
Deep Convolutional Networks
without Backpropagation

Mubarakah Alotaibi

Doctor of Philosophy

University of York

Computer Science

November 2022

i

Declaration of Authorship
I, Mubarakah Alotaibi, declare that this thesis titled “Deep Convolutional Net-
works without Backpropagation” and the work presented in it are my own. I
confirm that:

• This work was wholly completed while I was a student at the University
of York pursuing a doctoral degree.

• Wherever I have studied the published work of others, I have always
cited it properly.

• The source is always given when I have quoted from others’ works. Ex-
cept for such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• All of the codes are my own work, and I take full responsibility for the
results.

• The work in Chapter 3 of this thesis has been previously published in [1].
In addition, the works in Chapters 4 and 6 were submitted to the Interna-
tional Joint Conference on Neural Networks (IJCNN 2023) and have been
accepted for presentation (Chapter 4 as a supplementary material).

Signed:

Date: November 2022

ii

Abstract
This thesis attempts to develop networks trained without gradient descent or
backpropagation designed specifically for classification tasks. The emergence
of issues with gradient-based neural networks, such as long training time, van-
ishing or exploding gradients and high computational costs, has led to the
development of such alternatives. In fact, the works presented in this the-
sis extend PCANet, with the fundamental objective being the development
of networks capable of providing both good performance and significant im-
provements in network depth. Chapter 1 of this thesis formulates the problem,
describes the challenges, outlines the research questions and summarises the
contributions. In Chapter 2, gradient-based and non-gradient-based networks
are reviewed. Chapter 3 presents the Multi-Layer PCANet, whose design is
inspired by that of PCANet. However, using second-order pooling and CNN-
like filters, the evaluation experiments indicate that the proposed network pro-
vides a considerable reduction in the number of features and, consequently, a
gain in performance. The networks in Chapters 4 and 5 share the same de-
sign as the Multi-Layer PCANet but generate their filter banks using different
supervised learning approaches. The experimental results on four databases
(CIFAR-10, CIFAR-100, MNIST and TinyImageNet) show that semi-supervised
Stacked-LDA filters are sufficient for providing good data representation in the
convolutional layers. These filters are produced by combining 50% PCA fil-
ters (Chapter 3) with 50% Stacked-LDA filters (Chapter 4). Chapter 6 intro-
duces deep residual compensation convolutional networks for image classifi-
cation. The design of this network comprises several convolutional layers, each
post-processed and trained with new labels learned from the residual informa-
tion of all preceding layers. The evaluation experiments indicate that the pro-
posed network is competitive with standard gradient-based networks not only
in terms of accuracy but also in the number of FLOPs required for training.
Chapter 7 summarises the findings and discusses the field’s potential future
directions.

iii

Acknowledgements
To begin, I would like to express my gratitude to the Saudi Arabian Cultural
Bureau in the United Kingdom for sponsoring and funding my studies while
I have been abroad. I appreciate their thoughtful assistance, suggestions and
generosity throughout my journey. I also wish to extend my gratitude to Taif
University, where I work, for providing me with this scholarship. I would
never have made it without your generous support, so thank you!

To my PhD supervisor, Prof. Richard Wilson, at the University of York, I
am sincerely grateful for all of the time, effort and patience he has invested in
guiding and supporting me during my PhD, especially during the first stages
of it, when I barely knew anything about computer vision. My thanks to him
for constantly reading my work and the papers I sent, for listening patiently
to me explaining things and for providing valuable feedback. I also appreciate
his responses to my emails even during busy periods of the academic year. I
would say that I would never have made it without his guidance, so thanks
very much!

I would also like to thank my family for their constant support and en-
couragement, particularly my sweet mother, who would check on me daily. I
would never have been able to complete my research without their tremendous
understanding and encouragement. In addition, I would like to thank all the
friends I have made in York, with whom I have shared both happy and sad mo-
ments. Finally, I would like to extend my gratitude to everybody I have ever
met, whether I know them or not, whose pleasant attitude would make my
day. In my opinion, each and every one of you makes a difference. So, thank
you for easing my way along my PhD journey!

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation and Context . 1
1.2 Challenges . 3
1.3 Objectives and Research Questions 4
1.4 Contributions . 5
1.5 Outline of the Thesis . 7

2 Background and Related Works 8
2.1 Introduction . 8
2.2 Gradient-Based Networks . 11

2.2.1 Convolutional Neural Networks 11
2.2.1.1 LeNet-5 . 11
2.2.1.2 AlexNet . 12
2.2.1.3 VGGNet . 14
2.2.1.4 Network in Network (NiN) 18
2.2.1.5 Maxout Network 20
2.2.1.6 Stochastic Network 23
2.2.1.7 Residual Network 25
2.2.1.8 The All Convolutional Net 28
2.2.1.9 Densely Connected Convolutional Neural Net-

work . 30
2.2.1.10 FractalNet . 32

2.2.2 Deep Generative Models 37
2.2.2.1 Boltzmann Machine 37
2.2.2.2 Deep Directed Network 39
2.2.2.3 Deep Boltzmann Machine 40

v

2.2.2.4 Deep Belief Network 40
2.3 Non Gradient-Based Networks . 43

2.3.1 Deep-SVM . 43
2.3.2 deep Forest . 45
2.3.3 PCANet . 46
2.3.4 PCANet+ . 48
2.3.5 PCANet-II . 51
2.3.6 ScatNet . 52

2.4 Conclusions and Discussion . 54
2.4.1 Gradient-Based Models and Their Limitations 55
2.4.2 Non-Gradient-Based Models And Their Advantages . . . 56
2.4.3 PCANet As Baseline Model 56

3 Multi-Layer PCANet for Image Classification 58
3.1 Introduction . 58
3.2 Multi-Layer PCANet Structure . 59

3.2.1 PCA Convolutional Layers 60
3.2.2 Second-Order Pooling . 62

3.2.2.1 Covariance Computation 63
3.2.3 Spatial Pyramid Pooling . 65
3.2.4 Late Fusion . 66

3.3 Experiments and Results . 69
3.3.1 Databases . 69
3.3.2 Ablation Study on Multi-Layer PCANet Structure 71

3.3.2.1 The Impact of Using Second-Order Pooling and
Z-score Normalisation 71

3.3.2.2 Second-Order Pooling for All Feature Maps and
Late Fusion . 73

3.3.3 The Network Hyper-parameters 75
3.3.3.1 The Impact of the Filter Size on the Classifica-

tion Task Performance 75
3.3.3.2 The Impact of the Second-Order Pooling Block

Size on the Recognition Rate 76
3.3.4 Multi-Layer PCANet for Image Classification Task 76

3.3.4.1 Evalutaion of CIFAR-10 Database 77
3.3.4.2 Evaluation on CIFAR-100 Database 80
3.3.4.3 Evaluation on the MNIST Database 81
3.3.4.4 Evaluation on TinyImageNet Database 82

vi

3.4 Conclusion . 82

4 Stacked Linear Discriminant Analysis (Stacked-LDA) 84
4.1 Introduction . 84
4.2 General Stacked-LDA Model . 86

4.2.1 Description and Algorithm 86
4.2.2 Experiments . 90

4.2.2.1 Multi-Class Classifier 90
4.2.2.2 Digit Recognition on MNIST Dataset 94

4.2.3 Section Summary . 96
4.3 New Relabelling Technique . 96

4.3.1 Description of Relabelling-III 97
4.3.2 Experiments . 99
4.3.3 Digits Classification on the MNIST Database 100
4.3.4 Pattern Recognition on CIFAR-10 Database 101
4.3.5 Section Summary . 102

