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Abstract 

The colour of the face is one of the most significant factors in appearance 
and perception of an individual. With the rapid development of colour 3D 
printing technology and 3D imaging acquisition techniques, it is possible to 
achieve skin colour reproduction with the application of colour management. 
However, due to the complicated skin structure with uneven and non-
uniform surface, it is challenging to obtain accurate skin colour appearance 
and reproduce it faithfully using 3D colour printers. 

The aim of this study was to improve the colour reproduction accuracy of the 
human face using 3D printing technology. A workflow of 3D colour image 
reproduction was developed, including 3D colour image acquisition, 3D 
model manipulation, colour management, colour 3D printing, postprocessing 
and colour reproduction evaluation. Most importantly, the colour 
characterisation methods for the 3D imaging system and the colour 3D 
printer were comprehensively investigated for achieving higher accuracy. 
Specifically, a designated digital imaging system was developed to capture 
human faces to explore the effects of different factors, such as image 
format, training dataset and mapping method, on the accuracy of skin tone 
estimation. The findings supported the successful colour characterisation for 
the 3dMDface system to capture a 3D model of the human face with realistic 
skin colours. 

For the colour 3D printer, the methods of conventional polynomial regression 
and deep neural networks were investigated for printer colour 
characterisation which transforms from the printer controlled colour space to 
an output device-independent colour space, and five types of variables were 
compared as the output for producing higher precision in printing skin 
colours. Moreover, a specific skin colour chart was printed using the 3D 
printer to determine the colour profile for achieving faithful skin colour 
reproduction.  

In addition, psychophysical experiments with the grey-scale method were 
conducted to collect visual colour-differences data of 3D printed samples, 
and the results showed that the performance of CIELAB and CIEDE2000 
colour-difference formulae needs to be improved for 3D objects. 
Consequently, the parametric factors in the colour-difference formulae were 
optimised (𝑘𝑘𝐿𝐿 = 1.4, 𝑘𝑘𝐶𝐶 = 1.9 for CIELAB, and 𝑘𝑘𝐿𝐿 = 1.5 for CIEDE2000), and 
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the accuracy of 3D colour reproduction was evaluated using the optimised 
formulae. 

Based on the developed colour characterisation methods, a 3D model of a 
human face was printed using the proposed 3D colour image reproduction 
workflow, and the accuracy achieved was 5.73 CIELAB units (3.88 
CIEDE2000 units). The values were 3.75 and 3.42 units for the optimised 
colour-difference formulae. Overall, the methods and results presented in 
this thesis provide a new and improved understanding of colour 
characterisation and colour evaluation in 3D colour reproduction of human 
faces. 
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Chapter 1 
Introduction 

1.1 Background 

The colour of skin is one of the colours that we see most often in our daily 
lives, and there are many applications of skin colour appearance for various 
proposes, such as computer graphics, computer vision, medicine and 
cosmetology (Igarashi et al. 2005). Particularly, the colour appearance of the 
human face is the most significant factor indicating an individual’s health, 
age, attractiveness, emotional state, ethnic and cultural identity, etc. 
Achieving accurate skin colour reproduction of the human face is important 
for applications such as photography, digital art, graphic printing, and the 
fabrication of facial prostheses using 3D printing technology. 

With the development of diverse 3D image capturing techniques, the colour 
and geometric information of a target object can be captured and 
transformed into 3D digital models. Moreover, colour 3D printing technology 
makes it possible to produce full colour solid objects and enables colour 
controlling during the process of colour reproduction. By combining 3D 
image acquisition and 3D colour printing technology, it is desirable to 
fabricate soft tissue facial prostheses for patients suffering facial 
deficiencies, injuries or disfigurations, especially with an increase in the 
elderly population and the improving cancer survival rates that may involve 
facial tissues (Zardawi et al. 2015). Compared to the conventional method 
which is high skilled and both time and cost consuming, this advanced 
method is preferred because of its advantages in non-contact, flexible 
design, low cost, and customisation. 

Although the 3D imaging technique and colour 3D printing technology have 
been successfully applied to reproduce a face model, the colour accuracy 
still needs to be improved, especially considering that the human colour 
vision system appears to be sensitive to subtle changes in skin colour, 
reported by Changizi et al. (2006) and Jimenez et al. (2010). Therefore, it is 
crucial to achieve realistic and consistent skin colour reproduction using 3D 
printing technology.  

The limitations on achieving accurate colour reproduction of the human face 
usually come from the colour measurement technique used to quantify the 
colour of actual human skin, involving the colour characterisation for the 
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cameras used to capture the images of the human face. It is challenging due 
to the wide range of skin tones and colour heterogeneity on an individual’s 
face. Moreover, appropriate colour management approach is necessary in 
the 3D printing process to ensure that the 3D printer reproduces the desired 
skin tones accurately. As colour printing technologies continue to advance, 
new 3D colour printers with superior capabilities have emerged, making it 
achievable for reproducing skin colours accurately. 

Additionally, the evaluation of the accuracy of colour reproduction is of vital 
importance in the 3D printing process. The colour quality of the 3D printed 
objects was typically evaluated using colour-difference formulae such as 
CIELAB and CIEDE2000, however, these formulae were developed based 
on 2D colour samples, it is unknown how these formulae perform on 
predicting colour differences of 3D objects. In light of the circumstances, CIE 
Technical Committee 8-17 has been established to encourage researchers 
to collect visual colour-difference data of 3D objects and develop methods 
for evaluating colour differences between 3D objects.  

1.2 Aim and Objectives 

The aim of this research is to improve the accuracy of the colour 
reproduction of human face in the 3D printing process, including the tasks on 
skin colour measurement, 3D colour image acquisition, colour management 
from 3D imaging system to 3D printer, colour 3D printing and colour 
reproduction evaluation. During the conduction of this research, it is 
expected to achieve the following objectives:  

• To collect a skin colour database including spectral reflectance data 
and 2D & 3D colour images of human faces, 

• To establish a 3D colour image reproduction workflow of human faces 
for achieving higher accuracy, 

• To investigate the colour characterisation method for accurately 
capturing colour information in the 3D imaging system,  

• To develop a colour profile of the 3D printer for faithfully reproducing 
skin tones of the 3D printed models, 

• To improve the quantitative method for evaluating colour quality of 3D 
printed objects. 
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1.3 Thesis Structure 

In this thesis, eight chapters are included and organised as below: 

Chapter 1: Introduction 

The present chapter gives an introduction to this study by providing an 
overview of the research background, outlining the research aim and 
objectives, and describing the structure of the thesis. 

Chapter 2: Literature Survey 

In this chapter, literatures relevant to this research were reviewed, covering 
the fields of colour science, image science, 3D printing and psychophysics. 
Specifically, it includes the basic knowledge of CIE colorimetry, an overview 
of skin and skin colour, colour measurement using digital cameras, colour 
production in 3D printing. In addition, the techniques for conducting 
psychophysical experiments and the statistical measures for data analysis 
were presented in this chapter. 

Chapter 3: Methodology  

This chapter describes the methodology applied to achieve the aim and 
objectives of this research, including the 3D colour image reproduction 
workflow developed for human faces, the apparatus used in this study, the 
process of colour management in the workflow, and the evaluation of skin 
colour reproduction.  

Chapter 4: Image Measurement for Human Face 

This chapter begins by developing a specific 2D imaging system for 
capturing human faces and investigating the factors affecting the camera 
colour characterisation model for achieving accurate skin colour 
reproduction, followed by a case study on the investigation of skin colour 
heterogeneity under six illuminations different with CCTs. Moreover, the 
colour characterisation was performed on the 3D imaging system for 
accurate colour image acquisition. 

Chapter 5: Colour Characterisation for the 3D Printer 

This chapter focuses on the colour characterisation methods for the 3D 
printer to achieve higher accuracy of colour reproduction by comparing 
different methods and output variables. In practice, a printer colour profile 
with good performance was developed using a specific skin colour chart, 
and the colour reproduction accuracy of the 3D printer was significantly 
improved. 
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Chapter 6: Colour-Difference Evaluation of 3D printed objects 

Psychophysical experiments were conducted using the method of Grey 
Scale to investigate the visual colour perception of 3D printed samples in 
lightness, chroma and hue dimensions. Based on the collected visual colour-
difference data, the performance of CIELAB and CIEDE2000 colour-
difference formulae was tested for 3D objects. Furthermore, the parametric 
factors in the colour-difference formulae were optimised to better fit the 
visual results of 3D samples.  

Chapter 7: Implementation of 3D Colour Reproduction of a human face 

Based on the 3D colour image reproduction workflow, the practice of 
reproducing a human face from 3D imaging to colour 3D printing was carried 
out using the developed colour management procedure and specific colour 
quality assessment method. 

Chapter 8: Conclusions  

The last chapter summarises the findings of this study and provides 
suggestions for future work. 
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Chapter 2 
Literature Survey 

2.1  CIE Colorimetry 

In 1931, the Commission Internationale de l’Éclairage (CIE) established the 
first major recommendations on colorimetric standards, which were 
developed as the fundamental in the research field of colour science. The 
CIE colour specifications, colour difference formulae and colour appearance 
model have been introduced to provide recommendations and guidance on 
colour communication in various industrial applications. Therefore, it is 
crucial to understand CIE colorimetry for performing colour measurement 
and colour evaluation.  

2.1.1 CIE Standard Colorimetric Observers 

The mechanism of how colours are perceived by human eyes has been 
studied, and it was found that there are two types of photoreceptors in the 
retina of the eye: rods, which are highly sensitive to light and active at very 
low levels of light, and cones, which are capable of colour vision and active 
in a relatively bright environment (CIE 2018). Furthermore, there are three 
types of cones responding to long-, medium-, short-wavelength light, 
respectively, and the spectral sensitivities were be quantified by using a set 
of three functions, known as cone fundamentals (CIE 2006a).  

 

Figure 2.1 Basic experiment setup for colour matching (CIE 2006). 

Considering that it is complicated to measure the cone fundamentals of the 
eye, a set of colour matching functions (CMFs) were derived to represent the 
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average properties of human observers with normal colour vision, based on 
matching colours by the addition of different amounts of red, green, and blue 
(RGB) lights. Figure 2.1 illustrates the basic experiment setup for colour 
matching. The CIE 1931 and 1964 standard colorimetric observers were 
established for two different fields of view with respect to the observer’s eye. 

2.1.1.1 CIE 1931 CMFs 

The CIE 1931 standard colorimetric observer, also known as the CIE 2° 
standard colorimetric observer 𝑥𝑥2(λ), 𝑦𝑦2(λ), 𝑧𝑧2(λ) in technical applications, 
was established based on the results of two colour matching experiments 
with an approximately 2° bipartite field conducted separately by W.D. Wright 
(Wright 1929, 1930), and J. Guild (Guild 1931). In order to define a standard 
observer, the CIE system used three primaries of red at the wavelength of 
700 nm, green at 546.1 nm and blue at 435.8 nm to normalise the Wright 
and Guild experimental data, and a matrix transformation was applied to the 
RGB colour matching functions to avoid the negative values and reduce the 
complexity. Figure 2.2 shows the colour matching functions of the CIE 1931 
standard colorimetric observer which is recommended for small viewing 
fields between 1° to 4° (CIE 2018). A 2° visual field represents a diameter of 
about 17 mm at a viewing distance of 50 cm (CIE 2018).  

 

Figure 2.2 CIE 1931 colour matching functions.  

2.1.1.2 CIE 1964 CMFs 

For the application of larger viewing fields, the CIE 1964 supplementary 
standard colorimetric observer, also named as the CIE 10° standard 
colorimetric observer 𝑥𝑥10(λ), 𝑦𝑦10(λ), 𝑧𝑧10(λ), was derived from the results of 
two colour matching studies with a 10° bipartite field conducted by 
Speranskaya (1959) and Stiles and Burch (1959). A 10° visual field 
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represents a diameter of about 90 mm at a viewing distance of 50 cm (CIE 
2018). Judd (1993) performed the final transformation and derived the CIE 
1964 standard colorimetric observer. Figure 2.3 plots the CIE 1964 colour 
matching functions recommended for a viewing field larger than 4°. 

 

Figure 2.3 CIE 1964 colour matching functions.  

2.1.2 CIE Illuminants and Sources 

Light sources play an important role in colorimetry. Normally, there is no 
colour without light. For self-luminous colours, such as a candle or a 
firework, the light source itself is the colour stimulus. The radiation of a light 
source can be described by the spectral power distribution (SPD), which 
represents the radiant power per unit area per unit wavelength of an 
illumination (Ohta and Robertson 2006). It is a function of wavelength, 
typically ranging from 380 nm to 780 nm in the visible electromagnetic 
spectrum. When the radiation at the wavelength of 560 nm of the function is 
normalised as 100, it is called the relative spectral power distribution. 

Colour temperature is the colour of light emitted by a theoretical black body, 
also called a Planckian radiator, that absorbs all incident radiation. It is 
usually expressed in Kelvins (K). For light sources whose chromaticities are 
near, but not exactly on the Planckian locus, it is often to quote the 
temperature of the Planckian radiator that mostly resembles the colour of the 
light, and this is called correlated colour temperature (CCT). In order to 
reproduce colorimetric measurements, the CIE has standardised a series of 
SPDs: A, B, C, D, E and F, representing incandescent lights, phases of 
daylight, fluorescent lamps and high pressure discharge lamps, respectively. 
They were derived from theoretical data and referred as CIE illuminants (CIE 
2018). The practical realisations of a CIE illuminant are called CIE sources, 
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and it is referred to as a simulator in most cases that an illuminant cannot be 
reproduced accurately. Figure 2.4 illustrates the loci of the Planckian 
radiator, CIE illuminants and some colour temperatures in the 𝑢𝑢′𝑣𝑣′ uniform 
chromaticity diagram. 

   

Figure 2.4 The loci of the Planckian, CIE illuminants and some colour 
temperatures plotted in the 𝑢𝑢′𝑣𝑣′ chromaticity diagram (Hunt 2004). 

 

Figure 2.5 The relative spectral power distributions of CIE standard 
illuminants A, D50 and D65. 

Previously CIE defined two standard illuminants: A and D65, and a new 
standard illuminant D50 with a CCT of approximately 5000 K has been 
included in 2022 due to its extensive use in the fields of graphic, arts and 
photography (ISO/CIE 2022). CIE standard illuminant A has a CCT of 
approximately 2856 K, which is intended to represent typical tungsten-
filament lighting and recommended in all applications that involve the use of 
incandescent lighting. CIE standard illuminant D65 has a CCT of 
approximately 6500 K, and it is intended to represent average daylight and 
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can be used in all colorimetric calculations requiring representative outdoor 
daylight. Figure 2.5 plots the relative SPDs of CIE standard illuminants A, 
D50 and D65. 

2.1.3 CIE Standard Measurement Geometry 

In order to quantify the colorimetric characteristics of an object, it is not 
enough to define a standard observer and a standard illuminant, the 
measuring geometry has to be defined as well. The CIE specifies four 
measuring geometries for reflectance measurements:  0°:45°, 45°:0°, 8°:d 
and d:8° (CIE 2018), as shown in Figure 2.6. With the 0°:45° arrangement, 
the test sample is illuminated at an angle of 0° and the reflected light is 
detected at 45°. For 45°:0° measurement, the device illuminates the samples 
at 45° and detects the reflected light at 0°. In practice, these two types of 
measurement geometries, 0°:45° and 45°:0°, are widely used in the graphic 
arts industry, while the 45°:0° geometry may give rise to problems due to 
polarisation (Samanta and Das 1992).  

 

Figure 2.6 Schematic diagrams of the four CIE recommended geometries of 
illumination and measurement (Hunt and Pointer 2011). 

In the case of diffuse instrument geometries (8°:d and d:8°), a baffle is 
provided in the integrating sphere to prevent direct light from the sample 
falling on the detector, and a gloss trap is used to include or exclude the 
specular component (SCI/SCE). In the SCI measurement mode, the 
specular reflectance is included with the diffuse reflectance. It is used to 
measure the colour of an object without the influence of surface conditions. 
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When using the SCE measurement mode, the specular reflectance is 
excluded from the measurement and only the diffuse reflectance is 
measured. This type of measurement is used to evaluate colour of an object 
which correlates to visual perception. Some instruments can measure both 
SCE and SCI reflectance data simultaneously. It is necessary to consider 
these criteria and decide the suitable measurement mode, SCI or SCE, 
according to the object surface conditions. 

Generally, the illumination and viewing conditions play a significant role in 
colour measurement, it is important to select an appropriate measurement 
geometry that represents the viewing conditions of the target sample in the 
particular application. For partly glossy or textured samples, the preferred 
geometry is the one that minimises the surface effects (ASTM 2008). 

2.1.4 CIE Colour Spaces 

2.1.4.1 CIE XYZ and CIE 𝒙𝒙𝒙𝒙𝐘𝐘 Colour Space 

As shown in Figure 2.7, the perception of colour is generated by three 
components: the spectral power distribution of the light source, the optical 
properties of the surface of an object, and the response of the human colour 
vision system which is characterised by colour matching functions. 
According to the CIE recommendations (CIE 2018), a colour stimulus can be 
quantified by the integration of these three components, as expressed in the 
following equation: 

𝑋𝑋 = 𝑘𝑘�  𝑆𝑆(𝜆𝜆)𝜌𝜌(𝜆𝜆)
𝜆𝜆

𝑥̅𝑥(𝜆𝜆)𝑑𝑑𝑑𝑑 

(2.1) 𝑌𝑌 = 𝑘𝑘�𝑆𝑆(𝜆𝜆)𝜌𝜌(𝜆𝜆)
𝜆𝜆

𝑦𝑦�(𝜆𝜆)𝑑𝑑𝑑𝑑 

𝑍𝑍 = 𝑘𝑘�𝑆𝑆(𝜆𝜆)𝜌𝜌(𝜆𝜆)
𝜆𝜆

𝑧𝑧̅(𝜆𝜆)𝑑𝑑𝑑𝑑 

where X, Y, Z are the CIE XYZ tristimulus values, 𝜆𝜆 is the wavelength usually 
ranging from 380 nm to 780 nm or 400 nm to 700 nm, 𝑘𝑘 is a constant to 
normalize the Y values as 100 for the reference white and 𝑘𝑘 = 100/
∑ 𝑆𝑆(𝜆𝜆)𝜌𝜌(𝜆𝜆)𝜆𝜆 𝑦𝑦�(𝜆𝜆)𝑑𝑑𝑑𝑑, 𝑆𝑆(𝜆𝜆) indicates the spectral power distribution of the light 
source, 𝜌𝜌(𝜆𝜆)  denotes an object’s spectral reflectance, 𝑥𝑥(λ) , 𝑦𝑦(λ) , 𝑧𝑧(λ) 
represent the average spectral responses of the human colour vision 
system, either the CIE 1931 standard observer for 1° to 4° small visual field, 
or the CIE 1964 standard observer for a visual field larger than 4°, 𝑑𝑑𝑑𝑑 is an 
interval of the spectral wavelength, usually assigned as 1 nm, 5 nm or 10 nm 
(CIE 2018). For self-luminous objects, the 𝑆𝑆(𝜆𝜆)𝜌𝜌(𝜆𝜆) in Equation (2.1) can be 
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expressed as Φ(𝜆𝜆), which denotes the colour stimulus function of the light 
seen by the observer. 

 

Figure 2.7 An example of how human see colours. 

Although a colour stimulus can be described by using CIE XYZ tristimulus 
values, it is difficult to associate these numbers with the visual perception of 
the actual colour stimulus. The CIE XYZ colour space was designed to 
divide the conception of colour into two sections: the luminance factor 
indicated by the Y value with the maximum of 100, and the chromaticity 
diagram specified by 𝑥𝑥𝑥𝑥 coordinates. The CIE 𝑥𝑥,𝑦𝑦, 𝑧𝑧 chromaticity coordinates 
are defined as: 

𝑥𝑥 =
𝑋𝑋

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍 

(2.2) 𝑦𝑦 =
𝑌𝑌

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍 

𝑧𝑧 =
𝑍𝑍

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍 

where 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1, so it is simple to calculate the third one given any two of 
these three values. The two-dimensional 𝑥𝑥𝑥𝑥 chromaticity diagram, as shown 
in Figure 2.8 (left), is often used to plot colour coordinates. The luminance 
factor Y of the tristimulus values is usually used to specify a colour with 𝑥𝑥𝑥𝑥 
chromaticity coordinates, known as the CIE 𝑥𝑥𝑥𝑥Y colour space.  

However, it was found that equal colour differences computed by Euclidean 
distance in different regions of the colour space are not perceptually equal 
(Wright 1941). MacAdam reported that the chromaticity difference 
corresponding to a just noticeable colour difference will be different in 
different areas of the 𝑥𝑥𝑥𝑥 chromaticity diagram, and the equal chromaticity 
differences in different directions represent different colour-difference 
magnitudes (MacAdam 1942). Figure 2.8 (right) shows the MacAdam’s 
ellipses as 10 times just noticeable chromaticity differences in the CIE 𝑥𝑥𝑥𝑥 
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chromaticity diagram, and it can be clearly seen that this space is non-
uniform with the largest colour differences in green colours. These ellipses 
are expected to be circles of the same radius in the chromaticity diagram if 
the colour space is completely uniform. 

 

Figure 2.8 CIE 1931 𝑥𝑥𝑥𝑥 chromaticity diagram with the spectral locus and 
wavelengths shown in nanometres (left) and MacAdam’s ellipses ten 
times their actual sizes (right) (Małgorzata 2010). 

2.1.4.2 CIE 1976 Uniform Colour Space 

To improve the visual uniformity, a new chromaticity diagram, the CIE 1976 
uniform chromaticity scale diagram, was introduced by CIE, as shown in 
Figure 2.9 (left). The 𝑢𝑢′𝑣𝑣′ coordinates can be calculated as follows: 

𝑢𝑢′ =
4𝑥𝑥

−2𝑥𝑥 + 𝑦𝑦 + 3 =
4𝑋𝑋

𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍 
(2.3) 

𝑣𝑣′ =
9𝑥𝑥

−2 + 12𝑦𝑦 + 3 =
9𝑌𝑌

𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍 

  

Figure 2.9 CIE 1976 𝑢𝑢′𝑣𝑣′ chromaticity diagram (left) and MacAdam ellipses 
10-times of scale plotted (right). 
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Figure 2.9 (right) shows the MacAdam ellipses converted into the CIE 𝑢𝑢′𝑣𝑣′ 
chromaticity diagram, and it is clear that the uniformity of the ellipses is 
improved compared to the CIE 𝑥𝑥𝑥𝑥 chromaticity diagram (Figure 2.8), but it is 
still imperfect. The CIE 𝑢𝑢′𝑣𝑣′ chromaticity diagram is often used to describe 
the chromaticities of light sources. Examples are the definition of colour 
temperature as described in Section 2.1.2 (Figure 2.4). 

Based on the 𝑢𝑢′𝑣𝑣′ chromaticity diagram, the CIELUV or CIE 𝐿𝐿∗𝑢𝑢∗𝑣𝑣∗ uniform 
colour space was developed, which is sometimes used in industrial 
applications that depend on the additive mixing of light, such as colour 
television, illumination and video monitor, to specify self-luminous colour 
stimuli (Ohta and Robertson 2005). The equations to calculate the three 
coordinates in the CIELUV colour space are expressed: 

𝐿𝐿∗ = 116𝑓𝑓 �𝑌𝑌
𝑌𝑌𝑛𝑛
� − 16       

(2.4) 𝑢𝑢∗ = 13𝐿𝐿∗(𝑢𝑢′ − 𝑢𝑢𝑛𝑛′ ) 

𝑣𝑣∗ = 13𝐿𝐿∗(𝑣𝑣′ − 𝑣𝑣𝑛𝑛′ ) 

where 𝑢𝑢′,𝑣𝑣′are the CIE 1976 uniform chromaticity scale diagram coordinate 
of the test stimulus, 𝑢𝑢𝑛𝑛′ ,𝑣𝑣𝑛𝑛′  are those of a specified reference white, 𝑓𝑓 is a 
function expressed as: 

 𝑓𝑓(𝜔𝜔) = � 𝜔𝜔1/3

(841/108)(𝜔𝜔) + 16/116
     𝜔𝜔>(24/116)3
     𝜔𝜔≤(24/116)3     (2.5) 

The most widely used uniform colour space is the CIELAB or CIE 𝐿𝐿∗𝑎𝑎∗𝑏𝑏∗ 
colour space (CIE 1975). The lightness 𝐿𝐿∗ coordinate is the same as that in 
the CIELUV colour space, the other two coordinates can be calculated from 
CIE XYZ tristimulus values using the following equation:  

𝑎𝑎∗ = 500 �𝑓𝑓 �
𝑋𝑋
𝑋𝑋𝑛𝑛
� − 𝑓𝑓 �

𝑌𝑌
𝑌𝑌𝑛𝑛
�� 

(2.6) 
𝑏𝑏∗ = 200 �𝑓𝑓 �

𝑌𝑌
𝑌𝑌𝑛𝑛
� − 𝑓𝑓 �

𝑍𝑍
𝑍𝑍𝑛𝑛
�� 

where 𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛, 𝑍𝑍𝑛𝑛  are the tristimulus values of the reference white, and the 
function 𝑓𝑓 is as given by Equation (2.5). 

In CIELAB colour space, as shown in Figure 2.10, the attribute of 𝐿𝐿∗ 
represents the perceived lightness, the larger the 𝐿𝐿∗ value, the higher the 
lightness of the stimulus.  The 𝑎𝑎∗ axis points approximately in the direction of 
red-green colour stimulus, where the positive values of 𝑎𝑎∗ attribute indicate 
reddish colours while negative 𝑎𝑎∗ values denote greenish colours. The axis 
of  𝑏𝑏∗ indicates the direction of yellow-blue colour stimulus, where positive 𝑏𝑏∗  
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is more yellowish and negative  𝑏𝑏∗ is more bluish. Consequently, the 𝑎𝑎∗𝑏𝑏∗ 
diagram is divided into four quadrants by 𝑎𝑎∗, 𝑏𝑏∗ axis, and each represents 
different colour regions. The CIELAB uniform colour space is recommended 
for describing the colour of an object surface (Malacara 2003), widely used 
in colour applications such as the colourant and graphic art industries.  

 

Figure 2.10 The schematic diagram of CIELAB colour space. 

Additionally, there are two more perceived attributes, the chroma 𝐶𝐶ab∗ , 
representing the colourfulness of an object, and the hue angle ℎab , 
representing its proportions of red, green, yellow, blue colour. They can be  
derived from the 𝑎𝑎∗𝑏𝑏∗ coordinates by using the following equation: 

𝐶𝐶𝑎𝑎𝑎𝑎∗ = �𝑎𝑎∗2 + 𝑏𝑏∗2 
(2.7) 

ℎ𝑎𝑎𝑎𝑎 = arctan (𝑏𝑏∗/𝑎𝑎∗) 

The CIELAB hue angle ℎ𝑎𝑎𝑎𝑎 shall lie between 0° and 90° if 𝑎𝑎∗ and 𝑏𝑏∗ values 
are both positive, between 90° and 180° if 𝑎𝑎∗ value is negative and 𝑏𝑏∗ value 
is positive, between 180° and 270° if 𝑎𝑎∗and 𝑏𝑏∗  values are both negative, 
between 270° and 360° if 𝑎𝑎∗ value is positive and 𝑏𝑏∗ value is negative. The 
term of the hue angle ℎ𝑎𝑎𝑎𝑎  does not have a ‘‘*’’ symbol because pairs of 
colours with constant hue angle difference change their perceived colour 
difference with variation of chroma (Schanda 2007). 

2.1.5 Colour-Difference Formulae 

The evaluation of colour difference (∆E) between two colour stimuli is an 
important topic in colorimetry and the formulae developed based on CIE 
XYZ tristimulus values are widely used in industrial applications. Note that 
the prerequisite of applying colour-difference formulae is to ensure both 
colour stimuli are viewed under the same viewing conditions and identical 
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reference white. The reference conditions for applications are recommended 
by CIE (2006) and listed in Table 2.1. 

Table 2.1 CIE recommended reference conditions. 

Conditions CIE Recommendation 

Illumination Source simulating D65 

Illuminance 1000 lx 

Observer With normal colour vision 

Background field Uniform, neutral grey with 𝐿𝐿∗ = 50 

Viewing mode Object 

Samples size Greater than 4° subtended visual angle 

Sample separation Minimum, sample pairs with direct edge contact 

Magnitude of ∆E 0 to 5 CIELAB units 

Sample structure 
Homogeneous without apparent pattern or non-

uniformity 

2.1.5.1 CIE 1976 Colour-Difference Formula 

It is known that CIELUV colour space is mainly used for the television and 
illumination industries, and CIELAB colour space for the surface colourant 
industries (Hunt and Pointer 2011). Based on these two colour spaces, the 
associated colour-difference formulae have been widely utilised to quantify 
the perceived colour difference between a pair of colour samples. 

The simplest colour-difference formula is quantified as the Euclidean 
distance between two colour stimuli’s coordinates in CIELUV or CIELAB 
colour space, denoted as CIELUV ( ∆𝐸𝐸𝑢𝑢𝑢𝑢∗ ) or CIELAB ( ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ ) colour 
difference, the calculation formulae are expressed as:  

∆𝐸𝐸𝑢𝑢𝑢𝑢∗ = �(∆𝐿𝐿∗)2 + (∆𝑢𝑢∗)2 + (∆𝑣𝑣∗)2 (2.8) 

∆𝐸𝐸𝑎𝑎𝑎𝑎∗ = �(∆𝐿𝐿∗)2 + (∆𝑎𝑎∗)2 + (∆𝑏𝑏∗)2 = �(∆𝐿𝐿∗)2 + (∆𝐶𝐶𝑎𝑎𝑎𝑎∗ )2 + (∆𝐻𝐻𝑎𝑎𝑎𝑎∗ )2 (2.9) 

where ∆𝐿𝐿∗, ∆𝑢𝑢∗, ∆𝑣𝑣∗, ∆𝑎𝑎∗, ∆𝑏𝑏∗, ∆𝐶𝐶𝑎𝑎𝑎𝑎∗  correspondingly indicate the difference 
of 𝐿𝐿∗, 𝑢𝑢∗, 𝑣𝑣∗, 𝑎𝑎∗, 𝑏𝑏∗, 𝐶𝐶𝑎𝑎𝑎𝑎∗  coordinates of two colour stimuli with subscripts 0 
and 1, ∆𝐻𝐻𝑎𝑎𝑎𝑎∗  means hue difference which is defined as: 

 ∆𝐻𝐻𝑎𝑎𝑎𝑎∗ = 2sin (∆ℎ𝑎𝑎𝑎𝑎/2)�𝐶𝐶𝑎𝑎𝑎𝑎,0
∗ 𝐶𝐶𝑎𝑎𝑎𝑎,1

∗   (2.10) 
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As noted in Section 2.1.4.2, ∆ℎ𝑎𝑎𝑎𝑎  is not correlated to the perceptual 
magnitude of a difference in hue, and it may happen that the line joining the 
two colours crosses the +𝑎𝑎∗ axis, in which case the value of ∆ℎ𝑎𝑎𝑎𝑎 should be 
corrected by adding or subtracting 360°. Instead, ∆𝐻𝐻𝑎𝑎𝑎𝑎∗  is used for the 
calculation of CIELAB colour-difference formula. 

Considering that the CIELAB colour space is not perfectly uniform, several 
colour-difference formulae were developed to further improve the uniformity 
of the colour difference metric, such as the CMC (𝑙𝑙: 𝑐𝑐 ) colour-difference 
formula for the textile colouration industries (Clarke et al. 1984), the 
BFD(𝑙𝑙: 𝑐𝑐) developed by Luo and Rigg (1987), the CIE94 colour-difference 
formula for small colour difference (CIE 1995), and the CIEDE2000 colour-
difference formula (Luo et al. 2001). Due to the simplicity of the calculation in 
CIELAB colour-difference formula, it is still widely used for colour quality 
evaluation. 

2.1.5.2 CIEDE2000 Colour-Difference Formula 

The CIEDE2000 colour-difference formula was developed by Luo et al. 
(2001) to improve the perceptual uniformity, based on four reliable colour 
discrimination datasets collected from object colours: BFD-P (Luo 1987a, 
1987b), RIT–DuPont (Alman et al. 1989, Berns et al. 1991), Leeds (Kim and 
Nobbs 1997), and Witt (1999). This formula is jointly recommended as a 
standard by the CIE and the International Organization for Standardization 
(ISO) (ISO/CIE 2014). The CIEDE2000 colour-difference formula is 
expressed as: 

∆E00 = �( ∆𝐿𝐿′

𝑘𝑘𝐿𝐿𝑆𝑆𝐿𝐿
)2 + ( ∆𝐶𝐶′

𝑘𝑘𝐶𝐶𝑆𝑆𝐶𝐶
)2 + ( ∆𝐻𝐻′

𝑘𝑘𝐻𝐻𝑆𝑆𝐻𝐻
)2 + 𝑅𝑅𝑇𝑇( ∆𝐶𝐶′

𝑘𝑘𝐶𝐶𝑆𝑆𝐶𝐶
)2( ∆𝐻𝐻′

𝑘𝑘𝐻𝐻𝑆𝑆𝐻𝐻
)2  (2.11) 

where ∆𝐿𝐿′, ∆𝐶𝐶′, ∆𝐻𝐻′ are the lightness, chroma and hue differences between 
two colour stimuli subscripted as 0 and 1 (see Equation 2.12), 𝑘𝑘𝐿𝐿, 𝑘𝑘𝐶𝐶, 𝑘𝑘𝐻𝐻 are 
the parametric factors accounting for the influence of the illuminating and 
viewing conditions (𝑘𝑘𝐿𝐿 = 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 under so-called ‘reference conditions’ 
(Table 2.1) for most applications, and 𝑘𝑘𝐿𝐿 = 2,𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 for textiles), 𝑆𝑆𝐿𝐿, 𝑆𝑆𝐶𝐶, 
𝑆𝑆𝐻𝐻  are the lightness, chroma and hue weighting functions (see Equation 
2.13), 𝑅𝑅𝑇𝑇 is a new interactive function (see Equation 2.14) between chroma 
and hue differences to improve the performance of the colour-difference 
formula for fitting chromatic difference data in the blue region. 

The lightness weighting function 𝑆𝑆𝐿𝐿 in CIEDE2000 colour-difference formula 
was corrected as new data on lightness differences were collected in the 
database. The chroma weighting function 𝑆𝑆𝐶𝐶 is equivalent to that in CIE94, 
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which aimed to reduce the effect of chroma differences linearly with 
increasing chroma.  For the new hue weighting function 𝑆𝑆𝐻𝐻, a 𝑇𝑇 function is 
included in the calculation to cope with the complex hue-dependence.  

Since it was found that CIELAB-based formulae gave a poor fit to the 
chromatic differences close to neutral, a scaling factor 𝐺𝐺 was introduced to 
CIELAB 𝑎𝑎∗  scale in CIEDE2000 to improve the performance for neutral 
colours. Compared to the CIELAB colour-difference formula, the calculation 
of CIEDE2000 colour-difference formula is more complex, and the details 
are as follows (CIE 2001): 

Step 1. Calculate the CIELAB values (see Equation 2.4-2.6). 

Step 2. Calculate ∆𝑳𝑳′, ∆𝑪𝑪′ and ∆𝑯𝑯′: 

∆𝐿𝐿′ = 𝐿𝐿1′ − 𝐿𝐿0′  

∆𝐶𝐶′ = 𝐶𝐶1′ − 𝐶𝐶0′ 

∆𝐻𝐻′ = 2�𝐶𝐶1′𝐶𝐶0′ sin(ℎ1
′−ℎ0′

2
)  

(2.12) 

where 

𝐿𝐿′ = 𝐿𝐿∗ 

𝐶𝐶′ = �𝑎𝑎′2 + 𝑏𝑏′2 

ℎ′ = 𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑏𝑏′/𝑎𝑎′) 

where 

𝑎𝑎′ = (1 + 𝐺𝐺)𝑎𝑎∗ 

𝑏𝑏′ = 𝑏𝑏∗ 

where 

𝐺𝐺 = 0.5[1 −�(𝐶𝐶𝑎𝑎𝑎𝑎
∗ +𝐶𝐶𝑎𝑎𝑎𝑎,1

∗ )

2

7
/(𝐶𝐶𝑎𝑎𝑎𝑎∗�����

7 + 257)]. 

Step 3. Calculate lightness, chroma, hue weighting functions 𝑺𝑺𝑳𝑳,𝑺𝑺𝑪𝑪, 𝑺𝑺𝑯𝑯: 

𝑆𝑆𝐿𝐿 = 1 +
0.015 �𝐿𝐿1

′ + 𝐿𝐿0′
2 − 50�

2

�20 + �𝐿𝐿1
′ + 𝐿𝐿0′

2 − 50�
2
�

1
2
 

(2.13) 
𝑆𝑆𝐶𝐶 = 1 +

0.045(𝐶𝐶1′ + 𝐶𝐶0′)
2  

𝑆𝑆𝐻𝐻 = 1 +
0.015(𝐶𝐶1′ + 𝐶𝐶0′)

2 𝑇𝑇 
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where 𝑇𝑇 is 

𝑇𝑇 = 1 − 0.17 𝑐𝑐𝑐𝑐𝑐𝑐 ��ℎ1
′+ℎ2′ �
2

− 30°� + 0.24𝑐𝑐𝑐𝑐𝑐𝑐(ℎ1′ + ℎ2′ ) + 0.32cos [3�ℎ1
′+ℎ2′ �
2

+ 6°] −

0.20cos [2(ℎ1′ + ℎ2′ ) − 63°]  

Step 4. Calculate 𝑹𝑹𝑻𝑻: 

𝑅𝑅𝑇𝑇 = − sin(2∆𝜃𝜃) ∗ 𝑅𝑅𝐶𝐶 (2.14) 

where  

∆𝜃𝜃 = 30exp {−[
(ℎ1′ + ℎ2′ )

2 − 275°

25 ]2} 

𝑅𝑅𝐶𝐶 = 2�(𝐶𝐶1′+𝐶𝐶0′)
2

 7/ ((𝐶𝐶1′+𝐶𝐶0′)
2

 7 + 257). 

Step 5. Calculate CIEDE2000 ∆𝐄𝐄𝟎𝟎𝟎𝟎 (see Equation 2.11). 

2.1.6 Colour Appearance Model 

CIE colorimetry has been successfully applied in industries since it was 
proposed in 1931, however, it can only be used under limited viewing 
conditions, e.g., daylight illuminant, high luminance, grey background and 
standardised viewing/illuminating geometries. When the same sample is 
presented under two different conditions, the colour sensation perceived by 
human eyes could be different.  

