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Abstract

Multi-agent reinforcement learning is a machine learning technique that involves
multiple agents attempting to solve sequential decision-making problems. This learn-
ing is driven by objectives and failures modelled as positive numerical rewards and
negative numerical punishments, respectively. These multi-agent systems explore
shared environments in order to find the highest cumulative reward for the sequential
decision-making problem. Multi-agent reinforcement learning within autonomous
systems has become a prominent research area with many examples of success and
potential applications. However, the safety-critical nature of many of these potential
applications is currently underexplored—and under-supported. Reinforcement learn-
ing, being a stochastic process, is unpredictable, meaning there are no assurances that
these systems will not harm themselves, other expensive equipment, or humans. This
thesis introduces Assured Multi-Agent Reinforcement Learning (AMARL) to mitigate
these issues. This approach constrains the actions of learning systems during and
after a learning process. Unlike previous multi-agent reinforcement learning methods,
AMARL synthesises constraints through the formal verification of abstracted multi-
agent Markov decision processes that model the environment’s functional and safety
aspects. Learned policies guided by these constraints are guaranteed to satisfy strict
functional and safety requirements and are Pareto-optimal with respect to a set of op-
timisation objectives. Two AMARL extensions are also introduced in the thesis. Firstly,
the thesis presents a Partial Policy Reuse method that allows the use of previously
learned knowledge to reduce AMARL learning time significantly when initial models
are inaccurate. Secondly, an Adaptive Constraints method is introduced to enable
agents to adapt to environmental changes by constraining their learning through a
procedure that follows the styling of monitoring, analysis, planning, and execution
during runtime. AMARL and its extensions are evaluated within three case studies
from different navigation-based domains and shown to produce policies that meet
strict safety and functional requirements.
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Chapter 1

Introduction

Autonomous systems have become widely invested in, with consistent advances from

worldwide research communities, showcasing developments in autonomous land,

aerial, and marine-based systems, as well as different variants of robotic systems,

from robotic manipulation to human-robot interaction. Many of the proposed uses

of these autonomous systems find multiple autonomous agents (an agent being an

artificial decision-maker) working together towards a shared goal. Such uses include

teams of mobile robots reducing patient discomfort in hospitals, promoting safe travel

behaviours between autonomous cars, aiding in search and rescue attempts, and

providing assistance to soldiers and non-combatants in combat zones, amongst many

other examples [63, 66, 74, 102, 118, 119]. However, while these systems are utilised

to complete tasks in which they must reason and make decisions, they are also often

limited by problem-based constraints such as time or hardware limitations. Further-

more, these systems often utilise learning-based artificial intelligence (AI) techniques

due to their complex use circumstances. A system utilising AI learning techniques is

generally described as a system that can learn rational behaviours, developing optimal

behavioural strategies (policies) when given knowledge of a problem through suitable

inputs [126].

Learning techniques are often utilised in single-agent and multi-agent systems

due to the complex problems and environments in which these systems are expected

to work. The reason behind their frequent use can be found primarily in the design of

these systems. Learning techniques allow rational behaviours to be obtained without

the need for hard-coded behaviours and designed functions that are often imprac-

tical for the designer to achieve due to the complexities behind these systems [126].
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CHAPTER 1. INTRODUCTION

Learning techniques can also find the optimal sequence of behaviours subject to

stakeholder-specified criteria, with a sequence of behaviours being a set of actions

available to an agent over time. By making use of learning techniques, optimal sys-

tem behaviours can be obtained with incomplete prior knowledge of the problem or

environment.

These learning techniques, commonly deep reinforcement learning algorithms

or traditional reinforcement learning algorithms such as Q-Learning, have been ap-

plied to and highly researched in regards to autonomous vehicles [18], game AI [131],

robotics for security and defence [58], robotics in medical applications [140], and

other scenarios where robotics can be used to remove humans from potential harm.

However, despite the potential of such learning techniques, there is a significant

challenge in using them in real-world practical scenarios. This challenge is found

in promoting trust in these systems by demonstrating that they can reliably behave

safely during and after learning, avoiding adverse outcomes [46], explainable AI, a

branch of research that attempts to allow machine learning to explain and justify its

choices are an example of how trust is becoming a large concern with AI [89, 100]. The

main issues arise due to the difficulties involved in expressing safety constraints as

optimisation objectives, which are both strict enough to guide behaviour away from

adverse outcomes and sufficiently relaxed to facilitate behaviours required for mission

success. Single-agent safe reinforcement learning is an ongoing research area with

many open problems, though promising approaches have been proposed and inves-

tigated [46, 55]. Despite advancements in single-agent safe reinforcement learning,

multi-agent safe reinforcement learning is fast-growing yet relatively underdeveloped,

with many areas requiring further investigation.

In response to these areas worthy of investigation, this thesis explores how re-

cent advancements in single-agent safe reinforcement learning can be adapted and

applied to multi-agent safe reinforcement learning to allow multiple agents to work

collaboratively in shared environments, flexibly producing efficient behaviours and

solutions while adhering to strict safety requirements.
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1.1. MOTIVATIONS OF SAFE REINFORCEMENT LEARNING

1.1 Motivations of Safe Reinforcement Learning

AI-based learning, collectively known as machine learning, has been researched for

several decades, with various forms of learning techniques being developed [136, 148].

This thesis focuses on a branch of machine learning techniques known as reinforce-

ment learning [126], and more specifically, reinforcement learning involving multiple

agents, known as multi-agent reinforcement learning (MARL) [99, 145].

Reinforcement learning [126] is an optimisation technique that consists of, as a

minimum, an agent, an environment, and a goal. Reinforcement learning will use

an agent to interact repeatedly with an environment by making decisions (taking

actions) within the said environment. The agent will receive feedback on the utility

of its decisions regarding the completion of its goal. With reinforcement learning

derived from aspects of behavioural psychology, this feedback will be in the form of

a reward or punishment, depending on whether the decision made is beneficial or

detrimental to the agent. The agent retains knowledge of this feedback and then uses

it to influence its future selection of actions. A reinforcement learning agent aims to

obtain the largest cumulative reward possible and minimise cumulative punishment,

i.e., to find the best possible sequence of actions to reach its goal. The methods in

which these sequences of actions are found comprise a mixture of randomly selecting

actions to discover more efficient options and choosing the actions with the highest

amount of cumulative reward, with the agent being less inclined to choose random

actions over time [16].

There are several decades of research focusing on the benefits and advancement of

reinforcement learning and MARL, with both being widely implemented into games

[133] and mobile robotics [62], amongst other examples [99]. There is practical po-

tential for reinforcement learning and MARL, particularly with the advancements of

deep reinforcement learning making use of neural networks, which greatly extends the

practicality of reinforcement learning and explains the consistent growth of interest

in this branch of machine learning [101].

However, there are also key challenges that prevent the wide adoption of both

reinforcement learning and MARL in real-world settings. These challenges are par-

ticularly prevalent in mission-critical and safety-critical scenarios, where the safety

of humans, sensitive equipment, or the agents themselves are as important or more

3



CHAPTER 1. INTRODUCTION

important than the completion of goals [23, 46]. Within these scenarios, there will be

safety requirements that the agent must meet to be deemed reliably ‘safe’. However,

even if an agent meets safety requirements, unpredictable behaviours can make these

systems difficult to trust, further limiting their use [130].

In order to overcome these safety and trust issues in systems utilising reinforce-

ment learning, a relatively novel branch of research has emerged, known as safe

reinforcement learning [46, 55]. Safe reinforcement learning has multiple proposed

directions for working with various systems and environments, though many of the

current solutions lack formal assurances of safety and functional requirements being

met [46]. Recently, the foundations of reinforcement learning, which utilises quantita-

tive verification to assure that these safety and functional requirements will be met,

have introduced a level of trust and have shown promise for future development [87].

Safe MARL is an even more recent addition to machine learning research and,

as such, lacks the same level of development as safe reinforcement learning [55].

However, it shows potential to draw from the firmer foundations of safe reinforce-

ment learning as it advances. As such, this thesis hypothesises that the limitations

found in safe reinforcement learning that have recently been mitigated through for-

mal verification techniques can also be mitigated within safe MARL. Specifically, by

using quantitative verification [72], it can be assured that the behaviours of multiple

reinforcement-learning agents working within a shared environment will meet strict

safety requirements. Furthermore, it can also be assured in parallel that functional

requirements will also be met. These assurances will allow autonomous systems of

varying agent sizes and physical capabilities to employ learning techniques while also

supplying the system stakeholders with confidence that safety and mission require-

ments will be met.

1.2 Thesis Contributions

This thesis introduces and details a two-stage, plugin-styled approach for safe MARL,

introducing safety and performance assurances in the form of high-level quantita-

tively verified constraints. This approach is named Assured Multi-Agent Reinforce-

ment Learning (AMARL). AMARL is introduced in Chapter 4, and is designed to be

used with a broad range of tools, techniques, systems, and environments, allowing

4
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a standardised, flexible approach to safe MARL, which is limited in current research.

Furthermore, AMARL offers a degree of trustworthiness in the stochastic autonomous

learning systems that it is utilised on, either by providing formal proof of safety and

functional requirements being met—or by showing that the desired requirements

cannot be met and therefore indicating that the system should not be deployed.

The main contributions of the work supplied within this thesis are as follows:

• The AMARL approach is described with details and examples of how a multi-

agent problem can be abstracted to create a high-level model and how safety

and functional requirements can be specified for the said model. The thesis

introduces methods that use these high-level models to synthesise safe abstract

policies and leverage these safe abstract policies to constrain low-level actions.

• An extension to AMARL, named AMARL-Partial Policy Reuse (AMARL-PPR).

AMARL-PPR allows the retrieval and reuse of partial policies that would other-

wise not be useable due to previously utilised assured constraints that no longer

hold. This offline-based extension reduces the learning time of future learning

runs within similar domains by exploiting this previously learned knowledge.

• A two-stage extension to AMARL that is named AMARL-Adaptive Constraints

(AMARL-AC). AMARL-AC detects high-level inaccuracies or changes within

an environment compared to the abstracted Markov decision process created

from the environment and then revises this abstracted model based on the

ground truth, allowing new safe constraints to be produced while the learning

continues.

• A new algorithm that takes as input a multi-dimensional matrix containing

abstracted information about an MDP and outputs an abstract model of an

environment encompassing multiple agents for navigation problems. A quanti-

tative verification tool with a simplified input system can analyse this abstract

model. This algorithm reduces the knowledge and experience needed to work

with quantitative verification tools.

• An extensive evaluation of AMARL and its extensions, and three new case studies

to aid in this evaluation. This evaluation showcases the benefits of a plugin-
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styled approach in favour of the longevity of AMARL’s relevance. The experi-

ments presented in the thesis show AMARL being utilised in varying environ-

ments, differing system sizes, using learning algorithms from the main cate-

gories of MARL techniques, and with systems comprising both homogeneous

and heterogeneous capabilities. Three case studies were developed to aid in

this evaluation focusing on navigation-based problems, which are prevalent in

reinforcement learning and MARL research. The first of these case study focuses

on radiation avoidance in a ROS-based nuclear power plant patrolling simu-

lator [110]. The second is a more detailed simulator focused on an infiltration

problem in the Unity games engine and utilises the MARL plugin MLAgents [67].

This highly detailed simulator is increasingly used within the MARL research

community. The third is a grid-based world built within the Unity games engine

for navigation tasks, based on a previous safe reinforcement learning domain

[87].

1.3 Thesis Structure

The remainder of the thesis is structured as follows.

Chapter 2 introduces the key components that underpin the AMARL approach.

Firstly, Markov decision processes (MDPs), which represent the foundation of rein-

forcement learning processes, are introduced. Secondly, the concepts of reinforcement

learning and MARL are established. Thirdly, quantitative verification and the tools

which allow formal guarantees to be established are explored. Lastly, abstract Markov

decision processes (AMDP), which allow high-level details of a problem environment

to be analysed without the complexity of a full MDP, are introduced.

Chapter 3 offers an overview of related works in safe reinforcement learning,

which underpin critical works in safe MARL. These works are categorised into meth-

ods that modify the exploration behaviours and methods that guide the optimisation

behaviours of learning agents and facilitate comparisons with AMARL and its exten-

sions.

Chapter 4 introduces our Assured Multi-Agent Reinforcement Learning, a multi-

stage plugin-styled approach for safe multi-agent reinforcement learning using quan-

titatively verified constraints.

6
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Chapter 5 introduces Assured Multi-Agent Reinforcement Learning with Partial

Policy Reuse. This extension identifies similarities between domains and allows the

partially learned knowledge to be reused in a new learning run.

Chapter 6 introduces Assured Multi-Agent Reinforcement Learning with Adaptable

Constraints. This two-stage AMARL extension allows the automated re-constraint of

agents during run time when the MARL system identifies inconsistencies between the

AMDP and the problem domain.

Chapter 7 summarises the contributions of this thesis and the limitations of its

contributions and proposes directions for future research development within the

thesis.
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Chapter 2

Background of Foundational Concepts

This chapter describes the key components underlying AMARL and its extensions,

AMARL-PPR and AMARL-AC. These descriptions are necessary to facilitate a compre-

hensive understanding of the remaining contents of the thesis. Section 2.1 contains

an introduction to Markov decision processes; these processes form the basis of rein-

forcement learning and multi-agent reinforcement learning techniques. Section 2.2

introduces abstracted Markov Decision Processes, a higher-level form of the Markov

decision process used for efficient quantitative verification of their properties. Section

2.3 details the core elements of introductory reinforcement learning, which under-

pin multi-agent reinforcement learning. Section 2.4 contains the fundamentals of

multi-agent reinforcement learning, which facilitates efficient problem-solving in

distributed systems. Finally, 2.5 introduces quantitative verification, an established

technique that assures safety and functionality through formal mathematical proofs.

These fundamentals underpin the rest of the work within the thesis. Section 2.6 con-

tains a summary of the key information detailed in this chapter.

2.1 Markov Decision Processes

The use of Markov decision processes (MDP) [44] is a fundamental method in rep-

resenting a sequential decision-making problem, such as the ones which are often

solved using a form of reinforcement learning. As such, MDPs are utilised in chapters

4, 5, and 6, within the AMARL approach and its extensions.
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Figure 2.1: Transition Graph example of an MDP for a recycling robot system. Adapted
from [109].

A Markov decision process, otherwise known as a controlled Markov chain, is a

mathematical formalisation for describing and capturing information about systems

that contain stochastic processes. MDPs capture a set of states that describe the po-

tential situations an agent could be within, actions that allow the agent to transition

between states and a reward associated with taking said action within a state. Further-

more, with MDPs being utilised for stochastic processes, the probabilities of reaching

a state s′ when taking action a in the initial state s and receiving a set reward r by

doing so are also described.

The purpose of the MDP is to solve sequential decision problems under uncer-

tainty. So the performance of an agent’s controller within the MDP must be evaluated

to guide the agent’s controller to more efficient behaviours. An evaluation can be

achieved by observing the reward obtained by the agent whilst navigating through the

MDP. This reward signals how effective or ineffective an action is towards meeting an

objective, with ineffective actions being given negative rewards, otherwise known as

punishments. Therefore, the MDP is solved once a controller is obtained, allowing

behaviour that receives the greatest possible positive reward. This behaviour, which

involves actions taken in each state over time, is known collectively as a policy.

To help illustrate the MDP framework, Figure 2.1 is presented, which shows the

transition graph of a recycling robot that searches for and collects empty bottles. The
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system has two states, represented by white circles, which relate to the remaining

battery that the robot has, which can either be high or low. When the robot’s battery is

in the state named High, it has two actions: go searching for bottles, or wait for people

to bring them to it. When the robot’s battery is in the state named Low, it has three

actions: search for bottles, wait for bottles, or recharge at a recharging station. These

actions are shown by small black circles that protrude from their relative states.

This graph includes a transition function, the probability of an action leading to

the next state, and the robot’s expected reward for reaching it. For example, suppose

the robot is in a low battery state and decides to search for more bottles. In that case, it

has a probability of 0.9 of returning to the low battery state and receiving the expected

reward from finding bottles. However, there is a probability of 0.1 that the robot will

deplete its battery entirely and must be rescued and taken to a recharging station. This

transition gives the agent a reward of negative three, as the robot being rescued is far

from an optimal outcome.

The following definition of an MDP is adopted [111].

Definition 2.1 (Markov Decision Process).

A Markov decision process is formally described as a tuple (S, A,T,R) where,

• S is a finite set of states.

• A is a finite set of actions.

• T : S × A×S → [0,1] is a state transition function, where for all s, s′ ∈ S with any

available action a ∈ A in state s, T (s, a, s′) gives the probability of action a in

state s resulting in a transition to state s′.

• R : S × A×S →R is a reward function where R(s, a, s′) = r is the reward received

from transition from state s to state s′ after taking action a.

The Markovian principle [52] is the governing law that underpins all Markov chains

and MDPs. The principle states that all Markovian processes are memoryless, meaning

that an action a chosen in-state s, which causes the transition to state s′, is chosen

with no regard to what occurred in previous states. The governing law is shown in

Equation 2.1, where f (s, s′) is the probability of the next state being s′ given the current

11
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state s, where t represents the unit of time. When comparing Equation 2.1 to a non-

Markovian governing rule Equation 2.2, it is visible that the Markovian governing rule

lacks any reference to states other than s and s′.

Pr ob{S(t +1) = s′|S(t ) = s} = f (s, s′) (2.1)

Pr ob{S(t +1) = s′|S(t ) = s,S(t −1) = st−1} = f (s, st−1, s′) (2.2)

A policy, being the control mechanism that directs the agent within the MDP, is

an n-tuple where each element corresponds to an action that should be selected in

a specific state. For example, denoting a policy as π, the i th element of π, being π(i ),

is the action that would be selected in the i th state when following policy π. There

are two forms of policy, deterministic and stochastic; throughout this thesis, the word

“policy” will refer to a deterministic policy. A deterministic policy assigns only one

action for each state which must be chosen as directed by an action-selection policy

defined as π : S → A; these actions will not change over time.

An optimal policy, denoted as π∗, is called optimal as it results in the highest

possible cumulative reward. This means that the choices made in all states will be the

most beneficial to reaching the system’s objectives.

Solving an MDP, which entails finding a policy that returns the highest possible

cumulative reward, is achieved using value functions [44]. A value function returns

the utility of state s when considering the future states at st+1 that can be accessed

from a followed policy and continuing in this fashion. In contrast, a reward function

returns the immediate utility/reward of transitioning to a state without recognising

future states.

A state value function enables a perceived utility to be assigned to an agent transi-

tioning to a state based on the expected cumulative reward when following a policy

such that V π : S →R. A policy and a relevant performance criterion are two compo-

nents of a value function. The performance criterion is used to search for policies

that return the optimal sequence of immediate rewards and allow the formation of a

value function. Depending on the criteria selected, the value function will be shaped

accordingly; the finite criterion can be used in an episodic scenario, also known as a

finite horizon problem.

12
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E [r0 + r1 + r2 + ...+ rN−1|s0] (2.3)

This enables all rewards rn at each time step to be obtained according to a policy

π starting at an initial state s0. However, a discount criterion is often used when faced

with a large state space that may or may not be infinite, otherwise known as an infinite

horizon problem.

E [γr0 +γ1r1 +γ2r2 + ...+γi ri |s0] (2.4)

Here a discount factor γ, which is γ ∈ [0,1], is used to emphasise rewards obtained

from states that are transitioned to in later time steps. With γ degrading over each time

step, the transitions taken earlier will be perceived to be more valuable than those in

later time steps; this is due to the general principle that rewards that are more readily

accessible are more important in the immediate situation than those further away

in time. A smaller discount value will associate more value with immediate rewards,

while a larger discount value will value distant rewards more. With a discount value of

1, Criterion 2.4 reduces down to Criterion 2.3

Value functions can also be incorporated with a criterion, such as the finite crite-

rion in Equation 2.5 and the discounted criterion in Equation 2.6. Where V π(s) is the

utility of policy π from state s, and rt+i is the reward obtained at time step t + i .

V π(s) =
∞∑

i=0
rt+1|st = s (2.5)

V π(s) =
∞∑

i=0
γi rt+1|st = s (2.6)

Similar to state value functions are state-action value functions, otherwise known

as Q-functions. These differ from state value functions by determining the utility value

of taking action a in-state s while following a policy; this value is commonly known as

a Q-Value and is as follows Qπ : S × A →R. Q-functions can be utilised within infinite

horizon problems as shown in Equation 2.7, and infinite horizon problems shown in

Equation 2.8.

Qπ(s, a) =
∞∑

i=0
rt+1|st = s, at = a (2.7)
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Qπ(s, a) =
∞∑

i=0
γi rt+1|st = s, at = a (2.8)

With value functions, it is possible to use dynamic programming algorithms [125]

to solve MDPs in which all dynamics are fully known. Where the dynamics of the

reward functions or transition functions are unknown or partially unknown, reinforce-

ment learning algorithms [126] can be used to learn these dynamics and solve the

partially unknown MDP gradually.

2.2 Abstract Markov Decision Process

In modelling the sequential decision-making problems using MDPs, the considera-

tion of all the possible states that a system may encounter is required. For complex

environments in which there are many combinatorial effects, the number of states

grows exponentially. This leads to problems of scaling computational effort. In order

to tackle this problem, it is common to use abstraction to remove layers of complexity

and reduce the size of the state space. By abstracting the MDP, it is possible to retain

important information while making the model easier to work with. The outcome

of this abstraction process is known as an abstract MDP (AMDP) and is used within

chapters 4, 5, and 6.

At a foundational level, many learning and planning algorithms use MDPs; while

this use is widely accepted, it leads to severe limitations of use in terms of larger, com-

plex, real-world problems [77]. This limitation is brought from a well-known problem

known as the state-space explosion problem [34]; this occurs when the introduction

of larger environments and problems causes exponential growth of the state-space, to

which MDPs are prone. This state-space explosion problem makes working with MDPs

very challenging, especially with tools that use exhaustive processes, such as quanti-

tative verification [34], making these tools impractically computationally expensive.

Lastly, to use quantitative verification on an MDP, full knowledge of the MDP must

be held. This requirement is often not feasible, as shown by techniques used to solve

MDPs with unknown properties, such as reinforcement learning being developed.

In order to subvert these issues, abstract MDPs (AMDP) are commonly used in

safety engineering [51, 77]. An AMDP is an MDP that has been reduced in size through
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Figure 2.2: Ground Environment and Abstracted Environment of Two Rooms.

a chosen state aggregation method, of which there are many [77]. This state aggrega-

tion and what are known as options [127], which are high-level closed-loop policies of

actions over time, allows for significantly reduced state spaces and the construction

of MDPs with limited knowledge. State-aggregation and options allow greater state-

space reduction due to the abstraction of multiple actions into a simple definition.

For example, Figure 2.2 shows a ground view of an environment with two rooms and

an abstracted view of this same environment. If an agent must travel from Room A

to Room B, in the ground view, the MDP must consider each transition in each state

which will consist of moving North, South, and potentially moving East or West. While

in the abstracted view, this can be refined to one transition, which could be defined as

A transitionTo B.

Definition 2.2. Abstract Markov Decision Process

An AMDP is formally defined as a tuple < S, A,T ,R > where,

• S = s(S),

• A = a(A),

• T (s, a, s
′
) =∑

s∈s ws
∑

s′∈s
′ T (s, a, s

′
),

• R(s, a) =∑
s∈s ws |R(s, a),

With s(S) being an abstraction function of the state space defined by S, and ws

being a weight of state s which is associated with the frequency of this state in the

abstracted state [84].

AMDPs remain relevant when considering reinforcement learning and multi-agent

systems and have been used for these exact purposes [127]. Regarding this thesis,
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AMDPs are utilised to facilitate efficient quantitative verification of models in chapters

4, 5, and 6.

2.3 Reinforcement Learning

Reinforcement learning [126] is a sub-area of machine learning used to find optimal so-

lutions for MDPs when the reward and transition functions are unknown. Researchers

have focused on reinforcement learning for decades, with multiple forms of reinforce-

ment learning being devised and ending with a plethora of learning algorithms, policy

convergence optimisation techniques, and agent exploration techniques. For simplic-

ity and clarity, the rest of this section will only focus on what has become the standard

description of reinforcement learning and the most significant learning method in the

development of reinforcement learning for AI agents, known as temporal difference

learning. A comprehensive view of the primary reinforcement learning methods can

be viewed in recently updated sources [4, 126].

There are two main components when discussing reinforcement learning, and

these combine to make what is known as an agent-environment interface. First, an

agent is a learner and decision-maker in the scenario, and an agent can take many

forms. A mobile robot or a non-player character in a video game are two clear ex-

amples. The environment generally refers to everything outside of the agent; what

constitutes outside of an agent depends on the scenario. However, the environment

can commonly contain the rooms or surroundings through which an agent has to

transition and the physical components of an agent, such as motors and sensors. The

agent-environment interface continuously interacts throughout the learning process,

with the agent making decisions and performing actions within the environment

and the environment responding to these actions and presenting new situations to

said, agent. In terms of an MDP, the agent, when in an initial state, will have action

choices that correspond to the transitions present in said state. As the agent transi-

tions, governed by transition probabilities, the environment will present a state to the

agent. As a state is presented to the agent, a reward or punishment is given from the

environment depending on the state’s perceived value. These rewards are numerical,

and the agent attempts to maximise these rewards over time.

As the agent moves around the MDP, the reward received from performing action
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Algorithm 1 ε-greedy action selection [126]

1: n ← random uniform number between 0 and 1;
2: if n < ε then
3: A ← random action from the action space;
4: else
5: A ← maxQ(s, .);
6: end if
7: return selected action A;

a in state s is stored as Q-values in a tabular structure known as a Q-table. Q-tables

allow reward values to be accessed and manipulated with the use of state action pairs

Q(s, a). The way in which the agent chooses to move around the MDP is known as

an action selection policy, which directs which actions will be selected in a state. The

action selection policy can take many forms; the most commonly introduced is known

as the ε-greedy approach. The pseudo-code depicting this can be seen in Algorithm 1.

The ε-greedy approach has two outcomes in terms of action selection behaviour, the

first involving taking the action which will result in the highest reward (greedy) and the

second involving taking random actions irrespective of reward. The frequency with

which these two outcomes happen depends on the value of ε, which is between 0 and

1. Action selection policies are ways of answering one of the foundational problems in

reinforcement learning, this problem being known as the exploration/exploitation

problem. As a learning agent makes decisions within the environment, it can exploit

the knowledge of the environment it already has to take what is currently the most

efficient action (exploitation) or take actions that are less known or unexplored to gain

more information about the environment, potentially finding more efficient options

(exploration).

In episodic reinforcement learning, which the rest of this thesis is concerned

with, there is a clear start, and end position to a problem and one instance of the

problem is called a learning episode. In episodic learning, the agent’s goal is to reach a

terminal state, which means the problem has been solved. As the agent explores and

updates its Q-values, these updates will correspond to how much the action benefits

the agent in reaching this terminal state. When this terminal state has been reached,
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Figure 2.3: Reinforcement Learning Agent-Environment Interface. Adapted from [126].

the environment and the agent are reset to the initial settings. This start-stop episodic

setting is ideal for reinforcement learning because the learning process requires repeat

interaction with states and actions to find an optimal/near-optimal solution. Due

to this recurring nature of reinforcement learning and related time requirements,

it is common for learning to be halted at a predefined episode number. It can take

thousands of learning runs to find solutions to relatively simple problems. Therefore

sub-optimal solutions are often declared as efficient enough to halt learning in efforts

to reduce time-based costs.

Temporal Difference update algorithms are one of the most common forms of

update algorithms. These algorithms utilise Monte-Carlo sampling and combine this

with the Bellman equation to update Q-values each time an action is taken within a

state, allowing knowledge to be gained throughout the state space. Arguably the most

well-known temporal difference algorithm is the Q-learning algorithm [138].

2.3.1 Q-learning

Q-learning is an off-policy temporal difference learning algorithm meaning it deviates

from the current policy it possesses to find more efficient actions. Q-learning utilises

the ε-greedy approach to make these decisions regarding exploration and exploitation,

with the ε value degrading steadily over the episodes until it reaches 0, in which case

the decisions are entirely greedy. It utilises a Q-table and updates this table based

on the difference between the current value of a state-action pair and the maximum
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Algorithm 2 Q-learning update algorithm. [126, 138]

1: for each episode do
2: Initialise state s
3: while s is not terminal do
4: Select action a for state s using action selection policy
5: Perform a and observe reward r and new state st+1

6: Q(st , at ) ←Q(st , at )+α[R+γmaxa Q(st+1, a)−Q(st , at )]
7: s ← st+1

8: end while
9: end for

expected reward from the potential future state. The values in the Q-table are updated

with each transition through the MDP that the agent makes depending on the selected

state-action pair. The Q-values are updated using the Q-learning update function,

which can be seen in Equation 2.9. Where Q(st , at ) is the Q-value of the state-action

pair at time t, α ∈ [0,1] is a learning rate and discounts the learning process to avoid

shortsightedness in value updates, γ ∈ [0,1] discounts the importance of the future

expected reward in comparison to the immediate reward of making a state transition,

and rt+1 is the immediate reward from moving to state s′ from state s using action a.

Q(st , at ) ←Q(st , at )+α[rt+1 +γmax
a

Q(st+1, a)−Q(st , at )] (2.9)

The Q-learning algorithm, depicted in Algorithm 2, showcases how this update

takes place at every transition that occurs within the MDP and, as proven theoretically,

with infinite time and a decaying learning rate, will converge to an optimal policy.

2.3.2 Deep Q-Learning

As the complexity of environments increases and the process of creating appropri-

ate state-space models becomes unpractical for traditional reinforcement learning

techniques, it has become commonplace to employ deep reinforcement learning

techniques, a combination of traditional reinforcement learning and artificial neural

networks [80].
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Figure 2.4: Information Processing within an Individual Neuron. Adapted from [19].

Neural networks are inspired by the interconnection of neurons in a biological

brain and consist of many simple computational units connected into layered struc-

tures to provide complex mappings of inputs to outputs. These simple computational

units are called artificial neurons, transforming one or more inputs into a single out-

put value. A single process that takes place within a neuron can be seen in Figure 2.4,

where the inputs are a vector of xn values, which are then multiplied by a weight,

such as wi which adjusts the strength of the inputs. These adjusted input values are

summed together and passed to an activation function. An activation function is

utilised to determine what future neurons are inactivated, partly activated, or fully

activated. It does this by converting, for example, the input values to a value between

0 and 1. With 0 being a signal not to activate, 1 being a signal to activate as strongly

as possible, and varying values of strength in between. The signal gained from the

activation function can then be passed out of the neuron to either another neuron

or as a final output. There are several forms of activation function, each with their

own strengths, weaknesses, and preferred usage, with a neural networks prediction

accuracy being determined by the activation function chosen, such as binary step

functions, Sigmoid functions, and softmax functions [122].

The general structure of a neural network, as seen in Figure 2.5, where each node
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Figure 2.5: Neural Network [19].

contains the process described above, consists of three types of nodes. Input nodes

are nodes that take in the raw input and send an activation signal to the hidden nodes,

hidden nodes take in the signal from the input layer and pass their output to either

another hidden node or the output node, and the output node takes the output of

the last hidden node as input and produces a prediction based on the input data.

The signals sent from nodes to other nodes are adjusted based on the importance of

this transition in the network, which is determined by the value of the corresponding

weights, originally arbitrarily set.

The process of training a neural network is an iterative cycle of forward propagation

and backward propagation. First, a set of input variables are passed into the network,

allowing the network to produce a prediction based on the initial values of the weights;

this is known as forward propagation. The amount of error between the network’s

prediction and the expected result is determined using this measurement. Next, the

weights are adjusted to minimise errors by proceeding backwards through the network.

