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Abstract

Animals that live in the sky, underwater or underground display unique three

dimensional behaviours made possible by their ability to generate movement

in all directions. As animals explore their environment, they constantly adapt

their locomotion strategies to balance factors such as distance travelled, speed,

and energy expenditure. While exploration strategies have been widely studied

across a variety of species, how animals explore 3D space remains an open prob-

lem. The nematode Caenorhabditis elegans presents an ideal candidate for the

study of 3D exploration as it is naturally found in complex fluid and granular en-

vironments [79, 195] and is well sized (∼ 1 mm long) for the simultaneous capture

of individual postures and long term trajectories using a fixed imaging setup.

However, until recently C. elegans has been studied almost exclusively in pla-

nar environments and in 3D neither its modes of locomotion nor its exploration

strategies are known. Here we present methods for reconstructing microscopic

postures and tracking macroscopic trajectories from a large corpus of triaxial

recordings of worms freely exploring complex gelatinous fluids. To account for

the constantly changing optical properties of these gels we develop a novel dif-

ferentiable renderer to construct images from 3D postures for direct comparison

with the recorded images. The method is robust to interference such as air

bubbles and dirt trapped in the gel, stays consistent through complex sequences

of postures and recovers reliable estimates from low-resolution, blurry images.

Using this approach we generate a large dataset of 3D exploratory trajectories

(over 6 hours) and midline postures (over 4 hours). We find that C. elegans

explore 3D space through the composition of quasi-planar regions separated by

turns and variable-length runs. To achieve this, C. elegans use locomotion gaits

and complex manoeuvres that differ from those previously observed on an agar

surface. We show that the associated costs of locomotion increase with non-

planarity and we develop a mathematical model to probe the implications of

this connection. We find that quasi-planar strategies (such as we find in the

data) yield the largest volumes explored as they provide a balance between 3D

coverage and trajectory distance. Taken together, our results link locomotion

primitives with exploration strategies in the context of short term volumetric

foraging to provide a first integrated study into how worms move in 3D.
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Chapter 1

Introduction

The ability of animals to explore their environments in search of food is essential for their

survival. Across species, under different contexts and conditions, such exploration occurs

over different spatial and temporal scales – from small movements to manipulate and sense

their surroundings to long range migrations. Creatures that live in the sky, underwater, in

trees or underground display unique 3D behaviours such as diving, flocking, climbing and

burrowing that are made possible by their ability to generate movement in all directions [56,

74, 81, 155, 171, 227, 229]. However, the link between 3D locomotion and spatial exploration

is rarely considered. Indeed, for most animals, movement tends towards a dominant plane

at large scales. Only when the local environment is sufficiently isotropic at a scale much

larger than the organism may they explore their local volume without directional bias.

In all cases, locomotion primitives combine across scales to produce rich dynamic search

behaviours. However, obtaining detailed observations to better understand these processes

in 3D environments is particularly challenging [19, 64, 149, 199, 261].

Observing animal locomotion across different spatial and temporal scales offers insights

into the dynamics of movement, the purpose of anatomy and the complex relationships

between animals, species and habitats. Existing on the surface of the Earth, 2D data are

often sufficient to understand behaviour of large animals. However, for many creatures such

as fish, birds and insects that move in all directions in order to search and navigate in volu-

metric environments, 3D data is essential to build a complete picture. While technological

advances have made the collection of large quantities of multi-viewpoint visual data more

attainable, methods for extracting and modelling 3D information remain largely domain-

dependant as few species share common geometric models and exist within the same spatial

and temporal scales [24, 56, 81, 149, 171, 206, 229, 261]. Furthermore, while humans and

some domesticated animals [128, 251] may act naturally while wearing special markers,

marker-less observations of many species makes feature extraction more challenging and

1



1. INTRODUCTION

means pose estimation generally lacks ground truth data [199].

The widely studied nematode Caenorhabditis elegans is an ideal model system for link-

ing locomotion and exploration strategies. In a laboratory, C. elegans are studied almost

exclusively on flat surfaces. After removal from food on a dish, C. elegans begin a local

search behaviour characterised as periods of forward movement interspersed with turns and

reversals [96]. By contrast, in their natural habitat C. elegans are found in a broad range

of complex 3D environments, typically in decomposing vegetation such as rotting leaves

and compost heaps, with continually changing physical properties [79, 84, 195]. To explore

their environment, they must navigate within a volume to forage and survive; too close to

the surface they become vulnerable to predators, too deep and oxygen becomes scarce. On

the scale of rotting apples, though, one would expect any directional bias to disappear and

exploration to be fully isotropic. Despite the necessity for a rich behavioural repertoire in

their natural habitats, nematode local 3D search behaviours have not been studied.

With some exceptions (e.g . Nippostrongylus brasiliensis [141]), nematode locomotion is

generally described in terms of sinusoidal (planar) undulations [96, 244]. In particular, C.

elegans neuroanatomy and extensive behavioural evidence from studies on planar substrates

suggest that undulations are generated by propagating a smooth curvature wave along the

dorso-ventral plane of the body [7, 25, 54, 67, 96, 244, 250]. A more complex neural circuit

innervating the head and neck musculature suggests greater freedom of movement that is

also observed as head lifting on a planar substrate, but this is typically attributed to local

sensing [61, 249, 262]. Early studies of 3D locomotion in young adult hermaphrodites have

reported slight deviations from planar undulations [202], a novel three-dimensional reorien-

tation manoeuvre [28], the first reported observation of a three-dimensional trajectory of

an animal immersed in a volume [138] and more recently, observations of animals traversing

barriers and non-planar substrates [42]. In addition to young adults, studies of dauers have

identified novel 3D nictation [143] and related collective behaviour [80, 99].

To investigate the connection between locomotion and local search in 3D we track the

motion of individual wild type C. elegans young adults as they explore large (2-5 cm3)

3D volumes. Imaging semi-transparent, hair-thick animals with length ∼ 1 mm requires

careful illumination and sufficient magnification, and simultaneously capturing long-term

trajectories also requires a large volume of view. These requirements were met by using a

custom-built triaxial microscopic imaging setup [192] with sufficient magnification for ac-

curate 3D posture reconstruction and sufficiently large volume of view (10-20 worm lengths

per axis) for capturing foraging trajectories up to 25 minutes (described in detail in Chap-

ter 3). Over a number of years and many experiments, a large corpus of video recordings was

collected using this equipment. However, for these to be of any use for analysis, significant

computer vision challenges must first be overcome.

2



1. INTRODUCTION

As the worm explores the cube it frequently appears out of focus in one or more of the

cameras. Air bubbles and dirt trapped in the gel along with old tracks are often difficult

to differentiate from the transparent worm, particularly at the tapered ends. Self-occlusion

invariably appears in a least one view, where hidden parts darken the foreground while the

ordering of fore/back-parts is not discernible. As the semi-transparent and self-occluding

subject deforms and moves in the volume, photometric information in one view bears little

relevance to the appearance in the others. Thus, feature identification and photometric

matching are challenging and the solution requires a degree of adaptation from classical

approaches. Overcoming these challenges, we generate a dataset of 52 trajectories (4-

25 minutes per trajectory, totalling 6 hours 48 minutes) including complete 3D midline

reconstructions of 43 recordings (4 hours 36 minutes). Recordings are taken across a range

of fluid viscosities in which we observe a wide spectrum of different locomotive behaviours,

complex manoeuvres and exploration strategies.

The large corpus of recorded postures and trajectories, across a wide range of media,

allows us to address a number of interrelated questions: How worms move in 3D, how they

combine locomotion primitives to generate exploratory behaviour, and what strategies they

use for local volume exploration? We tackle these questions across scales, from the postures

observed at any given moment up to the characteristics of long term trajectories. We find,

as in 2D [211], that worm postures can be expressed in a low-dimensional shape space and

different gaits correspond to attractors on this manifold. However, differing from 2D, in

3D the fundamental shapes are somewhat helical and give rise to uniquely 3D behaviours

such as coiling and 3D crawling; undulations with twists and rolls. Alongside these gaits,

sharp changes of direction are made through simple and complex turns. Clusters of turns

(pirouettes) reorient the worm even more significantly, enabling fully volumetric exploration,

but at a cost. Simple turns and steering during forward locomotion can be done quickly,

but constrain the animal to a quasi-plane of exploration. To escape this plane, worms

sporadically perform complex manoeuvres and clusters of turns that take time to perform

but allow for a complete reorientation of this quasi-plane.

We ask the question, how effective is this strategy for local search and foraging ends?

To answer this we develop a simple random walk model of 3D exploration that incorporates

the quasi-planar (i.e. far from isotropic) biases we observe in the exploration trajectories.

By studying the shapes and sizes of the volumes explored by our simulated foragers under

different conditions we find that a quasi-planar strategy explores the largest volume; striking

an effective balance between fast-planar and slow-volumetric travel. Moreover, we find that

the theoretical optimal is in close agreement with the strategy observed in real C. elegans

trajectories.
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1. INTRODUCTION 1.1 Contributions

1.1 Contributions

The design and build of the imaging setup, the initial camera calibrations and all experi-

ments were all done by past and present members of our lab, but did not involve me. In

particular, the data was collected by Rob Holbrook and Omer Yuval [167] and the initial

camera calibration procedure developed by Felix Salfelder and Thomas Ranner [192].

I was co-author of an earlier 3D reconstruction method that was presented in Salfelder

et al . [192] (see Sec. 2.3.4 for a description). This attempt, the challenges, mistakes and

discussions all helped to guide the development of my own tracking and (significantly differ-

ent) reconstruction methods that I present here. I compare results from the two approaches

in Sec. 4.8.2.

The main contributions presented here are:

• A robust pipeline for 3D posture reconstruction of a freely deforming semi-transparent

object from noisy images.

• A novel viewpoint renderer to capture optical distortions and transparency.

• A feature-free bundle adjustment algorithm using direct image comparison and gra-

dient descent.

• A large dataset of postures and trajectories.

• A low-dimensional shape space of 3D postures; the 3D eigenworms.

• A detailed description of 3D reorientation manoeuvres; ϕ-turns.

• A mathematical model for volumetric exploration.

1.2 Thesis outline

In this research we aim to present a complete picture of how C. elegans move and explore

in the 3D environments that have been created for them. This means building an under-

standing of the worms’ postures, how they combine to form gaits and manoeuvres and how

these combine to generate effective volumetric exploration. But first, it requires generation

of 3D data from the raw videos.

We start in Chapter 2 by discussing the background to both the biological questions

we set out to answer and the computational challenges faced with extracting the necessary

data. In Chapter 3, we introduce the imaging setup and experimental protocols developed

by our group to capture the large corpus of video data that forms the foundation of our

investigations. We also consider the limitations of the system and the implications of

focusing our attention only on the longer recordings in the corpus (Sec. 3.6).
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1. INTRODUCTION 1.2 Thesis outline

Having selected the recordings for analysis, in Chapter 4 we tackle the computer vi-

sion challenges related to the tracking and posture reconstruction of C. elegans in 3D and

describe how we generate our large dataset of 3D postures and trajectories from multi-

viewpoint recordings. In Chapter 5 we investigate the spectrum of behaviours and postures

exhibited across the dataset and see how these vary across individuals and environmental

viscosities. In Chapter 6 we take a step back to consider how long-term foraging trajecto-

ries are formed from short-term behaviours. We examine the statistical properties of the

trajectories and construct a simple model to explain the observed exploration strategies and

to investigate what it means for volumetric exploration to be, in some sense, optimal.

Alongside this text we include seven videos to help illustrate the 3D trajectories, gaits,

manoeuvres, exploration strategies and the reconstruction process. These are referenced

throughout the text and collated in Appendix A.4. We conclude the thesis in Chapter 7,

summarising the key contributions and discussing future opportunities for this new dataset.
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Chapter 2

Background

2.1 Search problems and optimality

Search problems are found everywhere in the natural world, both in plants – leaves searching

for light, roots searching for water – and animals – searching for food, shelter or a mate.

Animal search occurs from scales as small as microscopic sensory movements right up to

mass population migrations across the planet. Search problems are also prevalent across the

man-made world, for example browsing the internet, trying to find the perfect gift, or simply

hunting for your keys. Although these natural and man-made search problems may seem

very different, the strategies for solving them are more similar than one might think. In

Kuhlthau’s information search process [135], the author describes six stages of information

seeking: initiation, selection, exploration, formulation, collection and presentation. These

provide a general framework for considering many types of search problem. If we return to

the example of animal foraging behaviour, the stages can be interpreted as: hunger initiating

a search, a direction is selected, an exploration is made, sensory data is assimilated and

food is located, or not.

Where a search problem is well defined, the optimality of different solutions may be

compared in terms of a cost function. For example, this may be the least energy expended,

the shortest distance travelled or the fastest route taken. In the mathematical formulation

of search games (where two players – a hider and a searcher – compete), this problem has

received rigorous attention [5, 20], but in nature the cost function is less easily defined,

subject to conflicting demands and far more complex environments. Regardless, the es-

timation of costs and approximation of environments play central roles in improving our

understanding of animal search behaviours [4]. There are many approaches to modelling

search strategies, below we outline the key concepts relevant to our study.
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2.1.1 Local search algorithms

A general approach to solving search problems is to start locally. This can be particularly

useful, often essential, when the costs (computational or otherwise) involved with query-

ing many candidates or distant locations is high. This is often the case in combinatorial

problems [169], where the number of possible solutions may be particularly large, or in

robotics, where there is a large energetic cost for movement. Local search strategies, or

local optimisation algorithms, involve starting from some initial point or solution and eval-

uating whether an improvement can be found with a small, one-step adjustment, e.g . to a

neighbouring solution or nearby position.

In the travelling salesperson problem, for example, where the goal is to find the shortest

path that visits every location on a map exactly once and then return to the starting posi-

tion, two solutions (routes) are considered neighbours if they differ by only a pair of edges

(paths between locations) [122]. A globally optimal solution is typically unavailable, but a

local search algorithm (e.g . 2-opt [60]) can generate good solutions quickly by considering

all neighbouring solutions of an initial (random or otherwise) guess and repeatedly selecting

the shortest option.

Hill-climbing search [200] and gradient descent [189] are other well-known examples of

local search optimisation algorithm; they update an estimate in order to improve upon a

cost function that is evaluated locally. The main benefits of local search algorithms are that

they do not require lots of memory (only the costs of the neighbouring solutions) and they

can move the solution quickly to more favourable areas [196].

Local search algorithms typically only find locally optimal solutions, but for many prac-

tical combinatorial optimisation problems such as scheduling, design, time-tabling and more

[1, 258], a locally optimal solution is sufficient. Better solutions may be found by repeating

this approach from many different starting conditions but sometimes even finding a single

solution can be costly. In these cases a greedy approach (selecting the locally optimal option

at every opportunity) may not be not the best, or most practical, approach.

Moving beyond one-step algorithms requires evaluation of two or more changes to the

current solution, requiring more memory and possibly a model of the problem, but often

producing more effective solutions. In nature, this apparatus emerges across scales in many

forms. Lasting electrical and chemical responses in sensory neurons dynamically encode the

state of the environment [65]. Rats will remember where to find food in a maze they have

seen before [230]. Evolutionary instincts guide the homing behaviour in salmon [69]. Such

examples demonstrate the hierarchy of mechanisms that underlie local search behaviours.
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2.1.2 Animal search and random walks

In contrast to theoretical optimisation problems, where many solutions may be sampled

and evaluated, search strategies by animals have a much greater cost of being sub-optimal.

Not finding food, water, shelter or a mate can mean death for the individual with no oppor-

tunity for a random restart. Animal searching integrates behaviours occurring across many

different scales. On short timescales animals must sense cues in their local environment,

employing short, fast movements to gather data, improve the state estimation and evaluate

the stop conditions (e.g . has the food been found?). On medium timescales they must move

between locations, either following cues or to collect information about an area that could

not be sensed from further away. On long timescales animals must adapt their behaviours

to follow the changing patterns of their environment (e.g . seasons); often migrating long

distances to increase the chances of success.

The most widely used approximation of animal movement is the random walk model, or

Brownian motion [39], named after the botanist Brown who studied the apparently random

trajectories of pollen particles suspended in water [51]. The theory of Brownian motion was

developed by Einstein [73] who modelled the microscopic movement of the pollen particles

changing due to random collisions with water molecules and derived macroscopic diffusion

rates under different thermal conditions. This formed the basis for a large body of work

over the last century, notably including the mean-reversion process [235], where walks tend

towards returning to a certain point, drift-diffusion, where a global directional bias exists

and correlated random walks, where the direction is locally correlated between steps [173].

The random walk-type behaviour observed in E. coli was first termed run-and-twiddle

by Berg and Brown [23] (and since, also called run-and-tumble – the term we will use),

owing to the self-propelled straight-line runs interrupted with random reorientation events

(twiddles/tumbles). Active locomotion causes significantly larger dispersal than would be

observed in passive particles undergoing standard diffusion (super-diffusion) [222]. However,

in the presence of chemical gradients bacteria modulate this behaviour to perform a biased

random walk to move them up or down the gradient; using a low turning rate when moving

in the preferred direction and a high rate otherwise [23]. In addition to modulation of the

turning rate, bias can also be introduced by varying the run speeds or constraining the

turning angles [6]. We will use these options in developing a model for how C. elegans

explore space in Sec. 6.5.
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2.1.3 Intermittent searches

Beyond micro-organisms, and on longer timescales, home ranges of animals provide an

upper-bound to the distances that may be travelled, and the mean-reversion random walk

model is usually more appropriate [30, 235]. In reality, the strength and direction of different

biases are likely to change constantly as new sensory information is received. For predatory

animals, search behaviours can be expressed along a “stop-and-go” continuum of inter-

mittent search strategies [57, 164]. At one end of the spectrum, animals move constantly

through their environment, “cruising” [98], or “widely ranging” [112], while continually

searching for prey. These include large fish such as sharks and birds of prey such as eagles.

At the other end of the scale are the “ambush” [98] or “sit-and-wait” [112] strategies where

predators wait patiently for an opportune moment. These may include types of snakes,

spiders and lizards. Intermediate to these are “saltatory” or “pause-travel” strategies that

involve alternating between pausing and moving to various degrees [75]. Several species

of fish, birds [188], lizards and mammals exhibit saltatory foraging behaviours, some with

short pauses between long periods of movement and others with long pauses and small

movements.

The random walk model does not reflect movement behaviours during intermittent

search strategies [22]. Neither, in fact, can it explain super-diffusion when observed in

inorganic particles. To explain the latter problem the random walk model was modified to

allow particles to take very long steps, specifically, drawn from a power law distribution.

This gave rise to the Lévy flight model [93, 144], so called for the large distances particles

may jump at each step, and later the Lévy walk model, where instantaneous jumps are

replaced by sampled run distances [204].

The Lévy walk model produces trajectories that sometimes resemble Brownian motion

with short runs between turns, but due to the heavy-tailed power-law distribution, occa-

sional long runs take the path far outside of the diffusive cluster. This model has been

found to be a better fit for the intermittent movement patterns of many foraging animals

[22] including Drosophila [55], bumblebees [242], albatrosses [241], reindeer [152], spider

monkeys [183], grey seals [10] and many more marine predators (sharks, fish, turtles etc.)

[209]. For sparse and randomly distributed targets, the Lévy walk search strategy has been

shown to be significantly more efficient than random walks [16, 17, 208, 260] especially in

unpredictable environments [113] and consequently has been used for robotics applications

[86, 163, 216] and to inform search and rescue strategies [3, 161, 224].

Despite its appeals, questions have been raised over the validity of modelling animal

foraging paths with the Lévy walk model. Edwards et al . [72] re-analysed results from

Viswanathan et al . [242] using new techniques, concluding that there is insufficient evidence
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to support the Lévy model and suggesting other studies may be similarly flawed. Benhamou

[21] raises similar concerns, arguing that animals truncate their flights (steps) when they

find targets, meaning clusters of short flights occur within patches of food and long flights

correspond to transitions between locations. They suggest that intermittent search may be

better represented as a mixture of classical random walks with different mean step sizes;

the small step size representing periods of intensive searching (or exploiting a discovered

resource) and large step size representing relocation movements. This composite search

model is explored further in a two-state process model by Benichou et al . in [22] and Plank

and James [181], in both cases showing that under many conditions the composite strategy

is more efficient than the Lévy walk model.

In developing our model for C. elegans foraging trajectories (Sec. 6.5) we draw on many

of the ideas discussed here. We find that the distribution of run durations observed in the

data exhibit heavy-tails, with occasional long runs moving worms between search areas.

However, in agreement with the results of Benhamou [21] and others [22, 181], we show

how using a random walk model that switches between two speeds can reproduce these

statistics without explicitly sampling from a power-law distribution.

2.1.4 3D search

All animals search in 3D environments, but for some the vertical component is more signif-

icant than others. Moving between different heights and depths presents unique challenges;

forest birds move between branches of different heights looking for insects [188], rodents

climb shrubs to forage flowers and seeds [155] and sperm whales dive to depths of over

1 km to hunt squid [116]. But typically there is some range within which the food may be

expected. For example, analysis of the 3D search behaviours of ringed seals found that most

local searches occurred at the bottom of their dives, with few searches during ascents and

descents [207]. While studies of 3D foraging behaviours are of great value to understand-

ing the ecological domains and habitat overlaps of species [19, 56], the specificity of 3D

behaviours to the animal and environment make generalisation of optimal search strategies

difficult.

For macroscopic land-based animals, foraging and home-range behaviours tend towards

a dominant plane at large scales [81, 171, 227]. Only in animals where the habitat is

sufficiently isotropic at a scale much larger than the organism can we expect to see fully

3D spatial exploration (such as in C. elegans). The lack of detailed studies in this area

highlights the numerous technical challenges presented by data collection of this type. Only

liquid or solid environments are able to support unbiased 3D exploration as they offer some

support against gravity, and visual imaging is not possible through solid environments (x-
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ray imaging through sand was used to track the swimming motions of sandfish lizards [151],

but although hidden from view, the locomotion stays mostly on the horizontal plane). Teo et

al . [227] attached electronic tags to wild bluefin tuna, but again the vertical axis is explored

differently to the plane, namely through diving. Macri et al . [149] report 3D trajectory

tracking of zebrafish in a controlled setting, but the confined unnatural environment does

not give rise to natural foraging behaviour.

A theoretical analysis of the optimality of intermittent search strategies in one, two and

three dimensions was presented by Loverdo et al . [148]. They report that under many con-

ditions, while an intermittent strategy is greatly advantageous in one and two dimensions,

the gains vanish in three dimensions. They reason that the searcher over-samples the space

in lower dimensions, so large jumps are always favourable, whereas a random walk in three

dimensions, on average, always reaches unexplored areas. This is reminiscent of the famous

joke by Shizuo Kakutani: “A drunk man will find his way home, but a drunk bird may get

lost forever” [71].

Bartumeus et al . [18] report the microzooplankton Oxyrrhis marina transitioning from

a Brownian walk to a Lévy walk as their prey decrease in abundance. The authors suggest

that the transition is required for sampling regions at different scales, as using the Lévy walk

generates fractal-like (scale-invariant) behaviour. However, the separation of 3D O. marina

trajectories into runs and turns is complicated somewhat by their frequent swimming in

helical trajectories, most notably during long travels. Vandromme et al . [236] argue that

the diversity of helical motion (varying velocity, pitch, amplitude) observed in Strobilidium

sp mean a simple Lévy interpretation is over simplistic.

Helical trajectories are observed across many microswimmers [18, 40, 58, 123, 236].

While the exact purpose is unknown, Crenshaw [59] describe how it can be used as a

strategy for simultaneous sampling from and orientation to a stimulus field. Bartumeus et

al . [18] also posit that helical paths improve 3D foraging efficiency by increasing the sensory

domain during runs.

In C. elegans, distinct helical centre-of-mass trajectories rarely occur. However, the head

frequently traces out helical point trajectories during forward locomotion – in crawling, but

especially in coiling gaits ([167], Sec. 5.4, Video 2). We observe some support for the Lévy

walk strategy (Sec. 6.3), yet still we see a preference for quasi-planar exploration, prompting

a new model of exploration that does not completely randomise the angles during tumbles

(Sec. 6.5).
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2.2 C. elegans as a behavioural model

The nematode Caenorhabditis elegans is a perfect model organism for studies into 3D search

and exploration behaviours. Originally championed by Sydney Brenner in 1965 as a model

for whole-organism study [34], it has since become one of the most well understood animals

on the planet. C. elegans is among the smallest multicellular organisms, having around 1000

cells including 302 neurons. The development and lineages of these cells from fertilised egg

through to adult have been charted [129, 214], the structure of the nervous system mapped

[250] and C. elegans was the first multicellular organism to have its full 97 mega-base

genome sequenced [201, 228].

In environments on the scale of rotting apples, the ∼ 1 mm long C. elegans must travel

and reorient in all dimensions to search for food. For the study of local search behaviours in

3D this is ideal as they are unlikely to exhibit the same planar biases or depth preferences

that we see from many other species that forage in 3D environments (Sec. 2.1.4). Their

small scale makes tracking long-term exploration feasible using a fixed imaging setup and

their ability to navigate through a range of gelatin solutions environments means they can

be seen without obfuscation (as demonstrated in previous work [192]).

The reference “wild-type” N2 strain was first collected from mushroom compost in

Bristol, England in 1951 and subsequently cultured in the laboratory for many generations

before being frozen in 1969 [187]. Therefore despite its name it is in fact a laboratory strain,

with a number of genetic differences from wild isolates of C. elegans [63, 177, 213]. The

consequences of these differences on locomotion behaviours have not been reported, but it is

worth noting that this N2 strain (used in our experiments) was cultured and fed for almost

20 years on mostly-planar agar environments.

