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Abstract

Thework presentedwithin this thesis pertains to the use of acousticmetamaterials

for low frequency absorption and attenuation of sound. Acoustic metamaterials

are structures composed of periodic and sub-wavelength locally resonant unit cells

and are typically an order of magnitude or smaller than the associated wavelength

of the frequency they are designed to manipulate. All naturally occurring materials

have both positivemass density and bulkmodulus; acoustic metamaterials have the

ability to artificiallymanipulate theseproperties to havenegative effective quantities

dependant on the frequency of the incident acoustic wave.

Within this thesis, a general analytical method based upon the linear superposition

of terms derived with the transfer matrix method are used to derive simple analyt-

ical expressions for complex acoustical systems. Good agreement is found when

in comparison to results produced using the transfer matrix method and numeri-

cally. One limitation with the effective property models presented is the inability to

capture the evanescent coupling between Helmholtz resonators.

The mechanism to achieve perfect absorption for one port systems has been ex-

plored with the development of single frequency and broadband frequency per-

fect absorbing acoustic metamaterial unit cells. Through the use of Helmholtz res-

onators with porous inclusions within their cavities, one port perfect absorbers

havebeendeveloped that obtain perfect absorption at 290Hzusing a singleHelmholtz

resonator with a sample thickness of λ/28, and over a broadband frequency range

between 275 and 625Hz using a systemof three Helmholtz resonatorswith a sample

thickness of λ/10.

In a two port system, Helmholtz resonators with porous inclusions within the cavity

have been utilised to achieve perfect absorption at a single frequency and over a

broadband frequency range. The single frequency perfect absorber has a sample

thickness of λ/16 at a frequency of 300 Hz. The broadband perfect absorber pre-



sented within this chapter exhibited perfect absorption at 312, 426 and 576 Hz, with

a sample thickness of λ/8 at the lowest critically coupled frequency.

A method of simplification has been proposed for impedance terms derived by the

transfer matrix method. This has been applied to the case of a serial array of M

coupled identical Helmholtz resonators. The simplification method is reliant upon

the use of an impedance contrast to create a small order term which can be used

in the Taylor expansion of the impedance expressions. By utilising the leading or-

der term from the Taylor series expansions, simple expressions were found com-

posed of polynomials of the same order as M . It was also found that the resonant

frequencies of the modelled systems can be obtained through the solution of the

polynomials present within the numerator of the impedance approximations.

Finally, an ideal analytical model has been developed tomodel the acoustic attenua-

tion achieved by periodic arrays of non-rigidly backed perforations acting as sound-

soft scatterers. It has been shown that periodic arrays of sound soft scatterers

produce a low frequency band gap from 0 Hz to a frequency determined by the

geometry of the perforations and the unit cell length. Acoustic waves within the

frequency range of the bandgap become evanescent, achieving large amounts of

attenuation for finite systems, and no wave propagation for infinite systems. To

confirm the existence of the low frequency band gap, an experimental setup to in-

vestigate the sound propagation in an open ended perforated pipe was designed.

The experimental transmission loss highlights that periodically arranged holes in

the rigid pipe create a low frequency band gap. The band gap produced experimen-

tally matches the predictions obtained for the simplified numerical model in which

the perforations were idealised with an acoustical soft backed elliptical geometry

in the 3D finite element model.
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Chapter 1

Introduction

Noise is a pervasive issue in everyday life. Whether in an occupational setting with

the use of tools and machinery, at home, in an office, or simply due to proximity to

infrastructure such as roads, railways and airports; noise affects every facet of our

day. It is well understood that chronic exposure to noise can produce both auditory

and non-auditory health effects. Exposure to high noise levels can cause damage to

hearing, even hearing loss in severe instances. It has also been shown that pro-

longed exposure to lower noise levels can lead to annoyance, sleep disruption and

daytime sleepiness. All of which increase the occurrence of hypertension and car-

diovascular disease [2]. Therefore, the subject of noise control spans a number of

industrial sectors. From the design and manufacturing of cars and planes, the de-

sign of homes and offices, in the planning process for large infrastructure schemes

such as wind farms and power stations, noise is a key consideration.

Generally, noise is a combination of direct sound from a source with the addition of

any reflected sound from any nearby acoustically hard surfaces such as walls and

buildings. Therefore, noise levels can either be reduced at the source or by altering

the reflective properties of surfaces such that noise is either attenuated, absorbed

or diffused. The most commonplace methodology for controlling noise is through

the use of porous materials. These are typically used for the construction of en-

closures and partition walls and can provide very good sound attenuation due to

viscous and thermal losses within the pores of the material [3]. One limiting factor

is that they become impractical at lower frequencies. This is due to the necessity

for them to be of comparable size to the incident sound wavelength, as dictated by
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the mass density law [4]. This means that in the case of low frequencies, sound ab-

sorbers need to be excessively deep or dense to effectively dissipate the sound en-

ergy. Therefore, a structure which achieves low frequency sound absorption with

a sample thickness much less than the wavelength being absorbed has numerous

general and industrial applications. Herein, this type of system will be referred to

as one port system, meaning that system is purely reflective with no transmission

occurring.

Another source of noise is producedwithin ducting and ventilation systems. To con-

trol this noise, silencers are often employed as a lining to the ducts [4]. The atten-

uation of acoustic waves by silencers is typically achieved through the employment

of rigidly backed cavities, connected to a main waveguide by a perforated panel.

For silencers with partitioned cavities with a single perforation, i.e. a Helmholtz

resonator, excellent attenuation can be achieved at the resonant frequency of the

resonator. For silencers with empty cavities and panels composed of multiple iden-

tical perforations along the length of the silencer, a similar phenomenon occurs. If

the perforated separating panel has a low porosity, a Helmholtz resonator type of

attenuation occurs. As the porosity increases, the silencer behaves more like an

expansion chamber [5]. In both cases, a limitation is the requirement for large cav-

ity volumes, or narrow neck regions, to achieve low frequency attenuation. A large

cavity volume is often impractical due to size constraints and having narrow regions

often results in poor attenuation of acoustic waves due to large amounts of viscous

and thermal losses overdamping the system. Therefore, a structure which achieves

low frequency sound absorption/ attenuation with a sample thickness and geome-

trymuch less than thewavelength being altered, whilst still allowing airflow through

the system, also has numerous general and industrial applications. Herein, this type

of system will be referred to as a two port system, meaning that it is both reflective

and transmissive and that airflow can pass through.

Acoustic Metamaterials

Acoustic metamaterials have come to the forefront in research in the past 20 years

[6]. Starting out as an academic curiosity, they have quickly become a main focal

point for research within the field of acoustics due to their far reaching industrial
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applications [7]. The term meta is a prefix used in the English language to indicate

a concept that is an abstraction of another concept, an example being metadata

– data about data. It then makes sense that metamaterials are artificial structures

built up of small building blocks. The building blocks beingmeta-atoms, whichwhen

constructed together behave as one continuous material but with unconventional

effective properties.

The concept of metamaterials shares its roots with composite materials; a mate-

rial that is composed of other materials. For example, fibreglass is made up of

glass fibres set in epoxy. The combination of materials allows for more desirable

mechanical properties than the individual properties of the constituent materials

that compose the composite. However, it is well understood that the mechanical

properties of the composite fall within the bounds of its component materials [8].

Metamaterials are similar in the fact that they are a continuousmaterial, like a com-

posite, however they constitute of smaller elements which collectively produce ef-

fective material properties not present in the individual elements. Therefore the

wave manipulation properties achieved by acoustic metamaterials supersede that

of the properties of its constituent materials.

Acoustic metamaterials are composed of sub-wavelength locally resonant unit cells

which can either be stand-alone, or periodic, and are typically an order of magni-

tude or smaller than the associated wavelength of the frequency they are designed

to manipulate [9]. The key parameters acoustic metamaterials alter in an impinging

sound wave are the mass density and bulk modulus [10]. All naturally occurring ma-

terials have both positive mass density and bulk modulus; acoustic metamaterials

have the ability to artificially manipulate these properties to have negative effective

quantities dependant on the frequency of the incident acoustic wave [11]. This al-

lows for a multitude of possibilities such as acoustic lensing, cloaking, phase delay,

active control and the absorption/ attenuation of low frequency sound with a sam-

ple thickness much less than the wavelength of sound being attenuated [1, 12]. A

graphic displaying these possible uses can be found in Figure 1.1.
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Figure 1.1: The material design space for acoustic metamaterials, where ρ is the ef-

fective dynamic density and C is the effective dynamic compressibility (inverse of

bulk modulus), as presented in [1]. The top right quadrant depicts the design space

for conventional acoustic materials, with the three remaining quadrants having one

or both negative effective dynamic fluid properties. These properties can only be

achieved dynamically. For instance, Helmholtz resonators driven at their resonance

frequency achieve negative dynamic compressibility. The three devices shown em-

ploy the metamaterial effects of negative refraction, transformation acoustics, and

cloaking.

Of particular interest for this thesis are acoustic metamaterials which can achieve

broadband low frequency noise absorption and attenuation in one and two port

systems, with a sample lengthmuch smaller than thewavelength beingmanipulated.

This thesis will explore; the analytical models required to obtain expressions for the

effective material properties of metamaterial structures; one and two port perfect

absorbers; and acoustic metamaterial structures which achieve very low frequency

attenuation of noise in waveguides through the exploitation of the negative dynamic

fluid properties exhibited by acoustic metamaterials.
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One Port Systems

For one port systems, perfect absorption has been shown to be possible through

the coupling of a Helmholtz and membrane resonators by tuning the interplay of

losses within the system such that the critical coupling condition is fulfilled [13].

This states that when the energy leakage of a resonant system is equal to the in-

herent losses within the system, all incident acoustic energy is absorbed [14]. It has

also been shown that a unit cell composed of a smaller waveguide structure side-

loaded by Helmholtz resonators can achieve perfect absorption omni-directionally

[15]. This was achieved through the coupling of identical Helmholtz resonators such

that the critical coupling condition was fulfilled by the accumulation of ’slow sound’

[16, 17, 18], where each subsequent resonator in a series reduces the speed of sound

such that very low frequency resonators absorb with much greater efficacy than if

the speed of sound was unaltered.

Through the use of multiple resonances within a one port structure it is possible to

obtain singular [19, 20] and broadband [21, 22] perfect absorption for sample thick-

nessmuch less than thewavelength being absorbed. The tuning of one port systems

composed of Helmholtz resonators can also be done through the use of porousme-

dia within the cavity, allowing for the losses within the system to be adjusted such

that the critical coupling condition is fulfilled [14]. Alternatively, it has been shown

that embedding Helmholtz resonators within a porous layer can also achieve per-

fect absorption [23, 24].

The mechanism for perfect absorption can also be visualised with the complex fre-

quency plane analysis method [14, 25, 26]. This is a graphical procedure which can

be used to display the eigenvalues or eigenvector components of systems in the

complex frequency plane. This provides useful information for the optimisation of

systems to achieve perfect absorption as it can be used to determine how the ad-

dition or reduction of losses in the system will change the absorption coefficient.

Some examples on the use of the complex frequency plane to achieve perfect ab-

sorption for subwavelength sized, anechoic termination type systems include those

composed of resonant building blocks [16, 15], membranes [27], porous membranes

[13], decorated membranes [28], bubble metascreens [29] and aerogels [30].
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Two Port Systems

To date, a number of methodologies have been employed to achieve perfect ab-

sorption in two port systems. For example, two port perfect absorption has been

realised through a process of ’coherent perfect absorption’, which is enabled by the

control of input acoustic waves in both propagative directions [31]. Through the use

of a subwavelength resonant metamaterial structure, the effective acoustic prop-

erties can be tuned such that perfect absorption can be achieved. This requires the

manipulation of the relative phase between impinging acoustic waves and allows for

the absorption coefficient to be tuned from zero to unity [32]. It has also been shown

that low frequency perfect absorption can be achieved through the use of elastic

membranes decorated with asymmetric rigid platelets which act as the oscillating

mass [33].

There is also a significant body of work on the analysis of Bloch wave propagation

through periodic arrays of Helmholtz resonators [34, 35, 36]. Based on the Bloch

wave analysis of infinitely periodic systems of Helmholtz resonators, it has been

shown that the bandgap dispersion effect on the acoustic wavenumber is also evi-

dent within finite systems [37, 38]. This work has lead to design of a system which

achieve negative bulk modulus through the implementation of periodic arrays of

HRs in the ultrasonic regime [39] and is also useful in when designing systems in the

low frequency regime [40, 18].

The absorptive properties of twoport structures can typically be simplified into two

types of systems. Those that exhibit asymmetrical sound absorption properties,

and those that are mirror symmetric and exhibit symmetrical sound absorption

properties. There has been a large body of work on achieving perfect absorption

with systems that exhibit asymmetrical absorptive properties [41].

As the maximum absorption coefficient attainable for one-sided absorption by a

point symmetric scatterer is α = 0.5 [31], multiple resonances are typically re-

quired to achieve perfect absorption. This can be achieved through the degenerate

coupling of Helmholtz resonators in which a detuning parameter can be utilised

such that strong coupling between the Helmholtz resonators is achieved and an

impedance match condition is met for a single propagative direction [42]. When
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this directional impedance match condition is met, this same boundary acts as an

acoustically soft boundary in the opposing direction, resulting in near-perfect re-

flection. As these types of systems are typically reciprocal in nature, the transmis-

sion coefficient does not varywith propagation direction [43]. Therefore, the duality

of the impedance matching condition coinciding with a sound soft boundary in the

opposing propagative direction is required to maintain an equal transmission coef-

ficient for both propagative directions [44].

Through the use of multiple degeneratively coupled resonators, it has been shown

that perfect and broadband absorption can be achieved over a large range of fre-

quencies with rainbow trapping using both Helmholtz resonators [45] and quar-

ter wavelength resonators [46]. It is also possible to use multiple pairs of detuned

degeneratively coupled Helmholtz resonators at targeted frequencies to achieve

asymmetric perfect absorption [42, 44, 47]. Other resonant structures such asmicro-

perforated panels [48] can be utilised to the same effect. Additionally, it has been

shown that through the use of degeneratively coupled resonators and waveguides,

mirror symmetric perfect absorption can be achieved in optics [49] and acoustics

through the use of Helmholtz resonators [50] and with coupled membrane res-

onators [51].

Through the use of a metamaterial consisting of an array of open backed perfo-

rations along a waveguide, where no cavities are present, it has been theoretically

and experimentally shown that negative bulk modulus can be obtained from zero

to an upper bound [52]. This is due to the non-local resonant effect of the perfo-

rations allowing for the occurrence of a bandgap where zero transmission occurs

and where the bandgap upper bound is determined by the system geometry. This

has been corroborated in the non-linear regime through the employment of high

amplitude excitation [53] and it has also been shown that through the coupling of

the perforations within an array of elastic membranes, both negative bulk modulus

and dynamic density can be achieved [54].
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Thesis Layout

The aims of this thesis are to investigate and develop broadband low frequency

acoustic metamaterials for noise absorption and attenuation in one and two port

systems, with a sample lengthmuch smaller than thewavelength beingmanipulated;

develop analytical models to obtain simple expressions for the effective material

properties of metamaterial structures to help gain an insight into the underlying

physics; and to develop an acoustic metamaterial structure for very low frequency

attenuation of noise in waveguides through the exploitation of the negative dynamic

fluid properties acoustic phenomenon exhibited by acoustic metamaterials.

This thesis is organised as follows: Chapter 1 is the introduction and provides con-

text for the work present herein. Chapter 2 provides the necessary theory and

mathematical framework that has been used throughout this thesis. Chapter 3

presents a general analytical model to obtain the effective fluid properties of com-

plex symmetric acoustical systems. Chapter 4 explores the use of Helmholtz res-

onators with porous inclusions to achieve perfect absorption at a single frequency

and over a broadband frequency range for one port systems. Chapter 5 explores

the use of Helmholtz resonators with porous inclusions to achieve perfect absorp-

tion at a single frequency and over a broadband frequency range for two port sys-

tems. Chapter 6presents amethodof approximating systemsof identical Helmholtz

resonators through the impedance contrast between the resonator neck and cav-

ity, with a discussion on the viability of coupled identical Helmholtz resonators for

low frequency perfect absorption. Chapter 7 describes the novel phenomenon of

open backed perforations along a waveguide acting as sound-soft scatterers, en-

abling very low frequency attenuation of acoustic waves. Experimental evidence of

this phenomenon is presented. Chapter 8 is the conclusion.
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Chapter 2

Theory

In his chapter, the underlying theory used throughout this thesis will be set out.

This begins with an introduction to the fundamental equations used throughout,

Helmholtz resonators and Phononic crystals. The effective fluid property models

that account for viscous and thermal effects in varying acoustic media will then be

detailed. These form the basis in which the analytical models developed within this

thesis are built upon. The transfer matrix method will be shown. This provides the

methodology for which all the analytical models have been developedwith through-

out this thesis. Finally, the numerical methods used for validation throughout this

thesis will be described.

2.1 Basic Equations

Consider a one-dimensional harmonic plane wave with eiωt time dependence (Not-

ing that this time dependence will be used throughout this thesis), where i =
√
−1,

which propagates in a duct of stationary ideal gaswith a cross sectional areaSa. The

macroscopic pressure gradient −∂p/∂x is applied to a medium in the x direction,

where p is the complex acoustic pressure amplitude at any point. The equation of

motion is written as follows [55]:

−∂p

∂x
= iωρ(ω)v, (2.1)
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where ρ(ω) is the effective frequency dependent dynamic fluid density, ω is the an-

gular frequency and v is the complex average macroscopic fluid velocity in the x

direction. For a small perturbation in the medium, the following expressions can be

written based on the continuity and thermodynamic state equations [55], respec-

tively:

ρ0
∂v

∂x
+ iωδρ = 0, (2.2)

δρ

ρ0
= C(ω)p. (2.3)

Hereweadopt notations similar to those used in ref. [55] so that ρ0 is the equilibrium

density, δρ is the perturbation density and C(ω) is the effective complex compress-

ibility of the fluid. Note that the effective bulk modulus K(ω) is simply the inverse

of the complex compressibility, i.e. 1/C(ω). The combination of equations (2.2) and

(2.3) leads to:

−∂v

∂x
= iωC(ω)p. (2.4)

Equations (2.1) and (2.4) result in the following wave equation:

∂2p

∂x2
= −ω2ρ(ω)C(ω). (2.5)

Subsequently, the effective dynamic fluid density and complex compressibility can

be used to obtain the characteristic impedance, Z(ω), and acoustic wavenumber,

k(ω), respectively:

Z(ω) =
1

Sa

√
ρ(ω)

C(ω)
, (2.6)

k(ω) = ω
√
ρ(ω)C(ω). (2.7)

The speed of sound, c(ω), can then be found simply as:

c(ω) = [ρ(ω)C(ω)]−1/2 . (2.8)

These basis equations provide the foundation to obtain the effective fluid properties

of an acoustical system.

2.2 Helmholtz Resonators

Helmholtz resonators (HRs) are a specific type of acoustic resonatorwhich are par-

ticularly useful in the control of audible harmonic sound waves. One such use is the
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attenuation of tonal noise within ducts/ pipes, such as in a muffler for a car exhaust

[56]. Additionally, as the resonance is not dependant on standing wave formation

within the structure, HRs can resonate at frequencies that have much longer wave-

lengths than the physical dimensions of the HR itself. This is a large contributing fac-

tor as to why HRs have become particularly prevalent within the design of acoustic

metamaterials, which by definition are sub-wavelength in size and dimensions.

Helmholtz resonators consist of two main features; a rigid walled cavity, and a neck

that typically protrudes out from the cavity. Due to this configuration, HRs resonate

at a specific frequency, similar to a mass-spring system. The air within the neck of

the resonator acts as the oscillating mass and the adiabatic compression of the air

within the cavity provides the spring constant. When an acoustic wave is incident

on the Helmholtz resonator, it acts as a force, causing the mass of air in the neck

to displace. As the mass moves down, it reduces the cavity volume, increasing the

pressure inside the cavity. This occurs until the pressure is great enough to recoil

the mass. Once the atmospheric pressure is greater than the cavity pressure, the

mass is then forced back in to the cavity, repeating the process. Figure 2.1 shows

this process.

Figure 2.1: Schematic of a Helmholtz resonator at resonance

Themass of air within the neck is simplym = ρSaL, where ρ is the fluid density, Sa is

the cross sectional area of the neck and L is the length of the neck. Using the ideal

gas law, it is possible to derive the following expression which relates the pressure
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change,∆p, with the change in volume,∆V :

∆p

p0
= −γ

∆V

V
, (2.9)

where γ is the ratio of specific heats. Furthermore, it is evident that ∆V = Sax,

where x is the distance travelled by the oscillating mass of air within the neck. This

results in the following expression:

∆p

p0
= −γ

Sax

V
, (2.10)

with the resulting net force on the oscillating fluid mass being:

F = ∆pSa = −γ
S2
ax

V
p0. (2.11)

Using Newton’s second law of motion, F = mẍ, gives us:

ẍ =
F

m
= −γ

Sap0
ρLV

x. (2.12)

If the mass oscillates harmonically, then ẍ = −ω2x, meaning the frequency of oscil-

lation is given by:

f0 =
1

2π

√
γSap0
ρLV

=
c

2π

√
Sa

LV
, (2.13)

where the speed of sound is c =
√

γp0
ρ
.

It must be stated that this model is simplified. Typically, the oscillating mass of air

encompasses a volume greater than the length of the neck. This is due to pres-

sure radiation at the discontinuities between the neck and the cavity/ surrounding

medium [57]. As a result, length correctionsmust be added to the length of the neck.

These vary with resonator geometry. Additionally, this model neglects the contri-

bution of damping, which occurs in the neck and cavity due to the visco-thermal

losses produced by the viscous and thermal boundary layers.

2.3 Phononic Crystals

Phononic crystals are periodic structures composed of two different elastic ma-

terials. The main quality of these structures is that mechanical waves are unable
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to propagate through the structure at designated frequencies [58, 59]. These fre-

quency ranges are known as bandgaps and are determined by the geometry of

the structure, e.g. lattice constant and unit cell structure [60]. To understand the

mechanismbehind this, it is important to recall some fundamentals from crystalline

structures [61].

An ideal crystal is constructed by an infinite repetition of identical groups of atoms.

These groups of atoms are known as the basis and the set of mathematical points in

which the basis resides is known as the Bravais lattice. A 2D Bravais lattice consists

of all points with position vectors, R, of the form R = n1a1 + n2a2. The vectors

ai, where i = 1, 2, are called primitive vectors and they generate the lattice. For

any given Bravais lattice, the set of primitive vectors is not unique, there are in fact

infinitely many choices. Figure 2.2 highlights a few examples.

Figure 2.2: Examples of some possible primitive vectors on a 2D Bravais lattice.

A volume of space that, when translated through all the vectors within the Bravais

lattice, fills all the space, without any overlapping or the creation of voids, is known

as the primitive unit cell. There must be exactly one lattice point per unit cell. This

is exemplified in figure 2.3.