This process is known as backward propagation. After the weights have been adjusted,

the process is repeated until the network makes reliably accurate predictions.

While it is possible to use traditional reinforcement learning techniques in complex

environments, it can be challenging to incorporate them efficiently. For example, Q-
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Learning requires Q-tables with values for each state and action pairing, which can

become numerous in complex environments. Neural networks, on the other hand,

do not require such a cumbersome data structure. With such a benefit of neural

networks being established, it is clear to see the advantages of combining neural

networks with Q-learning, known as Deep Q-learning [60]. In the Deep Q-learning

function, an approximation is used to estimate the optimal Q-values; this differs

from standard Q-learning and its value iteration method. Deep Q-learning consists

of a neural network with multiple hidden layers; the inputs to the neural network

are the states that an agent is in, and the outputs will be the predicted Q-values of

each action that’s available in said state. Two neural networks are required for deep

Q-learning to converge: a training network and a target network. The training network

functions as a normal neural network does, adjusting its weights after each iteration.

A target network, however, is only updated every n iteration. The reason for this delay

is to bring stability to the learning process, the error of the predictions made by the

training network is compared to the values of the target network, and the weights are

updated based on this error. The target network is updated with the same weights

as the training network, but the delay in updating negates the effect of randomness

on the network. The final feature of Deep Q-learning is using a batch-replay buffer,

which stores data from previous encounters that can be drawn for training; training

the network on a batch of experiences can identify patterns and avoid overfitting to a

specific experience.

The way in which target values are formulated is through the temporal difference

update function seen in Equation 2.10; where rt is the value of the state transitioned

to, and Q(st+1, a) is received by feeding the current state into the target network.

Target(s, a) = rt +γmax
a

Q(st+1,a) (2.10)

The use of deep learning, such as deep Q-learning, has allowed reinforcement

learning to be used highly efficiently to solve complex problems where traditional

reinforcement learning would be impractical or even impossible. One such problem

in which traditional reinforcement learning can be used in simple environments but

suffers from the extreme state-space explosion are problems which involve multiple

agents operating within the same environment, either cooperatively or competitively.
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Reinforcement learning is a core component of this thesis and can be seen through-

out. In order to evaluate AMARL and its extensions, forms of Q-learning are utilised in

chapters 4, 5, and 6, and neural networks are employed in chapters 4 and 6.

2.4 Multi-Agent Reinforcement Learning

A multi-agent system (MAS) [139] is known as a collection of autonomous agents

that operate in a shared environment, with the ability to make observations of the

environment and take actions that influence said environment. While it is possible

to preprogram behaviour for these agents, they often must learn behaviours accus-

tomed to the complex and sometimes changing environments they inhabit. This is

achieved using multi-agent reinforcement learning (MARL) [24]. The benefits of MARL

are paramount due to its distributed nature allowing it to succeed in a myriad of

problems with many tasks that need to be completed concurrently and with increased

robustness. Also, the potential applications of MARL are sizeable, with many real-

world problems being able to be framed as multi-agent problems, which would be too

complex to preprogram.

Due to the diversity of use of MAS and MARL, key features have been distinguished

to identify different kinds of MAS problems [145]. The first feature identifies the rela-

tionship of the MAS, whether the system is purely cooperative and working towards a

shared goal, purely competitive with conflicting goals, or whether the system contains

a mixture of cooperative and competitive goals. The remainder of the work in this

thesis is focused solely on cooperative systems, and as such, any mention of a MAS or

MARL system should be identified as cooperative. The second feature identifies the

similarity and unity between agents’ functions and abilities, with homogeneous sys-

tems containing identical agents and heterogeneous containing one or more agents

with different functions or abilities. This thesis contains work with both homogeneous

and heterogeneous systems and will state when each is being utilised. The third feature

identifies how task distributions are handled within the system, one of these being

centralised, where a single agent makes decisions for all agents in the system, and

decentralised, where each agent is responsible for its own task assignment, as well

as many other variants of these two methods. This thesis uses decentralised systems

in terms of task assignment, but in all cases where communication is needed, it is
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assumed that communication is reliable.

Similarly to single-agent reinforcement learning, MARL is used to solve sequential

decision-making problems but with two or more agents. In these multi-agent sequen-

tial decision-making problems, the current system state and the current system’s

rewards are directly influenced by the actions of all other agents within the system.

One of the simplest ways to view a multi-agent sequential decision-making problem is

to have each agent ignore the presence of all other agents and simply view the agent’s

interactions as part of the system, meaning the agent only makes observations of its

own received rewards. Here the multiple agents interacting with the environment

make the problem non-Moravian from the single agent’s point of view. In this setting,

there are no formal proofs of converging to an optimal set of agent policies [128],

though practically independent learners are thought to be more applicable in a board

sense and have shown to learn effective behaviours [88]. Due to these non-stationary

issues in independent learning, frameworks have been created to allow MARL to take

place with theoretical proof of convergence. One such framework which facilitates

cooperation is known as a Markov/stochastic game [79].

Definition 2.3.

2.4.1 Markov Games

A Markov game captures the interactions of multiple agents and allows the obser-

vation of all agent rewards at each time step in the system. These games have been

investigated for decades, with several algorithms developed for MARL within Markov

Games [145]. A Markov game has a similar relationship dynamic with the system as an

MDP, as seen in Figure 2.6, where an agent performs an action within a system and is

then presented with a new state and a reward for the transition. However, in a Markov

game, all actions from each agent are used to determine what new state is presented

to the agents. As each state within the stochastic system requires actions to be selected

from each agent, every state transition within a stochastic system results in a new

Markov game being presented to the agents. The agents then play this game and are

presented with a new system state depending on the agents’ actions. This process

is commonly known as repeated games, as the games are played repeatedly as the

agents change the state of the system, though the games played change depending on
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Figure 2.6: Description of the System-Agent Relationship of an MDP and a Markov
Game. Adapted from [145].

this state. One goal of the agents within a Markov game is to maximise their expected

reward from taking action in the Markov game. In a collaborative game, agents aim

to find a Nash-equilibrium [137], where no player has any incentive to change their

chosen action, meaning no agent can receive more reward given the actions other

agents have taken. Another goal is to find a Pareto-optimal [28] set of actions where

no agent can improve its expected reward without decreasing the reward of another

agent within the game. These two goals determine the efficiency and completeness of

which a game has been solved.

When formally defining a Markov game [22], it is defined as a tuple < S, N , A,T,R >
where

• S is a finite set of states,

• N is a finite set of n players/agents,

• A = A1 × ...× An , where Ai is a finite set of actions available to player i ,

• T : S × A×S → [0,1] is the transition function where p(q, a, q̂) is the probability

of transitioning from state q to state q̂ after joint action a and,

• R = r1...rn : S × A →R is a reward function for player i .

Varying methods of MARL are utilised throughout this thesis. Chapters 4, 5, and 6

show a multi-agent system utilising independent learning agents. While in chapter 4 a
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multi-agent system that uses a learning technique that utilises Markov games can be

found.

2.5 Quantitative Verification

Due to probability impacting all real-world problems and systems, methods of analysing

the stochasticity within these systems have been developed. One such method for

stochastic model checking is known as quantitative verification [72]. However, due to

the problems that this thesis addresses being of a stochastic nature, the discussion of

model-checking techniques will be limited to stochastic model checking, also known

as probabilistic model checking. Quantitative verification is a core component of

AMARL and its extensions and, as such, features heavily in chapters 4, 5, and 6.

Quantitative verification is a formal verification technique used to verify a mathe-

matical model that captures the behaviours of systems in the form of Markov chains,

MDPS, and Markov games. This formal verification technique aims to verify a mathe-

matical model’s correctness, reliability, optimality, safety, and other non-functional

properties. Some quantitative properties include the probability of the system reach-

ing a terminal state, the cost of performing a behaviour within the system, and how

much time would be required for this behaviour to be completed. These properties

are formally defined using probabilistic temporal logic and, along with an automated

model checker, can efficiently be used to analyse the model of the system.

Quantitative verification uses exhaustive analysis of the model’s state space; while

this can be a computationally expensive process, it guarantees that the verification

results will be accurate. Due to the non-determinism of MDPs, the quantitative ver-

ification must resolve this by generating policies through the MDP, also known as

adversaries [43], which allows the MDP to be analysed due to the degree of reachabil-

ity each adversary has, meaning if all adversaries reach a state, then it has a probability

of 1 of occurring, while if only half of the adversaries reach this state, it will have a

probability of 0.5 of occurring. Quantitative verification has been used in a wide range

of problem areas and to a high degree of effectiveness, including unmanned vehicles

[50], cloud infrastructure [27], and in single-agent safe reinforcement learning [87].
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2.5.1 Probabilistic Computation Tree Logic

As described, quantitative properties are described using probabilistic temporal logic,

which allows complex properties to be described, such as ‘the probability that a system

will reach the goal state must be at least 0.90’ or ‘what is the total cost of proceeding to

the goal state’. In order to verify quantitative properties, probabilistic computation

tree logic was developed (PCTL) [43], which is an extension of computation tree logic

(CTL) [33].

Part of PCTL and CTL success is in the intuitiveness of its use, building from

temporal logic operators [34], which allow differing properties to be analysed. Two

operators that focus on the paths within a computation tree are the A operator, which

will allow us to determine if a property holds along all paths within the computation

tree, and the E operator, which will allow us to determine if a property holds along

some of the paths within the tree. However, there are also operators which allow us

to determine if certain properties hold within the states along the paths of the tree.

For example, the X operator (next time) allows us to determine if a property holds

within the second stage of the path. The F operator (future) will allow us to determine

if a property will hold at some state in the path, the G operator (global) allows us

to determine if a property holds over all states on a path, and U (until) allows us to

determine if a property holds until a state on a path given that another property holds

on all subsequent states in said path. In addition, PCTL adds a third path operator, the

P operator (probabilistic), which allows us to determine the probability of the system

evolution occurring in a specific way. Finally, PCTL also allows using the R operator

(reward) to analyse the rewards in an MDP and how they develop through a path.

As can be seen, there are two distinct forms of operators, those detailing the path

within the tree and those detailing the states on those paths. These relate to the

formulas, which can be seen below in the PCTL syntax.

Definition 2.4. PCTL syntax.

The syntax of PCTL is as follows, where Φ is a state formulae, and φ is a path

formulae:
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Φ ::= true | a ∈ AP |Φ∧Φ |¬Φ | P ./p (φ)

φ ::= X Φ |Φ∪≤k Φ |Φ∪Φ

Where AP is a set of statements that are either true or false in each state of the MDP,

known as an atomic proposition, ./ ∈ {<,≤,≥,>}, p i n [0,1], k ∈N, and the reward

state formulae which allows the use of the R operator, is defined as:

φ ::= R./r [I=k ] | R./r [C≤k ] | R./r [FΦ]

Where r ∈R≥0, I is the instantaneous reward which is the expected reward at step

k under the constraints of ./r , C is the cumulative reward which is the expected

cumulative reward until step k when following path ω under the constraints of ./r ,

and F is the expected cumulative reward before reaching a state that satisfiesΦ, which

is also under the constraints of ./r . PCTL also have the following semantics adapted

from [86].

Definition 2.5. PCTL Semantics.

The semantics are defined using the operator |=, which is a relational satisfaction

operator. For example, if M is a Markov model and state s satisfies the formula Φ then

M , s |=Φ is equal to true. With this, we can define the satisfaction relations as shown.

M , s |= tr ue for all s ∈ S

M , s |= a iff a ∈ L(s)

M , s |= ¬φ iff M , s 6|=φ
M , s |=φ1 ∧φ2 iff M , s |=φ1, and M , s |=φ2

M , s |=φ1 ∨φ2 iff M , s |=φ1, or M , s |=φ2

M , s |=φ1 →φ2 iff M , s |=φ2, whenever M , s |=φ1

Each state is given a set of satisfied atomic propositions through the labelling

function L(s). Also, when defining PCTL operator semantics, the above notation holds

with the addition of ω ∈ Path(s) representing the infinite state paths.
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M , s |= Aφ iff ω |= for all ω ∈ Path(s)

M , s |= Eφ iff ω |= for some ω ∈ Path(s)

M , s |= P./p [φ] iff Prs{ω ∈ Path(s)|ω |=φ}./ p

M ,ω |= XΦ iff ω(1) |=Φ
M ,ω |= FΦ iff ∃k ≥ 0 such that ω(k) |=Φ
M ,ω |= GΦ iff ∀i ≥ 0 such that ω(i ) |=Φ
M ,Φ1 U Φ2 iff ∃k ≥ 0 such that ω(k) |=Φ2 and ∀i < K .ω(i ) |=Φ1

Here the probability ofφ being satisfied is denoted by Prs , withω(i andk) denoting

a state within path ω.

Using the grammar that PCTL facilitates, it is possible to define properties and

verify that constraints hold through a model by translating natural language require-

ments into PCTL statements. Examples of PCTL statements with their corresponding

natural language form can be seen in table 2.1.

Table 2.1: PCTL Statements of Natural Language Properties

Natural language Description PCTL Statement

Probability that more than 5 errors occur is less than

0.1

P<0.1 [ F Errors > 5]

What is the expected cumulative amount of battery

used in a mobile system?

R=? [ C ]

The maximum probability that more than ten mes-

sages have been lost by time T

Pmax=? [ F<=T Lost > 10 ]

2.5.2 Probabilistic Model Checkers

Due to the complexity of models, it is not possible to utilise manual analysis, and

simulation-based model checking struggles with stochastic and non-deterministic

models due to the possibility that some computational paths may never be explored

and assessed [12]. Therefore, it is necessary to make use of model-checking tools

that are capable of analysing stochastic models. Probabilistic model checkers, also
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known as stochastic model checkers, have been developed to analyse differing stochas-

tic model types and show proficiency under differing scenarios. Furthermore, such

model checkers efficiently perform these analysis processes and allow the validity of

properties to be formally assured.

Though many model checkers exist and comparisons between these models have

been made [3, 65], only two known probabilistic model checkers are relevant to the

work presented in this thesis, and this is due to the forms of stochastic models that

these tools are capable of analysing, in particular MDPs. PRISM and Storm are the two

model checkers known to analyse MDPs and be widely used.

• PRISM [73], which stands for probabilistic symbolic model-checker, is a tool

developed jointly by the University of Birmingham and Oxford University as

a flexible tool for analysing different stochastic models. Namely discrete-time

Markov chains, continuous-time Markov chains, MDPs, probabilistic automata,

probabilistic timed automata, partially observable MDPS, and partially observ-

able probabilistic timed automata. PRISM supports several engines which allow

stochastic models to be analysed in various ways. Such as the faster sparse en-

gine and the more memory-efficient hybrid engine. Though it also supports

multiple forms of temporal logic, including LTL, CSL, and PCTL. Lastly, PRISM is

accessed from a graphical user interface and the command line. It allows models

to be described using the PRISM language, which is introduced further within

this chapter.

• Storm [36] is a modular model checker developed at RWTH Aachen University

to easily allow extensions. Like PRISM, Storm uses numerical and symbolic

computations, though unlike PRISM is not capable of supporting discrete event

simulation, otherwise known as statistical model checking. However, it can

analyse discrete-time Markov chains, continuous-time Markov chains, MDPs,

and Markov automata and supports two forms of temporal logic, CSL and PCTL.

Storm can be accessed using a C++ and Python API through the command line

and allows models to be built in the PRISM language and the JANI specification.

When comparing these two tools, it is possible to reflect on the results of the ninth

model checking contest, which took place in 2019 [57]. This competition’s results saw
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PRISM and Storm outperforming each other in certain elements. For example, PRISM

could perform a faster analysis of the test models when running both tools in their

default configurations. However, Storm outperformed PRISM when both tools were

configured for specific tasks. This outcome shows that the older PRISM model checker,

especially when used by less experienced users, remains relevant in the presence of

the modern Storm model checker.

Both Storm and PRISM are reasonable tools to be used for the work presented

within this thesis, with PRISM being the primary tool chosen due to the efficiency

of its analysis when using its default configurations and also the greater number

of analysis techniques and stochastic models that are accepted. This flexibility and

default efficiency lends well to the broad nature of the intended use of the work

presented in this thesis.

Storm and PRISM can take input models described using the PRISM modelling

languages, a simple state-based language. A model within the PRISM language consists

of two primary components. These are modules and variables. A module is a collection

of local variables, and the values of these local variables constitute the current state

of the parent module. A model can contain multiple modules that can interact with

each other, and the local state of all modules constitutes the model’s state. In order to

change the state of the model, the modules within the model must contain commands

which are defined within the modules. A command takes the form:

[acti on] g uar d −> pr ob_1 : upd ate_1 + ... + pr ob_n : upd ate_n ;

Where the action label [acti on] allows transition rewards to be defined and to aid

in module synchronisation, the g uar d consists of behaviour restriction where the

module’s state must correspond to the guard specified for the command to be executed.

pr ob_1 until pr ob_n are probabilities that sum to 1 and specify the probability of

what part the command is executed; if pr ob_1 is met, then upd ate_1 will be executed.

An example of a stochastic model described using the PRISM language can be seen

in Listing 2.1, which shows a simple queue where a customer is either waiting to be

served, being served, successfully been served, or failed to be served due to an error

and the customer must return to waiting. The only reward structure in this system is
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to do with customer experience; where a customer is failed to be served will produce

a punishment.

1 mpd
2

3 module customer_queue
4 s : [0..3] init 0;
5 [waiting] s=0 -> (s’=1);
6 [being_serving] s=1 -> 0.5 : (s’=2) + 0.5 : (s’=3);
7 [service_failed] s=2 -> (s’=0);
8 [served_succeeded] s=3 -> (s’=3);
9 endmodule

10

11 rewards "customer_experience_cost"
12 [service_failed] true : 1
13 endrewards

Listing 2.1: PRISM Language: Customer Queue Example

In line one, the model type is declared, in this case, an MDP. Next, lines 3 and 9

declare the beginning and end of a module named customer _queue, which describes

the customer’s current state and defines four commands, all guarded based on the

state where the customer resides. These lines update the customers’ current state, with

the terminal state being 7. Finally, lines 11 and 13 declare the start and end of a reward

structure with an optional name that allows the reward structure to be selected within

the PCTL statement. For example, when the command ser vi ce_ f ai led is executed,

the corresponding command in the reward structure will execute.

With this model, where the aim is to determine the maximum cost of customer

experience which could occur, we can define this using the PCTL property below.

R{"customer _exper i ence_cost"}max =? [F s=3]

Quantitative verification, including PCTL and probabilistic model checkers, stands

as a defining characteristic of the AMARL approach and, as such, is discussed in

chapters 4, 5, and 6.
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2.6 Summary

This chapter has introduced the concepts of Markov decision processes (MDPs),

abstract Markov decision processes (AMDPs), reinforcement learning, multi-agent

reinforcement learning (MARL), and quantitative verification. These concepts form

the foundations of the thesis and, as such, the development of assured MARL and its

extension for problems that require adaptability. These foundational techniques and

technologies are summarised as follows:

• MDPs are used to model sequential decision-making processes and capture

their stochasticity. An MDP contains states, actions, transitions, and rewards,

forming a description of the problem. To solve an MDP is to find a state-action

pair for every state which returns the maximum possible expected reward. These

collections of state-action pairs are known as a policy, and the policy that returns

the maximum possible expected return is the optimal policy.

• AMDPs is an MDP whose size and complexity have been significantly reduced

through state aggregation. This grouping of states allows actions to be repre-

sented as high-level options, such as move from room A to room B, rather than

looking at low-level state transitions. This simplification of the MDP makes

analysing them more efficient.

• Reinforcement Learning is a machine learning technique used to solve MDPs

when the reward and transition functions are unknown. Reinforcement learning

is utilised in an autonomous agent, which explores an environment to learn

about its dynamics and exploits the knowledge it has learned. By utilising tem-

poral difference learning algorithms, the agent can learn which actions will

promote further reward as it explores the MDP.

• MARL is the natural progression from reinforcement learning and allows mul-

tiple agents in a common environment to learn to accomplish goals. MARL

can be accomplished through multiple techniques, the simplest being applying

individual reinforcement learning techniques to each agent and having them

learn independently. Another is to model the system using the Markov game
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framework, which allows agents to make decisions that take into account the

decisions of other agents.

• Quantitative Verification is a formal verification technique that uses exhaus-

tive analysis with proven mathematical formulas to verify properties within

stochastic systems. By modelling the stochastic system as an MDP and specify-

ing properties as Probabilistic Computation Tree Logic (PCTL), it is possible to

guarantee whether such properties hold.
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Related Work on Safe Reinforcement Learning

This chapter begins with a definition of both safety and risk to frame the use of these

terms throughout the rest of the thesis. These definitions are followed by a discussion

of other significant safe MARL approaches that have emerged from strains of research,

including the benefits of their application, limitations, and how they compare to the

AMARL approach we present in this thesis. Finally, this chapter aims to give a broad

overview of safe MARL techniques that will help place AMARL within the surrounding

research.

3.1 Defining Safety and Risk

Safety is a widely used term in the literature and can be used to convey different

meanings dependent on the target problem in reinforcement learning. Safe MARL also

has many definitions that are typically assigned on an ad-hoc basis. We align our work

with previous reinforcement learning research that utilises formal methods to produce

safe policies. In this thesis, we define safety such that under certain circumstances, an

undesirable event will never occur [15]. In the context of robotic systems, undesirable

events would be the robotic system and sensitive equipment sustaining damage or

humans being allowed to come to harm.

Risk is defined within Risk-Management as the possibility of events that lead to

adverse events occurring [21]. Risk is also often quantified by its outcome’s cost or

impact; In this thesis and other safety-critical works [86], the cost of an adverse effect

will be mission failure. In this work, we consider the risk high when it corresponds
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to an agent within the system taking one or more unsafe actions that have a high

probability of incurring mission failure. Conversely, low risk corresponds to a low

probability of mission failure with a system that may take unsafe actions of low impact

sparingly.

A safe MARL system within safety-critical and mission-critical scenarios is there-

fore defined as a system that minimises risk while still completing mission objectives

to an acceptable degree by meeting certain criteria [46, 86]. Such criteria could be

reaching a set number of goals while keeping the probability of a robotic agent suc-

cumbing to damage below a certain amount.

3.2 Safe Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL), as with single-agent reinforcement learn-

ing, has two components which play an important role in their learning processes.

The first of these components is the exploration strategy which is used to explore all

of the states in the environment. The second component is the optimisation strategy

used to ensure the agents reach their mission goals efficiently. Previous works in safe

reinforcement learning [46] have used these components to categorise safe reinforce-

ment learning research into two distinct categories: safe exploration techniques; and

safe optimisation techniques. Because of the novelty of safe MARL and the direct rela-

tionship between much of safe MARLs techniques with safe reinforcement learning

techniques, this section is organised using these two categories.

Each of the two components highlighted above has distinct ways in which they can

lead to potentially hazardous actions and unsafe behaviours. Exploration strategies,

such as the ε-greedy strategy [126], sporadically assign random actions to agents during

the learning process to find actions with higher utility in under-explored regions of the

state space. When using reinforcement learning methods in a safety-critical scenario,

where certain actions will lead to potential risk, random action selection strategies

can see agents taking actions that should never be taken or repeatedly taking actions

that should be used sparingly. In contrast, optimisation strategies are focused towards

maximising cumulative rewards with little concern for the side effects of this focus. As

such, the system will actively enter states with varying degrees of risk, possibly multiple

areas of risk, with no regard for possible adverse outcomes. While some approaches
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attempt to incorporate safety requirements into the rewards that the system receives

[46], the safety requirements are likely to negatively impact the system’s efficiency in

reaching its goal or to be ineffective. This impact can make it difficult, if not infeasible,

to capture multiple conflicting objectives in a reward structure.

Traditional strategies of exploration and optimisation in MARL and reinforcement

learning are ill-equipped to deal with safety concerns [46], and multiple safety ap-

proaches have been formulated. An overview of these approaches can be seen in

Figure 3.1 and described in the remainder of this section.

3.2.1 Exploration

In traditional reinforcement learning and MARL, the learning process begins with

limited or no prior knowledge of the environment and is allowed to explore and

gather information from all possible states. However, this lack of prior knowledge

can lead to learners entering unsafe states without knowing that these states are

unsafe. Therefore, to attempt to mitigate these problems, multiple methods, which are

described below, have been created to either drive learners away from unsafe states

over time or introduce knowledge to avoid unsafe states more consistently. In this

section, we present a number of existing approaches to this problem.

3.2.1.1 External Knowledge

External knowledge is any information that is used to aid the MARL system complete

its goal in a safe way prior to any learning [46]. This information could be in the form

of demonstrations, constraints, and so on. External knowledge is very commonly

required within safe reinforcement learning and safe MARL. While the most common

kind of External Knowledge is Prior Knowledge, other forms of external knowledge

can also lead to safe exploration, including Backup Policies, Teacher Advice, Cautious

Simulation and Safe Demonstration.

Prior Knowledge, of some kind, is needed for all of the safety methods shown in

Figure 3.1. Many of these methods require us to define the relationship between states,

actions and safety before the learning proceeds. A number of methods also require us

to define the severity of states and actions with respect to safety properties. As such,
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Figure 3.1: Types of Model-based Safe MARL Approaches.

exploration within safe reinforcement learning environments is likely to require prior

knowledge of some kind [46].

Back-up Policies are used to verify if actions taken by the agent with a particular

state have the potential to lead to unsafe states. If this is the case, we provide an ‘escape

action’ or ‘backup action’ that the agent near this unsafe state can use to return to

a safe state. The original backup policy algorithm has been discussed in previous

works [59, 83, 123]. The Safety Handling Exploration with Risk Perception (SHERPA)
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algorithm utilises a risk perception function to evaluate every possible action the

agent may take against some safety threshold, known as a filter. If an agent attempts

to take an action which will potentially lead to an unsafe action, then an alternative

safe action will be chosen. However, if the action will lead to a safe state, then the

algorithm begins to search for a safe backup action for this future state. If all actions

in the future state are evaluated, and there are no safe states to store as a backup, then

this future state is not transitioned to, and the current state backup action is used.

An accurate perception function and a filter that meets safety requirements guar-

antee that no unsafe states will be visited as any risks will be detected and mitigated.

However, these guarantees only hold under certain conditions. Firstly there is an

assumption that for the backup policy method, all unsafe states are able to be both

perceivable and identified accurately by this risk perception function which may be

non-trivial. Furthermore, depending on the selected safety threshold, the method

may be overly cautious, leading to sub-optimal policies, most notably by disallowing

actions that lead to states without a backup action. Finally, it can not be guaranteed

that taking actions without a backup action will lead to an unsafe state, but, in fact, it

could potentially lead to a highly functional state.

The backup policy method can only be used in scenarios in which risk is per-

ceivable and in scenarios that do not require strict probabilistic safety or functional

requirements.

Teacher Advice is a method that involves a ‘teacher’ providing a reinforcement

learner with knowledge as it explores the domain space [35]. This advice allows tra-

ditional reinforcement learning to take place, with the learner being advised how

to behave when confronted with safety concerns. There are two main techniques

proposed to incorporate a teacher into the reinforcement learning process: the agent

asking the teacher for advice [45], and the teacher providing advice when it feels it

is necessary to do so [113]. Teacher advice allows reinforcement learners to explore

safely in several ways, either by the teacher supplying a safe set of states within which

the agent’s behaviour can be optimised or by having suggested actions when the

learner moves too close to an unsafe state.

Using teacher advice does not supply safety guarantees but lowers the likelihood

of agents entering unsafe states. One can not provide guarantees because the teacher’s

advice is based on potentially flawed teacher knowledge. When this knowledge is
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inaccurate, there is potential for learners to be given bad advice [46]. This issue is

exasperated further due to the question of when advice should be given or when

advice should be requested, potentially leading to a lack of advice. As well as the above

limitations, if teacher advice is given without request, then this must be driven by

a monitoring process which must remain before and after learning, which may be

impractical computationally.

Furthermore, optimality can be significantly reduced depending on how strict and

accurate the teacher’s advice is, and the flexibility of teacher advice is reliant on the

existence of a known prior safe solution. Even with these limitations, teacher advice

has been utilised on MARL systems in several scenarios [38].

Cautious Simulation is a method which involves the use of accurate physics

simulations and a set of safe example behaviours for a domain within which a domain

expert provides guarantees that a leaner will never explore unsafe states [105, 107].

By using these physics simulators to represent the problem domain, states within

the simulation can be identified as safe or unsafe based on the output of multiple

simulations that run over a set of safe example behaviours. These simulations can

create a safety function to label states in the problem domain as safe or unsafe. In

addition, a domain expert may add or amend appropriate labels. Reinforcement

learning can then be allowed to optimise within the set of states which have been

labelled as safe. Unsafe states cannot be labelled as safe given a sufficiently accurate

physics simulation and cautious state classification. The role of the domain expert is

then to identify any safe states labelled as unsafe by the cautious classification and

alter these appropriately.

However, the issue with cautious simulation is that the safety function can be

overly cautious, labelling safe states as unsafe, and there is no way of guaranteeing

that the domain expert will identify and alter all of these correctly. Therefore, due

to safety limitations and overly cautious classification, reinforcement learning can

become inefficient, meaning that we can not be guaranteed to produce an optimal

solution. Furthermore, producing a sufficiently accurate simulation for open-world

environments is non-trivial and the safety function will only be as accurate as the set

of simulations employed.

Safe Demonstration is a technique that allows reinforcement learners to develop

behaviours, which are often complex, based on demonstrations [1, 142]. This method
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has been demonstrated using video footage of a human actor illustrating how to

accomplish tasks. These demonstrations can be used not only to define the models’

dynamics but also as a reward function that will allow reinforcement learners to

optimise their behaviour based on these demonstrations. The main limitations of

these methods are that the reinforcement learner is limited in how well it can perform

by the quality of the human demonstrator from which it defines its reward function.

Furthermore, it may not be possible for the demonstration to cover all potential

states, and if the reinforcement learner encounters states not addressed within the

demonstrations, then the reinforcement learner will not have behaviour to copy. This

can potentially lead to unsafe behaviour [46], and hence we are not able to guarantee

safety. Finally, the safe demonstration method is limited to scenarios where a safe

solution is known prior to learning, as the demonstration must be supplied in advance.

It has, however, but has been utilised on MARL systems [98].

Risk-Directed Exploration is a method similar to the constrained criterion intro-

duced later in this chapter, as it utilises a risk metric to determine if a state should

be visited. The key difference between the constrained criterion and risk-directed

exploration is that risk-directed exploration only drives behaviour towards safer states;

it is not a hard constraint [46]. An example of a risk metric is to take the weighted sum

of the stochasticity of the action outcomes of a state-action pair and combine this

with the normalised expected reward from said state-action pair [76]. Taking these

two aspects of the risk metric makes it possible to produce a risk-adjusted utility of

a state action pair. The reinforcement learner can then learn to optimise using this

risk-adjusted utility. This utility will push learners to produce behaviours that visit

states with high functionality and low risk.

Due to the behaviour of Risk-Directed Exploration, no guarantees can be made

on safety since the risk metrics used in this method are not constraints but incen-

tives. Therefore, it is still possible for unsafe states to be visited more frequently than

necessary and since this method has to learn these incentives, in the initial learning

stages, unsafe states will likely be visited sporadically [46]. Also, depending on the

selected metric, the risk metric can cause functionality to suffer significantly due to

the selection of what is deemed acceptable. Lastly, this approach is unsuitable for

scenarios requiring strict probabilistic safety and functional requirements due to the

limitations mentioned.
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3.2.2 Optimisation

Issues with the optimisation process within MARL arise due to the traditional re-

inforcement learning process being focused only on optimising non-contradicting

functional objectives. This narrow focus is, however, incompatible with safe reinforce-

ment learning when safety features become the primary concern. In an attempt to

address this, multiple methods have been developed that attempt to mitigate this

limitation for practical, safe reinforcement learning and safe MARL. In this section,

we highlight a number of commonly used methods.

