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Abstract 

SLE is a complex multisystem autoimmune disease, causing difficulties when diagnosing 

and treating. IFN dysregulation is a hallmark of SLE pathogenesis which leads to the 

activation of self-antigens in autoimmunity. Subtypes of IFN signal through specific 

receptors, however, downstream activation produces pleiotropic downstream effects, with 

distinct overlap, making the IFN pathway a challenge to study. Quantification of IFN 

stimulated gene expression acts as an indirect measurement of IFN protein levels and is 

known as IFN signature. Previously, the Leeds Lupus group have established a clinically 

relevant two-scoring system to measure IFN activity in PBMCs and were named IFN-Score-

A and IFN-Score-B, however, IFN signatures have not yet reached routine clinical practice. 

In 2019 a EULAR task force highlighted points to consider and terminology consensus when 

reporting IFN assays, including reasonable justification of assay choices. ISG measurement 

in a whole blood (WB) sample type is more feasible than PBMC so development of a WB 

assay was an aim of this report. Firstly, quantified IFN-Score-A and -B determined by 

TaqMan array were analysed in 45 matched PBMC and WB sample types which showed the 

most clinically useful PBMC derived IFN-Score-B cannot be interchanged between sample 

types. Secondly, factor analysis reinterrogation of 31 ISGs in WB derived two-IFN-Scores: 

IFN-Score-C (CCL8, CXCL10, IFI27, ISG15 and LAMP3) and IFN-Score-D (CASP1, 

CEACAM1, SOCS1 and TRIM38) and explained 97% of the variation. IFN-Score-A best 

defined SLE, RA and healthy patient groups compared to other IFN-Scores and IFN-Score-B 

and -D expressed strong correlations within WB suggesting the potential for future clinical 

utility of IFN-Score-D. Finally, RefFinder identified YWHAZ, PGK1 and GUSB to be the most 

stable reference genes from a group of 16 candidate genes in a WB SLE and healthy cohort. 

In conclusion, novel whole blood IFN scores warrant further evaluation in clinical validation 

studies. 
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Chapter 1. Literature Review 

1.1 Systemic Lupus Erythematosus 

Systemic Lupus Erythematosus (SLE) is a complex multisystem autoimmune disease that 

presents with multiple clinical manifestations, which may cause challenges to diagnose and 

treat. Breakdown of immune self-tolerance results in immune-mediated tissue injury in a 

multitude of organ systems including the skin, musculoskeletal, renal, and hematologic 

systems. SLE is preceded by a phase of asymptomatic autoantibody positivity (1) of 

autoreactive antinuclear antibodies (ANA) and can be detected in serum up to 10 years 

before clinical feature presentation. However, ANA are present in up to 25% of the general 

population, which less than 1% develop autoimmune disease, of which are classified as “At-

Risk” (2).  

A combination of genetic, environmental, and hormonal factors are known to be 

susceptibility features of the disease (1). Age, sex and ethnicity are impacting factors of SLE 

prevalence, with increase affect in female to males at an average ratio of 9:1 in the UK and 

highest incidence is amongst women at the reproductive ages (1). Ethnic ancestry also 

influences disease and organ involvement (3). 

 

1.1.1 Clinical classification of SLE 

Classification systems for SLE have been established to assist in differentiating the disease 

from other symptomatically and clinically similar connective tissue diseases (CTDs). The 

systemic lupus international collaborating clinics (SLICC) classification criteria for SLE, 

originally developed in 2012, were revised in 2019 by an expert task force from the 

European League Against Rheumatism (EULAR) and American College of Rheumatology 

(ACR) and was driven by data in the literature and expert experience (4, 5). 

In the revised system the first classification stage requires positive ANA 

immunofluorescence at a threshold of 1 ≥ 80 titre on Hep-2 cells. The next stage comprises 

of scores based on additive weighted criteria, including clinical and immunological domains. 

The criteria are cumulative across the course of disease and do not have to be 

simultaneously present. A positive ANA plus 10 or more points (Table 1), satisfies 

classification for SLE in a research context. Finally, SLICC criteria were developed for 

research classification rather than diagnostic purposes, therefore deviations from criteria 

based on clinical judgements may be applied (6). 
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Table 1. European League Against Rheumatism (EULAR) and American College of 
Rheumatology (ACR) SLE criteria classification (6) 

 

 

  

A positive ANA test of ≥ 1:80 on Hep-2 cells 

        

If positive, continue to additive criteria  

        

Additive criteria  

Must have at least one criterion at least 10 points 

The highest scoring criteria is counted towards final score for each domain 

Clinical domains and criteria        Weight 

Constitutional        

Fever             2 

Hematologic         

Leukopenia      3 

Thrombocytopenia      4 

Autoimmune haemolysis         4 

Neuropsychiatric        

Delirium       2 

Psychosis      3 

Seizure             5 

Mucocutaneous        

Non-scaring alopecia     2 

Oral ulcers      2 

Subacute cutaneous OR discoid lupus    4 

Acute cutaneous lupus         6 

Serosa         

Pleural or pericardial effusion     5 

Acute pericarditis           6 

Musculoskeletal        

Joint involvement            6 

Renal         

Proteinuria >0.5g/24h     4 

Renal biopsy Class II or V lupus nephritis    8 

Renal biopsy Class III or IV lupus nephritis     10 

Immunology domains criteria         

Antiphospholipid antibodies       

Anti-cardiolipin antibodies OR       

Anti-β2GP1 antibodies OR       

Lupus anticoagulant           2 

Complement proteins       

Low C3 OR low C4      3 

Low C3 AND low C4           4 

SLE-specific antibodies       

Anti-dsDNA antibody OR       

Anti-smith antibody           6 
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1.1.2 Treatment of SLE 

SLE is a chronic relapsing and remitting disease, and management aims to control 

symptoms, improving quality of life, reduce the severity of organ involvement caused by 

inflammation and to prevent disease flares. Due to the heterogenetic nature of SLE, 

response to therapy varies widely and treatment approaches must be tailored for individuals. 

Biomarkers to guide treatment course are however, still limited (1).  

The major classes of SLE therapies are glucocorticoids, antimalarial drugs including 

hydroxychloroquine, immunosuppressants such as mycophenolate mofetil and 

methotrexate, and more recent targeted biologic therapies. In 2011, Belimumab was the first 

drug to be licenced for the treatment of SLE (7) however, other therapeutic agents such as 

immunosuppressants and glucocorticoids are used to manage the symptoms. 

Treatment intensity depends on the severity of the disease. For example, current guidelines 

suggest the use of antimalarial drugs in mild skin or joint disease and a more aggressive 

treatment including combination of immunosuppressants and glucocorticoids may be 

necessary for moderate-severe multi system disease and lupus nephritis. Extended 

exposure to immunosuppressants are associated with risks to infections, diabetes and 

osteoporosis (4, 8).  

The established biologic agents used in the treatment of SLE, Rituximab and Belimumab, 

both target B cells and were developed based on overwhelming evidence for the role of B 

cell in the pathogenesis of SLE. They are both monoclonal antibodies that deplete B cells by 

targeting cell surface CD20 (9) and soluble B cell activating factor (BAFF) protein 

respectively (7). However, a significant subset of patients fail to respond to B cell targeted 

therapy and further research into the pathogenesis of SLE has identified new therapeutic 

targets including the development of biologic therapy targeting interferon (IFN) pathway, 

discussed later in the report (8).  
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1.2 SLE Pathogenesis 

1.2.1 Genetic susceptibility  

There is increasing evidence that predisposing hereditable genetic abnormalities contribute 

to the risk of SLE. For example, disease concordance is 25% in monozygotic twins 

compared to 2% in dizygotic twins (1). Moreover, a large nationwide study conducted in 

Denmark from 1977-2013 revealed SLE risk was 10.3-fold higher among first degree 

relatives of affected individuals and 3.6-fold increased with second or third degree relatives 

compared to the general population (10). 

One of the first identified genetic risk loci was within human leucocyte antigen (HLA) class 

proteins also known as major histocompatibility complex (MHC) (11, 12). The other major 

group of SLE risk variants are associated with type 1 IFN (IFN-I) signalling, production and 

response and this is discussed further below (13). 

In combination with genetic susceptibility, environmental triggers such as UV radiation, viral 

infection, smoking, and certain drugs are recognised to initiate autoimmunity (14). 

 

1.2.2 Autoreactive immune response 

SLE is regarded as the breakdown of self-tolerance with the development of tissue injury 

and inflammation as a result of auto-reactive immune cells and autoantibodies. 

Autoantibodies in SLE overwhelmingly target nuclear self-antigens, believed to reflect the 

insufficient clearance of cellular death material, a hallmark of SLE pathogenesis. There are 

over 180 autoantibodies associated with SLE that are mostly complementary to single-

stranded and double-stranded deoxyribonucleic acid (DNA), Ro/La antigens, and ribonuclear 

proteins (15). 

Apoptosis, secondary necrosis, release of extracellular traps upon neutrophil death: NETosis 

and autophagy are among the many cellular death pathways that release cellular nuclear 

material, which then form immune complexes (IC) upon binding with autoantibodies. The 

deposition of ICs in SLE propagates inflammation and tissue injury through complement 

fixation, and activation of diverse immune cells, including dendritic cells. UV exposure (16) 

and recurring infections are the main triggers for SLE cell death pathogenesis and can occur 

in different ways depending on the cell type signal.  

B cells are central to the adaptive immune system and are the main antibody producing cells 

in the humoral response to bacterial or viral pathogens. B cell development begins in the 

bone marrow where pluripotent hematopoietic stem cells mature and differentiate into 

immature B cells and present a unique membrane bound B cell receptor (immunoglobulin M 
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(IgM)) corresponding to specific antigens. Furthermore, B cell maturation takes place in the 

secondary lymphoid organs. Following antigen encounter, B cells are activated through T-

cell dependant or independent mechanisms and a subset of activated cells will ultimately 

differentiate to become antibody producing plasmablasts or long lived plasma cells or 

memory B cells (17).  

The breach of self-tolerance is initiated when autoreactive B cells are generated to recognise 

self-antigen and nuclear components. In normal B cell development, autoreactive B cells 

bind to self-antigens with high affinity and therefore undergo clonal deletion or are rendered 

anergic through a process of negative selection. This process is ignored in SLE (18) and 

ANAs are formed that are complementary to uncleared nuclear material and form ICs in the 

periphery. Of course, self-antigens can never be removed, and ICs are deposited into 

organs such as the kidneys or skin where they promote unwanted immune responses (19). 

 

1.3 IFN biology in SLE 

Interferons (IFNs) are so called, as they have the ability to interfere with viral replication (20) 

and produce an inflammatory response via the innate or adaptive immune system. IFNs also 

act as a signal to neighbouring cells to inform them of an infection, preparing and protecting 

them from further damage. In normal responses, IFNs production reduces when viral 

infections are no longer a threat, however, in SLE, a constant production of ICs 

uncontrollable IFN production. 

Since the 1970’s, IFN-I pathway activation has been implicated in SLE disease activity (21) 

and prompted efforts towards developing IFN-I blockade therapy (22, 23). Several bodies of 

evidence to support the role of IFN-I in SLE pathogenesis: 

Firstly, over half of currently identified genetic susceptibility loci in SLE are related to IFN 

production or pathway (24). For example, variants of IFN-I pathway activation genes have 

been reported in but not limited to IRF5, IRF7, IRF8, STAT4, OPN, IFIH1 and TYK2 (13). 

Additionally, there is a hereditary association with abnormal IFN-I pathway activation genes 

where first degree relatives present with 20% more serum IFN-α than healthy unrelated 

individuals (25). Interestingly, there are no genetic abnormalities with IFN-α itself however, 

there are with the IFN-κ (IFNK) transcript. A genome-wide study revealed associations 

between increased serum IFN-I activity and genetic abnormalities in IFNK identifying other 

types of IFN-I have importance in SLE pathogenesis (26). 

Secondly, in the early 2000’s the term ‘interferonopathy’ was coined, which described 

diseases related to the increased regulation of IFN-I such as Aicardi–Goutières syndrome 
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(AGS) (27). AGS has been associated with a large spectrum of mutations across the TREX1 

gene, a 3’-5’ exonuclease, leading to failure of clearing apoptotic nuclear material thus 

promoting an IFN-I immune response. While these interferonopathies are not identical to 

SLE, they do have common features such as chilblain lupus lesions. In combination to these 

findings, rare monogenic forms of SLE have been associated with single polymorphisms to 

the TREX1 gene, and presents overlapping clinical features of AGS further validating the 

involvement of IFN-I dysregulation in SLE (28, 29). 

Thirdly, high levels of circulating IFN-I in the blood of SLE patients has led to the discovery 

of the IFN signature: the quantification of a group of IFN stimulated genes (ISGs). A high 

IFN-I signature has been reported in the blood and tissues of SLE patients and has been 

proposed as a biomarker to distinguish SLE from other autoimmune diseases, prognosis and 

response to treatment (30). 

Finally, observational studies of IFN-α treated malignancies induced an SLE like disease but 

discontinued when IFN-α therapy stopped. It is therefore no surprise that research has been 

directed into IFN blockade for the treatment of SLE and reagents such as Anifrolumab: a 

monoclonal antibody that blocks the IFN-I receptor that has now been licensed for treatment 

of SLE (31). 

Collectively these provide convincing evidence for the involvement of IFN in SLE 

pathogenesis reveals further targets for therapeutic methods. 

 

1.3.1 Types of IFN 

The three families of IFN: type 1 (IFN-I), type 2 IFN (IFN-II) and type 3 IFN (IFN-III) are 

subdivided due to their unique signalling receptor, protein structure and what cells they are 

secreted by (Table 2).  

IFN-I are the largest family of IFN divided into 5 subtypes (α, -β, -ω, -ε and -κ) and are 

secreted by all nucleated cells (32, 33). All nucleated cells express the IFN-I receptor 

IFNAR1/IFNAR2 and transcribe ISGs with the IFN-stimulated response element (ISRE) as 

their promoter (34) following activation of JAK1/TYK2 and/or STAT1/STAT2 intracellular 

signalling cascades. IFN-γ is the only subclass of IFN-II (34, 35), and is produced by NK, 

NKT and T cells. Like IFN-I receptor, the IFN-II receptor (IFNGR1/IFNGR2) is ubiquitously 

expresses on all nucleated cells and activates intracellular cascades involving STAT1 

homodimers (36). Finally, the 4 subtypes of IFN-III lambda are recognised by the IFNLR1/IL-

10R2 receptor complex and signal via interferon-stimulated gene factor 3 (ISGF3) with more 

restricted expression, predominately on epithelial cells (37, 38).  
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To summarise, all IFN subtypes induce ISG transcription, leading to the activation of innate 

and adaptive immune responses to virus and tumours, or in an autoimmune case, self-

antigen. IFN receptor activation produces pleiotropic downstream effects, with distinct 

overlapping signalling, making the IFN pathway a challenge to study (39). 

Table 2. IFN subtypes: cell secretion and receptor targets 

IFN 

type 

Subtype  Secreted by Receptor Receptor 

expression 

Reference 

IFN-I • IFN-α (further 

divided into 13 

subtypes)  
• IFN-β 

• IFN-ω 

• IFN-ε 

• IFN-κ 

All nucleated cells IFNAR1 / IFNAR2 All nucleated 

cells 

(34) (40) 

IFN-II IFN-γ NK, NKT, T cells IFNGR1 / IFNGR2 All nucleated 

cells 

(35) (34) 

(36) 

IFN-III • IFN-λ1 / IL-29 

• IFN-λ2 / IL-28A 

• IFN-λ3 / IL-28B 

• IFN-λ4 

All nucleated cells IFNLR1 / IL-10R2 Epithelial cells, 

pDCs 

(37) (38) 

IFN: Interferon, IFNAR: Interferon alpha receptor, IFNGR: Interferon gamma receptor, IFNL interferon 

lambda receptor, IL: interleukin, NK: natural killer, NKT: Natural killer T cell, pDC: plasma dendritic 

cell. 

