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Abstract
The digitisation of chemistry has been a rapidly evolving field of research both in academia and

industry in the last 20 years. Miniaturisation of equipment and increased computational power

have aided in the evolution of the way chemists conduct and optimise their reactions. Pharma-

ceutical drugs and small-molecule industries have taken precedence when it comes to artificially

intelligent reactor platforms. Flow chemistry has enabled the development of user-independent

and modular platforms with interchangeable components. In polymer science, there has been

a delay due to challenges associated with the accuracy of liquid handlers, the increasing vis-

cosity, and the use of specialised characterisation equipment. In precision polymer synthesis,

low molar mass dispersity and high conversions are targeted; however, this is not trivial in

reversible deactivation radical polymerisation (RDRP); a trade-off in these objectives compli-

cates optimisation. Prior to the work in this thesis, multi-objective optimisation algorithms

had been used in a droplet flow reactor and a batch reactor; however, a completely operator-

independent platform had not been reported. A mechanistic understanding of polymerisation

techniques can assist polymer chemists in predicting the reaction space of interest. Current

models require the use of software or programming abilities which are not always accessible.

Efforts towards explicit quantitative equations for conversion exist for most RDRPs, including

reversible addition-fragmentation chain transfer (RAFT). Full predictive equations for disper-

sity, that also account for termination, exist for atom transfer radical polymerisation (ATRP),

nitroxide-mediated polymerisation (NMP), and cationic polymerisation, but this does not exist

yet for RAFT. The aim of this thesis is to bridge the gap between polymer synthesis, kinetics, and

autonomous self-optimisation. Bayesian optimisation will be used to facilitate high-throughput

experimentation and will be applied to RAFT polymerisation. Furthermore, extensive reactor

design will be applied that will lead to a platform capable of exploring a wider reaction space.

A conversion model will be coupled to a newly completed equation for dispersity as a function

of conversion, allowing for rapid in-silico kinetic modelling of RAFT. Inclusion of the model will

also be used in tandem with the self-optimisation platform to direct reaction space exploration.
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Chapter 1

Introduction

1.1 Polymerisation

Although, nature has been synthesising polymers since the origin of organic life through DNA/RNA

and proteins, etc., we have gained the ability and understanding to synthesise non-naturally oc-

curring polymers in the last few centuries.1 In 1920, Staudinger defined polymers as the linkage

of small molecules (monomers) to form large macromolecules (polymers). Although in 1833,

Berzelius first used the term "polymer" to describe benzene, which he deemed a polymer of

ethyne. In addition, he also recognised the existence of compounds with different numbers of

atoms but identical elemental composition.2 Nowadays, the Staudinger definition is predom-

inantly used among polymer chemists.3 The first man-made polymeric material was actually

synthesised decades before polymers were defined and understood. Bakelite was the first ther-

moset polymer and was made in 1907 by condensing phenol and formaldehyde and is typically

described as the origin of the plastic industry. Berthelot (1863) is often hailed the original poly-

mer chemist, suggesting that "polymeric transformations" will occur when there is incomplete

compounds or those which can add chlorine, hydrogen, or water. In addition, he also postulated

routes of initiation, including heat or exotherms, a primary chemical reaction, and/or an inter-

mediate species. This formed the foundations of what is known as polymerisation today.4 In

1929, Carothers categorised polymers into condensation and addition polymers; dependent on

how they are formed. Condensation polymers are defined as polymers formed from functional

monomers where the reactive centre is the reactive functional group (ie, dicarboxylic acid and

a diamine species).5 As a consequence, a small molecule, such as water or an acid, is elimi-
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nated. On the other hand, addition polymers are those formed without the expulsion of a small

molecule.

Figure 1.1: Comparison of the mechanism of step-growth (teal) and chain-growth polymerisation
(purple) with increasing conversion [(α)] and average molecular weight (Mn).

The kinetics of condensation and addition polymerisation can exhibit different types of growth

of the polymer chain. The growth of a polymer with respect to conversion is divided into step

growth and chain growth, shown in Figure 1.1. In step-growth polymerisation the molecular

weight increases slowly with conversion as oligomers are formed, then the molecular weight

increases as oligomers join to form polymers. On the other hand, chain-growth results in an

increase in molecular weight as each monomer is successively added to the polymer chain.6 Due

to the statistical nature of polymerisations, there is no single molecular weight produced by the

reaction; instead, a distribution of molecular weights is observed, which is typically described by

molar mass dispersity, Ð. Where Ð (Equation 1.1), is the ratio of the average weight molecular

weight (Equation 1.3) to the average number molecular weight (Equation 1.2).

Ð =
M̄w

M̄n
(1.1)

M̄n =

∑
NiMi∑
Ni

(1.2)

M̄w =

∑
NiM

2
i∑

NiMi
(1.3)
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Process Conditions

Process conditions can be engineered to facilitate rapid kinetics and tunable MWDs.Some poly-

merisations can be conducted in bulk/mass which means that any other reactive species are

dissolved in the monomer. These are typically more "green" processes, as they require little or

no purification and drying, and do not use potentially environmentally damaging solvents. How-

ever, these polymerisations can lead to loss of control due to potential exotherms and reduced

heat transfer as a result of increased viscosity, especially in the case of chain-growth polymeri-

sation. On the other hand, higher molecular weight polymers are not achieved until the later

stages of the polymerisation (i.e. for step-growth polymerisation) - therefore, bulk polymerisa-

tion is better suited. Solution polymerisation techniques are commonly used for chain growth

polymerisations. Conducting polymerisation in solution can help increased viscosity and heat

transfer; however, it is important to consider the effect of transfer to the solvent as this may

cause molecular weight distribution (MWD) broadening.6 Typically, radical polymerisations can

also be conducted under heterogeneous conditions. Precipitation polymerisation occurs when

the starting reagents (e.g. monomer and initiator) are in solution until the polymer forms where

they are then absorbed into the polymer - this could be in bulk or solution. Another type

of polymerisation process is suspension, where the reagent species form a discontinuous phase

and the solvent (e.g. water) is the continuous phase. The biphasic mixture is then agitated

to suspend the monomer in droplets in the continuous phase, which can then form polymer

within the droplets. The coalescence of the droplets can be prevented by the use of dispersants

and surfactants. Finally, emulsion polymerisation is used as the medium for some chain-growth

polymerisations. This is different from the case for suspension because an emulsion is formed

immediately without agitation, and higher molecular weight polymers can be obtained without

lowering the rate of polymerisation. In emulsion polymerisation, the initiator is not soluble in

the monomer droplet; however, because of the low monomer concentration, the main site of poly-

merisation is not the continuous phase. Polymerisation actually occurs in the active micelles.6

The effect of oxygen on polymerisation has been known for decades.7 Metal-based polymerisation

is typically effected by oxidation of the organometallic reagent. Radical-based polymerisation

is effected as a result of radical scavenging capabilities of molecular oxygen via formation of a

less reactive peroxyl radical. Ultimately, this causes rate retardation and can affect molecular

weight as a result.7 Physical doxygenation is often the standard method for removing molecular

oxygen; methods include: degassing with an inert gas, freeze-pump-thaw by liquid nitrogen, and

3
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/ or using a glovebox to ensure that no air gets to the reaction. Deoxygenation is not always

feasible in the scale-up of polymers; thus, oxygen-tolerant polymerisations became a point of

interest for polymer chemists.8 Methods of improving oxygen tolerance include: transformation

of ground-state oxygen (3O) into singlet oxygen (1O) using a photocatalyst, the use of a reactive

oxygen reagent(e.g. ascorbic acid) and the use of enzymes such as glucose oxidase (GOx) to

form a non-radical species (H2O2). Alternatively, oxygen can also be used as a co-initiator using

triethyl borane as an activator.8

Co-polymers

Figure 1.2: Comparison of different monomer arrangements in copolymers.

A homopolymer is a polymer containing a single monomer species, whereas a copolymer is

defined as a polymer derived from more than one monomer species.9 The arrangement of the

monomers can affect the morphology and structure activity relationship of the resultant polymer.

The nomenclature of a copolymer depends on the arrangement of the monomers, this is shown

in Figure 1.2. The monomers in a copolymer may be in an alternating arrangement, known as

an alternating polymer. If the sequence of monomers is random, this is known as a statistical

copolymer. They can also have blocked arrangements of constitutionally different adjacent

monomers (polymer with 2 blocks = diblock copolymer, 3 blocks = triblock copolymer, etc.) or

have a periodic pattern of monomers that is repeated through the polymer. They may also have
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a gradient where the composition of the monomer increases or decreases along the chain, or be

a graft polymer where another monomer branches from a linear chain of another.

From this point onwards, the focus will be on the polymerisation of vinyl monomers. The

resonance and inductive properties of the substituent group on the C=C dictates the suitability of

initiation by anionic, cationic, and/or radical initiators. Typically, electron-donating groups (e.g.

alkoxy or alkyl groups) increase the C=C electron density, which enables initiation by cationic

species, as the cation on the propagating species will be stabilised by resonance. Both cationic

and anionic propagating species of alkenyl and phenyl-substituted monomers will be stabilised

by the delocalisation of electrons. However, electron-withdrawing groups (e.g. carbonyls and

amides) decrease the electron density on C=C, which aids initiation by anionic species only.

Halogenated vinyls such as vinyl chloride can only be polymerised by radical polymerisation,

due to inductive withdrawing and resonance-donating electronic properties. Almost any type of

monomer can be polymerised by radical polymerisation, as radical initiators are labile and will

attack the C=C bond.6

1.1.1 Ionic Polymerisation

Living Anionic

The seminal work reported by M.Swarc (1956) suggested that polymers that do not undergo

termination are "living". He defined a living polymer as a polymer that has a reactive end group,

where, as long as there is a supply of monomer, it will continue to grow and the molecular weight

will increase.10 The first instance of this demonstrated the use of sodium naphthalenide as an

electron transfer initiator to polymerise styrene. Furthermore, they elucidated the mechanism

through viscosity-kinetic studies.11,12

Figure 1.3: Schematic for Living Anionic Polymerisation using a linear alkyllithium species

Today, alkyllithium species are used as the initiator, which is possible because of the electroneg-
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ativity causing polarisation of the carbon and lithium bond. The alkyllithium used should be

compatible with the monomer and solvent polarity, and the types of alkyllithium species exhibit

varying intermolecular aggregation. Polymerising styrene with nBuLi has been shown to exhibit

rate retardation as a result of significant aggregation compared to sBuLi or tBuLi.13 Living

anionic polymerisation has been shown to provide the lowest dispersity of all polymerisation

techniques with a molecular weight distribution described by a poisson distribution.14

Cationic Polymerisation

Cationic polymerisation is defined by the International Union of Pure and Applied Chemistry

(IUPAC) as polymerisation in which the kinetic chain carrier is a cation.9 To obtain a "living"

character, initiation and propagation must be controlled.

Figure 1.4: Schematic for cationic polymerisation using a linear alkyllithium species

Lewis acids are the most common initiators in cationic polymerisation with the rate being

dependent on the strength of the Lewis acid. Cationic polymerisations using Lewis acids are

rapid and typically conducted at low temperatures with a protogen (e.g. protic solvents) or with

a cationogen (e.g. tertiary alkyl halide). It is more challenging to obtain the "living" character

with cationic polymerisation due to the presence of an irreversible termination step, as seen in

Figure 1.4.

1.1.2 Radical Polymerisation

The mechanism of radical polymerisation was investigated in the early 1900s. Stobbe and

Posnjak (1909) explored the change in viscosity of the polymerisation of styrene to metastyrol

(now named polystyrene) and discovered that fresh styrene polymerised much slower than styrene

that had been left a few weeks. Thus, we now explain what we identified as the induction
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period.15,16 Lautenschlager further explained this observation through the formation of peroxides

as catalysts.17 Swarc also defined polymers that can no longer react with the monomer even

if there is monomer present as "dead polymers".10 This section will cover traditional radical

polymerisation as well as the developments in controlling radical polymerisation such as RDRP

techniques.

Free Radical Polymerisation

Staudinger (1920) theorised that trivalent carbon atoms that we now call radicals were respon-

sible for the formation of long-chain species, which he called a "Makromolekul". In addition, he

proposed that the long chains would have a reactive end which proceeded to terminate or deacti-

vate3 At this point the mechanism was based on speculation, and it was not until 1929 when he

then published a subsequent paper where this was addressed. Here he addressed a possible route

for termination; such that, chains eventually terminate by ring formation.18,19 A few years later,

Staudinger and Kohlschutter (1931), suggested that acrylic acid polymerises through activation

of the monomer and that the rate of addition is rapid; which we now call propagation.20 Schulz

(1935) suggested the presence of catalytic species to form the active monomeric species.21 Flory

then proceeded and concluded that propagating chains, can only terminate by bimolecular dis-

proportionation and combination and that the rate of polymerisation is dependent on monomer

and initiator concentration.22

The mechanism of FRP is well studied and each step has its own rate constant.23 Initiation occurs

typically by thermal or photochemical decomposition; the rate constants of decomposition,kd,

are widely available. Due to the unimolecular nature of the reaction, the kinetic rate constant

can be extrapolated by monitoring the decay in the concentration of the initiator or by using

a radical "trap" such as a monomer. Subsequently, the Arrhenius Equation can be applied

at different temperatures to obtain the activation energies, Ea and the frequency factor, A.23

The fraction of initiator radicals that are added to monomer species is known as the initiator

efficiency, f . f is dependent on the functionalities of the initiator, the solvent used and whether

there is the presence of oxygen - the lability of radical species may cause side reactions that can

reduce the rate of polymerisation.6

7
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Figure 1.5: Schematic of a pulsed laser polymerisation setup taken from Buback et al..24 Repro-
duced with permission from The American Chemical Society, Copyright ©2016

Since the inception of FRP there has been a driving force led by IUPAC to benchmark rate con-

stants to enable better modelling. Propagation and termination rate constants can be described

by kp and kt, respectively, which are most commonly found through pulsed-laser polymerisa-

tion (PLP) techniques due to improved data quality. Prerequisite knowledge of the monomer

concentration and the time between pulses of the laser is mandatory for the identification of kp

and kt.25 The apparatus used in PLP is shown in Figure 1.5. A laser pulse applied at a con-

stant frequency initiates the polymerisation, and chain growth between each pulse is monitored

by SEC such that the first pulse initiates the polymerisation and the following pulse quenches

the polymerisation.26 PLP has been coupled to a variety of analytical techniques, such as SEC

and EPR, to detect macroradical concentration. SP-PLP-EPR which uses a single pulse (SP)

of light to photo-dissociate the initiator has been used in conjunction with EPR to elucidate

the chain-length dependence.2725,28 Termination can occur by combination (ktc), where the two

propagating chains share their single electron or by disproportionation (ktd), where a hydro-

gen from one propagating chain is abstracted by the radical forming one saturated and one

unsaturated chain.6
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Figure 1.6: Kinetic mechanism of free-radical polymerisation, where kp, kt and kd are the rate
constants of propagation, termination and decomposition, respectively.

The overall rate of polymerisation, Rp is commonly denoted as Equation 1.4.

Rp = kp[M ]

√
(2f [I]0e(−kdt))

kt
(1.4)

As a result of uncontrolled termination events, molecular weight distributions can be broad

and asymmetric compared to a living anionic polymerisation - Ð can be large (>1.4).29 Some

vinyl monomers can exhibit autoacceleration of the polymerisation rate in both bulk and so-

lution, causing a deviation from first-order kinetics. This phenomenon was first identified by

Trommsdorff, Norrish, and Smith between 1948 and 1951 for the polymerisation of methyl

methacrylate. They suggested that the increase in molecular weight was caused by a decrease

in termination occurring at a certain viscosity. Furthermore, causing a decrease in the rate of

diffusion of propagating chains. The termination rate of two vastly different chains will therefore

be dominated by the shorter of the 2 terminating chains. This phenomenon was later coined the

Trommsdorff-Nordish effect.30,31 This effect can be reduced by using the aforementioned solution

and heterogeneous process conditions, by lowering the temperature and/or using a species that

holds the propagating species in an equilibrium.

1.1.3 Reversible Deactivation Radical Polymerisation Techniques

RDRP is defined by IUPAC as "Chain polymerisation, propagated by radicals that are deacti-

vated reversibly, bringing them into active/dormant equilibria of which there might be more than

one".32 Between 1956-1990, Otsu and co-workers reported the use of dithiocarbamyl radicals as

a mediating initiator species for the radical polymerisation of MMA and St, which they named

9
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iniferters. The propagating species has an iniferter end group that allows for controlled monomer

insertion. This is a type of RDRP known as stable radical-mediated polymerisation (SRMP),

where the mediating species is a radical33 (i.e. there is reversible termination). The three most

studied RDRP techniques, atom transfer radical polymerisation (ATRP),34,35 nitroxide mediated

polymerisation (NMP)36,37 and reversible addition fragmentation chain transfer (RAFT)38–40 all

have well studied and well understood mechanisms.41,42 These exhibit pseudo-first order kinet-

ics, which is illustrated by a linear evolution in number average molecular weight (Mn) with

conversion (α), and results in low Ð polymers (typically <1.20). These properties are a result of

equilibration between the dormant species and propagating radicals; in the absence of this (for

FRP) broader statistical distributions of molecular weights are observed.42

Nitroxide Mediated Polymerisation

NMP was first reported in 1984 in a patent application by Commonwealth Scientific Industrial

Research Organisation (CSIRO),43 it was then published in 1985 in a patent named "Free radical

polymerisation and the produced polymers".36 The name "nitroxide-mediated polymerisation"

(NMP) is disputed by the IUPAC nomenclature where they encourage the name "aminoxyl-

mediated radical polymerisation" (AMRP).33 NMP is defined by IUPAC as "Stable-radical-

mediated polymerisation in which the deactivation of the radicals involves reversible coupling

with aminoxyl radicals".32,33

Figure 1.7: Mechanism for Nitroxide-Mediated Polymerisation where Pn is the propagating
chain, kde and kac are the rates of deactivation and activation, respectively

Atom Transfer Radical Polymerisation

In 1995, Matyjaszewski and co-workers demonstrated control over radical polymerisation through

the use of copper metal complexes34 and later that year Sawamoto and co-workers published

similar work using Ruthenium metal complexes.44

10
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Figure 1.8: General mechanism for atom transfer radical polymerisation where Pn is the prop-
agating chain, kde and kac are the rates of deactivation and activation, respectively.

The mechanism of ATRP is extensively studied, the catalyst abstracts the halogen on the alkyl

halide initiating species in a reversible redox reaction with the catalyst.45 Since the seminal

ATRP work, different transition metals such as Os, Mo, Cr, Re, Fe, Au, Rh, Ni, and Pd have

been used. Stimuli responsive ATRP techniques have also been used. Photon-induced electron

transfer ATRP (PET-ATRP) has also been demonstrated using 10-phenylphenothiazine and

dihydrophenazine as catalysts, eliminating the need for metal complexes. High surface area

electrodes have also been used as an electron source to convert the metal centre (Mt) from Mt (m

+ 1) back to Mt(m) to improve control in electrochemical ATRP (eATRP).46 Charge separation

has also been performed using piezoelectric nanoparticles that convert energy to electrons by

sonication46 Chemical reducers can also be added to reduce Mt (m + 1) in the presence of a low

concentration of catalysts. In the presence of organic reducers such as ascorbic acid, this is known

as activators regenerated by electron transfer (ARGET) ATRP. However, if a zero-valent metal

is used, this is known as supplement activator and reducing agent (SARA) ATRP.46 Initiator

for continuous activator regeneration (ICAR) ATRP uses conventional thermal initiators at low

temperature to release a small amount of deactivating species.

Reversible Addition-Fragmentation Chain Transfer

RAFT utilises sulphur containing compounds that can participate in reversible chain trans-

fer.29 RAFT was first reported by CSIRO in 1998, as a type of degenerative transfer radical

polymerisation.38 Thiocarbonyl species were identified from the chain-transfer capabilities of

macromonomers. IUPAC defines RAFT as a "degenerate transfer radical polymerisation in

which chain activation and chain deactivation involve a degenerative chain transfer process that

occurs by a two-step addition-fragmentation mechanism".32 Propagating radicals undergo addi-

tion to the CTA forming a radical adduct intermediate, which then decomposes to reform the

CTA and a radical.

11
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Figure 1.9: The general mechanism for RAFT where kd, kp, ka, kf , k−a, k−f , ktd and ktc
are the rates of initiator decomposition, propagation, forward addition, forward fragmentation,
backwards addition, backwards fragmentation, termination by disproportionation, termination
by coupling, respectively.

The two step equilibrium can be deconvoluted to account for the partitioning of the radical

adduct intermediate between the starting materials, ϕ, using Equations 1.5 and 1.6.

ktr = kaϕ = ka

(
kf

k−a + kf

)
(1.5)

k−tr = k−f (1− ϕ) =
k−a

k−a + kf
(1.6)

where ktr and k−tr are the rates of chain transfer. If ktr [Pr] [CTAx] = k−tr [Pr] [CTAy] then the
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polymerisation is degenerate. If ktr [Pr] [CTAx] > k−tr [Pr] [CTAy] then radicals are being pro-

duced by a mechanism other than initiator decomposition, the reverse suggests that propagating

radicals are not only being consumed by termination.47

The compatibility of the RAFT agent is critical to control the polymerisation of certain monomers.

The Z-group controls the rate of addition of propagating radicals (Pn) to the thiocarbonyl

species and the rate of fragmentation of the radical adduct intermediate. The class of RAFT

agent is moderated by the Z group, and RAFT categories include: dithiobenzoates, xanthates,

trithiocarbonates, dithiocarbamates, and dithioesters. RAFT using xanthates is often referred

to as macromolecular design by interchange of xanthate (MADIX). Typically, more-activated

monomers (MAMs) are more compatible with trithiocarbonates and dithiobenzoates as the Z-

group improves the stabilisation of the radical adduct intermediate, which increases the rate

of addition of the propagating radical to the C=S bond. On the other hand, less-activated

monomers (LAMs) are better suited to xanthates and dithiocarbamates, this affords labile rad-

ical adduct intermediates - that otherwise would be stable and able to undergo side reactions

- increasing the rate of fragmentation. Presence of oxygen and nitrogen in the Z-group pro-

vides a lone pair of electrons that can delocalise in the S-C=S system, increasing the lability of

the radical adduct intermediate. The R groups tend to have structures similar to those of the

monomer or initiator radical and require a balance of sterics and radical stability. The effect

of the R group is less prominent than the Z, but mediates: the rate of addition, leaving group

ability of the R group in fragmentation and the rate of propagation. It is important to consider

which monomer to make the macro-CTA from in block co-polymer synthesis - as a good leaving

group enables more controlled polymerisation.29,48 Chain-transfer describes the ratio of the rate

of a transfer process involving the propagating chain (propagating radicals-solvent/propagating

radicals-CTA) to the rate of propagation. The chain transfer coefficient Ctr, is frequently used

to demonstrate the chain transfer activity of a RAFT agent or solvent. If the rate of transfer

is greater than propagation then Ctr >1, and vice versa. Transfer coefficients can be found by

constructing a Mayo plot, this is a plot of the inverse of the DP against the inverse of the ratio

of monomer to CTA or solvent concentration. Donald et al.49 compared the efficacy of different

plots to obtain Ctr. Mayo plots were compared to Smith plots is monitoring the concentration

of monomer to CTA and plotting on a logarithmic scale, here the gradient would correspond to

the transfer coefficient. Gilbert method49 involved converting SEC data into number molecular

weight distribution and expressing as a function of the DP.
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Figure 1.10: RAFT agent design and synthesis showing the effect of the Z and R groups on the
rate coefficients for the polymerisation of MAMs and LAMs

Switchable RAFT agents are RAFT agents that have stimuli-dependent reactivity. These are

of particular interest for the synthesis of block copolymers. For example, where the z group has

a pyridine ring such as N-aryl-N-(4-pyridinyl)dithiocarbamate. Here, the RAFT agent affords

good control over LAMs (VAc, NVP, and NVC), while upon the addition of a strong acid, the

pyridine ring will be protonated to enable compatibility with MAMs (MMA, MA, and St).50

Additionally, the use of porphyrin-cobalt complexes has been demonstrated by Belovskii and co-

workers as early as 1981 to show regenerative chain transfer effects with methyl methacrylate,51

offering control over polymerisation. This has been suggested to be sulphur-free RAFT and

has been used by Haddleton and co-workers52 for the emulsion polymerisation of methacrylic

multi-block copolymers. The first step involved catalytic chain transfer polymerisation (CCTP),

which generated a vinyl-terminated poly(methyl methacrylate) using a cobaloxime catalyst. The

authors used macro-CTA to synthesise block copolymers with low dispersity.52,53 Examples of

electrochemically mediated RAFT (eRAFT) have also surfaced in the literature. Matyjaszewski

and co-workers54 successfully carried out eRAFT for the polymerisation of (meth)acrylates by

producing aryl radicals as initiators by reducing benzoyl peroxide or 4-bromobenzenediazonium

tetrafluoroborate. It was also reported that the electrochemical reduction of the standard RAFT
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agent itself led to carbanions. Furthermore, they concluded that eRAFT provided high conver-

sions (>80 %) with narrow MWDs.54 Deviations from the traditional free radical polymerisation

rate are known as rate retardation.

Figure 1.11: Comparison of IRT vs SFM

Polymer chemists debate the cause of rate retardation in RAFT, with three main theories: In-

termediate radical termination (IRT; see 1.11) proposed by Monteiro and DeBrouwer et al.;55,56

where cross-termination occurs forming a 3-armed chain species shown by species (3). Secondly,

slow fragmentation method (SFM) proposed by Barner-Kowolik et al.57,58 operates on the as-

sumption that fragmentation is slow and cross termination does not occur. In Figure 1.11, the

RAFT equilibrium constant (KRAFT ) is shown to favour the radical adduct (2’). Furthermore,

SFM has been supported by calculations ab initio looking at the effect of Z and R groups on

the stabilisation energies of the radical adduct intermediate species.59 Since this debate, a third

theory has also been postulated by Buback and Vana et al.58,60 who have used time-resolved

electron paramagnetic resonance spectroscopy (EPR) to identify a missing reaction step in the

IRT mechanism. It was initially assumed that rate retardation was only present for noncom-

patible monomers with dithiobenzoates; however, recent work suggests that it is ubiquitous in

varying amounts for most combinations of the RAFT agent and the monomer.61
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Figure 1.12: The formation of mid-chain radicals and the side reactions such as beta scission,
chain transfers and reactions with the raft agent in the RAFT polymerisation of butyl acrylate.

For bulkier, more active monomers, the likelihood of side reactions is high. The formation of

mid-chain radicals (MCRs) has been shown to undergo β-scission and macromonomer forma-

tion at temperatures greater than 120 ◦C. Mass spectrometry has shown that the formation of

macromonomers and short-chain radicals reduces the overall rate of polymerisation and explained

the formation of shorter average molecular weights at such temperatures.62,63 As mentioned

previously, oxygen is a carbon radical scavenger,bh which can cause rate retardation. Oxygen-

tolerant RAFT has been demonstrated by exciting 3O to 1O using photocatalysts; this is called

photoinduced energy transfer RAFT (PET-RAFT). The energy from the energy transfer from

the excited photo-redox catalyst and reaction of singlet oxygen with solvent or reducing agent

affords oxygen tolerance. In efforts to improve industrial and economic viability, the Fenton

reaction initially used to produce hydroxyl radicals in the FRP of vinyl monomers was coupled

with RAFT by Qiao and co-workers in minutes. They showed that a degree of oxygen tolerance

was accessed; however, the MWD obtained via SEC were much broader.64 Other advances in

RAFT polymerisation have come in the form of the use of enzymes to improve oxygen tolerance

while providing biologically viable conditions. GOx has been used to remove oxygen in the form
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of peroxides.65 An inherent challenge of precision radical polymerisation is increasing the rate of

polymerisation without losing control over the molecular weight. Significant improvements have

been made in increasing the rate of polymerisation. Perrier and coworkers managed to reduce

the time taken for the one-pot sequence controlled synthesis of an icosablock copolymer from 24

h per block to 2 h per block with a dispersity of <1.4.66 RAFT operates on the proportionality

between the rate of polymerisation and the kp of the monomer and the concentration of propa-

gating radicals. kp is temperature dependent, so an increase in temperature will increase kp. If

rapidly decomposing initiators are used at higher temperature, the concentration of propagating

radicals will increase; this, combined with the temperature dependence of kp, will increase the

rate of polymerisation. The concentration of the initiator must be regulated because a high con-

centration of propagating radicals can lead to an increased termination rate Rt = 2kt[Pr]
2 and a

broadening of the MWD. Initiators with a high kd are typically used because the "livingness" is

dictated by the number of radical species throughout the reaction and not the rate of initiation,

therefore therefore by using relatively lower [I]:[CTA]. Subsequently, the same group reduced

this to 3 minutes by using 2,2-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA044) in

aqueous conditions at 100 ◦C and achieve full conversion.67

Figure 1.13: Sequential multi-block co-polymerisation reaction under ultra-fast RAFT condi-
tions. Reproduced from Gody et al67 with permission from the Royal Society of Chemistry,
Copyright ©2014.
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1.1.4 Other Polymerisation Techniques

Ring opening polymerisations (ROP) were introduced in the early 1900s and were initially used

for the synthesis of polypeptides.68 Unlike in the polymerisation techniques considered above,

the thermodynamic driving force in ROP is the ring strain and the sterics.6 Although the propa-

gation rate constants for ROP are of a magnitude similar to that of step growth polymerisation,

the kinetics often exhibit more chain-like/ living behaviour. Ring-opening metathesis (ROMP)

is another type of ring-opening polymerisation in which unsaturated cycloalkene can undergo

polymerisation due to the cyclic strain in the presence of a Ruthenium Grubbs catalyst or a

Molybdenum Schrock catalyst.69,70

1.1.5 Modelling Polymerisation

Conversion and molecular weight are the most reported objectives that are modelled in the

literature. The modelling of radical polymerisation requires sufficient knowledge of the rate

constants corresponding to each step. Propagation (kp), termination (kt) and initiation (kd)

rate constants can be considered the same in RDRP compared to FRP. As mentioned above kp

and kt are commonly found using PLP coupled with SEC and/or EPR, as shown in Figure 1.5.

Whereas, kd is typically found measuring the gas evolution following thermal or photo-chemical

decomposition.23,71,72 Numerical methods are a popular choice in polymer chemistry to model

the reaction kinetics; there are two main types, stochastic and deterministic. Stochastic tech-

niques are probabilistic and random. Reaction events are discretised and the rates are treated

as probabilistic with temporal resolution. Since the first application of kinetic Monte Carlo

(kMC ) to chemical reactions in the 1970s by Gillespie,73 kMC has emerged as the most popular

stochastic techniques for modelling complex polymerisation due to its ability to obtain topolog-

ical and microstuctural information. MC has been applied to ATRP,74,75 NMP,76,77 RAFT78–80

and FRP.81,82Nevertheless, MC is considered a computationally expensive modelling technique.

kMC can be divided into 6 steps: (1) initialisation, (2) reaction selection, (3) calculation of the

time step, (4) reaction simulation, (5) model updates, and (6) iteration. Firstly, initialisation

where the total number of molecules is set, (N) in a certain volume at time 0, followed by setting

the value for the reaction rates, Ri, see Equation 1.7.

Ri = kiX
c (1.7)
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where the reaction number, i = 1, 2, . . . , NR. The total number of reaction steps is given by NR,

so ki is therefore the rate coefficient of the ith reaction and Xc is the number of combinations of

molecules in the ith reaction. The experimental rate constants, kexp,found by the above methods

are converted into microscopic rate coefficients for each reaction being considered. For a first-

order reaction, this is the same as the experimental; however, for bimolecular reactions kexp is

divided by Avogadro’s number (NA) multiplied by the control volume, as seen in Equation 1.8.

k =
Xkexp

NAV
(1.8)

If the two molecules in the step are the same X = 1, if they are different X = 2. Ri can then

be identified by multiplying the microscopic rate coefficient by the number of species, i or j.

Ri = kiniY (1.9)

If the reaction is first-order Y = 0, if it is bimolecular with different species Y = nj , if the species

are identical Y = (ni−1)
2 , seen in Equation 1.9. In Step 2, the probability of the ith reaction

occurring Pi is given by the ratio of Ri to the sum of all R for all reactions (see Equation 1.10.

Pi =
Ri∑NR
i=1Ri

(1.10)

The computational expense originates from the number of iterations required to evaluate the

values of Ri and Pi, since Ri does not change in some iterations. Upon satisfaction of the

inequality described by 1.11, reaction µ will be selected.

µ−1∑
i=1

Pi < r1 <

µ∑
i=1

Pi (1.11)

Modified MC algorithms have been reported to address the redundancy of some iterations, such

as the use of dependency graphs83 and the use of the binary tree data structure.84 Thirdly, the

elapsed time step is typically found by t=t+∆t, given by Equation 1.12

∆t = eRt =
e1
Rt

(1.12)

Here eRt is a randomly generated number obtained from an exponential distribution.The fourth

step is where the simulation occurs, and random selection of the molecules reacting from the
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control volume is required. This is already computationally expensive for non-polymeric sam-

ples, and this expense is increased upon inclusion of different chain lengths of the same species

having different behaviour. Consequently, the way data are stored is important in kMC. The

penultimate step requires updating the rates calculated in Equation 1.9 as the numbers of each

molecule are now different. The final step is to iterate from the reaction selection step un-

til a maximum conversion or time is achieved. Drache et al. demonstrated the use of kMC,

which they subsequently experimentally validated for the bulk RAFT polymerisation of methyl

acrylate. They obtained conversion, molecular weight, and concentration of RAFT species us-

ing FTIR, SEC, and ESR and the data were consistent with the model.7879,85 Deterministic

techniques treat concentration as a dependent variable and time as an independent variable.

For polymerisation, a simultaneous solution of mass balance equations representing each chain

species can be used to collect information about the molecular weight distribution and/or the

branching density distribution.86 The more mass balance equations, the more computationally

expensive; to reduce the expense, discretisation of time intervals is usually carried out. The

method of moments (MoM) is the most common deterministic technique for chemical reactions

and minimises the number of mass balance equations. In this process, the resolution of the

achievable data is compromised, so that only average chain properties are available. Moments

can be predefined, for example, if we consider two types of polymer chain species, propagating

chains (Pr·), Yi(1.13), and terminated chains(Pd), Qi (1.14), where i represents the moment.

Yi =
∞∑
r=0

ri[Pr·] (1.13)

Qi =

∞∑
r=0

ri[Pd] (1.14)

The zeroth order moment (i=0) represents the concentration of polymer chains in the system,

and the first order moment (i=1) represents the number of monomeric units in the polymer chain.