3.2.2.1 Model-free and Control Theory Setting based Learning Methods

A large portion of safe reinforcement learning and safe MARL research is focused on

methods that tackle model-free learning problems that do not use transition proba-

bility distributions associated with Markov decision processes. Model-free methods

have been derived for control-theoretic settings. With regard to the work presented

in this thesis, the most notable use of these methods is for the safe navigation of

aerial and land-based autonomous teams. However, most methods based on control

theory are not naturally paired with settings involving constrained MDPs, which are

a core principle for this thesis. For this reason, we do not discuss control theoretic

methods in detail here. A more in-depth description of control theory-based methods,

model-free safe reinforcement learning, and safe MARL, can be found in the following

survey papers [61, 81]. The methods outlined in these surveys are typically broken

up into four categories, which are: Trust-region-optimisation [20, 71, 78, 90]; Control-

Barriers [26, 29, 30, 85]; Gaussian processes [17, 25, 41, 134]; and Lyapunov functions

[30, 32, 108, 146].

3.2.2.2 Value-Based Methods

Value-based methods attempt to promote safe behaviours by incorporating risk avoid-

ance into the value functions of the reinforcement learning agents while promoting

functional behaviour. The key methods included within this area are reward-shaping,

worst-case criterion, and risk-sensitive methods.

Reward-Shaping Methods, attempt to balance rewards for potentially conflicting

objectives, and it’s use has been shown in both safe reinforcement learning [37, 94, 129]
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and safe MARL [39]. Reward-shaping is typically used to aid learning agents in accom-

plishing functional goals by altering the rewards received based on the utility of agents’

actions and utilising prior knowledge of unsafe states. Shaping a reward function for

functional objectives is still required in the realm of safe reinforcement learning and

safe MARL because there is an added conflicting goal of avoiding risky scenarios. While

this is a natural extension for safe reinforcement learning, it involves a lengthy trial and

error process to find a balanced reward structure that guides behaviour towards goals

while avoiding risks. In some cases, creating a reward structure that guides behaviour

in the desired directions may not be feasible, and, as such, it becomes difficult or even

impossible to provide safety guarantees. As well as this time-expensive trial and error

limitation, there is a need to have explicit knowledge of which states are unsafe and

such information may not be easily obtained. The limitations of reward-shaping have

led to the development of further methods, introduced in this section, which move

away from answering the question of how rewards can be changed to promote safety.

Worst-Case Criterion involves encoding the worst-case value of an action as the

utility of a state-action pair and has been utilised in safe reinforcement learning [124,

141], and safe MARL [144]. This encoding of the worst-case value is counterproductive

when using the standard exploitation action selection method found in Q-learning

since exploiting this knowledge will result in the learner choosing actions associated

with the worst possible outcome. However, if the MinMax [47] exploitation method

is selected, then the selected actions will have the least harmful possible outcome,

given correct prior knowledge. This action selection behaviour has been described

as pessimistic behaviour selection, meaning that it acts as if anything that can go

wrong will go wrong [46], and this behaviour potentially results in a low variance in

obtained rewards. With a low variance in obtained reward, it can then be expected

that risky scenarios will be less likely to be visited and become part of the final policy,

allowing the learner to meet set safety requirements. However, since this criterion is

likely overly pessimistic, it results in poor functionality. Lastly, this method attempts

to capture safety properties within rewards, much like reward shaping and shares the

same limitations.

Risk-Sensitive Criterion, attempts to lower the variance in expected rewards by

setting a permissible level of variance and has been used in safe reinforcement learning

[14, 42, 49] and safe MARL [40, 112]. In methods such as reward shaping, the value
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function is used to encapsulate safety properties, given accurate prior knowledge of

these properties. This value function then allows an agent to predict, and receive, a

reward that it would obtain from performing an action within a state. The idea behind

both reward shaping and the worst-case criterion is that a high variance in the reward

obtained indicates that the behaviour is more likely to entail moving into unsafe states.

In the case of reward shaping, this is because a state action pair that produces a high

reward is likely to be associated with greater functionality, while a small or negative

reward is likely to be unsafe. The risk-sensitive criterion takes this shared premise

and uses a parameter to determine how much variance in the expected reward is

acceptable or not [93]. This solution can be used to obtain a low variance in the

expected reward. However, it can be expected to produce a lower cumulative reward

than is possible, and also has incurred a costly trial and error process, a problem shared

with the worst-case criterion [103]. Lastly, since this method utilises instantaneous

reward-based variance for decision-making, may not be able to meet all acceptable

risk levels for multiple safety properties.

3.2.2.3 Constrained Criterion

Constrained Criterion [69, 94] describes a group of methods that involve the use of

constrained MDPs, in which the MDP that disallows agents taking actions that will

result in specified criteria exceeding, or falling below, a set threshold. This threshold is

typically linked to safety and risk thresholds for safe MARL and is focused on removing,

or strategically limiting, unsafe behaviours to guarantee that they are not frivolously

pursued both during and after learning. This group of methods is the only group

within the scope of this thesis that limits and guides behaviour in this definitive way.

The constraint that should be placed on the MDP to guide agent behaviour away from

these thresholds can be identified and applied in several ways. The most relevant are

reactive systems and constraints guided by quantitative analysis.

Threshold Constraints contain several methods of constraint which do not utilise

quantitative analysis or other formal methods of verification. The most natural exten-

sion to constraining agent behaviour consists of using hard constraints such that an

agent will not be able to move into any state associated with risk, no matter how small

of an impact this may have on the system. This extension has substantial limitations,
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firstly, all unsafe states must be known prior to the learning process, and this may not

be practicable. Secondly, the strict constraints may make completing functional goals

unlikely or impossible. A much more common use of constraints utilises thresholds

that must not be crossed during the duriation of a learning episode [48] or a threshold

defined on the percentage, or likelihood, that an outcome will surpass a set value [31].

Constraint-based approaches have been utilised with actor-critic methods [141], and

policy gradient methods in model-free environments [132], and with MARL systems

[54].

Threshold methods supply no formal guarantees on meeting safety or functional

requirements but do make it less likely for agents to visit unsafe states needlessly. The

issue with these methods is that prior knowledge must be supplied. For example, all

unsafe states within the MDP must be known, and an accurate perception of how

unsafe or how likely these states are to result in a negative outcome must also be

known. Due to a lack of formal guarantees or functionality, the safety thresholds

selected can significantly reduce the functionality of the system, and these techniques

cannot be utilised in scenarios where these formal guarantees are required.

Ergodic Policies can be used to constrain a state-space based on whether the

states within said state-space are reachable from all other states. All states which are

not Ergodic in nature will be made inaccessible by excluding all actions that lead

to the state from the learner’s available actions [46]. The concept behind Ergodic

Policies is that those states which are not Ergodic are unsafe, and by constraining

agent behaviour in this way, the learner cannot enter a state from which it can not

recover. However, despite this guarantee, Ergodic Policy constraint will likely produce

highly sub-optimal policies due to most real-world scenarios not permitting useful

Ergodic Policy use [95]. Furthermore, large amounts of rewards may be unattainable

by removing the ability to visit states that contain slight risk due to these states being

unrecoverable. Lastly, this method can remove states that are not unsafe, as not all

states that are unrecoverable are necessarily unsafe [106]. At the time of writing, Er-

godic Policies have not been applied to MARL.

Reactive Systems (Formal Methods) are architectural structures that allow sepa-

rate components to function together resiliently, taking input and responding with an

appropriate output [2]. These systems are expected to maintain an ongoing interac-
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tion with their environment with behaviours that are often specified using temporal

logic to allow a form of correctness checking to take place [82]. There are four main

cornerstones to reactive systems [5], being responsive (responding promptly), resilient

(remains responsive in the face of failure), elastic (remain responsive in the case of

varying scenarios), and message driven (utilising asynchronous messages).

Shielding is a process which allows for the synthesis of a correct-by-construction

reactive system. In this process, teacher knowledge is provided to the learning system

to stop safety violations. Correct-by-construction [70] is a process for creating reliable

systems at design time. This process is achieved by breaking a system or problem

into small components and describing each of these small components in a succinct

specification. These small components can then be refined to avoid introducing errors

and to identify potential errors closer to the point of their introduction. With the

specifications of each component, powerful tools can be used to check for such errors.

This correct-by-construction method of creating reactive systems for reinforcement

learning-based shields involves creating a two-player game based on a formalisation

specified by temporal logic. In these games, the environment (player one) supplies an

observation, and the agent (player two) selects an appropriate action. By repeatedly

running this two-player game, it is possible to identify state-action pairings within

the state space that will not violate safety violations. The set of state-action pairings

deemed safe can then be used as a shield, or teacher, to guide the agent so that when it

selects an unsafe action, it is replaced with a safe action. Alternatively, unsafe actions

may be removed from the agent entirely.

Shielding has been used in safe reinforcement learning [6, 13], and safe MARL

[38, 147] and shows that while a shield is operational, safety can be formally assured.

However, all levels of risk for all states must be analysed and stored to synthesise a

shield. Depending on the size of the problem environment, the synthesis of these

shields can be computationally expensive, and the information stored within the

shield can become sizeable. Furthermore, for safety to be assured, the shield must be

in place both during and after learning. This need is driven by the shielding method

utilising a reactive system approach, meaning in order for an agent’s actions to be

reviewed and potentially replaced by safe actions, there must be constant monitoring

[70]. In addition, there is no guarantee that a safe shield will be created from an opti-

mal policy since this procedure is akin to statistical simulation [143]. Finally, as with

46



3.2. SAFE MULTI-AGENT REINFORCEMENT LEARNING

quantitative verification, discussed next, any inaccuracies within the formalisation of

the problem or issues with the shield’s construction will result in assurances becoming

outdated and invalid.

Quantitative verification (Formal Methods)

Methods which employ quantitative verification allow for efficient searching through

all possible paths within an MDP in other to synthesise paths that meet a set of pre-

defined properties where the properties represent safety constraints and functional

requirements. These synthesised paths can then be used to constrain the reinforce-

ment learning or MARL agents, allowing these agents to produce learned policies that

are guaranteed to meet the defined requirements. As shown in Figure 3.1, there are

currently two main methods that utilise quantitative verification, the first is known as

Permissive Schedulers, and the second is known as Assured methods.

Permissive Schedulers [68] have been applied to single-agent reinforcement learn-

ing but, as of writing, not to MARL. This technique applies quantitative verification to

the agent’s MDP and synthesises a set of safety policies. These safe policies are synthe-

sised to meet safety and functional requirements, which are formatted using PCTL.

One of these safe policies is then used to constrain the agent’s behaviour and guide the

agent’s exploration process within the domain environment. However, while formally

guaranteeing the agent meets safety and functional requirements, this constraint

negatively impacts the reinforcement learner’s main aim of optimising rewards within

the environment. Therefore, permissive schedulers, like other constrained methods,

allow the agent to learn to maximise the rewards it can receive under the constraints

and not in the domain as a whole.

Despite permissive schedulers being one of the first methods that applied quanti-

tative verification to reinforcement learning, producing assured functional and safety

guarantees, it holds significant limitations. These limitations come from using quan-

titative verification directly on the agent’s MDP. The first limitation comes from the

need to obtain complete knowledge of the MDP in order for permissive schedulers

to be used. This is not always possible and is non-trivial. This need for preliminary

information is further exacerbated when looking at the use of permissive schedulers

used within the cited study [68]. This study used the MDPs state-transition function to

facilitate quantitative verification, which is troublesome given that the state-transition

function and the reward function are often learned through the reinforcement learn-
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ing process. Lastly, permissive schedulers have scalability issues when working with

large MDPs or multiple agents. This issue is due to the computation time required to

analyse the MDP using quantitative verification, which is infeasible for large models

due to the state space explosion problem.

Assured Methods have been applied to both single-agent reinforcement learning

[11, 87] and within MARL. The work that supports this thesis and what this thesis

was built from was the first to use assured methods in MARL[114–117], but since the

completion of this thesis, another paper outside of the work that supports this thesis

was published that also utilised assured methods for safe MARL [96]. Assured methods,

like permissive schedulers, make use of quantitative verification to synthesise safe

policies that are then used to constrain the reinforcement learning or MARL system.

This quantitative verification is also guided by requirements that are formatted using

PCTL. The main variance between permissive schedulers and assured methods is

using an abstracted version of an MDP in which similar states are aggregated. The use

of an AMDP mitigates the main issues found within permissive schedulers. Using an

AMDP within this process allows it to be used on domains where partial knowledge

is held, knowledge of states, transitions, rewards, costs, and safety is required, but,

unlike permissive schedulers, knowledge of transitional functions is not necessary.

The AMDP also allows domains with larger states and transitions to be analysed, and

unlike permissive schedulers, it has promoted the use of quantitative verification with

MARL systems.

The first limitation of assured methods is shared in all safe MARL work, which

is the need for preliminary knowledge. This preliminary knowledge is required to

synthesise the constraints that allow assurances of safety and functionality to be made.

The second limitation is the size of models and systems that these approaches can

handle. Although assured methods allow much bigger state spaces to be analysed,

there is still a correlation between the efficiency of quantitative verification and the

size of the model it is analysing.

3.3 Comparison to AMARL and Extensions

The methods we present within this thesis, AMARL and its Extensions, AMARL-PPR

and AMARL-AC, fall into the category of safe exploitation. This categorisation does
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not require modification of the exploration procedure, allowing for any exploratory

strategy to be used without additional steps being required.

The methods introduced in this chapter can be compared based on four main

factors: the assumptions and requirements of use, the safety assurances delivered, the

effect on optimality, and how flexible the method is in its use.

3.3.1 Assumptions and Requirements

The AMARL process, as described in chapter 4, relies on an AMDP, meaning it requires

accurate prior information on safety and functional properties in the form of ab-

stracted states. Secondly, AMARL requires that safety and functional requirements are

defined using the PCTL syntax. In addition, prior knowledge of transition properties

and rewards is desirable but optional within AMARL.

Other formal verification methods, such as assured reinforcement learning [87],

permissive schedulers [68], and shielding [6], require the developer to know aspects

of an MDP or AMDP. Assured reinforcement learning, like AMARL, requires an ab-

straction of an MDP which retains safety and functional details. Likewise, permissive

schedulers require encompassing knowledge of an MDP, including the transition

function. While shielding also requires full knowledge of an MDP or an AMDP.

Non-formal methods, such as those that modify the value function of agents, such

as reward shaping [94], worst-case criterion [124], risk-sensitive criterion [14], and risk-

directed exploration [46], often require knowledge of all risky states. Reward shaping

requires prior knowledge of all risks and a reward function that balances risk and

functionality and this can be time-consuming, if not infeasible, to achieve. Worst-case

and risk-sensitive criteria share the need for prior knowledge of all risky states and a

reward function that punishes unsafe actions in order to discourage their selection.

Risk-directed exploration also requires knowledge of all risky states and a risk metric

to discourage actions. These all have the limitation of needing full knowledge of all

risky states, while AMARL only requires the knowledge of risk within an abstracted

state space.

The methods that utilise expert knowledge are more varied in their requirements.

For example, teacher advice [35] requires a priori safe policy to guide the system

and a risk filter to decide when the teacher should advise the system. The cautious
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simulation method [107] requires a provably accurate physics simulator, which can

be difficult and time-consuming to create. In comparison, the safe demonstration

method [1] requires an expert that can provide safe demonstrations.

Lastly, AMARL-AC, described in chapter 6, does not require predefined knowl-

edge of where safety and functional properties are, but these safety and functional

properties must be perceivable. This limitation is similar to the backup method [59],

which also requires risk to be perceivable. Even though AMARL-AC requires less prior

abstracted knowledge, perceivable safety and functional properties are a large assump-

tion.

3.3.2 Safety Assurances

AMARL, AMARL-PPR, and AMARL-AC rely on formal verification methods to produce

abstract constraining policies that are guaranteed to meet safety and functional re-

quirements. There exist only three other approaches that offer guarantees through

formal verification. These are permissible schedulers [68], assured reinforcement

learning [87], and shielding [6].

Like AMARL, permissive schedulers utilise quantitative verification to produce

constraints that are guaranteed to meet safety and functional requirements. However,

permissive schedulers require complete knowledge of the MDP for the problem. This

includes the transition properties, which can be difficult to obtain and also suffers

from state-explosion limitations regarding quantitative verification, limiting its scope

of use.

Assured reinforcement learning also utilises quantitative verification to produce

constraints guaranteed to meet safety and functional requirements. This method, like

AMARL, also utilises AMDPs though the method focuses on single-agent reinforce-

ment learning. However, AMARL-AC and assured reinforcement learning differ more

significantly, with AMARL-AC producing safety and functional guarantees in prob-

lems with limited knowledge of states, transitions, safety properties, and functional

properties prior to learning.

Shielding is the last approach that utilises formal verification, though, unlike

AMARL, assured reinforcement learning, and permissive schedulers, it does not use

quantitative verification. Instead, this runs different policies through a constructed
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version of an MDP or AMDP and selects one policy to act as a shield or a teacher.

However, like statistical verification, which does a similar thing, depending on how

long it is left to run, it is not guaranteed that this type of verification will find the

optimal policy or even a safe policy, even after prolonged verification.

Methods such as teacher advice [35], cautious simulation [107], and safe demon-

stration [1] are only as safe as the teacher, simulator, or demonstrator is accurate

or safe. In contrast, risk-directed exploration [46], reward shaping [94], worst-case

criterion, risk-sensitive criterion, and threshold constraints do not hold any formal

guarantees but focus on pushing agents towards behaviours that are less likely to visit

states needlessly by incorporating safety into value functions or through constraint.

3.3.3 Optimality

AMARL and its extensions utilise PCTL to define both safety and functional require-

ments. A benefit of AMARL is synthesising a set of Pareto-optimal abstract constraints.

Therefore, the domain expert can select a solution which is a compromise between

safety and functionality. Like all safe reinforcement learning and safe MARL tech-

niques, there are direct impacts on optimality due to incorporating safety, and this

is also true for AMARL during the verification stage. The same is true for assured

reinforcement learning [87] and permissive schedulers [68].

Shielding [6] also allows a compromise between safety and functionality. However,

due to the lack of quantitative verification, these policies tested and proven to meet

functional and safety requirements are not likely to be Pareto-optimal, causing either

safety or functionality to take precedence and the other to be unnecessarily sub-

optimal under the constraints. As with AMARL, the generated shield is likely to cause

limitations on optimality for safety considerations.

Threshold constraints [48] and Ergodic policies [46] also directly constrain the

environment differently. Threshold constraints will disallow actions that take risks

above a certain threshold. However, as these constraints are not produced through

formal verification, there is no bound on how much optimality can be affected. Ergodic

policies, however, will disallow any state that is not reachable by any other state. The

issue arises when a non-ergodic state is not unsafe and contains a functional value.

Methods utilising expert knowledge, such as teacher advice [46], cautious simu-
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lation [107], and demonstration [1], will only be as optimal as the expert knowledge

allows it to be, which depending on the scenario, can vary greatly.

While the other methods which adapt value functions [14, 46, 94] will have no

guarantee of reaching high functionality. In case of worst-case criterion, [124], is highly

likely to have low functionality.

3.3.4 Flexibility

AMARL and AMARL-PPR have no inherent use case limitations and are suited to

problems with conflicting requirements. While both permissive schedulers [68] and

assured reinforcement learning [87] are either currently limited to, or solely focused on,

single-agent reinforcement learning. Shielding [6] shares AMARLs flexibility, however,

it has the possibility of struggling with very large state spaces both due to the method

of statistical verification employed and the construction of a potentially bloated shield

system that has to remain active both during and after learning.

Outside of the formal methods described, there are clear limitations. All of the

methods that utilise expert knowledge have noticeable use limitations, with both

teacher advice [46] and safe demonstration [1] requiring a safe solution to be known in

advance. Cautious simulation [107] has the added limitation of being only applicable

to physical systems. In addition, ergodic policies [46] cannot be utilised on problems

that are not proveably Ergodic. The remaining methods can not be used in scenarios

with strict probabilistic safety or functional requirements.

AMARL-AC, unlike the other methods, can also be applied to scenarios where

complete information on transitions, states, and safety and functional properties

are unknown. However, this is replaced with an assumption that these safety and

functional properties are perceivable. This means AMARL-AC can not be used in

scenarios where the system’s safety and functional properties are not recognisable

and perceivable.

3.4 Summary

This chapter describes existing methods for safe reinforcement learning and safe

MARL with methods categorised based on how they attempt to influence the learning
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process to achieve the defined safety requirements. The first category manipulates the

behaviour of the system as it explores the environment [1, 35, 59, 76, 107], whilst the

second concerns exploitation as the system attempts to find optimal policies to solve

the stated problem [2, 14, 48, 68, 69, 87, 94, 95, 124]. The work we present in this thesis,

AMARL and its extensions AMARL-PPR and AMARL-AC, all fall into the exploitation-

based category of safe MARL. AMARL and its extensions can explore the environment

without modifying a typical exploration technique. Instead, the techniques which are

used for optimisation are limited by constraints that assure that safety requirements

are met.

All approaches and varying methods share five characteristics by which they can

be compared. These are the assumptions and requirements that must be met in order

for these methods need to be used, what assurances they offer, how they impact

optimally, how flexible they can be in adapting to varying scenarios, and finally, if they

have been applied to MARL systems or not [46]. It is within these five characteristics

that each method has strengths and limitations. Primarily these methods pursue one

area at the disadvantage of another, such as constraining behaviour to produce safety

guarantees but removing functionality and therefore negatively affecting optimally. In

order to more easily distinguish each method’s relationship with these distinct areas,

they are detailed within Table 3.1.

Of all the methods detailed within this chapter that relate to AMARL, AMARL-

PPR, and AMARL-AC, Assured Reinforcement Learning [87] acts as a foundation

method that inspired the initial AMARL approach. Assured Reinforcement Learning

and AMARL share many assumptions and requirements, assurances, optimality, and

generalisability, with the exception being that Assured Reinforcement Learning does

not tackle safe MARL. At the same time, the method that shares the most similarities

to Assured Reinforcement Learning and AMARL is the method that utilises Permis-

sive Schedulers [68]. First, since Permissive Schedulers involve applying quantitative

verification directly to an MDP, instead of an AMDP, as with AMARL, more detailed

knowledge of the MDP is required, such as transitional values, while these are not in

AMARL. Secondly, while the assurances and optimally are the same as with Assured

methods, the generalisability is greatly diminished due to the need to analyse the

entire MDP, which is unpractical and even infeasible with larger models and systems.

This lack of generalisability is why Permissive Schedulers are not naturally applicable
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to MARL systems.

Since AMARL-PPR is an extension to AMARL that allows the partial reuse of learned

policies when learning is required to be rerun on an altered domain space, there are

no significant differences to be distinguished between AMARL-PPR and AMARL. With

the exception that this extension works exclusively with learning techniques that

store state-action values in a tabular format. However, the same can not be said for

AMARL-AC, which utilises a monitor-analyse-execute process structure. AMARL-AC

can be utilised to adapt to changes in a domain during run time and monitor for said

changes throughout the learning process. This monitoring for changes requires the

MARL system to perceive goals, potential risks, transitions, and states. This need for

goals, risks, transitions, and states to be perceivable is a large assumption that must

be met to utilise AMARL-AC effectively.

When these assumptions can be met, the assurances and optimality of AMARL-AC

should mirror that of AMARL. If assumptions are met, the main positive of AMARL-AC

is the increased generalisability from which it benefits. AMARL-AC can be utilised

in the same scenarios as AMARL and scenarios with partial knowledge of the goals,

risks, abstracted states and abstracted transitions. The closest approach to AMARL-AC

regarding its monitor-analyse-plan-execute process structure is Shielding [6]. This

similarity comes from Shielding using a reactive system that monitors potential ac-

tions, evaluates safety, and then executes changes to help guide a system towards safe

behaviours. The main difference between shielding and AMARL-AC is that the shield

that is utilised in shielding must be used after learning as halted, while AMARL-AC no

longer requires continued monitoring. Secondly, shielding is not currently capable of

adapting to such previously unknown conditions.
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Table 3.1: Comparison of Safe MARL Approaches

Method
Assumptions

& Requirements

Safety

Assurances
Optimality Flexbility

Exploration

Back-up

Policies

Prior Knowledge

of Risky States.

A filter and

perception

function to

detect risk.

Given an accurate

filter it is

guaranteed that

no unsafe states

will be visited.

Filter can cause

functionality

to suffer.

Not applicable

to scenarios

that require strict

probabilistic

safety or

functional

requirements.

APPLIED TO

MARL [13].

Teacher

Advice

A priori safe

policy to guide

systems.

A risk filter to

deselect unsafe

actions.

No guarantees but

lower probabilities

of entering unsafe

states.

Restrained by

how optimal the

teacher advice

is and how

strict the filter is.

Limited to

scenarios where

a safe solution

is known priori.

APPLIED TO

MARL [38].

Cautious

Simulation

An accurate

physics

simulator.

Cautious state

classification

means no unsafe

states can be

classified safe.

Limited to

physical systems.

Limited to

Physical

systems.

Safe

Demonstration

A domain expert

available to

provide safe

demonstration.

No guarantees

when states are

visited which were

not the focus of

the demonstrations.

Only as efficient

as the

demonstrator.

Limited to

scenarios where

a safe solution

is known priori.

APPLIED TO

MARL [98].

Risk-Directed

Exploration

Prior Knowledge

of Risky States.

A risk metric

to discourage

unsafe actions.

No guarantees as

system’s behaviour

is guided away

from unsafe states

but is not explicitly

constrained.

Depending on

the risk metric

functionality

can suffer.

Not applicable

to scenarios

that require strict

probabilistic

safety or

functional

requirements.

Exploitation

55



CHAPTER 3. RELATED WORK ON SAFE REINFORCEMENT LEARNING

Reward-Shaping

Prior knowledge

of risks.

A reward function

that balances risk

and functionality

is feasible.

No guarantees due to

difficulties in

designing

functions that

produce desired

behaviours.

Depending on

the chosen reward

function,

functionality

can suffer.

Not applicable

to scenarios

that require strict

probabilistic

safety or

functional

requirements.

APPLIED TO

MARL [39].

Worst-Case

Criterion

Prior knowledge

of all risky states.

Reward function

to punish unsafe

actions.

Due to pessimistic

exploration, a

minimum level of

safety can be

confidently gained.

High probability

of states with high

functionality being

avoided due to

pessimistic view

on risk.

Not applicable

to scenarios

that require strict

probabilistic

safety or

functional

requirements.

APPLIED TO

MARL [144].

Risk-Sensitive

Criterion

Prior knowledge

of all risky states.

Reward function

to punish unsafe

actions.

Reduces variance in

obtained rewards but

not guarantees to meet

safety properties.

Not suited for meeting

multiple safety

properties.

Depending on

the chosen risk

parameter,

functionality

can suffer.

Not applicable

to scenarios

that require strict

probabilistic

safety or

functional

requirements.

APPLIED TO

MARL [40].

Threshold

Constraints

Prior knowledge

of likelihood of

adverse outcomes.

No formal guarantees

of safety or functional

requirements being

met.

Less likely to

needlessly visit

unsafe states.

Depending on

the thresholds

deemed as

acceptable,

functionality

can suffer.

Not applicable

to scenarios

that require strict

probabilistic

safety or

functional

requirements.

APPLIED TO

MARL [54].

Ergodic

Policies

A safe policy

exists that does

not require

non-ergodic states.

Is not capable of

guarantees specific

safety requirements.

Only the ergodicity

of a solution.

Due to the

discounting of

non-ergodic states,

functionality

can suffer greatly.

Not suited to

problems whose

solutions are

not provably

ergodic.
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Shielding

Full knowledge

of an MDP to

allow sequences

of actions to be

analysed to create

a shield.

Given a correctly

constructed shield,

guarantees safety

and functional

requirements.

Optimality limited

by constraints but

formally guaranteed

to reach functional

requirements.

No obvious

limitations

apart from larger

MDPs

can result in

cumbersome

shield construction

times, and the shield

must remain active

during learning.

APPLIED

TO MARL [38].

Permissive

Schedulers

Encompassing

knowledge

of an MDP

including

transition function.

Formally guarantees

extensive safety,

functional, and other

non-functional

requirements.

Optimality limited

by constraints but

formally guaranteed

to reach functional

requirements.

Not suitable

for problems

with a large

state-space.

Such as in

MARL.

ARL

Abstraction of

reinforcement

learning MDPs

retaining safety

and functional

detail.

Formally guarantees

extensive safety,

functional, and other

non-functional

requirements.

Optimality limited

by constraints but

formally guaranteed

to reach functional

requirements.

No obvious

limitation.

Suited to problems

with strict and often

conflicting safety

and functional

requirements.

Developed for

single-agent use.

AMARL

Abstraction of

MARL MDPs

retaining safety

and functional

detail.

Formally guarantees

extensive safety,

functional, and other

non-functional

requirements.

Optimality limited

by constraints but

formally guaranteed

to reach functional

requirements.

No obvious

limitation.

Suited to problems

with strict and often

conflicting safety

and functional

requirements.

APPLIED TO

MARL.

AMARL-AC

A monitoring

system

that can detect

risks and rewards.

Ability for MARL

system to translate

AMDP constraints

to a domain space.

Given an accurate

monitoring system and

long enough learning

durations, formally

guarantees

extensive safety,

functional, and other

non-functional

requirements.

Optimality limited

by constraints but

formally guaranteed

to reach functional

requirements.

Limited to scenarios

in which goals and

risks are perceivable.

Suited to problems

with strict and often

conflicting

safety and functional

requirements.

APPLIED TO

MARL.
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Chapter 4

Assured Multi-Agent Reinforcement Learning

This chapter delivers a conceptual overview of Assured Multi-Agent Reinforcement

Learning (AMARL), describes its implementation, and reviews its performance in

example domains.

4.1 Introduction

In this chapter, the novel, safe MARL approach, AMARL, is introduced. AMARL is a

four-stage plugin-styled approach that formally assures that a system utilising MARL

will meet strict performance, safety, and other non-functional requirements during

and after its learning process.

The incentives behind the creation of AMARL are due to the commonly practised

methods of producing MARL policies and the inherent stochasticity of reinforcement

learning. In MARL, objectives for multiple agents are defined, and the behaviours of

MARL agents are driven towards reaching these objectives through the use of numeri-

cal rewards and punishments. These numerical rewards have been used successfully

for learning agents when the problem’s objectives are ‘simple’. However, when objec-

tives have more complexity, it becomes infeasible to design efficient reward functions.

The complexity here can be from the problem containing multiple non-functional

objectives or conflicting objectives. For example, an agent receiving a reward for reach-

ing a functional objective and punishment for putting itself at risk is unlikely to lead

to an agent’s behaviour converging to the desired behaviour. This difficulty is due

to the agent’s inability to perceive the efficiency of its actions other than this single
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numerical value. Increasing the information within the MARL problem can help with

these issues but potentially add to the state-space explosion problem that is already

present with every additional agent that is added to a MAS. Furthermore, if possible,

any attempt to construct a reward function to balance these objectives would require

a costly trial-and-error procedure. This process is commonly called Reward Shaping

and involves running a learning process repeatedly with different reward structures

until the required behaviours are produced.