 

1.3.2 IFN-I signalling  

IFNAR1 and IFNAR2 form the heterodimeric transmembrane structure of IFN-I receptor and 

is ubiquitously expressed on nucleated cells (41). IFN-I ligand activation of IFNAR subunit 

associated proteins; tyrosine kinase-2 (TYK2) and Janus tyrosine kinase (JAK1) respectively 

become phosphorylated and, in turn, activate STAT2 and STAT1. Two signalling cascades 

can be activated by i) homodimer formation of STAT1-STAT1 transcription factor binds to 

the IFN-γ activated sites (GAS) (42) or ii) activated STAT1-STAT2 binds to IRF9 to form 

complex interferon-stimulated gene factor 3 (ISGF3) to initiate ISG transcription. Like STAT1 

homodimer, ISGF3 initiates ISG expression but binds to the IFN-stimulated response 

element (ISRE) promoter region instead of GAS (43) and downstream transcription of ISGs 

rely on which promoter region is activated and or type of IFN stimulation. IFN-II also initiates  

STAT1 homodimer signalling pathways through IFNGR1/IFNGR2 stimulation and IFN-III 

initiates ISGF3 activation through IFNLR1/IL-10R2 stimulation creating an overlap of ISG 

expression (44).  

The production of IFN-I acts as an effective tool to fight viral infections by induction of an 

antiviral state of infected and neighbouring cells by upregulation of certain enzymatic ISGs, 
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thus preventing further viral infection. However, dysregulated IFN-I promotes unwanted 

immune responses to autoantibodies in SLE.  

For example, high serum IFN-I initiates IFN priming effects by increasing expression of 

STAT1 and IRF9 in undifferentiated macrophages, which can increase ISG production 

without IFN stimulation (45). Also, there is an increase in B cell survival including induction of 

plasma cell differentiation and class switching of Ig antibodies to favour production of high 

affinity autoantibodies. These autoantibodies create anti-DNA or anti-RNP ICs further 

activating IFN-I production through TLR pathways. Since healthy pDCs produce IFN in 

response to ANA containing ICs, a model in SLE was suggested wherein IFN-I activated 

antigen presenting cells, pDCs, rapidly translate further IFN-I, creating a vicious cycle of IFN-

I production in autoimmunity (46-48). Recent data suggests this may not be the case, 

discussed below. 

 

1.3.3 IFN-I producing cells  

In non-dysfunctional state, IFNs are produced in response to pathogens upon detection of 

viral nucleic acids by pattern recognition receptors on innate immune cells, particularly 

pDCs: bone marrow derived, antigen presenting cells, that have the professional ability to 

produce IFN-I via TLR-7 and -9 signalling that recognise ribonucleic acid (RNA) or DNA 

components of ICs (49, 50).  

In SLE however, recent evidence suggests that IFN production does not originate from pDCs 

as previously believed. For example, experimental autoimmune murine models have shown 

a decrease in circulating pDCs and their ability to produce IFN-I with no migration of pDCs 

into target organs such as kidneys (51). Other SLE human studies have detected no IFN-α 

in any circulating cell subset (52) and that these cells have lost their ability to produce IFN-α 

upon TLR-7 and -9 activation (53). 

Moreover, this hypothesis suggests that in the absence of inflammation, pDCs levels and 

function would expect to be normal. However, studies have shown that the dysfunctional 

pDCs that are present in active SLE are the same as those found in ANA positive At-Risk 

patients that never develop organ inflammation or require treatment (53) and therefore 

suggestion dysfunctional pDCs are independent of inflammation or disease. 

SLE IFN-I production is chronically increased in other tissues, especially the skin compared 

to blood, which may explain the persistent high IFN-I activity. New theories suggest that 

sustained IFN-I production, in particular IFN-κ, seems to be due to a continual response of 

keratinocytes to UV light (54). IFNK expression is significantly increased in lesional skin of 
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patients with cutaneous lupus erythematosus (CLE) and it increases keratinocyte sensitivity 

to UV irradiation (55, 56). In vitro studies of SLE and At-Risk non-lesional skin biopsies 

without signs of cutaneous inflammation, showed a higher IFNK expression with TLR3 and 

RIG-I stimulation (53). Therefore, there is enough data to indicate that skin itself, and not 

infiltrating cells, drives a high IFN-I response is delivered by keratinocytes even at At-Risk 

patients (ANA positive). 

 

1.3.4 IFN targeted therapy 

Given the pleiotropic effects of IFN-I signalling, blocking IFN-I protein or IFN-I receptors has 

versatile therapeutic potential to target autoimmune diseases related to IFN-I over 

production. Clinical trial design has proven difficult, due to the heterogeneity of SLE 

however, there is promise of new therapy, Anifrolumab, an anti-IFNAR1 human monoclonal 

antibody that inhibits all IFN-I signalling (57). Anifrolumab is now licenced in Europe and 

United States of America to treat adults with moderate to severe SLE and is the first drug for 

the treatment of SLE since the approval of Belimumab in 2011 (7). Phase III (Treatment of 

Uncontrolled Lupus via the Interferon Pathway: TULIP-2) clinical trials of Anifrolumab met 

the primary end points by reducing disease activity by 52 weeks compared to placebo (58).  

With the licensing of Anifrolumab, in addition to existing B cell targeted therapy, clinicians 

may now be faced with a choice between different classes of therapy for SLE. It also 

remains to be understood at what stage of the disease and in what sequence these 

therapies will yield maximum clinical benefits for example some patients with strongly IFN-I 

driven disease may benefit from Anifrolumab at an earlier stage before trying conventional 

immunosuppressants. A recent study demonstrated that Anifrolumab is more effective in 

patients with a high interferon gene signature (IFNGS) (59). In order to inform treatment 

decisions, clinicians need robust biomarkers for IFN-I driven disease.  
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1.4 Biomarkers in SLE 

1.4.1 Overview 

A biomarker is defined as “a biological molecule found in blood, other body fluids, or tissues 

that is a sign of a normal or abnormal process, or of a condition or disease” (60) and are 

utilised for clinical diagnosis and therapeutic research (61). There are many established 

biomarkers in cancer biology, used in screening or cancer stage determination (60). For 

example, mutation screening of epidermal growth factor receptor (EGFR) in non-small cell 

lung cancer, determines response to treatment of EGFR inhibitors such as Erlotinib which is 

superior to conventional chemotherapy (62). 

Effective biomarker development could help to resolve several important clinical challenges 

in SLE, for example distinguishing SLE from symptomatically similar disease such as RA 

and Sjogren’s syndrome, assisting early identification of poor prognosis disease from milder 

forms, predicting major organ involvement and disease flares, and importantly, guiding early 

personalised treatment strategies (63). Excluding serum ANA detection and complement 

deficiency, clinical validation of SLE has not yet reached biomarker level. Furthermore, as 

ANAs are present in many of the general population, (2, 64) and negative ANA results of 

some SLE patients (6), improved biomarkers are necessary.  

A comprehensive literature review by Arriens et al recognised numerous pro-inflammatory 

cytokines; TNF-α, IL-1, IL-6, IL-12, IL-17, IL-21 and IL-23 that were found to discriminate 

between SLE and healthy individuals, and although these contribute to understanding 

disease pathogenesis, they have not progressed to clinical application or the focus of new 

drug developments (65).  

Clinically traditional biomarkers i.e., anti-dsDNA and low-level complement are indicative of 

SLE disease activity, but sensitivity and specificity for predicting treatment outcomes and 

organ involvement have been inconsistent. More recently, increased serum BAFF shows 

some potential as novel B cell biomarkers as it positively correlates with serum anti-dsDNA, 

and rising BAFF levels, following rituximab, were closely associated with subsequent flare 

(66). Moreover, discovery of BAFF has allowed drug development of Belimumab, a 

monoclonal antibody targeting and inhibiting BAFF mechanism of action (7).  

Beyond B-cell development focus, there is increasing need to establish biomarkers for 

evaluating IFN-mediated pathways in SLE. There is now promising data in relation to 

measuring ISG transcriptomes reviewed by Fujio et al (67) and many other biomarker that 

utilise transcriptomics with IFN gaining increased prominence. However, given the 

pleiotropic effect of IFN signalling there are  considerable challenges to implementing IFN 



20 
 

biomarkers in clinical practice, and an ongoing EULAR task force is initiating points to 

consider when reporting IFN activity in clinical research (68) discussed later in this report. 

 

1.4.2 IFN signature in SLE 

Since determining serum IFN on a protein level was an insensitive detection method, 

research has moved towards an indirect way of measuring IFN pathway activation: the IFN 

signature. The IFN signature is described as a measurement of a group ISGs and was first 

reported in 2003 by Baechler et al (69). It is either described in a categorical manner as IFN 

‘high’ or ‘low’ or as continuous variable known as an IFN-Score (69, 70). Measuring the IFN 

signature currently has little consensus, and the literature reports various ways of IFN assay 

methodologies (69, 71). 

Unbiased clustering from blood genome wide studies have organised clinically relevant 

transcripts into modules that relate to a particular cell subset or immune function (72). 

Expression levels of certain modules were found to overlap between different diseases, and 

global analysis of all modules were disease specific giving insight into disease pathogenesis. 

In SLE, the IFN signature clustered into 3 different modules: M1.2, M3.2 and M5.12 which 

appear to have varying stability in SLE patients. Module 1.2 is stable over time and induced 

by IFN-I whereas modules 3.4 and 5.12 respond to both IFN-I and -II and are more 

responsive to disease activity levels, reiterating the diversity and complexity of the IFN 

pathway (73). This innovative analysis approach builds on the body of evidence that IFN 

signature is positively correlated to SLE disease activity and progression.  

 

1.4.3 Development of IFN-Scores: Leeds Lupus group  

As microarray analysis used in the initial discovery of the SLE modular transcriptome is 

expensive and time consuming, there is a need for refining and simplifying the quantitative 

measurement if IFN signature for development towards clinical application. Based upon the 

comprehensive description of IFN Modules (M1.2, M3.4 and 5.12) in the SLE blood 

transcriptome by Chiche et al (73), the Leeds Lupus group utilised these findings to build a 

continuous IFN-Scoring system (70).  

A selection of 29 highly expressed genes in SLE from the three IFN modules, with the 

addition of 2 commonly reported ISGs (IFI27, IFI6) were quantified using TaqMan on the 

Fluidigm® platform: a high-throughput fluidics gene expression technology. Statistical factor 

analysis can help reveal unobserved variables that are impacting upon the behaviour of IFN 

annotated modules, and this method was used in this study to determine ISGs score 
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selection. Two factors were shown to account for 84% of variability in IFN status. 26 out of 

31 measured ISGs were clustered into two factors and described as: IFN-Score-A (IFI27, 

IFI44, ISG15, GBP1, IFI44L, IRF7, IFIT1, RSAD2, CXCL10, CCL8, CEACAM1, XAF1); a 

group of ISGs, previously reported in existing literature as typical of the IFN-I signature, and 

IFN-Score-B (IFIH1, LAMP3, NT5C3B, UBE2L6, TAP1, STAT1, SERPING1, SOCS1, 

SP100, TRIM38, IFI16, UNC93B1, BST2, PHF11); a groups of ISGs not so commonly used 

in the literature which may be more dynamically regulated and responsive to other IFN-

subtypes. The remaining genes (CASP1, IFI6, HERC5, EIF2AK2 & MX1) cross loaded into 

both factors and were excluded from IFN-Scores (70). 

Exploration of continuous IFN-Scores proved to be more informative than bimodal (high or 

low) scoring system for stratifying disease. For example, a variation of diagnosis was found 

within the IFN-high and -low groups, with many healthy individuals to be categorised as IFN-

high, when a continuous measurement was able to decipher between diagnostic groups 

(Table 3). 

IFN-Scores were firstly developed in unsorted peripheral blood mononuclear cells (PBMCs) 

and since then, they have been proven useful in whole blood (WB) Tempus™ samples. The 

novel IFN-Score-B has found to be a better predictor of clinical outcomes than classical ISGs 

in IFN-Score-A and details of the findings in PBMCs and WB can be found in the table below 

(Table 3). 

Table 3. Reported findings of IFN-Scores 

IFN-Score-A significant findings IFN-Score B significant findings 

- Differentiates SLE from Rheumatoid 

Arthritis (RA) and HC PBMCs (70) 

 

- Associated with cutaneous and 

haematological SLE PBMCs (70) 

 

- Higher score value in At-Risk non-

lesioned skin than blood PBMCs 

(74) 

- Differentiates SLE and RA from HC 

PBMCs (70) 

 

- Associated with cutaneous and 

haematological SLE PBMCs (70) 

 

- Predicts progression to SLE in ANA 

positive, At-Risk individuals PBMCs 

(74) 

 

- Predicts progression to RA in CCP 

positive individuals PBMCs (75) 

 

- Associated with response to 

Rituximab Whole blood (76) 

 

- Associated with imaging-proven 

synovitis Whole blood (77) 
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1.4.4 EULAR task force  

There is a large body of evidence to suggest that using an IFN signature, albeit type-I and or 

-II, as a biomarker might ultimately assist clinical care, but progress towards adoption in 

clinical settings faces several challenges. Particularly around terminology and unifying 

approaches to ISG selection, measurement and establishing clinical associations. The 

literature reports numerous IFN assay detection methods, however, consensus is needed for 

future research for IFN assays to reach clinical practice. In 2019, a EULAR task force was 

established of a multi-disciplinary team, consisting of 17 members, in order to review 

published data around IFN-I assays and to enable the facilitation of these into clinical 

practice and are listed below. 

A systematic literature review studied published data (up to Oct 2019) that reported IFN-I 

assays in basic and clinical research of RMDs and described the population studied, type of 

assay, material analysed, pathway element, detailed description of method and calculation 

of reported result, validity reliability and feasibility of each method (68). 

It is well known that IFN pathway activation is easily measured via qPCR, so there is no 

surprise that this was the most reported method, although, reporting of IFN-Scores varied. 

For instance, 82/122 studies reported a continuous IFN-Score from a set of ISGs, 30/122 

reported individual gene transcript expression, 4/122 measured IFN protein transcript, 4/122 

reported transcript expression of IFN induced chemokines and 2/122 studies reported 

groups of ISGs in a categorical signature. Within these studies, different combinations of 

ISGs were measured but the rational of ISG choice was not always given. IFN activity was 

verified with secondary methods including comparison of previously published scores, 

validation again IFN-α protein levels using ELISA or SiMoA, and against the expression of 

IFN-stimulated proteins or individual ISGs. Immunoassays, microarray, reported cell assay, 

DNA methylation, flow cytometry, cytopathic effect assay, RNA sequencing, Plaque 

reduction assay, Nanostring and bisulfite sequencing were amongst the other methods 

reported in the literature. 

The collection of evidence lead the panel to develop the following points to consider when 

reporting IFN-I assays (78) [Press release] : 

1. Task force consensus terminology should be considered for reporting IFN assays 

measurement (Table 4). 

2. Existing assays measure different aspects of the IFN pathway; they do not reflect 

the entirety of the pathway, and some are not specific for IFN-I. The most 

appropriate assay will depend on the research or clinical question and should be 

justified. 
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3. Publications on novel IFN-I pathway assays should report whether they specifically 

reflect IFN-I, and to the extent possible, which IFN-I is measured. 

