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Abstract 

Background: Structural and functional lung imaging are critical components of pulmonary patient care. Image 

analysis methods, such as image segmentation, applied to structural and functional lung images, have 

significant benefits for patients with lung pathologies, including the computation of clinical biomarkers. 

Traditionally, machine learning (ML) approaches, such as clustering, and computational modelling techniques, 

such as CT-ventilation imaging, have been used for segmentation and synthesis, respectively. Deep learning 

(DL) has shown promise in medical image analysis tasks, often outperforming alternative methods. 

Purpose: To address the hypothesis that DL can outperform conventional ML and classical image analysis 

methods for the segmentation and synthesis of structural and functional lung imaging via: 
i. development and comparison of 3D convolutional neural networks (CNNs) for the segmentation of 

ventilated lung using hyperpolarised (HP) gas MRI. 

ii. development of a generalisable, multi-centre CNN for segmentation of the lung cavity using 1H-MRI. 

iii. the proposal of a framework for estimating the lung cavity in the spatial domain of HP gas MRI. 

iv. development of a workflow to synthesise HP gas MRI from multi-inflation, non-contrast CT. 

v. the proposal of a framework for the synthesis of fully-volumetric HP gas MRI ventilation from a large, 

diverse dataset of non-contrast, multi-inflation 1H-MRI scans. 

Methods: 
i. A 3D CNN-based method for the segmentation of ventilated lung using HP gas MRI was developed 

and CNN parameters, such as architecture, loss function and pre-processing were optimised. 

ii. A 3D CNN trained on a multi-acquisition dataset and validated on data from external centres was 

compared with a 2D alternative for the segmentation of the lung cavity using 1H-MRI. 

iii. A dual-channel, multi-modal segmentation framework was compared to single-channel approaches 

for estimation of the lung cavity in the domain of HP gas MRI. 

iv. A hybrid data-driven and model-based approach for the synthesis of HP gas MRI ventilation from CT 
was compared to approaches utilising DL or computational modelling alone. 

v. A physics-constrained, multi-channel framework for the synthesis of fully-volumetric ventilation 

surrogates from 1H-MRI was validated using five-fold cross-validation and an external test data set .  

Results: 
i. The 3D CNN, developed via parameterisation experiments, accurately segmented ventilation scans 

and outperformed conventional ML methods. 

ii. The 3D CNN produced more accurate segmentations than its 2D analogues for the segmentation of 

the lung cavity, exhibiting minimal variation in performance between centres, vendors and acquisitions. 
iii. Dual-channel, multi-modal approaches generate significant improvements compared to methods 

which use a single imaging modality for the estimation of the lung cavity.  

iv. The hybrid approach produced synthetic ventilation scans which correlate with HP gas MRI. 

v. The physics-constrained, 3D multi-channel synthesis framework outperformed approaches which did 

not integrate computational modelling, demonstrating generalisability to external data.  

Conclusion: DL approaches demonstrate the ability to segment and synthesise lung MRI across a range of 

modalities and pulmonary pathologies. These methods outperform computational modelling and classical ML 

approaches, reducing the time required to adequately edit segmentations and improving the modelling of 
synthetic ventilation, which may facilitate the clinical translation of DL in structural and functional lung imaging.  
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Chapter 1  
Thesis overview 

 

1.1 Thesis aims and objectives 

Recent developments in deep learning (DL) have dramatically influenced the medical 

imaging field. Medical image analysis applications have been at the forefront of DL research 

efforts for many diseases and anatomical sites, including the lungs. Artificial neural networks 

have been leveraged for image analysis applications such as image segmentation and 

synthesis. The POLARIS Lung Imaging Centre at The University of Sheffield provides a 

hyperpolarised gas MRI clinical referral service, the first of its kind in the world, which 

requires specialised equipment and significant resources for image acquisition and analysis. 

For example, currently used algorithms for the segmentation of structural and functional lung 

images are only semi-automatic and, thus, require substantial time to manually correct 

generated outputs. Therefore, to increase clinical throughput, there is a pressing need to 

eliminate, or reduce, the time taken to perform these lung image analysis tasks. In addition, 

surrogates of regional lung function have been proposed which are derived from structural 

imaging without exogenous contrast; however, these modelling approaches show large 

variability in performance. Consequently, the ability to generate surrogates of regional lung 

function from structural imaging would drastically increase wider clinical adoption. 

Accordingly, the central aim of this thesis is to address the hypothesis that:  

 

Artificial neural networks can outperform conventional machine learning and 
classical image analysis methods for the segmentation and synthesis of structural 
and functional lung imaging. 
 

To test this hypothesis, a series of inter-related investigations that have the following 

proposed objectives were performed:  
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1. Perform a systematic review of the DL literature related to structural and functional 

lung imaging to identify gaps in the literature, providing direction for the remainder of 

the thesis. 

 
2. Build, validate and evaluate several 3D convolutional neural networks (CNNs) for 

ventilated lung segmentation using multi-nuclear hyperpolarised gas MRI and 

compare these approaches to currently used methods. 

 
3. Develop a generalisable CNN-based method that is capable of segmenting proton 

MRI (1H-MRI) robust to image resolution, acquisition sequence and lung pathology 

and compare this approach to current methods used for 1H-MRI segmentation. In 

addition, experiments will investigate differences between 2D and 3D CNNs. 

 
4. Use DL to generate lung cavity estimations (LCE) that represent the structural lung 

parenchyma in the spatial domain of hyperpolarised gas MRI ventilation scans. 

 
5. Develop a novel hybrid framework, integrating model- and DL-based methods for the 

synthesis of hyperpolarised gas MRI ventilation from non-contrast, multi-inflation CT. 

 
6. Propose a novel DL technique to generate 3D surrogates of hyperpolarised gas MRI 

ventilation images from non-contrast, multi-inflation 1H-MRI scans across a range of 

diseases.  

1.2 Thesis organisation 

A background on lung disease, lung imaging and the theoretical underpinnings of DL, are 

described in Chapter 2. Furthermore, the technical knowledge required for the remainder of 

the thesis, including CNNs, loss functions, hyperparameters and experimental 

methodologies are described in further detail therein. 

 

In Chapter 3, a systematic literature review focusing on DL in pulmonary image analysis 

was conducted. This review focuses specifically on segmentation, registration, 

reconstruction and synthesis applications of DL in lung imaging across a range of imaging 

modalities. 
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Chapter 4 details the development and comprehensive evaluation of several 3D CNNs for 

ventilated lung segmentation using multi-nuclear hyperpolarised gas MRI. A series of 

parameterisation experiments were conducted to determine the network architecture, loss 

function and the impact of pre-processing on segmentations generated by the network. 

 

Building upon methods used in Chapter 4, Chapter 5 focuses on the development of a 

generalisable CNN for lung segmentation in 1H-MRI; the multi-sequence dataset used 

contains scans from multiple centres acquired at different field strengths and resolutions 

from a range of diseases. 

 

Chapter 6 builds upon the methods developed in the previous two chapters to generate a 

novel approach for segmenting LCEs. Clinical biomarkers of lung function, such as the 

ventilation defect percentage (VDP), require the segmentation of both structural 1H-MRI and 

hyperpolarised gas MRI ventilation scans. To this end, a dual-channel CNN that integrates 

functional and structural imaging to generate LCEs is proposed. 

 

Unlike previous chapters, the following two chapters focus on image synthesis applications 

in functional lung imaging. Chapter 7 demonstrates the development of a novel hybrid 

model- and DL-based framework for functional lung image synthesis using hyperpolarised 

gas MRI. The method generates 3D ventilation surrogates from non-contrast, multi-inflation 

CT with the aim of generating synthetic hyperpolarised gas MRI ventilation scans without 

the requirement for specialised equipment or exogenous contrast. In addition, we leverage 

the model in Chapter 4 to provide ventilated lung segmentations for the automatic calculation 

of VDP. 

 

Similar ideas developed for multi-inflation CT synthesis in Chapter 7 are adapted and 

applied to multi-inflation 1H-MRI synthesis in Chapter 8. The proposed framework uses a 

multi-channel CNN to generate hyperpolarised gas MRI ventilation surrogate images from 

3D multi-inflation 1H-MRI without the requirement for specialised equipment, exogenous 

contrast or exposure to ionising radiation. This investigation utilises a larger dataset than 

previous synthesis applications with the inclusion of external validation data, thus increasing 

the generalisability of the proposed approach. 

 

The novel contributions, potential clinical applications and future research directions of this 

work are discussed in Chapter 9. 



5 
 

 

Chapter 2  
Background and theory 

 

2.1 Lung function and disease 

The primary function of the lungs is gas exchange, whereby oxygen is inhaled, and carbon 

dioxide exhaled, during breathing; the pulmonary airways transport air to the alveoli where 

the gas exchange surface of the alveoli transfers fresh air across the blood-gas barrier 

delivering it to the pulmonary capillaries. This fresh gas then enters the pulmonary vascular 

system via two specific physiological functions, namely, ventilation and perfusion. Lung 

ventilation refers to the lungs’ ability to deliver fresh gas to the alveoli. Lung perfusion refers 

to the lungs’ ability to transfer gas across the blood-gas barrier, delivering oxygenated blood 

throughout the body. The physiology of the lungs, including the lung microstructure, 

facilitates lung ventilation and perfusion and is, therefore, key to the healthy and efficient 

functioning of the respiratory system. In healthy individuals, the lungs are ideally suited for 

their primary function; however, for individuals whose lungs are impaired, ventilation and 

perfusion are diminished. Individual alveoli have variable degrees of regional ventilation and 

perfusion, both in healthy individuals due to gravitational effects and in patients with 

respiratory diseases due to impairments induced by these diseases. Lung diseases can be 

broadly categorised as restrictive or obstructive. Restrictive lung diseases result in difficulty 

inhaling fresh gas, whereas obstructive lung diseases result in difficulty exhaling gases. 

Idiopathic pulmonary fibrosis and other interstitial lung diseases are examples of restrictive 

lung diseases which cause shortness of breath and lung inflammation. Obstructive lung 

diseases are significantly more common than restrictive diseases with substantial 

prevalence globally; 65 million people suffer from chronic obstructive pulmonary disease 

(COPD) and 339 million from asthma worldwide (GBD15 et al., 2016; Vos et al., 2017). 

Asthma results in constricted and inflamed airways, leading to an obstruction of airflow; it is 

believed that asthma has various causes, including genetic factors. COPD is a progressive 
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lung disease most commonly caused by smoking, resulting in persistent coughing, 

shortness of breath and a tightening in the chest. COPD may lead to emphysema which is 

categorised by structural changes in the lungs, such as the destruction of alveoli sacs. 

Furthermore, inherited genetic conditions such as cystic fibrosis (CF) cause obstructive lung 

disease via increased mucus plugging which blocks the secretion of digestive enzymes. 

Cystic fibrosis is relatively uncommon; however, it results in a significant reduction in lifespan 

and is, therefore, an area of continued research. Unlike the aforementioned lung diseases, 

lung cancer is categorised as neither restrictive nor obstructive. There are 1.8 million new 

lung cancer cases diagnosed annually and 1.6 million deaths worldwide, making it the most 

common and deadliest cancer on the planet (Torre et al., 2015). Approximately 40-70% of 

lung cancer patients have comorbidities, predominantly COPD (Congleton and Muers, 

1995); in addition, lung cancer treatments such as radiotherapy can cause restrictive lung 

pneumonitis and fibrosis, known as radiation-induced lung disease (RILD) (Hanania et al., 

2019). Additionally, respiratory infections can lead to a number of restrictive lung diseases; 

the populous will now be familiar with severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), commonly known as Covid-19, a viral respiratory infection which can cause 

restrictive lung diseases such as pneumonia. Lung disease is commonly diagnosed through 

pulmonary function tests (PFTs), whereby an individual’s lung function is assessed through 

spirometry tests and compared to established values from the literature derived from healthy 

participants. PFTs have been shown to be insensitive to minor changes and the early onset 

of disease (Kirby et al., 2011; Marshall et al., 2017). Therefore, imaging of the lungs may be 

important in the diagnosis and treatment of various pulmonary pathologies. 

2.2 Imaging of the lungs 

Imaging of the lungs is a critical component in the diagnosis, treatment planning, monitoring 

and assessment of respiratory diseases. Lung imaging can broadly be divided into structural 

and functional imaging modalities, both of which provide important insights into respiratory 

diseases. Structural lung imaging allows for the detailed visualisation of the lungs, including 

the pulmonary parenchyma and vessels, among other clinically useful features. Functional 

lung imaging, in contrast, provides insight into the function of the lungs, including ventilation, 

perfusion or gas exchange within the lung parenchyma. The following sections will focus on 

various imaging modalities that are referenced throughout this thesis, detailing how they are 

acquired, the insights that can be gleaned from them, and their benefits and drawbacks for 

clinical lung imaging. 
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2.2.1 Structural lung imaging 

Computed tomography (CT): is the most widely used anatomical imaging modality and is 

an integral part of clinical care for most patients with lung pathologies. CT scans are 

generated using X-rays deployed at a multitude of angles around the patient which are then 

combined and reconstructed to produce highly detailed 3D images of the lungs with 

resolutions of approximately 1-2mm3 when high-resolution CT protocols are utilised 

(Corcoran et al., 1992). This resolution allows for detailed imaging of internal lung structures 

such as vessels and fissures. Each voxel in a CT scan has a given intensity measured in 

Hounsfield Units (HUs) which is physiologically determined and consistent between images, 

facilitating comparison between CT scans acquired at different time points. CT employs 

ionising radiation which can be harmful to patients; thus, the use of CT is limited in paediatric 

or repeat scanning applications. CT images are acquired either at multiple breath-holds at 

different respiratory inflations (inspiration and expiration) or during tidal breathing at various 

phases (4DCT). Figure 2.1 shows an example CT scan of the lungs for a central 2D slice 

from a patient with lung cancer. 
 

 
Figure 2.1 Example coronal slice of a non-contrast CT scan from a lung cancer patient.  
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Proton-magnetic resonance imaging (1H-MRI): in the lungs is traditionally challenging 

due to the low proton density of the lungs which results in a lack of susceptibility differences 

between tissue and air, where the proton density is approximately 10 times less than other 

tissues (Wild et al., 2012). MR signal is proportional to proton density and, thus, the signal 

in the lungs can be limited. Susceptibility artefacts at lung-air interfaces cause 

inhomogeneities in the magnetic field, resulting in rapid T2* decay in gradient-echo imaging. 

This means that there is a requirement for very short echo times (TEs) in lung MRI compared 

to imaging of other tissues. Lung MRI can generally be acquired at either 1.5T or 3T 

depending on clinical requirements, where scans acquired at 3T have a higher signal but 

much shorter T2*, further lowering the required TE (Wild et al., 2012). In addition, lung MRI 

is challenging as the scan time must be minimised to reduce potential motion artefacts 

during breathing; consequently, MRI is regularly acquired at breath-hold inflations with a 

scan time on the order of 15 seconds. Unlike CT, MRI employs non-ionising radiation and 

thus it can be utilised for paediatric and longitudinal scanning. There are four main 

sequences used for lung MRI which produce scans with different contrasts and resolutions, 

namely, spoiled gradient-echo (SPGR), balanced steady-state free precession (bSSFP), 

single-shot fast spin-echo (FSE) and ultrashort echo time (UTE) (Wild et al., 2012). Figure 

2.2 depicts an example SPGR 1H-MRI scan acquired at 1.5T; Figure 2.3 depicts an example 

SPGR 1H-MRI scan acquired at 3T; Figure 2.4 depicts an example UTE 1H-MRI scan 

acquired at 1.5T. These examples have been chosen as they include MRI scans with various 

sequences and readout parameters that are used throughout this thesis. 
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Figure 2.2 3D coronal slice of a spoiled gradient-echo (SPGR) lung MRI scan for a patient with 

cystic fibrosis acquired using a 1.5T GE HDx scanner with an 8-element cardiac coil at an isotropic 
resolution of 3mm3. A TR/TE of 1.8/0.7 milliseconds with a flip angle of 3° and bandwidth of 

±166.6kHz was used. 

 
Figure 2.3 3D coronal slice of a spoiled gradient-echo (SPGR) lung MRI scan for a patient with 

Covid-19 acquired using a 3T Philips Ingenia scanner with a body coil at a resolution of 2x2x5mm3. 
A TR/TE of 1.9/0.6 milliseconds with a flip angle of 3° and bandwidth of ±321.4kHz was used. 
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Figure 2.4 3D coronal slice of an ultrashort echo time (UTE) lung MRI scan of a patient with 

interstitial lung disease acquired using a 1.5T GE HDx scanner with an 8-element cardiac coil at an 
isotropic resolution of 1.5mm3. A TR/TE of 2.8/0.078 milliseconds with a flip angle of 4° and 

bandwidth of ±125kHz was used.  

2.2.2 Contrast-based functional lung imaging 

Single-photon emission computed tomography (SPECT): is a nuclear medicine imaging 

modality that uses a radioactive tracer given prior to imaging that emits photons at various 

angles which are detected by a gamma camera and subsequently reconstructed using the 

3D radioactivity distribution. Proton and tissue interactions cause scatter and attenuation 

leading to blurring; in the lungs, around 10-15% of all photons detected are scattered 

(Petersson et al., 2007). Attenuation correction is generally employed via an external 

radiation source allowing the creation of an attenuation correction map used to improve 

image quality. Spatial resolution is dependent on the energy of the radionucleotide, the type 

of collimators and the distance between the source and the gamma camera, producing 

resolutions on the order of 10-20mm3 (Petersson et al., 2007). Due to the presence of a 

radioactive tracer, SPECT employs ionising radiation, limiting its application in paediatric 

patients. Acquisition of SPECT is relatively long with an acquisition time of 10-30 minutes. 

For SPECT ventilation, an aerosol radioactive tracer is used; commonly these include 

tracers such as Xenon-123 (123Xe) and Technegas (99mTc) (Jögi et al., 2010). Technegas 

can create aerosol deposition artefacts, leading to clumping, particularly in the airways, 
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characterised by high signal in these regions. Figure 2.5 depicts an example coronal slice 

from a SPECT ventilation scan. 

 

 
Figure 2.5 9 9 mTc-diethylenetriaminepentaacetic acid (9 9 mTc DTPA) free-breathing SPECT ventilation 

scan from a lung cancer patient.   

Positron emission tomography (PET): is an alternative nuclear medicine imaging modality 

to SPECT that can directly image metabolism, ventilation or perfusion depending on the 

radioactive tracer used. A positron is emitted from the tracer which produces a pair of 

photons when it collides with tissues; these photons can be detected by crystals in the PET 

scanner to produce an image. 68Ga-aerosol (Galligas) is commonly used as a radioactive 

tracer for PET ventilation imaging (Le Roux et al., 2019). PET imaging also utilises ionising 

radiation, reducing its application for repeat or longitudinal scanning. PET scans have a 

similar acquisition time as SPECT with images acquired over multiple breaths; this can lead 

to some defects resolving over time due to delayed ventilation filling effects. However, PET 

has a higher spatial resolution than SPECT on the order of approximately 4-6mm3. Figure 

2.6 depicts an example Galligas PET ventilation scan.  
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Figure 2.6 6 8Ga-aerosol (Galligas) free-breathing PET ventilation scan from a lung cancer patient.  

Hyperpolarised gas MRI: scans use hyperpolarised noble gases inhaled immediately 

before image acquisition to visualise various aspects of lung function. Gases are intrinsically 

low spin density, leading to low polarisation; this creates a weak MR signal, limiting the 

application of gases in clinical imaging. However, the spin density of gases can be increased 

by around four to five times using spin-exchange optical pumping via a high-powered laser, 

leading to hyperpolarisation (Norquay et al., 2018). This polarisation is non-permanent, 

decaying according to T1 relaxation in approximately 10 seconds (Stewart et al., 2021). In 

addition, a radiofrequency transmit-receive coil is required to image the nuclei of interest. 

Unlike nuclear medicine imaging modalities such as SPECT and PET, hyperpolarised gas 

MRI does not require ionising radiation. Non-ionising contrast agents, including Helium-3 

(3He) and Xenon-129 (129Xe), can be used for hyperpolarised gas MRI with both nuclei 

exhibiting slightly different properties. 3He was originally preferred due to its higher 

gyromagnetic ratio, leading to an intrinsically stronger MR signal; however, a worldwide 

paucity of 3He has led to a large increase in cost, resulting in increased use of 129Xe for 

hyperpolarised gas MRI. Furthermore, spatial resolution differs between 3He and 129Xe MRI 
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where 3He has a higher spatial resolution due to its increased gyromagnetic ratio and 

subsequently higher SNR (Stewart et al., 2018). The lower SNR of 129Xe MRI means a lower 

bandwidth is also required which produces longer scan times. 3He and 129Xe also differ in 

their diffusivity where 3He has a higher diffusion coefficient making it less likely to penetrate 

partial obstructions, leading to increased heterogeneity in 129Xe MRI scans.  

 

Hyperpolarised gas MRI can be used to image lung ventilation, microstructure, or gas 

exchange. Ventilation is measured directly via the distribution of inhaled gas throughout the 

lung. Lung microstructure is assessed via hyperpolarised gas diffusion-weighted MRI; 3He 

and 129Xe are approximately five times more diffusive than water in tissue where they can 

diffuse in the acinar airspace through Brownian motion (Yablonskiy et al., 2017). Thus, if 

there is damage to the acinar microstructure then the diffusion will be restricted. 129Xe is 

soluble in the blood with distinct resonances in the tissue, blood plasma, red blood cells and 

the airspace (Ebner et al., 2017). Using these resonances, dissolved-phase 129Xe MRI can 

provide insights into the lung’s gas exchange abilities.  

 

Hyperpolarised gas MRI ventilation has been validated in several diseases. In COPD 

patients, hyperpolarised gas MRI shows significant ventilation abnormalities and is highly 

sensitive to airway obstruction when compared to spirometry measures (Kirby et al., 2013; 

Kirby et al., 2010). In addition, ventilation defects are observed in asthma patients who have 

undergone hyperpolarised gas MRI and correlate with spirometry measures (de Lange et 

al., 2006; Zha et al., 2018). In CF patients, agreement between defect location in structural 

MRI and 129Xe MRI has been observed (Thomen et al., 2020). Furthermore, hyperpolarised 

gas MR imaging has demonstrated greater sensitivity than conventional spirometry in the 

detection of mild CF disease (Aurora et al., 2004). 3He and 129Xe MRI offer a non-invasive, 

non-ionising functional imaging modality that is sensitive to disease progression, facilitating 

longitudinal monitoring, particularly in paediatric patients. The University of Sheffield is 

currently the only centre worldwide which offers clinical hyperpolarised gas MRI, gaining 

MHRA approval for the acquisition of 129Xe and 3He MRI in patients referred for clinical 

imaging (Stewart et al., 2015). As stated, hyperpolarised gas MRI can provide insight into 

lung ventilation, microstructure and gas exchange; this thesis will focus on the use of 

hyperpolarised gas MRI for the direct measurement of ventilation. Thus, example images 

shown in Figure 2.7 and Figure 2.8 depict 129Xe and 3He hyperpolarised gas MRI ventilation 

scans, respectively. 
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Figure 2.7 3D coronal balanced steady-state free precession (bSSFP) hyperpolarised 1 2 9Xe lung MRI 

for a lung cancer patient acquired using a 1.5T GE HDx scanner with a flexible quadrature 
radiofrequency coil for transmission and reception of MR signals at the Larmor frequency of 1 2 9Xe 

at a resolution of 4x4x10mm3. A TR/TE of 6.7/2.2 milliseconds with a flip angle of 9° and 
bandwidth of ±8kHz was used. 1 2 9Xe was polarised on site to approximately 25% by using an in-

house developed rubidium spin-exchange polariser. 
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Figure 2.8 3D coronal balanced steady-state free precession (bSSFP) hyperpolarised 3He lung MRI 

for a lung cancer patient acquired using a 1.5T GE HDx scanner with a flexible quadrature 
radiofrequency coil for transmission and reception of MR signals at the Larmor frequency of 3He 

at a resolution of 4x4x5mm3. A TR/TE of 1.9/0.6 milliseconds with a flip angle of 10° and 
bandwidth of ±166.6kHz was used. 3He was polarised on site to approximately 25% by using an in-

house developed rubidium spin-exchange polariser.  

2.2.3 Image registration-based non-contrast functional lung imaging 

Various techniques have been proposed that utilise image registration to model lung 

ventilation from multi-inflation structural imaging. Image registration is traditionally 

formulated as an optimisation problem whereby a cost function is employed to produce an 

optimal spatial transform from one (moving) image to the spatial domain of a second (fixed) 

image, facilitating qualitative and quantitative comparison between images; this can occur 

intra- or inter-modality. Image registration is broadly divided into four components, namely, 

transformation, interpolation, the similarity metric and optimisation. Transformations can be 

rigid, affine or deformable. Rigid transformations include rotations and translations, giving a 

total of six degrees of freedom in 3D. Affine transformations include rigid deformations with 

the addition of scaling and shearing, giving a total of 12 degrees of freedom in 3D. 

Deformable transformations employ curved non-linear deformations that are often employed 

for lung registration tasks due to the deformable movements exhibited by pulmonary 

structures. This includes diffeomorphic deformations which can model 3D deformations 

based on the computation of a differentiable vector field. Often a combination of these 
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transforms is used in sequence to generate accurate registrations. Image interpolation is 

required to calculate voxel intensities in the new coordinate system after transformation. The 

interpolation algorithm used will differ depending on the application and image being 

registered; for example, if a binary segmentation is being registered, traditionally, a nearest 

neighbour algorithm would be employed. A voxel similarity measure such as the sum of 

squared differences or normalised cross-correlation is selected which is optimised by 

minimising a cost function using an algorithm such as gradient decent to generate accurate 

registrations between two images. In addition, a regularisation term is applied to ensure that 

only physically plausible transformations are included. Registration is used in the generation 

of non-contrast functional lung images, where multi-inflation structural images are registered 

to the same spatial domain, allowing the calculation of various ventilation metrics. 

Subsequently, the registered structural scans can be transformed to the same spatial 

domain as a corresponding contrast-based functional lung imaging modality such as 

hyperpolarised gas MRI, facilitating comparison between non-contrast and contrast-based 

functional lung images. 

 

CT ventilation imaging (CTVI): has been proposed as a non-contrast functional lung 

imaging modality derived from multi-inflation structural CT imaging. The method assumes 

that the air fraction of a parenchymal voxel in a CT scan (Fair) is equal to: 

 

F!"# = −
HU
1000 

( 2.1 ) 

 

Specific ventilation (SV) is defined as the ratio of fresh gas volume delivered to the alveoli 

following inspiration divided by the volume at expiration as follows: 

 

SV =
∆V
V!"#
$%& 

( 2.2 ) 

 

where ∆V refers to the change in volume between inspiratory and expiratory voxels and V!"#
$%& 

refers to the volume of air at expiratory inflation. A pulmonary parenchymal voxel comprises 

air and tissue; assuming that any change in volume is due to changes in ventilation i.e., that 

there is no change in tissue, then a surrogate of SV can be derived as follows: 
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SV ≈
F!"#
"'(& −	F!"#

$%&

F!"#
$%&	(1 −	F!"#

"'(&)
 

( 2.3 ) 

 

where F!"#
"'(& and F!"#

$%& denote the fraction of air at inspiratory and expiratory volumes, 

respectively. Using this formulation, the HU CTVI metric (CT)*) can be calculated. The CT)* 

metric is computed using voxel-wise intensity differences in HU values based on the 

formulation by Guerrero et al. (2005) shown below: 
 

CT)* = 1000
HU"'(& −	HU$%&

HU$%& 		(1000 +	HU"'(&)
 

( 2.4 ) 

 

where HU"'(& represents the HU of voxels in the warped inspiratory scan that spatially 

correspond to voxels in the expiratory scan and HU$%& 		represents the HU of expiratory 

voxels. CT)* aims to measure the change in the fractional content of air, in a voxel-wise 

manner, between expiratory and inspiratory phases (Simon et al., 2012). Other CTVI metrics 

have been proposed such as the determinant of the Jacobian matrix (CTJAC) which aims to 

model local volume change via deformation vector fields. These metrics have demonstrated 

moderate correlation with hyperpolarised gas MRI across various respiratory diseases 

(Tahir et al., 2018). Recently, more advanced, proprietary CTVI metrics such as the mass 

conserving volume change have been developed to account for potential limitations in 

previously developed CTVI metrics (Castillo et al., 2019). Figure 2.9 depicts an example 

CT)* ventilation scan for a patient with lung cancer.  
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Figure 2.9 Coronal slice of a CTH U  ventilation scan at expiratory geometry generated from 

inspiratory and expiratory breath-hold CT scans for a patient with lung cancer.  

1H-MRI ventilation: scans are generated in a similar manor as CTVI scans where lung 

ventilation can be calculated from multi-inflation structural 1H-MRI (Zapke et al., 2006). 1H-

MRI ventilation models assume that differences in signal intensities of co-registered voxels 

in multi-inflation 1H-MRI reflect naturally occurring density variations in the lungs during 

breathing (Kjørstad et al., 2017). As with the CT)* ventilation metric, 1H-MRI ventilation 

models aim to compute the SV with similar assumptions via deformably registered expiratory 

and inspiratory 1H-MRI scans (Capaldi et al., 2018) as follows: 
 

SV =
∆V
V!"#
$%& ≈

F!"#
"'(& −	F!"#

$%&

F!"#
$%&  

( 2.5 ) 

 

where F!"#
"'(& and F!"#

$%& denote the fraction of air at inspiration and expiration, respectively. 

Due to the arbitrary units of structural 1H-MRI voxels, the MRI signal intensity (SI) cannot be 
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directly calculated in the same way as CT and, therefore, it is assumed that SI is 

approximately inversely proportional to Fair (Zapke et al., 2006).  
 

SI	 ∝4 	
1
F!"#

 

( 2.6 ) 

 

Substituting Equation ( 2.6 into Equation ( 2.5 allows the SV to be approximated as follows: 
 

SV	 ≈ 5
SI$%& −	SI"'(&

SI"'(&
	6 

( 2.7 ) 
 

where SI$%& and SI"'(& are voxel-wise signal intensities at expiratory and inspiratory 

inflations, respectively. 1H-MRI ventilation models produce non-contrast functional lung 

images, without ionising radiation, that limit the need for specialised equipment required for 

contrast-based functional lung imaging, such as hyperpolarised gas MRI. Figure 2.10 

depicts a 1H-MRI ventilation surrogate for a patient with COPD.  

 

 
Figure 2.10 Coronal slice of 1H-MRI ventilation scan at expiratory geometry generated from 

inspiratory and expiratory breath-hold isotropic SPGR 1H-MRI scans. 
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2.2.4 Image segmentation-based regional functional lung imaging ventilation biomarkers 

Several biomarkers have been proposed to quantify ventilation and ventilation heterogeneity 

in functional lung images. These biomarkers are computed over a region of the image; 

therefore, image segmentation is required to delineate these regions of interest. Image 

segmentation is the process of defining a region, such as the lung parenchyma or the 

ventilated lung, either by manually delineating it or through a semi-automated algorithm 

which is subsequently edited by a trained individual. Various algorithms exist to semi-

automatically segment functional lung images, such as hyperpolarised gas MRI.   

 

A k-means clustering algorithm was previously modified for hyperpolarised gas MRI 

ventilation segmentation (Kirby et al., 2012a). This method attempts to find 𝑘 data points, 

given the integer 𝑘, in an n-dimensional space 𝑅, given 𝑚 data points. These 𝑘 data points 

are known as centres/centroids and the aim is to minimise the distance from each data point 

(𝑚) to its centre/centroid (Kanungo et al., 2002). The method attempts to delineate the image 

data into a number of clusters that can best represent a radiologist’s analysis of the 

ventilation image with clusters defined from defects to hyperintense signal (Kirby et al., 

2012a). The first stage of this method requires image normalisation into the range of 0-255, 

following which the cluster initial centres are set at 25% intervals between these values. 

Commonly, two-stage clustering is used, whereby initially four clusters are selected (the 

lowest of which contains both signal void and hypointense signal) followed by a second 

clustering applied to the lowest cluster from the first stage to define background, ventilation 

defect and hypointense signal regions.  

 

The spatial fuzzy c-means clustering (SFCM) algorithm has been used to segment 

ventilation and structural MR image pairs (Biancardi et al., 2018). Images are initially 

bilaterally filtered to remove noise and maintain edges (Tomasi and Manduchi, 1998b). The 

standard FCM algorithm assigns N pixels to C clusters via fuzzy memberships with the 

assumption that pixels in close proximity are highly correlated and hence have similarly high 

membership to the same cluster (Bezdek et al., 1984). This spatial information will modify 

the membership value only if, for example, the voxel is noisy and would have been 

incorrectly classified. The SFCM method makes use of nearby voxels during the iteration 

process by considering the membership of voxels within a predefined window and will weigh 

the central voxel depending on the provided weighting variables (Chuang et al., 2006). The 

number of clusters and thresholds for inclusion can be altered manually to generate the 
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most accurate segmentations. SFCM has an advantage over k-means clustering as it is 

applied to both hyperpolarised gas MRI scans and structural 1H-MRI scans in a pair-wise 

fashion to take advantage of the combined information arising from the co-location of the 

image pair to segment both the ventilated and structural regions simultaneously (Biancardi 

et al., 2018).  

 
Segmentations of the lung cavity or the ventilated portion of the lungs can be used to 

calculate several important regional lung ventilation biomarkers from hyperpolarised gas 

MRI and 1H-MRI scans. The ventilation defect percentage (VDP), defined as the percentage 

of low/zero intensity voxels in the scan, or the VDP′s inverse, the ventilated volume 

percentage (%vV), are common metrics used as biomarkers of regional ventilation. VDP and 

%vV are calculated by comparing structural and ventilated lung segmentations to generate 

a percentage value of ventilated lung volume as follows: 
 

VDP = @1 −
ventilated	lung	volume
total	lung	volume 	L × 	100 

( 2.8 ) 

 

%vV = @
ventilated	lung	volume
total	lung	volume 	L × 	100 

( 2.9 ) 

 
Similarly, the ventilated volume can be calculated from the ventilated lung segmentation; 

however, this metric is not normalised by the total lung volume which can lead to biases 

depending on the size of the lungs. An additional biomarker which can be calculated from 

these segmentations is the number of defects present in a hyperpolarised gas MRI scan, 

which may be important in specific diseases, such as CF (Smith et al., 2018; Stewart et al., 

2018). A further regional ventilation biomarker which determines ventilation heterogeneity, 

known as the coefficient of variation (CoV), can be calculated from image intensity values as 

follows (Stewart et al., 2021): 
 

CoV =
standard	deviation

mean  

( 2.10 ) 

 
Recently, binning-based biomarkers have been proposed which classify pixels into defect, 

low, normal and high ventilation bins depending on various thresholds. This binning 

approach has been used to quantify ventilation in hyperpolarised gas MRI scans (He et al., 

2016). 
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2.3 Deep learning theory 

Deep learning (DL) is a subfield of machine learning that commonly employs artificial neural 

networks (ANNs) with multiple deep or hidden layers in an end-to-end learning approach 

where features are learnt implicitly by the network. In contrast to traditional machine learning 

algorithms, such as random forests, K-means clustering and support vector machines, hand-

crafted feature extraction is not required. Traditional machine learning utilises explicitly 

defined features, which are manually engineered via domain-specific knowledge, and can 

include features such as shape priors and intensity histograms. Due to the hierarchical 

nature of ANNs, feature selection at varying levels of abstraction is integrated into the 

function mapping process between an input and an output within the ANN. The features 

‘selected’ by the network are those that produce a better mapping between the input and 

output domains. The varying levels of abstraction achieved by hidden layers in ANNs often 

allow for more complex features than those defined through hand-crafted feature selection 

and, consequently, frequently lead to improved modelling when an end-to-end approach is 

employed. Differences between traditional machine learning and DL approaches are 

displayed for an image segmentation task in Figure 2.11. In addition, traditional machine 

learning algorithms often require access to all training examples when classifying a new 

datapoint; for example, in clustering algorithms, the algorithm must know the position of all 

other data points within the dataset to assign a new data point to a specific cluster, whereas 

in DL algorithms, this information is stored within the learned weights and biases of a trained 

ANN.  

 

As with traditional machine learning, DL can be either supervised or unsupervised; 

supervised learning uses labelled training data to map complex functions between input and 

output domains. Conversely, unsupervised learning does not use labelled data; instead, 

inherent patterns are discovered directly from unlabelled data. The investigations detailed 

within this thesis will primarily use supervised DL approaches and, therefore, the following 

sections will focus on these algorithms; this includes an introduction to ANNs, convolutional 

neural networks (CNNs), DL training strategies and techniques to validate DL models.  
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Figure 2.11 Comparison of traditional machine learning and DL algorithms for a lung segmentation 

task, contrasting the hand-crafted feature selection and the end-to-end approach of machine 
learning and DL, respectively. 

2.3.1 Artificial neural networks 

The concept of modelling biological neurons that mimic the brain's computational capacity 

was first explored in the 1950s with the implementation of the perceptron (Rosenblatt, 1958). 

ANNs, or multi-layer perceptrons, are algorithms that map a complex function between an 

output and an input domain. The development of fully-connected ANNs with multiple hidden 

layers allows for an increased number of parameters, giving the network more freedom to 

tune these parameters for the task of learning complex functions (Werbos and John, 1974). 

The fundamental unit of an ANN is a neuron which stores a value; in fully-connected 

networks, each neuron in a layer is connected to every other neuron in the proceeding and 

subsequent layers. The strength of connections between neurons is determined by a weight 

(w) and a bias (b) term. A neuron computes the weighted sum of its activation plus a bias, 

representing a minimum threshold activation for each neuron, and applies a nonlinear 

activation function (𝜎) to produce an output α(.). Neurons are organised into layers in a 

hierarchical fashion whereby the output of layer L − 1 corresponds to the input activation of 

a neuron in layer L. Weights in a network can be represented by a matrix and the activations 

and biases at each layer as vectors where 𝐖 represents the weight matrix and 𝛂(.01) and 𝐛 

represent the corresponding vectors of activations and biases, respectively.  
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𝛂(.) = 𝜎W𝐖𝛂(.01) + 𝐛X 
( 2.11 ) 

Activations are propagated through a network to produce an output in what is known as the 

forward pass. For an ANN with an input layer containing pixel activations of x, a hidden layer 

(α(.01)) and an output layer (α(.)), the difference between the network’s output and the 

expected outcome is the cost (C), which can be calculated via a loss function (ℒ) for a single 

neuron using a forward pass as follows: 

 

z(.01) = w(.01)x +	b(.01) 

α(.01) = 𝜎Wz(.01)X 

z(.) = w(.)α(.01) +	b(.) 

α(.) = 𝜎Wz(.)X = y] 

C = ℒ(y], y) 
( 2.12 ) 

where y refers to the expected output and y] refers to the output of the final layer of the 

network. A non-linear activation function is required as this allows the network to learn 

complex non-linear functions. The activation function used is a hyper-parameter which can 

be tuned to improve performance. Activation functions can vary at different layers of the 

network; for example, in classification problems, the final output layer commonly utilises a 

SoftMax activation function that scales output weights into probability distributions. Common 

activation functions include the sigmoid, the rectified linear unit (ReLU) and the Leaky ReLU 

functions (He et al., 2015; Agarap, 2018). The Leaky ReLU activation function is a special 

case of the more general partial ReLU (pReLU); in both cases, an 𝛼 value is given for 

negative values, generating a differentiable slope for negative values. Maas (2013) initially 

proposed an 𝛼 of 0.01 for use in neural networks defined as the Leaky ReLU; however, any 

constant value can be employed, producing the more general pReLU. Figure 2.12 depicts 

common activation functions used in ANNs with example arbitrary values. 
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Figure 2.12 Common activation functions, including the Sigmoid, ReLU and Leaky ReLU functions. 

The example Leaky ReLU employs an 𝜶 of 0.025. 

At the heart of ANNs is optimisation; an algorithm learns by optimising weights and biases 

for a generalisable solution to a complex function. To achieve this, various weights and 

biases need to be updated over multiple iterations, leading to convergence between the 

output and the expected outcome. This process of continually updating weights and biases 

to optimise a loss function is known as training. The algorithm for updating weights and 

biases based on training examples in a dataset is known as backpropagation (Werbos and 

John, 1974; Plaut et al., 1986). Backpropagation utilises the chain rule and is applied 

iteratively at each layer of the network. The development of backpropagation algorithms was 

the catalyst that allowed for the implementation of ANNs with several hidden layers, 

dramatically reducing the number of calculations required and, therefore, reducing the 

computational requirements associated with training ANNs. For a network with one neuron 

in each layer, the partial derivative of the cost with respect to the weights and biases of a 

layer, that is the impact on the cost from small changes in the weights and biases, is denoted 

as C2 and calculated as follows: 

 

∂C2
∂w. =

∂z.

∂w.
∂a.

∂z.
∂C2
∂a. 

 
∂C2
∂b. =

∂z.

∂b.
∂a.

∂z.
∂C2
∂b. 

( 2.13 ) 

 

C2 represents the cost for a single training case; the cost C for all training examples k is the 

sum of the costs for each case with respect to the weights and biases of the output layer L 

and is computed as:  
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∂C
∂w. =

1
nb

∂C3
∂w.

'01

342

=	θ5 

 

∂C
∂b. =

1
nb

∂C3
∂b.

'01

342

=	θ6 

( 2.14 ) 

ANNs often contain multiple neurons in each layer, so the partial differentiation of weights 

and biases with respect to the cost is commonly given as a vector denoting the gradient of 

the cost at each layer with respect to all the neurons in the layer. The loss function penalises 

errors compared to some expected answer and is used to calculate the cost; it is an 

important hyper-parameter in network training as it represents the mechanism by which the 

network determines differences between its output and the expected outcome. Therefore, it 

is minimised to produce an effective ANN. Loss functions vary depending on the application; 

for example, a mean square error (MSE) loss function may be used in regression tasks, 

whereas in segmentation tasks, a binary cross-entropy loss function is more suitable. The 

development of novel loss functions for specific applications is a key area of DL research 

and has been used in medical imaging applications to improve segmentation performance 

with the development of the generalised Dice loss (Sudre et al. 2017). It is important that 

the loss function has a smooth distribution that contains no step changes; this allows for its 

minimisation through gradient descent methods. 

 

The partial differential of the cost with respect to the weights and biases represents the 

gradient, or slope, of the cost function at the current position, where θ5 and θ6 represent 

the weight gradient and bias gradient, respectively. By taking the negative gradient, the 

downhill direction can be determined, representing a minimisation of the loss function. This 

is known as gradient descent and provides the network with a mechanism of adjusting its 

parameters to reduce the difference between its output and the expected value. The process 

of updating the weights and biases for a single neuron network is as follows: 

 

w789 = w:.; − 𝜂(θ5) 
 

b789 = b:.; − 𝜂(θ6) 
( 2.15 ) 

where w789 and  b789 are the updated weights and biases, and w:.; and b:.; are the 

previous weights and biases, respectively, and where 𝜂 is the learning rate. These changes 



27 
 

are propagated iteratively at each layer of the network, representing the backward pass, 

otherwise referred to as network training where weights and biases are continually updated 

to produce a network capable of generating expected outputs on previously unseen data. In 

practice, gradient descent is unfeasible due to the significant computational requirement of 

simultaneously calculating gradients for all training examples. Instead, variations on gradient 

descent, such as stochastic gradient descent (SGD) or mini-batch gradient descent, are 

used to reduce the computational requirement (Robbins and Monro, 1951; Feyzmahdavian 

et al., 2015). SGD calculates the gradient for each example in the training dataset, leading 

to inefficient convergence if there are large variations between training examples. In 

contrast, mini-batch gradient descent often convergences faster than both conventional 

gradient descent and SGD. It employs a subset of the training examples, known as a batch, 

and calculates the gradients for each randomly shuffled batch, leading to a minimisation of 

the loss function; mini-batch gradient descent is common in DL applications due to the large 

number of training cases. For all variants of gradient descent, a learning rate 𝜂 is required. 

The learning rate determines how large the convergence step should be at each iteration. 

For traditional gradient descent, the learning rate is often held constant as convergence 

tracks a straight path towards either a global minimum if the loss function is convex, or a 

local minimum if it is not; however, for SGD and mini-batch gradient descent, the learning 

rate can be variable, reducing as convergence approaches a local minimum. This is due to 

both algorithms fluctuating about a local minimum instead of directly converging on the 

desired minimum. Recently, a type of gradient descent known as Adam has been employed 

to achieve fast convergence on non-convex loss functions (Kingma and Ba, 2015). Adam 

can be described as leveraging the advantages of common SGD variants, namely, adaptive 

gradient algorithm (AdaGrad) and Root mean square propagation (RMSProp) (Duchi et al., 

2011; Dauphin et al., 2015). It utilises per-parameter learning rates, whereby each 

parameter of the network has an independent learning rate based on the first- and second-

order moments of the gradient; it has shown efficacy in several DL applications (Gerard et 

al., 2018; Garcia-Uceda Juarez et al., 2019; Li et al., 2017). 

2.3.2 Convolutional neural networks 

Fully connected ANNs are computationally expensive and inefficient when processing large 

images; 3D images in the medical field tend to have millions of voxels, exacerbating this 

problem. In addition, ANNs are unable to account for spatially correlated information and 

features present in images and videos. To address these challenges, specifically adapted 
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ANNs, known as CNNs, have been widely adopted in applications that utilise large images 

in the dataset. CNNs are partially inspired by biological mechanisms in the eyes, whereby 

specific neurons respond to changes in small areas of the visual field, known as the 

receptive field (Hubel and Wiesel 1968). CNNs famously gained prominence in 2012 when 

AlexNet, a type of CNN, produced ground-breaking classification performance in the 

ImageNet Large Scale Visual Recognition Challenge, outperforming the second-place 

algorithm by over 10%. Using multiple graphical processing units (GPU), AlexNet 

distinguished between over 1000 classes, creating a new benchmark for image classification 

tasks in the process. The highly influential paper has been cited over 85,000 times and was 

successful in pushing CNNs and GPUs to the forefront of image-based DL tasks (Krizhevsky 

et al. 2012). 

 

As previously stated, unlike traditional ANNs, CNNs are not fully-connected and, instead, 

use a convolving filter which performs a convolution operation on an input image. For an 

image 𝑖 of size 𝑋	 × 	𝑌	 × 	𝑍	 × 	𝐶, where 𝑋, 𝑌 and 𝑍 are spatial dimensions of the image and 

𝐶 is the number of channels, a convolution operation is applied to the image with a filter of 

size 𝑓	 × 	𝑓	 × 	𝑓 and a stride length of 𝑠. In a CNN, network layers are arranged in a 

hierarchical fashion, whereby the output of one-layer acts as the input to the subsequent 

layer. In a convolutional layer with input 𝑖, the four-dimensional (4D) tensor is convolved with 

a filter to produce a 3D tensor which is then concatenated in the channel dimension with a 

defined number of filters so that for the subsequent layer 𝐿, a 4D tensor of 𝑖< =

	𝑋< 	× 	𝑌< 	× 	𝑍< 	× 	𝐶< is used as an input. The number of filters is equivalent to the number 

of channels in 𝑖<. Filters can be thought of as a matrix of values with a given size, where the 

number of filters is a hyper-parameter which can differ depending on the layer of the network. 

Whilst the number of channels is dependent on the number of learned filters, the spatial 

components of 𝑖< can be manipulated based on the size of the filters and the stride. Stride 

refers to the number of pixels that a filter traverses during the convolution operation. 

Depending on the type of padding (𝑝) used, for example zero-padding, the spatial 

dimensions of the input image can remain constant if a stride length of 1 is used. In general 

terms, the size of the output feature map 𝑂=>? can be calculated using the following 

equation: 

 

𝑂=>? =	
𝑖 + 2𝑝 − 𝑓

𝑠 + 1 

( 2.16 ) 
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It is common to apply a pooling layer directly after a convolutional layer to reduce the spatial 

dimensions of the input image 𝑖. If a pooling layer with a filter of size of 2	 × 	2	 × 	2 and a 

stride length of 2 was used, the spatial dimensions of the image would be reduced by a 

factor of two so that 𝑖! =	
"!
#
	× 	$!

#
	× 	%!

#
	× 	𝐶!. This process of downsampling images with a 

filter of 2	 × 	2	 × 	2 and a stride length of 2 is referred to as max pooling. 

 

Filters are traditionally used in machine learning for problems where the filters are hand-

crafted to detect specific, relevant features. In contrast, CNNs allow the values of filters to 

be trainable parameters, analogous to the weights in an ANN. As with traditional ANNs, a 

non-linear activation is required to learn complex features. CNNs often use similar activation 

functions to ANNs, including the sigmoid, ReLU, pReLU and hyperbolic tangent (TanH) 

functions. The filters are then ‘learnt’ through the familiar method of forward propagation and 

backpropagation with a minimisation of the loss function occurring through the continual 

updating of weights contained within each filter. For a classification task, the filters in the 

last convolutional layer will be connected to a fully-connected layer, traditionally with a 

SoftMax activation, that acts as the output layer, where each filter acts as a neuron for each 

class. Filters are analogous to feature detectors that correspond to the detection of curved 

edges for example. However, the key strength of CNNs for imaging applications is that, due 

to the hierarchical nature of CNNs, filters in deeper layers become increasingly abstract. If 

dimensionality is reduced during pooling so that 𝑂=>? < 𝑖, then the convolution operation in 

the next layer will be convolved over a compressed version of the image, producing 

increasingly abstract feature maps. For example, filters in the first hidden layer may detect 

vertical edges, whereas, in the final hidden layer, each filter may be capable of detecting the 

trachea. This allows for significantly more complex function mapping between input and 

output domains than hand-crafted features, where domain-specific knowledge is required to 

determine which features are relevant. Activation, or feature, maps can be generated at 

each convolutional layer using the learned filters, providing a representation of which 

features the CNN is using to produce its output (Lee et al., 2011). The combination of 

convolutional, pooling and activation layers can be referred to as a ‘block’. By linearly 

combining several blocks, the spatial dimensionality can be further reduced, leading to 

highly abstract and specialised feature detectors. Batch normalisation layers are often 

employed after convolutional and pooling layers in each network block. Batch normalisation 

resets the distribution of activations in the previous layer, reducing the covariate shift 

between network layers, leading to more efficient network training with a reduction in data 
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loss between network layers; normalisation is achieved by subtracting the mean activation 

from each batch and then dividing by its standard deviation. Thus, it is ensured that there 

are no activations which are too large or too small which can cause non-differentiable 

gradients, where the partial differential of the gradient used in the backpropagation algorithm 

tends to zero. Consequently, the value of weights in the network remains unchanged; 

therefore, the network can no longer effectively ‘learn’ through continually updating network 

parameters. Batch normalisation also acts as a form of regularisation, minimising overfitting 

in training where some examples produce much larger activations than other examples, 

thereby reducing the networks reliance on these examples which produce large activation 

values.  

