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Abstract 

The Ralstonia solanacearum species complex (RSSC) is a globally distributed 

bacterial plant pathogen and the causative agent of bacterial wilt disease. This 

pathogen can infect over 175 plant species, including many important crops, having 

huge impacts on agriculture. While the genetic and phenotypic diversity of this 

pathogen species has been explored, especially when concerning pathogenicity, 

knowledge of the phenotypic diversity using a broad range of ecologically relevant 

phenotypes is lacking. This thesis uses a combination of comparative analysis, high 

throughput phenotyping, and experimental evolution to explore the ecological 

diversity among the RSSC, progressing our understanding at the global (chapter 2), 

population (chapter 3), and isolate level (chapter 4). Potential causes of this trait 

variation were also explored, and phenotypic variation was linked with genomic 

data to reveal genetic mechanisms underpinning traits. Collecting 46 ecologically 

relevant traits across a collection of RSSC strains revealed that the local 

environment selects for similar ecological differences within two RSSC species (R. 

pseudosolanacearum and R. solanacearum) in chapter 2. In contrast, a lack of 

genetic variation was observed among a UK population of R. solanacearum despite 

significant phenotypic differences between isolates in chapter 3. Evolving one UK R. 

solanacearum isolate to different abiotic environmental stress conditions within the 

laboratory (chapter 4) revealed that exposure to stresses increases RSSC diversity, 

driven by the negative trait correlations observed between the different stresses 

and metabolic capacity. Furthermore, insertion sequence (IS) movement was found 

to cause adaptation to environmental stress conditions within the lab, potentially 

explaining the lack of genetic variation observed within the UK population. A 

genome-wide association study (GWAS) also revealed genes associated with cold 

tolerance and rifampicin resistance within the RSSC. Overall, this thesis provides a 

better understanding of RSSC ecological diversity which can improve our knowledge 

of the epidemiology of this plant pathogen. 
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Graphical Abstract: Chapter 2 reveals that the five identified phenotypically distinct ‘ecotypes’ are 
spread across the phylogeny, suggesting that the local environment selects for similar ecological 
differences within two Ralstonia solanacearum species complex (RSSC) species, R. 
pseudosolanacearum and R. solanacearum. Chapter 3 found significant phenotypic differences, with 
three phenotypically distinct ‘ecotypes’, among a UK population of R. solanacearum despite large 
genetic similarities between isolates. Chapter 4 discovered that exposure to stresses (acidity, 
alkalinity, and salinity) increases RSSC diversity in an evolutionary experiment within the laboratory. 
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1 Chapter 1: General Introduction 

1.1 Diversity of organisms 

Living things differ in their characteristics or phenotypes, a collection of 

traits encoded by the genome, known as biological diversity. As well as between 

species diversity, there is also diversity within the same species, which can lead to 

splitting into different species if geographical or temporal barriers separate 

populations for a long enough time. High within species diversity can rise through 

several adaptive processes. These include niche complementation, which decreases 

the competition among individuals of the same species by allowing different 

populations to occupy new environments/niches—for example, altering nutrient 

choice to partition resources among species, thereby preventing direct competition 

(Bajic and Sanchez 2020). Secondly, high diversity can be favoured because it 

improves species survival during natural fluctuations within an environment, such 

as temporal changes in temperature, nutrient availability and biotic stresses 

(Horner-Devine et al. 2004). Finally, diversity can increase the evolvability of an 

organism by increasing the chances of finding and fixing advantageous genotypes 

(Cordero and Polz 2014). 

There are four main genetic mechanisms influencing the diversity of a 

species. These are: mutation, gene flow, selection and genetic drift (Hanson et al. 

2012). Mutations (SNPs, indels) and gene flow (via horizontal gene transfer etc.) 

produce new genetic variation upon which selection and genetic drift can act. This 

genetic information can then encode traits, or phenotypes, which are influenced by 

the environment via interactions between external factors and the genome (Houle 

et al. 2010). Selection can remove maladaptive traits, and therefore any genetic 

information, that are detrimental by reducing the number of offspring with these 

characteristics. While genetic drift acts by chance, randomly increasing and 

decreasing the number of genetic variants and therefore has a larger impact on 

smaller populations. In environments where a new genotype encodes a fitter 

phenotype, this genotype will increase in number while the old genotype will 

decrease in frequency. Diversity can originate from changes within the genome, 
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such as mutations and horizontal gene transfer, or can even be regulated by 

expression networks and feedback loops through phenotypic plasticity. Phenotypic 

plasticity is common within bacteria, such as within the Xanthomonas bacterial 

species (Timilsina et al. 2020), and various traits are known to be expressed 

differently depending on the external environment, helping bacteria to utilise 

different niches and increase the overall fitness of a species (Bull 1987, Smits et al. 

2006, Rainey et al. 2011). Evolution can also generate an increase in diversity by 

increasing the mutation rate, as seen with hyper-mutators (Sniegowski et al. 1997) 

or by facilitating the incorporation of novel DNA, such as increasing horizontal gene 

transfer rate (Cordero and Polz 2014). 

At the turn of the 21st century, a new era of exploring diversity began. Unlike 

the 19th and 20th century, where the focus was on exploring the diversity of visible 

organisms, the diversity of single-cell organisms, made possible through 

technological advancements like high-throughput sequencing, began (Gibbons and 

Gilbert 2015). The largest survey on microbial diversity, the Earth Microbiome 

Project (https://earthmicrobiome.org/), started in 2010 where 5.6 million 

operational taxonomic units (OTUs) in the first 15,000 samples was discovered, 

going far beyond diversity estimates of multicellular organisms and highlights the 

huge diversity of microorganisms on Earth (Gibbons and Gilbert 2015). However, 

microbial diversity is not as straightforward, as microorganisms undergo rapid 

evolution/speciation and molecular phylogenies can become confounded due to 

the horizontal swapping of genes across microbes from distant taxa (Gibbons and 

Gilbert 2015). Therefore, scientists often rely on highly conserved genes, such as 

the 16S rRNA, to explore the genetic diversity of bacteria and other microorganisms 

(Gibbons and Gilbert 2015). However, finer scale distinction between individuals, 

along with contextualised information regarding the environment (e.g. ecotypes), is 

needed to observe interesting patterns among microbial species diversity (Gibbons 

and Gilbert 2015) and to understand better how natural environments shape and 

maintain microbial diversity over time and space. Traits are often used to 

characterise and distinguish bacteria and are likely a driving factor in microbial 

community composition, yet little is known about the trait diversity of most 

microbes (Weimann et al. 2016). 
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It is generally accepted that a balance between niche, such as 

pH/temperature driving microbial dominance (Zeglin 2015), and neutral (e.g. 

stochastic dispersal) processes will influence the diversity of microbial ecosystems 

(Gibbons and Gilbert 2015). A stable environment allows organisms to fine-tune 

their phenotypes to suit a specific condition, becoming specialists to this 

environment. However, environments are rarely constant, instead being extremely 

heterogeneous, constantly fluctuating in time and space (Horner-Devine et al. 2004, 

Hanson et al. 2012). In these environments, diversity can be selected and 

maintained through frequency-dependent selection, or alternatively generalists can 

be favoured (Bull 1987, Smits et al. 2006, Rainey et al. 2011). However, adaptation 

to one environment is typically associated with fitness loss in another (Elena and 

Lenski 2003), due to negative trait correlations called trade-offs. Such trade-offs can 

constrain the range of phenotypes open to organisms (Ferenci 2016) and can 

therefore limit the diversity of an organism. Therefore, in the absence of other 

forces, environmental heterogeneity should lead to locally adapted populations, 

where the local population is the most fit in its local environment (Croll and 

McDonald 2017). However, different specialists can also coexist within the same 

environment, fluctuating in frequency within the environment. Research has found 

that for some species of bacteria the presence of different niche specialists, or 

ecotypes, maintains high species diversity rather than generalist adaptation to a 

variety of environmental conditions (Jezbera et al. 2011, 2013, Larkin and Martiny 

2017). Other studies have also found that environmental differences, such as 

geographical distribution and host range, help maintain this high diversity of 

microbial species (Horner-Devine et al. 2004). Furthermore, high genetic differences 

and plasticity can also result in high phenotypic diversity, such is the case for 

Xanthomonas bacterial species (Timilsina et al. 2020). However, more information 

on a broad range of traits is needed to build our understanding of how high 

diversity is maintained among microorganisms. 

1.2 Trait Correlations 

Trait correlations can be recognised when two or more traits have a positive 

or negative relationship among individuals within a population (Saltz et al. 2017). 
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For example, a relationship between two traits can be linear, convex or concave, to 

name a few possibilities (Stearns 1989), and the strength of correlation between 

two traits can be statistically measured for example by using Pearson’s correlation 

coefficient (Saltz et al. 2017). Natural selection acts on traits (otherwise known as 

phenotypes). However, phenotypic correlations can determine the pattern of 

variation present for natural selection to act on (Stearns 1989), either increasing the 

evolvability of an organism in the case of positive trait correlations, or limiting 

adaptive potential due to negative trait correlations (also known as trade-offs). Trait 

correlations are widespread among traits and organisms. Therefore, understanding 

how they evolve is essential to predicting their evolutionary effects on the 

phenotype (Saltz et al. 2017). Negative correlations can constrain adaptation of an 

organism, especially if the other trait cannot be discarded. Furthermore, they can 

even result in the loss of the other trait, becoming specialist to a certain 

environment. This trade-off will then only become apparent when this organism 

moves into a new environment, or when selective pressures within the 

environment changes or are removed (Stearns 1989). A multitude of factors can 

cause trait correlations, and the response of an organism to selection depends on 

its genetic variation (Stearns 1989). Therefore, genetic interactions can determine 

whether and in what direction a response to selection will occur (Stearns 1989). 

Most traits show polygenic, not mendelian, inheritance, with genome wide 

association studies (GWAS) frequently finding no or very few large effect variants, 

even for highly heritable traits (Saltz et al. 2017). Multiple genetic variants can 

interact to produce a single phenotype, which indicates that the impact of new 

genetic variation on an organism’s phenotype will depend on the existing genetic 

background, a phenomenon known as epistasis. If multiple genes influence most 

traits, many genetic variants must therefore influence more than one trait as there 

are many quantitative traits and a finite number of genetic variants (Saltz et al. 

2017). This notion of single genes affecting multiple traits is known as pleiotropy 

(Foster et al. 2004). Trait correlations can also occur due to linkage disequilibrium 

(LD), where genes are physically close and therefore linked and subsequently 

commonly inherited together. However, while trait correlations through pleiotropy 

will not break down over time, correlations caused by linkage disequilibrium (LD) 
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will (Saltz et al. 2017). That being said, if LD arises randomly, all outcomes of linkage 

should be equally common, producing no trait correlation at the phenotypic level 

(Saltz et al. 2017), suggesting that LD can still be an important factor to take into 

account for trait correlations. 

Pleiotropy can be beneficial by increasing the fitness of an organism through 

positive trait correlations, such as when beneficial mutations in Escherichia coli 

selected in a glucose-limited environment were also beneficial in the presence of 

other sugars (Schenk et al. 2015). However, they can also cause negative trait 

correlations, also known as antagonistic pleiotropy or simply trade-offs, where the 

different phenotypic effects from the single genetic locus have opposite effects on 

the organism's fitness. One example is E. coli adapting to the enzyme TEM-1 b-

lactamase, causing an acquired cefotaxime antibiotic resistance but also reducing 

resistance to another antibiotic (ceftazidime) (Schenk et al. 2015). If there were no 

trade-offs, then selection would drive all traits correlated with fitness to limits 

imposed by history and design. However, we find that many traits are maintained 

well within those limits, and therefore trade-offs must exist (Stearns 1989). 

Trade-offs prevent organisms from achieving maximum fitness due to finite 

resources (energy, time, molecules etc.) allocated for one trait reducing investment 

in the other trait (Saltz et al. 2017). An example is sharing RNA polymerase and 

other transcriptional machinery, which are regulated by transcription factors such 

as the sigma factor in E. coli (Ferenci 2016). Another way in which a trade-off can 

occur is if a protein has multiple functions, such as a porin that allows nutrients and 

other molecules to enter a cell, which then adapts preferentially for a particular 

function. For example, reducing porin size to reduce antibiotic uptake also causes a 

reduction in its ability to uptake different metabolites (Ferenci 2016). Pleiotropy is a 

major constraint on evolution because adaptive change in one trait may be 

prevented because it would compromise other traits affected by the same genes 

(Foster et al. 2004). However, there are benefits to pleiotropy, such as facilitating 

cooperation in Dictyostelium discoideum amoeba. Here differentiation of some 

amoeba into dead pre-stalk cells is required to hold reproductive cells, however 

cheaters that lack the dimA gene, which is required to receive the signalling 

molecule to differentiate, are also excluded from spores due to genetic linkage 
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(Foster et al. 2004). Many trait correlations have a genetic basis, however, 

predictions about the evolutionary dynamics of trait correlations go beyond 

heritability. Scientists are often interested in why traits are correlated, if they 

evolved under selection, and if selection or drift can change the magnitude or 

direction of trait correlations rather than the exact genetic basis behind them (Saltz 

et al. 2017). Trait correlations also may not directly reflect trade-offs or true 

pleiotropy. Trait correlations can be due to genetic linkage, such as linkage 

disequilibrium (which usually has little effect on long-term evolution), and can also 

be due to the correlation of both traits of interest with a third unmeasured trait 

(Sgrò and Hoffmann 2004). 

Many species in nature experience varying environmental conditions, which 

play a role in shaping evolution by altering the genetic architecture of traits (Sgrò 

and Hoffmann 2004). Therefore, trait correlations can be highly dynamic and 

flexible, with the relationship between two traits easily changing from positive to 

negative over the commonly encountered environmental range (Stearns 1989). 

Phenotypic plasticity is a mechanism used to modulate the expression of genetic 

variants across environments, which could also play a part in this dynamic aspect of 

trait correlations (Stearns 1989). For example, genetic correlations among traits will 

often be positive when resources are abundant, while negative correlations 

reflecting trade-offs may only be apparent when fitness is measured in resource-

poor environments (Sgrò and Hoffmann 2004). It is also thought that genotype-by-

environment interactions may be stronger under extreme environmental conditions 

(Lannou 2012). 

Furthermore, within nature, multiple traits are usually under selection. 

Fisher’s geometric model for trait correlations (Fisher 1930) assumes that the rate 

of adaptation is inversely related to the number of traits under selection (McGee et 

al. 2016). This is because under complex environments, with multiple selection 

pressures acting on various aspects of the phenotype, trade-offs are more likely to 

emerge due to competing functions (McGee et al. 2016). This can be seen in lab 

experiments, such as when bacteriophage were evolved in simple (one trait) and 

complex (two traits) selection pressures which found smaller improvement rates for 

mutations fixed in complex conditions (McGee et al. 2016). 
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1.3 Introducing the Ralstonia solanacearum species complex (RSSC) 

The Ralstonia solanacearum species complex (RSSC) is a diverse group of 

gram-negative betaproteobacteria that are the causative agent of bacterial wilt 

disease in a wide range of plants. Some members are also able to cause host-

specific diseases, including potato brown rot, Moko disease and blood disease of 

banana, and Sumatra disease of cloves (Hayward 1991, Safni et al. 2018, Bragard et 

al. 2019). A species complex is a group of closely related species that are extremely 

similar, so much so that the boundaries between them can become unclear (Fegan 

and Prior 2005). DNA-DNA homology of RSSC strains has revealed that the 

relatedness between members is often less than 70%, commonly considered as the 

threshold between one species and another, despite similarities in phenotype and 

disease symptoms (Fegan and Prior 2005). Plant pathologists often relate plant 

pathogenic species to the disease symptoms they cause and to their host range. All 

members of the RSSC share the ability to grow in xylem vessels and stem apoplasts 

of host plants and cause classical wilting symptoms in their host plants (Lowe-Power 

et al. 2018). The lack of consistency in pathogen host range and behaviour between 

closely related species in the RSSC, and similarities between distantly related 

members, justifies the need to call Ralstonia solanacearum a species complex as 

opposed to multiple separate species (Sharma et al. 2022). High amounts of genetic 

exchange have also been observed between members of the RSSC (Wicker et al. 

2012), further supporting the concept that Ralstonia solanacearum is a species 

complex. Gillings and Fahy first used the term “species complex” to refer to R. 

solanacearum to reflect the large phenotypic and genetic variation apparent within 

this species in 1994 (Fegan and Prior 2005). Since then, Taghavi et al. added two 

other closely related organisms to the complex, the banana blood disease 

bacterium and the then-called Pseudomonas syzygii bacterium, since 16S rDNA 

sequence analysis revealed they fell within the diversity of the RSSC (Taghavi et al. 

1996). 

RSSC is one of the most destructive bacterial plant pathogens worldwide 

with an extensive host range, including at least 175 different plant host species 

(EPPO 2022), containing many important food crops such as potato (Solanum 
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tuberosum), tomato (Solanum lycopersicum) and banana (Musa spp.) (Hayward 

1991, Mansfield et al. 2012, Bragard et al. 2019). Furthermore, the RSSC can infect 

various wild hosts (for example, Solanum dulcamara and Urtica dioica in Europe) 

(Wenneker et al. 1999), many ornamental plants (including Pelargonium spp.), and 

some trees (including Eucalyptus spp.) (Hayward 1991, Bragard et al. 2019). The 

host range of RSSC is still growing, with new hosts being identified constantly (EPPO 

2022). For example, in 2017 roses in the Netherlands were reported as infected 

with RSSC for the first time (Stevens et al. 2018), blueberries in Florida were 

discovered to be infected in 2016 (Bocsanczy et al. 2019) and in Korea peanuts were 

first found to be infected in 2021 (Choi et al. 2022). The Ralstonia solanacearum 

species complex has one of the most diverse host ranges and, unsurprisingly, has 

one of the broadest geographic distributions of any plant pathogenic bacterium 

(Safni et al. 2018), currently present within 123 countries (EPPO 2022). This 

pathogen can be found in countries all around the world from tropical countries, 

like Indonesia, to temperate climates, such as Sweden and the UK (Hayward 1991, 

Bragard et al. 2019, EPPO 2022). 

1.4 History and classification of the Ralstonia solanacearum species 

complex (RSSC) 

The Ralstonia solanacearum species complex was initially known as Bacillus 

solanacearum (Smith 1896) due to its elliptical cell morphology. Since then, RSSC 

has undergone many different classification changes; being placed in the genus 

Bacterium in 1898, then Pseudomonas in 1914, then placed under the Phytomonas 

and Xanthomonas genus before returning to the Pseudomonas genus in 1948. RSSC 

then remained in the Pseudomonas genus until 1992 where it was classified under 

Burkholderia (Paudel et al. 2020). Finally, it was decided that a new genus called 

Ralstonia was to be created to describe Burkholderia solanacearum and 

Burkholderia picketti due to their similarity to one another and differences with 

other Burkholderia species based on DNA homology (Yabuuchi et al. 1995). 

Plant bacteriologists have been trying to come up with a way to subclassify 

members of the RSSC due to its huge diversity, both phenotypically and genetically. 
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Historically (from 1960s) RSSC strains were divided into races and biovars. First they 

were divided into five races based on their host range (Hayward 1991, Paudel et al. 

2020), and then further subdivided into five biovars according to their ability to 

oxidise three disaccharides (sucrose, maltose, lactose) and three hexose alcohols 

(mannitol, sorbitol, dulcitol) (Hayward 1991). Eventually, a new system of 

subclassifying the RSSC arose in 2005 when sequencing technologies advanced and 

Fegan and Prior 2005 proposed a classification scheme based on sequence analysis 

of the internal transcribed spacer region, the endoglucanase (egl) gene, and the 

hrpB gene (Fegan and Prior 2005). This resulted in four phylotypes corresponding to 

the clustering of strains into 4 groups based on their sequences (Wicker et al. 2007). 

Phylotype II, the most diverse phylotype, also had two recognisable distinct 

clusters, referred to as phylotypes IIA and IIB (Genin and Denny 2012). These four 

phylotypes roughly correspond to their geographical origin with Phylotypes I, II and 

III predominantly originating from Asia, Americas and Africa, respectively, and 

phylotype IV primarily originating from Indonesia (Safni et al. 2018). Each phylotype 

can also be further subdivided into over 20 sequevars based on differences in the 

sequence of a portion of the endoglucanase (egl) gene (Wicker et al. 2007). Since 

then, sequencing technology has become more advanced which prompted Safni et 

al., in 2014 to propose a regrouping of the R. solanacearum species complex into 

three separate species, R. pseudosolanacearum, R. solanacearum and R. syzygii, 

based on significant variations in the whole genome (Safni et al. 2014, Prior et al. 

2016, Kumar et al. 2018, Stevens et al. 2018). These 3 species correlate to the old 

phylotype groupings, with R. solanacearum comprised of phylotype II strains, R. 

pseudosolanacearum of phylotype I and III and R. syzygii comprised of phylotype IV 

(Safni et al. 2014) (see table 1.1 for an overview on RSSC classification). Separation 

of these three species is thought to date back to the geological separation of the 

continents as members of the RSSC can be found in virgin jungle soils in both Asia 

and the Americas (Hayward 1991), with the three separate species reflecting the 

true evolutionary lineage that arose when ancestors became geographically 

separated (Genin and Denny 2012). It is also hypothesised that R. syzygii was the 

first to diverge, followed by R. solanacearum and R. pseudosolanacearum 

separating from one another, leading to theories that the tropical RSSC pathogen 
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originated in Indonesia (where R. syzygii is predominantly found) (Wicker et al. 

2012). Throughout this thesis, when referring to each species separately they will 

be named by their assigned species name (e.g. Ralstonia pseudosolanacearum), 

while the term RSSC will refer to all three species as a collective. 

 

Table 1.1: Ralstonia solanacearum species complex (RSSC) classification. Adapted from Garćia et al. 
2019,and  Paudel et al. 2020. 

Species Phylotype Sequevar Race Biovar 
Geographical 

Origin 

Ralstonia 

pseudosolanacearum 

I 
12, 14, 

16, 18 
1, 4, 5 3, 4, 5 Asia 

III 

19, 20, 

21, 22, 

23 

1 1, 2-T 
Africa and 

surrounding islands 

Ralstonia 

solanacearum 

IIA 1, 2, 3, 4, 

5, 6, 7 
1, 2, 3 1, 2, 2-T America 

IIB 

Ralstonia syzygii IV 
8, 9, 10, 

11 
1 1, 2, 2-T Indonesia 

 

 

Ralstonia syzygii is thought to have the highest genetic diversity out of all 

three RSSC species (Wicker et al. 2012) and can also be further divided into 3 

subspecies, R. syzygii subsp. syzygii, R. syzygii subsp. celebesensis and R. syzygii 

subsp. indonesiensis (Safni et al. 2014, 2018). Ralstonia syzygii subsp. syzygii is a 

pathogen that causes Sumatra disease of clove trees, as well as some species of 

Myrtaceae found in forests in Indonesia and has only been reported in Indonesia. 

Ralstonia syzygii subsp. celebesensis causes Banana Blood Disease (BBD), a disease 

that is very similar to Moko disease of bananas caused by R. solanacearum strains. 

R. syzygii subsp. celebesensis has a larger host range than subspecies syzygii, but 

not as large as R. solanacearum, and is not pathogenic on Solanum lycopersicum 

(tomato) and Solanum melongena (aubergine) seedlings (Safni et al. 2018). Finally, 

R. syzygii subsp. indonesiensis causes diseases in several solanaceous plants in Asia, 
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including Solanum tuberosum (potato), Solanum lycopersicum (tomato) and 

Capsicum annuum (chilli and bell peppers), with bacterial wilt disease symptoms 

identical to wilting caused by R. solanacearum species (Safni et al. 2018, Bragard et 

al. 2019), however R. syzygii subsp. indonesiensis cannot infect potatoes in 

temperate conditions unlike some R. solanacearum strains. 

Two strains of R. syzygii are thought to be transmitted by insects. Ralstonia 

syzygii subsp. syzygii is an xylem-restricted bacteria whose main mode of dispersal 

is by insect vectors that feed on xylem sap (Safni et al. 2018) and R. syzygii subsp. 

celebesensis is also thought to be transmitted by insects as this bacterium has been 

found within some insects. However, the transmigration of people from Java to less 

populated islands in the country appears to be the main cause of the spread of R. 

syzygii subsp. celebesensis and it is thought to have originated on Selayar Island 

near Sulawesi and spread to Java in the late 1980’s . 

Ralstonia pseudosolanacearum can infect a wide range of hosts, with the 

most common hosts being Solanum species, including Solanum tuberosum (potato) 

and Solanum Lycopersicum (tomato), Casuarina equisetifolia (she-oak), and 

Nicotiana species (Bragard et al. 2019). Uniquely, the R. pseudosolanacearum 

species also comprises strains that can infect ginger (Zingiber officinale) and 

mulberry (Morus spp.) (EPPO 2018). There is also a clear geographical separation 

among R. pseudosolanacearum strains with phylotype I strains originating from Asia 

and phylotype III strains originating from Africa (Safni et al. 2014). 

Ralstonia solanacearum also has a wide host range, with the main host 

plants being Solanum species or other members of the family Solanaceae (including 

the cold tolerant S. tuberosum brown rot causing strain), Anthurium, Heliconia and 

Musa species (banana) (Bragard et al. 2019). The R. solanacearum species complex 

also includes causative strains of Moko disease, infecting both banana (Musa spp.) 

and Heliconia species (EPPO 2018). It also includes a causative agent of potato 

brown rot disease, previously known as race 3 biovar 2 or phylotype IIB sequevar 1 

(Fegan and Prior 2005, Safni et al. 2014). These are strains in the RSSC, a tropical 

pathogen, that is adapted to lower temperatures, therefore causing a serious threat 

to temperate agriculture (Williamson et al. 2002, EPPO 2018). Before the 1970s, 

RSSC was thought to be a solely tropical or subtropical pathogen until a series of 
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brown rot cases across Europe was reported; Sweden in 1972, Belgium in 1989, and 

the Netherlands, UK, and many other European countries since 1992 (Janse 1996). 

The origin of R. solanacearum is thought to be from the Americas, where it is 

speculated that this cold adapted strain evolved at higher altitudes in south 

America before being spread across the world through the potato trade (Hayward 

1991, Wicker et al. 2012, Safni et al. 2014). The clonal cold tolerant strain of R. 

solanacearum, a potato brown rot strain, originally described as pathogenic on 

potato and tomato, but not other solanaceous crops (Genin, 2010), was later 

discovered to have retained their ability to be virulent on a wider range of plant 

hosts at higher temperatures, including non-solanaceous Pelargonium species 

(Cellier and Prior, 2010). 

1.5 Controlling the spread of Ralstonia solanacearum species complex 

(RSSC) 

The RSSC can infect many different species of crops and therefore can cause 

huge economic loses, with an estimated amount of $1 billion worldwide lost 

annually due to the infection of potato crops alone because of RSSC (Mansfield et 

al. 2012). Furthermore, the world’s population is expected to increase from 7.5 

billion (2017) to 9.8 billion by 2050 (United Nations 2015), increasing global demand 

for food. To meet these goals a large increase in crop yields is needed, and factors, 

such as global warming where crop yields are predicted to decline with increasing 

temperatures (Hijmans 2003, Peng et al. 2004) will make this harder. On top of 

climate change, pests, and diseases such as RSSC also decrease crop yields even 

further. It is thought that combined they are responsible for the loss of around 11% 

to 59% of crops worldwide, with pathogens alone causing up to 24% of crops to be 

destroyed (Oerke 2006). This means that the control of pathogens, like RSSC, is vital 

to keep up with global food demands. Due to the danger RSSC poses on our food 

supply, it has been classed as a quarantine pest in many countries, including the EU 

(EPPO 2022) and a bioterrorism select agent in the US (USDA 2020) (Cellier and 

Prior 2010). 
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There are currently a variety of methods available to attempt to control the 

spread of RSSC, such as using resistant cultivars of crops. One example of this is the 

expression of the Arabidopsis thaliana PRR elongation factor Tu receptor gene, 

which significantly reduced tomato susceptibility to RSSC (Kunwar et al. 2018). 

However, natural host resistance is very limited in modern crop cultivars and RSSC 

is extremely diverse, meaning resistance to all strains in the RSSC is unrealistic 

(Champoiseau et al. 2009, Bragard et al. 2019). Another control method is the use 

of crop rotations with non-host plants, such as wheat, sweet potato, maize, millet, 

sorghum, or carrots. This can reduce the incidence of bacterial wilt disease by 20- 

26% compared to monocultured host crops such as tomato (Adhikari and Basnyat 

1998). 

There are also a number of soil treatments that can be used to control RSSC 

numbers, such as calcium carbonate, which can significantly reduce RSSC numbers 

by increasing the pH of the soil (Jiang et al. 2017). A number of chemical pesticides 

like algicides, fumigants and plant resistance activators (e.g. vilidamycin A) (Yuliar et 

al. 2015) are also used to reduce bacterial wilt disease symptoms. However, there 

has been a large reduction in pesticides allowed on the EU market due to public 

health concerns (Kleter et al. 2009) and a significant increase in resistance towards 

pesticides has been observed, rendering them useless (Zhou et al. 2012). 

One alternative to chemicals are biocontrol agents. These can include the 

addition of antagonistic bacteria to the field, like Bacillus amyloliquefaciens (Singh 

and Kumar Yadav 2016) or Pseudomonas brassicacearum J12 strain, that produces 

antimicrobial compound 4-diacetylphloroglucinol (2,4-DAPG) (Zhou et al. 2012). 

Both significantly reduce bacterial wilt disease symptoms in planta (Zhou et al. 

2012, Singh and Kumar Yadav 2016). Another potential biocontrol agent is using a 

combination of bacteriophage predators as a treatment to control RSSC, which have 

also been shown to be effective at reducing bacterial wilt disease symptoms (Wang 

et al. 2019, Doan et al. 2022). 

Despite all this, pathogen eradication of agricultural fields remains 

challenging due to the large host range of RSSC, accredited to its high diversity, 

including many weed species, such as Solanum dulcamara (woody nightshade) in 

Europe (Wenneker et al. 1999). Another reason why RSSC is so difficult to control is 
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that infected hosts can remain asymptomatic, particularly in temperate regions 

(Bragard et al. 2019) and RSSC can persist in a non-host environments, such as 

within water sources (and potential irrigation sources), within soil communities, and 

on farm equipment for a debated (from a few years to 14 days) period of time 

(Bragard et al. 2019). These environments can act as natural reservoirs for the 

pathogen to reside in, particularly when wild host plants (e.g. Solanum dulcamara in 

Europe) are present, remaining unaffected by field treatments and can later spread 

from these reservoirs onto crop fields causing further outbreaks. Due to this, it is 

unlikely that RSSC can be eradicated from countries, as treatment of river sources 

and complete removal of wild hosts is unrealistic (Williamson et al. 2002, 

Elphinstone and Matthews-Berry 2017). Therefore, current control methods include 

preventing the spread of RSSC even further as the pathogen is mainly dispersed 

through human trade of contaminated crops and seeds (van der Gaag et al. 2019, 

Bragard et al. 2019). This is done through regular testing of irrigation water, seed 

potatoes and other plant material, to prevent use of contaminated water sources 

and transmission of contaminated crops to other countries (Elphinstone and 

Matthews-Berry 2017). 

1.6 Ralstonia solanacearum species complex (RSSC) genetics 

The first Ralstonia solanacearum species complex (RSSC) strain to be 

sequenced was the R. pseudosolanacearum strain GMI1000 from French Guyana in 

2002 (Salanoubat et al. 2002). This revealed that the RSSC genome is bipartite, 

containing a chromosome (3.7 Mbp) and a separate ‘megaplasmid’, which is a 

similar size to the chromosome (2.1 Mbp), with a combined overall length of around 

5.8 Mbp (Genin and Boucher 2002). This ‘megaplasmid’ appears to carry genes 

associated with strain specific lifestyles , as well as includes genes needed for the 

overall fitness of the pathogen (Genin and Boucher 2002, Genin and Denny 2012). 

The ‘megaplasmid’ is also thought to still be in the process of acquiring new 

functions through duplications, genomic rearrangements and translocation of genes 

from the chromosome (Genin and Boucher 2002, Remenant et al. 2010). There only 

seems to be minor differences in gene  expression and regulation of gene expression 

between  both replicons, suggesting that they have a shared evolutionary history 
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which indicates that the ‘megaplasmid’ has not been recently acquired (Coenye and 

Vandamme 2003). Although it has been coined as a ‘megaplasmid’ in RSSC research, 

this evidence points towards the fact the second RSSC replicon acts more like 

another chromosome rather than a plasmid. 

Since the first genome of RSSC was sequenced, many other RSSC strains 

have since been sequenced, with 316 RSSC sequences available on NCBI in 

December 2022 (National Center for Biotechnology Information (NCBI) 2022). This 

data has revealed that RSSC strains share a conserved core genome that is 

presumably essential for their common biology, such as colonising plant xylem 

vessels and causing wilting symptoms (Ailloud et al. 2011). The number of strain 

specific genes is variable (Remenant et al. 2010) but each strain appears to exhibit 

highly diverse genetic content (Ailloud et al. 2011), which is one of the reasons why 

R. solanacearum is considered as a “species -complex” (Kumar et al. 2018). Small 

plasmids have also been detected but so far in only three strains, CMR15, PS107 

and T78 (Remenant et al. 2010, Genin and Denny 2012, Cho et al. 2019). 

Megaplasmids of R. syzygii, especially from subgroup celebesensis, are significantly 

smaller than those strains classified as R. solanacearum and R. 

pseudosolanacearum. This could reflect their narrow host range compared to other 

strains (Remenant et al. 2011). It is also thought that the R. syzygii subsp. 

celebesensis genome carries much more unique genetic information from phages 

than other RSSC strains sequenced (Remenant et al. 2011). 

Genome analysis has also revealed that recombination has played a major 

role in RSSC genome evolution as a large number of genomic islands surrounded by 

mobile elements suggests horizontal gene acquisition (Remenant et al. 2010, 

Peeters et al. 2013, Geng et al. 2022). It is also thought that horizontal gene transfer 

has enhanced the bacteria’s aggressiveness on tomatoes and is responsible for the 

large diversity among RSSC strains required to evade plant immune responses and 

infect new hosts (Peeters et al. 2013). Research has shown that DNA blocks, up to 

30 kb and 33 genes, can be transferred between RSSC strains and that multiple DNA 

acquisitions along the genome can occur in a single recombinant strain during a 

single horizontal gene transfer (HGT) event (Guidot et al. 2009). This suggests that 
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RSSC is capable of rapid adaptation to novel ecological niches via transfer of novel 

genes from the environment or other organisms. 

1.7 Introducing UK Ralstonia solanacearum: a potato brown rot pathogen 

The first recorded case of RSSC being present in the UK was in Oxfordshire in 

1992 (Parkinson et al. 2013, Elphinstone and Matthews-Berry 2017). This outbreak 

was shown to be caused by the cold tolerant strain of R. solanacearum, also known 

as race 3 biovar 2 or the phylotype IIB sequevar 1 of R. solanacearum, also found to 

cause potato brown rot across many countries in Europe in recent decades (Fegan 

and Prior 2005, Safni et al. 2014). This original UK outbreak has since been linked to 

contaminated river water that was used as an irrigation source for the field 

(Parkinson et al. 2013). Since 1992 there have been seven other outbreaks of R. 

solanacearum in the UK; in 1995 (infected potato), 1997 (infected tomato), 1998 

(infected tomato), 1999 (infected potato), 2000 (infected potato), 2005 (infected 

potato) and 2010 (infected potato) (Elphinstone and Matthews-Berry 2017). All 

except the 2010 outbreak, which can be linked to infected imported seed potatoes, 

were associated with contaminated water sources, suggesting establishment of R. 

solanacearum in some watercourses across the UK (Elphinstone and Matthews-

Berry 2017). 

River water can become contaminated through run-offs from infected 

potato crops at processing plants (Janse 1996), and the prevalence of R. 

solanacearum in the UK rivers was linked with infection of a wild host, Solanum 

dulcamara, which lives along riverbanks (Parkinson et al. 2013). Solanum 

dulcamara, otherwise known as woody nightshade, is an important wild perennial 

host for R. solanacearum in not just the UK but other countries in Europe as well, 

and its presence along rivers is constantly correlated with contaminated water 

sources (Wenneker et al. 1999, Bragard et al. 2019). Wilting symptoms in S. 

dulcamara are extremely rare, unless temperatures exceeds 25°C or if inoculum 

levels are high, and infected plants normally remain asymptomatic (van der Gaag et 

al. 2019). Solanum dulcamara grows along riverbanks with their roots in the water 

acting as a reservoir for bacteria to disseminate into the water, opening new 

opportunities for infecting primary hosts if this river is then used for irrigation of 
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crops (van der Wolf et al. 1997, Wenneker et al. 1999). It is thought that R. 

solanacearum’s ability to survive the cool winter temperatures in rivers is primarily 

due to the presence of this weed and the bacteria colonising the roots over winter 

(Genin and Boucher 2002, Champoiseau et al. 2009). It is also thought that R. 

solanacearum may enter a viable but non-culturable (VBNC) state in rivers at low 

temperatures helping its survival throughout the winter (Genin and Boucher 2002), 

however evidence for this is limited. 

RSSC is detected in river water by culturing the bacterium on semi-selective 

SMSA media, then conducting either plant infection assays, indirect 

immunofluorescent-antibody staining (IFAS), or PCR detection of RSSC DNA 

(Elphinstone et al. 1996, EPPO 2018). Ralstonia solanacearum can be detected in 

low numbers, as few as two viable pathogen cells per ml of river water, however 

population numbers vary in UK rivers depending on the time of year, being the 

highest when temperatures are above 15°C, usually between June and September, 

and falling to undetectable levels in the winter (Elphinstone and Matthews-Berry 

2017). In contrast, R. solanacearum can be detected all year round in the stems of S. 

dulcamara along riverbanks of known contaminated watercourses (Elphinstone and 

Matthews-Berry 2017), further supporting this plant’s role in helping R. 

solanacearum persist in UK rivers despite cold winters. Currently in the UK, regular 

testing of rivers is conducted and irrigation of host crops with contaminated water 

is prohibited to try and control the spread of the pathogen and prevent further 

outbreaks (Elphinstone and Matthews-Berry 2017). 

A few studies have been conducted focussing on European Ralstonia 

solanacearum diversity (van der Wolf et al. 1997, Timms-Wilson et al. 2001, Stevens 

and Van Elsas 2010, Cruz et al. 2012, Parkinson et al. 2013, Caruso et al. 2017), of 

which one focusses on the UK (Parkinson et al. 2013). These studies mainly 

conclude that the cold tolerant European strains are genetically very clonal 

compared to other strains in the RSSC, consistent with a recent invasion of the 

temperate region agreeing with the reports of R. solanacearum outbreaks in 

Europe, the first identified one being in Sweden in 1972 (Caruso et al. 2017).  
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1.8 Ralstonia solanacearum species complex (RSSC) life cycle 

There are 2 key stages in RSSC’s life cycle: As a pathogen the first stage is the 

infection of host plants, including production of virulence factors, evading plant 

immune responses and general survival within the host. The second stage is 

survival/persistence within the environment, such as in the soil and river water, 

during transmission from host to host. RSSC will face very different selection 

pressures depending on the stage of the life-cycle and what primary host they are in 

(Genin 2010). 

RSSC bacterium locates plant hosts by sensing and chemotaxis, moving 

attracted by root exudates using flagella motility (Yao and Allen 2007). Attachment 

(reversible and irreversible) then occurs to plant surfaces via pili leading to the 

formation of microcolonies at root elongation zones (Kang et al. 2002). The 

pathogen often enters plants through wounds and natural openings in the root, and 

once inside the plant, moves towards the xylem (Hayward 1991). Ralstonia 

solanacearum species complex is well adapted to living in the xylem which contains 

sugars, amino acids and organic acids that supports bacterial growth, while the 

xylem flow constantly introduces fresh nutrients and removes waste products 

(Lowe-Power et al. 2018). In the xylem, cells grow to aggregates in a biofilm matrix 

and fill vessels obstructing water flow. This creates the classic wilting symptoms 

linked to RSSC and ultimately kills the plant (Lowe-Power et al. 2018). Bacterial wilt 

symptoms tend to appear after pathogen populations reach 109 colony forming 

units per ml, as pathogenicity factors are activated using density-dependent 

quorum sensing molecules, which activates the main virulence gene network via the 

PhcA gene (Genin and Boucher 2002, Mansfield et al. 2012, Lowe-Power et al. 

2018). Pathogenic RSSC strains can also secrete exopolysaccharide and pectin 

degrading enzymes that aid colonisation of the xylem vessels and can also lead to 

plant death via degradation of the cell walls (Hayward 1991, Lowe-Power et al. 

2018). After the primary host dies, the pathogen returns to the soil or water where 

they may persist until infecting another plant continuing the infection cycle (Genin 

2010). RSSC can survive long periods within perennial hosts, such as RSSC tolerant 

plant Solanum dulcamara, at moderately high levels without causing symptoms 
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(van der Gaag et al. 2019, Bragard et al. 2019) (see figure 1.1 for RSSC life cycle 

schematic). 

 

 
Figure 1.1: Ralstonia solanacearum species complex (RSSC) life cycle schematic. (1) Ralstonia 
solanacearum can be detected within environments (soil or watercourses), and mainly persists 
among asymptomatic perennial hosts, such as Solanum dulcamara over winter in the UK. (2) The 
bacterium can move towards host plans via flagella motility and chemotaxis and is able to enter root 
tissues through wounds and natural openings to invade the plant vascular system. (3) Once within 
the xylem, wilting symptoms are associated with bacterial multiplication and production of 
exopolysaccharides. (4) Disease can lead to plant death, depending on host (i.e. degree of plant 
resistance), environmental factors and aggressiveness of the strain, where the pathogen can then 
return to the environment. Adapted from Genin 2010. 

 

1.8.1 RSSC virulence factors 

There are many traits that are specific towards RSSC’s lifestyle as a 

pathogenic bacterium, known as virulence traits. Virulence factors in RSSC 

bacterium are controlled by a complex quorum sensing regulatory system, where 

cell density is sensed, and genes are switched on or off depending on high or low 

density. PhcA is a gene involved in quorum sensing in RSSC, which is in turn 

controlled by an autoinducer, quorum-sensing signalling molecule, 3-

hydroxypalmitic acid methyl ester (3-OH PAME). When extracellular 3-OH PAME is 

above 5nM, which correlates to high cell densities, active PhcA gene expression is 
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triggered, which then activates several virulence genes, exopolysaccharide (EPS) 

biosynthesis, Pme and Egl exoprotein production, as well as represses other genes 

such as those involved in motility, polygalacturonase and siderophore production 

(Genin and Boucher 2002). This implies a difference in genes that are active during 

low cell density during early infection and high cell density later in the infection of 

the plant when PhcA is active. Other complex systems also regulate other genes in 

RSSC which highlights the complexity of R. solanacearum virulence and host 

specificity (Genin and Boucher 2002). 

Members of the RSSC need to enter the host and move into the xylem using 

flagellar motility which is often lost within the host potentially due to immune 

invasion (Álvarez et al. 2010, Deslandes and Rivas 2012, Meng 2013). However, 

twitching motility (i.e., movement via flagella-independent methods such as the 

type 4 pili) is normally maintained. Twitching motility is known to increase virulence 

on host plants and promotes auto-aggregation and biofilm production along the 

host xylem vessel wall (Genin and Denny 2012). 

Once inside the plant RSSC needs to overcome host immune defences. To 

avoid these immune defences RSSC has a large variety and number of effector 

proteins secreted by the type 3 secretion system (T3SS). Plants’ immune response 

relies on recognising PAMPs/MAMPs (pathogen/microbe-associated molecular 

patterns) resulting in PTI (PAMP-triggered immunity) (Deslandes and Rivas 2012). 

Pathogenic bacteria can adapt in response to PTI, changing structure and therefore 

recognition by plants. Additionally, pathogens use T3SS to evade plant immune 

response by secreting type 3 effector (T3E) proteins inside plant cells to supress 

immune response (Deslandes and Rivas 2012, Genin and Denny 2012). However, 

this can then trigger ETI (effector-triggered immunity) as some T3Es are recognised 

by plants R (resistance) genes (Deslandes and Rivas 2012). Ailloud et al., also found 

that compared to other virulence factors the type 3 effectors (T3E) family of RSSC 

exhibits extremely high plasticity, with 113 T3Es in the pan genome and only 14 are 

present in every sequenced strain (RipG5, RipB, RipW, RipAC, RipAB, RipR, RipE1, 

RipAM, RipAN, RipAY, RipAJ, RipF1, Rip A1 and a PopC-like effector), which form the 

core ‘effectome’ of RSSC (Ailloud et al. 2011). However, this study was mainly 

conducted on R. solanacearum and not the other 2 species in the complex so we 
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may find an even smaller core genome and larger amount of strain specific T3Es 

with further studies. The large range of T3SSs that RSSC have is thought to be due 

to its coevolutionary arms race against its numerous hosts (Genin 2010). Several 

agricultural pathogens show strong signatures of diversifying selection acting on 

their effector repertoire to avoid recognition by the prevalent host genotypes (Croll 

and McDonald 2017), which we see among specialist species within the RSSC 

(Landry et al. 2020). However, large unexplained diversity among the T3SS 

repertoire remains among RSSC members. 

Reactive oxygen species (ROS) are also made by plants after infection by 

pathogens as a defence system, and therefore RSSC must overcome this oxidative 

environment during plant infection (Flores-Cruz and Allen 2009). RSSC are known to 

produce lots of mechanisms, such as producing catalases and peroxidases (e.g. the 

Bcp gene), to protect themselves against these ROS (Genin 2010, Genin and Denny 

2012). Furthermore, biofilms have been suggested to filter out nutrients from the 

flow of xylem fluid, helping bacteria to survive in this environment, as well as 

protect them from host plant immune defences (Álvarez et al. 2010, Genin and 

Denny 2012, Meng 2013). Another trait that is thought to be linked with bacterial 

pathogenicity is siderophore production (Bhatt and Denny 2004). Siderophores can 

be used to increase resource utilisation, however secreted siderophores have also 

been seen to be supress RSSC populations in the rhizosphere (Gu et al. 2020). 

Finally, arguably the most important virulence trait of RSSC is its production of 

exopolysaccharide (EPS). EPS is produced in large quantities and accumulation 

causes vascular degradation and the classic wilt symptoms seen in susceptible hosts 

(Genin and Denny 2012). 

1.8.2 Environmental selection factors affecting RSSC infections 

In order to cause infections RSSC species must first invade bacterial 

communities that already exist in the rhizosphere and reach a threshold density to 

activate virulence genes (Genin and Boucher 2004, Mansfield et al. 2012, Wei et al. 

2015). Research has shown that diverse communities with clear niche overlaps with 

RSSC reduce invasion success and can lead to lower levels of bacterial wilt disease 

(Wei et al. 2015, Li et al. 2019). Negative interactions towards the invading bacteria 
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can be due to direct inhibition, such as antibiotic production, or resource 

competition (Wei et al. 2015, Li et al. 2019). Competition for resources, such as 

carbon, reduces pathogen establishment and growth within the rhizosphere, 

therefore reducing infection of host plants (Wei et al. 2015). In a diverse 

rhizosphere where all food resources are utilised, RSSC establishment is reduced 

massively due to increased competition (Wei et al. 2015). Production of 

siderophores is one method bacteria can selfishly improve its resource utilisation. 

These are iron-chelating compounds that can be secreted by microorganisms to 

help bacteria to collect essential iron from the environment for their survival and 

growth (Hider and Kong 2010). Production of polycarboxylate siderophores is 

common in Ralstonia species and this trait may also be linked with the strains 

survival within the soil (Bhatt and Denny 2004). Siderophore production can also 

affect RSSC’s ability to invade microbial communities within the rhizosphere and 

determine bacterial wilt disease incidence (Gu et al. 2020). Ralstonia solanacearum 

species complex is versatile when it comes to resource utilisation and is known for 

its extreme strain variation of metabolite utilisation, which was exploited to 

separate the diverse species into separate biovars before sequencing was available 

(Hayward 1991). Resource utilisation can indicate the life-history and ecology of 

RSSC strains, for example, utilisation of different metabolites differs within the 

same strain depending on its past environmental history as well as its ability to 

infect plants (Zuluaga et al. 2013, Peyraud et al. 2016). This is because resource 

utilisation is also an important factor in a pathogen’s ability to exploit host 

resources and can determine how virulent they are (Peyraud et al. 2016). Sugar and 

amino acid content of plants differ before and after RSSC infection (Zuluaga et al. 

2013) and the bacterium can even manipulate nutrients within the host plant, 

producing effector proteins to synthesise GABA (y-aminobutyric acid) from other 

molecules (Xian et al. 2019). This suggests that to infect plants RSSC has a 

preference on what resources the pathogen use within the environment as well as 

within the host, even altering their environment to achieve successful infection. 

Between host plants, RSSC must survive transmission through the 

environment, such as in soil or river water, where the pathogen can encounter 

many different environmental stressors. Adapting to these environmental stressors, 
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both abiotic and biotic, is hence extremely important for bacteria to survive and 

persist in the environment during transmission to a new host. Not only do 

fluctuations in stress occur naturally but global change means that changes in 

temperature, pH, light levels, carbon dioxide and oxygen concentrations, nutrient 

availability, salinity, and other environmental variables can occur together creating 

a complex picture of abiotic stressors in the future (Brennan and Collins, 2015). 

Adapting in the presence of multiple different stressors in the environment can 

have different effects on evolution of the microorganism (Brennan and Collins, 

2015) and it has been suggested that adapting to these stressful conditions can 

affect pathogen virulence and plant-pathogen interactions (Zarattini et al., 2021). 

Within these environmental reservoirs RSSC would have to cope with the 

stress of oligotrophic habitats with little nutrients. Survival studies in sterile water 

have reported persistence of the bacterium for variable periods, and occasional 

capacity to wilt susceptible hosts (Álvarez et al. 2008), suggesting that the ability to 

grow in these nutrient limited conditions is extremely beneficial for RSSC. Also, high 

soil moisture, accumulating from either a high water table or heavy rainfall, usually 

favour bacterial wilt disease incidence (Hayward 1991). Studies have shown that 

survival of the pathogen is greatest in wet but well-drained soils, whereas survival is 

affected adversely by soil desiccation and by flooding (Hayward 1991). 

Furthermore, bacterial wilt incidence can be predicted based on soil moisture 

properties (Jiang et al. 2021). Survival in waterways is also a key part in RSSC’s 

lifecycle and can lead to infectious outbreaks in crops (Parkinson et al. 2013). 

Therefore, water potential stress will be a key stress factor in R. solanacearum’s 

lifecycle. When water potential decreases, the metabolic activity of most microbial 

species is decreased, resulting in lowered respiration and nutrient mineralisation 

(Manzoni et al. 2012), tolerance to this stress may help pathogen survival and 

increase bacterial wilt disease incidence. 

RSSC can encounter many different abiotic stressors such as changes in the 

pH, temperature, and salinity. Changes in pH can occur within the soil, river, as well 

as within the plant xylem (Bahrun et al., 2002; Secchi and Zwieniecki, 2016; Li et al., 

2017). The acidity of the soil has a strong influence on the composition of bacterial 

communities (Rousk et al., 2010) reducing antagonistic microorganism densities, 
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such as P. fluorescens and B. cereus (Li et al., 2017; Wang, Liu and Ding, 2020). 

Research has shown that bacterial wilt disease incidence is a lot higher in these 

acidic soils (pH 4.5 - 5.5), favouring growth of Ralstonia solanacearum, indicating 

that R. solanacearum is well-adapted to an acidic soil environment (Li et al., 2017). 

RSSC also finds high salinity unfavourable, growing in 1% NaCl media, but struggling 

to grow in media with 2% salt content (Álvarez et al. 2010). Ions released from 

weathering minerals into the soil and rivers can cause high natural salinity levels in 

these environments where R. solanacearum resides (Parkinson et al., 2013; 

Shrivastava and Kumar, 2015). Salt may also be applied to rhizospheres through 

irrigation water or as fertilisers and when precipitation is insufficient and can 

accumulate in the soil resulting in high soil salinity (Shrivastava and Kumar, 2015). 

Cold tolerant R. solanacearum strains (race 3 biovar 2 or phylotype IIB 

sequevar 1) have been proven to infect plants successfully at lower temperatures 

compared to other RSSC strains (Milling et al. 2009, Meng et al. 2015). However, 

low temperatures correlate with lower survival rate within the soil and water 

(Álvarez et al. 2010), suggesting that lower temperatures are stressful for RSSC. A 

study on Ralstonia solanacearum strains (race 3 biovar 2 or phylotype IIB sequevar 

1) from Egyptian canals found that temperature, along with competition with other 

microorganisms, had a marked effect on survival of this cold tolerant R. 

solanacearum strain (Tomlinson et al., 2009). The ability of RSSC to grow and persist 

in these extreme temperature environments is crucial for pathogen success and 

their ability to tolerate them can indicate what environments these strains have 

encountered in its history. 

There are not only abiotic factors in the environment that can cause stress 

towards RSSC species. RSSC is constantly surrounded by a community of other 

microorganisms, whether it’s in the water or rhizosphere, which impose many 

different selection pressures on the pathogen depending on the environment and 

what organisms are present (Fukui 2003). For example, some bacteria in the 

rhizosphere community, such as Bacillus and Pseudomonas species, are known to 

produce a variety of antibiotics that kill RSSC species to reduce competition within 

the environment (Allen et al. 2010, Yuliar et al. 2015, Wei et al. 2019). Therefore, 

antibiotic resistance may be a trait the RSSC has evolved to be able to persist in this 
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community. Many enemies which can kill the bacterial wilt pathogen can be found 

in these communities, such as a large variety of bacteriophage (viruses that infect 

bacteria), and predatory protists (Jousset et al. 2006, Yamada et al. 2007, 

Bhunchoth et al. 2015, Xiong et al. 2019). Being resistant and able to survive in 

these communities would be a vital trait for RSSC to persist, reproduce and 

eventually infect plants within their environment. 

While many attempts have been made to better understand the genetic 

diversity among this Ralstonia solanacearum species complex (van der Wolf et al. 

1997, Castillo and Greenberg 2007, Cellier and Prior 2010, Stevens and Van Elsas 

2010, Cho et al. 2018, Sharma et al. 2022), there is still a lack of understanding of 

the phenotypic diversity among ecologically relevant phenotypes within this 

pathogen. This information is needed to better understand the life history of this 

pathogen as well as discover the underlying mechanisms of certain genes, by linking 

the two (genotypes and phenotypes) together. 

1.9 Linking phenotypes with genetic variants using a genome wide 

association study (GWAS) 

Genome wide association studies (GWAS) are used to identify parts of the 

genome that are associated with a trait, identifying the causative gene, genes or 

gene regions that create a certain phenotype. A large sample of individuals of a 

certain species are first collected and a GWAS is performed using these four steps: 

(1) collecting the genotypic variation among these individuals via microarrays or 

sequencing. Genotypic variation can be measured using SNP (single nucleotide 

polymorphisms), the presence or absence of genes, indels (insertions or deletions) 

or K-mers (small segments of DNA usually 30 bp long) (Read and Massey 2014). (2) 

Grouping individuals based on the phenotypic trait of interest, which can be 

continuous or discrete. (3) Testing the association of a genotype with a certain trait 

(phenotype). For example, if one genetic variant is more frequently associated with 

a certain trait then this variant is said to be associated with this trait. (4) Finally, the 

last step is calculating the significance of this association, where correction for 

multiple testing is also conducted (Read and Massey 2014, Power et al. 2016). 
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Human GWAS commonly uses SNP microchip arrays to collect SNP variants 

across the genome. However, creating SNP typing panels are generally associated 

with high fixed costs and therefore few platforms were designed for bacterial 

species as each species will need a specific SNP typing panel. This meant that GWAS 

on bacteria was slow to emerge (Read and Massey 2014). Now with whole genome 

sequencing costs dramatically decreasing, a recent increase of GWAS has been 

employed to identify causative genes in bacteria has occurred (Read and Massey, 

2014). The first bacteria GWAS using sequenced data was performed in 2013, 

where vitamin B5 biosynthesis was found to be associated with host specificity in 

Campylobacter (Sheppard et al. 2013). Whole genome sequencing also makes it 

possible to perform GWAS using other variants other than SNPs such as DNA 

fragments known as k-mers or unitigs. Using SNPs can cause an ascertainment bias 

where the strains that are more genetically similar to the reference tend to have 

more accurate SNP calls. However, using k-mers or unitigs can solve this issue as 

they are short fragments of DNA that are created with ‘reference-free’ multiple 

alignment methods (Read and Massey 2014). Also, with bacteria, validation 

experiments are relatively easy to conduct, which can be used to prove that the 

associated gene is causally causing the phenotype of interest. This means bacteria 

GWAS is less reliant on replication and reduces the chances of false positive results 

(Read and Massey 2014, Power et al. 2016). 

However, compared to humans, bacteria have 3 confounding factors, that 

need to be taken into consideration when conducting a GWAS: (1) they often face 

stronger selection pressures, (2) they have a higher linkage disequilibrium within 

the genome and (3) larger population stratification due to lack of recombination 

(Read and Massey 2014, Chen and Shapiro 2015). Firstly, strong selection pressures 

in bacterial communities often occurs due to strong host association, antibiotic 

resistance etc. This causes a higher linkage between genes via population sweeps, 

or bottlenecks, which removes much of the genetic diversity within a population. 

The second confounding factor is the extent that any two alleles within a population 

are on the same ancestral ‘haplotype block’ of DNA, termed as their linkage 

disequilibrium (LD). This usually decreases with genetic distance on the 

chromosome because of sexual recombination, however bacteria are asexual, with 
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only one or two chromosomes, and therefore lack this ability to reduce LD as 

quickly (Read and Massey 2014). The separation of haplotype blocks is important 

for distinguishing causal loci from passively linked mutations in a GWAS, therefore 

an important first step before performing a bacterial GWAS is to characterise LD 

(Read and Massey 2014, Chen and Shapiro 2015) and causative genes should ideally 

be acquired multiple times by different lineages, as this improves the evidence for 

the gene causing the trait (Read and Massey 2014). Finally, population structure 

confounds GWAS as the non-random distribution of alleles within subpopulations 

(Read and Massey 2014) can cause significant associations between genotypes and 

phenotypes to be detected which are due to bacteria being related rather than the 

genome region causing the phenotype (Chen and Shapiro 2015). Problems relating 

to structured genetic variation would be expected to be worse in bacterial strains as 

they are both haploid and clonal. The problem of population stratification is 

particularly acute in highly clonal (rarely recombining) bacteria, and in those with 

separate geographic or host-associated subpopulations (Chen and Shapiro 2015). 

New refinements on GWAS approaches for microbes are constantly being 

developed, each using different methods to control for these confounding factors. 

Some software use clustering methods to control for population structure while 

others use phylogenetic trees (Collins and Didelot 2018) to take into account 

genetic relatedness. However, this correction usually compromises the amount of 

power the software has, which could potentially be overcome by using larger 

sample sizes (Chen and Shapiro 2015). 

1.10 Project aims and thesis chapter outline 

The overall aim of this project was to explore and improve our 

understanding on the phenotypic and genetic diversity of the Ralstonia 

solanacearum species complex (RSSC). This project was part of a larger one in 

collaboration with another PhD student, Martina Stoycheva, who has conducted 

genomic analysis on RSSC strains to discover the genetic diversity among this 

bacterial plant pathogen group. Therefore, this thesis primarily focusses on the 

phenotypic diversity among the RSSC bacterial plant pathogen and attempts to link 
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this trait diversity with their genomic information. Within this research I aimed to 

answer:  

 

1. How phenotypically diverse is the Ralstonia solanacearum species 

complex (RSSC)?  

This was investigated by conducting high-throughput phenotyping, 

collecting 46 ecologically relevant traits, across two collections of RSSC 

bacterial isolates together comprising 379 isolates. One collection 

consisted of 194 isolates spanning the global distribution of the RSSC 

(chapter 2), while the other consisted of 186 isolates from a single 

population of R. solanacearum within the UK (chapter 3). 

 

2. What is driving trait diversity among the Ralstonia solanacearum 

species complex (RSSC)?  

Life-history data, such as the location, time, and host each isolate was 

sampled from (chapter 2 and 3), along with trait correlations (chapter 3 

and 4), were both explored as potential drivers of phenotypic trait 

diversity. 

 

3. What genetic mechanisms are underpinning trait variation within the 

Ralstonia solanacearum species complex (RSSC)? 

A combination of comparative genomics (chapter 2 and 3), genome wide 

association studies (chapter 2 and 3), and experimental evolution 

combined with whole genome sequencing (chapter 4) were used to 

determine genetic mechanisms behind phenotypic trait differences 

within the RSSC. 

 

To answer these three research questions this thesis includes the following 

chapters presented in the style of research papers: 

 

Chapter 2: Two species within the Ralstonia solanacearum species 

complex (RSSC) have diverse but similar ecologies 
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In this first data chapter I explore the phenotypic diversity among the RSSC, 

using a global collection (n=194) spanning eight decades and two species within the 

RSSC (R. pseudosolanacearum and R. solanacearum). Specific comparisons between 

the two most widely distributed species within the RSSC, Ralstonia solanacearum 

and R. pseudosolanacearum, were conducted to better understand the evolutionary 

history of these two species. Life-history characteristics, sampling location and host, 

was also linked to phenotypic diversity to determine if they can explain trait 

differences among the RSSC. Finally, genomic comparisons and a genome wide 

association study (GWAS) was conducted to link phenotypic variation with genetic 

mechanisms. 

This chapter reveals that a large overlap in trait diversity exists between the 

two RSSC species. However, small differences were identified, with R. 

pseudosolanacearum being metabolically more efficient and more diverse, while R. 

solanacearum was more oligotrophic. Across all RSSC strains, five distinct 

phenotypic groups, or ‘ecotypes’ were also identified each differing in their trait 

specificity, either being oligotrophic, heat tolerant, cold tolerant, antibiotic 

resistant/biofilm producer, and metabolically efficient. Members of both species 

were found in all five ecotypes, highlighting that these two species do belong to a 

species complex and suggests that ecotype separation drives this large diversity 

among RSSC strains. To test if life-history characteristics, host and location sampled 

from, drives diversification each strain’s metadata was linked to their phenotypic 

diversity. This revealed that host and continent can explain small amounts of trait 

variation among the world collection of RSSC strains. Linking this trait variation with 

genomic information revealed that all ecotypes were present across the RSSC 

phylogeny with no clear ecotype clustering. However, large differences in accessory 

genome variation were observed, potentially suggesting that horizontal gene 

transfer drives RSSC ecotype differentiation. Finally, a genome wide association 

study (GWAS) revealed a type II secretion system associated with cold tolerance 

and three novel genome regions associated with rifampicin resistance. This bridges 

the gap between genomic information and physical characterisation, which is 

especially important during this current omics era where vast quantities of genomic 

data are available with little known links with functional traits. Overall, this chapter 
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outlines the phenotypic differences between two species within the RSSC, linking 

some of this trait diversity with life-history data and genetic mechanisms. 