4. For assays that evaluate pathways downstream of the IFN-I receptor (e.g. IFN stimulated 

gene expression or protein scores) the choice of components needs to be justified. For 

gene expression scores, the known subsets of IFN-stimulated genes should be 

described separately. 

5. IFN-I pathway is consistently activated in several RMDs, but assays measuring IFN-I 

pathway activation cannot be currently recommended for diagnostic purposes. 

6. IFN-I pathway assays define more severe subgroups within many RMDs so should be 

considered for stratification studies. 

7. IFN-I pathway activation is associated with disease activity in some RMDs, especially 

SLE and myositis, but its added value in clinical decision-making is uncertain. 

8. IFN-I pathway assays can predict disease exacerbations, in particular flare occurrence in 

SLE patients, but further work should be performed to determine to what extent they 

outperform current instruments. 

9. IFN-I pathway assays might predict progression from pre-clinical autoimmunity to clinical 

disease. 

10. In SLE, IFN-I pathway assays may be useful in predicting response to IFN-I targeting 

therapies. 

11. IFN-I pathway assay results may be affected by some treatments (e.g. IFN-targeted 

therapies and high-dose glucocorticoids), and timing of sample collection should take 

this into account and be reported. 

The continuous two score system (IFN-Score-A and -B) for quantification of IFN pathway 

activation is emerging as a leading candidate biomarker framework for SLE (70, 74-77). The 

work presented, aims to advance the development of these biomarkers, in line with EULAR 

task force recommendations by addressing point 2. The key point to consider is that the IFN-

I pathway is a complex overlapping signalling system, and a IFN assays only capture 

sections of the pathway. ISGs may also be influenced by other non-IFN immune mediators, 

therefore, not all assays will be specific to IFN-I. There is no gold standard for IFN assays, 

however, the EULAR task force recommends reporting the appropriateness of IFN assays 

based on justification of theoretical, experimental, feasibility and clinical evidence 

requirements.  
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Table 4. Task force consensus terminology when reporting IFN-I assay. 

Term Abbreviation Definition 

Interferon IFN 

Proteins with anti-viral activity; IFNs are mediators of 

an anti-viral response. They belong to the Type I, 

Type II and Type III IFN families. 

Type I interferon IFN-I 

The IFNs alpha, beta, omega, kappa, epsilon, 

secreted by any nucleated cell, and binding to the 

IFNAR, which is expressed on any nucleated cell. 

Type II interferon IFN-II 
IFN gamma, mostly secreted by T cells, binding to 

the IFNGR, which is expressed on most leucocytes. 

Type III interferon IFN-III 

IFN lambda, which are structurally more similar to IL-

10 but share downstream signalling and gene 

expression with IFN-I. 

Interferon-stimulated 

genes 
ISGs 

Genes whose expression is known to be upregulated 

by any kind of IFN. Individual ISGs may not 

exclusively represent Type I IFN pathway activation. 

Type I Interferon 

pathway activation 
 

Any evidence for function of the components of the 

Type I IFN pathway. This includes secretion of a 

Type I IFN protein, binding to the IFNAR, initiation of 

JAK/STAT signalling pathways, expression of IFN-

stimulated genes, expression of IFN-stimulated 

proteins. 

Type I interferon 

pathway assay 
 

An assay measuring one or more components of the 

Type I IFN pathway at a molecular or functional level. 

Interferon stimulated 

gene expression 

signature 

 

A qualitative description of coordinated expression of 

a set of ISGs that is indicative of Type I IFN pathway 

activation. 

Interferon stimulated 

gene expression 

score 

 

A quantitative variable derived from expression of a 

defined set of ISGs that is indicative of Type I IFN 

pathway activation. 
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Term Abbreviation Definition 

Interferon stimulated 

protein score 
 

A variable derived from expression of a defined set 

of soluble biomarkers known to be upregulated by 

IFN, although not specific for Type I IFN. 

Interferonopathy  

Monogenic diseases in which there is constitutive 

Type I IFN pathway activation with a causal role in 

pathology. The clinical picture may resemble 

rheumatic musculoskeletal diseases. However, most 

diseases with IFN pathway activation are not 

Interferonopathies. 
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1.5 Hypothesis 

IFN gene expression assays can be refined to improve their ability to stratify autoimmune 

diseases. 

 

1.6 Aims 

The overall aim of this project is to define the optimal IFN gene expression assay for 

adoption into routine clinical laboratories. 

This project aims to address some of the EULAR points to consider with our IFN-Scores. 

Although the IFN-Scores have previously been validated by in vitro stimulation, there are 

several unanswered questions concerning their content and construct, validity and feasibility. 

This report mainly focuses on moving towards simpler sample collection from PBMCs to WB 

Tempus™. 

 

1.7 Objectives 

1.  Assess the effect of sample type on existing IFN-Scores-A and -B by comparing 

paired samples from the DEFINITION study. 

2.  Define the optimal selection of target ISGs for WB samples using factor analysis. 

3.   To determine the most stable WB reference gene panel, robust to influence of IFN-I. 
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Chapter 2: General Materials and Methods 

2.1 Regulatory approval 

Samples were collected under four ethically approved studies outlined below.  

DEFINITION: Defining Interferon Mediated autoimmune conditions, and healthy controls 

were under the ethical approval of CONVAS: Connective Tissue Disease and Vasculitis 

Cohort Cross-sectional and Longitudinal Clinical and Basic Science Evaluation study.  

CONVAS is an observational study based on routine clinical care that allows for collection of 

clinical data imaging and biomarkers on patients with a broad range of connective tissue 

diseases. Ethical approval was granted by Yorkshire and The Humber, Leeds East 

Research Ethics Committee (10/H1306/88). The University of Leeds were contracted with 

the administrative sponsorship.   

USEFUL: Ultrasound Evaluation for Musculoskeletal Lupus, was a prospective observational 

study on patients with lupus arthritis receiving glucocorticoid therapy. USEFUL was 

sponsored by The University of Leeds and, ethical and health research authority approval 

was granted by the Northwest - Greater Manchester Central Research Ethics Committee 

(16-NW-0060). The University of Leeds was contracted with the administrative sponsorship.  

MASTERPLANs: Prediction of Lupus Treatment Response Study, consortium aiming to 

stratify therapy in SLE for which University of Leeds led the workstream for analysis of IFN-

Scores. Samples evaluated were obtained from BILAG-BR: British Isles Lupus Assessment 

Group Biologics Register, a prospective UK-wide registry evaluating the safety and efficacy 

of biologics in SLE, sponsored by the University of Manchester and ethical approval was 

granted by Northwest–Greater Manchester West NRES Committee (REC: 09/H1014/64) and 

UK Health Research Authority (IRAS ref. 24407).  

BRAGGSS: Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate 

study-ethics was approved by the Northwest 6 Central Manchester South Research Ethics 

Committee (COREC  04/Q1403/37) and all patients provided written consent. 

All patients provided written informed consent and these studies were conducted in 

accordance with the principles of the Declaration of Helsinki. 

Table 5 includes number of participants used from each study, sample type used, 

recruitment criteria and where these samples were used in this report. 
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Table 5. Outline of participants in each study  

Study name Number of 

participants 

Sample 

type use 

in 

research 

Recruitment criteria  Relevant 

chapters in 

thesis 

DEFINITION 36 matched 

PBMCs and 

WB (1 failed 

PBMC) 

PBMC & 

Tempus™ 

ANA positive At-Risk 

individuals, SLE active, 

inactive 

All 

USEFUL 96 Tempus™ SLE patients with 

musculoskeletal symptoms 

0 

MASTERPLANS 223 Tempus™ SLE patient due to start a 

biologic 

0 

BRAGGSS 30 Tempus™ RA patients 0 

Healthy controls 10 PBMCs & 

Tempus™ 

Healthy individuals with no 

autoimmune disease 

All 

 

 

2.2 Blood collection and sample processing 

PBMCs: 24mls of blood were drawn from participants directly into EDTA vacutainers and 

processed no longer than 4 hours after collection. PBMCs were separated using LeucoSep 

tubes (Greiner Bio-One): a density gradient centrifugation method. Blood was poured directly 

onto the porous barrier of the LeucoSep tube and centrifuged at 800 x g for 15 minutes at 

room temperature (RT) in a swinging bucket rotor. The brake was set to 0 on the centrifuge 

to avoid the blood layers from mixing after separation. The top layer of plasma was 

discarded by an auto pipette and the enriched PBMCs, seen by eye as a white buffy coat 

layer, was transferred into a new centrifuge tube and washed with 50ml of PBS and 

centrifuged at 300 x g for 10 minutes. The supernatant was discarded, and the pelleted 

PBMCs were treated with red cell lysis buffer (0.89% NH4Cl, 0.1% KHCO3, 0.02% EDTA, in 

ddH2O) at RT for 10 minutes. After incubation, cells were centrifuged at 300 x g for 10 

minutes and washed again with PBS. 2X106 PBMCs were then pelleted down and 

resuspended in 300ul of RNA lysis buffer (Cambridge bioscience; Zymo research) and 

stored at -80oC until RNA isolation was performed.  
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Whole blood: 3ml of blood were drawn from participants directly into Tempus™ Blood RNA 

Tubes (Applied Biosystems™), inverted to thoroughly to mix blood with RNA stabilisers and 

stored at -80oC until RNA isolation was performed. 

 

2.3 RNA isolation 

PBMCs: Total RNA was isolated using the Quick-RNA™ Miniprep Kit (Cambridge 

bioscience; Zymo research): a Clean Spin™ column technology. Firstly, PBMCs in RNA lysis 

buffer were completed thawed and brought to RT before proceeding with the protocol. 

Genomic DNA and cellular debris were removed using the Spin-Away™ Filter. The flow 

through was mixed with 95-100% ethanol in preparation to transfer the mixture to the Zymo-

Spin™ IIICG Column. After the RNA was centrifuged through the column membrane, DNase 

I was pipetted directly onto the membrane and incubated for 15 minutes at RT to remove 

any additional contaminating genomic DNA. The column membrane was washed with RNA 

prep buffer and twice more with RNA wash buffer (containing ethanol) before eluting RNA in 

50ul of DNase/RNase-free water.  

Whole blood: Total RNA was isolated directly from thawed Tempus™ blood via column 

separation using Preserved Blood RNA Purification Kit I (Norgen Biotek, Canada): a column-

based extraction kit. Tempus™ blood was vortexed vigorously with a diluent provided with 

the kit for 30 seconds the centrifuged at 4000 x g for 30 minutes at 4°C in swing bucket 

centrifuge for 30 minutes to pellet the RNA. Supernatant was discarded and the pellet was 

resuspended with lysis solution then mixed with 95-100% ethanol. The mixture was added to 

the column and centrifuged to bind the RNA to the membrane and treated with DNase I 

(Norgen’s RNase-Free DNase I Kit) for 15 minutes at RT. The column was washed with 

wash solution 3 times before eluting the RNA with 100ul elution solution. 

For both sample types, RNA quantity and quality was measured using Nanodrop 1000 

(ThermoFisher Scientific) and stored at -80oC immediately. 

 

2.4 ISG transcript quantification 

Reverse transcription & preamplification of target genes: RNA of <100ng was reverse 

transcribed with a mixture of random and oligo deoxythymidine primers (Fluidigm® Reverse 

Transcription Master Mix) using the thermocycler settings in Table 6. Next, the copied DNA 

(cDNA) was pre-amplified with ISGs and housekeeping genes, see Table 9 for TaqMan 

assay ID information. A pooled assay mix was created with addition of 1X Tris-Hydrochloric 

acid Ethylenediaminetetraacetic acid (TE) buffer (Promega) to be a final concentration of 
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0.2X which was then combined with cDNA and Preamp Master Mix (Fluidigm®). Pre-

amplification was performed using 14 cycles (Table 7) and the product was diluted 1:5 with 

TE buffer.  

Table 6. Thermal cycler settings for reverse transcription 

Temperature Time Condition 

25 5 minutes Pre-anneal of primers 

42 30 minutes Reverse transcription 

85 5 minutes Denature enzyme 

4 ∞  

  

Table 7. Thermal cycler settings for preamplification of target genes 

Temperature Time Cycles  Condition 

95 2 minutes 1 Initial denaturation  

95 15 seconds 
14 

Denature cDNA 

60 4 minutes Anneal & extension 

4 ∞   

 

Set up of integrated fluidic circuit (IFC) gene expression array: Pre-amplified target 

cDNA was prepared with gene expression sample loading reagent (Fluidigm®) and TaqMan 

universal master mix (Applied Biosystems). In addition, TaqMan assays were prepared with 

assay loading reagent (Fluidigm®). PBMCs stimulated with high concentrations of IFNs were 

used as a positive control along with ‘no template control’ and ‘no reverse transcriptase’ as 

negative controls. Samples and TaqMans were loaded on a Fluidigm® 96.96 Dynamic 

Array™ integrated fluidic circuit IFCs chip and gene expression assays were performed 

using the BioMark™ HD System gene expression Standard v1 programme (Table 8).  

Real time qPCR analysis: IFC runs were analysed on the Fluidigm Real-Time PCR 

Analysis software and cycle threshold (Ct) values were automatically determined using user 

detector thresholds. 
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Table 8. Real Time PCR BioMark™ HD System gene expression Standard v1 programme 

 

Table 9. ISG TaqMan assay IDs (Applied Biosystems) 

IFN-
Score- 

Abbreviation Gene Name Function TaqMan Assay ID 

A CCL8 C-C Motif Chemokine 
Ligand 8 

Chemotactic 
factor 

Hs04187715_m1 

A CEACAM1 Carcinoembryonic 
Antigen-Related Cell 
Adhesion Molecule 1 

Cell-cell 
adhesion 
molecule  

Hs00989786_m1 

A CXCL10 C-X-C Motif 
Chemokine Ligand 10 

Th1 
proinflammator
y 

Hs01124251_g1 

A GBP1 Guanylate Binding 
Protein 1 

Anti-viral Hs00977005_m1 

A IFI27 Interferon Alpha 
Inducible Protein 27 

Apoptosis 
signally 
pathway 

Hs01086373_g1 

A IFI44 Interferon Induced 
Protein 44 

Cytoskeleton  Hs00951349_m1 

A IFI44L Interferon Induced 
Protein 44 Like 

Anti-viral Hs00915292_m1 

A IFIT1 Interferon Induced 
Protein With 
Tetratricopeptide 
Repeats 1 

Anti-viral Hs01911452_s1 

A IRF7 Interferon Regulatory 
Factor 7 

Binds to ISRE Hs01014809_g1 

A ISG15 ISG15 Ubiquitin Like 
Modifier 

Chemotactic 
factor 

Hs00192713_m1 

A RSAD2 Radical S-Adenosyl 
Methionine Domain 
Containing 2 

Anti-viral Hs00369813_m1 

A XAF1 X inhibitor of 
apoptosis Associated 
Factor 1 

Inhibitor of 
apoptosis 

Hs01550142_m1 

B BST2 Bone Marrow Stromal 
Cell Antigen 2 

Development of 
B Cells 

Hs01561315_m1 

Temperature Time  Cycles Condition 

50 2 minutes 1 

Thermal mix 70 30 minutes 1 

25 10 minutes 1 

50 2 minutes 1 UNG 

95 10 minutes 1 Hot start 

95 15 seconds 
40 

Denaturation 

60 1 minute Annealing 
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IFN-
Score- 

Abbreviation Gene Name Function TaqMan Assay ID 

B IFI16 Interferon Gamma 
Inducible Protein 16 

Inhibits cell 
growth 

Hs00194261_m1 

B IFIH1 Interferon Induced 
with Helicase C 
Domain 1 

Anti-viral Hs01070332_m1 

B LAMP3 Lysosomal 
Associated 
Membrane Protein 3 

Plays a role in 
dendritic cells 
(adaptive 
immunity) 

