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Abstract

Immune cells express thousands of receptors on their membrane sur-
face to sense their environment and communicate with each other.
Receptors bind specifically to extra-cellular molecules called ligands.
The binding of a ligand to its receptor initiates an intra-cellular sig-
nalling cascade which leads to the control of cellular fate, such as
division, death, migration or differentiation. As every cell expresses
a different number of receptors, each cell responds differently to a
given ligand. First motivated by seemingly paradoxical experimental
observations on the interleukin-7/interleukin-7 receptor (IL-7/IL-7R)
receptor-ligand system, this thesis investigates how receptor copy num-
bers impact the cell’s response, as measured by the amplitude and
the half-maximal effective concentration (or EC50). In particular, de-
terministic mathematical models of various receptor-ligand systems
are developed. For each model, making use of algebraic tools, such as
Gröbner bases, analytic expressions for the amplitude and the EC50

are computed. Such expressions allow one to identify precisely how a
cell’s response depends on the receptor core structure, namely recep-
tor chain copy numbers and receptor architecture. They also reduce
numerical errors and facilitate parameter inference, as demonstrated
by the fitting of two IL-7R models to the motivating experimental
data set. The results obtained are generalised to a larger family of
receptor-ligand systems, for which the amplitude is computed without
the use of advanced algebraic tools. Finally, as the immune system
relies on the coordination of many cells to fight pathogens, the complex
relationship between the cell population dynamics and the receptor
copy number distribution in the cellular population is examined. To

v



this end, agent-based models of increasing complexity, which model
the competition for interleukin-2 (IL-2) within the T cell population,
are constructed, by adding stochastic cellular events one at a time. A
mathematical description of each model is provided, which enables us,
when possible, to derive the desired receptor copy number distribution
(in this case for the IL-2 receptor).
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5.3.1 Computation of Ī(t) and R̄(t) . . . . . . . . . . . . . . . . 231
5.3.2 Analytic expressions for iT (t) and rT (t) . . . . . . . . . . . 232

5.4 Death and activation hybrid system: two regimes and a stochastic
steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.4.1 Mathematical analysis . . . . . . . . . . . . . . . . . . . . 236
5.4.2 Egalitarian regime . . . . . . . . . . . . . . . . . . . . . . 242
5.4.3 Gerontocracy: the oldest cells deprive newer cells of cytokine245
5.4.4 Additional investigations . . . . . . . . . . . . . . . . . . . 250

xiii



CONTENTS

5.5 Death, activation and division . . . . . . . . . . . . . . . . . . . . 260
5.5.1 Mathematical analysis . . . . . . . . . . . . . . . . . . . . 260
5.5.2 Numerical observations . . . . . . . . . . . . . . . . . . . . 266

5.6 Extending the IL-2 competition model . . . . . . . . . . . . . . . 277
5.6.1 Cellular events depending on cell variables: starvation . . . 277
5.6.2 Competition model between regulatory and activated con-

ventional T cells . . . . . . . . . . . . . . . . . . . . . . . . 279
5.7 Alternative system: modelling the competition for IL-7 between

ILCs and T cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
5.7.1 One-population model: altruistic or egoistic model . . . . . 283
5.7.2 Competition models . . . . . . . . . . . . . . . . . . . . . 291

5.8 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . 298

6 Concluding remarks 303

References 306

A Macaulay2 code to compute Gröbner bases 327

B Gröbner basis for the steady state of the allostery model 329

C Gröbner basis for the steady state of the model of homodimeric
receptor with IEK 335

D Gröbner basis for the computation of the EC50 of the trimeric
receptor model 337

E Mathematica notebook for the computation of the amplitude of
homodimeric RTK model A+B 343

F Mathematica notebook for the computation of the amplitude of
heterodimeric RTK model B+C 347

G Agent-based model with activation and death: switching from
egalitarian regime to gerontocracy as m0 decreases 349

H Agent-based model with activation and death: ∆t analysis 353

xiv



CONTENTS

I Agent-based model with activation, death and division: ∆t anal-
ysis 355

J General agent-based model: Python code description 357
J.1 Code structure and output . . . . . . . . . . . . . . . . . . . . . . 357

J.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
J.1.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

J.2 File description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
J.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 358
J.2.2 Cell classes . . . . . . . . . . . . . . . . . . . . . . . . . . 360
J.2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
J.2.4 Initialisation of global variables . . . . . . . . . . . . . . . 362
J.2.5 Main routine . . . . . . . . . . . . . . . . . . . . . . . . . 362

J.3 Different sub-cases . . . . . . . . . . . . . . . . . . . . . . . . . . 363

K Altruistic model with degradation of free ligand 365

xv



CONTENTS

xvi



List of Figures

1.1 JAK/STAT signalling pathway (from Haan et al. (2006)) . . . . . 5
1.2 Common gamma chain family (from Rochman et al. (2009)) . . . 6

2.1 Sigmoid dose response curve, amplitude and EC50 . . . . . . . . . 35
2.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Scheme describing the flow cytometry method from Picot et al. (2012) 69
3.2 Scheme describing CCVA method from Cotari et al. (2013a) . . . 71
3.3 Experimental amplitude and EC50 . . . . . . . . . . . . . . . . . . 73
3.4 Cell-to-cell variability analysis . . . . . . . . . . . . . . . . . . . . 74
3.5 First IL-7R model (model 1) . . . . . . . . . . . . . . . . . . . . . 76
3.6 Numerical exploration of model 1 . . . . . . . . . . . . . . . . . . 86
3.7 Normalised prior and posterior (model 1) . . . . . . . . . . . . . . 90
3.8 Correlation (model 1) . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.9 Comparison of experimental and modelled amplitude and EC50

(model 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.10 Experimental and modelled amplitude and EC50 colormap (model 1) 93
3.11 Posterior minimising d2

GV (model 1) . . . . . . . . . . . . . . . . . 94
3.12 Allostery model: amplitude . . . . . . . . . . . . . . . . . . . . . 97
3.13 Allostery model: EC50 . . . . . . . . . . . . . . . . . . . . . . . . 98
3.14 IL-7R model with additional receptor subunit (model 2) . . . . . 100
3.15 Proper values for model 2 . . . . . . . . . . . . . . . . . . . . . . 104
3.16 Numerical exploration of model 2: EC50 for p and K4 values . . . 109
3.17 General numerical exploration of model 2 . . . . . . . . . . . . . . 110
3.18 Normalised prior and posterior (model 2) . . . . . . . . . . . . . . 113

xvii



LIST OF FIGURES

3.19 Correlation (model 2) . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.20 Comparison of experimental and modelled EC50 (model 2) . . . . 114
3.21 Experimental and modelled amplitude and EC50 (model 2) . . . . 115
3.22 Amplitude and EC50 of IL-2, IL-7 and IL-15 response (from Sta

et al. (2022b)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 Monomeric receptor . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2 Homodimeric receptor RTK . . . . . . . . . . . . . . . . . . . . . 128
4.3 Heterodimeric receptor RTK . . . . . . . . . . . . . . . . . . . . . 131
4.4 Monomeric receptor with IEK . . . . . . . . . . . . . . . . . . . . 135
4.5 Homodimeric receptor with IEK . . . . . . . . . . . . . . . . . . . 137
4.6 Trimeric receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.7 Proper values of the trimeric receptor model . . . . . . . . . . . . 142
4.8 Amplitude and EC50 of the trimeric receptor model . . . . . . . . 150
4.9 Amplitude and EC50 of the models RTK and with IEK . . . . . . 152
4.10 Influence of the upregulation and downregulation of the primary

chain on the amplitude . . . . . . . . . . . . . . . . . . . . . . . . 154
4.11 SRLK model with n = 4 trans-membrane chains . . . . . . . . . . 158
4.12 Extended SRLK model with n = 4 trans-membrane chains . . . . 173
4.13 SRLK examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.14 Homodimeric models . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.15 Heterodimeric models . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.16 Heterodimeric RTK BC: Plot of Ny 7→ A− −min(Nx, Ny) . . . . 204
4.17 Dose response curves for heterodimeric and homodimeric RTK models209
4.18 Comparison of homodimeric RTK models . . . . . . . . . . . . . . 211
4.19 Comparison of heterodimeric RTK models . . . . . . . . . . . . . 212

5.1 T cell selection in the thymus . . . . . . . . . . . . . . . . . . . . 219
5.2 Agent-based model: fixed-size population . . . . . . . . . . . . . . 224
5.3 Deterministic case: time evolution plots . . . . . . . . . . . . . . . 227
5.4 Deterministic case: IL-2R distribution . . . . . . . . . . . . . . . 229
5.5 Scheme of the ABM with pure death process . . . . . . . . . . . . 230
5.6 Death process: time evolution plots . . . . . . . . . . . . . . . . . 234
5.7 Death process: IL-2R distribution . . . . . . . . . . . . . . . . . . 236

xviii



LIST OF FIGURES

5.8 Death and activation hybrid system . . . . . . . . . . . . . . . . . 237
5.9 Time evolution plots - egalitarian regime . . . . . . . . . . . . . . 243
5.10 Relative receptor trajectories in the Egalitarian regime . . . . . . 244
5.11 Scatterplot in the gerontocracy regime . . . . . . . . . . . . . . . 246
5.12 Time evolution plots in the gerontocracy regime . . . . . . . . . . 247
5.13 Relative receptor trajectories in the Gerontocracy regime . . . . . 248
5.14 Death and activation process: cohort switches occur regularly . . 249
5.15 Regime transition graph . . . . . . . . . . . . . . . . . . . . . . . 252
5.16 Time evolution plots of the ABM with activation and death for

m0 = −2 and σ0 = 3 . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.17 Scatter plot when σ0 = 3, m0 = −2 for the ABM with death and

activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.18 Time evolution plots of the ABM with activation and death for

m0 = 3 and σ0 = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 256
5.19 Underestimation of the mean of the log-normal distribution . . . . 257
5.20 IL-2R distribution at death . . . . . . . . . . . . . . . . . . . . . 259
5.21 Activation, death and division process . . . . . . . . . . . . . . . 261
5.22 Distribution of time between two cohort switches in the model with

division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
5.23 Family tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5.24 Scatterplot of the model with division for m0 = 20, λ = 0.007 . . . 271
5.25 Illustration of population event of type A . . . . . . . . . . . . . . 273
5.26 Illustration of population event of type B . . . . . . . . . . . . . . 274
5.27 Illustration of population event of type C . . . . . . . . . . . . . . 275
5.28 Two-populations ABM . . . . . . . . . . . . . . . . . . . . . . . . 280
5.29 Comparison of functions of the one-population models of the com-

petition for IL-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

G.1 Time evolution plots- m0 = 14 . . . . . . . . . . . . . . . . . . . . 350
G.2 Relative receptor trajectories - m0 = 14 . . . . . . . . . . . . . . . 351
G.3 Time evolution plots - m0 = 11 and m0 = 9 . . . . . . . . . . . . 352
G.4 Relative receptor trajectories - m0 = 11 and m0 = 9 . . . . . . . . 352

H.1 ∆t analysis of the ABM with activation and death . . . . . . . . . 353

xix



LIST OF FIGURES

I.1 ∆t analysis of the ABM with death, activation and division . . . . 356

xx



List of Tables

2.1 Summary of notation . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2 RTK models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3 Models with IEK . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4 Amplitude and EC50 expressions for models with IEK . . . . . . . 63
2.5 Amplitude expressions for RTK models . . . . . . . . . . . . . . . 63
2.6 EC50 and IC50 expressions for RTK models . . . . . . . . . . . . . 64

4.1 Key steps of the algebraic method . . . . . . . . . . . . . . . . . . 123
4.2 Branch 1 of the perturbation of the trimeric receptor model . . . 147

5.1 Sequence of events of the ABM with division . . . . . . . . . . . . 272
5.2 Routh table of the characteristic polynomial (5.71). . . . . . . . . 286

J.1 Parameters of the agent-based model . . . . . . . . . . . . . . . . 359

K.1 Number of sign variations of polynomial (K.7) at X + φ
Nσc

. . . . 367

xxi



LIST OF TABLES

xxii



Chapter 1

Introduction

1.1 Biological introduction

1.1.1 Overview of the immune system

The immune system is a complex network of cells, proteins and organs that defend
the body against invaders (collectively called pathogens) such as bacteria, viruses,
and parasites, while preserving its own cells. It means being able to identify
intruders (and discriminate between proteins naturally present in the body and
non-self proteins) and scale the response to the pathogen type and dose. Indeed,
an infection has to be fought with the most efficient weapon available while
minimising the damage caused to the neighbouring cells and tissue (Sompayrac,
2019).
There exist two defence strategies against an invasion. The innate immune system
is composed of barriers, such as skin and mucous, which prevent pathogens from
entering the body, and specific cells which can quickly eliminate the majority of
bacterial infections. For instance, in vertebrates, a certain type of cells, called
macrophages, detect most bacteria and “eat” them (phagocytosis), thus removing
the intruder from the body (Sompayrac, 2019). All living organisms, even plants,
fungi, insects or primitive multi-cellular organisms, possess an innate immune
system (Murphy et al., 2011). In vertebrates, it is completed with the adaptive
immune system (or acquired immune system). This other defence strategy is highly
specific to each particular invader. Indeed, it keeps track of the pathogens the
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1. INTRODUCTION

body encountered to respond quicker and more efficiently in case of a re-infection.
Vaccination relies on this memory mechanism. The adaptive immune response
is carried out by white blood cells known as lymphocytes, in particular B cells
(which mature in the bone marrow) and T cells (which mature in the thymus).
The mathematical models of this thesis mainly focus on T cell communication
and T cell population dynamics.

1.1.2 T cells at work

T cells sense their environment and communicate between each other through
thousands of receptors at their membrane surface, which bind specifically to
extra-cellular molecules, called ligands. Receptors can be composed of multiple
molecules: proteins that cross the cell membrane, known as trans-membrane
chains, and intra-cellular molecules that bind to these chains. The binding of a
receptor to its ligand induces an intra-cellular cascade of chemical reactions, called
downstream signalling (or signal), from the surface of the cell to its nucleus, which
alters the cell’s gene expression and regulates the cell’s fate such as migration,
proliferation, death, or differentiation (De Belly et al., 2022; Maxwell & Webb,
2008; Uings & Farrow, 2000).

In absence of threat (homeostasis), there exists a subset of T cells, called naive
cells, that have never been part of an immune response. This T cell population is
maintained in part thanks to survival signals such as the binding of the ligand
called interleukin-7 (IL-7) to its specific receptor (the interleukin-7 receptor or
IL-7R)1 (Akdis et al., 2011). To detect pathogens, naive T cells express a particular
type of receptor called T cell receptor (TCR)(Sompayrac, 2019). All the TCRs
expressed by one cell2 are identical and only bind to a set of specific proteins.
In order to recognise the multitude of pathogens that naturally exists, the body
creates a large number of T cells, each with a different TCR structure, thanks to
quasi-random somatic gene recombination (Sompayrac, 2019) (it selects, randomly
edits, and combines together different variants of the three main genes that give
the TCR repertoire its diversity). This can lead up to 4.5× 1015 (Murugan et al.,

1Note that IL-7 is also necessary for T cell development in the thymus (Hong et al., 2012).
2Each T cell expresses about 3× 104 identical TCRs (Varma, 2008).
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1.1 Biological introduction

2012) possible TCRs in the whole repertoire, which is more than the number of
stars in our galaxy (about 1× 1011 to 4× 1011 stars (Franck et al., 2001)).

When a pathogen enters the body (supposing it passed the defences of the
innate immune system), it, first, must be detected by a special category of cells,
called antigen-presenting cells (APCs). These cells present pieces of antigens (the
molecules that flags the pathogen as an invader: it can be proteins, peptides,
lipids,...) to a T cell’s TCRs. If the antigen molecules bind to the TCRs (i.e.
the TCRs’ structure matches the antigens’ structure) of the T cell, and if enough
TCRs are bound to antigens (the signal must be stronger than a certain threshold:
multiple TCRs must signal in the same time), the T cell switches from a resting
state to an activated state (through a signal that changes its gene expression, as
explained above). The activation of a T cell triggers its machinery which will
eventually clear the pathogen from the body. This machinery depends on the T
cell type: an activated killer T cell will kill (by inducing apoptosis, i.e assisted
suicide) virus-infected cells, helper T cells will start producing the proteins that
will support the other immune cells during the infection (Sompayrac, 2019), etc.
One of the most important proteins secreted by a subset of activated T cells is
the interleukin-2 (IL-2). This ligand binds to the interleukin-2 receptor (IL-2)
composed of three trans-membrane chains (γc, IL-2Rβ and IL-2Rα) and several
intra-cellular molecules (Rochman et al., 2009). Note that naive T cells do not
produce IL-2 and do not express the complete interleukin-2 receptor (Il-2R): the
IL-2Rα chain is missing1. While only a certain type of T cells start secreting IL-2
once activated, all activated T cells express IL-2Rα (and thus bind to IL-2 with
a high affinity) (Shipkova & Wieland, 2012). The binding of IL-2 to the IL-2R
triggers signals that induce activated T cells to divide (Akdis et al., 2011). Cell
division is the key process by which a local immune response (a cell detects an
intruder) can become a global immune response (multiple cells, maybe in different
parts of the body, fight against the pathogen). Indeed, when a cell divides, it
makes copies of itself. That is, the number of T cells expressing TCRs that are
able to detect the intruder is increasing. Furthermore, the secretion of IL-2 in the
extra-cellular medium, in addition to other co-stimulatory signals, will activate

1The incomplete IL-2R may bind to IL-2 but with a very low affinity. Thus, the binding of
IL-2 to the IL-2R deprived of IL-2Rα is neglected in the mathematical models of this thesis.

3



1. INTRODUCTION

certain neighbouring T cells which, in turn, will start to produce and consume
IL-2, and divide (Sompayrac, 2019). Thus, an increasing number of cells joins the
force to fight the intruder, until it is eventually cleared from the body. At the end
of an immune response (when the pathogens has been eliminated), some activated
T cells become memory T cells (thus keeping track of the invader) and the others
die. We will see in Chapter 5 how a subset of T cells can become activated in
absence of pathogens and secrete IL-2. This T cell activation at homeostasis,
when controlled, is essential to maintain an effective immune system.

1.1.3 Receptor-ligand systems and modelling

The human body consists of more than 3× 1013 cells (Bianconi et al., 2013), each
of them ensuring crucial functions. To guarantee proper functioning, cells need
to communicate with each other and sense their environment. They do so by
expressing thousands of surface receptors, just like T cells, which binds to ligands.
Receptors can be classified into different families, based on how they respond to
signalling molecules. The two families discussed in this thesis are receptor tyrosine
kinases (RTKs) (Du & Lovly, 2018) and cytokine receptors signalling through
associated Janus kinases (JAKs) (Leonard et al., 2019). These two families of
receptors are similar in many regards. Both RTKs and JAK-associated receptors
are activated by ligand-induced dimerisation, i.e., the ligand brings together the
two protein chains which form the full receptor1. This dimerisation leads to
phosphorylation2 of the receptor intra-cellular domains. In spite of their similari-
ties, these two receptor families have one notable difference in the mechanisms
by which they initiate downstream signalling: while RTKs have intrinsic kinase
activity, cytokine receptors do not contain intrinsic kinase domains. Instead
cytokine receptors make use of Janus family tyrosine kinases (a type of extrinsic
intra-cellular kinase) and signal, in part, by the activation of signal transducer

1Note that, in this thesis, we call a dimer a set of two receptor chains. A heterodimer (or
heterodimeric receptor) is a dimer composed of two different receptor chains, and a homodimer
(or homodimeric receptor) is a dimer with two identical chains.

2Phosphorylation is the attachment of a phosphate group to a molecule or protein (molecule
A). This process can be triggered by another molecule (molecule B) and we say that molecule A
is phosphorylated (by molecule B). A molecule can be phosphorylated by itself and we say that
it has been autophosphorylated. A molecule A which is phosphorylated, is usually written pA.

4



1.1 Biological introduction

Figure 1.1: Diagram of the JAK/STAT signalling pathway initiated by cytokine
molecules binding to a generic receptor dimer, reproduced from Ref. Haan et al.
(2006) with permission from Elsevier. The red stars attached to a molecular
species indicate that the species is phosphorylated.

and activator of transcription (STAT) proteins (Lin & Leonard, 2019). The
interaction between the JAK molecule and the activator of transcription STAT is
called the JAK/STAT signalling pathway1 (O’Shea et al., 2015; Steelman et al.,
2004; Villarino et al., 2015) and is illustrated in Figure 1.1 for a generic receptor
dimer. As described by Haan et al. (2006), when the two chains of a receptor are
brought together by a cytokine (ligand), the JAK molecules they are bound to
trans-autophosphorylate themselves. The tyrosine residues of the intra-cellular
tail of the receptor chains are then phosphorylated by the JAKs and will act as
docking sites for other intra-cellular proteins such as STAT molecules. STAT
molecules bind to the receptor chains, become phosphorylated themselves and
then dissociate. Two phosphorylated STAT (pSTAT) molecules will then form a
dimer in the cell cytoplasm, migrate to the nucleus and act as transcription factor,
i.e., read the part of the DNA which will determine cellular fate. For example,

1We call signalling pathway the cascade of chemical reactions from the surface of a cell to
its nucleus, which was triggered by the binding of a ligand to its receptor. The JAK/STAT
pathway is the name of one of the multiple existing pathways.
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1. INTRODUCTION

Figure 1.2: The common gamma chain family, comprising receptors for
interleukin-2, 4, 7, 9, 15 and 21. Figure taken from Ref. Rochman et al. (2009)
(reproduced with permission from Springer Nature).

the common gamma chain family of cytokine receptors, comprising receptors for
interleukin-2 (IL-2), 4, 7, 9, 15 and 21 (Akdis et al., 2011; Lin & Leonard, 2018;
Rochman et al., 2009), signals through the JAK/STAT pathway (see Figure 1.2).
This family of receptors shares the eponymous common gamma chain (written γc
or sometimes γ) which signals through the intra-cellular extrinsic Janus kinase
molecule, JAK3. All receptors in this family complete the signalling core of the
receptor with a second chain associated with JAK1: IL-4, IL-7, IL-9 and IL-21
make use of IL-4Rα, IL-7Rα, IL-9Rα and IL-21Rα, respectively. IL-2 and IL-15
share the JAK1-associated IL-2Rβ chain and include a third chain for specificity
and enhanced sensitivity (IL-2Rα and IL-15Rα, respectively). This thesis mainly
focuses on IL-7 and IL-2 receptors (IL-7R and IL-2R), which signal through STAT5
phosphorylation (Lin & Leonard, 2019). The amount of phosphorylated STAT can
often be used as the experimental measure of the intra-cellular response generated
by the cytokine stimulus. For instance, the quantity of phosphorylated STAT5
(pSTAT5) is a measure of the biological effect induced by the binding of IL-2 or
IL-7 to their respective receptor.

Receptor-ligand interactions are essential in cell-to-cell communication, as
is the case for immune cell populations (Farhat et al., 2021), and thus, a large
body of literature has been devoted to the experimental and theoretical study of
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1.1 Biological introduction

cell signalling dynamics (De Belly et al., 2022; Feinerman et al., 2010; Gonnord
et al., 2018; Lauffenburger & Linderman, 1996; Leonard et al., 2019; Molina-París
et al., 2013; Park et al., 2019; Ring et al., 2012; Rochman et al., 2009; Wiley
et al., 2003), in particular cytokine signalling (Altan-Bonnet & Mukherjee, 2019;
Lin & Leonard, 2018; Raeber et al., 2018; Villarino et al., 2015). The study of
a receptor-ligand system generally relies on the analysis of its dose-response (or
concentration-effect) curve, which describes the relation between ligand concen-
tration and the biological effect (or cellular response) it generates when binding
its specific receptor (Lambert, 2004; Lauffenburger & Linderman, 1996; Maxwell
& Webb, 2008). For example, the quantity of pSTAT5 as a function of the IL-2
concentration is a dose-response curve of the IL-2/IL-2R system. Mathematical
models of receptor-ligand systems have been developed to compute a dose-response
curve, under the assumption that a biological effect is proportional to the number
of ligand-bound receptors (Cotari et al., 2013b; Farhat et al., 2021; Molina-París
et al., 2013; Wiley et al., 2003).
Given a dose-response curve, two quantities (or metrics) have been defined to char-
acterise the properties of the ligand-receptor system under consideration. These
metrics are: the amplitude, which is defined as the difference between the maximal
and minimal response, and the half-maximal effective concentration (or EC50),
which is the concentration of ligand required to induce an effect corresponding to
50% of the amplitude (Lambert, 2004; Lauffenburger & Linderman, 1996; Maxwell
& Webb, 2008). In pharmacology, the amplitude is said to be a measure of the
efficacy of the ligand, and the EC50, a measure of the potency (or sensitivity) of
the ligand (for a given receptor) (Dushek et al., 2011; Lambert, 2004; Maxwell &
Webb, 2008). More mathematical definitions of the amplitude and EC50, as well
as an illustration, will be given in Section 2.4.
Exploiting the controlled environment of in vitro experiments, most cell signalling
studies focus on the estimation of the affinity constant for a given receptor-ligand
system, and the quantification of biochemical on and off rates for the binding and
unbinding, respectively, of receptor and ligand molecules. Mathematical models of
cell signalling often consist in fitting the dose response curve to experimental data
using statistical methods (Chen et al., 2013; Finlay et al., 2020; Gesztelyi et al.,
2012; Goutelle et al., 2008; Jiang & Kopp-Schneider, 2014; Keshtkar et al., 2021;
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Li et al., 2015; Suriyatem et al., 2017). Other cell signalling mathematical models
can study receptor trafficking, i.e., internalisation, recycling or degradation of the
bound receptor-ligand complex (Fallon & Lauffenburger, 2000; Molina-París et al.,
2013; Park et al., 2019; Wilmes et al., 2021), the signalling pathway (Anders et al.,
2020; McKeithan, 1995), or the competition of cells (Feinerman et al., 2010) or
receptors (Higuera et al., 2021) for the same ligand. As diverse as cell signalling
studies can be, most of them consider that cells of the same population behave
in a similar manner, for instance by expressing the same number of receptors
(or receptor constituents). However, recent single-cell studies have shown that
cells present heterogeneous expression levels of receptor copy numbers. Not only
does the copy number depend on the cell type, but receptor copy numbers vary
strongly between isogenic1 cells of the same type (Cotari et al., 2013b; Farhat
et al., 2021; Feinerman et al., 2010). Given the heterogeneity of receptor copy
numbers across and within cell types, it is timely to understand how a cell’s
response to a given ligand depends on the expression level (or copy number) of its
receptor. This quantification will be a first step to account for the variability of
receptor expression levels when designing and studying receptor-ligand models
(both from an experimental and mathematical perspective) (Cotari et al., 2013b;
Farhat et al., 2021; Gonnord et al., 2018; Ring et al., 2012). The heterogeneity
in cellular responses induced by the variability in receptor expression levels of a
given cell population may significantly impact the cell population dynamics. The
link between the receptor copy number distribution among the cell population
and the population dynamics must also be better understood.

1.2 Objectives of the thesis

As previously mentioned, cells of different type, but also isogenic cells, express
heterogeneous levels of receptors. This heterogeneity might have great impli-
cations in modulating, for instance, the immune response to a pathogen or in
cancer, due to the diversity of potential cellular responses in the population. A
natural conjecture would be that increasing the abundance of a receptor chain

1Isogenic cells all have identical genes.
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increases the cell’s response, reflected in an increase in amplitude (it increases
the number of fully-formed receptors) and decrease in EC50 (increases the sen-
sitivity of the ligand). This behaviour has been observed in RTKs of cancerous
cells (Bache et al., 2004; Du & Lovly, 2018; Eladdadi & Isaacson, 2008; Regad,
2015). However, Gregoire Altan-Bonnet, Guillaume Voisinne and Jesse Cotari
conducted experiments that showed that increased γc abundance decreased the
amplitude and the sensitivity of IL-7-induced cellular response in a population
of T cells. In Chapter 3 of this thesis, I present the experimental results that
lead to this seemingly paradoxical observation, and propose three mathematical
models of the IL-7R in an attempt to explain it. The first model is a simple
IL-7 receptor model in which the molecular complex able to induce the signal is
formed sequentially. This model also allows the formation of complexes deprived
of the extrinsic kinase and thus, unable to signal. The formation of these “dummy”
complexes can explain the paradox only partially and variations of the first model
are investigated. This chapter demonstrates that, contrary to popular belief,
dose-response curves are not univariate functions of the concentration of ligand
but instead are greatly influenced by the copy number of receptor constituents.
In this chapter, I also compute the analytic expressions of the amplitude and
EC50 of the first and last models, making use of Gröbner bases. The method
employed to compute such expressions is summarised in Chapter 4. Amplitude
and EC50 are key quantities commonly used in pharmacodynamic modelling, yet
a comprehensive mathematical investigation of the behaviour of these two metrics
is still outstanding for most receptor-ligand systems. Analytic expressions of
these quantities show directly the dependence of the amplitude and EC50 on
the parameters of the system and facilitate parameter exploration. In Chapter
4, I apply the method to additional examples of receptor-ligand systems, thus
exploring other receptor configurations of biological and immunological relevance.
The amplitude and EC50 expressions of some models are very similar, which
led me to study a generalised receptor-ligand system with n trans-membrane
chains. The application of the method to these different receptor architectures
also showed its limitations: some models are too complex to be solved with the
Gröbner basis method. In the last section of Chapter 4, I investigate whether I
can analyse the amplitude and EC50 of more complex models by computing the
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amplitude and EC50 expressions of simpler sub-models. Chapters 3 and 4 focus
on the response of a single cell but do not explore the consequences of receptor
copy number variability on the dynamics of a population of T cells. In turn, these
chapters do not take into account the impact of the population dynamics1 on the
receptor distribution. I propose to explore this complex relationship in Chapter
5, by constructing agent-based models of the competition for IL-2 within a T
cell population. I start with a simple and fully deterministic base model of the
competition for this cytokine within a population with a constant number of cells.
Then, I add stochastic cellular rules one at a time, such as death or division events,
thus building more complicated models. For each model, I provide a mathematical
description and try to determine the shape of the IL-2R copy number distribution
at any time. Finally, I suggest several extensions of these models, comprising the
competition for IL-2 between two different T cell populations. A Python code
for the most complicated model (which encompasses the other models) is provided.

Overall, this thesis explores the following questions: How does cell signalling
depend on molecular copy numbers? How can we develop mathematical models
that capture the cellular heterogeneity in copy numbers? How can we model the
difference of response to similar stimuli? After recapitulating, in Chapter 2, the
mathematical tools and methods that will be employed in this thesis, I show,
in Chapter 3, that the heterogeneity in molecular copy number may impact cell
signalling in a counter-intuitive manner. Chapter 4 presents theoretical results
which show that the receptor architecture can change the way the amplitude and
EC50 of the model vary in response to receptor copy number differences. Finally,
in Chapter 5, I combine mathematical descriptions and qualitative observations
from numerical simulations to analyse agent-based models of the competition
for IL-2 within a T cell population. I determine (when possible) how cellular
dynamics events change the distribution of IL-2 receptor copy number expression
within the cell population. I conclude this thesis in Chapter 6.

1For instance, what is the impact of the death of a cell on the receptor distribution? The
death of one hundred cells? The arrival of new cells?
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Chapter 2

Mathematical background

This chapter provides a background in chemical reaction network theory, pertur-

bation theory and stochastic processes, as well as an overview of some related

mathematical tools and methods which will be used in this thesis. Sections 2.3,

2.4 and 2.5 are directly adapted from Ref. Sta et al. (2022a).

2.1 Ordinary differential equations and systems

A major part of the work of this thesis consists of deterministic modelling, in

particular the application of ordinary differential equations (ODEs) to represent

biological mechanisms. Models consisting of a set of ODEs are commonly used

in biological sciences to describe many types of systems such as predator-prey

models (Diz-Pita & Otero-Espinar, 2021), viral infection models (Liao et al., 2020;

Locke et al., 2021) or molecular models (Fallon & Lauffenburger, 2000). In this

section, largely inspired by Ref. Allen (2007), I provide some basic definitions and

results on (systems of) differential equations that will be used in this thesis.

2.1.1 Ordinary differential equations

Let us first recall the definition of an ordinary differential equation.

Definition 1 (Ordinary differential equation). An ordinary differential equation

11
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of order n (or nth order differential equation) is an equation of the form

f(x,
dx

dt
,
d2x

dt2
, . . . ,

dnx

dtn
, t) = 0,

where x is a function of t (which represents time in this thesis) and is n times
differentiable. If this differential equation does not depend explicitly on t, i.e., we
have

f(x,
dx

dt
,
d2x

dt2
, . . . ,

dnx

dtn
) = 0,

then it is said to be autonomous ; otherwise it is non-autonomous.

If an nth order differential equation can be expressed as follows

dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ . . .+ an−1(t)

dx

dt
+ an(t)x = g(t), (2.1)

where the coefficients ai(t), i = 1, . . . , n, and g(t) are not functions of x (nor any

derivative of x), then it is referred to as linear. Otherwise it is called non-linear.

If for all t, g(t) = 0, then differential equation (2.1) is called homogeneous, and

non-homogeneous otherwise. Note that the coefficients ai(t), i = 1, . . . , n, and g(t)

are always supposed to be real valued.

First-order differential equations

In this thesis, we will consider first-order linear differential equations, which have

the following form:
dx

dt
+ a(t)x = g(t). (2.2)

The functions a(t) and g(t) are assumed to be continuous. This equation can be

solved making use of the method of the variation of parameters. We first solve the

homogeneous equation
dx

dt
+ a(t)x = 0,

to obtain the general solution of the differential equation: for each time t,

x(t) = Ke−A(t), (2.3)
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where K is a constant and A′(t) = a(t). To obtain the solution of (2.2), one now

assumes that K is a function of t and substitutes the general solution in equation

(2.2), which yields an expression for the derivative of K(t), K ′(t):

K ′(t) = g(t)eA(t).

After integration, one finds an expression for the function K(t),

K(t) =

∫
g(u)eA(u)du+ c,

where c is a constant of integration. The expression for K(t) replaces the constant

K in equation (2.3). Suppose the initial condition is x(t0) = x0. Making use of

this initial condition, one can determine the constant of integration, c, and obtain

the solution of (2.2). That is, for each time t, we have

x(t) = e
−

∫ t
t0
a(s)ds

(
x0 +

∫ t

t0

e
∫ u
t0
a(s)ds

g(u)du

)
. (2.4)

Second-order differential equations and Wronskian

Homogeneous second-order linear differential equations will also be found in this

thesis. They are of the following form:

d2x

dt2
+ a1(t)

dx

dt
+ a2(t)x = 0. (2.5)

Often, this ODE is completed by a set of two initial conditions, for instance

x(t0) = x0 and
dx

dt
(t1) = x1. Assume that a1(t) and a2(t) are continuous functions

of t. In general, the explicit analytic solution of (2.5) cannot be found. However,

if one knows a solution of (2.5) (one may find an obvious solution), then the

Wronskian can be used to find all the solutions of the system.

Definition 2 (Wronskian). The Wronskian of two univariate differentiable func-
tions u(t) and v(t) is defined as follows. For all t,

W (u, v)(t) = u(t)v′(t)− u′(t)v(t),

13
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where u′(t) and v′(t) are the derivative of u(t) and v(t), respectively.

Suppose y1 and y2 are solutions of (2.5). Then, their Wronskian obeys the

first-order differential equation:

W ′(y1, y2)(t) = y′1(t)y′2(y) + y1(t)y′′2(t)− y′′1(t)y2(t)− y′1(t)y′2(t)

= y1(t) [−a1(t)y′2(t)− a2(t)y2(t)]− [−a1(t)y′1(t)− a2(t)y1(t)] y2(t)

= −a1(t)W (y1, y2)(t),

where, the second step was obtained by substituting the second derivatives by

their expression from equation (2.5). This ordinary linear, autonomous and

homogeneous differential equation can be solved to obtain a general expression

for the Wronskian:

W (y1, y2)(t) = KeA(t),

where A′(t) = −a1(t) and K is a constant. Now, assume that we know one of the

solutions of the differential equation (2.5), say y2. Then, following the definition

of the Wronskian, any other solution of (2.5), y1, satisfies the following first-order

differential equation:

y′1(t)− y′2(t)

y2(t)
y1(t) = −W (y1, y2)(t)

y2(t)
.

For this method to work, we need W (y1, y2)(t) 6= 0 for all t, i.e., the Wronskian

never vanishes. In that case the functions y1 and y2 are linearly independent.

However, if the Wronskian vanishes, and under the conditions that the functions

y1 and y2 are analytic1(which is always the case in this thesis), then y1 and y2

are linearly dependent (Bocher, 1901) and there exists a constant c such that

y1 = cy2.

1A univariate real-valued function, f(x), is said to be analytic if it is locally given by a
convergent power series. That is, f(x) is analytic on an open set D if for any given x0 ∈ D, one

can write f(x) =

+∞∑
n=0

αn(x− x0)n, where α0, α1, . . . are real numbers and the series is convergent

(i.e., lim
N→+∞

N∑
n=0

αn(x− x0)n < +∞) for x in the neighbourhood of x0.
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2.1 Ordinary differential equations and systems

In some specific cases, an exact solution of the second-order differential equa-
tion (2.5) can be found. For instance, if a1(t) and a2(t) are constant (written a1

and a2), then the number of roots of the associated characteristic polynomial,
r2 + a1r + a2, determines the shape of the solution:

• if the characteristic polynomial has two real distinct roots, r1 and r2, the
solution of (2.5) is

x(t) = Aer1t +Ber2t.

This expression can also be rewritten in term of sum of cosh and sinh.

• If the characteristic polynomial has a repeated real root, r0, the solution of
(2.5) is

x(t) = (At+B)er0t.

• If the characteristic polynomial has two complex conjugate roots, r1 = a+ ib

and r2 = a− ib, then the solution of (2.5) is

x(t) = eat(A cos(bt) +B sin(bt)).

In the three cases, A and B are constants to be determined with the initial
conditions.

2.1.2 First-order systems of ordinary differential equations

Most of the time, more than one variable is considered in mathematical models.
For instance in an infectious disease model, one could consider the number of
infected patients, the number of patients which have never been infected and the
number of recovered people (SIR model in Allen (2007)). In that case, we consider
a system of differential equations.

Definition 3 (First-order system of ordinary differential equations). A first-order
system of ordinary differential equations satisfies

dX

dt
= F (X(t), t),

15



2. MATHEMATICAL BACKGROUND

where the vectors X(t) = (x1(t), . . . , xn(t))T , F = (f1, . . . , fn)T and each fi ≡
fi(x1(t), . . . , xn(t), t).

The system is said to be autonomous if F does not depend explicitly on t.

Otherwise, it is said to be non-autonomous. A system defined as in Definition 3

is said to be linear if each ODE of the system can be expressed as

dxi
dt

=
n∑
j=1

ai,j(t)xj + bi(t),

for i = 1, . . . , n. Otherwise it is said to be non-linear. Non-linear systems of ODEs

are very common in biology due to the interaction between species. A common

example found in this thesis is the case in which two species x1 and x2 bind to

form a third species x3. Then, the ODE which determines the evolution of the

concentration of each of this species will have a term proportional to x1(t)x2(t)

under the mass action law1. Finally, if the system is linear and bi(t) = 0 for all i

and at any t, then the system is said to be homogeneous, and non-homogeneous

otherwise.

Steady state

One important type of solution for an autonomous system of differential equations

is the constant solution, X∗ , known as the steady state solution, which satisfies

F (X∗) = 0.

This solution is obtained by setting all the derivatives (left side) to 0 in a system

of ODEs and solving the resulting system of equations. A steady state can be

biologically interpreted as a state in which the amount of each species considered

in the model is not changing anymore. Some models may have several steady

states. We call non-trivial steady state a steady state X∗ which is not the null

vector.

1More details will follow in Section 2.3.
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2.2 An introduction to Gröbner bases

Stability of the steady state

An important question about steady states is whether they are locally stable,

asymptotically stable or unstable. A steady state is locally stable if a solution

starting close to the steady state solution, X∗, remains close to X∗ as t→ +∞. A

steady state is asymptotically stable if it is locally stable and if a solution which

starts close to the steady state solution, X∗, approaches X∗ as t→ +∞. A steady

state that meets neither of these conditions is said to be unstable. In this thesis,

we will study the stability of steady states of systems of ODEs by computing the

eigenvalues of the Jacobian matrix associated with the system.

Definition 4 (Jacobian matrix). Consider a system of ODEs as defined in
Definition 3. Then the associated Jacobian matrix is

J(X) =


∂f1
∂x1

(X) . . . ∂f1
∂xn

(X)
... . . . ...

∂fn
∂x1

(X) . . . ∂fn
∂xn

(X)


A steady state solution, X∗, is asymptotically stable if and only if all of the

eigenvalues of the Jacobian matrix evaluated at this steady state, J(X∗), have a

real negative part. If one or more eigenvalues have a positive real part, the steady

state is unstable. If any eigenvalue has a real part equal to zero, the stability

analysis is said to be inconclusive.

2.2 An introduction to Gröbner bases

In this thesis, I make use of Gröbner bases (Buchberger, 1965, 2006) to solve

systems of polynomial equations. In this section, inspired by Cox et al. (2013), I

give an overview of the important definitions related to the polynomial ring and

introduce the Gröbner bases formally. I then explain how they are employed in

this thesis to solve polynomial systems.
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2. MATHEMATICAL BACKGROUND

2.2.1 The polynomial ring

Gröbner bases are defined in the polynomial ring which is commutative1. First,
let us recall the definition of a commutative ring.

Definition 5 (Commutative ring). A commutative ring consists of a set R and
two binary operations + and · defined on R such that

1. (a+b)+c = a+(b+c) and (a ·b) ·c = a ·(b ·c) for all a, b, c ∈ R (associativity).

2. a+ b = b+ a and a · b = b · a for all a, b ∈ R (commutativity).

3. a · (b+ c) = a · b+ a · c for all a, b, c ∈ R (distributivity).

4. There are 0, 1 ∈ R such that a+ 0 = a · 1 = a for all a ∈ R (identities).

5. Given a ∈ R, there exists b ∈ R such that a+ b = 0 (additive inverses).

Now, let us describe the polynomial ring in more detail. We first recall the
general definition of a polynomial, starting by introducing the notion of monomials.

Definition 6 (Monomial). A monomial in x1, . . . , xn is a product of the form
xα1

1 x
α2
2 . . . xαnn , where the exponents αi, i = 1, . . . , n, are non negative integers.

The degree of a monomial is α1 + . . .+ αn.

For a less cumbersome notation, the abbreviation xα = xα1
1 x

α2
2 . . . xαnn , where

α = (α1, . . . , αn) will be used. We let |α| = α1 + . . . + αn be the degree of the
monomial xα. We are now ready to formally define polynomials of n variables.

Definition 7 (Polynomial). A polynomial f in x1, . . . , xn with coefficients in a
field K (typically Q or R in this thesis), is a finite linear combination of monomials.
A polynomial f is written in the form

f =
∑
α

bαx
α, bα ∈ K,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn). We call bα
the coefficient of monomial xα. If bα 6= 0, then bαxα is called a term of f . The
degree of polynomial f 6= 0 is the maximum |α| such that bα 6= 0. The degree of
the zero polynomial, f = 0, is undefined.

1Note that the notion Gröbner bases have been generalised to non-commutative rings but it
is out of the scope of this thesis.
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2.2 An introduction to Gröbner bases

It can be shown that the set of all polynomials of n variables with coefficients
in K, with addition and multiplication, satisfies the axioms of a commutative ring.
This ring is called the polynomial ring and denoted by K[x1, . . . , xn]. Now that
the polynomial ring is defined, let us introduce an ordering relationship on this
set. We first recall the definition of a total ordering.

Definition 8 (Total ordering). A total ordering is a relation ≤ on some set X,
which satisfies the following for all a, b, c ∈ X:

• a ≤ a (reflexivity),

• if a ≤ b and b ≤c then a ≤ c (transitivity),

• if a ≤ b and b ≤ a then a = b (anti-symmetry),

• a ≤ b or b ≤ a (strongly connected or total).

With this in place, we can now introduce one of the most important notions
of this section: monomial ordering.

Definition 9 (Monomial ordering (or monomial order)). A monomial ordering
on K[x1, . . . , xn] is a relation ≥ on the set of monomials xα, α ∈ Nn, such that :

1. ≥ is a total ordering on Nn,

2. For all α, β, γ ∈ Nn, if α ≥ β, then α + γ ≥ β + γ

3. ≥ is a well-ordering on Nn (this means that every non-empty subset of Nn

has a smallest element with respect to ≥).

One first example of an ordering on n-tuples, which is a monomial ordering, is
the lexicographic order.

Definition 10 (Lexicographic (lex) order). Let α = (α1, . . . , αn) and β =

(β1, . . . , βn) be in Nn. We say α ≥lex β if the leftmost nonzero entry of the
vector α−β ∈ Nn is positive, i.e., if α−β is in the form (0, . . . , 0, a1, . . . , ar) with
a1 ≥ 0. With such a monomial ordering on K[x1, . . . , xn], we have xα ≥lex xβ.

Consider the variables x1, . . . , xn of any polynomial of K[x1, . . . , xn]. Then,
in term of the set of monomials xα defined earlier, we have x1 = x(1,0,...,0), x2 =
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x(0,1,...,0), etc.... Thus, the variables x1, . . . , xn are ordered in the usual way in the
lex ordering:

(1, 0, . . . , 0) ≥lex (0, 1, 0, . . . , 0) ≥lex . . . ≥lex (0, . . . , 0, 1),

so x1 ≥lex x2 ≥lex . . . ≥lex xn. Note that for a general case of n variables, there
exist n! lex orders 1.

Example 11 (Lex order (example inspired by Cox et al. (2013))). Consider the
multivariate polynomial, Q = 4xy2z + 4z2 − 5x3 + 7x2z2. Let us choose a lex
monomial order such that x ≥lex y ≥lex z. In term of the monomial notation
xα=(α1,α2,α3) = xα1yα2zα3 , we have xy2z = x(1,2,1), z2 = x(0,0,2), x3 = x(3,0,0) and
x2z2 = x(2,0,2). We have (3, 0, 0) ≥lex (2, 0, 2) ≥lex (1, 2, 1) ≥lex (0, 0, 2), so the
monomials of Q are ordered as follows: x3 ≥lex x2z2 ≥lex xy2z ≥lex z2.

We might want to take the degree of the monomials into account and order
monomials of bigger degree first. One way to do this is the graded lexicographic
order (or grlex).

Definition 12 (Graded lex order). Let α, β ∈ Nn. We say that α ≥grlex β if
|α| ≥ |β| or, |α| = |β| and α ≥lex β.

Note that the choice of a lex order is essential to define a grlex order.

Example 13 (Grlex order (example inspired by Cox et al. (2013))). Consider
again the multivariate polynomial, Q = 4xy2z + 4z2 − 5x3 + 7x2z2. Let us choose
a grlex monomial order such that x ≥lex y ≥lex z. The monomials of Q are
ordered by decreasing degree. To order the monomials, xy2z and x2z2, which have
the same degree, we use the chosen lex order. We have x2z2 ≥lex xy2z. Thus,
under such grlex order, the monomials of Q are ordered as follows: x2z2 ≥grlex
xy2z ≥grlex x3 ≥grlex z2.

Other orderings, such as graded reverse lex order, exist but we do not introduce
them in this thesis. A monomial ordering allows one to define the leading monomial,

1There is one lex order to each way the n variables can be ordered. There exist n! way of
ordering n elements. For example, consider a set {a, b, c} of three elements, then there are 3! = 6
lexicographic orders on this set: {a ≤ b ≤ c, a ≤ c ≤ b, b ≤ a ≤ c, b ≤ c ≤ a, c ≤ a ≤ b, c ≤ b ≤
a}.
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the leading coefficient and the leading term of any polynomial of K[x1, . . . , xn].

Let us first define the multidegree of a polynomial of K[x1, . . . , xn].

Definition 14 (Multidegree). Let f =
∑

α bαx
α be a non-zero polynomial of

K[x1, . . . , xn] and let ≥ be a monomial order. Then, the multidegree of f is

multideg(f) = max

{
α ∈ Nn

∣∣∣∣bα 6= 0

}
, where the maximum is taken with respect

to the ordering ≥.

With this multidegree, we can define the following three notions:

Definition 15 (Leading coefficient). Let f =
∑

α bαx
α be a non-zero polynomial

of K[x1, . . . , xn] and let ≥ be a monomial order. Then, the leading coefficient of
f is LC(f) = bmultideg(f).

Definition 16 (Leading monomial). Let f =
∑

α bαx
α be a non-zero polynomial

of K[x1, . . . , xn] and let ≥ be a monomial order.Then, the leading monomial of f
is LM(f) = xmultideg(f).

Definition 17 (Leading term). Let f =
∑

α aαx
α be a non-zero polynomial of

K[x1, . . . , xn] and let ≥ be a monomial order. Then, the leading term of f is
LT (f) = LC(f) · LM(f).

The determination of the leading term, coefficient and monomial are dependent

on the choice of the monomial ordering.

Example 18 (Leading term of a multivariate polynomial depends on monomial
ordering). When choosing the grlex monomial ordering of Example 13, the leading
term of polynomial Q = 4xy2z+ 4z2− 5x3 + 7x2z2 is 7x2z2, where 7 is the leading
coefficient and x2z2 the leading monomial. If we choose the lex monomial ordering
of Example 11, then the leading term of Q is −5x3.

The determination of the leading term is a crucial step in the division and

reduction algorithms (Cox et al., 2013). Since it is highly dependent on the choice

of monomial order, such ordering must be chosen carefully. A “bad” choice may

complicate the computation and make the algorithm less efficient.

Now that we recalled these important definitions, we are equipped to introduce

Gröbner bases.
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2.2.2 Definition of Gröbner bases

A Gröbner basis is a particular kind of generating set of an ideal in a polynomial
ring. We first recall the definition of an ideal.

Definition 19 (Ideal). Let (R,+, ·) be a commutative ring. A subset I ⊆ R is
an ideal if it satisfies:

1. 0 ∈ I.

2. If a, b ∈ I, then a+ b ∈ I.

3. If a ∈ I and b ∈ R, then b · a ∈ I.

In other words, an ideal is a subset of a commutative ring containing zero and
closed under internal addition and external multiplication. Note that ideals can
be generated by a set of elements of the ring.

Definition 20 (Ideal generated by a set). Let (R,+, ·) be a commutative ring
and f1, . . . , fs ∈ R. Then

I = 〈f1, . . . , fs〉 =

{
s∑
i=1

hifi

∣∣∣∣h1, . . . , hs ∈ R
}

is an ideal called the ideal generated by {f1, . . . , fs}. We also say that {f1, . . . , fs}
is a generating set of I, and for i = 1, . . . , s, fi is a generator of I.

Finally, let us introduce the notion of an ideal of leading terms.

Definition 21 (Ideal of leading terms). Let I ⊆ K[x1, . . . , xn] be an ideal other
than {0}, and fix a monomial ordering on K[x1, . . . , xn]. Then we denote by LT (I)

the set of leading terms (with respect to the given monomial order) of non-zero
elements of I:

LT (I) =

{
LT (f)

∣∣∣∣f ∈ I \ {0}} .
We denote by 〈LT (I)〉 the ideal generated by the elements of LT (I). The ideal
〈LT (I)〉 is called the ideal of leading terms.

Observe that 〈LT (I)〉 is impractical to build as we need to consider all the
polynomials of I and take their leading term. If I is generated by a finite set
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{f1, . . . , fs}, we would rather consider the ideal generated by the leading terms of

the generators, 〈LT (f1), . . . , LT (fs)〉. However, 〈LT (I)〉 and 〈LT (f1), . . . , LT (fs)〉
may be different ideals (but we do have 〈LT (f1), . . . , LT (fs)〉 ⊆ 〈LT (I)〉 (Cox
et al., 2013)).

Example 22 (Case for which 〈LT (f1), . . . , LT (fs)〉 6= 〈LT (I)〉. Example taken
from Cox et al. (2013)). Consider I = 〈f1, f2〉 = 〈x3 − 2xy, x2y − 2y2 + x〉 and
use the grlex ordering on monomials in K[x, y]. We have

x2 = xf2 − yf1,

so x2 ∈ I. Thus, LT (x2) = x2 is a linear combination of the leading terms
of the elements of I and we have x2 ∈ 〈LT (I)〉. However, LT (f1) = x3 and
LT (f2) = x2y. As x2 cannot be expressed as a linear combination of x3 and x2y,
we have x2 /∈ 〈LT (f1), LT (f2)〉.

It is however possible to find a generating set {f1, . . . , fs} of I such that

〈LT (f1), . . . , LT (fs)〉 = 〈LT (I)〉. We first have the following result:

Theorem 23 (Hilbert basis theorem). Every ideal I of the polynomial ring is
finitely generated. In other words, there exists a finite subset G = {g1, . . . , gs} ⊆ I

such that I = 〈g1, . . . , gs〉.

The proof of this theorem (Cox et al., 2013) establishes that we can always find a

generating set {g1, . . . , gs} of an ideal I such that 〈LT (g1), . . . , LT (gs)〉 = 〈LT (I)〉.
This special generating set is called a Gröbner basis.

Definition 24 (Gröbner basis). Fix a monomial order on the polynomial ring
K[x1, . . . , xn]. A finite subset G = {g1, . . . , gs} of an ideal I ⊆ K[x1, . . . , xn],
G 6= {0}, is said to be a Gröbner basis if

〈LT (g1), . . . , LT (gs)〉 = 〈LT (I)〉.

As a convention, the empty set ∅ is the Gröbner basis of the zero ideal {0}.

More informally, a set G = {g1, . . . , gs} ⊆ I is a Gröbner basis of I if and only

if the leading term of any element of I is divisible by one of the leading terms

of the elements of G, LT (gi). For a given monomial order, every ideal, I, of the
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polynomial ring K[x1, . . . , xn] has a Gröbner basis and this is a generating set of

I. For a given monomial order, an ideal I 6= {0} can have multiple Gröbner bases,

but has only one reduced Gröbner basis.

Definition 25 (Reduced Gröbner basis). A reduced Gröbner basis for a polynomial
ideal I is a Gröbner basis, G, of I such that

1. ∀g ∈ G, LC(g) = 1,

2. ∀g ∈ G, no monomial of g is divisible by the leading term of the other
elements of G.

Note that, in this thesis, if we fix a lex monomial ordering and compute

a Gröbner basis, we will say that we compute a lex Gröbner basis. Equipped

with these formal definitions, one can apply Gröbner bases to solve systems of

polynomial equations.

2.2.3 Use of Gröbner bases

Gröbner basis computation is a practical tool for solving systems of polynomial

equations. Consider a set of n polynomials, P1, . . . , Pn of K[x1, . . . , xn]. One

wants to find the solutions of the system P1 = 0, . . . , Pn = 0, i.e., find the n-tuples

(x∗1, . . . , x
∗
n) such that we have

P1(x∗1, . . . , x
∗
n) = 0,

...

Pn(x∗1, . . . , x
∗
n) = 0.

(2.6)

The set of n-tuples which satisfies system (2.6), is called an affine variety.

Definition 26 (Affine variety). Let f1, . . . , fs be polynomials of K[x1, . . . , xn].
Then we call an affine variety the set of points (n-tuples) at which all the
polynomials f1, . . . , fs vanish:

V (f1, . . . , fs) =

{
(x∗1, . . . , x

∗
n) ∈ Kn

∣∣∣∣fi(x∗1, . . . , x∗n) = 0, ∀i ∈ {1, . . . , s}
}
.
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We denote by K the algebraic closure of K. That is, the roots of every
non-constant polynomial with coefficients in K lie in K. We note that K ⊆ K.

Example 27 (Algebraic closure of R). Every non-constant polynomial of R[x]

admits a root in the complex field C. Thus, the algebraic closure of R is R = C.

Such a definition of an affine variety shows that we are studying the common
complex roots of a given system of polynomial equations. In this thesis, we focus
on real roots, in particular positive roots1.

When system (2.6) has a finite number of solutions, the associated variety is a
finite set of points. We call such a variety zero-dimensional.

The problem of solving the system (2.6) is equivalent to the problem of finding
all the points of the associated affine variety V (P1, . . . , Pn). Now, I = 〈P1, . . . , Pn〉
defines an ideal of K[x1, . . . , xn]. We can define a variety associated to this ideal.

Definition 28 (Variety associated to an ideal). Let I ⊆ K[x1, . . . , xn] be an ideal.
We denote by V (I) the following set

V (I) =

{
(x∗1, . . . , x

∗
n) ∈ Kn

∣∣∣∣f(x∗1, . . . , x
∗
n) = 0 ∀f ∈ I

}
.

We have the following result (Cox et al., 2013).

Proposition 29. V (I) is an affine variety. In particular, if I = 〈f1, . . . , fs〉, then
V (I) = V (f1, . . . , fs).

It results that if the system (2.6) has a finite number of solutions, V (I) is
finite and we have the following definition.

Definition 30 (Zero-dimensional ideal). Let I be an ideal of K[x1, . . . , xn]. We
say that I is zero-dimensional if the associated variety, V (I) is a finite set.

It follows from Proposition 29 that V (I) can be described by any gener-
ating set of I. Let G = (g1, . . . , gs) be a Gröbner basis of I. Then we have
V (P1, . . . , Pn) = V (I) = V (g1, . . . , gs). As a result, the system of polynomial
equations associated to G, g1 = 0, . . . , gs = 0 has the same roots as the sys-
tem (2.6).

1The problem of finding the positive real roots of a system of polynomial equations is usually
a hard problem.

25



2. MATHEMATICAL BACKGROUND

Now suppose that I = 〈P1, . . . , Pn〉 is a zero-dimensional ideal (or equivalently
that system (2.6) admits a finite set of solutions). Note that all the polynomial
systems considered in this thesis will admit a finite set of solutions. Choosing a
lex monomial order, a Gröbner basis, G = {g1, . . . , gs}, of I, has a special form:

g1(x1, . . . , xn),

g2(x1, . . . , xn−1),

...

gs(x1).

That is, the associated system of polynomial equations (g1 = 0, . . . , gs = 0) is a
triangular system. Thus, it can be solved iteratively, starting by solving gs(x1) = 0

with one variable solving methods, then solving gs−1(x1, x2) = 0 substituting x1

with a similar procedure, etc. These roots are also the roots of the system (2.6).

The computation of Gröbner bases is implemented in most computer algebra
software or libraries, such as Mathematica (Wolfram Research, Inc., 2019) or
Macaulay2 (Grayson & Stillman) which will be used in this thesis. They make
use of modified and improved versions of the first algorithm proposed to compute
Gröbner bases, the Buchberger algorithm (Buchberger, 1965, 2006). Informally
speaking, this algorithm is a multi-dimensional generalisation of the Gaussian
elimination and the Euclidean algorithm. The computation of Gröbner bases can
be computationally complex, making its practical use to solve polynomial systems
limited. However, in this thesis, many successful cases are highlighted.

2.3 A brief introduction to chemical reaction net-
work theory

In this section, I briefly summarise the relevant notions of chemical reaction
network theory (CRNT). In this thesis, a chemical reaction network (CRN), N,
is viewed as a multi-set N = {S,C,R}, where S is the set of species, C the set of
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complexes, and R the set of reactions. We note that in the context of a CRN, a
“complex” is a linear combination of species and need not be a “biological functional
unit”, which we refer to as a biological complex. We denote, whenever useful, a
biological complex formed by species X and Y as X : Y , where the colon denotes
the physical bond between X and Y . The order of species in the biological complex
is irrelevant, i.e., X : Y = Y : X.

Example 31 (Heterodimeric receptor tyrosine kinase). Consider the heterodimeric
receptor tyrosine kinase (RTK). This receptor is composed of two different
single chains, X1 and X2, which dimerise to form the full receptor (biologi-
cal complex) Y1 = X1 : X2. The ligand, L, then binds to this receptor to
form the biological complex, Y2 = L : Y1, which will induce a signal. A
simple heterodimeric receptor tyrosine kinase (RTK) model has a species set
S = {X1, X2, Y1, Y2}, a complex set C = {X1 + X2, Y1, Y2}, and a reaction set
R = {X1 +X2 → Y1, Y1 → X1 +X2, Y1 → Y2, Y2 → Y1}. In this thesis the ligand
concentration (L) is taken to be an input parameter (i.e., L is constant over time)
and, hence, it does not feature as a separate chemical species in the species set S.
I want the reader to notice how the set of complexes, C, in a CRN, is not solely
composed of biological complexes, and that the set of species, S, includes all the
biological complexes and not only the single chain components (receptor chains
that are not bound to any complex, such as X1 and X2).

We can associate a reaction graph to every CRN N, by letting the vertex set be
C and the (directed) edge set R. There exists a class of important CRNs defined
by their network reversibility.

Definition 32 (Network reversibility). Let N be a CRN with its associated
reaction graph G(C,R). An edge between Ci and Cj ∈ C exists if Ci → Cj ∈ R. If
for every edge Ci → Cj ∈ R, the edge Cj → Ci ∈ R also exists, then the network
is called reversible. If for every edge, Ci → Cj ∈ R, a directed path exists going
back from Cj to Ci, then the network is called weakly reversible. All reversible
networks are also weakly reversible.

A general reaction from complex Ci to complex Cj can be written as

Ci =
n∑
k=1

αik Xk →
n∑
k=1

αjk Xk = Cj, (2.7)
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where the sum is over the set of n species (X1, X2, . . . , Xn). The elements of
non-negative integer vectors, αi = (αi1, ..., αin)T and αj = (αj1, ..., αjn)T , are the
stoichiometric coefficients. One can define the reaction vector, given by r = αj−αi.
For a CRN with n species and m reactions we can now define the n×m matrix
of all reaction vectors, Γ, such that Γ = (r1, . . . , rm). This matrix is called the
stoichiometric matrix.

Example 33 (Heterodimeric RTK continued). The heterodimeric RTK model
has m = 4 reactions and n = 4 species. Its reaction graph is given by

X1 +X2 
 Y1 
 Y2.

The model is reversible and its reaction vectors are r1 = (−1,−1, 1, 0)T , r2 =

(1, 1,−1, 0)T , r3 = (0, 0,−1, 1)T and r4 = (0, 0, 1,−1)T . The stoichiometric matrix
is

Γ =


−1 1 0 0

−1 1 0 0

1 −1 −1 1

0 0 1 −1

 .

To derive dynamical properties from the static description so far provided,
we make use of the law of mass action kinetics (Horn & Jackson, 1972). First,
we assign a rate constant, kj ∈ R+, with j ∈ {1, . . . ,m}, to each reaction in
the network. Second, we denote the concentration of species Xi by the time-
dependent function xi(t). With this notation, we associate to every complex
Ci =

∑n
k=1 αik Xk, a monomial (product of the concentrations of the species

Xk, k = 1, . . . , n, each concentration elevated to the power of their associated
stoichiometric coefficient) as follows

xαi ≡ x1(t)αi1 . . . xn(t)αin , (2.8)

where n is the number of species in the network. Note that, in equation (2.7) the
complex Ci (complex on the left-hand side) is called the reactant complex. The
reaction rate of a reaction is the associated concentration product of its reactant
complex multiplied by the rate constant. That is, for a reaction Ci → Cj, if we
write ki its reaction constant and xαi the monomial associated to Ci, the reaction
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2.3 A brief introduction to chemical reaction network theory

rate is kixαi . Let us write, x(t) = (x1(t), ..., xn(t))T , the vector of the concentration
of species at time t. We also define the flux vector, R(x), the m× 1 column vector
of all reaction rates. The ordinary differential equations (ODEs) governing the
dynamics of the reaction network are given by

dx

dt
= Γ R(x), (2.9)

where Γ is the stoichiometric matrix (defined above). We note that the reaction
rate of the ith reaction is the ith row in R(x).

From (2.9) we can also deduce the conserved quantities of the reaction network.
That is, if a column vector exists, z ∈ Zn, such that d(zTx)/dt = zTΓR(x) = 0,
the quantity zTx is conserved. Consequently, the set of such vectors z defines
a basis for the space of conserved quantities. In this way, conservations induce
linear relations between the variables. Informally, we say that a molecular species,
Xi, is conserved if its total number of molecules, which we write Ni, is constant.
Ni is determined by the initial conditions.

Example 34 (Heterodimeric RTK continued). The dynamical system associated
with the heterodimeric RTK model is given by

dx

dt
=

d

dt


x1

x2

y1

y2

 =


−1 1 0 0

−1 1 0 0

1 −1 −1 1

0 0 1 −1



k1x1x2

q1y1

k2y1

q2y2



=


−k1x1x2 + q1y1

−k1x1x2 + q1y1

k1x1x2 − (q1 + k2)y1 + q2y2

k2y1 − q2y2

 ,

with ki as the reaction constants of the forward chemical reactions (⇀) and qi
the reaction constants of the backward reactions (↽). One can note that vectors
z1 = (1, 0, 1, 1)T and z2 = (0, 1, 1, 1)T satisfy d(zT1 x)/dt = 0 and d(zT2 x)/dt = 0.
That is, a basis for the conservation equations is given by the linear relations,
valid for any time t, x1(t) + y1(t) + y2(t) = N1 and x2(t) + y1(t) + y2(t) = N2,
where N1 (resp. N2) is the total number of X1 (resp. X2) in the system. These
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relations imply that the total amount of the species X1 (resp. X2) is conserved by
adding the amounts of the bound states of the molecule (Y1 and Y2, respectively)
to the amount of free molecule X1 (resp. X2).

We can now define the biologically meaningful steady states of a CRN.

Definition 35. A vector x∗ is a biologically meaningful steady state if ΓR(x∗) = 0

and x∗i ≥ 0 ∀i ∈ {1, . . . , n}. Note that for this steady state not to be trivial, we
want at least one of the x∗i to be strictly positive. We will call strictly positive
biological meaningful steady states, biological meaningful steady states for which
x∗i > 0 ∀i ∈ {1, . . . , n}.

A useful connection between the static network structure (defined earlier) and
the existence (and stability) of unique biologically meaningful steady states can
be made via deficiency theory (Feinberg, 1987).

Definition 36 (Deficiency). Let N be a CRN with ` connected components in
the reaction graph1 and η = dim span(r1, . . . , rm) be the dimension of the span of
the reaction vectors. The deficiency of N is then given by

δ = |C| − `− η.

The notion of network deficiency leads to one of the fundamental theorems
of CRNT, the Deficiency Zero Theorem (Feinberg, 1987), which connects the
network structure to the dynamics of a CRN.

Theorem 37 (Deficiency zero theorem (Feinberg, 1987)). Let N be a weakly
reversible CRN with δ = 0. Then the network has a unique strictly positive
biologically meaningful steady state for every set of initial conditions, and this
steady state is asymptotically stable.

With certain additional conditions on the reaction rates (see Refs. Dickenstein
& Pérez Millán (2011); Feinberg (1989)) that will be true in this thesis, biologically
meaningful steady states are detailed balanced. This means that for every reaction

1Given a graph G, two vertices of G belong to the same connected component if there
exists a (undirected) path between these two vertices. If all the vertices of G are connected
(that is, there exists a path between any pair of vertices of G ) then G has a unique connected
component. For examples, the graph A → B ← C has a unique connected component. The
graph A→ B ← C D → E has two connected components.

30



2.3 A brief introduction to chemical reaction network theory

of the form (2.7), the steady states satisfy

K(x∗)αi = (x∗)αj , (2.10)

where the number K = k/q, the ratio of the rate constants of the forward and

backward reactions, is called the affinity constant of the reaction. We write (x∗)αi

the monomial associated to complex Ci in which the concentration of the species

are at steady state: (x∗)αi = (x∗1)αi1 . . . (x∗n)αin .

Substituting the detailed-balanced steady state equations into the conservation

relations yields a system of polynomials equations. This polynomial system

will be one of the main interest in Chapters 3 and 4. In these chapters, as we

always study the systems at steady state, we will omit the ∗ to simplify the

notation. As we focus on the study of systems of polynomial equations, we can

use the techniques developed in the field of computational algebra and algebraic

geometry (Cox et al., 2013). Such methods have also been successfully applied to

many topics in chemical reaction network theory, see e.g., Refs. Dickenstein et al.

(2019); Gross et al. (2016); Sadeghimanesh & Feliu (2019). In this thesis, we will

solve, when possible, such polynomial systems to obtain exact expressions for the

steady state concentrations of any species of the CRN, making use of Gröbner

bases (Buchberger, 1965, 2006).

Example 38 (Heterodimeric RTK continued). The heterodimeric RTK model
has 3 complexes, 1 connected component and the dimension of the span of the
reaction vectors is 2; hence, δ = 3 − 1 − 2 = 0. Since the network is reversible,
we know from Theorem 37 that there exists exactly one stable positive steady
state for each set of initial conditions. By finding the steady state of system
(2.9), one can show that we have indeed the following detailed-balanced steady
state y∗1 = (k1/q1)x∗1x

∗
2 and y∗2 = (k2/q2)y∗1. The combination of the conservation

equations at steady state, x∗1 + y∗1 + y∗2 = N1 and x∗2 + y∗1 + y∗2 = N2, and the
detailed-balanced steady state equations gives a system of polynomial equations.
The variables are the concentration of the single chain components at steady state,
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x∗1 and x∗2:

0 = −N1 + x∗1 +
k1

q1

x∗1x
∗
2 +

k2

q2

k1

q1

x∗1x
∗
2,

0 = −N2 + x∗2 +
k1

q1

x∗1x
∗
2 +

k2

q2

k1

q1

x∗1x
∗
2.

(2.11)

Note that, as the biological complex Y2 is actually formed by association of
the ligand L and the biological complex Y1, the constant k2 is proportional to
the concentration of ligand L. Consequently, I will write (k̄2/q2)L instead of
(k2/q2) in polynomials system (2.11), where k̄2 = k2/L is the reaction constant of
L+ Y1 → Y2 (this is equivalent to the notation of k2 as the reaction constant of
Y1 → Y2).

2.4 Signalling function: amplitude and EC50

In Chapters 3 and 4, we will want to closely investigate pharmacological properties

of receptor-ligand systems, rather than the steady state structure of the models.

In particular, we want to study the dose-response (or concentration-effect) curve

of the system, which describes the relation between ligand concentration and the

biological effect (or cellular response) it generates when binding its specific cell

surface receptor. As mentioned in Chapter 1, a lot of effort has been devoted to

explore the steady state structure of chemical reaction networks. In this thesis,

we make use of algebraic methods to explore the dose-response of receptor-ligand

systems. To do so, we start with the definition of signalling complex. We note that

in most biological instances the signalling complex is formed by all the subunit

chains that make up the full receptor, intra-cellular kinases and the specific

ligand (Cotari et al., 2013b; Dushek et al., 2011; Feinerman et al., 2010; Gonnord

et al., 2018; Janes & Lauffenburger, 2013; Leonard et al., 2019; Uings & Farrow,

2000).

Definition 39. The signalling complex of a receptor-ligand system is the biological
complex which induces a biological response.

We are now equipped to define the signalling function and the dose-response

curve.
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2.4 Signalling function: amplitude and EC50

Definition 40. We define the signalling function, σ : R+ → R+, L 7→ σ(L), as
the univariate function which assigns to a given value of ligand concentration,
L, the number (or concentration) of signalling complexes formed at steady state.
The dose-response curve is the corresponding plot of the signalling function.

We note that in this thesis we will not distinguish between number (or concen-
tration) of signalling complexes since one can be obtained from the other if we
know the volume of the system and Avogadro’s number.