Figure 2.3: Two examples of primitive cells on a 2D Bravais lattice.
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Cell one is simply a primitive unit cell whereas cell two is known as theWigner-Seitz

primitive cell. The Wigner-Seitz primitive cell of the reciprocal lattice is known as

the first Brillouin zone. This is in the frequency domain. Figure 2.4 outlines the first

three Brillouin zones for a square lattice and shows how the irreducible Brillouin

zone can be constructed within the first zone [61].

Figure 2.4: First three Brillouin zones of a square lattice (left) and the irreducible

Brillouin zone of a square lattice (right).

The irreducible Brillouin zone is formed by reducing the first zone through all of

its symmetries. All the information within the first Brillouin zone is also contained

within the irreducible Brillouin zone. The importance of the Brillouin zone comes

from Bloch waves and how they can be used to describe wave propagation in peri-

odic medium. This states that as a plane wave propagates through a periodic struc-

ture, it only changes by a periodic modulation [62]. This is described with the fol-

lowing equation, where time dependence is omitted for simplicity, and q is the Bloch

wavevector:

p(r +R) = p(r)eiqR. (2.14)

Here, p(r) is a periodic function of the same periodicity as the reciprocal lattice.

Incidently, Bloch’s theorem is equivalent to Floquet’s theorem [63] when applied to

a linear wave equation with periodically varying mechanical properties.

The most common method to describe band structures, formed by wave propa-

gation through a periodic medium, is through the use of the dispersion relation-

ship. This describes the relationship between the angular frequency, ω, and the

Bloch wavevector, q. If the primitive lattice vector,Ri, denotes the periodicity of the

medium, the envelope function f has the same periodicity, f(x+R1) = f(x). In the

sameway, such an envelope function can be found for q, which is also periodic, such

that f(q +Gi) = f(q), whereGi is the primitive lattice vectors of the reciprocal lat-
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tice. The direct and reciprocal lattice vectors obey an orthogonality condition such

that RiGi = 2πδij , where δij is the kronecker delta symbol. Due to the periodicity

of the wavevector, it is only necessary to compute the values for q within the first

primitive cell, i.e. the irreducible Brillouin zone.

For example, in a 1D system of periodicity, a, the primitive reciprocal lattice vector

is G1 = 2π
a
. The irreducible Brillouin zone then encompasses the region [−π

a
, π
a
]

[64]. All wavevectors are equivalent to those in this zone when translated by some

multiple of G1. A plot comparing the dispersion relationship of a one dimensional

linear homogenous medium and a one dimensional periodic system can be seen in

Figure 2.5.

Figure 2.5: Dispersion relationship of a 1D linear homogenous system (left) and a 1D

periodic system (right).

For the homogenous case, the dispersion relationship is simply a linear function,

ω = ck. For the periodic case, it can be defined as ω = c(ω)k. In both cases the

bands fold back to fit the irreducible Brillouin zone. The frequency of the Bragg

bandgap is determined by fr = c/2a and the width of the bandgap is a function of

the filling fraction of the scatterers within the system.

In general, when a mechanical wave at a frequency within the bandgap frequency is

incident, the wave is totally reflected. This is due to Bragg scattering of the wave at

the interfaces between the different materials [65]. The interaction of the incident

and reflected waves creates a splitting of the dispersion relationship. This is due

to interference effects within the crystal such as the interaction of waves with the

same wavevectors but propagating in opposite directions, forming standing waves.
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These by definition have a vanishing group velocity, such that vg = ∂ω/∂k = 0,

implying there is a horizontal tangent to the dispersion curve at the Brillouin zone

boundary, or in other words, the formation of a bandgap [64]. It must be noted that

for thework presented herein, the target frequencies are such that they are unsuit-

able for the utilisation of Bragg bandgaps due to the separation distance required

for unit cells. For example, to obtain a bandgap at 1000 Hz, the separation distance

required between two unit cells is 17 cm. This is too large for the applications pre-

sented within this thesis when considering many unit cells are required to create a

Bragg bandgap.

2.4 Effective Fluid Property Models

2.4.1 Viscous and Thermal Losses

Viscous and thermal (viscothermal) losses for the analytical acoustical models pre-

sented herein are accounted for by evaluating the complex frequency dependent

density, ρeff , and bulk modulus, Keff , for a plane wave propagating through a sec-

tion of constant cross section [66].

For a circular duct of radius r these are expressed as:

ρeff (ω) = ρ0

[
1− 2J1(rGr)

rGrJ0(rGr)

]
, (2.15)

Keff (ω) = K0

[
1 + (γ − 1)

2J1(rGk)

rGkJ0(rGk)

]
. (2.16)

Here Gr =
√

−iωρ0/η and Gk =
√

−iωρ0Pr/η, in which ρ0 is the equilibrium den-

sity, K0 = γP0 is the adiabatic bulk modulus, γ is the ratio of specific heats, P0 is

the equilibrium pressure, Pr is the Prandtl number and η is the dynamic viscosity.

Additionally, J0 and J1 are Bessel functions of the first kind.

For a rectangular duct of width, a, and height, b:

ρeff (ω) =
ρ0a

2b2

4G2
ρ

∞∑
k=0

∞∑
m=0

[
α2
kβ

2
m

(
α2
k + β2

m +G2
ρ

)]−1
, (2.17)
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Keff (ω) =
K0

γ − 4(γ − 1)G2
K/a

2b2
∞∑
k=0

∞∑
m=0

[
α2
kβ

2
m

(
α2
k + β2

m +G2
K

)]−1
, (2.18)

where Gρ =
√
iωρ0/η, GK =

√
iωρ0Pr/η, αk = 2(k + 1/2)π/a and βm = 2(m +

1/2)π/b, where k and m are integers in this instance. The infinite sums are com-

puted numerically with a truncation number of 100 and an accuracy of 5 significant

figures for a range of duct dimensions. Using these expressions it is then possible to

calculate the characteristic impedance and acoustic wavenumber for a fluid layer.

The properties of air at normal conditions used throughout this thesis are pre-

sented in Table 2.1.

η 1.983e− 5 [kg/ms]

γ 1.4
Pr 0.702
P0 101320 [N/m2]

µ 15.68e− 6 [m2/s]

Table 2.1: Properties of air at normal conditions.

2.4.2 Johnson-Champoux-Allard Model

This approach considers the layer of porous material in the rigid frame approxima-

tion as a layer of equivalent fluid. To calculate the effective parameters of the porous

layer, five macroscopic parameters of the porous material are required; porosity,

Ω, tortuosity, α∞, static airflow resistivity, σ,viscous characteristic length, Λ and the

thermal characteristic length Λ′.

For clarity; porosity is a measure of the amount of void (empty space) within a ma-

terial in comparison to the total volume. Tortuosity is ameasure of the sinuosity and

interconnectivity between pores. The static airflow resistivity expresses the level

of frictional resistance to an acoustic wave propagating through air that is at rest

within the pores. The viscous characteristic length is a measure of how viscous ef-

fects influence wave propagation, and is related to the size of the inter-connection

between two pores. Finally, the thermal characteristic length is a measure of how

thermal effects influence wave propagation, and is related to the maximum sizes of

the pores.
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The equations for the effective frequency dependant density and bulk modulus, are

found using the following expressions, respectively [3]:

ρeff (ω) =
α∞ρ0
Ω

(
1− i

ωc

ω
F (ω)

)
, (2.19)

Keff (ω) =
1

Ω

(
γP0

γ − (γ − 1)
(
1− i8ηG(Prω)/PrωΛ′2ρ0

)−1

)
. (2.20)

Where

ωc =
σΩ

ρ0α∞
. (2.21)

The functions F (ω) and G(Prω) are corrections introduced by Johnson [67] and by

Champoux and Allard [68], respectively. These are given by:

F (ω) =

√
1 + i

4ηρ0α2
∞

Ω2σ2Λ2
ω, (2.22)

and

G(Prω) =

√
1 + i

ρ0Λ′2Prω

16η
. (2.23)

Throughout this thesis, any implementation of porous media is undertaken using

the JCA method with the properties of melamine foam presented in Table 2.2.

Ω 0.99
α∞ 1.02
σ 11000 [Nsm−4]

Λ 160e− 6 [m]

Λ′ 220e− 6 [m]

Table 2.2: Macroscopic parameters of melamine foam.

2.5 Champoux and Stinson Rigid Frame Model

Consider a bulk sample of identical pores with total cross section S and total length

L. Here L is sufficiently large to cover all variation of pore cross section, but small

enough such thatL is much smaller than the acoustic wavelength in the pore space.

Within a single pore, there areM segments. Each segment,m, has a length l(m) and

an area S
(m)
a . A schematic of a single tortuous pore can be seen in Figure 2.6.
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Figure 2.6: Schematic of a sample containing a single tortuous pore.

It has been shown from the linear superposition of terms within each segment that

the effective dynamic density ρeff (ω) and complex compressiblity Ceff (ω) can be

obtained as follows [55]:

ρeff (ω) = α∞

M∑
m=1

ρ(ω)(m)l(m)/S(m)
a

M∑
m=1

l(m)/S(m)
a

, (2.24)

Ceff (ω) =

M∑
m=1

C(ω)(m)S(m)
a l(m)

M∑
m=1

S(m)
a l(m)

. (2.25)

Provided the geometry, dynamic density and complex compressibility are known

for each pore section, it is possible to obtain the effective properties for the total

system. Finally, the characterisitc impedance of the bulk material is given by

Zeff (ω) =
1

ΩS

[
ρeff (ω)

Ceff (ω)

]1/2
, (2.26)

where Ω =
M∑

m=1

S(m)
a l(m)/(SL) is the porosity of the sample.
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2.6 The Transfer Matrix Method

2.6.1 Basic Formulation

The transfer matrix method (TMM) provides the relationship between the initial

sound pressure, p, and volume flux, V = vSa, where Sa is the cross sectional area, at

the start and at the end of amedium in a duct [3]. To differentiate between the initial

and end properties, the subscripts x = 0 and x = −L are used, respectively. The

transfermatrix, T , is derived under the assumption that only planewaves propagate

through the medium in the−ikx direction, meaning it provides the solution for a 1D

wave propagation problem. The general formulation of the transfer matrix is as

follows; [
p
V

]
x=0

= T

[
p
V

]
x=−L

=

[
T11 T12

T21 T22

][
p
V

]
x=−L

. (2.27)

This is graphically depicted for a single fluid layer within Figure 2.7.

Figure 2.7: Graphical depiction of the TMM applied to a single fluid layer.

For a pressure wave incident on a fluid layer of thickness, L, and characteristic

impedance, Z = ρc/Sa, the pressure and acoustic particle velocity are written as

follows;

p(x) = Ae−ikx +Beikx, (2.28)

V (x) =
1

Z
(Ae−ikx −Beikx), (2.29)

where A and B are the amplitudes of the incident and reflected waves, respectively.

When x = 0, the pressure and particle velocity can be expressed as

p(0) = A+B, (2.30)

V (0) =
1

Z
(A−B). (2.31)
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Correspondingly, when x = −L, the pressure and acoustic particle velocity are:

p(−L) = (A+B)cos(kL)− i(A−B)sin(kL), (2.32)

V (−L) =
1

Z
((A−B)cos(kL)− i(A+B)sin(kL)). (2.33)

Substitution of equations 2.30 and 2.31 into equations 2.32 and 2.33 yields the ex-

pressions

p(−L) = cos(kL)p(0)− iZsin(kL)V (0), (2.34)

V (−L) = cos(kL)V (0)− i
sin(kL)

Z
p(0). (2.35)

When rearranged intomatrix form and inverting, the transfermatrix for a fluid layer

becomes:[
p
V

]
x=0

=

[
cos(kL) iZ sin(kL)
i
Z
sin(kL) cos(kL)

][
p
V

]
x=−L

=

[
T11 T12

T21 T22

][
p
V

]
x=−L

. (2.36)

For a multilayered structure, as shown in Figure 2.8, the relationship between the

input and output pressure and acoustic flux are obtained by the multiplication of

the transfer matrices of each layer.

Figure 2.8: Graphical depiction of the TMMapproach applied to amultilayered fluid.

This is expressed as

T =
M∏

m=1

T (m), (2.37)

whereM denotes the total amount of layers.

2.6.2 Reflection Properties of One-Port Systems

A one port system is an acoustical system that is purely reflective such that no trans-

mission of acoustic waves occurs. To determine the reflection properties of a one-
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port system, it is required to obtain the surface impedance. Consider an effective

fluid layer of the following form:[
p
V

]
x=0

=

[
cos(keffL) iZeffsin(keffL)
i

Zeff
sin(keffL) cos(keffL)

][
p
V

]
x=−L

=

[
T11 T12

T21 T22

][
p
V

]
x=−L

.

(2.38)

If a system has one port then there is a velocity termination at the rigid boundary

at the end of the system. This is facilitated by the multiplication of the final transfer

matrix of the system by [1, 0]T . The surface impedance of the system, Zs, is then

simply

Zs =
Px=0

Vx=0

=
T11

T21

. (2.39)

For an effective fluid layer this results in

Zs = iZeff cot(keffL). (2.40)

The reflection coefficient,R, is then obtained as

R =
Zw − Zs

Zw + Zs

, (2.41)

where Zw is the waveguide characteristic impedance. The absorption coefficient is

then simply

α = 1− |R|2. (2.42)

2.6.3 Transmission Properties of Two Port Systems

A two port system is an acoustical system which is both reflective and also trans-

missive. For a non-isotropic and asymmetric system, where the transmission and

reflection of the incident plane wave are dependent on the direction of entry to the

system, expressions can be obtained for the transmission, reflection and absorp-

tion coefficients [69]. When the incident wave propagates in the −ikx direction,

these are:

R− =
T11 + T12/Z0 − Z0T21 − T22

T11 + T12/Z0 + Z0T21 + T22

. (2.43)

T− =
2e−ikL

T11 + T12/Z0 + Z0T21 + T22

, (2.44)

α− = 1− |R−|2 − |T−|2, (2.45)
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where the superscript− indicates these expressions are calculated with respect to

an incoming wave of −ikx direction. Similarly, when the incident wave propagates

in the +ikx direction, these are:

R+ =
−T11 + T12/Z0 − Z0T21 + T22

T11 + T12/Z0 + Z0T21 + T22

. (2.46)

T+ =
2eikL(T11T22 − T12T21)

T11 + T12/Z0 + Z0T21 + T22

, (2.47)

α+ = 1− |R+|2 − |T+|2. (2.48)

Here,Z0 is the characteristic impedance of the surroundingmedium. Furthermore,

if a system is isotropic and homogeneous, then the layer is reciprocal [43]. As such,

the determinant of the transfer matrix is equal to unity. i.e.:

T11T22 − T21T12 = 1. (2.49)

Additionally, if the system is symmetric, i.e. the reflection coefficient is independent

of the direction of wave propagation, then the following condition holds true:

T11 = T22. (2.50)

From these conditions, it is evident that if the system becomes isotropic and sym-

metric, then equations (2.44)-(2.46) reduce to T+ = T− and R+ = R−. i.e. The

acoustic transmission and reflective properties of the system are independent on

the direction of incidence. This leads to the following transmission and reflection

coefficients:

T =
2e−ikL

T11 + T12/Z0 + Z0T21 + T22

, (2.51)

R =
T11 + T12/Z − Z0T21 − T22

T11 + T12/Z0 + Z0T21 + T22

. (2.52)

2.6.4 Effective Fluid Properties of a Symmetric System

Consider the transfer matrix that is the result of a series of matrix multiplications

to model a symmetric system. The result is a 2x2 matrix which can be thought of

as a single effective fluid layer of finite length, L. From this, the four transfer matrix

elements can be directly related to the effective fluid properties [69]. Specifically,

the effective wavenumber can be found as

keff (ω) =
1

L
arcsin

(√
−T12T21

)
, (2.53)
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and the characteristic impedance as

Zeff (ω) =

√
T12

T21

. (2.54)

From these two equations, the effective speed of sound is then

ceff (ω) = ω/keff (ω), (2.55)

the effective dynamic density is

ρeff (ω) =
Zeff (ω)Seff

c(ω)
, (2.56)

and the effective complex compressibility is

Ceff (ω) = (c(ω)2ρeff (ω))
−1, (2.57)

where Seff is the cross sectional area of the effective fluid layer. This method of

retrieving the effective fluid properties is coined the ’TMM Multiplication’ method

within this thesis.

2.6.5 Modelling Helmholtz Resonators

To calculate the impedance of a single Helmholtz resonator, the transfer matrix

method is used. The full matrix, T, is derived from the following expression [70]:

T = MnM∆lMc. (2.58)

The transfermatrix for theHRneck and cavity take the following forms, respectively.

Mn =

[
cos(knLn) iZnsin(knLn)
i
Zn

sin(knLn) cos(knLn)

]
, (2.59)

Mc =

[
cos(kcLc) iZcsin(kcLc)
i
Zc
sin(kcLc) cos(kcLc)

]
. (2.60)

The transfer matrix that accounts for the end corrections of the HR neck is written

as:

M∆l =

[
1 iρ0ω∆l/Sn

0 1

]
. (2.61)
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Where∆l is arrived at from the addition of two correction lengths,∆l = ∆l1 +∆l2.

∆l1 is due to pressure radiation at the discontinuity from the neck to the cavity of

the HR [71] and∆l2 comes from the pressure radiation at the discontinuity from the

neck to the surrounding medium [72].

∆l1 = 0.82

[
1− 1.35

rn
rc

+ 0.31

(
rn
rc

)3]
rn. (2.62)

∆l2 = 0.82
[
1− 0.235

rn
rw

− 1.32
( rn
rw

)2
+ 1.54

( rn
rw

)3
− 0.86

( rn
rw

)4]
rn, (2.63)

or

∆l2 = 0.6rn. (2.64)

The first expression of∆l2 is accurate for a waveguide side-loaded with a HR, whilst

the second expression is accurate for a waveguide with a HR placed at a dead-end.

To determine the surface impedance for a resonator placed at the end of a waveg-

uide, you multiply the final T matrix by [1, 0]T , this accounts for the velocity termi-

nation. From this, the impedance can simply be found as follows:

ZHR =
Px=0

vx=o

=
T11

T21

. (2.65)

This yields the expression:

ZHR = −i
cos(knln)cos(kclc)− Znkn∆lcos(knln)sin(kclc)/Zc − Znsin(knln)sin(kclc)/Zc

sin(knln)cos(kclc)/Zn − kn∆lsin(knln)sin(kclc)/Zc + cos(knln)sin(kclc)/Zc

.

(2.66)

The transfer matrix for a Helmholtz resonator with a porous inclusion within the

cavity is expressed as

T = MnM∆lMcMp, (2.67)

whereMp is the transfermatrix for an effective fluid layer of porousmaterial defined

using equations (2.19) and (2.20). The impedance can be obtained using the same

methodology for a Helmholtz resonator with no porous inclusion.

2.7 Numerical Methods

All numerical modelling presented in this Thesis was undertaken using COMSOL

Multiphysics, which is a commercially available Finite Element Method (FEM) soft-

ware package which can be used to solve the acoustic wave propagation through
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fluids with complex geometry using a number of acoustic equations and boundary

conditions to accurately model systems.

The finite element method is an analytical technique for solving partial differential

equations over a 2D or 3D domain. To determine a solution to a particular problem,

the geometry of a system is discretised into a finite number of smaller sub-divisions

called elements. Each element is interconnected at singular points, which are called

nodes. The collection of elements and nodes for a given system is called the mesh.

The solution to the governing equations is solved at each node of an element. From

the solution at each node, a global solution can be determined based upon the nodal

contributions of each element, with a continuous solution interpolated using these

contributions [73].

All modelling herein was undertaken using the frequency domain within the pres-

sure acousticsmodule of COMSOLmultiphysics. Therefore, the governing equation

of motion is the Helmholtz equation. This is a time independent form of the wave

equation for a harmonic pressure wave excitation, p = p0e
iwt:

∇(− 1

ρc
∇p0)−

k2
eqp0

ρc
= 0, (2.68)

where the equivalent wavenumber keq = ω/cc, in which the complex speed of sound

is cc and the complex dynamic density is ρc.

Acoustically rigid surfaces are modelled as sound-hard boundaries using the Neu-

mann boundary condition. Through this, the normal component of the fluid accel-

eration is zero at the boundaries. The expression for this is

~n(− 1

ρ0
∇p0) = 0, (2.69)

where ~n is the normal vector at the boundaries. Viscothermal losses are modelled

using the narrow-regions acoustic domain selection within COMSOL. This solves

the Helmholtz equation within the narrow regions with the following corrections

for the complex speed of sound and complex dynamic density [74]:

cc = c

√
Ψv

γ − (γ − 1)Ψh

, (2.70)

ρc =
ρ0
ΨV

. (2.71)
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Here Ψv and Ψh are viscous and thermal field functions, respectively. The viscous

wavenumber, k2
v = −iωρ0/µ, and the thermal wavenumber, k2

h = −iωρ0Cp/κ, are

inputted into the viscous and thermal field functions. κ is the thermal conductivity,

µ is the kinematic viscosity and Cp is the specific heat capacity at constant pres-

sure. Depending on the geometry of the modelled system, i.e. if it is a circular or

rectangular duct, the viscous and thermal field functions are tailored to accurately

account for the viscous and thermal effects, as in Section 2.4.1.

The poro-acoustic losses are computed in a smaller manor such that the complex

speed of sound is cc =
√

Ke/ρe and the complex dynamic density is ρc = ρr. Here

the complex effective bulk modulus,Ke and density ρe are computed using the JCA

expressions displayed in Section 2.4.2.

In order to eliminate unwanted acoustic reflections, perfectlymatched layers (PML)

have been used. These act as artificial porous media that are extremely effective at

absorbing acoustic waves and as such can be used to emulate anechoic termina-

tions [75]. By placing a PML at the end of an numerically modelled acoustic waveg-

uide, it allows for the retrieval of the acoustic properties of the system by eliminat-

ing any unwanted reflections which would affect pressure results.

2.7.1 Mesh Convergence

The size of each element within a mesh is often a crucial factor upon the accuracy

of FEM computations. For the modelling of acoustic systems, it is recommended

to have the maximum of an element size at least five times smaller than the small-

est acoustic wavelength modelled [76]. The mesh density should also be suitable

such that any small geometrical properties of the modelled systems are accurately

approximated by the mesh.

For example, a mesh convergence study has been undertaken on a single cylindrical

Helmholtz resonator side-loading a square waveguide. This was conducted for the

frequency range [10, 1500]Hz. The geometry of the system is presented in Table 2.3.
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rn ln rc lc Aw

3.5 5 25 40 50

Table 2.3: Geometric properties of waveguide side-loaded by a Helmholtz resonator

for the mesh convergence study. All units are [mm].

Due to the geometry presented here being representative of the geometry pre-

sented throughout this Thesis, it was deemed appropriate to conduct a mesh con-

vergence analysis of this geometry. Because of the narrow region with the neck

and cavity of the Helmholtz resonator, the mesh was sufficiently dense within this

region such that all geometrical details were captured. Therefore, the mesh con-

vergence analysis was undertaken on the main waveguide on which the Helmholtz

resonator was side-loading. This was done by parametrically varying the maximum

mesh size through the ranges λ, λ/5, λ/10, and λ/20 at 1500 Hz and comparing plots

of the transmission, reflection and absorption coefficients to assess convergence.

