Artificial Intelligence for Understanding the Hadith

Shatha Hamad Altammami
School of Computing
University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

January 2023
Publications

Chapter 4,5,6,7 and 8 of this thesis are based on jointly-authored publications. I was the lead author and the co-authors acted in an advisory capacity, providing supervision and review. All original contributions presented here are my own.

Chapter 4:

Chapter 5:

Chapter 6:
Altammami, S., Atwell, E. and Alsalka, A., 2021. Towards a Joint

Chapter 7 and 8:

Dedication

To my parents, Hamad and Helah
for their unwavering love and support.
Acknowledgements

I am deeply grateful for the opportunity that Allah has granted me to pursue my PhD under the supervision of Professor Eric Atwell. He was an exceptional primary supervisor, providing invaluable support, guidance, and encouragement that helped me to develop intellectually, explore research areas that I am passionate about, and publish my work. My gratitude also extends to my second supervisor, Dr. Ammar Alsalka, for his support. I would also like to express my sincere thanks to my examiners, Professor James Dickens and Professor Paul Rayson, for the thoughtful feedback they provided. Additionally, I am thankful for the scholarship from King Saud University, which has made this endeavour possible.

I could not have undertaken this journey without my husband, Abdullah, who helped me pursue my dreams and celebrated my accomplishments. My heartfelt gratitude also goes to my wonderful children, Leena and Abdulrahman, for their understanding and patience during the long hours of research and for always lifting my spirits with their funny jokes. I am truly blessed to be their mother.

An immense thank you to my parents for always believing in me and keeping me in their prayers. Additionally, I am grateful to my siblings for their support, especially my brother Faisal, who sacrificed his first year in college to help me settle down in Leeds.

A special thanks to my friend Ahoud Aldhafeeri, for the enlightening conversations and for pointing me to valuable resources on the Quran. My gratitude also goes to members of the Artificial Intelligence for Language (AI4L) research group at the University of Leeds for their informative discussions. I am also grateful to all my amazing friends in Leeds, who have made this journey enjoyable and fun.

Last, but certainly not least, I would like to acknowledge my baby boy, Tameem, who came into this world in 2022 and brought my happiness and multitasking skills to the next level!
Abstract

My research aims to utilize Artificial Intelligence to model the meanings of Classical Arabic Hadith, which are the reports of the life and teachings of the Prophet Muhammad. The goal is to find similarities and relatedness between Hadith and other religious texts, specifically the Quran. These findings can facilitate downstream tasks, such as Islamic question-answering systems, and enhance understanding of these texts to shed light on new interpretations.

To achieve this goal, a well-structured Hadith corpus should be created, with the Matn (Hadith teaching) and Isnad (chain of narrators) segmented. Hence, a preliminary task is conducted to build a segmentation tool using machine learning models that automatically deconstruct the Hadith into Isnad and Matn with 92.5% accuracy. This tool is then used to create a well-structured corpus of the canonical Hadith books.

After building the Hadith corpus, Matns are extracted to investigate different methods of representing their meanings. Two main methods are tested: a knowledge-based approach and a deep-learning-based approach. To apply the former, existing Islamic ontologies are enumerated, most of which are intended for the Quran. Since the Quran and the Hadith are in the same domain, the extent to which these ontologies cover the Hadith is examined using a corpus-based evaluation. Results show that the most comprehensive Quran ontology covers only 26.8% of Hadith concepts, and extending it is expensive. Therefore, the second approach is investigated by building and evaluating various deep-learning models for a binary classification task of detecting relatedness between the Hadith and the Quran. Results show that the likelihood of the current models reaching a human-level understanding of such texts remains somewhat elusive.
Contents

1 Introduction .. 1
1.1 Aims and Motivation ... 1
1.2 Research Questions ... 3
 1.2.1 Is annotating Isnad and Matn feasible? 3
 1.2.2 Is semantic similarity in Quran and Hadith detectable? . 4
1.3 Contributions ... 4
 1.3.1 Hadith Segmenter .. 5
 1.3.2 Hadith Parallel Corpus 6
 1.3.3 Dataset of Related Quran and Hadith Pairs 7
 1.3.4 Evaluating Quran Ontologies for Hadith 8
 1.3.5 Semantic Similarity Between Quran and Hadith 8
1.4 Thesis Outline .. 9

2 Background .. 12
2.1 Introduction .. 12
2.2 The Arabic Language ... 12
 2.2.1 Classical Arabic ... 14
 2.2.2 Modern Standard Arabic 16
 2.2.3 Dialect Arabic ... 16
2.3 The Quran .. 18
 2.3.1 Quran Structure .. 18
 2.3.2 Quran’s Linguistic Features 18
 2.3.3 Quran Exegesis (Tafsir) 21
2.4 The Hadith ... 23
 2.4.1 Hadith Structure ... 25
4.6.2 Experiments ... 67
4.6.3 Results ... 68
4.7 Hidden Markov Model 71
 4.7.1 Data Preparation 72
 4.7.2 Experiments 72
 4.7.3 Results ... 75
4.8 Comparison and Discussion 80
4.9 Conclusion ... 82

5 Developing the Hadith Corpus 84
 5.1 Introduction ... 84
 5.2 Related Work 85
 5.3 Defining Corpus Data 88
 5.3.1 Hadith Structure 88
 5.3.2 Existing Hadith Books 88
 5.4 Corpus Creation 89
 5.4.1 Resource Enumeration 89
 5.4.2 Data Collection 90
 5.4.3 Corpus Annotation 91
 5.5 Corpus Analysis 95
 5.5.1 Corpus Statistics 95
 5.5.2 Manual Correction and Verification 98
 5.6 Potential Uses 100
 5.7 Conclusion ... 100

6 Evaluating Quran Ontologies for Hadith 102
 6.1 Introduction ... 102
 6.2 What is an Ontology? 103
 6.3 Existing Quran Ontologies 104
 6.4 Ontology Evaluation Methods 106
 6.5 Quran Ontology Evaluation 109
 6.5.1 Data Sources 110
 6.5.2 Data Analysis 111
 6.5.3 Experiment 111
CONTENTS

6.6 Results .. 113
6.7 Discussion ... 115
6.8 Conclusion ... 117

7 Creating the Quran-Hadith Dataset ... 118
 7.1 Introduction ... 118
 7.2 Quran and Hadith .. 118
 7.2.1 The Quran ... 122
 7.2.2 The Hadith ... 128
 7.3 Existing Arabic Datasets .. 131
 7.4 Datasets .. 132
 7.4.1 Testing Dataset: Quran-Hadith (QH) Pairs 133
 7.4.2 Training Dataset: Quran-Quran (QQ) Pairs 140
 7.5 Measuring Data Leakage .. 142
 7.6 Conclusion ... 144

8 Semantic Relatedness Using Deep Learning 146
 8.1 Introduction ... 146
 8.2 Related Work .. 147
 8.3 Datasets .. 148
 8.4 Experimental Setup ... 150
 8.4.1 Evaluation Metrics .. 150
 8.4.2 Baseline Model ... 151
 8.4.3 Transformer-based Models ... 153
 8.5 Results .. 156
 8.5.1 Validation ... 156
 8.5.2 Testing ... 158
 8.6 Analysis and Discussion ... 159
 8.7 Conclusion ... 165

9 Conclusion and Future Work ... 166
 9.1 Introduction ... 166
 9.2 Overall Findings .. 167
 9.3 Limitations and Future Work .. 169
CONTENTS

9.4 Research Contributions ... 171
9.5 Concluding Summary ... 171

References ... 190
List of Figures

1.1 A simple structure of Hadith showing Matn in bold 5
1.2 Hadith with comment after Matn .. 5
1.3 Hadith with a vague segmentation point ... 6
1.4 Thesis outline .. 11

2.1 Arabic language categories ... 13
2.2 Concordance from the arTenTen12 corpus .. 16
2.3 Arabic dialects are different within the same country 17
2.4 Hadith example, Matn in bold .. 25

3.1 Various methods to approach textual semantic similarity 37

4.1 Hadith example, Isnad in bold face text, followed by Matn 41
4.2 Isnad example, Isnad lexical items underlined 49
4.3 Python script to perform the segmentation on Albukhari Hadith 51
4.4 Example of Isnad and Matn extracted from the training data and
tokenized to unigrams, bigrams and trigrams then added to the
lists accordingly .. 52
4.5 Pipeline of Hadith segmenter using the ML approach 64
4.6 Data distribution of bigram tokens ... 65
4.7 Confusion matrix of the tested ML classifiers 66
4.8 Hadith annotation for training the HMM .. 73
4.9 Visualization of the HMM to illustrate the probability of transition-
ting to a new state conditioned on a present state 74
4.10 Example of a Hadith with regular structure, and the correct seg-
mentation indicated by the horizontal line after token number 13 76
4.11 Example of a Hadith with a vague segmentation point, incorrectly segmented as shown by the horizontal line .. 77
4.12 Example of incorrect segmentation: it should be at token 30 78
4.13 Example of a Hadith with irregular structure: it has more than one Isnad and Matn segment ... 79
4.14 Segmenter performance with unigrams, bigrams, and trigrams . . 82
5.1 Structure of the canonical Hadith books 90
5.2 HTML of a Hadith page on Sunnah.com 91
5.3 Example of a Hadith record extracted from Tarmizi Chapter10.csv – Part 1 .. 91
5.4 Continued example of Hadith record – Part 2 92
5.5 Continued example of Hadith record – Part 3 92
5.6 Structure of the LK Hadith corpus .. 94
5.7 A comparison between the Arabic and English parts of the LK Hadith corpus. Note the difference in the y-axis numbering to reflect the number of words ... 96
5.8 Most frequent words in the Isnad ... 97
5.9 Most frequent words in the Matn ... 99
6.1 An overview of ontology evaluation methods (Raad & Cruz, 2015) 107
6.2 A word from Chapter 106 in the Quran 112
6.3 Overlap between Hadith section-headings and the Quran ontologies 114
7.1 Quran and Hadith word clouds .. 121
7.2 The number of words and lexemes in Quran and Hadith 122
7.3 Quran and Hadith lexeme clouds ... 123
7.4 Fatwa page where the Quran, Hadith, and the tag is shown in red, green, and grey accordingly ... 135
7.5 Algorithm for creating positive QH samples 136
7.6 Some of the Quran symbols .. 138
7.7 Algorithm for creating negative QH samples 139
7.8 Algorithm for creating negative QQ samples 141
7.9 Algorithm to compute data leakage (Elangovan et al., 2021) 143
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Baseline model architecture</td>
</tr>
<tr>
<td>8.2</td>
<td>Weights and Biases is used to determine the hyper-parameters</td>
</tr>
<tr>
<td>8.3</td>
<td>The number of tokens in each instance of the training data</td>
</tr>
<tr>
<td>8.4</td>
<td>Fine-tuning CAMeLBERT-CA for 8 epochs</td>
</tr>
<tr>
<td>8.5</td>
<td>How the WordPiece tokenizes a Quran-verse and a Hadith-teaching from Example 6 in Table 8.7</td>
</tr>
<tr>
<td>8.6</td>
<td>Sentence length distribution where x-axes represent the number of tokens and the y-axes reflect the number of instances</td>
</tr>
<tr>
<td>8.7</td>
<td>Models’ tokenizers’ fertility</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>2.1</td>
<td>Examples of orthographic challenges associated with the Arabic language</td>
</tr>
<tr>
<td>2.2</td>
<td>Examples from Alzrkashi’s book</td>
</tr>
<tr>
<td>2.3</td>
<td>The different meanings of the word ‘Ayn’</td>
</tr>
<tr>
<td>2.4</td>
<td>Useful resources on the web that can be utilized in Hadith computational</td>
</tr>
<tr>
<td></td>
<td>studies</td>
</tr>
<tr>
<td>4.1</td>
<td>Review of previous research on Hadith segmentation into Isnad and Matn</td>
</tr>
<tr>
<td></td>
<td>components</td>
</tr>
<tr>
<td>4.2</td>
<td>Result of tokenizing and annotating the 500 Hadith testing data using</td>
</tr>
<tr>
<td></td>
<td>look-up lists</td>
</tr>
<tr>
<td>4.3</td>
<td>Example of incorrect Hadith segmentation using trigrams with back-off</td>
</tr>
<tr>
<td></td>
<td>approach</td>
</tr>
<tr>
<td>4.4</td>
<td>Correct segmentation, regular pattern</td>
</tr>
<tr>
<td>4.5</td>
<td>Correct segmentation, introductory statement</td>
</tr>
<tr>
<td>4.6</td>
<td>Correct segmentation, conversation of the Prophet</td>
</tr>
<tr>
<td>4.7</td>
<td>Correct segmentation, no prophetic words</td>
</tr>
<tr>
<td>4.8</td>
<td>Incorrectly segmented, parallel Isnad</td>
</tr>
<tr>
<td>4.9</td>
<td>Incorrectly segmented, Isnad contains Matn lexical items</td>
</tr>
<tr>
<td>4.10</td>
<td>Incorrectly segmented, names should be part of Matn</td>
</tr>
<tr>
<td>4.11</td>
<td>Accuracy of ML models on the testing data to classify bigram of words as</td>
</tr>
<tr>
<td></td>
<td>Isnad or Matn</td>
</tr>
<tr>
<td>4.12</td>
<td>Correctly segmented Hadiths with parallel Isnads</td>
</tr>
<tr>
<td>4.13</td>
<td>Correctly segmented Hadith with irregular pattern</td>
</tr>
<tr>
<td>4.14</td>
<td>Incorrectly segmented Hadith with irregular patterns</td>
</tr>
<tr>
<td>Table Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>4.15</td>
<td>Tag set for HMM training</td>
</tr>
<tr>
<td>4.16</td>
<td>Comparison of results using the first two annotation approaches</td>
</tr>
<tr>
<td></td>
<td>and normalization with Algorithm 3</td>
</tr>
<tr>
<td>4.17</td>
<td>Performance of the different approaches to build the Hadith segmenter</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of CA corpora that includes Hadith</td>
</tr>
<tr>
<td>5.2</td>
<td>Corpus Annotation</td>
</tr>
<tr>
<td>5.3</td>
<td>Number of Hadiths in each book</td>
</tr>
<tr>
<td>6.1</td>
<td>Existing Quran ontologies</td>
</tr>
<tr>
<td>6.2</td>
<td>A Quran verse and concepts extracted from the two ontologies</td>
</tr>
<tr>
<td>6.3</td>
<td>Example of a Hadith Matn and the associated section-heading</td>
</tr>
<tr>
<td>6.4</td>
<td>Vocabulary statistics for ontologies and Hadith headings</td>
</tr>
<tr>
<td>6.5</td>
<td>Synsets obtained from Arabic Wordnet</td>
</tr>
<tr>
<td>6.6</td>
<td>Examples of lexemes extracted from each part illustrated in Figure 6.3</td>
</tr>
<tr>
<td>7.1</td>
<td>Quran and Hadith statistics</td>
</tr>
<tr>
<td>7.2</td>
<td>Quran and Hadith unique words</td>
</tr>
<tr>
<td>7.3</td>
<td>Unique lexemes in Quran and Hadiths</td>
</tr>
<tr>
<td>7.4</td>
<td>The available Arabic semantic similarity and relatedness dataset</td>
</tr>
<tr>
<td>7.5</td>
<td>An example from Sahih Albukhari</td>
</tr>
<tr>
<td>7.6</td>
<td>The different training/fine-tuning dataset. QQ=Quran-Quran, QH=Quran-</td>
</tr>
<tr>
<td></td>
<td>Hadith, Ar= Arabic, En= English, M= Multilingual (43 languages)</td>
</tr>
<tr>
<td>7.7</td>
<td>Measuring data leakage</td>
</tr>
<tr>
<td>8.1</td>
<td>Examples from the QQ and QH datasets</td>
</tr>
<tr>
<td>8.2</td>
<td>The training/fine-tuning dataset as introduced in Table 7.6</td>
</tr>
<tr>
<td>8.3</td>
<td>Models’ performance on the QQ validation dataset shown in %.</td>
</tr>
<tr>
<td></td>
<td>Overall best models based on F1 score are highlighted in bold. Ar</td>
</tr>
<tr>
<td></td>
<td>= Arabic Quran, En = English Quran, M = Multilingual Quran</td>
</tr>
<tr>
<td></td>
<td>(43 languages), Taf = Arabic Tafsir(commentaries)</td>
</tr>
<tr>
<td>8.4</td>
<td>Performance of SBERT multilingual models on the QQ dataset</td>
</tr>
<tr>
<td>8.5</td>
<td>Examples of QQ pairs classified by CAMeLBERT-CA</td>
</tr>
</tbody>
</table>
LIST OF TABLES

8.6 Performance of models on the Quran-Hadith testing dataset . . . 159
8.7 Examples of QH pairs classified by CAMeLBERT-CA161
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Classical Arabic</td>
</tr>
<tr>
<td>CNN</td>
<td>Convolutional Neural Networks</td>
</tr>
<tr>
<td>BERT</td>
<td>Bidirectional Encoder Representations from Transformers</td>
</tr>
<tr>
<td>BOW</td>
<td>Bag Of Words</td>
</tr>
<tr>
<td>DA</td>
<td>Dialect Arabic</td>
</tr>
<tr>
<td>DL</td>
<td>Deep Learning</td>
</tr>
<tr>
<td>FST</td>
<td>Finite State Transducers</td>
</tr>
<tr>
<td>IDF</td>
<td>Inverse Document Frequency</td>
</tr>
<tr>
<td>IR</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>LDA</td>
<td>Latent Dirichlet Allocation</td>
</tr>
<tr>
<td>LSA</td>
<td>Latent Semantic Analysis</td>
</tr>
<tr>
<td>LSTM</td>
<td>Long Short-Term Memory</td>
</tr>
<tr>
<td>ML</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>MSA</td>
<td>Modern Standard Arabic</td>
</tr>
<tr>
<td>NB</td>
<td>Naive Bayes</td>
</tr>
<tr>
<td>NER</td>
<td>Named Entity Recognition</td>
</tr>
<tr>
<td>NLP</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>OOV</td>
<td>Out of Vocabulary</td>
</tr>
<tr>
<td>POS</td>
<td>Part of Speech</td>
</tr>
<tr>
<td>PBUH</td>
<td>Peace Be Upon Him</td>
</tr>
<tr>
<td>QA</td>
<td>Question Answering</td>
</tr>
<tr>
<td>SOTA</td>
<td>State Of The Art</td>
</tr>
<tr>
<td>STS</td>
<td>Semantic Textual Similarity</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>TF</td>
<td>Term Frequency</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Aims and Motivation

Artificial Intelligence (AI) is a branch of computer science that seeks to design and develop systems capable of performing tasks requiring human-like intelligence. One of these tasks is understanding the human language, which is addressed by a subfield of AI known as Natural Language Processing (NLP) (Vajjala et al., 2020). The recent advances in NLP can be attributed to the abundance of resources, including data and computing power (Goodfellow et al., 2016). These resources enable NLP systems to utilize Machine Learning (ML) and Deep Learning (DL) methods, which require a significant amount of processing power and a large number of examples, in order to learn and automate tasks.

Currently, NLP is used across several domains to automate domain-specific tasks such as financial narrative summarization (El-Haj et al., 2022b), medication extraction from clinical notes (Henry et al., 2020), and social media hate speech detection (Mubarak et al., 2020). One of the domains that has attracted interest in NLP is the modelling of Islamic religious texts as they are sources of knowledge, wisdom and law (Atwell et al., 2011). Successfully modelling these texts can aid scholars, researchers, and laymen in extracting and inferring knowledge from these texts. For example, the Islamicate Digital Humanities Network
1.1 Aims and Motivation

(IDHN)2 is a group of researchers who are interested in utilizing NLP tools in their Islamic studies research. The main obstacle in this domain is the availability of annotated corpora and datasets suitable for training and evaluating NLP systems to perform religious-oriented tasks (Bounhas, 2019).

In this thesis, I intend to fill the gap by enriching the under-resourced religious text of Islamic Hadith, which is the set of narratives reporting the words, actions and habits of the prophet Muhammad. Hadith is considered Classical Arabic (CA), an ancient language that is used in Islamic religious texts, and is the direct ancestor of Modern Standard Arabic (MSA) used today (Habash, 2010). Although Hadith’s importance is second to the Quran’s (Muslims’ holy book), most laws and legislation are obtained from the Hadith due to its larger scope and incorporated details (Brown, 2017). However, research in the area of Hadith computation is still in its infancy (Bounhas, 2019). However, here is an annual increase in the number of published papers in this field, indicating wider attention from multi-disciplinary researchers (Azmi et al., 2019).

The main practical problem in Hadith computational studies is that researchers gather their own datasets from different sources and sometimes manually process them (Luthfi et al., 2018). This suggests a lack of adequate language resources and re-usability is limited since the collected datasets are not published to be shared. Hence, it is unfeasible to establish benchmarks, compare results or set evaluation measures (Guellil et al., 2019). This makes building a well-structured Hadith corpus an imperative. Therefore, one of the main goals of this thesis is a Hadith corpus which is built automatically while answering the first research question discussed in Section 1.2.

After creating the Hadith corpus, the feasibility of detecting semantic similarity between Quran and Hadith texts is investigated as the second research question of this thesis. This is important for three reasons. First, Semantic Textual Similarity (STS) detection is at the core of many tasks like information retrieval (IR) and question answering (QA) (Cer et al., 2017). Second, religious

2https://idhn.org/
1.2 Research Questions

texts are important to understand, but are hard to interpret with their layers of embedded meanings as described in Chapter 7. Third, the performance of recent AI advances is largely unexplored on CA texts (Guellil et al., 2021).

1.2 Research Questions

1.2.1 Is annotating Isnad and Matn feasible?

Most Hadiths consists of two components, Isnad, which is the chain of narrators, followed by Matn, which is the actual Hadith teaching. The example below shows a Hadith\(^3\) in the simplest form,\(^4\) where the segmentation point between Isnad and Matn is clear as indicated by the long horizontal line (——).

Hadith Example:

Hadith computational studies either focus on Isnad or Matn (Azmi et al., 2019). This is because the Isnad is used for authentication and is considered a piece of meta-data that does not add any meaning to the actual Hadith teaching (Matn). Research studies that focus on Isnad usually aim to build systems for

\(^3\)English translation of Hadiths mentioned throughout this thesis are obtained from Sunnah.com
1.3 Contributions

Hadith authentication (Dalloul, 2013), and those that focus on Matn are concerned with enabling machines to capture the meaning of the Matn text (Saloot et al., 2016). Hence, it is useful to build a Hadith corpus for the research community where Isnad is segmented from Matn to minimise manual annotation (Luthfi et al., 2018).

The main obstacle to automatically segmenting the Isnad from the Matn is that Hadiths have different structures with vague endings of Isnad as illustrated in the examples in Section 1.3.1. Hence, automatically identifying and segmenting the Isnad from the Matn is a non-trivial task. This thesis investigates the feasibility of utilizing AI to automatically identify them to produce a well-structured Hadith corpus where Isnad is segmented from Matn.

1.2.2 Is semantic similarity in Quran and Hadith detectable?

Can AI tools and methods model the underlying meaning of CA religious texts? To answer this question, the task of detecting semantic similarity between Quran-verse and Hadith-Matn is chosen because it is at the core of many useful applications like QA and IR (Chandrasekaran & Mago, 2021). Detecting semantic similarity between religious texts is a challenging task which requires deep human understanding considering they are different in style and structure, as elaborated in Chapter 7. However, the main obstacle to this experiment is the lack of an evaluation dataset. Therefore, before answering this question, I developed a methodology that follows rigorous heuristics to automatically create a dataset of Quran-verse and Hadith-Matn pairs.

The following sections lists the contributions made to answer these two questions and enrich the Classical Arabic NLP research.

1.3 Contributions

The originality and novelty of contributions presented in this thesis is discussed below.
1.3 Contributions

1.3.1 Hadith Segmenter

The first contribution is a novel Hadith segmentation tool that identifies and segments the Isnad from the Matn in the Hadith. This is a non-trivial task since not all Hadiths\(^4\) follow consistent patterns. For example, some Isnad segments contain Matn patterns and vice versa. The following examples show Hadiths with Matn in bold. They are extracted from the most famous Hadith books. The first two examples in Figure 1.1 and 1.2 are extracted from *Sahih Albukhari’s*, which consists of many Hadiths that follow this consistent structure, Isnad followed by Matn and an optional comment at the end. However, it contains some Hadiths with vague segmentation point as in Figure 1.3. Chapter 4 discusses the creation of the Hadith segmenter.

4 The plural of Hadith in Arabic is AHadith, but I will use Hadiths

Figure 1.1: A simple structure of Hadith showing Matn in bold

Figure 1.2: Hadith with comment after Matn

1.3 Contributions

The second contribution is the first well-structured corpus of Hadith with data obtained from Hadith books known for their high degree of authenticity. The corpus captures Hadiths in Arabic and their corresponding English translations at the narrative level. This is because not all Muslims or those studying Hadith know Arabic, but they are more likely to know English since it is a global language.

The corpus is named “Leeds and KSU (LK) Hadith Corpus” to reflect the collaboration between Leeds University where I am doing my PhD, and King Saud University (KSU) where I am a lecturer. Potentially, this project will be extended to a larger scope that I plan to work on at KSU after finishing my PhD.

5From a Sunni perspective.

Ali bin Abdullah told us, Sufian told us, Israel Abu Musa told us, and I found him in Kufa came to Ibn Shibrama then said introduce me to Isa to preach him, it was as if Ibn Shbarma feared something so he did not do. Said Al-Hasan told us when Al-Hasan bin Ali moved with army units against Muawiya, Amr bin Al-As said to Muawiya, “I see an army that will not retreat unless and until the opposing army retreats”. Muawiya said, “(If the Muslims are killed) who will look after their children?” Amr bin Al-As said: “I (will look after them)”. On that, Abdullah bin Amir and Abdur-Rahman bin Samara said, “Let us meet Muawiya and suggest peace.” Al-Hasan Al-Basri added: “No doubt, I heard that Abu Bakra said, ‘Once while the Prophet was addressing (the people), Al-Hasan (bin Ali) came and the Prophet (PBUH) said, This son of mine is a chief, and Allah may make peace between two groups of Muslims through him’.”

Figure 1.3: Hadith with a vague segmentation point
1.3 Contributions

To the best of my knowledge, there is no corpus for Hadith that is well-structured and freely available for the research community. This new corpus can be accessed through my GitHub (LK-Hadith-Corpus)\(^6\). The availability of the corpus has proved to be useful for the research community as it is already being used (Habash et al., 2022; Tarmom et al., 2021). Chapter 5 introduces the methodology of creating the corpus and discusses potential uses.

1.3.3 Dataset of Related Quran and Hadith Pairs

This thesis investigates the ability of AI to model the meaning of Hadith. Hence, a downstream task of Semantic Textual Similarity (STS) is defined to measure the extent AI can capture meaning in Hadith texts by detecting their relatedness to Quran texts. Such a task requires an evaluation dataset of related Quran and Hadith texts, which shall be created as no such dataset, to my best knowledge, exists. However, following the traditional approach of using human annotators and taking the Kappa agreement is not appropriate. This is because religious texts are complex and require religious scholars to interpret them. Hence, I developed a novel framework to create Quran-Hadith pairs by extracting relatedness information from a reliable source: an archived Fatwa of an Islamic scholar as discussed in Chapter 7. The new Quran-Hadith dataset is available on my GitHub (Quran_Hadith_Datasets)\(^7\).

The usefulness of this dataset is two-fold. First, provides the NLP research community with a challenging dataset of CA that is considered low-resourced in terms of available datasets. Second, finding semantic similarity in religious scriptures is especially useful to the Islamic studies field where various religious texts are processed manually. For example, Quran exegesis is a living activity that can be done by several means (Saeed, 2018). One approach is by finding related Quran verses, Hadiths, or reasons of revelation to help understand a specific verse better or shed light on new insights. Other means include Biblical, Rabbinical, Syriac etymology, or various modern ideologies (Saeed, 2018). Hence, AI tools

\(^6\)https://github.com/ShathaTm/LK-Hadith-Corpus
\(^7\)https://github.com/ShathaTm/Quran_Hadith_Datasets
that can process low-resource languages will be useful to identify similarities in the
different scriptures, thus, assisting researchers by limiting the time spent in sifting
through texts, and detecting underlying meanings that are not yet identified.