 

Chapter 3: The UK Ralstonia solanacearum bacterial plant pathogen 

population has diversified into three ‘ecotypes’ 

In this second data chapter, I explored the phenotypic diversity among a 

single population of Ralstonia solanacearum within the UK (n=186), from both 

environmental and plant host samples. The UK R. solanacearum belongs to the 

clonal cold tolerant strain (phylotype IIB sequevar 1) and has thought to have been 

introduced to the country relatively recently (around 30 years ago). This collection 

contains isolates spanning from the first recorded outbreak in 1992 to 2019, and 

therefore this chapter aimed to determine the phenotypic diversity of a recently 

introduced RSSC population to the UK environment, providing insights on how 

initial adaptation occurs. Again, like chapter 2, life-history characteristics, the time, 

location and host isolated from, were linked to phenotypic diversity to determine if 

they help explain trait diversity among this population. Furthermore, trait 

correlations can aid (positive trait correlations) or limit adaptation (negative trait 

correlations) due to genetic linkages. Therefore, the impact of trait correlations on 

UK R. solanacearum’s phenotypic diversity was also explored. Finally, to study the 

genetic mechanisms behind trait diversity of UK R. solanacearum comparative 

genomics and genome wide association studies (GWAS) were also conducted. 

This chapter reveals that the UK population of R. solanacearum separates 

into three distinct ‘ecotype’ groups that differ in their growth in nutrient limited 

conditions, and overall trait generalism and specialism. This presence of separate 

ecotypes in both the UK R. solanacearum population and the global RSSC collection 

(chapter 2) suggests that niche specialisation is important in driving high diversity of 

this plant pathogen both at the species and population level. Exploring trait 

correlations revealed that they differed between each ecotype, while linking 

metadata with trait variation also revealed that location and isolation source cannot 

explain trait variation. However, the isolation date correlated with increased 

diversification between UK R. solanacearum isolates over time. This highlights the 

recent introduction of this bacterial species to the UK as diversification occurs when 
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new niche opportunities open. Temporal trait variation was also driven by an 

increase in antibiotic resistance and biofilm production, revealing that these traits 

are important in driving R. solanacearum adaptation within the UK. Linking this 

phenotypic variation with genetic data revealed extremely high genetic similarity 

between isolates with 98% shared genes across all three ecotypes. This suggests a 

role of other genetic mechanisms, such as epigenetics, in driving RSSC adaptation 

and diversification in the UK. Overall, this chapter reveals that a recently introduced 

R. solanacearum population shows relatively little genetic variation, while also 

harbouring large phenotypic diversity. 

 

Chapter 4: Adaptation to environmental stresses can explain 

diversification of phytopathogen Ralstonia solanacearum 

Finally, in this third data chapter I concentrate on how abiotic stresses, such 

as pH and salinity, within the environment can shape the UK Ralstonia 

solanacearum phenotypic diversity using experimental evolution approach. 

Specifically, this chapter explored the potential role of trait correlations in shaping 

R. solanacearum adaptation by evolving one UK isolate to single stress conditions 

(acidic, alkaline, and saline conditions) as well as a combination of stresses (acidic 

with salinity and alkalinity with salinity). I predicted that evolutionary outcomes 

would depend on how these stress tolerance traits are correlated with one another, 

with positive correlations resulting in generalist organisms (equally adapted to each 

stress conditions), while negative trait correlations constraining or driving 

adaptation into specialist genotypes. After evolving this R. solanacearum isolate to 

different stress conditions these evolved clones were sequenced (whole genome 

sequencing) to reveal genetic mechanisms underpinning stress tolerance traits. 

My results revealed that specialist adaptation to extreme pH occurred, while 

no adaptation to the combined stress conditions took place, suggesting negative 

trait correlations between the two stress conditions. Adapting to all stress 

conditions also resulted in a trade-off in metabolic capacity, suggesting that trait-

correlations across metabolism and environmental stresses exists within R. 

solanacearum. Genome sequencing revealed little core genome variation (SNPs and 

small INDELs) between evolved clones, the only promising causative one being a 
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few SNPs within a type IV pilus gene, agreeing with the lack of genetic variation 

seen within the UK population in chapter 3. However, insertion sequence (IS) 

movement was abundant, suggesting that genome rearrangement of these 

insertion sequences plays a potentially important role in the initial R. solanacearum 

adaptation. Furthermore, when phenotypic diversity of clones evolved to different 

stress conditions were compared this revealed a larger diversification of clones 

adapted to stress conditions compared to the stress-free adapted clones, 

suggesting that environmental stresses can drive increased phenotypic diversity. 

Overall, this chapter highlights that trait correlations can drive diversification of R. 

solanacearum and IS movement plays a large role in RSSC adaptation to 

environmental stresses. 

 

Chapter 5: General discussion 

A general discussion considering the results and context of all chapters 

together and an overview of my three research questions. Potential future 

directions to further this area of research are also discussed here. 

 

The methods used for each chapter are outlined in their respective chapters. 

References are provided at the end of the thesis. A list of all the bacterial isolates 

within each collection, along with supplemental protocols, are found within 

appendix A at the end of the thesis. Supplementary information for each chapter is 

also shown at the end of the thesis in separate chapter appendices (B-D). 
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2 Chapter 2: Two species within the Ralstonia solanacearum 

species complex (RSSC) have diverse but similar ecologies 

 

2.1 Abstract 

The Ralstonia solanacearum species complex (RSSC) is a diverse group of 

plant pathogenic bacteria, causing bacterial wilt disease among a wide range of 

plants of agricultural, horticultural, and environmental importance all over the 

world. While previous research has been conducted to determine the genetic 

diversity and host range of RSSC, the ecological relevance of its wider phenotypic 

diversity remains unclear. This research aimed to compare a broad range of 

phenotypic traits within two widely distributed RSSC species, R. 

pseudosolanacearum and R. solanacearum, and to investigate their potential 

ecological similarities and differences. To achieve this, high-throughput 

phenotyping was conducted, on a worldwide collection of 194 strains, with traits 

involved in virulence, stress tolerance, and metabolism. Only a small amount of trait 

variation was explained by species identity, with R. solanacearum being more 

oligotrophic, and R. pseudosolanacearum more diverse and metabolically efficient. 

However, strains could be divided into five distinct ‘ecotypes’ based on variation 

among 46 ecologically relevant phenotypic traits. All five ecotypes comprised 

strains from both species, in line with both species belonging to the same species 

complex and suggesting that ecotype separation may drive the observed diversity 

among RSSC strains. Linking this trait variation with genomic information revealed 

that all ecotypes were present across the RSSC phylogeny with no clear clustering. 

However, differences in accessory genome variation were present, potentially 

explaining and driving these ecotype differences. A GWAS also highlighted a type II 

secretion system associated with cold tolerance and three novel genome regions 

associated with rifampicin resistance. Overall, this research suggests that the 

environment is selecting for similar ecotype differences within both RSSC species, 

aligning with the fact that both species still share similar life cycles. 
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2.2 Introduction 

The Ralstonia solanacearum species complex (RSSC) is a diverse group of 

plant pathogenic bacteria and the causative agent of bacterial wilt disease in a wide 

range of plants across the world (Hayward 1991, Safni et al. 2018, Bragard et al. 

2019, EPPO 2022). A species complex has been defined as a group of closely related 

species that are highly similar, so much so that the boundaries between them can 

be unclear (Fegan and Prior 2005). While DNA-DNA homology has revealed that the 

relatedness between RSSC members is often less than 70%, commonly considered 

as the threshold between one microbial species and another, considerable 

similarities in phenotypes and disease symptoms have also been observed (Fegan 

and Prior 2005, Lowe-Power et al. 2018). Gillings and Fahy first used to term 

“species complex” to reflect the phenotypic and genetic variation observed within 

the bacterial wilt bacteria (Fegan and Prior 2005). A lack of consistency in pathogen 

host range and behaviour between these closely-related species in the RSSC, in 

addition to phenotypic and behavioural similarities between genetically distinct 

members, further justified the need to define this pathogen as a species complex 

(Sharma et al. 2022). Based on significant variations in the whole genome, the RSSC 

currently comprises three separate species, R. pseudosolanacearum, R. 

solanacearum and R. syzygii (Safni et al. 2014, 2018, Prior et al. 2016, Kumar et al. 

2018, Stevens et al. 2018) which aligns with the previous phylotype classification 

system (Fegan and Prior 2005). Ralstonia solanacearum was previously classified as 

RSSC phylotype II and predominantly originated from the Americas. Ralstonia 

pseudosolanacearum comprises both phylotype I and III classified strains and 

predominantly originated from Asia and Africa (for phylotype I and III respectively), 

while R. syzygii, comprises previously classified phylotype IV strains, originating 

from Indonesia (Safni et al. 2014, 2018). 

R. syzygii strains are mainly located within Indonesia (Safni et al. 2018), with 

recent emergence in other countries (EPPO 2022). However, the other two species 

within the RSSC, R. solanacearum and R. pseudosolanacearum, have global 

distributions and can be found within the same country in some regions of the 

world (EPPO 2022), suggesting that these two species have overlapping niches. The 

separation of these two widely distributed species is thought to date back to the 
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geological separation of the continents (Hayward 1991), with the two species 

reflecting each lineage that arose when ancestors became geographically separated 

(Genin and Denny 2012). There are also some apparent differences in host 

preference between the two species. Ralstonia pseudosolanacearum has been 

recovered from a wide range of hosts, the most common belonging to the Solanum 

genus, including potato (Solanum tuberosum) and tomato (Solanum Lycopersicon) 

(Bragard et al. 2019). Uniquely R. pseudosolanacearum also comprises of strains 

that can infect ginger (Zingiber officinale) and mulberry (Morus spp.) (EPPO 2018). 

Ralstonia solanacearum also has a wide host range, with the primary host plants 

also belonging to the Solanum genus (Bragard et al. 2019). The R. solanacearum 

species includes the Moko disease-causing strains infecting banana (Musa spp.) and 

Heliconia species (EPPO 2018). Furthermore, R. solanacearum also includes the 

cold-tolerant potato (Solanum tuberosum) brown rot causing strain, previously 

known as race 3 biovar 2 or sequevar 1 of phylotype IIB (Fegan and Prior 2005, Safni 

et al. 2014). The phylotype IIB sequevar 1 strain is adapted to lower temperatures 

compared to other more tropical R. solanacearum strains, and therefore also poses 

a serious threat to temperate agriculture (Williamson et al. 2002, EPPO 2018). 

Despite these differences, R. pseudosolanacearum and R. solanacearum 

species share very similar life cycles. Both can infect a broad range of host plants, 

producing various virulence factors and evading a wide range of plant immune 

responses. Additionally, they must also persist within the environment, such as in 

the soil and river water, during transmission from host to host (Genin 2010). As a 

result, both RSSC species have evolved to be highly diverse both genetically and 

phenotypically with multiple complex regulatory networks that respond to internal 

and environmental cues allowing for high phenotypic plasticity (Schell 2000, Cellier 

and Prior 2010, Genin and Denny 2012, Perrier et al. 2019, Chen et al. 2022, Yan et 

al. 2022). This means that they can undergo phenotypic conversions depending on 

environmental cues and therefore, the overall diversity of this species cannot be 

determined by its genome alone (Drenkard and Ausubel 2002). Furthermore, RSSC 

have large accessory genome variation, accredited to horizontal gene transfer 

within the bacterial community (Ailloud et al. 2011, Geng et al. 2022). Despite 

current research investigating genetic differences among RSSC members, it is still 
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unclear how this genetic variation is associated with species-level phenotypic 

differences and similarities. 

This research aimed to explore diversity within the two widely distributed 

RSSC species, R. pseudosolanacearum and R. solanacearum, using high-throughput 

phenotyping to compare a collection of virulence traits, as well as other ecologically 

important traits involved in stress tolerance and metabolism. As a plant pathogenic 

bacterium, virulence traits, such as protein production, tolerance to reactive oxygen 

species, biofilm formation and siderophore production, are important phenotypes 

driving RSSC adaptation. Furthermore, resource utilisation is important for invading 

plant rhizosphere microbiomes and establishing infection of hosts, as well as for 

survival within environmental reservoirs (Genin and Boucher 2002, Mansfield et al. 

2012). Selection within environmental reservoirs can also drive RSSC adaptation to 

abiotic stresses, resulting in changes in tolerance to pH, salinity, temperature, and 

water potential (Elphinstone et al. 1997, Sgrò and Hoffmann 2004, Parkinson et al. 

2013, Stevens et al. 2018). RSSC is also constantly surrounded by a community of 

other microorganisms (Fukui 2003), some of which, such as Bacillus and 

Pseudomonas bacterial species, are known to produce a variety of antibiotics that 

can kill RSSC strains to reduce competition within the environment (Allen et al. 

2010, Yuliar et al. 2015, Wei et al. 2019). Therefore, tolerance of biotic stresses, 

including antibiotics, could be selected for as they allow RSSC members to persist 

within these communities. 

Therefore, trait diversity was explored across 194 RSSC isolates from both 

species (R. pseudosolanacearum and R. solanacearum) (see appendix table A.1 for 

full list of strains). This was conducted by collecting 46 ecologically relevant traits, 

regarding three different adaptive strategies: 1) resource utilisation, 2) 

environmental stress tolerance, both abiotic and biotic, and 3) virulence (see 

appendix table B.1 for the full list of phenotypic traits collected). This study aimed 

to improve the understanding of phenotypic diversity among RSSC strains, that are 

genetically and phylogenetically well characterized (Cellier and Prior 2010), and help 

distinguish what is driving the observed phenotypic diversity among this complex of 

plant pathogens. Drivers of trait diversity could be either; 1) genetic differences 

between the two species, 2) life-history differences between strains, such as host or 
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location sampled from, or 3) differences between ecological niches to which each 

strain is exposed. This study also aimed to link this observed phenotypic variation to 

genetic data, identifying possible underlying genetic causes of phenotypic variation 

among the RSSC. To do this, a genome wide association study (GWAS) was 

conducted. This is a unbiased method of exploring associations between genetic 

information and phenotypes and identifying causative gene or genes for certain 

phenotypes (Read and Massey 2014, Power et al. 2016). By identifying potential 

genetic mechanisms involved in trait diversity among the RSSC, novel genes 

important for plant pathogen survival could then be explored. 

Overall, the two RSSC species investigated within this study were found to 

be phenotypically diverse with large overlaps with their trait diversity. Some 

differences were observed, with R. solanacearum being more oligotrophic, while R. 

pseudosolanacearum was more diverse and metabolically efficient. The continent 

and host in which isolates were sampled only explained a small amount of trait 

diversity among RSSC isolates. However, five phenotypically distinct ‘ecotypes’ were 

discovered within the RSSC collection (n=194) each differing in their niche 

preferences and all containing isolates from both species. Linking genotypes to 

phenotypic variation also revealed that all ecotypes were present across the RSSC 

phylogeny with no ecotype clustering. However, large differences in each ecotypes’ 

accessory genome was observed, suggesting that horizontal gene transfer within 

the environment is potentially driving these ecotype differences.  Together, these 

findings supports that environmental conditions could select for similar ecotype 

differences within both RSSC species. A GWAS also identified novel genetic 

mechanisms, a type II secretion system associated with cold tolerance and gene 

regions associated with rifampicin resistance, which requires further investigation. 

Overall, comparative analysis among a plant pathogenic group has revealed insights 

into bacterial ecological diversity, providing important insights to RSSC adaptation 

and identifying potential genetic mechanisms of certain traits. 
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2.3 Materials and Methods 

2.3.1 Ralstonia solanacearum species complex (RSSC) isolates and culture 

conditions 

The 194 Ralstonia solanacearum species complex (RSSC) isolates used in this 

study (appendix table A.1) were collected and stored by FERA Science ltd, Sand 

Hutton, York, UK. These strains were curated from a variety of collections, such as 

the National Collection of Plant Pathogenic Bacteria (NCPPB) and Protect collection 

maintained by FERA Science ltd, and spanned a variety of hosts, countries, and 

years, from 1945 to 2016 (figure 2.1). All RSSC isolates were verified as belonging to 

the RSSC using 16S rRNA real-time PCR (RT-PCR) with (Weller et al. 2000) primers 

and the standard protocol advised by the European and Mediterranean Plant 

Protection Organization (EPPO) (EPPO 2018). All isolates were grown up on SP agar 

plates (20g/L sucrose, 5g/L peptone, 0.5g/L potassium hydrogen phosphate, 0.25g/L 

magnesium sulphate heptahydrate, 12 g/L agar) (Mehan and McDonald 1995), 

before being normalised to 0.1 OD600 (optical density at 600nm) using sterile 

deionised water. They were then suspended in 25% glycerol, in random positions 

across different 96-well microplates, and cryopreserved at -80°C, ready for high-

throughput phenotyping. Among these inoculation microplates were also two well 

characterised RSSC reference strains, the R. pseudosolanacearum type strain 

GMI1000, and R. solanacearum type strain K60, from French Guyana and USA 

respectively. These strains were repeated three/four times per plate and were 

placed strategically across the microplates to detect and account for both batch and 

plate position effects. A collection of 46 different traits were investigated for this 

RSSC bacterial collection (see appendix table B.1 for full list of traits), categorised 

into four different groups: resource utilisation, abiotic and biotic stress tolerance, 

and virulence. A linear model using batch, plate position and technical replicate as 

random effects was conducted on the two type strains to determine that only small 

effects were due to these variables (7%, 6% and 0% for batch, plate position and 

technical replicate respectively), and therefore corrections for batch effect were not 

conducted. 
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Figure 2.1: Ralstonia solanacearum species complex (RSSC) isolate collection and sampling 
distribution. The RSSC collection used within this study comprised of 194 isolates, however missing 
metadata for certain isolates was observed. (A) World map showing the geographical distribution of 
this RSSC collection. Shaded countries indicate that at least one isolate within the RSSC collection is 
from this region (n=185 in total; map created using mapchart.net). (B) Temporal distribution of this 
RSSC collection, showing the number of isolates collected per year (n=159 in total). (C) Pie chart 
showing the host distribution of the RSSC collection, with each section showing the percentage of 
isolates from this RSSC collection isolated from different hosts. Most hosts have fewer than 3 
isolates and are therefore within the `other` category for easier interpretation (n=177 in total). For 
full list of isolates and metadata see appendix table A.1. 

 

2.3.2 Quantifying phenotypic traits linked with metabolic capacity 

The investigation of metabolic traits included growth within four rich 

standard media commonly used for RSSC culture in the laboratory, as well as 16 

single carbon resources (asparagine, glutamine, histidine, proline, serine, glycine, 

glucose, arabinose, xylose, sucrose, maltose, sorbitol, nicotinamide, citric acid, 

malic acid, and succinic acid; all at 10mM; appendix table B.1). These carbon 

resources were chosen because they are commonly present in the rhizosphere and 
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previous research suggests that they may impact RSSC growth and virulence (Yao 

and Allen 2006, Stevens and Van Elsas 2010, Jacobs et al. 2012, Zuluaga et al. 2013, 

Zhang et al. 2014, Wu et al. 2015, 2017, Perrier et al. 2016, Lowe-Power et al. 2018). 

 

2.3.2.1 Complex media 

For growth within complex media, casamino acid, peptone and glucose 

media (CPG: 1g/L casamino acid, 10g/L peptone, and 5g/L glucose) (Kelman 1954), 

casamino acid sucrose media (CS: 7.5g/L casamino acid, 2g/L sucrose, 0.25 g/L 

magnesium sulphate heptahydrate, 0.5g/L potassium hydrogen phosphate, and 

0.25g/L of ammonium iron(III) citrate) (Remenant et al. 2011), nutrient broth (NB) 

media (made as per Thermo Fisher scientific’s instructions), and sucrose peptone 

media (SP: 20g/L sucrose, 5g/L peptone, 0.5g/L potassium hydrogen phosphate, and 

0.25g/L magnesium sulphate heptahydrate) (Mehan and McDonald 1995). Each 

media was made and adjusted to pH 7 before being autoclaved at 120°C for 20 

minutes. The media (190µl) was then placed into each well of a 96-microplate and 

10µl of diluted inoculant bacteria (diluted 100-fold to 0.001OD600) using sterile 

distilled water, was added to create a final volume of 200µl. 

 

2.3.2.2 Single carbon resources 

Growth in the 16 different carbon resources was quantified using a defined 

minimal media containing salts essential for bacterial growth (OS media). This 

minimal media was prepared, as in appendix table A.3. Briefly, 5ml of the carbon 

resource of choice, at concentration 100mM, was added to 45ml of minimal media 

to make a 10mM solution of each carbon source. For the negative control, or ‘no 

carbon’ condition, 5ml of sterile distilled water was added. The pH of the media was 

then adjusted to pH7 and filter sterilised using a 0.2µm filter. 190µl of this 10mM 

solution was then added to each well of a 96-well microplate and 10µl of each 

isolate in the inoculation plates (diluted 100-fold to 0.001 OD600) was then added to 

these wells, creating an overall volume of 200µl.  

Three repeats of each resource, complex and single carbon media, was used. 

Initial OD600 measurements were taken, and microplates were placed in an 
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incubator at 28°C with humidity to avoid evaporation. OD600 reads were then taken 

every 24 hours for 5 days to measure bacterial growth. Area under the curve (AUC) 

was calculated as a proxy for growth. Mean average AUC across all replicates (n=3) 

was taken as the trait value for each isolate in complex media. While relative 

growth per isolate was calculated, by dividing their AUC in each carbon resource by 

their AUC in the no carbon control, for single carbon resource traits. Mean average 

relative growth across all replicates (n=3) was then taken as the trait value for that 

isolate. 

 

2.3.3 Phenotyping abiotic stress tolerance 

Growth within different abiotic stress conditions, including saline, extreme 

pH, high water potential and nutrient limited conditions, was conducted at 28°C 

with humidity. Relative growth within a variety of temperatures, 10°C and 35°C, 

with humidity were also quantified as an abiotic stress tolerance trait (appendix 

table B.1). SP media (Mehan and McDonald 1995) and 96-well microplates were 

used for all trait conditions using the same methods as described earlier. 

 

2.3.3.1 Growth in nutrient limited media 

For growth within resource limited conditions, 1% and 10% solutions of SP 

media were made by diluting 100% SP media 10-fold (for 10% SP) and 100-fold (for 

1% SP) using sterile deionised water. 190µl of each media, 1% SP, 10% SP, and 100% 

SP, were added to each well of a 96-well microplate and 10µl of bacteria inoculant 

(0.001 OD600) was then added. 

 

2.3.3.2 Growth in saline media 

For saline stress conditions growth in 3 different concentrations of salt 

(NaCl); 0.5%, 1%, and 2%, along with a control of 0% NaCl was measured. The 

isolates (10µl of 0.001 OD600) were grown in 190µl of SP media with different 

amounts of sodium chloride (NaCl) added to make up the desired salt 

concentration. 
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2.3.3.3 Growth in extreme pH 

Growth within 4 different pH levels, ranging from acidic to alkali (4.5, 7, 9, 

10), was also measured as follows. Drops of sodium hydroxide (NaOH) or 

hydrochloric acid (HCl) was added to SP media to make the specific pH required 

before media was autoclaved (120°C for 20 minutes). 10µl of inoculant (0.001 

OD600) was then added to 190µl of this media. 

 

2.3.3.4 Growth in water potential stress conditions 

To characterize how well R. solanacearum grows in water potential stress 

we took relative growth measurements in 15% polyethylene glycol (PEG)-4000. 15g 

of polyethylene glycol was added to 100ml of SP media before being filter sterilized 

with a 0.2µm filter. 10µl of inoculant bacteria (0.001 OD600) was then added to 

190µl of this media. 

 

2.3.3.5 Heat and cold tolerance traits 

Heat tolerance was quantified as growth in SP media at 35°C, where 10µl of 

inoculant (0.001 OD600) was added to 190µl of SP media and incubated at 35°C with 

humidity. 

Cold tolerance was quantified as growth in SP media at 10°C, where 10µl of 

inoculant (0.001 OD600) was added to 190µl of SP media and incubated at 10°C with 

humidity. 

For this trait and all abiotic stress traits above, optical density reads at 

600nm (OD600) were taken every 24 hours for 5 days. Area under the curve (AUC) 

was then calculated as a proxy for growth. Relative growth per isolate was then 

taken by dividing their AUC within the stress condition by their AUC in SP media 

without any stresses (100% pH7 SP media, with 0% NaCl added, and incubated at 

28°C). Mean average relative growth across all replicates per isolate (n=3) was then 

taken as the trait value for that isolate. 

Another cold tolerance trait was survival at 4°C. 10µl of inoculant (0.001OD) 

was added to 190µl of SP media (pH adjusted and autoclaved), with three repeats 

per isolate, and incubated at 4°C for five days. Afterwards, 5µl was spotted onto a 
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CGP agar plate (1g/L casamino acid, 10g/L peptone, 5g/L glucose, and 17g/L of agar) 

(Kelman 1954). Survival was measured as a binary growth trait (growth as 1 and no 

growth as 0) after 48 hours in a 28°C incubator and therefore was only used within 

the GWAS. 

 

2.3.4 Phenotyping biotic stress tolerance 

Antibiotic resistance was calculated as relative growth within four different 

antibiotics, each with a different mechanism of action, at ‘high’ and ‘low’ 

concentrations per antibiotic. The antibiotics chosen were: ciprofloxacin, a 

fluoroquinolone which works by targeting the alpha subunits of DNA gyrase 

preventing it from supercoiling the bacterial DNA which prevents DNA replication 

(Silver 2016). Gentamycin, an aminoglycoside that works through inhibition of 

bacterial protein synthesis by binding to 30S ribosomal subunit (Silver 2016). 

Rifampicin, a rifamycin which acts via inhibiting DNA-dependent RNA polymerase 

(Silver 2016). Tetracycline, a member of the tetracyclines which works by binding 

specifically to the 30S ribosome of the bacteria preventing attachment of the 

aminoacyl tRNA (Silver 2016) (appendix table B.1). 

Stocks (0.01g/ml) of each antibiotic were made, and filter sterilised with a 

0.2µm filter. Antibiotic stocks were then added to sterile SP media (Mehan and 

McDonald 1995) in amounts to make up ‘high’ and ‘low’ concentrations of each 

antibiotic, as determined by preliminary experiments on a subsample (10 isolates) 

of RSSC isolates (appendix figure B.1). Concentrations were as follows; 3 and 

5µg/ml for ciprofloxacin, 0.5 and 1 µg/ml for gentamycin, 0.5 and 4µg/ml for 

rifampicin, and 1 and 5µg/ml for tetracycline. 10µl of inoculant (0.001 OD600) was 

then added to 190µl of each antibiotic concentration containing media, along with 

the no antibiotic control (SP media alone). Bacteria were grown in a 28°C incubator, 

with humidity, for 48 hours and then OD600 measurements were taken. Growth 

(OD600) of each isolate within each antibiotic condition was then divided by their 

growth (OD600) within the SP control condition to get the relative growth. Mean 

average relative growth across all replicates per isolate (n=3) was then taken as the 

trait value for that isolate. 
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2.3.5 Phenotyping virulence traits 

Phenotypes classed as virulence traits included biofilm production, oxidative 

stress tolerance, siderophore production and protein production (appendix table 

B.1). 

 

2.3.5.1 Biofilm production 

RSSC biofilms have been suggested to filter out nutrients from the flow of 

xylem fluid, as well as protect bacteria from host plant immune defences, making 

them an important trait for RSSC host infection (Álvarez et al. 2010, Genin and 

Denny 2012, Meng 2013). Biofilm assays were conducted, using a crystal violet 

staining method, where isolates were grown on microplates for 7 days (to make 

sure carrying capacity had been reached) in the four different complex media, CS 

(Remenant et al. 2011), CPG (Kelman 1954), SP (Mehan and McDonald 1995) and 

nutrient broth (NB) (see complex media methods section). The biofilm assay was 

completed as dictated by (O’Toole and Kolter 1998) with slight modifications, such 

as those from (Burton et al. 2007). Bacteria were removed from the microplate and 

microplates were washed three times using sterile deionised water. They were then 

allowed to dry for 15 minutes before adding 200µl of 0.1% crystal violet. After 15 

minutes of incubation at room temperature, the crystal violet was washed out three 

times using distilled water. 200µl of 70% ethanol was then added to solubilize the 

crystal violet and OD600 was taken after 15 minutes. OD measurements were 

divided by the OD600 of a blank control plate, conducted per batch, and the mean 

average across the replicates (n=3) was taken as the value of this trait per isolate. 

 

2.3.5.2 Oxidative stress tolerance 

Reactive oxygen species (ROS) are produced by plants after infection as a 

defence system (Flores-Cruz and Allen 2009), and therefore tolerance to ROS is an 

important virulence trait for RSSC isolates. Growth of all isolates were taken in SP 

media (Mehan and McDonald 1995) with 100mM of H2O2, the sublethal amount of 

ROS for RSSC (Tondo et al., 2020), within a 28°C incubator with humidity. All media 
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was freshly prepared by adding the required amount of filter sterilized H2O2 (0.2µm 

filter) to SP media and was kept in the dark using foil as dictated by (Rodríguez-

Rojas et al., 2020). Inoculant bacteria (10µl at 0.001 OD600) was added to 190µl 

media with 100mM of H2O2, or no H2O2 for the control. OD600 was taken every 24 

hours for five days and AUC was then calculated as a proxy for growth. Relative 

growth per isolate was calculated by dividing AUC within H2O2 by their AUC in the SP 

control. Mean average relative growth across all replicates per isolate (n=3) was 

then taken as the trait value for that RSSC isolate. 

 

2.3.5.3 Siderophore production 

Iron chelating ability of bacterial supernatant was measured as a proxy for 

siderophore production as this has been indicated as an important trait for 

rhizosphere community invasion and RSSC virulence (Gu et al. 2020). The (Schwyn 

and Neilands 1987) universal siderophore assay was used with chrome azurol S 

(CAS) and hexadecyltrimethylammonium bromide (HDTMA) as indicators. This assay 

works as CAS/ HDTMA complexes tightly bind with ferric iron to produce a blue 

colour, when supernatant with a strong iron chelator, such as a siderophore, is 

added this then removes the iron from the dye complex, changing the colour from 

blue to orange/pink (Arora and Verma 2017). 

All bottles were washed with 10mmol/L HCl (6ml of 1M HCl in 600ml of 

Milli-Q ultrapure water) and milli-Q ultrapure water before stock solutions were 

made to remove any iron residues. FeCl3 stock solution was made by dissolving 

0.135g of FeCl3 6H20 in 500ml of 10mmol/L HCl, the CAS stock solution made by 

dissolving 0.12g of CAS in 100ml of milli-Q ultrapure water. The HTDMA solution 

was made by dissolving 0.088g of HTDMA in 200ml of milli-Q ultrapure water and 

the piperazine buffer by dissolving 17.23g of piperazine in 120ml of milli-Q 

ultrapure water and adjusting the pH to 5.6 using 37% HCl. All stock solutions were 

stored at 4°C. On the day the siderophore assay was conducted, the chrome azurol 

S (CAS) solution was freshly made by mixing 0.75ml of FeCl3 stock solution, 3.75 ml 

of CAS stock solution, 25 ml of HTDMA solution, 15 ml of the piperazine buffer and 

5.5ml of milli-Q ultrapure water. 
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Isolates (0.001 OD600 inoculant) were grown up in 190µl of SP media (Mehan 

and McDonald 1995) for three days at 28°C with humidity (n=6 per isolate). OD600 

measurements were taken, and plates centrifuged at 2000 rpm for 15 mins. From 

these centrifuged plates 100µl of the supernatant per replicate (n=6) was then 

removed and placed into two 96-well filter plates (with a total volume of 300µl in 

each plate, totaling to 600µl overall) which were then centrifuged at 2000 rpm for 

15 mins. After centrifuging these plates 100µl of filtered supernatant was then 

placed into a new 96-well microplate with 100ul of CAS solution and mixed 

carefully, to ensure no bubbles were created, using a pipette. Four technical 

replicates were conducted per isolate, along with the control (SP media with no 

inoculant). Plates were left to incubate for 2 hours, and OD reads at 630nm (OD630) 

were taken. Siderophore production (psu) was then calculated using the below 

formula: 

(𝐴! −	𝐴") ∗ 	100
𝐴!

 

Where 𝐴!  is the absorbance of the reference (CAS solution and uninoculated 

broth), and 𝐴" the absorbance of the sample (CAS solution and cell-free 

supernatant of sample) (Arora and Verma 2017). Mean average across the four 

technical replicates were taken and then divided by average initial OD600 to get 

Siderophore production (psu) per cell values (normalised by growth). 

 

2.3.5.4 Protein production 

RSSC strains secrete a lot of virulence proteins while invading plant hosts, to 

evade plant immune systems, degrade cell walls etc. (Genin and Denny 2012). 

Therefore, Bradford assays of RSSC isolate’s supernatant was conducted to 

determine the amount of protein produced. RSSC isolates (0.001 OD600) were grown 

up in 190µl of sterile SP media (Mehan and McDonald 1995) for three days in a 

28°C incubator with humidity (n=6 per isolate). OD600 measurements were taken, 

before plates were centrifuged at 2000 rpm for 15 minutes. 100µl of supernatant 

per replicate was then taken and placed into two 96-well filter plates (each with a 

total volume of 300µl) which were then centrifuged at 2000 rpm for 15 minutes. 

The Pierce detergent compatible Bradford assay kit was conducted using the 
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manufactures 2-25ug/ml detection limit microplate protocol with a few 

modifications from (Baroukh et al. 2021). 100µl of Bradford dye reagent was added 

to 96-well EIA/RIA assay microplates, then 100µl of supernatant was added and 

mixed with a pipette carefully to ensure no bubbles arose. Plates were left to 

incubate for 30 minutes before OD was taken at 595nm (OD595). Three technical 

replicates were conducted per isolate. Bovine serum albumin (BSA) was used as the 

standards with a variety of concentrations, from 0 to 50µg/ml, diluted using sterile 

SP media. 

The amount of protein within the supernatant was calculated by subtracting 

the blank standard (0µg/ml standard) OD595 from all samples and standards OD595. A 

standard curve was then produced by plotting the average blank-corrected 

measurements for each BSA standard vs. its concentration in µg/ml. Using this 

standard curve, protein concentration estimates were calculated for each sample. 

This protein concentration was then divided by the average growth of that isolate, 

OD600 before supernatant was extracted, to get protein produced per cell. The 

mean average across all technical repeats per isolate (n=3) was then taken as this 

trait value. 

 

2.3.6 Whole genome sequencing and genetic variant curation 

Whole genome sequencing was conducted on 182 isolates. DNA was first 

extracted following the Qiagen DNeasy Blood and Tissue Kit, with the optional 

RNase A step included and slight modifications to the manufacturers protocol 

(appendix table A.4). The elution buffer used was trisaminomethane hydrochloride 

(Tris HCl, 10mM, pH 8) as recommended by Earlham Institute for their library 

preparation. Quality of the extracted DNA was determined using 3 methods. 1) 

Nanodrop, to detect any impurities present. 2) Quant-iT™ double stranded (ds) DNA 

broad-range assay, performed as per the manufacturer’s microplate assay 

instructions, to discern double stranded DNA concentration using a fluorescent DNA 

binding stain. 3) electrophoresis gels using 0.8% agarose to ensure minimal shearing 

of the DNA occurred. DNA was diluted to 15ng/µl and transported to Earlham for 

Illumina MiSeq 30x sequencing and raw untrimmed paired FASTQ files were 
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received. Files can be found publicly available at SRA under project number 

PRJNA823737. 

 

2.3.7 Genetic analysis: linking phenotypes with genetic properties 

A genome wide association study (GWAS) was used to link phenotypic 

variation to changes within RSSC genomes. Genomic variation across RSSC isolates 

was determined by differences in the presence and absence in cluster of 

orthologous genes (COGs), mutations, such as single nucleotide polymorphisms 

(SNPs) and small insertion and deletions (indels), and different DNA segments, 

known as unitigs. To create the input COG files, an .Rtab file of gene 

presence/absence was created using panaroo (Tonkin-Hill et al. 2020). For 

investigation in unitigs, unitig-counter (v1.1.0) (Jaillard et al. 2018) was used. For 

SNP/small indel GWAS an input vcf file was curated using freebayes (Garrison and 

Marth 2012). Bacterial GWAS was conducted using Pyseer v1.3.10 (Lees et al. 2018) 

which uses linear models with fixed or mixed effects to associate genetic variation 

with a phenotypic variable of interest, while accounting for confounding population 

structure in the bacterial population. To account for population structure, all 

analyses were supplemented with phylogenetic distances from a tree constructed 

using IQ-TREE (Nguyen et al. 2015). Furthermore, a minimum minor allele frequency 

(maf) cut-off of 0.05 (and maximum maf of 0.95) was used for the unitig and SNP 

GWAS analysis. All Pyseer analyses were run using the linear mixed model (LMM). 

Five reference strains representing the two RSSC species, R. 

pseudosolanacearum and R. solanacearum, were used for unitig gene annotation. 

These were R. pseudosolanacearum strain GMI1000 (NCBI accession number: 

000009125), R. solanacearum strain UW551 (NCBI accession number: 002251655), 

R. solanacearum strain UY031 (NCBI accession number: 001299555), R. 

solanacearum strain K60 (NCBI accession number: 002251695), R. 

pseudosolanacearum strain CMR15 (NCBI accession number: 000427195) and R. 

solanacearum strain YO199 (this study). Phandango software (Hadfield et al. 2018) 

was used to visualise Manhattan plots with GMI1000 (accession number: 

000009125) as the reference strain. 
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For phenotype GWAS, trait values (as measured as above for each trait) 

were taken and mean centered. All 46 traits were inputted as a continuous 

phenotype, however binary input phenotypes were also calculated for all antibiotic 

resistant traits, cold tolerance, and reactive oxygen species tolerance, by taking 

growth (1) as OD600 over 0.13 at the last timepoint and no growth (0) as below this 

value. Survival at 4°C was also measured as a binary phenotype and used as an 

input phenotype. For the ecotype level GWAS, the input phenotype used was 

ecotype classification based on k-means clustering and PC1 and 2 values from figure 

2.3B. 

Accessory genomes of each ecotype were also investigated further as 

enriched KEGG pathways for each ecotype relative to the pangenome (all genes). 

Accessory genes were classified as being present in more than one isolate and less 

than 168 isolates (around 90%). All gene sequences were then functionally 

annotated with KEGG pathways using eggNOG-mapper (version emapper-2.1.9) 

(Huerta-Cepas et al. 2019, Cantalapiedra et al. 2021) with sequence searches 

performed using DIAMOND (Buchfink et al. 2021) with default setting apart from 

0.00001 as the minimum e-value threshold and ‘betaproteobacteria’ as the 

annotation taxa group. Enrichment analysis was then completed to determine 

which pathways were enriched within each ecotypes accessory genome compared 

to the pangenome of the RSSC collection. This was conducted within R version 4.2.1 

(R Core Team 2022) using the clusterProfiler package (Wu et al. 2021) with the 

Benjamini-Hochberg (BH) multiple testing correction method and 0.05 as the p 

value and q value cut-off. 

 

2.3.8 Statistical analysis and data visualisation 

Statistical data analysis and visualisation were conducted within R version 

4.2.1 (R Core Team 2022). Figures were produced using the package ggplot2 

(Wickham 2016) and heatmaps were curated using the Heatmap function in the 

ComplexHeatmap package (Gu et al. 2016). Venn diagrams were curated using the 

ggVennDiagram (Gao 2021) package, while upset plots were curated using the 

package ComplexUpset (Krassowski et al. 2020) and ggtree (Yu et al. 2017, 2018, Yu 

2020, 2022) was used to visualise the RSSC phylogeny. 
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Area under the growth curve (AUC) was calculated as a proxy for growth for 

most traits, as AUC captures lag time, growth rate and carrying capacity, using the 

MESS package in R version 4.2.1 (Ekstrøm 2019, R Core Team 2022). Standardised 

trait values were z-scores curated using the scale function in the stats R package (R 

Core Team 2022) and mean standardised trait values across the trait groups 

(appendix table B.1) was taken as the mean z-score across all traits within that 

group. Principal component analysis (PCA) was carried out using tidymodels (Kuhn 

and Wickham 2020) with normalisation of the data. K-means clustering was 

conducted using the kmeans function in stats R package using Euclidean distances 

(R Core Team 2022) and optimal number of clusters were determined using the 

cascadeKM function in the vegan package (Oksanen et al. 2019), using simple 

structure index (ssi) as the criterium. 

Significance of clusters and groups within PCA plots was determined with 

PERMANOVA analysis using the adonis2 and betadisper functions in the vegan 

package (Oksanen et al. 2019). Post hoc analysis was conducted using pairwise 

PERMANOVA using the pairwise.perm.manova function in the RVAideMemoire 

package (Hervé 2022) with PC1 and PC2 values as the input variables and the fdr p 

value adjustment method. Significant differences of mean trait values per 

phenotype group between each species and ecotype was determined using two-

way ANOVA with the aov function, and post hoc using the TukeyHSD function, in 

the stats R package (R Core Team 2022), using the standardised trait value as the 

dependent variable and species (or ecotype) and phenotype group as the 

explanatory variables. Mean pairwise distances were calculated by taking the mean 

Euclidean distance per isolate from all other RSSC isolates, using the dist() function 

(R Core Team 2022) on a matrix of the 46 phenotypic trait values. The median of the 

mean Euclidean distance between different species and ecotypes was then 

compared using Kruskal-Wallis significance test, using the kruskal.test function, and 

pairwise Wilcoxon test, using the pairwise.wilcoxon.test function, both available 

within the stats R package (R Core Team 2022). Significance of host, decade and 

species distribution across the five ecotypes was calculated using chi squared tests 

with the chisq.test function in the stats R package (R Core Team 2022), and post hoc 

analysis using the chisq.posthoc.test package (Ebbert 2019). Significance of cold 
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tolerant gene hit (hxcR/epsE) distribution across the ecotypes was also calculated 

using chisq.test function and the chisq.posthoc.test package (Ebbert 2019, R Core 

Team 2022). 

 

2.4 Results 

2.4.1 Two Ralstonia solanacearum species complex (RSSC) species show only 

small phenotypic dissimilarity 

To compare the phenotypic diversity of two RSSC species, 46 trait 

measurements were collected across a collection of 194 global RSSC isolates, 

spanning eight decades (1945 to 2016). Isolates assigned as R. solanacearum 

(n=119) and R. pseudosolanacearum (n=66), through whole genome sequencing 

analysis, were compared to see if genetics can determine trait diversity patterns 

and trait specialization within the RSSC. A principal component analysis (PCA) was 

conducted to visualize the phenotypic differences between the isolates (figure 

2.2B). This PCA plot explained 46% of the total variation within the dataset, with the 

majority (30%) explained by principal component 1 (PC1) and 16% by principal 

component 2 (PC2). A lower PC1 value corresponds to an increase in growth across 

most traits, apart from nutrient limited conditions and heat tolerance traits where a 

positive PC1 value corresponds to higher growth (figure 2.2A). Furthermore, PC2 

shows differences in values across the traits explored, with higher values showing 

higher growth on carbon resources, and an increase in antibiotic resistance and 

biofilm production traits, while negative values indicate higher stress tolerance 

within extreme pH and salinity conditions (figure 2.2A). Both species revealed large 

phenotypic diversity and they differed significantly from one another especially 

along PC2. However, this only accounted for a small amount of the trait variation 

(8%) observed between the RSSC isolates (figure 2.2B, PERMANOVA: F1,183= 15, R2= 

0.08, p=0.001). A large overlap along PC1 and PC2 in trait diversity was observed 

across the two species and no significant differences in dispersion was observed 

(figure 2.2B: ANOVA: : F1,183= 2.5, p=0.11). However, exploring each isolate’s mean 

pairwise distance from all other isolates, calculated using Euclidean distances across 

all 46 traits, also revealed that R. pseudosolanacearum isolates were more diverse, 
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and therefore had a significantly higher mean pairwise distance compared to R. 

solanacearum isolates (figure 2.2C, Kruskal-Wallis: X2
1 = 13.7, p=0.0002). 

Next, to explore how these two species differ in specific trait groups, their 

standardised trait values for each of the 13 phenotypic groups (appendix table B.1) 

were compared (figure 2.2D). This revealed that the two species only differed 

significantly in their ability to grow on complex media and nutrient limited 

conditions, with R. pseudosolanacearum having significantly higher growth within 

complex media compared to R. solanacearum (figure 2.2D, ANOVA: F1,1937= 0.30, 

p<0.0001, TUKEY: p=0.0004) and R. solanacearum isolates having significantly 

higher growth in nutrient limited conditions compared to R. pseudosolanacearum 

isolates (figure 2.2D, ANOVA: F1,1937= 0.30, p<0.0001, TUKEY: p=0.018). This suggests 

that each species specializes in different niches, with R. solanacearum focusing on 

survival within nutrient limited conditions, while R. pseudosolanacearum has higher 

metabolic efficiency, with higher growth within complex media (figure 2.2D). 

However, for most traits the two species were not significantly different and large 

phenotypic diversity was observed within both species (figure 2.2B). This suggests 

that each species could have overlapping niches maintaining the large phenotypic 

diversity observed among both species or more specific test conditions are 

required. 

The RSSC collection metadata was also used to explain variation in the 

phenotypic data. First, to explore how geographical separation explains RSSC trait 

diversity the same PCA plot as figure 2.2B was created but with isolates coloured by 

the continent in which they were isolated. This shows a significant, although small, 

difference in trait diversity depending on which continent they were from (appendix 

figure B.2D, PERMANOVA: F5,179= 3.2, R2= 0.08, p=0.002) and no significant 

dispersion (appendix figure B.2D, ANOVA: F5,179= 0.8, p=0.53). This was mainly 

explained by isolates from Europe being different compared to other isolates from 

other continents, specifically Asia, Africa, North America, and South America 

(pairwise PERMANOVA: p=0.037 for all). Next, the amount of trait diversity 

explained by the isolation host or source was investigated. Due to the large number 

of unique hosts in this dataset, metadata were filtered so that only hosts 

represented by five or more isolates were selected for this analysis, which resulted 
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in a dataset of 133 isolates from the following hosts: potato (n= 75), tomato (n=25), 

banana (n=13), ginger (n=8), water (n=6), and tobacco (n=6). The analysis showed 

that isolation source also explained a small but significant amount of trait variation 

within the collection (appendix figure B.2E, PERMANOVA: F5,127= 2.4, R2= 0.09, 

p=0.014) with no significant difference in dispersion around the centroid (appendix 

figure B.2E, ANOVA: F5,127= 1.8, p=0.12). However, pairwise PERMANOVA analysis 

revealed no significant differences between host groups, most likely due to small 

sample sizes. In conclusion, phenotypic diversity of RSSC was explained by species, 

isolation source and geographical location of isolation, however the percentage of 

variation explained by each factor was relatively small (between 8 and 9%). 

 



 65 

 



 66 

Figure 2.2: Two Ralstonia solanacearum species complex (RSSC) species share similar ecological diversity, differing in diversity and only some trait groups. (B) Principal 
component analysis (PCA) plot with each point as one of the isolates within the RSSC collection coloured by species, R. pseudosolanacearum or R. solanacearum, assigned 
using whole genome sequencing (n=185). Principal component (PC) 1 explained 30% of the variation within the dataset and PC2 16%. The amount of contribution each trait 
has on the principal components is shown in a heatmap in panel (A) Orange and purple points show Ralstonia pseudosolanacearum and R. solanacearum isolates 
respectively. (C) Mean pairwise difference to all other isolates calculated per isolate and grouped by species. Pairwise distances were measured using Euclidean distances. 
Orange and purple points show Ralstonia pseudosolanacearum and R. solanacearum isolates respectively. Boxplots lines show the median per species of the mean pairwise 
distances with the box indicating the interquartile range and whiskers showing the 95% quantile range. (D) Standardised values (z-score) distribution across each species for 
traits grouped into 13 ecologically relevant categories are shown in a density plot. 
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2.4.2 Ralstonia solanacearum species complex (RSSC) isolates cluster into five 

distinct phenotypic ‘ecotypes’ 

As species identity could not explain most of the trait variation seen among 

RSSC isolates, further analysis exploring if strains could be clustered based on their 

phenotypic traits was conducted. This revealed that RSSC isolates clustered into five 

groups based on their phenotypic diversity of 46 traits (figure 2.3A), assigned by k-

means clustering and ssi criterion (appendix figure B.3A). These can be seen clearly 

in the PCA plot (figure 2.3B) where isolates from each group are significantly 

different from one another phenotypically (figure 2.3B, PERMANOVA: F4,189 = 232, 

R2 = 0.83, p = 0.001) and ecotype 5 having significant higher dispersion around the 

centroid compared to ecotypes 2 and 3 (figure 2.3B, ANOVA: F4,189 = 3.8, p = 0.005, 

TUKEY: p = 0.02 for ecotypes 5 and 2 and p = 0.01 for ecotypes 5 and 3). As this 

phenotypic differentiation is likely to affect the fitness and ecology of RSSC isolates 

within the environment, groups are henceforth called ‘ecotypes’. Ecotypes also 

differ in their trait diversity (appendix figure B.3B, Kruskal-Wallis: X2
4= 126, 

p<0.0001), as calculated as each isolate’s mean pairwise Euclidean distance from all 

other isolates. Ecotype 5 was the most diverse (p<0.0001-0.004 compared to all 

other ecotypes), followed by ecotype 4 (p<0.0001-0.01 for all other ecotypes), then 

2 (p<0.00001-0.01 for all) then ecotype 1 (p<0.0001 for all), and with ecotype 3 

being the least diverse of them all (p<0.0001-0.01 compared to all other ecotypes). 

Isolates from different ecotypes also differed in their trait specialisation 

(figure 2.3A), with significantly different standardised value distributions (figure 

2.3C) across 13 phenotypic groups (for trait groupings see appendix table B.1). RSSC 

isolates from ecotype 1 (n = 60) could be considered as oligotroph specialists, with 

higher standardised values within nutrient limited conditions compared to all other 

RSSC ecotypes (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001 for all), 

and lower standardised values across all other traits, especially growth within 

complex media (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001 

compared to ecotypes 2, 4 and 5). RSSC isolates assigned to ecotype 2 (n=31) could 

be regarded as the heat tolerant specialist isolates, with significant higher 

standardised values when grown in high temperatures compared to ecotypes 4 and 

5 (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001 for both ecotypes) 
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and significant lower trait values when grown in cold temperatures compared to 

ecotypes 3 and 4 (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001 for 

ecotype 3 and p=0.003 for ecotype 4). In contrast ecotype 3 isolates (n=49) were 

cold tolerant with the highest standardised values within this condition compared 

to all other ecotypes (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001 

for all ecotypes). This ecotype also had the highest growth in the presence of 

reactive oxygen species (ROS) (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: 

p<0.0001 for all ecotypes) and is one of three ecotypes (along with ecotypes 4 and 

5) that had higher standardised values in pH and salinity stress compared to 

ecotypes 1 and 2 (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001). 

Ecotypes 4 (n=29) and 5 (n=25) were both antibiotic resistant and biofilm 

producers, with higher standardised values in these traits compared to the other 

three ecotypes (figure 2.3C, ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001 for 

all). These two ecotypes, however, differed in their metabolic traits with ecotype 5 

having the highest trait values in complex media, and significantly higher 

standardized values in single carbon media compared to ecotype 4 (figure 2.3C, 

ANOVA: F4,2457= 155, p<0.0001, TUKEY: p<0.0001). Overall, the two species within 

the RSSC investigated in this study are phenotypically diverse, clustering into five 

distinct ecotypes, each differing in their trait specialization. 

To investigate ecotype differences in more detail, the significance of 

metadata across the five ecotypes was compared. This revealed that species 

distribution among the five ecotypes was significantly different (appendix figure 

B.4A, X2
4= 48, p<0.0001), with a higher proportion of isolates from the nutrient 

limited specialist ecotype (ecotype 1) (r=3.3, p=0.009) and cold tolerant ecotype 3 

(r=3.1, p=0.017) belonging to the R. solanacearum species, and a higher proportion 

of heat tolerant ecotype 2 isolates belonging to the R. pseudosolanacearum species 

(r=6.1, p<0.0001). However, representation from both species was seen in all five 

ecotypes (appendix figure B.4A), supporting the large overlap in phenotypic 

diversity between the two species observed in figure 2.2. Furthermore, continent 

distribution was also uneven across the five ecotypes (appendix figure B.4B, X2
20= 

37, p= 0.013). Isolates from the heat tolerant ecotype 2 (r=-3.3, p=0.03) were less 

likely to be from Europe and isolates from the cold tolerant ecotype 3 (r=-3.5 
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p=0.015) were less likely to be isolated from Asia, with no isolates from either 

continent in these respective ecotypes. Host distribution among the five ecotypes 

was also uneven (appendix figure B.4C, X2
20= 44, p= 0.0015). With isolates from the 

heat tolerant ecotype (ecotype 2) more likely sampled from ginger hosts (r=4.2, 

p=0.0009) and isolates from the heat tolerant ecotype (ecotype 2) less likely 

sampled from potato crops (r=-3.1, p=0.05). Some ecotypes were also missing 

isolates from certain hosts, however due to the low overall sample sizes from 

certain hosts we cannot conclude if this is a statistically significant trend. Overall, 

five phenotypically distinct ecotypes within the RSSC were identified, which were 

evenly distributed within both species. 
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Figure 2.3: Ralstonia solanacearum species complex (RSSC) clusters into five separate phenotypic ‘ecotypes’. (A) Heatmap showing all 194 isolates and their z-score 
standardised values in each of the 46 traits measured. K-means clustering (k=5) was used to split isolated into 5 groups. Traits can be split into three categories, 
metabolism, stress tolerance and virulence. (B) Principal component analysis (PCA) with each point as one of the 194 isolates within the RSSC collection, principal 
component (PC) 1 explains 30% of the variation within the dataset and PC2 16%. The amount of contribution each trait has on the principal components is shown in a 
heatmap in figure 2.2A. Isolates are coloured by ecotype assigned via K-means clustering, five optimal groups were determined using ssi criterion. Ellipses show the 90% 
confidence intervals around the centroid of each group. (C) Standardised values (z-score) distribution across each ecotype for traits grouped into 13 ecologically relevant 
categories are shown in a density plot. 
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2.4.3 Ecotype differences within the RSSC can be explained by accessory genome 

variation 

The ecotype distribution across the RSSC phylogeny, as determined using 

core genome differences, showed that all ecotypes were present across the 

phylogeny and across both species (figure 2.4A). Figure 2.4A also highlights that 

ecotype 1 is more commonly found within R. solanacearum (coloured as purple on 

the phylogeny) and ecotype 2 is more commonly found within the R. 

pseudosolanacearum clade (orange) on the phylogeny (figure 2.4A). However, all 

ecotypes were present across both clades with no clear ecotype clustering, 

suggesting core genetic differences may not be contributing much towards ecotype 

differences. 

Next, accessory genome variation between each ecotype was explored 

(figure 2.4B and C). This revealed that while 44% of genes were shared across all 

five ecotypes, a vast number of genes were unique within each ecotype, with 11%, 

7%, 1%, 6% and 4% of total genes being unique to ecotypes 1, 2, 3, 4 and 5, 

respectively. As most ecotype specific genes were only present within one isolate, 

or were annotated as hypothetical proteins, genetic differences between each 

ecotype were further explored by comparing enriched pathways within the 

accessory genomes of each ecotype group relative to the whole RSSC pangenome. 

Accessory genes were determined as those present in more than one isolate and 

fewer than 90% of isolates (168 isolates). These accessory genes for each ecotype 

were then compared to the pan genome (all genes across all isolates; Stoycheva et 

al. 2022: manuscript in progress) to reveal which pathways, using the KEGG 

database, were enriched within each ecotype’s accessory genome (figure 2.4D). 

Overall, for all ecotypes, the most significantly enriched pathway within their 

accessory genomes were genes involved in microbial metabolism in diverse 

environments, suggesting that metabolism differentiation is the main driver of RSSC 

diversification. Furthermore, genes involved in starch and sucrose metabolism, 

tyrosine metabolism and xylene degradation were all enriched within the accessory 

genomes of all five ecotypes. Pathways associated with the degradation of aromatic 

compounds pathway were enriched within the accessory genomes of all ecotypes, 

apart from ecotype 5. Benzoate degradation genes were enriched within ecotypes 
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1, 2 and 4, and aminobenzoate degradation genes were enriched within the 

accessory genomes of ecotypes 1 and 2. Furthermore, ecotypes 1 and 4 had 

glycolysis/gluconeogenesis genes enriched within their accessory genomes as well. 

Unique pathways were also found enriched within ecotypes accessory genomes. 

Ecotype 1 had the fatty acid metabolism and galactose metabolism pathways 

enriched within their accessory genome. Ecotype 2 had genes involved in quorum 

sensing overrepresented within their accessory genome. Ecotype 4 had pyruvate 

metabolism enriched within their accessory genome and ecotype 5 had genes 

involved in methane metabolism enriched (figure 2.4D). Ecotype 3, the cold tolerant 

group, had no unique enriched pathways, however this ecotype also had the 

smallest number of unique genes (figure 2.4B). This highlights differences between 

the ecotypes, potentially reflecting their phenotypic differences. This suggests that 

accessory genome variation could be responsible for driving ecotype differences. 

Also, a GWAS was conducted, using SNPs/small INDELs, presence and absence of 

cluster of orthologous genes (COGs) and DNA segments known as unitigs as the 

input genetic variation. This analysis resulted in no significant hits associated with 

ecotype. Therefore, despite large trait differences between ecotypes, and high trait 

similarity between isolates within the same ecotype, our analysis suggests that 

different genetic mechanisms could be responsible for phenotypic differences 

between the ecotypes. 
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Figure 2.4: Genetic differences between the five identified ecotypes. (A) core genetic phylogeny shows all five ecotypes are spread across the RSSC phylogeny and across 
the two species, R. pseudosolanacearum and R. solanacearum. Two species are coloured on the phylogenetic tree, orange being R. pseudosolanacearum and purple R. 
solanacearum. (B) Accessory gene differences, gene presence and absences, across the five ecotypes as shown as an upset plot and (C) Venn-diagram. (D) Enrichment 
analysis on the five ecotypes accessory genomes highlights overrepresented KEGG pathways. Accessory genes were selected as present within more than one isolate and 
less than 90% of isolates (168 isolates). The genes meeting these requirements within each ecotype was then compared to the pan-genome (all genes) to see which 
pathways were enriched. Pathways were annotated using the KEGG database. A p-value cut-off of 0.05 was used and multiple testing correction method of Benjamini-
Hochberg (BH) was conducted. Gene ratio is calculated as the number of enriched genes belonging to a given gene-set divided by the total number of genes in the gene-set. 
With separate graphs for each of the five ecotypes. 
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2.4.4 A GWAS reveals potential causative genes for cold tolerance and 

rifampicin resistance traits within the RSSC 

As the ecotype level GWAS found no significant genetic associations with the 

five identified ecotypes, another GWAS was conducted for each of the single trait 

measurements across the whole RSSC collection (182 isolates) including both 

species, as sample size is critical for having enough power to conduct a bacterial 

GWAS. This analysis revealed no clear associations for most traits due to strong 

population structure and linkage disequilibrium present among bacterial isolates. 

However, some promising genetic associations were discovered. A few genes were 

found significantly associated with cold tolerance traits, ‘cold survival at 4°C’ 

(binary_cold_survival) and ‘growth at 10°C’ (binary_low_temp), when COGs were 

used as the input genetic variable (appendix table B.2). A gene annotated as a type 

II secretion system protein (hxcR/epsE) was identified as significantly associated 

with both cold temperature traits, suggesting a higher likelihood of this gene being 

a true association with cold tolerance. Further exploration of the presence of this 

gene among the RSSC collection revealed that it was distributed unevenly across 

the five ecotypes (figure 2.5B, Chi-squared: X2
4= 13.6, p=0.009), with a significantly 

lower proportion of isolates within the heat tolerant ecotype 2 having this gene 

(p=0.005). This ecotype had lowest growth within cold conditions and therefore 

suggests that this gene could be involved in tolerance to cold temperatures within 

the RSSC or that the absence of this gene promotes heat tolerance (figure 2.5A and 

2.3C). 
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Figure 2.5: A gene associated with cold tolerance is represented less within the heat tolerant ecotype 2. (A) schematic summarising the five different ecotypes identified 
in the RSSC. Ecotypes are based on phenotypic differences among 46 traits and 194 RSSC isolates. (B) proportion of isolates (%) with the type II secretion system protein 
(hxcR/epsE) gene per ecotype. This gene was found significantly associated with cold tolerance using COG GWAS technique (n=182). 
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Associations between rifampicin resistance at 0.5µg/ml (as a binary trait) 

was also discovered using both COGs and unitigs as the input genetic variable 

(appendix table B.3). Most of these hits were annotated as hypothetical genes with 

some COGs annotated including a PCP degradation transcriptional activation 

protein (pcpR), a toxin (fitB) and an HTH-type transcriptional regulator (gltR). For 

the unitig GWAS, qq plots show a normal distribution of p-values suggesting that 

there was little population structure confounding these results (figure 2.6A). While 

manhattan plots (figure 2.6B) revealed three regions within the genome, two in the 

chromosome (between 870-900kb and 3.47-3.5Mb) and one in the megaplasmid 

(between 700-720kb), that were significantly associated with resistance to 

rifampicin (0.5 µg/ml). All significant unitigs were however annotated as being 

hypothetical proteins (figure 2.6C and D). These regions were explored in more 

detail using the best annotated RSSC isolate, the R. pseudosolanacearum GMI1000 

strain (appendix figure B.5), as the reference. This revealed that the first region 

within the chromosome (870-900kb) mainly consisted of hypothetical proteins, with 

some genes annotated as probable transposase proteins, putative bacteriophage 

related-proteins and a putative DNA modification methylase protein, suggesting a 

role in gene regulation and insertion sequence movement for RSSC rifampicin 

resistance. The second significant chromosome region (3.47-3.5Mb) also mainly 

consisted of hypothetical proteins, along with a couple mobile elements, probable 

transmembrane proteins, transposase proteins, bacteriophage related proteins, a 

type III effector protein (ripT) and a putative drug efflux lipoprotein. Finally, the 

region within the megaplasmid significantly associated with rifampicin resistance 

consisted of mainly hypothetical proteins, putative transposase proteins (including 

isrsol6, isrsol10, is1421 insertion sequences), putative transmembrane proteins, a 

putative type III effector protein, putative bacteriophage proteins, a probable 

exoglucanase, a hypothetical signal protein and a putative lipoprotein. Together, 

these analyses suggest that a type II secretion system and insertion sequence 

movement might explain both cold and rifampicin tolerant RSSC genotypes in this 

dataset. 
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Figure 2.6: Rifampicin resistance at 0.5µg/ml, as a binary trait, is associated with differences 
within three regions of the genome. Linear mixed model pyseer GWAS technique was used with 
unitigs as the input genetic variant and rifampicin resistance (0.5µg/ml) as a binary trait as the input 
phenotype. (A) A qq-plot of unitig p-value distribution. (B) Manhattan plot of annotated unitigs 
positions along the bipartite genome, both chromosome and megaplasmid are shown. This 
highlights the positions where unitigs have higher p-value and are therefore associated with this 
trait. Identifying three regions within the genome that are significantly associated with rifampicin 
resistance. (C) and (D) show each annotated gene’s p-value, average effect size (beta) and average 
minor allele frequency (MAF) along with the number of significant unitigs that are associated with 
this gene. All genes are annotated as hypothetical proteins. 
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2.5 Discussion 

The aims of this research were to phenotypically compare two bacterial wilt 

plant pathogen species in the Ralstonia solanacearum species complex (RSSC), 

based on 46 ecologically relevant traits involved in metabolism, stress tolerance 

(abiotic and biotic) and virulence. Phenotyping a collection of 194 isolates revealed 

large similarities between the two species reflecting their similar life cycles. Five 

phenotypically distinct ‘ecotypes’, each differing in their trait specialisation (figure 

2.7), were discovered across the whole collection, each comprising isolates from 

both species. Furthermore, genomic differences between these ecotypes could be 

attributed to accessory genome variation. Together, this suggests that the large 

diversity among the plant pathogen RSSC could be a product of adaptation to 

variable environmental niches with horizontal gene transfer driving this adaptation. 

