
Gait Analysis and Rehabilitation Using
Web-Based Pose Estimation

Dominic Mark Richmond

Master of Science (by research)

University of York
Physics, Engineering and Technology

January 2023

Abstract
Gait abnormalities are one of the most common health conditions in the elderly population,
with almost one in three people over 60 experiencing symptoms that disrupt their movement
[1]. These symptoms can cause disability [2] and present an increased fall risk [3] [4]. De-
tecting these abnormalities early is, therefore, crucial as it reduces the likelihood of injuries
and accidents.

Current treatments for gait abnormalities depend on the condition, but many treatment
plans commonly incorporate some form of physiotherapy. Clinicians typically deliver physio-
therapy in the form of gait assessments and targeted exercises or therapies. Recent research
has also shown that virtual reality (VR) treadmill walking, using motion capture technology,
can be an effective method of treating certain gait abnormalities [5] [6] [7].

This thesis covers the development of a web-based VR treadmill walking system to make
VR physiotherapy cheaper and more accessible. The system uses convolutional neural net-
works to assess the patient’s gait from an RGB webcam feed and provides them with live
feedback on their body position within a VR environment. The system’s gait assessment
capabilities are validated by comparing it to a gold standard – the OptiTrack motion capture
system.

The results demonstrate that the system’s percentage error (ϵ̃%) was much less for tem-
poral gait metrics (0.24 < ϵ̃% < 12.40) than it was for spatial ones (70.90 < ϵ̃% < 79.72).
Four out of five spatial metrics also had a “very strong correlation” (0.74 < r < 0.86) when
compared to the OptiTrack’s metrics, meaning the accuracy could be increased using a gain
factor. These findings establish the basis for a similar study with a larger sample size. They
also raise the possibility that this system could analyse gait in the clinic and the home
without specialist motion capture equipment or facilities.

i

Acknowledgements
I would like to thank the people who supported and championed me during this project.
Firstly, my supervisor Dr. Adar Pelah and my second supervisors: Doctor Eugene Avrutin
and Prof. Zion Tse. Next, I would like to thank my partner Maisie Hardy, her family,
and my family: Rachelle Richmond, Mark Richmond, Lucy Richmond, Molly Richmond,
Bertie Richmond, Julie Hardy, Keith Hardy, and Ned Hardy. I would also like to express
my gratitude for the resources and support provided during the course of this research by
my employer, Asuuta Ltd. Finally, I would like to thank my friends from LIVE, Vignesh
Radhakrishnan, Cai Xin Chen and Zadok Storkey.

ii

Declaration
I declare that this thesis is a presentation of original work and I am the sole author. This
work has not previously been presented for an award at this, or any other, university. The
work makes use of resources kindly made available by Asuuta Ltd’s StepSense Clinic system
[8] [9] and StroMoHab Android system [10]. All sources are acknowledged as references.

iii

Contents

1 Introduction 1
1.1 Gait Disorders and Treatments . 1
1.2 Diagnosing Gait Disorders . 3
1.3 Physiotherapy as a Treatment . 8

2 Proposed Solution 10
2.1 Solution Outline . 10
2.2 Gait Analysis Protocol . 10
2.3 Physiotherapy Protocol . 15
2.4 System Tech Stack . 16
2.5 Measuring The System’s Accuracy . 19
2.6 Project Management Strategy . 20
2.7 Aims and Objectives . 22

3 Design 24
3.1 Version 1.0 Designs . 24
3.2 Version 2.0 Designs . 28
3.3 Version 3.0 Designs . 31

4 Implementation 34
4.1 Version 1.0 Implementation . 34

4.1.1 OpenPose Server Implementation . 34
4.1.2 Web App UI . 38

4.2 Version 2.0 Implementation . 39
4.2.1 Patient Facing Biofeedback . 39
4.2.2 Biofeedback Environment . 42

4.3 Version 3.0 Implementation . 44
4.3.1 Game Settings . 44
4.3.2 MediaPipe Pose Implementation . 44
4.3.3 Metrics Detection . 45

5 Testing 46

6 Validation 49
6.1 Data Capture and Processing . 49
6.2 Discussion . 60

7 Evaluation and Further Work 63
7.1 Evaluation . 63
7.2 New Game Features . 64

iv

7.3 In-app Metric Calculation . 64
7.4 Improving Spatial Metrics . 65
7.5 Validating Joint Angles . 65

8 Conclusion 66

A Web App Design 1
A.1 Version 1 Architecture . 1
A.2 Version 2 Mobile UI . 5
A.3 Version 2 Architecture . 6
A.4 Version 3 Architecture . 10

B Web App Implementation 12
B.1 Version 1.0 OpenPose Server . 12
B.2 Version 1.0 Webcam Class . 21
B.3 Version 1.0 WebcamRecorder Class . 22
B.4 Version 2.0 PoseEstimator Class . 24
B.5 Version 2.0 MediaPipeHolistic Class . 34
B.6 Version 2.0 World Class . 36
B.7 Version 3.0 Game Class . 39
B.8 Version 3.0 MediapipePose Class . 42
B.9 Version 3.0 MetricsCalculator Class . 44

C Web App Testing 63
C.1 Unit Tests for Training Page . 63

D Study Documents 69
D.1 Study Consent Form . 69

E Web App Validation 72
E.1 get_swing_stance() function . 72
E.2 get_double_support() function . 73
E.3 get_metrics() function . 74
E.4 get_fundamental() function . 76

v

List of Figures

1.1 Graph of world COVID cases per day over the last two years (from [11]). . . 2
1.2 Phases of the human gait cycle and important gait events (from [12]). 4
1.3 The five common types of joint rotation (from [13]). 5
1.4 Graph of average hip flexion/extension over the gait cycle (from [14]). 5
1.5 AMTI force plates used to measure kinetics [15]. 6
1.6 Observational gait analysis (from [16]). 7
1.7 Technology-aided gait analysis (from [17]). 7
1.8 Screen showing the user’s in-game view during a VR game (from [18]). . . . 8
1.9 Some of the most well-known VR devices. 9

2.1 Convolving an input matrix with a kernel to produce an output matrix (from
[19]). 11

2.2 Two common pooling algorithms: max pooling and average pooling (from
[20]). In both cases, the image is split into four 2x2 regions which are then
condensed into four 1x1 regions. 11

2.3 A fully connected neural network layer (from [21]). 12
2.4 2D pose estimation of a single RGB frame (from [22]). 12
2.5 2D pose estimation using OpenPose (from [23]). 13
2.6 MediaPipe Pose and MediaPipe Holistic. 13
2.7 Azure Kinect RGB-D camera (from [24]). 14
2.8 Multi-person character control with XNect (from [25]). 14
2.9 Detecting UV co-ordinates using DensePose. The red dot is the location of a

pixel in the image on a mesh representation of the person’s body (from [26]). 14
2.10 Fitting a 3D mesh to a 2D image using DensePose (from [26]). 15
2.11 Heart rate based biofeedback on the Apple Watch (from [27]). 16
2.12 Avatar-based biofeedback (from [28]). 16
2.13 An example of HTML tags. 17
2.14 Viewing a 3D model in the browser with Three.js (from [29]). 18
2.15 Diagram of the proposed tech stack. 18
2.16 OptiTrack V100:R2 camera (from [30]) (the V100 looks almost identical to

the V100:R2). 19
2.17 The basic concepts of scrum (from [31]). 21
2.18 Jira allows progress tracking for Scrum sprints. 21
2.19 Assigning sub-tasks as time-limited calendar items. 22

3.1 Flow diagram for V1.0 UI. 25
3.2 Pre-assessment screen (heartbeat logo from [9]). 25
3.3 Assessment instructions screen (Background image from [32]). 26
3.4 Assessment screen (Background image from [32]). 26
3.5 Save Session Screen (Background image from [32]). 27

vi

3.6 Start again screen (Background image from [32]). 27
3.7 Flow diagram for V2.0 UI. 29
3.8 UI design for the training page. 30
3.9 New UI design for the select camera page. 30
3.10 Training page with new control panel. 33

4.1 Using the subprocess.run() command to analyse a video using OpenPose. . . 34
4.2 Graph of ankle displacement (m) over time (s). 35
4.3 Detecting a left heel strike using the heel strike criteria. 35
4.4 Detecting a left toe-off using the toe-off criteria. 36
4.5 Initialising the flask server and running it on localhost:5000. 37
4.6 Using the @app.route() decorator to connect a function to an API call. . . 37
4.7 Creating a new http request. 37
4.8 Setting up the http request’s event listener. 38
4.9 Creating a new http request. 38
4.10 Attaching the webcam stream to the <video> HTML object. 39
4.11 Creating a new MediaRecorder and telling it how to save video data. 39
4.12 Example of creating a mesh in Three.js. 40
4.13 Updating the camera to sit directly behind the Three.js avatar. 40
4.14 Finding the direction vector between the bone’s two joint locations. 41
4.15 Rotating the bone to face the calculated direction vector. 41
4.16 Creating a new holistic solution and setting the tracking options. 41
4.17 getVideoFrame() sends each frame of data to MediaPipe Holistic. 42
4.18 Setting up the MediaPipe Holistic event listener. 42
4.19 Adding MediaPipe co-ordinates to an array. 42
4.20 The addFloor() function creates a plane for the floor and adds it into the

scene. 43
4.21 The addSky() function creates a sphere with a sky texture and adds it to

the scene. 43
4.22 Excerpt from updateProperty() showing how game settings are updated. . 44
4.23 Setting each of the joint co-ordinates with scaling. 45
4.24 Real time metrics within the biofeedback game. 45

6.1 Sporadic data from the OptiTrack. 49
6.2 The cubic_spline function for removing null values using cubic interpolation. 50
6.3 Example of the cubic interpolation algorithm losing accuracy with large gaps

in data. The orange line is the raw data, and the blue line is the pre-processed
data with cubic interpolation. The red dashed line gives an idea of how the
interpolation should have looked. 52

6.4 Results of the peak detection algorithm. The circle markers denote minima
and maxima and the red and blue lines are the OptiTrack data and MediaPipe
Pose data respectively. 53

6.5 Using findpeaks() to detect maxima and minima. 53
6.6 Calculating temporal metrics from peak data. The red line is the left ankle

data and the blue line is the right ankle data. 54

vii

6.7 Diagram showing how stride length was calculated. 54
6.8 Graph showing anomalous peak detection results for Pat06_01. 55
6.9 Equation for the mean error (ϵ̃%) of a metric, where mopt is the metric value

for the OptiTrack, mmed is the metric value for MediaPipe and n is the number
of samples. 55

6.10 Box plot showing distribution of mean percentage error for metrics (Graph 1). 56
6.11 Box plot showing distribution of mean percentage error for metrics (Graph 2). 57
6.12 Graph showing the high amounts of peaks missed in the Pat06_02 result. . . 58
6.13 Graph showing the secondary fluctuation in the gait cycle detected by Medi-

aPipe. 59
6.14 Equation for the SRCC (ρ) of a metric, where Ropt is the rank of each metric

value for the OptiTrack, Rmed is the rank of each metric value for MediaPipe,
and n is the number of samples (from [33]). 61

6.15 Graph showing the distribution of spatial metrics (outliers circled in green). . 61

7.1 Finished web app including GCS, camera feed, and biofeedback game. 63
7.2 Using VR within a THREE.js project [34]. 64

A.1 Flow diagram for pre-assessment page. 1
A.2 Flow diagram for assessment instructions page. 2
A.3 Flow diagram for assessment page. 3
A.4 Flow diagram for save session page. 3
A.5 Flow diagram for start again page. 4
A.6 Mobile layout for select camera page. 5
A.7 Mobile layout for training camera view. The settings button on the left toggles

the settings hamburger menu and the game button on the right switches to
the training game view. 5

A.8 Mobile layout for training game view. The settings button on the left toggles
the settings hamburger menu and the camera button on the right switches to
the training camera view. 6

A.9 Flow diagram for select activity page. 6
A.10 Flow diagram for training instructions page. 7
A.11 Flow diagram for biofeedback game page. 8
A.12 Flow diagram for start again page (biofeedback version). 9
A.13 Flow diagram for start screen. 10
A.14 Flow diagram for instructions page. 10
A.15 Flow diagram for biofeedback game page. 11

viii

List of Tables

2.1 Table comparing markerless motion capture solutions 15

5.1 Table describing each of the unit tests for the UI. 47
5.2 Table describing each of the visual tests for the game. 48

6.1 Table describing each of the modifications to the OptiTrack data. 51
6.2 Table describing how much data was trimmed and discarded for each patient. 51
6.3 Number of different metrics detected as outliers for outlier classes. 57
6.4 Mean percentage error values with standard deviation in brackets. 60
6.5 SRCC for spatial metrics. 62

ix

Overview
This thesis covers the design, implementation, testing and validation of a web-based gait
analysis and biofeedback system. Physiotherapists could use this system as a cost-effective
tool to diagnose and rehabilitate conditions that affect the motor system, such as Parkinson’s
Disease, Long COVID, and Musculoskeletal disorders.

Chapter 1 introduces the problem, describing what a movement disorder is and giving
examples of common disorders. It then explains why diagnosing and treating these disorders
is important, establishing a motivation for the research. Finally, the chapter describes some
of the solutions already available for the diagnosis and treatment of these disorders.

Chapter 2 describes the proposed solution and introduces the different technologies that
could form parts of the system’s tech stack. It lists the advantages and disadvantages of each
technology and decides upon the final tech stack. Finally, the chapter details the project
management strategy this thesis will use and describes the aims and objectives that will
measure the thesis’s success.

Chapters 3 - 5 detail the design, implementation and testing process for each version of
the system. Chapter 3 includes a list of user stories and a specification for each version of
the system. It also explains the system’s design in more detail with flow diagrams of the
architecture and UI designs. Chapter 4 explains how key features of the system work at a
programming level using code snippets. Chapter 5 describes how the system’s code is tested,
providing a list of unit tests, visual tests, and the testing results.

Chapter 6 documents the process of validating the web app with respect to the gold
standard. It describes the validation protocol and discusses the problems encountered during
data collection. Finally, the chapter explains the data processing methods in the validation
step and discusses the validation results.

Chapter 7, evaluates the system and proposes next steps for a study that will further
validate it for clinical use. The chapter also provides ideas for future system features.

Finally, chapter 8 reiterates what the thesis has covered and describes how the aims and
objectives have been fulfilled.

x

1 Introduction

1.1 Gait Disorders and Treatments
Gait refers to the locomotive movements of a living thing (a human in the context of this
thesis). According to a 2013 study [1], almost one in three people over 60 experience abnor-
malities in their gait. These abnormalities are well known to correlate with decreased mood
[35], chronic pain [36] and disability [2] along with an array of other symptoms. Neurological
gait problems also present a significant fall risk [3] [4] which increases the risk of mortality
[37]. Because of these reasons, it is crucial to identify gait problems early on in order to
prevent serious accidents.

One such gait disorder is Parkinson’s Disease. Parkinson’s disease is a neurological dis-
order that affects how neurons in the brain fire, causing symptoms such as “slow movement,
tremor, rigidity and imbalance” [38], all symptoms that affect gait quality. Some common
gait-specific symptoms of Parkinson’s Disease include reduced stride length resulting in in-
creased cadence [39] (see section 1.2), freezing of gait (inability to start or continue walking)
[40], and Festinations (increasingly smaller steps sometimes occurring after freezing of gait)
[41]. It is a degenerative condition [38] and, according to the WHO, is increasing global
disability and death “faster than for any other neurological disorder” [38]. Parkinson’s UK
lists three main treatments for the disease [42]:

• Drugs such as levodopa, dopamine agonists, MAO-B inhibitors, COMT inhibitors,
amantadine, and anticholinergics.

• Physical activity.

• Conventional therapies such as physiotherapy, speech and language therapy, and occu-
pational therapy.

Papers often cite levodopa as the main treatment option for Parkinson’s disease [43]. Physical
activity/therapy is usually prescribed alongside levodopa, as it also has a positive effect [44].

Musculoskeletal conditions can also affect gait [45]. The term “Musculoskeletal (MSK)
conditions” covers a wide range of problems associated with muscles, bones, joints and mul-
tiple body areas or systems [46]. There are three categories of MSK conditions [47]:

• Inflammatory conditions e.g. rheumatoid arthritis.

• Conditions causing MSK pain e.g. osteoarthritis and back pain.

• Osteoporosis and fragility fractures.

The gait parameters affected by MSK conditions vary widely and depend on the specific
diagnosis. Examples of deviations include decreased joint moments in Osteoarthritis [48] and
Rheumatoid Arthritis [49]. According to the NHS, patients with musculoskeletal disorders

1

account for 30% of GP consultations in England [45]. The treatment for MSK disorders
varies based on the specific issue, but care providers often use physiotherapy as an initial
treatment.

Another condition known to affect gait is Multiple Sclerosis (MS). MS is a neurological
condition affecting the brain, spinal cord and optic nerves [50]. Whilst the cause of MS is
unknown, scientists believe it is caused by the immune system attacking the central nervous
system [50]. Some of the most common symptoms are fatigue, cognitive changes, and spas-
ticity (stiff limbs) [51]. Some commonly reported deviations in gait include reduced walking
speed [52][53][54], reduced step length [52][53], heightened variability in joint angles [54],
and changes in temporal parameters such as double support [52]. Medical professionals usu-
ally treat MS using a comprehensive approach [55] involving disease-modifying medications,
steroids (during flare-ups), and rehabilitation (both mental and physical) [55].

Cerebral palsy (CP) can also cause abnormal gait. CP happens when the movement
centres of the brain do not develop as they should [56]. This causes symptoms such as stiff
muscles , spasticity, uncontrollable movements, poor balance and co-ordination and seizures
[56]. Spasticity usually causes the gait deviations observed in CP. Commonly observed gait
deviations include decreased range of motion at the ankle, knee and hip [57]. Increased
hyperextension at the knee and hip is also common [57]. Hyperextension involves the joint
extending past its normal maximum extension. CP usually appears at a young age and is
prevalent throughout the person’s life [56]. Whilst there is no cure for CP, it can still be
managed using medication (for seizures, muscle control and pain management), surgery, and
therapy (physical, occupational and mental) [58].

More recently, the COVID-19 virus has been reported to cause gait abnormalities. COVID-
19 is a respiratory illness that first appeared on the 31st of December 2019 in Wuhan, China
[59]. It received the status of “global pandemic” on the 11th March 2020 [60] and continues
to affect billions of people.

Figure 1.1: Graph of world COVID cases per day over the last two years (from [11]).

The most common symptoms of COVID-19 the World Health Organization (WHO) de-
scribes are fever, cough, tiredness, and loss of taste or smell [61]. These symptoms usually
take 5-6 days to show [61], and recovery usually takes one to two weeks [62]. The severity
of COVID-19 varies greatly depending on the individual. The age and general health of the
person infected are known to affect this. According to the WHO, COVID-19 can also cause
long-term complications such as fatigue, shortness of breath, cognitive dysfunction [63] and

2

joint pain [63]. Some studies have observed the potential of these long-term complications
to affect gait [64], particularly symmetry of temporal measures such as double and single
support [65]. Treatments for the immediate symptoms of COVID-19 come in the form of
antiviral medicines (Paxlovid, Remdesivir and Molnupiravir) and neutralising monoclonal
antibody (nMAb) treatments (Sotrovimab) [66]. Treatments for the long-term symptoms
can come in many different forms and are handled on a case-by-case basis as the spectrum
of symptoms is so large [67]. Common treatments include pulmonary rehabilitation, physio-
therapy, occupational therapy and modifying diet [67].

Serious cases of COVID-19 also put people at higher risk of PICS. PICS is a disability that
can arise from the physical and mental trauma associated with ICU admissions. Generalized
weakness, fatigue, decreased mobility, anxious or depressed mood, sexual dysfunction, sleep
disturbances, and cognitive issues [68] are all symptoms that can occur. The risk factor relat-
ing COVID-19 to PICS is respiratory failure requiring prolonged mechanical ventilation [68].
Much like the long-term symptoms of COVID-19, the treatments are wide-ranging, typically
involving a combination of physiotherapy, mental health support/medication, medication to
treat injuries and speech therapy.

1.2 Diagnosing Gait Disorders
Clinicians measure gait using different metrics they calculate from their observation of the
patient walking. The clinician compares the calculated metrics to the expected healthy values
to detect the presence of abnormal gait. This comparison can help to identify the presence
of different conditions affecting movement. Access to gait analysis services is important, as
early detection of abnormalities prevents falls occurring and allows for early intervention,
which can “reduce the frequency of nursing home admissions” [69].

Gait is measured and classified using a variety of metrics (some metric definitions taken
and adapted from “Terminology of Human Walking” [70]):

• Step count - Number of steps taken.

• Velocity - Change in distance walked divided by change in time elapsed.

• Cadence - Step count divided by time elapsed.

• Heel strike - When the heel first touches the floor.

• Toe-off - When the toe first leaves the floor.

• Stride length - Distance between toe-off and heel strike on the same leg.

• Swing time - Time the foot is in the air (begins at toe-off and ends at heel-strike). The
swing time occupies 39% of the gait cycle on average.

• Stance time - Time the foot is in contact with the ground (begins at heel-strike and
ends at toe-off). The stance time occupies 62% of the gait cycle on average.

3

• Swing/stance ratio - Ratio of average swing time to average stance time.

• Double support - Time that both feet are on the ground (begins when a heel-strike
occurs on the foot in question and ends when a toe-off occurs on the opposite foot).

• Single support - Time that one foot is on the ground (same as swing time of the
opposite leg).

• Double/single support ratio - Ratio of average double support time to average single
support time.

Figure 1.2: Phases of the human gait cycle and important gait events (from [12]).

More advanced gait analysis and biomechanics focuses on Kinetics and Kinematics. Kine-
matics is primarily concerned with joint positions (measured in metres (m)), velocities (mea-
sured in metres per second (m/s)) and accelerations (measured in metres per second squared
(m/s2)) [71]. Joint rotations, rotational velocities and rotational accelerations can also be
calculated using the positional information and inverse kinematics [72]. Kinematics mea-
surements are traditionally taken using marker-based motion capture systems (detailed later
in this section). The most common measures of kinematics used by clinicians are joint
rotations, which usually fall under one of five categories (Fig.1.3):

• Flexion - a decrease of the angle between two connected segments (a segment is a
section of the body (i.e. the forearm)) [71].

• Extension - an increase of the angle between two connected segments [71].

• Abduction - a movement away from the centre of the body or the centre of a segment
[71].

• Adduction - a movement towards the centre of the body or the centre of a segment
[71].

• Rotation - a movement about the axis running through a segment (can be internal or
external [71].

4

Figure 1.3: The five common types of joint rotation (from [13]).

Figure 1.4: Graph of average hip flexion/extension over the gait cycle (from [14]).

Kinetics focuses on the forces applied to the skeletal system by muscles [71]. There are
two types of kinetics: Linear Kinetics and Angular Kinetics. Linear kinetics focuses on force
(expressed in Newtons) and the direction it is acting in. Linear kinetics during gait is usually
measured using force plates (fig.1.5). The force plate measures the direction and intensity
of the force using piezoelectric sensors under the plate. Meanwhile, angular kinetics focuses
on torque (or moments) about a joint (expressed in Newton-metres (Nm)) [71]. Angular
Kinetics information is usually derived using inverse dynamics [73].

5

Figure 1.5: AMTI force plates used to measure kinetics [15].

Clinicians determine gait metrics using one of two methods: observational analysis or
technology-aided analysis. A clinician performs observational gait analysis without a com-
puter (Fig.1.6). During an assessment, the patient walks in front of the clinician on a
treadmill or a large section of the floor. The clinician observes irregularities in the patient’s
movement, often using a gait scoring system as an impartial assessment method. There are
many scoring systems for different diseases and movement disorders. Some notable examples
include:

• GALS (Gait, Arms, Legs, Spine) system for detecting MSK disorders [74].

– The gait assessment section of the GALS system assesses gait symmetry, gait
smoothness, gait quality across the gait cycle, stride length, and the ability to
rapidly change position. The clinician assesses the patient’s gait by asking them
to walk a few steps, turn around and walk back [74]. GALS also assesses any
potential causes of abnormal gait such as structural deformities or swelling [74].

• Tinetti test for gait and balance in older adults [75].

– The gait assessment section of the Tinetti test assesses hesitancy in starting walk-
ing, gait symmetry, step length, step height, step continuity, walking path, walking
time, and the straightness of the trunk. The clinician assesses the patient’s gait
by asking them to walk a few metres at a standard walking speed, turn around
and walk faster on the way back.[75].

• Get up and go test for balance in older adults [76].

– The gait assessment section of the get up and go test measures postural stability,
gait, stride length, and sway [76]. The clinician assesses the patient’s gait by
asking them to get up from a seated position in the chair, walk 3 metres at a
normal pace, turn around, walk back at a normal pace, and sit back down.

6

Figure 1.6: Observational gait analysis (from [16]).

Technology-aided gait analysis (Fig.1.7) can take many forms, but all share a general
method:

1. Sensor - captures the patient’s movement in a form that the analysis algorithm can
process.

2. Additional input (optional) - in some analysis methods, the software requires clinicians
to manually label parts of the data to assist the analysis algorithm.

3. Analysis algorithm - takes in the sensor data and any additional input, processing it,
and outputting the required gait metrics.

Figure 1.7: Technology-aided gait analysis (from [17]).

There are different categories of technology-aided gait analysis:

• Marker-based systems involve the clinician placing markers on the patient. These
markers track the patient’s joints and calculate the specified gait metrics. Marker-based
systems are extremely accurate and time-efficient, but are costly as a result.

• Markerless systems use pose-estimation algorithms to determine joint positions from
RGB or RGB-D images and calculate relevant gait metrics. These systems are usually
less accurate than marker-based systems, but are still very time-efficient and more
cost-effective than marker-based systems.

• Manual marker placement systems prompt the clinician to label joint positions
frame-by-frame and calculate relevant gait metrics using these positions. These systems
have around the same accuracy and price as markerless systems but are less time-
efficient.

7

Technology-aided gait analysis is much more accurate and time-efficient than observational
gait analysis. This increases the likelihood that medical clinicians can detect the gait disorder
at an early stage.

1.3 Physiotherapy as a Treatment
There are many treatments for gait and movement disorders ranging from different types of
medication to surgery. One more holistic option is physiotherapy. Physiotherapy helps to
restore movement and function [77] and is a treatment option for most gait disorders. Unlike
other treatment options, physiotherapy is advantageous, as can have less side effects than
other treatment options.

There are two types of physiotherapy: passive and active. Passive physiotherapy is
performed by the medical clinician and does not require the patient’s muscles to be active
[78]. It is usually used where the patient’s pain is too extreme for them to participate in
active physiotherapy [78]. Acupuncture and manual therapy (manipulation of the muscles
with the hands) are the main two forms of passive physiotherapy [77]. Active physiotherapy
is where the patient performs exercises to increase their strength and mobility[77]. The
patient usually performs these exercises free, with weights, or with resistance bands. Active
physiotherapy for gait disorders often uses treadmill walking to build strength and improve
physical capacity.

More recently, researchers have used virtual reality (VR) treadmill walking to administer
active physiotherapy. VR is a method of displaying animated 3D content that is more immer-
sive than 2D displays (Fig.1.8). According to Britannica, VR is “the use of computer mod-
elling and simulation that enables a person to interact with an artificial three-dimensional
(3-D) visual or other sensory environment” [79].

Figure 1.8: Screen showing the user’s in-game view during a VR game (from [18]).

VR headsets are the most common method of displaying VR content. A VR headset
has one display for each eye, giving the user the illusion of being immersed in a virtual 3D
environment. Here some of the most popular VR headsets currently on the market:

• VIVE pro (Fig.1.9b) - Developed by the HTC Corporation. It runs by connecting
to a PC and costs £1,299.00 [80].

8

• Meta Quest 2 (Fig.1.9a) - Owned by the company Meta. It costs £399.00 and does
not need to be connected to a PC [81].

• Valve Index (Fig.1.9c) - Developed by the online games platform Steam. Similar to
the VIVE pro, the Valve Index requires a PC to work. It costs £459.00 [82].

• PlayStation VR (Fig.1.9d) - Developed by the games console company PlayStation.
It requires a PlayStation 5 console to work and costs £299.00 [83].

(a) Meta Quest 2
(from [81]).

(b) HTC VIVE (from
[80]).

(c) Valve Index (from
[82]).

(d) PlayStation VR
(from [83]).

Figure 1.9: Some of the most well-known VR devices.

Although VR treadmill walking improves physiotherapy outcomes for certain conditions
[5] [6] [7], it is only accessible to a small fraction of the population. This is due to the high
cost of motion capture equipment and the need for specialist facilities. This thesis will aim
to address this issue by providing a portable and cost-effective version of the protocol.

9

2 Proposed Solution

2.1 Solution Outline
This thesis describes the implementation of a gait analysis and physiotherapy application.
The application functions as a web-based first-response tool that is more accessible than
current diagnosis and treatment solutions and provides a reliable quantitative diagnosis,
unlike the scoring systems described in section 1.2 which use qualitative observations. The
application performs physiotherapy within a VR world, as VR is significantly better at
improving gait quality [84] and pain [85] when compared with traditional physiotherapy
approaches. The main priorities for development were:

1. Cost-effectiveness.

2. Time efficiency.

3. Accuracy.

Prioritizing cost effectiveness whilst still maintaining an acceptable level of accuracy allowed
a wide selection of clinics with limited facilities to use the product.

With these priorities in mind, it was decided a markerless motion capture (MoCap)
system would be used for the web application. The technology-aided nature of this solution
would provide higher accuracy than observational analysis and the markerless format would
make the system more cost effective and time efficient than other technology-aided solutions.

2.2 Gait Analysis Protocol
The proposed solution uses a markerless motion capture system to analyse the subject’s
gait. To understand markerless systems, it is important to have a basic grasp of convolu-
tional neural networks. Convolutional neural networks (CNNs) are one of the most common
methods of estimating pose. According to Encyclopedia Britannica, a neural network is “a
computer program that operates in a manner inspired by the natural neural network in the
brain” [86]. A neural network’s output is called an inference. Inside a neural network are
layers of linked mathematical operators. Each mathematical operator has a weight which
dictates how much it factors into the network’s inference. The network improves its weights
by performing inference on training data and calculating the error (loss) compared to the
correct answer.

A CNN is a neural network often tasked with solving computer vision problems. A typical
CNN has convolutional layers, pooling layers, and fully connected layers. A convolutional
layer transforms the image by convolving it with a kernel (transformation matrix). The

10

convolution process involves stepping (or shifting) the kernel across the image pixels, multi-
plying the selected pixels by the kernel each time (Fig.2.1) and producing an output matrix.
Convolutions can pick particular features out of an image which is why they are popular for
computer vision tasks.

Figure 2.1: Convolving an input matrix with a kernel to produce an output matrix (from
[19]).

A pooling layer uses an algorithm to reduce the size of an image whilst trying to preserve
as much information as possible (Fig.2.2). This method can reduce the computing power
required in subsequent network layers. An example of a pooling algorithm is max pooling
(Fig.2.2). Max pooling takes the maximum values of small regions of the image and uses
them to construct a smaller image. A similar example is average pooling (Fig.2.2), where
the new image is composed of the mean values of each region.

Figure 2.2: Two common pooling algorithms: max pooling and average pooling (from [20]).
In both cases, the image is split into four 2x2 regions which are then condensed into four
1x1 regions.

The fully connected (FC) layers are at the end of a convolutional neural network. FC
layers have connections to every node of the previous layer (Fig.2.3) and are used to formulate
an inference based on the convolution and pooling in previous layers.

11

Figure 2.3: A fully connected neural network layer (from [21]).

In the context of markerless systems, CNNs are used to perform the task of pose esti-
mation. Pose estimation detects the location of a person’s joint positions from RGB (or
RBG-D) video (Fig.2.4). Pose estimators usually predict joint positions using CNNs and ex-
press them as 2D or 3D Cartesian coordinates. Some examples of pose estimation technology
are described in more detail below.

Figure 2.4: 2D pose estimation of a single RGB frame (from [22]).

OpenPose [23] is a pose estimator developed by the Carnegie Mellon University’s Percep-
tual Computing Lab. It detects 2D joint locations of multiple subjects from a single RGB
image (Fig.2.5) in real-time. OpenPose achieves joint prediction using two stages, both per-
formed by a CNN. First, the CNN creates a confidence map for each joint. The confidence
map shows the most likely positions for the joint in a frame. Second, OpenPose predicts
part affinity fields (PAFs) for the subject’s joints. PAFs are 2D vectors that describe the
most likely orientation of a joint. OpenPose then combines these two sources of information
and outputs 2D coordinates for each joint, each with a confidence value.

12

Figure 2.5: 2D pose estimation using OpenPose (from [23]).

MediaPipe [87] is a framework developed by Google to combine perception-based machine
learning algorithms. There are several example projects within the MediaPipe page [88]
including face mesh detection, object detection and iris detection. One MediaPipe example
relevant to the field of pose estimation is MediaPipe Pose [89]. MediaPipe Pose is a pose
estimator that uses the BlazePose CNN [90] to predict 3D joint positions from a single RGB
image of the subject in real-time (Fig.2.6a). MediaPipe Pose provides the joint positions
in a normalised format and in metres. MediaPipe Holistic [91] (Fig.2.6b) is another pose
estimator from the MediaPipe project. It combines MediaPipe Pose with MediaPipe’s hand
and face keypoint detection algorithms, producing a more versatile pose estimator.