In all instances the minimummesh size was λ/20within the main waveguide. These

results were plotted against those obtained with the TMM to determine the agree-

ment with the analytical methodology. Plots comparing the obtained transmission,

relfection and absorption coefficients from varying waveguide maximummesh ele-

ment sizes can be seen in Figure 2.9.
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Figure 2.9: The transmission (|T |), reflection (|R|) and absorption (α) coefficients

computed using the TMMmethod (TMM) and numerically (Numerical) for awaveg-

uide side-loaded by a single Helmholtz resonator for four values of maximum ele-

ment size λ, λ/5, λ/10, and λ/20 at 1500 Hz.

From this figure it can be seen that excellent agreement between all the mesh sizes

in comparison to the TMM when modelling the response of the Helmholtz res-

onator. This is due to the high mesh density required to accurately approximate

the resonator geometry and the fact that the resonator response is within the low

frequency range, where there are more elements per wavelength. However, above

1000 Hz it can be seen that there is some inaccuracies within the results for the

maximum mesh sizes of λ and λ/5, when in comparison to the TMM and the two

finer meshes. Therefore, for all modelling herein it can be determined that it is

necessary to have at least 10 elements per wavelength and to ensure the mesh is

fine enough to accurately approximate the modelled geometry.
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2.7.2 TwoMicrophone Method

The methodology to establish the acoustic properties of the one port numerical

models is the based upon the two-microphone method, as described in [77, 78].

This is an experimental methodology which allows for the retrieval of the acoustic

reflection coefficient of one port systems placed at the end of an impedance tube.

This experimental methodology can be adapted to obtain the acoustic properties

of one port systemsmodelled numerically. By modelling an ideal plane wave source

at one endpoint of a waveguide and the sample with rigid backing at the other, it

is possible to determine the reflection coefficient by extracting the complex val-

ued total acoustic pressure at the two pressure points positioned at x1 and x2, as

highlighted in Figure 2.10.

Figure 2.10: Schematic drawing of a numerical model utilising the two-microphone

method to determine the reflection coefficient. The red points represent the pres-

sure points at which the total acoustic pressure is retrieved.

The complex valued total acoustic pressure at the points x1 and x2, respectively, are

expressed as

p1 = pI(x1) + pR(x1) = p̂Ie
−iikx1 + p̂Re

iikx1 ,

p2 = pI(x2) + pR(x2) = p̂Ie
iikx2 + p̂Re

−iikx2 ,
(2.72)

where p̂I and p̂R are the amplitudes of the incident and reflected waves, respec-

tively. The transfer functions for the incident and reflected waves can therefore be

expressed as

HI =
pI(x2)

pI(x1)
=

p̂Ie
−ikx2

p̂Ie−ikx1
= eiks,

HR =
pR(x2)

pR(x1)
=

p̂Re
ikx2

p̂Reikx1
= e−iks,

(2.73)
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where s = x2 − x1 is the separation distance of the points. The transfer function

between the two pressure point positions can be expressed as

H12 =
p2
p1

=
p̂Ie

−ikx2 + p̂Re
ikx2

p̂Ie−ikx1 + p̂Reikx1
. (2.74)

Finally, using these expressions, the reflection coefficient at the sample surface, x =

0, can be obtained as

R =
H12 −HI

HR −H12

eik2x1 . (2.75)

From this the acoustic surface impedance and absorption coefficient can also be

obtained.

2.7.3 Four Microphone Method

The methodology to establish the acoustic properties of the two port numerical

models is the based upon the four-microphone method, as described in [79, 80].

This is an experimentalmethodwhich allows for a transfermatrix to be constructed

for a system,meaning the acoustic properties of a two port system can be obtained.

A key assumption is the test sample does not exhibit symmetric absorption, i.e.

T11 6= T22.

In the experimental setup a loudspeaker is installed at one endpoint of the impedance

tube and generates a wide-band white noise signal. The test sample is placed in the

centre of the impedance tube with a pair of microphones placed either side. The

endpoint opposite the loudspeaker can be equipped with either an anechoic or re-

flecting termination, allowing for two tests with different boundary conditions. This

is an essential factor in determining the asymmetrical absorptive properties of sys-

tems.

This experimental methodology can be adapted to obtain the acoustic properties

of two port systemsmodelled numerically. By modelling an ideal plane wave source

at one endpoint and either a sound-hard boundary or a PML at the other endpoint,

it is possible to simulate the same setup. By retrieving the total acoustic pressure

at four points, two either side of the modelled system, the following calculations

can be used to determine the acoustic properties from the numerical model. A

graphical example of this setup is displayed in Figure 2.11.
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Figure 2.11: Schematic drawing of a numerical model utilising for the four-

microphone method to retrieve the asymmetric reflection coefficient. The red

points represent the pressure points at which the total acoustic pressure is re-

trieved.

Here the acoustic wavenumber is simply defined as the real value k = 2πf/c, and

the four amplitude coefficients A, B, C and D can be calculated once the complex

acoustic transfer functions, Hi,ref , between the ith pressure point and reference

pressure point are obtained:

A =
i
(
H1,refe

−ikL1 −H2,refe
−ik(L1+s1)

)
2 sin(ks1)

,

B =
i
(
H2,refe

ik(L1+s1) −H1,refe
ikL1
)

2 sin(ks1)
,

C =
i
(
H3,refe

ik(L2+s2) −H4,refe
ikL2
)

2 sin(ks2)
,

D =
i
(
H4,refe

−ikL2 −H3,refe
−ik(L2+s2)

)
2 sin(ks2)

,

(2.76)

where any of the four pressure point locations can be used as the reference. For

either boundary condition, it is possible to determine the acoustic pressure and

particle velocity for x = 0 and x = d. These are determined as:

p0 = A+B,

v0 =
(A−B)

ρc

pd = Ce−ikd +Deikd

vd =
(Ce−ikd −Deikd)

ρc
.

(2.77)

The total transfer matrix, T , for the system can be determined from the calculated

acoustic pressures and particle velocities for the two boundary conditions; where

32



a is the anechoic termination and b is the sound-hard backing:

T =

[
T11 T12

T21 T22

]
=[

(p0avdb − p0bvda)/(pdavdb − pdbvda) (p0bv0a − p0avdb)/(pdavdb − pdbvda)
(p0avdb − p0bvda)/(pdavdb − pdbvda) (pdav0b − pdbv0a)/(pdavdb − pdbvda)

]
.

(2.78)

From this it is now possible to establish the acoustic properties of the system using

the methodology set it in Section 2.6.3.
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Chapter 3

The use of the Transfer Matrix

Method to predict the effective fluid

properties of acoustical systems

The transfer matrix method (TMM) is a simple and powerful method to model

acoustical systems. Using this method it is possible to analyse the sound absorp-

tion/transmission properties of one and two port systems [56], assess effects due

to periodicity [34, 40] and derive effective property expressions for porous layers

[69]. Additionally, it has proven to be a popular technique in order to model multi-

layered porous materials [3], parallel assemblies of porous materials [81] and sound

absorbing acoustic metamaterials consisting of waveguide structures side-loaded

by Helmholtz resonators [13, 45].

In the acoustics of porous materials, sound propagation in rigid tortuous pores is

modelled with the linear superposition of the macroscopic pressure gradient and

the averaged velocity within pore segments of constant cross-section. This ap-

proach of discretising pores into segments was used in the Champoux and Stinson

model [55] to determine the effective density and compressibility and thus enables

the building of simple acoustical models.

In this chapter, a general methodology is proposed to obtain simple analytical ex-

pressions for the effective material properties for symmetric systems that can be

modelled with the TMM, denoted as ’TMM Summation’. The proposed method
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utilises the linear superposition of terms derived from the transfer matrix compo-

nents of a system to obtain the total effective properties of the system. Thismethod

differs from the traditional transfer matrix method as it is not reliant upon the ma-

trix multiplication of each segment’s transfer matrices. As such, simple analytical

expressions for complex systems can be derived using this method, allowing for an

insight into the underlying physics of these systems.

The proposed methodology is validated for two scenarios. Firstly, the effective

properties are obtained for a single rigid tortuous pore consisting of cylindrical

sections of varying cross sectional area. The obtained effective properties are sim-

plified to succinct analytical expressions which match the well established Cham-

poux andStinsonmodel [55]. These expressions are validated against the traditional

TMM. Secondly, simple general expressions for the effective dynamic density and

complex compressibility are obtained for a waveguide side-loaded by an arbitrary

number of Helmholtz resonators. These expressions are validated against results

obtained using the traditional TMM and numerically for a symmetric system.

3.1 The TMM Summation Method

The transfer matrix method provides a system of two equations which relates the

acoustic pressure, p, and the volume flux, V , at x = 0 and x = −L, where L is the

length of the system. For a two-port system these are:

p0 = T11pL + T12VL, (3.1)

and

V0 = T21pL + T22VL. (3.2)

The subscripts 0 and L denote the respective variable value at x = 0 and x =

−L of the system. Consider a system discretised into M segments, each with a

cross section S
(m)
a and length l(m), where (m) denotes the mth segment. By apply-

ing the velocity-pressure relationship VL = pL/ZL, where ZL is the characteristic

impedance at the local coordinate x = −l(m) of a segment, equations (3.1) and (3.2)

can be modified to model the change in pressure and particle velocity within the
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mth segment. These expressions are:

p
(m)
0 =

(
T

(m)
11 +

T
(m)
12

Z
(m)
L

)
p
(m)
L , (3.3)

and

v
(m)
0 =

1

Sa

(
T

(m)
21 +

T
(m)
22

Z
(m)
L

)
p
(m)
L . (3.4)

For further clarification, Figure 3.1 shows themth segment of an arbitrary symmetric

system.

Figure 3.1: Graphical depiction of the application of the modified transfer matrix

equations to themth segment of an arbitrary symmetric system.

Continuing this notion of a discretised system and utilising the equation of motion

(2.1), the equation of motion for themth segment of a system can be described as:

−
(
∂p

∂x

)(m)

= iωρ(ω)(m)v(m). (3.5)

Here, the pressure gradient of the fluid within themth segment, (∂p /∂x)(m)
, can be

expressed as (p
(m)
L −p

(m)
0 )/l(m), assuming l(m) is sufficiently small with respect to the

wavelength. The average fluid velocity across the mth segment, v(m), is taken to be

v
(m)
L to capture velocity variation along the segment. Assuming that the tortuosity

of themth segment is equal to unity due to the constant cross section, by inputting

these substitutions fromequations (3.3) and (3.4) and somealgebraicmanipulation,
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the effective dynamic density of the fluid within themth segment of a system can be

obtained as:

ρ
(m)
eff (ω) =

(
(T

(m)
11 − 1)Z

(m)
L + T

(m)
12

)
S
(m)
a

iωl(m)
. (3.6)

To determine the effective density of the total system, the effective densities for

all segments are superimposed. Each term is multiplied by the acoustic inertance

weighting factor,
(
l(m)/S

(m)
a

)
/

M∑
m=1

(
l(m)/S(m)

a

)
, to account for density terms from

narrow cross sections being dominant in the total effective dynamic density. The

tortuosity of the total system, α∞, is then included as a factor on the superimposed

expression. This is defined as [82]:

α∞ =

M∑
m=1

S(m)
a l(m)

(
M∑

m=1

l(m)

)2

M∑
m=1

l(m)

S
(m)
a

. (3.7)

Therefore, the total effective density of the fluid within the symmetric system is

calculated using the following expression:

ρeff (ω) =

α∞

M∑
m=1

ρ
(m)
eff (ω)l

(m)/S(m)
a

M∑
m=1

l(m)/S(m)
a

=

α∞

M∑
m=1

(
(T

(m)
11 − 1)Z

(m)
L + T

(m)
12

)
iω

M∑
m=1

l(m)/S(m)
a

. (3.8)

Using the same logic and applying this to equation (2.4), the rate of change in the

acoustic velocity for the fluid in themth segment can be described as:

−

(
∂v

∂x

)(m)

= iωC(ω)(m)p(m). (3.9)

Here, the velocity gradient of the fluid within the mth segment (∂v/∂x)(m)
can be

expressed as (v
(m)
L − v

(m)
0 )/l(m), where v

(m)
L = p

(m)
L /(Z

(m)
L Sa), assuming l(m) is suffi-

ciently small with respect to the wavelength. The acoustic pressure p(m) is taken to

be p
(m)
L to capture pressure variation along the segment. Again, by inputting these

substitutions from equations (3.3) and (3.4), the following expression can then be

obtained for the effective complex compressibility of the fluid in the mth segment

of a system:

C
(m)
eff (ω) =

T
(m)
21 Z

(m)
L + T

(m)
22 − 1

iωl(m)Z
(m)
L S

(m)
a

. (3.10)
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By multiplying the effective complex compressibility of the fluid within each seg-

ment by the volumetric weighting factor, S
(m)
a l(m)/

M∑
m=1

S(m)
a l(m), to account for com-

pressibility terms from large cross sections being dominant in the total effective

complex compressibility, and superimposing all terms, the total effective complex

compressibility of the fluid within the system system can be expressed as:

Ceff (ω) =

M∑
m=1

C
(m)
eff (ω)S

(m)
a l(m)

M∑
m=1

S(m)
a l(m)

=

M∑
m=1

(
T

(m)
21 Z

(m)
L + T

(m)
22 − 1

)(
Z

(m)
L

)−1

iω
M∑

m=1

S(m)
a l(m)

. (3.11)

A simple approach is now available to obtain analytical expressions for systems

modelled by the TMM. The above expressions can be used to assess how the com-

plex compressibility, dynamic density, speed of sound, effective wavenumber and

characteristic impedance varies within a complex system.

3.2 Effectivematerial propertiesof a rigid frameporous

material

A simple theoretical model that describes the sound propagation through pores

of known cross-sectional area and shape is proposed by Champoux and Stinson in

[55]. This same rigid pore system is modelled using the proposed TMM Summation

method and results are comparedwith those from the TMMmultiplicationmethod.

3.2.1 Application of the TMM summation method

Consider a single pore composed ofM distinct cylindrical segments which are con-

stant in cross section. Each segment, m, has a length l(m) and a radius r(m). For

convenience a graphical depiction of this system can be seen in Figure 3.2.
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Figure 3.2: Schematic of a sample containing a single tortuous pore.

The total transfer matrix of the system, T , is:

T = MΩ ·M (1) ·M (2) . . .M (M−1) ·M (M) ·M−1
Ω , (3.12)

whereM (m) is the transfer matrix for themth segment fluid layer. Here, the acous-

tic wavenumber, k(m), and characteristic impedance, Z(m), are obtained with equa-

tions (2.15) and (2.16) to account for the viscothermal losses of each segment. MΩ

accounts for the porosity of the system and is defined as:

MΩ =

[
1 0
0 1

Ω

]
. (3.13)

From this total matrix, the effective fluid properties can be obtained by with the

TMMmultiplication method using equations (2.53) and (2.54).

For the TMM summation method, the effective density and compressibility of the

system can be obtained by utilising equations (3.8) and (3.11) upon each matrix in

the system. This results in the following expressions:

ρeff (ω) =

α∞

M∑
m=1

(
cos

(
k(m)l(m)

)
+ i sin

(
k(m)l(m)

)
− 1
)
Z(m)

iω
M∑

m=1

(
l(m)/S(m)

a

) (3.14)
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and

Ceff (ω) =

M∑
m=1

(
cos

(
k(m)l(m)

)
+ i sin

(
k(m)l(m)

)
− 1
) (

Z(m)
)−1

iω
M∑

m=1

(
S(m)
a l(m)

) . (3.15)

By taking the low frequency limit, k(m)l(m) � 1, the series expansion of the common

expression present in equations (3.14) and (3.15) can be calculated. The result of

this is:

cos
(
k(m)l(m)

)
+ i sin

(
k(m)l(m)

)
− 1 = ik(m)l(m) +O

{(
k(m)l(m)

)2}
. (3.16)

Therefore, utilising the leading order term from the series expansion, the total dy-

namic density and complex compressibility of the fluidwithin the tortuous pore can

be defined as:

ρeff (ω) = α∞

M∑
m=1

ρ(ω)(m)l(m)/S(m)
a

M∑
m=1

l(m)/S(m)
a

(3.17)

and

Ceff (ω) =

M∑
m=1

C(ω)(m)S(m)
a l(m)

M∑
m=1

S(m)
a l(m)

, (3.18)

where ρ(ω)(m) and C(ω)(m) are the dynamic density and complex compressibility of

the fluid in the mth segments calculated with equations (2.15) and (2.16). It can be

seen that these expressions match the Champoux and Stinson model.

3.2.2 Results

In this section, a single pore of four distinct segments of varying cross section is

modelled using the proposed TMM summation method and then validated against

the traditional TMMmultiplicationmethod. The geometric parameters for the pore

can be seen in Table 3.1.
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r(1) r(2) r(3) r(4) l(1) l(2) l(3) l(4) L
2 0.75 3 1.5 1 2.5 2 1 6.5

Table 3.1: Geometric properties of rigid framed pore structure. All units are [mm].

The resulting tortuousity of the system is α∞ = 3.26 and the sample cross sec-

tional area can be selected as an arbitrary value as the above methods obtain the

effective properties for the fluid within the pore. The plots of the real and imagi-

nary components of effective material properties, normalised acoustic impedance,

wavenumber and speed of sound can be seen in Figure 3.3.
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Figure 3.3: The effective density ρ(ω) [kg/m3], bulk modulus K(ω) [Pa], normalised

acoustic impedance Z(ω), wavenumber k(ω) [1/m] and speed of sound c(ω) [m/s]

computed using the proposed effective property model (TMM summation) and the

traditional TMMmethod (TMMMultiplication).

From Figure 3.3 it is evident that there is excellent agreement between the TMM

summation and TMM multiplication models in the low frequency regime, with a

mean absolute percentage error (MAPE) of 0.6% for the effective density andMAPE

of 0.032% for the effective bulk modulus, within the first 1000Hz. Past this it can be

seen that the the two methods begin to deviate from one another, as evidenced in

the dynamic density and wavenumber of this system. As equations (3.17) and (3.18)

42



are experimentally validated by Champoux and Stinson [55], with a similar pore ge-

ometry for up to 5kHz, it is thought this deviation is associated with a limitation in

the retrieval of the effective properties using the TMM multiplication method. As

this sysytem is not locally resonant, there is no dependance on the system being

symmetrical for the effective property models to be valid. Finally, if one wanted to

increase the scale of the system by an order of magnitude whilst retaining the same

tortuousity, radiation effects would then have to be accounted for [83], which is not

viable with this TMM Summation method.

3.3 Effectivematerial propertiesof awaveguide side-

loaded by Helmholtz resonators

In this section, the effective fluid properties are obtained for a waveguide side-

loaded byMHelmholtz resonators. This is done using the TMMsummationmethod.

The obtained effective fluid properties are comparedwith those obtained using the

TMMmultiplication method presented in Section 2.6.4.

3.3.1 Application of the TMM summation method

Consider a waveguide section of constant cross-section, Sa, and length, L, side-

loaded byM Helmholtz resonators periodically spaced by l = L/(M − 1), as shown

in Figure 3.4. It is worth noting that the Helmholtz resonator geometries must be

selected such that the system is symmetric about x = −L/2.
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Figure 3.4: Schematic for a system of M equispaced cylindrical HRs side-loading a

square waveguide.

The transfer matrix for the whole system is expressed as:

T = M
(1)
HR ·MWG ·M (2)

HR2 . . .MWG ·M (M−1)
HR ·MWG ·M (M)

HR , (3.19)

where the waveguide transfer matrix,MWG, is the transfer matrix of a fluid layer of

length l. Within this matrix, Z = ρc/Sa, is the characteristic impedance for plane

wave propagation within the fluid of the waveguide, and k is the wavenumber of the

fluid within the waveguide. These quantites are determined with the use of equa-

tions (2.17) and (2.18). The resonators are introduced as point scatterers within the

transfer matrix, which is facilitated for themth resonator by the following matrix:

M
(m)
HR =

[
1 0
1

Z
(m)
HR

1

]
. (3.20)

To calculate the effectivematerial properties using the traditional method of matrix

multiplication, it is a simplemanner of utilising the equations set out in Section 2.6.4

upon the final transfer matrix, T, of the system.

Through the application of equation (3.8) upon the transfer matrices in equation

(3.19), the total effective dynamic density of the fluid within the system can be ex-

plicitly written as:

ρeff (ω) =
ZSa

iωL

M−1∑
m=1

(cos (kl) + i sin (kl)− 1) . (3.21)

Through the application of equation (3.11) upon the transfer matrices in equation

(3.19), the total effective compressibility of the fluid within the system can be ex-
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plicitly expressed as:

Ceff (ω) =
1

iωLSa

{
1

Z

M−1∑
m=1

(cos (kl) + i sin (kl)− 1) +
M∑

m=1

1

Z
(m)
HR

}
. (3.22)

By taking the low frequency limit, kl � 1, the total dynamic density and complex

compressibility of the fluid within the system can be defined as:

ρeff (ω) = ρ(ω), (3.23)

Ceff (ω) = C(ω) +
1

iωLSa

M∑
m=1

1

Z
(m)
HR

, (3.24)

where ρ(ω) and C(ω) are the dynamic density and complex compressibility of the

waveguide.

3.3.2 Results

To assess the validity of equations (3.23) and (3.24), a system of two cylindrical

Helmholtz resonators side-loading a square waveguide is modelled. This system

contains two distinct resonances resulting from variation in geometry between the

Helmholtz resonators. Namely, a difference in the cross sectional area of the necks.

A limiting factor in using an effective fluid layer transfer matrix to compute the re-

flection coefficient is due to the assumption that the system is a symmetric ab-

sorber, i.e. T11 = T22. When this is not the case, such as in a degenerate coupling of

Helmholtz resonators [31], the use of effective properties as presented within this

paper is unfit for purpose in obtaining the reflection and absorption coefficients.

This does not apply to the transmission coefficient due to the reciprocal nature of

this type of system, i.e. T11T22 − T12T21 = 1.

As such, the following symmetric examples have been selected with M identical

Helmholtz resonators, where M = 3, 5, 10 and 20. The separation between each

subsequentHR is 12mmand thereforeL = (M−1)×12mm, thewidth, a, andheight,

b, of the waveguide are a = b = 50 mm. The geometry of the modelled Helmholtz

resonators can be seen in Table 3.2 with these quantities graphically represented in

Figure 3.4.
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rn rc ln lc
2 10 10 60

Table 3.2: Geometric properties of the modelled Helmholtz resonator. All units are

[mm].

Theplots of the effective dynamicdensity, effective bulkmodulus, normalised acous-

tic impedance, acoustic wavenumber and the speed of sound computed using the

effective property model and the TMM multiplication method for M = 5 can be

seen in Figure 3.5.
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Figure 3.5: The effective dynamic density ρ(ω) [kg/m3], effective bulk modulusK(ω)
[Pa], normalised impedance Z(ω), acoustic wavenumber k(ω) [1/m] and speed of

sound c(ω) [m/s] computed using the effective property model (TMM summation)

and the traditional TMMmethod (TMMMultiplication) .