 

Hs00180880_m1 

B NT5C3B 5'-Nucleotidase, 
Cytosolic IIIB 

5'-nucleotidase 
activity 

Hs00369454_m1 

B PHF11 PHD Finger Protein 
11 

Th1 
proinflammator
y 

Hs00211573_m1 

B SERPING1 Serpin Family G 
Member 1 

Complement 
cascade 
regulator 

Hs00163781_m1 

B SOCS1 Suppressor Of 
Cytokine Signalling 1 

Negative 
feedback of 
cytokine 
signalling  

Hs00705164_s1 

B SP100 SP100 Nuclear 
Antigen 

Tumour 
suppressor 

Hs00162109_m1 

B STAT1 Signal Transducer 
and Activator Of 
Transcription 1 

Induces ISG 
transcription  

Hs01013996_m1 

B TAP1 Transporter 1, ATP 
Binding Cassette 
Subfamily B Member 

Antigen 
transport for 
MHC class I 
signalling  

Hs00388675_m1 

B TRIM38 Tripartite Motif 
Containing 38 

inhibiting TLR3-
mediated type I 
interferon 
signalling 

Hs00197164_m1 

B UBE2L6 Ubiquitin Conjugating 
Enzyme E2 L6 

Degrades 
abnormal 
proteins 

Hs01125548_m1 

B UNC93B1 Unc-93 Homolog B1, 
TLR Signalling 
Regulator 

Regulates TLR 
signalling  

Hs00276771_m1 

Cross 
Loadin
g 

HERC5 HECT And RLD 
Domain Containing 
E3 Ubiquitin Protein 
Ligase 5 

Anti-viral Hs00180943_m1 

Cross 
Loadin
g 

IFI6 Interferon Alpha 
Inducible Protein 6 

Regulates 
apoptosis 

Hs00242571_m1  

Cross 
Loadin
g 

MX1 MX Dynamin Like 
GTPase 1 

Anti-viral Hs00895608_m1 



33 
 

IFN-
Score- 

Abbreviation Gene Name Function TaqMan Assay ID 

Cross 
Loadin
g 

CASP1 Caspase 1 Cleaves and 
activates other 
cytokines 

Hs00354836_m1 

Cross 
Loadin
g 

EIF2AK2 Eukaryotic 
Translation Initiation 
Factor 2 Alpha Kinase 
2 

Anti-viral Hs00169345_m1 

 

 

2.5 Calculation of IFN-Scores 

Ct values were exported from the real-time PCR software and undetected Ct values were 

singly imputed using the R package ‘nondetects’. 

For Chapters 3 and 4, delta Ct gene expression was normalised to PPIA (TaqMan ID: 

Hs99999904_m1), and IFN-Scores were determined by the median value of all ISGs in the 

score (Table 9). Calculations of IFN-Scores are described separately in Chapter 5. Finally, to 

better visualise IFN-Scores, delta Ct values were reflected by multiplying the value by -1. 

This means that the higher the value the higher the expression and vice versa. 

 

2.6 Statistical analysis 

All graphs were created in GraphPad Prism software 9.3.1. Statistical analyses of Pearson’s 

correlation and Bland-Altman plots were also analysed in GraphPad Prism. Independent T 

tests were calculated using SPSS and R software and packages were used for factor 

analysis. Details of each tests are described in each Chapter methods section.



34 
 

Chapter 3: Comparison of IFN-Scores Between PBMC 

and Whole Blood Sample Types 

3.1 Background 

Continuous IFN-Score-A and -B were first published in 2018 (70) using unsorted PBMCs 

and, as previously discussed, they show promise as IFN biomarkers with strong associations 

with several important clinical outcomes in SLE (70, 74). Compared to isolated PBMCs, WB 

samples obtained in RNA stabilising Tempus™ collection system is much simpler and 

quicker processing technique and thus may be more accessible for development as a clinical 

platform.  

For example, benefits of using a WB sample type over PBMCs includes clear advantages for 

blood processing and storage: freshly drawn blood into Tempus™ or PAXGENE tubes can 

be stored directly at -80oC for up to 6 years (79). The manufacturer also states that RNA will 

be stable at room temperature for up to five days, allowing option to transport samples to 

laboratories for processing using regular mail services, or even international shipping.  

In contrast, PBMCs must be processed within 4 hours, or an excess of cellular apoptosis can 

lead to degradation in RNA integrity. Moreover, on site laboratory facilities and specialised 

expertise are required to isolated PBMCs and this process can take up to two hours. PBMCs 

require long term storage in a liquid nitrogen facility (≤-150oC) (80). Alternately, isolated 

PBMCs can be stored in RNA lysis buffer at -80oC before RNA extraction. These additional 

considerations will ultimately impact upon operating costs and wider availability as a clinical 

assay.   

 

3.2 Objective 

To assess whether PBMC and WB sample types can be used interchangeably to calculate 

existing IFN-Scores-A and -B. 
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3.3 Methods 

3.3.1 Sample inclusion and sample processing  

For this series of experiments, paired PBMCs and WB obtained at the same blood draw 

were analysed from 45 subjects enrolled in the DEFINITION study. To evaluate IFN-Scores 

across the range of disease, subjects with baseline active SLE (n=12), inactive SLE (n=10), 

At-Risk progressors (n=6), At-Risk non-progressors (n=7) and healthy donors (n=10) were 

included (Table 5). PBMC and WB Tempus™ sample collection and RNA extraction was 

carried out as per section 2.3. 

 

3.3.2 Gene transcript quantification 

Thirty-one ISGs (Table 9) gene transcripts plus reference gene PPIA were quantified by 

TaqMan Fluidigm as described in section 2.4 and IFN-Score-A and -B were calculated as 

described in section 0. IFN-Score are represented as reflected scores (score multiplied by -

1) so that numerically higher scores represent higher expression, while preserving the 

original distribution. 

 

3.3.3 Statistical analysis  

Statistical analysis and graphs were performed and created using GraphPad Prism version 

9.3.1. Box and whisker plots show the median, interquartile ranges, and minimum and 

maximum values with paired t-test assessing IFN-Score-A and -B differences between 

PBMC and WB sample types.  

The relationship of IFN-Score-A and -B from 45 matched PBMC and WB samples were 

compared, and Pearson’s correlation calculated the correlation coefficient (R) to determine 

the strength of the relationship comparing the two sample types, where r=1 / -1 is perfect 

positive / negative correlation and r=0 is no correlation between sample types. 

Bland-Altman were used to visualise and assess the agreement and differences between 

IFN-Score-A and -B in PBMC and WB sample types. Values were plotted by the average of 

the two measurements (x-axis) and the difference of the two measurements (y-axis). Perfect 

agreement is when there is no difference between the two sample types and the bias=0. 

Points scatters with a consistent spread across values represent a systematic difference. 

Details of samples and comparisons are noted in respective figure legends.  
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3.4 Results 

Comparison of IFN-Score-A and -B in PBMC and WB sample types revealed that WB has a 

significantly higher mean expression compared to PBMCs (p<0.0001). Mean IFN-Score-A 

expression in PBMCs was -5.14 (1.95) Vs. -3.70 (2.08) in WB. Mean IFN-Score-B 

expression in PBMCs was -4.68 (0.72) Vs. -3.45 (0.73) in WB (Figure 1). 
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Figure 1. IFN-Score-A and -B display an overall higher expression in Tempus™ whole blood 

compared to PBMCs. 45 matched PBMCs and WB samples calculated a) Reflected IFN-Score-A 

and b) Reflected IFN-Score-B. Box and whisker plots display median, interquartile ranges and 

minimum and maximum values. Paired t-test calculated the significance between the two sample 

types, p values displayed on the graph. 

Pearson’s correlation was calculated to see whether a standardised difference could be 

identified and used to convert between the sample types (Figure 2). IFN-Score-A displays a 

strong correlation between sample types (r=0.93, p<0.0001, Figure 2a) however a weaker 

correlation was found with IFN-Score-B (r=0.45, p=0.0019, Figure 2b). Although the 

correlation was significant in both IFN-Scores, this alone is not enough to calculated 

agreement between sample types as they do not measure the differences between each 

point, and there was still substantial disagreement. The difference between sample types 

was more consistent for IFN-Score-A than -B. 

Bland-Altman is a method that is used to assess the agreement between two clinical 

measurement methods (81) and therefore has been used in determining the bias between 

the mean difference in this data (Figure 3). Perfect agreements (solid line) between sample 

types were not expected. 

The bias of IFN-Score-A in PBMCs vs. WB was -1.44 (upper LOA=0.08, lower LOA= -2.96, 

Figure 3a) reflected delta Ct and -1.23 (upper LOA=0.26, lower LOA =-2.73, Figure 3b) in 

IFN-Score-B in PBMCs vs. WB. The variation in LOA is relative to the range of the values 

and the size of the bias for both scores and for IFN-Score-A, the bias is more systematic. 
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Figure 2. PBMC and Tempus™ whole blood have a stronger relationship in IFN-Score-A than 

IFN-Score-B. Comparison of 45 match PBMCs vs. WB samples in a) Reflected IFN-Score-A and b) 

Reflected IFN-Score-B. The dotted line represents perfect correlation, and the solid line represents 

the regression line of the points on the graph. Pearson’s correlation calculated the r and p values 

displayed on each data set. 
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Figure 3. Bland-Altman plots determine limits of agreement of IFN-Score between PBMC and 

WB sample types. Agreement of IFN-Scores in 45 match PBMCs and WB: a) IFN-Score-A and b) 

IFN-Score-B. The average value was plotted against the difference between both sample types for 

each sample (n=45). The solid line (y=0) represents perfect agreement, the thick dotted black line 

represents the bias, and the smaller dotted lines represent the upper and lower limits of agreement, 

indicated on the graph. 
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3.5 Discussion 

Key results 

WB sample type is a more technically feasible way of processing IFN-I assays in clinical 

settings. Since clinical validation of IFN-Score-A and -B to date has been performed using a 

PBMC sample type (70, 74) this work set out to compare IFN-Scores between sample types 

to test how readily measurement using WB samples might be used interchangeably with 

PBMC data. This analysis revealed the following: 

1. WB sample type produced significantly higher IFN-Score-A and -B expression 

compared to a PBMC sample type. 

 

2. Comparisons between different sample types showed strong positive correlation in IFN-

Score-A with apparent systematic agreement. However, there was only a weak positive 

correlation in IFN-Score-B. 

 

Collectively these results indicate that IFN-Score-A could potentially be used in WB samples 

with further investigation. However, agreement between PBMC and WB sample types in 

IFN-Score-B was limited. 

Context with other data 

Firstly, there are key differences between PBMCs and WB. In a study of 8 mild asthmatics, 

He et al found that 704/730 transcripts had higher expression levels in matched WB samples 

compared to PBMCs, and WB transcript measurements were less variable (84). Additionally, 

PBMCs lack the presence of polymorphonuclear leukocytes (PMN) such as neutrophils, 

eosinophils, platelets, reticulocytes, and red blood cells. In particular, neutrophils are the 

most abundant PMNs in non-disease, and levels increase in active SLE compared to healthy 

(82). Whitney et al, discovered that ~2000 gene transcripts to have at least a 2-fold change 

between PBMC and WB sample types that were associated with various cell types (83).  

Furthermore, since all nucleated cells respond to IFN-I, greater quantification of transcripts in 

WB is expected with their greater repertoire of cells (34).   

The disagreement of IFN-Score-B between sample type was the most distinctive result. One 

explanation to this could be that neutrophil ISG expression is influenced by alternative IFN 

signalling cascades to other immune cells in PBMCs. For example, IFN-I, -II and -III 

signalling cascades activate pleiotropic downstream effects, with distinct overlap in gene 

transcription (39). IFN-Score-B uniquely contains ISGs from module M5.12 which were 

found to be induced by IFN-II (IFN-γ) as well as IFN-I (73). To support this, Ellis et al, 
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reported that PMNs signalled via STAT1 and STAT3 transcription factors upon IFN-γ 

activation which was not witness in other cell types (84).  

In line with neutrophils dominating WB cellular components, Coit et al discovered there were 

significant demethylation of ISG CG sites (upregulated due to increased access to the gene) 

in SLE neutrophils in contrast to healthy control neutrophils (85), which could potentially 

explain the dissimilarities between PBMC and WB in IFN-Score-B. Additionally, M1.2 ISGs, 

unique to IFN-Score-A, are longitudinally stable due to epigenetic changes, and the strong 

correlation between sample types suggest that this is true across difference cell types (73, 

86). 

IFN-Score-A and -B were previously analysed in sorted PBMC cell subsets. The balance of 

IFN-Score-A and IFN-Score-B didn’t seem to differ between subsets, although there was a 

higher expression in some subsets, especially monocytes in both SLE and healthy (70). 

Studies of isolated neutrophils reveal that ISGs were upregulated in patients with active 

Tuberculosis compared to healthy control (87), suggesting that neutrophils influence a higher 

IFN-Score that is seen in WB compared to PBMCs SLE. 

Moreover, there is plenty of evidence that demonstrates the importance of neutrophils in 

SLE pathogenesis especially through their cellular death process, NETosis which is 

heightened in SLE compared to healthy. During this process, extracellular traps are released 

that contain nuclear material, initiating further immune response and IFN production (82). 

There has been a continuous discussion in the literature regarding low density neutrophils to 

play a part in SLE pathogenesis. Although, low density neutrophils are isolated along with 

PBMCs as it suggests in their name and therefore does not support arguments towards 

differences between PBMC and WB ISG expression. However, studies comparing low and 

normal density neutrophils (present in WB only) show higher expression of IFN-I and -II ISGs 

compared to immature, low density neutrophils, which are present in PBMCs (88). This 

suggests that activation of ISGs are upregulated upon terminal maturation stages of mature 

neutrophils (only present in WB). 

Theories of increased neutrophil ISG expression by influences of epigenetics and varying 

IFN signalling pathways have not been evaluated in this study. However, reinterrogation of 

ISGs could account for unexplained variants, discussed in the next chapter. 

Limitations 

A limitation of this study is that variables such as age, sex, ethnicity, different diseases, 

measure of full blood count haven’t been accounted for in the way they might influence ISG 

expression.  
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Future Work 

A true explanation of why sample types do not correlate in IFN-Score-B may be complex to 

investigate, requiring, further studies into measurement of IFN-Scores for each cell subset. 

Furthermore, it is disappointing to see that the most clinically relevant IFN-Score-B cannot 

simply be interchanged between sample types. Therefore, the recognised approach, factor 

analysis as used initially for IFN-Score-A and -B will be applied to a WB cohort to detect 

other unmeasured variables described in the next chapter. 

Conclusions: 

When reviewing the literature, researchers need to be aware of sample type description, as 

this data suggests assay measurements cannot always be interchangeable. These results 

raise questions about the contribution of neutrophils to the IFN-Score, and whether that has 

special pathogenic significance. The data suggests there are unmeasured variables which 

account for differences in PBMCs and WB ISGs and these appear most marked for the IFN-

Score-B genes than IFN-Score-A.  

In clinical practice and multicentre trials, it is more feasible to collect WB samples. IFN-

Scores must therefore be developed and validated for that specific sample type. Next, the 

measurement of ISGs in WB is explored in the same way that PBMC IFN-Scores were 

previously discovered.  
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Chapter 4: IFN-Scores in Whole Blood: Factor Analysis 

4.1 Background 

Previous work has shown that two-scores (IFN-Score-A and-B) derived from genes selected 

from previously defined IFN modules (73) were able to differentiate between various clinical 

subsets (Table 3) (70). IFN-Score-A consisted of 12 classically reported ISGs whereas IFN-

Score-B included 14 less frequently reported ISGs (Table 9). Moreover, IFN-Score-B has 

sparked particular interest due to predicting disease progression and response to therapy 

(74, 76). 