First, comparisons in the phenotypic diversity of the two widely distributed 

RSSC species, R. pseudosolanacearum and R. solanacearum were conducted to 

determine how these species differ (figure 2.2). This revealed that R. 

pseudosolanacearum was more diverse than R. solanacearum, with a large overlap 

in trait diversity between the two. This phenotypic diversity could reflect the fact 

that R. pseudosolanacearum is genetically more diverse, comprising of two 

phylotypes (I and II), compared to R. solanacearum which consists of only one 

phylotype (phylotype II) (Fegan and Prior 2005, Safni et al. 2014). However, we do 

have an overrepresentation of a single genotype strain, the cold tolerant phylotype 

IIB sequevar 1, within R. solanacearum data which could have also biased this result 

(Fegan and Prior 2005, Safni et al. 2014). Trait differences were also observed 

between the two species with R. solanacearum having higher trait values in limited 

nutrient conditions and R. pseudosolanacearum having higher growth within 

complex media. This could reflect life-cycle differences, or niche preferences, 

between the two species. This finding could also be explained by the smaller host 

range of phylotype IIB sequevar 1 strains, which survives mainly in vegetatively 

propagated potato or solanaceous weed species (van der Gaag et al. 2019), being 

present within the R. solanacearum species. Despite these differences there was 

large overlap in trait diversity between the two species which is surprising 

considering that it is thought that these species separated long ago, at the time of 
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continent split (Hayward 1991, Genin and Denny 2012). However, both species 

occupy similar habitats, with broad worldwide distributions, and cause the same 

disease symptoms, suggesting both species have extremely similar life cycles, and 

therefore, might be under similar selective pressures (Hayward 1991, Genin 2010, 

Bragard et al. 2019, EPPO 2022) Other research has also found that RSSC pathogen 

specificity was not phylotype specific (Lebeau et al. 2011), supporting that 

phylogeny or species does not correlate with RSSC isolate phenotypic profile. This 

implies that the ecological environment can have a large effect on phenotypic 

characteristics of bacterial species, with genetically different species showing highly 

similar traits if they occupy and have adapted to similar niches. This is further 

supported by the fact that the metadata, continent sampled from and isolation 

source, explained similar amounts of phenotypic variation (8 to 9%) than the two 

species did. Overall, R. pseudosolanacearum was more diverse but there were also 

large phenotypic and ecological niche overlap between the two species, justifying 

the species complex definition for this plant pathogen. 

Exploration of the trait diversity among all RSSC isolates within this study 

was also conducted. This revealed a separation into five phenotypically distinct 

groups, or ‘ecotypes’, which each differed in their trait specialisations (figure 2.7). 

Ecotype 1 could be considered an oligotrophic group, with higher growth in low 

concentrations (1% and 10%) of sucrose peptone media (Mehan and McDonald 

1995) compared to the other four ecotypes. This is an important trait to have for 

RSSC survival as between infections within environmental reservoirs they must cope 

with the stress of nutrient limited habitats, such is the case within river water 

(Álvarez et al. 2008). This ecotype also had the lowest growth in rich ‘complex’ 

media, suggesting a trade-off in overall growth, and therefore these isolates could 

be considered oligotrophic specialists. Nutrient availability has been previously 

linked with competitive ability and virulence of RSSC isolates (Yang et al. 2018, 

2019, Li et al. 2021) supporting that growth within oligotrophic habitats could result 

in trade-offs between other aspects of the RSSC lifecycle. 

Two other ecotypes also specialised in growth at either high (35°C) or low 

(10°C) temperatures. Ecotype 2 could be considered as the heat tolerant ecotype 

with higher growth within 35°C compared to the other ecotypes, while having 
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lowest trait values within cold (10°C) temperatures, suggesting a trade-off between 

the two temperature conditions. As a tropical pathogen, RSSC isolates are well 

adapted to grow at high temperatures, with optimal growth temperatures of 

around 35°C (Álvarez et al. 2010), and hence, it is not surprising that this pathogen 

species can grow well at this temperature. In contrast, ecotype 3 was the cold 

tolerant ecotype, with higher standardised trait values within cold temperatures 

(10°C) compared to the other ecotypes. The ability to grow, and therefore infect 

plants, at cold temperatures (10°C) will be extremely important for RSSC strains 

residing in temperate regions of the world, such as within Europe (Hayward 1991, 

Williamson et al. 2002, EPPO 2022). RSSC was first thought to become adapted to 

cold temperatures within the high altitudes in South America and was then moved 

to other temperate regions around the world along with the potato trade (Hayward 

1991, Wicker et al. 2007, Safni et al. 2014). Therefore, this ecotype could consist of 

these cold adapted strains (race 3 biovar 2 or phylotype IIB) which has a lower 

optimal growth temperature at around 27°C (van der Gaag et al. 2019). Reactive 

oxygen species (ROS) tolerance was also highest within this ecotype which may be 

an adaptation of RSSC to infect plants within the colder temperate regions of the 

world, as both growth within colder temperatures and tolerance to ROS, produced 

by plants as a defence mechanism (Flores-Cruz and Allen 2009), will be required for 

successful infection. 

Ecotype 4 and 5 both had higher standardised values in antibiotic resistance 

and biofilm production traits and differed in their ability to grow on single carbon 

media. Antibiotic resistance is an important trait for persisting within microbial 

communities, where antagonistic bacteria can produce a variety of antibiotics that 

kill RSSC species to reduce competition (Allen et al. 2010, Yuliar et al. 2015). Biofilm 

production is an important virulence trait for RSSC as they have been suggested to 

filter out nutrients from the flow of xylem fluid, as well as protect the pathogen 

from host plant immune defences (Álvarez et al. 2010, Genin and Denny 2012, 

Meng 2013). Biofilm production has also been shown to protect bacteria from 

antibiotics (Høiby et al. 2010), bacteriophage predators (Hosseinidoust et al. 2013) 

and other stresses within the environment, (de la Fuente-Núñez et al. 2013). 
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Suggesting that survival of general stresses, such as antibiotics, could be positively 

linked with biofilm production within the RSSC. 

Furthermore, all ecotypes differed in their ability to utilise rich ‘complex’ 

media, with ecotype 5 having the highest growth measurements, ecotype 4, 2 and 3 

having intermediate values, and ecotype 1 the lowest growth within complex media 

(figure 2.7). This could be an indication of niche separation between the five 

ecotypes to avoid competition (Bajic and Sanchez 2020). Other research, such as on 

the ocean living bacterium Prochlorococcus, has found separation into different 

genetic ecotypes based on environment nutrient availability (Kent et al. 2016), 

suggesting that nutrient availability is an important trait that divides bacterial 

species into separate groups. Overall, this presence of five separate ecotypes within 

the RSSC suggests that the large diversity observed among this plant pathogen 

(Hayward 1991, Genin 2010) could be due to niche separation or ecological 

diversification, resulting in separate ecotypes rather than generalist adaptation to a 

wide range of environments. This ecotype separation resulting in high microbial 

diversity has also been observed among other bacterial species, such as 

Polynucleobacter necessaries and Limnohabitans bacterial species (Jezbera et al. 

2011, 2013, Larkin and Martiny 2017). High overall diversity could aid RSSC survival 

due to ecotype sorting in the face of selection, helping isolates avoid competition 

with one another and increases survival chances within diverse environments, or 

could also help survival due to temporal fluctuations within the habitat (Jezbera et 

al. 2011). 
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Figure 2.7: Summary schematic of the five assigned ecotypes. Ecotypes were determined by 
phenotypic variation within 46 separate ecologically relevant traits among a collection of 194 RSSC 
isolates. 

 

The species distribution, as well as life-history data, was evaluated across 

the five ecotypes to determine if certain ecotypes can be linked to specific groups of 

isolates. All ecotypes were present within both species. However, distribution of 

species per ecotype was not equal with a higher proportion of oligotroph specialist, 

ecotype 1, and cold tolerant group (ecotype 3), assigned as R. solanacearum and a 

higher proportion of heat tolerant isolates being from the R. pseudosolanacearum 

species. Again, this could be due to the overrepresentation of cold tolerant R. 

solanacearum sequevar 1 phylotype IIB (race 3 biovar 2) strains within the RSSC 

collection (Fegan and Prior 2005, Safni et al. 2014). 

Linking this trait variation with life-history data, the continent and host in 

which they were isolated from, also revealed that variation among RSSC isolates can 

be partly explained by these two factors. The continent in which an isolate was 

sampled from revealed that European isolates were different to other continents 

and are less likely to be assigned to heat tolerant ecotype 2. European RSSC isolates 

uniquely consists of the genetically similar cold tolerant R. solanacearum isolate 

(race 3 biovar 2 or phylotype IIB) (Fegan and Prior 2005, Safni et al. 2014), thought 

to have recently undergone a population expansion across the temperate regions of 

the world, disseminated through the potato trade (van der Gaag et al. 2019). 

Therefore, it is unsurprising that a lower proportion of European isolates was found 
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in the heat tolerant ecotype 2 which lacked adaptation to cool temperatures. 

Furthermore, a lower proportion of samples from Asia was also found to belong to 

the cold tolerant ecotype 3, suggesting that cold tolerance isn’t an important trait 

to have within this region or could also be due to sampling bias within this region, 

such as the type of crops isolates were collected from within Asia. 

The host or isolation source also explained small amounts of trait variation 

among isolates. Isolates sampled from potato crops were less likely assigned to the 

heat tolerant ecotype (ecotype 2), while isolates from ginger hosts were more likely 

to belong to the heat tolerant ecotype 2 group. This reflects the climate in which 

different crops are grown, with potato crops grown within temperate regions of the 

world, and grown within highlands or as a winter crops in tropical and subtropical 

regions (Campos and Ortiz 2020). In contrast ginger crops are mainly grown within 

Asian and South American countries as they have an optimal growth temperature 

between 27°C and 30°C (Retana-Cordero et al. 2021). It is thought that specific RSSC 

isolates pathogenic for certain hosts may have evolved only in certain parts of the 

world and are not found elsewhere (Hayward 1991), however while this research 

shows that certain ecotypes are more likely to infect certain hosts there are still 

great variation in host and continent origin across the five ecotypes. Overall, both 

the continent and host of origin, as well as the species, can partly explain the trait 

variation observed among the RSSC, suggesting that the life-history of isolates can 

determine trait diversity among the RSSC. However, the amount of trait variation 

explained is small suggesting that environmental differences could be the main 

factor driving phenotypic diversity. 

The five identified ecotypes within this RSSC collection were next linked to 

genetic information to determine genetic mechanisms driving this diversification of 

isolates. All ecotypes were found present across both clades, representing the two 

species, in the RSSC phylogeny with no clear ecotype clustering, suggesting core 

genetic differences may not be contributing much towards ecotype differences. 

However, a large amount of accessory gene variation between the five ecotypes 

was observed, supporting theories that horizontal gene transfer plays a large role in 

the evolution and adaptation of the RSSC pathogen (Geng et al. 2022). KEGG 

pathways enriched within different ecotypes accessory genomes were explored, 
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revealing some similarities across all ecotypes and highlighting some interesting 

uniquely enriched pathways with some ecotype’s accessory genomes. Most 

enriched pathways within each ecotypes accessory genome were involved in 

metabolism, suggesting that metabolic capacity drives RSSC ecotype diversification. 

Enrichment of metabolism genes driving ecotype separation within the RSSC is 

further supported by research on Listeria, where genes involved in nutrient 

transport were found responsible for survival within variable environments (Liao et 

al. 2021). Furthermore, the large differences in accessory genome variation, along 

with the absence of any significant genes associated with ecotype in a GWAS, both 

suggest that multiple different options are available for RSSC to achieve the same 

phenotype. Also, other genetic mechanisms not studied within this research, such 

as gene regulation, could also play a role in ecotype trait variation. One potential 

explanation for this result is that RSSC trait diversity is a product of adaptation 

towards different environmental niches and is potentially driven by horizontal gene 

transfer from the local environment. 

Finally, by linking genetic data of the 182 RSSC isolates with specific 

phenotypes, exploration on the genetic causes of certain traits can be conducted. 

This revealed a novel type II secretion system protein (hxcR/epsE) associated with 

cold tolerance and less likely to be found within isolates in the heat tolerant 

ecotype 2, which had significant lower growth at 10°C compared to other ecotypes. 

Type II secretion systems (T2S) are a means by which bacteria secrete proteins, such 

as toxins, degradative enzymes, effectors, and novel proteins (Cianciotto 2005). 

While T2S are well known in their function during pathogenicity, other studies have 

also shown that T2S also promote growth of bacteria in environmental niches 

(Cianciotto 2005, Cianciotto and White 2017) and this study suggests that they 

could also have a role in cold tolerance within the RSSC. This finding is supported by 

a study on Legionella pneumophila which found that a type II secretion system gene 

(lsp) was required for growth at low temperatures (12°C to 25°C) (Söderberg et al. 

2004). The type II secretion protein identified within this study has a heritability (h2) 

of around 0.2 (appendix table B.2) suggesting that it cannot explain all the variation 

in cold tolerance among RSSC isolates. Therefore, gene regulation could also have a 

role in cold tolerance among this pathogen species which was found to be the case 
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in previous studies focusing on cold tolerance genetic mechanisms within the RSSC 

(Meng et al. 2015, Bocsanczy et al. 2017). Further experiments (i.e., constructing 

mutant strains) are also needed to confirm if this association between the type II 

secretion system protein is causative and not an artifact of population structure or 

chance. 

Multiple genes were also found associated with resistance to the antibiotic 

rifampicin at 0.5µg/ml. These genes were annotated as hypothetical proteins and 

correspond to three regions of genome, two within the chromosome and one in the 

megaplasmid. Multiple putative transposase proteins were discovered in each of 

these three regions. Previous research has also shown that transposase genes are 

linked to antibiotic resistance genes within RSSC isolates and could be responsible 

for the gene transfer of these genes between bacterial isolates (Gonçalves et al. 

2020) . Furthermore, insertion sequence movement within a R. solanacearum strain 

has been linked to ampicillin tolerance within laboratory (Alderley et al. 2022) 

further supporting this finding. This provides strong evidence that these are 

involved in resistance to rifampicin or are associated with a rifampicin resistance 

gene. However, as these genome regions were large (around 30kb in length), and 

comprise of mainly hypothetical proteins, further investigation within these regions 

is needed; for example, engineering of knock-out mutants to find out the causative 

gene or mutants (SNPs, INDELs, etc) responsible for this phenotype.  

Most traits, however, could not be linked to genetic variation among the 

RSSC due to population structure and linkage disequilibrium present among the 

bacterial isolates confounding results. Another explanation could also be that 

genetic variation not captured within this study, such as epigenetics, could also be 

causing RSSC trait variation. RSSC isolates have multiple complex regulatory 

networks that respond to internal and environmental cues allowing high phenotypic 

plasticity (Schell 2000, Cellier and Prior 2010, Genin and Denny 2012, Perrier et al. 

2019, Chen et al. 2022, Yan et al. 2022). An example of this are the quorum sensing 

regulatory systems present within this pathogen, such as the PhcA quorum-sensing 

pathway that controls the production of virulence factors in response to cell density 

(Genin and Boucher 2002, Genin and Denny 2012). Furthermore, transposable 

elements, such as insertion sequences (IS), and methylation patterns are highly 
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diverse among the RSSC (Erill et al. 2017, Gonçalves et al. 2020, Greenrod et al. 

2022) and therefore could also cause differences among phenotypes within this 

bacterial pathogen. Overall, RSSC isolates can undergo phenotypic conversions 

depending on environmental conditions (Drenkard and Ausubel 2002) and this 

research highlights that there is still large trait variability among the RSSC with 

unexplained genetic causes. Future work should therefore focus on exploring these 

alternative genetic mechanisms causing phenotypic differences among this 

pathogen species. 

In conclusion, the Ralstonia solanacearum species complex (RSSC) is a 

diverse collection of plant pathogenic bacteria, with a large overlap in phenotypic 

diversity between the two widely distributed bacterial species in this group. 

Phenotypic differences between the two species revealed R. solanacearum as being 

more oligotrophic, while R. pseudosolanacearum was identified as being more 

metabolically efficient. Furthermore, trait variation among 46 ecologically relevant 

phenotypes across the whole collection revealed five phenotypically distinct 

ecotypes, each of which comprised of isolates from both species. Linking this trait 

variation with genomic information revealed that accessory genome variation 

potentially drives ecotype differences, while a GWAS identified a type II secretion 

system associated with cold tolerance and three novel regions of the RSSC genome 

associated with rifampicin resistance. Overall, comparative analysis among a plant 

pathogenic group has revealed that phenotypic diversity among RSSC isolates could 

result from adaptation towards the environment, mediated by horizontal gene 

transfer from the local environment or other organisms within the environment. 
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3 Chapter 3: The UK Ralstonia solanacearum bacterial plant 

pathogen population has diversified into three ‘ecotypes’ 

 

3.1 Abstract 

Bacterial plant pathogen, Ralstonia solanacearum, a causative agent of 

bacterial wilt disease and potato brown rot, was first recorded in the UK in 1992. 

Since then, it has been regularly detected in river water and wild host plant 

(Solanum dulcamara) environmental reservoirs. Here, environmental sampling and 

high-throughput phenotyping was used to ask how diverse R. solanacearum is in 

the UK. 46 independent traits measured across 182 isolates, that span three 

decades of sampling, revealed that the UK population forms three distinct 

‘ecotypes’ that differ in their growth in nutrient limited conditions, and overall trait 

generalism and specialism. Trait correlations also differed between these three 

ecotypes, implying that niche preferences and their trade-offs can be driving 

diversification. Linking trait differences with metadata highlighted that neither 

isolation source nor geographic location can explain this diversity. However, the 

decade in which isolates were sampled can help explain trait variation, indicating 

increased diversification over time. Specifically, antibiotic resistance and biofilm 

production are traits that have increased throughout time, suggesting that these 

are key phenotypic traits driving diversification within the UK pathogen population 

despite extremely high genetic similarity between isolates (98% shared genes across 

all three ecotypes). This study is the first to extensively focus on phenotypic 

diversity of UK Ralstonia solanacearum environmental isolates and therefore 

improves our understanding of how this bacterial pathogen may adapt in 

environmental reservoirs over decades.
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3.2 Introduction 

The Ralstonia solanacearum species complex (RSSC) comprises of plant-

pathogenic bacteria, the causative agents of bacterial wilt disease, which have a 

wide host range and global distribution (Hayward 1991, Genin 2010, Safni et al. 

2018, Bragard et al. 2019), making them one of the most devastating bacterial crop 

pests globally (Hayward 1991, Mansfield et al. 2012). The first recorded case of 

RSSC in the UK was within Oxfordshire in 1992 (Elphinstone and Matthews-Berry 

2017) and has since been linked to nearby contaminated river water (Parkinson et 

al. 2013). UK RSSC belongs to the cold tolerant strain of Ralstonia solanacearum 

(race 3 biovar 2 or phylotype IIB sequevar 1), the causative agent of potato brown 

rot in Europe (Fegan and Prior 2005, Safni et al. 2014). Since 1992 there have been 

seven outbreaks of R. solanacearum in the UK; one in 1995 (infected potato), 1997 

(infected tomato), 1998 (infected tomato), 1999 (infected potato), 2000 (infected 

potato), 2005 (infected potato) and 2010 (infected potato) (Elphinstone and 

Matthews-Berry 2017). All except the 2010 outbreak, which can be linked to 

infected imported seed potatoes, have been associated with contaminated water 

sources used for irrigation (Elphinstone and Matthews-Berry 2017). The prevalence 

of R. solanacearum in the UK rivers can be linked with an asymptomatic weed host, 

Solanum dulcamara, which resides along the riverbanks (Parkinson et al. 2013). The 

presence of infected S. dulcamara, otherwise known as woody nightshade, along 

rivers has been constantly correlated with R. solanacearum contaminated water 

sources (Wenneker et al. 1999, Bragard et al. 2019) and is thought to aid survival 

during the cold winter temperatures by acting as a reservoir for the pathogen 

(Genin and Boucher 2002, Champoiseau et al. 2009). As R. solanacearum is thought 

to have only recently been introduced to the UK, not long before 1992 (Parkinson et 

al. 2013, Elphinstone and Matthews-Berry 2017), it is an ideal model organism to 

investigate how adaptation and diversification of bacterium initially occurs within 

the environment. Bacterial organisms can diversify rapidly when new 

environmental niches open, however the underlying causes of diversification 

among pathogen populations are unclear (Rainey and Travisano 1998). Therefore, 

using R. solanacearum as the organism of interest will also increase understanding 

on how plant pathogens diversify within the natural environment across time, 
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which can improve the understanding of pathogen dispersal and spill over from 

environmental reservoirs as a cause of bacterial wilt disease outbreaks. 

There are two key stages in the life cycle of R. solanacearum. As a pathogen 

the first stage is the infection of host plants, including production of virulence 

factors, evading plant immune responses and general survival within the host. The 

second stage is survival within external environments between transmissions, such 

as in soil and water (Genin 2010). In order to cope with this environmental 

variability, RSSC has evolved to be extremely diverse both genetically and 

phenotypically (Schell 2000, Cellier and Prior 2010, Genin and Denny 2012). 

However, only a few studies have been conducted focussing on European R. 

solanacearum diversity (van der Wolf et al. 1997, Timms-Wilson et al. 2001, Stevens 

and Van Elsas 2010, Cruz et al. 2012, Parkinson et al. 2013, Caruso et al. 2017). 

These studies mainly concluded that the cold tolerant European strains are 

genetically very clonal compared to other strains within the RSSC, consistent with a 

recent invasion of the temperate region disseminated through the international 

potato trade, and agreeing with the reports of R. solanacearum outbreaks in 

Europe, the first identified one being in Sweden in 1972 (Caruso et al. 2017). They 

also indicate that European isolates show phenotypic diversity, clustering into 

groups corresponding to pathogenicity (van der Wolf et al. 1997, Cellier and Prior 

2010). However, the phenotypic traits studied so far are growth in specific carbon 

sources, previously used to differentiate isolates into biovars (Hayward 1991), or 

specific virulence traits. This means that focus on ecologically relevant traits, 

including those under high selection for bacterial survival within the external 

environment between infections, has been limited in these previous studies. This is 

a clear shortcoming as most European countries have reported R. solanacearum 

isolates surviving in rivers and wild host plants being the main cause of recurring 

outbreaks of the disease (van der Gaag et al. 2019). 

One way to study diversity among this pathogen is to use high-throughput 

phenotyping (Blumenstein et al. 2015) and link this variation with underlying 

genetic differences. This research used these techniques to determine how diverse 

UK R. solanacearum population is, using a broad range of ecologically relevant traits 

driving pathogen adaptation, on a collection of 182 UK isolates. These isolates were 
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collected from both environmental sources (river water and wild host Solanum 

dulcamara) and crop hosts (potato and tomato), spanning almost 30 years of 

sampling, from the first recorded outbreak in 1992 to 2019 (see figure 3.1 for 

geographical location and time/host distribution and appendix table A.2 for the full 

list of isolates). The general diversity of a species can be constrained by correlations 

between different traits. Trait correlations can increase the evolvability of an 

organism, in the case of positive trait correlations, or limit adaptive potential, due 

to negative trait correlations (also known as trade-offs). Trade-offs can therefore 

prevent organisms from achieving maximum fitness due to allocation of finite 

resources (energy, time, molecules etc.) affecting investment in one trait over the 

other (Saltz et al. 2017) or due to genetic conflicts (multiple loci interacting to 

produce a single phenotype or a single locus affecting multiple different traits) 

(Foster et al. 2004). Therefore, phenotypic correlations along with niche 

preferences could play a role in the diversification of R. solanacearum within the 

environment. 

The aims of this research were to first explore the phenotypic diversity of UK 

R. solanacearum (n=182), by collecting and analysing 46 ecologically relevant traits 

which cover three adaptive strategies: 1) metabolic capacity, 2) environmental 

stress tolerance, both abiotic and biotic, and 3) virulence (see appendix table C.1 for 

the full list of phenotypic traits collected). Then to determine the potential cause or 

causes of diversification among this pathogen population by linking trait variation to 

metadata, such as location, isolation source, and year of isolation. The final aim was 

to link this trait variation with specific genetic variants, using GWAS techniques 

(Lees et al. 2018), potentially identifying causative genes of adaptation within this R. 

solanacearum population. This research revealed that within the UK population of 

R. solanacearum three phenotypically distinct clusters, or ‘ecotypes’, exist differing 

in their ability to grow in nutrient limited environments, and in their trait specificity. 

Trait correlations also differed between these three ecotypes, implying that niche 

preferences and their trade-offs can be responsible for the range of phenotypes 

available to each ecotype, driving pathogen diversification. Investigating the 

potential causes of trait differences discovered that neither isolation source nor 

location can explain this diversity. However, the decade in which an isolate was 
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sampled in does explain small amounts of variation, indicating increased 

diversification over time. More specifically, traits involved in antibiotic resistance 

and biofilm formation was found to be increasing with time, suggesting a role of 

these phenotypes in UK R. solanacearum diversification. Finally, high genetic 

similarity between isolates resulted in a failure to link this phenotypic 

differentiation to specific genetic changes indicating that other factors, such as 

epigenetics, could impact UK R. solanacearum evolution. This study is the first to 

extensively focus on phenotypic diversity of UK Ralstonia solanacearum 

environmental isolates and therefore improves our understanding of how this 

bacterial pathogen may adapt initially within the environment. 

 

3.3 Materials and Methods 

3.3.1 Ralstonia solanacearum isolates and culture conditions 

182 UK R. solanacearum isolates used in this study were collected and 

stored by FERA Science Ltd, Sand Hutton, York, UK. They were curated from a 

variety of environment (river water and Solanum dulcamara) and crop (potato and 

tomato) samples between 1992 to 2019 (appendix table A.2 and figure 3.1). All 

isolates were verified as belonging to the RSSC using the same 16S rRNA real-time 

PCR (RT-PCR) method as described in chapter 2 (EPPO 2018, Weller et al. 2000). 

Isolates were grown up on SP agar plates (Mehan and McDonald 1995), normalised 

to 0.1 OD600 (optical density at 600nm) using sterile deionised water and suspended 

in 25% glycerol, in random positions across different 96-well microplates using the 

same method as described above in chapter 2 (section 2.3.1). These microplates 

were cryopreserved at -80°C, ready for high-throughput phenotyping with the two 

previously described well characterised R. solanacearum species complex (RSSC) 

reference strains (R. pseudosolanacearum type strain GMI1000, and R. 

solanacearum type strain K60). A collection of 46 different traits were then 

collected for this R. solanacearum bacterial collection (see appendix table C.1 for 

full list of traits), categorised into four different groups: metabolic capacity, abiotic 

and biotic stress tolerance, and virulence. As mentioned in chapter 2, a linear model 

using batch, plate position and technical replicate as random effects was then 
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conducted, using the two reference strains, to determine that only small proportion 

of variation was explained by these variables (7%, 6% and 0% for batch, plate 

position and technical replicate respectively), and therefore corrections for batch 

effect were not used. 

 
Figure 3.1: UK Ralstonia solanacearum isolate collection and sampling distribution. (A) 
Geographical schematic of the UK R. solanacearum collection. Colour indicates that at least one 
isolate originates from that county, with the shade of colour indicating the number of samples (map 
created using mapchart.net). (B) Distribution of the year (1992 to 2019) and host (water source, 
Solanum dulcamara, or crop host; potato or tomato) in which the UK collection was isolated from 
(n=182 in total). 

 

3.3.2 Quantifying phenotypic traits linked with metabolic capacity 

Metabolic traits included growth within four rich standard media commonly 

used for R. solanacearum growth in the laboratory (see 'Complex media’ section in 

chapter 2), and 16 single carbon resources: asparagine, glutamine, histidine, 

proline, serine, glycine, glucose, arabinose, xylose, sucrose, maltose, sorbitol, 

nicotinamide, citric acid, malic acid, and succinic acid; all at 10mM (appendix table 

C.1, as described in the ‘Single carbon resources’ section of chapter 2). 

 

3.3.2.1 Complex media 

Traits involving growth in four separate complex media were measured 

using the same methods as described in section 2.3.2.1 (chapter 2). 
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3.3.2.2 Single carbon resources 

Growth within 16 single carbon resources was also quantified using the 

same methods as stated in section 2.3.2.2 (chapter 2). 

 

3.3.3 Phenotyping abiotic stress tolerance 

Growth within abiotic stress conditions, including saline, extreme pH, high 

water potential and nutrient limited conditions, was conducted at 28°C within 

humidity. Relative growth within two different temperatures, 10°C and 35°C, were 

also quantified as an abiotic stress tolerance trait (appendix table C.1). SP media 

(Mehan and McDonald 1995) was used for all trait conditions using the same 

methods as described in chapter 2. 

 

3.3.3.1 Growth in nutrient limited media 

Growth within resource limited conditions, 1% and 10% SP media (Mehan 

and McDonald 1995), were measured as outlined in method section 2.3.3.1 

(chapter 2). 

 

3.3.3.2 Growth in saline media 

Growth of all UK isolates was also measured in three different 

concentrations of salt (NaCl); 0.5%, 1%, and 2%, along with a control of 0% NaCl 

following the protocol described above in chapter 2 (section 2.3.3.2). 

 

3.3.3.3 Growth in extreme pH 

Growth within 4 different pH levels, ranging from acidic to alkali (4.5, 7, 9, 

10), were also measured as stated in section 2.3.3.3 (chapter 2). 

 

3.3.3.4 Growth in water potential stress conditions 

To characterize how well UK R. solanacearum grows in water potential 

stress, relative growth measurements in 15% polyethylene glycol (PEG)-4000 within 
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SP media (Mehan and McDonald 1995) was characterized as reported above in 

section 2.3.3.4 (chapter 2). 

 

3.3.3.5 Heat and cold tolerance traits 

Growth of UK isolates in SP media (Mehan and McDonald 1995) was also 

characterised at 35°C and 10°C, following methods outlined in section 2.3.3.5 

(chapter 2). 

 

3.3.4 Phenotyping biotic stress tolerance 

Antibiotic resistance was calculated as relative growth within four different 

antibiotics: tetracycline, gentamycin, rifampicin, and ciprofloxacin (appendix table 

C.1) at two different concentrations per antibiotic. See chapter 2 ‘Phenotyping 

biotic stress tolerance’ (section 2.3.4) for full methods. 

 

3.3.5 Phenotyping virulence traits 

Phenotypes classed as virulence traits included biofilm production, oxidative 

stress tolerance, siderophore production and protein production (appendix table 

C.1). 

 

3.3.5.1 Biofilm production 

RSSC biofilms filter out nutrients from the flow of xylem fluid, as well as 

protect bacteria from host plant immune defences (Álvarez et al. 2010, Genin and 

Denny 2012, Meng 2013). Therefore, biofilm assays were conducted, using a crystal 

violet staining method, in the four different complex media, CS (Remenant et al. 

2011), CPG (Kelman 1954), SP (Mehan and McDonald 1995) and nutrient broth (NB) 

(see the ‘Complex media’ methods section in chapter 2 for recipes). The biofilm 

assay was completed as dictated in section 2.3.5.1 (chapter 2). 

 

3.3.5.2 Oxidative stress tolerance 

Reactive oxygen species (ROS) are a defence system used by plants after 

infection of pathogens (Flores-Cruz and Allen 2009), and therefore tolerance to ROS 
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was calculated as a virulence trait for UK R. solanacearum. ROS tolerance was 

calculated using the same methods as dictated in chapter 2 (section 2.3.5.2). 

 

3.3.5.3 Siderophore production 

Iron chelating ability of bacterial supernatant was measured as a proxy for 

siderophore production using the (Schwyn and Neilands 1987) universal 

siderophore assay method (Arora and Verma 2017) as described above in section 

2.3.5.3 (chapter 2). Siderophore production has been indicated as an important trait 

for rhizosphere community invasion and RSSC virulence (Gu et al. 2020). 

Siderophore production (psu) per cell was also calculated using the same method as 

stated in chapter 2. 

 

3.3.5.4 Protein production 

RSSC strains secrete a lot of virulence proteins while invading plant hosts 

(Genin and Denny 2012) and Bradford assays of each UK isolates supernatant was 

conducted to determine the amount of protein produced per isolate. Protein 

production per cell was measured using methods as stated previously in chapter 2 

(section 2.3.5.4). 

 

3.3.6 Whole genome sequencing and genetic variant curation 

Whole genome sequencing was conducted on 168 isolates. DNA was first 

extracted following the Qiagen DNeasy Blood and Tissue Kit (see appendix table A.4 

for full protocol). The elution buffer used was trisaminomethane hydrochloride (Tris 

HCl, 10mM, pH 8) as recommended by Earlham Institute for their library 

preparation. Quality of the extracted DNA was determined using 3 methods as 

previously described in chapter 2 (section 2.3.6). DNA was diluted to 15ng/µl and 

transported to Earlham for Illumina MiSeq 30x sequencing and all raw FASTQ files 

are publicly available at SRA under project number PRJNA823737. 
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3.3.7 Genetic analysis: linking phenotypes with genetic properties 

Genome wide association studies (GWAS) were used to link phenotypic 

variation to changes within the R. solanacearum genome, as determined by 

differences in single nucleotide polymorphisms (SNPs) or small insertion and 

deletions (indels), the presence and absences in cluster of orthologous genes 

(COGs) and differences in DNA segments, known as unitigs. For identification of 

SNPs/indels, SNIPPY (Seemann 2015) was used to create alignment files (BAM files), 

then variant calling was conducted on these files using freebayes (Garrison and 

Marth 2012). To create the input COG files, an .Rtab file of gene presence/absence 

was created using panaroo (Tonkin-Hill et al. 2020). For investigation in unitigs, 

unitig-counter (v1.1.0) (Jaillard et al. 2018) was used. Bacterial GWAS was 

conducted using Pyseer v1.3.10 (Lees et al. 2018) which uses linear models with 

fixed or mixed effects to associate genetic variation with a variable of interest, while 

accounting for confounding population structure in the bacterial population. To 

account for population structure, all analyses were supplemented with phylogenetic 

distances from a tree constructed using IQ-TREE (Nguyen et al. 2015). A minimum 

minor allele frequency (maf) cut-off of 0.05 (and maximum maf of 0.95) was used 

for the unitig GWAS analysis. 0.10 and 0.90 maf cut-offs were used for the SNP 

GWAS analysis due to high errors in the SNP calling method due to the high 

clonality between isolates (Stoycheva et al. 2022: manuscript in progress). All 

Pyseer analyses were run using the linear mixed model (LMM). For annotations of 

significant unitigs identified in the GWAS, two reference strains representing the R. 

solanacearum phylotype IIB sequevar 1 strain was used. These were UY031 (NCBI 

accession number: 001299555) and YO199 (this study). 

For phenotype GWAS, trait values (as measured as above for each trait) 

were taken and mean centred. All 46 traits were inputted as a continuous 

phenotype, however binary input phenotypes were calculated for all antibiotic 

resistant traits and reactive oxygen species tolerance, by taking growth (1) as OD600 

over 0.13 at the last timepoint and no growth (0) as below this value. For ecotype 

level GWAS, the input phenotype used was ecotype classification based on k-means 

clustering and PC1 and 2 values from PCA plot in figure 3.2C. A temporal GWAS was 
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also conducted, where the input phenotype value was time of isolation in years (or 

decade) as a continuous trait. 

The proportion of specific SNPs and COGs present per ecotype was also 

compared to see if there were overall differences between each phenotypic group. 

SNPs, from the vcf used for GWAS, were imported into R using vcfR (Knaus and 

Grünwald 2017) and downstream analysis was conducted on R version 4.2.1 (R Core 

Team 2022). SNPs that were present in less than 90% of isolates, and within more 

than one isolate per ecotype, were filtered for better visualisation. The percent of 

isolates in each ecotype that had a certain SNP was then calculated. For COGs, the 

same matrix as used in the GWAS analysis was taken and the proportion of genes 

shared by each ecotype was calculated using R version 4.2.1 (R Core Team 2022). 

 

3.3.8 Statistical analysis and data visualisation 

Statistical data analysis and visualisation was conducted within R version 

4.2.1 (R Core Team 2022). Figures were produced using the package ggplot2 

(Wickham 2016), heatmaps were curated using the Heatmap function in the 

ComplexHeatmap package (Gu et al. 2016), while visualisation of the correlation 

matrix was constructed using ggcorr within the GGally suite of packages (Schloerke 

et al. 2021), and venn diagrams using ggVennDiagram (Gao 2021). 

Area under the growth curve (AUC) was calculated as a proxy for growth for 

most traits, as they capture lag time, growth rate, and carrying capacity, using the 

MESS package in R version 4.2.1 (Ekstrøm 2019, R Core Team 2022). Standardised 

trait values were z-scores curated using the scale function in the stats R package (R 

Core Team 2022) and mean standardised trait values across the ecologically 

relevant trait groups were taken as the mean z-score across all traits within that 

group (appendix table C.1). Principle component analysis (PCA) was carried out 

using tidymodels (Kuhn and Wickham 2020) with normalisation of the data. K-

means clustering was conducted using the kmeans function in stats R package using 

Euclidean distances (R Core Team 2022) and optimal number of clusters were 

determined using the cascadeKM function in the vegan package (Oksanen et al. 

2019), using calinski as the criterium. 
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Statistical analysis was also conducted in R version 4.2.1 (R Core Team 

2022). Significance of clusters and groups within PCA plots was determined with 

PERMANOVA analysis using the adonis2 and betadisper function in the vegan 

package (Oksanen et al. 2019). Significant differences of mean trait values per 

phenotype group between each ecotype was determined using two-way ANOVA 

with the aov function, and post hoc using the TukeyHSD function, in the stats R 

package (R Core Team 2022), using the standardised trait value as the dependent 

variable and ecotype and phenotype group as the explanatory variables. 

Correlations between phenotype groups per ecotype was calculated using the 

rrcorr function in the Hmisc package (Harrell Jr 2022), with Pearson as the chosen 

correlation type. Significance of host and decade distribution across the three 

ecotypes was calculated using chi squared tests with the chisq.test function in the 

stats R package (R Core Team 2022), and post hoc analysis using the 

chisq.posthoc.test package (Ebbert 2019). Mean pairwise distances were calculated 

by taking the mean Euclidean distance per isolate from all other R. solanacearum 

isolates, using the dist() function (R Core Team 2022) on a matrix of the 46 

phenotypic trait values for mean pairwise distance and the longitude and latitude 

for mean pairwise geographical distance. The median of the mean pairwise distance 

between different ecotypes and decades were then compared using Kruskal-Wallis 

significance test, using the kruskal.test function, and pairwise Wilcoxon test, using 

the pairwise.wilcoxon.test function, both available within the stats R package (R 

Core Team 2022), with Benjamini-Hochberg (BH) as the multiple test correction 

method. Statistical differences in antibiotic resistance and biofilm production trait 

values between each ecotype was determined using one-way ANOVA, with the aov 

function and post hoc analysis was conducted using the TukeyHSD function both in 

stats R package (R Core Team 2022), using the trait value as the dependent variable 

and ecotype as the explanatory variable. To determine correlations between 

antibiotic resistance and biofilm resistance, along with correlations between these 

traits and time of isolation, linear regression models were curated using the lm 

function in the stats R package (R Core Team 2022). Each isolate’s trait value (or 

mean trait value across all isolates from that year) was used as the dependent 
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variable and time isolated from in years was the independent variable (or the other 

trait value for correlations between two traits). 

 

3.4 Results 

3.4.1 UK R. solanacearum population comprises of three distinct ‘ecotypes’ 

groups 

Multiple independent trait measurements were collected across 182 UK 

Ralstonia solanacearum isolates to explore diversity of this pathogen within the UK. 

This dataset shows that the UK R. solanacearum isolates clusters into three groups, 

assigned by k-means clustering, based on their phenotypic diversity of 46 traits 

(figure 3.2A). The optimal number of clusters (k = 3) was determined using calinski 

criterion (appendix figure C.1B), and the three ecotypes can be seen clearly in the 

principal component analysis (PCA) (figure 3.2C). Isolates from each ecotype were 

found to be significantly different from one another phenotypically (PERMANOVA: 

F2,179 = 528, R2 = 0.85, p = 0.001, pairwise PERMANOVA: p=0.01 for all), with 

significant lower dispersion within ecotype 2 compared to the other two ecotypes 

(ANOVA: F2,179 = 11.3, p<0.0001, TUKEY: p = 0.0003 for ecotypes 1 and 2, p = 0.002 

for ecotypes 3 and 2, p=0.598 for ecotypes 3 and 1) suggesting lower diversity 

among isolates within this ecotype (ecotype 2). The PCA plot (figure 3.2C) explained 

51% of the total variation within the dataset, with 32% of the variation explained by 

principal component 1 (PC1) and 19% by principal component 2 (PC2). A higher PC1 

value corresponded to an increase in R. solanacearum growth across most traits, 

apart from nutrient limited conditions whereas a negative PC1 value corresponded 

to high growth in this condition. Furthermore, PC2 showed differences in growth 

across the 46 traits explored, with higher values showing higher growth on certain 

carbons and specific abiotic stresses, while negative values indicating higher biofilm 

production and antibiotic resistance (figure 3.2B). As this trait differentiation is 

likely to affect the fitness and ecology of R. solanacearum isolates, groups are 

henceforth referred to as ‘ecotypes’. Trait diversity of each ecotype group also 

differed significantly from each other when calculated based on mean pairwise 

Euclidean distances (figure 3.2C, Kruskal-Wallis: X2
2= 130, p<0.0001), with ecotype 3 
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being more diverse than the other two ecotypes (p<0.0001 for both) and ecotype 2 

being the least diverse out of the three (p<0.0001 for both ecotypes). 

More detailed analysis revealed that isolates from ecotype 1 (n=62) could be 

considered as heat tolerant oligotrophs with significant higher trait values 

compared to the other two ecotypes in nutrient limited conditions (figure 3.2D, 

ANOVA: F2,2327= 335, p<0.0001, TUKEY: p<0.0001 for both) and high temperatures 

(figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: p=0.021 and p=0.012 for 

ecotype 2 and 3 respectively) compared to the other two ecotypes. Ecotype 1 

strains also had significant lower standardised values across most of the other 

traits, including protein production (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, 

TUKEY: p<0.0001 and p=0.0002 for 2 and 3 respectively), siderophore production 

(figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: p<0.0001 for both), growth 

within complex media (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: 

p<0.0001 for both) and single carbon media (figure 3.2D, ANOVA: F2,2327= 335, 

p<0.0001, TUKEY: p=0.0003 and p=0.038 for 2 and 3 respectively), and tolerance to 

pH (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: p<0.0001 for both) and 

salinity (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: p<0.0001 for both) 

stress conditions. On the other hand ecotype 3 (n=16) had higher standardised trait 

values across most traits compared to the other two ecotypes, especially in 

siderophore production (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: 

p<0.0001 for both), biofilm formation (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, 

TUKEY: p<0.0001 for both), growth within complex media (figure 3.2D, ANOVA: 

F2,2327= 335, p<0.0001, TUKEY: p<0.0001 for both) and relative growth across 

different antibiotics (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: p<0.0001 

for both). The largest cluster, ecotype 2 (n = 104), comprised of isolates with 

intermediate phenotypes, apart from for tolerance to reactive oxygen species 

(figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: p<0.0001 for both) and cold 

tolerance (figure 3.2D, ANOVA: F2,2327= 335, p<0.0001, TUKEY: p<0.0001 for both) 

where isolates showed higher standardised value compared to the other two 

groups. Overall, these measurements show that the UK R. solanacearum population 

is phenotypically diverse, clustering into three distinct phenotypic ecotype groups.
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Figure 3.2: UK Ralstonia solanacearum clusters into three groups based on phenotypic diversity. (A) Heatmap of z-score standardised trait values across the 47 traits 
shows trait differences across the 182 isolates. K-means clustering (k = 3) was used to split isolates into 3 groups and was confirmed using calinski criterion (appendix figure 
C.1). Traits can be split into three categories, metabolism, stress tolerance and virulence. (C) Principal component analysis (PCA) of the 182 isolates was used to visualize the 
phenotypic diversity of UK R. solanacearum by reducing dimensionality of the 46 traits into a 2D plot. The amount of contribution each trait has on the principal 
components is shown in a heatmap (B). Each point represents one UK isolate, coloured by ecotype assigned by k-means clustering (k=3). Ellipses show the 90% confidence 
interval around the centroid for each cluster. Principal component (PC) 1 explains 32% of the variation within the dataset and PC2 19%. PC3 graphs can be seen in appendix 
figure C.1C-E. (D) Standardised value (z-score standardised) distribution across each ecotype for traits grouped into 13 ecologically relevant categories. Colours indicate the 
assigned ecotype. 
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3.4.2 Trait correlations differ between ecotypes 

Differences in trait correlations for each ecotype were explored to 

determine if they not only differed in their phenotypic profile but also regarding 

trait correlations. To achieve this, the measured 46 traits were grouped into 13 

ecologically relevant phenotypic units (appendix table C.1) for easier interpretation 

using standardised values (same phenotype groups as figure 3.2D) and Pearson’s 

correlation were conducted between all trait combinations (figure 3.3, for trait 

correlations across all 46 individual traits see appendix figure C.2). These results 

indicate trait correlations vary between the three ecotypes, with fewer strong 

significant trait correlations (above 0.4 or below -0.4) observed with ecotype 2 (9) 

compared to the other two ecotypes (14 and 10 for ecotype 1 and 3, respectively) 

(appendix table C.2). Furthermore, most correlations were positive, with ecotype 1 

having three strong negative correlations and ecotypes 2 and 3 having one and two, 

respectively (appendix table C.2). 

The three ecotypes showed strong trait correlations which were unique to 

each group. First, ecotype 1 had five unique strong trait correlations, three of which 

were positive and the other two negative. One of the positive correlations 

discovered within this group were between the two metabolic traits: growth in 

complex media and single carbon resources (r=0.43, p=0.0004). Other positive 

correlations found were between tolerance towards ROS and pH (r=0.43, 

p=0.0005), and high and low temperatures (r=0.41, p=0.0011). The two strong 

negative correlations found unique to ecotype 1 were also linked to metabolic 

traits, with growth within single carbon resources being negatively correlated with 

growth within nutrient limited conditions (r=-0.42, p=0.0006) and growth within 

complex media negatively correlated with tolerance to cold temperatures (r=-0.50, 

p<0.0001). This suggests that trait correlations between metabolic traits could be 

driving ecotype 1 phenotypic diversity. 

Secondly, ecotype 2 had four unique positive correlations. Two of which 

were between virulence traits, with biofilm production being positively associated 

with growth within single carbon resources (r=0.59, p<0.0001) and tolerance to 

reactive oxygen species (ROS) positively associated with high-water potential 

tolerance (r=0.44, p<0.0001). Stress tolerance traits were also positively associated 
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with one another within ecotype 2, with tolerance to pH and cold temperatures 

being positively correlated (r=0.45, p<0.0001), in addition to salinity tolerance and 

antibiotic resistance (r=0.46, p<0.0001). 

Finally, ecotype three showed four unique strong trait correlations, two of 

which were positive and the other two negative. Salinity tolerance was found 

positively associated with growth within nutrient limited conditions (0.71, 

p=0.0023), as well as protein production being positively correlated with growth 

within complex media (r=0.56, p=0.0246). Negative trait correlations within this 

ecotype were also discovered between cold tolerance and two other traits, 

resistance towards antibiotics (r=-0.52, p=0.0384), and growth in nutrient limited 

conditions (r=-0.55, p=0.0285). 

Some positive correlations were shared by all three different ecotypes, 

including correlation between pH and salinity tolerance traits (r=0.44, p=0.0003 for 

ecotype 1, r=0.74, p<0.0001 for ecotype 2 and r=0.80, p=0.0002 for ecotype 3), as 

well as between tolerating cold temperatures and reactive oxygen species (ROS) 

(r=0.67, p<0.0001 for ecotype 1, r=0.72, p<0.0001 for ecotype 2 and r=0.62, 

p=0.0111 for ecotype 3). Furthermore, multiple strong correlations were shared 

between two of the three ecotypes. Ecotypes 1 and 2 shared three trait 

correlations, with strong positive correlations discovered between salinity tolerance 

and protein production (r=0.51, p<0.0001 and r=0.46, p<0.0001 for ecotypes 1 and 

2 respectively), and between antibiotic resistance and growth within complex 

media (r=0.44, p=0.0003 and r=0.45, p<0.0001 for ecotypes 1 and 2 respectively). 

They also both shared a strong negative correlation between growth in complex 

media and nutrient limited conditions (r=-0.68, p<0.0001 and r=-0.69, p<0.0001 for 

ecotype 1 and 2 respectively). Furthermore, ecotype 1 shared four positive trait 

correlations with ecotype 3. Three of which were between heat tolerance and other 

stress tolerance traits, including growth within nutrient limited conditions (r=0.55, 

p<0.001 and r=0.55, p=0.027 for ecotype 1 and 3 respectively), tolerance to salinity 

stress (r=0.54, p<0.0001 and r=0.56, p=0.0223 for ecotypes 1 and 3 respectively) as 

well as extreme pH stress (r=0.43, p=0.0007 and 0.68, p=0.0040), suggesting that 

tolerating high temperatures and other stress conditions are closely linked within 

these two ecotypes. Another shared positive trait correlation was found between 
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pH tolerance and growth within nutrient limited conditions (r=0.48, p=0.0001 and 

r=0.57, p=0.0215 for ecotypes 1 and 3 respectively). Interestingly, ecotypes 2 and 3 

did not have any unique strong trait correlations shared between them, suggesting 

that these two ecotypes have very different trait correlation patterns. 

Together, these results show that we find both negative and positive strong 

trait correlations, some of which are shared between the three ecotypes and the 

majority of which are unique to each ecotype group. Trait correlations could 

therefore be driving phenotypic differences between UK Ralstonia solanacearum 

isolates and play a potential role in maintaining these ecotypes within the UK-wide 

population. 
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Figure 3.3: Trait correlations differ among the three ecotypes. Pearson’s paired correlations of the 46 traits classified into 13 phenotypic groups for easier interpretation. 
See appendix figure C.2 for correlations among all traits. This analysis was done for each ecotype, assigned by k-means clustering, with 62 isolates in ecotype 1 (A), 104 
isolates in 2 (B) and 16 in ecotype 3 (C). Red indicates a positive trait correlation, blue a negative trait correlation and white no correlation. Traits are also ordered by 
phenotype classification, metabolism, stress tolerance or virulence. 
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3.4.3 The decade of isolation explains phenotypic diversity among UK isolates, 

while the isolation source or geographical location do not 

Next, exploration on isolate metadata (date, isolation source or location) 

was conducted to attempt to explain the phenotypic separation observed among 

UK isolates. To investigate this, the same PCA plot as in figure 3.2C was constructed 

but with isolates grouped by the source they were isolated from, river water, weed 

host Solanum dulcamara or crops (potato or tomato). This showed that no 

significant differences in trait diversity was driven by isolation source (figure 3.4A, 

PERMANOVA: F2,179 = 1.9, R2 = 0.02, p = 0.11). Furthermore, host distribution was 

found to be non-significantly associated with certain ecotypes (appendix figure 

C.3A, X2
4 = 8.4, p = 0.08), suggesting that host samples were not significantly biased 

across the three ecotypes. 

Isolates were also grouped by the decade in which they were isolated from. 

Decade was used for easier interpretation and due to the absence of isolates 

sampled in certain years (figure 3.1B). This showed that significant, although small, 

differences in phenotypic diversity can be explained by sampling date (figure 3.4B, 

PERMANOVA: F2,177 = 8.8, R2 = 0.09, p = 0.001). Pairwise PERMANOVA revealed that 

this was driven by differences between isolates from the 1990s and 2010s (p = 

0.015) and 2000s and 2010s (p = 0.015), suggesting that isolates from the most 

recent decade (2010s) are more diverse compared to the other two decades (figure 

3.4B). This was confirmed by dispersion around the centroid being significantly 

higher in the 2010s compared to the other two decades (figure 3.4B, ANOVA: F2,177 

= 11.8, p < 0.0001, TUKEY: p < 0.0001 for both 2000s and 1990s compared to 

2010s). Furthermore, mean pairwise distances (compared to all other isolates) 

agreed with these results, as isolates originating from the 2010s had significantly 

higher mean pairwise differences compared to the other two decades (appendix 

figure C.3C, Kruskal Wallis: X2
2 = 19.0, p<0.0001, Post Hoc: p=0.0002 between 2010s 

and 2000s, p=0.0002 for 2010s and 1990s, p=0.17 for 1990s and 2000s). 

Additionally, isolates from each decade were not evenly distributed across the 

three ecotypes (appendix figure C.3B, X2
4 = 45.0, p<0.0001), with isolates from the 

2010s being significantly less likely assigned to ecotype 2 (p=0.0013), and 

significantly more likely assigned to ecotype 3 (p<0.0001). Isolates from the 1990s 
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were also significantly less likely to be associated with ecotype 3 (p=0.013), and no 

significant differences were found between ecotypes for isolates from the 2000s 

(p=1.0 for all). This suggest that the decade in which the pathogen was isolated in 

can partly explain the trait differences between isolates. However, this difference 

was small and can mainly be explained by isolates from 2010 onwards being more 

diverse compared to the isolates sampled from the two other decades. 

Finally, isolates were plotted by their coordinates of isolation and coloured 

by the assigned ecotype, but no significant pattern between ecotype and location 

was found (figure 3.4C, PERMANOVA: F2,171 = 2.4, R2 = 0.03, p = 0.07). Each isolate’s 

pairwise geographical distance from all other isolates (Euclidean distance from the 

coordinates they were isolated from) was also calculated and compared. This 

revealed no significant difference in geographical distance from the other isolates 

among the three ecotypes (appendix figure C.3D, Kruskal Wallis: X2
2= 4.1, p=0.13). 

This suggests that neither location nor isolation source can explain the phenotypic 

separation of UK R. solanacearum into the three ecotype groups. However, the time 

of isolation can partly explain some of these phenotypic differences, suggesting 

increased diversification over the most recent decade. 
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Figure 3.4: Metadata cannot explain clustering of UK R. solanacearum. (A) Principal component analysis (PCA) with each point representing an isolate and coloured by the 
host they were isolated from. This includes isolation from water sources (blue), weed host Solanum dulcamara (grey), and crop hosts potato and tomato (red) (differences 
between potato or tomato are shown by shape). The eclipses highlight the 90% confidence interval around each host group; river water, weed host Solanum dulcamara and 
crops (n=182). (B) PCA with each point representing a UK R. solanacearum isolate and coloured by the decade in which they were isolated from. Eclipses shows 90% 
confidence interval around the centroid of each decade (1990s, 2000s and 2010s) (n=180). (C) Map of location each isolate was collected from across the UK. Each points 
represents one isolate, plotted by the coordinates of their place of isolation, with jitter to make the points more visible. Isolates are coloured by ecotype assigned by k-
means clustering (k = 3). Ellipse shows the 90% confidence interval around the centroid of each ecotype (n=174). 
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3.4.4 Linking genetic variation with trait differences highlights high genetic 

similarity within the UK R. solanacearum population 

To link trait and genetic variation, a genome wide association study (GWAS) 

was conducted on 168 of the UK R. solanacearum isolates using single nucleotide 

polymorphisms (SNPs), cluster of orthologous genes presence and absences (COGs) 

and DNA segments known as unitigs as input genetic variables. However, the strong 

effect of population structure, combined with the little genetic variation discovered 

among the UK R. solanacearum population, confounded results and few promising 

associations were discovered. After filtering for minor allele frequency (maf), only 

734 variable unitigs, 7 SNPs, and 48 variable COGs were found in the UK population. 

Within the unitig GWAS, only 20 traits had a significant gene associated with them, 

most of which were antibiotic resistance traits and biofilm production traits within 

different media (see appendix table C.3). Furthermore, most gene hits within the 

unitig GWAS were single unitigs, suggesting a high likelihood of them being false 

positives. However, a tyrocidine synthase gene (tycC) was associated with many 

different traits (including resistance to rifampicin, tetracycline, and gentamycin 

antibiotics, biofilm and siderophore production, and growth within CS and 

nicotinamide media), with up to 95 significant unitigs assigned to it for a single trait 

(appendix table C.3). Further analysis revealed that multiple different annotations 

were assigned to this gene, suggesting a high likelihood of this gene being a 

hypothetical protein. Overall, the genetic variation we captured within this study 

cannot explain most trait differences, supporting genomic analysis, which indicates 

that the UK R. solanacearum population is clonal (Stoycheva et al. 2022: manuscript 

in progress). 

 

3.4.5 Antibiotic resistance and biofilm production traits are driving UK R. 

solanacearum diversification in time 

The few promising associations between a hypothetical protein and 

antibiotic resistance and biofilm formation were explored in more detail. By using 

the mean standardised trait value over all antibiotic resistance traits (n=8) and 

biofilm production (n=4) traits, it was found that both trait values differ significantly 

between ecotypes (appendix figure C.4A, ANOVA: F2,179= 207, p<0.0001 and 
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appendix figure C.4B, ANOVA: F2,179= 371, p<0.0001 for antibiotic resistance, and 

biofilm production respectively). Specifically, ecotype 3 isolates showed higher trait 

values compared to ecotype 1 (TUKEY: p<0.0001 for both traits) and 2 (TUKEY: 

p<0.0001 for both traits) regarding both trait mean averages. In contrast, ecotypes 

1 and 2 did not significantly differ in their ability to produce biofilm (TUKEY: p=0.72), 

but differed in their ability to resist antibiotics, with ecotype 2 being more resistant 

than ecotype 1 on average (TUKEY: p<0.0001). 

It was also found that both antibiotic resistance and biofilm production are 

increasing with time. With isolates collected more recently having higher trait 

values compared to isolates collected at the time of the first reported case of R. 

solanacearum in the UK (appendix figure C.4C, F1,178= 7.8, adjusted R2= 0.04, 

p=0.006 and appendix figure C.4D, F1,178= 30, adjusted R2= 0.14, p<0.0001 for 

antibiotic resistance and biofilm production respectively). Fitting a linear model 

over the average trait value per year revealed a significant increase in biofilm 

production in all four media in time (figure 3.5A: F1,19= 15, adjusted R2= 0.40, 

p=0.001 and figure 3.5A: F1,19= 13, adjusted R2= 0.38, p=0.001 for CPG and CS 

respectively and figure 3.5B: F1,19= 10, adjusted R2= 0.32, p=0.004 and figure 3.5B: 

F1,19= 10, adjusted R2= 0.32, p=0.005 NB and SP media respectively). Similar increase 

across time was also observed with ciprofloxacin resistance (figure 3.5C: F1,19= 4.9, 

adjusted R2= 0.16, p=0.039 and figure 3.5C: F1,19= 6.1, adjusted R2= 0.20, p=0.023 for 

3µg/ml and 5µg/ml respectively), gentamycin resistance (figure 3.5D: F1,19= 9.5, 

adjusted R2= 0.3, p=0.006 and figure 3.5D: F1,19= 7.3, adjusted R2= 0.24, p=0.01 for 

0.5µg/ml and 1µg/ml respectively), and tetracycline resistance at 5µg/ml (figure 

3.5E: F1,19= 8.9, adjusted R2= 0.28, p=0.008). Together, this suggests that ecotype 3 

isolates are associated with a higher antibiotic resistance and biofilm production, 

traits that are overrepresented by isolates collected from the 2010s (appendix 

figure C.3B). Furthermore, while trait correlations per ecotype (figure 3.3) did not 

show a positive correlation between overall biofilm production and antibiotic 

resistance to all measured antibiotics, trait correlations across all three ecotypes 

were positively correlated with each another (appendix figure C.4E: F1,180= 175, 

adjusted R2= 0.49, p<0.0001). Selection for antibiotic resistance and increased 
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production of biofilm could be hence partly driving the UK R. solanacearum 

population diversification into sperate ecotypes. 