With the rapid development of digital imaging technologies and increasing 
demands on cross-media colour reproduction, basic colorimetry is becoming 
insufficient, and a colour appearance model (CAM) is required to predict 
colour appearance across a wide range of viewing conditions. 

2.1.6.1 CIECAM02 

In 2002, a new colour appearance model, CIECAM02, was introduced and 
recommended by CIE (Moroney 2002, CIE 2004). Its development was 
based on CIECAM97s (CIE 1998, Luo and Hunt 1998) and it gives better 
agreement with experimental data. The schematic diagram of a colour 
appearance model can be simply shown in Figure 2.11 with the viewing 
parameters shown in the shaded area. The inputs 𝑋𝑋,𝑌𝑌,𝑍𝑍  are CIE XYZ 
tristimulus values of the colour stimulus, 𝑋𝑋𝑊𝑊,𝑌𝑌𝑊𝑊 ,𝑍𝑍𝑊𝑊 are the tristimulus values 
of the reference white under the test illuminant, 𝐿𝐿𝐴𝐴 indicates the luminance of 
the adapting field (Fairchild 2005); 𝑌𝑌𝑏𝑏  denotes the luminance factor of the 
background, the surround conditions are described by ‘average’, ‘dim’ and 
‘dark’ conditions in Table 2.2. 
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Figure 2.11 The schematic diagram of a CIE colour appearance model (CIE, 
2004). 

Table 2.2 Input parameters for the CIECAM02 model. 

Viewing conditions 𝑐𝑐 𝑁𝑁𝑐𝑐 𝐹𝐹 

Average 0.69 1.0 1.0 

Dim 0.59 0.9 0.9 

Dark 0.525 0.8 0.8 

There are many outputs from the CIECAM02 model describing the colour 
appearance attributes, such as lightness 𝐽𝐽, brightness 𝑄𝑄, colourfulness 𝑀𝑀, 
chroma 𝐶𝐶, hue composition 𝐻𝐻, etc. In addition to the forward model (Figure 
2.11), there is a reverse model aiming to transform human perceptual 
attributes back to tristimulus values, mainly recommended for applications in 
colour management. More details about the forward and reverse models of 
CIECAM02 can be found in the reference of CIE, 2004 and Xiao, 2006. 

One of the most important improvement of CIECAM02 as a refinement of 
CIECAM97s is the use of a linear chromatic adaptation transform (CAT), 
known as CAT02, to simplify the model. The chromatic adaptation transform 
aims to enable the human visual system to adjust to widely varying colour of 
illumination in order to approximately preserve the appearance of object 
colour. In CAT02, a transform matrix, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶02, was determined to convert CIE 
XYZ tristimulus values to RGB cone responses, as expressed in Equation 
2.15. The matrix was normalised so that the tristimulus values for the equal-
energy illuminant (𝑋𝑋 = 𝑌𝑌 = 𝑍𝑍 = 100) produce equal cone responses (𝐿𝐿 =
𝑀𝑀 = 𝑆𝑆 = 100 ). In addition, a factor denoting the degree of chromatic 
adaptation, 𝐷𝐷, is calculated using Equation (2.16) based on the adapting 
luminance 𝐿𝐿𝐴𝐴 and surround factor 𝐹𝐹 in Table 2.2.  
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�
𝑅𝑅
𝐺𝐺
𝐵𝐵
� = 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶02 �

𝑋𝑋
𝑌𝑌
𝑍𝑍
�    (2.15) 

where 

𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶02 = �
   0.7328 0.4296 −0.1624
−0.7036 1.6975    0.0061
    0.0030 0.0136    0.9834

�. 

𝐷𝐷 = 𝐹𝐹 �1 − � 1
3.6
� 𝑒𝑒(−𝐿𝐿𝐴𝐴−4292 )�    (2.16) 

Based on the CIECAM02 output attributes, a colour space 𝐽𝐽′𝑎𝑎𝑀𝑀′ 𝑏𝑏𝑀𝑀′  was 
developed to fit all available datasets. The colour difference between two 
samples can be calculated in this space using Equations (2.17-2.21). 
Moreover, three colour spaces named CAM02-SCD, CAM02-LCD and 
CAM02-UCS were developed for small, large, and combined small and large 
colour differences, respectively, to better describe human perceptual 
attributes. The coefficients for each CIECAM02 based colour space and the 
corresponding colour-difference formulae are listed in Table 2.3.  

𝐽𝐽′ =
(1 + 100𝑐𝑐1)𝐽𝐽

1 + 𝑐𝑐1𝐽𝐽
 (2.17) 

𝑀𝑀′ = (1/𝑐𝑐1)𝑙𝑙𝑙𝑙(1 + 𝑐𝑐2𝑀𝑀) (2.18) 

𝑎𝑎𝑀𝑀′ = 𝑀𝑀′𝑐𝑐𝑐𝑐𝑐𝑐(ℎ) (2.19) 

𝑏𝑏𝑀𝑀′ = 𝑀𝑀′𝑠𝑠𝑠𝑠𝑠𝑠(ℎ) (2.20) 

∆𝐸𝐸′ = �(∆𝐽𝐽′/𝐾𝐾𝐿𝐿)2 + (∆𝑎𝑎𝑀𝑀′ )2 + (∆𝑏𝑏𝑀𝑀′ )2 (2.21) 

Table 2.3 The coefficients for each CIECAM02 based colour space and the 
corresponding colour-difference formulae. 

 CAM02-SCD CAM02-LCD CAM02-UCD 

𝐾𝐾𝐿𝐿 1.24 0.77 1.00 

𝑐𝑐1 0.007 0.007 0.007 

𝑐𝑐2 0.0363 0.0053 0.0228 

Overall, the CIECAM02 colour appearance model has been widely used in 
academic research and industrial applications since it was recommended by 
CIE in 2002. However, it was reported that CIECAM02 has problems when 
predicting the lightness perceptual attribute for certain colour samples 
(Süsstrunk and Brill 2006, Brill and Süsstrunk 2007), and the predicted 
corresponding colours with negative tristimulus values (Li et al. 2007). In 
light of the above, a CIE technical committee: CIE TC8-11 on CIECAM02-
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Mathematics was established in 2007 to improve the performance of 
CIECAM02. 

2.1.6.2 CIECAM16 

Li et al. (2017) proposed a new transform matrix, 𝑀𝑀16 , by changing the 
original structure of the CIECAM02 model, resulting in a new CAT named 
CAT16. A new colour appearance model, CAM16, was developed by 
combining the chromatic and luminance adaptations in the same space 
instead of in two different spaces. It was tested using the colour appearance 
datasets and proved that the CAM16 model performed better than the 
CIECAM02 in predicting the colourfulness and hue composition. Moreover, a 
CIE Technical Report was published in 2022 to recommend the CAM16 
model, now known as CIECAM16 (CIE 2022), to replace the CIECAM02 
model for colour management systems that involve related colours, e.g., the 
evaluation of photographic prints, self-luminous displays, and generally in 
the imaging industries. 

Given a colour stimulus with known XYZ values under a test illuminant with 
known 𝑋𝑋𝑤𝑤, 𝑌𝑌𝑤𝑤 , 𝑍𝑍𝑤𝑤 values and the parameters for the surround (see Table 
2.2), the calculation of the CIECAM16 forward model is as follows: 

Step 1: Calculate RGB cone responses: 

�
𝑅𝑅
𝐺𝐺
𝐵𝐵
� = 𝑀𝑀16 �

𝑋𝑋
𝑌𝑌
𝑍𝑍
� , �

𝑅𝑅𝑤𝑤
𝐺𝐺𝑤𝑤
𝐵𝐵𝑤𝑤
� = 𝑀𝑀16 �

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
�   (2.22) 

where 

𝑀𝑀16 = �
   0.401288 0.650173 −0.051461
−0.250268 1.204414    0.045854
    0.002079 0.048952    0.953127

� 

Step 2: Complete the colour adaptation of the illuminant in the 
corresponding cone response space: 

�
𝑅𝑅𝐶𝐶
𝐺𝐺𝐶𝐶
𝐵𝐵𝐶𝐶
� = �

𝐷𝐷𝑅𝑅𝑅𝑅
𝐷𝐷𝐺𝐺𝐺𝐺
𝐷𝐷𝐵𝐵𝐵𝐵

�,  �
𝑅𝑅𝑐𝑐𝑐𝑐
𝐺𝐺𝑐𝑐𝑐𝑐
𝐵𝐵𝑐𝑐𝑐𝑐

� = �
𝐷𝐷𝑅𝑅𝑅𝑅𝑤𝑤
𝐷𝐷𝐺𝐺𝐺𝐺𝑤𝑤
𝐷𝐷𝐵𝐵𝐵𝐵𝑤𝑤

�   (2.23) 

where 

𝐷𝐷𝑅𝑅 = 𝐷𝐷
𝑌𝑌𝑊𝑊
𝑅𝑅𝑊𝑊

+ 1 − 𝐷𝐷 

𝐷𝐷𝐺𝐺 = 𝐷𝐷
𝑌𝑌𝑊𝑊
𝐺𝐺𝑊𝑊

+ 1 − 𝐷𝐷 

𝐷𝐷𝐵𝐵 = 𝐷𝐷
𝑌𝑌𝑊𝑊
𝐵𝐵𝑊𝑊

+ 1 − 𝐷𝐷 
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where 𝐷𝐷 is the degree of adaption which is the same as that in CIECAM02 
model (see Equation 2.16). 

Step 3: Calculate the post adaptation cone responses: 

𝑅𝑅𝑎𝑎 = 400 �
(𝐹𝐹𝐿𝐿𝑅𝑅𝑐𝑐/100)0.42

(𝐹𝐹𝐿𝐿𝑅𝑅𝑐𝑐/100)0.42 + 27.13� + 0.1 

(2.24) 𝐺𝐺𝑎𝑎 = 400 �
(𝐹𝐹𝐿𝐿𝐺𝐺𝑐𝑐/100)0.42

(𝐹𝐹𝐿𝐿𝐺𝐺𝑐𝑐/100)0.42 + 27.13� + 0.1 

𝐵𝐵𝑎𝑎 = 400 �
(𝐹𝐹𝐿𝐿𝐵𝐵𝑐𝑐/100)0.42

(𝐹𝐹𝐿𝐿𝐵𝐵𝑐𝑐/100)0.42 + 27.13� + 0.1 

where 

𝐹𝐹𝐿𝐿 = 0.2𝑘𝑘4(5𝐿𝐿𝐴𝐴) + 0.1(1 − 𝑘𝑘4)2(5𝐿𝐿𝐴𝐴)1/3 

where 

𝑘𝑘 =
1

5𝐿𝐿𝐴𝐴 + 1 

If 𝑅𝑅𝑎𝑎 is negative, then 

𝑅𝑅𝑎𝑎 = −400 �
(𝐹𝐹𝐿𝐿𝑅𝑅𝑐𝑐/100)0.42

(𝐹𝐹𝐿𝐿𝑅𝑅𝑐𝑐/100)0.42 + 27.13� + 0.1 

The 𝑅𝑅𝑎𝑎𝑎𝑎, 𝐺𝐺𝑎𝑎𝑎𝑎, 𝐵𝐵𝑎𝑎𝑎𝑎 can be calculated from 𝑅𝑅𝑐𝑐𝑐𝑐, 𝐺𝐺𝑐𝑐𝑐𝑐, 𝐵𝐵𝑐𝑐𝑐𝑐 in the same way. 

Step 4: Calculate the redness-greenness 𝒂𝒂, yellowness-blueness 𝒃𝒃 and 
hue angle 𝒉𝒉 (between 0° and 360°): 

𝑎𝑎 = 𝑅𝑅𝑎𝑎 −
12𝐺𝐺𝑎𝑎

11 +
𝐵𝐵𝑎𝑎
11 (2.25) 

𝑏𝑏 =
(𝑅𝑅𝑎𝑎 + 𝐺𝐺𝑎𝑎 − 2𝐵𝐵𝑎𝑎)

9  (2.26) 

ℎ = 𝑡𝑡𝑡𝑡𝑡𝑡−1(
𝑏𝑏
𝑎𝑎) (2.27) 

Step 5: Using the following unique hue data in Table 2.4, set 𝒉𝒉′ = 𝒉𝒉 +
𝟑𝟑𝟑𝟑𝟑𝟑 if 𝒉𝒉 < 𝒉𝒉𝟏𝟏, otherwise 𝒉𝒉′ = 𝒉𝒉, and choose a proper 𝒊𝒊 (𝒊𝒊 = 𝟏𝟏,𝟐𝟐,𝟑𝟑,𝟒𝟒 𝒐𝒐𝒐𝒐 𝟓𝟓) 
so that 𝒉𝒉𝒊𝒊 ≤ 𝒉𝒉′ ≤ 𝒉𝒉𝒊𝒊+𝟏𝟏 . Calculate the eccentricity factors 𝒆𝒆𝒕𝒕  and hue 
quadrature composition 𝑯𝑯: 

𝑒𝑒𝑡𝑡 =
1
4 [cos (

ℎ′𝜋𝜋
180 + 2) + 3.8] (2.28) 

𝐻𝐻 = 𝐻𝐻𝑖𝑖
100(ℎ′ − ℎ𝑖𝑖)/𝑒𝑒𝑖𝑖

(ℎ′ − ℎ𝑖𝑖)/𝑒𝑒𝑖𝑖 + (ℎ𝑖𝑖+1 − ℎ′)/(𝑒𝑒𝑖𝑖 + 1) (2.29) 
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Table 2.4 Unique hue data for calculation of hue quadrature (Li et al. 2017). 

 Red yellow Green Blue Red 

𝑖𝑖 1 2 3 4 5 

ℎ𝑖𝑖 20.14 90.00 164.25 237.53 380.14 

𝑒𝑒𝑖𝑖 0.8 0.7 1.0 1.2 0.8 

𝐻𝐻𝑖𝑖 0.0 100.0 200.0 300.0 400.0 

Step 6: Calculate achromatic response 𝑨𝑨： 

𝐴𝐴 = �2𝑅𝑅𝑎𝑎 + 𝐺𝐺𝑎𝑎 +
𝐵𝐵𝑎𝑎
20 − 0.305� 𝑁𝑁𝑏𝑏𝑏𝑏 (2.30) 

where  

𝑁𝑁𝑏𝑏𝑏𝑏 = 0.725(
1
𝑛𝑛

)2 

𝑛𝑛 =
𝑌𝑌𝑏𝑏
𝑌𝑌𝑤𝑤

 

Step 7: Calculate the correlate of lightness 𝑱𝑱： 

𝐽𝐽 = 100(
𝐴𝐴
𝐴𝐴𝑤𝑤

)𝑐𝑐𝑐𝑐 (2.31) 

where 

𝐴𝐴𝑤𝑤 = �2𝑅𝑅𝑎𝑎𝑎𝑎 + 𝐺𝐺𝑎𝑎𝑎𝑎 +
𝐵𝐵𝑎𝑎𝑎𝑎
20 − 0.305� 𝑁𝑁𝑏𝑏𝑏𝑏 

𝑧𝑧 = 1.48 + √𝑛𝑛 

Step 8: Calculate the correlate of brightness 𝑸𝑸: 

𝑄𝑄 = (
4
𝑐𝑐) �

𝐽𝐽
100

�
0.5

(𝐴𝐴𝑊𝑊 + 4)𝐹𝐹𝐿𝐿0.25 (2.32) 

Step 9: Calculate the correlates of chroma 𝑪𝑪 , colourfulness 𝑨𝑨 , and 
saturation 𝒔𝒔: 

𝑡𝑡 =
(50000

13 𝑁𝑁𝑐𝑐𝑁𝑁𝑐𝑐𝑐𝑐)𝑒𝑒𝑡𝑡(𝑎𝑎2 + 𝑏𝑏2)1/2

𝑅𝑅𝑎𝑎 + 𝐺𝐺𝑎𝑎 + (21/20)𝐵𝐵𝑎𝑎
 (2.33) 

𝐶𝐶 = 𝑡𝑡0.9 �
𝐽𝐽

100
�
0.5

(1.64 − 0.29𝑛𝑛)0.73 (2.34) 

𝑀𝑀 = 𝐶𝐶𝐹𝐹𝐿𝐿0.25 (2.35) 

𝑠𝑠 = 100 �
𝑀𝑀
𝑄𝑄
�
0.5

 (2.36) 

where 



- 24 - 
 

𝑁𝑁𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑏𝑏𝑏𝑏 

There is a reverse model for CIECAM16, mapping the perceived correlates 
( 𝐽𝐽,𝐶𝐶,ℎ  or 𝑄𝑄, 𝑀𝑀, 𝑠𝑠,𝐻𝐻 ) to the CIE XYZ tristimulus values under the test 
illuminant. More details can be found in CIE Colorimetry (CIE 2018). 

The acceptance of the CIECAM16 model has made great progress for 
colour appearance applications, furthermore, a new uniform colour space, 
CIECAM16-UCS, was developed based on the this model to replace the 
CIECAM02-UCS space. Three coordinates in the CIECAM16-UCS colour 
space, 𝐽𝐽′, 𝑎𝑎′, 𝑏𝑏′ are defined as: 

𝐽𝐽′ =
1.7𝐽𝐽

1 + 0.007𝐽𝐽 

(2.37) 𝑎𝑎′ = 𝑀𝑀′cos (ℎ) 

𝑏𝑏′ = 𝑀𝑀′sin (ℎ) 

where 

𝑀𝑀′ = ln(1 + 0.0228𝑀𝑀) /0.0228 

The CIECAM16-UCS colour difference between two samples subscripted as 
0 and 1 can be calculated as the Euclidean distance between them in the 
CIECAM16-UCS colour space, and the colour-difference formula can be 
further improved by applying a power correction, as shown in the following 
equations:  

∆𝐸𝐸′ = �(𝐽𝐽0′ − 𝐽𝐽1′)2 + (𝑎𝑎0′ − 𝑎𝑎1′ )2 + (𝑏𝑏0′ − 𝑏𝑏1′)2 (2.38) 

∆𝐸𝐸 = 1.41(∆𝐸𝐸′)0.63 (2.39) 

2.2 Skin and Skin Colour 

Skin is the largest organ and the outermost tissue of the human being 
(Igarashi et al. 2005). The colour of skin is probably one of the colours that 
we see most often in our daily lives, and it directly connects with the visual 
perception of facial attractiveness, health and age (Fink et al. 2006, De Riga 
et al. 2010, Jones et al. 2016). The study on skin colour has been applied to 
various multidisciplinary applications. Apart from the colour reproduction of 
skin in amateur and professional photography (Zeng and Luo 2013), 
cinematography and printing (Pedersen et al. 2010), these applications 
include the photographic recording of skin colour for medical diagnosis or 
treatment response (Choi et al. 2012, Ly et al. 2020), skin-colour based face 
detection for computer vision applications (Jones and Rehg 2002, Brancati 
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et al. 2017), the identification of skin colour preference in the cosmetic and 
personal healthcare industries (Caisey et al. 2006, Lee et al. 2019), and the 
potential manufacture of facial prostheses in 3D colour printing (Xiao et al. 
2014). For all these applications, it is of vital importance to understand the 
structure of the skin and find a reliable technique to objectively quantify the 
colour of skin.  

2.2.1 Skin Components 

Skin has a very complex structure that consists of many components, such 
as cells, fibres, veins, capillaries and nerves (Igarashi et al. 2005). It is 
mainly composed of three layers: the epidermis, dermis and hypodermis, as 
shown in Figure 2.12.  

 

Figure 2.12 The cross-sectional schematic diagram of skin (©The McGraw-
Hill Companies, Inc.). 

There are two main pigments that determine the skin colour: melanin and 
haemoglobin (Angelopoulou 2001). Melanin is especially important for 
contributing differences in skin tones. It is produced in the cells called 
melanocytes within the skin epidermis (Figure 2.13) and its function is to 
protect the body by absorbing or scattering ultraviolet radiation before it 
damages skin cells. People have different skin colours principally because 
there are different amounts of melanin produced by the melanocytes. 
Haemoglobin is a red coloured pigment found in blood vessels and it will 
make the skin appear redder when blood vessels are closer to the surface of 
the skin. In addition, an orange and yellow pigment in the skin called 
carotene also helps to determine the colour of the skin. Excess amounts of 
carotene will result in accumulation in tissues and lead to yellowish skin 
colour appearance (Ogura et al. 2011).  
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Figure 2.13 The schematic diagram of skin chromophores. 

Skin pigmentation is usually the result of individual genetics, geography, and 
the ultraviolet radiation from the sun (Richards et al. 2003). Human skin 
exhibits great colour variations from the darkest brown to the lightest white 
due to the existing pigmentations within the skin. Naik et al. (2022) reviewed 
the previous research work on assessing skin colour variations among 
different populations and reported that the ethnic skin colour variations are 
remarkable in skin structure and functions as well as difference in 
dermatological disease patterns. 

2.2.2 Facial Skin Colour  

It is well known that the sebum secretion over the face is different, e.g., the 
nose is the region to have more sebum secreted on the face, followed by the 
forehead and chin, compared to other regions such as the cheeks (Igarashi 
2005). Similarly, the colours of skin on a human face vary from different 
regions. It is acknowledged that there is more redness on cheeks, dullness 
around eyes and suntan for forehead (Yoshikawa 2009). These colours are 
perceived, observed and evaluated comprehensively as facial skin colour. 
Figure 2.14 illustrates the interpreted facial skin colour in specific regions. 

It was reported that facial redness increases the perception of healthy and 
attractive colour appearance (Stephen et al. 2009, Thorstenson et al. 2017). 
Skin colour homogeneity or skin colour heterogeneity, driven by the 
distributions of skin chromophores, is positively associated with the 
perception of age, health and attractiveness on the human face (Fink et al. 
2006, 2012). Additionally, different skin colouration in the face can be used 
to judge the physical status of a person as healthy or unhealthy, particularly 
in the periorbital, cheek, and forehead areas (Jones et al. 2016).  
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Figure 2.14 The interpreted facial skin colour in specific regions: forehead 
(FH), periphery of eyes (PE), upper cheek (UC), lower cheek (LC), 
nose (NS), and periphery of mouth (PM) (Yoshikawa 2009). 

2.2.3 Skin Colour Measurement   

The measurement of skin colour and its appearance have been investigated 
in previous studies (Clays et al. 2000, Xiao et al. 2012, Wang et al. 2018). 
Based on CIE colorimetry, different types of colour measurement 
instruments were developed and widely used for quantifying object colours, 
such as a colorimeter, spectrophotometer and spectroradiometer. For 
measuring human skin colour, the methods can be generally divided into two 
types: those based on contact measurements and those based on non-
contact measurements. Currently, spectrophotometers and tele-
spectroradiometers are the two main types of instruments that are most 
widely used for measuring skin colour. In addition to conventional 
spectrophotometers and tele-spectroradiometers, it has been widespread to 
use digital cameras that characterise surface colour and visual texture with 
the development of digital imaging systems. 

2.2.3.1 Spectrophotometer Measurement  

A spectrophotometer is a contact-measurement instrument, measuring the 
colour of a non-self-luminous object by contacting its surface in a selected 
area. It has an internal light source, usually a tungsten-halogen light source 
or a xenon flash lamp (Hunt and Pointer 2011), to illuminate the sample so 
that the amount of light reflected from the surface of the sample can be 
measured at different wavelengths of the visible spectrum. Typically, the 
range of wavelengths measured using a spectrophotometer is from 400 nm 
to 700 nm with intervals of 10 nm. Since a spectrophotometer measures the 
reflectance factor, a calibration procedure including white and zero 
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calibration is required so that the intensity of light at each group of 
wavelengths can be scaled to a range of human perception from 0 to 100, 
where zero is completely dark and 100 is perfect white. 

Table 2.5 Studies on skin colour measurement using spectrophotometers. 

Authors Spectrophotometer Human Population Body Location 

Xiao et al. 
2012 

Konica Minolta 
CM-2600d (di:8°, 3 

mm) 
Chinese 

Face, hand, 
arm 

Del Bino and 
Bernerd, 2013 

Datacolour Check 
(di:8°, 8 mm) 

Caucasian, Hispanic, 
African, Asian. 

Breast 

Matias et al. 
2015 

Mexameter MX-18 
Fitzpatrick skin type 

II and III 
Back 

Wang et al. 
2017 

Datacolour 600 
(de:8°, 8 mm); 

X-Rite SpectroEye 
(45°:0°, 4.5 mm) 

Chinese, Caucasian, 
Africans, Sri Lankans 

Face, hand, 
arm 

Wang et al. 
2018 

Konica Minolta 
CM-700d (di:8°, 3 

mm / 8 mm) 

Chinese, Caucasian, 
South Asian, African 

Face, neck, 
hand 

Melgosa et al. 
2018 

Konica Minolta 
CM-700d (d:8°, 8 
mm), CM2600d 

Caucasians, 
Orientals 

Face 

He et al. 2020 
Konica Minolta 

CM-2600d (di:8°, 3 
mm) 

Indonesian, Chinese, 
Caucasian, Mexican, 

African 
Face 

Amano et al. 
2020 

Konica Minolta 
CM-700d (di:8°, 8 

mm), 
Not restricted Arm 

Jiang et al. 
2022 

Konica Minolta 
CM-2600d (di:8° / 

de:8°, 8 mm) 
Chinese 

Face, neck, 
hand 

According to the measuring geometry, there are three main types of 
spectrophotometer: 0°:45° (or 45°:0°), sphere and multi-angle 
spectrophotometers. For sphere spectrophotometers, there are two types of 
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measurement modes: specular component included (SCI) and specular 
component excluded (SCE). A spectrophotometer can provide different sizes 
of measurement apertures, often denoted small, middle and large aperture 
size. A suitable spectrophotometer with an appropriate measurement mode 
for a specific application depends on the sample material, desired 
functionality and portability. 

For measuring skin colour, spectrophotometers are widely used to measure 
the spectral reflectance of human skin within the visible spectrum. CIE XYZ 
tristimulus values or CIELAB values can be derived from CIE standard 
illuminants and CIE standard colorimetric observers. Table 2.5 summarises 
recent studies on skin colour measurement using spectrophotometers. 
Generally, spectrophotometers have high accuracy and consistency on 
measuring surface colours, and they provide different settings for various 
purposes, giving reliable results of spectral reflectance, CIE colorimetric data 
and colour-difference values. However, there are some limitations for 
spectrophotometer measurement, e.g., the measurement aperture size is 
restricted, wet and liquid samples cannot be measured using a 
spectrophotometer since it is a contact-measurement device.  

2.2.3.2 Spectroradiometer Measurement 

A spectroradiometer is a type of non-contact measurement instrument, 
measuring the amount of radiation of a self-luminous object such as a 
television and a computer display, or an object illuminated by a light source. 
It must be borne in mind that the measurement geometry of the light from 
self-luminous colours may affect the results (Hunt and Pointer 2011). 
Compare to a spectrophotometer, there is no fixed illumination and viewing 
geometry integrated in a spectroradiometer. For a non-self-luminous object, 
an external light source has to be provided to illuminate the object so that 
the reflected light can be measured using the spectroradiometer. In such 
cases, it is highly required to have a stable and uniform illumination for 
obtaining accurate and repeatable measurement results. One of the 
advantages of spectroradiometer measurement is that the measured results 
better correspond to the actual viewing conditions. 

In addition, a light source can be measured using a spectroradiometer based 
on a stable white reflecting surface (reference white) with known spectral 
power distribution. When measuring the absolute radiant power by using a 
spectroradiometer, a calibration must be performed before measurement, 
which is usually offered by the instrument manufacturer as part of the 
instrument package. Furthermore, colour measurement instruments are 
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always evaluated for uncertainty, repeatability and accuracy (Berns 2019), 
and the results are usually reported in a statement for users. 

Spectroradiometers are also utilised for skin colour measurement. 
Regarding the variability of skin colour measurement between a  
spectrophotometer and a spectroradiometer, Wang et al. (2017) reported 
that the spectral reflectance measured using a spectroradiometer had a 
similar shape to that of a de:8° spectrophotometer measurement which 
presented a slightly lower amplitude. The reflectance factor achieved from 
the 45°:0° spectrophotometer is obviously smaller than that from the de:8° 
device in the long wavelength range greater than 580 nm, although both 
instruments are contact-measurement instruments. In addition, Wang et al. 
(2018) investigated the effect of different measurement parameters on skin 
colour measurement of the forehead and cheekbones, e.g., different 
measurement aperture sizes and different pressure for the 
spectrophotometer, and different measurement distances for the 
spectroradiometer. 

2.2.3.3 Camera Measurement  

For non-contact measurement instruments, a high-quality digital camera 
could be one of the options, extracting colour data from the captured images 
for quantitative analysis. Since colour images collected from a digital camera 
are in RGB colour space which is dependent on the device used, known as 
device-dependent parameters, and the colour possibly varies among 
different cameras. A colour characterisation procedure should be conducted 
so that the relationship between the RGB signals generated by the digital 
camera and the corresponding CIE colorimetric values can be quantified. 
Usually, a colour characterisation model is determined for the camera to 
transform RGB values of digital images to CIE colorimetric values. The 
process of camera colour characterisation will be introduced in Section 2.3. 

A digital imaging system consisting of a standardized digital camera and a 
controlled, stable lighting environment has been widely used for skin colour 
measurement, especially considering that spectrophotometers and 
spectroradiometers are not suitable for those applications which need to 
measure a wide range of skin area because of their limited apertures/angles. 
An example is the DigiEye non-contact colour measurement and imaging 
system, developed by VeriVide Ltd, as shown in Figure 2.15. It consists of a 
Nikon D7000 SLR (digital single-lens reflex) camera controlled by the 
DigiEye software and a large viewing cabinet providing consistent and 
uniform daylight environment. Xiao et al. (2016b) used this device to capture 
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the colour images of human faces and reconstructed spectral reflectance of 
skin from camera RGB images. In addition, various digital imaging systems 
were developed to study facial colour distributions, skin colour 
heterogeneity, dermatology diagnosis (Kikuchi et al. 2015 and 2020, Ly et al. 
2020) . 

  

Figure 2.15 DigiEye colour imaging equipment with a large cabinet. 

2.2.4 Skin Colour Database 

In order to investigate the uncertainty in skin colour measurement and 
recommend protocols for good measurement practice, CIE Technical 
Committee CIE 1-92: Skin Colour Database was established to encourage 
the collection of skin images and skin colours covering different ethnicities, 
gender, age and body locations. Its aim is to understand the characteristics 
of skin colours and develop a publicly accessible database of skin 
reflectance data. With the increasing demands of multi-disciplinary 
applications of human skin colour, various skin colour databases including 
spectra data and CIE LAB values were developed to provide the reference 
for evaluating skin colour reproduction. 

2.2.4.1 SOCS 

In 2003, the ISO published an international standard: Graphic technology - 
Standard object colour spectra (SOCS) database for evaluating the colour 
reproduction of image input devices (ISO 2003). It includes 8213 human skin 
colours from six groups: SHISEIDO, KAO, OOKA, KAWASAKI, OULU and 
SUN, covering a relatively large number of skin colours for different genders, 
ethnicities and body locations (forehead, cheek, neck and arm). Table 2.6 
lists the information of instrument types, human subjects and measured 
body locations of these six groups of skin colours. It can be seen that most 
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skin colour data were collected from Japanese and Caucasian participants, 
and the number of human subjects from other ethnic groups is limited. 
Based on these skin colour data collected, ISO/TR16066 recommends six 
typical skin colour groups (ISO/TR 2003): 

• Bare North Asian skin, 
• Foundation-applied North Asian skin, 
• Bare South Asian skin, 
• Foundation-applied South Asian skin, 
• Bare Caucasian skin 
• Bare Negroid skin. 

The SOCS database did not report the details of the instrument used, and 
different types of colour measurement instruments with different 
measurement settings used made it problematic to compare between 
different datasets.   

Table 2.6 The six groups of skin colour databases included in SOCS (Xiao 
2013). 

 Instrument Types Human subjects Body locations 

SHISEIDO 
Contact (d:0° 

SCE) 
Asian females (most 

Japanese) 
Forehead, cheek, 

neck 

KAO 
Contact (d:0° 

SCE) 
Japanese Females 

Forehead, cheek, 
arm, neck 

OOKA 
Non-contact & 

contact 
Japanese (most 

males) 
forehead, cheek 

KAWASAKI 
Non-contact & 

Contact 
Most Japanese 

males 
Forehead, cheek 

OULU 
Contact (d:8° 

SCE) 
Most Caucasian, 
Negroid, Asian 

Forehead, cheek 

SUN 
Contact (d:8° 

SCE) 
Caucasian, Negroid 
and other ethnics  

Forehead, cheek, 
neck, hand 

2.2.4.2 L’Oréal 

Colour measurements on human skin were extensively conducted by the 
L’Oréal Ltd. for various research purposes. In 2007, more than 1000 women 
including Caucasian and half-caste (France, United States, Mexico, and 
Brazil), Asian (Japan, Korea, China, and Thailand) and African descent were 
involved in a study where a Photo Research PR-650 spectroradiometer was 
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used to measure the bare skin colours at the forehead, cheekbone and 
forearm in the Chromasphere device which was developed by the L’Oréal 
Ltd. to provide a constant diffusing lighting environment (Rigal et al. 2007). 
In 2010, colour images of 385 female faces (121 African-American, 80 
Caucasian, 120 Chinese and 64 Mexican, aged from 18 to 87) were 
captured, and skin colour data were derived from the images by performing 
colour characterisation using a Macbeth ColorChecker chart (Rigal et al. 
2010). The effect of age on skin colour and colour heterogeneity in the four 
ethnic groups were investigated based on CIELAB values. Moreover, 
Colomb et al. (2018) conducted skin colour measurements on cheeks of 
1204 Indian females aged from 18 to 84 years, using a Photo Research PR-
650 spectroradiometer to obtain the CIELAB values. 

2.2.4.3 Shiseido 

Facial skin colour measurements were extensively conducted by Shiseido 
Ltd. during the years of 1991-2015, with 3181 healthy Japanese women 
aged from 20 to 59 years involved (Kikuchi et al. 2018). The bare skin colour 
was measured at the area under the cheek by using three colour 
measurement instruments, and the spectral reflectance data of the facial 
skin were collected in the wavelength range of 400 nm to 700 nm at intervals 
of 10 nm. More detail information can be found in Table 2.7 for when the 
colour measurements were taken, the number of human subjects, the 
measurement instrument and settings.  

Based on the collected skin colour database, Kikuchi et al. (2018) reported 
long-term skin colour changes in Japanese women’s face and investigated 
the factors relevant to skin pigmentations that affect the skin colour changes. 

Table 2.7 Information about Shiseido’s facial skin colour measurements. 

Years No. of subjects Instrument 

1991-1992 794 Konica Minolta CM-1000RHs (de:8°, 10 mm) 

1999-2002 847 Konica Minolta CM-1000RHs (de:8°, 10 mm) 

2004-2006 350 Konica Minolta CM-2600d (di:8°, 8 mm) 

2013-2015 
644  Konica Minolta CM-2600d (di:8°, 8 mm)  

546 Konica Minolta CM-700d (di:8°, 8 mm) 
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2.2.4.4 Xiao et al.  

Xiao et al. (2017) developed a new skin colour database by measuring skin 
colours of four body areas (forehead, cheek, back of hand, inner arm) of 960 
individuals from four different ethnic groups: Caucasian, Chinese, Kurdish, 
Thai. This database includes 3860 skin colour data in terms of CIE XYZ 
tristimulus values under CIE illuminant D65 and CIE 2° standard colorimetric 
observer, which was used to investigate the variations in different ethnic skin 
colours. Table 2.8 gives relevant information about the collection of this skin 
colour database. 

Table 2.8 Information about the collection of the skin colour database 
developed by Xiao et al. 

 Number Site Instrument 

Caucasian 187 (102 F, 85 M) UK 
Konica Minolta CM-
2600d (di:8°, 3 mm) 

Chinese 202 (65 F, 137 M) China 

Kurdish 145 (74 F, 72 M) Iraq 

Thai 426 (283 F, 143 M) Thailand 
X-Rite SP62 (di:8°, 4 

mm) 

Additionally, there is a skin reflectance database developed by Xiao et al. 
(2016b) which consists of 4392 colour data measured using a CM-2600d 
spectrophotometer on nine body locations of 482 subjects from three ethnic 
groups: Caucasian, Chinese and Kurdish. This database was used to 
improve the method for skin reflectance reconstruction from camera RGB 
images. 

Another similar skin colour database was reported by Wang (2017) in her 
PhD dissertation, named the Leeds-Liverpool skin colour (LLSC) database. 
It was collected from 188 human participants from four ethnic groups: 
Caucasian, Oriental, South Asian and African. Three colour measurement 
instruments, a Konica Minolta CM-700d spectrophotometer, a Photo 
Research PR650 spectroradiometer and a VeriVide DigiEye digital imaging 
device, were used to measure skin colour data of each subject at 10 
different body locations on face, neck, hand and arm. Over 10000 spectral 
data and 900 2D images of skin colour were collected, and the development 
of this skin colour database can be summarised as the following: 

• 188 subjects including 86 Oriental, 79 Caucasian, 13 South-Asian 
and 10 African, 
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• 10 body locations measured by using a Konica Minolta CM-700d 
spectrophotometer, 

• 5 body locations measured by using a PhotoResearch PR650 
spectroradiometer, 

• Each body location measured 3 times, 
• 5 colour images captured for each subject. 

2.2.5 Skin Colour Chart 

In addition to colour measurement instruments described in Section 2.2.3, a 
skin colour chart could be used as a tool for skin colour reproduction, skin 
colour evaluation, and as a reference chart for skin colour image capture. It 
is usually developed based on massive data of colour measurements on 
actual human skin, either printed or painted colours. The presence of a skin 
colour chart effectively improves the standardisation of visual colour 
assessments. 

2.2.5.1 Pantone SkinTone Guide 

The Pantone SkinTone Guide, Figure 2.16 (left), was developed by 
scientifically measuring thousands of actual skin tones of human participants 
in a diverse range of ethnicities and age groups by using X-Rite 
spectrophotometers (Pantone 2012). It includes 110 skin tones numbered 
from 1Y01 SP (the lightest yellow tone) to 4R15 SP (the reddest tone), as 
shown in Figure 2.16 (right). Each Pantone SkinTone number is composed 
of a four-digit alpha numeric number where the first two indicate the hue or 
undertone of the skin and the second two represent the lightness and 
darkness of the skin.  