(a) Pose estimation with Me-
diaPipe Pose (from [89]).

(b) Pose estimation with Me-
diaPipe Holistic (from [91]).

Figure 2.6: MediaPipe Pose and MediaPipe Holistic.

The Azure Kinect [92] (Fig.2.7) is an RGB-D (colour and depth) machine learning so-
lution developed by Microsoft. It performs 3D pose estimation and speech recognition in
real-time. The pose estimation functionality is comprised of a software component - the
Azure Kinect Sensor SDK, and a hardware component - the Azure Kinect RGB-D camera.
The pose estimation component uses a CNN to detect joint positions in 2D and then uses
the depth stream data to convert them into 3D positions [93]. The 3D pose data can be
used to analyse movement or power 3D avatars within games [94].

13

Figure 2.7: Azure Kinect RGB-D camera (from [24]).

XNect is a pose estimator developed by the Max Planck Institute for Informatics, EFPL,
Saarland Informatics Campus, and The University of British Colombia. It detects 3D joint
locations from an RGB image in real-time using a CNN to detect 3D pose and skeleton
fitting to ensure the body pose is valid when compared to a biomechanical model of the
human body [25]. XNect is capable of detecting multiple people in a scene and can be used
for 3D character control [25] (Fig.2.8).

Figure 2.8: Multi-person character control with XNect (from [25]).

DensePose is a pose estimator developed by Facebook Research. It calculates 2D UV co-
ordinates for the body of each person in the scene. The UV co-ordinates form a map of the
surface of the human body, allowing 3D meshes to be fitted to the 2D image (Fig.2.10) [26].
This method of pose recognition is referred to as dense, as it is not true 3D pose estimation.
To detect the mesh co-ordinates, DensePose analyses each pixel of the image to determine
which body part it belongs to and its precise location within that body part (Fig.2.9) [26].

Figure 2.9: Detecting UV co-ordinates using DensePose. The red dot is the location of a
pixel in the image on a mesh representation of the person’s body (from [26]).

14

Figure 2.10: Fitting a 3D mesh to a 2D image using DensePose (from [26]).

Below is a table comparing the features of the markerless solutions this section has
mentioned.

Pose Estimator Input 2 or 3D? Multi-
person?

Web-
compatible?

Price

OpenPose RGB Video 2D Yes No £0.00

MediaPipe Pose RGB Video 3D No Yes £0.00

MediaPipe
Holistic

RGB Video 3D No Yes £0.00

Azure Kinect RGB-D Video 3D Yes No £355.00

XNect RGB Video 3D Yes No £0.00

DensePose RGB Video 2D
(dense)

Yes No £0.00

Table 2.1: Table comparing markerless motion capture solutions

This thesis explores MediaPipe and OpenPose as options for motion capture. XNect
was excluded because the code was not easily accessible and DensePose was excluded as it
could not be implemented on a windows machine. The Azure Kinect was excluded, as it is
expensive compared to the other options which would limit accessibility of the system.

2.3 Physiotherapy Protocol
The physiotherapy component of the system uses VR technology to deliver the treatment.
Most VR physiotherapy options use some form of biofeedback as a method of improving
gait.

According to Encyclopedia Britannica, biofeedback is “information supplied instanta-
neously about an individual’s own physiological processes” [95]. Some examples include:

15

• Heart rate [95] - a live heart rate display on a smart watch.

• Brain signals [95] - a live readout of brain signals from an electroencephalogram
(EEG).

• Blood pressure - a blood pressure monitor [95].

Figure 2.11: Heart rate based biofeedback on the Apple Watch (from [27]).

The biofeedback paradigm in VR physiotherapy utilizes motion capture technology and a 3D
virtual avatar to construct a third person view of the patient’s pose in real-time (Fig.2.12).
This method is proven to visualize gait accurately to facilitate training via biofeedback [28],
and can successfully improve gait in patients with cerebral palsy [5], stroke [6], and patients
with motor neglect (chronic pain) [7]. This thesis uses the VERMONT protocol for motor
neglect conditions [7], as it utilises a standard display. This feature makes the protocol more
cost-effective, easier to implement in smaller facilities, and more accessible.

Figure 2.12: Avatar-based biofeedback (from [28]).

2.4 System Tech Stack
The gait analysis and physiotherapy system is web-based and utilises the JavaScript front-
end development stack. This is made up of three major components:

• Hypertext Markup Language (HTML) - Describes the web page’s structure using
tags. Tags must open and close (Fig.2.13).

16

• Cascading Style Sheets (CSS) - describes the webpage’s style. CSS properties are
attached to HTML elements.

• JavaScript/Python - instructs the website on what to do when the user performs
different actions. This includes handling user interaction and updating CSS properties.
This project will use JavaScript as its programming language.

1 <body>
2 <h1>Hel lo World !</h1>
3 </body>

Figure 2.13: An example of HTML tags.

The system uses Next.js for the UI. Next.js [96] is a JavaScript library that builds upon
the commonly used JavaScript library React.js [97]. Web developers use React.js to create
components that combine HTML, CSS and JavaScript. The current page can then use these
components as HTML tags. Due to the JavaScript-based nature of these components, they
can have states which can change during runtime. React.js components refresh each time
any of their states change. Next.js builds upon and optimizes React and “handles the tooling
and configuration needed” to build a React project [98].

The system’s UI also uses Tailwind. Tailwind [99] is a framework that makes CSS more
efficient. It shortens common CSS styles that usually require multiple properties into a single
property that the developer can apply directly to the page’s HTML. Common styles include
flexboxes [100] and grid views [101].

Finally, to create the 3D biofeedback environment, the solution uses Three.js. Three.js
is a 3D library for JavaScript [102]. It can be used to make 3D applications and games
(Fig.2.14) and supports VR content in a web environment [34].

17

Figure 2.14: Viewing a 3D model in the browser with Three.js (from [29]).

Below is a diagram showing the full tech stack (Fig.2.15).

Figure 2.15: Diagram of the proposed tech stack.

18

2.5 Measuring The System’s
Accuracy

To validate the system’s effectiveness as a gait analysis tool, its performance was compared
to that of a gold standard. The gold standard in gait analysis currently involves systems that
use retro-reflective markers such as OptiTrack [103] and Vicon [104], as the accuracy is high
enough that the system is no longer a significant source of error in clinical gait analysis [105].
This thesis used the OptiTrack retro-reflective system [103], as it was readily available in
the University of York’s facilities. The OptiTrack system uses multiple infrared cameras to
detect retro-reflective markers on the subject. The validation study used the 10 OptiTrack
V:100 and V:100 R2 (Fig.2.16) infrared cameras available at the University of York and
combined them with OptiTrack’s tracking software “Tracking Tools” [106]. Both the V:100
and V:100 R2 cameras have sub-millimetre accuracy [107] [108].

Figure 2.16: OptiTrack V100:R2 camera (from [30]) (the V100 looks almost identical to the
V100:R2).

The validation study captured simultaneous pose data from six participants (referred to
from now on as “patients”) for the OptiTrack and the web-based solution. Once the data
was captured, the following gait metrics could be calculated:

• Hip flexion (degrees).

• Knee flexion (degrees).

• Stance/swing time(s).

• Double/single support time(s).

• Stride length (m).

• Distance walked (m).

• Cadence (steps/s).

19

• Number of steps.

These metrics were chosen from experience, as they are some of the most commonly assessed
by clinicians.

The study compared the average gait metrics from each data collection, assessing the
similarity of the web-based solution’s results to those of the gold standard (the OptiTrack).

The data collection protocol for the validation study is detailed below. For a full de-
scription of the protocol, see the patient consent form in appendix D.1. Here are the key
points:

• The participant will have markers placed on their hips, knees and ankles.

• They will then stand stationary on the treadmill for the calibration stage.

• After the calibration stage, the participant will walk for nine “rounds”, each a minute
in length.

• They will walk at three different speeds (three rounds for each speed) - 0.5, 1 and 1.5
(speeds are arbitrary units defined by the treadmill).

A mobile phone captured the video footage for the pose estimator whilst the OptiTrack V100
and V100:R2 cameras captured the gold standard footage using Tracking Tools [106]. The
command “3, 2, 1, start” was issued at the beginning of the recording, starting the OptiTrack
recording on the word start and stopping at 60 seconds by saying “3, 2, 1, stop” (stopping
on “stop”). The speech acted as a timecode so the recordings could be synchronised.

2.6 Project Management Strategy
This thesis used a project management strategy to track how close each of the application’s
features were to completion. There are two types of project management approach that
software engineers use:

• Waterfall management - this strategy plans all the project’s deliverables before
development work commences.

• Agile management - this strategy is composed of sprints, where the developers work
on a particular set of features. Planning takes place before each sprint, and the learn-
ings from the previous sprint are taken into account when planning the next one.

This thesis used a variation of the Agile management strategy called Scrum [31]. Agile
was chosen over Waterfall, as it is more adaptable to changes in knowledge. This flexibility
was advantageous, as during the planning phase the pose estimation method was not yet
determined and could have changed multiple times throughout the development process.

20

Figure 2.17: The basic concepts of scrum (from [31]).

Each scrum sprint was equivalent to a version of the software (V1.0, V2.0, V3.0). Jira
[109], a scrum planning tool, was used to assign deliverables to each sprint. By tracking how
many deliverables were completed, Jira could be used to estimate how close each sprint was
to completion (Fig. 2.18).

Figure 2.18: Jira allows progress tracking for Scrum sprints.

Each of the deliverables within the Jira project had a series of sub-deliverables that
followed the SMART goal-setting strategy:

• S - Specific.

• M - Measurable.

• A - Achievable.

21

• R - Realistic.

• T - Time-bound.

For example, one could turn the non-smart goal “Make some of the UI” into a smart one by
changing it to “Implement the web app’s welcome page as shown in the UI designs within
the next two days.” Assigning portions of the project calendar to each smart goal ensured
they fulfiled the time-bound aspect of the SMART strategy.

Figure 2.19: Assigning sub-tasks as time-limited calendar items.

2.7 Aims and Objectives
Detailed below are the aims and objectives for the research work. The aims were more
general and described what the research work needed to accomplish, whereas the objectives
were more specific and explained how the research aims would be completed. The aims and
objectives were categorised into “diagnosis” - testing for abnormal gait, and “treatment” -
rehabilitating abnormal gait.

Project aims:

• Diagnosis:

– Aim 1 - Create a web application that analyses a subject’s gait.

– Aim 2 - Validate the accuracy of the gait analysis technique.

• Treatment:

– Aim 3 - Develop a web-based biofeedback game for gait rehabilitation.

Project objectives:

• Diagnosis:

22

– Objective 1 - Implement a pose estimator that calculates the subject’s joint
locations.

– Objective 2 - Derive stride length, swing/stance, double/single support, speed,
cadence, hip angles, knee angles, and distance walked from the joint locations.

– Objective 3 - Use OptiTrack motion capture software and hardware to validate
the above gait metrics on five test subjects.

• Treatment:

– Objective 4 - Use a real-time pose estimator in combination with Three.js to
create a biofeedback game with a 3D avatar.

23

3 Design

3.1 Version 1.0 Designs
Version 1.0 of the web app will implement the core functionality needed for web-based gait
analysis. It will achieve this by analysing user-recorded footage using a server-side OpenPose
instance. The following user requirements were derived from this brief:

1. As a clinician, I must be able to. . .

(a) Select to perform a gait analysis (assessment) session.

(b) Receive information about how to set up the device camera for capture.

(c) Start an assessment session.

(d) Record a 30 second video of the patient.

(e) Send the video to the OpenPose server for analysis.

(f) Begin a new session.

A list of deliverables and sub-deliverables was then developed from the user requirements:

1. User interface:

(a) Pre-assessment page with “start assessment” button.

(b) Assessment instructions page with “record” button

(c) Assessment page with camera view.

(d) Post-assessment page with “new capture” button.

2. Video recording:

(a) Record a 30 second video using the device’s webcam and save it in temporary
memory.

(b) Upload the video to the OpenPose server.

3. Pose estimation:

(a) Use OpenPose to detect the patient’s joint locations.

(b) Calculate gait metrics from the OpenPose data (on the server side).

To design a user interface (UI) in line with the requirements above, a flow diagram was
created to understand the structure of the main pages in the UI and describe how the user
would navigate through them.

24

Figure 3.1: Flow diagram for V1.0 UI.

Each UI screen in the flow diagram was then designed. Three primary UI colours were
chosen (names given in hex): #135796 (blue), #FFFFFF (white), and #FFDC64 (yellow).
These colours were picked as they are contrasting, thus making the page more accessible to
colour-blind users.

Figure 3.2: Pre-assessment screen (heartbeat logo from [9]).

The pre-assessment screen was designed (Fig.3.2) with later versions of the web app in
mind. Space was left below the start assessment button so other buttons, such as “start
biofeedback game”, could be added when their functionality had been implemented.

25

Figure 3.3: Assessment instructions screen (Background image from [32]).

When the user clicks the “start assessment” button on the pre-assessment screen, the
web app navigates to the assessment instructions screen. The assessment instructions screen
(Fig.3.3) instructs the clinician on how to set up their camera to record a gait assessment.
The design features a live camera feed to allow the clinician to adjust the camera position
and angle.

Figure 3.4: Assessment screen (Background image from [32]).

When the user clicks the “start” button on the assessment instructions screen, the web
app navigates to the assessment screen. The assessment will record video footage for 30

26

seconds, displaying the save session screen at the end of the recording period.

Figure 3.5: Save Session Screen (Background image from [32]).

The save session screen prompts the user to send the session for analysis by clicking
“save”. If the user clicks save, the web app uploads the recorded video to the OpenPose
server and navigates to the start again screen. If the user clicks “don’t save”, the web app
does not upload the video and displays the “start again” screen.

Figure 3.6: Start again screen (Background image from [32]).

On the start new session screen, the user can choose between starting a new session (“yes”)
and quitting for now (“quit”). If the user clicks “yes”, the web app navigates to the assessment

27

instructions screen. If the user clicks “quit”, the web app navigates to the pre-assessment
screen.

Upon completing the list of requirements and the UI designs, the next step was to specify
the individual JavaScript classes and Next.js components that needed to be implemented.
This information could then be used to form the tasks and subtasks for the Jira and begin
version 1.0’s implementation phase.

Five separate flow diagrams were created (see Appendix A.1). Each flow diagram con-
tained the components and classes that needed to be developed by the end of the implemen-
tation phase. In the flow diagrams, purple represents a Next.js page, orange represents a
Next.js component, and blue represents a JavaScript class.

3.2 Version 2.0 Designs
In version 2.0 of the web app, live body tracking would be used to drive a 3D avatar for
patient-facing biofeedback. MediaPipe Holistic was chosen to drive the biofeedback avatar,
as in preliminary tests, it ran in real-time on a laptop and a mobile phone. OpenPose would
still be used for a post-session gait assessment as it was more accurate. This change in design
meant the web app required two camera feeds: a front-facing feed for biofeedback and a side-
facing feed for gait assessment. Another goal for version 2.0 was to make it mobile-friendly,
which meant redesigning the UI to work on smaller screen sizes.

The first stage of design, involved creating the user stories. As this version of the app
included patient-facing content, the user stories were written from the perspective of the
patient as well as the clinician:

1. As a clinician, I must be able to. . .

(a) Select to perform a biofeedback (training) session.

(b) Receive information about setup for the training session.

(c) Start the training session.

(d) Send the video of the training session to the OpenPose server for analysis.

(e) Receive gait metrics from the analysis server.

(f) Start a new training session.

2. As a patient, I must be able to. . .

(a) Walk forward in a virtual biofeedback environment as a stick man.

Using these user stories, a list of requirements was formulated. These requirements
needed to be met by the end of version 2.0’s implementation phase:

1. User interface:

(a) Initial page with “start training” and “start assessment” buttons (remove start
assessment page from V1.0).

28

(b) Training instructions page with “record” button.

(c) Select camera page allowing the user to select gait analysis and biofeedback cam-
eras.

(d) Training page with camera view and biofeedback view.

(e) Post-training page with “new training session” button.

2. Pose estimation:

(a) Implement MediaPipe Holistic tracking within the project.

(b) Create a universal sensor framework that can be extended to multiple pose esti-
mators.

3. Biofeedback Game:

(a) Avatar class that instantiates a 3D stickman controlled by the chosen pose esti-
mator at a specific location.

(b) 3D walking game that allows the patient to walk around a virtual space with the
avatar.

As in version 1.0, a flow diagram was created to understand the main pages in the UI
and how the user would navigate around them.

Figure 3.7: Flow diagram for V2.0 UI.

There were two new UI screens that needed to be designed, the first of which was the
assessment screen (Fig.3.8). From now on, this new screen will be referred to as the training
screen. The screen was split into three sections:

29

• Camera feed - displays the camera feed the device will use for biofeedback. The
clinician can choose to make this full-screen.

• Game feed - displays the biofeedback game. The clinician can also make this section
full-screen.

• Control panel - contains the start button for the game. In future versions of the app,
the control panel would also contain settings for the biofeedback game.

Figure 3.8: UI design for the training page.

The other new screen was the select camera screen. This screen would allow the user to
select and position the cameras for biofeedback and gait analysis using two dropdowns and
live camera feeds.

Figure 3.9: New UI design for the select camera page.

30

In addition to these new screens, some screens needed to be adjusted or copied from
version 1.0:

• Rename the pre-assessment screen to “select activity”.

• Add a button to the select activity screen that starts a training session.

• Update the assessment instructions page to give training instructions.

• Duplicate the start again page and adapt it for training sessions.

Finally, mobile designs were created for the select camera screen and the training screen
(appendix A.2), as the existing desktop layout did not work well within a mobile environment.
Below are a few of the design choices made for the mobile versions of these two screens (images
in appendix):

• Laying out content in a column-based view to suit the portrait nature of the phone
display (Fig.A.6).

• Using a hamburger menu to hide and show the biofeedback control panel (Fig.A.7 and
Fig.A.8).

• Using a button to toggle between the camera feed and the game feed (Fig.A.7 and
Fig.A.8).

Flow diagrams were created for new or updated components and classes. These are
included in Appendix A.3.

3.3 Version 3.0 Designs
Version 3.0, would implement game customization features. It would also build upon the
following advancements in knowledge made in version 2.0:

• The OpenPose server is potentially costly.

• MediaPipe Pose is more accurate than MediaPipe Holistic.

• MediaPipe Pose might provide accurate enough joint positions to calculate gait metrics
without OpenPose.

The first step taken to design version 3.0 was forming user stories for the patient and clinician.
The user stories were as follows:

1. As a clinician, I must be able to. . .

(a) Change the game’s ground and sky textures.

(b) Choose the colour of the avatar’s bones, joints and head.

31

(c) Select the session record time.

(d) Decide whether to use a stroop test (a stroop test is a method of adding cognitive
load by asking the person to name the colour of a word).

(e) Select the word frequency for the stroop test.

2. As a patient, I must be able to. . .

(a) See live gait metrics on the biofeedback screen.

Using these user stories, a list of requirements was formulated that needed to be met by the
end of version 3.0’s implementation phase:

1. User interface:

(a) Game customization panel with “Avatar”, “Environment” and “Interactions” set-
tings.

(b) Live metrics display within the biofeedback game.

2. Pose estimation:

(a) Calculate and display real-time metrics using MediaPipe Pose.

3. Biofeedback Game:

(a) Avatar can be customised.

(b) Environment textures can be customised.

(c) Game parameters can be customised.

In addition to this specification, the app would be designed to output a JSON of the Medi-
aPipe Pose data that could be analysed within MATLAB. This JSON data would be used
in the accuracy assessment part of the project (see section 6).

The flow diagram for the UI was the same as in version 2.0 so a new one did not need to
be created.

32

Figure 3.10: Training page with new control panel.

Flow diagrams were created for new or updated components and classes. These can be
found in Appendix A.4.

33

4 Implementation

4.1 Version 1.0 Implementation

4.1.1 OpenPose Server Implementation
In version 1.0’s implementation phase, the OpenPose server was implemented first. This task
had three parts: implementing OpenPose locally, designing a Python server to run OpenPose
remotely, and sending video data from the web application to this Python server.

In the local implementation stage, it was decided the easiest way of running OpenPose
would be to use the portable windows binary and execute it using Python. The binary
would output JSON files for each frame of video data. Following this, the Python script
would analyse the patient’s gait using the motion capture data in the JSON files. These
stages rewrite and improve upon the approaches used in [9] and [10]. The code for these
stages is included in appendix B.1.

The OpenPose binary runs using a command line instruction, executed using Python’s
subprocess.run() function (Fig.4.1). The “–write_json” and “–write_video” flags tell
OpenPose to output a JSON for each video frame and a copy of the video with labelled
joint points.

1 # runs openpose on a video , outputt ing the analysed video and the JSON f i l e s
2 de f run_openpose (recording_name) :
3 # run OpenPose on the video and save the r e s u l t
4 subproces s . run ([' . / bin /OpenPoseDemo . exe ' , '−−video ' , ' . . / v ideos / ' +

recording_name + ' .mp4 ' , '−−write_json ' , ' . . / v ideos−analyzed / ' +
recording_name , '−−d i sp l ay ' , ' 0 ' , '−−write_video ' , ' . . / v ideos−analyzed / '
+ recording_name + ' / ' + recording_name + ' . av i '])

Figure 4.1: Using the subprocess.run() command to analyse a video using OpenPose.

OpenPose is then instructed to output the JSON files for the video, so patient’s gait can
be analysed. The first step in the analysis process is searching the JSON data for heel-strike
and toe-off events. Once these are located and labelled, the required gait metrics can be
calculated.

These heel-strike and toe-off events are determined using ankle location (in the x-direction).
Ankle location during gait is a periodic waveform (Fig.4.2), where the minima are heel strike
events, and the maxima are toe-off events.

34

Figure 4.2: Graph of ankle displacement (m) over time (s).

To locate minima and maxima the data is iterated through chronologically and condi-
tional statements detect points where the ankle changes direction. The following criteria are
used to detect heel-strike events:

• The last toe-off event was on the leg in question.

• The last heel strike event was on the opposite leg.

• The difference between the hip and leg must be greater than it was in the previous
iteration.

The code implementing these criteria is as follows:

1 # l e f t he e l s t r i k e
2 i f l_hip_dif > l_hip_dif_prev and (ga i t_t racke r s [' toe_of f '] == ' none ' or

ga i t_t racke r s [' toe_of f '] == ' l e f t ') and (ga i t_t racke r s [' hee l_s t r i k e ']
== ' none ' or ga i t_t racke r s [' hee l_s t r i k e '] == ' r i g h t ') and l_heel_x >
r_heel_x and l_heel_y > r_heel_y :

3 handle_hee l_str ike (metr ics , ga i t_tracker s , frame , l_heel_x ,
r_heel_x , ' l e f t ')

Figure 4.3: Detecting a left heel strike using the heel strike criteria.

The following criteria are used to detect toe-off events:

• The last heel-strike event was on the opposite leg.

• The last toe-off event was on the opposite leg.

• The difference between the hip and leg must be smaller than it was in the previous
iteration.

The code implementing these criteria is as follows:

35

1 # l e f t he e l r a i s e
2 e l i f l_hip_dif < l_hip_dif_prev and (ga i t_t racke r s [' toe_of f '] == ' none ' or

ga i t_t racke r s [' toe_of f '] == ' r i g h t ') and ga i t_t racke r s [' hee l_s t r i k e ']
== ' r i g h t ' and l_heel_x < r_heel_x and l_heel_y < r_heel_y :

3 handle_toe_off (metr ics , ga i t_tracker s , frame , ' l e f t ')

Figure 4.4: Detecting a left toe-off using the toe-off criteria.

Once the heel-strike and toe-off events have been detected, the metrics for each gait cycle
can be calculated. The following symbols will be used to describe the equations for each
metric:

• Hc: Last recorded heel strike event.

• Hp: Heel strike event directly before Hc.

• Hpp: Heel strike event directly before Hp.

• Tc: Last recorded toe-off event.

• Tp: Toe-off event directly before Tc.

• G: Scaling to convert OpenPose co-ordinates to metres.

A subscript “x” is written after the event to denote spatial displacement on the x-axis (e.g.
Hcx), otherwise, the symbol references time (e.g. Hc). The equations for calculating the
metrics are below. All equations assume a heel strike has just occurred on the leg in question.

• Stride length = G(Hcx − Tcx).

• Swing time = Hc − Tc.

• Stance time = Tc −Hpp.

• Double support time = Tc −Hp.

The code for calculating these metrics also has to account for a scenario where the heel
strike does not happen first. Therefore the code is slightly different to the formulas but still
uses the same principles. For the full code see the calculate_swing_stance_ds_ss()
function in B.1.

The Python script then derives the remaining metrics from the already calculated ones:

• Single support time is identical to the swing time of the opposite leg (see the calcu-
late_swing_stance_ds_ss() function in appendix B.1).

• Number of steps is equal to the number of heel strike events (see the handle_heel_strike()
function in appendix B.1).

• Cadence is equal to the number of steps divided by the video duration (see the calcu-
late_cadence() function in Appendix B.1).

36

• Speed is equal to the sum of the stride lengths divided by the video duration (see the
calculate_speed() function in appendix B.1).

After creating the gait analysis script, the next step was to develop the server code. The
gait analysis script is hosted on a Flask [110] server. Flask [110] is an API that enables
Python developers to create servers for their code. The first step to creating a flask server
is initialising it on localhost:5000 (Fig.4.5).

1 app = Flask (__name__)
2

3 # run the Flask s e r v e r
4 i f __name__ == '__main__ ' :
5 app . run (debug=True , port =5000)

Figure 4.5: Initialising the flask server and running it on localhost:5000.

vid_upload_and_analysis() (the main function for gait analysis) was then changed
into an API route for the server using @app.route() from the Flask API (Fig.4.6). This
means that whenever anything makes a http request to localhost:5000/vid-uploader, the
script executes vid_upload_and_analysis().

1 # saves v ideo and ana lyze s with OpenPose
2 @app . route (' /vid−uploader ' , methods=['POST '])
3 de f vid_upload_and_analysis () :

Figure 4.6: Using the @app.route() decorator to connect a function to an API call.

When the Flask API was complete, the next step was to send the server a video the web
app had recorded. To send the video, a call is made to the Flask API from the web app.
This is achieved using XMLHttpRequest() (Fig.4.7).

1 //Get the http request for the OpenPose server ready
2 var xmlhttp = new XMLHttpRequest () ;

Figure 4.7: Creating a new http request.

Once a HTTP request had been created, an action listener is instantiated to listen for the
response. This listener navigates to the post-assessment page, appending the gait metrics
received from the OpenPose server in JSON format to the URL (Fig.4.8) so the web app can
access them.

37

1 xmlhttp . onreadystatechange = ()=>{
2 i f (xmlhttp . readyState == XMLHttpRequest .DONE) {
3 const j son = JSON. parse (xmlhttp . responseText)
4 conso l e . l og (j son) ;
5 //Change to the post assessment screen
6 route r . push ({ pathname : '/assessment/post-assessment' , query : j son

}) ;
7 }
8 }

Figure 4.8: Setting up the http request’s event listener.

The final step in sending the video data is converting it to a blob (a blob “is a file-like
object of immutable, raw data” [111]) and sending it to the server in the body of the http
request (Fig.4.9).

1 xmlhttp . open ("POST" , 'http://localhost:5000/vid-uploader') ;
2

3 //Create blob with the video data
4 const blob = new Blob (recordedChunks) ;
5

6 //Save the blob to a form
7 var fd=new FormData () ;
8 fd . append ("video" , blob , "video.webm") ;
9

10 //Send the form to the OpenPose server using the http request
11 xmlhttp . send (fd) ;
12

13 //Go to the analyzing page for now
14 route r . push ('/assessment/assessment -analyzing') ;

Figure 4.9: Creating a new http request.

4.1.2 Web App UI
Each page in the web app UI is implemented as a Next.js functional component (see section
2.4). The key sections and features of the page are also represented as Next.js components.
Most of the Next.js functional components are implemented using solely HTML and Tailwind
(see section 2.4), but the Webcam and WebcamRecorder functional components have
some additional functionality that will be explained in more detail below.

Webcam and WebcamRecorder both display live webcam footage in a video HTML
element. WebcamRecorder also records the footage. The WebcamRecorder component
(see appendix B.3) makes use of React’s useEffect() hook. useEffect() is called after the
functional components and HTML elements on the page are rendered. This hook allows
WebcamRecorder to access the <video> element on the page after it is rendered so it
can attach the webcam stream (Fig.4.11).

38

Within useEffect(), WebcamRecorder also calls GetWebcamStream(). This func-
tion creates a MediaRecorder (see Mozilla’s MediaRecorder API [112]) to record the video
frames, and when it finishes recording, it sends them to temporary storage (Fig.4.10). The
Webcam component (see appendix B.2) is almost identical to WebcamRecorder but it
does not need to set up a MediaRecorder (it does not need to record the webcam footage).

1 //Once we have acquired the webcam, attatch it's stream to the video
object

2 nav igator . mediaDevices . getUserMedia (v i dPrope r t i e s) . then ((stream)=>{
3 video . cur rent . s r cObjec t = stream ;
4 }) ;

Figure 4.10: Attaching the webcam stream to the <video> HTML object.

1 //Create a media recorder to record the video
2 const mediaRecorder = new MediaRecorder (stream , mediaRecorderOptions) ;
3

4 //Create an array to save the video frames in
5 const recordedChunks = [] ;
6

7 mediaRecorder . ondataava i l ab l e=function (e) {
8 i f (e . data . s i z e > 0) {
9 //Add image to array

10 recordedChunks . push (e . data) ;
11 }
12 i f (shouldStop === true && stopped === fa l se) {
13 mediaRecorder . stop () ;
14 stopped = true ;
15 }
16 } ;

Figure 4.11: Creating a new MediaRecorder and telling it how to save video data.

4.2 Version 2.0 Implementation

4.2.1 Patient Facing Biofeedback
In version 2.0, the patient-facing biofeedback was implemented first. The first step to this
goal was implementing the real-time pose estimator (MediaPipe Holistic) in the web app.

Before implementing MediaPipe Holistic, a generic pose estimator class needed to be
implemented (PoseEstimator (see appendix B.4)). This class allows fast integration of new
pose estimators into the system when developers release them. The generic pose estimator
class uses the joint points from the implemented pose estimator to render a 3D avatar within
the biofeedback game’s Three.js scene.

The pose estimator class has four main functions:

39

• StartTracking() - This function is abstract and specific to each pose estimator.
StartTracking() should perform the necessary steps to set up the pose estimator
and start it running on live video footage.

• assignPose() - This function is also abstract. The pose estimator should assign x, y,
z and confidence values of each joint to a data structure inside PoseEstimator so the
web app can access them.

• buildAvatarBody() - This function instantiates all the Three.js objects necessary to
construct the avatar.

• updateAvatarBody() - This function updates the position, scale and rotation of all
the avatar’s body parts. It does this by calculating them using the x,y and z coordinates
that assignPose() provides.

The functions above are explained in more detail below:
In buildAvatarBody(), there are three functions:

• buildAvatarBones() - Creates 25 cylinders as Three.js objects to represent the avatar’s
bones.

• buildAvatarJoints() - Creates 11 spheres as Three.js objects to represent the avatar’s
joints.

• buildAvatarHead() - Creates a sphere as a Three.js object to represent the avatar’s
head.

Instantiating Three.js objects involves creating a geometry and combining it with a ma-
terial to form a mesh (Fig.4.12).

1 //Make a bone (cylinder)
2 const geometry = new THREE. CylinderGeometry (0 .003 , 0 . 002 , 20 , 32) ;
3 const c y l i nd e r = new THREE. Mesh(geometry , this . boneMater ia l) ;

Figure 4.12: Example of creating a mesh in Three.js.

In updateAvatarBody(), the distance the avatar has walked is calculated using cal-
culateDistanceWalked() from PoseEstimator. To calculate this, the change in distance
on the leg currently in stance phase is calculated and added to the total distance value. The
code used for this is almost identical to the OpenPose gait analysis code in section 4.1.1.
For the full code, see calculateDistanceWalked() in appendix B.4. After calculating the
distance, the camera position is updated in the Three.js scene so it remains directly behind
the avatar (Fig.4.13).

1 //Update camera using Yoke
2 this . camera . p o s i t i o n . z = −0.7 + this . avatarDis tance ;

Figure 4.13: Updating the camera to sit directly behind the Three.js avatar.

40

Finally, updateAvatarBody() updates the spheres for the joints (including the head
sphere) and the cylinders for bones to be the correct position, size and rotation. The rotation
of each bone is calculated by determining its direction vector. This calculation involves
finding the difference between the location vectors of the two joints it is attached to (Fig.4.14).
The bone is then rotated to point towards the calculated direction vector (Fig.4.15).

1 /**
2 * Calculates the direction vector between two joints
3 */
4 ca l cu l a t eBoneDi r e c t i on (v1 , v2) {
5 const v3 = new THREE. Vector3 () ;
6 v3 . copy (v1) ;
7 v3 . sub (v2) ;
8 return v3 ;
9 }

Figure 4.14: Finding the direction vector between the bone’s two joint locations.