Analysis of IFN-Scores using a WB platform is desirable for development of clinical assays 

due to a range of technical considerations discussed earlier in this report. The development 

of IFN-Score-A and-B was carried out in PBMCs however, this report indicates insufficient 

alignment between IFN-Scores, particularly IFN-Score-B, measured in WB and PBMCs (70).  

This suggests a new arrangement of ISGs may be required in a WB sample type. Therefore, 

this chapter uses factor analysis, as applied in the original development of IFN-Score-A and 

B (70) to establish whether a two factor system can sufficiently describe ISG activity in WB.   

It is essential that any clinically applicable potential SLE biomarker can reliably differentiate 

SLE from healthy individuals but also from other related autoimmune diseases. Rheumatoid 

arthritis (RA) is a chronic inflammatory autoimmune disease, with symptoms mainly involving 

painful and swollen joints but it can also involve constitutional upset, fatigue and lung 

involvement which may overlap symptomatically with SLE. Not only do RA and SLE 

demonstrate similar clinical features but both display an upregulated IFN signature (89, 90). 

When IFN-Score-A and -B were created, factor analysis included SLE, RA and healthy 

controls which can influence factor clustering of underlying factors and they displayed a 

difference between SLE and RA (70), therefore this chapter will extend to evaluate subjects 

with SLE and RA as well as healthy subjects. 

 

4.2 Objective 

To use factor analysis to discover new IFN-Scores in WB and explore how these relate to 

known PBMC IFN-Scores and patient groups. 
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4.3 Methods 

4.3.1 Sample inclusion and sample processing  

For this section of the report, 342 established SLE patients from the MASTERPLANS, 

USEFUL and DEFINITION, 6 baseline At-Risk progressors, 7 baseline At-Risk non-

progressors, 30 RA patients and 10 healthy donor WB samples were utilised in factor 

analysis and 45 PBMCs from DEFINITION study were used in sample comparison analysis 

(Figure 4). Studies are described in more detail in in section 2.1. WB Tempus™ and PBMC 

sample collection and RNA extraction was carried out as per section 2.3. 

 

4.3.2 Gene transcript quantification 

The same 31 ISGs (Table 9) gene transcripts, as evaluated in the initial development of IFN-

Score-A and -B in PBMCs were re-quantified here in WB, in addition to reference gene 

PPIA. Gene expression was quantified by TaqMan Fluidigm, as described in section 2.4 and 

IFN-Score-A and -B were calculated as described in section 0. IFN-Score are represented 

as reflected scores (score multiplied by -1) so that numerically higher scores represent 

higher expression, while preserving the original distribution. 

 

4.3.3 Factor analysis 

Factor analysis is a statistical approach for exploring the underlying structure of the data and 

to determine whether a reduced number of latent (not directly observed) variables could 

describe the variation in the data (91) and was used in pool samples of SLE, ANA positive 

At-Risk, RA and healthy individuals as described in section 4.3.1. Undetected delta Ct 

values were singly imputed using the R ‘nondetects’ package (92) and adequacy of the 

sample size was established using the Kaiser-Meyer-Olkin measure (‘KMO’ R function in the 

‘psych’ R package), where a score greater than 0.5 is sufficient in sample sizes above 300 

(93). Correlation within the data was explored using the ‘ggcorrplot’ R function in the 

‘ggcorrplot’ package and Barlett’s test of sphericity using the R function ‘cortest.bartlett’ in 

the ‘psych’ package (94, 95). The ‘det’ R function in base R was used to calculate the 

determinant of the correlation matrix and ISGs were removed based on minimising the 

squared multiple correlation until the determinant was above 0.00001.  

Horn's Parallel Analysis was carried out using the ‘paran’ R function in the ‘paran’ R package 

to determine the optimal number of factors to retain, however if fewer factors than 

recommended explained a high percentage (~80%) of the variation the simpler solution was 

selected (96). A promax rotation was applied to the final solution using the ‘fa’ R function in 
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the ‘psych’ package and ISGs with a factor loading less than 0.4 on all factors were 

removed. The process was repeated until the final solution contained ISGs with a loading of 

greater than 0.4 on at least one factor. 

A score for each of the final factors was then constructed by taking the ISGs that were 

loaded above 0.4 on each respective factor and summing the median ∆Ct values of those 

ISGs. Any ISGs that loaded greater than 0.4 on more than one factor were considered to be 

cross loaded and was not included in the construction of the scores. 

 

4.3.4 Statistical analysis  

The relationship between newly developed IFN-Score(s), in 45 PBMC and WB sample 

types, were explored using Pearson’s correlation coefficient (r), correlation plots and Bland-

Altman plots. 

Old and new IFN-Scores were calculated in 395 WB samples and relationships between 

each IFN-Score were analysed using Pearson’s correlation coefficient (r) and correlation 

plots. 

To analyse the clinical relevance of the new WB IFN-Score(s), differences between Healthy, 

SLE and RA diagnostic groups, were determined by Hedges’ g* effect size which is 

recommended when equal variances are not assumed. Results were obtained from an 

online calculation platform which was created by the authors of this method for those who 

are not familiar with using statistical software, R, and can be found here: 

https://effectsize.shinyapps.io/deffsize/ (97). Effect sizes ≤0.2 were considered small 0.5 > 

0.8 were considered medium and ≥0.8 were considered large.

https://effectsize.shinyapps.io/deffsize/
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Figure 4. Consolidated Standards of Reporting Trials (CONSORT) diagram of samples included in exploratory factor analysis. *Technical replicate 

and **overlapping patient samples removed according to run date (earlier run retained).  
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4.4 Results 

4.4.1 Whole blood factor analysis reveals distinct two-scores for whole blood 

ISG expression 

Factor analysis in PBMCs initially described a two-factor system for describing ISG 

expression in the form of IFN-Score-A and -B. In order to determine whether an IFN-

Score(s) could be developed using WB, factor analysis was therefore performed on the 

same TaqMan quantified 31 gene set in WB to understand underlying variables that might 

be affecting IFN pathway activity. 

TaqMan quantified 31 ISGs (Table 9) to determine whether the gene expression values of 

multiple genes were driven by unobserved (latent) continuous variables by factor analysis. 

Kaiser–Meyer–Olkin (KMO) values of 0.96 confirmed sample size adequacy of factor 

analysis and Bartlett’s test of sphericity confirmed correlation between genes (p<0.001). To 

achieve correlation matrix determinant greater than 0.00001, 18 genes were removed based 

on minimising the squared multiple correlation (HERC5, IFI44, RSAD2, UBE2L6, XAF1, 

IFI16, STAT1, MX1, EIFAK2, IRF7, TAP1, SP100, IFI44L, IFIH1, SERPING1, UNC93B1, 

PHF11, IFIT1). Horn's Parallel Analysis suggested that 6 factors be retained however 91% 

variation was explained by two factors and so the simpler solution was retained. An oblique 

rotation was applied and resulted in 2 genes being removed for loading less than 0.04.  

The process was then repeated on the reduced set of genes; the determinant was above 

0.00001 and KMO = 0.89. Horn's Parallel Analysis suggested that 4 factors be retained 

however 97% variation was explained by two factors and so the simpler solution was again 

retained. Oblique rotation was again applied, and all genes had loadings greater than 0.04 

on one or both of the retained factors.  

From the 31 ISGs quantified, the two-factor solution derived in this WB analysis comprised a 

reduced gene set to those initially included in PBMC IFN-Score-A and IFN-Score-B. The 

resulting WB two factor system was therefore denoted as IFN-Score-C and IFN-Score-D 

(Table 10). 

CCL8 loaded most strongly onto IFN-Score-C and CASP1 loaded the most onto IFN-Score-

D. BST2 and GBP1 were cross loaded and excluded from both factors. Table 10 displays 

the ISGs loaded into each factors along with the eigenvalues.  
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4.4.2 Comparison of PBMC and novel whole blood IFN-Scores 

Compared to IFN-Score-A and -B developed and validated in PBMC sample type, the IFN-

Score-C and -D system identified here in WB, utilises fewer ISGs in each score: five ISGs in 

IFN-Score-C and four ISGs in IFN-Score-D (Table 10). 

IFN-Score-C closely aligns with IFN-Score-A in that IFN-Score-C shares 4/5 ISGs with IFN-

Score-A: CCL8, CXCL10, IFI27 and ISG15, and LAMP3 previously clustered to IFN-Score-

B. IFN-Score-D comprises 2/4 ISGs shared with IFN-Score-B: SOCS1 and TRIM38, one ISG 

with IFN-Score-A CEACAM1 and CASP1 did not correspond with either of the original IFN-

Scores. 

The 31 genes analysed in the development of IFN-Scores were selected from three IFN-

annotated modules described in a modular analysis of the blood SLE transcriptome by 

microarray (73). To further understand how closely the novel IFN-Score-C and -D system for 

WB corresponds to the original IFN-Score-A and -B derived in PBMCs, the modular origin of 

the composite genes were compared between IFN-Scores-A and-B, and IFN-Scores-C and -

D. Similarities in the parent modules of IFN-Score genes supports the resemblance between 

IFN-Score-A to IFN-Score-C and between IFN-Score-B and IFN-Score-D (Table 11). IFN-

Score-A and -C contain ISGs in modules M1.2 and M3.4. As suggested by the lower number 

of overlapping genes comprising IFN-Score-D and IFN-Score-B, the resemblance between 

these appears less than that of IFN-Score-A and IFN-Score-C. Although, IFN-Score-B does 

not fully align with IFN-Score-D, both contain ISGs mainly from M5.12 and M3.4 and only 

IFN-Score-B consists of ISGs from M1.2.  

  



48 
 

Table 10. Whole blood factor analysis: ISG Eigenvalues values. Values highlighted in green 

indicate the ISGs included in IFN-Score-C and values highlighted in orange indicate ISG included in 

IFN-Score-D. BST2 and GBP1 were cross loaded and excluded from further analysis. 

Gene Factor 1: IFN-Score-C 

Eigenvalues 

Factor 2: IFN-Score-D 

Eigenvalues 

BST2 0.441 0.527 

CASP1 -0.084 0.934 

CCL8 1.008 -0.296 

CEACAM1 0.006 0.887 

CXCL10 0.797 -0.078 

GBP1 0.419 0.508 

IFI27 0.836 0.031 

ISG15 0.655 0.237 

LAMP3 0.729 0.202 

SOCS1 -0.154 0.58 

TRIM38 0.226 0.726 
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Table 11. Modular comparisons of ISGs in each IFN-Score 

 
Module IFN-Score-A IFN-Score-B IFN-Score-C IFN-Score-D 

BST2 5.12 
 

* 
  

CASP1 5.12 
   

* 

CCL8 3.4 * 
 

* 
 

CEACAM1 3.4 * 
  

* 

CXCL10 1.2 * 
 

* 
 

EIF2AK2 3.4 
    

GBP1 3.4 * 
   

HERC5 1.2 
    

IFI16 5.12 
 

* 
  

IFI27 - * 
 

* 
 

IFI44 1.2 * 
   

IFI44L 1.2 * 
   

IFI6 - 
    

IFIH1 1.2 
 

* 
  

IFIT1 1.2 * 
   

IRF7 3.4 * 
   

ISG15 1.2 * 
 

* 
 

LAMP3 1.2 
 

* * 
 

MX1 1.2 
    

NT5C3B 5.12 
 

* 
  

PHF11 5.12 
 

* 
  

RSAD2 1.2 * 
   

SERPING1 1.2 
 

* 
  

SOCS1 3.4 
 

* 
 

* 

SP100 5.12 
 

* 
  

STAT1 3.4 
 

* 
  

TAP1 5.12 
 

* 
  

TRIM38 5.12 
 

* 
 

* 

UBE2L6 3.4 
 

* 
  

UNC93B1 5.12 
 

* 
  

XAF1 1.2 * 
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4.4.3 Comparison of PBMC and whole blood sample types in newly developed 

whole blood IFN-Scores 

As sample type comparisons in IFN-Score-A and -B, revealed that IFN-Score-B correlated 

poorly between PBMC and WB sample types, the new WB derived IFN-Score-C and -D 

were also compared between PBMC and WB sample types of 45 matching samples from the 

DEFINITION study.  

As presented in the previous chapter, there was a positive correlation between PBMCs and 

WB in IFN-Score-A, but a much less convincing relationship was seen in IFN-Score-B 

across sample types. Overall, the correlation between different sample types in IFN-Score-C 

and -D appeared slightly less well preserved across sample types. IFN-Score-C showed a 

positive correlation between sample types (r=0.77, p<0.001, Figure 5a) and there was a 

weaker positive relationship with IFN-Score-D (r=0.30, p=0.0419, Figure 5b).  

Analysis of agreement using Bland-Altman agreement plots, showed a weak degree of 

agreement for IFN-Score -C (Bias=-1.74, upper LOA=1.22, lower LOA=-4.70, Figure 5c). 

When there is an overall lower average between sample types, WB expression is higher and 

when there is an overall higher average between sample types, PBMC expression is higher. 

IFN-Score-D had a bias of -1.62, upper LOA of 0.20 and a lower LOA of-3.44, Figure 5d). 

Collectively, these findings indicate that, like IFN-Score-A and -B, the novel WB derived IFN-

Score-C and -D cannot be interchanged between sample types and further suggests that cell 

types within WB, for example, are highly influential to the pattern of ISG expression. 
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4.4.4 Comparison of original IFN-Scores to newly developed whole blood IFN-

Scores 

When both the original and newly developed score were calculated in WB samples, the 

weakest positive correlation was found between IFN-Score-C and -D  (r=0.54, p<0.0001, 

Figure 6f) which was strikingly different to the relationship between IFN-Score-A and -B  

(r=0.83, p<0.0001, Figure 6a). IFN-Score-C shared a moderate positive correlation with IFN-

Score-A  (r=0.77, p<0.0001, Figure 6b) compared to a weaker correlation with IFN-Score-B  

(r=0.66, p<0.0001 Figure 6d), which is not surprising when IFN-Score-C shares 4/5 common 

ISGs with IFN-Score-A, compared to 1/5 with IFN-Score-B (Table 11). There was a positive 

correlation between IFN-Score-D and -A  (r=0.71, p<0.0001, Figure 6c) and an impressively 

strong positive correlation with IFN-Score-B  (r=0.92, p<0.0001, Figure 6e). 

IFN-Score-A and -B were developed in PBMCs and IFN-Score-C and -D were developed in 

WB, which showed similarities between ISGs included in the scores. Therefore, it was 

hypothesised that WB IFN-Score-C and -D, might be surrogates of PBMC IFN-Score-A and -

B respectively. To test this, samples were analysed comparing IFN-Score-A in PBMCs with -

C in WB and IFN-Score-B in PBMCs with -D in WB (Figure 7). In 45 matched PBMC and WB 

samples from the DEFINITION study, Pearson’s correlation was calculated to test whether 

the similar scores (IFN-Score-A with -C and IFN-Score-B with -D) produce comparable 

results (Figure 7 a & b).   