  

Figure 2.16 Pantone SkinTone Guide (left) and the 100 skin tones included 
(right). 
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As shown in Figure 2.16 (left), the Pantone SkinTone Guide is composed of 
individual large-size (1.75” x 7”) swatch with a central hole (10 mm diameter) 
for easy colour communication and evaluation, recommended to match skin 
colours under simulated D65 illuminations. Its application could be in 
different fields, such as beauty, fashion, photography, medical, printing and 
graphic design, etc.  

2.2.5.2 L’Oréal Skin Colour Chart 

De Rigal et al. (2007) introduced a new Skin Colour Chart (as shown in 
Figure 2.17) developed by L’Oréal Ltd., which was designed to standardise 
the visual evaluation related to skin colours. Fifty-five skin colours were 
generated in the L’Oréal Skin Colour Chart, based on the skin colour 
database collected from more than 1000 women from different ethnic 
groups. It is presented as a sort of fan of 52 colour swatches, and each has 
a hole with a diameter of 3 cm for evaluating a defined skin area. De Rigal et 
al. reported that this chart represents true skin colour without metamerism 
and covers almost all skin colours encountered around the world. 

 

Figure 2.17 L’Oréal Skin Colour Chart. 

2.2.5.3 Spectromatch Silicon skin colour chart 

The silicon skin colour chart was developed by Spectromatch Ltd., 
consisting of 90 individual skin colour samples made with silicon (Figure 
2.18). It has a large skin colour gamut covering various skin tones from 
different ethnic groups, and its aims is to provide an accurate reference chart 
for soft tissue prostheses applications. The spectral reflectance data of the 
90 silicon skin colour samples were reported in the study published by Xiao 
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et al. (2016), and this chart  was used to calibrate a digital camera for the 
purpose of reconstructing skin reflectance from the captured colour images. 

 

Figure 2.18 Silicon skin colour chart developed by Spectromatch Ltd. 

2.3 Colorimetry with Digital Cameras 

As described in Section 2.2.3.3, a digital camera can be used as a non-
contact instrument to carry out colorimetric measurements on objects, 
especially those with complicated shapes or patterns that are tedious to be 
measured by using a spectrophotometer or a tele-spectroradiometer. 
Considering that the colour images captured using a digital camera are in a 
device-independent RGB colour space, this section will review the principles 
and methods for CIE colorimetric measures with digital cameras. 

2.3.1 Overview  

A digital camera is an optical instrument that records still or moving images, 
based on an image sensor such as a CCD (Charged Coupled Device) or a 
CMOS (Complementary Metal–Oxide–Semiconductor) detector converting 
images into pixels. The greater the number of pixels, the higher the 
resolution and quality of the created image. Most cameras can capture two-
dimensional (2D) images in width and height, while some more advanced 
models can capture three-dimensional (3D) images in width, height and 
depth. In other words, 2D cameras lack geometrical information and provide 
solely flat images, while 3D cameras are stereoscopic cameras that add an 
illusion of depth in images to replicate three dimensions. For a stereoscopic 
imaging system, multiple cameras are used and placed at different angles to 
capture multiple images simultaneously, or a single moving camera is used 
to capture photos at different times.  
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A digital single-lens reflex camera (digital SLR or DSLR) is a type of digital 
camera that combines the optics and the mechanisms of a single-lens reflex 
camera with a digital imaging sensor. It has been extensively used in 
photogrammetric applications with good image quality. Figure 2.19 shows 
the diagram of a DSLR camera, listing the components of a DSLR camera. 

With a DSLR camera, the light travels through the lens and then to a mirror 
that alternates to strike an image sensor when the shutter release button is 
pressed. The signal output by the image sensor is processed within the 
camera to create image data which can be stored on a memory card. The 
characteristics of an image sensor can be quantified as camera spectral 
sensitivities, which are three functions of wavelength describing the relative 
efficiency of light detection for colour filters and image sensors (Jiang et al. 
2013). The camera spectral sensitivity functions can be used to map the 
spectral information in a scene to the RGB response values recorded by a 
digital colour camera. This process of camera image capture is similar to the 
action of the human colour vision system that is characterised by a group of 
colour matching functions sensitive to three types of photoreceptors in the 
retina (see Section 2.1.1).  

 

Figure 2.19 Diagram of a DSLR camera. 
Image downloaded from https://www.ephotozine.com/article/this-
cutaway-diagram-shows-the-inside-of-a-dslr-30546.  

https://www.ephotozine.com/article/this-cutaway-diagram-shows-the-inside-of-a-dslr-30546
https://www.ephotozine.com/article/this-cutaway-diagram-shows-the-inside-of-a-dslr-30546
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2.3.1.1 Camera Settings 

For the acquisition of high-quality digital colour images, it is essential to 
understand camera settings before taking image captures, because different 
camera settings affect the colour information of the captured image. 
Appropriate parameters should be selected and used for different lighting 
conditions. The amount of light that reaches the image sensor inside the 
camera can be controlled by manipulating three variables: aperture, shutter 
speed and ISO speed, commonly known as the exposure triangle. 

The aperture is one of the most important settings in a digital camera. It is 
the size of the opening "window" of the camera lens that controls the amount 
of light that reaches the image sensor. The wider the opening "window" is, 
the more light the camera sensor will capture. The aperture of a digital 
camera can also be expressed as a number, known as f-number, or f-stop, 
such as f/16, f/11, f/8, f/5.6, f/4, f/2.8, f/2, f/1.4. Small numbers in f-stop 
represent large apertures, and large numbers represent small apertures, as 
shown in Figure 2.20. 

 

Figure 2.20 Diagram of different aperture sizes. 

The aperture size of a digital camera affects the brightness of the captured 
image. Typically, a larger aperture is preferred in darker environments and a 
smaller aperture is desired in high and bright lighting conditions. However, it 
should be noted that the aperture size always works together with the 
shutter speed to control how much light passes through the lens to the 
sensor. In addition, the aperture size of the camera lens also has an 
interesting effect on how the light is focused for a scene. If an image is taken 
with a larger aperture (such as f/1.4), the background will blur while the 
subject stays in focus, known as a shallow depth of field. On the contrary, a 
small aperture (such as f/16) will give a deeper depth of field, which means a 
large area of the image will be in focus.   

Shutter speed is another fundamental setting of a camera that is also related 
to the main camera exposure. It represents the length of time the camera 
shutter stays open and captures light, and it is measured in seconds, such 
as 2’’, 1’’, 1/2, 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000, 1/2000. 
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The smaller the shutter speed number, the shorter the exposure time. In the 
case of using a slower shutter speed (such as 1/2 second), it allows the 
camera to gather more light, while a faster shutter speed (such as 1/2000 
second) allows to freeze the action and avoid blurry photos. The aperture 
and shutter speed of a camera work together to control the amount of light 
gets to the sensor. For example, the camera will use a faster shutter speed 
with a larger aperture (such as f/1.4), while with a smaller aperture (such as 
f/16) the camera will use a slower shutter speed. 

The ISO speed is the last parameter in the camera exposure triangle. It is 
used to brighten or darken an image by adjusting the sensitivity of the 
camera sensor. It gives an extra option to manipulate the camera exposure 
in addition to aperture and shutter speed. Each camera has a different range 
of ISO values, and a common set could be ISO 100, ISO 200, ISO 400, ISO 
800, ISO 1600, ISO 3200, ISO 6400. The higher the ISO value, the more 
sensitive the sensor is to light. If a picture is taken in the same lighting 
conditions, increasing the ISO value will produce increasingly brighter 
images. However, one needs to be careful using a high ISO value during 
image capture, since it will be detrimental to the quality of the image, adding 
more image noise and making it too grainy.  

The three variables in the exposure triangle, aperture, shutter speed and 
ISO speed, must always be in balance to take the right exposure and 
acquire good-quality colour images. For example, ISO 100 is a lower 
sensitivity, so it requires more light to create a good exposure. In this case, it 
is indicated that the camera will use a larger aperture or a slower shutter 
speed to gather more light enter to the camera.  

The White Balance (WB) setting of a digital camera is a process of adjusting 
and balancing RGB colours with black and white in an image. It is one way 
to let the camera know what type of light that the scene is photographed 
under. Most DSLR cameras have three settings for white balance; 
automatic, preset and custom. By selecting the automatic white balance, the 
camera will use its built-in light meter to determine what type of lighting is 
illuminating the scene and it will attempt to estimate the colour of the 
illumination and correct for it. However, it doesn’t always get it right and so, if 
possible, it is a better option to set the WB manually. Preset white balance is 
where the camera uses a fixed (preset) estimation of the illumination, such 
as tungsten, fluorescent, daylight, and cloudy. This is a quick and simple 
solution to take an image with good white balance, but it is not always 
perfect. 
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Custom white balance is a manual mode that allows users to define it by 
capturing a grey reference card under the same lighting condition. For some 
advanced cameras, the white balance can be adjusted by manually inputting 
the value of colour temperature (in Kelvin unit). The Custom mode of white 
balance is preferred if colour images are being captured in a stable and well-
controlled lighting environment, such as a standard viewing cabinet. 

2.3.1.2 Image File Formats 

There are three most common image file formats in digital camera imaging: 
JPEG (Joint Photographic Experts Group), TIFF (Tagged Image File 
Format), and different RAW files. JPEG is probably the best known out of all 
the image files, recommended as a ISO/IEC 10918-1 standard in 1994 
(ISO/IEC 1994). It is a kind of image format with lossy compression, 
consequently, JPEG has much smaller storage size than TIFF and RAW 
image formats. Although this image format loses some image details and 
stores a lower-quality image, JPEG is typically set as the default output for 
most cameras since the image quality is sufficient for digital devices. The 
disadvantage of JPEGs is that less opportunity is provided for image 
manipulation in photo-editing software. 

TIFF is a lossless-compression image format that doesn’t lose information 
about a photo’s data, so the file size of TIFF images is larger than JPEG 
images and a larger storage space is usually required. TIFF files are 
recommended for graphic printing to keep digital photos as high-resolution 
as possible. A camera RAW image file contains the uncompressed and 
unprocessed or minimally processed data captured by the image sensor of a 
digital camera. It is designed to capture the radiometric characteristics of the 
scene and preserve all of the data captured, resulting in large file sizes and 
lossless image quality. Many researchers and professional photographers 
prefer to record in RAW file format, because it provides maximum flexibility 
and full control of post processing, such as linearization, white balance, 
gamma correction, etc. 

The RAW image formats from different camera manufacturers are not the 
same, e.g., Canon cameras saved RAW images in the CR2 or CRW format, 
Nikon cameras used NEF or NRW format, Sony cameras used SRF or ARW 
format. Most digital cameras enable to choose between JPEG, TIFF, RAW 
image formats, and it allows to capture JPEG and RAW images 
simultaneously. 
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2.3.2 Practical Considerations in Digital Imaging Systems 

2.3.2.1 Illumination 

The illumination in a digital imaging system is a very important factor for 
objectively colour measurement. A stable and uniform lighting environment 
is desired so that the target object can be illuminated evenly and captured in 
a quantitative and repeatable way, avoiding highlights and shadows. A 
perfect uniform illumination is seldom achieved in practice, but variation 
should be reduced as much as possible. In most cases, a viewing cabinet 
uses a number of fluorescent lamps at a suitable distance to provide 
reasonably even diffuse illumination. Alternatively, two directional light 
sources at 45° to the subject plane could be used to achieve near-uniform 
illumination (Hunt and Pointer 2011). 

In addition, the illumination used to light the object should be the same as 
that used to calculate the colorimetric values in the characterisation process, 
because there are issues of metamerism caused by different illuminations in 
practice. A variety of spectral power distributions may be encountered for 
matching CIE specifications such as CIE standard illuminant D65. Therefore, 
it is essential to derive the spectral power distribution of the illumination used 
in the digital imaging system to calculate the corresponding colorimetric 
values.  

2.3.2.2 Calibration and Reference Colour Chart  

Depend on the specific lighting environment, the digital imaging system 
should be calibrated before taking image captures, which is a process of 
determining specific camera parameters, such as the three variables of the 
exposure triangle, the white balance and the focus length, to set the camera 
to a known state. More information related to camera settings can be found 
in Section 2.3.1.1. Appropriate parameters should be decided and used for 
consistent and good-quality image captures.  

Typically, a reference colour chart including grey scales is used for creating 
camera profiles, correcting white balance and performing colour correction. 
Currently, the two widely used colour charts for camera colour calibration 
and characterisation are: ColorChecker Classic chart and ColorChecker 
Digital SG chart, as shown in Figure 2.21. The ColorChecker Classic chart is 
composed of 24 colour patches including 6 greyscale patches and other 
nature object colours such as human skin, blue sky and foliage. It is 
designed for use as a colour calibration tool in both traditional and digital 
photography. 
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Figure 2.21 The X-Rite ColorChecker Classic chart (left) and ColorChecker 
Digital SG chart (right). 

The ColorChecker Digital SG chart is composed of 140 colour patches, 
including the 24 patches from the ColorChecker Classic chart, 17 grey 
scales, 14 unique skin tone colours and other nature object colours. There 
was a ColorChecker DC chart designed for digital camera profiling, and it 
has been replaced by the ColorChecker Digital SG chart. Compared to the 
original classic chart, the SG chart covers a larger colour gamut, and it is 
used as a pro-level colour calibration tool for a variety of colour-management 
workflows. Additionally, a wider variety of skin-tone reference colours are 
included in this chart to deliver further accuracy and consistency of skin 
colour reproduction. Based on the selected colour chart, it becomes simple 
and efficient to set perfect exposures and accurate white balance. 

The implementation of calibration is a prerequisite for digital imaging 
systems, aiming to ensure the reproduction of reliable and meaningful data 
at all time. The colour characterisation results are only valid under the same 
conditions of calibration, i.e., the specific lighting environment and camera 
settings. 

2.3.3 Colour Characterisation Method 

Colour characterisation refers the quantification of a relationship between 
device coordinates and a device-independent colour space. The methods for 
camera colour characterisation could be divided into two main types: 
spectral sensitivity based and colour target based (Hong et al. 2000). For the 
former characterisation method, the spectral sensitivity of the camera sensor 
needs to be measured using a monochromator in the Lab, which is both time 
and cost-consuming. For the later characterisation method, a reference 
target containing a series of colour samples with known spectral reflectance 
or CIE XYZ tristimulus values is captured using the digital camera so that the 
relationship between camera RGB values and the corresponding CIE 
colorimetric coordinates can be characterised. Such a target used for 
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camera colour characterisation could be the ColorChecker chart introduced 
in Section 2.3.2.2.  

The colour target based method is much simpler and easier to be applied in 
comparison to the spectral sensitivity based method which requires 
expensive specialized apparatus. Therefore, most studies (including this 
study) used a reference colour chart for performing camera colour 
characterisation with different algorithms, such as linear regression, 
polynomial regressions, neural networks and lookup tables. 

2.3.3.1 Linear Regression  

A simple linear colour transformation between camera RGB signals and CIE 
XYZ tristimulus values can be expressed as: 

�
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where 𝑀𝑀 is a 3 × 3 transformation matrix converting camera RGB values to 
corresponding CIE XYZ tristimulus values, and it can be determined using 
the following equation:  
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where 𝑋𝑋𝑅𝑅 𝑌𝑌𝑅𝑅 𝑍𝑍𝑅𝑅  are the CIE XYZ tristimulus values of a number of colour 
patches in a reference colour chart, and 𝑅𝑅𝑅𝑅 𝐺𝐺𝑅𝑅 𝐵𝐵𝑅𝑅  are the RGB values 
extracted from the image captured using the digital imaging system.  

The advantage of a linear transformation is its invertibility. Theoretically, the 
transformation relationship between camera RGB values and CIE XYZ 
values is linear if the digital camera gives perfect-quality colorimetric data. In 
practice, however, linear transformations are not adequate to characterise 
the digital camera because of the complexity of camera sensitivity functions. 
Nonlinear transformations are often used to establish the best fitting for 
camera colour characterisation (Hong et al. 2001). 

2.3.3.2 Polynomial Regressions 

One approach to improve the accuracy of camera colour characterisation is 
to apply polynomial regression to the transformation matrix by adding more 
terms. In such cases, the transformation between camera RGB values and 
CIE XYZ values can be expressed as: 

𝑇𝑇 = 𝑀𝑀 × 𝐶𝐶     (2.42) 
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where 𝑇𝑇  indicates a set of CIE XYZ tristimulus values, 𝑀𝑀  is a 3 × 𝑁𝑁 
transformation matrix and 𝐶𝐶  denotes RGB matrix with 𝑁𝑁  extended terms. 
Note that 𝑁𝑁=3 is the case of linear transformation, as expressed in Equation 
2.40. 

The polynomial regressions with the least-square fitting method have been 
extensively studies for camera colour characterisation. Hong et al. (2002) 
investigated the polynomials with different terms (𝑁𝑁 = 3, 5, 6, 8 ,9, 11) for 
colour characterisation transformation from camera RGB values to CIE XYZ 
values and they addressed that the black “1” and white “RGB” terms were 
important for achieving more accurate results. Li et al. (2003) compared five 
polynomial models with the order changing from 1st to 5th (𝑁𝑁 = 4, 10, 20, 35, 
56) for a digital camera colour characterisation, and it was found that a 
higher order performed better than a lower one among the polynomial 
models of the 1st-4th order, while the 5th order polynomial performed worse 
than the 2nd order polynomial. Cheung et al. (2004a) conducted a 
comparative study on camera colour characterisation using polynomial 
regressions with different extended terms (𝑁𝑁 = 3, 4, 5, 10, 20, 35) and the 
results showed that the best result was given by using the 3rd order 
polynomial regression (𝑁𝑁 = 20). Table 2.9 lists the corresponding terms of 
the polynomial regressions with the 1st, 2nd and 3rd order. 

Table 2.9 The corresponding terms of the polynomial regressions with the 
1st-3rd order. 

Order Number of terms Terms  

1st  4 𝑟𝑟,𝑔𝑔,𝑏𝑏, 1 

2nd  10 𝑟𝑟,𝑔𝑔,𝑏𝑏, 𝑟𝑟2,𝑔𝑔2,𝑏𝑏2, 𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟,𝑔𝑔𝑔𝑔, 1 

3rd  20 
𝑟𝑟,𝑔𝑔,𝑏𝑏, 𝑟𝑟2,𝑔𝑔2,𝑏𝑏2, 𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟,𝑔𝑔𝑔𝑔, 

𝑟𝑟2𝑔𝑔, , 𝑟𝑟2𝑏𝑏,𝑔𝑔2𝑏𝑏, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟2,𝑔𝑔𝑔𝑔2, 𝑟𝑟3,𝑔𝑔3,𝑏𝑏3, 1 

One of the disadvantages of using polynomial regressions is the trade-off 
between colour predictive accuracy and the overfitting results due to the 
higher orders. It is possible that independent data with similar RGB values 
are sometimes mapped to very different CIE XYZ values. Moreover, the data 
outside the range of the reference colour chart are likely extrapolated in 
unexpected ways, resulting in large errors in colour predictions (Berns 
2019).  

Finlayson et al. (2015) proposed a new polynomial-type regression called 
Root Polynomial, which is to take each term in an order-root polynomial 
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expansion. Table 2.10 gives the corresponding terms of the root-polynomial 
regressions with the 1st-3rd order, and it can be seen that the number of root-
polynomial terms is reduced compared to that of polynomial terms. The 
results showed that the root-polynomial algorithm performed better than 
linear regression and offered a significant improvement over polynomial 
model on camera colour correction.  

Table 2.10 The corresponding terms of the root-polynomial regressions with 
the 1st-3rd order. 

Order Number of terms Terms  

1st 3 𝑟𝑟,𝑔𝑔,𝑏𝑏 

2nd 6 𝑟𝑟,𝑔𝑔,𝑏𝑏,�𝑟𝑟𝑟𝑟,√𝑟𝑟𝑟𝑟,�𝑔𝑔𝑔𝑔 

3rd 13 
𝑟𝑟,𝑔𝑔,𝑏𝑏,�𝑟𝑟𝑟𝑟,√𝑟𝑟𝑟𝑟,�𝑔𝑔𝑔𝑔, �𝑟𝑟2𝑔𝑔3 , �𝑟𝑟2𝑏𝑏3 , �𝑏𝑏2𝑔𝑔3 , 

�𝑟𝑟𝑟𝑟23 , �𝑟𝑟𝑟𝑟23 , , �𝑔𝑔𝑔𝑔23 , �𝑟𝑟𝑟𝑟𝑟𝑟3 , 1 

2.3.3.3 Lookup Tables  

Another approach is to create a lookup table consisting of a large number of 
camera RGB values and corresponding CIE XYZ values of the well-sampled 
target colour patches in a large colour gamut, which defines the 
transformation between camera RGB colour space and a CIE colour space 
at a series of discrete measured coordinates. Interpolation is necessary in 
lookup tables to map the values for intermediate coordinates. The basic 
model used in ICC profiles standardized by the International Colour 
Consortium is lookup table, which is commonly used in printer colour 
characterisation (Hung 1993). A lookup table requires a high number of 
measurements, and it is suitable for storing and reusing complex colour 
transformation.  

2.3.3.4 Neural Networks 

In addition to the above methods, it is also possible to use neural networks 
to perform colour characterisation transforming from camera RGB to CIE 
XYZ values. Neural networks are computer models that attempt to imitate 
some of the functions of the human brain using certain basic structures 
(Westland 1998). A high-level neural network consists of input, hidden and 
output layers of interconnected nodes or neurons. Each neuron receives 
input from the previous layer, computes a weighted sum of these inputs, and 
produces an output that is some function of the weighted inputs (Hunt and 
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Pointer 2011). This process is repeated for each layer, allowing the network 
to learn complex patterns and representations from the input data. 

Kang and Anderson (1992) applied the neural network with the Cascade 
Correlation learning architecture to map device values to CIE colorimetric 
coordinates. Cheung et al. (2004b) used a multilayer perceptron of artificial 
neural networks as a universal function approximator to find a map between 
camera RGB values and XYZ values. The network was trained by finding a 
set of weights that produce the smallest difference between the actual and 
target output vectors for a set of samples. 

The method of neural networks requires a large number of training data, and 
it works well for highly nonlinear relationships. It should be noted that neural 
networks have no relationship to the physics of the imaging devices, they 
must be trained each time a change is made in any component of the 
system. In addition, the nonlinear transformation using neural networks is 
not reversible, and the training process takes much longer time than other 
methods due to an iterative process of computations. 

2.3.4 Accuracy Measures 

The accuracy of the camera colour characterisation model developed is 
typically measured by calculating colour differences between the predicted 
and measured CIE XYZ values of a number of test colours. In most cases, 
the test colours are the colour patches in the reference colour chart which is 
used for the determination of the colour characterisation model. However, it 
is suggested to separate the training data and testing data so that the 
validation of the model is more reasonable. 

The most widely used colour difference formulae are CIELAB and 
CIEDE2000, and the averaged colour-difference value is usually used to 
quantify the predictive accuracy of the colour characterisation model. 
Moreover, Pointer et al. (2001) addressed that the maximum colour-
difference value should be evaluated together with median colour-difference 
value for adequate investigation. 

2.4 Colour Reproduction in 3D Printing 

3D printing, also known as additive manufacturing, is an additive process 
whereby layers of materials are built up to create a three-dimensional (3D) 
part based on a CAD (computer-aided design) model or a digital 3D model. 
It is regarded as a revolutionary technology for customised fabrication 
because of its advantages in saving both time and costs. In recently years, 
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colour 3D printing technology has been developed dramatically and widely 
applied in various industrial fields such as art and design practice (Walters 
2009), dentistry (van Noort 2011), food (Sun et al. 2015), and fashions 
(Vanderploeg et al. 2017), etc. With the evolution of various 3D imaging 
techniques, it provides the ability to directly interconnect with advanced 
manufacturing techniques, allowing customisation with high accuracy and 
making it highly possible to achieve “What You See Is What You Get” (Xiao 
et al. 2016a). This section will review the current colour 3D printing 
technologies, colour characterisation methods of a 3D printer, colour quality 
evaluation for 3D printed objects, and the application of 3D printing in skin 
colour reproduction. 

2.4.1 Colour 3D Printing Technology 

Various 3D printing technologies have been developed with different 
functions, and they are classified into seven groups according to ASTM 
standard F2792 (ASTM 2012): the binding jetting, material jetting, powder 
bed fusion, material extrusion, sheet lamination, directed energy deposition 
and vat photopolymerization. Chen et al. (2022) reported that the material 
jetting and vat photopolymerization printers are the most accurate by 
comparing the printing accuracy of 16 printers that are commonly used in the 
medical field, which covered five distinct printing technologies and eight 
different vendors. 

Table 2.11 Full colour 3D printing technologies. 

Colour Technology Brand Technology Materials 

PolyJet Stratasys UV-Cured Resin 

ColorJet Printing 3D Systems Powder-binder Powder 

UV-curable inkjet Mimaki UV-Cured Resin 

MultiJet Fusion Hewlett Packard Powder-fusion Powder 

Laminated Object 
Manufacturing (LOM) 

Mcor Paper-binder Paper 

To print a 3D object in full colour spectrum, different technologies have been 
developed and applied in different 3D printing systems, such as the PolyJey 
technology based on UV cured light from Stratasys, ColorJet Printing with 
powder binder from 3D Systems, UV-curable inkjet printing technology from 
Mimaki, MultiJet Fusion with powder fusion from Hewlett Packard, and LOM 
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from Mcor, more information is given in Table 2.11. Full colour means 
thousands of colours can be produced by a 3D printer, it is different from the 
term of multicolour which refers to models made using multiple materials in 
different colour. Full-colour 3D printers can produce realistic production 
prototypes. 

The Polyjet printing technique, a patented invention of Stratasys Ltd., is an 
additive manufacturing system that builds parts by jetting photopolymer 
droplets in CMYK colours from printer heads onto a build tray and solidifying 
each layer with UV-curable light, as illustrated in Figure 2.22. It is stated that 
Stratasys CMYK colours can be matched to 1970 printable PANTONE 
Colours, Solid Coated and SkinTones™. The J-series 3D colour printers 
developed by Stratasys Ltd. are widely used in applications of dental, 
anatomy, fabric and fashion. Models can be printed with a glossy or matte 
surface finish. Liu et al (2019) utilised a Stratasys J750 3D printer to build a 
3D colour reproduction system for dental prostheses. 

 

Figure 2.22 Schematic diagram of PolyJet 3D printing (Wei et al. 2022). 

The ProJet ColorJet Printing (CJP) technology developed by 3D Systems 
Ltd. is an additive manufacturing technology that creates parts by spreading 
powder polymer in thin layers over the build platform with a levelling roller, 
and colour binders in CMY colours (cyan, magenta and yellow) are 
selectively mixed and jetted from inkjet print heads after each layer is spread 
(see Figure 2.23). The Z Corporation developed such powder-binder 3D 
printing technology and its Zprinters had been used for printing 3D objects in 
full colour. The company was acquired by 3D Systems Ltd. in 2012. 

The colour 3D printing technology from Mimaki is based on UV light which 
was originally developed for its 2D flatbed printers. It uses white or clear 
liquid resin as the base material and jets CMYK colours to coat the base with 
soluble support material on a bed layer by layer (Figure 2.24). Each layer is 
cured by the UV light and a roller flattens the material layer, the process 
repeats until 3D prints are produced and finished in colour. 
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Figure 2.23 Schematic diagram of ProJet CJP technology (Espera et al. 
2019). 

 

Figure 2.24 Mechanism of UV-curable inkjet technology. 
Image downloaded from https://mimaki.com/supply/ink/uv-curable.html  

For the printing technology of MultiJet Fusion developed by Hewlett Packard 
in 2016, it creates parts by depositing fusing and detailing agents in a bed of 
powder material, then fusing them into a solid layer. This process repeats 
layer by layer with more powder distributed on top of the bed. 

The paper-based colour 3D printing technology from Mcor is to deposit 
coloured ink on each sheet of paper, then glue those paper and cut off non-
object materials. Unfortunately, the company ceased trading in 2019. 

2.4.2 Colour Characterisation for 3D Printers 

The accuracy and consistency of colour reproduction is crucial in the 3D 
printing process for meeting modern aesthetic and practical needs. Reliable 
colour reproduction in the digital printing process is commonly achieved by 
performing printer colour characterisation, which defines the relationship 
between the input device colour space, RGB or CMY(K) and the output 
device-independent colour space, typically based on CIE colorimetric 
coordinates. This process could be divided into two models: the forward 
transformation aiming to predict the printed colours from the printer 
controlled values, and the reverse transformation derived to decompose the 
target colour into printer controlled values.   

In the printing industry, the ICC-based colour profile is probably one of the 
most widely used approach to manage printed colours, and various 
mathematical models have been proposed for achieving higher accuracy of 

https://mimaki.com/supply/ink/uv-curable.html
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colour characterisation for specific purposes, such as 3D lookup tables 
(Green and MacDonald 2011), least-squares based polynomial regressions 
(Shen et al. 2012), empirical techniques based on principal component 
analysis (Shaw et al. 2003), the artificial neural network (ANN) (Littlewood 
and Subbarayan 2006), etc. Most of those models focused on simple colour 
transformations between RGB and CIELAB colour space.  

Although the colour characterisation methods used in 2D graphic printing 
can be applied into 3D colour printing, it is probably difficult to achieve highly 
accurate colour characterisation for a 3D colour printer because there are 
many restrictions in 3D printing such as poor colour uniformity and different 
pigment penetration (Sun and Sie 2016, Yao et al. 2022). In addition, 
Parraman et al. (2008) reported that there are more variables that affect the 
finished colour of 3D colour printed objects, compared to 2D digital inkjet 
printing.  

As colour 3D printing has become widespread in various industrial 
applications, it is necessary to understand colorimetric principles in 3D 
printing and investigate colour characterisation methods for faithful colour 
reproduction using 3D colour printers. Stanić et al. (2008) used two different 
types of colour test charts to investigate the basics of 3D colour 
measurements methodology, colour reproduction of basic colours and the 
colour gamut achievable by 3D printing. Yuan et al. (2021) reviewed colour 
reproduction methods in full-colour 3D printing and discussed colour 
accuracy issues of different colour 3D printing techniques. 

For the practical applications in 3D colour printing, Xiao et al. (2016a) used a 
third-order polynomial regression to determine a printer colour profile 
transforming between printer RGB and CIE XYZ colour spaces, based on 
the digital Macbeth ColorChecker DC chart with 240 colour patches which 
was printed using a Z Corp Z510 colour printer. By printing 14 skin colour 
samples using the determined colour profile, the accuracy was quantified 
using CIELAB colour-difference formula and the average value was 4.50 
CIELAB units, indicating a significant improvement compared to an average 
colour difference of 20.80 CIELAB units without performing colour 
characterisation. 

In addition, with the aim of improving colour reproduction accuracy of dental 
prostheses, Liu et al. (2019) selected 96 colour patches to develop the 
colour profile of a 3D printer and the polynomial regression method with 
different orders were investigated to perform colour transformation between 
CIE XYZ and printer RGB values. With 18 tooth and gum shades printed to 
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evaluate the 3D colour reproduction system, it was found that the third-order 
polynomial regression yield smaller colour differences than the quadratic 
polynomial, and the average colour difference achieved was 6.54 CIELAB 
units. 

More recently, with the development of machine learning methods, it has 
become possible and desired to perform printer colour characterisation from 
complex subtractive CMYK colour system to CIELAB colour space. 
Velastegui and Peders (2021) used the FOGRA53 dataset consisting of 
1617 colour samples and compared the performance of four different 
machine learning approaches: Support-Vector Regression (SVR), Artificial 
Neural Network (ANN), Deep Neural Networks (DNN), and Radial Basis 
Function (RBF) models, on colour characterisation between CMYK and 
CIELAB colour spaces. It was found that all these four methods could 
achieve very high transformation accuracy, with 99.5% of the colour-
difference values obtained less than 3 units. When it came to practical 
printing, the DNN-based transformation method reached lower colour 
differences than other methods, and the average colour difference is 4.65 
CIELAB units. 

In the process of colour characterisation transforming from CMYK to 
CIELAB, Su et al. (2021) proposed an improved wavelet neural network 
model which was optimised by cuckoo search algorithm to reduce the colour 
difference. The 1296 coated FOGRA27 colour samples were employed to 
train the model and 100 samples were selected as the testing data. The 
results showed that the average colour difference of the proposed model 
was 3.47 CIELAB units, smaller than that of the traditional neural networks. 

In generally, various methods have been applied to the process of colour 
characterisation of 3D colour printers to improve the accuracy of 3D colour 
reproduction workflow. Currently, it still lacks a standard numerical model, 
and a comprehensive understanding of these methods is required.  

2.4.3 Colour-Difference Evaluation of 3D Printed Objects 

The Section 2.1.5 reviews the currently widely used colour-difference 
formulae which were developed based on flat coloured samples (CIE 2001, 
Melgosa et al. 2017). In contrast to 2D samples, a 3D printed object has an 
non-uniform surface, and it is more complicated for the human visual system 
to process colour information, especially considering that the colour 
appearance of 3D objects is probably affected by 3D shape, gloss and 
different lighting conditions (Bloj et al. 1999, Xiao and Brainard 2008).  
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To understand the basic visual perception of coloured 3D objects, Hung et 
al. (2018) conducted a series of psychophysical experiments to quantify the 
visual colour differences of 3D objects using a 7-step grey scale, and it was 
found that chroma differences for high chroma or dark colours were not easy 
to visually assess. The authors suggested that the measured lightness and 
chroma values must be further scaled in the colour-difference formula to fit 
the visual data. 

Jiang et al. (2021) conducted a psychophysical experiment based on 150 
pairs of 3D printed samples and tested the performance of ten modern 
colour-difference formulae. It was reported that predictions of current colour-
difference formulae were below average inter-observer variability, then they 
tried to optimise the 𝑘𝑘𝐿𝐿  parametric factor in the colour-difference formulae 
and applied a power correction to improve the performance of colour-
difference formulae in predicting visual colour differences of 3D samples. 
The results showed that remarkable improvements were achieved by adding 
a power correction with an exponent of 0.55. 

Huang et al. (2022a, 2022b) used 440 pairs of 3D samples to study the 
influences of shape, size, and gloss on the perceived colour difference of 3D 
printed objects by conducting psychophysical experiments, and it was 
reported that these factors caused changes of visual perception. In order to 
test the performance of eight colour-difference formulae on predicting 3D 
printed objects, the visual data collected were used to quantify the 
agreement with the calculated colour-difference values. It was found that the 
CIELAB formula has the most worse performance, and the results of 
CIEDE2000 is equivalent to those of CIECAM02 and CIECAM16-based 
colour-difference formulae. Although the current colour-difference formulae 
were optimised to better fit the visual data, new experimental data of 3D 
samples are needed to develop more accurate colour-difference formulae for 
industrial applications.  

Overall, the current colour-difference formulae developed based on 2D 
samples are possibly not appropriate for 3D objects, while currently there is 
no standard guidance for the colour-difference evaluation of 3D objects, 
which has stimulated industrial and academic interests. It is necessary to 
collect sufficient colour-difference data of 3D samples and provide a 
comprehensive knowledge of the visual colour perception of 3D objects. 



- 54 - 
 

2.4.4 Skin Colour Reproduction in 3D Printing 

Colour 3D printing technologies have been applied successfully in the 
fabrication of soft tissue facial prostheses by combining with 3D imaging 
acquisition techniques. Xiao et al. (2014, 2016a) developed a colour image 
reproduction workflow for 3D printing facial prostheses, which are desired for 
patients to repair their facial deficiencies, disfigurements or injuries. Figure 
2.25 shows a 3D colour image reproduction workflow for facial prostheses, 
including 3D image acquisition, 3D image design, colour management, 
colour texture mapping, 3D colour printing and postprocessing. Compared to 
the conventional approach to produce a soft tissue prosthesis, including the 
tasks of taking an impression, making a cast and hand crafting (Zardawi 
2013), the advanced method based on colour 3D printing is much simpler, 
more efficient and low-cost. 

 

Figure 2.25 The 3D colour image reproduction workflow for facial 
prostheses (Xiao et al. 2014). 

In the 3D colour reproduction process, colour management is one of the 
most important steps to achieve accurate skin colour reproduction of facial 
prostheses. It involves comprehensive colour characterisation for both 3D 
cameras and 3D printers, which was typically implemented using a 
conventional colour chart. In addition, the method of colour quality evaluation 
is another vital aspect of ensuring that the skin tones are reproduced 
faithfully.  

In the development of a 3D colour image reproduction system for facial 
prostheses (Xiao et al. 2014), the colour differences achieved were 2.5-11 
CIELAB units, based on 14 skin colour samples printed using a colour 3D 
printer. Sohaid et al. (2018) reported that the colour differences of three 3D 
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printed facial prostheses were from 5.1 to 9.4 CIEDE2000 units, while the 
general acceptable colour difference for a skin-coloured specimen is 3 to 4 
CIELAB units (Paravina et al. 2009). Therefore, further research into 
accurate colour reproduction and colour evaluation methods is needed to 
enhance the fidelity of skin tones achieved using colour 3D printing 
technologies. 

2.5 Psychophysics  

The tools of psychophysics are used to derive quantitative measures of 
perceptual phenomena that are often considered subjective (Fairchild 2005). 
In CIE colorimetry, psychophysical techniques provide enormous and 
powerful support for the research of human colour vision and colour 
appearance phenomena. The psychophysical experiment is of vital 
importance for the development of colour-difference formulae and image 
quality measures. Although the uncertainties associated with psychophysical 
experiments tend to be significantly larger than those of physical 
measurements, the results are equally useful and meaningful as long as 
those uncertainties are considered, as they always should be for physical 
measurements as well. 

For the conduction of visual assessments in specific applications, an 
appropriate psychophysical technique is to be determined in experimental 
design in order to collect accurate visual results. This section will review the 
two classes of psychophysical techniques, threshold and matching method, 
and scaling method, that have been widely used in visual-assessment 
experiments within colour science, based on the book Colour Appearance 
Models (Fairchild 2005) and the ASTM E1808-96R21: Standard Guide for 
Designing and Conducting Visual Experiments (ASTM 2021). 

2.5.1 Threshold and Matching Techniques 

Threshold and matching experiments are designed to measure the visual 
perception sensitivity of human observers to a given colour stimulus. 
Threshold experiments are intended to determine the just-perceptible 
difference (JPD) in a stimulus, sometimes referred to as the just-noticeable 
difference (JND). Matching techniques are similar to threshold techniques, 
except that its goal is to determine when two stimuli are not perceptibly 
different. 
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2.5.1.1 Threshold Techniques 

Threshold techniques are useful for measuring sensitivity to changes and 
the detectability of stimuli sensitive to small changes in stimuli (or perceptual 
equality). Absolute thresholds are defined as the JPD for a change from no 
stimulus, they are reported in terms of the physical units used to measure 
the stimulus, for example, a brightness threshold might be measured in 
luminance units (𝑐𝑐𝑐𝑐/𝑚𝑚2). While difference thresholds represent the JPD from 
a particular stimulus level greater than zero, and they are measured with 
respect to the difference between two stimuli. The lower the threshold, the 
higher the sensitivity. Several basic types of threshold techniques have been 
developed for particular applications to increase utility of the data collected, 
and they were divided into three types: Method of Adjustment, Method of 
Limit and Method of Constant Stimuli (ASTM 2021, Fairchild 2005). 