1 //Calculate the bone's direction vector and use it to update its rotation
2 const up = new THREE. Vector3 (0 , −1 ,0) ;
3 this . avatarBones [index] . quatern ion . setFromUnitVectors (up , this .

c a l cu l a t eBoneDi r e c t i on (j o i n tPa i r [0] , j o i n tPa i r [1]) . normal ize ()) ;

Figure 4.15: Rotating the bone to face the calculated direction vector.

To implement MediaPipe Holistic, PoseEstimator’s abstract methods assignPose()
and StartTracking() are extended in a new class - MediaPipeHolistic (see appendix
B.5).

In StartTracking() MediaPipeHolistic creates a new holistic solution from the Me-
diaPipe package. This is done using MediaPipe Holistic’s constructor function (Fig.4.16).

1 h o l i s t i c = new MediaPipe . H o l i s t i c ({ l o c a t eF i l e : (f i l e) => {
2 return `https : //cdn.jsdelivr.net/npm/@mediapipe/holistic/${file}`;
3 }}) ;
4

5 //Set up holistic tracking
6 h o l i s t i c . se tOpt ions ({
7 modelComplexity : 2 ,
8 smoothLandmarks : true ,
9 smoothSegmentation : true ,

10 ref ineFaceLandmarks : true ,
11 minDetect ionConf idence : 0 . 5 ,
12 minTrackingConfidence : 0 . 5
13 }) ;

Figure 4.16: Creating a new holistic solution and setting the tracking options.

41

StartTracking() also initializes MediaPipe Holistic and tells it to call getVideoFrame()
once initialization is complete. getVideoFrame() executes once per video frame sending
the current frame of webcam footage to MediaPipe Holistic for analysis.

1 /* Gets current video frame and sends it for analysis */
2 async getVideoFrame () {
3 window . requestAnimationFrame (()=> { this . getVideoFrame () }) ;
4 i f (! this . switchingCams) {
5 await h o l i s t i c . send ({ image : v ideo }) ;
6 i f (! this . i s I n i t i a l i z e d) {
7 this . i s I n i t i a l i z e d = true ;
8 }
9 }

10 }

Figure 4.17: getVideoFrame() sends each frame of data to MediaPipe Holistic.

Finally, StartTracking() sets up an event listener that fires when MediaPipeHolistic
returns pose data (Fig.4.18). This listener calls assignPose() to set the avatar’s new pose
and updateAvatar() (from the pose-estimator class) to match the avatar to the new pose
data.

1 //Event fires when holistic has completed its analysis
2 h o l i s t i c . onResults ((r e s u l t s)=> {
3 this . a s s ignPose (r e s u l t s) ;
4 this . updateAvatar () ;
5 })

Figure 4.18: Setting up the MediaPipe Holistic event listener.

assignPose(), adds the coordinates of each joint to an array that is visible to the
PoseEstimator class. The distance walked is added to each joint’s z coordinate to make
the avatar appear to move forward with the user.

1 //Assign values for body
2 r e s u l t s . poseLandmarks . forEach (element => {
3 this . body [i] = { coo rd ina t e s : new THREE. Vector3(−element . x , −element . y ,

−element . z + this . avatarDis tance) , con f id ence : element . v i s i b i l i t y }
4 i++
5 }) ;

Figure 4.19: Adding MediaPipe co-ordinates to an array.

4.2.2 Biofeedback Environment
The World class (see appendix B.6) renders an environment for the avatar to walk in. This
environment includes a floor, a sky and lighting for the Three.js scene. The main functions

42

in World are addFloor() and addSky().
addFloor() creates a plane for the floor and applies a floor-like material to it. It then

adds the plane to the scene (Fig.4.20).

1 /**
2 * Adds a plane with a specified texture for the avatar to walk on
3 */
4 addFloor () {
5 //Create floor geometry
6 const geometry = new THREE. PlaneBufferGeometry (10 ,20 ,512 ,512) ;
7

8 //Create and position floor
9 this . f l o o r = new THREE. Mesh(geometry , this . f l o o rMa t e r i a l) ;

10 this . f l o o r . r o t a t i on . x = Math . PI /2 ;
11 this . f l o o r . p o s i t i o n . y = −1;
12 this . f l o o r . p o s i t i o n . z = 5 ;
13

14 //Add floor to the THREE scene
15 this . s cene . add (this . f l o o r) ;
16 }

Figure 4.20: The addFloor() function creates a plane for the floor and adds it into the
scene.

addSky() adds a sphere to the scene that is large enough to fit the floor and avatar
inside it. addSky() then adds a sky texture to the inside of the sphere to give the illusion
of a sky surrounding the scene.

1 /**
2 * Adds a sphere with a sky texture to the scene
3 */
4 addSky () {
5 //Create a sky dome
6 const geometry = new THREE. SphereGeometry (30 ,32 ,32) ;
7

8 const sphere = new THREE. Mesh(geometry , this . skyMater ia l) ;
9 sphere . p o s i t i o n . z = 15 ;

10 sphere . p o s i t i o n . y = −15;
11

12 this . s cene . add (sphere) ;
13 }

Figure 4.21: The addSky() function creates a sphere with a sky texture and adds it to the
scene.

43

4.3 Version 3.0 Implementation

4.3.1 Game Settings
The first feature implemented in version 3.0 was the Game Control System (GCS). The
GCS allows the clinician to change game settings such as the avatar colour or the ground
material. The concept of this feature was adapted from the thesis author’s previous Master
of Engineering Project [8]. To make it easier to change game settings from the GCS, a game
class was created (see appendix B.7). The game class performs all the functionality imple-
mented in version two but also contains a new function - updateProperty() (Fig.4.22).
This function takes a string as input that describes a property of the game that needs to
be updated. As its second input, updateProperty() takes the value the property should
update to. updateProperty() uses these two inputs to change the specified game property
to the specified value. Individual settings in the GCS make calls to updateProperty()
when the user updates them.

1 /** Updates any property within the game from the GCS */
2 updateProperty (name , va lue) {
3 switch (name) {
4 case "avatar bone colour" :
5 this . avatar . updateBoneColour (va lue) ;
6 break ;
7 case "avatar head colour" :
8 this . avatar . updateHeadColour (va lue) ;
9 break ;

Figure 4.22: Excerpt from updateProperty() showing how game settings are updated.

4.3.2 MediaPipe Pose Implementation
The second feature implemented in version 3.0 was the MediaPipe Pose pose estimator. This
was accomplished by creating a new class MediapipePose (see appendix B.8) that extends
PoseEstimator. MediaPipe Pose was chosen, as when testing its Web Demo [113], it had
a noticeably higher accuracy than MediaPipe Holistic. The implementation of MediaPipe
Pose is almost identical to that of MediaPipe Holistic (see section 4.2.1).

MediapipePose incorporates avatar scaling into its design. This feature keeps the avatar
the same size regardless of the user’s height (this was an issue encountered during version
2’s development). To scale the avatar, the y coordinates of each joint are normalised with
respect to the avatar’s height, and an offset is applied so the avatar’s feet appear at ground
level (Fig.4.23).

44

1 //Set results with offset and scaling
2 r e s u l t s . poseLandmarks . forEach (element => {
3 this . body [i] = { coo rd ina t e s : new THREE. Vector3 (element . x−1.05 ,

(0 . 6 ∗ ((element . y−this . avatarOf fsetY) / this . avatarHeight)) −0.7 , −
element . z + this . met r i c s . rea lTimeMetr ics . avgDistance) , con f id ence :
element . v i s i b i l i t y }

4 i++
5 }) ;

Figure 4.23: Setting each of the joint co-ordinates with scaling.

4.3.3 Metrics Detection
The final feature implemented in version 3.0 was real-time metrics calculation (Fig.4.24) in
the MetricsCalculator class (see appendix B.9). The approach when implementing this
was to convert the OpenPose metrics calculation code from Python into JavaScript. The
script includes some code for calculating more accurate post-session metrics but this code
was later moved to MATLAB and improved upon, so it will be discussed it in chapter 6.

Figure 4.24: Real time metrics within the biofeedback game.

The only other item of note is the data structure in MetricsCalculator that keeps
track of the important joint locations (trackerVariables.jointPoints_m). This is used to
output the JSON data for the MATLAB analysis in chapter 6.

45

5 Testing
The Next.js testing framework Cypress was used to test the UI of the training page. The
tests designed are as follows:

Page area Test Description Result

Training page. . . should open PASS

Avatar settings. . . allows user to select differ-
ent bone colours

PASS

Avatar settings. . . allows the user to select dif-
ferent joint colours

PASS

Avatar settings. . . allows the user to select dif-
ferent head colours

PASS

World settings. . . allows the user to select dif-
ferent ground textures

PASS

World settings. . . allows the user to select dif-
ferent sky textures

PASS

Interactions settings. . . allows the user to enable
and disable the colours task

PASS

Interactions settings. . . allows the user to set the
speed for the colours task

PASS

Interactions settings. . . allows the user to set the
time for the test

PASS

Mobile switch displays but-
ton. . .

should switch to the game
display

PASS

Mobile switch displays but-
ton. . .

should switch back to the
video display

PASS

Mobile menu open & close
button. . .

should close the settings
menu

PASS

Mobile menu open & close
button. . .

should open the settings
menu

PASS

46

Settings navbar. . . should only display the
avatar settings when the
avatar button is clicked

PASS

Settings navbar. . . should emphasize the avatar
button when the avatar but-
ton is clicked

PASS

Settings navbar. . . should de-emphasize the
world button when the
avatar button is clicked

PASS

Settings navbar. . . should de-emphasize the in-
teractions button when the
avatar button is clicked

PASS

Settings navbar. . . should only display the
world settings when the
world button is clicked

PASS

Settings navbar. . . should emphasize the world
button when the world but-
ton is clicked

PASS

Settings navbar. . . should de-emphasize the
avatar button when the
world button is clicked

PASS

Settings navbar. . . should de-emphasize the in-
teractions button when the
world button is clicked

PASS

Settings navbar. . . should only display the in-
teractions settings when the
world button is clicked

PASS

Settings navbar. . . should emphasize the inter-
actions button when the in-
teractions button is clicked

PASS

Settings navbar. . . should de-emphasize the
avatar button when the in-
teractions button is clicked

PASS

Settings navbar. . . should de-emphasize the
world button when the in-
teractions button is clicked

PASS

Table 5.1: Table describing each of the unit tests for the UI.

47

The testing code is included in appendix C.1. Cypress was unable to test the biofeed-
back game since the majority of its features required visual confirmation that they were
functioning. A series of visual tests were therefore carried out for the game:

Page area Test Description Result

Avatar. . . should follow the patient’s
movements

PASS

Avatar. . . should change to the colour
the clinician selects

PASS

Avatar. . . should move forward when
the patient walks forward
on the treadmill

PASS

Environment. . . should change to the ground
texture the clinician selects

PASS

Environment. . . should change to the sky
texture the clinician selects

PASS

Interactions settings. . . should change the test du-
ration

PASS

Interactions settings. . . should turn the stroop test
on and off

PASS

Interactions settings. . . should adjust the speed of
the stroop test

PASS

Table 5.2: Table describing each of the visual tests for the game.

48

6 Validation

6.1 Data Capture and Processing
Upon capturing the data for the first patient, it was evident that Tracking Tools was strug-
gling to capture the six joint positions required. When capturing more than two joint
locations, it was impossible to get a consistent trace on each joint’s location. This issue
occurred because the only version of Tracking Tools available at the time was a limited one
not designed for tracking large numbers of objects at once. Therefore, the decision was made
to focus solely on ankle location rather than the planned hip, knee and ankle locations. This
decision removed hip flexion and knee flexion from the list of metrics that could be measured.

Some trials did not capture data, and were unable to be repeated due to time constraints:

• For Patient01, two rounds were captured for each treadmill speed instead of three.

• For Patient05, two rounds were captured instead of three for the lowest treadmill speed.

The next stage in the study was to apply a low-pass filter to both datasets to optimize them
for gait event detection.

Before applying a low pass filter to the OptiTrack data, a preliminary step needed to
be performed. When the OptiTrack can not locate a marker, it assigns it a value of zero.
This feature creates sporadic jumps in the data (Fig.6.1) which would affect the results of
the filtering stage. Cubic interpolation (Fig.6.2) was used to fill in the missing values. This
technique was not required for the MediaPipe data as it was continuous (no breaks in the
signal). The filtering stage uses a moving average filter with a window size that is 1/10th
the period of the waveform. This filter removes high-frequency fluctuations so the peaks of
the data can be detected.

Figure 6.1: Sporadic data from the OptiTrack.

49

1 f unc t i on [array] = cub ic_sp l ine (array)
2 %cubic_sp l ine uses cubic i n t e r p o l a t i o n where z e ro s (nu l l va lue s) appear
3

4 array_start = −1;
5 f o r i = 1 : l ength (array)
6 %i f the value i s nu l l (0) s e t i t to NaN
7 i f array (i) == 0.0000000
8 i f a r ray_start ~= −1
9 array (i) = NaN;

10 end
11 %record f i r s t non zero value
12 e l s e i f ar ray_start == −1
13 array_start = i ;
14 end
15 end
16

17 %in t e r p o l a t e miss ing va lue s (cub ic s p l i n e)
18 array (array_start : end) = f i l l m i s s i n g (array (array_start : end) , ' s p l i n e ') ;
19 end

Figure 6.2: The cubic_spline function for removing null values using cubic interpolation.

After the filtering stage, outliers needed to be removed from the OptiTrack data. This
step was important as the gold standard data needed to be accurate for validation purposes.
It was decided the best method of determining outliers was to make a priori assumptions
based on normal gait data. Each source of data would then be visually inspected for anoma-
lies and this data would be excluded from the results where appropriate.

It was decided the gait data from the OptiTrack should fit the two following criteria:

• Periodic, sine-like waveform with a roughly constant frequency.

• No sudden jumps in amplitude outside the range of the waveform.

Once the anomalous data had been determined, the decision had to be made whether to
exclude it completely or trim it down to remove the outliers. It was decided that any clips
with more than 30 seconds of continuous footage without an outlier could be trimmed,
otherwise, the clip would be discarded. 30 seconds was chosen as from experience, enough
gait data could be collected in this time to calculate average metrics.

Using the criteria mentioned above, six outlier recordings were discarded and eight outlier
recordings were trimmed (Tab.6.1 and Tab.6.2). This totalled 482.3 seconds of footage.:

50

Patient
Code

Recording
Code

Amount of Data Removed
(seconds (s))

Reason

Patient02 Pat02_09 all data - 60.0s Breaks in waveform period-
icity (BWP)

Patient03 Pat03_02 12.0s Jump in amplitude outside
the usual range of the wave-
form (JIA)

Patient03 Pat03_03 all data - 60.0s JIA

Patient03 Pat03_05 13.0s JIA

Patient03 Pat03_06 8.0s JIA

Patient03 Pat03_07 27.0s JIA

Patient03 Pat03_08 all data - 60.0s BWP

Patient03 Pat03_09 13.5s JIA

Patient04 Pat04_01 all data - 60.0s BWP

Patient05 Pat05_02 all data - 60.0s BWP

Patient05 Pat05_06 all data - 60.0s BWP

Patient06 Pat06_04 25.3s JIA

Patient06 Pat06_07 10.0s JIA

Patient06 Pat06_08 13.5s JIA

Table 6.1: Table describing each of the modifications to the OptiTrack data.

Patient Code Recordings
Trimmed

Recordings Re-
moved

Patient02 0 1

Patient03 5 2

Patient04 0 1

Patient05 0 2

Patient06 3 0

Table 6.2: Table describing how much data was trimmed and discarded for each patient.

51

Upon inspection, the cause of the above outliers was determined to be large gaps in
tracking data on the left and/or right ankle. These gaps were caused by the OptiTrack
system failing to detect the markers. Whilst cubic interpolation was useful for smaller gaps
in the data, larger gaps were much harder to fill (fig.6.3), causing the outliers seen in tab.6.1.

Figure 6.3: Example of the cubic interpolation algorithm losing accuracy with large gaps in
data. The orange line is the raw data, and the blue line is the pre-processed data with cubic
interpolation. The red dashed line gives an idea of how the interpolation should have looked.

Once the outliers had been discarded, the metrics extraction process could begin. The
first stage in this process is to detect minima and maxima from the ankle position data.
MATLAB’s findpeaks() is used to achieve this (Fig.6.4 and Fig.6.5). The minimum distance
between peaks (MinPeakDistance) was set to be ¾ of the waveform’s period (calculated by
finding 1/cadence) and the minimum drop in amplitude between peaks (MinPeakProminence)
was set to be ¾ of the root mean square (RMS) of the signal. These values were determined
to be the best for peak detection through trial and error.

52

Figure 6.4: Results of the peak detection algorithm. The circle markers denote minima
and maxima and the red and blue lines are the OptiTrack data and MediaPipe Pose data
respectively.

1 %f ind maxima in the data
2 [peaks_l , l o c s_ l] = f indpeaks (ankle_l , ' MinPeakDistance ' , (fundamental_l∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_l ∗0 . 75) ;
3 [peaks_r , locs_r] = f indpeaks (ankle_r , ' MinPeakDistance ' , (fundamental_r∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_r ∗0 . 75) ;
4

5 %f ind minima in the data
6 [min_l , locs_min_l] = f indpeaks (−ankle_l , ' MinPeakDistance ' , (fundamental_l∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_l ∗0 . 75) ;
7 [min_r , locs_min_r] = f indpeaks (−ankle_r , ' MinPeakDistance ' , (fundamental_r∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_r ∗0 . 75) ;

Figure 6.5: Using findpeaks() to detect maxima and minima.

Temporal metrics are calculated by looking at the time intervals between detected peaks.
The temporal metrics are:

• Swing time(s).

• Stance time(s).

• Double support time(s).

• Single support time(s).

The temporal metrics were calculated according to the diagram below (Fig.6.6). For the
temporal metrics code, see get_swing_stance() in appendix E.1 and get_double_support()
in appendix E.2. The number of steps is also calculated by counting the number of peaks.

53

Figure 6.6: Calculating temporal metrics from peak data. The red line is the left ankle data
and the blue line is the right ankle data.

In terms of the spatial metrics, stride length is calculated by looking at the distance
intervals between minima and maxima (Fig.6.7). The sum of the strides is then calculated
to get the distance walked. Finally, the distance walked is divided by the duration of the
clip to get the walking speed in m/s. For the stride length code, see get_swing_stance()
in appendix E.1.

Figure 6.7: Diagram showing how stride length was calculated.

Cadence is calculated by finding the fundamental frequency of the gait data. The Fast
Fourier Transform (FFT) is used to split the gait data into it’s constituent frequencies and
the lowest frequency is assumed to be the fundamental. For the code used to calculate the
cadence, see lines 12-16 of get_metrics() in appendix E.3 and get_fundamental() in
appendix E.4.

54

At this stage, all the metrics had been extracted from the MediaPipe and OptiTrack data.
Upon initial inspection of the metrics data, one anomalous result was found and removed
(Pat06_01). This result was removed as many of the metric values for the right foot were
equal to either null or zero, meaning the result could not be used for accuracy calculations
(MATLAB functions cannot be called on null data values). Upon inspecting the step count
for the right foot, it was observed that MediaPipe’s number of steps was 1, whereas the
OptiTrack’s was 18. This large difference in step count signified that the peak detection
algorithm failed on the MediaPipe data, only detecting one step, hence the null values. This
was confirmed when viewing the peak detection results graphically (Fig.6.8).

Figure 6.8: Graph showing anomalous peak detection results for Pat06_01.

After this anomalous data was removed, the next step in the validation study was to
separate the data into classes. A class consisted of all the data captured for a particular
patient and treadmill speed. For example, Pat01_Speed01 means all the data captured
at the slowest speed for Patient 1. After the data had been sorted into classes, the mean
percentage error was calculated for every metric in each class using the equation in Fig.6.9.

ϵ̃% =
1

n

∑ mmed −mopt

mopt

× 100

Figure 6.9: Equation for the mean error (ϵ̃%) of a metric, where mopt is the metric value for
the OptiTrack, mmed is the metric value for MediaPipe and n is the number of samples.

55

The mean errors from every class were then combined to produce a box plot showing the
distribution of error for each metric across the different classes (Fig.6.10 and Fig.6.11).

Figure 6.10: Box plot showing distribution of mean percentage error for metrics (Graph 1).

56

Figure 6.11: Box plot showing distribution of mean percentage error for metrics (Graph 2).

From these box plots, a list of classes that were potential outliers was generated along
with the number of metrics that were outliers (Tab.6.3).

Class Name Number of Metrics
Detected as Outliers

Pat01_Speed01 1

Pat02_Speed01 4

Pat02_Speed03 1

Pat04_Speed03 1

Pat06_Speed01 9

Pat06_Speed02 4

Pat06_Speed03 5

Table 6.3: Number of different metrics detected as outliers for outlier classes.

An important initial observation to make is that over half of the outliers occurred for
both Pat06 (18/25 outliers) and Speed01 (14/25 outliers). Although these results cannot be

57

discarded, this could suggest that MediaPipe found slower gait speeds and particular types
of gait more difficult to process.

It was decided that the data for each of the outlier classes should be investigated individ-
ually to determine whether there was a root cause. Some of the data of the outlier classes
had high percentage errors for number of steps, similar to the anomalous result Pat06_01.
This suggested that the peak detection algorithm was not working correctly. Cadence was
found to be the main cause for this, as it was sometimes calculated incorrectly due to very
low frequency oscillations in the gait data. This miscalculation meant the MinPeakDis-
tance of the peak detection algorithm was set higher than it should have been, resulting
in less peaks being detected. The MediaPipe results with this type of error could not be
discarded as they were representative of the pose estimation method’s accuracy. However,
the OptiTrack result for Pat06_02 also displayed this behaviour with a high percentage of
the peaks being missed during data processing (Fig.6.12). As the OptiTrack was the gold
standard, the Pat06_02 result was discarded. It was decided final results would be shown
both with and without this result.

Figure 6.12: Graph showing the high amounts of peaks missed in the Pat06_02 result.

The other type of outlier observed was due to inaccurate data from MediaPipe. Some-
times MediaPipe would detect a secondary fluctuation within the gait cycle that was not
present in the OptiTrack data. If it was big enough, this fluctuation caused the peak detec-

58

tion algorithm to trigger twice within one gait cycle (Fig.6.13). Again, these results could
not be discarded, as they were representative of the pose estimation method.

Figure 6.13: Graph showing the secondary fluctuation in the gait cycle detected by Medi-
aPipe.

Once the outliers had been removed, the mean percentage errors were found for the study
as a whole. These results are shown overleaf (Tab.6.4).

59

Metric Name Mean Percentage
Error (2d.p.)

Mean Percentage
Error After Remov-
ing Outliers (3d.p.)

Steps left 3.96(9.28)% 2.63(3.14)%

Steps right 11.94(30.33)% 8.26(18.55)%

Cadence left 0.24(1.19)% 0.24(1.20)%

Cadence right 4.95(21.19)% 5.07(21.43)%

Swing time left 9.70(11.51)% 8.30(7.07)%

Swing time right 13.54(13.73)% 12.40(11.65)%

Stance time left 3.43(3.61)% 3.03(2.49)%

Stance time right 8.41(14.91)% 7.17(12.66)%

Single support time left 8.41(14.91)% 7.17(12.66)%

Single support time right 3.43(3.61)% 3.03(2.49)%

Double support time left 11.42(11.08) 10.14(7.32)%

Double support time right 13.43(12.12)% 12.40(10.20)%

Stride length left 71.12(6.42)% 70.90(6.33)%

Stride length right 79.86(2.79)% 79.72(2.65)%

Distance left 70.88(6.52)% 70.93(6.59)%

Distance right 78.39(4.73)% 78.81(3.86)%

Speed 74.62(4.79)% 74.82(4.66)%

Table 6.4: Mean percentage error values with standard deviation in brackets.

6.2 Discussion
The mean percentage errors show that MediaPipe’s time-based metrics are much more ac-
curate (0.24 < ϵ̃% < 12.40) than spatial metrics (70.90 < ϵ̃% < 79.72). The results for
time-based metrics matched predictions from initial observations of the data and certainly
warrant further investigation. It is apparent that whilst Mediapipe shows fluctuations that
are not present in the OptiTrack data, it still represents the peaks and troughs of the data
accurately enough to estimate time-based metrics.

The Spearman’s Rank Correlation Coefficient (SRCC) between the spatial metrics for
MediaPipe and the OptiTrack was calculated using the Spearman’s Rho function [33] (Fig.
6.14). The SRCCs signified a very strong positive correlation (Tab.6.5) for four out of five

60

metrics (moderate correlation for the left leg’s stride length). SRCC was chosen as some
of the spatial metrics data had outliers (Fig.6.15) so the Pearson’s Correlation Coefficient
could not be used. This result could signify that the larger percentage error of the spatial
metrics is caused by a scaling issue and could be fixed by applying a gain factor.

ρ = 1− 6
∑
(Rmed −Ropt)

2

n(n2 − 1)

Figure 6.14: Equation for the SRCC (ρ) of a metric, where Ropt is the rank of each metric
value for the OptiTrack, Rmed is the rank of each metric value for MediaPipe, and n is the
number of samples (from [33]).

Figure 6.15: Graph showing the distribution of spatial metrics (outliers circled in green).

61

Metric Name SRCC (2d.p.) SRCC After Re-
moving Outliers
(2d.p.)

Stride length left 0.40 0.39

Stride length right 0.81 0.82

Distance left 0.75 0.74

Distance right 0.87 0.86

Speed 0.86 0.85

Table 6.5: SRCC for spatial metrics.

Finally, another notable observation is that the percentage error for the right foot is
greater than the left for every metric. The only exception to this is single support time
(single support time is calculated using data from the opposite foot, so the percentage errors
are swapped). This difference in percentage error could mean that MediaPipe’s right ankle
detection is less accurate than that of the left ankle. Again, a study with a larger sample
size would be necessary to validate this claim.

62

7 Evaluation and Further Work

7.1 Evaluation
Below is a screenshot of the finished web app running (Fig.7.1). The biofeedback game and
camera feed are on the left and the GCS is on the right. Evaluating the general appearance
of the application, it is split into distinct sections, making it simple and easy to understand.
This will make it easy for clinicians to use it without much prior training.

Figure 7.1: Finished web app including GCS, camera feed, and biofeedback game.

Assessing the finished application against the aims and objectives in section 2.7, it is
clear that the majority have been accomplished. The MediaPipe Pose pose estimator is
implemented, and used to create a biofeedback game that physiotherapists can use for reha-
bilitation. This accomplishes aim 3, objective 1 and objective 4. A gait analysis algorithm
is also developed to calculate the required gait metrics from MediaPipe Pose, and the algo-
rithm’s results are compared to those from the OptiTrack. This achieves aim 1, aim 2, and
objective 3. Objective 2 is mostly completed, apart from the calculation of hip and knee
angles. Hip and knee angles were not included in the metrics due to the limitations of the
OptiTrack software discussed in section 6.1. In addition to the aims and objectives com-
pleted, a settings panel was also developed to allow the clinician to customise the gameplay
to the patient’s needs.

63

7.2 New Game Features
One way to further improve the biofeedback game would be to add new gameplay features.
Some examples of possible features are:

• Support for VR headsets - Three.js has native support for this [34]. To make the
application a VR application, VR must be enabled and a button must be created to
start VR mode (Fig.7.2).

• Objects for the patient to interact with - This could be achieved by implement-
ing collision detection using Three.js’s Raycaster [114]. Implementing this allows the
patient to touch objects using their avatar and make them disappear or move.

• “Movement challenges” such as squats, calf raises, etc. - Change in joint angles
could be used to calculate when the user has completed a repetition. These measure-
ments of range of motion could also be used to measure the patient’s improvement over
time.

These features would make the biofeedback game more immersive, which could increase
the patient’s distraction from chronic pain caused by their condition (as seen in [7]).

1 import { VRButton } from 'three/addons/webxr/VRButton.js' ;
2

3 //Add button to page for VR users
4 document . body . appendChild (VRButton . createButton (r endere r)) ;
5

6 //Enables VR
7 r endere r . xr . enabled = true ;
8

9 //Can't use requestAnimationFrame for the game loop in VR
10 r endere r . setAnimationLoop (function () {
11

12 r endere r . render (scene , camera) ;
13

14 }) ;

Figure 7.2: Using VR within a THREE.js project [34].

7.3 In-app Metric Calculation
MATLAB was used to calculate the metrics in section 6. Whilst this was useful for the
accuracy study, the metric calculation should happen on the web app in its production-
ready version. Most of the calculations for the metrics can be transferred directly, however
the findpeaks(), movmean() and fft() functions need to be implemented in JavaScript.
The alternative to integrating the metrics calculation into the web app would be to create

64

a MATLAB server for the user to send the pose data to. However, the metrics calculation
is not very compute-intensive, so handling the computations on the client end would be less
costly than hosting a metrics server.

7.4 Improving Spatial Metrics
As noted in Section 6.2, MediaPipe’s spatial metrics displayed a very strong positive corre-
lation when compared to the OptiTrack’s despite their large percentage error. This might
indicate that a relationship exists between MediaPipe’s spatial data and the OptiTrack’s.
This relationship could be determined using regression and used to reduce the percentage
error of the results.

7.5 Validating Joint Angles
Due to the limitations of the Tracking Tools software at the University, only ankle data
could be captured. This limitation meant that joint angles could not be calculated from
the OptiTrack data. A future study could use the full-body tracking version of Tracking
Tools to capture hip and knee angles. The equivalent angles from MediaPipe Pose could
then be obtained and compared to those from the OptiTrack using mean percentage error
calculations.

65

8 Conclusion
Gait disorders are one of the most common health issues affecting the elderly population.
Due to the higher incidence of disability and falls [2] [3] [4] in people with this type of disorder,
early detection and intervention is paramount in preventing the occurrence of injuries and
accidents.

This thesis has emphasised the value of gait analysis and physiotherapy as a holistic
method of detecting and treating gait disorders. It has also highlighted how combining
VR-based gait analysis and physiotherapy is more effective than conventional methods at
treating various gait disorders, thus establishing the need for a cost-effective version of this
system.

The design, implementation and testing phases of the system were documented and
the process of assessing it’s accuracy against the OptiTrack was described. The results
demonstrated that the system’s percentage error (ϵ̃%) was much less for temporal gait metrics
(0.24 < ϵ̃% < 12.40) than it was for spatial ones (70.90 < ϵ̃% < 79.72). Four out of five
spatial metrics also had a “very strong correlation” (0.74 < r < 0.86) when compared to the
OptiTrack’s metrics, meaning the spatial inaccuracy could be reduced using a gain factor.
These results support the use of the system as a first response tool for measuring temporal
gait metrics and warrant further investigation in an accuracy study with a higher sample
size measuring more gait metrics.

This system could make gait analysis and VR rehabilitation more accessible to the general
public and would allow medical clinicians to measure gait without the need for specialist
motion capture facilities. This accessibility would improve early detection rates for gait
abnormalities, improving outcomes for those affected and reducing the risk of accident or
injury. The system uses a standard webcam, making it affordable and easy to set up, and
can be used on a mobile device in the home. These features could alleviate the strain
on healthcare services caused by the cost and lack of accessibility of current gait analysis
systems.

66

A Web App Design

A.1 Version 1 Architecture

Figure A.1: Flow diagram for pre-assessment page.

1

Figure A.2: Flow diagram for assessment instructions page.

2

Figure A.3: Flow diagram for assessment page.

Figure A.4: Flow diagram for save session page.

3

Figure A.5: Flow diagram for start again page.

4

A.2 Version 2 Mobile UI

Figure A.6: Mobile layout for select camera page.

Figure A.7: Mobile layout for training camera view. The settings button on the left toggles
the settings hamburger menu and the game button on the right switches to the training
game view.

5

Figure A.8: Mobile layout for training game view. The settings button on the left toggles
the settings hamburger menu and the camera button on the right switches to the training
camera view.

A.3 Version 2 Architecture

Figure A.9: Flow diagram for select activity page.

6

Figure A.10: Flow diagram for training instructions page.

7

Figure A.11: Flow diagram for biofeedback game page.

8

Figure A.12: Flow diagram for start again page (biofeedback version).

9

A.4 Version 3 Architecture

Figure A.13: Flow diagram for start screen.

Figure A.14: Flow diagram for instructions page.

10

Figure A.15: Flow diagram for biofeedback game page.

11

B Web App Implementation

B.1 Version 1.0 OpenPose Server
Below is the code for the OpenPose Gait analysis server.