4.4 Convolutional Stacked-LDA model 102
4.4.1 Network Structure . 102

4.4.1.1 Stacked-LDA convolutional layer 103
4.4.2 Experiments . 104

4.4.2.1 Network Hyper Parameters 104
4.4.2.2 Image Classification on four Databases 107

4.5 Conclusions . 112

5 Class-Embedding Networks 114
5.1 Introduction . 114
5.2 Deep Supervised Networks . 116

5.2.1 Preliminary Principles . 119
5.2.1.1 Spectral Clustering 119
5.2.1.2 Extreme Learning Machine 120
5.2.1.3 Supervised Laplacian Eigenmaps 123
5.2.1.4 Hilbert–Schmidt Independence Criterion 124

5.2.2 Problem Settings . 127
5.2.3 Producing Networks Filter Banks 127

5.2.3.1 Clustering Network 127
5.2.3.2 Supervised Extreme Learning Machine 128
5.2.3.3 Supervised Laplacian Eigenmaps 129
5.2.3.4 Hilbert–Schmidt Independent Criteria Network . 130

5.3 Experiments and Results . 131

vii

5.3.1 Selecting Hyperparameters for Proposed Architectures . . 132
5.3.2 Networks Complexity . 132
5.3.3 Single-Layer Networks . 133

5.3.3.1 Parameter Settings 133
5.3.3.2 Performance Analysis 135

5.3.4 Two-layer Networks . 138
5.3.4.1 Parameter Settings 138
5.3.4.2 Performance Analysis 138

5.3.5 Combination of Filters . 140
5.3.5.1 Motivation and Parameter Settings 140
5.3.5.2 Performance Analysis 141

5.4 Conclusions . 144

6 Deep Residual Compensation Convolutional Network 147
6.1 Introduction . 147
6.2 Network Architecture . 149
6.3 Experiments and Results . 157

6.3.1 Network Parameters . 157
6.3.1.1 Experiment 1 . 157
6.3.1.2 Experiment 2 . 160

6.3.2 Image Classification over Four Benchmarks with No Data
Augmentation . 165
6.3.2.1 Handwritten Digit Recognition on the MNIST

Database . 165
6.3.2.2 Pattern Recognition on the CIFAR-10 Database . 168
6.3.2.3 Image Classification on the CIFAR-100 Database 170
6.3.2.4 Classification on the TinyImageNet Database . . 172

6.3.3 Image Classification on Three Benchmarks with Data Aug-
mentation . 174
6.3.3.1 Parameter Settings 174
6.3.3.2 Performance Analysis 175

6.4 Conclusions and Future Work . 176

7 Conclusions 179
7.1 Summary of Contributions . 179
7.2 Future Research Directions . 180

References 190

viii

A Solution to HSIC Optimisation Problem 191

ix

List of Figures

2.1 LeNet-5 architecture: a five-layer convolutional neural network
for image classification on the MNIST database. 11

2.2 AlexNet architecture: eight-Layer CNN for large-scale image clas-
sification. More details about the network structure are described
in Table 2.2. 13

2.3 The main architecture of Network in Network: a CNN model
with three mlpconv layers and one global average pooling layer.
Captured from [31]. 19

2.4 Comparison between a) linear convolution layer and b) mlpconv
layer. The linear convolution layer slides a linear filter along the
image, while the mlpconv layer slides a multi-layer perceptron
over the image. 20

2.5 A single Maxout unit: a linear function that returns the maxi-
mum of the inputs (z1 to zn in the figure). 21

2.6 Graphical depiction of how the Maxout activation function can
implement the rectified linear, absolute value rectifier, and ap-
proximate the quadratic activation function. Captured from [7]. . 21

2.7 An example of m Maxout units needed to map x ∈ Rd to m di-
mension outputs h(x) ∈ Rm. k ≥ 2 in the figure is a user-defined
parameter. 22

2.8 Comparasion between ReLU and Maxout with multiple layers
on the MNIST database. This figure is captured from [7]. 23

2.9 An example explaining the stochastic pooling idea. The acti-
vations inside a region is normalised to obtain the probabilities
pi. The pooled activation (1.6 in this example) is selected using
multinomial distribution applied to the computed probabilities
pi. Captured from [8]. 24

2.10 Training error rate (left) and test error rate (right) for 20-layer
and 56-layer plain networks on CIFAR-10. This picture is cap-
tured from [5]. 25

x

2.11 Residual learning: building block. This picture is captured from
[5]. 26

2.12 ResNet architectures on the ImageNet database. 27
2.13 Training on the ImageNet database using 18 and 34 layer struc-

ture of (left) plain networks and (right) residual networks. This
picture is captured from [5]. 28

2.14 DenseNet architecture: a deep learning model consists of sev-
eral dense blocks separated by transition blocks. This picture is
captured from [12]. 32

2.15 The architecture of FractalNet: simple Fractal expansion archi-
tecture (left), Fractal expansion stacked recursively as a single
block (centre), and five blocks cascaded as FractalNet (right).
Captured from [11]. 34

2.16 Drop-path: a fractal network block works with certain layer con-
nections deactivated. Captured from [11]. 35

2.17 Two types of Boltzmann machine: restricted and unrestricted. In
the unrestricted Boltzmann machine every node is connected to
all other nodes. On the other hand, connection between nodes
in the same layer is prohibited in the restricted version of Boltz-
mann machine. 37

2.18 Deep directed network architecture 40
2.19 An example of the explaining-away problem. The nodes "earth-

quick" and "truck hits the house" end to be dependent on each
other. 41

2.20 Deep Boltzmann machine structure. 42
2.21 Deep belief net architecture. 42
2.22 Deep belief net on the MNIST database. 42
2.23 a) SVM maximises margin. b) Kernel trick of SVM. 43
2.24 Structure of deep SVM. Captured from [34]. 44
2.25 Two phases deep forest architecture: multi-grained scanning and

cascade forest. This picture is taken from [13]. 45
2.26 The main architecture of PCANet. 47
2.27 The main architecture of PCANet+. 50
2.28 Accuracy of PCANet+ and PCANet on FERET DUP I and DUP II

using different layers architectures. The figure is captured from
[24]. 50

xi

2.29 Accuracy of PCANet+ and PCANet on FERET DUP I and DUP
II with and without mean pooling layers. The figure is captured
from [24]. 51

2.30 The main architecture of PCANet-II. 52
2.31 Iterating scattering propagator W̃ defines the convolution net-

work. Captured from [16]. 53

3.1 Multi-Layer PCANet structure . 60
3.2 Example of extracting image patches using a filter of size kL × KL. 62
3.3 Example of extracting the second-order features from a tensor XL. 63
3.4 Example of using SPP to reduce the number of patches from 64

to 21 using 3-level SPP with 16, 4 and 1 bin respectively. 67
3.5 Late fusion methods versus early fusion methods. Early fusion

methods work on the feature space while late fusion ones split
the problem into multiple classification problems and combine
the classifiers’ decisions. 68