 

When several convolutional blocks containing pooling layers are combined, the features it 

can detect are highly abstract; however, the dimensions of the output layer are significantly 

different from those of the input image. For applications such as image segmentation or 

image synthesis, the predicted segmentation is required to be the same size as the input 

image. In some CNNs, upsampling is conducted using interpolation functions, such as linear 

interpolation, to enforce the size of the CNN output. However, these interpolation functions 

contain no learnable parameters and are therefore applied independently to each image 

without change. Many CNNs have utilised the transposed convolution operation to allow 

fully learnable upsampling. Increasing the spatial dimensions of the output feature map 

𝑂=>?, where 𝑖 is the input image dimensions to this layer, can be achieved similarly to how 

the convolution operation can be used to reduce image dimensions; here, the transposed 

convolution operation is used to increase the size of 𝑂=>? as follows: 

 

𝑂=>? = (𝑖 − 1)𝑠 + 𝑓 − 2𝑝 
( 2.17 ) 

Several other hyper-parameters can be employed, such as dilation and output-padding, 

which modify the size of 𝑂=>?  to produce the desired spatial dimension. For segmentation 

tasks, through a series of convolutional and transposed convolutional layers, it can be 

ensured that 𝑂=>? = 𝑖, where 𝑖 is the original input image dimensions. These transposed 

convolutional layers are often conducted with the same filter size and stride as the original 

downsampling convolutions. This creates two ‘sides’ of the network, where one is the mirror 

image of the other, one being responsible for downsampling through convolutions and the 

other for upsampling through transposed convolutions. Various CNN architectures have 
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been developed for image segmentation which utilise this network configuration. A CNN 

architecture refers to the specific configuration of convolutional, pooling, interpolation and 

transposed convolutional layers; these architectures are usually proposed in original 

research articles for use in specific applications, either to reduce computational expenses 

or to generate improved predictions when compared to previously proposed architectures. 

Advancements in CNN architectures have produced complex network configurations with 

several convolutional and transposed convolutional blocks for the downsampling and 

upsampling of images, respectively. Variations in architectures usually occur in the output 

layer; in classification tasks, the output layer is required to predict between 𝑛 number of 

classes, giving 𝑛 number of neurons in the output layer. For example, the VGGNet 

(Simonyan and Zisserman, 2014) is a CNN used for image classification tasks that has been 

utilised in medical imaging applications (Alebiosu and Muhammad, 2019). In this instance, 

upsampling is not required as the output need not be the same size as the input image. 

2.3.3 Fully convolutional neural networks 

CNN configurations which utilise convolution and transposed convolutions to produce output 

maps with the same spatial resolution as the input image are referred to as fully 

convolutional neural networks (fCNNs). For image segmentation or image synthesis tasks, 

upsampling is required; fCNNs have become the dominant network configuration for these 

tasks. Common fCNN architectures include the UNet and VNet architectures which employ 

residual connections and transposed convolutions for upsampling. Variations of the UNet 

have been developed which can receive 2D or 3D input images; the original UNet was 

implemented as a 2D fCNN, meaning that each slice of an image is processed 

independently (Ronneberger et al., 2015). The UNet architecture contains 19 total layers 

consisting of convolutional, transposed convolutional and max pooling layers. Convolutional 

layers employ 3	 × 	3 convolutions followed by 2	 × 	2 max pooling to reduce image resolution 

with transposed convolutions of 2	 × 	2 in the upsampling path. The network can receive 

patches of various sizes; however, more pooling is required for larger patch sizes as well as 

reduced localisation accuracy when patches are too large. The UNet, is commonly used in 

many segmentation applications; more specifically, several investigators have utilised the 

UNet for pulmonary image segmentation tasks (Zhu et al. 2019; Eppenhof & Pluim 2019; 

Ren et al. 2019). In contrast to the UNet, the VNet architecture employs no pooling layers; 

instead, it contains only convolutional layers with a kernel size of 2	 × 	2 and a stride of 2 is 

used for downsampling. The use of convolutional layers instead of pooling layers generates 
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learnable parameters with a reduced memory footprint as inputs do not need to be stored to 

conduct backpropagation. The VNet uses 5	 × 	5	 × 5  convolutions in both the upsampling 

and downsampling paths. The VNet architecture was designed to allow non-isotropic patch 

sizes and was specifically developed for fully-volumetric image segmentation in the medical 

imaging domain (Milletari et al., 2016). Both the UNet and the VNet employ residual 

connections to forward information from the downsampling path to the upsampling path. 

Residual connections, sometimes called skip connections forward the output of 

convolutional blocks during downsampling directly to the equivalent layer in the upsampling 

path; this provides high-resolution features to transposed convolutional operations, 

improving network training and limiting the possibility of exploding/vanishing gradients. By 

providing alternative paths for information to be conveyed to the upsampling path, residual 

connections act as a kind of ensemble network where features can be forwarded and 

combined at several different resolutions. This often results in a more accurate output than 

networks which do not employ residual connections. In addition, the VNet uses fine-grained 

feature forwarding, allowing features to be shared between downsampling and upsampling 

sides of the network (Milletari et al., 2016). Extensions of the UNet have been proposed, 

such as the nn-UNet (Isensee et al., 2018). The nn-UNet is a 3D implementation of the UNet 

which is adapted for use in the medical imaging domain and can be deployed on a large 

range of input image sizes and regions of interest. To adequately process large input images 

(in terms of numbers of voxels), such as those of the lungs, the nn-UNet uses a 3D UNet 

cascade-based architecture to provide patch-based sampling at different image resolutions 

(Isensee et al., 2018). 

 

Various other mechanisms have been developed to improve the performance of fCNN 

architectures, including attention-mechanisms (Oktay et al., 2018) and densely connected 

layers (Gibson et al., 2018a), each providing improved performance for specific tasks during 

network training and inference. Hesamian et al. (2019) have reviewed in detail several 

common CNN architectures used for medical image segmentation. The development of 

novel CNN architectures is an ongoing area of research. 

2.3.4 Patch-based sampling 

The input of a CNN is an image. This can be the whole image; however, in most cases, due 

to memory constraints, a small patch of the image is used as an input. In addition to reducing 

the memory requirements of the CNN, patch-based analysis also provides a regularisation 
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function where network weights must perform consistently across a range of locations within 

the image, which may exhibit high-resolution features, as well as across various training 

images. Several types of patch-based sampling can be employed; these include overlapping 

or non-overlapping configurations, uniform or grid sampling methods, and the use of prior 

regions of interest to define sampling frequency. Overlapping and non-overlapping patch-

based sampling methods are largely self-explanatory; if the spatial window size of the patch 

is equally divisible into the size of the total image, non-overlapping sampling can be 

deployed. Overlapping patch-based sampling is used when this is not the case; overlapping 

patches can be randomly located or arranged in a grid-like fashion. If random overlapping 

patches are used, the set of all feasible spatial locations are first computed, so that all 

patches are within the border of the image, and then random locations are drawn from this 

set during each pass through the CNN. If grid sampling is used, the full set of patches is 

computed and then arranged so that the minimal amount of overlap is present; this is 

effectively the same as a sliding window with a stride length equal to the size of the patch. 

Figure 2.13 depicts a hyperpolarised gas MRI scan with an in-plane resolution of 256	 × 	256 

with examples of non-overlapping and random overlapping patch-based sampling methods. 

 

 
Figure 2.13 Hyperpolarised gas MRI scan with example overlapping and non-overlapping patch-

based sampling methods for a patch size of 64 × 64 pixels. 

If the CNN receives a 3D input, then the patch becomes a cubic volume; however, the same 

principles can be used to generate non-overlapping or overlapping volumetric patches. The 

type of patch-based sampling used can depend on the specifics of the application. For 

example, in hyperpolarised gas MRI segmentation, random overlapping patches can be 

used as minimal information is contained at the edges of the image that is relevant to the 

segmentation. The network’s output for each patch is subsequently reassembled by an 

aggregator using relevant location information, either into their location in a 2D slice or at a 
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volume-level in the 3D scan. Various network architectures have constraints on the patch 

size that can be used. For example, the nn-UNet requires isotropic input image patch sizes; 

therefore, if the original input image is anisotropic, the patches may contain large amounts 

of redundant information. In contrast, the VNet architecture can accommodate anisotropic 

patch sizes and, consequently, for hyperpolarised gas MRI scans which have a very 

anisotropic resolution, a patch size of 96	 × 	96 × 24 can be utilised. 

2.3.5 Memory and computational constraints 

DL is notoriously computationally expensive. DL training often requires purpose built 

computational resources with a large memory footprint. At test time, inference can be 

conducted using a central processing unit (CPU) with limited processing power; however, 

during network training, a graphical processing unit (GPU) is required. GPUs are specialised 

processors which contain dedicated memory designed for performing floating point 

operations and rendering complex graphics. Neural networks often contain millions of 

parameters where matrix multiplications are computed at each layer of the network, 

representing a significant amount of memory. GPUs contain more cores than CPUs and 

have a higher memory bandwidth making them more suitable for DL calculations; the 

number of cores also allows for parallelisation of computational processes, further improving 

GPUs’ efficiency for network training. Simple matrix multiplications can be performed in 

parallel by each core reducing the time taken to train a CNN and increasing the size of the 

dataset which can be utilised. Whilst GPUs have several features which are advantageous 

for training a CNN, each core often contains only a limited amount of memory. Therefore, 

external dynamic rapid access memory (DRAM) is required to store large medical images. 

The amount of DRAM available will affect the patch size and batch size that can be 

employed. fCNNs such as the VNet employ various techniques to reduce the memory 

footprint of the network, including replacing pooling operations with convolutional layers, 

thereby reducing the computational requirements associated with processing large 3D 

medical images. Countless researchers are currently developing new and innovative ways 

to improve computational efficiency in the training of large neural networks; however, the 

field of DL optimization is complex and beyond the scope of this thesis. Nevertheless, 

computational constraints will play an important role in the investigations contained herein, 

whether that be by limiting the batch size which can be processed or the input patch size of 

the CNN. 
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2.4 Deep learning training strategies 

When training a neural network, the performance on the testing set should be similar to the 

performance on the training test, indicating that the model can generalise to unseen inputs. 

Differences in performance between training and testing data are due to underfitting or 

overfitting. Underfitting occurs when the ANN is unable to encapsulate the relationship 

between the input and output domains, leading to reduced performance on both the training 

and testing sets; an underfit ANN is too simplistic and cannot account for important features 

in the training data. Conversely, overfitting occurs when the ANN learns both features and 

noise in the training data such that they are no longer applicable to new, unseen inputs. This 

results in good performance on training data but poor performance on testing data. Both 

overfitting and underfitting limit a network's capacity to generalise to new inputs and, 

therefore, the model's usefulness is reduced. The presence of overfitting and underfitting is 

also referred to as the bias vs variance trade-off, whereby a network with a high bias 

experiences underfitting and a network with high variance exhibits overfitting. The ideal, or 

optimal, model is one with low bias and low variance; however, there is often a trade-off 

between minimising these sources of error. A visual representation of underfitting and 

overfitting is displayed in Figure 2.14.  
 

 
Figure 2.14 Diagram of underfitting, overfitting and optimal performance of a classification 

algorithm. 
 

To ensure that a network is optimally trained, a validation dataset is often used alongside 

training and testing sets; this allows researchers to measure performance without biasing 

ANNs to a specific testing set. If the networks loss deviates significantly between the training 

and validation sets, there is a high likelihood that the network is experiencing overfitting. In 

the majority of cases, the most effective method for improving model performance is to 

increase the amount and variation of training data. In pulmonary imaging applications, 
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generating more data is often unfeasible; thus, other approaches can be employed to 

mitigate underfitting and overfitting; these include transfer learning, data augmentation, 

regularisation and dropout. 

2.4.1 Transfer learning 

Transfer learning is the process of using pre-trained models developed for one task and re-

purposing them for use in a second, somewhat related task. It is primarily used to mitigate 

underfitting where there is a lack of available training data and, consequently, is used 

regularly in medical imaging to improve performance when a lack of training data is available 

(Tajbakhsh et al. 2016). Transfer learning can take multiple forms depending on the specific 

requirements; in certain cases, weights from a pre-trained ANN are used as a starting point 

instead of random initialisations, and in other cases, layers are added to the network where 

weights are fixed for the pre-trained layers and weights for the additional layers are learnt 

during network training. CNNs pre-trained using the ImageNet dataset are commonly used 

for transfer learning in the medical imaging domain (Morid et al., 2021).  

2.4.2 Data augmentation 

Data augmentation is the process of generating new data by manipulating original training 

data. Augmentation can be used to mitigate both underfitting and overfitting; augmenting 

training data can alleviate the limitations associated with the small datasets often 

encountered in medical imaging tasks. Furthermore, augmentation can be used to mitigate 

overfitting by producing variations in the training data which lead to additional noise, 

reducing the potential for a network to capture all variations generated by the augmentation 

accurately. Data augmentation methods can include horizontal/vertical flipping, random 

rotations, elastic deformations and scaling. In most cases, data augmentation increases the 

number of training examples; however, another method for data augmentation is to not 

directly increase the number of training samples, but to apply random augmentations each 

time a training example is passed to the network. Therefore, the number of training 

examples remains the same as before data augmentation; this method is often used to 

increase the number of epochs during training and primarily guards against overfitting. A 

primary consideration when applying data augmentation techniques is to ensure that the 

augmentations are representative of images encountered in the specific use case of the 

network. For example, in lung imaging applications, applying horizontal flipping is unlikely to 
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generate improved performance as there are significant differences between the left and 

right lungs, in terms of both the presence of the heart and the number of lobes. 

2.4.3 Regularisation 

Regularisation is commonly used during ANN training to minimise overfitting. Regularisation 

works by adding additional terms to the loss function that update the value of weights within 

the network to increase sparseness and reduce model complexity. Three main regularisation 

parameters are employed in DL experiments, namely, L1 regularisation, L2 regularisation 

and dropout. 

 

L1 regularisation employs lasso regression that adds an absolute value of the magnitude to 

the loss function that becomes undifferentiable at 0. This incentivises weights close to 0 to 

be 0 and removes connections within the network and hence removes features with low 

activations. Incentivising weights to be 0 increases the sparsity of matrices, often leading to 

less overfitting due to the pruning of less important features which may represent variation 

in the training data only. L1 regularisation has the effect of reducing complexity in the model 

and acts as an in-built feature selection tool that is robust to outliers.  

 

L2 regularisation employs ridge regression that adds a squared value of the magnitude to 

the loss function. L2 regularisation does not increase sparsity; however, it achieves the 

same goal of reducing overfitting. This is achieved by both discouraging large weights in the 

matrix and encouraging smaller weights to be closer to 0. This removes overreliance on 

some features and minimises the effect of less important features which are still useful in 

complex problems; however, it is not robust to outliers.  

 

Dropout is a form of regularisation that randomly removes connections between neurons 

within the network; this introduces an element of randomness to the network and reduces 

the model's complexity. It is often combined with L1 and L2 regularisation to limit overfitting. 

Dropout can be applied at each layer of the network during network training, dropout is 

primarily used after dense layers rather than after convolutional layers. These dropouts are 

not permanent as a proportion of neurons are temporarily removed at each epoch of network 

training to facilitate improved learning; however, during inference dropout is removed and 

therefore if a trained network is provided for use dropout will not be present in this trained 

model once training has been completed. The level of dropout used will depend on the level 
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of overfitting exhibited by the network. It is generally advised that dropout should be below 

50% of the number of neurons to maximise learning performance. 

2.5 Deep learning validation strategies 

To determine if a model is overfit or underfit and if the training strategies previously 

described have generated a model that is able to effectively generalise, various validation 

strategies can be employed. The most basic is dividing the dataset into training and testing 

sets. As previously described, it is also commonplace to also define a validation dataset to 

assess underfitting or overfitting during network training; however, this approach is limited 

due to the small subsection of data used for validation. To avoid this problem, cross-

validation can be employed; cross-validation results in a series of models where each is 

trained and tested on subsections of the dataset. Several techniques, including K-fold, 

stratified and Monte-Carlo, cross validation are discussed. In addition, another method for 

validating ANNs is to use an external validation dataset. This provides an understanding of 

the network’s generalisability to new cases and its resilience to domain shift. 

2.5.1 K-fold cross validation 

K-fold cross validation involves splitting the dataset into 𝐾 subsections where 𝐾 models are 

trained; each of the trained models is tested on one of these subsections with the remaining 

subsections used for network training. This is repeated until 𝐾 models have been trained, 

so that each training image will have been represented in the testing set once. The error is 

subsequently averaged over all folds. In traditional K-fold cross-validation, the images 

contained within each subset, or fold, are defined randomly. If 𝐾 = 𝑁, where 𝑁 represents 

the number of images in the dataset, this is referred to as leave-one-out cross-validation. 

Figure 2.15 contains a visual representation of a K-fold cross validation where 𝐾 = 5. 

2.5.2 Stratified cross-validation 

Stratified cross-validation also splits the dataset into 𝐾 parts where 𝐾 models are trained. 

However, instead of randomly defining which images are contained within each fold, the 

folds are constructed to ensure each fold is representative of the dataset as a whole. For 

example, in lung imaging, a dataset may contain numerous pulmonary pathologies with 

varying levels of representation; in stratified cross-validation, each of these folds would 



39 
 

contain pulmonary pathologies with the same representation as the whole dataset. Stratified 

cross-validation is primarily used when the dataset has large class imbalances. 

 

 
Figure 2.15 Visual representation of K-fold cross-validation where K=5.  

2.5.3 Monte-Carlo cross validation 

Monte-Carlo cross validation splits the data into training and testing sets; however, this is 

repeated with random subsections of the data and a variety of pre-defined random splits; for 

example, in the first cross-validation iteration, an 80/20% split is used, and in the second 

iteration, a 75/25% split is used. Unlike in K-fold cross-validation, the number of iterations is 

not limited to 𝐾 number of subsections because in each cross-validation iteration, a random 

subsection of the data is used; therefore, each training image is represented in the testing 

cohort any number of times. Hence, there are an infinite number of possible iterations. 

However, since an image can be included in the testing set multiple times, it is possible that 

the results can be biased to specific cases. Consequently, Monte-Carlo cross-validation is 

used when the data is largely balanced. Figure 2.16 contains a visual representation of a 

Monte-Carlo cross-validation with splits of 80/20% and 75/25% for 𝑁 number of iterations.  
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Figure 2.16 Visual representation of Monte-Carlo cross-validation for N number of iterations with 

data splits of 80/20% and 75/25%. 
 

2.5.4 External validation 

External validation is regularly used alongside cross validation techniques; it is often 

considered the most effective form of validation. External validation datasets use data from 

a different centre, scanner or disease to validate a model trained on data that does not 

contain these features, potentially leading to domain shift. Domain shift occurs when the 

data distribution significantly differs between the internal and external validation datasets, 

leading to reduced performance. If the network performs similarly on cross-validation and 

external validation data, it is a clear sign of generalisability to new cases and, thus, a lack of 

overfitting. The presence of a testing cohort not contained in the dataset used for cross-

validation gives the opportunity to compare the performance of each cross-validation model 

on the same set of images; large variations in performance between cross-validation models 

on the external validation dataset are indicative of potential overfitting.  

2.6 Related works  

The following section will detail several papers which are related to the work presented in 

this thesis. A brief outline of each paper’s methods, results and limitations are outlined with 

a view to understand how the work presented in this thesis builds upon these related 
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investigations and represents significant improvements over previously developed 

approaches. 

 

Tustison et al. used a 2D UNet for hyperpolarised gas MRI ventilated lung segmentation on 

a dataset of 113 scans, developing a novel template-based method to augment the lung 

imaging data alongside several pre-processing techniques, including N4 bias correction and 

adaptive denoising (Tustison et al., 2019). The 2D CNN achieved a mean ± SD Dice 

similarity coefficient (DSC) of 0.94 ± 0.03 on ventilated lung regions from 40 testing set 

cases. In addition, Tustison et al. evaluated a 3D UNet CNN for isotropic 1H-MRI lung cavity 

segmentation; a dataset of 268 scans was utilised with 62 1H-MRI scans used for testing. 

The proposed approach achieved a mean ± SD DSC of 0.94 ± 0.02 (Tustison et al., 2019). 

The approach used relatively small datasets for both hyperpolarised gas and 1H-MRI 

segmentation with a limited number of lung pathologies present in the dataset. For 

hyperpolarised gas MRI ventilated lung segmentation, although the dataset contained both 
129Xe and 3He hyperpolarised gas MRI scans, no analysis was undertaken to distinguish 

between the two nuclei. Furthermore, the approach utilises a 2D CNN which cannot account 

for features which occur across several 2D slices. Singular hyperpolarised gas MRI and 1H-

MRI image acquisition protocols were used to acquire the dataset; due to the small number 

of acquisition protocols and the limited amount of lung pathologies, the proposed 

segmentation approaches demonstrated limited generalisability (Tustison et al., 2019). 

 

Zha et al. used a 2D UNet to segment the lung cavity on UTE 1H-MRI scans utilising a 

dataset of 45 1H-MRI scans from healthy, asthma and CF participants (Zha et al., 2019). 5-

fold cross validation was used to maximise the size of the testing set. Various preprocessing 

strategies were employed including denoising, bias field correction and masking images so 

that only participants’ bodies were present. The proposed approach achieved a mean ± SD 

DSC of 0.97 ± 0.02 for the right lung and 0.96 ± 0.01 for the left lung. The generalisability of 

this method was not demonstrated due to the small dataset which contained only 45 1H-MRI 

scans from a limited number of diseases and a single image acquisition sequence (Zha et 

al., 2019). Furthermore, extensive preprocessing was utilised, such as generating body 

masks, which adds an additional step to the proposed workflow, potentially increasing the 

processing time. 
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Ren et al. (2022) have shown the capability of deriving synthetic perfusion maps from CT 

using SPECT perfusion as ground truth. A dataset comprising 33 lung cancer patients and 

137 non-lung cancer patients utilising stratified 3-fold cross-validation to increase the 

number of testing examples was employed. A pre-trained 3D UNet CNN was utilised, where 

images were preprocessed by clipping intensity values between -1000 and -300 HU. The 

proposed approach achieved a voxel-wise Spearman’s correlation of 0.64 averaged across 

all lobes and a DSC value of 0.81 for both high-functional and low-functional lung regions 

(Ren et al., 2022). The dataset contained only one pulmonary pathology, namely, lung 

cancer, reducing the generalisability of the proposed approach if applied to patients with 

other lung diseases. Furthermore, the resolution of SPECT is limited (~10-20mm3) which 

leads to less detailed outputs when compared to other functional lung imaging modalities, 

such as hyperpolarised gas MRI. 

 

Liu et al. (2020) proposed a CNN-based approach to synthesise Technegas SPECT 

ventilation images from non-contrast 4DCT. A dataset of 50 participants which contained 

lung and oesophageal cancer patients was utilised for this investigation, whereby 10-fold 

cross-validation was employed for CNN training (Liu et al., 2020). A 2D UNet CNN was 

trained, producing 2D synthetic ventilation scans by combining 2D ventilation surrogate 

outputs; normalisation was employed prior to network training. The authors indicate that, 

after median filtering, the proposed approach achieved mean Spearman’s correlations of 

0.73 and 0.71 for 10-phase and 2-phase 4DCT, respectively. Mean DSC across all folds of 

0.83 for high-functional lung regions, 0.61 for medium-functional lung regions and 0.73 for 

low-functional lung regions were reported (Liu et al., 2020). The dataset contained only 50 

participants with thoracic malignancies, limiting the ability to deploy the CNN in participants 

with other lung pathologies. As previously stated, the resolution of SPECT is somewhat 

limited which is further compounded by the use of median filtering as a preprocessing step, 

further reducing the resolution of synthetic ventilation scans generated by the proposed 

CNN. 

 

Capaldi et al. (2020) used a 2D UNet CNN with a MAE loss function to generate ventilation 

maps of a single 2D coronal section from free-breathing 1H-MRI (Capaldi et al., 2020). Image 

normalisation was employed before scans were provided to the network. The dataset 

contained 114 participants with various pulmonary pathologies; 6-fold cross-validation was 

employed to maximise the size of the testing set. The proposed approach achieved a 

Pearson correlation of 0.87 when synthetic ventilation scans were correlated with 3He 
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hyperpolarised gas MRI (Capaldi et al., 2020). Furthermore, the authors segmented both 

the ventilated portion and defect portion of synthetic ventilation scans. These segmentations 

were compared to expert segmentations derived from hyperpolarised gas MRI scans, 

achieving a mean DSC of 0.90 and 0.37 for ventilated and defect lung regions, respectively 

(Capaldi et al., 2020). The developed methodology utilised a 2D CNN and, therefore, 

generated only 2D intensity maps on specific coronal sections. Consequently, this method 

cannot contextualise the volumetric nature and spatial clustering of ventilation defects 

(Donovan and Kritter, 2015). This can lead to discontinuities between slices which reduces 

the plausibility of ventilation defect patterns in DL-based ventilation surrogates. In addition, 

the dataset used is relatively small with all data being acquired using the same acquisition 

protocol. 
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Chapter 3  
Deep learning in structural and functional lung 

image analysis: a review 
 

 

The recent resurgence of deep learning (DL) has dramatically influenced the 
medical imaging field. Medical image analysis applications have been at the 
forefront of DL research efforts applied to multiple diseases and organs, 
including those of the lungs. The aims of this review are twofold: (i) to briefly 
overview DL theory as it relates to lung image analysis; (ii) to systematically 
review the DL research literature relating to the lung image analysis 
applications of segmentation, reconstruction, registration and synthesis. The 
review was conducted following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines. 479 studies were initially 
identified from the literature search with 82 studies meeting the eligibility 
criteria. Segmentation was the most common lung image analysis DL 
application (65.9% of papers reviewed). DL has shown impressive results 
when applied to segmentation of the whole lung and other pulmonary 
structures. DL has also shown great potential for applications in image 
registration, reconstruction and synthesis. However, the majority of 
published studies have been limited to structural lung imaging with only 
12.9% of reviewed studies employing functional lung imaging modalities, thus 
highlighting significant opportunities for further research in this field. 
Although the field of DL in lung image analysis is rapidly expanding, concerns 
over inconsistent validation and evaluation strategies, inter-site 
generalisability, transparency of methodological detail and interpretability 
need to be addressed before widespread adoption in clinical lung imaging 
workflows.
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3.1 Preface 

The majority of the material in this chapter was originally published as an invited review 

article in the British Journal of Radiology:  

 
Astley J.R, Wild J.M. and Tahir B.A. (2020). Deep learning in structural and 
functional lung image analysis. The British Journal of Radiology. 20201107. 
10.1259/bjr.20201107.  

 

This article was published under an Open Access Creative Commons Attribution 4.0 

International License, which permits use, sharing, adaptation, distribution and reproduction 

in any medium or format (https://creativecommons.org/licenses/by/4.0/). Slight 

modifications have been made to the published version. 

3.1.1 Author contributions 

J.R.A conducted the literature search and was responsible for drafting the manuscript.  

J.M.W and B.A.T consulted on the definition of search terms and provided feedback or 

comments on versions of the draft manuscript. 

3.2 Introduction 

Respiratory diseases constitute significant global health challenges; five respiratory 

diseases are among the most common causes of death. 65 million people suffer from 

chronic obstructive pulmonary disease (COPD) and 339 million from asthma (GBD15 et al., 

2016; Vos et al., 2017). There are 1.8 million new lung cancer cases diagnosed annually 

and 1.6 million deaths worldwide, making it the most common and deadliest cancer on the 

planet (Torre et al., 2015).  Lung imaging is a critical component of respiratory disease 

diagnosis, treatment planning, monitoring and treatment assessment. Acquiring lung 

images, processing them and interpreting them clinically are crucial to achieving global 

reductions in lung-related deaths. Traditionally, the techniques employed to quantitatively 

analyse these images evolved from the disciplines of computational modelling and image 

processing; however, in recent years, deep learning (DL) has received significant attention 

from the lung imaging community.  
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DL is a subfield of machine learning that employs artificial neural networks with multiple 

deep or hidden layers. Whilst the fundamental theory was posited several decades ago 

(Berners-Lee, 1968), DL gained international interest in 2012 when AlexNet, a type of neural 

network referred to as a convolutional neural network (CNN), won the ImageNet Large Scale 

Visual Recognition Challenge. That paper has been cited over 47,000 times and triggered 

a renaissance in DL research (Krizhevsky et al., 2012). Subsequently, CNNs, and DL more 

generally, began to impact the medical imaging field profoundly. Development of fully 

convolutional networks such as V-Net demonstrated how deep-layered architectures could 

provide valuable functions in solving some of the field’s most critical applications, including 

common image analysis tasks (Milletari et al., 2016; de Vos et al., 2017). Increased 

computational power due to the reduced cost of graphical processing units (GPUs) and 

publicly available annotated imaging datasets have since led to rapid developments and 

applications (Yang et al., 2018). This review assesses the current literature on DL's role in 

lung image analysis applications, discusses critical limitations for clinical adoption, and sets 

out a roadmap for future research. 

3.3 Deep learning theory 

3.3.1 Artificial neural networks 

An artificial neural network (ANN), inspired by biological neurons, can be thought of as a 

series of connected nodes containing weights and biases which are combined using an 

activation function to produce an activation; the activation determines the strength of 

connections within the network. At the heart of DL is optimisation; an ANN learns by 

optimising weights and biases for a generalisable solution. This optimisation occurs in a two-

step process of forward propagation and backpropagation. A basic diagram of an ANN with 

two hidden layers and generalised examples of forward propagation and backpropagation 

are shown in Figure 3.1. The use of hidden layers in the network allows more freedom for 

the weights and biases to be optimised. Forward propagation refers to the process of feeding 

an example to the network during training where the output of the neural network is 

compared to a desired output and a loss is calculated using a loss function. Backpropagation 

uses this loss to propagate changes in weights and biases throughout the network; thus, by 

continually providing new examples, known as iterations, the model is optimised to 
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approximate the function between the input and output domains. Table 3.1 provides a 

glossary of the key technical terms used in this review. 

 
Table 3.1 Glossary of key technical terms related to deep learning and image analysis. 
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Figure 3.1 Simplified diagrams of the processes of forward propagation (left) and backpropagation 
(right) for a neural network with two hidden layers. The neural network is represented as a series 

of nodes, each of which contains a weight and bias. The weight and bias are combined using the 
activation function to produce an activation that impacts the strength of connections within the 

network. Once an input has been passed through the network, it is compared to a desired output, 
such as an expert segmentation of an anatomical region of interest, to produce a loss. This loss is 
used to propagate changes to weights and biases, hence, changing the strength of connections for 

the subsequent example. 

The structure of a DL network is known as an architecture. In the medical imaging field, 

three key architectures, namely, CNNs, recurrent neural networks (RNNs) and generative 

adversarial networks (GANs) are particularly prevalent. These structures are outlined in 

Figure 3.2. Understanding specific architectures such as V-Nets and GANs requires an in-

depth understanding of complex linear algebra and matrix manipulation and is beyond this 

review's scope; the interested reader is directed to several excellent papers on the subject 

(Milletari et al., 2016; Kazeminia et al., 2018; Goodfellow et al., 2014). 

3.3.2 Pre-processing 

Before images are fed into a neural network, they are frequently processed, often by 

accentuating differences between foreground and background voxels, to enhance 

performance and/or reduce training time. DL theory suggests that in high-dimensional 

matrices, local minima are very unlikely; instead, saddle points are more common due to 

the improbable likelihood that every dimension produces a minimum at the same location. 

These techniques can decrease the likelihood that the algorithm reaches a shallow saddle 



 
 

 

 
 

49 

point, thereby causing slower optimisation. This is achieved through regularisation 

techniques and limiting outlier intensities. Cropping is regularly used to restrict the 

processing to voxels within the patient (Jiang et al., 2018), or coarse, manually-drawn 

bounding boxes (Negahdar et al., 2018). Table 3.2 summarises commonly used pre-

processing techniques in the DL lung image analysis literature. In CNNs, other techniques 

such as batch normalisation, have been shown to reduce training time, acting as secondary 

regularisation techniques to minimise outliers and improve performance (Ioffe and Szegedy, 

2015; Huang et al., 2018) 

 
Figure 3.2 Illustration of three common types of deep learning architectures used in medical 

imaging: a) convolutional neural network (CNN), b) recurrent neural network (RNN) and c) 
generative adversarial network (GAN). In the lung image analysis examples given, the CNN and 

RNN are used for image segmentation while the GAN is used for image synthesis. 
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Table 3.2 Summary of common pre-processing techniques used for lung image analysis 
tasks, including values prevalent in the literature. Modalities included are those for which 

the pre-processing techniques have been used in the reviewed studies. This is not an 
exhaustive list of pre-processing techniques used. 

Pre-processing 

technique 

Description Modality Literature Values References 

Thresholding The process of 

constraining the 

pixel values of an 

image to be 

between 

predefined values. 

CT, MRI CT intensity: 

[-1000,-700 HU,  

-400,700 HU] 

MRI intensity: 

[0,667] 

(Wang et al., 2018b), (Sousa et 

al., 2019), (Javaid et al., 2018), 

(Hofmanninger et al., 2020), 

(Jiang et al., 2019), (Tahmasebi 

et al., 2018), (Zhong et al., 

2019b), (Zhou et al., 2019), (Park 

et al., 2020), (Gerard et al., 

2019), (Yun et al., 2019), 

(Eppenhof and Pluim, 2019), (Fu 

et al., 2020), (Jiang et al., 2020), 

(de Vos et al., 2019), (Stergios et 

al., 2018), (Ren et al., 2019) 

Normalisation 

and whitening 

The process of 

transforming the 

distribution of 

image pixels to 

some distribution 

which is 

standardised across 

images. 

CT, MRI, X-ray Normalisation: 

[0,1] 

Mean/variance » 0  

 

(Wang et al., 2018b), (Liu et al., 

2019), (Javaid et al., 2018), 

(Hofmanninger et al., 2020), 

(Akila Agnes et al., 2018), 

(Novikov et al., 2018), (Gaál et 

al., 2020), (Jiang et al., 2019), 

(Tahmasebi et al., 2018), (Zhou 

et al., 2019), (Hatamizadeh et 

al., 2019), (Sandkühler et al., 

2019), (Rajchl et al., 2017), 

(Sentker et al., 2018), (Fechter 

and Baltas, 2020), (Jiang et al., 

2020), (de Vos et al., 2019), 

(Galib et al., 2020), (Ferrante et 

al., 2018), (Stergios et al., 2018), 

(Beaudry et al., 2019), (Duan et 

al., 2019), (Liu et al., 2020), (Ren 

et al., 2019), (Olberg et al., 2018) 
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Denoising The process of 

removing noise 

from images in 

order to improve 

their quality. 

CT, MRI Gaussian, adaptive 

patch-based 

(Xu and Liu, 2017), (Zha et al., 

2019), (Tustison et al., 2019) 

Bias correction A technique to 

correct for the low-

frequency bias field 

that corrupts MR 

images. 

HP gas MRI, 

MRI 

N3/N4 bias 

correction  

(Tustison et al., 2019), (Zha et 

al., 2019), (Rajchl et al., 2017) 

Cropping Cropping refers to 

the process of 

removing 

unwanted outer 

pixels or voxels of 

an image prior to 

being inputted to 

the network. This 

includes cropping 

by manually-

defined regions of 

interest or external 

body masks. 

Cropping is 

commonly used to 

reduce 

computational cost 

and/or eliminate 

the influence of 

background voxels. 

CT, MRI, X-ray, 

PET 

Cropping to body 

mask, specific 

organ or manually-

defined region. 

(Negahdar et al., 2018), (Soans 

and Shackleford, 2018), (Zhu et 

al., 2019), (Hofmanninger et al., 

2020), (Zha et al., 2019), (Hooda 

et al., 2018), (Mittal et al., 2018), 

(Jiang et al., 2018), (Zhao et al., 

2018),  (Zhou et al., 2019), 

(Moriya et al., 2018), (Kalinovsky 

et al., 2017), (Sandkühler et al., 

2019), (Anthimopoulos et al., 

2019), (Gao et al., 2016), (Rajchl 

et al., 2017), (Wang et al., 2019), 

(Garcia-Uceda Juarez et al., 

2019), (Juarez et al., 2018), 

(Eppenhof and Pluim, 2019), 

(Sentker et al., 2018), (Fechter 

and Baltas, 2020), (Blendowski 

and Heinrich, 2019), (Zhong et 

al., 2019a), (Liu et al., 2020), 

(Olberg et al., 2018) 

3.4 Validation 

Validation is used to evaluate the performance of trained DL networks and assess their 

generalisability to non-experimental settings. The goal is to develop a validation strategy 

that best represents the situation in which the algorithm is to be deployed. 
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3.4.1 Evaluation metrics 

It is imperative to evaluate the performance of DL algorithms accurately. Evaluation metrics 

are used to compare DL-based outputs with ground-truth segmentations or images. A large 

selection of evaluation metrics are used to assess the quality of segmentations, registered 

scans and synthesised images. Overlap-based evaluation metrics are used to assess the 

accuracy of segmentations by comparing the overlap of voxels in comparative 

segmentations; these include the Dice similarity coefficient (DSC), Jaccard similarity 

coefficient (JSC) and the relative error (XOR) metrics. Distance-based evaluation metrics 

are used to assess the accuracy of segmentations by comparing the distance between all 

voxels, or boundary voxels, in comparative segmentations; these include the Hausdorff 

distance (HD), average boundary Hausdorff distance (Avg HD) and the Hausdorff 95th-

percentile (HD95) metrics. Error-based metrics aim to quantify the bidirectional error 

between images with continuous intensity values; this can include registered or synthesised 

images. The mean square error (MSE), root mean square error (RMSE) and the mean 

absolute error (MAE) are examples of error-based evaluation metrics. The target registration 

error (TRE) can also be used to assess the accuracy of registered images by comparing the 

location of landmarks which are defined based on physical locations within the image. 

Similarity-based metrics quantify the structural similarity between images with continuous 

intensity values. The structural similarity index measure (SSIM), multiscale-SSIM (MS-

SSIM) and the normalised cross-correlation (NCC) are examples of common similarity-

based metrics. 

3.4.2 Validation techniques 

Aside from the training set, an internal validation set is commonly used for tuning DL 

parameters to improve performance. A testing set is then used to provide an unbiased 

evaluation of performance on unseen data. In this review, validation sets used throughout 

the training phase are counted as training sets as the network has previously seen these 

images before testing. Therefore, the data split is the percentage of the total data used for 

training and internal validation versus that used for testing. Maintaining completely separate 

testing sets is somewhat uncommon in the literature and represents the ideal form of 

validation (Yun et al., 2019; Gerard et al., 2019; Dai et al., 2018). Validating on external 

multicentre datasets that have not been used for training should be the gold standard in 
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ensuring comparison between methods and generalisability (Bluemke et al., 2019). 

However, this is uncommon as single-centre datasets, split into training and testing sets, 

are frequently used. To make the validation process more robust and generalisable, specific 

techniques are applied, such as k-fold cross-validation. In 4-fold cross-validation, the 

dataset is randomly partitioned into a 75/25% training/testing split; this process is repeated 

with four different 25% blocks. Another approach is leave-one-out cross-validation which 

uses all of the data for training except one case for testing and repeats until all cases have 

been evaluated. 

3.5 Methods 

The protocol for this literature review was performed using the preferred reporting items for 

systematic reviews and meta-analyses (PRISMA)-statement (Moher et al., 2009). The 

literature search was conducted on 1 April 2020 using multiple databases (Web of Science, 

Scopus, PubMed) and aimed to identify studies written in English published between 1 

January 2012, the same year that the seminal AlexNet paper was published (Krizhevsky et 

al., 2012), and the date of the search. The search strategy is defined in Error! Reference 
source not found.. Further studies that met the selection criteria were identified by 

handsearching references and through the authors’ input.  

 

Several recent reviews have focussed primarily on DL-based lung classification and 

detection (Lobo and Guruprasad, 2018; Chassagnon et al., 2020; Pehrson et al., 2019); 

accordingly, this review was limited in scope to the lung image analysis applications of 

segmentation, registration, reconstruction and synthesis. Both published peer-reviewed 

scientific papers and conference proceedings were included due to recent developments in 

the field. 
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Figure 3.3 The search strategy used on Scopus, Web of Science and PubMed to identify relevant 

studies for inclusion in the review. Further studies that met the selection criteria were identified 
by handsearching references and through the authors’ input. 

3.6 Results and discussion 

3.6.1 Study selection 

479 non-overlapping papers were retrieved. 355 papers were excluded due to not meeting 

the eligibility criteria. In particular, many papers focused on classification or used traditional 

machine learning techniques beyond this review's scope. Upon reviewing the remaining 

papers, 82 studies were included for analysis. The PRISMA flowchart is shown in Figure 

3.4.  

 

No studies that met the inclusion criteria were published before 2016 with the majority 

appearing since 2018. Image segmentation applications accounted for 65.9% of the studies 

reviewed. The remaining 34% are divided between synthesis, reconstruction and 

registration applications (Figure 3.5). Full details are shown in Figure 3.6. The majority of 

studies reviewed used structural imaging modalities (87.8%), with most using CT (63.5%). 

Functional lung imaging studies only constitute 12.1% of the reviewed studies and are 

spread across PET, SPECT and hyperpolarised gas MRI. 
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Figure 3.4 PRISMA flowchart of studies identified, screened, assessed for eligibility and included 

in the literature review analysis. 

 

 
Figure 3.5 Graphical overview of the number of studies per year for the four image analysis 

applications considered in this review. 2020 values calculated up to 1 April 2020. 
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Figure 3.6 Graphical overview of deep learning lung image analysis studies reviewed by a) disease 
present in patient cohorts, b) imaging modality and c) architecture. Absolute numbers of papers 

are provided in a) and b). 

3.6.2 Segmentation 

Image segmentation is the process of partitioning an image into one or more segments that 

encompass anatomical or pathological specific regions of interest (ROIs), such as the lungs, 

lobes, or a tumour. Studies describing DL-based segmentation applications of pulmonary 

ROIs are summarised in Table 3.3.
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Table 3.3 Summary of reviewed studies on deep learning for lung image segmentation. Arranged alphabetically by ‘Anatomical site’, then by 
‘Modality’. 

Study Modality ROI Disease Number of 

subjects 

Dimensions Architecture Pre-processing Percentage data split 

(training*/testing) 

Performance 

(Wang et al., 

2018b) 

CT  Whole lung 

 

COPD, IPF 575 2D ResNet-101  

 

Clipped -1000 to 

+1000 HU, 

Normalisation [0,1] 

5-fold CV DSC = 0.988 ± 0.012 

Avg HD = 0.562 ± 

0.52mm 

(Dong et al., 

2019) 

CT Whole lung Lung cancer 35 3D U-Net-GAN  LOOCV DSC = 0.97 ± 0.01 

HD95 = 2.29 ± 

2.64mm 

Avg HD = 0.63 ± 

0.63mm 

(Liu et al., 

2019) 

CT Whole lung  NR 100 2D SegNet Class grouping, 

Normalisation                 

[-1000,800] 

40/60 DSC = 0.98 

 

(Lustberg et 

al., 2018) 

CT Whole lung Lung cancer 470 NR CNN  95/5 DSC = 0.99 ± 0.01 

Median HD = 0.4 

±0.2cm 

(Negahdar et 

al., 2018) 

CT Whole lung Multiple 83 3D V-Net Bounding box for 

lung,  cropped to 

bounding box 

58/42 DSC(n=12) = 

0.983±0.002 

DSC(n=23) = 

0.990±0.002 
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(Soans and 

Shackleford, 

2018) 

CT Whole lung Lung cancer 422 3D CNN with 

spatial 

constraints 

ROI extraction for 

organ localisation  

71/29 ROC(Left) = 0.954 

ROC(right) = 0.949 

(Soliman et 

al., 2017) 

CT Whole lung NR 95 3D Deep-CNN Post-processed hole 

filling 

LOOCV DSC = 0.984 ± 0.068 

HD95 = 2.79 ± 

1.32mm 

PVD = 3.94 ± 2.11% 

(Sousa et al., 

2019) 

CT Whole lung  Lung lesion 908 3D Modified V-

Net 

Clipped [-1000, 400 

HU] 

98/2 Avg HD = 0.576mm 

DSC = 0.987  

(Zhou et al., 

2017) 

CT Whole lung NR 106 2D/3D FCN VGG16 Transfer learning 

from ImageNet 

ILSVRC-2014 

95/5 JSC = 0.903 ± 0.037 

(Zhu et al., 

2019) 

CT Whole lung  Lung Cancer 66 3D U-Net Cropping to ROI 55/45 DSC = 0.95 ± 0.01 

Avg HD = 1.93 ± 

0.51mm 

HD95 = 7.96 

±2.57mm 

(Gerard et al., 

2018) 

CT Whole lung  COPD, IPF 1749 3D Course-Fine 

ConvNet 

Transfer learning 

from COPDGene and 

SPIROMICS, fine-

tuned on animal 

model 

92/8 JSC = 0.99 

Avg HD = 0.29mm 

(Javaid et al., 

2018) 

CT Whole lung Lung cancer 13 2D Dilated U-

Net 

Only axial slices 

selected, clipped -

94/6 DSC = 0.99 ± 0.01 

HD » 4.5mm 
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1000 to 3000 HU, 

Normalisation [0,1] 

(Xu and Liu, 

2017) 

CT Whole lung NR 20 2D MFCNN Gaussian denoising 50/50 DSC = 0.754 

(Hu et al., 

2020) 

CT Whole lung NR 75 2D Mask R-CNN 

+ k-means 

 NR DSC = 0.973 ± 0.032 

(Hofmanninge

r et al., 2020) 

CT Whole lung Multiple 266 2D U-Net Body mask, Clipped [-

1024, 600 HU], 

Normalisation [0,1] 

87/13 DSC = 0.98 ± 0.03 

HD95 = 3.14 ± 

7.4mm 

Avg HD = 0.62 ± 

0.93mm 

(Xu et al., 

2019) 

CT Whole lung Lung cancer, 

COPD 

224 2D 1 layer CNN Post-processed hole 

filling 

8-fold CV DSC = 0.967 ± 0.001 

HD = 1.44 ± 

0.04mm 

(Tustison et 

al., 2019) 

HP gas 

MRI 

 

Proton 

MRI 

Functional 

lung 

 

Whole lung 

NR 

 

NR 

113 

 

268 

2D 

 

3D 

U-Net 

 

U-Net 

Template-based data 

augmentation, N4 

bias correction, 

denoising 

65/35 

 

77/23 

DSC (HP gas) = 0.92 

 

DSC (Proton) = 0.94 

(Akila Agnes 

et al., 2018) 

LDCT Whole lung  NR 220 2D  CDWN Normalised [mean=0] 91/9 DSC = 0.95 ± 0.03 

JSC = 0.91 ± 0.04 

(Zha et al., 

2019) 

UTE 

proton 

MRI 

Whole lung Healthy, CF, 

asthma 

45 2D CED  (U-Net+ 

autoencoder

) 

Denoising, bias field 

correction, body 

mask 

5-fold CV DSC (right) = 0.97 ± 

0.015 
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DSC (left) = 0.96 ± 

0.012 

(Hwang and 

Park, 2017) 

X-ray Whole lung Healthy, 

lung nodules 

247 2D U-Net   2-fold CV DSC = 0.980 ± 0.008 

JSC = 0.961 ± 0.015 

Avg HD = 0.675 ± 

0.122mm 

Avg boundary HD = 

1.237 ± 0.702mm 

(Souza et al., 

2019) 

X-ray Whole lung Healthy, 

Tuberculosis 

138 2D ResNet-18 

with FC layer 

Scaled to same input 

size, post processing 

erosion, dilation, 

filtering 

73/27 DSC = 0.936 

JSC = 0.881 

(Dai et al., 

2018) 

X-ray Whole lung Healthy, 

Tuberculosis

, lung 

nodules 

385 2D SCAN 

(structure 

correcting 

adversarial 

network) 

Scaled to same input 

size 

85/15 IoU = 94.7% ± 0.4% 

DSC = 0.973 ± 0.02 

(Wang, 2017) X-ray Whole lung  Healthy, 

lung nodules 

247 2D Multi-task U-

Net 

Scaled to same input 

size, post processing 

hole filling 

NR JSC = 0.959 ± 0.017 

AD = 1.29 ± 

0.80mm 

(Novikov et 

al., 2018) 

X-ray Whole lung Healthy, 

lung nodules 

247 2D InvertedNet 

+ All-

dropout 

Normalised [mean=0, 

SD = 0] 

3-fold CV DSC = 0.974 

JSC = 0.949 
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(Hooda et al., 

2018) 

X-ray Whole lung Healthy, 

Tuberculosis

, lung 

nodules 

385 2D FCN-8 + 

dropout 

Scaled to same input 

size, random 

cropping 

75/25 DSC = 0.959 

(Mittal et al., 

2018) 

X-ray Whole lung Healthy, 

Tuberculosis

, lung 

nodules 

385 2D LF-SegNet Scaled to same input 

size, random 

cropping  

48/52 DSC = 0.951 

(Gaál et al., 

2020) 

X-ray Whole lung Healthy, 

Tuberculosis

, lung 

nodules 

1047 2D Adversarial 

attention U-

Net 

Scaled to same input 

size, CLAHE, 

Normalisation [-1,1] 

24/76 DSC = 0.962 ± 0.04 

(Chen et al., 

2019) 

CT Lung 

tumour 

Lung cancer 134 3D HSN (2D + 3D 

CNN) 

 78/22 DSC = 0.888 ± 0.033 

(Jiang et al., 

2018) 

CT, MRI Lung 

tumour 

Lung cancer 400 

CT (377) 

MRI (23) 

2D Tumour 

aware semi-

supervised 

Cycle-GAN  

Scaled to same input 

size, Image synthesis 

from CT to MRI, body 

mask 

98/2 DSC = 0.63 ± 0.24 

HD95 = 11.65 ± 

6.53 

(Jiang et al., 

2019) 

CT, MRI Lung 

tumour 

Lung cancer 405 

CT (377) 

MRI (28) 