The method of adjustment is the simplest and most straightforward 
technique for deriving threshold data, because observers control the 
stimulus magnitudes. This method is commonly used in matching 
experiments. However, it is possible to bias the results due to observer 
variability and adaptation effects. In contrast, the method of limit enables the 
experimenter to present the stimuli at predefined discrete magnitude levels 
in either ascending or descending series, and the threshold is defined as the 
minimum stimulus or difference in stimulus that can be distinguished from 
the reference. 

In the method of constant stimuli, the experimenter chooses several stimulus 
magnitude levels (usually five or seven) around the threshold, and each of 
stimulus is presented in a random order and for multiply times. The 
frequency of each visual assessment can be calculated, and the threshold is 
generally taken to be the stimulus magnitude at which it is perceived in 50% 
of the trials. In the experiment of constant stimuli, two types of response can 
be obtained: Yes-No or Pass-Fail and Forced-Choice. 

For the Yes-No procedure, observers are asked to response yes if they 
detect the stimulus change and no if they do not. Alternatively, the Pass-Fail 
procedure can be used to measure visual tolerances above threshold by 
providing a reference stimulus magnitude and asking observers to pass 
stimuli that fall below the magnitude of the reference and fail those that fall 
above it. The Forced-Choice procedure is to present the stimulus in one of 
two intervals defined by a boundary and ask observers to indicate in which 
of the two intervals the stimulus was presented. The observers have to make 
decisions even they are unsure. 



- 57 - 
 

2.5.1.2 Matching Techniques 

Matching experiments provided the basis for CIE colorimetry, deriving the 
colour matching functions of the CIE standard colorimetric observers through 
the metameric matches. Measures of the variability in matching can be used 
to estimate thresholds. One type of matching experiment is called 
asymmetric matching that is commonly applied in chromatic adaptation 
experiments, where a colour match made across some change in viewing 
conditions. For example, in the haploscopic experiment, one eye views a 
test stimulus in one set of viewing conditions and the other eye 
simultaneously views a matching stimulus in a different set of viewing 
conditions until a match is produced. Another type is memory matching 
where observers produce a match to a previously memorised colour, such 
as the redness of an apple. Typically, such matches are asymmetric to study 
viewing conditions dependencies.  

2.5.2 Scaling Techniques 

Scaling experiments are intended to investigate the relationships between 
physical magnitudes and perceptual magnitudes of colour stimuli. Several 
decisions must be made by observers, depending on the type and 
dimensionality of the scale required. It is important to identify and decide on 
the suitable type of scaling method to be used before collecting data.  

2.5.2.1 Paired Comparison 

A paired comparison method is to present all samples in all possible pairs to 
the observer, usually one pair at a time, and ask observers to choose the 
stimulus which is closer to the reference. Since this method is not forced–
choice, observers are allowed to judge both pairs of stimuli to be equal when 
they are unsure. The proportion of times a particular samples is judged 
greater in some attributes than other samples is calculated and recorded. 
Based on the Thurstone’s Law of Comparative Judgments (Thurstone 1927), 
the collected data can be transformed into interval scales on which the 
perceptual magnitudes of the stimuli are normally distributed.  

2.5.2.2 Categorical Judgement 

Categorical judgement is to ask observers to classify a large number of 
stimuli into various categories defined by the experimenter. It has been 
commonly used for colour-difference assessments. An example could be the 
following six categories defined for the visual experiments (Cui 2000):  

1. No difference, 
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2. Just noticeable difference, 
3. Noticeable difference, 
4. Fairly large difference, 
5. Large difference, 
6. Very large difference. 

During the visual assessments, the number of times that each sample is 
placed in a given category is recorded, and interval scales may be obtained 
by assuming that the perceptual magnitudes are normally distributed and by 
making use of the standard normal distribution according to the Law of 
Categorical Judgements (Torgerson 1954). This scaling method is an 
effective approach, the samples must be similar enough so that they can be 
placed in different categories rather than always in the same category. 

2.5.2.3 Magnitude or Ratio Estimation 

The magnitude estimation is to ask observers to assign numbers to the test 
stimuli according to the magnitude of their perceptions. Alternatively, the 
observers are given a number and asked to produce a stimulus with that 
perceptual magnitude. This is one of the few techniques that can be used to 
generate a ratio scale. It can also be used to generate data for 
multidimensional scaling by asking observers to scale the differences 
between pairs of stimuli. 

A ratio estimation is to ask observers to find, select, or produce a sample 
that bears some prescribed ratios (one half or twice) to a standard, or give 
the observers two or more samples and ask them to state the ratios 
perceived in a particular attribute. In practice, this method is too difficult for 
most observers to use due to problems with either sample preparation or 
observers’ judgments.  

The advantage of magnitude or ratio estimation is that observers can directly 
scale colour appearance attributes, such as lightness, chroma and hue, 
based on their visual perception of the reference stimuli under controlled 
viewing conditions. But the disadvantage is that the uncertainty is typically 
much larger than that of other matching techniques, and well-trained 
observers are required because of the difficulty of obtaining consistent 
scaling results by naive observers. 

2.5.2.4 Rank Order 

In a rank order experiment, the observer is asked to make an order of a 
given set of samples according to increasing or decreasing magnitudes of a 
particular perceptual attribute, e.g., the Farnsworth Munsell 100 Hue Test is 
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designed to evaluate an individual's ability to discern colour by asking the 
observe to place the colour caps in order of hue. For the conduction of 
psychophysical experiments, it is not recommended to have one attempt to 
derive interval scales from rank-order data, and in order to collect consistent 
visual results, with a large number of observers the data may be averaged 
and reranked to obtain an ordinal scale. 

2.5.2.5 Grey Scale  

The grey scale method is to ask observers to assess the colour difference of 
a given pair of samples, based on the perceived colour difference from 
several pairs of neutral samples with different lightness. The majority of the 
previous colour-difference datasets were obtained using the methods of grey 
scale and paired comparison, e.g., Witt and Döring, (1983), Cheung and 
Rigg (1986), BFD (Luo and Rigg 1987a), RIT–DuPont (Berns et al. 1991), 
and Leeds (Kim and Nobbs 1997). 

In order to convert the grey-scale grades (GS) given by observers to visual 
colour-difference results (∆V), a regression technique is usually applied to 
derive an appropriate relationship between the GS and the ∆V values. In 
previous studies, it could be the exponent (Luo and Rigg 1987a), polynomial 
with the 4th order (Melgosa et ql. 2014), and logarithm function (Jiang et al. 
2021).  

Additionally, the grey scale method is recommended for testing colour 
fastness (ISO 2010), which means the resistance of the colour of textiles to 
fading or running. Two grey scales consisting of nine pairs of non-glossy 
grey or white colour swatches were developed for assessing staining and 
change in colour (ISO 1993, ISO 2019). 

2.6 Statistical Measures 

Statistical measures are essential for quantitative data analysis, which can 
be used to quantify measurement uncertainty, process data collected from 
psychophysical experiments, test statistical significance, etc. This section 
will introduce basic principles and formulae of those statistical methods used 
in the present study. 

2.6.1 Mean Colour Difference from the Mean  

The concept of Mean Colour Difference from the Mean (𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 ) was 
proposed by Billmeyer and Alessi (1981) as a measure of short-term and 
long-term repeatability of colour measurement instruments. It is defined by 
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averaging the colour differences between each of measurement and the 
mean, expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �(𝐿𝐿𝑖𝑖

∗−𝐿𝐿�∗)2+(𝑎𝑎𝑖𝑖
∗−𝑎𝑎�∗)2+(𝑏𝑏𝑖𝑖

∗−𝑏𝑏�∗)2𝑖𝑖=1,𝑛𝑛

𝑛𝑛
   (2.43) 

where 𝑛𝑛 is the measurement number, 𝐿𝐿𝑖𝑖∗𝑎𝑎𝑖𝑖∗𝑏𝑏𝑖𝑖∗ are the CIELAB values of the 
𝑖𝑖𝑡𝑡ℎ  measurement and 𝐿𝐿�∗𝑎𝑎�∗𝑏𝑏�∗  are the averaged CIELAB values of the 𝑛𝑛 
measurements. The larger the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, the lower the repeatability of 
the instrument. Typically, the calculation of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 uses the CIELAB colour-
difference formula. As the development of colour-difference formulae, the 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 calculation formula can be expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ [𝑓𝑓∆𝐸𝐸(𝑉𝑉𝑖𝑖,𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎)]𝑖𝑖=1,𝑛𝑛

𝑛𝑛
    (2.44) 

where 𝑓𝑓∆𝐸𝐸 is a colour-difference formula, such as CIELAB and CIEDE2000. 

The metric of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is used to evaluate the precision random errors of a 
photo-electric colour measurement instrument such as spectroradiometers 
and spectrophotometers, e.g., Wang et al. (2018) calculated 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  to 
assess the consistency within and between colour measurement 
instruments. For a given sample measured using a modern instrument, the 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 value of a set of measurements can usually be expected to be about 
0.1 (or less) of a CIELAB colour difference unit (Hunt and Pointer 2011).  
Another use of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is to quantify colour variations (Cui et al. 2001) or 
intra- and inter- observer variability in a psychophysical experiment (Sarkar 
et al. 2010). 

2.6.2 StandardiSed Residual Sum of Squares 

The index of Standardized Residual Sum of Squares ( 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ) was 
proposed by García et al. (2007) and adopted by CIE (2016) to test the 
performance of two colour-difference formulae with respect to a given set of 
visual colour-difference data. It is expressed as:   

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 100��∑(∆𝐸𝐸𝑖𝑖−𝑓𝑓∆𝑉𝑉𝑖𝑖)2

∑𝑓𝑓2∆𝑉𝑉𝑖𝑖
2 �    (2.45) 

where 𝑓𝑓 = ∑∆𝐸𝐸𝑖𝑖
2

∑∆𝐸𝐸𝑖𝑖∆𝑉𝑉𝑖𝑖
, ∆𝐸𝐸𝑖𝑖  indicates the colour difference of the 𝑖𝑖𝑡𝑡ℎ  testing pair 

calculated using a colour-difference formula, such as CIELAB and 
CIEDE2000, ∆𝑉𝑉𝑖𝑖  means the average visual colour difference of the 𝑖𝑖𝑡𝑡ℎ 
testing pair given by observers. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value ranges from 0 to 100, and 
for a perfect agreement, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value should be zero. The larger the 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value, the less the agreement between the perceived and calculated 
colour differences. This metric has been widely used for testing the 
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performance of colour-difference formulae (Melgosa et al. 2008, Huang et al. 
2015, Mirjalili et al. 2019, Jiang et al. 2021). 

The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is also used to quantify intra- and inter-observer variability in 
visual colour-difference assessments (Melgosa et al. 2011). For each 
observer, intra-observer variability is calculated as the average of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
values of each replication made by the observer with respect to the average 
result of all the replications, while inter-observer variability is calculated as 
the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value between the average result of all the replications made by 
the observer and the average result of all the observers. Final intra- and 
inter-observer variability is defined as the average intra- and inter-observer 
variability 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values. 

2.6.3 Statistical Significance Test 

Although 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values can be used to compare the performance of two 
different formulae, it is not sufficient to indicate the degree of statistical 
significance. In order to quantify the significance of the difference between 
two colour-difference formulae or colour spaces tested, the measure based 
upon statistical 𝐹𝐹-test was used by Luo et al. (2006). With the introduction of 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  metric, García et al. (2007) proposed the following equation to 
perform 𝐹𝐹-test using 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values, defined as: 

𝐹𝐹 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵2
 (2.46) 

where A and B indicates two different colour-difference formulae. 

The statistical significance analyse is based on the confidential interval 
[𝐹𝐹𝐶𝐶 , 1/𝐹𝐹𝐶𝐶 ], where 𝐹𝐹𝐶𝐶  is the critical value, and 𝐹𝐹𝐶𝐶 = 𝐹𝐹(𝑑𝑑𝑓𝑓𝐴𝐴, 𝑑𝑑𝑓𝑓𝐵𝐵, 0.975) for the 
two-tailed 𝐹𝐹  distribution with 95% confidence level, 𝑑𝑑𝑓𝑓𝐴𝐴  and 𝑑𝑑𝑓𝑓𝐵𝐵  are the 
degrees of freedom. The critical value 𝐹𝐹𝐶𝐶  can be found from statistical 
textbooks and the results can be divided into five categories: 

• If 𝐹𝐹 < 𝐹𝐹𝐶𝐶, A is significantly better than B;  
• If 𝐹𝐹𝐶𝐶 ≤ 𝐹𝐹 < 1, A is insignificantly better than B;  
• If 𝐹𝐹 = 1, A is equal to B; 
• If 1 < 𝐹𝐹 ≤ 1/𝐹𝐹𝐶𝐶, A is insignificantly poorer than model B; 
• If 1/𝐹𝐹𝐶𝐶 ≤ 𝐹𝐹,  A is significantly poorer than B. 

The 𝐹𝐹-test based on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 has been widely used to test the performance 
of different colour-difference formulae and analyse statistical significances 
(Melgosa et al. 2008, Huang et al. 2015, Mirjalili et al. 2019, Jiang et al. 
2021). 



- 62 - 
 

2.6.4 Pearson Correlation Coefficient and Coefficient of 
Determination  

The Pearson correlation coefficient (PCC), also known as Pearson's 𝑟𝑟, is the 
most common way of measuring a linear correlation between two sets of 
data. It is the ratio between the covariance of two variables and the product 
of their standard deviations, defined as: 

𝑟𝑟(𝑥𝑥,𝑦𝑦) =
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)

�∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
 (2.47) 

where 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 are the 𝑖𝑖𝑡𝑡ℎ sample of the two data sets, 𝑥̅𝑥,𝑦𝑦� are the average of 
all the samples in each data set. The Pearson's 𝑟𝑟 value ranges from -1 to +1 
where a value of +1 denotes a perfect agreement, 0 denotes no linear 
correlation, and -1 denotes a totally negative linear correlation. When the 𝑟𝑟 
value is close to -1 or 1, it means that the two sets of data have a stronger 
positive or negative correlation. 

The square of the Pearson correlation coefficient, also known as the 
coefficient of determination (𝑟𝑟2 𝑜𝑜𝑜𝑜 𝑅𝑅2), is more commonly used to indicate  
the variance in the dependent variable that is accounted for by the variance 
in the independent variable. In regression, it is a measure of the goodness of 
fit of a model, i.e., how well the regression predictions approximate the real 
data points. The value of 𝑟𝑟2 ranges from 0 to 1, and 𝑟𝑟2 = 1 for a perfect fit. 

2.7 Summary 

In this chapter, the fundamental theories and previous studies relevant to the 
present PhD work were reviewed. Starting from the basic knowledge and 
principle of CIE colorimetric system, followed by literature surveys on skin 
and skin colour measurement. Then the colour characterisation methods for 
digital cameras and 3D printers were described, furthermore, the studies on 
3D colour image reproduction were reviewed and discussed. In addition, the 
psychophysical techniques and statistical measures were introduced which 
are crucial for quantitative data analysis. Basically, the goal of this chapter is 
to provide appropriate references and give an overview of the topic of the 
present work for further reading and understanding.  
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Chapter 3 
Methodology 

3.1 Workflow of 3D Face Colour Reproduction 

To achieve the aim and objectives of the present study, a workflow as 
illustrated in Figure 3.1 was developed for colour reproduction of human 
faces. The first step is to capture the digital 3D model of the target face 
including colour and geometric information using a 3D imaging system. For 
the purpose of achieving accurate colour images, the second step is to 
perform colour characterisation for the 3D cameras so that the camera RGB 
images can be transformed to CIE colour space which is device 
independent. The third step is to develop a colour profile of the 3D printer to 
convert the colour image from CIE colour space to the printer RGB/CYMK 
colour space for faithful colour reproduction. The next step is to project the 
characterised colour image to the manipulated 3D face model whose 
polygon mesh was repaired in a 3D modelling software to make the model 
watertight and 3D printable. Then the ready 3D face model is sent to the 
colour 3D printer, and after the printing is completed, the 3D printed model is 
taken away from the 3D printer for postprocessing, such as support material 
removal and polishing. The last step is to evaluate the colour quality of the 
3D printed model compared to the actual face. In this workflow, colour 
management, including colour measurement and colour characterisation for 
the 3D imaging system and the 3D printer, and the evaluation of colour 
reproduction accuracy are key work. 

 

Figure 3.1 The 3D colour reproduction workflow for faces. 
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3.2 Apparatus 

3.2.1 3dMDface System 

The 3dMDface system, as shown in Figure 3.2 (left), was adopted to capture 
3D images of human faces. It incorporates nine computer vision cameras 
from three modular units, and an industrial-grade flash system was built in 
for each modular unit. The 3dMD Acquisition software (3dMDface 
Acquisition, 3dMD, Atlanta, GA) was used to control this system to 
simultaneously capture colour images of a human face from the three 
directions with different camera viewpoints. The capture time is about 1.5 
milliseconds, and the captured facial image covers 180° of the face, from ear 
to ear.  

   

Figure 3.2 The 3dMDface system (left) and the calibration frame (right). 

Before 3D facial image acquisition, a calibration procedure is required to 
ensure that the 3D imaging system produces accurate data measurements 
and alignment of the objects being captured. This process is performed in a 
dark environment using its build-in flash, and the calibration frame, as shown 
in Figure 3.2 (right), is placed in a specific position so that the cross centre 
can be shown simultaneously in the three live view windows captured using 
the cameras from three directions. In the calibration process, the 3D image 
acquisition of the calibration frame needs to be taken twice. For the first 
capture, the calibration frame is tilted 15° forward, and it is tilted 15° 
backward for the second capture. Figure 3.3 presents the two image 
acquisitions of the calibration frame. The calibration is not successful until 
the centre of the frame is simultaneously captured from three directions and 
the same to both captures. A successful calibration is necessary for the 3D 
imaging system to capture 3D digital models. 
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Figure 3.3 The two image acquisitions of the calibration frame in the 
3dMDface system. 

Based on the speckle projection technique, this system can generate a 
continuous 3D polygon surface mesh with a single x, y, z coordinate system 
from all viewpoints, and an object file is created containing the geometric 
data of the targe subject.  Figure 3.4 shows the captured speckle projection 
images of a mannequin face. Simultaneously, three colour images of the 
face are captured using the cameras in three module units, and a bitmap 
image consisting of the three colour images is created to record the colour 
and texture information of the object, as shown in Figure 3.5. This texture 
bitmap image will be automatically linked and mapped to the 3D mesh model 
in a 3D viewer software, based on a MTL (material template library) file 
which is generated to specify colour, texture and reflection characteristics.  

In generally, three files (obj, bmp and mtl) are created using the 3D imaging 
system to generate the digital 3D colour model of the face. Additional 3D 
data manipulation is required to repair and smooth any bad edges and make 
the 3D model printable. Considering that the colour appearance of a 3D face 
model is dependent on the 2D colour bitmap image captured using the 3D 
imaging system, it is therefore necessary to achieve accurate colour 
reproduction of the bitmap image and map it onto the 3D face model.  



- 66 - 
 

 

Figure 3.4 The captured speckle projection images of a mannequin face. 

 

Figure 3.5 The captured texture bitmap image of a mannequin face. 

3.2.2 3D Colour Printer 

Based on the Polyjet colour 3D printing technology, the Stratasys J750™ 
colour 3D printer is able to achieve full colour 3D printing (over 500,000 
colours) and create realistic prototypes with texture mapping. The size of its 
build tray is 490 × 390 × 200 mm, as shown in Figure 3.6. The printer 
supports a wide range of material properties, from rigid to flexible and 
opaque to transparent. The printing materials that mix together to produce a 
wide range of colours are VeroCyan, VeroMagenta, VeroYellow, Vero 
PureWhite and VeroBlackPlus™. The VeroClear material is available to 
adjust the opacity or translucence of the colour applied to the 3D model 
when needed. In this study, the VeroClear material was not used and all the 
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printed samples were opaque. Regarding the support material, it has two 
options: SUP705 which can be removed with a waterjet system, and 
SUP706 which is soluble and easily removed in automated post-processing. 
In addition, there are three options of printing mode for this 3D printer: the 
high-speed mode using up to 3 base resins to produce in 27-micron layers, 
the high-quality mode using up to 6 model materials to print in 14-micron 
layers, and the high-mix mode using up to 6 base resins to print in 27-micron 
layers. 

 

Figure 3.6 Stratasys J750TM colour 3D printer. 

The GrabCAD Print (GrabCAD Print, Stratasys, Rehovot, Israel) offers an 
open software platform for preparing print jobs on a variety of 3D printers, 
including the Stratasys J750 printer. The 3D printer print using the CMYK 
colour gamut while computer monitors use the RGB colour gamut, a sRGB 
icc profile and an icc profile containing the colour gamut of the printer were 
available in the GrabCAD Print software so that the RGB-based colour 
models can be printed using the Stratasys J750 printer. 

3.2.3 Spectrophotometer 

Two spectrophotometers, the Konica Minolta CM-2600d and the Konica 
Minolta CM-700d, as shown in Figure 3.7, were used to take colour 
measurements. Both are portable and handheld colour measurement 
instrument with a diffuse illumination and 8-degree viewing system (d:8°), 
equipped with simultaneous SCI (specular component included) and SCE 
(specular component excluded) measurement, and they have been widely 
used to measure the colour of skin (see Table 2.5 in Section 2.2.3.1).  

Before taking colour measurements, the spectrophotometer should be 
calibrated in accordance with the manufacturer’s recommendation, typically 
performing dark and white calibration using the provided samples. In this 
study, a small aperture size of SAV 3 mm and SCI measurement mode was 
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adopted to measure the colour of human faces and 3D printed objects. The 
SpectraMagic NX software (SpectraMagic NX, Konica Minolta, Tokyo, 
Japan) is compatible to record spectral reflectance data with wavelengths 
ranging from 360 nm to 740 nm and intervals of 10 nm.  

 

Figure 3.7 Konica Minolta CM-2600d spectrophotometer (left) and CM-700d 
spectrophotometer (right). 

3.3 Colour Management 

The colour of the printed object is not only affected by the colour behaviours 
of the 3D printer, but also the colour accuracy of the 3D model captured 
using the 3D imaging system. Therefore, it is crucial to ensure consistent 
and accurate colour reproduction from 3D image acquisition to 3D colour 
printing. Based on the conventional colour management approaches 
developed for 2D colour image reproduction, a dedicate colour management 
pipeline has been applied to the workflow of 3D colour image reproduction. 
As shown in Figure 3.8, the colour image captured using the 3D imaging 
system is firstly transformed to CIE colour space, such as CIE XYZ and 
CIELAB, and then converted to the 3D printer-based colour space. In this 
process, it is of vital importance to determine a colour characterisation model 
with high accuracy for the 3D imaging system and the 3D colour printer, 
respectively.   

 

Figure 3.8 The process of colour management in 3D image reproduction. 

Since the colour information of an object captured using the 3dMDface 
system is stored in a 2D bitmap image, it is practicable to apply the 
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conventional colour image reproduction workflow, but specific colour 
characterisation methods are required to achieve higher accuracy for 
reproducing skin tones. Therefore, a specialised 2D digital imaging system 
for capturing human faces was developed to investigate the factors affecting 
camera colour characterisation, such as training dataset, image format and 
mapping methods. Furthermore, the prediction accuracy of different colour 
characterisation models was quantified not only using the typical colour 
difference method but also two newly proposed measures based on real 
human facial skin. The details of this part of work are described in Chapter 4. 

In the light of the findings reported in 2D camera colour characterisation, a 
suitable and feasible method was applied to the 3D imaging system for 
accurately predicting the colour of facial skin from the pixel-based images, 
and more information is given in Chapter 4. The colour characterisation for 
3D cameras makes the captured facial colour image independent of the 3D 
imaging system and can be communicated between different devices. 

It is no doubt that the colour quality of a 3D printed object is not only affected 
by the quality of the captured image but also the 3D printer itself. As an 
output device, it is critical to understand the colour characteristics of the 
printer for accurate colour reproduction. Basically, printer colour 
characterisation is performed to transform colours between the printer-based 
colour space and a device-independent colour space, and the accuracy of a 
printer colour model can be affected by a wide variety of factors. It is 
therefore necessary to compare different colour characterisation methods 
and develop a specific protocol for the 3D printer to achieve accurate skin 
colour reproduction. In Chapter 5, different methods including conventional 
polynomial regression and new machine learning techniques were 
investigated on the performance of colour characterisation for a 3D printer, 
in both colorimetric and spectral-based approaches. Additionally, a practical 
accuracy of the colour characterisation model was reported based on the 
Stratasys J750 colour 3D printer.    

In generally, colour management in the 3D colour image reproduction 
workflow is to determine a validated colour characterisation model for the 3D 
cameras and the 3D printer, respectively, which can be applied to ensure 
that the skin tones can be faithfully reproduced in the 3D printing process.  
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3.4 Colour Reproduction Evaluation 

In addition to colour management, colour quality evaluation is also an 
important part in the workflow of accurate colour reproduction of human face 
using 3D printing technology. Typically, the colour-difference formulae such 
as CIELAB and CIEDE2000 are used to quantify the accuracy of 3D printed 
objects, but these formulae were developed based on 2D colour samples, 
and currently there is no standard guidance for the colour-difference 
evaluation of 3D objects. Consequently, it is necessary to collect visual 
colour-difference data of 3D objects, and comprehensive knowledge of the 
visual colour perception of 3D objects is highly desired, especially 
considering that it has become a topic of great concern in various industrial 
applications with the rapid development of colour 3D printing technologies. 

To investigate the human colour perception of 3D objects in terms of the 
lightness, chroma, and hue dimension, psychophysical experiments were 
conducted to collect visual colour-difference data of 3D printed objects, 
which were used to test the performance of CIELAB and CIEDE2000 colour-
difference formulae. Furthermore, the parametric factors in colour-difference 
formulae were optimised to better fit the visual colour-difference data of 3D 
objects, and the modified colour-difference formulae were validated using 3D 
printed skin colour samples. This part of research work is presented in 
Chapter 6. 

Regarding the evaluation of the 3D colour image reproduction workflow, the 
accuracy is quantified by calculating the colour difference between the actual 
human face and the 3D printed model, which involves the precision of the 
3D imaging system and the fidelity of the 3D colour printer. In Chapter 7, a 
3D human face model was printed practically using the developed 3D colour 
image reproduction workflow integrated with the specific colour 
characterisation and colour evaluation methods.  
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Chapter 4 
Image Measurement for Human Faces 

In this chapter, a specific digital imaging system for human face was 
developed to measure skin colour based on the captured images, and the 
factors that affect image-based skin colour measurement, such as image 
format, training data, mapping method, were comparatively investigated for 
the development of camera colour characterisation model, which is the most 
important for transforming camera RGB values to CIE colorimetric values.  

Typically, the method for quantifying predictive accuracy of camera colour 
characterisation is to use CIELAB or CIEDE2000 colour-difference formula 
based on a group of testing data of uniform colour patches. It is usually 
taken for granted that good prediction of the testing colours will lead to good 
performance on whole images in most cases, but this does not fairly 
represent what happens in practice, especially for facial skin with non-
uniform colour. As a result, additional measures to evaluate the predictive 
accuracy of facial skin colour were introduced in this chapter. In addition, 
based on the designed digital imaging acquisition system for human face, a 
case study was conducted to investigate how the illuminations with different 
CCTs affect skin colour heterogeneity. Moreover, the colour characterisation 
was implemented for the 3D imaging system to capture accurate and 
consistent facial images. 

4.1 Development of a 2D Imaging System 

4.1.1 Design and Apparatus 

To obtain good-quality colour images for quantitative analysis, a specific 
digital imaging system consisting of a high-resolution digital SLR camera 
and two THOUSLITE® LED Cubes was developed, as illustrated in Figure 
4.1. The position of each component in the digital imaging system is of vital 
importance, because it could affect the results of colour characterisation for 
the camera and skin colour measurement based on the captured images 
once each parameter is changed.   

The two LED Cubes were placed symmetrically towards the position of the 
human face. In literature survey, it was suggested that two directional light 
sources at 45° to the subject plane could achieve near-uniform illumination 
(Hunt and Pointer 2011). However, considering that the LED Cube is a 
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lighting panel with a size of 300 × 300 mm (the whole dimension is 300 × 
300 × 210 mm) rather than a spotlight, it is not appropriate to define as 45°. 
Finally, the angle of each LED Cube edge to the horizontal plane was 
defined as 60°, aiming to provide as uniform lighting on the human face as 
possible. The illumination uniformity in the developed digital imaging system 
was tested and the results will be given in Section 4.1.3. 

 

Figure 4.1 Schematic diagram of the developed digital imaging system for 
capturing human faces. 

The Canon EOS 6D Mark II digital camera equipped with a Canon EF 24-
105 mm lens, as shown in Figure 4.2 (left), was used to take image capture. 
It was located in the horizontal centre of the two LED Cubes. In order to 
avoid most specular lights in the captured images caused by reflection, a 
cross linear polariser with a size of 300 × 300 mm was placed vertically in 
front of each LED Cube to filter out the glare, and a Kalimar PL 77mm filer, 
as shown in Figure 4.2 (right), was placed over the camera lens with a 
specific rotational angle for polarisation.  

   

Figure 4.2 Canon EOS 6D Mark II digital camera equipped with a Canon EF 
24-105 mm lens (left) and the Kalimar PL 77mm filer (right). 

Normally, the maximum degree of polarisation occurs in a circular degree of 
90°, and the angle for minimum polarisation is 0°. Although a polarisation 
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degree of 90° can remove most of glares in the facial images, it also causes 
dimming and colour shifts in the captured image, as shown in Figure 4.3 
where the face of a mannequin face was captured at 0°, 45°, 75°, 90°. With 
the aim of producing diffuse light on the face without changing too much skin 
tones in the image, different polarisation degrees ranging from 0° to 90° 
were tested, and finally, the polarisation degree was determined as 75° to 
achieve good colour quality of the captured facial images.  

    
0° 45° 75° 90° 

Figure 4.3 Colour images of a mannequin face captured at polarisation 
degrees of 0°, 15°, 45°, 90°. 

To make the digital camera in a stable and repeatable condition, the manual 
mode was selected for image capture instead of using automatic mode. A X-
Rite ColorChecker Classic chart (see Figure 2.21) was used to determine 
the camera settings, which were specifically ISO 640, aperture size f/5.6, 
shutter speed 1/8 second. The white balance was customised as the colour 
temperature mode, corresponding to the CCT of the light illuminated on the 
human face. Table 4.1 lists the fixed settings of the digital camera before 
taking image captures, both JPEG and RAW images were saved. 
Additionally, a matt black lens hood was equipped in front of the camera lens 
to prevent any stray light of the two LED Cubes from directly entering the 
camera lens during image captures.  

Table 4.1 Camera settings for capturing facial images. 

ISO 
Shutter 
speed 

Aperture White balance 
Focal 
length 

Polariser 
angle 

Image 
format 

640 1/8 s f/5.6 
Customised Colour 

Temperature 
85 mm 75° 

JPEG 
& RAW 

4.1.2 The Lighting System 

Based on the stable and computer controlled THOUSLITE LED technology 
which can generate a spectral power distribution with specific requirements, 
an illumination with a CCT of 6500 K was created and reproduced using the 
two LED Cubes. A Konica Minolta CS2000 tele-spectroradiometer, as shown 
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in Figure 4.4 (left), was placed in the position of the camera and used to 
measure the created illumination against the THOUSLITE standard white tile 
(Figure 4.4 (right)) which was placed at the position of the human face.  

   

Figure 4.4 Konica Minolta CS-2000 spectroradiometer (left) and 
THOUSLITE standard white tile (right). 

The parameters of the simulated D65 illumination were measured using the 
CS-2000 spectroradiometer and given in Table 4.2. Figure 4.5 shows the 
measured relative spectral power distribution (SPD) of the illumination, 
which was used to calculate CIE XYZ and CIELAB values with the spectral 
reflectance measured on human faces. The simulated D65 illumination was 
saved in the LEDNavigator software (LEDNavigator V5.3.4, THOUSLITE, 
Changzhou, China) with its parameters and SPD so that it can be 
reproduced and used next time for taking image captures. 

Table 4.2 The measured parameters of the simulated D65 illumination in the 
digital imaging system. 

 CCT Ra Duv Luminance 

D65 6544 K 95 0.0064 127.45 𝑐𝑐𝑐𝑐/𝑚𝑚2 

 

Figure 4.5 The relative SPD of the simulated D65 illumination in the digital 
imaging system. 
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4.1.3 System Validation 

The uniformity of the lighting in the target area was tested by using a 
uniformity board, which was placed at the same position as the human face 
and then captured using the digital camera with the same settings. The 
intensity of each pixel was derived from the captured image, and the 
histograms of red, green and blue channels are shown in Figure 4.6. In order 
to quantify the lighting uniformity, the RGB values in the target area were 
converted to CIELAB values using the default 𝑟𝑟𝑟𝑟𝑟𝑟2𝑙𝑙𝑙𝑙𝑙𝑙 function in MATLAB 
(MATAB 2020, MathWorks, Natick, MA), note that the colour accuracy was 
not the aim in this step. The results showed that the lightness 𝐿𝐿∗  values 
ranged from 76.5 to 78.5 in the subject area, which are very similar, and the 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 value calculated using CIELAB colour-difference formula was 0.39. It 
is indicated that the light illuminated on the area of the face is uniform and 
constant, which can used for quantitative image analysis on skin colour 
measurement. In addition, it can be seen from the RGB intensity histograms 
that the white balance of the camera is good for capturing images, with no or 
very few colour shifts of the neutral board. 

 

  

Figure 4.6 Histograms of RGB intensity and lightness 𝐿𝐿∗ for testing lighting 
uniformity. 

The camera responses to light intensity were characterised using the grey 
scales (12 neutral patches) in the ColorChecker Digital SG chart (Figure 
2.21). Both RGB and RAW images of the chart were saved, and the digital 
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data of each neutral patch were extracted in MATLAB. A Konica Minolta CM-
2600d spectrophotometer was used to measure the light intensity of each 
neutral patch. The relationship between the camera response and light 
intensity is illustrated in Figure 4.7, where the non-linear relationship (left) is 
for RGB image data, and the linear relationship (right) is for RAW image 
data. 

 

Figure 4.7 The relationship between light intensity and camera digital 
responses for RGB (left) and RAW (right) image data. 

4.1.4 Image Acquisition  

The image acquisition process for human faces was conducted in a dark 
room, and the LED lighting system produced the only illumination. The 
Canon EOS 6D Mark II DRGB camera with specific settings (see Table 4.1) 
was connected to Canon EOS Utility software (EOS Utility 3, Canon, Tokyo, 
Japan) to remotely control image captures. Before attending the collection of 
facial images, the human participant was asked to keep face clean without 
any makeup, and no bangs of hair in front of forehead. Then the participant 
was instructed to sit in front of the camera at a distance of about 120 cm 
(See Figure 4.1) and put face on a fixed chin rest. Moreover, the participant 
was asked to keep still and look at the camera lens, the digital camera was 
controlled remotely to capture the image of the face against a black 
background. Figure 4.8 shows the shooting interface of a mannequin face. 

Both JPEG (.JPG) and RAW (.CR2) images of the human face were 
automatically saved in the computer after each capture. The resolution of the 
image is 6240 pixels (width) × 4160 pixels (height), equal to a 26 MP image 
with a 3:2 aspect ratio. It is important to ensure that each captured image is 
clear and sharp. If an image is blurry, it needs to be captured again until a 
clear image is obtained. 
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Figure 4.8 The remote shooting interface of capturing a mannequin face.  

4.2 Spectrophotometer Measurement  

The Konica Minolta CM-2600d spectrophotometer with a SAV aperture and 
SCI measurement mode, as shown in Figure 3.7, was used to measure the 
skin colours of five facial positions: forehead (FH), right cheekbone (CBR), 
left cheekbone (CBL), nose tip (NT) and chin (CH), as illustrated in Figure 
4.9. The measurement position for the forehead is the intersection of the 
horizontal midline of the whole forehead and the vertical midline of the whole 
face, and it is similar to take colour measurements on the chin. For colour 
measurement on both cheekbones, the position is the centre of the 
cheekbone. The spectral reflectance data measured using the 
spectrophotometer were used to calculate the corresponding CIE XYZ 
tristimulus values and CIELAB values with the CIE 1931 standard 
colorimetric observer and the SPD of the simulated D65 illumination used in 
the digital imaging system. To evaluate the predictive accuracy of camera 
colour characterisation in section 4.4, the spectrophotometer measurement 
data were considered as the ground truth and compared to the predicted 
results. 

In the present study, 144 human subjects from different ethnicities were 
invited to participate in the capture of facial images and skin colour 
measurements. Table 4.3 gives the number of the participants by ethnicity 
and gender. It can be seen that most participants are female, and there are 
more Chinese and Caucasian than other ethnicities. The “others” in Table 
4.3 indicates 6 Africans, 4 Japanese, 1 Pakistani, 1 Arab and 1 Turk. Most of 
the participants were in the age group of 20-29 years. Before their 
participation, each was asked to sign a consent form, in accordance with the 
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ethical review procedure of the University of Leeds. Figure 4.10 plots all the 
measured spectral reflectance data of facial skin colours collected from the 
144 human participants. 

 

Figure 4.9 The five positions measured on each human face (1. forehead, 2. 
right cheekbone, 3. left cheekbone, 4. nose tip, 5. chin).  

Table 4.3 Information about the participants. 

 Chinese Caucasian Indonesian Mexican Others Sum 

Male 11 15 9 6 2 43 

Female 40 17 22 11 11 101 

Sum  51 32 31 17 13 144 

 

Figure 4.10 The spectral reflectance measured on the five facial locations of 
144 human participants. 

4.3 Colour Characterisation for the Digital Camera 

A camera colour characterisation model is usually determined based on a 
reference colour chart (also called training data) and a mapping method. 
This section will introduce different image formats, training datasets, and 
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mapping methods that were used for the determination of camera colour 
characterisation models. 