AMARL overcomes these issues by allowing traditional reward functions to be used

without the need for over-designing to encompass these complex and conflicting

objectives. This is accomplished with the use of formal verification techniques that are

utilised on an abstracted version of the problem domain, producing what are known

as abstract policies, which show how the system can reach both functional and safety

requirements. These abstract policies are formally proven to meet these functional

and safety requirements, so it is possible to identify a set of low-level state-action

pairs that meet all requirements. While also allowing all state-action pairs that do not

meet these requirements to be removed from the agents’ MDP, a process known as

‘constraining’. The MARL system is then free to utilise traditional MARL techniques

under the guidance of these constraints.

The abstracted version of the problem domain is expressed as an AMDP and is

a significant step within the AMARL process as it alleviates some of the issues of

state-space explosion. This non-trivial problem can potentially make the planning

and analysis of these systems infeasible. With the use of abstraction, all details of the

environment which are not strictly relevant to the functional and safety requirements

are removed. By removing these unnecessary details, the complexity of the environ-

mental model is drastically reduced, allowing analysis to become more accessible

and safety and functional assurances to be produced. An efficient analysis must be

available as these assurances are delivered through the formal proofs synthesised

through a formal verification technique called quantitative verification. Quantitative

verification identifies paths within the AMDP that meet functional and non-functional

requirements and produces these paths as safe abstract policies.

The rest of this Chapter focuses on the individual steps within the AMARL ap-

proach and provides an introduction to case studies and experimentation involving

the AMARL approach.
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Figure 4.1: Assured Multi-Agent Reinforcement Learning.

4.2 Approach

The AMARL approach consists of four stages, as seen in Figure 4.1. These stages are

kept non-domain or tool specific to emphasise the plugin nature and intended broad

usage of the approach.

Prerequisites must be fulfilled before using AMARL, and these prerequisites consist

primarily of preliminary knowledge, such as knowledge of states, actions, rewards,

costs, and potential safety issues, a common prerequisite of safe MARL methods. While

this knowledge does not have to be ‘complete’, it must contain sufficient information

about the environment, which relates directly to safety and functional objectives. With

the assumption that this knowledge is accurate regarding the environment and that the

MARL system is given ample learning time to converge, the AMARL approach can be

effectively utilised to produce learned behaviours that satisfy functional requirements

by the time of convergence and safety requirements throughout the entire learning

process. If these assumptions are not met, any suggested behaviour constraints will

not result in any assurance of safety or functionality in the ensuing MARL stage.
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4.2.1 Stage One: Analysis of the Problem Domain

The first stage of the AMARL process involves the analysis of preliminary knowledge

to define a set of objectives O={O1,O2, ...,On}, that the MARL system must accomplish

through traditional learning techniques involving maximising a reward function or

minimising a cost function. Furthermore, these objectives must be reached while

adhering to a strict set of safety constraints C ={C1,C2, ...,Cn}, which must be defined

by accurately discerning the needs of the problem scenario.

The problem scenario must be analysed to collect this information in order to

create an MDP structure. This includes the states, such as geographical states within

the environment; the actions that will be available to the agents within these states;

and the objectives and costs that can naturally be used within a MARL setting, such

as reaching a goal; the resources needed to reach said goal, and any states or actions

which include any potential safety concerns. The information collected within this

stage is then used to guide stage two of the AMARL approach, which involves creating

an AMDP and identifying functional and safety requirements.

4.2.2 Stage Two: Multi-Agent AMDP Construction

The second stage involves using preliminary knowledge gained in stage one to con-

struct an AMDP and define functional and safety requirements.

The definition of functional and safety requirements should be completed before

the construction of an AMDP due to how these requirements may alter the structures

within the AMDP. These functional requirements can involve, for example, certain

objectives, such as reaching a certain amount of goals or retaining a certain level of bat-

tery power. At the same time, Safety requirements can involve reducing the probability

of agents coming to harm within the environment, such as through collisions.

AMDPs at this stage are simplified models created for efficient quantitative analysis

and reduce the complexity of describing the problem scenario in regard to the low-

level environment. For example, the low-level environment may consist of Cartesian

locations, wherein in each Cartesian location, there are at most four actions (move

North, move South, move East, move West). If an environment consists of multiple

rooms with hundreds of Cartesian locations, the state-action space would be substan-

tially large, difficult to construct into a model, and inefficient to analyse. By abstracting
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out the low-level environment, it is possible to drastically reduce a state space by only

modelling the transitions and states with meaningful properties, such as transitioning

from roomA to roomB. This simplification allows a model to be constructed with less

information and ensures quantitative verification tools can be effectively used. When

working with MARL systems, the abstraction of an MDP is particularly important due

to the complexity different agents can add to the environment.

In order to facilitate the necessary quantitative verification in stage three, the

AMDP should be constructed within a language that is used by the chosen quantitative

verification tool. These languages allow the fulfilment of labelling the AMDP with

atomic propositions that ultimately allow probabilistic model checking to be utilised.

For example, by providing atomic propositions to the states within the AMDP, the

model-checking tool can distinguish whether a described goal has been accomplished.

Using these probabilistic tools, it is also possible to create structures within these

languages to facilitate tracking rewards, costs, and numerical safety features, such

as the probability of a system becoming damaged performing a certain behaviour.

It is important to identify the objectives and requirements of the problem domain

before the construction of the AMDP, as the model must be adapted for effectively

tracking these objectives and requirements. Such an example would entail reaching n

amount of goal states before the system reaches a terminal state. This can be achieved

by shaping the AMDP within the probabilistic tools language to track the number of

goals reached, using the atomic propositions to remain aware of these changes within

the system.

The rest of this section details an algorithm which was created to automate the

creation of AMDPs within a specific language, known as the PRISM language. Though

multiple tools accept this language, this algorithm can be adapted to function with

other tools that do not use the PRISM language by changing the language’s syntax

encoded within the algorithm. This algorithm was created to reduce the expertise

and time required to create abstract models for quantitative verification, which can

be a very time-consuming process. The first algorithm was created, as detailed in

Algorithm 3 and its related functions in Algorithm 4, to automate the construction of

an AMDP in the PRISM model language given a multi-dimensional array that contains

abstracted information from the problem domain and the number of agents that are

within the system, and the initial state of the system. The input and output structure
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Figure 4.2: Input and Outputs of Algorithm 3. Showing the multi-dimensional array
structure for describing an AMDP.

of Algorithm 3 can be seen detailed within Figure 4.2.

When looking at this figure, a multi-dimensional array or matrix structure is shown

as an input to Algorithm 3. This is a simplified way of describing the transitions

between states within an AMDP. Here states and transitions values of the AMDP are

represented by the index values of the multi-dimensional array.

This multi-dimensional array is accessed and manipulated by making use of three

values which relate to the indices of the multi-dimensional array. The first value

determines which row within the multi-dimensional array is being accessed. As shown

in Figure 4.2, the row accessed is a way to represent which state an agent is currently in

within. The second value is used to determine which column is being accessed within

the multi-dimensional array, where the column that is accessed is used to represent

the state that the agent is transitioning to, as shown by state’ in Figure 4.2. Finally, the

third value is used to select which indices should be accessed within the nested arrays

that are present in the indices of the multi-dimensional array. The indices within these

nested arrays are used to store the properties of an agent transition from its current

state to the potential future state. These three indices consist of an integer that acts as

a Boolean to state if a possible transition between the current state and the new state
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is possible, an integer value which shows the potential reward from the transition, and

finally, an integer value that shows the cost involved in making this transition.

An example of how to use this Matrix is given. When the Matrix description shown

in Figure 4.2, referred to as a Matrix World View in Chapters 5 and 6, is read in by Algo-

rithm 3, it can determine that the abstracted representation of the domain contains

two states because there are only two columns, and only two rows, meaning there

are only two potential states to transition to. If an agent was currently within state

one and wanted to move to state zero, this information can be accessed by using the

matrix input values of [1,0]. First, it can be determined that a transition is possible

from state one to state zero by looking at the first indices of the nested array using

the input values of [1,0,0], which will return the value 1, showing that a transition is

possible. Secondly, it can be determined that no reward can be obtained from making

this transition by using the input values of [1,0,1], which will return the value 0. Lastly,

it can be determined that there is a cost to making this transition by using the input

values [1,0,2], which will return the value 1. This structure can be adapted to contain

many states and transitions by simply increasing the number of rows and columns

within the Matrix World View.

The code itself is described with an overview of Algorithm 3. As mentioned previ-

ously, the syntax within this algorithm is specific to the PRISM language, which was

used in all of the case studies within this thesis. Algorithm 3 begins with the input of

the multi-dimensional array as a txt file on line 1 and the conversion of lines of text

into an integer matrix through lines 3 to 8. The PRISM model file is created on line

9 and is populated with the initial structures of an MDP model, such as lines 10 and

11, which state for the quantitative analysis tool that the model is an MDP and that

the module is named MAS. Lines 12 to 17 use the inputs given, the number of agents

and the limit on state visits to further populate the model with a definition of agents

within the system and the states within the system. Line 18 defines a terminal state as

a Boolean, with the aim of the quantitative analysis tool to find a path that sets this

Boolean to true. In order to populate the model with all the available transitions, which

is the most time-consuming in manual creation, lines 19 to 30 are used. These lines

check if a transition is declared within the integer matrix and calls an external function

called ‘DefineTransition’ along with the corresponding reward and risk associated

with the said transition. In line 18, a set of conditions are selected, which, when met,
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will result in the terminal condition being met; these conditions are created using

lines 31 to 39. Regarding this algorithm, the base conditions are set to a patrolling

problem; as such, the conditions are that all states must be visited; however, this can

be easily adapted. Finally, the algorithm’s closing lines state the MAS module’s ending

and call on an external function to create the reward structures that will track safety

and functional requirements.

Algorithm 4 consists of the external functions made use of within Algorithm 3,

named ‘DefineTransitions’, described in lines 1 to 15, and ‘RewardStructure’, described

in lines 16 to 27. As seen in line 3, each transition is repeated for every agent within the

system, with the possibility of further editing to incorporate states that not all agents

may visit. Lines 4 to 11 check if any risks or rewards are associated with the transition

sent to the function, and if so, then a reward or risk label is added to an array which

will be utilised in the function named ‘RewardStructure’ as well as the actual value of

the reward or risk which is stored in a second array. Line 12 uses the given parameters

and writes the transition to the PRISM model; these transition definitions are long

and often numerous. With the second function, lines 18 to 25 involve the definition of

the reward functions for tracking risks and goals and the definition of every transition

label resulting in risk and goals being added. This uses both the risk and reward label

arrays and the corresponding arrays, which state how much reward or risk should be

attributed to these transitions. Finally, on line 26, the final reward structure is closed,

and the PRISM model is generated. This model can then be used with a quantitative

verification tool or for further editing.

The generated AMDP and the knowledge of functional and safety requirements

are then used within stage three to perform quantitative analysis using probabilistic

model checking tools, securing formal proofs.

4.2.3 Stage Three: Quantitative Analysis

In the third stage of AMARL, the AMDP and PCTL formatted requirements and objec-

tives are utilised within a probabilistic model checking tool to synthesise safe abstract

policies that are assured to meet both the objectives and requirements. This quanti-

tative analysis identifies different paths within the model for one or several options

which the quantitative analysis tool can synthesise. This is guided based on the reward
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Algorithm 3 AMDP Generation

1: Input ← AgentWorldMatrix
2: for i in Input do
3: for x in Input[i] do
4: if x == NUMBERCHAR then
5: States.append(int(Input[x]))
6: end if
7: end for
8: end for
9: Output ← GENPRISM.nm

10: Output.Write("mdp")
11: Output.Write("module MAS")
12: for i in range NUMBEROFAGENTS do
13: Output.write(’A’ + i + ’ : ’ + ’[0..’ + len(States) - 1 + ’]’ + "init " + INITSTATE + ’;’)
14: end for
15: for i in range len(States) do
16: Output.write(’visits’ + i + ’ : [0..’ + STATECOUNT + ’] init 0’ + ’;’)
17: end for
18: Output.write(’done : bool init false;’)
19: count ← 0
20: for i in States do
21: TransitionCount ← 0
22: TransitionAmount ← len(States[Count]) / 3
23: for i in range(TransitionAmount) do
24: if TransitionCount == 0 and int(States[Count][0] == 1) then
25: DefineTransition(count,Count,States[count][1],States[count][2])
26: end if
27: TransitionCount++
28: end for
29: count++
30: end for
31: for x in range(len(rooms)) do
32: if x == len(rooms) - 1 then
33: visitsDoneConditionAr.append(" visits" + str(x) + " >= " + STATECOUNT)
34: else
35: visitsDoneConditionAr.append(" visits" + str(x) + " >= " + STATECOUNT + "

&")
36: end if
37: donePrint ← donePrint + visitsDoneConditionAr[x]
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38: end for
39: Output.write(“[done]” + donePrint + "-> (done’= true);")
40: Output.write("endmodule")
41: RewardStructures()

Algorithm 4 DefineTransition and RewardStructure Functions

1: Function{DefineTransition}{currentState, nextState, reward, risk}
2: if currentState != nextState then
3: for i in range(NUMBEROFAGENTS) do
4: if risk != 0 then
5: riskLabels.Labels("[visits" + currentState + "_" + nextState + "_" + i + “]”)
6: riskList.append(risk)
7: end if
8: if reward != 0 then
9: rewardLabels.append("[visits" + currentState + "_" + nextState + "_" + i +

"]")
10: rewardList.append(reward)
11: end if
12: Output.write("[visits" + currentState + "_" + nextState + "_" + i + "] "+ "!done &

!goal" + nextState + " & r" + i + "=" + currentState + " & visits" + nextState + "<" +
STATECOUNT + " -> 1:(r" + i + "’=" + nextState + ")&(visits" + nextState + "’=visits"
+ nextState + "+1)&(goal" + nextState + "’=true);")

13: end for
14: end if
15: EndFunction
16: Function{RewardStructure}
17: Output.write(’rewards "risk"’)
18: for x in range(len(riskLabels) do
19: Output.write(riskLabels[x] + "] true : " + riskList[x] / 10 + ";")
20: end for
21: Output.write("endrewards")
22: Output.write(’rewards "goal"’)
23: for x in range(len(rewardsLabels) do
24: Output.write(rewardLabels[x] + "] true : " + rewardList[x] / 10 + ";")
25: end for
26: Output.write("endrewards")
27: EndFunction
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structure defined within the AMDP and the PCTL requirements.

• multi(R"goal"max=? [ C<=200 ], R"risk"min=? [ C<=200 ])

After the quantitative verification tool has identified paths within the given AMDP

under the guidance of the PCTL requirements, several Pareto-optimal policies will be

synthesised. These safe abstract policies show an order of transitions that are formally

assured to meet safety and functional requirement. The domain expert can then

remove low-level states and transition options that are not under this safe abstract

policy and constrain the MARL system. The domain expert will then be free to select

the appropriate policy that meets the requirements. However, these policies are not

produced in a format that is readable, and the policy is not sorted over the thousands

of possible states. Because of this, Algorithm 5 was created to allow these policies

to be used. In order to make use of this algorithm, two files are required, the policy

synthesised by the quantitative verification tool and the exported state labels for the

model. These numerical labels are required as they supply the algorithm with the

initial state that the system starts within and allow the first action to be found in the

policy by using these labels. Lines 1 to 10 of the Algorithm open the state labels and

begin to search until the value 0 is found; this states that the label next to this value is

the initial label for the system. On line 7, this label is stored for use in the second half

of the algorithm.

Table 4.1: Original and Revised Policy

Original Policy Form Revised Policy Form

0 0 3 1 visits1_2_1 [A1_1_0]

1 0 4 1 visits1_2_1 [A2_1_2]

2 0 8 1 visits1_4_1 [A1_4_3]

The second half of the algorithm, from lines 11 to 27, searches through the syn-

thesised policy to produce a human-readable version of said policy. Lines 11 and 12

involve reading the original policy and preparing a file for the new human-readable

policy. The original policy file is parsed through on line 15 in order to find the next

state label; when this is found, the action label is written to the human-readable policy,

and the previous state label is stored for further checks. The algorithm ends when the
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condition specified on line 24 is met, that being that the next state label is equivalent

to the previous state label, meaning the policy has been collected.

Algorithm 5 Policy Organisation

1: Input ← InitialState.txt
2: CheckCounter ← 0
3: for x in Input do
4: LabelReference.append(x.split(:)[0])
5: InitalStateCheck.append(x.split(:)[1])
6: if InitalStateCheck[CheckCounter] == 0 then
7: NextStep ← LabelReference[CheckCounter]
8: end if
9: CheckCounter++

10: end for
11: InputTwo ← adv1.txt
12: Output ← PolicyOne.txt
13: while done != True do
14: CheckCounter ← 0
15: for x in InputTwo do
16: StateCheck.append(x.split(‘ ’)[0])
17: if StateCheck[CheckCounter] == NextStep then
18: Output.write(StateCheck.append(x.split(‘ ’)[2]))
19: PreviousStep ← NextStep
20: NextStep ← StateCheck.append(x.split(‘ ’)[1]
21: end if
22: CheckCounter++
23: end for
24: if NextStep == PreviousStep then
25: done = True
26: end if
27: end while

This algorithm transforms the original policy of column one in Table 4.1, which is

unsorted and unfiltered, to the sorted and filtered version of column two. This allows

the policy to be understood by a domain expert.
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4.2.4 Stage Four: Constrained MARL

The fourth and final stage of AMARL begins with a set of safe abstract policies, which

vary in terms of safety levels and general functionality. These abstracted policies are

obtained from stage three through quantitative verification. Due to this quantitative

verification, these abstracted policies will fall within the scope of the requirements

and objectives. With the potential for multiple safe abstract policies to be available, a

selection must be made based on the domain expert’s desire to balance functional and

non-functional capabilities. This is required as the set of Pareto-optimal abstracted

policies will vary on how much one requirement is prioritised over the other.

This stage is the first stage that directly involves the ground-level environment.

The ground-level environment is constrained under the rules set by the safe abstract

policy. Here, state-action pairings that will go against the guidance of the safe abstract

policy are removed from an agent’s available action choices. This enables the MARL

system to learn to maximise its utility to reach objectives as efficiently as possible while

following the constraints that guarantee requirements are abided by. The safe abstract

policy identifies which agent is permitted to perform a certain behaviour within the

MARL system. This allows flexibility for each agent and becomes increasingly relevant

when considering heterogeneous systems. However, while this individualism is a key

feature that allows the benefits of MARL to be utilised under this approach, the overall

success and safety of the system as a whole is captured.

Under these constraints, the chosen MARL technique should be left to run for

sufficient time to converge to a solution. It is common for MARL to be halted before

the optimal solution to a problem is found, and instead, a sub-optimal solution is

used due to the time-based expense of reinforcement learning. The AMARL approach

assures that safety requirements will be met. Therefore, due to constraints, the global

optimality of the MARL system is treated as a secondary priority and is expected to

be negatively affected by the constraints that assure this safety. The MARL system

aims to learn to navigate optimally through the constrained environment, where the

environment is constrained as minimally as possible, enabling exploration when it is

known to be acceptable under the constraints.
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4.3 Evaluation

In order to evaluate AMARL and its flexibility in terms of MARL techniques, the ap-

proach to two varieties of navigation-based domains, which will be our case stud-

ies, one to showcase traditional MARL and another for deep MARL. However, only

navigation-based problems were investigated as this thesis focused on multi-robot

systems, which are often involved with navigation tasks.

The first case study is a representation of a multi-agent inspection mission based

on real-world problems in nuclear power plants [64] and inspired by the Fukushima

Daiichi nuclear power disaster response [97]. Here a MAS must learn to reliably visit

points of interest while minimising battery usage and exposure to highly irradiated

zones, two conflicting goals which can be counterintuitive to the learning process.

As can be seen in Table 4.2, the first case study was used to answer three research

questions with six experiments. Experiments 1 and 2 include both a MARL system

learning without AMARL to showcase prevalent issues and an experiment utilising

AMARL to demonstrate if these prevalent issues are mitigated. Experiments 3 to 5

involved three different MARL algorithms being used alongside AMARL. This is to help

demonstrate the plugin style of AMARL in regard to algorithms while also attempting

to show if the individual benefits of these algorithms are not negated. The algorithms

in question are Independent Q-learners, the game theory-driven Team-Q algorithm,

and the direct policy search algorithm known as WoLF-PHC. Experiment 6 contains a

heterogeneous system, showing the plugin nature of AMARL in regard to systems and

also attempting to show how AMARL can be used to partition tasks in ways which take

advantage of the individual abilities of the agents within the heterogeneous system.

The second case study takes the shape of an infiltration and collection-based

domain, inspired by current and potential future real-world defence and security

problems [7]. Here a MAS utilising a Deep MARL technique must learn to explore a

representation of a building with rooms and corridors to collect sensitive equipment

while avoiding being in sight of surveillance cameras as much as possible. This case

study is utilised in experiment six, which attempts to show that the AMARL process

can be utilised with a Deep MARL technique, utilising an AMDP structure to constrain

the agents.

All of these experiments were carried out on a computer with an Intel Core i7-
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Table 4.2: Research Questions and Relative Experiments.

Experiment Research Question
Case Study One

Experiments 1-2
Can AMARL allow a MARL system to reliably
meet functional and safety requirements?

Experiments 3-5
Can AMARL allow different algorithms to be utilised
and retain their individual benefits?

Experiment 6
Can AMARL be used with heterogeneous system
and partition tasks effectively?

Case Study Two
Experiment 7 Can AMARL be utilised with Deep MARL techniques?

6700HQ 2.60GHz CPU with 32 GB of RAM. In addition, all experiments which are

detailed above were run multiple times (five times), as is standard when evaluating

stochastic processes, and the final policies which were gained through the learning

process were evaluated many times (10,000) in order to ensure that the results are

statistically significant [8].

4.3.1 Case Study One: traditional MARL Radiation Avoidance

Patrolling Domains

The first set case study in which AMARL is utilised contains three separate domains,

as shown in Figure 4.3, which are based on multi-agent inspection and maintenance

problems within nuclear power plants. In these scenarios, autonomous robotic sys-

tems are tasked with mission-critical objectives corresponding to infrastructure in-

tegrity within nuclear power plants. Furthermore, due to the setting, these systems will

be exposed to high doses of radiation which at prolonged exposure is fatal to humans

and damaging to robotic agents, making these scenarios safety-critical. The robotic

systems which are running within the domains introduced must visit all location-

based goals, here on called patrol points, at least three times while attempting to

maximise battery conservation and limiting time spent within irradiated zones due

to potential damage to their hardware. Due to the nature of the problem being inves-

tigated within this case study, all domains were constructed within a ROS patrolling

simulator [110].
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Figure 4.3: Three navigation domains in which n agents must collaboratively visit
patrol points (red diamonds) three times while avoiding areas of high radiation (areas
in red with black circles) as much as possible.

Map A, as seen from Figure 4.3, is a navigation domain which consists of eight

patrol points, two of which are located within an irradiated zone. There are three

possible ways for agents within this domain to visit these patrol points, through the

two entrances, which are the slightly safer options or to travel through the irradiated

zone, increasing time spent within the risky area. This domain is given a two-agent ho-

mogeneous system that uses its battery extensively when making choices to navigate

between patrol points and a safety requirement of keeping the probability of system

damage to 10%.

Map B is a navigation domain consisting of six patrol points with a single patrol

point within an irradiated zone. There are two options for the agents within the

system to navigate to this patrol point, one which reduces the travel time in this

radiation and one which will involve agents spending more time subjected to this

radiation. Therefore, this domain is given a two-agent homogeneous system that

drains its battery when making choices to navigate between patrol points and a safety

requirement of keeping the probability of system damage to 20%.

Map C is a navigation domain that consists of eleven patrol points, with three

patrol points within irradiated zones. The top two irradiated zones are less dangerous

than the centre zone, so a new system setup is utilised to balance these differences. The

system utilised in this domain is a three-agent heterogeneous system comprising two

different types of agents. Two lightweight agents are used to move around the larger

domain space while using less battery; however, due to the emphasis on lightweight

hardware, the agents are less shielded against radiation. Finally, one heavyweight
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agent is used to contrast the others, using more battery to move its hardware around

the domain but holding more protection against radiation. This collaborative system

is tasked to utilise its different hardware capabilities to solve the problem efficiently

and a safety requirement of keeping the probability of system damage to 20%.

Throughout all these domains, the agents receive a numerical reward when visiting

a patrol point based on how long it has been left without an agent visiting it. These

rewards are individually given to the agent who visits said patrol point.. However, in

order to emphasise patrol points that have been visited less, this reward is reduced

by how many times it has already been visited, meaning the agents are pushed to

visit the patrol points intelligently. This should promote agent behaviour that does

not unnecessarily visit patrol points that no longer require agent interaction and seek

out patrol points that have been neglected. This reward structure, which can be seen

in Equation 4.1, promotes very efficient battery conservation behaviours and quick

goal completion, where t i me_el apsed is the time that a patrol point has been left

unattended and t i mes_vi si ted is the times a patrol point has been visited. Agents

are given a punishment when an agent is damaged by radiation, which is decided

through probability based on the time spent within the irradiated area.

f (x)=

t i me_el apsed/t i mes_vi si ted , if t i mes_vi si ted < 3.

0, otherwise.
(4.1)

In these missions, the MAS is expected to learn to complete its mission while using

as little battery as possible. In order to evaluate the performance of the MAS, the

cumulative battery of the system is used, with cumulative battery meaning all of the

agents’ remaining batteries are added together at the end of the learning episode. It

should be identified that when a system is called efficient, it implies that it has a large

amount of unused battery. Furthermore, the system is tasked with remaining below a

certain probability of succumbing to damage throughout a learning episode, and this

is evaluated using cumulative risk. Since a risk is taken every time an agent within the

system enters a potentially dangerous area, the probability associated with these risks

is added together to produce an overall probability, or cumulative risk, of the system

being damaged throughout the learning episode. Therefore, a system is deemed to be

acting safely if the cumulative risk throughout a learning episode never exceeds the

acceptable risk level.
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4.3.1.1 Experiment 1: Standard MARL

When MARL is applied to a safety-critical and mission-critical scenario, such as the

ones Maps A, B, and C introduce, the learning agents can produce efficient behaviours

that satisfy functional objectives reliably. However, as the process of MARL is inherently

stochastic, it is likely that during the learning process, safety requirements will be

repeatedly abused, and there is no guarantee that the final system behaviour will not

violate these requirements.

To demonstrate the shortcomings of MARL within safety-critical and mission-

critical scenarios and to act as a benchmark, Map A and its MARL system are utilised

with independent Q-learners without the guidance of AMARL. This system utilised the

same reward structure as shown in Equation 4.1 to guide the learning and was allowed

to run for 300 learning episodes. The results from these learning runs can be seen in

Figure 4.4 and show the average risk and battery over these 300 learning episodes in a

total of five learning runs, with error bars detailing the standard deviation between

these five learning runs.

The results that can be seen from these learning runs demonstrate the efficiency

of MARL in maximising a simple reward function, with battery levels towards the end

of the learning runs being in the high 20s and exceeding beyond this, meaning that

the cumulative battery of all agents in the system was above 30% in the final policy.

However, without any guidance to drive the system away from unnecessary risk, the

cumulative risks that the system took were erratic, unpredictable, and repeatedly

violated safety requirements during the learning process. Even with a punishment in

the reward structure that attempts to dissuade agents from entering into areas of risk

unnecessarily, the system violated safety requirements late into the learning process.

This demonstrates the limitations of MARL that attempts to incorporate safety as a

product of agents’ reward structures; the balance between conflicting objectives is

difficult to find and offers little to no confidence in the system’s safety.

4.3.1.2 Experiment 2: Initial AMARL Implementation

The AMARL approach is utilised in the same problem domain, Map A. The system is a

two-agent homogeneous system utilising independent Q-learning, as in Experiment

1, allowing a comparison between MARL and AMARL.
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Figure 4.4: Cumulative battery and risk results from five individual learning runs
for the Individual Q-learners including two homogeneous agents in Map A without
AMARL Guidance.

This experiment was conducted by first following the four stages of AMARL. Start-

ing with stage one, MAP A was analysed regarding states, transitions, rewards, costs,

and safety issues. There are eight objectives across seven rooms and a finite number

of ways to traverse between different objectives. The states within this domain can be

derived from the eight objectives if the agent behaviours for transitioning between

them are abstracted away. However, each objective has four conditions (not visited,

visited once, visited twice, visited three times), meaning these eight abstracted states

must also contain four conditions. The transitions, when abstracting away the specific

agent travel behaviours, are simply transitions between these abstracted states. The

rewards given to the agents are based on them reaching the abstracted states that have

not been visited three times, but since a mission can only be deemed as successful if

all abstracted states are visited three times, this reward can be abstracted away. The

cost of the transitions are related to the battery that is used in the worst-case, as each

transition will have a different worst-case battery usage, which will vary depending
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on the transition made. The safety features are related to the probability of risk when

entering, leaving or transitioning through possibly irradiated zones which are shown

as red-shaded rooms in Figure 4.3.

After this analysis, stage two is followed to create an AMDP, for which aspects of

the PRISM model can be found in Listing 4.1. Where the states are abstracted down to

the eight patrol points and added to the PRISM model from both agent one and two

on lines 3 and 4. Also, the conditions of these states are encoded, allowing them to be

visited a maximum of three times and for these visits to be tracked, as seen on lines 6

and 7. The transitions between these abstracted states are encoded on lines 12 and 13

and simply change the agent’s state to the new state and increase the visit count of

this state. The rewards for reaching the abstracted states are abstracted out entirely.

As mentioned previously, the only way for a mission to be completed successfully is

for all eight states to be visited three times. Therefore it was possible to set the target

end state of the model to encompass all of these objectives as encoded on line 10,

removing the need to incorporate these rewards. The battery costs of transitioning

between the states are able to be encoded and tracked using the reward structure

named ‘battery’ from line 20 onwards. At the same time, the safety properties can

also be encoded and tracked from another reward structure named ‘risk’ on line 16

onwards.
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1 const N = 3;
2 module RobotSystem
3 r0 : [0..7] init 1;
4 r1 : [0..7] init 2;
5

6 visits0 : [0..N] init 0;
7 visits1 : [0..N] init 0;
8 done : bool init false;
9

10 [] visits0 >= 3 & visits1 >= 3 & visits2 >= 3 & visits3 >= 3 & visits4 >= 3
& visits5 >= 3 & visits6 >= 3 & visits7 >= 3 & r0 != 3 & r0 != 4 & r1 !=

3 & r1 != 4-> (done’= true);
11

12 [visits0_1_0] !done & r0=0 & visits1<N -> 1:(r0’=1)&(visits1’=visits1+1);
13 [visits0_1_1] !done & r1=0 & visits1<N -> 1:(r1’=1)&(visits1’=visits1+1);
14

15 endmodule
16 rewards "risk"
17 [visits0_3_0] true : 0.1;
18 [visits0_3_1] true : 0.1;
19 endrewards
20 rewards "battery"
21 [visits0_1_0] true : 3;
22 [visits0_1_1] true : 3;
23 endrewards

Listing 4.1: PRISM Language: Model for a MARL System. Appendix A.

With the AMDP created, stage three can begin, where the PRISM model checker

is utilised. PRISM uses PCTL requirements to direct the model checking to identify

Pareto-optimal policies that end in mission success and meet all functional and safety

requirements. For example, for MAP A, the PCTL command R‘battery’min=? [C<=200],

R‘risk’min=? [C<=200] was used. This will cause the probabilistic model checker to

find a Pareto front of safe abstract policies that minimise the energy usage of the

MARL system and the risk the system takes. Next, Algorithm 5 sorts the policy which is

unsorted and unfiltered and displays safe abstract policies in a readable format. With

all previous stages complete, stage four was started by the domain expert selecting a
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Figure 4.5: Cumulative battery and risk results from five individual learning runs for
the Individual Q-learners including two homogeneous agents in Map A with AMARL
Guidance.

synthesised safe abstract policy. This policy was used to constrain the MARL system

within the lower level domain problem allowing the MARL system to enter into risky

scenarios and therefore complete the mission goal, but with the assurances of the

safe abstract constraints that the probability of an agent coming under harm never

exceeding a set amount.