1 import os
2 import subproces s
3 import j son
4 from cv2 import cv2
5 from f l a s k import Flask , request , make_response
6 import numpy as np
7

8 app = Flask (__name__)
9

10 # openpose body_25 indexes f o r l e f t and r i gh t hip and hee l
11 L_HEEL = { 'x ' : 63 , 'y ' : 64 , ' c ' : 65}
12 R_HEEL = { 'x ' : 72 , 'y ' : 73 , ' c ' : 74}
13 L_HIP = { 'x ' : 36 , 'y ' : 37 , ' c ' : 38}
14 R_HIP = { 'x ' : 27 , 'y ' : 28 , ' c ' : 29}
15

16 # conver t s l ength o f walkway in p i x e l s to metres
17 SCALE_FACTOR = 4.0 # TODO need to a l s o mult ip ly by sc r e en r e s
18

19

20 # sends the re sponse to the PWA
21 de f request_response (metr i c s) :
22 # al low CORS
23 re sponse = make_response ()
24 re sponse . headers . add (' Access−Control−Allow−Orig in ' , ' ∗ ')
25

26 # se t the data in the response to a JSON conta in ing the metr ic va lue s
27 re sponse . data = j son . dumps(metr i c s)
28 re turn response
29

30

31 # saves v ideo and ana lyze s with OpenPose
32 @app . route (' /vid−uploader ' , methods=['POST '])
33 de f vid_upload_and_analysis () :
34 recording_name = ' test_conv '
35 f i le_name = ' t e s t '
36

37 save_video_to_storage (file_name , recording_name)
38

39 # move to the openpose d i r e c t o r y
40 os . chd i r (' . / openpose ')
41

12

42 run_openpose (recording_name)
43

44 # move to the j son d i r e c t o r y
45 os . chd i r (' . . / v ideos−analyzed / ' + recording_name)
46

47 # acqu i r e a l i s t o f a l l JSONs f o r the ana l y s i s
48 json_names_list = [f i l e f o r f i l e in os . l i s t d i r (
49 ' . / ') i f f i l e . endswith (' . j s on ')]
50

51 # load the saved video in to OpenCV
52 video = cv2 . VideoCapture (' . . / . . / v ideos / ' + recording_name + ' .mp4 ')
53

54 # ana lyse g a i t and pr in t the r e s u l t
55 metr ics , ga i t_t racke r s = analyse_gait_data (json_names_list , v ideo)
56

57 # di sp l ay metr i c s and hee l t r a c k e r s
58 pr in t (met r i c s)
59 pr in t (ga i t_t racke r s)
60

61 # output the frames where the re i s a hee l s t r i k e
62 render_heel_str ike_images (ga i t_tracker s , v ideo)
63

64 os . chd i r (' . . / . . / ')
65 re turn request_response (metr i c s)
66

67

68 # runs openpose on a video , outputt ing the analysed video and the JSON f i l e s
69 de f run_openpose (recording_name) :
70 # run OpenPose on the video and save the r e s u l t """
71 subproces s . run ([' . / bin /OpenPoseDemo . exe ' , '−−video ' , ' . . / v ideos / ' +

recording_name + ' .mp4 ' , '−−write_json ' , ' . . / v ideos−analyzed / ' +
72 recording_name , '−−d i sp l ay ' , ' 0 ' , '−−write_video ' , ' . . /

v ideos−analyzed / ' + recording_name + ' / ' +
recording_name + ' . av i '])

73

74

75 # saves the video captured by the c l i e n t to the s e r v e r
76 de f save_video_to_storage (recording_name , f i le_name) :
77 # get the video
78 blob = reques t . f i l e s [' video ']
79

80 # save the video and convert to mp4 us ing FFMPEG
81 blob . save (' . / v ideos / ' + recording_name + ' .webm ')
82 subproces s . run ([' . / ffmpeg/bin / ffmpeg . exe ' , '− i ' , ' . / v ideos / ' +

recording_name +
83 ' .webm ' , '−vf ' , ' t ranspose=0 ' , ' . / v ideos / ' + file_name + ' .

mp4 '])
84 os . remove (' . / v ideos / ' + recording_name + ' .webm ')
85

86 # make a d i r e c t o r y f o r the JSONs
87 os . mkdir (' . / v ideos−analyzed / ' + recording_name)
88

89

90 # outputs frames where the re i s a hee l s t r i k e to the JSON d i r e c t o r y

13

91 de f render_heel_str ike_images (ga i t_tracker s , v ideo) :
92 # track prog r e s s in the f o r loop
93 index = 0
94

95 # save each o f the hee l−s t r i k e frames as an image
96 f o r frame_index in ga i t_t racke r s [' toe_off_frames '] :
97 video . s e t (1 , frame_index)
98 ret , frame = video . read ()
99 cv2 . imwrite (' . / ' + s t r (frame_index) + '_ ' +

100 s t r (ga i t_t racke r s [' toe_of f_legs '] [index]) + ' . jpg ' , frame)
101 index = index + 1
102

103

104 # ca l c u l a t e s and re tu rn s g a i t met r i c s f o r the v ideo
105 de f analyse_gait_data (json_names_list , v ideo) :
106 # current and prev ious BODY_25 poses
107 current_pose : l i s t [f l o a t]
108 previous_pose : l i s t [f l o a t]
109

110 # ga i t met r i c s
111 metr i c s = {
112 ' step_count ' : 0 ,
113 ' avg_swing_left ' : 0 . 0 ,
114 ' avg_stance_left ' : 0 . 0 ,
115 ' avg_swing_right ' : 0 . 0 ,
116 ' avg_stance_right ' : 0 . 0 ,
117 ' avg_swing_left_cent ' : 0 . 0 ,
118 ' avg_stance_left_cent ' : 0 . 0 ,
119 ' avg_swing_right_cent ' : 0 . 0 ,
120 ' avg_stance_right_cent ' : 0 . 0 ,
121 ' avg_double_support_left ' : 0 . 0 ,
122 ' avg_single_support_le ft ' : 0 . 0 ,
123 ' avg_double_support_right ' : 0 . 0 ,
124 ' avg_single_support_right ' : 0 . 0 ,
125 ' cadence ' : 0 . 0 ,
126 ' avg_str ide_length ' : 0 . 0 ,
127 ' speeds ' : [] ,
128 ' avg_speed ' : 0 . 0
129 }
130

131 # di c t i ona ry items used i n t e r n a l l y to t rack ga i t
132 ga i t_t racke r s = {
133 ' hee l_s t r i k e ' : ' none ' ,
134 ' toe_of f ' : ' none ' ,
135 ' hee l_sta r t ' : 0 . 0 ,
136 ' hee l_str ike_frames ' : [] ,
137 ' toe_off_frames ' : [] ,
138 ' hee l_s t r i k e_ l eg s ' : [] ,
139 ' toe_of f_legs ' : [] ,
140 ' step_lengths ' : [] ,
141 ' f i r s t_ s t e p ' : True ,
142 ' f i r s t _ i t e r a t i o n ' : True ,
143 ' frame ' : 0 ,
144 ' tota l_frames ' : 0 ,

14

145 ' duration_min ' : 0 . 0 ,
146 ' swing_le f t ' : [] ,
147 ' s t anc e_ l e f t ' : [] ,
148 ' swing_right ' : [] ,
149 ' s tance_r ight ' : [] ,
150 ' double_support_left ' : [] ,
151 ' s ing l e_suppor t_ le f t ' : [] ,
152 ' double_support_right ' : [] ,
153 ' s ing le_support_r ight ' : []
154 }
155

156 f o r f i le_name in json_names_list :
157 # open the next j son in the l i s t
158 json_data = open (fi le_name)
159

160 # d e s e r i a l i z e in to a d i c t
161 de_json_data = json . load (json_data)
162

163 i f l en (de_json_data [' people ']) != 0 :
164 i f not ga i t_t racke r s [' f i r s t _ i t e r a t i o n '] :
165 # prev ious array o f j o i n t po in t s
166 previous_pose = current_pose
167

168 # current array o f j o i n t po in t s
169 current_pose = de_json_data [' people '] [0] [' pose_keypoints_2d ']
170

171 # ana lyse g a i t f o r the frame
172 analyse_frame (previous_pose , current_pose ,
173 ga i t_tracker s , metr ics , ga i t_t racke r s [' frame '])
174

175 e l s e :
176 # current array o f j o i n t po in t s
177 current_pose = de_json_data [' people '] [0] [' pose_keypoints_2d ']
178

179 # no t i f y the loop the f i r s t i t e r a t i o n has passed
180 ga i t_t racke r s [' f i r s t _ i t e r a t i o n '] = Fal se
181 e l s e :
182 pr in t ('no j son data f o r frame ' + s t r (ga i t_t racke r s [' frame ']))
183

184 # move onto next frame
185 ga i t_t racke r s [' frame '] += 1
186

187 # get video durat ion in minutes
188 ca lcu late_video_durat ion (video , ga i t_t racke r s)
189

190 # avg s t r i d e l ength rounded to 1 d . p .
191 calculate_avg_step_length (ga i t_tracker s , met r i c s)
192

193 # cadence (s t ep s per minute)
194 ca l cu late_cadence (ga i t_tracker s , met r i c s)
195

196 # speed (m/ s)
197 ca l cu la t e_speeds (ga i t_tracker s , met r i c s)
198

15

199 # swing/ stance r a t i o and double support / s i n g l e support
200 calculate_swing_stance_ds_ss (ga i t_tracker s , met r i c s)
201

202 re turn metr ics , ga i t_t racke r s
203

204

205 # genera t e s an average f o r an array o f n items
206 de f avg_array (array) :
207 # va r i a b l e s to conta in average
208 avg = 0
209

210 # ca l c u l a t e average
211 f o r va lue in array :
212 avg += value
213 avg /= len (array)
214 re turn avg
215

216

217 # retu rn s swing and stance as percentages
218 de f swing_stance_percent (swing , s tance) :
219 t o t a l = swing + stance
220 # round to 1d . p .
221 swing_percent = np . round ((swing / t o t a l) ∗ 100 , dec imals=1)
222 stance_percent = np . round ((s tance / t o t a l) ∗ 100 , dec imals=1)
223 re turn swing_percent , stance_percent
224

225

226 # conver t s a numbers o f frames to a durat ion in seconds
227 de f frames_to_sec (frames , total_frames , video_length_min) :
228 re turn (frames / tota l_frames) ∗ video_length_min ∗ 60
229

230

231 # ca l c u l a t e s the swing stance r a t i o
232 de f calculate_swing_stance_ds_ss (ga i t_tracker s , met r i c s) :
233 # determine the amount o f g a i t phase t imes we can c a l c u l a t e
234 i f l en (ga i t_t racke r s [' toe_off_frames ']) < l en (ga i t_t racke r s ['

hee l_str ike_frames ']) :
235 l ength = len (ga i t_t racke r s [' toe_off_frames '])
236 e l s e :
237 l ength = len (ga i t_t racke r s [' hee l_str ike_frames '])
238

239 d i f f e r e n c e = 0
240 f i r s t_even t = 1
241 # determine i f h e e l s t r i k e happens be f o r e hee l r a i s e
242 whi le d i f f e r e n c e == 0 :
243 d i f f e r e n c e = ga i t_t racke r s [' toe_off_frames '] [f i r s t_even t] − \
244 ga i t_t racke r s [' hee l_str ike_frames '] [f i r s t_even t]
245 f i r s t_even t += 1
246

247 s t r i k e _ f i r s t = d i f f e r e n c e > 0
248

249 f o r i in range (f i r s t_event , l ength − 1) :
250 # get name o f l e g s that have j u s t entered s t r i k e and r a i s e
251 s t r i k e_ l e g = ga i t_t racke r s [' hee l_s t r i k e_ l eg s '] [i]

16

252 r a i s e_ l eg = ga i t_t racke r s [' toe_of f_legs '] [i]
253

254 # i f hee l s t r i k e comes be f o r e hee l r a i s e
255 i f s t r i k e _ f i r s t :
256 # ca l c u l a t e swing and stance phase in frames
257 swing_phase = ga i t_t racke r s [' hee l_str ike_frames '] [i +
258 1] −

ga i t_t racke r s
['
toe_off_frames
'] [i]

259 stance_phase = ga i t_t racke r s [' toe_off_frames '] [i +
260 1] − ga i t_t racke r s [

'
hee l_str ike_frames
'] [i]

261

262 # ca l c u l a t e double support in frames
263 double_support = ga i t_t racke r s [' toe_off_frames '] [i] − \
264 ga i t_t racke r s [' hee l_str ike_frames '] [i]
265

266 # i f hee l r a i s e comes be f o r e hee l s t r i k e
267 e l s e :
268 # ca l c u l a t e swing and stance phase in frames
269 swing_phase = ga i t_t racke r s [' hee l_str ike_frames '] [i] − \
270 ga i t_t racke r s [' toe_off_frames '] [i]
271 stance_phase = ga i t_t racke r s [' toe_off_frames '] [i +
272 2] − ga i t_t racke r s [

'
hee l_str ike_frames
'] [i]

273

274 # ca l c u l a t e double support in frames
275 double_support = ga i t_t racke r s [' toe_off_frames '] [i +
276 1] −

ga i t_t racke r s
['
hee l_str ike_frames
'] [i]

277

278 # ca l c u l a t e swing and stance phase in s e c s
279 swing_phase_sec = frames_to_sec (
280 swing_phase , ga i t_t racke r s [' tota l_frames '] , ga i t_t racke r s ['

duration_min '])
281 stance_phase_sec = frames_to_sec (
282 stance_phase , ga i t_t racke r s [' tota l_frames '] , ga i t_t racke r s ['

duration_min '])
283

284 # append va lue s to swing and stance array
285 ga i t_t racke r s [' swing_ ' + ra i s e_ l eg] . append (swing_phase_sec)
286 ga i t_t racke r s [' stance_ ' + st r i k e_ l e g] . append (stance_phase_sec)
287

288 # ca l c u l a t e double support in seconds
289 double_support_sec = frames_to_sec (

17

290 double_support , ga i t_t racke r s [' tota l_frames '] , g a i t_t racke r s ['
duration_min '])

291

292 # append double support
293 ga i t_t racke r s [' double_support_ ' +
294 s t r i k e_ l e g] . append (double_support_sec)
295

296 # s i n g l e support i s swing o f oppos i t e l e g
297 ga i t_t racke r s [' s ingle_support_ ' + st r i k e_ l e g] . append (swing_phase_sec)
298

299 i += 1
300

301 # ca l c u l a t e average swing/ stance f o r l e f t and r i gh t l e g s
302 avg_swing_left = avg_array (ga i t_t racke r s [' swing_le f t '])
303 avg_stance_left = avg_array (ga i t_t racke r s [' s t anc e_ l e f t '])
304 avg_swing_right = avg_array (ga i t_t racke r s [' swing_right '])
305 avg_stance_right = avg_array (ga i t_t racke r s [' s tance_r ight '])
306

307 # round post c a l c u l a t i o n
308 metr i c s [' avg_swing_left '] = np . round (avg_swing_left , dec imals=2)
309 metr i c s [' avg_stance_left '] = np . round (avg_stance_left , dec imals=2)
310 metr i c s [' avg_swing_right '] = np . round (avg_swing_right , dec imals=2)
311 metr i c s [' avg_stance_right '] = np . round (avg_stance_right , dec imals=2)
312

313 # ca l c u l a t e swing/ stance percentage f o r l e f t and r i gh t l e g s
314 metr i c s [' avg_swing_left_cent '] , met r i c s [' avg_stance_left_cent '] =

swing_stance_percent (
315 avg_swing_left , avg_stance_left)
316 metr i c s [' avg_swing_right_cent '] , met r i c s [' avg_stance_right_cent '] =

swing_stance_percent (
317 avg_swing_right , avg_stance_right)
318

319 # ca l c u l a t e average double / s i n g l e support f o r l e f t and r i gh t l e g s
320 metr i c s [' avg_double_support_left '] = np . round (
321 avg_array (ga i t_t racke r s [' double_support_left ']) , dec imals=2)
322 metr i c s [' avg_single_support_le ft '] = np . round (
323 avg_array (ga i t_t racke r s [' s ing l e_suppor t_ le f t ']) , dec imals=2)
324 metr i c s [' avg_double_support_right '] = np . round (
325 avg_array (ga i t_t racke r s [' double_support_right ']) , dec imals=2)
326 metr i c s [' avg_single_support_right '] = np . round (
327 avg_array (ga i t_t racke r s [' s ing le_support_r ight ']) , dec imals=2)
328

329

330 # ca l c u l a t e s speed by step and average speed (both in m/ s)
331 de f ca l cu la t e_speeds (ga i t_tracker s , met r i c s) :
332 # track step number in the f o r loop
333 index = 0
334

335 # durat ion o f the whole v ideo
336 vid_duration_sec = ga i t_t racke r s [' duration_min '] ∗ 60
337

338 # use t h i s v a r i ab l e to c a l c u l a t e average speed over the whole v ideo
339 speed_tota l = 0
340

18

341 # frame at which the hee l s t r i k e event s t a r t s
342 f rame_start = 0
343

344 # ca l c u l a t e speed during each hee l s t r i k e phase
345 f o r d i s t anc e in ga i t_t racke r s [' step_lengths '] :
346 # frame at which the hee l s t r i k e event ends
347 frame_end = ga i t_t racke r s [' hee l_str ike_frames '] [index]
348

349 i f index != 0 :
350 distance_m = di s t anc e / 100
351

352 # number o f frames the hee l s t r i k e phase occup i e s
353 num_frames = frame_end − f rame_start
354

355 # durat ion o f he e l s t r i k e phase as a f r a c t i o n o f the t o t a l frames
in the video

356 step_durat ion = num_frames / ga i t_t racke r s [' tota l_frames ']
357

358 # po s i t i o n in the video in seconds
359 step_duration_sec = vid_duration_sec ∗ step_durat ion
360

361 # speed (m/ s) f o r t h i s hee l s t r i k e phase
362 speed_ms = distance_m / step_duration_sec
363

364 # add speed to l i s t o f speeds and cumulat ive speed
365 metr i c s [' speeds '] . append (np . round (speed_ms , dec imals=2))
366 speed_tota l += speed_ms
367

368 index += 1
369 f rame_start = frame_end
370

371 # ca l c u l a t e and return average speed f o r the whole v ideo
372 metr i c s [' avg_speed '] = np . round (
373 speed_tota l / l en (metr i c s [' speeds ']) , dec imals=2)
374

375

376 # ca l c u l a t e s t ep s per minute
377 de f ca lcu late_cadence (ga i t_tracker s , met r i c s) :
378 metr i c s [' cadence '] = metr i c s [' step_count '] / ga i t_t racke r s [' duration_min ']
379

380

381 # get s v ideo durat ion in minutes
382 de f ca lcu late_video_durat ion (video , ga i t_t racke r s) :
383 # Calcu la te the v ideo durat ion in seconds and convert i t to minutes
384 tota l_frames = video . get (cv2 .CAP_PROP_FRAME_COUNT)
385 frame_rate = video . get (cv2 .CAP_PROP_FPS)
386 time_s = tota l_frames / frame_rate
387 ga i t_t racke r s [' duration_min '] = time_s / 60
388 ga i t_t racke r s [' tota l_frames '] = tota l_frames
389

390

391 # ca l c u l a t e the mean step l ength
392 de f calculate_avg_step_length (ga i t_tracker s , met r i c s) :
393 # f ind mean step l ength and round i t to 1d . p .

19

394 avg_step_length = avg_array (ga i t_t racke r s [' step_lengths '])
395 metr i c s [' avg_str ide_length '] = np . round (avg_step_length , dec imals=1)
396

397

398 # updates the metr i c s and ga i t t r a c k e r s as analyse_gait_data i t e r a t e s through
frames

399 de f analyse_frame (previous_pose , current_pose , ga i t_tracker s , metr ics , frame) :
400 # get the he ight o f each hee l
401 l_heel_y = current_pose [L_HEEL['y ']]
402 r_heel_y = current_pose [R_HEEL['y ']]
403

404 # get the x po s i t i o n o f each hip (cur rent and prev ious)
405 l_hip_x = current_pose [L_HIP['x ']]
406 r_hip_x = current_pose [R_HIP['x ']]
407 l_hip_x_prev = previous_pose [L_HIP['x ']]
408 r_hip_x_prev = previous_pose [R_HIP['x ']]
409

410 # get the x po s i t i o n o f each hee l (cur r ent and prev ious)
411 l_heel_x = current_pose [L_HEEL['x ']]
412 r_heel_x = current_pose [R_HEEL['x ']]
413 l_heel_x_prev = previous_pose [L_HEEL['x ']]
414 r_heel_x_prev = previous_pose [R_HEEL['x ']]
415

416 # ca l c u l a t e the x d i s t anc e t r a v e l l e d by l e f t and r i gh t h e e l s in r e l a t i o n
to the h ips

417 l_hip_dif = l_hip_x − l_heel_x
418 r_hip_dif = r_hip_x − r_heel_x
419 l_hip_dif_prev = l_hip_x_prev − l_heel_x_prev
420 r_hip_dif_prev = r_hip_x_prev − r_heel_x_prev
421

422 # l e f t he e l s t r i k e
423 i f l_hip_dif > l_hip_dif_prev and (ga i t_t racke r s [' toe_of f '] == ' none ' or

ga i t_t racke r s [' toe_of f '] == ' l e f t ') and (ga i t_t racke r s [' hee l_s t r i k e ']
== ' none ' or ga i t_t racke r s [' hee l_s t r i k e '] == ' r i g h t ') and l_heel_x >
r_heel_x and l_heel_y > r_heel_y :

424 handle_hee l_str ike (metr ics , ga i t_tracker s , frame ,
425 l_heel_x , r_heel_x , ' l e f t ')
426

427 # r i gh t hee l s t r i k e
428 e l i f r_hip_dif > r_hip_dif_prev and (ga i t_t racke r s [' toe_of f '] == ' none ' or

ga i t_t racke r s [' toe_of f '] == ' r i g h t ') and (ga i t_t racke r s [' hee l_s t r i k e '
] == ' none ' or ga i t_t racke r s [' hee l_s t r i k e '] == ' l e f t ') and r_heel_x >
l_heel_x and r_heel_y > l_heel_y :

429 handle_hee l_str ike (metr ics , ga i t_tracker s , frame ,
430 r_heel_x , l_heel_x , ' r i g h t ')
431

432 # r i gh t hee l r a i s e
433 i f r_hip_dif < r_hip_dif_prev and (ga i t_t racke r s [' toe_of f '] == ' none ' or

ga i t_t racke r s [' toe_of f '] == ' l e f t ') and ga i t_t racke r s [' hee l_s t r i k e ']
== ' l e f t ' and r_heel_x < l_heel_x and r_heel_y < l_heel_y :

434 handle_toe_off (metr ics , ga i t_tracker s , frame , ' r i g h t ')
435

436 # l e f t he e l r a i s e

20

437 e l i f l_hip_dif < l_hip_dif_prev and (ga i t_t racke r s [' toe_of f '] == ' none ' or
ga i t_t racke r s [' toe_of f '] == ' r i g h t ') and ga i t_t racke r s [' hee l_s t r i k e ']
== ' r i g h t ' and l_heel_x < r_heel_x and l_heel_y < r_heel_y :

438 handle_toe_off (metr ics , ga i t_tracker s , frame , ' l e f t ')
439

440

441 # updates the metr i c s and ga i t t r a c k e r s when a hee l r a i s e occurs
442 de f handle_toe_off (metr ics , ga i t_tracker s , frame , heel_name) :
443 # update the ga i t t r a c k e r s with the new hee l r a i s e event data
444 ga i t_t racke r s [' toe_off_frames '] . append (frame)
445 ga i t_t racke r s [' toe_of f_legs '] . append (heel_name)
446

447 # Set hee l l i f t to new foo t
448 ga i t_t racke r s [' toe_of f '] = heel_name
449

450

451 # updates the metr i c s and ga i t t r a c k e r s when a hee l s t r i k e occurs
452 de f handle_hee l_str ike (metr ics , ga i t_tracker s , frame , heel_x , other_heel_x ,

heel_name) :
453 # update the ga i t t r a c k e r s and metr i c s with the new hee l s t r i k e event data
454 metr i c s [' step_count '] = metr i c s [' step_count '] + 1
455 ga i t_t racke r s [' hee l_str ike_frames '] . append (frame)
456 ga i t_t racke r s [' hee l_s t r i k e_ l eg s '] . append (heel_name)
457

458 # di s tance count ing
459 i f not ga i t_t racke r s [' f i r s t_ s t e p '] :
460 d i s t anc e = −(other_heel_x − ga i t_t racke r s [' hee l_sta r t '])
461 distance_m = di s t anc e / SCALE_FACTOR
462 ga i t_t racke r s [' step_lengths '] . append (distance_m)
463 e l s e :
464 # var i ab l e to s t o r e whether the f i r s t s tep has been taken
465 ga i t_t racke r s [' f i r s t_ s t e p '] = Fal se
466

467 # var i ab l e to s t o r e the l o c a t i o n o f the hee l when i t f i r s t h i t s the f l o o r
468 ga i t_t racke r s [' hee l_sta r t '] = heel_x
469

470 # Set hee l s t r i k e to new foo t
471 ga i t_t racke r s [' hee l_s t r i k e '] = heel_name
472

473

474 # run the Flask s e r v e r
475 i f __name__ == '__main__ ' :
476 app . run (debug=True , port =5000)

B.2 Version 1.0 Webcam Class
Below is the code for the Webcam class.

1 import { useRef } from "react" ;

21

2 import { u s eE f f e c t } from "react" ;
3

4 export de f au l t function Webcam() {
5 const v ideo=useRef (null) ;
6

7 //UseEffect hook allows us to activate the navigator
8 u s eE f f e c t (()=> {
9 //Properties for the webcam stream

10 const v i dPrope r t i e s = {audio : false , v ideo : { width :1920 , he ight : 1080}} ;
11

12 GetWebcamStream(navigator , video , v i dPrope r t i e s) ;
13 } , [])
14

15 //Return the video object, creating a reference to it for the webcam to
use

16 return <video className="w-full" autoPlay r e f={video } />
17 }
18

19 /* Attaches the webcam feed to a reference of the video object */
20 function GetWebcamStream(navigator , video , v i dPrope r t i e s) {
21 //Once we have acquired the webcam, attatch it's stream to the video

object
22 nav igator . mediaDevices . getUserMedia (v i dPrope r t i e s) . then ((stream)=>{
23 video . cur rent . s r cObjec t = stream ;
24 }) ;
25 }

B.3 Version 1.0 WebcamRecorder
Class

Below is the code for the WebcamRecorder class.

1 import { useRef } from "react" ;
2 import { u s eE f f e c t } from "react" ;
3 import { useRouter } from "next/router"
4

5 l e t shouldStop ;
6 l e t stopped ;
7

8 export de f au l t function WebcamRecorder () {
9 const v ideo=useRef (null) ;

10 const route r=useRouter () ;
11

12 //Both variables describe the state of video capture
13 shouldStop = fa l se ;
14 stopped = fa l se ;
15

16 //UseEffect hook allows us to activate the navigator

22

17 u s eE f f e c t (()=> {
18 //Properties for the webcam stream
19 const v i dPrope r t i e s = {audio : false , v ideo : { width :1920 , he ight : 1080}} ;
20

21 //When stop is clicked, the media recorder is told to stop
22 const stopButton = document . getElementById ("stopButton") ;
23 stopButton . addEventListener ('click' , ()=>{
24 shouldStop=true ;
25 }) ;
26

27 GetWebcamStream(navigator , video , v idProper t i e s , r ou te r) ;
28 } , [])
29

30 //Return the video object, creating a reference to it for the webcam to
use

31 return <video className="w-full" autoPlay r e f={video } />
32 }
33

34 /* Attaches the webcam feed to a reference of the video object */
35 function GetWebcamStream(navigator , video , v idProper t i e s , r ou te r) {
36 //Acquire the webcam
37 nav igator . mediaDevices . getUserMedia (v i dPrope r t i e s) . then ((stream)=>{
38 //Set video format to webm
39 const mediaRecorderOptions={mimeType : 'video/webm' } ;
40

41 //Create a media recorder to record the video
42 const mediaRecorder = new MediaRecorder (stream ,

mediaRecorderOptions) ;
43

44 //Create an array to save the video frames in
45 const recordedChunks = [] ;
46

47 mediaRecorder . ondataava i l ab l e=function (e) {
48 i f (e . data . s i z e > 0) {
49 //Add image to array
50 recordedChunks . push (e . data) ;
51 }
52 i f (shouldStop === true && stopped === fa l se) {
53 mediaRecorder . stop () ;
54 stopped = true ;
55 }
56 } ;
57

58 mediaRecorder . onstop = function () {
59 //Get the http request for the OpenPose server ready
60 var xmlhttp = new XMLHttpRequest () ;
61

62 xmlhttp . onreadystatechange = ()=>{
63 i f (xmlhttp . readyState == XMLHttpRequest .DONE) {
64 const j son = JSON. parse (xmlhttp . responseText)
65 conso l e . l og (j son) ;
66 //Change to the post assessment screen
67 route r . push ({ pathname : '/assessment/post-assessment' ,

query : j son }) ;

23

68 }
69

70 }
71

72 xmlhttp . open ("POST" , 'http://localhost:5000/vid-uploader') ;
73

74 //Create blob with the video data
75 const blob = new Blob (recordedChunks) ;
76

77 //Save the blob to a form
78 var fd=new FormData () ;
79 fd . append ("video" , blob , "video.webm") ;
80

81 //Send the form to the OpenPose server using the http request
82 xmlhttp . send (fd) ;
83

84 //Go to the analyzing page for now
85 route r . push ('/assessment/assessment -analyzing') ;
86 } ;
87

88 //Assign stream to video HTML element
89 video . cur rent . s r cObjec t = stream ;
90

91 //Set FPS to 30
92 mediaRecorder . s t a r t (33 . 333) ;
93 }) ;
94 }

B.4 Version 2.0 PoseEstimator
Class

Below is the code for the Generic PoseEstimator class.