2D Tumour 

aware 

pseudo MR 

and T2w MR 

U-Net 

Scaled to same input 

size, Image synthesis 

from CT to MR, 

Clipped [-1000,500 

HU] and [0,667], 

Normalised [-1, 1] 

95/5 DSC = 0.75 ± 0.12 

HD95 = 9.36 ± 

6.00mm 

VR = 0.19 ± 0.15 
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(Tahmasebi et 

al., 2018) 

MRI Lung 

tumour 

Lung cancer 6 2D Adapted FCN Rescaled 10-95% of 

intensities, 

Normalisation [0,1] 

5-fold CV DSC = 0.91 ± 0.03 

HD = 2.88 ± 0.86 

mm 

RMSE = 1.20 ± 0.34 

(Zhong et al., 

2019b) 

FDG PET, 

CT 

Lung 

tumour  

Lung cancer 60 

PET (60) 

CT (60) 

3D DFCN Co-Seg 

U-Net 

Scaled to same input 

size, Clipped [-

500,200 HU] and 

[0.01,20] 

80/20 DSC (CT) = 0.861 ± 

0.037 

DSC (PET) = 0.828 ± 

0.087 

(Zhao et al., 

2018) 

PET, CT Lung 

tumour  

Lung cancer 84 

PET (84) 

CT (84) 

3D V-Net + 

feature 

fusion 

Cropped to ROI 57/43 DSC = 0.85 ± 0.08 

VE = 0.15 ± 0.14 

(Zhou et al., 

2019) 

 

CT Lung 

tumour 

NR 1350 

 

3D P-SiBA Transfer learning 

from ImageNet 

ILSVRC-2014, 

Cropped to ROI, 

Rescaled by +1000 

HU and dividing by 

3000 and 

Normalisation [0,1] 

NR DSC = 0.809 ± 0.12 

HD = 7.612 ± 

5.03mm 

VS = 0.883 ± 0.13 

(Moriya et al., 

2018) 

Micro CT Lung 

tumour 

Lung cancer 3 3D JULE CNN + 

k-means 

Body mask, patch 

extraction 

 NMI = 0.390 

(Imran et al., 

2020) 

CT Lobes COPD, ILD 563 3D Progressive 

dense V-Net 

 48/52 DSC (n=84) = 0.939 

± 0.02 
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DSC (n=154) = 

0.950 ± 0.007 

DSC (n=55) = 0.934 

(Park et al., 

2020) 

CT Lobes COPD 196 3D U-Net Clipped [-1024,-400 

HU] 

80/20 DSC = 0.956 ± 0.022 

JSC = 0.917 ± 0.031 

Avg HD = 1.315 ± 

0.563mm 

HSD = 27.89 ± 7.50 

(Wang et al., 

2018b) 

CT  Lobes COPD, IPF 1280 3D DenseNet Clipped -1000 to 

+1000 HU, 

Normalisation [0,1] 

 

5-fold CV DSC = 0.959 ± 0.087 

ASD = 0.873 ± 0.61 

mm 

(Hatamizadeh 

et al., 2019) 

CT Lung lesion NR 87 3D DALS CNN Scaled to same input 

size, Normalisation 

[NR] 

90/10 DSC = 0.869 ± 0.113 

HD = 2.095 ± 

0.623mm 

(Kalinovsky et 

al., 2017) 

CT Lung lesion Tuberculosis 338 2D GoogLeNet 

CNN 

Images cropped into 

4 quadrants 

80/20 IoU = 0.95 

ROC = 0.775 

(Gerard et al., 

2019) 

CT Lung 

fissure  

COPD, Lung 

cancer 

5327 3D Two 

Seg3DNets 

Clipped [-1024,-200 

HU], Linear rescaling 

30/70 Avg HD = 1.25mm 

SDSD = 2.87 

(Sandkühler et 

al., 2019) 

MRI Lung 

defect 

region 

NR 35 2D GAE-LAE 

RNN with LCI 

Loss 

Z-normalisation [-

4,4], Lung mask, 

Normalisation [0,1], 

Histogram stretching 

80/20 Qualitative 

evaluation - 42% 

images rated ‘very 

good’, 19% rated 

‘perfect’ 
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(Vakalopoulou 

et al., 2018) 

CT ILD pattern ILD 46 2D AtlasNet  37/63 DSC = 0.677  

HD = 3.981mm 

Avg HD = 1.274mm 

(Anthimopoul

os et al., 2019) 

CT ILD pattern ILD 172 2D FCN-CNN Pre-computed lung 

mask 

5-fold CV Accuracy = 81.8% 

(Park et al., 

2019) 

CT ILD pattern COP, UIP, 

NSIP 

647 2D U-Net  88/12 DSC = 0.988 ± 0.006 

JSC = 0.978 ± 0.011 

Avg HD = 0.27 ± 

0.18mm 

HSD = 25.47 ± 

13.63mm 

(Gao et al., 

2016)  

CT ILD pattern ILD 17 2D CNN based 

CRF unary 

classifier 

Transfer learning 

from ImageNet, Pre-

computed lung mask 

 Accuracy = 92.8% 

 

(Suzuki et al., 

2020) 

CT Diffuse 

lung 

disease 

NR 372 3D U-Net  5-fold CV DSC = 0.780 ± 0.169 

(Wang et al., 

2018a) 

MRI  Foetal lung NR 18 2D BIFSeg P-Net Trained on different 

organs, Image 

specific fine-tuning 

66/33 DSC = 0.854 ± 0.059 

 

(Rajchl et al., 

2017) 

MRI Foetal lung  Healthy, 

IUGR 

55 3D DeepCut 

CNN + CRF 

Bounding box for 

ROI, Bias correction, 

Normalisation 

5-fold CV DSC = 0.749 ± 0.067 
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[mean=0], Transfer 

learning from LeNet 

(Edmunds et 

al., 2019) 

Cone-

beam CT 

Diaphragm  Lung cancer 10 2D Mask R-CNN Scaled to same input 

size 

9-fold CV Mean error = 

4.4mm 

(Wang et al., 

2019)  

CT Airways NR 38 3D Spatial-CNN  

(U-Net) 

Random cropping  92/8 3-fold MCCV DSC = 0.887 ± 0.012 

CO = 0.766 ± 0.06 

(Garcia-Uceda 

Juarez et al., 

2019) 

CT Airways Lung cancer 32 3D U-Net GNN Bounding box for ROI  63/37 DSC = 0.885 

Airway 

completeness = 

74%  

(Yun et al., 

2019) 

CT Airways COPD 89 2D 2.5D CNN Clipped [-700,700 

HU] 

78/22 Mean Branch 

detected = 65.7% 

(Juarez et al., 

2018) 

CT Airways Healthy, CF, 

CVID 

24 3D U-Net Bounding box for ROI 75/25 DSC = 0.8 

Abbreviations: Chronic obstructive pulmonary disorder (COPD), Convolutional neural network (CNN), Idiopathic pulmonary fibrosis (IPF), Hounsfield 

unit (HU), Average Hausdorff distance (Avg HD), Dice similarity coefficient (DSC), Generative adversarial network (GAN), Not reported (NR), Hausdorff 

distance (HD), Jaccard similarity coefficient (JSC), Average boundary Hausdorff distance (Avg boundary HD), HD 95th Percentile (HD95), Percent 

ventilated defect (PVD), Receiver operating characteristic (ROC), Intersection over union (IoU), Average distance (AD),  Relative volume ratio (VR), 

Root mean square error (RMSE), Region of interest (ROI), Classification error (CE), Volume error (VE), Normalised mutual information (NMI), Volumetric 

similarity (VS), Standard deviation of surface distances (SDSD),  Mean average precision (MAP), Centreline overlap (CO), Cross-validation (CV), Leave-

one-out cross-validation (LOOCV), Convolutional deep wide network (CDWN), Contrast limited adaptive histogram equalisation (CLAHE), Cystic fibrosis 

(CF), Interstitial lung disease (ILD), Hausdorff surface distance (HSD), Monte carlo cross-validation (MCCV), Usual interstitial pneumonia (UIP), 

Nonspecific interstitial pneumonia (NSIP), Intrauterine growth restriction (IUGR), Common variable immunodeficiency disorders (CVID), Standard 

deviation (SD), Fluorine-18-fluorodeoxyglucose (FDG). *The training dataset includes internal validation data. 
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CT is the most common modality for clinical lung imaging due to superior spatial resolution, 

rapid scan times and widespread availability. This is reflected in the DL lung segmentation 

literature with the majority of studies to date focusing on CT. For whole-lung segmentation, 

3D networks are often used, whereas in interstitial lung disease (ILD) pattern segmentation, 

only 2D networks have been applied to date. The application often dictates the use of 2D 

and 3D networks; segmentation of the whole lung leads to a volumetric 3D region in which 

features such as overall lung shape, or the position of the trachea can be encoded. In 

contrast, segmenting ILD patterns is often conducted on central 2D slices; hence, a 2D 

network may be more appropriate as, in this approach, no features are conserved between 

slices (Anthimopoulos et al., 2019; Park et al., 2019). Across the CT papers reviewed, both 

the median and mode training/testing data splits were 80/20%, with many using k-fold cross-

validation with less than 50 patients. Even as an independent testing set, using only 5-10 

patients for testing limits generalisability. Moreover, some studies cite the number of images 

or 2D slices rather than the number of subjects. If data from the same subject is included in 

both the testing and training phases, it is likely that the algorithm has already seen a similar 

slice from the same patient as the individual data points are spatially correlated and do not 

strictly represent independent data points.  

 

The Dice similarity coefficient (DSC) overlap metric is the most common evaluation metric 

used. Most studies tackling whole-lung segmentation report DSC values above 0.90, with 

some achieving values above 0.98. For other pulmonary ROIs, the highest DSC values 

reported are often lower (e.g. DSC (airways) » 0.85). However, overlap metrics such as the 

DSC can be insensitive to errors in large volumes as the percent error is low compared to 

the overall pixel count (Taha and Hanbury, 2015). Frequently, high DSC values are reported 

despite errors that require significant manual intervention before a segmentation is clinically 

useful. As the airways occupy smaller volumes, the DSC metric is more sensitive. In terms 

of Hausdorff-based distance metrics, whole-lung segmentation studies report HD95 values 

»10mm; however, (Dong et al., 2019) report a HD95 as low as 2.249±1.082mm averaged 

across both lungs. The lack of a standardised evaluation metric can make direct 

comparisons between different methods challenging.  

 

Image segmentation is challenging to evaluate. Currently, manual segmentations by expert 

observers are used as the gold standard; however, it is well-known that expert 
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segmentations are susceptible to inter-observer variability (Mukesh et al., 2012). Often, only 

one observer segments all the images in a training dataset; hence, if a different observer 

segments the testing images, the algorithm may not perform as expected. This poses 

problems for widespread generalisation if certain biases in segmentation are preserved as 

there is no clear ‘true’ expert segmentation; therefore, differences in DL segmentations and 

expert segmentations may not be solely the result of DL errors. Most expert segmentations 

are conducted using semi-automatic software and image editing tools; the tools given to the 

user can convey a propensity for features, such as smooth lung borders, which may, in fact, 

be inaccurate. In other anatomical sites such as the liver, a DSC of 0.95 was obtained by 

DL; the inter-observer variability for the DL approach was 0.69% compared to 2.75% for 

manual expert observers (Chlebus et al., 2019). The low degree of inter-observer variability 

in DL segmentations may be a positive step towards consistent segmentations between 

institutions. Using multiple expert segmentations and averaging the error may reduce inter-

observer variability effects; however, this is unlikely to be widely adopted due to the time 

required. In addition, medical imaging grand challenges can provide diverse data from 

multiple institutions with corresponding expert segmentations, limiting the extent of 

individual researcher bias. 

 

There are limited studies to date regarding pulmonary MRI segmentation, attributable 

perhaps to less widespread clinical use of the modality and lack of large-scale annotated 

pulmonary MRI datasets. However, pulmonary MRI techniques, such as contrast-enhanced 

lung perfusion MRI and hyperpolarised gas ventilation MRI, can provide further insights into 

pulmonary pathologies currently not possible with alternative techniques (Woodhouse et al., 

2005). Quantitative biomarkers derived from hyperpolarised gas MRI, including the 

ventilated defect percentage, require accurate segmentation of ventilated and whole-lung 

volumes which can be very time consuming when performed manually. Example images of 

DL-based hyperpolarised gas MRI segmentations are provided in Figure 3.7. (Tustison et 

al., 2019) used CNNs to provide fast, accurate segmentations for hyperpolarised gas and 

proton MRI (Tustison et al., 2019). A 2D U-Net was used for hyperpolarised gas MRI 

segmentation whilst a 3D U-Net was used for proton MRI segmentation. They introduced a 

novel template-based data augmentation method to expand the limited lung imaging data. 

Hyperpolarised gas and proton MR images were segmented with DSC values of 0.94±0.03 

and 0.94±0.02, respectively. Research evaluated a DL-based proton MRI segmentation 
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network, which yielded an average DSC of 0.965 across both lungs, outperforming 

conventional region growing and k-means techniques (Zha et al., 2019). 

 

 
Figure 3.7 Example images from the authors’ own work using deep learning for hyperpolarised gas 
MRI segmentation. The 1 2 9Xe MR ventilation images are taken from three subjects in a testing set, 

a healthy volunteer, asthma patient and cystic fibrosis patient. The patient images selected are 
characterised by significant ventilation defects. These are compared to expert segmentations of 

the same image. Dice similarity coefficient (DSC) values are displayed for all images. 

Although the majority of segmentation studies reviewed used CT and MRI, early studies 

focused on X-ray segmentation (Wang, 2017; Hwang and Park, 2017). This was due to the 

public availability of large-scale, annotated X-ray datasets, such as the Japanese Society of 

Radiological Technology (JSRT) (Shiraishi et al., 2000) and Montgomery (Jaeger et al., 

2014) datasets, enabling researchers to experiment with large numbers of images not 

previously accessible. The majority of X-ray studies reviewed used these datasets, making 

comparisons between methods more applicable (Hooda et al., 2018; Mittal et al., 2018; 

Novikov et al., 2018; Souza et al., 2019; Wang, 2017; Dai et al., 2018). 

3.6.3 Registration 

Image registration is the process of transforming a moving image onto the spatial domain of 

a fixed image. Registration is used in numerous applications within the lung imaging field, 
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including adaptive radiotherapy (Moro et al., 2013), computation of functional lung metrics 

such as the VDP (Hughes et al., 2018) and generation of surrogates of regional lung function 

from multi-inflation CT (Tahir et al., 2018) or 1H MRI (Bauman et al., 2009). However, most 

image registration algorithms assume that the moving and fixed images’ topology are the 

same. This is not always the case in lung imaging as often functional images do not follow 

the same topology as structural images, especially in individuals with severe pathologies 

where functional lung images may show substantial heterogeneity (Tahir et al., 2016). 

Studies concerning DL-based pulmonary registration are summarised in Table 3.4 

 

(Eppenhof and Pluim, 2019) built upon previous work (Lafarge et al., 2018) using publicly 

available datasets to directly map displacement vector fields from inspiratory and expiratory 

CT pairs using a 3D U-Net with extensive data augmentation. Synthetic transforms were 

used to directly train the network as the deformation fields are known. The approach 

achieved fast, accurate registrations, reducing mean TRE from 8.46mm to 2.17mm. The 

results are further validated using landmarks from multiple observers, indicating the level of 

inter-observer variability. Notwithstanding, only 24 images for testing and training were used, 

limiting the study’s generalisability. In addition, synthetic transforms do not directly represent 

real transforms likely found in patients. Other approaches use a CNN to learn expressive 

local binary descriptors from landmarks before applying Markov random field registration 

(Blendowski and Heinrich, 2019). This is compared to a method using handcrafted local 

descriptors with high self-similarity, facilitating faster computation. The results suggest that 

a combination of both CNN-learned descriptors and handcrafted features produce the best 

registration results. 

 

In a generic registration approach, a U-Net-like architecture with a differentiable spatial 

transformer that can register both X-ray and MR images was used (Ferrante et al., 2018). 

The algorithm was evaluated using the contour mean distance (CMD). CMD was 

approximately 5mm on average across the testing data. Whilst this is a less accurate 

registration than other methods reviewed, it is more broadly applicable; the generic algorithm 

(in this case trained on X-ray and MR images) can learn features that are independent of 

modality. By fixing these weights and adding additional layers, transfer learning can then be 

applied to a specific modality; the additional data across modalities may lead to improved 

results (Tajbakhsh et al., 2016).
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Table 3.4 Summary of reviewed studies using deep learning for lung image registration. 

Study Modality Disease Public 

dataset 

Number 

of 

subjects 

Dimensions Architecture Pre-processing Percentage data 

split 

(training*/testing) 

Performance 

(Lafarge et 

al., 2018) 

4DCT Lung 

cancer  

DIR-LAB, 

CREATIS 

17 3D Modified 

VGG 

Synthetic DVFs for 

data augmentation 

42 (CREATIS) / 

58 (DIR-LAB)  

TRE = 4.02 ± 3.08 

(Eppenhof 

and Pluim, 

2019) 

4DCT 

 

Lung 

cancer  

DIR-LAB, 

CREATIS 

17 3D Modified U-

Net  

Synthetic DVFs for 

data augmentation, 

Resised, Pre-

computed body 
mask, mask < -250 

HU  

42 (CREATIS) / 

58 (DIR-LAB) 

TRE = 2.17 ± 

1.89mm 

(Ali and 

Rittscher, 

2019) 

4DCT Lung 

cancer  

DIR-LAB, 

CREATIS 

17 2D Conv2Wrap 

(Linear and 

Deformable 

ConvNet) 

 58 (DIR-LAB) / 42 

(CREATIS) 

DSC = 0.90 

JSC = 0.84 

(Sentker et 

al., 2018) 

4DCT Lung 

cancer  

DIR-LAB, 

CREATIS 

86 3D GDL-FIRE4D 

U-Net with 
VarReg 

Normalisation [0,1], 

Cropped to same 
input size, pre-

computed body mask 

69 / 31 (DIR-LAB, 

CREATIS, In 
house) 

TRE (DIR-LAB) = 

2.50 ± 1.16mm 
TRE (CREATIS) = 

1.74 ± 0.57mm  

(Fechter 

and Baltas, 

2020) 

4DCT Lung 

cancer  

DIR-LAB, 

CREATIS, 

Sunnybrook 

31 3D U-Net one-

shot learning  

Pre-computed body 

mask, Normalisation 

[mean=0, SD=1] 

LOOCV (DIR-

LAB)  

0 / 100 

(CREATIS) 

TRE (DIR-LAB) = 

1.83 ± 2.35mm 

TRE (CREATIS) = 

1.49 ± 1.59mm 
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(Fu et al., 

2020) 

4DCT Lung 

cancer  

DIR-LAB 20 3D LungRegNet 

(CourseNet, 

FineNet) 

Vessel 

enhancement, 

Clipped at -700 HU 

5-fold CV, DIR-

LAB testing 

MAE (in house) = 

52.1 ± 18.4 

TRE (in house) = 

1.00 ± 0.53 
TRE (DIR-LAB) = 

1.59 ± 1.58mm 

(Jiang et 

al., 2020) 

4DCT Lung 

cancer  

DIR-LAB, 

SPARE 

32 3D MJ-CNN Clipped [-1000,-200 

HU], Normalisation 

[0,0.2] 

75 (SPARE, DIR-

LAB) / 25 (DIR-

LAB) 

TRE = 1.58 ± 

1.19mm 

(de Vos et 

al., 2019) 

4DCT, 

CT 

Lung 

cancer  

DIR-LAB, 

NLST 

2070 3D DLIR 

framework 
ConvNet 

Clipped [-1000,-200 

HU], Normalisation 
[0,1] 

99 (NLST) / 1 

(NLST, DIR-LAB) 

DSC (NLST) = 0.75 ± 

0.08 
HD (NLST) = 19.34 ± 

13.41 

TRE (DIR-LAB) = 

5.12 ± 4.64mm 

(Sokooti et 

al., 2017) 

CT COPD  19 3D RegNet CNN Synthetic DVFs for 

data augmentation, 

Initial affine 

registration 

63/37 

(SPREAD) 

TRE = 4.39 ± 

7.54mm 

 

(Sokooti et 

al., 2019) 

CT, 

4DCT 

Lung 

cancer, 

COPD 

SPREAD, 

DIR-LAB 

39 3D RegNet 

CNN, U-Net 

Synthetic DVFs for 

data augmentation, 

Initial affine 

registration 

54 (SPREAD, 

DIR-LAB COPD) / 

46 (SPREAD, 

DIR-LAB) 

TRE (DIR-LAB) = 

1.86 ± 2.12mm 

(Blendowsk

i and 

CT COPD  DIR-LAB 10 3D CNN Cropped to lung 

region 

LOOCV 

(DIR-LAB) 

TRE = 3.00 ± 

0.48mm 
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Abbreviations: Target registration error (TRE), Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), Mean absolute error (MAE), Area 

under curve-receiver operator characteristic (AUC-ROC), Mean absolute differences (MAD), Contour mean distance (CMD), Visual geometry group 

(VGG), Markovian random field (MRF), Cross-validation (CV), Leave-one-out cross-validation (LOOCV), Hausdorff distance (HD), Mean contour 

distance (MCD), Chronic obstructive pulmonary disorder (COPD), Convolutional neural network (CNN), Deep learning image registration (DLIR), 

Hounsfield unit (HU).  *The training dataset includes internal validation data.

Heinrich, 

2019) 

 

(Qin et al., 

2019) 

CT, 

MRI 

COPD  COPDGene 1000 2D UMDIR-

LaGAN 
 

Cross modality 

registration, 
deformed to domain 

invariant latent space 

90/10  

(COPDGene) 

DSC = 0.967 ± 0.03 

HD = 8.257 ± 
4.43mm 

MCD = 0.71 ± 

0.44mm 

(Galib et 

al., 2020) 

CT, 

CBCT 

Healthy, 

COPD, 

Lung 

cancer 

DIR-LAB, 

VCU 

27 3D CNN Normalisation [0,1] 37 (DIR-LAB) / 

63(VCU) 

AUC-ROC = 0.882 ± 

0.11 CI = 68% 

(Ferrante et 

al., 2018) 

X-ray Healthy, 

Lung 

nodule 

JSRT 247 2D U-Net Normalisation [0-1], 

Domain adaption 

Cardiac MR 

81/19  

(JSRT) 
MAD » 6.3 

CMD » 5 mm 

DSC » 0.9 

(Mahapatra 

et al., 2018) 

X-ray Multiple  NIH-

ChestXray14 

420 2D JRSNet 

(cycleGAN 

with U-Net) 

Joint segmentation 

and registration 

NR 

(SCR, NIH-

ChestXray14) 

TRE = 7.75mm 

(Stergios et 

al., 2018) 

MRI Systemic 

sclerosis, 

healthy 

 41 3D CNN + 

transformatio

n layer 

Clipped [0, 1300], 

Normalisation [0,1] 

68/32 DSC = 0. 915 ± 2.33 

Euclydian error = 

4.358mm 
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3.6.4 Reconstruction 

Image reconstruction is the process of generating a usable image from the raw data 

acquired by a scanner. CT and SPECT reconstruction use different reconstruction 

algorithms to MRI. DL-based CT reconstruction, as with segmentation, is further developed 

than DL-based MRI reconstruction applications. CT and SPECT reconstruction use analytic 

(e.g. filtered back-projection) or iterative algorithms to produce 3D images from projections 

taken at multiple angles around a subject. MRI reconstruction, in contrast, produces images 

by transforming raw k-space data via Fourier transforms. Full details of image reconstruction 

methods have been described elsewhere (Willemink and Noel, 2019; Ye, 2019) Studies 

describing DL-based lung image reconstruction applications are summarised in Table 3.5.  

 

CT/SPECT images can be reconstructed accurately using Monte-Carlo based iterative 

reconstruction (Norberg et al., 2007); however, this process is computationally expensive 

and time-consuming (El Bitar et al., 2006). In addition, multiple studies have demonstrated 

the success of analytical methods such as filtered-back projection (Willemink and Noel, 

2019). Building upon this, CNNs have been used to speed up the process of filtered back-

projection to shorten reconstruction times (Dietze et al., 2019). The results suggest DL can 

accurately reconstruct SPECT images in under 10 seconds. Furthermore, the authors 

compare clinical metrics, such as the lung shunting fraction (LSF), between methods in a 

specific time frame. DL produced an LSF of 4.7% comparable to 5.8% for Monte-Carlo 

methods, indicating the potential for use in clinical applications (Dietze et al., 2019). Multiple 

studies have employed DL for MRI reconstruction (Hammernik et al., 2018) but only one 

published study has applied it to pulmonary MRI (Duan et al., 2019). MRI of the lungs can 

take upwards of 10 seconds to acquire, often requiring that patients maintain inflation levels 

for a significant period; this can be particularly challenging for patients with severe lung 

pathologies. Compressed sensing can be used to reconstruct randomly undersampled k-

space in conjunction with regularisation methods to produce accurate reconstructions in 

hyperpolarised gas MRI (Ajraoui et al., 2010; Sheikh et al., 2016) and enables reduced 

acquisition time without significantly reducing image quality. A coarse-to-fine neural network 

has been proposed to yield an accurate hyperpolarised gas MRI scan with an accelerating 

factor of 8 (undersampled 1/8 of k-space) (Duan et al., 2019). The method can also improve 

inherent spatial co-registration accuracy when acquiring proton and hyperpolarised gas MRI 
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in the same breath (Wild et al., 2011), possibly alleviating the need for substantial post-

acquisition image registration.  

 

Tangentially related to the goal of image reconstruction, images can also be improved 

further using image enhancement at the post-acquisition stage. Multiple studies have shown 

the effectiveness of using CNNs combined with gradient regularisation and super-resolution 

modules to enhance low-dose CT images with noise and artefacts, potentially limiting 

radiation exposure without degrading image quality (Gou et al., 2019; Umehara et al., 2018). 

3.6.5 Synthesis 

Image synthesis, also referred to as regression, is the process of generating artificial images 

of unknown target images from given source images. Synthesis has been applied to a range 

of applications, such as generating functional or metabolic images from structural images. 

For example, estimating contrast-based functional images from routinely acquired non-

contrast structural modalities reduces the need for additional scans, specialised equipment 

and administration of contrast agents. Even within traditional model-based techniques, 

accurate synthesis has proved challenging due to the complex mathematical functions 

mapping input to output images. Studies describing DL-based lung image synthesis 

applications are summarised in Table 3.6.  

 

The development of DL architectures such as GANs enables a more unsupervised 

approach, which lends itself to the complex problem of synthesis (Kazeminia et al., 2018).  

DL has been used to generate synthetic fluorine-18-fluorodeoxyglucose (FDG) PET images 

from CT images via a GAN (Bi et al., 2017). The GAN’s inputs were varied to include either 

a CT image, label, or both CT and corresponding label; the multi-channelled GANs (M-GAN) 

provided the most accurate synthetic PET images, demonstrating that multiple inputs 

increase synthesis accuracy. To explore this further, the authors also evaluate the synthetic 

PET images by feeding them into a network as training data. The network aims to delineate 

tumours by learning relationships from the training data; the data was then divided into real 

PET images and synthetic PET images. The trained model was then evaluated on unseen 

tumour detection problems. The synthetic PET-trained network produced 2.79% lower recall 

accuracy. This indicates that, as a whole, the synthetic PET images are closely related to 

the real images in terms of tumour identification. The paper posits that synthetic PET images 
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can be used as additional training data in other DL tasks. However, it is unclear if synthetic 

PET images can be used in treatment planning and other clinical tasks with this level of 

accuracy (Bi et al., 2017). GANs have continued to show promise in synthesis problems 

(Jang et al., 2019). CT images have been used to generate SPECT images via a conditional 

GAN (cGAN) instead of a CNN (Ren et al., 2019). The method used a 2D GAN with 49 

patients consisting of 3054 2D images as training data; the testing data contains five 

patients. cGANs differ from the regular GAN architecture by using both the observed image 

and a random noise vector, mapping these to the output image instead of only the noise 

vector. The generator used is based on the U-Net architecture with multiple inputs. Synthetic 

and real SPECT images were compared using the multiscale structural similarity index 

measure (MS-SSIM), yielding MS-SSIM=0.87. Further analysis used a Gamma index with 

a passing rate of 97.7±1.2% with 2%/2mm. The authors note qualitatively that errors occur 

more frequently at the base of the lungs, possibly caused by the increased deformation in 

this region. A key limitation for synthesis methods is the errors introduced by the registration 

of source and target images. Consequently, it has been suggested that images that are not 

matched anatomically due to breathing discrepancies are excluded (Jang et al., 2019). 

complicating validation for clinical adoption (Jang et al., 2019; Ren et al., 2019).  

 

A major application of DL image synthesis is for MR-guided radiotherapy. The current 

paradigm in radiotherapy is to derive electron density information required for dose 

calculations directly from CT scans; MRI does not directly provide this information. DL has 

been invoked to generate pseudo-CT images for use in MR-guided stereotactic body 

radiotherapy using GANs, precluding the need for CT (Olberg et al., 2018). (Zhong et al., 

2019a) used a CNN to synthesise ventilation images from 4DCT scans. Whilst good 

performance was observed, the major limitation of this study is that the target images in the 

training phase were CT-based surrogates of ventilation generated from aligned inspiratory 

and expiratory CT scans via deformable registration and computational modelling. These 

images are still the subject of intense validation efforts (Kipritidis et al., 2019). Using more 

direct measures of regional lung function, such as hyperpolarised gas MRI, and larger 

datasets are critical to the success of future work in structure-to-function DL synthesis 

applications.  
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Table 3.5 Summary of reviewed studies using deep learning for lung image reconstruction. 
Study Modality Disease Number of 

patients 
Dimensions Architecture Pre-processing Percentage data split 

(training*/testing) 
Performance 

(Beaudry 

et al., 

2019) 

4D Cone 

beam CT 

Lung cancer 16 2D Sino-Net 

(Modified U-

Net) 

Cropped to same input 

size, Sinogram 

Normalisation [0,1]  

88/12 RMSE Translational = 

1.67mm 

 
(Lee et 

al., 2019) 

CT COPD 60 2D FCN No sinogram used Dataset 1: 80/20 

Dataset 2: 40/60 

Mean RMSE (Dataset 

1) = 65.7 ± 15.8% 

Mean RMSE (Dataset 

2) = 59.6 ± 5.5% 

(Ge et al., 

2020) 

CT Liver lesion 5413 2D ADAPTIVE-

NET CNN 

Convert from HU to 

linear attenuation 

coefficient 

90/10 PSNR = 43.15 ± 1.9 

SSIM = 0.968 ± 0.013 

Normalised RMSE = 

0.0071 ± 0.002 
(Duan et 

al., 2019) 

HP Gas 

MRI 

COPD, 

nodule, PTB, 

healthy, 

asthma 

72 2D C-Net and F-

Net (U-Net 

based) 

Under sampled K-space 

(AF =4), Removed SNR 

below 6.6, Normalisation 

[0,1] 

NR MAE = 4.35% 

SSIM = 0.7558 

VDP bias = 0.01 ± 

0.91% 

(Dietze et 

al., 2019) 

99mTc-MAA 

SPECT 

Liver Cancer 128 2D CNN Initial filtered back 

projection 

94/6 LSF = 5.1% 

CNR = 12.5 

Abbreviations: Root mean square error (RMSE), Structural similarity index metric (SSIM), Mean absolute error (MAE), Volume defect percentage (VDP), 

Lung shunting fraction (LSF), Contrast to noise ratio (CNR), Electrical impedance tomography (EIT), Peak signal to noise ratio (PSNR), Ventilation 

defect percentage (VDP), Convolutional neural network (CNN|), Chronic obstructive pulmonary disorder (COPD), Pulmonary tuberculosis (PTB), 

Hounsfield unit (HU), Technetium-99m macroaggregated albumin (99mTc-MAA). *The training dataset includes internal validation data.
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Table 3.6 Summary of reviewed studies using deep learning for lung image synthesis. 
Study Modality 

(original Þ  target) 

Disease Number of 

subjects 
Dimensions Model Pre-processing Percentage data 

split 
(training*/testing) 

Performance 

(Bi et 

al., 

2017) 

CT Þ FDG PET Lung 

cancer 

50 2D Multichann

el-GAN (U-
Net) 

Manual segmentation of 

tumour/lymph nodes, axial 
slices with tumours only 

50/50 MAE = 4.6 

PSNR = 28.06 

(Jang et 

al., 

2019) 

CT Þ 99mTc-MAA 

SPECT perfusion 

Lung 

cancer 

54 2D Conditional 

GAN 

Resized images, 

segmentation and 

removal of bone, soft 

tissue and heart  

91/9  MS-SSIM = 0.87 

Gamma index 

2%/2mm = 97.7% ± 

1.2% 
(Zhong 

et al., 

2019a) 

4DCT Þ  CT 

ventilation 

Lung 

cancer, 

COPD 

82 2D Deep CNN Images cropped to ROI 10-fold CV MSE = 7.6% 

Gamma index 

5%/5mm = 80.6% ± 

1.4% 

SSIM = 0.880 ± 0.035 

(Liu et 

al., 

2020) 

4DCT Þ 99mTc-

Technegas SPECT 

ventilation 

Lung 

cancer, 

oesophag

eal cancer 

50 2D U-Net Pre-computed lung mask, 

normalisation [0,1], post-

processing normalisation 

[90th percentile] 

10-fold CV Spearman’s ρ = 0.73 ± 

0.17 

DSC = 0.73 ± 0.09 

(Ren et 

al., 

2019) 

CT Þ 99mTc-MAA 

SPECT perfusion 

Lung 

cancer 

30 3D U-Net Clipped [-1000,-300 HU] 

for segmentation, 
normalisation [0,1] 

83/17 Correlation coefficient  

= 0.53 ± 0.14 
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(Preisw

erk et 

al., 

2018) 

Ultrasound Þ  MRI NR 7 3D LRCN PCA = 10 components 66/33 (conducted 

in time segments) 

SSE = 39.0 ± 12 

(Olberg 

et al., 

2018) 

MRI Þ CT NR 41 NR GAN  

(U-Net)  

Normalisation [NR], pre-

computed body mask  

90/10 3D Gamma index 

passing rate 99.2% 

Lung V20% difference 

= 0.11% 

(Ren et 

al., 

2022) 

CT Þ SPECT Lung 

cancer 

170 3D UNet Clipped [-1000, -300 HU], 

transfer learning 

3-fold CV Voxel-wise 

Spearman’s 

correlation = 0.64 

(Capaldi 

et al., 

2020) 

MRI Þ HP gas MRI Various 114 2D UNet Normalisation [0, 255] 6-fold CV Pearson correlation = 

0.87 

Abbreviations: Fluorine-18-fluorodeoxyglucose (FDG), Mean absolute error (MAE), Peak signal to noise ratio (PSNR), Technetium-99m 

macroaggregated albumin (99mTc-MAA), Multi-scale structural similarity index metric (MS-SSIM), Mean square error (MSE), Sum of squared error 

(SSE), Generative adversarial network (GAN), Convolutional neural network (CNN), Not reported (NR), Principle component analysis (PCA), Hounsfield 

unit (HU), Region of interest (ROI), Long-term recurrent convolutional network (LRCN), Chronic obstructive pulmonary disease (COPD), Hyperpolarised 

(HP). *The training dataset includes internal validation data.
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3.7 Future research directions 

The studies reviewed show that DL has significant potential to outperform more traditional 

methods in a wide range of lung image analysis applications. Novel ways of using DL to 

synthesise more training examples (Salehinejad et al., 2019) or combine segmentation and 

registration in one process (Mahapatra et al., 2018) have been shown to enhance 

performance. The scope of such innovation is still in its infancy, providing an opportunity for 

novel technical developments. As shown through the improved performance observed by 

combining traditional approaches with machine learning and DL for registration, great 

synergy can be achieved by combining DL and conventional image processing approaches 

(Blendowski and Heinrich, 2019).  

 

In image synthesis, researchers have developed techniques to synthesise CT images from 

MRI scans of the brain (Nie et al., 2016); similar advancements in lung imaging would allow 

patients to receive less radiation exposure as well as reduce the cost and time for additional 

scans. Using synthesis to generate functional lung images from routinely acquired structural 

images would allow clinicians to understand which areas of the lungs are ventilated or 

perfused without the need to acquire dedicated functional scans, which often require 

contrast agents and specialised equipment, reducing costs and acquisition times. Such 

applications require further DL research in architectural development and the input of lung 

imaging experts. Using DL for CT enhancement to reduce radiation dose or improve 

compressed sensing methods in MRI has the potential to reduce scan times, improving 

image quality and patient compliance.  

 

However, in relation to image synthesis, there are important considerations which must be 

addressed before widespread clinical translation. Numerous challenges exist, including the 

ability to reliably generate synthetic surrogates, which limits its usefulness as a diagnostic 

tool in image analysis applications. Many research studies report inconsistent results on 

datasets of limited size, precluding their translation. In addition, this unreliability in 

conjunction with the lack of explainability reduces trust in synthetic images. This is 

particularly a concern in applications where information not present in the input images must 

be generated by the neural network as this can lead to the addition of incorrect information. 
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Thus, it is likely that DL-based synthesis solutions will mainly be used in a triaging capacity 

rather than as a specific diagnostic tool. 

 

Promising results have been shown for both proton MRI and hyperpolarised gas MRI 

segmentation (Tustison et al., 2019); however, further work is required to demonstrate 

accurate MRI segmentation in an independent multicentre validation. The importance of 

collaborative research to boost training data and inject heterogeneity of centre and scanner 

will lead to more robust and generalisable models. The paucity of published DL studies in 

functional lung imaging (only 12.9% of reviewed studies here) provides significant 

opportunities for innovations and further research in this field. 

 

The literature on CT segmentation provides a positive picture of the success of DL methods 

in providing fast, accurate automatic segmentations. However, producing impressive results 

in a research setting is no substitute for clinical validation. Long-term clinical case studies 

are required with large numbers of patients before these novel developments have a real 

impact. The ‘black box’ nature of DL methods and the lack of explainability of generated 

outputs can undermine clinicians and patients’ trust, despite, or even because of, an 

unprecedented level of hype. Another challenge is transparency; although most software 

used for DL is well documented and open source, a requirement for continued use, the open-

source nature also generates safety concerns relating to software edits and bugs. 

Developing a standardised literature consensus on validation and evaluation procedures is 

key to ensuring transparency. All of these challenges need to be overcome before DL can 

live up to its full potential. 

3.8 Conclusion 

We have reviewed the role of DL for several lung image analysis tasks, including 

segmentation, registration, reconstruction and synthesis. CT-based lung segmentation was 

the most prevalent application where exceptional performance has been demonstrated. 

However, research in other applications and modalities, including functional lung imaging, 

is still in its infancy. A concerted effort from the research community is required to develop 

the field further. Before widespread clinical adoption is achievable, challenges remain 

concerning validation strategies, transparency and trust. 
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Chapter 4  
Large-scale investigation of deep learning approaches 
for ventilated lung segmentation using multi-nuclear 

hyperpolarised gas MRI 
 

 
Respiratory diseases are leading causes of mortality and morbidity worldwide. 
Pulmonary imaging is an essential component of the diagnosis, treatment planning, 
monitoring, and treatment assessment of respiratory diseases. Insights into 
numerous pulmonary pathologies can be gleaned from functional lung MRI 
techniques. These include hyperpolarised gas ventilation MRI, which enables 
visualization and quantification of regional lung ventilation with high spatial 
resolution. Segmentation of the ventilated lung is required to calculate clinically 
relevant biomarkers. Recent research in deep learning (DL) has shown promising 
results for numerous segmentation problems. Here, we evaluate several 3D 
convolutional neural networks to segment ventilated lung regions on hyperpolarised 
gas MRI scans. The dataset consists of 759 helium-3 (3He) or xenon-129 (129Xe) 
volumetric scans and corresponding expert segmentations from 341 healthy 
subjects and patients with a wide range of pathologies. We evaluated segmentation 
performance for several DL experimental methods via overlap, distance and error 
metrics and compared them to conventional segmentation methods, namely, spatial 
fuzzy c-means (SFCM) and K-means clustering. We observed that training on 
combined 3He and 129Xe MRI scans using a 3D nn-UNet outperformed other DL 
methods, achieving a mean±SD Dice coefficient of 0.963±0.018, average boundary 
Hausdorff distance of 1.505±0.969mm, Hausdorff 95th percentile of 5.754±6.621mm 
and relative error of 0.075±0.039. Moreover, limited differences in performance were 
observed between 129Xe and 3He scans in the testing set. Combined training on 129Xe 
and 3He yielded statistically significant improvements over the conventional methods 
(p<0.0001). In addition, we observed very strong correlation and agreement between 
DL and expert segmentations, with Pearson correlation of 0.99 (p<0.0001) and 
Bland-Altman bias of -0.8%. The DL approach evaluated provides accurate, robust 
and rapid segmentations of ventilated lung regions and successfully excludes non-
lung regions such as the airways and artefacts. This approach is expected to 
eliminate the need for, or significantly reduce, subsequent time-consuming manual 
editing. 
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4.1 Preface 

The majority of the material in this chapter was originally published as a full-length article in 

the journal Nature Scientific Reports:  
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Eaden J.A., Weatherley N.D., Hatton M.Q., Wild J.M. and Tahir B.A. (2022). Large-
scale investigation of deep learning approaches for ventilated lung segmentation 
using multi-nuclear hyperpolarized gas MRI. Scientific Reports 12, 10566. 
https://doi.org/10.1038/s41598-022-14672-2.  

 

This article was published under an Open Access Creative Commons Attribution 4.0 

International License, which permits use, sharing, adaptation, distribution and reproduction 

in any medium or format (https://creativecommons.org/licenses/by/4.0/). Slight modifications 

have been made to the published version. The work contained within this chapter has also 

been published as conference proceedings at the following conferences: 
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Astley J.R., Biancardi A.M., Hughes P.J.C., Smith L.J., Marshall H., Mussell G.T., 
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Los Angeles, CA, USA. 
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Astley J.R., Biancardi A.M., Hughes P.J.C., Smith L.J., Marshall H., Collier G.J., 
Eaden J.A., Weatherley N.D., Wild J.M. and Tahir B.A. (2021). Comparison of 3D 
deep convolutional neural networks and loss functions for ventilated lung 
segmentation using multi-nuclear hyperpolarized gas MRI. The international society 
for magnetic resonance in medicine (ISMRM) 2021. Online. 

 
Astley J.R., Biancardi A.M., Hughes P.J.C., Marshall H., Eaden J.A., Weatherley N., 
Collier G.J., Wild J.M. and Tahir B.A. (2021). Comparison of 3D deep convolutional 
neural networks and training strategies for ventilated lung segmentation using multi-
nuclear hyperpolarized gas MRI. American association of physicists in medicine 
(AAPM) 2021. Online. 

 
Additional material that could not be included within the journal article or within conference 

proceedings is also contained within this chapter. 

4.1.1 Author contributions 

J.R.A., J.M.W. and B.A.T. made substantial contributions to the conceptualisation of the 

work. A.M.B., P.J.C.H., H.M. L.J.S., G.J.C., J.A.E., N.D.W., M.Q.H., J.M.W. and B.A.T. were 

involved with patient recruitment, image acquisition and/or generating expert 

segmentations. J.R.A. performed the deep learning experiments, interpreted data, and 

conducted statistical analyses. J.R.A. drafted the manuscript. B.A.T. substantively revised 

the manuscript. All authors reviewed and approved the submitted manuscript. 

4.2 Introduction  

Respiratory diseases are leading causes of mortality and morbidity worldwide with 339 

million experiencing asthma, 65 million people with chronic obstructive pulmonary disease 

(COPD) (Vos et al., 2017; GBD15 et al., 2016) and 1.8 million new lung cancer cases 

diagnosed every year (Torre et al., 2015). Pulmonary imaging, using various modalities, is 

an essential part of the diagnosis, treatment planning, monitoring, and treatment 

assessment of respiratory diseases. The acquisition, processing, and interpretation of 

pulmonary images are critical components of patient management and are essential in 

reducing mortality and morbidity.  

 

Currently, computed tomography (CT) is the clinical gold standard for pulmonary imaging 

due to its exceptional spatial and temporal resolution, and its ubiquitous availability. CT is a 
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structural imaging modality that provides exquisite detail of morphological changes in the 

lung parenchyma but employs ionising radiation. Although proton magnetic resonance 

imaging (1H MRI) has historically been susceptible to the low proton density in lungs, recent 

advances in pulse sequences and hardware with ultra-short and zero echo times have 

enabled 1H MRI to compete with CT with the added benefit of no ionising radiation (Togao 

et al., 2010; Bae et al., 2019). However, whilst structural imaging modalities facilitate the 

assessment of changes in lung tissue density, they do not directly provide an accurate 

picture of regional lung function.  

 

Although nuclear imaging modalities such as single-photon emission computed tomography 

(SPECT) can provide regional lung function information (Petersson et al., 2007), they require 

harmful ionising radiation, reducing the ability to conduct regular scans during clinical care. 

This is particularly important when imaging children, as developing tissue is more sensitive 

to ionising radiation. Moreover, SPECT is limited by poor temporal and spatial resolution 

and images acquired using 99mTc-diethylenetriamine pentaacetate (DTPA) aerosols, one of 

the most commonly used radiotracers for ventilation imaging with SPECT, are subject to 

clumping artefacts (Petersson et al., 2007; Yuan et al., 2011). In contrast, unparalleled 

insights into respiratory diseases can be gleaned from non-ionising functional lung MRI 

modalities, such as dynamic contrast-enhanced lung perfusion MRI and hyperpolarised gas 

ventilation MRI. Hyperpolarised gas MRI provides visualisation and quantification of regional 

lung ventilation with high spatial resolution within a single breath (Fain et al., 2007). 

Quantitative biomarkers derived from this modality, including the ventilated defect 

percentage (VDP) and coefficient of variation, provide further insights into regional 

ventilation (Woodhouse et al., 2005; Tzeng et al., 2009; Hughes et al., 2019). To facilitate 

the computation of such biomarkers, segmentation of ventilated regions of the lungs is 

required (Tustison et al., 2011). 

 

Previous approaches for hyperpolarised gas MRI ventilation segmentation employed 

classical image processing and machine learning approaches, such as hierarchical K-

means (Kirby et al., 2012a) and spatial fuzzy c-means (SFCM) clustering (Hughes et al., 

2018). However, as these methods rely on voxel intensities and thresholding, they only 

provide semi-automatic segmentations; as such, they are prone to generate errors in regions 
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where voxel intensities are similar to those of the ventilated lung region (e.g., airways and 

artefacts). Consequently, they frequently require significant time to manually correct. 

 

Deep learning (DL), which utilises artificial neural networks with multiple hidden layers, has 

shown tremendous promise in medical image segmentation applications (Hesamian et al., 

2019). Although DL was initially theorised over half a century ago, the field only received 

widespread acclaim in 2012 when AlexNet, a form of an artificial neural network referred to 

as a convolutional neural network (CNN), triumphed in the ImageNet Large Scale Visual 

Recognition Challenge (Krizhevsky et al., 2012). Subsequently, CNNs, and DL more 

generally, have become mainstream in the medical image segmentation field. UNet and 

VNet CNNs have demonstrated their profound impact in numerous medical image 

segmentation problems (Bakator and Radosav, 2018; Lundervold and Lundervold, 2019). 

Adoption has been enhanced through transfer learning to cope with limited datasets 

common in the medical imaging field (Tajbakhsh et al., 2016). In a recent review of DL-

based lung image analysis studies, Astley et al. identified a significant gap in DL-based lung 

MRI segmentation studies (n=7) with only one published conference proceeding (Astley et 

al., 2020a) and one journal article (Tustison et al., 2019) evaluating DL for hyperpolarised 

gas MRI segmentation. Tustison et al. used a 2D UNet for hyperpolarised gas MRI 

segmentation on a dataset of 113 images, developing a novel template-based method to 

augment the limited lung imaging data alongside pre-processing techniques, including N4 

bias correction and adaptive denoising. A mean±SD DSC between DL and manual 

segmentations of 0.94±0.03 was achieved (Tustison et al., 2019). However, the application 

of DL on a more extensive dataset with a broader range of pathologies is required prior to 

clinical adoption. 

 

In this work we conducted extensive parameterisation experiments to determine the best-

performing 3D CNN architecture, loss function and pre-processing techniques for 

hyperpolarised gas MRI segmentation. We further evaluated five DL methods using the best 

performing configuration to accurately, robustly and rapidly segment ventilated lungs on 

hyperpolarised gas MRI scans. Using a diverse testing set, with both helium-3 (3He) and 

xenon-129 (129Xe) noble gas scans and corresponding expert segmentations, we evaluated 

and compared performance using a range of evaluation metrics. We also investigated the 

effect of the noble gas on DL performance. Furthermore, we compared the best performing 
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DL method to conventional approaches. Finally, ventilated lung volume correlation and 

agreement were assessed for the best-performing DL method compared to expert-derived 

volumes. 

4.3 Materials and Methods 

4.3.1 Hyperpolarised gas MRI acquisition 

All subjects underwent 3D volumetric 3He or 129Xe hyperpolarised gas MRI with full lung 

coverage in the coronal plane at 1.5T on a HDx scanner (GE Healthcare, Milwaukee, WI) 

using 3D steady-state free precession (SSFP) sequences as previously described (Horn et 

al., 2014; Stewart et al., 2015; Tahir et al., 2018). Flexible quadrature radiofrequency coils 

were employed for transmission and reception of MR signals at the Larmor frequencies of 
3He and 129Xe. In-plane (x-y) resolution of scans for both gases was 4x4mm2 (matrix = 

512x512). 129Xe scans ranged from 16-34 slices with a mean of 23 slices and slice thickness 

of 10mm. The 129Xe acquisition protocol used the following settings: repetition time/echo 

time of 6.7/2.2 milliseconds, in-plane resolution of ~4x4 mm2 with a slice thickness of 10 

mm. A ~40 cm field of view with a flip angle of 9° or 10° at a bandwidth of ±8kHz was used. 
3He scans ranged from 34-56 slices with a mean of 45 slices and slice thickness of 5mm. 

The 3He acquisition protocol used the following settings: repetition time/echo time of 1.9/0.6 

milliseconds, in-plane resolution of ~4x4 mm2 with a slice thickness of 5 mm. A ~40 cm field 

of view with a flip angle of 10° at a bandwidth of ±166.6kHz was used. 

4.3.2 Dataset 

The imaging dataset used in this study was pooled retrospectively from several research 

studies and clinical studies of patients referred for hyperpolarised gas MRI scans. Data use 

was approved by the Institutional Review Boards at the University of Sheffield and the 

National Research Ethics Committee. All data was anonymised and all investigations were 

conducted in accordance with the relevant guidelines and regulations.  