The results from this initial AMARL implementation can be seen in Figure 4.5,

where the average cumulative battery and risk over five learning runs are displayed

with their standard deviation. The cumulative risk is consistently around 7%, which

is below the 10% safety requirement showing that the formal guarantees of AMARL

have held. We can see in Figure 4.6, which contains both the results from MARL and

AMARL, that the system’s battery is significantly lower than unconstrained MARL

until episode 200 where it drastically improved. This is likely due to the constrained

nature of AMARL, making it more difficult initially for the system to find as efficient be-

haviours than without the AMARL constraints. The unconstrained AMARL algorithms
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Figure 4.6: Averages from Experiment One and Two over five learning runs.

find behaviours that reliably conserve more battery towards episodes 230 on-wards,

though to a lesser extent than the AMARL system. A noticeable difference between the

unconstrained and AMARL-constrained results is that the risk levels of the AMARL-

constrained system appear to be a relatively flat line through all 300 episodes, never

moving over a seven per cent probability of an agent succumbing to damage. This is

the main draw of AMARL, the assurances that are delivered. These assurances are that

the system will be free to learn a functional policy while never exceeding a certain

probability of negative outcomes, and the final policy will meet functional and safety

requirements.

4.3.1.3 Experiments 3-5: Differing Algorithm Structures and AMARL

With AMARL shown to function with Independent Q-learners in Experiment 2, the

simplest implementation of a MARL system, the evaluation of AMARL continued to

demonstrate its ability to be utilised with other MARL techniques. Three algorithms
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were evaluated using Map B and the system that is utilised within it; these were

chosen due to the algorithm’s structural differences, utilising game theory and direct

policy search techniques, which, as well as altering the implementation, also alters

the system’s learning behaviours. Different algorithms were used with AMARL to

attempt to demonstrate the plugin nature of AMARL and that the approach allows the

individual benefits and behaviours of these varying algorithms to be exploited. The

first algorithm that is used is the constrained independent Q-learning algorithm that

was utilised previously. This is reused to highlight the patterns caused by the unique

behaviours of the other two newly introduced algorithms.

The second algorithm is a direct-policy search learning algorithm known as ‘Win

or Lose Fast (WoLF) - Policy Hill Climb (PHC)’ (WoLF-PHC). WoLF-PHC extends Q-

learning by utilising a probabilistic policy which follows a probability distribution

function, meaning that for every set of actions in a state, there is a probability dis-

tribution that dictates how likely each action is to be selected, rather than selecting

the action with the highest Q-value as with standard Q-learning. In order to drive

efficient learning, WoLF-PHC will allow continued exploration and learning when it

is performing well. However, when its performance drops, it will attempt to end the

learning episode as quickly as possible.

The third algorithm is a variant of Q-learning which utilises game theory tech-

niques, named Team-Q. Team-Q consists of a Markov game being created every time

the agents’ within the system must take action. These games can be competitive,

but the agents within the domain play cooperative Markov games due to the Map B

domain being cooperative. Here the agents receive rewards based on the utility of

both agents’ actions, meaning behaviours begin to coordinate towards the mission

goal, making agents capable of more intelligent decision-making.

With the system in Map B being outfitted with standard temporal difference learn-

ing, direct policy search, and game theory techniques, the AMARL approach was

utilised, allowing for an investigation into how AMARL can guide these different learn-

ing techniques. As with all the Radiation Avoidance Patrolling Domains, the objective

is for all patrol points to be visited three times. However, in Map B, the system must

keep the probability of damage occurring to the system below 20%. Furthermore, it

must do this while attempting to maximise battery conservation. The results from

running these experiments with independent Q-learners can be seen in Figure 4.7,
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Figure 4.7: Cumulative battery and risk results from five individual learning runs for
the Constrained Individual Q-learners including two homogeneous agents in Map B.

WoLF-PHC learners can be seen in Figure 4.8, and Team-Q learners can be seen in

Figure 4.9.

The error bars in Figure 4.7 show that the variance between the five learning

episodes is large during the beginning and slowly reduces in size until similar policies

are found at the end of the learning episodes. The independent Q-learners’ results

are as one would expect, given that the agents are learning with no regard to each

other’s actions, and begin with an osculating battery conservation value, with battery

conservation being the optimising value. This occurs due to two separate agents

attempting to utilise Q-learning in an environment that they are both manipulating,

meaning the optimal action choice at a certain time step depends on the previous and

current actions of all agents within the system. However, as these agents are operating

with a mutual ignorance of each other, this will lead to fluctuating values. Due to the

complexity that is involved with two agents learning in a shared environment with

this mutual ignorance, it can take a larger number of learning episodes for the agents
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Figure 4.8: Cumulative battery and risk results from five individual learning runs for
the Constrained WoLF learners including two homogeneous agents in Map B.

to find efficient policies, as can be seen with a sudden jump in battery conservation at

episode 140, but also find successful policies, as can be seen, by the long sequence of

learning episodes were battery depletion events occurred. Crucially, however, with the

guidance of AMARL, it can be seen that the risk level never exceeded 20% throughout

any of the learning runs, and this continued after learning was concluded.

When looking at Figure 4.8, which shows the results of WolF-PHC, the ‘Win or

Lose Fast’ behaviour of the algorithm can be seen from episodes 30 to 100, where

the algorithm quickly ended the learning episode when performance decreased in

order to find a more efficient behaviour. It can be seen that this algorithm typically

found highly efficient behaviours from learning episode 130 and continued to have

the greatest performance regarding battery conservation out of the three algorithms.

The greater variance between learning episodes that can be seen between episodes

10 to 120 shows the probability distribution sampling techniques that underpin the

algorithm and, in an unconstrained scenario, would likely result in frequent high
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Figure 4.9: Cumulative battery and risk results from five individual learning runs for
the Constrained Team-Q learners including two homogeneous agents in Map B.

cumulative risk. However, due to the guidance of AMARL, this algorithm which relies

on greater flexibility in terms of action selection exploration, never exceeded the lower

than 20% chance of damage requirement.

When looking at Figure 4.9, the game theory-led behaviour of Team-Q can be

seen regarding the steady climb in regards to battery conservation as the agents

share knowledge of their actions and work directly to achieve the mission goal. This

intelligent joint decision-making led to Team-Q reaching consistent mission success

quicker than the other two algorithms, which can be seen from episode 70 onwards.

However, due to the limitations of Team-Q and the Markov game foundations, the

battery conservation levels remained the lowest out of all three algorithms. This is due

to the added complexity that these Markov games add to the learning process and

the increased time requirements that this adds. Also, a common issue with Markov

game-led algorithms is the difficulty of attributing awards to specific agents within

the system and specifying which individual action out of the joint actions had the
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greater utility. These issues likely impacted the efficiency of the learning process and

would require longer learning runs to produce the same battery conservation levels

as the other two algorithms. However, due to the intelligent joint decision-making

technique, Team-Q delivered a final policy with the lowest level of risk. As with the

other two algorithms, under the guidance of AMARL, they never exceeded a risk level

of 20%.

The results of these experiments which were summarised in Table 4.3, show how

AMARL allows the different behaviours and benefits of various reinforcement learning

techniques to continue to be utilised. In regards to the variance in battery and risk

found in each technique, five learning runs, it can be seen that independent learners,

which do not factor in other agents’ actions within their learning process, would have

the greatest differences, while Team-Q which directly utilises other agents actions in

their learning process would have the lowest variance. At the same time, it is shown

that Team-Q was the quickest to find an approach that resulted in no battery deple-

tion events and the lowest risk, but due to the larger Markov game structure that is

generated at each joint state in the domain, it took longer to policies that produced

more reserved cumulative battery. While with WoLF-PHC, due to it being a direct-

policy search algorithm, was able to utilise its more flexible probability-based action

selection behaviour to locate the highest amount of reserved cumulative battery over

the learning periods. However, WoLF-PHC, like independent Q-learners, do not take

into account other agents during its learning process, and as such, produced higher

variance in its learning runs. But due to the ‘win or lose fast’ behaviour, it uses it was

still able to outperform independent Q-learns in every aspect.

Experiments 3-5 show the plugin nature of AMARL, and despite its constraint-

based approach to safe MARL, is still able to be utilised without removing the indi-

vidual benefits of certain learning techniques. As has been shown in Table 4.3, the

safety, efficiency, and amount of variance of the learning system can be altered by the

technique it uses, and AMARL allows flexibility of choice.

4.3.1.4 Experiment 6: Heterogeneous Systems and AMARL

After demonstrating different algorithm structures plugged into AMARL, it is very

relevant to question how different system types can be plugged into AMARL. One of
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Properties Indi Q-Learners Team-Q WoLF-PHC
Final Cumulative Battery 64% (Average) 51% (Average) 68% (Average)
Final Cumulative Risk 15% (Average) 10% (Average) 11% (Average)
Final Battery Depletion Episode 130 Episode 60 Episode 100
Variance Highest Lowest Moderate

Table 4.3: Summary of Results from Experiments 3-5 including Independent Q-
Learners, Team-Q Learners, and WoLF-PHC learners.

the primary benefits of multi-agent systems is the ability for agents to delegate tasks

based on individual functionality, utilising their heterogeneity. This heterogeneity is

a strength that can be utilised in many different scenarios. As such, Map C and its

system are used to investigate how heterogeneous systems can be incorporated into

the AMARL approach. This system contains three agents, two of which are lightweight

and use less battery, and one which is heavier and therefore uses more battery to move

but has increased protection from radiation.

In order to utilise AMARL for the mentioned heterogeneous system, stage one

must be followed with further attention given to how the different abilities of the

agents will affect costs, safety issues, and the system’s capabilities to reach goals. In

stage two, simple changes are made to the process of creating an AMDP within the

PRISM language or a language from another verification tool. Certain instructions

must be added that capture the agents’ independent capabilities, such as being able

to move to states that other agents cannot, and the reward structures must capture the

differing properties of these agents. In the case of the system in Map C, these differing

properties are the amount of battery that an agent uses to perform the same task may

differ drastically, or the probability of an agent sustaining damage may be less than

other agents. These differences can be captured by assigning labels to transitions, such

as [A1_0_1], where A1 is the name of the agent, 0 is the current state, and 1 is the state

to be transitioned to. By changing the agent name within the label, it is possible to

show that only certain agents can make certain transitions and to assign agent-specific

costs and rewards to said transitions.

When the safe abstract policies are synthesised in stage three, the policies are pro-

duced that are assured to meet safety and functional properties as specified. However,

a benefit of AMARL, as well as the functional and safety assurances, is its ability to

87



CHAPTER 4. ASSURED MULTI-AGENT REINFORCEMENT LEARNING

Figure 4.10: Map C Partitioned for the Heterogeneous System.

intelligently suggest task partitions for multi-agent systems. This is apparent when

using AMARL with heterogeneous systems with distinct abilities. This extra benefit is

the product of producing Pareto-optimal policies, which naturally partition tasks to

agents which will be more efficient at completing them given specific properties. In

regards to Map C, the abstract safe policy partitions can be seen in Figure 4.10. Here it

shows how the model checker has synthesised a policy that assigns tasks to specific

agents based on their strengths and weaknesses. The two lightweight agents were

given the task of travelling greater distances which corresponds to less battery con-

sumption, and the protected agent travelling smaller distances but almost exclusively

to irradiated zones, reducing the risk to the system.

In Figure 4.11, the results of running the heterogeneous system a total of five times

can be seen. The efficient partitioning of tasks can be seen when looking at the battery

depletion events in Figure 4.11. After only 20 learning episodes over five learning

runs, the three-agent system learned to complete patrols consistently with no agents

within the system, fully depleting their batteries. After this, with the protected agent

only allowed to move short distances and primarily to irradiated patrol points, the

two smaller agents gradually learned to maximise their battery conservation over

the remaining 180 learning episodes. Because of the partitioning of risky actions

to the protected agent, the amount of risk throughout the learning episodes stayed
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Figure 4.11: Cumulative battery and risk results from five individual learning runs for
the Individual Q-learners including three heterogeneous agents in Map C with AMARL
Guidance.

mostly between 8% to 15%. However, as the learning progressed from episode 130

onwards, the variance between these learning runs in terms of risk became small to

non-existent, remaining at around 11%.

What experiment 6 aimed to achieve was to showcase how AMARL can be used to

produce safe abstract policies that allow the individual capabilities of agents within a

system to be utilised effectively. Through the safe abstract policy that was produced

and then shown in Figure 4.10, and the following five learning runs displayed in

Figure 4.11 it has been shown that AMARL can be used to assure functional and safety

properties and also create efficient task partitions.

4.3.2 Case Study Two: Deep MARL Infiltration Domain

A substantial amount of MARL research involves using neural networks to facilitate

learning [9], otherwise known as deep learning, where the word ‘deep’ is in reference

to the layers within a neural network. In order to demonstrate that AMARL is a valid
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approach concerning the deep MARL research community, a navigation domain was

created within a simulator that warrants deep MARL techniques. This was created

using the Unity games engine and a MARL system that utilises the MLAgents plugin

[75]. This new domain, as shown in Figure 4.12, is based upon the premise of a team of

agents which are given an infiltration and collection mission, which would fall under a

defence and security setting. Infiltration and or collection-styled missions are missions

that place robotic systems in the role of an adverse force attempting to infiltrate a

space. This domain, which consists of nine rooms and various connecting hallways, is

given a system of three homogeneous agents, which are required to navigate through

the rooms and hallways collecting items, in this case, flags, which are located in every

room. The system must collect at least six out of nine flags for the mission to be deemed

a success while learning how to navigate correctly through the domain. However, as

this is an infiltration domain, the system must remain covert and undetected by

the surveillance cameras protecting these flags. As the agents move into view of

these surveillance cameras, there are set probabilities of agents being detected by

the partially monitored feeds, and the number of instances of coming into view of a

camera should be limited. The cumulative risk of an agent being detected should be

kept below 30%.

The agents within this system act as independent learners, using the deep rein-

forcement learning algorithm called Proximal Policy Optimization (PPO) [121]. This

algorithm attempts to minimise a cost function while refraining from making consid-

erable changes to the previous policy it held using trust region updates. This allows

learning to occur without the agent changing its behaviour rapidly for a reward that

may be sub-optimal or dependent on sparse conditions. Furthermore, to promote

more persistent exploration, Intrinsic Curiosity [104] is also factored into the learning

algorithm. Intrinsic Curiosity is an additional feature that rewards agents for finding

actions within states that do not return the expected outcome, pushing agents further

into unexplored areas.

Utilising AMARL in this domain requires the analysis of stage one, recognising the

states, transitions, goal locations, and the risk involved with moving between these

states. The risk involved with making certain transitions vary with different hallways

and cameras which are partially operated. Cameras h2, h5, h7, h8 have a probability of

5% of detecting an agent, cameras h3, h4 have a probability of 10%, and camera h10
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Figure 4.12: An infiltration-themed navigation domain built within the Unity games
engine, consisting of three homogeneous agents, surveillance cameras which must be
avoided, and nine rooms which contain flags that must be collected.

has a probability of 15%. In stage one, it is possible to treat entire rooms as a single

state and each hallway being treated as a single transition, meaning in the domain’s

initial state, all transitions will result in a goal being reached.

In stage two, using the information gained in stage one, an AMDP was created

using the Algorithm 3 by inputting a multi-dimensional matrix which contains nine

columns and nine rows, one row for each of the abstracted states within the domain

and one row each for the possible transitional relationships between these abstracted

states. In this stage the functional and safety requirements are also identified, here

the overall probability of an agent being discovered should remain below 30%, and at

least six out of nine goals should be reached.

In stage three, this AMDP was then subjected to quantitative verification, where

the requirements were to maximise the potential goals retrieved and minimise the

encounters with surveillance cameras. The resulting policy, which can be seen in

Figure 4.13, allows robot one to pass through hallway h3 to collect the rewards in

rooms rE ,rG , and rH , robot two to collect the reward in rooms r A and rB , and robot

three moving through hallways h3 and h5 to collect the rewards in rooms rC and ri .

The policy was synthesised based on the availability of rewards without encounter-

ing cameras and the probability of an agent being detected depending on the specific

camera encountered. As can be seen, based on the policy that has been synthesised,
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Figure 4.13: Constraining Safe Abstract Policy with Inaccessible Areas in Grey.

the assurances given are that the MARL system will converge to a cumulative reward of

seven and a cumulative probability of detection that does not exceed 0.3 or 30%. This

means that the domain expert can move forward with confidence if these assurances

meet the mission requirements or will know not to proceed if this falls short of said

mission requirements. In order to demonstrate these assurances, the three-agent

system was constrained in stage four under the above policy and allowed to learn over

1400 episodes, with 6000 steps per learning episode. The agents within this simulator

are given the physical ability to move left and right, forward and backwards. As input,

they have five laser sensors which protrude from the front of the agents and are rotated

around the agent to give the agents a 100-degree view of the surrounding world.

As can be seen from the five individual learning runs that are shown within Fig-

ure 4.14, during the early stages of learning, all three agents struggled to reliably move

out of rooms r A, rB , and rC this is expected due to the constraints and the agents inter-

fering which each other within this initial area. However, it should also be noted that

within the initial stages of deep MARL, it is unlikely to find meaningful behaviours and

data due to the neural network having to collect experiences to refine its behaviour

using batches. The system then learned to collect reliably from rooms r I and rE after

450 learning episodes, and this may be due to the relatively large batch sizes that the

system uses to update its neural networks. The agent, which was given flexible con-

straints to move from rooms r A, rE and then to rooms rG and rH struggled to explore

reliably around hallway h9, possibly due to lower exploration rates and the batched
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Figure 4.14: Results of Five Learning Runs of Deep AMARL. Where n is the Episode
Number Shown on The Graph.

nature of neural networks at the point of encountering said hallway and as such the

agent had a slow learning process from episodes 5500 to 17300 before reliably the

system began to collect all seven possible goals. As is expected with any reinforcement

learning process, the behaviour between episodes is erratic, meaning the expected

rewards and risk can vary drastically or minimally. The goals received generally stayed

within a margin of one for each episode, meaning the system would collect one less

goal or one more than expected at the time of learning. However, the same can not be

said for the risk involved. The risk levels changed erratically throughout all learning

periods due to the learning process’s stochastic nature. Despite the erratic changes, it

can be seen that the safety requirements of the mission were never neglected, with

the system never exceeding a 30% chance of being caught.

Over five learning runs, the deep MARL system continuously found all seven

available goals, reaching its functional requirements while never breaching safety

requirements. Demonstrating that the safe abstract policy and its assurances were

upheld due to the ADMP being constructed correctly. This experiment shows how

93



CHAPTER 4. ASSURED MULTI-AGENT REINFORCEMENT LEARNING

AMARL can be utilised with deep learning techniques by creating an abstracted AMDP

from the problem domain.

4.4 Summary

This Chapter on the safe MARL approach known as AMARL displays how it can be

utilised to meet safety and functionality requirements with varied MARL techniques

and systems. This approach consists of four stages: three stages involve creating

and analysing an abstracted version of the problem domain, and one stage involves

constraining the low-level problem domain. Before AMARL can be utilised, it must be

established that enough preliminary information is known about the environment

and the mission needs. While this preliminary does not have to be extensive, it must

include all safety and functional requirements information.

1. Stage one involves defining a set of functional objectives and safety constraints

that align with the mission requirements. Next, the domain must be analysed to

determine which transitions and states are vital for inclusion within an AMDP.

Those included need only to contain information that directly relates to these

functional or safety requirements, such as transitions that result in moving

rooms, but not the states within said rooms.

2. Stage two consists of the formal definition of an AMDP, utilising the decisions

made in stage one on how to abstract the states. This AMDP is constructed in

the PRISM language and can be accomplished manually or using this Chapter’s

Algorithm. This algorithm allows the automated construction of a formal AMDP

with minimal input. The AMDP also consists of reward structures used to track

objectives and safety concerns throughout the model analysis in stage three. This

stage allows efficient analysis of the problem domain and also allows analysis of

the problem where reward or transition functions are unknown.

3. Stage three involves running quantitative analysis over this AMDP, which is

guided using the functional and safety requirements established in stage one

within the form of PCTL. This quantitative analysis will synthesise paths through

the model that meet both these functional and safety requirements, known as
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safe abstract policies. While there is a possibility that no safe abstract policies

will be synthesised due to the functional and safety requirements, this is a clear

message to not deploy the system.

4. Stage four consists of choosing a safe abstract policy most appropriate for the

system’s needs and using this safe abstract policy to constrain the MARL system.

This removes a lot of complexity of safe MARL by simply allowing MARL to run

traditionally under these assured constraints. This allows agents to enter risky

states or make risky transitions but only within the guidelines of the constraints.

AMARL was evaluated in a ROS-based patrolling simulator and the Unity games

engine. These were used to demonstrate the flexibility of the plugin style approach

of AMARL by showing it being utilised with three different types of traditional MARL

techniques and a deep MARL technique, as well as homogeneous and heterogeneous

systems. These evaluations showed that AMARL could be used to allow safe MARL

to occur while being assured to meet or improve upon both functional and safety

requirements during and after the learning process.

The first limitation of AMARL revolves around inaccuracies in the initial two stages.

The assurances provided by the safe abstract policies that are synthesised by quan-

titative verification only hold if the AMDP is constructed correctly. Therefore, no

guarantees can be made regarding the safety of the MARL system. This issue is ad-

dressed in chapters 5 and 6, which attempt to correct issues in the AMDP description

manually and autonomously without restarting the lengthy MARL process. The sec-

ond limitation of AMARL relates to the synthesis of safe abstract policies, as there is no

guarantee that any policies will be produced after a time-expensive analysis. However,

while this is a limitation, it is also a valid outcome that states that deploying the safe

MARL system would not be safe.
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Chapter 5

AMARL with Partial Policy Reuse

In Chapter 4, we introduced the abstract multi-agent reinforcement learning ap-

proach (AMARL), which allows for the synthesis of safe abstract policies using safety

constraints and efficient quantitative verification. However, when an AMDP fails to

sufficiently represent the real world, e.g. due to changes over time, the information

about the low-level domain that the MARL system learned is rendered obsolete, and

guarantees on safe behaviour are invalidated.

A significant issue with addressing inaccuracies in the AMDP is that the time-

consuming MARL process must be restarted from scratch. This chapter provides an

overview of AMARL with Partial Policy Reuse (AMARL-PPR) and an approach which

reduces the time and cost related to rerunning long MARL processes. In addition,

AMARL-PPR increases learning speed by reusing aspects of previously optimised or

sub-optimised policies when changes to the AMDP are required. This approach also

reduces the amount of manual effort necessary to reuse partial policies.

5.1 Introduction

This Chapter introduces the AMARL-PPR process, as shown in Figure 5.1. The pro-

posed process is initiated when the domain expert identifies that the formal assurances

of safety and functionality requirements no longer hold.

When we consider the initial AMARL approach as described in Section 4, we see

that the formal assurances that the system meets safety and functional requirements

are supplied through the synthesises of safe abstract policies using quantitative verifi-
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Figure 5.1: Partial Policy Reuse with AMDP and Q-Table Value Reuse.

cation. However, using quantitative verification in this context can be computationally

expensive for large models. In order to mitigate this limitation, the problem may be

abstracted. This abstraction is driven by safety and functionality properties such that

the resulting AMDP is reduced to a size that can be efficiently verified on the available

hardware and in a timely manner. In addition, abstracting domain information for the

AMDP in this way can provide a high-level view of the problem, thus allowing AMARL

to be utilised with partial domain knowledge. With AMARL, any information that

does not directly relate to a safety or functional objective can be discarded. When this

abstraction is completed correctly, meaning all relevant information is captured for an

unchanging domain problem, then the AMARL process produces formal assurances

for functionality and safety that will hold true.

The issue with AMARL utilising AMDPs comes from the entirely plausible event

of an abstraction being completed incorrectly due to incomplete knowledge or the

problem changing over time. This would mean that the formal assurances that are

synthesised through quantitative verification will be acquired from an inaccurate

model of the problem, resulting in assurances that do not hold in reality. If this is the

case, then the safe abstract policies used to guide the constraint of the AI agents may

restrict the agents from completing goals or allow them to act recklessly.

When this occurs, AMARL must be utilised again from stage one, and the lengthy

learning process must be restarted. When this learning process is restarted, everything

the system has learned is discarded as the information from the low-level domain

that has been learned may no longer be useful when the new safe abstract policies are

synthesised.
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AMARL-PPR overcomes these issues while meeting two main aims. The first of

these aims is to reduce the amount of information which is discarded between runs.

AMARL-PPR leverages previously learned knowledge to reduce the learning time

in subsequent learning runs. Domain experts can partially reuse existing policies

by analysing changes within the problem domain to determine which areas remain

unchanged and which areas are likely to be impacted in terms of safety or functionality.

This allows those parts of the policy previously developed for use in these unchanged

areas to be reused. Learning is then confined to the areas in which the change has

impacted. The second aim is to reduce the amount of manual manipulation and

decision-making required by the domain expert when reusing learned information.

The next section describes the AMARL-PPR approach, which takes two safe ab-

stract policies and a matrix data structure storing a previously learned policy as input.

5.2 Approach

AMARL-PPR builds upon the standard AMARL process, initially introduced in Fig-

ure 4.1, with policy reuse connected directly to stage four of the original process. An

example of how AMARL and AMARL-PPR are interconnected can be seen in Figure 5.2.

As the MARL system is learning within the constrained low-level environment or after

the learning has concluded, the AMARL-PPR process can be initiated. AMARL-PPR

involves six potential steps, beginning with a question posed to the domain expert:

"Does the safe abstract policy still hold?". This question requires the expert to evaluate

whether the problem domain is still in a condition that satisfies the original modelling

assumptions. This will result in one of two outcomes.

The first outcome results when the domain expert identifies that the safe and

functional assurances still hold, having analysed the environment to see that no

change has occurred that materially impacts the potential functionality or safety of

the system. Step 2 (continued MARL) can take place in this case, and the MARL system

is free to continue learning.

The second outcome results when the domain expert identifies that the AMDP

does not correctly capture the low-level domain and that the safe and functional assur-

ances no longer hold. This triggers the third step (Update AMDP and Requirements),

which involves the update of the AMDP to match the current state of the lower-level
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Figure 5.2: Partial Policy Reuse incorporated within the AMARL Approach with the
policy reuse process shown within the green dashed box

domain and, if required, the safety and functional requirements. This will involve

manually changing the AMDP model within the PRISM language and the safety and

functional requirements within the PCTL syntax. This allows for a degree of flexibility

for the domain expert following the AMARL-PPR process, allowing the mission and

safety requirements to be reanalysed and redefined to reflect the current state of

the problem they face. At the same time, the domain expert must also be aware of

and store the policy information (in the form of Acceptable Q-Table Values) that was

learned in previous runs of the AMARL process.

In step 4 (safe Abstract Policy Synthesis), the updated AMDP is analysed with

respect to the safety and functional requirements encoded as formal logic using

quantitative verification. This results in the synthesis of safe abstract policies which

are guaranteed to allow the system to meet safety and functional requirements. Once

a safe abstract policy has been selected, it can be directly compared to the previous

safe abstract policy, as shown in Figure 5.3. Here the transitions that remain the

same between the two safe abstract policies can be used to inform the rest of the

approach within step 5. In step 5 (Partially Update Q-Tables), the differences between
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the new and old safe abstract policies can be used to determine which aspects of the

policy learned can be reused and which need to be discarded. This allows for selected

aspects of the Q-table values to be copied over for the future MARL system to use as a

foundation. Once the partial update of the Q-tables has been completed, then step

6 can be followed, which involves the new safe abstract policy being used to guide

the constraint of the lower-level problem domain. Learning can continue with partial

knowledge from the old MARL learning run.

At step 6, the MARL is initialised under constraints that are guided by this new safe

abstract policy. After step 6, the process reaches the original question posed, allowing

the process to be repeated as many times as needed to produce a safe MARL policy

that meets safety and functional requirements; however, it may be the case that this

process is only needed once. The process can be stopped when the question reliably

produces the answer that the safety and functional assurances hold. However, suppose

an event occurs where the domain expert notices an issue after a prolonged period.

In that case, the process can also be initiated on the condition that the previous safe

abstract policy and lower-level policy details are available.

The policy reuse approach is encoded in Algorithm 6 and reduces the manual

manipulation required by the Domain Expert. Throughout the description of this

algorithm, the tabular data structures are discussed as Q-Tables and Q-values. This

algorithm compares the problem domain’s original safe abstract policy with the newly

defined safe abstract policy. Similarities between these abstract policies indicate there

are learned values that the algorithm can retain. Therefore, it is possible to have the

Q-values of the agents copied over from the previous Q-Tables into the newly initiated

Q-Tables for the different agents within the system. In lines 2 to 26, the algorithm

loops through the previous and the new safe abstract policies, which share a format

with the example in Figure 5.3. If identical instances exist in these abstract policies,

then the algorithm will find them (line 4). Next, the string is split to allow the abstract

state, the state transitioned to, and the agent making the transition to be identified.

Once these have been identified, the low-level state action pairs from the previous

Q-tables are copied to the new Q-tables. This transition is facilitated in lines 8 to 23

and relies on identifying the low-level states that are abstracted in both the initial and

transition states. Finally, depending on the agent value collected in line 7, the Q-tables

of the related agent is updated.
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Algorithm 6 Policy Reuse Algorithm

1: Function{PolicyReuse}{AbstractPolicyOld, AbstractPolicyNew}
2: for i in AbstractPolicyOld do
3: for x in AbstractPolicyNew do
4: if i == x then
5: abstractState = x.split(’_’)[0]
6: abstractState’ = x.split(’_’)[1]
7: Agent = x.split(’_’)[2]
8: for all low-level (s,a) in abstractState do
9: if Agent == ’1’ then

10: QtableOne(s,a) = QtableOne*(s,a)
11: end if
12: if Agent == ’2’ then
13: QtableTwo(s,a) = QtableTwo*(s,a)
14: end if
15: end for
16: for all low-level (s,a) in abstractState’ do
17: if Agent == ’1’ then
18: QtableOne(s,a) = QtableOne*(s,a)
19: end if
20: if Agent == ’2’ then
21: QtableTwo(s,a) = QtableTwo*(s,a)
22: end if
23: end for
24: end if
25: end for
26: end for
27: EndFunction

With this algorithm, the domain expert has only to supply the original Q-table, the

original and new safe abstract policies, and the learned values that can be automati-

cally copied over. This reduces the amount of manual manipulation that is required,

which, depending on the size of the tabular data structure, could be relatively exten-

sive.
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Figure 5.3: Comparison of safe abstract policies to dictate which Q-values will be
reused or discarded.

5.3 Evaluation

In this section, the functionality of AMARL-PPR is evaluated with respect to the speed

of the learning process and how much of an impact AMARL-PPR has when compared

to AMARL as presented in Chapter 4. In order to facilitate this evaluation, a grid-world-

based domain was adapted from previous safe reinforcement learning research [87]

using the Unity Games Engine. This grid-world domain, as shown in Figure 5.4, is

framed as a simplified search and rescue setting, with a system comprising of two

homogeneous agents making use of Independent-Q learning. The agents must search

a building in which there are risks to the system safety due to building instability.

