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Abstract

Malware detection is a major security concern and a great deal of academic and commercial research
and development is directed at it. Machine Learning is a natural technology to harness for malware
detection and many researchers have investigated its use. However, drawing comparisons between
different techniques is a fraught affair. For example, the performance of ML algorithms often
depends significantly on parametric choices, so the question arises as to what parameter choices
are optimal. In this thesis, we investigate the use of a variety of ML algorithms for building malware
classifiers and also how best to tune the parameters of those algorithms – a process generally known
as hyper-parameter optimisation (HPO). Firstly, we examine the effects of some simple (model-free)
ways of parameter tuning together with a state-of-the-art Bayesian model-building approach. We
demonstrate that optimal parameter choices may differ significantly from default choices and argue
that hyper-parameter optimisation should be adopted as a ‘formal outer loop’ in the research and
development of malware detection systems. Secondly, we investigate the use of covering arrays
(combinatorial testing) as a way to combat the curse of dimensionality in Gird Search. Four ML
techniques were used: Random Forests, xgboost, Light GBM and Decision Trees. cAgen (a tool that
is used for combinatorial testing) is shown to be capable of generating high-performing subsets of the
full parameter grid of Grid Search and so provides a rigorous but highly efficient means of performing
HPO. This may be regarded as a ‘design of experiments’ approach. Thirdly, Evolutionary algorithms
(EAs) were used to enhance machine learning classifier accuracy. Six traditional machine learning
techniques baseline accuracy is recorded. Two evolutionary algorithm frameworks Tree-Based
Pipeline Optimization Tool (TPOT) and Distributed Evolutionary Algorithm in Python (Deap) are
compared. Deap shows very promising results for our malware detection problem. Fourthly, we
compare the use of Grid Search and covering arrays for tuning the hyper-parameters of Neural
Networks. Several major hyper-parameters were studied with various values and results. We achieve
significant improvements over the benchmark model. Our work is carried out using EMBER, a
major published malware benchmark dataset of Windows Portable Execution (PE) metadata samples,
and a smaller dataset from kaggle.com (also comprising of Windows Portable Execution metadata).
Overall, we conclude that HPO is an essential part of credible evaluations of ML-based malware
detection models. We also demonstrate that high performing hyper-parameter values can be found by
HPO and that these can be found efficiently.
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Chapter 1

Introduction

1.1 Malware and its Detection

Malware is any malicious software that causes harm to the users of a computer system. It is one of
the most pressing problems in modern cybersecurity, and its detection has been a long-standing focus
for academic and commercial research and development [8]. There are many types of malware, and
each has its own characteristics [9, 10]. New malware families and new variants of existing families
are constantly emerging. This means detection techniques must evolve and improve too. There
are three approaches to malware detection: static, dynamic, and hybrid detection. Static malware
detection analyses malicious binary files without executing them. This is the focus of this thesis.
Dynamic malware detection uses features of run-time execution behaviour to identify malware.
Hybrid detection combines the previous two approaches. Detection must be adequate, i.e. exhibit
low false positives and negatives, but also efficient, particularly in areas such as forensics or threat
hunting where vast file storage may need to be scanned for malware. Furthermore, the malware
environment constantly changes, so detectors’ (re-)training or reconfiguration speed is also important
[11].

1.2 Machine Learning-Based Detection and Hyper-parameter
Optimisation

Machine learning (ML) is one of the highest-profile technologies of our age. Its theory develops
apace, and the number of successful applications to modern-day problems is huge. It also has
the potential to play a critical role in detecting malware by any of the three approaches identified
above. Machine Learning is an obvious avenue to pursue, with various advantages to harnessing it
for malware detection and categorisation: an ML approach can significantly reduce manual effort in
developing detectors, giving more rapid deployment; ML can play a critical role in the extraction of
insight from malware samples; and ML-based detectors can detect some unseen malware, e.g. unseen
malware that has features that are similar to those of known malware may be detected because of the
loose pattern matching that underpins many ML classification approaches.

1
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Malware detection is the focus of this thesis and aims to determine if a file or behaviour is
malicious. Ground truth labels (indicating whether an instance of software is malware or not) are
not always available or necessary for this task. Both supervised machine learning approaches (where
labels are available) and unsupervised machine learning approaches (when labels are not available)
have been applied. (Semi-supervised learning, which can be applied when some labels are available,
has received much less attention. Malware classification, on the other hand, involves categorising
malware into specific families or types. This generally requires ground truth labels.

A large number of ML techniques have indeed been brought to bear on the malware detection
problem, often attaining good results. However, ML must not be seen as a toolkit that can be
thrown at any problem. Many ML techniques are parameterised, and the choice of parameters may
significantly affect performance. In modern, widely used ML tool-kits, algorithms often have many
tens of parameters (and sometimes more). This leads to the thorny issue of how such parameters may
be best set, a problem generally referred to as hyper-parameter optimisation (HPO). Suitable HPO
has the potential to improve on the results obtained by a specific detection approach but also to enable
fair comparison of techniques that are not the specific focus of the investigation. Manual tuning is
often simply impossible. (As an aside, we observe that many commercial ML users spend a great
deal of time tuning for their specific needs).

Existing ML toolkits address this problem to some extent by adopting default values for
parameters; these values have been shown to work plausibly over many problems. However, for
any specific problem, it is far from clear that the default values will be the best, or even good, choices.
We have significant domain incentives to gain the best possible results for malware detection.

The negative impact of false positive (FP) and false negative (FN) classifications differs
significantly. Academic research typically treats the relative importance as equal (e.g., using accuracy
or F1-score as a target performance metric). It almost universally fails to indicate what levels of false
negatives and false positives are acceptable. The anti-malware industry, however, associates a much
higher cost with FPs than with FNs. FPs are largely considered unacceptable, and FNs are largely
considered a limitation. So in practice, the anti-malware industry does not seek to minimize both
errors but to minimize FNs while keeping FPs at zero. This is a perfectly reasonable stance by the
anti-malware industry. There is a general informed acceptance that anti-malware will not protect
against all malware (and so some level of FNs is to be expected). The negative impact of FPs, e.g.
the waste of skilled analysis time and system inconveniences incurred by management action before
full resolution of the raised issues, may bring the anti-malware itself into disrepute and destroy faith
in its general operation. The risk managers in individual organisations are free to deviate from this
position, but in practice, the same issues are often faced.

We observe that in a more general engineering context, there are many cases where false alarms
(FPs) have led to operator actions that simply increase risk. Safety system alerts, for example, have
been switched off by operators if they are found to waste their time. Where anti-malware is widely
distributed the reputation damage that may be incurred by FPs is multiplied.

Whatever the relative costs assumed for each type of error, the detection models developed by ML
algorithms depend on choices of its parameters: making high-performing hyper-parameter choices
matter. In this thesis, we explore various ML techniques applied to malware classification. We aim
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to demonstrate that hyper-parameter tuning is important for ML users in the research community
focusing on security applications, particularly static malware detection. For comparison purposes,
our experiments typically use the evaluation criteria adopted in reviewed research works.

1.3 Scope of the Thesis

The work presented in this thesis explores various approaches to hyper-parameter optimisation in the
context of ML-based static detection of malware. It focuses on a prevalent form of malware: Windows
Portable Execution (PE) files. Windows is the most common user operating system; malware writers
often target it. The thesis uses two publicly available datasets for its work. One is available from
the ML competition website kaggle.com [12]. The other is EMBER, a much larger dataset. We
use the 2018 version of EMBER, which, its authors say, was curated to be specifically challenging
for ML-based approaches. We do not formally explore types of malware other than Windows PE
files. The application of the techniques deployed in this thesis to other types of malware is left as
future work. The encouragement to pursue hyper-parameter optimisation came from several sources,
e.g. [13, 5]. The scope for hyper-parameter optimisation (HPO) seems excellent. To the best of
our knowledge, there is no significant exploration of the application of HPO in Static PE malware
detection.

1.4 Thesis Hypothesis

The main thesis hypothesis is:

• Main Hypothesis: HPO can significantly improve the performance of static malware detectors
based on machine learning.

We explore three general approaches to HPO:

• A Bayesian approach where the results of trials of sets of hyper-parameter values are used to
inform the selection of the next candidate set;

• Covering Arrays, a technique that provides a concise but diverse set of candidate parameter sets
to evaluate and which may be regarded as a Design of Experiments approach; and

• Optimisation-based approaches using evolutionary algorithms (DEAP and TPOT) to search the
hyper-parameter space.

More specific research hypotheses are:

• Hypothesis1: AHBO-TPE is an efficient and effective technique for hyper-parameter
optimisation of ML-based malware detectors. It can find high-performance hyper-parameter
vectors more quickly than comparable techniques.
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• Hypothesis2: A Covering Array is an efficient technique for hyper-parameter optimisation of
ML-based malware detectors. It can find significantly better hyper-parameters in comparison
to Grid Search and do so with reduced computation.

• Hypothesis3: An Evolutionary Algorithm can find new or improved hyper-parameter vectors
that give better performance than the defaults of ML-based malware detectors.

• Hypothesis4: Grid Search and Covering Arrays can be used to efficiently achieve
high-performing parameter choices for Deep Neural Network based malware detectors.

The first three hypotheses are evaluated using a variety of underpinning ML classification
approaches. The fourth hypothesis extends our investigation into HPO for optimising the model
parameters of neural networks. All assume that the context is static malware detection of Windows
PE files.

1.5 Thesis Contributions

In the context of static ML-based Windows PE malware detection, the contributions of this thesis are
as follows:

• The development of benchmarks for the use of various ML techniques with their default model
parameters. We demonstrate that optimal parameter choices may differ significantly from
default choices. We argue that hyper-parameter optimisation should be adopted as a ‘formal
outer loop’ in the research and development of malware detection systems.

• A demonstration of the effectiveness and the time taken by established model-free approaches
to the hyper-parameterisation of such models. Specifically, we apply Grid Search and Random
Search for HPO purposes.

• Demonstration of the efficiency and effectiveness of a specific Bayesian approach to such HPO.

• The demonstration of the efficiency and effectiveness of Covering Arrays applied to the model
parameter domains of ML approaches.

• A demonstration of the efficiency and effectiveness of two evolutionary algorithms for the HPO
of ML-based malware detectors.

1.6 Structure of the Thesis

The rest of the thesis is structured as follows:

• Chapter 2 surveys the background literature relevant to the thesis work, covering malware
(particularly Windows PE files), its detection, ML techniques and provides an introduction
to Covering Arrays.
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• Chapter 3 provides an exploration of classical ML classifier techniques applied with default
parameters and a newer ML approach. These are subject to classic model-free HPO approaches
(Random Search and Grid Search). A specific Bayesian HPO approach is evaluated.

• Chapter 4 explores the use of Covering Arrays as an HPO approach for the classical ML
techniques of interest.

• Chapter 5 explores the use of two evolutionary algorithm approaches (DEAP and TPOT) to
enhance and optimise selected ML models’ default parameters.

• Chapter 6 explores HPO approaches for Deep Neural Networks (specifically, the use of
Covering Arrays).

• Chapter 7 provides conclusions and identifies future work.

1.7 Publications

Works in this thesis have appeared in the following publications:

1. Fahad T. ALGorain and John A. Clark. "Bayesian Hyper-Parameter Optimisation for
Malware Detection." (2021)."https://ceur-ws.org/Vol-3125/paper6.pdf"

2. F.T ALGorain and J.A. Clark, "Bayesian Hyper-Parameter Optimisation for
Malware Detection." Electronics 2022, 11, 1640. "https://doi.org/10.3390/
electronics11101640"

3. F.T. ALGorain and J.A. Clark, "Covering Arrays ML HPO for Static Malware
Detection." Eng 2023, 4, 543-554. "https://doi.org/10.3390/eng4010032"

https://ceur-ws.org/Vol-3125/paper6.pdf
https://doi.org/10.3390/electronics11101640
https://doi.org/10.3390/electronics11101640
https://doi.org/10.3390/eng4010032


Chapter 2

Background and Literature Review

This chapter provides background and reviews literature concerned with Windows Portable Execution
(PE) files, HPO, and its application in static malware detection.

2.1 Malware and Windows Portable Executable Files

2.1.1 What is Malware?

Malware is any malicious software that causes harm to the users of a computer system. Recently,
malware has become more sophisticated and anti-malware software is frequently becoming
circumvented or deceived. Malware authors use various ways to bypass current detectors, e.g. using
various obfuscation techniques such as binary-packers. Special measures are needed to find such
malware. In this thesis, we are concerned with static malware detection approaches. In particular,
our work deals with the detection of Windows Portable Executable (PE) files, a very common form
of malware.

2.1.2 Portable Executable (PE) Files

The Microsoft file format PE, which stands for portable executable, is used for executable files, object
files, dynamic-link library files (DLLs), and some other types of files. Since the release of Windows
NT 3.1, this format has been utilised by Windows operating systems. Any file with the following
extensions—.cpl,.dll,.exe,.ocs,.scr, and. sys—has a PE file format. This format makes it possible
for Windows to manage executable code. These PE files contain data that instructs the Windows
operating system on how to load and run them. They are trustworthy, harmless files that are essential
to all of Microsoft’s operating systems. When the PE files are contaminated with malicious code then
this trust is misplaced.

When arbitrary or harmful code is added to a portable executable, PE infection results. It is not
difficult to insert malicious code into PE files because the PE format was not intended to be resistant
to code change. PE files are frequently infected by various types of malware, e.g. Trojans, backdoors,
ransomware, worms, and advanced persistent threat (APT) malware [14, 15, 16]. Once malware has
access to a computer’s PE files, it can often run undetected by the user.

6
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2.1.3 PE File Format and Structure

The PE file format is the most common executable format for Windows OS and its executables,
DLLSs and FONs (font files). It comprises a number of standard headers (PE-32 format), see the
structure of PE in 2.1, followed by different sections [17]. In the Header section, we can see the PE
file structure COFF (Common Object File Format). This file contains sensitive information such
as machine type ( windows, MAC etc.), the format of the file (e.g. DLL or EXE), the number
of sections, symbols etc. The optional header has information about the linker version, code size,
initialisation size and uninitialised data, and address entry pointers to the sections that follow. Pointers
to components like export tables, import tables, resources, exceptions, debug information, certificate
information, and relocation tables are kept in data directories. As a result, they summarise the contents
of any executables [18]. The last part consists of Section Tables which show the name, offset and size
of all sections in a PE file. PE sections have codes and initialised data that the Windows loader uses
to navigate into the executables or readable/writable memory pages. The same also goes for imports,
export and resources defined by the file. Different sections have a header that specifies the size and the
address. The import table address instructs the loader which functions should be imported statically.

The resources section contains important information about user interfaces, e.g. cursors, fonts,
icons, and menus. Normally a PE file contains a .text code section, and others (.dat, .rdatat or. bss).
Section .reloc is the place in which relocation tables usually reside. This gives the windows loader
the ability to reassign the base address from the preferred base of the executables. The section .tls has
special thread local storage (TLS) to store thread-specific local variables. These have been exploited
to redirect the entry point of an executable in order to check if a debugger or any other tool is being
run [19]. For more information about PE files, the reader is referred to [20]
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Figure 2.1: PE File Structure [1].
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2.2 Machine Learning (ML) algorithms

ML algorithms are of three forms: supervised learning, which needs data to be labelled in order
to train a model; unsupervised learning where unlabeled data are typically used to learn patterns of
‘similar’ data inputs (i.e. data classes); and semi-supervised learning, in which the previous two are
combined to get the desired output.

2.3 Supervised ML algorithms

In any given supervised learning technique, both labels x (features) and y (target) are available. The
aim here is to find an optimal predicted value of a model function to minimise a specific cost function
that models an error between the estimated output and the true labels (a.k.a ground truth). There are
several loss functions in supervised learning models (euclidean distance, cross-entropy, information
gain etc.) [21]. Furthermore, different ML algorithms have a different predictive model architecture
that is based on the hyper-parameters space. These will be discussed below.

2.3.1 Linear Models

Generally, supervised learning models can be either classification or regression techniques; these are
used to predict continuous (regression) or discrete variables (classification). We will start with logistic
regression from [22] because it is one of the chosen ML models for our scope.

2.3.2 Logistic regression (LR)

LR [23] is one of the models that can be used for classification problems. LR cost function can
take many forms depending on the regularisation method chosen for the penalty. Three types of
method of regularisation methods exist in LR (L1, L2 and elasticnet) [24]. In order to tune LR, the
first hyper-parameter is the regularisation method used in the penalisation (l1, l2, elasticnet or non);
it is called a penalty in sk-learn. C (the coefficient) is another important hyper-parameter to tune,
this determines how strong the regularisation for the model needs to be. Furthermore, the solver
type represents the type of optimisation algorithm to be used (i.g. newton-cg, lbfgs, liblinear, sag or
saga ) in LR. These solvers have correlations with a penalty and C, this relation is called conditional
hyper-parameters.

2.3.3 Stochastic Gradient Descent (SGD)

SGD [22] is an optimisation algorithm that is used for classification or regressions. The gradient here
is the slope or slant on a surface (gradient descent means descending a slope to reach the lowest point
on that surface). It is an iterative technique. It typically starts from a random point of a function’s
response surface and travels down in steps until it reaches the lowest point of that function (or at least
a local optimum). With SGD the gradient loss is calculated by taking each sample at a time and then
the model gets updated with decreasing strength schedule (learning rate). To achieve the best results,
SGD uses minibatch learning (online or out of core) by the partial_fit method; the data should have
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zero mean and unit variance. SGD has a function that is added to the loss called a regularizer (it
works as a penalty to the loss). The penalty shrinks the parameters towards the zero vector using
three choices: L2 (squared euclidean norm), L1 (absolute norm) or a combination of both called
(Elasticnet). When the parameter gets updated and crosses a value (0.0) of the regulariser, this leads
to online feature selection of the sparse learning models [22].

2.3.4 K-nearest neighbour (KNN)

K-nearest neighbour (KNN) is one of the commonly used ML algorithms for classification tasks. It
uses a set (the training set) of labeled data items to make a prediction for new (unlabeled) data items.
The predicted class of each new item is usually set to the most highly occurring class in its k nearest
neighbours in the training set. The technique adopts a distance metric to determine distances between
data items.

The most important hyper-parameter is k, the number of considered nearest neighbours [25].
There are a couple of problems that might arise if k is too small or too large. If k is too small the
model will under-fit, alternatively, if it is too large, it will overfit and require more time to be trained.
Depending on different problems, the weighted function used in prediction can be either uniform
or distance. With uniform, the points are equally weighted, and with distance, they are weighted
using the inverse of their distance. One more distance and power metric can be tuned for minor
improvements called Minkowski. Finally, the algorithms that compute the nearest neighbours are
taken from three choices: ball tree, k-dimensional tree, or brute force search. There is also a common
choice in which we can set it to auto mode in sk-learn [22].

2.3.5 Naive Bayes (NB)

Naive Bayes (NB) [26] form a set of supervised learning techniques based on Bayes’ theorem. It
shows a way in which we can calculate the probability of a hyper-parameter belonging to a given
score. It uses previous results to form a probabilistic model that is based on the probability of
the score given a vector of hyper-parameters. We can say that Bayes theorem is denoted by the
following: P (score|hyper-parameter) = (P (hyper-parameter|score) * P (score)) / P(hyper-parameter).
P (score|hyper-parameter) is the probability of the score given the provided hyper-parameter value.
There are four main types of NB: Bernoulli NB [27], Gaussian NB [28], multinomial NB and
complement NB [29]. Interested readers should refer to [30] for more information.

