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Abstract  
  

Anaerobic digestion involves the conversion of organic waste into biogas and biofertilisers. 

Anaerobic digesters are commonly found within the wastewater treatment process in the UK, 

converting waste sludge into methane. Higher yields of methane are required for AD to 

become a favourable renewable energy source. The AD process consists of four steps 

(hydrolysis, acidogenesis, acetogenesis, and methanogenesis) that are driven by complex 

microbial communities. Hydrogenotrophs and methanogens are rate-determining factors, 

highlighting the significance of these microbial communities within these dynamic AD 

environments. Research into these microbial communities will ultimately result in greater 

yields of methane in AD.    

  

A greater understanding of the microbial communities can be achieved via metagenomics, 

which involves the study of genomes recovered from environmental samples. Metagenomics 

involves the use of shotgun sequencing. Environmental DNA is sequenced followed by 

binning, and assembly into metagenome-assembled genomes (MAGs). Functional 

annotation is carried out to predict the gene function within the MAGs. However, quality and 

completeness of MAGs varies greatly due to the nature of shotgun sequencing. Large 

datasets of metagenomic data require large-scale data manipulation and bioinformatic 

analysis. Genome annotation pipelines (via workflow management tools e.g. Snakemake) 

allow automation and ensure reproducibility of the genome annotation.  

  

A genome annotation pipeline was developed, using Snakmake, to predict the gene function 

of MAGs recovered from AD. This pipeline was developed to provide an automated tool to 

functionally annotate MAGs, in order to discover more about the metabolic processes and 

relationships between microbes that drive the AD process. A confidence system was devised 

to indicate the quality of annotations provided by orthology-based tools EggNOG and 

KofamScan, allowing further analysis of low quality ORFs. Reproducibility and  

reference databases continue to be limitations of bioinformatic pipelines. However, 

approximately 50% of ORFs are annotated to a high confidence.    
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Chapter 1: Introduction  
  

1.1 Anaerobic Digestion and its Environmental Impacts    

  

Anaerobic digestion (AD) is an integral part of the wastewater treatment process in the UK 

that generates electricity from biogas production. Primary solids and activated sludge are fed 

into an anaerobic digester under anaerobic conditions. Microorganisms in the digester 

metabolise anaerobically, producing biogas composed mainly of methane, carbon dioxide. 

Biofertilisers are also produced from the remaining biosolids. The production of biogas was 

estimated as over 1 million m3 biogas in 2019, where 24% of biogas was from farm sites and 

28% on commercial sites was integrated into the national grid (WRAP, 2020). The methane 

produced during AD is then injected directly into the National Grid and can be converted into 

electricity for commercial and domestic use. The production of biofertilisers that are derived 

from organic waste have the potential to replace artificial fertilisers which are known to have 

a wider impact on ecosystems, including causing eutrophication (Yang, et al., 2008).   

  

The UK government has committed to ensuring that the UK does not contribute to increasing 

global temperatures beyond 2oC by signing the Paris agreement in 2015 (United Nations / 

Framework Convention on Climate Change, 2015). There is a general decreasing trend in 

Carbon Emissions (Figure 1) in the UK (DUKES, 2021), particularly in the last 10 years. The 

greatest difference is in the usage of coal over this time. There has been a decrease in 

petroleum usage since 1990, although this is not a massive change. Petroleum is still used 

to run cars. The overall decrease in emissions in 2020 would have been due to the global 

pandemic, which saw commercial airlines grind to a halt, decreases in commuting via 

personal vehicles, and less need for public transport. However, by 2021 that use in 

petroleum is back up to what is typically expected (Figure 1). The rise of electric cars should 

start to drive a reduction in petroleum consumption. However, there is a need to make 

electric cars more affordable for the average household, as currently the upfront cost for an 

electric car steers buyers away from the more environmentally friendly option. This trend in 

the data looks to comply with the promise that the UK government made to minimise its 

contribution to global temperature rise, aligning with the Paris Agreement, which aims to limit 

this rise to 2oC by 2050.   
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Figure 1. bar plot illustrating the UK Carbon Emissions (by fuel type) from 1990-2021. The 

data was provided by a publicly available report by the Digest of UK Energy Statistics 

(DUKES, 2021) and the plots were generated in R Studio using ggplot2.  

  

The Global carbon emissions of the energy utilities company Shell Energy (Shell Energy, 

2021) illustrate that there are efforts to reduce emissions. The amount of methane (CH4) 

emitted (globally), by the company, has decreased between 2017 and 2021 (Figure 2). The 

total amount of carbon dioxide (CO2) that was emitted by Shell from 2017 to 2021 (globally), 

similar to that of methane gas, was reduced (Figure 3). However, the data sets were not 

presented within the same units as the total CH4 emissions is 103 more than CO2. This does 

not make the results incomparable, as it shows that the overall difference in CH4 emissions 

is much less significant when compared to that of CO2 emissions. These data sets are worth 

further comparison as the Global Warming Potential (GWP) of CH4 is 81.2 times higher than 

CO2 over a 20-year period (Smith, et al., 2021). Although there are some efforts to lower 

carbon emissions, as seen above in the UK, but also across international companies, these 

efforts still need to cut carbon emissions significantly. This is to ensure global temperatures 

do not reach the 2oC increase, causing significant and detrimental effects on the planet from 

extreme weather events i.e. droughts that would then negatively impact an already 

struggling food supply and therefore demand would exceed what is available.  
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Figure 2. Plot illustrating the methane (CH4) emissions (thousand tonnes) generated by Shell 

Energy from 2017-2021. Data is publicly available (Shell Energy, 2021), and the plots were 

generated in R Studio using ggplot2.  

  

The total change in CO2 emissions (Figure 4) that were emitted by BP energy company (BP, 

2021) from 2011-2021 (global) showed that there was no overall trend of this data. However, 

there was a significant drop in CO2 emissions from BP in 2020 this is indicative of the 

COVID-19 pandemic and therefore the lower demand for carbon as an energy source.  
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Figure 3. Plot illustrating the total carbon dioxide (CO2) emissions (million tonnes) generated 

by Shell Energy from 2017-2021. Data is publicly available (Shell Energy, 2021), and the plots 

were generated in R Studio using ggplot2.  

  

Alongside this Paris Agreement, there are other environmental targets such as the 17  

Sustainable Development Goals (SDGs) developed by the United Nations, to be achieved by  

2030 (UN General Assembly, 2015). These goals were established to tackle some of the 

World’s greatest challenges from poverty to climate change. SDG number 7, for example, 

aims for “Affordable and Clean Energy” by 2030, in order to achieve this goal the productivity 

and affordability of renewable energy sources, such as AD, needs to be improved. Improving 

the efficacy of renewable energy sources will enhance global efforts to meet the Paris 

Agreement.  

  

  
  

Figure 4. bar plot illustrating the total change in carbon dioxide (CO2) emissions generated by 

BP from 2011-2021. Data is publicly available (BP, 2021), and the plots were generated in R 

Studio using ggplot2.  

  

Additional benefits of increasing renewable energy usage include social advantages, such as 

providing many opportunities for environmental job opportunities. This would in turn improve 

skills and education to communities and therefore, improve income and increase investment 

in greener infrastructure subsequently building up local economies. This aligns with SDG 

number 9, which aims to “build resilient infrastructure, promote inclusive and sustainable 

industrialisation and foster innovation”. SDG 11 is also of note here, which aims to “Make 

cities and human settlements inclusive, safe, resilient and sustainable”. AD involves 

converting the solids of wastewater into biomethane as a source of renewable energy, 

improving the sustainability of UK cities, as well as reducing the disposal of harmful waste 
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into the environment. This would lead to a safer environment for humans, wildlife, and local 

ecosystems.  

  

Efforts to dispose of waste appropriately have been ongoing for a number of decades, from 

recycling bins for domestic waste, to disposing of industrial/commercial waste at recycling 

centres. The waste disposed of by Shell energy from 2017-2021 globally (Figure 5),  does 

not show any significant change, although the data shows results indicative of the COVID-19 

pandemic. The significant increase in disposal of hazardous waste is likely due to increased 

use of medical equipment, such as surgical masks (You, Sonne and Ok, 2020). Surgical 

masks were being used, not only in a medical setting but in everyday life, something that 

was not typically seen before 2020. This highlights the importance of appropriately and 

safely disposing of waste in a sustainable way, e.g. more of global organic waste could be 

incorporated into anaerobic digestion systems to be converted into biomethane.  

  

  
Figure 5. Plot illustrating the total amount of waste (hazardous and non-hazardous) disposed 

by Shell Energy from 2017-2021. Data is publicly available (Shell Energy, 2021), and the plots 

were generated in R Studio using ggplot2.  

  

Although AD holds great potential as a renewable energy source it is also met with a number 

of limitations. Some of these limitations include the extreme unreliability of the AD process 

and small exposures to oxygen can cause devastating consequences on the system.  

Foaming also impacts the efficacy of the process and requires the AD system to be cleared 

out entirely. The clearing process is incredibly costly and time consuming (Jiang, et al., 

2018). Foaming can be caused by the rate at which organic matter is fed into the digesters 

or the presence of filamentous bacteria i.e. Microthrix parvicella (Westlund, Hagland, and 

Rothman, 1998). These bacteria are found in higher abundance when the metabolites that 

cause foaming are also in high abundance. The demand for energy across the globe is not 

yet matched by the current renewable energy sources (such as, AD) but is currently met by 
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non-renewable energy. Until the demand for energy can be met, the use of non-renewable 

energy sources (e.g. gas and coal) will continue to be the primary source of energy. It also 

does not come close to the financial gain of fossil fuels such as coal and gas despite them 

causing the most detrimental effects on the environment (S&P Global Market Intelligence, 

n.d.). Therefore, it is vital that bioinformatic pipelines of microbes in AD are developed to 

decrease the time spent researching and ultimately improve AD’s capabilities as a renewable 

energy source.  

  

  

1.2 The Anaerobic Digestion Process   

  

AD depends heavily on the dynamic and complex microbial community within the digesters, 

often determining the productivity of biogas production (Nguyen, Nguyen and Nghiem, 

2019). AD consists of four consecutive steps: hydrolysis, acidogenesis, acetogenesis and 

finally methanogenesis (Meegoda, et al., 2018). Hydrolysis involves the conversion of 

products such as carbohydrates, proteins and lipids into monosaccharides, amino acids and 

fatty acids respectively, via hydrolytic bacteria (Bajpai, 2017). Next in the process is 

acidogenesis, which is the production of intermediates, including Volatile Fatty Acids (VFAs), 

via acidogenic microorganisms, from the up-take of the constituent products produced in 

hydrolysis (Detman, et al., 2021). Then acetate is typically generated by the reduction and 

conversion of  larger, more complex VFA molecules into acetate, via acetogens. Finally, 

acetate, as well as CO2 and H2, are metabolised by methanogenic archaea resulting in the 

formation of methane (Mahmood, Q. et al., 2006).  

  
The ratio of hydrolytic to methanogenic microorganisms determines the kinetics of the AD 

process (Ma, et al., 2013), therefore hydrolysis and/ or methanogenesis can be defined as 

the rate-limiting step. This highlights the importance of the composition of microbial 

communities in AD, which consequently highlights the value of gaining more insight into 

microbial communities, to ultimately improve AD’s productivity as a renewable energy 

source. The findings by Ma, et al., 2013 were initially determined using microbiological 

techniques by culturing microbes and then determining the rate-limiting step. This study 

involved dairy manure that was collected and passed through a sieve, to remove large 

solids, before being added into anaerobic digesters. Samples were separated into two 

groups, heated sludge and normal (untreated) sludge. Here, the heated sludge was heated 

to 105oC for 2 hours to destroy non-spore-forming methanogenic archaea in the sludge. A 

modified Biochemical Methane Potential (BMP) assay was developed to determine the 

ratelimiting step of AD. The BMP assay consists of a mixture of heated sludge, glucose and 

sodium acetate. A respirometer was then used to record the production of methane gas. The 

methane production of the normal sludge (untreated) sludge was used as a control.  

  

1.3 Microbial communities within biological systems  

   
Common microbes found in AD microbial communities include a number of acidogens such 

as firmicutes (e.g. Clostridium difficile and Bacillus subtilis ), bacteroides (e.g. Bacteroides 

fragilis), and proteobacteria (e.g. Pseudomonas aerunginosa) (Nguyen, Nguyen and  

Nghiem, 2019). These bacteria are all anaerobic. Some are obligate anaerobes, such as  

Bacteroides fragilis and Clostridium difficile, and others are facultative, like Bacillus subtilis. 

Many acetogens (microbes that produce acetate via anaerobic processes) including bacteria 

from the Syntrophomonas genus can also be found in AD systems. Finally, a major 

contributor to the microbial community are methanogens that can produce methane gas 
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under anaerobic conditions. These archaea are anaerobic microbes that are typically found 

in a number of extreme environments (extremophiles).  

  

Methanogens are methane-producing archaea that broadly share homology, as they typically 

belong to the same phylum, Euryarchaeota. However, recent research into the 

methanogenesis pathways indicate that the pathway could be present in two other phyla 

Bathyarchaeota and Verstraetearcheota (Lyu and Liu, 2019). Within the Euryarchaeota 

phylum there are seven different orders, Methanosarcinales, Methanobacteriales,  

Methanomicrobiales, Methanococcales, Methanopyrales, Methanocellales and 

Methanomassiliicoccales (belong to the phylum Thermoplasmata) that methanogens are 

currently classified by. These taxons were determined by comparing 16S rRNA sequences 

and physiological features, e.g. morphology, cell structure, of methanogens (Liu, 2010). The 

wide diversity of methanogens highlights the importance of characterising methanogenesis 

in a variety of methanogens. This would ultimately improve the efficacy of the fourth and final 

step of AD, methanogenesis, as the methanogenesis process would be well researched and 

its intricacies would be more understood. AD digesters could then be manipulated to favour 

certain metabolic pathways. This could then produce a higher yield of biogas at a more 

affordable cost. An example that shows the importance of understanding homology in 

methanogens, is the taxonomy of Methanothrix soehngenii, which was unclear for many 

years. However, recent analysis of its physiology and morphology, via electron micrographs, 

in comparison with other methanogens finally defined its taxon (Jetten, Stams and Zehnder, 

1992) and was re-identified as the Methanosaeta genus. Methanosaeta and Methanosarcina 

are common methanogens found within AD. M. soehngenii is more prevalent in the process 

of anaerobic digestion as it has a high affinity for acetate but has a higher yield in lower 

acetate concentrations. With reference to enzymatic activity, M. soehngenii uses acetyl CoA 

synthetase to activate acetate in the initial step of acetoclastic methanogenesis whereas as 

Methanosarcina spp. uses acetate kinase, which has a greater activity in higher acetate 

concentration. Thauer et al characterises the methanogenesis pathways used by different 

methanogens such as Methanosarcinales and Methanococcales (Thauer, 1998).  

  

There is a syntrophic relationship between acetogens and methanogens in AD, where the 

acetogens produce acetate and hydrogen that allow the methanogens to metabolise these 

products into methane (Harirchi, et al., 2022). There are three common types of 

methanogens; acetoclastic, methylotrophic and hydrogenotrophic. Each of these produce 

methane via different metabolic pathways. During acetogenesis, there is often an increase in 

hydrogen leading to a lower pH in the digester (Wang, et al., 2021). The excess hydrogen 

can be used up during hydrogenotrophic methanogenesis via hydrogenotrophic 

methanogens, or during the production of butyrate and propionate (which are common VFAs 

produced in AD) (Darwin and Cord-Ruwisch, 2019). However, excess VFAs can disrupt the 

AD digesters causing failure (Yu and Fang, 2003). Also, acetogenesis is generally 

thermodynamically unfavourable (Harirchi, et al., 2022) however, this process is made 

possible via sulphate-reducing bacteria (SRB). This ensures hydrogen levels are kept at an 

optimum (de Lemos Chernicharo, 2007). Hydrogenotrophic methanogens are common 

SRBs in AD, this transfer of hydrogen between SRBs and acetogens is a crucial interaction 

that allows AD to occur. The understanding of these complex interactions occurring in AD is 

vital to improve the productivity of methane production.  

  

The acetoclastic methanogenesis pathway is the primary metabolism of M. soehngenii and is 

well characterised. This pathway consists of a multi-step process involving the conversion of 

acetate into methane, which is catalysed by multiple proteins (enzymes) produced by genes 
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found in the genome of M. soehngenii. Genes of interest in this pathway include mcrA gene, 

which is typically used to identify methanogens (Friedrich, 2005). McrA (methyl coenzyme M 

reductase A) catalyses the conversion of methyl-coenzyme M into methane. The abundance 

of the mrcA gene shown in Morris, R. et al shows a corresponding increase in the production 

of methane by this organism under these conditions. This increase in methane production 

can be understood with reference to Ma, J. et al, as the methanogenic microbes are shown 

as rate determining factors in the AD process (Morris, et al., 2014, Ma, et al., 2013).   

  

Efforts to gain a greater understanding of microbial communities in AD systems are ongoing. 

However, there are microbial communities that are more highly researched such as the gut 

microbiota. The increasing interest in the gut microbiome is due to the profound impact that 

these microbes have on the human body from digestion, to the immune system, to mental 

health conditions. The gut microbiota consists of commensal bacteria that in typical 

proportions, aid certain functions of the human body. Clostridium difficile is an example of a 

commensal bacterium, which is typically harmless in the correct proportions. However, 

administration of high levels of antibiotics affects the proportions of the gut microbiota, 

allowing C. difficile to thrive. This causes a Clostridium difficile infection, antibiotic-associated 

diarrhoeal disease (Schäffler and Breitrück, 2018), highlighting the delicate nature of the 

microbial communities. C.difficile allows the digestive system to thrive when present in low 

abundance but when present in high abundance, the bacterium harms the entire system. 

Microbes are also capable of having such a profound effect on AD systems, as the 

composition of microbes drives the AD process.   

  

A synthetic gut model (Vrancken et al., 2019) was designed to imitate the environment inside 

of the human gut. This will allow for rapid progress in the understanding of this greatly 

complex microbial community. A similar concept to the synthetic gut model is System 60, 

found at the University of York, which is a controlled model for AD systems. This is beneficial 

to the study of AD, as AD is difficult to control at an industrial scale. In addition, the use of 

System 60 can be more beneficial than long term studies of the ever-changing human gut 

microbiota, as these studies are easily affected by varied food intake, antibiotic intake, and 

several other factors. The experimental data obtained from AD models like System 60, 

alongside the findings from the metagenomic data will ultimately further the improvement of 

AD productivity. Easy Manipulation of the conditions of System-60 digesters, e.g.  

temperature, pH, pressure, or the addition of gases or feed at certain time points; will help to 

determine the optimum conditions for AD digesters. Sequencing samples taken from the 

digesters at certain time points, will help to discover the composition of microbes that thrive 

at these particular time points, which will also lead to improving AD, as favouring certain 

metabolic pathways can ensure a desired end-product.  