1.3.4 Evaluating Quran Ontologies for Hadith

Once the Quran-Hadith dataset was created, I studied the different approaches to
semantic similarity detection. There are two main approaches, one of which is a
knowledge-based approach using ontologies, while the other involves deep learn-
ing. The former approach is feasible if appropriate ontologies exist. Since there
are many Quran ontologies, I have enumerated, compared and evaluated their
‘fit’ for Hadith as discussed in Chapter 6. This is the first evaluation of existing
Quran ontologies’ appropriateness for the Hadith. I have identified the most
comprehensive Quran ontology, which covers 26.8% of Hadith topics. Therefore,
I decided to try the second approach using state-of-the-art (SOTA) DL models
which has shown remarkable results on many NLP downstream tasks (Devlin
et al., 2018; Conneau et al., 2019).

1.3.5 Semantic Similarity Between Quran and Hadith

To the best of my knowledge, automatically linking Hadith to the Quran is a
novelty. The existing links between Quran and Hadith are explicitly mentioned
by the Prophet and Islamic scholars. Hence, new interpretations could be in-
ferred if current SOTA tools succeed in modelling the meaning of these CA texts.
Consider the example below. The Quran-verse and Hadith-Matn cover the same
topic, but the wording is completely different. Chapter 8 evaluates SOTA models’
ability to detect semantic similarity in these texts.
1.4 Thesis Outline

O you who have believed, do not consume usury, doubled and multiplied, but fear Allah that you may be successful.

- The Quran [3:130]

Certainly a time will come when people will not bother to know from where they earned the money, by lawful means or unlawful means.

- The Hadith [Matn from Sahih Albukhari]

1.4 Thesis Outline

This thesis is divided into four parts as shown in Figure 1.4. The first introduces necessary background, Chapter 2 contains the relevant information about the Arabic language, Quran and Hadith. It explains challenges associated with the Arabic language and all its variants. Then it demonstrates the obstacles to applying NLP on the Quran and Hadith texts in particular. Chapter 3 presents the literature review, which gives a general overview of topics tackled in this thesis, while the more focused work is discussed in the associated chapters.

Part 2 answers the first research question of the thesis and introduces the first two contributions. Chapter 4 describes the creation of the Hadith segmenter. This is followed by Chapter 5, which presents the creation of the LK Hadith corpus using the aforementioned Hadith segmenter.
Part 3 aims to answer the second research question of this thesis. Chapter 7 describes the creation of the evaluation dataset of Quran-Hadith pairs which is used for the downstream task of detecting semantic similarity in Islamic religious texts. Since there are several approaches to semantic similarity, Chapter 6 focuses on enumerating and evaluating Quran ontologies’ ‘fit’ for Hadith to ascertain if a knowledge-based approach is feasible. Then Chapter 8 demonstrates the evaluation of DL based approaches to semantic similarity.

The thesis concludes with Part 4, in which Chapter 9 summarizes the main contributions, discusses challenges and limitations of the work, and presents recommendations for future directions.
1.4 Thesis Outline

Figure 1.4: Thesis outline
Chapter 2

Background

2.1 Introduction

This chapter provides a brief historical and linguistic background to the Arabic language and points to references that elaborate on the challenges associated with it. It also explains the Islamic religious texts, with a particular focus on the Quran and Hadith. These texts hold great significance for Muslims around the world, but they also present challenges in understanding and interpreting their meanings due to cultural and linguistic barriers. The chapter discusses these difficulties and highlights helpful resources for further study.

2.2 The Arabic Language

Arabic is one of the most widely spoken languages today and possesses a great importance due to its association with Islam. Muslims use it in their daily prayers five times a day while reciting the Quran, which was revealed and must be read in Arabic. However, today the term ‘Arabic’ is multivalent and can be divided into three categories, Classical Arabic (CA), Modern Standard Arabic (MSA), and Dialect (or Colloquial) Arabic (DA) (Habash, 2010). The relatedness between the different categories is depicted in Figure 2.1. These Arabic variants can be used daily by the same person depending on the different social context in a linguistic situation called diglossia (Ferguson, 1959). For example, DA is used
2.2 The Arabic Language

at home, CA is used in prayer, and MSA is used at work.

Figure 2.1: Arabic language categories

The Arabic language with all its forms shares basic properties that impose challenges to NLP tasks. Arabic is written from right to left in Arabic scripts, which is also used in other languages like Urdu. Arabic letters have different forms according to the position of the letter in a word as shown in the first example in Table 2.1. Although once a problem, this is no longer an issue as many of the current NLP tools can process Arabic letters.

Arabic letters, almost without exception, have a one-to-one mapping to their sound, but short vowels are represented as diacritics which are optionally written to disambiguate words. These diacritics often change the meaning of a word as shown in the second example in Table 2.1 where the word عقَد with different diacritics can mean different things like ‘hold’, ‘necklace’, ‘complex’, and ‘contract’. Most of the available Arabic texts are generally undiacritized as in Wikipedia, news websites, and social media. This is because Arabic readers are able to dis-
ambiguate words based on context.

Another Arabic property is agglutination, where a sentence can be writing in a single complex word that contains affixes and clitics representing various parts of speech as shown in the third example in Table 2.1 (Habash, 2010). Not only complex morphological, structural and grammatical nature of Arabic that impose a challenge, but also there is a great level of ambiguity due to lack of capitalization and minimal punctuation in texts (Farghaly & Shaalan, 2009). Moreover, there are challenges specific to each form as discussed below.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Property</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Different letter-forms depending on position, like the letter</td>
<td>عـ وـ ـ ـ ـ ـ ـ ـ ـ</td>
</tr>
<tr>
<td>2</td>
<td>Short vowels are represented using diacritics to disambiguate meanings.</td>
<td>عـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ</td>
</tr>
<tr>
<td>3</td>
<td>Agglutination is common in Arabic words.</td>
<td>وـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ</td>
</tr>
</tbody>
</table>

Table 2.1: Examples of orthographic challenges associated with the Arabic language

2.2.1 Classical Arabic

CA is the archaic version of the Arabic language that was spoken during the Prophet’s time in the seventh century. It is believed that this form of Arabic disappeared from prose during the second half of the eighth century AD (Fischer, 2013). However, it remained the educational language of the Muslim elites. Today, it represents the highest form of Arabic, found in the Quran and Hadith, and it is thus the ritual language used by Muslim communities around the world.

The importance of CA stems from the requirement of scholars to be erudite in CA to explain the meaning of the Quran. Ibn Abbas was the Prophet’s cousin and pioneering Quran exegete who is quoted to explain Quranic words by referring to their usage in CA poetry and referring to the usage of the أَعْرَاب ‘A’rab’ (Bedouin)
2.2 The Arabic Language

since their language represented the purest form of CA.

Table 2.2 shows examples from the renowned book by the famous Islamic scholar Alzrkashi where he quoted Ibn Abbas explaining Quranic words by referring to incidents with an ‘أعرابي’ ‘أ’رaby’. Example 1 shows the meaning of ‘فاطر’ as quoted in the incident documented in the next lines:

<table>
<thead>
<tr>
<th>Example</th>
<th>Quran text</th>
<th>Actual Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>فاطر الشمَّامِات والأرض</td>
<td>‘fāṭir’ means start it</td>
</tr>
<tr>
<td></td>
<td>The Creator of the Heavens and the Earth</td>
<td>‘fāṭir’ means start it</td>
</tr>
<tr>
<td>2</td>
<td>منى هذا الفتح إن كنتم صدقين</td>
<td>‘الفتح’ means judgment</td>
</tr>
<tr>
<td></td>
<td>When will this promise be fulfilled, if ye are truthful?</td>
<td>‘الفتح’ means judgment</td>
</tr>
<tr>
<td>3</td>
<td>فِيْتَرَبها إِنْ تَحْقِقَ وَمِنَ زَرآء إِنْ تَفْقُودُ</td>
<td>‘warā’ is the grandson</td>
</tr>
<tr>
<td></td>
<td>then We gave her the good news of Isaac and Jacob after Isaac</td>
<td>‘warā’ is the grandson</td>
</tr>
</tbody>
</table>

Table 2.2: Examples from Alzrkashi’s book

Also known as the Bedouins, they are the inhabitants of the deserts, as contrasted with the settled people in the villages.

For more details refer to Alzrkashi’s book page 293.
The most challenging aspect of CA is language change, where some vocabulary items became obsolete or experienced a semantic shift (Fischer, 2013; Manning, 2015). This is especially problematic with the rise of deep learning (DL) models that require large data with hundreds of examples to facilitate dealing with ambiguity by learning contextual representations of words.

2.2.2 Modern Standard Arabic

MSA is derived from CA and is not any Arab’s native language. However, it is the official language of all Arab countries, since it is used in formal settings such as education, news and political interviews. MSA is different from CA in terms of some vocabulary and stylistic features while the morphology and syntactic features remain almost entirely the same (Fischer, 2013). For example, Figure 2.2 shows the concordance of the word وراء mentioned in Example 3 in Table 2.2. It is evident that the meaning in all the examples is ‘behind’ and not ‘grandson’.

![Figure 2.2: Concordance from the arTenTen12 corpus](image)

2.2.3 Dialect Arabic

Dialect Arabic, i.e. Arabic dialects are regional languages and the native tongue of Arabic speakers. Arabic dialect can be divided into five main groups on lin-
2.2 The Arabic Language

guistic grounds: Egyptian, Levantine, Gulf, Iraqi and Moroccan (Habash, 2010). These can be further sub-divided into fine-grained dialects. For example, the Gulf alone has several dialects such as Hijazi, Najdi, Bahraini, and Kuwaiti, as shown in Figure 2.3. With the rise of social media platforms, these dialects became pervasive in written form posing a challenge to NLP tools. This is partially because they lack standard orthography which lead to many spelling variations and inconsistencies (Habash et al., 2012a).

Dialects contain some words that are unique and different from MSA. For example, ‘I want’ is expressed differently depending on the dialect. It is ‘أنا أريد’ in Najdi, ‘أنا أريد’ in Egyptian and ‘أنا أريد’ in Sudani . This suggests that dialects could be considered different languages 11. For this reason, it is crucial to be careful when building ML or DL models since training data should be chosen depending on the language and downstream task (Inoue et al., 2021).

Figure 2.3: Arabic dialects are different within the same country 12

11International Organization for Standardization (ISO) considers them different languages: https://iso639-3.sil.org/code/ara
12Source: https://en.wikipedia.org/wiki/Varieties_of_Arabic
After discussing the different variants of Arabic, the CA Quran and Hadith are explained in the next paragraphs.

2.3 The Quran

Muslims believe the Quran is God’s divine words transmitted to the Prophet Muhammad by the angel Gabriel over a period of 23 years. It contains a variety of topics including guidance and historical narrative. However, the Quran is not a detailed legal manual for every life aspect. In fact, only about five hundred of the book’s verses provide legal injunctions (Brown, 2017). Hence, Muslims believe the Prophet’s Hadith is essential for elaborating the Quranic message to unlock its manifold meanings to an evolving community.

2.3.1 Quran Structure

The Quran has 114 chapters (Surahs), each including a varying number of verses (Ayas). The total number of verses in the Quran is 6,236, and an individual verse can be a few letters long or consist of sentences that span several lines. So a verse can cover many topics, or one topic can be covered by short consecutive verses. Moreover, a topic can be covered by verses scattered in different chapters in the Quran. Hence, many studies have attempted to build an ontology for the Quran to enable connecting these topics that can be used in information retrieval systems (Alqahtani & Atwell, 2018).

2.3.2 Quran’s Linguistic Features

The Quran is considered the purest form of Arabic. Hence, it is used to study the Arabic grammar and its linguistic features. The famous grammarian *Sibawayh* derived the earliest books on Arabic grammar, Al-Kitab, by relying heavily on the Quran. This is because the Arabic language was codified primarily in the Quran (Watson, 2007).
Every letter and diacritic in the Quran contributes to the meaning. For example, verse [2:61] shown below contains the phrase اهْيَطْوَا بِمَسْرًا and verse [12:99] contain a similar phrase مَضْرًا ادْخِلُوا مَضْرًا so both contain the word مَسْرًا ‘Misr’ as an object منَعُوْلَ بِه. Although مَسْرًا is in the same part of speech in both examples, it does not have the same diacritics. The first has تَنْوِين ‘Tanween’ to denote a city (any city outside the desert), while the second is منْعوْل ‘indeclinable’ to indicate it is a foreign name أعجمي and refers to the city, or country, we know now as Egypt.

وَإِذْ قَلَّمَّنَّهُ يَمُوسِىَ لَنْ نَصَبْ عَلَى طَعَامٍ وَحيدَ فَادْعُ لنا رَبُّكَ لِتَخْرِجْ لنا مِنَا تَتَبَّعَتْ الأَرْضَ مِنْ بَيْنِنَا وَفِي نَا وَفُومَهَا وَغَذِيْبُهَا وَبَصْلِهَا قَالَ أَنتَ بِهِدْلُونَ أَلَّذِي هُوَ أَذْكَرْنَاهُ بِمَسْرَا فَإِنَّ لَكُمْ مَا سَآئِلُونَ وَصَرِبْ عَلَيْهِمْ الدَّلَّةَ وَمَسَّكَةً وَيَأْوَى بِفَضْلِ مِنْ اللهِ ذَلِكَ بِأَنْبِهِمْ كَانُوا يَكْفُرُونَ بِبَابِتِ اللهِ وَيَقُولُونَ أَلَيْسَهُ أَيَّامُ أَخْرَجَ ذَلِكَ بِمَنْ عَضْوَةُ وَكَانُوا يَغْتَدُونَ

And [recall] when you said, “O Moses, we can never endure one [kind of] food. So call upon your Lord to bring forth for us from the earth its green herbs and its cucumbers and its garlic and its lentils and its onions.” [Moses] said, “Would you exchange what is better for what is less? Go into [any] settlement and indeed, you will have what you have asked.” And they were covered with humiliation and poverty and returned with anger from Allah.
2.3 The Quran

them]. That was because they [repeatedly] disbelieved in the signs of Allah and killed the prophets without right. That was because they disobeyed and were [habitually] transgressing.

-The Quran [2:61]

And when they entered upon Joseph, he took his parents to himself and said, “Enter Egypt, Allah willing, safe [and secure]”.

-The Quran [12:99]

The Quran has been studied extensively to explore it linguistically and spiritually. One of these fields is ‘The science of polysemy’ where famous scholars like Ibn al-Jawzi, Nisaburi, Al-Suyuti, and many others have studied polysemic words in the Quran to explain the different meanings of the same word in different contexts. For example, ibn Aljawzi’s book ‘The excursion of watchful eyes in the field of polysemy’ discusses the different meanings of Quranic words as shown in Table 2.3.

Another common feature in the Quran is the abstract imagery as in the verse [17:24] shown below. It contains the words ‘lower’ and ‘wing’ which...
2.3 The Quran

<table>
<thead>
<tr>
<th>Meaning of the word</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>عين، ‘Ayn’</td>
<td>The eye(s) which the person uses to see</td>
</tr>
<tr>
<td>العين النفي يبصر بها</td>
<td>Gold</td>
</tr>
<tr>
<td>الذهب</td>
<td>Heavy rain</td>
</tr>
<tr>
<td>الطر</td>
<td>The same</td>
</tr>
<tr>
<td>نفس الدي</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3: The different meanings of the word ‘Ayn’

have completely different meanings in this phrase as illustrated by the translation. This is due to the phenomenon that frequently a “combination of words creates a meaning that they do not have in isolation” (Dickins et al., 2016, p. 97).

And be humble with them out of mercy, and pray, “My Lord! Be merciful to them as they raised me when I was young.”

- The Quran [17:24]

More Quranic features are discussed in Chapter 7.

2.3.3 Quran Exegesis (Tafsir)

There are many books of Tafsir aimed at explaining the meanings of Quran’s verses, clarifying their importance and indicating their significance. This is because “Tafsir is an ongoing activity rather than something settled in the distant past” (Saeed, 2018, p. 17). Hence, many Tafsir books have been written throughout the past 1400 years and Tafsir is still developing to accommodate the development of societies that ask new and different questions.
Tafsir of the Quran can be done by referring to the Quran itself (تفسير القرآن ‘Interpretation of the Qur’an by the Qur’an’). This is common in many situations as illustrated in verses [6:82] and [31:13] below. The first verse contains the word ‘Injustice’ which implies different meanings, but the meaning is clarified in verse [31:13] to indicate the meaning in this context is ‘Polytheism’.

Another approach to conducting Tafsir is through the Hadith. For example, verse [2:173] below indicates which food is permissible to eat and which is forbidden. More details about this topic are obtained from the Hadith that follows. It gives further details to indicate that anything from the sea is permissible to eat.

\[
\text{آلَذِينَ يَعْمَنُوا وَلَمْ يَتْبَعُوا إِلَّاَّ خِيْرًا أَوْلَدَهُمْ آلَ الْأَسْمَىُ وَهُمْ مُهْتَدُونَ}
\]

It is those who believe and confuse not their beliefs with wrong - that are (truly) in security, for they are on (right) guidance.

- *The Quran* [6:82]

\[
\text{وَإِذ قَالَ لَفْسَنَ لَا بَيْنَهُ وَهُوَ يَعْمَلُهُ يَمِينًا لَّا تَشْرَدُ بِاللَّهِ إِنَّ الْشَّرِّدَةَ أَظْلَمُ عَظِيمًا}
\]

And [mention, O Muhammad], when Luqman said to his son while he was instructing him, “O my son, do not associate [anything] with Allah . Indeed, association [with him] is great injustice.”

- *The Quran* [31:13]
2.4 The Hadith

Muslims believe the Quran is God’s divine words, which enjoined them to follow the guidance of the Prophet Muhammad in their laws, legislations, and moral guidance. This is evident in the Quran as shown in the below verse.

- The Quran [2:173]

“A man asked the Prophet (PBUH): O Messenger of Allah, we travel by sea and we take a little water with us, but if we use it for Wudu, we will go thirsty. Can we perform Wudu with seawater? The Messenger of Allah (PBUH) said: Its water is a means of purification and its dead meat is permissible.”

- The Hadith

He has only forbidden to you dead animals, blood, the flesh of swine, and that which has been dedicated to other than Allah. But whoever is forced [by necessity], neither desiring [it] nor transgressing [its limit], there is no sin upon him. Indeed, Allah is Forgiving and Merciful.

-The Quran [2:173]
2.4 The Hadith

Say, “Obey Allah and obey the Messenger; but if you turn away - then upon him is only that [duty] with which he has been charged, and upon you is that with which you have been charged. And if you obey him, you will be [rightly] guided. And there is not upon the Messenger except the [responsibility for] clear notification.”

-The Quran [24:54]

This clear instruction to emulate the Prophet and follow his judgements is necessary because not all Islamic laws and regulations are mentioned in the Quran. For example, Islamic prayer, including the calling to prayer, the Adhaan, is obtained from the Prophet’s reported actions. Ritual prayers are stated in the Quran as an obligation without the exact details of practice, which shows that most Islamic practice is obtained from the Prophet. Therefore, recording the Prophet’s words and actions is of great importance.

The act of reporting the different aspects of the Prophet’s life became known as Hadith, which is an Arabic word for ‘speech’, ‘report’, or ‘narrative’. Hadith types vary. They could be a short sentence or long paragraph describing what the Prophet said in a specific incident, a dialogue of the Prophet’s conversation with someone, or a story told by the Prophet’s companions that explains the Prophet’s actions in a specific matter like prayers.

Unlike the Quran, Hadith was not documented immediately after the Prophet’s death. Instead, it was passed down the generations verbally by scholars each mentioning the person from whom they heard the Hadith. However, some dishonest individuals deliberately fabricated material and ascribed it to the Prophet. This led to the development of Hadith science, in which scholars study the chain of
narrators and their biographies to accept or reject the Hadith teaching. The process of this formed the unique structure of Hadith (Brown, 2017).

2.4.1 Hadith Structure

Hadith consists of two parts, as shown in Figure 2.4, the **Isnad** which is a chain of narrators followed by the **Matn** in bold, which is the actual teaching. The term ‘Isnad’ can be translated to mean ‘support’, since it is used to identify the authenticity of Hadith following the narrator’s genealogy. It is meta-data that is useful for authenticity but does not add useful information to the context of the actual narration (Matn). Therefore, in designing the Hadith corpus, it is crucial to separate the Isnad from the Matn to allow researchers to focus on their text of interest.

![Figure 2.4: Hadith example, Matn in bold](image)

Unlike the Quran, which consists of a number of verses in one sura, each Hadith is a stand-alone statement or act by the Prophet that was later written, collected, and compiled into books. Scholars have categorized Hadiths into topics by relying on their deep knowledge and understanding of Hadith. The following section gives a general idea about the different types of Hadith books.

2.4.2 Hadith Books

Not all Hadiths are considered authentic. For this reason, early Islamic scholars identified the need to compile authentic Hadiths for later generations. The pioneering work was conducted by an Islamic scholar named Muhammad Albukhari...
who died in 870 C.E. He collected Hadiths that met the most rigorous standards of authenticity into a book commonly known as ‘Sahih Albukhari’. The word ‘Sahih’ is an Arabic word which means correct, sound and authentic.

Albukhari’s book is considered a hybrid of two genres of Hadith books, Musannaf and Musnad (Brown, 2017). The former include books that categorize Hadiths into topics and does not emphasis the authenticity of Hadith. Some books do not include the Isnad of the Hadith. Musnad books organize Hadith based on chains of narrators. This hybrid genre of Hadith became known as Sahih or Sunan books where Hadiths are organized under sub-titles that deal with Islamic law, dogma, and the legal implication the reader should derive from the subsequent Hadiths. This is a useful feature that is exploited in this research as shown in Chapter 6.

Following Albukhari’s lead, other Islamic scholars compiled more Sahih/Sunan books including Albukhari’s student, Muslim ibn al-Hajjaj, who compiled a Hadith book known as ‘Sahih Muslim’. Currently, there are six recognised Sahih/Sunan books collectively referred to as “Al-Sihah al-Sittah”, which translates as “The Authentic Six” or canonical books. These books are Sahih Albukhari, Sahih Muslim, Sunan Abu Dawood, Sunan Altarmithi, Sunan Ibn Maja, and Sunan Al-Nasai. They form the bases for Islamic Hadith books generally. Although they are called the authentic six, not all incorporated Hadiths possess the same degree of authenticity, but they were named the authentic six based on the majority of Hadiths in these books (Khan, 1987). The six books contain approximately 19,600 Hadiths, or around 35,000 with repetition (Brown, 2017).

20 The English spelling of the books names is adapted from Azmi et al. (2019), a survey of Hadith computational research.
2.4.3 Hadith Types

There are different types of Hadiths, which Brown (2017) classifies into a number of categories. First, there are historical narratives, which incorporate stories about past events. These are usually about previous Prophets and their people, which the archangel Gabriel transmitted to the Prophet Mohammed (PBUH). Second, there are the Prophet’s personal narratives, which include stories about his life with his family, companions, and his actions in relation to specific incidents and major events. These were recorded and disseminated to teach Islamic morals and best behaviour. Third, there are metaphysical narratives about the future that usually involve the Day of Judgement and events of the hereafter. Fourth, there are Hadiths that contain facts instead of Prophetic sayings and teachings. These are usually used in authenticating Hadiths and studying narrators’ genealogy, as shown in the example below.

Ahmad told us, he is son of Saleh, Anbasa told us, Abu-yunus told us, Ibn Shihab said, I asked Alhusain bin Muhammed, he is one of Bani Salim family, about Hadith Mahmood bin Rabi from Utban bin Malik, he confirmed it.

- The Hadith

2.4.4 Useful Sources for Hadith

The Hadith and Hadith literature have became prevalent online through several websites like sunnah.com, hadithcollection.com, and ahadith.co.uk. To create a parallel corpus of Arabic Hadith and its English translations aligned at the narrative level, an exhaustive search and comparison of available web resources was con-
duced as discussed in chapter 5. Through the search, I stumbled upon very useful resources for computational Hadith research in general, which I enumerate in Table 2.4. These include 21 موسوعة رواة الحديث, 22 الدرر السنية, 23 موسوعة الحديث, 24 قاعدة بيانات علماء المسلمين, 25. I think these can be utilized in various types of computational Hadith research such as authentication and classification.

<table>
<thead>
<tr>
<th>source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>موسوعة الحديث</td>
<td>A database of narrators and Hadith categorized into topics.</td>
</tr>
<tr>
<td>الدرر السنية</td>
<td>A large encyclopedia of Islamic topics including Quran exegesis and Hadith.</td>
</tr>
<tr>
<td>موسوعة رواة الحديث</td>
<td>The Hadith Transmitters Encyclopedia is a comprehensive biographical dictionary of Hadith transmitters.</td>
</tr>
<tr>
<td>قاعدة بيانات علماء المسلمين</td>
<td>This contains biographies of Muslim scholars.</td>
</tr>
<tr>
<td>معجم الدوحة التاريخي للغة العربية</td>
<td>Historical dictionary of Classical Arabic that shows the different meanings of a word and its usage and the date it was first used with that meaning.</td>
</tr>
</tbody>
</table>

Table 2.4: Useful resources on the web that can be utilized in Hadith computational studies

2.4.5 Hadith Commentaries

Hadith literature is huge, consisting of the actual Hadith books like the canonical books mentioned in section 2.4.2 and the supporting work to help grade a Hadith’s authenticity or explain its contents. Such books are known as Hadith commentaries, where scholars with in-depth knowledge record their insights into the

21 https://hadith.islam-db.com/
22 https://www.dorar.net/
23 http://hadithtransmitters.hawramani.com
24 https://muslimscholars.info
25 https://www.dohadictionary.org
Hadith for the ordinary layman. Commentators devote a lifetime to interpret and elucidating Hadiths by employing their knowledge of the Quran, Quranic commentary (Tafsir), Arabic grammar and rhetoric. The number of commentaries is large because many with different types of explanation have been developed for the same set of Hadiths. For example, Sahih Albukhari alone has fifty-six commentaries produced by different scholars, the most renowned one being Ibn Hajar al-Asqalani’s *Fath Al-bari* ‘Victory of the Creator’ (Blecher, 2016). Some of these commentaries along with the Quran and the Hadith books were used to train and build domain-specific word embeddings as described in Chapter 8.

2.5 Conclusion

In this chapter, the required background is covered for the reader to gain an understanding of the Arabic language and its variants with the associated features that impose a challenge to NLP. Furthermore, the necessary background to Islamic religious texts and their features are discussed to demonstrate the obstacles they may cause in modelling the meaning of Islamic text using AI.
Chapter 3

Literature Review

3.1 Introduction

This chapter gives a general overview of the main research areas that the thesis builds upon and points to the forthcoming chapters where a deeper discussion of the associated literature is provided. Section 3.2 presents a review of the computational Hadith research and concludes with the need for a well-structured Hadith corpus as previous studies have emphasized (Bounhas, 2019; Azmi et al., 2019).

To build such a resource automatically, it is essential to first create a tool that segments and annotates the two main components of Hadith, Isnad and Matn. Therefore, the literature on text segmentation and how to build on established methods are discussed in Section 3.3. Then a brief overview of corpus creation methods is given in Section 3.4 to demonstrate how these shaped the choices made in building the Hadith corpus.

Once the corpus is built, the next goal is to use AI methods to model the meaning of these Classical Arabic (CA) sacred texts to serve those studying them. For example, an AI system can be used to consolidate and process a large body of textual data to enable tasks such as information retrieval, or grouping Hadiths and Quran-verses based on topics. Hence, a downstream task is needed to measure how well the meaning in such complex texts is captured. The task of finding semantic similarities between Quran and Hadith texts is chosen because these
3.2 Computational Hadith Research

In the past decade an extensive amount of computational research has been done on the Quran to enhance understanding of its meaning and the message it conveys (Safeena & Kammani, 2013; Bashir et al., 2022). Researchers produced Quranic tools, corpora, and ontologies (Alrehaili & Atwell, 2018; Hamoud & Atwell, 2016; Alqahtani & Atwell, 2018; Hakkoum & Raghay, 2016). Such valuable research can be extended to cover Hadith since there are limited advances in this field despite the importance of Hadith (Bounhas, 2019). The computational research done on Hadith can be categorized into three areas which are discussed in the following subsections.