Ultimately, this allows one to find the number fraction and weight fractions. The dispersity can

then be related to moments of the zeroth, first, and second order.86 The method of moments

has been applied to ATRP,87–89 FRP,90,91 NMP92–94 and RAFT.95,96

Ð =
Q2Q0

Q2
1

(1.15)
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The mass dispersity can be identified by taking the ratio of the zeroth (Q0) and second order

(Q2) moment to the square of the first order number moment (Q1).

Alternatively, the commercially available user-friendly PREDICI software by Wulkow97,98 is an-

other deterministic technique. Through the implementation of the discrete Galerkin h-p method

in the C++ programming language, PREDICI enables the modelling of polymerisations with: ar-

bitrary numbers of species and CLD, arbitrary numbers of reaction steps and complex MWDs.97

RAFT was one of the preliminary examples of PREDICI simulations where MWDs were sim-

ulated with respect to time by Vana et al..99 Furthermore, they reported the ability to find

optimum conditions for "livingness" in RAFT and reported that the rate of addition of propa-

gating radical species to the polyRAFT species was crucial to the control of the polymerisation.99

PREDICI has since been used to simulate the kinetics of more sophisticated RAFT reactions.

Zetterlund et al.100 reported the use of PREDICI for the modelling of sequence-defined block

copolymers comprising 10 blocks. Here, they find that the number of dead chains is indicated by

the number of chains generated from the initiator and that they can achieve a "livingness" of ap-

proximately 7 %.100 The use of PREDICI has also been shown to effectively model the synthesis

of star polymers by Chaffney-Millar et al. where they use the RAFT R group approach. Their

findings include the dependence of termination on the concentration of linear chains that can

lead to nonstar MWDs and, in turn, the broad MWDs observed using the R-group approach.84

Recently, Corrigan and Boyer101 proposed a mathematical predictive model to blend molecular

weight distributions using moments to obtain statistical parameters that describe the shape. In

addition, they proposed a data storage method to encode and decode polymer blends using the

American Standard Code for Information Interchange (ASCII).101

Mathematical Equations Mechanistic knowledge of what happens in polymerisations can

enable the development of mathematical models to predict the outcomes in reaction kinetics.

Assumptions based on ideality can enable mass balance Equations to be simplified; removing

computational cost and providing a synthetic chemist without any coding experience with a

means to predict chemical outcomes. Monomer conversion is often given as the change in

monomer concentration over time if we assume that all monomers are converted to polymeric

species. Wang et al.102 implemented the steady-state hypothesis to solve the equations for chain

species analytically, assuming that all chains behave in the same way regardless of their size.

Here, they compared the analytical equation with the equivalent numerically solved moments
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and found good concordance between the two models as shown in Figure 1.14.102

Figure 1.14: Comparison of chain species concentration with increasing concentration solved
analytically (lines) and numerically (symbols). Here 4 chain species are modelled, propagating
chains (R), radical adduct intermediate (A), chain transfer species (T) and dead chains (D).102

Reproduced from Wang et al.102 with permission from Wiley and Sons. Copyright ©2003

Table 1.1: Existing models for mass dispersity for ATRP and NMP. Here, kact, kdeact, kp and kt
are the rate constants for activation, deactivation (ATRP and NMP), propagation and termi-
nation Initial concentrations of the radical generating species ([PnX]0) , monomer ([M ]0) and
catalyst species ([C]0 and [XC]0). Conversion is denoted as (α)

RDRP Quantitative Equation

ATRP103 Ð = 1 + [PnX]0
[M ]0α

+ kact[PnX]
kdeact[XC]

(
2
α − 1

)
+ ktkact[C]0

4kpkdeact[XC]0
α [XC]0 ̸= 0

NMP104 Ð = 1 + [PnX]0
[M ]0α

+ kact[PnX]
kdeact[X•]

(
2
α − 1

)
+ ktkact

4kpkdeact[X•]α [X•] ̸= 0

Equilibria in many types of controlled polymerisations, where the rate of exchange as a function

of conversion causes broadening of the MWD, a phenomenon theoretically explained by Fig-

ini105,106 and Coleman et al..107 Explicit quantitative models for dispersity are attractive due
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to the ease of use and redundancy of expensive software or high-performance PCs. Zhu and co-

workers, derived dispersity as a composite equation for RDRP comprising a living step, transfer

steps and terminative steps108 Currently, only complete equations have been derived for normal

ATRP103 and NMP104 have been derived (Table. 1.1) by employing blend and block theory.

Blend and block theory is a strategy in which chain growth and termination is discretised by time

interval. For ATRP and NMP, activation/deactivation effects dominate during the initial stages

of polymerisation, where chains are relatively short, but it is commonly speculated that termi-

native events become more significant during the later stages, where polymer chains are much

longer.109–111 Work simulating molecular weight distributions for living anionic,112 ATRP,103

RAFT113 and cationic polymerisations109 based on the first 3 terms of the dispersity equation

that exist in the literature have been fitted to the experimental data to provide information

about the control.110 Terminative events are quantified in the final term of both equations for

ATRP and NMP and manifest in an increase in Ð.114

Figure 1.15: (left) validation of the dispersity Equation for the ATRP by Mastan et al.103 of
HEMA in DMF at room temperature using experimental data from Beers et al.115 and (right)
MMA in anisole at 90 ◦ C with validation using experimental data from Gromada.116 Reproduced
from Mastan et al.103 with permission from Americal Chemical Society, Copyright ©2015.

Mastan et al.103 have validated their quantitative equation for dispersity using experimental

data from the literature and showed that the equation predicts the minima and accounts for the

terminative events well for the polymerisation of HEMA and MMA by ATRP, shown in Figure

1.15.103
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Figure 1.16: (a,b) validation of the dispersity Equation for the NMP by Wang et al.104 of
DEAmin and (c,d) HEA. Reproduced from Wang et al.104 with permission by the Americal
Chemical Society, Copyright ©2020.

Wang et al.104 demonstrated that for first-order NMP, their model was also validated, as shown

in Figure 1.16. Here, they proposed 2 models: (1) a first-order kinetic approach - as in Mastan

et al. and (2) a power law approach. They also provided an Excel spreadsheet to calculate the

molecular weight distribution using this dispersity value.104

In this section, a variety of polymerisation techniques, process conditions, and modelling tech-

niques have been discussed. In the context of this thesis, RAFT polymerisation has been used due

to the plethora of monomers that could be accessed through compatible chain-transfer agents.

In addition, a place in the literature for an equation of dispersity as a function of conversion

accounting for terminative events has been identified.
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1.2 Flow Chemistry

1.2.1 Reactors

Traditionally, chemical synthesis is conducted in round bottom quick-fit flasks, and an ideal

batch reactor model can be applied to characterise performance on a small scale. Reactor

geometries that use continuous flow have piqued interest in the last century, offering better

control over reaction conditions. Continuous flow can afford a plethora of advantages: the

high surface area-to-volume ratio provides efficient heat transfer/light absorption and mixing,

and the reduced volume can improve safety.117 Typically, tubular reactors constructed from

stainless steel or polymeric materials (PFA or PEEK) are used; which is often the least expensive

option. Alternatively, continuous stirred tank reactors (CSTR) provide a hybrid of continuous-

flow and batch-type platforms.117 Tubular flow reactors are categorised according to channel

size mesofluidic (0.5-5mm) or microfluidic (0.01-0.5 mm).118 Unlike batch production where

the reaction composition changes over time, Ct, continuous flow reactors must reach a steady

state where the composition does not change; this may take several reactor volumes to stabilise,

schematics of reactors and their compositional changes is shown in Figure 1.17. In flow, residence

time is used to describe the time a molecule experiences in the reactor; this depends on the flow

rate, viscosity, vessel dimensions, and whether the stream is homogeneous in phase.117,119

Figure 1.17: Comparison of the compositional change of a reaction in (a) a batch reactor, (b)
continuous stirrer tank reactor (CSTR) and (c) a tubular flow reactor.

The velocity profile of a fluid passing through a tubular reactor can be perturbed due to molecular

and turbulent diffusion - this is called dispersion and leads to a distribution in the residence

times. The effect of dispersion can be characterised by the dimensionless Bodenstein number,
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BO which is calculated by Equation 1.16.120

BO =
uL

Dax
(1.16)

Here, u is the flowrate, L is the length of the channel and Dax is the axial dispersion coefficient.

A BO value greater than 100 suggests dispersion is low and if it is greater 1000, ideal plug flow

is achieved. BO less than 100 indicated deviation from the dispersion model and the convective

model may be more appropriate.120,121 Residence time distributions can be used to characterise

the performance of a flow reactor (e.g. dead zones), relevant flow regime and mixing information.

Typical experiments involve pulsed injection of a tracer into the reactor and timing how long

it takes to be detected. The C-curve is a term used to describe change in concentration of the

effluent tracer. The residence time distribution function, E(t), describes how long molecules have

spent in a reactor in a certain time interval, which can be found by dividing the concentration

of each discrete time from the C-curve by the area under the curve and is given by 1.17.122

E(t) =
C(t)∫∞

0 C(t)dt
(1.17)

The first moment gives the mean residence time (τ) or 1.18

τ =

∫ ∞

0
tE(t)dt (1.18)

The second moment is used to describe the variance about E(t) described by 1.18

σ2 =

∫ ∞

0
(t− tm)2E(t)dt (1.19)

To compare reactors of different sizes, a dimensionless RTD is required, these are typically

described by 1.20 and 1.21.

θ =
t

τ
(1.20)

E(θ) = τE(t) (1.21)

The residence time distribution has been shown to be largely affected by the internal diameter,

the mean residence time, and the use of static mixing. Gobert et al. conducted extensive
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reactor characterisation, demonstrating the effect of these variables on RTD using dispersion

and convective models.

Figure 1.18: Demonstration by Gobert et al. of the effect of (A) tubing diameter using tubing
diameters of 0.4 circle, 0.7 (square), 1.6 (diamond), 2.4 (cross) and 4.8 (triangles) mm on the RTD
modelled using dispersion (line). (B) the effect of static mixing (triangles) on RTD compared to
without static mixing (filled circle) using the convective model(dashed line) and (C) The effect
of mean residence time 56 s (circle) and 14 s (triangle) on RTD using both dispersion (solid line)
and convective models (dashed line).123 Adapted from Gobert et al.121 with permission from the
American Chemical Society, copyright ©2017.

Gobert et al.121 showed that the RTD broadens and asymmetry increases as the diameter in-

creases. They also reported the invalidity of the dispersion model for tubing diameters greater

than 2.4 mm - this can be observed in Figure 1.18 by the asymmetry in the triangle and cross

data. In addition, the larger diameter tubing was also investigated to see the effect of a com-

mercially available static mixer placed directly after a y mixer where they reported a slight shift

in the peak towards 1 and a slight narrowing. Furthermore, they reported that shorter residence

times lead to more convective behaviour whereas longer residence times are more consistent with

the dispersion model.121
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1.2.2 Flow Regimes

Figure 1.19: Schematic of flow patterns for laminar, turbulent, plug and droplet flow

Flow regime is highly dependent on the phase of the components in the channel. A single

velocity is unachievable for many reactions. For liquid-liquid mixtures there are several possible

flow regimes that can occur - laminar and turbulent are the most common and can be predicted

based upon the Reynolds Number. Reynolds’ number is dependent on flow-rate, viscosity,

channel diameter, Laminar flow regimes occur when the longitudinal flow is not obstructed by

parallel phases. Low flow-rates, viscous liquids and large diameter channels can facilitate laminar

flow (Re <2040 ). In gas-liquid systems the gas phase can form bubbles, plugs or annular flow

as the flow-rate of the gas is increased, in larger diameter reactors slug flow is more likely due to

the increase in pressure behind the liquid phase causing a droplet to form from the liquid phase.

Inert gases may be introduced into liquid phase reactions, to induce droplet flow and improve

mixing.117 A schematic representation of the flow regimes is observed in Figure 1.19.

1.2.3 Mixing

Mixing is considered a diffusion process. Segregation of flow regimes is typically seen in batch

reactors with the extent of segregation being reduced with decreased vessel size. However, the

flow regime is never uniform. Turbulent flow exists closer to the stirrer bar whereas laminar flow

may be experienced closer to the walls of the vessels.117 Due to the high surface area to volume

ratio, in a tubular reactors the diffusion path is reduced which can increase mixing. Damkohlers
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number, (Da) can be used to approximate the ratio of reaction rate to the rate of mass transport.

For an nth order reaction: reaction rate (k), initial concentration (Cn−1
0 ), diameter of tubing

(dt) and diffusion coefficient (D) the value for Da can be given by Equation 1.22. For rapid

reactions where the rate of diffusion is less than the rate of reaction; additional pre-mixing may

be required.120,124

Da =
kCn−1

0 d2t
4D

(1.22)

Figure 1.20: Schematic depiction of uniform mixing compared to non-uniform mixing in flow
where the Da value is less than 1 and greater than 1, respectively. For the case of non-uniform
mixing, localised variation in concentration of each reagent can lead to increased concentration
of side-product

If the rate of diffusion is greater than the rate of reaction leading to more of the desired product,

then the Da number will be less than 1, shown in Figure 1.20. If the rate of diffusion is less

than the rate of reaction then the reaction mixture will have localised variation of reagents so

Da will be greater than 1.
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Figure 1.21: CFD simulated data showing the effect of velocity at (a) 25 and (b)250 µL/min
on the mixing immediately after the T junction (top), in the curved mixing sections (middle)
and secondary flow in the curved mixing section (bottom). Adapted from Peres et al.125 with
permission from Wiley and Sons, copyright ©2019.

Computational fluid dynamics can enable visualisation of what is happening inside the tube

or channel - this is especially useful for visualising the mixing within the reactor. Peres et

al.125 demonstrated the mixing efficiency in a serpentine microfluidic device for the synthesis of

nanocrystals using CFD and experimental data. Parallel flow is shown immediately after the

two streams interaction in Figure 1.21.a at the lower velocity stream even at points in the tube

which may experience more centrifugal forces such as at curved regions. A more disordered

flow is shown in Figure 1.21.b. at higher flow-rates. For the secondary flow CFDs, the fluid

flows are effected by the inertial effect causing fluid to flow towards the wall. Dean Vortices are

also reported to be experienced in the tube as a result of the combination of centripetal and

centrifugal forces as shown in the bottom section of Figure 1.21.125
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1.2.4 Heat Transfer

Heat transfer describes the transfer of thermal energy in a system. In traditional batch glassware

the heat has to travel through the glass and reaction solution, where it has dissipated signif-

icantly by the time it reaches the centre. Flow reactors afford improved heat transfer leading

to precise thermal control; due to the large surface area to volume ratio. Enhanced control

over temperature in tubular flow reactors can provide a safer reactor geometry for exothermic

reactions, and offer better selectivity..117,124 Heat transfer for exothermic reactions is dependent

on a range of factors: rate of heat generated from the reaction(−r∆Hrxn), rate of heat removed

from the reactor wall to surroundings, the heat of reaction(∆Hrxn), adiabatic temperature rise

(∆Tad), dimensions (df ) and thermal conductivity of the reaction mixture (κ). This can be

simplified to the ratio of heat generated to the heat removed. Furthermore, the ratio can given

as, βB.126

βB =
−r∆Hrxnd

2
F

4∆Tadκ
(1.23)

1.2.5 Safety and Scale-up

Risk is often written as a function of the hazard, exposure and vulnerability.127 Performing

chemical reactions in laboratory-scale flow reactors has become of high interest to industry due to

inherent safety aspects.128 Improved knowledge of chemical interactions and hazards has allowed

a range of tailored reaction vessels (such as thin walls) compared to early examples. As mentioned

above, flow reactors can facilitate the dissipation of heat arising from exothermic reactions,

providing better control than in batch. Continuous flow operation can reduce the amounts of

hazardous reagents (e.g., explosives) used because of the low inventory. In some cases, hazardous

intermediates generated in a reaction are consumed in the reactor. Kappe and co-workers have

successfully demonstrated a reactor that can produce diazomethane, a highly sensitive and

explosive gas - (CH2N2) in-situ which then undergoes downstream methylations..129,130 Extreme

temperatures and pressures can be used to accelerate reactions; high temperature and pressure

are difficult to achieve safely in standard glassware. Back pressure regulators are often used in

flow to exceed the boiling points of solvents, such as in the synthesis of a 1,2,3-triazole precursor

of Rufinamide where a Huisgen cycloaddition was carried out at 210 ◦C and 69 bar. From

the HPLC yields they identified an optimal temperature of 210 ◦C after a 10 min residence

time. Here, reactor fouling was successfully avoided by operating at temperatures higher than
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Rufinamide’s melting point.131

Figure 1.22: Example of the use of backpressure regulators to enable extreme temperatures to
produce a precursor of Rufinamide Reproduced from Borukhova et al.131 with permission from
Wiley and Sons, copyright ©2013.

Scale-up enables increased productivity which is desirable in industry. For batch synthesis,

scaling up can be challenging due to mixing, heat transfer, and safety considerations. Flow has

its own scale-up issues; however, the chemistry may not permit scale-up as a result of RTD.

Competitive productivity is hard to achieve in microscale flow reactors, even when the system is

scaled out. Typically, to scale up microscale flow, the internal volume of the reactor is increased

to milliscale while maintaining the diameter of the channels..132 Numbering up reactors can often

be the viable option for reactions that require narrow channels (e.g. photochemical reactions).

Noel and co-workers developed a single chip reactor (Figure. 1.23) that divides the reaction

stream into 8 channels enabling parallel synthesis. This chip was used for the photooxidation

of 9,10-diphenyl anthracene, and they reported superior flow partitioning even in chips with up

to 32 channels. In addition, they reported that the photochemically driven reaction conversion

consistent with a single-channel chip was also observed.133
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Figure 1.23: Numbered up chip reactor for photochemical flow reactions. Adapted from Zhao et
al.133 with permission from The American chemical society, under Creative Commons, copyright
©2017

1.2.6 Automation and Online-Monitoring

The first automated reactor can be traced back to 1966, where the stepwise synthesis of pep-

tides was performed autonomously.134 Advances in computation have afforded sophisticated

platforms controlled by desktop PCs whereby pumps, thermal controllers/light sources, analyt-

ical equipment and data management are controlled in programmes such as LabVIEW,135–137

MATLAB138,139 or Python.140,141 Where custom software may be inaccessible, Vaportec offers

a commercially available flow reactor that allows for the precision scale-up of flow systems with

condition monitoring (e.g., pressure) which has been used for many reactions.142,143 Gilmore

et al.142 reported the use of a Vapourtec R-2 + model to continuously synthesise artemisinin-

derived drug molecules using a modular approach. Their findings report 4 antimalarial APIs

autonomously synthesised with modular transformation and continuous purification. Through

incorporation of specialised flow cells and sampling, inline analytical techniques have enabled

chemists to monitor conversion, yields, selectivity, impurity, pressure, and temperatures without

the error related to taking samples for offline analysis. A plethora of in-line/on-line analytical

techniques have been developed. Jensen and co-workers implemented a commercially available

HPLC to analyse the yield from a Heck-type coupling.144 Subsequently, they used optimised

reaction conditions to scale up the reactor 50-fold. Process analytical techniques can be cate-

gorised into: offline, at-line and, online. Offline is traditional analytical techniques where the

user will prepare the sample and then take it to the analytical equipment, At-line is similar

except that the person is replaced with a sampling valve which takes a sample and sends it

to the equipment. Online monitoring occurs when the sensor is placed in or on the reaction

solution without user intervention. On-line FTIR was used to monitor conversion in a conden-

sation synthesis of pyrazole, allylation and reduction-crotonation synthesised in flow by Ley and
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co-workers;145 later Jensen and co-workers demonstrated the use of FTIR to monitor reaction

yields of a Paal-Knorr reaction.146 Online UV-Vis has been used to monitor nucleophilic substi-

tutions and Aza-Diels Alder.147,148 Benchtop NMR has been integrated into flow platforms for

monitoring of oxidation and cyclopropanation.149

Figure 1.24: Schematic of an autonomous flow reactor with in-line/online analysis.

In this section, the challenges and benefits of conducting reactions in flow have been discussed.

The high surface area-to-volume ratio leads to improved heat transfer, which can lead to faster

kinetics. Mixing is typically improved for flow if the reaction kinetics are slower than the rate

of mixing by diffusion; however, for rapid reactions, this is reduced. In this thesis, mixing

is an important consideration due to the rapid nature of radical polymerisations which was

investigated in Chapter 3. Challenges associated with the change in viscosity were investigated

in the context of this thesis, and this knowledge was subsequently used to account for flow effects

in the development of the RAFT model.

1.3 Optimisation of Chemical Systems

Traditional optimisation uses the one-variable at a time (OVAT) approach, which involves the

systematic changing of a reaction condition, conducting analysis, and then deciding where to

try next. OVAT is often time consuming, inefficient, and the likelihood of getting to the optima

is low as it is unable to separate experimental noise (variation between repeats of the same

experiment).150
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1.3.1 Local Optimisation

Design of experiments (DoE) is a model-based statistical approach to optimisation that can

allow multiple variables to be changed at a time and also gives the operator an idea of the

direction the objective is moving in reaction parameter space. The objective(outputs), each

variable, and the boundaries need to be defined. For example, a 3 variable (factor) DoE with

2 values (high and low limits) for each factor will have 8 trial experiments(at each vertice of

reaction parameter space). The data from these experiments can have a response surface model

that can be fitted150,151 Some mechanistic knowledge is required for weighting variables.

Figure 1.25: Optimisation of yield by DoE demonstrated by Rutjes and co-workers for a Paal-
Knorr cyclocondensation of 2 ethanoamine 2 (top) and ethylamine 3 (bottom) reaction. Repro-
duced from Nieuwland et al.152 with permission from the American Chemical Society, Copyright
©2011

Rutjes and co-workers optimised a Paal-Knorr cyclocondensation for yield via GCFID varying

the stoichiometry of the amine to diketone, residence time, and temperature in a microreactor.

The resultant surface plots are shown in Figure 1.25 They conducted this for 2 amines. A

polynomial was fit to the data. The findings identify optimal conditions for the ethanolamine

substrate as 20 ◦ C after 100 s with an amine:diketone ratio of 5; whereas, if an ethylamine is

used the amine:diketone ratio must be doubled.152
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Simplex algorithms such as Nelder Mead Simplex (NMSIM), where n is the number of variables

a convex polyhedron can be made of n+1 vertices. The worst vertex is removed, and a geometric

transformation selects the next conditions. The transformations can include; multiple contrac-

tions, inside and outside contractions, reflection and expansion. There are many examples of

simplex being used in the literature. Cronin and co-workers used a modified NMSIM coupled

to a fitting function to optimise 2 variables (composition and residence time) and 1H in-line

NMR to obtain yield for an imine synthesis.153 Another example of local optimisation is the

steepest decent method, this is a gradient based method where a 2k orthogonal design or central

composite design (DoE) is initialised. A response surface is mapped, which then allows for the

calculation of a gradient. Conditions along the gradient are conducted until a poor response is

observed, indicating that the optimum has been surpassed.

Figure 1.26: (left) Demonstration of convergence in a simplex algorithm overlayed onto a re-
sponse surface showing maxima (red) and minima (blue) where the simplex algorithm converges
to a minimum. (right) Steepest descent method with an initial point and 2k orthogonal design.
Reproduced from Clayton et al.154 with permission from the Royal Society of Chemistry. Copy-
right ©2019.

The advantages of local optimisation is rapid convergence to an optima; however, it operates on

the assumption that there is only a single optimum. Local optimisation algorithms also neglect

the effect of experimental noise, which can delay the algorithm’s evaluation.

1.3.2 Global Optimisation

Stable Noisy Optimisation by Branch and Fit (SNOBFIT) is a popular local single-objective

optimisation algorithm that can effectively tackle the problem of noise. The algorithm takes the

input data and generates a surrogate model.154 Unlike the gradient-based simplex approaches,

SNOBFIT does not require explicit gradients to be defined; rather, they are approximated by
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the surrogate model. SNOBFIT searches different subregions in parallel through identifying

local points. Cheaper models are fit to the function, which allows the quality of the model to

be quantified and the noise to be reduced. An initial space filling design may be incorporated

to ensure that the surrogate model is representative. SNOBFIT classifies into: (1) a point that

minimises the local quadratic about (xbest), (2) estimated local minimising points, (3) estimated

global minimisers, (4) possible points of interest and (5) random points.

Figure 1.27: SNOBFIT optimisation of N-methyl nicotinamide with the highest conversion being
the darkest red circle highlighted with a star. Reproduced from Holmes et al.155 with permission
from Royal Society of Chemistry. Copyright ©2015.

SNOBFIT138,155,156 has been used in a variety of reactions; an example is its use in closed-

loop optimisation of the synthesis of N-methyl nicotinamide, where the optimisation objective

is yield (obtained by mass spectrometry). Here, the authors varied relative concentrations of

the reagent and the temperature of reaction and reported higher yields were obtained at higher

concentrations of amine, low temperatures, and slow flow rates. The optimum is identified at

an ester flow rate of 0.1 mL/min using 10 eq of MeNH2 at 10.6 ◦C, which is shown in Figure

1.27155

When two or more conflicting objectives are being considered; a more suitable optimisation

algorithm considers both objectives at the same time. A set of solutions is typically identified

for a multiobjective optimisation algorithm. This set of solutions is defined as the Pareto front,

where there can be no effect of one objective without having a detrimental effect on the other.

Bayesian optimisation is a popular type of multiobjective optimisation, these do not require a
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priori knowledge to evaluate. Bayesian optimisation works by fitting a Gaussian process (GP)

to a set of data. The GP treats variables as having a normal (Gaussian) distribution with a

mean and a covariance function. The covariance function enables noise to be considered, whilst

the mean function indicates the expected solution. GPs provide a computationally inexpensive

and stochastic method of evaluating the objective function, the GP is sampled and further

exploration along the GP allows better fitting.157 An acquisition function is used to find the

probability of an optima, which is designed to explore and exploit chemical space.

Figure 1.28: Demonstration of the TSEMO algorithm finding the Pareto front for space time
yield (STY) and E-Factor. Black squares represent the initial training experiments and the
crosses are the solutions to the TSEMO generated conditions Reproduced from Schweidtmann et.
al.158 with permission from Elsevier Chemical Engineering under Creative Commons. Copyright
©1969.

Comparisons of different types of Bayesian optimisation have been conducted comparing algo-

rithms such as Thompson sampling efficient multiobjective optimisation (TS-EMO),158 Pareto

efficient global optimisation (ParEGO),159 expected hypervolume improvement (EHI),160 non-

sorting genetic algorithm II (NSGA-II)161 with TS-EMO outperforming the latter.158,162 TS-

EMO has been used to optimise three conflicting objectives for a Claisen-Schmidt condensation

reaction. Here Clayton et. al163 identify the trade-off in 65 h by automating what would

typically take 6 optimisations over weeks, allowing high-throughput optimisation163 Another

example where a multi-objective optimisation algorithm was used is a multi-objective active

learner (MOAL) was applied to a complex, expensive-to-evaluate nanoparticle platform opti-
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mising 14 variables for 2 objectives.135 Prior to the work addressed in this thesis, TS-EMO has

not been applied to polymerisation. Multi-objective optimisation algorithms have also been ap-

plied to discrete variable systems. Mixed-variable multi-objective optimisation (MVMOO),164

was demonstrated for a nucleophilic aromatic substitution reaction changing the solvent, the

selection of the ligand on the regioselectivity of the product. Here, the polarity of the solvent

was identified as a significant variable in the reaction of amines and 2,4-nitrobenzene. The phos-

phine ligand that experienced the least steric hindrance was also found to perform best despite

a contrasting understanding.165

As previously discussed in the polymerisation section, dispersity is a quantitative measurement

of the control over the polymerisation that can often increase as the monomer is converted into

polymer chains. This results in a trade-off in dispersity and conversion; therefore, this is an ideal

candidate for Bayesian optimisation therefore these were selected as optimisation objectives in

this thesis.

1.4 Polymerisation in Flow

Seminal work on flow polymerisation can be traced back to the 1950s. In 1953 Melville and

co-workers demonstrated the use of glass flow reactors for photoinitiated block copolymer syn-

thesis.166 Flow chemistry also enabled M. Swarc et al.167 to investigate the kinetics of a rapid

"living" anionic polymerisation of styrene in THF. Meira et al.168 suggested that the varied

addition of monomer and initiator in a living anionic polymerisation using continuous flow can

enable control over MWDs. Over the past century, the benefits provided to polymerisation

by flow chemistry have been appreciated. Safety improvements attributed to flow have enabled

polymerisations in which stringent conditions (i.e., in living anionic polymerisation) are required

to be performed in flow.169,170
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Figure 1.29: (a) Living anionic polymerisation flow platform using microfluidics with different ge-
ometry channels to polymerise styrene.170 Adapted from by Iida et al. with permission from The
Royal Society of Chemistry, copyright ©2009. (b) Oxygen-tolerant PET-RAFT platform for
(homo)polymers and blockcopolymer synthesis Adapted from Zaquen et al.171 with permission
by American Chemical Society, copyright ©2019. (c) Telescoped multi-block copolymerisation
platform demonstrated Adapted from Baeten et al.172 with permission from The Royal Society
of Chemistry, copyright ©2017

.

Iida et al. used microfluidic devices to conduct anionic polymerisation of styrene in cyclohexane

at elevated temperatures and monomer concentration; otherwise, this would lead to danger-

ous pressure buildup in batches (shown in Figure 1.29).170 The thermal transfer advantages of

flow make it a great tool for thermally initiated polymerisation. Radical polymerisations are

typically exothermic, which can cause loss of control; here, flow chemistry can enable efficient

dissipation of this exotherm. In the 00s/early 10s ATRP,173–176 NMP,177,178 FRP179,180 and

anionic14 and cationic polymerisations.181 The functional group tolerance of RAFT makes it at-

tractive for polymer discovery platforms. Diehl et al. compared the effect of different diameters

of tubing to batch on the RAFT polymerisation of NIPAM,182 while Hornung and co-workers

expanded on this by looking at other combinations of monomer / RAFT agent / initiator,

as well as comparing PFA and stainless steel tubular reactors and the synthesis of block co-

polymers. They found that conversions obtained using batch, a microwave reactor and stainless

steel tubing were similar; whilst PFA tubing under-performed significantly. For RAFT there

was no monomer conversion, which they attribute to the permeability of the PFA tubing.183,184

Building on the work of Meira et al.168 Fors and co-workers have enabled the fine-tuning of the

broadness, shape, and asymmetry of MWDs by altering the flow rate of the initiator in a liv-

ing anionic polymerisation.185 Sophisticated telescoped cascade platforms have been developed
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that allow for tetrablock and quarterpolymer172 (shown in Figure 1.29), as well as droplet flow

reactors for co-polymer libraries.186 Inherently short path lengths (Beer-Lambert law) in flow

reactors also offer efficient absorption of light in photomediated polymerisations. PET-RAFT

has been demonstrated in flow to provide an oxygen-tolerant way of producing (homo)polymers

and block copolymers in PFA tubing.171,187 (shown in Figure 1.29) Photoiniferter RAFT was

successfully reported to achieve high conversion and high molecular weight polymers in continu-

ous flow.39,188,189 Furthermore, photo-redox mediated controlled polymerisation of MMA using

Ir(ppy)3 has also been carried out in a flow reactor; here, they optimised the type of tubing

the reactor was made of and found that Halar tubing afforded a higher conversion than PFA,

FEP and Tefzel.190 As O-ATRP relies on UV/Vis radiation, it is suitable for flow and has been

carried out in PFA tubing191,192 In recent years, polymeric nano-objects have been able to be

synthesised in flow. Parkinson et al. used dispersion UF-RAFT Polymerisation to synthesise

PDMAm-PDAAm nano-objects using PISA.193,194

Figure 1.30: The effect of (A) tubing diameter, (B) mean residence time and (C) viscosity on
the RTD modelled using the dispersion model reported by Reis et al..123 Adapted from Reis et
al. with permission from The American Chemical Society, Copyright ©2019.

Continuous stirred tank reactors have also been used to synthesise polymers using FRP,195

RAFT,196 ATRP197 and NMP198 which have shown conversions comparable to batch data;

however, showed a broadening of the MWD. Fluid dynamics provides a fundamental challenge

41



1.4. Polymerisation in Flow Chapter 1. Introduction

for conducting polymerisation in flow; interactions between the channel wall and the outer

reaction solution can broaden the velocity profile, affecting the molar mass distribution.123,187

Interactions between the channel wall and the polymer solution can lead to a pressure drop, there

is a balance between viscosity, flow rates, channel diameter and tube length to minimise pressure

drops. Plug flow has been shown to improve the polymer properties; through, circular mixing as

a result of the gas-liquid interface. Leibfarth and co-workers demonstrated the effect of viscosity

and tubing diameter on the dispersity and conversion of polymerisation in continuous and plug

flow.123 Deviations from the dispersion model are reported at large tubing diameters, which

was also previously reported in.121 Here, the viscosity is also investigated, showing a significant

increase in the broadness of the RTD at high viscosity.

Figure 1.31: (a) computer controlled droplet flow platform by Zhou et al. using RAFT photo-
induced RAFT. Adapted from Zhou et al.186 with permission from the American Chemical
Society. Copyright ©2019 American Chemical Society. (b) Operator independent platform
reported by Van-Herck et al. for the thermal transient kinetic screening of RAFT polymerisation
in continuous flow.Adapted from Van-Herck et al.141 with permission from the Royal Society of
Chemistry under Creative Commons. Copyright ©2022.

Computer-aided platforms for high-throughput screening of co-polymer libraries have since been

reported by Zhou et al,186 shown in Figure 1.31. a. In this paper, the authors take advantage

of plug flow with an immiscible solvent carrier for high-viscosity RAFT polymerisations. More

recently, Junkers and co-workers141 have developed a closed-loop automated screening platform

for big data collection in continuous flow, successfully elucidating the transient kinetics collected

by bench-top NMR and online SEC. The workflow is seen in Figure 1.31.b.141,199
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Figure 1.32: Molecular weight distribution design and synthesis platform using computer con-
trolled platforms. Reproduced with permission from Springer Nature under Creative Commons.
Copyright ©2020.

Through extensive characterisation of a plug flow reactor and the effect of flow profile on the

molecular weight distribution, Guironnet and co-workers have developed a flow reactor capable

of synthesising a predicted molecular weight distribution. The authors applied mathematical

models to ROP, ROMP, and anionic polymerisation and obtained square, triangular, and com-

plex MWDs that are consistent with the empirical data of the plug flow, this is shown in Figure

1.32.
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Figure 1.33: Rig used by Eckhert et al.151 to optimise RAFT polymerisation in multiple reactor
combinations. Reproduced from Eckhert et al. with permission by MDPI. Copyright: ©2021.
Creative Commons.