  
1.4 The applications of metagenomics   

  

In the past, inoculation and cultivation techniques were used to identify microbes in AD. 

Then, more advanced molecular biology techniques were used to understand the microbial 

communities in AD. These included DGGE, PCR and cloning on marker genes, molecular 

fingerprinting, qPCR, etc. (Lim, et al., 2020). Although these molecular biology techniques 

paved the way to understanding these communities, they provided relatively basic findings in 

comparison to the information that has been discovered within more recent years. This 

significant increase in research and therefore understanding of the AD process, has been 

made possible by the development of multi-omic techniques and analysis, including 

metagenomic analysis (Zhang, et al., 2017,  Zhang, et al., 2019). Metagenomics is the 
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analysis of genomic data that was recovered from environmental samples, and provides 

predictions of all of the genes found within a genome or genomes.   

  

Efforts to culture microbes from extreme environments is generally very challenging; 

however, the application of metagenomics provides genomic data without the need to culture 

individual microbes in the laboratory. This is especially advantageous for microbes that are 

unculturable. The capacity for new information about certain species and evolutionary 

genetics etc. has been expanded massively with the application of metagenomics. This 

allows for the study of complex dynamic communities within  anaerobic digesters, soil, 

oceans, and glaciers; and is also being applied within the medical field (Pérez-Cobas, 

Gomez-Valero and Buchrieser, 2020). The application of metagenomics has also greatly 

benefitted the medical community, by discovering more information of pathogenic microbes 

within these communities. This will help to develop new medical treatments (Zhang, et al., 

2021).   

  
Metagenome-assembled genomes (MAGs) are genomes recovered from environmental 

samples, which involves the assembly and binning of metagenomes. Shotgun sequencing is 

a technique often used in assembly of MAGs (Gerlach and Stoye, 2011) where an 

environmental sample, containing microbial genomes, is collected. The DNA is then 

extracted and fragmented (Ghurye, Cepeda-Espinoza and Pop, 2016) so that a library of 

fragments can be subjected to DNA sequencing. Genomes are sequenced as either long 

reads or short reads, and this is typically decided by the technologies that are available at 

the time, and often the cost also (Olson, et al., 2019). The random collection of reads are 

then assembled, via alignment by comparison against reference genomes, into contigs 

(Nissen, et al., 2021). The contigs are binned by grouping contigs of the same taxon, by 

using taxon-dependent methods, that use reference databases, or computer models of 

predicted sequences, to compare the contigs against. Contigs that are not comparable to 

either the databases or computer models are binned as unassigned (Strous, et al., 2012). 

This allows for taxonomic classification of contigs and is often used for further functional 

analysis as well. Challenges associated with binning and alignment include a bias of 

taxonomic groups available in reference databases during these processes. Well-researched 

taxons are typically prioritised over less-understood taxons, impacting accuracy of binning to 

the correct taxonomic level (Wickramarachchi and Lin, 2022).  

  

MAG sequences can be annotated revealing the function and taxonomy of the genes found 

in the MAGs. This is typically carried out by comparing MAGs to databases (such as Kyoto 

Encyclopaedia of Genes and Genomes- KEGG). Common functional annotation  

(bioinformatic) tools include EggNOG (Huerta-Cepas, et al., 2019), GhostKOALA (Kanehisa, 

Sato and Morishima, 2016), InterProScan (Jones, et al. 2014), BLAST+ (Camacho, et al., 

2009). These tools can all be applied to metagenomic data in order to predict protein 

function. EggNOG and GhostKOALA use the KEGG database and can then compare genes 

found in metabolic pathways to KEGGmapper (Kanehisa and Sato, 2020). Methanogenesis 

pathways have been recognised and inputted into the KEGG database, making the 

identification of methanogens and subsequent genes involved in methanogenesis relatively 

straightforward. Although some of the genes involved in methanogenesis are present in 

some bacteria, identification of the entire pathway, or partial identification of the pathway, 

should be considered when identifying microbes.  

 

The extraction of DNA from environmental samples and shotgun sequencing removes the 

need to culture microorganisms individually (as this is typically not possible), and allows the 
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extraction of DNA from dead cells (Gerlach and Stoye, 2011). Shotgun sequencing followed 

by the assembly into genomes, produces Metagenome-Assembled Genomes (MAGs).  

Completeness of MAGs varies greatly (Nayfach, et al., 2021), typically because of the nature 

of shotgun sequencing and further binning into contigs, making functional annotation tools 

less accurate, as it is likely that significant parts of the MAG sequences are misplaced. It is 

also likely that some microbes might be missed from the samples being sequenced as they 

are only found in low quantities (Gasc and Peyret, 2018) within these microbial communities. 

This can provide an inaccurate consensus of the entire microbial community as not all of the 

microbes present will be accounted for within the samples. An inaccurate consensus of the 

entire AD community can also be caused by cells that are potentially very fragile (the DNA 

can be damaged) or cells that are too tough to penetrate (no DNA can be recovered). 

Although the data generated from these datasets is not indicative of the entire environment, 

they provide sufficient information about the microbes found in the environment, and the 

processes they are responsible for. Contamination is also a massive challenge to overcome 

when carrying out shotgun sequencing (Chen, et al., 2020). This occurs when fractions of 

DNA from several organisms within the samples collected are mistakenly involved in the 

assembly of a particular MAG. There are several common errors in genome assembly. One 

of these errors is the incorrect assignment of repeated DNA segments within the same MAG 

or other closely related MAGs in the environmental sample (Olson, et al., 2019). The 

development of bioinformatic tools, such as FastQC (Andrews, 2010), can be used to 

highlight contaminants within metagenomic sequences, leading to their removal. The outputs 

from current bioinformatic software are sub optimal (Salzberg, 2019), as the overall standard 

of MAGs is currently inadequate and becomes a limiting factor. However, this can be 

assessed through quality metrics via software such as CheckM (Parks, et al., 2015).  

  
A study collected 1635 MAGs from 134 datasets of MAGs, from various different anaerobic 

digestion reactors (Campanaro, et al., 2019). Functional annotation via metabolic 

reconstruction led to the discovery of the role of the microbes from AD in a number of 

processes. These processes include methane production and the conversion of organic 

waste into productive biomass (e.g. biogas and biofuel). This study highlights the importance 

of metagenomic data in achieving a greater understanding of the complex processes that 

make up the AD process.   

   

The use of metagenomics on AD data has already significantly improved the understanding 

of the microbial communities within AD systems, by identifying a greater number of microbial 

species present and therefore their function within the complex community (Maus et al., 

2017). This understanding will lead to greater yields of biogas production in AD.  

  

1.5 The use of workflows and pipelines for metagenomic data  

  

Analysing large datasets involves generating useful information from raw data. In the context 

of bioinformatics this means analysing the data through multiple bioinformatic tools and 

reference databases. Many challenges are faced when producing scalable and reproducible 

results (Perkel, 2019). These results are easily transferred onwards into further analysis, 

such as converting data into a versatile format (FASTA), and improving previous analysis 

from bioinformatic tools such as comparative genomic and taxonomical analysis. As a result, 

bioinformatic data and analyses now rely heavily on the use of workflow management tools. 

Workflow tools allow the automation of pipelines and decrease the time taken to develop 

these pipelines (David and Glore, 2010). Workflow management tools also allow the 

execution of multiple commands and tools in order to carry out an overall analysis (Wratten, 
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Wilm, Göke, 2021). In this instance the analysis is carried out on genomes (or 

metagenomes). The automation of these tools offers improved scalability and productivity 

(Perkel, 2019) in the research space as additional work can be achieved while the workflow 

tool is running the desired analyses.   

  

A big concern when performing large-scale bioinformatic analysis is reproducibility (Perkel, 

2019). Problems typically occur due to minor changes in individual operating systems or 

computers. Another common issue is the lack of organisation (Wratten, Wilm, Göke, 2021) 

with reference to the bioinformatic tools used and their respective dependencies, which often 

cause clashes (David and Glore, 2010). Workflow management tools such as Snakemake 

(Köster and Rahmann, 2012), Nextflow (David and Glore, 2010) and Galaxy (Jalili, et al., 

2020) allow for container-like environments. This is similar to the environment a high 

performance computing cluster offers when Conda environments or Docker are utilised. The 

containerisation allows for these tools to integrate external bioinformatic tools into the 

workflow, without the dependencies of certain tools breaking the pipeline by prohibiting some 

parts of the pipeline to work. Multiple Conda environments can be implemented into a 

pipeline when using workflow management tools, typically each tool will have its own Conda 

environment, to ensure the resolution of this issue.    

  
Snakemake (Köster and Rahmann, 2012) is a portable workflow management tool that can 

be utilised on a local device as well as a Cluster (like Viking). Snakemake is a modular tool 

based on rules. All of the rules collectively achieve an overall goal, which is set by the first 

rule, referred to as ‘Rule all’. This Python-based tool is accessible via command line, and 

clear and concise messages are provided to the user to indicate errors within the pipeline 

(which can quickly become excessively complicated).   

  
High Performance Computing  (HPC) clusters can play a crucial role in reproducibility of 

multi-omic analyses, as the environment is the same for all users. This benefits users as it 

eliminates the need for high-performance personal computers, which are often expensive 

and not essential for the typical biologist.   

  

This does eventually become a limitation of the pipeline, in terms of reproducibility, as only 

users that have access to the HPC cluster would be able to utilise the software or datasets 

that are developed or analysed respectively. Other than HPC users, those with a similar 

computer set-up to the HPC would also be able to utilise the software and datasets 

developed, highlighting the importance of noting operating system versions and software 

versions. Finally, some bioinformatic tools require an increased memory-usage or more 

CPUs, which may exceed the limits of a personal computer, reducing the speed of the tool or 

rendering it unusable. HPC clusters allow the allocation of different amounts of memory and 

CPU cores to run the tools.  

  

There are many genome annotation pipelines already publicly available, such as PGAP  

(Tatusova, et al., 2016), MetaErg (Dong and Strous, 2019), Microbe Annotator (Ruiz-Perez, 

Conrad, and Konstantinidis, 2021), and FA-nf (Vlasova, et al., 2021). PGAP is a prokaryotic 

genome annotation pipeline developed by NCBI and was automated using Common 

Workflow Language (CWL). It is common for genome annotation pipelines, including the 

pipelines mentioned above (Table 1), can be installed locally and onto HPC clusters. The 

typical data files that are required for these pipelines are FASTA sequences. All of these  

pipelines carry out homology-based predictions, however, PGAP does not carry out 

orthology-based predictions, like MetaErg and FA-nf.      
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Table 1. A Comparison of features in current functional annotation pipelines. The pipelines 

include PGAP, FA-nf, MetaErg and Microbe Annotator.  

  

Categories  Features  MetaErg  PGAP  
Microbe 

Annotator  
FA-nf  

Use  Local installation  Yes  Yes  Yes  Yes  

   Command line/ Cluster  Yes  Yes  Yes  Yes  

Software  Written using:  Docker  CWL  Python-based  Nextflow  

Databases  Multiple used  Yes  Yes  Yes  Yes  

   KEGG Orthology  Yes  -  Yes  Yes  

   RefSeq  Yes  -  Yes  -  

   TIGRFAM  Yes  Yes  -  -  

   Pfam  Yes  Yes  -  Yes  

   SwissProt  Yes  -  Yes  -  

   BLAST  -  ?  -  Yes  

   InterPro  -  -  -  Yes  

Functions  
Homology-based 

predictions  
Yes  Yes  Yes  Yes  

   
Name-based 

predictions  
-  Yes  -  -  

   
Orthology-based 

predictions  
Yes  -  Yes  Yes  

   Pfam assignments  Yes  Yes  Yes  Yes  

   
KEGG KO/pathway 

assignment   
Yes  -  Yes  Yes  

Outputs  
HTML results page  

(interactive plots)  
Yes  -  -  -  

   
Summary report for 

Genbank submission  
-  Yes  -  -  

   
Annotation tables of 

modules completion  
-  -  Yes  -  

   
Annotation tables from 

each tool  
Yes  Yes  Yes  Yes  

 

Although these pipelines all result in the same overall outcome, the process of retrieving the 

information differs and the format of results differs. The use of multiple different databases 

ensures that the maximum number of proteins are annotated per query sequence. For 

example, Microbe Annotator will compare query sequences to each database until a KEGG 

KO number is assigned. However, sequences not assigned a KEGG KO are discarded and 

only 48% of proteins within the KEGG database have been assigned a KEGG KO (Aramaki, 
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et al., 2019). Workflow management tools are typically used to develop pipelines e.g. FA-nf 

used Nextflow and PGAP used CWL; however, none of these tools use Snakemake. 

Snakemake is the Workflow management tool that is intended to be used for the pipeline 

developed during this research project. To conclude, the requirements for these functional 

annotation pipelines are simple and minimal, which provides an easy process for the efficient 

conversion of metagenomic data into useful information, via a thorough analysis.    

  

As previously discussed, pipelines developed by workflow management tools improve 

reproducibility, scalability, efficiency; and are completely customisable. These workflow 

management tools allow for easier production of bioinformatic pipelines, hence there are 

already so many pipelines publicly available. However, production of a pipeline that is 

entirely specific will further reduce the risk of any challenges in relation to reproducibility 

appearing etc., as well as increase productivity tenfold in the research group. This will 

ultimately lead to a greater understanding of the role of microbial communities in anaerobic 

digestion.   

 

1.6 Confidence of results and benchmarking  

 

Benchmarking is a vital part of the development of bioinformatic tools as they help to provide 

insight into the accuracy of the tool by comparing the results against pre existing tools of a 

similar function (Urbanowicz, et al., 2018). Benchmarking can be used as a confidence 

measure of the results generated by bioinformatic tools. The Confidence measure can be 

quantified, this can be quantified by comparing total number of outputs generated, or, often, 

time taken to complete the analysis e.g. Kraken2 benchmarking against Kraken (Wood, Lu 

and Langmead, 2019). 

 

Another form of quantifying the quality of the generated results is via a statistical method.  

For example, EggNOG-mapper (Huerta-Cepas, et al., 2017) provides expected-values, 

these E-values are a numerical value to compare the matches provided by the tool. The 

closer the E-value is to zero, the more likely the sequence made by the tool is expected to 

be present in the database. However, this method only compares the performance of this 

individual tool rather than being compared against other tools that provide a similar output. 

 

A confidence measure of the quality of outputs generated by one tool compared to the quality 

of another tool would provide more of an accurate measure of tool performance. Providing 

quality control of the results generated by these tools will help to make more accurate protein 

predictions, by collecting all possible information for each query sequence. Furthermore, 

improving the quality of bioinformatic data generated will result in greater, more frequent 

advances within the scientific community.  

 

Confidence ranking that already exists in bioinformatic tools.. Variant Ranker (Alexander, et 

al., 2017) is a tool that ranks variants of genes, to ensure the prioritisation of variants is 

provided to researchers to apply these within an experimental approach. Statistical 

confidence measures are commonly used to improve the quality of genomic mapping and 

assembly (Servin, de Givry and Faraut, 2010). The Annotation Confidence Score (Yang, 

Gilbert and Kim, 2010) was also developed as a confidence measure during genome 

annotation of gene or ORFs, to determine the quality of the predictions made by 

bioinformatic tools.  

 



   23  

Devising a confidence measure, that determines the quality of the protein predictions from 

two homology-based tools (EggNOG and KofamScan), will begin to ensure the quality of the 

results generated by this genome annotation pipeline. The quality of the results will be 

determined by whether both tools provide the similar results, and the same amount of 

information. Through general use of these two tools respectively, these tools often generated 

differing results for the same query sequence. The confidence measure will be quantified 

with a value between 1-6, value of 1 is the highest quality and 6 is the lowest quality.  

 

 

1.7 Project aims   

  
Microbial communities are still largely not well understood. This is typically due to a lack of 

information about the microbes found within the communities, and is often due to an inability 

to culture these microbes in a laboratory environment. With the rising popularity of shotgun 

sequencing and metagenomic analysis, this information is slowly being uncovered. Although 

there are still limitations, the increasing number, and quality, of bioinformatic tools and 

reference databases means that this information continually improves. Consequently, the 

production and automation of a genome annotation pipeline, via workflow management 

tools, should allow the analysis of large datasets at a faster rate, ultimately leading to further 

research into microbial communities within anaerobic digestion.   

  

The overall aims of the project are:  

• To develop an automated genome annotation pipeline that will allow us to gain a 

greater understanding of the wider microbial communities in the digesters.   

• To devise a confidence ranking system where each ORF will be given a confidence 

score based on the completeness of the annotation.  
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Chapter 2: Pipeline introduction   

  

2.1 PROKKA   

  
PROKKA (Seemann, 2014) is prokaryotic rapid annotation tool that annotates FASTA 

sequences and provides a brief annotation by providing a name, and sometimes a 

description, of the protein, any unknown proteins to the tool are labelled as ‘hypothetical 

protein’. The genomic annotation is carried out by a number of bioinformatic tools that are 

independent of PROKKA. These tools include Prodigal (coding sequences) (Hyatt, et al., 

2010), RNAmmer (ribosomal RNA genes) (Lagesen, et al., 2007), Aragorn (transfer RNA 

genes) (Laslett, and Canback, 2004), SignalP (signal leader peptides) (Teufel, et al., 2022), 

and Infernal (non-coding RNA) (Nawrocki and Eddy, 2013). Prodigal identifies the 

coordinates of these features and then the other tools predict the coordinates’ function. 

Typically protein function is predicted by comparing genomic sequences against large 

databases. This same method of comparison is used here except PROKKA has a 

hierarchical system where the sequences are first compared with a small reliable database, 

followed by a slightly larger one and so on. PROKKA generates 10 different formats of the 

annotation to allow for further analysis.  