3.2.1 Hadith Authentication

The first area focusses on classifying Hadith based on authenticity by particularly examining the chain of narrators (Isnad). Several researchers contributed to this area as shown in the survey papers covering the field (Hakak et al., 2022; Binbeshr et al., 2021; Luthfi et al., 2018). This is because Isnad is the proof of authenticity and as a famous scholar named Bin Mubarak stated, “If not for the Isnad anyone could say anything they wanted” and claim it is a Prophet saying (Hasan, 1994). Some work attempts to simply categorise Hadith as authentic or not (Bilal & Mohsin, 2012; Dalloul, 2013; Baraka & Dalloul, 2014). Other work assigns a degree of validity known as ‘Takhreej Al-Hadith’, which is the process of categorizing Hadith based on its validity degree. In other words, it classifies Hadith into groups ranging from authentic to a complete fabrication, known as Sahih (authentic), Hasan (Good), Da’ef (weak) and Maudo (fabricated) (Aldhaln et al., 2012; Ghazizadeh et al., 2008). Another method of Hadith authentication proposed building visual network of narrators using Named Entity Recognition.
3.2 Computational Hadith Research

(NER) and Machine Learning (ML) (Muazzam Siddiqui, 2014; Azmi & Badia, 2010). Since most of these studies required a dataset of narrators (Isnad), the Hadith corpus presented Chapter 5 facilitates using the Isnad since it is segmented from the Matn.

3.2.2 Hadith Topic Classification

The second type of research focuses on the actual narration, the Matn. For example, Matn was used to develop a Hadith WordNet by using tools to identify POS tags and Classical Arabic dictionaries to extract meaning (Alkhatib et al., 2017). Another type of research that focuses on Matn aims to categorize Hadith (Saloot et al., 2016). For example, Jbara (2010) used a supervised approach to classify Hadith based on section titles extracted from Hadith books. Another research work treated Hadith as a life coach that contains suggestions or guidance for Muslims attempting to classify Hadith into three categories: dos, don’ts, and information (Al Faraby et al., 2018).

3.2.3 Hadith Ontology

The third type of Hadith research focuses on creating ontologies to enhance Hadith understanding and information retrieval. This is because ontologies are usually built to represent domain knowledge by identifying a set of concepts and the relationships between them. Ideally, an ontology is represented by the following tuple:

\[O = < C, H, R, A > \]

Here \(O \) represents an ontology, \(C \) represents a set of classes or concepts, \(H \) represents taxonomic relations, which are hierarchical links between the concepts, \(R \) represents non-taxonomic relation that include the set of conceptual links, and \(A \) represents the set of rules and axioms (Al-Aswadi et al., 2020). Creating an ontology with such features is challenging since fully automatic construction is not
feasible and manual creation using experts is expensive. Therefore, the ontology
learning approach is used, which involves building ontologies semi-automatically
where a combination of computational tools and experts are utilized.

Previous studies in the area of Islamic ontologies have almost exclusively fo-
cused on the Quran (Atwell, 2018), while research in Hadith ontologies remains
limited (Bounhas, 2019). Existing ontologies cover a specific topic in Hadith like
the one presented by Al-Sanasleh & Hammo (2017), who manually produced an
ontology of prophets and messengers from the Quran and Hadith by consulting
experts in the domain. Another example is the ontology created for Salat (Islamic
prayer) by consulting the Qur’an, Hadith, and scholars’ books about Salat (Saad
et al., 2011).

Some research works have utilized Hadith as a case study to test their pro-
cessed computational methods. For example, Lahbib et al. (2014) introduced an
approach to extract domain terminology and applied it to Sahih Albukhari and
its English translation. They used GIZA++ (Och & Ney, 2003) to align the
parallel corpus at the word level, which was then used to extract the terms using
TF-IDF. However, the extracted terms are not available.

I am not aware of any Hadith ontology that covers all the Hadiths topics. The
existing ones model the structure or meta-data of Hadith. For example, Jaafar &
Che Pa (2017) built on Dalloul (2013) ontology to link Hadith to commentaries
and answer questions such as “What is the commentary of a particular Hadith?”.
Hence, the area of Hadith ontology is relatively unexplored and requires more
work to reach a mature status.

3.3 Text Segmentation

Text segmentation involves splitting texts into meaningful units called segments,
which can be a word, sentence, topic, or a phrase (Pak & Teh, 2018). One type
of text segmentation is Hadith segmentation, which aims to split a Hadith into
two components, Isnad and Matn. The first part is the chain of narrators which
exists for the sake of authenticity but does not add meaning to the actual Hadith teaching, the Matn. Hence, the task of Hadith segmentation can be considered a special type of topic segmentation.

Topic segmentation is a well-studied area of research since it is often considered a pre-requisite for tasks like information retrieval or text summarization (Purver, 2011). One of the seminal works in this area is Texttiling (Hearst, 1997), which uses a vector space model to measures cosine similarity between neighbouring units to detect topic change and assign boundaries to dissimilar units. Developments based on the Texttiling method has been proposed including utilizing BERT to obtain units’ semantic embeddings (Solbiati et al., 2021) since lexical semantics are better captured with distributed representations (Goldberg, 2017).

Although the performance of the aforementioned methods is encouraging, the task of Hadith segmentation aims to detect the Isnad span, which is a chain of narrators that usually follows a pattern. Therefore it is more logical to first try the classical methods mentioned in Reynar (1998), where features like word cues, word n-grams, word repetition, and word co-occurrence are utilized to identify topic shift.

Special features of Isnad including narrators’ names and transmission words like ‘said’, ‘heard’, and ‘told’ have been utilized in previous attempts to segment Hadith. A more specific literature review of Hadith segmentation is found in section 4.2, which discusses how a Hadith segmentation tool presented in this thesis builds on previous research. After creating the Hadith segmenter, the Hadith corpus is created. The next section gives a brief overview of corpus building.

3.4 Corpus Building

‘Corpus’ is a word derived from Latin meaning ‘body’, which is used to refer to any collection of texts. The earlies corpus created was in 1897 consisting of 11 million words to study spelling conventions in the German language (McEnery
Currently, a ‘corpus’26 refers to any body of text available in a machine-readable format that can be used in a wide range of research that covers general topics such as lexicography, syntax, semantics, and language pedagogy. Furthermore, a corpus may answer specific questions such as authorship attribution and change in word meaning through time (Kennedy, 2014).

To make the corpus more useful, it is common practice to add a meaningful annotation. For example, POS tagging a corpus increases its utility and enables better analysis of the text in question. Ideally, corpus annotation should follow Leech’s maxims (Leech, 1993), which state that it should be possible to revert to the raw corpus by removing annotation. Furthermore, the end user should be aware of for whom and how the annotation was conducted, which means it is a potentially useful but not infallible tool. Hence, in creating the Hadith corpus, these were considered, as stated in Chapter 5.

The Hadith corpus serves a dual purpose. Firstly, it aims to provide a common resource for Hadith computational studies. Secondly, it aims to improve the availability of data as Classical Arabic is considered under-resourced in terms of available datasets (Alyafeai \textit{et al.}, 2021). Hence, a bilingual parallel corpus of Classical Arabic and the English translations aligned at the Hadith level is created as discussed in Chapter 5. This can be beneficial for various fields of research such as machine translation. In Section 5.2, the existing Arabic corpora are listed and discussed to highlight the usefulness of this new Hadith corpus, in addition to its intended use for detecting semantic similarities in religious CA texts.

3.5 Semantic Similarity

Automatically detecting semantic similarity between texts is useful for general NLP tasks including spelling correction, information retrieval, and plagiarism.

26The plural form of ‘corpus’ is ‘corpora’.
3.5 Semantic Similarity

detection (Hadj Taieb et al., 2020). Moreover, it can be beneficial for domain-specific tasks. For example, researchers at KITAB created the Passim27 algorithm to detect how extensively pieces of Classical Arabic writing spread across space and time. This is because in Classical Arabic books, it was common practice for authors to copy large chunks from previous books without referring to them. Although the proposed system is not designed to detect paraphrasing, it could be developed by utilizing recent advances in semantic similarity detection methods.

The field of semantic similarity has evolved through several stages starting from lexical similarity by counting similar words, to recent advances in using deep neural network-based methods (Chandrasekaran & Mago, 2021). Figure 3.1 shows a diagram of the various approaches to semantic similarity which are discussed in the following sections.

\footnote{https://kitab-project.org/methods/text-reuse}
3.5 Semantic Similarity

3.5.1 Knowledge-Based

Knowledge-based semantic similarity methods utilize existing resources, such as domain-specific ontologies or general ones like WordNet (Miller, 1995), a lexical database of a handcrafted semantic network of English words. The approach relies on the structure of the ontology, which is typically a graph connecting words taxonomically. The semantic similarity between concepts can be measured using the ‘Short Path’ method, which involves identifying the concepts in the ontology graph and counting the edges of the shortest path between them. The similarity score is inversely proportional to the shortest path length between the two terms; the shorter the path, the more similar the concepts are (Rada et al., 1989). Another method, called Lesk (Banerjee et al., 2003), takes advantage of glossary information provided by language resources. For example, BabelNet (Navigli & Ponzetto, 2012), the largest multilingual semantic ontology, provides meanings.
of words (glosses). The Lesk algorithm assigns a relatedness value between two words based on the overlap in their glosses. For more information on knowledge-based approaches, refer to Hadj Taieb et al. (2020) and Chandrasekaran & Mago (2021). It is worth noting that these semantic similarity measures are only possible if a suitable ontology exists. Therefore, I have listed, compared, and evaluated the ‘fit’ of existing Quran ontologies for Hadith in Chapter 6 to determine the feasibility of this approach.

3.5.2 Corpus-Based

The corpus-based approach uses statistical analysis to convert textual data to numerical representations, which allows for the mathematical measurement of semantic similarity. The earliest and most basic representation is the Bag of Words (BOW), along with dimensionality reduction methods such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). However, this method ignores the relationship between words in a sentence (Mihalcea et al., 2006). To address this limitation, Mikolov et al. (2013) introduced Word2Vec, which is a vector representation of words that captures the underlying linguistic relationship between words. These vectors are called word embeddings, and are produced using neural networks trained on large corpora to learn word associations by observing a word and its neighbouring words. Currently, the most widely used word embeddings are Word2vec and Glove (Pennington et al., 2014). Another widely used model is the character n-gram embeddings called FastText (Bojanowski et al., 2017). This was introduced to solve the problem of out-of-vocabulary (OOV) words by obtaining the embedding of the syllabus or consecutive letters that are the building blocks of the word, then combining the embeddings to obtain one embedding of the OOV word. These models produced promising results on several tasks (Alharbi & Lee, 2020; Nagoudi et al., 2017). An extension of word embeddings research aimed to produce sentence embeddings using averaging or concatenation of word vectors in an approach known as Doc2Vec (Le & Mikolov, 2014). However, these embeddings suffer from meaning conflation deficiency, because one word with all its possible meanings is represented as a single
vector. This is addressed by the contextual embeddings introduced by Devlin et al. (2018).

3.5.3 Deep-learning Based

Several methods have been proposed to measure semantic similarity in textual data using deep neural networks, such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. One proposed method replaces words in a sentence with their word embeddings, which are produced by GloVe. These word embeddings are used as features and are fed into a CNN that predicts the semantic similarity values between sentences (Shao, 2017). Recently, transformer-based models like BERT (Bidirectional Encoder Representations from Transformers) have been used to produce contextual embeddings and have become the best-performing method on downstream tasks (Seelawi et al., 2019). Although deep-neural network methods outperform traditional corpus-based methods, they suffer from a lack of interpretability.

In Chapter 8, I have used a corpus-based method where I trained a fastText model on different corpora consisting of Hadith, Quran and their associated literature to obtain domain-specific word embeddings. Then, I compared them to a deep-learning method by using contextual embeddings on a semantic similarity downstream task to ascertain the extent to which these models represent the complex Quran and Hadith texts.

3.6 Conclusion

This chapter gives a brief overview of the main research topics this thesis builds upon, and points to the deeper literature discussed in the other chapters within this thesis.
Chapter 4

Building the Hadith Segmenter

4.1 Introduction

This chapter is largely based on my two publications Altammami et al. (2019) presented at the 3rd Workshop on Arabic Corpus Linguistics (WACL-3), and Altammami et al. (2020a) presented at the 12th Language Resources and Evaluation Conference (LREC2020). It demonstrates the experiments undertaken to build the Hadith segmenter, which deconstructs the Hadith into its two main components Isnad and Matn.

Before conducting the experiments, it is worth recalling some essential background information. The Hadith and its literature are thoroughly explained in Chapter 2. This chapter specifically focuses on the structure of the Hadith. Most Hadiths consist of two parts: the Isnad, which is a chain of narrators, and the Matn, which is the actual teaching. These two parts are illustrated in Figure 4.1. Note that in this study, the phrase ‘The Prophet PBUH said’ is considered part of the Matn, which means the Hadith corpus discussed in Chapter 5 is built according to this assumption. This will facilitate determining if a Matn consists of prophetic words, or words of his companions without the need to refer to Isnad. More discussion on this is given in the next chapter.
4.1 Introduction

It is important to note that in Hadith computational studies, researchers often focus on one specific aspect of the Hadith, such as the Isnad or the Matn (Luthfi et al., 2018). For example, some researchers may analyse the Isnad in order to visualize the chain of narrators (Siddiqui et al., 2014) and tracing the transmission of Hadith over time. Other researchers may focus on the Matn with the goal of categorizing Hadith into subtopics (Saloot et al., 2016). Having a dataset of Hadith where the Isnad and Matn are clearly segmented can greatly assist these researchers in their studies. However, manually segmenting the Hadith can be a tedious and error-prone task. Automating the process using a segmentation tool can provide more coherent and consistent results.

The following section enumerates the previous attempts to create a Hadith segmenter. Then the subsequent sections discuss the different approaches undertaken in this study to build the Hadith segmenter. The initial approach uses a dictionary look-up method (Section 4.5). Although its performance is acceptable, it is developed further to improve its accuracy to 92.5% (Section 4.6). This is achieved by adding a machine learning (ML) component and changing the algorithm to detect Isnad with irregular patterns. Additionally, another approach was tested that involves using a Hidden Markov Model (HMM), which is known to be effective in pattern recognition (Section 4.7). Finally, the various approaches are compared and discussed in order to identify potential future directions and areas for improvement.

Figure 4.1: Hadith example, Isnad in bold face text, followed by Matn
There have been a number of attempts to detect Isnad patterns. Table 4.1 shows summaries between such studies and the following paragraphs provides an overview of these papers.

Siddiqui et al. (2014) attempted to segment Isnad from Matn by using supervised ML algorithms that require an annotated corpus. Thus, native Arabic speaker-annotated Hadith tokens were extracted from Sahih Albukhari divided into five classes (beginning of Person, inside Person, beginning of Narrator, inside Narrator, and Other) where ‘Narrator’ corresponds to names in the Isnad, and ‘Person’ corresponds to names in the Matn. After annotating the corpus, Siddiqui et al studied contextual patterns of Hadith to identify features beneficial for classification. For example, the word ‘told us’ is followed by a narrator’s name in the Hadith Isnad, and the word ‘son of’ is part of a name. Another example is the honorific phrases that always follow a person’s name. The classifier takes the training data and features in the form of ‘feature, class’ where each word is classified as ‘beginning/inside Person’, ‘beginning/inside Narrator’, or ‘Other’. The system classifies new Hadith tokens and segments the Hadith by finding the end of the consecutive list of narrators.

The system’s performance was evaluated based on two factors: firstly, its ability to accurately assign each token to the correct type, regardless of the boundaries, as long as there is an overlap, and secondly, its ability to correctly identify the boundary of each name, regardless of the type assigned (narrator or person). The average F1 score was calculated for both results, which was 85% in the training phase. In the testing phase, another manually labelled Hadith book titled ‘Musnad Ahmed’ containing 5K tokens was used, which resulted in a 71% F1 score. It is important to note that these scores reflect the system’s performance in annotating tokens, rather than the segmentation of Hadith. Unfortunately, the annotated data is not available to reproduce the experiments and evaluate the
4.2 Related Work

Harrag (2014) built a Finite State Transducers (FST) system to extract Hadith segments and meta data which includes Num-Kitab, Title-Kitab, Num-Bab, Title-Bab, Num-Hadith, Isnad, Matn, Taalik, and Atraf. This is accomplished by identifying beginning of words like ‘K’ for Kitab to extract the book title. Furthermore, punctuations are used to identify other parts of the Hadith assuming that all the Matn is surrounded by parenthesis. These features depend on the Hadith book used and how well and correctly it is punctuated. Thus, it cannot be applied to all kinds of Hadith books. His work measures the system’s performance to identify several components of Hadith that range from Isnad, to going deeper, identifying the narrator’s names. However, for the purpose of this study, only the result of Isnad extraction is reported, which is 44% precision.

Azmi & Badia (2010) developed a system that aimed to construct a tree of narrators, but first, the Isnad needed to be extracted. To extract the Isnad, they implemented several pre-processing steps, including removing diacritics and punctuation, and applied shallow parsing to handle noise and exclude non-parsable words. Using the output of the shallow parsing, noun phrases were considered as potential names of narrators. After pre-processing the data, they employed a context-free grammar to identify each segment in the Hadith by comparing the tokens to a list of Hadith lexicon they had compiled earlier. Since the goal of their study was to construct the tree, their results reflect the system’s success in building the tree, rather than the segmentation of Hadith.

Maraoui et al. (2018) compiled a list of trigger words that come before, after, and between narrator’s names. Furthermore, they identified words that mark the termination of each Hadith, which are تَخْتَفِئَ or أَطْرافَ. Using these comprehensive lists of words, they were able to segment Isnad from Matn for Sahih Albukhari. However, it is not clear whether it can be used to segment other Hadith books, considering that Sahih Albukhari is well structured.
Boella (2011) proposed the HedExtractor system, which uses regular expressions (Regex) to extract Hadith. The system first extracts each Hadith from the book by identifying the number of each Hadith. Then, the Arabic text is converted to its transliteration to locate the words of transmission based on a list that the researchers compiled. The system assumes that words between these transmission words are the names of narrators. Once no transmission terms are detected, the system marks the end of the Isnad. However, the exact point of Hadith segmentation can be ambiguous, even for humans. To address this issue, they set a threshold of 100 characters, which was chosen based on trial and error. This threshold tells the system that if no other transmission word is detected within the next 100 characters, then the Matn starts.

Mahmood et al. (2018) aimed to build a multilingual Hadith corpus by extracting Hadiths from different websites then segmenting the Hadith into Isnad and Matn using regular expressions. However, the examples presented in their paper indicate that trigger words were encoded in regular expression statements tailored for specific types of Hadiths, such as a particular Hadith book. A potential drawback of this method is its lack of versatility in application to different types of Hadith books.

Limitation of Previous Studies

In the previous work, Hadith segmentation was done using three approaches. The first was rule-based that consist of allow list (or gazetteers) to identify names and Isnad specific words, a filtration mechanism (or deny list) to identify Matn words, and grammar rules (as a set of regular expressions) to identify the segmentation point. The second was the ML approach which consists of data annotation, feature and algorithm selection, training and classification. The third was the FST, which depends on the degree of consistency in a well-structured text.

Observing Table 4.1, it is evident that the rule-based approach produced better results. However, it is not clear if the rule-based approach designed for one book can be applied to other Hadith books. As demonstrated by the work of
<table>
<thead>
<tr>
<th>Paper</th>
<th>Approach</th>
<th>Technique</th>
<th>Pre-processing</th>
<th>Manual annotation</th>
<th>Data</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siddiqui et al. (2014)</td>
<td>Machine Learning</td>
<td>Naïve Base, KNN, Decision tree</td>
<td>Remove diacritics, stemming</td>
<td>Person, Narrator, other</td>
<td>Albukhari, Musnad, Ahmed</td>
<td>71%</td>
</tr>
<tr>
<td>Harrag (2014)</td>
<td>Finite State Transducer</td>
<td>-</td>
<td>Tokenize, None</td>
<td>None</td>
<td>Albukhari</td>
<td>44%</td>
</tr>
<tr>
<td>Azmi & Badia (2010)</td>
<td>Rule Based</td>
<td>Context Free Grammar</td>
<td>Shallow parsing, Remove diacritic and punctuation</td>
<td>Hadith Lexicons</td>
<td>Albukhari</td>
<td>87%</td>
</tr>
<tr>
<td>Maraoui et al. (2018)</td>
<td>Rule Based</td>
<td>Dictionary Lookup</td>
<td>None</td>
<td>Hadith Lexicons</td>
<td>Albukhari</td>
<td>96%</td>
</tr>
<tr>
<td>Boella (2011)</td>
<td>Rule Based</td>
<td>Regular Expressions</td>
<td>Transliteration</td>
<td>Hadith Lexicons</td>
<td>Albukhari</td>
<td>97%</td>
</tr>
<tr>
<td>Mahmood et al. (2018)</td>
<td>Rule Based</td>
<td>Regular Expressions</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>98%</td>
</tr>
</tbody>
</table>

Table 4.1: Review of previous research on Hadith segmentation into Isnad and Matn components
Mahmood et al. (2018), who developed distinct regular expressions for various Hadith books, it is evident that relying solely on rule-based methods may not be suitable for universal application. On the other hand, the ML approach is no better since it requires training data that represent all kinds of Hadith to make its performance acceptable when applied to the different Hadith books. For example, the study presented in Siddiqui et al. (2014) reported a drop in performance by 14 points once the model was tested with a different book. Another problem associated with FST is that segmentation will not work if the Hadith book does not use unique punctuation that surrounds each segment, e.g. parenthesis around the Matn.

Although an attempt was made to compare system performance in Table 4.1, it is crucial to clarify that the approaches are not comparable for two reasons. First, the data used to test the systems are different in terms of size and type. Second, the way system performance was measured is different in every study. For example, the study by Siddiqui et al. (2014) measured the precision of the system’s ability to annotate the person’s name as Narrator or not: that is, whether each name is part of the Isnad or Matn. Therefore, their system goal is not to segment but rather to identify narrators. To sum up, the results column in table 4.1 for papers Harrag (2014); Maraoui et al. (2018); Boella (2011), and Mahmood et al. (2018) reflects the segmentation performance, while the other studies report the performance of named entity recognition (NER) of narrators in Hadith. Overall, it would have been beneficial if previous studies had shared their datasets to enable better analysis and comparison. This work ensures that all created data is shared with the research community.

Before discussing the experiments for creating a Hadith segmenter, a brief overview of Arabic text preprocessing is given. This is necessary because many Arabic NLP tasks require some form of preprocessing, depending on the type of text used and the intended task.
4.3 Arabic Text Preprocessing

Text preprocessing is an important step in Arabic NLP. Previous studies measured the impact of various preprocessing steps on a range of downstream tasks such as sentiment analysis (Duwairi & El-Orfali, 2014), document classification (Alhaj et al., 2019), and semantic similarity (Alhawarat et al., 2021). These studies suggest that the impact of preprocessing steps may vary depending on the specific task and data used. The following lines discuss common preprocessing steps and which ones are more suitable for identifying Isnad and Matn in Hadith texts to aid in building the Hadith segmenter.

Remove punctuation marks
The use of punctuation marks is not consistent throughout the different Hadith books. Hence, it is not a reliable approach to rely on them in identifying the Isnad and Matn segments. Therefore, the removal of punctuation marks is considered in the text preprocessing pipeline.

Remove diacritics
Sometimes Classical Arabic texts have, in addition to the basic letter, diacritics that are located above or below the letters. The same letter-form may take various diacritics to represent the different words and avoid ambiguity as in عَنْدَ ‘necklace’, and عَنْدَ ‘complicate’. However, considering diacritics leads to data sparsity, and this task aims to identify narrators’ names and transition words, which are less likely to be ambiguous. Hence, removing diacritics is considered in the text preprocessing pipeline.

Remove Stop-words
Stop-words are frequent words that have no significant meaning for the text, such as prepositions, pronouns, and conjunctions. However, such Arabic words like أن ‘that’, and عن ‘from’ are cornerstones of the Isnad structure and therefore are essential to identify the Isnad pattern. Hence, no stop-word removal is incorporated in the preprocessing pipeline.
4.4 Data Preparation

Stemming and Lemmatization
One of the common preprocessing steps in Arabic NLP is stemming and lemmatization. However, this is not useful for the current task because Isnad mostly consists of narrator names and transmission words. Hence, unique Isnad words such as ‘[he] told me’, and ‘[he] informed me’) will be converted to words that are not Isnad-specific (١٨١٨١). Therefore, the preprocessing pipeline does not include this step.

Normalization
Normalization is the process of reducing orthographic ambiguity by normalizing the differences in spelling to minimize data sparsity. For example, the letters ٧, ١, and ٩ are all normalized to ١, and ٣ is normalized to ٣. The effect of normalization on this task cannot be predicted. Therefore, it is added to the pipeline of data preprocessing to test its effect.

4.4 Data Preparation

4.4.1 Testing Data
Testing data must be prepared before building the segmenter. There are a countless number of Hadith books with a varying degree of authenticity. For the purpose of this project, the six famous books are included. These are commonly referred to The Authentic Six or canonical Hadith books. These books are Sahih Albukhari, Sahih Muslim, Sunan Abi Dawood, Sunan Al-Nasai, Sunan Altarmithi, and Sunan Ibn Maja. From each book, around 80 Hadiths were carefully chosen to form 500 Hadiths that include Hadiths with irregular patterns. These can be downloaded from my repository. This is to ensure two goals are achieved. First, I needed to overcome the limitations of previous studies that relied on one book, and second, to produce a realistic performance of a segmenter that can deal with various types of Hadiths.

https://github.com/ShathaTm/Hadith_segmenter_testing_data
4.4 Data Preparation

4.4.2 Training Data

Previous research works were consulted to determine the most effective way to obtain training data for a Hadith segmenter. Although, their data is not available, it is clear that Isnad specific lexicons are used in regular expressions and rule-based approaches to identify the Isnad segments. To extract these terms, Sahih Albukhari is used for two reasons. First, it is the most commonly used book in previous studies and it is well-structured.

To automate this task, Isnads in Hadiths are scrutinized to ascertain that they contain of a closed set of words, as indicated by previous studies (Maraoui et al., 2018; Boella, 2011). The example of Isnad in Figure 4.2 underlines these words. A common pattern in Isnad is the narrator’s name which takes the form of first name - son of- father’s name, so this involves two names connected by a ‘relation’ word. Narrators’ names are usually followed by ‘transmission’ words that reflect how the Hadith was reported e.g. *x heard y* or *x said*. Hence, transmission words usually appear four words apart.

![Figure 4.2: Isnad example, Isnad lexical items underlined](image)

Using this information, a list of Isnad lexical items (or lexemes) is created that consists of ‘transmission’ and ‘relation’ words similar to those mentioned in
Siddiqui et al. (2014); Maraoui et al. (2018); Boella (2011). Then a python script is built as illustrated in Figure 4.3 which tokenizes a Hadith into space-separated words. Then it takes four tokens at a time to check if an Isnad lexical item is present. Once it detects a group of four words with no Isnad lexical item, it assumes the beginning of the Matn text and separates the Hadith at that point. This approach automatically detects Isnads with regular patterns only, so it aims to collect the various names of narrators. The final step is performed manually to verify the results of this bootstrapping approach. This produced a collection of more than four thousand segmented Hadiths to be the training data of Isnad and Matn segments.

4.5 Look-up Approach

4.5.1 Look-up Lists

The first approach to build the segmenter relies on the simplest model that uses dictionary look-up lists. Hence, to create these lists, the training data of Isnad and Matn segments created previously as discussed in Section 4.4.2 are extracted. Then they are tokenized to trigrams, bigrams and unigrams, which are added to the look-up lists accordingly as shown in the example in figure 4.4.

4.5.2 The N-gram Model

This section empirically tests the performance of different n-gram models for Hadith token labelling, which is similar to part-of-speech (POS) tagging tasks. However, in POS tagging, words can be ambiguous if POS information is obtained from a dictionary, as some words can have different POS tags depending on the context. The bigram model, which takes into account the context of words, has been found to be effective in POS tagging tasks (Atwell, 1983). Therefore, it is speculated that the same applies to Hadith token labelling, as many words can exist in both the Isnad and Matn, making them ambiguous without considering the context.
Figure 4.3: Python script to perform the segmentation on Albukhari Hadith
Figure 4.4: Example of Isnad and Matn extracted from the training data and tokenized to unigrams, bigrams and trigrams then added to the lists accordingly.
To test this hypothesis, an empirical study is conducted using the training and testing datasets discussed in Section 4.4. The study follows these steps:

1. Extract the trigram, bigram, and unigram lists from the training data to be used as dictionary look-up lists.

2. Tokenize the 500 Hadiths in the testing data using the different n-gram models.

3. Perform a dictionary look-up task on the testing n-grams to identify whether each token is part of Isnad or Matn.

4. If the token is found in both, Isnad and Matn, then label it ‘ambiguous’.

5. If the token is not found in any list, then label it ‘token with no match’.

As shown in Table 4.2, when the bigram model is used, 40% of the tokens are recognized. On the other hand, the unigrams model produces the most ambiguous words, because most unigrams, e.g. words, exist in both the Isnad and the Matn. Although the trigram model produced the lowest rate of ambiguous tokens, it introduced a major drawback. It requires large training data, as is evident by the high number of unrecognized trigram tokens.