Eckhert et al. have used commercially available multiphysics analysis software (COMSOL)

to develop the CFD and thermal properties of the reactors (this is shown in Figure 1.33).

The kinetics of the reaction was then simulated using PREDICI, which was optimised for high

conversion, low Ð and molecular weight. The reactions were conducted experimentally in the

reactors; followed by optimisation with respect to the COMSOL model. The authors found that

using a premixing chip and a 20 mL glass reactor chip provided the lowest Ð with the highest

conversion.200

1.5 Online monitoring of polymerisation

Typically, when polymer kinetics are monitored, monomer conversion (α), M n, Mw, and Ð are

of interest as they provide information on the degree of control and macromolecular structure.

Online monitoring can provide uniform real-time detection of changes in a chemical system.
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Figure 1.34: Response traces from ACOMP using UV, RI and viscometric analysis. Reproduced
with permission by Wiley and Sons. Society of Chemical Industry, Copyright ©2007

Automatic continuous online monitoring of polymerisation (ACOMP) is a term coined to de-

scribe a platform that uses non-chromatographic/non-model techniques. A sample is taken from

the reaction and diluted in stream and taken to a detector (light scattering, spectroscopic, vis-

cometric) for conversion, composition, weight average molar mass, and intrinsic viscosity (seen

in Figure 1.34) can be monitored without the need for models.201
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Figure 1.35: A demonstration of the use of real-time IR for online monitoring of radical poly-
merisations. Reproduced with permission from American Chemical Society ©1999.

Spectroscopy operates on the principles of energy transitions in the atomic and molecular en-

ergy levels (i.e. rotational, vibrational, and electronic transitions). In FT-IR the bonds in the

molecule absorb a certain frequency of IR radiation that causes certain vibrational modes. FT-

IR is a popular technique for monitoring the depletion of the C=C absorbance, which can then

be related to concentration via the Beer-Lambert law. Long and coworkers (1999) demonstrated

the use of React IR probe to monitor living cationic polymerisation via the C=C stretch at 1628

cm−1.202 Raman is a type of vibrational spectroscopy that measures the amount of inelastic

scattered light - some photons are absorbed, but the rest are emitted at a different frequency.

Reiss et al203 have compared NIR with Raman spectroscopy for emulsion polymerisations where

they identified that Raman exhibited the least signal/noise ratio that could be overcome with a

filter. Both methods allowed a sufficient quality of mononomer concentration to be monitored;

but Raman also offered water tolerance.203

UV/Vis is a technique similar to IR except that the molecule absorbs photons of energy that

caused electronic transitions. The amount of light absorbed is monitored. In RAFT, UV/Vis is

popular for monitoring degradation of the chain end groups with respect to time.204 The ACOMP

UV/Vis methods have been used to monitor RAFT homopolymerisation for conversion, Mw and
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ηr.205 A novel calculation for the conversion of monomers was proposed by Lauterbach et al.,206

where they used the reduction in the molar free volumes of the monomer (Vm,M ) when it is

converted to polymer (Vm,P ). The total volume (Vall) decreases while the overall composition is

constant. This can be related to the concentration in the Beer-Lambert law and to the change

in absorbance (A), as shown in 1.24

A(λ, α) = ϵ(λ) · l · c(α) = ϵ(λ) · d · n

Vallα)
(1.24)

In a flow reactor, the diameter of the channel, d is the optical path length. Vall can be assumed

to be the sum of the volume of monomer, polymer, control agent, solvent and an excess volume.

A further set of calculations allows for the derived equation for conversion (α) shown in Equation

1.25.

α =
Vall(0)

∆Vmax
− ϵ(λ) · d · n

∆Vmax
· 1

A(λ, α)
(1.25)

where ∆Vmax is the maximum volume of contraction, For inline conversion, a calibration is

required to obtain the extinction coefficient.

Figure 1.36: Comparison of the UV/Vis conversion monitoring used by Abetz et al. to contin-
uous and stationary NMR measurements demonstrating concordant results. Reproduced from
Lauterbach et al.206 with permission from Wiley and Sons. Copyright ©2020.

Subsequently, the results of this were compared to those of continuous and stationary NMR and

showed comparable results as demonstrated in Figure 1.36 where the kinetic traces of UV/Vis

and NMR overlap. Mass spectrometry (MS) is a technique that involves measuring the mass-

charge ratio by ionising the sample. Ionisation is usually categorised into hard and soft.
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Figure 1.37: Demonstration of ESI-MS being used for the monitoring of side reactions at tem-
peratures greater than 100 deg C. Reproduced from Haven et al.207 with permission from Wiley
and Sons, copyright ©2017

Online-MS was first reported for radical polymerisation by Junkers and co-workers207 where an

electron-spray ionisation setup was used to track side reactions at high temperatures for the

polymerisation of nBuA by RAFT. This set up is shown in Figure 1.37.

Nuclear magnetic resonance spectroscopy operates on the nuclei having spin angular momentum.

Spin leads to a magnetic field, and thus a magnetic moment. When an external magnetic field

is applied, the nuclei align with or against the magnetic field. If a radio frequency proportional

to the energy gap between spin states is applied, the relaxation of the spin from higher to lower

energy corresponds to certain nuclei (i.e. 1H). Different electronic environments (i.e., electron

withdrawing groups) within a molecule will have their own local magnetic field that opposes the

applied field, which provides structural information. Interactions of neighbouring non-equivalent

atoms can lead to spin-spin coupling, enabling fine structural information to be obtained.208,209

Traditional NMR requires large cryogenically cooled superconducting magnets, and a technician

is usually employed to manage these multimillion GBP instruments. Advances in the miniatur-

isation of traditional NMR have enabled the online monitoring of reactions. Bench-top NMR

utilises smaller permanent magnets positioned in a way to achieve optimised spectra. Field

frequency locking allows homogeneity of the magnetic field that would otherwise drift, while

external locking allows non-deuterated solvents to be used.210 Bench-top instruments have been

incorporated into polymer synthesis platforms to analyse monomer conversion from depletion

of the vinyl group and growth of the polymer backbone.200,211,212 High-field flow diffusion order
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(DOSY) NMR adds another dimension to traditional NMR by adding a diffusion coefficient for

polymerisation, which has been shown to permit elucidation of the molecular weight.213

Figure 1.38: The monitoring of molecular weight by DOSY and the linearisation of the data
to enable the radius of gyration of the polymer particle to be found. Adapted from Vrijsen et
al.214 with permission from the Royal Society of Chemistry under Creative Commons. Copyright
©2020.

High-resolution flow DOSY was coupled to a flow reactor, which is shown in Figure 1.38 to

enable online monitoring of a RAFT polymerisation and to elucidate the conversion and MWDs

of poly(methylacrylate).214 A linear relationship was found between the logarithm of both the

diffusion coefficient and the average weight molecular weight of a dilute solution that allowed

the gyration radius of the polymer to be evaluated.214

Commonly, polymer molecular weights and MWD are determined by size exclusion chromatog-

raphy/gel permeation chromatography (SEC/GPC). A diluted sample is injected into columns

containing porous beads, and the coiled polymer chains are separated depending on size. Larger

chains will elute sooner than shorter chains, which will penetrate the porous beads. The columns

are attached to multiple detectors; frequently, viscometers, UV/Vis and light scattering. To

analyse a sample, the instrument must be calibrated against standards with a known molecular
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weight and concentration.6 Typical SEC samples take 30 min to analyse; for online monitoring

this needs to be faster. Haddleton and co-workers developed online monitoring of SEC where

they diluted a batch SET-LRP reaction of methylacrylate with eluent by varying the flow rate

of HPLC pumps, which could then be injected into a rapid column, bringing the data collection

time to 3 min.215 Subsequently, automated sampling valves have been used to take injections

every 12 min for the NMP and copolymerisation of nBuA and stryene synthesised in flow; SEC

was coupled to multiple detectors so that linear and branched polymers could be evaluated.

This was named continuous online rapid size exclusion chromatography (CORSEMP).BallyAA

SEC has also been coupled to high-field and bench-top NMR as a detector for online analysis of

copolymer MWDs.216,217

1.6 Self-Optimisation platforms for polymer synthesis

Flow polymerisation offers high throughput polymer discovery and optimisation and is a growing

area within polymer chemistry. Many online polymerisation platforms look at optimising the

collection of molecular weight information - i.e precise Mn and/or shape. A degree of automation

is required for online analysis, and several examples using computer-controlled equipment are

mentioned above.218

Machine learning (ML) algorithms have been shown to be effective in reaction self-optimisation

by reducing the number of experiments compared to traditional techniques by Design of Exper-

iments (DoE). Complex multivariate, multiobjective, multistep self-optimising platforms have

been developed for small molecules.140,144,162,165
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Figure 1.39: Optimisation of molecular weight showing little deviation from the target DP
after 5 hours reported. Reproduced from Rubens et al.219 with permission by Wiley and Sons.
Copyright ©2019

A Lab-View based autonomous platform consisting of three syringe pumps was used by Rubens et

al.219 in conjunction with a microfluidic reactor to target a defined molecular weight (monitored

by SEC) using an algorithm. A screening set of data was conducted to explore different target

degree of polymerisation and the kinetics evolving the Mn. An algorithm was then used to

identify the optimised reaction conditions corresponding to the target DP; such that the accuracy

of the Mn value is directly related to the accuracy of the equipment.219

Houben et al.135 reported the use of a multiobjective active learner (MOAL) algorithm to op-

timise particle size and conversion in an emulsion polymerisation varying 14 input variables.

Initially, they ran an in-silico optimisation of an emulsion copolymerisation and conducted the

experiment on a semi-automated closed-loop reactor platform, seen in Figure 1.40.135 Frequently,

optimisation objectives contradict each other, meaning that one cannot be improved on without

having a detrimental effect on the other - also known as the pareto front – in this circumstance

Bayesian optimisation algorithms are better suited. Their successful optimisation led to the

identification of a series of conditions with 14 input variables that led to a particle size of 100

nm and full conversion135
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Figure 1.40: Data from the MOAL optimisation by Houben et al. targeting high conversion
and particle size of 100 nm for an emulsion copolymerisation, where the dashed lines are the
target objectives (a) in-silico model looking at potential recipes where the target is reached
after 27 experiments and (b) closed-loop experimental data where the target was reached in
17 exeriments. Reproduced from Houben et al.135 with permission from American Chemical
Society under Creative Commons. Copyright ©2015.

ML has been applied to polymer synthesis by Gu et al.220 where they used experimental data

and setting inputs and outputs (feedstock concentration and Mw), the data sets were analysed

for relationships between conditions and objectives using various ML algorithms to predict con-

ditions leading to tailored polymers. The non-linear nature of the data meant that the Random

Forest algorithm outperformed all of the others. Through multivariate analysis, they identified

complex interactions between covariables - Mw decreases when [CTA] < 33 x smaller than [M]

and then increases for PET-RAFT. Their findings report that at high [CTA]/[M] and lower

[PC]/[CTA] they obtain the lowest propagating groups % and lowest Ð, as demonstrated in Fig-

ure 1.41. They called this platform the ML-assisted systematic polymerisation planning platform

(SPP).220
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Figure 1.41: Heat maps produced by Gu et al.220 where the input variables are CTA/monomer
ratio and photocatalyst/CTA ratio.the colour corresponds to (a) propagating group percent and
(b) Ð. Reproduced from Gu et al. with permission from Science China Press and Springer-Verlag
GmbH Germany, part of Springer Nature. Copyright ©2021

Alternatively, a DOE algorithm using a face-centred central composite design has also been

used for thermally initiated RAFT. Eckhert et al.151 have successfully shown the power of DoE

in exploration of reaction space, this allowed them to fit surfaces and equations that enabled

generations of accurate predictive models. Using the predictive models, they found that the ex-

perimental data fall within the 95 % prediction limits of the models, therefore, it is validated.151

Reis et al.221 have developed a Bayesian-based optimisation platform capable of optimising the

synthesis of 19F MRI agents. Using plug flow, they optimised a series of copolymers with varying

composition of fluorinated acrylate monomers in 2 min per copolymer. Here they overcame the

solubility issue owing to the fluorine substituent by forming statistical copolymers while opti-

mising the 19F MRI activity of the copolymer. This trade-off in solubility and activity makes

this an ideal candidate for Bayesian optimisation. They identified a number of copolymers with

sensitivity greater than previously reported and found that the signal-to-noise ratio is not di-

rectly related to the composition of fluorine in the co-polymer. In general, this work will allow

for further discovery of 19 MRI agents.221
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1.7 Project Aims and Objectives

Advanced polymeric nanoobjects used in the pharmaceutical, agrichemical and electronics indus-

tries typically require sequence-controlled. RAFT is an attractive type of polymerisation because

of its functional group tolerance and ability to produce sequence-defined block copolymers; for

sequence-defined block copolymers, defined homopolymers with low molar mass dispersity are

required. Formation of homopolymers with narrow MWDs is not a trivial process for RAFT

because of the presence of side reactions, chain-transfer, and termination, which can cause a

trade-off in conversion and dispersity. The overall aim of this thesis was to reduce the number

of experiments required to identify the Pareto front; subsequently, decreasing the amount of

reagents required and increase the throughput of optimisation while exploring a large amount

of experimental reaction space. This main aim has been compartmentalised into 4 chapters.

In Chapter 2, the main aim is to introduce the use of a state-of-the-art Bayesian optimisation

algorithm that can efficiently explore and exploit 2D reaction parameter space. In a simple

flow platform consisting of a single pump and a tubular flow reactor, the 2D reaction parame-

ter space (temperature and residence time) will be explored. Affording first-instance Bayesian

optimisation for the exploration of solution RAFT polymerisation in continuous flow.

The aim of Chapter 3 is reactor optimisation; which is important when carrying out continuous

flow of rapid reactions such as radical polymerisation. The mixing has been optimised to ensure

uniform mixing before the solution enters the reactor. Several variables have been changed to

investigate their effect on the residence time distribution, which is useful later in Chapter 4.

Chapter 4 addresses a gap in the literature by providing a quantitative Equation for dispersity as

a function of conversion, accounting for chain growth, transfer, and terminative events. This has

been coupled with an existing kinetic model to obtain conversion and written into a MATLAB

application. Experimental validation in both batch and flow has been carried out from the

literature and from data obtained in this work.

Finally, in Chapter 5 the model developed in Chapter 4 and the experimental platform optimised

in chapter 3 has been used to investigate the effects of initiator concentration, temperature, and

residence time on the trade-off in conversion and dispersity.
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Chapter 2

Multi-objective Self-Optimisation of

RAFT Polymerisation

in a One Pump Continuous Flow

Reactor Platform

2.1 Introduction

Self-optimising reactors can enable chemists to visualise rapidly what is happening with green

metrics, selectivity, yield, conversion, wavelength, or other objectives when exploring the re-

action space. Examples of self-optimising reactors have been reported in abundance for small

molecules, with the fine chemical industry showing great interest in the area. In some cases,

if a combination of objectives is looked at, the effect of certain reaction conditions may im-

prove one objective but severely impact the other objective. These reactions can be considered

expensive-to-evaluate problems. Bayesian optimisation can offer a way to overcome these issues.

A surrogate model can be used to build an approximate objective function based on experimental

or modelled data. An acquisition function is then applied to sample from this surrogate model.

These functions typically aim to exploit and explore the reaction space in the case of chemical

systems. This allows identification of the Pareto front, which can be described as the set of

experiments that lead to the optimal trade-off in objectives. Bayesian optimisation algorithms
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can be considered a "black-box" where no a priori knowledge is required, which means that they

can be considered ideal for discovery platforms. Bayesian optimisation applied to polymerisa-

tions has been reported a handful of times in the literature. As shown in Chapter 1. Reis et

al.221 have described the use of Bayesian optimisation for the synthesis of copolymer-based 19F

MRI agents. Whilst Houben et al.135 have demonstrated the use of MOAL for the discovery of

recipes that lead to full conversion and a specific particle size.

In this chapter, 2D reaction parameter space was optimised for the RAFT polymerisation of

dimethylacrylamide, tert-butylacrylamide, n-butylacrylate and the statistical copolymerisation

of PDMAm-PFPA. Optimisation objectives were conversion(α) and dispersity (), which were

monitored using NMR and GPC, respectively. The effect of oxygen on the continuity of the

surface was also investigated using an inline degasser. The platform in this chapter uses Latin-

Hyper Cube (LHC) to select screening experiments to conduct as the initial exploration of

experimental space. The output data from these experiments were fed into the main ML algo-

rithm based on Bayesian optimisation. A surrogate Gaussian process (GP) model was generated

from training data, the GP was sampled from, and the hyperparameters identified; the point

that has the largest hypervolume improvement was carried out as the next real-time experiment.

The algorithm does not require a priori knowledge of the chemical system, its computationally

inexpensive, and finds the global optima.
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2.2 Experimental

Figure 2.1: Reagents used in the experimental work of this thesis

Monomers used in this thesis:

N,N-dimethylacrylamide ((DMAm) 99 %, contains 500 ppm monomethyl ether hydroquinone

as inhibitor, CAS 2680-03-7) purchased from Sigma Aldrich, tert-butylacrylamide ((tBuAm),

97 %, CAS 107-58-4) purchased from Alfa Aesar and butyl acrylate ((nBuA), 99 %, contains

10-60 ppm monomethyl ether hydroquinone as inhibitor, CAS 141-32-2) purchased from Sigma

Aldrich. Pentafluorophenyl acrylate was synthesised by A.G (CAS-71195-85-2)

RAFT agents were all purchased from Boron Molecular:

2-(Butylthiocarbonothioylthio)propanoic acid ((TTC1) 95 %, CAS 480436-46-2),

3-((((1-carboxyethyl)thio)carbonothioyl)thio)propanoic acid ((TTC2) 95 %, CAS 870451-09-5)

and 2-cyanobutan-2-yl 4-chloro-3,5-dimethyl-1H-pyrazole-1-carbodithioate((DTC) 95 %, CAS

2052159-02-9).

Initiators used:

2,2’-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride ((VA044), CAS 27776-21-2), 4,4’-Azobis(4-

cyanovaleric acid) ((ACVA), CAS 2638-94-0) and 2,2’-Azobis(isobutyronitrile) ((AIBN), CAS

78-67-1)
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Figure 2.2: (top) Schematic depiction of the autonomous self-optimising platform used in this
chapter for 2D reaction space optimisation.(bottom) Flow diagram showing how the computer
decides on experiments

A premixed solution of reagents was supplied, using a computer-controlled HPLC pump (JASCO

PU980), into a 2 mL tubular flow reactor coiled around a cylindrical heating block. Temporal

resolution was achieved by varying the flow rate. After 3 reactor volumes, the flow rate was

reduced to around 0.1 mL/min, where an at-line GPC was used to analyse a sample. The at-line

GPC consists of a VICI EHMA 6 port switching valve and a 2 position actuator that enables a

100 µL sample to be injected into the online GPC setup mentioned in the analytical techniques

section below. The reacted solution continues through a length of perfluoroalkyl alkane (PFA)

tubing threaded through the hole in the NMR. A 7 bar (100 psi) IDEX cartridge back pressure

regulator (BPR) was used to mediate flow throughout the tube. The GPC analyses the Mn,

Mp and the Ð from the resultant chromatogram after 6 min. In tandem, xml commands were

called, which trigger the NMR, conduct a quick shim on the reaction mixture, and then run a

PRESAT scan as mentioned in the analytical techniques section. Mestrenova then opens the

script, and a template that allows signal processing is called. The integrals were then analysed
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and substituted in the equations in Table 2.7. Subsequently, the collected data form an objective

function that was fed into the TS-EMO algorithm along with the corresponding conditions. The

suggested residence time was converted into a flow rate; where this and the new temperature

were then supplied to the pump and the Eurotherm temperature controller, respectively, forming

a feedback loop.

a. DMAm: TTC1: ACVA in water

Table 2.1: Limits used in the implementation of the TS-EMO algorithm for the RAFT poly-
merisation of DMAm in the presence of TTC1 using ACVA in water, with a reagent ratio of
200: 1: 0.1, respectively, at a mass content of 30 w/w%. Each TS-EMO iteration suggested a
single experiment.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 70 100 2
Residence time (min) 5 20 1

DMAm (80 g, 0.81 mol), TTC1 (0.96 g, 4.04 mmol) and ACVA (0.11 g, 0.403 mmol) were

dissolved in water (189.17 g). The reagent reservoir was not degassed under an atmosphere of

nitrogen. Ten training experiments were suggested by the Latin hypercube sampling algorithm,

then the TS-EMO suggested one experiment per iteration. The optimisation limits are shown

in Table 2.1.

b. i. tBuAm:TTC1:AIBN in methanol

Table 2.2: Limits used in the implementation of the TS-EMO algorithm for the RAFT poly-
merisation of tBuAm in the presence of TTC1 using AIBN in methanol, in a reagent ratio of
200:1:0.1, respectively, with a mass content of 30 w/w %. Each TS-EMO iteration suggested
four experiments.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 80 120 2
Residence time (min) 4 20 1

tBuAm (80 g, 0.62 mol), TTC1 (0.75 g, 3.1 mmol) and AIBN (0.052 g, 0.31 mmol) were dissolved

in methanol (188.5 g). The reagent reservoir was not degassed under an atmosphere of nitrogen.

Ten training experiments were suggested by the Latin hypercube sampling algorithm; then, the

TS-EMO suggested four experiments per iteration so that the waiting time for GPC would be

reduced. The optimisation limits are shown in Table 2.2.
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b. ii. tBuAm: TTC2: AIBN in methanol

Table 2.3: Limits used in the implementation of the TS-EMO algorithm for the RAFT poly-
merisation of tBuAm in the presence of TTC2 using AIBN in methanol, in a reagent ratio of
200:1:0.1, respectively, with a mass content of 30 w/w %. Each TS-EMO iteration suggested
four experiments.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 80 120 2
Residence time (min) 4 20 1

tBuAm (80 g, 0.62 mol), TTC2 (0.79 g, 3.1 mmol) and AIBN (0.052 g, 0.31 mmol) were dissolved

in methanol (188.5 g). The reagent reservoir was not degassed under an atmosphere of nitrogen.

Ten training experiments were suggested by the Latin hypercube sampling algorithm; then, the

TS-EMO suggested four experiments per iteration so that the waiting time for GPC would be

reduced. The optimisation limits are shown in Table 2.2.

b. iii. tBuAm: DTC: AIBN in methanol

tBuAm (80 g, 0.62 mol), TTC1 (0.91g, 3.1 mmol) and AIBN (0.052 g, 0.31 mmol) were dissolved

in methanol (188.9 g). The reagent reservoir was not degassed under an atmosphere of nitrogen.

Ten training experiments were suggested by the Latin hypercube sampling algorithm; then, the

TS-EMO suggested four experiments per iteration so that the waiting time for GPC would be

reduced. The optimisation limits are shown in Table 2.4.

Table 2.4: Limits used in the implementation of the TS-EMO algorithm for the polymerisation
of tBuAm in the presence of DTC using AIBN in methanol, in a reagent ratio of 200:1:0.1,
respectively, with a mass content of 30 w/w %. Each TS-EMO iteration suggested four experi-
ments.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 80 120 2
Residence time (min) 4 20 1

b. iv. tBuAm: TTC2: AIBN in methanol with inline degassing

For degassed experiments, a JASCO DG-2080-53 was used to remove oxygen from the reac-

tion. The optimisation limits and procedure were the same as in the equivalent nondegassed

experiment (ii).
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c. nBuA: TTC1: AIBN in 1,4-dioxane

nBuA(80 g, 0.62 mol), TTC1 (0.74g, 3.1 mmol) and AIBN (0.051 g, 0.31 mmol) were dissolved in

1,4-dioxane (188.5 g). The reagent reservoir was not degassed under an atmosphere of nitrogen.

Ten training experiments were suggested by the Latin hypercube sampling algorithm; then, the

TS-EMO suggested four experiments per iteration so that the waiting time for GPC would be

reduced. The optimisation limits are shown in Table 2.4

Table 2.5: Limits used in the implementation of the TS-EMO algorithm for the polymerisation
of nBuA in the presence of TTC1 using AIBN in 1,4-dioxane, in a reagent ratio of 200:1:0.1,
respectively, with a mass content of 30 w/w %/. Each TS-EMO iteration suggested four exper-
iments.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 80 120 2
Residence time (min) 3 30 1

d. Statistical co-polymerisation of DMAm: PFPA: TTC1: ACVA in acetonitrile

Table 2.6: Limits used in the implementation of the TS-EMO algorithm for the statistical
copolymerisation of PDMAm and PFPA in the presence of TTC1 using ACVA in acetonitrile,
in a reagent ratio of 90:10:1:0.1, respectively, with a mass content of 30 w/w %/. Each TS-EMO
iteration suggested four experiments.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 70 120 2
Residence time (min) 10 60 1

DMAm (44 g, 0.45 mol), PFPA (10.8 g, 0.045 mol), TTC1 (1.19 g, 5.0 mmol) and AIBN

(0.14 g, 0.5 mmol) were dissolved in acetonitrile (107.7 g). The reagent reservoir was not

degassed under an atmosphere of nitrogen. Ten training experiments were suggested by the

Latin hypercube sampling algorithm; then, the TS-EMO suggested one experiment per iteration.

The optimisation limits are shown in Table 2.6.
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2.2.1 Heating vessel

Figure 2.3: Diagram of the heating block used in this Chapter and Chapters 3, 4 and 5.

The heating block consisted of an aluminium cylinder with 2 holes to fit 2 cartridge heaters and

an aluminium sheath. A 2 mL reactor stainless steel tube with an internal diameter of 0.762

mm was used as the reactor vessel for all experiments in this chapter, except for the DMAm

experiment, where a 5 mL coil was used. The setup can be seen in Figure 2.3.

2.2.2 Analytical techniques

Bench-top-Nuclear Magnetic Resonance

A Magritek Spinsolve Ultra benchtop NMR (60 MHz) was used to characterise homopolymers.

Online measurements were taken by flowing the solution through at 0.1 mL/min. The PRESAT

setting conducted two scans, at a saturation frequency set to 4.79 for water, 3.53 for dioxane,

3.31 for methanol and 1.94 for acetonitrile, at a sat power of -65 dB For these experiments, the

PFA tubing was clamped at the top and bottom of the NMR using a standard laboratory clamp,

stand and boss. The conversions for DMAm/water, nBuA/1,4-dioxane and tBuAm/methanol

were calculated by comparing the vinyl integral with the polymer backbone integral, as seen in

Table 2.7. For the optimisation of the statistical copolymer PDMAm-PFPA, only relative vinyl

integrals were used for the conversion.
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α = 1− [M ]

([M ] + [P ])
(2.1)

Figure 2.4: NMR assignments used to identify the equation for conversion of nBuA in 1,4-
dioxane.

The NMR conversion protocol requires the assignment of the vinyl and polymer backbone re-

gions and the number of protons in those environments211 For nBuA the vinyl region exists at

chemical shifts between 5.5 and 6.5 ppm, there were only 3 protons in this environment. Due to

benchtop NMR operating at a lower resonance frequency, the backbone and the pendant group

were difficult to discern; thus, the region from 0 to 2.1 ppm required normalisation. Qualita-

tively, in Figure 2.4 the depletion of monomer vinyl peaks can be observed from bottom to top

corresponding to the increase in monomer conversion.
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Figure 2.5: NMR assignments were used to identify the equation for the conversion of DMAm
in water.

For DMAm, the chemical shift for the 2 protons associated with the polymer backbone can be

seen to grow in spectra between 1.0 and 2.5 ppm, as seen in the Figure 2.5. Seven protons were

present in integral y; however, these protons were shared between the pendant group in the

monomer and the polymer, as well as proton b in the polymer. The increased conversion of the

monomer is demonstrated in Figure 2.5 in the integral region z, where the peak disappears from

the bottom to the top spectra. Using Equation 2.1, an equation for conversion can be identified

following normalisation of shared protons, which are shown in Table 2.7.

Table 2.7: Equations for the quantification of the monomers used

Entry number Monomer Equation
1 DMAm α = 1− 2z

y−x
2

2 tBuAm α = 1− 10x
3(x+y)

3 nBuA α = 1− 10x
3(x+y)
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Gel-Permeation Chromatography

Figure 2.6: Schematic of the online GPC set up used in this Chapter and Chapter 5 showing
the switching valve sampling

The at-line GPC used in this chapter was a home-made setup consisting of a JASCO PU-980

HPLC pump connected to a 6-port VICI EHMA switching valve with a 2 position actuator. This

allows injection into an Agilent 5 µm guard column adjacent to an Agilent Rapide M column.

A Knauer K2301 RI detector was used to monitor the refractive index response, pressure was

regulated with an IDEX P767 7 BPR. In this chapter, THF treated with BHT / TEA (0.05/1

w/w %) was used for experiments in which tBuAm or nBuAm was used, while LiBr treated

DMF (0.1 w/w %) was used in the cases of DMAm and DMAm-PFPA.
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2.3 Results and Discussion

A large challenge in data analysis where there are 2 objectives and multiple variables is presenting

the data clearly. In this chapter, 3D plots are used, where the x and y axes represent the two

reaction conditions (temperature and residence time), and the z axis is objective 1 (monomer

conversion). A colour map surface is fitted to the data to make the change in objective 2 (Ð)

clear. A high point corresponds to high conversion and where the surface is blue corresponds

to low Ð. The objective plots are also provided in tandem, demonstrating the training data set

and the data where the Bayesian algorithm takes over. The circles in both the surfaces and

the objective plots correspond to the training data sets (LHC), whereas a square corresponds

to the data obtained by TS-EMO predicted conditions. On the surfaces, a black data point

corresponds to points that lie on the Pareto front, whereas on the objective plots these data

points are filled. Firstly, the optimisation of dimethylacrylamide was carried out. DMAm is a

well-studied monomer with predictable behaviour in flow.67 The experimental procedure can be

found in the experimental section of this chapter, as well as the NMR and GPC procedure.
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2.3.1 a. DMAm:TTC1:ACVA in water

Figure 2.7: (a) The reaction scheme for the aqueous polymerisation of DMAm using TTC1 and
ACVA. (b) 3D surface for the black-box optimisation demonstrating the effect of temperature
and residence time on the molar mass dispersity (red =high Ð, blue = low Ð) and monomer
conversion. Here, 10 LHC training data points (circles) were conducted then the TS-EMO
(squares) in batches of 4 were suggested. Black data points represent the solutions that lie on
the Pareto front. (c) Objective plot showing the trade off in conversion and dispersity (LHC -
red circles TS-EMO -blue squares) and the points that lie on the Pareto front (filled data points)
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As expected, at higher temperatures, higher conversions were achieved due to an increase in

the initiation rate and higher kd values. An increase in dispersity was observed at higher tem-

peratures; which is typically observed when the rate of termination increases, This can be due

to increased viscosity leading to increased rate of termination by disproportionation at higher

temperatures which can broaden the MWD. The highest bluest point is the most desirable for

most precision polymer applications; the nondominated solution with the lowest dispersity and

the highest conversion can be identified at 82 ◦C after 20 min with a conversion of 96 % and a

Ð of 1.28. If high conversion was most desirable; the nondominated solution with the highest

conversion and the lowest dispersity was observed at 90 ◦C and 16 min where full conversion

and a Ð of 1.45 were achieved. The Pareto front lies between temperatures of 76 and 92 ◦C;

producing the most precise polymers between 4 and 15 min. The lowest Ð of 1.20 was obtained

after 9 min at 80 ◦C; however, only 51 % conversion was achieved. Here, a defined Pareto front

can be observed in Figure 2.7.c which the TS-EMO successfully maps in 8 additional experi-

ments. For the points where complete conversion was achieved, temperature has a large effect

on dispersity with a Ð of 1.64 and 1.72 at 92 and 100 ◦C, respectively; this was indicative of

increased termination.
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2.3.2 b. i. tBuAm:TTC1:AIBN in methanol

Figure 2.8: (a) The reaction scheme for the polymerisation of tBuAm using TTC1 and AIBN in
methanol. (b) 3D surface for the black-box optimisation demonstrating the effect of temperature
and residence time on the molar mass dispersity (red =high Ð, blue = low Ð) and monomer
conversion. Here, 10 LHC training data points (circles) were conducted then the TS-EMO
(squares) in batches of 4 were suggested. Black data points represent the solutions that lie on
the Pareto front. (c) Objective plot showing the trade off in conversion and dispersity (LHC -
red circles TS-EMO -blue squares) and the points that lie on the Pareto front (filled data points)
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tBuAm is a less ideal monomer than DMAm due to its bulky pendant group. Here, a max-

imum conversion of 84 % was reached; to our knowledge, the literature shows that tBuAm

conversion in alcoholic media never reaches a full conversion.222 This has been thought to be

due to backbiting in the same way that it affects AAm and MA as studied through pulsed laser

polymerisation(PLP). Agboluaje et al.222 have supported this idea by reducing the w/w % of

the monomer in solution, reporting a broadening of the MWD and rate-retardation that can be

attributed to backbiting through the formation of dead chains.