  

2.2 EggNOG-mapper  

  
EggNOG-mapper (Cantalapiedra, et al., 2021) is a functional annotation tool based on the 

KEGG Orthology (Kanehisa, et al., 2016) and the KEGG database. This tool predicts 

functions of proteins by comparing against orthologs, instead of other homologs which is true 

of NCBI BLAST+ (Camacho, et al., 2009) and InterProScan (Jones, et al., 2014). Typically 

orthologs retain their function post-speciation events, whereas paralogs do retain their 

function post-speciation events. Therefore the functional annotation provided by EggNOG 

should be more accurate. Predictions of orthology are determined at different taxonomic 

levels. This can provide more scope to the genes within the genomes that are being 

annotated. If the prediction is at a lower taxonomic level (closer to species-level) the more 

targeted the function can be to that specific genome. ORFs are provided with a more 

extensive annotation than PROKKA, by giving a functional COG, KEGG number, taxonomic 

origin, and often a name and free description. The free text description is generated via a 

text mining machine learning pipeline (Huerta-Cepas, et al., 2019). Functional COGs (often 

referred to as orthologous groups) are clusters of approximately three homologous 

sequences, that have divergently evolved from a single speciation event. Therefore based 

on this theory that orthologs are more likely to retain the function long even after speciation 

events occur. During the development of EggNOG-mapper the benchmarking approach was 

used to ensure the performance of the tool is adequate compared to similar existing tools.  

Gene Ontology (GO) predictions by EggNOG have been compared against NCBI BLAST+ 

and InterProScan. These also provide a homology-based prediction of function so therefore 

are appropriate for benchmarking (Huerta-Cepas, et al., 2019).The developers of EggNOG 

have used Orthobench2 (Trachana, et al., 2014) and Quest For Orthologs (QFO) (Altenhoff, 

et al., 2016) to estimate whether consistent updates and the addition of genomes to the 

KEGG orthology database affects the quality of the predictions that are given by EggNOG. 

Finally, as all bioinformatic tools and software are often updated and improved, EggNOG is 

consistently evolving and improving and are currently focusing efforts to improve analysis of 

metagenomic sequences.    
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2.3 KofamScan   

  
KofamScan (Aramaki, et al., 2019) is a command line tool that, similarly to EggNOG, is a 

functional annotation tool that makes predictions on functions by comparing nucleotide 

sequences against the KEGG Orthology database. The tool provides an E-value, a KEGG 

number, and a description of the protein. The annotation from KofamScan lacks some 

information in comparison to the annotation from EggNOG. However, KofamScan has the 

option, by using a command line flag to generate an output file that can be directly inputted 

into KEGG-Decoder. Then, a heatmap is generated to visualise the KofamScan outputs. 

KofamScan is a homology-based search tool (similar to BLAST+ and GHOSTX) (Suzuki, et 

al., 2014), which differs from the other bioinformatic tools that have been developed by 

Kanehisa et al e.g. GhostKOALA and blastKOALA (Kanehisa, Sato, and Morishima, 2016). 

The KEGG numbers predicted by KofamScan are also compared against a database of 

profile hidden Markov models (pHMM), unlike GhostKOALA and BlastKOALA.   

  

The comparison of KofamScan and EggNOG acts as benchmarking for the pipeline, acting 

as a quality checking process. Both tools are homology-based search tools that are based 

on the KEGG orthology (KO) that provide similar outputs and similar predictions via slightly 

different methods. It is also interesting to see whether these tools will predict the same 

function for certain genes. A limitation of these tools basing their predictions of the KEGG 

Orthology, is that only 48% (12,934,535) of protein sequences are within the KEGG GENES 

database (which contains 27,173,868 protein sequences), have a KEGG number assigned 

to them (Aramaki, et al., 2019). This results in half of the genes annotated to be left 

unaccounted for. Efforts to improve this percentage of assigned genes need to be pushed to 

make these tools more reliable for functional annotations.  

  

2.4 KEGG-Decoder  

  
KEGG-Decoder (Graham, Heidelberg and Tully, 2018) is designed to input the outputs from 

a number of KEGG-KOALA tools, i.e. GhostKOALA, BlastKOALA and KofamScan, in order 

to visualise the completeness of metabolic pathways found within the KEGG Orthology of 

multiple genomes at once. The outputs are visualised by a heatmap And the capability of 

comparing multiple genome sequences at once provides an instant comparison of their 

metabolism. This tool was developed by manually defining metabolic pathways and the 

enzymes involved within the KEGGmapper pathways, this file can be found on their Github 

(KOALA_definitions.txt) (Github, n.d.). The tool is consistently being updated as users can 

request pathways of interest to be integrated into the tool, as long as the genes present in 

these pathways are present in the KEGG database.  

  

2.5 Kraken2  

  
Kraken 2 (Wood, Lu and Langmead, 2019) is a high-speed metagenomic annotation tool that 

provides a taxonomical analysis of metagenomes using k-mers alignment. The database for 

this tool (Wood and Salzberg, 2014) was curated to consider exact k-mer alignment as well 

as the lowest common ancestor (LCA) taxa. The taxa being that of all genomes that have 

that specific k-mer. Using this method was comparable, in speed, to BLAST (Altschul, et 

al.,1990), this comparison is seen as a benchmarking example of the performance of Kraken 

2. To improve the overall speed of Kraken 2 in comparison to the first version of the tool 

(Kraken1) the memory usage of the tool was reduced by 85%. This reduction allows for a 

greater number of reference genomes to be utilised within the tool without negatively 
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impacting the accuracy of the tool. Its performance and accuracy was assessed by collating 

a group of 50 genomes, of which there were reference genomes for, as stated by Wood, Lu, 

and Langmead. Then a group of 50 genomes that were not found within the first group of 50 

genomes was also collated. When compared with different taxonomic classifiers both groups 

showed consistent results. This tool is used in the manual annotation to provide some 

information to the ORFs with a lower confidence score in this pipeline. Simulated 

metagenomic data was generated in order to test the performance of the tool, by testing 

classification speed, as well as genus-level taxonomy accuracy. Simulated metagenomes 

were developed by combining two complete genomes from other projects. Illumina HiSeq 

and MiSeq sequencing platforms were used to sequence the data involved to produce these 

simulated metagenomes.  

  

2.6 NCBI Blast+  

  

NCBI Protein Blast+ (Camacho, et al., 2009) is often the research standard for protein and 

microorganism identification, as it is routinely used as a benchmark for other homologybased 

tools such as KofamScan. Blast+ is a homology based search tool that compares query 

amino acid sequences to the BLAST database, by aligning query sequences to reference 

sequences from the database. An E-value (expected value) is then given to each matching 

sequence by calculating the number of matches that are expected to be found within the 

database (Camacho, et al., 2009). An NCBI accession number is given to each matching 

sequence to provide a summarised report about each protein,, from its individual function, to 

the exact position in the plasmid/chromosome of the query sequences.  

  

2.7 InterProScan  

  

InterProScan (Jones, et al., 2014) is a functional annotation tool that involves the analysis of 

DNA and protein sequences, and is available on command line. The homology of query 

sequences are compared against the InterPro database of reference sequences. The 

InterPro database is made up of multiple public databases and with every update more 

genome sequences are added. These databases often contain the same information within 

them such as functional sites, domain sites, and families of proteins (Jones, et al., 2014). 

Multiple output formats are provided by the tool these include- xml, a text file and gff3, and 

this allows for further analysis of the sequence of interest.   

  

2.8 SeqKit   

  
SeqKit (Shen, et al., 2016), the final tool in the pipeline, is a command line tool that 

manipulates nucleotide sequences in a FASTA or FASTQ format. The FASTA/Q format file is 

versatile and allows for sequence files to undergo further analysis without further 

manipulation of the file to be inputted into certain tools. The FASTA/Q format files are easily 

read with languages such as Python and Perl- languages that many common bioinformatic 

tools are written in. There are many FASTA/Q manipulation tools readily available, such as 

FASTX-ToolKit (Hannon, 2010), Pyfaidx (Shirley, et al., 2015) and Seqtk (Li, 2012), that 

perform typical manipulations-  filtering, converting, deduplication, searching, splitting and 

sampling. However, SeqKit offers more options than these tools e.g. shuffling, and locating 

motifs and common sequences. In total, SeqKit has 19 subcommands that are utilised on 

command line as flags which makes them easy to integrate into pipe commands to perform 

complex FASTA/Q manipulations. Therefore, one tool (SeqKit) can be used instead of 

multiple FASTA/Q manipulation tools.   
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Chapter 3 : Materials and methods   

  

3.1 Data  

  

The initial pass through of the pipeline was completed using a single known MAG, a putative 

Methanothrix soehngenii genome that was recovered from the Naburn wastewater site just 

outside of York. It was then binned and assembled into a MAG. This was chosen initially as 

the results from the bioinformatic tools were already known, and this will ensure that, not 

only the bioinformatic tools, but the pipeline is generating expected results. M. soehngenii is 

a methanogenic archaea, and is non-motile, non-spore forming, rod shaped, with an 

aggregate to form long filaments (Huser, Wuhrmann, and Zehnder, 1982), and is an 

acetoclastic methanogen that uses solely acetate as an energy source. Methanothrix 

soehngenii has been more recently renamed to Methanosaeta concilii upon revision (Patel 

and Sprott, 1990).   

  

A second small dataset was generated by downloading a number of Genome sequences 

from NCBI nucleotide. This dataset is comprised of 5 highly characterised or researched 

prokaryotic organisms, these include Escherichia coli (NCBI Accession No. NC_002695.2), 

Bacillus subtilis (NCBI Accession No. NZ_CP103783.1), Pseudomonas aeruginosa (NCBI 

Accession No. NZ_CP102441.1), Vibrio cholerae (NCBI Accession No. NZ_CP080462.1), and 

finally Staphylococcus aureus (NCBI Accession No. NZ_CP064365.1). The idea of this small 

dataset is to pass the genomes through the pipeline and receive results that are expected, 

as these organisms are particularly well researched. These genome sequences are also 

high quality lab strains and thus there is a higher confidence in these sequences being 

complete genomes, as metagenomic data is more likely to be incomplete and not perfectly 

correct sequences. This is due to the reassembly of a larger mixture of DNA, that will 

ultimately result in DNA segments being misplaced. The results of this test dataset will also 

provide confidence in the annotation of the bioinformatic tools present in the pipeline and 

that the pipeline is outputting the results as expected.  

  

All of the genomes in this dataset are prokaryotic bacteria, and are all facultative anaerobes, 

the majority (excluding V. cholerae) of which can be found in AD (Mukhuba, et al., 2018). 

These bacteria typically undergo mixed acid fermentation under anaerobic conditions, 

among some other metabolic processes. Mixed acid fermentation involves the conversion of 

carbon based molecules into ethanol, acetate, succinate, formate, and lactate (Ciani, 

Comitini and Mannazzu, 2008).   

  

3.1.1 Bacillus subtilis   

  
B. subtilis uses sugars and other organic acids as an energy source. This occurs by either 

glycolysis, the pentose phosphate pathway, or the Krebs cycle (Schilling, et al., 2007). 

However this is only in response to oxygen being present. As previously discussed, B. 

subtilis is a facultative anaerobe and is therefore able to undergo mixed acid fermentation 

under anaerobic conditions. With the use of high-performance liquid chromatography 

(HPLC), compounds such as lactate, acetate, and 2,3-butanediol, were identified as some of 

the main products of these fermentation processes (Cruz Ramos, et al., 2000). Alternative 

electron acceptors (like nitrate, sulphate, and fumarate) can be used to undergo respiration 

under anaerobic conditions. It is hypothesised that nitrate ammonification is used by B.  

subtilis in low oxygen conditions where free electrons are donated to nitrate (Sun, Kokko and 

Vassilev, 2023).  
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3.1.2 Escherichia. coli  

  

In the absence of oxygen E. coli undergoes fermentation producing products such as 

acetate, ethanol, lactate and formate (Förster and Gescher, 2014). Depending on availability 

of alternative electron acceptors, E. coli can undergo respiration under anaerobic conditions. 

With a lack of oxygen, however, the citric acid cycle is downregulated, resulting in an 

incomplete production of sugars, and acetate becoming the main product of this anoxic 

respiration (Förster and Gescher, 2014). Acetate is a fundamental compound of AD that 

drives acetoclastic methanogenesis, to produce methane gas (Pan, et al., 2021).   

  

3.1.3 Pseudomonas aeruginosa   

  

P. aeruginosa undergoes arginine fermentation and pyruvate fermentation under anaerobic 

conditions. Pyruvate fermentation does not allow for the organism to thrive but allows for 

prolonged survival in the absence of oxygen (Kampers, et al., 2021). Alongside anaerobic 

fermentation, P. aeruginosa undergoes nitrate dissimilation, and denitrification (where 

enzymes catalyse the transfer of electrons into nitrogen oxides). (Van Alst, et al., 2007).  

  

3.1.4 Staphylococcus aureus   

  

In conditions without oxygen S. aureus cannot use electron acceptors (oxygen) to undergo 

aerobic respiration, however alternative electron acceptors e.g. nitrate and nitrite, allow this 

process to occur anaerobically (Fuchs, et al., 2007). Mixed acid fermentation is also 

undergone in anaerobic conditions to produce products such as lactate, acetate, formate, 

and 2,3-butanediol (Fuchs, et al., 2007).   

  

3.1.5 Vibrio cholerae  

  

Under anaerobic condition Vibrio cholerae undergoes fermentation which is common in 

facultative anaerobes. However, in the presence of an alternative electron acceptor (AEA), V. 

cholerae can undergo respiration and fermentation simultaneously (Bueno, Pinedo and 

Cava, 2020). Common AEAs are nitrate and fumarate. Nitrate, nitrite, and sulphate, are 

AEAs commonly found within AD (Batstone, et al., 2015). Therefore, respiration products of 

V. cholerae are likely present in anaerobic digesters.   

  

3.1.6 NCBI Dataset Conclusion  

  

The interest in the metabolic mechanisms of these organisms is to understand the 

breakdown of compounds in AD, to then produce high value products, such as methane gas. 

In addition, the metabolic characteristics of these organisms are visualised in the pipeline 

precisely, to ensure the pipeline is producing high-quality results.  

  
  

3.2 File structure  

  

An integral part of ensuring that a pipeline is working correctly and is therefore reproducible, 

is its filing structure. An emphasis was placed on ensuring the filing structure for this pipeline 

was concise and easy to navigate (Figure 6), especially considering that there is no GUI on 

the Viking Cluster. The other important thing is to organise the output files, as the pipeline 
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generates a significant number of output files per genome and multiple genomes can be 

inputted into the pipeline at once. Folders for each tool's output are generated (Figure 7) 

alongside the data itself and then “wildcards” (a feature of Snakemake) ensure that the 

outputs from each tool are generated respectively, and provided with the correct file name.  

  

 
 Figure 6. Schematic illustrating the initial file structure required to run the pipeline 

successfully.  

  

Another vital part of setting up the pipeline was the installation of certain tools and 

databases. Yaml files, which contain the dependencies of Conda environment containers, 

were constructed for each tool of the tools in the pipeline, to ensure that the dependencies of 

one tool do not affect another.  

  

    
snake_test  

.  

|---- Snakefile (.smk)  

|---- data  

|    |---- CLUSTER.fasta  

|    |---- ncbi_data  

|         |-- ecoli.fasta  

|         |-- bsubtilis.fasta  

|         |-- paeruginosa.fasta  

|         |-- saureus.fasta  

|         |-- vcholerae.fasta  

|---- envs  

|    |---- prokka_env.yaml  

|    |---- pip_egg.yaml  

|    |---- kofamscan.yaml  

|    |---- keggdecoder.yaml |    
|---- r_env.yaml  

|    |---- seqkit_env.yaml  

|    |---- kraken_env.yaml  

|    |---- interproscan.yaml  
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|    |---- blast_env.yaml  

|---- scripts  

|    |---- egg_regex.py  

|    |---- r_plot2.R  

|    |---- stats_python.py  

|---- results  

|    |---- prokka_out_{wildcard}  

|         |-- {wildcard}.faa  

|         |-- {wildcard}.fna |         
|-- {wildcard}.log  

|         |-- {wildcard}.gff  

|         |-- {wildcard}.ffn  

|         |-- {wildcard}.fsa  

|         |-- {wildcard}.tbl  

|         |-- {wildcard}.sqn  

|         |-- {wildcard}.gbk  

|         |-- {wildcard}.txt  

|    |---- egg_out_{wildcard}  

|         |-- {wildcard}.emapper.annotations  

|         |-- {wildcard}.emapper.hits  

|         |-- {wildcard}.emapper.seed_orthologs  

|    |---- kofamscan_out  

|         |-- kofamscan_{wildcard}.tsv  

|         |-- kofamscan_{wildcard}.txt  

|    |---- decoder_out  

|         |-- concat_{wildcard}  

|         |-- decoder_out_{wildcard}  

|    |---- seqkit_out  

|         |-- hypothetical_list_{wildcard}  

|         |-- seqkit_{wildcard}_length  

|    |---- blast_out  

|         |-- blast_{wildcard}  

|    |---- interproscan_out  

|         |-- {wildcard}_interpro.xml  

|         |-- {wildcard}_interpro.gff3  

|         |-- {wildcard}_interpro.tsv  

|         |-- {wildcard}_interpro.xml  

|    |---- kraken_2  

|         |-- kraken_out_{wildcard}  

|    |---- python_out  

|         |-- {wildcard}_py  

|            |-- subset  

|            |-- stats_df  

|            |-- low_qual_df  

|            |-- egg_tax_df  

|            |-- egg_module_df  

|            |-- egg_cog_df  

|    |---- r_plots  

|         |-- {wildcard}_r  

|            |-- plot1  

|            |-- plot2  

|            |-- plot3  

|            |-- plot4  



   32  

|            |-- plot5  

|            |-- plot6  

L           |-- plot_con  

  
Figure 7. Schematic illustrating the file structure required for the pipeline, along with the 

expected output files that each tool will generate.   

  

3.3 Installation   

  

A High Performance Computing (HPC) cluster, Viking , is the cluster that is widely available 

to staff and researchers at the University of York. Viking was utilised to run command line 

based-tools and the develop the pipeline using Snakemake.     

  

3.3.1 Protein Identification   

  

3.3.1.1 PROKKA (1.14.5)  

The modules ‘barrnap’ and ‘prokka’ were loaded in the Viking Cluster. The FASTA sequence 

of the MAG was then inputted into PROKKA to produce annotated output files. One of these 

output files includes the amino acid sequence file (*.faa) that was provided to run most of the 

bioinformatic tools in this pipeline.   

  
3.3.1.2 EggNOG-mapper (v2.1.7)  

  

A Conda environment was created, with EggNOG installed in the environment, in an 

appropriate workspace on the Viking Cluster, and then activated. The EggNOG database was 

then installed onto the Viking Cluster. The amino acid sequence of the MAG of interest, 

obtained from PROKKA, was used to run EggNOG producing a comma-separated variable 

output file.   