3.6 Mixed examples from the MNIST database. 69
3.7 Some examples from CIFAR-10 database. 70
3.8 A) The accuracy of the models (A−G) using histogram descrip-

tors and second-order features. We computed the second-order
features after applying either z-score patch normalization (sop z-
score) or the Heaviside function (sop step). B) The number of di-
mensions generated using the models (A− G) after either using
the histogram pooling (histogram in the figure) or the second-
order pooling (sop). In both sub figures A and B, we used the
CIFAR-10 database. 73

3.9 An experiment on the early fusion method with second-order
pooling and z-score normalisation for models A − G described
by Table 3.3 using the CIFAR-10 database, where features of all
layers are concatenated and processed every 8’s, 16’s, 24’s, and
all feature maps before being sent to a linear discriminant analy-
sis classifier for final prediction. 74

xii

3.10 An experiment with the late fusion method using second-order
pooling and z-score normalisation techniques for models A−G,
as outlined in Table 3.3, using the CIFAR-10 database. The ex-
periment involves running a linear discriminant analysis (LDA)
classifier on each layer, followed by concatenating the resulting
posteriors from all layers before sending them to a final LDA
classifier for prediction. Second-order pooling is calculated ev-
ery 8, 16, 24, and all feature maps. 75

3.11 Accuracy of the models (A− G) (Table 3.3) using different filter
sizes on the CIFAR-10 database. 76

3.12 Accuracy of the models (A− G) (Table 3.3) using different SOP
block-sizes on the CIFAR-10 database. 77

4.1 An example of a non-linearly separable data set. 86
4.2 Simple feed-forward neural network. 87
4.3 A single LDA to distinguish the two classes. 89
4.4 The new classes generated in the first iteration. 89
4.5 An example of dividing class 5 from the MNIST database into

subclasses for two iterations. 98
4.6 Convolutional Stacked-LDA model. 103
4.7 Accuracy of the CIFAR-10 database using different types of fil-

ters and different numbers of layers. 106

5.1 Conceptual illustration of the proposed shallow depth networks.
The architecture consists of several convolutional layers that learn
filter banks through supervised methods. The post-processing
step involves applying a non-linear function to convert the data
into a non-linear space, followed by second-order pooling. To
reduce the high dimensionality of the features, the second-order
pooling can be followed by a spatial pyramid pooling. Then we
apply a classifier to the output of each layer and combine the
classifier’s posteriors to make the final decision. 118

5.2 Structure of single-layer feedforward neural network. 121
5.3 Structure of single-layer ELM-AE. 123
5.4 Two-layer semi-supervised network. 141

6.1 Deep residual compensation convolutional network. 154

xiii

6.2 The performance (error rate %) of a deep residual compensation
convolutional network with 30 filters throughout all of its layers
on the CIFAR-10 database. 159

6.3 The performance (error rate%) of a deep residual compensation
convolutional network with 50 filters throughout all of its layers
on the CIFAR-10 database. 159

6.4 The performance (error rate %) of a deep residual compensation
convolutional network with 50 filters throughout all of its layers
on the CIFAR-10 database. The experiment was evaluated by
setting α (in equation 6.17) to different values ranging from 0.2
to 1, and the number of layers was set to 30. 162

6.5 The performance (error rate %) of a deep residual compensation
convolutional network with 50 filters throughout all of its layers
on the CIFAR-10 database, where α (in equation 6.17) was set to 1.163

6.6 The performance (error rate %) of a deep residual compensation
convolutional network with 50 filters throughout all of its layers
on the CIFAR-10 database, where α (in equation 6.17) was set to
0.4. 164

6.7 The training and testing error rates using the deep residual com-
pensation network on the MNIST database. 167

6.8 The training and testing error rates (%) for the deep residual
compensation convolutional network trained on the CIFAR-100
database. 171

6.9 The training and testing error rates (%) for the deep residual
compensation convolutional network trained on the TinyIma-
geNet database without data augmentation. 173

xiv

List of Tables

2.1 LeNet-5 architecture. 12
2.2 Explanation of the AlexNet architecture in detail. 13
2.3 VGG Configurations. Each column represents an architecture. . . 16
2.4 The number of parameters in millions in each configuration of

VGGNet. 16
2.5 The performance of VGG configurations using the single-scale

method. These results were reported in [4]. 17
2.6 The performance of VGG configurations using the multi-scale

method. These results were reported in [4]. 18
2.7 Stochastic pooling network compared with max and average pool-

ing using four databases: MNIST, CIFAR-10, CIFAR-100 and SVHN.
. 25

2.8 ResNet performance on ImageNet, compared with state-of-the-
art results. These results were all reported by [5]. 28

2.9 Three baseline architectures for the CIFAR-10 and CIFAR-100
databases. 29

2.10 Three variants derived from model C described in Table 2.9. . . . 30
2.11 Error rate of baseline models described in Table 2.9 and their

variants (2.10) on the CIFAR-10 database with no data augmen-
tation. 30

2.12 ALL-CNN error rate (%) compared with some networks on the
CIFAR-10 and CIFAR-100 databases with and without data aug-
mentation. These results were reported in [9]. 31

2.13 DenseNet error rate (%) compared with other networks on the
CIFAR-10, CIFAR-100 and SVHN databases. These results were
all reported by [12]. The "+" symbol in the table refers to the use
of data augmentation. 33

xv

2.14 The error rate of FractalNet compared with other methods on
three databases, CIFAR-10, CIFAR-100 and SVHN. These results
were reported by [11]. The sign "+" in the table indicates the use
of data augmentation, while "++" indicates the use of heavy data
augmentations. 36

2.15 FractalNet performance compared with ResNet [4] and VGG [5]
on the ImageNet database. 36

2.16 The performance of deep-SVM compared to the standard sup-
port vector machine using the Breast cancer database. 44

2.17 The performance of gcForest on the MNIST database. All of
these results were reported by [13]. 46

2.18 The performance of gcForest on the CIFAR-10 database. These
results were reported by [13]. 46

3.1 Fusion methodology . 67
3.2 Classes and super-classes of the CIFAR-100 database. 71
3.3 Simple configurations to evaluate the Multi-Layer PCANet on

the CIFAR-10 database. 72
3.4 Configurations for CIFAR-10/100, MNIST and TinyImageNet . . 78
3.5 Comparison of the accuracy (%) of some methods on the CIFAR-

10/CIFAR-100 database with no data augmentation. We re-implemented
the networks marked with (*). 80

3.6 Comparison of the accuracy and number of features of some
PCANet methods on the MNIST database with no data augmen-
tation. 81