There is a strong positive relationship between IFN-Score-A and-C when calculated in their 

respective sample type (r=0.79, p<0.0001, Figure 7a) compared to a weaker positive 

relationship between IFN-Score-B and -D (r=0.47, p=0.001, Figure 7b). The LOA is larger 

between IFN-Score-A and -C (Bias=1.73, upper LOA=4.08, lower LOA=-0.59, Figure 7c) 

compared to the LOA IFN-Score-B and -D (Bias=0.25, upper LOA=1.74, lower LOA=-1.24, 

Figure7d). Notably, when there is an overall lower average between IFN-Score-A in PBMC 

and IFN-Score-C in B, IFN-Score-C in WB is higher and when there is an overall higher 

expression, IFN-Score-A in PBMCs is higher.
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Figure 5. Comparison of IFN-Score-C and -D between PBMC and WB sample types. IFN-Scores 

were analysed in 45 matched PBMC and WB samples from active SLE (n=12), inactive SLE (n=10), 

At-Risk progressor (n=6), At-Risk non-progressor (n=7) and healthy donors (n=10). Dotted line on 

graphs a & b represent perfect agreement. Pearson’s correlation coefficient r and p value represented 

on each plot. Bland-Altman plots c & d: the solid line (y=0) represents perfect agreement, the thick 

dotted black line represents the bias, and the smaller dotted lines represent the upper and lower limits 

of agreement, represented on the plots. 
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Figure 6. Correlation comparison of each IFN-Score in whole blood. Tempus™ whole blood data 

including SLE n=347, RA n=30 and healthy n=10, and At-Risk non progressor n=7. Reflected IFN-

Scores displayed to identify larger values as higher gene expression and smaller values as lower 

gene expression. The dotted line represents perfect correlation. Pearson’s correlation coefficient r and 

p values are represented for each plot. 
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Figure 7. Correlation and Bland-Altman agreement plots between IFN-Score-A in PBMCs with 

IFN-Score-C in WB and IFN-Score-B in PBMCs with IFN-Score-D in WB. Since IFN-Score-A and -

B were developed in PBMCs and IFN-Score-C and -D were developed in WB, comparisons were 

made between IFN-Score-A Vs -C and IFN-Score-B Vs -D as they showed to share similar properties. 

IFN-Scores were analysed in 45 matched PBMC and WB samples, active SLE (n=12), inactive SLE 

(n=10), At-Risk progressor (n=6), At-Risk non-progressor (n=7) and healthy donors (n=10). Dotted 

line on graphs a & b represent perfect agreement. Pearson’s correlation coefficient r and p values are 

represented for each plot. Bland-Altman plots c & d: the solid line (y=0) represents perfect agreement, 

the thick dotted black line represents the bias, and the smaller dotted lines represent the upper and 

lower limits of agreement, represented on the graphs.  
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4.4.5 Comparison of novel and existing whole blood IFN-Scores across 

disease groups 

Next, the ability of the existing and new scores measured in WB to discriminate between 

healthy subjects, SLE and RA was evaluated (Figure 8). Although IFN-Score-A was 

developed in PBMCs, WB calculated IFN-Score-A displayed the most definition between 

patient groups, with Hedges’ g* calculating large effect sizes between the averages all 

groups in (Healthy Vs SLE =1.59, 95% CI [1.10, 1.99], Healthy Vs RA =1.19, [0.36, 1.99], 

SLE Vs RA =0.88, [0.63, 1.13]).  

IFN-Score-B and -D measured in WB both showed ‘good’ ability to discriminate between 

disease groups, with similar large effect sizes between healthy Vs. SLE (IFN-Score-B=1.12, 

[0.66, 1.58], IFN-Score-D=1.45, [0.96, 1.94]) and healthy Vs RA (IFN-Score-B=1.5, [0.69, 

2.28], IFN-Score-D=2, [1.11, 2.85]). However, both IFN-Scores failed to display clear 

classification between SLE and RA (IFN-Score-B=0.07, [-0.21, 0.35], IFN-Score-D=0, [-0.29, 

0.29]). 

These findings indicate that despite apparent similarities in gene and modular composition of 

IFN-Scores-A and -C there were marked differences in their ability to distinguish between 

autoimmune disease groups and this could have implications for further development as 

biomarkers. For example, IFN-Score-A produced large effect sizes between all diagnostic 

groups whereas IFN-Score-C only has small effect sizes between all diagnostic groups 

(Healthy Vs SLE =0.453, [-0.03, 0.94], Healthy Vs RA =0.18, [-0.51, 0.86], SLE Vs RA =0.30, 

[-0.01, 0.61]).  
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Figure 8. Reflected delta Ct Scores of IFN-Score-A, -B, -C and -D, comparison between 

diagnostic groups SLE, HC and RA. Violin plots represent the median value as bold dashed line 

and upper and lower quartiles as dotted lines. Healthy in pink n=10, SLE in orange n=342 and RA in 

green n=30 are displayed in each IFN-Score and effect values calculated between each diagnostic 

group within each score. Effect sizes calculated using Hedges’ g* presented as top value and lower 

and upper 95% confidence intervals presented underneath (97). Effect sizes ≤0.2 were considered 

small 0.5 > 0.8 were considered medium and ≥0.8 were considered large. 
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4.5 Discussion 

Key results 

Initially, it is disappointing to see sample types cannot be interchanged reliably when 

measuring IFN-Score-A and -B however, this has led to new opportunities to analyse IFN 

pathogenesis in a WB sample type and investigates the potential for a more robust 

biomarker. 

To refine and develop on IFN-Score signatures in SLE, a WB sample type is a more efficient 

way to process samples compared to PBMCs. Factor analysis of 31 ISGs (Table 9) in 

PBMCs, previously created a two-score system of ISG clustering named IFN-Score-A and 

IFN-Score-B. The current work demonstrated in chapter 3 indicated that IFN-Scores-A and -

B show a poor degree of correlation and agreement when quantified in different sample 

types. This was particularly the case for IFN-Score-B, which has previously shown the most 

clinically relevant associations (70, 74-77). 

To address this, factor analysis was repeated in WB samples of the same 31 ISGs drawn 

from modular SLE blood transcriptome (70), to test whether a different underlying factors 

explain the structure and variability of ISG expression in WB. This work has revealed the 

following: 

1. A two-factor system (IFN-Score-C and -D) of ISGs established in WB accounts for 

96% of the data compared to previous PBMC (IFN-Score-A and -B) analysis which 

accounts for 84% variation in ISG expression.  

 

2.  IFN-Scores-C and -D comprised a lower number of genes, with partially overlapping 

parent IFN modules (M1.2, M3.4, M5.12) to IFN-Score-A and -B which benefits the 

aim of refining IFN assays for clinical practice. 

 

3.  Correlation between PBMC and WB sample types showed weak positive correlation 

of IFN-Score-C however, weak correlation of IFN-Score-D.  

 

4.  WB comparisons identified weaker positive between IFN-Score-C and -D which was 

strikingly different to the positive correlation between IFN-Score-A and -B. Notably, 

IFN-Score-B and -D shared an impressively strong positive correlation. 
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5.  Comparison of IFN-Scores dependent of their sample type origin, revealed IFN-

Score-C and -D were not simply the WB equivalent of IFN-Scores-A and -D in 

PBMCs. IFN-Score-A in PBMC relation with -C in WB showed bias in agreement 

plots and IFN-Score-B in PBMCs and -D in WB had weak positive correlations. 

 

6.  IFN-Score-A better stratified between SLE, RA and healthy patient groups compared 

to IFN-Score- B, -C and -D in WB. IFN-Score-B and -D showed significant difference 

between healthy and SLE, and healthy and RA but failed to distinguish between SLE 

and RA. IFN-Score-C was the weakest among all IFN-Scores to stratify patient 

groups, with no significant differences. 

 

Context with other data 

These results suggest that the underlying factors influencing IFN-Score clustering are not 

equivalent within PBMC and WB autoimmunity. One suggestion could be the type of 

cytokine influence driving the IFN-Scores. For example, Chiche et el, described M1.2 and 

M3.4 to be induced by IFN-β more than IFN-α and both M3.4 and M5.12 were also induced 

by IFN-II (IFN-γ) as well as IFN-I (73). In this study, factor analysis clustering of ISGs found 

IFN-Score-C to include ISGs in M1.2 and M3.4 and IFN-Score-D equally consisted of ISGs 

in M3.4 and M5.12, suggesting other subtypes of IFN could explain the differences in 

clustering. Also, M1.2 is reported to be the most longitudinally stable IFN module whereas 

M5.12 is more responsive to disease activity, constituting these ISGs to be more robust, 

clinically relevant biomarker.  

The degree of correlations and agreement between IFN-Scores was not simply a function of 

how similar they were in gene composition. Despite the differences in IFN-Score-B and -D 

ISG composition, the strong correlation between scores suggest they entail similar 

underlying factors which could be a contribution of IFN signalling cascade. For example, 

giving the broad range of transcription factor initiation upon IFN signalling, alternative types 

of IFN could induce similar transcription factors and or transcription promoter regions (39). 

As highlighted previously, there are distinct differences in cellular composition between 

PBMC and WB sample types alluding to the granulocyte compartment of WB being the 

underlying influences of WB IFN-Scores, particularly IFN-Score-C, which showed weak 

correlation between other IFN-Scores. An RNA sequencing study of 2 female and 2 male 

healthy individuals revealed that ISGs from IFN-Score-C such as CCL8, CXCL10 and IFI27 

were mostly upregulated in monocyte cell subsets, and ISG15 and LAMP3 were mostly 
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upregulated in granulocyte cells subsets such as neutrophils (98). Moreover, all IFN-Score-D 

transcripts CASP1, CEACAM1, SOCS1 and TRIM38 were mostly upregulated in neutrophils 

and basophils (98). This highlights the differences between ISG regulation in cell types 

however, results could be uniquely different in autoimmunity. 

This gives possible explanation to the difference in factor analysis results compared to 

previous PBMC IFN-Scores-A and -B, in which cell types such as neutrophils, influence ISG 

transcripts. Especially when neutrophils play a large role in IFN dysregulation in SLE 

pathogenesis, by releasing NETs and inducing IFN production and high neutrophil transcript 

scores in juvenile SLE patients, correlate with high IFN signature (99-102).  

Limitations  

One limitation of this study is that a limited number of Healthy samples, potentially reducing 

the variety of ISG transcription level for factor analysis. Previously there were 14.9% of 

healthy patients for factor analysis that determined SLE from RA, whereas this study 

contained 2.5% of healthy patients within the total sample inclusion. 

A reliable and robust biomarker must distinguish between similar diseases and patients 

whose classification may not yet be clear, in a scenario that matches a clinical question. SLE 

and RA are clinically and pathogenically quite different and can usually be distinguished 

easily without any blood tests. Other relevant comparisons may be SLE with is Sjogren’s 

syndrome, which is more similar to SLE than RA with similar joint involvement. However, this 

project was not designed to be a diagnostic study. 

Also, RA PBMC sample type was unable to be retrieved as RA WB were collected from an 

external site. This would have been useful to test whether new IFN-Scores could distinguish 

between disease also in PBMCs. 

Factor analysis results depend on the diversity of individuals who contribute to the sample. 

The greater diversity of immune states among the participants increases the ability of the 

analysis to find factors. This was addressed by including SLE, RA and HC. However, it is 

possible that results would differ if other autoimmune diseases were included, or greater 

variety of clinical states for each disease. 

Future work  

Firstly, to test the relevance and reliability of IFN-Score-C and -D biomarker potential, IFN-

Scores will need to be measured in an independent cohort against other clinical factors such 

as pre/post treatment, pre/post diagnosis, and comparison of differential clinical feature. 
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Future work will explore WB separated cell type in vitro stimulations to see what exactly is 

driving the scores, this could include different IFN subtypes and cytokines that have been 

noted to drive IFN signature.  

Conclusions: 

Although in these results, IFN-Score-A differentiated the patient groups most clearly, in 

previous work IFN-Score-B has performed better for specific questions. For example, to 

predict development of SLE in At-Risk individuals, results were stronger for IFN-Score-B 

than -A (74). Since these studies analysed PBMCs, a validation study using WB would 

require an IFN-Score that captures similar information to IFN-Score-B using a WB sample. 

IFN-Score-D appears to meet this need and could act as a surrogate WB IFN-Score for IFN-

Score-B in PBMCs, moreover, it uses a smaller number of genes so it simpler and cheaper. 

However, an additional study would be required to validate IFN-Score-D for the same clinical 

questions.  
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Chapter 5: Exploring Appropriate Reference Genes in 

SLE Patient Whole Blood When Measuring ISGs 

5.1 Background 

Real time polymerase chain reaction (RT-PCR) is a commonly used, highly sensitive method 

to quantify targeted RNA. RNA is reverse transcribed into cDNA and amplified according to 

target gene sequence (TaqMan) where the Ct value is determined (103). Reference genes 

(RG), also known as a house keeping gene or endogenous control are genes that are 

consistently and uniformly expressed and are essential to normalise quantity of target gene 

expression (104). Early qPCR studies commonly used β-actin (ACTB), GAPDH and 18s as 

RGs (105) however, recent studies have shown these genes respond to diverse biological 

factors and were not selected as having the most stable expression when screened in 

panels of 10-20 RGs (106). An optimised RG should be uniformly expressed in all 

experimental conditions, in order to account for technical differences such as, RNA quantity, 

enzyme efficiency, sample collection and preparation (107, 108). According to the 

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE), 

unless a single RG has been fully validated, the use of at least 3 RGs is advised to avoid 

bias when interpreting results (109, 110).  

Moreover, RGs should be validated by researchers using their experimental set up and 

determined by using a validated algorithm such as publicly available software packages: 

NormFinder (111), geNorm (112), BestKeeper (113), and comparative delta Ct method 

(114).  In brief, NormFinder ranks candidate RGs according to their stability value, with 

anything below 0.15 considered to be stable (111). By calculating the average pairwise 

variation to other RGs, geNorm outputs a gene expression stability value of ‘M’ also with a 

cut-off point of 0.15 (112). BestKeeper, ranks RGs depending on their SD values within each 

gene (113). Finally, the comparative delta Ct method calculates the SD of each gene 

between each sample and ranks the genes with the lowest SD to be the most stable RG 

(114). As each algorithm is different, it is recommended that more than one software 

packages be used, which is provided by RefFinder: a free online tool which creates 

comprehensive stability rankings by combining all 4 algorithms 

(www.heartcure.com.au/reffinder/) (115).  

The previously described IFN-Scores-A and -B and novel WB derived scores IFN-Score-C 

and -D have thus far been normalised to a single RG, PPIA (70). This was previously 

demonstrated as stably expressed and non-responsive to IFN-γ stimulation in a study of 

human keratinocytes cell lines (116). As the IFN pathway activation has diverse effects 

multiple cell types and gene expression can be sensitive to multiple subtypes of IFN specific 

http://www.heartcure.com.au/reffinder/
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validation of RGs for use in ISG assays should be tailored to experimental conditions, 

sample type and disease status. Some of the most established and widely used RGs (ACTB, 

GAPDH, HPRT, 18s and B2M) have shown inconsistent expression in different cell types or 

disease such as upregulation of ACTB in leukaemia tumour samples  (103, 110, 117). As 

outlined in previous chapters, IFN-Scores-A and -B, as well as IFN-Scores-C and -D derived 

here in WB show promising potential for further development towards clinical application. It 

is therefore critical to now verify the appropriate RG for these assays and this approach 

aligns with the conclusions of EULAR task force on IFN assays introduced earlier in this 

report. In view of the various benefits of a WB analysis workstream as a clinical assay, this 

work focusses exclusively on WB. 

 

5.2 Objectives 

To determine the most stable RG to measure IFN-Scores in SLE and healthy WB samples 

using RefFinder.  
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5.3 Methods 

5.3.1 Sample inclusion and sample processing  

For this section of the report, 6 healthy control bloods were used and patient SLE samples 

were derived from the DEFNITION study (SLE inactive (n=7), SLE active (n=9) (total n=22). 