The specific choice of σ will depend on the receptor-ligand system under
consideration. The signalling function associated to each model studied in this
thesis will be defined in the corresponding section when needed. In the models
proposed in this thesis, the signalling function will be a product of the steady state
values (numbers) of sub-unit chains that make up the full receptor, intra-cellular
kinases, affinity constants of the reactions involved, and ligand concentration.
This together with equations (2.8) and (2.9) indicate that the signalling function
will always be algebraic1.

Example 41 (Heterodimeric RTK continued from Section 2.3). In the het-
erodimeric RTK model, the biological complex which induces a signal is Y2. That
is, the signalling function is given by σ(L) ≡ y∗2. The detailed-balance steady state
gives y∗2 = K2K1Lx

∗
1x
∗
2, where we wrote K1 = k1

q1
, K2 = k̄2

q2
. Hence, the signalling

function is a product of the concentration (at steady state) of the single chains
components that form the signalling complex and the affinity constants of the
reactions involved in its formation. Solving the system of polynomial equations
described in the previous example, one can obtain expressions for x∗1 and x∗2 and
thus an expression for σ.

Next, we define a central object of study in this thesis; namely, the ampli-
tude of the signalling function, often referred as efficacy in the pharmacology
literature (Maxwell & Webb, 2008).

Definition 42. The amplitude of the signalling function, A, is the difference
between the maximum and the minimum of σ; that is, A ≡ max(σ)−min(σ).

1An algebraic function is a function that can be defined as the root of a polynomial equation.
The product of algebraic functions is an algebraic function. A formal definition is recalled in
Chapter 4 (Def. 78).
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We note that when min(σ) = 0, which is the case considered in this thesis
(min(σ) = σ(0) = 0), the amplitude is given by the maximum of the signalling
function. If, in addition, the dose-response curve attains its maximum at large
concentrations (for instance, when the dose-response curve is a sigmoid), we have

A = lim
L→+∞

σ(L). (2.12)

The amplitude provides information about the magnitude of the intra-cellular
response to the stimulus, L. The larger the amplitude is, the larger the response
variability will be. The amplitude is always bounded by the number of molecules
available. However, this bound is often not tight (Pérez Millán & Dickenstein,
2015). To quantify the sensitivity of the model to the stimulus, i.e., the potency
of the ligand L, we introduce the half-maximal effective concentration, EC50.

Definition 43. The half-maximal effective concentration, or EC50, is the ligand
concentration L∗ which satisfies σ(L∗) = min(σ) + max(σ)−min(σ)

2
= min(σ) + A

2

(when σ is increasing).

We say that the EC50 is inversely proportional to ligand potency; namely, the
lower the EC50, the higher the potency (or sensitivity) of the ligand. Figure 2.1
illustrates the amplitude and the EC50 of a sigmoid dose-response curve (A) when
its minimum is zero: increasing the amplitude shifts up the maximum of the curve
and results in greater efficacy (B), and decreasing the EC50 shifts the dose-response
curve to the left and increases the potency of the ligand (C).

The amplitude and the EC50 are generally inferred from the fitting of a dose-
response curve to an equation. When the dose-response curve is a sigmoid, it is
generally fitted to a Hill equation:

Definition 44 (Hill equation). The Hill equation is defined as follows:

fHill : L 7→ A
Ln

(L50)n + Ln
,

where n is called the Hill coefficient, A is the amplitude of the curve and L50 is
the EC50.
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Figure 2.1: Sigmoid dose-response curve: number of signalling complexes formed
at steady state, σ(L), as a function of the concentration of ligand L (arbitrary
units). (A) The maximum value of σ(L) defines the amplitude, since the minimum
of the curve is 0. The EC50 is the concentration of ligand which corresponds to
half the amplitude. (B) Three dose-response curves with the same EC50 value
and different amplitudes. Increasing the amplitude shifts up the maximum of the
curve and increases the efficacy of the ligand. (C) Three dose-response curves
with the same amplitude and different EC50 values. Decreasing the EC50 shifts
the dose-response curve to the left and increases the potency of the ligand.

The parameters n, L50 and A are inferred from the fitting process. In this
thesis, we prefer to fit a sigmoidal dose-response curve to a sigmoid function

fsigmoid : L 7→ A

1 + e−n(L−L50)
,

where A is the amplitude, n a slope coefficient and L50 the EC50. Note that
the Hill equation and the sigmoid equation are mathematically equivalent (as
Ln = en logL).

2.5 Perturbation theory

A well-known difficulty with the lex Gröbner basis method to solve polynomial
systems, and polynomial equations in general, is that there is usually no analytic
solution when the degree of a univariate polynomial is greater than four. This
result is known as the Abel-Ruffini theorem (Żołądek, 2000). Therefore, in
order to make progress, we need to resort to either numerical computations or
analytic approximations. Since receptor-ligand systems are often characterised
by a sigmoidal dose-response curve, at least to calculate the amplitude, the only
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quantity of interest is the limit of the signalling function at infinity. In order to
calculate this limit (where possible analytically, otherwise numerically) we make
use of perturbation theory for polynomial equations.

Greatly inspired by the Dover book written by Simmonds and Mann (Simmonds
& Mann, 2013), this section reviews some notions of perturbation theory and
justifies the steps of the method used to compute the analytic amplitude expression
in Sections 3.4.1 and 4.2.6. We start by defining an asymptotic expansion.

Definition 45 (Asymptotic expansion). Let f be a univariate real-valued function
and ε, a0, . . . , an ∈ R. We say that

N∑
n=0

an fn(ε),

is an asymptotic expansion of f in ε if:

• the family of functions {fn}n=0,...,N+1 is a gauge sequence, i.e., fn(ε) =

o(fn−1(ε)) as ε→ 0, for n = 0, . . . , N + 1, and

• f(ε)−∑N
n=0 an fn(ε) = O(εN+1) as ε→ 0.

The numbers a0, . . . , aN are called the coefficients of the asymptotic expansion.

Note that, here, we used the Landau notation:

Definition 46 (Little o notation). Let f and g be two real-values univariate
functions and x0 ∈ R. We write f(x) = o(g(x)) as x→ x0 if and only if

lim
x→x0

f(x)

g(x)
= 0.

We supposed that g(x) 6= 0 for x in the neighbourhood of x0.

Definition 47 (Big O notation). Let f and g be two real-values univariate
functions and x0 ∈ R. We write f(x) = O(g(x)) as x→ x0 if and only if

∃ d, C > 0,∀x, |x− x0| < d⇒ |f(x)| ≤ C|g(x)|.

.
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2.5 Perturbation theory

That is, an asymptotic expansion is a formal series 1 of functions which provides
an approximation of a given function (as the argument of the function tend to a
specific point) when truncated. The core of perturbation theory is the notion of
asymptotic expansion and the following fundamental theorem.

Theorem 48 (Fundamental theorem of perturbation theory). Consider an asymp-
totic expansion of a function f in ε with coefficients a0, . . . , aN . If it is a power
series which satisfies

a0 + a1ε+ a2ε
2 + . . .+ aNε

N + O(εN+1) = 0,

for any sufficiently small ε, and the coefficients ai are independent of ε, then we
have

a0 = a1 = . . . = aN = 0.

Note that if an asymptotic expansion is a power series, we call it a regular
expansion. If the expansion has non-integer powers, then it is called a singular
expansion. Theorem 48 only applies to regular expansions.

We are now ready to study the behaviour of the root of a univariate polynomial.
Let n ∈ N∗. We consider a univariate polynomial, Pε(x), of degree n, in the variable
x, with coefficients which depend on the parameter ε, and suppose that such
polynomial can be re-written in the following form

Pε(x) = (1 + b0ε+ c0ε
2 + . . .) + A1ε

ν1(1 + b1ε+ c1ε
2 + . . .)x+ . . .

+ Anε
νn(1 + bnε+ cnε

2 + . . .)xn,
(2.13)

where for each i, νi is a rational number, Ai, bi, ci, . . . are real constants, (1 +

biε+ . . .) is a regular asymptotic expansion of the general form

a0 + a1ε+ . . .+ aNε
N + O(εN+1).

We are interested in the behaviour of the roots of Pε(x) when ε→ 0. That is,

1A formal series is an infinite sum considered independently from any notion of convergence.
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we want to determine the coefficients of the asymptotic expansion of the roots

of Pε(x), as ε→ 0. Note that given a polynomial, we cannot always find regular

expansions of its roots. Instead, we are looking for singular expansions first.

We will “make” each expansion regular by a change of variable so we can apply

Theorem 48 and find the coefficients of the expansion. For such a polynomial,

Pε(x), we have the following result.

Theorem 49. Each root of a polynomial (2.13) is of the form

x(ε) = εpω(ε), ω(0) 6= 0 (not identically 0), (2.14)

where ω is a continuous function of ε for ε sufficiently small and p ∈ Q.

The proof of this theorem (see Ref. Simmonds & Mann (2013)) gives a method

to study the asymptotic behaviour of the roots of polynomial (2.13).

Method. We first aim to determine what we call the proper values of p ∈ Q
(as defined in Theorem 49). Let Pε(x) be a polynomial that can be written as in

equation (2.13). Let p be a rational number and x a root of Pε(x). Let us replace

x by εpω(ε) in Pε(x). We can re-write the polynomial as follows

Pε(ε
pω(ε)) = Qε(ω) + ε(b0 + b1A1ε

ν1+pω(ε) + . . .+ bnAnε
νn+npω(ε)n)

+ ε2(c0 + c1A1ε
ν1+pω(ε) + . . .+ cnAnε

νn+npω(ε)n) + . . . ,
(2.15)

where

Qε(ω) = 1 + A1ω(ε)εν1+p + . . . Anω(ε)nενn+np.

Thus, Qε(ω) collects all the terms with the lowest power of ε for each power of

ω(ε). Now, if we have to satisfy ω(0) 6= 0, we have the following result:

Proposition 50. At least two of the exponents in set E = {0, ν1 +p, . . . , νn+np}
must have identical minimal values.

Proof. Suppose that νk + kp is the unique smallest exponent of E. Then we have

ε−(νk+kp)Pε(ε
pω(ε)) ∼

ε→0
Akω(0)k.

38



2.5 Perturbation theory

Since ω(0) 6= 0 and Pε(εpω(ε)) = 0 by hypothesis, this implies that Ak = 0. That
is, there is no term in ενk+kp in Qε(ω) and νk + kp /∈ E, which is a contradiction
with the initial hypothesis. So E has more than one minimal value.

We now proceed by finding all the values of p and their associated minimal
exponent to form the set {(pj, ej)}j=1,...,m. To this end, we follow a graphical
algorithm which indicates when two or more components of E have equal minimal
values:

1. On a plane (p, q), draw the lines q = νj + jp, j = 1, . . . , n and the line q = 0.

2. From the right, for p sufficiently large, the smallest exponent is 0. As p
decreases (one can imagine a fictive vertical line moving from right to left),
there will be a first point where at least two lines intersect (q = 0 and
another one). Let us call this point (p1, 0). One line will have the largest
slope, n1.

3. Let the fictive vertical line keep moving to the left and follow this line of
slope n1 until the next intersection (p2, e2). Find the new intersected line
with the largest slope n2.

4. Continue until there is no other intersection. The last intersection involves
the line with the largest slope of all the lines n.

We apply this method on two examples and illustrate the algorithm in Sections 3.4
and 4.2.6. This algorithm finds all the intersection points of the lines of equation
q = νj + jp, j = 0, . . . , n and q = 0 that are on the lower envelope of these lines.
In this way, we have generated a set of pairs {(pj, ej)}j=1,...,m corresponding to
each intersection we encountered. Each of these intersection points is called a
branch of the asymptotic behaviour of the roots of our original polynomial Pε(x).
Now let us define for each branch j, the scaled polynomial T (j)

ε , as follows:

T (j)
ε (ω(ε)) = ε−ejPε(ε

pjω(ε)). (2.16)

We can re-write T (j)
ε (ω(ε)) as a sum of two polynomials

T (j)
ε (ω(ε)) = T

(j)
0 (ω(ε)) + E(j)

ε (ω(ε)),
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where E(j)
0 (ω(ε)) = 0 and the coefficients of T (j)

0 (ω(ε)) do not depend on ε explicitly.

By multiplying Pε by ε−ej , we extracted the dominant part of Pε(εpjω(ε)), i.e., the

term that will determine the behaviour of Pε(εpjω(ε)) as ε→ 0. The solutions of

T
(j)
0 (ω(ε)) = 0, for each j, will give the values of ω(ε) which, when substituted into

x = εpjω(ε), will give the n roots of Pε(x). Now, to apply Theorem 48, and find

the coefficients of the asymptotic expansion of the roots of Pε(x), the non-zero

roots of T (j)
ε (ω(ε)) (approached by the roots of T (j)

0 (ω(ε)) as ε → 0) need to be

regular (i.e., can be approached by a regular expansion) but this is not necessarily

the case. Indeed, νj or (pj, ej) may be non-integer rationals or T (j)
0 (ω(ε)) may

have repeated roots. To obtain regular expansions, we introduce the new variable

β such that:

ε = βqj , (2.17)

where qj is the least common denominator (lcd) of the set of exponents {0, ν1 +

pj, . . . , νn + npj}. Finally, we form:

R
(j)
β (ω(β)) = Tj(ω(β), βqj) = β−qjejP (βqjpjω(β), βqj), (2.18)

where Tj(ω(ε), ε) = T
(j)
ε (ω(ε)) and P (ω(ε), ε) = Pε(ω(ε)). The polynomial

R
(j)
β (ω(β)) has the same roots as the polynomial T (j)

ε (ω(ε)) but its non-zero

roots have a regular expansion in β of the form

ω(β) = a0 + a1β + . . .+ aNβ
N + O(βN+1).

By substituting this expansion into R(j)
β (ω) and applying the fundamental theorem

of perturbation theory (Theorem 48), we find an expression for a0, a1, . . .. We

then come back to x with the transformation x = βqjpjω(β) for each branch. In

practice we explore each branch one by one and can eliminate those which are

irrelevant (for instance when we have a negative root, since in our case the roots

of the polynomials are concentrations of species, or ω(0) = 0).

The above discussion can be summarised algorithmically as follows.
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2.6 Estimation of the number of positive real roots of a polynomial

1. Replace the variable x by εpω(ε) in Pε(x), assuming ω(0) 6= 0. One obtains
a polynomial of the form

Pε(ε
pω(ε)) = Qε(ω) + ε(. . .) + . . . .

2. Write the set of exponents for Qε: E = {0, ν1 + p, . . . , νn + np}.

3. Determine the pairs, (pj, ej), of proper values and minimal exponents
following the graphical algorithm described above. Each pair corresponds
to an asymptotic branch to explore.

4. For each branch j:

4.1. Define T (j)
ε (ω) = ε−ejPε(ε

pjω).
4.2. Introduce β such that ε = βqj , where qj = lcd(0, ν1 +p, . . . , νn+np),

and form R
(j)
β (ω) = T

(j)

βqj
(ω).

4.3. In R
(j)
β (ω) = 0, substitute ω by a regular expansion ω(β) =

a0 + a1β + . . .+ aNβ
N + O(βN+1).

4.4. Apply the fundamental theorem of perturbation theory to obtain
an analytic expression for a0, a1, . . .. Usually at this step, we can
discriminate whether this branch is relevant (see example 3.4).

4.5. Find the asymptotic expansion of the root of the original polyno-
mial, Pε, by x = βqjpjω(β).

In this thesis we are mainly interested in the first non-zero coefficient of the regular
expansion of ω since it drives the behaviour of the root of Pε in the limit ε→ 0.

2.6 Estimation of the number of positive real roots
of a polynomial

It is often useful to estimate the number of positive or negative real roots of a
polynomial. For instance, the number of biologically meaningful steady states
of a system of ODEs may be related to the number of positive real roots of a
polynomial. For another instance, the stability of a particular steady state of a
system depends on whether the characteristic polynomial of the Jacobian matrix
of the system (evaluated at the steady state) has positive real roots.
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2.6.1 Descartes’ rule and Budan’s theorem

The Descartes’ rule of signs (Curtiss, 1918) provides a theoretical upper bound on
the number of positive or negative real root of a given polynomial.

Theorem 51 (Descartes’ rule of signs). A univariate polynomial f(x) = a0x
n +

a1x
n−1 + . . .+ an with real coefficients cannot have more positive real roots than

the sequence a0, . . . , an has variations of sign.

This rule has been later refined to state that the number of variations of sign
is either equal to the number of positive real roots, or else exceeds it by an even
number. The maximum number of negative real roots can be obtained with the
same rule by considering f(−x).

Example 52. Consider the univariate polynomial equation f(x) = x3 − 5x2 +

3x + 9. The signs of the coefficients (ordered by decreasing monomial degrees)
are (+,−,+,+). There are two sign changes thus polynomial f(x) admits 2 or
0 positive real roots. We have f(−x) = −x3 − 5x2 − 3x + 9: the signs of the
coefficients of f(−x) are (−,−,−,+). There is only one sign variation which
means that polynomial f(x) has one real negative roots. Polynomial f(x) can be
factorised as f(x) = (x− 3)2(x+ 1) which shows that f(x) has 2 positive roots
and one negative root.

Sometimes, we might prefer to estimate the number of positive real roots of
a polynomial in an interval different from [0,+∞). To this end, we use Budan’s
theorem (Akritas, 1982), which is a generalisation of Descartes’ rule.

Theorem 53 (Budan’s theorem). Consider a univariate polynomial f(x) with real
coefficients. Consider a real number, h and write Vh the number of sign variations
of the sequence of the coefficients of polynomial fh(x) ≡ f(x + h). Finally, let
us define a half-open interval [p, q), with p < q ∈ R and write #fp,q the number
of roots of f in this interval, with their multiplicity. Then, Vp − Vq −#fp,q is a
non-negative even integer.

Example 54. Consider the univariate polynomial f(x) = x3 − 2x2 − 5x+ 6, and
let us find the number of roots of this polynomial in interval (0, 2). We have
V0 = 2 and as f(x + 2) = x3 + 4x2 − x − 4, V2 = 1. Hence, Budan’s theorem
asserts that f has a unique root (V0 − V2 = 1) in interval (0, 2). Note that this
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polynomial can be factorised as (x− 1)(x+ 2)(x− 3), which confirms the result.

2.6.2 Routh–Hurwitz criterion

The stability analysis of a steady state of a system of ODEs usually consists of
analysing the characteristic polynomial of the Jacobian matrix of the system,
evaluated at said steady state. Descartes’ rule is a useful theorem to define
a necessary condition of stability: if the polynomial characteristic has all its
coefficients of the same sign, then the system may be stable. On the contrary,
if there is at least one sign variation, then the system is unstable. The Routh–
Hurwitz criterion (Anagnost & Desoer, 1991) defines a sufficient condition for the
stability of a steady state when the polynomial characteristic of the associated
Jacobian matrix has positive coefficients. Let us first define the Routh table of a
polynomial.

Definition 55 (Routh table). Let f(x) = a0x
n + a1x

n−1 + . . .+ an−1x+ an be a
univariate polynomial of degree n, where ai, i = 0, . . . , n are real strictly positive
coefficients. The Routh table of f(x) is defined (when possible, i.e., none of the
denominators is 0) as follows:

a0 a2 a4 . . .

a1 a3 a5 . . .

b1 =
a1a2 − a3a0

a1

b2 =
a1a4 − a5a0

a1

b3 =
a1a6 − a7a0

a1

. . .

c1 =
b1a3 − b2a1

b1

c2 =
b1a5 − b3a1

b1

. . . . . .

With this in place, we can define the Routh–Hurwitz criterion.

Theorem 56 (Routh–Hurwitz criterion). Let f(x) = a0x
n+a1x

n−1 + . . .+an−1x+

an be a polynomial of degree n, where ai, i = 0, . . . , n are real strictly positive
coefficients. If the elements of the first columns of the Routh table of f(x) are all
of the same sign (and not 0), then all the zeros of polynomial f(x) are in the left
half-plane (i.e, have a negative real part). In that case, we say that polynomial
f(x) satisfies the Routh–Hurwitz criterion.

Let us compute the Jacobian matrix, J(X), of a system of ODEs and evaluate it
at a steady state, X∗. If the characteristic polynomial of the Jacobian matrix J(X∗)
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satisfies the Routh–Hurwitz criterion, then the steady state, X∗ is asymptotically
stable.

2.7 Stochastic processes

In deterministic models, the random fluctuations (such as the difference in receptor
expression levels between cells of a population) from one individual to another
are ignored. That is, all individuals are assumed to be identical. One way to take
these fluctuations into account is to use stochastic models. In this section, inspired
by Allen (2010), I introduce the main tools from probability theory that are
used in this thesis. I also introduce some useful results on two specific stochastic
processes: the pure death process and the simple birth and death process.

2.7.1 Probability theory

Here, I give an overview of some basic definitions of probability theory and describe
the probability distributions used in this thesis.

Random variable, mean, variance and probability functions.

First, let us recall the definition of a sample space and random variable.

Definition 57 (Sample space). The sample space of a given random experiment
is the set of all the possible outcomes of this experiment.

Note that in this section, we make use of the usual notations in probability
theory and ω now denotes an element of the sample space.

Definition 58 (Random variable). A random variable X is a real-valued function
defined on a sampled space Ω,

X : Ω 7→ R.

A random variable X is said to be a discrete random variable if its support

SX =

{
x ∈ R

∣∣∣∣X(ω) = x for ω ∈ Ω
}

is finite (or countably finite). If SX is

uncountably infinite, it is said that X is a continuous random variable.
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2.7 Stochastic processes

Example 59 (Discrete random variable). Suppose we toss a single coin. The
outcomes of this experiment are head (H) or tail (T ). Thus, the sample space is
Ω = {H,T}. A discrete random variable associated with this experiment could
return 1 if head is obtained and 0 otherwise.

In this thesis, we will write P(A) the probability that the event A happens. For
instance in the previous example, the probability that we obtain tail when tossing
the coin will be denoted P(T ), or, as a function of the random variable X defined
above, P(X = 0). Let us now introduce useful functions used in probability theory.
We start with the cumulative distribution function.

Definition 60. (c.d.f.) The cumulative distribution function (c.d.f.) of a random
variable X is the function F : R 7→ [0, 1] defined by

F (x) = P(X ≤ x).

It can be shown that F is non-decreasing, right continuous and satisfies

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

The cumulative distribution function describes how probabilities accumulate.

For a discrete random variable, we define the probability mass function.

Definition 61 (p.m.f.). Suppose X is a discrete random variable with c.d.f. F .
The probability mass function (p.m.f) is defined as

f(x) = P(X = x).

The p.m.f. and the c.d.f are linked through the following relationship:

F (x) =
∑
ai<x

f(ai)

where {ai}i is a collection of elements of the support of X, SX , and F (x) = 0 for
any x < infi(ai).

The continuous version of the p.m.f. is the probability density function.

Definition 62 (p.d.f.). Consider a continuous random variable, X with c.d.f. F .
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If there exists a non-negative integrable function f : R 7→ [0,+∞) such that

F (x) =

∫ x

−∞
f(y)dy,

then this function is called the probability density function (p.d.f.) of X. It follows
that, if F is differentiable,

dF

dx
(x) = f(x) for x ∈ SX .

Making use of the p.d.f., one can compute the probability associated with

the outcome of any event. Suppose A a random event (A ⊆ Ω) andX an associated

continuous random variable with p.d.f. f . We writeAX =

{
x ∈ R

∣∣∣∣X(ω) for ω ∈ A
}
.

Then

P(A) = P(X ∈ AX) =

∫
AX

f(x)dx.

Often, we want to compute the expected value or the standard deviation of

a random variable. These concepts help characterise the p.d.f. of the random

variable.

Definition 63 (Expected value). Suppose X a continuous random variable with
p.d.f. f . Its expected value (or expectation), denoted E(X) is given by

E(X) =

∫
R
xf(x)dx.

Suppose X a discrete random variable with p.m.f. f , defined on the space
SX = {ai}+∞

i=1 . Then, its expected value is defined as

E(X) =
+∞∑
i=1

aif(ai).

The expected value of X is a weighted average and corresponds to the mean of
the possible values that X can take.

The variance and standard deviation of a random variable are defined as

follows:
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2.7 Stochastic processes

Definition 64 (standard deviation and variance). Suppose X a random variable
with mean µX = E(X). The variance of X is defined as V ar(X) ≡ E([X − µX ]2).
Its standard deviation, σ(X) is the square root of the variance.

Note that, in this section, σ denotes the standard deviation, as commonly

denoted in probability theory (in this section, σ is not a signalling function).

Some common distributions

I now recall some well-known distributions that are used in this thesis. We start

with the continuous uniform distribution which will be used as a non-informative

prior in Bayesian inference (see Section 2.8).

Definition 65 (Continuous uniform distribution). A random variable X is said
to follow a continuous uniform distribution with parameters −∞ < a < b < +∞,
and we write x ∼ U(a, b), if its probability density function (see Figure 2.2(a)) is

f(x) =

{
1
b−a , a ≤ x ≤ b

0, otherwise
.

Another very common continuous distribution is the normal distribution.

Definition 66 (Normal distribution). A random variable X is said to follow a
normal distribution with parameters µ and σ, and we write X ∼ N(µ, σ2), if its
probability density function (see Figure 2.2(b)) is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, −∞ < x < +∞.

The parameters µ and σ2 are the mean and variance of X respectively.

Biological quantities (which are positive quantities) may be normally dis-

tributed. However, many measurements show a more skewed distribution, with

a low mean and a large variance. Such a distribution often fit a log-normal

distribution (Koch, 1966):

Definition 67 (Log-normal distribution). A random variable X = log(Y ) is
said to follow a log-normal distribution with parameters µ and σ, and we write
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X ∼ logN(µ, σ2), if its probability density function (see Figure 2.2(c)) is

f(x) =
1

xσ
√

2π
exp

(
−(log(x)− µ)2

2σ2

)
, 0 < x < +∞.

The parameters µ and σ2 are the mean and variance of the normally distributed
variable Y . The mean of X is eµ+σ2

2 , its variance is [eσ
2 − 1]e2µ+σ2 .

I also recall the definition of the Poisson distribution which is used when

simulating birth processes in Chapter 5.

Definition 68 (Poisson distribution). A discrete random variable X is said to
follow a Poisson distribution with parameter λ, and we write X ∼ P(λ), if its
probability mass function (see Figure 2.2(d)) is

P(X = k) =
λke−λ

k!
, k ∈ N.

Parameter λ is also the mean and the variance of X

Finally, I give the definition of the Gumbel distribution.

Definition 69 (Gumbel distribution). A discrete random variable X is said
to follow a Gumbel distribution with parameters m and β, and we write x ∼
Gumbel(m,β), if its probability density function (see Figure 2.2(e)) is

f(x) =
1

β
e−(z+e−z).

where z =
x−m
β

. The mean of such a distribution is given by m+ γeβ (where γe

is the Euler–Mascheroni constant) and its standard deviation is
πβ√

6
.

Note that we call mode of a probability distribution the maximum value of

the p.d.f. (or p.m.f. for discrete variables). In other words, the mode is the value

of the distribution that is the most likely to be sampled.
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Figure 2.2: P.d.f. (p.m.f. for the Poisson distribution) of the different probability
distributions described in this section. (a) Uniform distribution for a = −1, b = 1.
(b) Normal distribution for µ = 0 and different values of σ. (c) Log-normal
distribution for µ = 0 and different values of σ. (d) Poisson probability mass
function for different values of λ. The function is defined only at integer values
of k; the connecting lines are guides for the eye. (e) Gumbel probability density
function for different parameter values: fixed β, different m (blue), and fixed m,
different β (solid lines). The value of m is also indicated with vertical grey lines
(dash-dotted line for m = 0.5, dashed line for m = 1 and solid line for m = 1.5).
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2.7.2 Branching process: pure death process

A stochastic process is defined as a collection of random variables. Branching
processes are stochastic processes describing a population in which each individual,
independently, follows the same set of rules. In Chapter 5, I will make use of
some results from the analysis of the continuous-time branching process called
pure death process.

Consider a population of individuals which have the same death rate µ. That
is, any individual alive at time t has probability µ∆t of dying before t + ∆t as
∆t→ 0. Thus, the probability that an individual survives during this time interval
is 1− µ∆t. Writing e−µ∆t = 1− µ∆t+ o(∆t), the probability that one individual
survives to time t is e−µt.

Kolmogorov equations. Let N(t) denote the number of individuals alive at
time t and let P(N(t) = n) define the probability that exactly n individual survived
at time t, n < N(0) ≡ N0. For simplification, we write pn(t) = P(N(t) = n) in
this section. Then we have:

pN0(t) = e−N0µt,

pN0−1(t) = N0e
−(N0−1)µt(1− e−µt),

pN0−2(t) =

(
N0

2

)
e−(N0−2)µt(1− e−µt)2,

...

pN0−j(t) =

(
N0

j

)
e−(N0−j)µt(1− e−µt)j,

...

p0(t) = (1− e−µt)N0 .

Hence, pn satisfies the forward Kolmogorov equations :

dpn
dt

= −nµpn + µ(n+ 1)pn+1 for n < N0,

dpN0

dt
= −µN0pN0 .

(2.19)
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From this equation, we can compute the mean number of individuals at time t:

E(N(t)) =
+∞∑
n=0

npn(t). (2.20)

Indeed,

dE(N)

dt
=

+∞∑
n=0

n
pn
dt

=

N0∑
n=1

n
pn
dt

=

N0−1∑
n=1

n[−nµpn + µ(n+ 1)pn+1]−N2
0µpN0

= −
N0∑
n=1

µn2pn +

N0∑
n=2

µ(n− 1)npn

= −µ
N0∑
n=1

n2pn + µ

N0∑
n=2

n2pn − µ
N0∑
n=2

npn(t)

= −µp1(t)− µ
N0∑
n=2

npn

= −µE(N).

That is, the mean number of individuals alive at time t satisfies an ordinary

differential equation:
dE(N)

dt
= −µE(N). (2.21)

Hence, E(N(t)) = N0e
−µt.

Time of extinction This paragraph is inspired by Ref. Solomon et al. (1971).

Let τi be the time to first death in a population of initial size i. Then, for t ≥ 0,

P(τi ≤ t) = 1− P(τi > t)

= 1− P(N(t) = i : N(0) = i)

= 1− e−iµt.
(2.22)
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Its density function is

fi(t) =
d

dt
P(τi ≤ t) = iµe−iµt. (2.23)

Thus,

E(τi) =

∫ +∞

0

iµte−iµtdt

=
1

iµ
.

(2.24)

The time to extinction τ of a population of initial size N0 is given by the sum of
the τis for 0 < i ≤ N0: τ = τ1 + ...+ τN0 . Hence, the mean time to extinction of a
pure death process is given by:

E(τ) =

N0∑
i=1

E(τi) =
1

µ

N0∑
i=1

1

i
≈ 1

µ
(log(N0) + γe) (2.25)

where γe is the Euler–Mascheroni constant. Note that the centred distribution
(distribution’s mean brought back to 0) of τ is a Gumbel distribution.

Proof. For any time t, the c.d.f. of the random variable τ is

P(τ < t+ E(τ)) = (1− e−µ(t+E(τ)))N0

= (1− e−µt−γe

N0

)N0 .
(2.26)

When N0 → +∞, we obtain

lim
N0→+∞

P(τ < t+ E(τ)) = e−e
−µt−γe (2.27)

which is the c.d.f. of a Gumbel distribution Gumbel(m,β) with parameters

m =
−γe
µ

and β =
1

µ
.

2.7.3 Time of extinction of a simple birth and death process

In Chapter 5, I will also make use of some results from the analysis of the
continuous-time branching process called simple birth and death process. In
particular, I will be interested in characterising the distribution (mode and mean)
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of the time to extinction of a population of individuals that follows a birth and

death process with death rate µ and birth rate λ. That is, any individual alive at

time t has probability µ∆t of dying before t+∆t as ∆t→ 0. In addition, during

this small time interval ∆t, each individual has a probability λ∆t to give birth

to a new individual. We assume that µ > λ so that extinction is certain (Allen,

2010).

Let us write p0(t) the probability that such a population, which started with

only one individual, is extinct at time t. We have (Allen, 2010):

p0(t) =
µ− µe(µ−λ)t

λ− µe(µ−λ)t
. (2.28)

Now, consider a population starting with N0 > 1 individuals. We write N(t) the

number of individuals at time t and τN0 the time to extinction of the population.

Then, we have

P(τN0 < t : N(0) = N0) = p0(t)N0 . (2.29)

The distribution of time to extinction is characterised by its p.d.f.:

fτN0
(t) =

d

dt
(p0(t)N0) = N0p0(t)N0−1p′0(t), (2.30)

where p′0 is the first derivative of p0.

Mode of the distribution The mode of this distribution is the maximum of

the p.d.f.. We compute this maximum by finding t such that

dfτN0

dt
(t) = Np0(t)N0−2(p0(t)p′′0(t) + p′0(t)2(N0 − 1)) = 0. (2.31)

The first and second derivative of p0 are:

p′0(t) =
µ(µ− λ)2e(µ−λ)t

(λ− µe(µ−λ)t)2
, (2.32a)

p′′0(t) =
µ(µ− λ)3e(µ−λ)t(λ+ µe(µ−λ)t)

(λ− µe(µ−λ)t)3
. (2.32b)
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Note that the denominator of p′′0 is negative so is p′′0. The equation p0(t)p
′′
0(t) +

p′0(t)2(N0 − 1) = 0, can be simplified into a polynomial of degree 2 in X = e(µ−λ)t:

λ+ (µ− λ)N0X − µX2 = 0. (2.33)

Solving this polynomial, we obtain:

tmode =
1

µ− λ log

(
(µ− λ)N0 +

√
4λµ+ (µ− λ)2N2

0

2µ

)
. (2.34)

This is the mode of the distribution of time to extinction of a population, with
N0 individuals at t = 0, that follows a simple birth and death process. When
N0 → +∞, we obtain:

tmode −→
N0→+∞

1

µ− λ log

(
µ− λ
µ

N0

)
. (2.35)

Expected time to extinction I also provide expressions to compute the
mean time to extinction, τ̄N0 , of a population following a simple birth and death
process with initial size N0. The expected time to extinction satisfies the following
relationship (Allen, 2010):

τ̄N0 = N0λ(1 + τ̄N0+1) +N0µ(1 + τ̄N0−1) + (1−N0(µ+ λ))(1 + τ̄N0). (2.36)

Note that we have τ̄0 = 0. Making use of this recursive relation, we can obtain an
analytic expression for τm, m > 1 (Allen, 2010):

τ̄N0 =


1

µ
+

+∞∑
i=2

(
λ

µ
)i−1 1

µi
if N0 = 1

τ̄1 +

N0−1∑
s=1

(
λ

µ
)s

+∞∑
i=s+1

(
λ

µ
)i−1 1

µi
for N0 > 1

. (2.37)

By recognizing that − log(1− x) =
∑+∞

n=1
xn

n
for |x| < 1, τ1 can be re-written as:

τ̄1 =
1

µ
+

+∞∑
i=2

(
λ

µ
)i−1 1

µi
= −1

λ
log(1− λ

µ
). (2.38)
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2.8 Approximate Bayesian computation: rejection
algorithm

When developing mathematical models of biological systems, one of the central
question is to find the parameter values that allow the model to best reproduce the
experimental data. In this section, I introduce a Bayesian method to infer param-
eters of mathematical models (Toni et al., 2009), called rejection algorithm. This
method is based on Bayes’ theorem (for instance introduced in Ref. Blitzstein &
Hwang (2015) and in many other texts), which relates the conditional probabilities
of two events A and B:

P(A|B) =
P(A)P(B|A)

P(B)
,

where P(A|B) describes the probability that the random event A happens knowing
that the random event B occurred. In statistical inference, this theorem is
formulated as:

π(θ|D) =
π(θ)π(D|θ)∫

θ
π(D|θ)π(θ)dθ

where θ represents the set of the parameters of the model and D is the observed
data. In this equation, π(θ) is known as the prior distribution, π(D|θ) is the
likelihood of observing the data D given parameters θ, and π(θ|D) is called the
posterior distribution. The integral in the denominator is just a normalisation
constant that can be ignored. Thus, we often write:

π(θ|D) ∝ π(θ)π(D|θ). (2.39)

The prior distribution encodes the prior beliefs of the user about the parameters.
For instance, the user may know that their parameters lie in a small value interval
and thus choose an informative prior distribution (such as a normal or log-
normal distribution) which gives a higher density on this region of the parameter
space. On the contrary, a user with little to no knowledge of the parameters
might prefer choosing a non-informative prior distribution, for instance a uniform
distribution over a large interval of values. The user aims to evaluate the posterior
distribution, which according to equation (2.39) requires the computation of the
likelihood. Unfortunately, it is often difficult to compute for mathematical models.
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The rejection algorithm, which belongs to the family of approximate Bayesian
computation (ABC) methods, allows one to infer posterior distributions exploiting
the computational efficiency of modern simulation techniques by replacing the
calculation of the likelihood with a comparison between the observed and simulated
data (Toni et al., 2009). The algorithm goes as follows:

Algorithm 1 ABC rejection algorithm (Toni et al., 2009)
1: Choose the desired posterior sample size N , the acceptance threshold ε, the

distance measure d(·, ·) and set n = 0.
2: while n < N do
3: Sample the parameters θ∗ from the prior distribution π(θ).
4: Simulate a dataset D∗ from π(D|θ∗).
5: if d(D,D∗) ≤ ε then
6: Accept the parameter set θ∗
7: Set n = n+ 1.
8: end if
9: end while

A wordy version of this algorithm could be as follows. First, sample parameters
according to the prior distribution and simulate the mathematical model with
these parameters as inputs. Then, compute the distance between the experimental
data set D and the model output D∗. If the distance is small enough, then accept
the parameters, i.e., store them for later. These steps are repeated as many times
as necessary to reach a posterior of size N (in practice, the user fixes a maximum
number of simulation Nsim � N and hopes that the algorithm will manage to
find N parameter sets for which the distance is small enough). The set of all the
accepted parameters defines the posterior distribution. We say that the algorithm
was a success, when the posterior distribution is significantly narrower than the
prior distribution: the true parameters have a high probability to lie in the small
interval defined by this posterior. When the posterior distribution presents a large
standard deviation, the user might want to choose a smaller acceptance threshold
or a more informative prior. However these two solutions may not always lead
to a narrower posterior distribution. Some data set might not allow the user
to learn about specific parameters in the model. Finally, the algorithm might
also converge slowly (i.e., the algorithm needs many occurrences, Nsim, to find N
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2.9 Agent-based modelling

parameter sets for which the distance is smaller than the acceptance threshold),
especially when the parameter space to explore is large (many parameters or prior
distributions spanning a large interval). More computationally efficient algorithms
have been developed, such as ABC–sequential Monte Carlo (Toni et al., 2009),
but are not used in this thesis as I never infer more than four parameters at once.

Note that in this thesis, instead of choosing a threshold ε, I compute the
distance value d(D,D∗) for the Nsim simulations and select the N parameter sets
that return the N smallest distance values.

2.9 Agent-based modelling

In ODEs models and branching processes, all individuals of a population follow
the same rules and have similar attributes. This assumption, that the population
is homogeneous, is usually unrealistic as considerable differences can be observed
from one individual to an other: for instance, two cells of a same population can
express a different number of a specific receptor at their surface (Cotari et al.,
2013b; Farhat et al., 2021; Feinerman et al., 2010). They can also behave very
differently depending on their local environment (maybe one cell has more access
to resources than another,...). This apparent heterogeneity in a given population
is difficult to incorporate in ODEs models as each individual should be represented
by a different variable. An agent-based model (ABM) can be used, instead, to
model heterogeneous populations of interacting agents (Bauer et al., 2009; Truong
et al., 2022). An ABM is a stochastic, discrete-event and discrete-time numerical
model (An et al., 2009) in which each individual of the population (for instance a
cell or a bacterium), also known as agent, has a set of specific attributes and obeys
his own set of rules that might depend on its local environment (which can be a
2D or 3D space, a local protein concentration, etc....). Agent-based modelling thus
allows one to model macroscopic phenomena (at the population scale) emerging
from the aggregated outcome of the agents’ properties, behaviours and interactions
(Borgonovo et al., 2022). ABMs have been widely used to model biological systems
such as tumour environment (An et al., 2009), cancer cell’s response to a treatment
(Truong et al., 2022) or decision making in ecology (DeAngelis & Diaz, 2019)...
Indeed, a great advantage of agent-based modelling is that their definition is
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2. MATHEMATICAL BACKGROUND

easy to understand: ABMs allow the user to model almost any biological system
intuitively as we specify the set of rules for each agent and make them interact,
mimicking reality. Such models are also flexible as it is usually easy to modify a
rule.
Agent-based modelling thus allows researchers to examine systems whose be-
haviour cannot be entirely described analytically by equations (Borgonovo et al.,
2022). However, results of an ABM are, in general, hard to interpret, mainly
because there is no closed-form expression that links the inputs and outputs of
the model. For this reason, modellers rely on numerical observations and often
struggle to assess whether the result of the ABMs are robust and their conclusion
valid (Borgonovo et al., 2022). In addition, despite being particularly suitable for
parallel programming, an ABM can be a very complex network (the model can
be multiscale and spatio-temporal) resulting in long simulation times. For this
reason, it is not always possible to parametrise such models from experimental
observations. Due to the difficulty to calibrate ABMs, they are often seen as qual-
itative tools, only offering exploratory observations. A lot of recent studies have
been devoted to finding systematic and exhaustive methods of robust sensitivity
analysis of agent-based models (Borgonovo et al., 2022; Ten Broeke et al., 2016;
Thiele et al., 2014). These methods usually require significant computational
resources (time and power) and may not be applicable to all agent-based models.
When conducting such as study of an ABM, one has to define the goal of the
sensitivity analysis, i.e., the outputs to observe and measure to assess the analysis.
Determining a relevant output may be difficult, depending on the system. For
example, in one of the agent-based model described in Chapter 5, I measure the
average number of receptors expressed by cells of two different cohorts. I use
this criterion to determine for which parameter values my model switches from
a specific regime to another. While this criterion is relevant for some sets of
parameters, I show that it is unfortunately not the case for all parameter values.
That is, for a robust analysis, another criterion should be determined. Finally, to
test the robustness and stability of agent-based models, one may want to vary
non-parametric elements, such as behavioural rules (Borgonovo et al., 2022), which
complicates the process.
In this thesis, we keep the agent-based models simple enough so that they can
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be described, at least partially, mathematically and thus provide a mechanistic
understanding of the system.

2.10 Guide for Chapters 3 and 4

This section does not describe any mathematical background but provide a
summary of the mathematical models of receptor-ligand systems (chemical reaction
schemes) studied in Chapters 3 and 4 and the main results of their analysis (the
expression of their amplitude and EC50, when computed). We advise the reader
to use this section as a guide when reading both these chapters.
The receptors considered in the models are composed of one, two or three trans-
membrane chains (γ, α and β), with or without extrinsic kinase (denoted JAK).
One of the receptor-ligand model describes the competition for the γ chain between
the main receptor and an extra decoy chain denoted R. The concentrations of γ
and α chains are written x and y, respectively, in the mathematical expressions.
The concentration of R in Chapter 3 and the concentration of the β chain in
Chapter 4 will be denoted w in the mathematical expressions. The concentration
of the extrinsic kinase is denoted z in mathematical expressions and the ligand
concentration is written L (L is also used to denote the species in the chemical
reactions). The notation N• will denote the total number of the chain or kinase
of concentration • (for instance, Nx denotes the total number of γ chain which
concentration is written x). The affinity constants of the chemical reactions
considered are denoted by Ki, K ′i or K ′′i , i = 1, 2, 3. This notation, partially
summarised in Table 2.1, will be recalled in Chapters 3 and 4. The modelling
assumptions for the different models will be stated in the relevant sections.
We provide tables which recapitulate all the specific receptor-ligand systems

Description Species Concentration Total quantity
Ligand L L
Primary trans-membrane chain γ x Nx

Secondary trans-membrane chain α y Ny

Extrinsic intra-cellular kinase chain JAK z Nz

Table 2.1: Summary of the common notation used in Chapters 3 and 4.
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studied in chapters 3 and 4: models with intrinsic kinase activity (RTK) are
summarised in Table 2.2, and models that require an intra-cellular extrinsic kinase
to signal (IEK) can be found in Table 2.3. Table 2.4 recapitulates the analytic
results obtained for the amplitude and EC50 of receptor-ligand systems with
extrinsic kinase. The results on the amplitude and EC50/IC50 (the definition of
the IC50 can be found in Section 4.5) of RTK models are summarised in Tables
2.5 and 2.6, respectively. Note that the main reason why an expression for the
amplitude or the EC50 could not be obtained is indicated in the summarising
tables with the appropriate symbol (F, ♠, ♣) as follows1:

F A Gröbner basis of the polynomial system describing the model (or of the
augmented polynomial system for the computation of the EC50) could not
be computed within a reasonable time,

♠ The dose-response curve was bell-shaped and the computation of its maxi-
mum (amplitude) was intractable,

♣ The amplitude or the EC50 is a root of a polynomial of degree greater than 2.
If the polynomial degree is less than 5, the roots may be computed exactly
(resulting in long complicated expressions), but selecting the positive real
root that let the other variables of the system positive is potentially hard.

.

1These descriptions will make sense while reading Chapters 3 and 4.

60



2.10 Guide for Chapters 3 and 4

Model Chemical reactions
Monomeric RTK L + γ 
 L : γ K3

Homodimeric RTK A γ + γ 
 γ : γ K2

L + γ : γ 
 L : γ : γ K3

Homodimeric RTK B L + γ 
 L : γ K ′3
γ + L : γ 
 L : γ : γ K ′2

Homodimeric RTK AB

γ + γ 
 γ : γ K2

L + γ : γ 
 L : γ : γ K3

L + γ 
 L : γ K ′3
γ + L : γ 
 L : γ : γ K ′2

Heterodimeric RTK A γ + α 
 γ : α K2

L + γ : α 
 L : γ : α K3

Heterodimeric RTK B γ + L 
 L : γ K ′3
α + L : γ 
 L : γ : α K ′2

Heterodimeric RTK C L + α 
 L : α K ′′3
γ + L : α 
 L : γ : α K ′′2

Heterodimeric RTK AB

γ + α 
 γ : α K2

L + γ : α 
 L : γ : α K3

γ + L 
 L : γ K ′3
α + L : γ 
 L : γ : α K ′2

Heterodimeric RTK AC

γ + α 
 γ : α K2

L + γ : α 
 L : γ : α K3

α + L 
 L : α K ′′3
γ + L : α 
 L : γ : α K ′′2

Heterodimeric RTK BC

α + L 
 L : α K ′′3
γ + L : α 
 L : γ : α K ′′2
γ + L 
 L : γ K ′3
α + L : γ 
 L : γ : α K ′2

Heterodimeric RTK ABC

γ + α 
 γ : α K2

L + γ : α 
 L : γ : α K3

γ + L 
 L : γ K ′3
α + L : γ 
 L : γ : α K ′2
α + L 
 L : α K ′′3
γ + L : α 
 L : γ : α K ′′2

Table 2.2: Chemical reaction schemes of the RTK models. Monomeric RTK,
homodimeric RTK A and heterodimeric RTK A are analysed in Section 4.2.1,
4.2.2 and 4.2.3, respectively. The other models are studied in Section 4.5.
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Model Chemical reactions

Monomeric with IEK (Sec-
tion 4.2.4)

JAK + γ 
 JAK : γ K1

L + γ : JAK 
 L : γ : JAK K3

L + γ 
 L : γ K3

Homodimeric with IEK (Sec-
tion 4.2.5)

JAK + γ 
 JAK : γ K1

JAK : γ + γ 
 γ : γ : JAK K2

JAK : γ + JAK : γ 
 JAK3 : γ : γ : JAK K2

γ + γ 
 γ : γ K2

L+ γ : γ 
 L : γ : γ K3

L+ γ : γ : JAK 
 L : γ : γ : JAK K3

L+ γ : JAK : γ : JAK 
 L : γ : JAK : γ : JAK K3

Heterodimeric with IEK
(Section 3.2)

JAK + γ 
 JAK : γ K1

α + JAK : γ 
 α : γ : JAK K2

γ + α 
 α : γ K2

L + α : γ 
 L : α : γ K3

L + α : γ : JAK 
 L : α : γ : JAK K3

Heterodimeric with IEK and
additional R (Section 3.4)

JAK + γ 
 JAK : γ K1

α + JAK : γ 
 α : γ : JAK K2

γ + α 
 α : γ K2

L + α : γ 
 L : α : γ K3

L + α : γ : JAK 
 L : α : γ : JAK K3

R + γ 
 R : γ K4

R + γ : JAK 
 R : γ : JAK K4

Trimeric with IEK (Section
4.2.6)

JAK + γ 
 JAK : γ K1

β + γ : JAK 
 β : γ : JAK K2

β + γ 
 β : γ K2

α + β : γ : JAK 
 α : β : γ : JAK K3

α + β : γ 
 α : β : γ K3

L + α : β : γ : JAK 
 L : α : β : γ : JAK K4

L + α : β : γ 
 L : α : β : γ K4

Table 2.3: Chemical reaction schemes of the models with IEK.
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Model Amplitude EC50

Monomeric with IEK
K1z

1 +K1z
Nx

1

K3

Homodimeric with
IEK

Not obtained F Not obtained F

Heterodimeric with
IEK

K1z

1 +K1z
M M

1+K2(Nx+Ny−M)+
√

1+K2
2 (Ny−Nx)2+2K2(Nx+Ny−M)

K2K3(M−2Nx)(M−2Ny)

Heterodimeric with
IEK and additional R

K1z

1 +K1z
M Solution of a polynomial of degree 3

independent on K1 and Nz (and condition for
x > 0 and y > 0) ♣

Trimeric with IEK
K1z

1 +K1z
min(Nx, Ny, Nw) Solution of a polynomial of degree 4

independent on K1 and Nz (and condition for
x > 0, y > 0 and w > 0) ♣

Table 2.4: Amplitude and EC50 expression (when obtained) of the models with

intra-cellular extrinsic kinase (IEK). We wrote: z =
−1 +K1(Nz −Nx) +

√
∆1

2K1
and M = min(Nx, Ny)

Model Amplitude
Monomeric Nx

Homodimeric
RTK A

Nx

2

Homodimeric
RTK B

(−1 +
√

1 + 2K ′2Nx)
2

4K ′2

Homodimeric
RTK A+B

∈ (0,
1 + 2K ′2Nx −

√
1 + 4K ′2Nx

2K ′2
) ♠

Heterodimeric
RTK A

min(Nx, Ny)

Heterodimeric
RTK B

1 +K ′2(Ny +Nx)−
√

1 +K ′22 (Ny −Nx)2 + 2K ′2(Nx +Ny)

2K ′2

Heterodimeric
RTK C

1 +K ′′2 (Ny +Nx)−
√

1 +K ′′22 (Nx −Ny)2 + 2K ′′2 (Nx +Ny)

2K ′′2

Heterodimeric
RTK A+B

1 +K ′2(Ny +Nx)−
√

1 +K ′22 (Ny −Nx)2 + 2K ′2(Nx +Ny)

2K ′2

Heterodimeric
RTK A+C

1 +K ′′2 (Ny +Nx)−
√

1 +K ′′22 (Nx −Ny)2 + 2K ′′2 (Nx +Ny)

2K ′′2

Heterodimeric
RTK B+C

∈ (0,min(Nx, Ny)] ∩ (0,
K ′3 +K ′′3 +K ′2K

′
3(Nx +Ny)−

√
(K ′3 +K ′′3 +K ′2K

′
3(Nx +Ny))2 − 4K ′22 K

′2
3 NxNy

K ′2K
′
3

) ♠

Heterodimeric
RTK A+B+C

∈ (0,min(Nx, Ny)] ∩ (0,
K ′3 +K ′′3 +K2K3(Nx +Ny) +

√
(K ′3 +K ′′3 +K2K3(Nx +Ny))2 − 4K2

2K
2
3NxNy

K2K3

) ♠

Table 2.5: Summary of the analytic expressions of amplitude (or any knowledge
about this quantity) for the different RTK models. We write ∈ (a, b) when the
amplitude of the model ranges between a and b but we did not obtain an analytic
expression.
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Table 2.6: Summary of the analytic expressions of the EC50 (or any knowledge
about this quantity) for the different RTK models. We wrote M = min(Nx, Ny),

∆ho
B =

2(7+9
√

1+2K′2Nx)+K′2Nx(K′2Nx+6(4+
√

1+2K′2Nx))

K′23
, ∆het

ec (K) = 1 +K2
2 (Nx −Ny)

2 +

2K2(Nx+Ny)+
2K2(K −K3)

K3

A and p = K ′2K
′
3(A−2Ny)(2Nx−A)+2A(K ′3 +K ′′3 ).

Note that Nx +Ny −M = max (Nx, Ny). We wrote N/A when the quantity does
not exist for the model. Finally, in each row, A denotes the amplitude of the
corresponding model. 64



Chapter 3

Tuning of IL-7 signalling through
imbalanced abundances of receptors
and kinases

This chapter, for the most part, will focus on interleukin-7 (IL-7) and its receptor

(IL-7R) (Cotari et al., 2013b; Gonnord et al., 2018; Leonard et al., 2019; Palmer

et al., 2008; Park et al., 2019; Rochman et al., 2009). Interleukin-7 is a cytokine

involved in T cell development, survival and homeostasis (Akdis et al., 2011; Ma

et al., 2006). Its receptor, IL-7R, is displayed on the surface of T cells and is

composed of two trans-membrane chains: the common gamma chain (denoted

by γc) and the specific high affinity chain IL-7Rα (denoted by α when there

is no ambiguity) (Gonnord et al., 2018; Ma et al., 2006; Molina-París et al.,

2013; Park et al., 2019). This cytokine receptor does not contain intrinsic kinase

domains. Thus, it makes use of Janus family tyrosine kinases (JAKs) and signals

in part by the activation of signal transducer and activator of transcription (STAT)

proteins (Lin & Leonard, 2019). The gamma chain binds to the intra-cellular

extrinsic Janus kinase molecule, JAK3. Binding of IL-7 to the dimeric JAK3-

bound IL-7 receptor, defined as α : γc : JAK3, initiates a series of biochemical

reactions from the membrane of the cell to its nucleus, which in turn lead to a

cellular response. For the IL-7R system, the STAT protein preferentially activated

is STAT5 (Lin & Leonard, 2019). The amount of phosphorylated STAT5 (which
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is released when IL-7 binds its receptor) can be used as the experimental measure
of the intra-cellular response generated by the IL-7 stimulus.

As mentioned in the introduction of this thesis, previous single-cell studies
have shown that isogenic cells present heterogeneous expression levels of receptor
constituents copy numbers (Cotari et al., 2013b; Farhat et al., 2021; Feinerman
et al., 2010). Prior studies also demonstrated that cytokine receptor signalling
can be significantly altered by the precise abundance of the molecular signalling
components (Cotari et al., 2013b). Since the cytokine receptors of the common
gamma chain family are signalling through association with an intra-cellular
Janus kinase (JAK), their co-optation of soluble kinases could elicit large non-
genetic variability of ligand detection within a population of cells. Grégoire
Altan-Bonnet, Jesse Cotari and Guillaume Voisinne used single-cell measurements
to explore the impact of the relative abundance of signalling components in terms
of variable sensitivity (EC50) and amplitude in response to extra-cellular cytokines.
In particular, they focused on the common gamma chain family and explored
a conjecture derived from their initial finding of γc chain competition (Cotari
et al., 2013b); namely, that increases in γc chain abundance would increase the
number of fully-formed receptors and the sensitivity to the γc family cytokines.
Furthermore, by analogy to the role of RTK upregulation in cancer (Bache et al.,
2004; Du & Lovly, 2018; Eladdadi & Isaacson, 2008; Regad, 2015), a natural
expectation would be that γc chain upregulation would lead to stronger maximal
signal upon ligand binding. After all, one could naturally think that increasing
the abundance of a crucial receptor component, such as γc chain, increases the
number of fully formed receptors, and thus increases cytokine uptake and cell’s
response. This work, however, stems from experiments examining the impact of
γc chain abundance on T cell responses to IL-7, which immediately led to the
paradoxical observation that increased abundance of the γc chain in fact decreased
both the sensitivity and the maximal response to IL-7. I present the experimental
work in Section 3.1.
In an attempt to resolve this paradox, I developed and analysed three IL-7R
mathematical models, making use of the notation of chemical reaction network
theory introduced in Section 2.3. In the first model, described in Section 3.2,
the signalling complex L : γc : α : JAK3 is formed sequentially. This model
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also includes the formation of kinase-deprived complexes, α : γc, called “dummy”

receptors, which can bind to the ligand L (here IL-7) but are unable to signal. The

formation of “dummy” complexes L : γc : α can explain the observed decrease in

amplitude as the γc abundance increases. However, the model is unable to explain

the EC50 behaviour and thus needs to be augmented. We conjectured that the

increase in EC50 with increasing γc abundance could be explained by one of the

two following mechanisms: an allostery effect or the competition for the γc chain

between the different receptors of the common gamma chain family. I explore the

first mechanism in Section 3.3, in which I developed the allostery model. This

mathematical model is a variation of the first IL-7R model in which the binding

of the kinase JAK3 to the γc chain is assumed to change the binding affinity of

the α chain to the complex γc : JAK3, or the ligand L to JAK3 : γc : α. The

second mechanism is tested in Section 3.4. To take into consideration that the γc
chain is shared with other cytokine receptors (Rochman et al., 2009), I modify

the first IL-7R model to include an additional receptor chain which has the ability

to bind to the γc chain or the complex γc : JAK3 to form decoy receptors. This

extra chain is unknown a priori and could be for instance IL-2Rβ, IL-4Rα or the

pre-formed complex IL-2Rβ:IL-2Rα. It prevents the γc chain from binding IL-7Rα

and form IL-7R. This last model seems to be able to reproduce both amplitude

and EC50 behaviours. Note that all the systems studied in this section are at

steady state and we considered the ligand L to be in excess, i.e., we consider L as

a parameter of the models instead of a variable.

This study shows that the dose-response curve of a receptor-ligand system is not

a univariate function of the ligand concentration but, instead, depends on the

receptor chain abundances. It is particularly explicit when I make use of Gröbner

bases to compute the analytic expressions of the steady state, amplitude and

EC50 for the first and third IL-7R models. Analytic expressions directly show the

dependence on parameters and facilitate parameter exploration, which will prove

to be very useful when fitting the models to experimental data. I summarise the

findings and conclude in section 3.5.
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3.1 A paradoxical observation: increasing the avail-
ability of γc chains decreases IL-7 induced T
cell response

In this section, I present the experimental work and data analysis conducted by
Jesse Cotari, Guillaume Voisinne and Grégoire Altan-Bonnet and published in Sta
et al. (2022b). Making use of flow cytometry, they analysed the responsiveness
of murine T cells to γc cytokines (in particular IL-7) as measured by STAT5
phosphorylation. Let us first briefly introduce flow cytometry and cell-to-cell
variability analysis so that a reader with no biological background can understand
how the data have been acquired.

3.1.1 Flow cytometry and cell-to-cell variability analysis

Flow cytometry is a technique routinely used nowadays to measure physical and
chemical characteristics of a population of cells (or particles) (Picot et al., 2012;
Rieseberg et al., 2001). Cells in suspension in a tube or plate are passing one by
one through one or more laser beams in a machine called flow cytometer. Cells are
often first treated and labelled with antibodies and fluorescent markers so light is
absorbed and re-emitted differently from the laser emitter. The flow cytometer
then measures scattered light at several angles and fluorescence emission. The
data, acquired and analysed by a computer, are then used to sort cells according
to their characteristics. The whole flow cytometry process is summarised in Figure
3.1 from Ref. Picot et al. (2012).

Flow cytometry data show that a population of isogenic cells are never truly
identical (Cotari et al., 2013a). They may vary in expression of key proteins or do
not produce signal at the same ligand concentration. This variability means that
cells do not respond homogeneously to a given stimulus. The measure of cell-to-
cell variability (CCV) accounts for the heterogeneity of cell populations but does
not connect this variability to downstream cell response variability. Fortunately,
flow cytometry allows the simultaneous measurement of protein abundance and
pathway activation (for instance abundance of IL-7Rα and phosphorylated STAT5).
Cell-to-cell variability analysis (CCVA) is a computational method which allows to
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decreases IL-7 induced T cell response

Figure 3.1: Scheme describing flow cytometry method, taken from Ref. Picot
et al. (2012) (reproduced with permission from Springer Nature).

69



3. TUNING OF IL-7 SIGNALLING THROUGH IMBALANCED
ABUNDANCES OF RECEPTORS AND KINASES

correlate the variability in protein abundance and the variability in cell response
to a given stimulus, using flow cytometric data (see Figure 3.2).

Cell-to-cell variability analysis (CCVA) For each dose of stimulus (for
instance ligand concentration), cells of similar protein abundance are gathered
(data binning) and associated to a certain fluorescence intensity level. For each
group of cells (bin), a dose-response curve is computed by plotting the fluorescence
level of the bin as a function of the concentration of stimulus (see Figure 3.2). From
this dose-response curve, amplitude and EC50 can be calculated. This method
bypasses the fact that dose-response curves of a single cell are technically impossible
(cells have a memory of their previous stimulation and adapt accordingly) (Cotari
et al., 2013a).

3.1.2 Data analysis

After cell transfection1, which artificially increased γc abundance above normal
physiological levels in some cells, Jesse Cotari, Guillaume Voisinne and Gregoire
Altan-bonnet made use of flow cytometry and CCVA to analyse the response of
murine T cells to IL-7. Guillaume Voisinne conducted the data analysis. The
complete dataset contains 432,380 cells corresponding to 8 experimental conditions
(7 IL-7 doses ranging from 10pM to 10 nM and the control “no-cytokine” condition)
and for which the pSTAT5 fluorescence intensity along with the absolute number
of JAK3, IL-7Rα, IL-2Rα and γc were quantified. Calibrated data were log-
transformed and subdivided into bins corresponding to different total numbers of
JAK3, IL-7Rα and γc proteins per cell denoted as Nz, Ny and Nx, respectively.
For the Ny and Nz variables, bins of width 0.2 were created in the interval ranging
from the 5% to the 95% quantile of log-transformed values. For the Nx variable,
bins of width 0.25 were created in the entire range (from min to max) of log-
transformed values. Only bins containing at least 5 cells for each experimental
condition were selected for further analysis. For each bin, making use of the 8
experimental conditions, a dose-response curve has been computed (sigmoid) and

1Cell transfection is the process of deliberately introducing foreign DNA into a cell.
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decreases IL-7 induced T cell response

Figure 3.2: Scheme describing the cell-to-cell variability analysis (CCVA) method,
taken from Ref. Cotari et al. (2013a) with permission from Elsevier. (a) Cells with
similar protein abundances are grouped together and associated to a fluorescence
intensity level (binning). (b) The process described in figure (a) is repeated for
every dose of stimulus. (c) For each bin, the dose-response curve is computed
by plotting the fluorescence intensity level as a function of the dose. (d) From
dose-response curves, amplitude and EC50 can be computed. We thus obtain these
pharmacological quantities for each bin.
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fitted to a Hill equation:

pSTAT5(L) = β1 + β2 ×
L

(EC50 + L)
, (3.1)

where L denotes the extra-cellular IL-7 concentration. Values of the β1, β2 and
EC50 parameters were estimated using a non-linear least-square analysis. Guil-
laume Voisinne minimised the sum of differences between predicted and measured
mean log-transformed pSTAT5 values weighted by the standard error of the mean.
From this analysis, he selected the bins for which convergence towards a minimum
was achieved and for which the estimated EC50 parameter was higher than 10−13M

with a 95% confidence interval within [10−20M, 10−8M ].

This final data set, that will be used to fit the models of this chapter, consists
of 172 bins, i.e., 172 values of amplitude and EC50, each corresponding to a certain
level of JAK3, IL-7Rα and γc. The colormaps of the amplitude and EC50 of these
bins are displayed in Figure 3.3.

3.1.3 A counter-intuitive result

At a given stimulus, single-cell resolution shows that STAT5 phosphorylation
correlates monotonically with the abundance of IL-7Rα and JAK3. However, a
greater abundance of γc chains corresponds to diminished pSTAT5 levels (see
Figure 3.4). The amplitude and EC50 maps (Figure 3.3) show a strikingly complex
relationship between γc levels and IL-7 response. The EC50 map indicates that a
greater abundance of γc increases EC50 values. The amplitude map exposes an
even more complex relationship between γc expression levels and IL-7 response.
A clear trend can be observed for any abundance of IL-7Rα, in which increasing
the abundance of the γc chain first increases and then decreases the amplitude.
This overall trend explains the reduced pSTAT5 levels at a high IL-7 dose (10
nM) observed in Figure 3.4.

Experimental results show a seemingly paradoxical observation: high abun-
dance of γc is found to reduce the responsiveness to IL-7, reflected both in a smaller
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Figure 3.3: Complete map of the experimental amplitude and EC50 for different
levels of signalling components. Each rectangle corresponds to one bin of the data
set.
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Figure 3.4: Figure from Sta et al. (2022b). Distribution of pSTAT5 in response to
10 nM of IL-7, for different abundances of IL-7Rα, JAK3, and γc after cell-to-cell
variability analysis. Each grey dot represents a cell, the grey circles are level lines
and red line represents the geometric mean of pSTAT5 for each level of receptor
component.

amplitude and a greater EC50 of the pSTAT5 dose-response curve (diminished
signal associated with the increased abundance of a crucial component of the
signalling pathway have also been observed in Ref. Prabakaran et al. (2014)). In
an attempt to explain this paradox, I propose, in the following sections, three
mathematical models of IL-7 receptor-mediated signalling. The experimental
conditions in which the data were obtained justify several approximations that
make the modelling more tractable. First, since IL-7 signalling reaches equilib-
rium within 10 minutes of exposure (Cotari et al., 2013a; Vogel et al., 2016), the
models assume that all biochemical reactions reach a steady-state to calculate
the abundance of each complex. This simplification allows us to make use of
experimentally-determined equilibrium constants (K) to quantify the interaction
between receptor components in the membrane (Pillet et al., 2010), rather than
kinetic rates for the forward and backward biochemical reactions (on and off
rates), which have not been experimentally determined. Second, the parameters
defining STAT5 phosphorylation have not been determined. In previous work
(Cotari et al., 2013b), Jesse Cotari, Guillaume Voisinne and Gregoire Altan-Bonnet
demonstrated that the abundance of pSTAT5 correlated linearly with the number
of IL-7 molecules bound to the cell surface, hence we assumed that the fraction of
phosphorylated STAT5 molecules and the number of IL-7Rα : γc :IL-7 complexes,
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3.2 A first IL-7R model (model 1)

σ, follow the affine relation:

pSTAT5 = ξ1σ + ξ2, (3.2)

where ξ1 and ξ2 are parameters to be determined. Finally, since IL-7Rα depends
on JAK1 (mentioned in the introduction (Chapter 1)) for signalling, a similar
balance would exist for these proteins. However, though they tested multiple
antibodies, Jesse Cotari, Guillaume Voisinne and Gregoire Altan-Bonnet could
not find one suitable for the flow cytometric analysis of JAK1. Consequently, the
modelling efforts focus on the effects of IL-7Rα, JAK3, and γc abundances, which
could be experimentally quantified, and the number of phosphorylated STAT5
molecules was estimated as proportional to the number of fully-formed signalling
complexes IL-7Rα : γc :IL-7:JAK3, calculated from the equilibrium amounts of its
molecular components.

3.2 A first IL-7R model (model 1)

The experimental results present a paradox: high abundance of the γc chain, an
essential IL-7 receptor component, is found to reduce the responsiveness to this
cytokine, reflected both in a smaller signalling amplitude and a greater EC50. To
resolve this, we considered the fact that γc does not have intrinsic kinase ability,
but rather depends on the kinase activity of a receptor-associated JAK3 to activate
downstream signalling (Leonard et al., 2019) (Fig. 3.5(a)). As such, Gregoire
Altan-Bonnet and his team hypothesised that increased abundance of the γc chain
alone could exert a dominant negative effect by acting as “dummy” subunits,
binding to IL-7Rα chains to form signalling-deficient receptors (Fig. 3.5(b)). Such
a negative effect of over-abundance has been previously reported in the case
of specific T cells, which requires an associated downstream kinase (Lck, the
lymphocyte specific protein tyrosine kinase) (Nakayama et al., 1993).

To test this hypothesis, the mathematical model of IL-7 signalling presented
in Ref. Cotari et al. (2013b) is modified to account for the binding of JAK3 to
the γc chain.
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(a) Signalling IL-7 complex
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(c) IL-7R model: sequential chemical reaction scheme

Figure 3.5: First IL-7R model (model 1): (a) The IL-7 receptor is composed
of the trans-membrane γc and α chains. The γc chain can bind the intra-cellular
downstream kinase JAK3. When the ligand, IL-7, binds the full receptor, it
phosphorylates STAT5. (b) Model 1 allows the formation of “dummy” complexes:
IL-7 bound IL-7R complexes, devoid of JAK3, which are unable to induce intra-
cellular signalling. (c) IL-7 bound IL-7R complexes with JAK3 are able to induce
intra-cellular signalling, and thus, are called “signalling” complexes. IL-7R “dummy”
and signalling complexes are formed sequentially. The mathematical notation used
in this section is shown below each molecule or complex. Note that complexes c2

and c3 are also referred to as signalling and “dummy” receptors, respectively.
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3.2.1 Model description

Consider a model in which the IL-7R signalling complex (illustrated in Fig-
ure 3.5(a), where the hatched area determines the intra-cellular environment) is
formed sequentially, one molecule at a time; the γc chain binds to the kinase,
JAK3, then the α chain binds to the complex formed by γc and JAK3 (similarly
to the crosslinking model in Ref. Ho & Harrington (2010)). Finally, the ligand,
IL-7, also denoted by L, binds to the signalling receptor composed of γc, α and
JAK3. The model also includes the formation of “dummy” receptors, which do
not involve the kinase JAK3 (Fig. 3.5(b)). Figure 3.5(c) illustrates the sequential
formation of the signalling and “dummy” complexes. The reaction scheme for this
model, which we will refer to as model 1, is as follows

γc + JAK3 
 γc : JAK3, K1,
α + γc : JAK3 
 α : γc : JAK3, K2,
α + γc 
 α : γc, K2,
L+ α : γc 
 L : α : γc, K3,
L+ α : γc : JAK3 
 L : α : γc : JAK3, K3,

(3.3)

where for i = 1, 2, 3, Ki is the affinity constant of the appropriate reaction. We
assumed that the binding (or not) of JAK3 to γc has no influence on the binding
of the other receptor chains (no allostery): that is the chemical reactions involved
in the formation of the “dummy” or signalling complexes have the same affinity
constants. One can show that this system has deficiency zero and is reversible (see
Section 2.3). Therefore, for every set of rate constants and initial conditions, there
exists exactly one positive steady state. Moreover, this positive steady state is in
detailed balance. We remind the reader that we assume mass action kinetics to
determine reaction rates. We denote the concentration of γc, α, JAK3 and IL-7 by
x, y, z, and L, respectively. The reaction rate for the forward/backward reaction
(⇀/↽) is given by ki and qi, respectively, for i = 1, 2, 3. We note that Ki = ki/qi.
The concentrations of the product complexes of the forward reactions are denoted
by ci in order of appearance (see Figure 3.5(c)). We can now write down the
ordinary differential equations (ODEs) associated to the system of reactions (3.3):

dx

dt
= −k1xz + q1c1 − k2xy + q2c3,
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dy

dt
= −k2yc1 + q2c2 − k2xy + q2c3,

dz

dt
= −k1xz + q1c1,

dc1

dt
= k1xz − q1c1 − k2yc1 + q2c2, (3.4)

dc2

dt
= k2yc1 − q2c2 − k3c2L+ q3c5,

dc3

dt
= k2xy − q2c3 − k3c3L+ q3c4,

dc4

dt
= k3c3L− q3c4,

dc5

dt
= k3c2L− q3c5.