<table>
<thead>
<tr>
<th>Ngram</th>
<th>Number of Tokens</th>
<th>Isnad Tokens</th>
<th>Matn Tokens</th>
<th>Ambiguous tokens</th>
<th>Tokens with no match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigrams</td>
<td>34,267</td>
<td>13%</td>
<td>16%</td>
<td>14%</td>
<td>54%</td>
</tr>
<tr>
<td>Bigrams</td>
<td>35,272</td>
<td>8%</td>
<td>32%</td>
<td>23%</td>
<td>34%</td>
</tr>
<tr>
<td>Unigrams</td>
<td>36,277</td>
<td>1%</td>
<td>26%</td>
<td>65%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Table 4.2: Result of tokenizing and annotating the 500 Hadith testing data using look-up lists
4.5.3 Experiments

Trigram with back-off

Instead of relying solely on the bigram representation model, a better approach is to combine the three n-gram representation models using a back-off approach that can handle irregularity and missing information. For example, if an encountered trigram token has no match in the trigram lists of the lookup training data, it can be annotated according to its components by converting it to two bigram tokens and looking it up in the bigram lists. If no match is found it is converted to unigram tokens and looked up in the unigram lists. Consider a case in which a narrator’s full name is not captured in the lists, then Hadith lexical item like ﯾ (‘son of’) will enable the system to identify this trigram as part of the narrator’s chain and labels it Isnad. This approach is detailed in Algorithm 1. Once every token is labelled, the system finds the segmentation point as detailed in Algorithm 2.
Algorithm 1 Annotate Trigram tokens

Tokenize Hadith into Trigrams “T”

```plaintext
for t ∈ T do
    if t ∈ IsnadTrigramList then
        t.Label = Isnad
    else if t ∈ MatnTrigramList then
        t.Label = Matn
    else
        Convert t to Bigrams B
        for b ∈ B do
            if b ∈ IsnadBigramList then
                t.Label = Isnad
                Break
            else if b ∈ MatnBigramList then
                t.Label = Matn
                Break
            else if b last token in B then
                Convert t to Unigrams U
                for u ∈ U do
                    if u ∈ IsnadUnigramList then
                        t.Label = Isnad
                        Break
                    else if u ∈ MatnUnigramList then
                        t.Label = Matn
                        Break
                    else
                        t.Label = Niether
                    end if
                end for
            end if
        end for
    end if
end for
output_list ← [t, t.Label]
end for
```
4.5 Look-up Approach

Algorithm 2 Find Segmentation point

for \([t, t_{Label}]\) in output_list do
 if \(t_{Label} == \text{Matn}\) then
 if followed by \(t_{Label} == (\text{Matn} \text{ or } \text{Neither})\) then
 Mark Segmentation Point at \(t\)
 Break
 else if \(t_{Label} == \text{Neither}\) then
 if followed by 2 \(t_{Label} == (\text{Matn} \text{ or } \text{Neither})\) then
 Mark Segmentation Point at \(t\)
 Break
 end if
 end if
 end if
end for

This approach produced 48% accuracy. To understand this disappointing result, the incorrectly segmented Hadiths are inspected. It appears that the system rarely used the trigram feature, but rather relied on the bi-gram and uni-gram features to annotate tokens. Consider the example in Table 4.3. Feeding this Hadith to the system produces 79 trigrams, of which only 15 found a match in the trigram training set. The remaining 64 trigrams relied on the bi-gram and uni-gram training set to be annotated. This dependency on bi-gram/uni-gram features to annotate Hadith trigrams produced unreliable results as illustrated in the example. The phrase ‘that a man said’ should mark the beginning of the Matn, instead it was labelled as Isnad. This is because when the system did not find a match in the trigram training set, it applied the back-off approach and searched in the bi-gram and uni-gram lists. Since it found a match for the term ‘he said’ in the Isnad lists, it labelled the phrase accordingly. Therefore, using trigrams did not prove useful in this case for two reasons. First, the training data is not large enough to cover all known narrators. Second, it is obtained from only one Hadith book, which does not include all Hadith lexical items and patterns.
4.5 Look-up Approach

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حديثنا قتيبة حدثنا مروان بن معاوية الغزاري عن أبي يعفون عن الوليد بن العزاز عن أبي عبادة البشري أن رجلاً قال لابن مسعود أي العمل أفضل قال سألت عنه رسول الله صلى الله عليه وسلم فقال الصلاة على موافقَتها قلت وماذا</td>
<td>يا رسول الله قال وبر الوالدين</td>
</tr>
</tbody>
</table>

Qutaiba told us Marwan bin Muawiya al-Fizari from Abu Yafour from Al-Walid bin Al-Azar from Abu Amr AlShibani that a man said to Ibn Masood, which work is better? He said I asked the Messenger of Allah (PBUH): "Which action is dearest to Allah?" He (PBUH) replied, "Performing the prayer at its earliest fixed time." I asked, "What is next?"

O Prophet, He said, "Kindness towards parents."

Table 4.3: Example of incorrect Hadith segmentation using trigrams with back-off approach

Bigram with back-off

To improve the system performance, the trigram features are omitted, and instead, bigrams and unigrams are used. The bigram technique produced better results as expected.

4.5.4 Result

The segmenter performance is measured using accuracy. The segmentation is considered correct if it is off by three words as shown in formula 4.1. This is based on the narrators’ names in the Isnad, which usually do not exceed three tokens. Hence, it assumes the segmentation is correct even if it is off by three words. This measurement of accuracy is used with the various approaches discussed in this chapter to build the Hadiths segmenter.
4.5 Look-up Approach

\[\text{\# of actual Isnad tokens} - \text{\# of produced Isnad tokens} < 4 \quad (4.1) \]

The accuracy of the segmenter is 87.1\%, which is improved further after normalization where \(\mid \), \(\breve{\imath} \) and \(\breve{\phi} \) are all normalized to \(\imath \), and \(\breve{\phi} \) is normalized to \(\phi \). This made the accuracy reach 88.3\%.

This segmenter is able to segment Hadiths with different structures. For example, the traditional ones where a Matn start with a prophetic saying as shown in Table 4.4. Other Hadith structures include those containing irregular patterns where a Matn starts with an introductory phrase followed by the prophetic saying as shown in Table 4.5, a dialogue with the Prophet as shown in Table 4.6, or an explanation of a prophetic deed as in Table 4.7.

While performance is improved, the incorrectly segmented Hadiths are inspected and it appears they are the ones with irregular patterns. For example, a Hadith may contain a parallel Isnad, which is a chain of narrators that ends at the Prophet followed by another chain of narrators that ends at the Prophet again, as shown in Table 4.8. Another example of an irregular pattern in Isnad is shown in Table 4.9, which illustrates that an Isnad may contain different Matn patterns. Finally, Table 4.10 shows that some Hadiths possess a vague segmentation point. Note that due to space constraint some Hadiths in the examples were truncated as indicated by ‘...’.
4.5 Look-up Approach

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حدثنا كثير بن عبيد الفضل حدثنا محمد بن خالد بن عبد الله بن الوالي الوصافي عن محارب بن دثار عن عبد الله بن عمر قال</td>
<td>قال رسول الله صلى الله عليه وسلم أن أعظم الخبال إلى الله الطلاق</td>
</tr>
<tr>
<td>Kathir bin Obeid Al-Homsi told us</td>
<td>The Prophet (PBUH) said, “Of all the lawful acts the most detestable to Allah is divorce”</td>
</tr>
<tr>
<td>Mohammed bin Khalid from Obidallah bin Walid Al-Wasafi from Moharib bin dathar from Abdullah bin Omar said</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4: Correct segmentation, regular pattern

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حدثنا أبو معمر قال حدثنا عبد الواثر عن عبد العزيز قال أنس</td>
<td>إنه لمَّنعني أن أحدثكم حديثا كثيرا أن النبي صلى الله عليه وسلم قال من تعبد علي كذبًا فليتْ مُقَعِّد مَنَ النار</td>
</tr>
<tr>
<td>Abu Muammar told us that Abdul Warith told us from Abdul Aziz said that Anas said</td>
<td>I refrain from telling you many things about the Prophet because I heard the Prophet (PBUH) said, “He who deliberately forges a lie against me let him have his abode in the Hell.”</td>
</tr>
</tbody>
</table>

Table 4.5: Correct segmentation, introductory statement
4.5 Look-up Approach

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حديثنا قتيبة قال حدثنا الليث عن يزيد بن أبي حبيب عن أبي الخير عن عبد الله بن عمرو</td>
<td>أن رجلا سال رسول الله صلى الله عليه وسلم أي الإسلام خير قال تطعيم الطعام وقرأ السلام على من عرفت ومن لم تعرف</td>
</tr>
<tr>
<td>Qaytibah told us Alith from Yazid ibn Abi Habib from Abi Al-Khair from Abdulllah bin Amr</td>
<td>A man asked the Messenger of Allah (PBUH): “Which act in Islam is the best?” He (PBUH) replied, “To give food, and to greet everyone, whether you know or you do not.”</td>
</tr>
</tbody>
</table>

Table 4.6: Correct segmentation, conversation of the Prophet

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حديثنا إسماعيل بن موسى الفزاري حدثنا شريك عن أبي إسحق عن الحارث عن علي بن أبي طالب قال</td>
<td>من السنة أن تخرج إلى العيد ماشيا وأن تأكل شيئًا قبل أن تخرج</td>
</tr>
<tr>
<td>Ismail bin Musa al-Fazari told us Sharik said Abu Ishaq from AlHarith from Ali bin Abi Talib said</td>
<td>It is the Sunnah (prophetic tradition) to go out to the Eid prayer walking and eat something before you go out.</td>
</tr>
</tbody>
</table>

Table 4.7: Correct segmentation, no prophetic words
4.5 Look-up Approach

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حدثنا مسدد قال حدثنا يحيى عن شعبة عن قتادة عن أنس رضي الله عنه عن النبي صلى الله عليه وسلم وعن حسين المعلم قال حدثنا قتادة عن أنس عن النبي صلى الله عليه وسلم قال لا يؤمن أحدكم حتى يحب لأخيه ما يحب لنفسه</td>
<td>صلى الله عليه وسلم وعن حسين المعلم قال حدثنا قتادة عن أنس عن النبي صلى الله عليه وسلم قال لا يؤمن أحدكم حتى يحب لأخيه ما يحب لنفسه (PBUH), and from Husayn al-Muallim said Qatada told us from Anas that the Prophet (PBUH) said: “No one of you becomes a true believer until he likes for his brother what he likes for himself”.</td>
</tr>
<tr>
<td>Mosaadad said Yahya told us Shoba heard Qatada from Anas may Allah be pleased with him, the Prophet</td>
<td></td>
</tr>
</tbody>
</table>

| Table 4.8: Incorrectly segmented, parallel Isnad |

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حدثنا نصر بن علي الجهضمي وأبو عمر</td>
<td>واحد والللفظ لفظ أبي عمر قالا أخبرنا سفيان بن عبيدة عن الزهري عن حميد بن عبد الرحمن عن أبي هريرة قال أنا رجل فقال يا رسول الله هل كنت...</td>
</tr>
<tr>
<td>Nasser bin Ali Juhadhmi and Abu Ammar told us and the meaning</td>
<td>Is the same but the words are of Ammar they said, Sufian bin Aayneh from Alzahri from Hamid bin Abdul Rahman on the authority of Abu Hurayrah said a man came and said, “O Allah’s Apostle! I have been ruined...”</td>
</tr>
</tbody>
</table>

| Table 4.9: Incorrectly segmented, Isnad contains Matn lexical items |
4.5 Look-up Approach

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>أخبرنا محمد بن منصور قال حدثنا سفيان قال حدثنا يحيى بن سعيد عن مسلم بن أبي مريم شيخ من أهل المدينة ثم ناهى الشيخ فقال جمعت علي بن عبد الرحمن يقول صلى إلى جنب ابن عمر فقلت الحصى فقال لي ابن عمر لا تقلب الحصى فإن تقلب الحصى من الشيطان وفعل كما رأيت رسول الله صلى الله عليه وسلم يفعل قلت وكيف رأيت رسول الله صلى الله عليه وسلم يفعل قال هكذا...</td>
<td>Do not turn the gravel, turning the gravel is from the devil and do as I saw the Messenger of Allah peace be upon him do...</td>
</tr>
<tr>
<td>Muhammad bin Mansour told us, that Sufian said Yahya bin Said told us about Muslim bin Abi Maryam a Sheikh from Madinah then I met the Sheikh and he said he heard Ali bin Abdul Rahman say I prayed beside Ibn Omar, while I turned the gravel he said</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.10: Incorrectly segmented, names should be part of Matn
4.6 Machine Learning Approach

Although the look-up lists approach to build a Hadith segmenter produced acceptable results, its performance is improved in this experiment by incorporating a machine learning (ML) model into the pipeline. Furthermore, the segmentation algorithm is modified to deal with irregular Hadith structures. The proposed Hadith segmenter pipeline is shown in Figure 4.5, where it applies the following steps:

1. First, it takes the Hadith input and pre-processes it to remove diacritics, punctuation marks and extra white spaces. Diacritics were removed to overcome data sparseness and enhance term weighting. The experiment was run with and without normalization to understand its effect29.

2. Then it tokenizes the pre-processed Hadith into bigrams of words. Bigrams were chosen based on their better performance compared to the other n-gram features as explained in Section 4.5.2.

3. After that it labels every token as ‘Isnad’ or ‘Matn’ by using an ML classifier which is described in Section 4.6.1.

4. Once every token is labelled, a rule-based algorithm is applied to find the exact segmentation point as detailed in Section 4.6.2.

5. Finally, the segmentation point is applied on the original Hadith to produce Isnad and Matn segments with diacritics and punctuations intact.

4.6.1 Choosing a Classifier Model

Training a supervised ML model requires labelled training data to learn the mapping function that takes an input variables \((x)\) and produces an output variable \((y)\). In other words, it solves for \(f\) in equation 4.2.

\[
y = f(x) \tag{4.2}
\]

29Pre-processing was implemented from scratch in python as CAMeL tools were not published at the time of running this experiment.
Figure 4.5: Pipeline of Hadith segmenter using the ML approach
4.6 Machine Learning Approach

A ML Classifier takes in a Hadith bigram and classifies it as ‘Isnad’ or ‘Matn’. It is trained on 4,686 segmented Hadiths extracted from Sahih Albukhari. Additionally, a list of narrator names was tokenized to bigrams and added to the training data. These were collected from a website30 and can be downloaded from my repository31. The training data includes 314,340 bigram instances as shown in Figure 4.6 which are divided into 70% training and 30% validation. The testing bigrams are obtained from the 500 Hadiths extracted from the six Hadith books as explained in Section 4.4.

![Figure 4.6: Data distribution of bigram tokens](image)

Ideally, all suitable ML algorithms should be tested. However, this experiment only focuses on the most widely used ones. Various classical ML algorithms were trained using the scikit-learn library. These include multinomial Naïve Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), and Random Forests. Each training instance is a bigram token with a label that is fed into a model as [word1 word2, label]. An example of an Isnad training instance is ['حدثنا تئيه', 'Isnad']. These data are converted to numerical form using TF-IDF encoding. The performance is measured based on the classifier’s correct predication of each token’s label e.g. ‘Isnad’ or ‘Matn’.

30https://github.com/ShathaTm/Hadith

31https://github.com/ShathaTm/Hadith_Narrator_Names
4.6 Machine Learning Approach

Figure 4.7 shows the confusion matrix of the various ML models. It is clear that their performance is relatively similar, with Random Forests showing the best performance as indicated in Figure 4.7(b). Although training data consists of more Matn bigrams than Isnad bigrams as shown in Figure 4.6, the performance of the classifiers is satisfactory for both categories. This could be due to the fact that the Isnad usually consists of words that are either proper names or transmission words e.g. ‘said’, ‘heard’.

The classifiers are then evaluated on the testing data which includes 33,290 bigrams. Table 4.11 highlights the performance of these classifiers in labelling testing data bigrams.
4.6 Machine Learning Approach

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multinomial Naive Bayes</td>
<td>95.6%</td>
</tr>
<tr>
<td>Support Vector Machine</td>
<td>91.4%</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>95.9%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>96.9%</td>
</tr>
</tbody>
</table>

Table 4.11: Accuracy of ML models on the testing data to classify bigram of words as Isnad or Matn

The best performing model is Random Forest. Therefore, the bigram tokens \((t_1, t_2, \ldots, t_n)\) annotated by this model as \([(t_1, t_Label_1), [t_2, t_Label_2], \ldots, [t_n, t_Label_n]]\) are stored in a list \(\text{output_list}\) which is used to segment Hadiths as discussed in the next section.

It is worth noting that the typical out of vocabulary (OOV) problem, which is usually associated with proper nouns, does not necessarily apply to Hadith. This is because the names of narrators in the Hadith literature are a relatively closed set.

4.6.2 Experiments

Once the bigram tokens are annotated by the ML model as \([t, t_Label]\) and stored in a list \(\text{output_list}\), the segmenter finds the exact segmentation point. Hadith segmentation is a domain specific task, and as shown in the previous survey in Section 4.2, rule-based approaches produced the highest accuracies. The rule-based Hadith segmentation approach is simplified in Algorithm 3. This algorithm is able to identify Isnads with irregular patterns, and Hadiths that contain parallel Isnads. These were the limitations in the previous approach in Algorithm 2.
4.6.3 Results

The result using normalization is 92.5% accuracy, a slightly better performance than not normalizing data. The effect of normalization is discussed further in Section 4.16. The following lines explains how the segmenter performance is im-
4.6 Machine Learning Approach

proved with examples.

Table 4.12 shows an example of Hadith with parallel Isnad. The first chain of narrators is followed by the Prophet’s name, which is followed by another chain of narrators that ends with the Prophet’s name as well. These two chains of narrators are followed by the Matn, where the segmentation point should be detected.

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حدثنًا مسدد قال حدثنًا يحيى عن شعبة عن قنادة عن أنس رضي الله عنه عن النبي صلى الله عليه وسلم وعن حسين العلم قال أنس حدثنًا قنادة عن أسى</td>
<td>عن النبي صلى الله عليه وسلم قال لا يؤمن أحدكم حتى يحب لأبيه ما يحب لنفسه. Mosadad said Yahya told us Shoba heard Qatada from Anas may Allah be pleased with him, that he heard the Prophet (PBUH), and from Husayn al-Muallim said Qatada told us that Anas said that the Prophet (PBUH) said: "No one of you becomes a true believer until he likes for his brother what he likes for himself".</td>
</tr>
</tbody>
</table>

Another limitation of the first approach is dealing with Isnads that contain irregular patterns. This is addressed in this approach as illustrated by the example in Table 4.13. However, the example in table 4.14 demonstrates that there is room for improvement, specially in dealing with Hadiths that contain vague segmentation points. Note that due to space constraints some Hadiths in the
examples were truncated, as indicated by ‘...’.

<table>
<thead>
<tr>
<th>Isnad</th>
<th>Matn</th>
</tr>
</thead>
<tbody>
<tr>
<td>حديثنا نصر بن علي المجهمي وأبو عمر والمعنى واحد واللفظ لفظ أبي عمار قالا</td>
<td>رجل فقال يا رسول الله هلكت...</td>
</tr>
<tr>
<td>أخبرنا سفيان بن عبيدة عن الزهري عن حيد بن عبد الرحمن عن أبي هريرة قال أتاه</td>
<td>a man came and said, ”O Allah’s Apostle! I have been ruined.” ...</td>
</tr>
<tr>
<td>Nasser bin Ali Juadthmi and Abu Ammar told us and the meaning is the same but the words are of Ammar they said,</td>
<td></td>
</tr>
<tr>
<td>Sufian bin Aayneh from Alzahri from Hamid bin Abdul Rahman on the authority of Abu Hurayrah said</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.13: Correctly segmented Hadith with irregular pattern
4.7 Hidden Markov Model

Instead of labelling bigram tokens independently from the previous token, the Hidden Markov Model (HMM) is investigated. HMM is a class of probabilistic models that allows prediction of sequence of unknown (hidden) variables from a set of observed variables. It has been used to predict the POS tags (hidden variable) based on the word (observed variable) (Jurafsky & Martin, 2020). In this experiment, the HMM predicts whether each word in the Hadith is part of the Isnad or Matn.
4.7 Hidden Markov Model

4.7.1 Data Preparation

As in the previous experiments, Albukhari’s Hadiths are used as training data for the HMM. However, instead of using bi-grams of words as tokens, every Hadith word is considered a token where the model labels it as part of the Isnad or Matn using the tag set in Table 4.15. Thus, the HMM computes the joint probability of a set of hidden states (labels) given a set of observed states (words). The labels tag set is used following the approach of Siddiqui et al. (2014), who defined a similar tag set to identify narrators’ names in the Isnad, as discussed in Section 4.2. An example of how each training record is labelled is shown in Figure 4.8.

<table>
<thead>
<tr>
<th>Label</th>
<th>Token Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B_I</td>
<td>begin Isnad</td>
</tr>
<tr>
<td>/I_I</td>
<td>inside Isnad</td>
</tr>
<tr>
<td>/E_I</td>
<td>end Isnad</td>
</tr>
<tr>
<td>/B_M</td>
<td>begin Matn</td>
</tr>
<tr>
<td>/I_M</td>
<td>inside Matn</td>
</tr>
<tr>
<td>/E_M</td>
<td>end Matn</td>
</tr>
</tbody>
</table>

Table 4.15: Tag set for HMM training

4.7.2 Experiments

The HMM is built using the pomegranate python library by training it on 6,278 Hadiths, consisting of more than 6000 words in each of the following /B_I, /E_I, /B_M and /E_M. The /I_I consists of more words exceeding 100,000, and the /I_M contains the largest share exceeding 300,000 words.

After training, the model was validated on 1,570 Hadiths, which produced 97% accuracy for annotating tokens. To illustrate how the model captured the transition probability between the different states, a visualization of the model is

Figure 4.8: Hadith annotation for training the HMM
depicted in Figure 4.9.

Figure 4.9: Visualization of the HMM to illustrate the probability of transitioning to a new state conditioned on a present state.

Once the HMM model is validated, it is used as a segmentation tool for testing data of 500 Hadiths from the 6 different Hadith books. First, the model annotates every token in the Hadith. Then the segmentation algorithm finds the last /E_I and /B_M tokens to segment the Hadith at that point.
4.7.3 Results

The accuracy of annotating words in the testing data is 79.15%. However, the accuracy of segmentation is 90.25%. The segmenter using HMM identified the Isnad and Matn in Hadiths with regular structures successfully as shown in the example in Figure 4.10. In the other hand, the incorrectly segmented Hadiths fall into three categories as discussed next with examples to illustrate. Bear in mind that some Hadiths in the examples are truncated for space purposes.

The first type of incorrectly segmented Hadiths contain vague segmentation points as in Figure 4.11. The segmentation should be at token 25 instead of 31. However, this result is understandable since the vague tokens consist of names which have a greater probability of being part of the Isnad. Second, some Hadiths Isnad contain description of a narrator which the model identified as part of the Matn as shown in Figure 4.12. In this example segmentation should be at token 30. Again, this annotation is understandable since the words are not names of narrators. Third, there are Hadiths with several Isnad and Matn segments, as shown in Figures 4.13. This is because the segmenter algorithm finds the last /E_I and /B_M tokens to segment the Hadith at that point without considering that there is more than one Isnad and Matn segments. Hence, the HMM could be the answer to annotating Hadith to fine-grained segments.
Figure 4.10: Example of a Hadith with regular structure, and the correct segmentation indicated by the horizontal line after token number 13
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>اخبرنا</td>
</tr>
<tr>
<td>2</td>
<td>الحسن</td>
</tr>
<tr>
<td>3</td>
<td>م</td>
</tr>
<tr>
<td>4</td>
<td>محمد</td>
</tr>
<tr>
<td>5</td>
<td>الزعفراني</td>
</tr>
<tr>
<td>6</td>
<td>عن</td>
</tr>
<tr>
<td>7</td>
<td>حاج</td>
</tr>
<tr>
<td>8</td>
<td>قال</td>
</tr>
<tr>
<td>9</td>
<td>ابي</td>
</tr>
<tr>
<td>10</td>
<td>جريه</td>
</tr>
<tr>
<td>11</td>
<td>ابيانا</td>
</tr>
<tr>
<td>12</td>
<td>عمو</td>
</tr>
<tr>
<td>13</td>
<td>م</td>
</tr>
<tr>
<td>14</td>
<td>يحيى</td>
</tr>
<tr>
<td>15</td>
<td>عن</td>
</tr>
<tr>
<td>16</td>
<td>محمد</td>
</tr>
<tr>
<td>17</td>
<td>م</td>
</tr>
<tr>
<td>18</td>
<td>يحيى</td>
</tr>
<tr>
<td>19</td>
<td>م</td>
</tr>
<tr>
<td>20</td>
<td>حيان</td>
</tr>
<tr>
<td>21</td>
<td>عن</td>
</tr>
<tr>
<td>22</td>
<td>عمو</td>
</tr>
<tr>
<td>23</td>
<td>واع</td>
</tr>
<tr>
<td>24</td>
<td>م</td>
</tr>
<tr>
<td>25</td>
<td>حيان</td>
</tr>
<tr>
<td>26</td>
<td>ال</td>
</tr>
<tr>
<td>27</td>
<td>سال</td>
</tr>
<tr>
<td>28</td>
<td>عبيد</td>
</tr>
<tr>
<td>29</td>
<td>ال</td>
</tr>
<tr>
<td>30</td>
<td>م</td>
</tr>
<tr>
<td>31</td>
<td>عمر</td>
</tr>
<tr>
<td>32</td>
<td>عن</td>
</tr>
<tr>
<td>33</td>
<td>صلاه</td>
</tr>
<tr>
<td>34</td>
<td>رسول</td>
</tr>
<tr>
<td>35</td>
<td>ال</td>
</tr>
<tr>
<td>36</td>
<td>صلى</td>
</tr>
<tr>
<td>37</td>
<td>ال</td>
</tr>
<tr>
<td>38</td>
<td>عليه</td>
</tr>
<tr>
<td>39</td>
<td>وسلم</td>
</tr>
<tr>
<td>40</td>
<td>قال</td>
</tr>
<tr>
<td>41</td>
<td>ال</td>
</tr>
<tr>
<td>42</td>
<td>أكبر</td>
</tr>
<tr>
<td>43</td>
<td>كلما</td>
</tr>
<tr>
<td>44</td>
<td>وضع</td>
</tr>
</tbody>
</table>

Figure 4.11: Example of a Hadith with a vague segmentation point, incorrectly segmented as shown by the horizontal line
4.7 Hidden Markov Model

Figure 4.12: Example of incorrect segmentation: it should be at token 30
Figure 4.13: Example of a Hadith with irregular structure: it has more than one Isnad and Matn segment
4.8 Comparison and Discussion

This section discusses the different approaches to building the Hadith segmenter. First, it compares the look-up and ML approaches considering they were published in two different papers where the second approach (Altammani et al., 2020a) is an improvement of the first (Altammani et al., 2019). It investigates whether the approach used to annotate Hadith tokens contributes to the accuracy, or if the improvement is attributed to using Algorithm 3 for segmentation, as described in Section 4.6, which detects Isnads with irregular patterns.

In the following experiment, several factors are compared. First, the ML approach described in Section 4.6 is compared to the look-up approach described in Section 4.5. Also Algorithm 3 is used with both annotation approaches to segment Hadiths, since it is better than Algorithm 2 which assumes all Hadiths have a well-structured Isnad. Furthermore, data normalization is tested to understand if this factor contributes to better performance. The testing data of 500 Hadiths is divided into 450 regular and 50 irregular Hadiths to investigate how each approach handles the different kinds of Hadiths.

Table 4.16 shows the accuracy of using the two approaches along with Algorithm 3 to segment Hadiths. Results show that the ML model used for annotating tokens has an impact on performance. Also, normalization has a positive effect on the result. Hence it is recommended to normalize text before feeding it into the Hadith segmenter.