 

The dataset consisted of 759 volumetric hyperpolarised gas MRI scans (23265 2D slices), 

with either 3He (264 scans, 11880 slices) or 129Xe (495 scans, 11385 slices), from 341 

subjects. The slices were distributed approximately 50:50 between 3He and 129Xe. The 
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dataset contained healthy subjects and patients with various pulmonary pathologies: 

asthma, COPD, asthma/COPD overlap, bronchiectasis, interstitial lung disease (ILD), 

idiopathic pulmonary fibrosis (IPF), lung cancer, cystic fibrosis (CF), children born 

prematurely, and patients investigated for possible airway disease. Demographic and 

clinical data for these subjects are summarised in Table 4.1. The dataset contains 129Xe and 
3He scans acquired using either free-breathing or breath-hold acquisitions at a range of 

inflation levels, including functional residual capacity (FRC), total lung capacity (TLC) 

residual volume (RV). 

 

Each of the 759 scans in the dataset has a corresponding, manually-edited expert 

segmentation, representing the ventilated region of the lungs. These scans and 

segmentations were collected from numerous retrospective studies; consequently, the 

segmentations were generated using several semi-automated methods (Hughes et al., 

2018; Biancardi et al., 2018) and edited by multiple expert observers. Quality control was 

conducted by an experienced imaging scientist who identified potential errors and manually 

corrected them to ensure segmentation accuracy; the airways were removed down to the 

third generation, and it was ensured that no voxels were outside of the lung parenchymal 

region defined by a structural 1H MRI scan, thereby removing background noise.
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Table 4.1 Summary of demographics, clinical characteristics and image dataset information stratified by disease. 

Disease 
Total number of 

scans 
Number of 

patients 

Number of HP gas scans Sex* 
Median (range) 

age* 

Mean±SD 
ventilated lung 
volume (litres)* 

3He 129Xe Male Female 

Healthy 43 33 1 42 15 13 12 (9, 76) 3.78 ± 1.18 
Asthma 169 81 4 165 28 52 50 (13, 73) 4.23 ± 1.03 

Asthma / COPD overlap 11 5 0 11 0 5 56 (45, 67) 4.13 ± 0.68 

Bronchiectasis 3 3 1 2 1 1 15 (9, 29) 3.76 ± 1.00 

CF 247 58 134 113 29 28 16 (6, 48) 3.65 ± 1.05 

COPD 62 23 56 6 4 5 64 (52, 80) 4.43 ± 0.71 

Non-IPF ILD** 77 41 0 77 25 16 69 (39, 83) 3.78 ± 0.80 

Investigation for possible airways 
disease 

38 21 5 33 2 16 49 (36, 69) 3.89 ± 1.05 

IPF 46 20 45 1 17 3 72 (52, 80) 3.87 ± 0.71 

Lung cancer 22 16 14 8 10 6 69 (34, 85) 4.12 ± 0.86 

Preterm birth 41 40 4 37 15 25 12 (9, 14) 2.75 ± 0.55 

*Data for 25 patients was unavailable. 

**Contains connective tissue disease-associated ILD (CTD-ILD), hypersensitivity pneumonitis and drug-induced ILD (DI-ILD). 

Abbreviations: hyperpolarised (HP), cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), idiopathic pulmonary fibrosis 

(IPF), standard deviation (SD)
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4.3.3 Parameterisation experiments 

Parameterisation is rarely conducted in the DL literature due to its time-consuming nature, 

computational cost and the possibilities of biasing future investigations using the same 

dataset. To this end, we used a subset of the data as the parameterisation dataset 

comprising 431 hyperpolarised gas MRI scans (55% of the total data), with either 3He 

(n=173) or 129Xe (n=258) from a subset of the diseases present in the total dataset. 29 scans 

were used for the parameterisation testing set. In this study, we conducted three distinct 

parameterisation experiments that were completed sequentially; the outcome of the 

previous experiment influenced the inputs used in the subsequent experiment. We assessed 

the following hyperparameters: 

 

Fully convolutional network architecture - The network architecture concerns the 

structure of the neural network. All the networks tested are 3D fully convolutional networks, 

which represent a subset of CNN architectures. The choice was made to evaluate CNNs as 

they are by far the most common network architectures in the lung image segmentation 

literature (Astley et al., 2020b). Here, we focused on 3D CNNs due to the volumetric nature 

of features present in hyperpolarised gas MRI, lending itself towards analysis in a 3D view. 

 

CNN loss function - Loss functions, or cost functions, are used to optimise the network. 

The loss function dictates how a network’s weights and biases are updated for a given 

training pass; therefore, they represent a key component to any neural network and are 

important for generating accurate segmentations.  

 

Pre-processing - Pre-processing is defined as an action taken to modify the training and 

testing images before they are passed to the network architecture. Pre-processing is often 

used to enhance features of the image, to accentuate the differences between foreground 

and background voxels or to remove noise from the image. Numerous studies in the DL-

based MRI segmentation literature have employed several pre-processing strategies, 

including normalisation, denoising and N4 bias correction (Astley et al., 2020b). 

 

Each experiment trained a CNN for 30,000 iterations on an NVIDIA Tesla V100 graphical 

processing unit (GPU). Performance was assessed at intervals of 5000 iterations to 

determine the optimal number of iterations for each network. Shapiro-Wilk tests were 

performed for each experiment to determine normality and appropriate parametric or non-
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parametric statistical tests were conducted accordingly. The first parameterisation 

experiment compared the following four 3D CNNs: 

 

VNet: A 3D fully convolutional neural network trained end-to-end on volumetric MRI. The 

network consists of convolutional compressions and subsequent decompression stages 

until the image is the original size. Each operation is conducted with valid padding. 

Convolution operations decrease in size from 5x5x5 with a stride of 1 to 2x2x2 with a stride 

of 2 (Milletari et al., 2016). The network uses a spatial window size of [96, 96, 32] and a 

batch size of 6. 

 

Dense VNet: Similar to VNet, this CNN employs convolution and deconvolution operations 

(Milletari et al., 2016) with the addition of batch-wise spatial dropout, dense feature stacks 

and an explicit spatial prior (Gibson et al., 2018a). Similar to the VNet, we used a spatial 

window size of [96, 96, 32] and a batch size of 6. 

 

nn-UNet: The UNet is a common 2D encoder-decoder network; here, we used a 3D 

implementation of the UNet modified to reduce memory constraints, allowing 30 feature 

channels (Isensee et al., 2019). Convolution operations vary in size from 3x3x3 to 1x1x1 

depending on the layer of the network. The network also makes use of instance 

normalisation. An isotropic spatial window size of [96, 96, 96] was used with a batch size of 

2. 

 

HighResNet: A 3D fully convolutional neural network containing 20 layers, the first seven 

of which used 3x3x3 kernels to capture low-level features. Subsequent layers are dilated by 

either 2 or 4, with the number of kernels increasing from 16 to 64 to capture high-level 

features (Li et al., 2017). Every two layers are grouped with residual connections to form a 

residual block. An isotropic spatial window size of [96, 96, 96] was used with a batch size of 

2. 

 

Figure 4.1 displays the results of the four 3D CNNs, showing mean performance on the 

parameterisation testing set. All networks show improved performance as iterations 

increase for the DSC and average Hausdorff distance at the boundary (Avg HD) metrics. At 

30,000 iterations, we compared performance using DSC and Avg HD across the four 

network architectures. A Friedman test indicated that there was a statistically significant 

difference between architectures X2(4)=50.75, p<0.0001. Pairwise comparisons were 
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conducted with Bonferroni correction for multiple comparisons. Post-hoc analysis using the 

DSC and Avg HD metrics showed that both the nn-UNet and the VNet significantly 

outperformed the other networks tested (p<0.05); however, no statistical difference was 

observed between the nn-UNet and VNet architectures. Consequently, we could not 

conclude which network generates the most accurate hyperpolarised gas MRI 

segmentations for the parameterisation dataset. Hence, the loss function experiments were 

performed for both network architectures. 
 

 
Figure 4.1 Results for the network architecture parameterisation experiments showing 

performance at (a) intervals of 5000 iterations and (b) 30000 iterations for four 3D CNNs in terms 
of DSC (left) and Avg HD (right). 

We compared three common loss functions, namely, the binary cross-entropy (BCE) loss, 

the dice loss and the Tversky loss. The BCE loss function is defined below: 

 

BCE(PR, GT) = 	−
1
Nb[gt@ 𝑙𝑜𝑔(pr@) + (1 − gt@) 𝑙𝑜𝑔(1 − pr")

7

@41

] 

( 4.1 ) 

where GT = {gt" ∈ GT} denotes the manually-edited ground truth segmentation, PR =
{pr" ∈ PR} the predicted segmentation by the network and 𝑖 represents the voxel location 
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within the image, which is assumed to have N number of voxels. The Dice loss, which has 

shown promise in medical image segmentation tasks (Milletari et al., 2016) is defined below: 
 

										Dice(PR, GT) = 	
2∑ pr@gt@7

@

∑ pr@A +	∑ gt@A7
@

7
@

	 

( 4.2 ) 

The Tversky loss (Salehi et al., 2017) provides a similar function as the Dice loss; however, 

it can be weighted to bias the loss function in favour of false positives and false negatives. 

The Tversky loss is defined below: 
 

Tversky(PR, GT, α	, β) = 	
∑ pr@gt@7
@

∑ pr@gt@ + α∑
pr@
gt@

+ β∑ gt@
pr@
	7

@ 	7
@

7
@

 

( 4.3 ) 

where α and β are constants that weight the network's performance towards false positives 

or false negatives. For this work, we used α + β = 1, which reduces the Tversky loss to a set 

of Fβ scores. This has been shown to work well for imbalanced data (Salehi et al., 2017). 

Results for all three loss functions are shown in Figure 4.2. 

 
Figure 4.2 Results for both the nn-UNet and VNet architectures using three common loss 

functions, namely, the binary cross-entropy loss, dice loss and Tversky loss evaluated with a) DSC 
and b) Avg HD metrics at intervals of 5000 iterations up to 30000 iterations. 
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Figure 4.2 indicates no meaningful difference at 30000 iterations between any of the loss 

functions on either network, except for the VNet with Dice loss which exhibited inferior 

performance. This configuration failed due to an exploding gradient; hence, results are only 

available up to 15000 iterations. A Friedman test was performed indicating no significant 

differences between the nn-UNet architectures or the VNet with BCE loss. Consequently, 

we used the BCE loss and continued to evaluate both the nn-UNet and VNet architectures 

further for the impact of image pre-processing on performance.  

 

We evaluate the impact of three commonly used pre-processing techniques for 

hyperpolarised gas MRI, namely, normalisation, denoising (Manjon et al., 2010) and N4 bias 

correction (Tustison et al., 2010). In addition, we compared the previous strategies to a 

combination of all pre-processing techniques and unprocessed images. Figure 4.3a shows 

that the segmentations produced by the combination of all pre-processing methods perform 

significantly worse than the other pre-processing methods alone and the images with no 

pre-processing. Figure 4.3b indicates the performance of each pre-processing method at 

30000 iterations. 
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Figure 4.3 a) Results for both the nn-UNet and VNet architectures using common pre-processing 

strategies evaluated with DSC and Avg HD at intervals of 5000 iterations up to 30000 iterations. b) 
Results for pre-processing experiments comparing performance at 30000 iterations in terms of 

DSC. 

Friedman tests were conducted for both the VNet (X2(5)=23.28, p=0.0001) and nn-UNet 

(X2(5)=25.08, p<0.0001) architectures, indicating significant differences between pre-

processing strategies. Pairwise comparisons were conducted with Bonferroni correction for 

multiple comparisons. No pre-processing was selected as the control group for this 

experiment. Post-hoc comparisons of the VNet architecture indicated that no pre-processing 

method provides a statistically significant improvement over scans without pre-processing. 

Post-hoc comparisons of the nn-UNet architecture indicated that denoising provides a 

statistically significant improvement over images without pre-processing (p<0.05); no 

significant differences were observed for the other pre-processing strategies. Accordingly, 

we compared the nn-UNet denoised model with the VNet unprocessed model using a 
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Wilcoxon signed-rank test and observed that the nn-UNet denoised model exhibited 

superior performance (p<0.0001). Performance at 5000 iteration intervals for the nn-UNet 

denoised and the VNet unprocessed models are shown in Figure 4.4. 

 

 
Figure 4.4 Comparison of performance for the nn-UNet denoised and VNet no pre-processing 

models using Avg HD (top) and DSC (bottom) at intervals of 5000 iterations up to 30000 iterations. 

Based on the parameterisation experiments conducted on a subset of our available data, 

we determined that for our hyperpolarised gas MRI segmentation problem, the nn-UNet 

architecture with BCE loss using denoised images generates the best performing 

segmentations and, therefore, constitutes the optimal configuration for future investigations. 

Conducting these experiments on a subset of the total data allows for optimisation of 

parameters without introducing potential biases to specific training and testing sets. The 

following section describes the data split and DL parameters, informed by the above 

investigations, used in the remainder of this work. 
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4.3.4 Convolutional neural network 

We used the nn-UNet fully convolutional neural network which processes 3D scans using 

volumetric convolutions. The network is trained end-to-end using hyperpolarised gas MRI 

volumetric scans. We use a 3D implementation of the UNet which has been modified to 

reduce memory constraints, allowing 30 feature channels (Isensee et al., 2019). Convolution 

operations vary in size from 3x3x3 to 1x1x1 depending on the layer of the network. The 

network also makes use of instance normalisation. An isotropic spatial window size was 

used of [96, 96, 96] with a batch size of 2. A high-level visual representation of the 3D nn-

UNet, specific to the spatial window sizes used, is shown in Figure 4.5. 

 

The network utilises a non-linear PReLU activation function (He et al., 2015) and is 

optimised using a binary cross-entropy loss function. ADAM optimisation was used to train 

the CNN (Kingma and Ba, 2015) and instance normalisation was conducted for each pass. 

The spatial window size was [96, 96, 96] with a batch size of 2. A learning rate of 1x10-5 was 

used for initial training and 0.5x10-5 for subsequent fine-tuning methods. 

 

Each hyperpolarised gas MRI scan was pre-processed using spatially adaptive denoising, 

designed to consider both Rician noise and spatially varying patterns of noise. Denoising 

was implemented with ANTs 2.1.0 using the DenoiseImage function across three 

dimensions. Standard parameters were used (Manjon et al., 2010). Constrained random 

rotation and scaling was used for data augmentation. Rotation with limits -10° to 10° and 

scaling of -10% to 10%, where a random rotation or scaling were applied at an interval within 

those limits, were used. A different random value was computed for each rotation axis and 

scaling factor. 

 

All networks were trained using the medical imaging DL framework NiftyNet 0.6.0 (Gibson 

et al., 2018b) built on top of TensorFlow 1.14 (Abadi et al., 2016). Training and inference 

were performed on an NVIDIA Tesla V100 GPU with 16 GB of RAM. 
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Figure 4.5 Visual representation of the modified 3D nn-UNet network used in this work. The 

deconvolution side of the network is omitted as it follows the same structure as the convolutional 
path, however, with the addition of a 1x1x1 SoftMax layer. 

The dataset was randomly split into training and testing sets with 75% and 25% of the data 

respectively, in terms of the number of subjects. The training set, therefore, contained 237 
3He scans (10902 slices) and 436 129Xe scans (10028 slices) from a total of 255 subjects. 

86 scans, each from a different subject, were selected for the testing set (3He: 27 scans 

(1242 slices); 129Xe: 59 scans (1357 slices)). Repeat or longitudinal scans from multiple 

visits for the same patient were contained in the training set; however, no subject was 

present in both the training and testing sets, with the testing set containing only one scan 

from each patient. This was ensured by randomly selecting only one scan from each subject 

in the testing set and discarding the remaining scans; these scans are not included in Table 

4.1. The range of diseases in the testing set was representative of the dataset as a whole. 

In addition, it was specified that there would be no overlap between the newly defined testing 

set and the previous testing set used for parameterisation experiments in terms of either 

patient or scan. 
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4.3.5 DL experimental methods 

Five DL experimental methods were performed to train the network:  

 

(1) The model was trained on 237 3He scans for 30000 iterations. 

(2) The model was trained on 436 129Xe scans for 30000 iterations. 

(3) The model was trained on 237 3He scans for 20000 iterations; these weights were 

used to initialise a model trained on 436 129Xe scans for 10000 iterations. 

(4) The model was trained on 436 129Xe scans for 20000 iterations; these weights were 

used to initialise a model trained on 237 3He scans for 10000 iterations. 

(5) The model was trained on 436 129Xe and 237 3He scans for 30000 iterations. 

 

The five experimental methods were applied to the data split defined above using the same 

testing set for each method, facilitating comparison between the five methods to identify the 

best performing training method across multiple metrics. 

4.3.6 Comparison to conventional methods 

For further benchmarking, the best-performing DL method was compared against two other 

conventional machine learning methods, namely, SFCM and K-means clustering. The 

methods used are described as follows: 

 

1) The k-means clustering algorithm used here was previously modified for 

hyperpolarised gas MRI segmentation (Kirby et al., 2012a). This method attempts to 

find 𝑘 data points, given the integer 𝑘, in an n-dimensional space 𝑅, given	𝑚 data 

points. These 𝑘 data points are known as centres/centroids and the aim is to minimise 

the distance from each data point (𝑚) to its centre/centroid (Kanungo et al., 2002). 

The previously developed method (Kirby et al., 2012a) attempts to delineate the 

image data into a number of clusters that can best represent a radiologist’s analysis 

of the ventilation image with clusters defined from defects to hyperintense signal. The 

first stage of this method requires image normalisation into the range of 0-255, 

following which the cluster initial centres are set at 25% intervals between these 

values. A two-stage clustering process was applied with four clusters in the first stage, 

the lowest of which contains both signal void and hypointense signal. In the second 

stage, the clustering was reapplied to the lowest cluster from the first stage to define 

background, ventilation defect and hypointense signal regions.  
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2) The SFCM method used in this work has been reported previously (Hughes et al., 

2018); images are initially filtered to remove noise and maintain edges using a 

bilateral filter (Tomasi and Manduchi, 1998b). The standard FCM algorithm assigns 

N pixels to C clusters via Fuzzy memberships. The key assumption of the Spatial 

Fuzzy C-means is that pixels spatially close will have high correlation and hence have 

similarly high membership to the same cluster. This spatial information will modify the 

membership value only if, for example, the pixel is noisy and would have been 

incorrectly classified. The SFCM method makes use of nearby pixels during the 

iteration process by taking into account the membership of voxels within a predefined 

window (5x5 in this work) and will weight the central pixel depending on the provided 

weighting variables (Li et al., 2011). The optimal number of clusters was manually 

selected by the observer. 

4.3.7 Evaluation metrics 

The testing set results for each of the five DL experimental methods and two conventional 

methods were evaluated using several metrics. The DSC was used to assess overlap 

between the sets of voxels in the ground truth (X) and DL-generated (Y) segmentations 

(Dice, 1945) and is defined as:  

 

DSC = 2
|Y	 ∩ 	X|
|Y| + |X| 

( 4.4 ) 

Two distance metrics, average boundary Hausdorff distance (Avg	HD) and 95th percentile 

Hausdorff distance (HD95) were used (Beauchemin et al., 1998) which assess the difference 

between the sets of boundary voxels in X and Y defined as XB and YB, respectively. The 

HD95 is frequently used in the image segmentation literature to remove the impact of outlier 

voxels and is defined as the following: 
 

 

 

( 4.5 ) 

HD95 = 95CD	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑑(YB, XB) , 𝑑(XB, YB))	 
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where the 95CD	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 represents the bottom 95% of directed Hausdorff distances and 

𝑑(YB, XB) and 𝑑(XB, YB) represent the directed Hausdorff distances between XB and YB given 

by: 
 

𝑑(YB, XB) =
1
N	 b min

%!∈F!
‖yB − xB‖			

G!∈H!

 

( 4.6 ) 

where xB and yB represent individual voxels in the set of XB and YB, N is the number of 

observations in |YB|	and ‖yB − xB‖ is the Euclidean distance between yB and xB. The Avg	HD 

is defined similarly as: 

 

Avg	HD = 	
1
2
(𝑑(YB, XB) + 𝑑(XB, YB)) 

( 4.6 ) 

The Avg	HD reduces sensitivity to outliers and is regarded as a stable metric for 

segmentation evaluation (Shapiro and Blaschko, 2004). Furthermore, a relative error metric 

(XOR) was used to evaluate segmentation errors (Biancardi and Wild, 2017) as follows:  

 

XOR =
|Y	 ∩ 	X′| +	 |Y′	 ∩ 	X|

|X| 	 

( 4.8 ) 

where Y′ and X′ are the complements of Y and X, respectively. The metric was used 

specifically because it is expected to correlate with the manual editing time required to 

correct the segmentation outcome. 

4.3.8 Statistical analysis 

Data were tested for normality using Shapiro-Wilk tests; when normality was not satisfied, 

non-parametric tests were conducted. One-way repeated-measure ANOVA or Friedman 

tests were conducted as appropriate with Bonferroni correction for post-hoc multiple 

comparisons to assess statistical significances of differences between experimental DL-

based methods. Independent t-tests or Mann-Whitney U tests were used to compare 

differences between 3He and 129Xe segmentations in the testing set, assessing the effect of 

the noble gas. The best performing DL method was compared to other conventional 

segmentation methods using one-way repeated-measure ANOVA or Friedman tests with 
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Bonferroni correction for post-hoc multiple comparisons. Pearson or Spearman correlations 

and Bland-Altman analysis were conducted to compare volumes of DL-generated and 

expert segmentations. Statistical analysis was performed using Prism 8.4 (GraphPad, San 

Diego, CA) and SPSS Statistics 26.0 (IBM Corporation, Armonk, NY). 

4.4 Results 

4.4.1 Qualitative results 

Segmentations for each of the five DL methods were generated for 86 testing set scans. 

Figure 4.6 shows examples of segmentation quality for a healthy subject and patients with 

four different pathologies across the five DL experimental methods using 3He or 129Xe. The 

original scans and expert segmentations are included to facilitate comparison. It can be 

observed that, in general, there are negligible voxels outside the lung parenchyma classed 

as ventilated and that the CNNs accurately excluded ventilation defects, as shown in the 

examples of the asthma and lung cancer patients. Case 4, of a healthy subject, represents 

an interesting case due to the presence of a zipper artefact caused by electronic noise in 

the hardware from external source of electromagnetic radiation. Zipper artefacts often 

present as a vertical band of alternating high and low intensity regions that occur across 

multiple slices in both 129Xe and 3He scans. It can be observed that some models are able 

to accurately exclude this artefact, whilst others remain unable to distinguish between the 

zipper artefact and ventilated lung voxels. 

4.4.2 Quantitative evaluation 

Figure 4.7 shows distributions of all four metrics for each DL method. The assumption of 

normality for each metric was not satisfied for all DL methods, as assessed by Shapiro-

Wilk’s tests (p < 0.05). As such, Friedman tests were run, determining that there were 

differences between DL methods for each metric. Post-hoc pairwise comparisons were 

performed for each metric with Bonferroni correction for multiple comparisons. The 

combined 3He and 129Xe method yielded statistically significant improvements over all DL 

methods using the DSC, XOR and HD95 metrics (p<0.05). However, using the Avg HD 

metrics, the combined 3He and 129Xe method significantly outperformed all but one DL 

method. 
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Figure 4.6 Example coronal slices for a healthy subject and four cases with different pathologies 

for each DL experimental method. Individual, and median (range), DSC values are displayed. 

Table 4.2 summarises segmentation performance for the five DL experimental methods. 

The Combined 3He and 129Xe method generated the best segmentations using all four 

metrics. 
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Figure 4.7 Comparison of segmentation performance on 86 testing scans for five DL experimental 
methods using the DSC, Avg HD, HD95 and XOR metrics (left to right). P-values are displayed for 

Friedman tests with Bonferroni correction for multiple comparisons, comparing the combined 3He 
and 1 2 9Xe DL method to the other DL methods. Mean and standard deviation values are marked by 

a bold line and whiskers, respectively. 
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Table 4.2 Comparison of segmentation performance for the five DL training methods for all scans 
in the testing set. Medians (ranges) are given; the best result for each metric is in bold. 

Experimental DL 
methods 

Evaluation metrics: Median (range) 

DSC Avg HD (mm) HD95 (mm) XOR 

Train on 3He 0.961 (0.765, 0.981) 2.335 (35.91, 0.644) 10.00 (140.9, 1.934) 0.079 (0.613, 0.037) 

Train on 129Xe 0.964 (0.886, 0.983) 1.341 (3.911, 0.675) 4.809 (15.90, 1.875) 0.072 (0.253, 0.035) 

Train on 3He,  
fine-tuned on 129Xe 

0.963 (0.892, 0.983) 1.384 (4.628, 0.636) 4.971 (29.80, 1.934) 0.075 (0.238, 0.034) 

Train on 129Xe,  

fine-tuned on 3He 
0.968 (0.842, 0.983) 1.483 (10.84, 0.596) 4.935 (67.85, 1.563) 0.066 (0.372, 0.034 

Combined 3He and 
129Xe training 

0.971 (0.886, 0.983) 1.234 (5.630, 0.594) 4.193 (52.70, 1.875) 0.059 (0.255, 0.035) 

 

Figure 4.8 shows the segmentation performance for the testing set stratified by noble gas 

(129Xe or 3He) using the DSC and Avg HD metrics. The majority of models show no 

significant difference between 129Xe and 3He for both metrics. Only two methods, namely, 

the ‘Train on 3He’ and ‘Train on 129Xe, fine-tune on 3He’ methods, showed a significant 

difference between noble gases across both metrics. 

 

 
Figure 4.8 Comparison of DSC (top) and Avg HD (bottom) values for 1 2 9Xe and 3He testing scans for 
five DL methods. P-values between 1 2 9Xe and 3He using Mann-Whitney tests are shown. Mean and 

standard deviation values are marked by a bold line and whiskers, respectively. 
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4.4.3 Validation on 2D 3He hyperpolarised gas MRI scans 

Based on the results of the five experimental methods, the combined 3He and 129Xe DL 

model was identified as the most accurate DL ventilated lung segmentation method due to 

statistically significant improvements over all other methods using the DSC, HD95 and XOR 

metrics. Consequently, we tested the combined 3He and 129Xe DL model on 31 2D spoiled 

gradient-echo 3He hyperpolarised gas MRI ventilation scans which differ in MRI sequence 

and acquisition parameters. We employed a dataset of 2D spoiled gradient-echo 3He 

hyperpolarised gas MRI ventilation scans from 31 patients with either asthma (Tahir et al., 

2016) (n=12) or cystic fibrosis (Marshall et al., 2017) (n=19) acquired at FRC+1L with full 

lung coverage at 1.5T on a HDx scanner (GE Healthcare, Milwaukee, WI). Helium was 

polarised on-site to around 25% polarisation (GE Healthcare, Amersham, England). Flexible 

quadrature radiofrequency coils were employed for transmission and reception of MR 

signals at the Larmor frequency of 3He (Clinical MR Solutions, Brookfield, WI) with the 

following parameters: resolution of ~3x3x10mm2, TR/TE equal to 3.6/1.1 milliseconds, field 

of view of 30-40cm, flip angle of 8º and bandwidth of ±63kHz. The 3He hyperpolarised gas 

MRI scans differ from the scans used in the primary investigation in terms of both MRI 

sequence and acquisition parameters. 

 

Figure 4.9 shows examples of segmentation quality for one asthma and one CF patient 

using the combined 3He or 129Xe DL trained model. The original scans and expert 

segmentations are included to facilitate comparison. The proposed model accurately 

excludes subtle and gross ventilation defects in the spoiled gradient-echo hyperpolarised 

gas MRI scans and excludes airways. Quantitative results of segmentation performance on 

the 2D spoiled gradient-echo hyperpolarised gas MRI scans are displayed in Table 4.3. The 

results indicate that the combined 3He and 129Xe DL trained model generated segmentations 

which largely agree with expert ground truth segmentations across a range of metrics. 
 

Table 4.3 Summary of 2D spoiled gradient-echo results. 

Segmentation 
method 

Evaluation metrics: Median (range) 

DSC Avg HD (mm) HD95 (mm) XOR 

Combined 3He and 
129Xe DL model 

0.965 (0.947, 0.983) 1.389 (2.030, 0.602) 4.323 (8.203, 1.934) 0.069 (0.107, 0.034) 
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Figure 4.9 Example coronal slices for an asthma and CF case with ground truth segmentations and 
the segmentations generated by the combined 3He and 1 2 9Xe DL model. DSC values are displayed. 

These results indicate that the proposed DL model, trained on a combined 3D SSFP 3He 

and 129Xe dataset, is generalisable to hyperpolarised gas MRI ventilation scans acquired 

with a sequence, namely, a 2D spoiled gradient-echo sequence. The segmentation 

performance on 2D spoiled gradient-echo hyperpolarised gas MRI scans, across all four 

metrics, are highly similar to the results observed on the 3D SSFP testing set. 

4.4.4 Ventilated volume 

Furthermore, ventilated volume was assessed for the combined 3He and 129Xe method. The 

assumption of normality was satisfied for DL and expert ventilated volume, as assessed by 

Shapiro-Wilk’s tests (p>0.05). Pearson correlation and Bland-Altman analysis are shown in 

Figure 4.10 for the combined 129Xe and 3He model; the DL segmentation volume is highly 

correlated (r=0.99) with the expert segmentation volume and exhibits minimal bias (-0.8%). 
 

 
Figure 4.10 Pearson correlation and Bland-Altman analysis of lung volumes for 86 testing set cases 

compared to volumes derived from expert segmentations for the combined 3He and 1 2 9Xe DL. 
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4.4.5 Comparison to machine learning approaches 

Figure 4.11 shows qualitative and quantitative performance for the DL combined 3He and 
129Xe training method with two conventional segmentation methods, namely K-means 

clustering and SFCM across three cases. The assumption of normality for the DSC metric 

was not satisfied for conventional and DL approaches, as assessed by Shapiro-Wilk’s tests. 

Post hoc Friedman’s tests were performed with Bonferroni correction for multiple 

comparisons (X2(3), p<0.0001). The DL segmentation method exhibited significant 

improvements over conventional methods (p<0.0001), accurately excluding low-level noise 

and artefacts (e.g. Case 2) as well as non-lung regions such as the trachea and bronchi. 
 

 
Figure 4.11 Comparison of performance on testing scans between the combined 1 2 9Xe and 3He DL 

method and conventional segmentation methods (SFCM and K-means) with P-values for Friedman 
tests with Bonferroni correction for multiple comparisons. Mean and standard deviation values 
are marked by a bold line and whiskers, respectively. Individual DSC and Avg HD values for each 

method are displayed for three cases. 

4.5 Discussion 

The DL segmentation methods yielded highly accurate segmentations across a range of 

evaluation metrics on the dataset used. To the best of the authors’ knowledge, the 

hyperpolarised gas MRI dataset used here is the largest to date for ventilated lung 

segmentation, comprising 759 scans from patients with a wide range of lung pathologies. 

This is advantageous for preserving generalisability as it enables algorithms to learn 

features present in a range of diseases independent of the noble gas. Compared with 129Xe 

MRI, 3He MRI has an intrinsically stronger MRI signal due to the difference in gyromagnetic 
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ratios between the two nuclei. Generally, lung ventilation information of similar diagnostic 

quality has been obtained with the two nuclei; despite this, there are known differences in 

lung diffusivity as well as differences in spatial resolution between the nuclei (Stewart et al., 

2018; Kirby et al., 2012b). This is particularly important for deep learning applications as the 

resolutions of our 3He and 129Xe MRI scans differ greatly in the z-direction whereby 3He and 
129Xe MRI scans have a slice thickness and an inter-slice distance of ~5mm and ~10mm, 

respectively. Therefore, it remains important to understand the performance of deep 

learning segmentation applications across the two nuclei. 

 

The combined 3He and 129Xe DL method showed statistically significant improvements over 

all other methods using the DSC, HD95 and XOR metrics; however, using the Avg HD 

metric, no significant difference between the combined 3He and 129Xe method and 129Xe 

only method was observed, perhaps attributable to an outlier case. Some statistically 

significant differences were observed in performance when comparing 3He and 129Xe testing 

set scans; however, the combined 3He and 129Xe method exhibited identical performance 

independent of the noble gas used. This indicates that, for a given 3He or 129Xe scan, the 

combined 3He and 129Xe method is unlikely to be biased towards a specific noble gas. Due 

to the current paucity and unpredictable supplies of 3He worldwide, the field, in general, has 

transitioned towards the use of 129Xe as the predominant noble gas for hyperpolarised gas 

MR ventilation imaging. As this trend continues, it may be pertinent in future work to assess 

the impact of training and testing solely on 129Xe scans. In addition, external testing indicated 

the proposed model’s ability to generalise across MRI sequence and acquisition parameters 

not seen in the training set, further reinforcing that the model is using functional features 

from hyperpolarised gas MRI to produce accurate segmentations. 

 

The CNN produced more accurate segmentations than the two conventional approaches for 

all evaluation metrics. In particular, the CNN was able to deal with images containing 

background noise and artefacts, as well as successfully excluding ventilation defects and 

airways. In comparison, the SFCM method was unable to distinguish airways or artefacts 

and segmented these areas erroneously. As such, it is highly probable that the CNN 

eliminates or dramatically reduces the manual-editing time required after automatic 

segmentation. The K-means clustering algorithm exhibited poorer than expected 

performance, possibly attributable to the lack of an available proton MRI. This represents a 

benefit of the CNN-based method as only the hyperpolarised gas MRI scan is required as 

an input. Previous work in the literature that aimed to employ DL for hyperpolarised gas MRI 
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segmentation used a 2D UNet and achieved a mean DSC of 0.94 (Tustison et al., 2019). In 

comparison, our combined 3He and 129Xe method trained via a 3D nn-UNet yielded a mean 

DSC value of 0.96. The 3D CNN allows the model to treat the segmentation as a 3D volume 

and learns features present across multiple slices e.g. ventilation defects. Several pre-

processing techniques have previously been used in the literature for lung image 

segmentation (Astley et al., 2020b). The work of Tustison et al. (2019) utilises a novel 

template-based data augmentation strategy with N4 bias correction and denoising, which 

are computationally expensive and time-consuming; however, the impact of such 

techniques is not assessed in their work. In this study, we observed that N4 bias correction 

provided no significant benefit, while denoising yielded significant improvements. 

 

All DL methods were trained and tested using a single GPU. Training required approximately 

nine days, while inference took 27 seconds per 129Xe scan and 35 seconds per 3He scan, 

corresponding to approximately one second per slice for both gases. Compared with 

conventional methods, such as SFCM, the time taken to generate automatic segmentations 

is significantly reduced from approximately 5 minutes to around 30 seconds, indicating the 

time-saving benefits of DL-based methods. Moreover, accurate automatic segmentation of 

hyperpolarised gas MRI ventilation scans through CNN-based approaches will eliminate or 

reduce manual editing time, thus improving clinical throughput. To further improve clinical 

translation of DL-based techniques, we have provided the trained DL model along with 

necessary files, enabling members of the pulmonary imaging community to apply the trained 

model in their own research. 

 

The specific dataset used is unique within the context of pulmonary imaging due to the 

presence of numerous features such as different noble gases, longitudinal scans, repeat 

scans and pre- and post-treatment scans. The variation in the number of repeat or 

longitudinal scans and slice thicknesses between 3D 3He and 129Xe scans impeded us from 

achieving a training and testing set split equally between both gases; notwithstanding, the 

number of 2D slices were approximately equal between gases. Although multiple scans from 

the same patient were included in the training set to increase dataset numbers, to enhance 

the robustness of the evaluation, no scan of the same patient was present both in the training 

and testing sets. This study also represents the first large-scale investigation of 

architectures, loss functions and pre-processing techniques within the field of lung MRI. 

Selecting a subset of the data allowed us to perform parameterisation experiments to 

determine the ideal choice of network architecture, loss function and pre-processing 
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technique, without creating optimisation biases in subsequent experiments. The conclusions 

of the parameterisation experiments were partially limited due to multiple factors; the same 

exact parameters cannot be used for each network due to the spatial imaging constraints of 

the specific network, such as requiring isotropic resolutions or the varying memory 

requirements of each architecture. This means that the windowing, batch size and bordering 

varies between architectures and can, therefore, make comparisons potentially difficult. 

However, where possible, we aimed to maintain consistent parameters across all networks 

tested. Further investigation may aim to optimise other hyperparameters that could be 

deemed equally important as the experiments conducted related to architecture, loss 

function and pre-processing; these may include the choice of activation function or 

optimisation algorithm. Furthermore, parameterisation results will vary based on the specific 

datasets used and, consequently, limit conclusions to the particular data used in these 

experiments. 

 

Currently, segmentations edited by expert observers are the gold-standard for training 

supervised DL algorithms. Studies have shown that manual segmentations are susceptible 

to inter-observer variability (Mukesh et al., 2012). Numerous research projects have 

employed techniques to create generalisable DL models across multiple institutions and 

observers (Balachandar et al., 2020). A limitation of our study is the presence of only one 

expert segmentation per scan, which precludes the ability to evaluate intra- and inter-

observer variability. Various studies have aimed to account for annotator intra- and inter- 

observer variability (Zhang et al., 2020a; Tanno et al., 2019; Zhang et al., 2020b). However, 

the wide range of expert observers used to generate and manually edit the expert 

segmentations in this work led to significant variability in the training and testing sets. Hence, 

the CNN can learn a robust segmentation method invariant to the specific semi-automated 

method used to generate the ground truth or the expert observer who manually corrected it. 

In future work, multiple expert segmentations may be used to train the algorithm and allow 

the evaluation of inter-observer variability. 

 

For the evaluation of certain clinically relevant metrics such as VDP (Woodhouse et al., 

2005), the whole-lung cavity volume is required in addition to ventilated lung volumes, most 

commonly computed from a whole-lung segmentation generated from a structural proton 

MRI scan. In this work, we showed that ventilated lung volumes derived from CNN-

generated segmentations have a significant Pearson correlation of 0.99 and a minimal 

Bland-Altman bias of -0.8% with expert volumes. However, evaluation of DL-based methods 
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using not only ventilated lung volume, but also VDP, would further the extensive validation 

required for clinical adoption.  

4.6 Conclusion 

In conclusion, we evaluated a 3D fully connected CNN using the nn-UNet architecture that 

is capable of producing accurate, robust and rapid hyperpolarised gas MRI segmentations 

on a large, diverse dataset. We compared five experimental DL methods and observed that 

combining 3He and 129Xe scans during training produces significantly improved 

segmentations. Compared with expert segmentations, this CNN-based method also showed 

a strong Pearson correlation and limited bias using Bland-Altman analysis. In addition, the 

CNN-based segmentation method significantly outperformed two conventional 

segmentation methods commonly used in the literature.
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Chapter 5                                                       
Implementable deep learning for multi-sequence proton 

MRI lung segmentation: a multi-centre, multi-vendor, 
and multi-disease study 

 
Background: Recently, deep learning via convolutional neural networks (CNNs), 
has largely superseded conventional methods for proton (1H)-MRI lung 
segmentation. However, previous deep learning studies have utilised single-centre 
data and limited acquisition parameters. 
Purpose: Develop a generalizable CNN for lung segmentation in 1H-MRI, robust to 
pathology, acquisition protocol, vendor, and centre. 
Study type: Retrospective. 
Population: 809 1H-MRI scans from 258 participants with various pulmonary 
pathologies (median age (range): 57 (6–85); 42% females) and 31 healthy 
participants (median age (range): 34 (23–76); 34% females) that were split into 
training (593 scans (74%); 157 participants (55%)), testing (50 scans (6%); 50 
participants (17%)) and external validation (164 scans (20%); 82 participants (28%)) 
sets. 
Field strength/sequence: 1.5-T and 3-T / 3D spoiled-gradient recalled and 
ultrashort echo-time 1H-MRI. 
Assessment: 2D and 3D CNNs, trained on single-centre, multi-sequence data, and 
the conventional spatial fuzzy c-means (SFCM) method were compared to manually-
delineated expert segmentations. Each method was validated on external data 
originating from several centres. Dice similarity coefficient (DSC), average boundary 
Hausdorff distance (Avg HD), and relative error (XOR) metrics to assess 
segmentation performance. 
Statistical tests: Kruskal-Wallis tests assessed significances of differences 
between acquisitions in the testing set. Friedman tests with post-hoc multiple 
comparisons assessed differences between the 2D CNN, 3D CNN and SFCM. 
Bland-Altman analyses assessed agreement with manually-derived lung volumes. A 
p-value of <0.05 was considered statistically significant. 
Results: The 3D CNN significantly outperformed its 2D analogue and SFCM, 
yielding a median (range) DSC of 0.961 (0.880–0.987), Avg HD of 1.63mm (0.65–
5.45) and XOR of 0.079 (0.025–0.240) on the testing set and a DSC of 0.973 (0.866–
0.987), Avg HD of 1.11mm (0.47–8.13) and XOR of 0.054 (0.026–0.255) on external 
validation data. 
Data conclusion: The 3D CNN generated accurate 1H-MRI lung segmentations on 
a heterogenous dataset, demonstrating robustness to disease pathology, sequence, 
vendor, and centre. 
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5.1 Preface 

Work contained within this chapter has been submitted as a Journal article to the in Journal 

of Magnetic Resonance Imaging: 

 
Astley J.R., Biancardi A.M., Hughes P.J.C, Marshall H., Collier G.J., Chan H.F., 
Saunders L.C., Smith L.J., Brook M.L., Thompson R., Rowland-Jones S., Skeoch 
S., Bianchi S.M., Hatton M.Q., Rahman N.M., Ho L.P., Brightling C.E., Wain L.V., 
Singapuri A., Evans R.A., Moss A.J., McCann G.P., Neubauer S., Raman B.; C-
MORE/PHOSP-COVID Collaborative Group; Wild J.M., Tahir B.A. Implementable 
Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, 
Multi-vendor, and Multi-disease Study. Journal of Magnetic Resonance Imaging. 
2023 Feb 17. doi: 10.1002/jmri.28643. Epub ahead of print. PMID: 36799341. 

 

The work contained within this chapter has also been published as conference proceedings 

at the following conference: 

 
Astley J.R., Biancardi A.M., Marshall H., Smith L.J., Collier G.J., Hughes P.J.C., 
Walker M., Hatton M.Q., Wild J.M. and Tahir B.A. (2021). Generalizable deep 
learning for multi-resolution proton MRI lung segmentation in multiple diseases. The 
international society for magnetic resonance in medicine (ISMRM) 2021. Online. 

 

Additional material that could not be included within the conference proceeding or the journal 

article is also contained within this chapter. 

5.1.1 Author contributions 

J.R.A., J.M.W. and B.A.T. made substantial contributions to the conceptualisation of the 

work. A.M.B., H.M. L.J.S., G.J.C., P.J.C.H., M.Q.H., J.M.W. and B.A.T. were involved with 

patient recruitment, image acquisition and/or analysis. J.R.A. conceptualised and performed 

the DL experiments and validation. J.R.A interpreted data and conducted statistical 

analyses. J.R.A. drafted the manuscript. B.A.T. substantively revised the manuscript. All 

authors reviewed and approved the submitted manuscript.  

5.2 Introduction 

Imaging of the lungs is a key component in the management of patients with respiratory 

diseases and facilitates their diagnosis, treatment planning, monitoring, and assessment. 

Imaging modalities such as computed tomography (CT) and proton MRI (1H-MRI) enable 

the visualization and quantification of anatomical features within the lungs (Ivanovska et al., 
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2016; Zeng et al., 2019). High-resolution CT has traditionally represented the reference 

standard in clinical practice for structural lung imaging due to its impeccable resolution 

(~1mm3) and ubiquitous availability (Whiting et al., 2015). 1H-MRI has historically been 

limited in the management of patients with respiratory diseases due to the low proton density 

and fast signal decay within the lungs which pose inherent challenges for the modality (Wild 

et al., 2012). However, recent advances in sequence development and coil design have 

improved structural detail via ultrashort and zero echo-time sequences which increase the 

resolution to approximately that of CT (~1.5mm3), enabling the use of 1H-MRI in numerous 

pulmonary imaging applications (Voskrebenzev and Vogel-Claussen, 2021). Furthermore, 
1H-MRI uses non-ionising radiation and therefore can be utilised for paediatric patient care 

and treatment monitoring where longitudinal imaging studies are required. 

 

Segmentation of the lungs in 1H-MRI is required to delineate the lung cavity from other 

nearby features and has numerous applications, such as disease characterization (Liu et 

al., 2021a), treatment planning (Crockett et al., 2021) and longitudinal assessment (Pennati 

et al., 2021). Lung segmentation is also required for the computation of quantitative dynamic 

contrast-enhanced and oxygen-enhanced MRI which evaluate lung perfusion and 

ventilation, respectively (Voskrebenzev and Vogel-Claussen, 2021). In addition, surrogates 

of ventilation can be derived from non-contrast, multi-inflation 1H-MRI, requiring the 

segmentation of the lung parenchyma at different volumes (Kjorstad et al., 2017). 

Segmentation of pathological lungs, in particular, represents a challenge due to the relative 

similarity in signal intensity between aerated and non-aerated lung tissue and the presence 

of various pathological patterns such as ground glass opacities, consolidation, and 

bronchiectasis. 

 

Conventional image processing and machine learning approaches have traditionally been 

used for lung segmentation in 1H-MRI; these include semi-automatic thresholding, clustering 

and region growing methods (Ivanovska et al., 2016). Spatial fuzzy c-means (SFCM) is a 

clustering method that employs spatial information to modify cluster membership and has 

been used successfully as a semi-automated 1H-MRI lung segmentation method (Hughes 

et al., 2018; Biancardi et al., 2018). However, although these methods achieved varying 

degrees of success, they remain semi-automated in nature. Time-consuming manual 

correction is often required to modify semi-automated methods based on MRI sequence or 

readout parameters.  
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In recent years, deep learning (DL) has largely superseded classical image processing, such 

as thresholding, and conventional machine learning, such as clustering, for medical image 

segmentation applications. Convolutional neural networks (CNNs) have emerged as the 

dominant DL approach and have been used in numerous pulmonary image segmentation 

applications. A recent review of DL applications in lung image segmentation indicated that 

studies predominantly utilised CT imaging and single-centre datasets (Astley et al., 2020b). 

This leads to  reduced performance when deploying DL models across multiple centres due 

to variations in training and testing set distributions (Raschka, 2018). Due to variations in 

MR acquisition protocols or vendor, the large-scale segmentation of 1H-MRI represents a 

significant challenge for the deployment of implementable DL models. Multi-centre datasets 

have been used for other DL-based lung segmentation applications such as the use of the 

COPDGene dataset in CT fissure detection and segmentation (Gerard et al., 2021); 

however, large-scale DL investigations are yet to be conducted for 1H-MRI lung 

segmentation. Consequently, there is a pressing need for a multi-centre implementable 

approach to 1H-MRI segmentation that can be deployed regardless of specific MR imaging 

parameters or patient pathology. 

 

In this study, we hypothesised that a generalizable DL-based segmentation algorithm can 

accurately delineate the lung cavity across a multi-centre, multi-vendor, and multi-disease 
1H-MRI dataset. We aimed to develop and compare 1H-MRI DL segmentation networks with 

a conventional segmentation approach to automatically segment the lungs on 1H-MRI 

scans. 

5.3 Materials and methods 

5.3.1 Patient data 

All studies received ethical approval from the relevant institutional review boards with 

participants (or their guardians) providing informed written consent. Appropriate consent and 

permissions have been granted by the sponsors to utilize this data for retrospective 

purposes. All data were anonymised, and all investigations were conducted in accordance 

with the appropriate guidelines and regulations.  

 
1H-MRI scans used in this study were retrospectively collected from several research 

imaging studies and patients referred for clinical pulmonary MRI scans. The dataset 



 

 116 

comprised 809 1H-MRI scans from 31 healthy participants with a median age (range) of 34 

(23, 76); 66% males, 34% females and 258 participants with various pulmonary pathologies 

with a median age (range) of 57 (6, 85); 58% males, 42% females. Scans acquired at 

different inflation levels, longitudinal, and intrasession reproducibility scans were included in 

the dataset, resulting in a larger number of 3D scans than participants. A breakdown of 

patient data and demographics, stratified by disease, is included in Table 5.1.  

 
Table 5.1 Summary of patient data. 

 

5.3.2 1H-MRI acquisition 

The dataset used in this study contained 1H-MRI acquired with a range of sequences and 

readout parameters from three distinct centres in the United Kingdom. 1H-MRI acquisition 

details are summarised in Table 5.2. 

        
Spoiled-gradient echo (SPGR) and ultrashort echo-time (UTE) 1H-MRI scans were collected 

from Centre 1 and originated from several research and clinical studies conducted between 

2014 and 2022. The data was used for training and testing DL networks containing a total 

of 643 scans from 207 participants and included five distinct MR sequence and readout 

parameter configurations (see Table 5.2). These acquisitions included differences in 

scanner manufacturer, sequence, field strength, lung inflation level, in-plane resolution, and 

slice thickness.   
 
SPGR 1H-MRI scans collected from Centre 2 and Centre 3 and originated from a single 

clinical study conducted between 2021 and 2022. They were used for external validation 

Disease 
Number of 
subjects 

Number 
of scans 

Agea  
Median (range) 

Sexa  
Frequency (%) 

Asthma 17 89 50 (15, 73) 5M (29%), 12F (71%) 
Post COVID-19 147 376 57 (21, 83) 97M (66%), 49F (34%) 
Cystic fibrosis 26 82 18 (6, 48) 12M (46%), 14F (54%) 
Healthy 31 103 34 (23, 76) 19M (66%), 10F (34%) 
ILDb 46 83 69 (44, 83) 25M (54%), 21F (46%) 
Possible airways disease 4 15 50 (46, 64) 0M (0%), 4F (100%) 
Lung cancer 18 59 72 (35, 85) 11M (61%), 7F (39%) 
Total 289 809 56 (6, 85) 168M (59%), 117F (41%) 
aPatient demographic data was unavailable for four participants. 
bContains connective tissue disease-associated interstitial lung disease (CTD-ILD), hypersensitivity 

pneumonitis (HP), idiopathic pulmonary fibrosis (IPF) and drug-induced ILD (DI-ILD). 