From Figure 3.5 it is evident that there is good agreement in all terms, although fluc-

tuations within the effective density are evident in the TMM multiplication model

which have not been captured with the TMM summation model. The physical na-

ture of these fluctuations is uncertain and could either be a result of the resonances

of the Helmholtz resonators or numerical errors in the retrieval of the effective

wavenumber and impedance with the TMM multiplication method. Nonetheless,
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it can be seen that these fluctuations play no significant role in subsequent terms

derived from the dynamic density and as such, regardless of the physical meaning

of these fluctuations, they can be deemed negligible. Therefore, the TMM summa-

tion model can be deemed a valid approach to derive analytical approximations for

symmetric systems composed of Helmholtz resonators. To corroborate this claim,

it has been shown that through the use of the modal expansion method [15], an an-

alytical approximation for the effective dynamic density of a waveguide side-loaded

by Helmholtz resonators matches that of equation (3.23) obtained using the TMM

summation method.

The transmission, reflection and absorption coefficients of the system for M =

3, 5, 10 and 20 have been computed using the TMM method, numerically and with

the TMM summation method. The equations used to obtain the transmission and

reflection coefficients were (2.51) and (2.52). These equations were applied to the

total transfer matrix of the system for the TMM method and to the transfer matrix

of an effective fluid layer for the TMM summation method. The numerical calcu-

lations were done using COMSOL 6.0 using the Acoustics Pressure Module. The

model was 3D with the viscothermal losses being accounted for in every region of

the structure.
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(b) M=5
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(c) M=10
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(d) M=20

Figure 3.6: The transmission (|T |), reflection (|R|) and absorption (α) coefficients

computed using the effective property model (TMM summation) in comparison to

the coefficients obtained with the traditional TMMmethod (TMM) and numerically

(Numerical).

From Figure 3.6 it can be seen that with increasing amounts of identical Helmholtz

resonators, the system exhibits greater absorptive and reflective properties such

that the transmission coefficient isminimised. ForM = 20, this accumulationof res-

onances has reduced the transmission coefficient to 0 at approximately 300Hz. Fur-

thermore, it is evident that there is excellent agreement between the three meth-

ods when computing the transmission properties, which is due to the reciprocity

of the modelled systems. Due to the symmetry of the modelled systems, it can be

seen that the reflection and absorption coefficients obtainedwith the TMMsumma-

tionmethod are also in excellent agreement with the TMM and numerical methods.

This holds true for all modelled values of M , indicating that the TMM summation
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method provides valid analytical approximation to complex symmetric acoustical

systems where high levels of transmission loss can be obtained, as long as L � λ.

Therefore, the TMM Summation method can be used to provide a simple expres-

sions for the effective fluid properties of complex symmetric systems where high

levels of transmission loss can be obtained. This is beneficial when in contrast to

the TMM Multiplication method as any expressions resulting from large chains of

matrix multiplications are unwieldy for practical use.

The following example, as presented in [84], has been selected as tominimise asym-

metry in the reflection coefficient to show that whilst not rigorous mathematically,

the effective property approach can still be used to approximate weakly asymmet-

ric systems. This is possible due to very weak coupling between the Helmholtz res-

onators by ensuring there is a suitable gap between the resonant frequencies of the

resonators. The length of the system is L = 34mm, the width, a, and height, b, of the

waveguide are a = b = 50mm. The geometry of themodelled Helmholtz resonators

can be seen in Table 3.3.

HR rn rc ln lc
1 3 15 10 40

2 1.5 15 10 40

Table 3.3: Geometric properties of themodelled Helmholtz resonators. All units are

[mm].

The transmission, reflection and absorption coefficients of the system for the−ikx

and +ikx have been computed using the TMMmethod and numerically. The trans-

mission, reflection and absorption coefficients assuming a symmetric system have

been computed using TMM summation method. These plots can be found in Figure

3.7.

50



0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|R
|,
 |
T

|,
 

|R| TMM Summation

|T| TMM Summation

 TMM Summation

|R
-
| TMM

|T| TMM
-
 TMM

|R
-
| Numerical

|T| Numerical
-
 Numerical

(a) −ikx direction

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|R
|,
 |
T

|,
 

|R| TMM Summation

|T| TMM Summation

 TMM Summation

|R
+
| TMM

|T| TMM
+
 TMM

|R
+
| Numerical

|T| Numerical
+
 Numerical

(b) +ikx direction

Figure 3.7: The symmetric transmission (|T |), reflection (|R|) and absorption (α)
coefficients computed using the effective property model (TMM summation) in

comparison to the asymmetric coefficients obtained with the traditional TMM

method (TMM) and numerically (Numerical).

From Figure 3.7, it is evident that there is good agreement between the threemeth-
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ods when computing the transmission properties of the selected system. Due to

the near-symmetry in the system, it can be seen that the reflection and absorption

coefficients obtained with the TMM summation method remains consistent with

the coefficients obtained using the TMM and numerical methods. From the results

it can be concluded that the TMM summation method provides valid analytical ap-

proximations to the traditional TMMmethod, so long as the modelled system does

not exhibit asymmetric reflection properties.

It must be noted that this model only remains valid in the low frequency regime, be-

low the first Bragg frequency and the first cross sectional mode of the waveguide.

This is due to the model’s inability to account for effects associated with period-

icity and the assumption of plane wave propagation within the formulation of the

model. The failure to capture effects due to periodicity can be seen upon examina-

tion of equation (3.24) where the summation term associated with each resonator

is scaled by the total length of the system, not the separation of each resonator.

To highlight the inability to capture asymmetric reflection phenomenon using the

two effective property models presented here, a set of degenerate Helmholtz res-

onators have beenmodelled using the TMM, TMM summation and TMMmultiplica-

tion methods. The geometry of the Helmholtz resonators can be found in Table 3.4.

The waveguide dimensions and system length are unchanged.

HR rn rc ln lc
1 4 15 10 40

2 4 15 10 42

Table 3.4: Geometric properties of themodelled degenerate Helmholtz resonators.

All units are [mm].

The plots of the absorption coefficient for the two directions of incidence, α+ and

α−, obtained with the TMM method, absorption coefficients obtained using the

TMM summation method and TMM multiplication method are presented in Figure

3.8.
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Figure 3.8: Plots of the absorption coefficient for the two directions of incidence α+

andα−, obtainedwith the TMMmethod, against the absorption coefficient obtained

using the TMM summation and multiplication methods.

From Figure 3.8 it can be seen that when using the TMM method, the effects of

strong evanescent coupling can be captured. This is evident with the large disparity

between the amplitude of absorption between the two directions of incidence. Ad-

versely, when looking at the plots produced by the two effective property methods,

there is little correlation to the absorption for either direction of incidence. Addi-

tionally, there is poor agreement between the two effective propertymodels too. As

such, the two effective property models are only valid for systems of Helmholtz res-

onators in which there is weak evanescent coupling. If evanescent coupling were

to be captured, the effective fluid properties would have to be modified for each

direction of incidence.

3.4 Chapter Conclusion

A general effective property model has been proposed to obtain explicit analyti-

cal expressions for complex systems. By discretising a system into segments, it is
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possible to utilise the transfer matrix method to predict the acoustic properties in

these segments. Through the application of linear superposition, these individual

segment effective properties can be summated to achieve the total effective prop-

erties of the system. Analytical expressions were derived for two use in order to

validate the model.

Firstly, the proposed approach was applied to derive the effective properties for

the fluid in a singular pore consisting of M unique cylindrical cross sections. This

is consistent with well established Champoux-Stinson model for rigid pored struc-

tures. These expressions were then used to describe the dynamic behaviour of the

fluid in a pore of four segments with varying radii and lengths. The results of this

methods were also compared with those obtained with a conventional TMM for-

mulation. It was found upon examination of all effective properties that there is

excellent agreement between the two models in the low-frequency regime. There

is no dependency on symmetry for this type of system due to the lack of local res-

onances.

Subsequently, using the same methodology, the effective properties for a symmet-

ric waveguide side-loaded by M Helmholtz resonators were derived. To validate

the expressions, the effective fluid properties of a waveguide side-loaded by M =

3, 5, 10 and 20 identical HRs obtained with the TMM summation method were com-

pared with those obtained via the TMM multiplication method. It was found that

there is excellent agreement in all terms except the effective dynamic density. It is

thought these fluctuations are the result of numerical error and possess no physical

meaning. Nonetheless, the influence these fluctuations play on subsequent terms

is negligible. Additionally, the transmission properties obtained through the effec-

tive property model were compared with those obtained through the traditional

TMM and a numerical FEMmodel. It was found that there was excellent agreement

between the methods. It was shown that the effective property models presented

within this chapter fail to capture effects resulting from evanescent coupling be-

tween Helmholtz resonators such that asymmetric absorption properties occur.
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Chapter 4

Perfect Absorption with Helmholtz

Resonators: One Port

Perfect absorption has been shown to be possible in a one port system through the

coupling of a Helmholtz and membrane resonator by tuning the interplay of losses

[13]. It has also been shown that a unit cell composed of a smaller waveguide struc-

ture side-loaded by Helmholtz resonators can achieve perfect absorption omni-

directionally [15]. This was achieved through the coupling of identical Helmholtz

resonators such that the critical coupling condition was fulfilled by the accumula-

tion of ’slow sound’ [17, 18]. Through the use of multiple resonances within a one

port structure it is possible to obtain broadband perfect absorption by tuning each

resonance to be at a unique frequency [21]. The tuning of one port systems com-

posed of Helmholtz resonators can also be done through the use of porous media

within the cavity, allowing for the losses within the system to be adjusted such that

the critical coupling condition is fulfilled [14].

In this chapter, oneport systemscomposedof awaveguide side-loadedby aHelmholtz

resonators are modelled. Analysis is undertaken on how the inclusion of a porous

layerwithin the cavity of theHelmholtz resonator can be used to achieve perfect ab-

sorption at a single frequency and also over a broadband frequency range by also

utilising the evanescent coupling between Helmholtz resonators.

One port perfect absorbers that operate for a single frequency and over a broad-

band frequency range are modelled as Helmholtz resonators with porous inclu-
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sions. In both cases comparisons are made to the same system without the porous

inclusion, to observe the absorptive performance gain. Commentary on the strengths

and limitations of the modelling methodologies is presented throughout this chap-

ter. The one port systems developed within this chapter comprise of a single unit

cell which form the basis of an acoustic metamaterial that can achieve perfect ab-

sorption of acoustic waves at frequencies which have a wavelength much larger

than the sample length of the modelled metamaterial. The modelling is undertaken

using the TMM, the TMMSummation low frequency approximation and numerically.

4.1 Theory

Consider a one port system composed of two rectangular waveguide sections of

differing dimensions, the larger of which with a cross sectional areas St and the

smaller one with a cross sectional area of Sw = A2
w. A plane wave propagates within

the larger waveguide and is incident upon the smaller waveguide section which is

side-loaded by a single Helmholtz resonator. As it is a one port system, it is a purely

reflective problem, as highlighted in Figure 4.1.

Figure 4.1: Schematic of a one port perfect absorber composed of a single

Helmholtz resonator.

The Helmholtz resonator has a cylindrical neck of length ln with a cross sectional

area of Sn = πr2n and a rectangular cavity of length lc with a cross sectional area of

Sc = Ac2. At the base of the cavity is a porous inclusion of length lp which covers

the same cross sectional area as the cavity. The total length of the system is L. The

broadband perfect absorber consists of three side-loaded Helmholtz resonators,
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the schematic of which can be seen in Figure 4.2.

Figure 4.2: Schematic of a one port broadband perfect absorber composed of three

Helmholtz resonators.

The generalised transfer matrix for a one port perfect absorber can be expressed

as

T = M∆l

M∏
m=1

MWG ·M (m)
HR ·MWG (4.1)

WhereMWG is the transfer matrix for fluid layer of length Ac/2 and cross sectional

area Sw,M
(m)
HR is the transfer matrix which introduces themth Helmholtz resonator

as a point scatterer, whereM is the total number of resonators in the system, and

M∆l is the transfer matrix to account for the pressure radiation due to the discon-

tinuity between the two differing waveguide cross sections. This is given by [15]

M∆l =

[
1 iωρ0∆l/Sw

0 1

]
, (4.2)

and the length correction∆l is given by [85]

∆l = AwΩ
∞∑
n=1

sin2(nπΩ)

(nπΩ)3
, (4.3)

Where the porosity is Ω = Sw/St. The impedance for a Helmholtz resonator with a

porous inclusion within the cavity can be obtained with equation (2.67). It must

be noted that within this chapter, the addition of a porous inclusion will not in-

crease the depth of the cavity when in comparison to the non-porous alternative,

i.e. l
(m)
c + l

(m)
p is constant. When calculating the porosity of the sample designed for

broadband absorption St is calculated with the largest Helmholtz resonator geom-

etry, i.e. usingmax(l
(m)
c + l

(m)
n ). Within each dimension of the system an additional

length of 2mmhas been added to provide boundaries with a finite thickness. These
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have been excluded from the analytical expressions for brevity and any difference in

results would be immaterial from the ideal geometry presented here. The charac-

teristic surface impedance is then simply calculated from the final transfer matrix

as ZTMM = T11/T21, allowing for the reflection and absorption coefficients to be

determined.

Using the TMM Summation low frequency approximation methodology, it is possi-

ble to express the effective dynamic density of the generalised one port broadband

perfect absorber as

ρeff (ω) =
ρw(ω)

Ω
, (4.4)

and the effective dynamic compressibility as

Ceff (ω) = Ω

(
Cw(ω) +

1

iωLSw

M∑
m=1

1

Z
(m)
HR

)
. (4.5)

Where ρw(ω) andCw(ω) are the effective dynamic density and compressibility of the

side-loaded waveguide, respectively. Similarly, the effective dynamic bulk modulus

can be expressed as

Keff (ω) =
1

Ω

(
Cw(ω) +

1

iωLSw

M∑
m=1

1

Z
(m)
HR

)−1

. (4.6)

The effective impedance of the system can then be obtained as

Zeff (ω) =
1

St

(
ρeff (ω)

Ceff (ω)

)1/2

(4.7)

and the effective acoustic wavenumber as

keff (ω) =

(
ρeff (ω)Ceff (ω)

)1/2

. (4.8)

From these expressions an effective fluid layer transfer matrix can be obtained,

from which the surface impedance, defined as ZSum, reflection and absorption co-

efficients can be obtained by constructing an effective fluid layer transfer matrix

system, as detailed in Section 2.6.2.
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4.2 Results

4.2.1 Perfect absorption with a single Helmholtz resonator

Within this section, results are presented highlighting how the inclusion of porous

material within the cavity of a Helmholtz resonator can be used to achieve perfect

absorption. This is initially done for a single resonator with which three sets of re-

sults are presented. The three scenarios are when there is; no porous inclusion

resulting in an underdamped system; an optimised length of porous material to

achieve perfect absorption; and a length greater than this optimised length result-

ing in an overdamped system. In order to achieve perfect absorption, the optimisa-

tionmethodologywas themethod of Least Squares using the in-builtMATLAB 2021b

function ’lsqnonlin’ with a cost function of CF = 1−α at a frequency of 300 Hz and

two optimisation parameters, rn and ln [86]. The geometry for the single Helmholtz

resonator is presented in Table 4.1. The three values of lp which are modelled are 0,

25 and 45 mm, where 25 mm is the optimised value of lp.

rn ln Ac lc Aw

2.8 4.4 40 50 40

Table 4.1: Geometric properties of the single Helmholtz resonator. All units are

[mm].

Plots of the absorption coefficient obtained using the TMM, the low frequency ap-

proximation and numerically for lp = 0 can be seen in Figure 4.3. From this figure it is

evident that for this configuration there is excellent agreement between the three

methodologies. Here the absorption peak occurs at approximately 310 Hz where

α ≈ 0.65.
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Figure 4.3: Plots of the absorption coefficients obtained using the low frequency

approximation, the TMMand numerically for the single Helmholtz resonator system

when lp=0 mm.

It is evident for a system of this configuration composed of a single Helmholtz res-

onator that the lack of length correction for the side-loaded waveguide within the

low frequency approximation results in a negligible discrepancy of approximately

5 Hz with the TMM and numerically. As such, it is acceptable to use the low fre-

quency effective property models to help gain an understanding on the underlying

physical phenomenon that is occurring at the resonant frequency of the Helmholtz

resonator. Plots of the normalised dynamic bulk modulus and density obtained us-

ing the low frequency approximation can be seen in Figures 4.4a and 4.4b. From this

figure it can be seen that resonance is instigated by the real component of the bulk

modulus becoming negative. Plots of the normalised surface impedance obtained

using the low frequency approximation (ZSum) and the TMM (ZTMM) can be seen

in Figures 4.4c and 4.4d.
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Figure 4.4: All effective property plots for a single Helmholtz resonatorwhere lp = 0.
(a) Plots of the normalised dynamic bulk modulus and density obtained using the

low frequency approximation expressions; (b) enhanced plot of the normalised dy-

namic bulk modulus obtained using the low frequency approximation expression;

(c) plots of the normalised surface impedance obtained using the low frequency ap-

proximation and the TMM; (d) enhanced plot of the normalised surface impedance

at resonance obtained using the low frequency approximation and the TMM.

From Figure 4.4c it can be seen that there is good agreement between the two ana-

lytical methodologies and that, upon comparison with the plot of the dynamic bulk

modulus in Figure 4.4b, the imaginary component of the bulk modulus dictates the

response of the real component of the surface impedance and subsequently the

real component of the bulk modulus dictates the response of the imaginary com-

ponent of the surface impedance, but with an opposite sign. Upon examination of

Figure 4.4d, resonance occurs when the imaginary component of the normalised

surface impedance is 0, which is a product of the bulk modulus crossing the x-axis.
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At this resonant frequency, the amplitude of the absorption coefficient is deter-

mined by the value of the real component of the normalised surface impedance,

where a value of 1 indicates an impedance match with the surrounding media such

that no reflection occurs, resulting in perfect absorption.

Plots of the absorption coefficient obtained using the TMM, the low frequency ap-

proximation and numerically for optimised value of lp = 25mmcanbe seen in Figure

4.5. From this it is evident that for this configuration there is again excellent agree-

ment between the three methodologies. Here the absorption peak occurs at 290

Hz where α = 1 at a sample thickness of λ/28. It can therefore be determined that

the introduction of the optimised length of porous material has resulted in an in-

crease of the absorption coefficient to unity and also a reduction in the frequency

at which resonance occurs by approximately 25 Hz.
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Figure 4.5: Plots of the absorption coefficients obtained using the low frequency

approximation, the TMMand numerically for the single Helmholtz resonator system

when lp=25 mm.

Plots of the normalised dynamic bulk modulus and density obtained using the low

frequency approximation can be seen in Figure 4.6a and an enhanced image of the

dynamic bulk modulus at the resonant frequency in Figure 4.6b. Plots of the nor-
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malised surface impedance obtained using the low frequency approximation and

the TMM can be seen in Figure 4.6c and an enhanced image at the resonant fre-

quency in Figure 4.6d.

0 200 400 600 800 1000

Frequency (Hz)

0

10

20

K
e

ff
(

)/
 K

t(
) Re[ K

eff
( )/ K

t
( )]

Im[ K
eff

( )/ K
t
( ) ]

0 200 400 600 800 1000

Frequency (Hz)

0
2
4
6
8

e
ff
(

)/
 

t(
) Re[ 

eff
( )/ 

t
( ) ]

Im[ 
eff

( )/ 
t
( ) ]

(a)

260 280 300 320

Frequency (Hz)

-5

0

5

K
e

ff
(

)/
 K

t(
)

Re[ K
eff

( )/ K
t
( )]

Im[ K
eff

( )/ K
t
( ) ]

(b)

0 200 400 600 800 1000

Frequency (Hz)

-100

-50

0

50

100

150

200

Z
(

)/
 Z

t(
)

Re[ Z
Sum

( )/ Z
t
( ) ]

Im[ Z
Sum

( )/ Z
t
( ) ]

Re[ Z
TMM

( )/ Z
t
( ) ]

Im[ Z
TMM

( )/ Z
t
( ) ]

(c)

260 280 300 320

Frequency (Hz)

-2

-1

0

1

2

3

4

5

Z
(

)/
 Z

t(
)

Re[ Z
Sum

( )/ Z
t
( ) ]

Im[ Z
Sum

( )/ Z
t
( ) ]

Re[ Z
TMM

( )/ Z
t
( ) ]

Im[ Z
TMM

( )/ Z
t
( ) ]

(d)

Figure 4.6: All effective property plots for a single Helmholtz resonator where

lp = 25. (a) Plots of the normalised dynamic bulk modulus and density obtained

using the low frequency approximation expressions; (b) enhanced plot of the nor-

malised dynamic bulkmodulus obtained using the low frequency approximation ex-

pression; (c) plots of the normalised surface impedance obtained using the low fre-

quency approximation and the TMM; (d) enhanced plot of the normalised surface

impedance at resonance obtained using the low frequency approximation and the

TMM.

Upon examination of Figures 4.6a and 4.6c in comparisonwith Figures 4.4a and 4.4c,

it can be seen that the introduction of porous inclusion has damped the response of

the dynamic bulk modulus and thus the surface impedance of the single resonator

system. In Figure 4.6d it can be seen that when the imaginary component crosses
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the x-axis at resonance, the real value of the normalised surface impedance is 1,

i.e. Z(ω) = Zt(ω) as Im[Z(ω)]= 0. This also coincides with the frequency at which

Re[Keff(ω)]= 0 in Figure 4.6b. This indicates that the introduction of the porous

layer has critically coupled by the single resonator system with the surrounding

medium, allowing for perfect absorption.

A numerically produced graphic showing the distribution of the acoustic pressure

at resonance when perfect absorption is attained can be seen in Figure 4.7.

Figure 4.7: Numerically produced graphic showing the distribution of the acoustic

pressure at resonance with perfect absorption

From this it can be seen that the incoming acoustic energy is contained predomi-

nantly within the cavity of the Helmholtz resonator which is indicated by the large

pressure amplitude within the cavity. Within the neck there is a large pressure

gradient present due to the oscillating mass of air. In the side-loaded waveguide

section there is still some energy present, which could indicate the coupling be-

tween this smaller waveguide and the Helmholtz resonator. As a complete system

the Helmholtz resonator and side-loaded waveguide have reduced any reflections
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of acoustic energy to a minimum and contained it within the metamaterial unit cell.

Plots of the absorption coefficient obtained using the TMM, the low frequency ap-

proximation and numerically for over-damped value of lp = 45 mm can be seen in

Figure 4.8. From this figure it is evident that for this configuration there is again

excellent agreement between the three methodologies. Here, the absorption peak

occurs at 280 Hz where α ≈ 0.9. Increasing the length of porous material has re-

sulted in a further reduction in the frequency at which resonance occurs by 10 Hz.

It is also evident that with an increase in porous layer length and thus the inher-

ent losses within the system, the more broadband the absorption becomes. This

can be seen when comparing the widths of the absorption peaks in Figures 4.3, 4.5

and 4.8. This is due to the increase in porous material resulting in more leakage at

resonance.
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Figure 4.8: Plots of the absorption coefficients obtained using the low frequency

approximation, the TMMand numerically for the single Helmholtz resonator system

when lp=25 mm.