  

  
  

 

3.3.1.3 KofamScan (1.3.0)  

  

KofamScan was installed, via Unix command ‘wget’, to download the appropriate database 

and the tool onto the Viking cluster. These files were then unzipped using the ‘gzip’ Unix 

command. A conda environment was created with ‘kofamscan hmmer parallel’ and ‘ruby’ 

installed and then activated. A yaml file was made consisting of paths to find the databases 

in order to run KofamScan. The FASTA sequence and amino acid sequence (of the MAG) 

were required to run KofamScan. The tool produces two outputs, one tab-separated variable 

(tsv), and another that can be directly inputted into KEGG-Decoder.  

  

3.3.1.4 KEGG-Decoder (V1.3)   

  

A Conda environment was created with KEGG-Decoder and Python (version 3.6) installed in 

the enviroment and then activated. KEGG-Decoder was also installed in Python3 using ‘pip’, 

the output from KofamScan was then inputted into KEGG-Decoder and was run on the 

Viking cluster. The EggNOG output file and KofamScan output file were concatenated and 

inputted into KEGG-Decoder. A heatmap was outputted by KEGG-Decoder.   
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3.3.1.5 Python (3.9.7)  

  
The EggNOG and KofamScan output files were read into Spyder and the module 'Pandas' 

was then read in. Basic information about both output files was obtained. Spyder was also 

used to make a new data frame of the EggNOG output file, to be an appropriate format for 

the KEGG-Decoder tool. Finally both output files were combined by an ‘outer join’ using the 

‘merge()’ function. This new data frame was used for the confidence ranking system.  

  

3.3.1.6 R Studio (4.1.2)  

  

The EggNOG output file was read into a new file in R Studio, then the ‘ggplot2’ package was 

loaded in. Ggplot2 was used to provide plots of the data generated from the EggNOG 

output.  

  

3.3.2 Confidence ranking system  

  

3.3.2.1 Python (3.9.7)  

  

The module ‘ttg’ in Python was used to generate simple truth tables that determine the logic 

for the confidence ranking system. An ‘elif’ loop was used to produce the confidence ranking 

system.   

  

3.3.2.2 Microsoft Excel   

  

Manual truth tables were manually generated using Microsoft Excel, that were more 

appropriate for the confidence values required for this dataset.  

  

  

3.3.2.3 R studio (4.1.2)  

  

Subset.csv was read into R studio. Then the ‘ggplot2’ package was loaded in. Values in the 

dataset were re-set as factors using ‘as.factors()’ in order to produce a number of plots 

visualising the results of the confidence ranking system.  

  

3.3.3 Manual annotation   

  
3.3.3.1 Kraken2 (2.1.2)  

  

A Conda environment was created with Kraken2 installed. The Conda environment was then 

activated. Kraken2 was then run, with the amino acid sequence of the ORFs with a 

confidence value of 4, 5, or 6, producing a tab-separated variable output file.  

  

3.3.3.2 NCBI protein BLAST+ (2.11.0-gompi-2021a)  

  

Blast+ was loaded into the Viking cluster. The amino acid sequence of ORFs with a 

confidence value of 4, 5, or 6, was inputted and BLAST was run using the ‘outmft  -6’ which 

produced a tsv file of the output results.  
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3.3.3.3 InterProScan (5.56-89.0)  

  
Java 13.2.0 and then InterProScan 5.46-81.0-foss-2019b was loaded into the Viking cluster, 

as these were previously installed on viking. The amino acid sequence of the ORF of interest 

was input into InterProScan and a tab-separated variable table was outputted.  

  

3.3.3.4 SeqKit (2.2.0)  

  
The Conda environment ‘seqkit_env’ was created with SeqKit installed. This environment 

was then activated. A text file with the ORFs that were given a confidence value of 4, 5, or 6 , 

was inputted into SeqKit. The command ‘Seqkit grep -f’ was run, with the text file and the 

MAG amino acid sequence file inputted, to find the amino acid sequences of these individual 

ORFs. This SeqKit output file was then run again using the command ‘grep ‘hypothetical’ to 

list the number of ORFs that were annotated as hypothetical proteins. SeqKit was then run a 

final time using the command ‘fx2tab -l’ to count the sequence length of each ORF.  

  

3.3.3.5 Snakemake (7.21.0)  

  
Snakemake was installed via a Conda environment and  was made using a .yaml file.  

Snakemake was run using a Snakefile file (*.smk), on unix command line. The command 

‘snakemake’, along with a number of flags and parameters, was used to run the script written 

within the Snakefile.   

  

  

3.4 Snakemake rules  

  

Snakemake is a workflow management tool based in Python, that allows for the automation 

of this genome annotation pipeline. The pipeline consists of 18 rules, each of which will run a 

part of the pipeline. (Table 2) The first rule of the pipeline is called ‘rule all’.  
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Table 2. A summary of the outputs generated by each Snakemake rule in the pipeline.  

  

snakemake rules  output  

rule all  -  

prokka  Table 9  

eggnog   Table 10  

egg_zero  Table 3  

kofamscan  Table 11, 12  

egg_for_decoder  Table 14  

egg_format_decoder2  Table 4  

rename_egg_decoder  Table 5  

rename_kofam_decoder  Table 6  

concat_for_decoder  Table 7  

keggdecoder  Figure 9, 14  

r_plots  Figure 10,11,12,13,15,16,17,18,19,20,21,22,23  

python_info  Table 20, 18  

low_qual  Table 8  

kraken2  Table 21  

interproscan  Table 22  

blast_p  -  

hypo_list  Table 23  

seqkit_length  Table 24  

  
  

‘Rule all’ is a rule that is used to direct the pipeline to run all of the rules, otherwise 

snakemake would only run the first rule in the pipeline. The input of this rule will always be 

the outputs of the final rule. Which in this case is called ‘seqkit_length’, and no output would 

be given. The second rule, called ‘prokka’, will run the tool PROKKA. The initial data is 

inputted as a FASTA sequence of the MAG(s). A yaml file for PROKKA is also included in this 

rule. The next rule is ‘eggnog’. This runs the EggNOG tool using a yaml file. The output of 

the ‘prokka’ rule (files ending with the suffix .faa) is also inputted into this tool. The output file 

of EggNOG places ‘-’ in the rows and columns that do not give a result. The ‘-’ will be 

changed to ‘0’ to allow for this output file to be compatible with the rules thereafter. This is 

made possible by the next rule called ‘egg_zero’, where a regular expression (regex) is run 

in shell to replace the ‘-’ for ‘0’ (Table 3). The rule ‘kofamscan’ then runs KofamScan. This 

also requires a yaml file to run KofamScan. Like eggnog, the output from the PROKKA rule is 

inputted into ‘kofamscan’. The outputs from KofamScan and EggNOG will later go on to be 

compared.  
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Table 3. Output file generated by the Snakemake rule 'egg_zero', all ‘-’ replaced by ‘0’ to be 

read correctly by the confidence system. The entire output file can be found in the Github 

repository, MRes-pipeline (https://github.com/louisegrimble/MRes-pipeline).  

   

#query  seed_ortholog  evalue  score  

JKJFLGDP_00001  1173027.Mic7113_1202  3.21E-85  275  

JKJFLGDP_00002  756067.MicvaDRAFT_1231  4.63E-22  95.5  

JKJFLGDP_00003  192952.MM_1348  0.000962  42.7  

JKJFLGDP_00004  521011.Mpal_0288  3.16E-11  63.9  

JKJFLGDP_00005  224325.AF_0894  2.55E-37  141  

JKJFLGDP_00006  1094980.Mpsy_1669  1.30E-48  170  

JKJFLGDP_00007  679926.Mpet_0612  3.29E-09  58.2  

JKJFLGDP_00008  269797.Mbar_A1008  1.24E-14  75.5  

JKJFLGDP_00009  1094980.Mpsy_1047  1.34E-26  105  

JKJFLGDP_00010  1120936.KB907210_gene5880  1.00E-31  119  
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eggNOG_OGs  

 

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia 

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,245YF@183980|Archaeoglobi  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG1842@1|root,arCOG04782@2157|Archaea,2XU11@28890|Euryarchaeota,2N9P1@224756|Methanomicrobia 

COG1842@1|root,COG1842@2|Bacteria,2GP0K@201174|Actinobacteria,4EGYB@85012|Streptosporangiales  

 
  

  

  

  
  

  

  
  

  

  

    

max_annot_lvl  COG_category  Description  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

183980|Archaeoglobi  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  K  PspA/IM30 family  

201174|Actinobacteria  KT  PspA/IM30 family  
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Preferred_name 

dap2  

GOs  

0  

EC 0  KEGG_ko  

0  

KEGG_Pathway  KEGG_Module  

0  0  

dap2  0  0  0  0  0  

argS  0  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  0  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  0  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  0  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  0  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  0  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

0  0  0  ko:K03969  0  0  

0  0  0  ko:K03969  0  0  
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KEGG_Reaction  KEGG_rclass  BRITE  

0  0  0  

0  0  0  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

0  0  ko00000  

0  0  ko00000  
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 KEGG_TC  CAZy  BiGG_Reaction  PFAMs  

0  0  0  PD40,Peptidase_S9  

0  0  0  PD40,Peptidase_S9  

0  0  0  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

0  0  0  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

0  0  0  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

0  0  0  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

0  0  0  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

0  0  0  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

0  0  0  PspA_IM30  

0  0  0  PspA_IM30  

  

In order to input the EggNOG output into the tool, KEGG-Decoder, the output file needs to be 

reformatted by a python script in the rule ‘egg_for_decoder’. The python script removes the 

unwanted columns as well as removing some KEGG numbers from the column ‘KEGG_ko’. 

This is only necessary if that specific gene predicts more than one KEGG number. The final 

part of the script is a regex that removes the characters ‘ko:’ that precede the KEGG 

numbers in the column ‘KEGG_ko’ (Table 14). This is to make the format of the column the 

same as the output file of KofamScan. ‘egg_format_decoder’ is a rule that is also involved 

with reformatting the EggNOG output file to be inputted into KEGG-Decoder. The python 

script saves the output file as a comma-separated variable (.csv) however, this needs to be 

changed to a text file. The ‘,’ are removed from the file, and then the header is also removed 

(Table 4).  

 

Table 4. Output file generated by Snakemake rule 'egg_format_decoder2', allowed the 

EggNOG output to be inputted into KEGG-Decoder to generate a heatmap. The entire  

output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

  

query  KEGG  

JKJFLGDP_00002  -  

JKJFLGDP_00003  K01887  

JKJFLGDP_00004  K01887  

JKJFLGDP_00005  K01887  

JKJFLGDP_00006  K01887  

JKJFLGDP_00007  K01887  

JKJFLGDP_00008  K01887  

JKJFLGDP_00009  K03969  

JKJFLGDP_00010  K03969  

JKJFLGDP_00011  -  

  

To determine the difference between the EggNOG annotation outputs and KofamScan 

annotation outputs, the name of the ORFs in the ‘query’ column need to differ. Two rules are 

used ensure this. ‘rename_egg_decoder’ adds the characters ‘egg’ to the start of every ORF 
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from the EggNOG results (Table 5), and another rule called ‘rename_kofam_decoder’ adds 

the characters ‘kofam’ to the start of every ORF from the KofamScan results (Table 6).  

  

Table 5. Output file generated by Snakemake rule 'rename_egg_decoder', added ‘egg’ to 

each of the query sequences to identify which row in the heatmap was from the EggNOG 

output. The entire output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

query  KEGG  

eggJKJFLGDP_00002  -  

eggJKJFLGDP_00003  K01887  

eggJKJFLGDP_00004  K01887  

eggJKJFLGDP_00005  K01887  

eggJKJFLGDP_00006  K01887  

eggJKJFLGDP_00007  K01887  

eggJKJFLGDP_00008  K01887  

eggJKJFLGDP_00009  K03969  

eggJKJFLGDP_00010  K03969  

eggJKJFLGDP_00011  -  

  

The final rule required to reformat the EggNOG and KofamScan outputs is  

‘concat_for_decoder’ (Table 7). This is predominantly due to KEGG-Decoder requiring two or 

more sequences to be inputted at once in order to generate a heatmap. This also ensures a 

single heatmap is generated per dataset that is passed through in the pipeline. Finally, 

KEGG-decoder will be run by the rule ‘keggdecoder’ using a yaml file of KEGG-Decoder. 

The output from ‘concat_for_decoder’ is inputted into this rule and a heatmap is generated 

as an output, as an svg.    

 

Table 6. Output file generated by Snakemake rule 'rename_kofam_decoder', added ‘kofam’ 

to each of the query sequences to identify which row in the heatmap was from the 

KofamScan output. The entire output file can be found in the Github repository, MRespipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

query  KEGG  

kofamJKJFLGDP_00037    K02574  

kofamJKJFLGDP_00038  K22169  

kofamJKJFLGDP_00038  K00343  

kofamJKJFLGDP_00039  K22168  

kofamJKJFLGDP_00039  K00342  

kofamJKJFLGDP_00040 

kofamJKJFLGDP_00041 

kofamJKJFLGDP_00042 

kofamJKJFLGDP_00043  

  
  
  

K22166  

kofamJKJFLGDP_00043  K00340  
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The next rule is ‘python_info’, this consists of a python script that summarises the output files 

from EggNOG and KofamScan, and will run the confidence ranking system of the 

annotations from EggNOG and KofamScan. A summary table, a table of low quality ORFs 

(determined by the confidence system), and other tables (Supplementary data S.1), are 

outputted from this rule. The rule ‘r_plots’ uses R to generate a number of plots, from the 

EggNOG output data, and the confidence ranking system output data.  

  

 

Table 7. Output file generated by Snakemake rule 'concat_for_decoder', Table 5. and Table 

6. were concatenated (as axis=0) to be inputted into KEGG-Decoder. The entire output file 

can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

query  KEGG  

eggJKJFLGDP_00002  -  

eggJKJFLGDP_00003  K01887  

eggJKJFLGDP_00004  K01887  

eggJKJFLGDP_00005  K01887  

eggJKJFLGDP_00006  K01887  

eggJKJFLGDP_00007  K01887  

eggJKJFLGDP_00008  K01887  

eggJKJFLGDP_00009  K03969  

eggJKJFLGDP_00010  K03969  

eggJKJFLGDP_00011  -  

  

The table of low quality ORFs from the ‘python_info’ rule is inputted into the next rule 

‘low_qual’. Seqkit is used along with grep to select all of the amino acid sequences of the 

low quality ORFs, this file will allow the low quality ORFs to undergo through further 

annotation. Next, the low quality ORF amino acid file from the previous rule (‘low_qual’) is 

inputted into the rule ‘kraken’. This rule will involve running the tool Kraken2, using a yaml 

file to run the tool. The low quality ORF amino acid file (Table 8) is also inputted into the next 

two rules ‘interproscan’, which runs the tool InterProScan and ‘blast_p’, which runs the 

protein BLAST search tool. Both rules (interproscan and blast_p) will use a yaml file, 

respectively, of the tool to run them. The next rule is ‘hypo_list’, this rule will generate a file of 

every ORF that has been defined by PROKKA as a ‘hypothetical’ protein. These ORFs will 

not typically provide any results to the tools used prior.  
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Table 8. Output file generated by snakemake rule 'low_qual', SeqKit tool collate the amino 

acid sequences of each of the low quality ORFs (Table 20.) from the confidence system. The 

entire output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

 >JKJFLGDP_00001 hypothetical protein           

MSWFQPLQCQDPVHEGGGAYTVFGRTLIFSNFADQRLYRLDPARPPAHHPAIECRYADGV  

INARCRPITCACEDHRLPGREALNTIVAIDLDGEVEMQVLAKGYDFYPSPRISPDGRRLA  

WPAWHHPQMPWDGTELWTGELEKDGSLGAVERVAGGSDESIFQPQWSPDGILHFVSDRTG  

WSNLYCWQDGHVLALTDIQAELSRPQWRFGFSTYAFLTPDRIICTYAQDGIWKLARLDTS  

 YLKIDPIKTPFTEISYLEACRIMPSSSPALLIWPPRW      

 >JKJFLGDP_00002 hypothetical protein        

MQKLAPYGSWRSPITSDMIASQTIGLEQIALEGSDIYWIESRPAEGGRSVIIRCDPGGGV  

 DELVPAPSMPGPGA              

 
  

The final rule of the pipeline is ‘seqkit_length’, this will retrieve the sequence length of each 

ORF. This rule combined with the penultimate rule, ‘hypo_list’, can determine whether the 

ORFs are potentially incomplete proteins. If the ORFs are both hypothetical and smaller than 

typical gene length for prokaryotes, they can be disregarded as a result of poor sequencing.  
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Chapter 4:  Results (Methanothrix soehngenii)  

  

4.1 Overall pipeline   

  

The pipeline was split into 3 main steps (Figure 8). The first step of the pipeline, protein 

identification, was to produce a functional annotation. This annotation involved providing a  

KEGG number to every ORF that was recognised by the reference databases of the tools. 

The second step of the pipeline, confidence system, involved a confidence ranking system 

that was devised based on the completeness of the annotations generated in step 1. In the 

final step of the pipeline, manual annotation, involved low quality ORFs (determined by the 

confidence system) that were placed into a new dataframe. This dataframe was passed 

through a series of functional and taxonomic annotations. This provided more breadth to the 

initial annotations generated by comparison of the sequences to a larger number of 

reference databases. The sequence lengths of these ORFs was discovered from this which 

provided greater understanding of why the proteins were unknown e.g. they were incomplete 

proteins during sequencing or perhaps subject to truncation via mutations.  

  

  
  

Figure 8. Directed acyclic graph illustrating the three main steps of the functional annotation 

pipeline. The main steps are 2.3.1 Protein Identification (blue), 2.3.2 Confidence Ranking 

(yellow) and 2.3.3 Manual Annotation (green).  

  

4.2 PROKKA output for Methanothrix soehngenii   

  

The first output produced by the pipeline is the PROKKA output files. The amino acid 

sequence file (*.faa) is utilised as an input to run many of the bioinformatic tools in this 

pipeline (Table 9).  
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Table 9. Output file generated by PROKKA for the Methanothrix soehngenii MAG. Amino 

acid sequence of each ORF in this MAG. The entire output file can be found in the Github 

repository, MRes-pipeline (https://github.com/louisegrimble/MRes-pipeline).   