 

 
Figure 3.5: Biofilm production and ciprofloxacin, gentamycin, and tetracycline resistance increases 
across time within the UK R. solanacearum population. Mean average biofilm production in CPG 
and CS media (A) and NB and SP media (B) across all UK isolates each year. Antibiotic resistance was 
measured as relative growth within the presence of the antibiotic (described in chapter 2.3.4). Mean 
average ciprofloxacin resistance, at 3µg/ml and 5µg/ml, (C) gentamycin resistance, at 0.5µg/ml and 
1µg/ml, (D) and tetracycline resistance, at 1µg/ml and 5µg/ml, (E) across all UK isolates within that 
year. Error bars show 1 standard error around the mean and coloured line shows the linear model 
with shaded regions showing 95% confidence intervals around the model for each 
concentration/media. All linear models but tetracycline resistance at 1µg/ml (black in panel E: 
F1,19=3.0, adjusted R2= 0.09, p=0.1) show significant positive relationships between resistance/biofilm 
production and time. 
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3.4.6 Temporal GWAS (tGWAS) identifies gene associated with time 

As the time of isolation appeared to be related to phenotypic diversity 

within UK R. solanacearum (figure 3.4B), a temporal GWAS was also conducted 

using time in years, as well as the decade in which they were isolated from, as the 

phenotypic variable. This revealed one SNP, four COGs and multiple unitigs 

associated with time (appendix table C.5). The SNP hit was identified within a 

putative deoxyribonuclease RhsC (RSUY_02640) gene. Furthermore, four genes 

(group_2086, group_1877, group_1933 and group_1905) were also found to be 

associated with time of isolation. Unfortunately, they are all hypothetical proteins 

and therefore their functions are unknown. As well as these genes, multiple unitigs 

(172 for year, and 155 for decade, as the continuous trait) were also found to be 

associated with time (appendix figure C.6). The most promising unitig hit found 

associated with time, is the same tyrocidine synthase gene (tycC) found associated 

with multiple traits within the phenotype GWAS. These traits included a few 

antibiotic resistant and biofilm production traits which were found to be increasing 

with time (figure 3.5). This tyrocidine synthase gene had 87 or 77 (year and decade 

as phenotype respectively) unitigs significantly associated with time for homolog 3 

(tycC_3) and 66 or 61 (year and decade as phenotype respectively) unitigs 

associated with homolog 2 (tycC_2), making it highly unlikely that this is a false 

positive association. However, like previously stated multiple different annotations 

were found to be assigned to this gene suggesting a high likelihood of it being a 

hypothetical protein. Overall, temporal GWAS techniques has identified a 

hypothetical gene linked with time that could be a novel contributor to R. 

solanacearum pathogen survival within the UK. 

 

3.4.7 Genetic variation explains only small phenotypic ecotype differences 

Genetic variation (SNPs and COGs) among the UK R. solanacearum 

population was also investigated and compared between the three different 

ecotypes. The proportion of each single nucleotide polymorphisms (SNPs) identified 

within each ecotype is summarized in figure 3.6A and B. This highlights that there 

are fewer SNPs identified among ecotype 3, which could be due to sampling size 

(n=16 compared to n=62 and n=104 in ecotype 1 and 2 respectively) rather than 
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actual variation between the three ecotypes. SNPs are spread evenly across the 

chromosome and megaplasmid (figure 3.6B) and most SNPs are at a low frequency 

among each ecotype (figure 3.6A and B), suggesting neutral adaptation. The 

presence and absence of clusters of orthologous genes (COGs) can capture genes 

inherited through horizontal gene transfer, as well as vertical transmission, which 

may play an important role in bacterial adaptation to a new niche. However, gene 

presence and absence information among UK R. solanacearum shows a similar 

pattern than the SNP genetic variation, with little variation seen among these 

pathogen isolates. Overall, 98% of genes are shared between all three ecotypes, 

suggesting high genetic similarity between the three groups (figure 3.6C). While 

very few genes were found to be unique to specific ecotype groups, with ecotype 1 

having the most unique genes (40), ecotype 2 having only 8 unique genes and 

ecotype 3 having no unique genes (figure 3.6C). Overall, this suggests that the 

genomic variation we have captured cannot explain the large trait differences 

between the three UK R. solanacearum ecotypes identified. 

To further study if overall genetic variation between the UK R. solanacearum 

isolates could explain the phenotypic ecotype differences seen, another GWAS was 

conducted using ecotype, along with principal component (PC) 1 and PC2 values 

(from figure 3.2C), as the phenotypic variables. This analysis revealed one significant 

SNP and a couple of unitigs associated with ecotype and PC2 (appendix figure C.5 

and appendix table C.4). These unitigs were all unique with only one hit suggesting 

a high possibility of false positives. The significant SNP identified as being associated 

with ecotype, was identified using both ecotype and PC2 as phenotypic variables 

and was annotated as being within a putative deoxyribonuclease RhsC gene 

(RSUY_02640). This SNP can be found at a higher proportion within isolates 

assigned to ecotype 3 compared to the other two ecotypes (fourth gene from the 

bottom in figure 3.6A) and may be associated with phenotypic differences between 

ecotype 3 with the other two ecotypes. Furthermore, this is the same SNP 

previously found associated with time and suggests that the year of isolation could 

be the driving force of diversification of UK R. solanacearum into three ecotypes. 

Together, these results highlights a lack of genetic variation observed within the UK 

R. solanacearum population. 
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Figure 3.6: Genetic variation captured (SNPs and gene presence/absence) cannot explain ecotype 
differences. (A) Proportion of isolates (%) in each ecotype that have a SNP within each gene. (B) 
SNPs found in the chromosome (left, ~3.5Mbp) and megaplasmid (right, ~2Mbp) per ecotype 
(coloured). Each circle represents a gene in which a SNP has been called in, the position of the circle 
shows the that genes position within the R. solanacearum genome, size of circles indicates the 
proportion (%) of isolates per ecotype that have that variant present within its genome. Circle 
highlights the different ecotype group, inner circle being ecotype 1, then ecotype 2 and outer circle 
showing ecotype 3. (C) Venn diagram showing the number (and percentage) of accessory genes 
shared across the three ecotypes or are unique to each ecotype. 
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3.5 Discussion 

The aims of this research were to explore the phenotypic and genetic 

variation of R. solanacearum in space and time within the UK. First, by exploring the 

phenotypic diversity of 46 ecologically meaningful traits (involved in metabolism, 

stress tolerance and virulence) across 182 UK isolates significant trait variation was 

observed despite the previously reported clonal population structure and relatively 

recent introduction to the UK (Elphinstone and Matthews-Berry 2017). From this 

data, three phenotypically distinct ecotypes were identified, each with specific 

characteristics (figure 3.7). 

Ecotype 1 (n = 62) could be considered a heat-tolerant oligotrophic specialist 

with lower standardised values compared to the other two ecotypes in most traits 

apart from low concentrations (1% and 10%) of sucrose peptone media, where it 

had the highest trait values. Within environmental reservoirs, such as rivers, R. 

solanacearum must cope with the stress of nutrient limited habitats, making this a 

potentially important trait for surviving and persisting in the environment (Álvarez 

et al. 2008). Ecotype 2 could be considered as a generalist ecotype (figure 3.7) with 

intermediate standardised values for all traits, apart from high trait values in 

tolerance to reactive oxygen species (ROS) and cold temperatures (10°C) (figure 

3.2D). The ability to grow, and therefore infect plants, at cold temperatures (10°C) 

will be extremely important for R. solanacearum residing in temperate regions of 

the world, such as the UK. Average annual temperatures in Oxford, the region 

where the first outbreak of UK R. solanacearum was reported, were recorded to be 

15°C from 1991 to 2020 (Met Office 2022), suggesting that in order to survive and 

infect plants within this environment, tolerating cold temperatures would be 

beneficial. Therefore, it is unsurprising that this cold tolerant ecotype 2 was the 

largest ecotype identified in the UK, consisting of 104 isolates. ROS tolerance was 

also highest within this ecotype. ROS is produced by plants as a defence response to 

pathogen infection (Flores-Cruz and Allen 2009) and therefore is an important 

virulence trait for R. solanacearum. Ecotype 3 was a specialist pathogen group, with 

higher standardised values in traits such as growth within complex media, antibiotic 

resistance, biofilm production and siderophore production (figure 3.7). This ecotype 

was also the most diverse group out of the three but also the smallest comprising of 
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only 16 isolates (figure 3.2). Siderophore and biofilm production are both important 

virulence traits for R. solanacearum. Biofilms have been suggested to filter out 

nutrients from the flow of xylem fluid, as well as protect R. solanacearum from host 

plant immune defences (Álvarez et al. 2010, Genin and Denny 2012, Meng 2013), 

while siderophores can be used to increase resource utilisation and have been 

linked to pathogen virulence (Bhatt and Denny 2004, Gu et al. 2020). Antibiotic 

resistance is an important trait for persisting within microbial communities, where 

antagonistic bacteria can produce a variety of antibiotics that kill RSSC species to 

reduce competition (Allen et al. 2010, Yuliar et al. 2015). Also, all three ecotypes 

differed in their ability to utilise rich ‘complex’ media, with ecotype 3 having highest 

growth measurements, ecotype 2 having intermediate values, and ecotype 1 the 

lowest trait values (figure 3.7). This could be an indication of niche separation 

between the three ecotypes to avoid competition (Bajic and Sanchez 2020). Overall, 

this separation of UK R. solanacearum into three separate ecotypes, each differing 

in certain traits (figure 3.7), could help pathogen survival within the environment by 

each group adopting different adaptive strategies. 

 

 
Figure 3.7: Summary schematic of three phenotypically distinct ‘ecotypes’ identified in this study. 
From a collection of 182 UK R. solanacearum isolates three phenotypically distinct ecotypes have 
been identified. Ecotype 1, the oligotroph group, has higher trait values in nutrient limited 
conditions and higher temperatures. Ecotype 2, the generalist group, has higher trait values in cold 
temperatures and when in the presence of reactive oxygen species (ROS). Ecotype 3, the specialist 
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group, has higher trait values in producing siderophores and biofilm, as well as being the most 
antibiotic resistant strains. Ecotype 3 also has highest growth in rich ‘complex’ media, with ecotype 1 
having the lowest growth and ecotype 2 having intermediate values. 

 

Not only do trait values differ between ecotypes, but so do their trait 

correlations. Exploring trait correlations across the three identified ecotypes 

revealed that some trait correlations were unique to each ecotype, suggesting that 

they could help maintain ecotype separation. Negative trait correlations can limit 

the range of phenotypes open to organisms (Ferenci 2016), while positive traits 

correlations can increase the evolvability of an organism (Saltz et al. 2017). There 

are numerous known negative trait correlations (trade-offs) among Ralstonia 

solanacearum species complex (RSSC) strains (Peyraud et al. 2016, Wang et al. 

2017, 2019, Khokhani et al. 2017), however a more comprehensive understanding 

on trait correlations, spanning a wider range of traits, provides a deeper 

understanding on their role in the phenotypic diversification within this pathogen 

species. This research illustrates that trait correlations can differ among different 

groups (ecotypes) within the same pathogen population, highlighting that trait 

correlations are perhaps more dynamic than first thought within R. solanacearum. 

These differences within trait correlations between the three ecotypes can 

therefore alter the range of phenotypes open to these isolates, potentially driving 

them into different adaptive fitness landscapes. 

However, other trait correlations were found to be shared by all three 

ecotypes. Many of the trait correlations observed were also positive, highlighting R. 

solanacearum’s generalist nature (Hayward 1991, Genin and Boucher 2002). Two 

trait correlations were found across all three ecotypes, these were positive 

correlations between pH and salinity tolerance and tolerance to ROS and cold 

temperatures. This could indicate that the two traits are genetically linked or 

environmentally linked, where these two traits commonly occur together within the 

environment. Salinity has been seen to coincide with high pH stress within the soil 

and rivers (Sardinha et al. 2003, Jiang et al. 2022) with sewage and agricultural run-

off causing increased pH and saline levels within these environments (Rowbury 

1997, Shrivastava and Kumar 2015, Zhang et al. 2021). Alkaline pH has also been 

seen to be increasing within UK rivers through time, from 2000 to 2020 (Jiang et al. 
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2022). Therefore, tolerating both extreme pH and saline conditions could be linked 

to environmental survival in the UK environment. ROS and cold tolerance were also 

found positively associated among all three ecotypes. This may be an adaptation of 

R. solanacearum to infect plants within the colder UK temperatures, as both growth 

within colder temperatures and tolerance to ROS, produced by plants as a defence 

mechanism (Flores-Cruz and Allen 2009), will be required for successful infection. 

To determine the cause of separation of this UK population into three 

separate ecotypes, phenotypic variation was correlated with metadata, including 

the isolation source, year, and location in which isolates were sampled from. The 

source from which each isolate was taken from, crop host (potato or tomato), weed 

host (Solanum dulcamara), or river water, did not explain any significant phenotypic 

variation among the UK isolates (figure 3.4A). This research found that UK isolates 

did not differ significantly based on their isolation source, contradicting another 

study conducted in the Netherlands which found that river isolates lost their ability 

to utilise seven resources compared to strains from plant hosts (Stevens and Van 

Elsas 2010). In the Netherlands, Sweden and UK waterways, Solanum dulcamara 

acts as a reservoir for R. solanacearum helping them to survive the cold winter 

temperatures before they return to the river (Elphinstone et al. 1997, Parkinson et 

al. 2013, van der Gaag et al. 2019). Therefore, it could be expected that isolates 

from river water and S. dulcamara nearby are from the same population and 

therefore have very similar phenotypic diversity. Environmental (river water and 

weed hosts) and crop host environments are also closely linked as river water is 

used as an irrigation source for crops, causing outbreaks of R. solanacearum in the 

UK (Parkinson et al. 2013). Furthermore, there have also only been eight reported 

outbreaks in crop plants to date in the UK (Elphinstone and Matthews-Berry 2017), 

and therefore there could be not enough samples to detect phenotypic differences 

between them and environmental samples. 

Location also did not explain UK ecotype variation, with the three distinct 

ecotypes identified in this study spread evenly across the UK (figure 3.4C). The UK 

population of R. solanacearum is thought to have been introduced relatively 

recently, with the first reported outbreak on potato being in 1992 (Parkinson et al. 

2013, Elphinstone and Matthews-Berry 2017). Therefore, if diversification is 
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occurring, we could expect to see some first signs of local adaptation, with isolates 

closer together being more phenotypically similar. However, this was not the case. 

This can be explained by constant mixing of R. solanacearum populations within UK 

rivers resulting in no geographical barriers and therefore no localised adaptation 

(Rainey and Travisano 1998). Another explanation can be due to fluctuations within 

the environment increasing the benefits of having multiple ecotypes present in the 

same location. 

In contrast to location, the year of isolation could partly explain the 

phenotypic variation of UK R. solanacearum and suggests that the population has 

become a lot more phenotypically diverse within the past decade (figure 3.4B and 

appendix figure C.3C). Isolates from the 2010s have a significant higher chance of 

belonging to the specialist ecotype 3 and a significant lower chance of being in the 

generalist ecotype (ecotype 2). However, all ecotypes were observed in all three 

decades, suggesting that the overall phenotypic diversity has always been present 

and is maintained in the UK population. An increase in antibiotic resistance 

(gentamycin, tetracycline, and ciprofloxacin) in time was also observed, with lower 

resistance occurring in the 1990s, when the first recorded outbreak occurred, and 

higher resistance developing in the more recent years (figure 3.5). Antibiotics are 

naturally produced by competitor microorganisms within the environment (Allen et 

al. 2010) and resistance genes are associated with mobile genetic elements, which 

can be transferred between distantly related bacteria (Wellington et al. 2013). The 

increase in antibiotic resistance seen among the UK R. solanacearum population 

across time could be a response to tolerate specific antibiotics produced by 

competitors within the environment or could have been gradually inherited through 

horizontal gene transfer from nearby microorganisms throughout time. A variety of 

antibiotics can also be introduced to the environment through medical and 

agricultural sources. Antibiotics in humans are emitted to the sewage systems 

where they may be degraded or released into rivers (Wellington et al. 2013). 

Research has found that the concentration and frequency of detecting antibiotics 

within the river Thames in the UK increased during the influenza pandemic in 

November 2009 (Singer et al. 2014). This suggests that there is a transfer of 

antibiotics consumed by humans to the surrounding environmental rivers, such as 
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the river Thames where R. solanacearum has been consistently detected since the 

first outbreak (Parkinson et al. 2013, Elphinstone and Matthews-Berry 2017). 

Alternatively, antibiotics consumed by animals (livestock) are transmitted to 

agricultural fields as sludge to fertilise crops, and from here they can run off into 

nearby river systems introducing antibiotics to surrounding waterways (Blackwell et 

al. 2007, Topp et al. 2008, Wellington et al. 2013). Antibiotics are widely 

administered for animal health and are poorly absorbed in the gut resulting in a 

large proportion being excreted and therefore introduced into the environment 

through fertilisers (Sarmah et al. 2006). The reported concentrations of antibiotics 

detected in the soil and rivers are generally low, however some antibiotics from 

both urban and agricultural sources have been seen to persist in environments for 

longer periods of time (Allen et al. 2010, Wellington et al. 2013) and research has 

shown that even low environmental concentrations can select for antibiotic 

resistance (Lundström et al. 2016, Kraupner et al. 2018, Stanton et al. 2020). 

Furthermore, antibiotic use worldwide has increased both in agriculture and clinical 

use (Laxminarayan et al. 2020), suggesting a link with antibiotic presence and time. 

Ralstonia solanacearum has thought to have been introduced relatively recently to 

the UK, and the presence of antibiotics within this new environment could 

potentially cause a selective pressure for an increase in resistance over time within 

the population. This increase in antibiotic resistance in UK R. solanacearum can 

have implications in the control of this pathogen, such as reducing the efficacy of 

antibiotic producing biocontrol agents (Zhou et al. 2012, Singh and Kumar Yadav 

2016), and suggests that environmental bacteria can act as reservoirs for 

antimicrobial resistance genes also having implications for antibiotic efficacy in 

clinical settings. 

Temporal analysis also discovered that biofilm formation increased over 

time in the UK R. solanacearum population. Biofilm production can be a plant 

pathogen virulence trait (Álvarez et al. 2010, Genin and Denny 2012, Meng 2013), 

however it can also be used to protect bacteria from general stresses within the 

environment (de la Fuente-Núñez et al. 2013), such as bacteriophage predators 

(Hosseinidoust et al. 2013) as well as antibiotics (Høiby et al. 2010). As biofilm 

production is highly correlated with antibiotic resistance among the UK pathogen 
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population (appendix figure C.4E), this suggests that R. solanacearum could have 

adapted to have higher biofilm production in response to antibiotic presence in the 

UK rivers. Another explanation is that biofilm formation could have increased 

overtime within the UK R. solanacearum population for an unrelated reason, for 

example an environmental stress response such as salinity, bacteriophage or 

extreme pH within rivers (de la Fuente-Núñez et al. 2013), and an increase in 

antibiotic resistance is a by-product of this due to trait correlations. 

Linking genetic data to trait variation among UK isolates using a genome 

wide association (GWAS) technique revealed very little genetic variation between 

the isolates, despite 30 years of sampling, supporting research suggesting that this 

is a clonal population of R. solanacearum (Stoycheva et al., 2022: manuscript in 

progress). Despite this, a hypothetical protein was found associated with multiple 

traits, the majority of which are antibiotic resistance and biofilm production traits 

found to be increasing with time. A temporal GWAS also identified 153/138 

sequence unitigs spanning across this same gene, suggesting that it is either linked 

with time or these specific traits. However, more information is needed to 

determine the cause of this association. Furthermore, a SNP within a putative 

deoxyribonuclease RhsC (RSUY_02640) gene, was also discovered to be associated 

with time, as well as the ecotype 3 (figure 3.6A), indicating that this variant may 

also be involved in adaptation to the UK environment. These identified hits can 

provide information on how R. solanacearum is changing over time within the UK, 

which could be due to selective pressures within the environment or due to 

stochastic mechanisms, such as bottlenecking of the population over winter, 

causing certain genes/SNPs to rise to high frequencies in the UK R. solanacearum 

population by chance. Exploring the genetic variation between the three identified 

ecotypes also highlighted very few differences between them, with 98% of genes 

being shared across all three ecotypes (figure 3.6C), despite clear significant 

phenotypic differences observed between isolates. Most traits are normally 

controlled by multiple genes and can be environmentally dependent, suggesting 

that there may be more information not captured within this study, for example 

epigenetics and phenotypic plasticity which are well-known R. solanacearum 
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adaptive strategies (Genin and Boucher 2002, Genin and Denny 2012), are 

responsible for the trait variation observed within this research. 

In conclusion, UK R. solanacearum is phenotypically diverse, comprising of 

three ecotypes, which differ in their phenotypes and trait correlations. Linking 

phenotypic variation to isolates metadata revealed that neither location nor 

isolation source can explain trait variation, however the isolation time was 

positively associated with increased diversification over time. Antibiotic resistance 

traits and production of biofilm were also seen to be increasing among this 

population throughout time, potentially driving diversification of this pathogen. 

Genetic differences could not be linked with this trait variation, potentially 

suggesting that phenotypic plasticity or phenotypic switching are causing ecotype 

variation among this pathogen population. Therefore, future studies should focus 

on epigenetic variation, such as methylation patterns (Erill et al. 2017) among UK R. 

solanacearum. Overall, this study is the first to extensively focus on phenotypic 

diversity of Ralstonia solanacearum environmental isolates in the context of the 

whole lifecycle of this plant pathogen, increasing our understanding of the true 

phenotypic diversity among UK R. solanacearum. 
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4 Chapter 4: Adaptation to environmental stressors can 

explain diversification of phytopathogen Ralstonia 

solanacearum 

 

4.1 Abstract 

Plant pathogen Ralstonia solanacearum, the causative agent of bacterial wilt 

disease, commonly persists within environments, such as water sources, during 

transmissions from host to host. Within these environments exposure to various 

abiotic environmental stresses, including salinity and pH, is common. Exploring 

abiotic stress tolerance across a population of 182 R. solanacearum isolates 

revealed diversification based on acidic and alkaline tolerance, indicative of a trait 

correlation between the two traits. Trait correlations can determine the adaptation 

of an organism, with positive correlations resulting in generalists and negative trait 

correlations resulting in specialist adaptations. To study trait correlations directly, 

an evolution experiment was conducted where R. solanacearum was exposed to 

acidic, alkaline or salinity stresses alone or in two-stress combinations. It was found 

that selection resulted in specialist adaptation towards acidic and alkaline stress, 

whereas no adaptation to salinity was observed. However, the salt stress prevented 

R. solanacearum adaptation to acidic and alkaline conditions in stress combinations 

likely due to negative trait correlations between different tolerance traits. 

Furthermore, adapting to all stresses reduced R. solanacearum metabolic capacity, 

indicating a trade-off between stress tolerance and resource utilisation. Genome 

sequencing revealed little core genome (SNP/small INDEL) variation but stress 

adaptation was associated with insertion sequence movement in genes encoding 

virulence and metabolism traits. These results highlight the rapid evolution and 

diversification of R. solanacearum in response to environmental stresses, which 

could affect pathogen distribution and survival within environmental reservoirs.
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4.2 Introduction 

Bacteria are commonly exposed to stressful environmental conditions, 

including pH, temperature, and high osmolarity (Elabed et al. 2019), which can 

create strong selection for stress adaptations. Theory predicts that selection in 

stable environments will result in the evolution of specialist phenotypes (Bull 1987, 

Smits et al. 2006, Rainey et al. 2011). However, environments are rarely constant, 

but instead fluctuate in time and space (Horner-Devine et al. 2004, Hanson et al. 

2012), which could favour the evolution of generalists. As adaptation to one 

environment can be associated with a fitness loss in another (Elena and Lenski 

2003), fluctuating environments could select for generalists that exhibit 

intermediate fitness across multiple environments (Bull 1987, Smits et al. 2006, 

Rainey et al. 2011, Ferenci 2016). While the evolution of specialism and generalism 

have been studied extensively (Bleuven and Landry 2016), we still poorly 

understand how multiple stressors alone and together drive species adaptation 

within the environment. 

Adaptive traits to multiple stressors within a given environment can be 

positively or negatively correlated. If positively correlated, adaptation to one stress 

is expected to lead to an increase in fitness in the other environment, leading to the 

evolution of a generalist organism that tolerates multiple stresses (figure 4.1). For 

example, beneficial mutations in Escherichia coli selected for in glucose-limited 

environments, also increased its fitness within other sugars (Ostrowski et al. 2005). 

However, more often traits are negatively associated with each other, resulting in 

conflicts due to trade-offs (Ferenci 2016). Trade-offs prevent organisms from 

achieving maximum fitness due to finite resources, where energy allocated for one 

trait reduces the investment in the other trait (Saltz et al. 2017). Alternatively, 

trade-offs can result from genetic conflicts due to epistasis (multiple loci interacting 

to produce a single phenotype) and pleiotropy (single locus affecting multiple 

different traits). Examples of such trade-offs include, changing protein function of 

one trait preferentially, such as reducing porin size to limit antibiotic uptake, which 

also reduces the metabolism via reduced nutrient uptake (Ferenci 2016). Similarly, 

evolving cefotaxime antibiotic resistance can result in reduced resistance towards 

ceftazidime in Escherichia coli (Schenk et al. 2015), while sharing molecular 
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resources, such as transcriptional machinery, which is regulated by the sigma 

transcription factor in E. coli can split resource allocation between stress resistance 

and metabolism (Ferenci 2016). Trade-offs can therefore constrain adaptation to 

multiple different stressors causing a reduction in fitness compared to adapting to a 

single stresses alone (Brennan and Collins 2015), limiting the range of phenotypes 

‘open’ to organisms (Ferenci 2016). While many of the reported cross-tolerance 

interactions come from antibiotic research, it is less known how bacteria adapt to 

natural environmental stresses and to what extent selection in environmental 

reservoirs might affect the evolution of specialism and generalism. 

Ralstonia solanacearum, the causative agent of bacterial wilt disease and 

potato brown rot, is an example of a phytopathogenic bacterium that encounters 

many different environmental selection pressures (Genin and Denny 2012). It has a 

large host range and can be found all over the globe, being one of the most 

important bacterial crop pests in the world (Hayward 1991, Genin 2010, Mansfield 

et al. 2012, Safni et al. 2014, Bragard et al. 2019). Not only can R. solanacearum 

infect a wide variety of plants, but it also survives across many natural 

environments outside hosts between transmissions, such as in water, and 

asymptomatic wild hosts, like Solanum dulcamara, where the bacteria can reside 

and survive for long periods of time (Genin and Denny 2012). Ralstonia 

solanacearum is hence capable of infecting host plants through the production of 

multiple virulence factors and evading plant immune responses (Genin 2010), as 

well as surviving external environments and tolerating a variation of abiotic 

stressors. Within Europe, R. solanacearum persists for long periods of time within 

environmental reservoirs, such as river networks, and several outbreaks of R. 

solanacearum in agricultural fields have been linked to these contaminated water 

sources (Parkinson et al. 2013, van der Gaag et al. 2019). Therefore, survival within 

these habitats is a critical part of R. solanacearum’s life cycle and adaptation to 

environmental stresses can increase the prevalence of this pathogen thereby 

increasing risk of disease outbreaks. 

One stressor particularly relevant to R. solanacearum is the change in pH 

within the environment, which can occur within the soil, surface water, as well as 

within the plant xylem (Bahrun et al. 2002, Secchi and Zwieniecki 2016, Li et al. 
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2017). Optimal pH for R. solanacearum is said to be between 5 and 6 (Li et al. 2017) 

and acidification or alkalization of environments, such as soils or water sources, can 

occur due to sewage, agricultural waste and chemical run offs (Rowbury 1997). For 

example, excessive application of nitrogen fertilizer plays a key role in the progress 

of soil acidification (Li et al. 2017). The spread and prevalence of wilt causing 

bacteria are closely related to soil pH and other soil properties (Bhanwar 2022), 

with research suggesting that bacterial wilt disease incidence is a lot higher in acidic 

soils (pH 4.5 - 5.5). Because of this, calcium amendments, like CaO and CaCO3, have 

been used to control bacterial wilt disease in China by changing pH and nitrite 

accumulation in fields (Jiang et al. 2017). 

Another stressor that affects R. solanacearum survival is salinity, which is 

considered one of the major stress factors that inhibit microorganism survival 

(Zhang et al. 2021). R. solanacearum has been seen to survive in saline 

concentrations of up to 2% (Álvarez et al. 2010). Ions released from weathering 

minerals into the soil and rivers can cause naturally high salinity levels (Parkinson et 

al. 2013, Shrivastava and Kumar 2015). Salt may also be applied to rhizospheres 

through irrigation water or by excessive application of chemical fertilizers, 

especially when precipitation is insufficient (Shrivastava and Kumar 2015, Zhang et 

al. 2021). Salinized areas are also increasing at a rate of 10% annually for various 

reasons including, drought, irrigation with saline water, poor cultural practices, and 

global warming (Shrivastava and Kumar 2015). This indicates that tolerating high 

levels of salt will be beneficial for R. solanacearum, especially in combination with 

other stresses such as rising temperatures. 

The aim of this study was to see if selection to abiotic stresses, pH and 

salinity, can drive R. solanacearum diversification using both comparative analysis 

of environmental samples and experimental evolution approach. In the UK, R. 

solanacearum has been recorded within environmental reservoirs, such as river 

networks, since the first reported outbreak in 1992 and since then several 

outbreaks in agriculture fields have been linked to these contaminated water 

sources (Parkinson et al. 2013). Therefore, tolerating these abiotic stresses will be 

critical for pathogen persistence within these environments and for transmission to 

crop hosts. Exploring the diversity of abiotic stress tolerance traits among a 
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population of R. solanacearum isolates from the UK (n=182) determined that there 

is large trait variation in tolerance towards acidity, alkalinity, and salinity stresses. 

This diversification towards abiotic stresses was then replicated within the 

laboratory by evolving one isolate to a variety of stresses and combined stress 

conditions. The overall hypothesis was that exposing R. solanacearum to different 

environmental stress conditions (pH and salinity) will result in different evolutionary 

outcomes depending on how these stress tolerance traits are correlated with one 

another (figure 4.1). Predictions included that exposure to acidity or alkalinity stress 

will drive R. solanacearum into two specialist niches if traits are negatively 

correlated, while positive trait correlations will result in generalist adaptations 

(figure 4.1). Furthermore, exposing R. solanacearum simultaneously to multiple 

stresses could lead to the evolution of generalists that are equally adapted to both 

stresses if these traits are positively correlated with one another. Alternatively, 

generalists with intermediate fitness in both stress conditions, or lack of adaptation, 

would occur if stress tolerances are negatively correlated (figure 4.1). 

To test these hypotheses, an evolution experiment was conducted where 

one UK R. solanacearum isolate was exposed to different stress conditions alone 

(acid, alkaline and saline stress) or in combination (acidity with salinity and alkalinity 

with salinity) in liquid microcosms containing ten carbon resources for 40 days. 

Afterwards fitness assays were conducted, measuring the growth of evolved clones 

within different stress conditions and carbon resources to determine if adaptation 

had occurred. Furthermore, whole genome sequencing of a subset of evolved 

clones was conducted to determine genetic mechanisms of stress adaptation. 

Results showed that R. solanacearum adapts to acid and alkaline stress conditions 

with no correlated increase in fitness in the other stress condition, suggestive of 

specialist adaptation. Adapting in the presence of salinity prevented R. 

solanacearum evolution to either pH, suggesting that the double stress condition 

limited adaptation and was highly stressful for the pathogen causing extinctions 

when under extreme pH and high salinity concentrations (1% NaCl). Additionally, pH 

adaptation was accompanied with reduced growth on carbon resources, implying a 

trade-off between stress adaptation and metabolism. At the molecular level, 

adaptations were associated with movement of insertion sequences, mainly within 
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the megaplasmid, with a very few mutations (SNPs/small INDELs). Together, these 

results highlight the potential of different environmental stressors to alter R. 

solanacearum evolution and diversification within ecosystems, potentially affecting 

pathogen distribution and prevalence within environmental reservoirs. 

 

 
Figure 4.1: Schematic of how different correlations between stress traits determines evolutionary 
outcomes, leading to a specialist or generalist bacterium. Positive traits correlations will result in 
generalists for bacteria exposed to single stress (red and blue lines) and combined stress conditions 
(black dashed line). No trait correlations between the two stress conditions will result in specialists 
when exposed to single stress conditions (red and blue lines) with no trade-offs, while generalists 
will arise when exposed to the two stress conditions combined (black dashed line). However, 
negative correlations between the two traits will result in specialists with trade-offs in the other 
stress condition (red and blue lines) and intermediate generalists, or no adaptation when exposed to 
the combined stress condition (black dashed line). 

 

4.3 Methods and Materials 

4.3.1 Ralstonia solanacearum isolates and culture conditions 

The 182 Ralstonia solanacearum bacterial isolates, from the United Kingdom 

(UK), used in this study were collected and stored by FERA Science ltd, Sand Hutton, 

York, UK. This sample set were curated from a variety of environment (river water 

and wild host Solanum dulcamara) and crop host (potato and tomato) samples 

collected between 1992 to 2019 (see appendix table A.2 for complete list). All 

isolates were verified as belonging to the R. solanacearum species complex (RSSC) 
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using 16S rRNA real-time PCR (RT-PCR) with (Weller et al. 2000) primers and the 

standard protocol advised by the European and Mediterranean Plant Protection 

Organization (EPPO) (EPPO 2018). One UK R. solanacearum isolate (York number: 

YO336, Protect number: 6941), collected from river water in 2007 from 

Cambridgeshire, was chosen for further evolutionary experiments as it was 

positioned in the ‘middle’ of the trait-space of the whole population (highlighted in 

figure 4.2B). 

Modified OS media was used throughout the evolution experiment, this is a 

minimal medium containing salt required for bacterial growth (appendix table A.3). 

Media was prepared from various stock solutions to avoid co-precipitation of the 

salts with 10mM of carbon source added. SP media (20g/L sucrose, 5g/L peptone, 

0.5g/L potassium hydrogen phosphate, 0.25g/L magnesium sulphate heptahydrate) 

(Mehan and McDonald 1995) was also used for relative growth in stressful 

conditions to explore diversity of abiotic stress tolerance among all isolates. CPG 

agar plates (1g/L casamino acid, 10g/L peptone, 5g/L glucose and 17g/L agar) 

(Kelman 1954) were used for colony-forming unit per ml counts (CFU/ml) with 

phosphate buffer solution (PBS) (8 g/L sodium chloride, 0.2 g/L potassium chloride, 

1.44 g/l disodium phosphate, 0.24 g/l potassium dihydrogen phosphate) used to 

dilute bacterial populations. SPA plates (sucrose peptone media (Mehan and 

McDonald 1995) with 12g/L of agar) were also used for growth of single bacteria 

colonies isolated from evolved populations after the selection experiment for 

fitness assays and sequencing. 

 

4.3.2 Abiotic stress tolerance diversity among the UK R. solanacearum 

population 

Phenotypic traits involving tolerance to abiotic stresses were collected for 

182 UK R. solanacearum isolates (see appendix table A.2) to investigate variation 

among the UK population due to abiotic stress tolerance (for geographical 

distribution of isolates see figure 4.2A). The 182 R. solanacearum isolates were 

standardised to 0.1 OD600 (optical density read at 600nm) in 25% glycerol before 

being cryopreserved at -80°C. On the day of the experiment, these isolates were 
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thawed and diluted 100-fold using sterile deionized water before 10µl of the 

inoculant was placed into 190µl of media in a 96-well microplate. 

SP media was used, adjusted to pH 7, or 4.5, 9 and 10 for the pH stress 

conditions, and supplemented with 0.5%, 1% or 2% NaCl for salinity stress 

treatment before sterilisation (autoclaved at 120°C for 15 minutes). Microplates 

were placed in a 28°C incubator for 5 days with humidity to avoid evaporation. 

Change in bacterial growth was measured as optical density at 600nm (OD600) with 

a spectrophotometer every 24 hours for a total of 5 days. Area under the growth 

curve (AUC) after five days of growth was used as a proxy of growth. AUC values 

were divided by isolate growth in the absence of any stress (pH 7 0% NaCl) to get 

the relative growth for each isolate to control for variation between isolates due to 

media preference. This data was then converted into a principal component 

analysis (PCA) plot to visualise the variation among UK R. solanacearum isolates due 

to abiotic stress tolerance (figure 4.2B). 

 
Figure 4.2: Abiotic stress tolerance causes diversification of UK R. solanacearum population into 
two groups. (A) Geographical locations where the 182 UK isolates were sampled, counties are 
shaded based on the number of samples originating from that region. Map curated using 
mapchart.net. (B) PCA plot showing UK R. solanacearum diversity in its ability to tolerate extreme pH 
(pH 4.5, 9 and 10) and salinity (0.5%, 1% and 2% NaCl). Each point represents one of the 182 UK 
isolates. Tolerance is measured as relative growth in that stress (growth in stress is divided by 
growth without stress). Each point represents a UK isolate (N=182) and the hollow circle indicates 
the isolate used in the selection experiment shown in Figure 2. PC1 and 2 both explain 91% of the 
variation in the data together. Loadings of the PCA plot are shown by arrows and in appendix figure 
D.1A. Isolates are coloured by cluster assigned using k-means clustering. Optimal of 2 clusters were 
determined using calinski method (appendix figure D.1B). Ellipses shows the 90% confidence interval 
around the centroid of each cluster. 
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4.3.3 Selection Experiment 

As variation was observed among UK R. solanacearum in their abiotic stress 

tolerance (figure 4.2B), evolution towards different stress conditions was then 

tested experimentally by conducting a selection experiment. During the selection 

experiment a single colony of a UK R. solanacearum isolate (York number: YO336) 

was grown in several different stressful conditions including: control (pH 7 + 0% 

NaCl), salinity stress alone (pH 7 + 0.5% NaCl, pH 7 + 1% NaCl), extreme pH 

conditions alone (pH 4.5 + 0% NaCl, pH 8.5 + 0% NaCl), and a combination of the 

two stressors (pH 4.5 + 0.5% NaCl, pH 4.5 + 1% NaCl, pH 8.5 + 0.5% NaCl, pH 8.5 + 

1% NaCl) (see figure 4.3A for schematic). Stress values were chosen based on 

preliminary results (appendix figure D.2). R. solanacearum was grown in these 

conditions at 28° C for 40 days, with 8 replicates per treatment, and 5% of the 

population was transferred into fresh OS media every 4 days (total of 40 days; 10 

transfers; around 100 generations). OS media contained equal amounts of its 

constituent carbons (arabinose, glucose, maltose, sucrose, glutamine, histidine, 

serine, citric acid, malic acid, and succinic acid) resulting in at a total carbon 

concentration of 10mM in all treatments. Media was prepared, pH adjusted and 

NaCl added (for 0.5% and 1% conditions only) before filter sterilisation, using a 

0.2µm filter, and storing the media in the fridge (4°C). Fresh media was prepared 

every week. 

At every transfer 190ul of media was placed into each well of a 96-well 

microplate and 10µl of R. solanacearum was added to each well. Starting R. 

solanacearum densities were 2.2x106 CFU/ml in all treatments. Microplates were 

kept in a 28°C incubator with humidity to prevent evaporation. Before each serial 

transfer, optical density (OD) reads were taken at 600nm using a 

spectrophotometer with shaking, and at every second transfer (8-day intervals) 

colony-forming units per ml (CFU/ml) were recorded. CFU/ml were calculated by 

spotting 5µl of bacteria from each of the serial dilutions (100-10-7) onto CPG 

(Kelman 1954) agar plates, for the dilutions phosphate buffer solution (PBS) was 

used. These plates were then placed in a 28°C incubator for 48 hours before 
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colonies were counted. Populations were also cryopreserved every second transfer 

in 25% glycerol at -80°C. 

 

4.3.4 Fitness assays for quantifying evolutionary changes in stress and metabolic 

adaptations 

At the end of the selection experiment, evolved R. solanacearum 

populations were spread onto SPA plates, including the ancestor, and placed in a 

28°C incubator for 48 hours. 12 colonies per population (16 for the ancestor) were 

then randomly picked and cryopreserved in 25% glycerol at -80°C. These clones 

(n=96 per stress condition) were then compared with the ancestor (n=16) in a 

variety of conditions to determine if they had adapted to certain stress conditions 

(pH 4.5, pH 8.5, 0.5% NaCl, pH 4.5 + 0.5% NaCl and pH 8.5 + 0.5% NaCl), and how 

that impacted R. solanacearum’s ability to utilise certain carbons resources in the 

media (10mM of arabinose, glucose, maltose, sucrose, glutamine, histidine, serine, 

citric acid, malic acid, and succinic acid) as well as all of the ten resources combined 

at pH 7 (see figure 4.3B for schematic). 

Before these fitness assays were conducted, all evolved clones, along with 

the ancestor isolate, were grown up in a common environment (10 carbon OSG 

media at pH 7 0% NaCl) to control for any changes due to phenotypic plasticity and 

to ensure cell densities were high and in exponential phase for the fitness assays. 

For this 10µl of each cryopreserved clone was grown in 190µl of mixed carbon 

media for 24 hours at 28°C and humidity to avoid evaporation. After 24 hours, 

clones were diluted 10-fold using sterile deionized water and 10µl of this inoculum 

was transferred to 190µl of each assay condition, this included growth in individual 

stressors (pH 4.5, pH 8.5 and 0.5% NaCl),  combined stresses (pH 4.5 + 0.5% NaCl, 

pH 8.5 + 0.5% NaCl), or the OS ten carbon mixture (pH 7 0% NaCl), as well as in each 

single constituent carbon media, with carbon resources always at an overall 

concentration of 10mM. Clones were incubated at 28°C with humidity to avoid 

evaporation and growth was measured as optical density (OD600) every 24 hours for 

five days. This data (see appendix figure D.4 and D.5) was then used to calculate 

area under the curve (AUC), growth rate (r) and carrying capacity (k) as a proxy of 

bacterial growth. 
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Figure 4.3: Schematic of experimental evolution methods. (A) The selection experiment layout using 96-well microplates. 10µl of the ancestral Ralstonia solanacearum 
isolate (at 2.2x106 CFU/ml) was added to 190µl of 10 carbon minimal media at different pH and salinity concentrations. 8 replicate populations per condition were 
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conducted and populations were transferred into fresh media every 4 days, for a total of 40 days. Optical density reads were taken every 4 days and colony forming units 
(CFU) per ml were calculated every 8 days. The colour of wells within the 96-well microplates indicate the condition (pH or salinity stress) and back wells indicate empty 
wells. (B) Fitness assay experimental schematic. After the selection experiment 12 evolved clones per evolved population (n=96 per condition), and 16 ancestral clones, 
were taken from SPA plates. They were then grown for 24 hours in neutral conditions (10 carbon minimal media at pH7 and 0% NaCl) to control for phenotypic plasticity 
and increase cell densities for sufficient replication. 10µl of these grown clones were then diluted 10-fold and placed into multiple 96-well plates at different pH, salinity and 
carbon media to determine relative growth compared to the ancestor in a variety of conditions. 
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4.3.5 Identification of genetic variants 

One clone from each of the 8 replicate populations, evolved in neutral (pH 7 

0% NaCl), saline (pH 7 0.5% NaCl), acidic (pH 4.5 0% NaCl) and alkaline (pH 8.5 0% 

NaCl) conditions was randomly chosen for Illumina sequencing. DNA was extracted 

using the Qiagen DNeasy blood and tissue kit according to the manufacturer’s 

protocols with a couple of modifications (see appendix table A.4 for protocol). 

Quality checks of extracted DNA were undertaken using nanodrop and gel 

electrophoresis imaging of 0.8% agarose gels, and DNA was quantified using the 

Quant-iT™ dsDNA broad-range assay kit as per the manufacturer’s microplate 

protocol. Samples were then diluted to 15 ng/µl in 10mM tris-HCl (pH 8.4) and 50µl 

was sent to MicrobesNG for sequencing (30x coverage). MicrobesNG conducted 

library preparation using Nextera XT Library Prep Kit following the manufacturer’s 

protocol with the following modifications: 2 ng of DNA were used as input, and PCR 

elongation was increased to 45 seconds. Hamilton Microlab STAR automated liquid 

handling system was used for DNA quantification and library preparation. Pooled 

libraries were quantified using the Kapa Biosystems Library Quantification Kit for 

Illumina on a Roche light cycler 96 qPCR machine. Libraries were sequenced on the 

Illumina sequencers using a 250 bp paired end protocol. Reads were adapter 

trimmed by MicrobesNG using Trimmomatic 0.30 (Bolger et al. 2014) with a sliding 

window quality cut-off of Q15 . De novo assembly was performed using SPAdes 

version 3.7 (Bankevich et al. 2012) and contigs annotated using Prokka 1.11 

(Seemann 2014) (https://microbesng.com/). 

For the variant calling, reference genome of a highly related R. 

solanacearum UY031 strain was downloaded from RefSeq (accession number: 

001299555.1) as this is currently the best assembled phylotype IIB R. solanacearum 

strain. Variant calling was then conducted using SNIPPY version 4.6.0 (Seemann 

2015) or with custom filtering requirements. For personalised filtering, alignment 

files (bam) were created using bwa version 0.7.17 (Li and Durbin 2009) and used as 

the input files for Freebayes version 1.3.2 (Garrison and Marth 2012), which was 

used to identify single nucleotide polymorphisms (SNPS) and insertion/deletion 

(INDEL) variants compared to the reference strain. These variants were then filtered 

using vcftools (Danecek et al. 2011) to only include those with a minimum overall 
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read depth of 5, a minimum number of reads to include that genotype as 5, and a 

quality score above 30. Finally, SnpEff version 4.3 (Cingolani et al. 2012) was used to 

annotate and predict the impact of those variants. Annotated variant files from 

both methods were then imported to R version 4.1.2 (R Core Team 2022) using the 

vcfR package (Knaus and Grünwald 2017), where all further downstream analyses 

were performed, including the removal of variants present within the ancestor. 

Variants that were detected by only one of these filtering methods were confirmed 

manually using the integrative genomics viewer (IGV) platform (Robinson et al. 

2011), along with manually determining that the parallel mutations detected were 

also not present within the ancestor clone. A full table of each variant can be found 

in appendix table D.4. 

For insertion sequence (IS) identification, IS that were identified within a 

highly similar UK isolate (York number: YO199), from (Greenrod et al. 2022), were 

blasted against the ISFinder database (https://isfinder.biotoul.fr/). IS with the 

highest score, which resulted in 8 different IS elements (IS1021, IS1421, ISAzo23, 

ISRso10, ISBma3, ISRso20, ISRel26 and ISRso7), were then used as reference IS to 

search for within our evolved clones. IS within the evolved clones, along with the 

ancestor, were then identified using short read data with ISMapper version 2.0.2 

(Hawkey et al. 2015) using methods as described by (Greenrod et al. 2022). Overall, 

ISMapper maps short read data to our reference IS sequences, identifying reads 

that map to and overhang the 3’ and 5’ IS flanks. Mapped reads were then further 

aligned to an annotated reference bacterial genome, we used the highly related R. 

solanacearum UY031 strain downloaded from GenBank (NCBI accession number: 

001299555.1, gbff format file), and IS positions are determined where 3’ and 5’ 

flanking reads both map to similar genomic locations. After running ISMapper, IS 

hits were filtered to remove potential false positives within R version 4.1.2 (R Core 

Team 2020). Filtering included removing IS with unknown 5’ or 3’ coordinates, along 

with removing IS elements present within all 33 clones. IS hits that overlapped with 

one another, by plus or minus 100 bases, were reannotated to the same position 

due to high chances of this being a misalignment. IS elements within transposons 

were also removed as IS that map inside multi-copy genes will map to all copies 
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irrespective of the true IS content and therefore may generate spurious hits 

(Hawkey et al. 2015). 

 

4.3.6 Statistical Analysis 

All data and statistical analyses were conducted using R version 4.1.2 (R Core 

Team 2020). Data manipulation was performed using the tidyverse suite of 

packages (Wickham et al. 2019) and production of graphs with ggplot2 (Wickham 

2016). Principle component analyses were conducted using the prcomp function in 

the stats package (R Core Team 2020) and PERMANOVAs were conducted using the 

adonis2 and betadipser function in the vegan package (Oksanen et al. 2019). 

Growth rate, carrying capacity and area under the curve data was all taken using up 

to four days’ worth of growth data. Growth rate (r), the speed at which the number 

of organisms in a population increases, was calculated using the below formula: 

 

𝐺𝑟𝑜𝑤𝑡ℎ	𝑅𝑎𝑡𝑒	(𝑟) = ((𝑙𝑜𝑔#$𝑁 −	𝑙𝑜𝑔#$𝑁$)2.303)/(𝑡 − 𝑡$) 

 

Where 𝑡$ is the time (in hours) before exponential growth occurred (time at 

which the lowest OD600 was recorded). 𝑡 is the time at which the highest OD600 was 

recorded (after exponential growth). 𝑁$, the OD600 measurement at the time before 

exponential growth and 𝑁 the OD600 value at the timepoint designated after 

exponential growth. Carrying capacity (k), the maximum population size that can be 

sustained by that specific environment, was calculated by taking the maximum 

optical density (OD600) read of all recorded time points. Area under the growth 

curve, which captures both growth rate and carrying capacity, was calculated using 

the auc function in the MESS package (Ekstrøm 2019). Relative growth was then 

calculated by dividing each clone’s growth (AUC, r or k) by the ancestors in the same 

media condition (appendix figure D.6). 

Significance between population densities across the selection experiment 

was determined via repeated measures ANOVA using the aov function (R Core 

Team 2020). This model included density (OD600 or CFU/ml) as the response 

variable, and pH and salinity as the predictor factors, with replicate populations set 

as random effects across time. Post-hoc pairwise comparisons were then computed 
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using Tukey’s significance test through the emmeans package (Lenth 2021). 

Significance between evolved isolates growth in different stressors or carbons was 

determined with repeated measures ANOVA using the aov function. This model had 

growth (AUC, r, or k) as the response variable, and evolutionary history and growth 

condition (stress or carbon) as the predictor factors. Population was inputted as a 

random effect and ancestor information was excluded due to lack of populations. 

Separate one-way ANOVAs were then conducted, including the ancestor growth 

measurements (n=16), for each condition once significance was observed overall. 

Mean growth (AUC, r or k) was calculated across all clones (n=12) per population 

(n=8) to control for pseudo replication. The model consisted of growth (AUC, r or k) 

as the response variable and evolutionary history as the predictor factor and the 

aov function (R Core Team 2020) was used. Post hoc tests were also conducted 

Tukey’s significance test through the emmeans package (Lenth 2021). Mean 

pairwise distances were calculated by taking the mean Euclidean distance per 

evolved clone from all other clones (along with the ancestor clones), using the dist() 

function (R Core Team 2020) on a matrix of the relative growth in each stress 

condition (acid, alkaline and saline stress). The median of the mean pairwise 

distance between different evolutionary history groups were then compared using 

Kruskal-Wallis significance test, using the kruskal.test function, and pairwise 

Wilcoxon test, using the pairwise.wilcoxon.test function, both available within the 

stats R package (R Core Team 2020), with Benjamini-Hochberg (BH) as the multiple 

test correction method. 

 

4.4 Results 

4.4.1 Abiotic stress tolerance drives diversification of R. solanacearum UK 

population into two distinct groups 

To investigate whether exposure to different stress conditions can cause 

diversification of a R. solanacearum population a collection of 182 UK isolates was 

used (see appendix table A.2) and tolerance to abiotic stresses, such as extreme pH 

and salinity, were quantified. These isolates were collected from environmental 

reservoirs, primarily from water sampled from different rivers and the associated 
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wild host Solanum dulcamara, across a timescale of 30 years, beginning in 1992 

with the first recorded case to 2019 (for geographical distribution of sampling see 

figure 4.2A). Relative growth in stress conditions was measured and converted into 

a principal component analysis (PCA) plot to visualise the variation of abiotic stress 

tolerance among UK R. solanacearum isolates (figure 4.2B). This PCA plot explained 

91% of total variation of the dataset, with the majority (82%) explained by principal 

component 1 (PC1) and 7% by principal component 2 (PC2). A higher PC1 value 

corresponded to an increase in abiotic stress tolerance across all stresses, 

suggesting that an increase in growth under one stress was correlated with an 

increase in growth under another stress. However, PC2 showed differences in 

abiotic stress tolerance with higher values contributed to higher tolerance to acidic 

stress (pH 4.5) and high salinity concentrations (2% and 1% NaCl), while negative 

values indicated higher tolerance to alkaline stress (pH 9 and pH 10) and low salinity 

concentrations (0.5% NaCl) (figure 4.2B and appendix figure D.1A). Clustering of UK 

isolates into two groups was observed based on their overall abiotic stress 

tolerance (figure 4.2B, PERMANOVA: F1,180 = 669, R2 = 0.79, p = 0.001) along PC1, 

possibly suggesting divergence of UK isolates into two phenotypically distinct 

groups. To explore this further, metadata (time, location, and source isolated from) 

were analysed to determine if time, location, or isolation source can explain the 

observed diversity in abiotic stress tolerance among UK isolates. However, no 

significant differences was observed between isolates from different hosts 

(appendix figure D.3A, PERMANOVA: F3,178 = 1.03, R2 = 0.02, p = 0.37), decades 

(appendix figure D.3B, PERMANOVA: F2,177 = 0.92, R2 = 0.01, p = 0.42) or location 

(appendix figure D.3C, PERMANOVA: F1,172 = 0.56, R2 = 0.003, p = 0.52). Together, 

this analysis suggests that UK R. solanacearum population varies regarding stress 

tolerance (figure 4.2B), which cannot be explained by location, host, or time of 

isolation. How this diversity arose and how different types of stress might drive 

distinct stress adaptations is still unclear, however the presence of different 

stresses could drive R. solanacearum adaptation into different directions, leading to 

increased diversity. Therefore, stress adaptation was replicated within laboratory 

conditions to explore this hypothesis. 
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4.4.2 Abiotic stresses reduce bacteria densities with extinctions occurring in 

combined stress conditions 

To causally test whether selection by pH and salinity can drive R. 

solanacearum adaptation, and how the presence of multiple stressors affects 

pathogen survival, one UK R. solanacearum isolate (YO336), positioned in the 

‘middle’ of the trait-space of the whole population (highlighted in figure 4.2B), was 

selected and evolved in a variety of stresses in the lab using experimental evolution 

(n=8 per stress condition). The effect of stress on the growth of R. solanacearum 

populations throughout the experiment was analysed using optical density (OD), to 

determine total cell densities, and colony forming unit (CFU) data, to determine 

viable cell densities. Population densities, as measured by OD, in the no stress 

control (pH7) were relatively constant at around 0.6 OD, with a slight peak 

occurring at day 28 and a gradual decrease afterwards (dashed line in figure 4.4A-

C). Bacteria densities measured by CFU were more variable with a gradual increase 

over time, with a drop in population densities at day 24 and a gradual increase 

afterwards (figure 4.4D). As these fluctuations in OD and CFU occurred in all stress 

conditions this suggests that uncontrolled changes within the laboratory 

environment are likely responsible. 

Overall, 0.5% salinity significantly reduced total R. solanacearum population 

densities (OD) compared to 0% NaCl (figure 4.4B; Repeated Measures ANOVA: F2,63= 

2281, p<0.0001; Tukey: p < 0.0001) especially at the start of the selection 

experiment (figure 4.4B). However, there were no changes in CFU compared to the 

no stress control with very similar population densities across time (figure 4.4D). A 

higher concentration of salinity (1% NaCl) reduced population densities even 

further, with both OD and CFU measurements being extremely low at the start and 

gradually increasing throughout the selection experiment, but never reaching 

comparable densities to the no stress control (figure 4.4B and D). Both OD and CFU 

population density measurements were significantly lower when exposed to 1% 

NaCl compared to 0% NaCl (figure 4.4B; Repeated Measures ANOVA: F2,63= 2281, 

p<0.0001; Tukey: p < 0.0001 for OD and figure 4.4D; Repeated Measures ANOVA: 

F2,63= 7.9, p= 0.0009; Tukey: p=0.005 for CFU). 
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Alkaline stress also significantly reduced pathogen densities compared to 

the neutral control (pH 7), both with OD (figure 4.4B-C; Repeated Measures ANOVA: 

F2,63= 793, p<0.0001; Tukey: p < 0.0001) and CFU measurements (figure 4.4D; 

Repeated Measures ANOVA: F2,63= 6.2, p= 0.003; Tukey: p=0.01). In contrast, acidic 

stress did not significantly reduce R. solanacearum densities relative to control 

treatment (pH7) in case of both OD (figure 4.4A-B; Repeated Measures ANOVA: 

F2,63= 793, p<0.0001; Tukey: p=0.09) and CFU (figure 4.4D; Repeated Measures 

ANOVA: F2,63= 6.2, p= 0.003; Tukey: p=0.3) data. 

Exposing R. solanacearum simultaneously to two stresses, magnified the 

negative effects of each pH stress. For example, all populations went extinct in the 

presence of both high salt (1% NaCl) and either acid (pH 4.5) or alkaline (pH 8.5) 

stresses (figure 4.4D). All 8 populations exposed to alkalinity with 1% salinity 

became extinct after 8 days of exposure, and populations exposed to both acidity 

and 1% salinity combined went extinct within 24 days. Also, the additional effect of 

low salt concentrations (0.5% NaCl) alongside acidic stress (pH 4.5) significantly 

reduced R. solanacearum population densities (OD) compared to pH 4.5 treatment 

alone (figure 4.4A; Repeated Measures ANOVA: F4,63= 141, p<0.0001; Tukey: 

p<0.0001). Similarly, combining salinity with alkaline pH stress significantly reduced 

R. solanacearum population densities (OD) compared to populations growing in the 

pH 8.5 treatment alone (figure 4.4C; Repeated Measures ANOVA: F4,63= 141, 

p<0.0001; Tukey: p<0.0001), with consistently lower OD throughout the selection 

experiment. The addition of pH stress, pH 4.5 or pH 8.5, with 0.5% salinity also 

significantly reduced R. solanacearum populations OD compared to populations 

exposed to salinity stress alone (0.5% NaCl at pH 7) (figure 4.4A-B; Repeated 

Measures ANOVA: F4,63= 141, p<0.0001; Tukey: p<0.0001 for pH 4.5 with salinity 

and figure 4.4B-C; Repeated Measures ANOVA: F4,63= 141, p<0.0001; Tukey: 

p<0.0001 for alkaline with salinity). However, these stress specific effects on 

population densities were not observed based on the CFU data. Overall, the 

presence of stress conditions reduces R. solanacearum population densities, apart 

from acidic stress, while when combined with salinity stress led to even more 

reduced population densities, causing extinctions when high salinity concentrations 

(1% NaCl) was combined with extreme pHs. 
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Figure 4.4: R. solanacearum population dynamics during the selection experiment. Changes in 
population densities were measured as optical density (OD) reads at 600nm before each transfer 
over the course of the evolution selection experiment. Panels show the pH to which the bacteria 
were exposed to; (A) pH 4.5 (B) pH 7 (C) pH 8.5 and lighter colours indicate increasing salinity 
concentrations in the media. Points indicate individual replicate populations OD measurement, and 
the solid line shows the fitted model (loess method) across the 8 populations, with 95% confidence 
intervals shaded around this line. The dashed line shows the fitted model (loess method) for the no 
stress control populations (pH 7 with 0% NaCl). (D) colony-forming units per ml (CFU/ml) were 
calculated every two transfers (8-day interval) throughout the selection experiment. Dashed black 
line indicates initial starting densities in the media at the start of the 40-day selection experiment. 
Points shows log base 10 of the mean average CFU/ml across the 8 replicate populations and error 
bars indicate one standard error from this mean. 
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4.4.3 R. solanacearum adapts to pH abiotic stresses 

To test if specialist adaptation to abiotic stresses occurred during the 

selection experiment 12 clones per replicate population from all treatments were 

isolated and fitness assays conducted where growth (growth measured as area 

under the curve (AUC), growth rate (r) and carrying capacity (k)) of ancestral and 

evolved clones was compared in three different stress conditions: pH 4.5, pH 8.5 

and 0.5% salinity. Growth compared to the ancestor was then calculated per clone 

and the average across all clones per evolutionary history (a total of 96 clones, 12 

per treatment replicate) was taken as a measure of relative growth in that condition 

(figure 4.5). Metabolism utilisation of the ten individual carbon resources within the 

media for each evolutionary treatment was also measured to understand the effect 

stress adaptation has on R. solanacearum growth. Overall, variation in clones’ 

growth was explained the interaction between evolutionary history and stress 

condition (figure 4.5A, Repeated Measures ANOVA: F25,175= 6.2, p<0.0001, figure 

4.5B, Repeated Measures ANOVA: F25,175= 7.8, p<0.0001 and figure 4.5C, Repeated 

Measures ANOVA: F25,175= 8.8, p<0.0001 for AUC, r and k respectively) and between 

evolutionary history and carbon condition (figure 4.5A, Repeated Measures ANOVA: 

F45,315= 5.2, p<0.0001, figure 4.5B, Repeated Measures ANOVA: F45,315= 6.9, 

p<0.0001 and figure 4.5C, Repeated Measures ANOVA: F45,315= 7.6, p<0.0001 for 

AUC, r and k respectively). Therefore, comparisons of stress adaptation within each 

condition was conducted to understand R. solanacearum adaptation under single 

and two stresses, as well as to compare growth in each carbon recourse per 

evolutionary history to better understand potential metabolic costs of R. 

solanacearum adaptation. 

Clones exposed to no stress (pH 7 with 0% salinity) showed a non-significant 

increase in growth on pH 7 mixed carbon media compared to the ancestor (figure 

4.5, appendix tables D.1-3), indicative of media adaptation. This can be attributed 

to a significant increase in growth on histidine (k and r) and citric acid (r) (figure 

4.5B and C, appendix tables D.2 and D.3). However, a significant reduction in AUC 

on one of the ten single carbon resources, glucose, was also observed (figure 4.5A, 

appendix table D.1). The pH7 evolved clones also showed a significant increase in 

growth (r and k) compared to the ancestor in acidic media (figure 4.5, appendix 
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tables D.2 and D.3) and an increased carrying capacity (k) compared to the ancestor 

in alkaline conditions (figure 4.5C, appendix table D.3), suggesting that adaptation 

to the media also resulted in increased growth in acidic and alkaline stress 

conditions. However, the increase in growth (AUC, r, and k) compared to the 

ancestor within salinity stress conditions was non-significant (figure 4.5A, appendix 

tables D.1-3). Overall, in the absence of stress R. solanacearum adapts to the ten 

mixed carbon media, which is also correlated with increased growth in acidic and 

alkaline pH. 

Ralstonia solanacearum adaptation towards acidic pH (pH 4.5) was observed 

as evolved clones had significant higher growth (AUC, r and k) in pH 4.5 stress 

compared to the ancestor (figure 4.5, appendix tables D.1-3). However, adaptation 

to acidic pH did not lead to changes in clones’ growth in the mixed carbon media 

(figure 4.5, appendix tables D.1-3), suggesting that this adaptation was not due to 

increased growth on the media. Clones also suffered a reduced growth (AUC) on six 

of the ten individual carbon resources that were within the media (figure 4.5A, 

appendix table D.1), suggestive of a trade-off between acid stress adaptation and 

metabolism. Moreover, adaptation towards acidic pH also did not result in changes 

in growth within salinity stress conditions compared to the ancestor (figure 4.5A, 

appendix tables D.1-3). However, it did result in lower growth (AUC and r) in 

alkaline stress conditions compared to the ancestor (figure 4.5B, appendix tables 

D.1 and D.2), indicative of a trade-off between the two extreme pH stress 

conditions. In summary, acid stress adaptation occurred which resulted in reduced 

metabolic ability and alkaline tolerance suggestive of trade-offs between these 

traits. 