4.3.1 Image Formats 

Both RGB and RAW image data were used as the camera digital signals to 
predict skin colours. For the saved JPEG images, the RGB values of each 
pixel were extracted using the imread function in MATLAB. For the RAW 
images, the open source raw-files converter dcraw was used to decode the 
RAW image to TIFF format without colour correction (Coffin, 2018), and the 
RAW RGB values of each pixel was derived from the decoded TIFF image in 
MATLAB. 

4.3.2 Training Datasets 

The two existing colour charts: X-Rite ColorChecker Digital SG chart with 
140 colour patches as shown in Figure 2.21 (right) and the Spectromatch 
silicon skin colour chart with 95 colour samples as shown in Figure 2.18, 
were selected and used separately as the training dataset for the 
determination of the camera colour characterisation model. Based on the 
developed digital imaging system, each colour chart was placed in the same 
position as the human face and captured using the digital camera with the 
same settings. The averaged RGB/RAW values of each patch were derived 
from the captured images in MATLAB. In addition, the spectral reflectance of 
each colour patch was measured using a CM-2600d spectrophotometer, and 
the corresponding CIE XYZ tristimulus values and CIELAB values were 
calculated with the CIE1931 CMFs and the measured SPD of the 6500 K 
illumination. 

From the facial skin colour data collected in this study, the colour data of 200 
facial locations of 40 human subjects (10 Caucasian, 10 Chinese, 10 
Indonesian and 10 Mexican) were used as a separate training dataset, 
which include the CIE XYZ tristimulus values calculated from the spectral 
reflectance data measured using the spectrophotometer and the RGB/RAW 
image data of the five facial positions in the captured images. Specifically, 
an area of 50 × 50 pixels was selected for each position in the facial image, 
trying to keep the facial positions for image data extraction the same as 
those for spectrophotometer measurements. The RGB/RAW values of the 
2500 pixels were averaged to represent the image data of the facial position. 
Overall, three training datasets were used for performing camera colour 
characterisation, which are: 
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• CCSG: the X-Rite ColorChecker Digital SG chart with 140 colour 
patches, 

• SSCC: the Spectromatch silicon skin colour chart with 95 skin colour 
samples, 

• FSCD: the 200 facial skin colour data collected from human 
participants.  

4.3.3 Mapping Methods 

The linear transformation, polynomial regression (PR) with 1-3 orders, root-
polynomial regression (RPR) with 1-3 orders and neural network (NN) were 
used as the mapping methods to transform camera image data to CIE XYZ 
tristimulus values, respectively. For the PR and RPR methods, the extension 
terms of each order are listed in Table 4.4, note that the first order PR and 
RPR has the same terms and was named as 1st PR. For the neural network 
method, the fitnet function in MATLAB was used with the trainbr method 
(Bayesian regularization backpropagation) to train an optimised mapping 
between the input (RAW/RGB values) and output vectors (CIE XYZ 
tristimulus values). The architecture used has three hidden layers, where the 
first hidden layer size is 5, the second is 25, the third is 5, and the number of 
epochs is 1000. Specifically, seven mapping methods used for performing 
camera colour characterisation.  

Table 4.4 The extension terms for linear, 1st PR, 2nd PR, 3rd PR, 2nd RPR, 
and 3rd RPR methods. 

 Number terms 

Linear 3 𝑟𝑟,𝑔𝑔,𝑏𝑏 

1st PR 4 𝑟𝑟,𝑔𝑔,𝑏𝑏, 1 

2nd PR 10 𝑟𝑟,𝑔𝑔,𝑏𝑏, 𝑟𝑟2,𝑔𝑔2,𝑏𝑏2, 𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟,𝑔𝑔𝑔𝑔, 1 

3rd PR 20 
𝑟𝑟,𝑔𝑔,𝑏𝑏, 𝑟𝑟2,𝑔𝑔2,𝑏𝑏2, 𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟,𝑔𝑔𝑔𝑔, 

𝑟𝑟2𝑔𝑔, 𝑟𝑟2𝑏𝑏,𝑔𝑔2𝑏𝑏, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟2,𝑔𝑔𝑔𝑔2, 𝑟𝑟3,𝑔𝑔3,𝑏𝑏3, 1 

2nd RPR 7 𝑟𝑟,𝑔𝑔,𝑏𝑏,�𝑟𝑟𝑟𝑟,√𝑟𝑟𝑟𝑟,�𝑔𝑔𝑔𝑔, 1 

3rd RPR 14 
𝑟𝑟,𝑔𝑔,𝑏𝑏,�𝑟𝑟𝑟𝑟,√𝑟𝑟𝑟𝑟,�𝑔𝑔𝑔𝑔, �𝑟𝑟2𝑔𝑔3 , �𝑟𝑟2𝑏𝑏3 , �𝑏𝑏2𝑔𝑔3 , 

�𝑟𝑟𝑟𝑟23 , �𝑟𝑟𝑟𝑟23 , , �𝑔𝑔𝑔𝑔23 , �𝑟𝑟𝑟𝑟𝑟𝑟3 , 1 

4.3.4 Determination of Colour Characterisation Models 

Based on the three training datasets (CCSG, SSCC, FSCD) with known CIE 
XYZ tristimulus values calculated under the simulated D65 illumination and 
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the corresponding RAW/RGB values extracted from the captured image, the 
seven mathematical methods, linear, 1st PR, 2nd PR, 3rd PR, 2nd RPR, 3rd 
RPR and NN, were applied respectively to determine the colour 
characterisation model with the least-square fitting method. A total of 42 
different colour characterisation models (2 image formats × 3 training 
datasets × 7 methods) were generated to predict facial skin colours in terms 
of CIE colorimetric values from the captured images. 

4.4 Validation of Colour Characterisation Models  

4.4.1 Testing Dataset 

The 100 facial skin colour data collected from 20 participants (5 Caucasian, 
5 Chinese, 5 Indonesian and 5 Mexican) were used as the testing data, 
which are different from the FSCD training dataset. Figure 4.11 shows the 
distributions of the collected skin colour data in the CIELAB lightness-
chroma 𝐿𝐿∗𝐶𝐶∗  plane (a) and the chromatic 𝑎𝑎∗𝑏𝑏∗  plane (b), where the dot 
symbols indicate the 200 skin colours that were used as a training dataset, 
and the cross symbols denote the 100 skin colours that were used as the 
testing data to evaluate the performance of the model determined. The 
training and testing datasets are openly available in Zenodo (He 2021). 

 

Figure 4.11 Colour distributions of the FSCD training data and the testing 
data in CIELAB 𝐿𝐿∗𝐶𝐶∗ (a) and 𝑎𝑎∗𝑏𝑏∗ (b) plane. 

For the facial images collected as the testing data, the RGB/RAW values of 
each facial location were derived from an area of 50 × 50 pixels, and the 
averaged values were transformed to CIE XYZ values using each colour 
characterisation model generated. The colour prediction accuracy was 
evaluated not only by using the conventional method of CIELAB colour 
difference, but also the two newly introduced measures, facial colour 
contrast and skin colour gamut.   
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4.4.2 Colour Difference  

The traditional method for quantifying the prediction accuracy of colour 
characterisation model is to calculate the averaged CIELAB colour 
difference between instrument measurements and the corresponding 
predictions of a group of testing data. The equation is expressed as: 

∆𝐸𝐸𝑎𝑎𝑎𝑎∗ =
1
𝑛𝑛
� �(𝐿𝐿0𝑖𝑖∗ − 𝐿𝐿1𝑖𝑖∗ )2 + (𝑎𝑎0𝑖𝑖∗ − 𝑎𝑎1𝑖𝑖∗ )2 + (𝑏𝑏0𝑖𝑖∗ − 𝑏𝑏1𝑖𝑖∗ )22

𝑛𝑛

𝑖𝑖=1
 (4.1) 

where 𝑛𝑛 is the number of the testing data (𝑛𝑛 = 100), 𝑖𝑖 indicates the 𝑖𝑖𝑡𝑡ℎ testing 
data, 𝐿𝐿0∗ ,𝑎𝑎0∗ , 𝑏𝑏0∗  indicate the CIELAB values calculated from spectral 
reflectance measured on actual human faces, and 𝐿𝐿1∗ ,𝑎𝑎1∗ , 𝑏𝑏1∗  represent the 
CIELAB values predicted by each colour characterisation model. The larger 
the CIELAB colour-difference value, the lower accuracy of the corresponding 
characterisation model.  

The results of CIELAB colour difference calculated between the 
measurement and each model prediction are given in Figure 4.12, where (a) 
shows the results obtained when using JPEG image data as camera digital 
values, and (b) represents the results based on RAW image data. Error bars 
were calculated using the standard error of the mean for each model. 

 

Figure 4.12 Histogram of the average CIELAB colour difference for each 
prediction model based on RGB (a) and RAW (b) image data. 

It can be clearly seen in Figure 4.12 (a) that the colour differences vary 
greatly for the three different training datasets and the seven different 
mapping methods. The CCSG training dataset (blue bars) has considerably 
larger colour-difference values than the other two datasets, except when a 
neural network was used as the mapping method. In comparison, when the 
RAW image data were used for skin colour prediction, the variations among 
different training datasets and mapping methods became much smaller. 
Noticeably, the CCSG chart produced very similar CIELAB colour-difference 
values to the other two training datasets, as shown in Figure 4.12 (b), which 
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indicates that the training dataset has little effect on predictive accuracy 
when using RAW images as camera digital signals. In addition, when the 
FSCD training dataset was used, in most cases it gave the smallest colour 
difference for both image formats except for the neural network model (NN). 

Tables 4.5 and 4.6 list the average and maximum CIELAB colour-difference 
values of each colour characterisation model for RGB and RAW image data, 
respectively. With RGB values as camera digital signals, the 3rd RPR 
mapping method predicted the smallest colour differences for the FSCD and 
SSCC datasets, 2.63 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗  and 3.96 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ , respectively, followed by the 1st 
PR (2.69 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ ) and 2nd PR method (3.97 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ ). For the CCSG training 
dataset, the smallest colour difference was achieved by the NN technique 
with the value of 4.21 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ , followed by the 3rd PR method (4.87 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ ).  

Table 4.5 The average CIELAB colour differences based on RGB and RAW 
image data (the smallest value for each dataset is shown in bold). 

 Training Linear 1st PR 2nd PR 3rd PR 2nd RPR 3rd RPR NN 

RGB 

FSCD 3.06 2.69 2.72 2.71 2.69 2.63 4.23 

SSCC 4.97 4.34 3.97 4.04 4.06 3.96 4.01 

CCSG 11.76 11.43 6.93 4.87 12.25 11.10 4.21 

RAW 

FSCD 3.08 2.47 2.65 2.70 2.55 2.53 4.68 

SSCC 4.06 3.48 3.43 3.35 3.32 3.35 3.48 

CCSG 3.98 3.48 3.56 3.51 3.54 3.47 4.73 

Table 4.6 The maximum CIELAB colour differences based on RGB and 
RAW image data (the smallest value for each dataset is shown in bold). 

 Training Linear 
1st 
PR 

2nd 
PR 

3rd 
PR 

2nd 
RPR 

3rd 
RPR 

NN 

RGB 

FSCD 9.53 6.51 6.26 6.05 8.10 5.96 16.62 

SSCC 8.35 7.52 8.68 8.78 7.80 7.36 8.55 

CCSG 17.00 17.16 14.63 9.17 17.73 15.97 14.69 

RAW 

FSCD 7.78 5.75 8.21 7.75 6.46 6.32 18.63 

SSCC 10.68 6.84 6.94 6.75 7.00 6.94 7.06 

CCSG 8.50 7.69 8.07 7.74 8.19 7.76 8.79 

For the average results based on RAW image data (Table 4.5), the 1st PR, 
2nd RPR and 3rd RPR methods predicted the smallest colour-difference value 
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for the FSCD, SSCC and CCSG datasets, respectively. The colour 
differences were significantly reduced to less than 4 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗  for the CCSG 
dataset, compared with the results based on RGB images. In addition, it can 
be observed in Table 4.6 that the colour characterisation models achieving 
the smallest maximum colour-difference value (bold numbers) does not 
always correspond to the average colour difference results, which suggests 
that more measures need to be considered to better evaluate the 
performance of colour characterisation model on image measurement for 
human facial skin colour. 

4.4.3 Facial Contrast  

Skin colour of human face is non-uniform and unevenly distributed, it 
provides essential information of an individual such as youth and health. In 
this study, the facial colour contrast amongst the five facial locations is 
introduced and used to present the overall colour variation of the face, and 
the differences between each two facial locations were calculated in each 
colour component, CIELAB lightness 𝐿𝐿∗, redness +𝑎𝑎∗ and yellowness +𝑏𝑏∗. 
Therefore, a total of ten differences were calculated for facial contrast, as 
shown in Table 4.7.  

Table 4.7 The ten differences between each two different facial locations. 

 FH CBR CBL NT CH 

FH      

CBR ∆     

CBL ∆ ∆    

NT ∆ ∆ ∆   

CH ∆ ∆ ∆ ∆  

In order to evaluate the degree of preservation of facial colour contrast in the 
images predicted using different colour characterisation models, the Pearson 
Correlation Coefficient was used to quantify the relationship between the 
facial colour contrast of the objective measurements of an actual human 
face and those estimated from the corresponding facial image by using 
colour characterisation models. The larger the Pearson 𝑟𝑟value, the better the 
preservation of facial contrast of the prediction model. 

The results of facial colour contrast in each colour attribute (lightness, 
redness and yellowness) are shown in Figure 4.13, where (a) and (b) show 
the results from RGB and RAW image data, respectively. Regarding facial 
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contrast for lightness, the FSCD dataset gives the best predictions, with 
Pearson 𝑟𝑟 values greater than those for the SSCC and CCSG datasets. For 
the facial contrast of redness and yellowness, different prediction models 
gave similar results, except the NN model which gave poor performance for 
FSCD dataset. 

 

Figure 4.13 Histogram of facial colour contrast PCC in lightness, redness 
and yellowness based on RGB (a) and RAW (b) image data. 

To compare the effect of different training datasets and mapping methods on 
the prediction of facial colour contrast, the Pearson 𝑟𝑟 values of the three 
attributes were averaged and the results are given in Table 4.8. From the 
results based on RGB image data, the 1st PR method gives the largest 𝑟𝑟 
value of 0.64, based on the FSCD training dataset. For the SSCC training 
dataset, the 1st PR, 2nd RPR and NN methods have the same Pearson 𝑟𝑟 
values of 0.52. The model based on a neural network performed better for 
the CCSG dataset with the Pearson 𝑟𝑟  value of 0.55. In comparison, the 
worse correlation achieved for the FSCD and SSCC training dataset is 0.44 
by using the NN method and the linear transformation, respectively. For the 
CCSG dataset, the 2nd RPR method gave a worst performance with the 
Pearson 𝑟𝑟 value of 0.40.   

For the results based on RAW images, the 1st PR method achieved the 
largest Pearson 𝑟𝑟 value, 0.62, based on the FSCD dataset. For the SSCC 
and CCSG datasets the best performance was achieved using the 2nd PR 
method and the linear transformation, respectively. The neural network 
model gave the worst predictive results when the FSCD dataset was used 
as the training data, with a PCC value of only 0.21, which indicates that it is 
not recommended to apply a neural network with facial skin colour data to 
determine a colour characterisation model. In addition, the results based on 
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RAW image data are generally better than those of RGB image data for 
preserving facial colour contrast. 

Table 4.8 The averaged Pearson 𝑟𝑟 values for each prediction model based 
on RGB and RAW images. 

 Training Linear 1st PR 2nd PR 3rd PR 2nd RPR 3rd RPR NN 

RGB 

FSCD 0.50 0.64 0.60 0.56 0.59 0.56 0.44 

SSCC 0.44 0.52 0.48 0.48 0.52 0.50 0.52 

CCSG 0.42 0.41 0.46 0.43 0.40 0.43 0.55 

RAW 

FSCD 0.59 0.62 0.59 0.60 0.61 0.58 0.21 

SSCC 0.47 0.46 0.49 0.48 0.48 0.48 0.44 

CCSG 0.51 0.43 0.45 0.45 0.44 0.44 0.45 

4.4.4 Skin Colour Boundary  

The above two methods to validate the predictive accuracy were limitedly 
based on the five specific facial locations, for 3D colour image reproduction it 
is crucial to ensure good colour prediction of the whole skin area, which is 
also desired for the image-based measurements in cosmetics and medical 
applications. Therefore, a skin colour gamut in terms of CIELAB values was 
introduced to verify the colour distributions of the skin-related pixels in the 
facial images predicted by each model.  

Considering the colour distributions of the skin colour data collected in the 
present study (Figure 4.11) and the skin colour database developed for four 
ethnic groups (Caucasian, Chinese, Kurdish, Thai) by Xiao et al. (2017), a 
general skin colour gamut, with the lightness 𝐿𝐿∗ranging from 40 to 75, the 𝑎𝑎∗ 
value from 0 to 30 and the 𝑏𝑏∗ value from 5 to 35, was defined to validate the 
colour characterisation models. Given that the aim was to compare the 
performance of the 42 colour characterisation models rather than deciding 
the exact skin colour boundary, this gamut was approximately defined in a 
cuboid shape, and it is expected that the prediction model can convert most 
of the skin-colour pixels falling within the predefined gamut and the least 
colours outside the boundary.   

To predict skin colours from facial images, the non-skin regions, such as the 
hair, eyes and mouth, were removed from each image, and the colour of the 
remaining pixels was estimated by each colour characterisation model 
converting the extracted RAW/RGB values of each pixel to CIE XYZ 
tristimulus values. The percentage of the pixel-based colours outside the 
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gamut was calculated for each facial image, and the average result of all the 
testing images was used to validate the model performance, expressed in 
Equation (4.2), where 𝑚𝑚 indicates the number of testing facial images (𝑚𝑚 = 
20), 𝑁𝑁 is the number of the skin colour pixels in each facial image, and 𝑛𝑛 is 
the number of colours predicted to be outside of the predefined colour 
gamut. The larger the percentage value, the poorer the accuracy of the 
corresponding colour characterisation model in estimating skin colours. 

𝑃𝑃 = 1
𝑚𝑚
∑ (𝑛𝑛/𝑁𝑁)𝑚𝑚
𝑖𝑖=1        (4.2) 

After applying each colour characterisation model, the percentage of colours 
outside the predefined skin colour gamut was calculated for each facial 
image, and the averaged results for the 20 testing images are listed in Table 
4.9. It is shown that different colour characterisation models determined 
using three training datasets and seven mapping methods lead to obvious 
differences in estimating pixel-based skin colours from RGB images. For 
instance, the 3rd RPR method predicted 0.11% colours outside the skin 
colour gamut for the FSCD training dataset, but 12.30% was achieved for 
the CCSG training dataset. The minimum percentage value achieved for the 
FSCD training dataset was 0.07% using the 1st PR method. For both SSCC 
and CCSG training dataset, the linear transformation predicted the least 
number of colours outside the skin gamut, which are 1.42% and 0.06%, 
respectively.   

Table 4.9 Percentages (%) of non-skin colours based on RGB and RAW 
image data (the smallest value for each dataset is shown in bold). 

Images Training Linear 
1st 
PR 

2nd 
PR 

3rd 
PR 

2nd 
RPR 

3rd 
RPR 

NN 

RGB 

FSCD 2.86 0.07 0.15 1.40 0.12 0.11 1.05 

SSCC 1.42 1.43 3.70 2.27 2.17 1.90 2.74 

CCSG 0.06 0.57 6.39 0.76 2.67 12.3 0.47 

RAW 

FSCD 0.00 0.00 0.60 0.84 0.43 0.09 0.95 

SSCC 0.80 1.16 0.86 0.72 0.69 0.69 1.03 

CCSG 0.24 1.45 0.94 1.38 1.27 1.65 0.87 

Based on RAW images, these models predicted fewer colours outside the 
predefined skin colour gamut, which indicates most skin colours were 
smoothly estimated. Compared with the SSCC and CCSG datasets, the 
FSCD dataset applied to the seven mapping methods almost has the 
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smallest percentage of colours beyond the defined skin colour gamut, with 
the percentage values ranging from 0.00% to 0.95%. The value of 0.00% 
means that the colour of each pixel in the facial image was predicted within 
the predefined skin colour gamut. In addition, the largest number (1.65%) 
achieved for RAW images is given by using the 3rd RPR mapping method 
and the CCSG dataset, and the same to RGB images with the largest value 
of 12.3%.  

4.4.5 Discussion 

4.4.5.1 Factors Affecting the Colour Characterisation Model 

Regarding the two image formats in camera colour characterisation, RGB 
image data result in larger variation in the predictive accuracy of different 
training datasets and mapping methods, indicating that it is more dependent 
on the selection of training data and mapping method. In contrast, different 
models have very similar predicted results for RAW images. This is probably 
because RGB images have a complex nonlinear power law relationship 
between digital signal response and light intensity, while RAW images have 
a linear relationship with light intensity. In addition, it was confirmed that the 
predictive accuracy of CIELAB colour difference based on RAW images was 
generally better than RGB images. This agrees with the results reported by 
Zhang et al (2017) that RAW images would be better than RGB images for 
predicting spectral reflectance.  

The three different training datasets have a significant impact on skin colour 
prediction, especially for RGB images. Although the CCSG colour chart has 
been widely used for camera colour characterisation in various industrial 
applications (Fairchild et al. 2008), it gave the worst predictive accuracy in 
terms of CIELAB colour difference. The possible reason for this is that there 
is a very limited number (fourteen) of skin-colour patches in the CCSG chart 
which is insufficient for predicting skin colours. Consequently, the CCSG 
chart is not the most suitable training dataset for skin colour estimation 
based on RGB images. In comparison, the SSCC training dataset provides 
slightly better performance on predictive accuracy than the CCSG chart, 
since it covers a wide range of skin tones. The FSCD training dataset has 
the best performance in predicting skin colours, showing that real skin colour 
data is to be preferred as the training dataset to achieve more accurate 
colour prediction, specifically for quantitative image analysis of wide facial 
skin area. 
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In terms of mapping methods, it was previously reported by Li et al. (2003) 
that a higher order polynomial model performs better than a lower order 
model for higher predictive accuracy of camera colour characterisation. The 
similar results were found only when CCSG training dataset was used based 
on RGB images. This is not surprising because most studies were 
conducted based on the ColorChecker chart instead of specific colour chart 
for camera colour characterisation, and few studies focus on the 
investigation of different methods for skin colour prediction.  

Although the linear transformation has larger predicted errors in terms of 
CIELAB colour difference, most colours in the facial images were predicted 
within the skin colour gamut. In comparison, smaller colour differences were 
achieved by using some methods, but it is possible to cause overfitting of 
prediction so that the skin colour pixels in facial images were predicted 
outside the skin colour gamut. In general, the 1st PR method has good 
performance on predictive accuracy in terms of the three evaluation 
measures. 

In addition, the difference between the results of 2nd, 3rd RPR and that of 2nd, 
3rd PR methods is not obvious since the root-polynomial regression is a 
simple (low complexity) extension of polynomial regression (Finlayson et al 
2015). Figure 4.14 shows an example of skin colour distributions in 𝑎𝑎∗𝑏𝑏∗ 
plane with the averaged CIELAB values predicted using the seven different 
mathematical methods and the FSCD training dataset, where the red 
squares indicate the predefined skin colour gamut in 𝑎𝑎∗𝑏𝑏∗ plane. Although all 
methods gave similar averaged CIELAB values, there is large variation in 
the colour scatters predicted by the 3rd PR and NN mapping methods, 
resulting in many predicted colours outside the skin colour gamut. It is 
suggested that the mapping method with complex extensions is not suitable 
for predicting pixel-based skin colours, since the complex mapping method 
may have an overfitting problem for the colours near to the gamut boundary. 
The neural network gave stable performance in terms of CIELAB colour 
difference for different training datasets and two image formats, but the 
results of predicting pixel-based colours are not satisfactory. This is probably 
because the number of samples in the training dataset is insufficient for 
predicting the colour of each pixel in the image.  
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Figure 4.14 An example of colour distributions with the averaged CIELAB 
values predicted using the seven mapping methods and the FSCD 
training dataset (the red squares indicate the predefined skin colour 
gamut in 𝑎𝑎∗𝑏𝑏∗ plane). 

4.4.5.2 Evaluation Measures 

The colour difference between the measured and predicted data is a simple 
and conventional metric to quantify the predictive accuracy, and most 
studies rely on this approach to develop a colour characterisation model. 
However, it was found in this study that colour difference is not enough for 
the comprehensive evaluation of colour characterisation, especially for 
image-based colour analysis. For instance, the colour difference predicted 
using the 1st PR and 3rd PR mapping methods from RGB images was 2.69 
and 2.71 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ , respectively, which are similar in value, but there were 
separately 0.07% and 1.40% predicted colours outside the skin colour 
gamut. In such a case, the 1st PR method is recommended to convert image 
data to CIE colour coordinates. Moreover, the colour difference is dependent 
on the absolute difference of testing points between the ground truth 
(instrument measurements) and the predictions, regardless of the 
characteristics of facial skin such as its colour heterogeneity. In this study, 
two additional measures are proposed, the facial colour contrast which is 
concerned with the relative relationship between five different facial 
positions, and the skin colour gamut which is predetermined to validate all 
pixel-based skin colours.  

To achieve accurate image-based measurement for skin colour, it is 
expected that the facial colour contrast predicted from the facial image is 
well preserved with that of the actual human face. Regarding the results of 
facial colour contrast, different models chieved similar Pearson 𝑟𝑟 values less 
than 0.65. This is probably because of: (i) the colour characterisation model 
for predicting skin colours, (ii) the method for quantifying facial colour 
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contrast. It requires further investigation on quantifying facial colour contrast, 
which is an important factor for achieving faithful skin colour reproduction of 
the human face. 

The introduction of the proposed skin colour gamut allows to validate all the 
pixel-based skin colours predicted from the whole facial skin area, rather 
than focusing on the limited five facial locations. As shown in Figure 4.14, 
there is an evident difference between the skin colour distributions in 
𝑎𝑎∗𝑏𝑏∗plane estimated using different colour characterisation models, although 
the averaged CIELAB values were similar (1.5 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ ). This indicated that the 
average colour-difference values are not adequate to objectively quantify the 
predictive accuracy of human skin colour, especially for wide facial skin 
area. In addition, although it was confirmed that the skin colour gamut is an 
effective measure to evaluate the prediction accuracy of the overall detail 
colours, a cubic gamut in orthogonal CIELAB colour space is simply defined 
from 𝐿𝐿∗, 𝑎𝑎∗, 𝑏𝑏∗ three dimensions. It is recognised that an ellipsoid may better 
represent skin colour distributions and thus the specification of the boundary 
of the skin colour gamut should be further investigated. 

4.4.5.3 Recommendation 

To develop an image-based measurement system for facial skin colour, 
three components are indispensable: the digital imaging system for human 
faces, colour characterisation for camera, and the validation of the colour 
characterisation model. In the digital imaging system, it is necessary to 
provide diffuse illumination on the human face to accurately estimate skin 
colour from the captured image, and a linear polariser filter was equipped to 
the light source and the camera lens to reduce the specular light in the 
captured facial images. 

Regarding the determination of the colour characterisation model, it is 
necessary to carefully select the training dataset and the mapping method. 
In general, the skin-colour related colour chart is recommended instead of 
ColorChecker chart as the training dataset for higher predictive accuracy in 
most cases, and the skin colour data collected from human faces is 
preferred to perform image-based measurement for facial skin colour. 
Moreover, the RAW image format has more stable performance as camera 
digital signals than the RGB images. As for the mapping method, the 1st 
polynomial regression is suggested for predicting colours in both specific 
facial positions and wide facial skin area. When mainly focusing on the 
colour at specific facial positions, the 3rd PR and 3rd RPR methods also have 
good performance. 
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In addition, there is no doubt that colour difference is a simple way to 
quantify predictive accuracy, but it only focuses on the absolute accuracy of 
individual facial locations. More aspects should be considered to validate the 
predictive performance of the model. The two newly introduced measures, 
facial colour contrast representing the relative relationship amongst five 
different facial locations and skin colour gamut for validating all pixel-based 
skin colours, play a role in the validation of a prediction model. 

4.5 A Case Study on Skin Colour Heterogeneity under 
Different Illuminations 

4.5.1 Introduction 

Skin colour heterogeneity is an indicator of colour spatial distributions in a 
given facial area, and it influences the overall skin colour appearance of 
human skin. The colour heterogeneity on human faces is affected by some 
factors such as climatic conditions, ethnicity, age, etc. (De Rigal et al. 2010, 
Kukuchi et al. 2015). In addition, the light source as one of components 
producing colours can significantly affect the colour appearance of human 
skin. Therefore, it is desired to quantify skin colour heterogeneity under 
different lightings and investigate how the illumination affects the perception 
of skin colour. 

Melgosa et al. (2018) conducted a study to investigate how facial contrast 
was affected by different white light-emitting diode (LED) sources and CIE 
recommended traditional illuminants. It was found that both the body area 
differences and the discrepancies of colour differences between Caucasian 
and Oriental subjects were small for the 18 illuminants tested. Chauhan et 
al. (2019) investigated just noticeable colour difference of facial images 
under different illuminations, based on skin colour patches representing 
Caucasian and Chinese skin types. They concluded that facial images under 
TL84 (CCT = 3900 K) have a larger discrimination threshold than the D65 
illumination (CCT = 6100 K).  

Considering that conventional colour measurement instruments often fail to 
measure skin colours of a wide facial area due to their limited measurement 
aperture, an image-based approach is required to analyse skin colour 
heterogeneity on human faces. Based on the specific digital imaging system 
developed for capturing facial images, this case study was conducted to 
objectively quantity skin colour heterogeneity under various illuminations 
with different CCTs including the simulated D65 daylight.  
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4.5.2 Illuminations and Image Capture 

Based on the stable and well-controlled LED lighting system in the digital 
imaging system (Figure 4.1), six illuminations with different CCTs of 2850 K, 
3500 K, 5000 K, 5500 K, 6500 K and 9000 K were created and saved in the 
LEDNavigator software, respectively. A Konica Minolta CS2000 tele-
spectroradiometer was used to measure each of the six lightings by 
targeting at a white tale illuminated in the position of the human face. Table 
4.10 lists the measured parameters of each illumination, and Figure 4.15 
plots the relative SPDs of the six illuminations used for image capture. Note 
that the illumination of 6500 K is the same to the one used for camera colour 
characterisation in previous sections. 

Table 4.10 Parameters of each illumination measured using the CS2000 
tele-spectroradiometer. 

 2850 K 3500 K 5000 K 5500 K 6500 K 9000 K 

CCT (K) 2848 3516 5014 5514 6544 9033 

Ra 91 98 96 97 96 96 

lux(cd/m2) 112.62 117.88 118.3 123.48 127.45 119.65 

Duv 0.003 0.0035 0.0059 0.0066 0.0064 0.0058 

 

Figure 4.15 The relative SPDs of the six illuminations produced in the digital 
imaging system. 

To investigate the effect of different illuminations on skin colour 
heterogeneity, the developed digital imaging system described in Section 4.1 
was used to capture images of human faces under the six illuminations with 
different CCTs. The camera settings were manually adjusted to ISO 640, 
aperture size f/5.6, shutter speed 1/8 second, and the white balance was 
customised as the CCT value of each illumination used for image capture, 
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i.e., when taking image capture under the illumination of 2850 K, the white 
balance was customised as 2850 K, and it was changed to 9000 K when 
using the illumination of 9000 K. The process of facial image acquisition is 
the same as that described in the Section 4.1.4. Six image captures were 
taken for each face under the six illuminations. The RAW images without 
post-processing were collected and used for image analysis on skin colour 
heterogeneity. 

In this case study, 25 human participants from different ethnic groups (5 
Indonesian, 5 Caucasian, 5 Chinese, 5 Mexican and 5 African) were 
involved to collect facial images under the six different illuminations, 
including 9 males and 16 females. All the participants were in the age group 
of 20-30. A total of 150 facial images were collected using the digital imaging 
system. 

4.5.3 Methodology 

Camera colour characterisation was performed under each light source to 
determine the model transforming from the RAW RGB values to CIE XYZ 
tristimulus values for each facial image. In light of the results achieved in 
Section 4.4, the 95 colour samples with different skin tones in the 
Spectromatch silicon skin colour chart were used as the training samples 
and captured under each illumination using the digital camera with the 
specific settings. The RAW RGB values of each colour sample were 
extracted from the captured images using the open source raw-files 
converter dcraw in MATLAB. A Konica Minolta CM-2600d 
spectrophotometer with a 3 mm aperture size and SCI measurement mode 
was used to measure the spectral reflectance of each sample, and the CIE 
XYZ tristimulus values were calculated with the CIE 1931 standard observer 
and the measured SPD of each illumination (Figure 4.15). In addition, the 
third-order polynomial regression was applied with the least-square fitting 
method to determine the colour characterisation model under each 
illumination to convert RAW RGB values to CIE XYZ values.  

In this study, the CIECAM16-UCS described in Section 2.1.6.2 was used to 
quantify the colour difference of facial skin under different light sources. The 
CIE XYZ tristimulus values under different illuminations were converted to 
CIECAM16-UCS colour appearance attributes 𝐽𝐽’ , 𝑎𝑎’  and 𝑏𝑏’ , using the 
Equations 2.22-2.37. Compared to CIELAB colour space, the CIECAM16-
UCS has a better model of chromatic adaptation, and it transforms skin 
colours under a specific illumination to the equivalent under an equal-energy 
white condition (illuminant E). The CIECAM16-UCS colour difference 
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formula is expressed in Equations 2.38-2.39, with a power function 
corrected. 

The mean colour difference from the mean (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) with CAM16-UCS colour 
difference was used to quantify skin colour heterogeneity under different 
illuminations. The larger the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  values, the greater the skin colour 
heterogeneity. For the local colour heterogeneity, it is defined as the average 
colour difference between each pixel and the average of the facial area of 
100 × 100 pixels (𝑛𝑛 = 10000 in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). For the facial position difference, it 
is defined as the average colour difference between each facial location (50 
× 50 pixels) and the average of the 5 facial locations (𝑛𝑛 = 5 in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). 

4.5.4 Results and Discussion 

4.5.4.1 Colour Characterisation Accuracy 

The skin colour data collected from 25 human participants were used to 
quantify the accuracy of the colour characterisation model. For the facial 
images captured under each illumination, the RGB values of each pixel in 
the facial area of 50 × 50 pixels were averaged and converted to the 
corresponding CIE XYZ values using the camera characterisation model. 
The colour difference between the CIE XYZ values calculated from the 
spectrophotometer measurement and the model prediction was calculated 
using the CAM16-UCS colour difference formula.  

The average results for the six different illuminations are given in Table 4.11, 
where the predictive errors achieved using the colour characterisation 
models were between 2.13 to 2.39 units. These values indicate that the 
generated colour characterisation models have agreeable and similar 
performance for different illuminations on predicting CIE colorimetric values 
of facial skin, based on the RAW images captured using the digital imaging 
system. 

Table 4.11 Prediction accuracy in terms of CIECAM16-UCS colour 
difference of different colour characterisation models. 

 2850 K 3500 K 5000 K 5500 K 6500 K 9000 K 

∆ECAM16−UCS  2.39 2.30 2.19 2.18 2.13 2.18 

4.5.4.2 Local Colour Heterogeneity 

Based on the colour characterisation model developed for each light source, 
the RAW RGB values of each pixel in the facial area of 100 × 100 pixels 
were converted to CIE XYZ values and then transformed to CAM16-UCS 
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colour space. The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 with the CIECAM16-UCS colour difference formula 
was used to quantify skin colour heterogeneity in each facial area under the 
six illuminations with different CCTs. The average results of the five facial 
areas under each illumination are given in Table 4.12, where the bold and 
underlined numbers respectively indicate the maximum and minimum 
colour-difference value under the six illuminations. It can be seen that the 
largest skin colour heterogeneity of the subjects from different ethnicities 
always occurs under the illumination with a CCT of 2850 K, and the smallest 
colour heterogeneity was produced under the illuminations of 5000 K.  

Table 4.12 The average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values of the five facial areas under six 
illuminations. 

 2850 K 3500 K 5000 K 5500 K 6500 K 9000 K 

Indonesian 2.46 2.17 1.82 1.84 1.83 1.88 

Caucasian 2.68 2.38 2.12 2.12 2.12 2.12 

Chinese 2.54 2.26 1.90 1.99 1.93 1.98 

Mexican 2.69 2.19 1.82 1.84 1.87 1.90 

African 3.55 3.11 2.53 2.56 2.67 2.56 

Figure 4.16 illustrates the histogram of skin colour heterogeneity of the 
human participants from five ethnicities, and the dashed line indicates the 
trend under the six illuminations. It can be seed that the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  values 
decreased with an increase in the CCT of the light sources of 2850 K to 
5000 K. Under the light sources with the CCT between 5000 K to 9000 K, 
there were slight changes in skin colour heterogeneity. The results 
suggested that larger skin colour heterogeneity exists under the light 
sources with lower CCT, and when the CCT of the light source is higher than 
5000 K, the colour heterogeneity differs little with the change of CCT. 

Considering that skin colour is reddish as well as yellowish and the light 
sources with lower CCT appears warmer (reddish), the skin colour variations 
are possibly more obvious under the light source with similar colour 
appearance. In order to further investigate the effect of the CCT of light 
source on local skin colour heterogeneity, the chin area of five females from 
different ethnicities was taken as an example. Figure 4.17 presents the skin 
colour distributions of the 10000 pixels in 𝑎𝑎’𝑏𝑏’  and 𝐽𝐽’𝑀𝑀’  plane with the 
boundaries illustrated, where the red, green, blue, cyan, magenta and yellow 
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colours indicate the results under the light sources of 2850 K, 3500 K, 5000 
K, 5500 K, 6500 K and 9000 K, respectively. 

 

Figure 4.16 Skin colour heterogeneity in CIELAB units under six light 
sources. 

 

 

 

Figure 4.17 Skin colour distributions and the boundary in 𝑎𝑎’𝑏𝑏’ and 𝐽𝐽’𝑀𝑀’ plane 
for the chin area. 

From the colour distributions of the chin area in 𝑎𝑎’𝑏𝑏’ plane in Figure 4.17, it 
can be clearly seen that the skin colour boundary under the illumination of 
2850 K (the red line) is the largest among the six light sources, followed by 
the boundary under the 3500 K illumination (the green line). In contrast, the 
skin colour boundaries under the other four light sources are relatively 
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smaller. The results are similar to the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values given in Table 4.12, 
indicating that a light source with lower colour temperature results in larger 
skin colour variation.  