Abbreviations: M, male; F, female; ILD, interstitial lung disease. 
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with a total of 110 scans from 55 participants (Centre 2) and 54 scans from 27 participants 

(Centre 3) acquired 3 to 12 months after hospitalization due to COVID-19. Each participant 

underwent an inspiratory and expiratory scan, resulting in two scans per subject. Acquisition 

details are provided in Table 5.2. 

5.3.3 1H-MRI segmentations 

All 1H-MRI scans (n=809) had corresponding, manually-edited segmentations, representing 

the lung parenchyma. These segmentations were used as ground-truth delineations of the 

lung cavity volume, exclusive of major airways. Segmentations were pooled retrospectively 

and were originally generated manually or using a variety of semi-automated methods 

(Hughes et al., 2018; Woodhouse et al., 2005; Horn et al., 2014). Subsequently, they were 

manually reviewed and edited by several experienced observers (B.A.T had 10 years, H.M 

had 7 years, G.J.C had 6 years, P.J.C.H had 5 years, A.M.B had 5 years, H.F.C had 4 years, 

L.J.S had 3.5 years, and J.R.A had 3 years, of experience in editing lung segmentations) 

with each observer segmenting different cases within the dataset using the ITK-SNAP 

software (ITK-SNAP, University of Pennsylvania, PA, USA). Airways were removed down 

to the third generation, and care was taken to ensure that no more than two connected 

components were present in the segmentations, thus removing any potentially incorrect 

stray voxels. 
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Table 5.2 1H-MRI acquisition details. 

abag volume was titrated based on standing height and ranges from 400mL to 1L. 

Abbreviations: FRC, functional residual capacity; RV, residual volume; TLC, total lung capacity; INSP, inspiratory; EXP, expiratory; SPGR, spoiled-gradient recalled 

echo; UTE, ultrashort echo time. 

 Acquisition 1 Acquisition 2 Acquisition 3 Acquisition 4 Acquisition 5 
External 

validation 1 
External 

validation 2 

Centre: Centre 1 Centre 1 Centre 1 Centre 1 Centre 1 Centre 2 Centre 3 

Scanner: GE HDx Philips Ingenia GE HDx GE HDx GE HDx Siemens Skyra Siemens Prisma 

Field strength: 1.5T 3T 1.5T 1.5T 1.5T 3T 3T 

Coil: 8-channel cardiac  Body 8-element cardiac Body Body coil Body coil Body coil 

Sequence: UTE SPGR SPGR SPGR SPGR SPGR SPGR 

Sequence dimension: 3D 3D 3D 3D 3D 3D 3D 

Acquisition orientation: Axial Coronal Coronal Coronal Coronal Coronal Coronal 

Inflation level: 
FRC (free-breathing 

gated on expiration) 
INSP / EXP 

RV, TLC, 

FRC+baga 
FRC+baga FRC+baga INSP / EXP INSP / EXP 

Slice thickness (mm): ~1.5 5 3 or 4 5 10 3 3 

Inter-slice distance (mm): ~1.5 2.5 3 or 4 5 10 3 3 

In-plane resolution (mm2): ~1.5 x 1.5 ~2 x 2 ~3 x 3 or ~4 x 4 ~4 x 4 ~4 x 4 ~3.13 x 3.13 ~3.13 x 3.13 

TR / TE (milliseconds): 2.8 / 0.078 1.9 / 0.6 1.8 / 0.7 1.9 / 0.6 1.9 / 0.6 1.9 / 0.7 1.9 / 0.7 

Flip angle (°): 4 3 3 5 5 3 3 

Field of view (cm): ~35-48 ~38-40 ~35-48 ~35-48 ~35-48 ~40 ~40 

Bandwidth (kHz): ±125 ±321.4 ±166.6 ±166.6 ±166.6 ±200.3 ±200.3 
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5.3.4 Convolutional neural network 

The proposed networks consisted of a 2D and 3D implementation of the UNet CNN (Isensee 

et al., 2018). All networks were trained using the medical imaging DL framework NiftyNet 

(0.6.0) (Gibson et al., 2018b) built on top of TensorFlow (1.14) (Abadi et al., 2016). To ensure 

an adequate comparison between the two CNNs, training was performed on an NVIDIA 

Tesla V100 graphical processing unit (GPU) (Nvidia Corporation, Santa Clara, CA, USA) 

with 16 GB of RAM for the same length of time, thereby normalising the performance in 

terms of computational efficiency and resources. Each network was trained for 120 hours. 

 

2D UNet: A 2D UNet (Ronneberger et al., 2015) architecture was used with varying kernel 

sizes from 3x3x3 to 1x1x1 depending on the layer of the network. An input spatial window 

size of 128x128x1 in the coronal plane and a volume padding size of 24x24x0 was 

implemented to maintain consistent image dimensions. Each network was trained with a 

partial rectified linear unit (PReLU) activation function (He et al., 2015), Adam optimization 

(Kingma and Ba, 2015) and binary cross-entropy loss function. A learning rate of 1x10-5 and 

batch size of 1 was used for 123 training epochs. A decay of 1x10-6 and L2 regularization 

were implemented to minimize overfitting. 

 

3D UNet: A 3D implementation of the UNet, referred to as the nn-UNet was used (Isensee 

et al., 2018). Convolution operations varied in kernel size from 3x3x3 to 1x1x1 depending 

on the layer of the network. The network also made use of instance and batch normalization 

to reduce the covariate shift between network layers. An isotropic spatial window size of 

96x96x96 was used. Each network was trained with a PReLU activation function (He et al., 

2015), Adam optimization (Kingma and Ba, 2015) and binary cross-entropy loss function. A 

learning rate of 1x10-5 and batch size of 2 were used for 227 training epochs. A decay of 

1x10-6 and L2 regularization were selected to minimize overfitting. 

 
Data augmentation: Data augmentation was employed before 3D scans were fed into the 

network to increase the variability of the training images. The augmentation method did not 

increase the total size of the dataset but instead used random rotation and scaling factors 

to modify scans before entering the network. Rotation angles of -10° to 10° and scaling 

values of -10% to 10% were applied for each epoch, selected based on previous research 

investigations (Astley et al., 2022). Augmentation techniques were constrained to the above 

limits to produce physiologically plausible scans. 
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Training and testing sets: 50 scans from 50 participants, with 10 scans from each distinct 

acquisition in Centre 1, were randomly selected as a testing set. This constituted 

approximately 8% of the total number of scans from Centre 1 and 25% of the total number 

of participants. This was done to ensure that no participant was included concurrently in the 

training and testing sets and that only one scan per participant was included in the testing 

set. In addition, two external validation cohorts from Centres 2 and 3 were used to further 

validate the DL frameworks. Therefore, as a proportion of the total dataset, approximately 

27% and 46% of the data in terms of scans and participants were used for testing, 

respectively. Numbers of scans and participants in the training, testing and external 

validation datasets are shown in Table 5.3. 

5.3.5 Conventional approach: Spatial fuzzy c-means 

A conventional approach commonly used for 1H-MRI segmentation, namely, SFCM, was 

used (Hughes et al., 2018). Images were initially bilaterally filtered to remove noise and 

maintain edges (Tomasi and Manduchi, 1998). SFCM differs from generic FCM algorithms 

in that it assumes that voxels in close spatial proximity will have a high correlation with each 

other and hence have similarly high membership to the same cluster. This spatial 

information will modify the membership value if, for instance, the voxel is noisy yet highly 

spatially correlated and consequently would have been incorrectly classified. The optimal 

number of clusters was manually selected by A.M.B based on previous experience in the 

clinical translation of this technique. Traditional FCM methods assign N pixels to C clusters 

via fuzzy memberships yet do not make use of nearby pixels during the iteration process. 

By taking into account the membership of voxels within a predefined window (5x5 in this 

work), SFCM will weigh the central voxel depending on the provided weighting variables (Li 

et al., 2011) and thus is expected to generate more accurate segmentations (Hughes et al., 

2018). 
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Table 5.3 Breakdown of training and testing strategy with external validation  

 

5.3.6 Quantitative evaluation 

Segmentations generated by DL and SFCM were compared to manually-annotated 

segmentations and quantitatively evaluated using several common voxel-based evaluation 

metrics. The overlap-based Dice similarity coefficient (DSC) metric was used to assess 

overlap between the sets of voxels in the ground truth (X) and computationally-generated 

(Y) segmentations (Dice, 1945) and is defined as: 
 

DSC = 2
|Y	 ∩ 	X|
|Y| + |X| 

( 5.1 ) 

Average boundary Hausdorff distance (Avg	HD) in millimetres (Shapiro and Blaschko, 2004) 

assesses the conformity of boundaries between the sets of boundary voxels in X and Y 

defined as XB and YB, respectively, and is defined as follows: 

 

Avg	HD = 	
1
2
(𝑑(YB, XB) + 𝑑(XB, YB)) 

 
( 5.2 ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

aThe number of unique participants in the training set. The totals for each acquisition in the training 
set are greater than this as some participants have scans from multiple acquisitions. 

Image Acquisition No. of scans No. of participants 
Training Total 593 157a 

 Acquisition 1 89 44 

 Acquisition 2 78 39 
 Acquisition 3 242 65 
 Acquisition 4 99 26 
 Acquisition 5 85 33 

Testing Total 50 50 
 Acquisition 1 10 10 

 Acquisition 2 10 10 
 Acquisition 3 10 10 
 Acquisition 4 10 10 
 Acquisition 5 10 10 

External validation Total 164 82 
 External validation 1 110 55 

 External validation 2 54 27 
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where xB and yB represent individual voxels in the set of XB and YB, respectively, and 

𝑑(YB, XB) and 𝑑(XB, YB) represent the directed average Hausdorff distances given by: 

 

𝑑(YB, XB) =
1
N	 b min

%!∈F!
‖yB − xB‖			

G!∈H!

 

( 5.3 ) 

where N is the number of observations in |YB|	and ‖yB − xB‖ is the Euclidean distance 

between yB and xB. 

 
The relative error metric (XOR) is an error-based metric which is expected to correlate with 

the manual editing time required to correct the segmentation (Biancardi and Wild, 2017) and 

is defined as follows: 

 

XOR =
|Y	 ∩ 	X′| +	 |Y′	 ∩ 	X|

|X| 	 

( 5.4 ) 

where Y′ and X′ are the complements of Y and X, respectively. 

5.3.7 Statistical analysis 

The normality of the data was assessed using Shapiro-Wilk tests; if normality was not 

satisfied, non-parametric tests were conducted. Kruskal-Wallis tests for multiple 

comparisons were used to assess differences in segmentation performance between Centre 

1 image acquisitions (see Table 5.2). One-way repeated-measures analysis of variance 

(ANOVA) with Tukey’s test or Friedman tests with corrected Dunn’s method for post-hoc 

multiple comparisons were used to assess differences in segmentation performance 

between the 2D UNet, 3D UNet and SFCM methods for Centre 1 data. Bland-Altman 

analyses were conducted to compare the 2D UNet-, 3D UNet- and SFCM-generated 

segmentations on external validation data. ANOVA or Friedman tests were used to assess 

differences between segmentation methods on external validation cohorts from Centres 2 

and 3. Furthermore, independent t-tests with Welch's correction or Mann-Whitney U tests 

were used to assess differences between expiratory and inspiratory segmentations in 

external validation data. Statistical analyses were conducted using GraphPad Prism 9.2.0 

(GraphPad Software, San Diego, CA). A p-value of <0.05 was considered statistically 

significant. 
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5.4 Results 

5.4.1 Qualitative evaluation 

Figure 5.1 shows the segmentations generated by the 2D UNet, 3D UNet and SFCM 

methods in comparison to the manually-edited segmentations for six cases, where a range 

of pulmonary pathologies, centres, and MR sequences were chosen to demonstrate each 

method’s performance. For all cases, the 3D UNet exhibited improved performance over its 

2D analogue and the SFCM method; this superior performance was maintained for the 

external validation dataset. Cases with challenging features such as artifacts, ground glass 

opacities, consolidation and bronchiectasis are displayed in Figure 5.2 along with expert, 

DL and SFCM segmentations. The 3D UNet exhibited improved performance on these 

cases compared to the other approaches tested; however, some differences were observed 

with expert segmentations, particularly when areas of high signal intensity were adjacent to 

the border of the lung cavity.
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Figure 5.1 Example coronal slices showing the 1H-MRI scans (row 1) and the 1H-MRI scans overlaid with manual segmentations (row 2) and 

segmentations generated by the 3D UNet, 2D UNet and SFCM methods (rows 3-5) for six cases. DSC and Avg HD values are provided for each case.  
Example slices were left uncropped to display differences in field of view and arm position between acquisitions.
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Figure 5.2 Example coronal slices showing 1H-MRI scans that exhibit challenging features such as 

artifacts, ground glass opacities, consolidation, and bronchiectasis for five cases with 
corresponding expert, deep learning, and SFCM segmentations. DSC values are provided for each 

case and method. 

5.4.2 Centre 1 evaluation 

Quantitative results for the 2D UNet, 3D UNet and SFCM method are displayed in Table 

5.4. Results demonstrated that the 3D UNet generated superior segmentations across all 

three metrics for each acquisition. The 3D UNet achieved a median (range) DSC, Avg HD 

and XOR of 0.961 (0.880, 0.987), 1.63mm (0.65, 5.45) and 0.079 (0.025, 0.240), 

respectively, on testing data from Centre 1. Both the DL-based approaches outperformed 

the SFCM method across all three metrics. Our 3D UNet trained model is publicly available 

at https://github.com/POLARIS-Sheffield/1H-MRI-segmentation. In Figure 5.3, performance 

between segmentation methods is shown per MR acquisition configuration for all metrics. 

The 3D UNet significantly outperformed the SFCM method in all comparisons and the 2D 
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UNet in almost all comparisons. The 2D UNet statistically outperformed the SFCM on 

Acquisition 1 data only. Network training performance and convergence for the 3D and 2D 

UNets are illustrated graphically in Figure 5.4. 
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Figure 5.3 Comparison of segmentation performance for each of the methods using the a) DSC, b) 

Avg HD, and c) XOR metrics. Significances of differences between DL methods and SFCM as 
assessed by Friedman tests with Bonferroni correction are displayed for each metric.
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Table 5.4 Quantitative results for the testing set (n=50), external validation 1 (n=110) and external validation 2 (n=54) using the DSC, Avg HD (mm) 
and XOR metrics for the SFCM, 2D UNet and 3D UNet methods. Median (range) values are provided for each acquisition protocol, the combined 

testing set, and the external validation sets. 

 

Acquisition 

SFCM 2D UNet 3D UNet 

DSC Average HD (mm) XOR DSC Average HD (mm) XOR DSC Average HD (mm) XOR 

Median (range) Median (range) Median (range) Median (range) Median (range) Median (range) Median (range) Median (range) Median (range) 

Acquisition 1 0.871 (0.770, 0.919) 4.67 (3.20, 6.78) 0.241 (0.157, 0.397) 0.935 (0.897, 0.960) 1.86 (1.27, 2.83) 0.124 (0.079, 0.191) 0.942 (0.917, 0.974) 1.57 (0.96, 3.28) 0.111 (0.052, 0.156) 

Acquisition 2 0.885 (0.484, 0.945) 5.74 (2.90, 19.9) 0.209 (0.105, 0.682) 0.920 (0.874, 0.953) 2.70 (1.54, 3.66) 0.152 (0.093, 0.227) 0.968 (0.951, 0.974) 1.03 (0.93, 1.30) 0.065 (0.051, 0.098) 

Acquisition 3 0.879 (0.438, 0.956) 7.71 (3.43, 11.1) 0.217 (0.085, 0.719) 0.960 (0.910, 0.974) 2.48 (1.20, 8.43) 0.080 (0.051, 0.172) 0.979 (0.964, 0.987) 1.10 (0.65, 2.16) 0.043 (0.025, 0.070) 

Acquisition 4 0.942 (0.793, 0.979) 3.57 (2.08, 9.12) 0.112 (0.042, 0.343) 0.942 (0.915, 0.968) 4.17 (2.60, 5.01) 0.114 (0.065, 0.163) 0.959 (0.926, 0.975) 2.35 (1.53, 4.99) 0.083 (0.048, 0.145) 

Acquisition 5 0.898 (0.796, 0.961) 5.64 (1.96, 8.78) 0.187 (0.075, 0.362) 0.921 (0.848, 0.949) 3.71 (2.28, 8.49) 0.156 (0.102, 0.291) 0.942 (0.880, 0.961) 2.80 (1.68, 5.45) 0.111 (0.078, 0.240) 

Testing total 0.896 (0.438, 0.979) 5.28 (1.96, 19.9) 0.195 (0.042, 0.719) 0.938 (0.848, 0.974) 2.86 (1.20, 8.49) 0.123 (0.051, 0.291) 0.961 (0.880, 0.987) 1.63 (0.65, 5.45) 0.079 (0.025, 0.240) 

External validation 1 0.831 (0.295, 0.949) 5.07 (2.82, 54.1) 0.290 (0.097, 0.918) 0.894 (0.477, 0.959) 4.58 (1.64, 16.7) 0.197 (0.080, 0.688) 0.973 (0.866, 0.986) 1.19 (0.53, 8.13) 0.054 (0.028, 0.255) 

External validation 2 0.808 (0.170, 0.925) 5.88 (3.35, 71.9) 0.324 (0.141, 0.907) 0.902 (0.272, 0.954) 3.47 (1.79, 44.8) 0.185 (0.090, 0.912) 0.972 (0.914, 0.987) 0.96 (0.47, 3.86) 0.056 (0.026, 0.159) 

External validation total 0.819 (0.170, 0.949) 5.36 (2.82, 71.9) 0.307 (0.097, 0.918) 0.894 (0.272, 0.959) 4.08 (1.64, 44.8) 0.197 (0.080, 0.912) 0.973 (0.866, 0.987) 1.11 (0.47, 8.13) 0.054 (0.026, 0.255) 

Abbreviations: SFCM, spatial fuzzy c-means; DSC, Dice similarity coefficient; Average HD, average boundary Hausdorff distance; XOR, relative error metric. 
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Figure 5.4 (Top) 2D UNet and (bottom) 3D nn-UNet training performance and convergence. 

 

Figure 5.5 displays graphically the performance of the (a) 3D UNet, (b) 2D UNet and (c) 

SFCM methods for each metric. All methods exhibited statistically significant differences 

between some of the acquisitions; however, the 3D UNet exhibited the smallest range 

between least and best performing MR acquisition. The 3D UNet produced the most 

accurate segmentations for a single acquisition (Acquisition 3) when using all three metrics; 

in contrast, the 2D UNet and SFCM methods did not consistently exhibit superior 

performance for a specific acquisition across metrics. 
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Figure 5.5 Comparison of segmentation performance across acquisition protocols for the DSC, Avg 

HD and XOR metrics for a) 3D UNet, b) 2D UNet and c) SFCM methods. Significant differences 
between image acquisitions were assessed by Kruskal-Wallis tests are given for each metric. 
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5.4.3 External Validation 

As shown in Table 5.4, improved performance over Centre 1 testing data was exhibited on 

the external validation cohorts, achieving a median (range) DSC, Avg HD and XOR of 0.973 

(0.866, 0.987), 1.11mm (0.47, 8.13) and 0.054 (0.026, 0.255), respectively. The 3D UNet 

significantly outperformed the 2D UNet and SFCM for all three metrics across 164 external 

validation scans using the DSC, Avg HD and XOR metrics; distribution and comparison of 

segmentation performance is displayed in Figure 5.6. Figure 5.7 shows Bland-Altman 

analyses comparing the lung parenchymal volume of DL methods and SFCM to manually-

derived lung volumes for the 164 external validation scans from Centres 2 and 3. The 3D 

UNet exhibited a significantly reduced bias compared to other methods tested and achieved 

a bias of 0.063 litres with limits of agreement (LoA) -0.099 to 0.225 litres. 

 

 
Figure 5.6 Comparison of segmentation performance on the combined external validation datasets 

for each of the methods using the DSC (left), Avg HD (centre) and XOR (right) metrics. 
Significances of differences between DL methods and SFCM as assessed by Friedman tests with 

Bonferroni correction for multiple comparisons are displayed for each metric. 

 
Figure 5.7 Bland-Altman agreement analysis of lung volumes for 164 external validation set cases 
compared to volumes derived from manual segmentations for a) 3D UNet b) 2D UNet and c) SFCM 

methods. 
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Figure 5.8 displays a comparison of segmentation performance between expiratory and 

inspiratory scans in data from Centres 2 and 3 for all metrics used. For the 2D UNet and the 

SFCM methods, inspiratory scans were segmented more accurately than expiratory scans 

for all metrics. This was replicated for the 3D UNet using the DSC and XOR metrics; 

however, no difference was observed between inspiratory and expiratory scans using the 

Avg HD metric (p=0.06). 
 

 
Figure 5.8 Comparison of the combined external validation datasets stratified by inspiratory and 
expiratory scans using the DSC, Avg HD and XOR metrics for a) 3D UNet, b) 2D UNet and c) SFCM 

methods. P-values between inspiratory and expiratory scans are shown. 
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5.5 Discussion 

In this study, the proposed implementable DL segmentation algorithm produced accurate 

lung segmentations on a large, multi-centre, multi-acquisition, multi-disease 1H-MRI dataset. 

Our proposed 3D CNN significantly outperformed a 2D CNN and a conventional machine 

learning segmentation method. In addition, it was validated on external data from two 

centres, acquired on different vendor scanners, demonstrating minimal bias compared to 

manually-edited lung volumes. Differences in lung segmentation performance were 

observed between scans acquired at inspiratory and expiratory inflation levels. 

 

The dataset used is diverse in terms of pulmonary pathology, centre in which the scans were 

acquired, and image acquisition parameters, including sequence, field strength and vendor. 

This results in a segmentation network that is invariant to the specifics of the 1H-MRI scans 

analysed, relying on relevant anatomical features present in 1H-MRI scans to generate 

segmentations. These anatomical features remain consistent regardless of acquisition 

parameters in contrast to other features that varied between acquisitions, such as noise 

patterns, arm position, or location of the lungs within the scan. CT lung segmentation 

methods have adopted the large, multi-centre COPDGene dataset for validation of DL 

segmentation models to increase generalizability (Gerard et al., 2021). In this work, we used 

a large multi-centre, multi-vendor 1H-MRI dataset to demonstrate the generalizability of the 

DL model, allowing it to potentially be deployed across numerous centres; this could have a 

large impact on the pulmonary MRI field.   

 

Furthermore, our proposed 3D UNet demonstrated high quality segmentations across a 

range of pulmonary pathologies. This performance largely extends to particularly 

challenging cases such as participants with idiopathic pulmonary fibrosis. Fibrotic lungs 

contain an increased presence of challenging pathologies, such as ground glass opacities 

and honeycombing, which lead to increased heterogeneity within the lung parenchyma and 

consequently represent challenging cases for segmentation algorithms (Mansoor et al., 

2015). Similarly, 1H-MRI scans from participants who were previously hospitalised for 

COVID-19 can exhibit consolidation and reticulation patterns that reduce the difference in 

signal intensity between lung and non-lung tissue (Fields et al., 2021), which our proposed 

model adequately accounts for. 
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Quantitative results and statistical tests indicated that, for all acquisitions, across all metrics, 

the 3D UNet significantly outperformed the SFCM method. For the majority of acquisitions 

and metrics, the 3D UNet significantly outperformed its 2D analogue. When tested on 

external validation data, some degree of overfitting was present in the 2D UNet exemplified 

by a reduction in performance compared to testing set data from Centre 1; this behaviour 

was not exhibited by the 3D UNet. Differences in performance between the 2D and 3D 

UNets are potentially due to the volumetric nature of the 1H-MRI scans, which were acquired 

using 3D sequences. In addition, anatomical features primarily occur across multiple slices 

and thus a 3D approach to segmentation may better encapsulate these features. 

Comparison between DL networks was limited due to the differences in batch size and 

spatial windowing between the two CNNs as a result of differing memory constraints. It is 

possible that these differences may impact network comparisons; however, computational 

resources remained consistent between 2D and 3D CNNs and therefore the computational 

efficiency of the networks were assessed alongside segmentation performance. 

 

Several investigators have leveraged CNNs for pulmonary MRI segmentation. For example, 

Zha et al. used a 2D UNet to segment the lung cavity on UTE 1H-MRI scans, achieving a 

mean DSC of 0.96 across both lungs. However, the generalizability of this method was not 

demonstrated due to the small dataset of the study which only contained 45 UTE 1H-MRI 

scans from a limited number of diseases (Zha et al., 2019). Tustison et al. evaluated a 3D 

UNet CNN for isotropic 1H-MRI lung cavity segmentation, achieving a mean DSC of 0.94 on 

a dataset of 268 scans (Tustison et al., 2019). These studies employed a limited range of 

image acquisition parameters with 1H-MRI scans acquired using the same scanner and from 

a single-centre. Our 3D UNet proposed here demonstrated improved performance over 

previous research studies on a significantly larger dataset containing scans from multiple 

centres with varying sequences and readout parameters. Previous works in the field of 1H-

MRI lung segmentation have employed either 2D (Zha et al., 2019) or 3D (Tustison et al., 

2019) approaches; here, we directly compared differences in segmentation performance 

between 2D and 3D segmentation networks.  

 

Our analysis of external validation data from Centres 2 and 3 indicated that all lung cavity 

segmentation methods show significantly reduced performance on scans acquired at 

expiration. This effect was less prevalent in segmentations generated by the 3D UNet where 

no significant difference between inflation levels was observed using the Avg HD metric. 

Differences in performance between inflation levels may be due to the reduced contrast 



 

 136 

between the lung parenchyma and other tissues as air is expelled from the lungs and the 

increased heterogeneity of signal within the parenchyma caused by pathophysiological air 

trapping at expiration observed in some patients. In addition, segmentations of exhaled 

lungs have a smaller volume than those of inhaled lungs; this can potentially bias 

quantitative results when using voxel-based evaluation metrics (Reinke et al., 2021). 

 

Accurate lung segmentation of 1H-MRI plays an important role in the treatment planning, 

monitoring, and assessment of patients with respiratory diseases as well as other 

applications that require the delineation of the lung cavity such as dynamic contrast-

enhanced perfusion MRI (Voskrebenzev and Vogel-Claussen, 2021). The ability to rapidly 

produce lung cavity segmentations can greatly reduce cumbersome manual editing, leading 

to a more streamlined lung imaging workflow and thus higher clinical throughput, increasing 

clinical translation. 

5.5.1 Limitations 

The ratios of MRI acquisitions present in the training set leads to potential biases towards 

some MR sequences or acquisitions; those with a larger number of scans may lead to 

improved segmentation performance for these acquisitions by the network. In particular, this 

study presented more Acquisition 3 scans than any other acquisition in the training set, 

potentially leading to the increased DSC values exhibited by the 2D and 3D UNets for this 

acquisition. However, using the Avg HD metric, no relationship between the number of scans 

in the training set and reduced segmentation performance can be established, indicating 

that these biases are minimal. This is further reinforced by the superior performance on 

external validation datasets demonstrated by the 3D UNet, despite the CNN never being 

exposed to 1H-MRI scans from these centres or vendors during training. However, external 

validation data contained only one pulmonary pathology, namely, patients previously 

hospitalised with COVID-19. 

 

The expert segmentations used in this work delineate only the lung parenchyma inclusive 

of vessels and not other relevant structures, such as the airways. Various applications 

require the delineation of only the lung parenchyma, including the computation of clinically 

relevant metrics such as the ventilation defect percentage (Woodhouse et al., 2005) and as 

a precursor step to image registration of multi-inflation proton MRI for the generation of 1H-

MRI surrogates of ventilation (Capaldi et al., 2018). However, in certain respiratory disorders 

such as obstructive sleep apnoea, the segmentation of the airways is highly relevant for 
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studying the anatomical structure of the upper airways (Gamaleldin et al., 2020). Future 

investigations may aim to integrate a multi-label DL solution which can segment both the 

lung parenchyma and airways simultaneously. 

 

The number of MRI sequences contained within the dataset were limited. The dataset 

contained SPGR and UTE sequence scans i.e., proton density or T1-weighted scans only. 

In addition, UTE scans were acquired with a kooshball acquisition and, therefore, other 

possible acquisitions, such as Floret and spiral, were not assessed. Likewise, only 3D 

acquisition sequences were contained in the dataset, thereby limiting its implementation to 

3D sequences. The inclusion of other MRI sequences, such as steady-state free-precession 

or fast spin echo sequences, in combination with 2D and 3D MRI sequences will help to 

further generalize the work. In future investigations, we will aim to further validate the model 

with data from an increasing number of centres and from MRI sequences not previously 

investigated. 

 

In this work, 1H-MRI lung segmentations were primarily evaluated using voxel-wise 

evaluation metrics, such as the DSC. These metrics are susceptible to reduced sensitivity 

in segmentation evaluation as the volume of the segmentation is increased (Taha and 

Hanbury, 2015). Hence, comparisons between lung inflation levels evaluated using voxel-

based metrics are challenging. In future work, transfer learning could be employed to boost 

performance on expiratory scans or more advanced data augmentation methods could be 

used to increase the number of expiratory scans in the training set. Similarly, comparisons 

between acquisitions were limited in this study because of variations in voxel resolution, 

resulting in large differences in the overall number of voxels between acquisitions. Whilst 

the volume of the lung cavity remained largely consistent between acquisitions, the number 

of voxels did not; therefore, biases were introduced when using voxel-based evaluation 

metrics. The subject of appropriate evaluation metrics remains lively within the medical 

image analysis field with recent works aiming to quantify the benefits and drawbacks of each 

metric (Reinke et al., 2021). With this in mind, in this work, we employed a range of 

evaluation metrics; the overlap-based DSC (Dice, 1945), the distance-based Avg HD 

(Shapiro and Blaschko, 2004) and the error-based XOR metric (Biancardi and Wild, 2017) 

which each assessed a different component of segmentation accuracy. In addition, analysis 

of the lung cavity volume was also undertaken when evaluating external validation data as 

a non-voxel-based evaluation metric to further diversify segmentation performance 

evaluation. 
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5.6 Conclusion 

The DL-based implementable 1H-MRI segmentation network produced accurate lung 

segmentations across a range of pathologies, acquisitions, vendors, and centres, which 

could potentially have numerous applications for pulmonary MRI quantification. A 3D CNN 

significantly outperformed its 2D analogue and a conventional segmentation method. 
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Chapter 6                                                                              
A dual-channel deep learning approach for lung cavity 

estimation from hyperpolarised gas and proton MRI 
 
 

Background: Hyperpolarised gas MRI enables quantification of regional lung 
ventilation via biomarkers such as the ventilation defect percentage (VDP). VDP is 
computed from segmentations derived from spatially co-registered functional 
hyperpolarised gas and structural proton (1H)-MRI. Although these scans can be 
acquired at similar lung inflation levels, they are frequently misaligned, requiring a 
lung cavity estimation (LCE) mask. Recently, single channel, mono-modal deep 
learning (DL)-based methods have shown promise for numerous pulmonary image 
segmentation problems. Multi-channel approaches using multi-modal images may 
outperform single-channel alternatives when there are important features across 
multiple imaging modalities 
Purpose: We hypothesise that a DL-based dual-channel approach that leverages 
both 1H-MRI and Xenon-129-MRI (129Xe-MRI) can generate LCEs more accurately 
than single-channel alternatives. 
Study type: Retrospective. 
Population: 480 corresponding 1H-MRI and 129Xe-MRI scans from 26 healthy 
participants (median age (range): 11 (8, 71); 50% males, 50% females) and 289 
patients with pulmonary pathologies (median age (range): 47 (6, 83); 49% males, 
51% females) were split into training (422 scans (88%); 257 participants (82%)) and 
testing (58 scans (12%); 58 participants (18%)) sets. 
Field strength/sequence: 1.5-T, three-dimensional (3D) spoiled gradient recalled 
1H-MRI and 3D steady-state free-precession 129Xe-MRI. 
Assessment: We developed a multi-modal DL approach that integrates 129Xe-MRI 
and 1H-MRI in a dual-channel nn-UNet convolutional neural network. We compared 
this approach to single-channel alternatives using manually-edited LCEs as a 
benchmark. We further assessed a fully-automatic DL-based framework to calculate 
VDPs and compared it to manually generated VDPs. 
Statistical tests: Shapiro-Wilk tests for normality assessment; Friedman tests with 
post-hoc Bonferroni correction for multiple comparisons to compare single-channel 
and dual-channel DL approaches using Dice similarity coefficient (DSC), average 
boundary Hausdorff distance (Avg HD), and relative error (XOR) metrics. Bland-
Altman analysis and paired t-tests to compare manually and DL-generated VDPs. A 
p-value <0.05 was considered statistically significant. 
Results: The dual-channel approach significantly outperformed single-channel 
approaches and generated realistic LCEs across numerous pulmonary pathologies 
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achieving a median (range) DSC, Avg HD, and XOR of 0.967 (0.867–0.978), 1.68 
mm (37.0–0.778), and 0.066 (0.246–0.045), respectively. Furthermore, the DL-
generated VDP values were statistically indistinguishable from manually generated 
VDP values (p=0.710). 
Data conclusion: We used a dual-channel DL approach that may allow to generate 
LCEs, which could be integrated with ventilated lung segmentations to produce 
markers such as the VDP without manual intervention. 

6.1 Preface 

Work contained within this chapter has been published as a Journal article in Journal of 

Magnetic Resonance Imaging: 
 

Astley, J.R., Biancardi, A.M., Marshall, H., Hughes, P.J.C., Collier, G.J., Smith, L.J., 
Eaden, J.A., Hughes, R., Wild, J.M. and Tahir, B.A. (2023), A Dual-Channel Deep 
Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton 
MRI. Journal of Magnetic Resonance Imaging. https://doi.org/10.1002/jmri.28519 

 
The work contained within this chapter has also been published as conference proceedings 

at the following conferences: 

 
Astley J.R., Biancardi A.M., Marshall H., Hughes P.J.C., Collier G.J., Smith L.J., 
Eaden J.A., Wild J.M. and Tahir B.A. (2022). A multi-channel deep learning approach 
for lung cavity estimation using hyperpolarized gas and proton MRI. Medical imaging 
and deep learning (MIDL) 2022. Zurich, Switzerland. 
 
Astley J.R., Biancardi A.M., Marshall H., Hughes P.J.C., Collier G.J., Smith L.J., 
Eaden J.A., Blè F.X, Hughes R., Wild J.M. and Tahir B.A. (2022). A multi-channel 
deep learning approach for lung cavity estimation from hyperpolarized gas and 
proton MRI. The international society for magnetic resonance in medicine (ISMRM) 
2022. London, UK. 
 

Additional material that could not be included within the journal article or within conference 

proceedings is also contained within this chapter. 

6.1.1 Author contributions 

J.R.A., J.M.W. and B.A.T. made substantial contributions to the conceptualisation of the 

work. A.M.B., H.M., P.J.C.H., G.J.C., L.J.S., J.A.E., R.H., J.M.W. and B.A.T. were involved 

with patient recruitment, image acquisition and/or analysis. J.R.A. developed the dual-

channel approach, performed the deep learning experiments, interpreted data, and 

conducted statistical analyses. J.R.A. drafted the manuscript. B.A.T. substantively revised 

the manuscript. All authors reviewed and approved the submitted manuscript. 
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6.2 Introduction 

Respiratory diseases are among the leading causes of mortality and disability worldwide 

(Vos et al., 2017; GBD15 et al., 2016). Imaging plays an important role in the diagnosis, 

treatment planning, monitoring, and treatment assessment of respiratory diseases (Hollings 

and Shaw, 2002; Antony et al., 2007; Kaireit et al., 2017; Martini and Frauenfelder, 2018). 

Computed tomography (CT) is the reference standard in clinical practice for most patients 

with respiratory diseases (Eichinger et al., 2010). Recent advances in proton MRI (1H-MRI) 

have overcome historical challenges in using this modality for pulmonary imaging, including 

the low proton density and many air-tissue interfaces in the lungs (Wild et al., 2012). Despite 

the strengths of both these modalities, they only provide structural information and not 

information on regional lung function. Hyperpolarised gas MRI has shown applicability for 

functional lung imaging including lung ventilation quantification (Woodhouse et al., 2005), 

treatment response assessment (Horn et al., 2017), and for functional lung avoidance 

radiotherapy (Tahir et al., 2017; Ireland et al., 2016). Hyperpolarised gas MRI enables 

quantification of regional lung ventilation with high spatial and temporal resolution (Fain et 

al., 2007), allowing the computation of clinical biomarkers such as the ventilation defect 

percentage (VDP) (Woodhouse et al., 2005; Hughes et al., 2019).  

 

The VDP is computed from segmentations derived from spatially co-registered, 

hyperpolarised gas MRI and structural 1H-MRI (Stewart et al., 2021). To ensure spatial 

alignment, both modalities are acquired consecutively and at approximately the same lung 

inflation level. However, the acquired scans are frequently misaligned, given that image 

registration, which assumes topology preservation between fixed and moving images, 

consistently underperforms in cases with large discrepancies in topology between functional 

and structural modalities (Tahir et al., 2014). Consequently, the misaligned structural region 

of interest (the lung cavity) required for the computation of VDP poses considerable 

segmentation challenges. To ensure the most accurate results, particularly in cases with 

substantial discrepancies in inflation levels during image acquisition, a lung cavity estimation 

(LCE) representing the thoracic cavity volume in the spatial domain of hyperpolarised gas 

MRI is required. To date, no algorithm exists to automatically segment this structure and 

manual editing is time-consuming. 
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Deep learning (DL) has shown promise for numerous pulmonary image segmentation 

problems (Gerard et al., 2020). A recent review of DL applications in lung image analysis 

showed that the vast majority of DL lung segmentation studies employed CT (Astley et al., 

2020b). The authors identified that MRI is underrepresented in DL lung segmentation 

applications and thus represents a gap in the literature. In the field of DL, convolutional 

neural networks (CNNs) have become dominant for lung image segmentation due to their 

ability to accurately segment various structures with computational efficiency (Astley et al., 

2020b). Several investigators have evaluated the use of CNNs for pulmonary MRI 

segmentations (Tustison et al., 2019; Zha et al., 2019; Jiang et al., 2018; Jiang et al., 2019; 

Sandkühler et al., 2019). Tustison et al. used a three-dimensional (3D) UNet CNN to 

produce 1H-MRI whole-lung segmentations, achieving a mean Dice similarity coefficient 

(DSC) of 0.94 (Tustison et al., 2019). Zha et al. used a two-dimensional (2D) UNet to 

successfully segment ultra-short echo time (UTE) 1H-MRI scans; however, this work used a 

relatively limited dataset, containing only 45 participants (Zha et al., 2019). Astley et al. have 

demonstrated accurate 1H-MRI segmentation on a large dataset, containing multi-resolution 

scans of patients with various pulmonary pathologies (Astley et al., 2021). A 3D UNet was 

employed and achieved a mean DSC of 0.96 for whole-lung segmentation across all 

resolutions (Astley et al., 2021). All these approaches to generate whole-lung segmentations 

from 1H-MRI have used single-channel, mono-modal CNN-based methods, where a single 

image or 3D scan is used as an input to the CNN (Tustison et al., 2019; Zha et al., 2019; 

Astley et al., 2021). Although these methods have shown promising results, they cannot 

account for the aforementioned spatial misalignments between structural and functional 

modalities. Multi-channel approaches using multi-modal images have shown promise in DL 

image analysis applications, where there are important features across multiple imaging 

modalities (Xu, 2019; Yang et al., 2019). For example, DL has been employed for lesion 

segmentation using multi-modal CT and positron emission tomography (PET) images that 

are acquired simultaneously (Guo et al., 2019). A similar problem is encountered in this 

work, thus motivating the investigation of dual-channel, dual-modal approaches.  

 

We hypothesise that a dual-channel approach that leverages both 1H-MRI and Xenon-129-

MRI (129Xe-MRI) can generate accurate LCEs across a wide range of lung pathologies. We 

aimed to compare this approach with single-channel CNN-based methods which do not 

integrate functional and structural imaging as inputs to a CNN. In addition, we aim to 

combine the dual-channel approach with a previously developed DL method for 
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hyperpolarised gas MRI ventilated lung segmentation to generate clinical biomarkers, such 

as the VDP, without manual intervention. 

6.3 Materials and methods 

All prospective studies received ethical approval by the national research ethics committee 

with participants (or their guardians) providing informed written consent. Appropriate 

consent and permissions have been granted by the Sponsors to utilise this data for 

retrospective purposes. 

6.3.1 Patient data 

The dataset included in this study contained 480 corresponding 1H-MRI and 129Xe-MRI 

scans from 26 healthy participants (median age (range): 11 (8, 71); 50% males, 50% 

females) and 289 patients with various pulmonary pathologies (median age (range): 47 (6, 

83); 49% males, 51% females). An overview of all participants, stratified by pathology, is 

displayed in Table 6.1. The data used in this study were pooled retrospectively from a range 

of prospective clinical imaging studies. 
 

Table 6.1 Summary of patient demographic data. 

 

6.3.2 Image acquisition 

All participants underwent 3D volumetric 129Xe-MRI and 1H-MRI in the coronal plane at 

approximately functional residual capacity (FRC)+bag (for any given participant, the bag 

Disease Number of 
participants 

Number of 
scans 

Age* Sex* VDP* 
Median (range) Frequency (%) Median (range) 

Asthma 92 154 50 (13, 74) 36M (40%), 55F (60%) 2.5 (0.07, 30.9) 

Asthma + COPD 25 27 59 (33, 71) 15M (60%), 10F (40%) 10.4 (1.3, 29.3) 

COPD 20 22 66 (48, 80) 8M (40%), 12F (60%) 18.8 (1.9, 64.8) 

Cystic fibrosis 55 109 18 (6, 62) 27M (51%), 26F (49%) 6.1 (0.38, 62.0) 

Healthy 26 27 11 (8, 71) 13M (50%), 13F (50%) 0.17 (0.01, 1.6) 

ILD** 40 71 67 (39, 83) 21M (58%), 15F (42%) 7.9 (1.5, 30.1) 

Investigation for possible airways disease 15 27 49 (11, 69) 2M (13%), 13F (87%) 6.6 (0.65, 35.0) 

Preterm birth 42 43 12 (9, 14) 14M (34%), 27F (66%) 0.48 (0.01, 5.2) 

Total 315 480 44 (6, 83) 138M (45%), 169F (55%) 3.6 (0.01, 62.0) 

*Demographic information unavailable for eight patients. Age and VDP given at baseline. 

**Contains connective tissue disease-associated interstitial lung disease (CTD-ILD), hypersensitivity pneumonitis 

(HP), idiopathic pulmonary fibrosis (IPF) and drug-induced ILD (DI-ILD). 

Abbreviations: chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), ventilated defect 

percentage (VDP), male (M), female (F). 
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volume was titrated based on standing height and ranges from 400mL to 1L) or total lung 

capacity (TLC) with full lung coverage at 1.5T on a HDx scanner (GE Healthcare, Milwaukee, 

WI, USA). 
 

129Xe-MRI acquisition: The 129Xe was polarised on site to approximately 25% by using an 

in-house developed rubidium spin-exchange polariser (Norquay et al., 2018). Flexible 

quadrature radiofrequency coils were employed for transmission and reception of MR 

signals at the Larmor frequency of 129Xe-MRI (Clinical MR Solutions, Brookfield, WI, USA). 

A 3D balanced steady-state free precession sequence was used (Stewart et al., 2018). The 

protocol used the following settings: repetition time/echo time of 6.7/2.2 milliseconds, in-

plane resolution of ~4x4 mm2 with a slice thickness of 10 mm. A ~40 cm field of view with a 

flip angle of 9° or 10° at a bandwidth of ±8kHz was used.  

 
1H-MRI acquisition: The 1H-MRI scans were acquired with a quadrature transmit–receive 

body coil in the coronal plane (Stewart et al., 2018). A 3D spoiled gradient-recalled sequence 

was used with the following settings: repetition time/echo time of 1.9/0.6 milliseconds, in-

plane resolution ~4x4 mm2 with a slice thickness of 5 mm. A ~40 cm field of view with a flip 

angle of 5° at a bandwidth of ±83.3kHz was used. 1H-MRI scans were acquired before and 

after 129Xe-MRI scans at a similar lung inflation level (i.e., FRC+bag or TLC) and 

subsequently rigidly registered and resampled to the resolution of 129Xe-MRI, using the 

ANTs framework implemented in an in-house MATLAB (Mathworks, Nantucket, MA, USA) 

software (Avants et al., 2014). 

6.3.3 Image quality assessment  

Testing set scans were classified as either containing, or not containing, an artifact for both 

the 1H-MRI and 129Xe-MRI scans. An image was classified as containing an artifact if and 

only if the artifact was inside the lung parenchyma or within the region encompassed by the 

ribs. This was chosen to focus solely on artifacts that were likely to have a significant impact 

on DL-based LCE performance. Artifacts were determined by three readers; B.A.T and 

G.J.C have 10 years and J.R.A has 2 years of experience. B.A.T and G.J.C are both imaging 

scientists with extensive experience in the pulmonary MRI field and J.R.A is currently 

undertaking a Ph.D. in lung imaging. Each reader was blinded, and 129Xe-MRI and 1H-MRI 

scans were assessed over two sessions. 1H-MRI scans were assessed for artifacts initially 

followed by 129Xe-MRI scans with a washout period of 24 hours for J.R.A and G.J.C; B.A.T 

performed the analysis similarly but with a 4-hour washout period between sessions. Scans 
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would be classified as containing an artifact if the majority of readers scored the scan as 

containing an artifact. We determined the SNR for all testing set cases in the 129Xe-MRI and 
1H-MRI scans in order to assess the impact of noise on the performance of DL-based LCEs. 

SNR was calculated as follows: 
 

SNR = 	
Mean	signal	itensity

Standard	deviation	of	noise 

( 6.1 ) 

129Xe-MRI SNR analysis: Signal was assessed at a high signal location within the trachea 

and noise was delineated in two locations for each slice, one under the diaphragm and the 

other above the apex. It was ensured that both the noise and signal were calculated on 

regions not containing an artifact as to not conflate the artifact and SNR analyses of DL 

segmentation performance. Signal and noise were delineated on the central slice of the scan 

and one slice either side of the central slice, resulting in three consecutive slices being 

delineated for each participant. Figure 6.1 shows the central slice signal and noise 

delineations for nine random cases in the testing set. 

 
1H-MRI SNR analysis: Signal was assessed at a location within the shoulder muscle and 

noise was delineated outside of the chest cavity. It was ensured that both the noise and 

signal were calculated on regions not containing an artifact as to not conflate these two 

analyses of DL segmentation performance. Signal and noise were delineated on the central 

slice of the scan and one slice either side of the central slice, resulting in three consecutive 

slices being delineated for each participant. Figure 6.2 shows the central slice signal and 

noise delineations for nine random cases in the testing set. 

 



 

 146 

 
Figure 6.1 1 2 9Xe-MRI signal (green) and background noise (red) delineations. 

 

 
Figure 6.2 1H-MRI signal (green) and background noise (red) delineations. 
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6.3.4 Lung cavity estimation segmentations 

Figure 6.3 displays fused 129Xe-MRI and 1H-MRI scans after rigid registration, demonstrating 

the continued misalignment between ventilation and structural scans and thus highlighting 

the requirement for an LCE. Segmentation of LCEs from ventilation and structural MR image 

pairs was conducted semi-automatically using paired spatial fuzzy c-means clustering 

(SFCM) (Biancardi et al., 2018). Images are initially bilaterally filtered to remove noise and 

maintain edges (Tomasi and Manduchi, 1998). The standard FCM algorithm assigns N 

pixels to C clusters via fuzzy memberships with the assumption that pixels in close proximity 

are highly correlated and hence have similarly high membership to the same cluster (Bezdek 

et al., 1984). This spatial information will modify the membership value only if, for example, 

the pixel is noisy and would have been incorrectly classified.  

 

 
Figure 6.3 Illustration showing the motivation to generate lung cavity estimations in the spatial 
domain of 1 2 9Xe-MRI due to misalignments in image acquisitions between modalities. Example 

cases demonstrating misalignments between 1 2 9Xe- and 1H-MRI. Misalignments are indicated by 
green arrows. 

The SFCM method makes use of nearby pixels during the iteration process by considering 

the membership of voxels within a predefined window and will weigh the central pixel 

depending on the provided weighting variables (Chuang et al., 2006). Heuristic values for 

the number of clusters and cluster selection threshold for inclusion in the ventilation or 

structural masks were identified, resulting in the selection of 18 clusters for both masks by 
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A.M.B who had 3.5 years of experience. For the manual segmentations used in this work, 

the SFCM clustering was applied to both 129Xe-MRI and 1H-MRI scans in a pair-wise fashion 

to take advantage of the combined information arising from the co-location of the image pair 

(Biancardi et al., 2018). LCEs were pooled retrospectively from several studies and, 

consequently, were subsequently manually reviewed and edited by several experienced 

observers, where each scan was segmented by a single observer, but the dataset as a 

whole contained LCEs manually-edited by observers with a range of expertise: H.M had 7 

years, G.J.C had 6 years, P.J.C.H had 5 years, A.M.B had 5 years, L.J.S had 3.5 years, 

J.A.E had 3 years, and J.R.A had 2 years, of experience in editing LCEs. 

6.3.5 Deep learning frameworks 

We assessed three DL methods to generate LCEs by varying the input channels provided 

to each network. These consisted of single-channel and dual-channel CNN approaches 

(Figure 6.4) as follows: 

 
1) Ventilation-only (129Xe-MRI) 

2) Structural-only (1H-MRI) 

3) Dual-channel (129Xe-MRI + 1H-MRI) 

 
All methods used a variation of the common 2D UNet encoder-decoder network architecture; 

here we used a 3D implementation of the UNet, referred to as the nn-UNet, which has been 

modified to reduce memory constraints, allowing 30 feature channels (Isensee et al., 2018). 

Convolution operations varied in kernel size from 3x3x3 to 1x1x1 depending on the layer of 

the network. The network also made use of instance normalisation. An isotropic spatial 

window size of 96x96x96 was used. Each network was trained with a parametric rectified 

linear unit (PReLU) activation function (He et al., 2015), ADAM optimisation (Kingma and 

Ba, 2015), and cross-entropy loss function. A learning rate of 1x10-5 and batch size of 2 

were used. A decay of 1x10-6 and L2 regularisation were selected to minimise overfitting. 

Each method was trained for 300 epochs resulting in a model training time of approximately 

8 days. All networks were trained using the medical imaging DL framework NiftyNet 0.6.0 

(https://github.com/NifTK/NiftyNet) built on top of TensorFlow 1.14 (Gibson et al., 2018b). 