Plots of the normalised dynamic bulk modulus and density obtained using the low

frequency approximation can be seen in Figures 4.9a and 4.9b. Plots of the nor-

malised surface impedance obtained using the low frequency approximation and
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the TMM can be seen in Figure 4.9c and an enhanced image at the resonant fre-

quency in Figure 4.9d.
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Figure 4.9: All effective property plots for a single Helmholtz resonator where

lp = 45. (a) Plots of the normalised dynamic bulk modulus and density obtained

using the low frequency approximation expressions; (b) enhanced plot of the nor-

malised dynamic bulkmodulus obtained using the low frequency approximation ex-

pression; (c) plots of the normalised surface impedance obtained using the low fre-

quency approximation and the TMM; (d) enhanced plot of the normalised surface

impedance at resonance obtained using the low frequency approximation and the

TMM.

Upon examination of Figures 4.9a and 4.9c in comparisonwith Figures 4.4a and 4.4c,

it can be seen that increasing the length of the porous inclusion has further damped

the response of the dynamic bulk modulus and thus the surface impedance of the

single resonator system. In Figure 4.9d it can be seen that when the imaginary com-

ponent crosses the x-axis at resonance, the real value of the normalised surface
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impedance is 2. This indicates that the system is now over-damped such that any

additional losses within the system will reduce the absorption coefficient as it in-

creases the disparity between the surface impedance of the single resonator sys-

tem and the surrounding medium.

To help visualise the effect of the porous inclusion, a heatmap plot is presented in

Figure 4.10 of the absorption coefficient as a function of porous inclusion length and

frequency for the single Helmholtz resonator one port system. From this figure, it

can be seen that there is an optimum range for the length of the porous inclusion

in which perfect absorption is achieved, which for this particular system is approx-

imately in the range lp = 20 mm and lp = 30 mm. Additionally, the decrease in the

resonant frequency with an increase in porous inclusion length is evident, where

resonance occurs at 310 Hz when lp = 0 and at 285 Hz when lp = 45mm.

0 5 10 15 20 25 30 35 40 45

Porous Inclusion Length, l
p
(mm)

200

220

240

260

280

300

320

340

360

380

400

F
re

q
u

e
n

c
y
 (

H
z
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
b

s
o

rp
ti
o

n
 C

o
e

ff
ic

ie
n

t,
 

Figure 4.10: Heatmap plot of the absorption coefficient as a function of porous in-

clusion length, lp [mm], and frequency [Hz].

The mechanism for perfect absorption can also be visualised with the complex fre-

quency plane analysis method [14, 25, 26]. This is a graphical procedure which can

be used to display the eigenvalues or eigenvector components of systems in the

complex frequency plane. This provides useful information for the optimisation of
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systems to achieve perfect absorption as it can be used to determine how the ad-

dition or reduction of losses in the system will change the absorption coefficient.

Some examples on the use of the complex frequency plane to achieve perfect ab-

sorption for subwavelength sized, anechoic termination type systems include those

composed of resonant building blocks [16, 15], membranes [27], porous membranes

[13], decorated membranes [28], bubble metascreens [29] and aerogels [30].

By inputting a complex frequency values in to the TMM model for the single res-

onator systems when lp = 0 mm (for the lossy and lossless case), lp = 25 mm and

lp = 45 mm, and retrieving the reflection coefficient, it is possible to create the

following complex frequency plane contour plots seen in Figure 4.11.
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Figure 4.11: Complex frequency plane contour plots of the single resonator system

when lp =0 mm, lp =25 mm and lp =45 mm

On these plots the minimum and maximum of log(|R|) are defined as the ’zero’ and

68



’pole’, respectively. The real component of the zero is the resonant frequency and

the imaginary component of the zero can be used as an indication on the amount of

energy leakage within the system with respect to the energy losses of the system.

For the lossless case in Figure 4.11a when lp = 0 mm, it is evident that the pole and

zero are symmetric about the real frequency axis. When the imaginary component

of the zero is negative, energy leakage from the system is greater than the energy

losses of the system. This can also be seen in Figure 4.11b for when lp = 0mm in the

lossy case. In comparison of these two figures it can be seen that the introduction

of losses has increased the complex value of both the pole and the zero, with the

zero getting closer to the real frequency axis, indicating that the losses have been

increased with respect to the energy leakage of the system.

As the zero has a negative complex value, there is the option to introduce a porous

inclusionwithin the cavity of theHelmholtz resonator to increase the inherent losses

within the system until the losses in the system are equal to the energy leakage of

the system, which is fulfilled when the zero lies on the real frequency axis, with no

imaginary component. This is the critical coupling condition and is how perfect ab-

sorption can be achieved. The fulfilment of the critical coupling condition is evident

in Figure 4.11c when lp = 25 mm. Here the zero is situated on the real frequency

axis, therefore perfect absorption is realised, and indicates the energy leakage of

the system is now equal to the energy losses of the system.

When the length of the porous inclusion is increased such that the inherent losses

of the system are now greater than the energy leakage of that system, the zero’s

imaginary component becomes positive. This is evident in Figure 4.11d and results

in a reduction in absorption coefficient from unity. Additionally, when comparing all

four plots in Figure 4.11, it can be seen that as the losses of the system are increased

by increasing the length of the porous inclusion, the zero and pole are downshifted

with respect to the real component of the frequency, indicating a reduction in the

resonant frequency with an increase in the losses of a system. It can also be seen

that in each case, the separation distance between the pole and zero remains ap-

proximately constant, indicating the introduction of losses is not changing thewidth

of the absorption peak.

If your modelled system is such that the energy losses within the system are al-

ready greater than the energy leakage of the resonator, then the introduction of
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damping/ porous material will hinder the absorptive performance of the system.

This is because the zero of the unaltered system will already have a positive imag-

inary component and therefore the introduction of any additional losses will shift

the zero further away from the real frequency axis and thus the critical coupling

condition.

4.2.2 Broadbandperfect absorptionwithHelmholtz resonators

Within this section, results arepresented for thebroadbandperfect absorberwhich

builds upon the phenomenon described for a single resonator perfect absorber.

Here, the one port system consists of three Helmholtz resonators of differing res-

onant frequencies. Results are presented highlighting the difference between the

inclusion porousmaterial of an optimised length within the cavity of each resonator

and without a porous inclusion within each resonator cavity. To achieve an opti-

mised geometry, the Least Squaresmethod of optimisationwas again used by utilis-

ing the in-built MATLAB function ’lsqnonlin’. This time the cost function was defined

as

CF = (f1 − f0)−
∫ f1

f0

α df, (4.9)

where f1 and f0 are the upper and lower bounds of the desired frequency range,

respectively. For the bounds [200, 600]Hz, an optimised geometry was obtained and

can be seen in Table 4.2. An additional wall thickness of 2mm is incorporated within

the geometry such that the design can be replicated experimentally if desired. The

total length of the system is L = 12.6 cm.

HR rn ln Ac lc lp
1 8.6 2.0 40 50 42.6

2 5.0 2.7 40 50 45.0

3 2.5 2.7 40 50 39.2

Table 4.2: Geometric properties of the broadband perfect absorber Helmholtz res-

onator system. All units are [mm].

Plots of the absorption coefficient obtained using the TMM, the low frequency ap-

proximation and numerically can be seen in Figure 4.12.
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(a) With porous inclusions
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(b) Without porous inclusions

Figure 4.12: Plots of the absorption coefficient for an optimised one port perfect

absorber consisting of three Helmholtz resonators, with and without porous inlcu-

sions.
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From Figure 4.12 it can be seen that there is excellent agreement between the TMM

and numerical results at the three peaks associated with the Helmholtz resonators.

These are the first three peaks occurring at approximately 275 Hz, 425 Hz and 625

Hz. At each of these frequencies near unity absorption is achieved by using the

porous layer to optimise the energy leakage and losses such that critical coupling is

achieved, resulting in a thickness of λ/10 at the lowest frequency absorption peak.

Upon comparison with the low frequency approximation model, there is a reason-

able agreement at the first two resonances, but above this there is a disparity when

in comparison to results produced with the TMM and numerically. Additionally,

there is a disagreement in the absorption coefficient obtained using the TMM and

numerically at approximately 800 Hz. Absorption at this frequency is facilitated by

the quarterwavelength resonance produced by thewaveguidewhich theHelmholtz

resonators side-load. This discrepancy is most prevalent in Figure 4.12b where no

porous inclusion is present.

To help visualise this described phenomenon when perfect absorption is achieved,

numerically produced graphics showing the distribution of the acoustic pressure at

each resonance for the broadband perfect absorber are presented in Figure 4.13.

Each graphic corresponds to a different resonance frequency; Figure 4.13a depicts

the total pressure distribution at the lowest resonant frequency of 275 Hz, the reso-

nant frequency ofHR(3); 4.13b depicts the total pressure distribution at 425 Hz, the

resonant frequency of HR(2); 4.13c depicts the total pressure distribution at 625

Hz, the resonant frequency of HR(1); 4.13d depicts the total pressure distribution

at 800Hz, the quarterwavelength resonant frequency of the side-loadedwaveguide

itself.
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(a) 275 Hz (b) 425 Hz

(c) 625 Hz (d) 800 Hz

Figure 4.13: Numerically produced graphic showing the acoustic pressure distribu-

tion at each resonant frequency of the broadband perfect absorber.

Additionally, plots of the absorption coefficients for each resonant element of the

perfect absorber can be seen in Figure 4.14. These plots were obtained using the

TMMand in each case the side-loadedwaveguide length remained constant. There-

fore, in addition to the total absorption coefficient of the system, there is also the

absorptive response of each individual resonatorwhen coupledwith thewaveguide,

as well as the waveguide un-sideloaded.
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Figure 4.14: Plots of the absorption coefficient for each resonant element of the

perfect absorber. Calculated with the TMM.

Upon examination of Figure 4.13a in combination with Figure 4.14 it is evident that

HR(3) is loosely coupled to the rest of the system with nearly all of the absorptive

performance at this frequency coming from this resonator alone. Some coupling

is evident in Figure 4.14 as the absorption peak created by the quarter wavelength

resonance has been slightly shifted to a higher frequency with an increase in ab-

sorption coefficient. In Figure 4.13b it can be seen that both HR(2) and HR(3) con-

tributing to absorption at 425 Hz, with the rest of the system being out of phase.

In Figure 4.14 it can be seen that there is very strong coupling between HR(2), in-

dicated by the shift in frequency and also large increase in absorption coefficient

of the quarter wavelength resonance. At 625 Hz it appears HR(1) is strongly cou-

pled with the waveguide, with little interaction withHR(2) andHR(3). This can be

seen in Figure 4.13c by the strong in phase response of the resonator andwaveguide

and in Figure 4.14 by the singular pronounced absorption peak, indicating the res-

onant frequency of HR(1) is very close to that of the waveguide. This peak is very

broadband with a reduced amplitude, which is typical for resonators with a large

cross sectional area of neck in relation to the cavity [87]. When looking at the total

absorptive performance of the system in Figure 4.14, it is evident the quarter wave-
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length absorption peak has been shifted to approximately 800 Hz by the Helmholtz

resonators. The pressure distribution at this frequency can be seen in Figure 4.13d.

Here it can be seen that there is a relationship between the width of the resonator

neck and how strongly coupled with the waveguide the resonator is, with the wider

neck resulting in stronger coupling. This could be due to the acoustic inertance for

a Helmholtz resonator with a wider neck being lower than that of a resonator with

a narrow neck, allowing for stronger coupling.

When comparing the low frequency approximation plots produced using the TMM

Summation method with those of the other twomethodologies in Figure 4.12, it can

be seen that whilst resonance broadly occurs at the same frequency, absorption

is much greater in amplitude. There is also an additional absorption peak at 600

Hz. To further investigate the discrepancy between the low frequency approxima-

tion and the numerical and semi-numerical TMM approaches seen in Figures 4.15a

and 4.15b, plots are produced of the same system, but with the sequential order

at which the Helmholtz resonators are situated along the waveguide varied. This

is to determine the effect of evanescent coupling, which is not captured using the

low frequency approximation model. These plots are presented within Figure 4.15

for all six permutations of Helmholtz resonator order, with and without a porous

inclusions.
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(a) HR1→ HR2→ HR3 with Porous

Inclusion
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(b) HR1→ HR2→ HR3 without Porous

Inclusion
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(c) HR1→ HR3→ HR2 with Porous

Inclusion
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(d) HR1→ HR3→ HR2 without Porous

Inclusion
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(e) HR2→ HR1→ HR3 with Porous

Inclusion
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(f) HR2→ HR1→ HR3 without Porous

Inclusion

From this figure it is evident for each permutation of Helmholtz resonator order,

different absorption coefficients are obtained. This highlights the influence the
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(g) HR2→ HR3→ HR1 with Porous

Inclusion
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(h) HR2→ HR3→ HR1 without Porous

Inclusion
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(i) HR3→ HR1→ HR2 with Porous

Inclusion
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(j) HR3→ HR1→ HR2 without Porous

Inclusion
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(k) HR3→ HR2→ HR1 with Porous

Inclusion
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(l) HR3→ HR2→ HR1 without Porous

Inclusion

Figure 4.15: Plots of the absorption coefficient for all six permutations of resonator

order using the optimised Helmholtz resonator geometry, with and without the op-

timised porous inclusion. Produced using the TMM, Numerically and with the low

frequency approximation using the TMM Summation method.
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evanescent coupling that occurs between the resonators and the waveguide has

on the total response of the system. This phenomenon is present for each permu-

tation with and without the porous inclusions. When assessing the influence of the

order of resonators on the individual resonant frequencies, it can be seen that the

initial resonator in the series plays an important part. When HR1 is the first in the

series, as in Figures 4.15a, 4.15b, 4.15c and 4.15d, the responses of each resonator oc-

cur at the same frequencies, albeit with varying degrees of absorption. This is also

evident when HR2 is the first in the series, as in Figures 4.15e, 4.15f, 4.15g and 4.15h;

and additionally when HR3 is the first in the series, as in Figures 4.15i, 4.15j, 4.15k and

4.15l. Interestingly, the absorptive performance and the resonant frequency of HR3

remains consistent throughout all the permutations, indicating the resonator was

much more loosely coupled with the rest of the system than the other resonators.

This could be a resultant of the high acoustic inertance due to the narrow neck

region and low resonant frequency.

Within each plot of Figure 4.15, plots of the absorption coefficient determined using

the low frequency approximation of the TMM Summation method are presented.

These plots are identical for each permutation for both cases of with and without

the porous inclusions. This is due to the low frequency approximation linearly sum-

ming the Helmholtz resonator impedances over the length of the system, which fails

to account for prior Helmholtz resonances altering the effective fluid properties of

the waveguide such that the response of subsequent resonators is altered. It can

be seen that whilst the absorption coefficients of the two cases of with and without

porous inclusions bares a resemblance to the plots produced using the TMM and

numerically, there is disagreement in all of the plots. Highlighting the limitation of

the low frequency approximation for multi resonator system in which evanescent

coupling is prevalent.

4.2.3 Semi-Numerical TMM Approach

Upon further examination of Figure 4.15, it is evident that there is a disagreement be-

tween three methodologies when determining absorption resulting from the quar-

ter wavelength resonance when there is no porous inclusion present. When com-

paring the TMM and numerical plots of the absorption coefficient, it can be seen
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that the resonant frequencies are consistent, but the extent of absorption is over-

estimated with the TMM when no porous inclusions are present. This is a conse-

quence of the Helmholtz resonators influencing the end correction, which is not

captured in equation 4.3 [17]. Instead of a singular real valued length, the end cor-

rection becomes complex and frequency dependant, explaining the disparity be-

tween the absorption peaks between the two methodologies due to the numerical

modelling capturing this phenomenon.

However, it can also be seen that there is good agreement between the TMM and

numerical plots when the porous inclusions are present. This indicates the addition

of the porous material has damped the response of the individual resonators such

that they have a reduced impact on the response of the side-loaded waveguide.

Finally, using the low frequency approximation model it can be seen that there is an

over-estimation of the frequency at which the absorption peak occurs by approxi-

mately 200 Hz in Figure 4.15a. This is due to the lack of end correction being present

within the approximation expressions, which add an effective length to the system,

lowering the resonant frequency.

Here a semi-numerical approach is presented to obtain the radiation impedance

for the side-loaded waveguide at the discontinuity between the the two waveguide

sections. The frequency dependant length correction can be determined semi-

numerically by first determining the numerically calculated impedance, Z , with the

following expression

Z =

(
1 +R
1−R

)
Z0, (4.10)

whereR is the numerically determined reflection coefficient. By using the analytical

surface impedance determined using the TMM, the following relation can be used

to calculate the radiation impedance

Z − ZTMM =
iωρ0∆l

Sw

. (4.11)

Plots of the absorption coefficient obtained using numerically, semi-numerically

and with the low frequency approximation for all permutations can seen in Figure

4.16
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(a) HR1→ HR2→ HR3 with Porous

Inclusion
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(b) HR1→ HR2→ HR3 without Porous

Inclusion
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(c) HR1→ HR3→ HR2 with Porous

Inclusion
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(d) HR1→ HR3→ HR2 without Porous

Inclusion
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(e) HR2→ HR1→ HR3 with Porous

Inclusion
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(f) HR2→ HR1→ HR3 without Porous

Inclusion
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(g) HR2→ HR3→ HR1 with Porous

Inclusion
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(h) HR2→ HR3→ HR1 without Porous

Inclusion
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(i) HR3→ HR1→ HR2 with Porous

Inclusion
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(j) HR3→ HR1→ HR2 without Porous

Inclusion
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(k) HR3→ HR2→ HR1 with Porous

Inclusion
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(l) HR3→ HR2→ HR1 without Porous

Inclusion

Figure 4.16: Plots of the absorption coefficient for all six permutations of resonator

order using the optimised Helmholtz resonator geometry, with and without the op-

timised porous inclusion. Produced using the Semi-numerical TMM, Numerically

and with the low frequency approximation using the TMM Summation method.
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When comparing the plots in Figure 4.16 with those in Figure 4.15, it can be seen that

the semi-numerical approach has rectified the discrepancies seen between the an-

alytical and numerical predictions of the absorption coefficient from the quarter

wavelength response of the side-loaded waveguide when no porous inclusions are

present. This further highlights the influence Helmholtz resonators play on the ra-

diation impedance term and why it can be necessary to use the semi-numerical

methodology to account for this; exposing the limitations of using length correc-

tions which are simply functions of the waveguide geometry and porosity.

However, whilst there is still good agreement between the semi-numerical and nu-

merical plots within Figure 4.16 when the porous inclusions are present, the agree-

ment has not been improvedwhen in comparison to the full analytical plots in Figure

4.15. This indicates that since the porous inclusions have reduced the influence of

the Helmholtz resonators upon the quarter wavelength response, it is unnecessary

to compute the compute the radiation impedance semi-numerically. It can there-

fore be concluded that the semi-numerical approach is not necessary for a system

of this configuration if there is a significant amount of damping facilitated by porous

inclusions.

4.3 Chapter Conclusion

Within this chapter, the mechanism to achieve perfect absorption for a one port

systemhas been exploredwith the development of single frequency and broadband

perfect absorbing acousticmetamaterial unit cells. Thiswas achieved at a single fre-

quency using a single Helmholtz resonator, and over a broadband frequency range

with a system of three Helmholtz resonators. The main premise that has been ex-

plored is on the use of porous inclusions to help optimise the acoustic properties of

the Helmholtz resonators such that the system becomes critical coupled with the

outer waveguide at each resonant frequency.

It has been shown that with the assistance of a numerical optimisation algorithm,

perfect absorption at a specified frequency can be achieved with a single HR sys-

tem with the use of a porous inclusion. This was achieved at a frequency of 290

Hz with a sample thickness of λ/28. Then, either reducing or increasing the length
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of the optimised porous inclusion length will either underdamp or overdamp the

system, respectively. The physical meaning of achieving critical coupling has been

highlighted by showing how the normalised surface impedance is equal to onewhen

perfect absorption is achieved, i.e. the real component of the surface impedance

of the metamaterial system is equal to the real component of the fluid within the

main waveguide. In the analysis of the single Helmholtz resonator system, it has also

been shown that there is excellent agreement between the TMM, numerical and low

frequency approximation.

An alternative visual representation of the critical coupling conditionwas presented

via plots of the reflection coefficientwithin the complex frequency domain obtained

with the TMM. Using this methodology allows the poles and zeros of a system to be

identified, with the location of the zeros in the complex frequency plane a useful

metric in determining how the use of a porous inclusion will influence the energy

leakage and intrinsic losses within the system. If the system is underdamped, the

zero will be in the negative complex plane. By the introduction of a porous inclu-

sion with an optimised length, the complex value of the zero was increased to zero,

fulfilling the critical coupling condition. Further increase of the porous inclusion

length increased the complex value of the zero, breaking the critical coupling of the

system.

Using this same methodology with a numerical optimisation algorithm designed to

operate over a specified frequency range, it was possible to produce a broadband

perfect absorbing metamaterial unit cell consisting of three Helmholtz resonators.

Here broadband perfect absorption was obtained with a sample thickness of λ/10

for the lowest frequency perfectly absorbed. Using graphics produced numerically

of the absolute acoustic pressure at the four resonant frequencies of the system,

insight into how each resonator was coupled within the system was gained. This

highlighted that there is significant evanescent coupling between theHelmholtz res-

onators and the waveguide. To further explore this coupling, absorption coefficient

plots for all six permutations of resonators was produced. This highlighted how the

order of resonator placement in regards to their resonant frequency was impor-

tant, with going to highest to lowest frequency yielding the best absorptive results.

Finally, a discrepancy between the quarter wavelength absorptive response pro-

duced from all three methodologies was observed. The low frequency approxima-
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tion produced poor agreement due to the lack of length correction for the pressure

radiation at the discontinuity at the interface of the two waveguides. The TMM pro-

duced accurate results with a porous layer present, but over estimated the absorp-

tive performance of the quarter wavelength response when no porous inclusions

were present, with respect to the numerical results. This indicated that the inclu-

sion of the porous layer damped the resonators such that they had little influence

on the quarter wavelength response, but when no porous media was present, they

had a large influence. The account for the influence of the Helmholtz resonators

on the length correction, a semi-numerical approach was presented in which the

pressure radiation impedance was obtained. This resulted in excellent agreement

for the systems with no porous inclusions, but no further improvement was ob-

tained for the systems with porous inclusions.
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Chapter 5

Perfect Absorption with Helmholtz

Resonators: Two Port

As discussed for one port systems in Chapter 4, perfect absorption can be achieved

through the utilisation ofHelmholtz resonators such that the critical coupling condi-

tion is fulfilled through an impedance match with the surrounding medium. Within

this chapter, the use of Helmholtz resonators with porous inclusions within the cav-

ity will be explored for achieving perfect absorption in two port systems at both a

single frequency, and also over a broadband frequency range.

To date, a number of methodologies have been employed to achieve perfect ab-

sorption in two port systems. For example, two port perfect absorption has been

realised through a process of ’coherent perfect absorption’, which is enabled by the

control of input acoustic waves in both propagative directions [31]. Through the use

of a subwavelength resonant metamaterial structure, the effective acoustic prop-

erties can be tuned such that perfect absorption can be achieved. This requires the

manipulation of the relative phase between impinging acoustic waves and allows for

the absorption coefficient to be tuned from zero to unity [32].