Another feature this section discusses is the use of bigrams as tokens. The experiments described in Section 4.5.2 show that using bigrams for Hadith segmentation is better than trigrams, specifically because the training data is relatively limited. Furthermore, annotating unigrams of words without considering context impose a challenge as many words exist in both the Isnad and the Matn. To illustrate this, a comparison of segmenter performance is shown in Figure 4.14, which depicts the accuracy of the Hadith segmenter built using the different n-gram representation models, token annotation approaches and segmentation methods.
4.8 Comparison and Discussion

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approach</th>
<th>Normalized</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 500 Hadith</td>
<td>Look-up lists</td>
<td>Yes</td>
<td>88.3%</td>
</tr>
<tr>
<td></td>
<td>Look-up lists</td>
<td>No</td>
<td>87.1%</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>Yes</td>
<td>92.5%</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>No</td>
<td>92.3%</td>
</tr>
<tr>
<td>450 regular Hadith</td>
<td>Look-up lists</td>
<td>Yes</td>
<td>92.0%</td>
</tr>
<tr>
<td></td>
<td>Look-up lists</td>
<td>No</td>
<td>90.5%</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>Yes</td>
<td>95.1%</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>No</td>
<td>95.1%</td>
</tr>
<tr>
<td>50 irregular Hadith</td>
<td>Look-up lists</td>
<td>Yes</td>
<td>56.0%</td>
</tr>
<tr>
<td></td>
<td>Look-up lists</td>
<td>No</td>
<td>56.9%</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>Yes</td>
<td>79.0%</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>No</td>
<td>68.6%</td>
</tr>
</tbody>
</table>

Table 4.16: Comparison of results using the first two annotation approaches and normalization with Algorithm 3

algorithms. It is clear that among the different n-gram representation models, bigrams scores the highest.

The last topic to discuss in this section is the performance of the HMM compared to the other approaches. The table below shows their performance on the testing data of 500 Hadiths.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look-up list</td>
<td>88.3%</td>
</tr>
<tr>
<td>ML</td>
<td>92.5%</td>
</tr>
<tr>
<td>HMM</td>
<td>90.25</td>
</tr>
</tbody>
</table>

Table 4.17: Performance of the different approaches to build the Hadith segmenter

Although the ML approach to build the Hadith segmenter produced the highest accuracy, not all Hadiths with irregular patterns were correctly segmented. In fact, this can be vague even for human annotators who are not experts in Hadith studies. For this reason, I argue that Hadith can be segmented to fine-grained
4.9 Conclusion

The main goal of this chapter is to create a system that can segment and annotate the components of Hadiths, the Isnad and the Matn. Previous attempts at segmenting Hadiths have used hand-crafted tools and were only tested on Hadiths from one book. To improve upon these limitations, the proposed system utilizes NLP techniques, and is tested on Hadiths from six different books to ensure a diverse range of Hadith types are covered. Despite achieving a 92.5% accuracy rate in segmenting Hadiths, the system struggles with some Hadiths that have irregular structures. However, it is still able to effectively segment and build a

segments that go beyond two segments. This is because some Hadiths contain information in the Isnad that was identified as Matn segments by the proposed systems. For example, a Hadith Isnad may include information about a specific narrator as shown in the example in Figure 4.12. Another example is a Hadith that starts a Matn segment with a piece of introductory information containing names of people, which is identified as an Isnad pattern by the segmenter as in Figure 4.11. Thus, the HMM could be the answer to such irregular Hadiths where the output is several segments instead of two as in Figure 4.13.

4.9 Conclusion

The main goal of this chapter is to create a system that can segment and annotate the components of Hadiths, the Isnad and the Matn. Previous attempts at segmenting Hadiths have used hand-crafted tools and were only tested on Hadiths from one book. To improve upon these limitations, the proposed system utilizes NLP techniques, and is tested on Hadiths from six different books to ensure a diverse range of Hadith types are covered. Despite achieving a 92.5% accuracy rate in segmenting Hadiths, the system struggles with some Hadiths that have irregular structures. However, it is still able to effectively segment and build a

Figure 4.14: Segmenter performance with unigrams, bigrams, and trigrams
4.9 Conclusion

corpus of the six canonical Hadith books. In the future, the proposed HMM Hadith segmenter could be used to develop a tool that can deconstruct Hadiths with irregular patterns into fine-grained segments.
Chapter 5

Developing the Hadith Corpus

5.1 Introduction

Research in the area of Hadith computation is still in its infancy (Bounhas, 2019). However, there is an annual increase in the number of published papers indicating it is gaining wider attention from multi-disciplinary researchers (Azmi et al., 2019). In such work, researchers gather their own datasets from different sources and sometimes manually process them (Luthfi et al., 2018). This indicates a lack of adequate language resources and reusability is limited since most of the collected datasets are not published. Hence, it is unfeasible to establish benchmarks, compare results or set evaluation measures (Guellil et al., 2019), which makes creating an accessible Hadith dataset an imperative.

This chapter, which is based on my publication Altammami et al. (2020b), describes the process of gathering and constructing a bilingual parallel corpus of Islamic Hadiths in their original Classical Arabic (CA) text and corresponding English translations. The corpus data is gathered from the six canonical Hadith collections then processed using a segmentation tool discussed in the previous chapter. The tool automatically segments and annotates the Hadith Isnad and Matn with 92.5% accuracy to produce this well-structured corpus containing more than 10M tokens 33.

33https://github.com/ShathaTm/LK-Hadith-Corpus
To the best of my knowledge, no parallel corpus of Hadith is freely available to the research community. The accessible data is scattered around the web in an unstructured format. Resources for CA constitutes only 11% of available Arabic resources (Guellil et al., 2019), and Arabic parallel corpora in non-news genre are limited (Darwish et al., 2021).

This language resource is named the Leeds University and King Saud University (LK) Hadith corpus to represent the collaboration between the two universities as I am pursuing my PhD at Leeds and working as a lecturer at King Saud University. The following section provides a detailed comparison and analysis of existing corpora, highlighting the unique features incorporated within the LK Hadith Corpus.

5.2 Related Work

There are many existing Arabic corpora (Atwell, 2018), but this section focuses on those that include Hadiths. Although there are several CA corpora, most existing ones are not dedicated to computational Hadith studies such as Al-Thubaity (2015). The KSU 50-million-word corpus of CA is designed to help researchers understand the use of words during the period of the Quran’s revelation (Alrabiah et al., 2013). Such corpora are not designed for researchers focused on Hadith as the Hadith components (Isnad and Matn) are not annotated.

There are other corpora which incorporate Hadith books, namely the Historical Arabic Corpus, or HAC (Hammo et al., 2016), which contains 45 million words from different time periods. Tashkeela (Zerrouki & Balla, 2017) is a 76-million-word vocalised corpus of texts that represents classical and modern Arabic books. Again, these are not focused on the Hadith.

Another notable project is the Open Islamicate Texts Initiative (OpenITI), which is an international collaboration that incorporates various other projects, such as KITAB, under its umbrella. OpenITI uses an open-source OCR tool
called Kraken ibn Ocropus to convert Arabic books into digital form. This tool relies on neural networks to recognize Arabic letters within an entire line, rather than trying to segment the text into words and then letters. This approach has an accuracy rate of 97.56\% (Kiessling et al., 2017). The goal of OpenITI is to eventually incorporate Persian and other languages, creating a vast Islamic corpus that includes all Hadith books, regardless of authenticity (Belinkov et al., 2018). The meta-data included in this corpus includes the author’s name, book title, and the author’s date of death.

One of the recently published corpora is dedicated to Hadith. It includes four Hadith books scraped from different websites that cover several languages like Arabic, English and Urdu (Mahmood et al., 2018). The LK Hadith corpus is different since it is an Arabic–English parallel corpus of the six canonical Hadith books. However, it might be worth investigating merging their corpus with the LK Hadith corpus by applying AI to align the Urdu translations.

Alosaimy & Atwell (2017) presented a Sunnah Arabic Corpus, which comprises 144,000 words extracted from the Hadith book Riyadu Assalihin. The corpus is annotated with POS tags. However, it does not segment Isnads from Matns.

A recent study surveyed and enumerated the freely available Arabic corpora. It mentions the existence of one Hadith corpus; however, this was not accessible or used in the literature (Zaghouani, 2017). This indicates a common problem where a dataset is lost. It occurs when researchers share data on personal websites that become obsolete after time. Therefore, to mitigate this problem, the LK Hadith corpus is shared on GitHub and has been indexed by The Arabic NLP Data Catalogue. Table 5.1 highlights the difference between this corpus and previously existing ones.

\[34\text{https://arbml.github.io/masader/}\]
<table>
<thead>
<tr>
<th>Corpus</th>
<th>Hadith only</th>
<th>All canonical books</th>
<th>Isnad segmented from Matn</th>
<th>Parallel</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zerrouki & Balla (2017)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hammo et al. (2016),</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Alrabiah et al. (2013)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Belinkov et al. (2018)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Alosaimy & Atwell (2017)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mahmood et al. (2018)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LK Hadith Corpus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 5.1: Comparison of CA corpora that includes Hadith
5.3 Defining Corpus Data

This section provides an overview of the structural elements of Hadith and how they were considered in designing the LK Hadith Corpus. Furthermore, a discussion clarifying the reasons specific Hadith books were included in the corpus and the criteria used for their selection.

5.3.1 Hadith Structure

As mentioned in Chapter 2, a Hadith consists of two parts, Isnad and Matn. The first representing the reverse chronological chain of narrators and is followed by the latter, which is the actual teaching. ‘Isnad’ can be translated as ‘support’, since it is used to identify the authenticity of Hadith following the narrator’s biography (علم الرجال). It is a meta-data that is useful for authenticity, but does not add useful information to the context of the actual narration (Matn). Therefore, in designing LK Hadith corpus, it is crucial to separate the Isnad from the Matn to enable researchers to access the different components.

5.3.2 Existing Hadith Books

As noted in Section 2.4.2, in the Islamic literature, there are six canonical Hadith books which are considered authentic. They are a hybrid of two book genres, Musannaf and Musnnad (Brown, 2017). The former includes books that categorizes Hadiths into topics and does not emphasise on the authenticity. On the other hand, Musnnad books organize Hadith based on chains of narrators to place more emphasise on authenticity. This hybrid genre became known as ‘Sahih’ or ‘Sunan’, where authentic Hadiths are organized under subtitles that indicate the legal implications or rulings the reader should derive from the subsequent Hadiths.

Nowadays, these canonical books are collectively called ‘Al-Siha al-Sittah’, which translates as ‘The Authentic Six’, and they include Sahih Albukhari, Sahih Muslim, Sunan Abu Daud, Sunan Tirmizi, Sunan Ibn Maja and Sunan Nesa’i. These form the base for Islamic Hadith books. It is worth noting that these books are named after the scholars who compiled them. For example, Sahih Albukhari
was compiled by Muhammad Albukhari who dedicated years of his life studying the authenticity of Hadiths before adding them to his book.

Despite their collective name ‘The Authentic Six’, not all incorporated Hadiths possess the same degree of authenticity. Rather, they were named on the basis of on the dominance of authentic Hadiths found in them (Khan, 1987).

5.4 Corpus Creation

5.4.1 Resource Enumeration

The canonical books organise Hadiths into a topology of topics on three levels, (Book, Chapter, Section). Each chapter is dedicated to one theme. Within the chapter, there are several sections that the author used to indicate a ruling on specific matters, given the incorporated Hadiths as evidence. The structure of these books is illustrated in Figure 5.1. Each Hadith consists of two parts, an Isnad and a Matn, and some books add a comment by the author, usually regarding the authenticity of the Hadith.

To maintain this structure in the corpus, electronic sources of Hadith that followed this structure are sought. Several websites host Hadith books; however, they did not meet this requirement. For example, ahadith.co.uk contains the English version of the Hadith with the section and chapter titles removed. Another valuable website is islamweb.net, which hosts a huge number of Islamic resources, including Hadiths. However, it does not fulfil the requirement of a parallel corpus (English and Arabic aligned Hadiths). Only sunnah.com provides the required features. It maintains the structure of the books, and the English translation is aligned in parallel with the Arabic Hadith at the narrative level.
5.4 Corpus Creation

Figure 5.1: Structure of the canonical Hadith books

5.4.2 Data Collection

A tool is developed to scrape sunnah.com35 pages and extract information from every Hadith. However, HTML tags are not used consistently on the website. This could be due to its being built by a group of web developers. For example, the Arabic Isnad is not separated from the Matn in most Hadiths, despite the existence of an HTML tag <Arabic_sanad arabic> dedicated to the Isnad, as shown in Figure 5.2. To overcome this, a Hadith segmentation tool, described in Chapter 4, is used to automatically maintain a consistent segmentation of Isnad and Matn.

35Sunnah.com permits using their data for education
5.4 Corpus Creation

5.4.3 Corpus Annotation

The scrapped information from sunnah.com is processed to be added to the corpus. The Hadith segmenter processes every Arabic Hadith to extract the Isnad and Matn. Then the Hadith, Isnad, Matn and the meta data including, chapter, section, and Hadith number are saved as a record where information are separated by commas. Hence, the CSV (comma separated values) files are used with UTF-8 encoding. This annotation can be easily converted to XML format that can be used across different systems. Every CSV file contains the following information listed in Table 5.2. An example of how one Hadith record is represented in a CSV file is broken down for readability is given in figures 5.3, 5.4 and 5.5.

<table>
<thead>
<tr>
<th>Chapter Number</th>
<th>Chapter English</th>
<th>Chapter Arabic</th>
<th>Section Number</th>
<th>Section English</th>
<th>Section Arabic</th>
<th>Hadith Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>The Book on Janaiz (Funerals)</td>
<td>كتاب الجنازة عن رسول الله صلى الله عليه وسلم</td>
<td>1</td>
<td>What Has Been Related About Reward For The Sick</td>
<td>باب ما جاء في نواب المريض</td>
<td>966</td>
</tr>
</tbody>
</table>

Figure 5.3: Example of a Hadith record extracted from Tarmizi Chapter10.csv – Part 1

An illustration of the LK Corpus structure is shown in Figure 5.6. It is a simple structure that corresponds to the original structure of the books. The LK
5.4 Corpus Creation

Hadith corpus folder contains six folders representing the six canonical Hadith books. Within these folders the CSV files represent the chapters in the book. For example, 97 CSV files were created in the Sahih Albukhari folder, which represent the number of chapters in Sahih Albukhari. The first CSV file is named ‘Chapter1.csv’ and it contains seven Hadith records.
5.4 Corpus Creation

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Number</td>
<td>The chapter number where the Hadith is listed.</td>
</tr>
<tr>
<td>Chapter English</td>
<td>Title of the chapter in English.</td>
</tr>
<tr>
<td>Chapter Arabic</td>
<td>Title of the chapter in Arabic.</td>
</tr>
<tr>
<td>Section Number</td>
<td>The section number where the Hadith is listed.</td>
</tr>
<tr>
<td>Section English</td>
<td>Title of the section in English.</td>
</tr>
<tr>
<td>Section Arabic</td>
<td>Title of the section in Arabic.</td>
</tr>
<tr>
<td>Hadith number</td>
<td>The sequential number of the Hadith.</td>
</tr>
<tr>
<td>English Hadith</td>
<td>The whole English Hadith consisting of Isnad and Matn.</td>
</tr>
<tr>
<td>English Isnad</td>
<td>The name of the first narrator in English.</td>
</tr>
<tr>
<td>English Matn</td>
<td>The actual Hadith teaching in English.</td>
</tr>
<tr>
<td>Arabic Hadith</td>
<td>The whole Arabic Hadith consisting of Isnad and Matn.</td>
</tr>
<tr>
<td>Arabic Isnad</td>
<td>The chain of narrators in Arabic.</td>
</tr>
<tr>
<td>Arabic Matn</td>
<td>The actual Hadith teaching in Arabic.</td>
</tr>
<tr>
<td>Arabic Comment</td>
<td>An optional value that contains the scholar’s comment on the authenticity of the Hadith.</td>
</tr>
<tr>
<td>English Grade</td>
<td>The degree of authenticity in the transliteration.</td>
</tr>
<tr>
<td>Arabic Grade</td>
<td>The degree of authenticity in Arabic.</td>
</tr>
</tbody>
</table>

Table 5.2: Corpus Annotation
Figure 5.6: Structure of the LK Hadith corpus
5.5 Corpus Analysis

5.5.1 Corpus Statistics

The corpus contains 39,038 Hadith records distributed among the six books as illustrated by Table 5.3. Each record consists of the original Arabic and an aligned English translation, making more than 10 million tokens. A comparison between the Arabic and English texts in the corpus is shown in Figure 5.7. The number of word tokens in English Hadiths is larger than that in Arabic, as shown in Figure 5.7(a). This is because some Arabic words represent a phrase or a sentence. For example

is translated as ‘and they will send’. The English Isnad has less words than the Arabic Isnad, because the English translation contains only the primary narrator of the Hadith rather than the chain. In the other hand, the Arabic Hadith is richer in word types, as shown in Figure 5.7(b).

<table>
<thead>
<tr>
<th>Book</th>
<th>Number of Hadiths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albukhari</td>
<td>6,633</td>
</tr>
<tr>
<td>Muslim</td>
<td>7,293</td>
</tr>
<tr>
<td>Nesa’i</td>
<td>5,680</td>
</tr>
<tr>
<td>Ibn Maja</td>
<td>10,082</td>
</tr>
<tr>
<td>Tirmizi</td>
<td>4,209</td>
</tr>
<tr>
<td>Abu Daud</td>
<td>5,141</td>
</tr>
<tr>
<td>Total</td>
<td>39,038</td>
</tr>
</tbody>
</table>

Table 5.3: Number of Hadiths in each book

To further analyse the corpus, the most frequent words in the Arabic and English Isnads are obtained, as shown in Figure 5.8. It is clear that the Isnad involves transmission words such as ‘said’, ‘narrated’, and ‘reported’in addition to the narrators names. Furthermore, some narrators’ names are spelled differently in different places in the English Translations.g. ‘Hrairah’, ‘Haira’. Hence, normalization should be considered when using the English Isnad data.
5.5 Corpus Analysis

(a) The number of English words (word tokens) are more in most components

(b) The number of unique Arabic words (word type) are more in most components

Figure 5.7: A comparison between the Arabic and English parts of the LK Hadith corpus. Note the difference in the y-axis numbering to reflect the number of words
5.5 Corpus Analysis

Since the honorific phrase صلِّ الله عليه وسلم Peace be upon him (PBUH) is incorporated in the Matn, these words appear as the most frequent one in Figure 5.9. They are considered to be part of the Matn to facilitate distinguishing the Prophet’s sayings from sayings by his companions. However, this phrase could be removed easily using regular expressions if a researcher wishes to focus on the teachings alone.

Figure 5.8: Most frequent words in the Isnad

- [Graph showing the most frequent words in the Isnad]
5.5.2 Manual Correction and Verification

Following the initial compilation of the dataset, manual intervention was necessary to identify and fix inconsistencies, if any. I checked the Sahih Albukhari data against the PDF version of the book. Minor mistakes have been found e.g. a Hadith is placed under the wrong section, or the English translation was of another Hadith, which is normal since human efforts are susceptible to mistakes.

Therefore, LK Hadith corpus relies on the source. In other words, missing values or inconsistencies with the original book are dependent on Sunnah.com. Currently, Sahih Albukhari data has been thoroughly checked against the book and the mistakes produced by the segmenter has been fixed. This makes Sahih Albukhari the gold standard of the LK Hadith corpus. The other Hadith books were not fully checked, but the first 50 Hadiths of each book were manually scrutinized. The result show that the annotation of Isnad and Matn segments in the corpus has an error rate of 7.6%.
Figure 5.9: Most frequent words in the Matn
5.6 Potential Uses

One of the main objectives of this research is to provide the research community with a Hadith corpus that is well-annotated for diverse research purposes. Hence, every component is annotated in such a way as to be easily extracted. Once researchers have access to a common dataset, it is possible to set benchmarks and compare results.

This Hadith corpus is already being used (Tarmom et al., 2021) to build AI systems that classify authentic Hadiths and the non-authentic Hadiths collected by Tarmom et al. (2019). Also Habash et al. (2022) included parts of the LK Hadith corpus in their annotated open-source dependency treebank. Potential uses for the corpus include:

1. To build ontologies that support Hadith authenticity by focusing on the Isnad. Such systems could be tested using the Isnads extracted from this corpus.

2. To study the words of the Prophet by extracting the Matn which start with ‘The Prophet (PBUH) said’.

3. To apply AI methods to the Matn and automatically link Hadiths to the Quran without the Isnad affecting the results.

4. To use the parallel corpus for training machine translation models for CA.

5. To utilize section headings to derive Hadith topics that can be used as the terminology for a Hadith ontology.

5.7 Conclusion

This chapter presents the creation of the LK Hadith parallel corpus in its original Classical Arabic form with English translations. It incorporates more than 39 K Hadiths where every component and meta data is annotated accordingly. These include Hadiths and the book, chapter and section headings it is extracted from.
5.7 Conclusion

In addition, each Hadith is deconstructed into its two main components (Isnad and Matn) using a segmentation tool described in Chapter 4. This parallel corpus opens new avenues to various research areas such as machine translation of Classical Arabic.

In the subsequent chapters, the LK Hadith corpus plays a crucial role in the experiments aimed at identifying the relationships between Hadith teachings (Matn) and the Quran. The well-structured nature of the corpus allows for the convenient extraction of the Matn component, which enables an in-depth analysis of the actual Hadith teaching without the influence of the Isnad on the results.
Chapter 6

Evaluating Quran Ontologies for Hadith

6.1 Introduction

As discussed in Chapter 2, the Quran and the Hadith are two religious texts used by Muslims as a reference to perform their daily religious obligations. Hence, developing a computational tool to better understand and link these different texts will be useful for Islamic scholars, learners, and laymen. I hypothesize that linking them using a knowledge-based approach by using an existing Quran ontology that covers the Hadiths is possible. However, there are several Quran ontologies, none of which have been rigorously evaluated using a standard ontology evaluation method. For this reason, the experiment in this chapter starts with enumerating and discussing the existing Quran ontologies. Then the top candidates are evaluated using a corpus-based approach to determine the level of overlap between the ontologies and the Hadith texts. The experiment shows that one Quran ontology could be used as a starting point for a larger Islamic ontology that covers both the Quran and Hadiths.
6.2 What is an Ontology?

The fascinating idea of capturing human expert knowledge in a machine-readable format is a common goal of ontologies, which is defined by Gruber as ‘a specification of a conceptualization’ (Gruber, 1993). The word “conceptualization” refers to the abstract and simplified description of an area of concern one wishes to represent for a specific purpose. Hence, the ontology identifies concepts and relationships to infer associations that form the bases for complex semantic knowledge. In other words, a domain ontology is the backbone knowledge of a particular field, or an expert’s knowledge captured in a machine-readable format. This captivating idea sparked research interest in the knowledge representation of Islamic teachings.

Ontologies are especially important for religious texts as they provide a way to better understand them. This is because such ancient texts can be challenging for non-experts to interpret. Additionally, simple string matching searches are not sufficient for computers as they do not capture the underlying moral behind a story told by the Prophet. For instance, currently available Hadith search tools on the web like Sunnah.com, only return Hadiths with an exact match with the search terms, without considering the more general meaning of the text. This approach frequently fails to provide the desired information. Therefore, the goal is to model the meaning of Hadith texts to enhance information retrieval efficiency and aid in uncovering potentially obscured knowledge by connecting Hadiths to the Quran.

Instead of creating a new ontology for Hadiths from scratch, existing ontologies for the Quran are considered, because both cover the same domain of Islamic teachings. In recent years, various attempts have been made to construct ontologies that capture the structural and semantic connections within and between the verses of the Quran (Alqahtani & Atwell, 2018). Researchers have explored different types of knowledge representation models and attempted to combine different Quran ontologies through data aggregation (Abbas et al., 2013). This chapter aims to investigate which Quran ontology is most suitable for Hadiths.
6.3 Existing Quran Ontologies

To the best of my knowledge, computationally linking Hadiths to the Quran is a novel activity and no prior research has explored using Quran ontologies as a foundation for creating an ontology for Hadith texts. Currently, the existing links between the Quran and Hadiths are created manually, through explicit references made by the Prophet or Islamic scholars.

6.3 Existing Quran Ontologies

A number of Quran ontologies have been developed; some cover the whole Quran while others focus on specific topics. Although this research area has been explored for a decade, it is not yet mature with a unified, validated, available Quranic ontology that covers the whole Quran with its various topics. The following paragraphs enumerate the existing Quran ontologies and discuss the most appropriate candidate to be the base for an Islamic ontology that covers the Hadiths.

The most frequently cited Quran ontologies aim to cover the whole Quran and were developed at Leeds University (Alqahtani & Atwell, 2018). These were at different levels and for different purposes. These include the verse level to encode the conceptual meaning of each verse, which was done by Abbas (2009) who incorporates more than 1,000 concepts linked to all verses in the Quran. She developed this using an Islamic book Mushaf Al-Tajweed, where the meaning of each Quranic verse is elucidated by scholars and the topic of the verse is encoded in the book index.

The other widely used ontology is the Quranic Arabic Corpus (QAC) developed by Dukes (2015), who used the famous book Tafsir Ibn Kathir to extract 300 concepts. Similarly, Tafsir Ibn Kathir has been used by Sharaf & Atwell (2012b) to build Qursim ontology that consists of 7,600 related verses. Sharaf & Atwell (2012a) also introduced an ontology that describes pronoun antecedents in the Quran. This consists of 1,050 concepts and 2,700 relations that were manually built during Sharaf’s PhD.
Other researchers created ontologies for specific domains of the Quran. For example, Khan et al. (2013) presented an ontology based on an Islamic book describing animals mentioned in the Quran. Another ontology that focuses on a specific domain presents a model that captures the meaning of time nouns in the Quran (Al-Yahya et al., 2010). A similar approach was used by Alromima et al. (2015) to build an ontology dedicated to place nouns in the Quran. Their work is based on Alam Almakan, Fe Al Quran, which is an MSc thesis involving a linguistic computational study. An interesting model to build a Quran ontology specific to human relations concepts was introduced by Tashtoush et al. (2017). For each class, they defined a set of synonyms in Arabic, then manually linked the concepts or classes to each verse. The Semantic Quran (Sherif & Ngonga Ngomo, 2015) focuses on concepts in terms of Quran text structure parsing: every chapter, verse, word and lexical item is treated as a “concept”, linked by ontology relations such as ‘isPartOf’.

Although the above ontologies are built using different technologies, there have been some attempts to unify them (Alrehaili & Atwell, 2018). However, not all ontologies are designed to be reused. Many proposed ontologies are not presented in an applicable and reusable way, but rather to prove a concept in the research environment (Ahmad et al., 2013).

Some researchers went beyond aligning ontologies by not only combining ontologies, but extending them. Hakkoum & Raghay (2016) integrated Semantic Quran (Sherif & Ngonga Ngomo, 2015) and QAC ontologies using the Owl property ‘Same-as’ to indicate the two concepts representing the same thing, which can be used interchangeably. Then they extended it by manually extracted concepts from Tafsir (exegesis) books.

The discussed ontologies are further summarized in Table 6.1, which illustrates that four ontologies attempt to cover all topics across the whole Quran. However, the ontology introduced by Hakkoum & Raghay (2016) is composed of the ontology of Dukes (2015) and that of Sherif & Ngonga Ngomo (2015). Therefore, only the two distinctive ontologies are evaluated, Abbas’ Qurany ontology and the
Quran ontology of Hakkoum & Raghay (2016). To avoid any confusion between the names of the evaluated ontologies, the ontology of Abbas (2009) is referred to as ‘Ontology A’ and the one by Hakkoum & Raghay (2016) as ‘Ontology B’ throughout this chapter.

6.4 Ontology Evaluation Methods

Ontology evaluation typically involves assessing existing ontologies for a particular purpose. In this research, the Quran ontologies are evaluated to find whether or not they cover the Hadith corpus and can be used to identify semantic relatedness between Hadiths and the Quran that go beyond lexical similarity. There is a plethora of research on ontology evaluation methods and techniques (McDaniel & Storey, 2019). The consensus is that ontology evaluation techniques can be grouped into four categories: gold-based, corpus-based, task-based and criteria based approaches (Raad & Cruz, 2015). These aim is to evaluate the ontology’s quality and correctness by assessing several metrics including accuracy, completeness, conciseness, consistency, adaptability, expandability and clarity (Hlomani & Stacey, 2014). Each approach evaluates the ontology differently as shown in Figure 6.1, where a darker colour in the table represents a better coverage for the corresponding criterion.

The most appropriate approach to evaluating the Quran ontologies ‘fit’ for Hadiths is the corpus-based, for two reasons. First, they are created based on a textual corpus, the Quran. Second, these ontologies are evaluated for the Hadith, which is also a textual corpus. The other approaches could be more useful for other types of ontologies that were built using knowledge elicitation from experts.