1 import ∗ as MediaPipe from '@mediapipe/holistic'
2 import ∗ as THREE from 'three'
3 import { Vector3 } from 'three' ;
4 import { loadMater ia l } from '../game/material -loader' ;
5

6 /**
7 * Uses a pose estimator to render and return a 3D avatar
8 */
9 export de f au l t class PoseEstimator {

10 con s t ruc to r (scene , camera) {
11 /* Each array contains a list of keypoints
12 The keypoints have the following format: {coordinates:THREE.Vector3

, confidence:number} */
13 this . body = [] ;
14 this . f a c e = [] ;

24

15 this . handL = [] ;
16 this . handR = [] ;
17

18 //Track whether the model has been loaded
19 this . i s I n i t i a l i z e d = fa l se ;
20

21 //False for testing mode, true for deployment mode
22 this . useWebcam = true ;
23

24 //Lists containing the meshes to build the avatar
25 this . avatarBones = [] ;
26 this . ava ta rJo in t s = [] ;
27 this . avatarHead = new THREE. Mesh () ;
28 this . boneMater ia l = new THREE. MeshStandardMaterial ({
29 c o l o r : 0x212121 ,
30 roughness : 0 . 2 6 2 ,
31 metalness : 0 . 1
32 }) ;
33 this . headMater ia l = new THREE. MeshStandardMaterial ({
34 c o l o r : 0x212121 ,
35 roughness : 0 . 2 6 2 ,
36 metalness : 0 . 1
37 }) ;
38 this . j o i n tMa t e r i a l = new THREE. MeshStandardMaterial ({
39 c o l o r : 0xFFFFFF,
40 roughness : 0 . 2 6 2 ,
41 metalness : 0 . 1
42 }) ;
43

44 //Indexes to draw the spheres for joints (and the head)
45 this . j o i n t I nd ex e s = [11 , 1 2 , 1 3 , 1 4 , 2 3 , 2 4 , 2 5 , 2 6] ;
46 this . sp ine Indexes = {hip : [2 3 , 2 4] , neck : [1 1 , 1 2] } ;
47 this . headIndex = 0 ;
48

49 //Reference to the THREE scene and camera
50 this . s cene = scene ;
51 this . camera = camera ;
52 this . camera . p o s i t i o n . y = −0.6;
53

54 //8 point moving average filter for Yoke
55 this . avatarDistanceChangeBuf fer = [] ;
56 this . avatarDistanceChangeBuf fer . l ength = 8 ;
57 this . avatarDistanceChangeBuf fer . f i l l (0 , 0 , 7) ;
58

59 //Variables for realtime metric calculation
60 this . avatarDis tance = 0 . 0 ;
61 this . avatarDistance_m = 0 . 0 ;
62 this . avgCurrent_m = 0 . 0 ;
63 this . avgCurrentUpdated = fa l se ;
64 this . lastTime = 0 . 0 ;
65 this . s c a l eFac to r = 2 ;
66 this . s t ep s = 0 ;
67 this . l e rpValue = 0 . 6 ;
68

25

69 //Track specific joints for Yoke calculations
70 this . l e f tAnk l e = 0 . 0 ;
71 this . r i ghtAnkle = 0 . 0 ;
72 this . l e f tAnk lePrev = 0 . 0 ;
73 this . r ightAnklePrev = 0 . 0 ;
74 this . l e f tH i p = 0 . 0 ;
75 this . l e f tH ipPrev = 0 . 0 ;
76 this . r i ghtHip = 0 . 0 ;
77 this . r ightHipPrev = 0 . 0 ;
78

79 //Track which heel is currently in heel strike phase
80 this . h e e l S t r i k e = 'none' ;
81

82 //True for the first frame of a new heel strike
83 this . heelChange = fa l se ;
84 }
85

86 /**
87 * Starts the pose estimator (*make sure to specify the trackingType*)
88 */
89 async StartTrack ing () {
90 throw new Error ('Start tracking method not implemented') ;
91 }
92

93 /* Assigns the x,y,z and confidence values to the Sensor */
94 ass ignPose () {
95 throw new Error ('Assign pose method not implemented') ;
96 }
97

98 /**
99 * Builds the avatar in the way specified by tracking type

100 */
101 bui ldAvatar () {
102 switch (this . trackingType) {
103 //Body is just plain body tracking
104 case 'body' :
105 this . buildAvatarBody () ;
106 break ;
107 de f au l t :
108 throw new Error ('Unrecognized tracking type, please assign in

the startTracking function') ;
109 break ;
110 }
111 }
112

113 /**
114 * Updates the avatar in the way specified by tracking type
115 */
116 updateAvatar () {
117 this . updateAvatarBody () ;
118 }
119

120 colourToHex (co l our) {
121 switch (co l ou r) {

26

122 case "Red" :
123 return 0xFF0000 ;
124 case "Orange" :
125 return 0xFFA500 ;
126 case "Yellow" :
127 return 0xFFFF00 ;
128 case "Green" :
129 return 0x00FF00 ;
130 case "Blue" :
131 return 0x0000FF ;
132 case "Purple" :
133 return 0x6A0DAD;
134 case "Black" :
135 return 0x000000 ;
136 case "White" :
137 return 0xFFFFFF;
138 de f au l t :
139 break ;
140 }
141 }
142

143 /**
144 * Changes the colour of the avatar's joints, head and bones
145 */
146 updateJointColour (j o in tCo lou r) {
147 const co l our = this . colourToHex (j o in tCo lou r . t a r g e t . va lue) ;
148

149 //Update bone material
150 this . j o i n tMa t e r i a l . c o l o r . setHex (co l our) ;
151 }
152

153 updateBoneColour (boneColour) {
154 const co l our = this . colourToHex (boneColour . t a r g e t . va lue) ;
155

156 //Update bone material
157 this . boneMater ia l . c o l o r . setHex (co l our) ;
158 }
159

160 updateHeadColour (headColour) {
161 const co l our = this . colourToHex (headColour . t a r g e t . va lue) ;
162

163 //Update head material
164 this . headMater ia l . c o l o r . setHex (co l our) ;
165 }
166

167 /**
168 * Builds the avatar's body as a THREE mesh
169 */
170 buildAvatarBody () {
171 this . bui ldAvatarBones () ;
172 this . bu i ldAvatarJo int s () ;
173 this . buildAvatarHead () ;
174 }
175

27

176 /**
177 * Builds the avatar's head as a THREE sphere
178 */
179 buildAvatarHead () {
180 //Make the head (a sphere)
181 const geometry = new THREE. SphereGeometry (0 . 1 , 16 , 16) ;
182 this . avatarHead = new THREE. Mesh(geometry , this . headMater ia l) ;
183

184 //Add the head to the scene
185 this . s cene . add (this . avatarHead) ;
186 }
187

188 /**
189 * Builds the avatar's bones as THREE cylinders and assigns them to the

avatarBones variable
190 */
191 buildAvatarBones () {
192 //POSE_CONNECTIONS is an array describing the connections between

joints
193 f o r (l e t i =0; i <25; i++){
194 //Make a bone (cylinder)
195 const geometry = new THREE. CylinderGeometry (0 .003 , 0 . 002 , 20 , 32

) ;
196 const c y l i nd e r = new THREE. Mesh(geometry , this . boneMater ia l) ;
197

198 //Add the bone to the array of bones and to the THREE js scene
199 this . avatarBones [i] = cy l i nd e r ;
200 this . s cene . add (this . avatarBones [i]) ;
201 }
202 }
203

204 /**
205 * Builds the avatar's joints as THREE spheres and assigns them to the

avatarJoints variable
206 */
207 bu i ldAvatarJo int s () {
208 //Create the joint connectors and add them to the scene
209 f o r (l e t i =0; i <11; i++){
210 //Make a joint (sphere)
211 const geometry = new THREE. SphereGeometry (0 . 005 , 32 , 16) ;
212 const sphere = new THREE. Mesh(geometry , this . j o i n tMa t e r i a l) ;
213

214 //Add the joint to the array of joints and to the THREE js scene
215 this . ava ta rJo in t s [i] = sphere ;
216 this . s cene . add (this . ava ta rJo in t s [i]) ;
217 }
218 }
219

220 /**
221 * Updates the avatar in the THREE scene
222 */
223 updateAvatarBody () {
224 //Calculate Yoke
225 this . ca lcu lateDistanceWalked () ;

28

226

227 //Update camera using Yoke
228 this . camera . p o s i t i o n . z = −0.7 + this . avatarDis tance ;
229

230 //Update avatar
231 this . updateAvatarBones () ;
232 this . updateAvatarJoints () ;
233 }
234

235 /**
236 * Updates the position , length and rotation of the avatar's bones
237 */
238 updateAvatarBones () {
239 var i = 0 ;
240

241 //POSE_CONNECTIONS is an array describing the connections between
joints

242 MediaPipe .POSE_CONNECTIONS. forEach (element =>{
243 i f (((element [0] == this . sp ine Indexes . neck [0]) && (element [1] ==

this . sp ine Indexes . hip [0])) | | ((element [0] == this .
sp ine Indexes . neck [1]) && (element [1] == this . sp ine Indexes . hip
[1]))) {

244 }
245 else {
246 i f (element [0] <= 11 && element [1] <= 11) {
247 }
248 else {
249 //Get the coordinates of the joint and its child
250 const j o i n t 1 = new THREE. Vector3 () ;
251 const j o i n t 2 = new THREE. Vector3 () ;
252 j o i n t 1 . copy (this . body [element [0]] . c oo rd ina t e s) ;
253 j o i n t 2 . copy (this . body [element [1]] . c oo rd ina t e s) ;
254 this . updateSingleBone ([j o in t1 , j o i n t 2] , i) ;
255

256 //Only render bones which have a high confidence value
257 i f (this . body [element [0]] . c on f id ence < 0 .2 | | this . body [

element [1]] . c on f id ence < 0 . 2) {
258 this . avatarBones [i] . v i s i b l e = fa l se ;
259 }
260 else {
261 this . avatarBones [i] . v i s i b l e = true ;
262 }
263 i++;
264 }
265 }
266 }) ;
267

268 //Get coordinates necessary to calculate spine bone
269 const le ftHip_v = this . body [this . sp ine Indexes . hip [0]] ;
270 const rightHip_v = this . body [this . sp ine Indexes . hip [1]] ;
271 const l e f tShou lder_v = this . body [this . sp ine Indexes . neck [0]] ;
272 const r ightShoulder_v = this . body [this . sp ine Indexes . neck [1]] ;
273

29

274 //Create a fake spine bone based on midpoint between shoulders and
hips

275 const spineBase = new Vector3 () ;
276 const spineTop = new Vector3 () ;
277 spineBase . copy (this . ca l cu la teMidpo intVector (le ftHip_v . coord inate s ,

rightHip_v . coo rd ina t e s)) ;
278 spineTop . copy (this . ca l cu la teMidpo intVector (l e f tShou lder_v . coord inate s ,

r ightShoulder_v . coo rd ina t e s)) ;
279 this . updateSingleBone ([spineBase , spineTop] , i) ;
280

281 //Only render bones which have a high confidence value
282 i f (le ftHip_v . con f idence < 0 .2 | | rightHip_v . con f idence < 0 .2 | |

l e f tShou lder_v < 0 .2 | | r ightShoulder_v < 0 . 2) {
283 this . avatarBones [i] . v i s i b l e = fa l se ;
284 }
285 else {
286 this . avatarBones [i] . v i s i b l e = true ;
287 }
288 }
289

290 /**
291 * Update a bone's position , rotation, and length
292 */
293 updateSingleBone (j o i n tPa i r , index) {
294

295 //Calculate the midpoint between the two joints and assign this as the
bone's location

296 this . avatarBones [index] . p o s i t i o n . copy (this . ca l cu la teMidpo intVector (
j o i n tPa i r [0] , j o i n tPa i r [1])) ;

297

298 //Calculate the bone's new length and update it
299 const boneLength = this . ca lcu lateBoneLength (j o i n tPa i r [0] , j o i n tPa i r

[1]) ;
300 this . avatarBones [index] . geometry = new THREE. CylinderGeometry (0 .002 ,

0 . 002 , boneLength , 32) ;
301

302 //Calculate the bone's direction vector and use it to update its
rotation

303 const up = new THREE. Vector3 (0 , −1 ,0) ;
304 this . avatarBones [index] . quatern ion . setFromUnitVectors (up , this .

c a l cu l a t eBoneDi r e c t i on (j o i n tPa i r [0] , j o i n tPa i r [1]) . normal ize ()) ;
305 }
306

307 /**
308 * Updates the position of the spheres representing joints
309 */
310 updateAvatarJoints () {
311 var i =0;
312

313 //Update standard joints
314 this . j o i n t I nd ex e s . forEach ((element)=>{
315 this . updateS ing l eJo in t (element , i) ;
316 i++;
317 }) ;

30

318

319 //Calculate location of fake hip, neck and mid spine joints
320 const hip = this . ca l cu la teMidpo intVector (this . body [this . sp ine Indexes .

hip [1]] . coord inate s , this . body [this . sp ine Indexes . hip [0]] .
c oo rd ina t e s) ;

321 const neck = this . ca l cu la teMidpo intVector (this . body [this . sp ine Indexes .
neck [1]] . coord inate s , this . body [this . sp ine Indexes . neck [0]] .
c oo rd ina t e s) ;

322 const spineMid = this . ca l cu la teMidpo intVector (hip , neck) ;
323

324 //Change position of fake joints
325 this . ava ta rJo in t s [i] . p o s i t i o n . copy (hip) ;
326 this . ava ta rJo in t s [i +1] . p o s i t i o n . copy (neck) ;
327 this . ava ta rJo in t s [i +2] . p o s i t i o n . copy (spineMid) ;
328

329 //Calculate size of head and update it
330 const headRadius = this . ca lcu lateBoneLength (this . body [this . headIndex] .

coord inate s , neck) /5 ;
331 const headPos i t ion = new THREE. Vector3 (this . body [this . headIndex] .

c oo rd ina t e s . x , this . body [this . headIndex] . c oo rd ina t e s . y , neck . z) ;
332 this . updateAvatarHead (headRadius , headPos i t ion) ;
333 }
334

335 /**
336 * Update the position of each joint
337 */
338 updateS ing l eJo in t (jo in t Index , index) {
339 const j o i n t = new THREE. Vector3 () ;
340 j o i n t . copy (this . body [j o i n t Index] . c oo rd ina t e s) ;
341 this . ava ta rJo in t s [index] . p o s i t i o n . copy (j o i n t) ;
342 }
343

344 /**
345 * Updates the position and size of the avatar's head
346 */
347 updateAvatarHead (radius , p o s i t i o n) {
348 //Update the size of the head sphere
349 this . avatarHead . geometry = new THREE. SphereGeometry (radius , 32 , 16) ;
350

351 //Update the head sphere's position
352 this . avatarHead . p o s i t i o n . copy (po s i t i o n) ;
353 }
354

355 /**
356 * Calculates Yoke based on the ankle and
357 */
358 ca lcu lateDistanceWalked () {
359 //Set previous positions to last current positions
360 this . l e f tAnk lePrev = this . l e f tAnk l e ;
361 this . r ightAnklePrev = this . r i ghtAnkle ;
362 this . l e f tH ipPrev = this . l e f tH i p ;
363 this . r ightHipPrev = this . r i ghtHip ;
364

365 //Set current positions

31

366 this . l e f tAnk l e = this . body [MediaPipe .POSE_LANDMARKS_LEFT.LEFT_ANKLE] .
c oo rd ina t e s . z ;

367 this . r i ghtAnkle = this . body [MediaPipe .POSE_LANDMARKS_RIGHT.RIGHT_ANKLE
] . c oo rd ina t e s . z ;

368 this . l e f tH i p = this . body [MediaPipe .POSE_LANDMARKS.LEFT_HIP] .
c oo rd ina t e s . z ;

369 this . r i ghtHip = this . body [MediaPipe .POSE_LANDMARKS.RIGHT_HIP] .
c oo rd ina t e s . z ;

370

371 //Get difference between leg and hip for previous and current
positions

372 const l e f tH i pD i f = this . l e f tH i p − this . l e f tAnk l e ;
373 const r i ghtHipDi f = this . r i ghtHip − this . r i ghtAnkle ;
374 const l e f tH ipDi fPrev = this . l e f tH ipPrev − this . l e f tAnk lePrev ;
375 const r ightHipDi fPrev = this . r ightHipPrev − this . r ightAnklePrev ;
376

377 //Detect left heel strike
378 i f (l e f tH i pD i f > l e f tH ipDi fPrev && (this . h e e l S t r i k e == "none" | | this .

h e e l S t r i k e == "right") && this . l e f tAnk l e > this . r i ghtAnkle) {
379 this . h e e l S t r i k e = 'left' ;
380 this . heelChange = true ;
381 this . s t ep s++;
382 }
383 //Detect right heel strike
384 else i f (r i ghtHipDi f > r ightHipDi fPrev && (this . h e e l S t r i k e == "none"

| | this . h e e l S t r i k e == "left") && this . r i ghtAnkle > this . l e f tAnk l e)
{

385 this . h e e l S t r i k e = 'right' ;
386 this . heelChange = true ;
387 this . s t ep s++;
388 }
389

390 //Exclude erroneous events (left foot) - assume we are always walking
forward

391 i f (this . h e e l S t r i k e == "left") {
392 const d i s t anc e = this . l e f tAnk lePrev − this . l e f tAnk l e ;
393 i f (d i s t anc e > 0) {
394 //Add distance to the queue
395 this . avatarDistanceChangeBuf fer . un sh i f t ((d i s t anc e + this .

avatarDistanceChangeBuf fer [0]) ∗ this . l e rpValue) ;
396 }
397 else {
398 //0 used to replace erroneous values
399 this . avatarDistanceChangeBuf fer . un sh i f t ((0 . 0)) ;
400 }
401 //Dequeue one distance value to maintain buffer size
402 this . avatarDistanceChangeBuf fer . pop () ;
403 }
404 //Exclude erroneous events (right foot) - assume we are always walking

forward
405 else i f (this . h e e l S t r i k e == "right") {
406 const d i s t anc e = this . r ightAnklePrev − this . r i ghtAnkle ;
407 i f (d i s t anc e > 0) {
408 //Add distance to the queue

32

409 this . avatarDistanceChangeBuf fer . un sh i f t ((d i s t anc e + this .
avatarDistanceChangeBuf fer [0]) ∗ this . l e rpValue) ;

410 }
411 else {
412 //0 used to replace erroneous values
413 this . avatarDistanceChangeBuf fer . un sh i f t ((0 . 0)) ;
414 }
415 //Dequeue one distance value to maintain buffer size
416 this . avatarDistanceChangeBuf fer . pop () ;
417 }
418

419 //Read average distance from the buffer
420 l e t avg = 0 . 0 ;
421 this . avatarDistanceChangeBuf fer . forEach ((element)=>{
422 avg += element ;
423 }) ;
424 avg /= this . avatarDistanceChangeBuf fer . l ength ;
425

426 //Update distance away from camera
427 this . avatarDis tance += avg ;
428 this . avatarDistance_m = Math . round (this . avatarDis tance ∗ 2 ∗ 10) /10 ;
429 this . avgCurrent_m = Math . round (avg ∗ 2 ∗ 10) /10 ;
430 this . avgCurrentUpdated = fa l se ;
431

432 //Reset variable
433 this . heelChange = fa l se ;
434 }
435

436 /**
437 * Calculates the length of a bone given two joints
438 */
439 ca lculateBoneLength (v1 , v2) {
440 const v3 = new THREE. Vector3 () ;
441 v3 . copy (v1) ;
442 const d i s t ance = v3 . distanceTo (v2) ;
443 return d i s t ance ;
444 }
445

446 /**
447 * Calculates where to place the bone in the scene
448 */
449 ca l cu la teMidpo intVector (v1 , v2) {
450 const l o c a t i o n = new THREE. Vector3 () ;
451 //Find location by getting the point midway between two joints
452 l o c a t i o n . addVectors (v1 , v2) ;
453 l o c a t i o n . d i v i d eS ca l a r (2) ;
454 return l o c a t i o n ;
455 }
456

457 /**
458 * Calculates the direction vector between two joints
459 */
460 ca l cu l a t eBoneDi r e c t i on (v1 , v2) {
461 const v3 = new THREE. Vector3 () ;

33

462 v3 . copy (v1) ;
463 v3 . sub (v2) ;
464 return v3 ;
465 }
466 }

B.5 Version 2.0 MediaPipeHolistic
Class

Below is the code for the MediaPipeHolistic class.

1 import ∗ as MediaPipe from '@mediapipe/holistic'
2 import ∗ as CameraUtils from '@mediapipe/camera_utils'
3 import ∗ as THREE from 'three'
4 import PoseEstimator from './pose-estimator' ;
5 import Webcam from '../data-capture/webcam' ;
6 import { useRef } from 'react' ;
7

8 //Config file TODO: implement config locally
9 const c on f i g = { l o c a t eF i l e : (f i l e) => {

10 return `https : //cdn.jsdelivr.net/npm/@mediapipe/holistic/${file}`;
11 }} ;
12

13 l e t h o l i s t i c ;
14 l e t v ideo ;
15 var switchingCams = fa l se
16

17 /**
18 * Uses MediaPipe's hollistic tracking module to track body, facial landmarks

and hand movements
19 */
20 export de f au l t class Mediap ipeHo l i s t i c extends PoseEstimator {
21 async StartTrack ing (id) {
22 //Get the video from the HTML document
23 video = document . getElementById ("input_video") ;
24

25 conso l e . l og (id) ;
26

27 //For patients
28 i f (this . useWebcam) {
29 const webcam = new Webcam(navigator , v ideo) ;
30 await webcam . ChangeDeviceById (id) ;
31 }
32

33 //Set tracking type to full body for now, face + hands coming in future
34 this . trackingType = 'body' ;
35

36 h o l i s t i c = new MediaPipe . H o l i s t i c ({ l o c a t eF i l e : (f i l e) => {

34

37 return `https : //cdn.jsdelivr.net/npm/@mediapipe/holistic/${file}`;
38 }}) ;
39

40 //Set up holistic tracking
41 h o l i s t i c . se tOpt ions ({
42 modelComplexity : 2 ,
43 smoothLandmarks : true ,
44 smoothSegmentation : true ,
45 ref ineFaceLandmarks : true ,
46 minDetect ionConf idence : 0 . 5 ,
47 minTrackingConfidence : 0 . 5
48 }) ;
49

50 conso l e . l og ("yeet") ;
51

52 //Start tracking
53 h o l i s t i c . i n i t i a l i z e () . then (()=>{this . getVideoFrame () }) ;
54

55 //Add the avatar to the THREE scene
56 this . bui ldAvatar () ;
57

58 //Event fires when holistic has completed its analysis
59 h o l i s t i c . onResults ((r e s u l t s)=> {
60 this . a s s ignPose (r e s u l t s) ;
61 this . updateAvatar () ;
62 })
63

64 conso l e . l og ("initialized")
65 }
66

67 async OnChangeCamera (value , webcam) {
68 this . switchingCams = true ;
69 await webcam . ChangeDevice (va lue) ;
70 this . switchingCams = fa l se ;
71 //await holistic.reset();
72 }
73

74 /* Gets current video frame and sends it for analysis */
75 async getVideoFrame () {
76 window . requestAnimationFrame (()=> { this . getVideoFrame () }) ;
77 i f (! this . switchingCams) {
78 conso l e . l og ("yeet") ;
79 await h o l i s t i c . send ({ image : v ideo }) ;
80 i f (! this . i s I n i t i a l i z e d) {
81 this . i s I n i t i a l i z e d = true ;
82 }
83 }
84 }
85

86 /**
87 * Assigns the x,y,z and confidence values to the generic Sensor
88 */
89 ass ignPose (r e s u l t s) {
90 var i =0;

35

91 i f (r e s u l t s . poseLandmarks) {
92 //Assign values for body
93 r e s u l t s . poseLandmarks . forEach (element => {
94 this . body [i] = { coo rd ina t e s : new THREE. Vector3(−element . x , −element

. y , −element . z + this . avatarDis tance) , con f id ence : element .
v i s i b i l i t y }

95 i++
96 }) ;
97 i =0;
98 }
99

100 i f (r e s u l t s . faceLandmarks) {
101 //Assign values for face
102 r e s u l t s . faceLandmarks . forEach (element => {
103 this . f a c e [i] = { coo rd ina t e s : new THREE. Vector3 (element . x , element . y

, element . z + this . avatarDis tance) , con f id ence : −1}
104 i++
105 }) ;
106 i =0;
107 }
108

109 i f (r e s u l t s . leftHandLandmarks) {
110 //Assign values for left hand
111 r e s u l t s . leftHandLandmarks . forEach (element => {
112 this . handL [i] = { coo rd ina t e s : new THREE. Vector3 (element . x , element .

y , element . z + this . avatarDis tance) , con f id ence : −1}
113 i++
114 }) ;
115 i =0;
116 }
117

118 i f (r e s u l t s . rightHandLandmarks) {
119 //Assign values for right hand
120 r e s u l t s . rightHandLandmarks . forEach (element => {
121 this . handR [i] = { coo rd ina t e s : new THREE. Vector3 (element . x , element .

y , element . z + this . avatarDis tance) , con f id ence : −1}
122 i++
123 }) ;
124 }
125 }
126 }

B.6 Version 2.0 World Class
Below is the code for the World class.

1 import ∗ as THREE from 'three' ;
2 import { loadMater ia l } from './material-loader' ;
3

36

4 /**
5 * Renders an environment in the provided scene. This includes ground and a

sky.
6 */
7 export de f au l t class World{
8 con s t ruc to r (scene , camera) {
9 //References to three scene & camera

10 this . s cene = scene ;
11 this . camera = camera ;
12

13 //Location of different textures
14 this . f l o o rF i l e p a t h = "./images/textures/ground/terracotta" ;
15 this . skyFi l epath = "./images/textures/sky/cloudy" ;
16

17 //Material for floor
18 this . f l o o rMa t e r i a l = loadMater i a l (this . f l o o rF i l e pa th , 8 , true) ;
19 this . skyMater ia l = loadMater i a l (this . skyFi lepath , 2 , fa l se) ;
20

21 //Add elements of environment to scene
22 this . addFloor () ;
23 this . addLight ing () ;
24 this . addSky () ;
25

26 }
27

28 /**
29 * Changes the floor material
30 */
31 s e tF l oo rMate r i a l (materialName) {
32 //Update filepath based on material name
33 switch (materialName . t a r g e t . va lue) {
34 case "Rock" :
35 this . f l o o rF i l e p a t h = "./images/textures/ground/rock_stylized" ;
36 break ;
37 case "Moss" :
38 this . f l o o rF i l e p a t h = "./images/textures/ground/rock_moss" ;
39 break ;
40 case "Terracotta" :
41 this . f l o o rF i l e p a t h = "./images/textures/ground/terracotta" ;
42 break ;
43 de f au l t :
44 break ;
45 }
46

47 //Update the floor material with the new filepath
48 this . f l o o rMa t e r i a l . copy (loadMater ia l (this . f l o o rF i l e pa th , 8 , true)) ;
49 }
50

51 /**
52 * Changes the sky material
53 */
54 se tSkyMater ia l (materialName) {
55 //Update filepath based on material name
56 switch (materialName . t a r g e t . va lue) {

37

57 case "Cloudy" :
58 this . skyFi l epath = "./images/textures/sky/cloudy" ;
59 break ;
60 case "Overcast" :
61 this . skyFi l epath = "./images/textures/sky/overcast" ;
62 break ;
63 case "Night" :
64 this . skyFi l epath = "./images/textures/sky/night" ;
65 break ;
66 de f au l t :
67 break ;
68 }
69

70 //Update the sky material with the new filepath
71 this . skyMater ia l . copy (loadMater ia l (this . skyFi lepath , 2 , fa l se)) ;
72 }
73

74 /**
75 * Changes the sky material
76 */
77

78 /**
79 * Adds a sphere with a sky texture to the scene
80 */
81 addSky () {
82 //Create a sky dome
83 const geometry = new THREE. SphereGeometry (30 ,32 ,32) ;
84

85 const sphere = new THREE. Mesh(geometry , this . skyMater ia l) ;
86 sphere . p o s i t i o n . z = 15 ;
87 sphere . p o s i t i o n . y = −15;
88

89 this . s cene . add (sphere) ;
90 }
91

92 /**
93 * Adds lighting to the scene
94 */
95 addLighting () {
96 //Add ambient lighting
97 const l i g h t = new THREE. HemisphereLight (0 x f f f f f f , 0 x f f f f f f , 1 . 2) ;
98 this . s cene . add (l i g h t) ;
99 }

100

101 /**
102 * Adds a plane with a specified texture for the avatar to walk on
103 */
104 addFloor () {
105 //Create floor geometry
106 const geometry = new THREE. PlaneBufferGeometry (10 ,20 ,512 ,512) ;
107

108 //Create and position floor
109 this . f l o o r = new THREE. Mesh(geometry , this . f l o o rMa t e r i a l) ;
110 this . f l o o r . r o t a t i on . x = Math . PI /2 ;

38

111 this . f l o o r . p o s i t i o n . y = −1;
112 this . f l o o r . p o s i t i o n . z = 5 ;
113

114 //Add floor to the THREE scene
115 this . s cene . add (this . f l o o r) ;
116 }
117 }

B.7 Version 3.0 Game Class
Below is the code for the Game class.

1 import MediapipePose from '../data-processing/mediapipe -pose' ;
2 import World from './world' ;
3 import { Vector3 } from 'three' ;
4 import ColourDi s t rac to r from './colour-distractor' ;
5 import AlertHandler from '../../pages/training/game-feed/alert-handler' ;
6 import NLP from './nlp' ;
7 import id from '../../pages/training/id'
8 import Webcam from '../data-capture/webcam' ;
9 import Metr i c sCa l cu la to r from '../data-processing/metrics-calculator' ;

10 import Grapher from './grapher' ;
11

12 /** Renders an environment in the provided scene. This includes ground and a
sky. */

13 export de f au l t class Game{
14 con s t ruc to r (scene , camera , renderer , query , setGameActive) {
15 this . s cene = scene ;
16 this . camera = camera ;
17 this . query = query ;
18 this . r ende re r = rendere r ;
19 this . setGameActive = setGameActive ;
20

21 //Initialise the avatar and pass it the THREE scene
22 this . avatar = new MediapipePose (this) ;
23 this . world = new World (this) ;
24 this . c o l ou rD i s t r a c t o r = new ColourDi s t rac to r (this) ;
25 this . a l e r tHand l e r = new AlertHandler (3000 ,1000 , ['hey' ,'yo' ,'konichiwa'

,'guten tag']) ;
26 this .NLP = new NLP(this) ;
27 this . grapher = new Grapher (this) ;
28

29 //Variables describing game state
30 this . sess ionTime = 0 . 0 ;
31 this . recordTime = 10 . 0 ;
32 this . shouldStopRecording = fa l se ;
33 this . r e co rd ing = fa l se ;
34 this . d i sp layTick = fa l se ;
35 this . s c o r e = 0 ;

39

36 this . l a s t S c o r e = 0 ;
37 this . attempts = 0 ;
38 this . lastAttempts = 0 ;
39

40 const ga itFeed = document . getElementById (id . Train ing . GaitFeed) ;
41 this . webcam = new Webcam(navigator , ga i tFeed) ;
42 }
43

44 /** Get rid of the tick in the game UI */
45 c l e a rCo r r e c t () {
46 this . d i sp layTick = fa l se ;
47 }
48

49 /** Initializes the game (but doesnt begin recording) */
50 async i n i t () {
51 //Place the camera behind the avatar
52 this . camera . p o s i t i o n . copy (new Vector3 (−0.55 , −0.5 , −1)) ;
53 this . camera . r o t a t i on . y = Math . PI ;
54

55 //Start avatar tracking
56 await this . avatar . s ta r tTrack ing (this . query . bioCam) ;
57 }
58

59 /** Checks an answer from the NLP vs the actual answer from the colour
distractor */

60 checkAnswer (answer) {
61 i f (this . r e co rd ing) {
62 i f (answer == this . c o l ou rD i s t r a c t o r . currentAnswer && this .

sess ionTime < (this . recordTime −(this . c o l ou rD i s t r a c t o r . timeGap
/1000))) {

63 //Add to the score and display the tick for 1 second
64 this . s c o r e++;
65 this . d i sp layTick = true ;
66 window . setTimeout (()=>{this . c l e a rCo r r e c t () } ,1000) ;
67 }
68 }
69 }
70

71 /** Starts recording metrics, scores etc. */
72 async s ta r tRecord ing () {
73 this . sess ionTime = 0 . 0 ;
74 this . avatar . met r i c s = new Metr i c sCa l cu la to r (this) ;
75 await this . webcam . changeDeviceById (this . query . gaitCam) ;
76 //await this.webcam.startRecording();
77 this . r e co rd ing = true ;
78 this . s e s s ionTimer () ;
79 }
80

81 /** 0.1s interval timer */
82 sess ionTimer () {
83 i f (this . r e co rd ing) {
84 this . sess ionTime = Math . round ((this . avatar . met r i c s . rea lTimeMetr ics

. time_s) ∗10) /10 ;
85 window . setTimeout (()=>{this . s e s s ionTimer () } ,100) ;

40

86 }
87 }
88

89 stopRecording () {
90 //Keep a record of the last score and the last number of attempts
91 this . l a s t S c o r e = this . s c o r e ;
92 this . lastAttempts = this . attempts ;
93

94 //Reset score, attempts,session time and metrics
95 this . s c o r e = 0 ;
96 this . attempts = 0 ;
97

98 //Stop recording
99 //this.webcam.stopRecording();

100 this . r e co rd ing = fa l se ;
101 this . shouldStopRecording = true ;
102 this . avatar . met r i c s . output () ;
103 this . grapher . graph () ;
104 this . sess ionTime = this . avatar . met r i c s . rea lTimeMetr ics . time_s ;
105 }
106

107 /** Renders each frame of the game */
108 update () {
109 //Render THREE scene
110 this . r ende re r . render (this . scene , this . camera) ;
111 }
112

113

114 /** Sets total test time from GCS */
115 setTestTime (time_m){
116 this . recordTime = time_m . ta r g e t . va lue ∗ 60 ;
117 }
118

119 /** Updates any property within the game from the GCS */
120 updateProperty (name , va lue) {
121 switch (name) {
122 case "avatar bone colour" :
123 this . avatar . updateBoneColour (va lue) ;
124 break ;
125 case "avatar head colour" :
126 this . avatar . updateHeadColour (va lue) ;
127 break ;
128 case "avatar joint colour" :
129 this . avatar . updateJointColour (va lue) ;
130 break ;
131 case "world floor material" :
132 this . world . s e tF l oo rMate r i a l (va lue) ;
133 break ;
134 case "world sky material" :
135 this . world . s e tSkyMater ia l (va lue) ;
136 break ;
137 case "world sky material" :
138 this . world . s e tSkyMater ia l (va lue) ;
139 break ;

41

140 case "interactions cognitive distractor" :
141 this . c o l ou rD i s t r a c t o r . s e tD i s t r a c t o rAc t i v e (va lue) ;
142 value . t a r g e t . va lue == "Yes" ? this . setGameActive (true) : this

. setGameActive (fa l se) ;
143 break ;
144 case "interactions guidance" :
145 this . a l e r tHand l e r . s e tA l e r t sAc t i v e (va lue) ;
146 break ;
147 case "interactions distractor speed" :
148 this . c o l ou rD i s t r a c t o r . s e tD i s t r a c to rSpeed (value) ;
149 case "interactions test time" :
150 this . setTestTime (value) ;
151 break ;
152 case "graph selection" :
153 this . grapher . graph (value . t a r g e t . va lue) ;
154 break ;
155 de f au l t :
156 break ;
157 }
158 }
159 }

B.8 Version 3.0 MediapipePose
Class

Below is the code for the MediapipePose class.