Figure 2.9: Simulated initiator fraction left if Ea = 132.4 kJ/mol and lnA = 36.6 from the
literature were inserted into the first order rate law.223

Conversion increases with temperature; however, at higher temperatures >100 ◦C a decrease in

conversion can be seen. This can likely be explained by the low fraction of the initiator left; see

Figure 2.9. The reaction will slow down if the concentration of radicals becomes 0 because the

overall rate of polymerisation depends on the supply of radicals. Dispersity also increased at this

point, probably as a result of an increase in the termination of the propagating radicals. The

nondominated solution with the highest conversion and the lowest dispersity can be observed

at 98 ◦C after 20 min, with a conversion of 85 % and a Ð of 1.28. The nondominated solution

with the lowest dispersity and the highest conversion was identified at 90 ◦C after 16 min, which

corresponds to a Ð of 1.17 at 71 %.
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2.3.3 b. ii. tBuAm:TTC2:AIBN in methanol

Figure 2.10: (a) The reaction scheme for the polymerisation of tBuAm using TTC2 and AIBN in
methanol. (b) 3D surface for the black-box optimisation demonstrating the effect of temperature
and residence time on the molar mass dispersity (red =high Ð, blue = low Ð) and monomer
conversion. Here, 10 LHC training data points (circles) were conducted then the TS-EMO
(squares) in batches of 4 were suggested. Black data points represent the solutions that lie on
the Pareto front. (c) Objective plot showing the trade off in conversion and dispersity (LHC -
red circles TS-EMO -blue squares) and the points that lie on the Pareto front (filled data points)
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The highest conversion nondominated solution with the lowest dispersity can be observed at

104 ◦C after 15 min, where a conversion of 82 % and a Ð of 1.29. The nondominated solution

with the lowest dispersity and the highest conversion was identified at 112 ◦C after 4 min, which

corresponds to a Ð of 1.21 at 64 %. The overall dispersity observed for the polymerisation of

tBuAm in the presence of TTC2 is higher, indicated by the lighter blue surface shown in Figure

2.10. b. The RAFT agent only differs depending on the Z group, TTC2 has a carboxylic acid at

the end, which appears to lead to slightly lower conversion and higher values, these are evident

by the 3 points in the LHC at low temperature that are outside of the colourmap limits. Lower

conversions may be a result of increased rate of addition, whereas the presence of the more

activated tBuAm chains on the radical adduct intermediate may affect the ability of the radical

adduct intermediate from reforming the RAFT species and decrease the rate of fragmentation,

increasing side reactions and dispersity.
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2.3.4 b. iii. tBuAm: DTC: AIBN in methanol

Figure 2.11: (a) The reaction scheme for the polymerisation of tBuAm using DTC and AIBN in
methanol. (b) 3D surface for the black-box optimisation demonstrating the effect of temperature
and residence time on the molar mass dispersity (red =high Ð, blue = low Ð) and monomer
conversion. Here, 10 LHC training data points (circles) were conducted then the TS-EMO
(squares) in batches of 4 were suggested. Black data points represent the solutions that lie on
the Pareto front. (c) Objective plot showing the trade off in conversion and dispersity (LHC -
red circles TS-EMO -blue squares) and the points that lie on the Pareto front (filled data points)
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Here, the nondominated solution with the highest conversion and the lowest dispersity can be

observed at 100 ◦C after 17 min, where a conversion of 80 % and a Ð of 1.19. The lowest

dispersity nondominated solution with the highest conversion was identified at 98 ◦C after 13

min, which corresponds to a Ð of 1.16 at 64 %. Figure 2.11. b. has more blue on the surface

compared to the surface in Figure 2.10. b., suggesting that the DTC species offers more control

over the polymerisation of tBuAm. The black data points for the more controlled reactions

shown in Figures 2.8. b and 2.11. b. are more clustered between 80 and 100 ◦C and 10 to 20

min, suggesting a more ideal reaction system where the trade-off was more defined.

Figure 2.12: Objective comparison for tBuAm using RAFT agents TTC1(blue), TTC2(black)
and DTC(red)

The objective plot in Figure 2.12 demonstrates the huge effect the Z group can have on the

control of polymerisation. The monomer tBuAm is a more active monomer due to the presence

of the electron-withdrawing amide group, TTC1 and TTC2 differ with respect to the Z group.

Both TTC1 and TTC2 have identical R groups; which, in theory would mean the radical leaving

groups have the same stability. However, the carboxylic acid on the Z group on TTC2 may offer

some stability to the radical adduct intermediate, increasing kf .48 DTC provides a higher level

of control indicated by the low Ð, computational studies have shown the halogen on the pyrazole

ring could decrease the electron density of the ring increasing the availability of the lone pair on

the N to be delocalised activating the C=S bond, increasing the addition rate constant. Low Ð

obtained using DTC could be due to the improved homolytic leaving group capabilities of the

2-cyano-butyl radical compared to the propagating radicals, increasing fragmentation.224
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2.3.5 b. iv. tBuAm:TTC2:AIBN in methanol with inline degassing

Figure 2.13: (a) The reaction scheme for the polymerisation of tBuAm using TTC2 and AIBN in
methanol for the experiments using inline degasser. (b) 3D surface for the black-box optimisation
using one degassing channel demonstrating the effect of temperature and residence time on the
molar mass dispersity (red =high Ð, blue = low Ð) and monomer conversion. Here, 10 LHC
training data points (circles) were conducted then the TS-EMO (squares) in batches of 4 were
suggested. Black data points represent the solutions that lie on the Pareto front. (c) 3D
surface for the black-box optimisation using three degassing channels demonstrating the effect
of temperature and residence time on the molar mass dispersity (red =high Ð, blue = low Ð)
and monomer conversion. Here, 10 LHC training data points (circles) were conducted then the
TS-EMO (squares) in batches of 4 were suggested. Black data points represent the solutions
that lie on the Pareto front.
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To address the issue of oxygen quenching, an inline degasser was implemented into the platform

prior to the reagent pump and an optimisation was performed using 1 and 3 channels overnight.

A fairly discontinuous surface was observed using 1 degassing channel shown in Figure2.13. b.

compared to the non-degassed platform shown in Figure 2.8. b, suggesting that the dissolved

oxygen concentration was irregular. Following this experiment, the number of degassing channels

was increased to 3 to see if the degassing efficiency would increase. The surface using 3 channels

shown in Figure 2.13.c. is more continuous than that shown in Figure 2.13. b. From this it can

be assumed that the longer the solution has to degass, the lower the oxygen concentration. This

suggests that a steady state of degassing is required to efficiently use the inline degasser.

Figure 2.14: Surface for the optimisation of tBuAm:TTC2:AIBN using 3 degassing channels
with the first 10 LHC experiments removed.

Subsequently, this effect that relates time to degassing efficiency was further investigated by

removing the LHC from the surface. The surface becomes continuous after the first 60 mL of

reaction solution. Each channel in the degasser is 10 mL; thus a 30 mL excess in reagents is

required. A rapid priming rate was used to get the solution through the pump head to start

optimisation. This 30 mL of solution would be degassed less than that at lower flow rates, as

used in the optimisation. The level of degassing will vary depending on the flow rate; therefore,

the inline degasser is not the best choice for removing oxygen.
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2.3.6 c. nBuA:TTC1:AIBN in 1,4-dioxane

Figure 2.15: (a) The reaction scheme for the polymerisation of nBuA using TTC2 and AIBN
in 1,4-dioxane. (b) 3D surface for the black-box optimisation demonstrating the effect of tem-
perature and residence time on the molar mass dispersity (red =high Ð, blue = low Ð) and
monomer conversion. Here, 10 LHC training data points (circles) were conducted then the TS-
EMO (squares) in batches of 4 were suggested. Black data points represent the solutions that
lie on the Pareto front. (c) Objective plot showing the trade off in conversion and dispersity
(LHC - red circles TS-EMO -blue squares) and the points that lie on the Pareto front (filled
data points)
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Acrylates are another challenging monomer. The surface in Figure 2.15 shows a general increase

in conversion between 80 and 100 ◦C with increasing Ð at higher temperatures. At temperatures

greater than 100 ◦C, the conversion begins to decrease significantly. This retardation in the rate

of monomer conversion is likely due to side reactions that decrease the rate of propagation as-

sociated with the formation of mid-chain radicals(MCRs) and (secondary propagating radicals

(SPRs), as mentioned in Chapter 1. It is unlikely that at the temperatures used in this optimi-

sation, a sufficient amount of macromonomer would form due to β-scission that would cause an

larger vinyl integrals and a maximum apparent conversion of 80 %. A significant macromonomer

concentration has been found at temperatures >140 ◦C by mass spectrometry.225 However, it

may be possible that other reactions that occur at the same time due to the formation of MCR

and SPR lead to the observed rate retardation. In Figure 2.15.b, the lowest Ð nondominated

solution with the highest conversion was found to be 1.22 with a conversion of 63 % after 27

mins at 76 ◦C. However, the nondominated solution with the highest conversion and the lowest

dispersity was found to be 82 % with a Ð of 1.31 after 27 min at 80 ◦C which is only 4 degrees

higher than the lowest Ð data; showing a strong temperature dependence.

A statistical block copolymerisation was also performed using DMAm and pentafluorophenyl

acrylate in a 5 mL tubular flow reactor. The GUI was also adapted to obtain 19F NMR spectra

to allow the conversion of the fluorinated monomer to be analysed; however, the usability of this

requires further development of data processing due to the low resolution 19F NMR spectra.
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2.3.7 d. Statistical co-polymerisation of DMAm:PFPA:TTC2:ACVA in ace-

tonitrile

Figure 2.16: (a) The reaction scheme for the statistical co-polymerisation of DMAm and PFPA
in the presence of TTC2 using ACVA as the initiator at a 90:10:1:0.1 reagent ratio in aceto
nitrile. (b) 3D surface for the black-box optimisation demonstrating the effect of temperature
and residence time on the molar mass dispersity (red =high Ð, blue = low Ð) and monomer
conversion. Here, 10 LHC training data points (circles) were conducted then the TS-EMO
(squares) in batches of 4 were suggested. Black data points represent the solutions that lie on
the Pareto front. (c) Objective plot showing the trade off in conversion and dispersity (LHC -
red circles TS-EMO -blue squares) and the points that lie on the Pareto front (filled data points)

79



2.4. Conclusions
Chapter 2. Multi-objective Self-Optimisation of RAFT Polymerisation

in a One Pump Continuous Flow Reactor Platform

The lowest Ð nondominated solution with the highest conversion is observed after 57 min at 78

◦C, where a Ð of 1.15 and a conversion of 14 %. However, the non-dominated solution with the

highest conversion and the lowest Ð is identified after 60 min at 90 ◦C , obtaining a conversion

of 47 % and a of 1.29. The data shown in Figure 2.16.b show low conversion with a maximum

conversion of 47 % achieved. This may be explained by the fact that the polarity of the solvent

has been shown to be critical to the polymerisation rate. Polar protic solvents such as water

have been shown to stabilise the transition states of propagating radicals, lowering activation

energies by hydrogen bonding to the amide bond.226 In acetonitrile, the rate of polymerisation is

slower as there is no opportunity for hydrogen bonds to increase the reactivity of the C=C bond.

It is important to note that the presence of PFPA can also cause slower kinetics, due to the fact

that acrylates exhibit slower propagation rates, as studied using PLP by Lacik et al..227 Higher

temperatures are shown to lead to a decrease in the polymerisation rate here, which could be

due to the activation energy of the PFPA being overcome, causing it to consume some of the

radicals.

2.4 Conclusions

To conclude this section, a series of operator-independent optimisations have been performed for

challenging RAFT polymerisations. A series of RAFT agents for polymerisations of tBuAm have

been compared, which have shown that a Cl-substituted DTC offers superior control. For TTCs,

reduction of the electron-withdrawing capability of the Z group offers improved control. The

use of an in-line degasser proved inefficient and the internal volume was shown to be too large

to be a feasible way of degassing the system. Rate retardation has also been shown to be largely

affected at temperatures >80 ◦C owing to the presence of secondary and mid-chain radicals

that subsequently increase the dispersity of polymers. The optimisation platform has also been

used to optimise a statistical copolymerisation, where the data demonstrated a rate retardation

at high temperatures that led to a maximum conversion of 47 %. 19F NMR was collected to

see if PFPA conversion could be monitored; however, resolution limited the usability of these

data. Further experimentation may require repeating this experiment by using a higher initiator

concentration and optimising data processing of the fluorine NMR. This series of reactions

provided proof of concept for the self-optimisation of RAFT in an operator independent reactor.

The data obtained provides valuable information on RAFT agent suitability which is used in
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the rest of this thesis, directly or implied. The limitation of this chapter was that the initiator

concentration, which also effects the kinetics, was fixed. In the next chapter, the engineering

challenges and solutions associated with changing initiator concentration inline will be addressed.
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Chapter 3

Reactor Design and Characterisation of

a Three-Pump Reactor Platform

for Multi-objective RAFT

Polymerisation

3.1 Introduction

Having explored the 2D reaction space in Chapter 2 focussing on the effect of temperature and

residence on kinetics and Ð the aim of this Chapter was to develop the platform by addressing

and characterising potential challenges. As discussed in Chapter 1, both Gobert et al.121 and

Reis et al.123 have investigated the effects of certain parameters on RTD, such as mean residence

time,121,123 channel diameter,121,123 static mixing121 and viscosity.123 Reis et al.123 reported a

great effect on MWD and therefore molar mass dispersity. Here, we conduct RTDs on two

different tubing diameters, using a UV/Vis-responsive dye tracer on a 2 pump platform. An RI

detector was used to replace the UV/Vis detector, the RI signal for a DMAm and PDMAm200

tracer was conducted in the narrowest diameter, and the dispersion model for RTD was applied.

This enabled the viscosity, mean residence time, and temperature effects to be investigated.

Mixing is important when considering fast reactions. Zhong et al.228 demonstrated the effect of

a Y mixer compared with that for a packed-bed plug mixer on the dispersity for photochemically
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driven RAFT. The packed bed was shown to lead to narrower MWDs and lower dispersity than

the Y-mixer.228 Here, the mixing ability of 3 commercially available mixers was compared to a

homemade packed bed by investigating the effect of dispersity. In tandem, the effect of different

reactor sizes and viscosity on RTD was compared for a 2 pump and a 3 pump platform to

minimise the effect of RTD on the MWDs.

3.2 Mixing

3.2.1 Experimental

The monomer used for the mixing study was N,N-dimethyl acrylamide ((DMAm) 99 %, con-

tains 500 ppm monomethyl ether hydroquinone as inhibitor, CAS 2680-03-7) purchased from

Sigma Aldrich. 3-((((1-carboxyethyl)thio)carbonothioyl)thio)propanoic acid ((TTC2) 95 %,

CAS 870451-09-5) and 2,2’-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride ((VA044), CAS

27776-21-2)

Figure 3.1: Reaction scheme for the the all-aqueous solution RAFT polymerisation of DMAm
using TTC1 and VA044 under an atmosphere of nitrogen, using the ratio 100:1:0.02 at 50 w/w %

Batch

A solution of BM1429 (0.25 g, 0.097 M) and VA-044 (6.20 mg, 0.0019 M) was prepared in water

(10 g) using sodium bicarbonate (1 M) as a solubility agent for the carboxylic acid groups of

CTA. To this solution, neat DMAm (9.62 g, 9.7 M) was added. This was stirred under an

atmosphere of nitrogen for 20 min before heating to 80 ◦C.
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Continuous Flow Set-up

Neat DMA (20 g, 0.20 mol) was degassed under nitrogen for 20 min together with a separate

solution of CCTP (0.51 g, 0.002 mol) and VA044 (13 mg, 0.04 mmol) in H2O (20.0 g) using

sodium bicarbonate (1 M) dropwise as solubilising agent. The two solutions were pumped

through a 5 mL 1/8" reactor at 2 separate flow rates, maintaining residence times of 10 min

and 20 min, respectively. Static samples were taken by GPC and low-field NMR was used to

characterise mixing.

Figure 3.2: Home-made packed bed mixer, consisting of a 30 mm piece of stainless steel tubing
filled with 40 mesh glass beads and glass plugs at each side to stop to beads from getting into
the reactor

Figure 3.3: (A) Schematic of the batch set up where samples were taken after 20 mins (B)
schematic of the initial flow setup
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3.2.2 Results and Discussion

The ultra-fast RAFT polymerisation of dimethylacrylamide was selected as a model system due

to its predictable and rapid kinetics in water.229 Rapid kinetics associated with RAFT poly-

merisation require additional mixing. Efficient mixing by diffusion is often regarded an inherent

feature of flow reactors because of the large surface area to volume ratio. The Damkohler num-

ber, Da, mentioned in Chapter 1 can give us an idea of the chemical reaction rate to the rate of

mass transfer by diffusion ratio; if Da > 1 then mixing is slower than the reaction rate and vice

versa.117 I

Table 3.1: Table comparing mixing in flow relying on diffusion compared to batch after 10
minutes. Conversion (α) was found using bench-top NMR and off-line GPC was used to obtain
molecular Mw (g/mol)and Mn (g/mol)

Mixer Mn (g/mol) Mw (g/mol) Ð α (%)
T-piece 27300 50100 1.84 51
Batch 8600 10500 1.22 96

It is very evident from Table 3.1 that relying solely on diffusion causes a huge effect on conversion

and dispersity. For the Swagelok t-piece the conversion is reduced by 46 %; this combined with

the high Mw in dictated that there is localised variation in the the reactor and that mixing

by diffusion is slower than the rate of the reaction.117From these findings a series of RAFT

polymerisations were conducted in continuous flow using 3 micromixers: (1) a packed bed, (2) a

high-pressure t-piece(Idex High-Pressure micro-static mixing tee) and (3) an inversion tee(Idex

PEEK High-Pressure Mixing Tee Body) these were then compared to each other and a standard

Swagelok t-piece.
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Figure 3.4: Molecular weight distributions comparing batch (black), the packed bed (blue),
inversion tee (red), High-pressure t-piece (green) and the swagelok t-piece (magenta).

The MWD for the control Swagelok t-piece in Figure 3.4 demonstrates very poor mixing. A

shoulder in the distribution was indicative of local variation in the concentration of the reagents.

This was not unexpected because mass transport by diffusion takes longer than the rate of the

reaction; consequently, it can be assumed that the reaction solution has not reached homogeneity
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as it enters the heated reactor. The packed bed outperformed both commercially available micro-

mixers; which showed slight narrowing of the MWD compared to the swagelok t-piece with the

inversion tee being the best commercial option. The presence of glass beads in the packed bed

potentially increases the surface area to volume ratio whilst also providing disruption in the fluid

flow. The mixing effects on the dispersity were further investigated for the 2 superior mixers. in

this case, the packed bed and the inversion tee.

Figure 3.5: Molecular weight distributions for the black (blue), inversion tee (red) and batch
(black) taken after 20 minutes.

The data in Figure 3.5 show an improved conversion for the packed bed and the inversion tee

compared to the batch experiment after 20 min. This is indicative of improved heat transfer,

which is a well-studied benefit of flow as a result of increased surface area to volume ratios.117 The

lower Ð observed for the packed bed compared to the inversion tee can be attributed to increased

surface area-to-volume ratio and the alteration of flow patterns. The higher Mw for the inversion

tee is due to the localised variation in reagent concentrations and inefficient mixing leading to

higher molecular weights. This is because the degree of polymerisation is proportional to the

ratio of monomer to RAFT agent multiplied by the conversion, so a variation in the concentration

of RAFT agent can lead to a variation in molecular weight. Additionally, conversion depends

on the concentration of propagating radicals generated, so variation in initiator concentration
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can lead to variations in conversion and, in turn, molecular weight.

3.3 Residence time distributions

3.3.1 Experimental

The reagents used in this section, were: N,N-dimethylacrylamide ((DMAm) 99 %, contains

500 ppm monomethyl ether hydroquinone as inhibitor, CAS 2680-03-7) purchased from Sigma

Aldrich, 2-(Butylthiocarbonothioylthio)propanoic acid ((TTC1) 95 %, CAS 480436-46-2) pur-

chased from Boron Molecular. The polymer was synthesised using 2,2’-Azobis[2-(2-imidazolin-

2-yl)propane]dihydrochloride ((VA044), CAS 27776-21-2) purchased from Wako.

The PDMAm tracer was synthesised in flow:

DMAm (20 g, 200 eq) and TTC1 (0.28 g, 1 eq) and VA044 (32 mg, 0.1 eq) were dissolved in

water (47.5 g) and the solution was pumped through a 5 mL reactor at 92 ◦C for 3 reactor

volumes. A conversion monitored by benchtop NMR of >99% was reached with an offline GPC

Ð of 1.18.

For the DMAm:TTC1 tracer:

DMAm (10 g, 200 eq) and TTC1 (0.07 g, 1 eq) were dissolved in water (11.8 g). Offline bench-top

NMR was used for characterisation in the mixing study, using the same PRESAT configuration

as in Chapter 2. Offline GPC was used to characterise the molecular weight distributions, for

the offline measurements in this Chapter and Chapter 4 an Agilent 1260 infinity GPC was used

with refractive index (RI) and UV/Vis detectors (309 nm). Fitted with two 5 µm Mixed-C

columns and guard column, the eluent used was LiBr treated DMF (0.1 w/w %). The GPC was

calibrated with methyl methacrylate standards with Mp values between 833-2,200,000 g/mol.
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Figure 3.6: Image of how the UV RTDs seen in this section were collected using a manual
switching valve to inject eosin Y into the coils

As the RTD has been shown to have an impact on the dispersity of polymers123 Here, two

RTD set-ups were used to characterise the behaviour of a set of tubular flow reactors operating

in a series of configurations. Firstly, the diameter of the tubing and effect of a single packed

bed was compared using set-up 1 (two pumps, Eosin Y tracer in water detected with UV/Vis).

Subsequently, a third pump was added and the monomer and polymer were used as tracers

to observe the effect of viscosity, residence time, temperature, and reactor volume using RI

detection. Then, a program was integrated into the platform for autonomous RTD elucidation.
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3.3.2 Results and Discussion

UV/Vis Detection

Figure 3.7: Comparison of the dimensionless RTDs investigating the effect of tubing diameters
of 1/8" stainless steel(blue line), 1/16" stainless steel(black line) and the effect of the packed
bed(redline)

Figure 3.7 was in agreement with the trends observed in Reis et al..123 The RTD for the 1/8"

outer diameter (OD) reactor was much broader than the 1/16" OD reactor, and the tracer takes

much longer to leave the reactor. Dimensionless θ represents the number of reactor volumes

taken for the tracer to be expelled from the reactor. For the 1/8" OD tubing, this was around 2

reactor volumes compared to around 1.1 for both 1/16" OD with and without the packed bed.

A known drawback of packed-bed reactors/mixers is the pressure drop associated with the plug,

to limit this effect 425-600 µm (30-40 sieve) SiO2 beads were used and the mixer length was

kept short. The packed bed was shown to have minimal impact on the RTD which could be

attributed to the short-length and relatively large-diameter beads. The 1/8" OD reactor also

shows an asymmetric RTD suggesting that the dispersion model has fallen apart, which occurs

when increasing the diameter of the tubing; thus, the convective model is more appropriate.120
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Figure 3.8: (a) Conversion monitored by online NMR, (b) offline GPC calculated disper-
sity and (c) weight average molecular weight for the polymerisation of DMAm (100:1:0.02
DMAm:TTC1:VA044 as a function of reactor volume for a residence time of 20 mins in the
3 pump reactor.

The number of reactor volumes could then be validated by monitoring the conversion change

with respect to the number of reactor volumes. The monitored reaction conversion shows a

steep incline between 0 and 2 reactor volumes, as seen in Figure 3.8.a. The NMR conversion

reaches a steady state after 2.5 reactor volumes, conversion by NMR was concordant with Ð

andMn reaching a relatively constant value after 2 reactor volumes. Higher dispersity was shown

after 1 reactor volume which was likely a result of localised variation of reagent concentrations

leading to broader molecular weight distributions, this was also corroborated by the higher Mw.

Therefore, all kinetic experiments were conducted after 3 reactor volumes to ensure that the

system had reached steady state prior to analysis.
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RI detection

Figure 3.9: The reactor set-up used to obtain RTDs autonomously

An automated residence time distribution platform was developed based on the RI response of

the monomer and polymer seen in Figure 3.9. Here, the monomer solution and the polymer

solution were injected into a 100 (µL) sample loop, a 2 position VICI Valco 6 port switching

valve and actuator were used to autonomously inject the polymer into the reactor coil and/or

mixer. The RI signal was then detected by a Knauer RI detector. First, the RTD of a 5 mL

and a 2 mL coil with an OD of 1/16" were compared.
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The Effect of Residence Time

Figure 3.10: Dimensionless RTDs for a 2 mL coil (dotted line) and 5 mL coil (solid line) at a
target residence time of 5 min (black) and 10 mins(red)

The residence time distributions obtained using the set-up in Figure 3.9 with two reactors of

different sizes (2 mL and 5 mL) were compared with the two different target residence times.

The larger volume coil produced the narrowest RTD, which was likely due to having a larger

Reynolds number. Furthermore, longer residence times (slower flow rates) have a narrower RTD,

which is consistent with studies by Reis et al.123 and Gobert et al.121
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The Effect of The Tracer Viscosity

Figure 3.11: Dimensionless RTDs for a 5 mL coil at a target residence time of 5 min (black),
10 mins (red) and 20 mins (blue) using DMAm:TTC(solid line) and PDMAm200/TTC(dotted
line) as a tracer

Polymers typically have a viscosity higher than that of the monomer even in solution. Here, a

solution of DMAm/TTC and PDMAm200/TTC both at at 30 w/w % in water was injected as

a pulse into a stream of solvent. The RTDs where the PDMA tracer was injected were broader

and shorter than those of the DMAm; this is a result of the forces between the tube wall and

the outer solution, causing a broader velocity profile, and the effect of residence time is evident

here, with longer average residence times having narrower distributions. For the polymer tracer,

the distributions were asymmetric, indicating that the dispersion model was no longer in effect

because of the slow molecular diffusion and viscosity associated with polymer chains. This was

previously predicted by Reis et al.123 As viscosity can be affected by temperature, the polymer

tracer was injected into the reactor at 2 temperatures, 70 ◦ C and room temperature to account

for this.
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Figure 3.12: Dimensionless RTDs for a 5 mL coil heated to 70 ◦C (red solid line) and at room
temperature(black dashed) using PDMAm as the tracer.

At room temperature, the polymer RTD was broader and slightly asymmetric; explained by the

dispersion model falling apart. However, in a heated reactor, this becomes more symmetric.

This is likely due to the reduction in viscosity at higher temperature and the increased free

movement of the polymer chains. However, even at 70 ◦ C the RTD of the PDMAm tracer is

still broader than that of the monomer tracer.

Table 3.2: Table of average residence time(τ), calculated using equation 1.18 in Chapter 1. †

Conducted at 70 ◦C

Tracer V ttarget τ

DMAm 2 5 5.57
DMAm 2 10 11.79
DMAm 5 5 4.75
DMAm 5 10 9.99

PDMAm 2 5 5.52
PDMAm 2 10 9.94
PDMAm 5 5 4.91
PDMAm 5 10 10.45
PDMAm† 5 5 4.39
PDMAm† 5 10 8.33

95



3.4. Modifications to the analysis in flow
Chapter 3. Reactor Design and Characterisation of a Three-Pump Reactor Platform

for Multi-objective RAFT Polymerisation

The average residence time calculated using equation 1.18 is shown in Table 3.2 for each experi-

ment. For the monomer tracer with the same target residence time in different reactor volumes,

the value τ is shorter for the longer reactor coil. The value of a 2 mL coil with a ttarget of 5

min is 0.57 min larger; whereas, the 5 mL coil is only 0.25 min smaller than the target. This

could be due to the accuracy of the pump at low flow rates. This effect is also seen for the

longer residence time of 10 mins, which would require lower flow rates; here τ is much closer

(0.01 mins) less than ttarget for the 5 mL coil compared to the 2 mL coil. For PDMAm, the

residence time of 10 minutes does not show this trend and τ is further away from ttarget which

is likely a result of a greater pressure drop in the more viscous system that will affect flow rate.

For the heated tracers significantly lower τ values are obtained; this is possibly the result of the

decrease in viscosity and increase in velocity caused by elevated temperatures.

3.4 Modifications to the analysis in flow

A low cost oven was constructed to enable GPC using DMF as the eluent at a controlled

temperature of 30◦C. An Asynth hotplate and thermocouple and an aluminium block covered

in aluminium foil was constructed. Figure 3.13 where DMF enter through the guard column

then through the Rapide M column and out to the RI detector. This set up enables a more

temperature controlled environment for the columns to improve elution and signal quality.

Figure 3.13: DMF GPC set up set to 30 ◦C

Furthermore, a zaiput BPR (shown in 3.14.a) has been implemented and pressurised with ni-

trogen at 7 bar to replace the IDEX cartridges that had the propensity to foul. A 55 cm glass

tube (shown in Figure 3.14.b.) that can accommodate 1/8" PFA tubing has been included in
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the flow NMR protocol to provide a more reproducible environment to improve the quality of

the spectrum.

Figure 3.14: (a) Zaiput BPR used in Chapters 4 and 5 instead of the IDEX cartridge as used in
Chapter 2. (b) NMR set up using a hollow glass rod with the PFA tubing through the middle.

3.4.1 Conclusions

To conclude this Chapter, a low-cost home-made mixer provided superior mixing with respect to

commercially available options. A short path length and relatively large glass beads circumvent

the pressure drop associated with packed beds and showed a minimal effect on the RTD. This

type of mixer is therefore selected for multi-pump flow experiments in the subsequent Chapters.

The 1/16 " OD tubing afforded the narrowest RTD compared to 1/8". Thus, 1/16" OD tubing

was selected for the flow platform. Characterisation of the RTD has been conducted to look at

the effect of viscosity, volume, and temperature; showing that 5 mL tubing and longer residence

times produce the narrowest dimensionless RTDs. It has also been concluded that measurements

need to be conducted after at least 3 reactor volumes for steady state to be established. Further

modifications have been made to the platform to ensure homogeneity in data collection, such as

a self-constructed heated GPC unit. In addition, a glass guide has been implemented to ensure

that the PFA tube is taut through the NMR. Optimisation of the reactor platform was important

for the subsequent chapters in order to reduce the effects of poor mixing and asymmetrical flow

regimes. The RTDs obtained in this chapter came in useful in the next chapter where they were

super-imposed onto the batch MWD data and used to account for the flow regimes observed in

flow in the model developed in Chapter 4.
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Chapter 4

Development and Validation of a

Kinetic and

Dispersity Model for in-silico RAFT

Polymerisation

4.1 Introduction

In Chapter 1, current modelling techniques have been discussed in detail. Commercially avail-

able PREDICI is the most popular technique due to its user interface and ability to model full

chain-length distributions with temporal resolution, as reported in the seminal work by Vana

et al.99 Improved performance in the software in recent upgrades has enabled sophisticated sys-

tems to be modelled, such as the work by Zetterlund,100 and the formation of sequence defined

multi-block co-polymers. Improvements in computation has enabled this to become a rapid

prediction platform for kinetics; however, cross platform incorporation and the pay-wall make it

less accessible. Non-commercially available alternatives for RAFT kinetics, such as the method

of moments (MoM) have been shown to be powerful contenders to PREDICI with tunable com-

putational expense by simplification. Introduction of the pseudo steady state approximation

has enabled Zapata-Gonzales et al.230 to model the full molecular weight distributions whilst

accounting for intermediate radical termination (IRT), slow fragmentation (SF) and interme-
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diate radical termination with oligomers (IRTO). Improvements of kMC have been reported

across multiple programming language with the most efficient being.79 Drache and co-workers

reported a modular user interface named "mcPolymer" for the use of kMC, which they compared

to PREDICI. Here they found "mcPolymer" capable of modelling concentration time profiles

and CLDs with comparable precision to PREDICI.85 Explicit analytical models have been re-

ported for obtaining the conversion from RAFT assuming steady state approximation, Wang

et al. successfully simulated conversion from manual analytical solvation of a set of ODEs,102

with comparable data to the numerical MoM method.95 Thus, providing a simple mathemat-

ical equation for relative chain species concentrations and conversions. The same method for

analytically deriving an equation for dispersity as a function of conversion has also been used

to derive the final termination step for RAFT polymerisation. Prior work deriving predictive

equations for dispersity as a function of conversion are discussed in depth in Chapter 1. Mastan

et al., successfully derived an equation accounting for terminative events for normal ATRP val-

idating this against the method of moments and experimental work for the polymerisations of

2-hydroxyethyl methacrylate, methyl methacrylate, and N-isopropylacrylamide..103 In a similar

vein, Wang et al. successfully derived a similar equation using both pseudo-first order kinetics

and power law kinetics and validated it for DMAm, MA, BuA and MMA.104 Previously, only

the first 3 terms of this equation have been derived for RAFT polymerisation,113 this was then

used to model the MWDs using a Poisson distribution fitting to experimental data by Kearns et

al.110 where there os no termination to gain information about propagation to transfer. Here, we

expand on the equation derived for the ideal chain transfer example and account for termination

and re-initiation. With the intention to use a model to augment the Bayesian Optimisation plat-

form, the analytical pseudo-first order model proposed by Wang et al.102 was adapted to include

CLD-T proposed by Heuts et al.111which account for the change in termination rate from short

to long chain polymers and successfully validate conversion for flow and batch. Subsequently,

this was then coupled to a dispersity equation derived in this chapter to simulate and validate

against experimental data. The conversion and dispersity was validated for DMAm(this work)

and literature data for AAm, AA and MA.
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4.2 Experimental

Monomer used in the validation in this chapter were N,N-dimethyl acrylamide ((DMAm) 99 %,

contains 500 ppm monomethyl ether hydroquinone as inhibitor, CAS 2680-03-7) purchased from

Sigma Aldrich, RAFT agents used were both purchased from Boron Molecular:

2-(Butylthiocarbonothioylthio)propanoic acid ((TTC1) 95 %, CAS 480436-46-2),

3-((((1-carboxyethyl)thio)carbonothioyl)thio)propanoic acid ((TTC2) 95 %, CAS 870451-09-

5) Initiators used were 2,2’-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride ((VA044), CAS

27776-21-2), 4,4’-Azobis(4-cyanovaleric acid) ((ACVA), CAS 2638-94-0)

Figure 4.1: (A) Autonomous flow set-up used for model validation in chapter 4 using online
NMR and offline GPC

The validation platform comprises of 3 computer controlled pumps using 2 inline packed bed

mixers (See Figure 3.2 in Chapter 3). These facilitate mixing before the reaction solution enters

the flow reactor coiled around a cylindrical heating block. Temporal resolution was achieved by

varying the flow-rate. An At-line GPC comprising of a VICI EHMA 6-port switching valve and

2 position actuator enables a 100 µL sample to be injected into the online GPC mentioned above

- this was done by switching positions for 4 ms. The reacted solution continues into length of
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PFA threaded though a glass guide in the NMR. A 7 bar (100 psi) Zaiput BPR was used to

mediate the flow within the tube, as shown in Chapter 3.

4.2.1 DMAm:TTC2:VA044 (100:1:0.02)

DMAm (60 g, 100 eq) and TTC2 (1.54 g, 1 eq) were dissolved in deionised water (67.6 g). To

a separate flask VA044 (0.49 g, 0.1 eq) was dissolved in 102.9 g of deionised water. A third

flask was dosed with deionised water only. The 3 vessels were degassed under an atmosphere of

nitrogen for 20 mins prior to reaction then kept under nitrogen for the rest of the experimental

time. Off-line NMR and offline GPC was used in this case. For the batch experiments a Deep

Matter digital glassware probe was used. A 3 necked RBF was dosed with DMAm (15.0 g, 0.15

mol, 100 eq), TTC2 (0.385 g, 1.51 mmol, 1 eq) and VA044 (9.7 mg, 0.030 mmol, 0.02 eq) was

dissolved in water (35.9 g). The solution was degassed under nitrogen for 20 mins and submerged

into a preheated oil bath set to 80 ◦C. Samples were analysed by offline NMR and offline GPC.