2.3.6 Tree-based Models

The Decision Tree (DT) [31] is a widely used classification technique which utilises a tree-based
structure to model a decision and consequently summarise the set of classification rules from the
data. There are three main components for a DT: the root node to represent the whole data, multiple
nodes that show decision tests and sub-nodes split over features to make a decision, and lastly, result
classes represented by various leaf nodes [32]. Commonly these algorithms recursively split the
training set with better values from the features to achieve good decisions over each subset. In
order to prevent over-fitting in a DT, pruning is used to remove a few subsets from the decision
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nodes. To control the complexity of a DT, there is a hyper-parameter called max_depth [33].
There are several hyper-parameters that can be tuned to build a better DT model [34]. First, to
control the split parameter quality we use a measuring function called criterion in scikit-learn.
Two main types of measuring functions can be selected: Gini impurity and Information gain.
Furthermore, there are also two choices for the split method, it is either best (for best split) or
random split (to split randomly). There is a feature selection method called max_features for
choosing the best features. Moreover, there are a few more hyper-parameter for the splitting process:
min_samples_split (to acquire a minimum number of data points to split) and min_samples_leaf
(to acquire a minimum number of leaves to obtain); max_leaf_nodes (maximum number of leaf
nodes), and the min_weight_fraction_leaf (this is the minimum weighted fraction of total weights).
These also are tuned to improve model performance [22], [34]. Similarly, it is possible to combine
multiple singular ML models to achieve better performance. Models derived in this way are known as
ensembles. Such models include Random Forest (RF), Extra Trees (ET), Extreme Gradient Boosting
(xgboost) and Light Gradient Boosted Machines (LightGBM). We will focus on xgboost, LightGBM
and RF.

2.3.7 Random Forests (RFs)

As an ensemble learning technique, RF [35] employs a technique called bagging to combine multiple
decision trees together. The majority-voted classes are chosen as the final classification in RF, which
use standard DTs constructed from a large number of randomly generated subsets [36]. Similar to
RF, ET [37] employs a randomly selected feature set and the entire sample set to construct DTs. It
also chooses the split at random while RF seeks optimal results.

2.3.8 Gradient Boosting Decision Trees (GBDTs)

A GBDT uses the boosting function and it facilitates classification ‘difficult’ samples. This is due to
putting more weight on using these difficult samples during training. GBDT is a version of Gradient
Boosting Machines GBM (where all weak classifiers are regression trees). There are two techniques
that are based on GBDT: xgboost and LightGBM.

2.3.9 Extreme Gradient Boosting (xgboost)

Xgboost [38] is one of the popular tree-based ensemble models; it is designed for speed and
performance improvement. It uses boosting and gradient descent methods to combine basic DTs. It
grows trees depth-wise (one of the main important traits to differentiate it from LightGBM). Xgboost
trains various models on several subsets of the training dataset and then gives out the vote for the
best-performing model.

2.3.10 Light Gradient Boosting Machines (LightGBM)

LightGBM [39] is an implementation of GDBT that is used to preserve the accuracy of the model.
One of the main differences between it and xgboost is that it grows trees leaf-wise. LightGBM is very
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suitable for large datasets, that is due to how fast and efficiently it produces results. Gradient-based
side sampling is a way to weigh samples during training. Data instances with larger gradients
contribute more to the information gain used for building a tree. Thus, keeping instances with the
highest gradients during training and using random sampling instances with smaller gradients. It has
an exclusive feature bundling to reduce the number of features. Many features are exclusive and can
be bundled together (meaning they do not take non-zero values simultaneously). This is used to lower
the dimension of features. Thus, classifiers train quicker while having the same accuracy. In the ML
detection field, most models are required to handle bigger data sets. LightGBM is very effective in
this aspect, as it can handle big data. This is one of the reasons why this specific model has been used
in this thesis.

2.4 Deep Learning (DL) Models

Deep Learning (DL) techniques are applied to many areas such as computer vision, machine
translation and natural language processing; this is due to the success in solving many types of related
problems. It is based on the artificial neural network (ANNs) theory. DL comes in various forms
such as deep belief networks (DNNs), feedforward neural networks (FFNNs), convolutional neural
networks (CNN), recurrent neural networks (RNNs) and more [40]. All of these models have the same
hyperparameters because they have the same base architecture (ANN structure). DL approaches have
many hyper-parameters that require tuning. Two main hyper-parameters are the number of layers
and the number of neurons, which in turn raises the complexity of the DL model [41]. Mainly,
DL models should have the capability to model the objective function and avoid over-fitting. Then
setting up the type of function needed for the problem (i.g. binary cross entropy for classifications
or RMSE for regression etc.). After that, we need to set up the required activation function. There
are many types of activation functions to be used depending on the problem: Softmax, rectified
linear unit (Relu), sigmoid, tanh, or soft sign, hard_sigmoid etc. (These are used to model non-linear
problems). Finally, the optimiser type, it can be set as follows: stochastic gradient descent (SGD),
adaptive moment estimation (Adam) and others [42]. There are other hyper-parameters that are
closely related to the optimisation and training process of DL Models. The learning rate is one of the
most important parameters to tune in DL models [43]. It makes use of the step size of each iteration
that enables the objective function to converge. Even though having a large learning rate speeds up the
training process, however, the gradient may achieve a local minimum value or even cannot converge.
Furthermore, a lower learning rate converges somewhat smoothly, but in turn, it will increase the
model training time and require more epochs. The optimal learning rate should be one that enables
the objective function to reach a global minimum within budget. Another important hyper-parameter
to tune is the drop-out rate (it is used to combat over-fitting). With drop-out, a random sample of
neurons is removed and it should be tuned accordingly. Batch size (number of processed samples
before training ) and Epochs (number of complete cycles throughout the entire training set) are other
hyper-parameters that we need to tune [44]. The number of iterations and the resource requirement
for training affects the Batch size. Epoch tuning usually depends on the type of the training set
and normally it is tuned while increasing its value slowly (this is until validation accuracy starts
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decreasing) this means, the model started over-fitting. One of the methods to combat over-fitting
is called Early stopping (it is a form of regularization in which if model validation accuracy starts
decreasing it will stop training the model in advance after a number of epochs). Commonly, the DL
model converges fast with lower epochs and to prevent over-fitting the model early stopping is used.
Another hyper-parameter that is used to lower the training time of the model is called Patience. These
are the main hyper-parameters to tune to achieve the desired optimal values for any DL model.

2.4.1 Neural Network Structural Model

The common neural network (NN) structural model, e.g. as described in [2], has an input layer,
an output layer, and a number (possibly none) of intermediate or ‘hidden’ layers. Each layer has
a number of nodes or ‘neurons’. Different layers may have different numbers of neurons. A Feed
Forward Neural Network is illustrated in figure 2.2.

Figure 2.2: A simple Feed Forward Neural Network showing (a) structure, (b) how a weighted sum
is calculated and fed into an activation function to produce a node value (output), and (c) common
activation functions [2]

The number of input and output neurons is typically defined by the problem. For example,
application metadata comprising 80 features with (normalised) values in the interval (0,1) would
naturally give rise to 80 input neurons. Similarly, if the problem is binary classification (e.g. malware
or non-malware), then a single output neuron would be very common. If the task is to identify the
type of malware family, a multi-class problem, then an output layer with a neuron for each considered
family would be usual.

Values are associated with neurons. These are either problem input values or else calculated as
indicated below. Neurons in an intermediate layer are connected to neurons in the previous layer
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and each connection is associated with a weight (see Figure 2.2 (b)). There is an additional constant
weight which is a bias term. The neurons in the previous layer to which a neuron is connected can
be thought of as its ‘input neurons’. The weighted sum of the values stored at the neuron’s inputs
plus a bias term forms the input to an activation function that computes the stored value of the neuron
in question. There are many activation functions, which typically implement a non-linear response.
Three are shown in Figure 2.2 (c). Commonly used ones are linear, softmax, rectified linear unit
(Relu), sigmoid, tanh, softsign and hard-sigmoid (e.g. see c in 2.2). Figures 2.3, 2.4 and 2.5 illustrate
the remaining activation functions for reference (softsign, linear, softmax and hard_sigmoid).

Figure 2.3: Softsign and Hard_sigmoid Activation Functions Example [3]
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Figure 2.4: Softmax Activation function Example [4]

Figure 2.5: Linear Activation function Example [3]
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The number of hidden layers and the numbers of neurons in them are the two main
hyper-parameters that affect performance and require tuning to give excellent performance for the
problem at hand.

2.4.2 Training of A Neural Network

Training a neural network requires a ‘loss function’ to measure how far the performance of the
model deviates from the idea. Loss functions come in various forms (binary cross entropy for binary
classifications, multi-class cross entropy for multi-classification and root mean squared error (RMSE)
for regression problems). In our case, we will focus on binary cross entropy. Binary cross entropy
(also called log loss) compares the predicted probability p to the actual class output y (represented as
0 or 1.0). It is the negative average of the log of the corrected predicted probabilities (meaning how
far or close we are from the actual value). The formula for binary cross entropy is:

−(y log(p)+(1− y) log(1− p)) (2.1)

Deep neural networks are typically trained, by updating and adjusting neurons weights and biases,
utilizing the supervised learning back-propagation algorithm in conjunction with an optimisation
technique such as stochastic gradient descent [45, 46]. Dropout addresses the problem of over-fitting
by preventing neuron co-adaption. Basically, it works by taking away a (usually) small number of
neurons in a random manner. The random deletion occurs with a specified probability that is a tunable
parameter of the network. Another hyper-parameter to be set is the optimiser. This could be stochastic
gradient descent (SGD), adaptive moment estimation (Adam) or root mean square propagation (RMS
prop), etc [42]. There are other dependent hyper-parameters to the optimiser such as Learning Rate
(LR). This is to be set during the training or optimisation of the DL model. The learning rate is one of
the most important hyper-parameters for DL models that need to be tuned [43]. It directly affects the
convergence of the objective function. It specifies the step size at each iteration of the search. Hence,
if the LR were lower, there is a chance that it will lead to a slower convergence rate. However, if
it is too high it could cause the model to never converge or become stuck at a local minimum [47].
Based on the data set used, the right LR should be found by looking through a number of values
until a reasonable one is found. No single LR could work for every problem, it needs to be modified
accordingly.

2.4.3 ML-Based Static Malware Detection Related Literature

Several works have explored the use of machine learning for Windows PE malware detection, e.g.,
[48, 49, 50], but work has often been hampered by the absence of a standard benchmark dataset.
The publication of the Ember dataset [6] has resolved this problem. The dataset is accompanied by
various Python routines to facilitate access. Ember’s authors have also provided baseline applications
of various ML techniques to their datasets. This paper [6] explicitly identifies the potential for
HPO in future work. In [51], the authors considered imbalanced dataset issues and model training
duration. They also applied a static detection method using a Gradient-Boosting Decision Tree
Algorithm. Their model achieved better performance than the baseline model with less training time
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(They used feature reduction based on the recommendation of the authors of [6].) Another approach
used a subset of the Ember dataset for their work and compared different ML models [52]. Their work
is mainly concerned with scalability and efficiency. Their goal was to identify malware families. The
proposed Random Forest model achieved a slightly better performance than the baseline model. [53]
The authors here utilised a hybrid of two datasets, Ember (version 2017) and another dataset from the
security partner of Meraz’s 18 techno-cultural festivals (IIT Behali). A feature selection method was
used to improve their model’s performance Fast Correlation-based Feature Selection method (FCBF).
Thirteen features (with high variance) were selected. Several ML models (Decision Trees, Random
Forest, Gradient boost, AdaBoost, Gaussian Naive Bayes) were introduced to be trained. Random
forest achieved the highest accuracy 99.9%.

2.5 Formal Definition of HPO and Motivation for its Use in Malware
Classification

Hyper-parameters are parameters of a model that are not updated during the learning process [54].
The HPO problem is defined in a common way by many researchers as a search to find x∗ defined in
Equation (2.2).

x∗ = argmin
x∈X

f (x), (2.2)

where f (x) is an objective function. Commonly, f (x) is an error rate of some form evaluated
on the validation set, e.g., the Root Mean Square Error (RMSE). x∗ is the hyper-parameter vector
that gives rise to the lowest objective score, and x can be any vector of parameters in the specified
domain. HPO seeks the hyper-parameter values that return the lowest score. For malware and similar
classification tasks, suitable choices for the objective functions are holdout and cross-validation
errors. Furthermore, if we consider a loss function for the same problem, then a possible choice
is the misclassification rate [55]. For our proposed model in chapter 3, the loss function is defined by
Equation (2.3).

f (x) = (ROC_AUC−1) (2.3)

where ROC_AUC is the Receiver Operating Characteristic (with cross-validation) Area Under the
Curve. ROC_-related criteria are common in malware detection. For an in-depth background about
validation protocols, see [56]. Our work also aims to investigate evaluation time. There are three
clear ways to do this. The first is to use a subset of folds in testing an ML algorithm [57]. The second
is to use a subset of the dataset, especially if the data set is large [58, 59] or the third is to use fewer
iterations.

Although HPO has a great deal to offer, it comes at a computational price. For every
hyper-parameter evaluation, we must train the model, make predictions on the validation set, and
then calculate the validation metrics. Developing a robust ML-based classifier for Windows PE with
a credibly sized and diverse dataset such as Ember is not yet introduced, therefore, it is a significant
undertaking. The computational costs involved act as a disincentive to implementing Bergstra et al.’s
formal outer loop. There is a pressing need for traversing the hyper-parameter space efficiently, and
we demonstrate how a leading HPO approach allows us to do so.
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Here, Windows PE files are a means to an end; the same issues apply to detecting other malware.
Although malware is our major interest, our work also seeks to motivate consideration of HPO,
and the use of state-of-the-art approaches, in particular, more widely in the application of ML in
cybersecurity. For more information about HPO, interested readers should refer to [55].

2.6 Hyper-Parameter Optimisation (HPO)

2.6.1 Main Process of HPO

The normal process to utilise HPO is as follows:

1. Select an objective function and the metrics that will be used.

2. Choose the hyper-parameters for tuning and select the required optimisation method.

3. Train the model using the default parameters as a baseline.

4. Select a search space to check for applicability based on intuition or manually.

5. Narrow down the search space if it is too large, based on the plausible parameters found and/or
explore new ones

6. Return the highest performing hyper-parameters.

However, there are a few issues that hinder the progress of the most commonly used optimisation
techniques [21]. This is because HPO problems are unique [60] as follows:

First, the optimisation target is usually a non-convex and non-differentiable function, whereas
many traditional methods are configured to solve convex and non-differentiable functions. This can
lead easily to getting stuck in a local rather than the global optimum. Further, the lack of smoothness
in the optimisation target leads to poor performance [5].

Second, hyper-parameters of different ML models have different forms (e.g. continuous, discrete,
conditional etc.). This makes many traditional optimisation methods with a focus on continuous or
numerical variables infeasible for HPO [61].

Third, it is computationally expensive to train ML models on large datasets. Sometimes
HPO methods make use of data sampling to obtain approximate values for the objective function.
Consequently, these approximate values should be usable with the appropriate optimisation
techniques (specific to the HPO problem). A limitation is that the evaluation time for a given function
will be ignored by black-box optimisation (BBO) models. Thus, they might need exact instead of
approximate values for the objective function. This makes various BBO algorithms unsuitable for
HPO problems with a limitation on time and budget.

Furthermore, there is a need to find effective optimisation methods to be applied to the HPO
problem. This is in order to identify optimal hyper-parameter space for any ML models. We will
discuss BBO further in section 2.7.1
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2.7 General Categories of Hyper-Parameter Optimisation

The goal of HPO is to automate the process of hyper-parameter-tuning and enhance the practical
applicability of ML techniques to problems [60, 5]. Further rationale for using HPO can be
found in [62]. Hyper-parameter techniques come in various forms: babysitting [63], Grid search
(GS)[64], Random-Search(RS)[65], Gradient Based Optimisation [66], Bayesian Optimisation(BO)
[67], (BO-GP) Gaussian Process [67], Sequential Model Based Algorithm Configurations(SMAC)
[63], and Tree Structured Parzen Estimators using BO (BO-TPE) [64]. This thesis will explore the
use of GS, RS and BO-TPE.

2.7.1 Traditional Model-Free Blackbox approaches

Perhaps the two most common HPO methods are Random Search and Grid Search. These require only
an evaluation function to work, i.e., they are what is commonly referred to as ‘blackbox’ techniques.

Random Search selects values randomly from the domain of each hyper-parameter. Usually, the
values selected from different domains by Random Search are independent, i.e., the value selected
for one parameter does not affect the value selected for a different parameter. Furthermore, for an
individual parameter, all values have the same probability of being selected. (Selection is said to be
uniform.) It is possible to relax such properties, producing what is referred to as a biased stochastic
search. Such bias often encodes for domain insight, which is not in the spirit of a blackbox approach.
In our work, we adopted a standard unbiased Random Search.

In Grid Search the individual parameters are discretised, i.e., a number of specific values
are selected as ‘covering’ the particular parameter space. For example, the elements in the set
{0.0,0.25,0.5,0.75,1.0} could be taken to cover a continuous parameter in the range [0.0, 1.0]. Grid
Search evaluates the function over the cross-product of the discretised hyper-parameter domains and
so suffers from the ‘curse of dimensionality’ [68]. As the number of parameters increases or finer
grain discretisation is adopted, the computational complexity mushrooms.

Random Search and Grid Search do not learn from past evaluations; we generally refer to such
approaches as being uninformed. Consequently, they may spend a great deal of time evaluating
candidates in regions where the previous evaluation of candidates has given rise to poor objective
values. Random Search will search the specified space until a certain number of evaluations,
time, or budget has been reached. It works better than Grid Search when we know the promising
hyper-parameter regions, and so we can constrain the stochastic selection of candidates to lie in such
regions [69, 70]. Combining Random Search with complex strategies allows a minimum convergence
rate and adds exploration that can improve model-based searches [55, 71].

It is not surprising that uninformed methods can be outperformed by methods that use evaluation
history to judge where to try next; indeed, such guided searches usually outperform uninformed
methods [64, 72, 73]. Thus, motivates our interest in the use of Bayesian optimisation approaches,
which we now explore.
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2.8 Model-Based approaches to HPO

Below we discuss model-based approaches to HPO, specifically Bayesian optimisation and its
variants.

2.8.1 Bayesian Optimisation (BO)

BO has emerged recently as one of the most promising optimisation methods for expensive blackbox
functions. It has gained a lot of traction in the HPO community, with significant results in areas such
as image classification, speech recognition, and neural language modelling. For an in-depth overview
of BO, the reader is referred to [54, 74]. BO is an informed method that takes into consideration past
results to find the best hyper-parameters. It uses those previous results to form a probabilistic model
that is based on the probability of the score given a vector of hyper-parameters. This is denoted by
the formula: P(score|hyperparameter). [75] refers to the probabilistic model as a surrogate for the
objective function denoted by P(y|x), the probability of y given x. The model or surrogate is more
straightforward to optimise than the objective function. BO works to find the next hyper-parameters
to be evaluated using the actual objective function by selecting the best-performing hyper-parameters
on the surrogate function. A five-step process to do this is given by [75]. The first step builds a
surrogate probability model of the objective function. The second finds the hyper-parameters with
the best results on the surrogate. The third applies those values to the real objective function. The
fourth updates the surrogate using this new real objective function result. Steps 2–4 are repeated
until the maximum iteration or budgeted time is reached [76]. BO has two primary components: a
probabilistic model and an acquisition function to decide the next place to evaluate. Furthermore,
BO trades off exploration and exploitation; instead of assessing the costly blackbox function, the
acquisition function is cheaply computed and optimised. There are many choices for the acquisition
function. In this thesis, we use the most common—expected improvement (EI) [77]. The goal of
Bayesian reasoning is to become more accurate as more performance data is acquired. The previous
five-step process is repeated to keep the surrogate model updated after each evaluation of the objective
function [64]. BO spends a little more time generating sets of hyper-parameter choices that are likely
to provide real improvements whilst keeping calls to the actual objective function as low as possible.
Practically, the time spent on choosing the next hyper-parameters to evaluate is often trivial compared
to the time spent on the (real) objective function evaluation. BO can find better hyper-parameters
than Random Search in fewer iterations [72]. In this thesis, we investigate whether AHBO-TPE, a
specific variant of BO, can, for ML-based Windows PE file malware detection purposes, find better
hyper-parameters than Random Search and with fewer iterations.