Training and inference were performed on an NVIDIA Tesla V100 graphical processing unit 

(GPU) (Nvidia corporation, Santa Clara, CA, USA) with 16 GB of RAM. 
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Data augmentation: Constrained random rotation and scaling were used for data 

augmentation before 129Xe-MRI and 1H-MRI scans were fed into the network. The 

augmentation method used does not increase the total size of the dataset but instead utilises 

random rotation and scaling factors to modify scans before entering the network. Each time 

a scan is fed into the network, random rotation and scaling factors with limits -10° to 10° and 

-10% to 10%, respectively, where different factors at an interval within these limits, were 

applied. 

 

 
Figure 6.4 From left to right: ventilation-only, structural-only, and dual-input deep learning 

workflows. 

Training and testing sets: The dataset was divided into training and testing sets; the data 

split was conducted at the level of scans whereby 15% of the scans were randomly selected 

as the testing set. If a participant had multiple repeat or longitudinal scans, one scan out of 

these was randomly selected and the other scans discarded from the analysis; these 

removed scans do not appear in the dataset. This was done to ensure that no participant 

was present in both the training and testing sets and that the testing set contained only one 

scan from each participant, thereby reducing potential biases in favour of specific 

participants. Therefore, the training set contained 422 corresponding 129Xe-MRI and 1H-MRI 

scans from a total of 257 participants and the testing set contained 58 scans from 58 

participants, representing 81.6% and 18.4% of the total number of participants, respectively. 

Even though the testing set allocation was randomly determined, at least one scan from 

each disease or healthy cohort (described in Table 6.1) was present in the testing set. The 

training set had the following demographic distributions: median age (range) of 41 (8.9, 83); 

median VDP (range) 3.23% (0.01, 64.8); sex 44% male, 56% female. The testing set had 

the following demographic distributions: median age (range) of 53 (6.4, 76); median VDP 

(range) 5.19% (0.05, 62.0); sex 49% male, 51% female. 
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6.3.6 Quantitative evaluation 

The DL-generated LCEs were quantitatively evaluated using the overlap-based DSC metric 

that assesses the overlap between the sets of voxels in the ground truth (X) and 

computationally-generated (Y) segmentations, defined as:   

 

DSC = 2
|Y	 ∩ 	X|
|Y| + |X| 

( 6.2 ) 

Average boundary Hausdorff distance (Avg	HD) in millimetres (Shapiro and Blaschko, 2004) 

assesses the conformity of boundaries between the sets of boundary voxels in X and Y 

defined as XB and YB, respectively, and is defined as follows: 

 

Avg	HD = 	
1
2
(𝑑(YB, XB) + 𝑑(XB, YB)) 

( 6.3 ) 

where xB and yB represent individual voxels in the set of XB and YB, respectively, and 

𝑑(YB, XB) and 𝑑(XB, YB) represent the directed average Hausdorff distances given by: 

 

𝑑(YB, XB) =
1
N	 b min

%!∈F!
‖yB − xB‖			

G!∈H!

 

( 6.4 ) 

where N is the number of observations in |YB|	and ‖yB − xB‖ is the Euclidean distance 

between yB and xB. 

 
A relative error metric (XOR) was used to evaluate segmentation errors as follows:  

 

XOR =
|Y	 ∩ 	X′| +	 |Y′	 ∩ 	X|

|X| 	 

( 6.5 ) 

where Y′ and X′ are the complements of Y and X, respectively. The metric was used because 

it is expected to correlate with the manual editing time required to correct the segmentation 

outcome (Biancardi and Wild, 2017). 
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6.3.7 Clinical evaluation 

In addition to quantitative evaluation metrics, clinical evaluation metrics were used to assess 

the lung parenchymal volume defined by the LCE. DL-generated LCE volumes were 

compared to ground truth LCE volumes to assess LCE accuracy. The VDP has been used 

as a robust measure of lung function (Woodhouse et al., 2005). VDP was calculated from 

structural and functional volumes aligned via rigid registration as follows:  

 

VDP	(%) = @1 −
ventilated	lung	volume

LCE	volume 	L × 	100 

( 6.6 ) 

 

We assessed the performance of the DL-generated LCEs by computing VDP values for 

each scan in the testing set. As shown in Equation( 6.6, in addition to LCE volumes, 

ventilated lung volumes are required. Thus, we employed a previously trained nn-UNet fully-

CNN, developed for automatic hyperpolarised gas MRI ventilated lung segmentation in a 

large diverse dataset (Astley et al., 2022), which was done to generate accurate DL-based 
129Xe-MRI ventilated lung segmentations for the current testing set. The fully-automatic DL-

derived VDPs were compared to VDPs derived from manually-edited ventilated and LCE 

segmentations. Ventilated volumes were initially generated using a binning method (He et 

al., 2014). 129Xe-MRI scans were normalised by the average value of the 129Xe signal in the 

lung cavity and ventilation defects were defined as any value below 33% of the mean signal 

intensity. Thus, the ventilated volume was defined as the complement of the ventilation 

defect (Collier et al., 2018). 

6.3.8 Statistical analysis 

All statistical analyses were conducted using GraphPad Prism (version 9.2.0; GraphPad 

Software, San Diego, CA, USA). Data were tested for normality using Shapiro-Wilk tests. 

When normality was not satisfied, non-parametric tests were conducted. One-way repeated 

measures analysis of variance (ANOVA) or Friedman tests were conducted as appropriate 

with Bonferroni correction for post-hoc multiple comparisons to assess statistical 

significance of differences between DL ventilation-only, structural-only, and dual-input 

methods. Pearson or Spearman correlation and Bland-Altman analyses were conducted to 

compare the volumes of the dual-input DL method and manual LCEs. In addition, paired t-

tests and Bland-Altman analyses were used to compare manual and DL-generated VDP 
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values. Independent t-tests with Welch's correction or Mann-Whitney U tests were used as 

appropriate to assess differences in VDPs between scans containing or not containing 

artifacts. Relationships between differences in manual and DL-generated VDPs and SNRs 

were assessed using Pearson or Spearman correlation. A p-value <0.05 was considered 

statistically significant. 

6.4 Results 

6.4.1 Quantitative evaluation 

Figure 6.5 demonstrates the qualitative and quantitative performance of each DL method 

comparing the DL-generated LCEs to the manual LCEs for four cases. For all cases, the 

dual-input method generated realistic LCEs that might accurately mimic manual LCEs.  

 

Quantitative results for each DL method are provided in Figure 6.6a. The results 

demonstrate that the dual-input method generated the most accurate segmentations across 

all metrics used. The dual-input method achieved a median (range) DSC, Avg HD, and XOR 

of 0.967 (0.867, 0.978), 1.68 mm (37.0, 0.778 mm), and 0.066 (0.246, 0.045), respectively. 

The dual-input method significantly outperformed the single-channel methods. The results 

for all metrics are displayed graphically in Figure 6.6b. Due to the significant improvements 

demonstrated by the dual-input DL method across all segmentation metrics, we selected 

this method for assessment using clinical evaluation metrics.
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Figure 6.5 Example coronal slices showing the 1H-MRI and corresponding similar-breath hyperpolarised gas MRI scan with the expert LCE and the LCE 
generated from the three DL methods for four cases within the testing set. Expert hyperpolarised gas MRI segmentations are provided for each case 

to aid visualisation of alignments. DSC values are provided for each case.
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Figure 6.6 a) Quantitative results for the testing set (n=58) using the DSC, Avg HD (mm) and XOR 

metrics for the ventilation-only, structural-only, and dual-input DL methods. Median (range) 
values are given with the best values shown in bold. b) Comparison of LCE performance for each 

of the three DL methods using the DSC (left), Avg HD (centre) and XOR (right) metrics. Significance 
of differences between DL methods as assessed by Friedman tests with Bonferroni correction for 

multiple comparisons are displayed for each metric. 

 

6.4.2 Clinical evaluation 

Figure 6.7 shows Pearson correlation and Bland-Altman analyses of lung volumes for the 

dual-input, DL-generated LCEs compared to manual LCEs. The dual-input method exhibited 

a statistically significant, strong Pearson’s correlation of 0.98 and minimal bias of 0.06±0.26 

litres with limits of agreement (LoA) of -0.45 to 0.56 litres. Figure 6.8 shows example coronal 

slices of the manual LCEs and ventilated lung volumes compared with those generated by 

the DL methods.  
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Figure 6.7 Bland-Altman analysis (left) and Pearson correlation (right) of lung volumes for 58 

testing set cases comparing the manual LCEs to the dual-input DL-generated LCEs. 

 
Figure 6.8 Example coronal slices of four cases with ventilation defects showing fused manual 

LCEs (white) and hyperpolarised gas MRI ventilated lung segmentations (pink) compared to those 
generated using the dual-input DL method and previously described hyperpolarised gas MRI 

ventilated lung segmentation method. Manual and DL-generated VDPs are given for each case. 
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Figure 6.9a contains an estimation plot indicating that there is no significant difference 

between DL-generated VDPs and manual VDPs (p=0.71). In addition, Bland-Altman 

analysis of bias using the VDP values resulted in a bias of -0.19% and LoA of -7.73% to 

7.35%. A Bland-Altman plot is shown in Figure 6.9b for the VDP generated using the 

proposed DL workflow compared to VDP values from manual assessment. 
 

 
Figure 6.9 a) Estimation plot of manual- and DL-generated VDPs (left) with significance of 

differences; b) Bland-Altman analysis (right) of VDPs for 58 testing set cases comparing the 
manual LCE to the dual-input DL-method. 

6.4.3 Image quality assessment  

For 1H-MRI scans, all three readers agreed on 12 cases and the majority opinion of two 

readers was used for three cases, resulting in 15 testing set 1H-MRI scans containing an 

artifact. 9 scans were not included as only one reader identified them as containing an 

artifact. For 129Xe-MRI scans, all three readers agreed on two cases and the majority opinion 

of two readers was used for 10 cases, resulting in 12 testing set 129Xe-MRI scans containing 

an artifact. 13 scans were not included as only one reader identified them as containing an 

artifact. Five cases within the testing set contained artifacts in both 1H-MRI and 129Xe-MRI 

scans. Artifacts included zipper, aliasing, signal dropout, motion, wrap-around and image 

warping. Figure 6.10a concerns the presence of image artifacts identified by the three 

independent readers in either the 1H-MRI or 129Xe-MRI scans. The differences between the 

manual and DL-generated VDPs were significantly impacted by the presence of imaging 

artifacts in 129Xe-MRI scans; similar effects were not exhibited when considering artifacts in 
1H-MRI scans (p=0.67). Figure 6.10b plots the Spearman’s correlation between the 
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difference in VDP with SNR and shows that there was no significant correlation between the 

two variables for both 1H-MRI (p=0.22) or 129Xe-MRI (p=0.49) scans.  
 

 
Figure 6.10 a) Absolute differences between manual and DL VDPs stratified by presence (or 

absence) of image artifacts in the 1H-MRI (left) and 1 2 9Xe-MRI (right) scans. Mann-Whitney U tests 
were conducted, and p values indicated. b) Scatterplot of absolute differences between manual 
and DL VDPs and SNRs for the 1H-MRI (left) and 1 2 9Xe-MRI (right) scans. Spearman’s ρ values are 

provided. 

Figure 6.11 displays three failure cases where the differences in VDP between manual and 

DL-generated VDPs are outside the LoA in the Bland-Altman analysis. Case 1 contained a 

gas motion artifact on the 129Xe-MRI, leading to an error in the segmentation around this 

region. Case 2 contained a zipper artifact in the 1H-MRI, which traversed the lung 

parenchyma, possibly contributing to errors in the DL-generated LCE. Case 3 showed a 

large degree of noise in the 129Xe-MRI scan. 
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Figure 6.11 Example coronal slices of fused 1H-MRI, 1 2 9Xe-MRI and LCEs from three cases in the 
testing set which, through Bland-Altman analysis, fall outside the limits of agreement. Manual 
and DL-generated VDPs are given. Case 1 contains a motion artefact on the 1 2 9Xe-MRI. Case 2 

contains a zipper artefact on the 1H-MRI. Case 3 exhibits a large degree of noise throughout the 
1 2 9Xe-MRI. Artifacts are indicated with green arrows. 

6.5 Discussion 

In this study, we propose a dual-channel CNN for LCE that leverages 1H-MRI and 129Xe-

MRI scans. Our method significantly outperformed single-channel alternatives that do not 

integrate both functional and structural lung imaging in a range of diseases for adult and 

paediatric participants. Furthermore, we combined this dual-channel LCE approach with a 

DL-based method for hyperpolarised gas MRI ventilated lung segmentation to automatically 

generate a key clinical biomarker of lung function, namely, the VDP, showing strong 

agreement with manually-derived VDPs. The proposed method showed no reduction in 

performance in scans with a large degree of noise; however, it showed decreased 

performance when artifacts were present in 129Xe-MRI scans. 

 

Qualitative comparison of the various DL methods demonstrated the differences in LCEs 

due to varying modalities used in the input channels. For the majority of cases, the 

ventilation-only method was unable to generate realistic LCEs due to the lack of structural 

features provided to the CNN. Conversely, the structural-only method generated reasonable 

LCEs; however, in cases where there were misalignments between the 129Xe-MRI and 1H-

MRI scans, the structural-only DL method could not account for the inherent registration 

errors.  Misalignments were addressed in the dual-input method using both ventilation and 

structural features in the input channels, probably providing the network adequate context 

to accurately generate LCEs that represented structural lung regions in the domain of 129Xe-
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MRI. This seems supported by the quantitative results adjusted for multiple comparisons, 

indicating that the dual-input method significantly outperformed single-channel methods 

across all metrics tested. 

 

The nn-UNet employed is specifically designed to reduce memory constraints during 

network training, a requirement that benefits the dual-input method, facilitating the use of 

larger batch and patch sizes (Isensee et al., 2018). Previous studies have described DL-

based approaches to segment the lung parenchyma on 1H-MR images; however, these 

approaches have conducted the segmentation using single-channel networks (Tustison et 

al., 2019; Zha et al., 2019; Astley et al., 2021). The inclusion of functional features present 

in the hyperpolarised gas MRI scans may provide the network context with which to adapt 

the structural LCE to account for inherent registration errors between the 1H-MRI and 129Xe-

MRI acquisitions. Previous work by Tustison et al. utilised separate networks for segmenting 
1H-MRI and hyperpolarised gas MRI (Tustison et al., 2019); however, due to several factors, 

including inherent registration errors and differences in inflation levels, a network that 

generated a structural segmentation purely using 1H-MRI seems inadequate.  

 

Although same-breath acquisition of helium-3 (3He) and 1H-MRI has been leveraged in 

previous studies (Wild et al., 2011; Tahir et al., 2018; Tahir et al., 2014; Horn et al., 2014; 

Stewart et al., 2018), due to the lower bandwidths and longer repetition times required for 
129Xe-MRI, owing to its lower intrinsic signal intensity compared to 3He, longer acquisition 

times and thus longer breath-holds are inevitable. These are prohibitively long for many 

patients who are unable to maintain lengthy breath-holds, inducing movement, particularly 

at the diaphragm. In this study, 129Xe-MRI was acquired in approximately 10 seconds; 129Xe-

/1H-MRI back-to-back acquisition times would be approximately 19 seconds. Our recent 

work with compressed sensing has enabled us to reduce this time to 15 seconds (Collier et 

al., 2019); however, although the shorter breath-hold is more feasible for patients, the 

likelihood of changes in lung posture during back-to-back scanning persist. As such, a lung 

cavity estimation will still be required for many patients. 

 

Tustison et al. used a 3D UNet CNN to generate 1H-MRI lung segmentations (Tustison et 

al., 2019). However, the authors noted that this limits the batch size due to computational 

constraints; the nn-UNet used here may overcome these challenges (Isensee et al., 2018). 

Additionally, the authors generated ventilated lung segmentations of hyperpolarised gas 

MRI using a 2D CNN (Tustison et al., 2019). Conversely, both the dual-channel DL approach 
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to LCE generation and the single-channel DL approach to hyperpolarised gas MRI ventilated 

lung segmentation used here employed 3D CNNs. These 3D CNNs can process images in 

a fully volumetric fashion. LCEs represent volumetric lung parenchymal regions that are 

located across multiple slices in the scan; consequently, the network’s ability to process 

scans in three dimensions potentially enhances the delineation of lung parenchymal 

volumes compared to 2D alternatives, which do not allow the network to learn inter-slice 

features of the scan that occur in a volumetric fashion; this has been demonstrated 

previously in the segmentation of adipose tissue in cardiac MRI (Kulasekara et al., 2022). 

We used a large, diverse training set comprising patients with numerous pulmonary 

pathologies and used a testing set that contains only one scan from each participant. This 

resulted in a robust dual-channel CNN, which may be demonstrated by the limited bias in 

the Bland-Altman analysis that showed that the accuracy of the LCEs does not diminish with 

changing volumes.  

 

Furthermore, evaluation of VDP may demonstrate the ability of DL to both produce accurate 

LCEs and ventilated lung segmentations. The VDPs generated using the DL workflow 

exhibited no statistically significant differences with manual VDPs. In addition, the Bland-

Altman analysis of VDP showed a bias of only -0.19%. This may indicate that the DL-

generated workflow can provide statistically indistinguishable VDPs without subsequent 

editing. Removing the editing step could allow for a more streamlined workflow to generate 

automatic VDP values. This, in turn, leads to a vast reduction in the time taken to generate 

VDP values. Previous approaches to edit segmentations generated by semi-automatic 

segmentation methods could take ~1.5 hours per scan. The automatic DL-based approach 

proposed here may eliminate this editing time or could at least drastically reduce it. In 

addition, inference using the dual-input method could yield accurate LCEs in ~30 seconds 

using a single GPU, further facilitating the computation of rapid and robust VDPs, leading to 

potentially higher clinical throughput. 

 
For all testing set cases, we assessed the impact of SNR and imaging artifacts on DL-

generated VDPs and observed that our approach is potentially invariant to SNR. No 

significant impact on VDP accuracy was observed due to the presence of at least one artifact 

(n=15) on the 1H-MRI scans (p=0.67). In contrast, for 129Xe-MRI, there was significantly 

reduced VDP accuracy for images containing at least one imaging artifact (n=12). This may 

indicate that the presence of imaging artifacts in 129Xe-MRI scans has the potential to 

produce inaccurate DL-generated VDPs, representing a challenge for this approach. The 
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prevalence of imaging artifacts in the training set was not assessed and therefore it cannot 

be concluded whether the network was exposed to these features previously. In addition, 

there was less agreement between readers for 129Xe-MRI artifacts, reducing the 

generalisability of this evaluation. 

6.5.1 Limitations 

The large dataset used for this study contains participants with numerous pulmonary 

pathologies; however, each scan in the dataset is acquired with the same acquisition 

protocol. This reduces the generalisability of the model as performance has not been 

demonstrated on scans acquired at a different centre, using a different scanner 

manufacturer, with different field strengths or MRI sequences. Therefore, the proposed DL 

model is potentially limited in its application to scans acquired with different acquisition 

protocols. Future investigations will aim to validate approaches on a wider range of scan 

acquisitions, facilitating inter-centre deployment of the proposed DL approach. Nonetheless, 

we have made our trained model publicly available which will enable other centres to tailor 

the model to their unique datasets via the use of fine-tuning and transfer learning. 

 

Whilst there are multiple examples of good segmentation performances on 1H-MR images 

with imaging artifacts, the clinical implications of reduced performance on some of these 

scans is a limitation of our study. Future investigations could employ multiple strategies to 

reduce the impact of imaging artifacts on DL performance; this could be done by 

implementing specialised data augmentation techniques such as increasing the proportion 

of images containing each specific artefact, boosting their prevalence during network 

training, or by artificially augmenting scans with plausible, synthetic noise. In addition, it may 

be feasible to build a secondary network to identify the presence of imaging artifacts, hence 

triggering a manual review; however, there is unlikely to be a sufficiently large dataset to 

build an effective model for this purpose. 

 

In future work, it may be possible to generate both ventilated and structural lung 

segmentations within a single model using a dual-class segmentation network. This 

approach would have the inherent benefit of co-location, thereby potentially further dealing 

with misalignments between imaging modalities. However, the DL-generated 

hyperpolarised gas MRI segmentation method used in this work utilised a dataset 

comprising 759 scans, significantly larger than the dataset used here for LCE; hence, 
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generating ventilated lung segmentations in a dual-class model would reduce the size of the 

training set, and consequently likely reduce segmentation performance. 

6.6 Conclusion 

We used a dual-channel 3D CNN approach for LCE and compared it to single-channel DL 

methods. We demonstrated that the dual-channel approach, leveraging both hyperpolarised 

gas and 1H-MRI as inputs, may yield improved LCEs. In addition, we used this approach in 

conjunction with a DL-based hyperpolarised gas MRI segmentation method to automatically 

generate VDPs, which did not significantly differ from manual VDPs. 
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Chapter 7                                                                              
A hybrid model- and deep learning-based framework for 
functional lung image synthesis from multi-inflation CT 

and hyperpolarised gas MRI 
Background: Hyperpolarised gas MRI is a functional lung imaging modality capable 
of visualising regional lung ventilation with exceptional detail within a single breath. 
However, this modality requires specialised equipment and exogenous contrast, 
which limits widespread clinical adoption. CT ventilation imaging employs various 
metrics to model regional ventilation from non-contrast CT scans acquired at multiple 
inflation levels and has demonstrated moderate spatial correlation with 
hyperpolarised gas MRI. Recently, deep learning (DL)-based methods, utilising 
convolutional neural networks (CNNs), have been leveraged for image synthesis 
applications. Hybrid approaches integrating computational modelling and data-
driven methods have been utilised in cases where datasets are limited with the 
added benefit of maintaining physiological plausibility. 
Purpose: To develop and evaluate a multi-channel DL-based method that combines 
modelling and data-driven approaches to synthesise hyperpolarised gas MRI lung 
ventilation scans from multi-inflation, non-contrast CT and quantitatively compare 
these synthetic ventilation scans to conventional CT ventilation modelling. 
Methods: In this study, we propose a hybrid DL configuration that integrates model- 
and data-driven methods to synthesise hyperpolarised gas MRI lung ventilation 
scans from a combination of non-contrast, multi-inflation CT and CT ventilation 
modelling. We used a diverse dataset comprising paired inspiratory and expiratory 
CT and helium-3 hyperpolarised gas MRI for 47 participants with a range of 
pulmonary pathologies. We performed 6-fold cross-validation on the dataset and 
evaluated the spatial correlation between the synthetic ventilation and real 
hyperpolarised gas MRI scans; the proposed hybrid framework was compared to 
conventional CT ventilation modelling and other non-hybrid DL configurations. 
Synthetic ventilation scans were evaluated using voxel-wise evaluation metrics such 
as Spearman’s correlation and mean square error (MSE), in addition to clinical 
biomarkers of lung function such as the ventilated lung percentage (VLP). 
Furthermore, regional localisation of ventilated and defect lung regions was 
assessed via the Dice similarity coefficient (DSC). 
Results: We showed that the proposed hybrid framework is capable of accurately 
replicating ventilation defects seen in the real hyperpolarised gas MRI scans, 
achieving a voxel-wise Spearman’s correlation of 0.57±0.17 and an MSE of 
0.017±0.01. The hybrid framework significantly outperformed CT ventilation 
modelling alone and all other DL configurations using Spearman’s correlation. The 
proposed framework can generate clinically relevant metrics such as the VLP without 
manual intervention, resulting in a Bland-Altman bias of 3.04%, significantly 
outperforming CT ventilation modelling. Relative to CT ventilation modeling, the 
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hybrid framework yielded significantly more accurate delineations of ventilated and 
defect lung regions, achieving a DSC of 0.95 and 0.48 for ventilated and defect 
regions, respectively. 
Conclusions: The ability to generate realistic synthetic ventilation scans from CT 
has implications for several clinical applications, including functional lung avoidance 
radiotherapy and treatment response mapping. CT is an integral part of almost every 
clinical lung imaging workflow and hence is readily available for most patients; 
therefore, synthetic ventilation from non-contrast CT can provide patients with wider 
access to ventilation imaging worldwide. 

7.1 Preface 

Work contained within this chapter has been submitted to the Journal of Medical Physics: 

 
Astley J.R., Biancardi A.M., Marshall H., Hughes P.J.C., Collier G.J., Hatton M.Q., 
Wild J.M. and Tahir B.A. (2022). A hybrid model- and deep learning-based 
framework for functional lung image synthesis from multi-inflation CT and 
hyperpolarized gas MRI. Medical Physics. [in press]. 
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lung image synthesis from non-contrast multi-inflation CT. Medical imaging and deep 
learning (MIDL) 2021. Online. 
 
Astley J.R., Biancardi A.M., Walker M., Hughes P.J.C., Marshall H., Collier G.J., 
Hatton M.Q., Wild J.M. and Tahir B.A. (2021). Hyperpolarized gas MRI ventilation 
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7.2 Introduction 

Lung diseases represent significant global health challenges (Vos et al., 2017; Torre et al., 

2015). Imaging of the lungs constitutes a key component of clinical care, providing both 

anatomical and functional information for a wide range of lung pathologies. Functional lung 

imaging modalities such as single-photon emission computed tomography (SPECT), 

positron emission tomography (PET) and hyperpolarised gas magnetic resonance imaging 

(MRI) have shown efficacy in several applications such as early diagnosis, functional lung 

avoidance radiotherapy and treatment response evaluation (Tahir et al., 2017; Ireland et al., 

2016; Horn et al., 2017). Hyperpolarised gas MRI is a functional lung imaging modality 

capable of visualising regional lung ventilation with exceptional detail within a single breath 

(Fain et al., 2007). Quantitative biomarkers derived from this modality, including the 

ventilated lung percentage (VLP), provide further insights into regional ventilation 

(Woodhouse et al., 2005). However, this modality requires specialised equipment, including 

a laser polariser, and inhaled contrast agents such as helium-3 (3He) or xenon-129 (129Xe) 

noble gases, which currently limits widespread clinical adoption (Stewart et al., 2021). 

 

Computed tomography (CT) is the most widely used anatomical imaging modality and is an 

integral part of clinical care for most patients with lung pathologies. CT ventilation imaging 

(CTVI) aims to model regional ventilation from non-contrast CT scans acquired at multiple 

inflation levels, either during tidal breathing or breath-hold (Guerrero et al., 2005; Reinhardt 

et al., 2008). CTVI assumes that changes in regional lung volume and/or lung density 

between inflation levels is representative of lung ventilation (Ding et al., 2012). Several 

metrics have been proposed to generate synthetic ventilation maps from multi-inflation CT, 

such as those that map changes in Hounsfield units (CTHU) or the determinant of the 

Jacobian (CTJAC) (Guerrero et al., 2005; Reinhardt et al., 2008). The CTHU metric is based 

on differences in HU intensities between inflation levels whereas the CTJAC metric is a 

measure of volume expansion computed directly on the deformation vector field between 

inflations. Previous validation of CTVI methods included assessing Spearman’s correlation 

with well-established lung function measures, such as spirometry, resulting in moderate 

correlations, ranging from 0.38 to 0.73 for both the CTHU and CTJAC methods (Brennan et 

al., 2015; Yamamoto et al., 2014). CTVI models have also been validated against nuclear 

medicine imaging modalities, exhibiting moderate correlation with SPECT and PET imaging 

(Castillo et al., 2010; Kipritidis et al., 2014); however, these studies report highly variable 
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results and often use small numbers of patients (Yamamoto et al., 2010). Furthermore, 

nuclear medicine imaging has a relatively poor spatial and temporal resolution and a 

susceptibility to aerosol deposition artifacts, particularly within defect regions (Jögi et al., 

2010; Magnant et al., 2006). In addition, the requirement of radioactive contrast agents 

makes nuclear medicine imaging unattainable for some patient groups e.g., paediatrics. By 

using hyperpolarised gas MRI for validation, Tahir et al. (2018) showed moderate 

Spearman’s correlations of several CTVI metrics. 

 

Recently, deep learning (DL)-based methods utilising convolutional neural networks (CNNs) 

have become widespread in numerous lung imaging applications, including image synthesis 

(Astley et al., 2020b). Zhong et al. (2019a) used a CNN to synthesise CT-based ventilation 

surrogates from 4DCT, reporting a mean square error (MSE) of 7.6%. However, a limitation 

of this approach is that CT ventilation images, used as the ground truth ventilation, are in 

themselves the subject of intense validation efforts (Kipritidis et al., 2019). Ren et al. (2022) 

have shown the capability of deriving synthetic perfusion maps from CT using SPECT 

perfusion as ground truth; a 3D UNet CNN was used, achieving an average Spearman’s 

correlation of 0.81 using 3-fold cross-validation. A Dice similarity coefficient (DSC) value of 

0.81 was achieved for both high-functional and low-functional lung regions. Furthermore, 

Liu et al. (2020) proposed a CNN-based approach to synthesise Technegas SPECT 

ventilation images from non-contrast 4DCT. They demonstrated, after post-processing, 

Spearman’s correlations of 0.73 and 0.71 for 10-phase and 2-phase 4DCT, respectively. 

10-fold cross-validation was used, achieving an average DSC across all folds of 0.83 for 

high-functional lung regions, 0.61 for medium-functional lung regions and 0.73 for low-

functional lung regions. Subsequently, Grover et al. investigated the utility of CNNs for 

synthesising Galligas PET ventilation images, demonstrating a mean Spearman’s 

correlation of 0.58 and a mean DSC for high, medium, and low functional regions of 0.55 

(Grover et al., 2022). However, SPECT and PET have significantly longer acquisition time, 

on the order of 30-45 minutes, compared to CT imaging which facilitates acquisition within 

a single breath. This leads to the possibility of time-delayed ventilation filling (Marshall et al., 

2012), reducing the relationship between structural and functional imaging modalities. 

Conversely, hyperpolarised gas MRI ventilation has an acquisition time spanning a single 

breath, similar to that of CT, leading to a potentially more accurate representation of 

ventilation at a specific point in time. Capaldi et al. (2020) has recently used a 2D UNet CNN 

to map free-breathing proton MRI to 3He hyperpolarised gas MRI, achieving a Pearson 

correlation of 0.87 and a mean DSC of 0.90 and 0.37 for ventilated and defect lung regions, 
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respectively. However, synthesising hyperpolarised gas MRI directly from multi-inflation CT 

has not yet been demonstrated.  

 

Despite promising results achieved by DL synthesis techniques in multiple domains, there 

has been a lack of widespread adoption due to an inability to produce physiologically 

consistent results. Additionally, there is often a shortage of available data representative of 

a diverse population; to this end, several researchers have proposed the use of hybrid 

approaches that leverage computational modelling alongside data-driven approaches, such 

as deep learning (Long et al., 2018), precluding the requirement for large datasets. For 

example, hybrid physics- and model-based approaches have been used in weather 

forecasting (Grover et al., 2015), earth surface modelling (Goldstein et al., 2014) and 

spatiotemporal dynamic systems evolution in robotics (Hamilton et al., 2017). Hybrid 

approaches have also been used for data generation in situations where there is limited 

data available (Willard et al., 2020). 

 

We hypothesised that a hybrid framework that integrates physiological-based multi-inflation 

level CT ventilation modelling and CNN-based DL may generate accurate surrogate 

ventilation maps. Accordingly, we propose a hybrid model- and DL-based framework, where 

conventional CTHU models are used alongside structural inspiratory and expiratory CT scans 

as inputs to a CNN for functional lung image synthesis. In addition, we propose an automatic 

pipeline for predicting VLPs from the DL-generated synthetic ventilation scans using CNN-

based segmentation. Due to the relatively small dataset, data-driven approaches alone are 

unlikely to generate accurate synthetic ventilation images, especially in patients with 

significant ventilation defects. Therefore, the combination of data-driven and physiological 

modelling approaches utilises both methods’ benefits to produce physiologically consistent 

results, whilst also allowing features to be learnt from underlying patterns in the available 

data. 

7.3 Materials and Methods 

7.3.1 Dataset 

The dataset comprised paired inspiratory and expiratory CT and hyperpolarised 3He MRI 

scans for 47 patients originating from three clinical observational studies that were approved 

by the National Research Ethics Committee (REC). Lung cancer (n=16) data was collected 
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between 2015 and 2017 (REC:14/LO/0481) (Tahir et al., 2018). Asthma (n=12) data was 

collected between 2012 and 2013 (REC:11/EM/0402) (Tahir et al., 2016). Cystic fibrosis 

(n=19) data was collected between 2013 and 2014 (REC:12/YH/0343) (Marshall et al., 

2017). 

7.3.2 Image acquisition 

Image acquisition details for CT and 3He MRI across the three studies are provided in Table 

7.1. Additional image acquisition details are given in the subsequent sections. 

 

CT acquisition 
Study 1 (Tahir et al., 2018): comprised 16 lung cancer participants. All participants 

underwent radiotherapy planning breath-hold CT on a 16-slice Lightspeed scanner (GE 

Healthcare, Princeton, NJ, USA); each acquisition was acquired within 15-20 seconds. 

 

Study 2 (Tahir et al., 2016): comprised 12 asthma participants. All participants underwent 

high resolution breath-hold CT with a Sensation 16 CT scanner (Siemens, Forchheim, 

Germany). 

 

Study 3 (Marshall et al., 2017): comprised 19 cystic fibrosis participants. All cystic fibrosis 

participants underwent low dose inspiratory and ultra-low dose expiratory non-contrast CT 

imaging, following the protocol of Loeve et al.(2009), on a GE Lightspeed VCT 64 CT 

scanner (GE Healthcare, Milwaukee, WI, USA). The CT scanner tube voltage was 80 kV for 

children weighing < 35 kg and 100 kV for those weighing 35 kg and above. Inspiratory scans 

were performed with a modulating tube current (max 150mA) and expiratory scans were 

performed at a fixed current of 25 mA; as a result, expiratory scans were lower dose. 

 

MRI acquisition 
All subjects underwent 3D volumetric 3He hyperpolarised gas MRI in the coronal plane at 

FRC+1L with full lung coverage at 1.5T on a HDx scanner (GE Healthcare, Milwaukee, WI, 

USA). Helium was polarised on-site to around 25% polarisation (GE Healthcare, Amersham, 

UK). Flexible quadrature radiofrequency coils were employed for transmission and reception 

of MR signals at the Larmor frequency of 3He (Clinical MR Solutions, Brookfield, WI, USA). 

An anatomical proton (1H) MRI in the same breath as 3He MRI was acquired for each patient. 

Details of this acquisition for each study are provided below: 
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Study 1 (Tahir et al., 2018):  Same-breath 1H MRI scans were acquired at the same 

resolution as 3He MRI using the scanner’s inbuilt body coil with a 3D spoiled gradient-echo 

sequence. Repetition time/echo time were equal to 1.9/0.6 milliseconds with a flip angle of 

5° and ±83.3kHz bandwidth. 

 

Study 2 (Tahir et al., 2016): Same-breath 1H MRI scans were acquired at the same slice 

thickness as 3He MRI with an in-plane resolution of 3x6mm2 using the scanner’s inbuilt body 

coil with a 2D steady-state free-precision sequence. Repetition time/echo time was equal to 

2.4/0.7 milliseconds with a flip angle of 50° and ±167kHz bandwidth. 

 

Study 3 (Marshall et al., 2017): Same-breath 1H MRI scans were acquired at the same 

resolution as 3He MRI using an 8-element chest receiver array with a 2D steady-state free-

precession sequence. Repetition time/echo time was equal to 2.9/0.9 milliseconds with a 

flip angle of 50° and ±250kHz bandwidth.
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Table 7.1 CT and hyperpolarised gas MRI acquisition details. 

  Study 1 Study 2 Study 3 

 Disease: Lung cancer Asthma Cystic fibrosis 

 Total subjects: 16 12 19 

CT scans: Acquisition orientation: Axial Axial Axial 

 Dose mode: Radiotherapy planning High resolution Ultra-low dose (expiration) & low dose (inhalation) 

 Breathing inflation: FRC & FRC+1L FRC & TLC Inspiratory & expiratory breath-hold 

 Slice thickness: 2.5 mm ~ 2.1 mm 2.5 mm 

 In-plane resolution: ~ 0.98 x 0.98 mm2 ~ 0.8 x 0.8 mm2 ~ 0.6 x 0.6 mm2 

 Tube voltage / Current: 120kV / 315mA 120kV / 120mA 80-100kV / 25-150mA 

Hyperpolarised 
gas MRI scans: 

Hyperpolarised gas: 3He 3He 3He 

Dimension: 3D 2D 2D 

Sequence: Balanced steady-state free precession Spoiled gradient echo Spoiled gradient echo 

 Acquisition orientation: Coronal Coronal Coronal 
 Breathing inflation: FRC+1L FRC+1L FRC+1L 

 Slice thickness: 5 mm 10 mm 10 mm 

 In-plane resolution: ~ 4 x 4 mm2 ~ 3 x 3 mm2 ~ 3 x 3 mm2 

 TR / TE: 1.9 / 0.6 msec 3.6 / 1.1 msec 3.6 / 1.1 msec 

 Field of view: 40cm 38.4cm 30-40cm 

 Flip angle: 10° 8° 8° 

 Bandwidth: ±166.6kHz ±63kHz ±63kHz 

 Time-difference: Same day < 4 days Same day 

Abbreviations: 2D, 2-dimensional; 3D, 3-dimensional; FRC, functional residual capacity; 1L, 1 litre; SD, standard deviation; 3He, helium-3; TR, repetition time; TE, 

echo time; CT, computed tomography; MRI, magnetic resonance imaging. 
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7.3.3 Image segmentation 

The Chest imaging platform (CIP) (San Jose Estepar et al., 2015) (Harvard, Massachusetts, 

USA) was used to generate segmentations of the lung parenchyma on inspiratory and 

expiratory CT scans. These segmentations were subsequently reviewed and manually 

edited by multiple experienced observers, specifically, B.A.T and J.R.A. Segmentation of 

the lung parenchyma from 1H MRI scans was conducted using spatial fuzzy c-means 

clustering (Hughes et al., 2018). 1H MRI segmentations were subsequently manually edited 

by two experienced observers, namely, B.A.T and P.J.H. Both observers have a PhD in 

respiratory imaging. 

7.3.4 Image registration 

Inspiratory and expiratory CT scans were aligned using deformable image registration and 

subsequently registered to the spatial domain of 3He MRI via a corresponding anatomical 
1H MRI scan. The empirically optimised script used identical rigid and affine parameters as 

the EMPIRE10_BSplineSyn script as previously described (Tahir et al., 2014; Tahir et al., 

2018). Registration pipelines consisted of rigid, affine and diffeomorphic stages. For the 

deformable registration stage, explicit B-spline regularisation was applied to the resulting 

transform of the affine pipeline. A knot spacing for the update field of 65 mm provided optimal 

results. Additionally, a 5-level multi-resolution pyramid was used (instead of 4 levels) with 

down-sampling factors of 10 × 6 × 4 × 2 × 1 and corresponding smoothing Gaussian sigmas 

of 5 × 3 × 2 × 1 × 0 mm and the normalised correlation coefficient similarity metric with a 

radius of 2 voxels instead of 4. A step size of 0.2 was selected for the gradient descent 

optimisation algorithm. All registrations were conducted using the advanced normalisation 

tools (ANTs) registration framework (Avants et al., 2008) based on parameters provided 

previously (Tahir et al., 2019). For each patient, two registrations were performed:  

 

 1) Inspiratory CT to expiratory CT 

 2) Expiratory CT to 1H MRI (same-breath as 3He MRI) 

 

Figure 7.1 shows example unregistered inspiratory and expiratory CT images with the 

corresponding warped CT images in the domain of 3He MRI. Registrations were 

quantitatively assessed for overlap using the Dice similarity coefficient (DSC) (Dice, 1945). 
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Figure 7.1 Example coronal slices for three patients with lung cancer, cystic fibrosis, or asthma of 
inspiratory and expiratory CT scans (a) before and (b) after deformable registration to the spatial 

domain of (c) hyperpolarised gas MRI. 

7.3.5 CT ventilation modelling 

CT-based surrogate ventilation images were computed using the CTHU model-based metric 

originating from theory proposed by Simon et al. (2004). CTVI scans were generated at 

expiratory geometry and computed using voxel-wise intensity differences in Hounsfield unit 

(HU) values based on the formulation by Guerrero et al. (2005) shown below: 

 

CT)* = 1000
HU"'(& −	HU$%&

HU$%& 		(1000 +	HU"'(&)
 

( 7.1 ) 
 
where HU"'(& represents the HU of voxels in the warped inspiratory scan which spatially 

correspond to voxels in the expiratory scan and HU$%& 		represent the HU of inspiratory and 

expiratory voxels. CTHU aims to measure the change in the fractional content of air, in a 

voxel-wise manner, between expiratory and inspiratory phases (Simon et al., 2012). The 

method assumes that there is uniform air distribution in a given parenchymal voxel and that 

the observed change in lung density between respiratory phases is attributable solely to 

changes in ventilation. Several CTVI works have employed various degrees of filtering to 

account for image noise and possible registration errors (Tahir et al., 2018; Castillo et al., 
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2010; Castillo et al., 2012; Kipritidis et al., 2014). This has previously been used for post-

processing of CTHU ventilation methods in the range of 1x1x1 to 7x7x7 median filtering (Tahir 

et al., 2018); after a series of investigations, median filtering to CTHU ventilation images 

across the whole lung region with kernel size 6x6x1 achieved the best results. An anisotropic 

kernel was used due to the anisotropic resolution of 3He MRI. 

7.4 Deep learning experiments and evaluation 

7.4.1 CNN architecture configurations 

We evaluated four CNN configurations using either single-channel or multi-channel inputs 

as follows: 

 
 1) Expiratory CT 

 2) Inspiratory CT  

 3) Expiratory CT + inspiratory CT 

 4) Inspiratory CT + expiratory CT + CTHU model 

 
For each configuration, input feature maps constituting patches of 128x128x48 voxels were 

used due to memory constraints. Patches were fed into a 3D fully-convolutional neural 

network with VNet architecture (Milletari et al., 2016). The network consisted of convolutional 

steps containing between one and three convolutional layers with subsequent 

deconvolutional steps, enforcing the original input resolution. As demonstrated by Milletari 

et al. (2016), each step is designed to learn residual functions by initially processing the first 

convolutional layer using a non-linear activation function and subsequently replicating this 

output to the last convolutional layer within the step (Milletari et al., 2016). Convolutional 

operations in the initial input block used two convolutional layers with 5x5x5 kernels and a 

stride of 1 followed by 2x2x2 kernels with a stride of 2 to reduce image dimensionality. For 

the multi-channel configurations 3) and 4), we concatenated network blocks, combining the 

feature maps from spatially aligned inspiratory CT, expiratory CT and CTHU modelling. This 

allowed the network to make use of concordant features represented across multiple 

inflation levels and modalities (Berger et al., 2018). The rest of the network consisted of four 

convolutional blocks that contained a varying number of convolutional layers with either 

5x5x5 kernels with a stride of 1 or 2x2x2 kernels with a stride of 2, resulting in a maximum 

of 248 channels. Each convolutional operation employed a PReLU non-linear activation 

function with valid padding. Subsequent deconvolutional blocks, with the same structure as 
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the convolutional blocks, were used to reduce the number of channels. Fine-grained feature 

forwarding introduced residual functions to corresponding convolution and deconvolution 

steps. The final output block made use of a 1x1x1 convolutional layer. 

7.4.2 CNN training parameters 

All hyperpolarised gas MRI, CT and CTHU ventilation scans were masked by their respective 

lung parenchymal segmentations, thereby eliminating the effect of background voxels and 

allowing the network to focus on features within the lung parenchyma. All hyperpolarised 

gas MRI scans used in the dataset underwent pre-processing to normalise image intensities 

to values between 0-1. Training data was augmented to reduce overfitting whilst still 

maintaining physiological plausibility. To do this, we employed constrained random rotations 

with limits -10° to 10° and scaling of -10% to 10%, where a different random rotation or 

scaling for each axis was applied at an interval within the defined limits above. The data 

augmentation method used does not increase the overall number of scans in the dataset; 

instead, each scan is given random scaling and rotation factors before being fed into the 

network. Therefore, the number of epochs can be increased as each time a scan is passed 

through the network, it is plausibly augmented by a different random factor at each epoch. 

Batch normalisation was applied for each pass using a mini-batch size of 2 with the aim of 

reducing covariate shift between network layers (Ioffe and Szegedy, 2015). The weights of 

the network were trained from scratch and initialised using Xavier initialisation, representing 

a Gaussian distribution with mean of 0 and variance of 1/N, where N represents the number 

of weights and biases. A root mean square error (RMSE) loss was used to optimise the 

network employing ADAM (Kingma and Ba, 2015) optimisation with an initial learning rate 

of 1x10-5, reducing by a factor of 10 after 1500 epochs and trained for a total of 2150 epochs. 

L2 regularisation with a decay of 0.00001 was used to penalise large network weights and 

minimise potential overfitting. Training and testing were performed using TensorFlow (Abadi 

et al., 2016) 1.15 and Python 3.6 (Gibson et al., 2018b). Training was parallelised across 

four NVIDIA Tesla V100 GPUs each with 16GB of RAM. 

 

Due to the somewhat limited size of the dataset, we employed 6-fold cross-validation, 

generating six separately trained models tested on a random subset of 7 or 8 patients as 

shown in Figure 7.2. The use of cross-validation to increase the size of the testing set 

allowed for inferential statistical analyses to be conducted. Each model was stopped at 2150 

epochs to constrain model training, mitigating overfitting. All DL configuration outputs were 
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subsequently median filtered with a kernel size of 6x6x1 in line with the filtering applied to 

CTHU ventilation images. 
 

 
Figure 7.2 Breakdown of cross-validation strategy used for training and testing across 47 patients. 

7.4.3 Quantitative evaluation 

Synthetic ventilation images generated via the CTHU method and DL approaches were 

quantitatively evaluated using both voxel-wise and clinical metrics. Following previous works 

in the CTVI field and the VAMPIRE grand challenge, Spearman’s correlation was selected 

as the primary evaluation metric (Kipritidis et al., 2019). DL-based methods were additionally 

assessed using the MSE metric. Further, based on voxel-wise evaluation metrics, the clinical 

metric of VLP was computed on the best performing approach. Furthermore, regional 

localisation of ventilated and defect lung regions was assessed via the DSC. 

 

The spatial correlations of the DL-generated synthetic ventilation images and the CTHU 

model with corresponding 3He MRI scans were assessed at full resolution using Spearman’s 

rho (ρ) on all voxels within the lung region, defined by the same-breath 1H MRI lung 

segmentation. Spearman’s ρ quantifies the degree of monotonicity between any two 

ventilation images. It takes a range between -1 and 1 where 1 represents a perfect positive 

correlation and -1 represents a perfect negative correlation. Consequently, a Spearman’s ρ 

of 0 represents no correlation. 

 

Quantitative performance was further evaluated for all DL-based approaches using the 

voxel-wise MSE metric. The MSE represents the mean square difference between 

estimated values and actual values across all voxels within the lung region. MSE is derived 

from the square of errors and, therefore, always takes a positive value with the MSE 

approaching 0 as the error concordantly decreases. 

n = 8

n = 8

n = 8

n = 8

n = 8

n = 7

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6

Training

Testing

Total n = 47
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The quantitative biomarker of the VLP has been used extensively in the hyperpolarised gas 

MRI literature as a robust measure of lung function. VLP is calculated by comparing 

structural and ventilated lung segmentations to generate a percentage value of ventilated 

lung volume as follows: 

 

VLP	(%) = @
ventilated	lung	volume
total	lung	volume 	L × 	100 

( 7.2 ) 

 
In our clinical lung image analysis workflow, VLP values are derived from expert 

segmentations of hyperpolarised gas MRI for ventilated lung volumes and 1H MRI for total 

lung volume (Stewart et al., 2021). In this study, we compared these expert VLP values to 

VLP values derived using the same 1H MRI expert segmentations for total lung volume and 

DL-based ventilated lung segmentations. We used a previously validated nn-UNet CNN 

developed for automatic hyperpolarised gas MRI segmentation (Astley et al., 2022) to 

segment synthetic ventilated lung regions. These segmentations were used to calculate VLP 

automatically without manual editing. Figure 7.3 depicts a high-level description of the hybrid 

model/DL workflow and the automatic calculation of VLP values using DL and expert 

approaches. In addition to VLP values, DSC overlap values were computed between DL-

generated or CTHU-generated ventilated lung segmentations and expert 1H MRI 

segmentations to define both ventilated and defect regions. 

7.4.4 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 9 (GraphPad, San Diego, CA). In 

this work, a p-value <0.05 was considered statistically significant. A one-way repeated 

measures analysis of variance (ANOVA) test for multiple comparisons was used to 

determine differences between DL configurations for both voxel-wise Spearman’s 𝜌 and 

MSE. Post-hoc paired t-tests were used to assess differences in Spearman’s 𝜌 between the 

CTHU ventilation model and the four DL configurations compared to the reference 3He MRI 

ventilation scans. Kruskal-Wallis tests were used to assess differences in Spearman’s 𝜌 

between the three studies contained within the dataset. Bland-Altman analyses of bias were 

used to compare expert VLP values to DL-derived and CTHU-derived VLP values for the best 

performing DL-based configuration. Paired t-tests were used to assess differences in 
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overlap of ventilated and defect lung regions for the best performing DL configuration and 

the CTHU ventilation model. 

 

 
Figure 7.3 Hybrid model- and DL-based synthetic ventilation workflow and accompanying 

automatic calculation of VLP. 

7.5 Results 

7.5.1 Image registration 

Registrations between inspiratory CT and expiratory CT, and expiratory CT and 1H MRI 

were evaluated using the DSC metric. All studies generated a median (range) DSC value 

exceeding 0.98 for inspiratory and expiratory CT, and 0.91 for expiratory CT and 1H MRI 

(see Table 7.2). 
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Table 7.2 Evaluation of overlap between inspiratory and expiratory CT after two-step registration 
process. Median DSC and range are given for the three studies comprising the data used in this 

work. 

Study 
Insp CT to Exp CT 

Median DSC (range) 

Exp CT to 1H MRI 

Median DSC (range) 

Lung cancer 0.984 (0.969, 0.989) 0.963 (0.942, 0.973) 

Asthma 0.986 (0.977, 0.988) 0.948 (0.930, 0.960) 

Cystic fibrosis 0.983 (0.970, 0.990) 0.919 (0.864, 0.955) 

 

Figure 7.4 shows the alignment of internal lung structures between inspiration and expiration 

CT scans. The qualitative results indicate that major structures within the lungs, such as 

bifurcations and vessels, are accurately aligned between inflation levels. 
 