We note that the ligand is assumed to be in excess and its concentration is

thus a parameter of the model. A suitable basis for the conservation equations is

Nx = x+ c1 + c2 + c3 + c4 + c5,

Ny = y + c2 + c3 + c4 + c5,

Nz = z + c1 + c2 + c5,

(3.5)

that is, single chain molecules are conserved since we do not consider the generation

or degradation of molecules. The constants Nx, Ny and Nz represent the total

copy number of γc, α and JAK3 molecules per cell, respectively. Detailed balance

leads to the following steady state equations:

c1 = K1xz,

c2 = K2yc1,

c3 = K2xy,

c4 = K3Lc3,

c5 = K3Lc2.

(3.6)

Substituting the steady state equations into the conservation equations, we obtain
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3.2 A first IL-7R model (model 1)

a system of polynomials

0 = −Nx + x+K1xz +K2K1xyz +K2xy +K3K2Lxy +K3K2K1Lxyz,

0 = −Ny + y +K2K1xyz +K2xy +K3K2Lxy +K3K2K1Lxyz,

0 = −Nz + z +K1xz +K2K1xyz +K3K2K1Lxyz.

(3.7)

3.2.2 Mathematical analysis: steady state, amplitude and
EC50 expression

The polynomial system (3.7) can be solved numerically for a particular set of
parameter values. However, an analytic solution will provide greater insight and
will allow us to derive expressions for the amplitude and the EC50.

Analytic computation of the steady state

We make use of Macaulay2 (Grayson & Stillman) to compute a lex Gröbner basis
for this model, which will lead to a triangular set of polynomials 1, as follows:

0 = z2 +
[1 +K1(Nx −Nz)]

K1

z − Nz

K1

, (3.8a)

0 = y2 +
[1 +K2(K3L+ 1)(Nx −Ny)]

K2(K3L+ 1)
y − Ny

K2(K3L+ 1)
, (3.8b)

0 = x− 1

Nx

yz − (Nx −Nz)

Nx

y − (Nx −Ny)

Nx

z − Nx(Nx −Ny −Nz) +NyNz

Nx

.

(3.8c)

Equation (3.8c) gives

x =
(Nx −Ny + y)(Nx −Nz + z)

Nx

=
Nx −Ny + y

1 +K1z
,

where the last equality follows from equation (3.8a). Solving the system (3.8) and
selecting the biologically meaningful solution, we obtain an analytic expression
for the number of free (unbound) JAK3, α and γc molecules at steady state

z =
−1 +K1(Nz −Nx) +

√
∆1

2K1

, (3.9a)

1Example code is provided in Appendix A.
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y =
−1 +K2(Ny −Nx)(K3L+ 1) +

√
∆2

2K2(K3L+ 1)
, (3.9b)

x =
Nx −Ny + y

1 +K1z
, (3.9c)

where we have introduced

∆1 = 4K1Nz + [K1(Nx −Nz) + 1]2 ,

and

∆2 = 4K2Ny (K3L+ 1) + [K2(Nx −Ny)(K3L+ 1) + 1]2 .

We study the dose-response curve of this model given by the number of signalling
complexes, L : γc : α : JAK3, per cell at steady state as a function of L. The
signalling function, σ(L), is given by the steady state equations (3.6):

σ(L) ≡ c5 = K3K2K1Lxyz. (3.10)

.

Analytic computation of the amplitude

A simple inspection of the behaviour of (3.10) shows that the dose-response curve
is a sigmoid, such that σ(0) = 0. Therefore the amplitude A is given by the
asymptotic behaviour of the signalling function as follows:

A ≡ lim
L→+∞

σ(L). (3.11)

We will prove this result rigorously for a more general class of models in Section 4.3.

We first notice that z is independent of L. We now compute the product xy
(at steady state) as follows

xy =
(Nx −Ny)y + y2

1 +K1z
.

From equation (3.8b) we can replace the polynomial in y of degree two by an
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expression linear in y:

(Nx −Ny)y + y2 =
Ny − y

K2(K3L+ 1)
.

Thus, we obtain the following analytic expression for the signalling function:

σ(L) = K3K2K1Lxyz =
K1z

(1 +K1z)

K3L

(K3L+ 1)
(Ny − y). (3.12)

Since K3L
1+K3L

→ 1 when L→ +∞, we need to study the expression Ny − y in this

limit. We have

Ny − y =
(Ny +Nx)K2(K3L+ 1) + 1−√∆2

2K2(K3L+ 1)
, (3.13)

where

∆2 = K2
2(K3L+ 1)2(Nx −Ny)

2 + 2K2(K3L+ 1)(Nx +Ny) + 1.

Keeping to lowest order in O( 1
L

) we obtain

Ny − y =
1 + (Nx +Ny)K2(K3L+ 1)−K2(K3L+ 1)|Nx −Ny|(1 + O( 1

L
))

2K2(K3L+ 1)
,

=
Nx +Ny − |Nx −Ny|

2
+ O(

1

L
). (3.14)

Finally, noticing that

Nx +Ny − |Nx −Ny|
2

= min(Nx, Ny),

we obtain the amplitude

A = min(Nx, Ny)
K1z

1 +K1z
, (3.15)

where z is the analytic expression obtained in (3.9). This result indicates that the

amplitude of this model is the total number of the limiting trans-membrane chain

modulated by a factor, valued in the interval [0, 1], which only depends on K1,
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Nx and Nz.

Analytic computation of the EC50

We now determine the EC50 by finding the value of L50 such that

σ(L50) =
A

2
= K1K2K3L50x50y50z50, (3.16)

where x50, y50 and z50 are the steady state expressions found in (3.9) evaluated

at L = L50. Let us write M = min(Nx, Ny). We make use of the expression for

σ(L), the signalling function described in (3.12), and equation (3.13), to isolate

the square root in equation (3.16).

√
∆2 = K2(K3L50 + 1)(Nx +Ny) + 1− K2(K3L50 + 1)2M

K3L
, (3.17)

with M = min(Nx, Ny). We square the equation to remove the root and simplify

the expression to obtain

0 = 4K2
2(K3L50 + 1)2NxNy +K2

2(K3L50 + 1)4 M2

K2
3L

2
50

− 2
K2

2(K3L50 + 1)3M(Nx +Ny)

K3L50

− 2
K2(K3L50 + 1)2M

K3L50

.

(3.18)

Since we are looking for a positive value of L50, we divide by K2(K3L50 + 1)2 and

rewrite the previous expression as follows:

0 = 4K2K
2
3L

2
50NxNy +K2(K3L50 + 1)2M2

− 2K2(K3L50 + 1)M(Nx +Ny)K3L50 −MK3L50.
(3.19)

It leads to a polynomial of degree 2 in L50,

0 = M2K2 +2K3L50M(−1+K2(M−Nx−Ny))+K2
3K2L

2
50(M−2Nx)(M−2Ny).

(3.20)
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The discriminant of this polynomial is positive:

∆ = [1 +K2
2(Ny −Nx)

2 + 2K2(Nx +Ny −M)]4K2
3M

2, (3.21)

so that there are two potential solutions (both roots are positive):

L+
50 = M

1 +K2(Nx +Ny −M) +
√

1 +K2
2(Ny −Nx)2 + 2K2(Nx +Ny −M)

K2K3(M − 2Nx)(M − 2Ny)
,

L−50 = M
1 +K2(Nx +Ny −M)−

√
1 +K2

2(Ny −Nx)2 + 2K2(Nx +Ny −M)

K2K3(M − 2Nx)(M − 2Ny)
.

(3.22)
Two solutions exist since by squaring equation (3.17) we lose the positive steady
state (x, y, z, L) hypothesis. Substituting these expressions back into the steady
state equations shows that only L+

50 leads to a biologically meaningful solution
(L, x, y, z > 0). The relevant analytic expression of the EC50 is given by

EC50 = M
1 +K2(Nx +Ny −M) +

√
1 +K2

2(Ny −Nx)2 + 2K2(Nx +Ny −M)

K2K3(M − 2Nx)(M − 2Ny)
(3.23)

with M = min(Nx, Ny).
This result shows that the EC50 value for this system is independent of the

kinase, since the parameters K1 and Nz are absent in the previous expression.
Alternatively, we now propose a more algebraic method to derive the analytic

expression of the EC50. We compute a lex Gröbner basis for the augmented system
of polynomials consisting of the steady state equations (3.7) and

K1K2K3Lxyz (1 +K1z)− MK1z

2
= 0, (3.24)

where this time x, y, z, and L are variables. The resulting triangular system
describes directly L50 and x50, y50, z50 (defined in equation (3.16)), i.e. the EC50

and x, y, z at L =EC50:

0 = L2 +
2M [−1 +K2(M −Nx −Ny)]

K2K3(M − 2Nx)(M − 2Ny)
L+

M2

K2
3(M − 2Nx)(M − 2Ny)

, (3.25a)

0 = z2 +
1 +K1(Nx −Nz)

K1

z − Nz

K1

, (3.25b)
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0 = y − K3(M − 2Nx)(M − 2Ny)

2M
L+

K2(2Nx −M) + 2

2K2

, (3.25c)

0 = x− K3(M − 2Nx)(M − 2Ny)(Nx −Nz + z)

2MNx

L (3.25d)

+
[2 +K2(2Ny −M)](Nx −Nz + z)

2K2Nx

.

Solving (3.25a) and selecting the solution for which y and x, given by equations
(3.25c) and (3.25d), respectively, are positive yields the final result, in agreement
with (3.23). The use of the algebraic method is more elegant as it gives directly
the correct EC50 expression.

3.2.3 Model validation

The analytic study of this IL-7R mathematical model shows that the abundance
of JAK3 has an influence on the amplitude but not on the EC50, which is in
accordance with the experimental results (see Figure 3.3).
A short numerical analysis has been conducted to explore how γc abundance
impacts the cytokine response (Figure 3.6). Model 1 demonstrated that the
over-abundance of γc chains could indeed inhibit the IL-7 signalling response
and thus reduce its amplitude (see Figure 3.6(a)). Namely, both the number of
signalling complexes and non-signalling (or “dummy”) complexes grow linearly as
the number of γc chains increases (Figure 3.6(b) shows the number of signalling and
“dummy” complexes at high ligand concentration, so that the number of signalling
complexes is the amplitude). When the number of γc equals the number of IL-7Rα
chains, the amplitude of the IL-7 response (number of signalling complexes at
high ligand concentration) reaches its maximum. As the abundance of γc exceeds
that of IL-7Rα, the number of signalling complexes decreases and that of “dummy”
complexes, in turn, increases. We observe (proof in a more general case in Section
4.3) that the sum of the “dummy” and signalling complexes is always equal to the
total copy number of the limiting component (γc during the linear growth and
IL-7Rα after the maximum amplitude has been reached). This implies that once
the number of γc chains exceeds that of IL-7Rα, all IL-7Rα chains are ligand– and
γc–bound to form either a signalling or a “dummy” complex. When the number of
γc chains (Nx) exceeds that of JAK3 (Nz), the number of signalling complexes
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(here the amplitude A) goes back to zero rather quickly (proportionally to the
inverse of the total number of γc chains).

Proposition 70. The amplitude decreases proportionally to 1
Nx

as Nx → +∞.

Proof. Consider h = 1
K1(Nx−Nz)

. Then,

z =
−1− 1

h
+ 1

h

√
1 + 2h+ h2(1 + 4K1Nz)

2K1

.

As h→ 0,

z =
−1− 1

h
+ 1

h
[1 + 1

2
(2h+ h2(1 + 4K1Nz))− 1

8
(2h+ h2(1 + 4K1Nz))

2 + o(h4)]

2K1

=
−1− 1

h
+ 1

h
(1 + h+ 1+4K1Nz−1

2
h2 + o(h2))

2K1

= Nzh+ o(h).

Back to the original notation, as Nx → +∞, we obtain

z ∼
Nx→+∞

Nz

K1(Nx −Nz)
∼

Nx→+∞

Nz

K1Nx

.

Thus, as Nx → +∞ (and so min(Nx, Ny) = Ny),

A =
K1z

K1z + 1
Ny ∼

Nx→+∞

NzNy

Nx

.

These observations shows that model 1 seems to be a good candidate to repro-
duce the experimental results on the amplitude, thus explaining the decrease in
amplitude observed in excess of γc chains by the formation of “dummy” complexes.
The EC50, however, seems to be a more complicated feature that is not captured
by this model: the modelled EC50 seems rather flat where we expect an increase
of this quantity with the increase of γc chains abundance (Figure 3.6(c)).

We now fit the model to the experimental data making use of approximate
Bayesian computation (ABC) and infer the affinity constants K1, K2 and K3. An
introduction to ABC can be found in Section 2.8.
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Figure 3.6: Numerical exploration of the impact of γc chain abundance on the
IL-7 response in model 1: (a) Dose-response curve for different γc abundances.
The amplitude (the plateau of the dose-response curve) increases then decreases
with the increase of γc abundance. The EC50 (dots) reminds mostly unchanged.
(b) Number of signalling and “dummy” complexes at high ligand concentration
(L = 10−3 M). (b) The modelled EC50 is mostly flat. For this figure, the parameters
has been fixed to 103 IL-7Rα chains per cell (as determined in Ref. Waickman
et al. (2020)), 8× 103 JAK3 molecules per cell (mean JAK3 abundance measured
experimentally), K1 = 10−4, K2 = 17× 10−3 and K3 = 34× 1010M−1. Values of
K2 and K3 were taken from Ref. Cotari et al. (2013b).
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Approximate Bayesian computation and results

Before inferring the parameters of the model, one has to make sure that we

can compare the model output and the experimental data. Indeed, for a given

parameter set, solving system (3.7) returns the steady state number of unbound

single chain components. One can then multiply these quantities to obtain the

number of signalling complexes formed (Equation (3.10)). However, the original

experimental data set is composed of STAT5 phosphorylation level. As mentioned

in Section 3.1, in a previous work (Cotari et al., 2013b), Jesse Cotari, Guillaume

Voisinne and Gregoire Altan-Bonnet demonstrated that the abundance of pSTAT5

correlated linearly with the number of IL-7 molecules bound to the surface of

the cells. Hence, for any ligand concentration L, the fraction of phosphorylated

STAT5 molecules, pSTAT5(L), and the number of signalling complexes, σ(L)

follow an affine relation with parameters ξ1 and ξ2 for any ligand concentration L,

as introduced in equation (3.2):

pSTAT5(L) = ξ1σ(L) + ξ2,

where pSTAT5 is a STAT5 phosphorylation level measured in the experiment for

given γc, IL-7Rα and JAK3 abundances, and σ(L) is the number of signalling

complexes (Equation (3.10)) returned by the model evaluated at the same chain

abundances, for the ligand concentration L. Since we expect to only compare the

experimental and modelled amplitude and EC50, let us investigate how this affine

transformation on σ affects the two pharmacological quantities. The amplitude A

is defined as A = max(σ)−min(σ). Thus, the amplitude experimentally measured,

A′, is proportional to the modelled amplitude, A:

A′ = max(pSTAT5)−min(pSTAT5)

= ξ1 max(σ) + ξ2 − (ξ1 min(σ) + ξ2)

= ξ1(max(σ)−min(σ))

= ξ1A.

(3.26)
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One can also show that the EC50 is independent of the parameters ξ1 and ξ2.
Indeed, by definition of the EC50 (see Section 2.4), we have:

pSTAT5(EC50) =
A′

2
+ min(pSTAT5)

⇐⇒ ξ1σ(EC50) + ξ2 =
ξ1A

2
+ ξ1 min(σ) + ξ2

⇐⇒ ξ1σ(EC50) = ξ1(
A

2
+ min(σ))

⇐⇒ σ(EC50) =
A

2
+ min(σ).

(3.27)

Hence, to compare the modelled and experimental amplitude and EC50, one only
needs the parameter ξ1 to rescale the modelled amplitude.

To perform ABC, one has to simulate the model multiple times, each time
exploring a new parameter set. Bayesian computation can thus be numerically
cumbersome. However, here, the use of the analytic expression of the amplitude
and EC50, obtained in Section 3.2.2, dramatically reduces computation time and
increases numerical precision. Indeed, one can just substitute the parameter
values in the analytic expression, instead of computing, for each set of parameter
values, the dose-response curve, the amplitude and finally the EC50. Moreover,
the mathematical analysis shows that the amplitude and the EC50 do not depend
on the same parameters: the amplitude only depends on K1 and ξ1 while only
K2 and K3 are present in the EC50 expression. This separation of parameters
facilitates parameter exploration and inference, as we can conduct ABC on the
amplitude and EC50 separately. It also means that we infer only two parameters
at a time, which effectively increases the convergence speed of the parameter
inference (i.e., we can sample fewer parameter values in the prior to observe a
significant posterior).

I decided not to make any assumption on the parameters and chose uniform
prior distributions on the logarithm of the parameters: log(K1) ∼ U(−8, 1),
log(K2) ∼ U(−10, 10), log(K3) ∼ U(8, 12) and log(ξ1) ∼ U(−4, 4). Note that I
chose the range of these distributions in accordance with biologically relevant values
(for instance, I expect K2 and K3 to be around 10−4 and 1011M−1, respectively,

88



3.2 A first IL-7R model (model 1)

as determined in Ref. Cotari et al. (2013b)). I also adapted the ranges of the
distributions after several test simulations to ensure not to obtain cropped posterior
distributions. For each simulation, I sample a parameter set according to the
uniform prior distributions defined above. Then, for each bin i of the data set, I
extract the γc chain, IL-7Rα and JAK3 abundance levels which set the values for
Nx, Ny and Nz, respectively, and simulate the model (making use of the analytic
expressions obtained in the previous section for the amplitude and EC50). The
following distance d2 is computed:

d2 =

Nbin∑
i=1

(model[i]− data[i])2, (3.28)

where Nbin = 172 is the number of bins, model[i] corresponds to the modelled
quantity (amplitude or EC50) with the abundances of bin i and data[i] is the
amplitude or EC50 computed from the data set for bin i. I repeat these steps five
million times and obtain a list of five million distance values corresponding to the
five million different parameter sets tested. I select the 103 parameter sets that
minimise the distance to obtain a posterior distribution. The normalised posterior
distributions resulting from the two separated ABC (one fitting the amplitude and
one fitting the EC50) are shown in Figure 3.7. The Bayesian computation returns
narrow distributions for all the parameters, with an extremely thin distribution for
K3 (the y-scale has been limited to 10 so that the prior distribution is observable
but the peak goes up to 600) and a larger posterior for K2. The correlations graphs
(Figure 3.8) shows that K1 and ξ1 are correlated, which is expected as ξ1 and
K1 are directly multiplied. On the contrary, it seems that K2 and K3 are totally
uncorrelated. One has to be cautious when interpreting the posterior distributions
of K2 and K3 as the model is unable to fit the experimental EC50 (Figure 3.9(b)).
Indeed, the modelled EC50 is rather flat and does not reproduce the experimentally
observed increase in sensitivity. Model 1 is nonetheless able to reproduce with a
good accuracy the experimental amplitude (Figure 3.9(a)). For a more compact
comparison, Figure 3.10 shows the colormap of the modelled amplitude and
EC50 alongside with the data colormap provided in Section 3.1. The modelled
quantities in Figure 3.9 and 3.10 were generated with the parameter values that
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Figure 3.7: Normalised prior (blue) distribution of the 5×106 parameter samples
and posterior distribution (green) of the 103 best parameter values for model 1.

yield the smallest distance value: K1 = 10−4.04, ξ1 = 100.79, K2 = 10−0.06 and

K3 = 1010.62M−1.

The parameter values obtained in this section vary slightly from those obtained

by Guillaume Voisinne (K1 = 10−4.5, K2 = 10−0.09, K3 = 1010.6M−1, ξ1 = 100.9)

and published in Ref. Sta et al. (2022b). This difference is explained by the

use of different fitting strategies. Here we make use of ABC and, thanks to

the analytic study, separated the fitting of the amplitude and EC50. Guillaume

Voisinne, however, found the amplitude and EC50 numerically after computation

of the dose-response curve, and fitted these quantities together making use of a
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Figure 3.8: Correlation plots of the 103 best parameter values for model 1 as a
function of the distance value.

least-square method. The distance he minimised was

d2
GV =

Nbin∑
i=1

(
ECmodel

50 [i]− ECdata
50 [i]

)2
+

Nbin∑
i=1

(
amplitudemodel[i]− amplitudedata[i]

)2
,

(3.29)
where the amplitude and EC50 values were in log-scale. To compare my work
to his, I also fitted the parameters of model 1 by minimising d2

GV in the ABC. I
obtained parameter values very similar to the ones already obtained in this section
(see Figure 3.11). In the three cases (ABC with separation of the amplitude and
EC50, Guillaume Voisinne’s version and ABC with amplitude and EC50 fitted
together), the parameter values obtained are of the same order of magnitude.

Conclusions

As demonstrated through Figures 3.9 and 3.10 in particular, model 1 is able to
reproduce the amplitude behaviour but is unable to predict the observed effect
of γc abundance on EC50. This suggests that model 1 needs to be augmented to
account for the peculiar increase of EC50 for cells with over-abundant expressions
of γc chain. To this end, I examine two variations of this model. First, I explore
how an hypothetical allosteric change induced by JAK3 binding to γc could limit
binding of IL-7Rα to γc and the formation of the signalling IL-7 receptor complex.
Then, I explore and analyse the case of model 1 in which we account for the fact
that γc is a chain shared between many interleukin receptors (Rochman et al.,
2009).
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Figure 3.9: Comparison of the experimental (red dots) and modelled amplitude
and EC50 (model 1 in blue) for different levels of signalling components. The
modelled quantities were generated with the best parameter values (those which
minimise the distance): K1 = 10−4.04, ξ1 = 100.79, K2 = 10−0.06 and K3 =
1010.62M−1.
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(a) Experimental and modelled amplitude (model 1)
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Figure 3.10: Complete map of the experimental and modelled amplitude and
EC50 (model 1) for different levels of signalling components. The modelled
quantities were generated with the best parameter values (those which minimise
distance): K1 = 10−4.04, ξ1 = 100.79, K2 = 10−0.06 and K3 = 1010.62M−1.
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Figure 3.11: Posterior distribution of ABC minimising d2
GV (Equation (3.29)).

The best parameter values obtained areK1 = 10−4.08, K2 = 103.62, K3 = 1010.6M−1,
ξ1 = 100.81. Note that the posterior for K2 is not significant. Prior distributions
were chosen uniform in the interval showed in the figure.

3.3 IL-7R model with allostery

To increase the EC50, the ability of the γc chain to form IL-7 signalling recep-

tors must be reduced. The first hypothesis explored is that the formation of

“dummy” complexes is faster than that of the signalling ones. This results in the

monopolisation of the γc chain by non-signalling receptors.

3.3.1 Model description

Model 1 is revised to allow for allostery; that is, the affinity constants of the

chemical reactions forming the “dummy” and signalling complexes are not equal

anymore. The affinity constant for the reaction between the α and the γc chain is

different from that of α and the complex formed by γc and JAK3 (K2 6= K ′2) and

the constant for the binding of IL-7 to the “dummy” receptor is different from that

of IL-7 to the signalling receptor (K3 6= K ′3). The reaction scheme is as follows:
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3.3 IL-7R model with allostery

γc + JAK3 
 γc : JAK3, K1,
α + γc : JAK3 
 α : γc : JAK3, K2,
α + γc 
 α : γc, K ′2,
L+ α : γc 
 L : α : γc, K ′3,
L+ α : γc : JAK3 
 L : α : γc : JAK3, K3,

(3.30)

where theKi andK ′i are the affinity constants. Figure 3.5 still illustrates this model,

which we call allostery model. Proceeding similarly to model 1, a polynomial

system, combination of steady state and conservation equations, can be written:

0 = −Nx + x+K1xz +K2K1xyz +K ′2xy +K ′3K
′
2Lxy +K3K2K1Lxyz,

0 = −Ny + y +K2K1xyz +K ′2xy +K ′3K
′
2Lxy +K3K2K1Lxyz,

0 = −Nz + z +K1xz +K2K1xyz +K3K2K1Lxyz.

(3.31)

One could compute a Gröbner basis of this polynomial system and proceed to an

analytic study of the allostery model. However, the Gröbner basis obtained is more

complicated (see Appendix B) than the basis obtained for model 1, which makes

the mathematical analysis more tedious. The numerical exploration (see below)

shows that this model has little chance to be a good candidate to reproduce the

experimental EC50 behaviour. Thus, I decided not to continue the mathematical

study, and only make use of (3.31) to numerically compute the amplitude and

EC50 of this model.

In the following section, the amplitude and EC50 of the allostery model are

computed as follows. First, for a given set of parameters (K1, K2, K3, K ′2, K ′3, Nx,

Ny, Nz), and a fixed ligand concentration L, polynomial system (3.31) is solved

to obtain the steady state expression of the unbound single chain components

(x, y and z). These quantities are multiplied to obtain the number of formed

signalling complexes σ(L) = K3K2K1Lxyz. Keeping the same parameter set, this

step is repeated for a range of ligand concentrations to obtain a dose-response

curve. This curve is a sigmoid: it reaches a plateau at high concentration which

is the amplitude of the model. The dose-response curve is then fitted to a Hill

equation (Gesztelyi et al., 2012; Goutelle et al., 2008) to compute the EC50.
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3. TUNING OF IL-7 SIGNALLING THROUGH IMBALANCED
ABUNDANCES OF RECEPTORS AND KINASES

3.3.2 Numerical exploration

To numerically explore whether the allostery model is able to reproduce the
experimental amplitude and EC50 expression, I fixed all the parameters of the
model (K1 = 10−4.04 and ξ1 = 100.79 as inferred for model 1 (even though the
amplitude of this model is a priori different from model 1), K ′2 = 17× 10−3 and
K ′3 = 34× 1010 M −1 as computed in Cotari et al. (2013b)) but varied the ratios,
k and q, between the affinity constants of the reactions forming signalling and
“dummy” complexes: K2 = k ×K ′2 and K3 = q ×K ′3. I computed the amplitude
and the EC50 for k and q equal to 0.1, 1 and 10 (see Figure 3.12 and 3.13). Note
that the graphs on the diagonal (q = k) of these figures are, by definition, outputs
of model 1. Figure 3.12 shows that the allostery model is able to reproduce
the experimental amplitude behaviour: the modelled amplitude increases then
decreases as γc chain abundance increases (x-axis). However, as shown in Figure
3.13, the EC50 of the allostery model displays more intriguing behaviours. Indeed,
for q = 0.1 (ignoring the diagonal graphs), the EC50 seems to decrease slightly
for high abundance of γc chains. On the contrary, for q = 10 (ignoring the
diagonal graphs), the EC50 seems to slightly increase (but, once again, only for
high abundance of γc chains). In the other configurations, the EC50 seems rather
flat. Surprisingly, the ratio k does not seem to have any influence on the EC50.
This result is unexpected as one could conjecture that diminished K2 or K3 values
(i.e., q < 1 or k < 1), compared to K ′2 and K ′3, would prioritise the formation of
“dummy” complexes and reduce IL-7-induced response: the EC50 would increase
rather than decrease. Similarly, it is natural to expect that larger binding rates
implied in the formation of signalling complexes (i.e., q > 1 or k > 1) would
prioritise the formation of such complexes and thus decrease rather than increase
the EC50. This model confirms that the EC50 is not an intuitive quantity.

To summarise, this model with biochemical allostery still reproduces the
observed amplitude and there exists a set of parameters where the EC50 does
indeed increase with the abundance of γc overall. However the general pattern of
the EC50 did not agree with the observed experimental evidence: the modelled
EC50 increased only once the amount of γc was really large, while the experimental
EC50 seemed to present a regular increase.
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(a) k = 0.1, q = 0.1
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(c) k = 10, q = 0.1
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(i) k = 10, q = 10

Figure 3.12: Numerical exploration of the allostery model. The modelled ampli-
tude (bottom row of each graph) is computed and compared to the experimental
amplitude (top row of each graph) for different values of k and q defined as
K2 = k×K ′2 and K3 = q×K ′3. We set K1 = 10−4.04 and ξ1 = 100.79 as inferred in
the previous section (even though the amplitude of this model is a priori different),
K ′2 = 17× 10−3 and K ′3 = 34× 1010 M −1 as computed in Cotari et al. (2013b).
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Figure 3.13: Numerical exploration of the allostery model. The modelled EC50

(bottom row of each graph) is computed and compared to the experimental EC50

(top row of each graph) for different values of k and q defined as K2 = k ×K ′2
and K3 = q × K ′3. We set K1 = 10−4.04 as inferred in the previous section,
K ′2 = 17× 10−3 and K ′3 = 34× 1010 M −1 as computed in Cotari et al. (2013b).
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3.4 IL-7R model with an additional subunit (model
2)

The previous hypothesis of allostery, differences in binding caused by interactions
between the components of the IL-7 receptor complex, did not lead to a math-
ematical model which could reproduce the experimental data. In this section,
I modify model 1 to account for the fact that the γc chain is shared between
multiple cytokine receptors (Rochman et al., 2009). Indeed, the presence of other
pre-formed receptors could limit the amount of γc chain available to form signalling
IL-7 complexes.

3.4.1 Model description

The first IL-7R model (model 1) described the IL-7 receptor system without
any consideration to the fact that the γc chain is shared with other cytokine
receptors (Rochman et al., 2009). I now account for this competition by including
in model 1 an additional receptor chain, R, which could bind to the γc chain, or
the complex γc : JAK3 to form decoy receptor complexes (see Figure 3.14(a) and
Figure 3.14(b), where the hatched area indicates the cytoplasmic region). Decoy
receptors prevent the formation of signalling complexes by sequestering the γc
chain away from IL-7Rα. Here, R could, for instance, be IL-2Rβ, IL-2Rβ:IL-2Rα
or IL-4Rα. Alternatively, this additional chain could account for the set of all the
receptor chains that bind to γc (except IL-7Rα). Similarly to model 1, we assume
no allostery so that the binding rates related to the formation of the signalling
and the “dummy” complexes are the same. The resulting reaction scheme of this
new model, which we call model 2 (summarised in Figure 3.14(c)), is given by

JAK3 + γc 
 JAK3 : γc K1,
α + JAK3 : γc 
 α : γc : JAK3 K2,
α + γc 
 α : γc K2,
L+ α : γc 
 L : α : γc K3,
L+ α : γc : JAK3 
 L : α : γc : JAK3 K3,
R + γc 
 R : γc K4,
R + JAK3 : γc 
 R : γc : JAK3 K4.
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JAK3

γ R

(a) Decoy receptor with kinase

γ R

(b) Decoy receptor without kinase

JAK3

γ α

L

signalling complex

c5

kinase JAK3

z

JAK3

gamma chain

γ

x

JAK3

γ

c1

alpha chain

α

y

γ α

c3

JAK3

γ α

c2

dummy complex

γ α

L

c4

L

L

ligand

decoy subunit

R

w

decoy complex

JAK3

γ R

decoy complex

γ R

(c) Second IL-7R model sequential chemical reaction scheme

Figure 3.14: IL-7R model with an additional receptor subunit (model 2): The
signalling and “dummy” complexes are the same as in model 1. This second
model allows the formation of decoy receptors: (a) with the kinase JAK3, (b)
or without the kinase. (c) The IL-7R “dummy” and signalling complexes are
formed sequentially. Decoy complexes can be formed to prevent the formation of
signalling or “dummy” complexes. The mathematical notation used in this section
is annotated below each subunit or complex.
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3.4 IL-7R model with an additional subunit (model 2)

We use w to describe the concentration of the additional chain R and the notation
of model 1 for the other variables. Similarly to model 1, we write the system of
ODEs describing the time evolution for each complex and then derive (a basis
for) the conservation and steady state equations. Combining them, we obtain the
following polynomial system:

0 = −Nx + x+K2xy +K1xz +K2K1xyz +K3K2Lxy +K3K2K1Lxyz

+K4xw +K1K4xwz,

0 = −Ny + y +K2xy +K2K1xyz +K3K2Lxy +K3K2K1Lxyz,

0 = −Nz + z +K1xz +K2K1xyz +K3K2K1Lxyz +K1K4xwz,

0 = −Nw + w +K4xw +K4K1xwz,

(3.32)

where Nw is the additional conserved quantity.

Despite its mathematical analysis being more complex than the one of model 1,
Model 2 seems to be able to reproduce the experimental amplitude and EC50

behaviour (see Section 3.4.3). Its analytic study is thus pursued.

3.4.2 Mathematical analysis of the amplitude and EC50

We compute a lex Gröbner basis of polynomials (3.32) to obtain the following
triangular system:

0 = K1z
2 + z[1 +K1(Nx −Nz)]−Nz, (3.33a)

0 = Ay3 +By2 + Cy +D, (3.33b)

0 = [K2K4(1 +K3L)NxNy]x+ (Ay2 +By + C +K4Ny)(Nx −Nz + z), (3.33c)

0 = [K2K4(1 +K3L)Ny]w + Ay2 +By + [K2(1 +K3L)−K4]Ny, (3.33d)

where

A = −K2(1 +K3L)[K2(1 +K3L)−K4],

B = K4 −K2(1 +K3L)[1 +K4(Nw −Nx + 2Ny) +K2(1 +K3L)(Nx −Ny)],

C = Ny[−2K4 +K2(1 +K3L)(1 +K4(Nw −Nx +Ny))],
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D = K4N
2
y .

Solving (3.33a) gives the number of free JAK3 molecules per cell at steady state,

z; solving (3.33b) gives the number of free (unbound) α chains per cell at steady

state, y; and substituting y and z into (3.33c) and (3.33d) gives the remaining

steady states. We obtain the following implicit steady state expressions for the

number of free (unbound) chains:

z =
−1 +K1(Nz −Nx) +

√
[1 +K1(Nx −Nz)]2 + 4NzK1

2K1

,

x =− (Ay2 +By + C +K4Ny)(Nx −Nz + z)

K2K4(1 +K3L)NxNy

,

w =− Ay2 +By + [K2(1 +K3L)−K4]Ny

K2K4(1 +K3L)Ny

.

(3.34)

The problem now reduces to finding the positive real roots of (3.33b). As (3.33b)

is a polynomial of degree three, we could, in principle, find an exact analytic

solution. However, such a solution might not be very conclusive. Instead, we show

how perturbation theory can be used to obtain the amplitude of the dose-response.

In this model, the signalling complex is still L : α : γc : JAK3. The signalling

function is given by

σ(L) ≡ K3K2K1Lxyz. (3.35)

In Section 4.3.3 we will show that, for this model, the maximum of σ is attained

in the limit L→ +∞. Hence, we have

A ≡ lim
L→+∞

σ(L). (3.36)

Combining (3.33a), written as Nx − Nz + z = Nx
1+K1z

, and (3.33b), we obtain a

reduced expression for the product xy

xy =
Ny − y

K2(1 +K3L)(1 +K1z)
, (3.37)
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which allows us to rewrite the amplitude as

A = lim
L→+∞

K1z

(1 +K1z)

K3L

(K3L+ 1)
(Ny − y). (3.38)

We note that z is independent of L and, therefore, to compute the amplitude we
only need to find the behaviour of y as L→ +∞.

Perturbation theory to determine y as L→ +∞

We now apply the method described in Ref. Simmonds & Mann (2013) and
summarised in Section 2.5. Let ε = 1

L
and define the polynomial Pε as follows:

Pε(y) ≡ P2(y)ε2,

where P2 is the polynomial (3.33b). We added a factor of ε2 to remove any negative
powers of ε in P2. We obtain the polynomial

Pε(y) = Aεy
3 +Bεy

2 + Cεy +Dε, (3.39)

where

Aε =−K2(ε+K3)[K2(ε+K3)− εK4],

Bε =K2
2K

2
3(Ny −Nx)− εK2K3[1 + 2K2Nx − 2K2Ny +K4(Nw −Nx + 2Ny)]

+ ε2(K4 −K2(1 +K2Nx −K2Ny +K4(Nw −Nx + 2Ny))),

Cε =εNy[K2K3(1 +K4(Nw −Nx +Ny))

+ ε(K2 − 2K4 +K2K4(Nw −Nx +Ny))],

Dε =K4N
2
y ε

2.

We now replace y by εpω(ε) with ω(0) 6= 0 and p ∈ Q, according to theorem 49.
We obtain

Pε(ε
pω(ε)) = Ap,εω

3 +Bp,εω
2 + Cp,εω +Dp,ε, (3.40)

where

Ap,ε =− ε3pK2(ε+K3)(K2(ε+K3)− εK4),
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Figure 3.15: The lines defined in set E and the proper values, (black dots),
computed following the graphical algorithm described in Section 2.5.

Bp,ε =ε2p(K2
2K

2
3(Ny −Nx)− εK2K3(1 + 2K2(Nx −Ny) +K4(Nw −Nx + 2Ny))

+ ε2(K4 −K2(1 +K2Nx −K2Ny +K4(Nw −Nx + 2Ny)))),

Cp,ε =ε1+pNy(K2K3(1 +K4(Nw −Nx +Ny))

+ ε(K2 − 2K4 +K2K4(Nw −Nx +Ny))),

Dp,ε =K4N
2
y ε

2.

The smallest exponents in the previous equation are

E = {2, 1 + p, 2p, 3p}.

We note that 0 is not in E because we multiplied P2 by ε2. Applying the graphical

algorithm detailed in Section 2.5, we find the proper values (0, 0) and (1, 2) (see

Figure 3.15). We investigate these two branches.

Branch (0,0). We make use of the notation in Section 2.5, to define

T (1)
ε (ω) ≡ ε0Pε(ωε

0).
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The least common denominator of {2,1,0,0} is q1 = 1. Therefore in accordance

with the notation of Section 2.5

ε = β,

and the polynomial R(1)
β defined as

R
(1)
β (ω) ≡ T (1)

ε (ω),

is the polynomial Pε. It means that we have y = ω and we can directly carry out

a regular perturbation expansion.

Let us write the asymptotic expansion y = y0 + y1ε+ y2ε
2 + . . . and replace

it in Pε(y). Since Pε(y) = 0, by the fundamental theorem of perturbation theory

(Theorem 48) we obtain a system of equations in y0, y1, . . ., which can be solved.

The first equation of the system is given by

−K2
2K

2
3y

2
0(Nx −Ny + y0) = 0. (3.41)

We are only interested in non-negative values of y0, since we want y to be

biologically meaningful. We also require ω(0) = y(0) = y0 6= 0 (not identically

zero) from Theorem 49. Thus, solving equation (3.41), we obtain y0 = Ny −Nx if

Ny > Nx and y0 = 0 otherwise. Assuming y0 = 0 (i.e., Nx ≥ Ny), we solve the

next order equation

K4N
2
y +K2K3Ny(1 +K4(Nw −Nx +Ny))y1 +K2

2K
2
3(Ny −Nx)y

2
1 = 0. (3.42)

We select the positive root of this polynomial and obtain an expression for y1

when y0 = 0. Thus, we have

y1 = Ny

1 +K4(Nw −Nx +Ny) +
√
∆y1

2K2K3(Nx −Ny)
, (3.43)

where we wrote ∆y1 = 1 + 2K4(Nw +Nx −Ny) +K2
4 (Nw −Nx +Ny)

2. Equation

(3.43) shows that y1 > 0 when Nx ≥ Ny. Hence, y ≈ εy1 converges to zero

from above and, therefore, represents a biologically meaningful solution. We can
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conclude that

lim
ε→0

(Ny − y) =

{
Nx, if Ny > Nx,
Ny, otherwise.

}
= min(Nx, Ny). (3.44)

Branch (1,2). On this branch, and again following the notation of Section 2.5,
we define

T (2)
ε (ω) ≡ ε−2Pε(ε

1ω).

The least common denominator of {2,1+1,0+1,0+1} is q2 = 1, so R(2)
β is the same

polynomial as T (2)
ε . Since y = ωε, we have Ny − y ∼

ε→0
Ny. Furthermore, when

replacing ω by an asymptotic expansion ω0 + ω1ε+ . . . in T (2)
ε and applying the

fundamental theorem of perturbation theory (Theorem 48), we obtain the same
equation for w0 as for y1 in the previous branch (see equation (3.42)):

K4N
2
y +K2K3Ny(1 +K4(Nw −Nx +Ny))ω0 +K2

2K
2
3(Ny −Nx)ω

2
0 = 0 . (3.45)

We have y1 = ω0. In other words, at large, but finite L = 1/ε, the convergence
behaviour of the two branches is identical. This agrees with Theorem 37 which
states that there is only one positive solution for each set of reaction constants
and initial conditions. In conclusion, we find that Ny − y = min(Nx, Ny), which
gives the following expression for the amplitude

A ≡ K1z

1 +K1z
min(Nx, Ny), (3.46)

with z defined in (3.34). As the steady state concentration of JAK3, z, is the
same in the IL-7R model with or without the extra chain R, the same expression
has been obtained for the amplitude of both models 1 and 2.

Computation of the EC50

Since we did not compute analytic expressions for each steady state concentration,
the EC50 expression has to be obtained by computing a Gröbner basis of the
polynomial system (3.32) augmented by the polynomial

K3K2K1Lxyz(1 +K1z)− K1zM

2
= 0, (3.47)
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3.4 IL-7R model with an additional subunit (model 2)

considering x, y, z and L as variables, with M = min(Nx, Ny). The lex Gröbner
basis obtained for this system is:

0 = K1z
2 + (1 +K1(Nx −Nz))z −Nz, (3.48a)

0 = K3aL
3 + ALL

2 +BLL+ CL, (3.48b)

0 = y +
−aL2 +ByL+ Cy
2K2(K2 −K4)M2

, (3.48c)

0 = w +
aL2 +BwL+ Cw
2K4(K2 −K4)M2

, (3.48d)

0 = x+
aL2 +BxL+ Cx

2K2K4M2(1 +K1z)
, (3.48e)

where we wrote:

a = K2
2K

2
3(M − 2Nx)(M − 2Ny)

2,

AL = K2K
2
3M(M − 2Ny)(−2 + 3K2M −K4(M + 2Nw − 2Nx)

− 2K2(2Nx +Ny)),

BL = K3M
2[2K4

+K2(−2 + 3K2M + 2K4(−M −Nw +Nx +Ny)− 2K2(Nx + 2Ny))],

CL = K2(K2 −K4)M3,

By = −AL
K3

,

Cy = M2(−2K4 +K2(2 +K4(M + 2Nw − 2Nx)− 2K2(M −Nx −Ny))),

Bw = −2K2K3M(M − 2Ny)(1 +K4Nw +K2(Nx +Ny −M)),

Cw = K2M
2(K2(M − 2Ny)− 2K4Nw),

Bx = −K2K3M(M − 2Ny)(2 +K4(M + 2Nw − 2Nx)− 2K2(M −Nx −Ny)),

Cx = M2(2K4 +K2(K2 −K4)(M − 2Ny)).

The polynomial (3.48a) is expected to be independent of the ligand concentration,
L. The EC50 expression is the real positive root of polynomial (3.48b) at which
x, y and w (obtained via polynomials (3.48e), (3.48c) and (3.48d), respectively)
are positive. The polynomial (3.48b) reflects the parameter dependence of the
EC50: since the parameters K1 and Nz are not present in its coefficients, one can
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affirm that the EC50 is, once again, independent of the kinase, JAK3. Thus, the
problem of computing the EC50 is reduced to solving a univariate polynomial
(equation (3.48b)). In comparison, before any algebraic manipulation was possible,
the polynomial system (3.32) had to be solved multiple times to obtain the dose-
response curve (a sigmoid), which was then fitted to a Hill equation. Finally, the
EC50 was computed from the fitted parameters of the Hill curve. Alternatively,
if one wanted to apply the Gröbner basis-free method of Section 3.2, one would
have to solve the polynomial (3.33b) in y (which is possible in theory), find its
positive real solution (which is potentially hard), substitute the expression of y
into σ(L), and then solve for the EC50.

3.4.3 Model validation

A short numerical exploration shows that, this time, the increase of γc abundance
does increase the EC50, under the condition that the abundance of the additional
chain R is proportional to a certain power of the abundance of γc, Nw = Np

x with
p > 1 (see Figure 3.16). Indeed, a fixed amount of R or an amount proportional
(p = 1) to Nx is not sufficient to observe changes in the EC50 compared to model 1.
Figure 3.17 shows the amplitude and EC50 variations with the increase of γc chain
abundance for p = 1.2 and K4 = 10−2. The mathematical analysis conducted in
the previous section shows that the EC50 is independent of JAK3 abundance, in
accordance with the experimental observations. This analysis also showed that
the amplitudes of model 1 and 2 are the same, which guarantees that model 2 will
be as accurate as model 1 to fit the amplitude. Model 2, thus, seems to be a good
candidate to reproduce both the experimental amplitude and EC50 behaviours. I
now make use of ABC to fit model 2 to the data in order to infer the values of
the affinity constants and the power p which links Nx and Nw.

Approximate Bayesian computation (ABC)

In Section 3.4.2, I reduced the problem of computing the EC50 to solving a
univariate polynomial of degree 3 (equation (3.48b)) and selecting the real positive
root of this polynomial at which x, y and w (obtained via polynomials (3.48e),
(3.48c) and (3.48d), respectively) are positive. Unfortunately, due to the huge
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Figure 3.16: Numerical exploration of the EC50 of model 2 for different values
of K4 and Nw = Np

x as a function of the total γc abundance Nx. The other
parameters were fixed: K1 = 10−4.04, K2 = 17 × 10−3, K3 = 34 × 1010M−1,
Ny = 103 and Nz = 8× 103. Increasing the abundance of γc chains increases the
EC50 only when p > 1.
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Figure 3.17: Numerical exploration of the impact of γc chain abundance on the
IL-7 response in model 2: (a) Dose-response curve for different γc abundances. The
amplitude (the plateau of the dose-response curve) increases then decreases with
the increase of γc abundance. The EC50 (dots) increases as γc abundance increases
(dots shift to the right). (b) Number of signalling and “dummy” complexes at
high ligand concentration (L = 10−3 M). (b) The modelled EC50 increases as γc
abundance increases. For this figure, the parameters has been fixed to 103 IL-7Rα
chains per cell, 8× 103 JAK3 molecules per cell, K1 = 10−4.04, K2 = 17× 10−3

and K3 = 34× 1010M−1, K4 = 10−2 and p = 1.2. Values of K2 and K3 were taken
from Ref. Cotari et al. (2013b).
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difference in order of magnitude of the parameters involved in the coefficients of
polynomial (3.48b) (for instance, K3 = 1010M−1 and K1 = 10−4), the problem
of finding the roots of this polynomial is ill-conditioned, i.e., the roots of the
polynomial are very sensitive to small perturbations (such as numerical errors) to
the coefficients (this is a common problem in polynomial root finding (Boyd, 2002;
Tsai, 2014)). This makes it difficult to find the positive real roots of polynomial
(3.48b) that also let the other variables positive and in biologically relevant ranges
(for instance we want Nx ≥ x > 0 as Nx is the total γc abundance available)1. To
fix this issue, one could try to normalise the coefficients of polynomial (3.48b)
or decompose the polynomial into a Chebychev basis according to the method
described in Boyd (2002). This is, however, out of the scope of this thesis. To
simulate model 2 and perform the approximate Bayesian computation, I thus make
use of more traditional methods: computing a dose-response curve by solving
system (3.32) for different ligand concentrations and fitting the curve to a sigmoid
equation to derive the amplitude and EC50. Despite the fact that I do not make use
of polynomial (3.48b), the mathematical analysis conducted in the previous section
is still very useful. Indeed, I showed that the amplitude and the EC50 of model 2
depend on different separated subsets of parameters: the amplitude only depends
on K1 while the EC50 depends on all the other parameters. The pharmacological
quantities can thus be fitted separately. Furthermore, the amplitude of model 1
and 2 are the same. Hence, the amplitude does not need to be fitted again and
we can fix K1 to the value found when fitting model 1 (K1 = 10−4.04). Finally,
the separation of the parameters also allows us to only compare the modelled and
experimental EC50, independently of the parameters ξ1 and ξ2 defined in (3.2).

Once again, I have decided to not make any assumption on the parameters
and chose uniform prior distributions on the logarithm of the parameters (except
for p): log(K2) ∼ U(−7, 6), K3 ∼ U(9, 14), log(K4) ∼ U(−8, 4) and p ∼ U(0.5, 2).
The ABC algorithm goes as follows. For each simulation, I sample a parameter
set according to the prior distributions defined above. Then, for each bin i of
the data set, I extract the γc chain, IL-7Rα and JAK3 abundances (which define
the values for Nx, Ny and Nz, respectively). For these values of Nx, Ny and

1I tried to compute the roots of polynomial (3.48b) making use of the function roots from
the Python library Numpy (Oliphant, 2006)
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Nz and for different ligand concentrations L (typically L ranges from 10−15M to
10−6 M), I numerically solve the polynomial system (3.32) to obtain the steady
state number of unbound single chains x, y, z and w. The number of signalling
complexes formed, σ(L) = K3K2K1Lxyz, is computed by multiplying the steady
state values of the single chain components. The values of σ at the different
ligand concentrations define the dose-response curve, which is fitted to a sigmoid
equation to obtain the EC50. I am now able to compute the distance d2 between
the modelled and experimental EC50:

d2 =

Nbin∑
i=1

(model[i]− data[i])2, (3.49)

where Nbin = 172 is the number of bins, model[i] corresponds to the modelled
EC50 with the abundances of bin i and data[i] is the EC50 computed from the
data set for bin i. I repeat these steps five million times and obtain a list of five
million distance values corresponding to the five million different parameter sets
tested. I select the 103 parameter sets that minimise the distance d2 to obtain
a posterior distribution. The normalised posterior distributions for parameters
K2, K3, K4 and p, resulting from the ABC fitting the EC50 are shown in Figure
3.18. The posterior distributions of all the parameters are narrower than the
prior distributions. In particular, the posterior distributions of K2, K4 and p

present a clear peak which means that the best parameter value most likely falls
around this mode. The posterior distribution of K3, however, does not have an
obvious mode and so the value of K3 was not inferred accurately. The parameter
sensitivity analysis, conducted by Michael Adamer and published in Ref. Sta et al.
(2022b), shows that K3 is one of the least important parameters in model 2: this
might be the reason why we struggle to infer it. The correlation plots (Figure
3.19) show that K2 and K3, as well as p and K4 seem correlated while the other
pairs of parameters are mostly independent. Figure 3.20 shows the modelled EC50

computed with the best parameters values determined by this ABC (K2 = 10−5.16,
K3 = 1013.2M−1, K4 = 10−4.098 and p = 1.41) along with the EC50 computed with
the experimental data set. It shows that model 2 is much better than model 1 at
reproducing the experimental EC50 behaviour. Figure 3.21 summarises the similar
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Figure 3.18: Normalised prior (blue) distribution of the five million parameter
samples and posterior distribution (green) of the 103 best parameters for model 2.

behaviour of the modelled and experimental amplitude and EC50.

Conclusions

The addition of the extra chain R to model 1 did not modify the amplitude expres-
sion but changed the modelled EC50 behaviour. As shown in Figure 3.20, model
2 can now reproduce the experimental EC50 increase with γc chain abundance,
while predicting the observed amplitude behaviour as accurately as model 1. The
parameter values inferred with Bayesian computation in this section vary from
the ones found by Guillaume Voisinne in Ref. Sta et al. (2022b), mainly because
we did not choose the same fitting strategy. The difference in parameter values
between those of this section and his, is never more than one order of magnitude.
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Figure 3.19: Correlation plots of the 103 best parameters according to the
distance value, resulting from the fitting of model 2 to the experimental EC50.
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Figure 3.20: Comparison of the experimental (red dots) and modelled EC50

(model 2 in blue) for different receptor chain abundances. The modelled quantities
were generated with the best parameters (those which return the smallest distance):
K2 = 10−5.16, K3 = 1013.2M−1, K4 = 10−4.098 and p = 1.41.
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3.4 IL-7R model with an additional subunit (model 2)
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(a) Experimental and modelled amplitude (model 2)
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(b) Experimental and modelled EC50 (model 2)

Figure 3.21: Complete map of the experimental and modelled amplitude and
EC50 (model 2) for different levels of receptor chain abundances. The modelled
quantities were generated with the best parameters (those which return the
smallest distance):K2 = 10−5.16, K3 = 1013.2M−1, K4 = 10−4.098 and p = 1.41.
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3. TUNING OF IL-7 SIGNALLING THROUGH IMBALANCED
ABUNDANCES OF RECEPTORS AND KINASES

3.5 Discussion

In this chapter, I proposed three IL-7R models to elucidate the seemingly para-
doxical observation that increased abundances of γc chain, a crucial component of
the IL-7R, decreased the IL-7-induced T cell response, reflected both in a smaller
amplitude and a greater EC50. The models explain the amplitude dynamics by
the formation of signalling-deficient (“dummy”) complexes that did not co-opt
intra-cellular kinases. At high γc chain abundances, all IL-7Rα chains are γc-
and ligand-bound, forming “dummy” complexes instead of signalling receptors.
The introduction, in model 2, of the γc- binding protein, R, whose abundance
correlates with that of γc, allows to reproduce the experimental EC50 behaviour.
This protein, R, simulates the competition for the γc chain between the receptors
of the γc family, hence specific competition for the formation of the complete IL-7
receptor accounts for the EC50 increase in the IL-7 response.

To further explore the imprint of γc abundance on cytokine responses, Guil-
laume Voisinne, Jesse Cotari and Grégoire Altan-Bonnet repeated their experimen-
tal measurements and analysis for the STAT5 phosphorylation responses triggered
by IL-2 and IL-15 stimulation. In both cases, the effect of γc on the amplitude
of response to the respective cytokine was nearly identical to that seen following
IL-7 treatment (see Figure 3.22). Most interestingly, γc chain abundance did not
significantly affect EC50 values for either IL-2 or IL-15.
Making use of these additional experimental results and a previous IL-2R model
(Cotari et al., 2013b), Guillaume Voisinne and Jesse Cotari concluded that the
extra chain, R, could not be IL-2Rβ, and suggested that R would act only on
the IL-7 receptor (Sta et al., 2022b). Precise identification of this protein is still
pending.
The work of this chapter demonstrates that optimal signalling necessitates a

precise balance of protein abundances (for instance, model 1 and 2 show that the
maximum amplitude is attained when the number of γc chains equals the number
of IL-7Rα chains). The requirement for abundance balance between kinases
and receptor subunit chains might provide built-in protection against aberrant
activation, as observed during oncogenic transformation (Shtiegman et al., 2007).
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3.5 Discussion

Figure 3

Analysis of IL-7, IL-2 and IL-15 treatments: 
A) Amplitude is the same as IL-7, 
B) EC50 is different.
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Figure 3.22: Experimental maps of amplitude (top) and EC50 (bottom) for
the pSTAT5 responses to IL-2, IL-7 and IL-15, for different expression levels of
IL-2Rα and γc. Note how similar the amplitude values are for different cytokines,
while the EC50 have very different dependencies with the abundances of IL-2Rα
and γc. Figure taken from Ref. Sta et al. (2022b).
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3. TUNING OF IL-7 SIGNALLING THROUGH IMBALANCED
ABUNDANCES OF RECEPTORS AND KINASES

Robust input/output response does limit functional variability but also protects
against enhancement of receptor signalling and its dysregulated accumulation of
downstream survival signals. This work also showed that while the behaviour
of the amplitude seems to be similar across several cytokine-receptor systems,
the sensitivity of the cellular response, as measured by EC50, is a non-intuitive,
cytokine-specific quantity which should motivate further experimental and theo-
retical analysis.
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Chapter 4

Algebraic analysis of receptor-ligand
systems and generalisations

As mentioned in Chapter 1, the study of a receptor-ligand system generally relies
on the analysis of its dose-response curve and in particular of the key pharmaco-
logical quantities such as the amplitude and the EC50. Previous work has shown
that the estimation of the amplitude and the EC50 from experimental data is
often possible, although strong bias and errors might be introduced (Badrick et al.,
2023). Usually one starts with a data set where the number (or concentration)
of receptor-ligand signalling complexes formed is measured for different values of
the ligand concentration. Then, the estimation of the amplitude and the EC50 is
turned into a regression problem by assuming a functional relationship in the data
set and fitting a parametric curve. A simple first approach is to plot experimental
values (corresponding to a measurable variable which quantifies cellular response,
such as pSTAT5 as used in Chapter 3) as a function of ligand concentration. The
amplitude and the EC50 are then read directly from a curve formed by inter-
polation of the data points. Since the EC50 is likely to fall between two data
points, a geometrical method (Alexander et al., 1999) can be used for an accurate
determination. Nowadays, many software packages can compute the amplitude
and the EC50 from the data set making use of statistical methods, which consist
in finding the “best-fit” equation to the dose-response curve. The most common
shape of the dose-response curve is a sigmoid, and thus, can be fitted with the Hill
equation (Gesztelyi et al., 2012; Goutelle et al., 2008). However, other functions
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4. ALGEBRAIC ANALYSIS OF RECEPTOR-LIGAND SYSTEMS
AND GENERALISATIONS

are also possible, such as a logistic equation (Chen et al., 2013; Li et al., 2015), a
log-logistic equation (Jiang & Kopp-Schneider, 2014; Suriyatem et al., 2017), or
the Emax model (Macdougall, 2006; Thomas, 2006). An asymmetrical sigmoid
equation is sometimes needed for better precision (Chen et al., 2013; Suriyatem
et al., 2017). The amplitude and the EC50 are parameters of these equations and
can thus, be directly inferred from the fitting process. When a data set does not
follow the strictly increasing pattern of these Hill-like functions, then more complex
functions, such as bell-shaped curves (Rovati & Nicosia, 1994), or multi-phasic
curves (Di Veroli et al., 2015) can be used. It is important to note that even though
these empirical regression methods allow one to quantify two key receptor-ligand
metrics, amplitude and EC50, they do not offer any mechanistic insights for the
receptor-ligand system under consideration. To this end, mathematical models
can be used to describe the receptor-ligand system at a molecular level; that is,
mathematical models consider the biochemical reactions which initiate a cellular
response (Eftimie et al., 2016; Lauffenburger & Linderman, 1996; Tyson et al.,
2003; White et al., 2022; Wiley et al., 2003). The challenge in such models is
finding analytic, ideally closed-form, expressions for the amplitude and the EC50.
Due to the non-linear nature of the biochemical reactions involved, this poses
a significant and practical challenge. As seen in Chapter 3, the advantages of
having analytic (or closed-form) expressions of the amplitude and the EC50 for a
large class of receptor-ligand systems are many: (i) they allow to quantify their
dependence on receptor copy numbers, (ii) they facilitate mathematical model
validation and parameter exploration, and (iii) they reduce computational cost. To
the best of my knowledge such expressions have been obtained in a few instances:
closed or open bi-molecular receptor-ligand systems (Gabrielsson et al., 2018),
monomeric receptors (Mack et al., 2008), ligand-induced dimerisation (White
et al., 2022) or ternary complexes (Douglass Jr et al., 2013). More complicated
receptor-ligand models have been studied with chemical reaction network theory
(CRNT) (Feinberg, 1987; Otero-Muras et al., 2017; Shiu, 2010), but CRNT has
thus far, been focused on the analysis of the steady state of the system (i.e.,
existence and number of steady states and their stability). Yet, as demonstrated in
Chapter 3, CRNT is an essential and useful framework to start any mathematical
investigation of the amplitude and the EC50.
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Another aspect which can be effectively addressed by mechanistic mathematical
modelling is the effect of internal or external perturbations to the state of a
cell. For example, in single-cell experiments or even repetitions of bulk experi-
ments (Cotari et al., 2013b; Feinerman et al., 2010), the experimental conditions
can never be replicated exactly. This leads to noise not only in the measured
quantities, but also in the reaction mechanisms themselves. This variation can be
captured in mathematical models which encode parameters such as affinity con-
stants or total copy number of constituent molecular species. An analytical study
of the dependency of pharmacologically relevant quantities, such as amplitude
and EC50, on the reaction parameters can facilitate in silico drug design (Moraga
et al., 2017). While amplitude and EC50 are widely employed to characterise
biological phenomena, the manner in which they depend on the parameters of
the receptor-ligand model is not fully understood. Thus, improved understand-
ing of these relationships could provide novel biological and computational insights.

In Chapter 3, I computed the analytic expression of the amplitude and EC50

of two IL-7R models making use of a tool from computational algebraic geometry
called Gröbner basis. The expressions obtained showed that the amplitude and
EC50 of the models were not depending of the same parameters and could be
fitted independently. This result, coupled with the use of the analytic expressions
when possible, dramatically reduced the computational cost and time of model
simulation and fitting. I recapitulate the key steps of the method used to compute
the analytic expressions of the amplitude and EC50 in Section 4.1. The IL-7R
models were simple enough to illustrate the algorithm, and thus, to derive analytic
expressions for the key pharmacological quantities, yet complex enough to show
its limitations, as additional mathematical operations, like perturbation theory,
were necessary. The previous chapter focused on cytokine receptors which display
a particular receptor architecture. Many other receptor configurations exist, such
as RTK receptors (Du & Lovly, 2018). In Section 4.2, I apply the method and
compute the amplitude and EC50 expressions for other receptor-ligand systems.
In particular, I consider monomeric receptors, homodimeric and heterodimeric
receptors, and trimeric receptors, requiring, or not, a downstream kinase to signal.
All these systems are studied at steady-state and the ligand is assumed to be
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in excess. These additional examples yield two main results: (i) the amplitude
and EC50 of some models are very similar, (ii) if the model is too complex, the
method is unable to compute analytic expressions of these key quantities. As a
consequence of the first remark, I generalise this result by studying a family of
receptor-ligand models in Section 4.3 and 4.4. In response to the second remark,
I investigate, in Section 4.5, whether it is possible to learn about the amplitude
and EC50 of complex models (computing the analytic expression or finding upper
and lower bounds) by computing these quantities for simpler sub-models.
The models studied in this chapter (and in Chapter 3) are summarised in the
tables in Section 2.10. These tables also recapitulate the analytic expressions of
amplitude and EC50 obtained for each of these models.

4.1 A method to compute analytic expressions
of the steady state, amplitude and EC50 of
receptor-ligand systems

From the two IL-7R examples studied in Section 3.2 and 3.4, we devise a general
algorithm to compute analytic expressions of the steady state, amplitude and
EC50 for some receptor-ligand binding models when the ligand L is considered in
excess. The key steps are described in Table 4.1.

One of the crucial parts of the proposed algebraic algorithm is the amplitude
computation. Usually, we have the simplification that min(σ) = σ(0) = 0, however,
finding max(σ) can be challenging. For certain classes of models we have

lim
L→+∞

σ(L) = max(σ),

which greatly reduces the calculation. We can now either solve the Gröbner
basis from step 3 directly, to obtain analytic expressions of the steady state
concentrations of the single chains components, or use perturbation theory as
outlined in Section 3.4. In the final step, if an exact expression for the EC50

cannot be computed, i.e., the univariate polynomial in L has a large degree, one
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already reduces the cost of the EC50 computation compared to the naive approach.
This polynomial also indicates the dependencies of the EC50 on the parameters.

Key steps

1) Write the mass action kinetics set of ODEs for the system under
consideration.

2) Obtain the polynomial system by combining the steady state and
conservation equations.

3) Compute a lex Gröbner basis of the polynomial system obtained in
step 2.

4) Define the signalling function σ(L).
5) Compute the amplitude by finding the extreme values of σ:

Amplitude = max(σ)−min(σ).

6) Compute a lex Gröbner basis of the polynomial system obtained in
step 2 augmented by the equation

σ(L)−
[
Amplitude

2
+ min(σ)

]
= 0,

with the ligand concentration, L, considered as an additional variable.
This additional equation corresponds to definition 43 (in Chapter 2)
of the EC50.

7) Find the positive roots of the univariate polynomial in L of the Gröbner
basis obtained in step 6. The root which allows the other variables of
the polynomial system to be positive is the EC50.

Table 4.1: Key steps of the algebraic method to compute analytic expressions
for the amplitude and EC50 of receptor-ligand systems

4.2 Exploring different receptor architectures

The unexpected modulation of cytokine responsiveness based on receptor abun-
dances, unveiled in the previous chapter, led us to consider the overall biological
impact of such an arrangement. The method described in the previous section
can be applied to more general biochemical designs of receptors, connecting
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extra-cellular signals to intra-cellular responses. In this section, I consider several
possible arrangements of receptor with or without intrinsic kinase activity with one
(monomeric), two (dimeric) or three (trimeric) trans-membrane chains. For every
model, we consider a primary chain called γ, equivalent to the common gamma
chain γc in the previous chapter. For monomeric and homodimeric receptors,
this is the only chain. Heterodimeric receptors are also composed of a secondary
chain called α. Finally, I consider a trimeric receptor with a primary chain γ, a
secondary chain β and third chain α, by analogy with the IL-2 receptor introduced
in Chapter 1 (the steady state of a trimeric receptor model with three identical
chains has been studied in Ref. Ho & Harrington (2010)). All the receptor-ligand
systems of this section have a similar structure and follow similar assumptions to
the models in Chapter 3: the signalling complex is formed sequentially, the ligand
is considered in excess, models with an intra-cellular extrinsic kinase (IEK) form
signalling and “dummy” complexes with the same binding rates (no allostery) and
the systems are at steady state. We also assume mass-action kinetics. All the
models are reversible and deficiency 0, thus admit a unique positive steady state.

Notation Here, we use notation similar to the previous chapter. In the chemical
reactions, γ, α and JAK describe the primary chain, secondary chain and IEK,
respectively, when present in the model. In mathematical equations, x denotes the
unbound (free) primary chain concentration, y denotes the unbound secondary
chain concentration and z the unbound IEK concentration. The ligand in chemical
reactions and its concentration in mathematical equations are both denoted by L.
Nx, Ny and Nz stand for the total number of γ chain, α chain and IEK molecules
per cell, respectively. Finally, since only reversible reactions are considered, ki
denotes the forward reaction constant (⇀) and qi the backward reaction constant

(↽). We write Ki =
ki
qi

for the affinity constants. To stay consistent across all the

models studied, K1 will describe the affinity constant of the binding of the IEK
to the primary chain. The constant K2 will denote the binding of the primary
(bound to the IEK or not) and secondary chain in the heterodimeric receptor case
and the binding of two primary chains in the homodimeric case. Finally, K3 will
stand for the affinity constant of the binding of the ligand to the full receptor
(with or without IEK). These consistent choices should allow amplitude and EC50
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comparisons.

We remind that in this thesis we will not distinguish between number (or concen-

tration) of signalling complexes since one can be obtained from the other if we

know the volume of the system and Avogadro’s number.

We first consider monomeric (one chain), homodimeric (two identical chains)

and heterodimeric (two different chains) RTK receptors. For instance, these

three receptor configurations are the different forms of the epidermal growth

factor receptor (EGFR or ErbB-1), a member of the ErbB family, a sub-family of

RTK receptors. Indeed, the ligand, EGF, can bind to monomers or pre-formed

inactive homodimers of the EGFR (Maruyama, 2014; Yarden & Schlessinger,

1987). Alternatively, the EGFR can pair with another ErbB receptor family, such

as ErbB-2/Her2/neu to create heterodimers. In the second part of this section,

we will consider the same receptor architectures but, this time, assuming they

do not possess intrinsic kinases and need intra-cellular extrinsic kinases (IEK) to

signal. Note that the heterodimeric receptor model with IEK has been studied in

Section 3.2 as one of the IL-7R model.

4.2.1 Monomeric receptor model (RTK)

The first receptor structure considered is a monomeric receptor 1 with intrinsic

kinase activity. This monomeric receptor is composed of a unique chain, γ (see

Figure 4.1). The sole chemical reaction considered is the binding of the γ chain

with the ligand:

L+ γ 
 L : γ K3 =
k3

q3

.

The signalling complex is L : γ and we denote its concentration by c. The analysis

of this system and computation of its amplitude and EC50 is straightforward

and does not require the computation of Gröbner bases. Indeed, the ordinary

1Note that the work in this section differs from the study conducted in Mack et al. (2008)
as we assume that the ligand is in excess.
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γ

L

Figure 4.1: The monomeric receptor with intrinsic kinase activity is composed of
only one chain, γ. The binding of the ligand, L, to this chain forms the signalling
complex. The hatched area determines the intra-cellular environment.

differential equations associated with this system

dx

dt
= −k3Lx+ q3c,

dc

dt
= k3Lx− q3c,

(4.1)

lead to an obvious equation which translates the conservation of the γ chain:

Nx = x+ c. (4.2)

Since the system is considered at equilibrium, the following detailed-balance steady

state equation holds:

c =
k3

q3

Lx. (4.3)

Combining the steady state and conservation equations, we obtain a polynomial

equation:

0 = −Nx + x+K3Lx. (4.4)
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Solving this polynomial yields the steady state expression of the number of

unbound γ chains per cell:

x =
Nx

1 +K3L
. (4.5)

The amplitude can now be computed. The signalling function is defined as

σ(L) ≡ K3Lx =
K3LNx

1 +K3L
. (4.6)

The graph of this function, the dose-response curve, is a sigmoid. Thus, the

amplitude A is attained at high concentration of ligand:

A ≡ lim
L→+∞

σ(L) = Nx. (4.7)

In this case, the amplitude is the maximum number of signalling complexes

that can be formed, as there are Nx gamma chains available. The EC50 can be

computed by finding L∗ such that

σ(L∗) =
A

2
, (4.8)

which gives:

EC50 =
1

K3

. (4.9)

One can notice that the signalling function is a Hill function with Hill coefficient

n = 1:

σ(L) = Nx
Ln(

1

K3

)n
+ Ln

.

The amplitude and EC50 are then directly read on the expression by identification.

4.2.2 Homodimeric RTK model

Consider a homodimeric receptor with intrinsic kinase, composed of two identical

chains γ. The ligand binds to this dimer to form a signalling complex (see Figure
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γ γ

L

Figure 4.2: The homodimeric receptor RTK is composed of two identical chains
γ. The ligand, L, binds to the dimer γ : γ to form the signalling complex. The
hatched area determines the intra-cellular environment.

4.2). The reaction scheme writes as follows:

γ + γ 
 γ : γ K2 =
k2

q2

,

L+ γ : γ 
 L : γ : γ K3 =
k3

q3

.

In the next equations, the concentration of complex γ : γ is denoted c1 and c2

denotes the concentration of the signalling complex L : γ : γ. The system of

differential equations associated to the model is:

dx

dt
= −2k2x

2 + 2q2c1,

dc1

dt
= k2x

2 − q2c1 − k3Lc1 + q3c2,

dc2

dt
= k3Lc1 − q3c2.