2.8.2 Sequential Model-Based Optimisation (SMBO)

There are several options for the SMBO’s evaluation of the surrogate model P(y|x) [64]. One of the
choices is to use Expected Improvement (EI), defined in Equation (2.4).

EIy∗(x) =
∫ y∗

−∞

(y∗− y)P(y|x)dy (2.4)
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Here y∗ is the threshold value of the objective function, x is the vector of hyper-parameters, y is
the actual value of the objective function using the hyper-parameters x, and P(y|x) is the surrogate
probability model expressing the probability (density) of y given x. The goal is to find the best
hyper-parameters under function P(y|x). The threshold value y∗ is the best objective value obtained
so far. We aim to improve (i.e., get a lower value than) the best value obtained so far. For such
minimisation problems, if a value y is greater than the threshold value, then it is not an improvement.
Only values less than the threshold are improvements. For a value y less than the threshold y∗, the
improvement is (y∗− y). Integrating over all such improvements, weighted by the density function,
P(y|x) gives the overall expected improvement given the vector of hyper-parameter values x. When
better values of x are found (i.e., giving rise to actual improvements in the real objective function) the
threshold value y∗ is updated. The above description is an idealised view of Expected Improvement.
In practice, the choice of the threshold value is more flexible, i.e., y∗ need not be the best objective
value witnessed so far; this is actually the case for the Tree-Parzen Estimator approach outlined
immediately below.

2.8.3 Tree-Structured Parzen Estimators (TPE)

The Tree-Structured Parzen Estimators approach constructs its model using Bayesian rules. Its model
P(y|x) is built from two model components, as shown in Equation (2.5). One component, l(x), models
values less than a threshold and the other, g(x), models value greater than that threshold.

P(x|y) =

{
l(x) i f y < y∗

g(x) i f y >= y∗
(2.5)

TPE uses y∗ to be some quantile γ of the observed y values, i.e., such that P(y < y∗) = γ [78]. This
allows data to be available to construct the indicated densities. l(x) is the density based on the set of
evaluated values of x that have been found to give objective values less than the threshold. g(x) is the
density based on the remaining evaluated x values. Here, P(x|y) is the density of hyper-parameter x
given an objective function score of y. Following [64] it is expressed as shown in Equation (2.6).

P(y|x) = P(x|y)∗P(y)
P(x)

(2.6)

Reference [64] also shows that to maximise improvement, we should seek parameters x with high
probability under l(x) and low probability under g(x). Thus, they seek to maximise g(x)/l(x). The
best such x outcome is then evaluated in the actual objective function and will be expected to have
a better value. The surrogate model estimates the objective function; if the hyper-parameter that
is selected does not make an improvement, the model will not be updated. The updates are based
on previous history/trials of the objective function evaluation. As mentioned before, the previous
trials are stored in (score, hyper-parameters) pairs by the algorithm after building the lower threshold
density l(x) and higher threshold density g(x). It uses the history of these previous trials to improve
the objective function with each iteration. The motivation to use TPE with SMBO to reduce time and
find better hyper-parameters came from leading HPO papers [64, 72, 79, 5]. SMBO uses Hyperopt
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[78]—a Python library that implements BO or SMBO. Hyperopt makes SMBO an interchangeable
component that could be applied to any search problem. Hyperopt supports more algorithms, but TPE
is the focus of our work. Our contribution lies in the demonstration of the usefulness of SMBO using
TPE for PE malware classification purposes.

2.9 HPO using Deep Learning

2.9.1 Selection of Hyper-parameter Optimisation for Deep Learning

Hyper-parameters are selected either manually or automatically [80]. The former is based on the
experience of a researcher. The latter does not need much understanding from the user but is usually
computationally heavy. In our case, we wanted to investigate how and which hyper-parameters would
affect our model performance. This is in order to understand as much as possible which of these
parameters would add value to our goal.

2.9.2 Approaches of Hyper-parameter Optimisation for Deep Learning

There are several ways in which we can incorporate optimisation techniques for ML models [69,
64, 66, 67, 63, 81]. However, we are interested in two methods Grid Search optimisation [82] and
another unique approach utilising a tool for Covering Arrays (cAgen) [83] (we discuss this further in
section 2.12). Grid Search is one of the most common optimisation search methods. It is relatively
simple to perform but has some limitations [84]. It requires the user to pre-define a search space
beforehand and it does an exhaustive search to find the best-performing values. One issue with the
search space is that if the discretised search space does not contain the best values the performance
would suffer. Covering Arrays are used for combinatorial testing (in the software testing field), in
which the number of tests is defined by the value of strength t (t-way testing). It is used to reduce the
number of tests needed to produce results. A recent paper by [85] revealed that a covering array can
be used to optimise the parameters of a Convolutional Neural Network. The authors investigated the
use of mixed-level covering arrays in experimental design to determine optimal parameter settings
and concluded that this method is very promising.

2.10 HPO using Metaheuristic Approaches

Metaheuristic approaches are derived from biological theories and are predominantly used in
optimisation problems [65]. They aid in solving non-convex, non-continuous and non-smooth
optimisation problems. They are typically computationally intensive. One major class is
population-based optimisation (PBO). PBO approaches include Genetic Algorithms (GAs), Particle
Swarm Optimisations (PSOs), Evolutionary Algorithms (EAs) and Evolutionary Strategies (ESs).
PBO usually involves creating and updating a specific population, where every generation and single
instance in it would be evaluated as part of the process to find a global optimum [79]. The difference
between various PBOs is the way in which they choose the populations [86]. PBO can parallelise
with ease. Because if we take a specific population with n individuals the evaluation process can be n
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machines in parallel [5, 87]. From within EA specifically, PSO and GAs are the most frequently used
techniques [88, 89].

2.10.1 Genetic Algorithms (GAs)

GA is a commonly used approach that is based on evolutionary theory. It implements a survival
of the fittest regimen, where the individuals with the best survivability traits (the best-performing
individuals) are more likely to survive and pass their traits to the next generation. Generations
are successively evolved. Once the generation’s budget reaches the end, the best members of the
population are identified as the global optimum. (In some cases memory is maintained of the best
performer in any generation and this individual is returned.)

In order to apply a GA to HPO problems, each chromosome or instance represents a
hyper-parameter vector and the value of each hyper-parameter vector is used to evaluate that
individual. A chromosome is typically a string (sequence) of elements of some data type. Simple
GAs will use binary strings as chromosomes. More sophisticated ones may use sequences of floats or
have mixed data types. Sub-strings will be interpreted as values to be used as inputs to an evaluation.
For example, the first 8 bits of a chromosome may represent an ML model parameter in the range
(0,1). We might map the value of the first 8 bits to an integer in the range (0,127) with a natural
unsigned binary interpretation and then divide by 127 to normalise to the range (0,1). It is common
to refer to the string of values as the genotype of the chromosome, whilst its interpretation in terms
of the actual model is referred to as the phenotype. The phenotype is what it ‘means’ in the real
(problem) world. We refer to an interpretable sub-string as a gene, with individual lower-level data
types as alleles.

The gene crossover and mutation methods are then performed on the genes associated with
each chromosome. The fitness function is what makes the evaluation metrics, while the initialised
parameter ranges include all possible values for evaluation [90]. In order to identify the
optimum, selection, crossover, and mutation operation operations are performed on the population’s
chromosome. Both methods introduce new gene values into the population.

Crossover generates new chromosomes by swapping parts of different chromosomes. For
example, suppose A and B are two binary chromosomes with 100 bits. One-point crossover may
pick a random internal point along two chromosomes and swap the parts after that point. Thus, if 43
is selected as the point, then bits 44-99 are exchanged between the two. There are many crossover
variations. In theory, crossover, allows highly effective genes from two chromosomes to combine
(hopefully to good effect, though this is problem dependent and is not guaranteed).

Mutation randomly modifies genes within a chromosome (often with a small probability) [5].
Mutation is important for a GA because it is frequently the only means by which a population can
gain a chromosome with a particular gene value. If a gene value is not present in any chromosome
of a population, then selection will not introduce one, since it merely samples from what is already
there. Furthermore, the crossover will not introduce new values if crossover points are aligned along
gene boundaries, which is commonly the case.

Note that even if a gene value is actually present in a population, it may disappear from the
evolution process if the individuals that possess it are not sufficiently high-performing, i.e. they may
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not be selected for the next generation. Mutation maintains the potential for the introduction of absent
values.

Crossover and mutation ensure that different generations have different characteristics which in
turn relieves the pressure of missing high-performing traits [91].

A typical GA approach to HPO is given below:

1. [65]: Randomly initialise a set (population) of chromosomes (candidate strings of
hyper-parameter values). This is generation 0.

2. Evaluate each instance in the current generation using the fitness function. The fitness function
will be a measure of how well those hyper-parameter values work when the ML technique at
hand uses them.

3. Carry out selection, crossover, and mutation operations on the population and its chromosomes
to produce the next generation (next set of hyper-parameter settings for evaluation).

4. Repeat procedures 2 and 3 until the budget ends.

5. Stop the search and return the best performing hyper-parameters, i.e. the chromosome(s) with
the highest fitness.

As illustrated above, the initial population is usually generated randomly [92]. But this is not
always the case. A higher-performing initial population may be engineered in some way. This can
speed up convergence and so reduce compute time to find optima or high-performing solutions [5].
Further details can be found in [93].

Therefore, GAs usually do not require strict and specific initialisation. Implementation is also
fairly easy. However, they can be computationally expensive (O(n)2) [94]) and convergence may be
slow. Furthermore, GAs have their own model parameters, e.g. probability of crossover, probability
of mutation, the number of chromosomes in the population, and the budgets available. These may
have a critical effect on their performance.

2.10.2 Particle Swarm Optimisation (PSO)

Another approach is PSO, which is derived from the biological population of both social and
individual behaviour [22, 95]. Particle (swarm) searches in the defined space in a semi-random
manner [86]. PSO finds the optimum based on knowledge sharing and cooperation between different
particles in a specific group. PSO is dependent upon specific and proper initialisation, this is true
for discrete hyper-parameters [96]. With such a problem, a proper initialisation depends upon the
previous experience of the user.

2.10.3 Distributed Evolutionary Algorithm in Python (Deap)

Deap [97] is a computational evolutionary framework that supports fast and easy-to-use testing of
new ideas. The framework is built with the Python programming language with the goal of providing
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tools to produce custom-made EA in a form of pseudo-code [98]. It is a type of black box framework,
built with different compatible existing techniques and provides various optimisation approaches
GAs, Genetic Programming (GP), Evolutionary Strategies (ESs), Particle Swarm Optimisation (PSO),
Differential Evolution (DE), Estimation of Distribution Algorithm (EDA) [99].

There are two main structures for Deap, a creator and a toolbox. The creator is a meta-factory that
produces classes through inheritance and composition during run-time. In practice, it aids the making
of genotypes and populations from data structures like lists, sets, dictionaries etc. The main uses of
the creator is to facilitate the different types of EAs, as previously mentioned. The second structure
is the toolbox, a collection of tools or operators to be accessed by the user according to the needs of
that user’s problem. Moreover, the core functions include four common algorithms in Evolutionary
computation (EC) pointed out in [100]. For more information about Deap please refer to [98]. Deap
has been successful in different venues [101, 102, 103, 104, 105, 106] which led to the decision to
utilise it for hyper-parameter optimisation of ML models targeting PE static malware detection. To
the best of our knowledge, no one has used Deap for HPO to improve ML model accuracy for PE
static malware problems.

2.10.4 Tree-Based Pipeline Optimisation Tool (TPOT)

TPOT [107] is an open-source Tree-Based Pipeline Optimization Tool, a type of automated machine
learning (Auto-ML) tool that utilises genetic programming for optimisation. It also integrates a Pareto
optimisation that produces compact ML pipelines without sacrificing classification accuracy. The
goal behind TPOT is to construct and enhance several series of data transformation and ML models
to maximize the classification accuracy for a given dataset. TPOT is built on top of scikit-learn [108]
a common ML python library [109]. Below is an example picture that depicts how TPOT would work
[107]. TPOT proved to be effective for optimizing supervised ML model pipelines constructions in
[110, 107, 103]. For more information about TPOT readers should refer to [111, 107]. To the best
of our knowledge, no one has yet used TPOT for HPO of ML models specific to PE static malware
detection problems.

2.11 HPO-Related Literature

Multiple works in the general optimisation literature have demonstrated the potential of HPO. For
example, [69] indicated the importance of parameter tuning for increasing accuracy, indicating that
Random Search works better than Grid Search when tuning neural networks. Further, [112] used
standard tuning techniques to the application of a decision tree on 102 datasets and calculated the
accuracy differences between tuned and traditional models. For all datasets, the experiments showed
that tuning could achieve better performance than with the defaults. References [113, 114] are
concerned with greedy forward search, which seeks to identify the most important hyper-parameter
to change next. Reference [115] stressed the importance of single hyper-parameters after using
sequential model-based optimisation (SMBO) tuning. ANOVA was used to measure hyper-parameter
importance. The authors of [64, 116] assessed the performance of hyper-parameters across different
datasets. Both have highlighted the importance of knowing which parameters to include in the
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Figure 2.6: Example of how TPOT would work with RF Classifier

hyper-parameter search space in order to see an improvement. Reference [116] also used surrogate
models that allow setting randomly chosen hyper-parameter configurations based on a limit on the
number of evaluations carried out. A hyper-parameter search based on Bayesian Optimisation (BO)
was used in [64, 54] to improve the speed of the search. The literature reveals that HPO, and in
particular BO approaches, have much to offer. Readers are encouraged to refer to the survey paper
[5] for a wider assessment of different HPO methods. HPO has clearly given excellent results across
many parameter optimisation problems. We envisage that it can do the same for ML-based Windows
PE static malware detection.

2.11.1 A Comparison between Different HPO Approaches for ML models

For more information about the common HPO algorithms and a comprehensive overview of common
ML models, hyper-parameters, suitable optimisation techniques and available libraries, please refer
to [5]. The table in figure 2.7 shows the common HPO algorithms, and another table 2.1 shows the
common ML techniques, hyper-parameters, optimisation techniques and Python libraries.
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Table 2.1: Common Techniques, Main Hyper-parameters, HPO Methods and Available Libraries

ML Algorithms Main HP HPO Methods Libraries

RF

n_estimators,
max_depth,

criterion,
min_samples_split,
min_samples_leaf,

max_features

GA,
PSO,

AHBO-TPE,
SMAC,

GS,
RS,

BOHB

TPOT,
OPTUNITY,

SMAC,
BOHB,

HYPEROPT

SGD

penalty,
loss,

max_iter,
alpha

GS,
RS,

AHBO-TPE
HYPEROPT

LightGBM

num_leaves,
Min_child,
samples,

n_estimators,
boosting_type,
learning_rate,

Subsample_for_bin,
Colsample_bytree,
feature_fraction,

Bagging_fraction,
Reg_alpha,

Reg_lambda,
Is_unbalance,

Objective

GS,
RS,

AHBO-TPE
HYPEROPT

KNN n-neighbours

GS,
RS,
BO,

AHBO-TPE,
HYBERBAND

SKOPT,
HYBERBAND,

SMAC,
HYBEROPT

NB N/A N/A N/A

Logistic Regression
Penalty

C
Solver

GS,
RS,

AHBO-TPE,
SMAC

SMAC,
HYBEROPT

DL

Number of hidden layers,
units per layer,

loss,
optimiser,

Activation Function,
learning_rate,
Dropout_relay,

epochs,
batch_size,

patience

GS,
RS,

PSO,
AHBO-TPE,

BOHB

OPTUNITY,
BOHB,

HYPEROPT
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Figure 2.7: Comparison of Common HPO Algorithms (courtesy of [5])

2.12 Covering Arrays: An Experimental Design Approach to HPO

Below we motivate the use of covering arrays.

2.12.1 What is Combinatorial Testing (CT)?

Testing of systems generally seeks to stress a system in a rigorous fashion with the intention of
revealing flaws. It is typically infeasible to execute all possible inputs to test a system and so
choices must be made. However, some sets of inputs are more likely to reveal flaws than others.
Various ‘coverage criteria’ have been developed that specify characteristics of effective test sets.
Combinatorial testing is one such approach. It provides requirements on which combinations of
parameter values must be present in the test set. A car, for example, may be travelling at different
speeds (low, medium, high), on various road surfaces (dry, wet, snow, ice), with different tyres
(summer, wet, all-purpose) at different states of tyre wear (8mm, 6mm, 4mm, 2mm), with a variety
of optional systems (traction control - yes/no, cruise control - yes/no, and so on). In modern
cars, the range of options is significant. Testing the car under all possible combinations is simply
infeasible. The software supporting modern cars is similarly varied, with a distinct desire to satisfy
user preferences for configuration. Thus, in both system and software contexts choices need to be
made about which configurations are actually tested. This has led to testing using formally defined
subsets of the full combinatorial space, i.e. specifying which combinations of choices (parameters)
must be present in the test set.
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One such technique is the Covering Array. The columns of the array represent specific parameters.
The rows of the array represent specific tests. Each parameter has a set of values. The Cartesian
product of all parameter sets gives complete combinatorial coverage. A covering array can provide a
subset of that with a particular strength t. For any subset of t parameters, each possible t-tuple occurs
in at least one row (test). This is called t-way testing. Orthogonal Arrays (OAs) are the optimal version
of CAs where each t-tuple occurs exactly once (rather than at least once). For some problems, an OA
may not actually exist. Pairwise testing (t = 2) is widely used. Furthermore, it has been found that
small values of t can actually give high performance in fault-finding. As t increases the size of the
covering array increases too. The test set reduction achieved by covering arrays compared with a
full combinatorial Grid Search may be very significant. In this thesis, we investigate whether the
clear efficiency benefits of a covering array approach can be brought to bear on the ML-based static
malware detection problem.

2.12.2 Covering Arrays - Related Literature

There are many problems for CAs [117] where construction of optimal values is known to be the
hardest [118]. Various methods for generating covering arrays have been proposed. These include
AETG [119], deterministic density algorithm (DDA) [120],[121], IPO [122], ACT [123], each with
its own advantages and disadvantages. Interested reader are referred to [119], [120], [121], [122]
and [124] respectively for more information. The In-Parameter-Order (IPO) strategy grows the
covering array column by column, adding rows where needed to ensure full t-way coverage. Various
research on improving covering array generation with the In-Parameter-Order strategy have been
made. The original aim of the strategy has been the generalisability of generating covering arrays
of certain arbitrary strength [125] resulting in the IPOG algorithm. In [126] a modification to
IPOG resulted in smaller covering arrays in some instances and faster generation times. In [127]
proposed a combination of IPOG with a recursive construction method that reduces the number of
combinations to be enumerated. In [128] use of graph-colouring schemes was proposed to reduce
the size of covering arrays. In [129] IPOG was modified with additional optimisations aimed at
reducing don’t-care values in order to have a smaller number of rows. Most of these presented works
aim primarily at reducing generated covering array sizes. Alternatively, improving the performance
of test generation even though it is of importance, has not gained much attention when applied in
real-world scenarios (e.g. in software testing). The FIPOG technique has been shown to outperform
the IPOG implementation (called ACTs) in all benchmarks and improved test generation times by up
to a factor of 146 [130]. In the next section, we describe the cAgen tool [83] which implements the
FIPOG technique.