The absorptive properties of twoport structures can typically be simplified into two

types of systems. Those that exhibit asymmetrical sound absorption properties,

and those that are mirror symmetric and exhibit symmetrical sound absorption

properties. There has been a large body of work on achieving perfect absorption

with systems that exhibit asymmetrical absorptive properties.
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As the maximum absorption coefficient attainable for one-sided absorption by a

point symmetric scatterer is α = 0.5 [31], multiple resonances are typically re-

quired to achieve perfect absorption. This can be achieved through the degenerate

coupling of Helmholtz resonators in which a detuning parameter can be utilised

such that strong coupling between the Helmholtz resonators is achieved and an

impedance match condition is met for a single propagative direction [42]. When

this directional impedance match condition is met, this same boundary acts as an

acoustically soft boundary in the opposing direction, resulting in near-perfect re-

flection. As these types of systems are typically reciprocal in nature, the transmis-

sion coefficient does not vary with propagation direction. Therefore, the duality

of the impedance matching condition coinciding with a sound soft boundary in the

opposing propagative direction is required to maintain an equal transmission coef-

ficient for both propagative directions [44].

Through the use of multiple degeneratively coupled Helmholtz resonators, it has

been shown that perfect and broadband absorption can be achieved over a range

of frequencies with rainbow trapping [45], or at targeted frequencies with multiple

pairs of detuned Helmholtz resonators [42, 44, 47]. Other resonant structures such

as micro-perforated panels can be utilised to the same effect [48].

Finally, it has been shown that through theuseof degeneratively coupled resonators,

mirror symmetric perfect absorption can be achieved in optics [49] and acoustics

through the use of Helmholtz resonators [50] and with coupled membrane res-

onators [51].

Within this chapter, the use of degeneratively coupled Helmholtz resonators for

asymmetric absorption will be explored. The detuning parameter in this instance

will be a porous inclusion within the cavities of the resonators. The mechanisms

behind achieving perfect absorption will be displayed and a perfect absorber at a

single frequency and also over a broadband frequency range will be modelled. All

analytical models will be validated with 3D FEM models.
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5.1 Theory

Consider a two port system composed of one large waveguide section with a cross

sectional areas St, in which a system of M Helmholtz resonators are placed which

are of differing lengths such that the cross sectional area of the waveguide varies

with each subsequent Helmholtz resonator. The resonator specific cross sectional

area is denoted as S(m) for themth resonator. This change in cross section for sub-

sequent Helmholtz resonators is to aid in the critical coupling of each resonator, as

presented for a rainbow trapping absorber in [45]. A plane wave propagates within

the large waveguide and is incident upon the system of Helmholtz resonators. A

graphic depicting the system forM = 2 is presented in Figure 5.1.

Figure 5.1: A graphic depicting a system for M = 2 Helmholtz resonators in a two

port system.

Themth Helmholtz resonators has a cylindrical neck of length l
(m)
n with a cross sec-

tional area of S
(m)
n = π(r

(m)
n )2 and a rectangular cavity of length lc(m) with a cross

sectional area of Sc = Ac2, which is kept constant for all values of m. At the base

of the cavity is a porous inclusion of length l
(m)
p which covers the same cross sec-

tional area as the cavity. The total length of the system is L. The broadband perfect

absorber consists of M = 4 Helmholtz resonators, the schematic of which can be

seen in Figure 5.2.
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Figure 5.2: A graphic depicting a system for M = 4 Helmholtz resonators in a two

port system.

The generalised transfer matrix for a two port perfect absorber can be expressed

as

T = M
(0)
∆l

M∏
m=1

M
(m)
WG ·M (m)

HR ·M (m)
WG ·M (m)

∆l (5.1)

WhereM
(m)
WG is the transfer matrix for fluid layer of length Ac/2 and cross sectional

areaS(m) = AwA
(m),M

(m)
HR is the transfermatrixwhich introduces themth Helmholtz

resonator as a point scatterer, where M is the total number of resonators in the

system, and M
(m)
∆l is the transfer matrix to account for the pressure radiation due

to the discontinuity between varying cross sectional areas. This is given by [45, 85]

M
(m)
∆l =

[
1 iωρ0∆l/S(m+1)

0 1

]
for m = {0 . . .M − 1},

M
(M)
∆l =

[
1 iωρ0∆l/S(M)

0 1

]
,

(5.2)

Where the initial length correction∆l(0) is given by [85]

∆l(0) = A(1)Ω
∞∑
n=1

sin2(nπΩ)

(nπΩ)3
, (5.3)

with the initial porosity as Ω = S(1)/St. The pressure radiation at the discontinuity

between each subsequent section is given by [72].

∆l(m) = 0.82

[
1− 1.35

A(m)

A(m−1)
+ 0.31

(
A(m)

A(m−1)

)3]
A(m) for m = {1 . . .M − 1},

∆l(M) = 0.82

[
1− 1.35

A(M)

At

+ 0.31

(
A(M)

At

)3]
A(M).

(5.4)
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The impedance for a Helmholtz resonator with a porous inclusion within the cavity

can be obtained with equation (2.67). It must be noted that within this chapter,

the addition of a porous inclusion will not increase the depth of the cavity when in

comparison to the non-porous alternative, i.e. l
(m)
c + l

(m)
p is constant. The two port

scattering coefficients can be determined from the final transfer matrix with the

methodology set out in Section 2.6.3.

5.1.1 Results

5.1.1.1 At a Single Frequency

Within this section, results are presented highlighting how the inclusion of porous

material within the cavity of a Helmholtz resonator can be used to achieve perfect

absorption in a two port system. This is conducted at a single frequency with two

sets of results presented to highlight the contrast between the inclusion of an op-

timised length of porous material. In order to achieve perfect absorption, the opti-

misation methodology was the method of Least Squares using the in-built MATLAB

function ’lsqnonlin’ with a cost function ofCF = 1−α at a frequency of 300 Hz, with

four optimisation parameters per Helmholtz resonator; rn, ln, lc and lp. The geom-

etry for system is presented in Table 5.1, where the depth of the system is Aw = 30

mm.

m rn ln Ac lc A(m) lp
1 2.9 14.9 30 40.3 14.8 9.0

2 3.0 15.5 30 52.5 2.0 0

Table 5.1: Geometric properties of optimised single frequency perfect absorber. All

units are [mm].

To study the contrast between the inclusion of the porous layer within the first

Helmholtz resonator, plots of the asymmetrical absorption and reflection coeffi-

cients, and the transmission coefficient, for the geometry presented in Table 5.1,

with l
(1)
p = 0mm, can be seen in Figure 5.3.
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Figure 5.3: Plots of the absorption and reflection coefficients in the −ikx and +ikx
directions, and the transmission coefficient, for the presented geometry when

l
(1)
p = 0.

From this figure it is evident that the absorption properties of the system are highly

90



asymmetrical with two absorption peaks present in the −ikx direction in Figure

5.3a, in contrast to the singular absorption peak in the+ikx direction in Figure 5.3b.

This is reflected in the plots of the reflection coefficients in the negative and positive

directions in Figures 5.3c and 5.3d, respectively. In both the negative and positive

directions, the peaks in absorption are compensated by reductions in the reflection

coefficient such that the transmission coefficient is the same for both propagative

directions. This is due to the system being reciprocal, i.e. the determinant of the

final transfer matrix is equal to one.

It can be seen that both resonant responses are present in the negative propaga-

tive direction due to the change in impedance being more gradual with the stepped

changes in cross sectional area from theopenwaveguide to each subsequentHelmholtz

resonator. This is in contrast to the positive propagative direction where there is a

singular large change in cross sectional area by HR(2), this has resulted in the sin-

gle resonant response by this resonator. In both directions there is near perfect

reflection at frequencies above the response ofHR(2) in the negative direction and

HR(1) in the positive direction. The near perfect reflection is a result of the very

large impedance contrast between the main waveguide section and the resulting

waveguide portion from the inclusion HR(2). Finally, it can be seen that there is

excellent agreement between the analytical and numerical models used, validating

the phenomenon present here.

To see the benefit of the porous inclusion, plots of the asymmetrical absorption

and reflection coefficients, and the transmission coefficient, for the geometry pre-

sented in Table 5.1, with l
(1)
p = 9mm, can be seen in Figure 5.4.
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Figure 5.4: Plots of the absorption and reflection coefficients in the −ikx and +ikx
directions, and the transmission coefficient, for the presented geometry when

l
(1)
p = 9mm.

From this figure it is evident that the addition of the porous inclusion in HR(1) has
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reduced the reflection coefficient to near zero in Figure 5.4c, such that the absorp-

tion coefficient has been increased to near unity in Figure 5.4a. This results in an

impedance match and thus has critically coupled the system with the main waveg-

uide such that perfect absorption is achieved at a frequency of approximately 300

Hz with a sample thickness of λ/17.

Additionally, the same phenomenon present in Figure 5.3 in which there is only a

single resonant response in the positive propagative direction can also be seen in

Figures 5.4c and 5.4d, indicating the benefit of the absorption layer is only realised

in negative propagative direction for this system. There is little difference between

the transmission coefficients for both systems.

To help further understand the physical mechanism behind the critical coupling

condition attained by the inclusion of the porous layer, complex frequency plane

plots based upon the eigenvalues and eigenvectors of the scattering matrices for

each system are examined. To illustrate, if the total acoustic pressure either side of

the structure is given by

p(x1) = Ae−ikx1 +Beikx1 for x1 > 0,

p(x2) = Ce−ikx2 +Deikx2 for x2 < −L,
(5.5)

the relationship between the amplitudes is given by the scattering matrix, S [31],[
A
D

]
= S

[
C
B

]
=

[
T R+

R− T

]
. (5.6)

From the scattering matrix, two eigenvalues can be obtained

λ1,2 = T ±
√
R+R−, (5.7)

which have the corresponding eigenvectors,

ν1 = [R+,
√
R+R−], ν2 = [−

√
R+R−, R−]. (5.8)

Plots of the eigenvalues and eigenvectors for the single frequency absorber when

lp = 0mm can be seen in Figure 5.5.
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(a) 10 log(|λ1|2) (b) 10 log(|λ2|2)

(c) 10 log(|ν1(1)|2) (d) 10 log(|ν2(1)|2)

(e) 10 log(|ν1(2)|2) (f) 10 log(|ν2(2)|2)

Figure 5.5: Plots of the eigenvalues and eigenvectors of the scatteringmatrix for the

single frequency absorber when lp = 0mm.

From this figure it can be seen in the plot of λ1 in Figure 5.5a, both pairs of poles and

zeros are present for each resonator, whereas in the plot of λ2 in Figure 5.5b, only
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one pair of poles and zeros is present forHR(1), with just the pole forHR(2) present.

In each case the pole indicates a resonance within the system. There is no zero for

HR(1) in the plot of λ2 due toHR(1) not being excited in the +ikx direction. In both

plots of the eigenvalues, the complex value of the zeros are negative indicating that

the critical coupling condition has not been fulfilled within this system.

Upon examination of ν1(1) in Figure 5.5c, only a single pole and zero is present, which

is forHR(2). Again this is due toHR(1) not being excited by an incident acousticwave

in+ikx direction. Due to the complex value of the zero being greater than zero, the

introduction of losses within this resonator would shift the zero further from the

real frequency axis and thus reduce the impedance matching. Upon examination

of ν2(2) in Figure 5.5f both poles and zeros are present. Again the low frequency

zero of HR(2) is greater than zero, indicating the introduction of lossy material will

simply increase the impedance mismatch. This is in contrast to the high frequency

zero of HR(2) which has a negative imaginary component, indicating the introduc-

tion of porous media within the cavity of the Helmholtz resonator could reduce the

impedance mismatch such that |R−| = 0. These observations can also be made

from plots of ν2(1) and ν1(2) in Figures 5.5d and 5.5e, respectively. These plots are

identical due to the absolute value of the eigenvectors being use within the scale.

Plots of the eigenvalues and eigenvectors of the scattering matrix for the perfect

absorber, where l
(1)
p = 9mm, can be seen in Figure 5.6. From the plots of the eigen-

values in Figures 5.6a and 5.6b it can be seen that the zero of the higher frequency

resonator, HR(1) has been translated to sit on the real frequency axis, at a lower

real frequency value, indicating that T =
√
R+R− ≈ 0 and near perfect absorption

has been achieved at approximately 300 Hz. To determine which propagative direc-

tion has perfect absorption, it is necessary to look at the eigenvector plots of ν1(1)

and ν2(2) in Figures 5.6c and 5.6f, respectively. Upon examination of these figures it

is evident the critically coupled zero is present in the eigenvector ν2(2), indicating

perfect absorption has be achieved in the −ikx direction.

95



(a) 10 log(|λ1|2) (b) 10 log(|λ2|2)

(c) 10 log(|ν1(1)|2) (d) 10 log(|ν2(1)|2)

(e) 10 log(|ν1(2)|2) (f) 10 log(|ν2(2)|2)

Figure 5.6: Plots of the eigenvalues and eigenvectors of the scatteringmatrix for the

single frequency perfect absorber when lp = 9mm.
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5.1.1.2 Broadband Frequency Range

Within this section, results are presented for the two port broadband perfect ab-

sorberwhich builds upon the phenomenon described for a single resonator perfect

absorber. Here, the system consists of four Helmholtz resonators of differing res-

onant frequencies. Results are presented highlighting the difference between the

inclusion of porous material of an optimised length within the cavity of each res-

onator and without a porous inclusion within each resonator cavity. To achieve an

optimised geometry, the Least Squares method of optimisation was again used by

utilising the in-built MATLAB function ’lsqnonlin’. It must be noted this selected op-

timisation methodology is not as effective for two port systems in comparison to

one port systems.

Due to the large number of parameters and the general insensitivity of the cost func-

tion, an iterative design process was utilised to obtain the final optimised system

geometry. This iterative process was undertaken by first achieving perfect absorp-

tion with the two lowest frequency resonators using the cost function CF = 1− α.

These optimised resonators provide a large enough impedance contrast such that

they behave almost as rigid backing and allow each subsequent resonator to be

perfectly coupled with the waveguide. This was done iteratively, again with the cost

function CF = 1 − α for each subsequent resonator. Finally, the following cost

function was utilised to maximise the absorption coefficient within the desired fre-

quency range and to account for any changes in the absorption coefficient due to

additional coupling of resonators in the final complete system.

CF = (f1 − f0)−
∫ f1

f0

α df, (5.9)

where f1 and f0 are the upper and lower bounds of the desired frequency range,

respectively. For the bounds [300, 600]Hz, an optimised geometry was obtained and

can be seen in Table 5.2. An additional wall thickness of 2mm is incorporated within

the geometry such that the walls have a finite thickness if desired. The total length

of the system is L = 13.6 cm.
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m rn ln Ac lc A(m) lp
1 7.4 10 30 60 40 25

2 6.4 16 30 63 31 27

3 5.0 20 30 67 23 27

4 5.0 25 30 80 5.0 15

Table 5.2: Geometric properties of the two port broadband perfect absorber

Helmholtz resonator system. All units are [mm].

Plots of the scattering coefficients for the geometry presented in Table 5.2 but no

porous inclusions can be seen in Figure 5.7.
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Figure 5.7: Plots of the absorption and reflection coefficients in the −ikx and +ikx
directions, and the transmission coefficient, for the presented geometry of the

broadband absorber but with no porous inclusions.

From this figure it can be seen that there is good agreement between the analytical
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andnumerical plots, with the samephenomenonpresented for the single frequency

absorber also present here; namely the high asymmetry in the reflection and ab-

sorption coefficients. Again, it is evident that each resonance is excited effectively

with impinging wave propagation in the −ikx direction, whereas only a single reso-

nant response is present in the +ikx direction.

To illustrate the benefit of the inclusion of the optimised length of porous media

within the cavities of the Helmholtz resonators, plots of the scattering coefficients

can be seen in Figure 5.8. From this figure it can be seen that the inclusion of porous

media has improved the absorption of the first three Helmholtz resonators to near

unity in the−ikx direction. It can be seen that themechanism for achieving this per-

fect absorption is present in the plots of |R−| in Figure 5.8c, where the reflection

coefficient is reduced to near zero at each resonant frequency of the system. Again,

the reflection and absorption coefficients display a large amount of asymmetry be-

tween impinging wave propagation directions. Here perfect absorption has been

achieved over a broadband frequency range, with the lowest frequency perfectly

absorbed being 312 Hz. This results in a system with a sample thickness of λ/8 at

this frequency.
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Figure 5.8: Plots of the absorption and reflection coefficients in the −ikx and +ikx
directions, and the transmission coefficient, for the presented geometry of the

broadband perfect absorber with porous inclusions.

To further illustrate the coupling phenomenon between the Helmholtz resonators,
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graphics of the numerically obtained acoustic pressure at each of the frequencies

perfect absorption is achieved can be seen in Figure 5.9.

(a) 312 Hz (b) 426 Hz

(c) 576 Hz

Figure 5.9: Pressure amplitude of the broadband perfect absorber at the three ab-

sorption peaks of 312 Hz, 426 Hz and 576 Hz. Red indicates positive pressure and

blue indicates negative pressure. HR(1) is the first resonator from the left andHR(4)

is the first from the right.

From this graphic it can be seen that at the lowest frequency in which perfect ab-

sorption is achieved, 312 Hz, the first three Helmholtz resonators are in phase, with

the lowest frequency resonator HR(4) out of phase. Since the perfect absorption

at this frequency is achieved by HR(3), it can be deduced that the strong response

fromHR(4) is to enable the soft boundary condition in the+ikx such that |R+| = 1,

allowing perfect absorption to be achieved in the −ikx direction. At 426 Hz, where

perfect absorption is achieved byHR(2), it can be seen that there is strong coupling
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between HR(2) and HR(3). The influence of the porous inclusion is also evident in

HR(2), shown by the large pressure gradient within the porous layer. At 576 Hz it is

evident perfect absorption is primarily achieved byHR(1) due to the comparatively

minimal response by the remaining resonators. At this frequency the pressure ra-

diation occurring at the discontinuity between the main waveguide and the first

section can also be seen.

Finally, complex frequency plane plots of the eigenvalues and eigenvectors for the

systemwith no porous inclusions are presented in Figure 5.10. From the plots of the

eigenvalues in Figures 5.10a and 5.10b, it can be seen there are four poles, one for

each resonance, with an accompanying four zeros for λ1, and three for λ2. All have

a negative imaginary components which indicates that the use of porous media can

be used to translate their position to the real frequency axis. As there is only three

zeros present in the plot of λ2, it can be determined that the maximum possible

number of critically coupled Helmholtz resonators in a system of this configuration

will beM−1, due to therebeing no zerowhich canbe tuned for the lowest frequency

resonator.

Again when examining the eigenvectors for the system, the high asymmetry in the

reflection coefficient is evident in the comparison of ν1(1) and ν2(2), in Figures 5.10c

and 5.10f, respectively. In Figure 5.10f it can be seen that each zero has a negative

imaginary component, indicating that each can be tuned to the real frequency axis

by the addition of porous media within the resonator cavities.
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(a) 10 log(|λ1|2) (b) 10 log(|λ2|2)

(c) 10 log(|ν1(1)|2) (d) 10 log(|ν2(1)|2)

(e) 10 log(|ν1(2)|2) (f) 10 log(|ν2(2)|2)

Figure 5.10: Plots of the eigenvalues and eigenvectors of the scattering matrix for

the broadband absorber with no porous inclusions.

To help quantify the benefit of the porous inclusions in achieving perfect absorption,

plots of the eigenvalues and eigenvectors of the broadband perfect absorber with
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porous inclusions can be seen in Figure 5.11.

(a) 10 log(|λ1|2) (b) 10 log(|λ2|2)

(c) 10 log(|ν1(1)|2) (d) 10 log(|ν2(1)|2)

(e) 10 log(|ν1(2)|2) (f) 10 log(|ν2(2)|2)

Figure 5.11: Plots of the eigenvalues and eigenvectors of the scatteringmatrix for the

broadband absorber with porous inclusions.

From this figure it can be seen that the zeros of the eigenvalues λ1 and λ2, in Figures
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5.11a and 5.11b, have been translated to the real frequency axis such that perfect ab-

sorption has been achieved, with a slight down-shift in the resonant frequencies.

In comparison of ν1(1) with ν2(2) in Figures 5.11c and 5.11f, respectively, it is evident

that perfect absorption is achieved in the−ikx direction, with only one resonant re-

sponse visible in the+ikx direction. The fulfilment of the critical coupling condition

is also evident in plots of ν2(1) and ν1(2) in Figures 5.11d and 5.11e, respectively.

5.2 Chapter Conclusion

Within this chapter, the mechanism to achieve asymmetrical perfect absorption

in two port systems has been explored. Here, systems of coupled Helmholtz res-

onators have been optimised by the inclusion of porousmediawithin the cavity such

that the critical coupling condition is fulfilled and thus perfect absorption is ob-

tained. This was undertaken at a single frequency of approximately 300 Hz through

the use of two coupled Helmholtz resonators with a porous inclusion in the higher

frequency resonator. The configuration of the geometry is such that at the criti-

cal frequency, impinging waves from one direction are perfectly absorbed, whilst

waves impinging in the opposite direction are perfectly reflected. This was illus-

trated through the plotting of the eigenvalues and eigenvectors of the scattering

coefficients in the complex frequency plane. The optimised geometry presented in

with this chapter has a sample thickness of λ/16.

Thismethodologywas then extended to a broadband system in the frequency range

of 300 Hz to 600 Hz. This utilised four coupled Helmholtz resonators. The utility of

the porous inclusions was displayed by contrasting the systemwith andwithout the

porous inclusions, highlighting the stark contrast in absorptive performance. Due

to required coupling of the two lowest frequency resonators, it was shown through

the use of the complex frequency plane plots of the eigenvectors that a system of

this geometry can only exhibit M − 1 critically coupled frequencies. The resulting

broadband perfect absorber presented within this chapter exhibited perfect ab-

sorption at 312, 426 and 576Hz, with a sample thickness of λ/8 at the lowest critically

coupled frequency.
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Chapter 6

Approximation of Impedance of

Identical Coupled Helmholtz

Resonators

A commonmethodology in the simplification of analytical models for low frequency

resonant structures is that of the low frequency approximation. This allows for sim-

ple approximate expressions to be obtained that describe the effective fluid prop-

erties of systems. This is typically done by taking the low frequency, kL � 1, such

that the analytical models can be simplified so that the equations for the effective

fluid properties can be obtained, as in [84, 17, 15], for example.

Also, it has been shown that by constructing serial arrays of Helmholtz resonators,

strong coupling and is observed allowing for attenuation at multiple distinct fre-

quencies, dependant on the number of resonators in the series [88]. These sys-

tems can be modelled with a lumped parameter approach [89, 90, 91, 92], or using

the TMM to obtain the acoustic properties of the system [93].

Within this chapter, an alternative simplification methodology is presented that is

based upon the asymptotic approximation of the full transfer matrix for the sys-

tem derived using the TMM. This is applied to the impedance expressions for one

port systems composed of M identical coupled Helmholtz resonators in series.