WB Tempus™ sample collection and RNA extraction was carried out as per section 2.3. 

 

5.3.2 Gene transcript quantification  

16 candidate RGs were selected from existing ISG related literature summarised by the 

EULAR task force PICO1 systematic literature review (68). Table 12 describes the candidate 

RGs and their functions with the references to the literature. As well as the 16 RGs, the 31 

ISGs used in the derivation of IFN-Scores (Table 9) gene transcripts were determined by 

TaqMan Fluidigm, as described in section 2.4. IFN-Score are represented as reflected 

scores (score multiplied by -1) so that numerically higher scores represent higher 

expression, while preserving the original distribution. 

 

5.3.3 Exclusion of 18s 

From the 16 candidate RG evaluated, 18s was eliminated from further analysis due to 

excessive abundance of the gene in all samples with an average Ct value of 2.5. 18s is an 

rRNA which can make up the bulk of extracted RNA and leading to under representation of 

overall RNA (118). Moreover, RGs should be of similar Ct values to gene of interest which 

ensures validation of the same kinetic interactions during qPCR, therefore (118)18s was 

excluded in evaluation for stable RG software.  

 

5.3.4 Exploring reference genes 

Exploration of appropriate RGs were explored using the publicly available, free to access 

online software; RefFinder (115). Raw Ct values of SLE and HCs were imported together 

into the software, and rankings of gene stability were outputted. The RefFinder software 

calculated a comprehensive gene stability weight using a combination of 4 algorithms from 

other RG software: geNorm, NormFinder, BestKeeper, and the comparative Delta-Ct 

method. Outputs of all algorithm rankings are shown in the results and the top three most 

stable genes from RefFinder’s comprehensive gene stability rankings were used in further 

validation. 
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5.3.5 Calculation of IFN-Scores 

Delta Ct values of ISG transcripts were determined by normalising to i) the geometric mean 

of the top three most stable reference gene, ii) previously used PPIA and iii) the least stable 

reference gene. IFN-Scores -A, -B, -C and -D were then calculated according to the delta Ct 

values to each normalisation method. Table 11 represents the ISG belonging to each score. 

 

5.3.6 Statistical analysis  

To compare the effect of normalising ISGs to different RGs, independent t-tests were 

calculated between SLE and healthy patient groups. Prior to this, Levene’s test of 

homogeneity was violated and therefore equal variances were not assumed. 

Pearson’s correlation calculated the correlation coefficient (R) to determine the strength of 

the relationships comparing IFN-Scores normalised to different RGs, where r=1 / -1 is 

perfect positive / negative correlation and r=0 is no correlation between sample types. 

Details of samples and comparisons are noted in respective figure legends. 
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Table 12. List of Reference Gene TaqMan Assays: Abbreviations, full name, function, TaqMan 

assay ID and a literature reference of where the gene was used as a reference gene. Information 

sourced from Genecards.org (119). * HMBS and IPO8 were not found as reference genes in the SLR 

but are commonly used reference genes in other studies and were therefore included. 

Abbreviation Name Function TaqMan ID Reference 

18S 18S ribosomal RNA Small ribosomal 

subunit, 

translation 

Hs03003631_g1 (120) (121) (122) 

(123) (124) (125) 

ACTB β-actin Cytoskeleton Hs99999903_m1 (126) 

B2M β-2-microglobulin Subunit of MHC class 

I, 

antigen presentation 

Hs00187842_m1 (124) (126) 

GAPDH Glyceraldehyde-3-

phosphate 

dehydrogenase 

Glycolysis Hs99999905_m1 (127) (128) (129) 

(122) (130) (131) 

(124) (126) 

GUSB β-glucuronidase Breakdown of 

mucopolysaccharides 

Hs99999908_m1 (132) (133) (134) 

HMBS* Hydroxymethylbilane 

synthase 

(Porphobilinogen 

deaminase) 

Porphyrin metabolism Hs00609296_g1 (135) 

HPRT1 Hypoxanthine guanine 

phosphoribosyl 

transferase 

Generation of purine 

nucleotides 

Hs99999909_m1 

 

(125) (136) (137) 

(138) (52) 

IPO8* Importin-8 Nuclear protein 

import 

Hs00183533_m1 (139) 

PGK1 Phosphoglycerate 

kinase-1 

Glycolysis Hs00943178_g1 (140) 

POLR2A RNA polymerase II, 

subunit A 

Transcription Hs00172187_m1 (141) 

PPIA Peptidyl proline 

isomerase A 

(Cyclophilin A) 

Protein folding Hs99999904_m1 

 

(70) 

RPLP0 Large ribosomal protein 

P0 

Translation Hs00420895_gH (142) (143) (144) 

(145) 

TBP TATA box binding 

protein 

Transcription initiation Hs00427620_m1 (141) (146) 

TFRC Transferrin receptor Endocytosis of iron Hs00951083_m1 

 

(147) 

(124) (148) 

UBC Ubiquitin C Protein degradation Hs00824723_m1 

 

(126) 
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YWHAZ Tyrosine 3-

Monooxygenase/Trypto

phan 5-Monooxygenase 

Signal transduction Hs01122445_g1 

 

(126) 

 

 

5.4 Results 

5.4.1 Algorithm based reference genes stability 

To determine the three most stable RGs when measuring ISGs in WB SLE and healthy 

donors, the Ct values of 15 RGs were inputted into RefFinder, and stability values were 

determined from each algorithm (Figure 9).  

RefFinder comprehensive ranking determined YWHAZ, PGK1 and GUSB to be the top three 

most stable RGs with previously used PPIA to be 10th stable and ACTB to be the least 

stable. Consensus of the top ranked genes, YWHAZ and PGK1 were found to be 1st or 2nd in 

all algorithms, with the exception of BestKeeper, where YWHAZ is 4th ranked and PGK1 is 

7th ranked. GUSB is 3rd ranked in the RefFinder, BestKeeper and delta Ct algorithm however 

is ranked 5th in NormFinder and 7th in geNorm. Across all the different algorithms, there was 

agreement that ACTB is the least stable RG in the experimental conditions evaluated. PPIA 

displayed mid-stability ranking in all algorithms, identifying that the gene is neither the most 

nor least stable to use in the evaluation of ISG expression across healthy subjects and SLE 

patients in WB. 

For the NormFinder and geNorm algorithms, a threshold of 0.15 or below identifies RGs to 

be stable. In analysis of SLE and healthy control WB ISG expression YWHAZ, PGK1 and 

GAPDH achieved stability values below the cut off in the NormFinder algorithm but none of 

the genes are below the cut off in the geNorm algorithm. As no current single algorithm-

based approach is considered definitive for rating stability among candidate RGs the 

consensus output across algorithms generated indicated the top three most stable RGs as 

YWHAZ, PGK1 and GUSB (identified as ‘SLE Ref’ in Figure 11).  
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5.4.2 Comparing expression across candidate reference genes 

To visualise algorithm ranking strategy, reflected Ct values were mapped for the three most 

stable genes: YWHAZ, PGK1, GUSB, previously used RG: PPIA and the least stable RG: 

ACTB, comparing healthy to SLE (Figure 10). A uniform mean expression Ct level is 

demonstrated between healthy and SLE patient groups for YWHAZ (Healthy mean=-8.058, 

(0.435), SLE mean=-8.864, (0.503)), PGK1 (Healthy mean=-9.907, (0.313), SLE mean=-

10.721, (0.666)), GUSB (Healthy mean=-11.208, (0.320) SLE mean=-11.638, (0.570)) and 

PPIA (Healthy mean=-8.191, (0.497), SLE mean=-8.694, (0.756)). Consistent with its lower 

stability ranking, ACTB displayed highly variable expression levels both within and between 

the two groups with Ct values ranging from an average of -9.823 Ct, (3.67) in healthy and an 

average of -11.946 Ct, (3.548) in SLE (Figure 10). The range of Ct values among candidate 

RGs demonstrates how bias could be readily introduced by insufficient RG stability.  
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Figure 9. Reference gene stability values from RefFinder online platform output for SLE and 

healthy whole blood. Raw cycle thresholds (Ct) values of each reference gene (excluding 18s) were 

inputted into the RefFinder software SLE (n=16) and healthy (n=6). Results from a) RefFinder’s 

comprehensive ranking (the top three most stable RG, YWHAZ, PGK1 and GUSB, are used in further 

analysis), b) NormFinder, c) geNorm, d) BestKeeper and e) comparative Delta Ct method. 

NormFinder (b) and geNorm (c) use a cut-off point of 0.15, indicated by the dotted line.  
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Figure 10. Reflected Ct values of top three most stable genes, previously used PPIA and least 

stable reference gene ACTB. Reflected Ct Values are demonstrated in order to represent larger 

values as higher expression and smaller values as lower expression. Healthy controls (circles) and 

SLE (triangle) are represented separately to indicate differences of reference gene between 

diagnostic groups and the mean value within groups is represented by a solid line. 
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5.4.3 Evaluating the effects of normalising IFN-Scores to different reference 

genes 

To evaluate the impact of RG selection on calculated IFN-Scores, the ISGs were normalised 

first to the geometric mean of top three most stable RGs: YWHAZ, PGK1 and GAPDH; next 

to the previously used PPIA; and lastly to the least stable RG, ACTB. SLE samples were 

compared to healthy donors to validate how different normalisation approaches can impact 

clinical IFN-Score results. 

At first glance, a wider spread of data is seen in the delta Ct values ACTB compared to 

normalisation to the top three most stable RG, suggesting that normalisation to difference 

RGs introduces errors in the estimation of expression (Figure 11). Highly significant 

differences (p<0.0001) were found when comparing healthy to SLE in all four IFN-Scores 

when normalising to the three most stable RGs and PPIA. However, lower significance (IFN-

Score-A: p=0.02, IFN-Score-C p=0.016) or no significance (IFN-Score-B: p=0.167, IFN-

Score-D: p=0.157) was found between the two groups when normalising to ACTB, which 

demonstrates the importance of selecting a validated RG (Figure 11). 

To further asses how RGs can affect clinical comparisons, IFN-Scores of SLE samples and 

healthy donors were combined, and the different normalisation methods were compared 

(Figure 11). In all four IFN-Scores, strong positive correlations are observed between 

normalisation to the top three most stable RGs and PPIA (IFN-Score-A: r=0.98; IFN-Score-

B: r=0.85; IFN-Score-C: r=-.97; IFN-Score-D: r=0.86, all with p<0.0001). As expected, 

weaker correlations are found between normalisation to the top three most stable RGs and 

ACTB (IFN-Score-A: r=0.70, p=0.0003; IFN-Score-B: r=0.41, p=0.585; IFN-Score-C: r=0.57, 

p=0.0054; IFN-Score-D: r=0.42, p=0.484). These results suggest that normalisation of IFN-

Scores to the top three most stable RG and PPIA produce similar results when calculated 

IFN-Scores.  
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Figure 11. Evaluating the effects of normalising IFN-Scores to different reference genes in 

whole blood patient SLE samples and healthy controls. Box and whisker plots display median, 

interquartile ranges and minimum and maximum values of whole blood SLE (n=16) and controls 
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(n=6). Correlation of IFN-Scores when normalised to the IFN reference genes (YWHAZ, PGK1, 

GUSB) Vs PPIA and ACTB, includes all SLE and control samples. Independent t-test with unequal 

variance assumed and Pearson’s correlation coefficient r and p values are represented for each plot. 

***p≤0.0001, **p≤0.01,*p≤0.05,  

 

5.5 Discussion 

Key results: 

RT-PCR is a common way to measure and quantify gene expression and RGs are used to 

normalise quantification and compensates for technical differences such as, RNA quantity, 

enzyme efficiency, sample collection and preparation (107, 108). RGs should be uniformly 

expressed throughout all experimental conditions and MIQE guidelines suggest the use of 

three RGs, validated by an available software to minimise introduction of bias (109, 110). 

Previously, publications of IFN-Score-A and -B in PBMCs have adopted PPIA as a RG, and 

prior work in the Leeds Lupus group has also made use of this in WB sample type (70, 74-

77). While literature suggests that PPIA it is not regulated by IFN, it has so far lacked 

comprehensive validation as a RG for ISG expression studies, especially in blood. Although 

previous publications of IFN-Score-A and -B showed encouraging clinically significant 

results, a focused evaluation of performance of PPIA among other candidate RGs is 

essential to progress the development of IFN-Scores in with MIQE guidelines and the 

standard set out by the EULAR task force. Specifically, these state that RGs must be 

validated for each experimental conditions and at least three RGs should be used (110). 

This work presents a detailed evaluation of 16 candidate RGs in a healthy and SLE WB 

cohort. 18s was excluded from further analysis due to the abundance of the gene in each 

sample and was therefore not a suitable RG. The RefFinder algorithm ranked YWHAZ, 

PGK1 and GUSB as the top three most stable RGs with PPIA 10th stable and ACTB least 

stable. Quantification of the leading candidate RGs in healthy and SLE WB show: 

1. Normalisation of ISGs to ACTB, showed lower significance or even no significant 

difference between SLE and healthy and IFN-Scores were more dispersed within 

patient groups compared to normalising to PPIA and YWHAZ, PGK1 and GUSB. 

 

2.  Normalisation of ISGs to PPIA showed similar significance between SLE and healthy 

compared to using the geometric mean of YWHAZ, PGK1 and GUSB.  
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3. Correlation between normalising ISGs to ACTB and YWHAZ, PGK1 and GUSB 

showed weak positive relationship and a strong positive correlation between PPIA 

and YWHAZ, PGK1 and GUSB. 

This work indicates promise that previous calculations of IFN-Scores with PPIA as a RG are 

still valid, however, RGs must be validated and the geometric mean of YWHAZ, PGK1 and 

GUSB should be used to measure the ISGs reported here in a healthy and SLE WB cohort. 

Context with other data: 

It is interesting to note how some of the most commonly reported RGs 18s, GAPDH and 

ACTB did not prove to be stable in this cohort (120-131). However, GAPDH could still be 

counted as stable in this cohort considering ranked 4th in the RefFinder algorithm. 18s is an 

rRNA, and the quantity of 18s was far too abundant to produce reliable results in this cohort 

(118). This is probably due to RNA extraction as the kit extracts total RNA from large mRNA, 

rRNA down to microRNA (miRNA) and small interfering RNA (siRNA).  

Although the literature states the use of 18s as a RG when measuring ISGs in autoimmunity, 

none of these publications justify the use of this gene (120-125). Furthermore, ACTB was 

the most stand out instable RG, which is an alarming finding since it is a commonly used RG 

in many RT-PCR studies (105). ACTB encodes for the β- actin protein, it is ubiquitously 

expressed and highly conserved. It’s function is involved in cellular structure and motility, 

making it a common RG to use in experiments (119). However, ACTB expression has been 

reported to be dysregulated in several cancers and not suitable to use as a RG (149), 

therefore it could be assumed cell motility and cytoskeletal alterations are part of SLE, again 

reiterating the importance of validating a RG in every experiment. 

Limitations: 

A limitation of this study is that IFN-Scores -A, -B, -C and -D were designed with PPIA as the 

RG. As YWHAZ, PGK1 and GUSB have now been established as the most stable RGs to 

normalise WB SLE and healthy samples, it would be unfeasible to re-run gene expression 

analysis with these RGs. Almost 400 WB samples have quantified ISG expression using 

PPIA as a RG and If this analysis was to be repeated with the 3 most stable RGs, it would 

come at a high cost and replicate unnecessary data. As a RG, PPIA has demonstrated the 

same clinical outcomes as newly verified top three most stable RGs YWHAZ, PGK1 and 

GUSB and therefore reliability of previously calculated IFN-Scores normalised to PPIA can 

be assumed. However, to ensure guidelines are followed, it is now recommended to 

calculate WB IFN-Scores with the geometric mean of the newly validated RGs YWHAZ, 

PGK1 and GUSB. 