2.13 Overview of the cAgen Tool

CAgen [83] is a quick and very efficient (in-memory) tool for combinatorial t-way test set generation.
It has two settings available: a Web-GUI and a command line tool (fipo-cli). We use the Web-GUI
tool in our research and describe three of its critical features below.
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2.13.1 Workspaces

Models are defined in ‘workspaces’. Figure 2.8 shows a current tool system configuration with two
workspaces (models) in the workspace tab. (Note: the figure is for illustration purposes only.) One of
them is selected.

Figure 2.8: Workspaces with one selected to work on

In the workspaces tab, you can add a new workspace and select a workspace to work with. A
workspace can be created by either clicking the plus sign or by importing an ACTS configuration
file. Once a workspace is added to the list, you can click on it and it will redirect you to the Input
Parameter Model.

2.13.2 Input Parameter Model (IPM)

Figure 2.9 shows the input parameter of the xgboost ML model.
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Figure 2.9: Shows the input parameter of xgboost ML model

The Input Parameter (IPM) tab is used to alter the parameters of your model. You can create
new parameters by selecting a type, adding a name, or specifying the values of the model. Clicking
the add button will then add the parameter to the IPM. The tool supports the following parameter
types: Boolean, here in the boolean value, only the name needs to be set; Enumeration, a list of
comma-separated values; Range, a range of values (e.g Range (2,6) which equals 2,3,4,5,6. The last
parameter is called Exponential writing.

The first three types (Boolean, Enumeration and Range) are straightforward. Exponential
parameters allow a faster way of adding several parameters at once: 32, 25 would specify 2
parameters with 3 values and 5 binary parameters, so a total of 7 new parameters are added to the
model upon a click [83]. Moreover, we can click on the added parameters to delete or edit them.
Constraints can be added in the space below the input parameters as shown in Figure 3.2 above.
Constraints allow you to deem certain parameter combinations invalid and prevent their appearance
in the test sets generated by CAgen. For example, if we do not want test value 0 in min_child_weight
we can add in the constraints section an in input such as ( min_child_weight => "1, 2, 3, 4, 5, 6, 7").

2.13.3 Generate

Figure 3.3 shows an example of generating a test set of arbitrary values of t with strength 1 of the
xgboost ML model.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 32

Figure 2.10: Shows a t1 test set of xgboost ML model

The generate tab makes it easy to choose the required algorithmic settings (FIPOG, FIPG-F and
FIPOG-F2) and initiate the generation of the test set for the selected workspace and IPM. We can
set other parameters accordingly: for example, strength t shows the strength of combinatorial testing
(with a max of t = 8). Index lambda gives the coverage of t-way interactions, i.e. the minimum
number of times each combination should appear in the generated test set. After clicking the generate
button, the job is passed to a web worker (it constructs the combinatorial test set for the given
parameters/models) using the fipo.wasm web-assembly. Once that is done, the array is displayed
with two options: either randomize "Do not care values" or switch between values in the model and
IPM. In the end, exporting the resulting arrays as comma-separated values (.csv) or directly into
Python and Matlab formats is possible.

2.14 Datasets Background

Our work uses EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models
[6]; and another dataset from Kaggle [12]. In EMBER, the authors have outlined the features’ details
and how to access them. The 2018 version (version 2 of the release) [13] is used in our work. The
authors stressed that the 2018 version of the dataset will present a significant challenge to ML-based
algorithms. It comprises 1m samples. We used 300k benign (represented in blue) and 300k malicious
(represented in red) samples for training, with 100k benign and 100k malicious samples for testing
purposes. The 200k unlabelled (represented in green) examples of the dataset were not used in our
experiments. (Our work concerns supervised learning only.) The training and testing sets were created
using a stratified sampling approach. The samples were divided into equal-sized subsets based on
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their labels (benign or malicious) and then randomly sampled from each subset to create the training
and testing sets. This approach ensures that the distribution of benign and malicious samples is
similar in the training and testing sets. However, there might still be potential biases in the dataset.
Spatial bias refers to the bias introduced by the distribution of samples across different malware
families. The malicious samples are drawn from diverse families in the Ember 2018 dataset. Still,
some families might be over-represented while others are under-represented. This could potentially
affect the performance of machine learning models trained on this dataset, as they may become biased
towards more prevalent families and perform poorly on under-represented families. Temporal bias
refers to the bias introduced during the dataset’s creation period. Malware evolves over time, and a
dataset created at a specific time may not represent current malware trends. (This might also apply
to the second dataset used, i.e. the kaggle.com dataset). The Ember 2018 dataset was created using
samples from 2017 to 2018, so it may not capture more recent developments in malware (This might
also apply to the other dataset). The EMBER dataset is a collection of features from PE files that
serve as a benchmark dataset for researchers. The dataset contains features from 1 million PE files
witnessed before/during 2018. The repository makes it easy to reproduce and train the benchmark
models, extend the provided feature set, or classify new PE files with the benchmark models. EMBER
consists of the following:

• A collection of JSON line files, each containing a single JSON object.

• Each object includes the following types of data: the sha256 hash of the original file - a unique
identifier.

• Coarse time information (monthly resolution) that establishes an estimate of when the file was
first seen.

• A label, which may be 0 for benign, 1 for malicious, or -1 for unlabelled.

• Eight groups of raw features that include both parsed values and format-agnostic histograms.

• The dataset’s samples have 2381 features in total.

The following two pictures illustrate the dataset training/testing sets and the years the samples were
acquired, respectively.
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Figure 2.11: courtesy of [6]
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Figure 2.12: courtesy of [6]
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The work also uses a second dataset built by [12] using PE files from [7]. The dataset has
19,611 samples labelled (malicious or benign) from different repositories (such as VirusShare).
The samples have 75 features. It is split into 80% training and 20% testing and can be found in
[12]. All results were obtained using Jupyter Notebook version 6.1.0 and Python version 3.6.0.
Furthermore, implementation details of our experiments presented in chapter 3 are available via our
GitHub repository [131].

Figure 2.13: courtesy of [7]
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Table 2.2: Previous Related Work to Datasets

Authors Paper Title Brief Score
[51] Static PE malware detection

using gradient boosting
decision trees algorithm
(Ember 2017)

The authors made use of feature reduction techniques
(reducing the number of features from 2381 to 1711). The
ML technique used was the Gradient boosting decision trees
algorithm with Area Under the Curve (AUC) as the score.
The authors do not state the model parameters.

AUC
0.999678

[132] Static PE Malware Type
Classification Using Machine
Learning Techniques (Ember
2017)

The authors observed how the literature did not consider
malware classification by family type. They have used
Ember version 2017 and some relabeling using VirusTotal
to confirm the malware type. The best-performing ML
technique investigated was Random Forest. The authors do
not state the model parameters.

F1
0.96

[133] EMBER-Analysis of Malware
Dataset Using Convolutional
Neural Networks (Ember
2017)

The author implemented two algorithms Convolutional
Neural Networks and Feed Forward Neural Networks and
assembled the results in terms of accuracy. Feed Forward
Neural Network proved to be the best-performing classifier.
The authors do not state the model parameters.

F1
CNN 0.95
FNN 0.97

[134] DeepMalNet Evaluating
shallow and deep networks for
static PE malware detection
(Ember 2017)

This work statically detects malicious Windows Portable
Executable files, it primarily compares the performance of
shallow (classical ML techniques) and deep networks (PE)
files. Experiments with these deep model configurations are
run for up to a thousand iterations at different learning rates
in the range of 0.01% and 0.50%. The outcomes of deep
networks have been shown to be superior to those of shallow
networks. This work considers a random subset of the data
set. This subset contains 25 035 benign and 24 965 malicious
files for training and 25 094 benign and 24 906 malicious
files for testing. The techniques that were used (techniques
that are similar to those investigated in this thesis) are LR,
RF, NB, KNN, DT, and DNN. The author uses variations of
a single model parameter (LR).

Accuracy
LR 0.544
RF 0.969
NB 0.531
KNN 0.942
DT 0.963
DNN 0.989

[135] Evaluating Performance
Maintenance and
Deterioration Over Time
of Machine Learning-based
Malware Detection Models
on the EMBER PE Dataset
(Ember2018)

In this paper, the authors investigated how to keep ML-based
malware detection models for PE executables running at
a good level of performance. They have shown, in
particular, that different decision tree-based models kept
their performance pretty well over time, and that ensemble
models based on decision trees kept their performance
even better in some cases. This paper claims that it
is the first published work to compare the rate at which
different machine learning-based malware detection models
lose performance over time on such a large real-world
malware dataset. The best techniques with 10-fold validation
(compared to this thesis) are LightGBM, RF, DT and KNN.
The authors do not state the model parameters.

Accuracy
LightGBM 0.948
RF 0.923
DT 0.971
KNN 0.872

[136] Windows PE Malware
Detection Using Ensemble
Learning (Kaggle dataset)

This study suggests an ensemble learning-based method for
malware detection. A stacked ensemble of fully-connected,
one-dimensional convolutional neural networks (CNNs)
performs the initial stage classification, while a machine
learning algorithm handles the final stage classification.
They evaluated 15 different machine learning classifiers in
order to create a meta-learner. Several machine learning
techniques were utilised for this comparison (compared to
our thesis): NB, DT, RF, GB, KNN, SGD and Neural
Nets The outcomes of tests conducted on the Windows
Portable Executable (PE) malware dataset. An ensemble of
seven neural networks with the ExtraTrees classifier as the
last-stage classifier performed the best at (1). The authors do
not state the model parameters.

Accuracy
NB 0.972
DT 0.989
RF 0.984
KNN 0.986
SGD 0.979
NN 0.979
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2.15 Summary and Links to the Research Hypotheses

This chapter summarised the background and research literature relevant to the work presented in this
thesis. Portable executable files (PE files), which underpin the various Windows OSs, were described
and identified as a particular problem. Machine learning was identified as a highly promising basis
for the development of static PE detectors and various supervised learning algorithms were explained
(LR, RF, SGS, KNN, NB, GBDT, xgboost, LightGBM, and DL). The application of ML to PE
malware detection was summarised, specifically in the context of the use of two datasets (EMBER and
a dataset from Kaggle), presented in Table 2.2. The research literature concerned with applying ML
to Windows PE malware detection suggests that systematic hyper-parameter optimisation is lacking
in the field. The HPO literature suggests that default parameter choices for ML models are unlikely
to be optimal and the adoption of HPO approaches could bring major benefits to ML-based static PE
malware detection. We hypothesise that such benefit can come from the use of HPO approaches that
are common in other deployment domains (both applied ML areas and further afield). Specifically,
we hypothesise that Bayesian methods, standard model-free methods (Grid Search and Random
Search), covering arrays, and evolutionary algorithms, have the potential to bring significant benefits.
The above has led to the main research hypothesis and its refinement into more detailed research
hypotheses, as presented in chapter 1. We now move to investigate the first of our detailed hypotheses,
which is concerned with the exploitation of a specific Bayesian method for HPO.



Chapter 3

Bayesian Hyper-Parameter Optimisation

This chapter thoroughly explores classical ML models applied to the default parameters and an
alternative, albeit newer, approach. It demonstrates the use of some model-free approaches (e.g.
Grid Search and Random Search) and Bayesian HPO approach evaluations.

3.1 Introduction

In this chapter, we explore the use of ML techniques applied to the classification of a specific form
of malware: Windows Portable Execution (PE) files. We show that a specific technique is highly
promising and that HPO still significantly affects its malware detection performance. We argue that
HPO should be essential in ML-based malware detection research and development and security
applications more widely. The contributions of this chapter are:

1. A demonstration of how well various ML-based Windows Portable Executable (PE) file
classifiers perform when trained with default parameters.

2. An evaluation of various HPO approaches applied to this problem, including:

(a) established major model-free techniques (Grid Search and Random Search); and

(b) a state-of-the-art Bayesian optimisation model-based approach (Bayesian Optimisation
with Tree-Structured Parzen Estimators).

3. A demonstration for our target problem that the optimal choices of ML hyper-parameters may
vary considerably from the toolkit defaults.

Windows PE files are an important malware vector, and their detection has been the focus of
significant research. The work described in this paper primarily uses the Ember dataset [6]—a
recently published dataset comprising a header and derived information from a million PE files. The
dataset contains samples of malware, benign software, and software of unknown status. (We use
only benign and malicious samples.)These samples are labelled accordingly. Ember is now a major
resource for the research community. We augment our Ember-focused work with work on a smaller
PE dataset available from the high-profile competition website kaggle.com.

39
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3.2 Research Question

In this chapter, we investigate a simple research question:

RQ: Can AHBO-TPE provide a highly efficient and effective means of hyper-parameter
optimisation for machine learning-based Windows PE malware detectors?

Section 3.3 details the experiments performed. The results are given in section 3.4, and section
3.5 discusses the work. Section 3.6 provides conclusions.

3.3 Experiments

Here we outline the experiments carried out and provide sample data and execution environment
details. Discussion of the results is given in Section 3.4.

3.3.1 Execution Environment

Our work uses two powerful toolkits: scikit-learn [22] and Hyperopt [78]. The experiments were
carried out using the Windows 10 operating system, with 8GB RAM, AMD Ryzen 5 3550 H with
Radeon Vega Mobile Gfc 2.10 GHz, 64-bit operating system, and an x64-based processor. Further,
we used a MacBook Air (running Catalina version 10.15), 1.8 GHz Dual-core Intel i5, 8 GB 1600
Mhz DDR3, Intel HD graphics 6000 1536 MB.

3.3.2 Experiments with Default Settings

Table 3.1 shows the results when various ML techniques are applied with default parameter
settings. The techniques include well-established approaches: Stochastic Gradient Descent classifier
(SGD), Logistic Regression classifier (LR), Gaussian Naïve Bayes (GNB), K-nearest Neighbour
(KNN), and Random Forest (RF) [22, 137]. A state-of-the-art approach—LightGBM [39]—is
also used. LightGBM has over a hundred parameters and so introduces major challenges for
hyper-parametrisation. Some of its categorical parameters (e.g., boosting type) give rise to conditional
parameters. For initial experiments, we adopted the default parameter settings adopted by the
Scikit-Learn toolkit for all techniques other than LightGBM (which has its own defaults). The
evaluation metric is Area Under the Receiver Operating Characteristic Curve (ROC AUC) [138].
ROC AUC plays an important role in many security classification tasks, e.g., it occurs frequently
as an evaluation metric in intrusion detection research. More specifically we have chosen the same
metrics used by Ember’s authors.
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Table 3.1: Score Comparison of ML Models with Default Parameters (Ember Dataset).

ML Model Time to Train Score (AUC-ROC)

GNB 11 min 56 s 0.406
SGD 11 min 56 s 0.563

LightGBM Benchmark 26 min 0.922
RF 57 min and 52 s 0.90
LR 1 h and 44 min 0.598

KNN 3 h 14 min 59 s 0.745

3.3.3 Model Hyper-parameter Optimisation

The most promising of the evaluated ML algorithms, taking into account functional performance and
speed of training, was LightGBM. We choose to further explore hyper-parameter optimisation on
this technique. Since LightGBM has over 100 parameters, some of which are continuous, we simply
cannot do an exhaustive search. Accordingly, we have had to select parameters as a focus in this
work. We focused on what we believe are the most important parameters. For Grid Search, we had to
be particularly selective in what we optimised. Moreover, for Random Search, we specified a budget
of 100 iterations. We examine Grid Search, Random Search, and AHBO-TPE as HPO approaches.
We, therefore, compare model-free (blackbox) approaches (Grid Search and Random Search) and
AHBO-TPE, an approach that uses evaluation experience to continually update its model and suggest
the next values of the hyper-parameters. We applied AHBO-TPE in two phases, the first one we
initially set to 3 iterations, while the second was allowed 100 more iterations for fair comparison
(with Random Search).

3.4 Results

The 2018 version of Ember was developed to include samples that present challenges to ML
classification approaches [13]. It can, therefore, present an excellent means to stress-test available
ML-based malware detection approaches. Table 3.1 shows the result of applying a variety of ML
approaches, instantiated with their corresponding default parameters, to classify the samples of
this dataset. All results were obtained under the MacBook Air environment described in Section
3.3.1. Table 3.1 also shows that the various ML techniques vary hugely in their suitability for the
classification of PE files. We can see that LightGBM is clearly the best-performing approach, taking
both time and score into account.

The subsequent tables summarise our attempts to apply HPO approaches to the most promising of
the original ML techniques. Table 3.2 gives the results of applying a variety of HPO techniques. The
LightGBM Benchmark results are those given in Table 3.1. Grid Search results were also obtained
using the MacBook environment. The remaining results (AHBO-TPE and Random Search) were
obtained using the Windows 10 laptop. The number of objective evaluations indicates the default
number of evaluations of the approach for LightGBM, the total number of evaluations of the Grid
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Search, and the index of the evaluation at which the best result was achieved for AHBO-TPE. Random
Search and AHBO-TPE were allowed 100 evaluations. Grid Search required 965 evaluations. The
ranges for parameters subject to variation are shown later in Table 3.6 (for Grid Search) and Table 3.7
(for Random Search). Random Search was allowed to explore a greater number of parameters and
performed well. The meaningful application of Grid Search to this extended set of varied parameters
would be computationally infeasible.

Table 3.2: Score Comparison of ML Models Before / After Optimisation (Ember Dataset).

Search Methods Best ROC AUC
Score

Number of Objective
Evaluations

Time to Complete
Search

Benchmark
LightGBM Model

0.922 100 26 min (MacBook)

Grid Search 0.944 965 Almost 3 months
(MacBook)

Random Search 0.955 60 15 days, 13 hrs and 12
min (Windows 10)

AHBO-TPE with 100
iterations

(results after 3 iterations)

0.957 (0.955) 26 (3) 27 days (4 h)
(Windows 10)

We can see that HPO can offer significant improvements. Random Search performs very well, and
so does AHBO-TPE. We can see that the initial optimisation for AHBO-TPE is far more efficient, with
the technique achieving 0.955 after only three objective evaluations. Note that the time to completion
is for information only. The LightGBM and Grid Search are evaluated on a Mac, and the remaining
approaches were evaluated on a laptop running Windows (as described earlier).

AHBO-TPE achieves a very good result very quickly, i.e., after 3 iterations. Figure 3.1 illustrates
the best score values achieved by Random Search and AHBO-TPE for each iteration (up to 100).
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Figure 3.1: Highest Validation Score at each Iteration for AHBO-TPE (yellow) and Random Search
(blue) (Ember Dataset).

Table 3.3 shows the performance of the remaining ML models using default parameter values and
after parameter optimisation (using AHBO-TPE). All results were obtained under the Windows 10
environment indicated in Section 3.3.

Table 3.3: Score Comparison of the Remaining ML Models using AHBO-TPE (Ember Dataset).

ML Model Score (AUC-ROC) Score (AUC-ROC) After
Optimisation

GNB 0.406 same
SGD 0.563 0.597
RF 0.901 0.936
LR 0.598 0.618

KNN 0.745 0.774

Table 3.4 gives the performance in training time based on the results attained by using



CHAPTER 3. BAYESIAN HYPER-PARAMETER OPTIMISATION 44

AHBO-TPE.

Table 3.4: Completion Time Results for Selected ML Models with AHBO-TPE (Ember Dataset).

ML Model Time to Train Training Time Reduction

GNB 11 min 56 s same
SGD 4 min 35 s 14 min 35 s

LightGBM Benchmark 18 min 30 s 7 min 30 s
RF 31 min 14 s 26 min
LR 1 h 5 min 37 s 38 min

KNN 4 h 37 min and 30s increased by 1 h 23 min 29s

Table 3.5 provides the default parameter results for various ML techniques applied to the
kaggle.com dataset together with results after parameter optimisation using AHBO-TPE. (For
LightGBM, it also gives results where Random Search and Grid Search were used to optimise
parameters) . The LightGBM and RF Classifiers performed comparably, giving the highest AUC
ROC scores (0.97914 and 0.97965). GNB and LR classifiers performed worst (0.54479 and 0.5072
). The KNN classifier performs well (0.9595). SGD achieved a reasonable score (0.8432). The
increase in the score under AHBO-TPE for LightGBM is considerable (0.97914 to 0.99755). The
tool’s default parameter choices cannot be relied upon to produce the best or even good results.