4.2.2 DMAm: TTC1: ACVA (200:1:0.02)

DMAm (60 g, 200 eq) and TTC1 (0.72 g, 1 eq) was dissolved in deionised water (40.5 g). To

a separate flask ACVA (0.21 g, 0.1 eq) was dissolved in 101.3 g of deionised water. A third

flask was dosed with deionised water only. The 3 vessels were degassed under an atmosphere of

nitrogen for 20 mins prior to reaction then kept under nitrogen for the rest of the experimental

time. The reagents were then diluted in stream to 30 w/w %
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Figure 4.2: Two adjacent packed bed mixers used to mix each stream. The first mixes the
Monomer and CTA solution with the Initiator solution and the second is used to dilute the
streams. This configuration is also used in Chapter 5
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4.3 Results and Discussion

4.3.1 Kinetic Model

To model monomer consumption, a series of ordinary differential equations (ODE) were con-

structed to describe the kinetic parameters for the reaction (4.1 and solved for monomer conver-

sion (α). Arrhenius equation was used to account for the temperature in the rate constants. The

concentration of chain species: propagating radicals (Pr), chain transfer agent species (CTA),

and radical adduct intermediates (CTAa) was assumed to be independent of chain length. [CTA]

described in (4.1.iv) is a summation of chain transfer species including the initial [CTA] at time

0. R seen in the pre-equilibrium represents the leaving group of the RAFT agent whilst Pi and

Pj represent any length of propagating chain. It is important to note that the r in Pr does

not refer to the chain-length. Steady state hypothesis was applied to enable simplification of

the equations to an ODE for d[CTA]
dt and then solved using the symbolic solution toolbox in

MATLAB. This was then used to find [Pr] at steady state enabling solution of (ii) for monomer

concentration, [M ]t at a given time and thus conversion.

α = 1− [M ]t
[M ]0

(4.1)
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Table 4.1: Steps describing the general RAFT mechanism and rate equations for each species.
Species included are: the initiator (I2), initiator radicals (I), monomer (M), propagating radicals
(Pr), chain-transfer agents (CTA), radical adduct intermediate (CTAa), polymer (P ) and the
3-armed polymer (P ′).

Assuming steady state hypothesis, d[CTAa]
dt = 0, so the concentration of the Dormant species
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was constant. Consequently, ODE iv in Table 4.1 can be simplified down to equation 4.2

0 = ka [Pr] [CTA]− kβ [CTAa]− kct [Pr] [CTAa] (4.2)

If the concentration of radical adducts does not change there has to be a constant rate of cross

termination that allows equation 4.2 to be simplified down to equation4.3.

[CTAa] =
ka
kβ

[Pr] [CTA] (4.3)

The rate of radical transfer from the CTA adduct species to form a branched polymer species

was assumed to be constant at steady state so that, d[CTAadduct]+d[Pr]
dt , ODE iv and ODE ii in

Table 4.1 can be combined and simplified down. This allows an equation for [Pr] at steady state

to be formulated from 4.3 to 4.4.

d [CTAa] + d [Pr]

dt
= ka [Pr] [CTA]− kβ [CTAa]− kct [Pr] [CTAa] +

(r1 + kβ [CTAa]− ka [Pr] [CTA]− 2kt [Pr]
2 − kct [Pr] [CTAa])

(4.4)

where rI is the initiation rate. As steady state was assumed d[Pr]+d[CTAa]
dt = 0 Equation 4.4 can

be simplified to equation 4.5

[Pr] =

√
rI

kt + 2 [CTA] kakctkβ

(4.5)

Combining ODE v with ODE iv in Table 4.1 when d[CTAa]
dt = 0, can be used to find the rate of

change of [CTA], while accounting for the equilibrium, equation 4.6 was obtained.

d [CTA]

dt
+

d [CTAa]

dt
= kβ [CTAa]− ka [Pr] [CTA] + (ka [Pr] [CTA]− kβ [CTAa]−

kct [Pr] [CTAa])

(4.6)

Equation 4.6 can be simplified to a single value for d[CTA]
dt , if it is assumed that the concentration

of the radical adduct intermediate does not change over time. The algebraic values for [Pr] and

[CTAa] can be substituted in to equation 4.6 to form equation 4.7.

d [CTA]

dt
= −

√
rI

ktkβ
kakct[CTA] + 2

(4.7)
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The rate equation of [CTA] can then be solved symbolically in MATLAB and then substituted

into the equation 4.5. To account for chain-length dependence the power law equations proposed

by Heuts et al.111 were used. Once [M ]t was determined for the non-chain-length dependent

reaction, a second iteration was performed accounting for chain-length dependent termination

(CLD-T).111 This involves a cross-over chain length where the termination rate operates using

2 separate equations for calculating kt: short chain (L<Lc ) and long chain ( L>Lc). The cross-

over chain length is typically identified experimentally by single-pulse pulsed laser polymerisation

(SPPLP) coupled to electroparamagnetic resonance spectroscopy (EPR).231 A log plot of the

radical concentration (cR) at t =0 and after the pulse against time enables the power law and

cross over chain length to be identified. The kinetic model was used to obtain the kinetic data

in the simulation for the dispersity model..232

Figure 4.3: (left) Simulated conversion plot comparing the effect of different αs against no CLD-
T (dotted line), where αs = 0.80 (blue solid line), 0.65 (red solid line) and 0.35 (green solid
line). (right) simulated conversion plot comparing the effect of the equilibrium, K, (right) on
the monomer conversion

The inaccessibility of rate constants in the literature is often stated as the primary issue when

modelling RAFT;233 thus, it is important to note the dependence of the model on explicit rate

constants. The model relies on 5 rate constants: kp, kd, kt, ka and kβ , where kp and kt are the

most experimentally studied by Pulsed-Laser polymerisation (PLP) combined with SEC and

electron spin resonance spectroscopy (ESR).234–236 kd values are also abundant in the literature;

and are typically found by measuring gas evolution with respect to time.237 Less commonly

studied are ka, k−a, kβ and, k−β which are uniquely associated with RAFT polymerisation. ka

is typically calculated from the chain transfer coefficient obtained experimentally by a Mayo plot

or by comparing monomer conversion with RAFT agent conversion; this is described in more
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detail in Chapter 1. Efforts to quantify kβ via the RAFT equilibrium constant have been limited

to retarded RAFT polymerisation, by comparing polymerisation rates at different concentrations

of the RAFT agent56 and through ab initio studies.238

Figure 4.4: Kinetic model validation experiments for the ultrafast RAFT polymerization of
DMAm:TTC1:VA044 (100:1:0.02) in H2O 30 w/w % at 80 ◦C. (a) The simulated kinetics
(dashed line) are compared to experimental results for the flow reactor (data points) where
squares, circles and triangles represent separate runs of the same reaction (b) In batch, the non-
isothermal kinetics (black) were simulated using the temperature measured in-situ (red line).
The temperature profile illustrates the poor heat transfer leading to an initial induction period
and subsequent polymerization exotherm.

An initial simulation was performed for the RAFT polymerization of dimethylacrylamide (DMAm)

under ideal “isothermal” conditions in water and compared to data obtained experimentally in

batch (Figure 4.4.b) and flow (Figure 4.4.a). This system was chosen because it is widely stud-

ied193,239 and the propagation constants are widely available.227,240 To best reproduce isothermal

conditions (Figure 4.4.a), the polymerisation was carried out in a flow reactor, where the higher

surface area to volume ratio facilitated superior heat transfer, which has the benefits of rapid

heating and dissipation of exotherms. In this case, the experimental data was in good agreement

with the model (dashed line), exhibiting the expected pseudo-first order kinetics. An equivalent

batch reaction was also performed, whereby the reaction solution at ambient temperature was

immersed in an oil bath at 80 ◦C. Experimental data indicated a delayed onset of polymerisa-
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tion followed by a large increase in conversion over a short time interval. This did not align

with the isothermal kinetic model due to the poor heat transfer resulting in an initially slow

polymerisation that auto-accelerates due to the poor dissipation of the exotherm, resulting in

a temperature peak > 90 ◦C. During the process, the reaction temperature was also recorded,

resulting in the ability to build a semi-empirical model which considers the varying temperature.

When this was plotted, it fit well with the batch data, demonstrating the wide applicability of

this kinetic model. Subsequently, the temperature dependence was then investigated in flow

for a different RAFT agent and initiator combination using a higher monomer concentration to

ensure a dynamic model for simulating ideal systems.

Figure 4.5: Comparison of kinetic conversion data obtained for DMAm : TTC2: ACVA
200:1:0.02 at 30 w/w% in flow (filled circles) at different temperatures. Here, the colour of
the symbol and dashed line corresponds to a different temperature, 85 ◦C (blue) and 90 ◦C (red)
and simulation at the corresponding temperature.

The simulated conversion traces again show good concordance with the experimental flow data
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even when an initiator with a slower rate of decomposition was used. It is increasingly important

to consider temperature dependence for radical polymerisations; highlighted in Figure 4.5 by the

change in rate observed when the temperature was elevated by 5 ◦C. The expected increase in

rate was observed for the simulation suggesting that the Arrhenius equation used to account

for temperature was satisfactory for this reaction system. For bulky acrylate polymerisations

where high temperature can lead to increased rate of side reactions (e.g. formation of mid-chain

radicals) a reduced polymerisation rate can be observed – in which case the model would fall

apart.

4.3.2 Molar Mass Dispersity

For “living” radical polymerization (no terminative or reversible transfer steps), dispersity de-

creases exponentially asymptotically as a function of conversion (equation 4.8 - where [CTA]0
[M ]0α

=

1
DP and the MWD is typically a Poisson distribution). Following block theory, which assumes

that there is no termination or chain transfer after each time step, equation 4.8 has been defined

for completely living polymerization.

Ð = T1 + T2 = 1 +
[CTA]0
[M ]0α

(4.8)

Where [CTA]0 and [M ]0 are the initial concentrations of CTA and monomer, respectively. For

simplicity, here each term derived was abbreviated as Tn where T1 is the first term, T2 is the

second term etc. Due to the reversible activation/transfer steps involved in RDRP, the term

previously derived by Harrisson et al.113,114 can be added, resulting in an equation for dispersity

as a function of conversion:

Ð = T1 + T2 + T3 = 1 +
[CTA]0
[M ]0α

+
kp
ktr

(
2

α
− 1) (4.9)

Where [CTA]t is the concentration of CTA at time, t. kp and ktr are the rate constants for

propagation of radicals and transfer of monomer to CTA, respectively. This step broadens the

MWD leading to slightly higher Ð. Harrison et al.113further simplify the formula by assuming

that the ratio of [CTA]0
[CTA]t

= 1 for the ideal case. To provide a further improvement in dispersity

prediction, a fourth term, T4, is necessary to account for terminative events leading to dead

polymer chains. To derive T4, it is important to propose assumptions required to achieve an
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explicit value, which can be achieved using blend and block theory103 (Figure 4.7), where chain

growth and terminative subpopulations were discretised per time interval to quantify Ð as a

function of time and, in turn, conversion. The model assumes a thermally initiated polymeriza-

tion will begin instantaneously on introduction of radicals, i.e. as soon as the reaction medium

is heated. A further major assumption is that radical concentration was at steady state in each

time interval; thus, if all the initiator radicals have been consumed (i.e., at high temperature

at long reaction times) then the model will break down. Realistically, all radicals may be con-

sumed under intense conditions, thus leading to rate retardation and reduced conversion as the

concentration of dead polymer increases.

Figure 4.6: (a) Complete RAFT equilibrium following, highlighting the mechanism of chain
transfer. Addition (ka) of Pr to CTA (1), then beta scission (kβ) of radical adduct intermediate
(2) to form CTA (3). Intermediate (2) can also undergo cross termination (kct) to form branched
polymer species. In RAFT, termination (kt) and propagation (kp) are also happening at the
same time. (b) A simplified equation for the RAFT equilibrium where ktr and k−tr account for
ka, k−a, k−β and kβ and the partitioning of species (2).241
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Figure 4.7: Schematic of how the model describes chain-growth in CRP based on the blend and
block strategy demonstrated by E.Mastan et al.86 Sg # = Segment and Sp # = Subpopulation.
The black spheres labelled “D” represent dead polymer in the reaction. The model assumes that
after each time step,∆ti , there is a degree of “livingness” and termination. Such that, in ∆t1
Sg 1 terminates to form Sp 1 but Sg 2 grows and in ∆t2 Sg 2 terminates forming Sp 2 and Sg 3
grows etc.

In this model, the simplified RAFT equilibrium is used which accounts for the degree of par-

titioning of the radical adduct intermediate, this is given by equations 1.5 and 1.6 in Chapter

1. Firstly, a term to describe the probability of propagation in each RAFT equilibrium cycle is

defined as, ρp which is found by finding the ratio of propagation of active polymer chains to all

steps using propagating radicals, given by equation 4.10

ρp =
kp [M ]

kp [M ] + ktr [CTA] + kt [Pr]
(4.10)

Where the overall rate constants for the equilibrium are described by equations 1.5 and 1.6.

Approximate ka, and partition coefficient, ϕ, can be found in the literature. Next, the number

of transfer cycles ∆τi for each segment, i, can be defined as equation 4.11.

∆τi = k−tr
[Pr][CTA]

[CTA]
= k−tr[Pr]∆ti (4.11)

The number of monomer units added in each equilibrium cycle, x, can be given by equation

4.12, when ktr [CTA] ≫ kt [Pr]

x =
ρp

1− ρp
=

kp [M ]

ktr [CTA] + kt [Pr]
=

kp [M ]

ktr [CTA]
(4.12)

111



4.3. Results and Discussion
Chapter 4. Development and Validation of a Kinetic and

Dispersity Model for in-silico RAFT Polymerisation

Subsequently, the degree of polymerisation of each block can then be given as the number of

monomeric units added per cycle multiplied by the number of transfer cycles to give equation

4.13.

rn,i =
kp [M ]i k−tr[Pr]

ktr [CTA]i
∆ti (4.13)

Ð = 1 +
1

rn,i
+

2

k−tr∆ti
(4.14)

where [M ]0 is the monomer concentration at t = 0, α is the conversion and [CTA]0 is the

concentration of CTA at time = 0. The dispersity of a segment can be given by equation 4.14,

Ð, previously derived by Mastan et al.242 The discretised total degree of polymerisation can

then be solved as the sum of all chains in each ∆ti, as ∆ti approaches 0 is shown in equation

4.16 which can then be integrated to find the DP of all chains. This can then be converted to a

function of conversion using the rate of polymerisation as a function of conversion.

dα

dt
= kp(1− α)[Pr] −→ dt =

dα

kp(1− α)[Pr]
(4.15)

rblockn =
N∑
i=1

rn,i = lim
∆ti→0

∑
N
i=1

kp [M ]i k−tr[Pr]

ktr [CTA]i
∆ti

=

∫ t

0

kp [M ] k−tr[Pr]

ktr [CTA]
dt

=
[M ]0α

[CTA]0

(4.16)

by substituting equation 4.1 from the kinetics section into equation 4.15, equation 4.16 can be

simplified down as shown. The total dispersity of the all segments can be given as equation4.17

Ðblock = 1 +
1

(rblockn )2

N∑
i=1

r2n,i(Ði − 1) (4.17)

In RAFT, termination is unavoidable and leads to dead polymers, as seen in Figure 4.7. Here,

the fraction of dead polymer as a subpopulation is considered. Propagating chains terminated

in each ∆ti were discretized into their sub populations as shown in Figure 4.8. Blend strategy

which assumes that there is termination of every chain in each interval so the total polymer will

be a blend of each subpopulation, was applied to account for this.
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Figure 4.8: Contributions of termination and "livingness" in blend and block theory.

For example, in subpopulation 1 there is 1 terminating chain so n#1 = T1, in subpopulation 2

segments 1 and 2 grow so n#2 = L1T2 and in subpopulation 3, the number of growing chains

is 2 so n#3 = L1L2. T is the number fraction of dead chains whereas L is the number fraction

of Living chains. The "livingness" can described by the ratio of [CTA]t
[CTA]0

based off the equation

for "livingness" given in Perrier et al.29 In this Chapter, the number fraction of dead chains can

be described by the ratio of [P ]
[CTA] . Consequently, the overall DP and Ð for a polymerisation

exhibiting both terminative and chain transfer, rblendn and Ðblend can be obtained, respectively.

rblendn =

N∑
i=1

nir
block
n,i =

[M ]0
[CTA]0

α (4.18)

Ðblend = 1 +
1

(rblockn )2

N∑
i=1

r2n,i(Ði − 1)Ðblock
i (4.19)

by substituting Ð i and rn,i from equation 4.14 and 4.13 and rblockn,i from equation 4.17 into 4.19,

an equation accounting for livingness and terminative events can be formed.

Ð = 1 +
1

r2n
lim
∆t→0

N∑
i=1

Lo
i−1(r

2
n,i)(Ði − 1) +

2

r2n
lim
∆t→0

N∑
i=1

Li−jrn,i

i∑
j=1

T o
j−1rn,j (4.20)

subsequently, L, T , rn,i (equation 4.13) and Ð i (equation 4.14) can be substituted into equation
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4.20 and simplified down to a 3 term summation.

Ð = 1+

[CTA]0[CTA]

[M ]20α
2

lim
∆ti→0

N∑
i=1

(
kp[M ]ik−tr[Pr]

ktr[CTA]i
∆ti

)
+

[CTA]0[CTA]

[M ]20α
2

lim
∆ti→0

N∑
i=1

2kp[M ]i
ktr[CTA]i

kp[M ]ik−tr[Pr]

ktr[CTA]i
∆ti+

[CTA]20
[M ]20α

2
lim

∆ti→0

N∑
i=1

2[CTA]i
[CTA]0

(
kp[M ]ik−tr[Pr]

ktr[CTA]i
∆ti

) i∑
j=1

[P ]

[CTA]i

(
kp[M ]ik−tr[Pr]

ktr[CTA]i
∆ti

)
(4.21)

As ∆ti approaches 0, equation 4.21 can be written as an integral in terms of time, t.

Ð = 1+

[CTA]0[CTA]

[M ]20α
2

∫ t

0

kp[M ]k−tr[Pr]

ktr[CTA]
dt+

[CTA]0[CTA]

[M ]20α
2

∫ t

0

2kp[M ]

ktr[CTA]

kp[M ]k−tr[Pr]

ktr[CTA]
dt+

2[CTA]0[CTA]

[M ]20α
2

∫ t

0

kp[M ]k−tr[Pr]

ktr[CTA]
dt

∫ t

0

[P ]

[CTA]

kp[M ]k−tr[Pr]

ktr[CTA]
dt

(4.22)

Using equation 4.1 substituted into equation 4.15, An equation in terms of conversion can

be identified, shown in equation 4.23. Furthermore this can then be simplified down to form

equation 4.24.

Ð = 1+

[CTA]0
[M ]0α

+

[CTA]0[CTA]

[M ]20α
2

∫ α

0

2kp[M ]0(1− a)

ktr[CTA]

[M ]0
[CTA]

da

2[CTA]0[CTA]

[M ]20α
2

∫ α

0

[M ]0
[CTA]0

da

∫ α

0

[P ]

[CTA]

[M ]0
[CTA]0

da

(4.23)

Ð = 1 +
[CTA]0
[M ]0α

+
2kp[CTA]0

ktrα2

∫ α

0

(1− a)

[CTA]
da+

2

α2

∫ α

0

(∫ a

0

[P ]

[CTA]
da

)
dα (4.24)

Here on in, the equation is separated out into T1−3 and T4 for simplicity. Integration via equation

4.25 and If degeneracy is assumed for the equilibrium, such that [CTA] = [CTA]0 equation 4.9
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was derived.

T3 =
2

α2

kp
ktr

[CTA]0
[CTA]

[
a− 1

2
a2
]
α

0
(4.25)

In order to solve the fourth term, T4, an expression for the change in concentration of polymer

chains [P ] with respect to time, was required. The ODE d[P ]
dt - shown by equation 4.26 - was

rearranged and integrated to give an expression for [P ] in terms of kt and the concentration of

propagating radicals, [Pr] (see equation 4.27)

d [P ]

dt
= kt [Pr]

2 (4.26)

[P ] = kt [Pr]
2 t (4.27)

Equation 4.27 can be substituted back into equation 4.24 then written as a function of conversion

using the integrated version of equation 4.15 into t and the the non-integrated form into dt.

T4 =

∫ α

0

(∫ α

0
− kt[Pr]

kp[CTA]
ln (1− a)da

)
dα (4.28)

The rate of initiation can be given as, rini = 2kdf [I]0 e
−kdt, which produces the initiating

radicals instantaneously. At time = 0 this was given by rini = 2kdf [I]0. Here, regeneration of

radicals is loosely accounted for by using the rate of formation of single monomeric radicals as

the radical forming step, which can be seen in equation 4.29 . −d[M ]
dt = d[M•]

dt = kp[M ][M•].

Where [M•] is given by
√

rini
kt

rR = kp [M ]

√
rini
2kt

(4.29)

d [Pr]

dt
= rR − ktr [CTA]x [Pr] + k−tr [CTA]y [Pr]− kt [Pr]

2 = 0 −→ d [Pr]

dt
= rR − kt [Pr]

2 = 0

(4.30)

If the steady state hypothesis is applied to the equation for change in [Pr] with respect to time,

the resultant quadratic equation 4.30 can be solved analytically for [Pr], 2 solutions are returned,

a positive and a negative. However, only a positive solution can be used, as the concentration

cannot be negative. Consecutively, the new expression for T4 can be given as follows.

T4 = − kt
kp[CTA]0

2

α2

√
rR
kt

∫ α

0

(∫ α

0
ln (1− a)da

)
da (4.31)

For ATRP Mastan et al.103 first used Gaussian quadrature with 1 node twice followed by a
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single term Taylor expansion to solve the double integral. Through truncation of the infinite

Taylor series a simple formula can be obtained; however this is only an approximation and the

true value of T4 would require computational intervention. Here, two methods of solving this

are demonstrated (1) Gaussian quadrature with a single Taylor term (2) an analytical method

using the symbolic math toolbox in MATLAB.

Gaussian Quadrature The result of 2 iterations of Gaussian quadrature using one node gives

equation 4.32

T4 =
kt

kp[CTA]0

√
rR
kt

[
− ln (1− α

4
)
]α
0

(4.32)

Writing the integral solution 4.32 in its Taylor form gives equation 4.33

T4 = − kt
kp[CTA]0

√
rR
kt

{
− α

4
− α2

32
− α3

192
+ ...

}
(4.33)

Taking a single Taylor term gives a simplified formula for dispersity as a function of conversion.

T4 ≈
kt

kp[CTA]0

√
rR
kt

α

4
(4.34)

A more accurate mathematical treatment is possible, whereby the integral is solved analytically

and expressed as a Taylor expansion with one and two terms.

Analytical Integrating T4 analytically twice and simplifying down gives equation 4.35. Sub-

sequently, the log value can be written as a Taylor series to give equation 4.37.

T4 = − 2

α2

kt
kp[CTA]0

√
rR
kt

2(ln (1− α)(α2 − 1)− (2− 3α)α

4
(4.35)

T4 = − kt
kp[CTA]0

√
rR
kt

{(2− 3α)

2α
+

(α2 − 1)

α2

(
−α− α2

2
− α3

3
+ ...

)}
(4.36)

Taking a single Taylor term from the analytically derived T4 in this case is more accurate than

the Gaussian quadrature method.

T4 ≈
kt

kp[CTA]0

√
rR
kt

(
α

3
+

α2

12

)
(4.37)
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Accounting for RTD

It has been demonstrated in Chapter 3 that the volume of the reactor affects the RTD. The 2 mL

coil required much slower flow-rates, which reduced the accuracy of the pump. The residence

time distributions obtained for the PDMAm tracer were broader than the DMAm equivalent;

viscosity has been shown by Reis et al.123 has shown viscosity to affect the residence time

distributions. Using the RTD for a polymer sample in Chapter 3.

Figure 4.9: Distribution of molecular weights as obtained by GPC for PDMAm200 at 98 %
conversion.

E(MW ) = E(θ)
dw

dLogM
(4.38)

MW = θM (4.39)

Here, it was assumed that each degree of polymerisation eluted in the GPC experiences its own

RTD due to laminar flow. Firstly, each chain in the MWD from batch assuming ideal mixing

was multiplied through by the residence time distribution function.
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Figure 4.10: RTD (coloured line superimposed onto each of the stems seen in the MW with the
batch molecular weight distribution overlayed

A Gaussian fitting function gmfitdist MATLAB was used to fit coefficients, µ,σ and c as seen in

equation 4.40.

G(x) =
1

σ
√
2π

e−
1
2
(x−µ

σ
) + c (4.40)

The individual Gaussians were then simulated on a known linearly spaced X scale between a

DP 0 and 900 and convoluted to give Figure 4.11. Using equations 1.2,1.3 and 1.1 in Chapter

1. The contribution of RTD to the dispersity for the flow platform can be accounted for, seen

in Table 4.2.

Table 4.2: Simulated RTD contribution calculations compared to GPC chromatograms from
flow

ExperimentalGPC With RTD Contributuion
Batch 1.0725
Flow 1.1351 1.1022 0.0277
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Figure 4.11: Comparison of the model using analytical integration (dotted and dashed) and
Gaussian quadrature (short dashed)

If the conversion vs dispersity plots using the Gaussian quadrature method with one node are

compared to an analytical integration, the truncated Gaussian quadrature method fits better. A

more accurate integration increases Ð, but the experimental data are more closely in agreement

with the simpler treatment. This indicates that the assumptions in the mathematical model are

insufficient to account for the complexity of the polymerisation system. This includes neglecting

the effects of chain transfer to solvent, which could lead to an overestimation of T4. The final

dispersity expression used can be given by the following.

Ð = 1 +
[CTA]0
[M ]0α

+
kp
ktr

(
2

α
− 1

)
+

kt
4[CTA]0kp

(√
rR
kt

)
α (4.41)
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Figure 4.12: simulated dispersity vs conversion plots using the rate constants for
DMAm:BM1640:VA044 (200:1:0.02) unless otherwise changed in the simulation, investigating
the effect of the magnitude of (a) kt, (b) ka, (c) [CTA]0 : [I]0 and (d) DP are changed.

When changing the termination rate constant, as shown in figure 4.12.a. If kt was increased,

an increase in the Ð was observed. Higher Ð were seen for a larger kt, this corresponds to a

faster rate of termination which would cause broadening of the MWD. As shown in Figure 4.12

the minimum of the Ð was lower for the higher ka; which was expected as increased transfer

will increase control and afford a higher transfer coefficient. A higher initiator concentration

and higher DPs as shown in Figure 4.12. c and d. lead to higher Ð. The higher initiator

concentrations cause an increase in rate of initiation, which leads to increased termination due

to a higher concentration of propagating radicals. Higher target DPs mean there was a higher

concentration of monomer, this will lead to increased rate of re-initiation, as accounted for by

the model. This would have led to increased propagation and chain growth, leading to a wider

MWD and higher dispersity. Following simulation and looking at the effect of each rate constant,

the model was further validated using experimental literature data and experiments conducted

in this chapter.
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Figure 4.13: (a) Reaction scheme for DMAm : TTC2: ACVA 200:1:0.1 at 30 w/w % (b)
Comparison of experimental dispersity and conversion (squares) obtained for DMAm : TTC2:
ACVA 200:1:0.1 at 30 w/w % in flow versus the simulated batch(solid line)and flow (dashed line)
reaction using equation 4.41. Monomer conversion was obtained via online flow-NMR, molecular
weight distributions were obtained using an offline GPC calibrated with PMMA standards. The
data shown here was subsequently corrected to consider the residence time distribution within
the reactor. The simulated dispersity using equations 4.8 and 4.9 where no termination was
accounted for.

Comparing the simulated data generated from Equation 4.41 at two temperatures to the experi-

mental data, the data at 85 ◦ lies on the simulated trace suggesting the model works well for this

system. Equation 4.41 fits the experimental data better than the existing literature equations

4.9 or 4.8. Although the use of flow chemistry has advantages in the context of efficient heat

transfer, the fluid dynamics mean an inherent feature was a residence time distribution (RTD),

which causes higher dispersity123 even in narrow tubing (1/16”) – consequently the model needs

an additional term to account for this. Assuming, that residence time of each polymer chain at

a set flow rate can lie anywhere on the RTD, the RTD function (E(θ) was superimposed onto

each molecular weight in the MWD forming a distribution of distributions. A fitting function

was used in MATLAB to obtain the Gaussian fitting parameters. Using the fitting parameters,
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the Gaussians were simulated and merged. The dispersity can then be calculated and the RTD

contribution determined through subtraction. It is important to note the effect of viscosity on

the RTD seen in the SI, as the viscosity increases with the degree of polymerization the dispersity

will also increase.123

Following successful validation for DMAm, literature values for the solution RAFT polymeriza-

tion of acrylamide (AAm),243 acrylic acid (AA),244 and methylacrylate (MA)245 were compared

to the model. Firstly, the reported experimental conversion was entered into Equation 4.41 then

the conditions were simulated using the kinetic model coupled to Equation 4.41. The resultant

data can be seen in Table 4.3. The rate parameters can be found in the appendix for this section.

For acrylic acids, the presence of the acid group can cause issues so often rate parameters for kp

account for the pH.240 Rate parameter tables for each system can be found in the Appendix C.
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Figure 4.14: in-silico kinetic surfaces with literature data (stars) imposed for the polymerization
of (a) AAm,243 (b) AA,244 (c) MA,245 and (d) DMAm (this work). The colour of the star and
surface corresponds to dispersity and the colourbar (blue = low Ð, red = highÐ.) The literature
values for AAM was reproduced from Liang et al.243 with permission from Springer ©2016,
AA was reproduced from Ji et al.244 with permission from Taylor and Francis ©2010, MA was
reproduced from Wood et al.245 with permission from CSIRO publishing ©2007.

Broad agreement between the literature data and simulation was observed (Figure 4.14). Devi-

ations for both conversion and dispersity were limited (Table 4.3) for AAm and AA. For AAm

the effect of initiator can be observed; as the initiator concentration was increased the reaction

takes less time to reach high conversion. This was also reflected in the simulated dispersity, the

increased radical concentration increases the rate of termination leading to broader MWDs A

systematic underestimation of conversion was observed for MA, which could be attributed to a

lower concentration of solids (10 w/w %)246 used for the rate constant measurement compared
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to the experimental data (30 w/w %),245 or the neglection of side reactions that increase the

concentration of propagating species. For monomers such as acrylamides and acrylic acid and

less bulky acrylates the equation and model work well; however due to the absence of backbiting

and cross termination effects, the model fails for bulky acrylates.

4.4 Conclusions

A combined model has been designed to enable computational simulation of the RAFT polymeri-

sation process to guide an automated platform. This combines an effective model for conversion,

which could be implemented under isothermal conditions or under polythermal conditions, where

the simulation can take into account a varying temperature. These were both validated by con-

ducting the RAFT polymerisation of DMAm in a flow-reactor (operating near isothermally due

to efficient heat transfer) or a batch reactor, where a previously recorded temperature profile was

used in the simulation. The model for predicting dispersity as a function of the conversion was

derived based on block-and-blend theory, with the addition of a novel fourth term quantifying

the contribution of the terminative events at higher conversion. This results in an up-turn in

the dispersity at high conversion which is typically seen in RAFT polymerisation. This could

enable the user to predict the transfer constants of their reaction, through fitting, which are

less abundant in the literature. Current methods of identifying propagation and termination

rate constants are often given as a range and can vary between groups, the model developed in

this thesis could provide a way of bench-marking these rate constants. Finally, to simulate the

outcome of reactions in a flow reactor, it was necessary to add a term to account for the contri-

bution of the RTD to the molar mass dispersity. The conversion and dispersity models, and the

option for an RTD correction (for flow reactors) were programmed into a computational package

which enabled prediction of the outcome of RAFT polymerization using trithiocarbonate RAFT

agents for monomers with known kp. Validation of the model was performed in flow, where

the experimental values for conversion and dispersity were in good agreement. Furthermore,

the model was also in good agreement with several examples from the literature. Although it

is recognised that models may not always reflect the exact polymerization process, it provides

an opportunity to better predict the outcome of a RAFT polymerisation reaction which can

be used to guide an automated reactor, potentially streamlining closed-loop self-optimization

systems which previously had no prior knowledge of the chemistry. With the aim to develop 2nd
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generation reactor that reduces time, cost and environmental impact of optimisation further,

the next chapter reports the use of a digitally directed platform. In the next chapter, the model

that accounts for RTD from this chapter could be embedded into the graphical user interface,

to enable in-silico prediction of the objectives obtained from the LHC.
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Chapter 5

Digitally Augmented Self-Optimisation

of RAFT polymerisation

5.1 Introduction

Self-optimisation of 2D reaction parameter space has already been covered in this thesis in

Chapter 2 for the RAFT polymerisation of several monomers. Kinetic understanding can help

polymer chemists to direct OVAT approaches to optimise their polymerisations. Houben et al.135

have demonstrated a fully in-silico self-optimisation using their MOAL algorithm - in which, out

of 84 simulated conditions, only 18 were at the desired 100 nm particle size and full conversion.

Overall, it was at experiment 27, when the algorithm found the optimum conditions to make

the emulsion polymer. Validation of some of these data points were not concordant with the

the model, which led them to run the optimisation experimentally and found the optimum in

17 experiments.135 More recently, Kandelhard et al.200have shown the power of multiphysics

analysis and kinetic modelling, using commercially available COMSOL and PREDICI software,

respectively. Here, they compared the simulations for a series of reactors for their conversion by

changing initiator concentration, temperature and residence time. Where they found a 20 mL

glass chip with a 2 mL premixing chip were the superior both in-silico and experimentally.200 This

is a good example of the use of theoretical knowledge using existing software that can enable

computer aided optimisation. In this Chapter, a closed-loop operator independent polymer

synthesis platform that used in built knowledge of RAFT kinetics to direct optimisation has

been developed. The affect of temperature, residence time and relative initiator concentration
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([I]:[CTA]) was investigates. As reported by Gody et al.67 the degree of "livingness" is related

to the number of dead chains and not the rate of polymerisation. So initiators with high kd

can be used to increase reaction rates without decreasing the "livingness" too significantly.

Experimental Validation showed that the model proposed in Chapter 4 was relatively good

at predicting conversion and dispersity for DMAm. Computationally inexpensive models will

always have some conditions where they fall apart; however, the ideality can be used to direct

an experiment. In precision polymer synthesis, low Ð is desired to synthesise nano-objects, high

conversion is also desirable to reduce the work-up and improve the sustainability. Although, ML

algorithms have reduced the optimisation time involved; hypothetically, the number of number

of experiments required to find the trade-off could be reduced further. Thus, it was proposed

that the model would be a valid enough to train a first iteration of the TS-EMO algorithm

to reduce the number of experiments that correspond to dispersity > 1.3, which are typically

undesirable for high value polymeric materials, discussed in Chapter 1.