74 
 

Future work: 

Future work will utilise YWHAZ, PGK1 and GUSB as RGs in WB SLE cohorts. 

Conclusion: 

RGs should be validated for every experimental design and MIQE guidelines should be 

followed. This does not appear to have been done for the majority of published papers 

reporting ISG assays. Choices of RGs may significantly influence the results of ISG-based 

assays. Notably, two of the RGs that showed to be unsuitable, are common in the published 

literature. 18s is too abundant, and ACTB is too inconsistent in expression. Research into 

ISG expression in WB would benefit from using the most suitable genes identified here: 

YWHAZ, PGK1, GUSB. 
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Chapter 6: Discussion 

Outline of report  

The clinical heterogeneity of SLE and the increasing therapeutic options available for the 

disease place effective biomarker development as an increasing research priority. IFN 

pathway activation is recognised as a key component to SLE pathology, but ensuring 

validation and consistency, the most appropriate IFN assay should be justified (78). A two-

score system for measuring ISG expression in PBMCs has been shown by the Leeds Lupus 

group to stratify autoimmune disease and predict disease progression in ANA positive 

individuals which builds upon identifying and addressing several key obstacles to applying 

these IFN-Scores in clinical settings (70, 74). The current work highlights the lack of 

transferability of ISG expression scores between PBMC and WB sample types, devises a 

novel two score system for WB samples drawn from the same elements of the SLE modular 

transcriptome and systematically identifies optimal RGs for use in this analysis. 

Key results 

Development of IFN-Scores: the impact of sample type 

Previously, the Leeds Lupus group developed IFN-Score-A and -B based on a PBMC cohort 

(70, 74). However, processing PBMCs is time consuming, therefore a quicker, replicable 

method such as WB processing needs to be developed in order to reach clinical practice. 

This report begins to justify measurement of IFN-I pathway in WB sample type based on 

theoretical, experimental feasibility and clinical evidence. 

Firstly, this work reveals the marked lack of transferability of IFN-Score across PBMC and 

WB sample types which vary in cellular composition. There was a striking lack of correlation 

between IFN-Scores measured in WB and PBMC samples. Notably this was not uniform for 

all ISGs. A better correlation was retained between sample types for IFN-Score-A than for 

IFN-Score-B, highlighting the complexity of ISG regulation. It is not clear what accounts for 

this difference; however, it could indicate that IFN-Score-A ISGs may be more stably 

expressed across cell populations than others.   

A possible explanation of this could be IFN related epigenomic remodelling that sustains ISG 

regulation (150). The epigenome is regulated in response to external stimuli and alters gene 

expression without changes to DNA sequences. Instead, modifications including DNA 

methylation, histone modifications, chromatin accessibility can influence the regulation of 

effected genes. It has been reported that IFN induction of IFN regulatory factors mediate 

chromatin remodelling at ISG loci, making transcription of genes more accessible which can 

last for days or weeks even after IFN production has subsided therefore creating a sustained 
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expression of ISGs (39). Moreover, IFN-Score-A / M1.2 genes IFIT1, IFI44L and RSAD2 

were found to be hypomethylated in ANA positive compared to ANA negative in a study of 

326 European females (150, 151), supporting the standardised regulation of M1.2 ISGs over 

time (73).  

Existing data indicated IFN-Score-B in PBMCs to show more clinically useful associations 

and this may be underpinned by its more dynamic regulation across sample types and 

disease groups.  

Development of WB IFN-Scores 

To address the evident difficulties in applying existing IFN-Scores to WB. This work 

undertook factor analysis of 31 genes in a cohort of 395 WB samples including SLE, RA and 

healthy patients, to reveal a new two scoring system: IFN-Score-C (CCL8, CXCL10, IFI27, 

ISG15 and LAMP3) and IFN-Score-D (CASP1, CEACAM1, SOCS1 and TRIM38).  

Interestingly IFN-Score-C shared similarities with IFN-Score-A and IFN-Score-D shared 

somewhat similar properties with IFN-Score-B. However, similarities did not appear to simply 

reflect the degree of overlap in gene composition or modular origin. Both new IFN-Scores 

showed weak relationships between PBMC and WB match samples, showing that IFN-

Score-C and -D are more specific for WB and factor analysis was possibly driven by the 

specific cellular ISG expression such as neutrophils, basophils and eosinophils. However, 

when testing the clinical utility of all IFN-Scores in WB, IFN-Score-A was strongest when 

stratifying patient diagnosis, showing large effect sizes between sample groups, SLE, RA 

and healthy. Unfortunately, the performance of each IFN-Score by effect size across disease 

groups could not be directly compared in this work between PBMC and WB sample types as 

disease group samples for PBMCs were not sufficiently available for all groups. Thus, it 

remains to be determined whether IFN-Score-A measured in WB could outperform the 

originator score in PBMCs in terms of differentiating disease. 

Addressing technical considerations for IFN assays 

To comply with MIQE guidelines, RGs for qPCR based studies should be validated in all 

experimental conditions, and it is recommended to use at least three to normalise qPCR 

data (109, 110). The work presented here provides key evidence to support RG selection in 

the ongoing development and validation of IFN-Scores in WB for studies in SLE. 

16 RGs were selected from the existing literature that are used to normalise ISG transcripts. 

Publicly available software, RefFinder ranked all RGs in order of stability, calculating 

YWHAZ, PGK1 and GUSB to be the most stable in WB SLE. Interestingly, a commonly used 

RG, β-actin (ACTB) was ranked least stable which could suggest it is partially responsive to 
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IFN or other disease mediators in SLE. Comparison of normalising IFN-Scores to the three 

most stable RGs and PPIA reassuringly generated similar results. The current work however 

supports the use of YWHAZ, PGK1 and GUSB when quantifying IFN-Scores in WB and 

future work should apply this style of analysis to WB based assays, particularly if considered 

for clinical development (152). 

Context with other data and future work 

The current work progresses the development of measuring IFN-signature in WB in line with 

current EULAR task force recommendations, and the findings could inform the wider field of 

IFN pathway quantification. Beyond practical relevance, the current work also further reveals 

the complexity of IFN dysregulation.  

Understanding ISG regulation  

IFNs signal and activate many different ISGs and cytokines and different types of IFN 

pathways overlap (34-39) and one of the EULAR points to consider is to determine stimuli of 

reported IFN-signatures (78). 

3/5 genes in the newly described WB IFN-Score-C originate from IFN module M1.2, with 1/5 

from M3.4 and 1/5 unclassified ISG. It may therefore be speculated that this IFN-Score is 

mainly upregulated by the presence of IFN-I and remains stable over time which was 

previously identified for M1.2 as a whole (73). IFN-Score-D includes 2 ISGs from M3.4 and 2 

ISGs from 5.12 which were both described to be regulated  by both IFN-I and IFN-II and so 

this score is likely to show distinct regulation to SLE disease activity (73).  

Principal component analysis in a longitudinal study of SLE patient and healthy controls 

clustered 46 ISGs into 3 subsets. The first subset consisted of 36 commonly reported ISGs 

predominantly responding to IFN-I, the second subset consisted of underrepresented ISGs: 

SERPING1, PARP9, CXCL10, SOCS1, C1QB and PDCD1CGS and responding to IFN-I and 

IFN-II and the third subset, also underrepresented ISG: S100A9, FCGRIA, S100A8, SOCS3 

predominately respond to IFN-II. Only the third subset correlated with disease activity, 

suggesting that IFN-II response genes are a better solution for SLE biomarkers (153).  

Alternatively, another approach to understanding the regulation of these genes is to test their 

expression under conditions of IFNAR blockade. In clinical trials of IFN-receptor blocking 

agent, Anifrolumab, an IFN-signature including ISGs, IFI44, IFI44L, RSAD2 and IFI27 was 

shown to be effectively suppressed by treatment. These ISGs fall predominately within M1.2 

genes known to respond specifically to IFN-I and individuals with an elevated IFN-signature 

at baseline showed improved responses to Anifrolumab (57, 154).  
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The responsiveness of these transcripts has not yet been interrogated in experimental 

conditions, and it is possible that different regulatory mechanisms apply in different cell 

types, adding to the effects seen in comparison between WB and PBMCs. Work is already 

underway to test expression in response to IFN and other inflammatory cytokines both alone 

and in combination, in an effort to unpick the precise regulation of these ISGs in the context 

of SLE.   

Understanding the expression of IFN-Score-A, -B, -C and -D following Anifrolumab treatment 

could help to reveal further similarities and differences between scores and assist their 

evaluation as clinical biomarkers. 

Clinical associations 

In this report, clinical relevance was determined by comparing diagnostic groups SLE, 

healthy and RA. It showed IFN-Score-A to have large effect sizes between all patient 

groups, IFN-Score-B and -D had large effect sizes between SLE Vs. healthy and RA Vs 

healthy but failed to distinguish between SLE and RA and IFN-Score-C had small effects 

sizes between all groups. However, sample sizes of the healthy and RA were a limitation in 

this study.  

Previously in a PBMC sample type, IFN-Score-B was able to differentiate SLE and RA, and 

more importantly, predict progression to SLE in ANA-positive At-Risk individuals (70, 74). 

Therefore, IFN-Score-B was deemed the most promising for progression toward clinical 

practice. The ability of the novel IFN-Scores-C and -D, as well as existing IFN-Score-A and -

B, now measured in WB, to distinguish clinically important end points remains to be 

determined and could ultimately guide the selection of candidate biomarkers for ongoing 

work.  

It is possible that different selection of IFN-Scores will be required in different clinical 

contexts, for example in diagnostic use healthy Vs autoimmune disease compared with 

stratification between diseases. Moreover, interpretation of IFN-Scores alongside other cell 

type signatures in combination potentially will yield more useful clinical information (102, 

152) (Carter et al. In press). 

Experimental feasibility: 

The IFN-pathway is large and complex therefore, there is no single assay that can evaluate 

the entirety of IFN pathway activation. The most commonly reported IFN biomarkers are 

measuring i) circulating IFN proteins by single-molecule array (SiMoA), ii) measuring IFN-

stimulated proteins encoded by ISGs, iii) measuring cell-specific IFN response via cell 

specific markers and iv) ISG quantification. The latter method, ISG quantification via qPCR, 
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has been the most successful to quantify the IFN-pathway which this report aims to develop 

further (68). 

Experimental feasibility begins with sample collection. Blood is easily accessible and can be 

drawn by any trained professional with minimal side effects for the patient. Working with WB 

is much more flexible compared to PBMCs and allows for options such as, room 

temperature sample transportation to other sites, whereas PBMCs would have to be 

transported on dry ice, incurring extra costs and risks.  

It is important to note that many of the literature report IFN-signature utilise PAXgene™ 

blood collection methods (122, 123, 126-128, 130, 131, 142). PAXgene™ Blood RNA 

System (PreAnalytiX QIAGEN) is a similar system to Tempus™ in that they a both blood 

tubes that contain RNA stabilisers and ensure gene expression profiles that reflect the 

blood’s state at the moment of sampling (155). Studies have shown that blood from the 

same individuals sampled into the PAXgene™ and Tempus™ tubes resulted in significantly 

different expression profiles of more than 2000 genes, hence the two WB collection methods 

cannot be used in the interchangeably (156). Therefore, it should be emphasised that the 

evaluation of the novel IFN-Scores-C and -D here is specific to using Tempus™ tube 

collection methods.  

IFN-Scores have been quantified using the Fluidigm, Biomark platform: a high-throughput 

qPCR System that uses integrated fluidic circuits known as dynamic arrays and digital 

arrays. This innovative method allows researchers to gain data on 96 transcripts whilst only 

using minimal RNA material (1-3ul), consumables such as pipette tips and reagents like RT 

and Pre-amplification master mix. If the same amount of data were produced on 384 single 

gene-based qPCR plates, researchers would have to run 24 plates, therefore the Fluidigm 

system not only saves on materials but also save time in that whole experiment can be 

completed in 1 day. Moreover, TaqMan assay combinations are customisable allowing for 

development and variation of transcript quantification. 

Development of IFN-Scores-C and -D has led to a smaller number of target genes compared 

to IFN-Score-A and -B and thus should incur cost saving on laboratory consumables. 

Specifically, previously, IFN-Score-A and -B would need to quantify 27 transcripts (12 for 

IFN-Score-A, 14 for IFN-Score-B and 1 RG (PPIA)) whereas newly developed IFN-Scores 

requires quantification of 12 transcripts (5 for IFN-Score-C, 4 for IFN-Score-D and 3 RGs 

(YWHAZ, PGK1 and GAPDH)), less than half of the previous IFN-Scores. Therefore, running 

high through-put Fluidigm might be unnecessary. Other methods such as customised 

TaqMan® Array Custom Micro Fluidic Cards might ultimately be more suitable and can 

range from 12 to 384 assays and can run 1 to 8 samples. Pending further validation and 
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clinical evaluation, the development of the WB two-score system based on this limited gene 

set could be a substantial advance towards use as biomarkers in routine clinical practice. 

Limitations  

A limitation of this study is that accountability for age, sex, ethnicity, disease activity could 

indicate specific influences of ISG activity and inclusion of a more diverse range of diseases 

such as Sjogren’s syndrome in factor analysis, could indicate other underlying causes of ISG 

expression which will be analysed in future projects.  

The influence of WB IFN-Score-C and -D has not been determined. IFN-Score-D had the 

most promise in terms of becoming the new gold standard in SLE biomarker, considering its 

strong relationship with clinically relevant IFN-Score-B. However, the use of this is yet to be 

determined and needs to be studied closer. For example, using new RGs, comparison to 

drug response, new cohort with different clinical end point. Furthermore, variability of ISG 

expression in certain cell types has not been determined which could explained differences 

between sample types and help understanding of IFN-Score clustering. 

Validation of RG stability was not determined before data analysis in chapters 3 and 4 were 

analysed using RG PPIA. However, as a RG, PPIA demonstrated the same clinical 

outcomes as newly verified most stable RGs YWHAZ, PGK1 and GUSB and therefore 

reliability of previously calculated IFN-Scores normalised to PPIA can be assume. 

Conclusion 

This work adds to a body of emerging data indicating the complexity of ISG regulation in 

SLE and contributes to development of ISG expression scores towards clinical application. 

Previously denoted IFN-Score-A could potentially be interchanged between sample types 

and has proven to be useful to distinguish between SLE, RA and healthy in WB. However, 

for clinical utility, biomarkers must be able to answer significant clinical questions in real-

world populations. For example, predicting response to treatment or disease progression in 

populations before these outcomes are known. So far, IFN-Score-B in PBMCs has shown 

greater promise for such questions. However, to move towards more feasible sample 

processing, establishment of a WB biomarker is desirable. The lack of agreement between 

IFN-Score-B between sample types called for reinterrogation of ISGs which creates two new 

WB scores IFN-Score-C and -D. IFN-Score-A shared overlapping genes with IFN-Score-C 

but WB calculations in the scores showed weak correlations. WB calculated IFN-Score-D 

showed strong correlation with IFN-Score-B suggesting it could act as a surrogate WB 

measurement of IFN-Score-B, and further work is justified to confirm whether it has the 

same, clinical utility. Furthermore, some of the RGs in the literature are shown to be 
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unsuitable for IFN assays. This work showed that WB IFN-Scores should utilise YWHAZ, 

PGK1 and GUSB as RGs when quantifying ISGs.  
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