A corpus-based approach, also known as data driven approach, is used to evaluate how far an ontology covers a given domain (Raad & Cruz, 2015). A widely used method of corpus-based evaluation is established by Brewster et al. (2004). It relies on three main steps. The first is extracting keywords from a corpus either using clustering methods or topic modelling. Then, query expansion is applied to capture synonyms using Wordnet or other information retrieval (IR)
6.4 Ontology Evaluation Methods

Figure 6.1: An overview of ontology evaluation methods (Raad & Cruz, 2015)

<table>
<thead>
<tr>
<th></th>
<th>Gold</th>
<th>Corpus</th>
<th>Task</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completeness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conciseness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>Ontology Name</td>
<td>Source</td>
<td>Language</td>
<td>Topics</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Dukes (2015)</td>
<td>QAC</td>
<td>Ibn Kathir</td>
<td>En, Ar</td>
<td>Entire Quran</td>
</tr>
<tr>
<td>Hakkoun & Raghay (2016)</td>
<td>Quran</td>
<td>QAC, Semantic Quran</td>
<td>En, Ar</td>
<td>Entire Quran</td>
</tr>
<tr>
<td>Abbas (2009)</td>
<td>Qurany</td>
<td>Mushaf Al-Tajweed</td>
<td>En, Ar</td>
<td>All Quran</td>
</tr>
<tr>
<td>Sharaf & Atwell (2012b)</td>
<td>QurSim</td>
<td>Ibn Kathir</td>
<td>Ar</td>
<td>Similar Verses</td>
</tr>
<tr>
<td>Sharaf & Atwell (2012a)</td>
<td>Qurana</td>
<td>Ibn Kathir</td>
<td>Ar</td>
<td>Pronoun Ancestor</td>
</tr>
<tr>
<td>Khan et al. (2013)</td>
<td>N/A</td>
<td>Hewanat-E-Qurani</td>
<td>En</td>
<td>Animals</td>
</tr>
<tr>
<td>Al-Yahya et al. (2010)</td>
<td>N/A</td>
<td>Arabic dictionaries and lexicons</td>
<td>Ar</td>
<td>Time Nouns</td>
</tr>
<tr>
<td>Alromima et al. (2015)</td>
<td>N/A</td>
<td>Alam Almakan Fe Al Quran</td>
<td>En, Ar</td>
<td>Places Nouns</td>
</tr>
<tr>
<td>Tashtoush et al. (2017)</td>
<td>N/A</td>
<td>Tafsir al-Jalalayn</td>
<td>Ar</td>
<td>Social Relations</td>
</tr>
<tr>
<td>Saad et al. (2011)</td>
<td>Solat</td>
<td>Quran + Hadith</td>
<td>En</td>
<td>Salat</td>
</tr>
</tbody>
</table>

Table 6.1: Existing Quran ontologies
techniques. Finally, the ontology is evaluated by mapping the set of keywords identified in the corpus to the concepts of an ontology being evaluated.

6.5 Quran Ontology Evaluation

In this experiment, two ontologies are evaluated to investigate their appropriateness for being the basis of an Islamic ontology that covers the Hadiths in addition to the Quran. Table 6.2 below shows a Quran verse with the associated concepts extracted from the two ontologies. It is worth noting that Ontology B not only captures topics, but also the structure of the Quran and the links between similar verses. Moreover, it includes the Tafsir (exegesis) extracted from two books, Jalalayn and Muyasser.

Since a corpus-based evaluation of the ontologies is conducted, the Albukhari Hadith book is used as the evaluating corpus. This book is the most famous Hadith compilation and it organizes and categorizes Hadiths under headings that indicate the legal implications or ruling the scholar (Albukhari) derived from the subsequent Hadiths based on his deep knowledge of and expertise in the Hadiths.

The first step in the corpus-based approach for ontology evaluation is keyword extraction. However, instead of extracting keywords from the Hadith Matn (the part of the Hadith that contains the actual teaching), the Albukhari Hadith book section-headings are used. I speculate that since the evaluated Quran ontologies are based on books like Mushaf Altajweed, where scholars categorise Quran verses into topics, section-headings in Albukhari are sensible keywords that capture the topic of the incorporated Hadiths.

I hypothesize that there is a larger degree of overlap between the ontology concepts and Albukhari’s section-headings than the actual Hadith Matn and Quran verses. This assumption is based on a previous study (Sayoud, 2012) that identified how the Prophet Muhammed’s style in Hadith statements (Matn) is frequently hyperboles (Brown, 2017), which are dramatic statements different from
Table 6.2: A Quran verse and concepts extracted from the two ontologies

<table>
<thead>
<tr>
<th>Quran verse (2:27)</th>
<th>Arabic</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>أَلْنِمَلُقُولَةَ</td>
<td>أَلْنِمَلُقُولَةَ</td>
<td>sever what Allah has ordered to be joined (as regards Allah’s Religion of Islamic Monotheism, and to practise its legal laws on the earth and also as regards keeping good relations with kith and kin), and do mischief on earth, it is they who are the losers.</td>
</tr>
</tbody>
</table>

For example, the Hadith Matn in Table 6.3 does not literally mean that such a person is not considered a Muslim, but that a certain action or characteristic is not the conduct of a good Muslim, as is captured in the associated section-heading.

6.5.1 Data Sources

In this section, the sources of the data used in the experiment is discussed. Ontology A and Ontology B can be accessed from their dedicated websites. The Hadith section-headings were obtained from the LK-Hadith corpus, described in Chapter 5. This corpus consists of the six canonical Hadith books where every Hadith component and pieces of meta data is annotated. Using it, the researcher can
6.5 Quran Ontology Evaluation

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>منْ غَشَّنا فَلِيَسْ مَنْ</td>
<td>One who cheats is not from among us</td>
</tr>
<tr>
<td>النَّهيِ عن الفساد والغشاع</td>
<td>Prohibition of deceiving others</td>
</tr>
</tbody>
</table>

Table 6.3: Example of a Hadith Matn and the associated section-heading

extract specific information; for example, the Hadiths Isnads, Matns, or section-headings. This corpus was built automatically using a Hadith segmentation tool as described in Chapter 4 that was created to deconstruct every Hadith to its two main components, the Isnad and the Matn. Furthermore, the GitHub36 repository of this corpus comes with a python script that can be used to extract any component of the Hadith and its metadata.

6.5.2 Data Analysis

Before delving into the experiment, a brief overview of the two ontologies and the Hadith section-headings is given. Table 6.4 shows the number of word tokens in each. A ‘word’ resents a token consisting of consecutive letters separated by space, like the one in Figure 6.2, which is translated as an English sentence. Moreover, the table shows the number of unrepeated words, which is called a ‘word type’. Arabic being a highly inflected language, words lexemes are used. Lexemes form the basic abstract unit of meaning and represent set of words that are related through inflection. Therefore, lexemes are extracted using the CAMeL tool (Obeid et al., 2020) to flatten the different forms of a word to its basic lexeme. This will make it possible to measure the ‘fit’ as precisely as possible where a word like ‘الإسلام’ ‘Islam’, ‘الإسلام’ ‘for Islam’, are collapsed into the same lexeme ‘Islam’.

6.5.3 Experiment

As discussed earlier, a data-driven approach to ontology evaluation is used. The idea is to find which ontology from the two candidates covers the Hadiths better,

36https://github.com/ShathaTm/LK-Hadith-Corpus
6.5 Quran Ontology Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Word Tokens</th>
<th>Word Types</th>
<th>Lexeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headings</td>
<td>39,959</td>
<td>6,110</td>
<td>2,913</td>
</tr>
<tr>
<td>Ontology A</td>
<td>41,782</td>
<td>978</td>
<td>746</td>
</tr>
<tr>
<td>Ontology B</td>
<td>103,603</td>
<td>2,009</td>
<td>1,370</td>
</tr>
</tbody>
</table>

Table 6.4: Vocabulary statistics for ontologies and Hadith headings

Figure 6.2: A word from Chapter 106 in the Quran

and which areas of the Hadiths are not covered. The following steps are followed to evaluate the ontologies.

1. Extract the concepts from Ontology A (Abbas, 2009) and Ontology B (Hakkoum & Raghay, 2016). Then extract the Hadith section-headings from LK Hadith corpus.

2. Remove punctuation marks and diacritics, then tokenize the text by white space. This step produces three lists of words. One list contains the words of concepts from Ontology A, the second list contains words of concepts from Ontology B, and the final list contains words in Hadith section-headings.

3. To remove stop-words, all the Matns from the LK Hadith corpus are extracted to get the most frequent terms in Hadith statements. Then the frequent terms are manually inspect to ensure they can be considered stop-words. These words are added to the list of Arabic stop-words obtained from the NLTK, resulting in 225 stop-words.

4. After removing stop-words from the three lists, the lexeme of each orthographic word is obtained. Then the overlap between the ontologies and Hadith section-headings lexeme are evaluated.
6.6 Results

To measure the overlap between the two different ontologies and Hadith section headings, the number of lexeme in the ontologies that are also found in the Hadith heading lexeme is counted. In addition, the number of lexeme that are found in both ontologies are counted.

- 61.5% of the Ontology A concepts lexemes are present in the Hadith headings lexemes.
- 56.9% of the Ontology B lexemes are found in the Hadith headings lexemes.
- 100% of the Ontology A lexemes are present in the Ontology B lexemes. This implies that ontology A is incorporated within ontology B, although it was not mentioned in their paper Hakkoum & Raghay (2016). However, the dedicated website for Ontology B states that it is an ongoing research work with constant updates.
- 26.8% of the Hadith headings lexemes are found in the Ontology B lexemes.

The overlap is demonstrated in Figure 6.3. Ontology B is 47% the size of the Hadith headings. While Ontology A is 25% the size of Hadith headings as is evident from the number of unique lexemes in each category as depicted in Table 6.4.

Since some parts of the ontologies do not have a match in the Hadith headings, the synonyms of the ontology concepts that do not have a match is extracted as proposed by the methodology (Brewster et al., 2004). Arabic Wordnet (Abouenour et al., 2013) is used to extract synsets of the ontology concepts lexemes that have no match in the Hadith headings lexeme list.

From 590 Quran lexemes, only 15% were found in Arabic Wordnet. Examples of the resulting synsets are shown in Table 6.5. Arabic Wordnet returns the synsets exactly as shown in the table, a pair of English and corresponding Arabic word or phrase (the author has not produced any translation). After scrutinizing the results, it is concluded that the Arabic Wordnet is more appropriate for MSA than CA. This is because important Islamic were not found like فَردوس, زكاة.
6.6 Results

Figure 6.3: Overlap between Hadith section-headings and the Quran ontologies

‘paradise’, ‘purity’, and صوم ‘fasting’. Therefore, it has been decided to not use Arabic Wordnet.
6.7 Discussion

To understand the overlap illustrated in Figure 6.3, some lexeme examples from each part are enumerated and shown in Table 6.6. As one might predict, the lexemes that are found in all lists are the most important concepts, while the lexemes that are found in the ontologies are related to historical stories of prophets, messengers, and animals, with Ontology B containing more details. This observation was statistically studied by Sayoud (2012), who remarked that several animal names are not cited in the Albukhari Hadiths. For example, the name عجل ‘calf’, is cited ten times in the Quran and is completely absent in the Albukhari Hadiths.

Similarly, the lexemes in Hadith headings which were not covered in the ontologies are mostly about specific incidents or instructions that are only found in Hadiths. For example, the complete instructions for Islamic washing that must be preformed before prayer are obtained from the Hadith; the Quran states the abstract obligation of the act without the details of how to perform it. Table 6.6 shows these words like مضمضة ‘mouth rinse’.

Table 6.6: Examples of lexemes extracted from each part illustrated in Figure 6.3
6.8 Conclusion

One of the main objectives of this thesis is to model the meaning of the Quran and Hadiths to discover semantic similarities within these texts. This chapter explores the possibility of using an ontology-based approach to semantic similarity detection. Since there are various Quran ontologies, they are reviewed, discussed, and evaluated using a corpus-based approach to identify which is best to serve as the foundation for an Islamic ontology that encompasses both the Quran and Hadiths. The experiment is conducted by extracting and comparing keywords from the Albukhari Hadith section-headings to the Quran ontology concepts. The study finds that Ontology B (Hakkoun & Raghay, 2016) is the most suitable candidate for an Islamic ontology. However, this ontology covers only 26.8% of Hadith topics, which calls for other means of modelling and linking the Hadiths to the Quran. Therefore, an alternative approach using DL to model the meaning of the Quran and Hadiths is explored in the following chapters.
Chapter 7

Creating the Quran-Hadith Dataset

7.1 Introduction

The previous chapter illustrates that a knowledge-based approach to finding relatedness between the Quran and Hadiths is not feasible using existing Quran ontologies. Hence, it is proposed that state-of-the-art Deep Learning (DL) models may capture the underlying meaning of these texts to find semantic similarities. However, DL models require a benchmark to gauge their performance. This chapter discusses the methodology of creating a Quran-verse and Hadith-teaching related and non-related pairs dataset. Also the Qursim (Sharaf & Atwell, 2012b) dataset, which consists of Quran-verse related pairs, is extended to incorporate negative samples of non-related Quran-verse pairs.

7.2 Quran and Hadith

As stated in Chapter 2, Muslims believe the Quran is God’s divine words transmitted to the Prophet Muhammad by the angel Gabriel over a period of 23 years. This holy book enjoins Muslims to follow the guidance of the Prophet Muhammad in their laws, legislation, and moral guidance. In fact, most laws and legislation
7.2 Quran and Hadith

are obtained from the Hadith, which is the reports of the Prophet Muhammed’s statements, actions, approval, or criticism of something said or done in his presence. The importance of Hadith is due to its larger scope and incorporated details which is not present in the Quran. Consequently, many Islamic rulings (Fatwa) use Quran and Hadith together as evidence.

Although the Quran and Hadith are both Classical Arabic (CA) and cover the same domain of Islamic teachings, they are distinctive in structure, style, and orthography (Bashir et al., 2022). This is aligned with an authorship attribution study using text-mining-based investigation, which shows that 62% of the Hadith words in Sahih Albukhari (the most famous Hadith book) do not occur in the Quran. Additionally, 83% of the Quran’s words do not occur in the Sahih Albukhari Hadiths (Sayoud, 2012).

To further illustrate the differences, I compiled a corpus of Hadith Matns from the LK Hadith corpus37 described in Chapter 5, which consists of the six canonical Hadith books, and compared it to the Quran corpus obtained from Tanzil38. Table 7.1 shows the number of tokens, which are words separated by spaces. The word type in each corpus is also counted. This refers to unique tokens without repetition. Other features are shown, including the number of unique words not present in the other corpus, and the number of words that are found in both corpora. Examples of these unique words are given in Table 7.2. It is evident that Hadith words are more specific and concern daily things while Quran words are more generic. This is also shown in the word clouds in Figure 7.1. The most common words in both is

\begin{center}
\texttt{لا} \texttt{فأ} \texttt{ش} \texttt{ق} \texttt{و} \texttt{ق} \texttt{ال} \texttt{ق} \texttt{ق} \texttt{ق} \\
\texttt{لا} \texttt{فأ} \texttt{ش} \texttt{ق} \texttt{و} \texttt{ق} \texttt{ال} \texttt{ق} \texttt{ق} \texttt{ق}
\end{center}

As noted in Section 6.5.2, a lexeme is the core representation of a word, stripped of any inflectional variations. It is the basic unit of meaning and is used

37https://github.com/ShathaTm/LKHadithCorpus
38https://tanzil.net/docs/tanzil_projec
7.2 Quran and Hadith

<table>
<thead>
<tr>
<th>Quran</th>
<th>Hadith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokens</td>
<td>78,245</td>
</tr>
<tr>
<td>Word type</td>
<td>14,870</td>
</tr>
<tr>
<td>Unique words</td>
<td>6,484</td>
</tr>
<tr>
<td>Shared words</td>
<td>8,386</td>
</tr>
<tr>
<td>Lexemes</td>
<td>76,602</td>
</tr>
<tr>
<td>Lexeme type</td>
<td>4,222</td>
</tr>
<tr>
<td>Unique lexeme</td>
<td>497</td>
</tr>
<tr>
<td>Shared lexeme</td>
<td>3,725</td>
</tr>
</tbody>
</table>

Table 7.1: Quran and Hadith statistics

Table 7.2: Quran and Hadith unique words

<table>
<thead>
<tr>
<th>Quran</th>
<th>Hadith</th>
</tr>
</thead>
<tbody>
<tr>
<td>السماء</td>
<td>ركعة</td>
</tr>
<tr>
<td>المسمى</td>
<td>أمثالهم</td>
</tr>
<tr>
<td>المسمى</td>
<td>استكبروا</td>
</tr>
<tr>
<td>المسمى</td>
<td>للمكذبين</td>
</tr>
<tr>
<td>المسمى</td>
<td>الفقه</td>
</tr>
</tbody>
</table>

Based on this information, finding semantic similarity by simple word match may not be feasible. Therefore, an approach that considers meaning is more likely to succeed. However, the Quran and Hadith have unique characteristics
7.2 Quran and Hadith

Figure 7.1: Quran and Hadith word clouds

<table>
<thead>
<tr>
<th>Quran</th>
<th>Hadith</th>
</tr>
</thead>
<tbody>
<tr>
<td>غشواة</td>
<td>ركعة</td>
</tr>
<tr>
<td>غضبان</td>
<td>خشى بعضه</td>
</tr>
<tr>
<td>غضبان</td>
<td>máu</td>
</tr>
<tr>
<td>حاضر</td>
<td>مسير</td>
</tr>
<tr>
<td>جهاد</td>
<td>مدرس</td>
</tr>
<tr>
<td>مصادر</td>
<td>محترف</td>
</tr>
<tr>
<td>محتلف</td>
<td>نسر</td>
</tr>
<tr>
<td>محتلف</td>
<td>نوري</td>
</tr>
<tr>
<td>محتلف</td>
<td>نوري</td>
</tr>
<tr>
<td>محتلف</td>
<td>نوري</td>
</tr>
<tr>
<td>محتلف</td>
<td>نوري</td>
</tr>
</tbody>
</table>

Table 7.3: Unique lexemes in Quran and Hadiths

that makes modelling their underlying meaning a grand challenge for AI tools. The following text will explore these features in greater detail.
7.2 Quran and Hadith

7.2.1 The Quran

Modelling the meaning of Quran using AI methods is a grand challenge. This is because the Quranic discourse is believed to be inimitable. Muslim scholars claimed that the Quran cannot be reproduced in other languages which led to the delay in translating it for centuries. The ‘meaning’ of the Quran was first translated into English by Alexander Ross in 1649, but the first English Muslim-translated version was by Dr. Mohammad Abdul Hakim Khan in 1904 (Faqeer, 2017). Now even more translations are produced in English, each typically claiming to do a better job at revealing the true message of the Quran. So what features contribute to the difficulty of conveying the meaning of this text?

The Quran has striking syntactic, semantic, phonetic, and rhetorical features that makes it challenging for the machine to model. This is because Quranic discourse is different to that of other texts, such that words can have layers of embedded meanings that require human beings to consult major Quran exegeses and dictionaries in order to derive and provide the accurate underlying meaning of a given Quranic expression or even a preposition (Abdul-Raof, 2013). The

![Figure 7.2: The number of words and lexemes in Quran and Hadith](image-url)
following lines discusses some of these features.

Orthography

There are orthographical challenges specific to the Quran. For example, it has its spelling conventions which are different to all varieties of Arabic (MSA, non-Quranic CA, DA) as shown in the example below. The Quran word ٌخِيَةُّ is written in Arabic as ُخِيَةٌ. Another challenge is the different meaning of Quranic words from Arabic in general. For example, the word ٌخِيَّانُ in Arabic means ‘the animal’ while in this verse it means ‘(is) the life’.
And this worldly life is not but diversion and amusement. And indeed, the home of the Hereafter - that is the [eternal] life, if only they knew. [26:64]

Figurative Language

The Quran includes many figurative words such as َقَطْمَالا، قُطْمَالا، which are literally parts of the date, but in the Quranic context refer to size. The translation of Pickthall is used since it maintained these figurative words.

Quranic Words

And whoso doeth good works, whether of male or female, and he (or she) is a believer, such will enter paradise and they will not be wronged the dint in a date stone. [4:124]

He maketh the night to pass into the day and He maketh the day to pass into the night. He hath subdued the sun and moon to service. Each runneth unto an appointed term. Such is Allah, your lord; His is the
Sovereignty; and those unto whom ye pray instead of Him own not so much as the white spot on a date stone. [35:13]

More examples of figurative usage in the Quran is illustrated below which contains the word أم. This i.e. the lexeme أم does not mean ‘mother’ as it does literally, but rather figuratively denotes something that embraces or enfolds. The second verse has the use of التَّمْعَصِرَاتِ that literally means ‘presses’ to refer to clouds.

Shall be engulfed by an abyss.[101:9]

And from the wind-driven clouds We send down waters pouring in abundance. [87:14]

Polysemy

Polysemy is the phenomenon where words have different but related meanings. The Quran incorporates many words that have different meanings, for example, in the first verse below the word ظلم does not mean ‘wrong doing’ as it does in other contexts, but rather, it refers to ‘worshipping others beside God’ as is evident in the second verse. Another example is illustrated in the third verse that contains the word الحِمْل. This generally means a ‘camel’, but some Quran exegesis state that it may also refer to twisted rope 39, which is not a prevalent use of the word. The last example have the same word in different contexts denoting different meanings. The first ساعة means ‘Day of Judgment’ and the second means ‘hour’.

Those who believe and obscure not their belief by wrong doing, theirs is safety; and they are rightly guided. [6:82]

And (remember) when Luqman said unto his son, when he was exhorting him: O my dear son! Ascribe no partners unto Allah. Lo! to ascribe partners (unto Him) is a tremendous wrong. [13:31]

Lo! they who deny Our revelations and scorn them, for them the gates of Heaven will not be opened nor will they enter the Garden until the camel goeth through the needle’s eye. Thus do We requite the guilty. [7:40]

Upon the Day when the Hour has come, the harmdoers will swear that they had stayed no more than an hour. As such they are deceived. [30:55]

Coherence

Another challenge is the Qur’anic structural coherence and propositional cohesion where a verse meaning is embedded in the context where it appears in the Quran. For example, verse [2:186] is placed between [2:185] and [2:187] which both refer to Ramadan, in order to highlight the significance of supplication during the holy month of Ramadan.
Ramadhan is the (month) in which was sent down the Qur’an, as a guide to mankind, also clear (Signs) for guidance and judgment (Between right and wrong). So every one of you who is present (at his home) during that month should spend it in fasting, but if any one is ill, or on a journey, the prescribed period (Should be made up) by days later. Allah intends every facility for you; He does not want to put to difficulties. (He wants you) to complete the prescribed period, and to glorify Him in that He has guided you; and perchance ye shall be grateful.[2:185]

When My servants ask thee concerning Me, I am indeed close (to them): I listen to the prayer of every suppliant when he calleth on Me: Let them also, with a will, Listen to My call, and believe in Me: That they may walk in the right way. [2:186]

Permitted to you, on the night of the fasts, is the approach to your wives. They are your garments and ye are their garments. Allah knoweth what
ye used to do secretly among yourselves; but He turned to you and forgave you; so now associate with them, and seek what Allah Hath ordained for you, and eat and drink, until the white thread of dawn appear to you distinct from its black thread; then complete your fast Till the night appears; but do not associate with your wives while ye are in retreat in the mosques. Those are Limits (set by) Allah. Approach not nigh thereto. Thus doth Allah make clear His Signs to men: that they may learn self-restraint. [2:187]

7.2 Quran and Hadith

Agglutination

One thing did make the Quranic texts complex is the Arabic language’s inherent challenges. One of the main challenges is its agglutivative property where a sentence can be expressed in one word by adding affixes and clitics that represent various parts of speech (Habash, 2010). The examples below show such Quranic words and their translations.

So will suffice you against them - ٍفَسِيكَفُيكُمْ
Shall we compel you (to accept) it) - ٍأَنْتَزِمْكُوهَا
and We gave it to you to drink - فَأَفْتَقَنَا كِمْوَة

7.2.2 The Hadith

Although the Hadith is different from the Quran, it possesses linguistic features that makes it challenging as well to model its underlying meaning. The following lines discuss some of these features. It is worth noting that since this study focuses on the Hadith teachings, the forthcoming examples show the Hadith Matn only.
Hyperbole

One of the most common features of the prophetic style in Hadiths is the frequency of hyperbole Brown (2017). The Hadith examples below are dramatic statements, but the way in which Muslim scholars have understood them is different from their literal meaning. The first example below simply means that cheating is prohibited, but it does not render the offender a non-Muslim.

One who cheats is not from among us.

No one will enter heaven who has even a grain’s weight of pride in his heart.

Cursing a Muslim is iniquity and fighting one is unbelief (kufr).

Simile

Another feature found in Hadith is the use of simile, which the Prophet often uses to give vivid descriptions.

“The relationship of the believer with another believer is like (the bricks of) a building, each strengthens the other.” He (PBUH) illustrated this by interlacing the fingers of both his hands.

The relationship of the believer with another believer is like (the bricks of) a building, each strengthens the other.

The relationship of the believer with another believer is like (the bricks of) a building, each strengthens the other.
Messenger of Allah (PBUH) said, “The believers in their mutual kindness, compassion and sympathy are just like one body. When one of the limbs suffers, the whole body responds to it with wakefulness and fever”.

Metaphor

The Hadith includes metaphor in which one word or phrase is used in place of another action to suggest a likeness or analogy between them.

The Prophet (PBUH) said to him, “(Drive) slowly, O Anjasha! Do not break the glass vessels!” And Qatada said, “(By vessels) he meant the weak women.”

"The upper hand is better than the lower one (i.e., the spending hand is better than the receiving hand); and begin (charity) with those who are under your care; and the best charity is that which given out of surplus; and he who asks (Allah) to help him abstain from the unlawful and the forbidden, Allah will fulfill his wish; and he who seeks self-sufficiency will be made self-sufficient by Allah”

and a man who gives charity so secretly that his left hand does not know what his right hand has given.

Despite the differences in these texts and the challenging linguistic features, I hypothesize that finding semantic similarity between the Quran and Hadith might be possible using State Of The Art (SOTA) DL models. However, to gauge the performance of such models, it is necessary to create a dataset (benchmark) to evaluate the performance of different models for a specific NLP task. The
following sections enumerate the available datasets that can be used for the task of semantic similarity detection between the Quran and Hadith.

7.3 Existing ArabicDatasets

Many studies have been conducted on Semantic Textual Similarity (STS) and relatedness. However, limited research focused on CA, which is considered a low resource language in terms of available datasets. This is a major obstacle since gold standard datasets are essential to gauge the performance of any given system on a downstream task.

Recently, many Arabic resources have been published for different NLP downstream tasks including question answering (Mozannar et al., 2019), offensive language detection (Mubarak et al., 2020) and datasets for sentiment analysis, machine translation, and topic classification (Alyafeai et al., 2021). However, only a few are dedicated to the semantic similarity task, and only one is for CA. Table 7.4 shows the existing Arabic datasets for the semantic similarity, which are discussed in the following lines.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Arabic Variant</th>
<th>num of pairs</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qursim</td>
<td>CA</td>
<td>7,679</td>
<td>2012</td>
</tr>
<tr>
<td>Q2Q</td>
<td>MSA</td>
<td>15,712</td>
<td>2019</td>
</tr>
<tr>
<td>STS</td>
<td>MSA</td>
<td>1104</td>
<td>2017</td>
</tr>
</tbody>
</table>

Table 7.4: The available Arabic semantic similarity and relatedness dataset

Qursim (Sharaf & Atwell, 2012b) is a semantic relatedness dataset consisting of 7,679 related Quran-verse pairs. It is extracted from the well-known Quran commentary of Ibn Kathir, an Islamic scholar who died in 1373. His methodology is clearly stated in the introduction of his book, where each verse is discussed and explained by referring to other verses in the Quran that contain more details or explain other aspects of the same topic. This is the only available CA dataset I

40https://arbml.github.io/masader/
am aware of, and is discussed further in Section 7.4.2.

The second dataset is dedicated to a Semantic Question Similarity shared task that was conducted during the NLP Solutions for Under Resourced Languages (NSURL) workshop (Seelawi et al., 2019). The dataset consists of three fields, question1, question2, and label. The label is 1 if both questions have a similar answer, or 0 otherwise. The third available dataset was used at the SemEval-2017 Semantic Textual Similarity (STS) shared task (Cer et al., 2017). It consists of Arabic pairs machine translated from English then checked by human translators. The label of each pair can be in a range from 0 to 5 with five being the most similar.