2.2.1 Ecology

C. elegans feed on bacteria and other microbes that are found in abundance in decomposing

vegetation such as rotting leaves and compost heaps [79, 84, 195]. Originally described as

a soil dweller, it is now known that all Caenorhabditis species prefer more nutrient-rich

habitats and while dauers (a type of juvenile) may be found in compost-rich soil, adults

are rarely found there [15]. A predisposition to bacteria-rich environments corresponds to a

preference for relatively low oxygen concentrations (around 6 %) and worms will avoid very

low (<2 %) or high (>12 %) oxygen levels [97]. This does impose some depth constraints

on the possible habitat range – too close to the surface and the oxygen levels may be too

high, too deep and the levels too low – but due to the complex and continually changing

properties of moist rotting material, any optimal depth is likely to keep changing.
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Under laboratory conditions, the life cycle of C. elegans is reliably predictable. They

progress from fertilised egg through four larval stages into reproductive adults in three to

four days and live for about two weeks [7]. The majority of worms are hermaphrodites

and reproduction is primarily done through self-fertilisation, meaning the offspring are

genetically similar to their parent [102]. A typical brood size is around 300 and up to

10 eggs will be laid at a time during an active period [194]. This reproductive pattern is

well suited for rapid population growth [108], essential to exploit the rich, but ephemeral,

resources available.

When food becomes scarce, larval worms may enter a more resilient dauer stage in

which they can remain for many months [44, 110]. So called dauer larvae are of particular

interest for C. elegans ecology as they enable individuals to migrate across large distances

and survive unfavourable conditions [79]. Dauers actively disperse to search for food, either

through their own locomotion or by catching a lift on carrier animals such as snails, slugs,

birds or even humans [80, 131]. To facilitate contact with carrier animals, dauers perform

a unique behaviour called nictation that involves moving to the surface of the substrate,

standing upright on their tails and waving their head in all directions [88, 143, 186, 255].

Large groups of dauers also exhibit collective behaviours such as forming large towers that

have been reported extending centimetre-size and consisting of thousands of individuals

[80]. In a controlled 3D setting, dauers were observed jumping from the top of these

swaying towers [99].

2.2.2 Locomotion

Undulatory propulsion

Nematode locomotion is typically characterised by the propagation of sinusoidal undula-

tions along the body [95, 244]. Undulatory propulsion occurs in animals of many different

sizes, from large snakes to the tails of spermatozoa [94], some using the whole body and

others using limbs or cilia to act like oars [53]. In the whole body cases, undulatory loco-

motion follows the same fundamental mechanism; smooth curvature waves of contraction

and relaxation initiated at one end and passed along the body, causing movement in the

opposite direction.

In C. elegans, shape deformations are caused by 95 body-wall muscle cells arranged

in bundles located in the four quadrants (dorsal-left (DL), dorsal-right (DR), ventral-left

(VL), ventral-right (VR)), extending alongside the dorsal and ventral nerve cords down

the length of the body (the anterior-posterior axis) [7]. Motor neurons along the ventral

cord responsible for forward and backward locomotion innervate the muscles in a left-right
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symmetric pattern along much of the body [45, 105, 250]. The muscle placement and neural

anatomy suggest the generation of feed-forward undulation patterns is more easily achieved

in the dorso-ventral plane [48]. This is confirmed when worms are observed moving on a

plate; they lie on one side (left or right, with no obvious preference) and undulate using the

dorsal and ventral muscles.

The nature of undulatory locomotion in C. elegans has been the subject of some debate.

In water, worms undulate at a high frequency with a long wavelength, commonly referred

to as swimming [178]. On surfaces, the frequency is lower, the wavelength shorter and the

tail tends to follow along the path set by the head [244]. These clearly different locomotion

behaviours led to the established convention that worms employ two distinct gaits [154,

178, 238]. More recently, Berri et al . [25] proposed an alternate hypothesis; that these two

behaviours exist on a continuous spectrum generated by modulation of a single gait. This

is evidenced through observations of the undulation wavelength and frequency changing

smoothly with the viscosity of the media. With these results confirmed by other groups in

both Newtonian [76, 220] and non-Newtonian [140] media, and supported by computational

models based on mechanosenory and proprioceptive feedback [31, 32, 68, 76, 83, 121, 140,

220], the single-gait interpretation is now widely accepted.

Muscles in the head and neck region are associated with more complex neural circuitry

[250]. Under a microscope, where C. elegans have been almost exclusively studied on

surfaces, this additional freedom can be observed through the lifting of the head off the

surface to make exploratory movements, typically associated with local sensing [61, 249],

showing increased regularity in the absence of food [262] and increased irregularity with age

[203].

Turns and manoeuvres

In addition to forward and backward undulatory movement, C. elegans change direction by

steering, which can be achieved through a left-right bias in the curvature waves, or through

turning manoeuvres [61, 95]. High-curvature turns, usually preceded by a reversal, are often

called Ω-turns in recognition of the shape of the worm at the peak of the turn [244]. These

turns are used to enact sharp reorientations of the worm’s path, either to assist in foraging,

exploration, taxis [179] or as an escape response [96, 150, 180]. More recently, Broekmans

et al . determined the presence of a similar, but distinct, δ-turn that occurs with similar

frequency to Ω-turns but exhibits higher characteristic curvatures [36].

With the exception of the recently published 3D roll manoeuvre by Bilbao et al . [28],

turns and manoeuvres have only been reported and described in the 2D, planar setting.

Their function for 3D reorientation and exploration remains unknown. In Sec. 5.5 we aim
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to fill this gap.

Dynamics of movement – eigenworms

One approach used to analyse the range of behaviours employed by an animal is to find a

low-dimensional representation of the dynamics of movement. This was first attempted in C.

elegans by Baek et al . [11], who developed automated tracking and image analysis tools to

extract 94 features from 5 min recordings of individual worms at 2 Hz and, using a regression

tree classification algorithm, demonstrated that behavioural patterns of different mutants

can be used for identification. This was extended by Geng et al . [90] who extract 253

features from 797 5 min recordings of individual worms at 2 Hz. Using principal component

analysis (PCA) they find 43 principal components that capture > 94 % of the total variance,

and show that many of the phenotypes are visually well separated by just the first two

components.

Hoshi and Shingai [109] designed another automated tracking system that improved the

accuracy of head and tail detection. Using this system they identify four basic locomotion

states – forward, backward, rest and curl [61] – and demonstrate the effectiveness of their

approach by statistically capturing the local-global search transition that is observed when

worms are removed from food (see Sec. 2.2.3).

In search of a fully quantitative, yet still tractable, description of C. elegans locomotion,

Stephens et al . [211, 212] constructed a low dimensional embedding of postures to construct

a shape space on which different behaviours can be tracked. The authors collect 60,000

images of 9 freely crawling worms over 30 min periods, extract midline skeletons, rotate

them into a consistent orientation intrinsic to the worm and then encode them as vectors

of 100 curvature angles sampled along the body. An eigen-decomposition of the covariance

matrix of angles reveals a low dimensional shape space, with the eigenvectors representing

the fundamental worm shapes; the eigenworms. They report that over 95 % of the total

variance in the data is accounted for by just four components [211]. By studying the different

gaits in shape space the authors demonstrate that forward (and backward) locomotion

corresponds to a circular orbit in the plane formed by the first two components (with the

chirality switching for backwards). The third component is shown to contribute mainly

during high curvature turning events and the fourth describes local excursions of the head

and tail [212].

Since the eigenworm basis of Stephens et al . was constructed from observations of the

reference wild-type (N2) strain, it provides a useful test bed for drawing comparisons be-

tween the locomotion behaviours of different strains. Brown et al . [37] demonstrate this by

tracking the crawling behaviours of 7,708 worms across 307 different mutant strains. The
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postures are embedded into the reference eigenworm basis and the relative contributions

from each coefficient calculated. The authors measure distances between the stereotypi-

cal behaviours of each strain and from these create a similarity graph; clustering similar

mutants and revealing new phenotypes that were not detectable by eye. This work was

subsequently developed into a public database of C. elegans behavioural phenotypes [256].

In the only published attempt at generating eigenworms from 3D observations, Shaw

et al . [202] image freely moving worms in a shallow volume using light field microscopy

(see Sec. 2.3.4 for more details on the imaging setup). In 3D, two curvature angles are

required to represent a shape, denoted here as azimuthal and polar angles. After 3D midline

extraction, 25 pairs of angles are calculated and a similar alignment process as described

in Stephens et al . [211] is followed. The authors compute eigenworms from each angle-

vector representation independently and report a close similarity between them, repeating

the finding from Stephens et al . [211] that four components are sufficient to describe 95 %

of the total variance in the data regardless of which angle is used. However, by treating

the angles as independent the true 3D basis remains unknown and the two bases must be

combined to represent a single 3D posture. In Sec. 5.4.1 we generate the first unified 3D

basis and explore the shape space trajectories related to 3D locomotion behaviours.

3D locomotion

Planar undulations combined with three-dimensional freedom of movement in the head

may be sufficient for volumetric exploration. However, Wallace [244] describes spiralling

behaviours being observed in a number of nematode species such as Hemicycliophora are-

naria, Meloidogyne javanica, and Nacobbus serendipiticus, and gives a theoretical descrip-

tion of how spiral undulations can generate forward movement. Spiral-like locomotion has

also been observed in Nippostrongylus brasiliensis [141] and Nippostrongylus larvae as they

climb hairs [142]. It has taken much longer for spiral locomotion to be observed and re-

ported in C. elegans, however this was finally done in 2022 by our group’s own Omer Yuval

[167], using the imaging setup we describe later in Sec. 3.2.

Kwon et al . [138, 139] were the first to publish 3D data on worm postures and trajectories

of up to 3 minutes. They report that trajectories within a gelatinous volume are not

confined to a plane. Although the mechanisms for 3D locomotion are not explored in depth,

the authors do find highly non-planar postures and characterise 3D-specific behavioural

phenotypes of mutant worms. In further analysis of this data, Bilbao et al . [28] describe a

uniquely 3D “roll manoeuvre” that requires non-planar postures to achieve 3D reorientation.

The authors posit that, combined with turns and planar undulations, the roll manoeuvre

enables complete exploration of 3D space [28]. This is the first detailed description of a 3D
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reorientation manoeuvre in C. elegans. We observe similar behaviour in our data but show

that this is just one of a range of behaviours used to explore 3D space (Sec. 6.3).

2.2.3 Search and navigation

C. elegans display a range of sensitivities to environmental conditions to help them navigate

away from danger or towards food sources through olfaction, taste and thermosensation

receptors concentrated in the anterior region [157, 170]. This manifests as thermotaxis;

movement along thermal gradients [106, 156, 158, 191], chemotaxis; movement along chem-

ical gradients [14, 82, 115, 179, 247], aerotaxis; movement along oxygen gradients [46, 50,

97] and even magnetotaxis; movement to align with the earth’s magnetic field [12, 239].

Interestingly, despite having no eyes and living in darkness, phototaxis (movement along

light gradients) is also observed [246].

Pierce-Shimomura et al . [179] describe the taxis behaviours of C. elegans as resembling

the run-and-tumble strategy employed by E. coli [23] (see Sec. 2.1.2), with runs represent-

ing periods of forward locomotion and tumbles corresponding to large turns (Ω-turns or

pirouettes, a term used to describe a cluster of multiple turns and reversals). The authors

find that pirouettes are more likely when the worm is moving down the gradient of an at-

tractant and suggest that chemotaxis behaviour is produced as a result, akin to a biased

random walk. Ryu and Samuel [191] found similar behaviour in thermotaxis assays. These

studies suggest a different strategy to the one proposed by Ward in 1973 [247], who posited

that worms perform chemotaxis using a “weather vane” strategy; pointing the head up (or

down) the gradient like a weather vane pointing into the wind. Iino and Yoshida [115]

make the case for both mechanisms operating in parallel, a possibility that was noted by

Pierce-Shimomura et al . [179] and later supported with biophysical modelling results [65,

92].

In the absence of sensory information, C. elegans undergo local search behaviour re-

sembling a random walk, with steering during the runs and occasional turns and pirouettes

[96]. This behaviour is not constant, however, as the rate of turning decreases over time

resulting in gradual shift from local search to dispersal [96, 107, 243] in a strategy known

as “area-restricted search”. Calhoun et al . [41] argue that worms taken off food have a

prior expectation of finding food locally, and their local search to global search behavioural

transition follows a maximally informative search strategy (infotaxis) that can be well ap-

proximated with a simple drift-diffusion model.
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2.2.4 Computational models

C. elegans have been widely used as a model system to explain how locomotion and be-

haviour arises from neural circuitry. For example, Boyle et al . [32] demonstrate how the

swimming to crawling transition can be achieved solely as a result of proprioceptive feed-

back using WormSim, their neuromechanical model for forward locomotion. This 2D model

simulates contractile forces with damped rods and springs and includes neural control units

repeated along the body to drive the forces and facilitate proprioceptive feedback. Us-

ing the same body model as Boyle et al ., Izquierdo and Beer [117] extend this model to

include a more anatomically accurate neural circuitry and muscle placement. The ongo-

ing OpenWorm project aims to build a complete biophysical simulator and is constructed

in a flexible modular fashion that allows investigators to experiment with different neural

models, circuits and physical properties [193, 219].

Cohen and Ranner [52] (and subsequently in Ranner [185] with more rigour) present a

biomechanical model of locomotion by formulating the worm as an inextensible viscoelastic

rod with external drag forces based on resistive force theory. This approach (using the

Kirchhoff rod model) collapses surface force interactions along the body to the midline.

Using this model, and a similar neural circuit to that of Boyle et al . [32], Denham et al .

[68] studied the biomechanical basis of intrinsic and extrinsic gait modulation and Deng et

al . [67] studied possible roles of inhibitory neurons.

Using a similar type of model – the Cosserat rod model (which also allows shear and

stretch forces in addition to bending and twisting) – Wang et al . [245] describe an inverse

optimisation scheme that recovers the forces along the body given a target midline displace-

ment. Specifically, the midline data we reconstruct in Chapter 4 is used as the target, and

the torques are derived. While there is a degree of twist along the body that cannot be

resolved from the midline data, different solutions can be found through adjustment of the

regularisation terms.

In both the Kirchhoff and Cosserat formulations, while the neuroanatomy of the worm is

not modelled explicitly, the active internal forces along the body are assumed to be generated

by muscle activations. Using an inverse modelling approach such as demonstrated in Wang

et al . [245] therefore provides insight into the muscle activity and in turn the neural activity.

We revisit this topic in the discussion.
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2.3 Shape reconstruction and tracking

In order to build an understanding of how C. elegans move in 3D space, we must first track

their trajectories and reconstruct their postures. 3D shape reconstruction and tracking are

well explored topics in computer vision, but with an understandably heavy focus on human

poses, opaque, rigid shapes and good focus, we ask how far can existing approaches go

towards solving these problems in our microscopic, highly-deformable case?

2.3.1 3D techniques

Reconstructing the 3D shape of an object from multiple views is a fundamental problem in

computer vision with a long history and many techniques [104]. In human vision, recon-

struction is achieved through a binocular stereo vision system, where two views from slightly

different perspectives are combined in the brain to give the impression of 3D vision. In the

case of multiple views, the problem is often referred to as the multi-view stereo problem, of

which the binocular case is a subset [38, 197]. The challenge is twofold: extraction of useful

information from images and the construction of a scene or object that is consistent with

the views.

Seitz et al . [197] suggest that multi-view stereo algorithms can be categorised into four

classes. The first class computes a cost function on a 3D volume and retains all voxels with

costs below some threshold [198, 232]. The second class extends this by iteratively evolving

a surface to decrease a cost or energy functional, this includes space carving [35, 137] and

level set [77, 120] methods. The third class derives a set of depth maps and constructs the

scene to satisfy the corresponding depth constraints [87, 132, 218]. The final class extracts

feature points from the images, finds corresponding 3D locations and then fits a surface or

object to these points [159, 225]. The algorithm we develop in Sec. 4.4 iteratively refines a

shape to best match the views, so we can consider it as belonging to Seitz’s second class.

More recently, neural networks have been extensively used to extract geometric infor-

mation from images and fit 3D shapes to data (see [85, 259] for reviews). Training deep

networks requires large amounts of data, such as 3D models [47, 100, 136, 175], 2D key-

points [124] and images [253]. As obtaining annotations is time consuming, many studies

employ a generative stage to render comparable images from a 3D, or latent-space encoded,

representation complete with textures and shading from which a perceptual loss is used to

train the model [89, 252, 254]. This last approach bears some similarity to ours, but while

deep-network models require lengthy training using a dataset that must be carefully curated

to minimise bias being stored in the network parameters, our method requires only a small

number of explainable settings and can immediately generate results for a single frame.
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At the core of the 3D reconstruction method we present in Sec. 4.4 is a variation of a

bundle adjustment (BA) algorithm, defined as a procedure to jointly optimise 3D geometry

and camera parameters [104, 233]. Typically, BA requires identifying common features

of an object from multiple viewpoints in order to minimise a prediction error between

projections of the corresponding 3D points and their 2D observations. BA is frequently

used in conjunction with other methods to find camera parameters using multiple images

of a 3D calibration object with known control points or for fine-tuning results [78, 111, 147,

168, 234, 248].

BA is commonly used to solve the structure-from-motion (SfM) problem which involves

reconstructing a 3D structure from multiple images through estimation of the relative mo-

tion of the cameras [147, 166, 168] and the closely related simultaneous localisation and

mapping (SLAM) problem that typically takes the perspective of an active observer or

explorer [70, 223]. By aligning image features obtained from multiple perspectives (up to

many thousands [2]) these methods can be used to generate depth maps and point clouds

of complex objects and scenes from which textured mesh models can be constructed. BA

is well suited for problems with moving cameras. In our case, although the imaging system

is fixed, the high magnification means even small environmental vibrations can cause sig-

nificant shifts of the subject in the image and must be accounted for with continual camera

parameter adjustments.

Identifying matching object points across multiple images requires an initial feature de-

tection stage in which photometric information is converted to image coordinates in order to

solve a geometric optimisation problem. This can be supported by adding easily detectable

markers to the target objects. In any case photometric information is first converted to

image coordinates in order to solve a geometric optimisation problem. Photometric bun-

dle adjustment methods, on the other hand, incorporate this information by additionally

requiring points to have the same appearance in all views [66, 91]. Our reconstruction

method does not match features and is entirely photometric, in the sense that all of the

pixel-information is used and the geometry is solved intrinsically.

2.3.2 Pose estimation

Pose (or posture) estimation concerns detecting the orientation of a subject from one or

multiple views. For example, in human and animal pose estimation the task is to find the

locations of the head, hands, feet, joints etc. in order to fit a geometric model and recover

the 3D orientation.

In 2D single-image human pose estimation, deep network approaches are by far the

most successful, as they are particularly well suited for feature extraction from images and
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large datasets of annotated examples exist for training [8, 215, 231]. The lack of large

ground truth datasets for 3D postures has perhaps hindered progress in the 3D multi-view

case. However, recent approaches using end-to-end architectures [133, 174, 226] or splitting

the problem into 2D pose estimation and constructing the 3D pose from these [49, 153]

are making significant progress [146]. Other anthropocentric examples include hand pose

estimation [9, 145, 165] and head pose estimation [160, 190].

Pose estimation algorithms for non-human animal subjects tend to contain the same

components as in the human cases, such as feature detection, neural networks and resolving

into 3D where needed. The huge variability in scales and shapes between species makes this

field much more diverse, however [119]. For humans, motion capture in controlled settings

with markers provides a large resource of ground truth skeleton and joint angle data, but for

most species this is not possible (barring a few exceptions for some domesticated animals

e.g . horses [251] and dogs [128]). Pereira et al . [176] demonstrate a combination of modern

approaches in tracking the gait dynamics of freely moving Drosophila, developing a graphical

interface to facilitate labelling of keypoints that are used for training a deep network. With

only a few hundred frames labelled they reconstruct poses for 21 million frames to generate

a dataset that would be extraordinarily time consuming to produce by hand and present

behavioural analyses that would not be possible without such a large quantity of data.

Generalised mesh surfaces may be used to approximate any object, but these often

require thousands of parameters, may require different views of the same object and do not

guarantee consistency through time. In contrast, approximating an animal shape using a

morphable model with few parameters can make the problem both tractable and robust.

Cashman et al . [43] show this using an 8-parameter template model of a dolphin and deform

it to match silhouettes taken from images with known camera positions. This works well

for smooth animals such as dolphins, but they highlight that articulation is not modelled.

The deformable template model idea has been used to model many species including fish

[182] and swans [237], and extended to articulated models of many animals, such as birds

[124], macaques [13], dogs [26], cats and horses [125], giraffes [162] and generic quadrupeds

[27, 263].

C. elegans has a simple geometric shape – a tapered cylinder – that can be well re-

constructed from a midline skeleton and parametrised by curvature values along the body

(see Sec. 4.5). This is the deformable template we look to fit to the data. Despite the

apparent simplicity, each vertex of the discretised curve has two degrees of freedom (two

curvature values) and as we use 128 vertices, our model is highly deformable and requires

many parameters (although smoothness regularisation simplifies the problem somewhat).
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2.3.3 C. elegans in 2D

Automated tools for visual image analysis of C. elegans in 2D must provide at least one of

two things: position tracking and/or skeletonisation. In many situations, position tracking is

sufficient for studying behaviour, particularly in studying population responses that require

the simultaneous tracking of many animals. Estimating the posture of C. elegans in 2D

equates to finding a midline “skeleton” that runs along the middle of the body from the

tip of the head to the tail. As C. elegans (and nematodes in general) have a well defined

cylindrical body shape that is tapered at the ends, a complete surface (2D or 3D) can be

computed from just the midline.

Numerous freely available software packages are capable of simultaneous tracking and

skeletonising single or multiple worms in 2D using inexpensive microscopic imaging [62, 109,

118, 184, 217, 221, 257] (see [114] for a review). In general, these tools involve some degree

of image pre-processing, filtering and thresholding followed by object detection and some

temporal interpolation. The skeletonisers extend the tracking with image segmentation to

separate the animal from the background followed by a thinning of the mask to some midline

pixels and then fitting a spline to these points. These tools often report additional statistics

such as speed, head-tail distance, trajectory curvature and posture curvature [114].

2.3.4 C. elegans in 3D

Imaging, tracking and reconstruction of C. elegans in 3D has received relatively little at-

tention, in part due to the numerous technical challenges involved in setting up a system

to reliably capture high quality data. There are, however, a few notable exceptions. Using

at first two views [139] and later extending to three [138], Kwon et al . design a motorised

stage coupled with a real-time tracker to keep a worm in focus under high magnification

in a 3D environment while capturing trajectories of up to 3 minutes. Thresholded images

are lifted into 3D, intersected in voxel space and thinned [101] to produce a final skeleton.

Kwon et al . omit camera modelling and assume perfectly parallel projections – assumptions

that result in large errors for our data – and only a single gelatin concentration (3 %) is

used. Despite these constraints, this research provided an exciting first look into the 3D

movement of C. elegans.

Taking a different approach, Shaw et al . [202] employs light field microscopy to gener-

ate depth maps alongside images from a single viewpoint thus avoiding the difficulties of

resolving multiple viewpoints. The planar dimensions of the field of view are reported as

1.3 mm× 1.3 mm and the maximum depth is not made clear in the text, but appears to be

relatively shallow. A midline skeleton is generated by fitting a spline to the 3D coordinates
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of the central voxels. However, self-occlusions cannot be resolved and the small field of view

means only very short trajectories (< 30 s) could be analysed.

From our lab, Salfelder et al . [192] and Yuval [167] present 3D reconstruction algorithms

using the same three-camera setup and data as here (Sec. 3.2). In Salfelder et al . [192],

a neural network is trained to identify 2D midlines from individual camera images before

lifting into 3D voxel space. To account for changing camera parameters, a relative axial

shift (dx, dy, dz) is optimised for each frame-triplet to maximise the voxel intersection before

thinning again using the Guo-Hall algorithm [101]. Remaining voxel coordinates are used as

control points to fit a (fixed-length) curve using a finite-element formulation. This approach

works well when the midline is well detected in each of the views, but can fail on occluded

postures or low-resolution, blurry images.

Yuval [167] uses a neural network to track head and tail points in 3D lab coordinates

then fits a curve between these end points using an iterative hill-climbing optimisation

algorithm. A pool of random curves is generated from the current estimate (or solution

from last frame) by random perturbations. Scoring is based on curve smoothness and pixel

intensities at the projected curve points. The process repeats using the best scoring curve

for the next generation while slowly reducing the size of the perturbations. This method

works well when the head and tail are correctly identified but struggles, or requires manual

correction, when the detection accuracy drops.

In our approach we find that incorporating camera model parameters into the optimisa-

tion results in more robust and accurate output curves. This extends the idea proposed in

Salfelder et al . [192] that adjusting the relative positions of the cameras could result in large

gains in accuracy. It is likely that the relative shift adjustments presented there account for

some of the changing optical properties, whereas these, along with the relative positions,

are directly optimised in our algorithm.
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Chapter 3

Experimental setup and protocols

3.1 Overview

The video recordings that form the basis of our research all come from a custom-built

triaxial imaging setup that has been in existence for a number of years (Fig. 3.1). This

chapter gives an overview of the physical equipment involved and the experimental processes

and protocols developed by members of our group over the years to record the data. The

recordings selected for our dataset were all taken by either Robert Holbrook or Omer Yuval.

For more details please refer to Yuval [167] and Salfelder et al . [192].

In the final section (Sec. 3.6) we explore some of the constraints and biases inherent in

the system and approaches used.

3.2 3D imaging setup

The imaging setup consists of three approximately orthogonal cameras (Ximea xIQ MQ042RG-

CM), each connected to a variable magnification telecentric lens (minimum 7X, Navitar

Inc.). Each camera has a pixel size of 5 µm and records 4 mega-pixel (2048× 2048) images.

The cameras are synchronised using a trigger box. Videos are recorded using the StreamPix

6 software from Norpix at (mostly) 25 frames per second (fps) and written to separate hard

drives concurrently.