5.2 Experimental

Monomers used in this chapter were N,N-dimethylacrylamide ((DMAm) 99 %, contains 500 ppm

monomethyl ether hydroquinone as inhibitor, CAS 2680-03-7) purchased from Sigma Aldrich,

tert-butyl acrylamide ((tBuAm), 97 %, CAS 107-58-4) purchased from Alfa Aesar and butyl

acrylate ((nBuA) 99 %, contains 10-60 ppm monomethyl ether hydroquinone as inhibitor, CAS

141-32-2) purchased from Sigma Aldrich.

RAFT agents were all purchased from Boron Molecular: 2-(Butylthiocarbonothioylthio)propanoic

acid ((TTC1) 95 %, CAS 480436-46-2)

Initiators used were 2,2’-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride ((VA044), CAS

27776-21-2), 2,2’-Azobis(isobutyronitrile) ((AIBN), CAS 78-67-1)

The platform in this chapter (shown in Figure 5.1 was comprised of 3 pumps (JASCO PU980 or

1580 HPLC). Here, the reservoirs that were of higher concentration to the target were pumped

and diluted in stream. Pump 1 delivers a premixed solution of monomer and CTA with a fixed

molar ratio, pump 2 delivers a fixed concentration of initiator and pump 3 delivers solvent to

dilute the concentration of initiator and total w/w % of the the reaction mixture. As in Chapter

3 the orthogonal analyses were the same except for the use of DMF/LiBr GPC. Two graphical
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user interfaces were used in this chapter: (1) a black box fully experimental GUI and (2) a

model assisted version. Both platforms were closed-loop and require a set of inputs for defining

the reaction parameter space, a target total w/w %, number of training experiments and a set

number of experiments predicted by the TS-EMO algorithm.

Figure 5.1: (a) Schematic for the 3D reaction parameter space self-optimising platform used
here for closed-loop model optimisation of RAFT polymerisation (b) Photograph of the platform
showing the pumps, temperature controller, home-built GPC and bench top NMR,

The algorithm for the black-box optimisation involves defining the reaction space by entering

the upper and lower bounds of [I]/[CTA], temperature, and residence times. In addition, a

rounding limit is required that describes the space limit between each variable of the reaction

space. For the black-box platform, a Latin hypercube sampling algorithm finds pseudo-random

conditions for the reactor to conduct experimentally. These data form an objective function
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that was returned to TS-EMO. The algorithm was stopped when sufficient reaction space was

evaluated.

Figure 5.2: Implementation of the TS-EMO algorithm into the multi-pump platform for black-
box optimisation

5.2.1 Black-box self optimisation of 3D reaction parameter space for DMAm

Firstly, concentrated reservoirs were prepared; these were diluted in the stream to 30 w/w %. To

a solution of DMAm (250 g, 2.52 mol) in water (169.1 g), TTC1 (3.00 g, 0.013 mol) was added.

A separate flask was charged with VA044 (0.73g , 2.27 mmol) dissolved in water(202.9 g). A

third flask was charged with water. These were kept at room temperature, and the solutions

were not degassed under an atmosphere of nitrogen. 15 training experiments were suggested by

a Latin hypercube algorithm; the limits of these inputs can be seen in Table 5.1

Table 5.1: The limits used in the implementation of the algorithms for DMAm in the presence of
TTC1 in a 200: 1 ratio using VA044 as the initiator in water with a regent content of (30 w/w%
200:1:x) each TS-EMO iteration suggested a single experiment.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 50 80 2
[I][CTA] (1:x) 0.09 0.04 0.005
Residence time (min) 5 20 1

5.2.2 Black-box self optimisation of 3D reaction parameter space for nBuA

Firstly, concentrated reservoirs were prepared - these were diluted in stream to 30 w/w %. In

a solution of nBuA (200 g, 1.56 mol) in 1,4-dioxane (134.7 g), TTC1 (1.86 g, 70 mmol) was

added. A separate flask was charged with AIBN (0.289g , 1.76 mmol) dissolved in 1,4-dioxane

(202.1 g). A third flask was charged with water. These were kept at room temperature, and the

solutions were not degassed under an atmosphere of nitrogen. 15 training experiments selected
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using a Latin Hyper Cube algorithm were conducted, the limits for these inputs can be seen in

Table 5.2

Table 5.2: Limits used in the implementation of the algorithms for nBuA in the presence of
TTC1 in a ratio of 200:1 using AIBN as the initiator in 1,4-dioxane with a reagent content of
30 w/w %. Each TS-EMO iteration suggested a single experiment.

Input Lower limit Upper limit Variance limit
Temperature (◦C) 70 100 2
[I][CTA] (1:x) 0.09 0.04 0.005
Residence time (min) 5 20 1

The model-assisted platform uses the validated model from Chapter 2 to conduct the LHC

experiment with 15 training points. This was then fed into the first iteration of TS-EMO (TS-

EMO1), suggesting experiments with greater spread to avoid clustering. These were conducted,

and the TS-EMO proceeded identically to the completely experimental platform using only the

experimental points (TS-EMO2).

Figure 5.3: Flow diagram for the digitally augmented platform showing where the model and
TS-EMO was implemented

5.2.3 Model assisted self optimisation of 3D reaction parameter space for

DMAm

Firstly, concentrated reservoirs were prepared- these were diluted in stream to 30 w/w %. To

a solution of DMAm (150 g, 2.52 mol) in water (101.4 g) and TTC1 (1.80 g, 7.56 mmol) was

added. A separate flask was charged with VA044 (0.73g , 2.27 mmol) dissolved in water(202.9
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g). A third flask was charged with water. These were kept at room temperature, and the

solutions were not degassed under an atmosphere of nitrogen. 15 training experiments selected

by a Latin Hyper Cube algorithm were conducted in-silico. The objective function from the

training simulation was then fed into the first TS-EMOa iteration and a batch size of 5 was set.

The 5 suggested experiments were conducted and the results were fed into TS-EMOb; From this

the experiments were suggested in batches of one. The limits for these inputs can be seen in

Table 5.3

Table 5.3: aLimits used in the implementation of the first TS-EMO iteration for the RAFT
polymerisation of DMAm in the presence of TTC1 using VA044 as the initiator in water at a
reagent content of 30 w/w %. The objective data from the first iteration suggested five potential
conditions to ensure a large directed exploration. bLimits used in the implementation of all other
iterations of the TS-EMO

Input Lower limit Upper limit Variance limit
Temperature (◦C)a 50 80 6
Temperature(◦C)b 50 80 2
[I]:[CTA] (1:x)a 0.09 0.04 0.015
[I]:[CTA] (1:x) b 0.09 0.04 0.005
Residence time(min) a 5 20 3
Residence time (min)b 5 20 1

5.2.4 Model assisted self optimisation of 3D reaction parameter space nBuA

Firstly, concentrated reservoirs were prepared - these were diluted in stream to 30 w/w %. To

a solution of nBuA (200 g, 1.56 mol) in 1,4-dioxane (134.7 g), TTC1 (1.86 g, 70 mmol) was

added. A separate flask was charged with AIBN (0.289g , 1.76 mmol) dissolved in 1,4-dioxane

(202.1 g). A third flask was charged with water. These were kept at room temperature, and

the solutions were not degassed under an atmosphere of nitrogen. 15 training experiments were

conducted using a Latin Hyper Cube algorithm were conducted in-silico. The objective function

from the training simulation was then fed into the first TS-EMOa iteration and a batch size of 5

was set. The 5 suggested experiments were conducted and the results were fed into TS-EMOb;

From this the experiments were suggested in batches of one. The limits of these inputs can be

seen in Table 5.5.
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Table 5.4: aLimits used in the implementation of the first TS-EMO iteration for the RAFT
polymerisation of nBuA in the presence of TTC1 using AIBN as the initiator in 1,4-dioxane
with a reagent content of 30 w/w %. The objective data from the first iteration suggested five
potential conditions to ensure a large directed exploration. bLimits used in the implementation
of all other iterations of the TS-EMO

Input Lower limit Upper limit Variance limit
Temperature (◦C)a 70 100 6
Temperature(◦C)b 70 100 2
[I][CTA] (1:x)a 0.09 0.04 0.015
[I][CTA] (1:x) b 0.09 0.04 0.005
Residence time(min) a 5 20 3
Residence time (min)b 5 20 1

5.2.5 Model assisted self optimisation of 3D reaction parameter space for

tBuAm

Firstly, concentrated reservoirs were prepared - these were diluted in stream to 20 w/w %. To

a solution of tBuAm (164.7 g, 1.30 mol) in methanol (199.3 g), TTC1 (1.54 g, 6.48 mmol) was

added. A separate flask was charged with AIBN (0.19 g , 1.18 mmol) dissolved in methanol

(242.0 g). A third flask was charged with water. These were kept at room temperature, and the

solutions were not degassed under an atmosphere of nitrogen. 15 training experiments selected

using a Latin Hyper Cube algorithm in-silico. The objective function of the training simulation

was then fed into the first TS-EMOa iteration and a batch size of 5 was set. The 5 suggested

experiments were conducted and the results were fed into TS-EMOb; From this the experiments

were suggested in batches of one. The limits for these inputs can be seen in Table 5.5.

Table 5.5: aLimits used in the implementation of the first TS-EMO iteration for tBuAm in the
presence of TTC1 using AIBN in methanol, at a reagent content of 20 w/w %. The objective data
from the first iteration suggested five potential conditions to ensure large directed exploration.
bLimits used in the implementation of all other iterations of the TS-EMO

Input Lower limit Upper limit Variance limit
Temperature (◦C)a 70 100 6
Temperature(◦C)b 70 100 2
[I]:[CTA] (1:x)a 0.09 0.04 0.015
[I]:[CTA] (1:x) b 0.09 0.04 0.005
Residence time(min) a 5 20 3
Residence time (min)b 5 20 1
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5.3 Results and Discussion

Displaying data with increasing numbers of variables and objectives is even more of a challenge

in this chapter. Here, bubble plots are used, the x axis in all plots is temperature, the y axis

is [I]:[CTA] and the z axis is the residence time. The size of the circle is the conversion where

increasing circle diameter corresponds to increasing conversion. The colourmap is kept the same

as in Chapter 2 where a darker blue circle corresponds to lower Ð. Here, numbers have been

provided to indicate which iteration of the TS-EMO they were predicted. The objective plots

are kept the same as in Chapter 2 for the fully experimental optimisations. For the model

assisted optimisations the in-silico LHC is the black diamonds, the first iteration of TS-EMO

used for training is the magenta triangles and the subsequent TS-EMO iterations are the blue

squares. In this results section, the fully experimental (black-box) optimisation is compared

to the model-assisted experiments for the RAFT polymerisations of DMAm and nBuA. The

digitally augmented method was subsequently used for the polymerisation of tBuAm.

134



Chapter 5. Digitally Augmented Self-Optimisation
of RAFT polymerisation 5.3. Results and Discussion

5.3.1 Black-box self optimisation of 3D reaction parameter space for DMAm

Figure 5.4: (a) 3D Blackbox closed loop optimisation for the RAFT polymerisation of DMAm
in the presence of TTC1 using VA044 as the initiator, (200:1:x) where the axes were the reaction
conditions used in the optimisation (z = Residence time, y = [I]:[CTA] and x = temperature.
The circle size corresponds to monomer conversion. Here, a large circle is indicative of higher
conversion and a small circle is indicative of low conversion. The colour of the bubble represents
dispersity, where the darker the blue the lower the dispersity and the darker the red the larger
dispersity. The number highlighting certain bubbles indicates points that lie on the Pareto
front.(b) Objective plot of dispersity vs conversion demonstrating the responses from 15 LHC
experiments (red circles) and 13 TS-EMO experiments (blue squares), the filled data points with
numbers correspond to the points in the optimisation that lie on the Pareto front
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An optimisation was conducted with 15 training experiments for the UF RAFT polymerisation

of DMAm, shown in Figure 5.4. The training experiments trained a TS-EMO algorithm that

allows exploration of the Pareto front. The continuity in the dispersity colour map in Figure

5.4. a and the defined Pareto front in Figure 5.4. b. was indicative of a well-behaved RAFT

polymerisation. Conversions >100 % were obtained; however, this was due to the error associated

with the automated NMR baseline. Generally, at low temperatures, lower [I]:[CTA] and shorter

residence times were observed with high Ð and low conversion. The data in Figure 5.4 suggests

that as long as there are sufficient initiator radicals in the solution and the solution spends

enough time in the reactor, high conversion will be achieved. It also shows that for DMAm, too

many initiator radicals produced in a given time can lead to increased termination and greater

Ð. The effect of CTA:initiator concentration is reflected by the tradeoff in the "livingness" of

the reaction and how fast the reaction goes. The degree of formation of dead polymer, leading

to higher is not affected by the rate of polymerisation but rather the number of radicals present

in the system through-out the polymerisation.29 In Figure 5.4 the lowest Ð was observed at low

temperatures and short times, with the lowest Ð and highest conversion seen at a temperature

of 58 ◦C after 6 minutes with [I]: [CTA] of 0.08. This set of conditions was found using the TS-

EMO algorithm after 22 experiments and corresponds to a conversion of 64 % with a Ð of 1.15.

Alternatively, at a temperature of 64 ◦C after 15 minutes with an [I]:[CTA] of 0.06, the highest

conversion non-dominated solution, that is within the error of the experiment, with the lowest Ð

was also identified by the TS-EMO algorithm after 21 experiments. These conditions correspond

to conversion >100 % with a Ð of 1.23. There were two high dispersity and low conversion

data points shown in Figure 5.4 that were identified in [I]:[CTA] between 0.04 and 0.05 at low

temperatures; suggesting that the initiator concentration severely limited the polymerisation

rate in this region of the reaction space; these were not seen in the objective plot in Figure 5.4.

b. as the limits of the y axis were between 1.1 and 1.6 for clarity when observing the Pareto

front data points. To assess the effect of all independent variables on each of the objectives

and whether a linear regression will be suitable to model the reaction further, a multiple linear

regression model, using the Statistics and Machine Learning Toolbox in MATLAB, was fit to

each objective set (see the appendix for residuals data).
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Figure 5.5: Regression analysis plots of (a) conversion and (b) dispersity for the the black box
experimental optimisation of DMAm in the presence of TTC1 using VA044 as the initiator at
a ratio of 200:1:x(=0.04-0.09), where the x and y axes are the adjusted model and objectives,
respectively. The data points represent the real data, the solid red line is the predicted linear
regression model and the dotted red lines represent the 95 % confidence limits. The x axis was
adjusted due to the presence of 3 independent variables which uses the Frisch-Waugh-Lovell
theorem to account for all variables.

There are a series of assumptions that must be met before a multiple linear regression model is

implemented. The variables must be continuous, there must be a linear relationship between the

independent and dependent variables, there must be no significant outliers, and the residuals
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exhibit a normal distribution about the regression model. To fit the regression models, data

where the conversion was low enough that there was no relevant GPC trace were treated as

outliers. The RMSE tells us how well a prediction model fits the data, for the conversion

regression model in Figure 5.5. a, the RMSE was 0.067, while the dispersity regression model

was 0.037. Low RMSE values were indicative of a good model and increased reliability in

predicting objectives. A large proportion of the experimental data points shown in Figure 5.5.

a lie above the upper 95 % confidence limit, there were two anomalous points that appeared at

low conversions below the 95 % confidence limit, suggesting that the prediction model would

fall apart at low conversions. For this instance, a non-linear regression was more appropriate.

For the dispersity regression model in Figure 5.5. b, many of the experimental data points lie

within the 95 % confidence bounds, suggesting a strong correlation between the independent

variables and the dispersity. Four data points exist above the upper 95 % of the linear regression,

indicating that these do not fit the prediction as well as the others. These points were identified

at longer residence times with a higher initiator concentration; therefore, it was not unusual

for MWD to broaden and Ð to increase under these conditions. Multiple regression indicates

that the reaction is predictable at low residence times, where the reaction has not yet reached

completion.
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5.3.2 Model assisted self optimisation of 3D reaction parameter space for

DMAm

Figure 5.6: (a) 3D Model-Assisted Self Optimisation for the aqueous RAFT polymerisation of
DMAm in the presence of TTC1 using VA044 as the initiator at a ratio of 200:1:x(0.04-0.09)
Where circle size corresponds to higher conversion and colour represents dispersity. The size of
bold circle corresponds to the conversion. (b) Objective plot of dispersity vs conversion where
the triangles are the results obtained following the first TS-EMO iteration which utilised an
LHC conducted in-silico (Black diamonds) to suggest 5 “real” training experiments, TS-EMO1
(magenta triangles) and 2(blue squares)
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Firstly, it is worth mentioning that the in-silico generated LHC data lie on top of the real

experimental data; suggesting the validity of the model for this polymerisation. The model-

assisted platform identifies the lowest dispersity at experiment 5 with the highest conversion

after 6 min at 56 min using a 0.06 eq of the initiator, where a conversion of 26 % and a Ð of 1.14

which was lower than that found in Figure 5.1. The highest conversion with the lowest Ð can

be identified by data point 3 in figures 5.6. a and b. where a Ð of 1.23 was found after 20 min

using a 0.06 eq of the initiator at 56 ◦ C. The difference between experiments 5 and 3 was the

residence time; suggesting that a sufficient initiator was still available after 20 min of reaction.

The power of the model in finding the Pareto from in the first 5 experiments can be shown by

the fact that 4 of 5 of initial TS-EMO generated experiments lie on the Pareto front. A clear

reduction in the number of data points required to find the Pareto front was evident in Figure

5.6. a and b by the reduction in the number of data points at low initiator concentrations at

high temperatures and the reduction of points at longer residence times. Furthermore, there

were significantly fewer data points in conditions leading to conversions >100 %, that were a

result of the baselining of the NMR, which reduces the optimisation time. Experimental point

6 was identified after TS-EMO 1 which was similar to the point identified in the black box that

took 22 experiments to find, and a higher conversion was found with a Ð only 0.01 higher for

the model-assisted platform. This data point here was found using 0.055 initiator eq instead of

0.08, a temperature 2 ◦C lower and almost twice as long of a reaction time, and this highlights

the balance between conversion and control that is crucial in precision polymerisation. Overall,

a much clearer Pareto front was observed by training the TS-EMO algorithm with simulated

data.
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Figure 5.7: Regression analysis plots of (a) conversion and (b) dispersity for the the digitally
augmented optimisation for the aqueous RAFT polymerisation of DMAm in the presence of
TTC1 using VA044 as the initiator at a ratio of 200:1:x(0.04-0.09). Where the x and y axes
were the adjusted model and objectives, respectively. The data points represent the real data,
the solid red line is the predicted linear regression model and the dotted red lines represent the
95 % confidence limits. The x axis is adjusted due to the presence of 3 independent variables
which uses the Frisch-Waugh-Lovell theorem to account for all variables.

A multiple regression model can also be fitted to the variables and each objective model-assisted

platform shown in Figure 5.7 which can be used to further predict the effect of [I]:[CTA], temper-

ature, and residence time on conversion and molar mass dispersity. The effect of all independent
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variables on the conversion was observed, and here fewer data points can be seen than in the

black-box experiment. The abundance of data above 100 % conversion in Figure 5.5. a causes

a more significant deviation from linearity with respect to the independent variables model pre-

dictions were different compared to Figure 5.7. a. The RMSE of the linear regression for Figure

5.7. a was 0.11 and therefore higher than in Figure 5.5. a; This was probably due to the larger

spread in the objective data. The digitally directed optimisation was able to identify lower con-

version points, while the completely black-box experiment effectively looked more towards high

conversion >100 %. Consequently, the RMSE for directed optimisation was likely to predict

lower conversions more accurately than the black box due to fewer experiments conducted at

longer residence times. The dispersity regression shown in Figure 5.7. b, has a RMSE of 0.027

which was 0.01 less than the black box. Visually, it can be seen that most of the data points

are close to the predicted regression or within the confidence intervals, so it can be concluded

that the regression model was reliable. The LHC shown in Figure 5.6. a and b, demonstrate the

identification of an approximate minima. It took 30 s to run 15 training experiments in-silico

on a standard laboratory PC compared to the 560 minutes experimentally shown in Figure 5.4.

The initial TS-EMO iteration suggests 5 experiments - 3 out of 5 were identified on the Pareto

front. Following TS-EMO 1 the data were then fed into TS-EMO 2 which suggests single condi-

tion experiments. Fewer data points in the reaction space region that led to high dispersity and

conversions >100 % were observed by the digitally assisted platform. Further points located on

the Pareto front were identified in some additional experiments. As a result, there was approx-

imately 40 % reduction in the time taken and the volume of reagents required to optimise the

polymerisation of DMAm in flow.

Table 5.6: Table comparing the efficiency of the fully experimental optimisation platform with
the model-assisted platform to identify the Pareto front of the RAFT polymerisation of DMAm
in the presence of TTC1 using VA044 as the initiator

Fully Experimental Digitally Augmented
Number of experiments 28 13

Experimental training points 15 5
Volume of solution (mL) 450 180

Time taken to map Pareto front (h) 17 7

A black-box optimisation of butyl acrylate was carried out as an example of a non-ideal monomer.

Several radical species, including secondary propagating radicals and tertiary propagating rad-

icals, are known to exist during polymerisations of nBuA; with the temperature dependence
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effecting the concentration of these with respect to time. The potential for macromonomer

formation is typically seen at temperatures greater than 120 ◦C; this is problematic for the

bench-top NMR online monitoring as the conversion calculation is dependent on the vinyl inte-

gral. To reduce the effect of macromonomer formation, a maximum temperature of 100 ◦C was

selected. Furthermore, a lower temperature bound of 70 ◦C was selected to challenge to ensure

a large reaction space.
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5.3.3 Black-box self optimisation of 3D reaction parameter space for nBuA

Figure 5.8: 3D black-box closed loop optimisation of (a) conversion and (b) dispersity for the
RAFT polymerisation of nBuA in the presence of TTC1 using AIBN as the initiator at a ratio
of 200:1:x(0.04-0.09) in dioxane. Where circle size corresponds to higher conversion and colour
represents dispersity. (b) objective plot for dispersity vs conversion showing the 15 LHC training
experiments(red circles) and the results from the TS-EMO generated example(blue squares),
filled circles and squares correspond to data that lies on the Pareto front.
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From the black-box optimisation shown in Figure 5.8. a a more discontinuous colour map was

observed and a greater variation in conversion; this was indicative of the number of side reactions

that occur for acrylates. The condition set corresponding to the lowest Ð can be attributed to

data point 6 and this was one of the 15 LHC experiments. Here, a conversion of 19 % was

obtained with a dispersity of 1.09 after 7 min at 80 ◦ C using the 0.07 eq of the initiator. Again,

more initiators would usually lead to broader MWD and higher Ð however, the intermediate

temperature and the short residence time indicated that there is relatively good control. The

non-dominated solution with the highest conversion and the lowest dispersity can be identified

by point 40 where a conversion of 76 % corresponds to a Ð of 1.47 which is obtained after 19

min at 100 ◦ C using a 0.06 eq of the initiator. Under these conditions, the termination rate will

be higher and the overall concentration of radicals in solution will be higher, producing broader

molecular weight distributions. Of the 42 experiments, only 7 lie on the Pareto front, suggesting

that the algorithm struggles to find the Pareto front. In Figure 5.8. b, the LHC data show a

good spread in the objective space. The LHC finds the lower conversion part of the trade-off

and then finds a further Pareto front at higher conversion by experiment 20. Subsequently, it

took until experiments 37 and 40 to identify the Pareto front at 75-80 %. Again, anomalous

data points at very low conversion where there was no good GPC trace were treated as outliers

and a multiple linear regression analysis was conducted.
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Figure 5.9: Regression analysis plots of (a) conversion and (b) dispersity for the the blackbox
experimental optimisation of nBuA in the presence of TTC1 using AIBN as the initiator at a
ratio of 200:1:x(=0.04-0.09), where the x and y axes are the adjusted model and objectives,
respectively. The data points represent the real data, the solid red line is the predicted linear
regression model and the dotted red lines represent the 95 % confidence limits. The x axis was
adjusted due to the presence of 3 independent variables which uses the Frisch-Waugh-Lovell
theorem to account for all variables
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The linear regression showing the effect of all the variables on the conversion shows a good

linearity with most of the experimental data points lying within the 95 % confidence limits. The

regression analysis for DMAm in Figure 5.5. a shows more spread in the confidence intervals

compared to that of nBuA, which was also reflected in the RMSE of nBuA, where an RMSE

of 0.042 was achieved. This is likely due to the presence of many data points at full conversion

achieved for DMAm which will render poorer predictability by regression analysis. The dispersity

data in Figure 5.9. b has much greater 95 % confidence intervals than that seen previously for

DMAm in Figure 5.5. b This suggests there is less of a trend between the independent variables

and dispersity. Thus the predicted linear regression model is less accurate for nBuA than for

DMAm which is typically a result of increased side reactions owing to the formation of secondary

propagating radicals.231 This is reflected in the RMSE of nBuA for Ð where a value of 0.11 was

obtained.
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5.3.4 Model assisted self optimisation of 3D reaction parameter space for

nBuA

Figure 5.10: (a) 3D model-directed optimisation for the polymerisation of for the RAFT
polymerisation of nBuA in the presence of TTC1 using AIBN as the initiator at a ratio of
200:1:x(0.04-0.09) in dioxane. Where circle size corresponds to higher conversion and colour
represents dispersity. The size of bold circle corresponds to the conversion. (b) Objective plot of
dispersity vs conversion where the triangles are the results obtained following the first TS-EMO
iteration which utilised an LHC conducted in-silico (Black diamonds) to suggest 5 “real” training
experiments, TS-EMO1 (magenta triangles) and 2(blue squares)
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The simulated Latin hypercube training experiments shown in Figure 5.10 appear in the centre

of the data. The minima of the training data are at a much higher conversion compared to

the experimental data. For experimental data, an upturn in dispersity is observed around 20

% compared to 60 % for in-silico training data. Similarly, the in-silico data reach 100 %

conversion, while the experimental data only reach 78 %. Both of these points are indicative

of rate retardation, which is not accounted for in the model since the model used is applicable

only to RAFT polymerisations that exhibit pseudo-first-order kinetics. Regardless, the model-

directed optimisation platform identifies a well-defined Pareto front. Here, the non-dominated

solutions with the lowest dispersity and the highest conversion can be identified by point 6

generated by TS-EMO2 in Figure 5.10. b, which corresponds to the dark blue point at 72 ◦C

after 19 min using an initiator ratio of 0.055 obtaining a Ð of 1.09. Compared to the fully

experimental data, very similar objective data are found in the model-assisted platform, and

this point on the Pareto front is found after the same number of experiments. The difference

is that the temperature and initiator eq are lower for the digitally trained experiment; this is

likely due to the LHC finding the conditions that correspond to a higher level of control. These

conditions are low temperatures and low initiator concentrations, since the model operates using

rate constants. The non-dominated solution with the highest conversion and the lowest dispersity

is identified by the data point at 25 giving a conversion of 78 % and Ð of 1.46 corresponding to

the data obtained at 98 ◦C after 17 min using 0.075 eq of the initiator. Compared to the fully

experimental nBuA experiment, similar conversion and Ð was identified here; however, this is

the case lower temperatures and initiator eq are used. It is also important to note the reduction

in spread of the data in the model assisted data in Figure 5.10 where is its evident it takes less

time to find the Pareto front.
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Figure 5.11: Regression analysis plots of (a) conversion and (b) dispersity for the the digitally
augmented optimisation for the RAFT polymerisation of nBuA in the presence of TTC1 using
AIBN as the initiator at a ratio of 200:1:x(0.04-0.09) in dioxane. Where the x and y axes are
the adjusted model and objectives, respectively. The data points represent the real data, the
solid red line is the predicted linear regression model and the dotted red lines represent the 95
% confidence limits. The x axis is adjusted due to the presence of 3 independent variables which
uses the Frisch-Waugh-Lovell theorem to account for all variables%
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Again, like for DMAm, the nBuA linear regressions offer a better fit than the fully experimental

runs. In Figure 5.11. a, the conversion shows a good linear fit with fewer anomalous data points

compared to the fully experimental-derived model in Figure 5.11. a, which is reflected in a

lower RMSE of 0.032. This is not unexpected as many of the data points corresponding to less

controlled systems that may experience greater retardation are avoided using the in-silico LHC.

This is further observed in Figure 5.11. b, where the Ð are much less spread, and an RMSE

of 0.061 is achieved, this suggests that the model used for training is good enough to obtain

enough experimental data to predict the results of further experiments using a linear regression.

Table 5.7: Table comparing the efficiency of the fully experimental optimisation platform with
the model-assisted platform to identify the Pareto front of the RAFT polymerisation of nBuA
in the presence of TTC1 using AIBN as the initiator

Fully Experimental Digitally Augmented
Number of Experiments 42 26

Number of Training points 15 5
Volume of Solution (mL) 714 442

Time taken to map Pareto front (h) 36 22

Although the model is less suitable for the nBuA system, it showed the ability to identify a

similar Pareto front in 38 % less time. This saves 272 mL of reagents and since 1,4-dioxane

was used as the solvent, this is a significant reduction in cost. Though the model did not find

the Pareto front in as few experiments as DMAm a total reduction was still observed, and a

platform capable of learning from theoretical knowledge with little human interaction has been

demonstrated.

5.3.5 Model assisted self optimisation of 3D reaction parameter space for

tBuAm

Another less ideal bulky monomer was selected and a model-assisted optimisation was conducted

on this system. In this case, the solid monomer tBuAm at 60 w/w % was insoluble in methanol;

consequently, a reservoir solid content of 45.5 w/w % was used to ensure solubility. To retain a

level of accuracy of the pumps, the target solid content of each reaction solution was reduced to

20 w/w %.
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Figure 5.12: (a) 3D model-directed optimisation for the polymerisation of tBuAm in the presence
of TTC1 using AIBN as the initiator at a (200:1:x(=0.04-0.09)) at 20 w/w % in methanol.(b)
Objective plot of dispersity vs conversion where the triangles are the results obtained following
the first TS-EMO iteration which utilised an LHC conducted in-silico (Black diamonds) to
suggest 5 “real” training experiments, TS-EMO1 (magenta triangles) and 2(blue squares)

The overall Ð was higher for tBuAm even with a low solid content than for DMAm and nBuA.

The lowest Ð non-dominated solution achieved was 1.28 with a conversion of 50 % - which was

obtained after 15 min at 86 ◦C with a low initiator ratio of 0.04 eq. This data point was the
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17 th to be identified and this was in TS-EMO experiments after TS-EMO 1 which can be seen

in the figures 5.12. a and b. On the other hand, the non-dominated solution with the highest

conversion and the lowest Ð was identified after 20 min at 100 ◦ C using a 0.09 eq. Affording a

conversion of 81 % and Ð of 1.45 after the 11 th experiment. This suggests that the algorithm

tried to identify higher conversions before the lower dispersity, which is the opposite to what

was the case for nBuA and DMAm. Compared to previous experiments only 1 of 5 of TS-EMO1

experiments, following the in-silico LHC, lies on the Pareto front. It subsequently takes 3 further

experiments to identify the next Pareto data point. Here, there are some anomalous data points

indicated by the discontinuity of the colour map. The high Ð (deep red) data point at 94

◦C using an initiator eq of 0.08 after 13 min gives a Ð greater than points at higher initiator

concentrations, longer residence times and higher temperatures. This suggests that there could

have been some fouling that enhanced the effects of potential side reactions associated with

tBuAm. Data point 2 looks like an anomalous point, as it is lower than its analogous reactions

at different initiator concentrations but with the same temperature (◦ C) and residence times

(18 min). The potential rate retardation is evident here, shown by the increase then decrease

in conversion, as the initiator is increased from 0.09 to 0.095 to 0.1 eq. It can be can assumed

that there were not enough radicals present at 0.09 to react with a high conversion; then at

0.095 there is enough to reach a conversion of 74 %. As there is no indication of fouling in

the reactor (i.e. no pressure increase; see the appendix for pressure monitoring), the decrease

in conversion at 0.1 eq is possibly caused by an increase in exotherm leading to side reactions;

however, further studies and repeats would need to be conducted to determine this. Figure 5.12.

b shows that, regardless, the model proposed in Chapter 4 did a relatively good job of finding

the Pareto front for this challenging system. To further investigate the effects of these conditions

on the conversion and dispersity data, a linear regression analysis was performed.
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Figure 5.13: Regression analysis plots of (a) conversion and (b) dispersity for the the digitally
augmented optimisation for the RAFT polymerisation of tBuAm in the presence of TTC1 using
AIBN as the initiator at a ratio of 200:1:x(0.04-0.09) in Methanol. Where the x and y axes are
the adjusted model and objectives, respectively. The data points represent the real data, the
solid red line is the predicted linear regression model and the dotted red lines represent the 95
% confidence limits. The x axis is adjusted due to the presence of 3 independent variables which
uses the Frisch-Waugh-Lovell theorem to account for all variables%

It can be seen from the regression analysis in Figure 5.13 that the conversions have a relatively

linear correlation; however, as expected, the data points corresponding to the anomalies in
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Figure 5.12. a exist outside of the 95 % confidence intervals. This indicates the presence of

other variables, such as side reactions/exotherms/errors, in the analysis. This is even more

apparent for the dispersity regressions in Figure 5.13. shown by the large confidence intervals.

5.4 Conclusions

To conclude this section, a platform capable of optimisation of 3 variables and 2 conflicting

objectives has been developed requiring no a priori knowledge of the reaction. The ultra-fast

RAFT polymerisation of DMAm was optimisable in 17 h and the less ideal nBuA was optimisable

in 36 h. Linear regression analysis was less appropriate for DMAm conversion data due to the

abundance of points at a max conversion of 100 %. More anomalies were observed by the

nBuA regressions which is likely due to the presence of side reactions owing to the secondary

propagating radicals and chain transfer to solvent. In addition, the ability to pre-program

theoretical knowledge of the reactions to improve the efficiency of TS-EMO to find the Pareto

front has been demonstrated. For DMAm this was very successful due to the ability of the

model to accurately model the conversion and dispersity. For nBuA this was even more of a

challenge due to the assumption that there are no other side reactions happening. Regardless,

for this system the model was able to find the Pareto front in a shorter time. For tBuAm even

less ideality was observed but the algorithm did manage to identify a Pareto front in as few as

19 experiments. The low computational expense of the model enabled rapid training of 15 LHC

generated experiments in as little as 30 s. A more complex model such as implementing MoM

or kMC may improve the ability of the algorithm to find the Pareto front in fewer experiments.