1 import ∗ as MediaPipe from '@mediapipe/pose'
2 import ∗ as THREE from 'three'
3 import PoseEstimator from './pose-estimator' ;
4 import Webcam from '../data-capture/webcam' ;
5 import id from '../../pages/training/id' ;
6 import { POSE_LANDMARKS_LEFT,POSE_LANDMARKS_RIGHT } from "@mediapipe/pose" ;
7

8 /** Uses MediaPipe's hollistic tracking module to track body, facial landmarks
and hand movements */

9 export de f au l t class MediapipePose extends PoseEstimator {
10 con s t ruc to r (game) {
11 super (game) ;
12 this . pose = new MediaPipe . Pose ({ l o c a t eF i l e : (f i l e) => {
13 return `https : //cdn.jsdelivr.net/npm/@mediapipe/pose@0.5/${file}`;
14 }}) ;
15 this . v ideo = document . getElementById (id . Train ing . BiofeedbackCam) ;
16 this . useWebcam = fa l se ;
17 }
18

19 async s ta r tTrack ing (id) {
20 //For patients

42

21 i f (this . useWebcam) {
22 const webcam = new Webcam(navigator , this . v ideo) ;
23 await webcam . changeDeviceById (id) ;
24 }
25

26 //Set tracking type to full body for now, face + hands coming in future
27 this . trackingType = 'body' ;
28

29 //Set up holistic tracking
30 this . pose . se tOpt ions ({
31 modelComplexity : 2 ,
32 smoothLandmarks : true ,
33 enableSegmentat ion : false ,
34 smoothSegmentation : true ,
35 minDetect ionConf idence : 0 . 5 ,
36 minTrackingConfidence : 0 . 5
37 }) ;
38

39 this . getVideoFrame () ;
40

41 //Add the avatar to the THREE scene
42 this . bui ldAvatar () ;
43

44 //Event fires when holistic has completed its analysis
45 this . pose . onResults (async (r e s u l t s)=>{
46 await this . a s s ignPose (r e s u l t s) ;
47 await this . updateAvatar () ;
48 })
49 }
50

51 async OnChangeCamera (value , webcam) {
52 this . switchingCams = true ;
53 await webcam . changeDevice (va lue) ;
54 this . switchingCams = fa l se ;
55 //await holistic.reset();
56 }
57

58 /** Gets current video frame and sends it for analysis */
59 async getVideoFrame () {
60 i f (! this . switchingCams) {
61 await this . pose . send ({ image : this . v ideo }) ;
62 i f (! this . i s I n i t i a l i z e d) {
63 this . i s I n i t i a l i z e d = true ;
64 }
65 }
66 window . requestAnimationFrame (()=> { this . getVideoFrame () }) ;
67 }
68

69 /** Assigns the x,y,z and confidence values to the generic Sensor with
scaling and offset */

70 async ass ignPose (r e s u l t s) {
71 var i =0;
72 i f (r e s u l t s . poseLandmarks) {
73 this . ca lu la teHe ightAndOf f se t (r e s u l t s) ;

43

74

75 i f (this . game . r e co rd ing) {
76 this . met r i c s . updateMetr ics (r e s u l t s)
77 }
78

79 //Set results with offset and scaling
80 r e s u l t s . poseLandmarks . forEach (element => {
81 this . body [i] = { coo rd ina t e s : new THREE. Vector3 (element . x−1.05 ,

(0 . 6 ∗ ((element . y−this . avatarOf fsetY) / this . avatarHeight)) −0.7 , −
element . z + this . met r i c s . rea lTimeMetr ics . avgDistance) , con f id ence :
element . v i s i b i l i t y }

82 i++
83 }) ;
84 }
85 }
86

87 /** Stops the game from recording */
88 stopRecording () {
89 this . met r i c s . r e s e t () ;
90 }
91

92 /** Calculates the scaling parameters for the avatar */
93 ca lu la teHe ightAndOf f se t (r e s u l t s) {
94 //Get body parts needed for scaling calculations
95 const r ightAnkle = r e s u l t s . poseLandmarks [MediaPipe .POSE_LANDMARKS_RIGHT.

RIGHT_ANKLE] . y ;
96 const l e f tAnk l e = r e s u l t s . poseLandmarks [MediaPipe .POSE_LANDMARKS_LEFT.

LEFT_ANKLE] . y ;
97 const nose = r e s u l t s . poseLandmarks [MediaPipe .POSE_LANDMARKS_NEUTRAL.NOSE] .

y ;
98

99 //If left ankle on the ground
100 i f (l e f tAnk l e <r ightAnkle) {
101 this . avatarOf fsetY = l e f tAnk l e ;
102 this . avatarHeight = nose−l e f tAnk l e ;
103 }
104 //If right ankle on the ground
105 else {
106 this . avatarOf fsetY = rightAnkle ;
107 this . avatarHeight = nose−r ightAnkle ;
108 }
109 }
110 }

B.9 Version 3.0 MetricsCalculator
Class

Below is the code for the MetricsCalculator class.

44

1 import { POSE_LANDMARKS_LEFT,POSE_LANDMARKS_NEUTRAL,POSE_LANDMARKS_RIGHT }
from "@mediapipe/pose" ;

2 import ∗ as THREE from 'three' ;
3

4 export de f au l t class Metr i c sCa l cu la to r {
5 con s t ruc to r (game) {
6 this . game = game ;
7 //Used to smooth this.realTimeMetrics.avgDistance
8 this . l e rpValue = 0 . 6 ;
9

10 //Metrics calculated whilst the session is running
11 this . rea lTimeMetr ics = {
12 "distance_m" : 0 . 0 ,
13 "avgDistance" : 0 . 0 ,
14 "time_s" : 0 . 0 ,
15 "speed_ms" : 0 . 0 ,
16 "cadence_ss" : 0 . 0 ,
17 "steps" : 0 . 0
18 }
19

20 //Metrics calculated post session
21 this . postSess ionGraphs = {
22 "filteredAnkle_left" : [] ,
23 "filteredAnkle_right" : [] ,
24 "ankleMaxima_left" : [] ,
25 "ankleMaxima_right" : [] ,
26 "ankleMinima_left" : [] ,
27 "ankleMinima_right" : [] ,
28 "filteredBalance" : [] ,
29 "balanceMinima" : [] ,
30 "balanceMaxima" : [] ,
31 "balanceMinima_values" : [] ,
32 "balanceMaxima_values" : [] ,
33 "strideLengths_left" : [] ,
34 "strideLengths_right" : [] ,
35 "swings_left" : [] ,
36 "swings_right" : [] ,
37 "stances_left" : [] ,
38 "stances_right" : [] ,
39 "doubleSupports_left" : [] ,
40 "doubleSupports_right" : [] ,
41 "kneeFlexion_left" : [] ,
42 "kneeFlexion_right" : []
43 }
44

45 //Average metrics calculated post session
46 this . po s tSe s s i onMet r i c s = {
47 "swing_left_s" : 0 . 0 ,
48 "swing_left_cent" : 0 . 0 ,
49 "swing_right_s" : 0 . 0 ,
50 "swing_right_cent" : 0 . 0 ,
51 "stance_left_s" : 0 . 0 ,

45

52 "stance_left_cent" : 0 . 0 ,
53 "stance_right_s" : 0 . 0 ,
54 "stance_right_cent" : 0 . 0 ,
55 "double_left_s" : 0 . 0 ,
56 "double_left_cent" : 0 . 0 ,
57 "double_right_s" : 0 . 0 ,
58 "double_right_cent" : 0 . 0 ,
59 "single_left_s" : 0 . 0 ,
60 "single_left_cent" : 0 . 0 ,
61 "single_right_s" : 0 . 0 ,
62 "single_right_cent" : 0 . 0 ,
63 "strideLength_left" : 0 . 0 ,
64 "strideLength_right" : 0 . 0 ,
65 "strideLength_left_stdDev" : 0 . 0 ,
66 "strideLength_right_stdDev" : 0 . 0 ,
67 "hipElevation_left" : 0 . 0 ,
68 "hipElevation_right" : 0 . 0 ,
69 "hipElevation_left_stdDev" : 0 . 0 ,
70 "hipElevation_right_stdDev" : 0 . 0 ,
71 "kneeFlexion_left" : 0 . 0 ,
72 "kneeFlexion_right" : 0 . 0 ,
73 "kneeFlexion_left_stdDev" : 0 . 0 ,
74 "kneeFlexion_right_stdDev" : 0 . 0
75 }
76

77 //Variables used by the metrics algorithms
78 this . t r a ck e rVa r i ab l e s = {
79 "heelStrike" : "none" ,
80 "heelRaise" : "none" ,
81 "firstStep" : true ,
82 "firstIteration" : true ,
83 "time_ms" : 0 ,
84 "timeDif_ms" : 0 ,
85 "prevTime_ms" : 0 ,
86 "startTime_ms" : 0 ,
87 "distanceChange_m" : 0 . 0 ,
88 "avatarDistanceBuffer" : [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0] ,
89 "lastEvent" : "none" ,
90

91 //Important joint points for metric calculation
92 "jointPoints_m" : {
93 "ankle_left" : {
94 "x" : [] ,
95 "y" : [] ,
96 "z" : []
97 } ,
98 "ankle_right" : {
99 "x" : [] ,

100 "y" : [] ,
101 "z" : []
102 } ,
103 "hip_left" : {
104 "x" : [] ,
105 "y" : [] ,

46

106 "z" : []
107 } ,
108 "hip_right" : {
109 "x" : [] ,
110 "y" : [] ,
111 "z" : []
112 } ,
113 "knee_left" : {
114 "x" : [] ,
115 "y" : [] ,
116 "z" : []
117 } ,
118 "knee_right" : {
119 "x" : [] ,
120 "y" : [] ,
121 "z" : []
122 } ,
123 } ,
124

125 //Important joint points for metric calculation
126 "jointPoints" : {
127 "ankle_left" : 0 . 0 ,
128 "ankle_right" : 0 . 0 ,
129 "hip_left" : 0 . 0 ,
130 "hip_right" : 0 . 0 ,
131 "dif_left" : 0 . 0 ,
132 "dif_right" : 0 . 0
133 } ,
134

135 //Above, but for previous frame
136 "jointPointsPrev" : {
137 "ankle_left" : 0 . 0 ,
138 "ankle_right" : 0 . 0 ,
139 "hip_left" : 0 . 0 ,
140 "hip_right" : 0 . 0 ,
141 "dif_left" : 0 . 0 ,
142 "dif_right" : 0 . 0
143 }
144 }
145 //List of the time values at each frame
146 this . times_s = [] ;
147 this . r e co rd ing = fa l se ;
148 }
149

150 /** Updates all of the metrics that are calculated in real-time */
151 updateMetr ics (body) {
152 i f (this . t r a ck e rVa r i ab l e s . time_ms > Math . round (this . game . recordTime

∗1000)) {
153 this . game . stopRecording () ;
154 }
155 else {
156 //Get coordinates (metres and normalized) of key joint points used

for gait calculations
157 this . updateJointPoints_m (body) ;

47

158 this . updateJointPoints_norm (body) ;
159

160 //If previous joint points have a value
161 i f (! this . t r a ck e rVa r i ab l e s . f i r s t I t e r a t i o n) {
162 this . updateTime () ;
163

164 //Determine if any new gait events have occured
165 const event = this . detectEvents () ;
166

167 //Handle the different types of event
168 switch (event) {
169 case "heelRaise_left" :
170 this . handleHee lRaise ('left') ;
171 break ;
172 case "heelRaise_right" :
173 this . handleHee lRaise ('right') ;
174 break ;
175 case "heelStrike_left" :
176 this . hand l eHee lS t r ike ('left') ;
177 break ;
178 case "heelStrike_right" :
179 this . hand l eHee lS t r ike ('right') ;
180 break ;
181 de f au l t :
182 break ;
183 }
184

185 //Only update metrics after first step
186 i f (! this . t r a ck e rVa r i ab l e s . f i r s t S t e p) {
187 this . updateDistance () ;
188 this . updateSpeed () ;
189 this . updateCadence () ;
190 }
191 }
192 else {
193 this . i n i t () ;
194 }
195 }
196 }
197

198 /** Prints the metrics into the console */
199 output () {
200 this . c a l cu l a t ePo s tSe s s i onVa lu e s () ;
201 conso l e . l og (this) ;
202 }
203

204 /** Calculates the average metrics and metrics graphs using the hip and
ankle location graphs*/

205 ca l cu l a t ePo s tSe s s i onVa lue s () {
206 this . f i l t e rData_ank l e s () ;
207 this . calculateMinimaMaxima_ankles () ;
208 this . getFi l te redData_hips () ;
209 this . calculateMinimaMaxima_hips () ;
210 this . ca l cu la teMetr i c sGraphs () ;

48

211 this . ca l cu lateKneeAngles () ;
212 this . c a l cu l a t eAverageMet r i c s () ;
213 }
214

215 ca lcu lateKneeAngles () {
216 const l e f t F l e x i o n = this . ca l cu la t eKneeF lex ion (this . t r a ck e rVa r i ab l e s .

jointPoints_m . h ip_le f t , this . t r a ck e rVa r i ab l e s . jointPoints_m .
knee_left , this . t r a ck e rVa r i ab l e s . jointPoints_m . ank l e_ l e f t) ;

217 const r i gh tF l ex i on = this . ca l cu la t eKneeF lex ion (this . t r a ck e rVa r i ab l e s .
jointPoints_m . hip_right , this . t r a ck e rVa r i ab l e s . jointPoints_m .
knee_right , this . t r a ck e rVa r i ab l e s . jointPoints_m . ankle_r ight) ;

218 this . postSess ionGraphs . kneeF l ex ion_le f t = this . movingAvgFilter (
l e f tF l e x i o n , 2 0) ;

219 this . postSess ionGraphs . kneeFlex ion_right = this . movingAvgFilter (
r i gh tF l ex i on , 2 0) ;

220 }
221

222 /** Calculates stride lengths, swings, and stances */
223 c a l c u l a t e S t r i d e s (maxima , minima , distanceArray , distanceArray_oppos ite ,

timeArray , swings , s tances , s t r i d eLengths) {
224 //Variables to track the current position in the maxima and minima

arrays
225 var max = 0 ;
226 var min = 0 ;
227

228 //While the size of the maxima and minima arrays have not been
exceeded

229 while (max < maxima . l ength && min < minima . l ength) {
230 //Get current max and min and next max and min
231 const h e e l S t r i k e = maxima [max] ;
232 const hee lRa i s e = minima [min] ;
233 const hee lSt r ike_next = maxima [max + 1] ;
234 const heelRaise_next = minima [min + 1] ;
235

236 //Stance event detection
237 i f (hee lRa i s e > h e e l S t r i k e) {
238 i f (hee lSt r ike_next > hee lRa i s e) {
239 conso l e . l og ("a") ;
240 const s tance = timeArray [hee lRa i s e] − timeArray [h e e l S t r i k e

] ;
241 s t ance s . push (s tance)
242 }
243 max++;
244 }
245 //Swing event detection
246 else {
247 i f (heelRaise_next > he e l S t r i k e) {
248 conso l e . l og ("b") ;
249 const s t r ideLength = distanceArray [h e e l S t r i k e] −

distanceArray_oppos i te [h e e l S t r i k e] ;
250 const swing = timeArray [h e e l S t r i k e] − timeArray [hee lRa i s e

] ;
251 s t r i d eLengths . push (s t r ideLength) ;
252 swings . push (swing) ;

49

253 }
254 min++;
255 }
256 }
257 }
258

259 /** Calculates double support values */
260 ca l cu lateDoubleSupport s (maxima , minima , timeArray , doubleSupports) {
261 //Variables to track the current position in the maxima and minima

arrays
262 var max = 0 ;
263 var min = 0 ;
264

265 //While the size of the maxima and minima arrays have not been
exceeded

266 while (max < maxima . l ength && min < minima . l ength) {
267 //Get max, min and next max
268 const h e e l S t r i k e = maxima [max] ;
269 const hee lRa i s e = minima [min] ;
270 const hee lSt r ike_next = maxima [max + 1] ;
271

272 //Double support event
273 i f (hee lRa i s e > h e e l S t r i k e) {
274 i f (hee lSt r ike_next > hee lRa i s e) {
275 const doubleSupport = timeArray [hee lRa i s e] − timeArray [

h e e l S t r i k e] ;
276 doubleSupports . push (doubleSupport)
277 }
278 max++;
279 }
280 else {
281 min++;
282 }
283 }
284 }
285

286 /** Calculates filtered balance angle from hips data and get maxima and
minima */

287 calculateMinimaMaxima_hips () {
288 this . postSess ionGraphs . balanceMaxima = this . getMaximaWindowed (this .

postSess ionGraphs . f i l t e r edBa l an c e , 6 0 , 0 . 5) ;
289 this . postSess ionGraphs . balanceMinima = this . getMinimaWindowed (this .

postSess ionGraphs . f i l t e r edBa l an c e , 6 0 , 0 . 5) ;
290 this . getBalancePeakValues () ;
291 }
292

293 getFi l te redData_hips () {
294 const hipAngles = this . c a l cu l a t eBa l ance (this . t r a ck e rVa r i ab l e s .

jointPoints_m . h ip_l e f t . y , this . t r a ck e rVa r i ab l e s . jointPoints_m .
hip_right . y , this . t r a ck e rVa r i ab l e s . jointPoints_m . h ip_l e f t . x , this .
t r a ck e rVa r i ab l e s . jointPoints_m . hip_right . x) ;

295 this . postSess ionGraphs . f i l t e r e dBa l a n c e = this . movingAvgFilter (
hipAngles , 2 0) ;

296 }

50

297

298 /** Filter left and right ankle data */
299 f i l t e rData_ank l e s () {
300 this . postSess ionGraphs . f i l t e r e dAnk l e_ l e f t = this . movingAvgFilter (this .

t r a ck e rVa r i ab l e s . jointPoints_m . ank l e_ l e f t . z , 2 0) ;
301 this . postSess ionGraphs . f i l t e r edAnk l e_r i gh t = this . movingAvgFilter (this

. t r a ck e rVa r i ab l e s . jointPoints_m . ankle_r ight . z , 2 0) ;
302 }
303

304 /** Calculate the minimum and maximum of the ankle locations (heel strike
and raise) */

305 calculateMinimaMaxima_ankles () {
306 //Get mean of left and right ankle data
307 const mean_left = this . ca l cu lateAvg (this . postSess ionGraphs .

f i l t e r e dAnk l e_ l e f t) ;
308 const mean_right = this . ca l cu lateAvg (this . postSess ionGraphs .

f i l t e r edAnk l e_r i gh t) ;
309

310 //Get standard deviation of left and right ankle data
311 const stdDev_left = this . ca l cu lateStdDev (mean_left , this .

postSess ionGraphs . f i l t e r e dAnk l e_ l e f t) ;
312 const stdDev_right = this . ca l cu lateStdDev (mean_right , this .

postSess ionGraphs . f i l t e r edAnk l e_r i gh t) ;
313

314 //Get maxima and minima for both angles
315 const ankleMaxima_left = this . getMaximaWindowed (this . postSess ionGraphs

. f i l t e r e dAnk l e_ l e f t , 1 0 0 , 0 . 3) ;
316 const ankleMaxima_right = this . getMaximaWindowed (this .

postSess ionGraphs . f i l t e r edAnk l e_r i gh t , 1 0 0 , 0 . 3) ;
317 const ankleMinima_left = this . getMinimaWindowed (this . postSess ionGraphs

. f i l t e r e dAnk l e_ l e f t , 1 0 0 , 0 . 3) ;
318 const ankleMinima_right = this . getMinimaWindowed (this .

postSess ionGraphs . f i l t e r edAnk l e_r i gh t , 1 0 0 , 0 . 3) ;
319

320 //Filter out any maxima or minima that are not close to the extremes
321 this . postSess ionGraphs . ankleMaxima_left = this . checkMaxima (mean_left ,

stdDev_left , ankleMaxima_left , this . postSess ionGraphs .
f i l t e r e dAnk l e_ l e f t) ;

322 this . postSess ionGraphs . ankleMaxima_right = this . checkMaxima (mean_right
, stdDev_right , ankleMaxima_right , this . postSess ionGraphs .
f i l t e r edAnk l e_r i gh t) ;

323 this . postSess ionGraphs . ankleMinima_left = this . checkMinima (mean_left ,
stdDev_left , ankleMinima_left , this . postSess ionGraphs .
f i l t e r e dAnk l e_ l e f t) ;

324 this . postSess ionGraphs . ankleMinima_right = this . checkMinima (mean_right
, stdDev_right , ankleMinima_right , this . postSess ionGraphs .
f i l t e r edAnk l e_r i gh t) ;

325 }
326

327 /** Calculates graphs of stride length, swing time and stance time */
328 ca l cu la teMetr i c sGraphs () {
329 this . c a l c u l a t e S t r i d e s (this . postSess ionGraphs . ankleMaxima_left , this .

postSess ionGraphs . ankleMinima_left , this . postSess ionGraphs .
f i l t e r e dAnk l e_ l e f t , this . postSess ionGraphs . f i l t e r edAnk l e_r i gh t , this

51

. times_s , this . postSess ionGraphs . swings_le f t , this . postSess ionGraphs

. s t ance s_ l e f t , this . postSess ionGraphs . s t r i d eLeng th s_ l e f t) ;
330 this . c a l c u l a t e S t r i d e s (this . postSess ionGraphs . ankleMaxima_right , this .

postSess ionGraphs . ankleMinima_right , this . postSess ionGraphs .
f i l t e r edAnk l e_r i gh t , this . postSess ionGraphs . f i l t e r e dAnk l e_ l e f t , this
. times_s , this . postSess ionGraphs . swings_right , this .
postSess ionGraphs . s tances_r ight , this . postSess ionGraphs .
s t r ideLengths_r ight) ;

331 this . ca l cu lateDoubleSupport s (this . postSess ionGraphs . ankleMaxima_left ,
this . postSess ionGraphs . ankleMinima_right , this . times_s , this .
postSess ionGraphs . doubleSupports_le f t) ;

332 this . ca l cu lateDoubleSupport s (this . postSess ionGraphs . ankleMaxima_right ,
this . postSess ionGraphs . ankleMinima_left , this . times_s , this .
postSess ionGraphs . doubleSupports_right) ;

333 }
334

335 /** Calculate average of important metrics */
336 ca l cu la t eAverageMet r i c s () {
337 //Calculate swing/stance
338 this . po s tSe s s i onMet r i c s . swing_left_s = this . po s tSe s s i onMet r i c s .

s ing l e_r ight_s = this . ca l cu lateAvg (this . postSess ionGraphs .
sw ings_le f t) /1000 ;

339 this . po s tSe s s i onMet r i c s . swing_right_s = this . po s tSe s s i onMet r i c s .
s i n g l e_ l e f t_s = this . ca l cu lateAvg (this . postSess ionGraphs .
swings_right) /1000 ;

340 this . po s tSe s s i onMet r i c s . s tance_le f t_s = this . ca l cu lateAvg (this .
postSess ionGraphs . s t an c e s_ l e f t) /1000 ;

341 this . po s tSe s s i onMet r i c s . stance_right_s = this . ca l cu lateAvg (this .
postSess ionGraphs . s tance s_r ight) /1000 ;

342 this . po s tSe s s i onMet r i c s . swing_left_cent = this . ca l cu la teDua lPercentage
(this . po s tSe s s i onMet r i c s . swing_left_s , this . po s tSe s s i onMet r i c s .
s tance_le f t_s) ;

343 this . po s tSe s s i onMet r i c s . swing_right_cent = this .
ca l cu la teDua lPercentage (this . po s tSe s s i onMet r i c s . swing_right_s , this
. po s tSe s s i onMet r i c s . stance_right_s) ;

344 this . po s tSe s s i onMet r i c s . s tance_le f t_cent = 100 − this .
po s tSe s s i onMet r i c s . swing_left_cent ;

345 this . po s tSe s s i onMet r i c s . stance_right_cent = 100 − this .
po s tSe s s i onMet r i c s . swing_right_cent ;

346

347 //Calculate double/single
348 this . po s tSe s s i onMet r i c s . double_left_s = this . ca l cu lateAvg (this .

postSess ionGraphs . doubleSupports_le f t) /1000 ;
349 this . po s tSe s s i onMet r i c s . double_right_s = this . ca l cu lateAvg (this .

postSess ionGraphs . doubleSupports_right) /1000 ;
350 this . po s tSe s s i onMet r i c s . s i ng l e_ l e f t_cen t = this .

ca l cu la teDua lPercentage (this . po s tSe s s i onMet r i c s . s i ng l e_ l e f t_s , this
. po s tSe s s i onMet r i c s . double_left_s) ;

351 this . po s tSe s s i onMet r i c s . s ing l e_r ight_cent = this .
ca l cu la teDua lPercentage (this . po s tSe s s i onMet r i c s . s ing le_r ight_s ,
this . po s tSe s s i onMet r i c s . double_right_s) ;

352 this . po s tSe s s i onMet r i c s . double_left_cent = 100 − this .
po s tSe s s i onMet r i c s . s i ng l e_ l e f t_cen t ;

52

353 this . po s tSe s s i onMet r i c s . double_right_cent = 100 − this .
po s tSe s s i onMet r i c s . s ing l e_r ight_cent ;

354

355 //Calculate stride length
356 this . po s tSe s s i onMet r i c s . s t r i d eLeng th_ l e f t = this . ca l cu lateAvg (this .

postSess ionGraphs . s t r i d eLeng th s_ l e f t) ;
357 this . po s tSe s s i onMet r i c s . str ideLength_left_stdDev = this .

ca l cu lateStdDev (this . po s tSe s s i onMet r i c s . s t r ideLength_le f t , this .
postSess ionGraphs . s t r i d eLeng th s_ l e f t) ;

358 this . po s tSe s s i onMet r i c s . s t r ideLength_r ight = this . ca l cu lateAvg (this .
postSess ionGraphs . s t r ideLengths_r ight) ;

359 this . po s tSe s s i onMet r i c s . str ideLength_right_stdDev = this .
ca l cu lateStdDev (this . po s tSe s s i onMet r i c s . s t r ideLength_right , this .
postSess ionGraphs . s t r ideLengths_r ight) ;

360

361 //Calculate hip elevation
362 this . po s tSe s s i onMet r i c s . h ipE l eva t i on_ l e f t = this . ca l cu lateAvg (this .

postSess ionGraphs . balanceMaxima_values) ;
363 this . po s tSe s s i onMet r i c s . h ipElevat ion_left_stdDev = this .

ca l cu lateStdDev (this . po s tSe s s i onMet r i c s . h ipE levat i on_le f t , this .
postSess ionGraphs . balanceMaxima_values) ;

364 this . po s tSe s s i onMet r i c s . h ipElevat ion_r ight = this . ca l cu lateAvg (this .
postSess ionGraphs . balanceMinima_values) ;

365 this . po s tSe s s i onMet r i c s . hipElevation_right_stdDev = this .
ca l cu lateStdDev (this . po s tSe s s i onMet r i c s . h ipElevat ion_right , this .
postSess ionGraphs . balanceMinima_values) ;

366

367 this . po s tSe s s i onMet r i c s . kneeF lex ion_le f t = this . ca l cu lateAvg (this .
postSess ionGraphs . kneeF lex ion_le f t) ;

368 this . po s tSe s s i onMet r i c s . kneeFlexion_left_stdDev = this . ca l cu lateStdDev
(this . po s tSe s s i onMet r i c s . kneeFlex ion_le f t , this . postSess ionGraphs .
kneeF lex ion_le f t) ;

369 this . po s tSe s s i onMet r i c s . kneeFlex ion_right = this . ca l cu lateAvg (this .
postSess ionGraphs . kneeFlex ion_right) ;

370 this . po s tSe s s i onMet r i c s . kneeFlexion_right_stdDev = this .
ca l cu lateStdDev (this . po s tSe s s i onMet r i c s . kneeFlexion_right , this .
postSess ionGraphs . kneeFlex ion_right) ;

371 }
372

373 /** Filters an array using a smoothing filter */
374 movingAvgFilter (array , b u f f e r S i z e) {
375 var i = 0 ;
376 var f i l t e r e dA r r a y = [] ;
377

378 //Filter a given window of data each iteration
379 array . forEach ((va lue)=>{
380 var f i l t e r e dVa l u e = 0 . 0 ;
381 i f (i<array . length−bu f f e r S i z e) {
382 //Find the sum of values to be averaged
383 f o r (l e t j =0; j<bu f f e r S i z e ; j++){
384 f i l t e r e dVa l u e += array [i+j] ;
385 }
386 //Calculate average from sum
387 f i l t e r e dVa l u e /= bu f f e r S i z e ;

53

388 f i l t e r e dA r r a y . push (f i l t e r e dVa l u e) ;
389 }
390 i++;
391 })
392 return f i l t e r e dA r r a y ;
393 }
394

395 /** Peak detection from array data */
396 getMaximaWindowed (array , windowSize , over lap) {
397 var peaks = [] ;
398

399 //Window of size "windowSize" that overlaps a fractional amount
defined by overlap

400 f o r (l e t i = 0 ; i < array . l ength ; i += (windowSize∗ over lap)) {
401 //Detect highest peak in the window
402 const window = array . s l i c e (i , i+windowSize) ;
403 const peak = this . getMaximum(window) ;
404

405 //Check for identical peaks on window boundaries
406 i f (peak !=null && (((i + peak) − peaks [peaks . length −1] >= (

windowSize∗ over lap)) | | peaks . l ength == 0)) {
407 peaks . push (i + peak)
408 }
409 }
410 return peaks ;
411 }
412

413 /** Gets the minima of an array */
414 getMinimaWindowed (array , windowSize , over lap) {
415 const negatedArray = [] ;
416 //Minima become maxima when array is negated
417 array . forEach ((element)=>{
418 negatedArray . push(−element) ;
419 })
420 const minima = this . getMaximaWindowed (negatedArray , windowSize , over lap)

;
421 return minima ;
422 }
423

424 /** Checks if minima are smaller than mean - (0.5 * standard deviation) */
425 checkMinima (mean , stdDev , indexes , array) {
426 var newArray = [] ;
427 const l im i t = mean−(stdDev ∗0 . 5) ;
428

429 i ndexes . forEach ((element)=>{
430 i f (array [element] < l im i t) {
431 newArray . push (element) ;
432 }
433 })
434 return newArray ;
435 }
436

437 /** Checks if maxima are greater than mean + (0.5 * standard deviation) */
438 checkMaxima (mean , stdDev , indexes , array) {

54

439 var newArray = [] ;
440 const l im i t = mean+(stdDev ∗0 . 5) ;
441

442 //If the maximum meets the criteria , add it to the final array of
maxima

443 i ndexes . forEach ((element)=>{
444 i f (array [element] > l im i t) {
445 newArray . push (element) ;
446 }
447 })
448 return newArray ;
449 }
450

451 /** Gets the maximum from an array */
452 getMaximum(array) {
453 var peak = − I n f i n i t y ;
454 l e t peakIndex ;
455 var peakDetected = fa l se ;
456

457 f o r (l e t i = 1 ; i < array . length −1; i++){
458 //Peak is defined as an upside down V shape (lower number -->

highest number --> lower number)
459 const a = (array [i −1] − array [i]) ;
460 const b = (array [i +1] − array [i]) ;
461 i f (a<0 && b<0){
462 i f (! peakDetected) {
463 peakDetected = true ;
464 }
465 //Search for the largest peak in the window
466 i f (array [i] > peak) {
467 peakIndex = i ;
468 peak = array [i] ;
469 }
470 }
471 }
472 i f (peakDetected) {
473 return peakIndex ;
474 }
475 else {
476 return null ;
477 }
478 }
479

480 f indKneeAngle (hip , knee , ankle , i) {
481 //Initialize co-ordinates as 2D vectors
482 const hip_loc = new THREE. Vector2 (hip . z [i] , hip . y [i]) ;
483 const knee_loc = new THREE. Vector2 (knee . z [i] , knee . y [i]) ;
484 const ankle_loc = new THREE. Vector2 (ankle . z [i] , ankle . y [i]) ;
485

486 //Get direction
487 l e t shin_dir = new THREE. Vector2 () ;
488 shin_dir . subVectors (ankle_loc , knee_loc) ;
489 l e t th igh_dir = new THREE. Vector2 () ;
490 thigh_dir . subVectors (hip_loc , knee_loc) ;

55

491

492 const shin_angle = shin_dir . ang le () ;
493 const thigh_angle = thigh_dir . ang le () ;
494

495 conso l e . l og ((shin_angle ∗180) /Math . PI) ;
496 conso l e . l og ((thigh_angle ∗180) /Math . PI) ;
497

498 return (Math . abs (shin_angle−thigh_angle) ∗180) /Math . PI ;
499 }
500

501 ca l cu la t eKneeF lex ion (hip , knee , ankle) {
502 var ang l e s = [] ;
503

504 //Calculate knee flexion for every frame and return an array of the
angle data

505 f o r (l e t i =0; i<hip . y . l ength ; i++){
506 const ang le = this . f indKneeAngle (hip , knee , ankle , i) ;
507 ang l e s . push (ang le) ;
508 }
509 return ang l e s ;
510 }
511

512 /** Finds the angle between left and right hips */
513 f indHipAngle (hip_left_y , hip_right_y , hip_left_x , hip_right_x) {
514 //Absolute as we are only interested in overall balance
515 const x = Math . abs (hip_left_x − hip_right_x) ;
516 const y = hip_left_y − hip_right_y ;
517

518 //Calculate and return angle in degrees
519 const ang le = Math . atan2 (y , x) ;
520 return ((ang le ∗180) /Math . PI) ;
521 }
522

523 /** Calculates a graph of balance based on hip angle */
524 ca l cu l a t eBa l ance (hip_left_y , hip_right_y , hip_left_x , hip_right_x) {
525 var ang l e s = [] ;
526

527 //Calculate hip angles for every hip position and return an array of
the angle data

528 f o r (l e t i =0; i<hip_left_y . l ength ; i++){
529 const ang le = this . f indHipAngle (hip_left_y [i] , hip_right_y [i] ,

hip_left_x [i] , hip_right_x [i]) ;
530 ang l e s . push (ang le) ;
531 }
532 return ang l e s ;
533 }
534