The telecentric property of the lens means the light rays are made close to parallel

(within a ± 0.4° error), thus increasing the depth of focus. The lens magnification was

chosen to ensure sufficient resolution with a depth of focus of at least 1 cm and is thus

24



3. EXPERIMENTAL SETUP 3.3 Experimental protocols

Figure 3.1: The experimental setup. (a) Simultaneous recordings are taken from three
mostly-orthogonal cameras pointed at a glass cube filled with a gelatin solution. Red LED
arrays face each camera to back-light the subject. (b) An example calibration image taken
of an oriented glass slide of about 1 cm2 in size inserted into the cube. The green grid
overlay shows the detected features used for calibration.

suitable for capturing postural sequences and exploration trajectories over several minutes.

At the centre of the setup is a glass cube of at least 2 cm3 dimensions that is filled with

liquid or gel. In our experiments, gelatin solutions were used with concentrations between

1 % and 4 % [25] that are transparent at optical frequencies. The stage is back-lit with red

LED lights located opposite each camera. A photo of the setup is shown in Fig. 3.1 (a).

For more details please refer to [167] and [192].

3.3 Experimental protocols

The gelatin media is prepared to the appropriate concentration as per Berri et al . [25] and

loaded into the sample cube when molten. Calibration images of a grid-patterned slide in

different orientations in the gel are then taken simultaneously from all cameras; these are

used to determine the initial pinhole camera model parameters [167, 192]. The gel is then

left to set as it cools at room temperature (20 °C).

Wild-type (N2) C. elegans worms were grown at 20 °C and maintained under standard

conditions [34]. Worms were age synchronised [7] and observed when at the young-adult

stage.

Each trial consists of an individual worm picked using a platinum wire and placed in the

sample cube, approximately in the centre of the field of view, at 20 °C. The only lighting in

the room is from the red LEDs that back-light the subject. The recording is started after

at least 30 seconds to let the worm settle, and continued as long as it remains in the field
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of view in all three cameras. Since the size of the cube is greater than the field of view

a small number of trials may be conducted using the same experimental preparation and

consequently there may be more than one animal in the recordings, though typically in our

recordings only one specimen is in focus in all three views.

3.4 Camera calibration

The cameras are modelled with pinhole camera models (see Sec. 4.2 for more details). The

parameters are initially calibrated using multiple still images of a glass slide printed with

an oriented grid (example image shown in Fig. 3.1 (b)), inserted into the volume in different

orientations while the medium is still hot and liquid. This cannot be done after the gelatin

has cooled as moving the calibration slide through the cooled solution will disturb the gel.

The intrinsic and distortion parameters for each camera are first established individually

before a bundle-adjustment algorithm is used to find the extrinsic parameters that describe

where each camera is in relation to the others and to the sample. The calibration procedure

is described in more detail in [167, 192].

This initial calibration process typically gives root mean squared (RMS) reprojection

errors on the detected keypoints of up to 10 pixels (px) which is roughly the radius of

the worm for the magnifications that we use. As we find camera parameters often require

fine tuning after the gel cools to room temperature, recalibration is performed during the

processing pipeline; this is explained in detail in Sec. 4.2.1.

3.5 Video preparation

Each uncompressed 4 mega-pixel image uses about 4 megabytes storage space and the total

video corpus requires more than 20 terabytes. These videos are too large to be used directly

for various technical reasons (e.g . transferring between compute nodes is time consuming

and processing is memory intensive) so first they must be compressed. However, it is crucial

that none of the salient information is discarded for a number of reasons. First, the temporal

resolution (25 fps) is pushing the lower limit of being able to resolve some of the fast moving

gaits observed in low-concentration gelatin environments. Second, blurring and loss of focus

means we already often have insufficient spatial resolution in at least one of the cameras.

Therefore, only lossless compression is acceptable.

Lossless compression acts by identifying pixels that do not change over a number of

frames, replacing the repeated pixels with some encoding. However, due to the low light
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conditions the raw recordings contain a lot of background white-noise that is constantly

changing and hence is not well compressible. To address this, for each recording, static

background images are computed using the median pixel values across the clip. All potential

objects of interest (plus large margins for error) are identified in each image with custom

software and OpenCV [33] using image thresholding and contouring and a new frame is

created by overlaying the contoured areas on top of the static background image. The new

stack of frames is then re-encoded with ffmpeg using the lossless H.264 codec. The new

videos preserve any areas of potential interest, but since the majority of each frame is now

fixed, the video encoding is able to reduce the video size substantially. After re-encoding,

terabyte-sized recordings are reduced to megabyte-sized with no loss of resolution in any

potential areas of interest.

3.6 Selection bias and confinement

A single C. elegans is placed into the centre of a field of view that is approximately 10-20

worm lengths per side, depending on magnification. The glass cube is always substantially

larger than the volume of view and the recording is stopped when the worm leaves the

volume of view. This ensures that the walls do not interfere with the exploratory behaviour

either by inducing a “wall effect” (an attractive force close to the wall) or by confining the

animal to repeatedly search the same region. Because of this, many of the trials are quite

short, for example when active worms choose to move too far in a straight line, a problem

that can be further compounded if they were also placed close to one of the field of view

boundaries.

While short trajectories are useful for collecting data on locomotion gaits [167], they are

not of particular interest in studying how short term behaviours combine across scales to

generate long term exploration. For these reasons, along with practical and computational

constraints, we focus our attention on trajectories of at least 4 min.

Despite best efforts to avoid confinement effects by ensuring the sample cube is suffi-

ciently larger than the field of view, a few of the longer trials still demonstrate signs of

confinement – as indicated by a plateau on the plot of the mean-squared displacement

(MSD) of the centre-of-mass trajectories over time (Fig. 3.2). This could be caused by

these worms becoming stuck in place (trapped) for some time, but from inspecting the

recordings this does not appear to be the case. Rather, this is caused by worms staying

within the visible area for a long duration and as such acting in a way that is equivalent to

being confined. In order to check if this results by chance or otherwise, we build a simple

correlated random walk model with similar statistics to our experiments and truncate each

trajectory as soon as the simulated particle leaves a cube of comparable size to the real

27



3. EXPERIMENTAL SETUP 3.6 Selection bias and confinement

cube. We then select from the truncated trajectories only ones that are longer than 4 min

and plot the MSD. As shown in Fig. 3.2, a similar plateau emerges, indicating that any

apparent confinement effects in the data are indeed due to chance.
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Figure 3.2: Selection bias and confinement. (a) Mean squared displacement (MSD), calcu-
lated along the centre-of-mass trajectories, shows a change in gradient in many cases for
time windows between 20 s to 100 s (red shaded region). This effect is observed across con-
centrations. (b) Using an unconfined correlated random walk model a plateau in the MSD
is not observed. We simulate 25 Brownian particles for 20 min (average shown as black
dashed line). An example simulated trajectory is shown to the right, note it is not confined
within the cube. (c) When Brownian particles are confined within a cube, a plateau is ob-
served within the shaded region. To the right is shown an example trajectory, here the cube
(shown with a red outline) provides a reflective boundary for the particles. (d) Using the
unconfined model we keep simulating trajectories until we find ones that remain within the
cube for at least 4 min. These trajectories show the same characteristics of being confined,
but this is a result of the selection bias.
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Chapter 4

3D tracking and reconstruction

4.1 Overview

Given many hours of experimental recordings our goals are both to track the worm positions

in 3D and reconstruct postures for as many frames as possible. We tackle this in two stages;

tracking and reconstruction. At each point in time we take triplets of 2048 × 2048 pixel

resolution grey-scale images and approximate the 3D worm position using object detection,

triangulation (Sec. 4.3) and some post-processing to filter out noise and smooth the estimate

(Sec. 4.4). This provides point-wise tracking that is sufficiently accurate for the study of

long-term trajectories (Chapter 6), but does not shed light on the gaits and manoeuvres

that were used to generate them – for this we must reconstruct the full 3D shapes.

The approximate positions are used to crop smaller images (about 200-300 px2 depending

on magnification and individual worm length) around the animal at each time point. We

model the slender worm as a 3D curve using an intrinsic parametrisation that naturally

admits biologically-informed constraints and regularisation (Sec. 4.5). To account for the

changing optics we developed a novel differentiable renderer to construct images from 2D

projections (Sec. 4.6.2). The rendered images are compared with the raw images to generate

a pixel-wise error that is used to jointly update the curve, camera and renderer parameters

using gradient descent (Sec. 4.7). The method is robust to interference such as air bubbles

and dirt trapped in the gel, stays consistent through complex sequences of postures, recovers

reliable estimates from low-resolution, blurry images and provides a significant improvement

on previous attempts to track C. elegans in 3D [167, 192] (Sec. 4.8).

At the core of our method is an integrated “project-render-score” algorithm to obtain

a midline curve for each image-triplet (Sec. 4.6 and Fig. 4.1). Discrete curve vertices are

projected through a triplet of pinhole camera models, rendered to produce an image-triplet
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4. 3D TRACKING AND RECONSTRUCTION 4.2 Pinhole camera model

for direct comparison against the recorded images and scored according to their intersection

with worm-like pixels in all three views. The differentiable renderer (Sec. 4.6.2) stacks 2D

super-Gaussian blobs at the projected locations of each vertex to approximate the trans-

parency along the worm, account for the variable focus and provide soft edges that direct

the geometric model towards the midline. The scoring (Sec. 4.6.3) allows the detection of

incontiguities and keeps the curve centred over the worm in all views. Regularisation terms

ensure smoothness along the body and in time. Curve, camera and rendering parameters

are jointly optimised using gradient descent to convergence (Sec. 4.7). Once the worm

shape has been resolved, it is generally only lost during image degradation or significant

self-occlusions that make the posture unresolvable by eye.

In summary, the main contributions in this chapter are:

• Creation of a large dataset of tracked 3D trajectories and 3D postures.

• A robust pipeline for 3D posture reconstruction of a freely deforming semi-transparent

object from noisy images.

• A novel viewpoint renderer to capture optical distortions and transparency.

• A feature-free bundle adjustment algorithm using direct image comparison and gra-

dient descent.

4.2 Pinhole camera model

The cameras are modelled using a triplet of pinhole camera models with tangential and

radial distortion that project 3D points into image planes using perspective transformations.

Each pinhole camera model offers a simple (15 parameters), yet tractable, approximation

to the optical transformation. Initial camera coefficients for the triplet-model are provided

for us following the method described in Sec. 3.4 and typically give root mean squared

reprojection errors up to 10 pixels (∼O(worm radius)). We denote the parameters for

camera c as ηc. We also include additional parameters to capture relative shifts along the

local coordinate axes, ηs = (dx, dy, dz), shared between the three models, as proposed by

Salfelder et al . [192] (see Sec. 4.2.1).

The parameters, summarised in Table 4.1, are divided into intrinsic, extrinsic and distor-

tion parameters. The intrinsic parameters are (fx, fy, cx, cy), where fx and fy are the focal

lengths and (cx, cy) is a principal point usually set to the image centre. The extrinsic pa-

rameters – angles (φ0, φ1, φ2) and a translation vector t – define the extrinsic transformation
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4. 3D TRACKING AND RECONSTRUCTION 4.2 Pinhole camera model

M = [R|t], where

R = Rz(φ0)Ry(φ1)Rx(φ2), (4.1)

t =

t0t1
t2

 (4.2)

and R is a rotation matrix composed of three axial rotations:

Rz(φ0) =

cosφ0 − sinφ0 0

sinφ0 cosφ0 0

0 0 1

 , (4.3)

Ry(φ1) =

 cosφ1 0 sinφ1

0 1 0

− sinφ1 0 cosφ0

 and (4.4)

Rx(φ2) =

1 0 0

0 cosφ2 − sinφ2

0 sinφ2 cosφ2

 . (4.5)

The radial and tangential distortion coefficients, (k1, k2, k3) and (p1, p2) respectively, com-

plete the parametrisation.

4.2.1 Shift-adjustments

Due to imperfections in the camera model and small environmental vibrations of the setup,

using fixed pinhole camera model parameters yields results with errors that vary over time

and space (i.e. the accuracy depends on the worm position). Allowing the camera param-

eters to change freely between frames resolves the reconstruction errors, but the problem

becomes under-determined and introduces drift into both the camera and curve parameters

resulting in incorrect tracking. To compensate for these errors without allowing full free-

dom of movement we use fixed pinhole camera parameters and introduce frame-dependent

variables that emulate relative movement between the cameras, hence limiting drift and

providing stable reconstructions.

To this end, the standard pinhole camera model is extended to include ηs = (dx, dy, dz),

relative shifts along the local coordinate axes as introduced by Salfelder et al . [192]. These

parameters approximate changes in the relative positions and rotations of the cameras by

applying pixel translations after the perspective transformation. Without loss of generality,

ηs can be limited to one direction per camera, thus capturing only relative shifts. The shifts
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4. 3D TRACKING AND RECONSTRUCTION 4.3 Triangulation

used in camera index c are given by (sx, sy)c where:

(sx, sy)0 = (dx, 0), (4.6)

(sx, sy)1 = (0,−dy), and (4.7)

(sx, sy)2 = (0, dz). (4.8)

4.2.2 Camera triplet model

For 3D object point (X,Y, Z), the corresponding projected image point (u, v) is generated

using the following procedure (when z 6= 0):xy
z

 = R

XY
Z

+ t, (4.9)

x′ =
x

z
+
sx
fx
, (4.10)

y′ =
y

z
+
sy
fy
, (4.11)

r2 = x′2 + y′2, (4.12)

k = 1 + k1r
2 + k2r

4 + k3r
6, (4.13)

x′′ = kx′ + 2p1x
′y′ + p2(r2 + 2x′2), (4.14)

y′′ = ky′ + p1(r2 + 2y′2) + 2p2x
′y′, (4.15)(

u

v

)
=

(
fxx
′′ + cx

fyy
′′ + cy

)
. (4.16)

Note the inclusion of the shift parameters in Eqs. (4.10) and (4.11).

Let the triplet of adjusted pinhole camera models be summarised as Γ and combine

parameters as η = {η0, η1, η2, η
s} such that for 3D point p ∈ R3:

q = Γ(p, η) (4.17)

where q ∈ R3×2 is a triplet of corresponding image points.

4.3 Triangulation

In order to track the position of the worm in the volume we first detect candidate locations

in each of the images and then use the camera models to triangulate combinations of points
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4. 3D TRACKING AND RECONSTRUCTION 4.3 Triangulation

Parameter Purpose Domain

fx,fy Focal lengths R+

(cx, cy) Principal image point R+

φ0, φ1, φ2 Rotation angles [0, 2π)
t Translation (position) vector R3

(k1, k2, k3) Radial distortion coefficients R+

(p1, p2) Tangential distortion coefficients R+

ηs Relative shifts R3

Table 4.1: Camera model parameters. With the exception of ηs these are defined for each
camera. ηs is shared between the models as per Eqs. (4.6) to (4.8).

into 3D to find the most likely match. We use the OpenCV software library to apply adaptive

thresholding and contouring to each camera image in order to detect all objects that may

potentially be a worm. We set bounds on the contour area sizes to filter out very small or

large objects, but the bounds cannot be tight due to the worm potentially appearing very

small when it is pointing directly at the camera or very large when blurred and pointing

laterally. Therefore, multiple 2D objects such as bubbles and dirt are frequently detected.

Image positions are taken as the centres of mass of each contoured object.

In the following, we denote Xc as the set of 2D centre points detected in camera c

for c ∈ {0, 1, 2} and define a maximum reprojection error threshold Θr. A 3D point is

calculated for each combination of 2D positions by minimising the distances between the

projections of an estimated 3D point and their target 2D locations. When the reprojection

error for a combination of points stays large (above Θr) this implies that the combination

is not consistent with the same object (worm or otherwise) and can be discarded. Most of

the detected artefacts are not present in all three views so this eliminates the majority of

the noise. If multiple 3D points are found we select the one with the lowest reprojection

error.

The triangulation procedure is described in Algorithm 4.1. When this algorithm fails to

find any 3D points within an acceptable tolerance then the 2D object detection is repeated

with a lower threshold to find more candidate 2D points. If/when an acceptable 3D object

point is found it is saved, along with the corresponding 2D points and reprojection error,

into a database. This point is used to initialise a 3D point estimate for the next frame-

triplet to improve convergence time. An example of the contouring and typical discrepancy

between image points and reprojected 3D object points is shown in Fig. 4.2.
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4. 3D TRACKING AND RECONSTRUCTION 4.3 Triangulation

Figure 4.2: Example of the triangulation process. Row (a) shows the raw full resolution
images from each camera. The blue box is only for presentation. Row (b) shows the results
of the object detection and triangulation. Detected objects are contoured in green and the
centre of mass of each contoured area is indicated by a blue cross. The red cross shows the
projection (through the pinhole camera models) of the triangulated 3D point that minimises
the sum of the distances to the blue crosses. Row (c) shows the prepared images; cropped
around the 3D centre point reprojections, inverted and normalised.

36



4. 3D TRACKING AND RECONSTRUCTION 4.4 Tracking

Algorithm 4.1 Triangulation procedure

1: Let ε∗ =∞
2: for each combination {x0, x1, x2} ∈ {X0, X1, X2} do
3: if zprev is defined then
4: ẑ ← zprev

5: else
6: Initialise a 3D object point at random: ẑ ∈ R3.
7: end if
8: {x̂0, x̂1, x̂2} = Γ(ẑ, η) . Project 3D point to 2D image points
9: ε =

∑
c |xc − x̂c|2 . Calculate reprojection error

10: Minimise ε to find optimal point z† with error ε†.
11: if ε† < ε∗ then
12: z∗ ← z†, ε∗ ← ε†

13: end if
14: end for
15: if ε† < Θr then
16: return z∗

17: else
18: return −1 . Fail: Find more 2D points
19: end if

4.4 Tracking

The triangulation procedure is applied to every frame-triplet to produce a 3D trajectory in

time. However, as the worm encounters image noise and other visual artefacts the trajectory

estimate can end up with large jumps due to incorrectly selected 2D centre points or the

algorithm determining some artefact to be more worm-like than an actual obscured, coiled

worm. To remedy this, any points with reprojection errors greater than 50 px are discarded

along with any points that suggest the worm has moved at a speed of more than 1 mm s−1

from its last known position (this upper bound of velocity taken from Hahm et al . [103]).

New coordinates are interpolated at the excluded points and the new trajectory is smoothed

with a 1 second window (see Fig. 4.3).

The final 3D tracking trajectory is projected back through the camera-triplet model

to give a triplet of 2D tracking coordinates. For every frame-triplet the background is

subtracted and the image renormalised to full brightness. Finally, crops centred on the

2D projected image points are taken to yield prepared image-triplets ready for midline

reconstruction (see the bottom row of Fig. 4.2 for an example of the prepared images).

37



4. 3D TRACKING AND RECONSTRUCTION 4.4 Tracking

Figure 4.3: 3D tracking example. The plots show the x, y and z-components of the 3D po-
sitions over a particularly challenging section of a trial. The camera images show projected
image positions of the unfixed (red) and fixed (green) 3D positions for the frame indicated
with a purple line and points indicated with red/green circles in the above plots. Contours
for the detected objects are shown in blue on the images. During this section the worm
is frequently hidden behind dirt in Camera 1 (bottom row) meaning the object detection
often fails to find the worm. In the example frame triplet the incorrectly detected object
cannot be resolved to a consistent 3D point so the red cross is drawn away from the worm
in the other two views. By excluding these points and interpolating between the remaining
points the worm can be tracked reliably through such dirt and interference.
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4. 3D TRACKING AND RECONSTRUCTION 4.5 Geometric model

4.5 Geometric model

Nematode shapes can be well approximated by a tapered cylinder and computed from a

midline. We construct the midline curve using an object-centric parametrisation, separating

shape from position and orientation to allow us to easily constrain and regularise the shape

to stay within biologically reasonable bounds. We discretise the curve into N equidistant

vertices and encode the posture in curvature K ∈ RN×2 and length l ∈ R that fully define

the curve up to a rigid-body transformation.

4.5.1 The Bishop frame

3D curves are typically expressed in the Frenet frame TNB where T refers to the normalised

tangent of the curve, N is the ‘normal’ vector defined as the normalised arc-length derivative

of T , and B is the ‘binormal’ vector obtained through the cross product B = T ×N . This

frame is defined along the curve using the Frenet-Serret formulas:

Ṫ = κN, (4.18)

Ṅ = −κT + τB, (4.19)

Ḃ = −τN, (4.20)

where dot denotes the arc-length derivative d/ds and κ and τ are scalar fields generally

called curvature and torsion respectively. For simplicity we leave the arc length parameter

s implicit in all equations.

A difficulty with the Frenet formulation is that the torsion, τ , is strictly undefined for

straight curves, or locally wherever κ = 0. Zero (or near-zero) curvature is expected in

an animal that propagates sinusoidal waves along its body and at these points we cannot

guarantee a unique and consistent parametrisation. To overcome this ambiguity we use the

Bishop frame [29], given by TM1M2 where T again refers to the normalised tangent of the

curve and M1,M2 form an orthogonal basis. The Bishop equations define how the frame

changes along the curve:

Ṫ = m1M1 +m2M2, (4.21)

Ṁ1 = −m1T, (4.22)

Ṁ2 = −m2T, (4.23)

where m1,m2 are scalar fields analogous to κ, τ that express the curvature in the M1 and

M2 directions respectively.
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While the Bishop frame improves the zero-curvature problem, it does leave a degree

of freedom in the choice of the initial value of M1 (M1
0 ) that can point in any direction

perpendicular to the initial tangent T0. Any rotation of M1
0 around T0 will result in a

different (m1,m2) representation of the curvature, but this rotation angle can easily be

recovered and different representations subsequently aligned.

As Bishop describes in [29] (and expanded here for completeness) the two frames are

related through their scalar field components. κ can be recovered from m1,m2 using

Eqs. (4.18) and (4.21) as:

κ =

∣∣∣∣dTds
∣∣∣∣ =

∣∣m1M1 +m2M2
∣∣ =

√
(m1)2 + (m2)2. (4.24)

To recover the torsion τ that describes the rotation of the Frenet frame around N , let θ be

the angle between N and M1, then

N = M1 cos θ +M2 sin θ, (4.25)

B = −M1 sin θ +M2 cos θ, (4.26)

m1 = κ cos θ and (4.27)

m2 = κ sin θ. (4.28)

Differentiating Eq. (4.25) with respect to arc length and substituting from Eqs. (4.22)

and (4.23) we have:

Ṅ = θ̇
(
−M1 sin θ +M2 cos θ

)
+ T

(
m1 cos θ −m2 sin θ

)
, (4.29)

= θ̇B − κT (cos2 θ + sin2 θ), (4.30)

=⇒ τ = θ̇. (4.31)

Thus, in the words of Bishop, “κ and an indefinite integral
∫
τds are polar coordinates for

the curve (m1,m2)”.

4.5.2 Constructing the curve

The curve path P ∈ RN×3 is computed by numerical integration of a system of difference

equations from starting point P0 and initial orientation frame (T0,M
1
0 ,M

2
0 ). The parameters

are summarised in Table 4.2. For higher curvature cases we find simple Euler integration

can produce inconsistent curves from different starting points with errors ∼O(worm radius)

that can cause convergence problems. These errors can be made arbitrarily small by using a

higher order scheme at the cost of adding more steps to the pipeline. While the fourth-order

Runge-Kutta method reduces the errors almost to zero we also find the simpler second- order
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Parameter Purpose Domain

P 3D curve vertex coordinates RN×3

T Normalised curve tangent vectors at each vertex location RN×3

M1 Normalised curvature orientation vectors at each vertex
location

RN×3

K Vector curvature RN×2

l Curve length (lmin, lmax)

Table 4.2: Curve and Bishop frame parameters

midpoint method comfortably improves the worst cases by a factor of at least 10 and is

sufficient for our purposes.

As the curve is constructed using a numerical integration scheme, the coordinates of

subsequent vertices depend not only on the local curvature but also on all preceding cur-

vatures. Similarly, small changes in the initial position and frame orientation can produce

large changes in the position of the end point. During optimisation, propagated errors ac-

cumulate near the starting point resulting in parts of the curve moving faster than others.

Starting the integration from a point in the middle and calculating the curve in two halves

reduces the impact but we still find kinks developing at the midpoint (even with strong

regularisation). To resolve this we generate the initial vertex index n0 by rounding and

clipping a random sample from a normal distribution at every optimisation step. This has

the effect of continually shifting the discontinuity so kinks are never given the opportunity

to develop. The curve construction process is illustrated in Fig. 4.4.

Noting that M2 = T ×M1, we omit M2 from the parameters. Summarising the inte-

gration as F , the 3D curve is generated from the parameters as:

(P̂ , T̂ , M̂1) = F
(
Pn0 , Tn0 ,M

1
n0
,K, l, n0

)
. (4.32)

Each gradient update adjusts all curvature values K but the position and orientation

only at the randomly selected n0 vertex (Pn0 , Tn0 ,M
1
n0

). Updating (P, T,M1) at only this

vertex immediately produces a P that is inconsistent with the updated K. Therefore, after

applying gradient updates we re-compute the curve from n0 and set (P, T,M1) to the output

(P̂ , T̂ , M̂1).

Lastly, since the curve describes a biological creature, we constrain the length l to

(lmin, lmax) and limit the maximum curvature by |Kn| < 2πkmax. The values of (lmin, lmax)

we use vary depending on magnification but the bounds do not need to be tight and are in

the range 0.5-2 mm. The curvature constraint kmax sets the number of circles a curve using

this value everywhere would form and is fixed at 3.
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4.6 Project, Render, Score

The core of the optimisation pipeline is broadly separable into three main stages; project,

render and score. The 3D curve P̂ generated in Eq. (4.32) is projected through the camera

models into 2D points that are rendered into images and then scored against the three

views. For the following sections, any reference to the images refers to the normalised

cropped images generated above in Sec. 4.4.

4.6.1 Project

Due to initial calibration error and changes in optical properties as the gelatin sets and is

then disturbed by the worms we re-calibrate the cameras at every frame by including the

camera parameters in the optimisation step. To avoid an under-determined problem, after

we have found a configuration that supports good reconstructions for a recording we fix all

but the ηs parameters. Interestingly, we still see changes (up to 30 px ∼ 0.15 mm) in ηs but

as this relates to the relative positioning between the cameras it does not affect the posture

reconstruction or long-term trajectories.