(4.10)

Noticing that
dx

dt
+ 2

dc1

dt
+ 2

dc2

dt
= 0 yields the following conservation equation:
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Nx = x+ 2c1 + 2c2. (4.11)

Detailed-balance gives the steady-state equations:

c1 = K2x
2,

c2 = K3Lc1.
(4.12)

Finally, by substituting the steady state equations in the conservation equation,

we obtain the following polynomial describing the model:

0 = −Nx + x+ 2K2(K3L+ 1)x2. (4.13)

The number of unbound gamma chains per cell at the steady state is given by the

only positive root of this polynomial (only biologically meaningful root).

x =
−1 +

√
1 + 8K2(1 +K3L)Nx

4K2(1 +K3L)
. (4.14)

The signalling function is defined as

σ(L) ≡ K3K2Lx
2 = K3K2L

[
−1 +

√
1 + 8K2(1 +K3L)Nx

4K2(1 +K3L)

]2

. (4.15)

Since σ(L = 0) = 0, the amplitude is the maximum of σ. Writing for conciseness

∆ = 1 + 8K2(1 +K3L)Nx, the derivative with respect to L of σ is:

dσ

dL
= K3(−1 +

√
∆)

1 + 8K2Nx −
√
∆+K3L(−1 + 8K2Nx +

√
∆)

16K2(1 +K3L)3
√
∆

. (4.16)

The numerator of the fraction can be re-written as:

1 + 8K2Nx−
√
∆+K3L(−1 + 8K2Nx +

√
∆) = ∆−

√
∆+K3L(

√
∆−1). (4.17)

Since∆ > 1,
dσ

dL
is always positive. Thus, σ is an increasing function. Furthermore,
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it admits a finite positive limit when L→ +∞. The amplitude is this limit:

A ≡ lim
L→+∞

σ(L) =
Nx

2
. (4.18)

The EC50 can be obtained by finding L50 such that

σ(L50) =
A

2
=
Nx

4
. (4.19)

Following the method described in Section 4.1, consider the ensuing polynomial

system
0 = −Nx + x+ 2K2(K3L+ 1)x2,

0 =
Nx

4
−K3K2Lx

2,
(4.20)

where L and x are variables, and compute a Gröbner basis of this new system.

Making use of Macaulay2 (Grayson & Stillman), we obtain the following triangular

system

0 = L2 − 1 + 2K2Nx

NxK2K3

+
1

K2
3

,

0 = x− NxK3

2
L+

K2Nx + 1

2K2

,

(4.21)

which we solve to obtain two values for L and two associated values for x:

L1 =
1 + 2K2Nx +

√
1 + 4K2Nx

2K2K3Nx

and x1 =
−1 +

√
1 + 4K2Nx

4K2

> 0,

L2 =
1 + 2K2Nx −

√
1 + 4K2Nx

2K2K3Nx

and x2 =
−1−√1 + 4K2Nx

4K2

< 0.

(4.22)

The root x1 is the only biologically meaningful solution and represents the number

of unbound γ chains at the steady state when L = L1 = EC50. In conclusion,

EC50 =
1 + 2K2Nx +

√
1 + 4K2Nx

2K2K3Nx

. (4.23)

4.2.3 Heterodimeric RTK model

We now consider a heterodimeric receptor model with intrinsic kinase (note that

this model has been introduced in Section 2.3). The ligand binds to a dimer
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αγ

L

Figure 4.3: The heterodimeric RTK is composed of two trans-membrane chains
γ and α. The binding of the ligand, L, to the complex formed by these two chains
forms the signalling complex. The hatched area determines the intra-cellular
environment.

composed of the primary and secondary chains, thus forming the signalling complex

L : α : γ illustrated in Figure 4.3. The reaction scheme can be summarised as

follows:
γ + α 
 γ : α K2 =

k2

q2

,

L+ γ : α 
 L : γ : α K3 =
k3

q3

.

We proceed as in the previous examples: write the ordinary differential equations

associated to the reaction scheme, derive the conservation and steady state

equations and finally obtain a polynomial system (this example is detailed in

Chapter 2):
0 =−Ny + y +K2xy +K3K2Lxy,

0 =−Nx + x+K2xy +K3K2Lxy.
(4.24)
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Computing a Gröbner basis of (or reorganising by hand) this system yields the

following triangular system to solve:

0 = −Nx + (1 +K2(Ny −Nx)(1 +K3L))x+K2(K3L+ 1)x2, (4.25a)

0 = y − x−Ny +Nx. (4.25b)

The expression of x is obtained by solving (4.25a) and selecting the positive root

x =
−1−K2(K3L+ 1)(Ny −Nx) +

√
∆

2K2(K3L+ 1)
, (4.26)

where ∆ = (1 +K2(K3L+ 1)(Ny −Nx))
2 + 4NxK2(K3L+ 1). An expression for

y can be found by solving equation (4.25b) knowing x, but is not relevant for the

computation of the amplitude and EC50. Indeed, the signalling function, defined

as:

σ(L) ≡ K3K2Lxy, (4.27)

can be rewritten as follows

σ(L) =
K3L(Nx − x)

K3L+ 1
, (4.28)

where we made used of equation (4.25b). The derivative with respect to L of σ is

dσ

dL
=

Nx − x
(K3L+ 1)2

− K3L

1 +K3L

dx

dL
, (4.29)

where
dx

dL
= −K3

(1 +K2(1 +K3L)(Nx +Ny)−
√
∆)

2K2(1 +K3L)2
√
∆

. (4.30)

Since 1 +K2(1 +K3L)(Nx +Ny) ≥
√
∆ ≥ 1,

dx

dL
is negative. Hence,

dσ

dL
> 0 and

σ is an increasing function of L. As σ(0) = 0, the amplitude of the heterodimeric

RTK model is the maximum of the signalling function, which is reached at high
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ligand concentration. As L→ +∞, we have

x = o

(
1

L

)
if Nx < Ny,

x = Nx −Ny + o

(
1

L

)
if Ny < Nx.

(4.31)

Thus, the amplitude of the model is:

A ≡ lim
L→+∞

σ(L) = min(Nx, Ny). (4.32)

The EC50 is computed by finding L50 such that:

σ(L50) =
min(Nx, Ny)

2
. (4.33)

Once again, following the method described in Section 4.1, we compute a

Gröbner basis of the following system where we consider x, y and L as variables:

−Ny + y +K2xy +K3K2Lxy,

−Nx + x+K2xy +K3K2Lxy,

A

2
−K3K2Lxy.

(4.34)

Making use of the software Macaulay2 (Grayson & Stillman), the resulting Gröbner

basis yields the following system of polynomial equations:

0 = L2 − 2A
1 +K2(Nx +Ny − A)

K2K3(A− 2Nx)(A− 2Ny)
L+

A2

K2
3(A− 2Nx)(A− 2Ny)

,

0 = y −K3
(A− 2Nx)(A− 2Ny)

2A
L+

1

K2

− A

2
+Nx,

0 = x−K3
(A− 2Nx)(A− 2Ny)

2A
L+

1

K2

− A

2
+Ny.

(4.35)

We obtain two expressions for L:

L1 =A
1 +K2(Nx +Ny − A) +

√
∆

K2K3(A− 2Nx)(A− 2Ny)
, (4.36)
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L2 =A
1 +K2(Nx +Ny − A)−

√
∆

K2K3(A− 2Nx)(A− 2Ny)
, (4.37)

and associated expressions for x and y:

x1 =
−1 +K2(Nx −Ny) +

√
∆

2K2

, y1 =
−1 +K2(Ny −Nx) +

√
∆

2K2

,

x2 =
−1 +K2(Nx −Ny)−

√
∆

2AK2K3

, y2 =
−1 +K2(Ny −Nx)−

√
∆

2K2

,

(4.38)

where we wrote ∆ = 1 + K2
2(Ny − Nx)

2 + 2K2(Nx + Ny − A). Only positive
expressions for x, y and L are biologically relevant. Since x2 and y2 are negative,
L1 is the EC50 of the model:

EC50 = A
1 +K2(Nx +Ny − A) +

√
1 +K2

2(Ny −Nx)2 + 2K2(Nx +Ny − A)

K2K3(A− 2Nx)(A− 2Ny)
,

(4.39)
where A = min(Nx, Ny). One can notice that this EC50 expression is the same as
the EC50 expression obtained for the IL-7R model (heterodimeric receptor with
IEK) of Section 3.2.

4.2.4 Monomeric receptor model with IEK

Now, consider the three previous configurations but, this time, the kinase is
extrinsic to the receptor chains. Signalling complexes as well as “dummy” complexes
(receptors deprived of kinase which cannot induce any signal) can be formed. Note
that the heterodimeric model with IEK was studied in Section 3.2. We remind
the reader that we assume that there is no allostery (signalling and “dummy”
complexes are formed with the same binding rates).

The monomeric receptor model with intra-cellular extrinsic kinase (IEK) can
form a signalling complex (composed of the primary chain, the kinase and the
ligand) and a “dummy” complex (composed of the ligand and primary chain only),
as illustrated in Figure 4.4. The reaction scheme is as follows:

JAK + γ 
 JAK : γ K1,
L + γ : JAK 
 L : γ : JAK K3,
L + γ 
 L : γ K3.
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JAK

γ

L

(a) Signalling complex

γ

L

(b) Dummy complex

Figure 4.4: Monomeric model with intra-cellular extrinsic kinase: A kinase can
bind to the unique chain γ of the monomeric receptor thus forming a signalling
receptor. The ligand, L, can bind to the signalling receptor to form a signalling
complex (left) or directly to a γ chain to form a “dummy” complex unable to
signal (right). The hatched area determines the intra-cellular environment.

Writing the associated ordinary differential equations, steady state and conserva-
tions equations can be derived and combined to obtain the following polynomial
system:

0 = −Nx + x+K1xz +K3Lx+K3K1Lxz,

0 = −Nz + z +K1xz +K3K1Lxz.
(4.40)

Computing a Gröbner basis of (or rearranging by hand) this system leads to a
triangular system

0 = −Nz + z +K1(Nx −Nz)z +K1z
2,

0 = Nx −Nz + z − x(1 +K3L),
(4.41)

which can be solved to obtain analytic expressions for the copy numbers of the
receptors component chains at steady state:

z =
−1 +K1(Nz −Nx) +

√
4K1Nz + (1 +K1(Nx −Nz))2

2K1

,

x =
Nx −Nz + z

1 +K3L
.

(4.42)
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The signalling function is defined as

σ(L) ≡ K3K1Lxz. (4.43)

One can notice from equation (4.41) that z is independent of L and that Nx −
Nz + z =

Nx

1 +K1z
. Thus, σ can be re-written as

σ(L) =
K3L

1 +K3L

K1z

1 +K1z
Nx. (4.44)

Similarly to the monomeric model with intrinsic kinase, one can recognise a Hill

function with Hill coefficient n = 1. By identification, the amplitude is

A =
K1z

1 +K1z
Nx, (4.45)

and the EC50 is

EC50 =
1

K3

. (4.46)

This time, if the binding of the kinase to the main chain γ is not fast enough

(if K1 is small), “dummy” complexes will be formed and the maximum response

will not reach its theoretical maximum, Nx. Instead, the signalling function only

reached a fraction,
K1z

1 +K1z
, of it. One can also notice that the EC50 of this

system is the same as the EC50 of the monomeric model with intrinsic kinase

described in Section 4.2.1.

4.2.5 Homodimeric receptor model with IEK

Next, I consider the homodimeric receptor with extrinsic downstream kinase. The

receptor is composed of two γ chains, each of them binding to a kinase. Thus,

two non-signalling (“dummy”) complexes can be formed: a complex composed of

the two γ chains but no kinase and a complex formed of a γ chain bound to a

kinase and a γ chain without kinase (see Figure 4.5). The chemical reactions are
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JAK

γ γ

JAK

L

(a) Signalling complex

JAK

γ γ

L

(b) Dummy complex 1

γ γ

L

(c) Dummy complex 2

Figure 4.5: Homodimeric receptor model with intra-cellular extrinsic kinase:
the receptor is composed of two γ chains (none, one or both can be bound to a
kinase). The ligand, L, binds to this homodimer. If both chains are bound to a
kinase, the binding of the ligand forms a signalling complex (left). Otherwise, it
forms a complex unable to signal called “dummy” complex (middle and right).
The hatched area determines the intra-cellular environment.

as follows:

JAK + γ 
 JAK : γ K1,
JAK : γ + γ 
 γ : γ : JAK K2,
JAK : γ + JAK : γ 
 JAK3 : γ : γ : JAK K2,
γ + γ 
 γ : γ K2,
L+ γ : γ 
 L : γ : γ K3,
L+ γ : γ : JAK 
 L : γ : γ : JAK K3,
L+ γ : JAK : γ : JAK 
 L : γ : JAK : γ : JAK K3.

Proceeding following the method described in Section 4.1, one can write the
differential equations associated to the model. Combining the steady state and
conservation equations, we obtain the following polynomial system:

0 =−Nx + x+K1xz + 2(K1K2x
2z +K2K

2
1x

2z2 +K2x
2 +K3K2Lx

2 (4.47a)

+K3K2K1Lx
2z +K3K2K

2
1Lx

2z2),

0 =−Nz + z +K1xz +K1K2x
2z + 2K2

1K2x
2z2 +K3K2K1Lx

2z (4.47b)

+ 2K3K2K
2
1Lx

2z2.

The Gröbner basis of this polynomial system is composed of very long polynomials
(the first univariate polynomial is shown in Appendix C). The signalling function
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JAK

γ β α

L

(a) Signalling complex

γ β α

L

(b) Dummy complex

Figure 4.6: Trimeric receptor model with intra-cellular extrinsic kinase: the
receptor is composed of three different chains, γ, β and α. The ligand, L, binds to
this trimer: if the receptor is bound to the kinase, it forms a signalling complex (a).
The ligand bound to the receptor deprived of kinase forms a “dummy” complex
(b). The hatched area determines the intra-cellular environment.

K3K2K1Lx
2z is a sigmoid and one could use perturbation theory to compute

the amplitude. However due to the length and high degree (degree 6 for the

first polynomial) of the polynomials of the Gröbner basis, the analytic study is

intractable and numerical analysis is preferred.

4.2.6 Trimeric receptor model with IEK

Finally, we consider a receptor composed of three chains (γ, β and α), such as IL-

2R or the IL-15R (Rochman et al., 2009), which signals through the downstream

kinase JAK. Similarly to the models previously described in this thesis, signalling

and “dummy” complexes can be formed (see Figure 4.6) with the same affinity

constants (we assume no allostery), and the receptor constituents are assembled
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sequentially. The reaction scheme is summarised follows:

JAK + γ 
 JAK : γ K1,
β + γ : JAK 
 β : γ : JAK K2,
β + γ 
 β : γ K2,
α + β : γ : JAK 
 α : β : γ : JAK K3,
α + β : γ 
 α : β : γ K3,
L + α : β : γ : JAK 
 L : α : β : γ : JAK K4,
L + α : β : γ 
 L : α : β : γ K4.

Note that for this model, we denoted by K4 the affinity constant of the binding
of the ligand with the receptor, and K2 and K3 the binding constants of the
secondary chain and third chain, respectively. Combining conservation and steady
state equations obtained from the differential equations associated to this reaction
scheme, we obtain the following polynomial system:

0 = −Nz + z +K1xz +K2K1xwz +K3K2K1xyzw +K4K3K2K1Lxyzw,

0 = −Nx + x+K1xz +K2xw +K2K1xwz +K3K2K1xywz +K3K2xwy

+K4K3K2K1Lxywz +K4K3K2Lxyw,

0 = −Ny + y +K3K2K1xyzw +K3K2xwy +K4K3K2Lxyw

+K4K3K2K1Lxywz, (4.48)

0 = −Nw + w +K2xw +K2K1xwz +K3K2K1xyzw +K3K2xwy

+K4K3K2Lxwy +K4K3K2K1Lxyzw.

In addition to the usual notation, we denote by w the concentration of unbound
β chains at steady state and Nw its total copy number. Let us compute the
amplitude of the trimeric receptor model with IEK. Note that a more elegant
computation of this quantity will follow from the generalisation of Section 4.3
(SRLK model with n = 3). Making use of Macaulay2 (Grayson & Stillman), we
compute a Gröbner basis of this polynomial system and obtain:

0 =Aw4 +Bw3 + Cw2 +Dw + E, (4.49a)

0 =−Nz + (1 +K1(Nx −Nz))z +K1z
2, (4.49b)

0 =Nw −Ny + (−1 +K2(Nw −Nx))w −K2w
2 + y, (4.49c)
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0 =x+
(Nz −Nx − w)(Nx −Nz + z)

Nx

, (4.49d)

where

A = K2
2K3(1 +K4L),

B = −K2K3(1 +K4L)(−1 + 2K2(Nw −Nx)),

C = K2 +K2K3(1 +K4L)(K2N
2
w +Nx +K2N

2
x − 2Nw(1 +K2, Nx) +Ny),

D = 1 +K2(Nw −Nx)(−1 +K3(1 +K4L)(Nw −Ny)),

E = −Nw.

One can notice from equation (4.49b) that
Nx −Nz + z

Nx

=
1

1 +K1z
. It follows

that the biologically meaningful solutions of equations (4.49b), (4.49c) and (4.49d),

are:

z =
−1 +K1(Nz −Nx) +

√
∆1

2K1

, (4.50a)

x =
Nx −Nw + w

1 +K1z
, (4.50b)

y = Ny −Nw + (1 +K2(Nx −Nw))w +K2w
2, (4.50c)

where ∆1 = (1 +K1(Nx −Nz))
2 + 4K1Nz and w, kept unknown, is a positive real

root of (4.49a). We define the signalling function of this model as

σ(L) ≡ K4K3K2K1Lxyzw. (4.51)

The concentration of JAK at steady state, z, is, once again, independent from the

ligand concentration, L. Replacing the expression of x and y in σ, we obtain a

signalling function expression which only depends on w:

σ(L) = K2K3K4L
K1z

1 +K1z
Pw(w), (4.52)

where we defined Pw as

Pw(w) ≡ w(Nx −Nw + w)(Ny −Nw + (1 +K2(Nx −Nw))w +K2w
2). (4.53)
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A simple inspection of (4.52) shows that the signalling function is a sigmoid and

σ(0) = 0. The amplitude is, thus, the limit of σ at high concentration (this will

later be proven in Section 4.3):

A = lim
L→+∞

σ(L)

= K4K3K2
K1z

1 +K1z
lim

L→+∞
(LPw(w)).

(4.54)

The number of unbound β chains at steady state, w, satisfies a polynomial of

degree 4 (equation (4.49a)). We could, in principle, find an exact analytic solu-

tion of this quartic function. However, such a solution will probably be overly

complicated and thus, not be very informative. To compute the amplitude, we

only need to find the behaviour of w as L→ +∞. To this end and analogously to

Section 3.4, we apply the perturbation theory method described in Ref. Simmonds

& Mann (2013) and summarised in Section 2.5.

We define Pε(w) as the polynomial in equation (4.49a) where we replaced L

by
1

ε
. We replace w by εpω(ε) where ω(0) 6= 0 according to Theorem 49 (Section

2.5). We obtain:

Pε(ε
pω) = Aεω

4 +Bεω
3 + Cεω

2 +Dεω + Eε, (4.55)

where

Aε = ε4p−1(εK2
2K3 +K2

2K3K4),

Bε = ε3p−1(−εK2K3(−1 + 2K2(Nw −Nx))−K2K3K4(−1 + 2K2(Nw −Nx))),

Cε = ε2p−1(K2K3K4(K2N
2
w +Nx +K2N

2
x − 2Nw(1 +K2Nx) +Ny)

+ εK2(1 +K3(K2N
2
w +Nx +K2N

2
x − 2Nw(1 +K2Nx) +Ny))),

Dε = εp−1(ε(1 +K2(Nw −Nx)(−1 +K3(Nw −Ny)))

+K2K3K4(Nw −Nx)(Nw −Ny)),

Eε = −Nw.
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q = 4p 1

Figure 4.7: The list E and the proper values (black dots).

The smallest exponents of ε in the previous equation are:

E = {0, p− 1, 2p− 1, 3p− 1, 4p− 1}. (4.56)

Applying the graphical algorithm detailed in the mathematical background
Section 2.5, we find the proper values (0,−1) and (1, 0) (see Figure 4.7). We
investigate these two branches. Note that the following calculations were obtained
with the help of the symbolic computation software Mathematica (Wolfram
Research, Inc., 2019) when necessary.

Branch (0,−1): We make use of the notation in Section 2.5 to define

T (1)
ε (ω) = εPε(ω). (4.57)

The least common denominator of (0,−1,−1,−1,−1) is q1 = 1. Therefore in
accordance with the notation in Section 2.5, ε = β and

R
(1)
β (ω) ≡ T (1)

ε (ω).

We can directly carry out a regular perturbation expansion, ω(ε) = w0 +w1ε+ ...,
of w = ε0ω(ε).

Let us write the asymptotic expansion w = ω = w0 + w1ε+ ... and replace it
in T (1)

ε (ω). Since Pε(w) = 0, by the fundamental theorem of perturbation theory
(Theorem 48), we obtain a system of equations in w0, w1, . . ., which can be solved.
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The first equation of the system is given by:

w0K2K3K4(w0 −Nw +Nx)(w0 −Nw + w0K2(w0 −Nw +Nx) +Ny) = 0, (4.58)

which yields four solutions for w0:

w01 = 0, (4.59a)

w02 = Nw −Nx, (4.59b)

w03 =
−1 +K2(Nw −Nx) +

√
(1 +K2(Nx −Nw))2 − 4K2(Ny −Nw)

2K2

, (4.59c)

w04 =
−1 +K2(Nw −Nx)−

√
(1 +K2(Nx −Nw))2 − 4K2(Ny −Nw)

2K2

. (4.59d)

To be biologically relevant, the value of w0 = limL→+∞w must be real and

non-negative. Moreover, w0 must satisfy additional constraints so that x, y

(obtained, respectively, by equations (4.50b) and (4.50c)) are also positive at high

concentration.

Case w0 = w01: If w0 = w01 = 0, then

x ∼
L→+∞

Nx −Nw

1 +K1z
,

y ∼
L→+∞

Ny −Nw,

w ∼
L→+∞

w1

L
.

(4.60)

We first need to assume Nx > Nw and Ny > Nw so that x and y are positive.

The coefficient w1 is found by replacing w by its asymptotic expansion in T (1)
ε ,

assuming w0 = 0 and applying the fundamental theorem of perturbation theory

(Theorem 48). We obtain:

w1 =
Nw

K2K3K4(Nw −Nx)(Nw −Ny)
. (4.61)
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Under the conditions Nx > Nw and Ny > Nw, w1 is positive so x, y and w are
positive at high concentration. Thus,

w0 = 0 when Nx > Nw and Ny > Nw. (4.62)

Case w0 = w02: If w0 = w02 = Nw −Nx, then we have

x ∼
L→+∞

w1

1 +K1z
,

y ∼
L→+∞

Ny −Nx,

w ∼
L→+∞

Nw −Nx,

(4.63)

Thus, we need to assume Nw > Nx and Ny > Nx so that w and y are positive.
We obtain w1 by replacing w by its expansion in T (1)

ε assuming w0 = Nw − Nx

and applying the fundamental theorem of perturbation theory (Theorem 48). We
obtain:

w1 =
−Nx

K2K3K4(Nw −Nx)(Nx −Ny)
. (4.64)

Under the conditions Ny > Nx and Nw > Nx, w1 is positive. Thus,

w0 = Nw −Nx when Nw > Nx and Ny > Nx. (4.65)

Case w0 = w03 or w0 = w04: Let us first note that w03 and w04 are real when
what is inside the square root ∆ ≡ (1+K2(Nx−Nw))2−4K2(Ny−Nw) is positive.

In both cases, we have

w ∼
L→+∞

w0,

x ∼
L→+∞

Nx −Nw + w0

1 +K1z
,

y ∼
L→+∞


w1

√
∆

L
if w0 = w03

−w1

√
∆

L
if w0 = w04

.

(4.66)

To be biologically relevant, we need simultaneously w0 > 0, Nx −Nw + w0 > 0

and y > 0. Let us investigate the first two conditions. To shorten the notation, we
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write b = K2(Nx −Nw) and re-write ∆ as ∆ = (1 + b)2 − 4K2(Ny −Nw). Thus,

w0 =
−1− b±

√
∆

2K2

, (4.67a)

Nx −Nw + w0 =
−1 + b±

√
∆

2K2

, (4.67b)

where ± is a plus sign if w0 = w03 and minus sign if w0 = w04.

To obtain w0 > 0 and Nx −Nw + w0 > 0, we need:

√
∆ > 1 + b and

√
∆ > 1− b if w0 = w03, (4.68)

−1− b >
√
∆ and −1 + b >

√
∆ if w0 = w04. (4.69)

If b > 0 (Nx > Nw), then 1 + b > 1 > 1 − b, so the stricter condition in (4.68)

is
√
∆ > 1 + b, which is satisfied when Nw > Ny. If b < 0 (Nw < Nx), we have

1 + b < 1 < 1 − b, so the stricter condition in (4.68) is
√
∆ > 1 − b, which is

satisfied when Nx > Ny. Note that if b > 0, then −1− b < 0, and if b < 0, then

−1 + b < 0. Since we want ∆ > 0 and so
√
∆ > 0, condition (4.69) can never be

satisfied. Thus, w04 is not an option for w0.

Finally, let us study the sign of w1 (to study the sign of y). We obtain w1 as a

function of w0 by replacing w by its asymptotic expansion in T (1)
ε and applying

the fundamental theorem of perturbation theory (Theorem 48):

w1(w0) =
Nw + w0(−1−K2(w0 −Nw +Nx)(1 +K3y(w0)))

K2K3K4Q(w)
, (4.70)

where we defined

Q(w) ≡ 4w3
0K2 + 3w2

0(1 + 2K2(Nx −Nw))

+ 2w0(K2(Nw −Nx)
2 +Nx − 2Nw +Ny) + (Nw −Nx)(Nw −Ny),

and y(w0) is the expression for y obtained in (4.50c) evaluated at w = w0. Notice

that y(w03) = 0. In this case (w0 = w03), the numerator of w1 can be simplified
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into:

Nw + w0(−1 +K2(Nw −Nx))−K2w
2
0 = Ny − y(w0) = Ny. (4.71)

Substituting w0 = w03 in (4.70), we obtain thanks to Mathematica (Wolfram

Research, Inc., 2019):

w1(w0 = w03) =
2K2Ny

K3K4

√
∆(1−

√
∆+K2(Nw +Nx − 2Ny))

. (4.72)

Now that we obtained an expression for w1, let us check it is indeed positive (so

that y > 0). The sign of w1 is the sign of 1−
√
∆+K2(Nw +Nx− 2Ny). We have

1−
√
∆+K2(Nw +Nx − 2Ny) > 0⇐⇒ 1 +K2(Nw +Nx − 2Ny) >

√
∆

=⇒ (1 +K2(Nx +Nw − 2Ny))
2 > ∆

⇐⇒ (Nx +Nw − 2Ny)
2 > (Nx −Nw)2

⇐⇒ 2NxNw + 4N2
y + 4NyNw + 4NwNx > −2NxNw

⇐⇒ (Ny −Nx)(Ny −Nw) > 0.

The last inequality is always true when we assume Ny < Nx and Ny < Nw which

were the conditions so that w0 > 0 and Nx −Nw + w0 > 0. Thus, when Ny < Nw

and Ny < Nx,

w0 =
−1 +K2(Nw −Nx) +

√
(1 +K2(Nx −Nw))2 − 4K2(Ny −Nw)

2K2

. (4.74)

We can now recapitulate the values of w0 and w1 and their domain of definition

for this branch in table 4.2.
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Domain w0 w1

Nx, Ny > Nw 0
Nw

K2K3K4(Nw −Nx)(Nw −Ny)

Ny, Nw > Nx Nw −Nx
−Nx

K2K3K4(Nw −Nx)(Nx −Ny)

Nx, Nw > Ny w03
2K2Ny

K3K4

√
∆(1−

√
∆+K2(Nw +Nx − 2Ny))

Table 4.2: Values of w0 and w1 with their domain of definition for the
branch (0,−1). We wrote ∆ = (1 + K2(Nx − Nw))2 − 4K2(Ny − Nw) and

w03 =
−1 +K2(Nw −Nx) +

√
(1 +K2(Nx −Nw))2 − 4K2(Ny −Nw)

2K2

.

Branch (1, 0): We now study the other branch obtained by the perturbation
theory method. Once again,we make use of the notation in Section 2.5 to define

T (2)
ε (ω) = Pε(εω). (4.75)

The least common denominator of (0,−1 + 1,−1 + 2,−1 + 3,−1 + 4) is q2 = 1.
Therefore in accordance with the notation in Section 2.5, ε = β and

R
(2)
β (ω) ≡ T (2)

ε (ω).

We can directly carry out a regular perturbation expansion. We replace ω by
an expansion a0 + a1ε+ a2ε

2 + ... in T (2)
ε and apply the fundamental theorem of

perturbation theory (Theorem 48). In this branch, since we have w = εω, w → 0

when ε→ 0+ (i.e., when L =
1

ε
→ +∞). Furthermore, a0 = w1, where w1 is the

coefficient of the asymptotic expansion obtained in the previous branch. In other
words, at large, but finite L = 1/ε, the convergence behaviour of the two branches
is identical. This agrees with Theorem 37 which states that there is only one
positive solution for each set of reaction constants and initial conditions.

Back to the amplitude: The behaviour of the signalling function in the limit
of L→ +∞ is a constant which determines the amplitude A:

σ(L) ∼
L→+∞

K4K3K2K1zLx∞y∞w∞ ≡ constant ≡ A, (4.76)
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where x∞, y∞ and w∞ are the behaviours of x, y and w, respectively, when

L→ +∞. They are recapitulated in equations (4.60), (4.63) and (4.66).

When Nx, Ny > Nw (w0 = 0), we obtain:

A(w0 = 0) = K4K3K2
K1

1 +K1z

L(Nx −Nw)(Ny −Nw)Nw

K2K3K4(Nw −Nx)(Nw −Ny)L

=
K1z

1 +K1z
Nw.

(4.77)

When Ny, Nw > Nx (w0 = Nw −Nx), we obtain:

A(w0 = Nw −Nx) = K4K3K2
K1z

1 +K1z

−NxL(Ny −Nx)(Nw −Nx)

K2K3K4L(Nw −Nx)(Nx −Ny)

=
K1z

1 +K1z
Nx.

(4.78)

When Nx, Nw > Ny, i.e., when

w0 =
−1 +K2(Nw −Nx) +

√
(1 +K2(Nx −Nw))2 − 4K2(Ny −Nw)

2K2

,

we obtain:

A(w0 = w03) = K4K3K2
K1z

1 +K1z

w0(Nx −Nw + w0)Lw1

√
∆

L

=
K1z

1 +K1z

2K2
2Nyw0(Nx −Nw + w0)

(1−
√
∆+K2(Nw +Nx − 2Ny))

.

(4.79)

As previously, let us write b = K2(Nx −Nw) for concise notation. We compute
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w0(Nx −Nw + w0) from the expressions derived in equation (4.67):

(−1 +
√
∆)− b

2K2

(−1 +
√
∆) + b

2K2

=
(−1 +

√
∆)2 − b2

4K2
2

=
1 +∆− 2

√
∆− b2

4K2
2

=
2 + b2 + 2b− 4K2(Ny −Nw)− b2 − 2

√
∆

4K2
2

=
1−
√
∆+K2(Nx +Nw − 2Ny)

2K2
2

.

(4.80)

Substituting this expression into the amplitude, we obtain:

A(w0 = w03) =
K1z

1 +K1z
Ny. (4.81)

Merging the three cases together, we obtain the analytic expression of the

amplitude for the model of the trimeric receptor with IEK:

A =
K1z

1 +K1z
min(Nx, Ny, Nw), (4.82)

where z =
−1 +K1(Nz −Nx) +

√
∆1

2K1

has been computed in equation (4.50a).

Notice that a very similar formula has been obtained for the amplitude of the

monomeric and heterodimeric receptor models with IEK (Section 3.2 and 4.2.4).

Indeed, the amplitude of these models is the total quantity of the limiting compo-

nent (receptor chain with the smallest abundance) modulated by a ratio,
K1z

1 +K1z
,

that takes a value between 0 and 1. This ratio only depends on the total number

of JAK and γ molecules, and the affinity constant of their binding, K1.

Computation of the EC50: Since we did not compute analytic expressions

for each steady state concentration, the EC50 expression has to be obtained by

computing a Gröbner basis of the polynomial system (4.49) augmented by the
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Figure 4.8: Amplitude (left) and EC50 (right) of the model of the trimeric
receptor with IEK as a function of the total number of γ chains, for 103 α chains,
3× 103 β chains and 104 JAK molecules per cells, K1 = 10−4.04 (as determined in
the previous chapter), K2 = 3.3×10−4, K3 = 3.7×10−4 and K4 = 67×1010M−1 as
determined in Ref. Cotari et al. (2013b) for the IL-2 receptor. The amplitude was
computed making use of the analytic expression (4.82). The EC50 was obtained
by fitting the dose-response curve to a sigmoid equation. The dose-response curve
was derived by solving system (4.48) for different ligand concentrations.

polynomial

K4K3K2K1zLxyw(1 +K1z)− K1zM

2
= 0, (4.83)

considering x, y, z, w and L as variables, withM = min(Nx, Ny, Nw). The Gröbner
basis, which can be found in Appendix D, is composed of a polynomial of degree
4 in L, independent of Nz and K1. The EC50 of this model is a positive root of
this polynomial. Thus, the EC50 of the trimeric receptor model is, like the EC50

of the other models with IEK, independent of the kinase.

The amplitude increases then decreases as γ abundance increases, while the
EC50 seems mostly independent from this quantity, especially at high γ concen-
tration (see Figure 4.8). In light of the additional experiment presented in Figure
3.22, the trimeric receptor model of this section seems to be a good candidate to
characterise the IL-2/IL-2R and IL-15/IL-15R systems. Note that Figure 4.8 was
generated with the affinity constant values determined for the IL-2R in Cotari
et al. (2013b). The value of K1 inferred in Chapter 3 stands for the trimeric
receptor model as long as the quantity of β chain is not limiting (as in that case,

150



4.2 Exploring different receptor architectures

the amplitude expressions of the IL-7R model and the trimeric receptor model
are the same).

4.2.7 Discussion

The amplitude and EC50 of different receptor configurations (monomeric, homo- or
heterodimeric with intra-cellular extrinsic or intrinsic kinase and trimeric receptor
with extrinsic kinase) have just been computed when possible, following the
method presented in Section 4.1. The calculated expressions are summarised in
the tables in Section 2.10.

Variability and robustness of receptor-ligand systems

Making use of the analytic amplitude expressions previously computed, we compre-
hensively explore the impact of varied abundances of receptor onto cell’s response
and compare the different models of this section 1. For every receptor system I
considered the up/downregulation of the primary receptor chain γ. The mean
abundance of the secondary receptor chain, α, was set to 103 proteins per cell and
if a downstream kinase (IEK) is required, I set its level to 104 proteins per cell.
These values are chosen similar to the average IL-7Rα and JAK3 abundances
used in the simulations of the IL-7R models of Chapter 3. Finally, I took the
following (no allostery) affinity constant values: K1 = 10−4.04 (as inferred in
Chapter 3), K2 = 17× 10−3, K3 = 34× 1010M−1 (as determined in Ref. Cotari
et al. (2013b)). The theoretical results and numerical explorations indicate a
striking difference for the effect of primary receptor abundance depending on the
receptor arrangement. Indeed, when the primary chain is the only one in the
receptor (monomeric or homodimeric RTK), increasing the abundance of that
chain proportionally increases the amplitude. This results in a large potential for
enhanced signalling (Fig. 4.9). As always, the less abundant chain determines the
theoretical maximum of the amplitude. However, this maximum is not attained
for receptors with downstream kinase due to the formation of “dummy” complexes

1Note that the trimeric receptor model is excluded from the following analysis as the
definition of the affinity constants is different and its RTK version is not considered in this
manuscript.
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Figure 4.9: Amplitude (top) and EC50 (bottom) of the monomeric, homodimeric
and heterodimeric RTK and with intra-cellular extrinsic kinase (IEK), for 103

α chains and 104 JAK molecules per cells, K1 = 10−4.04 (as determined in the
previous chapter), K2 = 17× 10−3 and K3 = 34× 1010M−1.

(this is a direct illustration of how the ratio
K1z

1 +K1z
modulates the amplitude of

receptors with IEK). Homodimeric and heterodimeric receptors with IEK present

a loss of signalling when the number of primary chains increases, thus, rendering

the tuning of the response by the primary chain abundance more complex than

RTKs.

I also simulated cellular populations for each of the arrangements, with the

distribution of each protein described by a log-normal distribution with a standard

deviation of 1 (Fig. 4.10). The abundance of the secondary receptor chain (if

present) was set to have a mean of 103 and downstream kinase a mean of 103.5.

We then simulated populations with a 10-fold up/downregulation of the primary

chain, with a mean of 104 for the wild type (reference distribution). Homodimeric
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RTKs or monomeric RTKs had the greatest variability of amplitude, matching the
distribution of the receptor exactly (as expected from the amplitude expressions).
Homodimeric receptors with IEK and heterodimeric RTKs had the least variability,
maintaining amplitude at a moderately high level. Heterodimeric receptors with
IEK had larger variability, but had lower amplitude when upregulating and
downregulating the primary chain by 10-fold. Monomeric IEK had a larger
variation in amplitude when downregulating than when upregulating the primary
chain. These results indicated that the composition of a receptor’s signalling core
could have strong effects on the variability of cellular responses to extra-cellular
ligands. The γc family’s arrangement tends to allow for large variability, but leads
to lower amplitudes (see Chapter 3 and Ref. Cotari et al. (2013b)). Heterodimeric
receptors with intrinsic kinase ability (RTK), such as the receptor for insulin,
IGF-1, or homodimeric receptors with downstream kinases (with IEK), such as the
IL-6 receptor, tend to have intermediate but consistent amplitude. Homodimeric
receptors with associated kinase activity (RTK), such as EGFR, are highly variable
in EC50 and their amplitude does not saturate (Shi et al., 2016; Shtiegman et al.,
2007).
We also computed the EC50 for each of the receptor configurations. We observed
that the EC50 of the monomeric models are the same, the EC50 of heterodimeric
models are also equal (as expected from the theoretical analysis), and the EC50

of the homodimeric models are similar (Fig. 4.9). This led us to conjecture that
the variability of the EC50 with the abundance of the primary chain depends on
the manner the trans-membrane receptor is built and is rather independent of its
intra-cellular activity. Further experimental work will be required to identify a
molecular mechanism to test such conjecture. We also observe that the EC50 for
all receptor configurations tends to a constant for large values of γ abundance.

This value is the dissociation constant of the ligand to the receptor
1

K3

.

Three interesting remarks

From the analytic computations and numerical simulations of this section, one
can make three remarks.
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Figure 4.10: Normalised and centred amplitude distributions for each receptor
configuration when the primary chain, γ, is upregulated (dark blue) or downregu-
lated (cyan) by 10-fold (compared to the grey distribution (wild type)).
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Remark 71 (Same amplitude form for several models). The amplitudes of
monomeric and heterodimeric receptor models with intrinsic kinase (RTK models)
are the lowest total number of all the receptor constituents. The amplitudes of
the monomeric, heterodimeric (Section 3.2) and trimeric receptor models with
IEK, as well as the amplitude of the heterodimeric receptor model with IEK and

additional subunit (Section 3.4), are of the form
K1z

1 +K1z
N where

z =
−1 +K1(Nz −Nx) +

√
4K1Nz + (1 +K1(Nx −Nz))2

2K1

and N is the total number of the limiting component (trans-membrane chain that
has the smallest total abundance).

Remark 72 (Same EC50 for models with extrinsic or intrinsic kinases). The
EC50 of the two monomeric models are the same. Similarly, the EC50 of the
heterodimeric model RTK and the heterodimeric model with IEK (IL-7R model
described in Section 3.2) are the same.

Remark 73 (Limitation of the method). The method described in Section 4.1
can effectively compute a closed-form expression of the amplitude and, in some
cases with a little extra work, the EC50. However, the model has to be simple
enough so that the Gröbner bases computed are tractable (in terms of length)
and solvable (the degree of the polynomials of the basis is low).

In response to Remark 71, in Section 4.3, I introduce a family of models with

n trans-membrane chains which is a generalisation of the models with IEK, and

derive the general amplitude expression for the models of this family without

making use of Gröbner bases. The analysis of this family also finally proves that

the limit of the signalling function of the models in Chapter 3 and the trimeric

receptor model of Section 4.2.6 is indeed the amplitude. This study is completed

in Section 4.4, in which I also explore the consequences of Remark 72. Finally, in

Section 4.5 and as a consequence of Remark 73, I investigate whether we can still

gain insights on the amplitude or EC50 of complex models (for which the method

of Section 4.1 fails to provide analytic expressions) by computing these quantities

for simpler sub-models.
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4.3 General results on a family of receptor-ligand
models: SRLK models

In spite of the general applicability of the method outlined in Section 4.1, we still
have to make the assumption that the computed limit of the signalling function
coincides with its amplitude. In this section we show that this is indeed the case
for a wide class of receptor-ligand systems. An analytic closed-form expression
for the amplitude follows with little extra work. The EC50 can then be studied
making use of key steps 6 and 7 in Section 4.1. We start by giving an abstract
generalisation of the examples from Sections 4.2.4, 3.2 and 4.2.6.

Definition 74 (SRLK model). We call a sequential receptor-ligand model with
extrinsic kinase (SRLK) a receptor-ligand model with the following properties:

• The receptor is composed of n different trans-membrane chains, X1, . . . , Xn,
which bind sequentially,

X1 : . . . : Xi−1 +Xi 
 X1 : . . . : Xi for all i ∈ {2, . . . , n}.

• X1 can bind reversibly to an intra-cellular extrinsic kinase Z.

• The signalling receptor is given by Z : X1 : . . . : Xn and the “dummy”
receptor by X1 : . . . : Xn.

• The extra-cellular ligand, L, binds reversibly to the signalling (or “dummy”)
receptor, forming the signalling (or “dummy”) complex Z : X1 : . . . : Xn : L

(or X1 : . . . : Xn : L).
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The biochemical reaction network for a general SRLK model is given by

Z + X1 
 Z : X1 K0,
X2 + Z : X1 
 Z : X1 : X2 K1,
X2 + X1 
 X1 : X2 K ′1,
...

...
...

...
Xi+1 + Z : X1 : . . . : Xi 
 Z : X1 : . . . : Xi+1 Ki,
Xi+1 + X1 : . . . : Xi 
 X1 : . . . : Xi+1 K ′i,
...

...
...

...
Xn + Z : X1 : . . . : Xn−1 
 Z : X1 : . . . : Xn Kn−1,
Xn + X1 : . . . : Xn−1 
 X1 : . . . : Xn K ′n−1,
L + Z : X1 : . . . : Xn 
 Z : X1 : . . . : Xn : L Kn,
L + X1 : . . . : Xn 
 X1 : . . . : Xn : L K ′n,

(4.84)

where the Ki (or K ′i) are the affinity constants related to the formation of the
signalling (or “dummy”) complex. Figure 4.11 illustrates the formation of the
signalling and “dummy” complexes in an SRLK model with n = 4 trans-membrane
chains. We assume the system at steady state and that the ligand is in excess. In
what follows we refer to these two assumptions as the experimental hypotheses.

We write z (or xi) for the steady state concentration of unbound chain Z (or
Xi). We also use L to denote the ligand concentration. Finally, Nz (or Ni) denotes
the total copy number per cell of the species Z (or Xi). An SRLK model satisfying
the experimental hypotheses is then described by the following polynomial system:

Nz = z +K0z (x1 +K1x1x2 + . . .+K1 . . . Kn−1x1 . . . xn + . . . Knx1 . . . xnL)

= z +K0z

[
x1 +

n∑
j=2

(
j−1∏
l=1

Klxlxj

)
+ L

n∏
j=1

Kjxj

]
, (4.85a)

N1 = x1 +K ′1x1x2 + . . .+K ′1 . . . K
′
n−1x1 . . . xn +K ′1 . . . K

′
nLx1 . . . xn (4.85b)

+K0z (x1 +K1x1x2 + . . .+K1 . . . Kn−1x1 . . . xn +K1 . . . Knx1 . . . xnL) ,

for i = 2, . . . , n− 1:

Ni = xi (4.85c)

+K ′1 . . . K
′
i−1x1 . . . xi + . . .+K ′1 . . . K

′
n−1x1 . . . xn +K ′1 . . . K

′
nx1 . . . xnL
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Figure 4.11: SRLK model with n = 4 trans-membrane chains: (a) (resp. (b))
Sequential formation of the signalling (resp. dummy) complex. (c) Summarising
scheme of the sequential formation of the signalling (resp. “dummy”) complex:
the chain X1 binds first to the intra-cellular kinase Z (only for the signalling
complex). Next, the chain X2 binds to the complex Z : X1 (resp. X1) and X3

binds to Z : X1 : X2 (resp. X1 : X2). Then, X4 binds to Z : X1 : X2 : X3

(resp. X1 : X2 : X3). Finally, the ligand L finally binds to the signalling receptor
Z : X1 : X2 : X3 : X4 (resp. “dummy” receptor X1 : X2 : X3 : X4), thus forming
the signalling (resp. “dummy”) complex.
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+K0z(K1 . . . Ki−1x1 . . . xi + . . .+K1 . . . Kn−1x1 . . . xn

+K1 . . . Knx1 . . . xnL)

= xi +
n∑
j=i

(
j−1∏
l=1

K ′lxlxj +K0z

j−1∏
l=1

Klxlxj

)
+ L

n∏
j=1

K ′jxj +K0zL
n∏
j=1

Kjxj,

Nn = xn +K0 . . . Kn−1zx1 . . . xn +K ′1 . . . K
′
n−1x1 . . . xn (4.85d)

+K ′1 . . . K
′
nLx1 . . . xn +K0 . . . KnzLx1 . . . xn .

We note that many results in this section can be further simplified under the
additional hypothesis of no allostery.

Definition 75. There is no allostery in an SRLK model if Ki = K ′i for all
i = 1, . . . , n.

Finally, we formally define the signalling and dummy functions for this class
of models.

Definition 76. For an SRLK model under the experimental hypotheses the
signalling function, σ(L), is the number of signalling complexes formed as a
function of the ligand concentration, L, and can be written as follows

σ(L) = K0zL
n∏
i=1

Kixi.

Similarly, the dummy function, δ(L), is the number of “dummy” complexes formed
as a function of the ligand concentration, L, and can be written as follows

δ(L) = L

n∏
i=1

K ′ixi.

Note that the IL-7R model of Section 3.2 is one example of an SRLK model
and the definition of signalling function given in Section 2.4 is equivalent. We now
introduce the notion of a limiting component.

Definition 77. The species, Xj, which has the smallest total copy number of
molecules

0 < Nj < Ni, ∀i 6= j,
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is the limiting component of the system. If there are multiple limiting components,
Xj1 , . . . , Xjr , then

0 < Nj1 = . . . = Njr < Ni, ∀i /∈ {j1, . . . , jr}.

If the signalling function attains its maximum for large values of the ligand

concentration, then, since by definition σ(0) = 0, the amplitude of such model is

given by

A ≡ lim
L→+∞

σ(L).

In this section we present some general results for lim
L→+∞

δ(L) and lim
L→+∞

σ(L)

applicable to SRLK models.

4.3.1 Asymptotic study of the steady states

While it is difficult to find closed-form expressions of the steady states for general

receptor-ligand systems, in what follows we show that considerable progress can

be made for the specific case of SRLK models. In this section we describe the

behaviour of the concentrations, xi, in the limit L → +∞. First, we recall the

definition and a property of algebraic functions.

Definition 78. A univariate function y = f(x) is said to be algebraic if it satisfies
the polynomial equation:

ym +Rm−1(x)ym−1 + · · ·+R0(x) = 0, (†)

where the Ri(x) are rational functions of x, i.e., are of the form p(x)
q(x)

, where p and
q are polynomial functions and q(x) 6= 0 for all x ∈ R.

Remark 79. Note that the polynomial (†) has m solutions. These solutions are
called the branches of an algebraic function and one often specifies a particular
branch.

Since we are interested in the limit behaviour, the following lemma proves

useful.
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Lemma 80. Any bounded, continuous solution of (†) defined on R has a finite
limit at +∞ (and −∞).

Proof. Multiply (†) by the common denominator of the Ri and let x = ε−1 to
obtain [

m∏
i=0

q̃i(ε)

]
︸ ︷︷ ︸

r̃m(ε)

ỹm + r̃m−1(ε)ỹm−1 + · · ·+ r̃0(ε) = 0,

with ỹ = f̃(ε). We have now recast the original problem into the form of equation
(2.13). By Theorem 49 we know that an expansion for the roots exists and we
note that the points of f(x) as x→ +∞ correspond to the points of f̃(ε) as ε = 0.
Note that, since all real f(x) are bounded, so are the real f̃(ε). Therefore all real
f̃(0) are finite and equal to the limits lim

x→+∞
f(x). A unique limit is chosen by

specifying a branch of f(x). The proof for x→ −∞ follows mutatis mutandis.

With this background in place, we can now proceed to study SRLK models in

detail. We start by showing that in steady state the signalling and the dummy

functions have a positive limit when L tends to +∞.

Lemma 81. The signalling and the dummy functions of an SRLK model satisfying
the experimental hypotheses admit a finite limit when L→ +∞ and this limit is
positive.

Proof. The function σ (or δ) are algebraic functions bounded on R between 0

and min(Nz, N1, . . . , Nn) (or min(N1, . . . , Nn)) so they admit a finite limit when
L → +∞. Let us denote this limit by cσ (or cδ). We know that cσ and cδ

are non-negative because σ and δ are, by definition, products of non-negative
functions.

Consider cδ = 0. Then since σ(L) = K0z
∏n

i=1

Ki

K ′i
δ(L), we have cσ = 0 (we

note that z being also an algebraic function, z also admits a finite limit when
L→ +∞). Since δ converges to 0, we need

n∏
i=1

xi ∼
L→+∞

Cn
Lp
, (4.86)
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with Cn a positive constant and p > 1. We recall and rewrite polynomial (4.85d):

Nn = xn +K0z
n−1∏
i=1

Ki

n∏
i=1

xi +
n−1∏
i=1

K ′i

n∏
i=1

xi + δ(L) + σ(L). (4.87)

Assuming (4.86) when L→ +∞ in (4.87), we obtain:

lim
L→+∞

xn = Nn,

and so we must have
n−1∏
i=1

xi ∼
L→+∞

Cn−1

Lp
,

with p > 1 and Cn−1 a positive constant. Passing to the limit in polynomial
(4.85c) for i = n− 1, we obtain

lim
L→+∞

xn−1 = Nn−1.

We repeat the process for every conservation equation (4.85c) of the species Xi

and we obtain
∀i = 1, . . . , n, lim

L→+∞
xi = Ni,

which is a contradiction with equation (4.86). So cδ > 0.

Now, consider cσ = 0. Then since σ(L) = K0z
∏n

i=1

Ki

K ′i
δ(L), z has to tend to

0. However, when passing to the limit L→ +∞ in equation (4.85a), we obtain

Nz = lim
L→+∞

(z +K0zx1 + . . .+ σ(L)) = 0,

which is a contradiction.
Conclusion: cσ > 0 and cδ > 0.

An equivalent result holds for the steady state concentration of the kinase.

Lemma 82. In an SRLK model under the experimental hypotheses, the concen-
tration of the extrinsic intra-cellular kinase Z admits a positive finite limit, cz > 0,
when L→ +∞.
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Proof. The concentration of kinase z being an algebraic function bounded on R
between 0 and Nz, it admits a finite limit cz when L→ +∞. We know that cz ≥ 0

because z is a concentration. We now prove that cz > 0. Since δ converges to a
positive constant when L→ +∞, we must have

n∏
i=1

xi ∼
L→+∞

cd
L
,

where cd is a positive constant. Since σ also admits a finite limit when L→ +∞,
it means that

z

n∏
i=1

xi ∼
L→+∞

cs
L
,

where cs is a positive constant. So z has to satisfy

z ∼
L→+∞

cz,

where cz =
cs
cd

is a positive constant.

In the particular case of no allostery, we can write an explicit expression of

the limit of z, cz.

Lemma 83. Consider an SRLK model which satisfies the experimental hypotheses.
If we assume no allostery, then the steady state value of the extrinsic intra-cellular
kinase, z, is given by

z =
−1 +K0(Nz −N1) +

√
∆z

2K0

, (4.88)

where

∆z = (1 +K0(N1 −Nz))
2 + 4K0Nz.

Proof. We assumed no allostery so Ki = K ′i for all i = 1, . . . , n. Equation (4.85a)
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gives:

Nz − z = K0z

(
x1 +

n∑
j=2

(
j−1∏
l=1

Klxlxj

)
+ L

n∏
j=1

Kjxj

)
.

By substituting this equality in equation (4.85b), we obtain:

N1 = Nz − z +
Nz − z
K0z

,

so z is a positive root of the polynomial

−Nz + z(1 +K0(N1 −Nz)) +K0z
2,

with L-independent coefficients. The two possibilities are:

z1 =
−1 +K0(Nz −N1) +

√
4K0Nz + (1 +K0(N1 −Nz))2

2K0

,

z2 =
−1 +K0(Nz −N1)−

√
4K0Nz + (1 +K0(N1 −Nz))2

2K0

.

The expression z1 is always positive, while z2 is always negative. Hence z1 is the
steady state kinase concentration, z.

By Lemma 83, z is independent of L (thus, cz = z) and only depends on K1,
N1 and Nz. Note that this result is equivalent to the one obtained in Section 3.2
for the first IL-7R model. Finally, we study the behaviour of the concentration xi
in the limit L→ +∞. We first give bounds to the asymptotic dependency of xi
on L.

Lemma 84. Let us consider an SRLK model which satisfies the experimental

hypotheses. Then no concentration xi behaves proportionally to Lq, q > 0 or
1

Lp
,

p > 1 when L→ +∞.

Proof. Lemma 82 affirms that z tends to a positive constant when L→ +∞. In
order for σ or δ to converge to a positive constant as stated in lemma 81, we need

n∏
i=1

xi ∼
L→+∞

c

L
, (4.89)
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where c is a positive constant. Since the concentrations x1, . . . , xn are bounded
functions (between 0 and their respective Ni), it is impossible to have for any
i = 1, . . . , n, xi ∼

L→+∞
ciL

q with ci constant and q > 0. From equation (4.89) it

follows that it is impossible to have any xi ∼
L→+∞

ci
Lp

for p > 1.

We can now state the main theorem of this section.

Theorem 85. We consider an SRLK model which satisfies the experimental
hypotheses. If there exists a unique limiting component Xi0 , then

xi0 ∼
L→+∞

ci0
L
,

and for all i = 1, . . . , n, i 6= i0,
xi ∼

L→+∞
ci,

where ci0 and ci are positive constants.

Proof. Since the concentrations xi are algebraic functions (with coefficients in R)
bounded on R, they admit a non-negative limit when L→ +∞.

We know that we need
n∏
i=1

xi ∼
L→+∞

c

L
, (4.90)

with c a positive constant, so that σ and δ converge when L→ +∞. Lemma 82
shows that z tends to a positive constant when L→ +∞. Thus, it follows from
equation (4.90) and Lemma 84 that at least one of the xi must tend to 0. We will
prove that the only concentration that can tend to 0 is xi0 , and so xi0 ∼

L→+∞

ci0
L
,

with ci0 a constant.
1) There exists at least one chain Xj whose concentration tends to 0. The

conservation equation of Xj described in equation (4.85c) is:

Nj = xj +

j∏
i=1

K ′ixi +K0z

j∏
i=1

Kixi +

j+1∏
i=1

K ′ixi +K0z

j+1∏
i=1

Kixi + . . .+ δ(L) + σ(L).

When L→ +∞, we obtain

Nj = lim
L→+∞

δ(L) + lim
L→+∞

σ(L).
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We cannot form more “dummy” or signalling complexes than the number of
molecules available. Since Xi0 is the limiting component, we have

δ(L) + σ(L) ≤ Ni0 , ∀L.

This yields in the limit L → +∞, Nj ≤ Ni0 . By hypothesis this implies that
j = i0 and so Xj is our limiting component Xi0 .

2) Reciprocally, if xi0 tends to a positive constant when L→ +∞, then there
exists at least one xj, j 6= i0 such that xj → 0 when L→ +∞. The limit when
L→ +∞ of equation (4.85c) (set to i = j) gives

lim
L→+∞

[δ(L) + σ(L)] = Nj.

However, since we also have δ + σ ≤ Ni0 , we obtain when taking the limit,
Nj ≤ Ni0 , which is a contradiction with the fact that Xi0 is the only limiting
component.

Conclusion: Xi0 is limiting if and only if its concentration tends to 0, and we
have

xi0 ∼
L→+∞

ci0
L
,

and for i 6= i0,
xi ∼

L→+∞
ci,

where ci0 and ci are positive constants.

Corollary 86. If an SRLK model, which satisfies the experimental hypotheses,
has multiple limiting components, Xi1 , . . . , Xir , i1 < . . . < ir, then

xi1 ∼
L→+∞

ci1
Lp1

, . . . , xir ∼
L→+∞

cir
Lpr

,

where ci1 , . . . cir are positive constants and p1 = . . . = pr =
1

r
. The concentrations

of the non-limiting components, xi, (for i /∈ {i1, . . . , ir}) tend to positive constants,
ci > 0.

Proof. If Xi1 and Xi2 are limiting components, they are the only ones whose
concentrations, xi1 and xi2 , tend to 0 when L→ +∞. From equation (4.90) we
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can write
xi1 ∼

L→+∞

ci1
Lp1

,

xi2 ∼
L→+∞

ci2
Lp2

,

with ci1 and ci2 constants and p1, p2 > 0, such that p1 + p2 = 1.

From system (4.85), we have:

Ni1 = xi1 +
n∑

j=i1

(
j−1∏
l=1

K ′lxlxj +K0z

j−1∏
l=1

Klxlxj

)
+ L

n∏
j=1

K ′jxj +K0zL

n∏
j=1

Kjxj,

Ni2 = xi2 +
n∑

j=i2

(
j−1∏
l=1

K ′lxlxj +K0z

j−1∏
l=1

Klxlxj

)
+ L

n∏
j=1

K ′jxj +K0zL

n∏
j=1

Kjxj.

Since Xi1 and Xi2 are limiting components, we have Ni1 = Ni2 and, if i1 < i2, we
obtain

Ni1 = Ni2 ⇐⇒ xi1

(
1 +

i2−1∑
j=i1

(
j−1∏
l=1

K ′l

j∏
l=1,l 6=i1

xl +K0z

j−1∏
l=1

Kl

j∏
l=1,l 6=i1

xl

))
= xi2 .

(4.91)
Since all the xi, with i 6= i1, i 6= i2, tend to a positive constant when L→ +∞,
we have

1 +

i2−1∑
j=i1

(
j−1∏
l=1

K ′l

j∏
l=1,l 6=i1

xl +K0z

j−1∏
l=1

Kl

j∏
l=1,l 6=i1

xl

)
∼

L→+∞
C,

where C is a positive constant. Thus, we obtain the behaviour of the left side of
equation (4.91)

xi1

(
1 +

i2−1∑
j=i1

(
j−1∏
l=1

K ′l

j∏
l=1,l 6=i1

xl +K0z

j−1∏
l=1

Kl

j∏
l=1,l 6=i1

xl

))
∼

L→+∞

Cci1
Lp1

.

Since the right side is given by

xi2 ∼
L→+∞

ci2
Lp2

,

it results in p1 = p2 =
1

2
.
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If there are r limiting components xi1 , . . . , xir , i1 < . . . < ir, then we have

xi1 ∼
L→+∞

ci1
Lp1

,

...
...

xir ∼
L→+∞

cir
Lpr

,

with ci1 , . . . , cir positive constants, and p1, . . . , pr > 0 such that p1 + . . .+ pr = 1.
We proceed in the same way as for the case of two limiting components and we

obtain p1 = . . . = pr =
1

r
.

4.3.2 Asymptotic study of the signalling and dummy func-
tions

The previous section presented numerous small results which give insight into

the steady state behaviour of SRLK receptor-ligand systems. We are now in a

position to combine these results to state and prove the main theorem, which

gives closed-form formulæ for the limits of the signalling and dummy functions.

Theorem 87. Consider an SRLK model which satisfies the experimental hy-
potheses. Let us write Xi1 , . . . , Xir as the limiting components and denote Ni0

as the total amount of any limiting component, i.e., Ni0 ≡ Ni1 = . . . = Nir . The
limit of the signalling function is given by

lim
L→+∞

σ(L) =

∏n
i=1KiK0cz∏n

i=1K
′
i +
∏n

i=1KiK0cz
Ni0 ,

and the limit of the dummy function is

lim
L→+∞

δ(L) =

∏n
i=1K

′
i∏n

i=1K
′
i +
∏n

i=1 KiK0cz
Ni0 ,

where
cz = lim

L→+∞
z.
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Proof. By definition of σ and δ we have:

δ(L) + σ(L) = L
n∏
i=1

xi

(
n∏
i=1

K ′i +K0z
n∏
i=1

Ki

)
,

which implies that

lim
L→+∞

[δ(L) + σ(L)] = lim
L→+∞

(
L

n∏
i=1

xi

(
n∏
i=1

K ′i +K0z
n∏
i=1

Ki

))
.

Using the limit properties and since everything converges, we obtain:

lim
L→+∞

[δ(L) + σ(L]) = lim
L→+∞

(
L

n∏
i=1

xi

)(
n∏
i=1

K ′i +K0 lim
L→+∞

(z)
n∏
i=1

Ki

)
.

However, Theorem 85 states that xi0 tends to 0 when L→ +∞. Thus, equation
(4.85c) when i = i0 at L→ +∞ gives

Ni0 = lim
L→+∞

[δ(L) + σ(L)].

Consequently since z → cz > 0 from lemma 82, we obtain:

lim
L→+∞

(L
n∏
i=1

xi) =
Ni0∏n

i=1K
′
i +K0cz

∏n
i=1 Ki

.

We substitute this limit into the expression of σ and δ and obtain the desired
expressions.

Under the assumption of no allostery, these expressions can be further simpli-

fied.

Corollary 88. Consider the system of Theorem 87 and assume there is no
allostery. Denote the limiting components by Xi1 , . . . , Xir and denote Ni0 as the
total amount of any limiting component, i.e., Ni0 ≡ Ni1 = . . . = Nir . The limit of
the signalling function is

lim
L→+∞

σ(L) =
K0z

1 +K0z
Ni0 ,
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and the limit of the dummy function is

lim
L→+∞

δ(L) =
Ni0

1 +K0z
,

with z given by equation (4.88) in Lemma 83.

Proof. Since there is no allostery, we have Ki = K ′i for all i. Lemma 83 states that
z is independent of L, thus cz = z. Applying these statements in the expressions
of the previous theorem, we obtain the expressions of this corollary.

From the previous expressions we observe that the limit of the signalling and
dummy functions are equal to the total copy number of the limiting component, Ni0 ,
multiplied by a term which is bounded between 0 and 1. This term only depends
on the affinity constant K0 and the steady state concentrations of the kinase,
Z and X1. In order to relate the above limits back to biologically meaningful
quantities, all there is left to show is that the explicit expression of the limit of σ
is in fact the amplitude of the system. Since σ(0) = 0, let us first note that the
amplitude is equal to the maximum of σ. Under the no allostery assumption, we
can show mathematically that this maximum is the limit of σ when L→ +∞. To
this end, the following lemma is needed.

Lemma 89. Consider an SRLK model under the experimental hypotheses. If
there is no allostery, then we have

supσ(L) = lim
L→+∞

σ(L).

Proof. Since Xi0 is the limiting component, we know from Theorem 85 that its
concentration tends to 0 when L→ +∞. We have

δ + σ ≤ Ni0 = lim
L→+∞

(δ + σ). (4.92)

In the no allostery case, z is independent of L and we have σ = K0zδ. Thus,
equation (4.92) gives

(1 +K0z)δ ≤ (1 +K0z) lim
L→+∞

δ.

170



4.3 General results on a family of receptor-ligand models: SRLK
models

Hence, we can conclude
lim

L→+∞
δ = sup δ,

and
lim

L→+∞
σ = supσ.

The supremum here is attained and is a maximum. Thus, the amplitude for a

SRLK receptor-ligand system when there is no allostery is the limit of σ described

in Corollary 88. This result is the generalisation of the examples discussed in

Sections 4.2.4, 3.2 and 4.2.6. Indeed, the amplitudes of the monomeric model

with IEK (Section 4.2.4), the IL-7R model of Section 3.2 and the trimeric receptor

model of Section 4.2.6 can be recovered by setting Ni0 = Nx, Ni0 = min(Nx, Ny)

and Ni0 = min(Nx, Ny, Nw), respectively. We now have also rigorously shown that

the limit of the signalling function is indeed the amplitude.

4.3.3 SRLK models with additional subunit receptor chains

As hinted in Section 3.4, the IL-7R model with the additional sub-unit receptor

chain is part of a larger group of models which are an extension of the SRLK

family. Therefore, our previous results can be extended to this type of models.

Again, we start by giving an abstract definition of the extended SRLK family of

models.

Definition 90 (Extended SRLK model). An extended SRLK model is an SRLK
model where we assume that each intermediate complex, Z : X1 : . . . : Xi (or
X1 : . . . : Xi), for i = 1, . . . , n can bind to an extra chain, Yi, with an affinity
constant Kyi (or K ′yi), to form a decoy complex Z : X1 : . . . : Xi : Yi (or
X1 : . . . : Xi : Yi). The addition of a sub-unit chain of the kind Yi prevents
the binding of ligand to the receptor, and thus, does not allow the formation of
signalling or “dummy” complexes.
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The chemical reaction network for an extended SRLK model is given by:

Z + X1 
 Z : X1 K0,
Y1 + X1 
 X1 : Y1 K ′y1 ,
Y1 + Z : X1 
 Z : X1 : Y1 Ky1 ,
X2 + Z : X1 
 Z : X1 : X2 K1,
X2 + X1 
 X1 : X2 K ′1,
Y2 + X1 : X2 
 X1 : X2 : Y2 K ′y2 ,
Y2 + Z : X1 : X2 
 Z : X1 : X2 : Y2 Ky2 ,
...

...
...

...
Xi+1 + Z : X1 : . . . : Xi 
 Z : X1 : . . . : Xi+1 Ki,
Xi+1 + X1 : . . . : Xi 
 X1 : . . . : Xi+1 K ′i,
Yi + X1 : . . . : Xi 
 X1 : . . . : Xi : Yi K ′yi ,
Yi + Z : X1 : . . . : Xi 
 Z : X1 : . . . : Xi : Yi Kyi ,
... +

...
...

...
Yn + X1 : . . . : Xn 
 X1 : . . . : Xn : Yn K ′yn ,
Yn + Z : X1 : . . . : Xn 
 Z : X1 : . . . : Xn : Yn Kyn ,
L + Z : X1 : . . . .Xn 
 Z : X1 : . . . : Xn : L Kn,
L + X1 : . . . .Xn 
 X1 : . . . : Xn : L K ′n.

where Ki, K ′i, Kyi and K ′yi denote the affinity constants. Figure 4.12(a) and
Figure 4.12(b) show the decoy complexes of an extended SRLK receptor-ligand
system with n = 4 trans-membrane chains. The signalling and “dummy” complexes
are built sequentially similarly to the classic SRLK model (see Figure 4.11 and
Figure 4.12(c)).

We note that while we assume all the Xi to be different species, we allow
that Yi = Yj or Yi = ∅, as long as for i = 1, . . . , n, Yi /∈ {X1, . . . , Xn, Z, L}. We
assume that the receptor-ligand system is in steady state and the ligand is in
excess. We further assume that the concentration of the species Yi (which we
write yi) are all bounded. We could consider the case when the Yi are in excess,
and thus, treat their concentration as a parameter of the model, or assume that
the number of Yi molecules is conserved. We refer to these assumptions as the
extended experimental hypotheses.

The signalling and dummy functions of classic and extended SRLK receptor-
ligand systems are equivalent (see Definition 76). The polynomial system describ-
ing an extended SRLK model under the extended experimental hypotheses is
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(c) Sequential chemical reaction scheme of an extended SRLK

Figure 4.12: Extended SRLK model with n = 4 trans-membrane chains: (a)
An additional subunit Yi can bind to each intermediate signalling complex Z :
X1 : ... : Xi, to form decoy complexes with kinase. (b) The subunit Yi can also
bind to the intermediate “dummy” complexes X1 : X2 : ... : Xi, forming decoy
complexes without kinase. (c) Summarising scheme of the sequential formation
of the signalling and “dummy” complexes. At each step, their formation can be
interrupted by the binding of a subunit Yi to the intermediate complex, forming a
decoy complex.
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given by

Nz = z +K0z

(
x1(1 +Ky1y1) +

n∑
j=2

(
(1 +Kyjyj)

j−1∏
l=1

Klxlxj

))
+ σ(L),

(4.93a)

N1 = x1(1 +K ′y1y1) +
n∑
j=2

(
(1 +K ′yjyj)

j−1∏
l=1

K ′lxlxj

)
+ δ(L) (4.93b)

+K0z

(
x1(1 +Ky1y1) +

n∑
j=2

(
(1 +Kyjyj)

j−1∏
l=1

Klxlxj

))
+ σ(L),

...

Ni = xi +
n∑
j=i

(
(1 +K ′yjyj)

j−1∏
l=1

K ′lxlxj +K0z(1 +Kyjyj)

j−1∏
l=1

Klxlxj

)
+ δ(L) + σ(L), for i = 2, . . . , n− 1, (4.93c)

...

Nn = xn +K0z (1 +Kynyn)
n−1∏
j=1

Kjxjxn + (1 +K ′ynyn)
n−1∏
j=1

K ′jxjxn + δ(L) + σ(L).

(4.93d)

This system of polynomials is completed by the conservation equations of the
species Yi, for i = 1, . . . , n, if we assume they are conserved.

We can extend the notion of no allostery to the extended models.

Definition 91. An extended SRLK model is said to be under the assumption of
no allostery if for each i = 1, . . . , n, Ki = K ′i and Kyi = K ′yi .

With these expanded definitions, we can extend the results previously obtained

for the SRLK receptor-ligand systems.

Theorem 92. The theorems and lemmas previously true for the SRLK models
are true for the extended SRLK models under the same (extended) hypotheses.

Proof. The concentrations yi are bounded (0 ≤ yi ≤ Nyi) algebraic function on R,
and therefore admit a limit when L → +∞. As the expressions of σ and δ are
not modified, the addition of the Yi variables to an SRLK model, assuming the
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extended experimental hypotheses, does not change the proofs of the previous
lemmas and theorems.

4.3.4 A few examples of (extended) SRLK models

In spite of some presumably strong modelling assumptions, the (extended) SRLK
models can describe a broad range of cytokine-receptor systems. The monomeric
receptor model with IEK of Section 4.2.4, the IL-7R model described in Section 3.2
and the trimeric receptor model of Section 4.2.6 are SRLK models with n = 1,
n = 2 and n = 3 trans-membrane chains, respectively. The IL-7R model with
the additional subunit described in Section 3.4 is an extended SRLK model. In
this section, we provide examples of other interleukin-signalling systems which
are part of the (extended) SRLK family.

A number of interleukin receptors share different molecular components. For
instance, cytokine receptors of the common gamma family (comprising the recep-
tors for IL-2,4,7,9,15 and 21 (Rochman et al., 2009)) share the common gamma
chain, γ. In addition the IL-2 and IL-15 receptors share the sub-unit chain, IL-2Rβ.
The competition for these sub-unit chains can be mathematically described with
an extended SRLK model, as follows.

Example 93 (Extended SRLK model: IL-2/IL-2R model with formation of
IL-7R and IL-15R). Let us suppose we want to study the formation of IL-2/IL-2R
complexes taking into account the competition for the γ chain between IL-2Rβ
and IL-7Rα, and the competition for the complex γ :IL-2Rβ between the sub-units
IL-2Rα and IL-15Rα. We can use an extended SRLK model with

{Z,X1, X2, X3, L} = {JAK3, γ, IL-2Rβ, IL-2α, IL-2}

and
{Y1, Y2, Y3} = {IL-7Rα, IL-15Rα, ∅}.