3.7 Comparison of the accuracy of some methods on the TinyIma-
geNet database with no data augmentation 82

4.1 Evaluation metrics . 91
4.2 Different decomposition methods on the MNIST database 93
4.3 Accuracy (%) after applying a single LDA classifier to the MNIST

database . 94
4.4 Stacked-LDA model’s accuracy (%) on the MNIST database us-

ing the first labelling method . 95
4.5 Stacked-LDA model’s accuracy (%) on the MNIST database us-

ing the second labelling method . 95
4.6 Accuracy (%) with different hidden units using NN on the MNIST

database [88] . 96
4.7 Accuracy (%) on MNIST database using three relabelling methods.100

xvi

4.8 Accuracy (%) after applying LDA on CIFAR-10 101
4.9 Accuracy (%) on the CIFAR-10 database using relabelling meth-

ods I and III . 101
4.10 Configurations for CIFAR-10/100, MNIST and TinyImageNet. . . 108
4.11 Accuracy of the Stacked-LDA network compared with different

methods on the MNIST database with no data augmentation. . . 109
4.12 Accuracy of the Stacked-LDA network compared to some meth-

ods on the CIFAR-10 and CIFAR-100 databases with no data aug-
mentation. 110

4.13 Comparison of the accuracy of some methods on the TinyIma-
geNet database with no data augmentation. 112

5.1 The estimated computational complexity of the filters generated
by the four proposed networks: SLE, HSIC, S-ELM, and cluster-
ing, in comparison to those associated with generating PCA and
LDA filters (Chapters 3 and 4). 133

5.2 Accuracy (%) using different networks on the CIFAR-10, CIFAR-
100, MNIST and TinyImageNet databases. PCANet in the table
refers to Multi-Layer PCANet (Chapter 3). 135

6.1 Accuracy (%) on the CIFAR-10 database test set using ResCNet-
50–1 and ResCNet-50–0.4 with different numbers of layers. . . . 163

6.2 Network architectures using the MNIST, CIFAR-100 and Tiny-
ImageNet databases. 166

6.3 Accuracy of the deep residual compensation network compared
with different methods on the MNIST database, with no data
augmentation. 168

6.4 Accuracy of the deep residual compensation network compared
with different methods on the CIFAR-10 and CIFAR-100 databases
with no data augmentation. 169

6.5 Accuracy and number of FLOPs of the deep residual compensa-
tion network compared with different residual networks on the
CIFAR-10 database with no data augmentation. 170

6.6 Accuracy (%) of the deep residual compensation convolutional
network compared with other methods on the TinyImageNet
database, without data augmentation. 174

6.7 Network architectures for the MNIST, CIFAR-100 and TinyIma-
geNet databases, with data augmentation. 175

xvii

6.8 Accuracy (%) of deep residual compensation convolutional net-
work on the CIFAR-10, CIFAR-100 and TinyImageNet databases,
with and without data augmentation. 176

1

Chapter 1

Introduction

1.1 Motivation and Context

Deep learning is a machine learning technique that relies on representation
learning, by which the system automatically learns the necessary represen-
tations from the raw data provided. The representations are learned using
a multi-layer framework in which each layer passes the processed data to a
higher abstraction layer. With enough transformations and parameters, com-
plex non-linear functions can, therefore, be learned [2].

Convolutional neural networks (CNNs) are deep learning models that ex-
tract meaningful abstract representations from raw data. The basic CNN ar-
chitecture is structured as a set of layers. The first few layers are convolu-
tional layers responsible for detecting useful features using kernels that slide
across different training data positions. Some of the convolutional layers are
followed by pooling layers, which combine semantically similar features and
reduce the amount of information. Between the layers of any CNN design, the
data are processed using non-linear activations. At the end of the network,
fully-connected layers and a softmax layer are employed. CNN networks are
trained in an end-to-end learning fashion using the backpropagation method,
which uses chain rules of derivatives to update the network’s parameters with
regard to its output’s errors.

Since the early 2000s, CNNs have been successfully applied to different
fields, including face recognition, image segmentation and detection [2]. How-
ever, CNNs started to become popular in computer vision and machine learn-
ing in 2012, when AlexNet [3] won the ImageNet challenge with a top-five error
rate of 15%, effectively halving the error rates of the best competing methods.
Since then, many CNN architectures have been investigated. VGGNet [4], for
instance, increased the CNN’s depth to 19 layers and placed second in the 2014

Chapter 1. Introduction 2

ImageNet challenge with a top-5 error rate of 7.3%. Using short connections be-
tween at least two convolutional layers, ResNet [5] has exceeded the 100-layer
barrier and won the ILSVRC competition with an error rate of 3.75%. Other
deep CNN examples include Fractional Net [6], Maxout [7], stochastic pool-
ing [8], ALL-CNN [9], binary network [10], FractalNet [11] and DenseNet [12],
among many others.

Along with the development of computer hardware and software, CNN ar-
chitectures have achieved human-level performance and become the dominant
approach in several domains, including image classification tasks. Since then,
deep learning and CNNs have been used interchangeably, with deep learning
now explicitly referring to the use of CNNs with several layers.

Before deep learning, the limitations of neural networks were well-known.
For example, they are not explainable, slow to train and require large amounts
of training samples. The evolution of CNNs has also led to complex models
with hundreds of layers and billions of parameters. Proper tuning of these pa-
rameters is crucial for optimal learning performance. This makes CNNs’ train-
ing not only challenging but also something closer to an art than a scientific or
technical discipline [13]. In addition, the network error is minimised using an
iterative method called stochastic gradient descent. This method aims to ad-
just the weights so that the network error reaches its global minimum. Most
of the time, however, it sticks at its local minimum. Backpropagation also uses
chain rules of derivatives, while not all properties in the world can be differ-
entiated [13]. Some additional issues that have emerged with deeper CNNs
include vanishing gradient, slow convergence rate and high computing cost
[14]. These limitations remain in the era of deep learning.

The main message from the last five years is to use effective deep archi-
tectures to represent real-world patterns, but this does not rely specifically on
the use of neural networks. Therefore, efforts have been made to investigate
non-differentiable-style networks, which are trained without gradient descent
or backpropagation. Among these networks are deep forest [13], PCANet [15],
scattering network [16] and extreme learning machine networks [14, 17, 18, 19].
The PCANet architecture, with basic processing steps, including two cascaded
principal component analysis (PCA) layers, binary hashing and histogram-
ming, has reached state-of-the-art performance on many databases, including

Chapter 1. Introduction 3

MNIST, extended Yale B, AR and FERET, confirming its generalisation capa-
bility across different tasks. As a result of PCANet’s success, a variety of sim-
ilar strategies have been developed. DCT-Net [20], LBP-Net [21] and ICANet
[22], for instance, shared the same architecture as PCANet but generated dif-
ferent features using different filter types. PCANet-II [23] replaced the original
PCANet’s histogram pooling with second-order pooling to reduce the number
of features. PCANet+ [24] presented a filter ensemble learning approach to ad-
here to CNN architectures. While these networks have not provided high clas-
sification accuracy on more challenging datasets such as CIFAR-10, they have
shown that network training without gradient descent or backpropagation is
possible. In addition, these networks offer less training time than gradient-
based style networks since they are trained sequentially in a single pass without
requiring iterations to update the weights. Moreover, the vanishing or explod-
ing gradient problem is not an issue since these networks are trained without
gradient descent. However, further study in this area is required, which is the
purpose of this research. The primary objective is to determine ways to build
more complicated structures without using backpropagation for classification
tasks.