The last two datasets are not comparable to the introduced dataset of related Quran and Hadith texts. This is because finding the semantic relatedness between Quran and Hadith is different from standard STS tasks. The aim is to detect similarity in the underlying meaning and message conveyed by these sacred texts, which is more complex than simple similarity measurement. The next section discusses the automatic benchmark construction methodology having observed the lack of publicly available CA resources.

7.4 Datasets

This section explains the methodology of creating the Quran-Hadith dataset, which is the main contribution of this chapter. Then a description is given of the process for extending the Qursim (Sharaf & Atwell, 2012b) to produce the datasets used in the training/fine-tuning and validation phase across the various models. These datasets are available in my GitHub[^41]. They are intended to be beneficial for the wider NLP community, particularly those working on under-resourced languages since there is an increased interest in applying NLP tools on such texts like religious scripture, but challenges are still unresolved (Bounhas, 2019; Bashir et al., 2022).

[^41]: https://github.com/ShathaTm/Quran_Hadith_Datasets
7.4 Datasets

7.4.1 Testing Dataset: Quran-Hadith (QH) Pairs

To build this dataset, two methods were designed to create the positive and negative samples. The main tasks in these methods can be summarized in the following five steps:

1. Select the sources where a reputable Islamic scholar explicitly stated the relatedness.

2. Collect the text, then extract the Quran and the Hadith as a pair.

3. Ensure the whole Quran verse or Hadith teaching is obtained by cross-referencing the original corpora.

4. Create samples of non-related pairs.

5. Process the dataset to remove punctuation marks and diacritics.

The following paragraphs discuss these steps.

Step 1: Select sources of the datasets

The traditional approach to building a dataset using crowd-sourcing is not possible for religious texts since it requires domain experts. Hence, two reliable sources involving reputable Islamic scholars are identified where they explicitly mentioned the relatedness between the pairs. The first is Sahih Albukhari, which incorporates a collection of Hadith-teachings organized into topics by the well-known scholar Muhammed Albukhari who died in 870. The book’s structure is exploited to create the dataset. In many cases, section headings consist of a Quran-verse, which the scholar used to indicate that it is related to the Hadiths within the section. Table 7.5 shows an instance of such a case. The LK-Hadith-Corpus \footnote{https://github.com/ShathaTm/LK-Hadith-Corpus} is used as it provides a well-structured version of the canonical Hadith collections. These section-headings and their associated Hadith Matn are extracted as a related Quran-Hadith pair.
Section O you who have believed, do not consume usury, doubled and multiplied, but fear Allah that you may be successful. [3:130]

Hadith Adam told us, Ibn Abi Dhib told us, Saeed Al-Maqbari told us, Abu Hurairah said the Prophet (PBUH) said "Certainly a time will come when people will not bother to know from where they earned the money, by lawful means or unlawful means."

Table 7.5: An example from Sahih Albukhari
7.4 Datasets

The second source is a website dedicated to Abdul-Aziz ibn Baz (died in 1999) who was a reputed Islamic scholar who answered religious questions on mainstream media which were later collected and archived on a website. Most of these archived Fatwas (a ruling on an Islamic law given by a recognized authority) contains an answer to a specific question supported by a Quran-verse and a Hadith-teaching as shown in Figure 7.4. However, some Fatwas contain several Quran verses and Hadith teachings to answer complex questions consisting of various topics. Hence, the relatedness is not clear if taken out of context. Therefore, only Fatwas which contain one Quran-verse and one Hadith-teaching are collected to ensure they are related to a distinct topic. The methodology is depicted in Figures 7.5.

![Fatwa page](https://binbaz.org.sa/fatwas)

Figure 7.4: Fatwa page where the Quran, Hadith, and the tag is shown in red, green, and grey accordingly

Step 2: Extract the Quran and Hadith related pairs

43: https://binbaz.org.sa/fatwas
Figure 7.5: Algorithm for creating positive QH samples
The Quran-verse and the Hadith-teaching are extracted from the data collected from Albukhari and Binbaz to form the related pairs.

Step 3: Create Quran-Hadith Non-related pairs
In the Binbaz website, each Fatwa is tagged with one or more topics. This feature is exploited to create the negative samples. A Quran-verse is extracted from a random Fatwa, and a Hadith-teaching is extracted from another Fatwa, given they contain different topic tags. This process is depicted in Figure 7.7.

Step 4: Dataset cross-referencing and filtration
The collected pairs were further processed to ensure the full text is included, because the scholar may mention part of the Quran-verse or the Hadith-teaching. So, the extracted text is cross-referenced to find its complete instance on Tanzil for the Quran, and the LK Hadith Corpus\(^{44}\) for the Hadith Matn. This was done by first checking that the number of words in the extracted verse is at least three. Then the Levenshtein distance is calculated between the verse and every verse in the Quran (Tanzil corpus) to get the best match where the lower the number the more similar the two texts are. Specifically, the Fuzzywuzzy Package\(^{45}\) and the partial-ratio command are used to conduct the substring matching. The same process is applied to the extracted Hadith-teachings to find their match in the LK Hadith corpus and get the full Matn. Finally, the duplicates are removed to form a balanced dataset of 310 related and not-related Quran-Hadith pairs.

Step 5: Data Preprocessing
The Quran and Hadith contain diacritics which are important for readability. Furthermore, the Quran contains other special symbols and signs that indicate how the verse should be read. For example, the sign on the bottom right of Figure 7.6 is a small \(\varepsilon\) that is found on the top of words indicating that a reciter of the Quran is allowed to pause at that instance. However, since DL models were pre-trained on Arabic corpora without these diacritics and symbols, they were removed.

\(^{44}\)Created in Chapter 5
\(^{45}\)https://pypi.org/project/fuzzywuzzy/
Figure 7.6: Some of the Quran symbols
Figure 7.7: Algorithm for creating negative QH samples
7.4 Datasets

7.4.2 Training Dataset: Quran-Quran (QQ) Pairs

To create the training dataset, part of the Qursim dataset (Sharaf & Atwell, 2012b) is used. This is because the authors of Qursim analysed the pairs manually to ensure their relatedness is clear regardless of Ibn Kathir’s comments. They found that not all pairs showed clear relatedness out of context. Therefore, each pair is classified into one of three categories: strong relation, weak relation, or no-obvious relation. Since this was done by one annotator, only the pairs with strong relations are used. To further process the dataset, the methodology by Alsaleh et al. (2021) is used to remove duplicates.

QQ Non-related Pairs

To create the QQ negative samples of non-related pairs, a different approach to that of Alsaleh et al. (2021) is used. Instead of randomly extracting two Quran verses and assuming they are not related, the Quran ontology of Hakkoum & Raghay (2016) is used to extract pairs that do not share the same ontological concepts. This ontology is used because it is the most comprehensive Quran ontology (Altammami et al., 2021).

Figure 7.8 shows the algorithm for creating the negative samples. First, two Quran verses are selected from Tanzil dataset \((x, y)\). Then the associated Quran ontology concepts \((Cx, Cy)\) are extracted from the Quran ontology. The extracted concepts are tokenized into words \(c_1, c_2, \ldots, c_n \in Cx\) and \(c_1, c_2, \ldots, c_n \in Cy\). After that a comparison is conducted to ensure there is no match in verse1 concepts and verse2 concepts\((Cx \cap Cy = \emptyset)\). Otherwise, these pairs are discarded and the system restarts to extract new pairs of Quran verses until it finds a pair with no intersection of concepts. Then the algorithm ensures the pair in both orders is not already in the negative sample list \((x, y) \notin (X, Y)\) and \((y, x) \notin (X, Y)\). Finally it is added to the list of negative samples \((x, y) \in (X, Y)\) and the process is repeated until the number of collected negative samples is 2600. This formed the balanced dataset of 5,096 related and non-related QQ pairs.
Figure 7.8: Algorithm for creating negative QQ samples
7.5 Measuring Data Leakage

QQ Augmentation

The Quran is translated into various languages at the verse level, which can be utilized for data augmentation to increase the size of the Quran-Quran (QQ) training data. The 43 languages available on the Tanzil project can be used for zero-shot transfer learning by fine-tuning multilingual models on the translated QQ training pairs, and then testing them on Arabic QQ data. Additionally, the 17 English translations on Tanzil can be used to fine-tune an English-Arabic cross-lingual model. The Tanzil project also provides electronic versions of Arabic Quran commentaries (Aljalalayn and Almuyasser) that are aligned at the verse level, which can be used to increase the Arabic training data. These translations and commentaries are extracted from Tanzil to form the training, validation and testing data detailed in Table 7.6.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Pairs type</th>
<th># of pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Ar QQ</td>
<td>4,072</td>
</tr>
<tr>
<td></td>
<td>Ar QQ + Tafsir</td>
<td>12,216</td>
</tr>
<tr>
<td></td>
<td>En QQ</td>
<td>20,360</td>
</tr>
<tr>
<td></td>
<td>M QQ</td>
<td>256,536</td>
</tr>
<tr>
<td>Validation</td>
<td>Ar QQ</td>
<td>1,019</td>
</tr>
<tr>
<td>Testing</td>
<td>Ar QH</td>
<td>310</td>
</tr>
</tbody>
</table>

Table 7.6: The different training/fine-tuning dataset. QQ=Quran-Quran, QH=Quran-Hadith, Ar=Arabic, En=English, M=Multilingual (43 languages)

7.5 Measuring Data Leakage

Recent research have revealed that many benchmark datasets possess a degree of overlap between training and testing data. This can inadvertently lead to evaluating the model’s ability to memorize rather than generalize. This section applies the framework introduced by Elangovan et al. (2021) to measure the data leakage from the QQ training to QQ validation dataset, and from QQ training to QH
testing dataset.

The algorithm for measuring similarity is shown in Figure 7.9. Given a test instance $test_i$, compute its cosine similarity with the most similar instance in the training set. Hence the algorithm goes through every training instance and computes the cosine similarity with the test instance to find the $BESTMATCH$. This is facilitated by the function $similarity(test_i, train_j)$ which converts the two texts into a bag-of-words. Then removes stop words (a list obtained from NLTK) to compute the cosine similarity between the two bag of words as shown in equation 7.1. The algorithm keeps the cosine similarity score of the instance that is most similar with $test_i$. Finally, it computes the average cosine similarity over all the test instances as an indicator to measure the extent of train/test overlap.

Algorithm 1 Compute overlap

1: procedure COMPARE(testset, trainset)
2: $totalscore \leftarrow 0$
3: $n \leftarrow |testset|$
4: for $test_i$ in testset do
5: $s \leftarrow BESTMATCH(test_i, trainset)$
6: $totalscore \leftarrow totalscore + s$
7: end for
8: return $totalscore/n$ ▷ Average score
9: end procedure

10: procedure BESTMATCH(test, trainset)
11: $bestscore \leftarrow 0$
12: for $train_j$ in trainset do
13: $s \leftarrow SIMILARITY(test, train_j)$
14: if $score > bestscore$ then
15: $bestscore \leftarrow s$
16: end if
17: end for
18: return $bestscore$
19: end procedure

Figure 7.9: Algorithm to compute data leakage (Elangovan et al., 2021)
7.6 Conclusion

It is clear that the data leakage in the QQ validation dataset is more significant than that in the QH testing dataset. This is predictable since the testing dataset consists of Hadiths which are not present in the training dataset. However, the Quran data is static and limited which means it is unfeasible to avoid such data leakage. Hence, using the QQ for validation and QH for testing in the next chapter ensures that the models are measured on their ability to generalize rather than memorize.

<table>
<thead>
<tr>
<th>Evaluation Dataset</th>
<th>Training Dataset</th>
<th>Avg. cosine similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>QH Testing</td>
<td>QQ training</td>
<td>49.3</td>
</tr>
<tr>
<td>QQ Validation</td>
<td>QQ training</td>
<td>62.4</td>
</tr>
</tbody>
</table>

Table 7.7: Measuring data leakage

7.6 Conclusion

This chapter presents a statistical overview of the differences between Quran and Hadith texts and the unique challenges they pose for AI-based modelling of their underlying meaning. Despite these challenges, recent advances in deep-learning models have shown promising results in achieving human-level performance for different languages. Thus, the chapter suggests investigating the ability of these models to capture the meaning of Quran and Hadith texts, which requires training and evaluation datasets. The main contribution of this chapter is a framework for creating two datasets, the Quran-Hadith (QH) dataset consisting of 310 balanced pairs of related and non-related Quran verses and Hadith teachings, and the Quran-Quran (QQ) dataset containing 5,096 balanced pairs of related and
7.6 Conclusion

non-related Quran-verse pairs. After creating the datasets, the data leakage is investigated and quantified to ensure that the evaluated models in the next chapter are measured on their ability to generalise rather than memorise data.
Chapter 8

Semantic Relatedness Using Deep Learning

8.1 Introduction

This chapter is largely based on my publication Altammami & Atwell (2022), which describes evaluating deep learning (DL) models’ effectiveness in identifying relatedness between the Quran and the Hadith Classical Arabic (CA) texts. This is a binary classification task of identifying whether two pieces of CA text convey the same underlying message, which is a special case of semantic similarity.

The idea of using DL models on CA text is inspired by the models’ near-perfect result on other languages and downstream tasks. Moreover, the application of deep learning models on CA texts remains largely unexplored, offering a significant opportunity for further research and exploration. Hence, this study aims to fill the gap by evaluating monolingual, bilingual, and multilingual state-of-the-art (SOTA) models to detect relatedness between the Quran and the Hadith. However, before delving into the experiments, the literature points to interesting observations that shall be considered in this study.

Recently, transformer-based DL models have shown unprecedented performance that surpasses human scores on common benchmarks like SICK (Marelli
8.2 Related Work

et al., 2014), which created the hype that such models could “understand” textual data (Bender & Koller, 2020). However, an emerging trend of probing these models yields striking results that suggest models are not able to generalize, but rather are more likely to memorize (Elangovan et al., 2021). This is due to the common practice of generating training and testing data using random split, which inadvertently leads to data leakage from the training set to the testing set reaching 70% of instance overlap (Lewis et al., 2020). Moreover, existing benchmark datasets possess a low readability index which does not reflect real-world complex data (Chandrasekaran & Mago, 2020). This is aggravated for CA since it is a low-resource language and inherently challenging for natural language processing (NLP) tasks (Habash, 2010).

To address the low-readability index limitation, a new CA dataset of related and non-related religious texts from the Quran and the Hadith is created as explained in Chapter 7. These texts involve embedded meanings which require reasoning and deep human understanding. Moreover, they contain complex syntactic and rhetorical features including, verbal idioms, irony, hyperbole, rhetorical questions (Abdul-Raof, 2013) as discussed in Chapter 7.

To mitigate the limitation of data-leakage, the models are fine-tuned on the extended version of the Qursim (Sharaf & Atwell, 2012b) dataset consisting of related and non-related Quran-verse pairs described in Chapter 7. Then the best performing models are tested on the more challenging dataset of Quran-Hadith pairs. Throughout this chapter, the phrase ‘Quran-Hadith pairs’ is used where ‘Hadith’ refers to an instance of a Hadith teaching (Matn), and the term ‘Quran’ refers to a Quran verse.

8.2 Related Work

This section discusses research, mostly in the digital humanities, that aims to utilize advancements in AI to identify similarities in sacred scriptures. There have been several attempts to automatically detect semantic similarity and relatedness between religious text, ranging from within the same book (Saeed et al.,
Datasets

The glaring weakness of the studies which compare different religious books (e.g., the Quran and the Bible) is where translations are used instead of the original texts. Ideally, such studies should use the texts in their original languages (e.g., CA, Hebrew, Greek) to keep their true meaning, which could be lost in the translations. This is due to the inherent biases or misinterpretations of the translators. For example, the Quran’s meaning is translated into more than 60 English translations, each one typically claiming to rectify deficiencies in the previous versions (Kidwai, 1987). Hence, multilingual models with zero-shot learning could be the answer to overcome such problem.

One of the studies that focused on the Quran and is more related to this work is Alshammeri et al. (2020). They trained a Doc2Vec model (Le & Mikolov, 2014) on the Quran corpus to obtain embeddings for each verse. Then they calculated the cosine similarity between the Quran pairs. To verify their results, they examined whether the pair of verses with high cosine similarity falls within the same concept in a Quran ontology (Abbas, 2009). Another study on the Quran presented by Alsaleh et al. (2021) utilizes AraBERT (Antoun et al., 2020), a transformer-based model, to identify semantic similarity between Quran verses. Their findings show promising results. Contrarily, the experiments in this chapter explore if such SOTA models fine-tuned on the Quran pairs dataset can be generalized to perform as well when presented with the Quran-Hadith pairs dataset. Hence, this work is not comparable to the previous research, because they used the same dataset for both training and testing by utilizing random split.

8.3 Datasets

Throughout this experiment, the dataset explained in Chapter 7 is used. The training/fine-tuning is conducted with Quran-Quran (QQ) verse pairs where ev-
8.3 Datasets

Every training example consists of a pair of verses along with a label, “1” for related and “0” for not related. Then the testing is conducted on a dataset of Quran-Hadith (QH) pairs. An example from each dataset is shown in Table 8.1. Using the QQ dataset for training and the QH dataset for testing ensures that the models are measured on how well they generalize to identify relatedness in CA texts instead of memorizing the training data.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Label</th>
<th>Text 1</th>
<th>Text 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ</td>
<td>1</td>
<td>ولا يسأل همّ عمّها دير أى، يميل قولهم؟ شان璧ه</td>
<td>ولا يوم متعلق للذين هم وعلى عومن وحصصهم وأوصاصهم وأولئك هم</td>
</tr>
<tr>
<td>QQ</td>
<td>0</td>
<td>أودك تقدم الله على قولكم وحصصهم وأوصاصهم وأولئك هم</td>
<td>إن وجدت النكهة نكون وأتين من كل بي، ولها عرض طعم العذاب</td>
</tr>
<tr>
<td>QH</td>
<td>1</td>
<td>التي صلى الله عليه وسلم، قال، تأتي تأتي على الناس زمان لا يأتي إلا من خالم، تلمع بكم</td>
<td>ينها، الذين آمنوا لا تأمرون أراعأ، أمنها معاينة وانتفا على المنكر</td>
</tr>
<tr>
<td>QH</td>
<td>0</td>
<td>قال رسول الله صلى الله عليه وسلم، من الموضع شذبده، حتى يقعون إلا وعضو منه</td>
<td>وإن تقع أكثر من في الأرض ينسلون من سبيل الله، إن يقعون إلا</td>
</tr>
</tbody>
</table>

Table 8.1: Examples from the QQ and QH datasets

The QQ dataset is a balanced dataset of 5,096 related and non-related verse pairs which is shuffled and divided into 80% training and 20% validation. The datasets used throughout the experiments in the next section are shown in Table 8.2. The Quran translations in 43 languages provided electronically on the Tanzil project are used to fine-tune multilingual models, while the 17 different English translations on Tanzil were used to fine-tune the English-Arabic bilingual model. Also, the Arabic Tafsir for each pair is extracted to augment the Arabic training data. After fine-tuning, the models are validated on the 20% of QQ Arabic pairs. Finally, the QH dataset, consisting of 310 balanced positive and negative pairs, is used in the testing phase.

46https://tanzil.net/docs/tanzil_project

47Refer to Chapter 7 for more details on the automatic construction of these datasets
8.4 Experimental Setup

This section introduces the different models trained/fine-tuned on the QQ dataset and tested for identifying relatedness in the QH dataset. This is not semantic similarity in the traditional sense where being synonymous or directly equivalent is what is measured, but rather identifies relatedness in the underlying religious teaching. The models are given \([text1, text2, label]\) where label “1” indicates their relatedness and “0” their non-relatedness.

8.4.1 Evaluation Metrics

The models’ performance is measured using the common accuracy and F1 scores as shown in equations 8.1 and 8.2 respectively, where \(TP=\text{True Positive}, TN=\text{True Negative}, FP=\text{False Positive}\) and \(FN=\text{False Negative}\). In addition, the Matthews Correlation Coefficient (MCC) is used as shown in equation 8.3, which takes the value between -1 and +1. It produces a reliable score in evaluating binary classifications, where a high score is produced only if the model preforms well on the majority of the negative instances and the majority of positive instances (Chicco & Jurman, 2020).

\[
\text{Accuracy} = \frac{TP + TN}{TN + TP + FP + FN} \quad (8.1)
\]

\[
F1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} = \frac{2 \times TP}{2 \times TP + FP + FN} \quad (8.2)
\]
8.4 Experimental Setup

\[MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}} \]
(8.3)

8.4.2 Baseline Model

Textual data must be first represented in a mathematical form for the computer to process it. Recently, text is converted to low dimensional vectors (known as embeddings) where lexical units are represented by an n-dimensional vector that captures word analogy and relationships. This is achieved by training a neural network on a corpus to generate embeddings for each word\(^{48}\) in the corpus, taking into account its surrounding words. For the baseline, a character embedding model is used (Bojanowski et al., 2017) since this has proven to be a major breakthrough in the field of semantic similarity, specifically for morphologically rich languages. The key idea is that words and subword information are learnt in the process of training the embedding model. This way word embedding vectors can be the aggregation of their constituent character n-grams.

To build the baseline model, the methodology proposed by Nagoudi et al. (2017) is adopted, which produced one of the top results at the SemEval 2017 Task1. Their approach enhances the embedding model by incorporating Inverse Document Frequency (idf) weighting and Part-of-Speech (POS) tagging to give more weight to highly descriptive words in a text. The is depicted in Figure 8.1, which illustrates the process of computing the relatedness between a given pair of texts \((S^1, S^2)\).

To compute the idf, the Quran is used as the background corpus. The idf for each word is measured using Eq 8.4, where \(s\) is the total number of sentences in

\(^{48}\)A maximum vocabulary size can be set, or a minimum frequency threshold can be set for a word to be included in the corpus.
the corpus (Quran verses), and ws is the number of sentences that contain the word w. The POS tags were obtained using CAMeL Tools (Obeid et al., 2020).

$$
idf(w) = \log(s/ws) \tag{8.4}
$$

To obtain the word embeddings, a character n-grams model *FastText*(FT) is trained using the Genism\(^{49}\) library on several corpora including Quran, Hadith, and commentaries, which consist of $15,222,814$ words of which $207,347$ are unique words. The model training hyperparameters were set to vector size 300, which refers to the dimensionality of the vectors. The window is set to 5, which indicates the number of words considered around the pivot word to capture context. The minimum count is set to 3 to ignore rare words.

The limitation of *FastText* and other context-free models is that it generates a single word embedding representation for each word in the data. However, since the models were trained on a specialized corpus, I assume they will capture the semantics of the religious CA words. Once the embedding for each word is obtained, the verse (sentence) embedding S_v is calculated as shown in Eq 8.5, where w_i represents a word in the verse, $POSw_i$ represents the POS tag of the word w_i,
which is used to assign the corresponding weight as proposed by Nagoudi et al. (2017), and v_i is the word vector obtained from the FastText model. Once the embedding for each verse is calculated, the cosine similarity between the pairs is measured considering those pairs with more than 0.5 as related.

$$S_v = \sum_{i=1}^{n} (idf(w_i)) \times POS_weight(POSw_i) \times v_i$$ \hspace{1cm} (8.5)

Another baseline model is considered where several machine learning classifiers (SVM, Random Forests, Naive Bayes) were trained with the aforementioned embeddings as the features. The best performance was obtained using the Random Forests as shown in the results in Section 8.5.

8.4.3 Transformer-based Models

Transformer-based models such as BERT are context-based and aim to address the limitation of the aforementioned context-free models that generate a single word embedding representation regardless of word contexts. Hence, polysemic words with different meanings could be captured in these transformer-based models.

Hyper-Parameters and Technical Details

The next experiments consist of fine-tuning pre-trained transformer-based models to classify pairs as related or not. The Tesla K80 GPU available on Google Colab is used in all experiments. For a given model, the experiment is run three times to ensure the results obtained are stable using the same hyper-parameter values of Adam optimizer with learning-rate $2e-5$, patch-size 16. These values were determined after using Weights and Biases50 for experiment tracking as shown in Figure 8.2

50https://wandb.ai/site
8.4 Experimental Setup

Transformer-based models have a predefined input length requirement. To accommodate this, a maximum sequence length of 128 tokens is used. This is determined by tokenizing each sample in the training data and plotting the number of tokens in a histogram as shown in Figure 8.3. It is observed that the majority of samples have fewer tokens than 128. Furthermore, early stopping is used to avoid over-fitting since the models are observed to overfit after the second epoch as depicted in Figure 8.4.

Monolingual Models

In this experiment, the focus is on using pre-trained transformer-based models that were trained on Classical Arabic (CA) or Modern Standard Arabic (MSA),
but not Dialect Arabic (DA). This is because a recent study found that the variant proximity of pre-training data to fine-tuning data is the most critical factor (Inoue et al., 2021). One of the widely used models is AraBERT (Antoun et al., 2020) which is trained on 24GB of Arabic text in the news domain. There are several versions of this model, but AraBERTv02 is used because previous studies showed its superior performance (Inoue et al., 2021; Alsaleh et al., 2021). A similar model incorporated into the experiments is ArabicBERT (Safaya et al., 2020), which is trained on 95GB of text mainly from the Arabic portion of the OSCAR corpus. Another model used is the CAMeLBERT-CA (Inoue et al., 2021), which is trained on the 6GB OpenITI Corpus consisting of CA texts (Belinkov et al., 2018).

Multilingual Models

Zero-shot learning showed promising results where multilingual models are fine-tuned on one language then tested on another language. In this study, experiment on multilingual modules is conducted by fine-tuning two models on the English and the multilingual datasets. These models are the mBERT (Devlin et al., 2018) which is trained on Wikipedia dump, and XLMRoberta (Conneau et al., 2019) trained on filtered Common-Crawl data. In addition to this, the performance of
a bilingual module named GigaBERT (Lan et al., 2020) is studied. This model is designed for English-to-Arabic cross-lingual transfer tasks and trained on news-wire, Wikipedia, and web crawl data.

Sentence-BERT

Sentence-BERT (SBERT) is a framework introduced to enable obtaining semantically meaningful sentence embeddings that can be compared using cosine similarity (Reimers & Gurevych, 2019). According to the authors, SBERT results in better representations than BERT for tasks involving text comparison. Therefore, their multilingual models are incorporated into these experiments as shown in Table 8.4. The threshold of 0.5 and above is used to classify pairs as related.

8.5 Results

This section shows the performance of models on the validation dataset of QQ pairs. It discusses the best model’s performance on the testing dataset of QH pairs.

8.5.1 Validation

Table 8.3 shows the models’ performance on the validation dataset of 1,019 Arabic QQ pairs. Moreover, it shows the fine-tuning dataset types, the number of pairs used in fine-tuning, and the fine-tuning time. The table is categorized into three section based on the model’s type. The first section shows the performance of baseline models using FastText embeddings and cosine similarity as explained in Section 8.4.2. The enhanced baseline incorporates a machine learning (ML) model trained on the two Arabic datasets of 4,072 QQ pairs and 8,144 Tafsir pairs.