The objective is to find at least four flags whilst avoiding areas of instability such

that the risk of damage occurring remains at, or below, 20%. The domain contains

a 21 by 15 grid, where each grid space is defined as being an individual state that

one of the agents can occupy. When an agent is within a state that is surrounded by

unoccupied grid squares, the agent has four movement actions allowing it to move

orthogonally through the space. In such a setting, it is not unforeseeable that the

physical characteristics of the domain space could change. In emergency scenarios,

walls may collapse, blocking access to rooms or creating new access routes. These

physical changes result in changes to the probabilities concerning risk to agents as

well as states being added or removed from the reinforcement learning model.

This problem domain was created to allow a research question to be answered,

which relates to how AMARL-PPR can be used to make use of otherwise wasted
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Figure 5.4: Search and Rescue inspired Domain with Objectives (Flags) that must be
reached and unstable ground (Shown as cracks within doorway squares) that must
be avoided as much as possible. Synthesised safe policy overlaid in green and blue,
donating differing agent abstracted actions, with grey showing states that either agent
never visits.

learned information and policies from MARL which took place under constraints and

assumptions which become invalidated. Depending on the similarities between the

original information concerning the problem domain and the updated information of

the same problem domain, how much more efficient is AMARL-PPR in comparison to

AMARL?

In order to meet its first aim, the AMARL-PPR process should greatly increase the

MARL system’s learning speed. This aim should be achievable based on the number of

learned values within the tabular data structure that can be reused in specific scenarios.

Though, it is expected that the efficiency of AMARL-PPR will depend entirely on the

similarities between the original information about the problem domain and the new

information gained about the problem domain.

We started our evaluation by applying the initial AMARL approach within this

domain. First, the problem domain was analysed, identifying seven abstracted states,

one per room, with the abstracted transitions relating to an agent moving between

rooms. It was then possible to attribute risks and goals to these transitions based

on how many flags can be collected per room and how many dangerous areas are
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Figure 5.5: domain updated with knowledge of transitions between rooms A and C,
and rooms C and E. Policies for both agents overlaid in green and blue with areas
where Q-values have been reused shown in a darker shade. Primarily these Q-values
are reused in rooms B, E, and F.

passed to make the said transition. The AMDP was then constructed based on this

analysis by the domain expert and constructed using the PRISM language. Quantitative

verification was then applied to this AMDP. Finally, the safe abstract policy was used

to guide constraints for the MARL system and allowed to learn for over 1000 learning

episodes, where each episode contained 200 actions. This equals a maximum of

200,000 actions that can be taken over the entire learning period within a domain with

a total of 264 states and 1056 possible transitions without considering the multi-agent

aspect. The results of the safe abstract policy, chosen for this domain, divide the actions

of the two agents as shown in Figure 5.4, where the first agent’s abstract policy results

in the agent visiting those rooms shown in green whilst the second agent is shown in

blue. This task segmentation greatly reduces the complexity of the MARL problem by

reducing the amount of interaction between the agents during the learning processes.

However, as has previously been shown with AMARL, a compromise has been found

such that whilst the minimum permissible number of flags are collected, two rooms

are never visited. This ensures that the probability of an agent being damaged is 20%

or below.

When looking at the policy shown within Figure 5.4, it is important to note that
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the safe abstract policy has removed access to rooms A and C entirely. This means that

no prior information will be able to be collected for the states and transitions within

these two rooms. However, the optimal policies for rooms B, D, E, and F, within their

current condition, can be utilised once found.

In order to evaluate AMARL-PPR, three sets of learning runs had to be completed.

The first involved the MARL system learning within the initial unchanged domain,

allowing an efficient policy to be learned. This learning run forms the first part of the

process, collecting information with inaccuracies and requiring a new policy to be

produced, rendering the previous time and resources spent on the initial learning run

lost if standard AMARL was being utilised. The second and third set of learning runs,

containing five learning runs each, act as the experimentation that will allow a direct

comparison between AMARL and AMARL-PPR when faced with this occurrence and

how efficient AMARL-PPR is in terms of learning time.

Having obtained a policy using AMARL, we turn our attention to policy reuse

when changes to the environment are identified. The altered domain we consider is

shown in Figure 5.5. Here two new passageways are created, possibly by collapsing

walls so that agents may move between rooms A and C and between C and E. Though

blockages have also been added to the domain, as shown by shaded grey squares

within the transition spaces. In this way, we can observe that it becomes possible for

all the flags to be collected without additional risk. We note that while this is an ‘ideal’

setup, the efficiency and usefulness of AMARL-PPR depend entirely on the similarities

between the prior learning environment and the new learning environment. If the

similarities are extensive, then the utility of AMARL-PPC will be significant due to

similarities in the synthesised safe abstract policies. If there are few similarities or

none, the utility will quickly reduce or become non-existent.

The safe abstract policy, which was synthesised for the new domain, is shown in

Figure 5.5, and it can be seen to be altered from the original policy in three ways. First,

actions within room D are no longer necessary as a blockage has occurred, meaning

transitions from room D to rooms C and E are impossible. Second, agent one (green)

is now allowed access to rooms A and C, providing an alternative route to room E,

which results in more goals being collected for the same degree of risk. This means it

is impossible to reuse Q-values for states within the starting room and room D as the

desired direction of travel has altered considerably. Third, the Q-values for Rooms A
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Figure 5.6: Performance of MARL utilising only AMARL

and C are also left unpopulated due to no prior knowledge being gained from them

because of the previously selected safe abstract policy restricting the agents’ access to

them. However, due to similarities in the domains, the Q-values for rooms B, E, and

F can be directly copied. Due to the nature of the domain, no further exploration is

required within these rooms as the optimal policy was found. The circumstances of

these rooms and the related Q-values mean that the learning space has been reduced

from 264 states with 1056 possible transitions to 131 states with 524 available actions.

With the complexity of the domain being reduced by more than half, this should

reduce the required learning time.

To compare the potential utility of AMARL-PPR, we used AMARL without policy

reuse to learn the safe policy for the altered domain, and the results are shown in

Figure 5.6. Throughout the five learning runs, it took, on average, 450 episodes for

the system to find all six available goals. However, it took a further 550 episodes for

this to become reliable, meaning a static policy is likely to enable all six goals to be

reached when one is randomly selected from an episode from this point on without

the stochastic learning process. This same trend in behaviour can also be viewed in the
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Figure 5.7: Performance of MARL utilising AMARL-PPR

Figure 5.8: The Cumulative Goals Collected by a MARL System Utilising AMARL and
then AMARL-PPR
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risk plot, with the probability of damage reaching 20% simultaneously. This is because

the probability of an agent succumbing to damage has a constraint of 20%, and due

to the nature of the domain, once a risky transition has been allowed, the number

of goals that may be reached increases. Conversely, if a risky transition is not taken,

then the number of goals reached decreases. This explains the similar trends between

the two lines of plotted data. At the end of the learning run, where stochasticity is

removed, it can be seen that all six goals are found consistently.

The results associated with using AMARL-PPR are then shown in Figure 5.7. For

ease of comparison, we show the cumulative goals achieved by episode for both

AMARL and AMARL-PPR in Figure 5.8. The primary aim of AMARL-PPR is to reduce

the time taken to produce a policy that meets the specified functional and safety

requirements. The AMARL system took 450 episodes to find the total number of goals

available to it and reliably found these six goals in episode 1000. However, the AMARL-

PPR system learned to find the total number of goals in 150 learning episodes, and

from episode 350, taking into account the exploration rate, reliably collected all six

goals, with only slight variations around episode 900. In order to ensure that the

learned policy of the AMARL-PPR system could reach the requirements, the agents’

policies within the system were tested without exploration in episodes 350 and 400.

As a result, they were proven to meet functional and safety requirements, reaching all

six goals repeatedly.

The results obtained for AMARL-PPR show that the approach can reduce the re-

quired learning time compared to the reapplication of the AMARL process without

partial policy reuse. When an abstracted state can be removed from the quantita-

tive analysis process or the learning process, it can remove a large number of state

transition pairings from the MARL domain, which significantly simplifies the problem.

5.4 Summary

AMARL with Partial Policy Reuse (PPR) is an extension to AMARL that allows for the

automated reuse of partial policies obtained from previous learning runs when there

is AMDP no longer adequately represents the state of the real-world context. This

error in representation could be present in the AMDP’s initial construction or due to

changes to the domain, which are identified during the learning process. When such
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changes are identified, it is possible that the assurances delivered by AMARL regarding

functional and safety requirements are undermined. Traditional approaches, includ-

ing AMARL, require the learning process to be restarted from scratch when such errors

are discovered. AMARL-PPR, by contrast, allows for the use of an automated AMDP

generation algorithm and an automated policy reuse algorithm to semi-automate

the process of correcting errors within the AMDP and selecting which Q-values to be

reused based on the previous and new safe abstract policies used to constrain the

MARL system. This semi-automated process reduces the time the learning process

takes by removing previously optimised states from the learning process.

AMARL-PPR is demonstrated using a domain comprising of a grid world con-

taining seven areas, within which multiple grid spaces were abstracted into single

states for learning. Within the domain, two homogeneous agents undertook a flag

collection task while complying with strict safety constraints. AMARL-PPR simplifies

the MARL learning problem by removing previously optimised states from the learn-

ing process and by populating states with non-optimised values, which assists the

learning process within these abstracted states. From this evaluation, it is observed

that AMARL-PPR can greatly increase the learning speed for problem domains that

have been partially explored previously.

AMARL-PPR has recognised limitations, which are as follows, the similarities

between the old and new safe abstract policies determine the utility of AMARL-PPR.

If there are no similarities between these safe abstract policies, then no parts of the

previous policy can be reused. Also, in its current state, the algorithm suggested in

this chapter is only applicable when tabular data structures are used to store learned

information. Lastly, AMARL-PPR has only been evaluated using MARL techniques that

utilise tabular data structures for storing learned information, such as Q-tables. This

evaluation could be expounded to include other kinds of partial policy reuse, such as

Deep MARL techniques.
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Chapter 6

AMARL with Adaptive Constraint

In chapter 4, an approach for safe MARL named Assured Multi-Agent Reinforcement

Learning (AMARL) was introduced, which utilises quantitative analysis to help guide

the constraint of MARL systems during and after learning while providing assurances

that safety and functional requirements will be met. However, if the AMDP does not

accurately capture all the safety and functional requirements of the low-level domain,

then this costly AMARL process would have to be restarted from scratch. AMARL

Partial Policy Reuse (AMARL-PPR) was created in chapter 5, allowing inconsistencies

between an AMDP and a problem domain to be corrected by information obtained

after learning has begun. This is accomplished while allowing the partial reuse of

learned policies from MARL which took place under outdated assumptions, resulting

in more efficient learning. However, despite AMARL-PPR being more efficient than

AMARL, it is currently only available offline, meaning the process can only take place

when the learning process is stopped.

Within this chapter, Adaptive Constraint (AMARL-AC) is introduced. AMARL-AC

was developed to allow a MARL system to adapt to changes within the low-level

domain at run-time while still under constraints that are guided by quantitative anal-

ysis. This adaption is facilitated by quantitatively guided constraints being changed

automatically by the MARL system during runtime. AMARL-AC uses the previously

introduced algorithms within an automated process to allow a MARL system to adapt

to changes without further input from a domain expert.
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Figure 6.1: Adaptive Constraint Process.

6.1 Introduction

This Chapter introduces the AMARL-AC process, which aims to allow a MARL system

to adapt to identified changes in an automated fashion. As can be seen in Figure 6.1,

AMARL-AC consists of two stages, an initial manual stage which involves the domain

expert providing information that is required for the second automated stage to

function correctly. When this automatic stage is operational, the MARL system is

able to identify inconsistencies between the current known AMDP and the low-level

problem domain related to safety or functional requirements. This will then allow the

AMDP to be updated accordingly, quantitative analysis to be utilised, and the AMARL

system to update its own constraints based on the received safe abstract policy during

run-time.

AMARL-AC was developed due to a significant issue within safe reinforcement

learning and safe MARL, which was discussed in Chapter 5. This issue arises from in-

accurate initial knowledge or changes which occur within the learning domain during

or after the learning process and is likely to be encountered in practical safety and

mission-critical settings. AMARL-PPR, introduced in Chapter 5, attempts to mitigate

this problem. However, it is limited to reinforcement learning techniques that utilise

tabular data structures to store information and is an entirely offline approach. Being

offline means that the learning process must be completed, or the domain expert
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must halt the learning process when issues arise. Such issues may not be immediately

apparent, resulting in wasted computational effort.

In order to build upon the AMARL-PPR, an approach is required which allows for

varied learning techniques to be used and for the MARL system to react promptly to

unexpected changes and outcomes within the environment. In this Chapter, AMARL-

AC is introduced, AMARL-AC is an approach that allows the AMARL process to be

autonomously triggered and utilised while learning can continue with minimal dis-

ruptions. Furthermore, by temporarily constraining learning to areas that have not

changed, the MARL system can keep learning without the threat of breaking safety

requirements and await the new quantitatively verified constraints to be synthesised.

AMARL-AC is broken into two stages, as shown in Figure 6.1, an initial manual stage

followed by a second automated state. The manual stage, as with AMARL, requires

preliminary information to be supplied. This preliminary information includes the

expected abstracted information on states, transitions, and functionality and safety

requirements (encoded as PCTL), the system’s initial state, and the number of agents

utilised by the system. This information is supplied directly within Algorithm 3 of

Chapter 4 and is assumed to remain unchanged throughout the learning process.

The automated second stage consists of the MARL system checking that a change

that affects the functionality and safety requirements has not taken place within the

low-level domain. If a change has taken place, then stage two supplies the MARL

system with a safe backup constraint while the AMDP is updated to reflect the change

in the lower-level domain. Quantitative verification takes place, and then the MARL

system receives a safe abstract policy that is used to guide the MARL system in con-

straining its own behaviour. Three Algorithms are utilised within this automated stage,

two algorithms introduced in Chapter 4 and one introduced later in this Chapter.

This automated stage follows a monitor, analyse, planning, and execute structure.

Firstly, The MARL system monitors the environment, checking for inconsistencies

within the domain. Secondly, Algorithm 3 from Chapter 4 generate and analyse an

updated AMDPS. Thirdly, Algorithm 7, is used in planning which selects which synthe-

sised safe abstract policy to send to the MARL system. Lastly, the agents are supplied

with the said safe abstract policy, which guides the MARL system in executing their

new constraints.

The main focus of this approach is to alter information about states, transitions
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and rewards and risks in an automated fashion. Allowing the MARL system to update

its learning constraints mitigates the limitations and issues presented by AMARL-PPR,

resulting in a more flexible approach. However, AMARL-AC requires the MARL system

to be able to recognise and identify goals, risks, transitions, and states.

6.2 Approach

Our two-stage approach is shown in Figure 6.1. The first manual stage begins with a

basic implementation of AMARL, as seen in step 1 and step 2, which involves an AMDP

of the low-level domain problem being created and subjected to quantitative analysis

and the constraint of the MARL system guided by the synthesised safe abstract policies

and the initialisation of MARL. Within this stage, it is fundamental that certain infor-

mation regarding the MARL system and the domain problem is stored in an accessible

place ready for use within the automated stage. This information includes the PCTL

encoded requirements, MARL system size, and the initial states. The automated stage

uses three individual algorithms, one of which is Algorithm 3 from Chapter 4, which

allows the automated generation of an AMDP. It is suggested that this fundamental

information is stored within this algorithm as variables. Due to Algorithm 3 being used

within AMARL-AC, it is required that the domain expert create a data structure which

will serve as an input into Algorithm 3 to facilitate the automated generation of an

AMDP. This data structure is known as a Matrix WorldView multi-dimensional array

which was introduced in Chapter 4 and illustrated in Figure 4.2.

This Matrix WorldView data structure is a multi-dimensional array containing

abstracted information about the low-level domain, such as abstracted states, the

transitions between these abstracted states, and the goals or risks to which these

transitions will lead. The Matrix WorldView is integral to the AMARL-AC approach,

which is underpinned by the ability of the agents to detect changes within their

environment and identify how these changes are linked to the current AMDP. The

existing AMARL-AC approach must be able to perceive risk and goals and rely on the

agents within the system knowing their current location and where their location

is concerning the abstracted transitions. This knowledge allows repeated queries to

determine if a transition is new or has been removed. For example, in a grid-based

world, an agent who is aware that it is within the state (3,2) will also know that state

114



6.2. APPROACH

(3,2) is within Room A. From these two pieces of information, the agent will be aware

that it is within Room A and may query how far it is to a known transition out of the

room. The agent will be able to update the Matrix WorldView and allow the synthesis

of an updated AMDP.

When the manual stage is complete, the second automated stage can begin. The

automated stage begins with step 3, which determines if an (Agent Detects Change).

This step is part of a looping process which constantly checks if an agent has detected

a change within the low-level domain while learning. Each agent monitors the environ-

ment to identify changes by comparing observations with its current understanding of

the environment as encoded in the Matrix WorldView. If no change is detected, then

this means the current safe abstract policies hold, and MARL can continue within

step 9, which then loops back to step 3 to check if any changes have been detected.

However, step 5-A (Temporary Backup Constraints) and step 5-B (Update Matrix

WorldView) is triggered if a change has been detected.

Step 5-A (Temporary Backup Constraints) consists of the MARL system being

allowed to continue learning within backup constraints before new constraints are

applied. These backup constraints contain the MARL system to the areas of the domain

which have not been directly affected by the changes that have been detected. This

means that the MARL system can continue to learn while not being at risk of learning

overly risky behaviour.

Step 5-B involves the MARL system updating the Matrix WorldView to contain the

new information. This utilises the abilities that are a prerequisite of the AMARL-AC

approach. Which, as stated, is the ability to perceive risk and goals and to know their

current location and where their location is in regards to the abstracted states. This

update will supply the MARL system with the ability to synthesise an updated AMDP

using Algorithm 3, which is what is required in step 6.

Step 7 (QV and Safe Abstract Policy Synthesis) then takes as input the updated

AMDP and the unchanged PCTL requirements, which were supplied in step 1. This

involves quantitative verification being utilised on the updated AMDP, guided by the

supplied PCTL requirements, and then the synthesis of safe abstract policies. If no

safe abstract policies are synthesised, then the constraints will not be updated, and

the MARL system will continue to learn under the Backup Constraints implemented

in step 5-A. If safe abstract policies are generated, then the policies are converted into
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readable policies using Algorithm 5, introduced in Chapter 4. Then a new Algorithm,

Algorithm 7 compares the generated policies in terms of functionality and safety and

selects the most functional option that meets all of the defined safety requirements.

In step 8 (Adapt Constraints), the selected policy is given to the MARL system, and

given the readable policy format, the MARL system can execute its own constraint

adaption by reading the safe abstract policy and using this to guide which actions

should not be taken within the low-level domain. Lastly, the MARL system is allowed

to continue learning within the boundaries of its updated constraints.

The algorithms that allow stage two to take place are Python scripts that are callable

from within the agents’ code classes. The first algorithm used was Algorithm 3, which

automatically generates an AMDP based on a Matrix WorldView. This algorithm was

adapted slightly for constraint adaption in order to launch the PRISM model checking

tool and supply it with the newly created AMDP and the PCTL requirements supplied

in the manual stage. Next, algorithm 5 waits for safe abstract policies to be synthesised

to translate the safe abstract policies into human-readable and agent-readable formats.

Finally, algorithm 7 selects a policy and places it in a folder structure that the agents

can access when the update algorithm commences. The agents read this policy and,

based on the information contained within it, they constrain their behaviour based

on the transitions within the safe abstract policy.

As well as the algorithms presented in Chapter 4, only one additional algorithm

had to be created for this process to function correctly. This is Algorithm 7, and it

is responsible for comparing and selecting a safe abstract policy after a set of safe

policies have been synthesised. This algorithm inputs the matrix world description

and the set of safe abstract policies.

The lists named Goal and Risk are declared on lines 2 and 3, and each index of

these arrays will store the cumulative number of Goals and Risks that the policy allows.

This collection of Goals and Risks is facilitated by the nested For loop structure from

lines 5 to 13. Here every policy received as input, the transitions within those policies

are individually inspected, and any corresponding goals and risks associated with an

individual policy are added to an index within Goal and Risk lists.

Every policy is given an identifying index within these two lists using the integer

counter declared on line 4. Finally, the For loop declared on line 14 cycles through

the Goal and Risk lists and performs a check to see if the cumulative values for each
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Algorithm 7 Policy Selection Algorithm

1: Function{PolicySelect}{MatrixDescription, policies[]}
2: Goal[]
3: Risk[]
4: PolicyCounter
5: for each policy in policies do
6: for i in policy do
7: S = i.split(’_’)[0]
8: S’ = i.split(’_’)[1]
9: Reward[PolicyCounter] == Reward[PolicyCounter] + MatrixDescription[S, S’,

1]
10: Risk[PolicyCounter] == Risk[PolicyCounter] + MatrixDescription[S, S’, 2]
11: end for
12: PolicyCounter++
13: end for
14: for i in range(PolicyCounter)) do
15: if Goal[PolicyCounter] == CRITERIA and Risk[PolicyCounter] == CRITERIA then
16: ChosenPolicy = policies[policyCounter]
17: end if
18: end for
19: EndFunction

index meet the criteria that the domain expert sets. Such as the policy with the greatest

number of goals without exceeding safety requirements. The policy which meets this

condition, specified on like 15, is then selected as the chosen policy and is sent to the

multi-agent system.

6.3 Evaluation

In order to evaluate AMARL-AC’s ability to adapt to issues with transitions, the domain

utilised in the previous Chapter on AMARL-PPR was reused. This domain is the same

as in Figure 5.4. However, to demonstrate AMARL-AC, the same adjustments were

made that are seen in Figure 5.5 without supplying the system prior knowledge of any

changes meaning it will be learning under outdated assumptions. However, as stated

previously, AMARL-AC can be utilised to adapt a system to more than transitional

changes and has been used to adapt to states being added to the domain. This capa-
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bility is demonstrated in a preliminary evaluation using the deep learning domain

introduced in Chapter 4 and shown in Figure 4.12.

6.3.1 Online Constraint Adaption

In this section, AMARL-AC transition adaption is evaluated regarding its ability to

perform in the presence of changes to transitions and transition properties, such as

the expected risk or goals collected by making the said transition. The MARL system is

initially provided with domain knowledge and constraints for the unaltered domain

shown in Figure 5.4. Unlike the experimental setup in Chapter 5, which saw MARL

systems given 1550 learning episodes to find an efficient policy, the experimental

setup for AMARL-AC permitted the use of 10,000 learning episodes, with 60 available

action steps per learning episode. This allows the two-agent homogeneous system

ample time to relearn behaviours as it encountered states that presented inaccuracies

within its domain knowledge. This updated knowledge is then stored as an abstract

matrix world description. It was found that fewer learning episodes increased the

likelihood of the system chasing rewards that it had collected based on inaccurate

information and not finding all six available goals. It was also necessary to supply

the system with a much higher exploration rate to find and collect the information

required for the system to perform well.

Within the domain, the agents had to discover that the key transition leading

from RoomD to RoomE was blocked and that new transitions that led from RoomA

to RoomC and then RoomC to RoomE had become available. This was primarily

achieved with one agent, as the other agent was always constrained to collect a single

flag found in RoomB . This result comes from quantitative analysis allowing one agent

to move through an area of risk. Due to the layout of the domain, it served no purpose

to allow a second agent through areas of risk apart from unnecessarily increasing the

likelihood of damage to the system. The system removed and added these different

transitions over time by updating the abstract matrix world description and allow-

ing quantitative verification, policy synthesis, and policy selection to allow further

exploration. This exploration was more easily allowed through constraints due to the

system not finding any risk associated with the new transitions and given the prelimi-

nary knowledge that there was a goal present within the adjoining Room. The system
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Figure 6.2: AMARL-AC results over 10000 learning episodes

was able to update the AMDP through its abstract matrix world description, adding

transition properties such as whether there was risk associated with the transition and

if goals were able to be reached.

Given the explained setup above, the results from five learning runs were dis-

played in Figure 6.2. Given the length of the learning process, the results show a

relatively smooth linear relationship between the number of learning episodes and

the goals achieved. The slight fluctuations and plateaus that can be seen throughout

the learning process can be attributed to the stochastic nature of reinforcement learn-

ing. However, it can be seen that these fluctuations become more turbulent at certain

points in learning. Specifically, it can be noted that when the system is transitioning

from commonly collecting three goals to four, between episodes 3400 to 6100, the

system’s behaviour was more varied than other episodes. This is due to the system

relearning and altering past learned behaviour, which sometimes allowed the agent to

collect four goals, and at other times caused the system to use all of its available ac-

tions before reaching goal 4. However, as learning continues, it becomes more difficult
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for the system to unlearn behaviours due to the decaying learning rate that pushes

learning systems to exploit gained knowledge more as it learns.

Learning decay may cause a noticeable dip in progression between episodes 6700

to 8500 and then the continued learning towards the cumulative number of goals

towards the end of the learning process. In this section of learning, the system would be

venturing into RoomE and RoomF , which it would have been less likely to visit up to

this point due to learning and relearning behaviours. During this point in learning over

the five learning runs, there is a relatively high variance between the goals collected

over this learning period. This suggests the systems had difficulty finding behaviours

that reliably allowed them to collect all six goals. Nevertheless, once this behaviour was

found, all five learning runs produced policies that reached the cumulative amount of

goals while keeping risk levels below the requirement and at a relatively low variance

rate. Despite these positive outcomes, which show a MARL adapting its constraints to

meet strict safety and functional requirements without further input from a domain

expert, it also shows that a significantly longer learning time is required. Compared

to AMARL-PPR, AMARL-AC requires over six times more learning time to produce

the same result. This means that this AMARL-AC, with benefits in terms of system

autonomy and flexibility, has trade-offs regarding the required time. Lastly, it must be

reiterated that the assumption that the goals and risks are perceivable is a necessity.

6.3.2 Online State Adaption

This section evaluates AMARL-AC’s ability to allow an AMARL system to adapt to

significant structural changes to a domain, such as states that have failed to be incor-

porated within the AMDP model of said domain. By using the abstract matrix world

description, a new state can be added by simply increasing the size of the matrix and

populating its transition information to other states. A MARL system can complete

this process without human intervention. In order to evaluate this feature of AMARL-

AC, the deep learning domain introduced in Chapter 4 and displayed in Figure 4.12

was used. In this evaluation, the domain and system remain unchanged from how

it was described in Chapter 4. However, the domain knowledge that is given to the

MARL system and AMARL-AC is limited to enable unknown states to be found and

for the system to adapt to them. As in the left section of Figure 6.3, the MARL system
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Figure 6.3: The initial domain knowledge supplied to the initial Process (Left). The
final learned policy that the MARL system produced using AMARL-AC (Right). Grey
areas are unknown/inaccessible to the MARL system.

was initially given information on four rooms, two hallways, and two surveillance

cameras, meaning that five rooms, seven hallways, and six surveillance cameras are

unknown the MARL system. The system also recognised when an agent was within a

state and the name of that state. The system was also given the ability to recognise

the presence of a surveillance camera and goals. This was achieved by giving each

agent in the system sensors that could retrieve information from the environment.

This information was received as a name tag for the item in this simplified domain. In

order for AMARL-AC to function, several assumptions are required. The first of these

assumptions involves the agents within the MARL system reliably knowing if they are

in a state (Room) or a transition (hallway) and also which state and transition. The

second assumption is that the agents within the system can reliably find and identify

the risks and goals present within the domain. Without this assumption, there is no

guarantee that formal verification would synthesise valid abstract policies.

The manual steps of AMARL-AC were completed, similarly to the previous section,

and the agents within the system were given the functional abilities to recognise

states (a state is added to the AMDP when a new goal is found), transitions, goals,

and risks. The system was then allowed to learn for 6800 learning episodes. As can be

seen in Figure 6.4, which contains the results of five learning runs, the system quickly,

within 1000 learning episodes, learns to take advantage of its initial knowledge and

collects three goals fairly consistently, these being in RoomA, RoomB , and RoomE .

Eventually, the system also reliably collected the goal in RoomC , but this was more
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Figure 6.4: AMARL-AC Preliminary Results Over Five Learning Runs. Experimental
Results From Allowing Agents to Adapt to Unknown States.

challenging as the goal was not visible until entering the Room, unlike the other known

goals. However, between episodes 1000 to 2000, there is a sharp decline in the goals

reached, followed by a short plateau, followed by another sharp increase in the goals

reached. Between episodes 2000 to 3000, this same trend occurs again, followed by

the consistent collection of the cumulative number of goals throughout the rest of

the learning process. This trend of sharp declines, plateaus, and then sharp inclines

corresponds to the system discovering, exploring, and eventually exploiting the new

information the system has found. While erratic, this behaviour is still governed by

assured constraints due to the system utilising AMARL-AC and reliably detecting the

risks within the domain. With these constraints that adapt whenever an agent within

the system detects a new source of risk, state, or goal, the system is gradually allowed

to explore more of the domain space, depending on the safe abstract policy that the

system is being utilised.

The exploration into unknown states is naturally more likely to be allowed to

occur if the goal within these states is easily visible, as this is an incentive for the

122



6.4. SUMMARY

quantitative analysis to synthesise a policy that allows exploration into the said state.

This can be seen clearly by the evolved behaviours displayed in the right section of

Figure 6.3. The system first explores Room f as the goal with this Room is easily visible

from RoomE . The next explored rooms were RoomG and RoomH , with the discovery

of these rooms taking much longer due to them being concealed from the system

by the sharp bend in hal l w ay s9. Finally, in RoomD , there is a visible goal that the

agent passing through hall w ay s3 would have added to the AMDP. However, as the

exploration into RoomD would have entailed moving into view of a camera twice

for one goal, it was not deemed a worthy pursuit through quantitative verification.

While RoomI was not seen to give the incentive to explore this area, the goal within

RoomI is difficult for the system to view. These experiments show the behaviours that

AMARL-AC can produce in a system and how it facilitates exploration in unknown

states. However, it also shows that AMARL-AC can be utilised in MARL systems to

allow them to produce policies that meet strict safety and functional requirements.

Despite the promising results, the work presented here for state adaption is cur-

rently underdeveloped and only shown to work on a single domain. Further work

must be pursued to show how the assumptions of this approach can be frequently

met. These assumptions are currently the main limitations of this work.

6.4 Summary

This chapter introduces AMARL-AC, an extension to AMARL that allows inaccuracies

within the AMDP to be automatically corrected by the MARL system during run time,

allowing the system to constrain its behaviour and continue learning under safety

assurances. This extension can enable systems to adapt to inaccuracies from the

beginning of the learning process or inaccuracies formed during runtime due to

changing environments. Furthermore, the extension allows inaccuracies in transitions

to be corrected, whether a transition is present, and the reward and risk associated

with the said transition. However, transitions are not the only factor that can be

updated within a domain. Through preliminary evaluations, it has been shown that it

is possible to update the states within the environment, more specifically, adapting to

new states that were not initially incorporated into the AMDP.

The chapter has two sections, focusing on transition-based adaption and state-
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based adaption, respectively. The first of these sections use a grid-based flag collection

domain with a two-agent homogeneous system which must collect flags while avoid-

ing potential damage to the system. This domain is the same as what is utilised in

Chapter5 and remains unchanged. In contrast, the second section uses a deep learning

domain consisting of a three-agent homogeneous system that also must collect flags

while avoiding detection by surveillance cameras. This domain is the same domain

that is introduced in Chapter 4 and remains unchanged. It is shown in this chapter

that by making use of algorithms and data structures introduced through Chapters

4 to 6 that AMARL-AC allows a MARL system to adapt to transitional changes within

a domain as well as state-based changes. This occurs while uninterrupted learning

produces behaviours that meet safety requirements during and after learning and

functional requirements after learning. This chapter answers several questions raised

in Chapter 5, such as if a solution can be devised that allows a domain expert to be

removed from the process after learning has begun and if the said solution can be

utilised to adapt to inaccuracies without the aid of a domain expert.