Ralstonia solanacearum clones exposed to extreme alkaline stress (pH 8.5) 

throughout the evolution experiment evolved clearly higher carrying capacity in the 

alkaline environment, compared to the ancestor, indicative of adaptation to pH 8.5 

(figure 4.5C, appendix table D.3). Alkaline adapted clones had no significant 

difference in their growth in acidic conditions (figure 4.5A, appendix tables D.1-3), 

and salinity stress compared to the ancestor (figure 4.5A, appendix tables D.1-3). 

Furthermore, alkaline evolved strains also did not show any signs of media 

adaptation, with no significant difference in their AUC, r and k compared to the 
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ancestor (figure 4.5A, appendix tables D.1-3) within the 10 carbon media. 

Furthermore, they had a reduced growth (AUC and k) in all ten of the single carbon 

resources present within the media compared to the ancestor (figure 4.5A, 

appendix tables D.1 and D.3), suggesting a reduced ability to utilise resources within 

the media and a trade-off between alkaline adaptation and metabolism. 

Adaptation to salinity was not observed even though salinity evolved clones 

at pH 7 showed a slight increase in their growth (AUC, r and k) in salinity compared 

to the ancestor, which was however non-significant (figure 4.5A, appendix tables 

D.1-3). Salinity exposed clones also had no significant difference in growth on the 

media without stresses (figure 4.5A, appendix tables D.1-3), and a reduction in 

growth (AUC) in alkaline conditions compared to the ancestor (figure 4.5A, 

appendix table D.1). Furthermore, salinity exposed clones did have an increase in 

growth rate (r) and carrying capacity (k) within acidic media compared to the 

ancestor (figure 4.5C, appendix tables D.2 and D.3). Despite no differences in 

growth within the mixed ten carbon media, growing in the presence of salinity led 

to reduced growth (AUC) compared to the ancestor on nine of the ten individual 

carbon resources (figure 4.5, appendix table D.1), suggesting negative trait 

correlations between salinity exposure and metabolism. No significant growth 

differences were observed between the ancestor and 1% NaCl exposed isolates at 

pH7 (appendix figure D.3 and D.4), possibly due to the low population densities and 

too few cycles of replication for adaptation to occur. Overall, salinity adaptation 

was not clearly observed during the selection experiment, even though growing in 

the presence of salinity increased R. solanacearum’s carrying capacity in acid stress 

conditions and reduced their ability to utilise resources within the media. 

 

4.4.4 Presence of multiple stresses hinders R. solanacearum adaptation to 

extreme pH  

Next, the aim was to determine if adaptation towards multiple stresses can 

occur and if this resulted in the evolution of generalists adapted to both stresses. It 

was found that isolates that were exposed to two stressors during the evolutionary 

experiment did not adapt to either stress, with pH 4.5 and salinity evolved clones 

having significant lower AUC in acidic conditions compared to the ancestor (figure 
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4.5A, appendix table D.1) and salinity conditions compared to the ancestor (figure 

4.5A, appendix table D.1). This suggests that not only have these strains failed to 

adapt to pH and salinity stresses, they also have a reduced ability to grow in these 

stress conditions compared to the ancestor. Alternatively, population sizes could be 

smaller within these stress conditions hindering bacteria adaptation. Combined 

alkaline and salinity stress exposed R. solanacearum also showed significant 

reduction in growth (AUC) in alkaline (figure 4.5A, appendix table D.1) and a non-

significant reduction in growth within salinity (figure 4.5, appendix tables D.1-3) 

stress conditions compared to the ancestor, also indicating no adaptation towards 

either stress environment. This suggests that simultaneous exposure to multiple 

stresses limits R. solanacearum’s adaptation, which is supported by the extinctions 

that occurred in the combined acid and alkaline stress with 1% salinity during the 

evolution experiment. 

The presence of double stress also constrained growth on the ten carbon 

mixed media (pH 7 0% NaCl), with clones grown in pH 4.5 with 0.5% salinity having 

significant reduced growth (AUC and r) compared to the ancestor (figure 4.5A, 

appendix tables D.1 and D.2), and reduced AUC compared to the ancestor in eight 

of the ten individual carbons this mixed media is composed of (figure 4.5A, 

appendix table D.1). Clones exposed to combined alkaline stress with salinity also 

showed significant reduced growth in AUC on five of the ten single carbon 

resources compared to the ancestor (figure 4.5A, appendix table D.1). This suggests 

that exposure to double stress can lead to reduced resource utilisation even in the 

absence of improved growth in stressful environmental conditions. 
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Figure 4.5: Average relative growth compared to ancestor for each evolved condition in the 
presence of abiotic stressors and ability to utilise different carbon resources. (A) Area under the 
curve (AUC), (B) growth rate (r) and (C) carrying capacity (k), was calculated for each evolved clone 
after 4 days of growth and relative growth was calculated by dividing AUC/r/k in each condition by 
the ancestor’s value in the same condition. Growth was conducted within different stress conditions 
(pH 4.5, pH 8.5 and salinity), combined stress conditions (pH 4.5 + salinity and pH 8.5 + salinity), as 
well as in the mixed 10 carbon media at pH 7 (all carbons), and in all 10 individual carbons, with an 
overall concentration of 10mM. The mean average across all 96 clones per evolved condition was 
then taken. Each row shows the evolutionary history of these clones, and each column indicates the 
condition they have been grown in. The colour of the boxes indicates the relative growth compared 
to the ancestor. White indicates same growth compared to the ancestor, blue a reduced growth and 
red an increase in growth. Stars indicate significant differences in growth compared to the ancestor 
(*: 0.01<p<=0.05, **: 0.001<p<=0.01, ***: p<=0.001). NAs indicate that growth rate calculations for 
these conditions were unreliable due to extremely small growth measurements, not exceeding 0.1 
optical density (OD), and therefore have been excluded (see appendix figure D.5 and D.6 for growth 
curves). 
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4.4.5 The molecular mechanisms of specialist stress adaptations were not 

associated with insertion sequence (IS) movements 

To understand potential molecular mechanisms of stress adaptations, one 

clone was selected at random from each replicate population that was exposed to 

acidity, alkalinity, salinity, and no stress conditions (8 populations per stress 

condition) as these treatments showed phenotypic adaptation based on the fitness 

assays. Whole genome sequencing of these clones, along with the ancestor (n=1), 

was then conducted to observe if there are any unique genetic changes within 

stress treatments. This was done by comparing mutations (SNPs/small indels) and 

insertion sequence (IS) movement, in both the chromosome and megaplasmid of 

the bipartite genome. 

Overall, very few (22) genetic mutations (SNPs/small indels) were found 

among the 32 sequenced R. solanacearum clones that were not present within the 

ancestor (figure 4.6). These variants were spread across the two chromosomes, the 

3.6 Mb chromosome and the 2.1 Mb megaplasmid (appendix table D.4 and figure 

4.6). A few mutations were present in one clone only, with no suggestion of parallel 

adaptation within treatment. Some mutations occurred across multiple clones from 

all four treatments, suggesting either neutral or media/lab adaptations, including 

mutations in a DUF2778 domain-containing protein (RSUY_RS17095), thought to be 

involved in the type VI secretion system (Sibinelli-Sousa et al. 2020), and a single 

SNP present in an Ig-like domain containing protein (RSUY_RS21215). However, one 

interesting gene to note is the type IV pilus twitching motility protein 

(RSUY_RS03815) where four separate missense SNPs were present within four 

clones, three of which originated from alkaline adapted clones in addition to one 

salinity adapted clone. This could indicate that mutations within this gene provides 

increased tolerance to stress conditions, especially towards alkaline environments. 

Overall, few unique genetic mutations were found with strong support as a cause 

for stress adaptation, indicating few specialist SNP/small INDEL adaptations towards 

stress conditions in R. solanacearum. 
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Figure 4.6: Genetic variants within adapted clones compared to the ancestor. Genetic variants 
found in the chromosome (left, ~3.5Mbp) and megaplasmid (right, ~2Mbp). Colour indicates the 
evolutionary history of the clones (N=8 per evolved condition), either from neutral (pH 7 with 0% 
NaCl), acidic (pH 4.5 with 0% NaCl), alkalinity (pH 8.5 with 0% NaCl) and salinity (pH 7 with 0.5% 
NaCl) stress conditions. Each circle represents a gene in which a genetic variant has been called in, 
the position of the circle shows the that genes position within the R. solanacearum genome, size of 
circles indicates the number of clones per evolutionary history that has that variant present within 
its genome. 
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In contrast, ISs appeared to be highly mobile, especially within the 

megaplasmid, as evidenced by 46 variable positions in the chromosome and 105 

variable positions within the megaplasmid (appendix figure D.7). In most variable 

positions gain and loss of IS was infrequent, occurring in a few clones per evolved 

condition, indicative of chance IS movement with non-neutral fitness effects. 

However, some of the IS movement was treatment specific, indicative of potential 

adaptation. Especially, the movement of the IS1021 element within the 

megaplasmid was associated with six genomic areas in the megaplasmid, which 

differed between clones exposed to different stress conditions (figure 4.7). Regions 

1, 2, and 3 all highlight that a few IS elements are commonly missing, compared to 

the ancestor, within acidic and alkaline adapted clones. Region one highlights four 

positions where IS1021 was absent in 2 or 3 acidic clones and 1 to 5 alkaline 

adapted clones but were present within all other clones (8 clones per condition). 

These positions are surrounded by a PhoPQ-activated pathogenicity-related 

protein, an endoglucanase precursor, a thioesterase superfamily protein, a TRP 

repeat-containing protein (YrrB), a Leukotokin, and hypothetical proteins, 

suggesting that these genes may play a role in acidic and alkaline adaptation in R. 

solanacearum. Region 2 highlights a position where IS1021 is absent in 3/8 acidic 

adapted clones and 4/8 alkaline adapted clones, between a cyclic di-GMP 

phosphodiesterase Gmr and a H-NS histone family protein. The third region shows 

that an IS1021 IS element has been removed in 2/8 acidic and alkaline adapted 

clones between a hypothetical protein and an integrase core domain protein. Four 

of the eight alkaline adapted clones had an IS1021 element missing between a 

tRNA-Pro and a filamentous hemagglutinin gene in region four, which indicates that 

these genes may be involved in specialized alkaline adaptation within R. 

solanacearum. Similarly, regions five had 3 positions where IS1021 or ISRso20 has 

been lost within neutral (2/8 to 6/8), alkaline (4/8 to 8/8) and salinity (4/8 to 6/8) 

adapted clones but has been retained within all 8 acidic adapted clones. These 

positions within the megaplasmid are near genes annotated as aminopeptidase N, 

type II secretion system protein F, type II secretion system protein G precursor, and 

hypothetical proteins. The sixth region had two IS positions (747499 and 759889) 

where the IS1021 element was present within the ancestor clone but missing within 
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4 of the stress-free clones and 5 to 6 of the alkaline adapted clones, while only 

missing in 2 of the salinity adapted clones and 1 clone adapted to acidic conditions. 

These positions have a tRNA3(Ser)-specific nuclease WapA precursor, a minor 

extracellular protease Epr precursor and two hypothetical proteins nearby. The 

other two positions in region six show an IS gain in position 928390, within 4/8 

stress-free evolved clones, 5/8 acidic adapted clones, 2/8 alkaline and 1/8 salinity 

adapted clones, suggesting an adaptation towards stress-free and acidic conditions. 

However, position 931174 shows an IS loss within 1 stress free clone, 3 acidic 

adapted clones, 2 alkaline clones and 0 salinity adapted clones (out of 8), suggesting 

a potential region associated with both acidic and alkaline adaptation. Both IS 

positions are within hypothetical proteins. Overall, this research suggests that there 

is a large amount of IS movement within R. solanacearum, especially within the 

megaplasmid, with some IS movements being specific to stress treatments and 

hence potentially adaptive. 
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Figure 4.7: Insertion sequence (IS) movement contributes to stress adaptation. Presence (coloured) 
and absence (white) of IS elements at certain genomic positions across the (A) chromosome and (B) 
megaplasmid of Ralstonia solanacearum. Specific colours indicate the type of IS present and only IS 
elements whose movement occurred within more than one clone are shown for easier 
interpretation, for all IS element movement see appendix figure D.7. Evolutionary history indicates 
the stress conditions in which the clone was exposed to during the selection experiment (n=8 per 
stress condition) plus the ancestor clone. Black numbered blocks along the right-hand side indicate 
the regions of interest which differ between different evolutionary history groups. Region 1 includes 
positions near a PhoPQ-activated pathogenicity-related protein, an endoglucanase precursor, a 
thioesterase superfamily protein, a TRP repeat-containing protein (YrrB), a leukotokin, and 
hypothetical proteins. Region 2 involves a cyclic di-GMP phosphodiesterase Gmr and a H-NS histone 
family protein. Region 3 a hypothetical protein and integrase core domain protein. Region 4 a tRNA-
Pro and a filamentous hemagglutinin.Region 5 an aminopeptidase N, a type II secretion system 
protein F, a type II secretion system protein G precursor and hypothetical proteins. Finally, region 6 
includes a putative deoxyribonuclease (RhsB), tRNA3(Ser)-specific nuclease WapA precursor, minor 
extracellular protease Epr precursor and hypothetical proteins. IS movement positions along the 
genome can be seen in appendix figure D.8. 

.
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4.4.6 Abiotic stress tolerance causes diversification of R. solanacearum clones 

Finally, comparisons on how exposure to these stress conditions affected 

diversification of R. solanacearum was conducted by comparing growth of evolved 

clones (acid, alkaline, saline and stress-free exposed clones), along with the 

ancestor, in different stress conditions (pH 4.5, pH 8.5, 0.5% NaCl). Area under the 

curve (AUC) after 4 days was used as a proxy for growth and was divided by their 

growth (AUC) on the ten carbon mixed media (pH7) to control for variation amongst 

the clones due to media preference rather than the presence of the stress. A 

principal component analysis (PCA) was then conducted, where all clones from the 

single stress evolutionary history groups along with the ancestor and stress-free 

(pH7 with 0% NaCl) control (figure 4.8A) were compared. Results showed that 

principal component (PC) 1 explains most of the variation within the dataset (66%), 

and PC2 18%. PC1 separated isolates with negative values indicating increased 

growth on all conditions, while negative values along PC2 showed higher growth on 

saline and alkaline conditions and higher PC2 values corresponded to high acidic 

stress tolerance (figure 4.8A and appendix figure D.9). This is similar to the trends 

observed among the environmental isolates, where higher PC2 values indicated 

higher tolerance to acidic stress (pH 4.5) and high salinity concentrations (2% and 

1% NaCl), while negative values indicate higher tolerance to alkaline stress (pH 9 

and pH 10) and low salinity concentrations (0.5% NaCl) (figure 4.2B). Overall, there 

were significant differences between clones from different evolutionary history 

(figure 4.8A, PERMANOVA: F4,395= 29, R2= 0.23, p=0.001), post hoc analysis showed 

significant differences between all groups (figure 4.8A, Pillai: p=0.0011), apart from 

between the ancestor clones and clones evolved within neutral conditions (pH 7) 

(figure 4.8A, Pillai: p=0.386), suggesting that adaptation to environmental stresses 

does drive an increased diversity in abiotic stress tolerance within the R. 

solanacearum population as a whole as clones in different treatments adapt 

differently. Furthermore, dispersion around the centroid was significantly different 

between the evolved groups (figure 4.8A, ANOVA: F4,395= 11.6, p<0.001), with all 

evolved clones having significant higher dispersion compared to the ancestor 

(TUKEY: p < 0.0001 – 0.002) and clones evolved in pH 8.5 having significant higher 
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dispersion compared to clones evolved in pH 7 with and without salinity (TUKEY: p = 

0.002 without salinity and p = 0.0003 with salinity) 

To confirm this the mean pairwise distance (as calculated using Euclidean 

distances) of each clone from all other clones was calculated (figure 4.8B). The 

results showed that the mean pairwise distance, and therefore diversity, was 

different between the different evolutionary history groups (figure 4.8B, Kruskal-

Wallis: X2
4= 65, p<0.0001). The least diverse group was the ancestral clones with a 

significantly lower mean pairwise distance compared to all other groups (p<0.0001 

for all). This is expected as these clones do not come from 8 replicate populations 

unlike the other treatments. Furthermore, evolved clones from no stress control 

conditions (pH7 0% NaCl) were less diverse compared the clones evolved in stress 

conditions, with significantly lower mean pairwise distance compared to acidic 

(p=0.0001), alkaline (p<0.0001), and salinity (p=0.0002) evolved clones. Out of the 

stress evolved clones, the most diverse groups were those evolved in alkaline 

conditions followed closely by salinity evolved clones and acidic evolved clones. 

However, these differences were not significantly different. This suggests that 

exposure to stress conditions does increase the pathogens diversity, with alkaline 

stress increasing diversity the most, suggesting that this diversification of UK 

isolates may be caused by past exposure to different stress conditions. 

 

 
Figure 4.8: Abiotic stress tolerance can cause diversification of R. solanacearum. (A) PCA plot 
showing that evolving clones to environmental stress conditions increases R. solanacearum diversity. 
Each point represents a clone, coloured by their evolutionary history in the selection experiment. 
Red is acidic (pH 4.5 0% NaCl), blue neutral (pH 7 0% NaCl), light blue salinity (pH 7 0.5% NaCl), grey 
alkalinity (pH 8.5 0% NaCl), and black the ancestor (YO336). Together the PCA explains 81% of the 
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total variation within the dataset, with PC1 explaining 66% and PC2 15%. Ellipses show the 90% 
confidence intervals around the centroid for each evolutionary history. (B) Each clone’s mean 
pairwise distance from all other clones (Euclidean distance) per evolutionary history showing 
increased diversity in stress adapted clones. Each point shows an individual clone’s mean pairwise 
Euclidean distance (log10). Boxplot lines show the median mean pairwise Euclidean distance (log10) 
of all clones in each evolutionary history group, with the box indicating the interquartile range and 
whiskers showing the 95% quantile (n = 96 per evolutionary group apart from ancestor where n = 
16). 

 

4.5 Discussion 

The aim of this study was to determine how R. solanacearum diversifies and 

evolves when exposed to different stress conditions using both comparative 

analysis of environmental samples and experimental evolution techniques. Analysis 

of a population of R. solanacearum (n=182), spanning 30 years of sampling (1992-

2019) within the UK, revealed great diversity in abiotic stress tolerance (pH 4.5, 

pH9, pH10, 0.5% NaCl, 1% NaCl and 2% NaCl) (figure 4.2) despite UK R. 

solanacearum’s clonal nature (chapter 3). Overall, specialist acidic and alkaline 

stress adaptation was observed in the selection experiment. However, negative 

trait correlations existed between these two stresses, resulting in a reduced growth 

rate in alkaline environments if R. solanacearum had been adapted in acidic 

conditions. The evolutionary experiment also failed to generate stress-tolerant 

generalists, as exposure to a combination of two stress conditions constrained R. 

solanacearum adaptation, resulting in extinctions when extreme pH was combined 

with 1% salinity. The lack of stress generalists arising could be due to the high 

metabolic costs observed linked to all stress conditions or a potential trade-off in R. 

solanacearum ability to tolerate stress and utilise resources simultaneously. 

Together, these results support the hypothesis that exposure to acidity or alkalinity 

stress can drive R. solanacearum into specialist niches. 

Throughout the selection experiment R. solanacearum was less affected by 

acidic and neutral pH compared to alkaline conditions. This is unsurprising as 

previous research indicates that bacterial wilt disease incidence can be high in 

lower pH conditions suggesting that the Ralstonia solanacearum species complex 

(RSSC) pathogen is well adapted to these conditions within the environment (Li et 

al. 2017, Wang et al. 2020). However, it also contradicts other research which states 

that RSSC is favoured by alkaline conditions (Álvarez et al. 2010, Bhanwar 2022). 
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The conflicting results within the literature could be due to bacteria changing their 

pH preference within different environments, for example rich lab media was not 

used within this experiment unlike in Bhanwar 2022, instead minimal mixed carbon 

media (10mM) was provided which could be more realistic to the natural resources 

available to R. solanacearum within the environment. Another explanation could be 

that different R. solanacearum strains, or different species within the RSSC, have 

different pH preferences. However, both Bhanwar 2022 and Li et al. 2017 

investigated R. pseudosolanacearum phylotype I (race 1 biovar 3) strains and yet 

found contradicting results, suggesting more evidence for the former argument that 

nutrient availability is changing pH preference. 

The selection experiment also showed that salinity had a larger effect on 

growth compared to extreme pH conditions, persistently reducing R. solanacearum 

densities regardless of pH condition. Cell densities were a lot lower in 1% salinity, 

even becoming extinct when combined with extreme pH, while for neutral pH (pH 

7) it took until about halfway through of the selection experiment (20 days) for R. 

solanacearum to recover and reach to similar densities as in the other stress 

conditions. It also took longer to become extinct in pH 4.5 compared to pH 8.5 

suggesting, again, that R. solanacearum is better adapted to acidic conditions. Cell 

densities were also lower in the 0.5% NaCl combined stress conditions compared to 

0.5% salinity or extreme pH alone, suggesting that adaptation to multiple stresses is 

more challenging than adaptation to a single stressor. Overall, these results suggest 

that salinity and alkalinity are extremely stressful for R. solanacearum, especially 

within minimal media, while acidic pH is less stressful in comparison. 

Fitness assays revealed evolution of specialists to the two extreme pH 

stressors (acidic and alkaline). Adaptation to acidic pH did not increase tolerance to 

alkaline pH and vice versa, suggesting that specialist adaptation occurred with no 

positive correlations between the two traits. In fact, a reduction in growth within 

alkaline conditions was observed if the pathogen was previously adapted to acidic 

conditions, suggestive of a negative trait correlation between the two traits. 

Research on Escherichia coli indicates that exposure to acid pH can in fact induce 

alkaline sensitivity by creating high internal Na+ (Rowbury 1997), also suggesting 

that these traits are not positively correlated with one another. Furthermore, an 
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increased media adaptation within the no stress control clones was also seen to 

increase their tolerance to acidic conditions, suggesting that a positive interaction 

between media adaptation and acid stress tolerance exists. 

Extreme pH, like many other environmental signals, has strong effects on 

numerous pathways (Olson 1993). Changes in external pH  can bring about alterations 

in internal cytoplasmic pH, changing the concentration of ions within the 

membrane, as well as changing membrane potential (Olson 1993, Saito and Kobayashi 

2003). An enzyme’s activity is also dependent on the binding of protons to its 

specific sites and consequently, enzymatic activity may decrease with cytoplasmic 

alkalization or acidification (Saito and Kobayashi 2003). Therefore, in response to 

changes in pH bacteria have many different adaptive strategies. For example, 

changing the lipid composition of their cytoplasmic membrane to maintain 

functionality (Siliakus et al. 2017), such as producing periplasmic proteins (Saito and 

Kobayashi 2003), or producing acid shock proteins (Olson 1993). Another 

adaptation towards extreme pH is to prevent the build-up of ions in the cytoplasm 

via ATP driven exclusion systems, outer membrane porins or sodium/proton 

antiporters (Saito and Kobayashi 2003). For example, Streptococcus mutans relies 

on its F-ATPase to protect itself from acidification by pumping protons out of the 

cells (Quivey et al. 2000) and extrusion systems for potassium ions have also been 

found in Escherichia coli and Enterococci (Saito and Kobayashi 2003). Research on 

evolution to long-term acid stress in a closely related bacterial species, Ralstonia 

pseudosolanacearum, has revealed that inactivation of the PhcA transcriptional 

regulator gene resulted in increased growth (Liu et al. 2022). The PhcA gene is 

involved in global regulation of virulence and metabolism in early stages of infection 

among R. solanacearum strains (Genin 2010). Overall, this implies that multiple 

adaptive strategies to tolerate extreme pH are present for R. solanacearum, 

however this research has shown that acidic or alkalinity adaptation occurs with no 

cross tolerance towards the other extreme pH condition. 

No clear adaptation to salinity was observed in the fitness assays. Salinity is 

highly stressful to bacteria, with high amounts in the soil creating toxic intermediate 

products which can weaken bacterial cell metabolism (Zhang et al. 2021). Salt stress 

can also result in the build-up of cations/anions within the cytoplasm, influencing 
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the osmotic balance of the cell, and therefore can affect cellular processes such as 

catalytic activity (Gregory and Boyd 2021, Zhang et al. 2021). Research on multiple 

bacteria organisms show that adaptation towards high salinity results in differential 

expression of multiple genes (Chen et al. 2017, Elabed et al. 2019, Zhang et al. 

2021), suggesting that adaptation is complex and relies on multiple gene products, 

pathways, and gene interactions (Elabed et al. 2019, Zhang et al. 2021). Other 

research has also found that genes involved in cell motility, including flagella genes, 

was down regulated and genes involved in energy production and conversion were 

found to be up regulated in high saline environments, suggesting that salinity 

tolerance is costly in terms of energy and a decreased cell motility allows more 

energy to be conserved for osmoprotection (Chen et al. 2017). Both reasons, high 

complexity of salinity adaptation (multi gene regulation) and high energy costs of 

adaptation, could explain why no clear salinity adaption in R. solanacearum was 

seen in this evolution experiment. 

Many of the differentially expressed genes in bacteria within saline 

environments are involved in proton transmembrane transport and metabolic 

pathways (Zhang et al. 2021). Sodium efflux and hydrogen or potassium ion uptake 

across the membrane can help bacteria maintain osmotic balance in high salinity 

environments. This is accomplished through a number of different transport 

systems that vary in kinetics, energy coupling and regulation (Chen et al. 2017, 

Elabed et al. 2019). For example, an increase in expression of H+ transport T3SS 

ATPase were seen, along with a significant increase in expression of T3SS proteins 

and 2 cytotoxin secretion factor exoenzymes, in salt adapted Pseudomonas 

aeruginosa (Elabed et al. 2019). Bacteria can also offset osmotic stress by 

accumulating compatible solutes or osmolytes which maintain cell metabolism 

(Chen et al. 2017, Zhang et al. 2021). Wang et al., found that knocking down the R. 

solanacearum AVT05_RS03545 gene (homologous to the Rsp1238 protein in 

GMI1000) reduced growth in 1% NaCl but not extreme pH, suggesting a role in 

salinity tolerance and not pH adaptation. AVTO5_RS03545 is predicted to be a 

polyisoprenoid-binding protein, YceI, which is shown to be involved in cellular stress 

response in Helicobacter pylori and Escherichia coli (Wang et al. 2021). Overall, this 

suggests that there are a multitude of potential adaptive strategies for R. 
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solanacearum salinity evolution, however no clear adaptation to salinity stress was 

observed within this study. 

This research also revealed that generalist adaptation did not occur when R. 

solanacearum was exposed to double stress conditions as acidic and alkaline 

adaptation were only observed when R. solanacearum was exposed to the pH stress 

alone. This result indicates that the presence of salinity stress constrained R. 

solanacearum adaptation to both extreme pH conditions, and potentially suggests 

that there could be negative correlations between the two stresses. Other research, 

in Escherichia coli, has shown that the presence of high NaCl concentration 

increases bacteria susceptibility to high or low pH, and is thought to be due to the 

induction of PhoE, an outer membrane proton pore (Rowbury 1997). Trade-offs 

between two different stresses have been seen in R. solanacearum before, but with 

temperature affecting the pathogens’ ability to grow in extreme pH conditions 

(Wang et al. 2020). This indicates that R. solanacearum has different mechanisms of 

stress tolerance for pH and salinity, and that these mechanisms possibly interact 

negatively with one other. In the environment it is quite likely stressors occur 

together, so this negative interaction can limit R. solanacearum’s ability to 

specialise and adapt to one stressor. Another explanation could be that the 

combination of adapting to both stressors results in an even further reduction in 

their metabolic capacity compared to adaptation to the pH stress alone. 

Alternatively, the double stress conditions resulted in smaller population sizes 

throughout the selection experiment (figure 4.4) which could result in not enough 

bacterial replication for adaptation to occur. 

Fitness assays also revealed that exposure to all stresses reduced R. 

solanacearum’s metabolic capacity. Research has shown that acid or alkaline 

responses can be affected largely by nutrients and metabolites (Rowbury 1997), 

suggesting that stress response and metabolism are closely linked. However, I have 

observed that reduction in metabolism was a lot more extreme in alkaline 

conditions. This could explain why R. solanacearum is naturally better adapted to 

acidic conditions, with a lower fitness cost being associated with adaptation to this 

pH. R. solanacearum is naturally more likely and persistently exposed to acidic 

conditions compared to alkaline conditions, such as in the soil where nitrogen 
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fertilizer increases soil acidification (Li et al. 2017), and in plant xylems which can be 

slightly acidic, with pH dropping even further when plants are stressed (Secchi and 

Zwieniecki 2016). Therefore, trade-offs in metabolism when adapting to acidic 

conditions could have higher consequences for R. solanacearum’s survival and 

competitive ability compared to alkaline conditions. 

Although no clear adaptation to salinity was seen within this experiment a 

trade-off between metabolism and exposure to saline conditions was also 

observed. Ralstonia solanacearum clones exposed to 0.5% NaCl conditions over the 

course of the selection experiment had clear reduction in growth in multiple 

different carbon resources. This suggests that although adaptation to salinity was 

not clear, growing in the presence of NaCl negatively impacted R. solanacearum’s 

ability to utilise most resources. This could be due to slight adaptation to salinity 

occurring, as indicated by a non-significant increase in growth in salinity conditions 

compared to the ancestor, and resulted in a reduction in uptake of nutrients, 

including NaCl and all other resources, or a conflicting use of resources for 

metabolism and compatible solutes resulting in lower growth (Gregory and Boyd 

2021). Compatible solutes (e.g. glutamate, glutamine, trehalose, proline, glycerol, 

ectoine and glycine betaine to name a few) are low molecular weight compounds 

that can be synthesised and/or taken from the environment by bacteria to maintain 

cellular turgidity and electrolyte concentration to sustain osmotic equilibrium (Chen 

et al. 2017, Elabed et al. 2019, Gregory and Boyd 2021). These compounds are also 

in different metabolic pathways in the cell and can be used as carbon sources, 

therefore the use of these compounds as osmolytes in some species can be costly 

(Gregory and Boyd 2021). Transporters, such as the Vibrionaceae BCCT transporter, 

can also be involved in both uptake of substrates for metabolism as well as the 

uptake of compatible solutes (Gregory and Boyd 2021), suggesting a costly trade-off 

between the two. Elabed et al. also found that Pseudomonas aeruginosa adaptation 

to salinity not only depended on the salt concentration but also on the composition 

of the growth media (Elabed et al. 2019), supporting this theory. As we used 

minimal growth media (10mM carbon solution) there could be higher costs 

imposed on growth when adapting to abiotic stress such as salinity compared to 

rich media. Overall, all stress conditions, acidic, alkalinity, and salinity stress, have 
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large impacts on R. solanacearum metabolic capacity, indicating a trade-off 

between abiotic stress tolerance and metabolism. 

To study the mechanisms of stress adaptation the DNA of one clone from 

each of the 8 replicate evolved populations for neutral, acidic, alkaline and salinity 

conditions was sequenced, and genomic variation (SNPs and small INDELs) 

compared. However, only one candidate gene responsible for stress adaptation was 

observed. This candidate gene possessed multiple missense SNPs across four 

different clones exposed to alkalinity (n=3) and salinity (n=1) stress conditions and 

was annotated as a type IV pilus twitching motility protein. This gene has previously 

been linked to virulence of this pathogen and therefore could have consequences 

on this pathogen’s ability to infect hosts (Genin and Denny 2012). Therefore, 

changes within this type IV pilus gene could be to preserve energy, otherwise used 

for virulence, to increase stress tolerance which is known to be costly in terms of 

energy requirements (Chen et al. 2017). 

Within R. solanacearum insertion sequences (IS) have been seen to insert 

and disrupt genes, such as type III effectors and the global virulence regulator, 

PhcA, resulting in changes within virulence and phenotypic plasticity (Jeong and 

Timmis 2000, Gonçalves et al. 2020). Furthermore, IS movement has been seen as 

an evolutionary response within R. solanacearum towards antimicrobial plant 

allelochemicals called isothiocyanates (ICTs) (Alderley et al. 2022). Therefore, IS 

movement was explored to see if they play a role in pH and salinity stress 

adaptation. There was a lot more IS movement compared to genetic mutations in 

response to stress conditions, which was mainly due to the IS element IS1021 

moving within the megaplasmid (figure 4.7) and is supported by other research on 

R. solanacearum that has found that IS are more frequently found on the 

megaplasmid compared to the chromosome (Greenrod et al. 2022, Alderley et al. 

2022). Acid and alkaline stress adaptation was associated with IS movement within 

or near virulence genes, such as the endoglucanase precursor, type II secretion 

proteins and the PhoPQ pathogenicity protein. PhoPQ has also been shown to be 

activated under acidic/alkaline conditions in plant bacterial pathogen Erwinia 

chrysanthemi (Venkatesh et al. 2006), suggesting a role in extreme pH adaptation 

within bacteria. IS within genes involved in biofilm formation, aggregation and 
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motility were also associated with both acid and alkaline stress tolerance (cyclic di-

GMP phosphodiesterase Gmr) and specialized alkaline stress tolerance (filamentous 

hemagglutinin gene). Multiple enzymes were also seen to have IS movement 

nearby (minor extracellular protease Epr precursor, tRNA3(Ser)-specific nuclease 

WapA precursor, thioesterase superfamily protein), potentially providing increased 

metabolism or tolerance to stresses within the environment. IS movement away 

from an integrase core domain protein was seen in acidic and alkalinity evolved 

clones, suggesting that integration of DNA into the genome could also be in 

response to environmental stresses. Furthermore, multiple IS elements nearby 

hypothetical proteins were found associated with stress tolerance, highlighting the 

lack of understanding we have of gene function within R. solanacearum. Previous 

research has discovered that acid adaptation in a closely related bacterial species, 

R. pseudosolanacearum, was caused by the loss of function of the global regulator 

PhcA gene (Liu et al. 2022). However, mutations or IS movement near this gene was 

not observed in this study. Overall, whole genome sequencing has revealed that IS 

movement is the main genetic mechanism underpinning stress adaptation within 

this experiment, potentially suggesting a role in gene disruption or gene regulation 

for stress adaptation in R. solanacearum. 

Finally, to see if R. solanacearum diversifies into specialist niches within the 

environment, comparisons in abiotic stress tolerance (acidic, alkaline, and saline 

environments) were made across our evolved clones that were adapted to extreme 

pH, salinity, and stress-free conditions, along with the ancestor (figure 4.8). This 

revealed diversification of R. solanacearum in their ability to tolerate acidic and 

alkaline stress conditions (figure 4.8A), mirroring the R. solanacearum population 

data (figure 4.2B). Higher diversity among clones exposed to one of the stress 

conditions was also observed compared to the stress-free adapted clones (figure 

4.8B). Together, this suggests that exposure to different stresses within the 

environment is responsible for R. solanacearum diversification with negative trait 

correlations between these traits being a potential driver. 

In conclusion, a comparative study on a R. solanacearum population 

revealed high abiotic stress tolerance diversity, with diversification based on acidic 

or alkaline tolerance and overall stress tolerance. To investigate how R. 
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solanacearum stress tolerant specialists and generalists arise within the 

environment, this pathogen was exposed to a variety of stress conditions (pH 4.5, 

pH 8.5, 0.5% salinity and 1% salinity), and a combination of stresses (pH 4.5 and pH 

8.5 with salinity), in an evolution experiment. Predictions were made that 

specialists would arise when exposed to one stress if positive trait correlations were 

not present (figure 4.1), however in the presence of more than one stress the 

bacteria would adapt to become generalists with intermediate fitness in either 

stress. This experiment discovered that specialist adaptation occurred to single 

stress conditions, with insertion sequence (IS) movement driving this adaptation. 

On the other hand, generalists did not arise, with no adaptation to either stress 

occurring in the combined stress conditions. This lack of adaptation in the combined 

salinity and pH stress conditions suggests that the cumulative stress was difficult for 

R. solanacearum to adapt to and caused extinctions events when extreme pH was 

combined with 1% NaCl. Furthermore, adapting to all stresses had great metabolic 

consequences, indicating a trade-off between stress tolerance and resource 

utilisation. Overall, this highlights that the presence of environmental stressors can 

play a large role in altering R. solanacearum diversity, potentially affecting pathogen 

distribution and prevalence in environmental reservoirs. 
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5 Chapter 5: General Discussion 

5.1 Overview 

The Ralstonia solanacearum species complex (RSSC) is a globally distributed 

bacterial plant pathogen and the causative agent of bacterial wilt disease. This 

pathogen is thought to infect over 175 species of plants, including many important 

crops, having huge impacts on agriculture. A review of the literature revealed that 

while genetic and phenotypic diversity of this pathogen species has been explored, 

especially when concerning pathogenicity, phenotypic diversity on a broad range of 

ecologically relevant phenotypes was lacking. A better understanding of RSSC 

ecological diversity can therefore improve knowledge of the epidemiology, such as 

the evolution and dispersal, of this plant pathogen species. Hence, the aim of this 

thesis was to first explore the ecological diversity among the RSSC, then determine 

potential causes of this trait variation, and finally link phenotypic variation with 

genomic data, revealing genetic mechanisms underpinning certain traits. This 

chapter provides an overview of the results of this thesis and discusses them in the 

context of the broader knowledge of the field. 

This research has progressed the understanding of phenotypic diversity 

among the bacterial plant pathogen RSSC at the global level (chapter 2), population 

level (chapter 3) and causally within the lab (chapter 4) (figure 5.1). My results 

suggest that the local environment selects for similar ecological differences within 

both RSSC species investigated within this thesis, R. pseudosolanacearum and R. 

solanacearum, aligning with the fact that both species share remarkably similar life 

cycles (chapter 2). Furthermore, exploring the UK population of Ralstonia 

solanacearum (chapter 3) highlighted a lack of genetic variation despite significant 

phenotypic differences observed (figure 5.1). However, diversification was observed 

over time, indicative of a relatively recent introduction of this population to the UK. 

Finally, evolving a single UK isolate, positioned in the ‘middle’ of the trait space of 

the whole RSSC collection (figure 5.1), to different abiotic environmental stress 

conditions within the laboratory revealed that exposure to stresses increases RSSC 

diversity. This is likely driven by the negative trait correlations observed between 

the different stresses and between stress adaptation and metabolism (chapter 4)., 
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resulting in contrasting evolutionary trajectories Overall, the RSSC is extremely 

phenotypically diverse, and this thesis provides a thorough investigation of the 

ecological diversity of this plant pathogen. 

This study has also increased knowledge of the genetic mechanisms 

underpinning traits within the RSSC. Accessory genome variation was shown to 

explain ecotype differences within the RSSC in chapter 2, potentially suggesting that 

horizontal gene transfer within the local environment drives RSSC diversity. 

Furthermore, a gene and three gene regions were found associated with cold 

tolerance and rifampicin resistance within the RSSC respectively (chapter 2). 

Genomic analysis of the UK R. solanacearum population revealed few genetic 

differences despite three decades of sampling, suggesting a role for other genetic 

mechanisms not captured within this chapter involved in initial RSSC adaptation 

(chapter 3). Evolving one UK isolate within the laboratory revealed that insertion 

sequence (IS) movement in the R. solanacearum genome can drive adaptation to 

environmental stress conditions (chapter 4), potentially explaining the lack of 

genetic variation observed at the SNP level within the UK population in chapter 3. 

Therefore, this thesis provides a deeper understanding of the genetic mechanisms 

underpinning important phenotypic traits and how adaptation of RSSC strains 

initially occurs within the environment. 
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Figure 5.1: Overview of phenotypic diversity among both Ralstonia solanacearum species complex 
(RSSC) collections; world and UK collections. All 376 isolates from both world (n=194) and UK 
(n=182) collections phenotypic trait values (n=46) were converted into a principal component 
analysis (PCA) to visualise on a 2D graph. Each point represents one RSSC isolate, colour indicating 
which collection they are from (world collection in chapter 2 or UK collection in chapter 3) and shape 
indicates if it was the chosen isolate conducted in the evolutionary experiment in chapter 4. Ellipse 
show a 90% confidence interval around the centroid for each bacterial collection. 

 

5.2 How phenotypically diverse is the Ralstonia solanacearum species 

complex (RSSC)? 

The Ralstonia solanacearum species complex (RSSC) isolates are 

phenotypically and genetically diverse (Fegan et al. 1998), comprising of three 

separate species (Safni et al. 2014) and consisting of strains that can infect a wide 

range of host plants (Hayward 1991). Previous research has tried to determine the 

genetic (Fegan and Prior 2005, Castillo and Greenberg 2007, Geng et al. 2022, 

Sharma et al. 2022) and phenotypic (Cellier and Prior 2010) diversity of this 

pathogen species, especially when in relation to pathogenicity (Bocsanczy et al. 
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2017) and metabolism (Stevens and Van Elsas 2010, Cruz et al. 2012, Caruso et al. 

2017). However, knowledge of RSSC phenotypic diversity using a broad range of 

ecologically relevant phenotypes is lacking. 

The first two data chapters (chapter 2 and 3) within this thesis makes use of 

a collection of bacterial plant pathogens collated by FERA science ltd, Sand Hutton, 

York (n=379). High throughput phenotyping of 46 ecologically relevant phenotypic 

traits, spanning virulence, stress tolerance, and metabolism, was conducted on this 

bacterial collection to explore the ecological diversity of the RSSC. Chapter 2 

explores the phenotypic diversity of RSSC across the world, spanning two separate 

species, R. pseudosolanacearum and R. solanacearum, revealing high ecological 

diversity among this bacterial pathogen. High diversity is usually correlated with 

increased survival, due to three factors: a greater tolerance within a changing 

environment, decreased competition among individuals, via the ability to occupy 

new niches, and increased evolvability, by increasing the chances of fixing 

advantageous genotypes (Horner-Devine et al. 2004, Cordero and Polz 2014, Bajic 

and Sanchez 2020). Therefore, the high ecological diversity discovered in this thesis 

reflects the worldwide distribution and complex life cycle RSSC strains have 

(Hayward 1991, Genin 2010, Bragard et al. 2019, EPPO 2022). 

RSSC pathology has been shown to not correspond fully with its genetic 

separation into species or phylotypes (Lebeau et al. 2011) and this research 

highlights that RSSC ecological diversity also does not adhere to these phylogenetic 

boundaries. Chapter 2 found that five phenotypically distinct ‘ecotypes’ exist within 

the RSSC which do not adhere to the species separation. This suggests that the 

shared life cycle within both species is selecting for the same trait differences within 

both RSSC species. The five distinct phenotypic groups or ‘ecotypes’ differed in their 

trait specificity, either being oligotrophic, heat tolerant, cold tolerant, antibiotic-

resistant/biofilm producer, and metabolically efficient. This reveals important 

habitat differentiators that are driving RSSC trait diversity and suggests that ecotype 

separation among both RSSC species could be causing this large diversity of RSSC 

strains rather than high diversity across all traits. 

Next, chapter 3 explored the phenotypic diversity of a single population of 

one of the RSSC species, Ralstonia solanacearum, within the UK. This chapter used a 
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collection recently introduced UK R. solanacearum strain spanning three decades 

from the first recorded outbreak in 1992 to 2019. This revealed three distinct 

groups that differ in their growth in nutrient-limited conditions, and overall trait 

generalism and specialism. Two traits, antibiotic resistance and biofilm production, 

were also seen to be increasing within this population with time. This reveals 

important selective forces within the UK environment driving R. solanacearum 

adaptation. This thesis has also shown that UK R. solanacearum is less diverse than 

the worldwide collection (figure 5.1). This is expected as we are comparing a 

population to a worldwide collection. Furthermore, high diversity of bacteria has 

been linked to a larger habitat variability (McArthur et al. 1988) and the UK 

population of R. solanacearum should exist in a lot less variable habitat compared 

to the world collection of RSSC. UK R. solanacearum belong to the cold-tolerant 

strain of Ralstonia solanacearum (race 3 biovar 2 or phylotype IIB sequevar 1), the 

causative agent of potato brown rot in Europe (Fegan and Prior 2005, Safni et al. 

2014). Therefore, it is thought to have a smaller host range and has been recently 

disseminated worldwide by the potato trade (Caruso et al. 2017) which would also 

result in reduced diversity due to the recent population expansion. However, a 

surprisingly large amount of phenotypic diversity was observed within this single 

population (figure 5.1) which can be explained by RSSC generalist nature (Hayward 

1991, Genin and Boucher 2002). Furthermore, strains within the RSSC have large 

genomes with complex regulatory systems allowing large phenotypic differences 

despite high genetic similarities (Schell 2000, Cellier and Prior 2010, Genin and 

Denny 2012). Overall, this research has progressed the understanding of RSSC 

ecological diversity at the global and population level. 

 

5.3 What is driving trait diversity among the Ralstonia solanacearum 

species complex (RSSC)?  

Large ecological diversity was observed among the RSSC plant pathogen, 

and this thesis also tried to explore potential drivers of this trait diversity. 

Comparative analysis revealed that small amounts of trait diversity can be explained 

by the host, location, and time from which isolates were sampled, suggesting that 
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life history characteristics of bacteria isolates can drive diversification within the 

RSSC. Chapter 2 revealed that RSSC phenotypic diversity can be partly explained by 

the host and continent they were sampled from. However, chapter 3 revealed that 

at the population level the isolation source (environmental and crop host) and 

location cannot explain trait diversity. The time in which an isolate was sampled 

does drive some trait variation within a single population of R. solanacearum with 

increased diversification over time. This is to be expected as the UK population of R. 

solanacearum was recently introduced to the country (Elphinstone and Matthews-

Berry 2017) and microorganisms increase in diversity when new niche opportunities 

open (Rainey and Travisano 1998). This suggests that different populations of RSSC 

within different countries and host plants may have distinctive selective forces 

driving RSSC trait differences. Overall, this suggests that at smaller scales 

(population level) increased diversification is occurring with time and host or 

location effects cannot be observed. However, at a global scale, the continent and 

host from which isolates were collected can explain trait diversification but these 

only explain small amounts of variation suggesting that other factors are also at 

play. 

Trait correlations were also explored in chapters 3 and 4 as an explanation 

of the phenotypic diversification of Ralstonia solanacearum isolates. In chapter 3 I 

discovered that trait correlations differed between the three phenotypically distinct 

ecotypes identified within this study. Therefore, trait correlations were explored in 

more detail by conducting an evolution experiment on one UK R. solanacearum 

isolate in chapter 4. Experimental evolution is a powerful technique used to explore 

how natural populations may evolve and adapt to environmental conditions 

(Phillips and Burke 2021). This revealed that adapting to environmental stresses is 

limited by trait correlations and that negative trait correlations exist between 

extreme pH and salinity stress conditions. However, extreme pH and salinity were 

seen positively correlated among UK R. solanacearum within all three ecotypes in 

chapter 3. Together these results suggest that the two stresses, extreme pH and 

salinity, are both present within the same environment in the UK, causing a positive 

trait correlation between the two traits as observed in chapter 3. In support of this, 

salinity has been seen to coincide with high pH stress within the soil and rivers 
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(Sardinha et al. 2003, Jiang et al. 2022) with sewage and agricultural run-off causing 

increased pH and saline levels within these environments (Rowbury 1997, 

Shrivastava and Kumar 2015, Zhang et al. 2021). Furthermore, no adaptation to the 

combined stress conditions (pH and salinity) was observed in chapter 4, however, 

UK isolates were seen to be equally adapted to both conditions in chapter 3. This 

implies that R. solanacearum can adapt to both stress conditions but that this just 

did not occur within the lab. A few explanations for these contradicting results 

could also be that the 40 days within the laboratory experiment in chapter 4 may 

have not been enough time to observe this adaptation. Another explanation could 

be that fluctuations within the environment, which I did not explore in my 

evolutionary experiment, can select for adaptation to both stress conditions. Within 

fluctuating environments, rather than having to adapt to two stresses 

simultaneously which can be too stressful for survival, bacteria can adapt to one 

stress before the environment switches and then accumulate stress responses to 

the other environment separately. Additionally, trade-offs were observed between 

stress tolerance traits and metabolism within chapter 4 when minimal media was 

used, while rich media was used for stress tolerance traits in the high-throughput 

phenotyping experiment in chapter 3. Therefore, these trade-offs between traits 

may be only visible when resources are not abundant as stress tolerance is linked 

with metabolic ability. Previous research has also suggested that genetic 

correlations among traits will often be positive when resources are abundant, while 

negative correlations reflecting trade-offs may only be apparent when fitness is 

measured in a resource-poor environment (Sgrò and Hoffmann 2004). The 

evolutionary experiment in chapter 4 also highlighted a larger diversification of 

clones adapted to stress conditions compared to the stress-free adapted clones, 

suggesting that environmental stresses and trait correlations can drive increased 

phenotypic diversity. Overall, metadata or life-history characteristics explain 

surprisingly little phenotypic variation. However, trait correlations are abundant 

and dynamic, potentially explaining trait differences observed between RSSC 

isolates. 
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5.4 What genetic mechanisms are underpinning trait variation within the 

Ralstonia solanacearum species complex (RSSC)? 

This research has also linked phenotypes with genetic information within the 

Ralstonia solanacearum species complex (RSSC). RSSC isolates also have large 

bipartite genomes with a great number of hypothetical proteins and therefore, a 

better understanding of how these complex genetic mechanisms link to trait 

characteristics is needed to provide useful annotations of these genes. This is 

especially important during this current omics era where vast quantities of genomic 

data are now available. RSSC are genetically diverse, with many regulatory 

pathways that respond to internal and environmental cues allowing for high 

phenotypic plasticity (Schell 2000, Cellier and Prior 2010, Genin and Denny 2012, 

Perrier et al. 2019, Chen et al. 2022, Yan et al. 2022). Furthermore, genome 

movements (such as prophages, insertion sequences, etc.) (Gonçalves et al. 2021, 

Greenrod et al. 2022), and epigenetic differences, for example methylation patterns 

(Erill et al. 2017), are also highly diverse among the RSSC. Therefore, this could 

explain why large amounts of phenotypic variation was not linked to genetic 

differences observed within this thesis. Despite this some key findings were 

discovered. 

Within this thesis, chapter 2 highlighted that accessory genome variation is 

potentially driving ecotype differences among the two species studied within the 

RSSC. Previous research on RSSC genomics has also found that each RSSC strain 

appears to exhibit a highly diverse genetic content (Ailloud et al. 2011), suggesting 

that horizontal gene transfer (HGT) plays a large role in RSSC adaptability and 

genome content. Previous research on genomic analysis of RSSC strains suggested 

that HGT played a great role in shaping the genomic plasticity and genetic diversity 

of RSSC genomes (Geng et al. 2022) and this thesis has begun to link this with 

ecological trait differences. The transfer of plasmids between bacterial species is 

also known to help bacteria adapt within the environment, such as antimicrobial 

resistance plasmids (Dimitriu 2022). However, while small plasmids have been 

detected within RSSC strains, this had only been the case so far within three strains, 

CMR15, PS107 and T78 (Remenant et al. 2010, Genin and Denny 2012, Cho et al. 

2019). Further research may discover more strains within the RSSC that contain 
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small plasmids, or this could suggest that plasmids are easily lost within RSSC 

strains. Overall, research has shown that recombination plays a major role in RSSC 

genome evolution, as large numbers of genomic islands surrounded by mobile 

elements are present within the genome (Remenant et al. 2010, Peeters et al. 2013, 

Geng et al. 2022). This supports my findings that gene acquisition is responsible for 

ecotype differences at a global scale 

Chapter 3 showed that R. solanacearum isolates within the UK are extremely 

genetically similar, despite 30 years of sampling. UK R. solanacearum belongs to the 

cold tolerant strain of Ralstonia solanacearum (race 3 biovar 2 or phylotype IIB 

sequevar 1), the causative agent of potato brown rot in Europe (Fegan and Prior 

2005, Safni et al. 2014) and has only recently been introduced to the country 

(Elphinstone and Matthews-Berry 2017). Therefore, this lack of genetic variation 

could be due to a recent invasion and expansion of the population. However, the 

pathogen has been present in the UK for at least 30 years and some genome 

differences should be expected to have been occurred within that time. Another 

explanation could be that UK R. solanacearum is at an evolutionary fitness peak, as 

cold tolerance, or other adaptations to the UK environment, limit adaptation due to 

trade-offs. Furthermore, annual bottlenecking at winter could explain low genetic 

diversity. Each winter R. solanacearum densities fall to undetectable levels within 

rivers (Elphinstone and Matthews-Berry 2017). It is thought that R. solanacearum’s 

ability to survive the cool winter temperatures in UK rivers is primarily due to the 

presence of Solanum dulcamara along the river beds with bacteria colonising the 

roots over winter (Genin and Boucher 2002, Champoiseau et al. 2009). Therefore, 

population densities should be expected to be a lot lower at winter than summer, 

suggesting an annual bottlenecking event. However, while UK R. solanacearum 

were genetically very similar, there was still large variation in phenotype, suggesting 

that differences could be due to other genetic information, such as epigenetics, not 

captured in this study. 

This thesis has revealed that the high genetic similarity seen among UK R. 

solanacearum isolates in their core genome and their gene presence/absence 

matrix (chapter 3) could be due to insertion sequence (IS) movement instead of 

core genome differences. Chapter 4 revealed that insertion sequence (IS) 
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movement had a large role in the initial adaptation of R. solanacearum to 

environmental stress conditions within an evolution experiment. Therefore, this 

could be the case within the UK environment also. Specific IS movement, 

particularly IS1021 loss within the megaplasmid, was linked to abiotic stress 

tolerance adaptation within the laboratory. While IS movement among Ralstonia 

solanacearum has been explored (Greenrod et al. 2022), linking specific IS 

movements with isolate’s phenotypic variation is still required to determine IS 

movement functionality. Therefore, future research could focus on comparing 

different trait measurements with UK R. solanacearum’s IS movement profile. 

Overall, linking genetic data with RSSC phenotypic variation has revealed 

novel insights into how this plant pathogen adapts. Accessory genome variation 

drives RSSC local adaptation to the environment, explaining differences in ecotypes 

discovered in chapter 2. While initial adaptation to the UK environment can be 

driven by IS movement within R. solanacearum, explaining the absence of SNP 

genetic mutations within this population. Surprisingly, little phenotypic differences 

among RSSC isolates can be explained by their core genome variation, justifying the 

need to classify this pathogen as a species complex. 

 

5.5 Wider implications of this research 

Due to the danger RSSC poses to our food supply, it has been classed as a 

quarantine pest in many countries, including the EU (EPPO 2022), and is classed as a 

bioterrorism select agent in the US (USDA 2020) (Cellier and Prior 2010). However, 

the high diversity and plastic nature of RSSC means that it is difficult to control. This 

is because RSSC can infect a large range of host plants, including many weed 

species, such as Solanum dulcamara in Europe (Wenneker et al. 1999) and can 

persist in non-host environments, such as within water sources (and potential 

irrigation sources), within soil communities, and on farm equipment for a debated 

period of time (Bragard et al. 2019). This research highlights the ecological diversity 

of RSSC and reveals that this is not linked to RSSC phylogeny (chapter 2). This can 

create problems when designing control strategies, highlighting the need to test 

potential control strategies on a wide range of isolates. This research also suggests 

that the surrounding microbial community has a large impact on RSSC diversity, 
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with accessory genome variation, most likely caused by horizontal gene transfer 

(HGT), resulting in adaptation to environmental niches (chapter 2). Therefore, when 

thinking about the control and limiting the spread of pathogenic bacteria, like RSSC, 

plant pathologists should consider the surrounding microbial community. However, 

this research also highlights why RSSC is called a species complex as few species-

specific differences were found. Therefore, this research suggests that when 

designing control methods we can consider all RSSC species as the same pathogen. 

An increase in antibiotic resistance over time was seen in this thesis within 

UK R. solanacearum (chapter 3) which can have implications for the control of this 

pathogen. For example, reducing the efficacy of antibiotic-producing biocontrol 

agents (Zhou et al. 2012, Singh and Kumar Yadav 2016). Antagonistic bacteria, like 

Bacillus amyloliquefaciens (Singh and Kumar Yadav 2016) or Pseudomonas 

brassicacearum J12 strain, produce antimicrobial compounds, such as 4-

diacetylphloroglucinol (2,4-DAPG) (Zhou et al. 2012), significantly reducing bacterial 

wilt disease symptoms in planta (Zhou et al. 2012, Singh and Kumar Yadav 2016). 

However, natural antimicrobial resistance within the population may mean that 

some biocontrol agents will be or will quickly become ineffective. This increase in 

antimicrobial resistance within environmental isolates of R. solanacearum also 

suggests that they can act as reservoirs for antimicrobial resistance genes also 

having implications for antibiotic efficacy in agricultural and even clinical settings. 

Resistance genes are usually associated with mobile genetic elements, which can be 

transferred between distantly related bacteria within the environment (Wellington 

et al. 2013). Therefore, if transferred to other pathogenic bacteria this could have 

implications in human medicine. However, the risk of this should be low due to the 

lack of plasmids found among RSSC strains (Remenant et al. 2010, Genin and Denny 

2012, Cho et al. 2019). 

Furthermore, chapter 4 revealed that mutations were not the main genetic 

driver of R. solanacearum adaptation within the laboratory. Insertion sequence 

movement was discovered as being highly abundant and was linked to 

environmental stress evolution. This highlights the importance of looking at 

multiple genetic mechanisms, such as IS movement, prophages, methylation 

patterns and so on, when looking at genetic causes of adaptation after evolutionary 
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experiments for RSSC and other microorganisms. Bioinformatic pipelines are 

constantly being developed to improve the detection of these variants and more 

long-read sequencing (such as Nanopore and PacBio) and should help to discover 

different variants more easily in the future. 

 

5.6 Future developments and limitations 

While this thesis has revealed more about the diversity of the Ralstonia 

solanacearum species complex (RSSC), there is still a lot still left unexplored. The 

aim of this thesis was to explore the phenotypic diversity of this plant pathogen and 

one method to conduct this was by measuring a broad range of ecologically 

relevant traits (n=46) on a collection of RSSC isolates (chapter 2 and 3). However, 

while this is the most extensive study on RSSC ecological diversity to date, these 

chosen traits will not have captured all the phenotypic diversity present among the 

RSSC and more traits, such as host range, motility, or growth on solid media to 

name a few, could separate these isolates even further. Furthermore, conducting 

this comparative analysis on more RSSC isolates would most likely reveal higher 

phenotypic diversity within the RSSC. For example, this thesis does not include one 

of the three RSSC species, R. syzygii (Wicker et al. 2012), a highly diverse bacterial 

species which has therefore been subdivided into three separate subspecies (Safni 

et al. 2014, 2018). Additionally, within the RSSC bacterial collection used in this 

thesis there are gaps in the metadata due to limitations on the samples and 

information available at FERA science ltd. 

Furthermore, within chapter 3, UK R. solanacearum diversification over time 

(1992-2019) was explored. However, certain years had no R. solanacearum samples 

representing them. This was due to the high detection limit, two viable pathogen 

cells per ml of river water (Elphinstone and Matthews-Berry 2017), needed to 

isolate R. solanacearum from river water in the UK. Therefore, within these years 

the pathogen never reached detectable levels and therefore no samples were 

collected. Within this thesis, I have discovered diversification of UK isolates over 

time, with antibiotic resistance and biofilm production traits increasing within the 

population with time. A continuation of sampling of UK R. solanacearum isolates 

can therefore reveal if this pattern continues and can also explore if these isolates 
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will remain clonal or if genetic diversification will begin. Overall, more phenotypic 

traits and isolates involved within this study could reveal more about the diversity 

of this plant pathogen. However, this would be a huge undertaking and there are 

limitations, such as which isolates are detectable within the environment, which 

were out of our control. 

Within this thesis, I used comparative analysis on environmental isolates to 

explore the phenotypic diversity of a natural bacterial population. However, some 

of the trait variation observed could be due to lab artefacts. This was controlled for 

as much as possible through multiple methods. First, each isolate’s stress traits 

were divided by their growth in the absence of that stressor, within the same batch, 

to attempt to control for batch effects and media preferences between isolates. 

Secondly, three repeats were also conducted for each isolate and trait combination 

to reduce random measurement error effects. Furthermore, among each 

inoculation plate used for the high-throughput phenotyping were two well-

characterised RSSC reference strains, the R. pseudosolanacearum type strain 

GMI1000 from French Guyana, and R. solanacearum type strain K60 from USA. 

These strains were repeated three/four times per plate and were placed 

strategically across the microplates to detect and account for both batch and plate 

position effects. A linear model was then conducted using batch, plate position and 

technical replicate as random effects was then conducted on these two strains to 

determine that only a small proportion of variation was explained by these 

variables (7%, 6% and 0% for batch, plate position and technical replicate 

respectively). Overall, multiple control methods were used to reduce lab artifacts 

within this experiment. However, despite these efforts some variation between 

isolates may be lab artifacts and relating these trait measurements to natural 

environments should be taken with a touch of caution. 

This thesis also highlights the potential use of genome wide association 

study (GWAS) techniques on exploring genetic causes of phenotypic traits within 

microorganisms. Chapter 2 showed that GWAS techniques can be used to link 

phenotypes to genotypes within the RSSC, where a type II secretion system was 

found to be associated with cold tolerance and three novel genome regions 

associated with rifampicin resistance. Bacterial GWAS have three main confounding 
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factors to take into consideration. First, bacteria have higher linkage between genes 

via population sweeps, or bottlenecks, which removes much of the genetic diversity 

within a population. They are also asexual and lack the ability to reduce linkage 

disequilibrium (LD) as quickly as sexually reproducing organisms (Read and Massey 

2014), therefore causative genes should ideally be acquired multiple times by 

different lineages, as this improves the evidence for the gene causing the trait (Read 

and Massey 2014). Finally, they have a higher population stratification due to lack 

of recombination. Population structure confounds GWAS as the non-random 

distribution of alleles within subpopulations can cause significant associations 

between genotypes and phenotypes to be detected which are due to bacteria being 

related rather than the genome region causing the phenotype (Read and Massey 

2014, Chen and Shapiro 2015). The problem of population stratification is 

particularly acute in highly clonal (rarely recombining) bacteria, and in those with 

separate geographic or host-associated subpopulations (Chen and Shapiro 2015). 

New refinements on GWAS approaches for microbes are constantly being 

developed, each using different methods to control for these confounding factors. 