In addition, with the increasing CCT of the light source, the colour 
distributions of the chin area shift to the −𝑎𝑎’ and −𝑏𝑏’ axis, which means that 
the colours become less reddish and less yellowish. This is affected by the 
change of colour temperature of the illumination. From the skin colour 
distributions in 𝐽𝐽’𝑀𝑀’ plane, the variation in lightness (𝐽𝐽’) scale remains similar 
and close under the six different light sources, but the range and variation of 
the colourfulness (𝑀𝑀’ ) scale decreased with an increasing CCT of the 
illumination. Additionally, the skin colours of the chin area are discrete, this is 
possibly because of the existence of skin texture, pores or fine hair in the 
facial skin area.  

Table 4.13 The skin colour gamut sizes in 𝑎𝑎’𝑏𝑏’ and 𝐽𝐽’𝑀𝑀’ plane (volumes in 
𝐽𝐽’𝑎𝑎’𝑏𝑏’ colour space) under each illumination.  

 2850 K 3500 K 5000 K 5500 K 6500 K 9000 K 

Indonesian - 𝑎𝑎′𝑏𝑏′ 112 88 56 63 56 59 

Caucasian - 𝑎𝑎′𝑏𝑏′ 126 88 69 63 74 67 

Chinese - 𝑎𝑎′𝑏𝑏′ 112 73 54 59 59 65 

Mexican - 𝑎𝑎′𝑏𝑏′ 97 77 45 50 53 53 

African - 𝑎𝑎′𝑏𝑏′ 372 253 135 151 163 159 

Indonesian - 𝐽𝐽’𝑀𝑀’ 52 49 46 49 43 41 

Caucasian - 𝐽𝐽’𝑀𝑀’ 57 49 52 41 49 49 

Chinese - 𝐽𝐽’𝑀𝑀’ 55 37 35 39 39 48 

Mexican - 𝐽𝐽’𝑀𝑀’' 86 60 48 50 53 56 

African - 𝐽𝐽’𝑀𝑀’ 228 154 96 122 121 101 

Indonesian - 𝐽𝐽’𝑎𝑎′𝑏𝑏′ 490 425 295 325 272 275 

Caucasian - 𝐽𝐽’𝑎𝑎′𝑏𝑏′ 536 418 353 285 342 310 

Chinese - 𝐽𝐽’𝑎𝑎′𝑏𝑏′ 444 270 212 226 244 294 

Mexican - 𝐽𝐽’𝑎𝑎′𝑏𝑏′ 729 467 281 317 314 322 

African - 𝐽𝐽’𝑎𝑎′𝑏𝑏′ 1982 1298 659 728 786 766 
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Based on the algorithm of convex hull in MATLAB, the sizes of the colour 
boundary of each facial area in 𝑎𝑎′𝑏𝑏′ and 𝐽𝐽’𝑀𝑀’ plane and 𝐽𝐽’𝑎𝑎′𝑏𝑏′ colour space 
were computed separately for each light source, and the average results are 
given in Table 4.13. It can be seen that the area and volume of skin colour 
distributions under 2850 K illumination is the largest, followed by the results 
achieved under the light of 3500 K. In addition, the area of colour 
distributions in 𝑎𝑎′𝑏𝑏′ plane is larger than that in 𝐽𝐽’𝑀𝑀’ plane by a factor of 1.5-
2.0 under each light sources. It is indicated that the lightness changes less 
than other chromatic attributes as the CCT of the light source changes. 
Furthermore, it can be seen from Table 4.13 that the African faces have 
more discrete skin colour distributions, followed by the Mexican faces. This 
is caused by the ethnicity and possibly affected by living environments, diet 
habits and other biophysical properties of the different ethnic groups 
(Richards et al. 2003).   

4.5.4.3 Facial Position Difference 

In addition to the local skin colour heterogeneity, the facial position 
differences were investigated under different light sources. Table 4.14 gives 
the average results of the facial position differences for each ethnic group 
under the six illuminations with different CCTs. It is shown that the facial 
position differences for each ethnic group vary slightly under the six light 
sources, indicating that the illuminations with different CCTs have little effect 
on the differences between different facial positions. Compared to the results 
of the local skin colour heterogeneity, the facial position differences are 
smaller, this is probably because the skin colour variation was averaged and 
diminished. In addition, it is normally desired for human beings to have 
smooth and even complexion to improve the visual perception of health and 
attractiveness, and it was reported that the difference between skin area and 
non-skin area is preferred to enhance facial contrast (Melgosa et al. 2018). 

Overall, based on the developed digital imaging system for capturing facial 
images, a case study on skin colour heterogeneity under six illuminations 
with different CCTs was conducted, and the results were quantified by 
calculating 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values in terms of CAM16-UCS colour differences. It was 
found that the local skin colour heterogeneity was the largest under the 
illumination of 2850 K, and it decreased with an increase in CCT. There 
were slight changes in local skin colour heterogeneity under the light 
sources with a CCT of 5000 K to 9000 K. Regarding facial position 
differences, the effect of different illuminations is not obvious. In addition, 
different ethnicities have a significant effect on skin colour variations 
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including local skin colour heterogeneity and facial position differences, 
which is greater than the influence caused by different illuminations. 

 Table 4.14 The average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values of the five facial areas under six 
illuminations. 

 2850 K 3500 K 5000 K 5500 K 6500 K 9000 K 

Indonesian 2.52 2.54 2.59 2.60 2.60 2.61 

Caucasian 1.72 1.69 1.73 1.71 1.70 1.71 

Chinese 1.86 1.82 1.83 1.83 1.81 1.83 

Mexican 1.85 1.85 1.88 1.88 1.88 1.90 

African 3.53 3.52 3.60 3.60 3.61 3.65 

4.6 Colour Characterisation for the 3D Imaging System   

4.6.1 Introduction  

The colour information of a human face is captured and saved in a 2D 
bitmap image using the 3dMDface system. The colour characterisation 
process performed for the developed digital imaging system was applied to 
the 3D imaging system. Considering that certain glares were found in some 
facial areas such as the forehead and cheeks in the bitmap image, it is not 
appropriate to use the skin colour data of human faces collected in this 
system as the training dataset to determine the camera colour 
characterisation model. Instead, a specific skin colour chart was applied to 
transform 3D camera RGB values to CIE colorimetric values.  

It is notable that the ethnicity has an observable effect on skin colour 
heterogeneity, and it was reported by Xiao et al. (2017) that skin colour 
differences between ethnicities are significant especially in the yellowness 
dimension. Therefore, it is sensible to use different skin colour charts for 
different ethnic groups for accurate skin colour reproduction.  In this section, 
a specific colour chart developed for Chinese skin tones was adopted to 
perform colour characterisation for the 3dMDface system based on the 
captured bitmap image, and the accuracy of the developed colour 
characterisation model was validated using skin colours of Chinese 
participants’ actual faces, rather than using uniform skin colour patches as 
previous studies (Xiao et al. 2014, Sohaib et al. 2018). 
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4.6.2 Colour Characterisation Process 

The skin colour chart, as shown in Figure 4.18 (left), was developed based 
on an existing skin colour database collected by Xiao et al. (2017). It 
consists of 216 colour patches including a series of grey scales, 14 skin 
colour patches from the ColorChecker digital SG chart, 18 natural colour 
patches with high chroma and other skin colour patches generated from the 
skin colour database. Both boundary colours and cluster centroid colours of 
the skin colour database were included in this chart. A Konica Minolta CM-
700d spectrophotometer with an aperture of SAV 3 mm and SCI 
measurement mode was used to measure each colour patch of the skin 
colour chart. Figure 4.18 (right) presents the colour distributions of the 216 
patches in CIE 𝑎𝑎∗𝑏𝑏∗ and 𝐿𝐿∗𝐶𝐶∗ plane. It can be observed that this skin colour 
gamut covers the colour distributions of the facial skin colour data collected 
in the present study (Figure 4.11). 

 

 

 

Figure 4.18 The skin colour chart developed for Chinese population (left) 
and the colour distributions in 𝑎𝑎∗𝑏𝑏∗ and 𝐿𝐿∗𝐶𝐶∗ plane. 

The skin colour chart was placed in the position of the calibration plate and 
captured using the 3dMDface system after a successful calibration. A bitmap 
image was created using the 3D imaging system, consisting of three colour 
images from three directions, as shown in Figure 4.19 (left). The front-facing 
image in the bitmap captured from the central camera unit was used to 
extract RGB values of each colour patch in MATLAB. 

Based on the RGB values of the 216 colour patches and the corresponding 
CIE XYZ tristimulus values measured using a spectrophotometer, 
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polynomial regressions with 1-3 orders were respectively applied with the 
least-square fitting method to determine a colour characterisation model for 
the 3D imaging system. Additionally, the ColorChecker digital SG chart was 
also captured using the same procedure of the 3dMDface system, and a 
comparison was made on the predictive accuracy of the two colour charts 
transforming 3D camera RGB values to CIE XYZ values. 

  

Figure 4.19 The bitmaps of the skin colour chart (left) and the ColorChecker 
digital SG chart (right) captured using the 3dMDface system. 

4.6.3 Validation and Accuracy  

Rather than using uniform colour patches, actual human skin colours were 
collected in this study to validate the performance of the colour 
characterisation model generated for the 3D imaging system. Five Chinese 
females were invited to participate in the 3D image acquisition which was 
conducted in a dark room, and the built-in flash in the 3D imaging system 
was the only illumination for 3D image capture. A calibration procedure was 
completed before taking facial images using this system. The human subject 
was asked to sit on a chair placed in a specific position that is the same as 
the calibration plate. The height of the chair was adjusted so that the human 
face can be shown simultaneously in the three live view windows. During the 
3D image acquisition using the 3dMDface software, the subject was asked 
to keep still until the capture is finished. It is important to ensure that no 
undesired image characteristics such as imaging artifacts and blurring 
appear in the bitmap image, otherwise, a new image capture should be 
taken.  
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Figure 4.20 gives an example of the bitmap image captured for a Chinese 
female using the 3D imaging system. The five facial positions (forehead, 
right and left cheekbones, nose tip and chin) illustrated in Figure 4.9 were 
located on the front-facing image in the bitmap, and the corresponding RGB 
values of each facial position were extracted and averaged in MATLAB. 
Based on the colour characterisation model developed using the colour 
chart, the averaged RGB values of each facial position in the bitmap image 
were converted to CIE XYZ tristimulus values, and the corresponding 
CIELAB values were calculated with CIE standard illuminant D65. The 
performance of different colour characterisation models developed using 
different approaches is quantified by calculating the CIELAB colour 
differences between the spectrophotometer measurements on the actual 
human faces and the skin colours predicted from the bitmap using the colour 
characterisation model. 

 

Figure 4.20 An example of the captured bitmap image of a Chinese female. 

Tables 4.15 and 4.16 give the average and maximum CIELAB colour 
differences of 25 human facial skin colour data, respectively, where the rows 
indicated different training dataset and the columns denote different orders 
of polynomial regressions. The 3rd order polynomial regression gave a 
smallest average colour difference (3.84 CIELAB units) for the SG chart, 
while for the skin colour chart, a CIELAB colour difference of 3.16 was 
achieved using the 1st polynomial regression. In addition, when the skin 
colour chart was adopted to perform camera colour characterisation for the 
3D imaging system, the colour differences achieved are smaller than the 
results produced using a ColorChecker SG chart, which shows the 
advantage of the skin colour chart as training data for accurate skin colour 
reproduction of the 3D imaging system. 

It was found that both the average and maximum colour-difference values 
decreased when the SG chart and the skin colour chart were combined 
together as the training data, which are 2.90 and 5.12 CIELAB units, 
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respectively. Considering that the colour characterisation model is to be 
applied to the whole facial image, the combination of both colour charts and 
the 2nd polynomial regression were utilised to determine the colour 
characterisation model for the 3D imaging system. Figure 4.21 shows the 
new bitmap image of the participant’s face in Figure 4.21 after applying the 
camera colour characterisation model. It can be clearly seen that the skin 
colours of the human face are more faithful and realistic than the original 
image captured using the 3dMDface system. 

Additionally, the accuracy of skin colour reproduction without performing any 
colour characterisation for the 3D imaging system was quantified by 
calculating the CIELAB colour differences between the captured facial 
images and the spectrophotometer measurements on the actual human 
face, and the results acquired are given in Table 4.17. The average colour 
difference of 5 Chinese female faces was 32.71 CIELAB units, which 
indicates that the 3D imaging system has a poor ability to reproduce facial 
skin tones accurately. It can also be recognised from Figure 4.20 that the 
lightness of the human face in the captured image is much lower, this is 
probably because of the industrial-grade flash built in the 3dMDface system. 
Therefore, it is necessary to perform camera colour characterisation for the 
3dMDface system to reduce the predictive colour differences. Compare the 
results before and after applying the camera colour characterisation model, 
the average colour difference decreased from 32.71 to 2.90 CIELAB units, 
indicating a significant improvement in accurate skin colour reproduction. 

Table 4.15 The average CIELAB colour-difference values testing for 
different colour characterisation methods. 

 1st order 2nd order 3rd order 

SG chart 4.48  4.30 3.84 

Skin Chart 3.16 3.34  3.40 

SG + SC 3.03 2.90 3.20 

Table 4.16 The maximum CIELAB colour-difference values testing for 
different colour characterisation methods. 

 1st order 2nd order 3rd order 

SG chart 7.12 6.92 6.63 

Skin Chart 5.23 5.25 5.19 

SG + SC 5.55 5.12 5.28 
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Table 4.17 The average CIELAB colour-difference values without performing 

colour characterisation. 

 Mean  Minimum  Maximum  

∆𝐸𝐸𝑎𝑎𝑎𝑎∗  32.71 29.98 37.31 

 

 

Figure 4.21 The modified bitmap image of a Chinese female after applying 
the colour characterisation model. 

4.7 Summary  

In this chapter, colour characterisation of the digital imaging system was 
performed for image-based measurement of human facial skin, and different 
methods were investigated for accurate skin colour reproduction. 
Specifically, a bespoken digital imaging system was developed to collect 
facial colour images of 144 human participants, and the factors affecting 
image-based facial skin colour measurement were investigated: 

• Two image formats: RGB and RAW, 

• Three training datasets: FSCD, CCSG, SSCC,  

• Seven mapping methods: the linear transformation, polynomial 
regressions and root-polynomial regressions with 1-3 orders, neural 
network. 

The predictive accuracy of different camera colour characterisation models 
was quantified not only using the conventional CIELAB colour-difference 
formula, but also two newly introduced measures: facial colour contrast and 
skin colour boundary. Moreover, based on the specific digital imaging 
system and the developed camera colour characterisation model, facial skin 
colour variations under six illuminations different with CCTs were 
investigated, and it was found that larger local skin colour heterogeneity 
exists under the light source with lower CCT (2850 K).  
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In addition, the colour characterisation of the 3dMDface system was 
performed and validated for accurate skin colour reproduction of human 
faces. Specifically, a colour characterisation model was determined based 
on a skin colour chart and a ColorChecker SG chart. The facial skin colour 
data of five Chinese participants were used to evaluate the developed colour 
characterisation model for the 3D imaging system. Furthermore, the 
predictive accuracy before and after performing camera colour 
characterisation was compared. The outcomes are:  

• A specific skin colour chart was applied to the colour characterisation 
of the 3D imaging system, rather than using the conventional colour 
charts, 

• Actual skin colours of human faces instead of uniform skin colour 
patches were used to validate the predictive accuracy,  

• The average colour difference of human facial skin decreased from 
32.71 to 2.90 CIELAB units by performing camera colour 
characterisation, and the maximum colour difference was reduced 
from 37.31 to 5.12 CIELAB units, 

• A specific colour characterisation model with high accuracy was 
determined for the 3D imaging system and successfully applied to the 
captured facial images for realistic skin colour reproduction. 
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Chapter 5 
Colour Characterisation for the 3D Printer 

Colour characterisation is a fundamental part of colour management. The 
process of colour characterisation for a 3D printer is to ensure accurate 
colour reproduction of 3D printed objects by developing a mathematical 
model that describes how the printer produces colours. Typically, the colour 
characterisation model is determined to transform between the device-
dependent colour space (printer RGB or CMYK), and the device-
independent colour space, such as CIELAB. Although the colour 
characterisation methods developed for 2D printers have been applied to 3D 
colour printers, currently it still lacks a standard numerical model for 
accurately predicting the colour of 3D printed objects. To achieve more 
accurate colour reproduction of a human face, the methods for determining a 
colour characterisation model of a 3D printer were investigated. 
Furthermore, a skin colour chart was applied in practical printing process to 
enable the printer faithfully produces the desired skin tones for a 3D face 
model. 

5.1 Investigation on Colour Characterisation Methods  

With the development of machine learning methods, it has become 
widespread to perform colour characterisation transforming between device-
dependent colour space to device-independent colour space. However, few 
research focuses on the comparison of different colour characterisation 
methods for a 3D CMYK colour printer. This study was conducted to explore 
how the conventional polynomial regressions and new machine learning 
methods affect the colour characterisation results, based on a large dataset 
consisting of 2016 colour samples. 

Specifically, the CMYK combinations of the 2016 samples were regarded as 
the input vectors, and the spectral reflectance, CIE XYZ and CIELAB were 
considered as the output, respectively. The third order polynomial regression 
and the deep neural networks (DNN) with multiple layers were separately 
applied to determine colour characterisation models converting from the 
input vectors to the output values. The accuracy of the colour 
characterisation models determined in different approaches was quantified 
by calculating CIELAB and CIEDE2000 colour differences under CIE 
standard illuminant D65. 
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5.1.1 Dataset  

The dataset was generated using a Stratasys J750 3D printer, which 
consists of 2016 colour samples with each sample represented in CMYK 
colour space and spectral reflectance data ranged from 400 nm to 700 nm 
with intervals of 10 nm that were measured using a X-Rite i1PRO3 
spectrophotometer. The measured spectral reflectance data were used to 
calculate the corresponding CIE XYZ and CIELAB values with CIE 1931 
standard observer and CIE illuminant D65 using Equations (2.1) and (2.4-
2.6). In practical applications, all the required data as CIE recommendations 
may not be available because the measurement was made at intervals of 10 
nm and data at the spectral extremes were omitted (truncation). ASTM 
(2017) provides tristimulus weighting factors at 10-nm and 20-nm intervals 
for CIE standard and recommended illuminants and CIE 1931 and 1964 
standard observers, which can be used for any degree of truncation by 
adding the weights at the unmeasured wavelengths to those at the extreme 
measured wavelengths. 

Figure 5.1 illustrates the distributions of the 2016 colour samples in 𝑎𝑎∗𝑏𝑏∗ and 
𝐿𝐿∗𝐶𝐶∗plane, which refers to the colours and tones that the 3D printer can 
produce. In addition, the colour distributions generate a colour gamut of the 
3D printer, where the colours range from -84.90 to 74.49 for the 𝑎𝑎∗ redness-
greenness scale, 5.77 to 93.53 for the 𝐿𝐿∗ lightness, and -48.20 to 113.17 for 
the 𝑏𝑏10∗  yellowness-blueness dimension. Figure 5.2 plots the spectral 
characteristics of the four CMYK primaries with 100% density. 

 

Figure 5.1 Colour distributions of the 2016 samples of the dataset in 𝑎𝑎∗𝑏𝑏∗  
and 𝐿𝐿∗𝐶𝐶∗   plane.  
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Figure 5.2 Spectral reflectance of the CMYK primaries with 100% density. 

5.1.2 Methodology 

5.1.2.1 Input and Output Vectors 

In order to ensure that the printed colours match well with the target colours, 
a forward colour characterisation was performed to transform from printer 
input vectors to the output vectors. The relationship can be expressed in 
Equation (5.1), where 𝑃𝑃 indicates the input vectors (CMYK combinations), 𝐶𝐶 
denotes the output vectors, and 𝑀𝑀 means the colour characterisation model 
converting the input vectors to the output vectors.  

 𝐶𝐶 =  𝑃𝑃𝑃𝑃     (5.1) 

Regarding the output vectors, the spectral reflectance data (𝑟𝑟), CIE XYZ 
tristimulus values and CIELAB values were selected as the device-
independent colour space, respectively. In addition, the logarithmic-based 
approach applied to CIE XYZ values was also used to investigate the effect 
of different output data types on printer colour characterisation.  

The use of spectral reflectance data as the output is beneficial for spectral 
reconstruction from device-dependent colour space, which is critical for 
practical applications since spectral data contain essential information that 
cannot be obtained from CIE XYZ and CIELAB values. By applying Principal 
Component Analysis (PCA), it is possible to reduce the dimension of the 
spectral data and derive the basis function 𝑈𝑈𝐾𝐾 that are sufficient to describe 
the spectral reflectance (Shaw et al. 2013, Xiao et al. 2016). Marimont and 
Wandell (1992) stated that the principal components are usually 5-10 for 
providing an accurate estimation for natural objects. In the present study, the 
principal components of the spectral reflectance of the 2016 colour samples 
were determined as 6 after testing from 1 to 31. 

As expressed in Equation (5.2), the coordinate vector 𝛽𝛽 can be achieved 
from the basis function 𝑈𝑈𝐾𝐾  and the spectral reflectance 𝑟𝑟 , which was 
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regarded as the output after performing PCA on spectral data. The CMYK 
values were firstly converted to the coordinate vector 𝛽𝛽 , and then the 
spectral reflectance data was reconstructed with the basis function 𝑈𝑈𝐾𝐾, using 
the Equation (5.3). More details in colour transformation using PCA can be 
found in the study conducted by Xiao et al. (2016). 

 𝛽𝛽 = (𝑈𝑈𝐾𝐾)𝑇𝑇𝑟𝑟.     (5.2) 

 𝑟𝑟 = 𝑈𝑈𝐾𝐾𝛽𝛽.     (5.3) 

In totally, five output data types were used for printer colour characterisation:  

• CIE XYZ,  
• log(XYZ): the logarithm to CIE XYZ, 
• CIELAB, 
• 𝑟𝑟: spectral reflectance data, 
• PCA(𝑟𝑟): principal components of spectral data. 

5.1.2.2 Polynomial Regression  

Given the number of the training data is 𝑛𝑛 , the 3rd-order polynomial 
regression was applied to the input CMYK matrix, making it expanded from  
𝑛𝑛 × 4 to 𝑛𝑛 × 35 dimensions. The third order was selected due to the complex 
colour transformation between the subtractive printer CMYK combinations to 
a device-independent colour space. By performing matrix operations in 
MATLAB, the colour characterisation model 𝑀𝑀  was determined using the 
Equation (5.4). A 35 × 3 matrix was derived for the output vectors of CIE 
XYZ and CIELAB values which were in 𝑛𝑛 × 3 dimensions. When the spectral 
data 𝑟𝑟 and PCA(𝑟𝑟) were treated as the output values, the corresponding 
colour characterisation matrix determined was 35 × 31  and 35 × 6 , 
respectively.  

 𝑀𝑀 = 𝐶𝐶𝑃𝑃−1     (5.4) 

5.1.2.3 Deep Neural Networks 

The architecture of the deep neural networks used in this study contained 
multiple hidden layers to distribute different neurons and process the 
information sequentially layer by layer, as shown in Figure 5.3. The first input 
layer was the predictor variables CMYK, then followed by four fully 
connected layers (Fc) with a swisher layer (Sw) in between, and the final 
regression layer was the output predictions, such as CIE XYZ, CIELAB, 
spectral reflectance. 

The numbers of the neurons in the four fully connected layers were given in 
Table 5.1. For the CIEXYZ- and CIELAB-based colour characterisation, the 
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numbers of the neurons in the four fully connected layers were 21-77-21-3, 
respectively. For the spectra-based colour characterisation, the numbers in 
the four Fc layers were defined as 22-66-33-31 because of the higher 
dimensions of the spectral data. The parameters were the same for the 
principal components of spectral data (PCA(𝑟𝑟)), except the number in the 
last layer was 6, which was consistent to the dimensions of the output 
variables. There is no specific method to determine the number of the 
neurons in each layer, these numbers were chosen in this study based on 
literature surveys and a testing procedure. 

The network transforming from the input to the output variables were trained 
in MATLAB with the optimisation method of Adam. Five attempts were made 
with the maximum epochs number of 2000 and the learning rate of 0.01. 
Based on the optimal results of the 5 attempts, another neural network was 
trained to achieve better results, with the maximum epoch number of 4000 
and the learning rate of 0.01 for CIELAB predictions and 20000 and 0.001 
for spectral estimation, respectively.  

 

Figure 5.3 The configuration of the deep neural networks implemented (Fc: 
fully connected layer, Sw: swisher layer). 

Table 5.1 The number of the neurons in the four fully connected layers. 

 CIE XYZ Log(XYZ) CIELAB 𝑟𝑟 PCA(𝑟𝑟) 

Number 21-77-21-3 21-77-21-3 21-77-21-3 22-66-33-31 22-66-33-6 

5.1.2.4 Colour Characterisation Process  

The process of colour characterisation is illustrated in Figure 5.3. For the 
dataset consisting of 2016 colour samples, it was divided into a training 
dataset and a testing dataset. Based on the training dataset consisting of 
CMYK values and corresponding colour measurement data, the methods of 
the 3rd polynomial regression and the deep neural networks were separately 
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applied to determine the corresponding colour characterisation model, which 
was performed in MATLAB. Since there were five types of output variables, 
a total of ten colour models were generated for the forward colour 
characterisation of the 3D printer. 

Regarding the reverse colour characterisation converting from target colour 
data to printer controlled CMYK values, the colour accuracy cannot be 
quantified directly from the estimated and actual CMYK colour values. 
Therefore, only the results of forward colour characterisation were included 
in Section 5.1. The process and results of reverse colour characterisation for 
the 3D printer were presented in Section 5.2. 

 

Figure 5.4 Process of forward colour characterisation for a 3D printer using 
different approaches and the validation procedure. 

5.1.2.5 Model Evaluation 

The 10-fold cross validation was applied to evaluate the accuracy of the 
colour characterisation models developed using different approaches, which 
means that the fitting procedure was performed 10 times with each fit 
consisting of 90% of the total data set selected at random and the remaining 
10% used for validation. Consequently, 1814 of 2016 colour samples were 
used as the training data and the remining 202 colour samples were 
considered as the testing data for each process of performing colour 
characterisation. 

The accuracy of each colour characterisation model was quantified by 
calculating the CIELAB and CIEDE2000 colour-difference values between 
the predictions and the measurements of the 202 testing data. Moreover, to 
assess the accuracy of the spectral data estimated by each model, the root-
mean-square error ( 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ) was calculated in comparison to the raw 
measured spectral reflectance. 
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Additionally, in order to investigate the impact of the amount of training data 
on colour characterisation accuracy, different percentages of the entire 
dataset ranging from 5% to 95% were used as the training data, 
respectively, and the remaining colour samples were considered as the 
testing data. Table 5.2 lists the percentages and corresponding numbers of 
training data and testing data for exploring the effect of the sizes of training 
data, particularly for the method of deep neural network. The validation 
procedure was performed 10 times for each training dataset to achieve 
reliable results, when the percentage equalled to 90%, it was the case of 10-
fold cross validation. 

Table 5.2 The percentages and corresponding numbers of the training data 
and testing data. 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

Train 101 202 302 403 504 605 706 806 907 1008 

Test 1915 1814 1714 1613 1512 1411 1310 1210 1109 1008 

 55% 60% 65% 70% 75% 80% 85% 90% 95%  

Train 1109 1210 1310 1411 1512 1613 1714 1814 1915  

Test 907 806 706 605 504 403 302 202 101  

5.1.3 Results 

5.1.3.1 Model Performance  

The average results of the 10-fold cross validation for the forward colour 
characterisation using different approaches are illustrated in Figure 5.5, and 
the corresponding CIELAB and CIEDE2000 colour-difference values are 
given in Table 5.3. It can be clearly seen that the method of deep neural 
networks gave much better performance than the 3rd polynomial regression, 
with the average colour differences smaller than 2.69 CIELAB units and 1.78 
CIEDE2000 units for the five output variables. In comparison, the method of 
the 3rd polynomial regression produced greater colour differences, 
particularly for the cases of using CIE XYZ, spectral data (𝑟𝑟) and principal 
components of spectral data (PCA(𝑟𝑟)) as the output. 

Regarding the results achieved using the 3rd polynomial regression, the best 
accuracy was produced using CIELAB as the output, with the average colour 
difference of 4.69 CIELAB units, followed by the logarithm of CIE XYZ (5.74 
CIELAB units). For the results of the other three types of output variables, 
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the average colour differences reached were larger than 11 CIELAB units (7 
CIEDE2000 units). 

As for the results produced using the deep neutral network, all the average 
colour differences attained were smaller than 3 CIELAB units (2 CIEDE2000 
units). The smallest maximum value (5.52 CIELAB units and 3.47 
CIEDE2000 units) was given when using the logarithm of CIE XYZ values as 
the output, which are similar to the best results obtained using the 3rd 
polynomial regression. 

 

Figure 5.5 Histograms of CIELAB and CIEDE2000 colour differences of 10-
fold cross validation for each model under CIE illuminant D65. 

Table 5.3 CIELAB and CIEDE2000 colour differences of 10-fold cross 
validation for each method under CIE illuminant D65. 

  CIELAB CIEDE2000 

  Mean Median Max Mean Median Max 

3rd PR 

Lab 4.69 3.95 22.72 2.89 2.55 9.49 

XYZ 12.44 10.26 60.46 7.63 5.86 33.69 

log(XYZ) 5.74 4.94 20.63 3.47 3.05 11.58 

𝑟𝑟 11.74 9.86 45.16 7.70 5.75 31.21 

PCA(𝑟𝑟) 12.05 9.75 46.34 7.80 5.81 32.87 

DNN 

Lab 1.59 1.27 9.25 1.06 0.87 6.91 

XYZ 2.69 2.13 18.53 1.78 1.35 12.47 

log(XYZ) 1.49 1.26 5.52 1.00 0.84 3.47 

𝑟𝑟 2.34 1.93 11.19 1.40 1.16 6.99 

PCA(𝑟𝑟) 1.84 1.62 7.82 1.18 1.03 4.84 
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Considering the colour-difference perceptibility and acceptability in industrial 
applications, the colour differences of the testing data were classified into 
three groups: ∆E ≤ 3, 3 < ∆E ≤ 6, and ∆E > 6 , according to the research 
work carried out by Hardeberg (2001), which were correspondingly defined 
as “Hardly perceptible”, “Perceptual, but acceptable” and “Not acceptable” 
(Velastegui and Pedersen 2021). Figure 5.6 illustrates the CIELAB and 
CIEDE2000 colour difference distributions in the three ∆E groups. It shows 
that over nearly 60% of colour differences predicted using the deep neural 
networks method were less than or equal to 3 CIELAB units (over 80% in 
CIEDE2000 units). In contrast, only a minority (less than 35%) of the 
CIELAB colour differences estimated using the 3rd polynomial regression 
method were equal to or smaller than 3 units. When CIELAB and the 
logarithm of CIE XYZ values were used as the output, approximately 60% 
and 50% of CIEDE2000 colour differences were in the group of ∆E ≤ 3. 

  

Figure 5.6 CIELAB (left) and CIEDE2000 (right) colour-difference 
distributions in the three ∆Ε groups. 

Regarding the results based on the 3rd polynomial regression and the 
spectral data, it failed to achieve a good performance, with an average 
colour-difference value of 11.74 CIELAB units (7.7 CIEDE2000 units). The 
same to the results produced using the principal components of spectral 
data, which resulted in over 70% of colour differences greater than 6 
CIELAB units (almost 50% for CIEDE2000 units). In comparison, the method 
of deep neural networks gave a significantly better performance on spectral 
estimation, approximately 25% of colour differences larger than 3 CIELAB 
units and 10% in CIEDE2000 units. 

To quantify the error in spectral estimation, the average 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values of the 
202 testing data between the predicted and the measured spectral data 
were calculated, and the results are given in Table 5.4. The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values 
obtained using the deep neural networks method were 0.51% and 0.48% for 
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the spectra 𝑟𝑟 and PCA(𝑟𝑟), respectively, smaller than the values achieved 
using the polynomial regression method. 

Table 5.4 The average 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values of different methods in spectral 
estimation. 

 PR + 𝑟𝑟 PR + PCA(𝑟𝑟) DNN + 𝑟𝑟 DNN + PCA(𝑟𝑟) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 0.0206 0.0218 0.0051 0.0048 

Figure 5.7 shows nine random examples of the spectral reflectance 
estimated using the PR (left) and DNN (right) methods, respectively, where 
the orange curves represent the measured spectral reflectance and the blue 
colour indicates the spectral data predicted from CMYK values. It can be 
seen that the spectral data estimated using the DNN method are much 
closer to the measured results, while for the PR predicted results the 
differences between the estimated spectral data and the measurements are 
obviously larger. For instance, the two curves in the lower left corner of 
Figure 5.7 (left) differ greatly, and the corresponding colour differences were 
49.00 CIELAB units and 35.10 CIEDE2000 units. The CIELAB values of this 
sample were 18.49, 0.42, 25.48, which had very low lightness and higher 
yellowness. From Table 5.3, the maximum colour difference produced using 
the DNN method for spectral estimation was 11.19 CIELAB units and 7.82 
CIEDE2000 units. It is indicated that the DNN method is suitable to predict 
spectral reflectance data from printer CMYK.  

   

Figure 5.7 Nine random examples of spectral estimation respectively using 
the 3rd PR (left) and the DNN method (right). 

In addition to quantifying the accuracy of colour characterisation for CIE 
illuminant D65, the colour differences under CIE illuminant A were calculated 
to investigate the effect of different illuminations on the colour 
characterisation results. The average results of 10-fold cross validation 
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under CIE illuminant A are shown in Figure 5.8, which are very similar (slight 
smaller) to the colour-difference values achieved under CIE illuminant D65 
(Figure 5.5). It is indicated that the two illuminations with different CCTs 
have negligible effect on the accuracy of colour characterisation for the 3D 
printer. Furthermore, it is evidenced that the DNN method yielded a higher 
level of accuracy than the PR method in characterising colours from printer 
CMYK.  

 

Figure 5.8 Histograms of CIELAB and CIEDE2000 colour differences of 10-
fold cross validation for each model under CIE illuminant A. 

5.1.3.2 Effect of Different Training Data Sizes 

The accuracy of colour characterisation is not only determined by the 
method utilised, but also relies on the quality and diversity of the training 
data. In the present study, the effect of different sizes of training data on 
performing colour characterisation was investigated by quantifying the 
predicted errors. Figure 5.9 shows the average colour differences achieved 
using 5%-95% of the whole dataset as training data, and Figure 5.10 
presents the results obtained through the DNN method. 

Regarding the results in Figure 5.9, the largest colour difference was 
produced for each of the five output variables when the size of the training 
data was 101 (5% of the entire dataset), and the values decreased as the 
number of the training data increased to 302 colour samples (15%), 
indicating that more training data resulted in improved performance. 
However, once the size of the training data exceeded 302, the colour 
differences produced using the PR method remained stable regardless of 
further increases in the training data size, which were approximately 13 
CIELAB units (8 CIEDE2000 units) for the outputs of CIEXYZ, spectra and 
PCA(𝑟𝑟 ), and 5 CIELAB units (3 CIEDE2000 units) for CIELAB and the 
logarithm of CIE XYZ. 
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Similarly, the colour differences calculated using the DNN method, as shown 
in Figure 5.10, decreased dramatically from about 20 to 3 CIELAB units 
(from 12 to 2 CIEDE200 units), as the number in the training dataset 
increased from 101 to 1310 (5%-65%), afterwards, the colour-difference 
values differed very little with an increase in the size of the training data. In 
addition, it is evident that the results achieved using the DNN method were 
affected significantly by the training data size, and a larger training dataset 
including diverse and representative samples can provide a higher accuracy 
of capturing the underlying features and characterising the relationship. In 
comparison, different training data sizes have little effect on the predicted 
results for the PR method. 

 

Figure 5.9 The average CIELAB (left) and CIEDE2000 (right) colour 
differences achieved using different training data sizes for the PR 
method. 

 

Figure 5.10 The average CIELAB (left) and CIEDE2000 (right) colour 
differences achieved using different training data sizes for the DNN 
method. 

5.1.4 Discussion 

Based on a large database consisting of 2016 colour samples, the deep 
neural networks method yielded less than 3 CIELAB units (2 CIEDE2000 
units) in the forward colour characterisation for a 3D printer, outperforming 
the 3rd polynomial regression which produced colour differences of 4.69-
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12.44 CIELAB units (2.89-7.80 CIEDE2000). The advantages were 
significant when CIE XYZ, spectra, and the principal components of spectra 
were treated as the output of colour characterisation, with approximately 10 
CIELAB units and 6 CIEDE2000 units reduced by using the DNN method. It 
is indicated that the 3rd polynomial regression method cannot accurately 
characterise the relationship between CMKY values and spectral data. This 
is probably due to the high dimensions and complex features of the spectral 
reflectance. In such cases, the DNN method is preferred because it has 
better self-learning capabilities for complex patterns and provide higher 
accuracy. Velastegui et al. (2021) used a FOGRA53 dataset consisting of 
1617 colour samples to compare the performance of four different machine 
learning approaches on colour space transformation between CMYK and 
CIELAB colour spaces, and it was found that the Deep Neural Networks 
produced 99.5% of colour differences less than 3 CIELAB units. 

One interesting finding is that the logarithm of CIE XYZ gave higher 
accuracy than CIE XYZ as the output of printer colour characterisation, 
reducing nearly 7 CIELAB units (4 CIEDE2000 units) for the PR method and 
about 1 unit for the DNN method. This is possibly because of the similarity 
between a logarithmic function and a power law function which was applied 
to the calculation from CIE XYZ to CIELAB values, as shown in Equations 
(2.4-2.6), leading to the results predicted from the logarithm of CIE XYZ 
were closer to CIELAB values than the predictions from CIE XYZ. Typically, 
the logarithm of tristimulus value Y is used as a uniform lightness scale 
(Ohta and Robertson 2006). In this study, the prediction results of CIELAB 
and the logarithm of CIE XYZ as the output were more accurate than the 
other three variables, and CIELAB achieved the smallest colour difference 
for the PR method, the logarithm of CIE XYZ produced the best accuracy for 
the DNN method.  

Additionally, the impact of the training data size on the accuracy of printer 
colour characterisation was explored, with the amount of the training data 
varied from 101 to 1915. The results revealed that the PR method exhibited 
minimal dependence on the size of the training data for colour estimation, 
while the colour differences estimated using the DNN method decreased 
significantly as the number of the training data increased. This is related to 
the approach and complexity in these two methods. The polynomial 
regression is a simple and fast algorithm, fitting a relationship by minimizing 
the sum of square errors between the predicted and the actual values, while 
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the deep neural networks is a powerful and complex machine learning tool 
capable of learning features at multiple levels of abstraction. 