The geometry is such that the neck of each subsequent Helmholtz resonator is di-

rectly interfaced with the cavity of the preceding Helmholtz resonator, resulting in
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a highly coupled and mutli-resonant structure. By undertaking this asymptotic ap-

proximation, the characteristic impedances for these systems of M coupled iden-

tical Helmholtz resonators are polynomials of the same order as the number of

Helmholtz resonators within the system. Solving these polynomials provides an an-

alytical methodology to determining the resonant frequency of one port coupled

Helmholtz resonators.

This chapter is set out as follows; first an array ofM identical Helmholtz resonators

coupled in series are modelled using the transfer matrix method. A method of sim-

plification is then applied to the impedance term obtained using the TMM. This

method of simplification utilises the large impedance contrast that exists between

the neck and cavity of a Helmholtz resonator. Analytical and numerical verification

is then undertaken to assess the validity of the approximation. Comments on the

effectiveness of the modelled system for low frequency absorption are also made.

Finally, further analytical analysis is undertaken to explore other useful aspects to

the derived polynomials, such as a simplified expression for the impedance of a

Helmholtz resonator and the approximation of the resonant frequencies of the sys-

tems from the solution to the derived polynomials.

6.1 Theory

Consider an array of coupled identical cylindrical Helmholtz resonators, as depicted

in Figure 6.1. Here Sw is the waveguide cross sectional area, Sn is the neck cross

sectional area, Sc is the cavity cross sectional area, ln is the neck length and lc is the

cavity length.

Figure 6.1: Graphic depicting a serial array of M coupled identical cylindrical

Helmholtz resonators.
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To calculate the impedance of this system, the transfer matrix method is used. The

full matrix, T, can be derived from the following expression:

T =
M∏

m=1

MnM∆lMc. (6.1)

wherem denotes the Helmholtz resonator, up toM . HereMn andMc are the trans-

fer matrices for a fluid layer within the neck and cavity, respectively, andM∆l is the

transfer matrix to capture the pressure discontinuity from the neck to the waveg-

uide and cavity, which in this instance is expressed as

M∆l =

[
1 iZnkn∆l
0 1

]
. (6.2)

Where∆l is arrived at from the addition of two correction lengths,∆l = ∆l1 +∆l2.

∆l1 is due to pressure radiation at the discontinuity from the neck to the cavity of

the HR [71] and∆l2 comes from the pressure radiation at the discontinuity from the

neck to the surrounding medium [72].

∆l1 = 0.82

[
1− 1.35

rn
rc

+ 0.31

(
rn
rc

)3]
rn. (6.3)

and

∆l2 = 0.6rn. (6.4)

The expression for the radiation impedance in equation 6.2 is different to that ex-

pressed in Section 2.6.5, as typically lossless impedance and wavenumber values in

the radiation impedance result in marginally more accurate results when in com-

parison to numerically produced results. Although in this instance, this slight dis-

crepancy is deemed appropriate to approximate the impedance of the system. This

is due to the need to simplify the overall impedance terms to allow for the collection

of like terms.

The surface impedance of the system ofM identical coupled Helmholtz resonators

can be derived from the full transfer matrix of the system as

Z(m)HR =
Px=0

vx=o

=
T11

T21

. (6.5)

The resulting expression of which can be deemed unwieldy for use beyond the sin-

gle resonator system, expressed in equation 2.66, with further increases in the num-

ber of resonators exponentially increasing thenumberof termswithin the impedance

expression.
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To simplify the impedance expressions obtained via the TMM for arrays of coupled

identical Helmholtz resonators, a method of asymptotic approximation is used. The

premise being the utilisation of the impedance contrast between the neck, Zn, and

cavity, Zc, facilitated by the large contrast in cross sectional area which allows for a

small order term to be obtained. This small order term, ε, is defined as

ε =

√
Zc

Zn

. (6.6)

The rest of the terms can be rendered dimensionless with the following expres-

sions:

c =
kclc
ε

,

n =
knln
ε

,

φ = 1 +
∆l

ln
.

(6.7)

For simplification purposes a new term, x, is defined as x = cnφ. This explicitly

becomes

x =
ω2Vcl

′
nρn(ω)

SnKc(ω)
. (6.8)

Here, Vc is the cavity volume, l′n is the length of the neck plus the correction terms,

ρn(ω) is the dynamic density of air within the neck andKc(ω) is the bulk modulus of

air within the cavity.

By undertaking the full analytical matrix expansion of the final dimensionless trans-

fer matrix, up to M = 3, a Taylor series expansion of the impedance can be un-

dertaken about ε = 0. This process was undertaken in Maple which is a symbolic

and numeric computing software. From the Taylor series expansion, the following

impedance expressions are obtained from the leading order terms. The subscript

number denotes the number of identical Helmholtz resonators within the system.

Z1HR =
iKc(ω)(x− 1)

ωVc

,

Z2HR =
iKc(ω)(x

2 − 3x+ 1)

ωVc(x− 2)
,

Z3HR =
iKc(ω)(x

3 − 5x+ 6x− 1)

ωVc(x2 − 4x+ 3)
.

(6.9)

From these expressions it is evident that by increasingM , you increase the order of

the polynomial composed of x terms, with the numerator polynomial being of the

same order as M, and the denominator being of the orderM − 1.
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The impedance expression for a single HR can be further simplified and expressed

as

Z1HR = i

(
ωl′nρn(ω)

Sn

− Kc(ω)

ωVc

)
. (6.10)

From the configuration of the effective property expressions of the fluid within the

neck and cavity, it is evident viscous effects dominate within the neck and thermal

effects dominate in the cavity.

6.2 Results

To assess the validity of the derived approximations for the surface impedance of

an array of coupled identical cylindrical Helmholtz resonators, the absorption co-

efficients obtained with these approximate expressions, the TMMwith both a lossy

radiation impedance, as in the approximation, and a lossless radiation impedance.

These results are comparedwith results computednumerically usingCOMSOLMul-

tiphysics 5.9. The geometry of modelled Helmholtz resonator can be found in the

Table 6.1 and has been chosen based upon achieving the critical coupling condition

with the single resonator system using the derived approximation expression for

the surface impedance of the system.

rw rn rc ln lc
30 2 30 12 30

Table 6.1: Geometric properties of the serial array of HRs. All units are [mm].

A plot of the resulting absorption coefficients can be seen in Figure 6.2, where the

single Hemholtz resonator system is presented in Figure 6.2a, the two resonator

system in Figure 6.2b and the three resonator system in Figure 6.2c.
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(b) Two Helmholtz resonator system.
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Figure 6.2: Plots of the absorption coefficient for a serial array of coupled identical

Helmholtz resonators, up to M = 3. Results are obtained with the TMM assum-

ing a lossy radiation impedance, with the proposed approximation, with the TMM

assuming a lossless radiation impedance and numerically.

From this figure it is evident that there is good agreement between all fourmethod-

ologies for the proposed geometry. When comparing the approximation against the

TMMwith a lossy radiation impedance, there is excellent agreement. This indicates

that the approximation provides a reliable and robust method to simplify expres-

sions with the TMM. However, when comparing these plots with those produced by

theTMMwith a lossless radiation impedance andnumerically, it is evident that there

is a slight discrepancy. In all cases the resonant frequency is in excellent agreement,

but themaximum value of the absorption coefficient differs slightly. This is logical as

the approximation and TMMwith lossy radiation impedance will be overestimating

the losses within the system, which can increase or reduce the absorption coef-

ficient at resonance depending upon the location of the zero within the complex

frequency domain. This discrepancy is most visible in Figures 6.2b and 6.2c, where

the absorption coefficient is greater at resonancewith the numerical and TMMwith

lossless radiation impedance methods.

To investigate the accuracy of the derived approximation for a single Helmholtz res-

onator, presented in equation 6.10, plots of the absorption coefficients produced

with the three analytical methodologies for varying neck to cavity width rations are
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presented in Figure 6.3. This is an important consideration as the approximation is

derived upon the basis that there is a large impedance contrast between the neck

and cavity such that a small order term can be obtained.
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Figure 6.3: Plots of the absorption coefficient for a single Helmholtz resonator sys-

tem with various neck to cavity width rations produced with all three analytical

methodologies.

From this figure it is evident that at every neck to cavity ration, there is excellent

agreement between the approximation and theTMMwith lossy radiation impedance.

This indicates that the selection of the small order term based upon the impedance

contrast provides a robust approach when approximating the surface impedance

of Helmholtz resonator systems. However, when in comparison with the TMMwith

lossless radiation impedance, which had excellent agreement with the numerical

methodology in Figure 6.2, it can be seen that there is a discrepancy in the absorp-

tion amplitude at resonance. This is the same issue that was evident in Figure 6.2,

both the approximation and the TMM with lossy radiation impedance, which it ap-

proximates, overestimates the losses within the system. However, the frequency

at which resonance occurs are in excellent agreement between the three analytical

methodologies, indicating that the overestimation of losses is not significant enough

to result in a material decease in the resonant frequency of the system .
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To assess the viability of this type of resonant system with an array of M identical

coupled Helmholtz resonators for low frequency sound absorption, complex fre-

quency domain plots of the reflection coefficient obtained with the approximation

expression in equation 6.10 can be seen in Figure 6.4. Figure 6.4a is a plot forM = 1,

Figure 6.4b is a plot forM = 2 and Figure 6.4c is a plot forM = 3,.

(a) Complex frequency domain plot of Log(|R|) whenM = 1.

(b) Complex frequency domain plot of Log(|R|) whenM = 2.
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(c) Complex frequency domain plot of Log(|R|) whenM = 3.

Figure 6.4: Complex frequency domain plots of Log(|R|) for the array of coupled

identical Helmholtz resonators whenM = 1, 2, 3.

From Figure 6.4a it is evident that for the single resonator system, the critical cou-

pling condition is fulfilled such that the zero of the system is on the real frequency

axis. This is evident by the perfect absorption seen in Figure 6.2a. In Figure 6.4b, the

introduction of the second Helmholtz resonator has introduced a second, higher

frequency pole and zero pair. There is also a material decrease in the real value of

the frequency of the zero coupling of the resonators [94], resulting in a reduction

in the resonant frequency of this Helmholtz resonator. Additionally, by adding the

second resonator, the critically coupled zero of the first Helmholtz resonator has

been shifted up in to the positive complex frequency domain, reducing the absorp-

tive performance. It must also be noted that the zeros are not located on the same

plane of complex frequency values. This is further evidenced in Figure 6.4c by the

introduction of the third resonator. Due to this phenomenon, it can bededuced that

it is only possible to achieve critical coupling with one zero of the system, meaning

perfect absorption at multiple frequencies is not possible. One possible use case,

however, would be to optimise the system such that themost lowest frequency res-

onator becomes critically coupled. This could provide a methodology to achieving

perfect absorption at a very low frequency.

One interesting avenue which could be further explored is that of a very low fre-

quency absorption with an absorption peak with a large Q factor. Typically, the Q
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factor of an absorption peak produced by a Helmholtz resonator is determined by

the ratio of the neck and cavity widths. This is evident in Figure 6.3, where the Q

factor of the absorption peak increases with an increase in neck to cavity width

ratio. Adversely, beyond the critical coupling point, an increase in the neck width

produces worse absorptive performance, again, as evident in Figure 6.3. By utilis-

ing the strong coupling within a system of identical Helmholtz resonators, a system

could be optimised such that Helmholtz resonator with a large width to cavity ratio

is critically coupledwithin the very low frequency regime by the addition of coupled

identical Helmholtz resonators. This would allow for very low frequency absorption

with a peak of high Q factor.

6.3 Resonant Frequency Analysis

Due to the simple nature of the approximated impedance expressions and the fact

that they are constructed of polynomials, it is a simplematter to derive the resonant

frequencies of the three presented systems for m = 1, 2 and 3. To illustrate, the

imaginary component of ZHR is 0 at resonance, therefore it is a simple matter of

finding the x value for which the respective polynomial is also equal to 0. Consider

an arbitrary solution x = A, by rearranging (6.8), the following relation can be found

fres =
1

2π

(
Sn

Vcl′n

)1/2

Re

[
Kc(ω)

ρn(ω)

]1/2(
A

)1/2

. (6.11)

Furthermore, by assuming a lossless system and taking the high frequency limit

lim
ω→∞

Re

[
Kc(ω)

ρn(ω)

]1/2
= c0, (6.12)

as depicted in Figure 6.5,

117



0 100 200 300 400 500 600

Frequency (Hz)

270

280

290

300

310

320

330

340

c
0
 (

m
/s

)

Re[K
c
( )/ rho

n
( )]

0.5

Figure 6.5: Plot of the high frequency limit for Re[Kc(ω)/ρn(ω)]
1/2.

equation (6.11) can be simplified to

fres =
c0
2π

(
Sn

Vcl′n

)1/2(
A

)1/2

. (6.13)

To determine the resonant frequencies of the three systems, it is necessary to find

A. This is done by solving the numerator polynomials in the approximate surface

impedance expressions in equation 6.9, which can be found in Table 6.2.

m A
1 1

2 (3−
√
5)/2, (3 +

√
5)/2

3 0.19806, 1.5550, 3.2470

Table 6.2: Values of A for the three HR systems.

From this it is evident that for a single HR , the classical formula for the resonant

frequency of a Helmholtz resonator is obtained;

fres =
c0
2π

(
Sn

Vcl′n

)1/2

. (6.14)
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To assess the validity of equation (6.13), the resonant frequencies for the three HR

systems obtained using TMMwith andwithout a lossy radiation impedance, numer-

ically and with equation (6.13) have been obtained. The values of which can be seen

in the Table 6.3.

fres TMM - Lossy Z∆l Equation (6.13) TMM - Lossless Z∆l Numerical

m = 1 173 186 167 168
m = 2 101, 270 107, 280 102, 271 102, 270
m = 3 72, 207, 301 77, 216, 311 73, 208, 303 73, 207, 301

Table 6.3: Values of fres [Hz] for the three HR systems obtained using TMMwith and

without a lossy radiation impedance, numerically and with equation (6.13).

From this table it is evident that there is relatively good agreement between the de-

termination of the lossless resonant frequencies with equation (6.13) with the other

presented methodologies. It can be seen that the resonant frequency obtained by

the approximation is consistently higher for every resonance. This is the influence

of viscothermal losses not being captured within equation (6.13), as the introduc-

tion of losses within the system typically reduces the resonant frequencies due to

dampening effect. An indicator to the influence that the introduction of losses has

upon the resonant frequency can be seen in Figure 6.5. Typically, the lower the

frequency of resonance, the larger influence the losses has upon the resonant fre-

quency. This is displayed by c0 being lower at these lower frequencies. Onemethod

to improve the accuracy of equation 6.13 would be to input the values of c0 at each

numerically computed resonant frequency. The results of this can be seen in Table

6.4.

fres Equation (6.13) with lossy c0 value Numerical c0 [m/s]

m = 1 165 168 327
m = 2 101, 270 102, 270 322, 330
m = 3 72, 207, 301 73, 207, 301 318, 328, 331

Table 6.4: Values of fres [Hz] for the three HR systems obtained with equation (6.13)

with a lossy value for c0 at resonance compared with the numerical results.

Using thismethodology there is now amuch better agreement in the determination

of the resonant frequencies, this is due to the influence of viscothermal losses being

accounted for.
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6.4 Chapter Conclusion

Within this chapter a method of simplification has been proposed for impedance

terms derived by the TMM. This has been applied to the case of a serial array ofM

coupled identical Helmholtz resonators. The simplification method is reliant upon

the use of an impedance contrast to create a small order term which can be used

in the Taylor expansion of the TMM impedance expressions. By utilising the lead-

ing order term from the Taylor series expansions, simple expressions were found

composed of polynomials of the same order asM . Excellent agreement was found

when comparing the absorption coefficient obtained via the TMM with a lossy ra-

diation impedance and with this approximation method. However when a com-

parison is made between the approximation and the TMM with a lossless radiation

impedance and numerical results, there is a slight discrepancy in the amplitude of

the absorption peaks. This is due to the TMM with lossy radiation impedance and

the expressions which approximate this overestimate the amount losses within the

system, changing the location of the zero in the complex frequency domain. This

was further exacerbated with greater resonator neck to width ratios.

Upon analysis of the complex frequency domain of themodelled systems itwas con-

cluded that it is only possible to achieve critical couplingwith one zeroof the system,

meaning perfect absorption at multiple frequencies is not possible. One possible

use case could be to optimise the system such that the lowest frequency resonator

becomes critically coupled. This could provide a methodology to achieving perfect

absorption at a very low frequency.

It was also found that the resonant frequencies of the systems can be obtained

through the solutionof thepolynomials presentwithin thenumerator of the impedance

approximations. However, it is evident that there is a slight discrepancy between

the approximate resonant frequency equations and those achieved by the other

methodologies. This is due to viscothermal loss effects not being taken in to ac-

count. By adjusting the speed of sound within the approximate resonant frequency

expression to that of a lossy system at specific resonant frequencies, accurate pre-

dictions to the resonant frequencies of systems of identical coupled Helmholtz res-

onators can be determined.
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Chapter 7

Low frequency attenuation of

acoustic waves in a perforated pipe

The attenuation of acousticwaves in a pipe by silencers is typically achieved through

the employment of rigidly backed cavities, connected to the pipe by a perforated

panel. For silencerswith partitioned cavitieswith a single perforation, i.e. aHelmholtz

resonator, excellent attenuation can be achieved at the resonant frequency of the

resonator. Multiple Helmholtz resonators can be side-loaded to the pipe, all tuned

to different frequencies in order to achieve the broadband attenuation of noise [56].

Side-loaded Helmholtz resonators can be optimised to increase their absorptive

performance by changing the separation distance between subsequent resonators

and by adjusting their geometry and thus visco-thermal losses to critically couple

them with the pipe. A similar technique has been employed in the design of sound

absorbing acoustic metamaterials in order to achieve perfect broadband absorp-

tion in one and two port systems much smaller than the wavelength of the sound

wave [18, 45].

For silencers with non-partitioned cavities and panels composed of multiple iden-

tical perforations along the length of the silencer a similar phenomenon occurs. If

the perforated separating panel has a low porosity, a Helmholtz resonator type of

attenuation occurs. As the porosity increases, the silencer behavesmore like an ex-

pansion chamber [5]. Different configurations of partitions can be used to alter the

number of resonances. Dissipative materials can be introduced to achieve broad-

band attenuation [95]. A limitation of these types of silencers is the requirement for
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large cavity volumes or narrow neck regions to achieve low frequency attenuation.

A large cavity volume is often impractical and having narrow regions often results

in poor attenuation of acoustic waves due to large amounts of visco-thermal losses

often resulting in over-damping of the system [57].

Through the use of a metamaterial consisting of an array of perforations along a

waveguide, where no cavities are present, it has been theoretically and experimen-

tally shown that negative bulk modulus can be obtained from zero to an upper

bound [52]. This is due to the non-local resonant effect of the perforations allow-

ing for the occurrence of a bandgap where zero transmission occurs and where

the band gap upper bound is determined by the system geometry. This has been

corroborated in the non-linear regime through the employment of high amplitude

excitation [53] and it has also been shown that through the coupling of the perfo-

rations within an array of elastic membranes, both negative bulk modulus and dy-

namic density can be achieved [54]. Finally, it has been theoretically shown that a

sonic crystal in which the surfaces of each scatterer is modelled with an acousti-

cally soft boundary condition, a band gap is created from zero to an upper bound

frequency determined by the surface area and periodicity of the soft scatterers

[96].

In this chapter an ideal analyticalmodel is created to examine the influence periodic

arrangements of sound-soft backed perforations have within a waveguide formed

by an air-filled pipe. It is observed that the presence of periodically arranged soft

scatterers result in a band gap from 0 Hz to an upper bound. The upper bound of

this band gap is determined by the dimensions and separation of the perforations.

Results are validated numerically with two modelling approaches employed to fur-

ther refine the analytical model. Experimental evidence of a band gap produced by

acoustically soft scatterers is presented. This concept of acoustically soft scatter-

ers much smaller than the wavelength enables us to achieve high attenuation at a

very low frequency [97].

This chapter is set out as follows. In the background theory section an analytical

model is derived using the transfer matrix method. This model is then used to

assess the acoustic transmission loss of a pipe that wall is composed of periodic

arrays of acoustically soft scatterers. Results from this analytical model are para-

metrically compared with those computed numerically for a variety of perforation
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geometries. This enables us to assess the relationship between variations in ge-

ometry and the width of the band gap attained. Then, further numerical results

are presented for a non-rigidly backed perforated pipe to understand better the

acoustically soft boundary phenomenon occurring within the perforations. Finally,

experimental results are presented and used to validate the numerical model.

7.1 Ideal Analytical Model

7.1.1 Impedanceof aperforationwith soft boundary conditions

To determine the impedance of a single circular perforation of length d, character-

istic impedance Zp and wavenumber kp, with a soft boundary condition at depth

x = d, the transfer matrix method is used. The full matrix, T , is derived from:

T = M∆lMp, (7.1)

whereMp models the cavity and is given by

Mp =

[
cos(kpd) iZp sin(kpd)
i

Zp
sin(kpd) cos(kpd)

]
. (7.2)

M∆l in eq. (7.1) models the length correction due to pressure radiation at the inter-

face between the perforation and the pipe, given by:

M∆l =

[
1 iZpkp∆l
0 1

]
. (7.3)

For a circular perforation, the length correction is: [72]

∆l = 0.82

[
1− 0.235

rp
rw

− 1.32
( rp
rw

)2
+ 1.54

( rp
rw

)3
− 0.86

( rp
rw

)4]
rp. (7.4)

Here, rw is the radius of the pipe (waveguide) and rp is the radius of the perfora-

tion. To account for the acoustically soft boundary at the end of the perforation,

the final T matrix is multiplied by [0, 1]T , which provides a soft termination to the

perforation at x = d where acoustic volume flux is Vx=d and pressure is px=d = 0.

The characteristic impedance of the perforationwith an acoustically soft boundary,

Zs, can then be found as:

Zs =
Px=0

Vx=0

=
T12

T22

= iZp tan(kp(d+∆l)). (7.5)

123



7.1.2 Finite periodic system of sound-soft scatterers

Consider a finite length of a pipe with nt periodic arrangements of sound soft scat-

terers. Each unit cell has a length h and cross sectional area Sw. The general geom-

etry of the system can be seen in Figure 7.1.

Figure 7.1: Graphical representation of a finite system of sound-soft scatterers.