Projecting the 3D curve P̂ through the camera-triplet model Γ with parameters η as

described in Sec. 4.2 generates 2D image points per view, which we combine as Q ∈ R3×N×2:

Q = Γ(P̂ , η). (4.33)

4.6.2 Render

In order to evaluate the reconstruction directly against the raw data, we render the pro-

jected 2D midline points into images using optimisable shape and rendering parameters.

Since worm bodies are well approximated by tapered cylinders, in theory we only require

maximum and minimum radius values and a tapering function. However, C. elegans are

also translucent – increasingly so at the head and tail – and their internal anatomy has

varying optical properties that diffract and distort the light. These challenges are further

exacerbated by the worms often being out of focus in at least one of the camera views,

therefore even a physically accurate model stands little chance of being correctly resolved.

We render realistic images by combining 2D super-Gaussian functions centred on each

projected vertex. Crucially, we allow the rendering parameters to differ between cameras

since the animal seldom has the same photometric qualities in different views. We optimise

three parameters for each camera view c: the scale σc ∈ R controls the spread, ιc ∈ R scales
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the intensity, and the exponent ρc ∈ R sharpens or softens the edges (see Fig. 4.5 to see the

effect of varying these parameters).

To capture the worm shape we linearly taper the values of σc and ιc from their optimis-

able values along the middle 60% of the body down to fixed minimum values σmin and ιmin

respectively at the ends. The tapered outputs σ̄c, ῑc ∈ RN are calculated thus:

σ̄c,n =


σmin(1− 5n

N ) + σc
5n
N 0 ≤ n < N/5

σc N/5 ≤ n < 4N/5

σc(1− n−4N/5
N−4N/5) + σmin

n−4N/5
N−4N/5 4N/5 ≤ n < N,

(4.34)

and

ῑc,n =


ιmin(1− 5n

N ) + ιc
5n
N 0 ≤ n < N/5

ιc N/5 ≤ n < 4N/5

ιc(1− n−4N/5
N−4N/5) + ιmin

n−4N/5
N−4N/5 4N/5 ≤ n < N.

(4.35)

σmin and ιmin are manually fixed for each recording to account for different magnification

factors and worm size variability.

For each camera index c and vertex index n we define the rendered blob Bc,n ∈ Rw×w

(image size w) for pixel (i, j) as:

Bc,n(i, j) = ῑc,n exp

[
−
(

(i−Qc,n,0)2 + (j −Qc,n,1)2

2σ̄2
c,n

)ρc]
. (4.36)

The stacks of blobs are combined to generate the complete renderings R ∈ R3×w×w by

taking the maximum pixel value across all blobs; for pixel (i, j),

Rc(i, j) = max {Bc,n(i, j)}n=0,...,N−1 . (4.37)

Rendering with super-Gaussian blobs allow sharp outlines to be produced for one view

by using a large exponent and flat-top blobs, and blurry images to be produced for another,

using low intensity and high variance. The orientation of the curve also directly affects

the pixel intensity of the images. When the worm is pointing directly at the camera the

peaks of the blobs cluster closely together and appear as a high-intensity (opaque) circle.

When the worm is pointing laterally the peaks spread out on the image revealing more

of the lower-intensity tails. In both situations our blob-rendering approach approximates

transparency effects without the need to model complex intensity-orientation responses.
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Figure 4.5: The rendering stage generates super-Gaussian blobs at each vertex position on
the image. The shape of the blobs depends on the optimisable parameters: the scale σ,
the intensity ι and the exponent used in the Gaussian ρ. σ and ι are tapered down to
fixed minimum values at the head and tail. The effects of varying these parameters from a
converged solution (blue curves) are shown above (green curves) and below (orange curves)
each.
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Parameter Purpose Domain

σc Standard deviation of the super-Gaussian blobs along the
untapered middle 60% of the worm in camera c

[σmin,∞)

ιc Intensity scaling factor for the super-Gaussian blobs along
the untapered middle 60% of the worm in camera c

[ιmin,∞)

ρc Exponent used in the super-Gaussian blobs in camera c (0,∞)

Table 4.3: Rendering parameters.

4.6.3 Score

In order to evaluate how well the curve represents the worm we require a way of distin-

guishing between worm pixels and non-worm pixels such as dirt, bubbles, old tracks and

even other worms. When the animal truly intersects with environmental interference it can

be impossible to differentiate between the two, but in the majority of cases there exists a

gap between the worm and the noise that is visible in at least one of the views. By ensuring

that the curve corresponds to a single contiguous pixel mass in all of the images we are able

to safely ignore other artefacts. This scoring procedure is illustrated in Fig. 4.6.

To detect if the curve is bridging a gap, each vertex P̂n is scored by correlating its

corresponding blobs B.,n (see Sec. 4.6.2) with the images I. The raw score Sn ∈ R is

defined:

Sn = min

{∑
i,j Bc,n · Ic
σ̄c,nῑc,n

}
c=0,1,2

(4.38)

where � is the Hadamard product (element-wise multiplication) and the sum is taken over

the image dimensions. By taking the minimum we ensure that vertices failing to match

pixels in any one of the views will receive low scores regardless of how well they match

pixels in the other views.

If the curve is bridging two disjoint groups of pixels that are visible in all three views

this will present as two peaks in S. Since we are only interested in finding one object we

restrict the scores to contain just one peak by tapering S from the middle-out to form the

intermediate S′. Finally, we normalise S′ to get scores Ŝ relative to the peak:

S′n =


min{Sn, S′n+1} 0 ≤ n < N/2

Sn n = N/2

min{Sn, S′n−1} N/2 < n < N

(4.39)

Ŝ =
S′

maxn{S′}
. (4.40)
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Figure 4.6: The 3D curve points are scored individually according to how well they match
the three views. The triplet of blobs associated with vertex n (B.,n) are multiplied with
the images I and summed. We take the minimum of the three sums and then taper these
values from the midpoint-out.

The final score profile Ŝ provides insight into how well the curve matches a contiguous

pixel mass across all three views and how evenly that mass is distributed. In the following

subsections we use the scores both to mask the input in order to target a single pixel mass

and also to make direct adjustments to keep the curve well situated.

Masking

From the score profile Ŝ we identify image areas that are more likely to contain the large

pixel masses that correspond to the worm. Masking the input to only these areas, local to

the predicted curve, focuses attention (and gradient) to a single region that is consistent

across all three views and excludes interference that does not correspond to the same mass.

See Fig. 4.7 for an overview and demonstration of the benefits of masking the input.

The masks M ∈ R3×w×w are generated in a similar way to the renders R (see Sec. 4.6.2),

but with a few notable differences. First, the blobs B are normalised and weighted by the
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relative scores,

B′c,n =
Bc,n∑
i,j Bc,n

· Ŝn, (4.41)

then combined by taking the maximum values as before,

M ′c,i,j = max{B′c,n,i,j}n=0,...,N−1, (4.42)

and finally passed through a threshold:

Mc,i,j =

1 M ′c,i,j ≥ ΘM

0.2 M ′c,i,j < ΘM .
(4.43)

For ΘM = 0 we have M = 1 everywhere and no masking occurs. For ΘM ∼ 1 the mask

shrinks around the blobs that correspond to the highest scoring vertices, making M = 0.2

almost everywhere. In all our experiments we fix ΘM = 0.1 as this appears to produce a

good balance. Note that we do not completely exclude the remaining points, but just reduce

their intensity. This allows some gradient to flow from outside the detection region which

is especially important in the early stages when none of the curve may be intersecting the

correct pixel mass. It is also important to detach the masks from the gradient computation

at this stage otherwise the curve will simply shrink and fade away from the high-intensity

pixels thus minimising pixel errors simply by detecting fewer pixels.

The target images I? ∈ R3×w×w are generated by applying the masks element-wise to

the raw images:

I? = M � I. (4.44)

Centre-shifting

The scores Ŝ also indicate the relative positioning of the curve over the target object. As

the curve aligns with a pixel mass, vertices with high scores (apparently “converged”) tend

to lock into place thus hindering convergence of the rest of the object. As we optimise

along a sequence, we use the previous solution as the starting point for the next. Thus,

the majority of points rapidly converge between frames, but small errors introduced at

the tips may remain when they are insufficient to generate the collective shift required.

Such mismatch can be exacerbated over time, leading to extensive loss at one end (see

Fig. 4.8). A loss of accuracy at one of the ends can be easily identified from an unbalanced

score profile. We rectify this imbalance by periodically shifting the curve along its length

between gradient descent optimisation steps.

An unbalanced alignment can be seen in the score profile when the centre-of-mass index
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Figure 4.7: The noisy input images are cleaned by applying masks that force pixel-errors to
be local to the current estimate. The blobs B are scaled by the relative scores Ŝ, combined
using the maximum pixel value across blobs and thresholded to form the masks M . The
masks are applied to the raw input images I to generate the targets: I?. Masking ensures
only a single contiguous pixel mass is detected. Without it, parts of the reconstruction can
“stick” to nearby bubbles and other artefacts as shown.
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of Ŝ (n̄) is not in the middle of the curve (i.e. n̄ 6= N/2). We can then shift the curve

along its length using n̄ as the new midpoint, removing vertices from the low-scoring end

and adding new vertices to the high-scoring end. The low-scoring end will consequently

improve, and since there is no expectation that the new vertices will match the images this

typically means the high-scoring end worsens; rectifying the imbalance.

To perform a centre-shift we calculate the centre of mass of the score profile n̄ and the

degree of imbalance ns as:

n̄ =

∑
n nŜn∑
n Ŝn

, and (4.45)

ns = n̄−N/2. (4.46)

Then we update the curvature by shifting the values and decreasing linearly to zero at the

ends. I.e. for ns > 0,

Kn ←

Kn+ns 0 ≤ n < N − ns,

KN−ns−1(1− N−ns−n+1
ns

) N − ns ≤ n < N,
(4.47)

and similarly for ns < 0 but adjusted to apply the tapering at the other end. Finally, new

position and orientation parameters are calculated from the adjusted midpoint and updated

curvatures using Eq. (4.32):

(P, T,M1)← F
(
Pn̄, Tn̄,M

1
n̄,K, l, n̄

)
. (4.48)

This process is illustrated in Fig. 4.8.

Centre-shifting the curve occurs between gradient descent optimisation steps. In prac-

tise, shifting after every step quickly leads to instabilities as the new points are not afforded

the time required to align them with the images. It is unrealistic to expect a perfect balance

can be sustained, and an unconstrained ns means large shifts may be applied – possibly due

to a change in the camera parameters or some transient interference – that would destroy

extensive sections of the curve. To mitigate these problems we only apply centre-shifting

every α steps when |ns| > βN and then restrict the shift size to γ (i.e. ns ← min{ns, γ}).
In our experiments we find values of α ∈ [3, 6], β ∈ (0.05, 0.1) and γ ∈ [1, 2] provide the

necessary stabilisations.
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Figure 4.8: As the animal moves along the path of its midline the tail may be left behind
(left column). This can be identified from an unbalanced score profile Ŝ. By periodically
shifting the curve along its length (adding new curvature values at one end and discarding
from the other) the centroid index (n̄) of the scores can be centred. Gradient descent
optimisation then updates the new curvature values so the curve matches the target (right
column).
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4.7 Optimisation

The main pixel loss to be minimised is defined as:

Lpx =
1

3w2

∑
c,i,j

(Rc(i, j)− I?c (i, j))2. (4.49)

To improve head and tail detection we also minimise a scores-loss,

Lsc =
max(S′)N∑

n S
′′
n

, where (4.50)

S′′n = S′n

(
2n− (N − 1)

N − 1

)2

, (4.51)

that is quadratically weighted towards the tips where the scores are naturally lower due to

the transparency.

In addition we include a number of regularisation terms. To keep the curve smooth we

define

Lsm =
N−1∑
n=1

|Kn −Kn−1|2, (4.52)

where | · | is the l2-norm. To ensure all parameters change smoothly between frames we set

Lt =
∑

x∈{l,K,P̂ ,η,σ,ι,ρ}

|xprev − x|2, (4.53)

where xprev refers to the frozen value of the variable from the previous frame. And to avoid

self-intersections, let

dn,m = |P̂n − P̂m|, (4.54)

d′n,m =
1

3

∑
c

σ̄c,n +
1

3

∑
c

σ̄c,m, (4.55)

nd = N/kmax, and (4.56)

Li =

N−nd−1∑
n=0

N−1∑
m=n+nd


d′n,m
dn,m

, if dn,m < d′n,m

0, otherwise.
(4.57)

In this last case a loss is incurred when two vertices which are sufficiently far apart (> nd)

along the curve come within a distance defined by the sum of their mean rendering variances

(since these approximate the view-independent worm radius at these points). Eq. (4.57)

forces the algorithm to find postures that are always feasible even during self-occlusions and

complex manoeuvres.
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The losses are combined in a weighted sum to yield the final optimisation target:

L = ωpxLpx + ωscLsc + ωsmLsm + ωtLt + ωiLi. (4.58)

Table 4.5 lists the weighting coefficients used in the combined loss calculation (Eq. (4.58)).

Different values of ωsm and ωt are required to capture the varying dynamics observed in

different environmental conditions (specifically, concentration of the gelatin). For example,

when the worm is deforming quickly (in low-viscosity experiments) there are large postural

changes between frames and therefore the temporal loss Lt is relatively big. In this case a

smaller value of ωt is used to prevent the reconstruction lagging behind the worm. Simi-

larly, when the worm is deforming slowly (in high-viscosity experiments) it frequently forms

tightly coiled postures in which case the smoothness loss Lt is large and a smaller value for

ωsm is more suitable.

To achieve robust reconstructions it is important that the curve parameters learn fastest,

then the rendering parameters and finally the camera parameters. Imposing this hierarchy of

rates ensures camera model stability and prevents the renderer from over-blurring the edges

(as it tries to “reach” the pixels). Thus, movement between frames is primarily captured

through curve deformations. We use learning rates λp = 1e−3 for the curve parameters

{P, T,M1,K, l}, λr = 1e−4 for the rendering parameters {σ, ι, ρ} and λη = 1e−5 for the

camera parameters η. The learning rates are listed in Table 4.6 – these are fixed for

all experiments. Optimisable camera, curve and render parameters are summarised in

Tables 4.1 to 4.3 respectively.

The midline curve is initialised as a straight line with small length (∼ 0.2 mm) in a

random 3D orientation centred in the field of view of all three cameras. We slowly increase

the length to lmin over the first 200–500 steps. This warm-up phase helps the curve to get

positioned and orientated as it grows into the full shape.

The pipeline is constructed using PyTorch [172] and the combined loss minimised using

Adam [130] with periodic centre-shifting of the curve vertices (Sec. 4.6.3). Learning rates

are decreased by a factor of 0.8 for every 5 steps taken without improvement in L to a

minimum of 1e−6 until convergence is detected. Subsequent frames are instantiated with

the solution from the previous frame for efficiency and to maintain consistency through

complex sequences of self-occluding postures. Example videos showing the effects of varying

some of the options on the optimisation are included in supplementary material (Video 5,

Video 6 and Video 7) and described further in Sec. 4.8.5.

The non-optimisable parameter values and ranges that are used in our experiments

are outlined in Table 4.4. The biggest factors affecting the choice of parameters are the

magnification and individual worm size – both of which vary between experiments. These
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Parameter Purpose Value/Range

w (Square) image size 200–350 px
N Number of discrete curve vertices 128
lmin Minimum curve length 0.5–1 mm
lmax Maximum curve length 1–2 mm
kmax Maximum curvature constraint 3 osculating circles
σmin Standard deviation of the super-Gaussian functions

at the tips
2–4 px

ιmin Intensity scaling factor of the super-Gaussian func-
tions at the tips

0.15–0.3

ΘM Mask threshold 0.1
α Frequency of centre-shift adjustments (number of

gradient descent steps)
3–6 steps

β Centre-shift adjustment sensitivity 0.05–0.1
γ Maximum centre-shift adjustment 1–2 vertices

Table 4.4: Non-optimisable parameter values and ranges used in our experiments.

Parameter Purpose Value/Range

ωpx Weighting of the pixel loss Lpx 0.1
ωsc Weighting of the scores loss Lsc 0.01
ωsm Weighting of the smoothness loss Lsm 10–100
ωt Weighting of the temporal loss Lt 10–100
ωi Weighting of the intersections loss Li 0.1–1

Table 4.5: Weighting coefficients for the different loss terms.

determine the required image size, w, and inform the estimates for the length bounds, lmin

and lmax. The super-Gaussian blobs are generated in corresponding w × w images, so the

minimum scales and intensities at the tips, σmin and ιmin, must also change accordingly

with the image and worm size.

Automated learning of optimal values for the fixed hyper-parameters that are tuned by

hand is, in general, an under defined problem. For example, Lpx will be at its lowest when

no regularisation terms are included (although it may take longer to get there) but the

resulting curves will be not smooth and consequently the length will be overestimated. If

σmin and ιmin are free to change, any decrease (making smaller tips) may be countered by

an increase in the length, and if the tips vanish then no gradient will be generated at these

points. However, some automation of the manual processes could be considered in future

iterations for example by generating initial estimates based on the known magnification and

gelatin concentration.
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Parameter Purpose Value

λp Learning rate for the curve parameters {P, T,M1,K, l} 1e−3
λr Learning rate for the rendering parameters {σ, ι, ρ} 1e−4
λη Learning rate for the camera parameters η 1e−5
λmin Minimum learning rate for all parameters 1e−6

Table 4.6: Learning rates for the different parameter groups.

4.8 Results

Using our method we track 3D trajectories for 52 trials (4-25 minutes per trajectory, to-

talling 6 hours 48 minutes). Of these we also reconstruct high quality 3D midlines for 43

trials. Syncing problems appear in some of the early experiments from the use of a record-

ing protocol that did not enforce time-syncing and meant that occasionally frames were

dropped in the feeds. In the worst cases the duration of the time-offset can be up to 1 s.

Since a conservative upper bound on the maximum speed is 1 mm s−1 [103], in theory this

could mean a mismatch of up to a worm length between the views, or at most half that

distance to reprojections of the triangulated 3D point. In practise this error is much smaller

and has negligible impact on the tracked trajectories. However, the recording rate of 25 Hz

is already at the limit of capturing fast moving gaits and even just a few frames out of sync

can make accurate midline reconstruction impossible. This is the case for 8 of the trials.

The remaining fail case is due to unusually excessive coiling of the worm combined with

poor focus. Significant occlusions also occur during successful reconstructions and when

combined with loss of focus can cause the shape to be lost.

The following sections describe how we validate the results (Sec. 4.8.1), evaluate them

against previous methods (Sec. 4.8.2) and investigate how the rendering parameters change

over time to capture the varying optical effects (Sec. 4.8.4). Finally, we describe the sup-

plementary videos that show the optimisation process and good and poor reconstructions

through challenging environmental conditions (Sec. 4.8.5).

4.8.1 Validation

To validate, we compare 2D reprojections of our midlines against 487 manual annotations of

individual frames from the video footage1. The annotations were produced by considering

single 2D images in isolation and they contain a varying number of unordered points. As

we cannot match up individual points between optimised and annotated curves we instead

find the minimum distance from each annotated point to any reconstructed point and vice-

1The manual annotations were done by Omer Yuval of [167].
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versa. The results (Fig. 4.9) show that our midlines consistently come close (∼ 2 px) to

hand-annotated points. However, annotated points at the ends show an increased distance

(∼ 10 px) to our midline points. This shows that our curves generally fall short of reaching

the very tips of the worm by ∼O(worm radius).

Figure 4.9: Validation against 487 manual annotations. At the top we show an example of
an annotated frame (left, orange) alongside a projection of our matching 3D midline (right,
blue). Below we plot the sample averages ±2 std. We find our midlines are consistently
close to annotated points (blue curve), but annotations typically extend further into the
head and tail regions (orange curve).

4.8.2 Comparison with previous methods

Our method significantly outperforms previous methods developed using the same dataset

[167, 192] when evaluated against the ground truth manual annotations (Table 4.7). This

evaluation is unbiased as only projected midline points are used and it shows our method

to be more accurate. However, only a small number of hand-picked examples are available,

limited further as previous methods only provide results for roughly half of the available

annotations.

For a large-scale comparison we take 3D midlines and camera parameters found by each
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Method Number of annotations Score

MF (ours) 487 1.53 (0.51)

reconst [192] 226 1.54 (0.69)
MF (ours) 226 1.34 (0.53)

WT3D [167] 237 2.64 (0.92)
MF (ours) 237 1.46 (0.59)

Table 4.7: Mean (and standard deviation) pixel distances between predicted points and
hand-annotated points (see Fig. 4.9).

method and, using our pipeline, render them to generate comparable images. Previous

methods only provide projected midline coordinates, so in order to use our pipeline to

generate renders and calculate Lpx we need to provide renderer (blob) parameters. We can

use blob parameter values from our results, but this introduces a bias towards our method

as these parameters are only optimal for our midlines. To mitigate against this we initialise

with our values then re-optimise for each frame until convergence (keeping the curve and

camera parameters fixed). This ensures optimal rendering parameters are found for each

midline. To ensure a fair comparison, we skip the masking and calculate Lpx. The results,

shown in Fig. 4.10, demonstrate that our method consistently produces shapes that more

closely match the raw images. In Fig. A.1 we show the effect of the re-optimisation across

the same clip. As expected, re-optimisation reduces the loss for both methods, but the

improvement is fairly marginal.

The biggest advantage over previous approaches is the significant improvement in ro-

bustness; total reconstructed durations: 4 h 37 min (ours) vs. 1 h 32 min [192] and 45 min

[167]. Using our method we generate a large dataset of many hours of results to be made

publicly available. In contrast, only small snippets (O(seconds)) of results have been re-

leased alongside the previously published methods.

4.8.3 Ablation study

We demonstrate some of the effects of masking (Fig. 4.7), centre-shifting (Fig. 4.8) and

varying parameters (Video 5), but these examples are somewhat anecdotal. In Table 4.8 we

present the results from a more thorough ablation study conducted over a typical ∼ 5 min

clip to clarify the importance of the different components of our method.

We find that optimisable camera parameters (a), optimisable rendering parameters (b)

and inclusion of centre-shifting (c) yield considerable benefit. Including the scores loss

(Eq. (4.50)) by setting ωsc > 0 (d) and including regularisation terms (f) incur a marginal

cost (L̃ > 0.99) but recover poses with high transparency (d) and ensure realistic (smooth)
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poses (f). Finally, masking (e) incurs a small cost but provides robustness to sequences

with interference (e.g . Video 5).

Variant < Lpx > L̃ =< Lpx > / Ref

Ref 3.99e−3 (1.13e−3) 1.000

a 7.21e−3 (1.97e−3) 1.807
b 4.64e−3 (1.42e−3) 1.163
c 4.29e−3 (1.71e−3) 1.075
d 3.99e−3 (1.12e−3) 1.000
e 3.69e−3 (9.00e−4) 0.925
f 3.96e−3 (1.08e−3) 0.992

Table 4.8: Ablation results (mean (and standard deviation) pixel errors and normalised
mean) across a typical 7200-frame clip. Variants: a) no camera parameter optimisation,
b) rendering parameters (σ, ι, ρ) fixed to averages from the reference results, c) no centre-
shifting, d) no scores-loss (ωsc = 0), e) no input masking, f) no regularisation losses (ωsm =
ωt = 0).

4.8.4 Rendering parameters

Figure 4.11 shows the rendering parameters over the course of a trial as the worm moves in

and out of focus in the different cameras. The clearer the image, the smaller the values of σ

and the larger the values ρ, and vice-versa. The fluctuations in intensity, ι, are due in part

to the posture of the worm in relation to the camera; when it is pointing directly towards

the camera we see higher values of ι used to capture the darker image observed and when

the worm is perpendicular to the camera we see lower values of ι to emulate the worm’s

transparency. However, all three parameters work in tandem to produce the final effect.

4.8.5 Supplementary videos

In the accompanying Video 5 the effects of adjusting some of the parameters listed in

Tables 4.4 and 4.5 on the solution are demonstrated. In this video we show the optimisation

process using paired examples. The same frame and randomised initial guess is used for

each pair and the optimisation is run for a fixed 2000 steps. The frames are selected to

demonstrate a range of challenging conditions – especially for achieving convergence from a

random guess. The first of each pair shows successful optimisation using parameter values

in the ranges specified in Tables 4.4 and 4.5. The second shows the effect that changing one

of the parameters has on the converged solution.

We include two further videos demonstrating examples of more-successful and less-

successful sequence reconstructions. In Video 6 we showcase more-successful examples.
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First, when the worm is well resolved in all three views. Next, when there is interference

from dirt or bubbles and/or poor focus in one or more views. Lastly, through complex

coiling manoeuvres that include significant self-occlusion.

The limitations of our method are illustrated in Video 7. These examples, taken from

otherwise successful reconstructions, demonstrate that when significant loss of focus is com-

bined with highly coiled and heavily occluded postures the reconstruction can fail. The exact

degree of failure is difficult to ascertain for the exact same reasons and only by watching

the full sequences can we be convinced that the reconstruction is incorrect. This suggests

that incorporating more temporal information may help to resolve these fail-cases, but we

leave this for future investigation.

4.9 Discussion

In this chapter we described our approach for tackling the 3D tracking and shape recon-

struction problems. Our multi-stage tracking pipeline detects and triangulates 2D objects

in each view to form a single 3D trajectory. Multiple detections are filtered out where

necessary and interpolation used when detections are inconsistent or absent, making the

method robust to bubbles and other interference.

Next, we presented a robust and reliable framework for the 3D reconstruction of a

microscopic, semi-transparent subject moving through a complex fluid and evaluated the

results against two other algorithms and manually annotated data. The key contribution

of our approach – constructing unique differentiable renderings for each view – allows us to

solve shape reconstruction and camera parameter optimisation by direct image comparison.