 
Figure 7.4 Alignment of internal lung structures between inspiration and expiration CT. 

Bifurcations are marked with crosshairs as landmarks. 
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7.5.2 Qualitative and quantitative evaluation 

Qualitatively, there are numerous examples of the hybrid DL-generated synthetic ventilation 

images accurately replicating gross ventilation defects in the ground-truth hyperpolarised 

gas MRI scans. Figure 7.5 shows qualitative spatial agreement between 3He MRI and 

synthetic ventilation approaches for three example cases. For the three cases displayed, 

the hybrid DL method, with inspiratory CT, expiratory CT and the CTHU model as inputs, 

generated the highest Spearman’s 𝜌 compared to the CTHU model and all other DL 

configurations. For Case 1, the differences in performance between DL configurations 

demonstrate that when a singular structural image is used as an input, the resulting 

synthesised ventilation scan is unable to capture gross ventilation defects in the left lung; 

however, when the hybrid DL configuration is utilised, the resulting synthetic scan accurately 

captures gross ventilation defects which mirror defects observed in the hyperpolarised gas 

MRI scan. 

 

 
Figure 7.5 Example coronal slices from the CTH U  model and the four DL frameworks for three cases 
compared to 3He MRI. Spearman’s ρ values between each method and 3He MRI are provided. Red 

arrows demonstrate examples of accurately replicated defects. 

Significant differences between methods were determined by a one-way ANOVA test 

(p<0.05). The hybrid method yielded statistically significant improvements in Spearman’s ρ 

compared to the CTHU model with mean±SD ρ of 0.57±0.17 vs 0.51±0.22 (p=0.003). 

Furthermore, this approach significantly outperformed all other DL approaches which did 

not employ the CTHU model as an input (p<0.05). DL-based approaches were additionally 

assessed using voxel-wise MSE; the hybrid approach generated the lowest MSE based on 
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descriptive statistics. No significant differences were observed between the three best 

performing DL-methods using the MSE metric for synthetic ventilation scans. Table 7.3 

summarises the descriptive statistics for all methods across 47 patients via 6-fold cross-

validation.  

 
Table 7.3 Descriptive statistics for the CTH U  model and DL methods after combining the testing set 
performance via 6-fold cross-validation. Mean±SD Spearman’s r  for the DL methods and the CTH U  
model are shown. Additionally, mean±SD MSE are given for the DL methods. The best r and MSE 

values are shown in bold. 

Synthetic ventilation generation methods  Filtered Spearman’s r MSE 

 Mean ± SD Mean ± SD 

CTHU model 0.51 ± 0.22 N/A 

DL (expiration CT) 0.52 ± 0.20 0.024 ± 0.01 

DL (inspiration CT) 0.47 ± 0.21 0.020 ± 0.01 
DL (expiration CT + inspiration CT) 0.52 ± 0.19 0.020 ± 0.01 

DL (expiration CT + inspiration CT + CTHU model) 0.57 ± 0.17 0.017 ± 0.01 

 

Figure 7.6 shows Spearman’s correlations between 3He hyperpolarised gas MRI for both 

the CTHU ventilation model and DL-based configurations; the proposed hybrid framework 

demonstrated significantly greater Spearman’s correlations when compared to all other DL 

configurations and the CTHU ventilation model. Additionally, MSEs between 3He 

hyperpolarised gas MRI and DL configurations are displayed, indicating minimal significant 

differences between DL configurations. 

 

The dataset contains scans from three independent research studies with varying 

acquisition protocols from participants with varying pulmonary pathologies. No significant 

difference in Spearman’s r between datasets was observed using the CTHU ventilation 

model. A significant difference was observed between the Spearman’s 𝜌 of Study 1 and 

Study 3 using the hybrid DL configuration (p=0.03); no other significant differences were 

observed (Study 1 vs Study 2, p=0.93; Study 2 vs Study 3, p=0.51). 



 

 181 

 
Figure 7.6 (Top) Spearman's 𝜌  values for synthetic ventilation scans derived from the CTH U  model 
and DL configurations. A paired t-test compared CTH U  with the hybrid DL configuration. One-way 

ANOVA tests compared Spearman’s 𝜌  values for DL configurations. (Bottom) MSE values for 
synthetic ventilation scans derived from DL configurations. One-way ANOVA tests compared MSE 

values for DL configurations. Only significant p-values are provided. 
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7.5.3 VLP evaluation 

The hybrid model/DL configuration exhibited significant improvements in Spearman’s 𝜌 

when compared to all other methods investigated. Therefore, we further investigated this 

configuration using a clinical metric, namely, VLP. Using the workflow defined in Figure 7.3, 

we compared expert VLP values to those computed from synthetic ventilation scans 

generated by the hybrid configuration. Figure 7.7 shows fused structural and functional 

images with corresponding VLP values for four cases in the dataset. Cases with significant 

ventilation defects were chosen to illustrate the hybrid framework’s ability to replicate gross 

defects. For example, Case 2 shows almost no ventilation signal in the left lung of the 

hyperpolarised gas MRI scan which is largely replicated in the output of the hybrid 

configuration. We used Bland-Altman analyses of bias to compare VLP values derived from 

hyperpolarised gas MRI versus VLP values derived using the hybrid DL configuration and 

the CTHU ventilation model as shown in Figure 7.8. The hybrid DL synthetic ventilation 

surrogates resulted in a bias of only 3.04% with limits of agreement (LoA) of -15.45% to 

21.53% compared to the CTHU ventilation model which produced a bias of -10.74% with LoA 

of -47.55% to 26.07%. 

 

 
Figure 7.7 Fused ventilation (jet colormap showing minimum to maximum ventilation) and 

structural scans (grayscale) from four patients derived from either 3He MRI and warped expiratory 
CT (top) or synthetic ventilation generated using the proposed hybrid model/DL approach and 
warped expiratory CT (bottom). Red arrows indicate defects replicated in synthetic ventilation 

scans. VLP values are given. 
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Figure 7.8 Comparison of VLPs derived from hyperpolarised gas MRI versus a) the hybrid model/DL 

configuration and b) the CTH U  ventilation model using Bland-Altman analysis. 

DSC values of ventilated and defect lung regions for the hybrid DL and CTHU model are 

compared to expert ventilated and defect lung regions computed using hyperpolarised gas 

MRI (see Table 7.4). The hybrid DL configuration produced significantly greater DSC values 

for both the ventilated and defect lung regions, achieving a median (range) DSC of 0.946 

(0.715, 0.977) and 0.483 (0.288, 0.743) for ventilated and defect lung regions, respectively. 

 
Table 7.4 Median (range) DSC of the hybrid DL configuration and CTH U  ventilation model for 

ventilated and defect lung regions. The best DSC values are shown in bold. 

Region Hybrid DL CTHU 

Ventilated lung 0.946 (0.715, 0.977) 0.903 (0.046, 0.956) 

Defect lung 0.483 (0.288, 0.743) 0.426 (0.049, 0.730) 

7.6 Discussion 

In this work, we proposed a hybrid model- and DL-based framework, integrating CTHU 

models of lung ventilation and structural, multi-inflation CT as inputs to a VNet CNN capable 

of producing synthetic ventilation scans that correlated well with corresponding ground-truth 
3He MRI ventilation scans. To the best of our knowledge, this work represents the first use 

of DL to predict hyperpolarised gas MRI ventilation directly from multi-inflation CT. As shown 

in Figure 7.5 and Figure 7.7, the synthetic ventilation scans generated using the hybrid 

framework mimic moderate-to-large defects present in the corresponding 3He MRI scans. 

This has the potential to produce DL-based synthetic ventilation scans from routinely 

acquired CT scans without exogenous contrast. Compared with conventional CTHU 

modelling, the hybrid framework yields a statistically significant improvement in spatial 

correlation. The comparison with CTHU ventilation surrogates is somewhat limited due to the 

inclusion of pulmonary vessels in CTHU images. Commonly, vessels are excluded from CTHU 
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images; however, this adds a significant time-consuming manual intervention step. The 

hybrid configuration developed here can potentially learn to accommodate pulmonary 

vessels without manual intervention through learning mechanisms. 1H MRI scans used in 

this study were acquired using spoiled-gradient echo sequences; pulmonary vessels are 

significantly more challenging to identify using these sequences compared to balanced 

steady-state free-precession MRI (Wild et al., 2012) or CT; hence delineating corresponding 

vessels in imaging modalities is a significant challenge. In addition to outperforming 

conventional CTHU modelling, the hybrid configuration significantly outperformed all other 

DL configurations using Spearman’s correlation, indicating the significant benefit of 

leveraging classical modelling and data-driven approaches. The hybrid configuration's 

performance is further enhanced by harnessing a combination of structural and functional 

modalities. Functional CTHU ventilation images have demonstrated moderate correlation 

with hyperpolarised gas MRI previously (Tahir et al., 2018); however, differences remain. 

By combining structural CT images at multiple inflations with CTHU images, additional 

information contained within the structural images can be utilised to modify the predicted 

ventilation image via a deep learning approach. The measured Spearman’s correlations of 

the CTHU model and the hybrid configuration demonstrate some correlation with each other, 

but, crucially the inclusion of structural CT images in combination with the CTHU images as 

inputs generated a significant improvement in Spearman’s 𝜌 compared to the conventional 

CTHU method or the DL configurations not integrating CTVI modelling. Although Spearman’s 

𝜌 was utilised as the primary evaluation metric, performance was also evaluated using the 

MSE. The MSE was not calculated for the CTHU ventilation model as this model is directly 

derived from HU values which have physiological meaning, limiting a direct quantitative 

comparison with hyperpolarised gas MRI where specific voxel intensity values are arbitrary 

and not consistent between scans. The MSE was calculated for all DL configurations, 

indicating minimal significant differences between DL configurations; this is potentially due 

to the MSE assessing specific values of intensity, compared to correlations between 

corresponding voxel intensities, and may be less important than correlated regions of low 

intensity. 

 

We evaluated the hybrid framework on a diverse and challenging dataset using 6-fold cross-

validation. The dataset contained scans of patients with one of three lung pathologies, 

namely, lung cancer, moderate-to-severe asthma or mild cystic fibrosis. The scans were 

pooled from three separate clinical studies, resulting in a wide range of acquisition protocols 

in the dataset: high-dose and low-dose CT; different CT scanner types, settings and 
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breathing manoeuvres; 2D vs 3D 3He MRI; differences in in-plane resolutions and slice 

thicknesses. The proposed hybrid framework exhibited some differences between studies 

present in the dataset i.e., between Study 1 and Study 3; however, it cannot be determined 

whether this variation in performance is due to differences in participant disease or the 

image acquisition parameters used. The lack of differences when comparing performance 

of the remaining study combinations indicates a level of robustness and generalisability to 

both disease and acquisition parameters. 6-fold cross-validation was employed, resulting in 

six separately trained models. This expanded the number of scans available for evaluation; 

however, the dataset remains relatively limited in size, containing only 47 patients. Future 

work will aim to expand the dataset further and investigate novel data augmentation 

techniques, including synthetic data generation.  

 

Some differences between hyperpolarised gas MRI scans, the hybrid approach and the 

CTHU model are observed for the majority of example cases. In general, synthetic ventilation 

scans are less detailed than their corresponding hyperpolarised gas MRI scans in terms of 

minor ventilation defects within the lung border. The CTHU model performs well in some 

instances but poorly in others; this is potentially due to registration errors, but the accuracy 

of the CTHU model is also limited by the signal intensity model utilised. It is hypothesised 

that lung ventilation cannot be solely captured by differences in signal intensities as other 

components likely contribute to ventilation. Thus, the hybrid approach showed improved 

performance when compared to the CTHU model is certain cases. It was also observed that 

in cases where the CTHU model performed poorly, the hybrid approach also exhibited worse 

than average performance. Nevertheless, the hybrid approach’s ability to modify CTVI 

ventilation surrogates, in combination with information from multi-inflation structural imaging, 

leads to improved performance in all cases within the dataset. When comparing the hybrid 

approach to the DL configuration which only utilises multi-inflation CT, there are some 

instances where the CTHU model underperformed and, consequently, the hybrid approach 

also underperformed. However, as demonstrated, the hybrid approach produced 

significantly more accurate synthetic ventilation scans in terms of Spearman’s correlation 

on average. There is a potential that, as the amount of available representative scans 

increases, configurations excluding CTVI modelling may generate synthetic ventilation 

images that are more correlated with hyperpolarised gas MRI scans. In future work, if the 

dataset is expanded, we can assess whether the inclusion of the CTVI modelling still 

provides significant performance benefits. 
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The VNet CNN architecture was used due to its fully-convolutional nature. Fully-

convolutional networks contain no fully connected layers and hence contain significantly 

fewer parameters than conventional networks with fully connected layers; this minimises the 

network’s ability to simply memorise scans within the training set, referred to as overfitting. 

The fully-convolutional VNet not only reduces the overall number of parameters but also 

makes the number of parameters independent of image matrix size. Therefore, the network 

was trained and tested on scans with different matrices and acquisition protocols using fixed-

size patches of 128x128x48 voxels. We further reduced the possibility of overfitting using 

L2 weight regularisation with a decay of 0.00001 to penalise large network weights. 

 

Segmentations of ventilated lung volumes derived from hyperpolarised gas MRI and 

thoracic cavity volumes derived from structural 1H MRI segmentations have been 

extensively used in the literature to generate VLPs, an established biomarker of regional 

lung function (Woodhouse et al., 2005). We demonstrated that VLPs derived from the 

proposed hybrid framework are comparable with ground truth VLPs from 3He MRI, 

producing a significantly reduced bias compared to the CTHU method. Bland-Altman analysis 

of bias, however, indicated that there was reduced accuracy in patients with more significant 

ventilation defects, resulting in higher predicted VLP values than the corresponding expert 

values. In addition to VLP analysis, synthetic ventilation scans were segmented using a DL-

based segmentation algorithm (Astley et al., 2022) to provide regional localised 

comparisons of ventilated and defect lung regions. The hybrid DL configuration generated 

a median DSC of 0.95 for ventilated regions and 0.48 for defect regions, significantly 

outperforming the DSC achieved by the CTHU method. Both VLP values and regional overlap 

values require the segmentation of synthetic ventilation scans and are, therefore, 

susceptible to biases in the segmentation algorithm used; the automatic segmentation 

method used here was trained to segment hyperpolarised gas MRI and not synthetic 

ventilation scans (Astley et al., 2022). There is limited consensus on the appropriate 

segmentation schema required for the delineation of ventilated and defect regions, resulting 

in an inability to produce accurate comparisons between research studies. It is possible that 

ventilated lung regions were overestimated during segmentation due to the less pronounced 

changes in ventilation heterogeneity. Further investigation to improve automatic 

segmentation of synthetic ventilation scans generated by the hybrid configuration could 

reduce these biases. 
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As previously demonstrated by Levin et al. (2017), the minimum resolution of functional lung 

images need not be higher than the smallest pulmonary gas exchange unit, namely, the 

acinus, which has been estimated to be on the order of 10x10x10mm3 in adult humans. 

They further indicate that resolutions of 20x20x20mm3 may be appropriate due to the spatial 

clustering of most ventilation defects (Levin et al., 2017). 

 

Our study only investigates one CTVI modelling method, namely, CTHU; however, several 

other CTVI methods have been used in the literature. Subsequent research will aim to 

assess the differences in performance of the hybrid approach using classical CTVI metrics, 

such as CTJAC, and emerging metrics with more robust formulations (Reinhardt et al., 2008; 

Castillo et al., 2019). One key consideration is the requirement of accurate registration 

between multi-inflation CT and hyperpolarised gas MRI. Building a network capable of 

synthesising ventilations scans independent of image registration would reduce the 

computational costs and time taken to generate synthetic images. Both the CTHU metric and 

the proposed hybrid model rely on accurate registrations and, consequently, are susceptible 

to errors in cases where the registration is suboptimal. Removing this requirement would 

eliminate biases due to errors in registration. 

 

A previous approach by Westcott et al. (2019) utilised texture analysis, feature selection and 

classical machine learning methods to generate synthetic lung ventilation maps from 

thoracic CT in COPD patients. They evaluated the synthetic ventilation maps using whole-

lung metrics; however, more accurate voxel-wise evaluation metrics were not reported. 

 

The ability to generate synthetic ventilation scans from CT has implications for several 

clinical applications, including functional lung avoidance radiotherapy (Tahir et al., 2017; 

Ireland et al., 2016) and treatment response mapping (Horn et al., 2017). Kida et al. (2016) 

has previously demonstrated that a Spearman’s 𝜌 of ~0.4 between CTHU and SPECT 

images produces clinically indistinguishable radiotherapy plans. In this study, we observed 

correlations of ~0.6 between the hybrid DL configuration and hyperpolarised gas MRI, 

indicating the former’s potential clinical utility in functional lung avoidance radiotherapy. 

Synthesising hyperpolarised gas MRI in comparison to other functional lung imaging 

modalities such as SPECT has several advantages, including enhanced spatial and 

temporal resolution and the lack of aerosol deposition artifacts or time-delayed ventilation 

filling effects. CT is an integral part of almost every clinical lung imaging workflow and hence 
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is readily available for most patients; therefore, synthetic ventilation from non-contrast CT 

can provide patients with wider access to ventilation imaging worldwide. 

7.7 Conclusion 

We propose a hybrid model/DL framework to synthesise ventilation scans from routinely 

acquired non-contrast multi-inflation CT and classical CTVI modelling. We show that a 

synergy between model-based CTVI and CNN-based learning yields statistically significant 

improvements in performance compared with conventional CTVI modelling alone and other 

DL configurations that do not integrate modelling.
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Chapter 8                                                               
PhysVENeT: A physics-informed deep learning-based 
framework for the synthesis of 3D hyperpolarised gas 

MRI ventilation 
 
 

Functional lung imaging modalities such as hyperpolarised gas MRI ventilation 
enable visualisation and quantification of regional lung ventilation; however, these 
techniques require specialised equipment and exogenous contrast, limiting clinical 
adoption. Physics-based, computational modelling techniques to generate proton 
(1H)-MRI ventilation surrogates have been proposed. These approaches have 
demonstrated moderate correlation with hyperpolarised gas MRI. Recently, deep 
learning (DL) has been used for image synthesis applications, including functional 
lung image synthesis. Here, we propose a 3D multi-channel convolutional neural 
network that employs physics-based ventilation modelling and multi-inflation 
structural 1H-MRI to synthesise 3D synthetic ventilation surrogates (PhysVENeT). 
The dataset comprised paired inspiratory and expiratory 1H-MRI scans and 
corresponding hyperpolarised gas MRI scans from 170 participants with various 
pulmonary pathologies. We performed 5-fold cross-validation on 150 of these 
participants and used 20 participants with a previously unseen disease (post COVID-
19) for external validation. Synthetic ventilation surrogates were evaluated using 
voxel-wise correlation and structural similarity metrics; the proposed PhysVENeT 
framework significantly outperformed computational 1H-MRI ventilation modelling 
and other DL approaches which did not utilise structural imaging and physics-
informed modelling. PhysVENeT can accurately reflect ventilation defects and 
exhibits minimal overfitting on external validation data compared to DL approaches 
that do not integrate physics-informed modelling.
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8.1 Preface 

Work contained within this chapter has been submitted to IEEE Transactions on Medical 

Imaging as a journal article: 

 
Astley J.R., Biancardi A.M., Marshall H., Smith L.J., Hughes P.J.C., Collier G.J., 
Saunders L.C., Tofan M., Hatton M.Q., Hughes R., Wild J.M. and Tahir B.A.  
PhysVENeT: A physics-informed deep learning-based framework for the synthesis 
of 3D hyperpolarized gas MRI ventilation. Scientific reports [accepted pending 
revisions]. 

 
The work contained within this chapter has also been published as conference proceedings 

at the following conferences: 

 
Astley J.R., Biancardi A.M., Marshall H., Smith L.J., Hughes P.J.C., Collier G.J., 
Hatton M.Q., Wild J.M. and Tahir B.A. (2022). Deep learning–based synthesis of 
hyperpolarized gas MRI ventilation from 3D multi-inflation proton MRI. Medical 
imaging and deep learning (MIDL) 2022. Zurich, Switzerland. 
 
Astley J.R., Biancardi A.M., Marshall H., Tofan M.M, Smith L.J., Hughes P.J.C., 
Collier G.J., Hatton M.Q., Blè F.X, Hughes R., Wild J.M. and Tahir B.A. (2022). Deep 
learning-based synthesis of hyperpolarized gas MRI ventilation from 3D multi-
inflation proton MRI. The international society for magnetic resonance in medicine 
(ISMRM) 2022. London, UK. 
 

Additional material that could not be included within the journal article or within conference 

proceedings is also contained within this chapter. 

8.1.1 Author contributions 

J.R.A., J.M.W. and B.A.T. made substantial contributions to the conceptualisation of the 

work. A.M.B., P.J.C.H., H.M. L.J.S., G.J.C., J.A.E., N.D.W., M.Q.H., J.M.W. and B.A.T. were 

involved with patient recruitment, image acquisition and/or analysis. J.R.A. performed the 

deep learning experiments, interpreted data, and conducted statistical analyses. J.R.A. 

drafted the manuscript. B.A.T. substantively revised the manuscript. All authors reviewed 

and approved the submitted manuscript. 
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8.2 Introduction 

The global prevalence of pulmonary diseases constitutes a substantial health challenge 

(Vos et al., 2017; Torre et al., 2015). Although respiratory diseases remain widespread in 

developed nations, they are significantly more prevalent in developing nations possibly 

attributable to factors such as poorer air quality (Portney and Mullahy, 1990), in-home 

woodburning (Torres-Duque et al., 2008) and tobacco consumption (Mackay and Crofton, 

1996) which pose significant respiratory challenges.  

 

Pulmonary imaging constitutes a primary component of the clinical workflow of patients with 

respiratory diseases; various modalities can provide anatomical or functional information 

that aids in their diagnosis, monitoring, and treatment. Thoracic computed tomography (CT) 

and proton MRI (1H-MRI) are used to ascertain anatomical lung information. However, the 

relationship between parenchymal destruction and regional function is only somewhat 

understood. Therefore, functional lung imaging modalities such as single-photon emission 

CT (SPECT), positron emission tomography (PET) and hyperpolarised gas MRI can be used 

to glean functional insights. These techniques have shown efficacy in several lung disease 

applications, including diagnosis, treatment planning and treatment response mapping 

(Tahir et al., 2017; Ireland et al., 2016; Horn et al., 2017). Hyperpolarised gas MRI is a 

specialised functional lung imaging modality which has excellent sensitivity to abnormal lung 

function and allows for the visualisation of regional ventilation (Woodhouse et al., 2005; 

Marshall et al., 2017). However, to acquire hyperpolarised gas MRI ventilation images, 

specialised equipment such as a gas polariser is required, that can limit widespread clinical 

uptake (Stewart et al., 2021). Surrogates of regional ventilation computed from structural 

images acquired at different lung inflation levels have been proposed. CT ventilation imaging 

(CTVI) models regional ventilation from multi-inflation CT by assessing changes in regional 

lung density (Guerrero et al., 2005) or lung volume (Reinhardt et al., 2008). CTVI methods 

are the subject of intense validation efforts (Kipritidis et al., 2019). However, CT imaging is 

ionising and thus impractical for repeat scanning or scanning of paediatric patients. 

Analogous to CTVI, structural 1H-MRI has also been used to derive 1H-MRI-based regional 

ventilation surrogates (Zapke et al., 2006; Bauman et al., 2009; Voskrebenzev et al., 2017). 
1H-MRI ventilation models are derived from differences in signal intensities of co-registered 

voxels in multi-inflation 1H-MRI. The model assumes that these changes reflect naturally 

occurring density variations in the lungs during breathing (Kjørstad et al., 2017). These 

computational approaches have shown moderate correlation with hyperpolarised gas MRI 
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(Capaldi et al., 2018; Tahir et al., 2021). Structural 1H-MRI can be acquired without contrast 

and is non-ionising, which allows it to be used in paediatric patients and longitudinal 

applications. 

 

In recent years, deep learning (DL) has been applied to  several pulmonary image analysis 

applications, including image synthesis (Astley et al., 2020b). Ren et al. used a pre-trained 

convolutional neural network (CNN) to synthesise SPECT perfusion maps from CT (Ren et 

al., 2022); they employed a dataset comprising 33 lung cancer patients and 137 non-lung 

cancer patients where the proposed approach generated a voxel-wise Spearman’s 

correlation of 0.64 averaged across all lobes. Similarly, Liu et al. proposed a CNN-based 

method to synthesise Technegas SPECT ventilation maps from non-contrast 4DCT using a 

dataset of 50 participants (Liu et al., 2020). They indicate that, after median filtering, the 

proposed approach achieved a Spearman’s correlation of 0.73 for 10-phase, and 0.71 for 

2-phase, 4DCT. Furthermore, Zhong et al. (2019a) leveraged a CNN to synthesise CTVI 

surrogates from 4DCT; they reported a mean±SD structural similarity index measure (SSIM) 

of 0.88±0.04 (Zhong et al., 2019a). Capaldi et al. (2020) used structural free-breathing 1H-

MRI to synthesise ventilation MRI surrogates for a single 2D coronal section (Capaldi et al., 

2020); a 2D UNet CNN with a mean absolute error (MAE) loss function was used. These 

ventilation surrogates were correlated with 3He hyperpolarised gas MRI, achieving a 

Pearson correlation of 0.87 after six-fold cross-validation on a dataset of 114 participants 

(Capaldi et al., 2020). 

 

Whilst these approaches have demonstrated the efficacy of CNN-based methods for 

pulmonary image synthesis, the robustness of these approaches and the inability to produce 

physiologically consistent results limit clinical applicability. In addition, medical imaging 

datasets are often limited in size and unrepresentative of a diverse population, limiting the 

effectiveness of DL techniques. Researchers have proposed the use of hybrid networks 

which combine computational modelling and DL (Long et al., 2018). Specifically, physics-

informed DL frameworks have been used in weather forecasting (Grover et al., 2015) and 

earth surface modelling (Goldstein et al., 2014). Networks integrating computational 

modelling and DL have also been used for data generation in situations where there is 

limited data available (Willard et al., 2020). Within the medical imaging domain, Poirot et al. 

(2019) have utilised a physics-informed DL approach for dual-energy CT image 

enhancement. 
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Here, we propose a physics-informed DL framework for the synthesis of fully-volumetric 3D 

lung ventilation maps, leveraging physics-based specific ventilation modelling and structural 

multi-inflation 1H-MRI in a multi-channel CNN configuration. We compare the proposed 

framework to DL approaches that do not integrate ventilation modelling or structural 1H-MRI 

and evaluate the quality of synthetic ventilation scans using voxel-wise metrics. 

8.3 Materials and methods 

8.3.1 Dataset 

The dataset comprised 3D isotropic 1H-MRI scans acquired at approximately total lung 

capacity (TLC) and residual volume (RV), and hyperpolarised 129Xe-MRI ventilation scans 

acquired at functional residual capacity (FRC) + bag (for any given participant, the bag 

volume was titrated based on standing height with a range of 400mL-1L) from 170 healthy 

participants or patients with various pulmonary pathologies. A summary of participant 

demographics, stratified by pathology, is provided in Table 8.1. Imaging data was collected 

retrospectively from several prospective clinical studies and patients referred for clinical 

imaging. Data use was approved by the Institutional Review Boards at the University of 

Sheffield and the National Research Ethics Committee. All data was anonymised and all 

investigations were conducted in accordance with the relevant guidelines and regulations 

with participants (or their guardians) providing informed written consent. Appropriate 

consent and permissions were granted by the Sponsors to utilise this data for retrospective 

purposes. 
 

Table 8.1 Summary of patient demographic data. 

 

Disease Number of 

subjects / scans 

Age Sex VDP 

Median (range) Frequency (%) Median (range) 

Asthma 64 53 (13, 74) 30M (47%), 34F (53%) 2.4 (0.07, 30.9) 

Asthma + COPD 23 59 (33, 71) 15M (65%), 8F (35%) 7.0 (1.3, 29.3) 
COPD 17 65 (48, 73) 6M (35%), 11F (65%) 18.6 (6.2, 64.8) 

Cystic fibrosis 31 18 (9, 48) 16M (52%), 15F (48%) 7.4 (0.42, 56.4) 
Healthy 6 38 (26, 71) 3M (50%), 3F (50%) 0.23 (0.03, 0.62) 

Possible airways disease 4 46 (41, 64) 0M (0%), 4F (100%) 6.6 (1.3, 35.0) 
Lung cancer 5 73 (68, 79) 4M (80%), 1F (20%) 52.6 (44.9, 69.0) 

Post COVID-19 20 58 (25, 73) 18M (90%), 2F (10%) 1.36 (0.55, 5.17) 

Total 170 53 (9, 79) 92M (54%), 78F (46%) 3.80 (0.03, 69.0) 
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8.3.2 Image acquisition 

All participants underwent 3D volumetric 129Xe-MRI and 1H-MRI in the coronal plane with full 

lung coverage on a 1.5T GE HDx scanner (GE Healthcare, Milwaukee, WI, USA). 1H-MRI 

scans were acquired with an 8-element cardiac coil (Stewart et al., 2018) using a 3D spoiled 

gradient-recalled sequence with a repetition time/echo time of 1.8/0.7 milliseconds, in-plane 

resolution of ~3x3 mm2 and a slice thickness of 3 mm. A ~35-48cm field of view with a flip 

angle of 3° at a bandwidth of 166.6kHz was used. Hyperpolarised gas MRI scans were 

acquired using 129Xe that was polarised on site to ~25% with an in-house developed 

rubidium spin-exchange polariser (Norquay et al., 2018b). A flexible quadrature 

radiofrequency coil was employed for transmission/reception of MR signals at the Larmor 

frequency of 129Xe-MRI (Clinical MR Solutions, Brookfield, WI, USA). A 3D balanced steady-

state free precession sequence was used (Stewart et al., 2018) with a repetition/echo time 

of 6.7/2.2 milliseconds, an in-plane resolution of ~4x4 mm2 and slice thickness of 10 mm. A 

~38-40 cm field of view with a flip angle of 9° or 10° and a bandwidth of 16kHz was used. 

8.3.3 Image segmentation 

To facilitate 1H-MRI registration, lung cavity segmentation is required to provide a region 

over which to perform registrations, thereby producing more accurate deformations 

compared to employing registration algorithms over the whole scan. 1H-MRI TLC and RV 

scans were segmented using a CNN-based implementable 1H-MRI lung segmentation 

network as previously developed (Astley et al., 2021). Segmentations were then manually 

corrected by several expert observers with the following experience: B.A.T had 10 years, 

H.M had 7 years, P.J.C.H had 5 years, A.M.B had 5 years and J.R.A had 3 years. 

8.3.4 Image registration 

RV and TLC 1H-MRI scans were aligned using deformable image registration and 

subsequently registered to the spatial domain and resolution of 129Xe-MRI via a 

corresponding anatomical 1H-MRI scan acquired at a similar inflation as 129Xe-MRI (Tahir et 

al., 2014; Tahir et al., 2018). The empirically optimised script used identical rigid and affine 

parameters as the EMPIRE10_BSplineSyn script as previously described (Tahir et al., 2014; 

Tahir et al., 2018). Registration pipelines consisted of rigid, affine and diffeomorphic stages. 

For the deformable registration stage, explicit B-spline regularisation was applied to the 

resulting transform of the affine pipeline. A knot spacing for the update field of 65 mm 

provided optimal results. Additionally, a 5-level multi-resolution pyramid was used (instead 
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of 4 levels) with down-sampling factors of 10 × 6 × 4 × 2 × 1 and corresponding smoothing 

Gaussian sigmas of 5 × 3 × 2 × 1 × 0 mm and the normalised correlation coefficient similarity 

metric with a radius of 2 voxels instead of 4. A step size of 0.2 was selected for the gradient 

descent optimisation algorithm. All registrations were performed using the advanced 

normalisation tools (ANTs) registration framework (Avants et al., 2008). The registration 

pipeline is further described in Tahir et al., (2019). 

8.3.5 1H-MRI ventilation modelling 

Model-based 1H-MRI ventilation surrogates were computed from the aligned TLC and RV 
1H-MRI scans. The 1H-MRI ventilation model assumes that differences in signal intensities 

of co-registered voxels reflect naturally occurring density variations in the lungs during 

breathing (Kjørstad et al., 2017). Specific ventilation (SV) is a unitless quantity that models 

the proportion of inhaled air entering the lungs during normal breathing (Capaldi et al., 2018) 

and is calculated from deformably registered 1H-MRI RV and TLC scans as follows: 
 

SV =
∆V
VIJ

≈	
FK.L −	FIJ

FIJ
 

( 8.1 ) 

where FK.L and FIJ denote the air volume fractions at inspiration and expiration, 

respectively, and FMNI denotes the air volume fraction at an arbitrary inflation level. The MRI 

signal intensity (SI) is known to be approximately inversely proportional to the volume of air 

in the lung (Zapke et al., 2006).  
 

SI	 ∝4 	
1
FMNI

 

( 8.2 ) 

Substituting Equation ( 8.2 ) into Equation ( 8.1 ) allows the specific ventilation to be 

computed as follows: 
 

SV ≈ @
SIIJ −	SIK.L

SIK.L
	L 

( 8.3 ) 

where SIIJ and SIK.L are voxel-wise signal intensities at RV and TLC, respectively. A median 

filter of 3x3x1 voxels was subsequently applied to 1H-MRI ventilation maps to account for 

noise and registration errors, resulting in a filtered resolution of 12x12x10 mm3 which  

approximately corresponds to the size of the acinus indicated by Levin et al. (2017). 
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Figure 8.1 Registration workflow for modelling 1H-MRI ventilation. 

8.4 Deep learning experiments and evaluation 

8.4.1 CNN architecture configurations 

We developed and compared three DL approaches to generate synthetic 129Xe-MRI 

ventilation maps by varying the input images provided to the CNN. These approaches are 

referred to below: 

 
1) DL (INSP + EXP + SV Model): PhysVENeT 

2) DL (INSP + EXP) 

3) DL (SV Model) 

 
We assessed the effect of providing a physics-based 1H-MRI ventilation model, alongside 

structural inspiratory (INSP) and expiratory (EXP) 1H-MRI, as inputs to a CNN (approach 1). 

This approach that we call “PhysVENeT” is compared to a network which is not physics-

informed (approach 2) and a network which does not integrate structural multi-inflation 1H-

MRI (approach 3).   

 

For each configuration, input scans with varying dimensions were read by the network using 

patch-based sampling with patches of 192x192x48 voxels (Gibson et al., 2018b). The VNet 

CNN allows for non-isotropic patch sizes in-line with the anisotropic nature of 129Xe-MRI. 

We modified the VNet CNN architecture (Milletari et al., 2016) to learn functional 

representations from 3D input images by outputting a 3D continuous map of regional 
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ventilation. The CNN contained feature channels of 16, 32, 64, 128 and 256, where 

convolution operations are employed at each layer to both learn residual features and to 

reduce the resolution of the feature stack, analogous to commonly employed pooling 

operations. The input layer employs a convolution operation with a 5x5x5 kernel and stride 

of 1; two identical convolutions are employed at the second layer and three at the 

subsequent layers. After each 5x5x5 convolution, a subsequent 2x2x2 kernel with stride of 

2 was utilised, generating non-overlapping patches, hence the resolution of the image is 

divided by two. This is repeated at each layer, resulting in a minimum resolution of 12x12x3 

in the final convolution step. The structure of the network is replicated in deconvolution steps 

bar the output layer. Each convolution operation employed a PReLU non-linear activation 

function with valid padding. As indicated by Milletari et al. (2016), the CNN learns residual 

fine-grained features at each step which informs corresponding deconvolution operations in 

the upsampling side of the network (Milletari et al., 2016). The VNet CNN architecture is 

modified to contain a regression output layer, allowing the network to generate continuous 

intensity maps in three dimensions. Furthermore, we employ a Huber loss function where 

the Huber loss (H.O(() is defined as: 

 

H.O(((𝑎) = 	�

1
2
𝑎A																								for	|𝑎| ≤ 	δ

δ	 ∙ @|𝑎| −
1
2
δL 			for	|𝑎| > 	δ		

 

( 8.4 ) 

where 𝑎 represents the difference between given co-registered voxels in the ground truth 

and predicted outputs and d is defined as 0.1. The Huber loss function is expressed as a 

representation of either the mean square error (MSE) or the absolute value function at d. 

The Huber loss has the benefit of combining the minimum-variance estimator of the MSE 

loss and the median-unbiased estimator of the absolute value loss to produce a loss function 

that alternatively provides the sensitivity and robustness of the MSE and absolute loss, 

respectively. This loss was utilised for synthetic ventilation generation to minimise the impact 

of outliers in the first stages of training and improve sensitivity once the loss has significantly 

reduced. For DL approaches 1 and 2, which utilise multiple input images, weight sharing 

was not employed, resulting in input dimensions of 192x192x48x3 or 192x192x48x2 for the 

PhysVENeT and other DL configurations, respectively, similar to Kläser et al. (2021) and 

Jahangir et al. (2022). This method combines the feature maps from spatially aligned 

inspiratory and expiratory 1H-MRI alongside the 1H-MRI ventilation model. Therefore, the 
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network can leverage concurrent information distributed across multiple input feature maps 

(Berger et al., 2018). The PhysVENeT architecture (approach 1) is detailed in Figure 8.2. 

8.4.2 CNN training parameters 

All warped and masked RV and TLC 1H-MRI scans and 129Xe-MRI ventilation scans 

underwent pre-processing before they were fed into the network; scans were normalised 

with image intensities between [0, 1]. Training data was augmented to reduce overfitting 

whilst still maintaining physiological plausibility. We used an augmentation method where 

the number of scans in the training set remained consistent; however, each set of input 

images is deformed using a random rotation and scaling factor between [-10°, 10°] and [-

10%, 10%], respectively. Different rotation and scaling factors are randomly selected within 

these limits when the feature map is provided to the network. Thus, the network can be 

trained for an increased number of epochs as it is highly unlikely to be exposed to the exact 

same deformations in each epoch. Consequently, we train our network for 900 epochs. 

Batch normalisation was applied at each layer using a mini-batch size of 2 to reduce 

covariate shift between network layers during training (Ioffe and Szegedy, 2015). Network 

weights were trained from scratch and initialised using Xavier initialisation, representing a 

Gaussian distribution with a mean of 0 and a variance of 1/N, where N represents the 

number of weights and biases. The network employs Adam (Kingma and Ba, 2015) 

optimisation with a learning rate of 1x10-5. L2 regularisation and a decay of 1x10-4 were used 

to minimise overfitting. The network is trained and tested using the open source medical 

imaging framework NiftyNet (Gibson et al., 2018b) built on top of TensorFlow 1.1.4 (Abadi 

et al., 2016). An NVIDIA Tesla V100 GPU with 24GB of RAM was required for network 

training. Post-processing was conducted to account for noise and registration errors in 

synthetic ventilation maps; 1H-MRI ventilation scans and DL-generated synthetic ventilation 

scans were normalised with signal intensities between [0, 1] and median filtered with a 

radius of 3x3x1 voxels. 

8.4.3 Data split 

The dataset contained scans from 170 participants. 150 participants were used for five-fold 

cross-validation, resulting in randomly selected training and testing sets of 120 and 30 

participants, respectively, for each fold. The remaining 20 participants were used for external 

validation; these scans were from participants who had previously been hospitalised for 

COVID-19, a disease not contained within the cross-validation dataset.
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Figure 8.2 PhysVENeT architecture and training strategy.
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8.4.4 Quantitative evaluation 

Surrogates of ventilation were quantitatively evaluated using two common voxel-wise image 

synthesis metrics, namely, the voxel-wise Spearman’s correlation (rs) and SSIM. The 

Spearman’s rs was the primary evaluation metric in the CT ventilation imaging grand 

challenge, VAMPIRE (Kipritidis et al., 2019). In a recent review of DL in pulmonary imaging, 

SSIM was used for evaluation in several image synthesis investigations (Astley et al., 

2020b). Further details of Spearman’s rs and SSIM calculations are given in the following 

sections. 

 

Spatial correlation between synthetic ventilation surrogates and corresponding 129Xe-MRI 

scans was assessed at full resolution using Spearman’s rs. The correlation was calculated 

on all voxels within the lung cavity region as defined by the lung volume in a 1H-MRI scan 

acquired at the same inflation as 129Xe-MRI. Spearman’s rs quantifies the degree of 

monotonicity between any two ventilation images within a range of [-1, 1] where 1 represents 

a perfect positive correlation and -1 represents a perfect negative correlation; therefore, an 

rs of 0 represents no correlation. 

 

SSIM is an image quality measure that encompasses similarity information. SSIM is 

calculated between non-zero voxels in the reference 129Xe-MRI scan (X) and the synthetic 

ventilation surrogate (Y) within the lung cavity region, as defined by the lung volume in a 1H-

MRI scan acquired at the same inflation as 129Xe-MRI, as follows: 

 

SSIM =
(2µFµH + c1)(2σF,H −	cA)

(µFA − µHA + c1)(σFA − σHA + cA)
 

( 8.5 ) 

where µF and µH are the average intensities of X and Y, respectively, and σF and σH are the 

variances of X and Y, respectively. σF,H is the covariance of X and Y. c1 and cA are defined 

as follows:  
  
 

c1 = (k1L	)A,			cA =	 (kAL	)A 
( 8.6 ) 

where L is the dynamic range of pixel intensities in X and Y and k1 and kA are the constants 

0.01 and 0.03, respectively (Wang et al., 2004). 
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8.4.5 Statistical analysis 

We initially determined whether the data was normally distributed via Shapiro-Wilk tests; if 

normality was not satisfied, non-parametric tests were conducted. Friedman tests with 

Bonferroni correction for post-hoc multiple comparisons were used to assess significant 

differences between DL approaches. For each metric, paired t-tests were used to assess 

significant differences between the DL approaches and the 1H-MRI ventilation model. 

Wilcoxon tests were used to assess differences between folds on external validation data 

and differences in performance between the 1H-MRI ventilation model and each fold on the 

external validation cohort. Statistical analyses were performed using GraphPad Prism 9 

(GraphPad, San Diego, CA). In this work, a p-value of <0.05 was considered statistically 

significant. 

8.5 Results 

8.5.1 Qualitative evaluation 

Figure 8.3 shows example coronal slices comparing synthetic ventilation maps with 129Xe-

MRI ventilation imaging for five cases within the dataset. Voxel-wise Spearman’s rs and 

SSIM are given for each case and method. A number of cases show large ventilation defects 

which are replicated in synthetic ventilation scans generated by the PhysVENeT framework. 

Case 2 shows an area of consolidation in the apex of the right lung on the 1H-MRI scan 

which manifests as a ventilation defect in the corresponding hyperpolarised gas MRI. This 

defect is replicated in all DL configurations and the SV model. Case 3 displays subtle 

ventilation defects which are somewhat replicated by several synthetic ventilation 

approaches. Case 4 shows a cystic fibrosis patient with large defects in both lungs which 

are replicated accurately by the PhysVENeT DL configuration. Case 5 displays a case with 

large defects at the apex of both lungs in the hyperpolarised gas MRI scan. All DL 

configurations and the SV model do not accurately replicate these ventilation defects, 

despite reduced intensity in these regions some ventilation is still present in all approaches 

tested. 
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Figure 8.3 Example coronal slices of TLC and RV 1H-MRI, 1 2 9Xe-MRI, DL-based synthetic ventilation maps and the 1H-MRI SV model for five 

participants in the dataset. Voxel-wise Spearman’s rs  and SSIM values are given for each DL approach and the 1H-MRI ventilation model. Green 
arrows indicate defects which are present in hyperpolarised gas MRI and replicated in synthetic ventilation scans.
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8.5.2 Quantitative evaluation 

The PhysVENeT framework generated the highest Spearman’s rs, achieving a median 

(range) of 0.68 (0.13, 0.85) and the DL (INSP + EXP) approach generated the highest SSIM, 

achieving a median (range) of 0.58 (0.14, 0.76) when compared to ground-truth 129Xe-MRI 

ventilation. A full summary of results is provided in Table 8.2. Using inferential statistics 

adjusted for multiple comparisons, the PhysVENeT significantly outperformed all other DL 

approaches and 1H-MRI ventilation modelling in terms of Spearman’s rs. In addition, both 

the PhysVENeT and DL (INSP + EXP) approaches significantly outperformed the DL 

(Model) and 1H-MRI ventilation model using the SSIM metric. No significant difference was 

observed between the PhysVENeT and DL (INSP + EXP) networks using the SSIM 

(p=0.14). The distribution of Spearman’s rs and SSIM for each method across all images 

within the cross-validation dataset is displayed in Figure 8.4; significant p-values are 

provided. Synthetic ventilation performance for the PhysVENeT approach, stratified by 

pulmonary pathology, is shown in Figure 8.5. 

 

 
Figure 8.4 Comparison of performance for DL methods and 1H-MRI SV model using the voxel-wise 

Spearman’s rs  (left) and SSIM (right) metrics. P-values are given for statistically significant 
comparisons. 
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Figure 8.5 Comparison of performance stratified by participant pathology using Spearman’s rs 

(left) and SSIM (right) metrics for the proposed PhysVENeT framework
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Table 8.2 Synthetic ventilation results from the 1H-MRI SV model and the three DL approaches compared to hyperpolarised gas MRI ventilation using 

the Spearman’s rs and SSIM metrics. Median (range) is given. Metrics are given for each fold individually and the combined values across all folds. 

Cross-
validation 

DL (INSP + EXP + SV Model) DL (INSP + EXP) DL (SV Model) SV Model 
Spearman’s rs 
Median (range) 

SSIM 
Median (range) 

Spearman’s rs 
Median (range) 

SSIM 
Median (range) 

Spearman’s rs 
Median (range) 

SSIM 
Median (range) 

Spearman’s rs 
Median (range) 

SSIM 
Median (range) 

Fold 1 0.68 (0.13, 0.85) 0.56 (0.19, 0.77) 0.65 (0.11, 0.86) 0.57 (0.14, 0.76) 0.58 (0.06, 0.77) 0.50 (0.05, 0.65) 0.37 (0.09, 0.57) 0.39 (0.11, 0.56) 

Fold 2 0.66 (0.18, 0.84) 0.54 (0.27, 0.72) 0.60 (0.11, 0.81) 0.55 (0.27, 0.67) 0.58 (-0.04, 0.82) 0.38 (0.01, 0.74) 0.34 (0.05, 0.61) 0.43 (0.17, 0.56) 

Fold 3 0.67 (0.28, 0.79) 0.60 (0.29, 0.72) 0.65 (0.37, 0.80) 0.59 (0.26, 0.75) 0.54 (0.22, 0.69) 0.30 (0.02, 0.64) 0.39 (0.05, 0.61) 0.43 (0.11, 0.59) 

Fold 4 0.69 (0.14, 0.83) 0.54 (0.19, 0.70) 0.64 (0.10, 0.84) 0.59 (0.29, 0.71) 0.54 (0.05, 0.73) 0.55 (0.04, 0.64) 0.41 (-0.01, 0.60) 0.42 (0.16, 0.52) 

Fold 5 0.66 (0.15, 0.84) 0.61 (0.18, 0.76) 0.63 (0.10, 0.77) 0.59 (0.29, 0.70) 0.64 (0.23, 0.80) 0.54 (0.00, 0.70) 0.38 (0.06, 0.61) 0.45 (0.21, 0.58) 

All folds 0.68 (0.13, 0.85) 0.56 (0.18, 0.77) 0.63 (0.10, 0.86) 0.58 (0.14, 0.76) 0.57 (-0.04, 0.82) 0.47 (0.00, 0.74) 0.38 (-0.01, 0.61) 0.43 (0.11, 0.59) 
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8.5.3 External validation 

An external validation dataset comprising 20 participants who had a pathology not present 

in the cross-validation dataset were used to assess the generalisability of DL approaches. 

The PhysVENeT framework achieved the highest Spearman’s rs and SSIM with a median 

(range) of 0.62 (0.18, 0.79) and 0.58 (0.05, 0.68), respectively when averaged across all 

networks trained using each cross-validation fold. The proposed PhysVENeT showed 

minimal reduction in performance on external validation data, whereas DL approaches that 

were not physics-informed, or did not integrate structural imaging directly, showed 

significant reductions in both Spearman’s rs and SSIM. Results for DL approaches are given 

in Table 8.3. 

 
Table 8.3 Synthetic ventilation results on the external validation dataset (n=20) from  the three DL 
approaches compared to 1 2 9Xe-MRI ventilation using the Spearman’s rs and SSIM metrics. Median 
(range) is given. Metrics are given for ventilation surrogates generated by each of the five folds 

during cross-validation and the average values across all folds. 

 
 

Significant differences in performance of the PhysVENeT between networks trained on each 

cross-validation fold and tested on external validation data were observed; however, the 

ranges of average Spearman’s rs and SSIM values across all folds were narrower than 

those of other approaches, with a Spearman’s rs range of 0.60-0.63 and SSIM range of 

0.57-0.60. Significant p-values between the five trained models generated by each fold in 

the cross-validation process are shown in Figure 8.6. 

External 
validation 
(n=20) 

DL (INSP +EXP + SV Model) DL (INSP + EXP) DL (SV Model) 

Spearman’s rs 

Median (range) 

SSIM 

Median (range) 

Spearman’s rs 

Median (range) 

SSIM 

Median (range) 

Spearman’s rs 

Median (range) 

SSIM 

Median (range) 

Fold 1 0.62 (0.28, 0.76) 0.58 (0.49, 0.66) 0.65 (0.29, 0.82) 0.56 (0.04, 0.68) 0.53 (0.24, 0.74) 0.53 (0.02, 0.64) 

Fold 2 0.63 (0.23, 0.79) 0.57 (0.22, 0.65) 0.55 (0.24, 0.71) 0.25 (0.01, 0.55) 0.56 (0.41, 0.75) 0.55 (0.03, 0.67) 

Fold 3 0.60 (0.31, 0.77) 0.60 (0.05, 0.66) 0.56 (0.26, 0.73) 0.52 (0.03, 0.63) 0.41 (0.13, 0.64) 0.50 (0.01, 0.56) 

Fold 4 0.61 (0.18, 0.74) 0.58 (0.33, 0.65) 0.58 (0.21, 0.76) 0.55 (0.04, 0.64) 0.50 (0.27, 0.75) 0.59 (0.07, 0.66) 

Fold 5 0.63 (0.22, 0.77) 0.58 (0.23, 0.68) 0.54 (0.18, 0.76) 0.51 (0.05, 0.63) 0.60 (0.26, 0.80) 0.54 (0.03, 0.65) 

Average 

across folds 
0.62 (0.18, 0.79) 0.58 (0.05, 0.68) 0.56 (0.18, 0.82) 0.51 (0.01, 0.68) 0.49 (0.13, 0.80) 0.53 (0.01, 0.66) 
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Figure 8.6 Comparison of performance on external validation data using the five trained models 

generated by the PhysVENeT during cross-validation in terms of Spearman’s rs  (left) and SSIM 
(right). Significant p-values are given. 