The transfer matrix for the total system is given by

T = (MwMsMw)
n . (7.6)

Mw is the transfer matrix for a fluid layer of length h/2 andMs is given by

Ms =

[
1 0

N/Zs 1

]
, (7.7)

where N denotes the number of scatterers per unit cell. The total length of the

system L = nh. The transmission loss (TL) of the total system can then be obtained

as

TL = 20 log10

∣∣∣∣T11 + T12/Zw + ZwT21 + T22

2

∣∣∣∣ , (7.8)

where Zw is the characteristic impedance of the waveguide. As this system is sym-

metric and reciprocal, the transmission, reflection and absorption coefficients can

be determined as:

T =
2e−ikL

T11 + T12/Zw + ZwT21 + T22

, (7.9)

R =
T11 + T12/Zw − ZwT21 − T22

T11 + T12/Zw + ZwT21 + T22

, (7.10)

α = 1− |R|2 − |T |2. (7.11)
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7.1.3 Infinitely periodic structure of sound-soft scatterers

Assuming plane wave propagation in a pipe with periodic imperfections, the Bloch

Floquet theorem (as presented in Section 2.3) can be fulfilled so that the transfer

matrix of a single unit cell can be described as follows [34, 37, 38]:[
p
V

]
x=o

= T

[
p
V

]
x=−h

=

[
T11 T12

T21 T22

][
p
V

]
x=−h

=

[
T11 T12

T21 T22

][
eiqhp
eiqhV

]
x=0

, (7.12)

where q is the Bloch wavenumber. By rearranging we obtain:([
T11 T12

T21 T22

]
−

[
e−iqh 0
0 e−iqh

])[
p
V

]
x=−h

= 0. (7.13)

By substituting Λ = eiqh, the following eigenvalue problem can be constructed:∣∣∣∣T11 − Λ T12

T21 T22 − Λ

∣∣∣∣ = Λ2 − Λ (T11 + T12) + |T | = 0. (7.14)

In the above equation the determinant, |T | = 1, through the principle of reciprocity

and therefore the forward and backward propagating Blochwaves display the same

dispersion and the Bloch dispersion relation can be found as:

cos(qh) =
1

2
(T11 + T22). (7.15)

As such, the dispersion relationship for an infinitely periodic array of sound-soft

backed perforations can be expressed as

cos(qh) = cos(kh) +
iZN

2Zs

sin(kh). (7.16)

7.2 Ideal Analytical Model Parametric Study

In this section, a parametric study is undertaken where the relationship between

the separation, depth and area of the perforations and the width of the band gap

produced is investigated. The analyticalmodel is validated using 3D numericalmod-

els in COMSOL Multiphysics 6.0.

Details of the selected geometries can be seen in Table 7.1 where the perforation ra-

dius is rp, the perforation depth is d and the unit cell length is h. In all the cases the
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radius of the pipe, rw, is 40mm, the total number of unit cells, nt, is 10 and the num-

ber of perforations per unit cell, N , is 6. These perforations are distributed evenly

along the circumference of the pipe. Plots comparing the absorption, transmis-

Table 7.1: Geometrical parameters of the four models validated numerically.

Geometry rp (mm) d (mm) h (mm)

1 2 5 50
2 2 5 25
3 3 5 50
4 2 10 50

sion and reflection coefficients predicted with the analytical and numerical model

in the lossless and lossy cases can be seen in Figure 7.2. In the lossless case the ef-

fective fluid properties of the pipe and perforation are calculated with the lossless

acoustic impedance and wavenumber such that visco-thermal losses are not taken

into consideration. In the lossy cases, all visco-thermal losses are included using

equations 2.15 and 2.16 to calculate the acoustic impedance and wavenumber. Plots

of the transmission loss predicted with analytical and numerical models and real

and imaginary components of the Bloch wavenumber predicted with the analytical

model are presented in Figure 7.3. These results are also presented for the loss-

less and lossy cases. The results shown in Figures 7.2 and 7.3 suggest that there is

excellent agreement between the ideal analytical and 3D numerical models.

From Figure 7.2a, it is evident that in the lossless case, the introduction of acous-

tically soft backed perforations results in the reflection coefficient value close to

unity at 0 Hz. This behaviour extends to approximately 300 Hz before the reflection

coefficient begins returns to 0. Consequently, the transmission coefficient behaves

in the oppositemanner. This phenomenon is also clear in Figure 7.2b. In the lossless

case there is no absorption present, whereas there is in the lossy case. Additionally,

with losses the strength of the band gap is reduced, with the reflection coefficient

dropping from near unity immediately at frequencies above 0 Hz. There is no dis-

cernible change in transmission loss.

In Figure 7.3a a bandgap is evident, denotedby thepurely imaginary Blochwavenum-

ber. This purely imaginary Bloch wavenumber indicates that the propagating wave

within the the band gap frequency range is evanescent, which is evidenced by the

transmission loss across the same frequency range. It can be seen in Figure 7.3b
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that the introduction of losses reduces the strength of the gap, with real values for

the Bloch wavenumber occurring at 0 Hz.

In Geometry 2, the length of the unit cell has been halved, reducing the separation

between the rows of perforations. Upon comparison of Figure 7.2c to Figure 7.2a, it

can be seen that by decreasing the unit cell length, the width of the band gap is in-

creased. It is worth noting that the reflection and transmission coefficients appear

to change more gradually in this scenario. Again, as seen in Figure 7.2d, the intro-

duction of losses induces absorption within the system. When looking at Figures

7.3c and 7.3d, the transmission loss seems similar in amplitude to that predicted for

Geometry 1, indicating that whilst the separation distance influences the width of

the band gap, it does not greatly impact transmission loss.

To further investigate the relationship between the perforation geometry and the

width of the band gap produced, Geometry 3 is chosen to have the same geometri-

cal parameters as Geometry 1, but an increase in perforation radius by 1 mm. When

examining Figures 7.2e and 7.2f, the main difference to Geometry 1 is, an increase in

the width of the band gap. This time, the change in the reflection and transmission

coefficients is similar to that produced by Geometry 1. From Figures 7.3e and 7.3f

it can be seen that by increasing the radius of the perforations it is possible to in-

crease the width of the band gap and amount of transmission loss within the band

gap. This result indicates that the overall surface area of soft boundary conditions

influences the transmission loss produced by the perforations.

The final parameter is the depth of the perforation and how it influences the width

of the band gap produced. In Geometry 4, the depth of perforations is doubled,

whilst the remaining parameters are kept consistent with Geometry 1. From Fig-

ures 7.2g and 7.2h, it can be seen that the width of the band gap is reduced, with the

reflection and transmission coefficients changing more gradually. In Figures 7.3g

and 7.3h, it can be seen that by increasing the depth of the perforations, the trans-

mission loss is reduced in comparison to Geometry 1.

Therefore, for this system it can be determined that the size and strength of the

band gap is dependant on multiple factors. Reducing the unit cell length, but keep-

ing the total number of unit cells increases the width of the gap, but it does not in-

crease the transmission loss within the band gap. Increasing the size of the perfora-
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tion increases the surface area where a sound-soft boundary condition is present,

which increases the size and transmission loss of the band gap. Finally, an increase

of the perforation depth reduces the size and transmission losswithin the band gap.
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(a) Geometry 1 - Lossless (b) Geometry 1 - Lossy

(c) Geometry 2 - Lossless (d) Geometry 2 - Lossy

(e) Geometry 3 - Lossless (f) Geometry 3 - Lossy

(g) Geometry 4 - Lossless (h) Geometry 4 - Lossy

Figure 7.2: Analytical and numerical plots of α, |R| and |T | for Geometries 1-4 (Table

7.2) in the lossless and lossy cases.
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(a) Geometry 1 - Lossless

0 200 400 600 800 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

R
e
[ 
q
h
 ]
 &

 I
m

[ 
q
h
 ]

0

20

40

60

80

100

T
L
 (

d
B

)

Re[ qh ]

Im[ qh ]

Analytical TL

Numerical TL

(b) Geometry 1 - Lossy
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(c) Geometry 2 - Lossless
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(d) Geometry 2 - Lossy
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(e) Geometry 3 - Lossless
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(f) Geometry 3 - Lossy

0 200 400 600 800 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

R
e
[ 
q
h
 ]
 &

 I
m

[ 
q
h
 ]

0

20

40

60

80

100

T
L
 (

d
B

)

(g) Geometry 4 - Lossless
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(h) Geometry 4 - Lossy

Figure 7.3: Analytical plots of the real and imaginary components of the Bloch

wavenumber, and analytical and numerical plots of the transmission loss (TL) for

Geometries 1-4 (Table 7.2) in the lossless and lossy cases.
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7.3 Numerical Study of sound soft phenomenon

In this section, a numerical study is undertaken to further understand the acousti-

cally soft boundary effect produced by non-rigidly backed perforations. To do this,

two variants of numerical models are used which model the soft boundary condi-

tion differently. In the first variant the perforations are encompassed by an air gap

and then a perfectly matched layer (PML), whereas in the other variant the outer

boundary of the perforations are modelled with an ideal acoustically soft boundary

condition. The PML is used to artificially attenuate any acoustic wave propagating

away from the perforated pipe andminimise reflections back in to the pipe from the

boundary of the fluid domain surrounding the pipe [75]. Graphical representations

of these two variants can be seen in Figures 7.4a and 7.4b, respectively.

(a) Perforated pipe encompassed by an air gap and

PML.

(b) Perforated pipe with sound-soft backed perfora-

tions.

Figure 7.4: Graphical representation of the numerically modelled perforated pipes

for an investigation in to the sound-soft phenomenon.

Three perforation geometries and spacing are modelled with the parameters sum-

marised in Table 7.2.
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Table 7.2: The parameters of the the three geometries of perforations used in the

numerical model of the perforated pipe.

Geometry rp (mm) d (mm) h (mm) n
1 5 5 50 11
2 5 5 25 21
3 2.5 5 25 21

The radius of the pipe is kept constant between eachmodel at rw = 40mm, and the

number of perforations per unit cell is always N = 1. The transmission, reflection

and absorption coefficient spectra for Geometries 1 - 3 (see Table 7.2) are shown in

Figure 7.5. These results are given for the perforated pipe surrounded with an air

gap (dashed lines) and ideal acoustically soft boundary (solid lines).
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(a) Geometry 1

(b) Geometry 2

(c) Geometry 3

Figure 7.5: Plots of α, |R| and |T | for both numerical variants for models 1 - 3.
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The behaviour of the absorption, reflection and transmission coefficients shown

in Figure 7.5 suggests that the band gap phenomenon cased by the perforations

is present in the both variants of the numerical model. This is evidenced by the

near unity reflection coefficient as the frequency reduces to 0 Hz. The width of the

band gap differs between the two variants of the numericalmodel. In the case of the

model for the ideal acoustically soft boundary conditions, the high attenuation band

extends over a larger frequency range for each of the three perforation geometries

considered in this study. It can therefore be determined that an additional length

correction due to pressure radiation at the soft boundary of the perforation is re-

quired. Additionally, in Figures 7.5 (a) and (b), it can be seen that the numerical

results produced for the variant with the air gap and PML are noisy due to numeri-

cal artifacts resulting from the PML.

To gain further insight, graphics showing the absolute acoustic pressure for geom-

etry 1 - 3 from the air gap with PML numerical variant can be seen in Figure 7.6. In

each graphic the chosen frequency was based upon the condition |R| = 0.5. This

criteria was used to select the frequency due to the large discrepancy in results

between the two numerical variants at these values.
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(a) Geometry 1 at 315 Hz

(b) Geometry 2 at 410 Hz

(c) Geometry 3 at 265 Hz

Figure 7.6: Absolute acoustic pressure for Geometries 1 -3 for the numerical variant

where the perforated pipe is encompassed by an air gap and PML.
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From Figure 7.6 it can be seen that there is pressure radiation occurring at the

discontinuity between the perforations and the surrounding medium. This indi-

cates that the sound boundary is acting beyond the perforation. There is an addi-

tional added length which is causing an overall decrease in themaximum frequency

achieved by the band gap. This additional length is increasing the depth of the per-

foration.

7.4 Revised Soft-backed Perforation Impedance

In order to account for the extra pressure radiation that occurs at the discontinuity

from the perforation and the surrounding medium, an additional length correction

to the perforation depthmust be accounted for in the expression for the impedance

of a perforation with a soft boundary condition. Equation 7.4 gives the length cor-

rection,∆l, for the pressure radiation at the discontinuity between the perforation

and fluid within the perforated pipe. In addition to this, an expression of the length

correction for the pressure radiation from an orifice in a tube wall into free space

is required. This is given by the following equation [85]

∆l2 =
Up

8
+ k−1

0 χ0

(
2k0

√
Sp

π

)
, (7.17)

where Up is the perimeter of the perforation, k0 = ω/c0 and

χ0(ξ) =
4

π

∫ π

0

sin(ξ cos(a)) sin2(a) da

≈ ξ2

8
for ξ � 1.

(7.18)

Here ξ = 2k0
√

Sp/π. If the length correction for the pressure radiation at the dis-

continuity between the perforation and pipe is

∆l1 = 0.82

[
1− 0.235

rp
rw

− 1.32
( rp
rw

)2
+ 1.54

( rp
rw

)3
− 0.86

( rp
rw

)4]
rp, (7.19)

as described in equation 7.4, then the equation for the revised impedance for a

perforation with a sound soft boundary (see equation 7.5) is

Zs = iZp tan(kp(d+∆l1 +∆l2)). (7.20)
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The methodology presented in Section 7.1.2 and equation 7.20 were used to com-

pare the revised analytical model against the numerical simulation detailed in Sec-

tion 7.3. The results of this comparison are shown in Figures 7.7 for the three ge-

ometries presented in Table 7.2. Figures 7.7 presents the absorption, reflection and

transmission coefficients for the perforated pipe encompassed by an air gap and

PML. From these figures it can be seen that there is now excellent agreement be-

tween the revised analytical and numerical models suggesting that the revised an-

alytical model now provides a simple and robust way to determine the acoustic

attenuation in a pipe with non-rigidly backed circular perforations.
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(a) Model 1

(b) Model 2

(c) Model 3

Figure 7.7: The spectra of the absorption, α, reflection, |R|, and transmission, |T |,
coefficients predicted with the revised analytical model and numerical model for

the pipe with the peroration geometries defined in Table 7.2.
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7.5 Experimental Results

In order to validate the proposed analytical and numerical models and to illustrate

practically the existence of the low frequency band gap, an experimental pipe rig

was set up in the ICAIR laboratory at theUniversity of Sheffield. The experimental rig

included a 1.32mperforated pipewith a smooth inner radius 0.8mand a corrugated

outer radius, with three perforations per cross-section and approximately 1 m of

separation between the speaker and an array of 9 microphones as illustrated in

Figures 7.8 (a)-(c). The speaker was piston-on-a-sphere which is designed to act

like a source with high radiation efficiency [98]. The speaker was installed at one

end of the perforated pipe as shown in Figure 7.8 (a). The speaker was driven by

a sine sweep generated between 50 Hz and 25 kHz with the help of NI-9260 analog

output module and B&K type 2716C amplifier.

The microphone array made of 9 GRAS 46AE 1/2” CCP free-field standard micro-

phones was installed at the other end of the pipe. It was arranged along the pipe

diameter as shown in Figure 7.8 (b). Themicrophone arraywas used to filter out the

planewavemode in a sufficiently broad frequency range. It is noted that the location

of holes in the perforated pipe along the pipe circumference were not consistent

and varied along the pipe length. The spacing between the rows of perforation was

fixed at h = 20 mm and the width of each perforation was approximately 20 mm

as shown in Figures 7.9 (a) and (b), respectively. A National Instrument data acqui-

sition module Type NI-9232 was used to acquire data at the sampling rate of 51.2

kHz.
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(a)

(b) (c)

Figure 7.8: The experimental pipe set up at the Integrated Civil and Infrastructure

Research Centre (ICAIR): (a) sound speaker at the source end; (b) array of 9 mi-

crophones at the receiver end; (c) perforated pipe with speaker and microphone

array installed at the opposite ends of the pipe.

Figure 7.10 illustrates the transmission loss obtained with the following equation

TL = 20 log10

∣∣∣∣prefprec

∣∣∣∣ , (7.21)

where pref is the acoustic pressure recorded at the reference microphone in the

vicinity of the sound speaker and prec is the acoustic pressure recorded at the re-

ceiver side with the array microphones.
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(a) (b)

Figure 7.9: Pipe perforation: (a) Axial distance between perforation; (b) Width of a

single perforation

The experimental pipe geometrywas replicated in a 3D FEMmodel in COMSOLmul-

tiphysics 6.0 with ideal soft boundary conditions at the interface of the perforation

and Perfectly Matched Layer (PML) imposed at the end of the pipe away from the

sound source. The sound source was modelled as a piston generating plane wave.

The perforationsweremodelled as ellipses of constant cross sectional area. The re-

sults of the numerically and experimentally obtained transmission loss can be seen

in Figure 7.10.
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Figure 7.10: (a) Numerical and (b) Experimental plots of the Transmission Loss de-

fined by equation (7.21)

Themeasured transmission loss illustrated in Figure 7.10(b) offers the evidence that

the periodically arranged perforations in the rigid pipe create a low frequency band

gap that extends to approximately 460 Hz. The width of this band gap matches that

predicted for the simplified perforation geometry, i.e. where the perforations are

idealised with an elliptical geometry in the 3D finite element model. It is evident,

142



however, that the experimental data set is noisy and that the level of the experi-

mental transmission loss is limited by the signal to noise ratio. This difference can

also be attributed to a structure-borne vibrations excited in the wall of the pipe or

sound leakage due to the experimental perforated pipe being open-ended. Despite

this, it can be seen that the acoustically soft scattering phenomenon does occur

when the pressure release condition is imposed on a non-rigidly backed perfora-

tion allowing for very low frequency attenuation of acoustic waves with a sample

size much smaller than the wavelength of sound being attenuated.

7.6 Chapter Conclusion

An analytical model based upon the transfer matrix method has been developed to

predict the acoustic attenuation in a pipe caused by a periodic array of non-rigidly

backed perforations acting like acoustically soft scatterers. It has been shown that

periodic arrays of acoustically soft scatterers produce a low frequency band gap

from 0 Hz to an upper bound determined by the geometry of the perforations and

the unit cell length. Acoustic waves within the frequency range of the band gap

become evanescent causing a significant attenuation. As a result, there is no wave

propagation in infinite pipewith perforation. Reducing the unit cell length, but keep-

ing the total number of unit cells constant, increases the width of the gap, but does

not increase the attenuation within the band gap. Increasing the size of the per-

foration increases the surface area where an acoustically soft boundary condition

is present. This causes an increase in the width of the band gap and attenuation

within it. Additionally, it is possible to adjust the width of the band gap and attenua-

tion by changing the depth of the perforations. An increase in the perforation depth

results in a reduction in the width of the band gap and attenuation achieved within

it. All of these observations are numerically validated indicating in the ideal case the

analytical model is valid. An experiment has been carried out to illustrate that the

models predict the width of the band gap.
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Chapter 8

Conclusion

The aims of this thesis were to investigate and develop broadband low frequency

acoustic metamaterials for noise absorption and attenuation in one and two port

systems, with a sample lengthmuch smaller than thewavelength beingmanipulated;

develop analytical models to obtain simple expressions for the effective material

properties of metamaterial structures to help gain an insight into the underlying

physics; and to develop an acoustic metamaterial structure for very low frequency

attenuation of noise in waveguides through the exploitation of novel acoustic phe-

nomenon.

In chapter 3 a general effective propertymodel has been proposed to obtain explicit

analytical expressions for complex systems. By discretising a system into segments,

it is possible to utilise the transfermatrixmethod to predict the acoustic properties

in these segments. Through the application of linear superposition, these individual

segment effective properties can be summated to achieve the total effective prop-

erties of the system. By taking the low frequency limit, simple analytical expressions

for complex acoustic systemswere obtained. It was shown that there was generally

good agreement when in comparison to the results produced with TMM Multipli-

cation method and numerically. However, all the effective property models fail to

capture the evanescent coupling between Helmholtz resonators such that asym-

metrical reflection properties are produced.

In Chapter 4 themechanism to achieve perfect absorption for a one port systemhas

been explored with the development of single frequency and broadband frequency
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perfect absorbing acousticmetamaterial unit cell. This was achieved at 290Hz using

a single Helmholtz resonator with a sample thickness of λ/28, and over a broadband

frequency range between 275 and 625 Hz using a system of three Helmholtz res-

onators with a sample thickness of λ/10. The main premise that has been explored

is on the use of porous inclusions to help optimise the acoustic properties of the

Helmholtz resonators such that the systembecomes critical coupledwith the outer

waveguide at each resonant frequency.

In Chapter 5 themechanism to achieve asymmetrical perfect absorption in twoport

systems has been explored. Here, systems of coupled Helmholtz resonators were

optimised by the inclusion of porous media within the cavity such that the criti-

cal coupling conditions were fulfilled and thus perfect absorption was obtained.

This was undertaken at a single frequency of approximately 300 Hz through the

use of two coupled Helmholtz resonators with a porous inclusion in the higher fre-

quency resonator. The configuration of the geometry was such that at the criti-

cal frequency, impinging waves from one direction were perfectly absorbed, whilst

waves impinging in the opposite direction were nearly perfectly reflected. The sin-

gle frequency perfect absorber has a sample thickness of λ/16. This methodology

was then extended to a broadband system in the frequency range of 300 Hz to 600

Hz. This utilised four coupled Helmholtz resonators. The utility of the porous inclu-

sions was displayed by contrasting the system with and without the porous inclu-

sions, highlighting the stark contrast in absorptive performance. Due to required

coupling of the two lowest frequency resonators, it was shown through the use of

the complex frequency plane plots of the eigenvectors that a system of this geom-

etry can only exhibitM − 1 critically coupled frequencies. The resulting broadband

perfect absorber presentedwithin this chapter exhibited perfect absorption at 312,

426 and 576 Hz, with a sample thickness of λ/8 at the lowest critically coupled fre-

quency.

In Chapter 6 a method of simplification has been proposed for impedance terms

derived by the TMM. This was applied to the case of a serial array of M coupled

identical Helmholtz resonators. The simplification method is reliant upon the use

of an impedance contrast to create a small order term which can be used in the

Taylor expansion of the TMM impedance expressions. Upon analysis of the complex

frequency domain of the modelled systems it was concluded that it is only possible

to achieve critical couplingwith one zero of the system,meaning perfect absorption
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at multiple frequencies is not possible. It was also found that the resonant frequen-

cies of the systems can be obtained through the solution of the polynomials present

within the numerator of the impedance approximations. However, it is evident that

there is a slight discrepancy between the approximate resonant frequency equa-

tions and those achieved by the other methodologies. This is due to viscothermal

loss effects not being taken in to account.

In Chapter 7 an ideal analytical model based upon the transfer matrix method has

been developed to model the acoustic attenuation achieved by periodic arrays of

non-rigidly backed perforations acting as sound-soft scatterers. It has been shown

that periodic arrays of sound-soft scatterers produce a low frequency band gap

from 0 Hz to a frequency determined by the geometry of the perforations and the

unit cell length. Through extensive numerical modelling using two different numer-

ical model variants to produce the soft-scatterer effect, it has been shown that two

length corrections are required to account for the pressure radiation at the dis-

continuity between the perforation and the waveguide and outside free air. A re-

vised analytical model was proposed which accounts for this fact and is in excellent

agreement with the numerical model variant in which the perforated waveguide is

encompassed by an air gap and PML. The experimental transmission loss highlights

that periodically arranged holes in the rigid pipe create a low frequency band gap.

The band gap produced experimentally matches the predictions obtained for the

simplified numerical model in which the perforations were idealised with an acous-

tical soft backed elliptical geometry in the 3D finite element model.
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