Table 3.5: Score comparisons for the Application of HPO (Kaggle Dataset).

ML Model Default AUC
ROC Score

Grid Search
Optimised AUC

ROC Score

Random Search
AUC ROC

Score

AHBO-TPE
AUC ROC

Score

LightGBM 0.97914 0.98247 0.99809 0.99755
RF 0.97965 N/A N/A 0.97819

KNN 0.94888 N/A N/A 0.95954
LR 0.5 N/A N/A 0.50729

SGD 0.84065 N/A N/A 0.84322
* GNB 0.54475 N/A N/A Same

There are no hyper-parameters for GNB; hence AHBO-TPE results are the same value as for defaults.

Tables 3.6 and 3.8 illustrate the difficulty of manually tuning parameters. In some cases, the
defaults and the best-found values are at the opposite ends of the parameter ranges, e.g., the bagging
fraction in Table 3.6. Many are significantly different from the default value, e.g., num_leaves in
Tables 3.7 and 3.8 and n_estimators in Table 3.8. Some binary choices are reversed, e.g., ob jective
and is_unbalance of Table 3.7.
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Table 3.6: LightGBM Grid Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter Grid Search Best
Hyper-Parameter

Settings

Range Default Value

boosting_type GBDT GBDT, DART, GOSS GBDT
num_iteration 1000 500:1000 100
learning_rate 0.005 0.005:0.05 0.1
num_leaves 512 31:2048 31

feature_fraction 1.0 0.5:1.0 1.0
bagging_fraction 0.5 0.5:1.0 1.0

objective binary binary None

Table 3.7: LightGBM Random Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter Random Search Best
Hyper-Parameter

Settings

Range Default Value

boosting_type GBDT GBDT or GOSS GBDT
num_iteration 60 1:100 100
learning_rate 0.0122281 0.005:0.05 0.1
num_leaves 150 1:512 31

feature_fraction 0.8 0.5:1.0 1.0
bagging_fraction 0.8 0.5:1.0 1.0

objective binary binary only None
min_child_samples 165 20:500 20

reg_alpha 0.102041 0.0:1.0 0.0
reg_lambda 0.632653 0.0:1.0 0.0

colsample_bytree 1.0 0.0:1.0 1.0
subsample 0.69697 0.5:1.0 1.0

is_unbalance True True or False False

The hyper-parameters giving the best performance for each ML model are given in Tables
3.8–3.12. Here, AHBO-TPE was used as the HPO approach. The results are shown with 10 iterations
(a constraint imposed for reasons of computational practicality) and 3-fold cross-validation. All
results were obtained using the Windows 10 environment indicated in Section 3.3.
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Table 3.8: LightGBM AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter Random Search Best
Hyper-Parameter

Settings

Range Default Value

boosting_type GBDT GBDT or GOSS GBDT
num_iteration 26 1:100 100
learning_rate 0.02469 0.005:0.05 0.1
num_leaves 229 1:512 31

feature_fraction 0.78007 0.5:1.0 1.0
bagging_fraction 0.93541 0.5:1.0 1.0

objective binary binary only None
min_child_samples 145 20:500 20

reg_alpha 0.98803 0.0:1.0 0.0
reg_lambda 0.45169 0.0:1.0 0.0

colsample_bytree 0.89595 0.0:1.0 1.0
subsample 0.63005 0.0:1.0 1.0

is_unbalance True True or False False
n_estimators 1227 1:2000 100

Subsample_for_bin 160,000 2000: 200,000 200,000

Table 3.9: SGD Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter AHBO-TPE Search
Hyper-parameter

Results

Range Default Value

Penalty L2 L1, L2, elasticnet L1
Loss Hinge hinge, log,

modified-huber,
squared-hinge

Hinge

Max-iterations 10 10:200 1000
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Table 3.10: RF Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter AHBO-TPE Search
Hyper-Parameter

Results

Range Default Value

n_estimators 100 10:100 10
max_depth 30 2:60 None

max_features auto auto, log2, sqrt auto
min_samples_split 10 2:10 2
min_samples_leaf 30 1:10 1

criterion gini gini, entropy gini

Table 3.11: LR Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter AHBO-TPE Search
Hyper-Parameter

Results

Range Default Value

max_iter 200 10:200 100
C 8.0 0.0:20.0 auto

solver sag liblinear, lbfgs, sag,
saga

lbfgs

Table 3.12: KNN Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter AHBO-TPE Search
Hyper-Parameter

Results

Range Default Value

n_neighbors 15 1:31 5

In Figures 3.2 and 3.3, a comparison is given between the benchmark model results and those
obtained using AHBO-TPE and Random Search to optimise parameters.
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Figure 3.2: ROC AUC Comparison for AHBO-TPE (Cyan), Random Search (Yellow), and Default Benchmark Model (Red) applied to the
Ember Dataset.
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Figure 3.3: FPR and TPR Comparison for AHBO-TPE (Cyan), Random Search (Yellow), and Default
Benchmark Model (Red) applied to the Ember Dataset.

Table 3.13: Confusion matrix for three classification models

Actual Benign Actual Malicious
AHBO-TPE 97886 1904

2114 98096
Random Search 97888 1748

2112 98252
Benchmark model 99000 3498

1000 96492

Summary of the performance of each model based on the confusion matrix 3.13:

• AHBO-TPE: The model correctly classified 97886 (out of a total of 100,000) benign samples
as benign and 98096 malicious samples (out of a total of 100,000) as malicious. However, it
misclassified 2114 benign samples as malicious (false positives) and 1904 malicious samples
as benign (false negatives).

• Random Search: The model correctly classified 97888 (out of a total of 100,000) benign
samples as benign and 98252 malicious samples (out of a total of 100,000) as malicious.
However, it misclassified 2112 benign samples as malicious (false positives) and 1748
malicious samples as benign (false negatives).
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• Benchmark model: The model correctly classified 99000 (out of a total of 100,000) benign
samples as benign and 96492 malicious samples (out of a total of 100,000) as malicious.
However, it misclassified 1000 benign samples as malicious (false positives) and 3498
malicious samples as benign (false negatives)

Table 3.14: False positive rate (FPR) and false negative rate (FNR) for each classification model

Model FPR (%) FNR (%)
AHBO-TPE 2.114 1.904

Random Search 2.148 1.773
Benchmark model 1.000 3.498

Table3.14 shows the false positive rate (FPR) and false negative rate (FNR) which provides useful
information about the performance of a classification model. In this case, the AHBO-TPE and
Random Search models have similar FPRs and FNRs, while the Benchmark model has a lower FPR
but a higher FNR.

It’s important to note that the acceptable values for FPR and FNR depend on the application’s
requirements and the consequences of misclassification. For example, in a security-related
application, a low FNR may be more critical than a low FPR since misclassifying a malicious sample
as benign could have severe consequences. Conversely, in a healthcare-related application, a low FPR
may be more critical than a low FNR since misdiagnosing a healthy individual as sick could lead to
unnecessary treatment and costs.

Table 3.15 illustrates the highest performing parameters obtained using AHBO-TPE for the
kaggle.com dataset.
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Table 3.15: ML Models Hyper-parameter results using AHBO-TPE (Kaggle Dataset).

ML Models Hyper-Parameter Range Best
Hyper-Parameter

Results

LightGBM

num_leaves
Min_child
samples

n_estimators
boosting_type
learning_rate

Subsample_for_bin
Colsample_bytree
feature_fraction

Bagging_fraction
Reg_alpha

Reg_lambda
Is_unbalance

objective

1:512
20:500
10:100
gbdt

0.01:0.5
2000: 200,000

0.6:1.0
0.5:1.0
0.5:1.0
0.0:1.0
0.0:1.0

True, False
Binary

10
90
19

Gbdt
0.4418140187193226

80,000
0.7307181013749854
0.6726481091942302
0.5893616201923844
0.195989486417426

0.1939778453324642
False

Binary

RF

n_estimators
max_depth

max_features
min_samples_split
min_samples_leaf

criterion

10:200
10:50

auto, sqrt
10:50
10:50

entropy, gini

100
15
sqrt
19
10

entropy

KNN n_neighbors 1:100 3

GNB N/A N/A N/A

SGD

penalty
loss

max_iter
alpha

none, l1, l2, elasticnet
hinge, log, squared_hinge

20:1000
0.0001:0.2

L2
log
790

0.0001

LR
Max_iter

C
solver

20:500
1.0:50.0

lbfgs, sag, saga

155
7

sag
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3.5 Discussion

The results show how the default values of parameters generally give suboptimal results and how
optimal choices of the parameter values for various models can vary significantly from their defaults.
The results also show that applying HPO to malware detection can be computationally practical.
Where there are a great number of hyper-parameters (for example, LightGBM has more than one
hundred), some efficient automated means of determining effective choices are essential. Credible
manual tuning will not be feasible, and many HPO approaches may be computationally impractical.
The work has shown the utility of using proxy evaluation functions for determining hyper-parameter
values. In particular, AHBO-TPE has been shown to be a very effective and efficient informed
approach. Other forms of surrogates may bring benefits.

For practical purposes, we informally identified plausible parameters that should be subject to
variation and allowed the remaining ones to be set at the defaults. It is possible that improvements
in results could be obtained by allowing variation in the parameters that were fixed at their default
values. It also suggests the possibility of adopting a sequential approach to optimising over the full
range of parameters, i.e., once investigated parameters have been subject to variation and evaluation,
they could be fixed at their optimal values and previously fixed parameters then are allowed to vary.
The focus of our work has been Windows PE files. Similar investigations of other malware types are
now needed to determine how well our approach generalises.

3.6 Conclusions

We have shown that HPO matters a great deal for ML-based malware detection. The use of default
parameters will generally not be optimal, and the results overall would suggest researchers in malware
and ML are missing a significant opportunity to use HPO to improve results attained by specific
techniques of interest. Every improvement matters to the security of the protected systems and
reduces costs in one form or another: getting the best out of malware detectors matters a great deal,
and HPO has much to offer. We have also shown that a specific informed technique (AHBO-TPE)
has particular potential for application to malware detection.

Using HPO to provide Bergstra et al.’s ‘formal outer loop’ should be normal practice to ensure any
targeted technique is exploited fully. Adopting HPO in this way brings methodological benefits. For
the development of the field, we need to be able to compare competing techniques at their best, and
HPO can provide a principled and repeatable way to get the best (or close to it) from all competing
techniques. We propose that HPO be an essential element of the ML process for malware detection
applications, i.e., that Bergstra et al.’s ‘formal outer loop’ be adopted, and recommend further research
into the use of HPO for tuning malware detectors.

3.7 Summary

In this chapter, we investigate the use of various ML algorithms for building malware classifiers
and how best to tune the parameters of those algorithms – generally known as hyper-parameter
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optimisation. We examine the effects of some simple (model-free) parameter tuning methods and
a state-of-the-art Bayesian model-building approach. We argue that HPO should be the norm to
ensure that any technique is fully explored. We need to be able to compare competing techniques at
their best for the field’s development, and HPO can provide a principled and repeatable way to get the
best (or close to it) from all competing techniques. Our work is carried out using EMBER, a major
published malware benchmark dataset on Windows Portable Execution (PE) metadata samples and
another dataset from kaggle.com.



Chapter 4

Covering Arrays ML HPO for Static
Malware Detection

This chapter shows the use of covering arrays as a design of experiments approach to the application
of HPO for classical ML techniques of interest.

4.1 Introduction

4.1.1 Covering Arrays: Dealing with the Curse of Dimensionality

Grid Search applies full combinatoric evaluation of the cross-product of discretised domains. The
total number of combinations is the product of the cardinalities of the individual domains Di.

totalCombinations =
n

∏
i=1

card(Di)

Grid Search can obviously give a thorough exploration of the parameter space, assuming the
individual domains are suitably discretised. However, in some areas of engineering, it is found
that full combinatorial evaluation can be wasteful. For example, in software testing, particular
sub-combination coverage of parameter values can provide a very high fault detection capability.
But we may not know in advance the specific sub-combinations that will be most revealing. Some
effective means of exploring the combinatorial space is needed that do not incur the costs of a full
Grid Search.

Covering arrays provide one such mechanism. Furthermore, the concept can be applied to
different ‘strengths’ allowing flexibility in the thoroughness of the exploration of the search space
at hand. At a basic level, a covering array is defined by the number n of its domains (parameters)
and its strength t. We will denote strength here using t = 1, t = 2, t = 3 etc. A covering array with n
domains and with strength t can be referred to as a CAn

t .
Consider a combinatorial search space with parameter domains A = {0,1}, B = {0,1}, and C =

{0,1}. A CA3
1 provides a suite of cases where each value of each domain occurs at least once. Here,

we are considering sub-combinations involving only single (t = 1) domains. This is easily achieved

54
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by an array with just two case rows as shown below.

A B C
0 0 0
1 1 1

If we had, say, 26 binary domains A,B, ...,Z, then a similar covering array, i.e. a CA26
1 , with two

rows would satisfy the t = 1 strength requirement, i.e. with rows as shown below.

A B C .. X Y Z
0 0 0 .. 0 0 0
1 1 1 .. 1 1 1

A CAn
1 clearly gives a rather weak coverage (exploration) of the domain space for most purposes.

In the A,B, ...,Z example, only 2 from 226 possible row values are sampled.
For a CAn

2 each combination of values from any two (t = 2) domains is present in the array. A
CA3

2 for the A, B, and C example is given below.

A B C
0 0 0
0 1 1
1 0 1
1 1 0

We can see that the four possible values of (A, B) are present, i.e. A, B=(0,0) in row 0, (0,1) in
row 1,(1,0) in row 2, and (1,1) in row 3. Similarly, we can see that four possible values of (A, C) and
the four values of (B, C) are also present. Thus, all pairs of values from any two domains from A, B
and C are present and so the given array is indeed a CA3

2. The simplest strength CA3
3 array would give

full combinatorial coverage (all 8 (A, B, C) combinations) with the usual binary enumeration of 0 to
7 for the rows, i.e. [0,0,0] through to [1,1,1].

4.1.2 Generating Covering Arrays

The actual generation of arrays is not our focus. A good deal of theoretical and practical work has
been carried out in algorithms to do so. Our motivation for using covering arrays was inspired by
their use in software testing. A method for generating CAn

2 arrays for software test suites is given in
[126]. As they state, “For a system with two or more input parameters, the IPO strategy generates a
pairwise test set for the first two parameters, extends the test set to generate a pairwise test set for the
first three parameters, and continues to do so for each additional parameter.”

CAs are widely used in the combinatorial testing field. Their use reduces the number of tests
needed in comparison to exhaustive combinatorial testing. This led to an increased usage of a specific
instance of the IPO strategy called In-Parameter-Order-General (IPOG). IPOG can be used to generate
covering arrays of arbitrary strengths [125]. It is a form of greedy algorithm and might not yield test
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suites of minimal size. It has been noted that providing an optimal covering array is an NP-complete
problem [139].

The IPOG strategy has gained traction in the software testing field. This is due to the competitive
test suites that are yielded by such covering arrays in comparison with other extant approaches for
generating test suites. Additionally, it exhibits a lower generation time of test suites compared with
other algorithms. The main goal of IPOG is to minimize the generated test suite size. This is a
significant area to explore especially when the cost of testing is very high. The duration of test cycles
will be reduced with fewer tests. However, there are some cases when the test execution is very
fast and does not impact the overall testing time. Instead, optimizing test suites can be very costly
as test generation time can become dominating [140], [141]. Optimisation of the IPOG family was
introduced by [130].

In this chapter, we use an implementation of FIPOG (an IPOG variant) provided by the cAgen
tool. cAgen is freely available as indicated below. We show that the use of FIPOG’s covering arrays
can achieve excellent results (and better than using the default parameters) far more quickly than
using full Grid Search. In our approach, an index in a row of a covering array can select a value from
a discrete set or a subrange of values from a given range (and then randomly sample from within the
selected subrange). We believe this to be original.

4.2 Research Question

In this chapter, we investigate a simple research question:

RQ: Can covering arrays provide a highly efficient and effective means of hyper-parameter
optimisation for machine learning-based Windows PE malware detectors?

4.3 The cAgen Array Generator

4.3.1 Parameter Specification and Array Generation

The cAgen tool set is available online [83]. It allows the user to specify parameters and sets of
associated values. For technical reasons that are concerned with our specific approach to the use of
covering arrays, we will assume that a parameter domain with R elements is indexed by values 0, 1,
(R-1). Figure 4.1 shows a completed specification for the (A,B,C) example above.
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Figure 4.1: Full Parameter Specification for ABC Example

Figure 4.2: Array Generation for ABC example above with t=2

Having specified the parameters we can invoke the generation capability of cAgen. Figure 4.1
shows the array generation stage for the A, B, and C examples, where a value of t=2 has been
selected. If we wanted each pair to occur multiple times, we could specify a larger value of lambda.
Several generation algorithms are available. Figure 4.2 shows that we have chosen FIPOG, for better
performance and fast generation [83]. The array can then be stored in a variety of formats. We have
chosen to use CSV format throughout for compatibility with our general approach in this thesis.

4.3.2 Array Indexing

We will use lists to represent parameter spaces. A list’s elements will be either actual parameter
values or else a list representing a subdomain. The values 0,1, ...,(R− 1) are interpreted as indices
to the corresponding elements in the domain list. For example, MAX_DEPT H = [5,10,15,20,None]
would be a simple list with 4 specific integer values and a ‘None’ value. LEARNING_RAT E =
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[0.001, .01,0.1,0.2] is a simple list of four real values. MAX_LEAV ES = [[1,2,3], [4,5,6], [7,8,9]]
is a list of lists of values. Here, the list cardinalities are given by card(MAX_DEPT H) = 5,
card(LEARNING_RAT E) = 4 and card(MAX_LEAV ES) = 3. Thus, for the list of lists the
cardinality is the cardinality of the highest-level list. A value in a row of a covering array is an
index into the top-level list for the corresponding parameter.

Python lists allow us to include different types of elements. Thus, in MAX_DEPT H we see that
integer values, as well as a ‘None’ parameter value, can be specified. ‘None’ typically means that the
algorithm can proceed as it sees fit, with no direction from the user for this parameter. Scikit− learn′s
ML algorithms often have such parameters as defaults. Where a parameter is represented by a simple
list then the covering array value for the parameter is used to index the specific element of the list.
Thus, an array value of 2 in the covering array column corresponding to MAX_DEPT H corresponds
to a parameter value of 15, i.e. MAX_DEPT H[2] = 15. The indexed array element may be a list.
Thus, a covering array value of 2 for MAX_LEAV ES, gives MAX_LEAV ES[2] = [7,8,9]. In such a
case, a value is randomly selected from the list. Thus, each of the values 7, 8, and 9 are now selected
with a probability of 0.333. In practice, we represent ranges of integer values more compactly, via
the use of low, high, and increment indicators. Thus, we will typically represent the list [1,2,3,4,5]
by [low,high, incr] = [1,5,1]. We adopt the convention of both low and high being included in the
denoted range.

4.4 Methodology

We will apply a variety of ML techniques and specify suitable parameter domains for the parameters
we wish to experiment with. We will evaluate the full combinatorial domain and over all rows of
the covering arrays of interest (for t=2,3,4). A full combinatorial evaluation or a full covering array
evaluation (i.e. all rows evaluated) will be referred to as a ‘run’ or ‘iteration’. We will carry out 30
runs for each array of interest and for the full combinatorial case. We do this to gain insight into
the distribution of outcomes from the technique. Some runs may give better results than others, even
if the same array has been used as the basis for the run. This is due to the stochastic selection of
elements within selected ranges as indicated above. Pooling the results from the 30 runs provides a
means of determining an accurate and useful distribution for the approach. In practice, a user may
simply use one run of a covering array search, if he or she is confident it will give good enough results.
Our evaluation activities aim to determine whether such confidence is justified.