Some software use clustering methods to control for population structure while 

others use phylogenetic trees (Collins and Didelot 2018) to take into account 

relatedness between clonal lineages. This research used the pyseer GWAS software 

for microbial GWAS (Lees et al. 2018) with distances from a phylogenetic tree used 

to correct for population structure. This software can also utilise unitigs and gene 

presence/absence as the input genetic variable as well as mutations within the core 

genome, such as single-nucleotide polymorphisms (SNPs). This is important as my 

research in chapter 2 suggests that accessory genome variation is important for 

RSSC trait variation. However, despite correcting for these confounding factors 

there are still limitations in the software. For example, my results highlight that 

those traits with strong signals, such as antibiotic resistance, deliver more promising 

results compared to more subtle traits, such as growth on different carbon sources, 

due to population structure confounding results agreeing with past studies (Power 

et al. 2016). Overall, this thesis has shown that GWAS can be used within bacterial 

species to discover novel genes associated with traits, however it is important to 

note that these are associations and may not be the causative gene/mutation. 
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5.7 Concluding remarks 

This thesis has given an in-depth investigation into the phenotypic diversity 

of the bacterial plant pathogen Ralstonia solanacearum species complex (RSSC). It 

has considered diversity at the global and population level, as well as within the 

laboratory (figure 5.1). While also linking some of this trait variation to genetic data, 

discovering the causative genetic mechanisms behind certain traits. The RSSC is 

highly diverse phenotypically and a large overlap in trait diversity exists between 

two RSSC species (R. pseudosolanacearum and R. solanacearum), supporting the 

classification that this plant pathogen is a species complex and suggests that 

differences between members cannot be determined by core genome differences 

alone. I have identified that niche specialisation drives high diversity among this 

plant pathogen species, both at the species and population level. However, while 

ecological differences were shown to be driven by accessory genome variation at 

the global level, insertion sequence (IS) movement may be driving initial adaptation 

to the environment within a single UK population of R. solanacearum. I also showed 

that environmental stresses can drive increased R. solanacearum diversity, caused 

by negative trait-correlations between different environmental stresses and 

metabolic traits. Finally, a genome-wide association study (GWAS) revealed a type II 

secretion system associated with cold tolerance and three novel genome regions 

associated with rifampicin resistance within the RSSC. Overall, this thesis has shown 

that comparative analysis combined with evolution experiments can build 

knowledge on the adaptation of microorganisms in natural environments and 

provides insights into RSSC ecological diversity improving our knowledge of the 

epidemiology of this plant pathogen. 
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Appendices 

Appendix A: Bacterial collections and supplemental methods 

Appendix Table A.1: Global Ralstonia solanacearum species complex (RSSC) collection. Table listing 
the world RSSC isolate collection, used within chapter 2, with identification names, year, host, and 
country isolated from as well as the assigned species and phylotype based on whole genome 
sequencing analysis. 

York 
Number 

(collection: 
University 

of York) 

Protect 
Number 

(collection: 
FERA 

Science 
ltd.) 

NCPPB 
Number 

(collection: 
FERA 

Science 
ltd.) 

Other 
Identifier 

(collection: 
FERA Science 

ltd.) 

Host Year Continent Country Species Phylotype 

YO001 7357 NCPPB 
1018   Potato 1961 Africa Angola Ralstonia 

pseudosolanacearum III 

YO002 6825 NCPPB 
1483   Potato 1963 Oceania Australia Ralstonia 

solanacearum II 

YO003   NCPPB 
2245   Stylosanthes 

humulis 1969 Oceania Australia Ralstonia 
pseudosolanacearum I 

YO004   NCPPB 
3980   Potato 1997 Oceania Australia Ralstonia 

solanacearum II 

YO005   NCPPB 
3992   Tobacco   Oceania Australia Ralstonia 

pseudosolanacearum I 

YO006 4364 NCPPB 
4001   Ginger   Oceania Australia Ralstonia 

pseudosolanacearum I 

YO007 3615     Potato   Oceania Australia Ralstonia 
pseudosolanacearum I 

YO008     21203224 Potato 2012 Asia Bangladesh Ralstonia 
solanacearum II 

YO009     21204041 Potato 2012 Asia Bangladesh Ralstonia 
pseudosolanacearum I 

YO010     21208789 Potato 2012 Asia Bangladesh Ralstonia 
solanacearum II 

YO011     21404030 Potato 2014 Asia Bangladesh Ralstonia 
solanacearum II 

YO012 3603     Potato 1993 Europe Belgium Ralstonia 
solanacearum II 

YO013   NCPPB 
0613   Potato 1958 South America Brazil Ralstonia 

solanacearum II 

YO014 5683     Tobacco 1968 South America Brazil Ralstonia 
solanacearum II 

YO015   NCPPB 
3649   Banana 1979 South America Brazil Ralstonia 

solanacearum II 

YO016   NCPPB 
3650   Banana 1979 South America Brazil Ralstonia 

solanacearum II 

YO017 1193 NCPPB 
3868   Potato 1991 South America Brazil Ralstonia 

solanacearum II 



 185 

YO018 1195 NCPPB 
3864   Chili 1991 South America Brazil Ralstonia 

pseudosolanacearum I 

YO019 1199, 6282 NCPPB 
3862   Chili 1991 South America Brazil Ralstonia 

solanacearum II 

YO020 1198 NCPPB 
3863   Tomato 1991 South America Brazil Ralstonia 

pseudosolanacearum I 

YO021 1202, 7360 NCPPB 
3866   Potato 1993 South America Brazil Ralstonia 

pseudosolanacearum I 

YO022   NCPPB 
3982   Potato   South America Chile Ralstonia 

solanacearum II 

YO023 4369 NCPPB 
4006   Olive   Asia China Ralstonia 

pseudosolanacearum I 

YO024 4370 NCPPB 
4007   Mulberry   Asia China Ralstonia 

pseudosolanacearum I 

YO025 4375, 5787 NCPPB 
4012   Mulberry   Asia China Ralstonia 

pseudosolanacearum I 

YO026 4374, 5786, 
6289 

NCPPB 
4011, 

NCPPB 
3850 

  Mulberry   Asia China Ralstonia 
solanacearum II 

YO027   NCPPB 
3994   Olive   Asia China Ralstonia 

pseudosolanacearum I 

YO028   NCPPB 
3998   Ginger   Asia China Ralstonia 

pseudosolanacearum I 

YO029 4366 NCPPB 
4003   Ginger   Asia China Ralstonia 

pseudosolanacearum I 

YO030 4371 NCPPB 
4008   Peanut   Asia China Ralstonia 

pseudosolanacearum I 

YO031 6822 NCPPB 282   Potato 1950 South America Colombia Ralstonia 
solanacearum II 

YO032 5770 NCPPB 
3594   Heliconia 

caribaea 1960 South America Colombia Ralstonia 
solanacearum II 

YO033 5680     Tobacco 1966 South America Colombia Ralstonia 
solanacearum II 

YO034 5771 NCPPB 
2154   Heliconia sp. 1958 North America Costa Rica Ralstonia 

pseudosolanacearum I 

YO035 8026 NCPPB 787   Banana 1959 North America Costa Rica Ralstonia 
solanacearum II 

YO036   NCPPB 
0788   Banana 1959 North America Costa Rica Ralstonia 

solanacearum II 

YO037   NCPPB 
0790   Nightshade 1959 North America Costa Rica Ralstonia 

pseudosolanacearum I 

YO038   NCPPB 
0791   False daisy 1959 North America Costa Rica Ralstonia 

pseudosolanacearum I 
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YO039 5688     Potato 1972 North America Costa Rica Ralstonia 
solanacearum II 

YO040 4367 NCPPB 
4004   Ginger   North America Costa Rica Ralstonia 

pseudosolanacearum I 

YO041 5681 NCPPB 
3977   M. perfoliatum   North America Costa Rica Ralstonia 

solanacearum II 

YO042   NCPPB 
3993   Pepper   North America Costa Rica Ralstonia 

pseudosolanacearum I 

YO043 3612     Potato   North America Costa Rica Ralstonia 
solanacearum II 

YO044 6823 NCPPB 643   Potato 1959 Europe Cyprus Ralstonia 
solanacearum II 

YO045 6281 NCPPB 
1584   Potato 1963 Europe Cyprus Ralstonia 

solanacearum II 

YO046 6824 NCPPB 909   Potato 1961 Africa Egypt Ralstonia 
solanacearum II 

YO047   NCPPB 
1115   Potato 1961 Africa Egypt Ralstonia 

solanacearum II 

YO048 6827 NCPPB 
1824   Potato 1966 Africa Egypt Ralstonia 

solanacearum II 

YO049 803     Potato 1991 Africa Egypt Ralstonia 
solanacearum II 

YO050 804     Potato 1991 Africa Egypt Ralstonia 
solanacearum II 

YO051 805     Potato 1991 Africa Egypt Ralstonia 
solanacearum II 

YO052 819     Potato 1991 Africa Egypt Ralstonia 
solanacearum II 

YO053 1328     Potato 1994 Africa Egypt Ralstonia 
solanacearum II 

YO054 1538     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO055 1539     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO056 1540     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO057 1541     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO058 1542     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO059 1543     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO060 1329     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO061 1544     Potato 1995 Africa Egypt Ralstonia 
solanacearum II 

YO062 1330     Potato 1996 Africa Egypt Ralstonia 
solanacearum II 

YO063 1331     Potato 1997 Africa Egypt Ralstonia 
solanacearum II 

YO064 1332     Potato 1998 Africa Egypt Ralstonia 
solanacearum II 

YO065 3122     Potato 1998 Africa Egypt Ralstonia 
solanacearum II 
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YO066 4433, 7361 NCPPB 
4153   Potato 1998 Africa Egypt Ralstonia 

solanacearum II 

YO067 3123     Potato 1998 Africa Egypt Ralstonia 
solanacearum II 

YO068 4567     Water 2002 Africa Egypt Ralstonia 
solanacearum II 

YO069 4573     Water 2002 Africa Egypt Ralstonia 
solanacearum II 

YO070 4578     Potato 2002 Africa Egypt Ralstonia 
solanacearum II 

YO071 4584     Soil 2002 Africa Egypt Ralstonia 
solanacearum II 

YO072 4587       2002 Africa Egypt Ralstonia 
solanacearum II 

YO073 4592       2002 Africa Egypt Ralstonia 
solanacearum II 

YO074   NCPPB 
1500   Potato 1963 Oceania Fiji Ralstonia 

pseudosolanacearum I 

YO075   NCPPB 
1702   Potato 1964 Oceania Fiji Ralstonia 

pseudosolanacearum I 

YO076   NCPPB 
1029   Pelargonium 

capitatum 1961 Africa France Ralstonia 
pseudosolanacearum III 

YO077   NCPPB 
2200   Tomato 1966 North America France Ralstonia 

solanacearum II 

YO078 4437, 7362 NCPPB 
4157   Potato 1995 Europe France Ralstonia 

solanacearum II 

YO079     21108193 Tomato 2011 Europe France Ralstonia 
pseudosolanacearum I 

YO080   NCPPB 
2204   Tomato 1968 South America French 

Guyana 
Ralstonia 

pseudosolanacearum I 

YO081 2015     Tomato   South America French 
Guyana 

Ralstonia 
pseudosolanacearum I 

YO082   NCPPB 
3181   Nightshade 1978 Africa Gambia Ralstonia 

pseudosolanacearum III 

YO083 7790     Tomato 2011 Asia Georgia Ralstonia 
pseudosolanacearum I 

YO084     21112409 Tomato 2011 Asia Georgia Ralstonia 
pseudosolanacearum I 

YO085 4441, 3604, 
5689 

NCPPB 
4161   Potato 1996 Europe Germany Ralstonia 

solanacearum II 

YO086   NCPPB 
1789   Potato 1965 Europe Greece Ralstonia 

solanacearum II 

YO087 6828 NCPPB 
2015   Potato 1967 Europe Greece Ralstonia 

solanacearum II 

YO088 8027 NCPPB 
3205   Banana 1979 South America Guyana Ralstonia 

solanacearum II 
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YO089   NCPPB 
0789   Banana 1959 North America Honduras Ralstonia 

solanacearum II 

YO090     21123931 Potato 2012 Europe Hungary Ralstonia 
solanacearum II 

YO091     21123932 Potato 2012 Europe Hungary Ralstonia 
solanacearum II 

YO092     21123933 Potato 2012 Europe Hungary Ralstonia 
solanacearum II 

YO093     21123934 Potato 2012 Europe Hungary Ralstonia 
solanacearum II 

YO094     21123935 Potato 2012 Europe Hungary Ralstonia 
solanacearum II 

YO095     21123936 Potato 2012 Europe Hungary Ralstonia 
solanacearum II 

YO096   NCPPB 
1331   Potato 1962 Asia India Ralstonia 

solanacearum II 

YO097   NCPPB 
1333   Potato 1962 Asia India Ralstonia 

solanacearum II 

YO098 8025 NCPPB 
3214   Banana 1980 Asia India Ralstonia 

solanacearum II 

YO101 147 NCPPB 
3793   Potato 1985 Asia Indonesia Ralstonia 

pseudosolanacearum I 

YO109 143     Clove 1987 Asia Indonesia Ralstonia 
solanacearum II 

YO111 148 NCPPB 
3794   Clove 1987 Asia Indonesia Ralstonia 

solanacearum II 

YO112 7233   20720807 Water 2007 Europe Ireland Ralstonia 
solanacearum II 

YO113 7234   20720808 Water 2007 Europe Ireland Ralstonia 
solanacearum II 

YO114     20719104 Potato 2007 Europe Ireland Ralstonia 
solanacearum II 

YO115 7235   20720809   2007 Europe Ireland Ralstonia 
solanacearum II 

YO116     20722587 Tomato 2007 Europe Ireland Ralstonia 
solanacearum II 

YO117     20722588 Tomato 2007 Europe Ireland Ralstonia 
solanacearum II 

YO119 140 NCPPB 
3445   Clove 1983 Asia Java Ralstonia syzygii IV 

YO120 6577 NCPPB 173   Potato 1945 Africa Kenya Ralstonia 
solanacearum II 

YO121 7358 NCPPB 
1028   Potato 1961 Africa Kenya Ralstonia 

solanacearum II 

YO122   NCPPB 
1045   Eggplant 1961 Africa Kenya Ralstonia 

pseudosolanacearum I 

YO123   NCPPB 
1049   Tomato 1961 Africa Kenya Ralstonia 

solanacearum II 

YO124 4142, 4448 NCPPB 
4215   Water 2001 Africa Kenya Ralstonia 

pseudosolanacearum I 

YO125 4134, 4444 NCPPB 
4211   Pelargonium 

hortorum 2001 Africa Kenya Ralstonia 
solanacearum II 

YO126 4135, 4445 NCPPB 
4212   Pelargonium 

hortorum 2001 Africa Kenya Ralstonia 
solanacearum II 
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YO127 4138, 4446 NCPPB 
4213   Water 2001 Africa Kenya Ralstonia 

solanacearum II 

YO128 4140, 4447 NCPPB 
4214   Soil 2001 Africa Kenya Ralstonia 

pseudosolanacearum III 

YO129 6826 NCPPB 
1489   Potato 1963 Africa Madeira Ralstonia 

solanacearum II 

YO130   NCPPB 
0792   Teak 1960 Asia Malaysia Ralstonia 

pseudosolanacearum I 

YO131   NCPPB 
1052   Ginger 1961 Asia Malaysia Ralstonia 

pseudosolanacearum I 

YO132   NCPPB 
1614   Potato 1964 Asia Malaysia Ralstonia 

solanacearum II 

YO133   NCPPB 
3190   Tomato 1978 Asia Malaysia Ralstonia 

pseudosolanacearum I 

YO134   NCPPB 
2199   Eggplant 1965 North America Martinique Ralstonia 

solanacearum II 

YO135 876 NCPPB 253   Pine tree 1949 Africa Mauritius Ralstonia 
pseudosolanacearum I 

YO136   NCPPB 
0500   Broad bean 1956 Africa Mauritius Ralstonia 

pseudosolanacearum I 

YO137   NCPPB 
0501   Cabbage 1956 Africa Mauritius Ralstonia 

pseudosolanacearum I 

YO138   NCPPB 
0503   Dahlia sp. 1956 Africa Mauritius Ralstonia 

pseudosolanacearum I 

YO139   NCPPB 
1621   Potato 1960 Africa Mauritius Ralstonia 

pseudosolanacearum I 

YO140   NCPPB 
1484   Strelitzia 

reginae 1963 Africa Mauritius Ralstonia 
pseudosolanacearum I 

YO141   NCPPB 
1485   Common bean 1963 Africa Mauritius Ralstonia 

pseudosolanacearum I 

YO142 5682 NCPPB 
3974   Tomato   North America Mexico Ralstonia 

solanacearum II 

YO143 6830 NCPPB 
3238   Potato 1982 Europe Netherlands Ralstonia 

solanacearum II 

YO144 4436, 3605, 
5690 

NCPPB 
4156   Potato 1995 Europe Netherlands Ralstonia 

solanacearum II 

YO145   NCPPB 
1703   Potato 1965 Europe Nigeria Ralstonia 

pseudosolanacearum III 

YO146   NCPPB 
2088   Potato 1968 Africa Nigeria Ralstonia 

solanacearum II 

YO147     21106713 Potato 2011 Asia Pakistan Ralstonia 
solanacearum II 

YO148     21108524 Potato 2011 Asia Pakistan Ralstonia 
solanacearum II 
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YO149 5781 NCPPB 
1123   Tomato 1961 Oceania Papua New 

Guinea 
Ralstonia 

pseudosolanacearum I 

YO150 5782 NCPPB 
1140   Tomato 1961 Oceania Papua New 

Guinea 
Ralstonia 

pseudosolanacearum I 

YO151   NCPPB 
2937   Potato 1975 Oceania Papua New 

Guinea 
Ralstonia 

pseudosolanacearum I 

YO152 7028, 6285, 
3602 

NCPPB 
3985   Eggplant 1987 South America Peru Ralstonia 

solanacearum II 

YO153 5772 NCPPB 
3990   Potato 1989 South America Peru Ralstonia 

solanacearum II 

YO154 3613     Tomato   South America Peru Ralstonia 
pseudosolanacearum I 

YO156 5785, 6287 NCPPB 
3996   Tomato   South America Peru Ralstonia 

pseudosolanacearum I 

YO157 8024 NCPPB 
2315   Banana   South America Peru Ralstonia 

solanacearum II 

YO158   NCPPB 
3986   Potato   South America Peru Ralstonia 

solanacearum II 

YO159 5776 NCPPB 
3970   Banana 1992 Asia Philippines Ralstonia 

solanacearum II 

YO160 5778 NCPPB 
3971   Banana   Asia Philippines Ralstonia 

solanacearum II 

YO161 6288, 4368, 
3614 

NCPPB 
4005   Ginger   Asia Philippines Ralstonia 

pseudosolanacearum I 

YO162     21422327   2014 Europe Poland Ralstonia 
solanacearum II 

YO163     21622099 Rose 2016 Europe Poland Ralstonia 
pseudosolanacearum I 

YO164     21622100 Rose 2016 Europe Poland Ralstonia 
pseudosolanacearum I 

YO165   NCPPB 
1019   Tomato 1960 Europe Portugal Ralstonia 

solanacearum II 

YO166 3608     Potato 1995 Europe Portugal Ralstonia 
solanacearum II 

YO167 4438 NCPPB 
4158   Potato 1995 Europe Portugal Ralstonia 

solanacearum II 

YO168 7421 NCPPB 
1225   Tomato 1958 North America Puerto Rico Ralstonia 

solanacearum II 

YO169   NCPPB 
1226   Tomato 1958 North America Puerto Rico Ralstonia 

solanacearum II 

YO170     21123062 (1) Potato 2012 Europe Serbia Ralstonia 
solanacearum II 

YO171     21123062 (2) Potato 2012 Europe Serbia Ralstonia 
solanacearum II 

YO172     21123063 (1) Potato 2012 Europe Serbia Ralstonia 
solanacearum II 

YO173     21123063 (2) Potato 2012 Europe Serbia Ralstonia 
solanacearum II 
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YO174     21025506/2   2013 Europe Serbia Ralstonia 
solanacearum II 

YO175     21025507/5   2013 Europe Serbia Ralstonia 
solanacearum II 

YO176     21025509/10   2013 Europe Serbia Ralstonia 
solanacearum II 

YO177     21025510/11   2013 Europe Serbia Ralstonia 
solanacearum II 

YO178   NCPPB 
1763   Tomato 1965 Africa Seychelles Ralstonia 

pseudosolanacearum I 

YO180 4440, 3606 NCPPB 
4160   Potato 1996 Europe Spain Ralstonia 

solanacearum II 

YO181   NCPPB 
1323   Potato 1962 Asia Sri Lanka Ralstonia 

solanacearum II 

YO182   NCPPB 
3217   Tumeric 1980 Asia Sri Lanka Ralstonia 

pseudosolanacearum I 

YO183 6293, 3607 NCPPB 
2505   Potato 1972 Europe Sweden Ralstonia 

solanacearum II 

YO184 6578 NCPPB 
2797   Solanum 

dulcamara 1974 Europe Sweden Ralstonia 
solanacearum II 

YO185   NCPPB 
2796   Solanum 

dulcamara 1975 Europe Sweden Ralstonia 
solanacearum II 

YO187 4363 NCPPB 
4000   Ginger   Asia Thailand Ralstonia 

pseudosolanacearum I 

YO188 5684     Tomato 1957 South America Trinidad Ralstonia 
solanacearum II 

YO189   NCPPB 
0446   Banana 1957 South America Trinidad Ralstonia 

solanacearum II 

YO190   NCPPB 
0616   Tomato 1957 South America Trinidad Ralstonia 

solanacearum II 

YO191 8023 NCPPB 
2198   Banana 1968 South America Trinidad Ralstonia 

pseudosolanacearum I 

YO192   NCPPB 
2201   Tomato 1968 South America Trinidad Ralstonia 

solanacearum II 

YO193   NCPPB 
1486   Peanut 1963 Africa Uganda Ralstonia 

pseudosolanacearum I 

YO194   NCPPB 
2484   Peanut 1969 Africa Uganda Ralstonia 

pseudosolanacearum I 

YO195     21517093 Potato 2015 Africa Uganda Ralstonia 
solanacearum II 

YO199 6594 NCPPB 
3854   Potato 1992 Europe UK Ralstonia 

solanacearum II 

YO372 5788, 5687, 
1532, 3611 

NCPPB 325, 
NCPPB 
3973 

  Tomato 1953 North America USA Ralstonia 
solanacearum II 

YO373   NCPPB 
0337   Tobacco 1954 North America USA Ralstonia 

solanacearum II 

YO374   NCPPB 
0338   Tobacco 1954 North America USA Ralstonia 

solanacearum II 
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YO375 4372, 5685 NCPPB 
4009   Tobacco 1955 North America USA Ralstonia 

pseudosolanacearum I 

YO376 7422 NCPPB 
1580   Tomato 1959 North America USA Ralstonia 

pseudosolanacearum I 

YO378   NCPPB 
1579   Ginger 1961 North America USA Ralstonia 

pseudosolanacearum I 

YO379   NCPPB 
1581   Strelitzia 

reginae 1961 North America USA Ralstonia 
pseudosolanacearum I 

YO380   NCPPB 
4362   Pelargonium 

hortorum 2003 North America USA Ralstonia 
solanacearum II 

YO381   NCPPB 
3969   Banana   South America Venezuela Ralstonia 

solanacearum II 

YO382   NCPPB 
0283   Solanum 

panduraforme 1950 Africa Zimbabwe Ralstonia 
pseudosolanacearum III 

YO383   NCPPB 
0332   Potato 1954 Africa Zimbabwe Ralstonia 

pseudosolanacearum III 

YO384   NCPPB 
0505   Comfrey 1956 Africa Zimbabwe Ralstonia 

pseudosolanacearum III 
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Appendix Table A.2: UK R. solanacearum collection. Table listing the UK R. solanacearum isolate 
collection, used within chapter 3 and 4, with identification names, year, host, and county isolated 
from. YO336, the isolate chosen for the evolution experiment within chapter 4, is highlighted in grey. 

York 
Number 

(collection: 
University 

of York) 

Protect Number 
(collection: FERA 

Science ltd.) 

NCPPB 
Number 

(collection: 
FERA Science 

ltd.) 

Other Identifier 
(collection: FERA 

Science ltd.) 
Host Year Continent Country County 

YO196 1143     Potato 1992 Europe UK Oxfordshire 

YO197 1123, 2797     Potato 1992 Europe UK Oxfordshire 

YO198 1140     Potato 1992 Europe UK Oxfordshire 

YO199 6594 NCPPB 3854   Potato 1992 Europe UK Oxfordshire 

YO200 6595 NCPPB 3855   Potato 1992 Europe UK Oxfordshire 

YO201 6596 NCPPB 3856   Potato 1992 Europe UK Oxfordshire 

YO202 6598 NCPPB 3858   Potato 1992 Europe UK Oxfordshire 

YO203   NCPPB 3815   Potato 1992 Europe UK Oxfordshire 

YO204 6003     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO205 6011     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO206 6057     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO207 6058     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO208 6059     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO209 6060     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO210 6084     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO211 6087     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO212 6089     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO213 6091     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO214 6093     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO215 6095     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO216 6100     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO217 6634     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO218 6635     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO219 6097     Solanum 
dulcamara 1993 Europe UK Oxfordshire 

YO220 6001     Solanum 
dulcamara 1994 Europe UK Wiltshire 

YO221 6044     Solanum 
dulcamara 1994 Europe UK Berkshire 
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YO222 6045     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO223 6046     Solanum 
dulcamara 1994 Europe UK Berkshire 

YO224 6047     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO225 6048     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO226 6049     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO227 6050     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO228 6051     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO229 6052     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO230 6053     Solanum 
dulcamara 1994 Europe UK Berkshire 

YO231 6054     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO232 6055     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO233 6056     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO234 6061     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO235 6064     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO236 6068     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO237 6070     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO238 6071     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO239 6074     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO240 6075     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO241 6076     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO242 6077     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO243 6078     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO244 6079     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO245 6080     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO246 6081     Solanum 
dulcamara 1994 Europe UK Berkshire 

YO247 6082     Solanum 
dulcamara 1994 Europe UK Berkshire 

YO248 6083     Solanum 
dulcamara 1994 Europe UK Oxfordshire 

YO249 5981     Water 1995 Europe UK Hertfordshire 

YO250 5984     Water 1995 Europe UK Hertfordshire 
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YO251 5989     Water 1995 Europe UK Hertfordshire 

YO252 6012     Water 1995 Europe UK Wiltshire 

YO253 6013     Water 1995 Europe UK Wiltshire 

YO254 6014     Water 1995 Europe UK Wiltshire 

YO255 6015     Water 1995 Europe UK Wiltshire 

YO256 6016     Water 1995 Europe UK Wiltshire 

YO257 6636     Solanum 
dulcamara 1995 Europe UK Oxfordshire 

YO258 5986     Water 1995 Europe UK Hertfordshire 

YO259 6002     Water 1996 Europe UK Oxfordshire 

YO260 6004     Solanum 
dulcamara 1996 Europe UK Greater London 

YO261 6005     Solanum 
dulcamara 1996 Europe UK Buckinghamshire 

YO262 6006     Solanum 
dulcamara 1996 Europe UK Surrey 

YO263 6007     Solanum 
dulcamara 1996 Europe UK Surrey 

YO264 6008     Solanum 
dulcamara 1996 Europe UK Surrey 

YO265 6009     Solanum 
dulcamara 1996 Europe UK Berkshire 

YO266 6062     Solanum 
dulcamara 1996 Europe UK Greater London 

YO267 6102     Potato 1996 Europe UK Berkshire 

YO268 6109     Water 1996 Europe UK Greater London 

YO269 2490     Water 1997 Europe UK Surrey 

YO270 2487     Water 1997 Europe UK Berkshire 

YO271 2488     Water 1997 Europe UK Hampshire 

YO272 2489     Water 1997 Europe UK Surrey 

YO273 6017     Tomato 1997 Europe UK Bedfordshire 

YO274 6018     Tomato 1997 Europe UK Bedfordshire 

YO275 6019     Water 1997 Europe UK Bedfordshire 

YO276 6020     Water 1997 Europe UK Bedfordshire 

YO277 6105     Water 1997 Europe UK Bedfordshire 

YO278 6106     Tomato 1997 Europe UK Bedfordshire 

YO279 6107     Tomato 1997 Europe UK Bedfordshire 

YO280 6108     Water 1997 Europe UK Bedfordshire 

YO281 3325     Water 1998 Europe UK Cambridgeshire 

YO282 6063     Water 1998 Europe UK Greater London 

YO283 3326     Water 1998 Europe UK Bedfordshire 

YO284 3597     Water 1999 Europe UK Northamptonshire 

YO285 3596     Water 1999 Europe UK Northamptonshire 

YO286 3729     Potato 1999 Europe UK Northamptonshire 

YO287 3792     Water 2000 Europe UK Kent 
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YO288 5518     Water 2000 Europe UK Scotland 

YO289 5822     Water 2005 Europe UK Bedfordshire 

YO290 5823     Water 2005 Europe UK Warwickshire 

YO291 5824     Water 2005 Europe UK Gloucestershire 

YO292 5825     Water 2005 Europe UK Gloucestershire 

YO293 5826     Water 2005 Europe UK Gloucestershire 

YO294 5827     Water 2005 Europe UK Worcestershire 

YO295 5828     Water 2005 Europe UK Worcestershire 

YO296 5870     Water 2005 Europe UK Gloucestershire 

YO297 5871     Water 2005 Europe UK Bedfordshire 

YO298 5872     Water 2005 Europe UK Cambridgeshire 

YO299 5873     Water 2005 Europe UK Bedfordshire 

YO300 5874     Water 2005 Europe UK Cambridgeshire 

YO301 5956     Potato 2005 Europe UK Nottinghamshire 

YO302 6418     Water 2006 Europe UK Lincolnshire 

YO303 6419     Water 2006 Europe UK Carmarthenshire 

YO304 6420     Water 2006 Europe UK Warwickshire 

YO305 6421     Water 2006 Europe UK Mid Glamorgan 

YO306 6423     Water 2006 Europe UK Cambridgeshire 

YO307 6424     Water 2006 Europe UK Cambridgeshire 

YO308 6425     Water 2006 Europe UK Dorset 

YO309 6426     Water 2006 Europe UK Dorset 

YO310 6427     Water 2006 Europe UK Carmarthenshire 

YO311 6428     Water 2006 Europe UK Carmarthenshire 

YO312 6429     Water 2006 Europe UK West Midlands 

YO313 6430     Water 2006 Europe UK West Midlands 

YO314 6431     Water 2006 Europe UK Warwickshire 

YO315 6432   W06/265 Water 2006 Europe UK Warwickshire 

YO316 6436     Water 2006 Europe UK Carmarthenshire 

YO317 6437     Water 2006 Europe UK Carmarthenshire 

YO318 6438     Water 2006 Europe UK Dorset 

YO319 6439     Water 2006 Europe UK Mid Glamorgan 

YO320 6440     Water 2006 Europe UK Bedfordshire 

YO321 6441   W06/427 Water 2006 Europe UK Warwickshire 

YO322 6442   W06/414 Water 2006 Europe UK Staffordshire 

YO323 6460   W06/614 Water 2006 Europe UK Carmarthenshire 

YO324 6461     Water 2006 Europe UK Bedfordshire 

YO325 6462     Water 2006 Europe UK Warwickshire 

YO326 6463     Water 2006 Europe UK Bedfordshire 

YO327 6464     Water 2006 Europe UK Dorset 

YO328 6465     Water 2006 Europe UK Carmarthenshire 

YO329 6466     Water 2006 Europe UK Mid Glamorgan 
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YO330 6470     Water 2006 Europe UK Warwickshire 

YO331 6471     Water 2006 Europe UK Carmarthenshire 

YO332 6472     Water 2006 Europe UK Cambridgeshire 

YO333 6477   W06/614 Water 2006 Europe UK Carmarthenshire 

YO334 6478   W06/818 Water 2006 Europe UK Cambridgeshire 

YO335 6940     Water 2007 Europe UK Hampshire 

YO336 6941     Water 2007 Europe UK Cambridgeshire 

YO337 6942     Water 2007 Europe UK Cambridgeshire 

YO338 6943     Water 2007 Europe UK Surrey 

YO339 6944     Water 2007 Europe UK Hampshire 

YO340 6945   W07/440 Water 2007 Europe UK Berkshire 

YO341 6946   W07/439 Water 2007 Europe UK Berkshire 

YO342 6947   W07/435 Water 2007 Europe UK Berkshire 

YO343 6948   W07/438 Water 2007 Europe UK Berkshire 

YO344 7114     Water 2008 Europe UK Oxfordshire 

YO345 7115     Solanum 
dulcamara 2008 Europe UK Oxfordshire 

YO346 7116     Solanum 
dulcamara 2008 Europe UK Oxfordshire 

YO347 7117     Solanum 
dulcamara 2008 Europe UK Oxfordshire 

YO348 7118     Water 2008 Europe UK Oxfordshire 

YO349 7482     Potato 2009 Europe UK Cornwall 

YO350     21314705 Water 2013 Europe UK Berkshire 

YO351     21314706 Water 2013 Europe UK Berkshire 

YO352     21415687 Water 2014 Europe UK Berkshire 

YO353     21415697 Water 2014 Europe UK Berkshire 

YO354     21517183 Water 2015 Europe UK Berkshire 

YO355     21517184 Water 2015 Europe UK Berkshire 

YO356     21620088 Water 2016 Europe UK Cambridgeshire 

YO357     21620089 Water 2016 Europe UK Cambridgeshire 

YO358     21620094 Water 2016 Europe UK Norfolk 

YO359     21620744 Water 2016 Europe UK Norfolk 

YO360     21713910 Water 2017 Europe UK Norfolk 

YO361     21713920 Water 2017 Europe UK Norfolk 

YO362     21714435 Water 2017 Europe UK Cambridgeshire 

YO363     21714855 Water 2017 Europe UK Norfolk 

YO364     21802385 Water 2018 Europe UK Norfolk 

YO365     21812347 Water 2018 Europe UK Cambridgeshire 

YO366     21812382 Water 2018 Europe UK Norfolk 

YO367     21813021 Water 2018 Europe UK Cambridgeshire 

YO368     21813608 Water 2018 Europe UK Norfolk 

YO369     21813731 Water 2018 Europe UK Cambridgeshire 
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YO370 5519     Water   Europe UK   

YO371 5517     Water   Europe UK   

YO385       Solanum 
dulcamara 2019 Europe UK   

YO386       Water 2019 Europe UK   

YO387       Solanum 
dulcamara 2019 Europe UK   

YO388       Water 2019 Europe UK   

YO389       Solanum 
dulcamara 2019 Europe UK   

YO390       Water 2019 Europe UK   
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Appendix Table A.3: Modified OS Media (OSG). Minimal medium, containing salts required for 
bacterial growth. Prepared from various stock solutions to avoid co-precipitation of the salts. Used 
within chapter 2, 3 and 4. 

Solution 
Name Add Amount 

OSA 

Na2HPO4 

35.05g (or Na2HPO4 x H2O, 
44.5g or Na2HPO4 x 7H2O, 

66.1g) 

KH2PO4 34.0g 

H2O dist. 500ml 

Autoclave 

OSB 

MgSO4 x 
7H2O 11.9g 

H2O dist. 100ml 

Autoclave 

OSC 

(NH4)2SO4 10.0g 

H2O dist. 100ml 

Autoclave 

OSD1 

CaCl2 x 
2H2O 2.2g 

H2O dist. 50ml 

Autoclave 

OSD2 

FeSO4 x 
7H2O dist. 50mg 

H2O dist. 50ml 

Sterile Filter 

OSD3 

(NH4)6Mo7O
24 x 4H2O 5mg 

H2O dist. 50ml 

Autoclave 
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(Prepare a 50mg/50ml solution then dilute 10x (ie: 5ml added to 
45ml H2O)) 

OSE 

EDTA (Na-
salt) 250mg 

ZnSO4 x 
7H2O 1095mg 

FeSO4 x 
7H2O 500mg 

MnSO4 x 
H2O 

154mg (or Mn(II)Cl2 x 4H2O, 
180mg) 

CuSO4 x 
5H2O 39mg 

Co(NO3)2 x 
6H2O 25mg 

Na2B4O7 x 
10H2O 18mg 

NiCl2 x 6H2O 130mg 

H2O dist. 100ml 

Add 2 
droplets of 

1 N HCl 
 

Sterile Filter 

(Protect this solution from light – alu foil) 

OSF 

Carbon of 
choice! g to make 100mM solution 

H2O dist. 50ml 

Autoclave 

All solutions can be stored at room temperature. 

OSG 
Medium 

Media: Volume: 

H2O dist. 
sterile 848ml 

OSD1 2ml 
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OSD2 2ml 

OSD3 2ml 

OSA 100ml 

OSB 10ml 

OSC 10ml 

OSE 1ml 

water 5ml 

Make sure pH is at around 7 before filter sterilising the OSG media. 

Mix by constant stirring with a magnet stirrer, sterile conditions 

Sterile filter (0.22µl) and aliquot in sterile 50ml falcon tubes. Seal with parafilm and store at 4°C. 

The carbon source can be added before starting the experiment. Add 5ml at 100mM to 45ml of 
OSG media to make 10mM overall. 
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Appendix Table A.4: DNA extraction protocol. DNA extraction protocol of Ralstonia solanacearum 
species complex (RSSC) isolates, used in chapter 2, 3 and 4, using the Qiagen DNeasy Blood and 
Tissue Kit. 

Preparation: 

Buffer AW1 and Buffer AW2 

Buffer AW1 and Buffer AW2 are supplied as 

concentrates. Before using for the first time, add the 

appropriate volume of ethanol (96–100%) as indicated on the 

bottle and shake thoroughly. Buffer AW1 and Buffer AW2 are 

stable for at least 1 year after the addition of ethanol when 

stored closed at room temperature (15–25°C). 

Proteinase K 

Store in fridge for over a year. Or freeze for longer 

storage. The activity of proteinase K is 600 mAU/ml solution 

(or 40 mAU/mg protein), as has shown optimal results. 

RNase A 
RNase treatment was conducted. The 

concentration of RNase A used is 50 mg/ml. 

1.      Bacterial pellet preparation: 

1.1    Grow up bacteria 

Place inoculation loop into cryopreserve freezer 

stock of strain and place onto SPA media plates. Grow at 28°C 

for 48 hours.  

1.2    Place in Eppendorf 
Take a single colony and place in an Eppendorf 

with 200µl of distilled water in. 

1.3    Freeze pellets 
Centrifuge Eppendorf’s and remove excess water. 

Freeze pellets at -80°C. 

2.      Cell lysis: 

2.1    Resuspend pellet in 180 µl 

Buffer ATL. 

Allowed precipitate in ATL to dissolve before use 

(place ATL bottle on 37°C hot block for 10 minutes or so). 

2.2    Add 20 µl proteinase K. Mix thoroughly by vortexing. 

2.3    Incubate at 56°C for 2 hours 

Place in a water bath shaking overnight and 

incubate until the tissue is completely lysed. After incubation 

the lysate may appear viscous, but should not be gelatinous 

as it may clog the DNeasy Mini spin column. If the lysate 

appears very gelatinous, incubate for longer or add more 

proteinase K. 

3.      DNA Purification: 

3.1    Add 2µl of RNase A 
Add 2µl of RNase A (50 mg/ml), mix by vortexing, 

and incubate for 15 minutes at room temperature. 

3.2    Vortex for 15 seconds   

3.3    Add 200 µl Buffer AL Mix thoroughly by vortexing. 

3.4    Add 200 µl ethanol (96–

100%) 

Mix again thoroughly by vortexing. (A white 

precipitate may form on addition of Buffer AL and ethanol. 

This precipitate does not interfere with the DNeasy 

procedure). 
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3.5    Pulse spin 
Do a 1-3 pulse spin to ensure all liquid from lid id 

in Eppendorf. 

3.6    Pipet the mixture into the 

DNeasy Mini spin column 

All sample including precipitate placed into spin 

column. Ensure spin column is also in a 2 ml collection tube. 

3.7    Incubate at room 

temperature for 5 minutes 
  

3.8    Centrifuge at full speed (17 

G) for 3 minutes 
  

3.9    Discard flow-through but not 

collection tube 

Tap collection tube onto blue paper to make sure 

you get rid of any excess liquid. Then place collection tube 

back on. 

3.10  Centrifuge at full speed (17 

G) for 1 minute 
  

3.11  Discard flow-through but not 

collection tube 

Tap collection tube onto blue paper to make sure 

you get rid of any excess liquid. Then place collection tube 

back on. 

4.      Wash steps: 

4.1    Wash 1: Add 500 µl Buffer 

AW1  

Invert tube to ensure was buffer has contacted all 

surfaces. 

4.2    Incubate at room 

temperature for 5 minutes 
  

4.3    Centrifuge at full speed (17 

G) for 3 minutes 

Centrifuge for 3 minutes to ensure all liquid has 

passed through. 

4.4    Discard flow-through but not 

collection tube 

Tap collection tube onto blue paper to make sure 

you get rid of any excess liquid. Then place collection tube 

back on. 

4.5    Centrifuge at full speed (17 

G) for 1 minute 
  

4.6    Discard flow-through but not 

collection tube 

Tap collection tube onto blue paper to make sure 

you get rid of any excess liquid. Then place collection tube 

back on. 

4.7    Wash 2: Add 500µl Buffer 

AW2 

Invert tube to ensure was buffer has contacted all 

surfaces. 

4.8    Incubate at room 

temperature for 5 minutes 
  

4.9    Centrifuge at full speed (17 

G) for 3 minutes 

Centrifuge for 3 minutes to ensure all liquid has 

passed through. 

4.10  Discard flow-through but not 

collection tube 

Tap collection tube onto blue paper to make sure 

you get rid of any excess liquid. Then place collection tube 

back on. 

4.11  Centrifuge at full speed (17 

G) for 1 minute 
  

4.12  Discard flow-through but not 

collection tube 

Tap collection tube onto blue paper to make sure 

you get rid of any excess liquid. Then place collection tube 

back on. 
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4.13  Wash 2 (Repeat): Add 500µl 

Buffer AW2 

Invert tube to ensure was buffer has contacted all 

surfaces. 

4.14  Incubate at room 

temperature for 5 minutes 
  

4.15  Centrifuge at full speed (17 

G) for 3 minutes 

Centrifuge for 3 minutes to ensure all liquid has 

passed through. 

4.16  Discard flow-through but not 

collection tube 

Tap collection tube onto blue paper to make sure 

you get rid of any excess liquid. Then place collection tube 

back on. 

4.17  Centrifuge at full speed (17 

G) for 3 minutes 

Centrifuge for 3 minutes to ensure all liquid has 

passed through. 

4.18  Place the DNeasy Mini spin 

column in a new 2 ml collection tube 
  

4.19  Incubate at room 

temperature for 15 minutes with lids open on 

spin column 

It is important to dry the membrane of the DNeasy 

Mini spin column since residual ethanol may interfere with 

subsequent reactions. 

5.      Elution: 

5.1    Elution 1: Add 50µl of Tris-

HCl [10mM], pH 8.4 
Leave for 3 minutes 

5.2    Centrifuge for 1 minute (17G)   

5.3    Elution 2: Add 50µl of Tris-

HCl 
Leave for 3 minutes 

5.4    Centrifuge for 1 minute (17G)   

5.5    Transfer eluted liquid from 

collection tube into Eppendorf  

Place 20µl in a separate one for quantification. 

Freeze at -80°C and avoid all unnecessary freeze thawing. 
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Appendix B: Chapter 2 

Appendix Table B.1: List of phenotypic traits. 46 phenotypic traits were collected across a collection 
of RSSC (n=194). Each trait is ecologically relevant to RSSC lifecycle, either involved in metabolism, 
stress tolerance (abiotic and biotic) and virulence. Each trait is also grouped into 13 phenotypic 
groups for easier comparisons. 

Theme Phenotype 
Group Trait Name More Information 

Metabolism Complex 
Media SP Area under the growth curve in SP media with 24 hour 

reads up to 5 days of growth 

Metabolism Complex 
Media CS Area under the growth curve in CS media with 24 hour 

reads up to 5 days of growth 

Metabolism Complex 
Media CPG Area under the growth curve in CPG media with 24 hour 

reads up to 5 days of growth 

Metabolism Complex 
Media NB Area under the growth curve in NB media with 24 hour 

reads up to 5 days of growth 

Metabolism Single 
Carbons Arabinose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Asparagine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons CitricAcid 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Glucose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Glutamine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 
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Metabolism Single 
Carbons Glycine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Histidine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Maltose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons MalicAcid 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Nicotinamide 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Proline 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Serine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Sorbitol 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons SuccinicAcid 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Sucrose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Xylose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 
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Abiotic Stress 
Tolerance 

Nutrient 
Limited SP1 

Relative growth in nutrient limited conditions. Area 
under the curve (auc) in SP media diluted with distilled 
water 100-fold (1% SP) divided by auc in 100% SP. Auc 
calculated for 5 days of growth with OD reads every 24 

hours. 

Abiotic Stress 
Tolerance 

Nutrient 
Limited SP10 

Relative growth in nutrient limited conditions. Area 
under the curve (auc) in SP media diluted with distilled 
water 10-fold (10% SP) divided by auc in 100% SP. Auc 
calculated for 5 days of growth with OD reads every 24 

hours. 

Abiotic Stress 
Tolerance pH pH4.5 

Relative growth in pH 4.5 compared to pH 7, calculated 
by dividing the area under the growth curve (across 5 

days) in the stress condition by the no stress condition. 
SP media was used. 

Abiotic Stress 
Tolerance pH pH9 

Relative growth in pH 9 compared to pH 7, calculated by 
dividing the area under the growth curve (across 5 days) 

in the stress condition by the no stress condition. SP 
media was used. 

Abiotic Stress 
Tolerance pH pH10 

Relative growth in pH 10 compared to pH 7, calculated 
by dividing the area under the growth curve (across 5 

days) in the stress condition by the no stress condition. 
SP media was used. 

Abiotic Stress 
Tolerance Salinity NaCl0.5 

Relative growth in 0.5% NaCl compared to 0% NaCl, 
calculated by dividing the area under the growth curve 
(across 5 days) in the stress condition by the no stress 

condition. SP media was used. 

Abiotic Stress 
Tolerance Salinity NaCl1 

Relative growth in 1% NaCl compared to 0% NaCl, 
calculated by dividing the area under the growth curve 
(across 5 days) in the stress condition by the no stress 

condition. SP media was used. 

Abiotic Stress 
Tolerance Salinity NaCl2 

Relative growth in 2% NaCl compared to 0% NaCl, 
calculated by dividing the area under the growth curve 
(across 5 days) in the stress condition by the no stress 

condition. SP media was used. 

Abiotic Stress 
Tolerance 

Heat 
Tolerance 35C 

Relative growth at 35C compared to 28C, calculated by 
dividing the area under the growth curve (across 5 days) 

in the stress condition by the no stress condition. SP 
media was used. 

Abiotic Stress 
Tolerance 

Cold 
Tolerance 10C 

Relative growth at 10C compared to 28C, calculated by 
dividing the area under the growth curve (across 5 days) 

in the stress condition by the no stress condition. SP 
media was used. 



 208 

Abiotic Stress 
Tolerance Potential Potential 

Water potential tolerance. Relative growth in 15% 
polyethylene glycol (PEG)-4000 compared to 0% 

polyethylene glycol, calculated by dividing the area 
under the growth curve up to 5 days of growth of stress 

condition by no stress condition. SP media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Gentamycin0.5 

Relative growth in 0.5 ug/ml of Gentamycin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Gentamycin1 

Relative growth in 1 ug/ml of Gentamycin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Tetracycline1 

Relative growth in 1 ug/ml of Tetracycline antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Tetracycline5 

Relative growth in 5 ug/ml of Tetracycline antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Rifampicin0.5 

Relative growth in 0.5 ug/ml of Rifampicin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Rifampicin4 

Relative growth in 4 ug/ml of Rifampicin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Ciprofloxacin3 

Relative growth in 3 ug/ml of Ciprofloxacin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Ciprofloxacin5 

Relative growth in 5 ug/ml of Ciprofloxacin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Virulence Biofilm BiofilmCPG Biofilm quantification after growth in CPG media for 7 
days. Crystal violet assay used. 

Virulence Biofilm BiofilmSP Biofilm quantification after growth in SP media for 7 
days. Crystal violet assay used. 
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Virulence Biofilm BiofilmCS Biofilm quantification after growth in CS media for 7 
days. Crystal violet assay used. 

Virulence Biofilm BiofilmNB Biofilm quantification after growth in NB media for 7 
days. Crystal violet assay used. 

Virulence ROS ROS 

Oxidative stress tolerance from reactive oxygen species 
(ROS). Relative growth in 100mM H2O2 compared to 

0mM, calculated by dividing the area under the growth 
curve up to 5 days of growth of stress condition by no 

stress condition. SP media was used. 

Virulence Siderophore Siderophore 

Siderophore production (psu) per cell. Siderophore 
production was quantified using the CAS assay protocol 
using bacteria supernatant after 3 days of growth in SP 
media. Psu per cell was then calculated by dividing psu 

by growth (OD at 600nm). 

Virulence Protein Protein 

Extracellular protein produced per cell. Protein in each 
isolate’s supernatant was quantified using Bradford 

assay technique after 72 hours of growth in SP media. 
Protein amount (ug/ml) was then divided by the growth 

(OD 600nm) to determine protein produced per cell. 
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Appendix Figure B.1: Preliminary work on a subset of 10 RSSC isolates was conducted to choose ‘low’ and ‘high’ antibiotic concentrations for phenotyping. Numbers at 
the top indicate antibiotic concentrations in µg/ml for (A) ciprofloxacin (B) gentamycin (C) rifampicin and (D) tetracycline. Concentrations chosen for the phenotyping were 
as follows; 3 and 5µg/ml for ciprofloxacin, 0.5 and 1 µg/ml for gentamycin, 0.5 and 4µg/ml for rifampicin, and 1 and 5µg/ml for tetracycline. Error bars show one standard 
error from the mean (N=6). 
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Appendix Figure B.2: Ralstonia solanacearum species complex (RSSC) phenotypic diversity cannot 
be explained fully by species, continent sampled from or host isolated from. (A) PCA plot with PC1 
(29.6%) and PC3 (13.7%). Each point represents a isolate in the RSSC collection, coloured by species 
assigned by whole genome sequencing (n=185). (B) PCA plot with PC2 (16.5%) and PC3 (13.7%). (C) 
Heatmap of loadings, contribution each trait has on the three PCs. (D) PCA plot with PC1 (29.6%) and 
PC2 (16.5%). Each point represents a isolate in the RSSC collection, coloured by continent sampled 
from (n=185). (E) PCA plot with PC1 (29.6%) and PC2 (16.5%). Each point represents a isolate in the 
RSSC collection, coloured by host isolated from (n=133). Eclipses show 90% confidence intervals 
around the centroid of each group. 
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Appendix Figure B.3: Ralstonia solanacearum species complex (RSSC) clusters into five separate 
ecotypes. (A) ssi criterion showing optimal number of clusters as 5 for k-means clustering, providing 
evidence for 5 ecotypes. (B) Mean pairwise distance (Euclidean distance) from all isolates grouped by 
the five ecotypes. Boxplots lines show the median per ecotype of their mean pairwise distances with 
the box indicating the interquartile range and whiskers showing the 95% quantile range. (C) PCA plot 
with PC1 (29.6%) and PC3 (13.7%). Each point represents a isolate in the RSSC collection (n=194), 
coloured by ecotype assigned by k-means clustering (k=5). (D) PCA plot with PC2 (16.5%) and PC3 
(13.7%). Each point represents a isolate in the RSSC collection (n=194), coloured by ecotype assigned 
by k-means clustering (k=5). Eclipses show 90% confidence intervals around the centroid of each 
group. 
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Appendix Figure B.4: Continent, host and species all vary slightly in their distribution across the 
five ecotypes. (A) The distribution of isolates within each ecotype belonging to the two separate 
RSSC species within this study. The distribution of isolates per ecotype isolated from different 
continents (B) and hosts (C) respectively. 

 

Supplementary Table B.2: Cold tolerance traits significant genetic associations. Associations were 
determined using a GWAS technique with gene presence/absence as the input genetic variable. 
Phenotypic genetic variables were binary_cold_survival, where growth (1) or no growth (0) was 
determined on a CPG agar plate after five days at 4°C. Also, binary_low_temperature was 
determined by growth (1), optical density at 600nm (OD600) over 0.13, and no growth (0), OD600 
below 0.13, after 5 days of incubation at 10°C. 

binary_cold_survival 

COGs 

Gene Name Filter p value lrt p value 
Allele 

frequency Beta Variant h2 

hxcR_2~~~epsE 2.28E-07 2.56E-05 8.42E-01 3.68E-01 2.21E-01 

binary_low_temp 

COGs 

Gene Name Filter p value lrt p value 
Allele 

frequency Beta Variant h2 

hxcR_2~~~epsE 1.27E-08 9.68E-06 8.42E-01 4.11E-01 2.32E-01 

group_4570 2.94E-08 2.22E-05 8.39E-01 3.93E-01 2.23E-01 

epsF_3~~~epsF_4 6.61E-08 4.67E-05 8.37E-01 3.78E-01 2.14E-01 

group_4620 2.69E-08 1.98E-05 8.34E-01 4.05E-01 2.24E-01 
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Appendix Table B.3: Rifampicin resistance at 0.5µg/ml (binary trait) significant hits determined 
using a GWAS technique with COG and unitigs as the input genetic variables. 

binary_rifampicin_0.5 

COGs 

Gene Name Filter p 
value lrt p value Allele 

frequency Beta Variant h2 

group_6769 0.0000 0.0000 0.7770 0.6850 0.2810 

pcpR_6~~~pcpR_5~~~pcpR_4 0.0000 0.0000 0.7630 0.7440 0.2630 

gltR_2 0.0000 0.0000 0.7630 0.7440 0.2630 

group_1663 0.0000 0.0000 0.7610 0.5950 0.2200 

group_1875 0.0000 0.0000 0.7300 0.7020 0.2800 

group_8240 0.0000 0.0000 0.7210 0.8810 0.2970 

group_6641 0.0000 0.0000 0.2820 -0.4880 0.2970 

group_6653 0.0000 0.0000 0.2650 -0.4570 0.2880 

group_4170 0.0000 0.0000 0.2820 -0.6020 0.3350 

group_3539 0.0000 0.0000 0.2650 -0.3450 0.2240 

group_3648 0.0000 0.0000 0.2480 -0.3760 0.2560 

group_3899 0.0000 0.0000 0.2390 -0.4140 0.2880 

group_6634 0.0000 0.0000 0.2230 -0.3560 0.2470 

group_6627 0.0000 0.0000 0.2170 -0.3310 0.2310 

group_7058 0.0000 0.0000 0.2510 -0.3960 0.2410 

group_5647 0.0000 0.0000 0.2060 -0.3520 0.2560 

group_4715 0.0000 0.0000 0.2310 -0.4010 0.2880 

group_4091 0.0000 0.0000 0.2340 -0.3140 0.2270 

group_4260 0.0000 0.0000 0.2000 -0.2990 0.2190 

group_3946 0.0000 0.0000 0.2340 -0.3480 0.2570 

group_4139 0.0000 0.0000 0.2420 -0.3610 0.2360 

group_2885 0.0000 0.0000 0.2140 -0.4760 0.3140 

group_4277 0.0000 0.0000 0.2170 -0.3940 0.2860 

group_6655 0.0000 0.0000 0.2170 -0.4770 0.3130 

group_4241 0.0000 0.0000 0.2000 -0.4180 0.2910 

group_4662 0.0000 0.0000 0.2200 -0.4580 0.2940 

group_7251 0.0000 0.0000 0.1770 -0.3960 0.2620 

group_6923 0.0000 0.0000 0.2060 -0.4200 0.2700 

fitB 0.0000 0.0000 0.1940 -0.3660 0.2490 

group_6722 0.0000 0.0000 0.1720 -0.3550 0.2550 

group_7366 0.0000 0.0000 0.1630 -0.4480 0.3040 

group_6925 0.0000 0.0000 0.1410 -0.4800 0.2990 

group_3326 0.0000 0.0000 0.1580 -0.4220 0.2830 

group_7354 0.0000 0.0000 0.1830 -0.3490 0.2240 

group_3802 0.0000 0.0000 0.1720 -0.3150 0.2230 

group_6912 0.0000 0.0000 0.1630 -0.3320 0.2280 



 216 

group_4962 0.0000 0.0000 0.1770 -0.4140 0.2820 

group_4121 0.0000 0.0000 0.1490 -0.3450 0.2530 

group_3664 0.0000 0.0000 0.1070 -0.4100 0.2610 

UNITIGS 

Gene Name Hits 
Maximum -

log10(p 
value) 

Average allele 
frequency 

Average 
minor 
allele 

frequency 

Average 
beta 

cds-WP_039562627.1 97 16.0590 0.0710 0.0710 0.6347 

cds-WP_039562510.1 94 15.0381 0.0791 0.0791 0.6103 

cds-WP_039562639.1 69 15.5258 0.0841 0.0841 0.5666 

cds-WP_039563187.1 50 13.9872 0.0690 0.0690 0.5948 

cds-WP_039559476.1 40 9.2403 0.0763 0.0763 0.5301 

cds850 37 15.4711 0.1329 0.1329 0.5689 

cds-WP_039562505.1 36 14.2396 0.0620 0.0620 0.6343 

cds-WP_039562644.1 35 12.2388 0.0677 0.0677 0.5766 

cds-WP_039563184.1 34 12.8894 0.0769 0.0769 0.5699 

cds854 33 15.4815 0.1075 0.1075 0.5671 

cds-WP_039562646.1 33 15.5436 0.0764 0.0764 0.6163 

cds-WP_039562516.1 30 15.5719 0.0697 0.0697 0.6063 

cds858 26 13.5560 0.1464 0.1464 0.5172 

cds-WP_039563186.1 26 10.0119 0.0798 0.0798 0.5710 

cds-WP_039562624.1 25 11.1530 0.0587 0.0587 0.5649 

cds-WP_039562504.1 25 17.4425 0.0765 0.0765 0.6916 

cds874 23 16.5969 0.1118 0.1118 0.5888 

cds-WP_039562499.1 23 14.1481 0.0657 0.0657 0.6323 

cds867 22 15.7570 0.0951 0.0951 0.6048 

cds-WP_039562664.1 20 9.7670 0.0736 0.0736 0.5152 

cds-WP_039562526.1 20 15.3233 0.0634 0.0634 0.6845 

cds-WP_039562650.1 19 13.1938 0.0707 0.0707 0.5451 

cds-WP_039562672.1 18 11.3958 0.0728 0.0728 0.5289 

cds-WP_039562654.1 18 10.0195 0.0731 0.0731 0.5345 

cds-WP_039562519.1 18 9.9586 0.0699 0.0699 0.5602 

cds852 17 14.8539 0.1578 0.1578 0.5859 

cds866 16 11.7352 0.1845 0.1845 0.5366 

cds-WP_039562629.1 16 11.7235 0.0632 0.0632 0.6036 

cds-WP_039562673.1 15 11.7033 0.0803 0.0803 0.5236 

cds873 14 15.0809 0.1359 0.1359 0.5538 

cds3215 14 11.7352 0.1597 0.1597 0.5354 

cds-WP_039559430.1 14 11.1624 0.1079 0.1079 0.5114 

cds-WP_039562631.1 13 10.2950 0.0756 0.0756 0.5129 

cds880 11 9.4473 0.1098 0.1098 0.4958 

cds3234 11 13.4214 0.1122 0.1122 0.5796 
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cds871 10 10.8928 0.0775 0.0775 0.5647 

cds-RSUY_RS22605 10 8.4437 0.0676 0.0676 0.5317 

cds-WP_039562621.1 10 13.2882 0.0822 0.0822 0.5393 

cds-WP_039562645.1 10 15.0809 0.0874 0.0874 0.5220 

cds-WP_039562514.1 10 14.6635 0.0583 0.0583 0.6751 

cds888 9 7.9431 0.1031 0.1031 0.4998 

cds856 9 12.0675 0.1424 0.1424 0.6057 

cds872 9 12.0372 0.1523 0.1523 0.4932 

cds-WP_039559478.1 9 10.8477 0.0779 0.0779 0.5473 

cds-WP_039562638.1 9 11.9586 0.0632 0.0632 0.5627 

cds4024 8 8.9547 0.1781 0.1781 0.4890 

cds-WP_003278075.1 8 8.4584 0.0968 0.0968 0.5504 

cds-WP_039562508.1 8 12.4584 0.0651 0.0651 0.5623 

cds4022 7 12.0675 0.1662 0.1662 0.5884 

cds4033|cds4034 7 11.0487 0.2297 0.2297 0.6310 

cds4033 7 11.7352 0.1622 0.1622 0.5129 

cds855 6 9.7773 0.0798 0.0798 0.5197 

cds876 5 12.4101 0.1928 0.1928 0.5172 

cds866|cds867 5 11.0487 0.2196 0.2196 0.6580 

cds878 5 10.0150 0.1380 0.1380 0.5060 

cds-WP_039562627.1|cds-
WP_039562624.1 5 14.3665 0.0727 0.0727 0.7056 

cds-WP_039563185.1|cds-
WP_014615737.1 5 11.4935 0.0552 0.0552 0.7000 

cds884 4 7.5986 0.1085 0.1085 0.5418 

cds864 4 9.4908 0.1784 0.1784 0.5503 

cds4031 4 9.4908 0.1784 0.1784 0.5503 

cds847 4 9.3019 0.1550 0.1550 0.4440 

cds859 4 9.8601 0.0528 0.0528 0.5875 

cds868 4 14.1018 0.0697 0.0697 0.6383 

cds-WP_003278076.1 4 7.6383 0.0957 0.0957 0.5233 

cds-WP_039562672.1|cds-
WP_039562664.1 4 8.9547 0.0571 0.0571 0.5435 

cds-WP_039562631.1|cds-
WP_039562629.1 4 10.1811 0.0662 0.0662 0.6423 

cds870 3 11.5560 0.1277 0.1277 0.6480 

cds849|cds850 3 12.5143 0.1672 0.1672 0.5550 

cds889 3 7.9508 0.0901 0.0901 0.5613 

cds849 3 16.3675 0.0985 0.0985 0.7403 

cds-WP_039559427.1|cds-
WP_039562672.1 3 9.4522 0.0582 0.0582 0.5310 

cds-WP_039562623.1 3 9.9666 0.0761 0.0761 0.5807 

cds-WP_039562502.1|cds-
WP_039562504.1 3 13.7959 0.0620 0.0620 0.7540 



 218 

cds-WP_039562523.1 3 9.6635 0.0516 0.0516 0.5940 

cds4029 2 7.3788 0.0997 0.0997 0.5255 

cds3218 2 8.8665 0.2610 0.2610 0.5345 

cds877 2 7.8996 0.0774 0.0774 0.5045 

cds851 2 8.5513 0.1154 0.1154 0.5060 

malQ 2 7.2495 0.1028 0.1028 0.6315 

cds855|cds856 2 11.7645 0.0564 0.0564 0.6740 

cds853|cds854 2 8.4921 0.0718 0.0718 0.5125 

cds869 2 11.4535 0.0577 0.0577 0.6545 

cds875 2 8.9626 0.0831 0.0831 0.4950 

cds-B7R79_RS16590 2 14.7773 0.0690 0.0690 0.7535 

cds-WP_003265739.1 2 13.9872 0.0999 0.0999 0.7480 

cds-WP_039562638.1|cds-
WP_039562631.1 2 8.8633 0.0747 0.0747 0.5290 

cds-RSUY_RS22855 2 13.7959 0.0620 0.0620 0.7335 

cds-WP_039562508.1|cds-
WP_039562510.1 2 10.3325 0.0747 0.0747 0.5730 

cds-WP_039562505.1|cds-
WP_039562508.1 2 12.8153 0.0690 0.0690 0.7425 

cds-WP_039562502.1 2 14.1135 0.0606 0.0606 0.7855 

cds862 1 7.0182 0.0535 0.0535 0.5260 

cds891 1 7.7235 0.0704 0.0704 0.6170 

cds886 1 8.5952 0.0704 0.0704 0.5430 

cds2545|cds2546 1 6.9914 0.0535 0.0535 0.4430 

cds874|cds875 1 8.9208 0.0873 0.0873 0.5440 

cds890 1 7.2890 0.0507 0.0507 0.5710 

cds892 1 7.1180 0.0761 0.0761 0.4820 

cds3203 1 7.1180 0.0761 0.0761 0.4820 

cds887 1 7.8356 0.0648 0.0648 0.5140 

cds884|cds885 1 8.1624 0.0789 0.0789 0.5890 

cds-WP_003265723.1 1 7.6946 0.0507 0.0507 0.5260 

cds-WP_039562650.1|cds-
WP_039562646.1 1 11.5607 0.0761 0.0761 0.6640 

cds-WP_039562512.1|cds-
WP_039562514.1 1 14.8861 0.0507 0.0507 0.8390 

cds-WP_014615737.1 1 7.0301 0.0507 0.0507 0.5430 

cds-WP_039562624.1|cds-
WP_039562623.1 1 7.4283 0.0930 0.0930 0.5190 

cds-WP_039562645.1|cds-
WP_039562644.1 1 8.5331 0.0507 0.0507 0.6000 

cds-WP_039563185.1 1 10.2823 0.0507 0.0507 0.7680 

cds-WP_047942537.1 1 9.0570 0.0648 0.0648 0.6400 
 



 219 

 
Appendix Figure B.5: Rifampicin resistance (0.5 g/ml) gene region hits identified in GWAS. 
Significantly associated gene regions, identified in the GWAS, was viewed in GMI1000 RSSC isolate 
(accession number: 000009125.1) on NCBI (https://www.ncbi.nlm.nih.gov/assembly/). These regions 
include between (A) 870 – 900 kb and (B) 3.47 – 3.5 Mb within the chromosome, along with 
between (C) 870 – 900 kb within the megaplasmid. 
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Appendix C: Chapter 3 

Appendix Table C.1: List of phenotypic traits. 46 phenotypic traits were collected across a collection 
of R. solanacearum isolates (n=182). Each trait is ecologically relevant to the lifecycvle of R. 
solanacearum, either involved in metabolism, stress tolerance (abiotic and biotic) and virulence. 
Each trait is also grouped into 13 phenotypic groups for easier comparisons. 