This example is illustrated in Figure 4.13(a).

A further extended SRLK example is that of the IL-12 family of receptors,
which share multiple components (Vignali & Kuchroo, 2012), and each of which is
composed of two trans-membrane sub-unit chains. The IL-12 receptor is composed
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Figure 4.13: (a) Illustration of example 93: IL-2R, IL-7R and IL-15R competing
for the common gamma chain and IL-2Rβ. The IL-2R is composed of three
sub-unit chains: the gamma chain, IL-2Rβ and IL-2Rα. IL-15R is composed
of the gamma chain, IL-2Rβ and the specific chain IL-15Rα. The IL-7R is
composed of the gamma chain and IL-7Rα. All these receptors signal through
the Janus kinase JAK3. (b) Illustration of example 94: 1. Competition for
IL-12Rβ1 between the IL-12 and the IL-23 receptors. We assume that IL-23R
and IL-12Rβ2 are already bound to their associated extrinsic kinase JAK2; 2.
Competition for IL-12Rβ2 between the IL-12 and IL-35 receptors. We consider the
complexes IL-12Rβ1:TYK2 and gp130:JAK1 already pre-formed; 3. Competition
for gp130 between the IL-35 and the IL-27 receptors. We consider the complexes
IL-12Rβ2:JAK2 and IL-27R:JAK2 already pre-formed.

of the sub-unit chains IL-12Rβ1 and IL-12Rβ2. The IL-23 receptor signals via the
IL-23R chain and the IL-12Rβ2 chain. The IL-27R (also known as WSX-1) and
glycoprotein 130 (gp130) form the IL-27 receptor. Finally, IL-12Rβ2 and gp130
form the IL-35 receptor. The sub-unit chains gp130, IL-12Rβ1 and IL-12Rβ2 bind
to a kinase from the JAK family (JAK1, TYK2 and JAK2, respectively). This
competition can be described with extended SRLK models as follows.

Example 94 (Extended SRLK models: IL-12R family). We provide three exam-
ples of extended SRLK systems which characterise the competition for receptor
sub-units between receptors of the IL-12 family (see Figure 4.13(b)).

1. Suppose we want to study the IL-12-induced signalling process taking into
account the competition for IL-12Rβ1. We can use an extended SRLK
model with

{Z,X1, X2, L, Y1, Y2} = {TYK2, IL-12Rβ1, IL-12Rβ2∗, IL-12, IL-23R∗, ∅}.

2. To study IL-35-induced signalling taking into account the competition for
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IL-12Rβ2, we can use an extended SRLK model with

{Z,X1, X2, L, Y1, Y2} = {JAK2, IL-12Rβ2, gp130∗, IL-35, IL-12Rβ1∗, ∅}.

3. An extended SRLK model with

{Z,X1, X2, L, Y1, Y2} = {JAK1, gp130, IL-27R∗, IL-27, IL-12Rβ2∗, ∅}

can describe the IL-27-induced signalling, when there is competition for the
sub-unit chain gp130 with the IL-35 receptor.

Above we have made use of the notation X∗ to denote the pre-formed complex
composed of the receptor chain X and its intra-cellular extrinsic kinase (TYK2
for IL-12Rβ1, JAK1 for gp130 and JAK2 for all the others).

4.4 Investigating the EC50 of SRLK models

4.4.1 Amplitude of SRL models

The SRLK models are a generalisation of the models with IEK and no allostery

studied in the previous sections of this thesis. Similarly, we can define a family of

models that generalise the RTK models. Let us call this new family sequential

receptor-ligand (SRL) systems. Making use of the same notation as for the

SRLK systems, the biochemical reaction network for a general SRL model (n

trans-membrane chains) is given by

X2 + X1 
 X1 : X2 K1,
...

...
...

...
Xi+1 + X1 : . . . : Xi 
 X1 : . . . : Xi+1 Ki,
...

...
...

...
Xn + X1 : . . . : Xn−1 
 X1 : . . . : Xn Kn−1,
L + X1 : . . . : Xn 
 X1 : . . . : Xn : L Kn,

(4.94)
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We consider the same notation, hypotheses and definitions as for the SRLK models.
Thus, the signalling function is

σ(L) ≡ K1 . . . KnLx1 . . . xn, (4.95)

and a SRL model with n trans-membrane chains at the steady state is described
by the following polynomial system:

N1 = y1 +K1x1x2 + . . .+K1 . . . Kn−1x1 . . . xn +K1 . . . KnLx1 . . . xn, (4.96a)
...

Ni = xi +K1 . . . Ki−1x1 . . . xi + . . . (4.96b)

+K1 . . . Kn−1x1 . . . xn +K1 . . . Knx1 . . . xnL,

...

Nn = xn +K1 . . . Kn−1x1 . . . xn +K1 . . . KnLx1 . . . xn. (4.96c)

By following a similar process to that of the SRLK models 1, we can show that
the amplitude of SRL models is the total number of the limiting component:

ASRL = min(N1, ..., Nn). (4.97)

With this final result, we generalised Remark 71 for receptors composed of different
trans-membrane chains, with or without downstream kinase.

4.4.2 EC50 of SRL and SRLK models

Remark 72 points out that the EC50 for SRLK (with no allostery) and SRL models
with n = 1 and n = 2 chains are the same. In other words, the EC50 of these

1(1) Prove that lim
L→+∞

σ(L) = cσ > 0. (2) Show that no xi tends to 0 faster than
1

L
nor

grows as a power of L when L→ +∞. (3) Show that the concentration of the limiting component

tends to 0 as fast as
1

L
and that the concentrations of the other trans-membrane chains tend to

a positive constant. (4) Show that lim
L→+∞

(σ(L)) = min(N1, ...Nn). (5) Prove that this limit is

the amplitude of the system.
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SRLK models is independent of the kinase z (or JAK). In Section 4.2.6, we show
that this is also the case for the heterotrimeric receptor. I conjecture that the EC50

of SRLK models with no allostery is independent of the kinase z (i.e., independent
from Nz and K0) for any trans-membrane chains number, n. Unfortunately, I did
not manage to prove this result rigorously. In this section, however, I advance a
sketch of the proof that justifies my intuition.

To distinguish SRL and SRLK models, I write yi the concentration of the
trans-membrane chain Xi in the SRL model1 for i = 1, . . . , n. To find the EC50,
we want to solve the following problem for the SRLK:

Problem 95 (Finding the EC50 of SRLK systems). Find L such that

K0zK1 . . . KnLx1 . . . xn =
K0z

(1 +K0z)

min(N1, . . . , Nn)

2
.

The EC50 of SRL models can be found by solving:

Problem 96 (Finding the EC50 of SRL systems). Find L such that

K1 . . . KnLy1 . . . yn =
min(N1, . . . , Nn)

2
.

In Lemma 83, we computed an expression for z that is independent of the
ligand concentration, L. Thus, we can remove equation (4.85a) from system (4.85)
and consider the remaining polynomials as a system of n variables x1, ..., xn, in
which z is replaced by its expression as a function of the parameters. Now, by a
change of basis x1(1 + K0z) = y1 and yi = xi, this modified polynomial system
becomes system (4.96). With the same change of basis, Problems 95 and 96 are
equivalent. This results that to study the EC50 of SRLK systems, it is sufficient to
study the corresponding SRL system. It follows that the EC50 of SRLK systems
is independent of the kinase (independent from Nz and K0).

In order to write a rigorous proof, I would need to justify the removal of the
first equation in system (4.85), as well as the change of basis with more precise
algebraic tools. I will also probably need to show that SRL and SRLK systems
admit a unique EC50. The existence of such quantity follows from the definition

1In other words, we re-write the polynomial system (4.96) with yi instead xi, i=1,. . . ,n.
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of such biochemical networks. The uniqueness of the EC50, however, is a difficult
question as I cannot show that the signalling function σ is monotonic.

4.5 Exploring the combination of simple models:
thermodynamic cycles

The method presented in Section 4.1 allows one to compute the analytic expression
for the amplitude and EC50 of a receptor-ligand model when the model is simple
enough (so the degree of the polynomials of the Gröbner basis is not too high).
For more complicated models, we managed to reduce the cost of the computation
of the amplitude and EC50 but the analytic study is intractable very quickly.
For some models (as demonstrated with the homodimeric model with IEK in
Section 4.2.5), the computation of the Gröbner basis is a challenge and the result
is composed of very long polynomials of high degree that are very impractical to
analyse. Thus, the domain of application of the method presented in Section 4.1
seems limited to the computation of pharmacological quantities of simple models.
Now, suppose one could decompose a complex model into sub-models for which the
analytic amplitude (resp. EC50) can be computed. Could one link the amplitude
(resp. EC50) expression of the sub-models to the amplitude (resp. EC50) of the
complex model? Here, I investigate this question by studying simple models,
which I later combine to artificially create a more complex model.

In this section, I consider the different orders to form the signalling complex of
the homodimeric and heterodimeric receptors with intrinsic kinase activity (RTK).
The homodimeric RTK model described in Section 4.2.2 assumes that the ligand
binds to the dimer composed of two γ chains to form the complex L : γ : γ. In
Section, 4.2.3, I described a heterodimeric RTK model in which the ligand binds
to the dimer composed of the primary and secondary chains, γ and α, to form
the signalling complex L : γ : α. The assembling order of these models will be
referred to as order A or model A. We now examine different sequential assembling
orders, obtained by transposition (permutation of two elements) of species in the
chemical reactions of models A. There is one alternative model of the homodimeric
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RTK A, which will be called homodimeric RTK B, obtained by permutation of
the ligand with one of the γ chains. Two alternative models of the heterodimeric
RTK A, called heterodimeric RTK B and C, can be obtained by permuting the
ligand with the primary or the secondary chain. Models A and their variants
(which I will also refer to as base models) are simple enough to compute analytic
expressions of their amplitude and EC50 with the method described in Section 4.1.
A base model assembles the signalling complex sequentially by adding one species
after another in a unique way. I later combine these base models together to
create more complicated models which I will call combined models. Thus I obtain
complex models which can be decomposed into sub-models (the base models).
By definition, the combined models display thermodynamic cycles: the signalling
complex can be formed by several routes of reactions, and the detailed-balance
steady state equations enforce constraints on the affinity constants. A combined
model of models A and B will be denoted model AB. The models studied in this
section are recapitulated in Table 2.2.

Biologically, it is very hard to know exactly in which order a signalling complex
is formed, though crystallography techniques can eliminate certain possibilities
by examining the binding site structures of the proteins (Boulanger et al., 2003;
Stauber et al., 2006; Wang et al., 2005). Most likely, the different orders described
by the base models co-exist and the preferred order to form the signalling complex
is the one constituted of the chemical reactions with the highest association con-
stants (higher association rate/slower dissociation rate). Note that the signalling
complex could also be formed by association of several pre-formed complexes
(for instance, the IL-2R/IL-2 complex, L :IL-2Rα :IL-2Rβ : γc, could be formed
by association of the pre-formed complexes L :IL-2Rα and γc :IL-2Rβ). This is
however out of the scope of this section.

We make use of the notation and hypotheses described in Section 4.2, and
assume mass-action law. The ligand L is always assumed to be in excess, i.e., it
is considered as a parameter of the model. All the models of this section are at
steady state and are deficiency 0: they admit a unique biologically meaningful
steady state.
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γ γ

L

(a) Signalling complex

γ γ
γ : γ

L

L : γ : γ
L : γ

(b) Model configurations

Figure 4.14: (a) The homodimeric RTK signalling complex is the association
of the receptor (composed of two identical γ chains) and the ligand L. (b) The
signalling complex (in yellow) can be formed in two manners corresponding to
two base models: the receptor, γ : γ, is formed first and the ligand binds to the
receptor (homodimeric RTK A model, blue path) or the ligand binds first to one
of the γ chain and the other γ chain binds to the complex γ : L (homodimeric
RTK B model, red path). The combined model homodimeric RTK AB follows
blue and red paths.

4.5.1 Half-maximal inhibitory concentration or IC50

Before starting any computation, let us define the concept of half-maximal in-

hibitory concentration:

Definition 97 (Half-maximal inhibitory concentration). Let A denote the am-
plitude of the dose-response curve function σ. The half-maximal inhibitory
concentration, or IC50 is the ligand concentration L∗ which satisfies σ(L∗) =

min(σ) +
max(σ)−min(σ)

2
= min(σ) +

A

2
when σ is decreasing.

The IC50 is very similar to the EC50, except, it is defined when the dose-

response curve is decreasing, i.e., increasing the ligand concentration inhibits the

cell’s response. In this section, we will encounter bell-shaped dose-response curves:

the equation σ(L∗) = min(σ) +
max(σ)−min(σ)

2
= min(σ) +

A

2
admits two

solutions, the smallest is the EC50 and the largest is the IC50.
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4.5.2 Homodimeric RTK models

In this subsection, we study different ways of forming the homodimeric RTK

signalling complex, composed of two identical chains γ and the ligand L, γ : γ : L

(see Figure 4.14(a)). It can be formed in two different manners: the γ chains

dimerise then bind to the ligand, or the ligand binds first to one γ chain before

binding to the other chain (see Figure 4.14(b)). These two orders can also co-exist.

Homodimeric RTK B

Let us consider the homodimeric RTK model of Section 4.2.2, which we refer to

as homodimeric RTK A. By permuting a γ chain with the ligand in the chemical

reactions, we obtain the homodimeric RTK model B. Its chemical reaction network

is as follows:
L+ γ 
 L : γ K ′3,
L : γ + γ 
 L : γ : γ K ′2.

Note that I distinguish the affinity constants of model B from model A using

primes. The index 3 still refers to the binding of the ligand L to a chain or

complex. Writing the ordinary differential equations associated to the chemical

reaction scheme and combining the steady state and conservation equations, I

obtain the following polynomial, which describes model B:

0 = −Nx + (1 +K ′3L)x+ 2K ′2K
′
3Lx

2. (4.98)

The positive solution of this polynomial, which represents the number of unbound

γ chains per cell at steady state, is:

x =
−1−K ′3L+

√
(1 +K ′3L)2 + 8K ′2K

′
3LNx

4K ′2K
′
3L

. (4.99)

Computation of the amplitude: The signalling complex is L : γ : γ, thus,

the signalling function of this model is:

σ(L) ≡ K ′3K
′
2Lx

2, (4.100)
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where x is the steady state expression found above. Since σ(0) = 0, the amplitude

is defined as the maximum of this function. Unfortunately, contrary to the previous

models of this chapter, the maximum of σ is not its limit when L→ +∞ (in fact,

σ → 0). We find the maximum of σ by computing its derivative. For concise

notation, we write

∆ ≡ (1 +K ′3L)2 + 8NxK
′
2K
′
3L, (4.101)

and the numerator of x:

f ≡ −1−K ′3L+
√
∆. (4.102)

The signalling function can be re-written with the new notation:

σ(L) =
f 2

16K ′2K
′
3L
. (4.103)

We compute the derivative of σ:

dσ

dL
(L) =

f

16K ′2K
′
3L

2
(2
df

dL
L− f)

=
f

16K ′2K
′
3L

2
(−2K ′3L+

2K ′3(1 +K ′3L) + 8NxK
′
2K
′
3√

∆
L+ 1 +K ′3L−

√
∆)

=
f

16K ′2K
′
3L

2
√
∆

(K2
3L

2 − 1 + (1−K ′3L)
√
∆)

= − (−1 +K ′3L)f 2

16K ′2K
′
3L

2
√
∆
.

(4.104)

The equation
dσ

dL
(L) = 0 has a unique solution:

La =
1

K ′3
. (4.105)

Note that
dσ

dL
is positive on [0,

1

K ′3
) and negative on (

1

K ′3
,+∞) so σ(La) is a

maximum. The dose-response curve increases then decreases (a short numerical

simulation shows it is in fact a bell-shaped curve (see Figure 4.17(a) in Section

4.5.4)). This result is not surprising considering the model: as the availability

184



4.5 Exploring the combination of simple models: thermodynamic cycles

of ligand increases, more and more signalling complexes are formed. As it keeps

increasing, there is enough ligand (alternatively one could interpret it as: the

binding of the ligand to the γ chain is fast enough) to bind each γ chain and form

L : γ complexes only, thus decreasing the number of signalling complexes until

none are formed anymore. Finally, the amplitude of the homodimeric receptor

model B (denoted AhoB), is given by σ(La):

AhoB ≡ σ(La) =
(−1 +

√
1 + 2K ′2Nx)

2

4K ′2
. (4.106)

Remark 98. An analytic expression for the steady state and the amplitude of
this model have already been computed in Ref. White et al. (2022). However,
White et al. considered another signalling function. As a result, they did not
compute the EC50 expression corresponding to the model of this section. Since
the derivation of the EC50 and IC50 directly follows from the computation of the
amplitude, and as it is the first time that a bell-shaped dose-response curve is
encountered in this thesis, I chose to detail the computation of the steady state
and amplitude of this model.

Computation of the EC50 and IC50: Since the dose-response curve of this

model is bell-shaped, we expect two solutions to the equation:

σ(L) =
AhoB

2
. (4.107)

The EC50 is the solution on the ascendant part of the curve, the IC50 the solution on

the descendant part of the dose-response curve. To compute their expression, one

could solve directly equation (4.107) or compute a Gröbner basis as described in

the method of Section 4.1. This time, I chose the first option, but the two methods

yield the same result. For concise notation, let us write A ≡ −1 +
√

1 + 2K ′2Nx.

Replacing x and the amplitude by their respective expression, equation (4.107)

can be re-written as:

(−1−K ′3L+
√

(1 +K ′3L)2 + 8K ′2K
′
3LNx)

2

2K ′3L
= A2. (4.108)
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Isolating the square-root and squaring the equation to remove it, we obtain after

several simplifications the following polynomial in L:

K ′23 L
2 −K ′3L

(
16K ′22 N

2
x

2A2
+

A2

2
− 2− 4K ′2Nx

)
+ 1 = 0. (4.109)

Replacing A by its modified definition,

A =
(−1 +

√
1 + 2K ′2Nx)(1 +

√
1 + 2K ′2Nx)

1 +
√

1 + 2K ′2Nx

=
2K ′2Nx

1 +
√

1 + 2K ′2Nx

,

we obtain the following simplified polynomial in L:

K ′23 L
2 −K ′3L

(
K ′2Nx + 3(1 +

√
1 + 2K ′2Nx)

)
+ 1 = 0, (4.110)

which has two positive roots corresponding to the expression of the IC50 and the

EC50:

EChoB
50 =

K ′2Nx + 3(1 +
√

1 + 2K ′2Nx)−
√
−4 + (K ′2Nx + 3(1 +

√
1 + 2K ′2Nx))2

2K ′3
,

IChoB
50 =

K ′2Nx + 3(1 +
√

1 + 2K ′2Nx) +
√
−4 + (K ′2Nx + 3(1 +

√
1 + 2K ′2Nx))2

2K ′3
.

(4.111)

Homodimeric RTK AB

Now, consider that the ways of forming the signalling complex L : γ : γ in

homodimeric RTK A and B models are possible. The chemical reaction scheme of

the combined model, called homodimeric model AB, is as follows:

γ + γ 
 γ : γ K2,
L+ γ : γ 
 L : γ : γ K3,
L+ γ 
 L : γ K ′3,
L : γ + γ 
 L : γ : γ K ′2.
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Writing the ordinary differential equations describing the system, we derive the
conservation equation

Nx = x+ [L : x] + 2[x : x] + 2[L : x : x], (4.112)

and the steady state equations

[x : x] = K2x
2,

[L : x] = K ′3Lx,

[L : x : x] = K ′3K
′
2Lx

2,

[L : x : x] = K3K2Lx
2,

(4.113)

where [X : Y ] denotes the concentration of complex X : Y . The existence of
a detailed-balanced steady state enforces conditions on the product of affinity
constants:

K2K3 = K ′2K
′
3. (4.114)

Combining the steady state relations and the conservation equation, we obtain
the following polynomial:

0 = −Nx + (1 +K ′3L)x+ 2K2(K3L+ 1)x2. (4.115)

The positive solution of this polynomial represents the number of unbound γ

chains at steady state:

x =
−1−K ′3L+

√
(1 +K ′3L)2 + 8NxK2(K3L+ 1)

4K2(K3L+ 1)
. (4.116)

Computation of the amplitude: The signalling function is defined by the
number of signalling complexes L : γ : γ formed at steady state as a function of
the ligand concentration:

σ(L) ≡ K3K2Lx
2 = K ′3K

′
2Lx

2. (4.117)

As in the case in the homodimeric model B, the signalling function of this model
does not attain its maximum when L → +∞ (in fact, σ(L) → 0 and a short
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numerical simulation shows that the dose-response curve seems to be bell-shaped).

Thus we need to compute the derivative of σ to compute its maximum (i.e., the

amplitude since σ(0) = 0). We want to find La such that

dσ

dL
(La) = 0, (4.118)

and the amplitude will be σ(La). Unfortunately, even with the use of a symbolic

computation software such as Mathematica (Wolfram Research, Inc., 2019), the

computation of La and the amplitude results in long and over-complex expressions

which are not useful for further analytic study or even for any computational use

(I provide the Mathematica notebook in Appendix E).

Computation of the EC50/IC50: Without the amplitude, we cannot derive

any explicit analytic expression for the EC50 and IC50. However, if we write A the

unknown amplitude of this model, we can reduce the computation of the EC50 and

IC50 to solving a polynomial of degree 3, supposing we obtained the amplitude

numerically. Indeed, by computing a Gröbner basis of polynomial (4.115) and the

additional equation

2K2K3Lx
2 −A = 0, (4.119)

considering L and x as variables, we obtain the following polynomial system:

0 = L3 + 2
−K2K3A

2 −K2K3N
2
x + A(K ′3 + 2K2K3Nx)

AK ′23
L2 (4.120a)

+
1 + 4K2(Nx −A)

K ′23
L− 2AK2

K3K ′23
,

0 = x+
K3K

′2
3 A(Nx −A)L2 + pL+ qA

2K2A(A(K ′3 −K3) +K3Nx)
, (4.120b)

where

p = 2A3K2K
2
3 − 2K2K

2
3N

3
x + 2AK3Nx(K

′
3 + 3K2K3Nx)

+ A2(−2K3K
′
3 +K ′23 − 6K2K

2
3Nx),

q = 2A2K2K3 +K3Nx(1 + 2K2Nx) + A(K ′3 −K3(1 + 4K2Nx)).
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Polynomial (4.120a) is of degree 3 so has at least one (and no more than three)
positive real root. By decreasing order of monomial degree, its coefficient signs are
(+, ?,+,−) with the second coefficient sign being unknown a priori. The roots of
polynomial (4.120a) are potential EC50 and IC50 expressions of the model. Only
roots that lead to a positive value of x (which is obtained by solving polynomial
(4.120b)) are actually EC50 and IC50. Since we have σ(0) = 0 and lim

L→+∞
σ(L) = 0,

we expect an even number of positive real roots of polynomial (4.120a) which lead
to a positive value of x (in fact exactly two because of the degree of polynomial
(4.120a)). Thus according to Descartes’rule (see Section 2.6.1) of sign, the second
coefficient of polynomial (4.120a),

−K2K3A
2 −K2K3N

2
x + A(K ′3 + 2K2K3Nx), (4.121)

must be negative.
Alternatively, the EC50 and IC50 can be found numerically by numerically solving

the equation σ(L∗) =
A

2
, making use of the analytic expression for σ. The largest

solution will be the IC50 and the smallest the EC50.
Note that in absence of closed-form amplitude expression, the analytic study is
very limited: the computation of the Gröbner basis does not show the dependency
on the parameters of the pharmacological quantities. Moreover, numerically solv-
ing polynomial (4.120a) might be difficult if the problem is ill-conditioned (see
example in Section 3.4)

Refining the upper bound for the amplitude: As equation (4.121) must be
negative, it provides an interval in which the amplitude A ranges. Indeed, equation
(4.121) is a polynomial of degree 2 in A with a negative leading coefficient. Thus
A has to range in interval (0, A−) ∪ (A+,+∞) where

A− =
1 + 2K ′2Nx −

√
1 + 4K ′2Nx

2K ′2
,

A+ =
1 + 2K ′2Nx +

√
1 + 4K ′2Nx

2K ′2
,

(4.122)
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are the roots of the polynomial defined by equation (4.121). By definition, the
amplitude has also to be smaller than Nx and we notice that A+ > Nx > A−.
Hence, A ∈ (0, A−). This interval, however, is only slightly more precise 1 than
the natural upper bound Nx (which is also the amplitude of model A). Since

A− − AhoB =
K ′2Nx +

√
1 + 2K ′2Nx −

√
1 + 4K ′2Nx

2K ′2
> 0,

the interval (0, A−) is too large to compare the amplitude of model AB with the
amplitude of model B.

4.5.3 Heterodimeric RTK models

We now study different ways of forming the heterodimeric RTK signalling complex,
composed of a primary chain γ, a secondary chain α and the ligand L, γ : α : L

(see Figure 4.15(a)). It can be formed in three different manners: (A) The ligand
binds to the dimerised receptor α : γ; or (B) the ligand binds first to the γ chain
before binding to the α chain; or (C) the ligand binds first to the α chain (see
Figure 4.15(b)). Two of these orders, or all of them, can also co-exist.

Heterodimeric RTK B and C

Let us consider the heterodimeric RTK model of Section 4.2.3, which we refer to
as heterodimeric RTK A. By permuting the α chain and the ligand in the chemical
reactions, I obtain the heterodimeric RTK B model. Its chemical reaction network
is as follows:

γ + L 
 L : γ K ′3,
L : γ + α 
 L : γ : α K ′2.

The steady state of this model is described by the following polynomial system:

0 = −Nx + (K ′3L+ 1)x+K ′3K
′
2Lxy,

0 = −Ny + y +K ′3K
′
2Lxy.

(4.123)

1It, of course, depends on the parameter values. But the difference between Nx and A− is
negligible (compared to Nx) for the parameter values used in the numerical simulations of this
section.
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αγ

L

(a) Signalling complex

γ α
γ : α

L

L : γ : α

L : αL : γ

(b) Model configurations

Figure 4.15: (a) The heterodimeric RTK signalling complex is the association of
the receptor (composed of a γ chain and a α chain) and the ligand L. (b) The
signalling complex (in yellow) can be formed in three manners corresponding to
three base models: the receptor is formed first and the ligand binds to the receptor
(heterodimeric RTK A model, blue path), the ligand binds first to the γ chain and
the α binds to the complex γ : L (heterodimeric RTK B model, green path) or
the ligand binds first to the α chain and the γ chain binds to the complex α : L
(heterodimeric RTK C, red path). The combined model heterodimeric RTK AB
follows blue and green paths, model heterodimeric RTK AC follows the blue and
red paths and the model heterodimeric BC follows the green and red paths. The
combined model heterodimeric RTK ABC follows the blue, red and green paths.
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Reorganising the polynomials by hand or computing a Gröbner basis, we obtain a

triangular system easier to solve:

0 = −Nx + (1 +K ′3L(1 +K ′2(Ny −Nx)))x+K ′2K
′
3L(K ′3L+ 1)x2,

0 = Nx −Ny − (1 +K ′3L)x+ y.
(4.124)

Solving the first polynomial and selecting the positive solution we obtain an

expression for the number of unbound γ chains at the steady state:

x =
−1−K ′3L(1 +K ′2(Ny −Nx)) +

√
∆

2K ′2K
′
3L(K ′3L+ 1)

, (4.125)

where we wrote ∆ ≡ (1 +K ′3L+K ′2K
′
3L(Ny−Nx))

2 + 4NxK
′
2K
′
3L(K ′3L+ 1). The

number of unbound α chains at steady state can be obtained through the second

polynomial knowing x.

Computation of the amplitude: The signalling function σ is the number of

signalling complexes L : γ : α as a function of the concentration of ligand:

σ(L) ≡ K ′3K
′
2Lxy. (4.126)

Note that polynomial system (4.123) gives K ′3K ′2Lxy = Nx − (1 + K ′3L)x. By

replacing x by its expression (Eq. (4.125)), σ can be re-written:

σ(L) =
1 +K ′3L(1 +K ′2(Ny +Nx))−

√
∆

2K ′2K
′
3L

. (4.127)

Since σ(0) = 0 the amplitude is defined as the maximum of σ. Additionally, since

we have
dσ

dL
=

σ

L
√
∆
> 0,

and know that σ is a bounded function by definition, the amplitude is:

AhetB ≡ lim
L→+∞

σ(L)

=
1 +K ′2(Ny +Nx)−

√
1 +K ′22 (Ny −Nx)2 + 2K ′2(Nx +Ny)

2K ′2
.

(4.128)
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Computation of the EC50: To find the EC50, let us compute a Gröbner basis
of the polynomial system (4.123) augmented by the equation

K ′3K
′
2Lxy −

AhetB

2
= 0. (4.129)

Making use of the software Macaulay2 (Grayson & Stillman), I obtain:

0 = L− 2AhetB

K ′3((AhetB)2K ′2 + 4NxNyK ′2 − 2AhetB(1 +K ′2(Nx +Ny)))
, (4.130a)

0 = y −Ny +
AhetB

2
, (4.130b)

0 = x−Nx + AhetB(
1

2
− 1

K2(AhetB − 2Ny)
). (4.130c)

The solution of equation (4.130a) yields the expression for the EC50 as a function
of the amplitude:

L =
2AhetB

K ′3 [(AhetB)2K ′2 + 4NxNyK ′2 − 2AhetB(1 +K ′2(Nx +Ny))]
. (4.131)

Let us note that the denominator of L is a polynomial of degree 2 in AhetB and
let us factorise it :

K ′3
[
(AhetB)2K ′2 + 4NxNyK

′
2 − 2AhetB(1 +K ′2(Nx +Ny))

]
= K ′2K

′
3

(
AhetB − b+

√
d

K ′2

)(
AhetB − b−

√
d

K ′2

)
.

(4.132)

where we wrote b = 1 +K ′2(Nx +Ny) and d = b2 − 4NxNyK
′2
2 . We can also use

these notation to describe the amplitude:

AhetB =
b−
√
d

2K ′2
. (4.133)

Replacing this expression into equation (4.132), we obtain:

K ′2K
′
3

(
AhetB − b+

√
d

K ′2

)(
AhetB − b−

√
d

K ′2

)
=

K ′3
4K ′2

(√
d− b

)(
−b− 3

√
d
)
.

(4.134)
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Finally, merging equations (4.131), (4.133) and (4.134) together, we obtain the
final expression for the EC50:

EChetB
50 =

4

K ′3

(
1 +K ′2(Nx +Ny) + 3

√
1 +K ′22 (Nx −Ny)2 + 2K ′2(Nx +Ny)

) .
(4.135)

The heterodimeric RTK C model is the heterodimeric RTK B model where
the role of γ and α (which have the same mathematical role) is interchanged. The
chemical reaction scheme is as follows:

L+ α 
 L : α K ′′3 ,
L : α + γ 
 L : γ : α K ′′2 .

We obtain the amplitude and EC50 expression of this model by replacing K ′2
and K ′3 in the corresponding expressions of model B by K ′′2 and K ′′3 (note that
these expressions were already symmetric in Nx and Ny). Thus by analogy
with heterodimeric RTK model B, the expressions of the amplitude and EC50 of
heterodimeric RTK model C are:

AhetC =
1 +K ′′2 (Ny +Nx)−

√
1 +K ′′22 (Nx −Ny)2 + 2K ′′2 (Nx +Ny)

2K ′′2
, (4.136)

and

EChetC
50 =

4

K ′′3

(
1 +K ′′2 (Nx +Ny) + 3

√
1 +K ′′22 (Ny −Nx)2 + 2K ′′2 (Nx +Ny)

) .
(4.137)

Heterodimeric RTK AB and AC

Consider now that the signalling complex can be formed in two different ways,
following the orders of models heterodimeric RTK A and homodimeric RTK B.
The chemical reaction scheme is as follows:

γ + α 
 γ : α K2,
L+ γ : α 
 L : γ : α K3,
γ + L 
 L : γ K ′3,
L : γ + α 
 L : γ : α K ′2.
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Writing the steady state equations, the positive detailed-balanced steady state

only exists if the following condition is enforced:

K3K2 = K ′3K
′
2. (4.138)

Combining the conservation and steady state equations with the detailed balance

constraint, we obtain the following polynomial system which describes the model:

0 = −Nx + (1 +K ′3L)x+K2xy +K3K2Lxy,

0 = −Ny + y +K2xy +K3K2Lxy.
(4.139)

We compute a Gröbner basis of these two polynomials (or the polynomials are

simple enough to be reorganised by hand) and obtain the following triangular

system:

0 = −(1 +K ′3L)Ny + [1 +K ′3L+K2(1 +K3L)(Nx −Ny)]y +K2(1 +K3L)y2,
(4.140a)

0 = Ny −Nx + (1 +K ′3L)x− y. (4.140b)

We select the positive solution of the Gröbner basis to obtain the number of

unbound α chains (y) and γ chains (x) per cell at the steady state:

y =
−[1 +K ′3L+K2(1 +K3L)(Nx −Ny)] +

√
∆

2K2(K3L+ 1)
,

x =
y −Ny +Nx

1 +K ′3L
,

(4.141)

where we wrote

∆ = (1 +K ′3L)2 +K2
2(1 +K3L)2(Nx−Ny)

2 + 2K2(K3L+ 1)(K ′3L+ 1)(Nx +Ny).

Computation of the amplitude: The signalling complex is L : γ : α and so

the signalling function is defined as:

σ(L) ≡ K3K2Lxy = K ′3K
′
2Lxy. (4.142)
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One can notice that

K2xy =
K2y(y −Ny +Nx)

1 +K ′3L

=
K2(1 +K3L)y2 +K2(1 +K3L)(Nx −Ny)y

(1 +K ′3L)(1 +K3L)

=
(1 +K ′3L)(Ny − y)

(1 +K ′3L)(1 +K3L)
.

The last simplification came from polynomial (4.140a). Thus, σ can be re-written
as

σ(L) =
K3L

1 +K3L
(Ny − y). (4.143)

Since σ(0) = 0, the amplitude is the maximum of σ. Let us prove that the
amplitude is the limit of σ when L→ +∞. We first observe that:

Proposition 99. σ is a monotonically increasing function.

Proof. Notice that

d(Ny − y)

dL
=

(K3 −K ′3)(Ny − y)

(1 +K3L)
√
∆

. (4.144)

Hence,
dσ

dL
=
K3(Ny − y)

(1 +K3L)2
+

K3L

1 +K3L

d(Ny − y)

dL

=
K3(Ny − y)√
∆(1 +K3L)2

((K3 −K ′3)L+
√
∆).

(4.145)

If K3 ≥ K ′3, then
dσ

dL
> 0 and the proof is finished. If K ′3 > K3, let us prove that

the term (K3 −K ′3)L+
√
∆ is always positive. Suppose (K3 −K ′3)L+

√
∆ ≤ 0,

√
∆ ≤ (K ′3 −K3)L =⇒ ∆ ≤ (K ′3 −K3)2L2

⇐⇒ aL2 + bL+ c ≤ 0,

where

a = K2
2K

2
3(Nx −Ny)

2 + 2K3K
′
3K2(Nx +Ny) +K3(2K ′3 −K3),

b = 2(K ′3 +K2
2K3(Nx −Ny)

2 +K2(K3 +K ′3)(Nx +Ny),
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c = 1 +K2
2(Nx −Ny)

2 + 2K2(Nx +Ny).

The three coefficients are positive because 2K ′3 > K3 by hypothesis, so the
polynomial aL2 + bL+ c does not have any real root. Since its leading coefficient
a is positive, aL2 + bL+ c > 0. This is a contradiction. Thus, (K3 −K ′3)L+

√
∆

is always positive.

Since σ is an increasing bounded (by definition) function, its maximum is

reached when L→ +∞. The limit of y when L→ +∞ is

lim
L→+∞

(y) =
−K ′3 −K2K3(Nx −Ny) +

√
∆∞

2K2K3

, (4.146)

where

∆∞ = K ′23 +K2
3K

2
2(Nx −Ny)

2 + 2K2K3K
′
3(Nx +Ny).

Thus the amplitude is

AhetAB ≡ K ′3 +K2K3(Nx +Ny)−
√
∆∞

2K2K3

. (4.147)

Finally, since we have K2K3 = K ′2K
′
3, the amplitude can be re-written and we

obtain the same expression as the amplitude of heterodimeric model B:

AhetAB = AhetB =
1 +K ′2(Ny +Nx)−

√
1 +K ′22 (Ny −Nx)2 + 2K ′2(Nx +Ny)

2K ′2
.

(4.148)

Computation of the EC50: The EC50 is obtained by finding L∗ such that

σ(L∗) =
AhetAB

2
. We compute a Gröbner basis of the polynomial system (4.139)

augmented with the equation

K3K2Lxy −
AhetAB

2
= 0, (4.149)

and consider x, y and L as variables. For simplification of the notation, we write

the amplitude AhetAB = A in the following system. We obtain a new system of
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polynomials:

0 = L2 +
2A(−1−K2(Nx +Ny) + AK2)

p
L+

K2A
2

K3p
, (4.150a)

0 = y − p

2AK2

L+
2−AK2 + 2K2Nx

2K2

, (4.150b)

0 = x+
K2(A− 2Ny)p

Aq
L+

r

q
, (4.150c)

where

p = A2K2K3 + 4K2K3NxNy − 2A(K ′3 +K2K3(Nx +Ny)),

q = 2K2(A(K ′3 −K3) + 2K3Ny),

r = A2K2K3 − 2A(K3 −K ′3 + 2K2K3Ny) + 4K3Ny(1 +K2Ny).

We first show a required result.

Proposition 100. p is always a positive quantity.

Proof. Indeed, p is a polynomial of degree 2 in A which has two positive real roots
according to Descartes’rule of sign, and a positive leading coefficient. Its roots are

A+ =
K ′3 +K2K3(Nx +Ny) +

√
∆∞

K2K3

,

A− =
K ′3 +K2K3(Nx +Ny)−

√
∆∞

K2K3

= 2AhetAB.

(4.151)

Thus since p is always evaluated at the amplitude AhetAB defined in equation
(4.147) and AhetAB < A− < A+, we have p > 0 for all parameter values.

Polynomial (4.150a) admits two roots:

L1 = A
1 +K2(Nx +Ny −A) +

√
∆ec

p
,

L2 = A
1 +K2(Nx +Ny −A)−√∆ec

p
,
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where

∆ec = 1 +K2
2(Nx −Ny)

2 + 2K2(Nx +Ny) +
2K2(K ′3 −K3)

K3

A.

Note that the expressions of L1 and L2 were simplified knowing that A and p

are positive. The two roots are positive (proof by Descartes’rule and by noting

that the amplitude is always lower than Nx or Ny by definition). The EC50 is

the positive root of polynomial (4.150a) which leads to positive values of y and x

(defined by polynomials (4.150b) and (4.150c), respectively). Evaluating (4.150b)

at L1 and L2 yields

yL=L1 =
−1−K2(Nx −Ny) +

√
∆ec

2K2

> 0,

yL=L2 = −1 +K2(Nx −Ny) +
√
∆ec

2K2

< 0.

Hence,

EChetAB
50 = AhetAB

1 +K2(Nx +Ny − AhetAB) +
√
∆ec

p
, (4.152)

where p = (AhetAB)2K2K3 + 4K2K3NxNy − 2AhetAB(K ′3 +K2K3(Nx +Ny)).

We define the heterodimeric model AC by combining the models A and C.

Model AC is model AB in which the roles of α and γ are interchanged. The

chemical reaction scheme is as follows:

γ + α 
 γ : α K2,
L+ γ : α 
 L : γ : α K3,
α + L 
 L : α K ′′3 ,
L : α + γ 
 L : γ : α K ′′2 .

From a purely mathematical point of view, models AB and AC are identical.

Thus, by replacing K ′2 and K ′3 by K ′′2 and K ′′3 , respectively, in the amplitude and

EC50 expressions of the previous model (which were already symmetric in Nx and
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Ny), we obtain the amplitude and EC50 expressions of model AC:

AhetAC = AhetC =
1 +K ′′2 (Ny +Nx) +

√
1 +K ′′22 (Nx −Ny)2 +K ′′2 (Nx +Ny)

2K ′′2
,

(4.153)

EChetAC
50 = AhetAC

1 +K2(Nx +Ny − AhetAC ) +
√
∆ec

p
, (4.154)

where

∆ec = 1 +K2
2(Ny −Nx)

2 + 2K2(Nx +Ny) +
2K2(K ′′3 −K3)

K3

AhetAC ,

p = (AhetAC )2K2K3 + 4K2K3NxNy − 2AhetAC (K ′′3 +K2K3(Nx +Ny)).

Heterodimeric RTK BC

Consider now the case in which the signalling complex can be formed following the

orders of models B and C. The chemical reaction scheme of model heterodimeric

RTK BC is:
α + L 
 L : α K ′′3 ,
L : α + γ 
 L : γ : α K ′′2 ,
γ + L 
 L : γ K ′3,
L : γ + α 
 L : γ : α K ′2.

A positive detailed-balanced steady state only exists if we enforce the following

constraint on the product of affinity constants:

K ′3K
′
2 = K ′′3K

′′
2 . (4.155)

Combining steady state and conservation equations, we obtain the following

polynomial system describing the model BC:

0 = −Nx + (1 +K ′3L)x+K ′3K
′
2Lxy,

0 = −Ny + (1 +K ′′3L)y +K ′3K
′
2Lxy.

(4.156)
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This polynomial system can be reorganised (by hand or by computing a Gröbner

basis) into the following triangular system:

0 = −(1 +K ′3L)Ny + [1 +K ′′3L (4.157a)

+K ′3L(1 +K ′′3L+K ′2(Nx −Ny))]y +K ′2K
′
3L(1 +K ′′3L)y2,

0 = −Nx +Ny + x(1 +K ′3L)− y(1 +K ′′3L). (4.157b)

Solving polynomial (4.157a) and selecting the positive solution, we obtain an

expression for the number of unbound α chains per cell at steady state y:

y =
−1−K ′′3L−K ′3L(1 +K ′′3L+K ′2(Nx −Ny)) +

√
∆

2K ′2K
′
3L(1 +K ′′3L)

, (4.158)

where

∆ = [1+K ′′3L+K ′3L(1+K ′′3L+K ′2(Nx−Ny))]
2 +4K ′2K

′
3L(1+K ′′3L)(1+K ′3L)Ny.

The number of unbound γ chains at steady state is given by

x =
Nx −Ny + (1 +K ′′3L)y

1 +K ′3L
. (4.159)

The number of signalling complexes L : γ : α as a function of the ligand dose

defines the signalling function σ:

σ(L) ≡ K ′3K
′
2Lxy. (4.160)

One can notice that

K ′3K
′
2Lxy =

K ′2K
′
3L(1 +K ′′3L)y2 +K ′3K

′
2Ly(Nx −Ny)

1 +K ′3L

=
(1 +K ′3L)Ny − (1 +K ′3L)(1 +K ′′3L)y

1 +K ′3L
.

The last step comes from polynomial (4.140a). Hence, σ can be re-written in a
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simpler expression:
σ(L) = Ny − (1 +K ′′3L)y. (4.161)

Computation of the amplitude: From equations (4.156), one can notice that
lim

L→+∞
σ(L) = 0 so the amplitude is not the limit of the signalling function at high

concentration. A short numerical simulation shows that the dose-response curve
is bell-shaped. This implies that the analytical expression of the amplitude has to
be computed through the derivative by finding La such that

dσ

dL
(La) = 0, (4.162)

and finally the amplitude is defined as

AhetBC ≡ σ(La). (4.163)

Unfortunately, Mathematica (Wolfram Research, Inc., 2019) cannot solve the

equation
dσ

dL
(La) = 0 (mostly due to the fact that

dσ

dL
is a long and complicated

expression (see Appendix F)).

Computation of the EC50: The EC50 computation can be reduced to the
computation of zeros of a polynomial, by computing a Gröbner basis of the
polynomial system (4.156) augmented with the equation

2K ′3K
′
2Lxy −A = 0, (4.164)

where x, y, L are the variables. We wrote A the unknown amplitude of the model
to shorten the notation. We obtain:

0 = L2 +
p

2AK ′3K
′′
3

L+
1

K ′3K
′′
3

, (4.165a)

0 = y +
AK ′′3

K ′2(2Nx −A)
L+ A

(
1

2
+

K ′′3
K ′2K

′
3(2Nx −A)

)
−Ny, (4.165b)

0 = x+
AK ′′3

K ′2(2Ny −A)
L+ A

(
1

2
+

1

K ′2(2Ny −A)

)
−Nx, (4.165c)
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where

p = K ′2K
′
3(A− 2Ny)(2Nx −A) + 2A(K ′3 +K ′′3 ).

Positive real roots of polynomial (4.165a) that lead to y and x (obtained by

solving polynomials (4.165b) and (4.165c), respectively) positive are EC50 and

IC50 expressions of the model. Since σ(0) = 0 and lim
L→+∞

σ(L) = 0, we expect an

even number of solutions of the equation

σ(L∗) =
A

2
.

Since polynomial (4.165a) is of degree 2, it has no more than two roots. Thus, p

must be negative so the two roots are positive real numbers. The smallest root

corresponds to the EC50 and the largest root is the IC50 of model heterodimeric

RTK BC. We obtain these expressions as functions of the unknown amplitude A

(but which can easily be computed numerically):

EChetBC
50 =

−p−
√
p2 − 16A2K ′3K

′′
3

4AK ′3K
′′
3

,

IChetBC
50 =

−p+
√
p2 − 16A2K ′3K

′′
3

4AK ′3K
′′
3

,

(4.166)

where p was previously defined as

p = K ′2K
′
3(A− 2Ny)(2Nx −A) + 2A(K ′3 +K ′′3 ).

Attempt to refine the upper bound of the amplitude: By definition, the

amplitude is a positive number lower than Nx and Ny. Since p must be negative,

the amplitude must range in interval

AhetBC ∈ ((0, A−) ∪ (A+,+∞)) ∩ (0,min(Nx, Ny)]
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Figure 4.16: Plot of Ny 7→ A−−min(Nx, Ny) for Nx = 103, K ′2 = 17×10−3,K ′3 =
34× 1010M−1, K ′′3 = 102 ×K ′3. The function does not have a constant sign.

where A+ and A− are the roots of the polynomial of degree 2 with a negative
leading coefficient defined by p:

A+ =
K ′3 +K ′′3 +K ′2K

′
3(Nx +Ny) +

√
∆BC

K ′2K
′
3

,

A− =
K ′3 +K ′′3 +K ′2K

′
3(Nx +Ny)−

√
∆BC

K ′2K
′
3

,

(4.167)

where
∆BC = (K ′3 +K ′′3 +K ′2K

′
3(Nx +Ny))

2 − 4K ′22 K
′2
3 NxNy.

We haveA+ > Nx andA+ > Ny so the amplitude must range in (0, A−) ∩ (0,min(Nx, Ny)].
However, the sign of A− −min(Nx, Ny) is not constant (see Figure 4.16) so we
cannot refine the interval of the amplitude.

Heterodimeric RTK ABC

Finally, consider now the case in which the signalling complex can be assembled in
three different ways, following the formation orders of models heterodimeric RTK
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A, B and C. The chemical reaction scheme of model heterodimeric RTK ABC is:

γ + α 
 γ : α K2,
L+ γ : α 
 L : γ : α K3,
γ + L 
 L : γ K ′3,
L : γ + α 
 L : γ : α K ′2,
α + L 
 L : α K ′′3 ,
L : α + γ 
 L : γ : α K ′′2 .

This model presents two thermodynamic cycles and the existence of a positive

detailed-balanced steady state is conditioned by the following constraints on the

product of the affinity constants:

K3K2 = K ′3K
′
2 = K ′′3K

′′
2 . (4.168)

Model heterodimeric RTK ABC is described by the following polynomial system:

0 = −Nx + (1 +K ′3L)x+K2xy +K3K2Lxy,

0 = −Ny + (1 +K ′′3L)y +K2xy +K3K2Lxy.
(4.169)

Reorganising this polynomial system by hand or computing a Gröbner basis, the

system (4.169) can be re-written as a triangular system:

0 = −(1 +K ′3L)Ny + [1 +K ′3L+K ′′3L+K ′3K
′′
3L

2

+K2(1 +K3L)(Nx −Ny)]y +K2(1 +K3L)(1 +K ′′3L)y2,

0 = −Nx +Ny + (1 +K ′3L)x− (1 +K ′′3L)y.

(4.170)

We solve these polynomials and select the positive solution for y to obtain an

expression for the numbers of unbound α chains and γ chains at steady state (y

and x, respectively):

y =
−1−K ′3L−K ′′3L−K ′3K ′′3L2 −K2(1 +K3L)(Nx −Ny) +

√
∆ABC

2K2(1 +K3L)(1 +K ′′3L)
,

x =
Nx −Ny + (1 +K ′′3L)y

1 +K ′3L
,

(4.171)
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where

∆ABC = [1 +K ′3L+K ′′3L+K ′3K
′′
3L

2 +K2(1 +K3L)(Nx −Ny)]
2

+ 4K2(1 +K3L)(1 +K ′′3L)(1 +K ′3L)Ny.

Computation of the amplitude: The number of signalling complexes L : α : γ

as a function of the ligand concentration defines the signalling function:

σ(L) ≡ K3K2Lxy. (4.172)

From equations (4.169), we see that lim
L→+∞

σ(L) = 0 (in fact, a short numerical

simulation shows that the dose-response curve is bell-shaped), thus the amplitude
has to be calculated by computing the derivative of the signalling function. Unfor-
tunately, once again, the derivative of σ is an over-complex expression which is not
useful for further analytic computation. However, since we obtained an analytic
expression of σ, we can compute its maximum (the amplitude) numerically very
easily.

Computation of the EC50: If we write A the unknown amplitude of model
ABC (which can be obtained numerically), one can reduce the computation of
the EC50 and the IC50 to solving a polynomial of degree 3. Indeed, by computing
a Gröbner basis to the polynomial system (4.169) augmented with the equation

2K3K3Lxy −A, (4.173)

where we considered x, y and L as variables, we obtain the following new polyno-
mial system:

0 = L3 +
p

2AK ′3K
′′
3

L2 +
1 +K2(Nx +Ny −A)

K ′3K
′′
3

L− AK2

2K3K ′3K
′′
3

, (4.174a)

0 = y + f(Nx, K
′′
3 )L2 +

q

2AK2(A(K3 −K ′′3 )− 2K3Nx)
L+ g(Nx, K

′′
3 ), (4.174b)

0 = x+ f(Ny, K
′
3)L2 +

q − 2K3(Ny −Nx)p

2AK2(A(K3 −K ′3)− 2K3Ny)
L+ g(Ny, K

′
3). (4.174c)
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We wrote

p = −A2K2K3 − 4K2K3NxNy + 2A(K ′3 +K ′′3 +K2K3(Nx +Ny)),

q = −K2K
2
3A

3 + 2(−K ′3K ′′3 +K3K
′
3 +K3K

′′
3 +K2K

2
3(2Nx +Ny))A

2

− 4K3Nx(K
′
3 +K ′′3 +K2K3(Nx + 2Ny))A + 8K2K

2
3N

2
xNy,

and defined the functions:

f :(N,K) 7→ K3K
′
3K
′′
3 (A− 2N)

K2(A(K3 −K)− 2K3N)
,

g :(N,K) 7→ A2K2K3 + 4K3N(1 +K2N)− 2A(K3 −K + 2K2K3N)

2K2(A(K −K3) + 2K3N)
.

The signs of the coefficients of polynomial (4.174a) by decreasing degree are

(−, ?,+,−) as the sign of p seems unclear a priori. According to Descartes’ rule

of sign, it means that polynomial (4.174a) has one or three positive real roots.

However since the dose-response curve reaches 0 for L = 0 and L → +∞, the

equation σ(L∗) =
A

2
must have an even number of solutions. It results that p < 0

and polynomial (4.174a) admits two positive real roots which lead to y and x

(obtained by solving polynomials (4.174b) and (4.174c), respectively) positive.

The lowest root is the expression for the EC50 and the larger root is the expression

for the IC50 of model ABC. Though we can use Cardano’s formulæ to obtain

analytic expressions of these roots, the resulting expressions are complex and long,

which is not useful for further analysis.

Alternatively, since we obtained an analytic expression for σ, the EC50 and

IC50 can be found by numerically solving σ(L∗) =
A

2
.

Attempt to refine the upper bound of the amplitude: Similar to the

heterodimeric model BC, as p < 0, the amplitude must range in the interval

(0,min(Nx, Ny)] ∪ (0, A−) ∪ (A+,+∞), where

A+ =
K ′3 +K ′′3 +K2K3(Nx +Ny) +

√
∆BC

K2K3

,

A− =
K ′3 +K ′′3 +K2K3(Nx +Ny) +

√
∆BC

K2K3

,

(4.175)
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and ∆BC = (K ′3 +K ′′3 +K2K3(Nx +Ny))
2 − 4K2

2K
2
3NxNy have been defined in

the previous section (we remind the reader that we have K2K3 = K ′2K
′
3). Since

A+ − min(Nx, Ny) > 0,the amplitude ranges in the interval (0,min(Nx, Ny)] ∩
(0, A−). We demonstrated in the previous section that the function Ny 7→ A− −
min(Nx, Ny) does not have a constant sign (see Figure 4.16) and the amplitude
upper bound cannot be refined.

4.5.4 Discussion

In the previous sections, I attempted to compute the analytic expression of the
amplitude and EC50 of homodimeric and heterodimeric RTK models, ranging from
relatively simple systems to more complex models with several thermodynamic
cycles. Such expressions could not be obtained for most complex models as
new complications arose (such as non-sigmoidal dose-response curves, see Figure
4.17). I then sought to find tighter bounds for the amplitude of complex models,
with very little success. The analytic expressions that I managed to obtained
were not as interesting as I expected since they were not really comparable.
Nonetheless, I showed that the amplitude of heterodimeric models AB and AC
were equal to the amplitude of models B and C, respectively. To gain further
insights, I conduct a comprehensive numerical exploration which compares the
pharmacological quantities of the different models of this section for a broad range
of parameter values.

Comparing pharmacological quantities:

Plotting the dose-response curves of the different models studied in this section
yields the following observation (see Figure 4.17 for a fixed set of parameter
values): the amplitude of a combined model seems lower than the amplitudes
of the models the combined model stems from, both in the heterodimeric and
homodimeric cases. We also observe that the EC50 of model AB (resp. AC) seems
to range between the EC50 of models A and B (resp. A and C). However, the
value of the EC50 of heterodimeric model BC does not seem to fall between the
EC50 of models B and C. To numerically investigate these rough observations, I
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(a) Homodimeric RTK models
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(b) Heterodimeric RTK models

Figure 4.17: Dose response curves for homodimeric (a) and heterodimeric (b)
RTK models for the following parameters: K2 = 17× 10−3, K3 = 34× 1010M−1,

K ′3 =
K3

2
, K ′′3 = 3×K3, Nx = 3× 103 and Ny = 103.

implemented the following algorithm that I describe in the heterodimeric case
which is the most general configuration:

1. Define ranges for the parameters involved Nx, Ny, λ =
K ′3
K3

and µ =
K ′′3
K3

.

We call Lx, Ly, Lλ and Lµ the list of values of the parameters Nx, Ny, λ
and µ, respectively.

2. For each model X, X = A,B,C,AB,AC,BC or ABC, define the multi-
dimensional arrays AmpX , ECX and ICX (when relevant) such that the
element AmpXijkl (respectively, ECX

ijkl, ICX
ijkl) is the amplitude (respectively,

the EC50, the IC50) of model X when Nx = Lx[i], Ny = Ly[j], λ = Lλ[k]

and µ = Lµ[l], where we wrote L[p] the p-th element of the list L.

3. We define a model order [A,B,AB,AC,BC,ABC] and the model Xp will
define the p-th model of this ordered list. We then compare each array
AmpXp (respectively, ECXp , ICXp) with each other, element by element,
and create the matrixMamp (respectively,M ec,M ic) as follows. The element
Mamp

pq (row p, column q) (resp. M ec
pq , M ic

pq) is equal to:

• 1 if for all i, j, k, l, AmpXpijkl − Amp
Xq
ijkl > 0 (respectively, ECXp

ijkl −
EC

Xq
ijkl > 0, ICXp

ijkl − iC
Xq
ijkl > 0)
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• −1 if for all i, j, k, l, AmpXpijkl − Amp
Xq
ijkl < 0 (respectively, ECXp

ijkl −

EC
Xq
ijkl < 0, ICXp

ijkl − iC
Xq
ijkl < 0)

• 0 if for all i, j, k, l, AmpXpijkl − Amp
Xq
ijkl ≈ 0 (respectively, ECXp

ijkl −

EC
Xq
ijkl ≈ 0, ICXp

ijkl − iC
Xq
ijkl ≈ 0). Note that we say that a quantity

Q − P is ≈ 0 if |Q − P | < atol and
|Q− P |
|Q| < rtol where atol (resp.

rtol) is a given absolute (resp. relative) tolerance.

• 3 if none of the previous statements is true.

The diagonal of the matrices M will always be 0. For instance, the element

Mamp
12 will be equal to 1 if the amplitude of the model A is greater than the

amplitude of the model B for all the parameter values Lx, Ly, Lµ, Lλ.

We vary the parameters (Nx and λ for the homodimeric case, Nx, Ny, λ and µ

for the heterodimeric case) in the following ranges: Nx and Ny in the interval

[10, 106], λ and µ in the interval [10−2, 102]. The values of the absolute and relative

tolerances were determined after typical values for the amplitude, EC50 and IC50:

atol = 10−3M for the amplitude, atol = 10−17M for the EC50 and atol = 10−16M

for the IC50. For the three quantities, rtol = 10−3.

We show the matrices M for the homodimeric case in figure 4.18 and the results

for the heterodimeric cases in figure 4.19. In the homodimeric case, we observe:

AhoAB < AhoA , AhoB ,

EChoA
50 > EChoAB

50 > EChoB
50 ,

IChoAB
50 > IChoB

50 .

(4.176)
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(c) Comparison of IC50s

Figure 4.18: Amplitude (a), EC50 (b) and IC50 (c) comparison matrices for
the homodimeric RTK models. A case is light blue (value 1) (resp. dark blue
(value −1)) if the quantity (amplitude or EC50 or IC50) of the model of the row
is greater (resp. lower) than the quantity of the model of the column for all the
parameter values tested. The case is turquoise (value 0) if the quantity of the
model of the row and the model of the column are equal. The parameters chosen
were K2 = 17× 10−3, K3 = 34× 1010M−1.

In the heterodimeric case, we observe:

AhetC+B < AhetC , AhetB ,

AhetAB = AhetB < AhetA ,

AhetAC = AhetC < AhetA ,

AhetABC < AhetBC , AhetAB , AhetAC , AhetA , AhetB , AhetC ,

EChetA
50 > EChetAB

50 > EChetB
50 ,

EChetA
50 > EChetAC

50 > EChetC
50 ,

EChetAB
50 , EChetAC

50 > EChetABC
50 > EChetBC

50 .

(4.177)

In summary, as hinted, we observe that the amplitude of a combined model is
lower than the amplitude of its submodels. Unfortunately, we could not prove it
analytically. From a biological point of view, this observation is not surprising.
Indeed, in combined models, we allow the formation of intermediate complexes
composed of a chain (present in limited quantity) and the ligand (which is in
excess), such as L : γ or L : α. At any concentration of ligand, such intermediate
complexes are formed but not enough chains are present to complete them into
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(b) Comparison of EC50s

BC ABC

BC

ABC

0.0 nan

nan 0.0

(c) Comparison of IC50s

Figure 4.19: Amplitude (a), EC50 (b) and IC50 (c) comparison matrices for the
heterodimeric RTK models. A case is light blue (value 1) (resp. dark blue (value
−1)) if the quantity (amplitude or EC50 or IC50) of the model of the row is greater
(resp. lower) than the quantity of the model of the column for all the parameter
values tested. The case is turquoise (value 0) if the quantity of the model of the
row and the model of the column are equal. The case is blank if no pattern has
been detected (dummy value 3 in the algorithm description). The parameters
chosen were K2 = 17× 10−3, K3 = 34× 1010M−1.

signalling complexes. Thus, we always form fewer signalling complexes in a com-
bined model than in a base model. Our rough observation on EC50 seems also
confirmed but, once again, we do not have an analytic proof.

Conclusions

Overall, in this section, I computed analytic expressions for the amplitude and
EC50 of some of the models, which thus reduces computational cost and shows
parameter dependency. However, this section was mostly unsuccessful to solve
the initial issue. Apart from the amplitudes of heterodimeric models AB and
AC which were equal to the amplitudes of models B and C, respectively, we
were unable to compare (analytically) the combined model quantities to their
sub-models attributes. The reasons are numerous: we could not always compute
the amplitude or EC50 expressions because of the complexity of the model or
because the dose-response was not sigmoidal (thus, we could not make the useful
approximation that the limit of the signalling function is the amplitude). Finally,
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as already investigated in CRNT, combining models together is not a trivial
task as it is almost unable to conserve basic properties of chemical reaction
networks (Gross et al., 2020). Combining simple models in the hope of noticing a
relationship between the amplitude or EC50 of the combined and base models was
rather optimistic.

4.6 Summary and discussion

First illustrated by two examples in Chapter 3, I proposed, in this chapter,
a method to compute analytic expressions for two relevant pharmacodynamic
metrics, the amplitude and the EC50, for receptor-ligand systems. The method
starts with the computation of a Gröbner basis for the polynomial system of the
receptor-ligand system in steady state. As shown in the different examples of this
chapter (and previous chapter), the derivation of the amplitude is easier when the
maximum of the dose-response curve is attained at large ligand concentration (for
instance when the dose-response curve is a sigmoid). In that case, the amplitude
is the limit of the signalling function when the ligand concentration tends to
infinity. When the model is simple enough, the polynomial system, simplified by
the computation of the Gröbner basis, can be solved iteratively to obtain an ana-
lytic expression for the steady state. From these expressions, it is then relatively
straightforward to compute the amplitude (i.e., the limit of the signalling function
at large values of the ligand concentration) and the EC50. For more complex
models, getting such steady state expressions can be more challenging. In some
cases (see Sections 3.4 and 4.2.6), perturbation theory can be used to derive the
expression for the amplitude. Computing another Gröbner basis can dramatically
simplify the calculation of the EC50, and in turn display how it depends on the
parameters of the model.
However, solving the computed Gröbner bases is not always possible as one may
obtain large degree polynomials, depending on the systems’ complexity. I tried to
circumvent this issue, in Section 4.5, by investigating the relationship between
the amplitude and EC50 of models and their sub-models. This work introduced a
lot of new challenges such as the computation of amplitudes when the maximum
response is not the asymptotic behaviour of the dose-response curve. For instance,
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the computation of the maximum for bell-shaped dose-response curves (which has
been done for simple models in Refs. Douglass Jr et al. (2013); Mack et al. (2008))
may involve the computation of the derivative of the signalling function, which can
be laborious even with the use of symbolic software, as demonstrated in Section
4.5. Finally, the method of Section 4.1 often requires additional mathematical
tools or knowledge, such as perturbation theory, which makes it rather a challenge
to be used by those who are not mathematically trained. In spite of the (some-
times, complicated) calculations that the method requires, I believe that analytic
expressions of the pharmacological metrics characterising simple receptor-ligand
systems may provide significant advantages when studying such biological systems.

I also introduced a family of receptor-ligand systems, called SRLK, in which
the signalling complex, composed of a kinase, a ligand and n trans-membrane
sub-unit chains, is built sequentially. These models could also form “dummy” and
decoy complexes, similarly to the IL-7R models of Chapter 3, which the SRLK
family encompasses. By manipulating the polynomials describing the SRLK
models, I was able to derive an analytic expression of the amplitude under the
no allostery assumption. I also showed that the maximum of the dose-response
curve for both the IL-7R models of Chapter 3 (and the trimeric receptor model of
Section 4.2.6) was indeed the amplitude of the models. Despite relatively strong
assumptions, I believe that the SRLK approach can be used to model a broad range
of biochemical systems, such as receptor competition in interleukin signalling. The
analytic expressions obtained for the amplitude could improve our understanding
of biological mechanisms requiring a fine tuning of cytokine signalling such as
cancer treatment (Spolski et al., 2017) or cytokine storm control (Fajgenbaum
& June, 2020; Savarin & Bergmann, 2018). I showed in Section 4.3.4 how the
SRLK models can account for the competition for the gamma chain between the
IL-2 family of receptors and the competition for receptor components between
the IL-12 family of receptors. However, many receptors signal through different
configurations. IL-35, for instance, can signal through homodimerisation of gp130
or IL-12Rβ2 (Collison et al., 2012). It has been shown that IL-6, a cytokine
implied in cytokine storms (Chen et al., 2021; Fajgenbaum & June, 2020), signals
through an hexameric structure composed of two IL-6Rα chains and two gp130
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molecules (Boulanger et al., 2003). Furthermore, it seems that the ligand IL-6 first
binds to the IL-6Rα chain before any association with gp130 (Boulanger et al.,
2003). Thus, one could imagine other general receptor models that may involve
any of the following: 1) homo-oligomerisation (when two trans-membrane chains
Xi are identical), 2) other orders of signalling complex formation (non-sequential
orders or for instance, if the ligand is not the final sub-unit to be bound), 3)
multiple kinases (including kinases binding to other sub-unit chains, such as JAK1
which binds to IL-7Rα (Park et al., 2019)), or 4) a more detailed JAK-STAT
pathway (most cytokine receptors activate multiple STAT molecules, whose copy
numbers tune the immune response elicited (Lin & Leonard, 2019)).

Conclusion of Chapters 3 and 4

In the current and prior chapters, I computed the analytic expression of the
amplitude and EC50 for specific receptor-ligand models, but also for general families
of such systems, such as SRLK models in Section 4.3. Analytic expressions for the
amplitude and the EC50 offer mechanistic insight for the receptor-ligand systems
under consideration, allow one to quantify the parameter dependency of these
two key variables, and can facilitate model validation and parameter exploration
as illustrated in great detail in Chapter 3. This work demonstrated that, while
being commonly considered as univariate functions of the ligand concentration,
the amplitude and EC50 are, instead, multivariate functions, highly depending
on the abundances of every protein composing the signalling receptor, and even,
sometimes, protein abundances of other receptors. The results of this chapter also
showed that the receptor architecture can have a great influence on these two key
pharmacological quantities. Indeed, we demonstrated that the quantitative effects
of receptor chain upregulation can be vastly different, depending on the elements
of a receptor’s signalling core. This study provides a theoretical and quantitative
framework with which to interpret the potential functional significance of receptor
up/downregulation during lymphocyte differentiation (Kalia et al., 2010; Voisinne
et al., 2015), oncogenesis (Du & Lovly, 2018) or drug treatment (Vogel et al.,
2016).
With this work I hope to have initiated, or renewed, an interest for the algebraic
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analysis of receptor-ligand systems. Finally, I believe the results presented in these
chapters are a first step to account for the variability of receptor expression levels
when designing and studying receptor-ligand models (both from an experimental
and mathematical perspective) (Cotari et al., 2013b; Farhat et al., 2021; Gonnord
et al., 2018; Ring et al., 2012).

216



Chapter 5

Agent-based models of the
competition for IL-2 between T regs
and self-activated T cells

5.1 Introduction

The immune system is a “team effort” which involves many different cells working
together to ensure proper defence against pathogens (Sompayrac, 2019). In home-
ostasis (in absence of pathogens/threat), key cell populations must be maintained
to ensure a prompt and appropriate immune response when under attack. This
means being able to identify invaders (i.e., discriminate between proteins present
naturally in the body (self-peptides) and non-self proteins) and scale the response
to the pathogen type and dose. The maintenance of an effective immune system,
or its response to a pathogen, results from the coordination of each cell’s behaviour,
which depends on the cell’s local environmental conditions (protein stimuli, space
for division, . . .) and cell’s attributes (receptor expression level, receptor structure,
exhaustion level, . . .). The previous two chapters have focused on understanding
how a cell’s response to a given ligand depends on the expression level of its
receptor. I demonstrated that, depending on the receptor structure, the individual
cell’s response can greatly vary (and sometimes in a non-intuitive manner) when
increasing the cell’s receptor (or receptor chain) expression levels. This variability
in an individual cell’s response may modulate the overall cell population dynamics
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and, thus, be an essential mechanism that gives the immune system its flexibility.
For instance, the competition for IL-2 between cells that express various levels
of IL-2R is one of the key factors to switch from homeostasis (the resting state
in the absence of pathogen) or a local inflammation, to a more global immune
response (Amado et al., 2013; Oyler-Yaniv et al., 2017). This competition is also
essential, at homeostasis, to maintain an effective immune system. Let me explain
this mechanism in greater detail.

As mentioned in Chapter 1, T cells express special receptors, called T cell
receptors (TCRs), which can bind to bits of non-self proteins (foreign peptides),
thus recognising a specific pathogen. All the TCRs expressed by one cell are
identical. The body uses quasi-random somatic gene recombination to generate
a large number of T cells, each with a different TCR structure, to be able to
recognise the multitude of pathogens that naturally exist. However, this genetic
recombination does not always lead to efficient cells. Before being released in
the organs and lymph nodes (which we refer to as periphery), T cells mature in
the thymus where their TCRs are tested against a variety of self-peptides. Cells
with TCRs which fail to react to these peptides, or which react too strongly to
the test proteins, undergo apoptosis (assisted suicide) (McCaughtry & Hogquist,
2008). Cells with TCRs of intermediate binding affinity will survive, pursue
their development and eventually be released in the periphery (see Figure 5.1).
However, not all peptides that exist in the body (self-peptides) are present in
the thymus. Consequently, some cells, particularly sensitive to self-peptides,
escape the thymic selection and move to the periphery (Bouneaud et al., 2000;
Zehn & Bevan, 2006). These cells can become activated in absence of pathogens,
triggered by the binding of self-peptides to their TCRs: this mechanism is called
autoimmunity. In absence of regulation, these self-activated (or self-reactive) T
cells can proliferate and trigger an immune response: they try to eliminate the
self-peptide, causing pathological and/or functional damage to the organ or tissue
containing the target protein. This provokes clinical symptoms and is referred to
as autoimmune disease. Some autoimmune diseases are very common (Davidson
& Diamond, 2001; Marrack et al., 2001), such as type-1 diabetes (Atkinson et al.,
2014), rheumatoid arthritis (Weyand & Goronzy, 2021) or psoriasis (Bowcock &
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Thymus Periphery

SelectionPeptide test

X

Figure 5.1: T cell selection in the thymus: cells that react too poorly or too
strongly to self-peptides undergo apoptosis. Only cells that bind to self-peptides
with intermediate affinity are released in the periphery.

Krueger, 2005), and while most are not fatal (mainly thanks to treatments), they
might cause major disruptions in the host’s life. Other autoimmune diseases, such
as giant cell myocarditis (Rosenstein et al., 2000), can be lethal. Developing new
treatments for these conditions requires to understand the underlying mechanisms
of immune diseases, which necessitates biological experiments and the development
of mathematical models.