4.5 Experiments

Here we outline the experiments carried out and provide sample data and execution environment
details. Discussion of the results is given in Section 4.6.
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4.5.1 Execution Environment

Our work uses two powerful freely available toolkits: Scikit-learn [22] and the cAgen tool [83]. The
the experiments were carried out using the Windows OS 11, with 11 Gen Intel Core i7-11800H, with
2.30 GHz processor, and 16 GB RAM.

4.5.2 Experiments Settings

This section shows the results when various ML techniques are applied with the specific parameter
settings of t values. The techniques include well-established approaches: Decision Trees (DT) [22],
xgboost [38] , and Random Forest (RF) [22, 137]. A state-of-the-art approach—LightGBM [39]—is
also used. For initial experiments, we adopted the default parameter settings by cAgen toolkit for RF,
DT, LightGBM and Xgboost. Then we added our own setting as seen in table 4.1. The results will
be obtained using the evaluation metric of scikit-learn’s Accuracy [142].

4.5.3 Implementation Details

Table 4.1 shows the implementation details for all four ML models using cAgen tool.

Table 4.1: ML Models cAgen configurations

ML Algorithms Hyper-parameters Hyper-parameter IPM values T-Strengths values IPM values Number of Iterations

RF

n_estimators,
max_depth,

criterion,
min_samples_split,
min_samples_leaf,

max_features

[[100, 300, 50],[350, 550, 50],[600, 800, 50]]
[[1, 10, 1],[11, 15, 1],[16, 20, 1],None]
[’entropy’, ’gini’]
[[5, 25, 5],[30, 50, 5]]
[[5, 25, 5],[30, 50, 5]]
[’auto’, ’sqrt’, ’log2’, ’None’]

T-2, 3, 4

0,1,2
0,1,2,3,4

0,1
0,1
0,1

0,1,2,3

30

LightGBM

num_leaves,
boosting_type,

Subsample_for_bin,
Is_unbalance,

max_depth

[[20,80,20],[100,160,20]]
[’GBDT’,’GOSS’]
[[1000,5000,1000],[6000,10000,1000],[11000,15000,1000]]
[True, False]
[1,5,10,15,20,25]

T-2,3,4

0,1
0,1

0,1,2
0,1

0,1,2,3,4,5

30

Xgboost

Min_child_weight
gamma

max_leaves
reg_alpha

max_depth

[1, 2, 4, 6, 8, 10, 12, 14]
[[1, 4, 1],[5, 8, 1]]
[2, 4, 6, 8, 10, 12]
[0.01,0.1,0.2,0.3,0.4,0.5]
[1,5,10,15,20,25]

T-2,3,4

0,1,2,3,4,5,6,7
0,1

0, 1, 2, 3,4,5
0, 1, 2, 3, 4,5
0, 1, 2, 3, 4, 5

30

DT

max_depth,
criterion,

min_samples_split,
min_samples_leaf,

max_features

[[1,10,1],[11, 15, 1],[16, 20, 1], None]
[’entropy’, ’gini’]
[[5, 25, 5],[30, 50, 5]]
[[5, 25, 5], [30, 50, 5]]
[’auto’, ’sqrt’, ’log2’, ’None’]

T-2,3,4

0, 1, 2, 3
0, 1
0, 1
0, 1

0, 1, 2, 3

30

There are three target ranges in our implementation: a) Simple lists, e.g. [0,1,2,3,4 or
None], where the covering array index indicates the specific value. b) List of lists, (e.g.
[[30,50,1],[350,50,1]]), where the covering array index indicates which inner list (subdomain) should
randomly be chosen from. c) Boolean values, then either one or another depending on the values (e.g
Entropy or Gini).
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4.6 Results

Results of hyper-parameter optimisation based on covering arrays (with strengths of 2, 3, or 4) and
Grid Search are shown in the following tables. The best-performing parameter values are given,
together with the time taken to complete the corresponding search, coverage (number of evaluations)
and summary accuracy data. Tables 4.2, 4.3, 4.5 and 4.4 show results for RF, LightGBM, Xgboost,
and DT respectively. The results for Grid Search (over the same discretised parameter ranges) are
also shown in each table. In the tables “No. of evaluations” is equal to the number of rows (i.e.
combinations) in the covering array multiplied by the number of iterations (30).
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Table 4.2: RF Model cAgen Results Comparison

ML Algorithms Optimal Values T-values/ Grid Search Time to complete No. of evaluations searched Score (accuracy)

RF

400
14

entropy
5
10

None

T2 2h 35min 21s 480 0.9904

700
None

entropy
5
10

None

T3 7h 31min 17s 1500 0.9902

150
18

entropy
5
10

None

T4 11h 58min 4s 2880 0.9902

650
19

entropy
5
5

None

Full Grid Search 2 Days, 23 hrs, 58Min and 18s 11520 0.9906

Table 4.3: LightGBM Model cAgen Results Comparison

ML Algorithms Optimal Values T-values/ Grid Search Time to complete No. of evaluations searched Score (accuracy)

LightGBM

gbdt
80

2000
False

20

T2 1h 25min 13s 540 0.9910

goss
140

16000
False

25

T3 2h 34min 30s 1080 0.9906

gbdt
40

1000
False

25

T4 4h 35min 39s 2160 0.9910

goss
80

2000
False

20

Full Grid Search 6h 48min 5s 4320 0.9910

We can see that the DT classifier in Table 4.4 is the fastest of all ML models. Even with Grid
Search it is still efficient with this particular technique taking only 5 minutes and 43 seconds to
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Table 4.4: DT Model cAgen Results Comparison

ML Algorithms Optimal Values T-values/ Grid Search Time to complete No. of evaluations searched Score (accuracy)

DT

entropy
13

None
5
20

T2 27.2s 480 0.9843

entropy
14

None
5
10

T3 1min 29s 1500 0.9845

gini
18

None
10
5

T4 2min 46s 2880 0.9855

gini
None
None

10
20

Full Grid Search 3min 39s 3840 0.9859

Table 4.5: Xgboost Model cAgen Results Comparison

ML Algorithms Optimal Values T-values/ Grid Search Time to complete No. of evaluations searched Score (accuracy)

Xgboost

1
1
10
0.4
20

T2 1h 4min 41s 1440 0.9902

1
1
4

0.4
25

T3 5h 20min 55s 8640 0.9902

1
1
4

0.01
15

T4 22h 15min 38s 51840 0.9906

1
1
2

0.01
15

Full Grid Search 1d 10h 46min 52s 103680 0.9906



CHAPTER 4. COVERING ARRAYS ML HPO FOR STATIC MALWARE DETECTION 63

finish 3840 evaluations. However, cAgen is much more efficient with only 42.5 seconds to finish.
Although only 480 evaluations with t = 2 are made it achieves the same accuracy as Grid Search but
with less time and effort. The second fastest ML model after DT was LightGBM, which highlights
covering array capability even more. Table 4.3 shows a huge disparity in time between Grid Search
and cAgen runs. The cAgen approach is faster than the Grid Search with only 1 hour, 41 minutes and
18 seconds taken to complete the search, while the latter took 7 hours, 57 minutes and 14 seconds
to complete. Both have reached excellent values for finding hyper-parameter choices while having
higher accuracy. Strength values t = 2 and t = 3 in LightGBM, even though they have almost the
same results obtained but both have reached that score with different hyper-parameter values. cAgen
is more efficient than Grid Search, using less time. The third ML model was RF, where cAgen runs
have reached the highest performing choices for t = 2 with 2 hours and 35 minutes. In contrast,
Grid Search took 2 days 23 hours and 58 minutes to complete the search. The difference between
cAgen and Grid Search in Table 4.2 is significant evidence of the usefulness of covering arrays for
hyper-parameter optimisation. Xgboost was the slowest of all models to achieve the best values. It
took more computational time than the other techniques to achieve the best values for strengths t3 and
t4, and even Grid Search. The figures below 4.3, 4.4 and 4.5 compare the accuracy results between the
selected models (t = 2, t = 3 and t = 4) in a histogram. (These histograms are not normalised between
techniques, i.e. the total counts may vary between techniques. However, the general distributions can
be compared.)

Figure 4.3: cAgen ML Models Results Comparison for Strength t = 2
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Figure 4.4: cAgen ML Models Results Comparison for Strength t = 3

Figure 4.5: cAgen ML Models Results Comparison for Strength t = 4
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4.6.1 Comparing the Results of CA against another Benchmark

The authors in [136] have benchmarked several ML models’ performances using Ensemble learning
with 10-fold cross-validation. For DT and RF the accuracy results were 0.989 and 0.984 respectively.
Our model achieved 0.9849 and 0.9904. However, the main aim of our paper is to evaluate various
coverage strategies, not necessarily to achieve an optimal value for each ML technique application.
If explicit optima are the target then further optimisations should be considered.

4.7 Conclusions

cAgen, a covering array approach with various strengths, was used to find high-performing
hyper-parameters for targeted ML models. It was compared to Grid Search. Our results show that
the systematic coverage offered by covering arrays can be both highly effective and efficient. The
covering arrays produced by cAgen produced superior results to Grid Search across all four ML
models. We highly recommend the covering arrays approach for ML researchers and the community
overall. Although our work has focused on improving attained accuracy of malware classification,
other tasks in security may well benefit from such an approach (particularly ML-based classification
tasks).

4.8 Summary

Four machine learning techniques were tuned using cAgen, a tool for generating covering arrays.
The results showed that cAgen is an efficient approach to achieving optimal parameter choices for ML
techniques. Furthermore, we recommend this unique approach of optimising parameters and choosing
optimal hyper-parameters of a given ML technique. This research will help the development of better
classifiers for static PE malware detection. Using Covering Arrays may be of significant benefit to
the ML hyper-parameter optimisation community, malware detection community and overall security
testing community. Furthermore, the cAgen toolkit has proved readily usable for our own malware
detection purposes. Its flexibility will also serve the various communities well.



Chapter 5

HPO for Evolutionary Algorithms

This chapter demonstrates the use of two EA methods to enhance and optimise the hyper-parameters
of six ML models.

5.1 Introduction

In this chapter, our focus will be on meta-heuristic algorithms, specifically Evolutionary Algorithms
(EAs). This chapter 1) investigates the effectiveness of hyper-parameter tuning using the algorithms
of two significant optimisation frameworks: Deap [98, 97] and TPOT [111]; 2) develops
understanding to help new users of ML to get best value of applying ML; and 3) Provides specific
recommendations for hyper-parameter choices for our chosen deployment area. Section 5.2 gives the
aim of the chapter. Section 5.3 presents our research question. Section 5.4 describes the experimental
setups. Section 5.5 gives the results and a discussion of our work. Section 5.6 provides conclusions.
Section 5.7 summarises the chapter.

5.2 Aim of this chapter

In this chapter, we use two optimisation frameworks, DEAP and TPOT, described in section 2 for
hyper-parameter optimisation of 6 ML techniques. DEAP chromosomes encode for parameters of an
identified ML technique. Evolution proceeds to develop fitter (higher performing) parameters. TPOT
is free to choose which ML model to use as part of its operation.

5.3 Research Question

We investigate the following research question:

RQ: Can Evolutionary Algorithms, specifically TPOT and Deap, find hyper-parameter vectors
that produce better performance than the defaults for machine learning-based Windows PE malware
detectors?
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5.4 Experiment Setup

ML models were based on Scikit-learn [22]. The experiments were carried out on an iMac (Mac
operating system Big Sur, version 11.0.1, Retina 5K, 27-inch, 2017,4.2 GHz Quad-Core Intel Core
i7,16 GB 2400 MHz DDR4 RAM, and a Radeon Pro 580 8 GB graphics card), Jupyter Notebook
version 6.1.0, and Python Version 3.7.0. The work used the Ember dataset.

5.4.1 Initial Experiments and Evaluation Metrics

This section describes the proposed Deap and TPOT models. Six traditional ML models will be
fine-tuned with the help of Deap. Automatic model selection will be performed using TPOT. Deap
selection criteria are default hyper-parameters and manual tuning for some of them. This experiment
aims to compare the accuracy [142] gained after finding the optimal hyper-parameters from TPOT
and Deap. We have taken the default ML model’s accuracy for all six models, and the results are
shown in Table 5.3. Our benchmark model LightGBM had the highest accuracy.

5.4.2 Deap Setup

For our experiment, we have chosen three-fold validation. Several other parameters must also be
initialised at random before beginning any experiment. We will focus on a specific set of parameters.
For more information about the complete set of parameters, please refer to the documentation in
[109]. Ten parameters are used, excluding the ML model’s parameters. Namely, the estimator
(that is the ML model to be used and in our case the 6 models we selected) params (the specific
hyper-parameters that we want to initialise beforehand), scoring (accuracy) for our experiments,
population size (population size of the GA, it has an integer value and the default size is 50), gene
mutation probability (chromosome mutation probability, a float value with default of 0.1), gene
crossover probability (the probability of exchanging genes between different chromosomes, a float
value with default value of 0.5), tournament size (the size of tournament selection stage in the GA, an
integer value with default of 3), generation number (is the number of generation for GA, an integer
number with default size of 10), CV (the cross validation iterator to split the data set, with default
value of 3) and the last one is verbose (verbosity, this one controls the messages that is generated
throughout the search; the higher the number, the more messages shown and it has an integer value).
The experiment took about three months to complete. Deap hyper-parameters configurations are
below; all of these are initialised manually beforehand:

Table 5.1: Pre-initialised Deap Hyper-parameter Configuration Ranges

Hyperparameter Hyper-parameter Range
Population size 1 : 50

Gene-mutation-prob 0.1 : 0.90
Gene-crossover-prob 0.1 :1.0

Tournament-size 1 : 10
Generations-number 5: 15
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5.4.3 TPOT Setup

TPOT is easier to use since it is automated. However, we need to select the right setting beforehand.
The first is the built-in configurations (it is for classification and regression tasks; however, we are
focusing on classification only). The second setting is a customised configuration, however, we will
not address it in our experiment. We note that the search space taken from documentation needs a
little bit of improvement, and we hope this will also aid TPOT in the future. There are six built-in
configurations in TPOT, default TPOT, TPOT Light, TPOT MDR, TPOT Sparse, TPOT NN, and
TPOT cuML. For more information about each configuration please refer to the documentation in
[108]. The custom configuration with search parameters already predefined from the same ML
model existing parameters inside TPOT. Some hyper-parameters are introduced as well from the
GA, and we need to randomly initialise [108]. Again, we will include only the parameters we used
in our experiment. Namely, config-dict (the name of the built-in configuration that we want to use,
e.g. TPOT NN), generations (the number of generations TPOT will run, and it must be positive),
population size (the number of individuals to retain the population for each generation), early stopping
rounds (TPOT will check if there is no improvement in the current pipeline. If so, it will terminate),
and the last hyper-parameter is the score (accuracy in our experiment). Below we have TPOT GA
hyper-parameter configurations; all of these are initialised manually beforehand for Config-dict TPOT
hyper-parameters:

Table 5.2: Pre-initialised TPOT hyper-parameter configurations (Config-dict)

Hyperparameter Hyper-parameter Range / Metrics
Population size 5 : 30

Generation 3 : 30
Early Stopping Rounds 3 : 10

Score Accuracy

5.4.4 TPOT Pre-built Configurations

We ran the experiment 30 times for each built-in configuration that worked with the dataset. There
were different config-dict initialisations, and for each, there were different values for the parameters.
Out of the six configurations we are interested only in three (Default TPOT NONE, TPOT Light and
TPOT NN).

5.4.5 TPOT Custom Configuration

TPOT custom configuration experiment with the predefined search space (within TPOT) for each ML
classifier, we note the following:

• Due to conflicting hyper-parameters there will always be a run-time error with our dataset and
only one-Pareto optimisation generation will be out. For this specific reason, we decided not to
proceed with the customized configuration.
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5.4.6 Target ML Algorithms

In our experiments, we investigated several widely used supervised ML classifiers: Logistic
Regression (LR), Light Gradient Boosted Machines (LightGBM), Random Forest (RF), Stochastic
Gradient Descent (SGD), Gaussian NaiveBase (GNB), and K-Nearest Neighbour (KN). For more
information about each technique’s default parameters please refer to [22].

5.5 Results and Discussion

This section presents the results of our experiments. Table 5.3 displays both the model’s results with
the default parameters and what is achieved via DEAP optimisation.

Table 5.3: ML Model Accuracy: Comparison using Default and Deap Optimization

Selected ML model Default ML Models Accuracy Score Deap Accuracy score
RF 89% 94%

KNN 69% 75%
LR 59% 62%

SGD 56% 59%
LightGBM 92% 94%

GNB 60% 60%

5.5.1 Deap Results

Optimizing Models with Deap: Out of the six selected classifiers, RF and LightGBM scored a tie in
the model’s accuracy. The original time to train LightGBM was reduced by 15 minutes (originally
26 minutes), and it took 11 mins 25 seconds to train. Moreover, RF’s original time to train was
decreased by 26 minutes (originally 52 minutes), and it took 26 minutes to finish training. RF
and KNN significantly increased the model accuracy after being optimised with Deap. Table 5.3
compares defaults and Deap after optimizing the models. RF with the default parameters scored
89%, and with the newly found hyper-parameters, it is 94%, which is about a 5% increase in model
performance. KNN default parameters scored an accuracy of 69%, and with the new hyper-parameter,
the score jumped to 75%, which is about a 6% increase in the model performance. The rest of
the models either stayed the same (GNB) or the other had a slight increase in accuracy LR (2%
increase), LightGBM (2% increase) and SGD(3%). Importance of Tuning GA Parameters: tuning
the predefined GA parameters is also important. For example, in LightGBM, values below 1.0 in
gene-mutation-crossover and higher values than 0.5 in gene-mutation would lower the accuracy of the
model. Also, a population size lower than 50 would cause the same issue. This shows how important it
is to notice these small changes. Effect of Different Parameters on Model Accuracy: The accuracy
of different ML models would change accordingly with different parameters. RF and KNN showed
a significant increase in accuracy after optimizing hyper-parameters, while GNB remained the same
(due to no hyperparameters).
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Table 5.4: ML Model and Deap Search Space / Hyper-parameter results

ML Model Default hyperparameter Search Space Best
hyperparameter
values

Deap model
pre-defined
hyperparameters

Deap
pre-defined
Search
Space
values

RF

n_estimators
Max_features
Max Depth

min-samples-split
Min_samples_leaf

criterion

1:100
Auto
5:50
2:11
1:11

Entropy or Gini

84
auto
20
8
8

Entropy

scoring
cv(cross validation)

verbose
Population-size

gene-mutation-prob
gene-crossover-prob

tournament-size
generations-number

Accuracy
3
1
35

0.50
0.90

6
10

SGD

penalty
loss

max_iter
l1_ratio

L2
Hinge, squared hinge

or modified huber
1:500

0:1

L2
Modified huber

366
0

scoring
cv(cross validation)
verbose
Population-size
gene-mutation-prob
gene-crossover-prob
tournament-size
generations-number

Accuracy
3
3
10

0.10
0.5
5
5

GNV N/A N/A N/A N/A N/A

LightGBM

Num_leaves
Min_child_samples

Boosting-type
Learning_rate

subsample_for_bin
feature_fraction
bagging_fraction

Is_unbalance
reg_alpha

reg_lambda
objective

31:800
20:400
GBDT

0.01:0.5
2000:200000

0.5:1.0
0.5:1.0

True or False
0.0:1.0
0.0:1.0
Binary

608
113

GBDT
0.01

106461
0.5
0.5

False
1.0
0.25

Binary

scoring
cv(cross validation)
verbose
Population-size
gene-mutation-prob
gene-crossover-prob
tournament-size
generations-number

Accuracy
3
1
50
0.3
1.2
5
15

LR
max_iter

C
solver

1:500
0:100

Liblinear ,lbfgs,
sag, saga

441
33.48
lbfgs

scoring
cv(cross validation)
verbose
Population-size
gene-mutation-prob
gene-crossover-prob
tournament-size
generations-number

Accuracy
3
3
15
0.5
0.6
5
10

KNN N-neighbours 1:20 16

scoring
cv(cross validation)
verbose
Population-size
gene-mutation-prob
gene-crossover-prob
tournament-size
generations-number

Accuracy
3
1
10

0.10
0.5
3
5
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5.5.2 TPOT Results

Issues with Hyper-parameters in TPOT Experiment: The hyper-parameters introduced by TPOT
caused low accuracy for the problem due to conflicting parameters. Results of Automated Search
with TPOT: BernoulliNB and Decision Trees were chosen multiple times by TPOT. The final results
were the decision trees classifier in Table 5.5. TPOT Classifiers: TPOT chose BernoulliNB as the
best classifier in all pre-built configurations (None, NN, and Light) with low accuracy. The Decision
Trees classifier had the best accuracy out of all the classifiers chosen by TPOT.