 

 >JKJFLGDP_00001 hypothetical protein           

  MSWFQPLQCQDPVHEGGGAYTVFGRTLIFSNFADQRLYRLDPARPPAHHPAIECRYADGV  

   INARCRPITCACEDHRLPGREALNTIVAIDLDGEVEMQVLAKGYDFYPSPRISPDGRRLA    

  WPAWHHPQMPWDGTELWTGELEKDGSLGAVERVAGGSDESIFQPQWSPDGILHFVSDRTG  

  WSNLYCWQDGHVLALTDIQAELSRPQWRFGFSTYAFLTPDRIICTYAQDGIWKLARLDTS  

   YLKIDPIKTPFTEISYLEACRIMPSSSPALLIWPPRW      

 >JKJFLGDP_00005 Arginine--tRNA ligase      

  MIGDTLVRILRRAGCTVDAQYYINDMGRQEAMVVVGCDHFQLDDSKADHATARVYIAANK  

   EMETTPAIREEADRVIQLYEAGDPKITAKIQSAVRYAISGIEETLERMNIRHDNYHWESE    

   FVRDGSVAEILKRLEDRPGGLGGGIASAGSERIRF        

 
  

 

4.3 EggNOG output for Methanothrix soehngenii   

  
The EggNOG output file provides each ORF with an E-value, predicted protein name, KEGG 

number, functional COG, along with other information (Table 10). The E-value is defined by 

the estimated probability that the protein will be found in the database. Therefore, the closer 

the E-value is to zero, the better the prediction of the ORF. The KEGG KO is an identifier 

given to each protein that is recognised by the KEGG Orthology. Which can then be used to 

refer to KEGG pathways, to identify the role and/or function of the protein in certain 

biological processes. Functional Cluster of Orthologous Groups (COGs) is the classification 

of proteins in order to try to determine their function via phylogenetic analysis. The KEGG 

KO and COG predictions will later determine the confidence values of the confidence 

ranking system. However, not all of this information from the EggNOG annotation is always 

provided to each ORF. This could be due to a number of factors including the query 

sequence not being  present in the KEGG database, or the protein has not been discovered 

yet (often referred to as a hypothetical protein). There also could have been errors during 

sequencing. For example, the use of different techniques can provide varied results, as 

Illumina sequencing is more accurate than Nanopore sequencing (McNaughton, et al., 

2019). Finally, recovering DNA from environmental samples is likely to result in errors 

(Mande, Mohammed and Ghosh, 2012).  
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Table 10. Output file generated by EggNOG for the Methanothrix soehngenii MAG. The  

entire output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

  

#query  seed_ortholog  evalue  score  

JKJFLGDP_00001  1173027.Mic7113_1202  3.21E-85  275  

JKJFLGDP_00002  756067.MicvaDRAFT_1231  4.63E-22  95.5  

JKJFLGDP_00003  192952.MM_1348  0.000962  42.7  

JKJFLGDP_00004  521011.Mpal_0288  3.16E-11  63.9  

JKJFLGDP_00005  224325.AF_0894  2.55E-37  141  

JKJFLGDP_00006  1094980.Mpsy_1669  1.30E-48  170  

JKJFLGDP_00007  679926.Mpet_0612  3.29E-09  58.2  

JKJFLGDP_00008  269797.Mbar_A1008  1.24E-14  75.5  

JKJFLGDP_00009  1094980.Mpsy_1047  1.34E-26  105  

JKJFLGDP_00010  1120936.KB907210_gene5880  1.00E-31  119  
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eggNOG_OGs  

 

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia 

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,245YF@183980|Archaeoglobi  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG1842@1|root,arCOG04782@2157|Archaea,2XU11@28890|Euryarchaeota,2N9P1@224756|Methanomicrobia 

COG1842@1|root,COG1842@2|Bacteria,2GP0K@201174|Actinobacteria,4EGYB@85012|Streptosporangiales  

 
     



   48  

max_annot_lvl  COG_category  Description  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

183980|Archaeoglobi  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  K  PspA/IM30 family  

201174|Actinobacteria  KT  PspA/IM30 family  
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Preferred_name 

dap2  

GOs  

-  

EC  

-  

KEGG_ko  

-  

KEGG_Pathway  KEGG_Module  

-  -  

dap2  -  -  -  -  -  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

-  -  -  ko:K03969  -  -  

-  -  -  ko:K03969  -  -  
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KEGG_Reaction  KEGG_rclass  BRITE  

-  -  -  

-  -  -  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

-  -  ko00000  

-  -  ko00000  
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 KEGG_TC  CAZy  BiGG_Reaction  PFAMs  

-  -  -  PD40,Peptidase_S9  

-  -  -  PD40,Peptidase_S9  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  PspA_IM30  

-  -  -  PspA_IM30  

  

 

4.4 KofamScan output for Methanothrix soehngenii   

  

The KofamScan output file (Table 11), similar to that of EggNOG, provides each ORF with an 

E-value and KEGG number. KofamScan produces three different results per ORF, rather 

than one result per ORF in the EggNOG annotation. To account for this, the repeats with the 

lowest E-value were removed to ensure the reproducibility of the confidence system. As 

mentioned previously, the KEGG KO from KofamScan will also be involved in the 

determination of confidence values. 

 

Table 11. Output file generated by KofamScan for the Methanothrix soehngenii MAG. The 

tsv file was generated to allow for further analysis in the confidence system.  The entire 

output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

 

 

       

gene name  KO  thrshld  score  E-value  KO definition  

---------  ------  -------  ------  ---------  -------------  

JKJFLGDP_00001  K03641  120.57  39.8  5.40E-11  TolB protein  

JKJFLGDP_00001  K08676  573.57  23  1.90E-06  tricorn protease [EC:3.4.21.-]  

JKJFLGDP_00001  K19732  171.77  11  0.022  

LuxR family transcriptional regulator, activator 

of conjugal transfer of Ti plasmids  

JKJFLGDP_00003  K13077  762.57  10.5  0.027  flavone synthase I [EC:1.14.20.5]  

JKJFLGDP_00004  K01887  127.03  41.8  8.10E-12  arginyl-tRNA synthetase [EC:6.1.1.19]  

JKJFLGDP_00004  K01886  508.87  14.8  0.00089  glutaminyl-tRNA synthetase [EC:6.1.1.18]  

JKJFLGDP_00005  K01887  127.03  96.2  3.00E-28  arginyl-tRNA synthetase [EC:6.1.1.19]  

JKJFLGDP_00006  K01887  127.03  81.5  8.30E-24  arginyl-tRNA synthetase [EC:6.1.1.19]  

JKJFLGDP_00006  K04566  231.2  17.8  9.30E-05  lysyl-tRNA synthetase, class I [EC:6.1.1.6]  

JKJFLGDP_00007  K01887  127.03  18.4  9.20E-05  arginyl-tRNA synthetase [EC:6.1.1.19]  
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KofamScan produces an output file format that can be directly inputted into KEGG-Decoder 

(Table 12). This output consists of the ORF name and the KEGG KO that KofamScan has 

assigned to each of the ORFs.   

 

Table 12. Output file generated by KofamScan for the Methanothrix soehngenii MAG. The txt 

file was generated to be directly inputted into KEGG-Decoder to generate a heatmap. The 

entire output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

  

query  KEGG  

JKJFLGDP_00037  K02574  

JKJFLGDP_00038  K22169  

JKJFLGDP_00038  K00343  

JKJFLGDP_00039  K22168  

JKJFLGDP_00039  K00342  

JKJFLGDP_00040  

JKJFLGDP_00041  

JKJFLGDP_00042  

JKJFLGDP_00043  

  
  
  

K22166  

JKJFLGDP_00043  K00340  

  

 

4.5 Summary of EggNOG and KofamScan annotation for Methanothrix soehngenii  

  

A series of statistics were generated, to compare both EggNOG and KofamScan outputs 

(Table 13). EggNOG and KofamScan produce differing predictions for the same query 

sequence i.e. they identify a different total number of proteins. EggNOG identifies 1980 

proteins and KofamScan identifies 2098 proteins. This difference could be due to the 

variation between the profile hidden Markov models used by KofamScan and the KEGG 

orthology database used by EggNOG. 31.46% of the proteins annotated by EggNOG were 

not assigned a KEGG KO. Whereas, all 2098 proteins that were annotated by KofamScan 

are assigned a KEGG KO. KofamScan will seemingly provide a prediction regardless of the 

quality, therefore, predictions made by KofamScan are likely to be less precise than 

EggNOG. The application of a confidence measure will ensure the results generated are 

accurate and will automatically remove ORFs that were not provided an accurate prediction.  

 

Table 13. Summary of the EggNOG and KofamScan annotations (Methanothrix soehngenii 

MAG).  

 

  

Proteins predicted EggNOG  2103  

Proteins predicted KofamScan (incl. duplicates)  1099  

Proteins predicted KofamScan   2099  

Proteins without KEGG number (EggNOG)  804 (38.2%)  

Proteins without KEGG number (KofamScan)  0 (0.0%)  
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4.6 Manipulation of EggNOG output file for input into KEGG-Decoder.  

  

In order to input the EggNOG annotation into KEGG-Decoder, manipulation of the EggNOG 

output file format is required. For example, the EggNOG output file presents KEGG KOs as 

“ko:K00399” and KofamScan presents the same KEGG KO as “K00399”. Following a 

multiple step manipulation, a final file format (Table 14) of the EggNOG annotation output is 

generated.  

  

Table 14. Output file generated by Snakemake rule 'egg_for_decoder', removed additional 

columns that are not required to run KEGG-Decoder.  The entire output file can be found in 

the Github repository, MRes-pipeline (https://github.com/louisegrimble/MRes-pipeline).  

 

 ,query,KEGG    

0,JKJFLGDP_00002,-   

1,JKJFLGDP_00003,K01887  

2,JKJFLGDP_00004,K01887  

3,JKJFLGDP_00005,K01887  

4,JKJFLGDP_00006,K01887  

5,JKJFLGDP_00007,K01887  

6,JKJFLGDP_00008,K01887  

7,JKJFLGDP_00009,K03969  

8,JKJFLGDP_00010,K03969  

 9,JKJFLGDP_00011,-     

 
  

 

4.7 KEGG-decoder illustrates the metabolism of Methanothrix soehngenii.   

  
The heatmap (Figure 9) generated by KEGG-decoder visualises the number of genes that 

are found in a number of biological processes, according to the KEGG orthology.  

Methanothrix soehngenii is an acetoclastic methanogen which is illustrated by Figure 9. This 

confirms the predictions of protein function via EggNOG and KofamScan is to a high 

standard. The annotations provided by both tools were similar overall, with some exceptions 

such as Glucoamylase, and the rTCA cycle. In the rTCA cycle, EggNOG predicted a high 

frequency of proteins, and KofamScan predicted no proteins. In the Glucoamylase pathway 

EggNOG predicted no proteins and KofamScan predicted a high frequency of proteins. This 

is likely due to the reference databases of each tool consisting of different reference 

sequences, providing varied predictions. However, the EggNOG and KofamScan 

annotations of the metabolic pathways involved in acetoclastic methanogenesis e.g. 

Methanogenesis via acetate, methanogenesis via CO2, coenzyme B/ coenzyme M 

regeneration and coenzyme M reduction to methane; are very similar. Both tools predicted 

high frequencies of proteins within these pathways, which is consistent with M. soehngenii 

being an acetoclastic methanogen.  
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Figure 9. Heatmap generated by KEGG-Decoder illustrates the completeness of metabolic 

pathways in  Methanothrix soehngenii MAG, recognised by KEGGmapper. Dark red - 1, white- 

0, 1 is equivalent to complete pathway and 0 is equivalent to the entire pathway being absent.  
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4.8 Taxonomic analysis of Methanothrix soehngenii via EggNOG.     

  
The taxonomic levels of each ORF within the M. soehngenii MAG was compared against the 

E-value prediction (Figure 10) from the EggNOG annotation. EggNOG predicted proteins 

from 3 methanogenic orders of the Euryarchaeaota phylum (Methanomicrobia, 

Methanococcus, and Methanobacteria). The E-value illustrates the confidence of the 

taxonomic classification of the ORFs.     
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Figure 10. Boxplot illustrating the taxonomic analysis generated by EggNOG compared 

against the E-value of each protein prediction, for the Methanothrix soehngenii MAG. The plot 

was generated using ggplot2 in R studio and the data was log-transformed  (-Log10). Colour 

legend: 

 
  

4.9 E-value distribution of EggNOG protein prediction   

  
Figure 11 illustrates the distribution of all E-values of EggNOG predictions, however the 

distribution is not clear with this scale. The difference between the E-values is so small that 

the difference is not visualised in this format. To combat this issue the data was transformed, 

by -log10, ensuring the distribution is clearly visible.  
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Figure 11. Histogram illustrating the E-values of the predictions made by EggNOG of the M. 

soehngenii MAG sequence. All predictions have a relatively good E-value as they are all 

close to zero, however this plot does not visualise the overall distribution. 

 

The overall E-value distribution of predictions (of the M. soehngenii MAG) is represented as 

a histogram (Figure 12). This plot shows that the data is negatively skewed towards zero. 

Evalues closer to zero are desired, as it indicates that the predictions generated by EggNOG 

are reliable and the user can be confident that a high proportion of the proteins have been 

predicted accurately. However, this data has been transformed (-log10), meaning that the 

data shows that there are few predictions close to zero (or one in Figure 12) in proportion to 

the scale in Figure 12. There is a high number of E-values towards one (or zero in Figure 

12), although the difference between all of the E-values in the sequences is very small, this 

can be seen clearly in Figure 11. 
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Figure 12. Histogram illustrating the E-values of the predictions made by EggNOG of the M. 

soehngenii MAG sequence. The data is skewed towards zero, however the data was log-

transformed (-Log10), therefore there are only few E-values with an exceptional E-value.  

  

4.10 Functional COGs predicted by EggNOG in Methanothrix soehngenii MAG.  

  
The number of proteins assigned to each of the functional COGs (Cluster of Orthologous 

Groups) is visualised in a bar plot (Figure 13). This provides more information about the 

function of groups of proteins based on their taxonomy. Functional COGs can therefore help 

to determine the overall function of the organism. EggNOG predicted a high abundance of 

proteins belonging to S and L functional COGs in the M. soehngenii MAG. The S functional 

COG is defined as an ‘unknown function’, whereas L is responsible for replication, 

recombination and repair (Chen, Xia and Li, 2022). A high abundance of L COG is expected 

as they’re involved in basic cellular processes. COGs involved in metabolism also had a 

prominent number of proteins present. These COGs inculded P (inorganic ion transport and 

metabolism), H (Coenzyme transport and metabolism), and C (energy production and 

conversion). This result is expected due to the fact that the sole energy source of M. 

soehngenii is acetate and is metabolised by the acetoclastic methanogenesis pathway, 

which involves coenzyme M and and B (Horng, Becker and Ragsdale, 2001).  
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Figure 13. Bar plot illustrating the frequency of different functional Cluster of Orthologous 

Groups (COGs) predicted by EggNOG in the Methanothrix soehngenii MAG sequence. The 

majority of proteins predicted were assigned the S COG, which are described as proteins of 

unknown function.  

  

  

4.11 Truth tables were generated to devise confidence ranking system  

  
A Truth table (Table 15) was generated to devise the logic for the confidence ranking system. 

The tables compare the functional COG from the EggNOG output, the KEGG KO from 

EggNOG and the KEGG KO from KofamScan. This truth table is not entirely applicable to 

the dataset as there is an additional confidence value that the automatically generated truth 

table cannot determine.  
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Table 15. Truth table generated by Python module ‘ttg’, logic of truth table used to develop 

the confidence rank system.  

  
 

A manually-made truth table (Table 16) was generated to include the additional confidence 

value (confidence value of 1). This value is assigned to ORFs with the highest confidence in 

the annotations. Confidence value 1 is defined as when the KEGG KO from both EggNOG 

and KofamScan, were predicted to be the same value, and a functional COG was predicted. 

The confidence value 2 is defined as a ORF that was predicted a KEGG KO from both tools, 

but that KEGG KO was not identical. A confidence value of 3 is appointed when either 

EggNOG or KofamScan predicted a KEGG KO (but not both) and a functional COG is 

provided. A confidence value of 4 is given when either EggNOG or KofamScan provide a 

KEGG number but no functional COG is provided. Confidence value of 5 is given when only 

a functional COG is provided by EggNOG and finally, a confidence value of 6 is a ORF that 

has no KEGG from either tool nor a functional COG from EggNOG.  

 

Table 16. Truth table manually generated using Microsoft Excel, logic of truth table used to 

develop the confidence rank system. An additional condition in the confidence system was 

required, this was not possible to illustrate in Table 15.   
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The confidence ranking system was devised to determine whether the protein predictions of 

both the tools (EggNOG and KofamScan) were precise. The confidence value is based on 3 

parameters- EggNOG providing a KEGG KO, EggNOG providing a functional COG and 

finally KofamScan providing a KEGG KO. Table 17 was generated to be inputted into the 

confidence system.  

 

Table 17.  Input file for Confidence ranking system (from Methanothrix soehngenii MAG). 

Output files from EggNOG and KofamScan (tsv) were merged using an outer join. The entire 

output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

#query  seed_ortholog  evalue  score  

JKJFLGDP_00001  1173027.Mic7113_1202  3.21E-85  275  

JKJFLGDP_00002  756067.MicvaDRAFT_1231  4.63E-22  95.5  

JKJFLGDP_00003  192952.MM_1348  0.000962  42.7  

JKJFLGDP_00004  521011.Mpal_0288  3.16E-11  63.9  

JKJFLGDP_00005  224325.AF_0894  2.55E-37  141  

JKJFLGDP_00006  1094980.Mpsy_1669  1.30E-48  170  

JKJFLGDP_00007  679926.Mpet_0612  3.29E-09  58.2  

JKJFLGDP_00008  269797.Mbar_A1008  1.24E-14  75.5  

JKJFLGDP_00009  1094980.Mpsy_1047  1.34E-26  105  

JKJFLGDP_00010  1120936.KB907210_gene5880  1.00E-31  119  
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eggNOG_OGs  

 

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia 

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,245YF@183980|Archaeoglobi  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG1842@1|root,arCOG04782@2157|Archaea,2XU11@28890|Euryarchaeota,2N9P1@224756|Methanomicrobia 

COG1842@1|root,COG1842@2|Bacteria,2GP0K@201174|Actinobacteria,4EGYB@85012|Streptosporangiales  
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max_annot_lvl  COG_category  Description  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

183980|Archaeoglobi  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  K  PspA/IM30 family  

201174|Actinobacteria  KT  PspA/IM30 family  
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Preferred_name 

dap2  

GOs  

-  

EC  

-  

KEGG_ko  

-  

KEGG_Pathway  KEGG_Module  

-  -  

dap2  -  -  -  -  -  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

-  -  -  ko:K03969  -  -  

-  -  -  ko:K03969  -  -  
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KEGG_Reaction  KEGG_rclass  BRITE  

-  -  -  

-  -  -  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

-  -  ko00000  

-  -  ko00000  
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 KEGG_TC  CAZy  BiGG_Reaction  PFAMs  

-  -  -  PD40,Peptidase_S9  

-  -  -  PD40,Peptidase_S9  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  PspA_IM30  

-  -  -  PspA_IM30  
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4.12 Confidence ranking system output for Methanothrix soehngenii  

  
The output from the confidence system is almost identical to Table 17, except with an 

additional column, ‘confidence_value’ (Table 18). This additional column consists of the  

confidence value that was assigned to each ORF based on the logic in the truth tables 

(Table 16).   