In healthy vertebrates, the regulation of self-activated T cells operates in
lymph nodes and spleen (both places are referred to as secondary lymphoid or-
gan) which contain specialised T cells, called regulatory T cells (T regs)1. These
cells are mainly defined by the expression of the forkhead box P3 transcription
factor (Foxp3) and are essential to maintain immunological homeostasis: the

1In the rest of this thesis, we refer to as conventional T cell, any T cell that is not a regulatory
T cell.
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absence of T regs precipitates T cell-mediated autoimmune diseases in mice and
humans (Kim et al., 2007a; Lahl et al., 2007; Sakaguchi et al., 1995). T regs depend
on interleukin-2 (IL-2) for their survival (Abbas et al., 2018; Liu et al., 2015; Owen
et al., 2018) and, as expression of Foxp3 prevents the production of IL-2 (Amado
et al., 2013), they rely on IL-2 producing cells, such as self-reactive conventional
T cells, to maintain their population at homeostasis (Hemmers et al., 2019; Lee
et al., 2012; Owen et al., 2018). It is believed that, in a healthy individual, the
competition for IL-2 between self-activated T cells and T regs regulates the two cell
populations at homeostasis (Busse et al., 2010; Feinerman et al., 2010; Höfer et al.,
2012): T regs prevent the inflammation from spreading in the organ by controlling
the diffusion of IL-2 produced by self-reactive cells (Oyler-Yaniv et al., 2017), and
thus limit the proliferation of such cells; the production of IL-2 maintains the
population of T regs at physiological levels which prevents autoimmune diseases.
This competition is reinforced by the IL-2/IL-2R feedback dynamics: the binding
of IL-2 to its receptor induces the upregulation of IL-2Rα expression and inhibits
IL-2 secretion (for IL-2 producing cells) (Feinerman et al., 2010; Kim et al., 2006).
The competition for IL-2 between regulatory and self-reactive conventional T cells
is a nice and self-contained example of population dynamics (as IL-2 is produced
and consumed by T cells). Many mathematical models have been proposed to
describe this mechanism (Busse et al., 2010; Feinerman et al., 2010; Higuera et al.,
2017; Reynolds et al., 2014; Voisinne et al., 2015; Wong et al., 2021), but the
impact of cell-to-cell variability in receptor expression levels on the system was
never the primary focus. In addition to this competition between two T cell
populations, there exists a competition for IL-2 within the conventional T cell
population (Höfer et al., 2012). Conventional T cells that express more IL-2Rα
signal stronger than others. It leads them to express even more IL-2Rα and thus
achieve stronger signalling capabilities. At the same time, they produce less and
less IL-2. A continuum level of IL-2Rα within the conventional T cell popula-
tion may lead to a split between IL-2 consumers and producers (Höfer et al., 2012).

In this chapter, I investigate how the heterogeneity in IL-2 receptor expression
levels among the self-activated conventional T cell population affects the popu-
lation dynamics, and how, in turn, the population dynamics (and in particular
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cellular events such as death or division of a cell) impacts the IL-2R1 distribution
among the population. To take into account each cell’s individuality, agent-based
modelling is a suitable computational tool. However, agent-based models (ABMs)
tend to be complex (the models can have a lot of parameters, be spatio-temporal
and multi-scale, have multiple intricate rules...) and computationally intensive.
Consequently, ABMs can be hard to study and thus have the reputation to be
rather uninformative as they do not provide mechanistic insights. To alleviate
the problem, I propose, in this chapter, to mathematically describe simple agent-
based models of the competition for IL-2 within the activated conventional T cell
population.
This chapter starts with a deterministic two-attribute system which describes the
IL-2/IL-2R dynamics: a cell that consumes2 IL-2, upregulates its IL-2R expression
level. However, each cell is assumed to secrete IL-2 at a constant rate. I, first, anal-
yse this two-attribute system in the case of a population with a constant number
of cells. Later, stochastic cellular events, such as death, immigration/activation
or division, will be added to construct more complicated agent-based models. A
combination of mathematical analysis and numerical simulations is necessary to
understand how the population dynamics and the receptor distribution among
the conventional T cell population are related.

The models of this chapter describe interactions between events with timescales
of days or weeks (death and division of cells, modelled as independent stochastic
events) and receptor upregulation dynamics on timescales of minutes or hours
(modelled deterministically with a pair of differential equations for each cell).
The even faster timescale, of the release and re-absorption of IL-2 molecules,
is not explicitly modelled but replaced by the assumption that, summed over
activated conventional T cells, the total rate of IL-2 production is equal to
the total rate of consumption. Further discussion of parameter values will be

1In this chapter, we will not distinguish between IL-2R and IL-2Rα, as IL-2R deprived of
IL-2Rα has a low binding affinity to IL-2.

2In this chapter, I refer to as IL-2 absorption (or consumption) the whole (not modelled)
process of IL-2/IL-2R binding, receptor internalisation, signal transduction and receptor recycling.
We do not consider any cytokine or receptor degradation. Once ligand-bound, a receptor is
immediately internalised and recycled at the surface for another ligand to bind to.
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provided at the end of this chapter. A Python code of all the agent-based
models of the competition for IL-2 discussed in this chapter is available at https:
//github.com/leasta/ABM_thesis (more information on how the models are
simulated can be found in Appendix J).

5.2 Deterministic two-attribute dynamics

First, consider a population of N activated conventional T cells and assume
this number, N , to be constant. We define, for each cell, T ∈ {1, . . . , N}, two
time-dependent attributes: the current IL-2R expression level of the cell at time t,
denoted by rT (t), and the quantity of IL-2 the cell accumulated since it entered
the cell pool (here, the beginning of the simulation, t = 0) up to time t, denoted
iT (t). Thus, for each cell T, iT (t) is a monotonically increasing function of t.
Note that the cell’s attribute at time t, rT (t) (respectively, iT (t)) is a real-valued
quantity that is proportional to the number of receptors expressed (respectively,
number of molecules of IL-2 absorbed) by cell T . We will sometimes refer to rT (t)

as the number of receptors of the cell, by abuse of terminology1. The dimension
of the attributes, rT (t) and iT (t) will be denoted by [rT ] and [iT ]. Along with the
time-dependent attributes, iT (t) and rT (t), associated with individual cells, we
construct the population quantities I(t) and R(t) given by

I(t) =
N∑
T=1

iT (t), (5.1a)

R(t) =
N∑
T=1

rT (t), (5.1b)

which represent the total amount of IL-2 accumulated up to time t and total
number of receptors expressed at time t by the entire cell population, respectively.

1In the simplest interpretation, the variables rT and iT are dimensionless because both
are numbers of molecules. However, the justification for treating them as real numbers is not
simply that they take large values, but also by analogy with experimental measurements. Flow
cytometry assigns a fluorescence value to each cell that is proportional to the number of copies
of the molecule in question on that cell’s surface. Measurements of the number of molecules
of a given type inside an individual cell are also indirect. Fortunately, because the differential
equations (5.2) are linear in rT and iT , they hold regardless their dimension.
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5.2 Deterministic two-attribute dynamics

Each cell produces extra-cellular IL-2 with a constant rate p. That is, at each time,
t, pN IL-2 is released in the extra-cellular medium for all the cells to compete
for. We assume that each cell consumes IL-2 proportionally to its current IL-2R
expression level, rT (t), and that the entirety of the pN IL-2 produced is consumed
at each time t. Thus, at any time t, each cell, T, receives the fraction, rT (t)

R(t)
, of the

pN extra-cellular IL-2 available. In addition, each cell T upregulates its IL-2R
expression level proportionally to the quantity of IL-2 it accumulated up to time
t (iT (t)), with an upregulation rate u. Hence, the dynamics of the attributes of
one cell T , rT (t) and iT (t). can be described as the following system of ODEs:

diT
dt

= pN
rT
R
, (5.2a)

drT
dt

= uiT . (5.2b)

Note that by summing equation (5.2a) over the cell population, we recover the
quasi steady state approximation that the total rate of IL-2 production (pN) is
equal to the total rate of consumption:

∑
T

diT
dt

= pN. (5.3)

For each cell T , we have iT (0) = 0 and, to model the heterogeneity in receptor
expression level, we suppose that the initial value rT (0) is drawn from a log-normal
distribution with parameters m0 and σ0:

rT (0) ∼ logN(m0, σ
2
0).

A scheme of the model can be found in Figure 5.2. The only stochastic element of
this model is the initial condition of system (5.2) for each cell, T 1. The rest of
the two-attributes model is entirely deterministic and an analytic expression for

1From one simulation of the model to another, we have different initial conditions (drawn
from the log-normal distribution logN(m0, σ

2
0)) for each cell. However, for a given simulation of

the model, once the initial conditions fixed, the system is entirely deterministic: the receptor
dynamics of each cell is governed by (5.2).
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Figure 5.2: Scheme of the model in which the population size of self-activated
conventional T cells is constant (fully deterministic model): T cells produce
IL-2, which they consume proportionally to their current IL-2R expression level,
rT (t). They upregulate their IL-2R expression proportionally to the level of IL-2
consumed since their entrance in the cell pool (t = 0 here), iT (t).
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iT (t) and rT (t) can be found for any time t. Let us first determine a more explicit
expression for the population variable, R(t).

5.2.1 Determining the population variable R(t)

Since the total number of cells, N , is constant over time, one can easily differentiate
R twice. The first derivative, R′, is:

R′(t) =
N∑
T=1

drT
dt

(t)

= u

N∑
T=1

iT (t),

(5.4)

where we replaced
drT
dt

by its expression in (5.2). Since iT (0) = 0, we obtain the
initial value of R′:

R′(t = 0) = 0. (5.5)

From equation (5.3), we obtain the expression of the second derivative R′′:

R′′(t) = u
N∑
T=1

diT
dt

= upN.

(5.6)

Finally, by integrating (5.6), and because of (5.5), we obtain for all t:

R(t) =
upN

2
t2 +R0, (5.7)

where we wrote R(0) =
∑N

T=1 rT (0) = R0.

5.2.2 Analytic expressions of iT (t) and rT (t) for any cell T

Now that we obtained an explicit expression for R(t), we can differentiate equation
(5.2a). For any activated conventional T cell, T , we have

d

dt
(R
diT
dt

) = pN
drT
dt

⇐⇒ R
d2iT
dt2

+R′
diT
dt

= upNiT ,
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where we replaced
drT
dt

by its expression in equation (5.2b). The function iT (t)

thus satisfies the following system composed of an ODE and its initial condition: d2iT
dt2

+
upN

R

diT
dt
t− upN

R
iT (t) = 0

iT (0) = 0
. (5.8)

One can notice that the identity function i(t) = t is an obvious non-zero solution
of system (5.8). Suppose that i1 and i2 are solutions of (5.8). We define the
Wronskian W (i1, i2) of these two functions as, for all t,

W (i1, i2)(t) ≡ i1(t)i′2(t)− i′1(t)i2(t).

Because of the initial condition of system (5.8), the Wronskian is always equal to
0 (see Section 2.1). As a consequence, the solutions of (5.8) are linearly dependent
(Bocher, 1901) and for any cell T , for all t, we can write

iT (t) = KT t, (5.9)

where KT is a constant to be determined, a priori different for each cell T . Making
use of the above expression for iT and integrating equation (5.2b), we obtain an
analytic expression for rT (t). For any cell T , for any time t,

rT (t) =
uKT

2
t2 + rT (0). (5.10)

To determine the constant KT , we substitute the expression of rT (t), iT (t) and
R(t) in equation (5.2a) and obtain for any cell T and time t:

KT =
NpKTut

2 + 2rT (0)Np

uNpt2 + 2R0

. (5.11)

In particular, when t = 0, we obtain for any cell T ,

KT = pN
rT (0)

R0

. (5.12)

The constant KT thus represents the fraction of IL-2 consumed by the cell T
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Figure 5.3: Deterministic case: time evolution plots of the population variable,
R(t), alongside its theoretical expression (top); and (bottom) IL-2R expression
levels of 0.3% randomly chosen cells compared to the average theoretical expression

(red), r̄T (t) = r̄0

(
upN

2R0

t2 + 1

)
, where r̄0 = em0+

σ20
2 . The parameter values used for

this simulation are: N = 5× 103 cells, u = 10 [rT ]/[iT ]/day, p = 10 [rT ]/day/cell,
m0 = 1 and σ0 = 1. The time step of the simulation was ∆t = 1 days.

during the first absorption. Finally, substituting the expression of KT yields the

final expressions for iT (t) and rT (t). For any cell T and at any time t, we have

iT (t) = pN
rT (0)

R0

t, (5.13a)

rT (t) =
upN

2

rT (0)

R0

t2 + rT (0). (5.13b)

We simulated the model with 5000 cells and plotted R(t), and rT (t) for 0.3% of the

cell population1 as a function of time in Figure 5.3. Notice that rT (t) =
rT (0)

R0

R(t)

1The model was simulated with the same code (described in appendix J) as for the other
agent-based models that will be developed in this chapter, setting the cellular event rates (such
as death or division rate) to 0.
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at all t, so that
rT (t)

R(t)
is in fact constant over time. That is, each cell increases

its receptor expression while maintaining its initial proportion,
rT (0)

R0

, within the

population (see individual receptor trajectories in Figure 5.3 (bottom graph)).

5.2.3 Distribution of rT (t) and iT (t) at any time t

We can factorise iT (t) and rT (t) by rT (0):

iT (t) = rT (0)
pNt

R0

,

rT (t) = rT (0)(
upN

2R0

t2 + 1).

The term R0 is the total IL-2R expression level (sum over all T cells) at t = 0.
Though being a sum of random variables, R0 is a constant in each simulation of
the agent-based model1. Since rT (0) follows a log-normal distribution, log(rT (0))

follows a normal distribution. Thus, the logarithms of iT (t) and rT (t) are the sum
of a normally distributed variable and a constant:

log(iT (t)) = log(rT (0)) + log(
pNt

R0

) ∀t > 0,

log(rT (t)) = log(rT (0)) + log(
upN

2R0

t2 + 1) ∀t.
(5.14)

As a consequence, log(iT (t)) and log(rT (t)) are normally distributed. Hence,
for any conventional T cell, T , at any time t, iT (t) and rT (t) are log-normally

distributed with mean m0 + log

(
pN

R0

t

)
and m0 + log

(
upN

2R0

t2 + 1

)
, respectively:

iT (t) ∼ logN

(
m0 + log

(
pN

R0

t

)
, σ2

0

)
∀t > 0,

rT (t) ∼ logN

(
m0 + log

(
upN

2R0

t2 + 1

)
, σ2

0

)
∀t.

(5.15)

At any time t (only t > 0 for iT (t)), iT (t) and rT (t) distributions are the shifted
initial log-normal distribution of rT (0) (see Figure 5.4). We have iT (t = 0) = 0

1R0 is different from one simulation to another. However, for a given simulation, it is a
constant.

228



5.3 Hybrid dynamics with cell death (only)

10 1 101 103 105 107 109

IL-2R expression level per cell

0

200

400

600

800

1000
Nu

m
be

r o
f c

el
ls

t = 200, N = 5000

Initial distribution
Conventional T cells

Figure 5.4: Deterministic case: distribution of IL-2R expression level among the
cell population from the simulation of Figure 5.3 at t = 200 days. The distribution
(blue) is shifted to the right compared to the initial distribution (in grey).

for any cell T .

5.3 Hybrid dynamics with cell death (only)

In this section, we consider the previous deterministic two-attributes model and
introduce the first stochastic cellular event in the dynamics by now assuming
that T cells may die with death rate µ: the number of living cells may be said
to follow a pure death process. The model is recapitulated in Figure 5.5. Death
events occur at discrete times. The time between two successive death events is a
random variable drawn from an exponential distribution.

The number of cells, N(t), and the population variables R(t) and I(t) are now
stochastic time-dependent quantities and we will consider their ensemble averages,
which we denote using the overbar. Our first such quantity is the mean number
of activated T cells at time t, given by:

N̄(t) = N(0)e−µt. (5.16)
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Figure 5.5: Scheme of the agent-based model in which activated conventional T
cells which may die with death rate µ. Activated T cells produce and consume
IL-2, and upregulate their IL-2R expression level, according to the two-attributes
dynamics described in the previous section.
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Contrary to the computation conducted for the previous deterministic model,

this time, the differentiation of R(t) =

N(t)∑
T=1

rT (t) is troublesome as the number of

cells, N(t), is randomly changing over time. We can, however, by considering I(t)

alongside of R(t), calculate the corresponding expressions for Ī(t) and R̄(t).

5.3.1 Computation of Ī(t) and R̄(t)

During a small time interval, [t, t + ∆t], each cell has probability µ∆t of dying.

The probability that no cell dies is 1− µN(t)∆t. When a cell T dies, the IL-2 it

absorbed before its death, iT (t), is lost to the cell population. Thus, as ∆t→ 0,

for any t,

I(t+∆t) =


I(t) + pN(t)∆t+ O(∆t2) with probability 1− µN(t)∆t,
and for each cell T ,
I(t) + pN(t)∆t− iT (t) + O(∆t2) with probability µ∆t.

(5.17)

Thus, the ensemble average Ī(t+∆t) is given by

Ī(t+∆t) =
(
Ī(t) + pN̄(t)∆t

) (
1− µN̄(t)∆t

)
+
[
Ī(t) + pN̄(t)∆t

]
µN̄(t)∆t− Ī(t)

N̄(t)
µN̄(t)∆t+ O(∆t2)

= Ī(t) +
(
pN̄(t)− µĪ(t)

)
∆t+ O(∆t2).

That is, we obtain a differential equation for Ī:

dĪ

dt
= pN̄ − µĪ. (5.18)

Since I(0) = 0, its solution is

Ī(t) = pN(0)te−µt. (5.19)
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We proceed similarly for R(t). When a randomly chosen cell T dies, its IL-2
receptors are lost to the cell population. Thus as ∆t→ 0, for any t,

R(t+∆t) =


R(t) + uI(t)∆t+ O(∆t2) with probability 1− µN(t)∆t,
and for each cell T ,
R(t) + uI(t)∆t− rT (t) + O(∆t2) with probability µ∆t.

(5.20)
We obtain the following differential equation for R̄:

dR̄

dt
= uĪ − µR̄. (5.21)

Substituting the expression for Ī and solving the differential equation, we
obtain:

R̄(t) = (
upN(0)

2
t2 +R0)e−µt, (5.22)

where R0 = R(t = 0).
In this hybrid dynamics model, the average variable R̄(t) is equal to the corre-

sponding variable in the purely deterministic model multiplied by the exponential
in the mean population function (5.16).

5.3.2 Analytic expressions for iT (t) and rT (t)

In practice, the hybrid dynamics of each realisation of the model can be described
as intervals of deterministic dynamics interrupted by discrete events (here, an
event is the death of a cell). In the intervals between events, N(t) and R(t) are
constant and system (5.2) is valid.

However, how to link the expressions for iT (t) and rT (t), derived in equations
(5.13) and valid only during the small time interval between two population
stochastic event (death of a cell), and the continuous functions iT (t) and rT (t),
defined for the whole lifetime of cell T , remains unclear. Heuristically, we can
solve system (5.2) in which we replaced R(t) and N(t) by the average expression
R̄(t) and N̄(t), respectively:

diT
dt

= pN̄
rT
R̄
, (5.23a)
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drT
dt

= uiT , (5.23b)

with the same initial conditions:

iT (0) = 0,

rT (0) ∼ logN(m0, σ
2
0).

In that case, we can proceed similarly to Section 5.2. Differentiating equation
(5.23a), we obtain for each alive activated conventional cell, T :

d

dt
(R̄
diT
dt

) = pN̄
rT
dt

+ p
dN̄

dt
rT .

By replacing
drT
dt

by its expression in equation (5.23b), the previous equation is
equivalent to:

R̄
d2iT
dt2

+ R̄′
diT
dt

= upN̄iT − µpN̄rT , (5.24)

where R̄′ is the derivative of R̄. Isolating rT in equation (5.23a) yields:

rT =
R̄

pN̄

diT
dt
, (5.25)

which we substitute in equation (5.24) to obtain:

R̃e−µt
d2iT
dt2

+ R̃′e−µt
diT
dt
− upN̄iT = 0, (5.26)

where we defined for all t, R̃(t) ≡ upN(0)

2
t2 +R0 as the expression for R(t) in the

fixed population case. Finally, by replacing N̄ by its expression and simplifying
the exponential, we obtain the ordinary differential equation that describes iT
(during the lifetime of cell T ):

R̃
d2iT
dt2

+ R̃′
diT
dt
− R̃′′iT = 0, (5.27)

where R̃′′ is the second derivative of R̃. Considering the initial conditions, for
each cell T , iT (t) satisfies the differential equation obtained for iT (t) in the fixed
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Figure 5.6: ABM with death only: time evolution plots of the number of cells,
N(t), and its theoretical average expression, N̄(t) (top), population variable R(t)
alongside its theoretical average expression, R̄(t) (middle); and (bottom) IL-2R
expression level of 0.3% randomly chosen cells compared to the theoretical average

expression (red), r̄T (t) = r̄0

(
upN(0)

2R0

t2 + 1

)
, where r̄0 = em0+

σ20
2 . The parameter

values used for this simulation are: u = 10 [rT ]/[iT ]/day, p = 10 [iT ]/day/cell,
µ = 0.01 /day, m0 = 1 and σ0 = 1. The simulation started with N(0) = 5× 103

cells and the time step was ∆t = 1 day. In the bottom plot, a blue curve ends
when the corresponding T cell dies.
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population case (system (5.8)). The domain of definition of this system, however,
is the lifetime of cell T and not the whole simulation time. We solved this system
in Section 5.2. Hence, for any cell T at any time t (during its lifetime), we have
(see Figure 5.6)

iT (t) = pN(0)
rT (0)

R0

t, (5.28a)

rT (t) =
upN(0)

2

rT (0)

R0

t2 + rT (0). (5.28b)

As a consequence, rT (t) and iT (t) follow the distributions described in (5.15):

iT (t) ∼ logN

(
m0 + log

(
pN(0)

R0

t

)
, σ2

0

)
∀ 0 < t < toutT ,

rT (t) ∼ logN

(
m0 + log

(
upN(0)

2R0

t2 + 1

)
, σ2

0

)
∀ 0 ≤ t < toutT ,

where toutT is the time at which the cell T dies. Note that if the cell did not
die at the end of the simulation (at t = tmax), then toutT = tmax. Plotting the
distributions of IL-2R expression and accumulated IL-2 levels for each time step of
the simulation (and with the x-axis in log-scale), we observe normal distributions
moving to the right and flattening as the population of cells is going extinct (see
Figure 5.7 for the receptor distribution).
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Figure 5.7: ABM with death only: distribution of IL-2R expression level among
the cell population from the simulation of Figure 5.6 at t=100 (blue). The
receptor distribution is shifted to the right and flattened, compared to the initial
distribution (grey). At t = 100 days, there are 1888 cells left in the cell pool.

5.4 Death and activation hybrid system: two regimes
and a stochastic steady state

We introduce a second type of population stochastic event (see Figure 5.8): we

now suppose that new cells may enter the activated conventional cell pool, by

being activated from a naive state (not modelled)1. In combination with cell death

(death rate µ), this has the effect of driving the population to a stochastic steady

state.

5.4.1 Mathematical analysis

If new cells can enter the pool of activated conventional T cells with rate α, the

mean number of cells satisfies:

dN̄

dt
= µN̄ + α. (5.29)

1In classic branching processes theory, this activation event would be called immigration.
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Figure 5.8: Death and activation hybrid system: activated T cells produce and
consume IL-2. They also upregulate their IL-2R expression. New cells enter the
pool at rate α (activation from the naive state) and any cell may die with death
rate µ.
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This differential equation can be solved and we obtain the mean number of cells
at any time t:

N̄(t) =

(
N(0)− α

µ

)
e−µt +

α

µ
, (5.30)

where N̄(0) = N(0) is the initial number of cells in the activated pool. In the
steady state, there are on average N∞ ≡

α

µ
cells in the cell pool. We investigate

the properties of the population of cells in the steady state, starting with the
mean quantities Ī(t) and R̄(t).

Expressions for Ī(t) and R̄(t)

We proceed similarly to the previous model and consider a small time step interval
[t, t + ∆t]. During this time interval, each cell has probability µ∆t of dying. A
new cell, T , can enter the cell pool with probability α∆t. This cell, arriving at
tinT ∈ [t, t + ∆t] will receive a certain number of IL-2R receptors, rT (tinT ) = r0

T ,

drawn from the log-normal distribution logN(m0, σ
2
0), that has mean r̄0 = em0+

σ20
2 .

The probability that no cell dies or becomes activated is ρ = 1− µN(t)∆t− α∆t.
Thus, as ∆t→ 0, for any t,

R(t+∆t) =


R(t) + uI(t)∆t+ O(∆t2) with probability ρ,
R(t) + uI(t)∆t+ r0

T + O(∆t2) with probability α∆t,
for each cell T ,
R(t) + uI(t)∆t− rT (t) + O(∆t2) with probability µ∆t.

(5.31)
A new cell starts with no absorbed cytokine (iT (0) = 0), so the differential equation
for Ī(t), obtained in (5.18), remains unchanged. Thus, R̄(t) and Ī(t) satisfy the
following system of differential equations:

dR̄

dt
= uĪ − µR̄ + αr̄0, (5.32a)

dĪ

dt
= pN̄ − µĪ. (5.32b)

Let us now solve these differential equations to specify Ī(t) and R̄(t). Solving
the homogeneous equation,

dĪ

dt
= −µĪ,
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leads to the general solution

Ī(t) = KIe
−µt,

where KI is a constant to be determined. To find a particular solution of equation

(5.32b), we use the method of variation of parameters. We obtain:

K ′I(t)e
−µt = p

(
N(0)− α

µ

)
e−µt + p

α

µ
,

which by integration yields:

KI(t) = p

(
N(0)− α

µ

)
t+ p

α

µ2
eµt +K1,

where K1 is a constant to determine. Finally, considering the initial condition

Ī(0) = I(0) = 0, we derive a general expression for the average total quantity of

absorbed IL-2 at any time t:

Ī(t) =

(
p

(
N(0)− α

µ

)
t− pα

µ2

)
e−µt +

pα

µ2
. (5.33)

We now determine an expression for the average total receptor copy number R̄(t).

The general solution of the homogeneous equation,

dR̄

dt
= −µR̄,

is R̄(t) = KRe
−µt, where KR is a constant to determine. Making use of the method

of variation of parameters to find a particular solution of equation (5.32a), we

obtain:

K ′R(t)e−µt = uĪ(t) + αr̄0.

Substituting Ī(t) by its expression obtained in equation (5.33) gives:

K ′R(t) = u

(
p

(
N(0)− α

µ

)
t− pα

µ2

)
+ u

pα

µ2
eµt + αr̄0e

µt.
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Integration of K ′R(t) yields

KR(t) = u

(
p

(
N(0)− α

µ

)
t2

2
− pα

µ2
t

)
+ u

pα

µ3
eµt +

αr̄0

µ
eµt +K2, (5.34)

where K2 is a constant to determine. We have:

R̄(t) = KR(t)e−µt.

Finally, considering the initial condition R̄(0) = R(0) = R0, we find

K2 = R0 −
αr̄0

µ
− upα

µ3
,

and obtain an expression for R̄(t) at any time t:

R̄(t) =

[
pu

((
N(0)− α

µ

)
t2

2
− α

µ2
t

)
+R0 −R∞

]
e−µt +R∞, (5.35)

where R∞ is the mean value of R(t) at steady state:

R∞ =
α

µ

(
r̄0 +

up

µ2

)
. (5.36)

Computing iT (t) and rT (t)

The attributes of each cell T of the current cell pool satisfy, heuristically, the
following system of differential equations:

diT
dt

= pN̄
rT
R̄
, (5.37a)

drT
dt

= uiT . (5.37b)

This system is the same as for the previous models. However, the initial conditions
are not defined at t = 0 anymore but at the time the cell T enters the pool, tinT
(which can be 0 if the cell is present at the beginning of the simulation):

iT (tinT ) = 0,

rT (tinT ) ∼ logN(m0, σ
2
0).
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We can decouple system (5.37) and obtain:

R̄
d2iT
dt2

+ (R̄′ − R̄N̄
′

N̄
)
diT
dt
− upN̄iT = 0, (5.39a)

d2rT
dt2
− upN̄ rT

R̄
= 0. (5.39b)

We note that R̄(t) and N̄(t) are composed of an exponential and a constant term.
Thus, the exponential cannot be simplified and the differential equations cannot
be solved in the general case.

Two regimes

The computation of the average steady state value of the total number of IL-2R
(equation (5.36)) shows that

R∞
N∞

= r̄0 +
up

µ2
.

This ratio is the long-term average receptor expression level per cell. If

r̄0 �
up

µ2
,

then the average long-term receptor expression level of a cell during its lifetime
differs little from the value it was given when the cell entered the pool. On the
contrary if

r̄0 �
up

µ2
,

then on average, cells significantly upregulate their receptor expression during
their lifetime. These two regimes exhibit different dynamics that are only captured
by numerical simulations. We will see later that, in fact, only a minority of cells
live long enough to massively upregulate their receptor expression level. These
cells, however, are the main contributors of the population variable R(t).

In the following sections, I investigate the two regimes in greater details,
making use of numerical simulations and analytic results. For the simulations of
this section, I used a fixed time step ∆t = 1. For the parameter values considered,
this time step is small enough to not distort the dynamics (see Appendix H). Let
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us start with the egalitarian regime (case r̄0 �
up

µ2
) as it has the most intuitive

outcome.

5.4.2 Egalitarian regime

Suppose that the cells entering the activated conventional T cell pool express,
on average, r̄0 �

up

µ2
IL-2 receptors. In this regime, if r̄0 is big enough, we even

observe no receptor upregulation (see Figure 5.9; a receptor upregulation can be
observed for a smaller r̄0, see Appendix G). All cells consume IL-2 and upregulate
their IL-2R at the same speed (no trajectories are crossing each other in Figure
5.10). We simulate the model with N(0) = N∞. The average ensemble R̄(t)

reaches its steady state, R∞ (defined in equation (5.36)), rapidly. As illustrated
in Figure 5.9, we observe that R(t) and N(t) remain very close to their average
value R̄(t) and N̄(t). That is, R∞ is a good approximation of R(t) and N∞ =

α

µ
is a good approximation of N(t), at any time t.

Approximating N(t) and R(t) by their average steady state value to find
rT (t)

Setting R̄(t) = R∞ and N̄(t) = N∞ for all t, we can solve equation (5.39b). The

characteristic polynomial of this differential equation has two roots r∗ ≡
√
puN∞
R∞

and −r∗. Thus, the solution of the differential equation is of the form:

rT (t) = Aer
∗t +Be−r

∗t, (5.40)

where A and B are constants to be determined with the initial conditions. Let us
write r0

T the receptor expression level of cell T when it entered the pool at time
t = tinT . We write toutT the time at which this cell will die (toutT = tmax if the cell
did not die at the end of the simulation). For this cell, we have rT (tinT ) = r0

T and
drT
dt

(tinT ) = 0 which yields:

Aer
∗tinT +Be−r

∗tinT = r0
T ,

Aer
∗tinT −Be−r∗tinT = 0.

(5.41)
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Figure 5.9: Time evolution plots of the number of cells, N(t), and its theoretical
average expression, N̄(t) (top), population variable R(t) alongside its theoretical
average expression, R̄(t) (middle); and (bottom) IL-2R expression level of 0.3%
randomly chosen cells. The parameter values used for this simulation are: u = 10
[rT ]/[iT ]/day, p = 10 [iT ]/day/cell, α = 30 cells/day, µ = 0.01 /day, m0 = 20 and
σ0 = 1. The simulation started with N(0) =

α

µ
cells and the time step was ∆t = 1

day.

243



5. AGENT-BASED MODELS OF THE COMPETITION FOR IL-2
BETWEEN T REGS AND SELF-ACTIVATED T CELLS

0 200 400 600 800 1000
t

107

108

109

1010

1011

IL
-2

R 
ex

pr
es

sio
n 

le
ve

l

Figure 5.10: Individual receptor upregulation trajectories from the simulation
shown in Figure 5.9, reported to the cell’s activation time, tinT . No trajectories
are crossing each other: they all follow the expression obtained in equation (5.42),

that has mean r̄0 cosh(r∗t), where r̄0 = E(r0
T ) = em0+

σ20
2 .

Solving this system, we obtain A =
r0
T

2
e−r

∗tinT and B =
r0
T

2
er
∗tinT . Thus, for any

cell T and for all t ∈ [tinT , t
out
T ):

rT (t) = r0
T cosh

(
r∗(t− tinT )

)
. (5.42)

We can derive an expression for iT (t) from equation (5.37b) and obtain for any

cell T for all t ∈ [tinT , t
out
T ):

iT (t) =
r0
T r
∗

u
sinh

(
r∗(t− tinT )

)
. (5.43)

Figure 5.10 shows that the receptor upregulation dynamics of each cell does follow

the expression obtained in equation (5.42).
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5.4.3 Gerontocracy: the oldest cells deprive newer cells of
cytokine

Suppose now that the cells enter the activated conventional T cell pool with, on

average, r̄0 �
up

µ2
IL-2 receptors.

Distinguishing two cell cohorts

Suppose we simulate the model with time step ∆t from t = 0 to t = tmax. We start

the simulation with a certain number of cells that produce and consume IL-2, and

upregulate their receptor expression level. The cells that enter the pools at a time

t > 0 express a significantly lower number of receptors compared to the cells that

were present at the beginning of the simulation and had time to upregulate their

receptor expression level. The initial cohort is thus responsible for the majority of

the cytokine intake and deprives the newer cells of IL-2. As a consequence, these

newer cells cannot upregulate their receptor expression level. Once the last cell

of the initial cohort dies, let us say at t = t1, many cytokine molecules become

suddenly available to be consumed by the cells that entered the pool between

t = 0 and t = t1. These cells can now increase their receptor copy number and

start depriving subsequent cells of cytokine. Thus, at any time but t = 0, the cell

population is split in two cohorts: the new cohort and the old cohort. The cells

of the old cohort express high receptor expression levels and prevent the cells of

the new cohort from increasing their receptor copy number by hoovering all the

IL-2 produced. That is, we call this regime a gerontocracy. When the last cell of

the old cohort dies, we observe a cohort switch: the new cohort becomes the old

cohort, i.e., it will be composed of the oldest cells of the pool and will deprive the

newer cells (the fresh new cohort) of cytokine (see Figure 5.11). This split of the

cell population, between a cohort that express a high number of IL-2R and an

other cohort that express very few receptors, is consistent with the observations

of Höfer et al. (2012) mentioned in the introduction.
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Figure 5.11: Scatterplot, at t = 1010, of the receptor expression level of each cell
as a function of its date of activation (time at which it entered the cell pool, tinT ),
with joint distributions, in the gerontocracy regime. The vertical black dotted
line represents the time at which the last cohort switch occurred: cells which
joined the pool before this time belong to the old cohort (blue), cells that became
activated after this time constitute the new cohort (yellow). At the cohort switch,
cells of the previous new cohort (current old cohort) suddenly upregulated their
IL-2R expression level, thus creating a “discontinuity” in the scatterplot and a
bimodal receptor distribution (turquoise line on the right). As a consequence,
cells of the current old cohort express a much higher number of IL-2R than cells
of the new cohort. Each mode of the receptor distribution corresponds to the
IL-2R distribution of one cohort. When almost all the cells of the old cohort died,
the second mode is imperceptible. We indicated the initial IL-2R distribution in
grey. The simulation was conducted with the following parameter values: µ = 0.01
/day, u = 10 [rT ]/[iT ]/day, p = 10 [iT ]/day/cell, α = 30 cells/day, σ0 = 1, m0 = 1,
an initial population of N(0) =

α

µ
cells and a time step ∆t = 1 day.
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Figure 5.12: Time evolution plots of the number of cells, N(t), and its theoretical
average expression, N̄(t) (top); population variable R(t) alongside its theoretical
average expression, R̄(t) (middle); and (bottom) IL-2R expression level of about
0.3% randomly chosen cells. Cohort switches (indicated by vertical dashed purple
lines) coincide with R(t)’s sharp drops and the sudden receptor expression upregu-
lation of certain cells. The parameter values used for this simulation were: u = 10
[rT ]/[iT ]/day, p = 10 [iT ]/day/cell, α = 30 cells/day, µ = 0.01 /day, m0 = 1 and
σ0 = 1. The simulation started with N(0) =

α

µ
cells and the time step was ∆t = 1

day.
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Figure 5.13: Individual receptor upregulation trajectories from the simulation
shown in Figure 5.12, reported to the cell’s activation time, tinT .

Cohort switches occur regularly

Cohort switches occur regularly and generally coincide with sharp R(t)’s drops

and sudden upregulation of receptor expression in certain cells (see Figures 5.12

and 5.13). Indeed, when the last cell of the old cohort dies, R suddenly loses

its major contributor (resulting in a sudden decrease). When the new cohort

becomes the old cohort, cells of the recent old cohort suddenly upregulate their

IL-2R expression level (because of the sudden IL-2 abundance resulting from the

death of the cells that were the main consumers).

Since the old cohort follows a pure death process, its mean time to extinction,

τ̄ ≡ 1

µ

N∞∑
i=1

1

i
, (5.44)

is the average time length at which a cohort switch happens. The centred

distribution of cohort switch occurrences is a Gumbel distribution (see Section 2.7.2

for the definition and proof) with parameters m =
−γe
µ

and β =
1

µ
. The constant

γe is the Euler–Mascheroni constant. This distribution is illustrated in Figure 5.14.
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Figure 5.14: Normalised distribution of the time between cohort switches, τ , over
a simulation until tmax = 106 days, centred around the mean time to extinction

τ̄ =
1

µ

∑N∞
i=1

1

i
. The red dashed vertical line represents the average time of this

distribution, which is to be compared with τ̄ (as this line falls around the 0 of
the x-axis, the mean of this distribution is approximatively τ̄). This distribution

follows a Gumbel distribution Gumbel(m,β) with parameters m =
−γe
µ

and

β =
1

µ
. The simulation was conducted with the following parameter values:

µ = 0.01 /day, u = 10 [rT ]/[iT ]/day, p = 10 [iT ]/day/cell, α = 30 cells/day, σ0 = 1,
an initial population of N(0) =

α

µ
cells and a time step ∆t = 1 day.
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5.4.4 Additional investigations

In this section, I explore the transition between the two regimes, investigate what
happens if the initial cell distribution is wide, and study the receptor distribution
of the cell population over the whole simulation.

Bifurcation: when do we change from one regime to another?

We observed that this model has two different regimes, depending on whether
the typical cell entering the pool receives a IL-2R expression level much larger
or much lower than an average upregulation level

up

µ2
. A few questions remain

unanswered: what happens when r̄0 ≈
up

µ2
? Is the transition between the two

regimes gradual or do we observe a binary switch when r̄0 passes the threshold
up

µ2
? To investigate these issues, we compute the mean IL-2R expression level of

the old and new cohorts (r̄old and r̄new, respectively) at a certain time t∗ between
the last two cohort switches of the simulation, for different r̄0 values. We chose
this time to be t∗ =

t2 − t1
8

where t1 and t2 are the time of the penultimate and
last cohort switches of the simulation, respectively. The definition of t∗ was chosen
such that the old cohort contains enough cells at each simulation, so that r̄old
does not vary too significantly when repeating a simulation. In the egalitarian
regime (large r̄0), we anticipate these two means, r̄old and r̄new, to be very close.
On the contrary, in the gerontocracy regime (low r̄0), we expect the mean IL-2R
expression levels of the two cohorts to be clearly distinguishable. We numerically

computed r̄old and ¯rnew for 200 increasing values of r̄0 = em0+
σ20
2 (we varied m0

and fixed σ0 = 1), from 10 to 109 [rT ]/cell. For each r̄0 value, we repeated the
simulation 2000 times and averaged r̄old and r̄new over these occurrences. The
result is displayed in Figure 5.15. As expected, when r̄0 �

up

µ2
, the two means

are well distinct, showing that the cell population is divided in two cohorts. On
the contrary, when r̄0 �

up

µ2
, the two curves are superposed, meaning that the

two cohorts express similar levels of IL-2R. Around
up

µ2
, we can still distinguish

the two cohorts, though the difference in IL-2R expression levels is smaller. This
suggests that

up

µ2
is a good characteristic value to separate the two regimes but is

not a hard threshold: the transition between the two regimes is gradual. This is
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confirmed by short numerical simulations for r̄0 ≈ 2
up

µ2
, r̄0 ≈

up

µ2
and r̄0 ≈

up

75µ2

(see Appendix G). These simulations show that, as m0 decreases, the system
gradually starts to behave like in the gerontocracy regime: R becomes noisier
and an increasing number of individual rT trajectories (reported to their date of
activation) are crossing each other.

Larger initial standard deviation σ0

In the previous simulations, we fixed σ0 and varied m0 to explore the different

ranges of r̄0 = em0+
σ20
2 . However, not only is σ0 the major contributor of r̄0 but it is

also the main parameter that determines the width of the distribution (the variance
of a log-normal distribution with parameters m0 and σ0 is (eσ

2
0−1)e2m0+σ2

0). When
considering log(r̄0), σ0 is the parameter that determines the width of the normal
distribution. Let us investigate the impact of the standard deviation on the
dynamics.

I first repeated the computational regime transition analysis for larger fixed
values of σ0 (σ0 = 3 and 5), and obtained graphs (not shown) very similar to
Figure 5.15 (note that the first m0 values were negative to accommodate the lower
r̄0 values). At low r̄0, the average receptor expression levels of the two cohorts are
distinct, at high r̄0, the mean of the two cohorts are equal.

To investigate further the influence of σ0 on the dynamics, I simulated the
model for a low value of r̄0, determined by a negative m0 and a large σ0. For
instance, one could choose m0 = −2 and σ = 3, or m0 = −10 and σ0 = 5, which
both lead to r̄0 ≈ 12 [rT ]/cell, while choosing parameters such that

up

µ2
= 106

[rT ]/cell. The time evolutions of R(t) and the individual rT trajectories show
that the system seems to behave like in the gerontocracy regime (described when
σ0 = 1): namely, R(t) is noisy and the individual trajectories cross each others.
However, one can observe that the sharp drops of R(t) are more numerous than
when σ0 = 1 and seem uncorrelated from the cohort switches (see Figure 5.16).
The scatterplot (individual receptor copy number as a function of the time at
which the cell entered the pool, see Figure 5.17) shows that cohort switches are
smoother than when σ0 = 1: the receptor distribution is never bimodal and no
discontinuity (such as observed in Figure 5.11) is observed. Instead, when the last
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Figure 5.15: Regime transition graph: Mean number of receptors of the old

(blue) and new (yellow) cohorts as a function of r̄0 = e
m0+

σ2
0

2 . The curves represent
the mean over 2000 simulations of the mean number of receptors among a cell
cohort at t∗. The time t∗ was arbitrarily defined as

t2 − t1
8

where t2 is the time of
the last cohort switch of the simulation and t1 the time of the penultimate cohort
switch of the simulation. To obtain these graphs, the standard deviation of the
receptor distribution at activation was fixed at σ0 = 1. The initial mean number of
receptors, m0, was changed such that r̄0 varied between 10 and 109 [rT ]/cell. For
each value of r̄0, the simulation was run for the following parameters: tmax = 3000
days, ∆t = 1 day, µ = 0.01 /day, α = 30 cells/day, u = 10 [rT ]/[iT ]/day, p = 10

[iT ]/day/cell and N(0) =
α

µ
.
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cell of the old cohort dies, we observe a gradual split of the receptor distributions
of the two cohorts, thus explaining the two distinct means on the regime transition
graph (Figure 5.15). These two distributions, however, significantly overlap, which
keeps the whole distribution unimodal and almost unchanged.
I conjecture that, in this case, as the receptor distribution of each cohort is wide,
R(t) is more sensitive to the death of cells that expressed a high receptor level
than to the extinction of a whole cohort (like when σ0 = 1). Indeed, as illustrated
in Figure 5.17, some cells of the old cohort express about 109 receptors while
others express about 103 receptors. The death of a cell expressing about 109

receptors will have a greater impact on R(t) (and make more IL-2 available for
the other cells to compete for, resulting in a greater receptor upregulation of the
other cells) than the death of a cell with about 103 IL-2R. That is, if the first
cell dies, R(t) might suddenly decrease. However, if the second cell dies, even if
it is the last cell of the old cohort, we might not observe any significant change
in the dynamics, as there are other cells expressing much more receptors in the pool.

Now, for a large r̄0 (for instance m0 = 3, σ0 = 5, which yields r̄0 ≈ 5
up

µ2
with

the usual parameter values), the system seems to behave like in the egalitarian
regime (case σ0 = 1), though we observe some individual receptor trajectories
crossing each others (see Figure 5.18(b)). We also note that R(t) seems noisy
and underestimated (which will be discussed in the next paragraph). Despite a
large r̄0 value, we notice that the majority of cells start with a receptor expression
level much lower than

up

µ2
(see Figure 5.18(a)). Let us call the population of

cells expressing a high receptor level (rT (0)� up

µ2
) the dominant cohort. As new

cells with this characteristic are constantly created, the dominant cohort never
goes extinct. Thus, at any time, cells of the dominant cohort express a high
receptor level and prevent the other cells from upregulating their own receptor
level significantly. Indeed, cells that do not enter the cell pool with enough
receptors, will never increase their receptor expression enough to compete with
the cells of the dominant cohort. The high receptor level of cells of the dominant
cohort also ensures that R(t) is maintained around its theoretical value R∞: we
“mimic” the egalitarian regime observed when σ0 = 1. On average, both the old
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(b) Relative trajectories

Figure 5.16: (left) Time evolution plots of the number of cells, N(t), and its
theoretical average expression, N̄(t) (top), population variable R(t) alongside its
theoretical average expression, R̄(t) (middle); and (bottom) IL-2R expression level
of 0.3% randomly chosen cells. Cohort switches are indicated with the vertical
dashed purple lines. (right) Individual receptor upregulation trajectories from the
simulation, reported to the cell’s activation time, tinT . The mean of the expression
obtained in equation (5.42), r̄0 cosh(r∗t), is also plotted (red line). The parameter
values used for this simulation are: u = 10 [rT ]/[iT ]/day, p = 10 [iT ]/day/cell,
α = 30 cells/day, µ = 0.01 /day, m0 = −2 and σ0 = 3. The simulation started
with N(0) =

α

µ
cells and the time step was ∆t = 1 day.
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steady state

Figure 5.17: Scatterplot, at t = 1630, of the receptor expression level of each cell
as a function of its date of activation (time at which it entered the cell pool, tinT ),
with joint distributions, when σ0 = 3 and m0 = −2. The vertical black dotted
line represents the time at which the last cohort switch occurred: cells which
joined the pool before this time belong to the old cohort (blue), cells that became
activated after this time constitute the new cohort (yellow). In this configuration,
the IL-2R distribution (turquoise line) is unimodal, despite the distribution of the
two cohorts having distinct modes. These two distributions significantly overlap.
We indicated the initial IL-2R distribution in grey. The simulation was conducted
with the following parameter values: µ = 0.01 /day, u = 10 [rT ]/[iT ]/day, p = 10

[iT ]/day/cell, α = 30 cells/day, an initial population of N(0) =
α

µ
cells and a time

step ∆t = 1 day.
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Figure 5.18: (left) Time evolution plots of the number of cells, N(t), and its
theoretical average expression, N̄(t) (top), population variable R(t) alongside its
theoretical average expression, R̄(t) (middle); and (bottom) IL-2R expression level
of 0.3% randomly chosen cells. Cohort switches are indicated with the vertical
dashed purple lines. (right) Individual receptor upregulation trajectories from the
simulation, reported to the cell’s activation time, tinT . The mean of the expression
obtained in equation (5.42), r̄0 cosh(r∗t), is also plotted (red line). The parameter
values used for this simulation are: u = 10 [rT ]/[iT ]/day, p = 10 [iT ]/day/cell,
α = 30 cells//day, µ = 0.01 /day, m0 = 3 and σ0 = 5. The simulation started
with N(0) =

α

µ
cells and the time step was ∆t = 1 day.

and the new cohorts present similar receptor expression levels (as observed in
Figure 5.15), though huge disparities can be observed in each cohort (because
cells of the dominant cohort can belong to the new and the old cohorts).

As mentioned, I observe that if σ0 is too large (typically σ0 > 5), the model
clearly underestimates the population variable R(t) (its average value is lower
than its theoretical value). I conjecture that this is because the mean of the initial
log-normal distribution, r̄0, is largely underestimated. Indeed, when sampling
from the log-normal distribution, points at the tail of the distribution are the
major contributors of the mean while being less likely to be sampled. If the sample
size is not big enough, we might not sample enough points in this tail, resulting in
a distribution with a mean value much smaller than theoretically predicted (see
Figure 5.19).
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Figure 5.19: The mean of a sample of size N = 105, drawn from a log-normal
distribution, logN(m0, σ

2
0), µ (blue), is compared to the theoretical mean of this

distribution (red), µth = em0+
σ20
2 , for m0 = 1 and different values of σ0. When

σ0 > 5, the mean is underestimated.

Distribution of receptor expression levels over the whole simulation

Now, suppose that we simulate the model for a long time (for instance tmax = 106

days, with a time step ∆t) and at each time, t, we sample some cells alive at time
t. What is the receptor distribution of these sampled cells? As long as every cell
have the same probability to be selected, the sampling method does not matter.
Here I chose to sample the cells that died at each time step. That is, each cell has
a probability µ∆t to be sampled. I fix σ0 = 1 again. The receptor distribution of
the n cells sampled during the simulation is shown in Figure 5.20 for both regimes.
This distribution is compared to the initial receptor distribution (re-scaled to size
n) and the relative contributions of each cohort.

First, we notice that, in the egalitarian regime (m0 = 20), the receptor
distribution of the sampled cells is very similar to the initial distribution, as
expected from the observations in the previous sections: cells from both cohorts
behave similarly and their long-term receptor expression level differs very little
from their initial value. In the gerontocracy regime (m0 = 1), however, the
distribution is slightly shifted to the right compared to the initial distribution and
displays a long tail1. The mode of the distribution corresponds to the contribution

1Note that we describe the distributions when the x-axis is in logarithmic scale.
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of cells of the new cohort which were prevented from upregulating their IL-2R
expression level by cells of the old cohort. The latter cells substantially increased
their IL-2R expression and are responsible for the tail of the distribution.

In both cases, the mean number of receptors is r̄0+
up

µ2
, as expected. Figure 5.20

confirms that, in the gerontocracy regime, only the old cohort actually upregulates
its receptor expression during its lifetime to a value much larger than its initial
value. That is, a minority of cells drives the average number of receptors up so
that it equals r̄0 +

up

µ2
.
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Figure 5.20: Distribution of IL-2R expression level of the cells that died during
the simulation (in turquoise) when the average initial receptor is low (m0 = 1, left)
and large (m0 = 20, right) compared to the potential upregulation r̄0 +

up

µ2
. This

distribution is compared with the initial log-normal distribution (grey) and the
receptor distributions of the old and new cohorts (blue and yellow, respectively).

When r̄0 = em0+
σ20
2 is low (left), the receptor distribution presents a long tail

corresponding to old cells which lived long enough to upregulate massively their
IL-2R expression. In the other regime (right), cells of the old and new cohorts
died with similar IL-2R expression levels (closed to their initial level). The mean
number of receptors expressed at death of the whole population (dashed turquoise
line) is equal to r̄0 +

up

µ2
(dotted black line). In the egalitarian regime, the mean

number of receptor of both cohorts is also equal to this value. The parameter
values used for the simulations were: u = 10 [rT ]/[iT ]/day, p = 10 [iT ]/day/cell,
µ = 0.01 /day, and α = 30 cells/day, σ0 = 1, ∆t = 1 day and tmax = 106 days.
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5.5 Death, activation and division

Let us now introduce a third type of stochastic event (see Figure 5.21): cell
division (division rate λ). That is, at each time, a cell has a certain probability to
be replaced by two cells with different attributes1. In combination to cell death
(death rate µ) and cell activation (activation rate α), the population can grow
exponentially or is driven to a stochastic steady state. We will study in more
details the latter case.

5.5.1 Mathematical analysis

We start by specifying the average number of cells N̄(t) which satisfies the following
differential equation

dN̄

dt
= α + (λ− µ)N̄ . (5.45)

Considering the initial conditions N̄(t = 0) = N(0), this differential equation can
be solved and we obtain:

N̄(t) = (N(0)− α

µ− λ)e(λ−µ)t +
α

µ− λ. (5.46)

This equation shows that:

• If µ > λ, there exists a steady state in which, on average, there are N∞ ≡
α

µ− λ cells in the pool.

• If λ > µ, the population grows exponentially.

Note that if µ = λ, we observe a linear growth and N̄(t) = αt+N(0). In the rest
of this section, we assume that µ > λ as we are interested in population growth
control.

Consider a population of N(t) cells alive at time t. Each cell has probability
µ∆t of dying or probability λ∆t of dividing before time t + ∆t. In addition,

1This process is similar to a birth event in which at any time step, an individual has a
certain probability to give birth to a new individual. However, here, we prefer talking about
division, as the attribute values of both the mother and daughter cells will be updated after this
event.
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Figure 5.21: Activation, death and division process: activated T cells produce
and consume IL-2. They also upregulate their IL-2R expression. New cells enter
the pool at rate α and cells can die with death rate µ. Cells can divide with rate
λ. Daughter cells inherit half of the receptors of their mother (but no IL-2) and
enter immediately the activated cell pool.
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during this small time interval [t, t+∆t], a new cell can enter the pool (a naive

cell becomes activated) with probability α∆t. The probability that none of the

events mentioned above happen during ∆t is 1 − µN(t)∆t − λN(t)∆t − α∆t.

As established in the previous section, the entrance of a new cell in the pool

does not affect the total IL-2 absorbed I(t). We assume that the two daughter

cells receive half the IL-2R expression level of their mother but receive no IL-2.

Thus, the total IL-2R expression level in the pool is conserved under division and

the differential equation satisfied by R̄(t) is the equation (5.32a) determined in

the previous section. However, since daughter cells do not receive any cytokine,

the quantity of IL-2 absorbed by the mother cell before division is lost to the

population: that is, I is decreased by this amount. Hence, as ∆t→ 0,

I(t+∆t) =


I(t) + pN(t)∆t+ O(∆t2) with probability ρ,
for each cell T ,
I(t) + pN(t)∆t− iT (t) + O(∆t2) with probability (µ+ λ)∆t,

(5.47)

where ρ = 1− µN(t)∆t− λN(t)∆t. The system of differential equations satisfied

by Ī(t) and R̄(t) is:

dR̄

dt
= uĪ − µR̄ + αr̄0, (5.48a)

dĪ

dt
= pN̄ − (µ+ λ)Ī . (5.48b)

Expression for Ī(t):

We solve equation (5.48b), with initial condition Ī(0) = 0. The solution of the

homogeneous equation is:

I(t) = KIe
−(µ+λ)t, (5.49)

where KI is an unknown constant. We make use of the method of variation of

parameters, considering KI as a function of time, and we obtain:

K ′I(t) = pN̄(t)e(µ+λ)t. (5.50)
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Integration yields

KI(t) =
p

2λ

(
N(0)− α

µ− λ

)
e2λt +

αp

(µ− λ)(µ+ λ)
e(µ+λ)t + CI , (5.51)

where CI is a constant to be determined. Thus,

Ī(t) = KI(t)e
−(λ+µ)t

=
p

2λ

(
N(0)− α

µ− λ

)
e(λ−µ)t +

αp

(µ− λ)(µ+ λ)
+ CIe

−(λ+µ)t.
(5.52)

The initial condition, Ī(0) = 0, gives an expression for CI :

CI =
p (α− (µ+ λ)N(0))

2λ(µ+ λ)
.

Finally, we obtain:

Ī(t) =
pl
[
ηe(λ−µ)t + ζe−(µ+λ)t + 2λα

]
2λ(µ2 − λ2)

, (5.53)

where we wrote

η =(λ+ µ) ((µ− λ)N(0)− α) ,

ζ =(µ− λ)(α− (µ+ λ)N(0)).

Expression for R̄(t):

We now solve equation (5.48a). We are looking for a solution of the form

R̄(t) = KR(t)e−µt,

which substituted in (5.48a) yields:

K ′R(t) = uĪ(t)eµt + αr̄0e
µt

= up
ηeλt + ζe−λt + 2λαeµt

2λ(µ2 − λ2)
+ αr̄0e

µt.
(5.54)
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After integration, we obtain

KR(t) =
Aeλt + Beµt + Ce−λt

2λ2(µ2 − λ2)µ
+ CR, (5.55)

where we wrote
A = puµ(λ+ µ)((µ− λ)N(0)− α),

B = 2αλ2((µ2 − λ2)r̄0 + pu),

C = puµ(µ− λ)((µ+ λ)N(0)− α),

and CR is an integration constant that will be determined later. Thus,

R̄(t) = KR(t)e−µt

=
Ae(λ−µ)t + B + Ce−(λ+µ)t

2λ2(µ2 − λ2)µ
+ CRe

−µt.
(5.56)

Making use of the initial condition R̄(0) = R0, we find an expression for CR

CR = R0 −
A + B + C

2λ2µ(µ2 − λ2)
, (5.57)

which we substitute in (5.56) to obtain:

R̄(t) =
Ae(λ−µ)t + B + Ce−(λ+µ)t − (A + B + C)e−µt

2λ2µ(µ2 − λ2)
+R0e

−µt. (5.58)

One can notice that when t→ +∞, if µ > λ, R̄(t) tends to a constant R∞:

lim
t→+∞

R̄(t) =
B

2λ2µ(µ2 − λ2)

=
2αλ2((µ2 − λ2)r̄0 + pu)

2λ2µ(µ2 − λ2)

=
α

µ

(
r̄0 +

pu

µ2 − λ2

)
≡ R∞.

(5.59)
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Finally, let us write R̄(t) as a function of R∞:

R̄(t) =
Ae−µt

(
eλt − 1

)
+ Ce−µt

(
e−λt − 1

)
2λ2µ(µ2 − λ2)

+ (R0 −R∞)e−µt +R∞

= pu

[
eλt − 1

2λ2

(
N(0)− α

(µ− λ)

)
+
e−λt − 1

2λ2

(
N(0)− α

(µ+ λ)

)]
e−µt

+ (R0 −R∞) e−µt +R∞.
(5.60)

Note that when λ→ 0, we recover the expression obtained for R̄(t) in Section 5.4
(equation (5.35)).

Proof. Indeed, as λ→ 0, we have

e−λt − 1

2λ2
=
−t
2λ

+
t2

4
+ o(1),

and
eλt − 1

2λ2
=

t

2λ
+
t2

4
+ o(1),

as well as
α

µ− λ =
α

µ

1

1− λ

µ

=
α

µ

(
1 +

λ

µ
+ o(λ)

)
,

and
α

µ+ λ
=
α

µ

1

1 +
λ

µ

=
α

µ

(
1− λ

µ
+ o(λ)

)
.

Thus, as λ→ 0, we obtain

eλt − 1

2λ2

(
N(0)− α

(µ− λ)

)
+
e−λt − 1

2λ2

(
N(0)− α

(µ+ λ)

)
= −αt

µ2
+

(
N(0)− α

µ

)
t2

2
+ o(λ).

Finally,

lim
λ→0

R∞ =
α

µ

(
r̄0 +

up

µ2

)
,

which is the expression obtained for R∞ in the previous section in equation
(5.36).
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Dynamics of iT (t) and rT (t)

Heuristically, the two attributes of a cell T , iT (t) and rT (t), satisfy the system of
ODEs (5.37). However, the initial conditions are different. Let us write tinT , the
time at which the cell T entered the cell pool, whether it has been activated or it
is the daughter of a cell, Tmother, that just divided. Then, we have:

iT (tinT ) = 0, (5.61a)

rT (tinT ) ∼ logN(m0, σ
2
0) if the cell just became activated, (5.61b)

= rTmother(t
in
T )/2 otherwise.

System (5.37) can be decoupled to obtain system (5.39). Similarly to the previous
model, the expression of R̄(t) is also a sum of a constant and an exponential. Thus,
it may not be possible to obtain expressions for iT (t) and rT (t) in the general
case.

Distribution of time between cohort switches

As for the study of the model without division, let us distinguish the new and old
cell cohorts. As each cell can divide into two cells, we assume that daughter cells
remain in the cohort of their mother: a cell of the old (respectively, new) cohort
gives two cells that belong to the old (respectively, new) cohort. That way, the
cells of the old cohort follow a pure birth and death process with death rate µ
and birth rate λ (see Section 2.7.3). As we assumed µ > λ, the extinction of this
cohort is certain. At steady state, the time to extinction of such population follows
a Gumbel distribution with parameters m = 1

µ−λ log(N∞(µ−λ
µ

)) and β = τ̄−m
γe

,
where γe is the Euler–Mascheroni constant and τ̄ is given by equation (2.37)
in Section 2.7.3. Such distribution also describes the time between two cohort
switches (see Figure 5.22).

5.5.2 Numerical observations

Once again, we resort to numerical simulations to understand the stochastic
dynamics of the system. Simulations of the model with division were carried
out for varying values of the division rate λ both in the egalitarian (m0 = 20,
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Figure 5.22: In the agent-based model with division, the time between two cohort
switches (which is the time to extinction of a pure birth and death process) follows
a Gumbel (blue solid line) distribution with parameterm = 1

µ−λ log(N∞(µ−λ
µ

)) and
β = τ̄−m

γe
, where γe is the Euler–Mascheroni constant and τ̄ is given by equation

(2.37) in Section 2.7.3. The model was simulated with the following parameter
values: µ = 0.01 /day, λ = 0.003 /day, α = 30 cells/day, p = 10 [iT ]/day/cell,
u = 10 [rT ]/[iT ]/day, ∆t = 1 day, tmax = 2× 106 days, N(0) = α

µ−λ , σ0 = 1 and
m0 = 1. Note that N(0) = N∞ was too large to compute τ̄ making use of the
expression introduced in Section 2.7.3. Here, to plot the Gumbel distribution, the
numerical value of τ̄ (mean of the distribution in red) was used. The Gumbel
distribution with parameter m being equal to the actual mode of this distribution
has also been added (dashed line).
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σ0 = 1) and gerontocracy (m0 = 1, σ0 = 1) cases. Note that these two regimes

are now defined by comparison of r̄0 = em0+
σ20
2 with

up

µ2 − λ2
1. We fixed the other

parameters to the following values: µ = 0.01 /day, α = 30 cells/day, u = 10

[rT ]/[iT ]/day and p = 10 [iT ]/day/cell. The division rate, λ, takes the values
0.001 /day, 0.003 /day and 0.007 /day, corresponding to low, moderate and high
division rate, respectively.

We looked at the evolution of the receptor distribution of each cohort and
observed three types of population events:

A - A cohort switch immediately followed by a sudden receptor upregulation of
the cells of the new cohort (see Figure 5.25 below),

B - A cohort switch without any sudden receptor upregulation of the cells of
the new cohort (see Figure 5.26 below),

C - A sudden receptor upregulation of the cells of the new cohort without cohort
switch (see Figure 5.27 below).

These population events affect the overall cell population dynamics. In some
cases, we may observe that both cohorts are characterised by very different
receptor distributions (typically the cells of the old cohort express a receptor level
significantly higher than the cells of the new cohort). However, in other cases, the
receptor distributions of the two cohorts significantly overlap. That is, for most
parameter values tested, the two cases of homeostasis can be observed:

1. The two cell cohorts have distinct receptor distributions (a small distribution
overlap may be observed),

2. The two cell cohorts are mixed and indistinguishable (receptor distributions
overlap significantly or completely).

In the model without division, in the gerontocracy regime (σ0 = 1), the home-
ostasis of type 1 was the only one observed and was characterised by a receptor

1I chose to keep the names gerontocracy for r̄0 � up
µ2−λ2 and egalitarian regime for r̄0 �

up
µ2−λ2 by analogy with the model without division. However, we will see that, the oldest cells
are not always the cells expressing the highest number of receptors anymore.
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distribution of the entire cell population which was bimodal, each mode matching
the mode of the receptor distribution of a cohort. On the contrary, in the egalitar-
ian regime, the receptor distribution of the cell population was unimodal because
the cohort distributions overlapped. Here, we will see that the dynamics is more
complicated as cohort distributions may be bimodal (and thus one cohort could
be responsible for the multimodality of the receptor distribution of the entire cell
population). Note that the definitions of the two types of homeostasis and the
three population events are purely qualitative, based on the observation of the
evolution of the scatterplots (see output description in Appendix J and Figures
5.24, 5.25, 5.26 and 5.27,below).

Let us now explore in more detail the two different regimes: r̄0 �
up

µ2 − λ2
and

r̄0 �
up

µ2 − λ2
. Note that figures illustrating this section come from simulations

with a fixed time step ∆t = 10. A simulation with this time step, while seemingly
large, displays the same dynamics as a simulation with a smaller ∆t (see Appendix
I). In the following qualitative descriptions, we will call family the set of an initial
cell which entered the pool after activation, and its descendants. The first cell
is said to be generation 0. When the cell divides, its daughters are generation 1.
The daughters of the daughters are generation 2 and so on. A family goes extinct
when all the descendants of the initial cell died. We will refer to as last descendant
the cells at the end of the family tree (since a cell that divided does not exist
anymore, the last descendant are the only cells currently alive in the simulation).
Finally, we refer to as ancestors of a cell T , all the cells of the previous generations
of the family of T that lead to this cell. Figure 5.23 recapitulates these definitions.
When mentioning the age of a family, we refer to the average generation number
of the last descendants.

Egalitarian regime (r̄0 �
up

µ2 − λ2
)

In the egalitarian case, for the three levels of division, we do not observe any
receptor upregulation. The two cell cohorts always express about the same level of
receptors (homoeostasis of type 2), and cohort switches do not change the receptor
distribution (we observe a sequence of population events of type B, as described
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Figure 5.23: Example of a family of cells. The number inside each cell of the
family indicates its generation. The initial cell entered in the cell pool with rate α
(generation 0). It then divided with rate λ to give two daughter cells (generation 1).
These cells, in turn, divided and their daughters died (crossed circles), remained
in the cell pool or divided as well. The cells at the end of the tree (that are still
alive) are the last descendants (red). The ancestors of the last descendant circled
in blue are indicated in blue.

before). More interestingly, when the division rate is high (λ = 0.007), we observe
a downward shift of the receptor distribution of each cell cohort (the cells of the
old cohort can even express a lower receptor level than cells of the new cohort,
see Figure 5.24). This is due to the fact that each daughter cell only receives half
of the mother cell receptor copy number. At each division, the receptor level is
divided by two: as there is very little receptor upregulation, the older the cell
family is, the lower the receptor level expressed by the last descendants.

Gerontocracy (r̄0 �
up

µ2 − λ2
)

In the gerontocracy case, all population events can occur and the two homeostasis
types are observed (see Table 5.1 for an example). At low division rate (λ = 0.001

/day for µ = 0.01 /day), we see that, most of the time, the receptor distributions
of the two cohorts are distinct, and we mostly observe a sequence of population
events of type A and C. At moderate division rate (λ = 0.003 /day for µ = 0.01

/day), we seem to alternate between sequences of population events of type A
and C (A-C-A-C cycle) and sequences of events of type B and C (B-C-B-C cycle).
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Figure 5.24: Scatterplot at t = 8980 of individual receptor levels as a function
of the time at which the cell entered the pool, with joint distributions (receptor
distribution is on the right), for a simulation with the following parameter values:
m0 = 20, σ0 = 1, µ = 0.01 /day, λ = 0.007 /day, p = 10 [iT ]/day/cell, u = 10
[rT ]/[iT ]/day, α = 30 cells/day, N(0) = α

µ−λ and ∆t = 10 days. The cells of
the old cohort are indicated in blue, cells of the new cohort are in yellow. We
observe that both receptor distributions are wider than the initial one (in grey),
and shifted down. The two distributions also overlap significantly and the two
sub-populations appear to be mixed (homeostasis of type 2). The last cohort
switch is indicated by the dotted line. This cohort switch did not induce any
visible receptor upregulation of any of the cohort.
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λ(/day) Events
0.001 ACACAAACAAACACA
0.003 ACACCBCBCBBCBCCBCB
0.007 CBCBCCA

Table 5.1: Sequence of events observed during a simulation of the agent-based
model with division, death and activation, when σ0 = 1, m0 = 1 and µ = 0.01
/day. Other parameter values were ∆t = 10 days, tmax = 10000 days, u =
10 [rT ]/[iT ]/day, p = 10 [iT ]/day/cell, α = 30 cells/day and N(0) = N∞ =
α

µ− λ . The letters in red indicate when the two cohorts were undistinguishable

(homeostasis of type 2). Letters in black indicate that the two cohort had separated
receptor distributions. Note that sometimes, it is not trivial to distinguish which
type of homeostasis or population event we are observing. This table is provided
for illustration purposes.

Usually, during a A-C-A-C cycle, the receptor distributions of the two cohorts
are distinct. However, if the cells of the new cohort managed to upregulate their
receptor levels above a certain threshold (which need to be determined), we might
switch to a B-C-B-C cycle. In such cycle, we may alternate between the two types
of homeostasis. Finally, at high division rate (λ = 0.007 /day for µ = 0.01 /day),
we mostly observe a sequence of population events of type B and C. The receptor
distribution of both cohorts (but especially the old cohort) can be significantly
wider than the initial distribution (see Figure 5.26). This is due to the fact that
cell families live up to a large generation number. For λ = 0.007 /day (both in
the gerontocracy and egalitarian regimes), we can go up to generation 50. Some
cells managed to upregulate massively their receptor expression level resulting in
descendants with a very large number of receptors (compared to the mean receptor
copy number of its cohort). Other cells express very few receptors, because their
ancestors did not upregulate enough their receptor expression level to compensate
the fact that each daughter receives only half the receptor level of their mother.
The A-C-A-C or B-C-B-C cycles may be explained as follows. Once in a while,

a cell, or a group of cells, of the old cohort will die or divide which results in the
cells of the old cohort not expressing enough receptors to deprive of cytokine the
cells of the new cohort. Consequently, cells of the new cohort suddenly gain access
to IL-2 and upregulate massively their receptor expression level (event of type
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Figure 5.25: Scatterplot at t = 860 of individual receptor levels as a function
of the time at which the cell entered the pool, with joint distributions (receptor
distribution is on the right), for a simulation with the following parameter values:
m0 = 1, σ0 = 1, µ = 0.01 /day, λ = 0.001 /day, p = 10 [iT ]/day/cell, u = 10
[rT ]/[iT ]/day, α = 30 cells/day, N(0) = α

µ−λ and ∆t = 10 days. The cells of
the old cohort are indicated in blue, cells of the new cohort are in yellow. The
vertical black dotted line indicates the last cohort switch. We observe that the
cells of the old cohort that did not divide yet (cells on the left of the black line)
express a higher receptor expression level than cells of the new cohort (there is a
“discontinuity” in the scatterplot). That is, the cohort switch induced a receptor
upregulation of the previous new cohort (current old cohort) (population event
of type A). Daughters of the cells of the old cohort (blue dots on the right of
the dotted line) still express high receptor levels. Cells of the new and the old
cohort express very different receptor expression levels and are well distinct on the
scatter plot (homeostasis of type 1). The receptor distribution of the whole cell
population is bimodal, each mode matching the mode of the receptor distribution
of one cohort.
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Figure 5.26: Scatterplot at t = 2750 of individual receptor levels as a function
of the time at which the cell entered the pool, with joint distributions (receptor
distribution is on the right), for a simulation with the following parameter values:
m0 = 1, σ0 = 1, µ = 0.01 /day, λ = 0.007 /day, p = 10 [iT ]/day/cell, u = 10
[rT ]/[iT ]/day, α = 30 cells/day, N(0) = α

µ−λ and ∆t = 10 days. The cells of the
old cohort are indicated in blue, cells of the new cohort are in yellow. The last
cohort switch is indicated by the vertical black dotted line. We observe that some
cells of the old cohort that did not divide yet (left of the black line), express
about the same receptor expression level as cells of the new cohort (there is no
“discontinuity”). That is, the last cohort switch did not induce any significant
receptor upregulation (population event of type B). Despite the fact that the
receptor distributions of the two cohort do not have the same mode, they overlap
significantly (homeostasis of type 2). We also note that in this specific case (high
division rate), the receptor distribution is wider than the initial distribution (grey):
some cell families lived long enough so that the last descendant expresses many
(because its ancestors had time to upregulate massively their receptor expression)
or very few receptors (because each descendant only received half the receptors of
the mother and could not consume enough IL-2 to upregulate).
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Figure 5.27: Scatterplot at t = 5560 of individual receptor levels as a function
of the time at which the cell entered the pool, with joint distributions (receptor
distribution is on the right), for a simulation with the following parameter values:
m0 = 1, σ0 = 1, µ = 0.01 /day, λ = 0.003 /day, p = 10 [iT ]/day/cell, u = 10
[rT ]/[iT ]/day, α = 30 cells/day, N(0) = α

µ−λ and ∆t = 10 days. The cells of
the old cohort are indicated in blue, cells of the new cohort are in yellow. We
observe that the cells of the new cohort are upregulating their receptor expression
level before the cohort switch (there are four cells left in the old cohort): this is
an illustration of population event of type C. The upregulation started around
t = 5400, where there is a “discontinuity” in the scatterplot. This results in a
bimodal and wider receptor distribution of the new cohort. Note that the cells of
the old cohort still express a significantly higher receptor level than most the cells
of the new cohort: the two cohorts are distinct (homeostasis of type 2).
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C). When the last cell of the old cohort dies, if this cell was expressing enough

receptors to impact the cells of the new cohort, then the cells of the new cohort

increase their receptor expression level again (event of type A). If the last cell of

the old cohort was not impacting the cells of the new cohort, then its death does

not affect them significantly: we observe a cohort switch without sudden receptor

upregulation (event of type B).