This avoids feature extraction and correspondence matching, and hence offers a powerful

alternative when those approaches are not well-suited to the problem, e.g . due to the varia-

tion in appearance between views. To improve the accuracy, especially as we move along a

sequence, the reconstruction is evaluated against a contiguous pixel mass that is consistent

across all three views to refine the solution and filter out unwanted interference.

Multi-view microscopic camera calibration, imaging through fluids and parametric model

fitting of semi-transparent subjects are challenges that have received little attention in the

literature. While we have focused here on constructing a curve to fit a microscopic worm

from three views, our method could be applied to the 3D reconstruction of arbitrary shape

models at any scale using any number of viewpoints. Rendering points with adaptable

super-Gaussian functions presents an effective solution to transparency and focal issues,

but more generally, our results indicate that our direct optimisation approach may offer

an effective alternative to contemporary methods for 3D approximation of generic objects
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from a limited number of silhouette-like images.
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Chapter 5

Overview of behaviours

In this chapter we discuss some of the new gaits observed for the first time

using this 3D set up. This includes “coiling” and “infinity” gaits that were

discovered by our colleague Omer Yuval and characterised in [167]. Credit for

these and related findings are repeated where appropriate below. These gaits are

studied here in a wider context in order to understand how they combine with

turns and manoeuvres to generate 3D exploration. In Sec. 5.4.1 we introduce the

“eigenworms” and the novel approach for generating them. This approach was

developed by Felix Salfelder (of [192]) during his time with our group but has not

yet been published elsewhere. We describe the full method here for completeness

and for consistency with our own implementation of the idea.

5.1 Overview

In this chapter we ask whether local volume search by C. elegans follows the same template

as local area search in 2D, namely periods of undulatory locomotion subject to gentle

steering and interrupted by occasional reversals coupled with reorientation manoeuvres

[36, 61, 244]. To navigate 3D environments we may expect to find the same locomotion

primitives. Instead, we find new crawling-like undulatory locomotion as well as chiral gaits

[167]: clockwise and counter-clockwise coiling, and a mixed-chirality infinity gait (Video

2). Similar to planar undulations in 2D, 3D locomotion involves propagated undulations

along the body, and yet postures can be highly non-planar, especially in 3D crawling.

Coiling gaits employ sequences of slightly helical postures, resulting in forward locomotion

characterised by clockwise and counter-clockwise elliptical trajectories by the head [167].

While chiral gaits are more prominent in low viscosity media and crawling at high viscosity,
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5. OVERVIEW OF BEHAVIOURS 5.2 Methods

all behaviours can be observed in all environments. Furthermore, while animals exhibit

extended durations of each behaviour, we also observe frequent transitions and even mixing

of gaits, both in forward and backward locomotion.

Forward motion is complemented by a rich spectrum of reorientation manoeuvres that

enable worms to sharply reorient their trajectory in 3D (Video 3). Taken together, 3D

postures and gaits, twists, rolls and 3D manoeuvres allow animals to effectively perform

volumetric exploration (Video 1).

We begin in the methods section (Sec. 5.2) by introducing non-planarity (Sec. 5.2.1) and

helicity (Sec. 5.2.2), key metrics used in our postural analysis and also used for trajectory

analysis later in Chapter 6. This is followed by a description of the complex PCA (cPCA)

method, developed in order to find a low dimensional shape space of the 3D postures; the

eigenworms (Sec. 5.4.1). We then move on to look at behaviours, starting in Sec. 5.3 with

the least active; resting and sensing. In Sec. 5.4 we look at different movement patterns

and gaits, how these are expressed in terms of shape space dynamics (Sec. 5.4.2) and

how they change across different environments (Sec. 5.4.3). In Sec. 5.5 we investigate the

various reorientation manoeuvres we observe and introduce ϕ-turns as a new classification

for complex 3D turns.

5.2 Methods

In order to quantify and describe the unique volumetric qualities of 3D curves we develop

two new metrics; non-planarity and helicity. These key metrics are used for postural analysis

throughout this chapter and also for trajectory analysis later in Chapter 6. In Sec. 5.2.3 we

describe the complex PCA method that is used to generate the eigenworms in Sec. 5.4.1.

5.2.1 Non-planarity

To quantify the extent to which 3D curves utilise the third dimension we develop a simple

metric based on the ratio of variances explained by the three PCA (principle component

analysis) components obtained through decomposition of the coordinates. For curve points

P = {p0, . . . , pN−1}, with pn ∈ R3 and N > 2, PCA produces an orthonormal basis

(v0, v1, v2) – the principal axes – obtained by successive alignments to the axes of (remaining)

maximum variance. The corresponding singular values s0 ≥ s1 ≥ s2 capture the amount of

variance along each axis. The explained variance ratios are given by

ri =
s2
i

σ2(N − 1)
(5.1)
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5. OVERVIEW OF BEHAVIOURS 5.2 Methods

where σ2 is the sum of the total variance in P , with
∑2

i=0 ri = 1, and 1 ≥ r0 ≥ r1 ≥ r2 ≥ 0.

Our non-planarity metric is defined as:

NP =


r2√
r0r1

for r1 > 0, and

0 otherwise.
(5.2)

It is valid for all curves, bounded below by 0 for planar curves (where s2 = r2 = 0) and

straight lines (where also s1 = r1 = 0) and bounded above by 1 when s0 = s1 = s2 and

r0 = r1 = r2. It is scale and rotation invariant and hence can be used to compare between

curves of varying lengths.

5.2.2 Helicity

To better characterise the non-planar shapes, we develop a metric to give a degree of helicity

– how closely the curve resembles a helix. A helix is defined in the Frenet frame notation

as a smooth curve with constant curvature |κ| > 0 and constant torsion |τ | > 0. Intuitively,

we want to produce a metric, ξ, that encapsulates this combination of curvature and torsion

into a single scalar value. As torsion goes to zero the curve becomes planar, so we need

ξ → 0. As curvature goes to zero the curve approaches a straight line, so again we need

ξ → 0. As curvature and torsion increase, the radius and pitch of the helix decrease to

form a narrow, tightly wound coil where we expect ξ to become large. Therefore a simple

product of these may suffice: κτ . However, as discussed previously (Sec. 4.5.1), torsion is

undefined in the Frenet frame when curvature is zero, so again we look to use the Bishop

frame [29] to find a more stable representation.

Consider a smooth curve parametrised by arc length parameter s with scalar curvature

κ(s) and torsion τ(s). From Eqs. (4.24) and (4.29) we have

κ =
√

(m1)2 + (m2)2 and (5.3)

τ =
d

ds
arg(m1 + im2). (5.4)

Since arg(x+ iy) = arctan2(x, y), we can express τ in terms of m1,m2 as

τ =
∂

∂s
arctan2(m1,m2) (5.5)

=
m1ṁ2 − ṁ1m2

(m1)2 + (m2)2
, (5.6)
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where dot denotes the arc-length derivative d/ds, and so

κτ =
m1ṁ2 − ṁ1m2√

(m1)2 + (m2)2
. (5.7)

As expected, this is undefined for |κ| = 0, but now we see that multiplication of this quantity

by κ yields a result that is well defined everywhere:

κ2τ = m1ṁ2 − ṁ1m2. (5.8)

We define helicity as the integral of this quantity along the curve:

ξ =

∫ 1

0
m1ṁ2 − ṁ1m2ds. (5.9)

To standardise helicity comparison between postures we normalise curve lengths to 1

before the calculation. Scalar curvature is bounded below by 0, but torsion is unbounded,

so ξ is also unbounded. In fact, the sign of ξ directly gives us the chirality (or handedness)

of the helical curve.

5.2.3 Complex PCA

Principal component analysis (PCA) decomposition of worm postures is well established in

2D [211]. We construct a low-dimensional shape space embedding of 3D postures by extend-

ing PCA into the complex domain such that the resulting basis consists of 3D eigenworms;

we denote our method complex PCA (cPCA).

Recall that curves expressed in the Bishop frame are defined with scalar curvature fields

(m1,m2) along two mutually orthogonal vectors (M1,M2) orthogonal to the tangent, T

(see Sec. 4.5.1). Eigenworm representations of 2D midlines are unique up to a sign, i.e. the

choice of the initial normal. The choice of the normal generalises to a rotational freedom

in 3D; the choice of M1 which can point in any direction normal to the tangent. We must

construct a basis that is independent of this freedom. The key insight here1 is that by

representing the (m1,m2) curvature in a complex vector space as m1 + im2, the rotational

freedom is captured in the complex argument, and with a small adjustment to the standard

PCA algorithm, variance in the relative phases can be ignored.

Let the worm shape w with Nv vertices be represented in the complex domain as row

vectors w = m1 + im2 ∈ CNv . We construct a matrix of the Np available postures as

W = (w1 · · ·wNp) ∈ CNp×Nv and let 〈w〉 =
∑

k wk/Np be the mean worm shape. Then we

1As observed by Salfelder, of [192]

66
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compute the covariance matrix C ∈ CNv×Nv as C = (W − 〈w〉)†(W − 〈w〉) where † denotes

the Hermitian transpose. Since the phase of each wk is arbitrary, we assume that a rotation

by θ of wk (i.e. wke
iθ) is as likely in W as a rotation by −θ (i.e. wke

−iθ) and hence 〈w〉 = 0.

Thus C has entries

C(i,j) =
1

Np

Np∑
k=1

w
(i)
k w

(j)
k , (5.10)

in row/column i/j, where the superscripts in brackets are the matrix/vector indices and ·̄
denotes complex conjugation. We can now clearly see that any rotation of w1 by θ yields

the same result:

C̃(i,j) =
1

Np

(w1eiθ)
(i)(w1e

iθ)(j) +

Np∑
k=2

w
(i)
k w

(j)
k

 , (5.11)

=
1

Np

e−iθeiθw(i)
1 w

(j)
1 +

Np∑
k=2

w
(i)
k w

(j)
k

 , (5.12)

=
1

Np

w(i)
1 w

(j)
1 +

Np∑
k=2

w
(i)
k w

(j)
k

 , (5.13)

=
1

Np

Np∑
k=1

w
(i)
k w

(j)
k = C(i,j). (5.14)

With the same argument, we may rotate any of the wk without changing C.

The fact that the covariance matrix does not change upon rotating any of the wk elimi-

nates the problematic rotational freedom. Thus the eigen-decomposition of C yields a set of

Nλ ≤ Nv orthonormal eigenvectors ν1, . . . , νNλ ∈ CNv that is unique up to arbitrary phase

rotations of the νk. In this basis, we represent a worm shape as a superposition of these

complex eigenworms:

w =

Nλ∑
i=1

aiνi, (5.15)

where the coefficients ai ∈ C,

ai = w · ν†i , (5.16)

include both the amplitudes and relative rotations of the different components (Fig. 5.1).

Each complex eigenworm represents a shape in the (m1,m2) curvature space as m1 +

im2. Multiplication of a single eigenworm by a complex number with magnitude A ∈ R
and phase θ ∈ [0, 2π) represents a scaling of the curvature by A and a phase rotation by

θ. As discussed, a phase rotation results in a different (m1,m2) representation, but the

same posture. Construction of the original and phase-rotated curves using the same initial

orientation frame (T0,M
1
0 ,M

2
0 ), therefore, yields the same posture in different orientations
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(Fig. 5.1 (a, b)). However, when multiple complex eigenworms are combined, the relative

phases between the complex coefficients of the components significantly impact the posture

that is generated (Fig. 5.1 (c)).

5.3 Resting / Sensing

We begin our discussion on the range of locomotion by highlighting that for much of the time,

worms do not move. Pauses have been previously commented on in 2D experiments [36, 61,

114, 126, 179], mostly in passing, as a criteria to exclude worms that were not sufficiently

active (e.g . [179]) or in reference to the short transitional pauses between forward and

backward movement. However, in their analysis of the dynamics of locomotion, Stephens

et al . [210, 211] show that a pause state (a fixed point in the dynamical state space)

is frequently visited during locomotion. We ask the questions, how are pauses used to

facilitate transitions between locomotive states and at what point does a pause become a

rest?

During forward undulation in 2D the head of C. elegans makes additional exploratory

movements to sense the environment, both in the undulatory plane and occasionally by

lifting away from an agar surface [61, 143, 249]. In 3D, we observe these exploratory head

movements during all forms of locomotion but most notably during short pauses. In fact, the

primary purpose of short pauses appears to be to allow time and space for these exploratory

movements and environmental sensing.

As pauses become longer the level of activity decreases (Fig. 5.2) and the worm ap-

proaches a resting state; defined as a period with no movement. Rests are not frequently

observed since pauses usually include some continued head movements, but when a worm

is at rest it may remain motionless for some time. We have observe rests over 1 min in the

dataset but it is likely longer rests would have been captured if these experiments were not

stopped due to inactivity.

Methods In order to better understand the relationship between sensing and resting we

identify 271 pause events in the dataset as periods where the speed of the (1 s averaged)

centre-of-mass trajectory stays below 0.02 mm s−1 for at least 2 s. Within each pause we

quantify the ongoing movement activity as the average speed of the worm vertices, smoothed

with a 0.2 s averaging window. This allows us to differentiate between resting; where all

parts of the worm are still, and sensing; where parts of the worm continue to move but the

overall position is stationary.
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Results The results (Fig. 5.2) show that long resting periods are observed across all

concentrations greater than 1 % and shorter pauses tend to contain more ongoing activity.

We see slightly more activity during short pauses at lower concentrations, likely due to the

reduced resistivity of the environment. As expected, the ongoing activity during a pause is

concentrated in the head and neck, with head points contributing on average twice as much

to the overall activity level than the average body point.

The absence of any detected pauses at 1 % gelatin is perhaps a little surprising. Here

we have 5 recordings ranging from 4 min to 6 min and totalling almost 26 min. By relaxing

the maximum speed threshold to 0.05 mm s−1 we detect 12 pauses, but even with these

relaxed settings the longest of these is only 5 s (Fig. A.2). Possibly the recordings were

not long enough to capture worms that needed rests and potentially the low concentration

environment can be sensed more easily during locomotion. Either way, we observe that

worms are more active at this concentration.

We conclude that the ‘pause’ state should be considered as encompassing two stationary

behaviours; resting and sensing. By considering the overall level of ongoing movement

during a pause we can determine if the worm is at rest or actively sensing. In our data we

expect the worms to be primarily foraging for food, and as such, long rests are infrequently

observed. However, relatively long periods of active sensing while stationary is common,

and there appears a smooth transition from this behaviour to the complete rest state.

5.4 Gaits

C. elegans exist primarily in decomposing vegetation [79, 84, 195]. This means they have to

navigate continuously changing conditions; from swimming through aqueous environments

during/after rainfall to crawling around rocks and dense obstacles at other times. For many

years C. elegans was described as having two distinct gaits; swimming and crawling [126,

127, 134, 178]. More recently, evidence suggests that these are generated from a single gait,

and a smooth transition of body wavelength and undulation frequencies can be observed as

the physical properties of the environment change [25, 32, 76].

In 3D there exist two fundamentally different undulatory behaviours: a lower-frequency

crawling and a higher-frequency coiling [167] (Video 2). We observe a strong preference

towards coiling at low concentrations and to crawling at high concentrations, although both

behaviours can be observed in all environments (e.g . Video 1). While crawling resembles

the planar undulations observed in 2D, in 3D it is accompanied with twists instigated in the

head and propagated to the tail causing transient helical, non-planar postures and resulting

in steering out of the undulatory plane. By contrast, coiling leads to much more planar
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5. OVERVIEW OF BEHAVIOURS 5.4 Gaits

Figure 5.2: Pause durations and activity levels. Rests, defined as periods of low activity, are
observed across all concentrations apart from 1 %. Elevated activity during a pause is due
to parts of the worm continuing to move while the centre of mass is stationary. Ongoing
activity during a pause is mostly found in the head and neck (upper-right, mean relative
activity ±2 std shown) and typically attributable to ongoing exploratory movements of the
head as it senses the environment.

trajectories when observed over sufficiently many undulations (10s of seconds).

5.4.1 Eigenworms

On an agar surface, PCA decomposition of C. elegans postures gives rise to a four-dimensional

shape-space of “eigenworms” [211]. We asked how much richer is the spectrum of postures

generated by worms in 3D volumes? To answer this question, we collate a database of over

415,000 postures across all gel concentrations and construct a complex eigenbasis of these

postures using cPCA (Sec. 5.2.3).

We find that five 3D (complex) eigenworms are sufficient to capture 96 % of the variance

in our data, dropping to 87 % for four modes (Fig. 5.4). In 2D, four eigenworms are sufficient

to capture most of the posture variability observed in a single medium. Our results suggest

that only a single additional eigenworm is required to explain the additional variability

introduced from the extension of shapes into 3D, inclusion of many more postures and

taking observations across a range of media. However, our 3D eigenworms are complex,

and the shape resulting from the composition of two eigenworms is dependent not only on

the magnitudes of the complex coefficients but also on the relative phase between them

(Fig. 5.1). I.e. many more shapes can be generated from the same number of components

71



5. OVERVIEW OF BEHAVIOURS 5.4 Gaits

Figure 5.3: (a): A trace of an animal navigating over a 40-second clip. Highlighted regions show
a typical sequence surrounding a reorientation. Spikes in non-planarity of the postures (orange
dashed line) do not compromise the speed (black line). Helicity of the postures (Sec. 5.2.2) alter-
nate between clockwise (shaded grey above the axis) and counter-clockwise (below the axis). (b):
Forward and backward locomotion is dominated by oscillations between the first two eigenworms
(λ0 and λ1). Higher modes tend to peak during reorientation manoeuvres. (c): Three frames of
forward locomotion. Each triplet of greyscale camera images with overlaid midline projections (top)
corresponds to a single 3D body shape (bottom). The relative magnitude of the red, blue and
green arrows – pointing in the directions of the first, second and third primary axes of the body,
respectively – determines the non-planarity of the posture. During forward locomotion the worm
modulates its helicity to reorient its undulatory plane without slowing (see increase in green arrow
length in the second panel coinciding with spike in non-planarity in (a)). (d): Three frames of a
ϕ-turn (Sec. 5.5.2). Here, a reversal is completed with an Ω shape, notably initiated during the
reversal by the tail. As forward locomotion resumes, the worm employs non-planar, helical postures
to set the new trajectory. This sequence is shown in full 3D animation in Video 3.
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in 3D than in 2D. Regardless, finding such a low-dimensional representation for the breadth

of 3D behaviours across environments is surprising.

5.4.2 Shape space dynamics

To see how postures combine to generate locomotive behaviour we consider a typical tra-

jectory, shown in Fig. 5.3. During forward locomotion, and without compromising speed,

we observe peaks in the non-planarity of the body shape. Looking more closely, we find 3D

crawling is accompanied by twists initiated in the head and propagated posteriorly resulting

in transient helical, non-planar postures and steering out of the undulatory plane (Fig. 5.3,

Video 2). Modulation of these twists and rolls during forward locomotion results in 3D

reorientation and non-planar trajectories.

Similarly to 2D [36, 211], in 3D eigenworm space, forward and backward locomotion cor-

responds to oscillating contributions from the largest two components, while higher modes

peak during reorientation (Fig. 5.3, panel (d)). As the coefficients of the modes are com-

plex, they define both the magnitudes of the contributions and their relative phases (see

Eq. (5.16) and Fig. 5.1). Consider the k-dimensional embedding of worm shape w given

by the coefficients al, l = 0, . . . , k − 1 (as per Eq. (5.15)). Since worm shapes w and

w′ = exp(−iθ)w are equivalent in shape space (i.e. they represent the same posture up to

a fixed body rotation), we can multiply each posture by exp(−i arg(a0)) to ensure a0 ∈ R
and the phase difference between components is relative to a fixed reference a0. Studying

these phases over periods of forwards and backwards locomotion reveals distinct clockwise

and counter-clockwise progressions respectively of ν1 and ν2 with respect to ν0 (Fig. 5.5).

Phase-space oscillations of ν3 and ν4 are also observed but are less consistent. However,

large excursions in the coefficient values of ν3 and ν4 are observed during reorientations

(Fig. 5.5, panel (c)).

5.4.3 Gait modulation

In 2D, as the physical properties of the environment changes, worms transition smoothly

between swimming and crawling through modulation of a single gait [25, 32, 76]. To examine

if this transition is evident in 3D we calculate the relative contributions of each eigenworm

to the postures recorded in each gel concentration (Fig. 5.6). For each trial, the postures

are encoded into shape space and the magnitudes of the complex coefficients are summed

and normalised. We take averages across the trials to give equal weighting to individual

animals regardless of how long they were recorded for.

At low gelatin concentrations worms employ coiling gaits using postures with one or
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Figure 5.4: (a): The first five principal components of the shape space; the eigenworms.
Bishop-frame vectors orthogonal to the midline are shown as blue and green arrows. (b):
The first four modes are sufficient to explain 87% of the variance in the data, extending to
96% with five modes (blue). The first two components, ν0 and ν1, are twisted along the
body resulting in non-planar (orange crosses), helical shapes of opposing chiralities (purple
bars extending above (clockwise) and green below (counter-clockwise) the axis). Higher
modes tend towards being more planar.
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Figure 5.5: Phase progressions of the coefficients of the complex eigenworms relative to the
first, λ0. Without loss of generality, the components are rotated so the first lies on the real
line and contains no imaginary component. During forward locomotion (a), the phases of
λ1 and λ2 proceed counter-clockwise relative to λ0, switching to clockwise during backward
locomotion (b). The higher components λ3 and λ4 play a lesser role during crawling but
large values (distance from the origin) can be seen during reorientation manoeuvres (c).
The trajectory sections and times shown correspond to the similarly highlighted sections
in Fig. 5.3. The backgrounds of the phase plots depict density maps derived from the
coefficient values across the entire trajectory using a Gaussian kernel density estimation
algorithm [205, 240].
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two bends hence ν0 and ν1 dominate the encodings. As the concentration increases, coiling

gaits give way to 3D crawling and body shapes exhibit more bends; contributions from ν0

and ν1 decrease accordingly to make space for higher frequency modes ν2 and ν4. No trend

is observed in ν3, which is typically associated with manoeuvres. While we do not claim

that these trends are due to modulation of a single gait – we have seen that coiling gaits

are distinct from 3D crawling – they do indicate a progressive behavioural transition, either

through modulation of the available gaits or by changing the amount of time spent in each.

Omitted from Fig. 5.6 are the results for 2.75 % and 4 %; these are included in Fig. A.3.

For historical reasons fewer experiments were carried out for concentrations > 2 %. We have

only 2 reconstructed trials totalling 13 minutes and 14 seconds at 2.75 % and 1 trial of 13

minutes and 20 seconds at 4 %; the concentrations with both fewest number of trials and

recorded durations. The results at these concentrations do not fit the trends observed below.

This may be down to individual variability and a lack of data to even out any anomalies

or it could be that gait modulation effects are only significant up to 2 %. Furthermore, as

we are entirely missing data for many intermediate concentrations we cannot confidently

conclude anything about the trend beyond 2 %.

Figure 5.6: The relative contributions from the eigenworms change with the concentration
of the gelatin environment. Between 1 % and 2 %, λ0 and λ1 decrease on average while λ2

and λ4 increase. Open circles indicate values for a single trial, solid lines plot the means of
the trial values, error bars show ±1 std.
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5.5 Manoeuvres and turns

Continuous locomotion is complemented by a rich spectrum of reorientation manoeuvres

that facilitate volumetric exploration (Video 3). Turning manoeuvres fall into two cate-

gories: simple, occurring during forward locomotion and complex, preceded by a reversal.

In both cases the high-curvature shapes correspond to increased contributions from the

higher eigenmodes before, during and after the turn (Figs. 5.3 and 5.5). In 2D, complex

turns are classified as omega (Ω) or delta (δ) turns in recognition of the observed posture at

the peak of the turn [36, 61, 244]. In 3D, we find complex turns cause non-planar deviations

of the trajectory. We propose a classification of 3D reorientation manoeuvres as ϕ-turns

and posit that Ω/δ-turns are restricted 2D projections of intended full 3D manoeuvres.

5.5.1 Simple turns

Observed primarily at low concentrations, simple turns break up runs of forward locomotion

with a few slower, higher-curvature undulations (see Figs. 5.7 and 5.8). At low concentra-

tions, runs are often of the coiling gait type; they exhibit high undulation frequency in time

[167]. During a coiling run the turn can be identified by a high curvature C-shape posture

where the head and tail come close together, followed by one or two slower 3D crawling-like

undulations before the high-frequency coiling gait is resumed. The posture at the peak of

the turn often approaches the well known Ω shape, especially as the head turns to start the

next undulation, but the opposing high curvature kink near the tail is absent.

At higher concentrations, simple turns are often difficult to differentiate from the 3D

crawling gait that uses high curvature undulations everywhere. Combinations of undulations

with twisting and helical postures result in 3D steering that can often produce the directional

changes we see across simple turns at lower concentrations. In fact, the presence of slow

undulations immediately following a turn at low concentration appears to be a critical

component of achieving the directional changes. We may almost consider simple turns to

be ubiquitous during 3D crawling, however, on occasion they do clearly stand out on their

own (e.g . Fig. 5.7, panel (b) and in Video 3).

Simple turns are frequently observed in small clusters (Fig. 5.8). Within a cluster,

intermediate undulations that start in the head but propagate a variable distance down the

body occur between the slow, high-curvature undulations that we identify as the individual

turns. The curvature amplitudes of the intermediate undulations are typically between those

of the turns and of the forward locomotion. These partial undulations combine to generate

helical postures within the cluster that, as in 3D crawling, facilitate 3D reorientation.
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Figure 5.7: Simple turns. During forward locomotion, a slower wave of high curvature
initiated in the head and propagated posteriorly causes a sharp change in direction. Simple
turns are more common in low gelatin concentration environments where they break up
high-frequency coiling gaits; an example at 1 % is shown in (a). In higher concentrations
simple turns are less common but can be similarly identified; (b) shows an example at
2.75 %.
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Figure 5.8: Clustered simple turns. Two (a) or three (b) simple turns often appear in quick
succession. These are regularly observed in low concentrations between sections of coiling
locomotion where the centre-of-mass trajectory remains relatively straight. Between turns
in a cluster the head and neck continue to exhibit greater curvature, often initiating some
partial undulations that do not propagate down to the tail.