1.2 Challenges

The main objective of this research is to investigate deep, non-differentiable-
style networks that are trained without backpropagation for classification tasks.
In this research, the PCANet structure [15] serves as the baseline for designing
our non-differentiable networks. Training networks without gradient descent
or backpropagation is not a trivial task, and in the following, we highlight some
challenges we encountered while working with non-differentiable networks.

The first challenge was to reduce the number of features and, therefore,
memory consumption. The current works suffer from the feature explosion
problem. Taking PCANet [15] as an example, images are convolved with filters
per channel; as each filter works on a single channel to create a new grayscale
image, the number of channels at the next layer equals channels × filters and
grows rapidly. Local histogramming in PCANet is another factor contributing
to the feature explosion problem. While several studies (e.g., [24] and [23]) have
attempted to tackle this issue, doing so effectively remains an open challenge.

Chapter 1. Introduction 4

The second challenge was to improve the feature representation process ei-
ther by changing the filter type or the post-processing procedures. PCANet
[15], for example, used PCA-based filters, whereas the unsupervised PCA method
is applied to local patches extracted from images. Other studies used differ-
ent filter types to generate different features. DCTNet [20], CCANet [25] and
CFR-ELM [26] are all examples of networks that create filter banks using unsu-
pervised approaches. The LDANet [15], DCCNet [27], OSNet [28] and CKNet
[29] networks are examples of those that use supervised approaches to pro-
duce their filter banks. DFSNet [30] is a good example of a network that uses
semi-supervised filters. Even though several of these studies used more com-
plicated procedures to create their filters, the networks’ accuracy results were
similar to those of the original PCANet. The primary difficulty is in produc-
ing filter banks that improve data representations while still offering noticeable
improvements over the baseline PCANet design. To further enhance the rep-
resentations, post-processing the feature maps after convolving them with the
filter banks is required. All variants of PCANet involve a binarization step that
reduces the filter responses to zeros and ones using the signum function, result-
ing in a big loss of information. Among the challenges was finding a suitable
alternative to the signum function that would maintain essential information
and provide better representations.

The final challenge was to considerably increase the network depth while
maintaining a good level of accuracy. Existing non-differentiable networks do
not have more than three layers, despite the importance of network depth in
achieving good classification results. This limitation, we believe, is due to the
subsampling nature of these shallow-depth networks. As we add more layers,
we lose more information about the original data, and unlike gradient-based
networks, we have no mechanism to update the network parameters concern-
ing the network’s error. Hence, the network’s errors are propagated as addi-
tional layers are added.

1.3 Objectives and Research Questions

This research again focuses on the classification tasks. Our main goal is to
design deep, non-differentiable networks that can be trained in a single pass
without backpropagation. Specifically, the layers are added sequentially and
trained without iterations or extensive parameter updates. More precisely, this
research aims to answer the following questions based on the main challenges

Chapter 1. Introduction 5

described in Section 1.2.

• What modifications may be made to the current PCANet model to reduce
the dimensionality of the data and, hence, the computational cost without
compromising classification accuracy?

• What type of convolutional filters are to be used to extract good represen-
tations that lead to a noticeable gain in the model’s accuracy?

• How can we simultaneously increase the network’s depth and ensure that
classification errors are corrected while traversing it?

1.4 Contributions

This thesis makes the following contributions to the area of non-differentiable
networks by addressing the research questions listed in Section 1.3:

• In Chapter 3, the Multi-Layer PCANet architecture is presented as a hy-
brid model that combines filter ensemble learning from [24] with second-
order pooling from [23]. In contrast to other variants of PCANet, which
employ the Heaviside activation function, we post-process the data us-
ing the z-score method, which maintains more information and provides
better representations. In addition, we use a late fusion technique to re-
duce the dimensionality of the data further. Due to these modifications,
we were able to enhance the original PCANet’s performance while in-
creasing the number of layers to a maximum of nine. Our experiments
in the chapter demonstrated that the Multi-Layer PCANet outperformed
PCANet not only in terms of accuracy but also in the number of float-
ing operations (FLOPs) required for the training. The model also showed
a significant improvement in the number of FLOPs compared to many
gradient-based models.

• In Chapter 4, we introduce the Stacked-LDA network, which replaces the
unsupervised PCA filters in the Multi-Layer network with supervised
Stacked-LDA filters. The computation of these filters involves selecting
a subset of image-based patches and then applying a linear discriminant
analysis classifier to train the selected patches with their classes. The tech-
nique searches iteratively for patches with separable classes. When such

Chapter 1. Introduction 6

classes are found, their weights are accumulated and used as Stacked-
LDA filters. In all classification tasks, the Stacked-LDA network out-
performed the Multi-Layer PCANet structure, demonstrating the signif-
icance of the filter type on the model’s accuracy. In addition, our exper-
imental results demonstrated that using only one layer of the Stacked-
LDA model produced a comparable performance to that of using multi-
ple layers of the Multi-Layer PCANet, but with a significant reduction of
around 50% in the number of trainable parameters.

• In Chapter 5, more filter types are introduced to generate different fea-
tures. Clustering networks, for instance, use spectral clustering to di-
vide each class into sub-classes, which are then used to train an LDA on
batch-based image data to produce the network filter banks. The SLE net-
work generates non-linear filters using supervised laplacian eigenmaps
and an extreme learning machine. The supervised laplacian eigenmaps
method is based on the principle of employing separation criteria that
maximises the distance between samples of different classes while min-
imising it within a class. As an alternative to the SLE network, the HSIC
network generates its filter banks based on the information criterion (Hilbert–
Schmidt independence criterion), which reduces the dependency on the
inputs and increases it on the labels. In addition, the S-ELM network em-
ploys the supervised extreme learning machine auto-encoder to produce
filter banks, which in turn give a compact representation that is informed
by both input and target data. The experiments presented in Chapter 5
demonstrated that the Stacked-LDA (Chapter 4) provided the highest ac-
curacy among the networks under consideration, despite the robust com-
petition from the S-ELM network. In addition, regarding computational
complexity, our experiments demonstrated that the Stacked-LDA filters
showed better computational efficiency compared to several other pro-
posed filters, including HSIC, SLE and clustering network filters.

• In Chapter 6, we present a novel deep residual compensation convo-
lutional network (ResCNet). This network’s structure comprises multi-
ple convolutional layers, each followed by some post-processing steps
and a classifier. Each layer is trained with classes generated using the
residual information of all of its preceding layers. In terms of accuracy,
this network structure outperformed all previous non-differentiable net-
works. Unlike neural networks, the ResCNet structure does not need to

Chapter 1. Introduction 7

be known in advance. Moreover, to the best of our knowledge, ResC-
Net is the first non-differentiable network to be implemented with over
950 layers and achieve outstanding performance. This performance was
comparable to standard gradient-based models such as Network in net-
work [31], stochastic pooling [8] and several residual networks. In ad-
dition, regarding the number of FLOPs required for training, ResCNet
used fewer FLOPs than some residual networks. While ResCNet is im-
plemented with hundreds of layers, these layers are trained sequentially,
one layer at a time, without any iterations or extensive updates to the net-
work’s parameters. Additionally, we trained each layer with a relatively
small number of filters, which never exceeded 60. Therefore, although
ResCNet comprises hundreds of layers, it remains computationally effi-
cient and does not suffer from the same complexity issues that arise with
deep gradient-based models.