Although the DNN method provided accurate prediction results, it highly 
relied on the training data size. The optimal number of training data was at 
least 1310 (65% of the dataset) for achieving consistent smaller colour 
differences in this study, which indicates that the amount of the training data 
is preferred to be greater than that of the testing data. In addition, the 
process of training a network was time-consuming, and the larger the 
training data size, the more time it takes. Specifically, it took about 200 
minutes to complete a 10-fold cross validation based on a common laptop 
with the Intel® Core™ i5-1035G1 CPU processor. The time was reduced to 
approximately 40 minutes when using a high-performance desktop PC with 
the intel® XEON® Silver 4214 CPU processor which was desired to perform 
neural network training. In contrast, the PR method only took less than 1 
second to give the results of a 10-fold cross validation. Therefore, it is 
generally compromised between prediction accuracy and processing time. 

5.2 Practical Colour Characterisation 

In addition to theoretical analysis of the accuracy of forward colour 
characterisation using various approaches, a practical experiment was 
conducted based a Stratasys J750 3D printer to perform reverse colour 
characterisation which quantified how the printer responds to different 
colours. The primary goal of this practical experiment was to ensure 
accurate and consistent colour reproduction of Chinese skin tones, as the 
participants in the skin colour data collection (described in Chapter 4) were 
mostly Chinese. Furthermore, given the significant variation in skin tones 
among different ethnic groups, it would be advantageous to perform colour 
characterisation separately for each group to enhance prediction accuracy. 

5.2.1 3D Print of the Skin Colour Chart 

In order to accurately reproduce facial skin tones, the Chinese skin colour 
chart consisting of 216 colour patches, as shown in Figure 4.18, was used to 
perform reverse colour characterisation of the Stratasys J750 printer in 
practice, which aimed to transform the output vectors back to the input 
vectors for well control of the printed colours. Specifically, the target skin 
colour chart with known CIELAB values was designed as an A4 size (210 
mm × 290 mm) RGB image with each patch being 15 mm × 15 mm in 
MATLAB. A 3D model was created in Blender with a size of 210 mm (length) 
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× 290 mm (width) × 5 mm (height), and the RGB image of the skin colour 
chart was mapped onto the 210 mm × 290 mm surface of the 3D model, as 
shown in Figure 5.11. The digital 3D model of the skin colour chart was sent 
to a Stratasys J750 3D printer in GrabCAD Print, with Vivid CMYK and high 
mix printing mode selected. The printing process took approximately 3-4 
hours. 

  

Figure 5.11 The digital 3D model of the skin colour chart. 

5.2.2 Colour Characterisation Process 

The spectral reflectance data of each patch in the 3D printed skin colour 
chart were measured using an X-Rite Ci64 spectrophotometer which has 
d/8° measurement geometry. The measurements were taken using a 
medium aperture size of 14 mm, and SCE measurement mode was selected 
because of the glossy surface finish. Then the colour characterisation was 
performed between the RGB values sent to the printer and the measured 
data of the 216 printed patches.  

 

Figure 5.12 Diagram of the colour characterisation process of the 3D printer. 

The logarithm of CIE XYZ, abbreviated as log(XYZ), was used for colour 
characterisation, given that it produced good performance on predicting 
those colours with moderate lightness like Chinese skin tones. In addition, 
considering that deep neural networks require a large number of training 
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samples to achieve accurate performance, the third-order polynomial 
regression was employed to develop a colour characterisation model, 
specifically for Chinese skin colour reproduction, due to its reasonable 
results and ease of implementation based on a small dataset. Therefore, a 
mathematical colour characterisation model was determined by applying the 
3rd polynomial regression with the least-squares method to transform the 
logarithm of CIE XYZ to RGB values of the 216 samples, as illustrated in 
Figure 5.12. 

5.2.3 Colour Accuracy 

To quantify the accuracy of the determined colour characterisation model, it 
was applied to the target skin colour chart with known CIELAB values to 
convert the logarithm of CIE XYZ tristimulus values of the 216 patches back 
to printer-based RGB values for faithfully reproducing the desired colours. 
The process is demonstrated in Figure 5.13. The characterised colour chart 
was as mapped to the 3D model and sent to the colour 3D printer. 

The second skin colour chart (Figure 5.13) was printed using the same 
settings as the first print (Figure 5.12), and each colour patch was measured 
using the same spectrophotometer. The CIELAB and CIEDE2000 colour 
differences of the 216 patches between the first/second printed chart 
(before/after performing colour characterisation) and the target skin colour 
chart were calculated and given in Table 5.5. 

 

Figure 5.13 Validation process for the colour characterisation model. 

Table 5.5 CIELAB and CIEDE2000 colour differences of the 216 patches. 

 After characterisation Before characterisation 

 mean min max mean min max 

CIELAB 2.81 0.11 17.49 7.77 2.85 18.43 

CIEDE2000 1.95 0.12 6.92 6.09 2.50 7.91 

Before performing colour characterisation based on the skin colour chart, the 
average colour difference of the 216 patches was 7.77 CIELAB units (6.09 
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CIEDE2000 units), and it was reduced to 2.81 CIELAB units (1.95 
CIEDE2000 units) after applying the colour characterisation model. It is 
indicated a significant improvement in the predictive accuracy. Similarly, the 
minimum colour difference decreased from 2.85/2.5 to 0.11/0.12 
CIELAB/CIEDE2000 units. Regarding the maximum colour difference, the 
value dropped very little, this is because of the white and black patches in 
the chart which had values of R=G=B=255. 

For the purpose of focusing on the accuracy of skin colour, the 118 patches 
related to skin tones were separated from others in the chart, and Table 5.6 
gives the mean, minimum and maximum CIELAB and CIEDE2000 colour 
differences of the 118 skin tone patches. Figure 5.14 shows the CIELAB 
colour-difference histograms before (left) and after (right) performing colour 
characterisation. It is evident that the majority of colour differences were 
significantly reduced to less than 3 CIELAB units, with most falling in the 0-1 
range, thanks to the colour characterisation model. Only two samples 
showed colour differences greater than 6 units. In contrast, prior to applying 
the model, most colour differences were between 7-9 CIELAB units.  

Table 5.6 CIELAB and CIEDE2000 colour differences of the 118 skin colour 
patches. 

 After characterisation Before characterisation 

 mean min max mean min max 

CIELAB 1.35 0.11 10.48 7.41 2.85 10.39 

CIEDE2000 1.35 0.12 6.76 6.31 2.50 7.91 

 

Figure 5.14 CIELAB colour-difference histogram of the 118 patches with 
skin tones before (left) and after (right) performing colour 
characterisation. 

Regarding the reproduction of the 10 grey-scale patches in the centre of the 
skin colour chart, Table 5.7 gives the target CIELAB values and the 
measurements of the two 3D printed chart. The chart 1 was printed directly 
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from the target chart, and the chart 2 was the result after applying colour 
characterisation. The CIELAB values of the chart 1 revealed that the 3D 
printer generated grey tones with lower lightness and higher yellowness than 
the intended target, except for black, due to the printer’s individual 
performance. In comparison, the results in the chart 2 demonstrated a 
significant improvement in the printed grey tones, attaining CIELAB values 
that closely matched to the target, based on the developed colour 
characterisation model.  

Table 5.7 CIELAB values of the ten grey-scale patches in the target chart 
and the two 3D printed charts and the average colour differences. 

Target Chart Print Chart 1 Print Chart 2 

𝐿𝐿10∗  𝑎𝑎10∗  𝑏𝑏10∗  𝐿𝐿10∗  𝑎𝑎10∗  𝑏𝑏10∗  𝐿𝐿10∗  𝑎𝑎10∗  𝑏𝑏10∗  

0.00 0.00 0.00 13.62 -0.37 0.58 13.42 -0.15 0.45 

31.89 0.00 0.00 31.80 0.18 4.65 31.13 -0.56 -0.10 

40.73 0.00 0.00 38.51 0.78 3.79 40.68 -0.89 -1.17 

49.64 0.00 0.00 45.61 0.78 5.34 49.34 -0.58 -0.93 

57.86 0.00 0.00 52.15 1.49 5.62 57.88 0.39 -0.77 

66.24 0.00 0.00 59.45 1.24 4.94 66.16 -0.07 -0.04 

74.05 0.00 0.00 66.35 1.21 4.60 74.22 0.21 -0.46 

82.05 0.00 0.00 74.09 0.52 2.66 81.53 -0.30 -0.75 

89.53 0.00 0.00 81.13 -0.47 2.81 88.75 -0.50 0.69 

100.00 0.00 0.00 91.04 -1.43 3.07 91.32 -2.72 2.61 

CIELAB 7.48 2.13 

CIEDE2000 5.99 1.74 

5.2.4 Discussion 

By implementing printer colour characterisation based on a specific Chinese 
skin colour chart, the average colour difference of skin tones was reduced 
from 7.41 to 1.35 CIELAB units (from 6.31 to 1.3 CIEDE2000 units), which 
indicates a significant improvement in the accuracy of skin colour 
reproduction. Compared to previous studies, Xiao et al. (2016a) used a 
ColorChecker DC chart and the third-order polynomial regression to 
determine a 3D printer colour profile transforming between printer RGB and 
CIE XYZ colour spaces, and the achieved accuracy of 14 printed skin colour 
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samples was 4.50 CIELAB units. Sohaib et al (2018) characterised a colour 
3D printer based on a ColorChecker Digital SG chart, giving an average 
CIELAB colour difference of 3.96 for 110 3D printed PANTONE skin tone 
samples. Therefore, to achieve higher accuracy of 3D colour reproduction of 
skin tones, it is recommended to use a specific skin colour chart instead of 
conventional colour charts. This finding demonstrated that the accuracy of 
printer colour characterisation is significantly influenced by the selection of 
training samples. 

In the colour characterisation of 3D printer, the third order polynomial 
regression provided a good performance, giving an average colour 
difference of 2.81 CIELAB units and 1.95 CIEDE2000 units. Moreover, Xiao 
et al. (2013) compared the performance of linear, second and third order 
polynomial regression on 3D printer colour characterisation, and it was 
summarised that the third order polynomial regression model gave the 
smallest predicted colour difference whereas the linear transformation 
produced the worst performance. Liu et al. (2019) also reported that the 
third-order polynomial regression yielded smaller colour differences than the 
quadratic polynomial for developing a colour profile for a 3D printer.   

In generally, prior to implementing the colour characterisation model 
developed using a skin colour chart, the colours printed by the 3D printer 
appeared less vibrant and had a yellowish tint in comparison to the target 
colours. With the introduction of the model, the printed colours were 
corrected, resulting in a significant improvement in accuracy of faithful and 
realistic skin colour reproduction. 

5.3 Summary  

In this chapter, two studies on colour characterisation of a 3D printer were 
carried out, one is the theoretical analysis on developing forward colour 
characterisation models using different methods, and the other one is the 
practical reverse colour characterisation transforming CIE colorimetric 
values to RGB values to achieve accurate skin colour reproduction using the 
3D printer. 

In the first study, the third order polynomial regression and deep neural 
networks were employed to perform colour characterisation from CMYK to 
CIELAB colour space, based on a dataset consisting of 2016 colour samples 
which was produced using a Stratasys J750 3D colour printer. Five output 
variables including CIE XYZ, the logarithm of CIE XYZ, CIELAB, spectra 
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reflectance and the principal components of spectra were compared for the 
performance of printer colour characterisation. Moreover, the effect of 
different training data sizes on predictive accuracy was investigated. The 10-
fold cross validation was applied to evaluate the accuracy of the models 
developed using different approaches, and CIELAB colour differences were 
calculated with CIE illuminant D65. The results showed that the DNN 
method produced much smaller colour differences than the PR method, but 
it is highly dependent on the amount of training data. In addition, the 
logarithm of CIE XYZ as the output provided higher accuracy than CIE XYZ. 

In order to enhance the accuracy of reproducing skin colours in practical, a 
specialised colour chart designed for Chinese skin tones was utilised instead 
of relying on conventional colour charts like the ColorChecker SG chart to 
perform reverse colour characterisation for a Stratasys J750 3D printer. The 
third-order polynomial regression was adopted to develop a mathematical 
model converting the logarithm of CIE XYZ to RGB colour space. The 
accuracy of the model was quantified by calculating the average colour 
difference of the printed chart, which was 2.81 CIELAB units. The predicted 
error for the 118 printed skin colour patches was about 1.35 CIELAB units, 
indicating significant improved accuracy of skin colour reproduction using the 
3D printer.   
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Chapter 6 
Colour-Difference Evaluation of 3D Printed Objects 

The current colour-difference formulae such as CIELAB and CIEDE2000 
were developed based on flat coloured samples, currently there is no 
standard guidance for evaluating colour differences of 3D objects. CIE has 
listed the reproduction and measurement of 3D objects as one of the top 
priority topics in its current research strategy, and CIE Technical Committee 
8-17 has been established to develop methods for evaluating the colour 
differences between 3D objects.  

To understand the basic visual perception of coloured 3D objects in 
lightness, chroma and hue scale, a series of psychophysical experiments 
were conducted to collect visual colour-difference data of 3D objects. The 
performance of CIELAB and CIEDE2000 colour-difference formulae was 
tested and quantified, furthermore, the parametric factors in the colour-
difference formulae were optimised to better fit the visual results collected 
from 3D objects.  

6.1 3D Printed Spherical Samples  

6.1.1 Colour Samples around 5 CIE Colour Centres 

Based on the five CIE recommended colour centres: grey, red, green, 
yellow, and blue (Witt 1995), 45 spherical samples with a diameter of 50 mm 
were printed using the Stratasys J750 colour 3D printer as shown in Figure 
3.6. A high mix printing mode and a matte surface finish were selected in 3D 
printing, and a waterjet machine was used to remove support materials. 
Figure 6.1 shows the 45 printed colour samples after postprocessing, where 
there are 5 grey samples with similar chroma and hue but different lightness 
and 10 colour samples with different variations in individual lightness, 
chroma and hue scales for red, green, yellow and blue colour centres, 
respectively. A Konica Minolta CM-700d spectrophotometer with a SAV 3 
mm aperture and SCI mode, as shown in Figure 3.7 (right), was used to 
measure the colour of each printed sample. The measured spectral 
reflectance data were used to calculate corresponding CIELAB values with 
the CIE 1964 standard observer and the measured SPD of the D65 
simulator of the viewing cabinet used for visual assessment (see Section 
6.2.2).  
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Figure 6.1 The 3D printed spherical samples based on the 5 CIE 
recommended colour centres.   

In order to quantify the colour homogeneity of the 3D printed objects, each 
spherical sample was measured at three different points, and the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
value in CIELAB units was calculated using the results of the three 
measurements. The average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 value of the 45 samples obtained is 
1.77 CIELAB units, which indicates that the 3D printed spherical samples 
have reasonable colour uniformity. 

The average CIELAB values of three measurements for each sample are 
illustrated in 𝐿𝐿10∗ 𝐶𝐶𝑎𝑎𝑎𝑎,10

∗  and 𝑎𝑎10∗ 𝑏𝑏10∗  diagrams in Figure 6.2. The triangle 
symbols are approximately positioned at the ‘centres of gravity’ of the 3D 
printed samples around each CIE recommended colour centre. It can be 
seen that grey samples vary mainly in the lightness scale and have slight 
changes in chroma and hue dimensions. For the other four colour centres, 
the samples differ primarily in one of the three attributes. 

  

Figure 6.2 Colour distributions of the 45 spherical samples in 𝐿𝐿10∗ 𝐶𝐶𝑎𝑎𝑎𝑎,10
∗  and 

𝑎𝑎10∗ 𝑏𝑏10∗  plane. 

Based on the 45 spherical colour samples printed using the J750 colour 3D 
printer, two sample sets were generated to collect visual colour-difference 
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data, named Sample Set I and Sample Set II, respectively. Regarding the 
Sample Set I, 42 pairs of colour samples were prepared to have 
predominant lightness, chroma or hue differences, i.e., the colour difference 
of each pair of 3D samples is mainly (at least 85%) given by one colour 
attribute (e.g., lightness differences ∆𝐿𝐿10∗ , chroma differences ∆𝐶𝐶𝑎𝑎𝑎𝑎,10

∗ , or hue 
differences ∆𝐻𝐻𝑎𝑎𝑎𝑎,10

∗ ). Figure 6.3 shows the colour difference of each sample 
pair for the five colour centres.  

 

 

Figure 6.3 Values of ∆𝐿𝐿10∗ ,∆𝐶𝐶𝑎𝑎𝑎𝑎,10
∗ ,∆𝐻𝐻𝑎𝑎𝑎𝑎,10

∗ ,∆𝐸𝐸𝑎𝑎𝑎𝑎,10
∗  for the 42 pairs of 3D 

samples in Sample Set I. 

For the grey centre, 6 pairs of 3D samples were produced to have colour 
difference mainly in lightness dimension, and for each of the four chromatic 
centres, 9 sample pairs were assembled to have predominant lightness, 
chroma and hue differences, respectively. The colour-difference magnitudes 
in the three attributes are designed to be consistent, always ranging from 2-
10 ∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗ , so that the visual perception can be compared for lightness, 
chroma and hue scales. Overall, there were 42 pairs of 3D samples in 
Sample Set I, including 18 lightness-difference pairs (∆𝐿𝐿10∗ /∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗ ≥0.85), 12 
chroma-difference pairs (∆𝐶𝐶𝑎𝑎𝑎𝑎,10

∗ /∆𝐸𝐸𝑎𝑎𝑏𝑏,10
∗ ≥0.85), and 12 hue-difference pairs 

( ∆𝐻𝐻𝑎𝑎𝑎𝑎,10
∗ /∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗ ≥0.85). The average colour difference of the 42 pairs of 3D 
samples was 5.46 CIELAB units. 

In terms of the Sample Set II, it consists of 40 pairs of spherical samples 
with an anchored reference sample (the triangle symbols in Figure 6.2) for 
each of the five CIE colour centres. Specifically, there were 4 pairs for the 
CIE grey centre and 9 pairs for each CIE chromatic centre. The colour 
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differences of the 40 sample pairs ranged from 1 to 12 CIELAB units, and 
the average colour difference was 4.58 CIELAB units. 

Overall, a total of 82 pairs of 3D printed spherical samples (42 pairs in 
Sample Set I and 40 pairs in Sample Set II) were used in the psychophysical 
experiments to collect visual-colour difference data given by human 
observers. More specifically, the visual results collected from Sample Set I 
were used to investigate the human visual colour perception of these 3D 
objects in terms of the lightness, chroma and hue dimensions and optimise 
the parametric factors in CIELAB and CIEDE2000 colour-difference 
formulae. The visual results of Sample Set II were used to test the prediction 
performance of the optimised colour-difference formulae. 

6.1.2 Colour Samples with Skin Tones 

Based on the facial skin colour data collected from human participants using 
a spectrophotometer, the average CIELAB values are 60.41, 13.07, 16.35. 
This colour was regarded as a reference, and 9 colours with different 
lightness, chroma and hue differences from it were determined and printed 
using the Stratasys J750 colour 3D printer. The colour-difference 
magnitudes and the printing process of these samples were the same as 
Section 6.1.1. Figure 6.4 displays the 10 spherical samples printed with skin 
tones, changing in lightness, chroma and hue scale, respectively. Moreover, 
nine pairs of skin colour samples were produced for visual assessments. 

 

Figure 6.4 The 3D printed spherical samples based on the facial skin colour 
data collected.   

6.2 Psychophysical Experiments 

6.2.1 Grey-Scale Method 

The grey-scale method has been widely used for visual assessment due to 
its ease of use and accurate results. In the present study, the Grey scale for 
assessing change in colour from the Society of Dyers and Colourists (SDC), 
following ISO 105-A02 (ISO 1993), was used in the visual experiments, as 
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shown in Figure 6.5. It consists of 9 pairs of non-glossy neutral grey 
coloured chips, with grades of 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5. The larger 
the grey-scale number, the smaller the colour difference. The colour 
difference in the grey scale is predominantly caused by a lightness 
difference. 

 

Figure 6.5 The SDC 9-step Grey Scale for assessing change in colour. 

The spectral reflectance of each grey chip was measured using a CM700d 
spectrophotometer with SAV 3 mm and SCI, and the colour difference 
between each pair of grey chips was calculated for the CIE1964 standard 
observer under the illumination used in the visual experiments. Figure 6.6 
plots the CIELAB and CIEDE2000 colour-difference values of the 9 grades 
in the grey scale. The grade 1 has the largest colour difference (13.36 
∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗  or 13.13 ∆𝐸𝐸00,10), and the grade 5 has almost no colour difference 
(0.18 ∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗  or 0.16 ∆𝐸𝐸00,10). In addition, it can be seen from Figure 6.6 that 
the colour-difference values of the 9 grey-scale grades calculated using 
CIEDE2000 formula were slightly smaller than those of CIELAB. 

 

Figure 6.6 Relationship between the 9 grades in the SDC grey scale and 
their measured colour differences in CIELAB and CIEDE2000 units. 

In order to convert the grey-scale grades given by human observers to 
colour differences, the third order polynomial regression was selected and 
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used to quantify the relationship between the grey-scale grade numbers and 
the corresponding colour differences. The fitted curves are illustrated in 
Figure 6.6, and the determined equations for CIELAB and CIEDE2000 
colour-difference units are expressed in Equations (6.1) and (6.2), 
respectively, with 𝑅𝑅2  values of 0.9998 and 0.9960. Considering that this 
study aimed to test and optimise the CIELAB and CIEDE2000 formulae, 
both equations were used separately to obtain the visual colour-difference 
values. 

∆𝑉𝑉𝑎𝑎𝑎𝑎,10 = −0.25 × 𝐺𝐺𝐺𝐺3 + 3.05 × 𝐺𝐺𝐺𝐺2 − 13.95 × 𝐺𝐺𝐺𝐺 + 24.46    (6.1) 

∆𝑉𝑉00,10 = −0.28 × 𝐺𝐺𝐺𝐺3 + 3.36 × 𝐺𝐺𝐺𝐺2 − 14.83 × 𝐺𝐺𝐺𝐺 + 24.81  (6.2) 

6.2.2 Visual Colour-Difference Assessment  

6.2.2.1 VeriVide Viewing Cabinet 

A VeriVide viewing cabinet with a D65 simulator was used in the visual 
colour-difference assessments. The spectral power distribution of the D65 
illumination was measured using a Konica Minolta CS2000 
spectroradiometer and a reference white tile, and the relative SPD is 
illustrated in Figure 6.7. The correlated colour temperature, CIE colour 
rendering index 𝑅𝑅𝑅𝑅 and luminance of this illumination measured at the centre 
of the viewing cabinet were 6519 K, 97 and 412.35 𝑐𝑐𝑐𝑐/𝑚𝑚2, respectively. 

 

Figure 6.7 The relative SPD of the D65 illumination in the VeriVide viewing 
cabinet. 

The visual experiments were conducted in a dark room, and human 
observers were asked to adapt to the dark surround for two minutes. Before 
starting psychophysical experiments, a pilot experiment was performed to 
train the observers to make the visual assessments using the grey scale 
method. Each pair of 3D samples was placed in the centre of the viewing 
cabinet, as shown in Figure 6.8. The observer’s task was to evaluate the 
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magnitude of the colour difference in the pair in comparison with the 
perceived colour differences in the pairs of the grey scale. All the testing 
pairs were presented in a random order, and observers were encouraged to 
give intermediate assessment values with one decimal between two 
contiguous grey pairs (e.g., 3.6 for a colour difference between the pairs 3.5 
and 4 but closer to 3.5 than to 4). During the visual experiments, observers 
had a fixed viewing position with an approximate distance of 50 cm from the 
samples and a 45° viewing angle. Each observer repeated the visual 
assessments of all testing pairs three times in different time periods.  

 

Figure 6.8 An example of visual colour-difference assessment in a VeriVide 
viewing cabinet. 

A panel of 15 observers (10 females and 5 males) participated in the visual 
experiments, with ages ranging from 25 to 29. They were postgraduate 
students from the University of Leeds and had normal colour vision 
according to the Ishihara test. Most observers had little experience in colour-
difference evaluation. A total of 3690 assessments (82 pairs × 3 repetitions × 
15 observers) were achieved to collect visual colour-difference data of 3D 
printed spherical samples from the psychophysical experiments.  

Regarding the 3D spherical samples with skin tones, 5 out of the 15 
observers participated in the same psychophysical experiment and gave 
their visual assessments of the colour differences of 9 pairs of 3D skin colour 
samples. 

6.2.2.2 X-Rite Virtual Light Booth 

Considering that the 3D objects can be viewed from different directions and 
angles in the real world and there is no specific surface to be viewed like 2D 
objects, additional visual assessments were conducted in a X-Rite Virtual 
Light Booth with a rotate stage, as shown in Figure 6.9. The rotation speed 
and direction of the stage were controlled using buttons in the control panel. 
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The D65 illumination was provided in the light booth, and it was measured 
using a CS2000 spectroradiometer. The measured CCT, CIE rendering 
index and luminance were 6078 K, 97, 448.79 𝑐𝑐𝑐𝑐/𝑚𝑚2, respectively. Figure 
6.10 plots the relative SPD of the D65 simulator in the X-Rite virtual light 
booth.  

Each pair of 3D samples was placed in the centre of the rotate stage, and 
observers were asked to assess the colour difference of the test sample pair 
rotated with the stage. In such case, the 3D samples were viewed from 360 
degrees during visual assessments. Five out of the 15 observers in the 
Section 6.2.2.1 were invited to evaluate the colour differences of the 82 
rotated 3D sample pairs, subsequently. In addition, the same visual 
assessments were conducted on the 82 pairs of 3D samples in the light 
booth without any rotation so that the effect of rotation on colour-difference 
assessments can be compared.  

 

Figure 6.9 The X-Rite virtual light booth with a rotate stage. 

 

Figure 6.10 The relative SPD of the D65 illumination in the X-Rite virtual 
light booth. 
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6.3 Visual Results 

6.3.1 Observer Variability 

The observer variability was quantified by using the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  index (see 
Section 2.6.2), based on the visual colour-difference data of the 82 pairs of 
3D sample pairs collected from the psychophysical experiments. The 
average 𝑆𝑆𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 values for intra- and inter-observer variability were 30.7 and 
30.9 CIELAB units (31.4 and 31.7 CIEDE2000 units), respectively. Similar 
results were achieved by Huang et al. (2022b) where the intra- and inter-
observer variability for matte spherical samples were 21.9 and 31.2 CIELAB 
units, respectively. In comparison, the intra-observer variability in the present 
study was relatively larger, which is possibly because three repetitions were 
performed in this study by each observer. Moreover, Jiang et al. (2021) 
reported that the observer variability in colour-difference evaluation of 3D 
objects is slightly larger (23.5 CIELAB units for inter and 14.9 for intra) than 
that of flat 2D objects (19.4 CIELAB units for inter and 12.6 for intra).  

6.3.2 Visual Colour Difference 

The visual colour-difference results (∆V) of the 82 pairs of 3D samples in the 
VeriVide viewing cabinet were plotted in Figure 6.11 against the 
corresponding colour-difference values computed using the CIELAB (a) and 
CIEDE2000 (b) formulae. It shows that the visual data can be fitted as linear 
relationships (the dotted lines) to the computed colour differences, with 𝑅𝑅2 
values of 0.6244 and 0.6986 for CIELAB and CIEDE2000, respectively. It 
was to be expected that the scatter points should fall on the 45° dashed line 
if the colour-difference formula can exactly predict the visual results, and the 
larger the scatter, the worse the colour-difference formula performs. It can 
be seen from Figure 6.11 that the ∆𝐸𝐸00,10 cluster data have less scatter than 
the ∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗  data, and the ∆𝐸𝐸00,10 scatters tend to be closer to the 45° dashed 
line than ∆𝐸𝐸𝑎𝑎𝑎𝑎,10, especially within approximately 6 units of colour-difference. 
This is in line with the statement that the CIEDE2000 formula was developed 
to fit visual assessment datasets of small-medium colour differences, 
typically under five CIELAB colour-difference units.   

Additionally, the ∆V magnitudes in Figure 6.11 are almost half (0.48) those 
of the calculated colour-difference values. It was generally assumed that the 
∆V values would tend to be close to the ∆E values if the colour-difference 
formula is a good predictor of the visual data, but it has been reported that in 
most cases the ratios, instead of the absolute values of ∆V and ∆E, are 
helpful for testing colour-difference formulae (Luo and Rigg 1987a). Poor 
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correlation indicates that the colour-difference formula should be improved to 
provide a better performance of colour-difference assessment. 

 

Figure 6.11. Plots of ∆V against ∆𝐸𝐸𝑎𝑎𝑎𝑎,10
∗  (a) and ∆𝐸𝐸00,10 (b) for the 82 sample 

pairs in the VeriVide viewing cabinet. 

Considering that the whole colour differences of the 42 sample pairs in 
Sample Set I were produced mainly from one of the three colour attributes, 
lightness, chroma and hue, the visual results were divided and analysed 
according to these three components. Figure 6.12 (left) shows the plots of 
the visual data of the 42 sample pairs in Sample Set I against ∆𝐿𝐿10∗ , ∆𝐶𝐶𝑎𝑎𝑎𝑎,10

∗ , 
∆𝐻𝐻𝑎𝑎𝑎𝑎,10

∗  and three linear lines fitted for lightness, chroma and hue 
differences, respectively. Figure 6.12 (right) plots ∆𝑉𝑉 against the CIEDE2000 
weighted ∆𝐿𝐿00 , ∆𝐶𝐶00 , ∆𝐻𝐻00  which were calculated using the equations 
proposed by Nobbs (2006).  

  

Figure 6.12 Plots and correlations of ∆V against ∆𝐿𝐿10∗ ,∆𝐶𝐶𝑎𝑎𝑎𝑎,10
∗ ,∆𝐻𝐻𝑎𝑎𝑎𝑎,10

∗  (a) and 
∆𝐿𝐿00,∆𝐶𝐶00,∆𝐻𝐻00 (b) of the 42 sample pairs in Sample Set I. 

As can be seen from Figure 6.12 (left), the relationships between the visual 
colour differences and the calculated in the three components of ∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗  
were approximately linear, and the linear line fitted for hue differences is 
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above the other two lines, indicating that the perceived hue differences are 
more distinct than the perceived lightness differences for a given ∆𝐸𝐸𝑎𝑎𝑎𝑎,10

∗ . It is 
indicated that the human visual system is more sensitive to hue changes 
than to lightness changes in CIELAB. In comparison, the slope of the fitted 
chroma-difference line as well as its 𝑅𝑅2  value are smaller than those of 
lightness and hue-difference fitted lines, indicating that the sensitivity to the 
perceived chroma changes for 3D objects is relatively lower.  

In addition, the CIELAB lightness, chroma and hue differences of the 42 
pairs are almost in the same range, from 2 to 10 units. The perceived visual 
colour differences, however, have different ranges for these three 
components, which are approximately 1.0-3.0 units for chroma differences, 
0.5-5.5 units for lightness differences, and 1.5-5.5 units for hue differences. 
Therefore, the factors related to these three colour components in the 
colour-difference formula should be rescaled for 3D colour objects.  

Regarding the results of CIEDE2000 as shown in Figure 6.12 (right), similar 
findings were achieved for lightness and hue-difference predictions, while a 
major difference was found for predicting chroma differences: the 
CIEDE2000 weighted ∆𝐶𝐶00 is much closer to the visual data compared to the 
results of CIELAB. This confirmed that CIEDE2000 colour-difference formula 
performed chroma correction on CIELAB formula and a significant 
improvement was achieved. 

6.3.3 Testing Colour-Difference Formulae 

The performance of the CIELAB and CIEDE2000 colour-difference formulae 
was tested using the visual data of the 82 pairs of samples, and the average 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  values obtained were 30.5 CIELAB units and 29.2 CIEDE2000 
units. This result indicates that CIEDE2000 has a slightly better performance 
than CIELAB for colour-difference prediction of 3D samples, which is in line 
with the results shown in in Figure 6.11.  

In order to investigate the performance of CIELAB and CIEDE2000 formulae 
on predicting lightness, chroma and hue differences, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values and 
the ratios of ∆𝐸𝐸/∆𝑉𝑉 were calculated for the 42 pairs in Sample Set I, and the 
results are shown in Tables 6.1 and 6.2, respectively. It was assumed that 
the ratio should be equal to 1.0 for a perfect agreement between the 
predictions of a colour-difference formula and the visual results collected 
from psychophysical experimental.  

Table 6.1 shows that the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values in CIEDE2000 units are smaller 
than those in CIELAB units for lightness-difference pairs and hue-difference 
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pairs, but not for chroma-difference pairs, which is quite surprising. It can be 
seen that the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values achieved for hue differences are the smallest 
compared to lightness and chroma, it is indicated that the colour-difference 
formulae predict hue differences accurately. Regarding the results in Table 
6.2, the average ratios of ∆𝐸𝐸/∆𝑉𝑉 achieved using the two colour-difference 
formulae are larger than 1.0. The ratios calculated for hue differences are 
the closest to 1.0 and this is in agreement with the smallest 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values 
shown in Table 6.1. It is therefore concluded that the tested colour-difference 
formulae have better performance for predicting hue differences than for 
lightness and chroma differences. 

Table 6.1 The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values in CIELAB and CIEDE2000 units of the 42 
pairs with predominant (≥85%) lightness, chroma and hue-differences. 
 42 pairs ∆𝐿𝐿10∗  pairs ∆𝐶𝐶𝑎𝑎𝑎𝑎,10

∗  pairs ∆𝐻𝐻𝑎𝑎𝑎𝑎,10
∗  pairs 

CIELAB 28.6 23.7 21.7 17.7 

CIEDE2000 25.9 18.9 23.3 15.6 

Table 6.2 Basic statistical results of ∆E/∆V  ratios of the 42 pairs with 
predominant (≥85%) lightness, chroma and hue-differences. 

 ∆𝐿𝐿10∗  pairs ∆𝐶𝐶𝑎𝑎𝑎𝑎,10
∗  pairs ∆𝐻𝐻𝑎𝑎𝑎𝑎,10

∗  pairs 

 ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ /∆V ∆𝐸𝐸00/∆V ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ /∆V ∆𝐸𝐸00/∆V ∆𝐸𝐸𝑎𝑎𝑎𝑎∗ /∆V ∆𝐸𝐸00/∆V 

Min 1.38 1.38 1.51 0.79 1.12 0.96 

Max 4.91 4.37 3.76 1.99 2.19 1.59 

Mean 2.66 2.41 2.63 1.44 1.63 1.26 

STD 0.92 0.71 0.60 0.39 0.28 0.19 

For the visual results of the same 82 pairs of 3D samples collected in the X-
Rite light booth with a D65 simulator, the average 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values achieved 
are given in Table 6.3, which are larger than the results obtained in the 
VeriVide standard viewing cabinet, even for the stationary 3D sample pairs. 
It is not surprising that the visual colour differences reported by observers for 
the rotated 3D sample pairs gave greater 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values (39.5 CIELAB units 
and 42.6 CIEDE2000 units), because the experiment did not meet the 
reference viewing conditions (given in Table 2.1) for visual colour-difference 
evaluation recommended by CIE. The reason that the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  values 
acquired for the 82 pairs of 3D samples in the X-Rite light booth were 
greater than in the VeriVide viewing cabinet may be due to the use of the 
two different simulated D65 illuminations. 
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Table 6.3 The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values in CIELAB and CIEDE2000 units of the 82 

pairs of 3D samples in the X-Rite light booth. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in ∆𝐸𝐸𝑎𝑎𝑎𝑎∗  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in ∆𝐸𝐸00 

Rotate 39.5 42.6 

Still 36.7 36.8 

6.4 Optimisation of CIELAB and CIEDE2000 

6.4.1 Optimisation Methods 

Most current advanced colour-difference formulae were derived by modifying 
the CIELAB formula which was defined as a Euclidean distance in terms of 
lightness, chroma and hue differences between the two stimuli (Luo et al 
2001), and the generic equation is expressed: 
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where ∆𝐿𝐿10∗ ,∆𝐶𝐶𝑎𝑎𝑎𝑎,10
∗ ,∆𝐻𝐻𝑎𝑎𝑎𝑎,10

∗  are the CIELAB metric lightness, chroma and 
hue difference, 𝑘𝑘𝐿𝐿,𝑘𝑘𝐶𝐶 ,𝑘𝑘𝐻𝐻 and 𝑆𝑆𝐿𝐿, 𝑆𝑆𝐶𝐶 , 𝑆𝑆𝐻𝐻 are the three parametric factors and 
weighting functions for lightness, chroma and hue difference, respectively, 
∆𝑅𝑅 is an interactive term between chroma and hue difference. 

In CIELAB formula, 𝑘𝑘𝐿𝐿,𝑘𝑘𝐶𝐶 ,𝑘𝑘𝐻𝐻 , 𝑆𝑆𝐿𝐿, 𝑆𝑆𝐶𝐶 , 𝑆𝑆𝐻𝐻  were all set as 1 and ∆𝑅𝑅 =0. For 
CIEDE2000, 𝑆𝑆𝐿𝐿, 𝑆𝑆𝐶𝐶 , 𝑆𝑆𝐻𝐻 are three specified weighting functions, ∆𝑅𝑅 is related 
to the so-called rotation term affecting the blue saturated region of colour 
space, and 𝑘𝑘𝐿𝐿 = 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 under so-called ‘reference conditions’ for most 
applications (𝑘𝑘𝐿𝐿 = 2, 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 for textiles). In order to better agree with 
visually perceived colour differences, Huang et al. (2015) reported that 
colour-difference formulae can be modified by applying power correction.  

Since the colour appearance of 3D objects may be affected by more factors 
than for 2D objects, it is hypothesised that the factors in colour-difference 
formulae should be different for these two situations. To improve the 
predictions of CIELAB and CIEDE2000 colour-difference formulae for 3D 
printed spherical objects, the optimisation on parametric factors were 
performed and the power correction was applied. In a nutshell, the following 
three optimisation methods were adopted:  

• Method 1: Optimise 𝑘𝑘𝐿𝐿 with 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1. 

• Method 2: Optimise both 𝑘𝑘𝐿𝐿 and 𝑘𝑘𝐶𝐶 with 𝑘𝑘𝐻𝐻 = 1. 
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• Method 3: Apply a power function and optimise the exponent 𝑛𝑛 (i.e., 
∆𝐸𝐸′ = ∆𝐸𝐸𝑛𝑛). 

The combination of parametric factor optimisation with application of power 
functions was also considered as an optimisation method, i.e., Method 1+3 
and Method 2+3. The goal of the optimisations was to minimize the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
value between the visual results and the values calculated using a colour-
difference formula, by using the GRG nonlinear method in Excel Solver or 
the fminsearch function in MATLAB.  