79



5. OVERVIEW OF BEHAVIOURS 5.5 Manoeuvres and turns

5.5.2 Complex turns

We define complex turns, or ϕ-turns, as any 3D turn that is preceded by a period of

backward locomotion – where undulation waves propagate from the tail anteriorly – see

Fig. 5.9. The use of the ϕ symbol to describe the turn follows the convention set out by

the 2D Ω- and δ-turns that reflect the posture the worm takes on at the peak of the turn

[36, 61, 244]. In 3D, the postures we observe at the peaks of the manoeuvres are less easily

classifiable into the existing Ω and δ categories. In fact, while in some cases both shapes

are observable during a single manoeuvre, for many more the presence of either requires

careful viewpoint selection. This underlines the difficulty of classifying 3D turns in a 2D

framework and motivates the need for a more general classification of complex 3D turns.

As the worm finishes the backward movement, a wave of high curvature is propagated from

the head or tail causing the ends to come close together – the Ω posture in a 2D turn –

however, the head then twists out of the plane of the Ω shape setting a new 3D direction

with a shape that, from many angles, resembles a ϕ (Fig. 5.9, Video 3).

The inclusion of helical, non-planar postures during manoeuvres, particularly immedi-

ately prior to and following the reversals, facilitates sharp 3D reorientation of the (centre-

of-mass) trajectory path. In 2D, backward locomotion is typically observed with the tail

following the same track that was carved out by the head during the incoming forward

locomotion. Following this, the Ω or δ postures are responsible for setting a new direction.

Furthermore, longer reversal durations have previously been shown to increase the likeli-

hood of an Ω-turn [96]. To investigate these findings in 3D we identify all ϕ-turns in the

data and study the changes in angles between incoming and outgoing trajectories.

Methods To identify the manoeuvres we smooth midpoint trajectories with a 1 s averag-

ing window, calculate the signed speed of the smoothed path and detect periods of backward

locomotion lasting longer than 1 s and travelling at least 0.1 mm. Using this approach we

detect 398 complex turns. To understand how a complex turn generates a 3D reorientation

we divide a midpoint trajectory around a manoeuvre into three stages; an incoming section

of forward locomotion, a section of backward locomotion and an outgoing section of forward

locomotion. Forward locomotion sections prior and subsequent to the reversal must be at

least 2 s for the manoeuvre to qualify and are otherwise cut to 4 s.

For each section we calculate the principal axes using PCA of the trajectory and de-

termine angles between pairs of vectors from different sections (see Fig. 5.10, panels (a)

and (b)). The first axis typically captures the average trajectory direction so we denote

angles between pairs of first axes as trajectory angles. The third component determines

how planar or non-planar the trajectory section is so we denote angles between pairs of
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Figure 5.9: Complex turns – ϕ-turns. After a period of backward locomotion (purple
midpoint-trajectories), where curvature waves propagate anteriorly from the tail, the wave
direction switches again and the next wave of forward undulation generates a coiled posture
loosely resembling a ϕ. The head then extends out of the plane of the body loop and sets a
new direction for forward locomotion (green midpoint-trajectory). Complex turns are less
common in low gelatin concentration environments but follow the same pattern; an example
at 1 % is shown in (a). In higher concentrations complex turns are common; (b) shows an
example at 4 %.
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third axes as inter-plane (IP) angles. Since PCA is invariant to the ordering of samples

(trajectory coordinates), the component vectors are not necessarily aligned with the trajec-

tory. To fix the alignment for the first axis we flip the vector if the dot product with the

average tangent of the trajectory is negative. To fix alignment for the third axis we choose

the sign that gives a positive dot product with the third axis of the entire manoeuvre (as

determined using PCA). The three sections gives rise to three trajectory angles and three

IP angles; incoming-reversal, reversal-outgoing and incoming-outgoing. Note that angles

between a pair of 3D vectors are in the range [0, π) since a third vector would be required

to determine chirality and resolve an appropriate sign for the angle.

Results Across all concentrations we see that backward locomotion is roughly aligned

with both the incoming and outgoing sections of forward locomotion, as indicated by a

peak in the distribution of trajectory angles at π (Fig. 5.10, panels (c) and (d)). If worms

exactly followed their incoming tracks during a reversal the peak in panel (c) of Fig. 5.10

would be entirely at π, but we do see a deviation from this. The IP angles between adjacent

sections follow a similar pattern, but the distributions peak at 0 showing that the plane of

motion is well aligned between neighbouring sections, subject to some deviation.

Perhaps surprisingly, strong alignment between incoming-reversal and reversal-outgoing

sections does not translate to strong alignment between incoming-outgoing sections (Fig. 5.10,

panel (e)). Instead, the distribution of both trajectory and IP angles is significantly more

uniform. The trajectory angles show a slightly elevated distribution at 0 that tails off slowly.

The IP angles distribution is more skewed to zero and tails off sharply after π/2. However,

this is to be expected, as IP angles above π/2 are unlikely due to the common alignment of

the third axis vectors described above.

In contrast to 2D, longer durations and larger distances of the reversals do not result

in larger reorientation events in 3D (Fig. 5.10, panels (c-e)). Furthermore, while most of

the reversal events we detect are small – both in terms of duration and distance – these are

equally as capable of generating large 3D angle changes as longer reversal events.

The distributions presented in Fig. 5.10 panels (c-e) underline the importance of consid-

ering the reversal to be an integral component of a ϕ-turn. The reversal facilitates a small

initial deviation from the incoming trajectory, the turn at the end of the reversal facilitates

a second small deviation from the backward trajectory, but the combination of these two

produces large changes in both the trajectory direction and the plane of motion. Broekmans

et al . [36] drew similar conclusions in their studies of Ω-turns on surfaces; they found that

while the turn provides the largest contribution to the reorientation, the small deviations

incurred by the reversal and post-turn sections increased the variance of the overall change

in direction. This behaviour can be seen clearly in the examples included with Video 3.
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5.5.3 Pirouettes

The term pirouette was introduced by Pierce-Shimomura et al . [179] to describe “bouts of

frequent turning, comprising two or more sharp turns in close succession”. However, the

authors extend their definition to include single turns to simplify their analysis. In Gray et

al . [96] pirouettes are defined as “a period marked by reversals or sharp turns”, and again

are used to refer to turning events of any number in the text. In the following, we use

the term pirouette specifically to refer to clusters of three or more turns – thus we exclude

single and double turn events from this discussion.

Determining how close together – in either time or space – multiple turns must be to

be deemed a pirouette is somewhat arbitrary. In the aforementioned works [96, 179], the

authors consider the rate of turning events and show that this increases as animals move

down the gradient of an attractant (i.e. away from food, [179]) and decreases the longer the

animal is without food [96]. These results suggest that turns are an important component

of foraging behaviour, both to help locate nearby food and to aid dispersal in the prolonged

absence from it.

Methods To identify pirouettes we first detect ϕ-turns using the method described above

in Sec. 5.5.2 but with a relaxed requirement on the reversal duration. I.e. we smooth

the midpoint trajectories with a 1 s averaging window, calculate the signed speed of the

smoothed path and detect periods of backward locomotion lasting longer than 1 s and

travelling at least 0.02 mm (reduced from 0.1 mm for individual ϕ-turns). The minimum

reversal distance is reduced in order to capture smaller turns within a cluster. To cluster

turns we require neighbouring reversal sections to be no more than 5 s apart and require at

least 1 s or 0.02 mm of forward locomotion between them. This avoids clustering groups of

turns when they are divided by particularly long rests or reversals. Turn clusters of sizes ≥
3 are included with windows of 4 s prior to the first and subsequent to the last reversal to

complete the excerpt.

Results We identify 51 pirouettes across the dataset, consisting of between 3 and 8 turns

and lasting between 20 and 80 s (Fig. 5.11). We do not detect any pirouettes at 1 % or 4 %.

At 1 % this is due to the relative rarity of ϕ-turns in comparison to simple turns, which

we do not consider in this analysis. We only have one recording at 4 % and this worm did

not do any pirouettes (manually verified). The majority of pirouettes detected contain 3

turns (the minimum for detection) and last less than 30 s, but a significant proportion are

found containing 4 or 5 turns and lasting up to 45 s. Beyond this we also find a number of

longer examples containing up to 8 turns. This suggests that while the three-turn threshold
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is somewhat arbitrary, pirouetting is sufficiently different from single and double turns to

be considered a special type of locomotive behaviour that worms regularly demonstrate for

extended periods of time.

In our experiments, worms are removed from food and placed in a homogeneous envi-

ronment with no cues or gradients to detect. From our understanding of 2D behaviour, the

occurrence of pirouettes should be most likely at the start of the experiments and progres-

sively become less likely. Unfortunately, either the recordings are not sufficiently long or

the field of view is not sufficiently large to capture transitions from local search to dispersal

behaviour. In many cases worms quickly exit the focal area with very few turns and these

recordings are excluded from the dataset due to not being long enough (Sec. 3.6). At the

other extreme, worms occasionally appear stationary for a long period after insertion into

the cube. These initial behaviours – possibly triggered by transportation into the stage –

coupled with a small sample size and variable recording durations make statistical analysis

of the relative timings of pirouettes particularly difficult. While our data may appear to

show some support for the hypothesis that pirouettes are more likely to appear near the start

of a trial (Fig. 5.11), the distribution of trial durations is skewed towards shorter recordings

(21 of the 43 recordings are less than 6 min) and therefore is biasing the distribution of

onset times.

Individual ϕ-turns are already very effective at acute reorientation, with only a very

weak directional alignment between incoming and outgoing trajectories (Fig. 5.10). Two or

three turns is more than sufficient for entirely removing any remaining statistical correlation

and may be a strategy employed by worms to improve randomisation of the 3D direction.

However, this does not explain the pirouettes containing 4 or more ϕ-turns that cause

the worm to remain in a small local volume for a long time. We observe that pirouettes

involve lots of head movements and environmental sensing (see Sec. 5.3), particularly at

the transitions between forward and backward movement. This suggests that their main

purpose is to allow the worm to find the best direction of travel to try next, at the cost of

spending time and energy to achieve this.

5.6 Discussion

In this chapter we took a detailed look at the 3D postures and behaviours exhibited across

the dataset produced in Chapter 4. Locomotion in 3D shares many similarities with that in

2D, namely periods of forward undulatory locomotion (runs) broken up with turns (tum-

bles), but in 3D the repertoire of behaviours observed during both runs and tumbles is far

richer than in 2D.
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In order to understand how postures and small movements combine to generate loco-

motive gaits and complex manoeuvres in 3D we developed new methods and metrics such

as non-planarity, helicity and complex eigenworms (Secs. 5.2 and 5.4.1). Using the com-

plex eigenworms we revealed that 3D locomotion can be expressed as trajectories in a low

dimensional shape space (Figs. 5.4 and 5.5). Similar to results in 2D ([211]), the first two

eigenworms are principally responsible for forward and backward undulations while the

higher dimensions are used for reorientation manoeuvres. However, in 3D, complex eigen-

worms also exhibit helical characteristics and combine with a relative complex phase to

generate highly non-planar postures (Figs. 5.3 and 5.5).

Helical postures are used extensively during forward crawling to change direction away

from the undulatory plane without compromising speed (Fig. 5.3, Video 2). Furthermore, as

previously reported by Yuval [167], helical postures are used continually in the unique-to-3D

coiling and infinity gaits where worms spiral around their axis either clockwise, counter-

clockwise or alternately back and forth. We observe a preference for coiling-type locomotion

at low gelatin concentrations that gives way to crawling-type at high concentrations but

we observe both gaits at all concentrations to varying degrees (Video 1). This changing

preference is captured in the relative contributions of the eigenworms at each concentration

which, on average, show consistent trends between 1 % and 2 % (Fig. 5.6).

In 2D, worms regularly perform manoeuvres such as Ω and δ-turns that involve a period

of reversal followed by high-curvature postures to facilitate sharp reorientations [36, 61, 244].

In 3D, we are no longer able to differentiate between these classes of turns, instead observing

a much wider variety of complex turns involving reversals that result in 3D reorientation of

the trajectory (Sec. 5.5.2 and Figs. 5.9 and 5.10, Video 3). We denoted these generalised

complex turns as ϕ-turns and hypothesised that Ω and δ-turns arise from 2D confinement

of the worm’s attempts at full 3D reorientation.

In low concentrations, ϕ-turns are less common, with worms favouring simple sharp turns

without reversals (Sec. 5.5.1 and Fig. 5.7). Turns of both types may often cluster together

in a pirouette behaviour that may last for some time and include many turns (Figs. 5.8

and 5.11 and Sec. 5.5.3). Pirouettes have the effect of keeping the worm in a small region for

an extended period of time as it criss-crosses back and forth. This allows it to extensively

sense the immediate volume in all directions, presumably to find the best direction to

pursue next. Sensing also occurs continually during locomotion through additional foraging

movements of the head and neck, behaviour which is especially noticeable during pauses

(Sec. 5.3), allowing us to close the loop between the smallest, simplest movements and the

most complex behaviours.

Through the combination of these movements C. elegans explore 3D environments,

adapting the gaits and strategies between environments to aid their exploration. In the next
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chapter we look at the resulting foraging trajectories and consider how the components of

locomotion discussed here contribute to effective volumetric search.
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Figure 5.10: Complex turn reorientation angles. (a) and (b): We divide the manoeuvre
into three sections: forward locomotion incoming (blue), backward locomotion (pink) and
forward locomotion outgoing (green) and calculate trajectory angles ((a), orange) and inter-
plane (IP) angles ((b), blue) between the sections. Analysis of 398 complex turns reveals
that neighbouring sections are likely to have closely aligned axes with trajectory angles
close to π and IP angles close to 0; (c) and (d). However, angles between the incoming
and outgoing sections are less closely aligned (e), implying that the period of reversal is as
important as the transition from reversal to outgoing for generating a new 3D direction.
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Figure 5.11: Pirouettes. Multiple complex turns often appear in clusters, forming pirouette
events. Most frequently these are observed in clusters of 3 and last less than 30 s, although
examples with 4 or 5 turns and durations up to 45 s are not uncommon. While pirouettes
lasting longer than 35 s are not observed after 5 min, it should be noted that 21 of the 43
recordings are less than 6 min.
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Chapter 6

Trajectories and exploration

6.1 Overview

In this chapter we take a step back from the postures, gaits and manoeuvres and consider the

longer trajectories that are generated through the composition of these behaviours. As the

gelatin environments used in our experiments do not contain food we expect worms, when

inserted into the gel, to exhibit local search behaviour as previously observed in 2D [96,

107, 243]. However, the question of how search behaviour manifests in 3D environments has

not previously been explored. What exploration strategies do C. elegans use to effectively

cover a volume in which food may be located in any direction? How do worms balance the

trade-off between extensive searching of a small volume against the limited searching of a

larger volume?

In Sec. 6.2 we detail the method we use for constructing run-and-tumble approximations

from the tracked trajectories. In Sec. 6.3 we investigate how long-term trajectories are

constructed from short-term behaviours and reveal a hierarchy of timescales associated

with switching between behaviours on different scales. We use these findings in Sec. 6.4 to

understand the statistics of the approximations and what they mean for 3D exploration.

In Sec. 6.5 we model the worm as a particle, or point animal, and introduce our simple

particle explorer model for generating realistic trajectories and use this in Sec. 6.6 to study

the implications of different strategies on effective exploration.
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6.2 Methods

We form long-term trajectories from the centre-of-mass of the animal at each time point.

This has two benefits: firstly, it smooths away undulatory tracks that appear in midpoint

trajectories to leave only the (gait-invariant) overall direction of travel. Secondly, it allows

us to include an additional nine trials for which 3D tracking was successful but midline

reconstruction failed. The reasons why posture reconstructions failed in these cases is

discussed in Sec. 4.8. While these nine 3D tracking trajectories are less accurate than

centre-of-mass trajectories derived from the full reconstructions, they are sufficiently close

to be included for the study of long-term behaviour.

We denote a trajectory path of duration T as X(t) ∈ R3, for 0 ≤ t < T . In practice,

we have Nf frames in the trajectory and calculate the duration from this as T = Nf/fps

(frames per second), meaning X ∈ RNf×3. For ease of exposition we use the t notation

going forward, but note this implicit conversion here.

6.2.1 Displacement

Displacement refers to the Euclidean distance between two points along a trajectory, sepa-

rated by an interval of ∆ s. The displacement at time t is thus calculated:

d∆(t) = |X(t+ ∆)−X(t)| (6.1)

where | · | is the l2-norm. By considering the displacement along a trajectory for different

intervals ∆ we reveal typical timescales of behaviour.

6.2.2 Non-planarity

Non-planarity was previously defined for postures in Sec. 5.2.1. The only differences between

posture and trajectory curves are that trajectory curves have variable length (typically much

longer) and have variable speed (i.e. the discrete vertices are not equally spaced). Since

these differences do not affect the calculation given in Eq. (5.2), the definition of NP is

unchanged.

In order to facilitate consistent comparisons between variable length trajectories, we

often consider windows of the trajectory of duration ∆ s; X∆(t) = X(t′), where t ≤ t′ <

t+ ∆. Similarly to the displacements described above (Sec. 6.2.1), varying the size of this

window provides insights into how non-planar the behaviours are at different timescales.
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6.2.3 Run-and-tumble approximations

In order to build an understanding of the exploration strategies across long timescales we

approximate the trajectories as sections of straight-line runs broken up with turns (tumbles).

This simplification filters out short term behaviours and allows us to consider trajectories

as a type of random walk of a particle in space.

The approximation process identifies turns as peaks in the curvature of the trajectory

and connects these peaks with straight lines to form runs. The approximated run-and-

tumble trajectory can be compared to the original to yield an approximation error. An

approximation can be found for any target error threshold by adjusting the sensitivity of

the peak detection process in order to add more (or fewer) vertex points. This process is

described in detail below.

We begin by defining an averaging kernel of length τ as:

gτ (t) =

 1
2τ for − τ ≤ t ≤ τ

0 otherwise.
(6.2)

And use this to smooth the trajectory path X(t) through convolution with a 1 s window:

X ′(t) = (X ? g1)(t). (6.3)

Calculating trajectory curvature

Peaks in trajectory curvature define where to place the vertices of the approximation. How-

ever, due to the constant pausing, sensing and switching of short-term behaviours, direct

evaluation of the curvature of X ′ yields a very noisy signal. To address this we apply

two further smoothing stages. First, we smooth the tangent (e0) with window size α and

calculate the vector curvature as:

K(t) =
d

dt
(e0 ? gα)(t), where (6.4)

e0(t) =
d
dtX

′(t)∣∣ d
dtX

′(t)
∣∣ . (6.5)

Then, we smooth K, again with window size α, and calculate the scalar curvature as:

k(t) = |(K ? gα)(t)|, (6.6)

where | · | is the l2-norm.
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Building an approximation

In order to find peaks in the curvature, we define two further parameters: β sets the

minimum curvature required for a peak to be detected and γ sets the minimum time between

peaks. With these defined, the peaks are found using the find peaks method provided by

the scipy library [240]:

Y = find peaks(k, β, γ), (6.7)

where Y = {yn}n=0,...,N−1 is the set of times where the N peaks occur (so 0 < yn < T ). The

corresponding vertex locations Z = {zn}n=0,...,N−1 are defined on the smoothed trajectory

as zn = X ′(yn).

With the inclusion of additional vertices at the start and end points of the trajectory, the

approximation X̃ is now constructed by combining straight lines of constant speed between

the vertices in space and time, i.e.:

X̃(t) =



(
1− t

y0

)
X ′(0) + t

y0
z0 0 ≤ t < y0

...
...(

1− t−yn−1

yn−yn−1

)
zn−1 + t−yn−1

yn−yn−1
zn yn−1 ≤ t < yn; n = 1, . . . , N − 1

...
...(

1− t−yN−1

T−yN−1

)
zN−1 +

t−yN−1

T−yN−1
X ′(T ) yN−1 ≤ t < T.

(6.8)

Evaluation and refinement

We calculate the approximation error as the mean squared distance from each point along

the approximation to the corresponding point on the original (smoothed) trajectory:

ε =
1

T

∫ T

t=0
|X ′(t)− X̃(t)|2dt. (6.9)

Due to the wide variety of trajectory paths in the dataset, there is no single set of

parameters that yields consistent errors. For example, a wide circular path may require a

low threshold for curvature height (β) in order to create an approximation that follows it,

whereas a zigzag path with sharp turns will be better fit with a larger β value so only the

turns are detected. Therefore, we construct the approximation to a specified error threshold

ε∗, starting from a conservative parameter set and progressively relaxing the parameters

until the error threshold is reached. Any value of ε∗ ≥ 0 can be reached; when the peak

detection parameters are relaxed entirely vertices will be placed at every point along the
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Parameter Purpose Value

ε∗ Target approximation error 0.05 mm
α0 Initial smoothing window used for calculating curvature 8 s
β0 Initial minimum curvature height used for detecting peaks

in the curvature
100 mm−1

γ0 Initial minimum interval between detected peaks 20 s
w PCA window size 3 vertices

Table 6.1: Run-and-tumble approximation parameters.

curve, so X̃ → X and ε → 0. For all of our approximations we use ε∗ = 0.05 mm. The

procedure is illustrated in Fig. 6.1, outlined in Algorithm 6.1 and the parameter values are

listed in Table 6.1.

Algorithm 6.1 Finding an approximation

1: Inputs: X, ε∗, α0, β0, γ0

2: Initialise: ε←∞, α← α0, β ← β0, γ ← γ0

3: while ε > ε∗ do
4: k = calculate curvature(X,α) . Eqs. (6.4) and (6.6)
5: Y = find peaks(k, β, γ) . Eq. (6.7)
6: X̃ = build approximation(X,Y ) . Eq. (6.8)
7: ε = calculate error(X, X̃) . Eq. (6.9)
8: if ε > ε∗ then
9: α← α− 0.2 s

10: β ← β − 1 mm−1

11: γ ← γ − 0.4 s
12: end if
13: end while
14: return X̃

Framing the approximation

In order to impose an intrinsic orientation of the particle, we calculate an orthonormal

orientation frame along the path: E(t) = (e0(t), e1(t), e2(t)). This allows us to decompose

curvature into the e1 and e2 directions (similar to the M1 and M2 directions used for

framing the midline curves in Sec. 4.5.1) and, by adjusting the frame to align with the local

estimate of the plane, separate planar curvature from non-planar curvature.

As the path is piecewise-linear and the frame does not change along the runs we only need

to calculate the frame values at the vertices. The first frame component, e0, corresponds

to the normalised tangent to the piecewise-linear curve, so this just points along the run
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Figure 6.1: Run-and-tumble approximation process. The parameters α, β, γ are adjusted
to detect progressively more peaks in the trajectory curvature until the error, ε, is less than
a given target ε∗ (see Algorithm 6.1). As more peaks are detected, more vertices (tumbles)
are added to the approximation. The target of ε∗ = 0.05 mm (highlighted in red) is used
for our analyses.
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vectors:

e0(yn) =



z0−X′(0)
|z0−X′(0)| yn = 0

...
...

zn−zn−1

|zn−zn−1| 0 < n ≤ N − 1
...

...

X(T )−zN−1

|X(T )−zN−1| yn = T.

(6.10)

As with the Bishop frame (Sec. 4.5.1), we are free to choose e1 as any direction per-

pendicular to e0. At the nth vertex we choose e1 to point into the plane formed by the

neighbouring vertices in window of size w ∈ 2Z+ 1 ≥ 3. We calculate the principal axes for

the window at yn using PCA as:

(v0, v1, v2)(n) = PCA({zn−w′ , . . . , zn, . . . , zn+w′}), where (6.11)

w′ = floor(w/2). (6.12)

The principal plane we are interested in is formed by (v0, v1). In most cases, such as

during forward locomotion with shallow turns, it is safe to assume that v0 points along the

trajectory as this corresponds to the direction of maximum variance in the window. This

leaves v1 to define the direction of e1, subject to orthogonalisation against e0;

e1 = v1 − (v1 · e0)e0. (6.13)

The remaining component is found through cross product: e2 = e0 × e1.

The frame changes only at a vertex and is fixed along the subsequent run, therefore we

have:

E(t) = (e0, e1, e2)(t) =


(e0, e1, e2)(0) 0 ≤ t ≤ y0

(e0, e1, e2)(yn) y0 < t ≤ yN−1

(e0, e1, e2)(T ) t > yN−1.

(6.14)

Calculating angles

At each tumble the frame rotates into a new orientation. This can be expressed as a sequence

of axis-angle rotations. First, a rotation of θ around e2; we call this a planar angle since it

does not affect the primary plane formed by e0 and e1. The second rotation, φ around e1,

we call a non-planar angle since it rotates the trajectory out of the previous (e0, e1) plane.
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The final rotation, ψ around e0, is required to complete the reorientation of the frame. The

first two angles define the change of direction, the third is a necessary reorientation of the

frame but we don’t consider this to be part of the manoeuvre.

For adjacent frames Ea and Eb represented in matrix form with the components as

columns, we calculate the rotation matrix Rab as

Rab = EbE
−1
a , (6.15)

then decompose the rotation matrix into the axes of Ea,

R′ab = ETa RabEa. (6.16)

so that the Euler angles of R′ab now correspond to rotations around the Ea axes. We extract

the Euler angles using scipy as:

θ, φ, ψ = Rotation.to euler(R′ab). (6.17)

6.3 Hierarchy of timescales

A key characteristic of local search is finding a balance between motility and sensing [22].