535 /** Calculates actual values of balance minima and maxima */
536 getBalancePeakValues () {
537 this . postSess ionGraphs . balanceMaxima . forEach ((va lue)=>{
538 this . postSess ionGraphs . balanceMaxima_values . push (this .

postSess ionGraphs . f i l t e r e dBa l a n c e [va lue]) ;
539 })
540 this . postSess ionGraphs . balanceMinima . forEach ((va lue)=>{

56

541 this . postSess ionGraphs . balanceMinima_values . push (this .
postSess ionGraphs . f i l t e r e dBa l a n c e [va lue]) ;

542 })
543 }
544

545 /** Calculates the average of values in an array */
546 ca l cu lateAvg (array) {
547 var t o t a l = 0 . 0 ;
548

549 //Get the total of the array and divide by the number of elements
550 array . forEach ((element)=>{
551 t o t a l += element ;
552 })
553 return t o t a l / array . l ength
554 }
555

556 /** Calculates the standard deviation of items in an array given the mean
*/

557 ca lcu lateStdDev (mean , array) {
558 var t o t a l = 0 . 0 ;
559

560 //Get sum of variances
561 array . forEach ((element)=>{
562 t o t a l += Math . pow(element−mean , 2) ;
563 })
564 return Math . sq r t (t o t a l / array . l ength) ;
565 }
566

567 /** Calculate a as a percentage of a + b */
568 ca l cu la teDua lPercentage (a , b) {
569 const cent = Math . round ((a /(a+b)) ∗1000) /10
570 return cent ;
571 }
572

573 /** Sets timer to 0 and signals that one iteration of pose estimation has
passed */

574 i n i t () {
575 this . t r a ck e rVa r i ab l e s . startTime_ms = Date . now() ;
576 this . t r a ck e rVa r i ab l e s . f i r s t I t e r a t i o n = fa l se ;
577 }
578

579 /** Update the current time value and the previous time value */
580 updateTime () {
581 //Set previous time to lat recorded time
582 this . t r a ck e rVa r i ab l e s . prevTime_ms = this . t r a ck e rVa r i ab l e s . time_ms ;
583

584 //Set new time and calculate difference between the previous
585 this . t r a ck e rVa r i ab l e s . time_ms = Date . now() − this . t r a ck e rVa r i ab l e s .

startTime_ms ;
586 this . t r a ck e rVa r i ab l e s . timeDif_ms = this . t r a ck e rVa r i ab l e s . time_ms −

this . t r a ck e rVa r i ab l e s . prevTime_ms ;
587 this . rea lTimeMetr ics . time_s = this . t r a ck e rVa r i ab l e s . time_ms/1000
588 this . times_s . push (this . t r a ck e rVa r i ab l e s . time_ms) ;
589 }

57

590

591 /** Update a record of the important joint points (metres) for gait (and
their values for the previous pose) */

592 updateJointPoints_m (body) {
593 //Set current positions
594 this . t r a ck e rVa r i ab l e s . jointPoints_m . ank l e_ l e f t . z . push(−body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_HEEL] . z) ;
595 this . t r a ck e rVa r i ab l e s . jointPoints_m . ank l e_ l e f t . x . push (body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_HEEL] . x) ;
596 this . t r a ck e rVa r i ab l e s . jointPoints_m . ank l e_ l e f t . y . push (body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_HEEL] . y) ;
597 this . t r a ck e rVa r i ab l e s . jointPoints_m . ankle_r ight . z . push(−body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_HEEL] . z) ;
598 this . t r a ck e rVa r i ab l e s . jointPoints_m . ankle_r ight . x . push (body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_HEEL] . x) ;
599 this . t r a ck e rVa r i ab l e s . jointPoints_m . ankle_r ight . y . push (body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_HEEL] . y) ;
600 this . t r a ck e rVa r i ab l e s . jointPoints_m . h ip_l e f t . z . push(−body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_HIP] . z) ;
601 this . t r a ck e rVa r i ab l e s . jointPoints_m . h ip_l e f t . x . push (body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_HIP] . x) ;
602 this . t r a ck e rVa r i ab l e s . jointPoints_m . h ip_l e f t . y . push (body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_HIP] . y) ;
603 this . t r a ck e rVa r i ab l e s . jointPoints_m . hip_right . z . push(−body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_HIP] . z) ;
604 this . t r a ck e rVa r i ab l e s . jointPoints_m . hip_right . x . push (body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_HIP] . x) ;
605 this . t r a ck e rVa r i ab l e s . jointPoints_m . hip_right . y . push (body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_HIP] . y) ;
606 this . t r a ck e rVa r i ab l e s . jointPoints_m . knee_le f t . z . push(−body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_KNEE] . z) ;
607 this . t r a ck e rVa r i ab l e s . jointPoints_m . knee_le f t . x . push (body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_KNEE] . x) ;
608 this . t r a ck e rVa r i ab l e s . jointPoints_m . knee_le f t . y . push (body .

poseWorldLandmarks [POSE_LANDMARKS_LEFT.LEFT_KNEE] . y) ;
609 this . t r a ck e rVa r i ab l e s . jointPoints_m . knee_right . z . push(−body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_KNEE] . z) ;
610 this . t r a ck e rVa r i ab l e s . jointPoints_m . knee_right . x . push (body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_KNEE] . x) ;
611 this . t r a ck e rVa r i ab l e s . jointPoints_m . knee_right . y . push (body .

poseWorldLandmarks [POSE_LANDMARKS_RIGHT.RIGHT_KNEE] . y) ;
612 }
613

614 /** Update a record of the important joint points (normalized units) for
gait (and their values for the previous pose) */

615 updateJointPoints_norm (body) {
616 //Set previous positions to last current positions
617 this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . ank l e_ l e f t = this .

t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ank l e_ l e f t ;
618 this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . ankle_r ight = this .

t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ankle_r ight ;
619 this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . h ip_ l e f t = this . t r a ck e rVa r i ab l e s

. j o i n tPo i n t s . h ip_ l e f t ;

58

620 this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . hip_right = this .
t r a ck e rVa r i ab l e s . j o i n tPo i n t s . h ip_right ;

621

622 //Set current positions
623 this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ank l e_ l e f t = body . poseLandmarks [

POSE_LANDMARKS_LEFT.LEFT_ANKLE] . z ;
624 this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ankle_r ight = body . poseLandmarks [

POSE_LANDMARKS_RIGHT.RIGHT_ANKLE] . z ;
625 this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . h ip_ l e f t = body . poseLandmarks [

POSE_LANDMARKS_LEFT.LEFT_HIP] . z ;
626 this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . h ip_right = body . poseLandmarks [

POSE_LANDMARKS_RIGHT.RIGHT_HIP] . z ;
627

628 //Get difference between leg and hip for previous and current
positions

629 this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . d i f_ l e f t = this . t r a ck e rVa r i ab l e s .
j o i n tPo i n t s . h ip_ l e f t − this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s .
ank l e_ l e f t ;

630 this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . d i f_r i gh t = this . t r a ck e rVa r i ab l e s .
j o i n tPo i n t s . h ip_right − this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s .
ankle_r ight ;

631 this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . d i f_ l e f t = this . t r a ck e rVa r i ab l e s
. j o in tPo in t sPrev . h ip_ l e f t − this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev .
ank l e_ l e f t ;

632 this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . d i f_r i gh t = this .
t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . hip_right − this . t r a ck e rVa r i ab l e s
. j o in tPo in t sPrev . ankle_r ight ;

633 }
634

635 /** Detects if there has been a heel strike or raise on either foot */
636 detectEvents () {
637 this . t r a ck e rVa r i ab l e s . heelChange = fa l se ;
638

639 const hipDif_l = this . t r a ck e rVa r i ab l e s
640 //If the last event was a raise the next must be a strike. A strike is

always the first event detected
641 i f (this . t r a ck e rVa r i ab l e s . l a s tEvent == "none" | | this . t r a ck e rVa r i ab l e s .

l a s tEvent == "raise") {
642 //Detect left heel strike
643 i f (this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . d i f_ l e f t > this .

t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . d i f_ l e f t && (this .
t r a ck e rVa r i ab l e s . h e e l S t r i k e == "none" | | this . t r a ck e rVa r i ab l e s
. h e e l S t r i k e == "right") && this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s .
ank l e_ l e f t > this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ankle_r ight) {

644 this . t r a ck e rVa r i ab l e s . l a s tEvent = "strike" ;
645 return "heelStrike_left" ;
646 }
647 //Detect right heel strike
648 else i f (this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . d i f_r i gh t > this .

t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . d i f_r i gh t && (this .
t r a ck e rVa r i ab l e s . h e e l S t r i k e == "none" | | this . t r a ck e rVa r i ab l e s
. h e e l S t r i k e == "left") && this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s .
ankle_r ight > this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ank l e_ l e f t) {

649 this . t r a ck e rVa r i ab l e s . l a s tEvent = "strike" ;

59

650 return "heelStrike_right" ;
651 }
652 }
653 //If the last event was a strike, the next event must be a raise
654 else {
655 //Detect right heel raise
656 i f (this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . d i f_r i gh t < this .

t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . d i f_r i gh t && (this .
t r a ck e rVa r i ab l e s . hee lRa i s e == "none" | | this . t r a ck e rVa r i ab l e s .
hee lRa i s e =="left") && this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s .
ankle_r ight < this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ank l e_ l e f t) {

657 this . t r a ck e rVa r i ab l e s . l a s tEvent = "raise" ;
658 return "heelRaise_right" ;
659 }
660 //Detect left heel raise
661 else i f (this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . d i f_ l e f t < this .

t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . d i f_ l e f t && (this .
t r a ck e rVa r i ab l e s . hee lRa i s e == "none" | | this . t r a ck e rVa r i ab l e s .
hee lRa i s e =="right") && this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s .
ank l e_ l e f t < this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ankle_r ight) {

662 this . t r a ck e rVa r i ab l e s . l a s tEvent = "raise" ;
663 return "heelRaise_left" ;
664 }
665 }
666 return "" ;
667 }
668

669 /** Calculates distance (for metrics) and average distance (for moving the
avatar forward) */

670 updateDistance () {
671 i f (this . t r a ck e rVa r i ab l e s . h e e l S t r i k e == "left" | | this . t r a ck e rVa r i ab l e s

. h e e l S t r i k e == "right") {
672 var d i s t ance = 0 . 0 ;
673 var distance_m = 0 . 0 ;
674

675 l e t di f ference_m ;
676 l e t d i f f e r e n c e ;
677

678 //Get distance change
679 i f (this . t r a ck e rVa r i ab l e s . h e e l S t r i k e == "left") {
680 const l ength = this . t r a ck e rVa r i ab l e s . jointPoints_m . ank l e_ l e f t .

z . l ength ;
681 di f ference_m = this . t r a ck e rVa r i ab l e s . jointPoints_m . ank l e_ l e f t .

z [length −2] − this . t r a ck e rVa r i ab l e s . jointPoints_m .
ank l e_ l e f t . z [length −1] ;

682 d i f f e r e n c e = this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . ank l e_ l e f t
− this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ank l e_ l e f t ;

683 }
684 else i f (this . t r a ck e rVa r i ab l e s . h e e l S t r i k e == "right") {
685 const l ength = this . t r a ck e rVa r i ab l e s . jointPoints_m . ankle_r ight

. z . l ength ;
686 di f ference_m = this . t r a ck e rVa r i ab l e s . jointPoints_m . ankle_r ight

. z [length −2] − this . t r a ck e rVa r i ab l e s . jointPoints_m .
ankle_r ight . z [length −1] ;

60

687 d i f f e r e n c e = this . t r a ck e rVa r i ab l e s . j o in tPo in t sPrev . ankle_r ight
− this . t r a ck e rVa r i ab l e s . j o i n tPo i n t s . ankle_r ight ;

688 }
689

690 //Add the distance change to the buffer if it is positive
691 i f (d i f f e r e n c e > 0) {
692 d i s t ance = d i f f e r e n c e ;
693 distance_m = dif ference_m ;
694 this . t r a ck e rVa r i ab l e s . avata rDi s tanceBuf f e r . un sh i f t ((d i s t anc e +

this . t r a ck e rVa r i ab l e s . avatarDi s tanceBuf f e r [0]) ∗ this .
l e rpValue) ;

695 }
696 //If the distance change is negative , just add 0
697 else {
698 this . t r a ck e rVa r i ab l e s . avata rDi s tanceBuf f e r . un sh i f t ((0 . 0)) ;
699 }
700

701 //Update non-filtered distance
702 this . rea lTimeMetr ics . distance_m += distance_m ;
703 this . t r a ck e rVa r i ab l e s . distanceChange_m = distance_m ;
704

705 //Remove last element from the buffer
706 this . t r a ck e rVa r i ab l e s . avatarDi s tanceBuf f e r . pop () ;
707

708 //Read average distance from the buffer
709 l e t avg = 0 . 0 ;
710 this . t r a ck e rVa r i ab l e s . avatarDi s tanceBuf f e r . forEach ((element)=>{
711 avg += element ;
712 }) ;
713 avg /= this . t r a ck e rVa r i ab l e s . avatarDi s tanceBuf f e r . l ength ;
714

715 //Update distance away from camera
716 this . rea lTimeMetr ics . avgDistance = (this . rea lTimeMetr ics .

avgDistance + avg) % 14 ;
717 }
718 }
719

720 /** Update speed in metres per second and add it to the speed graph */
721 updateSpeed () {
722 const speed = this . t r a ck e rVa r i ab l e s . distanceChange_m / (this .

t r a ck e rVa r i ab l e s . timeDif_ms / 1000) ;
723 this . rea lTimeMetr ics . speed_ms = speed ;
724 }
725

726 /** Update cadence in steps per second and add it to the cadence graph */
727 updateCadence () {
728 const cadence = this . rea lTimeMetr ics . s t ep s /(this . t r a ck e rVa r i ab l e s .

time_ms / 1000) ;
729 this . rea lTimeMetr ics . cadence_ss = cadence ;
730 }
731

732 /** Update the arrays of heel raise info and record the start of a step */
733 handleHee lRaise (hee l) {
734 //Record the heel raise

61

735 this . t r a ck e rVa r i ab l e s . hee lRa i s e = hee l ;
736 }
737

738 /** Update the arrays of heel strike info and record the step length */
739 hand l eHee lS t r ike (hee l) {
740 i f (this . t r a ck e rVa r i ab l e s . f i r s t S t e p) {
741 this . t r a ck e rVa r i ab l e s . f i r s t S t e p = fa l se ;
742 }
743 //Inform the algorithm of a heel change
744 this . t r a ck e rVa r i ab l e s . heelChange = true ;
745 this . rea lTimeMetr ics . s t ep s++;
746 this . t r a ck e rVa r i ab l e s . h e e l S t r i k e = hee l ;
747 }
748 }

62

C Web App Testing

C.1 Unit Tests for Training Page
Below is the code for the cypress unit tests.

1 /// <reference types="Cypress" />
2

3 import id from "../../components/pages/training/id" ;
4

5 const s c r e e nS i z e s = ['macbook -15' ,'iphone-x'] ;
6

7 const c o l o u rL i s t = ["Black" ,"White" ,"Red" ,"Orange" ,"Yellow" ,"Green" ,"Blue" ,"
Purple" ,"Select an option"] ;

8 const groundValuesList = ["Terracotta" ,"Moss" ,"Rock" ,"Select an option"] ;
9 const skyValuesL i s t = ["Cloudy" ,"Overcast" ,"Night" ,"Select an option"] ;

10 const colourTaskSpeed = ["1" ,"2" ,"3" ,"Select an option"] ;
11 const testTime = ["0.5" ,"1" ,"1.5" ,"2" ,"Select an option"] ;
12 const co loursTask = ["Yes" ,"No" ,"Select an option"] ;
13 const guidance = ["Yes" ,"No" ,"Select an option"] ;
14

15 de s c r i b e ('Training page' , ()=>{
16 s c r e e nS i z e s . forEach ((s i z e)=>{
17 i t ('should open' , ()=>{
18 cy . v iewport (s i z e) ;
19 cy . v i s i t ("http://localhost:3000/training") ;
20 })
21 }) ;
22 })
23

24 de s c r i b e ('Avatar settings' , ()=>{
25 s c r e e nS i z e s . forEach ((s i z e)=>{
26 beforeEach (()=>{
27 cy . v iewport (s i z e) ;
28 }) ;
29 i t (` a l l ows user to s e l e c t d i f f e r e n t bone co l ou r s (s c r e en s i z e : ${ s i z e

}) ` , ()=>{
30 checkDropdownText ("#"+id . Train ing . BoneColour , c o l o u rL i s t) ;
31 }) ;
32 i t (` a l l ows the user to s e l e c t d i f f e r e n t j o i n t c o l ou r s (s c r e en s i z e : ${

s i z e }) ` , ()=>{
33 checkDropdownText ("#"+id . Train ing . JointColour , c o l o u rL i s t) ;
34 }) ;
35 i t (` a l l ows the user to s e l e c t d i f f e r e n t head co l ou r s (s c r e en s i z e : ${

s i z e }) ` , ()=>{
36 checkDropdownText ("#"+id . Train ing . HeadColour , c o l o u rL i s t) ;
37 }) ;

63

38 }) ;
39 }) ;
40

41 de s c r i b e ('World settings' , ()=>{
42 s c r e e nS i z e s . forEach ((s i z e)=>{
43 beforeEach (()=>{
44 cy . v iewport (s i z e) ;
45 }) ;
46 i t (` a l l ows the user to s e l e c t d i f f e r e n t ground t ex tu r e s (s c r e en s i z e :

${ s i z e }) ` , ()=>{
47 checkDropdownText ("#"+id . Train ing . GroundTexture , groundValuesList)

;
48 }) ;
49 i t (` a l l ows the user to s e l e c t d i f f e r e n t sky t ex tu r e s (s c r e en s i z e : ${

s i z e }) ` , ()=>{
50 checkDropdownText ("#"+id . Train ing . SkyTexture , skyValuesL i s t) ;
51 }) ;
52 }) ;
53 }) ;
54

55 de s c r i b e ('Interactions settings' , ()=>{
56 s c r e e nS i z e s . forEach ((s i z e)=>{
57 beforeEach (()=>{
58 cy . v iewport (s i z e) ;
59 }) ;
60 i t (` a l l ows the user to enable and d i s ab l e the co l ou r s task (s c r e en

s i z e : ${ s i z e }) ` , ()=>{
61 checkDropdownText ("#"+id . Train ing . CogNonCog , co loursTask) ;
62 }) ;
63 i t (` a l l ows the user to s e t the speed f o r the co l ou r s task (s c r e en s i z e

: ${ s i z e }) ` , ()=>{
64 checkDropdownText ("#"+id . Train ing . DistractorSpeed , colourTaskSpeed

) ;
65 }) ;
66 i t (` a l l ows the user to s e t the time f o r the t e s t (s c r e en s i z e : ${ s i z e

}) ` , ()=>{
67 checkDropdownText ("#"+id . Train ing . TestTime , testTime) ;
68 }) ;
69 }) ;
70 }) ;
71

72 de s c r i b e ('Interactions settings' , ()=>{
73 s c r e e nS i z e s . forEach ((s i z e)=>{
74 beforeEach (()=>{
75 cy . v iewport (s i z e) ;
76 }) ;
77 i t (` a l l ows the user to s e l e c t d i f f e r e n t ground t ex tu r e s (s c r e en s i z e :

${ s i z e }) ` , ()=>{
78 checkDropdownText ("#"+id . Train ing . GroundTexture , groundValuesList)

;
79 }) ;
80 i t (` a l l ows the user to s e l e c t d i f f e r e n t sky t ex tu r e s (s c r e en s i z e : ${

s i z e }) ` , ()=>{
81 checkDropdownText ("#"+id . Train ing . SkyTexture , skyValuesL i s t) ;

64

82 }) ;
83 }) ;
84 }) ;
85

86 /* Compares the dropdown text againt those in the provided list */
87 function checkDropdownText (id , t e x tL i s t) {
88 //Cycle through each dropdown option and verify the text
89 var i = 0 ;
90 cy . get (id+'>option') . each ((e l)=>{
91 expect (e l . t ex t ()) . to . eq (t e x tL i s t [i]) ;
92 i++;
93 }) ;
94 }
95

96 const buttonEmph = 'bg-gradient -to-b from-yellow -400 to-yellow -500' ;
97 const buttonNonEmph = 'bg-gradient -to-b from-yellow -200 to-yellow -300' ;
98

99 de s c r i b e ('mobile switch displays button' , ()=>{
100 context ('iphone-x' , ()=>{
101 beforeEach (()=>{
102 cy . v iewport ('iphone-x') ;
103 }) ;
104 i t (` should switch to the three d i sp l ay (s c r e en s i z e : iphone−x) ` , ()=>{
105 cy . get ("#"+id . Train ing . VideoSwitchDisplay) . c l i c k () ;
106 cy . get ("#"+id . Train ing . VideoFeed) . should ('have.class' ,'invisible')

;
107 cy . get ("#"+id . Train ing .GameWindow) . should ('not.have.class' ,'

invisible') ;
108 }) ;
109 i t (` should switch back to the video d i sp l ay (s c r e en s i z e : iphone−x)

` , ()=>{
110 cy . get ("#"+id . Train ing . ThreeSwitchDisplay) . c l i c k () ;
111 cy . get ("#"+id . Train ing . VideoFeed) . should ('not.have.class' ,'

invisible') ;
112 cy . get ("#"+id . Train ing .GameWindow) . should ('have.class' ,'invisible'

) ;
113 }) ;
114 }) ;
115 }) ;
116

117 de s c r i b e ('mobile menu open & close button (video window)' , ()=>{
118 context ('iphone-x' , ()=>{
119 i t (` should open the s e t t i n g s menu (s c r e en s i z e : iphone−x) ` , ()=>{
120 cy . v iewport ('iphone-x') ;
121 cy . get ("#"+id . Train ing . VideoGCSToggle) . c l i c k () ;
122 cy . get ("#"+id . Train ing .GCS) . should ('not.have.class' ,'invisible') ;
123 cy . get ("#"+id . Train ing . CloseGCS) . c l i c k () ;
124 cy . get ("#"+id . Train ing .GCS) . should ('have.class' ,'invisible') ;
125 }) ;
126 }) ;
127 }) ;
128

129 de s c r i b e ('mobile menu open & close button (three window)' , ()=>{
130 context ('iphone-x' , ()=>{

65

131 i t (` should open the s e t t i n g s menu (s c r e en s i z e : iphone−x) ` , ()=>{
132 cy . v iewport ('iphone-x') ;
133 cy . get ("#"+id . Train ing . VideoSwitchDisplay) . c l i c k () ;
134 cy . get ("#"+id . Train ing . ThreeGCSToggle) . c l i c k () ;
135 cy . get ("#"+id . Train ing .GCS) . should ('not.have.class' ,'invisible') ;
136 cy . get ("#"+id . Train ing . CloseGCS) . c l i c k () ;
137 cy . get ("#"+id . Train ing .GCS) . should ('have.class' ,'invisible') ;
138 cy . get ("#"+id . Train ing . ThreeSwitchDisplay) . c l i c k () ;
139 }) ;
140 }) ;
141 }) ;
142

143

144 de s c r i b e ('Settings navbar' , ()=>{
145 s c r e e nS i z e s . forEach ((s i z e)=>{
146 i t (` should only d i sp l ay the avatar s e t t i n g s when the avatar button i s

c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
147 //Set viewport size and visit training page
148 cy . v iewport (s i z e) ;
149

150 i f (s i z e == 'iphone-x') {
151 cy . get ("#"+id . Train ing . VideoGCSToggle) . c l i c k () ;
152 }
153 cy . get ("#"+id . Train ing . WorldButton) . c l i c k () ;
154 cy . get ("#"+id . Train ing . AvatarButton) . c l i c k () ;
155 cy . get ("#"+id . Train ing . AvatarSett ings) . should ('not.have.class' ,'

hidden') ;
156 cy . get ("#"+id . Train ing . WorldSett ings) . should ('have.class' ,'hidden'

) ;
157 cy . get ("#"+id . Train ing . I n t e r a c t i o n s S e t t i n g s) . should ('have.class' ,'

hidden') ;
158 }) ;
159 i t (` should emphasize the avatar button when the avatar button i s

c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
160 cy . v iewport (s i z e) ;
161 cy . get ("#"+id . Train ing . AvatarButton) . should ('have.class' ,

buttonEmph) ;
162 }) ;
163 i t (` should de−emphasize the world button when the avatar button i s

c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
164 cy . v iewport (s i z e) ;
165 cy . get ("#"+id . Train ing . WorldButton) . should ('have.class' ,

buttonNonEmph) ;
166 }) ;
167 i t (` should de−emphasize the i n t e r a c t i o n s button when the avatar button

i s c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
168 cy . v iewport (s i z e) ;
169 cy . get ("#"+id . Train ing . In t e rac t i onsBut ton) . should ('have.class' ,

buttonNonEmph) ;
170 }) ;
171 i t (` should only d i sp l ay the i n t e r a c t i o n s s e t t i n g s when the avatar

button i s c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
172 //Set viewport size and visit training page
173 cy . v iewport (s i z e) ;

66

174 cy . get ("#"+id . Train ing . In t e rac t i onsBut ton) . c l i c k () ;
175 cy . get ("#"+id . Train ing . AvatarSett ings) . should ('have.class' ,'hidden

') ;
176 cy . get ("#"+id . Train ing . WorldSett ings) . should ('have.class' ,'hidden'

) ;
177 cy . get ("#"+id . Train ing . I n t e r a c t i o n s S e t t i n g s) . should ('not.have.

class' ,'hidden') ;
178 }) ;
179 i t (` should de−emphasize the avatar button when the i n t e r a c t i o n s button

i s c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
180 cy . v iewport (s i z e) ;
181 cy . get ("#"+id . Train ing . AvatarButton) . should ('have.class' ,

buttonNonEmph) ;
182 }) ;
183 i t (` should de−emphasize the world button when the i n t e r a c t i o n s button

i s c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
184 cy . v iewport (s i z e) ;
185 cy . get ("#"+id . Train ing . WorldButton) . should ('have.class' ,

buttonNonEmph) ;
186 }) ;
187 i t (` should emphasize the i n t e r a c t i o n s button when the i n t e r a c t i o n s

button i s c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
188 cy . v iewport (s i z e) ;
189 cy . get ("#"+id . Train ing . In t e rac t i onsBut ton) . should ('have.class' ,

buttonEmph) ;
190 }) ;
191 i t (` should only d i sp l ay the world s e t t i n g s when the world button i s

c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
192 cy . v iewport (s i z e) ;
193 cy . get ("#"+id . Train ing . WorldButton) . c l i c k () ;
194 cy . get ("#"+id . Train ing . AvatarSett ings) . should ('have.class' ,'hidden

') ;
195 cy . get ("#"+id . Train ing . I n t e r a c t i o n s S e t t i n g s) . should ('have.class' ,'

hidden') ;
196 cy . get ("#"+id . Train ing . WorldSett ings) . should ('not.have.class' ,'

hidden') ;
197 }) ;
198 i t (` should emphasize the world button when the world button i s c l i c k e d

(s c r e en s i z e : ${ s i z e }) ` , ()=>{
199 cy . v iewport (s i z e) ;
200 cy . get ("#"+id . Train ing . WorldButton) . should ('have.class' , buttonEmph

) ;
201 }) ;
202 i t (` should de−emphasize the avatar button when the world button i s

c l i c k e d (s c r e en s i z e : ${ s i z e }) ` , ()=>{
203 cy . v iewport (s i z e) ;
204 cy . get ("#"+id . Train ing . AvatarButton) . should ('have.class' ,

buttonNonEmph) ;
205 i f (s i z e == 'iphone-x') {
206 cy . get ("#"+id . Train ing . CloseGCS) . c l i c k () ;
207 }
208 }) ;
209 }) ;
210 }) ;

67

211

212 de s c r i b e ('Metrics panel' , ()=>{
213 s c r e e nS i z e s . forEach ((s i z e)=>{
214 i t (` should be i n v i s i b l e when not f u l l s c r e e n (s c r e en s i z e : ${ s i z e }) ` , ()

=>{
215 cy . v iewport (s i z e) ;
216 cy . get ("#"+id . Train ing . Metr i c sDisp lay) . should ('have.class' ,'

invisible') ;
217 }) ;
218 }) ;
219 }) ;

68

D Study Documents

D.1 Study Consent Form
The study consent form is included on the two pages following this one.

69

Evaluating the Accuracy of Web-Based Gait Analysis

1 Information About the Project

This project is focused on developing a low-cost web-based VR application that analyses and
improves movement. The application uses a single RGB camera to capture video footage of
the subject walking on a treadmill.

The application uses the video footage to detect the positions of the subject’s joints in
3D space. Using this position data, it builds a stick figure on a screen in front of the patient
that mirrors their movements in real-time. It also performs a more detailed analysis of their
movement after they finish walking. This detailed analysis could be used by clinicians in the
near future to diagnose movement problems and disorders.

This study will assess the viability of the VR application for gait analysis against a gold
standard motion capture system (Optitrack).

2 Before the Test

Before the test begins, the test operator will assign you a patient code (this will also be sent
to you by email). You will then enter some personal details (patient code, date of birth,
height, weight and gender). You can opt out of any of these details (apart from the patient
code).

Please try to wear tighter fitting trousers such as joggers or jeggings, as this makes placing
the Optitrack markers much easier.

3 Testing Process

3.1 Marker Placement

Before starting, the session operator will ask if you are comfortable with them placing ad-
hesive markers on top of your clothing on your hips, knees and ankles. Alternatively, the
session operator can tell you where to place the markers yourself.

3.2 Rounds

The test consists of “rounds”, each 1 minute in length. There are nine rounds in total
performed at different speeds. Before the testing rounds, there will also be one warm-up
round. This is so you can get used to the setup.

You can ask to take a break at any point during the test. If you require this, follow the
instructions for stopping as specified below.

1

3.3 Test Instructions

1. The session operator will ask you to step on the treadmill. Remain stationary, holding
onto the support beams.

2. Look at the screen and say “READY” when you wish to begin.

3. The treadmill will start. Keep holding the rails until you feel comfortable walking with
no support. The session operator will begin the round.

4. When the round is over you can choose to take a break or carry onto the next round.

5. If you want to stop the treadmill, say “STOP” and hold onto the support rails until it
has stopped moving completely. You will also be asked to do this at the end of the 15
rounds.

4 After the Test

When you have completed all 15 rounds of testing, the test operator will ask you to complete
a survey about the testing process and the walking environment.

5 Data Protection

By signing this form, you agree that this study can store and use your data indefinitely
unless you request it’s removal. All data is stored in compliance with The University of
York’s data protection regulations.

6 Consent

If you have read all of the information above and are happy to proceed, please sign and date
below.

Name:

Signature:

Date:

2

E Web App Validation

E.1 get_swing_stance() function
Below is the code for the get_swing_stance() MATLAB function.

1 f unc t i on [swing_times , stance_times , s t r i d e_ l eng th s] = get_swing_stance (maxima ,
minima , data , data_opposite , frame_rate)

2 %ca l c u l a t e s swing/ stance t imes and s t r i d e l ength us ing a l i s t o f the maxima
3 %and minima f o r both l e g s
4

5 max_size = s i z e (maxima , 1) ;
6 min_size = s i z e (minima , 1) ;
7 max_counter = 1 ;
8 min_counter = 1 ;
9 swing_times = [] ;

10 stance_times = [] ;
11 s t r i d e_ l eng th s = [] ;
12

13 %whi le we are with in the s i z e s o f both ar rays
14 whi le (max_counter < max_size) && (min_counter < min_size)
15 %se t cur rent events and next events
16 hee l_s t r i k e = maxima(max_counter) ;
17 hee l_ra i s e = minima (min_counter) ;
18 hee l_str ike_next = maxima(max_counter+1) ;
19 heel_raise_next = minima (min_counter+1) ;
20

21 %i f the cur rent hee l r a i s e occurs a f t e r the hee l s t r i k e
22 i f h e e l_ra i s e > hee l_s t r i k e
23 i f hee l_str ike_next > hee l_ra i s e
24 %stance time i s from current hee l s t r i k e to cur rent hee l r a i s e
25 s tance = (hee l_ra i s e − hee l_s t r i k e) / frame_rate ;
26 stance_times = [stance_times s tance] ;
27

28 end
29 max_counter = max_counter + 1 ;
30 e l s e
31 i f hee l_raise_next > hee l_s t r i k e
32 %record s t r i d e l ength
33 s t r ide_length = data (he e l_s t r i k e)−data (hee l_ra i s e) ;
34

35 %swing time i s from current hee l r a i s e to cur rent hee l s t r i k e
36 swing = (hee l_s t r i k e − hee l_ra i s e) / frame_rate ;
37 swing_times = [swing_times swing] ;
38 s t r i d e_ l eng th s = [s t r i d e_ l eng th s s t r ide_length] ;
39 end
40 min_counter = min_counter + 1 ;

72

41 end
42 end
43 end

E.2 get_double_support()
function

Below is the code for the get_double_support() MATLAB function.