  

Table 18. Output file generated by the confidence system (from Methanothrix soehngenii 

MAG) illustrates the confidence score of each ORF. The entire output file can be found in the 

Github repository, MRes-pipeline (https://github.com/louisegrimble/MRes-pipeline).  

 

#query  seed_ortholog  evalue  score  

JKJFLGDP_00001  1173027.Mic7113_1202  3.21E-85  275  

JKJFLGDP_00002  756067.MicvaDRAFT_1231  4.63E-22  95.5  

JKJFLGDP_00003  192952.MM_1348  0.000962  42.7  

JKJFLGDP_00004  521011.Mpal_0288  3.16E-11  63.9  

JKJFLGDP_00005  224325.AF_0894  2.55E-37  141  

JKJFLGDP_00006  1094980.Mpsy_1669  1.30E-48  170  

JKJFLGDP_00007  679926.Mpet_0612  3.29E-09  58.2  

JKJFLGDP_00008  269797.Mbar_A1008  1.24E-14  75.5  

JKJFLGDP_00009  1094980.Mpsy_1047  1.34E-26  105  

JKJFLGDP_00010  1120936.KB907210_gene5880  1.00E-31  119  

   

 

 

 

 

 

 

 

 

 

 

 

 

gene name  KO  thrshld  score  E-value  KO definition  

---------  ------  -------  ------  ---------  -------------  

JKJFLGDP_00001  K03641  120.57  39.8  5.40E-11  TolB protein  

JKJFLGDP_00001  K08676  573.57  23  1.90E-06  tricorn protease [EC:3.4.21.-]  

JKJFLGDP_00001  K19732  171.77  11  0.022  

LuxR family transcriptional regulator, activator 

of conjugal transfer of Ti plasmids  

JKJFLGDP_00003  K13077  762.57  10.5  0.027  flavone synthase I [EC:1.14.20.5]  

JKJFLGDP_00004  K01887  127.03  41.8  8.10E-12  arginyl-tRNA synthetase [EC:6.1.1.19]  

JKJFLGDP_00004  K01886  508.87  14.8  0.00089  glutaminyl-tRNA synthetase [EC:6.1.1.18]  

JKJFLGDP_00005  K01887  127.03  96.2  3.00E-28  arginyl-tRNA synthetase [EC:6.1.1.19]  

JKJFLGDP_00006  K01887  127.03  81.5  8.30E-24  arginyl-tRNA synthetase [EC:6.1.1.19]  

JKJFLGDP_00006  K04566  231.2  17.8  9.30E-05  lysyl-tRNA synthetase, class I [EC:6.1.1.6]  

JKJFLGDP_00007  K01887  127.03  18.4  9.20E-05  arginyl-tRNA synthetase [EC:6.1.1.19]  
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eggNOG_OGs  

 

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG1506@1|root,COG1506@2|Bacteria,1G200@1117|Cyanobacteria,1H8T3@1150|Oscillatoriales  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia 

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,245YF@183980|Archaeoglobi  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG0018@1|root,arCOG00487@2157|Archaea,2XTWP@28890|Euryarchaeota,2N9C5@224756|Methanomicrobia  

COG1842@1|root,arCOG04782@2157|Archaea,2XU11@28890|Euryarchaeota,2N9P1@224756|Methanomicrobia 

COG1842@1|root,COG1842@2|Bacteria,2GP0K@201174|Actinobacteria,4EGYB@85012|Streptosporangiales  

 
     



   70  

max_annot_lvl  COG_category  Description  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

1117|Cyanobacteria  E  PFAM Prolyl oligopeptidase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

183980|Archaeoglobi  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  J  Belongs to the class-I aminoacyl-tRNA synthetase family  

224756|Methanomicrobia  K  PspA/IM30 family  

201174|Actinobacteria  KT  PspA/IM30 family  

     



   71  

Preferred_name 

dap2  

GOs  

-  

EC  

-  

KEGG_ko  

-  

KEGG_Pathway  KEGG_Module  

-  -  

dap2  -  -  -  -  -  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

argS  -  6.1.1.19  ko:K01887  ko00970,map00970  M00359,M00360  

-  -  -  ko:K03969  -  -  

-  -  -  ko:K03969  -  -  
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KEGG_Reaction  KEGG_rclass  BRITE  

-  -  -  

-  -  -  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

R03646  RC00055,RC00523  ko00000,ko00001,ko00002,ko01000,ko01007,ko03016,ko03029  

-  -  ko00000  

-  -  ko00000  
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 KEGG_TC  CAZy  BiGG_Reaction  PFAMs  

-  -  -  PD40,Peptidase_S9  

-  -  -  PD40,Peptidase_S9  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  Arg_tRNA_synt_N,DALR_1,tRNA-synt_1d  

-  -  -  PspA_IM30  

-  -  -  PspA_IM30  
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gene name  KO  thrshld  score  E-value  

---------  ------  -------   ------   ---------   

JKJFLGDP_00001  K03641   120.57   39.8   5.40E-11  

JKJFLGDP_00001  K08676   573.57   23   1.90E-06  

JKJFLGDP_00001  K19732  
 

171.77  
 

11  
 

0.022  

JKJFLGDP_00003  K13077   762.57   10.5   0.027  

JKJFLGDP_00004  K01887   127.03   41.8   8.10E-12  

JKJFLGDP_00004  K01886   508.87   14.8   0.00089  

JKJFLGDP_00005  K01887   127.03   96.2   3.00E-28  

JKJFLGDP_00006  K01887   127.03   81.5   8.30E-24  

JKJFLGDP_00006  K04566   231.2   17.8   9.30E-05  

JKJFLGDP_00007  K01887   127.03   18.4   9.20E-05  
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 KO definition  confidence_value  

 

 TolB protein   1  

 0   1  

flavone synthase I [EC:1.14.20.5]             5  

arginyl-tRNA synthetase [EC:6.1.1.19]                         1  

arginyl-tRNA synthetase [EC:6.1.1.19]             3  

arginyl-tRNA synthetase [EC:6.1.1.19]    1  

arginyl-tRNA synthetase [EC:6.1.1.19]   1  

arginyl-tRNA synthetase [EC:6.1.1.19]   1  

phage shock protein A  1 phage shock protein A 1  

 
  

 

1037 ORFs have a confidence value of 1 (Table 19) in the M. soehngenii MAG. This 

accounts for 45.2% of the ORFs, meaning that both bioinformatic tools can provide an 

accurate annotation to approximately half of the ORFs in the M. soehngenii MAG. 

Considering that these results are from metagenomic data, a confidence of 45% is 

consistent with the current knowledge and tools. However, this highlights significant 

knowledge gaps in the subject area. Although the results generated by EggNOG and 

KofamScan are currently adequate, a higher percentage of ORFs being annotated 

accurately is preferable. A confidence value of 2 is also a satisfactory confidence prediction 

however, it is not entirely accurate. A much lower proportion (10.5%) of the ORFs scored a 

confidence value of 2. ORFs with a confidence value of 3 are not adequate, although they do 

provide some information about the general function of the ORF. ORFs with a confidence 

value of 4, 5, or 6, should be disregarded. These ORFs will undergo further annotation via an 

additional manual annotation (Chapter 3.3.2). To conclude, the ability of the pipeline to 

annotate and organise such large amounts of data is still beneficial.  

  

Table 19. Summary of the confidence system analysis of each ORF in the Methanothrix 

soehngenii MAG.  

Confidence Value  Frequency  

1  1037  

2  240  

3  459  

4  257  

5  252  

6  49  
  

The output file from the confidence system is also illustrated in a bar plot (Figure 14), to 

visualise the distribution of confidence values across the entire M. soehngenii MAG.  
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Figure 14. Barplot illustrating the confidence system output of the Methanothrix soehngenii 

MAG sequence. 1 = the highest confidence and 6= the lowest confidence. Colorblindness 

Guide R package was used to ensure the colours were colour blindness safe.  

  

4.13 Manual annotation of the lowest quality ORFs of Methanothrix soehngenii  

  

558 (23.4%) ORFs with the lowest confidence values (4, 5, or 6) were organised into a 

separate data frame (Table 20). These ORFs will undergo additional manual annotation in 

order to discover their function. After the ORFs have undergone this process, it is likely 

that more information will be discovered about the individual ORFs concerning their 

taxonomy, function, or sequence completeness.   

  

Table 20. Output file generated by the confidence system (from Methanothrix soehngenii 

MAG) of each ORF with a low confidence score (i.e. confidence score of 4, 5 or 6). The 

entire output file can be found in the Github repository, MRes-pipeline  

 (https://github.com/louisegrimble/MRes-pipeline). 

 

JKJFLGDP_00002  

JKJFLGDP_00011  

JKJFLGDP_00072  

JKJFLGDP_00079  

JKJFLGDP_00083  

JKJFLGDP_00084  

JKJFLGDP_00085  

JKJFLGDP_00086  

JKJFLGDP_00087  

JKJFLGDP_00093  

 
   

 

 

query   
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4.14 Kraken2 output for low quality ORFs of Methanothrix soehngenii   

  
Kraken2 output (Table 21) predicts the closest possible taxonomic annotation. This is 

illustrated in the first column, ‘U’ equates to unclassified, ‘K’ is kingdom, ‘P’ is phylum etc. A 

taxid is also provided to each sequence given, this will be ‘0’ if the protein is unclassified. 

Next is sequence length and the final column is the lowest common ancestor (LCA) 

mapping of each k-mer in the sequences. E.g. ‘562:13’ indicates that the first 13 kmers are 

mapped to the taxonomy ID 562. The majority of ORFs were predicted as an unclassified 

protein, meaning the confidence system was correct to define these as low quality open 

reading frames.  

  

Table 21. Output file generated by Kraken2 for the Methanothrix soehngenii MAG. The entire 

output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

Taxonomy   Sequence  Tax ID  

sequence  

length  LCA  

U  JKJFLGDP_00002  0  74  A:40   

U  JKJFLGDP_00011  0  67  A:33   

U  JKJFLGDP_00072  0  177  A:143   

U  JKJFLGDP_00079  0  170  A:136   

U  JKJFLGDP_00083  0  110  A:76   

U  JKJFLGDP_00084  0  79  A:45   

U  JKJFLGDP_00085  0  385  A:351   

U  JKJFLGDP_00086  0  73  A:39   

U  JKJFLGDP_00087  0  72  A:38   

U  JKJFLGDP_00093  0  79  A:45   

U  JKJFLGDP_00094  0  145  A:111   

  

4.15 InterProScan output for low quality ORFs of Methanothrix soehngenii   

  

InterProScan output file (Table 22) provides a functional annotation with a description of the 

function and a protein accession, which is a reference ID for the protein within the InterPro 

database. An E-value is also provided as well as a start and stop location of protein in the 

sequence. This would provide useful information for further analysis such as associative 

transcriptomics or alignment of query sequences against a known protein sequence. The 

type of analysis is also given in the output file. A Pfam analysis was performed on the ORFs 

in this MAG, which is the comparison of the sequence against the Pfam database and allows 

for the classification of protein domains and families (Finn, et al., 2014).  

 

 

 

 

 

 

    



   78  

 Table 22. Output file generated by InterProScan for the Methanothrix soehngenii MAG. The 

entire output file can be found in the Github repository, MRes-pipeline 

(https://github.com/louisegrimble/MRes-pipeline).  

 

JKJFLGDP_02396  8c0ef3f8ed19fe5467c97cb9a1a87a50  245  TIGRFAM  

JKJFLGDP_02396  8c0ef3f8ed19fe5467c97cb9a1a87a50  245  Pfam  

JKJFLGDP_00467  21ce23c07cd41d4f8eb6384d0ee85b60  195  Pfam  

JKJFLGDP_00467  21ce23c07cd41d4f8eb6384d0ee85b60  195  Pfam  

JKJFLGDP_00467  21ce23c07cd41d4f8eb6384d0ee85b60  195  PANTHER  

JKJFLGDP_00444  54c411f7aed6f5bf4df7fcb2a17d3ca8  159  Pfam  

JKJFLGDP_00444  54c411f7aed6f5bf4df7fcb2a17d3ca8  159  Gene3D  

JKJFLGDP_00444  54c411f7aed6f5bf4df7fcb2a17d3ca8  159  TIGRFAM  

JKJFLGDP_00444  54c411f7aed6f5bf4df7fcb2a17d3ca8  159  PANTHER  

JKJFLGDP_00444  54c411f7aed6f5bf4df7fcb2a17d3ca8  159  CDD  
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TIGR02391  hypoth_ymh: TIGR02391 family protein   118  238  2.80E-29  

PF09509  Protein of unknown function (Hypoth_ymh)   115  235  1.10E-31  

PF01169  Uncharacterized protein family UPF0016   15  87  4.60E-17  

PF01169  Uncharacterized protein family UPF0016   112  185  1.80E-22  

PTHR12608  TRANSMEMBRANE PROTEIN HTP-1 RELATED   14  188  1.30E-23  

PF04608  Phosphatidylglycerophosphatase A   51  147  4.60E-09  

G3DSA:1.10.3760.10  -  -   158  2.80E-39  

TIGR03161  
ribazole_CobZ: alpha-ribazole phosphatase CobZ   

7  148  2.70E-47  

PTHR35336  ADENOSYLCOBINAMIDE AMIDOHYDROLASE   4  130  7.20E-11  

cd06971  PgpA   6  148  1.07E-13  
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4.16 Blast+ output for low quality ORFs of Methanothrix soehngenii   

  

Blast+ output file generates a sequence ID of reference sequences, to identify the protein 

prediction within the NCBI database. An E-value is given, as well as the percentage of 

identical matches (pident), alignment length, stop and start of alignment of query sequence. 

Further analysis of the matches made by Blast+ can be made by the user. Due to technical 

difficulties with the Viking cluster, the Blast+ output files were not generated.   

  

4.17 SeqKit output for low quality ORFs of Methanothrix soehngenii   

  

A text file of the low quality ORFs that were predicted as a ‘hypothetical’ protein by PROKKA 

was generated (Table 23), using the Unix command ‘grep’. 302 (54.1%) low quality ORFs 

were predicted as hypothetical proteins by PROKKA.   

  

    

Table 23. Output file generated by Snakemake rule ‘hypo_list’ (from Methanothrix soehngenii 

MAG), consists of all low quality ORFs that are annotated as ‘hypothetical’ proteins in the 

PROKKA annotation. The entire output file can be found in the Github repository, MRes-

pipeline (https://github.com/louisegrimble/MRes-pipeline).  

Query  Function 

>JKJFLGDP_00002   hypothetical protein 

>JKJFLGDP_00011   hypothetical protein 

>JKJFLGDP_00072   hypothetical protein 

>JKJFLGDP_00079   hypothetical protein 

>JKJFLGDP_00083   hypothetical protein 

>JKJFLGDP_00084   hypothetical protein 

>JKJFLGDP_00086   hypothetical protein 

>JKJFLGDP_00087   hypothetical protein 

>JKJFLGDP_00093   hypothetical protein 

>JKJFLGDP_00094 hypothetical protein 

 

 

The final output generated by the pipeline is generated by SeqKit, which provides the 

sequence length of each of the low quality ORFs (Table 24). The sequence length of each 

ORF can provide an explanation for the lack of annotation provided by the numerous 

functional annotation tools. This could be due to incomplete proteins, which in metagenomic 

T  30/01/2023  IPR012654  
Conserved hypothetical protein CHP02391  

-     

T  30/01/2023  IPR012654  

Conserved hypothetical protein CHP02391  

-    

T  30/01/2023  IPR001727  Gdt1 family  -    

T  30/01/2023  IPR001727  Gdt1 family  -    

T  30/01/2023  IPR001727  Gdt1 family  -    

T  30/01/2023  IPR007686  YutG/PgpA domain  GO:0006629|GO:0008962  

T  30/01/2023  -  -  -    

T  30/01/2023  IPR017577  Alpha-ribazole phosphatase, CobZ  -    

T  30/01/2023  -  -      

T  30/01/2023  IPR007686  YutG/PgpA domain  GO:0006629|GO:0008962  

https://github.com/louisegrimble/MRes-pipeline
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data could be caused by inaccurate shotgun sequencing or assembly of the MAGs (Bharti 

and Grimm, 2021). Another explanation for short sequence length could be naturally 

occurring missense mutations in the genome sequences, resulting in truncated protein 

sequences and are therefore unable to be identified.  

 

Table 24. Output file generated by SeqKit tool, that includes the sequence length of each 

ORF that was defined as low quality by the confidence system in the Methanothrix soehgenii 

MAG.  

 

Query   Function  seq length  

JKJFLGDP_00002   hypothetical protein  74  

JKJFLGDP_00011   hypothetical protein  67  

JKJFLGDP_00072   hypothetical protein  177  

JKJFLGDP_00079   hypothetical protein  170  

JKJFLGDP_00083   hypothetical protein  110  

JKJFLGDP_00084   hypothetical protein  79  

JKJFLGDP_00085   

ISNCY family transposase 

ISMac19  385  

JKJFLGDP_00086  hypothetical protein  73  

JKJFLGDP_00087   hypothetical protein  72  

JKJFLGDP_00093   hypothetical protein  79  
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Chapter 5: Results (NCBI)  

  

5.1 Summary of EggNOG and KofamScan annotations   

  

The functional annotation generated by EggNOG and KofamScan were summarised 

respectively (Table 25). Within the NCBI dataset, EggNOG predicts a higher total number of 

proteins within each sequence. Often this is only by approximately 100 proteins, i.e. S. 

aureus: EggNOG 2435, KofamScan 2306 and V. cholerae: EggNOG 2681, KofamScan  

2541. However, there are instances where there is a difference of 500 proteins i.e. E. coli:  

EggNOG 5121, KofamScan 4642. This is not indicative of the EggNOG annotation of the of 

M. soehngenii MAG (Table 13), which had a higher number of predictions from KofamScan 

rather than EggNOG. As mentioned in the MAG results (Table 13), the number of protein 

predictions is initially higher from KofamScan as three predictions are assigned to each ORF. 