8.6 Discussion 

In this work, we propose a framework for the generation of synthetic ventilation surrogates 

from multi-inflation structural 1H-MRI and a physics-based SV model. The PhysVENeT 

approach integrates computational modelling and DL to produce physics-informed 3D 

ventilation maps of the lungs. These synthetic ventilation images correlate with 129Xe-MRI 

in a voxel-wise manner and can mimic gross ventilation defects across a range of 

pathologies. Generating 3D synthetic ventilation surrogates from structural imaging 

modalities, without the requirement of specialised equipment or exogenous contrast, can 

reduce barriers in the widespread adoption of cutting-edge functional lung imaging 

modalities, such as hyperpolarised gas MRI. 

 

Synthetic ventilation surrogates generated by the PhysVENeT framework significantly 

outperformed 1H-MRI ventilation maps generated through computational modelling of 

specific ventilation change. This was demonstrated using the voxel-wise Spearman’s rs and 

SSIM metrics calculated across the whole lung region where the PhysVENeT achieved a 

Spearman’s rs of 0.68 and an SSIM of 0.56 on the cross- validation dataset. Furthermore, 

the PhysVENeT significantly outperformed other DL approaches which did not leverage 

structural 1H-MRI or physics-based 1H-MRI ventilation modelling, using Spearman’s rs. 

When inference was conducted on external validation data, the PhysVENeT exhibited 

increased performance compared to other DL approaches, achieving a Spearman’s rs of 

0.62 and an SSIM of 0.58. The inclusion of both structural 1H-MRI and computational 
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modelling of specific ventilation provides PhysVENeT with the ability to generalise effectively 

to participants of a previously unseen disease. The increase in generalisability on external 

validation data, in conjunction with significant increases in correlations on cross validation 

data, indicates the benefit of using a physics-informed framework. 

 

We used a large dataset that contained 170 participants with numerous pulmonary 

pathologies and varying degrees of lung function, as measured by the ventilation defect 

percentage (VDP) (Table 8.1). 150 of these participants were used for five-fold cross 

validation, leading to five separately trained networks, each tested on 20% of the total 

cohort. The remaining 20 participants were used for external validation whereby each of the 

five separately trained networks were used to generate ventilation surrogates for these 20 

participants. The physics-informed PhysVENeT framework performed similarly on both the 

cross-validation and external validation datasets. In addition, the range of SSIM and 

Spearman’s rs metrics on the external validation data is much narrower than the other DL 

approaches. Therefore, by leveraging structural 1H-MRI and physics-based modelling, the 

PhysVENeT framework exhibits minimal overfitting and is largely generalisable to scans 

outside the cross-validation dataset. 

 

The framework uses a VNet CNN backbone previously developed for 3D segmentation 

tasks (Milletari et al., 2016). We adapted the VNet with a Huber loss function to output 3D 

continuous intensity maps and through the integration of a multi-channel input configuration. 

The CNN architecture makes use of additional convolution operations to reduce the 

dimensionality of the image instead of traditional pooling methods. This limits the footprint 

of the network, reducing the memory consumption (Springenberg et al., 2014). In turn, this 

facilitates the use of large anisotropic 3D patch sizes. An additional feature of the network 

architecture is the ability to use anisotropic input dimensions; 129Xe-MRI scans have an 

anisotropic resolution with an in-plane resolution of ~4x4 mm2 and a slice thickness of 10 

mm. Thus, we make use of the anisotropic input capabilities of the VNet architecture in 

contrast to other architectures which require isotropic spatial windowing, such as the nn-

UNet (Isensee et al., 2018). 

 

Relevant differences between 129Xe-MRI scans, the PhysVENeT and the SV model are 

observed for several example cases. In general, synthetic ventilation scans show reduced 

contrast between ventilated and non-ventilated regions than their corresponding 

hyperpolarised gas MRI scans where synthetic ventilation scans often contain some areas 
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of signal even within regions of ventilation defects. The SV model performs well in some 

instances but poorly in others; this is potentially due to registration errors, but the accuracy 

of the SV model is also limited by the signal intensity model utilised. It is hypothesised that 

lung ventilation cannot be solely captured by differences in signal intensities as other 

components likely contribute to ventilation. Therefore, in cases where the SV model 

performed poorly, the PhysVENeT also exhibited worse than average performance. 

Regardless, the PhysVENeT’s ability to modify ventilation surrogates, in combination with 

information from multi-inflation structural imaging, leads to improved performance in most 

cases within the dataset. When comparing the PhysVENeT to the DL configuration which 

only utilises multi-inflation 1H-MRI, there are some instances where the SV model 

underperformed and, consequently, the PhysVENeT also underperformed. However, as 

demonstrated, the PhysVENeT produced significantly more accurate synthetic ventilation 

scans, particularly on external validation scans. It is hypothesised that the inclusion of the 

SV model as an input increased the generalisability of the PhysVENeT to pulmonary 

pathologies previously unseen by the dataset compared to the configuration which utilises 

only multi-inflation 1H-MRI as an input. 

 

Previous approaches have utilised DL to generate synthetic ventilation maps in 2D. Capaldi 

et al. (2020) used a 2D UNet CNN with a MAE loss function to generate ventilation maps of 

a single 2D coronal section from free-breathing 1H-MRI, limiting volumetric coverage 

(Capaldi et al., 2020). Moreover, the 2D intensity maps cannot contextualise the volumetric 

nature and spatial clustering of ventilation defects (Donovan and Kritter, 2015). This can 

lead to discontinuities between slices which reduces the plausibility of ventilation defect 

patterns in DL-based ventilation surrogates. Here, we generate fully-volumetric synthetic 

ventilation surrogates in three dimensions which allows the proposed CNN to learn features 

which occur over multiple slices. 

 

Levin et al. (2017) has indicated that the resolution of functional lung images need not be 

higher than the smallest pulmonary gas exchange unit, namely, the acinus. The acinus is 

approximately 10x10x10 mm3 in adult humans. They also report that the sufficient resolution 

of ventilation images can be as low as 20x20x20 mm3 due to the spatial clustering of many 

ventilation defects (Levin et al., 2017). Consequently, we apply 3x3x1 median filtering as a 

post-processing step to 129Xe-MRI, 1H-MRI ventilation surrogates, and DL-based synthetic 

ventilation images before evaluation. This increases the resolution to 12x12x10 mm3, in-line 

with appropriate resolutions proposed by Levin et al. (2017). 
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Contrast-based functional lung imaging modalities such as hyperpolarised gas MRI require 

specialised equipment and exogenous contrast, which limit clinical adoption. In addition, 

non-contrast functional lung imaging techniques such as CTVI require exposure to ionising 

radiation and have demonstrated large variability in performance. Therefore, the ability to 

generate 3D ventilation scans from structural non-contrast 1H-MRI scans has wide-reaching 

implications for functional lung imaging, including the potential to be used for functional lung 

avoidance radiotherapy and in a triaging capacity for instances where contrast-based 

functional lung imaging is unavailable. 

8.6.1 Limitations 

Despite significant improvements in Spearman’s rs and SSIM when compared to 1H-MRI 

ventilation modelling, the PhysVENeT framework generated only moderate correlations with 
129Xe-MRI. Synthetic ventilation surrogates were unable to accurately replicate all subtle 

ventilation defects, and, in some cases, they exhibit minimal correlation. As 129Xe-MRI is a 

direct measure of gas distribution, it can accurately quantify regional ventilation; this ability 

is diminished in synthetic ventilation surrogates where the ability to accurately discern 

between ventilated and non-ventilated lung regions is reduced. In addition, accurate 

registration is also required for the generation of ventilation surrogates and, therefore, the 

quality of these registrations significantly impacts the performance of the proposed 

approach. In future work, an approach independent of registration could be considered. 

Other DL approaches that utilise generative adversarial networks (GAN) or vision 

transformers (ViT) have been used for image synthesis applications (Goodfellow et al., 

2014; Shamshad et al., 2022). The proposed framework used a fully convolutional network 

that lacks the unsupervised learning benefits of GANs and the long-range feature extraction 

of ViTs. Future investigations could indicate that utilising these methods over traditional 

CNNs leads to improved performance. 

 

The dataset used in this work, whilst varied in pathologies and demographics, is limited in 

MRI acquisition parameters; all scans were acquired on the same scanner at the same field 

strength from a single centre. Thus, the conclusions of this work cannot be appropriately 

extended to a dataset of differing sequence or field strength without further investigation. A 

further limitation related to the dataset is the uneven distribution of pathologies; for example, 

the dataset contains only five participants with lung cancer. Consequently, when stratified 

by disease, the Spearman’s rs and SSIM are lowest for lung cancer patients. This may also 
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be due to the large VDP values present in this cohort, which often lead to increased domain-

shift between structural and functional imaging (Tahir et al., 2014). Nevertheless, further 

expansions of the dataset should focus on increasing the number of participants with 

pathologies that are underrepresented in the current dataset and the inclusion of a diverse 

range of MRI acquisition parameters to increase generalisability. 

8.7 Conclusion 

In this study, we propose a multi-channel CNN to synthesise 3D pulmonary ventilation maps 

from multi-inflation 1H-MRI. These structural scans are combined with a physics-informed 

computational model of specific ventilation to enhance the physiological plausibility of the 

synthetic ventilation surrogates. The PhysVENeT framework produces ventilation maps 

which correlate with 129Xe-MRI, reflecting ventilation defects observed in the real scans. 
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Chapter 9  
Novel contributions and future research directions 

 

Novel contributions of this work are summarised in section 9.1. Potential clinical applications 

are discussed in section 9.2. Future research directions are discussed in section 9.3. 

9.1 Novel contributions 

The aim of this thesis was to explore the role of deep learning (DL) in structural and 

functional lung imaging. This involved the application of DL approaches to image 

segmentation and image synthesis, outlined in Chapters 4-8. 

 

Chapter 4 investigated the automatic segmentation of ventilated lung in hyperpolarised gas 

MRI scans, comparing several 3D convolutional neural networks (CNNs). The dataset used 

for this work is the largest reported to date for hyperpolarised gas MRI segmentation; it 

contains 759 3He and 129Xe hyperpolarised gas MRI scans from 341 participants with a wide 

range of pulmonary pathologies. The proposed network showed increased performance 

when compared to conventional machine learning approaches, such as spatial fuzzy c-

means, as well as outperforming other DL-based hyperpolarised gas MRI segmentation 

algorithms in the literature. This resulted in the publication of a long paper at the MICCAI 

2020 thoracic image analysis workshop and an original article in Nature Scientific Reports. 

 

Chapter 5 involved the development of a DL-based segmentation algorithm to delineate the 

lung parenchyma in 1H-MRI, demonstrating the generalisability of a DL approach when a 

diverse, representative dataset is utilised. A uniquely large, multi-centre, multi-vendor, multi-

disease 1H-MRI dataset, which contained 809 scans from 289 participants, was used. The 

proposed CNN was capable of generating accurate lung segmentations on scans acquired 

with a wide range of acquisition parameters; furthermore, this network outperformed 

machine learning approaches on external data from several other centres. A comparison of 
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2D and 3D CNNs was performed, where the 3D CNN significantly outperformed its 2D 

analogue; this is the first study to investigate the effect of dimensionality in DL lung MRI 

applications. The 3D CNN showed no overfitting and exceptional generalisability despite 

potential domain-shifts in the scans used for external validation, thereby indicating that the 

network can learn features independent of MRI acquisition parameters or participant 

disease.  

 

In Chapter 6, a dual-channel 3D CNN was developed to estimate the lung cavity in the 

domain of functional, hyperpolarised gas MRI. To this end, we used a paired dataset of 

hyperpolarised gas MRI and 1H-MRI, containing a range of pulmonary pathologies. In 

contrast to other 1H-MRI segmentation works, the inclusion of structural and functional 

modalities in a dual-channel configuration allows the network to adapt the lung cavity 

estimation (LCE) with reference to functional features. This is the first study to automatically 

generate LCEs, demonstrating significant improvements over single-channel alternatives. 

This resulted in the publication of an original, first-author article in the Journal of Magnetic 

Resonance Imaging. 

 

In Chapter 7, a hybrid DL and model-based framework was developed to synthesise 

hyperpolarised gas MRI from non-contrast multi-inflation CT. The method drew inspiration 

from works in other fields that combine computational modelling and DL to improve 

physiological plausibility. The network generates fully-volumetric ventilation maps that 

accurately reflect gross ventilation defects observed in hyperpolarised gas MRI scans. This 

study represents the first attempt to synthesise hyperpolarised gas MRI ventilation scans 

directly from non-contrast, multi-inflation CT. 

 

Analogous to the synthesis of hyperpolarised gas MRI from CT, Chapter 8 investigated the 

synthesis of hyperpolarised gas MRI from non-contrast, multi-inflation 1H-MRI. Extensive 

validation is employed, with 150 participants used for five-fold cross validation and 20 

participants for external validation. The proposed framework generates 3D volumetric 

ventilation surrogates using a physics-informed, multi-channel CNN. A previous work in the 

literature had synthesised a specific 2D coronal section of hyperpolarised gas MRI; however, 

this work represents the first study to synthesise hyperpolarised gas MRI fully-volumetrically. 



 

 214 

9.2 Potential clinical applications 

Potential clinical applications are divided into the two main image analysis tasks investigated 

in this work, namely, image segmentation (9.2.1) and image synthesis (9.2.2). 

9.2.1 Segmentation 

Hyperpolarised gas MRI facilitates the visualisation and quantification of regional lung 

ventilation with high spatial resolution within a single breath. Quantitative biomarkers derived 

from this modality, including the ventilation defect percentage (VDP) and coefficient of 

variation (CoV), provide further insights into regional ventilation. To enable the computation 

of such biomarkers, segmentation of ventilated regions of the lungs is required. DL-based 

automatic segmentation networks developed in Chapter 4 have the potential to dramatically 

reduce the editing time required to correct ventilated lung segmentations; this can allow for 

greater clinical throughput and wider adoption of hyperpolarised gas MRI as a functional 

imaging modality. Trained models developed in this work have been used to generate semi-

automatic ventilated lung segmentations for patients referred for clinical scans and patients 

in several prospective studies at The University of Sheffield. 

 

Segmentation of the lungs in 1H-MRI is required to delineate the lung cavity from other 

nearby features; these segmentations are used for numerous applications, including in 

disease characterisation, treatment planning and longitudinal assessment. Functional lung 

imaging modalities such as quantitative dynamic contrast-enhanced perfusion MRI and 

oxygen-enhanced ventilation MRI also require 1H-MRI lung segmentations. Furthermore, 

surrogates of ventilation, such as 1H-MRI ventilation modelling, require the segmentation of 

the lung parenchyma at different inflations. The generalisable 1H-MRI lung segmentation 

model developed in Chapter 5 can generate accurate lung segmentations across a range 

of centres, MRI sequences, field strengths and resolutions. The ability to rapidly produce 

lung cavity segmentations can greatly reduce the time required for manual editing, leading 

to a more streamlined lung imaging workflow. Due to the generalisability demonstrated by 

the proposed model, it can be applied to 1H-MRI scans acquired with various MRI 

parameters across multiple centres; therefore, the potential clinical applications are vast. To 

this end, the trained model has been provided to other researchers to facilitate higher clinical 

throughput, ultimately leading to increased clinical translation. Within the POLARIS group at 

The University of Sheffield, the proposed generalisable network has been used for the semi-

automatic segmentation of the lungs in the quantitative evaluation of biomarkers derived 
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from 1H-MRI Ultra-short echo time (UTE) scans in interstitial lung disease patients, as well 

as the computation of 1H-MRI ventilation surrogates. 

 

In Chapter 6, LCEs were generated automatically using a dual-channel CNN. This region 

represents the lung cavity in the spatial domain of functional hyperpolarised gas MRI and is 

required for the accurate computation of functional lung imaging biomarkers such as the 

VDP and CoV. LCEs often require extensive manual editing; using clustering approaches, 

LCEs required approximately 1.5 hours per scan to edit. In this work, a dual-channel CNN 

using hyperpolarised gas MRI and 1H-MRI as inputs was proposed; this dual-channel CNN 

may eliminate this editing time or could at least drastically reduce it. In addition, the network 

inferred LCEs in approximately 30 seconds using a single graphical processing unit (GPU). 

Removing the manual editing step could allow for a more streamlined workflow to generate 

automatic VDP values, in turn, leading to a vast reduction in the time taken to generate VDP 

values and, consequently, greater adoption of hyperpolarised gas MRI. The proposed 

network has been utilised to generate LCEs for asthma and chronic obstructive pulmonary 

disease (COPD) patients in the NOVELTY study, whereby the segmentation network 

dramatically reduced the time to calculate clinical biomarkers in a research setting. 

9.2.2 Synthesis 

Surrogates of ventilation that are computed from multi-inflation CT, known as CT ventilation 

imaging (CTVI), have been proposed; in Chapter 7, a hybrid framework is developed which 

combines CTVI modelling with non-contrast, multi-inflation CT imaging to generate synthetic 

hyperpolarised gas MRI scans. As stated previously, hyperpolarised gas MRI requires 

specialised equipment which limits clinical uptake; the ability to generate synthetic 

ventilation scans from multi-inflation CT without exogenous contrast or specialised 

equipment allows for increased clinical adoption of functional lung imaging. CT is an integral 

part of almost every clinical lung imaging workflow and hence is readily available for most 

patients; therefore, the ability to generate synthetic ventilation surrogates has implications 

for several clinical applications, including functional lung avoidance radiotherapy and 

treatment response mapping. 

 

In a similar vein to the synthesis of regional ventilation using multi-inflation CT, we employed 

multi-inflation 1H-MR imaging to generate 3D ventilation surrogates, as detailed in Chapter 
8. These synthetic ventilation images are derived from non-contrast, multi-inflation 1H-MRI 

without the requirements of specialised equipment and exogenous contrast that is 
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traditionally required for hyperpolarised gas MRI. CT-based ventilation surrogates, such as 

CTVI, require exposure to ionising radiation, limiting their applicability to longitudinal 

scanning applications or applications involving paediatric patients. In contrast, synthetic 

ventilation maps derived from 1H-MRI do not expose participants to ionising radiation, 

expanding the number of potential applications for the synthetic ventilation modality with 

wide-reaching implications for functional lung imaging.  

 

It is envisioned that the role of DL-based synthetic ventilation imaging is not to directly 

replace functional imaging modalities, such as hyperpolarised gas MRI, due to their reduced 

sensitivity to subtle defects and lack of interpretability. Rather, synthetic ventilation 

surrogates could, in future applications, be used to triage patients for functional imaging 

depending on the predicted ventilation derived from synthetic scans. Hyperpolarised gas 

MRI is limited to only one centre within the UK and, therefore, the demand for scanning is 

high; triaging patients based on whether the predicted scan shows large ventilation defects 

has the potential to reduce this demand. 

9.3 Future research directions 

9.3.1 Multi-centre evaluation and federated learning  

A large consideration in DL is the idea of domain shift, closely related to overfitting. This 

occurs when there are salient differences between training and testing set scans; if the 

distribution between the two sets does not substantially overlap, performance is frequently 

reduced when tested on data from a different disease or different centre (Aggarwal et al., 

2021). In Chapter 5 a generalisable 1H-MRI lung segmentation network was proposed and 

subsequently validated on data from two external centres. However, all other investigations 

in this work use data solely acquired from one imaging centre, reducing the generalisability 

of the conclusions reached. For several chapters, investigations can be further developed 

using external validation datasets; evaluation of ongoing clinical research studies acquired 

at different centres will provide a further enhancement of the LCE work detailed in Chapter 

6 presented in a subsequent research article. Furthermore, hyperpolarised gas MRI 

segmentation algorithms can be deployed on multi-institutional datasets providing further 

validation. Multi-centre validation of the proposed hyperpolarised gas MRI segmentation and 

LCE networks is likely to increase clinical translation of segmentation algorithms and 

consequently, external multi-centre validation should be a priority for future investigations. 



 

 217 

Multi-centre validation, or centralised federated learning, has a key drawback whereby there 

is a requirement for data to be transferred between imaging centres, possibly conflicting with 

established data agreements or ethical protocols. Therefore, it is pertinent to consider the 

concept of decentralised federated learning; this approach envisages each centre as a node 

that coordinates with other nodes to generate a singular model (Adnan et al., 2022). This 

means that no data is transferred off-centre and that there is no centralised server, thereby 

eliminating the single point of failure associated with centralised systems. Decentralised 

federated learning has the potential to expand the impact of DL in lung imaging. For 

example, each hyperpolarised gas MRI centre worldwide could act as a decentralised node, 

consistently updating model weights and parameters to build a fully global hyperpolarised 

gas MRI segmentation network, without the requirement for any individual centre to make 

their data publicly available.  

9.3.2 Unsupervised learning 

This thesis primarily explored supervised learning techniques, where a ground-truth 

delineation or ventilation scan is provided to the network for image segmentation or 

synthesis tasks, respectively. In contrast, unsupervised learning techniques require no 

ground-truth label and, instead, encode reoccurring patterns and features without specific 

direction. In recent years, an unsupervised learning approach called generative adversarial 

networks (GAN) has gained prominence in the medical imaging domain (Goodfellow et al., 

2014; Kazeminia et al., 2018). GANs consist of two neural networks, a generator and a 

discriminator, whereby the generator produces an image from a noise vector and the 

discriminator aims to determine whether the output is ‘real’ or produced by the generator. 

These networks compete against each other in a zero-sum game until the discriminator can 

no longer accurately predict if the image produced by the generator is real or fake. This 

means that labels do not need to be provided to the network before training; in the medical 

imaging field, this eliminates the requirement for large-scale expert labelling which is often 

expensive and time-consuming. In several applications, unsupervised learning approaches 

have demonstrated improved performance over their supervised counterparts (Wilmet et al., 

2021). In chapters 7 and 8, CNNs were used to generate synthetic ventilation scans; 

however, this can be formulated as an unsupervised learning problem using a GAN. 

Conditional GANs (cGANs) proposed by Mizra and Osindero use prior information to 

constrain the network by providing both random noise and useful priors as inputs (Mirza and 

Osindero, 2014). cGANs have the potential to be used for image synthesis tasks where, for 

example, information regarding lung shape and airway structure could be provided as 
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information priors. This may be particularly useful in future structural-to-structural 

investigations, such as a synthesis network which aims to transform a low-field 0.5T MRI 

scan to a more routinely acquired 1.5T MRI scan. CycleGANs proposed by Zhu et al. aim to 

discover underlying relationships between image modalities by finding overlapping features 

between unpaired images (Zhu et al., 2017). In structural-to-functional synthesis 

investigations such as those developed in Chapters 7 and 8, this approach may increase 

the robustness of synthesised outputs. In future investigations, this approach may be utilised 

for regional ventilation synthesis and compared to multi-channel supervised learning 

methods. 

9.3.3 Vision transformers 

Originally developed for natural language processing (NLP), transformers implement 

attention mechanisms that are able to factor in dependencies regardless of the distances 

between them in the sentence (Vaswani et al., 2017). Traditionally, CNNs have been used 

for imaging applications due to the overwhelming memory requirements needed for fully 

connected networks; transformers also suffer from this challenge. CNNs use the convolution 

operation on a local receptive field but lack the ability to model long-range dependencies. 

However, recent developments have aimed to combine the benefits of CNNs and 

transformers into a single model, known as a vision transformer (ViT) (Dosovitskiy et al., 

2020). These methods work by splitting images into a series of patches and feeding them in 

sequence to the ViT, similar to how words are treated in NLP tasks. The attention 

mechanism of transformers has no assumptions of locality or equivalence so long-range 

dependencies can be modelled between image patches, unlike with CNNs. Transformer-

based architectures, such as the Attention-UNet and the UNETR, have been utilised for 

various medical imaging applications (Oktay et al., 2018; Hatamizadeh et al., 2022). A recent 

review demonstrates the breadth of medical imaging applications where transformers have 

been employed; this includes the use of ViTs for image synthesis (Shamshad et al., 2022). 

ViTs can be deployed in the majority of chapters within this thesis; this thesis focuses on 

CNN-based solutions to segmentation and synthesis applications which have demonstrated 

promising results thus far. In future investigations, ViTs can be compared to the CNN-based 

solutions proposed here to generate improved 1H-MRI segmentations across various 

acquisition protocols, for example. For image synthesis problems, ViTs can be compared to 

GANs and CNNs on a cross-validation dataset, then subsequently validated on an external 

validation dataset. ViTs also allow for increased explainability, which may be particularly 

useful in synthesis applications, and will be further discussed in section 9.3.4. Despite their 
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success in recent years, transformers often require large datasets to improve upon state-of-

the-art CNN-based methods, something uncommon in the medical imaging field. In Chapter 

8, a larger version of the external validation dataset can be employed for network training to 

increase the size of the dataset, potentially facilitating the use of ViTs, and variations thereof, 

for the synthesis of hyperpolarised gas MRI scans from multi-inflation 1H-MRI scans. As 

large public datasets of pulmonary MR images become available, the efficacy of 

transformers is expected to surpass that of the previously dominant CNN.  

9.3.4 Demystifying deep learning 

DL maps a multidimensional and immensely complex function between some input and 

some output domain. DL is optimal for complex functions as it allows for greater degrees of 

freedom than conventional modelling through an end-to-end learning approach. End-to-end 

learning approaches limit the need for human selected feature extraction. However, a trade-

off between function mapping accuracy and interpretability has now occurred. By removing 

the feature extraction step and, instead, letting this be part of the function mapped by DL, 

we have now lost the ability to categorically determine which features are being used to 

produce the output. This has extensive implications in medical imaging where, 

understandably, clinicians and patients alike, require robust and interpretable data with 

which to make decisions. In the case of traditional DL, the clinician would not be able to 

explain why the CNN has predicted large ventilation defects and rather only that it has 

predicted such defects.  

 

Due to the aforementioned challenges, the medical imaging community has seen increased 

development of what are referred to as explainable or interpretable artificial intelligence (AI) 

techniques. These are somewhat catchall terms that refer to a series of steps taken by 

researchers to increase the transparency of a DL model (Jin et al., 2022). Explainability is 

often achieved through visualisation of activation maps at each level of the network (Pennisi 

et al., 2021). In the case of CNN-based lung segmentation, at each layer of the network, as 

the dimensionality of the image is reduced, the feature maps from each layer will transition 

from horizontal lines to more abstract features such as the surface curvature of the lungs. 

Networks can be developed that extract these activation maps, allowing researchers to 

visualise the activations of the network. With this information, it is possible to determine 

which parts of the image are most activated and, therefore, which parts contribute most to 

the network output. In Chapters 7 and 8, these activation maps could be employed to provide 

‘explanations’ as to which part of the structural images are most important for synthesising 
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hyperpolarised gas MRI scans, thereby increasing the interpretability of proposed synthesis 

workflows. This is particularly important in synthesis applications and, therefore, the 

incorporation of activation maps in these works represents an ideal application for 

explainable deep learning techniques in future investigations. Activation maps can be useful 

in some cases; however, in other cases, usefulness is diminished where high dimensional 

activations may not be conducive to human intuition. ViTs give high resolution feature maps 

which are often more explanatory than those generated by CNNs (Shamshad et al., 2022). 

In future investigations, if ViTs are used for image synthesis applications, these high-

resolution feature maps would provide significant insight into the decision making of 

networks developed for the synthesis of hyperpolarised gas MRI from structural imaging, 

described in Chapters 7 and 8. Increasing the interpretability of DL segmentation and 

synthesis algorithms will likely increase the clinical uptake and translation of DL networks 

proposed in this thesis, providing an understanding of how synthetic scans are generated 

and the location of potential errors in these scans. 

 

It is important to note that despite the development of ‘explainable’ DL, there is a 

fundamental paradox between explainability and DL. The reason DL often outperforms 

conventional modelling is precisely because of its ‘black box’ nature. For example, if we had 

an accurate model of specific ventilation then there would be no need to employ DL; 

however, as we do not have a comprehensive understanding of the relationship between 

parenchymal density and regional lung function, we require DL to model this function in a 

more complex form. Whilst the explainable AI approaches outlined above aim to interpret 

how the model generates outputs, the strength of DL lies squarely in its inscrutability. 

9.3.5 Ethics of AI: opinions on medical applications 

This thesis focuses on the development and evaluation of DL techniques in the domain of 

pulmonary imaging; however, there are also philosophical and ethical issues that must be 

considered when deploying DL in a clinical setting. Here, the author poses a series of ethical 

considerations that must be addressed for AI to reach its full potential in the medical imaging 

domain. 

 

Firstly, there are concerns over privacy. It is an open question as to who should own the 

images used in DL investigations. Traditionally, images are owned by the medical institution 

that acquired the scan and can be used in accordance with the data usage agreement 

consented to by the patient; however, as personalised medicine becomes more common, 
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there are increasing demands from patients to have greater control over their own data 

(Wetzels et al., 2018). It is possible that, in the future, patients will be able to control their 

own data through a mobile phone application and grant permission personally. This will pose 

challenges for DL as there is a requirement for large publicly available datasets that may be 

limited if patients have this ability. In addition, there are privacy issues related to the 

anonymisation of patient images. Previous studies have demonstrated the ability to recreate 

images by ‘reverse engineering’ trained neural networks (Liu et al., 2021b). This has 

implications for patient privacy, as, if these scans can be recreated, there is the potential for 

external adversarial actors to identify patients and use this information for nefarious 

purposes. As AI becomes more common in medical imaging, these concerns must be 

addressed to facilitate increased clinical adoption. 

 

Secondly, the medical imaging community must reckon with the prevalence of biases in DL 

networks. It has been well established that due to the data-driven nature of DL techniques, 

they are susceptible to biases in the data provided to the network (Seyyed-Kalantari et al., 

2021). This can be somewhat mitigated by providing demographic information in clinical 

research papers, so that potential readers can assess their implications; however, for large-

scale applications where DL methods are being deployed across numerous centres, 

particularly in other countries, these biases must be considered. Research papers have 

developed DL approaches to classify melanomas as cancerous or not; however, other 

researchers have warned of disparities, particularly when this was applied to patients with 

increased melanin performance, leading to serious concerns over bias (Adamson and 

Smith, 2018). In theory, this can be addressed, but practically this is challenging. This is 

because humans have inherent biases and these biases will be transferred to the data 

produced by these humans, meaning that in most cases some biases will remain. 

Consequently, it behoves the medical imaging community to remain vigilant. Vigilance can 

take the form of high-quality scientific research papers that are well validated and deployed 

only within their respective limitations. The author believes that concerns over biases will 

become one of the main issues that limit clinical translation in the near future.  

 

Lastly, we must consider the potential issues with liability and associated regulation. Who is 

to blame if a DL network makes an incorrect classification or erroneous segmentation? Does 

the liability lie with the radiologist, the DL researcher, or the AI algorithm itself? These are 

questions which remain undecided and require extensive government regulation to answer. 

The more trust given to such algorithms, the less a specific person will be directly 
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responsible for the outcomes. For example, in Chapters 7 and 8, methods for synthesising 

hyperpolarised gas MRI ventilation scans were developed; in this case, who would be 

responsible if the synthetic ventilation scans incorrectly predicted no ventilation defects, 

thereby affecting the care provided to patients? The author believes that these concerns 

over liability will limit the adoption of fully automatic DL methods in medical imaging 

applications. Due to differences in laws and government regulations between countries, the 

cross-border application of DL techniques will be significantly affected. Furthermore, in more 

general terms, do we as a populous, trust algorithms to make such decisions? From a 

utilitarian perspective, if the DL model improves upon human performance, then the answer 

would surely be to utilise this improvement; however, from a different ethical perspective, it 

may be justified to have a worse outcome in order to maintain a human in the loop. These 

are questions which do not fall within the domain of medical imaging research, but, instead, 

the domains of philosophy and ethics; a concerted effort by experts in these fields is required 

to provide adequate answers. 
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Appendix A  
Computation of evaluation metrics  

 
 

This section provides the code used for the computation of image segmentation (B.1) and 

synthesis (B.2) evaluation metrics. Evaluation metrics were calculated in Python 3 from 

documented libraries and validated against alternative libraries to calculate the same metric. 

A.1 Segmentation evaluation metrics 

The script provided below is used to calculate the following segmentation evaluation metrics: 

 

- Directional Average Hausdorff Distance (mm) 

- Directional Max Hausdorff Distance (mm) 

- Dice Similarity Coefficient 

- Jaccard Overlap 

- Volume similarity 

- Relative error metric (XOR) on region 

- Relative error metric (XOR) on boundary 

- Directional Boundary % Hausdorff Distance (mm) 

- Directional Boundary Average Hausdorff Distance (mm)  

 

The script can be run using the arguments -gt, -p and -% representing the ground truth 

path, output path and Hausdorff percentage, respectively. The script outputs three files, 

namely, a list of images (image_list.csv), a table of values in the same order as 

image_list.csv (output.csv) and a summary of all evaluation metrics 

(results_summary.csv). 

A.1.1 Code 

import numpy as np 

import os 
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import SimpleITK as sitk 

import csv 

import pandas as pd 

import scipy.spatial 

import argparse 

import pathlib 

import sys 

 

from pathlib import Path 

 

""" 

This script generates 9 evaluation metrics for segmentation for any images in the 

directories provided. The directories should contain the corresponding images to compare 

with the same origin and voxel spacing. Images should be .nii.gz or .mha 

     

    - Directional Average Hausdorff Distance (mm) 

    - Directional Max Hausdorff Distance (mm) 

    - Dice Similarity Coefficient 

    - Jaccard Overlap 

    - Volume similarity 

    - Relative error metric (XOR) on region 

    - Relative error metric (XOR) on boundary 

    - Directional Boundary % Hausdorff Distance (mm) 

    - Directional Boundary Average Hausdorff Distance (mm)  

""" 

 

######## 

parser = argparse.ArgumentParser() 

parser.add_argument('-gt','--gt_root', help="ground truth root", type=Path, required=True) 

parser.add_argument('-p','--pred_root', help="predicted root", type=Path, required=True) 

parser.add_argument('-%','--percents', help="percent hausdorff", default=95) 

args = parser.parse_args() 

X = str(args.gt_root) 

Y = str(args.pred_root) 

gtpath = ""+X+"/" 

predpath = ""+Y+"/" 

percent = float(args.percents) 

######## 

 

#### Parameters to define #### 

#gtpath = path to search for ground truth 

#predpath = path to search for segmentation for evaluation 

#percent = percent surface hausdorff distance 

#### Parameters to define #### 

 

def file_name(file_dir): 

   L=[] 

   path_list = os.listdir(file_dir) 
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   path_list.sort() # sort the read path 

   good_extensions = [ '.nii.gz', '.mha', '.nii'] 

   for filename in path_list: 

       if any(x in filename for x in good_extensions): #requires this to be changed if not 

nifty images 

            L.append(os.path.join(filename)) 

   return L 

 

def computeQualityMeasures(pred,gt): 

    quality=dict() 

    labelPred=pred 

    labelTrue=gt 

     

    #compute hausdorff distance max and average 

    hausdorffcomputer=sitk.HausdorffDistanceImageFilter() 

    hausdorffcomputer.Execute(labelTrue>0.5,labelPred>0.5) 

    quality["Avg HD"]=hausdorffcomputer.GetAverageHausdorffDistance() 

    quality["Max HD"]=hausdorffcomputer.GetHausdorffDistance() 

     

    #compute dice values 

    dicecomputer=sitk.LabelOverlapMeasuresImageFilter() 

    dicecomputer.Execute(labelTrue>0.5,labelPred>0.5) 

    quality["DSC"]=dicecomputer.GetDiceCoefficient() 

     

    #compute jaccard metrics 

    jaccomputer=sitk.LabelOverlapMeasuresImageFilter() 

    jaccomputer.Execute(labelTrue>0.5,labelPred>0.5) 

    quality["Jaccard"]=jaccomputer.GetJaccardCoefficient() 

     

    #compute volume similarity 

    vol_sim=sitk.LabelOverlapMeasuresImageFilter() 

    vol_sim.Execute(labelTrue>0.5,labelPred>0.5) 

    quality["Vol Sim"]=vol_sim.GetVolumeSimilarity() 

 

    #compute xor-errors 

    statsCmpt = sitk.StatisticsImageFilter() 

    xor_img = labelTrue ^ labelPred 

    statsCmpt.Execute(xor_img) 

    xor_total = statsCmpt.GetSum() 

    statsCmpt.Execute(labelTrue) 

    mask_norm = statsCmpt.GetSum() 

    xor_on_region = xor_total / mask_norm 

    quality["xor on region"] = xor_on_region 

     

    bnd_norm = 0 

    for slc in range(labelTrue.GetDepth()): 

        ctr = sitk.BinaryContour(labelTrue[:,:,slc]) 

        statsCmpt.Execute( ctr) 
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        bnd_norm += statsCmpt.GetSum() 

    xor_on_bnd = xor_total / bnd_norm 

    quality["xor on boundary"] = xor_on_bnd 

 

    #compute surface hausdorff distances 

    hd95computer=sitk.StatisticsImageFilter() 

    hd95computer.Execute(labelTrue>0.5) 

    hd95computer.Execute(labelPred>0.5) 

    eTestImage   = sitk.BinaryErode(labelTrue, (1,1,0)) 

    eResultImage = sitk.BinaryErode(labelPred, (1,1,0)) 

    hTestImage   = sitk.Subtract(labelTrue, eTestImage) 

    hResultImage = sitk.Subtract(labelPred, eResultImage) 

    hTestArray   = sitk.GetArrayFromImage(hTestImage) 

    hResultArray = sitk.GetArrayFromImage(hResultImage) 

    testCoordinates   = [gt.TransformIndexToPhysicalPoint(x.tolist()) for x in 

np.transpose( np.flipud( np.nonzero(hTestArray) ))] 

    resultCoordinates = [gt.TransformIndexToPhysicalPoint(x.tolist()) for x in 

np.transpose( np.flipud( np.nonzero(hResultArray) ))] 

             

    def getDistancesFromAtoB(a, b): 

        kdTree = scipy.spatial.KDTree(a, leafsize=100) 

        return kdTree.query(b, k=1, eps=0, p=2)[0] 

     

    dTestToResult = getDistancesFromAtoB(testCoordinates, resultCoordinates) 

    dResultToTest = getDistancesFromAtoB(resultCoordinates, testCoordinates) 

    quality["HD95"] = max(np.percentile(dTestToResult, percent), 

np.percentile(dResultToTest, percent)) 

    quality["surface"] = max(np.mean(dTestToResult), np.mean(dResultToTest)) 

 

    return quality 

 

gtnames = file_name(gtpath) 

prednames = file_name(predpath) 

 

#creates output csv with headers 

with open("output.csv", "a", newline="") as outcsv: 

    writer = csv.DictWriter(outcsv, fieldnames = ["Average HD (cm)", "Max HD (mm)", "DSC", 

"Jaccard", "Volume Similarity", "xor on region", "xor on boundary", "Boundary HD95", 

"Boundary Avg HD"]) 

    writer.writeheader() 

 

#writes image list in order to new csv 

rows = zip(prednames) 

with open("image_list.csv", "a", newline="") as outcsv1: 

    writer = csv.writer(outcsv1) 

    for row in rows: 

        writer.writerow(row) 
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#generate results for images in directory 

for i in range(len(gtnames)): 

    gt = sitk.ReadImage(gtpath + gtnames[i], sitk.sitkUInt64) 

    pred = sitk.ReadImage(predpath + prednames[i], sitk.sitkUInt64) 

    result = computeQualityMeasures(pred,gt) 

    print(result, file=open("output.csv", "a")) 

 

#remove all text for calculations 

text = open("output.csv", "r") 

text = ''.join([i for i in text]).replace("{'Avg HD': ", "") 

x = open("output.csv","w") 

x.writelines(text) 

x.close() 

 

text2 = open("output.csv", "r") 

text2 = ''.join([i for i in text2]).replace("'Max HD': ", "") 

x = open("output.csv","w") 

x.writelines(text2) 

x.close() 

 

text3 = open("output.csv", "r") 

text3 = ''.join([i for i in text3]).replace("'DSC': ", "") 

x = open("output.csv","w") 

x.writelines(text3) 

x.close() 

 

text5 = open("output.csv", "r") 

text5 = ''.join([i for i in text5]).replace("'Jaccard': ", "") 

x = open("output.csv","w") 

x.writelines(text5) 

x.close() 

 

text9 = open("output.csv", "r") 

text9 = ''.join([i for i in text9]).replace("'Vol Sim': ", "") 

x = open("output.csv","w") 

x.writelines(text9) 

x.close() 

 

text10 = open("output.csv", "r") 

text10 = ''.join([i for i in text10]).replace("'xor on region': ", "") 

x = open("output.csv","w") 

x.writelines(text10) 

x.close() 

 

text11 = open("output.csv", "r") 

text11 = ''.join([i for i in text11]).replace("'xor on boundary': ", "") 

x = open("output.csv","w") 

x.writelines(text11) 
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x.close() 

 

text6 = open("output.csv", "r") 

text6 = ''.join([i for i in text6]).replace("'HD95': ", "") 

x = open("output.csv","w") 

x.writelines(text6) 

x.close() 

 

text7 = open("output.csv", "r") 

text7 = ''.join([i for i in text7]).replace("'surface': ", "") 

x = open("output.csv","w") 

x.writelines(text7) 

x.close() 

 

text4 = open("output.csv", "r") 

text4 = ''.join([i for i in text4]).replace("}", "") 

x = open("output.csv","w") 

x.writelines(text4) 

x.close() 

 

#create summary results csv 

with open("results_summary.csv", "a", newline="") as rescsv: 

    writers = csv.DictWriter(rescsv, fieldnames = ["stats", "Average HD (mm)", "Max HD 

(mm)", "DSC", "Jaccard", "Volume Similarity", "xor on region", "xor on boundary", "Boundary 

HD95 (mm)", "Boundary Avg HD (mm)"]) 

    writers.writeheader()  

 

#summary results calculation 

des = pd.read_csv('output.csv') 

stats = pd.DataFrame(des) 

describe = stats.describe().to_csv("results_summary.csv", mode="a", header=False, sep=",") 

A.2 Synthesis evaluation metrics 

The script provided below is used to calculate the following synthesis evaluation metrics: 

 

- Structural similarity index measure (SSIM) 

- Absolute peak signal-to-noise ratio (PSNR) 

- Pearson’s Correlation 

- Spearman’s Correlation 

- Mean Squared Error (MSE) 

- Root Mean Squared Error (RMSE) 

- Mean Absolute Error (MAE) 
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The script can be run in bash using the arguments -gt and -p representing the ground truth 

path and output path, respectively. The python script outputs three files, namely, a list of 

images (image_list_reg.csv), a table of values in the same order as 

image_list_reg.csv (reg_output.csv) and a summary of all evaluation metrics 

(results_summary_reg.csv). 

A.2.1 Code 

import numpy as np 

import os 

import SimpleITK as sitk 

import csv 

import pandas as pd 

import scipy.spatial 

import skimage 

import argparse 

import pathlib 

 

from pathlib import Path 

from scipy import stats 

from scipy.stats import spearmanr 

from scipy.stats import pearsonr 

from skimage.metrics import structural_similarity as ssim 

from skimage.metrics import peak_signal_noise_ratio as psnr 

 

""" 

This script generates 7 evaluation metrics for synthesis for any images in the directories 

provided. The directories should contain the corresponding images to compare with the same 

origin and voxel spacing. Metrics are calculated over the masked region of the ground truth 

in both images (only the areas of interest). Images should be .nii.gz or .mha 

     

    - SSIM 

    - Absolute PSNR 

    - Pearson Correlation 

    - Spearman Correlation 

    - Mean Squared Error (MSE) 

    - Root Mean Squared Error (RMSE) 

    - Mean Absolute Error (MAE) 

     

""" 

 

###### 

parser = argparse.ArgumentParser() 

parser.add_argument('-gt','--gt_root', help="ground truth root", type=Path, required=True) 

parser.add_argument('-p','--pred_root', help="predicted root", type=Path, required=True) 

args = parser.parse_args() 
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X = str(args.gt_root) 

Y = str(args.pred_root) 

gtpath = ""+X+"/" 

predpath = ""+Y+"/" 

###### 

 

#### Parameters to define #### 

#gtpath = path to search for ground truth 

#predpath = path to search for synthesised imgage for evaluation 

#### Parameters to define #### 

 

def file_name(file_dir): 

   L=[] 

   path_list = os.listdir(file_dir) 

   path_list.sort() # sort the read path 

   for filename in path_list: 

       if 'nii.gz' or '.mha' in filename: #requires this to be changed if not nifty images 

            L.append(os.path.join(filename)) 

   return L 

 

def computeQualityMeasures(gt,pred): 

    quality=dict() 

    ground = ground_truth 

    predic = prediction 

     

    #read in ground truth image 

    gt_arrays = sitk.GetArrayFromImage(ground) 

    gt_array = gt_arrays.astype('float') 

     

    #recover mask from ground truth image 

    mask = gt_arrays.astype('float') 

    mask[mask > 0] = 1 

    

    #read in predicted image 

    pred_array = sitk.GetArrayFromImage(predic) 

    pred_array = pred_array.astype('float') 

     

    #mask predicted image 

    pred_array_masked = np.multiply(mask, pred_array) 

     

    #remove zeroes only for SSIM calculation - calculated over data range max and min of 

predicted image 

    #if the predicted image gives a value of 0 in the region inside the mask this will not 

be included in the average SSIM 

    no_zero_gt = gt_array[gt_array != 0] 

    no_zero_pred = pred_array_masked[pred_array_masked != 0] 

    struct = ssim(no_zero_gt, no_zero_pred, data_range=no_zero_pred.max() - 

no_zero_pred.min()) 
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    quality["ssim"] = struct 

 

    #calculate PSNR 

    peak = psnr(no_zero_gt, no_zero_pred, data_range=no_zero_pred.max() - 

no_zero_pred.min()) 

    quality["psnr"] = np.abs(peak) 

     

    #calculate pearson correlation 

    cor, p_val = pearsonr(no_zero_gt, no_zero_pred) 

    quality["cor"] = cor 

    #quality["p"] = p_val 

     

    #pred_array_masked[pred_array_masked == 0] = 'nan' 

    gt_array[gt_array == 0] = 'nan' 

     

    #images converted to 1D 

    pred_flatten = pred_array_masked.flatten() 

    gt_flatten = gt_array.flatten() 

     

    #calculate spearman correlation 

    corr, p_value = spearmanr(gt_flatten, pred_flatten, nan_policy='omit') 

    quality["corr"] = corr 

    #quality["p_value"] = p_value 

     

    #calculate mean squared error 

    square = np.square(gt_flatten - pred_flatten) 

    mse = np.nanmean(square) 

    quality["mse"] = mse 

     

    #calculate root mean squared error 

    rmse = np.sqrt(mse) 

    quality["rmse"] = rmse 

     

    #calculate mean absolute error 

    mae = np.nanmean(np.abs(gt_flatten - pred_flatten)) 

    #mae = np.nanmean(abs_error) 

    quality["mae"] = mae 

 

    return quality 

 

gtnames = file_name(gtpath) 

prednames = file_name(predpath) 

 

#creates output csv with headers 

with open("reg_output.csv", "a", newline="") as outcsv: 

    writer = csv.DictWriter(outcsv, fieldnames = ["SSIM", "PSNR", "Pearson corr", "Spearman 

corr", "MSE", "RMSE", "MAE"]) 

    writer.writeheader() 
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#writes image list in order to new csv 

rows = zip(prednames) 

with open("image_list_reg.csv", "a", newline="") as outcsv1: 

    writer = csv.writer(outcsv1) 

    for row in rows: 

        writer.writerow(row) 

         

#generate results for images in directory 

for i in range(len(gtnames)): 

    ground_truth = sitk.ReadImage(gtpath + gtnames[i]) 

    prediction = sitk.ReadImage(predpath + prednames[i]) 

    result = computeQualityMeasures(ground_truth,prediction) 

    print(result, file=open("reg_output.csv", "a")) 

 

#remove all text for summary calculations 

text = open("reg_output.csv", "r") 

text = ''.join([i for i in text]).replace("{'ssim': ", "") 

x = open("reg_output.csv","w") 

x.writelines(text) 

x.close() 

 

text7 = open("reg_output.csv", "r") 

text7 = ''.join([i for i in text7]).replace(" 'psnr': ", "") 

x = open("reg_output.csv","w") 

x.writelines(text7) 

x.close() 

 

text9 = open("reg_output.csv", "r") 

text9 = ''.join([i for i in text9]).replace(" 'cor': ", "") 

x = open("reg_output.csv","w") 

x.writelines(text9) 

x.close() 

 

text6 = open("reg_output.csv", "r") 

text6 = ''.join([i for i in text6]).replace(" 'corr': ", "") 

x = open("reg_output.csv","w") 

x.writelines(text6) 

x.close() 

 

text2 = open("reg_output.csv", "r") 

text2 = ''.join([i for i in text2]).replace(" 'mse': ", "") 

x = open("reg_output.csv","w") 

x.writelines(text2) 

x.close() 

 

text3 = open("reg_output.csv", "r") 

text3 = ''.join([i for i in text3]).replace(" 'rmse': ", "") 
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x = open("reg_output.csv","w") 

x.writelines(text3) 

x.close() 

 

text5 = open("reg_output.csv", "r") 

text5 = ''.join([i for i in text5]).replace(" 'mae': ", "") 

x = open("reg_output.csv","w") 

x.writelines(text5) 

x.close() 

 

text4 = open("reg_output.csv", "r") 

text4 = ''.join([i for i in text4]).replace("}", "") 

x = open("reg_output.csv","w") 

x.writelines(text4) 

x.close() 

 

#create summary results csv 

with open("results_summary_reg.csv", "a", newline="") as rescsv: 

    writers = csv.DictWriter(rescsv, fieldnames = ["stats", "SSIM", "PSNR", "Pearson corr", 

"Spearman corr", "MSE", "RMSE", "MAE"]) 

    writers.writeheader()  

 

#summary results calculation 

des = pd.read_csv('reg_output.csv') 

stats = pd.DataFrame(des) 

describe = stats.describe().to_csv("results_summary_reg.csv", mode="a", header=False, 

sep=",")
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