Theme Phenotype 
Group Trait Name More Information 

Metabolism Complex 
Media SP Area under the growth curve in SP media with 24 hour 

reads up to 5 days of growth 

Metabolism Complex 
Media CS Area under the growth curve in CS media with 24 hour 

reads up to 5 days of growth 

Metabolism Complex 
Media CPG Area under the growth curve in CPG media with 24 hour 

reads up to 5 days of growth 

Metabolism Complex 
Media NB Area under the growth curve in NB media with 24 hour 

reads up to 5 days of growth 

Metabolism Single 
Carbons Arabinose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Asparagine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons CitricAcid 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Glucose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Glutamine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 
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Metabolism Single 
Carbons Glycine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Histidine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Maltose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons MalicAcid 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Nicotinamide 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Proline 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Serine 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Sorbitol 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons SuccinicAcid 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Sucrose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 

Metabolism Single 
Carbons Xylose 

Growth in 10mM of single carbon resource. Growth 
measured by the area under the growth curve (auc), up 
to 5 days with 24 hour reads. auc was then divided by 

the auc of that isolate in no carbon media. 



 222 

Abiotic Stress 
Tolerance 

Nutrient 
Limited SP1 

Relative growth in nutrient limited conditions. Area 
under the curve (auc) in SP media diluted with distilled 
water 100-fold (1% SP) divided by auc in 100% SP. Auc 
calculated for 5 days of growth with OD reads every 24 

hours. 

Abiotic Stress 
Tolerance 

Nutrient 
Limited SP10 

Relative growth in nutrient limited conditions. Area 
under the curve (auc) in SP media diluted with distilled 
water 10-fold (10% SP) divided by auc in 100% SP. Auc 
calculated for 5 days of growth with OD reads every 24 

hours. 

Abiotic Stress 
Tolerance pH pH4.5 

Relative growth in pH 4.5 compared to pH 7, calculated 
by dividing the area under the growth curve (across 5 

days) in the stress condition by the no stress condition. 
SP media was used. 

Abiotic Stress 
Tolerance pH pH9 

Relative growth in pH 9 compared to pH 7, calculated by 
dividing the area under the growth curve (across 5 days) 

in the stress condition by the no stress condition. SP 
media was used. 

Abiotic Stress 
Tolerance pH pH10 

Relative growth in pH 10 compared to pH 7, calculated 
by dividing the area under the growth curve (across 5 

days) in the stress condition by the no stress condition. 
SP media was used. 

Abiotic Stress 
Tolerance Salinity NaCl0.5 

Relative growth in 0.5% NaCl compared to 0% NaCl, 
calculated by dividing the area under the growth curve 
(across 5 days) in the stress condition by the no stress 

condition. SP media was used. 

Abiotic Stress 
Tolerance Salinity NaCl1 

Relative growth in 1% NaCl compared to 0% NaCl, 
calculated by dividing the area under the growth curve 
(across 5 days) in the stress condition by the no stress 

condition. SP media was used. 

Abiotic Stress 
Tolerance Salinity NaCl2 

Relative growth in 2% NaCl compared to 0% NaCl, 
calculated by dividing the area under the growth curve 
(across 5 days) in the stress condition by the no stress 

condition. SP media was used. 

Abiotic Stress 
Tolerance 

Heat 
Tolerance 35C 

Relative growth at 35C compared to 28C, calculated by 
dividing the area under the growth curve (across 5 days) 

in the stress condition by the no stress condition. SP 
media was used. 

Abiotic Stress 
Tolerance 

Cold 
Tolerance 10C 

Relative growth at 10C compared to 28C, calculated by 
dividing the area under the growth curve (across 5 days) 

in the stress condition by the no stress condition. SP 
media was used. 
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Abiotic Stress 
Tolerance Potential Potential 

Water potential tolerance. Relative growth in 15% 
polyethylene glycol (PEG)-4000 compared to 0% 

polyethylene glycol, calculated by dividing the area 
under the growth curve up to 5 days of growth of stress 

condition by no stress condition. SP media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Gentamycin0.5 

Relative growth in 0.5 ug/ml of Gentamycin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Gentamycin1 

Relative growth in 1 ug/ml of Gentamycin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Tetracycline1 

Relative growth in 1 ug/ml of Tetracycline antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Tetracycline5 

Relative growth in 5 ug/ml of Tetracycline antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Rifampicin0.5 

Relative growth in 0.5 ug/ml of Rifampicin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Rifampicin4 

Relative growth in 4 ug/ml of Rifampicin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Ciprofloxacin3 

Relative growth in 3 ug/ml of Ciprofloxacin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Biotic Stress 
Tolerance 

Antibiotic 
Resistance Ciprofloxacin5 

Relative growth in 5 ug/ml of Ciprofloxacin antibiotic, 
calculated by dividing the OD at 600nm after 48 hours of 

growth in stress condition by no stress condition. SP 
media was used. 

Virulence Biofilm BiofilmCPG Biofilm quantification after growth in CPG media for 7 
days. Crystal violet assay used. 

Virulence Biofilm BiofilmSP Biofilm quantification after growth in SP media for 7 
days. Crystal violet assay used. 
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Virulence Biofilm BiofilmCS Biofilm quantification after growth in CS media for 7 
days. Crystal violet assay used. 

Virulence Biofilm BiofilmNB Biofilm quantification after growth in NB media for 7 
days. Crystal violet assay used. 

Virulence ROS ROS 

Oxidative stress tolerance from reactive oxygen species 
(ROS). Relative growth in 100mM H2O2 compared to 

0mM, calculated by dividing the area under the growth 
curve up to 5 days of growth of stress condition by no 

stress condition. SP media was used. 

Virulence Siderophore Siderophore 

Siderophore production (psu) per cell. Siderophore 
production was quantified using the CAS assay protocol 
using bacteria supernatant after 3 days of growth in SP 
media. Psu per cell was then calculated by dividing psu 

by growth (OD at 600nm). 

Virulence Protein Protein 

Extracellular protein produced per cell. Protein in each 
isolate’s supernatant was quantified using Bradford 

assay technique after 72 hours of growth in SP media. 
Protein amount (ug/ml) was then divided by the growth 

(OD 600nm) to determine protein produced per cell. 
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Appendix Figure C.1: UK R. solanacearum clusters into three phenotypic groups or ‘ecotypes’. (A) variance explained by each principal component (PC) in the principal 
component analysis (PCA) conducted on the 46 individual traits of the 182 UK isolates. (B) calinski criterion determines that the optimal cluster of phenotypic groups within 
the UK population to be 3. (C) Loadings of PC 1, 2 and 3 for the PCA plots. (D) PC1 and 3 plotted for each isolate (n=182) coloured by cluster assigned by k-means clustering. 
PC1 explains 32% of the total variation in the dataset and PC3 10%. (E) PC2 and 3 plotted for each isolate (n=182) coloured by cluster assigned by k-means clustering. PC2 
explains 19% of the total variation in the dataset and PC3 10%. 

 

 

 
Appendix Figure C.2: The three ecotypes differ in their trait correlation patterns. Pearson’s paired correlations of the 46 traits. This is done for each ecotype, assigned by 
k-means clustering, with 62 isolates in ecotype 1 (A), 104 isolates in 2 (B) and 16 in ecotype 3 (C). 
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Appendix Table C.2: Table of the strong significant trait correlations per ecotype. Significance was 
determined by having a p value less than 0.05, strongest correlations are those with a Pearson’s 
correlation coefficient (r) above 0.4 for positive trait correlations or below -0.4 for negative trait 
correlations. 

Ecotype 1 
Trait 1 Trait 2 r p 

ROS ColdTolerance 0.6731 0.0000 
NutrientLimited HeatTolerance 0.5505 0.0000 

Salinity HeatTolerance 0.5419 0.0000 
Salinity Protein 0.5083 0.0000 

pH NutrientLimited 0.4819 0.0001 
ComplexMedia AntibioticResistance 0.4429 0.0003 

Salinity pH 0.4409 0.0003 
SingleCarbons ComplexMedia 0.4342 0.0004 

ROS pH 0.4276 0.0005 
pH HeatTolerance 0.4178 0.0007 

HeatTolerance ColdTolerance 0.4051 0.0011 
SingleCarbons NutrientLimited -0.4220 0.0006 
ComplexMedia ColdTolerance -0.4950 0.0000 
NutrientLimited ComplexMedia -0.6838 0.0000 

Ecotype 2 
Trait 1 Trait 2 r p 
Salinity pH 0.7387 0.0000 

ROS ColdTolerance 0.7164 0.0000 
SingleCarbons Biofilm 0.5915 0.0000 

Salinity Protein 0.4598 0.0000 
Salinity AntibioticResistance 0.4548 0.0000 

ComplexMedia AntibioticResistance 0.4541 0.0000 
pH ColdTolerance 0.4476 0.0000 

ROS Potential 0.4355 0.0000 
NutrientLimited ComplexMedia -0.6939 0.0000 

Ecotype 3 
Trait 1 Trait 2 r p 
Salinity pH 0.8036 0.0002 
Salinity NutrientLimited 0.7056 0.0023 

pH HeatTolerance 0.6760 0.0040 
ROS ColdTolerance 0.6158 0.0111 
pH NutrientLimited 0.5688 0.0215 

Salinity HeatTolerance 0.5659 0.0223 
Protein ComplexMedia 0.5584 0.0246 

NutrientLimited HeatTolerance 0.5505 0.0271 
ColdTolerance AntibioticResistance -0.5212 0.0384 
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NutrientLimited ColdTolerance -0.5463 0.0285 
 

 

 

 

Appendix Figure C.3: Causes of ecotype separation/diversification within UK R. solanacearum 
population due to time of isolation, not isolation source or location. (A) Isolates collected from 
different sources are evenly distributed across the 3 clusters. (B) Isolates from the three separate 
decades are not evenly represented across the three clusters. (C) Mean pairwise distance, as 
measured using Euclidean distances (dist() function in R stats package) from all other isolates. This 
shows that isolated from most recent decade, 2010s, are significantly more distant from other 
isolates and therefore are more diverse phenotypically. (D) Mean pairwise geographical distance 
(using longitude and latitude rather than phenotypes) from all other isolates are the same across the 
three ecotypes. 
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Appendix Table C.3: Phenotype unitig GWAS unitig hits summary table. Input phenotype as trait 
column. Gene name as significant unitig annotation. Hits is the number of significant unitigs 
annotated as that gene. Maximum -log 10 (p value) across all hits, adjusted p value was adjusted for 
multiple testing (N=54). 

Phenotype Gene Name Hits Maximum -
log10(p value) 

Maximum -
log10(p value) 

adjusted 

Average allele 
frequency 

Average minor 
allele frequency Average beta 

binary_ciprofloxacin_3 cds-ALF88548.1 1 6.5229 4.79050624 0.0833 0.0833 0.429 

binary_ciprofloxacin_3 pcaR_1 2 6.5229 4.79050624 0.4912 0.4912 0.384 

binary_ciprofloxacin_3 cds-ALF87858.1 2 7.2457 5.51330624 0.4912 0.4912 0.416 

binary_rifampicin_4 tycC_3 31 4.4698 2.73740624 0.1145 0.1145 0.1489 

binary_rifampicin_4 tycC_2 8 4.4698 2.73740624 0.116 0.116 0.147 

binary_rifampicin_4 cds-ALF90441.1 1 4.3546 2.62220624 0.946 0.054 0.21 

binary_tetracycline_5 tycC_3 91 6.7773 5.04490624 0.1122 0.1122 0.2825 

binary_tetracycline_5 tycC_2 64 6.7773 5.04490624 0.1113 0.1113 0.2733 

binary_tetracycline_5 czcA_3 1 4.1379 2.40550624 0.935 0.065 0.356 

binary_tetracycline_5 tycC_1 1 4.9136 3.18120624 0.101 0.101 0.281 

binary_tetracycline_5 dhbF_3 1 4.9136 3.18120624 0.101 0.101 0.281 

binary_tetracycline_5 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 6.6216 4.88920624 0.929 0.071 0.438 

binary_tetracycline_5 cds-ALF90441.1 1 6.0605 4.32810624 0.946 0.054 0.484 

binary_tetracycline_5 cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 4.1379 2.40550624 0.935 0.065 0.356 

biofilmCPG czcA_3 1 4.4179 2.68550624 0.935 0.065 0.875 

biofilmCPG 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 5.6459 3.91350624 0.929 0.071 0.957 

biofilmCPG cds-ALF90441.1 1 5.0846 3.35220624 0.946 0.054 1.04 
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biofilmCPG cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 4.4179 2.68550624 0.935 0.065 0.875 

biofilmCS tycC_2 29 4.9431 3.21070624 0.1019 0.1019 2.4503 

biofilmCS tycC_3 20 4.9431 3.21070624 0.1059 0.1059 2.434 

biofilmCS 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 7.0357 5.30330624 0.929 0.071 5.89 

biofilmCS cds-ALF90441.1 1 6.1871 4.45470624 0.946 0.054 5.55 

biofilmNB czcA_3 1 4.2434 2.51100624 0.935 0.065 0.772 

biofilmNB tycC_2 4 4.5243 2.79190624 0.0893 0.0893 0.661 

biofilmNB tycC_3 4 4.5243 2.79190624 0.0893 0.0893 0.661 

biofilmNB 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 7.1561 5.42370624 0.929 0.071 0.971 

biofilmNB cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 4.2434 2.51100624 0.935 0.065 0.772 

biofilmSP cds-ALF90441.1 1 4.1662 2.43380624 0.946 0.054 1.57 

ciprofloxacin_3 czcA_3 1 3.9431 2.21070624 0.935 0.065 0.22 

ciprofloxacin_3 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 5.7447 4.01230624 0.929 0.071 0.258 

ciprofloxacin_3 cds-ALF90441.1 1 5.3675 3.63510624 0.946 0.054 0.285 
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ciprofloxacin_3 cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 3.9431 2.21070624 0.935 0.065 0.22 

ciprofloxacin_5 czcA_3 1 3.9431 2.21070624 0.935 0.065 0.236 

ciprofloxacin_5 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 5.3936 3.66120624 0.929 0.071 0.267 

ciprofloxacin_5 cds-ALF90441.1 1 5.6198 3.88740624 0.946 0.054 0.315 

ciprofloxacin_5 cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 3.9431 2.21070624 0.935 0.065 0.236 

CS tycC_3 67 5.3747 3.64230624 0.1164 0.1164 18.4045 

CS tycC_2 50 5.3747 3.64230624 0.1127 0.1127 19.158 

CS czcA_3 1 5.821 4.08860624 0.935 0.065 26.6 

CS 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 7.2366 5.50420624 0.929 0.071 28.6 

CS cds-ALF90441.1 1 8.0778 6.34540624 0.946 0.054 34.5 

CS cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 5.821 4.08860624 0.935 0.065 26.6 

siderophore tycC_3 75 4.5952 2.86280624 0.1139 0.1139 22.5693 

siderophore tycC_2 55 4.5952 2.86280624 0.1103 0.1103 22.5582 

siderophore czcA_3 1 6.1152 4.38280624 0.935 0.065 35.3 
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siderophore 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 7.2782 5.54580624 0.929 0.071 36.9 

siderophore cds-ALF90441.1 1 6.0128 4.28040624 0.946 0.054 38.4 

siderophore cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 6.1152 4.38280624 0.935 0.065 35.3 

gentamycin_0.5 tycC_3 28 4.4989 2.76650624 0.1107 0.1107 0.1294 

gentamycin_0.5 tycC_2 9 4.4989 2.76650624 0.1031 0.1031 0.135 

gentamycin_0.5 czcA_3 1 6.0287 4.29630624 0.935 0.065 0.222 

gentamycin_0.5 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 7.3391 5.60670624 0.929 0.071 0.234 

gentamycin_0.5 cds-ALF90441.1 1 6.3279 4.59550624 0.946 0.054 0.252 

gentamycin_0.5 cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 6.0287 4.29630624 0.935 0.065 0.222 

gentamycin_1 tycC_3 57 6.1209 4.38850624 0.12 0.12 0.1579 

gentamycin_1 tycC_2 30 6.1209 4.38850624 0.1203 0.1203 0.1518 

gentamycin_1 czcA_3 1 5.9031 4.17070624 0.935 0.065 0.213 

gentamycin_1 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 8.2823 6.54990624 0.929 0.071 0.243 

gentamycin_1 cds-ALF90441.1 1 6.9872 5.25480624 0.946 0.054 0.256 
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gentamycin_1 cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 5.9031 4.17070624 0.935 0.065 0.213 

nicotinamide tycC_3 55 6.2418 4.50940624 0.1041 0.1041 0.1007 

nicotinamide tycC_2 19 6.2418 4.50940624 0.0987 0.0987 0.1069 

nicotinamide tycC_1 1 4.0255 2.29310624 0.101 0.101 0.0932 

nicotinamide dhbF_3 1 4.0255 2.29310624 0.101 0.101 0.0932 

rifampicin_4 tycC_3 50 6.5702 4.83780624 0.1251 0.1251 0.0518 

rifampicin_4 tycC_2 22 6.5702 4.83780624 0.1332 0.1332 0.0483 

rifampicin_4 cds-ALF90441.1 1 4.8633 3.13090624 0.946 0.054 0.0688 

salinity_0.5 czcA_3 1 4.4134 2.68100624 0.935 0.065 0.204 

salinity_0.5 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 4.8182 3.08580624 0.929 0.071 0.205 

salinity_0.5 cds-ALF90441.1 1 5.2277 3.49530624 0.946 0.054 0.245 

salinity_0.5 cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 4.4134 2.68100624 0.935 0.065 0.204 

SP 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 4.3778 2.64540624 0.929 0.071 9.61 

SP cds-ALF90441.1 1 4.6946 2.96220624 0.946 0.054 11.4 

tetracycline_1 cds-ALF90441.1 1 4.699 2.96660624 0.946 0.054 0.379 

tetracycline_5 tycC_3 95 9.0173 7.28490624 0.1125 0.1125 0.2064 

tetracycline_5 tycC_2 67 9.0173 7.28490624 0.1119 0.1119 0.1952 

tetracycline_5 czcA_3 1 5.6478 3.91540624 0.935 0.065 0.235 

tetracycline_5 dhbF_3 1 5.3904 3.65800624 0.101 0.101 0.188 

tetracycline_5 tycC_1 1 5.3904 3.65800624 0.101 0.101 0.188 
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tetracycline_5 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 6.4067 4.67430624 0.929 0.071 0.241 

tetracycline_5 cds-ALF90441.1 1 7.2941 5.56170624 0.946 0.054 0.295 

tetracycline_5 cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 5.6478 3.91540624 0.935 0.065 0.235 

xylose czcA_3 1 3.9706 2.23820624 0.935 0.065 0.386 

xylose cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 3.9706 2.23820624 0.935 0.065 0.386 
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Appendix Figure C.4: Antibiotic resistance and biofilm production traits. Taking mean standardised 
value (z-score) across all antibiotic resistance traits (n=8) and biofilm production traits (n=4) per 
isolate. Shows that ecotype 3 has higher antibiotic resistance and biofilm production compared to 
the other two ecotypes (A-B). Antibiotic resistance and biofilm production are increasing over time 
(C-D). Biofilm production and antibiotic resistance are correlated with one another (E). 
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Appendix Figure C.5:Ecotype GWAS unitig hits. Unitig hits when the input continuous phenotype 
was (A, B and C) ecotype or (D, E and F) PC2 values from figure 1.2C. (A) and (D) show QQ plots of all 
unitigs for ecotype and PC2 values respectively. (B, C) and (E, F) show significant unitig hits for 
ecotype and PC2 values respectively. 
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Appendix Table C.4: Ecotype GWAS significant hits summary. 

SNPs 

Gene Name 
Filter 

p 
value 

lrt p value 
Allele 

frequency Beta 
Variant 

h2 

Ecotype 

CP012687_293375_A_G 0.0318 0.0073 0.1370 0.3630 0.2060 

PC2 

CP012687_293375_A_G 0.0571 0.0060 0.1370 1.8600 0.2110 

UNITIGS 

Gene Name Hits 
Maximum 
-log10(p 
value) 

Avgerage 
allele 

frequency 

Average 
minor 
allele 

frequency 

Average 
beta 

Ecotype 

czcA_3 1 5.1244 0.9350 0.0650 0.8260 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 6.1427 0.9290 0.0710 0.8720 

cds-ALF90441.1 1 5.5214 0.9460 0.0540 0.9430 

cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 5.1244 0.9350 0.0650 0.8260 

PC2 

czcA_3 1 4.2503 0.9350 0.0650 3.7500 

cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 5.7447 0.9290 0.0710 4.2300 

cds-ALF90441.1 1 5.4365 0.9460 0.0540 4.7000 

cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 4.2503 0.9350 0.0650 3.7500 
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Appendix Figure C.6: Temporal GWAS unitig hits. Unitig hits when the input continuous phenotype 
was (A, B and C) year or (D, E and F) decade. (A) and (D) show QQ plots of all unitigs for year and 
decade respectively. (B, C) and (E, F) show significant unitig hits for year and decade respectively.  
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Appendix Table C.5: Temporal GWAS significant associations summary table. 

SNPs 

Gene Name Filter p 
value 

lrt p value Allele 
frequency 

Beta Variant 
h2 

Year 

CP012687_293375_A_G 0.0003 0.0000 0.1370 9.2800 0.4130 

Decade 

CP012687_293375_A_G 0.0002 0.0000 0.1370 8.3000 0.4130 

COGs 

Gene Name 
Filter p 
value lrt p value 

Allele 
frequency Beta 

Variant 
h2 

Year 

group_2086 0.0079 0.0000 0.8870 -7.9800 0.3120 

group_1877 0.0000 0.0000 0.2320 -6.4100 0.3510 

group_1933 0.0000 0.0000 0.2140 -7.3300 0.3910 

group_1905 0.0000 0.0000 0.1960 -7.0300 0.3630 

Decade 

group_2086 0.0059 0.0000 0.8870 -7.1100 0.3510 

group_1877 0.0000 0.0001 0.2320 -4.9000 0.3000 

group_1933 0.0000 0.0000 0.2140 -5.5900 0.3330 

group_1905 0.0000 0.0001 0.1960 -5.3200 0.1060 

UNITIGS 

Gene Name Hits 
Maximum 
-log10(p 
value) 

Avgerage 
allele 

frequency 

Average 
minor 
allele 

frequency 

Average 
beta 

Year 

tycC_3 87 7.9747 0.1140 0.1140 8.6238 

tycC_2 66 7.9747 0.1115 0.1115 8.8370 

czcA_3 1 6.9914 0.9350 0.0650 13.3000 

cds-ALF90036.1|feaR 1 6.6126 0.7680 0.2320 7.1100 

feaR|cds-ALF90038.1|glnQ_4 1 6.9208 0.7560 0.2440 7.1500 

tycC_1 1 4.0931 0.1010 0.1010 7.7600 

dhbF_3 1 4.0931 0.1010 0.1010 7.7600 

yciK|cds-ALF88964.1|mtrR|yfcG_2|tar_6|ripJ 1 7.4510 0.7320 0.2680 7.1800 
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cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 8.0883 0.9290 0.0710 13.7000 

oppF_2|dppA_3|cds-ALF88572.1|cds-
ALF88573.1|iorB_1|iorA_1|cds-

ALF88576.1|regX3_1 
1 7.5229 0.7620 0.2380 7.5200 

cds-ALF89052.1 5 7.0048 0.6416 0.3584 7.0720 

cds-ALF91061.1|cds-ALF91062.1|cds-
ALF91063.1|cds-ALF91064.1|cds-
ALF91065.1|cds-ALF91066.1|cds-
ALF91067.1|cds-ALF91068.1|cds-

ALF91069.1|zraR_5 

1 7.0477 0.7500 0.2500 7.1500 

rhsC_1 1 4.3002 0.8270 0.1730 6.4400 

rhsC_3 1 4.3002 0.8270 0.1730 6.4400 

cds-ALF90441.1 1 4.8996 0.9460 0.0540 12.2000 

cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 6.9914 0.9350 0.0650 13.3000 

regX3_1|ycdT|trg 1 7.0477 0.7500 0.2500 7.1500 

Decade 

tycC_3 77 7.1649 0.1169 0.1169 7.2822 

tycC_2 61 7.1649 0.1133 0.1133 7.5785 

czcA_3 1 7.2111 0.9350 0.0650 11.9000 

cds-ALF90036.1|feaR 1 4.8297 0.7680 0.2320 5.3900 

feaR|cds-ALF90038.1|glnQ_4 1 4.7447 0.7560 0.2440 5.2500 

yciK|cds-ALF88964.1|mtrR|yfcG_2|tar_6|ripJ 1 5.1618 0.7320 0.2680 5.3100 
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cds-ALF90441.1|cds-ALF90442.1|eriC|cds-
ALF90444.1|cds-ALF90445.1|cds-
ALF90446.1|cds-ALF90447.1|cds-
ALF90448.1|cds-ALF90449.1|cds-

ALF90450.1|bbsG|yfdE|cysO|mec|moeZ_2|cds-
ALF90457.1|cds-ALF90458.1|recD|glpG|cds-

ALF90462.1|cds-ALF90463.1|cds-
ALF90464.1|fadK|cds-ALF90460.1 

1 8.4214 0.9290 0.0710 12.3000 

oppF_2|dppA_3|cds-ALF88572.1|cds-
ALF88573.1|iorB_1|iorA_1|cds-

ALF88576.1|regX3_1 
1 5.0726 0.7620 0.2380 5.4900 

cds-ALF89052.1 5 4.6861 0.6416 0.3584 5.1360 

cds-ALF91061.1|cds-ALF91062.1|cds-
ALF91063.1|cds-ALF91064.1|cds-
ALF91065.1|cds-ALF91066.1|cds-
ALF91067.1|cds-ALF91068.1|cds-

ALF91069.1|zraR_5 

1 4.9914 0.7500 0.2500 5.3400 

rhsC_3 1 5.0232 0.8270 0.1730 6.2300 

rhsC_1 1 5.0232 0.8270 0.1730 6.2300 

cds-ALF90441.1 1 5.0670 0.9460 0.0540 10.9000 

cds-ALF90702.1|cds-ALF90703.1|cdiA2_3 1 7.2111 0.9350 0.0650 11.9000 

regX3_1|ycdT|trg 1 4.9914 0.7500 0.2500 5.3400 
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Appendix D: Chapter 4 

 

 
Appendix Figure D.1: (A) loadings of PCA plot in figure 1.2B. (B) Calinski method determined 
optimal clusters as 2. 



 243 

 
Appendix Figure D.2: Preliminary results indicate that growth above pH 8.5 is too lethal and 
growth still occurs at pH 4.5 justifying the pH range used for the selection experiment in figure 4.4. 
A single YO336 colony was grown in 6 different pH conditions (pH 4.5, 5, 7, 8, 8.5 and 9) and three 
different salinity concentrations (0, 0.5 and 1%). Three replicates were conducted per condition. 
Optical density (OD) at 600nm was taken every 20 minutes as a measure of growth. 
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Appendix Figure D.3: Host, decade and location all cannot explain abiotic stress tolerance diversity among UK isolates. PCA plot seen in figure 1B with each point 
representing one UK isolate, coloured by (A) host (N=182) and (B) decade (N=180) isolated from. (C) Each point represents one UK isolate (N=174) plotted by coordinates of 
location isolated from and coloured by assigned cluster through k-means clustering (k=2). Eclipses shows the 95% confidence intervals around the centroids for each group. 
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Appendix Figure D.4: Growth curves showing R. solanacearum adaptation to different stressors. 
Growth curves used to calculate area under the curve, growth rate, and carrying capacity from. 
Graphs show the mean average growth of evolved clones (as measured by optical density reads at 
600nm) every 24 hours over the course of 5 days. Conditions in which they are growing in differs 
between panels; pH 7 (A), pH 4.5 (B), pH 8.5 (C), pH 7 0.5% NaCl (D), pH 7 1% NaCl (E), pH 4.5 0.5% 
NaCl (F) and pH 8.5 0.5% NaCl (G). Colour indicates the condition clones were evolved under; blue 
shows growth of clones evolved in pH 7 in a variety of salinity concentrations (lighter the colour the 
higher the salinity concentration). Red shows R. solanacearum evolved in acidic conditions with and 
without salinity, and grey shows the same for alkaline evolved clones. Each point shows the mean 
average OD read across all clones (N = 96 for all but ancestor, where N = 16) and the bars show one 
standard error from the mean. The dashed vertical line indicates the cut-off point used to calculate 
area under the curve, growth rate and carrying capacity (96 hours).  
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Appendix Figure D.5: Growth curves showing evolved R. solanacearum clone’s growth in 10 carbon 
resources. Growth curves used to calculate area under the curve data. Graphs show the mean 
average growth of evolved clones (as measured by optical density reads at 600nm) every 24 hours 
over the course of 5 days. Carbons in which they are growing in is labelled above each graph and 
were at a concentration of 10mM. Colour indicates the condition clones were evolved under; blue 
shows growth of clones evolved in pH 7 in a variety of salinity concentrations (lighter the colour the 
higher the salinity concentration). Red shows R. solanacearum evolved in acidic conditions with and 
without salinity, and grey shows the same for alkaline evolved clones. Each point shows the mean 
average OD read across all clones (N = 96 for all but ancestor, where N = 16) and the bars show one 
standard error from the mean. The dashed vertical line indicates the cut-off point used to calculate 
area under the curve, growth rate and carrying capacity (96 hours).  
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Appendix Figure D.6: Relative growth from growth rate and carrying capacity data showing R. 
solanacearum adaptation to different stressors. Relative growth (log2) in growth rate (left facet) 
and carrying capacity (right facet) was calculated by dividing clone’s growth rate or carrying capacity 
by the mean ancestor’s value (N = 16) and transforming by log2. Dashed line shows the ancestor 
value (log2(1) = 0), anything above the line has increased growth compared to the ancestor and 
anything below has reduced growth. Boxplot lines show the median relative fitness (log2) of all 
evolved clones in each stressor with the box indicating the interquartile range and whiskers showing 
the 95% quantile (N = 96). Blue boxplots show relative growth of isolates in pH 7 in the presence 
(light blue) and absence (darker blue) of salinity. Red boxplots show R. solanacearum relative growth 
in acidic conditions with and without salinity, and grey show the same for alkaline evolved clones. 
Each point shows an individual clone with shape referring to which population (N=8) that clone 
evolved in (12 clones per population). Each panel refers to a different selection condition in the 
selection experiment, (A and B) show clones evolved in neutral pH conditions (pH 7), in the absence 
of salinity (A) and presence of 0.5% NaCl (B). (C and D) are isolates evolved to acidic pH conditions in 
the absence (C) and presence (D) of 0.5% salinity. Finally, (E and F) show clones exposed to alkaline 
pH conditions throughout the selection experiment, in the absence (E) and presence (F) of 0.5% 
salinity. 
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Appendix Table D.1: Table of statistics for area under the curve (AUC) data. One-way ANOVAs 
conducted per condition where growth (AUC) between populations from different evolutionary 
histories is compared, along with the ancestor. 
 

pH7 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 4.2 0.002       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 5.7801 2.1025 57 2.7492 0.1047 

4.5 7 -4.1470 2.1025 57 
-
1.9724 0.4430 

4.5 7_0.5 0.9405 2.1025 57 0.4473 0.9993 

4.5 8.5 1.2551 2.1025 57 0.5970 0.9967 

4.5 8.5_0.5 -0.1761 2.1025 57 
-
0.0838 1.0000 

4.5 Ancestor -1.0638 1.8208 57 
-
0.5842 0.9970 

4.5_0.5 7 -9.9271 2.1025 57 
-
4.7216 0.0003 

4.5_0.5 7_0.5 -4.8396 2.1025 57 
-
2.3019 0.2611 

4.5_0.5 8.5 -4.5250 2.1025 57 
-
2.1522 0.3374 

4.5_0.5 8.5_0.5 -5.9563 2.1025 57 
-
2.8330 0.0863 

4.5_0.5 Ancestor -6.8439 1.8208 57 
-
3.7587 0.0070 

7 7_0.5 5.0875 2.1025 57 2.4198 0.2095 

7 8.5 5.4021 2.1025 57 2.5694 0.1550 

7 8.5_0.5 3.9709 2.1025 57 1.8887 0.4960 

7 Ancestor 3.0832 1.8208 57 1.6933 0.6232 

7_0.5 8.5 0.3146 2.1025 57 0.1496 1.0000 

7_0.5 8.5_0.5 -1.1166 2.1025 57 
-
0.5311 0.9983 

7_0.5 Ancestor -2.0043 1.8208 57 
-
1.1008 0.9253 

8.5 8.5_0.5 -1.4313 2.1025 57 
-
0.6807 0.9932 

8.5 Ancestor -2.3189 1.8208 57 
-
1.2735 0.8610 

8.5_0.5 Ancestor -0.8876 1.8208 57 
-
0.4875 0.9989 

pH4.5 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 12.2 <0.0001       
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Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 8.1913 1.3568 57 6.0370 0.0000 

4.5 7 1.4566 1.3568 57 1.0735 0.9333 

4.5 7_0.5 6.0714 1.3568 57 4.4746 0.0007 

4.5 8.5 4.5917 1.3568 57 3.3841 0.0208 

4.5 8.5_0.5 9.2021 1.3568 57 6.7820 0.0000 

4.5 Ancestor 4.2995 1.1751 57 3.6589 0.0094 

4.5_0.5 7 -6.7346 1.3568 57 
-
4.9634 0.0001 

4.5_0.5 7_0.5 -2.1199 1.3568 57 
-
1.5624 0.7062 

4.5_0.5 8.5 -3.5995 1.3568 57 
-
2.6528 0.1297 

4.5_0.5 8.5_0.5 1.0109 1.3568 57 0.7450 0.9890 

4.5_0.5 Ancestor -3.8918 1.1751 57 
-
3.3119 0.0254 

7 7_0.5 4.6148 1.3568 57 3.4011 0.0199 

7 8.5 3.1351 1.3568 57 2.3106 0.2570 

7 8.5_0.5 7.7455 1.3568 57 5.7084 0.0000 

7 Ancestor 2.8429 1.1751 57 2.4193 0.2097 

7_0.5 8.5 -1.4796 1.3568 57 
-
1.0905 0.9284 

7_0.5 8.5_0.5 3.1307 1.3568 57 2.3074 0.2585 

7_0.5 Ancestor -1.7719 1.1751 57 
-
1.5079 0.7390 

8.5 8.5_0.5 4.6104 1.3568 57 3.3979 0.0200 

8.5 Ancestor -0.2923 1.1751 57 
-
0.2487 1.0000 

8.5_0.5 Ancestor -4.9026 1.1751 57 
-
4.1722 0.0019 

pH8.5 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 12.7 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.5138 0.3826 57 
-
1.3426 0.8288 

4.5 7 -1.6902 0.3826 57 
-
4.4173 0.0009 

4.5 7_0.5 -0.2880 0.3826 57 
-
0.7527 0.9884 

4.5 8.5 -2.5184 0.3826 57 
-
6.5816 0.0000 
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4.5 8.5_0.5 -0.5297 0.3826 57 
-
1.3845 0.8077 

4.5 Ancestor -1.6769 0.3314 57 
-
5.0603 0.0001 

4.5_0.5 7 -1.1765 0.3826 57 
-
3.0747 0.0477 

4.5_0.5 7_0.5 0.2258 0.3826 57 0.5900 0.9969 

4.5_0.5 8.5 -2.0046 0.3826 57 
-
5.2389 0.0000 

4.5_0.5 8.5_0.5 -0.0160 0.3826 57 
-
0.0418 1.0000 

4.5_0.5 Ancestor -1.1631 0.3314 57 
-
3.5100 0.0146 

7 7_0.5 1.4022 0.3826 57 3.6647 0.0093 

7 8.5 -0.8281 0.3826 57 
-
2.1642 0.3309 

7 8.5_0.5 1.1605 0.3826 57 3.0329 0.0530 

7 Ancestor 0.0134 0.3314 57 0.0404 1.0000 

7_0.5 8.5 -2.2304 0.3826 57 
-
5.8289 0.0000 

7_0.5 8.5_0.5 -0.2417 0.3826 57 
-
0.6318 0.9954 

7_0.5 Ancestor -1.3889 0.3314 57 
-
4.1912 0.0018 

8.5 8.5_0.5 1.9886 0.3826 57 5.1971 0.0001 

8.5 Ancestor 0.8415 0.3314 57 2.5394 0.1650 

8.5_0.5 Ancestor -1.1471 0.3314 57 
-
3.4617 0.0167 

Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 3.1 0.01       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 2.5890 1.4366 57 1.8022 0.5522 

4.5 7 -2.5361 1.4366 57 
-
1.7654 0.5762 

4.5 7_0.5 -1.7398 1.4366 57 
-
1.2110 0.8870 

4.5 8.5 -1.5881 1.4366 57 
-
1.1055 0.9239 

4.5 8.5_0.5 0.9565 1.4366 57 0.6658 0.9939 

4.5 Ancestor -0.7545 1.2441 57 
-
0.6064 0.9964 

4.5_0.5 7 -5.1251 1.4366 57 
-
3.5675 0.0123 

4.5_0.5 7_0.5 -4.3288 1.4366 57 
-
3.0132 0.0557 

4.5_0.5 8.5 -4.1771 1.4366 57 
-
2.9076 0.0722 
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4.5_0.5 8.5_0.5 -1.6325 1.4366 57 
-
1.1364 0.9140 

4.5_0.5 Ancestor -3.3435 1.2441 57 
-
2.6874 0.1202 

7 7_0.5 0.7964 1.4366 57 0.5543 0.9978 

7 8.5 0.9480 1.4366 57 0.6599 0.9942 

7 8.5_0.5 3.4926 1.4366 57 2.4312 0.2049 

7 Ancestor 1.7816 1.2441 57 1.4320 0.7823 

7_0.5 8.5 0.1516 1.4366 57 0.1055 1.0000 

7_0.5 8.5_0.5 2.6963 1.4366 57 1.8768 0.5036 

7_0.5 Ancestor 0.9853 1.2441 57 0.7919 0.9849 

8.5 8.5_0.5 2.5446 1.4366 57 1.7713 0.5723 

8.5 Ancestor 0.8336 1.2441 57 0.6700 0.9937 

8.5_0.5 Ancestor -1.7110 1.2441 57 
-
1.3752 0.8125 

pH4.5 + Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 16.9 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.2873 0.5508 57 
-
0.5215 0.9984 

4.5 7 0.0963 0.5508 57 0.1747 1.0000 

4.5 7_0.5 2.2243 0.5508 57 4.0379 0.0029 

4.5 8.5 1.4288 0.5508 57 2.5937 0.1473 

4.5 8.5_0.5 0.7470 0.5508 57 1.3561 0.8222 

4.5 Ancestor -1.9700 0.4770 57 
-
4.1296 0.0022 

4.5_0.5 7 0.3835 0.5508 57 0.6962 0.9923 

4.5_0.5 7_0.5 2.5115 0.5508 57 4.5594 0.0005 

4.5_0.5 8.5 1.7160 0.5508 57 3.1152 0.0430 

4.5_0.5 8.5_0.5 1.0343 0.5508 57 1.8776 0.5032 

4.5_0.5 Ancestor -1.6828 0.4770 57 
-
3.5274 0.0139 

7 7_0.5 2.1280 0.5508 57 3.8632 0.0051 

7 8.5 1.3325 0.5508 57 2.4190 0.2098 

7 8.5_0.5 0.6507 0.5508 57 1.1814 0.8983 

7 Ancestor -2.0663 0.4770 57 
-
4.3314 0.0011 

7_0.5 8.5 -0.7955 0.5508 57 
-
1.4441 0.7756 

7_0.5 8.5_0.5 -1.4773 0.5508 57 
-
2.6818 0.1217 

7_0.5 Ancestor -4.1943 0.4770 57 
-
8.7922 0.0000 
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8.5 8.5_0.5 -0.6818 0.5508 57 
-
1.2376 0.8763 

8.5 Ancestor -3.3988 0.4770 57 
-
7.1246 0.0000 

8.5_0.5 Ancestor -2.7170 0.4770 57 
-
5.6955 0.0000 

pH8.5 + Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 10.9 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.3426 0.1028 57 
-
3.3314 0.0241 

4.5 7 -0.3574 0.1028 57 
-
3.4749 0.0161 

4.5 7_0.5 -0.1440 0.1028 57 
-
1.4002 0.7995 

4.5 8.5 -0.3926 0.1028 57 
-
3.8176 0.0058 

4.5 8.5_0.5 -0.5680 0.1028 57 
-
5.5228 0.0000 

4.5 Ancestor -0.6133 0.0891 57 
-
6.8853 0.0000 

4.5_0.5 7 -0.0147 0.1028 57 
-
0.1434 1.0000 

4.5_0.5 7_0.5 0.1986 0.1028 57 1.9313 0.4688 

4.5_0.5 8.5 -0.0500 0.1028 57 
-
0.4862 0.9989 

4.5_0.5 8.5_0.5 -0.2254 0.1028 57 
-
2.1914 0.3163 

4.5_0.5 Ancestor -0.2706 0.0891 57 
-
3.0384 0.0523 

7 7_0.5 0.2134 0.1028 57 2.0747 0.3813 

7 8.5 -0.0353 0.1028 57 
-
0.3427 0.9999 

7 8.5_0.5 -0.2106 0.1028 57 
-
2.0480 0.3971 

7 Ancestor -0.2559 0.0891 57 
-
2.8728 0.0785 

7_0.5 8.5 -0.2486 0.1028 57 
-
2.4175 0.2104 

7_0.5 8.5_0.5 -0.4240 0.1028 57 
-
4.1227 0.0022 

7_0.5 Ancestor -0.4692 0.0891 57 
-
5.2685 0.0000 

8.5 8.5_0.5 -0.1754 0.1028 57 
-
1.7052 0.6155 

8.5 Ancestor -0.2206 0.0891 57 
-
2.4771 0.1872 

8.5_0.5 Ancestor -0.0452 0.0891 57 
-
0.5080 0.9986 
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Arabinose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 6.4 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0844 0.6110 57 0.1381 1.0000 

4.5 7 0.9920 0.6110 57 1.6236 0.6679 

4.5 7_0.5 1.6745 0.6110 57 2.7406 0.1068 

4.5 8.5 2.1728 0.6110 57 3.5561 0.0128 

4.5 8.5_0.5 0.3426 0.6110 57 0.5608 0.9976 

4.5 Ancestor -0.5763 0.5291 57 
-
1.0891 0.9288 

4.5_0.5 7 0.9076 0.6110 57 1.4855 0.7521 

4.5_0.5 7_0.5 1.5901 0.6110 57 2.6026 0.1445 

4.5_0.5 8.5 2.0884 0.6110 57 3.4180 0.0189 

4.5_0.5 8.5_0.5 0.2582 0.6110 57 0.4227 0.9995 

4.5_0.5 Ancestor -0.6606 0.5291 57 
-
1.2485 0.8718 

7 7_0.5 0.6825 0.6110 57 1.1170 0.9203 

7 8.5 1.1808 0.6110 57 1.9325 0.4680 

7 8.5_0.5 -0.6494 0.6110 57 
-
1.0628 0.9363 

7 Ancestor -1.5683 0.5291 57 
-
2.9638 0.0630 

7_0.5 8.5 0.4982 0.6110 57 0.8155 0.9824 

7_0.5 8.5_0.5 -1.3319 0.6110 57 
-
2.1799 0.3224 

7_0.5 Ancestor -2.2508 0.5291 57 
-
4.2537 0.0015 

8.5 8.5_0.5 -1.8301 0.6110 57 
-
2.9954 0.0582 

8.5 Ancestor -2.7490 0.5291 57 
-
5.1953 0.0001 

8.5_0.5 Ancestor -0.9189 0.5291 57 
-
1.7366 0.5950 

Citric Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 8 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 1.4014 1.8491 57 0.7579 0.9880 

4.5 7 -3.1892 1.8491 57 
-
1.7247 0.6028 
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4.5 7_0.5 1.8666 1.8491 57 1.0095 0.9498 

4.5 8.5 0.5837 1.8491 57 0.3157 0.9999 

4.5 8.5_0.5 -1.7505 1.8491 57 
-
0.9467 0.9630 

4.5 Ancestor -6.6809 1.6014 57 
-
4.1719 0.0019 

4.5_0.5 7 -4.5906 1.8491 57 
-
2.4826 0.1851 

4.5_0.5 7_0.5 0.4653 1.8491 57 0.2516 1.0000 

4.5_0.5 8.5 -0.8176 1.8491 57 
-
0.4422 0.9994 

4.5_0.5 8.5_0.5 -3.1519 1.8491 57 
-
1.7045 0.6159 

4.5_0.5 Ancestor -8.0823 1.6014 57 
-
5.0470 0.0001 

7 7_0.5 5.0559 1.8491 57 2.7342 0.1083 

7 8.5 3.7730 1.8491 57 2.0404 0.4016 

7 8.5_0.5 1.4387 1.8491 57 0.7781 0.9862 

7 Ancestor -3.4916 1.6014 57 
-
2.1804 0.3222 

7_0.5 8.5 -1.2829 1.8491 57 
-
0.6938 0.9925 

7_0.5 8.5_0.5 -3.6171 1.8491 57 
-
1.9561 0.4532 

7_0.5 Ancestor -8.5475 1.6014 57 
-
5.3375 0.0000 

8.5 8.5_0.5 -2.3343 1.8491 57 
-
1.2624 0.8659 

8.5 Ancestor -7.2646 1.6014 57 
-
4.5364 0.0006 

8.5_0.5 Ancestor -4.9304 1.6014 57 
-
3.0788 0.0472 

Glucose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 14.7 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 1.7020 1.6468 57 1.0335 0.9439 

4.5 7 -2.0649 1.6468 57 
-
1.2539 0.8695 

4.5 7_0.5 1.5136 1.6468 57 0.9191 0.9680 

4.5 8.5 4.4869 1.6468 57 2.7246 0.1107 

4.5 8.5_0.5 -3.5611 1.6468 57 
-
2.1625 0.3318 

4.5 Ancestor -6.8748 1.4262 57 
-
4.8205 0.0002 

4.5_0.5 7 -3.7669 1.6468 57 
-
2.2874 0.2679 
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4.5_0.5 7_0.5 -0.1884 1.6468 57 
-
0.1144 1.0000 

4.5_0.5 8.5 2.7849 1.6468 57 1.6911 0.6246 

4.5_0.5 8.5_0.5 -5.2631 1.6468 57 
-
3.1960 0.0348 

4.5_0.5 Ancestor -8.5768 1.4262 57 
-
6.0139 0.0000 

7 7_0.5 3.5785 1.6468 57 2.1730 0.3261 

7 8.5 6.5518 1.6468 57 3.9785 0.0035 

7 8.5_0.5 -1.4963 1.6468 57 
-
0.9086 0.9697 

7 Ancestor -4.8099 1.4262 57 
-
3.3726 0.0215 

7_0.5 8.5 2.9733 1.6468 57 1.8055 0.5500 

7_0.5 8.5_0.5 -5.0748 1.6468 57 
-
3.0816 0.0468 

7_0.5 Ancestor -8.3884 1.4262 57 
-
5.8818 0.0000 

8.5 8.5_0.5 -8.0480 1.6468 57 
-
4.8871 0.0002 

8.5 Ancestor -11.3616 1.4262 57 
-
7.9666 0.0000 

8.5_0.5 Ancestor -3.3136 1.4262 57 
-
2.3235 0.2511 

Glutamine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 8.2 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.6454 1.3745 57 
-
0.4695 0.9991 

4.5 7 -3.1401 1.3745 57 
-
2.2845 0.2693 

4.5 7_0.5 0.0521 1.3745 57 0.0379 1.0000 

4.5 8.5 2.5838 1.3745 57 1.8797 0.5018 

4.5 8.5_0.5 -2.5009 1.3745 57 
-
1.8194 0.5409 

4.5 Ancestor -4.7334 1.1904 57 
-
3.9763 0.0036 

4.5_0.5 7 -2.4947 1.3745 57 
-
1.8150 0.5438 

4.5_0.5 7_0.5 0.6975 1.3745 57 0.5074 0.9987 

4.5_0.5 8.5 3.2291 1.3745 57 2.3492 0.2394 

4.5_0.5 8.5_0.5 -1.8555 1.3745 57 
-
1.3499 0.8253 

4.5_0.5 Ancestor -4.0880 1.1904 57 
-
3.4342 0.0181 

7 7_0.5 3.1922 1.3745 57 2.3224 0.2515 
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7 8.5 5.7239 1.3745 57 4.1642 0.0020 

7 8.5_0.5 0.6392 1.3745 57 0.4651 0.9992 

7 Ancestor -1.5933 1.1904 57 
-
1.3384 0.8309 

7_0.5 8.5 2.5316 1.3745 57 1.8418 0.5263 

7_0.5 8.5_0.5 -2.5530 1.3745 57 
-
1.8574 0.5162 

7_0.5 Ancestor -4.7855 1.1904 57 
-
4.0201 0.0031 

8.5 8.5_0.5 -5.0846 1.3745 57 
-
3.6992 0.0084 

8.5 Ancestor -7.3171 1.1904 57 
-
6.1469 0.0000 

8.5_0.5 Ancestor -2.2325 1.1904 57 
-
1.8754 0.5045 

Histidine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 11 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.4908 1.4070 57 0.3488 0.9998 

4.5 7 -2.7190 1.4070 57 
-
1.9325 0.4680 

4.5 7_0.5 4.1770 1.4070 57 2.9688 0.0622 

4.5 8.5 5.9799 1.4070 57 4.2502 0.0015 

4.5 8.5_0.5 2.8568 1.4070 57 2.0304 0.4075 

4.5 Ancestor -1.4289 1.2185 57 
-
1.1727 0.9014 

4.5_0.5 7 -3.2098 1.4070 57 
-
2.2813 0.2708 

4.5_0.5 7_0.5 3.6863 1.4070 57 2.6200 0.1392 

4.5_0.5 8.5 5.4891 1.4070 57 3.9014 0.0045 

4.5_0.5 8.5_0.5 2.3660 1.4070 57 1.6816 0.6307 

4.5_0.5 Ancestor -1.9196 1.2185 57 
-
1.5754 0.6981 

7 7_0.5 6.8960 1.4070 57 4.9014 0.0002 

7 8.5 8.6989 1.4070 57 6.1828 0.0000 

7 8.5_0.5 5.5757 1.4070 57 3.9630 0.0037 

7 Ancestor 1.2901 1.2185 57 1.0588 0.9374 

7_0.5 8.5 1.8029 1.4070 57 1.2814 0.8575 

7_0.5 8.5_0.5 -1.3203 1.4070 57 
-
0.9384 0.9646 

7_0.5 Ancestor -5.6059 1.2185 57 
-
4.6008 0.0005 

8.5 8.5_0.5 -3.1231 1.4070 57 
-
2.2198 0.3015 
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8.5 Ancestor -7.4088 1.2185 57 
-
6.0804 0.0000 

8.5_0.5 Ancestor -4.2856 1.2185 57 
-
3.5172 0.0143 

Malic Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 9.7 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 2.0485 2.0914 57 0.9795 0.9564 

4.5 7 -1.9711 2.0914 57 
-
0.9425 0.9638 

4.5 7_0.5 2.3661 2.0914 57 1.1314 0.9157 

4.5 8.5 6.7110 2.0914 57 3.2089 0.0336 

4.5 8.5_0.5 -3.8313 2.0914 57 
-
1.8319 0.5327 

4.5 Ancestor -5.3298 1.8112 57 
-
2.9427 0.0663 

4.5_0.5 7 -4.0196 2.0914 57 
-
1.9220 0.4747 

4.5_0.5 7_0.5 0.3176 2.0914 57 0.1519 1.0000 

4.5_0.5 8.5 4.6625 2.0914 57 2.2294 0.2966 

4.5_0.5 8.5_0.5 -5.8798 2.0914 57 
-
2.8114 0.0907 

4.5_0.5 Ancestor -7.3783 1.8112 57 
-
4.0737 0.0026 

7 7_0.5 4.3373 2.0914 57 2.0739 0.3818 

7 8.5 8.6821 2.0914 57 4.1514 0.0020 

7 8.5_0.5 -1.8601 2.0914 57 
-
0.8894 0.9728 

7 Ancestor -3.3586 1.8112 57 
-
1.8544 0.5182 

7_0.5 8.5 4.3449 2.0914 57 2.0775 0.3797 

7_0.5 8.5_0.5 -6.1974 2.0914 57 
-
2.9633 0.0631 

7_0.5 Ancestor -7.6959 1.8112 57 
-
4.2491 0.0015 

8.5 8.5_0.5 -10.5423 2.0914 57 
-
5.0408 0.0001 

8.5 Ancestor -12.0408 1.8112 57 
-
6.6480 0.0000 

8.5_0.5 Ancestor -1.4985 1.8112 57 
-
0.8274 0.9811 

Maltose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 15.2 <0.0001       
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Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.8331 0.4555 57 1.8291 0.5346 

4.5 7 -0.8605 0.4555 57 
-
1.8892 0.4957 

4.5 7_0.5 0.7298 0.4555 57 1.6022 0.6815 

4.5 8.5 1.1893 0.4555 57 2.6110 0.1420 

4.5 8.5_0.5 0.0570 0.4555 57 0.1251 1.0000 

4.5 Ancestor -1.7861 0.3945 57 
-
4.5281 0.0006 

4.5_0.5 7 -1.6936 0.4555 57 
-
3.7184 0.0079 

4.5_0.5 7_0.5 -0.1034 0.4555 57 
-
0.2270 1.0000 

4.5_0.5 8.5 0.3561 0.4555 57 0.7819 0.9858 

4.5_0.5 8.5_0.5 -0.7761 0.4555 57 
-
1.7040 0.6163 

4.5_0.5 Ancestor -2.6193 0.3945 57 
-
6.6402 0.0000 

7 7_0.5 1.5903 0.4555 57 3.4914 0.0154 

7 8.5 2.0498 0.4555 57 4.5002 0.0006 

7 8.5_0.5 0.9175 0.4555 57 2.0144 0.4172 

7 Ancestor -0.9256 0.3945 57 
-
2.3466 0.2406 

7_0.5 8.5 0.4595 0.4555 57 1.0088 0.9499 

7_0.5 8.5_0.5 -0.6728 0.4555 57 
-
1.4770 0.7570 

7_0.5 Ancestor -2.5159 0.3945 57 
-
6.3781 0.0000 

8.5 8.5_0.5 -1.1323 0.4555 57 
-
2.4859 0.1839 

8.5 Ancestor -2.9754 0.3945 57 
-
7.5430 0.0000 

8.5_0.5 Ancestor -1.8431 0.3945 57 
-
4.6726 0.0004 

Serine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 7.6 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.5953 0.6379 57 0.9332 0.9655 

4.5 7 -1.6228 0.6379 57 
-
2.5440 0.1634 

4.5 7_0.5 0.3270 0.6379 57 0.5126 0.9986 

4.5 8.5 -0.3149 0.6379 57 
-
0.4936 0.9988 
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4.5 8.5_0.5 0.5084 0.6379 57 0.7970 0.9844 

4.5 Ancestor -2.0591 0.5524 57 
-
3.7275 0.0077 

4.5_0.5 7 -2.2180 0.6379 57 
-
3.4771 0.0160 

4.5_0.5 7_0.5 -0.2683 0.6379 57 
-
0.4205 0.9995 

4.5_0.5 8.5 -0.9101 0.6379 57 
-
1.4268 0.7851 

4.5_0.5 8.5_0.5 -0.0869 0.6379 57 
-
0.1362 1.0000 

4.5_0.5 Ancestor -2.6544 0.5524 57 
-
4.8050 0.0002 

7 7_0.5 1.9498 0.6379 57 3.0566 0.0499 

7 8.5 1.3079 0.6379 57 2.0503 0.3956 

7 8.5_0.5 2.1311 0.6379 57 3.3410 0.0235 

7 Ancestor -0.4364 0.5524 57 
-
0.7899 0.9851 

7_0.5 8.5 -0.6419 0.6379 57 
-
1.0063 0.9505 

7_0.5 8.5_0.5 0.1814 0.6379 57 0.2843 1.0000 

7_0.5 Ancestor -2.3861 0.5524 57 
-
4.3194 0.0012 

8.5 8.5_0.5 0.8233 0.6379 57 1.2906 0.8534 

8.5 Ancestor -1.7443 0.5524 57 
-
3.1575 0.0385 

8.5_0.5 Ancestor -2.5675 0.5524 57 
-
4.6477 0.0004 

Succinic Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 6.8 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.9531 1.4088 57 0.6766 0.9934 

4.5 7 -2.0194 1.4088 57 
-
1.4334 0.7815 

4.5 7_0.5 0.3421 1.4088 57 0.2429 1.0000 

4.5 8.5 3.8239 1.4088 57 2.7143 0.1133 

4.5 8.5_0.5 -2.5171 1.4088 57 
-
1.7867 0.5622 

4.5 Ancestor -2.9784 1.2200 57 
-
2.4412 0.2009 

4.5_0.5 7 -2.9725 1.4088 57 
-
2.1100 0.3610 

4.5_0.5 7_0.5 -0.6110 1.4088 57 
-
0.4337 0.9994 

4.5_0.5 8.5 2.8708 1.4088 57 2.0378 0.4031 
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4.5_0.5 8.5_0.5 -3.4703 1.4088 57 
-
2.4633 0.1924 

4.5_0.5 Ancestor -3.9315 1.2200 57 
-
3.2224 0.0324 

7 7_0.5 2.3615 1.4088 57 1.6763 0.6342 

7 8.5 5.8432 1.4088 57 4.1477 0.0021 

7 8.5_0.5 -0.4978 1.4088 57 
-
0.3533 0.9998 

7 Ancestor -0.9590 1.2200 57 
-
0.7860 0.9854 

7_0.5 8.5 3.4818 1.4088 57 2.4715 0.1893 

7_0.5 8.5_0.5 -2.8593 1.4088 57 
-
2.0296 0.4080 

7_0.5 Ancestor -3.3205 1.2200 57 
-
2.7216 0.1114 

8.5 8.5_0.5 -6.3410 1.4088 57 
-
4.5011 0.0006 

8.5 Ancestor -6.8023 1.2200 57 
-
5.5754 0.0000 

8.5_0.5 Ancestor -0.4612 1.2200 57 
-
0.3781 0.9998 

Sucrose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 14.1 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 1.6321 2.2773 57 0.7167 0.9910 

4.5 7 -2.6741 2.2773 57 
-
1.1742 0.9009 

4.5 7_0.5 0.5550 2.2773 57 0.2437 1.0000 

4.5 8.5 5.3334 2.2773 57 2.3420 0.2427 

4.5 8.5_0.5 -4.2608 2.2773 57 
-
1.8710 0.5074 

4.5 Ancestor -10.3035 1.9722 57 
-
5.2244 0.0001 

4.5_0.5 7 -4.3063 2.2773 57 
-
1.8909 0.4946 

4.5_0.5 7_0.5 -1.0771 2.2773 57 
-
0.4730 0.9991 

4.5_0.5 8.5 3.7013 2.2773 57 1.6253 0.6669 

4.5_0.5 8.5_0.5 -5.8929 2.2773 57 
-
2.5877 0.1492 

4.5_0.5 Ancestor -11.9356 1.9722 57 
-
6.0519 0.0000 

7 7_0.5 3.2291 2.2773 57 1.4180 0.7899 

7 8.5 8.0075 2.2773 57 3.5162 0.0143 

7 8.5_0.5 -1.5866 2.2773 57 
-
0.6967 0.9923 
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7 Ancestor -7.6294 1.9722 57 
-
3.8684 0.0050 