1 f unc t i on [double_times] = get_double_support (maxima , minima_other_leg ,
frame_rate)

2 %ca l c u l a t e s double support t imes us ing a l i s t o f the maxima and minima f o r
both l e g s

3

4 max_size = s i z e (maxima , 1) ;
5 min_size = s i z e (minima_other_leg , 1) ;
6 max_counter = 1 ;
7 min_counter = 1 ;
8 double_times = [] ;
9

10 %whi le we are with in the s i z e s o f both ar rays
11 whi le (max_counter < max_size) && (min_counter < min_size)
12 %se t cur rent events and next events
13 hee l_s t r i k e = maxima(max_counter) ;
14 hee l_ra i s e = minima_other_leg (min_counter) ;
15 hee l_str ike_next = maxima(max_counter+1) ;
16

17 %i f the cur rent hee l r a i s e occurs a f t e r the hee l s t r i k e
18 i f h e e l_ra i s e > hee l_s t r i k e
19 i f hee l_str ike_next > hee l_ra i s e
20 %record double support t imes
21 double_support = (hee l_ra i s e − hee l_s t r i k e) / frame_rate ;
22 double_times = [double_times double_support] ;
23

24 end
25 max_counter = max_counter + 1 ;
26 e l s e
27 min_counter = min_counter + 1 ;
28 end
29 end
30 end

73

E.3 get_metrics() function
Below is the code for the get_metrics() MATLAB function.

1 f unc t i on [metr ics , swing_times_l , stance_times_l] = get_metr ics (ankle_l , ankle_r)
2 %ca l c u l a t e s the ga i t met r i c s needed f o r the study
3

4 %se t frame ra t e and get number o f frames
5 frame_rate = 100 ;
6 frames = s i z e (ankle_l , 1) ;
7

8 %plo t ankle z l o c a t i o n s on a graph
9 time = l i n s p a c e (0 , frames −1, frames) ;

10

11 %get step f requency
12 fundamental_l = get_fundamental (ankle_l , frame_rate) ;
13 fundamental_r = get_fundamental (ankle_r , frame_rate) ;
14 cadence_l = 1/(fundamental_l) ;
15 cadence_r = 1/(fundamental_r) ;
16 cadence = cadence_l + cadence_r
17

18 %ca l c u l a t e mean and std dev f o r both ank l e s
19 % mean_l = mean(ankle_l) ;
20 % mean_r = mean(ankle_r) ;
21 rms_l = rms (ankle_l)
22 rms_r = rms (ankle_r)
23

24 %f ind maxima in the data
25 [peaks_l , l o c s_ l] = f indpeaks (ankle_l , ' MinPeakDistance ' , (fundamental_l∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_l ∗0 . 75) ;
26 [peaks_r , locs_r] = f indpeaks (ankle_r , ' MinPeakDistance ' , (fundamental_r∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_r ∗0 . 75) ;
27

28 %f ind minima in the data
29 [min_l , locs_min_l] = f indpeaks (−ankle_l , ' MinPeakDistance ' , (fundamental_l∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_l ∗0 . 75) ;
30 [min_r , locs_min_r] = f indpeaks (−ankle_r , ' MinPeakDistance ' , (fundamental_r∗

frame_rate) ∗0 .75 , ' MinPeakProminence ' , rms_r ∗0 . 75) ;
31 min_l = −min_l ;
32 min_r = −min_r ;
33

34 %get swing , s tance and s i n g l e support (s tance o f oppos i t e f o o t) t imes
35 [swing_times_l , stance_times_l , s t r ide_lengths_l] = get_swing_stance (locs_l ,

locs_min_l , ankle_l , ankle_r , frame_rate) ;
36 s ingle_times_r = stance_times_l ;
37 [swing_times_r , stance_times_r , s t r ide_lengths_r] = get_swing_stance (locs_r ,

locs_min_r , ankle_r , ankle_l , frame_rate) ;
38 s ing le_t imes_l = stance_times_r ;
39

40

41 %get double support t imes

74

42 double_times_l = get_double_support (locs_l , locs_min_r , frame_rate) ;
43 double_times_r = get_double_support (locs_r , locs_min_l , frame_rate) ;
44

45 %get average s t r i d e l eng th s
46 s t r i d e_ l = mean(s t r ide_lengths_l) ;
47 s t r ide_r = mean(st r ide_lengths_r) ;
48

49 %get average t imes
50 swing_l = mean(swing_times_l) ;
51 swing_r = mean(swing_times_r) ;
52 stance_l = mean(stance_times_l) ;
53 stance_r = mean(stance_times_r) ;
54 double_l = mean(double_times_l) ;
55 double_r = mean(double_times_r) ;
56 s i n g l e_ l = mean(s ing le_t imes_l) ;
57 s ing l e_r = mean(s ingle_times_r) ;
58

59 %get r a t i o
60 swing_ratio_l = swing_l /(swing_l + stance_l) ∗100 ;
61 swing_ratio_r = swing_r /(swing_r + stance_r) ∗100 ;
62 s tance_rat io_l = stance_l /(swing_l + stance_l) ∗100 ;
63 stance_rat io_r = stance_r /(swing_r + stance_r) ∗100 ;
64 double_ratio_l = double_l /(double_l + s i ng l e_ l) ∗100 ;
65 double_ratio_r = double_r /(double_r + s ing l e_r) ∗100 ;
66 s i ng l e_ra t i o_ l = s i ng l e_ l /(double_l + s i ng l e_ l) ∗100 ;
67 s ing l e_rat i o_r = s ing l e_r /(double_r + s ing l e_r) ∗100 ;
68

69 %get number o f s t ep s f o r each l e g
70 s teps_l = s i z e (peaks_l , 1) −1;
71 steps_r = s i z e (peaks_r , 1) −1;
72

73 %get d i s t anc e walked from s t r i d e l eng th s
74 d i s tance_l = sum(s t r ide_lengths_l) ;
75 distance_r = sum(str ide_lengths_r) ;
76

77 %ca l c u l a t e speed from d i s t ance va lue s
78 speed = (d i s tance_l + distance_r) /(frames / frame_rate) ;
79

80 %save ga i t met r i c s i n to a s t r u c tu r e and return i t
81 metr i c s = s t r u c t (. . .
82 ' s t e p s_ l e f t ' , steps_l , . . .
83 ' s t eps_r ight ' , steps_r , . . .
84 ' cadence_left_steps_s ' , cadence_l , . . .
85 ' cadence_right_steps_s ' , cadence_r , . . .
86 ' cadence_steps_s ' , cadence , . . .
87 ' swing_time_left_s ' , swing_l , . . .
88 ' swing_time_right_s ' , swing_r , . . .
89 ' stance_time_left_s ' , stance_l , . . .
90 ' stance_time_right_s ' , stance_r , . . .
91 ' s ing le_t ime_le f t_s ' , s i ng l e_l , . . .
92 ' s ingle_time_right_s ' , s ing le_r , . . .
93 ' double_time_left_s ' , double_l , . . .
94 ' double_time_right_s ' , double_r , . . .
95 ' swing_time_left_rat io ' , swing_ratio_l , . . .

75

96 ' swing_time_right_ratio ' , swing_ratio_r , . . .
97 ' s tance_t ime_le f t_rat io ' , s tance_rat io_l , . . .
98 ' stance_time_right_rat io ' , stance_ratio_r , . . .
99 ' s ing l e_t ime_le f t_rat i o ' , s ing l e_rat i o_l , . . .

100 ' s ing le_t ime_r ight_rat io ' , s ing le_rat io_r , . . .
101 ' double_time_left_rat io ' , double_ratio_l , . . .
102 ' double_time_right_ratio ' , double_ratio_r , . . .
103 ' str ide_length_left_m ' , s t r ide_l , . . .
104 ' stride_length_right_m ' , s t r ide_r , . . .
105 ' distance_left_m ' , d i s tance_l , . . .
106 ' distance_right_m ' , d istance_r , . . .
107 ' speed_ms ' , speed . . .
108) ;
109

110 %plo t data with maxima and minima l ab e l ed and d i sp l ay metr i c s matrix
111 p lo t (time , ankle_l , locs_l , peaks_l , ' ob ' , locs_min_l , min_l , ' ob ' , time , ankle_r ,

locs_r , peaks_r , ' or ' , locs_min_r , min_r , ' or ') ;
112 end

E.4 get_fundamental() function
Below is the code for the get_fundamental() MATLAB function.

1 f unc t i on [fundamental] = get_fundamental (data , f s)
2 % get_fundamental c a l c u l a t e s the fundamental f requency o f the s tep data
3

4 l en = length (data) ;
5

6 % ca l c u l a t e the one−s ided f o u r i e r trans form o f the data
7 f_trans = abs (f f t (data) / l en) ;
8 f_trans_os = f_trans (1 : f l o o r (l en /2)+1) ;
9 f_trans_os (2 : end−1) = 2∗ f_trans_os (2 : end−1) ;

10 f_trans_os (1) = 0 ;
11

12 % plo t the f o u r i e r trans form and return the fundamental f requency (s e c s
per s tep)

13 f = f s ∗ (0 : (l en /2)) / l en ;
14 [peaks , l o c s] = max(f_trans_os) ;
15 p lo t (f , f_trans_os , f (l o c s) , peaks , ' ob ') ;
16 fundamental = 1/ f (l o c s) ;
17 end

76

Bibliography
[1] P. Mahlknecht, S. Kiechl, B. R. Bloem, J. Willeit, C. Scherfler, A. Gasperi, G. Rungger,

W. Poewe, and K. Seppi, “Prevalence and burden of gait disorders in elderly men and
women aged 60-97 years: a population-based study,” PLoS One, vol. 8, no. 7, p. e69627,
Jul. 2013.

[2] S. Perera, K. V. Patel, C. Rosano, S. M. Rubin, S. Satterfield, T. Harris, K. Ensrud,
E. Orwoll, C. G. Lee, J. M. Chandler, A. B. Newman, J. A. Cauley, J. M. Guralnik,
L. Ferrucci, and S. A. Studenski, “Gait Speed Predicts Incident Disability: A Pooled
Analysis,” The Journals of Gerontology: Series A, vol. 71, no. 1, pp. 63–71, 08 2015.
[Online]. Available: https://doi.org/10.1093/gerona/glv126

[3] P. Mahlknecht, S. Kiechl, B. R. Bloem, J. Willeit, C. Scherfler, A. Gasperi, G. Rungger,
W. Poewe, and K. Seppi, “Prevalence and burden of gait disorders in elderly men and
women aged 60-97 years: a population-based study,” PLoS One, vol. 8, no. 7, p. e69627,
Jul. 2013.

[4] J. Verghese, A. F. Ambrose, R. B. Lipton, and C. Wang, “Neurological gait
abnormalities and risk of falls in older adults,” Journal of Neurology, vol. 257, no. 3, pp.
392–398, Mar 2010. [Online]. Available: https://doi.org/10.1007/s00415-009-5332-y

[5] A. T. Booth, A. I. Buizer, J. Harlaar, F. Steenbrink, and M. M. van der Krogt,
“Immediate effects of immersive biofeedback on gait in children with cerebral
palsy,” Archives of Physical Medicine and Rehabilitation, vol. 100, no. 4, pp.
598–605, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0003999318314497

[6] L. Y. Liu, S. Sangani, K. K. Patterson, J. Fung, and A. Lamontagne, “Real-time avatar-
based feedback to enhance the symmetry of spatiotemporal parameters after stroke:
Instantaneous effects of different avatar views,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 28, no. 4, pp. 878–887, 2020.

[7] E. de Villiers, T. Stone, N.-W. Wang, V. Sarangi, A. Pelah, and N. Shenker,
“Virtual environment rehabilitation for patients with motor neglect trial (vermont):
A single-center randomized controlled feasibility trial,” Brain Sciences, vol. 11, no. 4,
2021. [Online]. Available: https://www.mdpi.com/2076-3425/11/4/464

[8] D. Richmond, “Motion capture games and a social platform for clinical diagnostics,
rehabilitation and exercise,” Master’s thesis, University of York, 2021.

[9] Laboratory for Investigative Virtual Environments (LIVE), “Stepsense clinic,” 2022.

[10] J. McKeown, “Stromoapp: A mobile gait and body symmetry analysis application
using video pose estimation.” Master’s thesis, University of York, 2020.

77

[11] Our World In Data, “Covid-19 data explorer - our world in data.” [Online].
Available: https://ourworldindata.org/explorers/coronavirus-data-explorer?facet=
none&Metric=Confirmed+cases&Interval=7-day+rolling+average&Relative+to+
Population=false&Color+by+test+positivity=false&country=~OWID_WRL

[12] W. Pirker and R. Katzenschlager, “Gait disorders in adults and the elderly: A clinical
guide,” Wiener klinische Wochenschrift, vol. 129, p. 2, 10 2016.

[13] S. Mihcin, S. Çıklaçandır, M. Koçak, and A. Tosun, “Wearable motion capture system
evaluation for biomechanical studies for hip joints,” Journal of Biomechanical Engi-
neering, vol. 143, 12 2020.

[14] M. Pau, F. Corona, R. Pili, C. Casula, F. Sors, T. Agostini, G. Cossu, M. Guicciardi,
and M. Murgia, “Effects of physical rehabilitation integrated with rhythmic auditory
stimulation on spatio-temporal and kinematic parameters of gait in parkinson’s dis-
ease,” Frontiers in Neurology, vol. 7, 07 2016.

[15] AMTI, “Bms400600,” 2022. [Online]. Available: https://www.amti.biz/product/
bms400600/

[16] A. Gouelle and P. Roscher, “How do we use gait analysis?” last Ac-
cessed 05 April 2022. [Online]. Available: https://lermagazine.com/cover_story/
gait-and-balance-academy-how-do-we-use-gait-analysis-to-measure-walking-consistency

[17] University of Delaware, “Rehabilitating knees,” last Accessed 05 April 2022. [Online].
Available: https://engr.udel.edu/news/2019/04/rehabilitating-knees/

[18] “Virtual reality.” [Online]. Available: https://en.wikipedia.org/wiki/Virtual_reality

[19] G. Jouvet, G. Cordonnier, B. Kim, M. Lüthi, A. Vieli, and A. Aschwanden, “Deep
learning speeds up ice flow modelling by several orders of magnitude,” Journal of
Glaciology, p. 4, 12 2021.

[20] M. Yani, S. Irawan, and C. Setianingsih, “Application of transfer learning using convo-
lutional neural network method for early detection of terry’s nail,” Journal of Physics:
Conference Series, vol. 1201, p. 3, 05 2019.

[21] B. Ramsundar and B. Zadeh Reza, “Chapter 4. fully connected deep networks.”
[Online]. Available: https://www.oreilly.com/library/view/tensorflow-for-deep/
9781491980446/ch04.html

[22] InData Labs, “Pose estimation for fitness and physical therapy application.” [Online].
Available: https://indatalabs.com/resources/human-activity-recognition-fitness-app

[23] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: Realtime
multi-person 2d pose estimation using part affinity fields,” 2018. [Online]. Available:
https://arxiv.org/abs/1812.08008

78

[24] Microsoft, “Azure kinect dk.” [Online]. Available: https://www.microsoft.com/en-us/
d/azure-kinect-dk/8pp5vxmd9nhq

[25] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, M. Elgharib, P. Fua, H.-P. Seidel,
H. Rhodin, G. Pons-Moll, and C. Theobalt, “XNect: Real-time multi-person 3D
motion capture with a single RGB camera,” vol. 39, no. 4, July 2020. [Online].
Available: http://gvv.mpi-inf.mpg.de/projects/XNect/

[26] R. A. Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human pose
estimation in the wild,” CoRR, vol. abs/1802.00434, 2018. [Online]. Available:
http://arxiv.org/abs/1802.00434

[27] Apple Inc., “Monitor your heart rate with apple watch.” [Online]. Available:
https://support.apple.com/en-us/HT204666

[28] A. Booth, M. van der Krogt, A. Buizer, F. Steenbrink, and J. Harlaar, “The
validity and usability of an eight marker model for avatar-based biofeedback gait
training,” Clinical Biomechanics, vol. 70, pp. 146–152, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0268003319300191

[29] mrdoob, “three.js examples.” [Online]. Available: https://threejs.org/examples/
#webgl_animation_keyframes

[30] NaturalPoint, “Optitrack - flex 3 - an affordable motion capture camera,” 2022.
[Online]. Available: https://optitrack.com/cameras/flex-3/

[31] Scrum.org, “What is scrum?” 2022. [Online]. Available: https://www.scrum.org/
resources/what-is-scrum

[32] Mike Cox, “Woman walking on a treadmill in a chicago gym,” 2021, last Accessed 30
December 2022. [Online]. Available: https://unsplash.com/photos/06EpjZiMz_E

[33] MathWorks, “Linear or rank correlation,” last Accessed 18 April 2023. [Online].
Available: https://uk.mathworks.com/help/stats/corr.html

[34] mrdoob, “How to create vr content.” [Online]. Available: https://threejs.org/docs/
index.html?q=vr#manual/en/introduction/How-to-create-VR-content

[35] J. Patience, K. S. P. Lai, E. Russell, A. Vasudev, M. Montero-Odasso, and A. M.
Burhan, “Relationship between mood, thinking, and walking: A systematic review
examining depressive symptoms, executive function, and gait,” The American Journal
of Geriatric Psychiatry, vol. 27, no. 12, pp. 1375–1383, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1064748119304361

[36] E. F. Ogawa, L. Shi, J. F. Bean, J. M. Hausdorff, Z. Dong, B. Manor,
R. R. McLean, and S. G. Leveille, “Chronic pain characteristics and gait in
older adults: The mobilize boston study ii,” Archives of Physical Medicine
and Rehabilitation, vol. 101, no. 3, pp. 418–425, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0003999319313061

79

[37] K. Spaniolas, J. D. Cheng, M. L. Gestring, A. Sangosanya, N. A. Stassen, and
P. E. Bankey, “Ground level falls are associated with significant mortality in elderly
patients,” Journal of Trauma and Acute Care Surgery, vol. 69, no. 4, 2010. [Online].
Available: https://journals.lww.com/jtrauma/Fulltext/2010/10000/Ground_Level_
Falls_Are_Associated_With_Significant.14.aspx

[38] World Health Organization, “Parkinson disease,” 2022, last Accessed 10 Octo-
ber 2022. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/
parkinson-disease

[39] M. E. Morris, R. Iansek, T. A. Matyas, and J. J. Summers, “The pathogenesis of gait
hypokinesia in parkinson’s disease,” Brain, vol. 117 (Pt 5), pp. 1169–1181, Oct. 1994.

[40] B. R. Bloem, J. M. Hausdorff, J. E. Visser, and N. Giladi, “Falls and freezing of
gait in parkinson’s disease: A review of two interconnected, episodic phenomena,”
Movement Disorders, vol. 19, no. 8, pp. 871–884, 2004. [Online]. Available:
https://movementdisorders.onlinelibrary.wiley.com/doi/abs/10.1002/mds.20115

[41] J. G. Nutt, B. R. Bloem, N. Giladi, M. Hallett, F. B. Horak, and A. Nieuwboer,
“Freezing of gait: moving forward on a mysterious clinical phenomenon,” Lancet Neu-
rol, vol. 10, no. 8, pp. 734–744, Aug. 2011.

[42] Parkinson’s UK, “Treatments and therapies for parkinson’s.” [On-
line]. Available: https://www.parkinsons.org.uk/information-and-support/
treatments-and-therapies-parkinsons

[43] S. G. Reich and J. M. Savitt, “Parkinson’s disease,” Med. Clin. North Am., vol. 103,
no. 2, pp. 337–350, Mar. 2019.

[44] P.-L. Wu, M. Lee, and T.-T. Huang, “Effectiveness of physical activity on patients with
depression and parkinson’s disease: A systematic review,” PLoS One, vol. 12, no. 7, p.
e0181515, Jul. 2017.

[45] NHS, “Nhs england » musculoskeletal,” last Accessed 10 October 2022.
[Online]. Available: https://www.england.nhs.uk/elective-care-transformation/
best-practice-solutions/musculoskeletal/

[46] World Health Organization, “Musculoskeletal health,” 2022, last Accessed 10
October 2022. [Online]. Available: https://www.who.int/news-room/fact-sheets/
detail/musculoskeletal-conditions

[47] Office for Health Improvement and Disparities, “Musculoskeletal health: applying
all our health,” last Accessed 30 December 2022. [Online]. Available: https://www.
gov.uk/government/publications/musculoskeletal-health-applying-all-our-health/
musculoskeletal-health-applying-all-our-health#:~:text=There\%20are\%203\
%20groups\%20of,a\%20fall\%20from\%20standing\%20height

80

[48] K. R. Kaufman, C. Hughes, B. F. Morrey, M. Morrey, and K.-N. An, “Gait
characteristics of patients with knee osteoarthritis,” Journal of Biomechanics, vol. 34,
no. 7, pp. 907–915, 2001. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0021929001000367

[49] R. J. Weiss, P. Wretenberg, A. Stark, K. Palmblad, P. Larsson, L. Gröndal, and
E. Broström, “Gait pattern in rheumatoid arthritis,” Gait & Posture, vol. 28,
no. 2, pp. 229–234, 2008. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0966636207003001

[50] National Multiple Sclerosis Society, “What is ms?” 2022. [Online]. Available:
https://www.nationalmssociety.org/What-is-MS

[51] ——, “Ms signs & symptoms,” 2022. [Online]. Available: https:
//www.nationalmssociety.org/Symptoms-Diagnosis/MS-Symptoms#section-0

[52] C. L. Martin, B. A. Phillips, T. J. Kilpatrick, H. Butzkueven, N. Tubridy,
E. McDonald, and M. P. Galea, “Gait and balance impairment in early
multiple sclerosis in the absence of clinical disability,” Multiple Sclerosis Journal,
vol. 12, no. 5, pp. 620–628, 2006, pMID: 17086909. [Online]. Available:
https://doi.org/10.1177/1352458506070658

[53] U. Givon, G. Zeilig, and A. Achiron, “Gait analysis in multiple sclerosis:
Characterization of temporal–spatial parameters using gaitrite functional ambulation
system,” Gait & Posture, vol. 29, no. 1, pp. 138–142, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0966636208002099

[54] S. J. Crenshaw, T. D. Royer, J. G. Richards, and D. J. Hudson, “Gait
variability in people with multiple sclerosis,” Multiple Sclerosis Journal, vol. 12,
no. 5, pp. 613–619, 2006, pMID: 17086908. [Online]. Available: https:
//doi.org/10.1177/1352458505070609

[55] National Multiple Sclerosis Society, “Comprehensive care,” 2022. [Online]. Available:
https://www.nationalmssociety.org/Treating-MS/Comprehensive-Care

[56] Centers for Disease Control and Prevention, “What is cerebral palsy?” 2022. [Online].
Available: https://www.cdc.gov/ncbddd/cp/facts.html

[57] S. Armand, G. Decoulon, and A. Bonnefoy-Mazure, “Gait analysis in children with
cerebral palsy,” EFORT Open Rev, vol. 1, no. 12, pp. 448–460, Dec. 2016.

[58] National Institute for Neurological Disorders and Stroke, “Cerebral palsy,”
2022. [Online]. Available: https://www.ninds.nih.gov/health-information/disorders/
cerebral-palsy

[59] UK Health Security Agency, “Covid-19: epidemiology, virology and clinical
features,” 2020, last Accessed 30 March 2022. [Online]. Available: https://www.
gov.uk/government/publications/wuhan-novel-coronavirus-background-information/
wuhan-novel-coronavirus-epidemiology-virology-and-clinical-features

81

[60] World Health Organization, “Archived: Who timeline - covid-19,” 2020, last
Accessed 30 March 2022. [Online]. Available: https://www.who.int/news/item/
27-04-2020-who-timeline---covid-19

[61] ——, “Coronavirus disease (covid-19),” 2020, last Accessed 30 March 2022. [Online].
Available: https://www.who.int/health-topics/coronavirus

[62] Lisa Maragakis, “Coronavirus diagnosis: What should i expect?” 2022, last
Accessed 30 March 2022. [Online]. Available: https://www.hopkinsmedicine.org/
health/conditions-and-diseases/coronavirus/diagnosed-with-covid-19-what-to-expect

[63] World Health Organization, “A clinical case definition of post covid-19 condition
by a delphi consensus, 6 october 2021,” 2021, last Accessed 30 March 2022. [On-
line]. Available: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_
COVID-19_condition-Clinical_case_definition-2021.1

[64] F. Pistoia, R. Ornello, P. Sucapane, C. Marini, and S. Sacco, “Symptoms of gait
and coordination impairment in a patient with covid-19 interstitial pneumonia,”
Neurological Sciences, vol. 42, no. 8, pp. 3083–3086, Aug 2021. [Online]. Available:
https://doi.org/10.1007/s10072-021-05341-9

[65] H. Keklicek, H. Selçuk, İlke Kurt, S. Ulukaya, and G. Öztürk, “Individuals
with a covid-19 history exhibit asymmetric gait patterns despite full recovery,”
Journal of Biomechanics, vol. 137, p. 111098, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021929022001518

[66] NHS, “Treatments for coronavirus (covid-19),” 2022, last Accessed 4 November
2022. [Online]. Available: https://www.nhs.uk/conditions/coronavirus-covid-19/
self-care-and-treatments-for-coronavirus/treatments-for-coronavirus/

[67] Asthma + Lung UK, “Long covid care in the nhs,” 2021, last Accessed
4 November 2022. [Online]. Available: https://www.blf.org.uk/support-for-you/
long-covid/long-covid-care-in-the-nhs

[68] G. Rawal, S. Yadav, and R. Kumar, “Post-intensive care syndrome: an overview,” J
Transl Int Med, vol. 5, no. 2, pp. 90–92, 2017.

[69] M. E. Tinetti and C. S. Williams, “Falls, injuries due to falls, and the
risk of admission to a nursing home,” New England Journal of Medicine,
vol. 337, no. 18, pp. 1279–1284, 1997, pMID: 9345078. [Online]. Available:
https://doi.org/10.1056/NEJM199710303371806

[70] Boston Orthotics and Prosthetics, “Terminology of human walking,” last Accessed 01
April 2022. [Online]. Available: https://www.bostonoandp.com/Customer-Content/
www/CMS/files/GaitTerminology.pdf

[71] J. Hamill and M. Kathleen, Biomechanical Basis of Human Movement Second Edition.
Lippincot Williams & Wilkins, 2003.

82

[72] T. Uchida, “Biomechanics of movement | lecture 7.4: Inverse kinematics: From marker
locations to joint angles,” 2022. [Online]. Available: https://youtu.be/R9DRhOy93RE

[73] ——, “Biomechanics of movement | lecture 8.1: Inverse dynamics: What is a joint
moment?” 2022. [Online]. Available: https://youtu.be/zrsQIGK7Gys

[74] M. Doherty, J. Dacre, P. Dieppe, and M. Snaith, “The ’gals’ locomotor screen.” Annals
of the Rheumatic Diseases, vol. 51, no. 10, pp. 1165–1169, 1992.

[75] M. E. Tinetti, T. Franklin Williams, and R. Mayewski, “Fall risk index for elderly
patients based on number of chronic disabilities,” The American Journal of Medicine,
vol. 80, no. 3, pp. 429–434, 1986.

[76] S. Mathias, U. Nayak, and B. Isaacs, “Balance in elderly patients: the" get-up and
go" test.” Archives of physical medicine and rehabilitation, vol. 67, no. 6, pp. 387–389,
1986.

[77] NHS, “Physiotherapy,” 2017, last Accessed 1 November 2022. [Online]. Available:
https://www.nhs.uk/conditions/physiotherapy/

[78] S. Arambulo, “Difference between active and passive physiotherapy,” last Accessed
1 November 2022. [Online]. Available: https://www.squareonephysio.ca/blog/
active-passive-physiotherapy-mississauga

[79] H. E. Lowood, “virtual reality,” last Accessed 06 April 2022. [Online]. Available:
https://www.britannica.com/technology/virtual-reality

[80] HTC Corporation, “Products.” [Online]. Available: https://www.vive.com/uk/
product/

[81] Oculus, “Meta quest 2.” [Online]. Available: https://store.facebook.com/gb/quest/
products/quest-2/

[82] Valve Corporation, “Valve index.” [Online]. Available: https://store.steampowered.
com/valveindex

[83] Sony Interactive Entertainment, “Playstation vr.” [Online]. Available: https:
//www.playstation.com/en-gb/ps-vr/

[84] D. Corbetta, F. Imeri, and R. Gatti, “Rehabilitation that incorporates virtual
reality is more effective than standard rehabilitation for improving walking
speed, balance and mobility after stroke: a systematic review,” Journal
of Physiotherapy, vol. 61, no. 3, pp. 117–124, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1836955315000569

[85] G. D. Yilmaz Yelvar, Y. Çırak, M. Dalkılınç, Y. Parlak Demir, Z. Guner, and
A. Boydak, “Is physiotherapy integrated virtual walking effective on pain, function,
and kinesiophobia in patients with non-specific low-back pain? randomised controlled
trial,” European Spine Journal, vol. 26, no. 2, pp. 538–545, Feb 2017. [Online].
Available: https://doi.org/10.1007/s00586-016-4892-7

83

[86] V. Zwass, “neural network,” last Accessed 29 June 2022. [Online]. Available:
https://www.britannica.com/technology/neural-network

[87] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang, C.-L.
Chang, M. G. Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg, and M. Grundmann,
“Mediapipe: A framework for building perception pipelines,” 2019. [Online]. Available:
https://arxiv.org/abs/1906.08172

[88] Google, “Solutions.” [Online]. Available: https://google.github.io/mediapipe/
solutions/solutions.html

[89] ——, “Mediapipe pose.” [Online]. Available: https://google.github.io/mediapipe/
solutions/pose

[90] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and M. Grundmann,
“Blazepose: On-device real-time body pose tracking,” CoRR, vol. abs/2006.10204,
2020. [Online]. Available: https://arxiv.org/abs/2006.10204

[91] MediaPipe, “Mediapipe holistic.” [Online]. Available: https://google.github.io/
mediapipe/solutions/holistic.html

[92] Microsoft, “Azure kinect dk.” [Online]. Available: https://azure.microsoft.com/en-us/
services/kinect-dk/#overview

[93] Z. Liu, “3d skeletal tracking on azure kinect.” [Online]. Available: https:
//www.microsoft.com/en-us/research/uploads/prod/2020/01/AKBTSDK.pdf

[94] R. Filkov, “Azure kinect examples for unity.” [Online]. Available: https://assetstore.
unity.com/packages/tools/integration/azure-kinect-examples-for-unity-149700

[95] The Editors of Encyclopaedia Britannica, “biofeedback,” last Accessed 22 April 2022.
[Online]. Available: https://www.britannica.com/science/biofeedback

[96] Vercel Inc., “Next.js by vercel.” [Online]. Available: https://nextjs.org/

[97] Meta Platforms, Inc., “React - a javascript library for building user interfaces.”
[Online]. Available: https://nextjs.org/

[98] Vercel Inc., “What is next.js?” [Online]. Available: https://nextjs.org/learn/
foundations/about-nextjs/what-is-nextjs

[99] Tailwind Labs Inc., “Tailwind css - rapidly build modern websites without ever leaving
your html.” [Online]. Available: https://tailwindcss.com/

[100] ——, “Flex.” [Online]. Available: https://v2.tailwindcss.com/docs/flex

[101] ——, “Grid.” [Online]. Available: https://v2.tailwindcss.com/docs/display#grid

[102] mrdoob, “Three.js - javascript 3d library.” [Online]. Available: https://threejs.org/

84

[103] NaturalPoint, “Optitrack - motion capture systems,” 2022. [Online]. Available:
https://optitrack.com/

[104] Vicon Motion Systems Ltd, “Vicon | award winning motion capture systems.” [Online].
Available: https://www.vicon.com/

[105] R. Baker, “Gait analysis methods in rehabilitation,” Journal of NeuroEngineering
and Rehabilitation, vol. 3, no. 1, p. 4, Mar 2006. [Online]. Available:
https://doi.org/10.1186/1743-0003-3-4

[106] NaturalPoint, “Optitrack - support - tracking tools,” 2022. [Online]. Available:
https://optitrack.com/support/software/tracking-tools.html

[107] ——, “Optitrack - support - flexv100,” 2022. [Online]. Available: https:
//optitrack.com/support/hardware/flex-v100.html

[108] ——, “V100-r2 data sheet,” 2012. [Online]. Available: https://d111srqycjesc9.
cloudfront.net/V100-R2\%20Data\%20Sheet.pdf

[109] Atlassian, “Jira | issue & project tracking software | atlassian,” 2022. [Online].
Available: https://www.atlassian.com/software/jira

[110] Pallets, “Welcome to flask - flask documentation (2.2x),” 2022. [Online]. Available:
https://flask.palletsprojects.com/en/2.2.x/

[111] Mozilla Corporation, “Blob,” 2022. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/API/Blob#:~:text=The\%20Blob\
%20object\%20represents\%20a,in\%20a\%20JavaScript\%2Dnative\%20format.

[112] ——, “Mediarecorder - web apis|mdn,” 2022. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/API/MediaRecorder

[113] MediaPipe, “Mediapipe - pose.” [Online]. Available: https://codepen.io/mediapipe/
pen/jOMbvxw

[114] mrdoob, “Raycaster.” [Online]. Available: https://threejs.org/docs/?q=ray#api/en/
core/Raycaster

85