6.4.2 Optimisation Results  

The visual colour-difference data of the 42 pairs of 3D samples in Sample 
Set I were used to optimise CIELAB and CIEDE2000 formulae, and the 
optimised factors for CIELAB and CIEDE2000 using different methods are 
given in Table 6.4. Table 6.5 presents the 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values calculated using 
the original and the optimised CIELAB and CIEDE2000 formulae. In order to 
analyse the statistical significances between the original and the optimised 
colour-difference formulae, the 𝐹𝐹 -test was performed using the Equation 
(2.41) described in Section 2.6.3. The degrees of freedom were 41 (𝑁𝑁=42), 
and the critical value 𝐹𝐹𝐶𝐶 is 0.54 (1/𝐹𝐹𝐶𝐶 = 1.86) for the two-tailed 𝐹𝐹-distribution 
with a 95% confidence level. Table 6.6 gives the 𝐹𝐹 -test results for the 
optimised CIELAB and CIEDE2000 formulae, the bold numbers indicate 
cases with statistically significant improvements. 

By using Method 1 which was to optimise the 𝑘𝑘𝐿𝐿 factor with 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1, the 
optimal 𝑘𝑘𝐿𝐿  factor for CIELAB colour-difference formula is 1.1 and the 
corresponding 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value is 28.5, which is similar to the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value of 
28.6 calculated using the original formula (𝑘𝑘𝐿𝐿 = 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 =1). Therefore, the 
improvement in performance of the optimised CIELAB colour-difference 
formula with 𝑘𝑘𝐿𝐿 = 1.1 is negligible. In comparison, the optimal 𝑘𝑘𝐿𝐿  factor for 
CIEDE2000 is 1.5 and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value reduced from 25.9 to 18.8 units, 
indicating better performance was achieved. Furthermore, the corresponding 
𝐹𝐹-test value is 0.53, as shown in Table 6.6, smaller than the critical value (𝐹𝐹𝐶𝐶 
= 0.54). It is indicated that the optimised CIEDE2000 formula with 𝑘𝑘𝐿𝐿=1.5 is 
significantly better than the original formula.  

Based on Method 2 for optimising both 𝑘𝑘𝐿𝐿 and 𝑘𝑘𝐶𝐶 simultaneously with 𝑘𝑘𝐻𝐻 = 
1, the optimal 𝑘𝑘𝐿𝐿 and 𝑘𝑘𝐶𝐶  factors for CIELAB are 1.4 and 1.9, respectively, 
and the calculated 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value decreased from 28.6 to 20.5 CIELAB units. 
Furthermore, the corresponding 𝐹𝐹 -test value is 0.51, smaller than the 𝐹𝐹𝐶𝐶 
value of 0.54, showing that the optimisation of the CIELAB formula with 𝑘𝑘𝐿𝐿 = 
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1.4 and 𝑘𝑘𝐶𝐶  = 1.9 has significantly better performance than the original 
CIELAB formula. For the results of the optimised CIEDE2000 with 𝑘𝑘𝐿𝐿 = 1.6 
and 𝑘𝑘𝐶𝐶 = 1.1, significantly better performance was also achieved compared 
to the original CIEDE2000 formula, with the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value decreasing from 
25.9 to 18.6 CIEDE2000 units and the 𝐹𝐹-test value of 0.52. In addition, the 
optimisation results of CIEDE2000 using Method 1 (𝑘𝑘𝐿𝐿 = 1.5, 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1) 
and Method 2 (𝑘𝑘𝐿𝐿 = 1.6, 𝑘𝑘𝐶𝐶 = 1.1, 𝑘𝑘𝐻𝐻 = 1) are very similar, because the 𝑆𝑆𝐶𝐶 
function in CIEDE2000 has already corrected the CIELAB chroma difference 
values (Luo et al. 2001). In comparison, the optimisation for the 𝑘𝑘𝐶𝐶 factor 
achieved better performance for CIELAB. 

Table 6.4 The parametric factors optimised for CIELAB and CIEDE2000 
formula using different methods. 

Method CIELAB CIEDE2000 

Original 𝑘𝑘𝐿𝐿 = 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 𝑘𝑘𝐿𝐿 = 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 

Method 1 𝑘𝑘𝐿𝐿 = 1.1, 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 𝑘𝑘𝐿𝐿 = 1.5,𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 

Method 2 𝑘𝑘𝐿𝐿 = 1.4,𝑘𝑘𝐶𝐶 = 1.9, 𝑘𝑘𝐻𝐻 = 1 𝑘𝑘𝐿𝐿 = 1.6, 𝑘𝑘𝐶𝐶 = 1.1,𝑘𝑘𝐻𝐻 = 1 

Method 3 𝑛𝑛 = 0.9 𝑛𝑛 = 0.8 

Method 1+3 
𝑘𝑘𝐿𝐿 = 1.1, 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 

𝑛𝑛 = 1 

𝑘𝑘𝐿𝐿 = 1.6,𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1 

𝑛𝑛 = 1 

Method 2+3 
𝑘𝑘𝐿𝐿 = 1.4,𝑘𝑘𝐶𝐶 = 1.9, 𝑘𝑘𝐻𝐻 = 1 

𝑛𝑛 = 1 

𝑘𝑘𝐿𝐿 = 1.6, 𝑘𝑘𝐶𝐶 = 1.2,𝑘𝑘𝐻𝐻 = 1 

𝑛𝑛 = 0.9 

Table 6.5 The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values calculated using the original and the optimised 
CIELAB and CIEDE2000 formulae. 

 Original 
Method 

1 
Method 

2 
Method 

3 
Method 

1+3 
Method 

2+3 

CIELAB 28.6 28.5 20.5 28.5 28.4 20.5 

CIEDE2000 25.9 18.8 18.6 24.8 18.7 18.4 

Table 6.6 The 𝐹𝐹 -test results for the optimised CIELAB and CIEDE2000 
formulae.  

 Method 1 Method 2 Method 3 Method 1+3 Method 2+3 

CIELAB 0.99 0.51 1.00 0.99 0.51 

CIEDE2000 0.53 0.52 0.92 0.52 0.51 
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With respect to the consequences of applying a power function to the 
original colour-difference formulae (Method 3), the obtained 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values 
of the optimised CIELAB and CIEDE2000 formulae are 28.5 and 24.8 units, 
respectively, and the 𝐹𝐹 -test values are close to 1, which suggested that 
there was no significant improvement achieved. When the power function 
was applied to the optimised colour-difference formulae, named as Method 
1+3 and Method 2+3 in Tables 6.5 and 6.6, the results similar to those from 
Method 1 and Method 2 were obtained. This means that applying a power 
function gives almost no improvement on the optimisation of colour-
difference formulae for 3D samples.  

Given the 3D sample pairs in Sample Set I can be divided into three groups: 
those with predominant (≥85%) lightness differences, chroma differences 
and hue differences, the visual data of these three groups of 3D sample 
pairs were used to optimise the 𝑘𝑘𝐿𝐿,𝑘𝑘𝐶𝐶 ,𝑘𝑘𝐻𝐻  parametric factors, respectively. 
The optimisation results and corresponding 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values for CIELAB and 
CIEDE2000 are listed in Table 6.7. The 𝑘𝑘𝐿𝐿 factors (1.8 and 1.6) optimised for 
the two formulae are larger than the default value of 1.0, indicating that 
lightness differences in the original formulae were over-valued for 3D 
samples (see Equation (6.3)). The optimal values for the 𝑘𝑘𝐶𝐶  factor were 
totally different for CIELAB and CIEDE2000 formulae, i.e., 𝑘𝑘𝐶𝐶 =1.4 was 
determined for CIELAB while 𝑘𝑘𝐶𝐶 =0.5 for CIEDE2000, and an opposite 
circumstance happened for the optimisation of 𝑘𝑘𝐻𝐻  factor, the optimal 𝑘𝑘𝐻𝐻  is 
0.5 for CIELAB while 1.1 for CIEDE2000.  

Compared to the results calculated using the original formulae, as shown in 
Table 6.1, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  values become smaller after individual factor 
optimisation, but the disparity is not great. This implies that the approach to 
separately optimise the parametric factors did not yield significantly 
improvement. 

Table 6.7 The individual optimised 𝑘𝑘𝐿𝐿,𝑘𝑘𝐶𝐶 , 𝑘𝑘𝐻𝐻  factors and corresponding 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values (in parentheses) for CIELAB and CIEDE2000. 

 ∆𝐿𝐿10∗  pairs ∆𝐶𝐶𝑎𝑎𝑎𝑎,10
∗  pairs ∆𝐻𝐻𝑎𝑎𝑎𝑎,10

∗  pairs 

CIELAB 𝑘𝑘𝐿𝐿=1.8 (23.3) 𝑘𝑘𝐶𝐶=1.4 (21.6) 𝑘𝑘𝐻𝐻=0.5 (16.7) 

CIEDE2000 𝑘𝑘𝐿𝐿=1.6 (18.3) 𝑘𝑘𝐶𝐶=0.5 (21.3) 𝑘𝑘𝐻𝐻=1.1 (15.5) 

6.4.3 Validation  

In addition to reporting the results of the optimised colour-difference 
formulae using the same 42 pairs of 3D samples in Sample Set I, the 
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collected visual colour-difference data of the 40 pairs of 3D samples in 
Sample Set II were used to validate the performance of the optimised colour-
difference formulae. The calculated 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values are shown in Table 6.8, 
and Table 6.9 gives the 𝐹𝐹-test results of the optimised formulae with respect 
to the original ones. The degrees of freedom are 39 (𝑁𝑁 =40), and the critical 
value 𝐹𝐹𝐶𝐶  is 0.53 (1/𝐹𝐹𝐶𝐶 = 1.89) for the two-tailed F-distribution with a 95% 
confidence level.  

Table 6.8 The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  values of the original and the optimised colour-
difference formulae, validated using the 40 sample pairs. 

 Original 
Method 

1 
Method 

2 
Method 

3 
Method 

1+3 
Method 

2+3 

CIELAB 32.8 32.6 25.3 33.1 33.0 25.3 

CIEDE2000 32.9 26.0 25.4 31.2 26.0 25.1 

Table 6.9 The 𝐹𝐹 -test values of the optimised colour-difference formulae, 
validated using the 40 sample pairs. 

 Method 1 Method 2 Method 3 Method 1+3 Method 2+ 3 

CIELAB 0.99 0.59 1.02 1.01 0.59 

CIEDE2000 0.62 0.60 0.90 0.62 0.58 

It is noticeable in Table 6.8 that the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value decreased from 32.8 to 
25.3 units, which was achieved using Method 2 and Method 2+3 to optimise 
CIELAB formula. In the light of the improvement, the recommended factors 
for CIELAB are 𝑘𝑘𝐿𝐿 = 1.4,𝑘𝑘𝐶𝐶 = 1.9. For the optimisation of CIEDE2000, the 
Method 1 (1+3) and Method 2 (2+3) gave similar 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values between 
25.1 and 26.0 units, and the 𝑘𝑘𝐿𝐿 factor is 1.5 for Method 1 and 𝑘𝑘𝐿𝐿 = 1.6 for 
Method 2. The effect produced by optimising 𝑘𝑘𝐶𝐶  factor in CIELAB is not 
significant in CIEDE2000, because the weighting function for chroma (𝑆𝑆𝐶𝐶) 
was applied to CIEDE2000. The results showed that the 𝑘𝑘𝐿𝐿 optimised factors 
are useful for CIELAB and in CIEDE2000 formulae. Furthermore, the 
corresponding 𝐹𝐹-test values in Table 6.9 indicate that the performance of the 
optimised colour-difference formulae was greatly improved. Additionally, the 
application of power correction (Method 3) did not provide better 
performance for the optimisation of colour-difference formulae.  

The visual colour-difference data collected from the 82 pairs of 3D sample in 
the X-Rite light booth were used to validate the predictive performance of the 
optimised colour-difference formulae, CIELAB with 𝑘𝑘𝐿𝐿 = 1.4, 𝑘𝑘𝐶𝐶 = 1.9  and 
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CIEDE2000 with 𝑘𝑘𝐿𝐿 = 1.5. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values achieved using the optimised 
formulae are given in Table 6.10. Compared to the results calculated using 
the original CIELAB and CIEDE2000 formulae, as listed in Table 6.3, the 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values in Table 6.10 are all smaller because of the optimisation on 
the colour-difference formulae, even for the rotated 3D samples. 
Consequently, it was confirmed that the optimised parametric factors in 
CIELAB and CIEDE2000 formulae are valid and useful for predicting colour 
differences of 3D printed samples. 

Table 6.10 The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values in the optimised CIELAB and CIEDE2000 
units of the 82 pairs of 3D samples in the X-Rite light booth. 

 Optimised CIELAB  Optimised CIEDE2000 

Rotate 31.7 33.9 

Still 32.2 30.8 

Additionally, the collected visual data of the 3D samples with skin tones were 
also used to validate the performance of the optimised colour-difference 
formulae. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value calculated using the original CIELAB formula 
was 18.4, and it decreased to 12.5 by using the optimised CIELAB with 𝑘𝑘𝐿𝐿 =
1.4,𝑘𝑘𝐶𝐶 = 1.9 . Similarly, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  value calculated using the optimised 
CIEDE2000 with 𝑘𝑘𝐿𝐿 = 1.5 was 11.6 units, compared to the value of 16.0 
calculated using the original CIEDE2000 formula. To sum up, after tested 
using different 3D samples sets including skin tones, the optimisation of 
colour-difference formulae for 3D objects achieved significant improvements.  

6.5 Discussion 

This study was conducted to investigate the human visual colour system of 
3D printed samples in perceiving lightness, chroma and hue differences, and 
to optimise the CIELAB and CIEDE2000 colour-difference formulae based 
on the visual results collected from psychophysical experiments. It was 
found that it is generally easier to assess hue differences of 3D spherical 
objects but not chroma differences, and the results indicated that the 
parametric factors related to lightness differences, chroma differences and 
hue-differences in colour-difference formulae should be optimised for 3D 
objects.  

Among the three methods used for optimisation, the best performance 
achieved for CIELAB was to optimise both the 𝑘𝑘𝐿𝐿 and 𝑘𝑘𝐶𝐶 parametric factors. 
The optimal 𝑘𝑘𝐶𝐶  factor (1.9) is larger than the optimal 𝑘𝑘𝐿𝐿  factor (1.4), 
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indicating that the original CIELAB formula predicted a larger difference for 
the chroma dimension than for the lightness dimension. Moreover, both 
optimised factors are larger than the original values of 1.0, suggesting that 
the difference scale should be compressed for 3D objects in the CIELAB 
colour-difference formula. In addition, the method to optimise only the 𝑘𝑘𝐿𝐿 
factor gives little improvement to CIELAB, which is quite different from the 
CIEDE2000 formula.  

The optimal 𝑘𝑘𝐿𝐿 parametric factor for the optimised CIEDE2000 is 1.5, larger 
than the default value of 1.0, indicating that the visual lightness difference of 
3D objects is over-estimated by the original formula(𝑘𝑘𝐿𝐿 = 1 ) which was 
developed based on 2D samples with homogeneous surfaces under 
reference conditions. It is suggested that human colour perception of 3D 
objects is different from 2D objects, concerning that 3D objects have non-flat 
surfaces. The parametric factors in colour-difference formulae have been 
modified to improve the prediction performance in different applications. In 
the textile industry, it is common practice to set the lightness parametric 
factor to 2 (CIE 2001), allowing for the associated texture effect. Huertas et 
al. (2006) investigated the three parametric factors based on simulated 
random-dot textures, suggesting values which were always larger than 1.0; 
Liu et al. (2013) proposed 𝑘𝑘𝐿𝐿= 2.3 for assessing colour differences in digital 
images; Mirjalili et al. (2019) concluded that optimising the lightness 
parametric factor, 𝑘𝑘𝐿𝐿, resulted in an improvement in the performance of the 
CIEDE2000 formula. Therefore, it is crucial to develop a colour-difference 
formula for 3D objects.  

In comparison to the optimisation of parametric factors, the power function 
had no evident improvement over the original formulae in this study. A 
possible reason for this is that the 3D sample pairs used in the current visual 
experiments had small to medium colour differences ranging from 2 to 9 
CIELAB units. In the study of Jiang et al. (2021), a remarkable improvement 
was achieved by adding a power correction in predictions of colour 
differences between 3D objects in a range of 25 CIELAB units, and it was 
reported that colour-difference magnitude had more effect on the perceived 
colour differences of 3D objects than sample shape or illumination. 
Therefore, a power function is possibly more suitable for sample pairs with 
magnitudes in a very large range of colour differences. 
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6.6 Summary  

In this chapter, psychophysical experiments with the grey scale method were 
conducted to assess colour differences of 3D printed spherical samples. The 
visual colour-difference results indicate that the human visual colour system 
of 3D objects is different in perceiving lightness, chroma and hue 
differences, and the factors related to these three components in colour-
difference formulae need to be optimised for 3D objects.  

By applying different optimisation methods to CIELAB and CIEDE2000 
formulae, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value of the 42 sample pairs decreased from 28.6 to 
20.5 units by simultaneously optimising both the 𝑘𝑘𝐿𝐿  and 𝑘𝑘𝐶𝐶  factors in 
CIELAB. Regarding the validation results based on the 40 sample pairs, 
considerable improvement was achieved for the optimised CIELAB with 
𝑘𝑘𝐿𝐿=1.4 and 𝑘𝑘𝐶𝐶=1.9, and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value achieved was 25.3 units, smaller 
than the value of 32.8 calculating using the original CIELAB formula. For the 
optimisation of the CIEDE2000 colour-difference formula, 𝑘𝑘𝐿𝐿 =1.5 is 
recommended for 3D spherical objects, and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  value of the 
validation decreased by 7 units compared with the results from the original 
formula (𝑘𝑘𝐿𝐿=1). 

In addition, it was found that power functions do not improve predictions of 
visual results, because the colour differences of 3D samples used in the 
present study were in small and medium magnitudes (less than 10 CIELAB 
units).  
  



- 147 - 
 

Chapter 7 
Implementation of 3D Colour Reproduction of a Human Face 

Based on the 3D colour image reproduction workflow for human faces 
introduced in Chapter 3 and the colour characterisation methods developed 
for the 3D imaging system (Section 4.6) and the colour 3D printer (Section 
5.2), a practice of reproducing the colour appearance of a human face was 
described in this chapter, from 3D image acquisition to 3D printing with 
colour characterisation models applied. In addition, the colour quality of the 
reproduced 3D face model was evaluated using the optimised colour-
difference formulae presented in Section 6.4. 

7.1 3D Image Acquisition 

The 3dMDface system introduced in Section 3.2.1 was utilised to capture the 
3D images of a human face. Prior to capturing facial images using this 
system, a successful calibration procedure was conducted. A Chinese 
human subject was asked to sit on a chair placed in a specific position that 
was the same as the calibration plate. The height of the chair was adjusted 
so that the human face can be shown simultaneously in the three live view 
windows. The implementation of 3D image acquisition was in a dark room 
and the built-in flash in the 3dMDface system was the only illumination for 
3D image capture. The 3dMDface acquisition software was used to control 
the 3D imaging system and capture the 3D images of the human face. 
During the 3D image acquisition, the subject was asked to keep still until the 
capture is finished.  

It is crucial to ensure absence of acquisition errors in 3D models, such as 
imaging artifacts, blurring, and missing surface data. Any images with these 
bad characteristics were discarded, and a new image capture was carried 
out to obtain high-quality 3D images. The speckle projection images and the 
bitmap images captured from three directions using the 3D imaging system 
are shown in Figures 7.1 and 7.2, respectively. Figure 7.3 (left) presents the 
3D mesh of the human face captured, which requires edge repairs and the 
removal of unwanted parts, and Figure 7.3 (right) presents the 3D face 
model with colour appearance, achieved by projecting the bitmap images 
onto the 3D mesh model.  
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Figure 7.1 The speckle projection images captured from different directions 
using the 3dMDface system. 

   

Figure 7.2 The bitmap images captured from different directions using the 
3dMDface system. 

  

Figure 7.3 The captured 3D face model without (left) and with (right) the 
bitmap image mapped. 
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7.2 3D Mesh Manipulation    

From Figure 7.3 (left), it can be seen that the original 3D mesh exhibits 
rough edges and a large number of sparse and discontinuous vertices and 
faces. As a result, it is necessary to modify the 3D mesh by adding and 
deleting vertices, edges and faces to smooth and refine the surface. 
Additionally, while the 3D model captured using the 3dMDface system 
provides a comprehensive coverage of the human face, ranging from left ear 
to right ear, it lacks certain details of the back of the head, resulting in gaps 
of holes that prevent it from being closed and watertight. 

The Blender software (Blender 2.90.1, Blender, Amsterdam, Netherlands) 
was used to manipulate the 3D mesh. Firstly, the object file created using 
the 3dMDface system was imported to Blender, and the selection tool was 
employed to choose the areas other than the face, such as the neck and 
hair, and the unwanted mesh was deleted. The next step was to add a plane 
to close the back of the 3D mesh, using the Solidity and Boolean Modifier 
tool provided by the software. Afterwards, the superfluous components were 
eliminated to create a smoother edge and achieve a solid and clean 3D 
model. The final step was to check if the 3D model is watertight and feasible 
for 3D printing, using the Clean Up tool in Blender. Figure 7.4 shows the 3D 
mesh model of the face after manipulation, which is workable for 3D printing. 

 

Figure 7.4 The manipulated 3D mesh model of the human face workable for 
3D printing. 

7.3 Colour Management 

Based on the colour characterisation model developed for the 3D imaging 
system in Section 4.6, the bitmap image of the human face was converted 
from the 3D camera RGB colour space to a device-independent CIE XYZ 
colour space. Figure 7.5 (left) shows the corrected bitmap image after 
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performing colour characterisation, and Figure 7.5 (right) presents the 
original bitmap captured using the 3dMDface system.  

  

Figure 7.5 The corrected bitmap image (left) using the colour 
characterisation model of the 3D cameras, in comparison to the original 
bitmap (right).  

A CM700d spectrophotometer with a SAV 3 mm aperture and SCI mode 
was used to measure the colours at four facial areas (FH, CBR, CBL, CH), 
which was carried out immediately after 3D image acquisition. The colour 
accuracy of the 3dMDface system was quantified by calculating the colour 
differences between the skin colour data predicted from the bitmap image 
using the colour characterisation model and the instrumental measurements 
of the actual human face. The average colour difference achieved for this 
subject was 2.45 CIELAB units (1.88 CIEDE2000 units), indicating good 
accuracy of colour reproduction of the 3D cameras, particularly compared to 
the original value of 32.26 CIELAB units (31.94 CIEDE2000 units) without 
performing camera colour characterisation. Table 7.1 gives the CIELAB and 
CIEDE2000 colour differences calculated for each facial location. The colour 
difference in the chin area appeared to be slightly greater than in the other 
three facial regions, this is possibly because the chin area is not as flat as 
the forehead and cheek areas. 

Table 7.1 The measurement accuracy of the 3D imaging system for each 
facial location. 

 FH CBR CBL CH Mean 

CIELAB 1.72 2.58 2.42 3.07 2.45 

CIEDE2000 1.72 1.53 1.72 2.56 1.88 
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In order to faithfully print the desired skin colours, a reverse colour 
characterisation model was developed for the colour 3D printer in Section 
5.2, calculating the input colour values from the output colours. The 
corrected bitmap image in CIE XYZ colour space was then converted to the 
printer RGB colour space for achieving accurate and consistent colour 
reproduction by using the colour characterisation model established for the 
Stratasys J750 colour 3D printer. 

7.4 3D Printing  

The processed bitmap image in the printer RGB colour space instead of the 
original bitmap was projected onto the manipulated 3D mesh model by 
applying the Image Texture tool in Blender. Apart from texture mapping, no 
other modifications were made to the colour appearance of the 3D face 
model. Figure 7.6 (left) shows the desired 3D colour face model in Blender. 
The GrabCAD Print software was employed to send the ready 3D face 
model to the Stratasys J750 3D colour printer without changing the colour 
appearance. A high mix printing mode were selected for reproducing the 
face model. Figure 7.6 (right) presents the process of 3D printing the face 
model, which has a support material covering the outer surface of the 3D 
model to achieve a matte finish. 

   

Figure 7.6 The digital 3D face model (left) and the process of 3D printing 
(right). 

7.5 Postprocessing 

When the 3D printing process is finished, the 3D face model was carefully 
removed from the build tray of the 3D printer and put into a waterjet system, 
as shown in Figure 7.7 (left). The support material was rinsed off under the 
high-pressure stream of the waterjet. Alternatively, it can be stripped 
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manually and cleaned under water. Figure 7.7 (right) displays the printed 3D 
face model after postprocessing. 

  

Figure 7.7 The printed 3D model in a waterjet system (left) and the face 
model after removing the support material. 

7.6 Colour Reproduction Evaluation  

A CM700d spectrophotometer with a small aperture and SCI condition was 
used to measure the colour of each of the four facial locations, and the 
colour differences between the measurement data of the actual human face 
and the results measured on the 3D printed face model were calculated and 
used quantify the accuracy of the 3D colour reproduction workflow. Table 7.2 
gives CIELAB and CIEDE2000 colour-difference values of each facial 
location under CIE illuminant D65. The average colour difference achieved 
for the 3D printed face is 5.73 CIELAB units and 3.88 CIEDE2000 units, 
which indicates a large improvement in colour accuracy, compared to the 
value of 17.98 CIELAB units (16.81 CIEDE2000 units) without applying 
colour characterisation for the 3D printer. In addition, the two cheek areas 
presented slightly smaller colour differences, then followed by the results 
achieved in the forehead area. The largest colour difference occurred in the 
chin area, the same to the accuracy results of the 3D imaging system. This 
is likely concerning to the curvature of the chin area, resulting in darker 
tones in the captured image.   

Table 7.2 The colour reproduction accuracy of the 3D printed face model for 
each facial location. 

 FH CBR CKL CH Mean 

CIELAB 6.87 3.95 2.87 9.21 5.73 

CIEDE2000 4.53 2.66 1.86 6.46 3.88 
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In Section 6.4, the parametric factors in colour-difference formulae were 
optimised for evaluating the colour differences of 3D spherical objects, and 
the optimal factors 𝑘𝑘𝐿𝐿=1.4 and 𝑘𝑘𝐶𝐶=1.9 are recommended for CIELAB, and 
𝑘𝑘𝐿𝐿=1.5 for CIEDE2000 (the default factors 𝑘𝑘𝐿𝐿 = 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝐻𝐻 = 1). These two 
optimised colour-difference formulae are named CIELAB-3D and 
CIEDE2000-3D, respectively, and expressed as:   
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The colour accuracy of the 3D printed face was evaluated using the 
CIELAB-3D and CIEDE2000-3D colour-difference formulae, and the results 
obtained are illustrated in Figure 7.8 with the colour differences calculated 
using the original formulae. It can be clearly seen that the optimised 
formulae gave smaller colour-difference values than the original CIELAB and 
CIEDE2000 formulae. This is concerning to that the optimisation was 
performed using the visual colour-difference data of 3D objects, even though 
only spherical samples were involved, while current CIELAB and 
CIEDE2000 formulae were developed based on 2D samples. 

The average colour difference calculated using CIELAB-3D was 3.75, with 2 
units reduced in comparison to the value of 5.73 produced using CIELAB. 
For the performance of CIEDE2000-3D, the colour-difference value 
decreased from the original value of 3.88 to 3.42 units. According to the 
colour difference thresholds reported by Paravina et al. (2009), these colour-
difference values of the 3D printed face model are acceptable for skin colour 
reproduction. 

 

Figure 7.8 Colour differences between the 3D printed face model and the 
actual human face. 
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7.7 Discussion  

The colour reproduction of a Chinese woman face was implemented in 
practice, from 3D colour image acquisition, colour management, colour 3D 
printing to colour quality evaluation. The average colour differences 
achieved for the 3D printed face model were 5.73 CIELAB units and 3.88 
CIEDE2000 units, and the colour-difference values produced for the 
forehead and cheek areas were 4.53 and 2.26 (the average for both cheeks) 
CIEDE2000 units, respectively. In the study conducted by Sohail et al. 
(2018) to evaluate colour quality of 3D printed facial prostheses, the average 
colour difference of the forehead areas of two Chinese subjects was 7.15 
CIEDE2000 units (8.2 and 6.1 units, respectively), and the CIEDE2000 
values were 8.9 (8.4 and 9.4 units, respectively) for the cheek area. In 
comparison, the results attained in this study has demonstrated a significant 
improvement in colour accuracy of skin colour reproduction using 3D printing 
technology. 

In this study, a specific skin colour chart instead of a conventional colour 
chart was applied to the colour characterisation processes for the 3D 
imaging system and the colour 3D printer to improve the accuracy of skin 
colour reproduction. Cheung et al. (2004) stated that better results would be 
achieved when using the colour samples which exhibit similar statistical 
properties to the target to characterise a camera. Considering that the colour 
of skin varies between different ethnicities (4.3 to 6.2 in CIELAB units 
reported by Xiao et al. 2017), a skin colour chart specifically developed for 
the Chinese group was selected in the 3D colour reproduction of a Chinese 
women face, and the results indicate that better colour accuracy was 
achieved for reproducing Chinese facial skin colour. 

Regarding the colour difference thresholds for the reproduced skin colour 
samples, Paravina et al. (2009) conducted visual colour assessments for the 
skin-coloured maxillofacial elastomers in light and dark tones, and it was 
found that the perceptibility and acceptability thresholds for dark specimens 
were significantly higher than light specimens in both CIELAB and 
CIEDE2000. The perceptibility and acceptability thresholds for light 
specimens were 1.1 and 3.0 CIELAB units (0.7 and 2.1 CIEDE2000 units), 
respectively, while the results for dark specimens were 1.6 and 4.4 CIELAB 
units (1.2 and 3.1 CIEDE2000 units), respectively.  

Despite that there is no systematic method to assess the colour fidelity and 
quality of the facial prostheses, achievement of colour consistency and good 



- 155 - 
 

colour match is a practical requirement for reproducing skin colour samples 
using 3D printing. In previous studies, the accuracy of a 3D colour image 
reproduction system was typically evaluated by printing some specific 
colours. For example, Xiao et al. (2013) used 14 testing skin colours to 
assess the performance of the colour reproduction, and the colour 
differences calculated under CIE illuminant D65 were 2.5 to 11.1 CIELAB 
units with an average value of 4.5. Liu et al. (2019) evaluated the developed 
3D colour reproduction system using tooth and gum shades, and the 
achieved CIELAB colour difference values ranged from 2.19 to 11.22 units, 
and the mean value was 6.54. Fewer studies have focused on colour 
reproduction evaluation for practical applications in 3D printing.  

In order to evaluate colour quality of facial prostheses in additive 
manufacturing, Sohail et al. (2018) reported large differences between the 
3D and 2D printed facial prostheses which were fabricated using the same 
colour management procedure. It is possible that good colour accuracy is 
achieved for 3D printing 2D colour images, but it is not feasible for faithfully 
reproducing colours in 3D models. Therefore, it is suggested to use 3D 
samples instead of relying on 2D colour patches, which are commonly used 
in traditional colour management processes, to evaluate the accuracy of the 
3D colour reproduction workflow.  

7.8 Summary  

In this chapter, the developed 3D colour image reproduction workflow was 
employed to reproduce the colour appearance of a human face in practice, 
including the 3D image acquisition, 3D mesh manipulation, colour 
management, 3D printing, postprocessing and colour evaluation. Based on 
the specific colour characterisation models, the colour accuracy of the 
3dMDface system was reduced from 32.26 to 2.54 CIELAB units (from 31.94 
to 2.04 CIEDE2000 units) for capturing the skin colour of a human face, and 
the precision of the 3D printed face model achieved was 5.73 CIELAB units 
(3.88 CIEDE2000 units), compared to the skin colour measurements on the 
actual human face.  

Additionally, the CIELAB-3D and CIEDE2000-3D colour-difference formulae, 
which have been optimised for 3D printed objects, were used to evaluate the 
colour accuracy of a 3D printed face model. The average colour differences 
produced by these formulae were 3.75 CIELAB-3D units and 3.42 
CIEDE2000-3D units, respectively. These results confirmed the validation 
and enhancement of the optimised colour-difference formulae for 3D objects, 
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particularly CIELAB. Overall, the accuracy of reproducing human facial skin 
colour in 3D printing was significantly improved by implementing the 
proposed colour management and colour evaluation methods within the 3D 
colour reproduction workflow.  
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Chapter 8 
Conclusions 

8.1 Overview of Findings 

The aim of the research presented in this thesis was to improve the 
accuracy of skin colour reproduction of human faces in 3D printing. To 
achieve this goal, a 3D colour image reproduction workflow was introduced, 
which involves 3D image acquisition, colour management, colour 3D printing 
and colour quality assessment. The skin colour data and facial images of 
human subjects were collected using a spectrophotometer and a specialised 
digital imaging system. The factors affecting the accuracy of camera colour 
characterisation were comprehensively investigated, enabling the 3D 
imaging system to accurately capture facial skin colour images. Moreover, 
the colour characterisation of a 3D printer was implemented and different 
approaches were compared to achieve faithful skin colour reproduction. In 
order to evaluate colour quality of 3D objects, psychophysical experiments 
were conducted to collect visual colour-difference data of 3D printed 
samples and the parametric factors in colour-difference formulae were 
optimised for 3D objects. Based on the developed  3D colour image 
reproduction workflow, a 3D human face model was printed with realistic 
skin tones. The major findings and contributions of the research are 
summarised in the following sections. 

8.1.1 Image Measurement 

The accurate colour reproduction of a 3D printed object is not only affected 
by the 3D printer but also the image quality captured using the 3D imaging 
system. For image-based measurement, the colour characterisation of digital 
cameras is the basis and key to convert the device-dependent RGB colour 
space to device-independent CIELAB colour space. In order to investigate 
the factors such as image formats, training samples and mapping methods 
that affect the accuracy of camera colour characterisation, a specific 2D 
digital imaging system was developed to capture colour images of human 
faces, and a facial skin colour database was collected. The findings are 
summarised as follows: 

• RAW images provided more stable and consistent predictive accuracy 
than RGB images which resulted in larger variations for different 
training datasets and mapping methods, 
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• The actual facial skin colour data used as the training samples gave 
significant higher accuracy than the conventional ColorChecker SG 
colour chart for skin colour reproduction, 

• Different methods produced the smallest colour difference for different 
training datasets. 

Based on the results of the digital imaging system, a specific skin colour 
chart and the second-order polynomial regression were utilised to determine 
the colour characterisation model for the 3dMDface system, and the average 
colour difference of capturing facial images decreased from 32.71 to 2.90 
CIELAB units. 

8.1.2 Colour Characterisation for the 3D Printer 

To achieve accurate colour reproduction of 3D printed object, different colour 
characterisation methods for determining a mathematical model that 
describes the colour behaviour of the 3D printer were investigated and 
compared, based on a large dataset generated using a Stratasys J750 3D 
printer. The obtained results showed that the method of deep neural 
networks gave overall better results (less than 3 CIELAB units and 2 
CIEDE2000 units) than the third order polynomial regression, but it is highly 
dependent on the size of training data, e.g., the optimal and consistent 
results were produced when the number of training samples was equal to or 
greater than 1310. In comparison, the training data size had little effect for 
the third order polynomial regression on the colour characterisation 
accuracy. Moreover, the logarithms of CIE XYZ rather than CIE XYZ 
tristimulus values were preferred as the output variables for printer colour 
characterisation. 

In the practical colour characterisation process of the 3D printer, the third 
order polynomial regression was applied to develop the printer colour 
characterisation model based on a specific skin colour chart. The average 
colour difference of 118 skin colour patches was 1.35 CIELAB units, 
indicating significant improved accuracy of skin colour reproduction, 
compared to the original value of 7.41 CIELAB units. 

8.1.3 Colour-Difference Evaluation 

The visual colour-difference data collected from psychophysical experiments 
showed that the human visual colour system is more sensitive to hue 
differences of 3D spherical objects, then followed by lightness and chroma 
differences. Based on the visual results, the parametric factors in CIELAB 
and CIEDE2000 colour-difference formulae were optimised for 3D objects: 
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• The factors 𝑘𝑘𝐿𝐿=1.4 and 𝑘𝑘𝐶𝐶=1.9 are recommended for CIELAB-3D,  
• The factor 𝑘𝑘𝐿𝐿=1.5 is recommended for CIEDE2000-3D.  

Regarding the validation results based on the 40 sample pairs, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
value decreased from 32.8 to 25.3 CIELAB units, and 7 units were reduced 
for the optimised CIEDE2000 formula. 

For the 3D printed face model, the accuracy of skin colour reproduction 
achieved using the developed methods was 5.73 CIELAB units (3.88 
CIEDE2000 units). By using the optimised colour difference formulae, 
CIELAB-3D and CIEDE2000-3D, the colour differences calculated were 3.75 
and 3.42 units, respectively. In generally, the developed 3D colour image 
reproduction workflow with specific colour characterisation models for the 3D 
imaging system and the colour 3D printer is capable of achieving higher 
accuracy of skin tone reproduction of human faces.  

8.2 Future Work 

Even though the methods of colour management and colour evaluation have 
been successfully applied to the 3D colour image reproduction workflow with 
improved accuracy, there are limitations in this work and some areas that 
need to be further studied: 

• The colour characterisation of the 3D printer was based on a skin 
colour chart particularly developed for Chinese skin tones, other 
ethnic groups such as Caucasian, Mexican, Indonesian and African 
can be involved to accurately reproducing different skin tones. In 
addition, the skin colour chart was printed on the surface of a cuboid 
as a 2D image, it will be interesting to investigate the difference 
between the 2D image printing and 3D image printing using the same 
colour 3D printer. 

• The optimisation of CIELAB and CIEDE2000 colour-difference 
formulae was mainly based on 3D printed spherical samples, other 
shapes such as cube, cylinder, and cone can be taken into 
consideration, and more visual colour-difference data of 3D objects 
need to be collected and used to test the optimised formulae. 

• Regarding skin colour reproduction in 3D printing, it is recommended 
to compare the glossy and matte surface finishes of 3D printed 
samples and investigate which print mode better matches the actual 
skin colours. 
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• In addition to using colour-difference formulae, visual assessments 
are useful to evaluate the similarity of the 3D printed model compared 
to the actual human face. A combination of objective measurements 
and subjective assessments can provide a more comprehensive 
evaluation on the accuracy of skin colour reproduction.  

• In the 3D colour image reproduction workflow, it is important to 
assess the repeatability and reproducibility of 3D printed objects to 
ensure the consistency and reliability of the accuracy. 
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Appendix 

This appendix shows the inspection report and calibration certification for 
Konica Minolta CM700d spectrophotometer.  
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