Table 5.5: TPOT built-in Configuration Search Space Results.

TPOT built-in
configuration
value

Chosen ML
Model and
hyperparameters

TPOT predefined-
Hyperparameter
search space

TPOT predefined-
search Range

Chosen
Hyperparameter
value

Accuracy score

NONE BernoulliNB
(alpha=0.1,
fit_prior=True)

generations
population_size
Verbosity
early_stop
cv
scoring

3:10
5:30
3
3:10
3
accuracy

3
15
3
4
3
accuracy

51%

Light BernoulliNB
(alpha=1.0,
fit_prior=True)

Generations
Population-size
Verbosity
early-stop
cv
scoring

3:10
5:30
3
3:10
3
accuracy

3
15
3
4
3
accuracy

61%

NN Decision Trees
Classifier
(criterion=gini,
max-depth=1,
min-samples-leaf=10,
min-samples-split=3)

Generations
Population-size
Verbosity
early-stop
cv
scoring

3:10
5:30
3
3:10
3
accuracy

5
20
3
3
3
accuracy

61%

5.6 Conclusion

Here we used two modern evolutionary algorithm frameworks: TPOT and Deap. The default
hyper-parameters of six different ML models were determined and then optimised using Deap. Deap
can improve 5 of the six models, giving percentage improvements of (+5, +6, +3, +3, +2, 0). Notably,
the default usage performances were improved even for the best two performing ML approaches (RF:
89% to 94 %) and (LGBM: 92% to 94 %). Models discovered by Deap were compared to those found
by TPOT. Then, the best of each is compared to one another to determine which hyper-parameter
setting is most effective. Deap returned better hyper-parameters for each ML model. When it comes
to finding the optimal hyper-parameters and optimising ML models for classifying and detecting
malware samples, Deap is the best EA.
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5.7 Summary

The baseline accuracy of six traditional machine learning techniques was established under default
parameter choices. The tuning capability of two evolutionary algorithms, the Tree-Based Pipeline
Optimization Tool (TPOT) and the Distributed Evolutionary Algorithm in Python (Deap), were
compared. The results show that Deap is an effective evolutionary search technique to optimise
and increase machine learning classifier accuracy for static PE malware detection.



Chapter 6

Using CA and Grid Search with Deep
Learning

This chapter illustrates the use of HPO approaches for Deep Neural Networks (specifically, the use
of Covering Arrays).

6.1 Introduction

Deep Learning (DL) is a subset of Machine Learning (ML) that is widely used in different fields, with
particular successes in Computer Vision, Natural Language Processing and Machine Translation. DL
is a part of the Artificial Neural Network (ANN) theory. There are several kinds of DL models: Deep
Neural Networks (DNNs), Feed Forward Neural Networks (FFNNs), Deep Belief Networks (DBNs),
and others [40]. Most DL models have similar traits and hyper-parameters. The performance of the
trained model depends significantly on the values of the parameters of the model [143, 144, 145, 146,
147, 148].

6.1.1 Aim of this Chapter

The main objective of the work of this chapter is to investigate specific hyper-parameter tuning of
deep learning-based Windows PE malware detectors. We illustrate the significant effects of parameter
choices on performance and show the power of hyper-parametrisation. Specifically, we build on the
encouraging performance of covering arrays explored in section 4.3 for traditional ML approaches.

6.1.2 Chapter Contribution

The contributions of this chapter are:

1. We demonstrate the performance improvements that systematic hyper-parameter search can
bring, working from a highly plausible baseline model for comparison.
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2. We demonstrate that covering arrays from the cAgen tool can be used to efficiently
find excellent parameter values with less time and fewer iterations compared to Grid
hyper-parameter search.

The targeted performance metric used in this work is Accuracy. This follows many malware detection
research papers and is very common practice for many deep learning applications. It is one of the
major accepted performance criteria. To the best of our knowledge, no one has attempted to study the
effects of different Deep learning hyper-parameters for malware detection.

Below, section 6.2 gives the research question investigated in this chapter. Section 6.3 details the
experiment setup and gives preliminary observations. Section 6.4 compares the use of Grid Search
and Covering Arrays provided by cAgen for NN hyper-parameter optimization tasks. Section 6.5
documents the results. Section 6.6 discusses issues raised and section 6.7 provides conclusions.
Section 6.8 provides a summary of the chapter.

6.2 Research Question

In this chapter, we investigate the following research question:

RQ: Can Covering Arrays and Grid Search provide a highly efficient and effective means of
hyper-parameter optimisation for machine learning-based Windows PE malware detectors?

6.3 Experiment Setup and Early Notes

6.3.1 Experiment Setup

DL models were based on Scikit-learn [138]. The experiments were carried out on an iMac (Retina
5K, 27-inch, 2017,4.2 GHz Quad-Core Intel Core i7,16 GB 2400 MHz DDR4 RAM, and a Radeon
Pro 580 8 GB graphics card) and Windows OS 11, with 11 Gen Intel Core i7-11800H, with 2.30
GHz processor, and 16 GB RAM. Inputs were subject to normalisation via the scikit-learn library’s
StandardScaler function [149]. 3-fold validation was used throughout.

6.3.2 Baseline Model

We started with a baseline model in order to optimise it. Ember’s model before optimisation had 12
neurons in the first layer, 8 neurons in the second layer and 1 in the last layer. It achieved 81.2%
accuracy. In contrast, the Kaggle dataset model had 12 neurons in the first layer, 8 neurons in the
second layer and 1 in the last layer. It achieved 94%. Given the established baselines, we started our
approaches of optimising through different hyper-parameters.
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6.4 Grid Search versus cAgen for NN Hyper-parameter Optimization
Tasks

Below we explain the methods that we use for both cAgen and Grid Search.

6.4.1 Grid Search

The four main phases of Grid Search involve iterating over the set of defined values in the search
space, incorporating the training set, cross-validating (here, using 3 folds) it during training, and
finally, employing the validation set to output the best results in order to optimise performance with
the optimal values. In Grid Search, that is expected behaviour.

6.4.2 cAgen

cAgen has its own parameters to be defined beforehand. First, we have to define a workspace to
prepare our model. Then we choose the Input Parameter (IPM) to alter the parameters of our model.
The last step is to set the value of t to specify the strength. The picture below shows the cAgen tool
implementation details for NN. Due to the large size of the Ember dataset, we will only investigate
covering arrays of strengths 1 and 2. In contrast, for the Kaggle dataset, we will investigate covering
arrays of strengths 1, 2 and 3.

Figure 6.1: cAgen Implementation Detail for both Ember and the Kaggle Datasets
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6.4.3 Hyper-parameter Grid Search Configurations

We have selected the following hyper-parameters to assess their performance using Ember and Kaggle
datasets. They are the Number of Epochs, Batch Size, Number of Neurons, Optimisation Method
(either SGD or Adams), Dropout Relay, Type of Activation Function and Learning Rate (LR). We
will examine the effects of different parameter choices and their performance. The following tables
6.1 and 6.2 show the hyper-parameters configurations for each DL model parameter.

Table 6.1: DL Model Grid Search Hyper-parameter Configurations (Ember Dataset)

Hyper-parameter Grid Search Space Best Hyper-parameter results
Number of Neurons(per layer) [1200,1400,1800,2000,2200,2400] 2400,1200,1200,1

Number of Epochs [20,40,60,80,100] 40
Batch Size [16,32,48,64,80] 64
Optimiser Adam or SGD Adam

Drop out Relay [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 0.1
Learning_rate [0.001, 0.01, 0.1, 0.11,0.12, 0.113,0.114,0.2] 0.114

Activation Function(per layer) softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid, linear hard_sigmoid , relu , relu , sigmoid

Table 6.2: DL Model Grid Search Configuration Space (Kaggle Dataset)

Hyper-parameter Grid Search Space Best Hyper-parameter results
Number of Neurons(per layer) [55,60,65,70,75,80] 80,75,80,1

Batch Size [48,64,80,100,128] 60
Number of Epochs [20,40,60,80,100] 40

Optimiser Adam or SGD SGD
Drop out Relay [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 0.1
Learning_rate [0.001, 0.01, 0.1, 0.11,0.12, 0.113,0.114,0.2] 0.2

Activation Functions(per layer) softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid,linear sigmoid,tanh,relu,sigmoid

6.5 Results

Below are the results from cAgen tool for both Kaggle 6.3 and Ember dataset 6.4
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Table 6.3: DL Model cAgen Results Comparison (Kaggle Dataset)

ML Algorithm Optimal Values Found T-Strengths values/ Grid Search Time to complete Number of Combination searched Score (Accuracy)

DL

75,150,1
SGD

tanh,sigmoid,relu
0.0
20
128

0.0112

T2 7m 36s 60 0.9814

75,150,1
Adam

tanh,sigmoid,relu
0.0
20
80

0.0001

T3 49m 1s 361 0.9839

75,37,1
SGD

softsign,sigmoid,relu
0.1
20
80

0.0112

T4 3h 17min 14s 1452 0.9842

75,80,80
Adam

softsign,tanh,relu
0.2
60
80

0.0112

Full Grid Search ∼4 days 3hrs 6 m all 0.9862

Table 6.4: DL Model cAgen Results Comparison (Ember Dataset)

ML Algorithm Optimal Values Found T-Strengths values/ Grid Search Time to complete Number of Combination searched Score (Accuracy)

DL

2400,1200,1200
Adam

softplus,relu,sigmoid
0.0
20
64

0.00001

T1 15 hrs 31min 10 0.9563

1200,1200,1200
Adam

sofplus,relu,sigmoid
0.5
40
128

0.0001

T2 4d 23h 5min 47s 60 0.9575

2400,1200,1200
Adam

hard_sigmoid,relu
0.1
40
64
0.0

Full Grid Search ∼29 days 15 hrs all 0.9542
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6.6 Discussion

Below we describe the effects of different hyper-parameter choices throughout our experiment.

6.6.1 Tuning the Number of Neurons

In [145], the authors state that number of neurons greatly affects the performance of a neural network.
We have set up a Grid Search space with varying values from 1200 up to 2400 neurons. See table
6.1 and 6.2. The results showed a different level of performance starting from 81% (Kaggle 90%)
accuracy of the models until it stagnated around 84.5% (Kaggle 92%). The best results were 2400
(Kaggle was 80) (which is slightly higher than the number of features we have in our Ember (2381)
and Kaggle (75) features. That is an approximate 2 to 4 percent increase just from tuning the number
of neurons with our model. The chosen activation function also had an impact.

6.6.2 Tuning the Number of Layers

Since we do not know what exact number of layers we should have, experimentation is all that we can
do right now [146]. Both cAgen and Grid search aided in identifying the best results that we can gain
through the specified search space. We started with 1 dense layer and 1 activation function (linear) to
give the output. The accuracy of the model was not of concern at earlier stages, now we just wanted to
make sure that it had a plausible result. We started iterating through our space with different varying
results from 35% to 45% accuracy of the model, until we reached a high-performing configuration
around one dense layer for the input with a vector size of 2381 (80 for Kaggle), a second dense layer
with a victor size of 1200 (75 for Kaggle), a third dense layer with a vector size of 1200 (80 for
Kaggle) and the last dense layer to return the binary output.

6.6.3 Tuning of Activation Functions

Activation functions are a crucial part of NN design. Different activation functions showed different
results in our models. We have selected 8 activation functions for our problem: Softmax, Softplus,
Softsign, Relu, Tanh, Sigmoid, Hard_sigmoid, Linear. We have set up a Grid Search using scikit-learn
Grid Search CV. We noticed the following accuracy results across the selected functions for both
datasets. The results are: Softplus (0.928%), Softmax (0.795%), Softsign ( 0.937%), Relu (0.926%),
Tanh (0.932%), Sigmoid (0.939%), Hard_sigmoid (0.94%) and Linear (0.896%). This clearly shows
how important choosing appropriate activation functions is to the performance of the model [150].
In the end, we chose 4 activation functions based upon our search results: for Ember we decided to
use the Hard_sigmoid function in the first layer, Relu in the second layer, and Sigmoid in the third
and fourth layers. Our experiment showed that the use of these different activation functions gave
higher/better accuracy for our model. In contrast the activations used in the four layers for processing
the Kaggle dataset were Sigmoid, Tanh, Relu and Sigmoid.
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6.6.4 Tuning Dropout relay

Dropout relay is another function to prevent making the NN more complex by regularizing it.
Basically, it is a way to approximate the model training within NN with different architectures in
parallel. It is also a way to improve the model generalisability of the NN. This function aided in
approximately adding a 1 to 3% increase to the model accuracy. Two dropout relay functions were
experimented upon in our model within a range of values between 0.1 to 0.9. The best results were
between 0.1 and 0.5; anything above that value would start to decrease the accuracy of our model.
For example, once we specify the value for the function to be 0.6 the model accuracy would drop
from 93% accuracy to approximately 88%. This shows how important dropout relay is in our model
accuracy. This idea of adding a dropout relay in the hidden layers came from the following authors
[143, 144]. One thing to add, it is very well established that the placement of dropout relays in the
neural network might as well affect the performance of the NN.

6.6.5 Choice of Optimisers

The choice of selecting the specific optimiser is of importance as well. We decided to go with two
optimisation techniques and compare the results from both SGD and Adam optimisers. However,
different optimisers have different dependent parameters. There are a lot of optimisation techniques
and each comes with its own issues. For example, with the SGD optimisation method, we have to
pre-initialise the learning rate and experiment on it; because it is not easy to know which learning
rate would work [148]. After experimenting for a while the results showed that both Adam and SGD
would be a good choice for our model accuracy. The experiments with SGD had an impact on the
learning rate (LR) hyper-parameter. The LR experiment focused on the exact value to provide for
our model’s optimal learning. So we set up a Grid Search space with values ranging from 0.0001 to
0.5. We noticed that values above 0.2 in the learning rate would sharply decrease our model accuracy
score. For example, a learning rate with a 0.4 value would have an accuracy score of 65%. This is an
indication that anything above a value of 0.2 would decrease the model score. For that, we selected
the new search space for learning rate as indicated in 6.1. The model accuracy results provided by the
Adam optimiser were affected by the number of epochs and batch size.

6.6.6 Tuning the Number of Epochs and Batch Size

The batch size is the sample before it is updated in the model (while training) and the number of
epochs is the whole complete cycle through the entire training of the data set. The number of epochs
can be said to be the budget that you would allow the model to be trained for. Both of them are
important parameters that need to be set before the training. Again here there is no one rule for
all, we have to mix and match until the model finds better values from the search. We have set
up a Grid Search through which we have learned the best outcome for our specific problem. The
results demonstrate that a higher number of epochs would start over-fitting the model (which in turn
decreases the model accuracy). Also, a low batch size would decrease the accuracy of our model. So
with both those in mind, we started experimenting with different values. Ember on the one hand we
have a number of epochs with values from 20 to 100 (the best was 40). On the other hand, we have
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batch sizes with values from 16 to 80 (the best was 64). Similarly, Kaggle had the number of epochs
with values from 20 to 100 (the best was 40), however, batch sizes with values from 48 to 128 (the
best was 60). Our findings approve the claim of [147], in which tuning of batch size as well as the
number of epochs would surely affect the model performance [147]. Getting the desired set of values
would go a long way in improving any NN model. Please refer to table 6.1 and 6.3 for epochs and
batch size values.

6.7 Conclusion

The optimisation of hyper-parameters is fundamental to the design of Neural networks. There is no
"one size fits all" choice. Several hyper-parameters were subject to experimentation to determine their
effects on the model’s efficiency. This experiment used both the cAgen tool and Grid Search. The
cAgen tool shows great promise as a method for quickly searching for the best parameter settings for
neural networks.

6.8 Summary

Hyper-parameter optimisation is vital to improving any neural network (NN) model. Several
hyper-parameters were studied: the Number of Epochs, Batch Size, Number of Layers, Number of
Neurons, Optimization Method, Dropout Relay, Type of Activation Function, and Learning Rate(LR).
We used the cAgen tool and Grid Search optimisation from the scikit-learn Python library to find the
best hyper-parameters of Keras deep learning models. The time and efficiency of cAgen are by
far better than those of Grid Search in finding the best parameters. Finally, we showed that our
hyper-parameter optimisation choices would significantly improve the performance of the NN model
for static malware detection for Ember (from 81.2% to 95.7%) and for Kaggle (from 94% to 98.6%)
in terms of accuracy.



Chapter 7

Conclusions and Future Work

This chapter summarises the motivation for the work and evaluates it. It also provides conclusions
and identifies future work.

7.1 Context and Motivation

Chapters 1 and 2 provide the motivational context for the work presented in this thesis. The major
components are summarised below:

• Malware is a problem. Malware is one of the biggest threats that Internet users (business
owners, corporate organisations, hospitals, etc.) face today. Windows PE files are very common
and essential to Windows OS. Their compromise, giving rise to PE malware, is a major security
problem.

• Issues for modern malware detection. Detection must be effective, i.e. FPs and FNs must
be minimised. Academia generally proceeds as though these were of equal importance. The
anti-malware industry, however, places a much higher cost on FPs (considered unacceptable),
than on FNs (considered a limitation). From that perspective, the goal of malware detectors
is not to minimize both errors but to minimize FNs while keeping FPs at zero. However,
mangement for specific system may make nuanced choices. Whatever trade-offs are to
be made, the performance of any underlying ML-based approach will depend on the
hyper-parameters chosen. Making high-performing hyper-parameter choices therefore matters.
However, malware increasingly evades detection techniques, and detectors need to be updated
or adapt as the threat landscape changes. Methods are needed to detect both seen malware
and unseen malware. Traditionally, signature-based detectors handle seen malware well, but
anomaly detection has a greater chance of detecting unseen malware. The scale of modern
systems (e.g. the size of cloud storage) poses a major challenge for detection: detection must
be efficient to allow its deployment in areas such as forensics or threat hunting where vast
file storage may need to be scanned for malware. Overall, there is a pressing need for fast
and re-trainable malware classifiers. Furthermore, it is beneficial to detect malware before
execution, i.e. static detection is generally preferred.

81
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• Potential for Machine Learning. Machine Learning (ML) has significant potential for
improving static malware detection: it can play a crucial role in extracting insight from
malware samples; ML-based detectors can detect some previously unseen malware, such as
previously unseen malware with properties similar to those of recognised malware; a huge
array of machine learning-based classification algorithms can be brought to bear on the malware
detection problem; and an ML approach can also significantly reduce the manual effort involved
in developing detectors, giving more rapid deployment.