1.5 Outline of the Thesis

This thesis is organised as follows:

• In Chapter 2, gradient-based and non-gradient-based works are discussed.

• In Chapter 3, the Multi-Layer network is presented, and its performance
is compared with that of the original PCANet.

• The primary purpose of Chapters 4 and 5 is to generate features using
different convolution filters.

• Chapter 6 describes the deep residual compensation convolutional net-
work, which increases the network’s depth to more than 950 layers while
simultaneously correcting classification errors.

• The works discussed in this thesis are summarised in Chapter 7, and some
directions for future research are presented.

In addition, it is worth noting that the work presented in Chapter 3 has been
published in [1], whereas the work described in Chapter 6 has been submitted
and accepted for presentation at the International Joint Conference on Neural
Networks (IJCNN 2023). Additionally, the Stacked-LDA filters discussed in
Chapter 4 were submitted to IJCNN2023 as supplementary material.

8

Chapter 2

Background and Related Works

2.1 Introduction

The artificial neural network is a sub-area of machine learning that has pro-
duced deep learning. Since its inception, deep learning has led to ever greater
disruption and achieved extraordinary success in practically all areas of appli-
cations. In deep learning, a class of machine learning that was introduced in
2006, ’learning’ refers to the procedure of estimating a model’s parameters to
perform a specific task. It consists of many layers that separate the input and
the output, providing multiple steps of nonlinear data processing units with
hierarchical constructions that are used to learn features and classify patterns.
In other words, deep learning is a universal approach composed of multiple
layers that learn representations from data and is not task-specific [32].

The key difference between deep learning and traditional methods is in fea-
tures are derived from the data. Traditional machine learning methods rely on
hand-crafted features using feature extraction methods such as scale-invariant
feature transform (SIFT), the speed-up robust feature (SURF) and many more.
The extracted features are then classified using a classifier such as the support
vector machine (SVM). Deep learning, on the other hand, automatically learns
functions from the raw data using a hierarchical, multi-level structure. This
makes deep learning a hot topic for many researchers.

Image classification is one area in which deep learning has shown effective-
ness. This deep learning success story began in 2012 when AlexNet [3], with an
eight-layer architecture, obtained a top-5 error rate of 15.3% on the ImageNet
database. AlexNet architecture, which consists of five convolutional layers,
three pooling layers and three fully connected layers, has served as the basis
for the development of a wide variety of other networks. For example, VG-
GNet [4] is a classic deep CNN with the same design as AlexNet. However,

Chapter 2. Background and Related Works 9

unlike AlexNet, and with the help of small, 3 × 3 receptive fields, VGGNet
increases the network depth to 19 layers. VGGNet placed second in the 2014
ImageNet challenge, with a top-5 error rate of 7.3%, which was reduced to 6.8%
after the submission. Network in network (NiN) [31] is a CNN architecture that
set out to modify the design of AlexNet and VGGNet by replacing their fully
connected layers with a global average pooling. This method has proven to
be effective in reducing the total number of parameters, and it has since been
adopted by many other well-known networks, such as ResNet [5]. NiN also
incorporated fully connected networks such as the multi-layer perceptron to
be utilised between layers to extract the feature maps of the convolutional lay-
ers. This network was tested on several benchmarks and set new records in the
CIFAR-10 and CIFAR-100 databases. ResNet [5] is an example of CNN archi-
tecture that follows the same design as VGGNet and AlexNet but replaces the
fully connected layers with global average pooling, as in NiN. ResNet added
short connections between at least two convolutional layers and increased the
network depth to over 100 layers. This network placed first in the ILSVRC
ImageNet challenge in 2015 with an error rate of 3.75% and won first place in
the COCO database competition. Other examples of deep convolutional neural
networks include Maxout [7], ALL-CNN [9], stochastic pooling [8], binary net-
work [10], DenseNet [12], FractalNet [11], Fractional Net [6] and many others.
Some of these networks have modified one aspect of the VGGNet architecture
while still adhering to the network’s fundamental design. For instance, frac-
tional [6] and stochastic pooling [8] networks work with the pooling layers,
Maxout [7] uses a new activation function, and EffNet-L2 [33] improves the
optimisation loss function of the network. Other networks have changed the
network’s basic design, such as Fractal Net [11] and DenseNet [12].

With the development of deeper networks, CNNs have shown success in
classification tasks and reached human-level performance in many benchmarks.
Despite their success, several problems have emerged, such as vanishing gra-
dient descent, in which the gradients become very small or vanish by the time
they reach the network end. CNNs also involve a high computational cost,
which negatively affects training and inference times. Other issues associated
with CNNs include a slow convergence rate, intensive human intervention in
the training phase and local minima [14]. Consequently, considerable efforts
have been devoted to examining different strategies that might extract deep
feature representations while simultaneously reducing computational costs. Ex-
amples of such networks include deep forest [13], deep SVM [34], ScatNet [16],

Chapter 2. Background and Related Works 10

PCANet [15], and extreme learning machines (ELM) [14, 17, 18, 19]. All of these
networks are non-differentiable models that have been trained without gradi-
ent descent or backpropagation. PCANet [15] is a well-known network that
facilitates faster training convergence and does not need iterations to adjust
the weights of the hidden layers. Instead, network training is accomplished
by applying unsupervised principal component analysis (PCA) to local image
patches. PCANet architecture is simple and consists only of basic processing
steps, including two cascaded PCA stages, binary hashing and histogramming.
PCANet, with its simple structure, has achieved state-of-the-art performance
on many databases, including MNIST, extended Yale B, AR and FERET, con-
firming its generalisation capability across various tasks. The success of this
network has resulted in the development of a family of similar networks. For
instance, while maintaining the same structure, DCT-Net [20], LBP-Net [21],
and ICANet [22] generated different features by modifying the filters used by
PCANet [15]. PCANet-II [23] shared the same design and filters as the original
PCANet; however, it used second-order pooling instead of histogramming to
reduce the number of features. PCANet+ [24] changed the topology of PCANet
filters by proposing PCA filters ensemble learning that constrains to CNNs’
structure. In addition, multiple kernel approaches have been investigated in an
effort to learn a non-linear representation of the PCA filters (see, for example,
[35]). Despite not achieving state-of-the-art performance on more challenging
datasets such as CIFAR-10 or Image-Net, these networks have demonstrated
the importance of convolution layers for obtaining good performance. How-
ever, there is a need for additional research in this area, and the objective of this
study is to satisfy that need. The research was carried out to investigate the
design of PCANet-like networks, which are optimised for classification tasks
and are trained without backpropagation or gradient descent.