7_0.5 8.5 4.7784 2.2773 57 2.0983 0.3677 

7_0.5 8.5_0.5 -4.8158 2.2773 57 
-
2.1147 0.3583 

7_0.5 Ancestor -10.8585 1.9722 57 
-
5.5058 0.0000 

8.5 8.5_0.5 -9.5941 2.2773 57 
-
4.2129 0.0017 

8.5 Ancestor -15.6369 1.9722 57 
-
7.9286 0.0000 

8.5_0.5 Ancestor -6.0427 1.9722 57 
-
3.0640 0.0490 
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Appendix Table D.2: Table of statistics for growth rate (r) data. One-way ANOVAs conducted per 
condition where growth (r) between populations from different evolutionary histories is compared, 
along with the ancestor. 
 

pH7 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 5.2 0.0002       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0033 0.0015 57 2.1670 0.3294 

4.5 7 -0.0035 0.0015 57 
-
2.3346 0.2460 

4.5 7_0.5 -0.0007 0.0015 57 
-
0.4810 0.9990 

4.5 8.5 0.0017 0.0015 57 1.1046 0.9241 

4.5 8.5_0.5 0.0010 0.0015 57 0.6848 0.9930 

4.5 Ancestor -0.0021 0.0013 57 
-
1.6269 0.6658 

4.5_0.5 7 -0.0068 0.0015 57 
-
4.5015 0.0006 

4.5_0.5 7_0.5 -0.0040 0.0015 57 
-
2.6479 0.1311 

4.5_0.5 8.5 -0.0016 0.0015 57 
-
1.0624 0.9364 

4.5_0.5 8.5_0.5 -0.0022 0.0015 57 
-
1.4822 0.7540 

4.5_0.5 Ancestor -0.0054 0.0013 57 
-
4.1291 0.0022 

7 7_0.5 0.0028 0.0015 57 1.8536 0.5187 

7 8.5 0.0052 0.0015 57 3.4392 0.0178 

7 8.5_0.5 0.0045 0.0015 57 3.0193 0.0549 

7 Ancestor 0.0014 0.0013 57 1.0688 0.9346 

7_0.5 8.5 0.0024 0.0015 57 1.5856 0.6918 

7_0.5 8.5_0.5 0.0018 0.0015 57 1.1658 0.9039 

7_0.5 Ancestor -0.0014 0.0013 57 
-
1.0715 0.9338 

8.5 8.5_0.5 -0.0006 0.0015 57 
-
0.4198 0.9995 

8.5 Ancestor -0.0038 0.0013 57 
-
2.9024 0.0731 

8.5_0.5 Ancestor -0.0031 0.0013 57 
-
2.4177 0.2103 

pH4.5 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 20 <0.0001       

Residuals 57           
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Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0037 0.0006 57 6.2450 0.0000 

4.5 7 0.0007 0.0006 57 1.2521 0.8703 

4.5 7_0.5 0.0015 0.0006 57 2.5244 0.1701 

4.5 8.5 0.0029 0.0006 57 4.8968 0.0002 

4.5 8.5_0.5 0.0048 0.0006 57 8.1110 0.0000 

4.5 Ancestor 0.0039 0.0005 57 7.6398 0.0000 

4.5_0.5 7 -0.0029 0.0006 57 
-
4.9929 0.0001 

4.5_0.5 7_0.5 -0.0022 0.0006 57 
-
3.7206 0.0078 

4.5_0.5 8.5 -0.0008 0.0006 57 
-
1.3482 0.8261 

4.5_0.5 8.5_0.5 0.0011 0.0006 57 1.8660 0.5106 

4.5_0.5 Ancestor 0.0002 0.0005 57 0.4288 0.9995 

7 7_0.5 0.0008 0.0006 57 1.2723 0.8616 

7 8.5 0.0022 0.0006 57 3.6447 0.0098 

7 8.5_0.5 0.0041 0.0006 57 6.8589 0.0000 

7 Ancestor 0.0032 0.0005 57 6.1940 0.0000 

7_0.5 8.5 0.0014 0.0006 57 2.3724 0.2293 

7_0.5 8.5_0.5 0.0033 0.0006 57 5.5866 0.0000 

7_0.5 Ancestor 0.0024 0.0005 57 4.7249 0.0003 

8.5 8.5_0.5 0.0019 0.0006 57 3.2142 0.0331 

8.5 Ancestor 0.0010 0.0005 57 1.9855 0.4349 

8.5_0.5 Ancestor -0.0009 0.0005 57 
-
1.7259 0.6020 

pH8.5 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 2.6 0.025       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0006 0.0013 57 
-
0.4489 0.9993 

4.5 7 -0.0016 0.0013 57 
-
1.2314 0.8789 

4.5 7_0.5 -0.0012 0.0013 57 
-
0.8693 0.9757 

4.5 8.5 -0.0035 0.0013 57 
-
2.6129 0.1414 

4.5 8.5_0.5 -0.0025 0.0013 57 
-
1.8852 0.4982 

4.5 Ancestor -0.0035 0.0011 57 
-
3.0782 0.0473 
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4.5_0.5 7 -0.0010 0.0013 57 
-
0.7825 0.9858 

4.5_0.5 7_0.5 -0.0006 0.0013 57 
-
0.4205 0.9995 

4.5_0.5 8.5 -0.0029 0.0013 57 
-
2.1640 0.3310 

4.5_0.5 8.5_0.5 -0.0019 0.0013 57 
-
1.4363 0.7799 

4.5_0.5 Ancestor -0.0029 0.0011 57 
-
2.5599 0.1581 

7 7_0.5 0.0005 0.0013 57 0.3620 0.9998 

7 8.5 -0.0018 0.0013 57 
-
1.3816 0.8092 

7 8.5_0.5 -0.0009 0.0013 57 
-
0.6539 0.9945 

7 Ancestor -0.0019 0.0011 57 
-
1.6564 0.6470 

7_0.5 8.5 -0.0023 0.0013 57 
-
1.7436 0.5905 

7_0.5 8.5_0.5 -0.0013 0.0013 57 
-
1.0159 0.9483 

7_0.5 Ancestor -0.0024 0.0011 57 
-
2.0744 0.3815 

8.5 8.5_0.5 0.0010 0.0013 57 0.7277 0.9903 

8.5 Ancestor -0.0001 0.0011 57 
-
0.0611 1.0000 

8.5_0.5 Ancestor -0.0010 0.0011 57 
-
0.9013 0.9709 

Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 3.4 0.006       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0008 0.0008 57 0.8953 0.9718 

4.5 7 -0.0013 0.0008 57 
-
1.5075 0.7392 

4.5 7_0.5 -0.0021 0.0008 57 
-
2.4698 0.1899 

4.5 8.5 0.0000 0.0008 57 0.0250 1.0000 

4.5 8.5_0.5 0.0009 0.0008 57 1.1292 0.9164 

4.5 Ancestor 0.0001 0.0007 57 0.1495 1.0000 

4.5_0.5 7 -0.0020 0.0008 57 
-
2.4028 0.2164 

4.5_0.5 7_0.5 -0.0028 0.0008 57 
-
3.3651 0.0220 

4.5_0.5 8.5 -0.0007 0.0008 57 
-
0.8703 0.9755 

4.5_0.5 8.5_0.5 0.0002 0.0008 57 0.2339 1.0000 
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4.5_0.5 Ancestor -0.0006 0.0007 57 
-
0.8843 0.9735 

7 7_0.5 -0.0008 0.0008 57 
-
0.9623 0.9600 

7 8.5 0.0013 0.0008 57 1.5326 0.7243 

7 8.5_0.5 0.0022 0.0008 57 2.6367 0.1343 

7 Ancestor 0.0014 0.0007 57 1.8903 0.4950 

7_0.5 8.5 0.0021 0.0008 57 2.4949 0.1806 

7_0.5 8.5_0.5 0.0030 0.0008 57 3.5990 0.0113 

7_0.5 Ancestor 0.0022 0.0007 57 3.0014 0.0574 

8.5 8.5_0.5 0.0009 0.0008 57 1.1042 0.9243 

8.5 Ancestor 0.0001 0.0007 57 0.1206 1.0000 

8.5_0.5 Ancestor -0.0008 0.0007 57 
-
1.1544 0.9079 

pH4.5 + Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 11.8 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0007 0.0012 57 
-
0.5991 0.9966 

4.5 7 0.0003 0.0012 57 0.2707 1.0000 

4.5 7_0.5 0.0053 0.0012 57 4.3432 0.0011 

4.5 8.5 0.0034 0.0012 57 2.7220 0.1113 

4.5 8.5_0.5 0.0020 0.0012 57 1.6322 0.6625 

4.5 Ancestor -0.0025 0.0011 57 
-
2.3503 0.2390 

4.5_0.5 7 0.0011 0.0012 57 0.8698 0.9756 

4.5_0.5 7_0.5 0.0061 0.0012 57 4.9423 0.0001 

4.5_0.5 8.5 0.0041 0.0012 57 3.3211 0.0248 

4.5_0.5 8.5_0.5 0.0027 0.0012 57 2.2313 0.2956 

4.5_0.5 Ancestor -0.0018 0.0011 57 
-
1.6585 0.6456 

7 7_0.5 0.0050 0.0012 57 4.0725 0.0026 

7 8.5 0.0030 0.0012 57 2.4513 0.1970 

7 8.5_0.5 0.0017 0.0012 57 1.3615 0.8195 

7 Ancestor -0.0028 0.0011 57 
-
2.6629 0.1269 

7_0.5 8.5 -0.0020 0.0012 57 
-
1.6212 0.6694 

7_0.5 8.5_0.5 -0.0033 0.0012 57 
-
2.7111 0.1141 

7_0.5 Ancestor -0.0079 0.0011 57 
-
7.3654 0.0000 
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8.5 8.5_0.5 -0.0013 0.0012 57 
-
1.0898 0.9286 

8.5 Ancestor -0.0059 0.0011 57 
-
5.4934 0.0000 

8.5_0.5 Ancestor -0.0045 0.0011 57 
-
4.2350 0.0016 

pH4.5 + Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 1.4 0.22       

Residuals 57           

Posthoc: TUKEY 

N/A 

Arabinose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 5.1 0.0003       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0006 0.0013 57 0.4328 0.9995 

4.5 7 0.0027 0.0013 57 2.0941 0.3700 

4.5 7_0.5 0.0033 0.0013 57 2.5320 0.1675 

4.5 8.5 0.0056 0.0013 57 4.2998 0.0013 

4.5 8.5_0.5 0.0001 0.0013 57 0.0443 1.0000 

4.5 Ancestor 0.0012 0.0011 57 1.0571 0.9378 

4.5_0.5 7 0.0022 0.0013 57 1.6613 0.6438 

4.5_0.5 7_0.5 0.0027 0.0013 57 2.0992 0.3672 

4.5_0.5 8.5 0.0050 0.0013 57 3.8669 0.0050 

4.5_0.5 8.5_0.5 -0.0005 0.0013 57 
-
0.3885 0.9997 

4.5_0.5 Ancestor 0.0006 0.0011 57 0.5573 0.9977 

7 7_0.5 0.0006 0.0013 57 0.4378 0.9994 

7 8.5 0.0029 0.0013 57 2.2056 0.3088 

7 8.5_0.5 -0.0027 0.0013 57 
-
2.0498 0.3960 

7 Ancestor -0.0015 0.0011 57 
-
1.3610 0.8197 

7_0.5 8.5 0.0023 0.0013 57 1.7678 0.5746 

7_0.5 8.5_0.5 -0.0032 0.0013 57 
-
2.4876 0.1833 

7_0.5 Ancestor -0.0021 0.0011 57 
-
1.8666 0.5103 

8.5 8.5_0.5 -0.0055 0.0013 57 
-
4.2554 0.0015 

8.5 Ancestor -0.0044 0.0011 57 
-
3.9078 0.0044 
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8.5_0.5 Ancestor 0.0011 0.0011 57 1.0059 0.9506 

Citric Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 5.3 0.0002       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0007 0.0010 57 0.7208 0.9908 

4.5 7 -0.0043 0.0010 57 
-
4.1749 0.0019 

4.5 7_0.5 -0.0012 0.0010 57 
-
1.1497 0.9095 

4.5 8.5 0.0001 0.0010 57 0.0977 1.0000 

4.5 8.5_0.5 -0.0018 0.0010 57 
-
1.7804 0.5664 

4.5 Ancestor -0.0011 0.0009 57 
-
1.2708 0.8622 

4.5_0.5 7 -0.0050 0.0010 57 
-
4.8957 0.0002 

4.5_0.5 7_0.5 -0.0019 0.0010 57 
-
1.8705 0.5077 

4.5_0.5 8.5 -0.0006 0.0010 57 
-
0.6231 0.9958 

4.5_0.5 8.5_0.5 -0.0026 0.0010 57 
-
2.5011 0.1784 

4.5_0.5 Ancestor -0.0019 0.0009 57 
-
2.1030 0.3649 

7 7_0.5 0.0031 0.0010 57 3.0252 0.0541 

7 8.5 0.0044 0.0010 57 4.2726 0.0014 

7 8.5_0.5 0.0025 0.0010 57 2.3945 0.2199 

7 Ancestor 0.0032 0.0009 57 3.5500 0.0130 

7_0.5 8.5 0.0013 0.0010 57 1.2474 0.8723 

7_0.5 8.5_0.5 -0.0006 0.0010 57 
-
0.6306 0.9955 

7_0.5 Ancestor 0.0001 0.0009 57 0.0568 1.0000 

8.5 8.5_0.5 -0.0019 0.0010 57 
-
1.8780 0.5029 

8.5 Ancestor -0.0012 0.0009 57 
-
1.3835 0.8082 

8.5_0.5 Ancestor 0.0007 0.0009 57 0.7850 0.9855 

Glucose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 7.7 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 
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4.5 4.5_0.5 0.0014 0.0015 57 0.9645 0.9595 

4.5 7 -0.0020 0.0015 57 
-
1.3319 0.8341 

4.5 7_0.5 0.0000 0.0015 57 
-
0.0128 1.0000 

4.5 8.5 0.0051 0.0015 57 3.4661 0.0165 

4.5 8.5_0.5 -0.0022 0.0015 57 
-
1.5139 0.7354 

4.5 Ancestor -0.0027 0.0013 57 
-
2.1204 0.3551 

4.5_0.5 7 -0.0034 0.0015 57 
-
2.2964 0.2637 

4.5_0.5 7_0.5 -0.0014 0.0015 57 
-
0.9772 0.9569 

4.5_0.5 8.5 0.0037 0.0015 57 2.5016 0.1782 

4.5_0.5 8.5_0.5 -0.0037 0.0015 57 
-
2.4784 0.1867 

4.5_0.5 Ancestor -0.0041 0.0013 57 
-
3.2341 0.0314 

7 7_0.5 0.0020 0.0015 57 1.3191 0.8402 

7 8.5 0.0071 0.0015 57 4.7980 0.0002 

7 8.5_0.5 -0.0003 0.0015 57 
-
0.1821 1.0000 

7 Ancestor -0.0007 0.0013 57 
-
0.5825 0.9971 

7_0.5 8.5 0.0052 0.0015 57 3.4788 0.0159 

7_0.5 8.5_0.5 -0.0022 0.0015 57 
-
1.5012 0.7429 

7_0.5 Ancestor -0.0027 0.0013 57 
-
2.1057 0.3634 

8.5 8.5_0.5 -0.0074 0.0015 57 
-
4.9800 0.0001 

8.5 Ancestor -0.0079 0.0013 57 
-
6.1227 0.0000 

8.5_0.5 Ancestor -0.0005 0.0013 57 
-
0.3723 0.9998 

Glutamine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 3 0.01       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0002 0.0010 57 
-
0.1887 1.0000 

4.5 7 -0.0025 0.0010 57 
-
2.4641 0.1921 

4.5 7_0.5 -0.0010 0.0010 57 
-
0.9242 0.9671 

4.5 8.5 0.0015 0.0010 57 1.5007 0.7432 
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4.5 8.5_0.5 -0.0014 0.0010 57 
-
1.3338 0.8331 

4.5 Ancestor -0.0006 0.0009 57 
-
0.6242 0.9957 

4.5_0.5 7 -0.0023 0.0010 57 
-
2.2754 0.2737 

4.5_0.5 7_0.5 -0.0008 0.0010 57 
-
0.7355 0.9897 

4.5_0.5 8.5 0.0017 0.0010 57 1.6894 0.6257 

4.5_0.5 8.5_0.5 -0.0012 0.0010 57 
-
1.1451 0.9111 

4.5_0.5 Ancestor -0.0004 0.0009 57 
-
0.4063 0.9996 

7 7_0.5 0.0016 0.0010 57 1.5399 0.7199 

7 8.5 0.0041 0.0010 57 3.9648 0.0037 

7 8.5_0.5 0.0012 0.0010 57 1.1302 0.9160 

7 Ancestor 0.0020 0.0009 57 2.2211 0.3008 

7_0.5 8.5 0.0025 0.0010 57 2.4249 0.2074 

7_0.5 8.5_0.5 -0.0004 0.0010 57 
-
0.4097 0.9996 

7_0.5 Ancestor 0.0004 0.0009 57 0.4430 0.9994 

8.5 8.5_0.5 -0.0029 0.0010 57 
-
2.8345 0.0860 

8.5 Ancestor -0.0021 0.0009 57 
-
2.3570 0.2360 

8.5_0.5 Ancestor 0.0008 0.0009 57 0.9160 0.9685 

Histidine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 10.9 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0013 0.0008 57 1.7686 0.5741 

4.5 7 0.0005 0.0008 57 0.6374 0.9952 

4.5 7_0.5 0.0030 0.0008 57 4.0311 0.0030 

4.5 8.5 0.0043 0.0008 57 5.6454 0.0000 

4.5 8.5_0.5 0.0040 0.0008 57 5.3438 0.0000 

4.5 Ancestor 0.0033 0.0007 57 5.0297 0.0001 

4.5_0.5 7 -0.0009 0.0008 57 
-
1.1312 0.9157 

4.5_0.5 7_0.5 0.0017 0.0008 57 2.2625 0.2800 

4.5_0.5 8.5 0.0029 0.0008 57 3.8768 0.0049 

4.5_0.5 8.5_0.5 0.0027 0.0008 57 3.5752 0.0121 

4.5_0.5 Ancestor 0.0020 0.0007 57 2.9875 0.0594 

7 7_0.5 0.0026 0.0008 57 3.3936 0.0203 

7 8.5 0.0038 0.0008 57 5.0080 0.0001 
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7 8.5_0.5 0.0036 0.0008 57 4.7064 0.0003 

7 Ancestor 0.0028 0.0007 57 4.2937 0.0013 

7_0.5 8.5 0.0012 0.0008 57 1.6144 0.6738 

7_0.5 8.5_0.5 0.0010 0.0008 57 1.3127 0.8432 

7_0.5 Ancestor 0.0002 0.0007 57 0.3750 0.9998 

8.5 8.5_0.5 -0.0002 0.0008 57 
-
0.3016 0.9999 

8.5 Ancestor -0.0010 0.0007 57 
-
1.4891 0.7500 

8.5_0.5 Ancestor -0.0007 0.0007 57 
-
1.1408 0.9125 

Malic Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 4.3 0.001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0019 0.0024 57 0.8027 0.9838 

4.5 7 -0.0005 0.0024 57 
-
0.2331 1.0000 

4.5 7_0.5 0.0015 0.0024 57 0.6395 0.9951 

4.5 8.5 0.0088 0.0024 57 3.7364 0.0075 

4.5 8.5_0.5 -0.0011 0.0024 57 
-
0.4814 0.9990 

4.5 Ancestor -0.0001 0.0020 57 
-
0.0577 1.0000 

4.5_0.5 7 -0.0024 0.0024 57 
-
1.0358 0.9434 

4.5_0.5 7_0.5 -0.0004 0.0024 57 
-
0.1632 1.0000 

4.5_0.5 8.5 0.0069 0.0024 57 2.9337 0.0678 

4.5_0.5 8.5_0.5 -0.0030 0.0024 57 
-
1.2841 0.8563 

4.5_0.5 Ancestor -0.0020 0.0020 57 
-
0.9846 0.9554 

7 7_0.5 0.0021 0.0024 57 0.8727 0.9752 

7 8.5 0.0093 0.0024 57 3.9696 0.0036 

7 8.5_0.5 -0.0006 0.0024 57 
-
0.2483 1.0000 

7 Ancestor 0.0004 0.0020 57 0.2115 1.0000 

7_0.5 8.5 0.0073 0.0024 57 3.0969 0.0450 

7_0.5 8.5_0.5 -0.0026 0.0024 57 
-
1.1209 0.9190 

7_0.5 Ancestor -0.0016 0.0020 57 
-
0.7961 0.9844 

8.5 8.5_0.5 -0.0099 0.0024 57 
-
4.2179 0.0016 
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8.5 Ancestor -0.0089 0.0020 57 
-
4.3722 0.0010 

8.5_0.5 Ancestor 0.0010 0.0020 57 0.4982 0.9988 

Maltose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 5.4 0.0002       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0019 0.0008 57 2.5540 0.1600 

4.5 7 -0.0017 0.0008 57 
-
2.1855 0.3194 

4.5 7_0.5 0.0010 0.0008 57 1.3583 0.8211 

4.5 8.5 0.0001 0.0008 57 0.1641 1.0000 

4.5 8.5_0.5 0.0009 0.0008 57 1.1685 0.9029 

4.5 Ancestor -0.0007 0.0007 57 
-
1.1184 0.9198 

4.5_0.5 7 -0.0036 0.0008 57 
-
4.7396 0.0003 

4.5_0.5 7_0.5 -0.0009 0.0008 57 
-
1.1957 0.8929 

4.5_0.5 8.5 -0.0018 0.0008 57 
-
2.3899 0.2218 

4.5_0.5 8.5_0.5 -0.0010 0.0008 57 
-
1.3855 0.8072 

4.5_0.5 Ancestor -0.0027 0.0007 57 
-
4.0675 0.0027 

7 7_0.5 0.0027 0.0008 57 3.5438 0.0132 

7 8.5 0.0018 0.0008 57 2.3497 0.2392 

7 8.5_0.5 0.0025 0.0008 57 3.3541 0.0226 

7 Ancestor 0.0009 0.0007 57 1.4052 0.7968 

7_0.5 8.5 -0.0009 0.0008 57 
-
1.1942 0.8935 

7_0.5 8.5_0.5 -0.0001 0.0008 57 
-
0.1898 1.0000 

7_0.5 Ancestor -0.0018 0.0007 57 
-
2.6868 0.1204 

8.5 8.5_0.5 0.0008 0.0008 57 1.0044 0.9509 

8.5 Ancestor -0.0009 0.0007 57 
-
1.3079 0.8455 

8.5_0.5 Ancestor -0.0016 0.0007 57 
-
2.4677 0.1907 

Serine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 8.3 <0.0001       

Residuals 57           
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Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0009 0.0011 57 0.7992 0.9841 

4.5 7 -0.0032 0.0011 57 
-
2.8732 0.0785 

4.5 7_0.5 -0.0009 0.0011 57 
-
0.7847 0.9856 

4.5 8.5 -0.0009 0.0011 57 
-
0.7827 0.9858 

4.5 8.5_0.5 -0.0007 0.0011 57 
-
0.6407 0.9951 

4.5 Ancestor -0.0046 0.0010 57 
-
4.7629 0.0003 

4.5_0.5 7 -0.0041 0.0011 57 
-
3.6724 0.0091 

4.5_0.5 7_0.5 -0.0018 0.0011 57 
-
1.5839 0.6929 

4.5_0.5 8.5 -0.0018 0.0011 57 
-
1.5820 0.6941 

4.5_0.5 8.5_0.5 -0.0016 0.0011 57 
-
1.4400 0.7779 

4.5_0.5 Ancestor -0.0055 0.0010 57 
-
5.6858 0.0000 

7 7_0.5 0.0023 0.0011 57 2.0885 0.3733 

7 8.5 0.0023 0.0011 57 2.0905 0.3722 

7 8.5_0.5 0.0025 0.0011 57 2.2324 0.2950 

7 Ancestor -0.0014 0.0010 57 
-
1.4453 0.7749 

7_0.5 8.5 0.0000 0.0011 57 0.0020 1.0000 

7_0.5 8.5_0.5 0.0002 0.0011 57 0.1439 1.0000 

7_0.5 Ancestor -0.0038 0.0010 57 
-
3.8569 0.0052 

8.5 8.5_0.5 0.0002 0.0011 57 0.1420 1.0000 

8.5 Ancestor -0.0038 0.0010 57 
-
3.8591 0.0051 

8.5_0.5 Ancestor -0.0039 0.0010 57 
-
4.0231 0.0031 

Succinic Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 4.2 0.001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0000 0.0017 57 0.0169 1.0000 

4.5 7 -0.0034 0.0017 57 
-
2.0763 0.3804 

4.5 7_0.5 -0.0028 0.0017 57 
-
1.7020 0.6176 

4.5 8.5 0.0035 0.0017 57 2.1340 0.3475 
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4.5 8.5_0.5 -0.0025 0.0017 57 
-
1.5351 0.7227 

4.5 Ancestor -0.0002 0.0014 57 
-
0.1429 1.0000 

4.5_0.5 7 -0.0035 0.0017 57 
-
2.0931 0.3706 

4.5_0.5 7_0.5 -0.0028 0.0017 57 
-
1.7189 0.6066 

4.5_0.5 8.5 0.0035 0.0017 57 2.1171 0.3569 

4.5_0.5 8.5_0.5 -0.0026 0.0017 57 
-
1.5520 0.7125 

4.5_0.5 Ancestor -0.0002 0.0014 57 
-
0.1624 1.0000 

7 7_0.5 0.0006 0.0017 57 0.3743 0.9998 

7 8.5 0.0070 0.0017 57 4.2103 0.0017 

7 8.5_0.5 0.0009 0.0017 57 0.5411 0.9981 

7 Ancestor 0.0032 0.0014 57 2.2545 0.2839 

7_0.5 8.5 0.0064 0.0017 57 3.8360 0.0055 

7_0.5 8.5_0.5 0.0003 0.0017 57 0.1668 1.0000 

7_0.5 Ancestor 0.0026 0.0014 57 1.8223 0.5390 

8.5 8.5_0.5 -0.0061 0.0017 57 
-
3.6692 0.0092 

8.5 Ancestor -0.0037 0.0014 57 
-
2.6071 0.1431 

8.5_0.5 Ancestor 0.0023 0.0014 57 1.6297 0.6641 

Sucrose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 6.5 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0001 0.0015 57 0.0949 1.0000 

4.5 7 -0.0013 0.0015 57 
-
0.8378 0.9798 

4.5 7_0.5 -0.0011 0.0015 57 
-
0.7173 0.9910 

4.5 8.5 0.0055 0.0015 57 3.5922 0.0115 

4.5 8.5_0.5 -0.0017 0.0015 57 
-
1.1031 0.9246 

4.5 Ancestor -0.0024 0.0013 57 
-
1.7872 0.5619 

4.5_0.5 7 -0.0014 0.0015 57 
-
0.9327 0.9656 

4.5_0.5 7_0.5 -0.0012 0.0015 57 
-
0.8122 0.9828 

4.5_0.5 8.5 0.0054 0.0015 57 3.4973 0.0151 

4.5_0.5 8.5_0.5 -0.0018 0.0015 57 
-
1.1980 0.8921 
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4.5_0.5 Ancestor -0.0025 0.0013 57 
-
1.8968 0.4908 

7 7_0.5 0.0002 0.0015 57 0.1205 1.0000 

7 8.5 0.0068 0.0015 57 4.4300 0.0008 

7 8.5_0.5 -0.0004 0.0015 57 
-
0.2653 1.0000 

7 Ancestor -0.0011 0.0013 57 
-
0.8199 0.9819 

7_0.5 8.5 0.0066 0.0015 57 4.3095 0.0012 

7_0.5 8.5_0.5 -0.0006 0.0015 57 
-
0.3858 0.9997 

7_0.5 Ancestor -0.0013 0.0013 57 
-
0.9590 0.9606 

8.5 8.5_0.5 -0.0072 0.0015 57 
-
4.6953 0.0003 

8.5 Ancestor -0.0079 0.0013 57 
-
5.9352 0.0000 

8.5_0.5 Ancestor -0.0007 0.0013 57 
-
0.5135 0.9986 
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Appendix Table D.3: Table of statistics for carrying capacity (k) data. One-way ANOVAs conducted 
per condition where growth (k) between populations from different evolutionary histories is 
compared, along with the ancestor. 
 

pH7 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 1.5 0.19       

Residuals 57           

Posthoc: TUKEY 
N/A 

pH4.5 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 18.7 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.1505 0.0254 57 5.9212 0.0000 

4.5 7 0.0304 0.0254 57 1.1959 0.8929 

4.5 7_0.5 0.0667 0.0254 57 2.6253 0.1377 

4.5 8.5 0.1367 0.0254 57 5.3769 0.0000 

4.5 8.5_0.5 0.2175 0.0254 57 8.5559 0.0000 

4.5 Ancestor 0.1415 0.0220 57 6.4264 0.0000 

4.5_0.5 7 -0.1201 0.0254 57 -4.7253 0.0003 

4.5_0.5 7_0.5 -0.0838 0.0254 57 -3.2958 0.0266 

4.5_0.5 8.5 -0.0138 0.0254 57 -0.5442 0.9980 

4.5_0.5 8.5_0.5 0.0670 0.0254 57 2.6348 0.1349 

4.5_0.5 Ancestor -0.0090 0.0220 57 -0.4108 0.9996 

7 7_0.5 0.0363 0.0254 57 1.4295 0.7837 

7 8.5 0.1063 0.0254 57 4.1810 0.0019 

7 8.5_0.5 0.1871 0.0254 57 7.3601 0.0000 

7 Ancestor 0.1111 0.0220 57 5.0455 0.0001 

7_0.5 8.5 0.0699 0.0254 57 2.7516 0.1041 

7_0.5 8.5_0.5 0.1507 0.0254 57 5.9306 0.0000 

7_0.5 Ancestor 0.0747 0.0220 57 3.3949 0.0202 

8.5 8.5_0.5 0.0808 0.0254 57 3.1790 0.0364 

8.5 Ancestor 0.0048 0.0220 57 0.2177 1.0000 

8.5_0.5 Ancestor -0.0760 0.0220 57 -3.4531 0.0172 

pH8.5 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 25.9 <0.0001       
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Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0094 0.0078 57 -1.2142 0.8858 

4.5 7 -0.0171 0.0078 57 -2.2008 0.3114 

4.5 7_0.5 -0.0098 0.0078 57 -1.2543 0.8693 

4.5 8.5 -0.0705 0.0078 57 -9.0641 0.0000 

4.5 8.5_0.5 0.0053 0.0078 57 0.6854 0.9929 

4.5 Ancestor 0.0082 0.0067 57 1.2165 0.8849 

4.5_0.5 7 -0.0077 0.0078 57 -0.9866 0.9549 

4.5_0.5 7_0.5 -0.0003 0.0078 57 -0.0402 1.0000 

4.5_0.5 8.5 -0.0611 0.0078 57 -7.8499 0.0000 

4.5_0.5 8.5_0.5 0.0148 0.0078 57 1.8996 0.4890 

4.5_0.5 Ancestor 0.0176 0.0067 57 2.6185 0.1397 

7 7_0.5 0.0074 0.0078 57 0.9464 0.9631 

7 8.5 -0.0534 0.0078 57 -6.8633 0.0000 

7 8.5_0.5 0.0225 0.0078 57 2.8862 0.0761 

7 Ancestor 0.0253 0.0067 57 3.7577 0.0070 

7_0.5 8.5 -0.0608 0.0078 57 -7.8098 0.0000 

7_0.5 8.5_0.5 0.0151 0.0078 57 1.9397 0.4635 

7_0.5 Ancestor 0.0180 0.0067 57 2.6649 0.1263 

8.5 8.5_0.5 0.0759 0.0078 57 9.7495 0.0000 

8.5 Ancestor 0.0787 0.0067 57 11.6828 0.0000 

8.5_0.5 Ancestor 0.0029 0.0067 57 0.4251 0.9995 

Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 3.2 0.009       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0226 0.0274 57 0.8240 0.9814 

4.5 7 -0.0501 0.0274 57 -1.8242 0.5378 

4.5 7_0.5 -0.0531 0.0274 57 -1.9335 0.4674 

4.5 8.5 -0.0105 0.0274 57 -0.3837 0.9997 

4.5 8.5_0.5 0.0408 0.0274 57 1.4875 0.7509 

4.5 Ancestor -0.0056 0.0238 57 -0.2336 1.0000 

4.5_0.5 7 -0.0727 0.0274 57 -2.6482 0.1310 

4.5_0.5 7_0.5 -0.0757 0.0274 57 -2.7575 0.1027 

4.5_0.5 8.5 -0.0331 0.0274 57 -1.2078 0.8883 

4.5_0.5 8.5_0.5 0.0182 0.0274 57 0.6635 0.9941 

4.5_0.5 Ancestor -0.0282 0.0238 57 -1.1851 0.8969 
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7 7_0.5 -0.0030 0.0274 57 -0.1093 1.0000 

7 8.5 0.0395 0.0274 57 1.4404 0.7776 

7 8.5_0.5 0.0909 0.0274 57 3.3117 0.0254 

7 Ancestor 0.0445 0.0238 57 1.8728 0.5062 

7_0.5 8.5 0.0425 0.0274 57 1.5498 0.7139 

7_0.5 8.5_0.5 0.0939 0.0274 57 3.4210 0.0188 

7_0.5 Ancestor 0.0475 0.0238 57 1.9990 0.4266 

8.5 8.5_0.5 0.0514 0.0274 57 1.8713 0.5072 

8.5 Ancestor 0.0050 0.0238 57 0.2095 1.0000 

8.5_0.5 Ancestor -0.0464 0.0238 57 -1.9512 0.4563 

pH4.5 + Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 7.9 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0006 0.0186 57 -0.0297 1.0000 

4.5 7 0.0109 0.0186 57 0.5877 0.9969 

4.5 7_0.5 0.0886 0.0186 57 4.7727 0.0003 

4.5 8.5 0.0605 0.0186 57 3.2584 0.0294 

4.5 8.5_0.5 0.0523 0.0186 57 2.8176 0.0894 

4.5 Ancestor 0.0061 0.0161 57 0.3769 0.9998 

4.5_0.5 7 0.0115 0.0186 57 0.6175 0.9960 

4.5_0.5 7_0.5 0.0892 0.0186 57 4.8024 0.0002 

4.5_0.5 8.5 0.0611 0.0186 57 3.2881 0.0271 

4.5_0.5 8.5_0.5 0.0529 0.0186 57 2.8473 0.0834 

4.5_0.5 Ancestor 0.0066 0.0161 57 0.4112 0.9996 

7 7_0.5 0.0777 0.0186 57 4.1849 0.0018 

7 8.5 0.0496 0.0186 57 2.6707 0.1248 

7 8.5_0.5 0.0414 0.0186 57 2.2299 0.2963 

7 Ancestor -0.0049 0.0161 57 -0.3018 0.9999 

7_0.5 8.5 -0.0281 0.0186 57 -1.5142 0.7352 

7_0.5 8.5_0.5 -0.0363 0.0186 57 -1.9551 0.4539 

7_0.5 Ancestor -0.0826 0.0161 57 -5.1341 0.0001 

8.5 8.5_0.5 -0.0082 0.0186 57 -0.4408 0.9994 

8.5 Ancestor -0.0545 0.0161 57 -3.3856 0.0207 

8.5_0.5 Ancestor -0.0463 0.0161 57 -2.8766 0.0778 

pH8.5 + Salinity 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 6 <0.0001       
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Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0087 0.0025 57 -3.4302 0.0183 

4.5 7 -0.0058 0.0025 57 -2.2841 0.2695 

4.5 7_0.5 -0.0039 0.0025 57 -1.5296 0.7261 

4.5 8.5 -0.0104 0.0025 57 -4.1105 0.0023 

4.5 8.5_0.5 -0.0133 0.0025 57 -5.2607 0.0000 

4.5 Ancestor -0.0071 0.0022 57 -3.2610 0.0292 

4.5_0.5 7 0.0029 0.0025 57 1.1461 0.9107 

4.5_0.5 7_0.5 0.0048 0.0025 57 1.9006 0.4883 

4.5_0.5 8.5 -0.0017 0.0025 57 -0.6803 0.9932 

4.5_0.5 8.5_0.5 -0.0046 0.0025 57 -1.8305 0.5336 

4.5_0.5 Ancestor 0.0015 0.0022 57 0.6998 0.9921 

7 7_0.5 0.0019 0.0025 57 0.7545 0.9882 

7 8.5 -0.0046 0.0025 57 -1.8264 0.5363 

7 8.5_0.5 -0.0075 0.0025 57 -2.9767 0.0610 

7 Ancestor -0.0014 0.0022 57 -0.6236 0.9958 

7_0.5 8.5 -0.0065 0.0025 57 -2.5809 0.1513 

7_0.5 8.5_0.5 -0.0094 0.0025 57 -3.7312 0.0076 

7_0.5 Ancestor -0.0033 0.0022 57 -1.4948 0.7466 

8.5 8.5_0.5 -0.0029 0.0025 57 -1.1503 0.9093 

8.5 Ancestor 0.0033 0.0022 57 1.4853 0.7522 

8.5_0.5 Ancestor 0.0062 0.0022 57 2.8135 0.0903 

Arabinose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 4 0.002       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0006 0.0135 57 0.0423 1.0000 

4.5 7 0.0150 0.0135 57 1.1094 0.9227 

4.5 7_0.5 0.0340 0.0135 57 2.5099 0.1752 

4.5 8.5 0.0457 0.0135 57 3.3791 0.0211 

4.5 8.5_0.5 -0.0048 0.0135 57 -0.3549 0.9998 

4.5 Ancestor 0.0096 0.0117 57 0.8232 0.9815 

4.5_0.5 7 0.0144 0.0135 57 1.0671 0.9351 

4.5_0.5 7_0.5 0.0334 0.0135 57 2.4675 0.1908 

4.5_0.5 8.5 0.0451 0.0135 57 3.3367 0.0238 

4.5_0.5 8.5_0.5 -0.0054 0.0135 57 -0.3973 0.9997 

4.5_0.5 Ancestor 0.0091 0.0117 57 0.7743 0.9865 
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7 7_0.5 0.0189 0.0135 57 1.4004 0.7993 

7 8.5 0.0307 0.0135 57 2.2697 0.2765 

7 8.5_0.5 -0.0198 0.0135 57 -1.4643 0.7642 

7 Ancestor -0.0054 0.0117 57 -0.4578 0.9992 

7_0.5 8.5 0.0118 0.0135 57 0.8692 0.9757 

7_0.5 8.5_0.5 -0.0388 0.0135 57 -2.8648 0.0800 

7_0.5 Ancestor -0.0243 0.0117 57 -2.0749 0.3812 

8.5 8.5_0.5 -0.0505 0.0135 57 -3.7340 0.0075 

8.5 Ancestor -0.0361 0.0117 57 -3.0786 0.0472 

8.5_0.5 Ancestor 0.0144 0.0117 57 1.2330 0.8782 

Citric Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 8.6 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0258 0.0277 57 0.9322 0.9657 

4.5 7 -0.0895 0.0277 57 -3.2333 0.0315 

4.5 7_0.5 -0.0460 0.0277 57 -1.6631 0.6427 

4.5 8.5 -0.0053 0.0277 57 -0.1908 1.0000 

4.5 8.5_0.5 -0.0781 0.0277 57 -2.8227 0.0884 

4.5 Ancestor -0.1095 0.0240 57 -4.5679 0.0005 

4.5_0.5 7 -0.1153 0.0277 57 -4.1655 0.0020 

4.5_0.5 7_0.5 -0.0718 0.0277 57 -2.5954 0.1468 

4.5_0.5 8.5 -0.0311 0.0277 57 -1.1231 0.9184 

4.5_0.5 8.5_0.5 -0.1039 0.0277 57 -3.7549 0.0071 

4.5_0.5 Ancestor -0.1353 0.0240 57 -5.6444 0.0000 

7 7_0.5 0.0435 0.0277 57 1.5702 0.7014 

7 8.5 0.0842 0.0277 57 3.0425 0.0517 

7 8.5_0.5 0.0114 0.0277 57 0.4106 0.9996 

7 Ancestor -0.0200 0.0240 57 -0.8344 0.9802 

7_0.5 8.5 0.0408 0.0277 57 1.4723 0.7597 

7_0.5 8.5_0.5 -0.0321 0.0277 57 -1.1596 0.9061 

7_0.5 Ancestor -0.0635 0.0240 57 -2.6475 0.1312 

8.5 8.5_0.5 -0.0728 0.0277 57 -2.6319 0.1357 

8.5 Ancestor -0.1042 0.0240 57 -4.3476 0.0011 

8.5_0.5 Ancestor -0.0314 0.0240 57 -1.3085 0.8452 

Glucose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 11.5 <0.0001       
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Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0149 0.0294 57 0.5078 0.9986 

4.5 7 -0.0593 0.0294 57 -2.0169 0.4157 

4.5 7_0.5 -0.0092 0.0294 57 -0.3112 0.9999 

4.5 8.5 0.0873 0.0294 57 2.9684 0.0623 

4.5 8.5_0.5 -0.0792 0.0294 57 -2.6932 0.1187 

4.5 Ancestor -0.0985 0.0255 57 -3.8679 0.0050 

4.5_0.5 7 -0.0743 0.0294 57 -2.5247 0.1700 

4.5_0.5 7_0.5 -0.0241 0.0294 57 -0.8190 0.9820 

4.5_0.5 8.5 0.0724 0.0294 57 2.4606 0.1934 

4.5_0.5 8.5_0.5 -0.0942 0.0294 57 -3.2010 0.0343 

4.5_0.5 Ancestor -0.1135 0.0255 57 -4.4543 0.0008 

7 7_0.5 0.0502 0.0294 57 1.7057 0.6152 

7 8.5 0.1467 0.0294 57 4.9853 0.0001 

7 8.5_0.5 -0.0199 0.0294 57 -0.6763 0.9934 

7 Ancestor -0.0392 0.0255 57 -1.5390 0.7204 

7_0.5 8.5 0.0965 0.0294 57 3.2796 0.0278 

7_0.5 8.5_0.5 -0.0701 0.0294 57 -2.3820 0.2252 

7_0.5 Ancestor -0.0894 0.0255 57 -3.5085 0.0146 

8.5 8.5_0.5 -0.1666 0.0294 57 -5.6616 0.0000 

8.5 Ancestor -0.1859 0.0255 57 -7.2955 0.0000 

8.5_0.5 Ancestor -0.0193 0.0255 57 -0.7580 0.9879 

Glutamine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 5.4 0.0002       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0046 0.0204 57 -0.2252 1.0000 

4.5 7 -0.0146 0.0204 57 -0.7171 0.9910 

4.5 7_0.5 -0.0231 0.0204 57 -1.1373 0.9137 

4.5 8.5 0.0587 0.0204 57 2.8847 0.0763 

4.5 8.5_0.5 -0.0299 0.0204 57 -1.4700 0.7610 

4.5 Ancestor -0.0355 0.0176 57 -2.0124 0.4184 

4.5_0.5 7 -0.0100 0.0204 57 -0.4919 0.9989 

4.5_0.5 7_0.5 -0.0186 0.0204 57 -0.9121 0.9691 

4.5_0.5 8.5 0.0633 0.0204 57 3.1099 0.0436 

4.5_0.5 8.5_0.5 -0.0253 0.0204 57 -1.2448 0.8734 

4.5_0.5 Ancestor -0.0309 0.0176 57 -1.7524 0.5847 
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7 7_0.5 -0.0086 0.0204 57 -0.4202 0.9995 

7 8.5 0.0733 0.0204 57 3.6018 0.0112 

7 8.5_0.5 -0.0153 0.0204 57 -0.7529 0.9884 

7 Ancestor -0.0209 0.0176 57 -1.1844 0.8972 

7_0.5 8.5 0.0819 0.0204 57 4.0220 0.0031 

7_0.5 8.5_0.5 -0.0068 0.0204 57 -0.3327 0.9999 

7_0.5 Ancestor -0.0123 0.0176 57 -0.6992 0.9921 

8.5 8.5_0.5 -0.0886 0.0204 57 -4.3547 0.0010 

8.5 Ancestor -0.0942 0.0176 57 -5.3433 0.0000 

8.5_0.5 Ancestor -0.0056 0.0176 57 -0.3150 0.9999 

Histidine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 10.8 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 -0.0333 0.0229 57 -1.4586 0.7675 

4.5 7 -0.0663 0.0229 57 -2.8998 0.0736 

4.5 7_0.5 0.0264 0.0229 57 1.1545 0.9079 

4.5 8.5 0.0887 0.0229 57 3.8830 0.0048 

4.5 8.5_0.5 0.0625 0.0229 57 2.7339 0.1084 

4.5 Ancestor 0.0099 0.0198 57 0.4995 0.9988 

4.5_0.5 7 -0.0329 0.0229 57 -1.4412 0.7772 

4.5_0.5 7_0.5 0.0597 0.0229 57 2.6131 0.1413 

4.5_0.5 8.5 0.1221 0.0229 57 5.3416 0.0000 

4.5_0.5 8.5_0.5 0.0958 0.0229 57 4.1925 0.0018 

4.5_0.5 Ancestor 0.0432 0.0198 57 2.1837 0.3204 

7 7_0.5 0.0927 0.0229 57 4.0544 0.0028 

7 8.5 0.1550 0.0229 57 6.7828 0.0000 

7 8.5_0.5 0.1288 0.0229 57 5.6337 0.0000 

7 Ancestor 0.0762 0.0198 57 3.8479 0.0053 

7_0.5 8.5 0.0624 0.0229 57 2.7284 0.1097 

7_0.5 8.5_0.5 0.0361 0.0229 57 1.5794 0.6957 

7_0.5 Ancestor -0.0165 0.0198 57 -0.8337 0.9803 

8.5 8.5_0.5 -0.0263 0.0229 57 -1.1491 0.9097 

8.5 Ancestor -0.0789 0.0198 57 -3.9842 0.0035 

8.5_0.5 Ancestor -0.0526 0.0198 57 -2.6574 0.1284 

Malic Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 10.9 <0.0001       
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Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0262 0.0264 57 0.9922 0.9537 

4.5 7 -0.0382 0.0264 57 -1.4439 0.7757 

4.5 7_0.5 0.0019 0.0264 57 0.0725 1.0000 

4.5 8.5 0.1100 0.0264 57 4.1611 0.0020 

4.5 8.5_0.5 -0.0519 0.0264 57 -1.9651 0.4476 

4.5 Ancestor -0.0564 0.0229 57 -2.4657 0.1915 

4.5_0.5 7 -0.0644 0.0264 57 -2.4361 0.2029 

4.5_0.5 7_0.5 -0.0243 0.0264 57 -0.9197 0.9679 

4.5_0.5 8.5 0.0837 0.0264 57 3.1689 0.0373 

4.5_0.5 8.5_0.5 -0.0781 0.0264 57 -2.9572 0.0640 

4.5_0.5 Ancestor -0.0826 0.0229 57 -3.6114 0.0109 

7 7_0.5 0.0401 0.0264 57 1.5165 0.7339 

7 8.5 0.1481 0.0264 57 5.6050 0.0000 

7 8.5_0.5 -0.0138 0.0264 57 -0.5211 0.9984 

7 Ancestor -0.0183 0.0229 57 -0.7984 0.9842 

7_0.5 8.5 0.1080 0.0264 57 4.0886 0.0025 

7_0.5 8.5_0.5 -0.0538 0.0264 57 -2.0376 0.4033 

7_0.5 Ancestor -0.0583 0.0229 57 -2.5494 0.1616 

8.5 8.5_0.5 -0.1619 0.0264 57 -6.1262 0.0000 

8.5 Ancestor -0.1664 0.0229 57 -7.2705 0.0000 

8.5_0.5 Ancestor -0.0045 0.0229 57 -0.1966 1.0000 

Maltose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 11.3 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0212 0.0093 57 2.2763 0.2733 

4.5 7 -0.0162 0.0093 57 -1.7357 0.5956 

4.5 7_0.5 0.0077 0.0093 57 0.8220 0.9817 

4.5 8.5 0.0276 0.0093 57 2.9576 0.0640 

4.5 8.5_0.5 -0.0007 0.0093 57 -0.0737 1.0000 

4.5 Ancestor -0.0268 0.0081 57 -3.3145 0.0253 

4.5_0.5 7 -0.0374 0.0093 57 -4.0119 0.0032 

4.5_0.5 7_0.5 -0.0136 0.0093 57 -1.4542 0.7699 

4.5_0.5 8.5 0.0064 0.0093 57 0.6813 0.9932 

4.5_0.5 8.5_0.5 -0.0219 0.0093 57 -2.3500 0.2391 

4.5_0.5 Ancestor -0.0480 0.0081 57 -5.9429 0.0000 
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7 7_0.5 0.0239 0.0093 57 2.5577 0.1588 

7 8.5 0.0438 0.0093 57 4.6933 0.0003 

7 8.5_0.5 0.0155 0.0093 57 1.6620 0.6434 

7 Ancestor -0.0106 0.0081 57 -1.3103 0.8443 

7_0.5 8.5 0.0199 0.0093 57 2.1355 0.3466 

7_0.5 8.5_0.5 -0.0084 0.0093 57 -0.8958 0.9718 

7_0.5 Ancestor -0.0344 0.0081 57 -4.2637 0.0014 

8.5 8.5_0.5 -0.0283 0.0093 57 -3.0313 0.0532 

8.5 Ancestor -0.0544 0.0081 57 -6.7296 0.0000 

8.5_0.5 Ancestor -0.0261 0.0081 57 -3.2294 0.0318 

Serine 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 13 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0099 0.0182 57 0.5417 0.9981 

4.5 7 -0.0542 0.0182 57 -2.9770 0.0610 

4.5 7_0.5 -0.0186 0.0182 57 -1.0198 0.9473 

4.5 8.5 -0.0196 0.0182 57 -1.0753 0.9328 

4.5 8.5_0.5 -0.0116 0.0182 57 -0.6367 0.9953 

4.5 Ancestor -0.0994 0.0158 57 -6.3097 0.0000 

4.5_0.5 7 -0.0640 0.0182 57 -3.5186 0.0142 

4.5_0.5 7_0.5 -0.0284 0.0182 57 -1.5615 0.7067 

4.5_0.5 8.5 -0.0294 0.0182 57 -1.6170 0.6721 

4.5_0.5 8.5_0.5 -0.0214 0.0182 57 -1.1784 0.8994 

4.5_0.5 Ancestor -0.1093 0.0158 57 -6.9352 0.0000 

7 7_0.5 0.0356 0.0182 57 1.9572 0.4525 

7 8.5 0.0346 0.0182 57 1.9016 0.4877 

7 8.5_0.5 0.0426 0.0182 57 2.3402 0.2435 

7 Ancestor -0.0453 0.0158 57 -2.8722 0.0786 

7_0.5 8.5 -0.0010 0.0182 57 -0.0555 1.0000 

7_0.5 8.5_0.5 0.0070 0.0182 57 0.3831 0.9997 

7_0.5 Ancestor -0.0809 0.0158 57 -5.1321 0.0001 

8.5 8.5_0.5 0.0080 0.0182 57 0.4386 0.9994 

8.5 Ancestor -0.0798 0.0158 57 -5.0680 0.0001 

8.5_0.5 Ancestor -0.0878 0.0158 57 -5.5744 0.0000 

Succinic Acid 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 7 0.001       
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Residuals 57           

Posthoc: TUKEY 

4.5 4.5_0.5 0.0073 0.0192 57 0.3826 0.9997 

4.5 7 -0.0288 0.0192 57 -1.5020 0.7425 

4.5 7_0.5 -0.0203 0.0192 57 -1.0549 0.9384 

4.5 8.5 0.0618 0.0192 57 3.2194 0.0327 

4.5 8.5_0.5 -0.0463 0.0192 57 -2.4120 0.2127 

4.5 Ancestor -0.0244 0.0166 57 -1.4662 0.7632 

4.5_0.5 7 -0.0362 0.0192 57 -1.8845 0.4987 

4.5_0.5 7_0.5 -0.0276 0.0192 57 -1.4374 0.7793 

4.5_0.5 8.5 0.0545 0.0192 57 2.8369 0.0855 

4.5_0.5 8.5_0.5 -0.0536 0.0192 57 -2.7945 0.0944 

4.5_0.5 Ancestor -0.0317 0.0166 57 -1.9079 0.4837 

7 7_0.5 0.0086 0.0192 57 0.4471 0.9993 

7 8.5 0.0906 0.0192 57 4.7214 0.0003 

7 8.5_0.5 -0.0175 0.0192 57 -0.9100 0.9695 

7 Ancestor 0.0045 0.0166 57 0.2682 1.0000 

7_0.5 8.5 0.0821 0.0192 57 4.2743 0.0014 

7_0.5 8.5_0.5 -0.0261 0.0192 57 -1.3571 0.8217 

7_0.5 Ancestor -0.0041 0.0166 57 -0.2481 1.0000 

8.5 8.5_0.5 -0.1081 0.0192 57 -5.6314 0.0000 

8.5 Ancestor -0.0862 0.0166 57 -5.1836 0.0001 

8.5_0.5 Ancestor 0.0219 0.0166 57 1.3189 0.8403 

8.5_0.5 Ancestor           

Sucrose 

Overall ANOVA 

  DF F value p       

EvolvedIn 6 10.5 <0.0001       

Residuals 57           

Posthoc: TUKEY 

EvolvedIn1 EvolvedIn2 estimate SE df t.ratio p.value 

4.5 4.5_0.5 0.0513 0.0380 57 1.3514 0.8245 

4.5 7 -0.0393 0.0380 57 -1.0345 0.9437 

4.5 7_0.5 -0.0169 0.0380 57 -0.4445 0.9994 

4.5 8.5 0.1429 0.0380 57 3.7656 0.0068 

4.5 8.5_0.5 -0.0639 0.0380 57 -1.6843 0.6290 

4.5 Ancestor -0.0955 0.0329 57 -2.9036 0.0729 

4.5_0.5 7 -0.0906 0.0380 57 -2.3859 0.2235 

4.5_0.5 7_0.5 -0.0682 0.0380 57 -1.7959 0.5562 

4.5_0.5 8.5 0.0916 0.0380 57 2.4142 0.2118 

4.5_0.5 8.5_0.5 -0.1152 0.0380 57 -3.0357 0.0526 

4.5_0.5 Ancestor -0.1468 0.0329 57 -4.4641 0.0007 



 285 

7 7_0.5 0.0224 0.0380 57 0.5900 0.9969 

7 8.5 0.1822 0.0380 57 4.8001 0.0002 

7 8.5_0.5 -0.0247 0.0380 57 -0.6498 0.9947 

7 Ancestor -0.0562 0.0329 57 -1.7091 0.6129 

7_0.5 8.5 0.1598 0.0380 57 4.2101 0.0017 

7_0.5 8.5_0.5 -0.0471 0.0380 57 -1.2397 0.8755 

7_0.5 Ancestor -0.0786 0.0329 57 -2.3903 0.2217 

8.5 8.5_0.5 -0.2069 0.0380 57 -5.4498 0.0000 

8.5 Ancestor -0.2384 0.0329 57 -7.2517 0.0000 

8.5_0.5 Ancestor -0.0315 0.0329 57 -0.9588 0.9607 
 
 
 



 286 

Appendix Table D.4: Table of filtered genetic variants present within evolved clones. Where CP012687 is the chromosome and CP012688 is the megaplasmid and position 
refers to place within their respective chromosome. Reference allele refers to the allele present in the ancestor (YO336) and alternative allele the genetic variant present in 
the clones highlighted. Predicted gene function was taken from the annotated reference file. Where each clone has a highlighted section, this indicates that the alternative 
allele is present within the genome, whereas no colour indicates that the reference allele is present in that clone. Colour indicates evolved condition, where blue shows 
neutral evolved clones (pH 7 0% NaCl), red acidic (pH 4.5 0% NaCl), grey alkaline (pH 8.5 0% NaCl) and light blue salinity (pH 7 0.5% NaCl) evolved clones. 
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Pipeline 
Discovered In

SNIPPY Both Mine Both Both Both Both SNIPPY SNIPPY Both Mine Mine Mine Mine Mine Mine Mine Both Both Both Mine Mine

Looked at 
manually?

YES YES YES YES YES YES YES YES

Comments:
Manual check 

confirmed 
variant

Manual check 
confirmed 

variant

Manual check 
confirmed 

variant

Manual check 
confirmed 

variant

Manual check 
confirmed 

variant

Manual check 
confirmed 

variant

In all clones 
but not 

ancestor. 
Manually 
changed.

Manual check 
confirmed 

variant

Mine found 
more clones 

witth this 
variant 

compared to 
SNIPPY

Mine found 
more clones 

witth this 
variant 

compared to 
SNIPPY

Mine found 
more clones 

witth this 
variant 

compared to 
SNIPPY

Chromosome CP012687 CP012687 CP012687 CP012687 CP012687 CP012687 CP012687 CP012687 CP012687 CP012687 CP012688 CP012688 CP012688 CP012688 CP012688 CP012688 CP012688 CP012688 CP012688 CP012688 CP012688 CP012688

Locus Tag
RSUY_RS0435

0
RSUY_RS1406

5
RSUY_RS0119

5
RSUY_RS0349

5
RSUY_RS0355

0
RSUY_RS0381

5
RSUY_RS0381

5
RSUY_RS0381

5
RSUY_RS0381

5
RSUY_RS0409

5
RSUY_RS2121

5
RSUY_RS2174

0
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5
RSUY_RS1709

5

Position 978476 3061170 658326 793548 805796 863455 863590 863797 863952 926782 1500065 1649968 356411 356488 356576 356722 356737 357148 357163 357235 357255 357400

Reference 
Allele

TGGCA

CCCCGGCCGCG
CGGACGGCCC
AGGCGGCTCC
GCCCGACGGC
AGCAGCAGCC
GCGCGGCGGT
CCAGCTCGAA

AGGTC

TCTAGAGGCT
AGAGGCTAGA
GGCTAGAGGC
TAGAGGCTAG
AGGCTAGAGG

CTAGAGGC

C G C C G C T C T A GCCTA GGC G T C C CTAC TCTT GAAC

Alternative 
Allele

A CC

TCTAGAGGCT
AGAGGCTAGA
GGCTAGAGGC
TAGAGGCTAG
AGGCTAGAGG

C

T A G T T G G T C G ACCTA GGT A C T T CTAT TCTC CAAT

Predicted 
Gene Function

Hpt domain-
containing 

protein

tetratricopepti
de repeat 

protein
tRNAscan-SE

LysR family 
transcriptional 

regulator

hybrid sensor 
histidine 

kinase/respon
se regulator

type IV pilus 
twitching 

motility protein

type IV pilus 
twitching 

motility protein

type IV pilus 
twitching 

motility protein

type IV pilus 
twitching 

motility protein

AI-2E family 
transporter

Ig-like domain-
containing 

protein

IS5 family 
transposase

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

DUF2778 
domain-

containing 
protein

Predicted 
Mutation

frameshift_var
iant

frameshift_var
iant

intragenic_vari
ant

missense_vari
ant

missense_vari
ant

missense_vari
ant

missense_vari
ant

missense_vari
ant

missense_vari
ant

missense_vari
ant

synonymous_
variant

missense_vari
ant

missense_vari
ant

synonymous_
variant

synonymous_
variant

synonymous_
variant

synonymous_
variant

synonymous_
variant

synonymous_
variant

synonymous_
variant

missense_vari
ant

synonymous_
variant

Predicted 
Impact

HIGH MODIFIER MODERATE MODERATE MODERATE MODERATE MODERATE LOW MODERATE MODERATE LOW LOW LOW LOW LOW LOW LOW MODERATE LOW

neutral_1

neutral_2

neutral_3

neutral_4

neutral_5

neutral_6

neutral_7

neutral_8

acid_1

acid_2

acid_3

acid_4

acid_5

acid_6

acid_7

acid_8

alkaline_1

alkaline_2

alkaline_3

alkaline_4

alkaline_5

alkaline_6

alkaline_7

alkaline_8

salinity_1

salinity_2

salinity_3

salinity_4

salinity_5

salinity_6

salinity_7

salintiy_8



 288 

 

 
Appendix Figure D.7: Insertion sequence (IS) movement contributes to stress adaptation. Presence 
(coloured) and absence (white) of IS across genomic positions across the (A) chromosome and (B) 
megaplasmid of R. solanacearum. Specific colours indicate the type of IS present. Evolutionary 
history indicates the stress conditions in which the clone was exposed to during the selection 
experiment (n=8 per stress condition) plus the ancestor clone. Black numbered blocks along the 
right-hand side indicate the areas of interest which differ between different evolutionary history 
groups. Block 1 includes positions near a PhoPQ-activated pathogenicity-related protein, an 
endoglucanase precursor, a thioesterase superfamily protein, a TRP repeat-containing protein (YrrB), 
a leukotokin, and hypothetical proteins. Block 2 involves a cyclic di-GMP phosphodiesterase Gmr and 
a H-NS histone family protein. Block 3 a hypothetical protein and integrase core domain protein. 
Block 4 a tRNA-Pro and a filamentous hemagglutinin. 5 an aminopeptidase N, a type II secretion 
system protein F, a type II secretion system protein G precursor and hypothetical proteins. Finally, 
block 6 includes a putative deoxyribonuclease (RhsB), tRNA3(Ser)-specific nuclease WapA precursor, 
minor extracellular protease Epr precursor and hypothetical protein 
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Appendix Figure D.8: Insertion sequence (IS) movement within adapted clones compared to the ancestor. IS found in the chromosome (left, ~3.5Mbp) and megaplasmid 
(right, ~2Mbp) within different positions compared to the ancestor. Colour indicates the evolutionary history of the clones (N=8 per evolved condition), either from neutral 
(pH 7 with 0% NaCl), acidic (pH 4.5 with 0% NaCl), alkalinity (pH 8.5 with 0% NaCl) and salinity (pH 7 with 0.5% NaCl) stress conditions. Each circle represents a gene in which 
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an insertion sequence has been called in the R. solanacearum genome, size of circles indicates the number of clones per evolutionary history that has that IS present within 
that position in the genome. 
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Appendix Figure D.9: Variance (A) and loading (B) values used to calculate the PCA plot figure 4.8. 
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