This manifests on a range of timescales. On the shortest timescales of O(100)ms, rapid

shallow movement of the tip of the head enhances local sampling. On timescales of seconds,

as worms locomote they undulate from side to side, allowing the sensors in the head to sweep

across their environment. On longer timescales, during 2D local search, animals execute a

run-and-tumble strategy in which the frequency of tumbles (turns) gradually decreases the

longer the animal is without food [96]: high tumble frequencies promote local sampling,

whereas low frequencies promote dispersion, allowing the animal to explore increasingly

larger spaces.

We hypothesise that this balance of sampling and motility gives rise to a similar hierarchy

of timescales in 3D. If so, we ask first, how do the primitives of locomotion combine to

form local trajectories, including runs and manoeuvres, and secondly how do these local

trajectories combine to produce 3D exploration?

On short timescales, despite the environmentally-driven preference towards slow-undulatory

(in high viscosity media) or fast-coiling (in lower viscosity media) forward locomotion (see

Sec. 5.4), we find both behaviours are repeatedly observed in all environments, albeit often

just for one or two undulations. The animal pauses frequently during both locomotion

and manoeuvres while the head and neck often continue to scan the local environment
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(see Sec. 5.3). The regular switching between these behaviours gives rise to spikes in non-

planarity and high variance in short-term displacement (Fig. 6.2, left column).

On timescales of tens of seconds (Fig. 6.2, middle column) we see the appearance of re-

versals, higher-curvature turns and reorientation manoeuvres (ϕ-turns, see Sec. 5.5). Taken

individually, these manoeuvres allow the worm to alter its heading substantially more than

through steering alone and offer significant increases in non-planar exploration through the

switching of quasi-planes (Fig. 6.2, (e)), but they come at a cost in terms of displacement.

The combination of three sections (forward-reversal-forward) enables large changes to both

the trajectory direction and the orientation of the quasi-plane of exploration (as measured

by the inter-plane (IP) angle, Fig. 5.10). As the reversal duration increases, so too does the

likelihood of emerging into a perpendicular plane (Fig. 6.3, (b)). On the same timescales

we also see planar adjustments achieved through clusters of simple turns, but without a

reversal more sections (i.e. 4-5 turns) are required to reach the same degree of reorientation

(Fig. 6.3, (c)).

In order to see how turns and runs combine to generate volumetric exploration we

consider timescales on the order of minutes, pushing the limit of our trajectory durations

(Fig. 6.2, right column). Clustering of turns and periods of resting and sensing (Sec. 5.3)

leads to prolonged periods of low displacement. However, on these timescales we also see

occasional sustained periods of high displacement without turns and with few pauses. These

long transitions cause the worm to leave the local search area and reach unexplored areas.

Across the dataset we find a wide range of run distances and run durations that are well

fit by heavy-tailed distributions (Fig. 6.4), akin to the step lengths found in Lévy-flight

foraging models [22, 72, 241, 260].

The nested combination of different behaviours across a hierarchy of timescales gives

rise to a wide variety of exploratory trajectories (Video 1). In some cases, just one or two

areas are searched in great detail while in others only brief stops are taken along long,

meandering trajectories. Deviations from the plane incur time penalties through reversals

and turns but are essential for achieving 3D coverage.

6.4 Summary of trajectories

We employ the run-and-tumble approximation method described above (Sec. 6.2.3) to get a

condensed overview of the longer-term behaviours and exploration strategies and generate

approximations for all 52 trajectories in our dataset. As we are particularly interested in

active exploration, we filter out any runs longer than 60 s that have average speeds of less

than 0.01 mm s−1. These runs are making very little progress (< 0.6 mm) and since they
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Figure 6.2: The hierarchy of behavioural timescales across a 15 min trajectory. On short
timescales (left column, ∆ = 5 s) worms frequently switch between crawling, coiling and
resting/sensing behaviours (d). This is reflected in the noisy displacement (a) and non-
planarity (g) signals that frequently cross above and below the means (horizontal red lines).
On medium timescales (middle column, ∆ = 30 s) locomotion is broken up with complex
manoeuvres such as ϕ-turns (e). These manoeuvres enable an increase in trajectory non-
planarity (h) but at the cost of reduced displacement (b). On long timescales (right column,
∆ = 100 s) local searches, containing lots of turns and sensing ((f), orange boxes) are broken
up with long runs ((f), green boxes) as the worm transitions to new search areas. Local
searches correspond to periods of sustained high non-planarity (i) and low displacement (c),
while the opposite is true during transitions as the worm moves more directly.
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Figure 6.3: Angles between the quasi-planes of exploration are changed through simple and
complex turns. a) We identify simple turns as any tumbles identified in the run-and-tumble
approximation method (Sec. 6.2.3), excluding any that correspond or intersect with complex
turns. We determine the plane at each turn by the incoming and outgoing run vectors. The
IP angle is calculated between normal vectors of two planes when turns are within 5 s (or 10 s,
15 s and 20 s for clusters of 3, 4 and 5 turns respectively). As the number of simple turns in a
cluster increases, the planes at the start and end of the cluster become more perpendicular.
b) The IP angles around individual complex turns (those involving reversals) are calculated
using the method described in Sec. 5.5.2. As the reversal duration increases, the angle
between incoming and outgoing planes is more likely to approach perpendicularity, leading
to greater volumetric coverage.

Figure 6.4: We identify 212 runs across the dataset as sections of sustained forward loco-
motion of the midpoint trajectories smoothed with a 2 s window. Trajectory speed must
stay above 0.05 mm s−1 for at least 8 s to be recorded. The distribution of run distances
and, to a lesser extent, run durations match Lévy distribution fits to the data (orange).
One-sample Kolmogorov-Smirnov test of data versus the fit distribution yields P = 0.76 for
run distances and P = 0.38 for run durations.
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are also, by definition, not changing direction, we consider these to be rests and exclude

them from the analyses.

Worm speeds in 2D have been recorded up to 1 mm s−1 [103]. In our approximated

runs, however, we rarely see average run speeds > 0.15 mm s−1 and most are < 0.1 mm s−1

(Fig. 6.5, (b)). The approximated straight line runs by definition shorten the real centre-

of-mass trajectories and we would not expect to see many runs at the theoretical speed

limit anyway. That said, the maximum of ∼ 0.2 mm s−1 may still be lower than expected.

However, these runs include frequent short-term behaviour switching between different lo-

comotion gaits and frequent pauses that greatly reduce the average speed. Similar to the

run distances (Fig. 6.4, albeit using a different method), run durations and average run

speeds both exhibit heavy tails in their distributions (Fig. 6.5 (a, b)).

To investigate our hypothesis that, on average, worms favour quasi-planar exploration,

we characterise tumbles by planar and non-planar angles, θ and φ respectively (as per

Sec. 6.2.3). We see a mostly uniform distribution of planar angles with a small peak near

0, suggesting that worms find it easy to reorient within the plane of motion (Fig. 6.5 (c)).

We also observe slight peaks at ±π that likely correspond to reversals in the dataset. On

the other hand, the non-planar angles are much more tightly clustered around 0 (Fig. 6.5

(d)), implying that the majority of tumbles do not change the quasi-plane significantly.

Figure 6.5: Run-and-tumble approximation statistics.
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6.5 Particle explorer model

We ask whether the approximated run-and-tumble trajectories could be generated by a

parsimonious state-transition model containing a minimal number of states. The simplest

of these – a two-state run-and-tumble model – generates runs of constant speed with dura-

tions following an exponential-type distribution. However, given the wide variability of run

speeds in the approximations due to pauses and sensing, and the heavy-tailed distribution

of run durations and run distances (Fig. 6.4), a two-state model is insufficient for generating

trajectories comparable with the real data.

To address these deficiencies, we extend the single run state into two: a fast and a

slow state. This reflects the short-term switching of behaviours we observe in the real

worms (Fig. 6.2), and through transitions between the fast and slow states without turns

we generate runs that have a wide range of average speeds. We restrict transitions to the

turn state from the slow state only. This enables a heavy-tailed distribution of run durations

and the clustering of turns (dependent on transition rates).

To fit the model parameters, we simulate many trajectories, calculate statistics and

compare against the statistics of the approximations of the real trajectories. Parameters

are adjusted by hand until a good fit is reached. The three-state explorer model is simple, yet

fits the data well and generates trajectories that qualitatively resemble the run-and-tumble

approximations derived above (Sec. 6.2.3). In Video 4 we show an example trajectory

generated by our model.

6.5.1 Three-state model

Our model consists of three states: a slow run state S0, a fast run state S1, and a turn state

S2. Animals, modelled as particles, are initialised at the origin with a random orientation

frame E = (e0, e1, e2) and in one of the two run states, chosen with equal probability. The

particles stochastically transition between the states according to the rates: r01 (slow to

fast), r10 (fast to slow) and r02 (slow to turn). The turn state is transient, meaning after

the direction is changed the particle immediately transitions either to the slow state with

probability r20 or to the fast state with probability r21 = 1 − r20. Remaining in a run

state moves the particle forward along its current heading, e0, with either the slow speed

(v0 mm s−1) or the fast speed (v1 mm s−1).

Simulations are generated in parallel with a time-step dt=0.04 s to match the 25 frames

per second real recordings. The model is described in Algorithm 6.2, illustrated in Fig. 6.6

and parameter values are listed in Table 6.2.
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Figure 6.6: Three-state particle explorer model. (a) Point trajectories are generated with
a combination of straight-line sections (runs) and turns (tumbles). Simulated particles
transition stochastically between slow, fast and turn states. The turn state is transient and
causes a change in direction by means of two randomly generated angles; one within the
plane of motion (θ) and one away from it (φ). Moving away from the plane of motion incurs
a time penalty (δ) quadratically proportional to φ. (b) An example trajectory generated
by the model. For comparison with real data a small amount of noise is added to the
trajectory before it is smoothed with a 1 s averaging window. (c) The distributions of run
durations, run speeds, planar and non-planar angles sampled from the model (1000, 10 min
simulations) show close agreement with the data (52 trajectories, 4 min to 25 min).
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Tumbles

At each tumble state the orientation is adjusted by rotating the frame by θ around e2 and

φ around e1 to correspond to the approximation angles derived in Sec. 6.2.3. The angles

θ and φ are sampled from distributions Λθ and Λφ respectively. The angle θ ∈ [−π, π]

represents a turn within the principal plane formed by (e0, e1) so we refer to this as the

planar angle. The angle φ ∈ [−π/2, π/2] represents a turn out of the principal plane so we

refer to this as the non-planar angle. Any angles sampled outside of the range are discarded

and re-sampled.

Given θ and φ, we calculate the rotation matrices as

Rθ = (cos θ)I + (sin θ)[e2]× + (1− cos θ)(e2 ⊗ e2), and (6.18)

Rφ = (cosφ)I + (sinφ)[e1]× + (1− cosφ)(e1 ⊗ e1) (6.19)

respectively, where [u]× is the cross product matrix of u and ⊗ is the outer product. The

new rotated frame is then obtained as

E′ = Rφ(RθE). (6.20)

Pause penalties

In order to capture the time penalty that we observe when worms move away from their

active plane of exploration (Fig. 6.3), we impose a pause at each turn state of duration δ s

where δ is quadratically proportional to the magnitude of φ, i.e.,

δ =

(
2|φ|
π

)2

δmax, (6.21)

so δ ∈ [0, δmax].

6.5.2 Fitting the model

We ask the question, can we find parameters for our three-state model that generate tra-

jectories that are statistically similar to the approximations constructed in Sec. 6.2.3? If

so, then we can be justified in studying the effects of individual parameters on the resulting

trajectories. We have two parallel goals: first, the simulation trajectories must qualitatively

resemble the approximations and second, the statistics of many simulated trajectories must

match those of the approximations.
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Algorithm 6.2 Particle explorer simulation

1: Inputs: E0, dt, T , r01, r10, r02, r20, s0, s1, Λθ, Λφ, δmax

2: Initialise: t← 0, E ← E0, X ← [ ], x← (0, 0, 0),
3: z ∼ B(0.5) . Sample initial state from a binomial distribution
4:

5: while t < T do
6: # Determine next state
7: q ∼ U [0, 1) . Sample q from a uniform distribution
8: if z = 0 then
9: if q < r01 then z ← 1

10: else if q > 1− r02 then z ← 2
11: end if
12: else if z = 1 then
13: if q < r10 then z ← 0
14: end if
15: else if z = 2 then
16: if q < r20 then z ← 0
17: else z ← 1 . Cannot remain in the turn state
18: end if
19: end if
20:

21: # Tumble
22: if z = 2 then
23: θ ∼ Λθ, φ ∼ Λφ
24: E ← rotate frame(E, θ, φ) . Eqs. (6.18) and (6.20)
25: δ ← calculate pause(φ, δmax) . Eq. (6.21)
26: t← t+ δ
27: end if
28:

29: # Run
30: if z ∈ 0, 1 then
31: s← sz . Pick the appropriate speed
32: x← x+ (s · dt)e0

33: end if
34:

35: X[t]← x
36: t← t+ dt
37: end while
38: return X
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Increasing variability

There can be a wide difference in the behaviours of individual worms, even within the same

concentration. This manifests most notably during the switching of short-term behaviours,

with some worms pausing regularly to sense the environment and others moving much

more quickly. An individual’s preference for coiling gaits, although more apparent at low

concentrations (Sec. 5.4), can also have a big effect on effective run speeds as forward

speed is typically reduced during coiling. To account for this, we introduce variability in

the run speed parameters by sampling different values for each simulation from Gaussian

distributions: s0 ∼ N (µs0 , σs0) and s1 ∼ N (µs1 , σs1). The sampled values are fixed across

a simulation run and give the slow/fast speeds for an individual, therefore providing the

population variability we observe across the dataset.

Approximating model trajectories

In the process of approximating real trajectories, small clusters of turns and reversals often

result in just a single vertex being added to the approximation as this is sufficient to keep

the approximation trajectory close to the real one. In contrast, clusters of turns generated

by the model yield many short runs with lots more angles. Moreover, when very small turn

angles are sampled two runs are recorded where one would be more appropriate. In these

cases, the simulations more closely resemble the real trajectories than their approximations.

Therefore, rather than generate statistics directly using the values generated by the model,

a fairer comparison can be obtained through running the same approximation process on

the simulated trajectories.

The approximation process described in Sec. 6.2.3 identifies the vertices using peaks in

the trajectory curvature. In the simulation output, curvature is zero everywhere except at

the tumbles. To aid in the merging of turn clusters, and to make the simulations appear

more like real trajectories, we add a small amount of Gaussian noise to the simulated

trajectories and then smooth. Let Xs be a simulated trajectory, N 3(σs) be a symmetric

three-variate Gaussian distribution centred at the origin with standard deviation σs, and

αs be the duration of the smoothing window, then

X ′s(t) = Xs(t) + (x ∼ N 3(σs)), and (6.22)

X ′′s (t) = (Xs ? gαs)(t). (6.23)

The effects of adding noise and smoothing on an example trajectory are shown in Video 4.
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The approximation X̃s can now be generated using Algorithm 6.1,

X̃s = find approximation(X ′′s , ε
∗, α0, β0, γ0), (6.24)

with values of ε∗, α0, β0 and γ0 the same as used for approximating the real trajectories

(Table 6.1).

Finding model parameters

By design, our three-state model uses planar and non-planar angles to correspond with

the approximation angles we calculate in Sec. 6.2.3. Looking at the angle distributions in

Fig. 6.5, we aim to fit a mixture of two Gaussian distributions for θ and a single Gaussian

for φ. These are defined thus:

Λθ = ω1N (µ1
θ, σ

1
θ) + ω2N (µ2

θ, σ
2
θ), and (6.25)

Λφ = N (µφ, σφ), (6.26)

The maximum pause duration δ is chosen heuristically to be 5 s. In order to fit the

remaining model parameters, we generate batches of simulated trajectories in parallel that

are large enough for the statistics to converge to stationary distributions. We find a batch

size of 1000 to be sufficient while still being computationally tractable. Model parameters

are then adjusted manually until a good fit is found. Final model parameters are listed in

Table 6.2 and distribution comparisons shown in Fig. 6.6.

6.6 Optimality

Our results and observations suggest that C. elegans explore quasi-planar regions within the

volume. This is perhaps an unusual result. Why should a quasi-planar strategy be preferable

to a simpler omni-directional random walk? Analysis of Lévy flight patterns can explain

the advantages of occasional long runs to local search [17, 22, 148], but in these models, the

reorientation events are without bias. Why would the worm bias the directionality in this

way? We have argued that volumetric local search requires non-planar behaviours to adjust

the search quasi-plane through clusters of simple turns or reversals and ϕ-turns, both of

which require high-curvature postures and a slowing of the forward undulations. However,

the associated energetic and time costs are not present during steering and shallow turns

so the worm is able to cover greater distances when it stays within a slowly changing quasi-

plane. This suggests the worm is looking to find the best balance between searching slowly,
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Parameter Purpose Value

dt Time step 0.04 s
r01 Transition rate from S0 → S1 (slow to fast) 0.01
r10 Transition rate from S1 → S0 (fast to slow) 0.01
r02 Transition rate from S0 → S2 (slow to turn) 0.001
r20 Transition rate from S2 → S0 (turn to slow) 0.9
r21 Transition rate from S2 → S1 (turn to fast) 1− r20 = 0.1
µs0 Mean slow speed 0.0025 mm s−1

σs0 Standard deviation of slow speed 0.0025 mm s−1

µs1 Mean fast speed 0.075 mm s−1

σs1 Standard deviation of fast speed 0.05 mm s−1

ω1 Weighting of first Gaussian in θ distribution 1
µ1
θ Mean of first Gaussian in θ distribution 0
σ1
θ Standard deviation of first Gaussian in θ distribution 1.25
ω2 Weighting of second Gaussian in θ distribution 0.35
µ1
θ Mean of second Gaussian in θ distribution π
σ1
θ Standard deviation of second Gaussian in θ distribution 0.8
µφ Mean of Gaussian in φ distribution 0
σφ Standard deviation of Gaussian in φ distribution 0.3
δmax Maximum pause duration 5 s
σs Standard deviation of noise added before approximation 0.1 mm
αs Smoothing window to apply before approximation 1 s

Table 6.2: Three-state particle explorer parameters.
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but volumetrically, and quickly, but restricted to a plane.

In our model, the balance between planar and volumetric searching is controlled by

σφ; the spread of the non-planar angle distribution. If this parameter is made very large,

the Gaussian distribution approaches a uniform distribution and the plane will be changed

frequently. At the other extreme, σφ ' 0, only φ = 0 can be sampled, and the particle

will never leave its initial (e0, e1) plane. Does there exist a value for σφ that maximises the

volume of space explored for any given duration?

6.6.1 Volume estimation

There are many different approaches to estimating the volume of space explored by a path.

To ensure the validity of our findings, we present results using three different methods. First,

we take the minimum slice of a sphere that encloses the trajectory. A path that extends

equally in all directions would require a full-height slice (i.e. a complete sphere), while

a completely planar path requires only a very thin, circular, disk. Second, we consider

a cuboid, aligned with the principal axes of the trajectory and extended to enclose the

trajectory. Finally, we count the number of distinct voxels visited.

Spherical slices

We calculate the volume of a slice of height z taken from the centre of a sphere of radius r

as:

Vs = Vsphere − 2Vcap, where (6.27)

Vsphere =
4

3
πr3, and (6.28)

Vcap =
1

3
π(r − z)2(2r + z). (6.29)

The r and z values for trajectory X correspond to the maximum distances along the

first and third of the principal axes respectively. We calculate the principal axes using PCA

as:

A = (v0, v1, v2) = PCA(X). (6.30)

Next, we rotate the trajectory to align with the principal axes,

X ′(t) = AX(t), (6.31)
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and then calculate r and z as the ranges along these axes:

r = max
t
X ′(t)[0]−min

t
X ′(t)[0], and (6.32)

z = max
t
X ′(t)[2]−min

t
X ′(t)[2], (6.33)

where [i] indicates that the ith component is taken.

Cuboids

The volume of a cuboid is simply the product of its dimensions:

Vc = u0u1u2. (6.34)

The dimensions are derived from the extents reached along each of the principal axes. To

calculate these we follow the process described above in Eqs. (6.30) and (6.31) to align the

trajectory with the principal axes and then calculate u0, u1, u2 as

u0 = max
t
X ′(t)[0]−min

t
X ′(t)[0], (6.35)

u1 = max
t
X ′(t)[1]−min

t
X ′(t)[1], and (6.36)

u2 = max
t
X ′(t)[2]−min

t
X ′(t)[2]. (6.37)

Voxels visited

We can estimate the volume explored by counting the number of voxels visited by a tra-

jectory and multiplying by the volume of a single voxel. For voxel size pmm3, we calculate

this as

Vv = p · count distinct(round(X/p)). (6.38)

The combination of scaling and rounding divides the coordinates into the discrete voxels,

and distinct voxels are counted using the count distinct function (not shown, but trivial).

An appropriate choice of p is important in order to get comparable estimates between

trajectories. As p → 0, every discrete trajectory coordinate gets its own voxel and we

are essentially just calculating the trajectory length. As p → ∞, we converge to a single

voxel encompassing any trajectory. For our analysis we choose p = 0.5 mm3, roughly half

the length of a worm, as this offers the necessary resolution to provide meaningful volume

estimates.
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6.6.2 Results

Using our particle explorer model we calculate the volumes explored across batches of 1000

trajectories for a range of σφ values, σφ ∈ [10−3, 101], while fixing all other parameters to

the values listed in Table 6.2. To see the effects at different timescales, we simulate across

durations T ∈ [1 min, 36 min]. To demonstrate the impact of the non-planar deviation

penalty term, δmax, we also experiment with values δmax ∈ [1 s, 36 s] while fixing T = 10 min.

After averaging over batches of simulated trajectories we find distinct peaks in the

volumes explored. These optimal σφ values are consistently located among variations in

simulation duration T (Fig. 6.7 (a)) and maximum pause penalties δmax (Fig. 6.7 (b)), and

are robust to different volume estimation approaches (Fig. A.5).

For fixed δmax (Fig. 6.7 (a)), small σφ means shorter time penalties but more planar

trajectories. As σφ increases, trajectories become more volumetric but longer pauses cause

them to be shorter. The Vs and Vc volume estimates indicate that the optimal value of

σφ may decrease as the duration increases, but this is not supported by the Vv estimate

(Fig. A.5 (c)), so may be an artefact of these estimation methods.

For fixed T (Fig. 6.7 (a)), changes to δmax significantly affect the volume estimates.

For large values of δmax the cost for going non-planar is significant and large values of

σφ perform poorly. For sufficiently small values of δmax, the penalty is negligible and the

volumes plateau for σφ & 0.3. Interestingly, this point of plateau corresponds to distinct

peaks for larger δmax. For σφ . 0.3, the volumes converge for all values of δmax, implying

that below this point, non-planar behaviour is essential to increase the volume, regardless

of the penalty it involves. These results are illustrated in Video 4, where we contrast a fast-

planar trajectory and a slow-volumetric trajectory against an intermediate, quasi-planar

trajectory.

Our modelling suggests optimal σφ values that generate quasi-planar exploration. We

find that these optima are in good agreement with the value we find from fitting to the

experimental data (σφ = 0.3), supporting our hypothesis that worms employ a quasi-planar

strategy for volumetric exploration as a way of balancing 3D coverage against trajectory

distance.

110



6. TRAJECTORIES AND EXPLORATION 6.6 Optimality

Figure 6.7: Optimal exploration strategies. The exploration volume (Vs) is approximated using the
spherical slice method (Sec. 6.6.1). (a) Sweeping over a range of variance values (σφ) for the non-
planar angle distribution reveals peaks in the exploration volumes at different durations. For small
σφ the time penalty is small, but the trajectories are very planar. As σφ increases, the trajectories
become more volumetric but longer pauses cause them to be shorter. The orange dashed line shows
the value of σφ used to model the data. Each data point is an average of 1000 simulations. A version
of this plot including the standard deviation is included in Fig. A.4. (b) The simulation duration is
fixed at 10 min and a range of maximum pause durations (δmax) are tested. For small δmax a large
value of σφ is preferable, but as δmax increases, non-planar trajectories have shorter distances and
result in smaller volumes being explored. A version of this plot including the standard deviation
is included in Fig. A.4. (c) The volume explored is approximated as a slice of height z taken from
a sphere of radius r where z is the maximum direction reached along the 3rd PCA component of
the entire trajectory and r is the maximum along the 1st component (Sec. 6.6.1). Other volume
approximations give similar results (Fig. A.5).
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Chapter 7

Discussion

To fully understand the behaviours of animals it is helpful to observe them under conditions

that capture key properties of their natural habitats. C. elegans presents an appealing

model system in which we anticipate volumetric exploration of the environment without

planar biases when foraging for food, even over scales of hundreds of body lengths. Here we

have presented an extensive corpus of 3D locomotion in C. elegans– the first of its kind –

and shown how animal locomotion gives rise to volumetric exploration during local search

behaviour. While nematodes typically do not inhabit homogeneous gelatin cubes without

sensory cues, our results offer a baseline for the study of 3D locomotion primitives and

exploration strategies. Future investigations of this and other nematode species and strains

under a variety of 3D conditions, and subject to external cues and stimuli, will allow us to

further expand our appreciation and understanding of animal behaviours, and the genetic,

biochemical and electrical mechanisms that underpin them.

7.1 3D reconstruction

Multi-view microscopic camera calibration, imaging through fluids and parametric model

fitting of semi-transparent subjects are areas that have received little attention in the lit-

erature. We found that while standard approaches may suffice for limited sub-clips, they

lose parts of the object or fail catastrophically for much of the data. Our problem is very

different to human pose estimation. Unlike large articulated bodies, the microscopic worm

moving through a fluid (with changing camera parameters) is deformable at every point. In

pose estimation, backgrounds, colours and shadows provide photometric information that

can aid the task. Our data is monochrome and our subjects are semi-transparent, meaning

that apparent ‘features’ may be artefacts of the optics, self-occlusion can be much harder to
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resolve, bubbles and dirt often look indistinguishable from the worms and the finely tapered

head and tail are barely visible.