While AMARL-AC has answered the questions posed in Chapter 5, further ques-

tions have arisen. These questions involve concepts regarding shortening the learning

time required to allow adaption to be used efficiently during runtime and whether the

assumptions of its use can be reliably met or mitigated. These assumptions include the

ability of the MARL system to identify which abstract state it is in, being in possession

of a sensor or set of sensors that allow it to recognise new risks and goals, and finally,

being able to recognise when it has located a new state.
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Conclusion

This thesis has discussed and addressed a significant limitation with the practical use

of MARL systems within safety-critical and mission-critical scenarios. This issue is the

lack of confidence in the multi-agent stochastic process regarding safety and, from

this, the lack of assurances that safety and functional requirements will be met. Due

to this lack of assurance, MARL is often avoided in safety-critical and mission-critical

scenarios, where the agents within the MARL system should not sustain damage,

damage other systems, or allow harm to come to humans.

Safe MARL, a relatively new research area closely tied to safe reinforcement learn-

ing, has produced several techniques and methods to mitigate this limitation. However,

most of these techniques do not offer any safety assurances; they only provide a way

of producing ‘safer’ MARL behaviour. Furthermore, despite some techniques offering

a type of safety assurance to MARL, this safety assurance can easily compromise func-

tionality and therefore lacks functional assurances. An overview of the techniques that

have been developed was given in Chapter 3.

In order to produce a solution to this issue within the research area of safe MARL,

this thesis introduced AMARL, a multi-stage plug-in-styled approach for constraining

MARL to meet safety requirements. AMARL uses quantitative verification to provide

formal assurances that these safety requirements will be met while also providing

formal assurances that the learning process could meet functional requirements if

left to learn for long enough. Additionally, AMARL-PPR was introduced, which allows

the reduction of the learning time when AMARL has been applied to a domain space

with inaccurate safe abstract policy constraints due to inaccuracies during AMDP

construction or due to the learning domain changing over time. This allows previously
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learned information about the domain to be partially reused within the new learning

process. Finally, AMARL-AC was introduced, which allows the MARL system to update

the AMDP of the domain when the MARL system discovers changes. This AMDP is

updated using an algorithm introduced in Chapter 4 and verified using requirements

pre-specified in probabilistic computational tree logic. New constraints are then given

to the individual agents within the MARL system using an automated process during

run time. This run-time adaption differs from AMARL-PPR, which can only be used

once the learning process has been finished or halted.

AMARL is designed to be generalisable for use across all types of domains and

with different systems. However, AMARL-PPC has the limitation of being designed for

MARL techniques that utilise Q-Tables, and AMARL-AC requires risks and goals to be

perceivable.

The rest of this chapter details the contributions of the thesis, the limitations of

those contributions, and possible directions for future work.

7.1 Contributions

This thesis offers five contributions to the field of safe MARL research, with the main

contribution being the multi-stage plugin-styled AMARL approach described in Chap-

ter 4. The AMARL approach differs from existing methods in safe MARL research by

using quantitative verification, which supplies formal assurances of safety during and

after learning. Quantitative analysis, the distinguishing feature of AMARL, is facili-

tated through the construction of an AMDP, which mitigates a significant limitation of

quantitative analysis, i.e., its inefficiency when faced with large models. The use of an

AMDP also allows AMARL to be utilised when preliminary knowledge is not complete,

meaning only states and transitions related to functional and safety requirements need

to be known. The AMDP is then analysed using quantitative verification to synthesise

Pareto-optimal safe abstract policies. This quantitative verification is guided by the

safety and functional requirements described in PCTL, meaning that the synthesised

abstract policies are guaranteed to meet these requirements. Finally, given the set of

safe abstract policies, a domain expert selects one that gives the most appropriate

compromise between safety and functionality regarding the specific domain needs.
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The selected safe abstract policy is then used to constrain the low-level states

and transitions by removing these transitions from the MDPs of the agents within

the MARL system. This reduction of the MDPs means that all low-level states and

transitions not incorporated within the abstracted states present in the abstract policy

are removed. As well as this, it can also mean that specific transitions can be limited

in regard to agent use, allowing movement into unsafe areas in a highly controlled

fashion. These constraints are set in place before learning and remain throughout and

after the learning process. These constraints guarantee that safety requirements will

be met throughout the learning process through the assurances of the synthesised

safe abstract policy. Additionally, safety and functional requirements will be met

consistently within the final learned policy.

Compared to other methods and techniques within safe MARL research, AMARL

has one main significant advantage: the use of quantitative verification that gives

formal assurances that both safety and functional requirements will be met. Other

techniques and methods rely on safety being built into reward structures, states and

transitions being constrained without assurances or other methods which do not

have the added benefit of formal assurances to build confidence. Another advantage

of AMARL is the Pareto-optimal guarantees, meaning that despite the compromises

needed in safety or functionality, the policies received will provide optimal trade-

offs between functionality and safety. Lastly, AMARL is a flexible approach, being

conceptualised as a plugin-styled approach, allowing many tools, techniques, systems,

and domain types to be used as needed for specific applications and scenarios.

The second contribution of this thesis, presented in Chapter 5, is the AMARL ex-

tension named AMARL-PPR. AMARL-PPR is an extension that is applicable when the

learning process is halted or finished. This extension is applicable when it is identified

that the safe abstract policies do not result in the expected safety and functionality

assurances that the policy offers. This deviation from expectation will be caused by in-

consistencies in the constructed AMDP, resulting in an analysis of said AMDP that fails

to reflect the realities of the actual problem domain. In standard AMARL, the learning

and the time it took would be wasted, with all learned information discarded and the

process starting from the beginning. With AMARL-PPR, the learned information from

the MARL system’s first learning process can be partially reused to increase the speed

of the follow-up learning process. AMARL-PPR consists of updating and correcting
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the AMDP, rerunning the quantitative analysis, and selecting a new, accurate, safe

abstract policy. These abstract policies are then autonomously compared to the ab-

stract policies from the previous learning process. Any abstract states and transitions

shared within these policies result in the low-level state-action Q-values related to the

abstracted states and transitions to be copied over and reused in the new learning

run. This contribution has practicality when working with partial knowledge due to

the possibility of new knowledge changing the preconceptions of the scenario or the

scenario changing over time.

The third contribution of this thesis, introduced in Chapter 6, is another extension

to AMARL, which, unlike AMARL-PPR, is intended to be utilised during run time and

is named AMARL-AC. AMARL-AC equips the MARL system with the ability to trigger

an automated process which updates outdated AMDPs and launches quantitative

verification on this new AMDP. While this analysis is running, the system sets the

AMARL system to backup constraints based on what is known to be correct with the

previous AMDP, allowing partial learning to continue. When the analysis has been

completed, a new safe abstract policy is selected and given to the MARL system, which

then constrains itself based on the received abstract policy. This process is triggered

when an agent within the MARL system explores areas of the domain and discovers

that the transitions, transition probabilities, or even states do not align with that of

the agent’s matrix worldview. The agents’ matrix worldview, introduced in Chapter 4,

is a multi-dimensional array which describes the AMDP in a simplified fashion and

which the agents can access and manipulate. The benefit of AMARL-AC is the removal

of human intervention after some initial properties are declared, allowing the system

to be more resilient in terms of changing environments and incomplete knowledge.

However, in order for AMARL-AC to be used, the rewards and risks must be perceivable

to allow the agents to alter the AMDP. Also, currently, AMARL-AC is only shown to

function with navigation-based domains. Despite these limitations, AMARL-AC is

the only approach that utilises constrained MDPS with assurance, which can offer

automated adaption to incorrect prior knowledge.

The fourth contribution is a new algorithm that can automate the generation of

navigation-based AMDPs within the PRISM high-level modelling language. This algo-

rithm, as discussed in Chapter 4, takes as input a multi-dimensional array structure

known as the matrix worldview, which contains information on abstracted states and
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transitions. This information records whether a transition between states is viable, the

risk associated with taking said transition, and the reward associated with taking said

transition. Humans or agents can easily update this structure to change the structure

of an AMDP by removing or adding possible transitions between states, changing risk

and reward values, and even adding states. This matrix worldview is taken as input to

the algorithm, as well as the initial starting state of the MARL system and the number

of agents within it. This information is then used to construct an AMDP, which can be

used in quantitative analysis without any further input from a domain expert. This

contribution dramatically improves the accessibility of AMARL, removing the need for

advanced knowledge of the PRISM language to use it, and greatly decreases the setup

time for AMARL. It also facilitates the automated functionalities of AMARL-PPR and

AMARL-AC, which use this algorithm. AMARL-AC uses the matrix worldview within

the agents’ code as a fundamental concept.

The fifth contribution is a set of three case studies and an evaluation of AMARL

and its extensions which made use of said case studies. The first of these case studies

consist of three domains within a ROS patrolling simulator, introduced in Chapter 4.

These three domains have been created or updated to include areas of risk that the

agents must avoid while completing their patrolling mission to complete the mission

with the most amount of battery conserved. The second case study, also introduced

in Chapter 4, is a domain implemented within the Unity games engine and uses the

MLAgents plugin to allow easy access to deep MARL algorithms. In addition, it provides

a new domain for safe MARL-utilising neural networks. The last case study introduced

within this thesis in Chapter 5 is a traditional grid-based world adopted from previous

research in safe reinforcement learning but updated for AMARL-PPR and multiple

agents. This case study was also created within the Unity games engine and could

easily be replicated in many other languages and software. All these domains are

navigation-based, allowing MARL systems to evaluate safe MARL approaches and

methods.

These case studies were then utilised within the evaluation of AMARL, which

spanned three different domains, using: several traditional MARL techniques and

one deep MARL technique; homogeneous and heterogeneous systems of agents;

and slightly varied system sizes. This broad evaluation was used to demonstrate

the versatility of the plugin style of AMARL. Throughout all these setups, AMARL
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could constrain the systems never to breach safety constraints, and the final learned

policy always met functional requirements. AMARL-PPR was also evaluated within

the grid-world domain to show the potential benefits to the speed of the learning

process when rerunning the learning process is required, and the results showed that,

within a setting where the previous safe abstract policy and the new safe abstract

policy share commonalities, the learning process can be sped up. AMARL-AC was also

evaluated within the grid-world domain to demonstrate that the automated process

can constrain itself with an updated, safe abstract policy. Within this domain, the

MARL system added and removed transitions and rewards, allowing safe MARL to

continue efficiently. Lastly, AMARL-AC was shown to be able to add entire abstracted

states and transition to an AMDP and continue to constrain itself without breaching

safety requirements. This important benefit was accomplished using deep MARL.

7.2 Limitations

The main limitation of AMARL and its extensions, common in safe reinforcement

learning and safe MARL approaches, is the need for preliminary knowledge. With-

out preliminary knowledge that gives enough insight into safety and functionality, a

full enough AMDP will not be able to be constructed, any abstract policies that are

produced will not be valid, and assurances will not hold.

The quantitative analysis that produces these abstract policies also has limitations.

The first limitation (which requires further exploration) is the explosion of model sizes

and how this could affect the time required for the analysis to conclude. This explosion

of model sizes is impactful when multiple agents are concerned. The model must

contain the possible transitions of every agent within the system, causing the model

size to increase exponentially. It is reasonable to assume that the analysis of a model

of too great complexity would take an unreasonable amount of time to conclude.

The second limitation of the quantitative analysis process is the potentially limited

number of safe abstract policies supplied by analysing the model. After a lengthy

analysis process, no abstract policy may be produced, and further refinement of the

model may be required, which could be a time-consuming process. However, we note

that the lack of abstract policies can also be an advantage of the process if the model

is entirely accurate and cannot be refined, meaning that the analysis has concluded

130



7.2. LIMITATIONS

that the MARL system should not be deployed.

As alluded to when discussing the explosion of model sizes, a limitation of this

approach is the number of agents that can represent within a model and, in turn, the

number of agents that can be practically used. The maximum number of agents which

were utilised during the course of this work was three agents. While it is theoretically

possible to use a higher number of agents with this approach, a limitation of this work

is that the higher limit of the number of agents that can be used was not identified.

However, dependent on the time and resource requirements of the verification tools,

verifying a model with more than three agents would be a demanding process.

Another limitation of using quantitative verification tools is linked to the same

time and resource requirements that were mentioned previously. The limitation is

the number of abstract states defined within the model. This work has not identified

the maximum number of abstract states that can be incorporated into a model and

can still be utilised with AMARL. However, the same issues that limit the number of

agents apply to the number of abstracted states. Most notably, the time and resource

intensiveness of verifying properties and synthesising policies in large models can be

demanding. This means the size of a problem domain, even when abstracted, will be

a limiting factor to AMARL.

The tools used within quantitative analysis make use of PCTL to define the objec-

tives that will drive the analysis. These are objectives that can be tracked, such as how

much battery was used and how much damage was dealt to the system. However, at

the time of writing, the tools available struggle to track more than two objectives or

mission constraints simultaneously. This lack of functionality means that the safe ab-

stract policies that are synthesised are only guaranteed to meet two objectives. While

it is possible to construct a model that represents this safe abstract policy and run the

verification of other properties, it has the potential to be a lengthy process. Further-

more, there is no guarantee that any of the safe abstract policies that are synthesised

will then be shown to meet other objectives or properties.

The algorithm that automates AMDP generation makes it possible to construct an

AMDP without much knowledge of the PRISM language. However, it is still advisable

that the user of AMARL understands the language. This suggestion is in case the

algorithm cannot be used for any revisions that may be required. This means that for

reliable use of the AMARL algorithm, there must be a degree of expertise in utilising
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the PRISM model checker and the PRISM language to use AMARL to its full extent. The

same limitation is also present due to the need to encode the system requirements

into PCTL. Even when utilising the automated systems, the PCTL requirements must

be given as input to use AMARL and its extensions.

7.3 Future Work

At the current state of understanding of AMARL and its extensions, multiple areas

could be focused upon for future work. These primarily include adaptions that can be

used to increase the ease of use and efficiency of AMARL and also investigations to

determine the limits of AMARL.

Partial Quantitative Analysis could be used to reduce the time required for quanti-

tative analysis when similar domains are being analysed or when AMDPs have been

constructed inaccurately. The concept behind this suggested area of future work is to

utilise previous knowledge from safe abstract policies which are still partially relevant

when considering the new condition of a domain. From this partial safe abstract policy,

the AMDP can be reformed to retract all unnecessary states and possible transitions

that have already been covered in the parts of the safe abstract policy that are still valid.

For example, suppose that the previous safe abstract policy governs one agent within a

system in a way that remains entirely valid with the new understanding of the domain

by this agent. In that case, the functional objectives the agent is instructed to complete

and the risks it encounters can be removed entirely from the AMDP. However, this

technique will only be applicable if these objectives and risks are also factored into

the PCTL requirements to allow the complete domain to be captured.

By utilising a method similar to a partial quantitative analysis, the time required to

analyse models could be reduced by the degree that the previous safe abstract policy

is still valid. However, such a method requires the utmost confidence that the portions

of the safe abstract policy are still valid. Any inaccuracies in this process will result in

potentially unsafe behaviours and functional objectives being neglected.

Plain-English Descriptions of PCTL requirements could increase the accessibility of

AMARL significantly. This area of suggested future work would enable users to write

the domain requirements using structured English grammar, removing the need to
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know how to define these requirements using PCTL. This suggested area of future

work has foundations that are found in the pattern system of the most common

PCTL commands named ProProST [53], which has been continued in further work

attempting to increase the number of commands that are available in this pattern

system [10]. Such pattern systems have been proposed and utilised in recent research,

e.g., to develop a toolchain that allows such techniques to be utilised on mobile robots

for use with LTL, CTL, and PCTL temporal logics [91, 92, 135]. If a system such as this

could be incorporated into the AMARL approach, users would no longer have to know

PCTL.

AMARL Solutions from a Simple User-Interface would remove the need for users to

become familiar with the algorithm structure presented within this thesis or how

they work together, significantly increasing the ease of use of AMARL. By containing

all user interaction within a simple user interface, this would allow users to supply

an agent worldview Matrix description of the AMDP, PCTL requirements either in

PCTL or structured English grammar, the number of agents within the system, and

the initial state of the system without altering any code. After these inputs have been

supplied using the said user interface, an AMDP would be automatically generated,

the quantitative analysis started, and safe abstract policies presented on-screen with

further details of their safety and functional assurances. This process would remove

the need for the user to interact with a quantitative analysis tool and be given a list of

policies they can select from, as well as instructions on how to use these safe abstract

policies. For specific domains, currently exclusive to navigation domains, this user

interface would aid users with limited knowledge of the notations and tools that

AMARL requires. However, with the current state of the algorithms presented within

the thesis, any domain which is not a navigation domain would not be able to be used

with this user interface. In order to allow this, further algorithms would have to be

created to deal with additional problem domains.

Evaluation of AMARL within Larger System and Domain Sizes would significantly

increase the validity of AMARL as a flexible approach. This thesis does not address the

limitations of AMARL regarding the size of systems and domains for which it can be

feasibly used, primarily working with AMDPs of a smaller size and a system size no

greater than three agents. Given the use of AMDPs, the number of lower-level states
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can be significantly large, but if the AMDP becomes too large, issues can arise when

the analysis is running. The leading causes for AMDPs to quickly become significantly

large are the number of states within the model and how many agents the model is

capturing. Depending on these properties, the time required to analyse a model can

vary drastically, possibly becoming infeasible. Large-scale multi-agent domains that

can be used to explore the scalability of AMARL are reviewed in [120].

Evaluation of AMARL in Non-Navigation Domains is required to confirm AMARL’s

flexibility. Within this thesis, the focus has been on multi-robot systems, which are

often used within navigation-based domains. As such, the domains used to evaluate

AMARL and its extensions have been navigation based. However, AMARL is presented

and shows no apparent limitations as a domain-flexible approach. As such, it should

be able to be utilised with systems other than multi-robot navigation-based systems.

It would benefit AMARL greatly if this hypothesis were evaluated thoroughly within

additional domain types, demonstrating and showcasing how it can be utilised, e.g.,

in the non-navigation-based domains discussed in [56].
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PRISM Model for Radiation Domain

1 mdp
2

3 const N = 4;
4

5 module RobotSystem
6 r0 : [0..7] init 1;
7 r1 : [0..7] init 2;
8

9 visits0 : [0..N] init 0;
10 visits1 : [0..N] init 0;
11 visits2 : [0..N] init 0;
12 visits3 : [0..N] init 0;
13 visits4 : [0..N] init 0;
14 visits5 : [0..N] init 0;
15 visits6 : [0..N] init 0;
16 visits7 : [0..N] init 0;
17

18 done : bool init false;
19 complete : [0..1] init 0;
20

21 [] visits0 >= 3 & visits1 >= 3 & visits2 >= 3 & visits3 >= 3 & visits4 >= 3 &
visits5 >= 3 & visits6 >= 3 & visits7 >= 3 & r0 != 3 & r0 != 4 & r1 != 3 &
r1 != 4-> (done’= true)&(complete’=1);

22

23

24 [visits0_1_0] !done & r0=0 & visits1<N -> 1:(r0’=1)&(visits1’=visits1+1);
25 [visits0_1_1] !done & r1=0 & visits1<N -> 1:(r1’=1)&(visits1’=visits1+1);
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26 [visits0_2_0] !done & r0=0 & visits2<N -> 1:(r0’=2)&(visits2’=visits2+1);
27 [visits0_2_1] !done & r1=0 & visits2<N -> 1:(r1’=2)&(visits2’=visits2+1);
28 [visits0_3_0] !done & r0=0 & visits3<N -> 1:(r0’=3)&(visits3’=visits3+1);
29 [visits0_3_1] !done & r1=0 & visits3<N -> 1:(r1’=3)&(visits3’=visits3+1);
30 [visits0_5_0] !done & r0=0 & visits5<N -> 1:(r0’=5)&(visits5’=visits5+1);
31 [visits0_5_1] !done & r1=0 & visits5<N -> 1:(r1’=5)&(visits5’=visits5+1);
32

33 [visits1_0_0] !done & r0=1 & visits0<N -> 1:(r0’=0)&(visits0’=visits0+1);
34 [visits1_0_1] !done & r1=1 & visits0<N -> 1:(r1’=0)&(visits0’=visits0+1);
35 [visits1_2_0] !done & r0=1 & visits2<N -> 1:(r0’=2)&(visits2’=visits2+1);
36 [visits1_2_1] !done & r1=1 & visits2<N -> 1:(r1’=2)&(visits2’=visits2+1);
37 [visits1_3_0] !done & r0=1 & visits3<N -> 1:(r0’=3)&(visits3’=visits3+1);
38 [visits1_3_1] !done & r1=1 & visits3<N -> 1:(r1’=3)&(visits3’=visits3+1);
39 [visits1_5_0] !done & r0=1 & visits5<N -> 1:(r0’=5)&(visits5’=visits5+1);
40 [visits1_5_1] !done & r1=1 & visits5<N -> 1:(r1’=5)&(visits5’=visits5+1);
41

42 [visits2_0_0] !done & r0=2 & visits0<N -> 1:(r0’=0)&(visits0’=visits0+1);
43 [visits2_0_1] !done & r1=2 & visits0<N -> 1:(r1’=0)&(visits0’=visits0+1);
44 [visits2_1_0] !done & r0=2 & visits1<N -> 1:(r0’=1)&(visits1’=visits1+1);
45 [visits2_1_1] !done & r1=2 & visits1<N -> 1:(r1’=1)&(visits1’=visits1+1);
46 [visits2_3_0] !done & r0=2 & visits3<N -> 1:(r0’=3)&(visits3’=visits3+1);
47 [visits2_3_1] !done & r1=2 & visits3<N -> 1:(r1’=3)&(visits3’=visits3+1);
48 [visits2_5_0] !done & r0=2 & visits5<N -> 1:(r0’=5)&(visits5’=visits5+1);
49 [visits2_5_1] !done & r1=2 & visits5<N -> 1:(r1’=5)&(visits5’=visits5+1);
50 [visits2_6_0] !done & r0=2 & visits6<N -> 1:(r0’=6)&(visits6’=visits6+1);
51 [visits2_6_1] !done & r1=2 & visits6<N -> 1:(r1’=6)&(visits6’=visits6+1);
52

53 [visits3_0_0] !done & r0=3 & visits0<N -> 1:(r0’=0)&(visits0’=visits0+1);
54 [visits3_0_1] !done & r1=3 & visits0<N -> 1:(r1’=0)&(visits0’=visits0+1);
55 [visits3_1_0] !done & r0=3 & visits1<N -> 1:(r0’=1)&(visits1’=visits1+1);
56 [visits3_1_1] !done & r1=3 & visits1<N -> 1:(r1’=1)&(visits1’=visits1+1);
57 [visits3_2_0] !done & r0=3 & visits2<N -> 1:(r0’=2)&(visits2’=visits2+1);
58 [visits3_2_1] !done & r1=3 & visits2<N -> 1:(r1’=2)&(visits2’=visits2+1);
59 [visits3_4_0] !done & r0=3 & visits4<N -> 1:(r0’=4)&(visits4’=visits4+1);
60 [visits3_4_1] !done & r1=3 & visits4<N -> 1:(r1’=4)&(visits4’=visits4+1);
61 [visits3_5_0] !done & r0=3 & visits5<N -> 1:(r0’=5)&(visits5’=visits5+1);
62 [visits3_5_1] !done & r1=3 & visits5<N -> 1:(r1’=5)&(visits5’=visits5+1);
63 [visits3_6_0] !done & r0=3 & visits6<N -> 1:(r0’=6)&(visits6’=visits6+1);
64 [visits3_6_1] !done & r1=3 & visits6<N -> 1:(r1’=6)&(visits6’=visits6+1);
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65

66 [visits4_3_0] !done & r0=4 & visits3<N -> 1:(r0’=3)&(visits3’=visits3+1);
67 [visits4_3_1] !done & r1=4 & visits3<N -> 1:(r1’=3)&(visits3’=visits3+1);
68 [visits4_6_0] !done & r0=4 & visits6<N -> 1:(r0’=6)&(visits6’=visits6+1);
69 [visits4_6_1] !done & r1=4 & visits6<N -> 1:(r1’=6)&(visits6’=visits6+1);
70 [visits4_7_0] !done & r0=4 & visits7<N -> 1:(r0’=7)&(visits7’=visits7+1);
71 [visits4_7_1] !done & r1=4 & visits7<N -> 1:(r1’=7)&(visits7’=visits7+1);
72

73 [visits5_0_0] !done & r0=5 & visits0<N -> 1:(r0’=0)&(visits0’=visits0+1);
74 [visits5_0_1] !done & r1=5 & visits0<N -> 1:(r1’=0)&(visits0’=visits0+1);
75 [visits5_1_0] !done & r0=5 & visits1<N -> 1:(r0’=1)&(visits1’=visits1+1);
76 [visits5_1_1] !done & r1=5 & visits1<N -> 1:(r1’=1)&(visits1’=visits1+1);
77 [visits5_2_0] !done & r0=5 & visits2<N -> 1:(r0’=2)&(visits2’=visits2+1);
78 [visits5_2_1] !done & r1=5 & visits2<N -> 1:(r1’=2)&(visits2’=visits2+1);
79 [visits5_3_0] !done & r0=5 & visits3<N -> 1:(r0’=3)&(visits3’=visits3+1);
80 [visits5_3_1] !done & r1=5 & visits3<N -> 1:(r1’=3)&(visits3’=visits3+1);
81 [visits5_6_0] !done & r0=5 & visits6<N -> 1:(r0’=6)&(visits6’=visits6+1);
82 [visits5_6_1] !done & r1=5 & visits6<N -> 1:(r1’=6)&(visits6’=visits6+1);
83 [visits5_7_0] !done & r0=5 & visits7<N -> 1:(r0’=7)&(visits7’=visits7+1);
84 [visits5_7_1] !done & r1=5 & visits7<N -> 1:(r1’=7)&(visits7’=visits7+1);
85

86 [visits6_2_0] !done & r0=6 & visits2<N -> 1:(r0’=2)&(visits2’=visits2+1);
87 [visits6_2_1] !done & r1=6 & visits2<N -> 1:(r1’=2)&(visits2’=visits2+1);
88 [visits6_3_0] !done & r0=6 & visits3<N -> 1:(r0’=3)&(visits3’=visits3+1);
89 [visits6_3_1] !done & r1=6 & visits3<N -> 1:(r1’=3)&(visits3’=visits3+1);
90 [visits6_4_0] !done & r0=6 & visits4<N -> 1:(r0’=4)&(visits4’=visits4+1);
91 [visits6_4_1] !done & r1=6 & visits4<N -> 1:(r1’=4)&(visits4’=visits4+1);
92 [visits6_5_0] !done & r0=6 & visits5<N -> 1:(r0’=5)&(visits5’=visits5+1);
93 [visits6_5_1] !done & r1=6 & visits5<N -> 1:(r1’=5)&(visits5’=visits5+1);
94 [visits6_7_0] !done & r0=6 & visits7<N -> 1:(r0’=7)&(visits7’=visits7+1);
95 [visits6_7_1] !done & r1=6 & visits7<N -> 1:(r1’=7)&(visits7’=visits7+1);
96

97 [visits7_4_0] !done & r0=7 & visits4<N -> 1:(r0’=4)&(visits4’=visits4+1);
98 [visits7_4_1] !done & r1=7 & visits4<N -> 1:(r1’=4)&(visits4’=visits4+1);
99 [visits7_5_0] !done & r0=7 & visits5<N -> 1:(r0’=5)&(visits5’=visits5+1);

100 [visits7_5_1] !done & r1=7 & visits5<N -> 1:(r1’=5)&(visits5’=visits5+1);
101 [visits7_6_0] !done & r0=7 & visits6<N -> 1:(r0’=6)&(visits6’=visits6+1);
102 [visits7_6_1] !done & r1=7 & visits6<N -> 1:(r1’=6)&(visits6’=visits6+1);
103
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104 endmodule
105

106 rewards "risk"
107 [visits0_3_0] true : 0.1;
108 [visits0_3_1] true : 0.1;
109

110 [visits1_3_0] true : 0.1;
111 [visits1_3_1] true : 0.1;
112

113 [visits2_3_0] true : 0.1;
114 [visits2_3_1] true : 0.1;
115

116 [visits3_0_0] true : 0.1;
117 [visits3_0_1] true : 0.1;
118 [visits3_1_0] true : 0.1;
119 [visits3_1_1] true : 0.1;
120 [visits3_2_0] true : 0.1;
121 [visits3_2_1] true : 0.1;
122 [visits3_4_0] true : 0.2;
123 [visits3_4_1] true : 0.2;
124 [visits3_5_0] true : 0.1;
125 [visits3_5_1] true : 0.1;
126 [visits3_6_0] true : 0.1;
127 [visits3_6_1] true : 0.1;
128

129 [visits4_3_0] true : 0.2;
130 [visits4_3_1] true : 0.2;
131 [visits4_6_0] true : 0.1;
132 [visits4_6_1] true : 0.1;
133 [visits4_7_0] true : 0.1;
134 [visits4_7_1] true : 0.1;
135

136 [visits5_3_0] true : 0.1;
137 [visits5_3_1] true : 0.1;
138

139 [visits6_3_0] true : 0.1;
140 [visits6_3_1] true : 0.1;
141 [visits6_4_0] true : 0.1;
142 [visits6_4_1] true : 0.1;
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143

144 [visits7_4_0] true : 0.1;
145 [visits7_4_1] true : 0.1;
146 endrewards
147

148

149

150 rewards "battery"
151 [visits0_1_0] true : 3;
152 [visits0_1_1] true : 3;
153 [visits0_2_0] true : 3;
154 [visits0_2_1] true : 3;
155 [visits0_3_0] true : 6;
156 [visits0_3_1] true : 6;
157 [visits0_5_0] true : 8;
158 [visits0_5_1] true : 8;
159

160 [visits1_0_0] true : 2;
161 [visits1_0_1] true : 2;
162 [visits1_2_0] true : 2;
163 [visits1_2_1] true : 2;
164 [visits1_3_0] true : 2;
165 [visits1_3_1] true : 2;
166 [visits1_5_0] true : 5;
167 [visits1_5_1] true : 5;
168

169 [visits2_0_0] true : 2;
170 [visits2_0_1] true : 2;
171 [visits2_1_0] true : 2;
172 [visits2_1_1] true : 2;
173 [visits2_3_0] true : 2;
174 [visits2_3_1] true : 2;
175 [visits2_5_0] true : 2;
176 [visits2_5_1] true : 2;
177 [visits2_6_0] true : 2;
178 [visits2_6_1] true : 2;
179

180 [visits3_0_0] true : 2;
181 [visits3_0_1] true : 2;
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182 [visits3_1_0] true : 2;
183 [visits3_1_1] true : 2;
184 [visits3_2_0] true : 3;
185 [visits3_2_1] true : 3;
186 [visits3_4_0] true : 2;
187 [visits3_4_1] true : 2;
188 [visits3_5_0] true : 2;
189 [visits3_5_1] true : 2;
190 [visits3_6_0] true : 5;
191 [visits3_6_1] true : 5;
192 [visits4_3_0] true : 1;
193 [visits4_3_1] true : 1;
194 [visits4_6_0] true : 7;
195 [visits4_6_1] true : 7;
196 [visits4_7_0] true : 5;
197 [visits4_7_1] true : 5;
198