Further, work may also include the use of regression models to inform future optimisations.
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The implementation of self-optimisation algorithms in the pharmaceutical and small molecule

industries has led to huge advances in the optimisation of APIs and commercial molecule syn-

thesis. There has been a slight delay in material chemistry, but traction has increased in the

last decade. The synthesis of defined homopolymers is discussed with the aim of optimisation

of the reaction parameters for the resultant conversion and dispersity. Here, the aim was to

take advantage of the benefits of continuous flow, such as efficient heat transfer, safer process

conditions above solvent boiling points, automated analysis, and online analysis to optimise the

synthesis of polymerisations under more extreme conditions. The platform has been successfully

applied and adapted to the RAFT polymerisation of dimethylacrylamide, tert-butylacrylamide,

and butylacrylate. The optimisation platform operates using a state-of-the-art Bayesian algo-

rithm that provides rapid evaluation of complex reactions compared to traditional OVAT and

DoE approaches.

In Chapter 2 the closed-loop autonomous Bayesian optimisation of several homopolymers was

discussed, these included: PDMAm, PtBuAm, and PBuA. Orthogonal online analysis in the

form of GPC and NMR and continuous liquid handling allowed high-throughput optimisation

of the reaction in as little as 20 experiments, including the 10 training experiments. The sur-

faces fitted to the data allowed for qualitative depiction of the effect of temperature and resi-

dence time on the conversion and dispersity and highlighted the areas of the reaction parameter

space of interest for precision polymer synthesis. RAFT agents for the polymerisation of tert-

butylacrylamide including two trithiocarbonates that differed by Z group and a halogenated

pyrazole dithiocarbonate. Subsequently, this allowed the RAFT agent that afforded superior
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precision to be identified by comparison of the surfaces and the Pareto fronts. The Pareto fronts

of dimethylacrylamide and butylacrylate at temperatures at or above boiling points were also

obtained, and non-dominated solutions that led to low Ð and high conversion were identified.

The validity of using an inline degasser for optimisation was also attempted; however, large in-

ternal volumes rendered this invalid. The optimisation platform was also applied to a statistical

copolymerisation that was shown to only reach 48 % conversion, which was considered due to

rate-retardation by acrylate and the presence of an aprotic solvent. Prior to the work in this

thesis, the novelty lies in the way in which the optimisations have been carried out, here the

polymerisation optimisations are conducted in continuous flow and not plug flow; which improves

the productivity. In addition, previously, a fully closed-loop optimisation platform had not been

reported for polymerisation, and the work in this thesis uses a fully autonomous platform that

only requires the press of a button to optimise due to the use of online analytics. This work has

defined a starting point for intelligent synthesis of materials in a user-independent fashion that

may be applied to other types of polymerisation and nano object formation. Further work to im-

prove this platform could involve using the MVMOO algorithm to include categorical variables

(i.e., solvent or RAFT agent), allowing identification of the optimum reaction system leading

to the lowest Pareto front. Furthermore, work to optimise the protocol for the conversion of

fluorinated monomers would be an interesting step toward a completely closed-loop continuous

self-optimisation of the activity of the MRI agent 19F .

Chapter 3 addressed the challenges of expanding the reaction space through the inclusion of

additional pumps, allowing for autonomous variation in initiator equivalence. The main objective

of this thesis was to develop a platform capable of precision; therefore, it was important to design

the reactor to reduce the effects of laminar flow regimes, inefficient mixing, and unreliable pumps.

Ultra-fast RAFT polymerisation of DMAm using VA044 was selected as a model system and

molecular weight distributions determined by GPC/SEC were used to characterise mixing, with

Ð indicating the efficiency of mixing. Rapid kinetics afforded poor mixing in the system that

relied on diffusion; a home-made packed bed offered the best mixing compared to 2 commercially

available micromixers. The packed bed was then used on the expanded platform. A larger coil

was also used for further experiments because of the reliability of the flow rates of the HPLC

pumps used. Contrary to the literature, the packed bed did not cause asymmetry of the RTD

that had been shown in Chapter 1 for a static mixer. The effect of temperature on RTD was

also characterised here for the viscous PDMAm200 tracer, which had not been done before
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for polymerisation and showed an expected narrowing of the RTD which is possibly due to

temperature dependence of viscosity. The value of this chapter came in useful in Chapter 4 and

5 where the RTD was superimposed onto batch MWDs to identify a broadening factor; that was

used to account for the effects of laminar flow regimes.

With the aim of using modelling to train the TS-EMO algorithm used in Chapter 2, an accessi-

ble model was developed for RAFT. In the search for identifying a computationally inexpensive

model that could accurately predict conversion and Ð, it was observed that a complete explicit

dispersity equation that accounts for terminative events was not available for RAFT. In Chap-

ter 4, an explicit equation for dispersity was proposed as a function of conversion for RAFT

polymerisation and validated against the literature and experimental data. Validation against

experimental data from the literature for batch polymerisations of AAm, AA, and MA and ex-

perimentally in this work for DMAm. This was compared with existing equations for dispersity

as a function of the conversion, where only terms one to three accounting for "livingness" and

chain transfer to CTA were solved and found to fit the experimental data better. RTD associ-

ated with flow was taken into account by superimposing the RTD on each bin in the MWDs,

and the convolution of these MWDs was used to obtain the dispersity and obtain the relative

broadening factor, which is added onto the dispersity equation. The conversion obtained by

NMR from the flow setup was shown to exhibit ideal heat transfer; indicated by the fit to the

isothermal simulation. Semi-empiral simulation and validation of the batch experiment were

also performed using the temperature trace, showing the expected induction period. Further

improvements to the model could include accounting for transfer to the solvent or be used to fit

approximate addition/fragmentation rate constants. The work in chapter 4 is useful not only

for implementation in a self-optimising experimental platform, as discussed in chapter 5 but also

for the wider polymer community. The IUPAC polymer division has significant interest in the

bench-marking of rate constants due to the errors associated with the measurement and variation

between different groups. The model may provide additional validation of these experiments,

as well as, the ability to fit the model to elucidate transfer rate coefficients. The application

and spreadsheet provides two accessible open-access routes to modelling RAFT polymerisation

without the need for extensive coding; therefore, this could provide synthetic polymer chemists

with the ability to predict outcomes of batch or flow reactions, reducing the time, money, and

environmental impact of their work.
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Typically, modelling is not a replacement for experimental work due to the nature of assumptions

made to reduce computational expense and/or availability of rate coefficients. Following model

validation, the conversion and dispersity model was augmented in the flow reactor software

interface and used in conjunction with TS-EMO to provide an in-silico LHC training data set.

Since the model may not provide the best fit in some monomer circumstances, the in-silico LHC

data set was only used to train the initial TSEMO iteration 1. The digitally augmented platform

performed the best for the polymerisation of N,N-dimethylacrylamide, reducing the number of

experiments required to trace the pareto front by 40 % while also reducing the number of wasted

experiments by more than 100 %, this data is shown in Table 6.1, highlighting the improvement

in sustainability of the process. The model-assisted platform was unexpectedly useful in reducing

the number of experiments for more challenging monomers using an ideal model. Multiple linear

regression analysis shows a link between variables and effects on the objectives and was shown

to work for small data sets after in-silico modelling. This area could be improved by using more

complex modelling techniques, such as MoM or computationally inexpensive methods kMC.

Improvements to the setup could also be made by introducing plug flow to reduce the effects of

residence time distribution; however, this would require an efficient method of degassing before

entering the GPC setup. Further work into incorporating categorical variables through inclusion

of a multi-position switching valve could further diversify the platform to enable continuous

screening of new RAFT agents. Chapter 5 offers a novel and unique approach to optimisation,

which could be useful if a monomer with a challenging low-yielding synthesis is used, as there is

a significant reduction in volumes of reagents required and, in theory, only a propagation rate

constant of a certain monomer class is required. The modular approach to optimisation may

also be applied to other chemistry such as small chemical industries, provided the reaction step

in question has a relatively good model for both conflicting objectives, as the model can be

switched for a different model with a few lines of code.

Table 6.1: Summary table showing the decrease in experimental time achieved using the digitally
augmented platform for (a)DMAm and (b)nBuA

Fully Experimental Digitally Augmented
Number of experiments 28a/42b 13a/26b

Experimental training points 15a/15b 5a/5b

Volume of solution (mL) 450a/714b 180a/442b

Time taken to map Pareto front (h) 17a/36b 7a/22b

Fully autonomous self-optimisation applied to polymers is still in its early days. In the same
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way that the application of machine learning algorithms has enabled high-throughput optimi-

sation of pharmaceuticals/fine chemicals, it could also be used to facilitate the optimisation of

polymeric nano-objects. High-throughput experimentation can provide big data to feed into fur-

ther machine learning algorithms to model and predict success outcomes when discovering new

polymeric materials. However, this is not without potential challenges, including the availability

of online monitoring techniques and reactor fouling. Work on scaling up and/or numbering up

these types of polymerisation reactors could also improve the productivity of certain polymers.

An algorithm such as MVMOO as mentioned in Chapter 1 could facilitate self-optimisation

of the reactor geometries of different 3D printed microfluidic reactors by selecting the reactor

used. Identifying rate constants by feeding data into machine learning algorithms would also

be an interesting opportunity to predict values, which would be useful for all polymer chemists,

whether synthetic or computational.

160



References

(1) Morawetz, H. In Encyclopedia of Polymer Science and Technology, 2014, pp 1–30.

(2) Berzelius, J. J. Annalen der Physik 1832, 102, 320–322.

(3) Staudinger, H. Reports of the German Chemical Society (A and B Series) 1920, 53,

1073–1085.

(4) Berthelot, M. Société de Paris 1866.

(5) Carothers, W. H. Journal of the American Chemical Society 1929, 51, 2548–2559.

(6) Odian, G., Principles of Polymerization, 2004.

(7) Bhanu, V. A.; Kishore, K Chemical Reviews 1991, 91, 99–117.

(8) Li, N.; Pan, X.-C. Chinese J. Polym. Sci 2021, 39, 1084–1092.

(9) Jenkins, A. D.; Stepto, R. F.; Kratochvíl, P.; Suter, U. W. Pure and Applied Chemistry

1996, 68.

(10) Szwarc, M.; Levy, M.; Milkovich, R. Polymerization initiated by electron transfer to

monomer. A new method of formation of block polymers, 1956.

(11) Szwarc, M.; Litt, M. Journal of Physical Chemistry 1958, 62, 568–569.

(12) Szwarc, M. Journal of Polymer Science Part A: Polymer Chemistry 1998, 36.

(13) Baskaran, D.; Müller, A. H. Progress in Polymer Science (Oxford) 2007, 32, 173–219.

(14) Takahashi, Y.; Nagaki, A. Anionic polymerization using flow microreactors, 2019.

161



REFERENCES REFERENCES

(15) Stobbe H.; Posnjak, G. Justus Liebigs Annalen der Chemie 1909, 371, 259.

(16) Stobbe, H. Justus Liebigs Annalen der Chemie 1915, 409, 1–13.

(17) Lautenschlager, L University of Karlsruhe 1913.

(18) Staudinger, H.; Brunner, M.; Frey, K.; Garbsch, P.; Signer, R.; Wehrli, S. Reports of the

German Chemical Society (A and B Series) 1929, 62, 241–263.

(19) Staudinger, H. Reports of the German Chemical Society (A and B Series) 1926, 59,

3019–3043.

(20) Staudinger, H.; Kohlschütter, H. W. Reports of the German Chemical Society (A and B

Series) 1931, 64, 2091–2098.

(21) Schulz, G. Zeitschrift für physikalische Chemie 1935, 30, 379–398.

(22) Flory, P. J. Journal of the American Chemical Society 1937, 59, 241–253.

(23) Brandrup, J; Immergut, E. H.; Grulk, E. A., Polymer Handbook fouth edition, 1999,

p 2366.

(24) Buback, M.; Schroeder, H.; Kattner, H. Detailed Kinetic and Mechanistic Insight into

Radical Polymerization by Spectroscopic Techniques, 2016.

(25) Beuermann, S.; Buback, M. Progress in Polymer Science (Oxford) 2002, 27, 191–254.

(26) Buback, M.; Kattner, H. Molecular Physics 2021, 119, DOI: 10.1080/00268976.2021.

1939452.

(27) Buback, M.; Müller, E.; Russell, G. T. Journal of Physical Chemistry A 2006, 110, 3222–

3230.

(28) Drawe, P.; Buback, M. Macromolecular Theory and Simulations 2016, 25, 74–84.

(29) Perrier, S. 50th Anniversary Perspective: RAFT Polymerization - A User Guide, 2017.

(30) Trommsdorff, V. E.; Köhle, H.; Lagally, P. Die Makromolekulare Chemie 1948, 1, 169–

198.

162

https://doi.org/10.1080/00268976.2021.1939452
https://doi.org/10.1080/00268976.2021.1939452


REFERENCES REFERENCES

(31) NORRISH, R. G. W.; SMITH, R. R. Nature 1942, 150, 336–337.

(32) Jenkins, A. D.; Jones, R. G.; Moad, G. Pure and Applied Chemistry 2010, 82, 483–491.

(33) Moad, G.; Rizzardo, E. In RSC Polymer Chemistry Series; 19, 2016; Vol. 2016-Janua,

pp 1–44.

(34) Wang, J. S.; Matyjaszewski, K. Macromolecules 1995, 28, 7901–7910.

(35) Dworakowska, S.; Lorandi, F.; Gorczyński, A.; Matyjaszewski, K. Toward Green Atom

Transfer Radical Polymerization: Current Status and Future Challenges, 2022.

(36) Solomon, D. H.; Rizzardo, E.; Cacioli, P. European Patent Application 1985, 1985.

(37) Marić, M. Canadian Journal of Chemical Engineering 2021, 99, 832–852.

(38) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne,

R. T.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules

1998, 31, 5559–5562.

(39) Tian, X.; Ding, J.; Zhang, B.; Qiu, F.; Zhuang, X.; Chen, Y. Recent advances in RAFT

polymerization: Novel initiation mechanisms and optoelectronic applications, 2018.

(40) Opiyo, G.; Jin, J. Recent progress in switchable RAFT agents: Design, synthesis and

application, 2021.

(41) Braunecker, W. A.; Matyjaszewski, K. Progress in Polymer Science 2007, 32, 93–146.

(42) Truong, N. P.; Jones, G. R.; Bradford, K. G.; Konkolewicz, D.; Anastasaki, A. Nature

Reviews Chemistry 2021 5:12 2021, 5, 859–869.

(43) Solomon, D. H.; Waverley, G. European Patent 1984, 581, 429.

(44) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl

Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/

Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living

Radical Polymerization, 1995.

(45) Krys, P.; Matyjaszewski, K. Kinetics of Atom Transfer Radical Polymerization, 2017.

163



REFERENCES REFERENCES

(46) Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Chemical Society Reviews 2018, 47,

5457–5490.

(47) Barner-Kowollik, C., Handbook of RAFT Polymerization, 2008, pp 1–543.

(48) Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. RAFT agent design and synthesis,

2012.

(49) Donald, M. K.; Bon, S. A. Polymer Chemistry 2020, 11, 4281–4289.

(50) Benaglia, M.; Chiefari, J.; Chong, Y. K.; Moad, G.; Rizzardo, E.; Thang, S. H. Journal

of the American Chemical Society 2009, 131, 6914–6915.

(51) Enikolopyan, N. S.; Smirnov, B. R.; Ponomarev, G. V.; Belgovskii, I. M. Journal of

polymer science. Part A-1, Polymer chemistry 1981, 19, 879–889.

(52) Engelis, N. G.; Anastasaki, A.; Nurumbetov, G.; Truong, N. P.; Nikolaou, V.; Shegiwal,

A.; Whittaker, M. R.; Davis, T. P.; Haddleton, D. M. Nature Chemistry 2017, 9, 171–

178.

(53) Engelis, N. G.; Anastasaki, A.; Whitfield, R.; Jones, G. R.; Liarou, E.; Nikolaou, V.;

Nurumbetov, G.; Haddleton, D. M. Macromolecules 2018, 51, 336–342.

(54) Wang, Y.; Fantin, M.; Park, S.; Gottlieb, E.; Fu, L.; Matyjaszewski, K. Macromolecules

2017, 50, 7872–7879.

(55) J. Monteiro, M.; de Brouwer, H. Macromolecules 2001, 34, 349–352.

(56) Kwak, Y.; Goto, A.; Tsujii, Y.; Murata, Y.; Komatsu, K.; Fukuda, T. Macromolecules

2002, 35, 3026–3029.

(57) Barner-Kowollik, C.; Quinn, J. F.; Morsley, D. R.; Davis, T. P. Journal of Polymer

Science, Part A: Polymer Chemistry 2001, 39, 1353–1365.

(58) Vana, P. In Macromolecular Symposia, 2007; Vol. 248, pp 71–81.

(59) Coote, M. L. Macromolecules 2004, 37, 5023–5031.

164



REFERENCES REFERENCES

(60) Zapata-Gonzalez, I.; Hutchinson, R. A.; Buback, M.; Rivera-Magallanes, A. Chemical

Engineering Journal 2021, 415, 128970.

(61) Bradford, E.; Schweidtmann, A. M.; Lapkin, A. Journal of Global Optimization 2018,

71, 407–438.

(62) Veloso, A.; García, W.; Agirre, A.; Ballard, N.; Ruipérez, F.; De La Cal, J. C.; Asua,

J. M. Polymer Chemistry 2015, 6, 5437–5450.

(63) Junkers, T.; Barner-Kowollik, C. Journal of Polymer Science, Part A: Polymer Chemistry

2008, 46, 7585–7605.

(64) Reyhani, A.; McKenzie, T. G.; Ranji-Burachaloo, H.; Fu, Q.; Qiao, G. G. Chemistry - A

European Journal 2017, 23, 7221–7226.

(65) Chapman, R.; Gormley, A. J.; Herpoldt, K. L.; Stevens, M. M. Macromolecules 2014,

47, 8541–8547.

(66) Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Nature Communications 2013

4:1 2013, 4, 1–9.

(67) Gody, G.; Barbey, R.; Danial, M.; Perrier, S. Polym. Chem 2015, 6, 1502.

(68) Leuchs, H. Berichte der deutschen chemischen Gesellschaft 1906, 39, 857–861.

(69) Grubbs, R. B. Nitroxide-mediated radical polymerization: Limitations and versatility,

2011.

(70) Grubbs, R. B.; Grubbs, R. H. 50th Anniversary Perspective: Living Polymerization -

Emphasizing the Molecule in Macromolecules, 2017.

(71) Overberger, C. G.; O’shaughnessy, T; Shalit, H Trans. Faraday Sac 1949, 71, 2027.

(72) Idage, B. B.; Vernekar, S. P.; Ghatge, N. D. Journal of polymer science. Part A-1,

Polymer chemistry 1983, 21, 2145–2156.

(73) Gillespie, D. T. Journal of Computational Physics 1976, 22, 403–434.

165



REFERENCES REFERENCES

(74) Rego, A. S.; Brandão, A. L. Industrial and Engineering Chemistry Research 2021, 60,

8396–8408.

(75) Al-Harthi, M. A.; Masihullah, J. K.; Abbasi, S. H.; Soares, J. B. Macromolecular Theory

and Simulations 2009, 18, 307–316.

(76) He, J.; Li, L.; Yang, Y. Macromolecular Theory and Simulations 2000, 9, 463–468.

(77) He, J.; Zhang, H.; Chen, J.; Yang, Y. Macromolecules 1997, 30, 8010–8018.

(78) Drache, M.; Schmidt-Naake, G.; Buback, M.; Vana, P. Polymer 2005, 46, 8483–8493.

(79) Pintos, E.; Sarmoria, C.; Brandolin, A.; Asteasuain, M. Industrial and Engineering Chem-

istry Research 2016, 55, 8534–8547.

(80) Brandão, A. L.; Soares, J. B.; Pinto, J. C.; Alberton, A. L. When Polymer Reaction

Engineers Play Dice: Applications of Monte Carlo Models in PRE, 2015.

(81) Tripathi, A. K.; Sundberg, D. C. Macromolecular Theory and Simulations 2015, 24,

52–64.

(82) Mohammadi, Y.; Pakdel, A. S.; Saeb, M. R.; Boodhoo, K. Chemical Engineering Journal

2014, 247, 231–240.

(83) Gibson, M. A.; Bruck, J. Journal of Physical Chemistry A 2000, 104, 1876–1889.

(84) Chaffey-Millar, H.; Stewart, D.; Chakravarty, M. M.; Keller, G.; Barner-Kowollik, C.

Macromolecular Theory and Simulations 2007, 16, 575–592.

(85) Drache, M.; Drache, G. Polymers 2012, 4, 1416–1442.

(86) Mastan, E.; Zhu, S. European Polymer Journal 2015, 68, 139–160.

(87) D’hooge, D. R.; Reyniers, M. F.; Marin, G. B. Macromolecular Reaction Engineering

2009, 3, 185–209.

(88) D’Hooge, D. R.; Konkolewicz, D.; Reyniers, M. F.; Marin, G. B.; Matyjaszewski, K.

Macromolecular Theory and Simulations 2012, 21, 52–69.

166



REFERENCES REFERENCES

(89) Toloza Porras, C.; D’Hooge, D. R.; Reyniers, M. F.; Marin, G. B. Macromolecular Theory

and Simulations 2013, 22, 136–149.

(90) Riazi, H.; Shamsabadi, A. A.; Grady, M. C.; Rappe, A. M.; Soroush, M. Processes 2019,

7, 656.

(91) Dorschner, D.; Jung, W.; Riahinezhad, M.; Duever, T. A.; Penlidis, A. Journal of Macro-

molecular Science, Part A: Pure and Applied Chemistry 2017, 54, 339–371.

(92) Asteasuain, M. International Journal of Polymer Science 2018, 2018, ed. by Roghani-

Mamaqani, H., 7803702.

(93) Veregin, R. P.; Odell, P. G.; Michalak, L. M.; Georges, M. K. Macromolecules 1996, 29,

3346–3352.

(94) Bonilla, J.; Saldívar, E.; Flores-Tlacuahuac, A.; Vivaldo-Lima, E.; Pfaendner, R.; Tiscareño-

Lechuga, F. Polymer Reaction Engineering 2002, 10, 227–263.

(95) Wang, A. R.; Zhu, S. Journal of Polymer Science, Part A: Polymer Chemistry 2003,

41, 1553–1566.

(96) Jiang, J.; Wang, W. J.; Li, B. G.; Zhu, S. Macromolecular Reaction Engineering 2017,

11, 1700029.

(97) Wulkow, M. Macromolecular Theory and Simulations 1996, 5, 393–416.

(98) Wulkow, M. Macromolecular Reaction Engineering 2008, 2, 461–494.

(99) Vana, P.; Davis, T. P.; Barner-Kowollik, C. Macromolecular Theory and Simulations

2002, 11, 823–835.

(100) Zetterlund, P. B.; Gody, G.; Perrier, S. Macromolecular Theory and Simulations 2014,

23, 331–339.

(101) Corrigan, N.; Boyer, C. Macromolecules 2022, 55, 8960–8969.

(102) Wang, A. R.; Zhu, S. Macromolecular Theory and Simulations 2003, 12, 663–668.

(103) Mastan, E.; Zhu, S. Macromolecules 2015, 48, 6440–6449.

167



REFERENCES REFERENCES

(104) Wang, T. T.; Wu, Y. Y.; Luo, Z. H.; Zhou, Y. N. Macromolecules 2020, 53, 10813–10822.

(105) Figini, V. R. V. Die Makromolekulare Chemie 1964, 71, 193–197.

(106) Figini, V. R. V. Die Makromolekulare Chemie 1967, 107, 170–187.

(107) Coleman, B. D.; Fox, T. G. Journal of the American Chemical Society 1963, 85, 1241–

1244.

(108) Zhu, S. Macromolecular Theory and Simulations 1999, 8, 29–37.

(109) H. E. Mueller, A.; Yan, D.; Litvinenko, G.; Zhuang, R.; Dong, H. Macromolecules 2002,

28, 7335–7338.

(110) Kearns, M. M.; Morley, C. N.; Parkatzidis, K.; Whitfield, R.; Sponza, A. D.; Chakma,

P.; De Alwis Watuthanthrige, N.; Chiu, M.; Anastasaki, A.; Konkolewicz, D. Polymer

Chemistry 2022, 13, 898–913.

(111) Heuts, J. P.; Russell, G. T.; Smith, G. B.; Van Herk, A. M. In Macromolecular Symposia,

2007.

(112) H. E. Mueller, A. et al. Kinetic Analysis of "Living" Polymerization Processes Exhibiting

Slow Equilibria. 1. Degenerative Transfer (Direct Activity Exchange between Active and

"Dormant" Species). Application to Group Transfer Polymerization.

(113) Harrisson, S. Polymers 2018, 10, 887.

(114) Zhou, Y.-n.; Li, J.-j.; Wang, T.-t.; Wu, Y.-y.; Luo, Z.-h. Progress in Polymer Science

2022, 130, 101555.

(115) Beers, K. L.; Boo, S.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 1999, 32, 5772–

5776.

(116) Gromada, J.; Spanswick, J.; Matyjaszewski, K. Macromolecular Chemistry and Physics

2004, 205, 551–566.

(117) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker’s Guide to

Flow Chemistry â¥, 2017.

168



REFERENCES REFERENCES

(118) Wegner, J.; Ceylan, S.; Kirschning, A. Ten key issues in modern flow chemistry, 2011.

(119) Zhang, J.; Wang, K.; Teixeira, A. R.; Jensen, K. F.; Luo, G. Design and scaling up of

microchemical systems: A review, 2017.

(120) Nagy, K. D.; Shen, B.; Jamison, T. F.; Jensen, K. F. Organic Process Research and

Development 2012, 16, 976–981.

(121) Gobert, S. R.; Kuhn, S.; Braeken, L.; Thomassen, L. C. Organic Process Research and

Development 2017, 21, 531–542.

(122) Fogler, H. S. Elements of Chemical Reaction Engineering 2006, 867–944.

(123) Reis, M. H.; Varner, T. P.; Leibfarth, F. A. Macromolecules 2019, 52, 3551–3557.

(124) Flow Chemistry – Fundamentals, 2021.

(125) Peres, J. C. G.; Herrera, C. d. C.; Baldochi, S. L.; de Rossi, W.; dos Santos Vianna, A.

Canadian Journal of Chemical Engineering 2019, 97, 594–603.

(126) Patel, No Title No Title No Title; De Gruyter: 2019, pp 9–25.

(127) UNDRR UNDRR - Terminology, 2017.

(128) Kockmann, N.; Thenée, P.; Fleischer-Trebes, C.; Laudadio, G.; Noël, T. Cite this: React.

Chem. Eng 2017, 2, 258.

(129) Mastronardi, F.; Gutmann, B.; Oliver Kappe, C. Organic Letters 2013, 15, 5590–5593.

(130) Dallinger, D.; Gutmann, B.; Kappe, C. O. Cite This: Acc. Chem. Res 2020, 53, 1330–

1341.

(131) Borukhova, S.; Noël, T.; Metten, B.; Devos, E.; Hessel, V. ChemSusChem 2013, 6, 2220–

2225.

(132) Woitalka, A.; Kuhn, S.; Jensen, K. F. Chemical Engineering Science 2014, 116, 1–8.

(133) Zhao, F.; Cambié, D.; Janse, J.; Wieland, E. W.; Kuijpers, K. P.; Hessel, V.; Debije,

M. G.; Noël, T. ACS Sustainable Chemistry and Engineering 2018, 6, 422–429.

169



REFERENCES REFERENCES

(134) Merrifield, R. B. Science 1965, 150, 178–185.

(135) Houben, C.; Peremezhney, N.; Zubov, A.; Kosek, J.; Lapkin, A. A. Organic Process

Research and Development 2015, 19, 1049–1053.

(136) Dragone, V.; Sans, V.; Henson, A. B.; Granda, J. M.; Cronin, L. Nature Communications

2017, 8, 1–8.

(137) Chatterjee, S.; Guidi, M.; Seeberger, P. H.; Gilmore, K. Nature 2020, 579, 379–384.

(138) Holmes, N.; Akien, G. R.; Blacker, A. J.; Woodward, R. L.; Meadows, R. E.; Bourne,

R. A. Reaction Chemistry and Engineering 2016, 1, 366–371.

(139) Jeraal, M. I.; Holmes, N.; Akien, G. R.; Bourne, R. A. Tetrahedron 2018, 74, 3158–3164.

(140) Ingham, R. J.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Beilstein Journal of Organic

Chemistry 2014, 10, 641–652.

(141) Van Herck, J.; Abeysekera, I.; Buckinx, A.-L.; Cai, K.; Hooker, J.; Thakur, K.; Van de

Reydt, E.; Voorter, P.-J.; Wyers, D.; Junkers, T. Digital Discovery 2022, 1, 519–526.

(142) Gilmore, K.; Kopetzki, D.; Lee, J. W.; Horváth, Z.; McQuade, D. T.; Seidel-Morgenstern,

A.; Seeberger, P. H. Chemical Communications 2014, 50, 12652–12655.

(143) Brocklehurst, C. E.; Lehmann, H.; La Vecchia, L. Organic Process Research and Devel-

opment 2011, 15, 1447–1453.

(144) McMullen, J. P.; Jensen, K. F. Annual Review of Analytical Chemistry 2010, 3, 19–42.

(145) Lange, H.; Carter, C. F.; Hopkin, M. D.; Burke, A.; Goode, J. G.; Baxendalea, I. R.;

Ley, S. V. Chemical Science 2011, 2, 765–769.

(146) Moore, J. S.; Jensen, K. F. Organic Process Research and Development 2012, 16, 1409–

1415.

(147) Rodriguez-Zubiri, M.; Felpin, F. X. Organic Process Research and Development 2022,

2022, 1766–1793.

170



REFERENCES REFERENCES

(148) Benito-Lopez, F.; Verboom, W.; Kakuta, M.; Gardeniers, J. G.; Egberink, R. J.; Oost-

erbroek, E. R.; Van Den Berg, A.; Reinhoudt, D. N. Chemical Communications 2005,

2857–2859.

(149) Ahmed-Omer, B.; Sliwinski, E.; Cerroti, J. P.; Ley, S. V. Organic Process Research and

Development 2016, 20, 1603–1614.

(150) Czitrom, V. American Statistician 1999, 53, 126–131.

(151) Eckert, T.; Klein, F. C.; Frieler, P.; Thunich, O.; Abetz, V. Polymers 2021, 13, 3137.

(152) Nieuwland, P. J.; Segers, R.; Koch, K.; Van Hest, J. C.; Rutjes, F. P. Organic Process

Research and Development 2011, 15, 783–787.

(153) Sans, V.; Porwol, L.; Dragone, V.; Cronin, L. Chemical Science 2015, 6, 1258–1264.

(154) Clayton, A. D.; Manson, J. A.; Taylor, C. J.; Chamberlain, T. W.; Taylor, B. A.; Clemens,

G.; Bourne, R. A. Reaction Chemistry and Engineering 2019, 4, 1545–1554.

(155) Holmes, N.; Akien, G. R.; Savage, R. J.; Stanetty, C.; Baxendale, I. R.; Blacker, A. J.;

Taylor, B. A.; Woodward, R. L.; Meadows, R. E.; Bourne, R. A. Reaction Chemistry and

Engineering 2016, 1, 96–100.

(156) Krishnadasan, S.; Brown, R. J.; DeMello, A. J.; DeMello, J. C. Lab on a Chip 2007, 7,

1434–1441.

(157) Rasmussen, C. E.; Williams, C., Gaussian Processes for Machine Learning ; MIT Press:

2006.

(158) Schweidtmann, A. M.; Clayton, A. D.; Holmes, N.; Bradford, E.; Bourne, R. A.; Lapkin,

A. A. Chemical Engineering Journal 2018, 352, 277–282.

(159) Knowles, J. IEEE Transactions on Evolutionary Computation 2006, 10, 50–66.

(160) Emmerich, M. Single-and multi-objective evolutionary design optimization assisted by

gaussian random field metamodels, Ph.D. Thesis, 2005.

(161) Deb, K.; Jain, H. IEEE Transactions on Evolutionary Computation 2014, 18, 577–601.

171



REFERENCES REFERENCES

(162) Müller, P.; Clayton, A. D.; Manson, J.; Riley, S.; May, O. S.; Govan, N.; Notman, S.;

Ley, S. V.; Chamberlain, T. W.; Bourne, R. A. Reaction Chemistry & Engineering 2022,

7, 987–993.

(163) Clayton, A. D.; Schweidtmann, A. M.; Clemens, G.; Manson, J. A.; Taylor, C. J.; Niño,

C. G.; Chamberlain, T. W.; Kapur, N.; Blacker, A. J.; Lapkin, A. A.; Bourne, R. A.

Chemical Engineering Journal 2020, 384, 123340.

(164) Manson, J. A.; Chamberlain, T. W.; Bourne, R. A. Journal of Global Optimization 2021,

80, 865–886.

(165) Kershaw, O. J.; Clayton, A. D.; Manson, J. A.; Barthelme, A.; Pavey, J.; Peach, P.;

Mustakis, J.; Howard, R. M.; Chamberlain, T. W.; Warren, N. J.; Bourne, R. A. Chemical

Engineering Journal 2023, 451, 138443.

(166) Hicks, J. A.; Melville, H. W. Nature 1953, 171, 300–301.

(167) Geacintov, C.; Smid, J.; Szwarc, M. Journal of the American Chemical Society 1962,

84, 2508–2514.

(168) Meira, G. R.; Johnson, A. F. Polymer Engineering & Science 1981, 21, 415–423.

(169) Cortese, B.; Noel, T.; de Croon, M. H. J. M.; Schulze, S.; Klemm, E.; Hessel, V. Macro-

molecular Reaction Engineering 2012, 6, 507–515.

(170) Iida, K.; Chastek, T. Q.; Beers, K. L.; Cavicchi, K. A.; Chun, J.; Fasolka, M. J. Lab on

a Chip 2009, 9, 339–345.

(171) Zaquen, N.; Kadir, A. M.; Iasa, A.; Corrigan, N.; Junkers, T.; Zetterlund, P. B.; Boyer,

C. Macromolecules 2019, 52, 1609–1619.

(172) Baeten, E.; Haven, J. J.; Junkers, T. Polymer Chemistry 2017, 8, 3815–3824.

(173) Chan, N.; Cunningham, M. F.; Hutchinson, R. A. Macromolecular Reaction Engineering

2010, 4, 369–380.

(174) Chan, N.; Boutti, S.; Cunningham, M. F.; Hutchinson, R. A. Macromolecular Reaction

Engineering 2009, 3, 222–231.

172



REFERENCES REFERENCES

(175) Chan, N.; Cunningham, M. F.; Hutchinson, R. A. Macromolecular Rapid Communica-

tions 2011, 32, 604–609.

(176) Chan, N.; Cunningham, M. F.; Hutchinson, R. A. Journal of Polymer Science, Part A:

Polymer Chemistry 2013, 51, 3081–3096.