The duplicates were removed to ensure reproducible results throughout the bioinformatic 

tools and confidence ranking system. The number of ORFs that were not assigned a KEGG 

KO number by EggNOG was fairly consistent throughout the NCBI dataset. A mean 

percentage of 34.7% of proteins in each genome sequence were not assigned a KEGG KO. 

This is indicative with the results of the M. soehngenii MAG (Table 13), where 31.5% of the 

proteins annotated by EggNOG were not assigned a KEGG KO. In contrast to EggNOG, 

KofamScan predicts a KEGG KO number for 100% of the ORFs within each genome 

sequence. KofamScan will give a prediction regardless of the quality of the prediction, 

therefore it is likely that the quality of the annotation by EggNOG is overall a higher quality 

than the KofamScan annotation.  

  

 

Table 25. Summary of the EggNOG and KofamScan annotations (NCBI dataset).  

   B. subtilis  E. coli  

P. 
aeruginosa S. aureus  

V.  

cholerae  

Proteins predicted EggNOG Proteins  3981  5121  6386  2435  2681  

predicted KofamScan (incl. duplicates)  137536  141855  206627  76915  80230  

Proteins predicted KofamScan   3758  4642  5932  2306  2541  

Proteins without KEGG number (EggNOG)  

1477  

(37.1%)  

1592  

(31.1%)  

2688  

(42.1%)  

855  

(35.1%)  

751  

(28.0%)  

Proteins without KEGG number (KofamScan)  0 (0.0%)  0 (0.0%)  0 (0.0%)  0 (0.0%)  0 (0.0%)  

  

 

5.2 KEGG-Decoder output of NCBI dataset  

  

The metabolic pathways present in all 5 genomes of the NCBI dataset is illustrated in a 

heatmap (Figure 15). B. subtilis and S. aureus genomes have a high number of genes 

related to the mixed acid: Lactate production, which is indicative of their known metabolism 

under anaerobic conditions. In the E. coli genome sequence, there was a high frequency of 

predicted genes involved in ethanol, acetate and formate production, which are common 

mixed acid fermentation products (Förster and Gescher, 2014). There were no genes 

involved in lactate production, this result is unexpected as E. coli does produce lactate via 

mixed acid fermentation (Förster and Gescher, 2014). It is likely that this error in annotation 

is due to incorrect sequencing of the E. coli sequence that is in the databases used by 

EggNOG and KofamScan. The heat map illustrated that P. aeruginosa metabolises via 

fermentation to produce only acetate and ethanol. There were no proteins present in the 
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mixed acid: lactate pathway, even though P. aeruginosa can undergo pyruvate fermentation 

which results in the production of lactate (Kampers, et al., 2021). This could indicate that P. 

aeruginosa is indirectly involved in producing lactate, rather than directly via mixed acid 

fermentation, resulting in a lack of lactate fermentation genes. Often, the annotation of 

certain pathways vary between KofamScan and EggNOG, for example, S. aureus 

undergoes mixed acid (acetate and ethanol) fermentation respectively. Indicative of literature 

(Fuchs, et al., 2007), EggNOG illustrates the presence of genes within these two metabolic 

pathways, however, KofamScan does not. Not all genes in the mixed acid: acetate pathway 

are present in the KofamScan annotation, but all are present in the EggNOG annotation. 

This is likely due to the query sequences of these genes not aligning appropriately with the 

reference sequences in the databases. Efforts to ensure that small differences in sequences 

do not negatively impact the outcome of the annotation need to be implemented. None of the 

organisms within this dataset undergo methanogenesis, this is clearly illustrated in the 

heatmap, as there is a frequency of zero genes in each of the methanogenesis pathways. 

This confirms the annotations of EggNOG and KofamScan are consistent with the current 

bioinformatic tools and knowledge. All organisms in the NCBI dataset, except S. aureus, 

possess at least one flagella, this is also illustrated in the dendrogram. This result also 

ensures that the annotations predicted by EggNOG and KofamScan are accurate.  
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Figure 15. Heatmap generated by KEGG-Decoder illustrates the completeness of metabolic 

pathways in the NCBI dataset, recognised by KEGGmapper. Dark red - 1, white- 0, 1 is 

equivalent to complete pathway and 0 is equivalent to the entire pathway being absent. ec=  

 E. coli, bs= B.subtilis, pa= P. aeruginosa, sa= S. aureus, vc= V. cholerae.    
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5.3 EggNOG E-value distribution of NCBI dataset  

 

Unlike the results from the original MAG of Methanothrix soehngenii (Figure 12), the  E-value 

distribution of NCBI EggNOG predictions are not negatively skewed. However, all of the 

genomes in the NCBI dataset show a similar distribution (Figure 16), that displays no clear 

pattern or bias. The lack of pattern in the EggNOG output was not expected, as this group of 

genome sequences have a much higher percentage completion than the M. soehngenii 

MAG recovered from the AD site. Therefore, it would be expected that the predictions made 

by EggNOG would be more confident in the NCBI dataset. These genomes are of well 

characterised and highly researched organisms, and so the likelihood of the genes in these 

genomes to be present, is higher. However, this one result is not indicative of the entire 

functional analysis carried out in this pipeline.   

  

  
Figure 16. Histogram illustrating the distribution E-values of the annotations made by 

EggNOG of the NCBI dataset. Plots generated in R Studio using ggplot2, the data was 

logtransformed (-Log10). (a) Bacillus subtilis. (b) Escherichia coli. (c) Pseudomonas 

aeruginosa. (d) Staphylococcus aureus. (e) Vibrio cholerae.    
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5.4 EggNOG taxonomic analysis of Bacillus subtilis  

 

The B. subtilis taxonomy plot (Figure 17) shows that the proteins present in this genome are 

derived from seven different taxonomic groups. Four of which provided a range of E-values 

indicating there are multiple proteins within these groups; Firmicutes, Bacilli, Bacteria & 

Siphoviridae. The other three taxonomic groups only contain a single E-value, suggesting a 

small number of proteins were predicted within the groups, Thermotogae, Clostridia and 

Proteobacteria. The taxonomy of Bacillus is as follows; Kingdom, Bacteria; Phylum,  

Bacillota; Class, Bacilli; Order, Bacillales; Family, Bacillaceae; Genus, Bacillus; Species, 

Bacillus subtilis group (Schoch, et al., 2020). A paper by Huerta-Cepas, J. et al. states that 

“recent speciations lead to smaller and usually more functionally specific sets of orthologs”. 

Therefore, proteins from taxonomic groups that are more closely related to the organism will 

most likely be unique to the organism of interest. Further analysis of genes within these 

taxonomic groups would help to identify genes of interest, i.e. E-value would determine the 

quality of the prediction made by EggNOG. Bacilli is the taxonomic group (Order) that is 

most closely related to B. subtilis, and would likely contain genes specific to its function 

compared to the other taxonomic groups.   

  

 
Figure 17. Boxplot illustrating the taxonomic analysis generated by EggNOG compared 

against the E-value of each ORF, for the Bacillus subtilis genome from NCBI. The plot was 

generated using ggplot2 in R studio and the data was log-transformed  (-Log10).  

 

5.5 EggNOG taxonomic analysis of Escherichia coli   

  

EggNOG has predicted proteins from eight different taxonomic groups (Figure 18) in the E. 

coli genome sequence. These groups contain multiple E-values, suggesting there are 
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multiple proteins within these groups. The taxonomic groups are Caudovirales, Bacteria, 

Gammaproteobacteria, Proteobacteria, Podoviridae, Siphoviridae & Viruses. Again, the 

ORFs from the closely related taxonomic groups are likely to contain genes of interest as 

they are most likely to be unique to the organism. 511145.b4204| is not a taxonomic level, 

this is seen again for multiple proteins in this figure- 155864.EDL933_2987|,  

155864.EDL933_2515|, 155864.EDL933_2453|, 155864.EDL933_2442|,  

155864.EDL933_2262|, 155864.EDL933_2013|, 155864.EDL933_1920,  

155864.EDL933_1407, 155864.EDL933_1307, 155864.EDL933_1087,  

155864.EDL933_0889. These are placed in the ‘max_annot_lvl’ column of the EggNOG 

output file (Table 10), although they should hypothetically be found in the preceding column, 

‘eggNOG_OGs. There is no taxonomy level provided to these particular ORFs, and upon 

further manual investigation via KEGGmapper, the description “duf” or “domain of unknown 

function” is typically given to these proteins. Therefore these should be discarded from the 

output results. There are several individual proteins that are classified as the following 

taxonomic groups Metazoa, Betaproteobacteria, Alphaproteobacteria, Acidithiobacillales,  

Neisseriales.  The taxonomy of E. coli is as follows; Kingdom, Bacteria; Phylum,  

Pseudomonadota; Class, Gammaproteobacteria; Order, Enterobacterales; Family,  

Enterobacteriaceae; Genus, Escherichia (Schoch, et al., 2020). E. coli belongs to the 

Gammaproteobacteria Order, and is the closest group related to E. coli, with multiple genes 

present in the EggNOG annotation. This group of proteins is most likely to have genes of 

interest of E. coli as they are most closely related.   
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Figure 18. Boxplot illustrating the taxonomic analysis generated by EggNOG compared 

against the E-value of each ORF, for the Escherichia coli genome from NCBI. The plot was 

generated using ggplot2 in R studio and the data was log-transformed  (-Log10).  

  

5.6 EggNOG taxonomic analysis of Pseudomonas aeruginosa  

  

There are four groups in this figure (Figure 19) that are not taxonomic groups,  

287.DR97_1398|, 287.DR97_1396|, 287.DR97_1393|, 287.DR97_1031|. These groups are 

not defined by a taxonomic group and are most likely proteins with an unknown function. 

Again, this is due to an error with EggNOG output file formatting. There are then nine 

individual E-values, indicating a small number of proteins are predicted within these 

taxonomic groups. These groups are Bacilli, Deltaproteobacteria, Neisseriales, 

Nitrosomonadales, Thermodesulfobacteria, Clostridia, Aeromonadales, Deinococcusthermus 

and Inoviridae. Finally there are many taxonomic groups that contain multiple Evalues per 

taxonomic group, these groups include Bacteroidetes, Caudovirales,  

Betaproteobacteria, Alphaproteobacteria, Rhodocyclales, Sphingomonadales,  

Rhodospirallales, Actinobacteria, Bacteria, Pasteurellales, Vibrionales, Oceanospirillales, 

Xanthomonadales, Chromatiales, Gammaproteobacteria, Proteobacteria, Cyanobacteria & 

myoviridae. The taxonomy of P. aeruginosa is as follows; Kingdom, Bacteria; Phylum, 

Pseudomonadota; Class, Gammaproteobacteria; Order, Pseudomonadales; Family,  

Pseudomonadaceae; Genus, Pseudomonas; Species, Pseudomonas aeruginosa group  

(Schoch, et al., 2020). The closest taxonomic group to P. aeruginosa is 

Gammaproteobacteria, the proteins from this group are likely to be specific to the function of 

this organism.   

 
  

Figure 19. Boxplot illustrating the taxonomic analysis generated by EggNOG compared 

against the E-value of each ORF, for the Pseudomonas aeruginosa genome from NCBI. The 

plot was generated using ggplot2 in R studio and the data was log-transformed  (Log10).  
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5.7 EggNOG taxonomic analysis of Staphylococcus aureus   

  
The S. aureus EggNOG taxonomy plot (Figure 20) illustrates that there are five taxonomic 

groups, Bacilli, Caudovirales, Bacteria, Firmicutes & Siphoviridae that provided a range of 

Evalues. This indicates there are multiple proteins within these groups. Then, there are two 

groups, Clostridia and viruses, that both provide a single E-value each. Finally, there are five 

groups that are not taxonomic groups but in fact an error due to the EggNOG output file not 

being parsed in R correctly. These values should be disregarded, like previously mentioned 

for the other taxonomy plots. These are shown in the figure as 1280.SAXN108_2110|, 

1280.SAXN108_0492|, 1280.SAXN108_0482, 1280.SAXN108_0481, 1280.SAXN108_0476.  

The taxonomy of S. aureus is as follows: Kingdom, Bacteria; Phylum, Bacillota; Class,  

Bacilli; Order, Bacillales; Family, Staphylococcaceae; Genus, Staphylococcus (Schoch, et al., 

2020). Bacilli is the taxonomic Class present from the EggNOG output that is most closely 

related to S. aureus. Bacilli is likely to contain genes of interest that are more targeted at the 

specific function of the organism.   

  

    

 
  

Figure 20. Boxplot illustrating the taxonomic analysis generated by EggNOG compared 

against the E-value of each ORF, for the Staphylococcus aureus genome from NCBI. The 

plot was generated using ggplot2 in R studio and the data was log-transformed  (-Log10).  

  

5.8 EggNOG taxonomic analysis of Vibrio cholerae   

  

The V. cholerae taxonomy plot (Figure 21) has ten different taxonomic groups that provide a 

range of E-values, indicating there are multiple proteins within these groups. The groups 

include Bacteroidetes, Bacilli, Epsilonproteobacteria, Betaproteobacteria,  

Alphaproteobacteria, Bacteria, Vibrionales, Oceanospirillales, Gammaproteobacteria & 

Cyanobacteria. There are then, many individual E-values, and therefore proteins that have 
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been classified within individual taxonomic groups. These groups include Rhodocyclales, 

Sphingomonadales, Clostridia, Aeromonadales, Cyanobacteria, Inoviridae, Podoviridae,  

Siphoviridae & viruses. The taxonomy of V. cholerae is as follows; Kingdom, Bacteria;  

Phylum, Pseudomonadota; Class, Gammaproteobacteria; Order, Vibrionales; Family,  

Vibrionaceae; Genus, Vibrio (Schoch, et al., 2020). Therefore the taxonomic group 

Vibrionales (Order) is most likely to have genes of interest, as it is the group present that is 

most closely related to V. cholerae. The genes of interest are dependent on the users’ 

intentions of the pipeline. In this context, the genes of interest are involved in anaerobic 

digestion and the related metabolic processes i.e. mixed acid fermentation pathways.   

    

  

 
  

Figure 21. Boxplot illustrating the taxonomic analysis generated by EggNOG compared 

against the E-value of each ORF, for the Vibrio cholerae genome from NCBI. The plot was 

generated using ggplot2 in R studio and the data was log-transformed  (-Log10).  

  

5.9 The S functional COG is highly abundant within the NCBI dataset.  

  

A trend seen in all of the plots (Figure 22), in the sequences in the NCBI dataset is a 

significantly high gene frequency in the S COG. All genome sequences exhibit very similar 

patterns of functional COGs considering their taxonomy varies. S functional COGs are 

proteins of unknown function (Chen, Xia and Li, 2022). Other common COGs in the NCBI 

dataset are J (Translation, ribosomal structure, and biogenesis) and K (transcription). 

However, these proteins are involved in basic cellular functions. Functional COGs of interest 

for this dataset, in relation to metabolism under anaerobic conditions within AD, would be C 

(energy production and conversion) and P (inorganic ion transport and metabolism).  
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Figure 22. Bar plot illustrating the frequency of genes assigned to Functional COGs for the  

NCBI dataset from the EggNOG output data. Plot generated in R Studio using ggplot2. (a) 

EggNOG output for Bacillus subtilis. (b) EggNOG output for Escherichia coli. (c) EggNOG 

output for Pseudomonas aeruginosa. (d) EggNOG output for Staphylococcus aureus. (e) 

EggNOG output for Vibrio cholerae.  
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5.10 Confidence ranking system output for NCBI dataset.   

  
The confidence ranking system, devised using Python, generated confidence values for all of 

the ORFs in the genome sequences of the NCBI dataset (Table 26). A mean percentage of 

58.7% of genes were given a confidence score of 1, which is the most confident score. 

Meaning the functional prediction by both EggNOG and KofamScan is correct for approx. 

60% of ORFs in these genomes. An average of 5.3% of ORFs across the NCBI dataset were 

given a confidence score of 2, which is the second highest confidence value of proteins 

within each sequence.   

  

Table 26. Summary of the confidence system analysis of each ORF in the NCBI dataset.  

 

Confidence 

Value  

Bacillus 

subtilis   

Escherichia  

coli  

Pseudomonas 

aeruginosa  

Staphylococcus 

aureus  

Vibrio 

cholerae  

1  2243  3295  3337  1404  1828  

2  257  225  345  173  101  

3  694  659  1296  396  373  

4  254  154  437  134  108  

5  541  726  848  309  237  

6  96  115  294  56  73  
 

The general trend seen across all of the genome sequences in the NCBI dataset (Figure 23) 

is that the majority of ORFs were scored a 1. Very few ORFs were given a score 2, however 

these ORFs are still satisfactory. An average of 19.8% of ORFs were given a low confidence 

value, i.e. 4, 5 or 6, in the NCBI dataset. ORFs with these confidence scores (4/5/6) do not 

have an adequate annotation from EggNOG or KofamScan, these annotations should be 

disregarded.  
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Figure 23. Bar plot illustrating the frequency of genes assigned to Confidence values based 

on the confidence ranking system that was devised on the NCBI dataset. 1 = the highest 

confidence and 6= the lowest confidence. Plots generated in R Studio using ggplot2. (a) 

Confidence value output for Bacillus subtilis. (b) Confidence value output Escherichia coli. (c) 

Confidence value output for Pseudomonas aeruginosa. (d) Confidence value output for 

Staphylococcus aureus. (e) Confidence value output for Vibrio cholerae.  

    

5.11 Manual annotation of the lowest quality ORFs of NCBI dataset.  

  

The low quality ORFs determined by the confidence system (Supplementary data S.2) are 

passed through additional functional annotation tools, InterProScan (Supplementary data 
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S.3) and taxonomic annotation tool Kraken2 (Supplementary data S.4). These output files 

can be found within the Supplementary data.   