• Focus and Extrapolation. Here, Windows PE files are a means to an end; the same issues
apply to detecting other malware. Although malware is our major interest, our work also seeks
to motivate consideration of HPO and the use of state-of-the-art approaches, in particular, more
widely in the application of ML in cybersecurity.

• The problem of hyper-parameter optimisation. This is addressed in chapter 2. Many
ML techniques are parameterised, and the choice of parameters may significantly affect
performance. In modern, widely used ML tool-kits, algorithms often have many tens of
parameters (and sometimes more). This leads to the thorny issue of how such parameters may
be best set; a problem generally referred to as hyper-parameter optimisation (HPO).

• What HPO can do for ML-based malware detection. Suitable HPO has the potential
to improve on the results obtained by a specific detection approach but also to enable fair
comparison of techniques with techniques that are not the specific focus of researchers’
investigation. (Comparisons are often made between their new technique (for which significant
effort may have been expended on its optimisation) and ‘vanilla’ (unoptimised) variants of
extant techniques.) Manual tuning is often simply impossible. (As an aside, we observe that
many commercial ML users spend a great deal of time tuning for their specific needs).

• What currently happens with HPO? Existing ML toolkits address this problem to some
extent by adopting default values for parameters; these values have been shown to work
plausibly over many problems. However, for any specific problem, it is far from clear that the
default values will be the best, or even good, choices. We have significant domain incentives to
gain the best possible results for malware detection. Where HPO is adopted (to some degree)
it is rarely done systematically. This is indicated in chapter 2.

• The computational cost of HPO. Although HPO has a great deal to offer, it comes at a
computational price. We must train the model for every hyper-parameter evaluation, make
predictions on the validation set, and then calculate the validation metrics. Developing a robust
ML-based classifier for Windows PE with a credibly sized and diverse dataset such as Ember
is a significant computational undertaking.

• The need for efficient hyper-parameter exploration. The computational costs involved are
a disincentive to implementing Bergstra et al.’s ‘formal outer loop’. There is a pressing need
for traversing the hyper-parameter space efficiently to deliver high-performing hyper-parameter
choices.
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7.2 Recap: the Research Hypotheses

Our main research hypothesis is:

• Main Hypothesis: HPO can significantly improve the performance of static malware detectors
based on machine learning.

The detailed research hypotheses are:

• Hypothesis1:AHBO-TPE is an efficient and effective technique for hyper-parameter
optimisation of ML-based malware detectors. It can find high-performance hyper-parameter
vectors more quickly than comparable techniques.

• Hypothesis2:A Covering Array is an efficient technique for hyper-parameter optimisation of
ML-based malware detectors. It can find significantly better hyper-parameters in comparison
to Grid Search and do so with reduced computation.

• Hypothesis3:An Evolutionary Algorithm can find new or improved hyper-parameter vectors
that give better performance than the defaults of ML-based malware detectors.

• Hypothesis4:Grid Search and Covering Arrays can be used to efficiently achieve
high-performing parameter choices for Deep Neural Network based malware detectors.

The first three hypotheses are evaluated using various underpinning ML classification approaches.
The fourth hypothesis extends our investigation into HPO for optimising the model parameters of
neural networks. All assume that the context is static malware detection of Windows PE files.

7.3 Evaluating the Evidence for the Hypotheses

The first hypothesis was identified in chapter 1.

• AHBO-TPE is an efficient and effective technique for hyper-parameter optimisation of
ML-based malware detectors. It can find high-performance hyper-parameter vectors more
quickly than comparable techniques.

We show that a specific technique in chapter 3 is highly promising and that HPO still significantly
affects its malware detection performance. We argue that HPO should play an important part in
ML-based malware detection research and development and in security applications more widely.
Using HPO to provide Bergstra et al.’s ‘formal outer loop’ should be normal practice to ensure any
targeted technique is exploited fully. Adopting HPO in this way brings methodological benefits. For
the development of the field, we need to be able to compare competing techniques at their best, and
HPO can provide a principled and repeatable way to get the best (or close to it) from all competing
techniques.
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• A Covering Array is an efficient technique for hyper-parameter optimisation of ML-based
malware detectors. It can find significantly better hyper-parameters in comparison to Grid
Search and do so with reduced computation.

We have shown that cAgen in chapter 4 (a combinatorial testing tool) is an efficient method to
find optimal parameters that increase the model performance with less iteration and time. There
is a huge difference in the time taken to finish iterations between our Covering Array (with cAgen)
approach and Grid Search. cAgen outperformed Grid Search in all four ML models and produced
better parameter values. The results show significant promise for adding Covering Arrays, especially
cAgen to the ML hyper-parameter optimisation community, malware detectors community, and the
security testing community.

• An Evolutionary Algorithm can find new or improved hyper-parameter vectors that give better
performance than the defaults of ML-based malware detectors.

Here, we show that Deap, in chapter 5, is a promising instrument for optimising the six ML models
of choice. The Deap experiment provided us with good parameter choices, superior to those provided
by TPOT.

• Grid Search and Covering Arrays can be used to efficiently achieve high-performing parameter
choices for Deep Neural Network-based malware detectors.

We demonstrate the improvements in chapter 6 that systematic hyper-parameter search can bring
to achieve better performance, working from highly plausible baseline models for comparison. We
demonstrate that using covering arrays generated by the cAgen tool is a highly efficient means to find
excellent parameter values with less time and fewer iterations than with Grid Search.

7.4 Limitations and Future Work

We now consider limitations, means of addressing them, and other future work.

7.4.1 Dataset Issues

In our experiments, we have made use of two high-profile datasets: Ember2018 and a dataset from
kaggle.com (created in 2014). Inevitably, these datasets may suffer from biases, e.g. spatial and
temporal biases. Spatial Bias is introduced by the distribution of samples across different malware
families. In both datasets, the malicious samples are drawn from diverse families, but some families
might be over-represented while others are under-represented. This could affect the performance of
machine learning models trained on this dataset, as they may become biased towards more prevalent
families and perform poorly on underrepresented families. Temporal bias is introduced during the
dataset’s creation period. Malware evolves over time, and a dataset created at a specific time may not
represent current malware trends. The Ember 2018 dataset was created using samples from 2012 to
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2018, so it may not capture more recent developments in malware. This also applies to the Kaggle
dataset since it is made with samples from 2012-2014.

Any research that seeks effective malware detection in a contemporary setting must avail itself of
datasets that facilitate that task. Training and evaluating on out-of-date or otherwise narrowly defined
datasets will not serve such research well.

• Widening the range of datasets used. In our work, our primary goal was to show how,
given a dataset, ML-model hyper-parameters could be found by HPO techniques to maximise
performance (measured in some plausible way). However, the nature of the datasets could
affect overall results and we adopted only two datasets in our work. Evaluation over a much
wider set of datasets, e.g. over non-Windows PE datasets, more contemporary datasets, or
datasets with a more extended timeframe (and so with a wider range of malware present) would
seem a plausible goal for further research. We can also use techniques such as oversampling
or undersampling to balance the representation of different families of malware in the datasets
used.

7.4.2 Other Limitations and Future Work

We have identified various further limitations and avenues of future work, as indicated below.

• Widening the Scope of Informed Approaches. We have used in chapter 3 a single (albeit
highly effective) ‘informed’ hyper-parameterisation approach. The use of other informed
hyper-parametrisation approaches could provide further insight and possible improvements.

• Varying the ML Framework and its Elements. We have embraced supervised learning
in our work. But there is a clear role for unsupervised approaches and semi-supervised
approaches. Furthermore, our ML model pipelines have generally been quite basic. More
sophisticated elements, such as dimensionality reduction, importance sampling, and other
feature engineering practices, could be beneficially adopted.

• Alternative Evaluation Criteria. We have been limited in the evaluation criteria we have used,
e.g. accuracy and ROC_AUC were chosen largely for comparison with extant research results.
Varying the sought balance between FPs and FNs should now be addressed. In particular,
the anti-malware industry’s preference for the lowest number of FNs consistent with zero FPs
should be recognised. Operationally, this would usually mean that FPs are punished very
highly, e.g. in an extreme form of Fβ scoring. (In much academic research, the F1 score is
used, reflecting equal weighting.) It is, however, far from clear that current approaches would
be effective for extremal cases. Strictly speaking, this would be problematic for the underlying
ML technique, but there may indeed be induced difficulties with hyper-parameterisation
too. For example, if the underlying loss function landscape becomes highly erratic (highly
discontinuous), this might also induce a highly erratic hyper-parametrisation landscape.

• Embracing Further Parameter Subsets. For computational complexity reasons, we have had
to make choices as to which parameters were subject to variation and which were left as defaults
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in our experiments. However, there remains the possibility of adopting a sequential approach
to optimising over the full range of parameters, i.e., once investigated parameters have been
subject to variation and evaluation, they could be fixed at their optimal values and previously
fixed or defaulted parameters then be allowed to vary. Thus, one subset of parameters would
be allowed to vary (i.e. be subject to HPO techniques) at any one time. This is related to what
is often called One-Factor-At-a-Time (OFAT) optimisation (with subset replacing factor).

• Progressive Hyper-parameter Range Refinement. Our HPO experiments assumed
fixed hyper-parameter ranges or discretisations. But optimal choices may be under- or
over-approximated in such set-ups. For example, a discrete set [0, 0.2, 0.4, 0.6, 0.8, 1.0]
may be defined to ‘cover’ the continuous range [0,1], but optimal results might actually be
obtained with a value of, say, 0.3, which is only approximately represented in our discretised
set. However, it would seem possible to run HPO on our discrete domain and then redefine
the domain to be investigated. For example, if a value of 0.4 gave rise to the best results, then
a domain centred on that value might be chosen for a subsequent run of HPO, e.g. we might
adopt a new domain of [0.3, 0.35, 0.4, 0.45, 0.5]. For a categorical data range [A, B, C, D,
E] a reduced range might be chosen comprising the top two performing categorical data values
in the first stage application of HPO, e.g. [A,D]. The same HPO approaches could be applied
using the revised parameter ranges.

• Generalising Choices for Covering Arrays. The work in chapter 4 made specific choices
regarding the covering arrays. We need not be so restricted. The cAgen toolkit provides the
means for further experimental flexibility: a variety of approaches for generating arrays, e.g.
FIPOG-F and FIPOG-2F); allowing constraints to be imposed; and allowing higher t-values
(strengths) than adopted in this thesis.

• Using Proxy Evaluation Functions. Evaluating a model over a large dataset is
computationally very expensive (as we have found in this thesis). This means that practical
compromises have to be found, e.g. the adoption of coarser granularity of discretisation (with
increased chances of not encompassing truly optimal values of parameters). However, if the
underlying evaluation landscape can be modelled and allow efficient evaluation, this could be
used to search for approximations to optimal parameter values. In a sense, Bayesian approaches
use a form of this, but the modelling approach used is very specific. An alternative is to use
neural networks as function approximators. That is, use the results of real hyper-parameter
evaluations to train a neural network to act as a predictor function (predicting the evaluation
result when supplied with a vector of hyper-parameter values). The search could revert to
using the real evaluation function starting from the best vector of hyper-parameters obtained by
hyper-parameter search using the neural network as an evaluation function.

7.5 Conclusions

From the work carried out in this thesis we conclude:
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• Systematic HPO is rarely performed in ML-based malware detection research generally. This
is also the case for the Windows PE detection.

• HPO has great potential to improve the results of applying ML approaches to PE malware
detection. We see no obvious reason why other types of malware detection would not benefit
similarly.

• Application of HPO is essential if we are to carry out principled research. Widespread adoption
of HPO would lead to optimised evaluations of techniques and so make for fairer comparisons.

• Computational efficiency is a major challenge for HPO. We have shown that the usefulness of
a variety of approaches for improving efficiency. Bayesian approaches are worthy of further
investigation. Design of experiments approaches have excellent potential; in particular, our
adoption of covering arrays seems very promising. A huge range of evolutionary approaches
can also be brought to bear on the problem.

• Our investigation has demonstrated the usefulness of HPO approaches and has shown excellent
results. Above we have identified numerous limitations, many of which are not intrinsic, i.e.
they simply suggest avenues for improving our results.

• Overall, there are many approaches that can be taken for HPO. The ML-based malware
detection community should further investigate them!

7.6 Acknowledgments of the Use of Freely Available Software

In our investigations, we have made significant use of freely available software toolkits. We would
like to express our thanks to the developers of these toolkits. Specifically, we acknowledge the use of
the following:

• Scikit-learn. This is a well-known and robust machine learning library with a large number
of algorithms and tools for ML visualizations, preprocessing, model fitting, selection, and
assessment [138]. This is used throughout the thesis.

• AHBO-TPE (Bayesian Hyperparameter optimisation using Tree Parzen Estimators). This
forms part of the Hyperopt Python Library [78].

• cAgen. This is a high-performance t-way test generation tool[83] which we use (in chapter 4
and chapter 6) to generate covering arrays.

• TPOT (Tree-based Pipeline Optimization Tool). This is a Python-based automated machine
learning tool that uses genetic programming to improve machine learning pipelines [111]. It is
used in chapter 5.

• DEAP (Distributed Evolutionary Algorithms in Python). This is an open-source Python library
designed for the rapid prototyping of evolutionary algorithms, including genetic algorithms
(GA) [109]. It is used in chapter 5.
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7.7 And Finally

As far as we are aware, this is the first thesis to focus on HPO in the context of ML-based malware
detection. The area of HPO seems ripe for exploitation by the malware detection community and we
recommend this area to them for future research.
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Robertas Damaševičius. Windows pe malware detection using ensemble learning. Informatics,
8(1), 2021.

[137] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, et al. Api
design for machine learning software: experiences from the scikit-learn project. arXiv preprint
arXiv:1309.0238, 2013.



BIBLIOGRAPHY 100

[138] Roc auc. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
roc_auc_score.html. Accessed : 2022-4-28.

[139] Gadiel Seroussi and Nader H Bshouty. Vector sets for exhaustive testing of logic circuits. IEEE
Transactions on Information Theory, 34(3):513–522, 1988.

[140] Paris Kitsos, Dimitris E Simos, Jose Torres-Jimenez, and Artemios G Voyiatzis. Exciting fpga
cryptographic trojans using combinatorial testing. In 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), pages 69–76. IEEE, 2015.

[141] Kristoffer Kleine and Dimitris E Simos. Coveringcerts: Combinatorial methods for x. 509
certificate testing. In 2017 IEEE International conference on software testing, verification and
validation (ICST), pages 69–79. IEEE, 2017.

[142] sklearn. sklearn-accuracy-metrics. https://scikit-learn.org/stable/modules/

generated/sklearn.metrics.accuracy_score.html, 2022. Accessed: 2022-07-21.

[143] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural networks
for lvcsr using rectified linear units and dropout. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 8609–8613. IEEE, 2013.

[144] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[145] Imran Shafi, Jamil Ahmad, Syed Ismail Shah, and Faisal M Kashif. Impact of varying neurons
and hidden layers in neural network architecture for a time frequency application. 2006 IEEE
International Multitopic Conference, 2006.

[146] Brownlee Jason. How to configure the number of layers and nodes in a neural network.

[147] Ibrahem Kandel and Mauro Castelli. The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset. ICT express, 6(4):312–315, 2020.

[148] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods from a
machine learning perspective. IEEE transactions on cybernetics, 50(8):3668–3681, 2019.

[149] sklearn. sklearn-standardscaler. https://scikit-learn.org/stable/modules/

generated/skle, 2022. Accessed: 2022-07-06.

[150] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function
on deep neural networks training. In International conference on machine learning, pages
2672–2680. PMLR, 2019.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/skle
https://scikit-learn.org/stable/modules/generated/skle

	Acknowledgments
	Introduction
	Malware and its Detection
	Machine Learning-Based Detection and Hyper-parameter Optimisation
	Scope of the Thesis
	Thesis Hypothesis
	Thesis Contributions
	Structure of the Thesis
	Publications

	Background and Literature Review
	Malware and Windows Portable Executable Files
	What is Malware?
	Portable Executable (PE) Files
	PE File Format and Structure

	Machine Learning (ML) algorithms
	Supervised ML algorithms
	Linear Models
	Logistic regression (LR)
	Stochastic Gradient Descent (SGD)
	K-nearest neighbour (KNN)
	Naive Bayes (NB)
	Tree-based Models
	Random Forests (RFs)
	Gradient Boosting Decision Trees (GBDTs)
	Extreme Gradient Boosting (xgboost)
	Light Gradient Boosting Machines (LightGBM)

	Deep Learning (DL) Models
	Neural Network Structural Model
	Training of A Neural Network
	ML-Based Static Malware Detection Related Literature

	Formal Definition of HPO and Motivation for its Use in Malware Classification
	Hyper-Parameter Optimisation (HPO)
	Main Process of HPO

	General Categories of Hyper-Parameter Optimisation
	Traditional Model-Free Blackbox approaches

	Model-Based approaches to HPO
	Bayesian Optimisation (BO)
	Sequential Model-Based Optimisation (SMBO)
	Tree-Structured Parzen Estimators (TPE)

	HPO using Deep Learning 
	Selection of Hyper-parameter Optimisation for Deep Learning
	Approaches of Hyper-parameter Optimisation for Deep Learning

	HPO using Metaheuristic Approaches
	Genetic Algorithms (GAs)
	Particle Swarm Optimisation (PSO)
	Distributed Evolutionary Algorithm in Python (Deap)
	Tree-Based Pipeline Optimisation Tool (TPOT)

	HPO-Related Literature
	A Comparison between Different HPO Approaches for ML models

	Covering Arrays: An Experimental Design Approach to HPO
	What is Combinatorial Testing (CT)?
	Covering Arrays - Related Literature

	Overview of the cAgen Tool
	Workspaces
	Input Parameter Model (IPM)
	Generate

	Datasets Background
	Summary and Links to the Research Hypotheses

	Bayesian Hyper-Parameter Optimisation
	Introduction
	Research Question
	Experiments
	Execution Environment
	Experiments with Default Settings
	Model Hyper-parameter Optimisation

	Results
	Discussion
	Conclusions
	Summary

	Covering Arrays ML HPO for Static Malware Detection
	Introduction
	Covering Arrays: Dealing with the Curse of Dimensionality
	Generating Covering Arrays

	Research Question
	The cAgen Array Generator
	Parameter Specification and Array Generation
	Array Indexing

	Methodology
	Experiments
	Execution Environment
	Experiments Settings
	Implementation Details

	Results
	Comparing the Results of CA against another Benchmark 

	Conclusions
	Summary

	HPO for Evolutionary Algorithms
	Introduction
	Aim of this chapter
	Research Question
	Experiment Setup
	Initial Experiments and Evaluation Metrics
	Deap Setup
	TPOT Setup
	TPOT Pre-built Configurations
	TPOT Custom Configuration
	Target ML Algorithms

	Results and Discussion
	Deap Results
	TPOT Results

	Conclusion
	Summary

	Using CA and Grid Search with Deep Learning
	Introduction
	Aim of this Chapter
	Chapter Contribution

	Research Question
	Experiment Setup and Early Notes
	Experiment Setup
	Baseline Model

	Grid Search versus cAgen for NN Hyper-parameter Optimization Tasks
	Grid Search
	cAgen
	Hyper-parameter Grid Search Configurations

	Results
	Discussion
	Tuning the Number of Neurons
	Tuning the Number of Layers
	Tuning of Activation Functions
	Tuning Dropout relay
	Choice of Optimisers
	Tuning the Number of Epochs and Batch Size

	Conclusion
	Summary

	Conclusions and Future Work
	Context and Motivation
	Recap: the Research Hypotheses
	Evaluating the Evidence for the Hypotheses
	Limitations and Future Work
	Dataset Issues
	Other Limitations and Future Work

	Conclusions
	Acknowledgments of the Use of Freely Available Software 
	And Finally