This chapter is organised as follows. The whole chapter is divided into
two main sub-sections. The first one (Section 2.2) describes some examples of
gradient-based models and is divided into the following two subsections: 2.2.1
explains some CNNs such as LeNet-5 [36], AlexNet [3], VGGNet [4], ResNet
[5], FractalNet [11], DenseNet [12], ALL-CNN [9], stochastic pooling [8] and
Maxout [7], while 2.2.2 details some deep probabilistic models such as the
Boltzmann machine [37], deep belief and deep direct networks [38]. The sec-
ond section in this chapter (Section 2.3) reviews some models designed with-
out relying on gradient descent or backpropagation. Among these models are
deep-SVM [34], deep forest [13], ScatNet [16], PCANet [15], PCANet+ [24] and

Chapter 2. Background and Related Works 11

PCANet-II [23].

2.2 Gradient-Based Networks

In this section, we begin by discussing different basic CNN architectures, in-
cluding AlexNet [3], VGGNet [4] and ResNet [5]. We then describe gradient-
based probabilistic models, such as deep belief nets [39] and deep Boltzmann
machines [38].

2.2.1 Convolutional Neural Networks

This section provides an overview of different fundamental CNN structures.
All these networks use a mathematical operation known as convolution to cap-
ture the different local patterns of images. The convolutional layers in CNNs
use shared-weight convolution filters that slide along input features and create
translation-equivariant feature maps.

2.2.1.1 LeNet-5 [36]

LeNet-5, which was introduced in [36] in 1998, is one of the earliest deep learn-
ing networks designed to recognise hand digits from the MNIST database. The
structure of the network is simple and is described in figure 2.1. The architec-
ture comprises seven layers, including three convolutional layers, two down-
sampling layers, and two fully connected layers. It derives its name from the
fact that five of its layers consist of trainable parameters.

FIGURE 2.1: LeNet-5 architecture: a five-layer convolutional neu-
ral network for image classification on the MNIST database.

Table 2.1 provides more details about the network structure. The network’s
first layer, the input layer, is designed to receive 32× 32 grayscale images. In ar-
ticle [36], the MNIST images of 28× 28 size were zero-padded and normalised

Chapter 2. Background and Related Works 12

to values of between −0.1 and 1.175 to ensure that the image patches had a
mean of about 0 and a standard deviation of roughly 1. The 32 × 32-pixel
images were then passed to the first convolutional layer (C1), which used a
5× 5-pixel kernel to generate six feature maps. The downsampling layer (S2)
reduced the size of the dimensions by a factor of two, bringing them down to
14× 14. In the paper, the downsampling layer averaged the pixel values in-
side a 2× 2 window, multiplied the average by a coefficient and added a bias
term before passing them to the activation function. The second convolutional
layer (C3) used a kernel size of 5× 5 to generate 16 feature maps, which were
then pooled by the second downsampling layer with a filter size of 2× 2 and
a stride of 2, to get 16 feature maps of size 5× 5 each. The final convolutional
layer (C5) employed a 5× 5 filter size to generate 120 feature maps, which were
then flattened and sent to a fully connected layer containing 84 neurons. The
last layer of the structure was the softmax layer, which consisted of 10 neurons
representing the MNIST digits (0–9). The network was trained to minimise the
mean square error loss using around 60, 000 parameters. The testing accuracy
reported in the paper was 99.05% on the MNIST database.

TABLE 2.1: LeNet-5 architecture.

Layer name Layer type Filter size Image size Activation
Input Image – 32× 32× 1 –

C1 Convolution 5× 5× 1× 6 28× 28× 6 Tanh
S2 Sub-sampling 2× 2, stride = 2 14× 14× 6 Sigmoid
C3 Convolution 5× 5× 6× 16 10× 10× 16 Tanh
S4 Sub-sampling 2× 2, stride = 2 5× 5× 16 Sigmoid
C5 Convolution 5× 5× 16× 120 1× 1× 120 Tanh
F6 fully connected – 84 Tanh

Output fully connected – 10 Softmax

2.2.1.2 AlexNet [3]

AlexNet, described in [3], has a structure similar to LeNet-5 but is much deeper.
The network was trained to classify the 1.2 million high-resolution images from
the ImageNet LSVRC-2010 competition into 1000 distinct categories. On the
test data, AlexNet obtained top-1 and top-5 error rates of 37.5% and 17.0%,
respectively, which was an improvement of more than 8% over the previous
state-of-the-art results. The network also won the ILSVRC-2012 challenge, with
a top-5 test error rate of 15.3%.

Chapter 2. Background and Related Works 13

Figure 2.2 describes the network architecture. The architecture consists of
eight layers; five of these are convolutional layers, while the remaining three
are fully connected. Some of the convolutional layers are followed by max-
pooling layers. The first convolutional layer applies 96 kernels of size 11 ×
11× 3 with a stride of 4 pixels to the 227× 227× 3 input images. The second
employs 256 kernels of size 5× 5× 96 to convolve the normalised and pooled
output of the first convolutional layer. The third, fourth and fifth are linked
with no pooling or normalising layers in between. The third layer employs 384
3 × 3 × 256 filters to convolve the outputs of the second convolutional layer
after normalising and pooling them. While the fourth layer uses 384 3× 3× 384
filters, the fifth layer uses only 256. Moreover, each fully connected layer has
a total of 4096 neurons. Table 2.2 provides more details about the network
architecture, including the activation functions used at each layer.

3

227

227

11

11

3

3

55

55

96

27

27

5

5

96
256

3
3

27

27
256

13

13
3

3

13
256

13

4096384

13

13
3

3

384

13

13
3

3

4096 1000

Fully-
connection Softmax

Conv 1

Max-pool 1

Conv 2 Max-pool 2
Conv 3 Conv 4 Conv 5

M
ax

-p
oo

l
3

FIGURE 2.2: AlexNet architecture: eight-Layer CNN for large-
scale image classification. More details about the network struc-

ture are described in Table 2.2.

TABLE 2.2: Explanation of the AlexNet architecture in detail.

Layer Filter size Stride Padding Image size Activation
Input – – – 227× 227× 3 –

Conv 1 11× 11× 3× 96 4 – 55× 55× 96 ReLU
Max-pool 1 3× 3 2 – 27× 27× 96 –

Conv 2 5× 5× 96× 256 1 2 27× 27× 256 ReLU
Max-pool 2 3× 3 2 – 13× 13× 256 –

Conv 3 3× 3× 256× 384 1 1 13× 13× 384 ReLU
Conv 4 3× 3× 384× 384 1 1 13× 13× 384 ReLU
Conv 5 3× 3× 384× 256 1 1 13× 13× 256 ReLU

Max-pool 3 3× 3 2 – 6× 6× 256 –
fully connected 1 – – – 4069 ReLU
fully connected 1 – – – 4069 ReLU

Output – – – 1000 Softmax

In [3], AlexNet was trained with 60 million parameters on GTX 580 3GB
GPUs for six days. So that the network would be trained faster, the authors

Chapter 2. Background and Related Works 14

used the rectified linear unit (ReLU), defined as max(0, x), instead of the tanh
or the sigmoid activation functions. The ReLU activation was used after each
convolutional layer, as shown in Table 2.2. In addition, two data augmenta-
tion methods and the dropout technique were used to address the overfitting
problem. Translation and horizontal flipping were the first forms of data aug-
mentation adopted. The original training images of size 256× 256× 3 and their
horizontally flipped copies were randomly cropped to size 227× 227× 3. At the
testing time, the testing images were cropped into ten patches of size 227× 227,
five representing the four corners and the centre of the original images and
the remaining representing the four corners and the centre of the horizontally
flipped images. The prediction was then made as the average probabilities of
these ten images. The second type of data augmentation used in the article was
the PCA-based transformation of RGB channel intensities. With a probability
of 50%, the dropout strategy deactivated specific neurons during training. This
method enabled neurons to learn representative features independent of the
values of neighbouring neurons.