  

5.12 SeqKit outputs for low quality ORFs of NCBI dataset.  

  
The number of hypothetical proteins from the annotation provided by PROKKA was achieved 

by using the grep command (Supplementary data S.5). B. subtilis, E. coli, P. aeruginosa, S. 

aureus, and V. cholerae, have 543, 746, 1147, 334, and 3317, ORFs annotated as 

hypothetical proteins respectively.   

  

The SeqKit output illustrates the sequence length (Supplementary data S.6) of all low quality 

ORFs. This data can be found within the Supplementary Data, and can provide an 

explanation for the lack of annotation provided by the bioinformatic tools in the pipeline.   
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Chapter 6: Accessibility  

  

The inappropriate use of colours in data visualisation is a recurring often overlooked issue 

(Crameri, Shephard and Heron, 2020), not only for the average consumer of the data, but 

especially for people with colour blindness. The misuse of colour causes misinterpretation of 

data and therefore scientific findings (Crameri, Shephard and Heron, 2020). Adobe colour 

(Adobe, 2014) offers a web-based simulator of desired colours, showing the perception of 

certain colour palettes via different types of colour blindness (i.e. protanopia, tritanopia and 

deuteranopia). This ensures that there is a high contrast between colours.  

  
ColorBlindness (Ou, 2021) is an R package that provides groups of suitable colours, for data 

visualisation, to aid users with colour blindness, by generating an example of the desired plot 

within the ranges of visibility of different types of colour blindness. This provides an easier 

solution for others developing data visualisation using R, rather than using a third party tool 

such as Adobe Color. There are other R packages that account for colour blindness when 

adding colour to figures generated in R Studio e.g. ColorBrewer (Neuwirth and Neuwirth, 

2014) and viridis (Garnier, et al., 2021). Upon use of this tool, the colour selected for the 

plots in this pipeline (Figure 24) were selected by using a colour palette provided by the 

ColorBlindness R package, that are appropriate for those with colour blindness. The 

taxonomy plots outputted by EggNOG, are not in a colour-blindness safe colour palette. This 

is due to the number of colours required to be defined, for the generation of this figure, 

differs each time the pipeline generates output files.  

  
     



   96  

 
Figure 24: Schematic illustrating the use of the colorblindness guide R package, to ensure 

the colours utilised in the figure are safe for users with colour blindness.  

  

The heatmap generated by KEGG-Decoder (Figure 9, Figure 15) has a colour palette that 

ranges from red to orange to yellow to white. Within the yellow to white region of the 

heatmap, it becomes increasingly difficult to determine whether there is any presence of 

proteins or whether all genes within this pathway are absent in this organism. The use of a 

colour palette that is accessible to a wider audience would improve the accessibility of this 

tool, and of this pipeline. Adding the option of a pattern alongside the colour would also 

improve the accessibility of this figure(Guha, Fertig and Deshpande, 2022).  
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Chapter 7: Discussion  

  

7.1 Comparison of EggNOG and KofamScan functional annotation.  

  

Regardless of which tool (EggNOG or KofamScan) predicts the most total proteins, it is the 

quality of the predictions made that makes it more valuable as a functional annotation tool. 

EggNOG does not give KEGG KO to each ORF, but it does mean that the ones that are 

predicted are definitely more likely to be correct.   

  
There is a significant limitation with EggNOG outputs (Table 10), as ORFs are often given 

more than one KEGG KO. This is a result of the lack of a one-to-one relationship between 

protein function and KEGG KO. This is likely due to some proteins being ubiquitous and 

found within multiple biological pathways and providing different functions. Upon further 

investigation of the multiple KEGG KOs, they tend to be KOs of varying function. The issue 

is that for both KEGG-Decoder and the confidence ranking system, only one KEGG KO can 

be inputted per ORF. Making a decision on which KEGG KO remains, and which does not, 

was challenging. This was decided by the first KEGG KO within the annotation. As a result, 

critical information concerning the function of an organism can be lost. This is similarly true 

of the KofamScan output file that predicts three repeats of each ORF in the query sequence, 

where each repeat is given a different KEGG KO. The duplicates in the KofamScan output 

were removed in order to parse this output file into the confident ranking system   

  

7.2 Comments on certain outputs and how they could be improved.  

  
The EggNOG output (Figure 13) illustrates the distribution of the E-value of proteins within 

each functional COGs, however, these plots do not illustrate the exact frequency of proteins 

within each of the COGs. The addition of a plot of the frequency of proteins in each  

functional COG, or even a table including these frequencies would be beneficial, to show 

the frequency of proteins within COGs of interest. Targeting COGs of interest specifically 

within certain genomes, could be conducted manually, by defining areas of interest before 

utilising the pipeline. For example, in the context of microbial metabolism within AD. 

Functional COGs C, P and H are of interest as they are involved in metabolism pathways 

that are typically found within AD (Chen, Xia and Li, 2022).   

  
Figure 17-20 illustrates the distribution of E-values within each taxonomic group of predicted 

proteins. However, a table summarising the frequency of proteins from each taxonomic 

group would help to target taxonomic groups of interest.   

  

The heatmap, generated by KEGG-Decoder (Figure 9, Figure 15), does not quantify the 

frequency of proteins within each metabolic pathway, therefore it is not certain how many 

proteins are required for each metabolic pathway. Instead, an estimate on the presence of 

proteins is based on the completeness of each pathway as there cannot be an accurate 

comparison between the annotation of certain metabolic pathways, as the data is qualitative. 

A table generated to count the frequency of proteins that were predicted per pathway 

alongside the number of proteins found within each pathway, would provide quantitative 

data. There are instances (e.g. for the pathways regarding the amino acids such as 

phenylalanine and asparagine) where a complete annotation of a pathway is given by one 

tool and not another. This is likely due to the reference sequence of the genes within that 

database being lower in quality or dissimilar to the query sequence. To overcome this issue, 

multiple references of the same sequence should be inputted into the databases so the 
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matching of the sequences is not as stringent and allows for slight changes in sequences. 

This is seen by both EggNOG and KofamScan, therefore it is not a concern for the quality of 

the annotations provided by the tool but the databases they refer to. This also highlights that 

the pipeline does not allow for contamination of MAGs, which could explain the lower 

number of high quality annotations of the MAG, in comparison to the NCBI dataset of 

monocultured strains.   

  

7.3 Comparison of outputs between MAG data and NCBI dataset.   

  
45.2% of proteins, in the MAG sequence (Table 19), were given a confidence score of 1 

however, an average of 58.7% (Table 26) of proteins in the NCBI dataset were given a 

confidence score of 1. This result is expected as the NCBI dataset consists of high quality 

genomes that are more complete than the M. soehngenii MAG. The genomes in the NCBI 

dataset have also not undergone shotgun sequencing, therefore there is a low possibility of 

contamination and noise. Instead, these genomes were sequenced from monocultures 

which have not been subject to environmental stressors or competition. The need to adapt to 

an extreme environment, like AD, and to outcompete other organisms within the digesters 

would likely lead to a faster rate of mutation in the M. soehngenii MAG. This would ultimately 

result in the MAG sequences being less similar to reference databases and providing fewer 

annotations. It is also important to note that the organisms in the NCBI datasets are highly 

characterised genomes that have multiple, sometimes thousands, of reference genomes that 

are publicly available and are therefore found within the databases. This suggests that a bias 

towards the highly characterised genome sequences is likely, as they are also likely to be 

very similar to the reference sequences in the databases found within the pipeline. Custom 

databases including microbial data from AD (Becker, et al., 2020) would remove this bias.  

  
Finally, in both metagenomic or genomic sequences, approximately 50% of ORFs (Table 19, 

Table 26) within these sequences are still unknown. There is only a 12.6% difference 

between metagenomic and genomic annotations in this paper. This highlights a knowledge 

gap within biology, the lack of understanding leaves many biological pathways unaccounted 

for. Efforts to improve this percentage of predictions need to be implemented. An approach 

to increasing the percentage of predictions of ORFs would be to use a technique such as 

associative transcriptomics to compare sequences of unknown ORFs together. This would 

illustrate whether some of the currently unknown ORFs are present, in association with other 

known proteins. With this information groups of hypothetical ‘pathways’ could be built. 

Following this, pairwise sequence alignment could be used to indicate similar ORF 

sequences that could indicate similarities in function and structure.  

  

7.4 The information extrapolated from the outputs of the pipeline is dependent on the user's 

intended use.  

  

Targeting pipeline outputs to illustrate targeted annotation results is challenging as the 

pipeline has wide capacity for application. The information discussed within this thesis, 

regarding the outputs of the pipeline are specific to AD, as this is the overall goal of the 

research project. The outputs provide breadth rather than depth in the results, to illustrate 

the capabilities of the pipeline and its wide range of applications.  

  

To generate results with further depth within the context of AD, certain parameters could be 

implemented prior to the data being inputted into the pipeline. This could be as simple as 

targeting Functional COGs of interest (regarding metabolism involved in AD process) and 
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taxonomic groups related to microbes (that play a key role in AD, etc.). Another approach 

would be to develop a bias within custom databases by passing through multiple reference 

genomes of microorganisms found in AD. This approach has been successfully used by 

Becker, D. et al. A final approach would be to use machine learning to develop a text-mining 

based search for reference databases that are relevant to the user.  
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Chapter 8: Limitations   

  

8.1 Limitations in terms of reproducibility.  

  
Reproducibility continues to be an ongoing challenge in pipeline development, this pipeline is 

subject to some limitations. There are three main limitations.  

  
Pre-existing databases on the Viking Cluster pose an issue for users that do not have access 

to the Viking Cluster at the University of York, as they will not have access to some of the 

paths to the databases in the pipeline. This jeopardises the reproducibility of the pipeline, as 

the databases will have to be installed manually for these users to use the pipeline. 

However, these databases and tools are easily retrievable from the web and this is 

commonly accomplished via Unix commands ‘wget’ or ‘curl’.   

  

Additionally, the majority of bioinformatic tools in the pipeline require the prior installation of 

certain databases before use of the pipeline. This installation will have to be part of the 

setup, this could be overcome by providing a README file instructing the manual installation 

required to use the pipeline.   

  

Finally, the file structure is critical to the success of the pipeline. The correct file structure 

ensures that the databases are accessible for the appropriate bioinformatic tools and that 

the results are outputted into the correct directory. The use of the workflow management 

tool, Snakemake, via wildcards in the snakemake script are utilised to lower the limitations 

with reproducibility from user to user.    

  

Although these points are considered to be limitations, specific installation instructions of the 

pipeline can be uploaded onto a GitHub (Github n.d.) page made for the pipeline (Russell, et 

al., 2018).   

  

8.2 Limitations regarding pipelines   

  

Although genome annotation pipelines are improving the efficiency of data manipulation and 

productivity of bioinformatic research etc., there are still challenges and limitations that need 

to be overcome.  

  

The development of pipelines has significantly improved; however, the process used to 

annotate genomic data has not drastically changed since these processes were established 

(Salzberg, 2019). Reference databases for bioinformatic tools are constantly updating, 

therefore databases rapidly become outdated and are required to be consistently updated 

(Isserlin, El-Badrawi and Bader, 2011). This results in manual manipulation of the pipeline, 

removing the automation of the pipeline. In addition, the bioinformatic tools themselves 

require consistent updates, as new versions of the tools are released, and previous versions 

may no longer be supported. Out of date tools can cause errors within the pipeline or even 

restrict use of the bioinformatic tool entirely. This limitation occurred during the development 

of this pipeline, as EggNOG released an update. Within this update, the developers changed 

the format of the output file that EggNOG generates. This resulted in multiple parts of the 

pipeline becoming obsolete, and were required to be re-written for the pipeline to be 

functional.  

  

Some of the bioinformatic tools utilised in the pipeline only support prokaryotic genome 

sequences i.e. PROKKA. This is typically a limitation as large knowledge gaps in the 
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datasets will arise. Although this is a limitation, it is not generally a concern for the intended 

use of the pipeline regarding microbial communities found in AD as a high majority of 

microbes within AD are prokaryotic (Nguyen, Nguyen and Nghiem, 2019), and only 0.1-1.4% 

of microbes were found to be eukarya (Matsubayashi, et al., 2017) from AD samples. 

However efforts to uncover eukaryotes, such as fungi (Schnürer and Schnürer, 2006) and 

protozoa (Prabhakaran, et al., 2016) with AD are ongoing, by the use of qPCR of RNA and 

CARD-FISH (Matsubayashi, et al., 2017).   
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Chapter 9: Conclusion   

  

To conclude, a genome annotation pipeline was developed, using the Snakemake workflow 

management tool. A selection of functional annotation tools were integrated into the pipeline 

and the respective results were used to generate a number of tables and figures to visualise 

the quality of the annotation. A confidence ranking system was successfully devised to 

compare the results of the bioinformatic tools (EggNOG and KofamScan), where 45.2% of 

MAG ORFs and an average of 58.7% of ORFs from the NCBI dataset were given a 

confidence score 1. Identification of high quality protein predictions via these two tools was 

made possible by the confidence ranking system, as well as, separation of low quality ORFs 

from the query sequences. Additional annotation of the low qual ORFs via functional and 

taxonomic analysis ensured more genes are appropriately identified. Finally, the low quality 

ORFs also undergo an annotation via PROKKA and the proteins of unknown function are 

annotated as ‘hypothetical’. Alongside this, ORF sequence length is then provided to ensure 

that the unidentified ORFs are not as a result of a sequencing error.   

  
The capabilities to characterise desired metabolic pathways and the genes involved in these 

pathways are made possible by the bioinformatic tools in the pipeline. Alongside the figures 

that are generated, a greater understanding of the role that certain organisms will play in 

anaerobic digestion was achieved. For example, Methanothrix soehngenii is an acetoclastic 

methanogen. Outputs from the pipeline illustrate the presence and then completeness of the 

acetoclastic methanogenesis pathway, that allows for the production of methane in AD.   

  

The application and analysis of metagenomic data, allows for the annotation of 

microorganisms (that would otherwise not be sequenced) by the use of shotgun sequencing 

(Garza and Dutilh, 2015). The use of genome annotation pipelines, allows for the automated 

and rapid interpretation of large genomic datasets. This is also applicable to MAGs 

recovered from AD digesters, to understand the interspecies metabolic pathways that drive 

the AD process, resulting in the production of methane gas. The methane gas produced can 

be utilised as a renewable energy source. However, there is significant improvement 

required to ensure this is an effective process, for production and further use of methane gas 

from AD. Current applications of AD include wastewater treatment (Wu, et al., 2022), in the 

conversion of agricultural waste (Jaman, et al., 2022), and more recently in the brewing 

industry (Herman, et al., 2022). All these processes involve the conversion of organic waste 

into methane (a high value end product) that significantly reduces contributions to Global 

GHG emissions.   

  

Limitations with reproducibility and automation are an ongoing challenge that need to be 

overcome to achieve high levels of productivity from pipelines. Additional limitations 

regarding the databases required for functional annotation tools continue to be met. The 

additional limitations are often due to the consistent updates that are required and tools 

developing a bias of annotation, based on the databases consisting of more well annotated 

sequences. Finally, databases missing high proportions of reference sequences recognised 

by the database i.e. 48% of the protein sequences within the KEGG GENES database, do 

not have an assigned KEGG KO number (Aramaki, et al., 2019).   
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Chapter 10: Future work  

  

10.1 Improvements to the pipeline  

  
The further development of the pipeline would reduce the limitations regarding reproducibility 

and automation. For example, access could be ensured to certain databases and 

bioinformatic tools that were pre-existing on the Viking Cluster (e.g. Seqkit and PROKKA). 

The addition of output figures and adjustments to pre-existing figures, including the addition 

of interactive plots, would also further the pipeline’s development. Interactive plots would 

allow for proteins of interest to be easily identified. The effective use of interactive plots is 

displayed by previous integration into some genome annotation pipelines such as MetaErg 

(Dong and Strous, 2019). Finally, the use of Blast+ in this pipeline would complete the 

pipeline.   

  

10.2 Development of a Shiny R application   

  

The development of a Shiny R application would display all outputs generated by the 

pipeline and improve the accessibility of the outputs for the user. This would be a favourable 

feature of the pipeline as the skill level of programming and bioinformatics is typically low 

within the biology research community. Finally, this would also improve the visual aesthetic 

of the pipeline outputs, encouraging a larger number of users, as it improves usability (David 

and Glore, 2010).  

  

10.3 Integration of machine learning   

  

Finally, the integration of machine learning to predict expected outputs of types of organisms 

would improve the productivity of the pipeline. Yip, Cheng, and Gerstein discussed genomic 

data and its capabilities of automatically recognising patterns via machine, particularly as 

genomic datasets are often large and unable to undergo manual annotation. Genome 

annotation pipelines are already integrating machine learning, e.g. DeepAnnotator (Amin, et 

al., 2018) and LOMETS3 (Zheng, et al., 2022). The application of machine learning would 

provide examples of the expected output generated by known organisms, by highlighting 

specific pathways that are involved in that specific MAG’s metabolism, or genes of interest 

within that specific MAG. Currently there are genome annotation pipelines that can manually 

create a bias for AD microbes as custom databases have been constructed to favour 

proteins prevalent in microbes in AD (Becker, et al., 2020), as a form of machine learning, 

thus showing the efficacy of machine learning in AD data.  
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Abbreviations  

  

MAG  Metagenome-Assembled Genome  

ORF Open Reading Frame  

AD  Anaerobic digestion  

GWP  Global warming potential  

SDG  Sustainable development goals  

VFA  Volatile fatty acids  

BMP  Biochemical methane potential  

NCBI  National centre for biotechnology information  

SRB  Sulphate-reducing bacteria  

McrA  Methyl coenzyme M reductase A  

DGGE  Denaturing gradient gel electrophoresis  

KEGG  Kyoto encyclopaedia of genes & genomes  

HPC  High performance computing   

CWL  Common workflow language  

COG  Cluster of orthologous groups  

GO  Gene ontology   

BLAST+  Basic local alignment tool   

LCA  Lowest common ancestor   

AEA  Alternative electron acceptor  

GUI  Graphical user interface  

CSV  Comma-separated variable  

rTCA  Reverse Krebs cycle  

CARD-FISH  Catalysed reporter deposition-fluorescence in-situ hybridisation  

GHG  Greenhouse gas  
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Supplementary  
  

Scripts written to produce the pipeline from snakemake, Python can be found in a Github 

repository https://github.com/louisegrimble/MRes-pipeline. R scripts for the data visualisation 

can also be found within this repository.   

  

Supplementary data (S.1-5) referred to in the main text can be found in a Github repository 

https://github.com/louisegrimble/MRes-pipeline. All additional files generated by the pipeline 

can be found in the Github repository.  
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