(177) Enright, T. E.; Cunningham, M. F.; Keoshkerian, B. Macromolecular Rapid Communi-

cations 2005, 26, 221–225.

(178) Rosenfeld, C.; Serra, C.; Brochon, C.; Hadziioannou, G. Chemical Engineering Science

2007, 62, 5245–5250.

(179) Iwasaki, T.; Yoshida, J. I. Macromolecules 2005, 38, 1159–1163.

(180) Iwasaki, T.; Kawano, N.; Yoshida, J. I. Organic Process Research and Development 2006,

10, 1126–1131.

(181) Wang, H.; Jin, Z.; Hu, X.; Jin, Q.; Tan, S.; Reza Mahdavian, A.; Zhu, N.; Guo, K.

Chemical Engineering Journal 2022, 430, 132791.

(182) Diehl, C.; Laurino, P.; Azzouz, N.; Seeberger, P. H. Macromolecules 2010, 43, 10311–

10314.

(183) Hornung, C. H.; Guerrero-Sanchez, C.; Brasholz, M.; Saubern, S.; Chiefari, J.; Moad,

G.; Rizzardo, E.; Thang, S. H. Organic Process Research and Development 2011, 15,

593–601.

(184) Hornung, C. H.; Nguyen, X.; Kyi, S.; Chiefari, J.; Saubern, S. Australian Journal of

Chemistry 2013, 66, 192–198.

(185) Kottisch, V.; Gentekos, D. T.; Fors, B. P. ACS Macro Letters 2016, 5, 796–800.

(186) Zhou, Y.; Gu, Y.; Jiang, K.; Chen, M. Macromolecules 2019, 52, 5611–5617.

(187) Corrigan, N.; Zhernakov, L.; Hashim, M. H.; Xu, J.; Boyer, C. Reaction Chemistry and

Engineering 2019, 4, 1216–1228.

(188) Wenn, B.; Junkers, T. T. Macromolecules 2016, 49, 6888–6895.

173



REFERENCES REFERENCES

(189) Chen, M.; Johnson, J. A. Chemical Communications 2015, 51, 6742–6745.

(190) Melker, A.; Fors, B. P.; Hawker, C. J.; Poelma, J. E. Journal of Polymer Science, Part

A: Polymer Chemistry 2015, 53, 2693–2698.

(191) El Achi, N.; Bakkour, Y.; Adhami, W.; Molina, J.; Penhoat, M.; Azaroual, N.; Chausset-

Boissarie, L.; Rolando, C. Frontiers in Chemistry 2020, 8, 1–10.

(192) Huang, W.; Zhai, J.; Hu, X.; Duan, J.; Fang, Z.; Zhu, N.; Guo, K. European Polymer

Journal 2020, 126, 109565.

(193) Parkinson, S.; Hondow, N. S.; Conteh, J. S.; Bourne, R. A.; Warren, N. J. Reaction

Chemistry and Engineering 2019, 4, 852–861.

(194) S.Parkinson University of Leeds 2020.

(195) Ilare, J.; Sponchioni, M.; Storti, G.; Moscatelli, D. React. Chem. Eng 2020, 5, 2081.

(196) Qi, G.; Jones, C. W.; Schork, J. F. Industrial and Engineering Chemistry Research 2006,

45, 7084–7089.

(197) Chan, N.; Meuldijk, J.; Cunningham, M. F.; Hutchinson, R. A. Industrial and Engineer-

ing Chemistry Research 2013, 52, 11931–11942.

(198) Payne, K. A.; Debling, J.; Nesvadba, P.; Cunningham, M. F.; Hutchinson, R. A. European

Polymer Journal 2016, 80, 186–199.

(199) Walsh, D. J.; Schinski, D. A.; Schneider, R. A.; Guironnet, D. Nature Communications

2020, 11, 3094.

(200) Kandelhard, F.; Schuldt, K.; Schymura, J.; Georgopanos, P.; Abetz, V. Macromolecular

Reaction Engineering 2021, 15, 2000058.

(201) Alb, A. M.; Drenski, M. F.; Reed, W. F. Polymer International 2008, 57, 390–396.

(202) Pasquale, A. J.; Long, T. E. Macromolecules 1999, 32, 7954–7957.

(203) Reis, M. M.; Araújo, P. H.; Sayer, C.; Giudici, R. Macromolecular Symposia 2004, 206,

165–178.

174



REFERENCES REFERENCES

(204) Lu, L.; Zhang, H.; Yang, N.; Cai, Y. Macromolecules 2006, 39, 3770–3776.

(205) Alb, A. M.; Serelis, A. K.; Reed, W. F. Macromolecules 2008, 41, 332–338.

(206) Lauterbach, F.; Abetz, V. Macromolecular Rapid Communications 2020, 41, 2000029.

(207) Haven, J. J.; Junkers, T. Polymers 2018, 10, 1228.

(208) Mirau, P. A. Polymer Characterisation 1993, 37–68.

(209) Atkins, P.; Paula, J. d. 2009, 1008.

(210) Castaing-Cordier, T.; Bouillaud, D.; Farjon, J.; Giraudeau, P. Annual Reports on NMR

Spectroscopy 2021, 103, 191–258.

(211) Knox, S. T.; Parkinson, S.; Stone, R.; Warren, N. J. Polymer Chemistry 2019, 10, 4774–

4778.

(212) Rubens, M.; Van Herck, J.; Junkers, T. ACS Macro Letters 2019, 8, 1437–1441.

(213) Groves, P. Polymer Chemistry 2017, 8, 6700–6708.

(214) Vrijsen, J. H.; Thomlinson, I. A.; Levere, M. E.; Lyall, C. L.; Davidson, M. G.; Hintermair,

U.; Junkers, T. Polymer Chemistry 2020, 11, 3546–3550.

(215) Levere, M. E.; Willoughby, I.; O’Donohue, S.; De Cuendias, A.; Grice, A. J.; Fidge, C.;

Becer, C. R.; Haddleton, D. M. Polymer Chemistry 2010, 1, 1086–1094.

(216) Hiller, W.; Hehn, M.; Hofe, T.; Oleschko, K. Analytical Chemistry 2010, 82, 8244–8250.

(217) Cudaj, M.; Guthausen, G.; Hofe, T.; Wilhelm, M. Macromolecular Rapid Communica-

tions 2011, 32, 665–670.

(218) Haven, J. J.; Zaquen, N.; Rubens, M.; Junkers, T. Macromolecular Reaction Engineering

2017, 11, 1700016.

(219) Rubens, M.; Vrijsen, J. H.; Laun, J.; Junkers, T. Angewandte Chemie - International

Edition 2019, 58, 3183–3187.

175



REFERENCES REFERENCES

(220) Gu, Y.; Lin, P.; Zhou, C.; Chen, M. Science China Chemistry 2021, 64, DOI: 10.1007/

s11426-020-9969-y.

(221) Reis, M.; Gusev, F.; Taylor, N. G.; Chung, S. H.; Verber, M. D.; Lee, Y. Z.; Isayev, O.;

Leibfarth, F. A. Journal of the American Chemical Society 2021, 143, 17677–17689.

(222) Agboluaje, M.; Kaur, G.; Hutchinson, R. A. Macromolecular Reaction Engineering 2022,

2200026.

(223) Wako Wako Catalog 2016.

(224) Gardiner, J.; Martinez-Botella, I.; Kohl, T. M.; Krstina, J.; Moad, G.; Tyrell, J. H.;

Coote, M. L.; Tsanaktsidis, J. Polymer International 2017, 66, 1438–1447.

(225) Willemse, R. X.; Van Herk, A. M.; Panchenko, E.; Junkers, T.; Buback, M. Macro-

molecules 2005, 38, 5098–5103.

(226) Valdebenito, A.; Encinas, M. V. Polymer International 2010, 59, 1246–1251.

(227) Lacík, I.; Chovancová, A.; Uhelská, L.; Preusser, C.; Hutchinson, R. A.; Buback, M.

Macromolecules 2016, 49, 3244–3253.

(228) Zhong, F.; Zhou, Y.; Chen, M. Polymer Chemistry 2019, 10, 4879–4886.

(229) Gody, G.; Barbey, R.; Danial, M.; Perrier, S. Polymer Chemistry 2015, 6, 1502–1511.

(230) Zapata-González, I.; Saldívar-Guerra, E.; Ortiz-Cisneros, J. Macromolecular Theory and

Simulations 2011, 20, 370–388.

(231) Barth, J.; Buback, M.; Russell, G. T.; Smolne, S. Macromolecular Chemistry and Physics

2011, 212, 1366–1378.

(232) Konkolewicz, D.; Hawkett, B. S.; Gray-Weale, A.; Perkier, S. Journal of Polymer Science,

Part A: Polymer Chemistry 2009, 47, 3455–3466.

(233) Desmet, G. B.; De Rybel, N.; Van Steenberge, P. H.; D’hooge, D. R.; Reyniers, M. F.;

Marin, G. B. Macromolecular Rapid Communications 2018, 39, 1700403.

(234) Lacík, I.; Beuermann, S.; Buback, M. Macromolecules 2003, 36, 9355–9363.

176

https://doi.org/10.1007/s11426-020-9969-y
https://doi.org/10.1007/s11426-020-9969-y


REFERENCES REFERENCES

(235) Lacík, I.; Učňova, L.; Kukučková, S.; Buback, M.; Hesse, P.; Beuermann, S. Macro-

molecules 2009, 42, 7753–7761.

(236) Kattner, H.; Buback, M. Macromolecules 2015, 48, 7410–7419.

(237) Brandrup, J; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R. Table 7. Miscellaneous

Initiators, 2005.

(238) Lin, C. Y.; Coote, M. L. Australian Journal of Chemistry 2009, 62, 1479–1483.

(239) Convertine, A. J.; Lokitz, B. S.; Lowe, A. B.; Scales, C. W.; Myrick, L. J.; McCormick,

C. L. Macromolecular Rapid Communications 2005, 26, 791–795.

(240) Schrooten, J.; Lacík, I.; Stach, M.; Hesse, P.; Buback, M. Macromolecular Chemistry and

Physics 2013, 214, 2283–2294.

(241) Moad, G.; Barner-Kowollik, C. In Handbook of RAFT Polymerization, 2008, pp 51–104.

(242) Mastan, E.; Zhou, D.; Zhu, S. Journal of Polymer Science, Part A: Polymer Chemistry

2014, 52, 639–651.

(243) Liang, J.; Shan, G. r.; Pan, P. j. Chinese Journal of Polymer Science (English Edition)

2017, 35, 123–129.

(244) Ji, J.; Jia, L.; Yan, L.; Bangal, P. R. Journal of Macromolecular Science, Part A: Pure

and Applied Chemistry 2010, 47, 445–451.

(245) Wood, M. R.; Duncalf, D. J.; Findlay, P.; Rannard, S. P.; Perrier, S. Australian Journal

of Chemistry 2007, 60, 772–778.

(246) Haehnel, A. P.; Wenn, B.; Kockler, K.; Bantle, T.; Misske, A. M.; Fleischhaker, F.;

Junkers, T.; Barner-Kowollik, C. Macromolecular Rapid Communications 2014, 35,

2029–2037.

(247) Alberti, A.; Benaglia, M.; Fischer, H.; Guerra, M.; Laus, M.; Macciantelli, D.; Postma,

A.; Sparnacci, K. Helvetica Chimica Acta 2006, 89, 2103–2118.

(248) Kattner, H.; Buback, M. Macromolecules 2018, 51, 25–33.

177



Appendix A
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A.1 Data Tables for Optimisations

Table A.1: Raw data for the optimisation shown in Figure 2.7 in chapter 2

Residence Time (min) Temperature (◦C) Conversion (%) Mn(g/mol) Mp(g/mol) Ð
6 70 0.534813 5116.686 1587.195 2
19 76 72.15371 10916.14 11852.8 1.218754
17 78 77.82843 11624.13 13039.39 1.231365
9 80 51.56274 8380.179 9698.214 1.203652
14 84 91.78376 13220.8 15927.33 1.270214
12 86 92.59817 12936.49 14394.26 1.253644
16 90 100.3107 12105.79 13518.99 1.454678
18 92 99.14615 12405.91 17142.69 1.461576
8 96 97.66148 13418.97 15221.37 1.560631
11 100 100.3384 12844.99 15970.52 1.717995
8 86 77.96727 12031.29 14685.96 1.205846
16 80 84.86235 12153.32 13681.1 1.243831
19 92 101.6823 12162.63 16292.75 1.637773
8 90 91.17132 13654.08 16346.88 1.253367
17 82 92.41907 13252.81 16452.18 1.293193
10 86 87.52309 13264.98 16676.6 1.256869
7 90 88.07786 13186.47 15444.23 1.288086
20 82 96.16675 13022.4 15418.51 1.283992
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Table A.2: Raw Data from the optimisation shown in figure 2.11 in chapter 2.

Residence Time (min) Temperature (◦C) Conversion (%) Mn(g/mol) Mn(g/mol) Ð
4 80 3.47944 2168.239 3667.011 2
19 86 2.318654 869.3861 452.6513 2
16 90 17.59924 3600.332 5106.321 1.434877
8 92 3.818404 2153.091 364.0313 2
13 98 64.01589 14482.49 15233.02 1.158882
10 100 56.88997 12830.12 13957.85 1.164647
15 102 78.21673 17982.76 21077.49 1.178914
18 106 83.81856 18423.15 21160.17 1.19102
7 112 67.90622 14260.55 16055.01 1.21399
10 116 74.4174 14117.67 18025.21 1.223956
18 110 81.83042 16324.45 18141.01 1.205766
19 112 80.83997 15596.4 18572.92 1.244677
20 114 79.89302 14121.01 17569.23 1.224357
17 100 79.73149 16801.48 21057.87 1.197548
17 108 81.65298 16633.5 20950.33 1.206256
19 110 82.16035 17359.64 20008 1.255447
14 98 65.21042 15259.11 18545.98 1.184912
16 98 72.84364 15534.91 18292.44 1.170222
12 112 76.82003 15511.53 18397.02 1.213937
15 114 76.98287 16347.7 18932.59 1.227047
17 100 77.81387 16929.64 19897.75 1.199976
19 100 81.39355 19098.66 21075.54 1.170927
19 102 83.10512 15887.59 19980.38 1.194063
16 106 82.16608 16164.2 18299.06 1.181429
20 110 83.14362 16228.07 21063.75 1.238441
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Table A.3: Raw data for the optimisation shown in figure 2.10 in chapter 2

Residence Time (min) Temperature (◦C) Conversion (%) Mn(g/mol) Mp(g/mol) Ð
4 80 3.189619 1054.864 299.0134 2
19 86 64.3955 13892.91 16893.94 1.183513
16 90 71.02265 15007.22 16927.02 1.171423
8 92 48.38241 10154.09 13132.7 1.207345
13 98 78.88167 15619.52 18930.89 1.199679
10 100 75.86065 15485.43 19730.1 1.223243
15 102 83.06429 14107.83 17986.26 1.247149
18 106 83.8646 13879.61 17159.29 1.272565
7 112 76.42956 12868.6 16441.79 1.235132
10 116 74.74776 13058.53 17364.35 1.302446
20 98 85.35131 15250.2 21028.48 1.279918
17 100 82.15479 14989.89 19383.94 1.229178
18 100 83.72044 14985.53 20152.45 1.268557
20 100 85.23079 14239.04 18442.05 1.298283
19 110 80.84406 15441.14 19533.7 1.270305
19 112 78.54612 14001.77 20048.63 1.28641
20 112 78.86738 13959.63 19352.04 1.290413
11 106 80.59662 13990.09 18908.48 1.274681
12 106 79.954 14920.47 18317.28 1.244205
12 108 80.5702 13609.18 16346.22 1.310491
20 88 72.78658 15923.05 19494.35 1.191201
20 94 82.72962 16416.85 21504.85 1.236481
18 96 82.85109 14371.4 18944.69 1.206448
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Table A.4: Raw data for the optimisation shown in figure 2.13 in chapter 2

Residence Time (min) Temperature (◦C) Conversion (%) Mn(g/mol) Mp(g/mol) Ð
4 80 2.291687 2100.643 7848.829 2
19 86 72.72325 10748.16 15022.88 1.260242
16 90 75.7733 11514.36 15002.05 1.248978
8 92 54.30836 6835.76 10102.79 1.356105
13 98 82.15361 12084.58 15913.18 1.288943
10 100 77.6591 11736.44 14929.47 1.283685
15 102 84.09318 12780.77 17319.38 1.334201
18 106 85.50641 12764.39 18190.23 1.384661
7 112 76.28054 11131.26 15978.98 1.361198
10 116 73.85091 10532.71 15050.26 1.342572
13 96 78.64464 11459.52 15846.31 1.318954
16 96 82.25012 13250.25 18201.73 1.332569
15 100 84.00659 12060.07 15039.83 1.359282
6 116 73.1012 9547.724 13835.86 1.347619
15 92 76.3763 11218.46 15113.07 1.309989
14 98 81.63686 13594.76 18740.65 1.30788
8 108 77.71394 11628.23 16128.64 1.286388
13 108 81.59189 11155.06 16495.68 1.384421
18 94 82.88324 13336.92 17049.51 1.290669
18 96 84.26513 13121.58 17035.84 1.305732
16 98 82.58453 12362.15 16402.61 1.330758
17 98 83.74156 12113.07 16892.41 1.316172
18 90 77.89126 11659.41 16460.7 1.343342

Table A.5: Raw data for the optimisation shown in figure 2.13 in chapter 2

Residence Time (min) Temperature (◦C) Conversion (%) Mn(g/mol) Mp(g/mol) Ð
4 80 2.297626 1954.449 7138.098 2
19 86 64.40301 9035.301 12193.05 1.237165
16 90 71.59781 10457.63 13203.69 1.262359
8 92 50.07341 5552.335 8434.534 1.348699
13 98 80.0163 11427.28 15069.85 1.309244
10 100 77.24948 10537.37 12177.9 1.298188
15 102 84.82699 12283.25 17274.55 1.309283
18 106 85.29163 12342.91 17199.14 1.325596
7 112 76.86056 11042.61 15812.99 1.36411
10 116 76.8 10062.41 13867.7 1.375444
16 94 79.19 11129.32 15039.81 1.304871
16 100 84.39 11444.66 15203.92 1.320174
17 100 84.82 11802.64 15851.86 1.332022
16 108 84.3 11721.74 17327.11 1.366091
17 88 74.59 11050.63 13947.13 1.25586
16 106 85.08 12341.49 17150.1 1.331689
19 108 84.08 11595.39 15835.19 1.393255
16 110 81.38 10907.48 15274.15 1.312069
8 114 77.62 10362.34 14572.84 1.348411
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Table A.6: Raw data for the optimisation shown in figure 5.8 in chapter 2

Residence Time (min) Temperature (◦C) Conversion (%) Mn(g/mol) Mp(g/mol) Ð
3 64 2.678779 1588.026 425.0318 2
27 76 63.20847 17241.56 19574.03 1.224444
24 80 69.16396 17872.49 21612.27 1.226586
9 84 49.48268 12485.16 16336.56 1.238372
18 96 75.49783 12379.05 19924.5 1.522059
15 102 67.99333 11701 18837.84 1.449882
21 106 69.00637 11865.69 19915.61 1.484438
27 112 68.38827 9453.018 15254.93 1.576055
9 122 54.71901 7644.253 11785.6 1.494619
12 128 57.69707 4587.59 10704.56 2
27 86 81.12579 20288.03 28035.47 1.335616
21 88 77.592 19137.49 23541.29 1.291658
24 80 75.16483 20057.17 23890.49 1.246697
30 86 82.21025 19631.64 26479.68 1.356665
27 90 80.53557 18960.89 24239.05 1.284264
30 102 74.82191 11213.38 17203.93 1.542546
18 82 71.9799 18003.23 24102.96 1.342506
30 92 80.72185 16110.74 24074.05 1.491561
21 80 73.69827 18539.42 23717.32 1.254105
27 80 81.55837 18422.33 23649.8 1.313914
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Figure B.1: Example of a UV/vis from the Knauer UV using the PDMA as a tracer
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C.1 Rate constant tables for Experimental and literature valida-

tion

Table C.1: Rate constants for the RAFT polymerisation of DMAm in the presence of TTC2
using VA044 in water at 30 w / w %, where the rate coefficients are given at 80 ◦C.

Ea A k(80◦C) ref
kp 14.1 kJmol−1 1.10× 107 M−1s−1 9.03× 104 M−1s−1 240

kt 25.0 kJmol−1 2.00× 1011 M−1s−1 4.00× 107 M−1s−1 236

k†a 0.00 kJmol−1 6.00× 106 M−1s−1 6.00× 106 M−1s−1 247

k†β 2.00× 104 s−1 247

kd 108.2 kJmol−1 1.28× 1012 s−1 5.48× 10−5 s−1 223

f 0.5 α†
s 0.40 236

kct 0.25kt α†
l 0.18 236

K† 300 L†
c 50 236

Table C.2: Rate constants for the RAFT polymerisation of DMAm in the presence of TTC1
using ACVA in water at 30 w/w %, where rate coefficients are given at 85 and 90 ◦C.

Ea A k(85◦C)/k(90◦C)) ref
kp 14.1 kJmol−1 1.10× 107 M−1s−1 9.66× 104/1.03× 105 M−1s−1 240

kt 25.0 kJmol−1 2.00× 1011 M−1s−1 4.52× 107/5.07× 107 M−1s−1 236

k†a 0.00 kJmol−1 7.00× 106 M−1s−1 7.00× 106 M−1s−1 247

k†β 7.00× 104 s−1 247

kd 132.4 kJmol−1 1.37× 1015 s−1 6.69× 10−5/1.23× 10−4 s−1 223

f 0.70 α†
s 0.40 236

kct 0.25kt α†
l 0.18 236

K† 100 L†
c 50 236
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Table C.3: Rate constants for the RAFT polymerisation of AAm in the presence of TTC3 using
VA044 in water at 15 w/w %, where rate coefficients are given at 45 ◦C.

Ea A k(45◦C) ref
kp 18.1 kJmol−1 1.47× 107 M−1s−1 1.27× 105 M−1s−1 227

kt 19.1 kJmol−1 5.30× 1011 M−1s−1 3.88× 108 M−1s−1 236

k†a 0.00 kJmol−1 7.00× 107 M−1s−1 7.00× 107 M−1s−1 247

k†β 1.67× 102 s−1 247

kd 108.2 kJmol−1 1.28× 1012 s−1 1.93× 10−5 s−1 223

f 0.55 α†
s 0.50 236

kct 0.25kt α†
l 0.15 236

K† 25000 L†
c 30 236

Table C.4: Rate constants for the RAFT polymerisation of AA in the presence of TTC4 using
ACVA in water at 13 w/w %, where rate coefficients are given at 69 ◦C.

Ea A k(69◦C) ref
kp 15.0 kJmol−1 6.60× 107 M−1s−1 3.89× 105 M−1s−1 234

kt 15.0 kJmol−1 1.60× 1012 M−1s−1 8.20× 109 M−1s−1 236

k†a 0.00 kJmol−1 2.00× 107 M−1s−1 2.00× 107 M−1s−1 247

k†β 6.66× 104 s−1 238

kd 132.8 kJmol−1 3.62× 1015 s−1 2.19× 10−5 s−1 223

f 0.70 α†
s 0.80 236

kct 0.25kt α†
l 0.16 236

K† 3000 L†
c 30 236

Table C.5: Rate constants for the RAFT polymerisation of MA in the presence of TTC5 using
AIBN in toluene at 30 w/w %, where rate coefficients are given at 50 ◦C.

Ea A k(50◦C) ref
kp 17.4 kJmol−1 1.87× 107 M−1s−1 2.82× 105 M−1s−1 248

kt 10.0 kJmol−1 2.30× 1010 M−1s−1 5.56× 108 M−1s−1 248

k†a 0.00 kJmol−1 7.00× 106 M−1s−1 7.00× 106 M−1s−1 247

k†β 7× 103 s−1 247

kd 132.4 kJmol−1 2.37× 1015 s−1 2.16× 10−6 s−1 223

f 0.70 α†
s 0.74 248

kct 0.25kt α†
l 0.15 248

K† 1000 L†
c 30 248

Table C.6: Rate constants for the RAFT polymerisation of MA in the presence of TTC5 using
AIBN in toluene at 30 w/w %, where rate coefficients are given at 50 ◦C.
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Table D.1: Raw data used in the optimisation seen in Figure 5.4.a in Chapter 5

[I]:[CTA] Temperature (◦C) Residence Time(min) Ð Conversion(%)
0.06 52 18 1.151 78.5
0.075 54 15 1.199 86.1
0.05 54 6 2.000 10.9
0.065 58 13 1.213 92.9
0.08 58 20 1.236 99.4
0.07 60 7 1.164 76.9
0.055 64 9 1.182 90.9
0.045 66 11 1.242 96.6
0.09 68 8 1.229 100.4
0.06 70 18 1.297 101.4
0.065 70 11 1.263 100.5
0.05 72 12 1.243 101.5
0.08 74 14 1.309 101.7
0.04 78 8 1.282 100.1
0.085 78 17 1.348 101.3
0.085 62 15 1.243 102.2
0.06 64 11 1.234 97.3
0.09 76 10 1.367 100.6
0.055 76 16 1.333 102.0
0.06 80 19 1.369 100.7
0.06 64 15 1.232 101.5
0.04 50 10 2.000 0.1
0.08 58 6 1.154 64.3
0.085 70 11 1.372 100.1
0.075 72 8 1.328 98.5
0.04 72 18 1.406 102.8
0.09 64 6 1.176 94.0
0.06 72 5 1.243 97.5
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Figure D.1: (a) residuals analysis for the regression shown in Figure 5.5.a in Chapter
5.(b)residuals analysis for the dispersity objective regression shown in Figure 5.5.a in Chap-
ter 5.

Table D.2: Arrhenius and rate parameters used in digitally augmented optimisation of DMAm
at 30 w / w %

Ea A ref
kp 14.1 kJmol−1 1.10× 107 M−1s−1 240

kt 25.0 kJmol−1 2.00× 1011 M−1s−1 236

k†a 0.00 kJmol−1 6.00× 106 M−1s−1 247

kd 108.2 kJmol−1 1.28× 1012 s−1 223

f 0.6 α†
s 0.40 236

kct 0.25kt α†
l 0.18 236

K† 300 L†
c 50 236
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Table D.3: Raw data used in the optimisation seen in Figure 5.6.a in Chapter 5

[I]:[CTA] Temperature (◦C) Residence Time(min) Ð Conversion(%)
0.06 52 18 1.196 90.6
0.075 54 15 1.197 92.2
0.05 54 6 1.171 44.0
0.065 58 13 1.198 93.2
0.08 58 20 1.196 99.6
0.07 60 7 1.208 77.0
0.055 64 9 1.202 91.0
0.045 66 11 1.200 96.0
0.09 68 8 1.202 98.0
0.06 70 18 1.201 100.0
0.065 70 11 1.202 99.6
0.05 72 12 1.202 99.8
0.08 74 14 1.205 100.0
0.04 78 8 1.206 99.3
0.085 78 17 1.209 100.0
0.08 50 16 1.185 77.7
0.06 56 8 1.142 58.1
0.06 56 20 1.239 102.8
0.04 78 11 1.315 101.1
0.06 56 6 1.138 26.1
0.055 56 11 1.164 68.0
0.075 68 19 1.398 104.6
0.065 60 20 1.306 101.8
0.05 50 14 2.000 0.6
0.04 58 18 1.194 89.8
0.065 54 18 1.184 85.4
0.085 74 17 1.383 100.4
0.08 80 20 1.481 99.5
0.07 56 18 1.197 92.4
0.065 78 11 1.318 100.2

Figure D.2: (a) residuals analysis for the conversion objective regression shown in Figure 5.7.a
in Chapter 5. (b)residuals analysis for the dispersity objective regression shown in Figure 5.7.b
in Chapter 5.
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Table D.4: Raw data used in the optimisation seen in Figure 5.8.a in Chapter 5

[I]:[CTA] Temperature (◦C) Residence Time(min) Ð Conversion(%)
0.075 74 15 1.412 30.5
0.05 74 6 2.000 6.7
0.065 78 13 1.266 32.1
0.08 78 20 1.203 47.4
0.07 80 7 1.089 18.9
0.055 84 9 1.205 33.1
0.045 86 11 1.230 36.7
0.09 88 8 1.310 42.8
0.06 90 18 1.376 63.1
0.065 90 11 1.340 50.3
0.05 92 12 1.325 51.6
0.08 94 14 1.421 64.0
0.04 98 8 1.361 50.1
0.085 98 17 1.997 73.7
0.045 90 20 1.326 56.7
0.045 84 20 1.335 50.0
0.06 100 14 1.430 67.8
0.04 100 19 1.371 65.6
0.06 96 17 1.339 64.3
0.045 98 10 1.378 54.7
0.085 86 16 1.441 54.6
0.09 86 18 1.376 64.8
0.08 88 20 1.409 70.0
0.045 88 18 1.337 54.2
0.055 96 20 1.451 68.5
0.09 90 16 1.484 57.9
0.065 96 15 1.422 67.9
0.055 92 16 1.365 59.9
0.09 84 20 1.390 60.2
0.065 94 20 1.416 70.1
0.065 98 18 1.393 72.2
0.06 82 18 1.384 51.6
0.07 80 19 1.329 50.2
0.085 76 20 1.277 37.4
0.075 88 18 1.462 69.1
0.065 100 20 1.339 73.0
0.05 86 16 1.228 36.5
0.08 80 17 1.309 44.6
0.06 100 19 1.477 76.0
0.065 100 9 1.410 61.4
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Figure D.3: Comparison of GPC traces associated with a low and high Ð polymer for experiment
2 and 3 from the RAFT polymerisation of nBUA shown in Figure 5.8, respectively.

Figure D.4: (a) residuals analysis for the conversion objective regression shown in Figure 5.9.a
in Chapter 5. (b)residuals analysis for the dispersity objective regression shown in Figure 5.9.b
in Chapter 5.

Table D.5: Arrhenius and rate parameters used in digitally augmented optimisation of nBuA at
30 w / w %

Ea A ref
kp 17.9 kJmol−1 2.24× 107 M−1s−1 240

kt 10.0 kJmol−1 1.3× 1010 M−1s−1 236

k†a 0.00 kJmol−1 6.00× 106 M−1s−1 247

kd 132.2 kJmol−1 1.28× 1012 s−1 223

f 0.42 α†
s 0.56 236

kct 0.25kt α†
l 0.16 236

K† 100 L†
c 33 236
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Table D.6: Raw data used in the optimisation seen in Figure 5.10.a in Chapter 5

[I]:[CTA] Temperature (◦C) Residence Time(min) Ð Conversion(%)
0.06 72 18 1.228 20.7
0.075 74 15 1.218 23.1
0.05 74 6 1.627 5.5
0.065 78 13 1.211 25.9
0.08 78 20 1.161 46.4
0.07 80 7 1.299 15.3
0.055 84 9 1.222 26.0
0.045 86 11 1.193 34.5
0.09 88 8 1.183 41.7
0.06 90 18 1.182 77.9
0.065 90 11 1.166 55.6
0.05 92 12 1.163 60.6
0.08 94 14 1.191 85.5
0.04 98 8 1.176 55.8
0.085 98 17 1.204 97.9
0.09 92 17 1.292 67.3
0.09 92 19 1.352 70.5
0.09 92 20 2.000 91.0
0.09 94 18 1.250 63.5
0.085 94 10 1.356 58.2
0.055 72 19 1.094 29.0
0.09 98 11 1.383 65.4
0.07 80 5 2.000 12.4
0.085 78 10 1.184 28.1
0.085 92 8 1.322 50.0
0.085 78 16 1.313 43.0
0.045 82 19 1.283 45.3
0.085 100 18 1.387 74.2
0.09 100 18 1.438 75.4
0.09 100 13 1.477 71.9
0.075 94 7 1.322 48.2
0.04 86 16 1.317 46.4
0.045 96 19 1.416 67.6
0.055 100 16 1.451 71.4
0.04 98 17 1.466 66.7
0.085 100 8 1.395 61.0
0.09 98 18 1.474 77.6
0.09 92 15 1.487 67.8
0.08 92 12 1.396 65.2
0.075 98 18 1.463 77.7
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Figure D.5: (a) residuals analysis for the conversion objective regression shown in Figure 5.11.a
in Chapter 5. (b)residuals analysis for the dispersity objective regression shown in Figure 5.11.b
in Chapter 5.

Table D.7: Arrhenius and rate parameters used in digitally augmented optimisation of tBuAm
at 20 w / w %

Ea A ref
kp 14.7 kJmol−1 8.68× 106 M−1s−1 240

kt 13.6 kJmol−1 1.88× 1010 M−1s−1 236

k†a 0.00 kJmol−1 6.00× 106 M−1s−1 247

kd 132.2 kJmol−1 1.28× 1012 s−1 223

f 0.48 α†
s 0.52 236

kct 0.25kt α†
l 0.16 236

K† 300 L†
c 33 236
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Table D.8: Raw data used in the optimisation seen in Figure 5.12.a in Chapter 5

[I]:[CTA] Temperature (◦C) Residence Time(min) Ð Conversion(%)
0.06 72 18 1.152 31.2
0.08 74 15 1.147 35.1
0.05 74 6 1.300 8.9
0.07 78 13 1.146 37.9
0.09 78 20 1.157 63.2
0.08 80 7 1.176 24.2
0.06 84 9 1.151 36.8
0.045 86 11 1.142 44.7
0.1 88 8 1.137 54.7
0.065 90 18 1.156 87.4
0.07 90 11 1.161 67.8
0.055 92 12 1.160 72.4
0.09 94 14 1.160 92.7
0.04 98 8 1.167 63.8
0.095 98 17 1.165 99.3
0.09 90 18 1.342 70.2
0.095 90 18 1.293 74.0
0.095 92 17 1.352 73.3
0.065 100 16 1.408 72.7
0.075 100 16 1.490 79.1
0.08 70 7 2.000 54.6
0.1 90 18 1.350 67.7
0.045 100 20 1.362 74.3
0.095 76 20 2.000 52.2
0.04 90 20 1.350 65.6
0.09 100 20 1.450 81.2
0.04 96 8 1.367 64.5
0.08 94 13 1.713 69.8
0.07 92 17 1.366 73.2
0.1 98 12 1.552 76.7
0.09 92 5 1.308 59.2
0.04 86 15 1.280 50.0
0.075 96 17 1.384 73.3
0.09 96 15 1.438 74.3

193



Chapter D. Appendix Chapter 5

Figure D.6: (a) residuals analysis for the conversion objective regression shown in Figure 5.13.a
in Chapter 5. (b)residuals analysis for the dispersity objective regression shown in Figure 5.13.b
in Chapter 5.
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