Let us point out that a bimodal receptor distribution of the entire cell popula-

tion does not always mean that there are two distinct cohorts: during a population

event of type C, both modes correspond to the modes of the distribution of the

new cohort (see Figure 5.27). After a succession of population events of type B

and C, the two modes can be caused by the old cohort distribution (see Figure

5.26).

Finally, we note that for the three division levels, the population variable R(t)

displays sharp drops that seem to coincide with a sudden receptor upregulation

of the cells of the new cohort (population event of type A or C). These drops,

however, are less significant (smaller amplitude) than in absence of division. I

conjecture that the variations of R(t) are more gradual due to the sequence of

events C and A (A-C-A-C cycle) or B and C (B-C-B-C cycle). Indeed, in a

B-C-B-C cycle, R(t) suddenly decreases at events C only. I conjecture that, since

during an event of type C some cells of the old cohort remain in the system, the

decrease is smaller than if all the cells of this cohort had died (to be confirmed

quantitatively). During a A-C-A-C cycle, R(t) decreases at event C (when the

cells of the old cohort suddenly stop depriving the cells of the new cohort) and at

event A (when the last cell of the old cohort dies and cytokine become available

to cells of the new cohort). Between each of these events, as cells of the new

cohort upregulate their receptor expression level (first very suddenly and then

more gradually), R(t) is brought back to a value around R∞. As a result, instead

of decreasing significantly only at cohort switches, R(t) decreases in two steps

(and comes back to its steady state value between each decrease), resulting in

even smaller drops.
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5.6 Extending the IL-2 competition model

In this section, I propose two extensions of the agent-based model described
in Section 5.5. While I provide a mathematical framework of the extended
models, I did not conduct any substantial mathematical analysis of these systems.
A Python code of the extended models is provided at https://github.com/

leasta/ABM_thesis (see Appendix J). Let us start by describing the process of
cytokine deprivation-induced death (or commonly called starvation) of activated
conventional T cells.

5.6.1 Cellular events depending on cell variables: starvation

In the previous models, the population rules (death, activation and division)
affected the IL-2R distribution by removing or adding cells to the population
compartment. On the contrary, the IL-2 secretion and uptake, and the upregulation
of its receptor, had no consequence on the population dynamics. Thus, to evaluate
the impact of the IL-2R distribution on the population dynamics, cellular events
that depend on the individual cell attributes (here iT and rT ) must be considered.
For instance, a cell deprived of cytokine may have an increased probability of
dying.

Cytokine deprivation (by restriction of the concentration of available extra-
cellular proteins or by limitation of the number of receptors expressed by the cells)
is a well-studied biological mechanism, which occurs naturally or can be created
for a biological experiment. For instance, at the end of an infection, decreased IL-2
concentration induces apoptosis of the majority of conventional T cells (cytokine
withdrawal-induced cell death (CWID))(Duke & Cohen, 1986; Larsen et al., 2017;
Strasser & Pellegrini, 2004), thus bringing back its population to homeostatic
levels. More related to the models of this chapter, IL-2 deprivation-induced
apoptosis is the mechanism by which regulatory T cells maintain conventional
T cell population to physiological levels at homeostasis (Pandiyan et al., 2007).
In a lab, to investigate the role of a specific protein, biologists may block its
production or prevent its receptor binding by treating cells in vitro or mice in vivo
with certain antibodies. They can also use mutant mice that do not produce this
particular protein or its associated receptor. Both mechanisms artificially induce
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cytokine deprivation and thus may lead to the death of essential cell populations.

For instance, Oliveira (2013) proposes a method to assess, in vitro, human T cell

apoptosis induced by IL-2 starvation, mimicking the end phase of an immune

response.

Following these examples, it is natural to consider cytokine deprivation-induced

cell death when designing models of IL-2 competition. Consider the model of

Section 5.5 and now suppose that a cell, T , that absorbed less IL-2 than a certain

threshold, θstarv, has a higher probability of dying. That is, during a small time

interval [t, t+∆t], each cell of the system may die with probability µ∆t. However,

each cell, T , that satisfies

iT (t) < θstarv, (5.62)

may die with probability (µ+ ν)∆t, where we wrote ν the starvation rate.

The mathematical analysis of models including cellular events dependent on

cell’s attributes, such as this starvation mechanism, may become very complicated,

if not intractable. The dynamics of the model with starvation is not obvious to

conjecture, especially since the dynamics of the model described in Section 5.5 is

already not simple. Let us, once again, discriminate the cell population in two

cohorts, as described in Section 5.4 and, to simplify the dynamics, consider the

gerontocracy regime in absence of division. Cells of the old cohort deprive cells

of the new cohort of IL-2. As a result, the latter cells have a higher probability

of dying, which reduces the size of the new cohort. This decreased number of

cells in the new cohort may have two consequences: fewer cells are competing for

IL-2 and fewer cells live long enough to be part of the old cohort. However, a

reduced old cohort may lead to more IL-2 available for the other cells to compete

for. Consequently, cells of the new cohort may upregulate their IL-2R faster and

thus stop starving. The next old cohort will then be larger and less IL-2 will be

available which will trigger starvation of the new cohort again. This “circular”

conjectured dynamics may be highly dependent on the choice of θstarv and the

other parameter values. Indeed, θstarv may be chosen such as the cells of the old

cohort never starve but cells of the new cohort always do. Further investigation,

including numerical analyses, is needed.
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5.6.2 Competition model between regulatory and activated
conventional T cells

As mentioned in the introduction of this chapter, self-activated T cells are not the
only cells consuming IL-2 in the periphery at homeostasis. Regulatory T cells also
express the IL-2R and the competition for IL-2 between the two cells populations
is the key to prevent autoimmunity (Höfer et al., 2012). Let us, now, consider an
agent-based model of the competition for IL-2 between regulatory and self-reactive
T cells. We keep the notation of the one-population models (N(t) for the number of
cells at time t, p for production rate, u for upregulation rate, etc....) and distinguish
the parameters for regulatory or conventional T cells by adding an index, r and
c, respectively. Hence, Nc(t) and Nr(t) denote the number of conventional self-
activated and regulatory T cells at time t, respectively; µc (respectively, µr) is the
death rate of conventional T cells (respectively, regulatory T cells), etc.... Both
cell types upregulate their IL-2R expression level proportionally to their IL-2
consumption (cytokine accumulated), but only self-reactive conventional T cells
produce the cytokine. For each cell, T , we define the time-dependent attributes
rT (t) and iT (t) which correspond, respectively, to the number of receptor and
quantity of accumulated IL-2 of cell T . These attributes satisfy the following
system of equations, for any cell T :

diT
dt

= c∗pNc(t)
rT (t)

R(t)
, (5.63a)

drT
dt

= u∗iT (t), (5.63b)

(5.63c)

where the index ∗ must be replaced by c if T is a conventional self-reactive cell or
r if T is a regulatory T cell. To take into account the possibility that both cells
may not consume IL-2 at the same speed (for instance, one cell type may recycle
its receptors slower), we introduced the parameters cc and cr which correspond to
consumption rates. Note that, this time, the definition of R(t) slightly changes:

I(t) =

Nc(t)+Nr(t)∑
T=1

iT (t), (5.64a)
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Figure 5.28: Scheme of the agent-based model of the competition for IL-2
between regulatory (bottom) and self-activated conventional (top) T cells. IL-
2 production and absorption, and IL-2R upregulation are deterministic events.
Division of regulatory T cells and starvation of conventional T cells are stochastic
and dependent on the cell’s attributes. Other cellular events are stochastic and
do not depend on the cell considered.
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R(t) = cc

Nc(t)∑
T=1

rT (t) + cr

Nr(t)∑
T=1

rT (t). (5.64b)

Finally, for any cell, T , entering the pool at t = tinT (by activation or from the
division of a mother cell, Tmother), the initial conditions of system (5.63) are:

iT (tinT ) = 0, (5.65a)

rT (tinT ) ∼ logN(m0∗, σ
2
0∗) if the cell just became activated, (5.65b)

= rTmother(t
in
T )/2 otherwise,

where, once again, the index ∗ must be replaced by c if T is a conventional
self-reactive cell or r if T is a regulatory T cell.

Hence, the IL-2R/IL-2 dynamics for both populations of cells is very similar
to the other models of this chapter. However, population rules for regulatory
T cells may be different from the rules for self-reactive conventional cells. We
assume that, during a small time interval (t, t+∆t), new cells, from any of these
populations, may enter the pool with probability α∗∆t. Each cell has probability
µ∗∆t of dying. A conventional T cell may divide or starve as in Sections 5.5
and 5.6.1. Several studies observed that, in absence of IL-2, the population of
regulatory T cells falls below physiological levels (Abbas et al., 2018; Humrich
et al., 2010; Létourneau et al., 2009; Sakaguchi et al., 1995). We thus assume that
a regulatory T cell may need a certain amount of IL-2, θdiv to divide. That is, if
for any regulatory T cell, T , we have

iT (t) > θdiv, (5.66)

then the cell T may divide with probability λr∆t in the small time interval
(t, t + ∆t). We assume that regulatory T cells do not starve. The competition
model is recapitulated in Figure 5.28.

The initial goal of this model is to understand in what settings we observe the
two possible scenarios: proliferation of self-reactive conventional T cell subsets
(immune response), or their extermination (or, at least, regulation) by being
starved of IL-2 by regulatory T cells (homeostasis). A special attention should
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be given to the receptor distribution of self-reactive cells in presence or absence

of regulatory T cells. A distinct receptor distribution shape corresponding to

a particular event or state of the system, could be a helpful information for

biologists. Finally, when the population of self-reactive cells escapes the control

of regulatory T cells, the “time of escape" should be investigated, measured and

better understood.

5.7 Alternative system: modelling the competition
for IL-7 between ILCs and T cells

Competition for a cytokine between two cell populations, such as the competition

for IL-2 between two T cell sub-populations, is common in immunology. Another

example is the competition for IL-7 between T cells and innate lymphoid cells

(ILCs) in lymph nodes (Cherrier et al., 2020; Martin et al., 2017; Sheikh &

Abraham, 2019). ILCs are tissue-resident cells that mirror the functions of T cells

(Eberl et al., 2015). These cells react more promptly than T cells to pathogens

(Kang & Coles, 2012; Vivier et al., 2018) but do not proliferate in reaction to the

invasion. Instead, they produce a range of cytokines that direct the developing

immune response into one that is adapted to the original insult (pathogen type

and dose) (Eberl et al., 2015). ILCs have been classified into several subsets

(Sonnenberg & Hepworth, 2019) and this section focuses on ILC2s and ILC3s

which require IL-7 for their development and maintenance at homeostasis (Cherrier

et al., 2020; Kang & Coles, 2012). IL-7 is a critical survival factor for T cells

produced by a small number of specialised tissue cells (Cherrier et al., 2020).

It binds to the IL-7R which is composed of the IL-7Rα chain and the γc chain.

IL-7/IL-7R binding induces downregulation of IL-7Rα1 expression in T cells.

However, it appears that ILCs are resistant to this downregulation (Martin et al.,

2017). Hence, a small number of ILCs can seriously limit the availability of IL-7

for T cells.

1Note that in this section, we will not distinguish the full IL-7 receptor and the IL-7Rα
chain. We will write IL-7R or IL-7Rα to denote the same thing.
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In this section, we discuss the possibility of adapting the system proposed
by Park et al. (2019) and Reynolds et al. (2013) to model competition for IL-7
between T cells, into an agent-based model similar to the ones presented in the
rest of this chapter. We modify this system to account for the competition with
ILCs. Note that Mathematica (Wolfram Research, Inc., 2019) has sometimes been
used to speed-up cumbersome steady-state computations of this section. First, let
us recapitulate the average dynamics described in Park et al. (2019) and Reynolds
et al. (2013), and understand how we can adapt this system to ILCs’ behaviour.

5.7.1 One-population model: altruistic or egoistic model

Consider a fixed-size population of N cells expressing the IL-7 receptor. The
cytokine IL-7, constantly produced with rate φ, binds to the receptor with rate
kon. The receptor-ligand complex dissociates with rate koff. We assume that
free (unbound) receptors (respectively, bound receptors) are degraded with rate
σr (respectively, σc). Finally, we assume that the signal elicited by receptor-
ligand binding is proportional to the number of receptor-ligand complexes formed
(constant ψ) and can be degraded with rate χ. With this notation in place, we
define a system of ODEs describing the time evolution of the average dynamics of
the concentration of extra-cellular IL-7, I(t), the average number of free receptors
per cell, R(t), the average number of bound receptors (complexes) per cell, C(t),
and the amount (per cell) of signal produced by the binding of IL-7 to its receptor,
S(t). The system is as follows:

dI

dt
=φ+N(koffC − konIR), (5.67a)

dR

dt
=− konIR + koffC − σrR + f(ks, S)ξ, (5.67b)

dC

dt
=konIR− koffC − σcC, (5.67c)

dS

dt
=ψC − χS. (5.67d)

The function f (and the parameter ks) tunes the receptor synthesis (rate ξ)
by making it dependent or independent on the quantity of signal elicited by
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IL-7/IL-7R binding. The different functions f studied in this section are compared

in Figure 5.29 below.

IL-7R altruistic dynamics in T cells

In Park et al. (2019) and Reynolds et al. (2013), we have

f : (ks, S) 7→ 1

1 + S
ks

. (5.68)

Thus, system (5.67) describes the average altruistic IL-7R dynamics in T cells.

This dynamics is called altruistic as T cells that received enough IL-7-mediated

survival signal downregulate their membrane IL-7R expression level. As a result,

cells that did not receive enough signal are prioritised for IL-7 signalling. Here, f

is a decreasing function of S (see Figure 5.29) between 0 and 1. Parameter ks is a

characteristic parameter of S: when S � ks, the receptor synthesis is independent

of signalling; when S � ks, we have perfect altruism as receptor synthesis is fully

inhibited. In that case, as receptors are forming IL-7/IL-7R complexes or are

degraded but no new receptors are created, we observe a decreased in unbound

membrane receptor level. With this definition of f , the system admits a unique

steady state, which has been computed in Park et al. (2019):

I∗ =
φσr(koff + σc)(ksNσcχ+ φψ)

konσc(ksNσcχ(Nξ − φ)− φ2ψ)
, (5.69a)

R∗ =
1

Nσr
(

ksN
2σcξχ

ksNσcχ+ ψφ
− φ), (5.69b)

C∗ =
φ

Nσc
, (5.69c)

S∗ =
φψ

Nσcχ
. (5.69d)

This steady state is positive (I∗ > 0, R∗ > 0, C∗ > 0 and S∗ > 0) under the

condition:

φ < φthreshold =

√
ksN2σcχ(ksσcχ+ 4ψξ)− ksNσcχ

2ψ
. (5.70)
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This condition means that a large extra-cellular concentration of IL-7 will reduce
the number of free IL-7R per cell to 0 (mathematically, to a negative receptor
number), even with receptor synthesis on.

Stability analysis The Jacobian matrix of system (5.67) at steady state is:

J(I∗, R∗, C∗, S∗) =


−NkonR∗ −NkonI∗ Nkoff 0

−konR∗ −konI∗ − σr koff
−ksξ

(ks+S∗)2

konR
∗ konI

∗ −koff − σc 0
0 0 ψ −χ

 .

A short computation with Mathematica (Wolfram Research, Inc., 2019) shows
that the expressions of the eigenvalues of the Jacobian matrix are long and
complicated, and their sign is not trivial. However, the study of the determinant
and characteristic polynomial of this matrix demonstrates that the Jacobian
matrix has no eigenvalues which are real positive, or equal to zero.

Proof. The determinant of the Jacobian matrix evaluated at the steady state,

det(J(I∗, R∗, C∗, S∗)) = χkonR
∗Nσcσr,

is positive. It results that 0 is not an eigenvalue of the matrix.

Additionally, we can study the roots of the characteristic polynomial of the
Jacobian matrix at steady state:

χJ = Ax4 +Bx3 + Cx2 +Dx+ E, (5.71)

where

A = 1,

B = χ+ koff + konI
∗ + konR

∗N + σc + σr,

C = χkoff + χkonI
∗ + χkonR

∗N + χ(σc + σr)

+ konI
∗σc + konR

∗Nσc + koffσr + konR
∗Nσr + σrσc,

D = χkonI
∗σc + χkonR

∗Nσc + χkoffσr + χkonR
∗Nσr + χσrσc
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A C E 0
B D 0 0

BC−AD
B

E 0 0
BCD−AD2+B2E

BC−AD 0 0 0

E 0 0 0

Table 5.2: Routh table of the characteristic polynomial (5.71).

+ konR
∗Nσcσr +

kskonI
∗ψξ

(k + S∗)2
,

E = χkonR
∗Nσcσr.

All the coefficients of the characteristic polynomial are positive so according to
Descartes’ rule, the Jacobian matrix has no positive real eigenvalue.

These results, however, do not exclude the possibility of complex eigenvalues
with positive real part or on the imaginary axis. The Routh table (see Section
2.6.2) associated to the characteristic polynomial of J is described in Table 5.2.
The roots of (5.71) have a negative real part if and only if

BC > D, (5.72)

and
BCD −D2

B2
> E. (5.73)

Unfortunately, these two conditions are not informative in the general case.
The stability analysis of the steady state remains inconclusive.

One could also suppose that extra-cellular IL-7 can be degraded. This hypoth-
esis complicates the computation of the steady state (see Appendix K) and so
won’t be considered for the rest of this section.

IL-7R egoistic dynamics in ILCs

Contrary to T cells, ILCs do not downregulate their IL-7R expression when
receiving IL-7R-mediated signal (Martin et al., 2017). Hence, a cell that received
enough survival signal will continue binding to IL-7, without any consideration
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for the other cells that may struggle to survive. Here, I propose two functions f
to model this egoistic dynamics.

Linear egoism I first assume that ILCs actually upregulate their IL-7R ex-
pression level when receiving IL-7R-mediated signal. This upregulation is linear,
without any limit (carrying capacity), similar to the competition models for IL-2
described previously in this chapter. We define the function f as follows:

f : (ks, S) 7→ S

ks
. (5.74)

Here, the more a cell signals through IL-7/IL-7R binding, the more it synthesises
membrane IL-7R. A simulation of the system, as an agent-based model, will
probably show a minority of cells hoovering all the intra-cellular cytokine, and
depriving the other cells (the cells that do not express enough IL-7R to compete)
of IL-7.

In that case, the system is linear in each variable and the non-trivial steady
state is easy to obtain by substitution:

I∗ =
(koff + σc)χ, ksσr
kon(ψξ − χσcks)

, (5.75a)

R∗ =
φ(ψξ − χσcks)
χσcNksσr

, (5.75b)

C∗ =
φ

Nσc
, (5.75c)

S∗ =
ψφ

χNσc
. (5.75d)

Every variable at steady state is positive as long as

ψξ − χσcks > 0. (5.76)

This constraint has multiple interpretations, depending on the parameter we want
to isolate. Note that all these parameters characterise intra-cellular mechanisms
and thus, may not be tunable.
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Following the process used for the stability analysis of the altruistic model1,
we can show that, under condition (5.76), the Jacobian matrix of the system
with linear egoism has a strictly positive determinant and that the coefficients
of its characteristic polynomial are all positive. As a consequence, the Jacobian
matrix does not admit any positive real, nor zero, eigenvalues. As, once again,
the Routh-Hurwitz criterion is not informative, we cannot exclude the possibility
of complex eigenvalues with positive real part. The stability analysis of the steady
state remains inconclusive.

Non-linear egoism I also propose a non-linear egoism function, inspired from
the altruistic model (see Figure 5.29). Now suppose that the functionf is:

f : (ks, S) 7→ 1

1 + ks
S

. (5.77)

This time, f is an increasing function of S, meaning that an increased signal
will increase IL-7R synthesis (until a certain carrying capacity). Parameter ks is,
once again, a characteristic parameter of S: when ks � S, membrane receptor
synthesis is independent of signalling; when ks � S, there is no synthesis. Note
that the latter case does not model egoism but altruism.

This model admits the following non-trivial steady state:

I∗ =
(koff + σc)σr(ksχNσc + φψ)

konσc(−ksNσcχ− φψ + ψξN)
(5.78a)

R∗ =
φ

σrN

−ksχNσc − φψ + ψξN

ksχNσc + φψ
(5.78b)

C∗ =
φ

Ncσc
(5.78c)

S∗ =
ψφ

χNσc
(5.78d)

The steady state solutions are positive as long as

−ksχNσc − φψ + ψξN > 0, (5.79)

1The Jacobian matrix and its characteristic polynomial differ very little from the altruistic
case as only the expression of f changed.
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Figure 5.29: Comparison of functions, f , used to define the one-population
models of the competition for IL-7. As soon as the cell receives some signal elicited
by IL-7 binding its receptor, down/up regulation of IL-7R expression level starts.
In the altruistic or non-linear egoistic cases, the change in IL-7R expression slows
down as the amount of signal increases.

which, re-written as
−ksχNσc + ψξN

ψ
> φ,

can be interpreted as a constraint on IL-7 production.

Following the process used for the stability analysis of the altruistic model,

we can show that the Jacobian matrix does not admit any positive real, nor zero,

eigenvalues. We cannot, however, exclude the possibility of complex eigenvalues

with positive real part. Once again, the stability analysis of the steady state

remains inconclusive.
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Adapting the system of ODEs into an ABM

To create an agent-based model, one cannot directly replace the two-attribute

dynamics introduced in Section 5.2 by one of these ODEs systems. First, here, each

system describes the time-evolution of the extra-cellular ligand concentration, while

we assumed this quantity to be at steady state (production equal to consumption)

in the previous models. Second, R(t), C(t) and S(t) are average quantities (per

cell) and do not take into account cells’ specificities. Let us attempt to adapt

system (5.67) into an agent-based model.

For any cell, •, let us define three attributes: its current number of free receptors

r•(t), its current number of bound receptors, c•(t), and its current quantity of

signal, s•(t). It is easy to link these attributes to the average variables:

R(t) =
1

N(t)

∑
•

r•(t), (5.80a)

C(t) =
1

N(t)

∑
•

c•(t), (5.80b)

S(t) =
1

N(t)

∑
•

s•(t), (5.80c)

where N(t) denotes the current number of cells. Note that if r•(0) (I suppose

c•(0) = 0 and s•(0) = 0) is drawn from a log-normal distribution (similar to the

models of the competition for IL-2), then R(t), C(t) and S(t) are random variables.

We also introduce the variable I(t), which represents the current quantity of IL-7

present in the extra-cellular medium. Its dynamics is described by the following

ODE:
dI

dt
= φ+N (koffC − konIR)

= φ+ koff
∑
•

c• − konI
∑
•

r•.
(5.81)

For each cell •, its attributes satisfy the following system of ODEs:

dr•
dt

= −σrr• + f(ks, s•)ξ + koffc• − konIr•, (5.82a)

dc•
dt

= −σcc• − koffc• + konIr•, (5.82b)
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ds•
dt

= ψc• − χs•. (5.82c)

In addition to this deterministic dynamics, stochastic cellular events which are
independent on cell’s characteristics, such as death or immigration, are added.
These events will affect N(t), which, in turn, will impact each of these cell
attributes (via I(t)). Note that in this system, the cell’s response is tracked
with the signal attribute, s•(t). A starvation or division process as introduced in
Section 5.6, may compare s•(t) to a threshold. To model the competition between
ILCs and T cells, we might want to combine the altruistic system with one of the
egoistic models (linear egoism or non-linear egoism). Let us detail the competition
in the following section.

5.7.2 Competition models

We combine the altruistic model (for T cells) with one of the egoistic systems
(for ILCs) to model the competition for IL-7 between ILCs and T cells. The
extra-cellular IL-7 is available for both cell types. We denote by the index 1

(respectively, 2) variables and parameters related to T cells (respectively, ILCs).
We kept the same notation for the parameters as in the one-population systems,
except that we renamed ks to k1 for T cells and k2 for ILCs. The system is as
follows:

dI

dt
=φ+N1(koffC1 − konIR1) +N2(koffC2 − konIR2), (5.83a)

dR1

dt
=− konIR1 + koffC1 − σr1R1 +

1

1 + S1

k1

ξ1, (5.83b)

dC1

dt
=konIR1 − koffC1 − σc1C1, (5.83c)

dS1

dt
=ψ1C1 − χ1S1, (5.83d)

dR2

dt
=− konIR2 + koffC2 − σr2R2 + f(k2, S2)ξ2, (5.83e)

dC2

dt
=konIR2 − koffC2 − σc2C2, (5.83f)

dS2

dt
=ψ2C2 − χ2S2. (5.83g)
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We assumed that the receptor-ligand binding and dissociation constants are the
same for both cells (rates kon and koff, respectively). Here f(k2, S2) is the linear
egoistic function (f(k2, S2) = S2

k2
) or the non-linear egoistic function (f(k2, S2) =

1

1+
k2
S2

). Note that in both cases (linear or non-linear egoism), there exists a steady

state for which R∗2 = 0, C∗2 = 0, and S∗2 = 0, which is similar to the steady state
computed for the altruistic model:

I∗ =
(koff + σc1)φσr1(N1k1σc1χ1 + ψ1φ)

konσc1(k1N2
1σc1χ1ξ1 − φk1N1σc1χ1 − ψ1φ2)

, (5.84a)

R∗1 =
k1N

2
1σc1χ1ξ1 − φk1N1σc1χ1 − ψ1φ

2

σr1N1(N1k1σc1χ1 + ψ1φ)
, (5.84b)

C∗1 =
φ

N1σc1
, (5.84c)

S∗1 =
ψ1φ

N1σc1χ1

. (5.84d)

This steady state is biologically meaningful under the condition that:

φ < φthreshold =

√
k1N2

1σc1χ1(k1σc1χ1 + 4ψ1ξ1)− k1N1σc1χ1

2ψ1

. (5.85)

ILCs and T cells competing for IL-7: linear egoism

Let f be the function:
f : (k2, S2) 7→ S2

k2

,

and assume that none of the variables are equal to 0. We can derive the steady
state of all the variables as a function of C∗1 . Equations (5.83d) and (5.83g) (with
the derivative set to 0) give

S∗1 =
ψ1

χ1

C∗1 , (5.86)

S∗2 =
ψ2

χ2

C∗2 , (5.87)

and equations (5.83c) and (5.83f) (with derivative set to 0) give

konI
∗R∗1 = (koff + σc1)C∗1 , (5.88)
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konI
∗R∗2 = (koff + σc2)C∗2 . (5.89)

Substituting these expressions in (5.83b) and (5.83e) yields:

R∗1 =
ξ1k1χ1 − σc1k1χ1C

∗
1 − σc1ψ1(C∗1)2

σr1(k1χ1 + ψ1C∗1)
, (5.90)

R∗2 =
(ψ2ξ2 − σc2χ2k2)C∗2

χ2k2σr2
. (5.91)

The expression of R∗2 substituted in (5.89) allows the computation of an expression

for the steady state concentration of extra-cellular cytokine:

I∗ =
(koff + σc2)χ2k2σr2
kon(ψ2ξ2 − σc2χ2k2)

. (5.92)

Finally, we find the expression of C∗2 as a function of C∗1 by substituting koffC∗1 −
konI

∗R∗1 = σc1C
∗
1 and koffC∗2 −konI∗R∗2 = σc2C

∗
2 (from equations (5.88) and (5.89))

in equation (5.83a) (derivative at 0). We obtain:

C∗2 =
φ−N1σc1C

∗
1

N2σc2
. (5.93)

The variable C∗1 is the root of the following polynomial:

Ax2 + Bx+ C = 0, (5.94)

where

A =ψ1[σr1(koff + σc1) + σc1konI
∗],

B =k1χ1[σr1(koff + σc1) + σc1konI
∗],

C =− konI∗k1χ1ξ1,

which has been obtained by substituting the expression of R∗1 in equation (5.88).

Coefficients A and B are positive, C is negative. Hence, according to Descartes’

rule, this polynomial admits a unique positive real solution (the only one that is
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biologically meaningful):

C∗1 =
−k1χ1[σr1(koff + σc1) + σc1konI

∗] +
√
∆C1

2ψ1[σr1(koff + σc1) + σc1konI∗]
, (5.95)

where we wrote

∆C1 = k2
1χ

2
1[σr1(koff + σc1) + σc1konI

∗]2

+ 4ξ1k1χ1konI
∗ψ1[σr1(koff + σc1) + σc1konI

∗].

Note that this steady state is biologically relevant under the following condi-
tions:

C∗1 <
φ

N1σc1
because we want C∗2 > 0, (5.96)

ψ2ξ2 − σc2χ2k2 > 0 because we want I∗ > 0. (5.97)

Note that, contrary to the one-population model, the IL-7 production must be
greater than a certain threshold to ensure a biologically meaningful steady state.

ILCs and T cells competing for IL-7: non-linear egoism

Let us now consider the competition model with non-linear egoism. Let f be the
function

f : (k2, S2) 7→ 1

1 + k2
S2

.

To find positive steady states, we solve

0 =φ+N1(koffC1 − konIR1) +N2(koffC2 − konIR2), (5.98a)

0 =− konIR1 + koffC1 − σr1R1 +
k1

k1 + S1

ξ1, (5.98b)

0 =konIR1 − koffC1 − σc1C1, (5.98c)

0 =ψ1C1 − χ1S1, (5.98d)

0 =− konIR2 + koffC2 − σr2R2 +
S2

k2 + S2

ξ2, (5.98e)

0 =konIR2 − koffC2 − σc2C2, (5.98f)
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0 =ψ2C2 − χ2S2, (5.98g)

and suppose that no variable is equal to 0.

Equations (5.98d) and (5.98g) give

S∗1 =
ψ1

χ1

C∗1 , (5.99)

S∗2 =
ψ2

χ2

C∗2 . (5.100)

Equations (5.98c) and (5.98f) give

konI
∗R∗1 = (koff + σc1)C∗1 , (5.101)

konI
∗R∗2 = (koff + σc2)C∗2 . (5.102)

Substituting these results into (5.98a) we obtain:

C∗2 =
φ−N1σc1C

∗
1

N2σc2
. (5.103)

By substituting (5.99) and (5.101) in (5.98b), we obtain:

R∗1 =
−σc1ψ1(C∗1)2 − σc1χ1k1C1 + k1ξ1χ1

σr1(χ1k1 + ψ1C∗1)
. (5.104)

Similarly, making use of equations (5.100) and (5.102) in (5.98e), we obtain:

R∗2 =
−σc2ψ2(C∗2)2 + C∗2(ψ2ξ2 − σc2χ2k2)

σr2(χ2k2 + ψ2C∗2)
. (5.105)

We also have

I∗ =
(koff + σc1)C∗1

konR∗1
. (5.106)

Combining (5.101) and (5.102) together, we have:

(koff + σc2)C∗2R
∗
1 = (koff + σc1)C∗1R

∗
2. (5.107)
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Replacing R∗1, R∗2 and C∗2 by their expression as a function of C∗1 in the previous
equation yields the following polynomial of degree 3 in C∗1 :

A(C∗1)3 + B(C∗1)2 + CC∗1 + D = 0, (5.108)

where

A =N1ψ1ψ2σc1K,

B =− [φψ1ψ2 − χ1k1N1ψ2σc1 + χ2k2N2ψ1σc2]K−N2ψ1ψ2σc2σr1ξ2(koff + σc1),

C =χ1k1(σc2σr1(koff + σc1)(φψ2 + χ2k2N2σc2 −N2ψ2ξ2)

− σc1σr2(koff + σc2)(φψ2 + χ2k2N2σc2 +N1ψ2ξ1)),

D =χ1k1σr2ξ1(koff + σc2)(φψ2 + χ2k2N2σc2),

where we wrote K = (σc1σr2(koff + σc2) − σc2σr1(koff + σc1)). The signs of the
coefficients are not obvious and may depend on the parameters values. All we
know is that D > 0. Thus, we might have 0 to 3 positive steady states (with no
variables equal to 0). Note that to obtain a biologically meaningful steady state,
we are looking for a root C∗1 that ensures that R∗1 > 0, R∗2 > 0 and C∗2 > 0. To
have C∗2 > 0 we want

C∗1 <
φ

N1σc1
.

The condition R∗2 > 0 means that

C∗1 >
N2σc2χ2k2 − ψ2N2ξ2 + ψ2φ

N1σc1ψ2

.

Finally, to ensure R1 > 0 we want

−σc1k1χ1 +
√

(σc1k1χ1)2 + 4k1ξ1ψ1χ1σc1
2σc1ψ1

> C∗1 ,

and

C∗1 > 0 >
−σc1k1χ1 −

√
(σc1k1χ1)2 + 4k1ξ1ψ1χ1σc1

2σc1ψ1

.

Thus, the competition model with non-linear egoism has between 1 and 4
steady states: the steady state with “no ILCs” and three possible steady state
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with both types of cell that correspond to the solutions of the polynomial (5.108).

Now suppose that σr1 = σr2 = σr and σc1 = σc2 = σc. Equation (5.107) can
be simplified:

R∗1C
∗
2 = C∗1R

∗
2, (5.109)

as well as the coefficients of polynomial (5.108). In that case, C∗1 is the positive
real root of a polynomial of degree 2:

AX2 +BX + C = 0, (5.110)

where

A = −N2ψ1ψ2σcξ2,

B = −χ1k1ψ2σc(N1ξ1 +N2ξ2),

C = χ1k1(φψ2 + χ2k2N2σc)ξ1.

If the unique positive root of this polynomial satisfies the conditions that ensure
R∗1 > 0, R∗2 > 0 and C∗2 > 0, then we found a positive steady state for the system,
with no variables equal to 0.

Adaptation as an agent-based model

The work conducted for the one-population model can be adapted for the competi-
tion model. The extra-cellular cytokine concentration, I(t), satisfies the following
ODE:

dI

dt
= φ+ koff

∑
•

c• − konI.
∑
•

r• (5.111)

For each cell •, we define the same three attributes as for the one-population
models, r•(t), c•(t) and s•(t), which satisfy the following system of ODEs:

dr•
dt

= −σrnr• + fn(kn, s•)ξn + koffc• − konIr•, (5.112a)

dc•
dt

= −σcnc• − koffc• + konIr•, (5.112b)

297



5. AGENT-BASED MODELS OF THE COMPETITION FOR IL-2
BETWEEN T REGS AND SELF-ACTIVATED T CELLS

ds•
dt

= ψnc• − χns•, (5.112c)

where n = 1 if the cell • is a T cell and n = 2 if it is an ILC. I defined

f1(k1, s•) =
1

1 + s•
k1

,

and
f2(k2, s•) =

1

1 + k2
s•

or
f2(k2, s•) =

s•
k2

,

depending on the egoism type considered. Cellular stochastic events, such as
death or division, affect N1(t) and N2(t) which then impact the other variables.

5.8 Discussion and conclusion

In this chapter, we aimed to characterise the IL-2R distribution among a cell
population and to understand its relationship with cellular stochastic events. Since
complicated agent-based models do not always provide mechanistic insights, we
focused on the mathematical description of simpler models first. In particular, we
started with a simple and fully deterministic model of the IL-2/IL-2R dynamics
within a population with a constant number of cells, and added the stochastic
cellular events one at a time.

To make the mathematical analysis of these models tractable, we made strong
simplifications of the actual biology. First, we assumed that the per cell IL-2
production is constant. In reality, the IL-2 secretion may decrease when a IL-2
receptor binds this cytokine (Feinerman et al., 2010). We also ignored any receptor
trafficking (such as receptor internalisation, degradation and recycling) and signal
transduction. Instead, we hid all of these mechanisms under the term “cytokine
consumption”. Heuristically, we assumed that receptors are never degraded (while
the cell is alive) and, once they bind to a molecule of IL-2, they are immediately
internalised and recycled back to the cell surface. We also did not implement any
limit on the number of receptors a cell can express, which might lead to unrealistic

298



5.8 Discussion and conclusion

high receptor expression levels. Luckily, it seems that the rules of our model
created a “natural” receptor carrying capacity as no cells expressed more than
1011 receptors (except in the fully deterministic case). We assumed that the IL-2
absorbed by a cell is accumulated and never degraded until the cell dies or divides.
Introducing such degradation may reduce the “natural” receptor carrying capacity
of any cell. In the case of cellular events depending on local variables, such as the
starvation or T regs division described in Section 5.6, such intra-cellular cytokine
degradation may allow these cellular events to be switched on and off as a cell
accumulates and loses intra-cellular cytokine. We also assumed that cells, that do
not express IL-2Rα (i.e., naive cells), do not consume IL-2, and thus were not
explicitly taken into account in the model. One could also note that we assumed
the cell division to be instantaneous. In reality, before division, a cell enters a cell
cycle which lasts for a couple of hours (Belluccini et al., 2022; De Boer & Perelson,
2005; Hogan et al., 2013). However, we have little information on the behaviour
of a cell undergoing such process regarding its IL-2/IL-2R dynamics, and thus
chose not to include it in the model. Finally, we did not consider any spatial
feature, even though it has been shown that regulatory T cells cluster around
IL-2 producing cells, which regulates IL-2 diffusion in the organ and contains the
inflammation (Amado et al., 2013; Liu et al., 2015; Oyler-Yaniv et al., 2017; Wong
et al., 2021).

We completed our mathematical analysis, which is, by essence, valid for any
parameter value, with qualitative observations from numerical simulations. Conse-
quently, we had to assign a value to each parameter of the model. In a mouse, a
T cell lives for about a month (den Braber et al., 2012). A human T cell, however,
may live for more than a year (den Braber et al., 2012). However, activated T
cells must have a much shorter lifetime, about a few days or weeks, as they are
supposed to exist only as long as needed to clear an infection. In this chapter,
we assumed that the stochastic events considered in our models were happening
on a timescale of days. Ref. Burroughs et al. (2006) proposes a mathematical
model of IL-2 consumption by T cells and T regs in which they give the death
rate the following value µ = 0.1 /day to 0.01/day (following measurements from
Ref. Michie et al. (1992)). We kept this value for our models and gave a sensible
value (on the same timescale) to the division rate, λ. The value of parameter α
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should depend on the total influx of cells considered. Indeed, whether we consider
a blood sample, a lymph node or a whole mouse, we do not consider the same
fraction of cells of an individual and thus the total influx must be adapted to
this fraction (the thymus releases self-reactive cells at a rate that is measured
for the whole body). In the examples of this chapter, we chose α = 30 cells/day,
which allows us to have about 103 to 104 cells at steady state. Considering more
than 104 cells at steady-state significantly increases the simulation time of the
models. In Ref. Burroughs et al. (2006), the input rate (of all T cells) varies
between 0 and 104 cells/mL/day. Note that the self-reactive T cells represent only
a very small fraction of all T cells at homeostasis (there are about 106 T cells in a
hypothetical spherical skin-draining lymph node of diameter 2mm (Catron et al.,
2004; Kim et al., 2007b)). Finally, if an activated T cell lives for a couple of days,
then the IL-2/IL-2R dynamics should happen within hours. We gave to p and u
the following values: p = 10 [iT ]/day/cell and u = 10 [rT ]/[iT ]/day. Changing all
the parameters by the same factor should not change the dynamics.

In absence of stochastic events or in presence of cell death only, we managed
to derive an expression for the receptor distribution at any time of the simulation.
When adding other stochastic events (activation then division), the dynamics
became more complicated and the mathematical description could not capture the
entire behaviour of the system. For instance, while the cells follow the same rules,
phenomena of inequalities arise (such as the emergence of groups of cells that
express very different levels of receptors or absorbed different levels of cytokine),
which were not prescribed by the mathematics. Nonetheless, with a mixture of
mathematical analysis and numerical simulations, we managed to significantly
improve our understanding of the dynamics of the model. In particular, we man-
aged to explain the sharp noisy variations displayed by the population variables
and clarify why the receptor distribution was always changing despite the system
being at a stochastic steady state.
When adding the activation event, for some parameter regimes, we observed the
emergence of two cell populations. The cells that were the first to enter the pool
(old cohort) express high receptor levels and deprive the newer cells (new cohort)
of cytokine, which prevent them from upregulating their receptor expression level.
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That is, the cells that express a low receptor expression level keep expressing
very few IL-2R, while the other cells keep expressing a high number of receptors.
When the old cohort goes extinct, the cells of the new cohort suddenly and
massively upregulate their receptor expression level. In a “rags to riches” manner,
the new cohort becomes the old cohort and starts to deprive the newer cells of
cytokine. In another parameter regime, we observe a more egalitarian dynamics
in which all cells express about the same level of IL-2R and behave similarly. The
addition of the division event complicates the dynamics. Indeed, such receptor
“inheritance” mechanism blurs the distinction between cells with high and low
receptor expression levels, as we may observe cells with both low and high receptor
levels in a family of cells of the old cohort, as well as in a family of the new
cohort. This illustrates that criteria of interest used to analyse one model (such
as the discrimination between old and new cohorts in the model with death and
activation only) may not be relevant anymore when adding or removing stochastic
events.
Despite our improved understanding of the relationship between the IL-2R distri-
bution and the population dynamics, we could not link a particular shape of the
receptor distribution, at a certain time t of the simulation, to a particular event
or state of the system. Indeed, we showed that a bimodal receptor distribution
might have three different explanations in the model with division. The receptor
distribution of cells sampled at any time of the simulation (such as Figure 5.20)
may be more stable but more investigation is needed 1.

The original ambition of this project extended beyond the work conducted in
the first sections of this chapter: the “end goal” was to model the competition
for IL-2 between regulatory and self-reactive conventional T cells, taking into
account cellular events depending on individual cell characteristics. We provided
a mathematical framework and a Python code for this final model, but no de-
tailed mathematical analysis. As the competition for a protein between two cell
populations is a common mechanism in the immune system, we could extend
our agent-based model to other systems. For instance, the competition for IL-7

1Note that such sampling might not be feasible in a biological experiment. Thus any
comparison between experimental data and mathematical predictions may not be possible.
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5. AGENT-BASED MODELS OF THE COMPETITION FOR IL-2
BETWEEN T REGS AND SELF-ACTIVATED T CELLS

between T cells and innate lymphoid cells is interesting because the two cell popu-
lations do not have the same receptor dynamics: IL-7-induced signal downregulates
IL-7R expression in T cells but not innate lymphoid cells. A deterministic model
for the competition for IL-7 between T cells was introduced in Refs. Park et al.
(2019); Reynolds et al. (2013). Similar models for the competition for IL-7 within
the innate lymphoid cell populations and between T cells and innate lymphoid
cells have been developed in Section 5.7. These deterministic systems were, then,
adapted into agent-based model frameworks. However, the structure of these
agent-based models is quite different from the agent-based models developed for
the IL-2 competition, as the cytokine extra-cellular concentration was taken into
account.

Models of competition for a cytokine might be helpful for therapeutic insights.
Indeed, understanding the mechanisms by which one population can overtake the
other is necessary to develop potential treatments for immune-related diseases.
For instance, a low dose of IL-2 therapy seems to prioritise regulatory T cell
proliferation (over self-reactive proliferation), which ameliorates autoimmune
diseases caused by lack of T regs (Abbas et al., 2018; Trotta et al., 2018). A
well-suited mathematical model could help determine the dose by identifying the
settings in which T regs are overtaken by self-reactive T cells. Taking into account
the diversity inside each cell population allows a greater modelling plasticity and
may be the only way to model the subtle biological mechanisms at work in the
immune system.

302



Chapter 6

Concluding remarks

The work conducted in this thesis examined the complex relationship between
individual cell signalling, cell population dynamics and cell-to-cell variability
in receptor expression levels in a population. The non-intuitive aspect of this
relationship was first observed experimentally: increasing the abundance of an
essential component of the IL-7R decreases the cell’s response to IL-7, reflected
in an increasing EC50 and a non-monotonic amplitude (increase then decrease).
The mathematical models of the IL-7R/IL-7 receptor-ligand system, developed in
Chapter 3, explained this seemingly paradoxical observation by the formation of
non-signalling complexes. Making use of algebraic tools, such as Gröbner bases,
analytic expressions of the amplitude and EC50 of these models were computed.
Such expressions reduced computational costs (computational time and number of
computation) and facilitated the fitting of the models to the data set, by showing
how these quantities depend on the parameters of the system. The algebraic
method was, then, applied to different receptor-ligand systems, in order to explore
the impact of the receptor architecture on the variations of the amplitude and
EC50 in response to the increased abundance of an essential receptor component.
The amplitude expression of a general family of receptor-ligand systems has also
been computed, this time without making use of advanced algebraic tools. This
work, described in the first two research chapters of this thesis, demonstrated the
importance of balancing the abundances of the receptor core chains for optimal
signalling. In Chapter 5, I developed and proposed a mathematical description of
several agent-based models of the competition for IL-2 within the T cell population.
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In particular, I examined the impact of cellular event such as immigration, death
or cell division, on the IL-2R expression level distribution. The results were not
always predictable, even for simple models. In particular, phenomena of inequality
arose in the cell population, some cells depriving the others of cytokine. We
also observed that the receptor distribution, for some parameter regimes, was
constantly changing, despite the cell population being at steady state. These
changes were explained making use of numerical simulations.
The work conducted in these three chapters shows that competition is prevalent
in biological systems and must be taken into account in mathematical models.
At the cellular level, the competition for a receptor chain between non-signalling
receptors (incomplete signalling receptors or other cytokine receptors) has a great
influence on the cell’s response, both in terms of amplitude and EC50. At the cell
population level, the competition for the ligand is responsible for the modulation
of important mechanisms in the immune system, as well as for the maintenance
of key cell populations. It can also be responsible for splitting the cell population
into many sub-populations, each of them expressing different average receptor
numbers and playing different roles in the immune response or homeostasis.

One of the main challenges in mathematical modelling is to be realistic enough
so that the main features of the biological systems are reproduced, but simple
enough to have tractable and insightful mathematical descriptions. Despite the
apparent simplicity of the models proposed in this thesis, they demonstrate that
the quantitative effects of receptor chain upregulation can be vastly different,
depending on the elements of a receptor’s signalling core. This work provides
a theoretical and quantitative framework with which to interpret the potential
functional significance of receptor up/downregulation during lymphocyte differ-
entiation (Kalia et al., 2010; Voisinne et al., 2015), oncogenesis (Du & Lovly,
2018) or drug treatment (Vogel et al., 2016). It also sheds light on the importance
of investigating the cellular level to model precise population systems. Further
work could combine the cellular and populations models of this thesis. Indeed,
eventual non-monotonic relationships between the cell’s receptor copy number
and its ligand-mediated response are not considered in the current models of
Chapter 5. Fortunately, as demonstrated by the experimental work described in
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Section 3.5, the IL-2-mediated amplitude and EC50 are monotonic functions of
the number of IL-2Rα chains. Namely, increasing the abundance of IL-2Rα chains
increases the cell’s response, as assumed in the agent-based models of this thesis.
It has been measured that T regs have lower IL-2 EC50 than conventional T cells
(Trotta et al., 2018). That is, for the same dose of IL-2, the T regs response will
be greater than the conventional T cell response, on average. Combined with the
experimental work described in Section 3.5, this tells us that the average IL-2Rα
number in T regs is greater than in activated conventional T cells. This result,
useful to calibrate the model of the competition for IL-2 between these two cell
populations, is consistent with other experimental studies that directly measured
the receptor numbers of conventional and regulatory T cells (Abbas et al., 2018).
In the case of non-monotonic variations of the cell’s response when increasing the
availability of an essential receptor chain component, a cellular model may be a
useful first step to guide the development of more precise population models.
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Appendix A

Macaulay2 code to compute
Gröbner bases

Most Gröbner bases of this thesis have been computed making use of Macaulay2 (Grayson
& Stillman). We provide the code to compute the Gröbner basis of the IL-7R
model described in Section 3.2.

R = frac(QQ[Nx,Ny,Nz ,L,K1 ,K2 ,K3])[x,y,z,MonomialOrder=>Lex]

I = ideal(
- Nx + x + K2*x*y + K1*x*z + K2*K_1*x*y*z

+ K3*K2*L*x*y + K3*K2*K1*L*x*y*z,
- Ny + y + K2*x*y + K2*K_1*x*y*z

+ K3*K2*L*x*y + K3*K2*K1*L*x*y*z,
- Nz + z + K1*x*z + K2*K_1*x*y*z + K3*K2*K1*L*x*y*z
)

g = gens gb I
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A. MACAULAY2 CODE TO COMPUTE GRÖBNER BASES
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Appendix B

Gröbner basis for the steady state of
the allostery model

I include here the Gröbner basis of polynomial system (3.31) computed with
Mathematica (Wolfram Research, Inc., 2019). Solving this system of polynomial
equations would give the number of unbound γc, IL-7Rα and JAK3 chains at
steady state. In Mathematica, K ′2 and K ′3 are written K2p and K3p respec-
tively.
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In[1]:= GroebnerBasis[

{-Nx + K1 * x * z + K2 * K1 * x * y * z + K2p * x * y + K3p * K2p * L * x * y + K3 * K2 * K1 * L * x * y * z + x,

-Ny + K2 * K1 * x * y * z + K2p * x * y + K3p * K2p * L * x * y + K3 * K2 * K1 * L * x * y * z + y,

-Nz + z + K1 * z * x + K1 * K2 * x * y * z + K3 * K2 * K1 * L * x * y * z}, {x, y, z}]
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2
K3p L Nz z

2
- 4 K1 K2 K2p K3 K3p L

2
Nz z

2
- 2 K1 K2p

2
K3p

2
L
2
Nz z

2
-

K1
2
K2

2
Nx Nz z

2
- 3 K1

2
K2 K2p Nx Nz z

2
- 2 K1

2
K2

2
K3 L Nx Nz z

2
- 3 K1

2
K2 K2p K3 L Nx Nz z

2
-

3 K1
2
K2 K2p K3p L Nx Nz z

2
- K1

2
K2

2
K3

2
L
2
Nx Nz z

2
- 3 K1

2
K2 K2p K3 K3p L

2
Nx Nz z

2
-

K1
2
K2

2
Ny Nz z

2
+ K1

2
K2 K2p Ny Nz z

2
- 2 K1

2
K2

2
K3 L Ny Nz z

2
+ K1

2
K2 K2p K3 L Ny Nz z

2
+

K1
2
K2 K2p K3p L Ny Nz z

2
- K1

2
K2

2
K3

2
L
2
Ny Nz z

2
+ K1

2
K2 K2p K3 K3p L

2
Ny Nz z

2
+

K1
2
K2

2
Nz

2
z
2
+ 2 K1

2
K2 K2p Nz

2
z
2
+ 2 K1

2
K2

2
K3 L Nz

2
z
2
+ 2 K1

2
K2 K2p K3 L Nz

2
z
2
+

2 K1
2
K2 K2p K3p L Nz

2
z
2
+ K1

2
K2

2
K3

2
L
2
Nz

2
z
2
+ 2 K1

2
K2 K2p K3 K3p L

2
Nz

2
z
2
+ K1

2
K2 z

3
-

K1
2
K2p z

3
+ 2 K1 K2 K2p z

3
+ K1 K2p

2
z
3
+ K1

2
K2 K3 L z

3
+ 2 K1 K2 K2p K3 L z

3
- K1

2
K2p K3p L z

3
+

2 K1 K2 K2p K3p L z
3
+ 2 K1 K2p

2
K3p L z

3
+ 2 K1 K2 K2p K3 K3p L

2
z
3
+ K1 K2p

2
K3p

2
L
2
z
3
+

K1
2
K2

2
Nx z

3
+ 3 K1

2
K2 K2p Nx z

3
+ 2 K1

2
K2

2
K3 L Nx z

3
+ 3 K1

2
K2 K2p K3 L Nx z

3
+

3 K1
2
K2 K2p K3p L Nx z

3
+ K1

2
K2

2
K3

2
L
2
Nx z

3
+ 3 K1

2
K2 K2p K3 K3p L

2
Nx z

3
+ K1

3
K2

2
Nx

2
z
3
+

2 K1
3
K2

2
K3 L Nx

2
z
3
+ K1

3
K2

2
K3

2
L
2
Nx

2
z
3
+ K1

2
K2

2
Ny z

3
- K1

2
K2 K2p Ny z

3
+ 2 K1

2
K2

2
K3 L Ny z

3
-

K1
2
K2 K2p K3 L Ny z

3
- K1

2
K2 K2p K3p L Ny z

3
+ K1

2
K2

2
K3

2
L
2
Ny z

3
- K1

2
K2 K2p K3 K3p L

2
Ny z

3
-

2 K1
2
K2

2
Nz z

3
- 4 K1

2
K2 K2p Nz z

3
- 4 K1

2
K2

2
K3 L Nz z

3
- 4 K1

2
K2 K2p K3 L Nz z

3
-

4 K1
2
K2 K2p K3p L Nz z

3
- 2 K1

2
K2

2
K3

2
L
2
Nz z

3
- 4 K1

2
K2 K2p K3 K3p L

2
Nz z

3
-

2 K1
3
K2

2
Nx Nz z

3
- 4 K1

3
K2

2
K3 L Nx Nz z

3
- 2 K1

3
K2

2
K3

2
L
2
Nx Nz z

3
+ K1

3
K2

2
Nz

2
z
3
+

2 K1
3
K2

2
K3 L Nz

2
z
3
+ K1

3
K2

2
K3

2
L
2
Nz

2
z
3
+ K1

2
K2

2
z
4
+ 2 K1

2
K2 K2p z

4
+ 2 K1

2
K2

2
K3 L z

4
+

2 K1
2
K2 K2p K3 L z

4
+ 2 K1

2
K2 K2p K3p L z

4
+ K1

2
K2

2
K3

2
L
2
z
4
+ 2 K1

2
K2 K2p K3 K3p L

2
z
4
+

2 K1
3
K2

2
Nx z

4
+ 4 K1

3
K2

2
K3 L Nx z

4
+ 2 K1

3
K2

2
K3

2
L
2
Nx z

4
- 2 K1

3
K2

2
Nz z

4
-

4 K1
3
K2

2
K3 L Nz z

4
- 2 K1

3
K2

2
K3

2
L
2
Nz z

4
+ K1

3
K2

2
z
5
+ 2 K1

3
K2

2
K3 L z

5
+ K1

3
K2

2
K3

2
L
2
z
5
,
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-K1 K2 Nz + K1 K2p Nz - K2p
2
Nz - K1 K2 K3 L Nz + K1 K2p K3p L Nz - 2 K2p

2
K3p L Nz - K2p

2
K3p

2
L
2
Nz -

K1 K2 K2p Nx Nz - K1 K2 K2p K3 L Nx Nz - K1 K2 K2p K3p L Nx Nz - K1 K2 K2p K3 K3p L
2
Nx Nz +

K1 K2 K2p Nz
2
+ K1 K2 K2p K3 L Nz

2
+ K1 K2 K2p K3p L Nz

2
+ K1 K2 K2p K3 K3p L

2
Nz

2
-

K1 K2 K2p Nz y + K1 K2p
2
Nz y - K1 K2 K2p K3 L Nz y - K1 K2 K2p K3p L Nz y + 2 K1 K2p

2
K3p L Nz y -

K1 K2 K2p K3 K3p L
2
Nz y + K1 K2p

2
K3p

2
L
2
Nz y + K1 K2 z - K1 K2p z + K2p

2
z + K1 K2 K3 L z -

K1 K2p K3p L z + 2 K2p
2
K3p L z + K2p

2
K3p

2
L
2
z + K1

2
K2 Nx z - K1

2
K2p Nx z + K1 K2 K2p Nx z +

K1 K2p
2
Nx z + K1

2
K2 K3 L Nx z + K1 K2 K2p K3 L Nx z - K1

2
K2p K3p L Nx z + K1 K2 K2p K3p L Nx z +

2 K1 K2p
2
K3p L Nx z + K1 K2 K2p K3 K3p L

2
Nx z + K1 K2p

2
K3p

2
L
2
Nx z + K1

2
K2 K2p Nx

2
z +

K1
2
K2 K2p K3 L Nx

2
z + K1

2
K2 K2p K3p L Nx

2
z + K1

2
K2 K2p K3 K3p L

2
Nx

2
z + K1 K2 K2p Ny z -

K1 K2p
2
Ny z + K1 K2 K2p K3 L Ny z + K1 K2 K2p K3p L Ny z - 2 K1 K2p

2
K3p L Ny z +

K1 K2 K2p K3 K3p L
2
Ny z - K1 K2p

2
K3p

2
L
2
Ny z + K1

2
K2

2
Nx Ny z - K1

2
K2 K2p Nx Ny z +

2 K1
2
K2

2
K3 L Nx Ny z - K1

2
K2 K2p K3 L Nx Ny z - K1

2
K2 K2p K3p L Nx Ny z + K1

2
K2

2
K3

2
L
2
Nx Ny z -

K1
2
K2 K2p K3 K3p L

2
Nx Ny z - K1

2
K2 Nz z + K1

2
K2p Nz z - 3 K1 K2 K2p Nz z - K1 K2p

2
Nz z -

K1
2
K2 K3 L Nz z - 3 K1 K2 K2p K3 L Nz z + K1

2
K2p K3p L Nz z - 3 K1 K2 K2p K3p L Nz z -

2 K1 K2p
2
K3p L Nz z - 3 K1 K2 K2p K3 K3p L

2
Nz z - K1 K2p

2
K3p

2
L
2
Nz z - K1

2
K2

2
Nx Nz z -

2 K1
2
K2 K2p Nx Nz z - 2 K1

2
K2

2
K3 L Nx Nz z - 2 K1

2
K2 K2p K3 L Nx Nz z - 2 K1

2
K2 K2p K3p L Nx Nz z -

K1
2
K2

2
K3

2
L
2
Nx Nz z - 2 K1

2
K2 K2p K3 K3p L

2
Nx Nz z - K1

2
K2

2
Ny Nz z + K1

2
K2 K2p Ny Nz z -

2 K1
2
K2

2
K3 L Ny Nz z + K1

2
K2 K2p K3 L Ny Nz z + K1

2
K2 K2p K3p L Ny Nz z - K1

2
K2

2
K3

2
L
2
Ny Nz z +

K1
2
K2 K2p K3 K3p L

2
Ny Nz z + K1

2
K2

2
Nz

2
z + K1

2
K2 K2p Nz

2
z + 2 K1

2
K2

2
K3 L Nz

2
z +

K1
2
K2 K2p K3 L Nz

2
z + K1

2
K2 K2p K3p L Nz

2
z + K1

2
K2

2
K3

2
L
2
Nz

2
z + K1

2
K2 K2p K3 K3p L

2
Nz

2
z +

K1
2
K2 z

2
- K1

2
K2p z

2
+ 2 K1 K2 K2p z

2
+ K1 K2p

2
z
2
+ K1

2
K2 K3 L z

2
+ 2 K1 K2 K2p K3 L z

2
-

K1
2
K2p K3p L z

2
+ 2 K1 K2 K2p K3p L z

2
+ 2 K1 K2p

2
K3p L z

2
+ 2 K1 K2 K2p K3 K3p L

2
z
2
+

K1 K2p
2
K3p

2
L
2
z
2
+ K1

2
K2

2
Nx z

2
+ 3 K1

2
K2 K2p Nx z

2
+ 2 K1

2
K2

2
K3 L Nx z

2
+ 3 K1

2
K2 K2p K3 L Nx z

2
+

3 K1
2
K2 K2p K3p L Nx z

2
+ K1

2
K2

2
K3

2
L
2
Nx z

2
+ 3 K1

2
K2 K2p K3 K3p L

2
Nx z

2
+ K1

3
K2

2
Nx

2
z
2
+

2 K1
3
K2

2
K3 L Nx

2
z
2
+ K1

3
K2

2
K3

2
L
2
Nx

2
z
2
+ K1

2
K2

2
Ny z

2
- K1

2
K2 K2p Ny z

2
+ 2 K1

2
K2

2
K3 L Ny z

2
-

K1
2
K2 K2p K3 L Ny z

2
- K1

2
K2 K2p K3p L Ny z

2
+ K1

2
K2

2
K3

2
L
2
Ny z

2
- K1

2
K2 K2p K3 K3p L

2
Ny z

2
-

2 K1
2
K2

2
Nz z

2
- 3 K1

2
K2 K2p Nz z

2
- 4 K1

2
K2

2
K3 L Nz z

2
- 3 K1

2
K2 K2p K3 L Nz z

2
-

3 K1
2
K2 K2p K3p L Nz z

2
- 2 K1

2
K2

2
K3

2
L
2
Nz z

2
- 3 K1

2
K2 K2p K3 K3p L

2
Nz z

2
-

2 K1
3
K2

2
Nx Nz z

2
- 4 K1

3
K2

2
K3 L Nx Nz z

2
- 2 K1

3
K2

2
K3

2
L
2
Nx Nz z

2
+ K1

3
K2

2
Nz

2
z
2
+

2 K1
3
K2

2
K3 L Nz

2
z
2
+ K1

3
K2

2
K3

2
L
2
Nz

2
z
2
+ K1

2
K2

2
z
3
+ 2 K1

2
K2 K2p z

3
+ 2 K1

2
K2

2
K3 L z

3
+

2 K1
2
K2 K2p K3 L z

3
+ 2 K1

2
K2 K2p K3p L z

3
+ K1

2
K2

2
K3

2
L
2
z
3
+ 2 K1

2
K2 K2p K3 K3p L

2
z
3
+

2 K1
3
K2

2
Nx z

3
+ 4 K1

3
K2

2
K3 L Nx z

3
+ 2 K1

3
K2

2
K3

2
L
2
Nx z

3
- 2 K1

3
K2

2
Nz z

3
-

4 K1
3
K2

2
K3 L Nz z

3
- 2 K1

3
K2

2
K3

2
L
2
Nz z

3
+ K1

3
K2

2
z
4
+ 2 K1

3
K2

2
K3 L z

4
+ K1

3
K2

2
K3

2
L
2
z
4
,

-K2p Nz - K2p K3p L Nz + K2p z + K2p K3p L z + K1 K2p Nx z + K1 K2p K3p L Nx z + K1 K2 Ny z -

K1 K2p Ny z + K1 K2 K3 L Ny z - K1 K2p K3p L Ny z - K1 K2 Nz z - K1 K2p Nz z -

K1 K2 K3 L Nz z - K1 K2p K3p L Nz z - K1 K2 y z + K1 K2p y z - K1 K2 K3 L y z +

K1 K2p K3p L y z + K1 K2 z
2
+ K1 K2p z

2
+ K1 K2 K3 L z

2
+ K1 K2p K3p L z

2
+ K1

2
K2 Nx z

2
+

K1
2
K2 K3 L Nx z

2
- K1

2
K2 Nz z

2
- K1

2
K2 K3 L Nz z

2
+ K1

2
K2 z

3
+ K1

2
K2 K3 L z

3
,

K2 Nz - K2p Nz + K2 K3 L Nz - K2p K3p L Nz + K2 K2p Nx Nz + K2 K2p K3 L Nx Nz + K2 K2p K3p L Nx Nz +

K2 K2p K3 K3p L
2
Nx Nz - K2 K2p Nz

2
- K2 K2p K3 L Nz

2
- K2 K2p K3p L Nz

2
- K2 K2p K3 K3p L

2
Nz

2
+

K2 K2p Nz y - K2p
2
Nz y + K2 K2p K3 L Nz y + K2 K2p K3p L Nz y - 2 K2p

2
K3p L Nz y +

2
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K2 K2p K3 K3p L
2
Nz y - K2p

2
K3p

2
L
2
Nz y - K2 z + K2p z - K2 K3 L z + K2p K3p L z - K1 K2 Nx z +

K1 K2p Nx z - K2 K2p Nx z - K1 K2 K3 L Nx z - K2 K2p K3 L Nx z + K1 K2p K3p L Nx z -

K2 K2p K3p L Nx z - K2 K2p K3 K3p L
2
Nx z - K1 K2 K2p Nx

2
z - K1 K2 K2p K3 L Nx

2
z -

K1 K2 K2p K3p L Nx
2
z - K1 K2 K2p K3 K3p L

2
Nx

2
z - K1 K2

2
Nx Ny z + K1 K2 K2p Nx Ny z -

2 K1 K2
2
K3 L Nx Ny z + K1 K2 K2p K3 L Nx Ny z + K1 K2 K2p K3p L Nx Ny z - K1 K2

2
K3

2
L
2
Nx Ny z +

K1 K2 K2p K3 K3p L
2
Nx Ny z + K1 K2 Nz z - K1 K2p Nz z + 2 K2 K2p Nz z + K1 K2 K3 L Nz z +

2 K2 K2p K3 L Nz z - K1 K2p K3p L Nz z + 2 K2 K2p K3p L Nz z + 2 K2 K2p K3 K3p L
2
Nz z + K1 K2

2
Nx Nz z +

2 K1 K2 K2p Nx Nz z + 2 K1 K2
2
K3 L Nx Nz z + 2 K1 K2 K2p K3 L Nx Nz z + 2 K1 K2 K2p K3p L Nx Nz z +

K1 K2
2
K3

2
L
2
Nx Nz z + 2 K1 K2 K2p K3 K3p L

2
Nx Nz z + K1 K2

2
Ny Nz z - K1 K2 K2p Ny Nz z +

2 K1 K2
2
K3 L Ny Nz z - K1 K2 K2p K3 L Ny Nz z - K1 K2 K2p K3p L Ny Nz z + K1 K2

2
K3

2
L
2
Ny Nz z -

K1 K2 K2p K3 K3p L
2
Ny Nz z - K1 K2

2
Nz

2
z - K1 K2 K2p Nz

2
z - 2 K1 K2

2
K3 L Nz

2
z -

K1 K2 K2p K3 L Nz
2
z - K1 K2 K2p K3p L Nz

2
z - K1 K2

2
K3

2
L
2
Nz

2
z - K1 K2 K2p K3 K3p L

2
Nz

2
z -

K2 K2p y z + K2p
2
y z - K2 K2p K3 L y z - K2 K2p K3p L y z + 2 K2p

2
K3p L y z - K2 K2p K3 K3p L

2
y z +

K2p
2
K3p

2
L
2
y z - K1 K2 z

2
+ K1 K2p z

2
- K2 K2p z

2
- K1 K2 K3 L z

2
- K2 K2p K3 L z

2
+

K1 K2p K3p L z
2
- K2 K2p K3p L z

2
- K2 K2p K3 K3p L

2
z
2
- K1 K2

2
Nx z

2
- 2 K1 K2 K2p Nx z

2
-

2 K1 K2
2
K3 L Nx z

2
- 2 K1 K2 K2p K3 L Nx z

2
- 2 K1 K2 K2p K3p L Nx z

2
- K1 K2

2
K3

2
L
2
Nx z

2
-

2 K1 K2 K2p K3 K3p L
2
Nx z

2
- K1

2
K2

2
Nx

2
z
2
- 2 K1

2
K2

2
K3 L Nx

2
z
2
- K1

2
K2

2
K3

2
L
2
Nx

2
z
2
-

K1 K2
2
Ny z

2
+ K1 K2 K2p Ny z

2
- 2 K1 K2

2
K3 L Ny z

2
+ K1 K2 K2p K3 L Ny z

2
+ K1 K2 K2p K3p L Ny z

2
-

K1 K2
2
K3

2
L
2
Ny z

2
+ K1 K2 K2p K3 K3p L

2
Ny z

2
+ 2 K1 K2

2
Nz z

2
+ 2 K1 K2 K2p Nz z

2
+

4 K1 K2
2
K3 L Nz z

2
+ 2 K1 K2 K2p K3 L Nz z

2
+ 2 K1 K2 K2p K3p L Nz z

2
+ 2 K1 K2

2
K3

2
L
2
Nz z

2
+

2 K1 K2 K2p K3 K3p L
2
Nz z

2
+ 2 K1

2
K2

2
Nx Nz z

2
+ 4 K1

2
K2

2
K3 L Nx Nz z

2
+ 2 K1

2
K2

2
K3

2
L
2
Nx Nz z

2
-

K1
2
K2

2
Nz

2
z
2
- 2 K1

2
K2

2
K3 L Nz

2
z
2
- K1

2
K2

2
K3

2
L
2
Nz

2
z
2
- K1 K2

2
z
3
- K1 K2 K2p z

3
-

2 K1 K2
2
K3 L z

3
- K1 K2 K2p K3 L z

3
- K1 K2 K2p K3p L z

3
- K1 K2

2
K3

2
L
2
z
3
- K1 K2 K2p K3 K3p L

2
z
3
-

2 K1
2
K2

2
Nx z

3
- 4 K1

2
K2

2
K3 L Nx z

3
- 2 K1

2
K2

2
K3

2
L
2
Nx z

3
+ 2 K1

2
K2

2
Nz z

3
+

4 K1
2
K2

2
K3 L Nz z

3
+ 2 K1

2
K2

2
K3

2
L
2
Nz z

3
- K1

2
K2

2
z
4
- 2 K1

2
K2

2
K3 L z

4
- K1

2
K2

2
K3

2
L
2
z
4
,

-Nz - K2p Nz y - K2p K3p L Nz y + z + K1 Nx z - K1 Nz z + K2p y z + K2p K3p L y z + K1 K2 Nx y z +

K1 K2 K3 L Nx y z - K1 K2 Nz y z - K1 K2 K3 L Nz y z + K1 z
2
+ K1 K2 y z

2
+ K1 K2 K3 L y z

2
,

K2 K3 Nz - K2p K3p Nz + K2 K2p K3 Nx Nz + K2 K2p K3 K3p L Nx Nz - K2 K2p K3 Nz
2
-

K2 K2p K3 K3p L Nz
2
+ K2 K2p K3 Nz y - K2p

2
K3p Nz y + K2 K2p K3 K3p L Nz y - K2p

2
K3p

2
L Nz y -

K2 K3 z + K2p K3p z - K1 K2 K3 Nx z - K2 K2p K3 Nx z + K1 K2p K3p Nx z - K2 K2p K3 K3p L Nx z -

K1 K2 K2p K3 Nx
2
z - K1 K2 K2p K3 K3p L Nx

2
z - K1 K2

2
K3 Nx Ny z + K1 K2 K2p K3 Nx Ny z -

K1 K2
2
K3

2
L Nx Ny z + K1 K2 K2p K3 K3p L Nx Ny z + K1 K2 K3 Nz z + 2 K2 K2p K3 Nz z -

K1 K2p K3p Nz z + 2 K2 K2p K3 K3p L Nz z + K1 K2
2
K3 Nx Nz z + 2 K1 K2 K2p K3 Nx Nz z +