199 [visits5_0_0] true : 3;
200 [visits5_0_1] true : 3;
201 [visits5_1_0] true : 2;
202 [visits5_1_1] true : 2;
203 [visits5_2_0] true : 2;
204 [visits5_2_1] true : 2;
205 [visits5_3_0] true : 1;
206 [visits5_3_1] true : 1;
207 [visits5_6_0] true : 4;
208 [visits5_6_1] true : 4;
209 [visits5_7_0] true : 7;
210 [visits5_7_1] true : 7;
211

212 [visits6_2_0] true : 7;
213 [visits6_2_1] true : 7;
214 [visits6_3_0] true : 5;
215 [visits6_3_1] true : 5;
216 [visits6_4_0] true : 7;
217 [visits6_4_1] true : 7;
218 [visits6_5_0] true : 4;
219 [visits6_5_1] true : 4;
220 [visits6_7_0] true : 4;
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221 [visits6_7_1] true : 4;
222

223 [visits7_4_0] true : 3;
224 [visits7_4_1] true : 3;
225 [visits7_5_0] true : 7;
226 [visits7_5_1] true : 7;
227 [visits7_6_0] true : 4;
228 [visits7_6_1] true : 4;
229 endrewards
230

231 //Automated PRISM Code Generation

Listing A.1: PRISM Model Adaption for Radiation Domain Map A
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Appendix B

PRISM Model for Infiltration Domain

1 mdp
2

3 //A = 0; B = 1; C = 2; D = 3; E = 4; F = 5; G = 6; H = 7; I = 8.
4 const int N = 3;
5 const int goal = 1;
6

7 ///[Command Name_CurrentRoom_RoomToVisit_RobotName]
8 module RobotSystem
9

10 r1 : [0..8] init 0;
11 r2 : [0..8] init 0;
12 r3 : [0..8] init 0;
13

14 visits0 : [0..N] init 0; // visit counter foor room 0
15 visits1 : [0..N] init 0; // visit counter foor room 1
16 visits2 : [0..N] init 0; // visit counter foor room 3
17 ...
18

19 //Has the goal in room N been completed?
20 goal0 : bool init false;
21 goal1 : bool init false;
22 goal2 : bool init false;
23 ...
24

25 //Is the mission completed?
26 done : bool init false;
27
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28 // In room Zero and making a movmement choice
29 //without goal
30 [visit0_1_1] !done & r1=0 & goal1 & visits1<N -> 1:(r1’=1)&(visits1’=visits1

+1); // robot 1 visits room 1
31 [visit0_3_1] !done & r1=0 & goal3 & visits3<N -> 1:(r1’=3)&(visits3’=visits3

+1); // robot 1 visits room 3
32 [visit0_4_1] !done & r1=0 & goal4 & visits4<N -> 1:(r1’=4)&(visits4’=visits4

+1); // robot 1 visits room 4
33

34 //with goal
35 [visit0_1_1_G] !done & r1=0 & !goal1 & visits1<N -> 1:(r1’=1)&(visits1’=

visits1+1)&(goal1’=true); // robot 1 visits room 1
36 [visit0_3_1_G] !done & r1=0 & !goal3 & visits3<N -> 1:(r1’=3)&(visits3’=

visits3+1)&(goal3’=true); // robot 1 visits room 3
37 [visit0_4_1_G] !done & r1=0 & !goal4 & visits4<N -> 1:(r1’=4)&(visits4’=

visits4+1)&(goal4’=true); // robot 1 visits room 4
38

39 //without goal
40 [visit0_1_2] !done & r2=0 & goal1 & visits1<N -> 1:(r2’=1)&(visits1’=visits1

+1); // robot 2 visits room 1
41 [visit0_3_2] !done & r2=0 & goal3 & visits3<N -> 1:(r2’=3)&(visits3’=visits3

+1); // robot 2 visits room 3
42 [visit0_4_2] !done & r2=0 & goal4 & visits4<N -> 1:(r2’=4)&(visits4’=visits4

+1); // robot 2 visits room 4
43

44 //with goal
45 [visit0_1_2_G] !done & r2=0 & !goal1 & visits1<N -> 1:(r2’=1)&(visits1’=

visits1+1)&(goal1’=true); // robot 2 visits room 1
46 [visit0_3_2_G] !done & r2=0 & !goal3 & visits3<N -> 1:(r2’=3)&(visits3’=

visits3+1)&(goal3’=true); // robot 2 visits room 3
47 [visit0_4_2_G] !done & r2=0 & !goal4 & visits4<N -> 1:(r2’=4)&(visits4’=

visits4+1)&(goal4’=true); // robot 2 visits room 4
48 ...
49

50 // In room One and making a movmement choice
51 //without goal
52 [visit1_0_1] !done & r1=1 & goal0 & visits0<N -> 1:(r1’=0)&(visits0’=visits0

+1); // robot 1 visits room 1
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53 [visit1_2_1] !done & r1=1 & goal2 & visits2<N -> 1:(r1’=2)&(visits2’=visits2
+1); // robot 1 visits room 3

54 [visit1_3_1] !done & r1=1 & goal3 & visits3<N -> 1:(r1’=3)&(visits3’=visits3
+1); // robot 1 visits room 4

55 [visit1_5_1] !done & r1=1 & goal5 & visits5<N -> 1:(r1’=5)&(visits5’=visits5
+1); // robot 1 visits room 4

56

57 //with goal
58 [visit1_0_1_G] !done & r1=1 & !goal0 & visits0<N -> 1:(r1’=0)&(visits0’=

visits0+1)&(goal0’=true); // robot 1 visits room 1
59 [visit1_2_1_G] !done & r1=1 & !goal2 & visits2<N -> 1:(r1’=2)&(visits2’=

visits2+1)&(goal2’=true); // robot 1 visits room 3
60 [visit1_3_1_G] !done & r1=1 & !goal3 & visits3<N -> 1:(r1’=3)&(visits3’=

visits3+1)&(goal3’=true); // robot 1 visits room 4
61 [visit1_5_1_G] !done & r1=1 & !goal5 & visits5<N -> 1:(r1’=5)&(visits5’=

visits5+1)&(goal5’=true); // robot 1 visits room 5
62

63 //without goal
64 [visit1_0_2] !done & r2=1 & goal0 & visits0<N -> 1:(r2’=0)&(visits0’=visits0

+1); // robot 2 visits room 1
65 [visit1_2_2] !done & r2=1 & goal2 & visits2<N -> 1:(r2’=2)&(visits2’=visits2

+1); // robot 2 visits room 3
66 [visit1_3_2] !done & r2=1 & goal3 & visits3<N -> 1:(r2’=3)&(visits3’=visits3

+1); // robot 2 visits room 4
67 [visit1_5_2] !done & r2=1 & goal5 & visits5<N -> 1:(r2’=5)&(visits5’=visits5

+1); // robot 2 visits room 4
68

69 //with goal
70 [visit1_0_2_G] !done & r2=1 & !goal0 & visits0<N -> 1:(r2’=0)&(visits0’=

visits0+1)&(goal0’=true); // robot 2 visits room 1
71 [visit1_2_2_G] !done & r2=1 & !goal2 & visits2<N -> 1:(r2’=2)&(visits2’=

visits2+1)&(goal2’=true); // robot 2 visits room 3
72 [visit1_3_2_G] !done & r2=1 & !goal3 & visits3<N -> 1:(r2’=3)&(visits3’=

visits3+1)&(goal3’=true); // robot 2 visits room 4
73 [visit1_5_2_G] !done & r2=1 & !goal5 & visits5<N -> 1:(r2’=5)&(visits5’=

visits5+1)&(goal5’=true); // robot 2 visits room 5
74 ...
75

76 // In room Two and making a movmement choice
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77 //without goal
78 [visit2_1_1] !done & r1=2 & goal1 & visits1<N -> 1:(r1’=1)&(visits1’=visits1

+1); // robot 1 visits room 1
79 [visit2_8_1_N] !done & r1=2 & goal8 & visits8<N -> 1:(r1’=8)&(visits8’=

visits8+1); // robot 1 visits room 8
80 [visit2_8_1_S] !done & r1=2 & goal8 & visits8<N -> 1:(r1’=8)&(visits8’=

visits8+1); // robot 1 visits room 8
81

82 //with goal
83 [visit2_1_1_G] !done & r1=2 & !goal1 & visits1<N -> 1:(r1’=1)&(visits1’=

visits1+1)&(goal1’=true); // robot 1 visits room 1
84 [visit2_8_1_N_G] !done & r1=2 & !goal8 & visits8<N -> 1:(r1’=8)&(visits8’=

visits8+1)&(goal8’=true); // robot 1 visits room 8
85 [visit2_8_1_S_G] !done & r1=2 & !goal8 & visits8<N -> 1:(r1’=8)&(visits8’=

visits8+1)&(goal8’=true); // robot 1 visits room 8
86 ...
87

88 // In room Three and making a movmement choice
89 //without goal
90 [visit3_0_1] !done & r1=3 & goal0 & visits0<N -> 1:(r1’=0)&(visits0’=visits0

+1); // robot 1 visits room 0
91 [visit3_1_1] !done & r1=3 & goal1 & visits1<N -> 1:(r1’=1)&(visits1’=visits1

+1); // robot 1 visits room 1
92 [visit3_4_1] !done & r1=3 & goal4 & visits4<N -> 1:(r1’=4)&(visits4’=visits4

+1); // robot 1 visits room 4
93 [visit3_5_1] !done & r1=3 & goal5 & visits5<N -> 1:(r1’=5)&(visits5’=visits5

+1); // robot 1 visits room 5
94

95 //with goal
96 [visit3_0_1_G] !done & r1=3 & !goal0 & visits0<N -> 1:(r1’=0)&(visits0’=

visits0+1)&(goal0’=true); // robot 1 visits room 1
97 [visit3_1_1_G] !done & r1=3 & !goal1 & visits1<N -> 1:(r1’=1)&(visits1’=

visits1+1)&(goal1’=true); // robot 1 visits room 3
98 [visit3_4_1_G] !done & r1=3 & !goal4 & visits4<N -> 1:(r1’=4)&(visits4’=

visits4+1)&(goal4’=true); // robot 1 visits room 4
99 [visit3_5_1_G] !done & r1=3 & !goal5 & visits5<N -> 1:(r1’=5)&(visits5’=

visits5+1)&(goal5’=true); // robot 1 visits room 5
100 ...
101
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102 // In room Four and making a movmement choice
103 //without goal
104 [visit4_0_1] !done & r1=4 & goal0 & visits0<N -> 1:(r1’=0)&(visits0’=visits0

+1); // robot 1 visits room 0
105 [visit4_3_1] !done & r1=4 & goal3 & visits3<N -> 1:(r1’=3)&(visits3’=visits3

+1); // robot 1 visits room 3
106 [visit4_5_1] !done & r1=4 & goal5 & visits5<N -> 1:(r1’=5)&(visits5’=visits5

+1); // robot 1 visits room 5
107 [visit4_6_1] !done & r1=4 & goal6 & visits6<N -> 1:(r1’=6)&(visits6’=visits6

+1); // robot 1 visits room 6
108

109 //with goal
110 [visit4_0_1_G] !done & r1=4 & !goal0 & visits0<N -> 1:(r1’=0)&(visits0’=

visits0+1)&(goal0’=true); // robot 1 visits room 0
111 [visit4_3_1_G] !done & r1=4 & !goal3 & visits3<N -> 1:(r1’=3)&(visits3’=

visits3+1)&(goal3’=true); // robot 1 visits room 3
112 [visit4_5_1_G] !done & r1=4 & !goal5 & visits5<N -> 1:(r1’=5)&(visits5’=

visits5+1)&(goal5’=true); // robot 1 visits room 5
113 [visit4_6_1_G] !done & r1=4 & !goal6 & visits6<N -> 1:(r1’=6)&(visits6’=

visits6+1)&(goal6’=true); // robot 1 visits room 6
114 ...
115

116 // In room Five and making a movmement choice
117 //without goal
118 [visit5_1_1] !done & r1=5 & goal1 & visits1<N -> 1:(r1’=1)&(visits1’=visits1

+1); // robot 1 visits room 1
119 [visit5_3_1] !done & r1=5 & goal3 & visits3<N -> 1:(r1’=3)&(visits3’=visits3

+1); // robot 1 visits room 3
120 [visit5_4_1] !done & r1=5 & goal4 & visits4<N -> 1:(r1’=4)&(visits4’=visits4

+1); // robot 1 visits room 4
121 [visit5_7_1] !done & r1=5 & goal7 & visits7<N -> 1:(r1’=7)&(visits7’=visits7

+1); // robot 1 visits room 7
122 [visit5_8_1] !done & r1=5 & goal8 & visits8<N -> 1:(r1’=8)&(visits8’=visits8

+1); // robot 1 visits room 8
123

124 //with goal
125 [visit5_1_1_G] !done & r1=5 & !goal1 & visits1<N -> 1:(r1’=1)&(visits1’=

visits1+1)&(goal1’=true); // robot 1 visits room 0
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126 [visit5_3_1_G] !done & r1=5 & !goal3 & visits3<N -> 1:(r1’=3)&(visits3’=
visits3+1)&(goal3’=true); // robot 1 visits room 3

127 [visit5_4_1_G] !done & r1=5 & !goal4 & visits4<N -> 1:(r1’=4)&(visits4’=
visits4+1)&(goal4’=true); // robot 1 visits room 4

128 [visit5_7_1_G] !done & r1=5 & !goal7 & visits7<N -> 1:(r1’=7)&(visits7’=
visits7+1)&(goal7’=true); // robot 1 visits room 7

129 [visit5_8_1_G] !done & r1=5 & !goal8 & visits8<N -> 1:(r1’=8)&(visits8’=
visits8+1)&(goal8’=true); // robot 1 visits room 8

130 ...
131

132 // In room Six and making a movmement choice
133 //without goal
134 [visit6_4_1] !done & r1=6 & goal4 & visits4<N -> 1:(r1’=4)&(visits4’=visits4

+1); // robot 1 visits room 4
135 [visit6_7_1] !done & r1=6 & goal7 & visits7<N -> 1:(r1’=7)&(visits7’=visits7

+1); // robot 1 visits room 7
136

137 //with goal
138 [visit6_4_1_G] !done & r1=6 & !goal4 & visits4<N -> 1:(r1’=4)&(visits4’=

visits4+1)&(goal4’=true); // robot 1 visits room 4
139 [visit6_7_1_G] !done & r1=6 & !goal7 & visits7<N -> 1:(r1’=7)&(visits7’=

visits7+1)&(goal7’=true); // robot 1 visits room 7
140 ...
141

142 // In room Seven and making a movmement choice
143 //without goal
144 [visit7_5_1] !done & r1=7 & goal5 & visits5<N -> 1:(r1’=5)&(visits5’=visits5

+1); // robot 1 visits room 5
145 [visit7_6_1] !done & r1=7 & goal6 & visits6<N -> 1:(r1’=6)&(visits6’=visits6

+1); // robot 1 visits room 6
146

147 //with goal
148 [visit7_5_1_G] !done & r1=7 & !goal5 & visits5<N -> 1:(r1’=5)&(visits5’=

visits5+1)&(goal5’=true); // robot 1 visits room 5
149 [visit7_6_1_G] !done & r1=7 & !goal6 & visits6<N -> 1:(r1’=6)&(visits6’=

visits6+1)&(goal6’=true); // robot 1 visits room 6
150 ...
151

152 // In room Eight and making a movmement choice
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153 //without goal
154 [visit8_2_1_N] !done & r1=8 & goal2 & visits2<N -> 1:(r1’=2)&(visits2’=

visits2+1); // robot 1 visits room 2
155 [visit8_2_1_S] !done & r1=8 & goal2 & visits2<N -> 1:(r1’=2)&(visits2’=

visits2+1); // robot 1 visits room 2
156 [visit8_5_1] !done & r1=8 & goal5 & visits5<N -> 1:(r1’=5)&(visits5’=visits5

+1); // robot 1 visits room 5
157

158 //with goal
159 [visit8_2_1_N_G] !done & r1=8 & !goal2 & visits2<N -> 1:(r1’=2)&(visits2’=

visits2+1)&(goal2’=true); // robot 1 visits room 2
160 [visit8_2_1_S_G] !done & r1=8 & !goal2 & visits2<N -> 1:(r1’=2)&(visits2’=

visits2+1)&(goal2’=true); // robot 1 visits room 2
161 [visit8_5_1_G] !done & r1=8 & !goal5 & visits5<N -> 1:(r1’=5)&(visits5’=

visits5+1)&(goal5’=true); // robot 1 visits room 5
162 ...
163

164 // Done with all the visits
165 [done] goal0 & goal1 & goal2 & goal3 & goal4 & goal5 & goal6 & goal7 & goal8

-> (done’= true);
166 endmodule
167

168

169 rewards "risk"
170 //Room A Risky Actions
171 [visit0_3_1] true : 0.05;
172 [visit0_4_1] true : 0.05;
173 [visit0_3_1_G] true : 0.05;
174 [visit0_4_1_G] true : 0.05;
175

176 //Room B Risky Actions
177 [visit1_2_1] true : 0.1;
178 [visit1_3_1] true : 0.1;
179 [visit1_5_1] true : 0.1;
180 [visit1_2_1_G] true : 0.1;
181 [visit1_3_1_G] true : 0.1;
182 [visit1_5_1_G] true : 0.1;
183

184 //Room C Risky Actions
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185 [visit2_1_1] true : 0.1;
186 [visit2_8_1_N] true : 0.05;
187 [visit2_8_1_S] true : 0.1;
188 [visit2_1_1_G] true : 0.1;
189 [visit2_8_1_N_G] true : 0.05;
190 [visit2_8_1_S_G] true : 0.1;
191 ...
192

193 //Room A Risky Actions
194 [visit0_3_2] true : 0.05;
195 [visit0_4_2] true : 0.05;
196 [visit0_3_2_G] true : 0.05;
197 [visit0_4_2_G] true : 0.05;
198

199 //Room B Risky Actions
200 [visit1_2_2] true : 0.1;
201 [visit1_3_2] true : 0.1;
202 [visit1_5_2] true : 0.1;
203 [visit1_2_2_G] true : 0.1;
204 [visit1_3_2_G] true : 0.1;
205 [visit1_5_2_G] true : 0.1;
206

207 //Room C Risky Actions
208 [visit2_1_2] true : 0.1;
209 [visit2_8_2_N] true : 0.05;
210 [visit2_8_2_S] true : 0.1;
211 [visit2_1_2_G] true : 0.1;
212 [visit2_8_2_N_G] true : 0.05;
213 [visit2_8_2_S_G] true : 0.1;
214 ...
215

216 //Room A Risky Actions
217 [visit0_3_3] true : 0.05;
218 [visit0_4_3] true : 0.05;
219 [visit0_3_3_G] true : 0.05;
220 [visit0_4_3_G] true : 0.05;
221

222 //Room B Risky Actions
223 [visit1_2_3] true : 0.1;
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224 [visit1_3_3] true : 0.1;
225 [visit1_5_3] true : 0.1;
226 [visit1_2_3_G] true : 0.1;
227 [visit1_3_3_G] true : 0.1;
228 [visit1_5_3_G] true : 0.1;
229

230 //Room C Risky Actions
231 [visit2_1_3] true : 0.1;
232 [visit2_8_3_N] true : 0.05;
233 [visit2_8_3_S] true : 0.1;
234 [visit2_1_3_G] true : 0.1;
235 [visit2_8_3_N_G] true : 0.05;
236 [visit2_8_3_S_G] true : 0.1;
237 ...
238 endrewards
239

240 rewards "goal"
241 [visit0_1_1_G] true : 1;
242 [visit0_3_1_G] true : 1;
243 [visit0_4_1_G] true : 1;
244

245 [visit1_0_1_G] true : 1;
246 [visit1_2_1_G] true : 1;
247 [visit1_3_1_G] true : 1;
248 [visit1_5_1_G] true : 1;
249

250 [visit2_1_1_G] true : 1;
251 [visit2_8_1_N_G] true : 1;
252 [visit2_8_1_S_G] true : 1;
253 ...
254

255 [visit0_1_2_G] true : 1;
256 [visit0_3_2_G] true : 1;
257 [visit0_4_2_G] true : 1;
258

259 [visit1_0_2_G] true : 1;
260 [visit1_2_2_G] true : 1;
261 [visit1_3_2_G] true : 1;
262 [visit1_5_2_G] true : 1;
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263

264 [visit2_1_2_G] true : 1;
265 [visit2_8_2_N_G] true : 1;
266 [visit2_8_2_S_G] true : 1;
267 ...
268

269 [visit0_1_3_G] true : 1;
270 [visit0_3_3_G] true : 1;
271 [visit0_4_3_G] true : 1;
272

273 [visit1_0_3_G] true : 1;
274 [visit1_2_3_G] true : 1;
275 [visit1_3_3_G] true : 1;
276 [visit1_5_3_G] true : 1;
277

278 [visit2_1_3_G] true : 1;
279 [visit2_8_3_N_G] true : 1;
280 [visit2_8_3_S_G] true : 1;
281 ...
282 endrewards

Listing B.1: PRISM Model for Deep AMARL Infiltration Domain. Automated

Generation.
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Appendix C

PRISM Model for Search and Rescue Domain

1 mdp
2

3

4 //MDP test
5 module RobotSystem
6 r0 : [0..6] init 0;
7 r1 : [0..6] init 0;
8

9 visits0 : [0..4] init 0;
10 visits1 : [0..4] init 0;
11 visits2 : [0..4] init 0;
12 visits3 : [0..4] init 0;
13 visits4 : [0..4] init 0;
14 visits5 : [0..4] init 0;
15 visits6 : [0..4] init 0;
16

17

18 goal0 : bool init false;
19 goal1 : bool init false;
20 goal2 : bool init false;
21 goal3 : bool init false;
22 goal4 : bool init false;
23 goal5 : bool init false;
24 goal6 : bool init false;
25 done : bool init false;
26
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27 [visits0_1_0] !done & !goal1 & r0=0 & visits1<4 -> 1:(r0’=1)&(visits1’=visits1
+1)&(goal1’=true);

28 [visits0_1_0G] !done & goal1= true & r0=0 & visits1<4 -> 1:(r0’=1)&(visits1’=
visits1+1);

29 [visits0_1_1] !done & !goal1 & r1=0 & visits1<4 -> 1:(r1’=1)&(visits1’=visits1
+1)&(goal1’=true);

30 [visits0_1_1G] !done & goal1= true & r1=0 & visits1<4 -> 1:(r1’=1)&(visits1’=
visits1+1);

31

32 [visits0_2_0] !done & !goal2 & r0=0 & visits2<4 -> 1:(r0’=2)&(visits2’=visits2
+1)&(goal2’=true);

33 [visits0_2_0G] !done & goal2= true & r0=0 & visits2<4 -> 1:(r0’=2)&(visits2’=
visits2+1);

34 [visits0_2_1] !done & !goal2 & r1=0 & visits2<4 -> 1:(r1’=2)&(visits2’=visits2
+1)&(goal2’=true);

35 [visits0_2_1G] !done & goal2= true & r1=0 & visits2<4 -> 1:(r1’=2)&(visits2’=
visits2+1);

36

37 [visits0_4_0] !done & !goal4 & r0=0 & visits4<4 -> 1:(r0’=4)&(visits4’=visits4
+1)&(goal4’=true);

38 [visits0_4_0G] !done & goal4= true & r0=0 & visits4<4 -> 1:(r0’=4)&(visits4’=
visits4+1);

39 [visits0_4_1] !done & !goal4 & r1=0 & visits4<4 -> 1:(r1’=4)&(visits4’=visits4
+1)&(goal4’=true);

40 [visits0_4_1G] !done & goal4= true & r1=0 & visits4<4 -> 1:(r1’=4)&(visits4’=
visits4+1);

41

42 [visits1_0_0] !done & !goal0 & r0=1 & visits0<4 -> 1:(r0’=0)&(visits0’=visits0
+1)&(goal0’=true);

43 [visits1_0_0G] !done & goal0= true & r0=1 & visits0<4 -> 1:(r0’=0)&(visits0’=
visits0+1);

44 [visits1_0_1] !done & !goal0 & r1=1 & visits0<4 -> 1:(r1’=0)&(visits0’=visits0
+1)&(goal0’=true);

45 [visits1_0_1G] !done & goal0= true & r1=1 & visits0<4 -> 1:(r1’=0)&(visits0’=
visits0+1);

46

47 [visits2_0_0] !done & !goal0 & r0=2 & visits0<4 -> 1:(r0’=0)&(visits0’=visits0
+1)&(goal0’=true);
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48 [visits2_0_0G] !done & goal0= true & r0=2 & visits0<4 -> 1:(r0’=0)&(visits0’=
visits0+1);

49 [visits2_0_1] !done & !goal0 & r1=2 & visits0<4 -> 1:(r1’=0)&(visits0’=visits0
+1)&(goal0’=true);

50 [visits2_0_1G] !done & goal0= true & r1=2 & visits0<4 -> 1:(r1’=0)&(visits0’=
visits0+1);

51

52 [visits3_4_0] !done & !goal4 & r0=3 & visits4<4 -> 1:(r0’=4)&(visits4’=visits4
+1)&(goal4’=true);

53 [visits3_4_0G] !done & goal4= true & r0=3 & visits4<4 -> 1:(r0’=4)&(visits4’=
visits4+1);

54 [visits3_4_1] !done & !goal4 & r1=3 & visits4<4 -> 1:(r1’=4)&(visits4’=visits4
+1)&(goal4’=true);

55 [visits3_4_1G] !done & goal4= true & r1=3 & visits4<4 -> 1:(r1’=4)&(visits4’=
visits4+1);

56

57 [visits4_0_0] !done & !goal0 & r0=4 & visits0<4 -> 1:(r0’=0)&(visits0’=visits0
+1)&(goal0’=true);

58 [visits4_0_0G] !done & goal0= true & r0=4 & visits0<4 -> 1:(r0’=0)&(visits0’=
visits0+1);

59 [visits4_0_1] !done & !goal0 & r1=4 & visits0<4 -> 1:(r1’=0)&(visits0’=visits0
+1)&(goal0’=true);

60 [visits4_0_1G] !done & goal0= true & r1=4 & visits0<4 -> 1:(r1’=0)&(visits0’=
visits0+1);

61

62 [visits4_3_0] !done & !goal3 & r0=4 & visits3<4 -> 1:(r0’=3)&(visits3’=visits3
+1)&(goal3’=true);

63 [visits4_3_0G] !done & goal3= true & r0=4 & visits3<4 -> 1:(r0’=3)&(visits3’=
visits3+1);

64 [visits4_3_1] !done & !goal3 & r1=4 & visits3<4 -> 1:(r1’=3)&(visits3’=visits3
+1)&(goal3’=true);

65 [visits4_3_1G] !done & goal3= true & r1=4 & visits3<4 -> 1:(r1’=3)&(visits3’=
visits3+1);

66

67 [visits4_5_0] !done & !goal5 & r0=4 & visits5<4 -> 1:(r0’=5)&(visits5’=visits5
+1)&(goal5’=true);

68 [visits4_5_0G] !done & goal5= true & r0=4 & visits5<4 -> 1:(r0’=5)&(visits5’=
visits5+1);

69
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70 [visits4_5_1] !done & !goal5 & r1=4 & visits5<4 -> 1:(r1’=5)&(visits5’=visits5
+1)&(goal5’=true);

71 [visits4_5_1G] !done & goal5= true & r1=4 & visits5<4 -> 1:(r1’=5)&(visits5’=
visits5+1);

72

73 [visits5_4_0] !done & !goal4 & r0=5 & visits4<4 -> 1:(r0’=4)&(visits4’=visits4
+1)&(goal4’=true);

74 [visits5_4_0G] !done & goal4= true & r0=5 & visits4<4 -> 1:(r0’=4)&(visits4’=
visits4+1);

75

76 [visits5_4_1] !done & !goal4 & r1=5 & visits4<4 -> 1:(r1’=4)&(visits4’=visits4
+1)&(goal4’=true);

77 [visits5_4_1G] !done & goal4= true & r1=5 & visits4<4 -> 1:(r1’=4)&(visits4’=
visits4+1);

78

79 [visits5_6_0] !done & !goal6 & r0=5 & visits6<4 -> 1:(r0’=6)&(visits6’=visits6
+1)&(goal6’=true);

80 [visits5_6_0G] !done & goal6= true & r0=5 & visits6<4 -> 1:(r0’=6)&(visits6’=
visits6+1);

81

82 [visits5_6_1] !done & !goal6 & r1=5 & visits6<4 -> 1:(r1’=6)&(visits6’=visits6
+1)&(goal6’=true);

83 [visits5_6_1G] !done & goal6= true & r1=5 & visits6<4 -> 1:(r1’=6)&(visits6’=
visits6+1);

84

85 [visits6_5_0] !done & !goal5 & r0=6 & visits5<4 -> 1:(r0’=5)&(visits5’=visits5
+1)&(goal5’=true);

86 [visits6_5_0G] !done & goal5= true & r0=6 & visits5<4 -> 1:(r0’=5)&(visits5’=
visits5+1);

87

88 [visits6_5_1] !done & !goal5 & r1=6 & visits5<4 -> 1:(r1’=5)&(visits5’=visits5
+1)&(goal5’=true);

89 [visits6_5_1G] !done & goal5= true & r1=6 & visits5<4 -> 1:(r1’=5)&(visits5’=
visits5+1);

90

91

92 [done] visits0 >= 4 & visits1 >= 4 & visits2 >= 4 & visits3 >= 4 & visits4 >= 4
& visits5 >= 4 & visits6 >= 4-> (done’= true);

93 endmodule
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94

95 rewards "risk"
96 [visits0_1_0] true : 0.1;
97 [visits0_1_0G] true : 0.1;
98 [visits0_1_1] true : 0.1;
99 [visits0_1_1G] true : 0.1;

100 [visits1_0_0] true : 0.1;
101 [visits1_0_0G] true : 0.1;
102 [visits1_0_1] true : 0.1;
103 [visits1_0_1G] true : 0.1;
104 [visits3_4_0] true : 0.1;
105 [visits3_4_0G] true : 0.1;
106 [visits3_4_1] true : 0.1;
107 [visits3_4_1G] true : 0.1;
108 [visits4_3_0] true : 0.1;
109 [visits4_3_0G] true : 0.1;
110 [visits4_3_1] true : 0.1;
111 [visits4_3_1G] true : 0.1;
112 [visits4_5_0] true : 0.1;
113 [visits4_5_0G] true : 0.1;
114 [visits4_5_1] true : 0.1;
115 [visits4_5_1G] true : 0.1;
116 [visits5_4_0] true : 0.1;
117 [visits5_4_0G] true : 0.1;
118 [visits5_4_1] true : 0.1;
119 [visits5_4_1G] true : 0.1;
120 [visits5_6_0] true : 0.1;
121 [visits5_6_0G] true : 0.1;
122 [visits5_6_1] true : 0.1;
123 [visits5_6_1G] true : 0.1;
124 [visits6_5_0] true : 0.1;
125 [visits6_5_0G] true : 0.1;
126 [visits6_5_1] true : 0.1;
127 [visits6_5_1G] true : 0.1;
128 endrewards
129

130 rewards "goal"
131 [visits0_1_0] true : 1;
132 [visits0_1_1] true : 1;
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133 [visits0_2_0] true : 1;
134 [visits0_2_1] true : 1;
135 [visits4_3_0] true : 1;
136 [visits4_3_1] true : 1;
137 [visits4_5_0] true : 1;
138 [visits4_5_1] true : 1;
139 [visits5_6_0] true : 2;
140 [visits5_6_1] true : 2;
141 [visits6_5_0] true : 1;
142 [visits6_5_1] true : 1;
143 endrewards
144 //Automated PRISM Code Generation

Listing C.1: PRISM Model for Grid-Based Search and Rescue Domain. Automated

Generation.
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