For long periods, through noisy interference and self-occlusions, our method is reliable

and robust (Video 6). To achieve this we mask the images to ensure only a single con-

sistent contiguous pixel mass is revealed in all views. However, through ablation testing

(Sec. 4.8.3) we see that masking decreases the performance in noise-free cases, primarily

due to the midline not extending fully toward the head and tail. The imperfect head and

tail accuracy is also highlighted in the validation results (Sec. 4.8.1). This may be improved

through a smarter application of the masking (i.e. only when it is needed) or through some

combination of our method with Yuval’s [167] head and tail detector.

In particularly difficult cases the reconstruction fails (Video 7), and though the posture

can usually be found a few frames later, fixing these gaps requires some restarts and splicing

– and often leaves glitches. Optimisation over a sliding window of frames may offer a more

robust automated solution, with temporal regularisation ensuring consistency across the

whole window as opposed to just with the previously optimised frame. Another interesting

possibility was explored in 2D by Broekmans et al . [36], who resolved ambiguities in self-

occluded postures by finding likely matches in the eigenworm shape space and then selecting

the solutions that ensured consistency in the shape space dynamics over time.

While working with real data invariably raises challenges that require bespoke solutions,

we believe that the midline reconstruction algorithm we have presented in Sec. 4.7 makes a

more general contribution to 3D shape reconstruction. The key contribution of our approach

– constructing unique differentiable renderings for each view – allows us to solve shape

reconstruction and camera parameter optimisation by direct image comparison. This avoids

feature extraction and correspondence matching, and hence offers a powerful alternative

when those approaches are not well-suited to the problem, e.g . due to the variation in

appearance between the views. Rendering using adaptable super-Gaussian blobs allows

sharp outlines to be produced in one view by using a large exponent and flat-top blobs, and

blurry images to be produced in another view, using low intensity and high variance.

7.2 Dataset

We generated and presented here a large dataset of exploratory trajectories and 3D midline

reconstructions that is the first of its kind. However, more could be done. The number

of experiments (and total recording duration) is not balanced across gelatin concentrations

and there are some noticeable gaps in the coverage (e.g . Fig. A.3). This balance could

be improved by including some of the many recordings that we excluded from our dataset
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(e.g . less than 4 min duration or videos with synchronisation issues). As mentioned above,

temporal windows may improve the consistency of reconstructions through occluded and

low-focus sequences, but they may also provide the necessary information for tackling sync-

ing issues by learning per-camera timing offsets to improve correspondence with the 3D

postures.

Wang et al . [245] showed how our data could be used to recover the forces along the

body using an inverse modelling approach. The worm is modelled as a Cosserat rod with

an internal frame that we liken to the anatomical frame of the worm. By varying the

optimisation and material parameters, different candidate frames can be found for the same

midline sequence, but unfortunately the true frame is unknown. However, at times during

deep ventral bends and planar undulations the anatomical frame can be deduced, so inverse

modelling approaches such as this can offer consistent and reliable estimates. Knowledge

of the physical forces and anatomical frame will offer a way to estimate the active force

contribution from the muscles and, in combination with a neural control model, the neural

activity.

7.3 Behaviours

We found that C. elegans exhibit a wide range of locomotion gaits and manoeuvres in 3D

that give rise to non-planar postures, non-planar trajectories, and thus, an ability to perform

volumetric exploration of their environment (Video 1, Video 2 and Video 3). Despite the

striking diversity of behaviours and strategies observed between individual animals, we have

shown that the space of C. elegans postures in 3D is well described by five eigenworms in

complex PCA space (Sec. 5.4.1) and that the first two modes – responsible for the majority

of forwards and backwards locomotion – are fundamentally non-planar. These give rise to

3D undulatory gaits that are more complex than sinusoidal planar undulations (Sec. 5.4). In

particular, we observed that the animal’s side-to-side head movements – typically attributed

to foraging in 2D – are in fact circular or oval. Unlike locomotion on a surface, where such

rapid head motion has negligible effect on the path of the animal, in 3D, circular head

motion can initiate torsional waves along the body that generate helical postures and 3D

trajectories.

As mechanical considerations predict planar sinusoidal undulations to produce much

more efficient locomotion than helical undulations, we hypothesise that non-planar locomo-

tion presents benefits for 3D sampling of the environment as well as facilitating non-planar

locomotion, akin to the theorised benefits of helical trajectories observed in zooplankton

[18, 59]. Indeed, planar undulatory movement naturally enables animals to sense both sides

of its heading on a surface whereas in 3D this only provides sampling along the undulatory
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plane, suggesting that coiling motions are required for omni-directional sensing.

We found evidence of gait modulation in 3D locomotion (Sec. 5.4.3) consistent with

known gait modulation of C. elegans in 2D [25]. Yet particularly in low gelatin concentra-

tions we also see individuals switching between distinct periods of high frequency, slow travel

coiling and low frequency, fast travel crawling (Video 1). This suggests that our gait modu-

lation result – using relative eigenworm contributions across concentrations – may, at least

in part, be due to the worms’ changing preference between these gaits. More investigation

is required to resolve this, but the emergence of distinct gaits in 3D at low concentrations

raises many interesting questions about their different functions and the capabilities of the

underlying neural control circuitry.

To execute tumbles in 3D, we found that C. elegans exhibit simple (more frequently near-

planar) and complex (more frequently non-planar) turns (Sec. 5.5). The latter generalise

the well known two-dimensional Ω-turn to a three-dimensional ϕ-turn (Sec. 5.5.2). Through

the careful analysis of Ω-turns, Broekmans et al . [36] determined that these can be split

into two groups and denoted the new group as δ-turns. Ω-turns enable worms to reorient

to their ventral sides and δ-turns to their dorsal sides (via over-turning and crawling over

itself). In 3D, ϕ-turns yield a continuum of angles, but collapsing these manoeuvres into 2D

may explain this apparent bifurcation and why we have not been able to find such a split in

our data. We consider another interpretation: Ω-turns correspond to a worm’s attempt at

turning into the surface and δ-turns their attempts at turning away from the surface. This

theory could be tested experimentally by ablation of one of the left/right side muscles and

observing if this limits worms to only perform Ω/δ-turns on a surface.

7.4 Optimal exploration

As in 2D, we found C. elegans volumetric exploration to be well described by a run-and-

tumble strategy, which links it to search behaviours observed in many other species across

scales [22, 23, 30, 55, 209, 242]. However, the behaviour differs from a simple random walk in

a number of ways. Worms exhibit switching of behaviours across scales: they pause regularly

to rest and sense their surroundings, occasionally perform large reorientation manoeuvres

and infrequently make long direct runs (Figs. 6.2 and 6.4). This leads to an intermittent

search-and-transition strategy more akin to a Lévy walk. Moreover, as steering and simple

turns do not significantly alter the plane formed by the local trajectory, the search areas

exhibit a planar bias. We hypothesised that ϕ-turns are manoeuvres intended to change

the plane of locomotion and our results show that they incur substantial time penalties

(Fig. 6.3).
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We cannot rule out the possibility that planar biases in our data may be emerging from

the use of a strain (N2) that has spent 18 years being cultured on a dish [187]. We made

the assumption that behaviours are unaffected, but the significance of this domestication

cannot be determined without running similar experiments using wild isolates of C. elegans

[213]. Regardless, our results provide the first 3D baseline for the widely used reference

strain.

The exploration model we developed in Sec. 6.5 is derived from many trajectories from

a large number of individuals across a range of environmental conditions (Video 4). The

full variability in the data is not captured by the model, nor are specific behaviours such

as reversals and pirouettes. While inclusion of such behaviours may yield a more represen-

tatively diverse output, the minimal model is computationally tractable and offers useful

insights into the exploration strategies. In particular, under the assumption that turns out

of the plane cost time, we showed that larger volumes are explored when they are used spar-

ingly, thus finding a quasi-planar strategy to be optimal. We showed that on average, for

the 4-25 minute timescales in our experiments, C. elegans achieves this optimal exploration

strategy through its balance of planar and non-planar turns.

7.5 Closing remarks

Previous studies of C. elegans in 2D have been essential in providing practical explanations

of neurophysiological, genomic and connectomic findings, and well-established tools and

protocols exist to ensure high quality reproducibility of results is attainable for most labs.

3D approaches such as ours may offer new insights in many cases, but further research

is necessary to identify areas where benefits outweigh the additional technical challenges

and computational costs. In the meantime, our findings and accompanying dataset offer a

complementary perspective to future 2D locomotion studies and neuromechanical models.
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Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”. In: Annalen der

physik 4 (1905).

[74] John T Emlen. “Flocking behavior in birds”. In: The Auk 69.2 (1952), pp. 160–170.

123



REFERENCES REFERENCES

[75] Barbara I Evans and W John O’Brien. “An analysis of the feeding rate of white

crappie”. In: Contemporary studies on fish feeding: the proceedings of GUTSHOP’84.

Springer, 1986, pp. 299–306.

[76] Christopher Fang-Yen, Matthieu Wyart, Julie Xie, Risa Kawai, Tom Kodger, Sway

Chen, Quan Wen, and Aravinthan DT Samuel. “Biomechanical analysis of gait adap-

tation in the nematode Caenorhabditis elegans”. In: Proceedings of the National

Academy of Sciences 107.47 (2010), pp. 20323–20328.

[77] Olivier Faugeras and Renaud Keriven. Variational principles, surface evolution, PDE’s,

level set methods and the stereo problem. IEEE, 2002.

[78] Olivier Faugeras and Quang-Tuan Luong. The geometry of multiple images: the laws

that govern the formation of multiple images of a scene and some of their applica-

tions. MIT press, 2001.

[79] Marie-Anne Félix and Christian Braendle. “The natural history of Caenorhabditis

elegans”. In: Current biology 20.22 (2010), R965–R969.

[80] Marie-Anne Félix and Fabien Duveau. “Population dynamics and habitat sharing

of natural populations of Caenorhabditis elegans and C. briggsae”. In: BMC biology

10.1 (2012), pp. 1–19.

[81] Alessandro Ferrarini, Giuseppe Giglio, Stefania Caterina Pellegrino, Anna Grazia

Frassanito, and Marco Gustin. “A new methodology for computing birds’ 3D home

ranges”. In: Avian Research 9.1 (2018), pp. 1–6.

[82] Thomas C Ferree and Shawn R Lockery. “Computational rules for chemotaxis in

the nematode C. elegans”. In: Journal of computational neuroscience 6.3 (1999),

pp. 263–277.

[83] Anthony D Fouad, Shelly Teng, Julian R Mark, Alice Liu, Pilar Alvarez-Illera,

Hongfei Ji, Angelica Du, Priya D Bhirgoo, Eli Cornblath, Sihui Asuka Guan, et

al. “Distributed rhythm generators underlie Caenorhabditis elegans forward locomo-

tion”. In: Elife 7 (2018), e29913.
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“Multi-robot searching algorithm using Lévy flight and artificial potential field”. In:

2010 IEEE Safety Security and Rescue Robotics. IEEE. 2010, pp. 1–6.

[217] Nicholas A Swierczek, Andrew C Giles, Catharine H Rankin, and Rex A Kerr.

“High-throughput behavioral analysis in C. elegans”. In: Nature methods 8.7 (2011),

pp. 592–598.

[218] Richard Szeliski. “A multi-view approach to motion and stereo”. In: Proceedings.

1999 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition (Cat. No PR00149). Vol. 1. IEEE. 1999, pp. 157–163.

[219] Balázs Szigeti, Padraig Gleeson, Michael Vella, Sergey Khayrulin, Andrey Palyanov,

Jim Hokanson, Michael Currie, Matteo Cantarelli, Giovanni Idili, and Stephen Lar-

son. “OpenWorm: an open-science approach to modeling Caenorhabditis elegans”.

In: Frontiers in computational neuroscience 8 (2014), p. 137.

[220] Josue Sznitman, Xiaoning Shen, Prashant K Purohit, and Paulo E Arratia. “The ef-

fects of fluid viscosity on the kinematics and material properties of C. elegans swim-

ming at low Reynolds number”. In: Experimental Mechanics 50 (2010), pp. 1303–

1311.

[221] Raphael Sznitman, Manaswi Gupta, Gregory D Hager, Paulo E Arratia, and Josue

Sznitman. “Multi-environment model estimation for motility analysis of Caenorhab-

ditis elegans”. In: PLoS One 5.7 (2010), e11631.

[222] J Tailleur and ME Cates. “Statistical mechanics of interacting run-and-tumble bac-

teria”. In: Physical review letters 100.21 (2008), p. 218103.

[223] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. “Visual SLAM algorithms: A

survey from 2010 to 2016”. In: IPSJ Transactions on Computer Vision and Appli-

cations 9.1 (2017), pp. 1–11.

[224] Jian Tang, Kejun Zhu, Haixiang Guo, Chengzhu Gong, Can Liao, and Shuwen Zhang.

“Using auction-based task allocation scheme for simulation optimization of search

and rescue in disaster relief”. In: Simulation Modelling Practice and Theory 82

(2018), pp. 132–146.

137



REFERENCES REFERENCES

[225] Camillo J Taylor. “Surface reconstruction from feature based stereo”. In: Computer

Vision, IEEE International Conference on. Vol. 2. IEEE Computer Society. 2003,

pp. 184–184.

[226] Bugra Tekin, Isinsu Katircioglu, Mathieu Salzmann, Vincent Lepetit, and Pascal

Fua. “Structured prediction of 3d human pose with deep neural networks”. In: arXiv

preprint arXiv:1605.05180 (2016).

[227] Steven LH Teo, Andre Boustany, Heidi Dewar, Michael JW Stokesbury, Kevin C

Weng, Shana Beemer, Andrew C Seitz, Charles J Farwell, Eric D Prince, and Bar-

bara A Block. “Annual migrations, diving behavior, and thermal biology of Atlantic

bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds”. In: Ma-

rine Biology 151.1 (2007), pp. 1–18.

[228] C The and Richard K Wilson. “How the worm was won: the C. elegans genome

sequencing project”. In: Trends in Genetics 15.2 (1999), pp. 51–58.

[229] Diane Theriault, Zheng Wu, Nickolay I Hristov, Sharon M Swartz, Kenneth S Breuer,

Thomas H Kunz, and Margrit Betke. “Reconstruction and analysis of 3D trajectories

of Brazilian free-tailed bats in flight”. In: 20th Int. Conf. on Pattern Recognition.

2010, pp. 1–4.

[230] Edward C Tolman. “Cognitive maps in rats and men.” In: Psychological review 55.4

(1948), p. 189.

[231] Alexander Toshev and Christian Szegedy. “Deeppose: Human pose estimation via

deep neural networks”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2014, pp. 1653–1660.

[232] Adrien Treuille, Aaron Hertzmann, and Steven M Seitz. “Example-based stereo with

general BRDFs”. In: ECCV (2) 3022 (2004), pp. 457–469.

[233] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.

“Bundle adjustment—a modern synthesis”. In: International workshop on vision

algorithms. Springer. 1999, pp. 298–372.

[234] Roger Tsai. “A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using off-the-shelf TV cameras and lenses”. In: IEEE Journal on

Robotics and Automation 3.4 (1987), pp. 323–344.

[235] George E Uhlenbeck and Leonard S Ornstein. “On the theory of the Brownian mo-

tion”. In: Physical review 36.5 (1930), p. 823.

138



REFERENCES REFERENCES

[236] Pieter Vandromme, François G Schmitt, Sami Souissi, Edward J Buskey, J Rudi

Strickler, Cheng-Han Wu, and Jiang-Shiou Hwang. “Symbolic analysis of plankton

swimming trajectories: case study of Strobilidium sp.(Protista) helical walking under

various food conditions”. In: Zoological Studies 49.3 (2010), pp. 289–303.

[237] Sara Vicente and Lourdes Agapito. “Balloon shapes: Reconstructing and deforming

objects with volume from images”. In: 2013 International Conference on 3D Vision-

3DV 2013. IEEE. 2013, pp. 223–230.

[238] Andrés Vidal-Gadea, Stephen Topper, Layla Young, Ashley Crisp, Leah Kressin,

Erin Elbel, Thomas Maples, Martin Brauner, Karen Erbguth, Abram Axelrod, et al.

“Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine

and serotonin”. In: Proceedings of the National Academy of Sciences 108.42 (2011),

pp. 17504–17509.

[239] Andrés Vidal-Gadea, Kristi Ward, Celia Beron, Navid Ghorashian, Sertan Gokce,

Joshua Russell, Nicholas Truong, Adhishri Parikh, Otilia Gadea, Adela Ben-Yakar,

et al. “Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis

elegans”. In: elife 4 (2015), e07493.

[240] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,

David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
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Appendix A

Appendix

A.1 Tracking and reconstruction

A.1.1 Comparison with previous methods

In Fig. 4.10 we compare the 3D midline reconstruction against previous attempts made

using the same data [167, 192]. To make this comparison we require rendering parameters

that are not present in the results of the previous methods and therefore have to provide

these ourselves. Using the values from our results introduces a bias as they are only optimal

for our midlines, so we re-optimise these values to find the best fit for each midline. The

effects of this re-optimisation significantly improves Yuval’s [167] results but only marginally

improves Salfelder et al .’s [192]. The improvements are shown in Fig. A.1.

A.2 Overview of behaviours

A.2.1 Resting / Sensing – 1 % results

In Sec. 5.3 we present statistics on the activity observed during detected pauses. We note

that, using the parameters described in Sec. 5.3 we do not detect any pauses at 1 % gelatin

and hypothesise some possible reasons. As discussed there, by relaxing the pause conditions

from a maximum speed of 0.02 mm s−1 to 0.05 mm s−1 we can detect 12 pause events at 1 %.

These results are shown in Fig. A.2.
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A. APPENDIX A.2 Overview of behaviours

Figure A.1: Effect of optimising renderer parameters on the pixel losses of previous at-
tempts. Here we compare the losses obtained when using our renderer parameters for
Yuval’s Worm-Tracker 3D (WT3D) [167] and Salfelder et al .’s ‘reconst’ [192] midlines vs.
the losses obtained from re-optimising the renderer parameters to better suit their midlines.
Our method (MF) is shown for reference. We show moving averages over 25 frames (∼ 1 s).

Figure A.2: Pause durations and activity levels at 1 %. As per the method described in
Sec. 5.3, pause events are obtained for 1 % trials by relaxing the maximum speed requirement
from 0.02 mm s−1 to 0.05 mm s−1.
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A. APPENDIX A.3 Trajectories and exploration

Figure A.3: The relative contributions from the eigenworms change with the concentration
of the gelatin environment. This figure extends Fig. 5.6 to include two additional results at
2.75 % and one at 4 %.

A.2.2 Gait modulation – full results

In Sec. 5.4.3 we discuss how the contributions from the eigenworms vary with the environ-

ment. There we caveat the results by highlighting the lack of data above 2 % and omit two

of the concentrations from Fig. 5.6. In Fig. A.3 this plot is repeated with all available data

points included.

A.3 Trajectories and exploration

A.3.1 Optimal exploration

In Sec. 6.6 we investigate the optimality of the exploration trajectories by adjusting param-

eters in our particle explorer model (Sec. 6.5). We propose three methods for approximating

the volume explored (Sec. 6.6.1), and present the results for the first of these in the main

text in Fig. 6.7. For clarity of presentation we omit the standard deviations from those plots

and show only the means. Plots including the standard deviations are shown in Fig. A.4.

In Fig. A.5 we show results for the remaining two volume approximation methods (cuboids

and voxels). All three methods are in close agreement on the optimal locations.
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Figure A.4: Optimal exploration strategies including standard deviations. As per Fig. 6.7,
the exploration volume (Vs) is approximated using the spherical slice method (Sec. 6.6.1)
taking averages over 1000 simulations. These plots extend Fig. 6.7 by including shaded
regions showing ±1 std. The standard deviations are large, but follow the same trends.
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Figure A.5: Optimal exploration strategies using different volume approximation methods.
The volume explored is approximated using the cuboid method ((a, b), Sec. 6.6.1) or using
the voxel method ((c, d), Sec. 6.6.1). As in Fig. 6.7, we sweep over a range of variance values
(σφ) and calculate the volume explored, highlighting that the largest volumes explored (red
circles) correspond closely to the value of σφ that we find from modelling of the experimental
data (0.3, orange dashed lines). For (a) and (b) the volume is estimated as a cuboid with
dimensions corresponding to the maximum distance travelled along each of the principal
axes. For (c) and (d) we count the number of unique voxels of size 0.5 mm3 visited by the
trajectory. In all cases the optima are located in similar positions. Each data point is an
average of 1000 simulations.
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A.4 Supplementary videos

A.4.1 Trajectories

In “Video 1: Examples of foraging trajectories.mp4” we show five examples of long foraging

trajectories from 1 % to 4 % gelatin concentration. Reconstructed worms are shown moving

along the trajectories. The effects of changing concentration can be seen in the different

gaits used by the worms.

A.4.2 Locomotion gaits

In “Video 2: Locomotion gaits.mp4” we show examples of the different locomotion gaits ob-

served in the data. We start with 3D crawling; planar dorso-ventral undulations combining

with twisting and rolling to generate 3D trajectories, both forwards and backwards. Then

we show examples of the three coiling gait variations – clockwise, counter-clockwise and in-

finity – that are more prevalent in low gelatin concentrations, highlighting both the highly

helical head-point trajectories that are formed and the remarkably straight centre-of-mass

trajectories that result.

A.4.3 Manoeuvres

In “Video 3: Manoeuvres.mp4” we show examples of simple and complex turns. We high-

light the different incoming, manoeuvre and outgoing sections to emphasise the volumetric

aspects of the reorientations. Simple turns are more frequently observed in low gelatin

concentrations, but we also include an example of a simple turn at 3 %. They often come

in small clusters of turns that allow more significant changes in direction (see also Fig. 5.8).

Next we show some complex turns, that (by definition) include a reversal, and demonstrate

how the reversal section typically plays a large part in the complete reorientation (as per

Fig. 5.10). These examples offer further justification for our use of ϕ in the new classification

of these manoeuvres as ϕ-turns.

A.4.4 Three-state particle explorer

In “Video 4: Three-state particle explorer.mp4” we begin by describing the workings of our

run-and-tumble based exploration model presented in Sec. 6.5. Next we show an example

of the raw simulated trajectory output and then what this example looks like after adding

noise and smoothing to make it appear more realistic. Using the model we can explore
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the balance between fast-planar and slow-volumetric exploration strategies. This trade-

off is illustrated next as we show the volumes explored by simulated particles using three

different strategies. The fast-planar strategy achieves the largest radius from the starting

point, the slow-volumetric strategy achieves the greatest height from the starting point, but

the intermediate quasi-planar strategy explores the largest volume.

A.4.5 Initial frame optimisation

In “Video 5: Initial frame optimisation.mp4” we show the reconstruction optimisation process

converging on a range of different initial frames. The effects of adjusting some of the

parameters listed in Tables 4.4 and 4.5 on the solution are demonstrated. We show the

optimisation process using paired examples. The same frame and randomised initial guess

are used for each pair and the optimisation is run for a fixed 2000 steps. The frames

are selected to demonstrate a range of challenging conditions – especially for achieving

convergence from a random guess. The first of each pair shows successful optimisation

using parameter values in the ranges specified in Tables 4.4 and 4.5. The second shows the

effect that changing one of the parameters has on the converged solution.

A.4.6 More-successful reconstructions

In “Video 6: More-successful reconstructions.mp4” we showcase some successful reconstruc-

tion examples. First, in some easy cases when the worm is well resolved in all three views.

Next, when there is interference from dirt or bubbles and/or poor focus in one or more

views. Lastly, through complex coiling manoeuvres that include significant self-occlusion.

A.4.7 Less-successful reconstructions

The limitations of our reconstruction method are illustrated in “Video 7: Less-successful

reconstructions.mp4”. These examples, taken from otherwise successful reconstructions,

demonstrate that when significant loss of focus is combined with highly coiled and heavily

occluded postures the reconstruction can fail. The exact degree of failure is difficult to

ascertain for the exact same reasons and only by watching the full sequences can we be

convinced that the reconstruction is incorrect.

148


	Introduction
	Contributions
	Thesis outline

	Background
	Search problems and optimality
	Local search algorithms
	Animal search and random walks
	Intermittent searches
	3D search

	C. elegans as a behavioural model
	Ecology
	Locomotion
	Search and navigation
	Computational models

	Shape reconstruction and tracking
	3D techniques
	Pose estimation
	C. elegans in 2D
	C. elegans in 3D


	Experimental setup
	Overview
	3D imaging setup
	Experimental protocols
	Camera calibration
	Video preparation
	Selection bias and confinement

	3D tracking and reconstruction
	Overview
	Pinhole camera model
	Shift-adjustments
	Camera triplet model

	Triangulation
	Tracking
	Geometric model
	The Bishop frame
	Constructing the curve

	Project, Render, Score
	Project
	Render
	Score

	Optimisation
	Results
	Validation
	Comparison with previous methods
	Ablation study
	Rendering parameters
	Supplementary videos

	Discussion

	Overview of behaviours
	Overview
	Methods
	Non-planarity
	Helicity
	Complex PCA

	Resting / Sensing
	Gaits
	Eigenworms
	Shape space dynamics
	Gait modulation

	Manoeuvres and turns
	Simple turns
	Complex turns
	Pirouettes

	Discussion

	Trajectories and exploration
	Overview
	Methods
	Displacement
	Non-planarity
	Run-and-tumble approximations

	Hierarchy of timescales
	Summary of trajectories
	Particle explorer model
	Three-state model
	Fitting the model

	Optimality
	Volume estimation
	Results


	Discussion
	3D reconstruction
	Dataset
	Behaviours
	Optimal exploration
	Closing remarks

	References
	Appendix
	Tracking and reconstruction
	Comparison with previous methods

	Overview of behaviours
	Resting / Sensing – 1 % results
	Gait modulation – full results

	Trajectories and exploration
	Optimal exploration

	Supplementary videos
	Trajectories
	Locomotion gaits
	Manoeuvres
	Three-state particle explorer
	Initial frame optimisation
	More-successful reconstructions
	Less-successful reconstructions