K1 K2
2
K3

2
L Nx Nz z + 2 K1 K2 K2p K3 K3p L Nx Nz z + K1 K2

2
K3 Ny Nz z - K1 K2 K2p K3 Ny Nz z +

K1 K2
2
K3

2
L Ny Nz z - K1 K2 K2p K3 K3p L Ny Nz z - K1 K2

2
K3 Nz

2
z - K1 K2 K2p K3 Nz

2
z -

K1 K2
2
K3

2
L Nz

2
z - K1 K2 K2p K3 K3p L Nz

2
z - K2 K2p K3 y z + K2p

2
K3p y z - K2 K2p K3 K3p L y z +

K2p
2
K3p

2
L y z - K1 K2 K2p K3 Nx y z + K1 K2 K2p K3p Nx y z + K1 K2 K2p K3 Nz y z -

K1 K2 K2p K3p Nz y z - K1 K2 K3 z
2
- K2 K2p K3 z

2
+ K1 K2p K3p z

2
- K2 K2p K3 K3p L z

2
-

K1 K2
2
K3 Nx z

2
- 2 K1 K2 K2p K3 Nx z

2
- K1 K2

2
K3

2
L Nx z

2
- 2 K1 K2 K2p K3 K3p L Nx z

2
-

K1
2
K2

2
K3 Nx

2
z
2
- K1

2
K2

2
K3

2
L Nx

2
z
2
- K1 K2

2
K3 Ny z

2
+ K1 K2 K2p K3 Ny z

2
-

K1 K2
2
K3

2
L Ny z

2
+ K1 K2 K2p K3 K3p L Ny z

2
+ 2 K1 K2

2
K3 Nz z

2
+ 2 K1 K2 K2p K3 Nz z

2
+

3
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2 K1 K2
2
K3

2
L Nz z

2
+ 2 K1 K2 K2p K3 K3p L Nz z

2
+ 2 K1

2
K2

2
K3 Nx Nz z

2
+ 2 K1

2
K2

2
K3

2
L Nx Nz z

2
-

K1
2
K2

2
K3 Nz

2
z
2
- K1

2
K2

2
K3

2
L Nz

2
z
2
- K1 K2 K2p K3 y z

2
+ K1 K2 K2p K3p y z

2
-

K1 K2
2
K3 z

3
- K1 K2 K2p K3 z

3
- K1 K2

2
K3

2
L z

3
- K1 K2 K2p K3 K3p L z

3
- 2 K1

2
K2

2
K3 Nx z

3
-

2 K1
2
K2

2
K3

2
L Nx z

3
+ 2 K1

2
K2

2
K3 Nz z

3
+ 2 K1

2
K2

2
K3

2
L Nz z

3
- K1

2
K2

2
K3 z

4
- K1

2
K2

2
K3

2
L z

4
,

-Ny + Nz + y + K2p Nx y + K2p K3p L Nx y - K2p Ny y - K2p K3p L Ny y + K2p y
2
+ K2p K3p L y

2
-

z - K1 Nx z + K1 Nz z - K1 z
2
, -Nz + z + K1 Nx z - K1 Ny z - K1 Nz z + K1 y z + K1 K2 Nx y z +

K1 K2 K3 L Nx y z - K1 K2 Ny y z - K1 K2 K3 L Ny y z + K1 K2 y
2
z + K1 K2 K3 L y

2
z + K1 z

2
,

-K2p K3p Nz + K2p K3p z + K1 K2p K3p Nx z + K1 K2 K3 Ny z - K1 K2p K3p Ny z - K1 K2 K3 Nz z -

K1 K2p K3p Nz z - K1 K2 K3 y z + K1 K2p K3p y z - K1 K2 K2p K3 Nx y z + K1 K2 K2p K3p Nx y z +

K1 K2 K2p K3 Ny y z - K1 K2 K2p K3p Ny y z - K1 K2 K2p K3 y
2
z + K1 K2 K2p K3p y

2
z +

K1 K2 K3 z
2
+ K1 K2p K3p z

2
+ K1

2
K2 K3 Nx z

2
- K1

2
K2 K3 Nz z

2
+ K1

2
K2 K3 z

3
,

K2 Nx - K2p Nx + K2 K3 L Nx - K2p K3p L Nx - K2 Ny + K2p Ny - K2 K3 L Ny + K2p K3p L Ny + K2p Nz +

K2p K3p L Nz - K2 x + K2p x - K2 K3 L x + K2p K3p L x + K2 y - K2p y + K2 K3 L y - K2p K3p L y - K2p z -

K2p K3p L z - K1 K2 Nx z - K1 K2 K3 L Nx z + K1 K2 Nz z + K1 K2 K3 L Nz z - K1 K2 z
2
- K1 K2 K3 L z

2
,

-Nx + Ny + x - y + K1 x z, -Nx + Ny + Nz + x - y - K2 Nx y - K2 K3 L Nx y +

K2 Ny y + K2 K3 L Ny y + K2 x y + K2 K3 L x y - K2 y
2
- K2 K3 L y

2
- z,

K2 K3 Nx - K2p K3p Nx - K2 K3 Ny + K2p K3p Ny + K2p K3p Nz - K2 K3 x + K2p K3p x + K2 K3 y -

K2p K3p y + K2 K2p K3 Nx y - K2 K2p K3p Nx y - K2 K2p K3 Ny y + K2 K2p K3p Ny y - K2 K2p K3 x y +

K2 K2p K3p x y + K2 K2p K3 y
2
- K2 K2p K3p y

2
- K2p K3p z - K1 K2 K3 Nx z + K1 K2 K3 Nz z - K1 K2 K3 z

2

4
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Appendix C

Gröbner basis for the steady state of
the model of homodimeric receptor
with IEK

The Gröbner basis of the polynomial system describing the homodimeric receptor
model with IEK is so long that Mathematica crashes everytime I want to save the
notebook. Instead, I present the first polynomial of the basis, which is a univariate
polynomial of degree 6.
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In[1]:= FullSimplify

CoefficientList-K1 Nx - K3 L Nx + K1 x + K3 L x - K1
2
Nx x - 2 K1 K3 L Nx x + K1

2
K3 L Nx x + K1

2
Nz x +

K1 K3 L Nz x + K1
2
x
2
+ 2 K1 K2 x

2
+ 2 K1 K3 L x

2
- K1

2
K3 L x

2
+ 2 K2 K3 L x

2
+ 2 K1 K2 K3 L x

2
+

2 K2 K3
2
L
2
x
2
- K1

2
K3 L Nx x

2
+ K1

3
K3 L Nx x

2
- 2 K1 K2 K3 L Nx x

2
+ 2 K1

2
K2 K3 L Nx x

2
-

2 K1 K2 K3
2
L
2
Nx x

2
+ 2 K1

2
K2 K3

2
L
2
Nx x

2
+ 2 K1

3
K2 Nx

2
x
2
+ 4 K1

3
K2 K3 L Nx

2
x
2
+

2 K1
3
K2 K3

2
L
2
Nx

2
x
2
+ 2 K1

2
K2 Nz x

2
+ K1

2
K3 L Nz x

2
- K1

3
K3 L Nz x

2
+ 2 K1 K2 K3 L Nz x

2
+

2 K1
2
K2 K3 L Nz x

2
+ 2 K1 K2 K3

2
L
2
Nz x

2
- 4 K1

3
K2 Nx Nz x

2
- 4 K1

2
K2 K3 L Nx Nz x

2
-

4 K1
3
K2 K3 L Nx Nz x

2
- 4 K1

2
K2 K3

2
L
2
Nx Nz x

2
+ 2 K1

3
K2 Nz

2
x
2
+ 4 K1

2
K2 K3 L Nz

2
x
2
+

2 K1 K2 K3
2
L
2
Nz

2
x
2
+ 2 K1

2
K2 x

3
+ K1

2
K3 L x

3
- K1

3
K3 L x

3
+ 6 K1 K2 K3 L x

3
- 2 K1

2
K2 K3 L x

3
+

6 K1 K2 K3
2
L
2
x
3
- 4 K1

2
K2 K3

2
L
2
x
3
- 3 K1

3
K2 Nx x

3
- 2 K1

2
K2 K3 L Nx x

3
- 4 K1

3
K2 K3 L Nx x

3
-

2 K1
2
K2 K3

2
L
2
Nx x

3
- K1

3
K2 K3

2
L
2
Nx x

3
+ 3 K1

3
K2 Nz x

3
+ 7 K1

2
K2 K3 L Nz x

3
-

K1
3
K2 K3 L Nz x

3
+ 7 K1

2
K2 K3

2
L
2
Nz x

3
- 4 K1

3
K2 K3

2
L
2
Nz x

3
+ K1

3
K2 x

4
+ 4 K1

2
K2 K3 L x

4
-

2 K1
3
K2 K3 L x

4
+ 4 K1 K2

2
K3 L x

4
- 4 K1

2
K2

2
K3 L x

4
+ 4 K1

2
K2 K3

2
L
2
x
4
- 3 K1

3
K2 K3

2
L
2
x
4
+

8 K1 K2
2
K3

2
L
2
x
4
- 8 K1

2
K2

2
K3

2
L
2
x
4
+ 4 K1 K2

2
K3

3
L
3
x
4
- 4 K1

2
K2

2
K3

3
L
3
x
4
-

7 K1
3
K2

2
Nx x

4
- K1

2
K2

2
K3 L Nx x

4
- 20 K1

3
K2

2
K3 L Nx x

4
- 2 K1

2
K2

2
K3

2
L
2
Nx x

4
-

19 K1
3
K2

2
K3

2
L
2
Nx x

4
- K1

2
K2

2
K3

3
L
3
Nx x

4
- 6 K1

3
K2

2
K3

3
L
3
Nx x

4
+ 6 K1

3
K2

2
Nz x

4
+

10 K1
2
K2

2
K3 L Nz x

4
+ 8 K1

3
K2

2
K3 L Nz x

4
+ 20 K1

2
K2

2
K3

2
L
2
Nz x

4
- 2 K1

3
K2

2
K3

2
L
2
Nz x

4
+

10 K1
2
K2

2
K3

3
L
3
Nz x

4
- 4 K1

3
K2

2
K3

3
L
3
Nz x

4
+ 5 K1

3
K2

2
x
5
+ 5 K1

2
K2

2
K3 L x

5
+

10 K1
3
K2

2
K3 L x

5
+ 10 K1

2
K2

2
K3

2
L
2
x
5
+ 5 K1

3
K2

2
K3

2
L
2
x
5
+ 5 K1

2
K2

2
K3

3
L
3
x
5
+

6 K1
3
K2

3
x
6
+ 2 K1

2
K2

3
K3 L x

6
+ 22 K1

3
K2

3
K3 L x

6
+ 6 K1

2
K2

3
K3

2
L
2
x
6
+ 30 K1

3
K2

3
K3

2
L
2
x
6
+

6 K1
2
K2

3
K3

3
L
3
x
6
+ 18 K1

3
K2

3
K3

3
L
3
x
6
+ 2 K1

2
K2

3
K3

4
L
4
x
6
+ 4 K1

3
K2

3
K3

4
L
4
x
6
, x

Out[1]= -(K1 + K3 L) Nx, K1 + K3 L + K1 K3 L (-2 Nx + Nz) + K12 ((-1 + K3 L) Nx + Nz),

2 K2 K3 L (1 + K3 L) + K13 2 K2 K32 L2 Nx2 + K3 L (1 + 4 K2 Nx) (Nx - Nz) + 2 K2 (Nx - Nz)2 +

2 K1 (K2 + K3 L + K2 K3 L (1 - (1 + K3 L) Nx + Nz + K3 L Nz (1 + Nz))) +

K1
2 1 + 2 K2 K32 L2 Nx (1 - 2 Nz) + 2 K2 Nz + K3 L (-1 + Nx (-1 + K2 (2 - 4 Nz)) + Nz + K2 Nz (2 + 4 Nz)),

-K1 -6 K2 K3 L (1 + K3 L) + K1 (-K3 L + K2 (1 + K3 L) (-2 + K3 L (4 + 2 Nx - 7 Nz))) +

K1
2 (3 K2 Nx + K3 L (1 + K2 (4 + K3 L) Nx) + K2 (1 + K3 L) (-3 + 4 K3 L) Nz),

-K1 K2 (1 + K3 L) -4 K2 K3 L (1 + K3 L) + K1 K3 L (-4 + K2 (1 + K3 L) (4 + Nx - 10 Nz)) +

K1
2 (-1 + 7 K2 Nx + K3 L (3 + K2 (13 + 6 K3 L) Nx) + 2 K2 (1 + K3 L) (-3 + 2 K3 L) Nz),

5 K1
2
K2

2 (1 + K3 L)2 (K1 + K3 L), 2 K1
2 (K2 + K2 K3 L)3 (K3 L + K1 (3 + 2 K3 L))
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Appendix D

Gröbner basis for the computation
of the EC50 of the trimeric receptor
model

I compute the Gröbner basis (for the EC50) of the trimeric receptor model making
use of Macaulay2 (Grayson & Stillman),(P1, P2, P3, P4, P5), and adapted the
output to Mathematica. The following notebook shows the polynomials which
compose the reduced Gröbner basis computed. The solutions of polynomial
P1 are potential expressions for the EC50 of the trimeric model. This polyno-
mial is independent on K1 and Nz (see extracted coefficients at the end of the
notebook).
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P1[L_] := L^4 +

((-4 * Nx * Ny * K2 * K3 * M - 8 * Nx * Nw * K2 * K3 * M - 4 * Ny * Nw * K2 * K3 * M + 6 * Nx * K2 * K3 * M^2 +

4 * Ny * K2 * K3 * M^2 + 6 * Nw * K2 * K3 * M^2 - 4 * K2 * K3 * M^3 - 4 * Nx * K2 * M - 4 * Nw * K2 * M +

4 * K2 * M^2 - 4 * M) / (8 * Nx * Ny * Nw * K2 * K3 * K4 - 4 * Nx * Ny * K2 * K3 * K4 * M -

4 * Nx * Nw * K2 * K3 * K4 * M - 4 * Ny * Nw * K2 * K3 * K4 * M + 2 * Nx * K2 * K3 * K4 * M^2 +

2 * Ny * 8 * K2 * K3 * K4 * M^2 + 2 * Nw * K2 * K3 * K4 * M^2 - K2 * K3 * K4 * M^3)) * L^3 +

((8 * Nx * Ny * K2 * K3^2 * M^2 + 4 * Ny^2 * K2 * K3^2 * M^2 + 4 * Nx * Nw * K2 * K3^2 * M^2 +

8 * Ny * Nw * K2 * K3^2 * M^2 - 6 * Nx * K2 * K3^2 * M^3 - 12 * Ny * K2 * K3^2 * M^3 -

6 * Nw * K2 * K3^2 * M^3 + 6 * K2 * K3^2 * M^4 + 4 * Nx * K2 * K3 * M^2 +

8 * Ny * K2 * K3 * M^2 + 4 * Nw * K2 * K3 * M^2 - 8 * K2 * K3 * M^3 + 4 * K2 * M^2 + 4 * K3 * M^2) /

(16 * Nx * Ny^2 * Nw * K2 * K3^2 * K4^2 - 8 * Nx * Ny^2 * K2 * K3^2 * K4^2 * M -

16 * Nx * Ny * Nw * K2 * K3^2 * K4^2 * M - 8 * Ny^2 * Nw * K2 * K3^2 * K4^2 * M +

8 * Nx * Ny * K2 * K3^2 * K4^2 * M^2 + 4 * Ny^2 * K2 * K3^2 * K4^2 * M^2 +

4 * Nx * Nw * K2 * K3^2 * K4^2 * M^2 + 8 * Ny * Nw * K2 * K3^2 * K4^2 * M^2 -

2 * Nx * K2 * K3^2 * K4^2 * M^3 - 4 * Ny * K2 * K3^2 * K4^2 * M^3 -

2 * Nw * K2 * K3^2 * K4^2 * M^3 + K2 * K3^2 * K4^2 * M^4)) * L^2 +

((-2 * Nx * K3 * M^3 - 4 * Ny * K3 * M^3 - 2 * Nw * K3 * M^3 + 4 * K3 * M^4 - 4 * M^3) /

(16 * Nx * Ny^2 * Nw * K3 * K4^3 - 8 * Nx * Ny^2 * K3 * K4^3 * M - 16 * Nx * Ny * Nw * K3 * K4^3 * M -

8 * Ny^2 * Nw * K3 * K4^3 * M + 8 * Nx * Ny * K3 * K4^3 M^2 + 4 * Ny^2 * K3 * K4^3 * M^2 +

4 * Nx * Nw * K3 * K4^3 * M^2 + 8 * Ny * Nw * K3 * K4^3 * M^2 - 2 * Nx * K3 * K4^3 * M^3 -

4 * Ny * K3 * K4^3 * M^3 - 2 * Nw * K3 * K4^3 * M^3 + K3 * K4^3 * M^4)) * L +

((M^4) / (16 * Nx * Ny^2 * Nw * K4^4 - 8 * Nx * Ny^2 * K4^4 * M - 16 * Nx * Ny * Nw * K4^4 * M -

8 * Ny^2 * Nw * K4^4 * M + 8 * Nx * Ny * K4^4 * M^2 + 4 * Ny^2 * K4^4 * M^2 +

4 * Nx * Nw * K4^4 * M^2 + 8 * Ny * Nw * K4^4 * M^2 - 2 * Nx * K4^4 * M^3 -

4 * Ny * K4^4 * M^3 - 2 * Nw * K4^4 * M^3 + K4^4 * M^4))

P2[w_, L_] := w + ((-32 * Nx * Ny^3 * Nw * K3 * K4^3 + 16 * Nx * Ny^3 * K3 * K4^3 * M +

48 * Nx * Ny^2 * Nw * K3 * K4^3 * M + 16 * Ny^3 * Nw * K3 * K4^3 * M -

24 * Nx * Ny^2 * K3 * K4^3 * M^2 - 8 * Ny^3 * K3 * K4^3 * M^2 -

24 * Nx * Ny * Nw * K3 * K4^3 * M^2 - 24 * Ny^2 * Nw * K3 * K4^3 * M^2 +

12 * Nx * Ny * K3 * K4^3 * M^3 + 12 * Ny^2 * K3 * K4^3 * M^3 + 4 * Nx * Nw * K3 * K4^3 * M^3 +

12 * Ny * Nw * K3 * K4^3 * M^3 - 2 * Nx * K3 * K4^3 * M^4 - 6 * Ny * K3 * K4^3 * M^4 -

2 * Nw * K3 * K4^3 * M^4 + K3 * K4^3 * M^5 - 32 * Nx * Ny^2 * Nw * K4^3 +

16 * Nx * Ny^2 * K4^3 * M + 32 * Nx * Ny * Nw * K4^3 * M + 16 * Ny^2 * Nw * K4^3 * M -

16 * Nx * Ny * K4^3 * M^2 - 8 * Ny^2 * K4^3 * M^2 - 8 * Nx * Nw * K4^3 * M^2 -

16 * Ny * Nw * K4^3 * M^2 + 4 * Nx * K4^3 * M^3 + 8 * Ny * K4^3 * M^3 +

4 * Nw * K4^3 * M^3 - 2 * K4^3 * M^4) / (4 * M^3)) * L^3 +

((16 * Nx * Ny^3 * K2 * K3^2 * K4^2 + 16 * Nx * Ny^2 * Nw * K2 * K3^2 * K4^2 +

16 * Ny^3 * Nw * K2 * K3^2 * K4^2 - 32 * Nx * Ny^2 * K2 * K3^2 * K4^2 * M -

16 * Ny^3 * K2 * K3^2 * K4^2 * M - 16 * Nx * Ny * Nw * K2 * K3^2 * K4^2 * M -

32 * Ny^2 * Nw * K2 * K3^2 * K4^2 * M + 20 * Nx * Ny * K2 * K3^2 * K4^2 * M^2 +

28 * Ny^2 * K2 * K3^2 * K4^2 * M^2 + 4 * Nx * Nw * K2 * K3^2 * K4^2 * M^2 +

20 * Ny * Nw * K2 * K3^2 * K4^2 * M^2 - 4 * Nx * K2 * K3^2 * K4^2 * M^3 -
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16 * Ny * K2 * K3^2 * K4^2 * M^3 - 4 * Nw * K2 * K3^2 * K4^2 * M^3 +

3 * K2 * K3^2 * K4^2 * M^4 + 32 * Nx * Ny^2 * K2 * K3 * K4^2 +

32 * Nx * Ny * Nw * K2 * K3 * K4^2 + 32 * Ny^2 * Nw * K2 * K3 * K4^2 -

48 * Nx * Ny * K2 * K3 * K4^2 * M - 32 * Ny^2 * K2 * K3 * K4^2 * M -

16 * Nx * Nw * K2 * K3 * K4^2 * M - 48 * Ny * Nw * K2 * K3 * K4^2 * M +

16 * Nx * K2 * K3 * K4^2 * M^2 + 40 * Ny * K2 * K3 * K4^2 * M^2 + 16 * Nw * K2 * K3 * K4^2 * M^2 -

12 * K2 * K3 * K4^2 * M^3 + 16 * Nx * Ny * K2 * K4^2 + 16 * Ny * Nw * K2 * K4^2 +

16 * Ny^2 * K3 * K4^2 - 8 * Nx * K2 * K4^2 * M - 16 * Ny * K2 * K4^2 * M -

8 * Nw * K2 * K4^2 * M - 16 * Ny * K3 * K4^2 * M + 8 * K2 * K4^2 * M^2 +

4 * K3 * K4^2 * M^2 + 16 * Ny * K4^2 - 8 * K4^2 * M) / (4 * K2 * K3 * M^2)) * L^2 +

((-8 * Nx * Ny^2 * K2 * K3^3 * K4 - 8 * Ny^3 * K2 * K3^3 * K4 - 8 * Ny^2 * Nw * K2 * K3^3 * K4 +

8 * Nx * Ny * K2 * K3^3 * K4 * M + 20 * Ny^2 * K2 * K3^3 * K4 * M +

8 * Ny * Nw * K2 * K3^3 * K4 * M - 2 * Nx * K2 * K3^3 * K4 * M^2 - 14 * Ny * K2 * K3^3 * K4 * M^2 -

2 * Nw * K2 * K3^3 * K4 * M^2 + 3 * K2 * K3^3 * K4 * M^3 - 16 * Nx * Ny * K2 * K3^2 * K4 -

24 * Ny^2 * K2 * K3^2 * K4 - 8 * Nx * Nw * K2 * K3^2 * K4 - 16 * Ny * Nw * K2 * K3^2 * K4 +

12 * Nx * K2 * K3^2 * K4 * M + 40 * Ny * K2 * K3^2 * K4 * M + 12 * Nw * K2 * K3^2 * K4 * M -

16 * K2 * K3^2 * K4 * M^2 - 8 * Nx * K2 * K3 * K4 - 24 * Ny * K2 * K3 * K4 -

8 * Nw * K2 * K3 * K4 + 20 * K2 * K3 * K4 * M - 8 * K2 * K4 - 8 * K3 * K4) / (4 * K2 * K3^2 * M)) * L +

((4 * Ny^2 * K3^2 - 4 * Ny * K3^2 * M + K3^2 * M^2 + 4 * Nx * K3 + 8 * Ny * K3 - 6 * K3 * M + 4) / (4 * K3))

P3[z_] := z^2 + ((Nx * K1 - Nz * K1 + 1) / (K1)) * z + (-Nz) / (K1)

P4[y_, L_, z_] :=

y + ((-16 * Nx * Ny^2 * Nw * K4^3 + 8 * Nx * Ny^2 * K4^3 * M + 16 * Nx * Ny * Nw * K4^3 * M +

8 * Ny^2 * Nw * K4^3 * M - 8 * Nx * Ny * K4^3 * M^2 - 4 * Ny^2 * K4^3 * M^2 -

4 * Nx * Nw * K4^3 * M^2 - 8 * Ny * Nw * K4^3 * M^2 + 2 * Nx * K4^3 * M^3 +

4 * Ny * K4^3 * M^3 + 2 * Nw * K4^3 * M^3 - K4^3 * M^4) / (2 * M^3)) * L^3 +

((4 * Nx * Ny^2 * K2 * K3 * K4^2 + 8 * Nx * Ny * Nw * K2 * K3 * K4^2 + 4 * Ny^2 * Nw * K2 * K3 * K4^2 -

8 * Nx * Ny * K2 * K3 * K4^2 * M - 4 * Ny^2 * K2 * K3 * K4^2 * M - 4 * Nx * Nw * K2 * K3 * K4^2 * M -

8 * Ny * Nw * K2 * K3 * K4^2 * M + 3 * Nx * K2 * K3 * K4^2 * M^2 + 6 * Ny * K2 * K3 * K4^2 * M^2 +

3 * Nw * K2 * K3 * K4^2 * M^2 - 2 * K2 * K3 * K4^2 * M^3 + 4 * Nx * Ny * K2 * K4^2 +

4 * Ny * Nw * K2 * K4^2 - 2 * Nx * K2 * K4^2 * M - 4 * Ny * K2 * K4^2 * M - 2 * Nw * K2 * K4^2 * M +

2 * K2 * K4^2 * M^2 + 4 * Ny * K4^2 - 2 * K4^2 * M) / (K2 * K3 * M^2)) * L^2 +

((-4 * Nx * Ny * K2 * K3^2 * K4 - 2 * Ny^2 * K2 * K3^2 * K4 - 2 * Nx * Nw * K2 * K3^2 * K4 -

4 * Ny * Nw * K2 * K3^2 * K4 + 3 * Nx * K2 * K3^2 * K4 * M + 6 * Ny * K2 * K3^2 * K4 * M + 3 * Nw *

K2 * K3^2 * K4 * M - 3 * K2 * K3^2 * K4 * M^2 - 2 * Nx * K2 * K3 * K4 - 4 * Ny * K2 * K3 * K4 -

2 * Nw * K2 * K3 * K4 + 4 * K2 * K3 * K4 * M - 2 * K2 * K4 - 2 * K3 * K4) / (K2 * K3^2 * M)) * L +

((2 * Nx * K3 + 2 * Ny * K3 + 2 * Nw * K3 - 3 * K3 * M + 4) / (2 * K3))

P5[x_, L_, z_] := x + ((-32 * Nx * Ny^3 * Nw * K3 * K4^3 + 16 * Nx * Ny^3 * K3 * K4^3 * M +

48 * Nx * Ny^2 * Nw * K3 * K4^3 * M + 16 * Ny^3 * Nw * K3 * K4^3 * M -

24 * Nx * Ny^2 * K3 * K4^3 * M^2 - 8 * Ny^3 * K3 * K4^3 * M^2 -

24 * Nx * Ny * Nw * K3 * K4^3 * M^2 - 24 * Ny^2 * Nw * K3 * K4^3 * M^2 +

128 Nx * Ny * K3 * K4^3 * M^3 + 12 * Ny^2 * K3 * K4^3 * M^3 + 4 * Nx * Nw * K3 * K4^3 * M^3 +

12 * Ny * Nw * K3 * K4^3 * M^3 - 2 * Nx * K3 * K4^3 * M^4 - 6 * Ny * K3 * K4^3 * M^4 -

2 * Nw * K3 * K4^3 * M^4 + K3 * K4^3 * M^5 - 32 * Nx * Ny^2 * Nw * K4^3 +
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16 * Nx * Ny^2 * K4^3 * M + 32 * Nx * Ny * Nw * K4^3 * M + 16 * Ny^2 * Nw * K4^3 * M -

16 * Nx * Ny * K4^3 * M^2 - 8 * Ny^2 * K4^3 * M^2 - 8 * Nx * Nw * K4^3 * M^2 -

16 * Ny * Nw * K4^3 * M^2 + 4 * Nx * K4^3 * M^3 + 8 * Ny * K4^3 * M^3 +

4 * Nw * K4^3 * M^3 - 2 * K4^3 * M^4) / (4 * Nx * M^3)) * z * L^3 +

((16 * Nx * Ny^3 * K2 * K3^2 * K4^2 + 16 * Nx * Ny^2 * Nw * K2 * K3^2 * K4^2 +

16 * Ny^3 * Nw * K2 * K3^2 * K4^2 - 32 * Nx * Ny^2 * K2 * K3^2 * K4^2 * M -

16 * Ny^3 * K2 * K3^2 * K4^2 * M - 16 * Nx * Ny * Nw * K2 * K3^2 * K4^2 * M -

32 * Ny^2 * Nw * K2 * K3^2 * K4^2 * M + 20 * Nx * Ny * K2 * K3^2 * K4^2 * M^2 +

28 * Ny^2 * K2 * K3^2 * K4^2 * M^2 + 4 * Nx * Nw * K2 * K3^2 * K4^2 * M^2 +

20 * Ny * Nw * K2 * K3^2 * K4^2 * M^2 - 4 * Nx * K2 * K3^2 * K4^2 * M^3 -

16 * Ny * K2 * K3^2 * K4^2 * M^3 - 4 * Nw * K2 * K3^2 * K4^2 * M^3 +

3 * K2 * K3^2 * K4^2 * M^4 + 32 * Nx * Ny^2 * K2 * K3 * K4^2 +

32 * Nx * Ny * Nw * K2 * K3 * K4^2 + 32 * Ny^2 * Nw * K2 * K3 * K4^2 -

48 * Nx * Ny * K2 * K3 * K4^2 * M - 32 * Ny^2 * K2 * K3 * K4^2 * M -

16 * Nx * Nw * K2 * K3 * K4^2 * M - 48 * Ny * Nw * K2 * K3 * K4^2 * M +

16 * Nx * K2 * K3 * K4^2 * M^2 + 40 * Ny * K2 * K3 * K4^2 * M^2 + 16 * Nw * K2 * K3 * K4^2 * M^2 -

12 * K2 * K3 * K4^2 * M^3 + 16 * Nx * Ny * K2 * K4^2 + 16 * Ny * Nw * K2 * K4^2 +

16 * Ny^2 * K3 * K4^2 - 8 * Nx * K2 * K4^2 * M - 16 * Ny * K2 * K4^2 * M -

8 * Nw * K2 * K4^2 * M - 16 * Ny * K3 * K4^2 * M + 8 * K2 * K4^2 * M^2 +

4 * K3 * K4^2 * M^2 + 16 * Ny * K4^2 - 8 * K4^2 * M) / (4 * Nx * K2 * K3 * M^2)) * z * L^2 +

((-8 * Nx * Ny^2 * K2 * K3^3 * K4 - 8 * Ny^3 * K2 * K3^3 * K4 - 8 * Ny^2 * Nw * K2 * K3^3 * K4 +

8 * Nx * Ny * K2 * K3^3 * K4 * M + 20 * Ny^2 * K2 * K3^3 * K4 * M + 8 * Ny * Nw * K2 * K3^3 * K4 * M -

2 * Nx * K2 * K3^3 * K4 * M^2 - 14 * Ny * K2 * K3^3 * K4 * M^2 - 2 * Nw * K2 * K3^3 * K4 * M^2 +

3 * K2 * K3^3 * K4 * M^3 - 16 * Nx * Ny * K2 * K3^2 * K4 - 24 * Ny^2 * K2 * K3^2 * K4 -

8 * Nx * Nw * K2 * K3^2 * K4 - 16 * Ny * Nw * K2 * K3^2 * K4 + 12 * Nx * K2 * K3^2 * K4 * M +

40 * Ny * K2 * K3^2 * K4 * M + 12 * Nw * K2 * K3^2 * K4 * M - 16 * K2 * K3^2 * K4 * M^2 -

8 * Nx * K2 * K3 * K4 - 24 * Ny * K2 * K3 * K4 - 8 * Nw * K2 * K3 * K4 +

20 * K2 * K3 * K4 * M - 8 * K2 * K4 - 8 * K3 * K4) / (4 * Nx * K2 * K3^2 * M)) * z * L +

((4 * Ny^2 * K3^2 - 4 * Ny * K3^2 * M + K3^2 * M^2 + 8 * Ny * K3 + 4 * Nw * K3 - 6 * K3 * M + 4) /

(4 * Nx * K3)) * z +

((-32 * Nx^2 * Ny^3 * Nw * K3 * K4^3 + 32 * Nx * Ny^3 * Nw * Nz * K3 * K4^3 +

16 * Nx^2 * Ny^3 * K3 * K4^3 * M + 48 * Nx^2 * Ny^2 * Nw * K3 * K4^3 * M +

16 * Nx * Ny^3 * Nw * K3 * K4^3 * M - 16 * Nx * Ny^3 * Nz * K3 * K4^3 * M -

48 * Nx * Ny^2 * Nw * Nz * K3 * K4^3 * M - 16 * Ny^3 * Nw * Nz * K3 * K4^3 * M -

24 * Nx^2 * Ny^2 * K3 * K4^3 * M^2 - 8 * Nx * Ny^3 * K3 * K4^3 * M^2 -

24 * Nx^2 * Ny * Nw * K3 * K4^3 * M^2 - 24 * Nx * Ny^2 * Nw * K3 * K4^3 * M^2 +

24 * Nx * Ny^2 * Nz * K3 * K4^3 * M^2 + 8 * Ny^3 * Nz * K3 * K4^3 * M^2 +

24 * Nx * Ny * Nw * Nz * K3 * K4^3 * M^2 + 24 * Ny^2 * Nw * Nz * K3 * K4^3 * M^2 +

12 * Nx^2 * Ny * K3 * K4^3 * M^3 + 12 * Nx * Ny^2 * K3 * K4^3 * M^3 +

4 * Nx^2 * Nw * K3 * K4^3 * M^3 + 12 * Nx * Ny * Nw * K3 * K4^3 * M^3 -

12 * Nx * Ny * Nz * K3 * K4^3 * M^3 - 12 * Ny^2 * Nz * K3 * K4^3 * M^3 -

4 * Nx * Nw * Nz * K3 * K4^3 * M^3 - 12 * Ny * Nw * Nz * K3 * K4^3 * M^3 -

2 * Nx^2 * K3 * K4^3 * M^4 - 6 * Nx * Ny * K3 * K4^3 * M^4 - 2 * Nx * Nw * K3 * K4^3 * M^4 +
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2 * Nx * Nz * K3 * K4^3 * M^4 + 6 * Ny * Nz * K3 * K4^3 * M^4 + 2 * Nw * Nz * K3 * K4^3 * M^4 +

Nx * K3 * K4^3 * M^5 - Nz * K3 * K4^3 * M^5 - 32 * Nx^2 * Ny^2 * Nw * K4^3 +

32 * Nx * Ny^2 * Nw * Nz * K4^3 + 16 * Nx^2 * Ny^2 * K4^3 * M + 32 * Nx^2 * Ny * Nw * K4^3 * M +

16 * Nx * Ny^2 * Nw * K4^3 * M - 16 * Nx * Ny^2 * Nz * K4^3 * M -

32 * Nx * Ny * Nw * Nz * K4^3 * M - 16 * Ny^2 * Nw * Nz * K4^3 * M - 16 * Nx^2 * Ny * K4^3 * M^2 -

8 * Nx * Ny^2 * K4^3 * M^2 - 8 * Nx^2 * Nw * K4^3 * M^2 - 16 * Nx * Ny * Nw * K4^3 * M^2 +

16 * Nx * Ny * Nz * K4^3 * M^2 + 8 * Ny^2 * Nz * K4^3 * M^2 + 8 * Nx * Nw * Nz * K4^3 * M^2 +

16 * Ny * Nw * Nz * K4^3 * M^2 + 4 * Nx^2 * K4^3 * M^3 + 8 * Nx * Ny * K4^3 * M^3 +

4 * Nx * Nw * K4^3 * M^3 - 4 * Nx * Nz * K4^3 * M^3 - 8 * Ny * Nz * K4^3 * M^3 -

4 * Nw * Nz * K4^3 * M^3 - 2 * Nx * K4^3 * M^4 + 2 * Nz * K4^3 * M^4) / (4 * Nx * M^3)) * L^3 +

((16 * Nx^2 * Ny^3 * K2 * K3^2 * K4^2 + 16 * Nx^2 * Ny^2 * Nw * K2 * K3^2 * K4^2 +

16 * Nx * Ny^3 * Nw * K2 * K3^2 * K4^2 - 16 * Nx * Ny^3 * Nz * K2 * K3^2 * K4^2 -

16 * Nx * Ny^2 * Nw * Nz * K2 * K3^2 * K4^2 - 16 * Ny^3 * Nw * Nz * K2 * K3^2 * K4^2 -

32 * Nx^2 * Ny^2 * K2 * K3^2 * K4^2 * M - 16 * Nx * Ny^3 * K2 * K3^2 * K4^2 * M -

16 * Nx^2 * Ny * Nw * K2 * K3^2 * K4^2 * M - 32 * Nx * Ny^2 * Nw * K2 * K3^2 * K4^2 * M +

32 * Nx * Ny^2 * Nz * K2 * K3^2 * K4^2 * M + 16 * Ny^3 * Nz * K2 * K3^2 * K4^2 * M +

16 * Nx * Ny * Nw * Nz * K2 * K3^2 * K4^2 * M + 32 * Ny^2 * Nw * Nz * K2 * K3^2 * K4^2 * M +

20 * Nx^2 * Ny * K2 * K3^2 * K4^2 * M^2 + 28 * Nx * Ny^2 * K2 * K3^2 * K4^2 * M^2 +

4 * Nx^2 * Nw * K2 * K3^2 * K4^2 * M^2 + 20 * Nx * Ny * Nw * K2 * K3^2 * K4^2 * M^2 -

20 * Nx * Ny * Nz * K2 * K3^2 * K4^2 * M^2 - 28 * Ny^2 * Nz * K2 * K3^2 * K4^2 * M^2 -

4 * Nx * Nw * Nz * K2 * K3^2 * K4^2 * M^2 - 20 * Ny * Nw * Nz * K2 * K3^2 * K4^2 * M^2 -

4 * Nx^2 * K2 * K3^2 * K4^2 * M^3 - 16 * Nx * Ny * K2 * K3^2 * K4^2 * M^3 -

4 * Nx * Nw * K2 * K3^2 * K4^2 * M^3 + 4 * Nx * Nz * K2 * K3^2 * K4^2 * M^3 +

16 * Ny * Nz * K2 * K3^2 * K4^2 * M^3 + 4 * Nw * Nz * K2 * K3^2 * K4^2 * M^3 +

3 * Nx * K2 * K3^2 * K4^2 * M^4 - 3 * Nz * K2 * K3^2 * K4^2 * M^4 +

32 * Nx^2 * Ny^2 * K2 * K3 * K4^2 + 32 * Nx^2 * Ny * Nw * K2 * K3 * K4^2 +

32 * Nx * Ny^2 * Nw * K2 * K3 * K4^2 - 32 * Nx * Ny^2 * Nz * K2 * K3 * K4^2 -

32 * Nx * Ny * Nw * Nz * K2 * K3 * K4^2 - 32 * Ny^2 * Nw * Nz * K2 * K3 * K4^2 -

48 * Nx^2 * Ny * K2 * K3 * K4^2 * M - 32 * Nx * Ny^2 * K2 * K3 * K4^2 * M -

16 * Nx^2 * Nw * K2 * K3 * K4^2 * M - 48 * Nx * Ny * Nw * K2 * K3 * K4^2 * M +

48 * Nx * Ny * Nz * K2 * K3 * K4^2 * M + 32 * Ny^2 * Nz * K2 * K3 * K4^2 * M +

16 * Nx * Nw * Nz * K2 * K3 * K4^2 * M + 48 * Ny * Nw * Nz * K2 * K3 * K4^2 * M +

16 * Nx^2 * K2 * K3 * K4^2 * M^2 + 40 * Nx * Ny * K2 * K3 * K4^2 * M^2 +

16 * Nx * Nw * K2 * K3 * K4^2 * M^2 - 16 * Nx * Nz * K2 * K3 * K4^2 * M^2 -

40 * Ny * Nz * K2 * K3 * K4^2 * M^2 - 16 * Nw * Nz * K2 * K3 * K4^2 * M^2 -

12 * Nx * K2 * K3 * K4^2 * M^3 + 12 * Nz * K2 * K3 * K4^2 * M^3 + 16 * Nx^2 * Ny * K2 * K4^2 +

16 * Nx * Ny * Nw * K2 * K4^2 - 16 * Nx * Ny * Nz * K2 * K4^2 - 16 * Ny * Nw * Nz * K2 * K4^2 +

16 * Nx * Ny^2 * K3 * K4^2 - 16 * Ny^2 * Nz * K3 * K4^2 - 8 * Nx^2 * K2 * K4^2 * M -

16 * Nx * Ny * K2 * K4^2 * M - 8 * Nx * Nw * K2 * K4^2 * M + 8 * Nx * Nz * K2 * K4^2 * M +

16 * Ny * Nz * K2 * K4^2 * M + 8 * Nw * Nz * K2 * K4^2 * M - 16 * Nx * Ny * K3 * K4^2 * M +

16 * Ny * Nz * K3 * K4^2 * M + 8 * Nx * K2 * K4^2 * M^2 - 8 * Nz * K2 * K4^2 * M^2 +

4 * Nx * K3 * K4^2 * M^2 - 4 * Nz * K3 * K4^2 * M^2 + 16 * Nx * Ny * K4^2 -

16 * Ny * Nz * K4^2 - 8 * Nx * K4^2 * M + 8 * Nz * K4^2 * M) / (4 * Nx * K2 * K3 * M^2)) * L^2 +
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((-8 * Nx^2 * Ny^2 * K2 * K3^3 * K4 - 8 * Nx * Ny^3 * K2 * K3^3 * K4 -

8 * Nx * Ny^2 * Nw * K2 * K3^3 * K4 + 8 * Nx * Ny^2 * Nz * K2 * K3^3 * K4 +

8 * Ny^3 Nz * K2 * K3^3 * K4 + 8 * Ny^2 * Nw * Nz * K2 * K3^3 * K4 +

8 * Nx^2 * Ny * K2 * K3^3 * K4 * M + 20 * Nx * Ny^2 * K2 * K3^3 * K4 * M +

8 * Nx * Ny * Nw * K2 * K3^3 * K4 * M - 8 * Nx * Ny * Nz * K2 * K3^3 * K4 * M -

20 * Ny^2 * Nz * K2 * K3^3 * K4 * M - 8 * Ny * Nw * Nz * K2 * K3^3 * K4 * M -

2 * Nx^2 * K2 * K3^3 * K4 * M^2 - 14 * Nx * Ny * K2 * K3^3 * K4 * M^2 -

2 * Nx * Nw * K2 * K3^3 * K4 * M^2 + 2 * Nx * Nz * K2 * K3^3 * K4 * M^2 +

14 * Ny * Nz * K2 * K3^3 * K4 * M^2 + 2 * Nw * Nz * K2 * K3^3 * K4 * M^2 +

3 * Nx * K2 * K3^3 * K4 * M^3 - 3 * Nz * K2 * K3^3 * K4 * M^3 - 16 * Nx^2 * Ny * K2 * K3^2 * K4 -

24 * Nx * Ny^2 * K2 * K3^2 * K4 - 8 * Nx^2 * Nw * K2 * K3^2 * K4 -

16 * Nx * Ny * Nw * K2 * K3^2 * K4 + 16 * Nx * Ny * Nz * K2 * K3^2 * K4 +

24 * Ny^2 * Nz * K2 * K3^2 * K4 + 8 * Nx * Nw * Nz * K2 * K3^2 * K4 +

16 * Ny * Nw * Nz * K2 * K3^2 * K4 + 12 * Nx^2 * K2 * K3^2 * K4 * M +

40 * Nx * Ny * K2 * K3^2 * K4 * M + 12 * Nx * Nw * K2 * K3^2 * K4 * M -

12 * Nx * Nz * K2 * K3^2 * K4 * M - 40 * Ny * Nz * K2 * K3^2 * K4 * M -

12 * Nw * Nz * K2 * K3^2 * K4 * M - 16 * Nx * K2 * K3^2 * K4 * M^2 +

16 * Nz * K2 * K3^2 * K4 * M^2 - 8 * Nx^2 * K2 * K3 * K4 - 24 * Nx * Ny * K2 * K3 * K4 -

8 * Nx * Nw * K2 * K3 * K4 + 8 * Nx * Nz * K2 * K3 * K4 + 24 * Ny * Nz * K2 * K3 * K4 +

8 * Nw * Nz * K2 * K3 * K4 + 20 * Nx * K2 * K3 * K4 * M - 20 * Nz * K2 * K3 * K4 * M - 8 * Nx * K2 * K4 +

8 * Nz * K2 * K4 - 8 * Nx * K3 * K4 + 8 * Nz * K3 * K4) / (4 * Nx * K2 * K3^2 * M)) * L +

((4 * Nx * Ny^2 * K3^2 - 4 * Ny^2 * Nz * K3^2 - 4 * Nx * Ny * K3^2 * M + 4 * Ny * Nz * K3^2 * M +

Nx * K3^2 * M^2 - Nz * K3^2 * M^2 + 8 * Nx * Ny * K3 + 4 * Nx * Nw * K3 - 8 * Ny * Nz * K3 -

4 * Nw * Nz * K3 - 6 * Nx * K3 * M + 6 * Nz * K3 * M + 4 * Nx - 4 * Nz) / (4 * Nx * K3))

FullSimplify[CoefficientList[P1[L], L]]

Out[ ]=  M
4

K4
4 (M - 2 Nw) (M - 2 Nx) (M - 2 Ny)2

,
2 M

3 (-2 + K3 (2 M - Nw - Nx - 2 Ny))

K3 K4
3 (M - 2 Nw) (M - 2 Nx) (M - 2 Ny)2

,

2 M2 2 K3 + K2 2 + 2 K3 (-2 M + Nw + Nx + 2 Ny) + K32 3 M2 - 3 M (Nw + Nx + 2 Ny) +

2 Nw Nx + 2 (Nw + Nx) Ny + Ny2  K2 K32 K42 (M - 2 Nw) (M - 2 Nx) (M - 2 Ny)2,
2 M 2 + K2 2 K3 M2 - M (2 + 3 K3 (Nw + Nx) + 2 K3 Ny) + 2 (Nw + Nx + 2 K3 Nw Nx + K3 (Nw + Nx) Ny)

K2 K3 K4 M3 - 8 Nw Nx Ny - 2 M2 (Nw + Nx + 8 Ny) + 4 M (Nx Ny + Nw (Nx + Ny))
,

1
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Appendix E

Mathematica notebook for the
computation of the amplitude of
homodimeric RTK model A+B

Here, I provide the Mathematica (Wolfram Research, Inc., 2019) notebook that I
tried to use to compute the amplitude of homodimeric RTK model A+B. The
affinity constant K ′3 is written K3p.
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In[1]:= x[L_] := (-1 - K3p * L + Sqrt[8 * Nx * K2 * (1 + K3 * L) + (1 + K3p * L)^2]) / (4 * K2 * (K3 * L + 1))

In[ ]:= sig[L_] := K2 * K3 * L * x[L] * x[L]

In[ ]:= FullSimplify[D[sig[L], L]]

Out[ ]= -

K3
2
L 1 + K3p L - (1 + K3p L)2 + 8 K2 (1 + K3 L) Nx

2

8 K2 (1 + K3 L)3
+

K3 1 + K3p L - (1 + K3p L)2 + 8 K2 (1 + K3 L) Nx
2

16 K2 (1 + K3 L)2
+

K3 L -K3p +
K3p+K3p2 L+4 K2 K3 Nx

(1+K3p L)2+8 K2 (1+K3 L) Nx

-1 - K3p L + (1 + K3p L)2 + 8 K2 (1 + K3 L) Nx

8 K2 (1 + K3 L)2
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In[ ]:= Solve[D[sig[L], L] ⩵ 0, L]

Out[ ]= L →

-
-2 K3 K3p + 3 K3p2

3 K3 K3p
2

- 21/3 -K32 K3p2 + 6 K3 K3p3 - 9 K3p4  3 K3 K3p2 -2 K33 K3p3 + 18 K32 K3p4 +

54 K3 K3p
5 - 54 K3p6 + 216 K2 K32 K3p4 Nx +4 -K32 K3p2 + 6 K3 K3p3 - 9 K3p43 +

-2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 + 216 K2 K32 K3p4 Nx21/3 +
1

3 × 21/3 K3 K3p2
-2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 + 216 K2 K32 K3p4 Nx +

4 -K32 K3p2 + 6 K3 K3p3 - 9 K3p43 +
-2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 + 216 K2 K32 K3p4 Nx21/3,

L → -
-2 K3 K3p + 3 K3p2

3 K3 K3p
2

+ 1 + ⅈ 3 -K32 K3p2 + 6 K3 K3p3 - 9 K3p4 

3 × 22/3 K3 K3p2 -2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 +
216 K2 K3

2
K3p

4
Nx +4 -K32 K3p2 + 6 K3 K3p3 - 9 K3p43 +

-2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 + 216 K2 K32 K3p4 Nx21/3 -
1

6 × 21/3 K3 K3p2
1 - ⅈ 3 -2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 +

216 K2 K3
2
K3p

4
Nx +4 -K32 K3p2 + 6 K3 K3p3 - 9 K3p43 +

-2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 + 216 K2 K32 K3p4 Nx21/3,

L → -
-2 K3 K3p + 3 K3p2

3 K3 K3p
2

+ 1 - ⅈ 3 -K32 K3p2 + 6 K3 K3p3 - 9 K3p4 

3 × 22/3 K3 K3p2 -2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 +
216 K2 K3

2
K3p

4
Nx +4 -K32 K3p2 + 6 K3 K3p3 - 9 K3p43 +

-2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 + 216 K2 K32 K3p4 Nx21/3 -
1

6 × 21/3 K3 K3p2
1 + ⅈ 3 -2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 +

216 K2 K3
2
K3p

4
Nx +4 -K32 K3p2 + 6 K3 K3p3 - 9 K3p43 +

-2 K33 K3p3 + 18 K32 K3p4 + 54 K3 K3p5 - 54 K3p6 + 216 K2 K32 K3p4 Nx21/3

2 homoAB_amp_ec50.nb
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Appendix F

Mathematica notebook for the
computation of the amplitude of
heterodimeric RTK model B+C

The signalling function of the heterodimeric RTK model B+C is σ(L) = Ny −
(1 +K ′′3L)y where y is the steady state concentration of unbound α chains. Thus,
dσ

dL
(L) = K ′′3 (y+L

dy

dL
). Here, I provide the analytic expression of

dy

dL
as computed

thanks to Mathematica. This expression is rather long, even in an supposedly

simplified form. Mathematica cannot find L such that
dσ

dL
(L) = 0.
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In[1]:= y[L_] := - 1 + K3p L + K3pp L (1 + K3p L + K2pp (Nx - Ny)) -

√(1 + L (K3p + K3pp + K3p K3pp L + K2pp K3pp (Nx - Ny)))2 +

4 K2pp K3pp L (1 + K3p L) (1 + K3pp L) Ny  (2 K2pp K3pp L (1 + K3pp L))

In[3]:= FullSimplify[D[y[L], L]]

Out[3]=

1

2 K2pp L
2 (1 + K3pp L)2

L 1 + K3p L + K3pp L (1 + K3p L + K2pp (Nx - Ny)) -

(1 + L (K3p + K3pp + K3p K3pp L + K2pp K3pp (Nx - Ny)))2 +

4 K2pp K3pp L (1 + K3p L) (1 + K3pp L) Ny +
1

K3pp
(1 + K3pp L) 1 + K3p L + K3pp L (1 + K3p L + K2pp (Nx - Ny)) -

(1 + L (K3p + K3pp + K3p K3pp L + K2pp K3pp (Nx - Ny)))2 +

4 K2pp K3pp L (1 + K3p L) (1 + K3pp L) Ny -
1

K3pp
L (1 + K3pp L)

K3p + K3p K3pp L + K3pp (1 + K3p L + K2pp (Nx - Ny)) - K3p + K3p2 L (1 + K3pp L) (1 + 2 K3pp L) +

K3p K3pp L (4 + 2 K2pp (Nx + Ny) + 3 K3pp L (1 + K2pp (Nx + Ny))) +

K3pp 1 + K2pp (Nx + Ny) + K3pp L 1 + K2pp2 (Nx - Ny)2 + 2 K2pp (Nx + Ny) 
(1 + L (K3p + K3pp + K3p K3pp L + K2pp K3pp (Nx - Ny)))2 +

4 K2pp K3pp L (1 + K3p L) (1 + K3pp L) Ny

F. MATHEMATICA NOTEBOOK FOR THE COMPUTATION OF
THE AMPLITUDE OF HETERODIMERIC RTK MODEL B+C
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Appendix G

Agent-based model with activation
and death: switching from
egalitarian regime to gerontocracy
as m0 decreases

Figures G.1 and G.2 show that the dynamics observed in the egalitarian regime
is still observed in the case of r̄0 ≈ 2

up

µ2
(m0 = 14, σ0 = 1). In that case, the

receptor distribution over the whole simulation is also similar to the one in Figure
5.20 in the egalitarian case. The dynamics (with the usual parameter values)
in the case of m0 = 11 (r̄0 ≈

up

µ2
) and m0 = 9 (r̄0 ≈

up

75µ2
) is shown in Figures

G.3 and G.4. As m0 decreases (σ0 = 1 fixed), more and more rT trajectories
(when reported to their activation time) are crossing each other (even though the
majority still follows the the mean of the expression obtained in equation (5.42)),
and R becomes noisier.
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G. AGENT-BASED MODEL WITH ACTIVATION AND DEATH:
SWITCHING FROM EGALITARIAN REGIME TO
GERONTOCRACY AS M0 DECREASES
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Figure G.1: Time evolution plots of the cell number, N(t), and its theoretical
average expression, N̄(t) (top), population variable R(t) alongside its theoretical
average expression, R̄(t) (middle); and (bottom) IL-2R expression level of 0.3%
randomly chosen cells. The parameter values used for this simulation are: u = 10
[rT ]/[iT ]/day, p = 10 [iT ]/day/cell, α = 30, µ = 0.01 /day, m0 = 14 and σ0 = 1.
The simulation started with N(0) =

α

µ
cells and the time step was ∆t = 1 day.
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Figure G.2: Individual receptor upregulation trajectories from the simulation
shown in Figure G.1, reported to the cell’s activation time, tinT . No trajectories
are crossing each other: they all follow the expression obtained in equation (5.42)
(red line).
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G. AGENT-BASED MODEL WITH ACTIVATION AND DEATH:
SWITCHING FROM EGALITARIAN REGIME TO
GERONTOCRACY AS M0 DECREASES
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(a) m0 = 11
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(b) m0 = 9

Figure G.3: Time evolution plots of the cell number, N(t), and its theoretical
average expression, N̄(t) (top), population variable R(t) alongside its theoretical
average expression, R̄(t) (middle); and (bottom) IL-2R expression level of 0.3%
randomly chosen cells. The parameter values used for this simulation are: u = 10
[rT ]/[iT ]/day, p = 10 [iT ]/day/cell, α = 30 cells/day, µ = 0.01 /day, and σ0 = 1.
The simulation started with N(0) =

α

µ
cells and the time step was ∆t = 1 day.
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Figure G.4: Individual receptor upregulation trajectories from the simulation
shown in Figures G.3, reported to the cell’s activation time, tinT . As m0 decreases
(i,e. r̄0 decreases), more and more trajectories are crossing each other. Most of
them still follow the mean of the expression obtained in equation (5.42), r̄0 cosh(r∗t)
(red line).
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Appendix H

Agent-based model with activation
and death: ∆t analysis

To make sure we simulated the agent-based model (with death and activation only)
with a time step, ∆t, small enough, I computed, at steady state, the mean value
(over one simulation) of R(t) for simulations with different time steps (from 0.1 to
100) for the different regimes (small, moderate or large m0). The result, displayed
in Figure H.1 shows that from ∆t = 10, the average value of R(t) deviates from
the theoretical mean steady state value R∞. Thus, we can affirm that ∆t = 1 < 10

is a reasonable time step for the simulations.
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Figure H.1: Each dot represents the mean of R(t) throughout a simulation of
the agent-based model with activation and death with the corresponding time
step, ∆t (in days), given on the x-axis. The other parameter values were: µ = 0.01
/day, p = 10 [iT ]/day/cell, u = 10 [rT ]/[iT ]/day, α = 30 cells/day, N(0) = α

µ
and

tmax = 5000 days. This mean value is to be compared with its theoretical value
R∞ (black dashed line).
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Appendix I

Agent-based model with activation,
death and division: ∆t analysis

To make sure we simulated the agent-based model (with death, activation and
division) with a time step, ∆t, small enough, I computed, at steady state, the mean
values of R(t) for simulations with different time steps (from 0.1 to 100) for the
two different regimes (m0 small or large). The result, displayed in Figure I.1 shows
that from ∆t = 30, the average value of R(t) deviates from the theoretical mean
steady state value R∞. Thus, we can affirm that ∆t = 10 < 30 is a reasonable
time step for the simulations.
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I. AGENT-BASED MODEL WITH ACTIVATION, DEATH AND
DIVISION: ∆T ANALYSIS
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Figure I.1: Each dot represents the mean of R(t) throughout a simulation of the
agent-based model with activation and death with the corresponding time step,
∆t (in days), given on the x-axis. The other parameter values were: µ = 0.01
/day, λ = 0.003 /day, p = 10 [iT ]/day/cell, u = 10 [rT ]/[iT ]/day, α = 30 cells/day,
N(0) = α

µ−λ and tmax = 5000 days. This mean value is to be compared with its
theoretical value R∞ (black dashed line).
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Appendix J

General agent-based model: Python
code description

I provide a Python code to simulate the models of competition for IL-2 discussed
in Chapter 5, comprising the extensions of Section 5.6. The code, available at
https://github.com/leasta/ABM_thesis, does not distinguish the old and new
cohorts.

J.1 Code structure and output

I define two classes of cells: conventional T cells, Tconv, and regulatory T cells,
Treg. Both cell types have the same attributes but follow different rules.

J.1.1 Structure

To make the code readable, I split it into different files. The code is organised as
follows:

• params.py defines the T cells parameters,

• cells.py defines the classes, Tconv and Treg, and their attributes,

• functions.py defines all the functions that rule the T cells behaviour (from
activation and death to cytokine consumption and receptor upregulation),
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DESCRIPTION

• globals.py defines the populations of conventional and regulatory T cells as
global variables (profile_Tc and profile_Tr respectively),

• main.py simulates the model from t = 0 to t = tmax by updating, at each
time step, the global profiles. It also creates the output plots.

In the following sections, I will detail the content of each file.

J.1.2 Output

The main.py routine creates a graph similar to Figure 5.13: it plots N(t), R(t)

and a sample of rT (t) trajectories as a function of time. When the analytic
expression for N̄(t) and R̄(t) is known, it adds it to the graph in dashed lines. If
the parameter animation is set to True, the routine saves, at each time step, a
scatterplot with joint distributions similar to Figure 5.11. One can then watch
the animated simulation by opening any of these figures and press the right arrow
on the keyboard to visualise the next ones 1.

J.2 File description

In this section, I detail the content of each file of the code. Especially, I introduce
the parameters and describe the main functions.

J.2.1 Parameters

The parameters of the model are defined in the file params.py. Table J.1 reca-
pitulates the notation of this code, which, most of the time, matches with the
mathematical notation introduced in Chapter 5. Additionally, this file computes

the value of r̄0 = em0+
σ20
2 for the two cell populations (since m0 and σ0 can be

different for both populations). All parameters (except m0_T*) need to be positive
but the code won’t stop the user from choosing negative parameter values. Finally,

1One could create an animated GIF from the set of all the scatterplots. However when
merging more than a hundred figures, the resulting file is heavy and takes a long time to be
created and to be opened. Thus, I chose to not create it and use the sequence of figures instead.
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J.2 File description

Python Math Description
dt ∆t Time step
tmax tmax Final time of the simulation
animation Boolean: save a scatterplot at each step if True
N* N∗ Initial number of cells of the population
m0_T* m0∗ Parameter of the initial receptor distribution

(mean of the normal distribution)
sig0_T* σ0∗ Parameter of the initial receptor distribution

(standard deviation of the normal distribution)
u_T* u∗ Receptor upregulation rate
p_Tc p Cytokine production rate
mu_T* µ∗ Death rate
a_T* α∗ Activation rate
lb_T* λ∗ Division rate
starv_T* ν Starvation rate
thrstarv_Tc θstarv Starvation threshold
thrdiv_Tr θdiv Division threshold
c_T* c∗ Cytokine consumption rate
track_T* Probability that a cell is tracked during the

simulation

Table J.1: Notation for the parameters of the agent-based model of the com-
petition for IL-2 between conventional and regulatory T cells. Conventional and
regulatory T cells have a priori different parameter values. To this end, in the
python code, I denote any quantity, X, (parameter, list or profile) related to
conventional (resp. regulatory) T cells by X_Tc (resp. X_Tr). In this table, I chose
to describe the parameters in the general case and the asterisk, *, replaces c or r.
When we consider the competition within the conventional T cells only, * replaces
c in the python notations and should be ignored in the mathematical notations.
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the parameter animation is a boolean that must be set to False if one wants a
code which runs faster, and does not want the scatterplots.

J.2.2 Cell classes

The file cells.py defines two similar cell classes: conventional (called Tconv) and
regulatory T cells (called Treg). Both classes have two attributes: the IL-2R level
expressed by the cell, r, and the amount of IL-2 it accumulated since it entered
the cell pool, i. When created, a cell receives a certain number of receptors
drawn from a log-normal distribution with parameters m0_Tc and sig0_Tc for
conventional T cells, or m0_Tr and sig0_Tr for regulatory T cells. Both cell
types receive no IL-2. The attributes i and r (iT and rT in Chapter 5) will be
updated during the simulation, thanks to two update class functions consume

and IL2R_upregulation . Additionally, each cell has a certain probability to be
tracked during the simulation. If a cell is tracked, then its boolean attribute,
track, will be set to True and the values taken by its attribute r at each time t
will be stored in the attribute rlist. The time during which r is updated (from
the time at which the cell enters the pool until it dies or divides (or the simulation
ends)), is stored in attribute timelist. For any cell, the initial receptor value
and the time at which it entered the cell pool are stored in rlist and timelist,
respectively. Two functions related to this tracking are defined: update_list

updates the attributes rlist and timelist. The function reset_tracking

resets these lists when the cell divides. The two daughter cells will need to be
selected again to be tracked. The initialisation of a conventional T cell is as follows
(the initialisation of a regulatory T cell is similar):� �
class Tconv ():

def __init__(self ,t):
self.r = np.random.lognormal(m0_Tc ,sig0_Tc)
self.i=0
self.rlist =[self.r]
self.timelist =[t]
ran=np.random.random ()
if ran <tracked_Tc:

self.track=True
else:

360



J.2 File description

self.track=False� �
J.2.3 Functions

The file functions.py contains four important functions.

IL-2 consumption and IL-2R upregulation

The function IL2consumption_IL2production_IL2Rupregulation computes
the quantity of IL-2 available for the cells to consume at time t, calculates the
populations variable R(t) and updates the cell attributes i and r following the
two-attributes dynamics described in section 5.2 (with a forward-Euler scheme).

Stochastic population events: Activation

The function activation determines the number (sampled from a Poisson distri-
bution) of new cells entering the two cell pools during the time interval dt and
updates the corresponding global profiles.

Stochastic population events: Death or division

The function death_division_starvation selects cells that will die, divide or
do nothing during the small time interval [t, t+dt].

First, we determine the cells that will undergo a stochastic event (death or
division) at time t. To this end, we attribute to each cell a number drawn from a
uniform distribution. If this number is lower than the product

dt × (division rate + death rate),

then the cell will die or divide. Note that we first need to determine the actual death
rate of each conventional T cell, which is µc + ν if the cell did not absorb enough
IL-2 (see starvation process described in Section 5.6), µc otherwise. Similarly,
for regulatory T cells, the division rate is lb_Tc if it absorbed enough IL-2, 0

otherwise. Each of these cells will then randomly die or divide, in accordance
with their death and division rate. If a cell dies, it will be removed from its global
profile. If a cell, T , divides, a new cell of the same type (Tconv or Treg), Td,
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will be created. The receptor number r of both cells will then be set to half the
value expressed by cell T when it divided, T.r. That is, attribute rlist of both
cells will be re-initialised at [T.r/2]. Attribute timelist will be reset to [t]

(division occurred at time t). The daughter cell, Td, is added to the corresponding
profile (profile_Tc if it is a Tconv, profile_Tr if it is a Treg).

Theoretical expression of the average ensembles

The function theoretical_NR returns the average ensemble values of the popula-
tion variables N(t) and R(t) evaluated at each time-step of the simulation, when
it was computed theoretically in Chapter 5. It returns vectors of negative values
otherwise.

J.2.4 Initialisation of global variables

The initialisation function of cell profiles is defined in globals.py. It takes Nc and
Nr, the initial number of conventional and regulatory T cells, as arguments and
establishes two lists (as global variables), profile_Tc and profile_Tr containing
Nc conventional T cells and Nr regulatory T cells, respectively. These cells were
initialised as described in Section J.2.2

J.2.5 Main routine

The file, main.py, contains the main routine. First, it initialises the global
profiles, profile_Tc and profile_Tr, by calling the function in globals.py. It
also initialises the scatterplot for the eventual animation. Once this in place, it
calls the function animateAndSave. This function first creates a folder (called
results_dir in the following piece of code) in which all the figures will be saved.
It also copies the file params.py in this folder for the record. Then, this function
initialises a couple of lists where all the important variables will be stored for the
time of the simulation. Finally, if animation ==True, it saves the scatterplot at
t = 0. With this in place, it updates the lists initialised for each time step as
follows 1:

1The arguments of the function advance have been replaced by *args. I have also
replaced individual outputs of this function by the generic word outputs . Finally, I have
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J.3 Different sub-cases

� �
output_list =[]
timenow =0
while timenow <tmax:

timenow +=dt
outputs=advance (*args , timenow)
output_list.append(outputs)
if animation ==True:

animateGraph(timenow)
file_name = "animation"+’%s’%timenow+’.png’
plt.savefig(results_dir + file_name)� �

The function advance simulates the agent-based model for each time step, calling
the functions defined in functions.py, death_division_starvation , immigration
and IL2consumption_IL2production_IL2Rupregulation in this order. The
function animateGraph updates the scatterplot initialised prior the update rou-
tine.

Once the simulation of the agent-based model for t = 0, . . . , tmax is over, a graph
of the time evolution of the number of cells (Nc(t), Nr(t) and N(t) = Nc(t)+Nr(t)),
the population variable R(t) and individual rT trajectories of track_Tc and
track_Tr randomly chosen cells, is created.

J.3 Different sub-cases

Sub-models studied in Chapter 5 can be simulated with this code by setting the
following parameter values: Nr=0, a_Tr=0. In addition, to obtain each sub-model
in particular, the following parameter values must be chosen:

• Deterministic model: mu_Tc=0, a_Tc=0, lb_Tc=0 and starv_Tc =0.

• Hybrid dynamics with death only: a_Tc=0, lb_Tc=0 and starv_Tc =0.

• Hybrid dynamics with death and activation: lb_Tc=0 and starv_Tc =0.

• Hybrid dynamics with death, activation and division: starv_Tc =0.

created a generic list output_list to store these general outputs. In the code, there is a
separated list for each output.
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For all these cases, theoretical expressions for N̄(t) and R̄(t) were computed and
are added to the output graph. Note that in this case, as there is only one cell
population, the parameter c_Tc does not affect the dynamics. However, it will
rescale R(t). To reproduce the figures of Chapter 5, one has to set c_Tc=1. We
remind that the cohort discrimination is not included in this code version.
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Appendix K

Altruistic model with degradation of
free ligand

Here, we consider the altruistic model described in Section 5.7.1 and suppose that

the extra-cellular ligand can be degraded with rate σi. The system of ODEs is as

follows:

dI

dt
=φ+N(koffC − konIR)− σiI, (K.1a)

dR

dt
=− konIR + koffC − σrR +

1

1 + S
ks

ξ, (K.1b)

dC

dt
=konIR− koffC − σcC, (K.1c)

dS

dt
=ψC − χS. (K.1d)

This system has a unique positive steady state (I∗, R∗, C∗, S∗).

Proof. Setting all the derivatives to zero, the equation (K.1c) gives :

konI
∗R∗ = (koff + σc)C

∗, (K.2)

and equation (K.1d) gives

S∗ =
ψC∗

χ
. (K.3)
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K. ALTRUISTIC MODEL WITH DEGRADATION OF FREE
LIGAND

Substituting (K.2) in equation (K.1a), we obtain:

I∗ =
φ− σcNC∗

σi
. (K.4)

This equations shows that we need to suppose φ
σcN

> C∗ to obtain a positive
steady state. Substituting the expression for I∗ in equation (K.2) gives:

R∗ =
(koff + σc)C

∗σi
kon(φ− σcNC∗)

(K.5)

Finally, substituting the expressions obtained for I∗, R∗ and S∗ in (K.1b) (with
the derivative set to 0), we obtain:

−σcC∗ −
(koff + σc)C

∗σiσr
kon(φ− σcNC∗)

+
ksχξ

ksχ+ ψC∗
= 0. (K.6)

Since we suppose φ
σcNc

> C∗ > 0, this equation can be simplified to obtain a
polynomial of degree 3 in C∗. Thus, C∗ is a root of the following polynomial:

AX3 +BX2 + CX +D = 0 (K.7)

where

A =konNψσ
2
c

B =− φkonσcψ + σ2
cNkonksχ− σiσrψ(koff + σc)

C =− φkonσcksχ− σcNkonksχξ − σiσrksχ(koff + σc)

D =ksχξφkon

We note that A and D are positive coefficients, C is negative. According to
Descartes’ Rule, whatever is the sign of B, polynomial (K.7) has 2 or 0 positive
real root and exactly one negative real root. Let us show that there exists a unique
positive value for C∗ such that the steady state is positive.

We expressed the other variables at the steady state as functions of C∗ (Equa-
tions (K.4), (K.5) and (K.3)). We supposed φ

σcN
> C∗, so that I∗ > 0 and R∗ > 0.

Let us apply Budan’s theorem (see Section 2.6.1) and find the number of roots
the polynomial (K.7) in interval (0, φ

σcN
). Replacing X by X + φ

Nσc
in polynomial
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a b c d number of sign variations
+ + + - 1
+ + - - 1
+ - - - 1
+ - + - 3

Table K.1: Sign variations of the coefficients of polynomial (K.7) when X was
substituted by X + φ

Nσc
. We wrote the sequence of coefficients by decreasing

associated monomial degree a, b, c, d.

(K.7), yields a polynomial with a positive leading coefficient and a negative last
coefficient (coefficient associated to the monomial of degree 0). The signs of the
two coefficients in between are not trivial but do not need to be determined.
Indeed, whatever are their signs, there is always at least one sign variation in
the sequence of coefficients (see Table K.1). As a consequence, polynomial (K.7)
always admits, at least, one positive real root in interval (0, φ

Nσc
). We also showed

that polynomial (K.7) admits only two positive real roots (so it cannot admits
3 roots in interval (0, φ

Nσc
)). Hence, (K.7) has exactly one real root in interval

(0, φ
σcN

). The altruistic model with degradation of free ligand has a unique positive
steady state.

Note that we can show that the Jacobian matrix of system (K.1) has a strictly
positive determinant and that its characteristic polynomial admits no real positive
roots. As a consequence, the Jacobian matrix does not admit any real positive,
nor zero, eigenvalues. We cannot, however, exclude the possibility of complex
eigenvalues with positive real part. The stability analysis of the steady state
remains inconclusive.
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