The second section records the performance of the monolingual models fine-tuned on the Arabic datasets. The third section presents the results of using zero-shot learning where the cross-lingual GigaBert model is fine-tuned on the English translations of the QQ pairs. The multilingual models, mBert and XLM-Roberta, are fine-tuned on the English QQ pairs in the first iteration, and on the
8.5 Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Fine-tuning</th>
<th># of pairs</th>
<th>Time</th>
<th>MCC</th>
<th>Acc.</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline FastText Nagoudi et al. (2017)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-2.8</td>
<td>49.2</td>
<td>64.1</td>
</tr>
<tr>
<td>FastText + Random Forests Arbor</td>
<td>Ar</td>
<td>4,072</td>
<td>0:00:65</td>
<td>+57.6</td>
<td>78.4</td>
<td>76.5</td>
</tr>
<tr>
<td>FastText + Random Forests Art + Taf</td>
<td>12,216</td>
<td>0:00:32</td>
<td>+55.4</td>
<td>77.4</td>
<td>75.9</td>
<td></td>
</tr>
<tr>
<td>AraBERT Antoun et al. (2020)</td>
<td>Ar</td>
<td>4,072</td>
<td>0:01:57</td>
<td>+74.6</td>
<td>86.7</td>
<td>85.4</td>
</tr>
<tr>
<td>AraBERT</td>
<td>Ar + Taf</td>
<td>12,216</td>
<td>0:04:37</td>
<td>+81.0</td>
<td>90.2</td>
<td>89.6</td>
</tr>
<tr>
<td>ArabicBERT Safaya et al. (2020)</td>
<td>Ar</td>
<td>4,072</td>
<td>0:01:33</td>
<td>+88.4</td>
<td>94.1</td>
<td>94.0</td>
</tr>
<tr>
<td>ArabicBERT</td>
<td>Ar + Taf</td>
<td>12,216</td>
<td>0:04:37</td>
<td>+94.1</td>
<td>97.0</td>
<td>97.0</td>
</tr>
<tr>
<td>CAMeLIBERT-CAInoue et al. (2021)</td>
<td>Ar</td>
<td>4,072</td>
<td>0:01:38</td>
<td>+82.2</td>
<td>90.9</td>
<td>90.5</td>
</tr>
<tr>
<td>CAMeLIBERT-CA</td>
<td>Ar + Taf</td>
<td>12,216</td>
<td>0:04:51</td>
<td>+86.6</td>
<td>93.2</td>
<td>93.1</td>
</tr>
<tr>
<td>GigaBERT Lan et al. (2020)</td>
<td>En</td>
<td>20,360</td>
<td>0:07:51</td>
<td>+16.0</td>
<td>55.9</td>
<td>67.0</td>
</tr>
<tr>
<td>XLM-RoBERTa Conneau et al. (2019)</td>
<td>En</td>
<td>20,360</td>
<td>0:08:44</td>
<td>+29.0</td>
<td>57.8</td>
<td>68.2</td>
</tr>
<tr>
<td>XLM-RoBERTa</td>
<td>M, Ar, En</td>
<td>260,608</td>
<td>1:52:40</td>
<td>+39.0</td>
<td>69.0</td>
<td>65.2</td>
</tr>
<tr>
<td>mBERT Devlin et al. (2018)</td>
<td>M, Ar, En</td>
<td>260,608</td>
<td>1:52:40</td>
<td>+39.0</td>
<td>69.0</td>
<td>65.2</td>
</tr>
</tbody>
</table>

Table 8.3: Models’ performance on the QQ validation dataset shown in %. Overall best models based on F1 score are highlighted in bold. Ar = Arabic Quran, En = English Quran, M = Multilingual Quran (43 languages), Taf = Arabic Tafsir(commentaries)

multilingual QQ pairs in the second iteration. Finally, the performance of SBERT models are shown separately in table 8.4 since they do not require fine-tuning.

<table>
<thead>
<tr>
<th>Model</th>
<th>MCC</th>
<th>Acc.</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>paraphrase-xlm-r-m-v1</td>
<td>+19.6</td>
<td>59.8</td>
<td>61.4</td>
</tr>
<tr>
<td>distiluse-base-m-cased-v2</td>
<td>+30.5</td>
<td>60.4</td>
<td>37.8</td>
</tr>
<tr>
<td>distiluse-base-m-cased-v1</td>
<td>+30.3</td>
<td>56.8</td>
<td>35.3</td>
</tr>
<tr>
<td>stsb-xlm-r-m</td>
<td>+16.6</td>
<td>58.4</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Table 8.4: Performance of SBERT multilingual models on the QQ dataset

The results demonstrate that the best performing models on the Arabic QQ pairs validation dataset are the monolingual models. Contrarily, multilingual and SBERT models showed the worst performance across their different models, which highlights the impact of the pretraining data. Additionally, the baseline model does not perform as well as it does on the SemEval task. This could be attributed to the dataset of QQ pairs, since they are considered complex with embedded meanings and polysemy, which is hardly captured in non-contextual representations. For this reason, I believe there is potential in contextual models.
to capture the underlying meaning of Hadith and Quran.

Table 8.5 shows examples of CAMeLBERT-CA classification results. It seems that the model produced promising results even with some of the incorrectly classified pairs. For example, the first pair, although not related as a sentence, contains words that have semantic similarities like the word حميم which mean ‘warm’ or ‘close [in relationships]’. The transliteration of this example is shown to indicate the possible shallow similarity that was identified by the model. The second example was classified as not-related, which is appropriate, because this relatedness requires knowing what the pronouns are referring to. Bear in mind that the Arabic text is different from the translations which usually explicitly state the meaning embedded in the original Arabic text.

<table>
<thead>
<tr>
<th>ID</th>
<th>Label</th>
<th>Predic.</th>
<th>Quran Verse1</th>
<th>Quran Verse2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex1</td>
<td>0</td>
<td>1</td>
<td>نار حامية</td>
<td>[Naarun hamiyah]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>It is a Fire, intensely hot.</td>
<td>[101:11]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>And no friend will ask [anything of] a friend.</td>
<td>[70:10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>And [mention] when We said to the angels, “Prostrate before Adam”; so they prostrated, except for Ibsees. He refused and was arrogant and became of the disbelievers.</td>
<td>[2:34]</td>
</tr>
<tr>
<td>Ex2</td>
<td>1</td>
<td>0</td>
<td>ولا يسأل حميم حمية</td>
<td>[Wa laa yaa’alu hameemun hameemaa]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>And no friend will ask [anything of] a friend.</td>
<td>[70:10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>And [mention] when We said to the angels, “Prostrate before Adam”; so they prostrated, except for Ibsees. He refused and was arrogant and became of the disbelievers.</td>
<td>[2:34]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For every man, that Day, will be a matter adequate for him.</td>
<td>[80:37]</td>
</tr>
</tbody>
</table>

Table 8.5: Examples of QQ pairs classified by CAMeLBERT-CA

Although monolingual modules produced promising results, can their performance be generalized to other CA datasets in the same domain? To answer this question, these models are evaluated on the testing dataset of Quran-Hadith (QH) pairs.

8.5.2 Testing

This section investigates how well the best-performing models generalize to the dataset of QH pairs. The results are shown in Table 8.6. It is clear that
8.6 Analysis and Discussion

CAMeLBERT-CA’s performance is superior. However, there is a significant drop across all the models’ F1 score compared to their performance on the validation dataset of QQ pairs in Table 8.3.

<table>
<thead>
<tr>
<th>Model</th>
<th>Fine-tuning</th>
<th>MCC</th>
<th>Acc.</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArabicBERT</td>
<td>Ar</td>
<td>+3.6</td>
<td>51.7</td>
<td>50.0</td>
</tr>
<tr>
<td>ArabicBERT Ar+Taf</td>
<td>Ar+Taf</td>
<td>+32.3</td>
<td>66.1</td>
<td>65.1</td>
</tr>
<tr>
<td>CAMeLBERT-CA Ar</td>
<td>Ar</td>
<td>+31.9</td>
<td>65.7</td>
<td>67.9</td>
</tr>
<tr>
<td>CAMeLBERT-CA Ar+Taf</td>
<td>Ar+Taf</td>
<td>+55.3</td>
<td>77.2</td>
<td>74.8</td>
</tr>
<tr>
<td>AraBERT</td>
<td>Ar</td>
<td>+12.9</td>
<td>56.3</td>
<td>59.1</td>
</tr>
<tr>
<td>AraBERT Ar+Taf</td>
<td>Ar+Taf</td>
<td>+41.4</td>
<td>70.6</td>
<td>69.6</td>
</tr>
<tr>
<td>GigaBERT</td>
<td>En</td>
<td>-8.3</td>
<td>46.2</td>
<td>56.2</td>
</tr>
<tr>
<td>XLM-RoBERTa En</td>
<td>En</td>
<td>-14.0</td>
<td>42.7</td>
<td>38.0</td>
</tr>
<tr>
<td>XLM-RoBERTa En+Ar+M</td>
<td>En+Ar+M</td>
<td>-6.8</td>
<td>46.6</td>
<td>46.4</td>
</tr>
<tr>
<td>mBERT</td>
<td>En</td>
<td>-4.2</td>
<td>48.5</td>
<td>62.7</td>
</tr>
<tr>
<td>mBERT En+Ar+M</td>
<td>En+Ar+M</td>
<td>+7.0</td>
<td>53.4</td>
<td>46.8</td>
</tr>
</tbody>
</table>

Table 8.6: Performance of models on the Quran-Hadith testing dataset

8.6 Analysis and Discussion

This section analyses the results of the ~20 points drop in F1 score across the models on the QH dataset. Several examples classified by CAMeLBERT-CA are shown in Table 8.7 to illustrate where it did well and discuss the causes of misclassification. Example 1 shows a Hadith-teaching and Quran-verse that consist of mostly different words except for one keyword that occurs in different morphological forms (إلا بإلاء - يَؤُلُون). The model was able to identify the relatedness. However, many of the correctly classified pairs involve of a clear message as in Example 2. While 70% of the incorrectly classified pairs have the label “1” (related), but the model fails to identify the relatedness and predicts “0” (not-related). This could be attributed to several reasons. First, the two texts consist of different words but have the same underlying message as shown in Example 3. Second, several words in these texts are vague, hence reference to exegesis is required to
understand them as shown in Example 4. Third, many Hadiths are a narration of an incident or a story that has a moral behind it, while the Quran gives the explicit guidance, as shown in Example 5.

To further analyse the model, the steps it takes to process an input and produce an output are scrutinized. Consider example 6 in Table 8.7. The input text is converted to the appropriate format required by the pre-trained model as shown in Figure 8.5. It expects the input to start with the [CLS] token and end with the [SEP] token. Since there are two texts (Quran-verse and Hadith-teaching), they are separated by the [SEP] token. Finally, a [PAD] token is used for padding, because the model expects each input to be at a fixed length of 128 tokens as discussed in Section 8.4.3.

The way the Quran-verse and the Hadith-teaching are tokenized depends on the model’s tokenizer. Generally, pre-trained models are trained on specific corpora (e.g. Classical Arabic), where they learn a vocabulary set. Hence, during fine-tuning, they might not recognize a word that is not found in their vocabulary. This out-of-vocabulary (OOV) problem is solved using the WordPiece tokenizer, which breaks down such words into sub words as indicated by the ## in Figure 8.5.

The figure shows that the tokenizer identified the words ‘‘ and ‘‘ in the Quran-verse and did not break them down into sub words. Although they convey the same meaning out of context, they have completely different meanings in this verse. The first means “Day of Judgment” while the second means...
Table 8.7: Examples of QH pairs classified by CAMeLBERT-CA

<table>
<thead>
<tr>
<th>ID</th>
<th>Label</th>
<th>Predic.</th>
<th>Quran</th>
<th>Hadith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex1</td>
<td>1</td>
<td>1</td>
<td>2:226</td>
<td>2:226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If the period of Ila expires, then the husband has either to retain his wife in a handsome manner or to divorce her as Allah has ordered.</td>
</tr>
<tr>
<td>Ex2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>He who repents of a sin is like him who has committed no sin.</td>
</tr>
<tr>
<td>Ex3</td>
<td>1</td>
<td>0</td>
<td>20:82</td>
<td>20:82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Certainly a time will come when people will not bother to know from where they earned the money, by lawful means or unlawful means.</td>
</tr>
<tr>
<td>Ex4</td>
<td>1</td>
<td>0</td>
<td>5:90</td>
<td>5:90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wagers are allowed only for shooting arrows, or racing camels or horses.</td>
</tr>
<tr>
<td>Ex5</td>
<td>1</td>
<td>0</td>
<td>3:130</td>
<td>3:130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>And we set out on a journey. One of our people was hurt by a stone, that injured his head. He then had a sexual dream. He asked his fellow travelers: Do you find a concession for me to perform tayammum? They said: We do not find any concession for you while you can use water. He took a bath and died.</td>
</tr>
<tr>
<td>Ex6</td>
<td>1</td>
<td>0</td>
<td>30:55</td>
<td>30:55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>God’s Messenger says, “He who grants a respite to one who is in straitened circumstances or who remits his debt will be saved by God from the anxieties of the day of resurrection.”</td>
</tr>
</tbody>
</table>

8.6 Analysis and Discussion

<table>
<thead>
<tr>
<th>ID</th>
<th>Label</th>
<th>Predic.</th>
<th>Quran</th>
<th>Hadith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex1</td>
<td>1</td>
<td>1</td>
<td>2:226</td>
<td>2:226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If the period of Ila expires, then the husband has either to retain his wife in a handsome manner or to divorce her as Allah has ordered.</td>
</tr>
<tr>
<td>Ex2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>He who repents of a sin is like him who has committed no sin.</td>
</tr>
<tr>
<td>Ex3</td>
<td>1</td>
<td>0</td>
<td>20:82</td>
<td>20:82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Certainly a time will come when people will not bother to know from where they earned the money, by lawful means or unlawful means.</td>
</tr>
<tr>
<td>Ex4</td>
<td>1</td>
<td>0</td>
<td>5:90</td>
<td>5:90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wagers are allowed only for shooting arrows, or racing camels or horses.</td>
</tr>
<tr>
<td>Ex5</td>
<td>1</td>
<td>0</td>
<td>3:130</td>
<td>3:130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>And we set out on a journey. One of our people was hurt by a stone, that injured his head. He then had a sexual dream. He asked his fellow travelers: Do you find a concession for me to perform tayammum? They said: We do not find any concession for you while you can use water. He took a bath and died.</td>
</tr>
<tr>
<td>Ex6</td>
<td>1</td>
<td>0</td>
<td>30:55</td>
<td>30:55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>God’s Messenger says, “He who grants a respite to one who is in straitened circumstances or who remits his debt will be saved by God from the anxieties of the day of resurrection.”</td>
</tr>
</tbody>
</table>
“hour”. Hence, the word ساعة in the Quran is semantically similar to the word المقابلة in the Hadith of Example 6. To check if the model captured the contextual meaning, the cosine similarity between the contextual embeddings is measured. This is done by obtaining the tensor produced by the model for this record.

The model produces [43 x 12 x 768] tensor since there are 43 tokens, 12 layers, and 768 features. There are several ways to extract the contextual word embeddings as mentioned by the creators of BERT (Devlin et al., 2018), but the suggested approach is followed where the last four layers are added. Below are the first five vector values for each word.

 ساعة
[-0.5590, -2.8905, -3.1850, -2.1183, -4.8249, ...]
 ساعة
[-1.2987, 0.6788, -2.4608, -0.4145, -8.4386, ...]
 القيامة
[-3.6930, -0.5412, 0.8372, -6.3855, -3.2655, ...]

The cosine similarity is 0.78 between ساعة and القيامة, while the cosine similarity between ساعة and ساعة is 0.83. Hence, the model did not capture that ساعة is more similar to القيامة than it is to ساعة in that context.

The issue with transformer-based models is that they are challenging to interpret. There is an ongoing field of research aimed at making models more interpretable. Therefore, it is difficult to determine the reasons for the inadequate detection of semantic similarities by these models, particularly the poorer performance of multilingual models as opposed to the baseline models on the validation data. Research by Rust et al. (2020) suggests that the superior performance of monolingual models compared to multilingual models may be attributed to the way data is tokenized. The tokenization process uses the WordPiece algorithm (Wu et al., 2016), which breaks texts into words present in its vocabulary. If a word is not in the vocabulary (OOV), it is tokenized into its constituent syllables or letters. This is known as “tokenizer fertility”, and measures the average number of subwords produced per word. A fertility score of 1 indicates that the
8.6 Analysis and Discussion

tokenizer’s vocabulary contains every single word in the text, while high fertility scores indicate that more sub words are produced for a word.

To test this hypothesis, the Quran verses (310 sentences) and Hadith teachings (310 sentences) from the QH dataset were tokenized using two approaches. The first approach is white space tokenization, which is performed to show the normal sentence length. The second approach is using the models’ tokenizers to show the number of tokens produced for each sentence by the WordPiece algorithm. Figure 8.6 shows sentence length distribution using the two approaches, with the x-axis representing the sentence length in tokens and the y-axis representing the number of instances of a certain length. Although every tokenizer is different, the bilingual and monolingual models show similar distributions, while the multilingual models show different distributions. For more analysis, the overall fertility scores of the tokenizers on the QH dataset are depicted in Figure 8.7.

Figure 8.6: Sentence length distribution where x-axes represent the number of tokens and the y-axes reflect the number of instances
It is clear from Figures 8.7 and 8.6 that mBERT has the highest tokenizer fertility. However, as shown in Table 8.6, the mBERT’s performance on identifying relatedness between Quran and Hadith is comparable to one of the monolingual models (ArabicBERT). This indicates that the training and fine-tuning data has a greater impact on the results than the tokenizer’s fertility. This is because for the models to capture a specific meaning of a word, they should be presented with multiple examples that use that particular meaning. However, some words in Arabic have more prevalent meanings than that meaning found in a particular Quran-verse, such as الساعة. Hence, to improve the performance of these models, the data should be increased. However, the limitation of a relatively small training/fine-tuning data is difficult to overcome, especially for Arabic religious texts, which are static, unlike MSA or DA, where the training data can be increased by, for instance, collecting textual posts from social media platforms.

![Figure 8.7: Models’ tokenizers’ fertility](image)

The analysis leads to the following conclusion. It might be more possible for machines to capture the underlying meanings in the Quran and the Hadith through a knowledge-based approach. Although many ontologies have been developed for the Quran, none of them cover the larger scope of Hadith as discussed in Chapter 6. Creating such resources is expensive, and utilizing deep learning models could be the alternative. Yet, the possibilities of the current models reaching a human-level understanding of such texts remains somewhat
elusive. This aligns with a recent study by Chandrasekaran & Mago (2020), who tested transformer-based models on a complex dataset of 50 English sentence pairs. Their performance decreases by more than 10 points compared to their performance on the common benchmarks (e.g., SICK). This is amplified for under-resourced languages as shown by the results in this chapter. Hence, measuring the sensitivity of the models to an increase in the complexity of the text should be considered.

8.7 Conclusion

In this chapter, various transformer-based models are evaluated on a binary classification task of identifying the relatedness between Quran-verses and Hadith-teachings. Datasets of Arabic Quran pairs, Arabic Tafsir pairs, and translations of the Quran pairs are used for fine-tuning these models. The results indicate that the monolingual model CAMeLBERT-CA achieved the highest performance, but there was a significant drop in the F1 score on the testing dataset compared to the validation dataset. This suggests that current state-of-the-art models still struggle with complex data and highlights the need for improved representation methods for such complex texts.
Chapter 9

Conclusion and Future Work

9.1 Introduction

Research in AI and NLP aims to model and computationally interpret the meaning of human languages such as Arabic, which has several variants: Modern Standard Arabic (MSA), Classical Arabic (CA) and Dialect Arabic (DA) as discussed in Chapter 2. Although Arabic NLP has received more attention than previously in the last decade (Guellil et al., 2021), more work is required to reach maturity for major languages such as English. The Arabic language is more complex than English and what works for one variant does not necessary apply to another (Habash et al., 2012b). This is evident from the number of attempts to create more fine-grained resources specific to each variant such as Abdulrahim et al. (2022); Khalifa et al. (2018) and El-Haj et al. (2022a).

Although some work has been done on CA, most is dedicated to the Quran while the Hadith does not benefit from the same level of computational focus (Bounhas, 2019). This thesis is based on five publications that make significant contributions to enriching Hadith computational research.
9.2 Overall Findings

At the outset of this work, I aimed to answer two research questions:

1. Is annotating the Hadith components, Isnad and Matn, Feasible?

Chapter 4 answers this question by discussing Hadith features that make its structure unique. It is clear that Isnad, the chain of narrators, follows a special pattern of scholar’s names linked by transmission method such as ‘said’, ‘heard’, and ‘told us’, which are exploited in building the segmenter. The experiment show that the bigram representation model is the best in capturing the Isnad pattern as discussed in Section 4.5.2. Furthermore, Section 4.6 describes how Random Forests outperforms other ML model to classify bigrams as Isnad or Matn. Additionally, Arabic text preprocessing is discussed and experiments show that normalization has a positive effect on the segmenter performance as shown in Section 4.8. These findings were published in Altammami et al. (2019, 2020a) and facilitated building a Hadith segmenter that deconstruct Hadiths to their Isnad and Matn components with 92.5% accuracy.

Although there is still room for improvement, specifically for Hadiths with irregular structure, the proposed system produced acceptable performance for building a well-structured Hadith corpus of the six canonical Hadith books. This is because most Hadiths in these books follow a regular structure. Chapter 5 described the creation of the Leeds and KSU (LK) Hadith corpus, which incorporates Hadiths in their original Classical Arabic and their English translation aligned at the Hadith level. Moreover, each Hadith’s meta-data is incorporated including book name, chapter, section, Hadith number, and grade, along with the Isnad and Matn produced by the Hadith segmenter. This is one of the main contributions of this thesis, and is published in Altammami et al. (2020b) and made available to the research community on GitHub. To the best of my knowledge, this corpus addresses the shortage in common Hadith datasets as identified by Bounhas (2019). Additionally, the value of this corpus is demonstrated by its current usage in other research (Habash et al., 2022; Tarmom et al., 2021).

51https://github.com/ShathaTm/LK-Hadith-Corpus
2. Is semantic similarity in Quran and Hadiths detectable?

The second research question aims to discover whether SOTA AI tools and methods are able to model the meanings of Hadiths. This is vital for identifying similarities within the Hadith teachings and other religious texts like the Quran. Such findings facilitate better understanding of these texts by computationally organizing and mining knowledge to serve those studying the Hadith and shed light on interpretations and discovery of new embedded knowledge.

To address this question, an investigation was conducted to explore various methods for computationally capturing the meaning of Hadith teachings (Matns). Two main approaches were considered: a non-deep-learning approach and a deep-learning approach. As there are several Quran ontologies available, the non-deep-learning approach was initially explored. This is because both the Quran and the Hadith are written in CA and cover the same domain of religious teachings. Therefore, the study evaluated how well existing Quran ontologies cover Hadith concepts using a corpus-based evaluation, as discussed in Chapter 6. To perform this corpus-based evaluation, Hadith keywords must be extracted. Instead of using feature extraction methods such as Latent Dirichlet Allocation (LDA) topic modelling, the Hadith section headings were utilized. This is because domain-relevant terms tend to occur in section headings as the scholar who compiled each Hadith book organized the Hadiths into chapters and sections with titles reflecting the topic in the incorporated Hadiths. The results showed that the best Quran ontology covered only 26.8% of Hadith concepts. This experiment and findings were published in my paper (Altammami et al., 2021), which led to the conclusion that extending the ontology to cover Hadiths is expensive. Therefore, the second approach of using deep-learning models is investigated.

Deep-learning transformer-based models have shown promising results on various downstream tasks, but their performance on CA texts has not been widely
studied. To address this gap, I evaluated monolingual, bilingual, and multilingual SOTA models for detecting relatedness between the Quran and the Hadith considering their underlying meanings, which require deep human understanding, as discussed in Section 7.2. To accomplish this, a benchmark dataset was required. Since there were no existing datasets appropriate for the task, I developed a methodology for building a dataset of related and non-related Quran-verse and Hadith-Matn pairs by consulting reputable religious experts, as discussed in Section 7.4. These datasets are made available on GitHub. Chapter 8, which is based on my publication (Altammami & Atwell, 2022), discusses the different experiments conducted and the results, which indicate that the current models’ ability to reach a human-level understanding of Quran and Hadith remains somewhat elusive.

9.3 Limitations and Future Work

Further work is certainly required to address limitations and improve performance. The following points are ideas worth exploring.

- Building a Hadith segmentation tool is a challenging task due to the unique structure of Hadith and the difficulties in recognizing sentence boundaries in Arabic without strict punctuation rules and capitalization. Additionally, this is a domain-specific task that can be difficult for non-specialists. Moreover, some Hadiths contain several Isnad and Matns which makes it more appropriate to deconstruct the Hadith into finer-grained segments. This can be achieved by using sequence modeling methods, such as HMM, which have shown promising results as discussed in Section 4.7. Furthermore, NER tools, such as CAMel-tool (Obeid et al., 2020), can also be used to identify names of narrators in the Isnad. This tool was not available at the time of building the Hadith segmenter, but it is worth exploring to segment Hadith to fine-grained components.

52https://github.com/ShathaTm/Quran_Hadith_Datasets
9.3 Limitations and Future Work

- The LK Hadith corpus can be extended to include Hadith commentaries aligned with the Hadith at the narrative level. Moreover, the translations of Hadiths in other languages could be incorporated.

- The evaluation of Quran ontologie’s “fit” for Hadith can be extended by utilizing word embeddings as an alternative to WordNet discussed in Section 6.6. By using word embeddings, it is possible to identify and link concepts in the Quran to topics in Hadith that are semantically similar, even if they do not have an explicit lexical relationship. This can provide a more comprehensive and nuanced evaluation of the ontologies.

- When I presented the paper Altammami & Atwell (2022) at LREC 2022 in Marseilles, other researchers made excellent suggestions and comments. Unfortunately, time does not allow me to incorporate these in this thesis, but they are certainly worth exploring in future work. One of the ideas is regarding the dataset created in Chapter 7. The framework proposed in Section 7.4.1 to create the Quran-Hadith pairs can be tweaked to collect larger numbers of pairs. Instead of imposing a strict rule of finding a Fatwa with only one Quran verse and one Hadith, a Fatwa can have Quran and Hadith with a one-to-many relationship, hence increasing the number of samples. This data can then be used in fine-tuning the models only, while the 310 gold standard pairs is still used for testing. Another suggestion worth mentioning is to build a simple neural network trained on the QQ dataset as one of the baseline models to compare its performance to the transformer-based models.

- After the experiments in the thesis were conducted and finalized, other language models were created. It is worth testing these models, such as AR-BERT and MARBERT (Abdul-Mageed et al., 2021; Elmadany et al., 2022).

- Future work can be improved by collaborating with Arabic and Islamic scholars to apply the research outcomes and resources in the fields of Arabic and Islamic studies, as well as using them to educate the general public in understanding the Quran and Hadith.
9.4 Research Contributions

My major research contributions are summarized in the following points:

- The first contribution is a novel Hadith segmentation tool that deconstructs the Hadith to Isnad and Matn with 92.5% accuracy.

- The second contribution is the first well-structured parallel corpus of the six canonical Hadith collections in their original CA form and English translations aligned at the Hadith level. This Leeds and KSU (LK) Hadith Corpus is freely available for the research community.\(^{53}\)

- The third contribution is the enumeration, comparison, and evaluation of Quran ontologies’ “fit” for Hadith. The result identifies the most comprehensive Quran ontology that can be extended to form a larger Islamic ontology to cover the Hadith. This can be done by utilizing Hadith section-headings which contain the main concepts of the incorporated Hadiths. These section-headings can be accessed from the LK Hadith corpus.

- The fourth contribution is a framework for creating a datasets of Quran-Hadith pairs by extracting relatedness information from a reliable source of an archived Fatwa from an Islamic scholar. The Quran-Hadith pairs dataset is provided on my GitHub.\(^{54}\)

- The fifth contribution is the development, evaluation, and analysis of SOTA models performance in capturing the meaning of the Quran and Hadith texts.

9.5 Concluding Summary

In conclusion, this thesis has made significant contributions to the field of Classical Arabic NLP, specifically in the area of computational Hadith research. By

\(^{53}\)https://github.com/ShathaTm/LK-Hadith-Corpus

\(^{54}\)https://github.com/ShathaTm/Quran_Hadith_Datasets
utilizing AI methods, I have demonstrated the feasibility of annotating the components of Hadiths, the Isnad and the Matn. I have also created the Leeds and KSU (LK) Hadith corpus, addressing the scarcity of existing datasets in this field. Additionally, I have presented a dataset of Quran-Hadith pairs, along with a methodology for expanding them. Lastly, this thesis has explored the potential for detecting semantic similarity between Quran and Hadith using state-of-the-art AI tools and methods. While further research is needed, this thesis provides a solid foundation for future advancements in the field of computational Hadith research.
References

ABOUENOUR, L., BOUZOUBAA, K. & ROSSO, P. (2013). On the evaluation and improvement of Arabic WordNet coverage and usability. Language resources and evaluation, 47, 891–917. 113

REFERENCES

BARAKA, R.S. & DALLOUL, Y. (2014). Building Hadith ontology to support the authenticity of Isnad. *International Journal on Islamic Applications in Computer Science And Technology*, 2. 31

REFERENCES

REFERENCES

REFERENCES

JURAFSKY, D. & MARTIN, J.H. (2020). Sequence labeling for parts of speech and named entities. *Speech and Language Processing*. 71

REFERENCES

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T. & Al-Khalifa, H. (2020). Overview of OSACT4 Arabic offensive language detection shared task. In Proceedings of the 4th Workshop on open-source arabic corpora and
processing tools, with a shared task on offensive language detection, 48–52. 1, 131

REFERENCES