Despite its success, AlexNet suffers from a hyperparameters problem. The
variability in the configuration that is external to the model and cannot be
inferred from the data is referred to as the hyperparameters [40]. There are
two types of hyperparameter: those responsible for determining the network’s
structure and those associated with its training. Among the hyperparameters
that may have an effect on the structure of the network are the kernel size, stride
value, padding value, number of hidden layers and activation functions that
are utilised. The learning rate, momentum, number of epochs and patch size
are examples of the hyperparameters defined during the network’s training
[40]. In Alex-Net, the number of user-defined hyper-parameters is relatively
high; this is what we refer to as the hyperparameters problem.

2.2.1.3 VGGNet [4]

The main contribution made by VGGNet [4], where VGG stands for the vi-
sual geometry group, was to highlight the importance of network depth on the
accuracy of CNNs. Utilising a very small convolutional filter size of 3× 3, the
authors of [4] were able to increase the network depth to 19 layers. It is essential
to mention that GoogLeNet [41] is also a deep CNN that consists of 22 layers.
It uses very small convolutional filter sizes, much as VGGNet does; however,
its structure is more complicated than VGGNet.

Chapter 2. Background and Related Works 15

The authors of the VGGNet paper used six configurations, all of which are
described in Table 2.3, whereby each column represents a single structure of
the VGGNet. The configurations follow the same design but differ in the num-
ber of layers, which range from 11 to 19 in configurations A through E. The
input size is fixed to 224× 224× 3 for all VGGNet configurations. Every con-
volutional layer uses relatively small receptive fields of size 3× 3 with a stride
and padding of 1 pixel each. In some configurations, 1× 1 convolution filters
are also employed to add non-linearity without changing the layer’s receptive
field. In every configuration, five max-pooling layers are used; however, not
every convolutional layer is followed by a max pooling layer. Every max pool-
ing layer uses a 2× 2 window with a two-pixel stride. The number of filters
in each network starts with 64 and increases by a factor of 2 after each max-
pooling layer until it reaches 512. All VGGNet configurations use three fully
connected layers, with 4096 neurons in the first two and 1000 neurons in the
third. Similar to AlexNet, ReLU is the activation function utilised between the
layers. Table 2.4 displays the total number of parameters for each VGGNet con-
figuration.

The main difference between VGGNet [4] and AlexNet [3] is that the former
has more layers. In contrast to AlexNet, which employs a single huge respec-
tive field of size 11 × 11, VGGNet consists of multiple layers, each of which
uses a very small respective field of size 3× 3. In addition to increasing non-
linearity and producing more discriminative data, using small receptive fields
reduces the number of parameters. For instance, a single layer with a filter size
of 5 × 5 can be represented by two layers of 3 × 3 convolutional filters. The
number of parameters required for the 5× 5 filter is 25. Using two layers of
3× 3 filters, however, generates (3× 3) + (3× 3) = 18 parameters. The con-
cept of small-size convolution filters allows VGGNet to have a larger number
of layers, resulting in a performance gain.

In [4], to train VGGNet, the input to each architecture was cropped to a
fixed size of 224 × 224 × 3 using rescaled images. The paper referred to the
scale parameter for the training images as S and the one for the test set as Q.
It investigated two types of scaling parameters, namely the single-scale param-
eter and the multi-scale parameter. In the single-scale approach, images were
scaled using a fixed value, whereas in the multi-scale approach, each image
was scaled by randomly sampling S from a given range [Smin,Smax]. If multi-
ple scales were used during testing, the class scores were averaged.

Chapter 2. Background and Related Works 16

TABLE 2.3: VGG Configurations. Each column represents an ar-
chitecture.

Convolution network configurations
A A-LRN B C D E

11 weights
layers

11 weights
layers

13 weights
layers

16 weights
layers

16 weights
layers

19 weights
layers

Input (224× 224 RGB image)

Conv3-64 Conv3-64LRN Conv3-64
Conv3-64

Conv3-64
Conv3-64

Conv3-64
Conv3-64

Conv3-64
Conv3-64

MAX-pooling

Conv3-128 Conv3-128 Conv3-128
Conv3-128

Conv3-128
Conv3-128

Conv3-128
Conv3-128

Conv3-128
Conv3-128

MAX-pooling

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256
Conv3-256
conv1-256

Conv3-256
Conv3-256
Conv3-256

Conv3-256
Conv3-256
Conv3-256
Conv3-256

MAX-pooling

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512
conv1-512

Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512
Conv3-512

MAX-pooling

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512
conv1-512

Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512
Conv3-512

MAX-pooling
FC-4096
FC-4096
FC-1000
Softmax

TABLE 2.4: The number of parameters in millions in each config-
uration of VGGNet.

Network A/A-LRN B C D E
Number of parameters 133 133 134 138 144

Chapter 2. Background and Related Works 17

Table 2.5 displays the top-1 and top-5 error rates of the six configurations
using the single-scale method, and Table 2.6 displays the performance of VG-
GNets using the multi-scale method. These results are based on the submission
by the authors of [4] to ImageNet Challenge 2014. As indicated in Table 2.5,
configuration E provided the best performance for VGG on a single test scale,
with a top-1 error of 25.5% and a top-5 error of 8.0%. Configuration D, with
16 layers, achieved comparable performance. According to Table 2.6, VGGNet
obtained a top-1 error of 24.8% and a top-5 error of 7.5% in multiple test scales
when using configurations E and D with 16 and 19 layers. In addition, VG-
GNet placed second in the 2014 ImageNet competition with a top-5 error rate
of 7.3%, which was obtained by training seven networks and averaging their
class scores. The error rate, as indicated in the paper, was decreased to 6.8%
after the submission by ensembling two architectures, D and E.

TABLE 2.5: The performance of VGG configurations using the
single-scale method. These results were reported in [4].

Network Smallest image side Top-1 error (%) Top-5 error (%)
Train(S) Test(Q)

A 256 256 29.6 10.4
A-LRN 256 256 29.7 10.5

B 256 256 28.7 9.9

C
256 256 28.1 9.4
384 384 28.1 9.3

[256; 512] 384 27.3 8.8

D
256 256 27 8.8
384 384 26.8 8.7

[256; 512] 384 25.6 8.1

E
256 256 27.3 9
384 384 26.9 8.7

[256; 512] 384 25.5 8

Chapter 2. Background and Related Works 18

TABLE 2.6: The performance of VGG configurations using the
multi-scale method. These results were reported in [4].

Network Smallest image side Top-1 error (%) Top-5 error (%)
Train (S) Test (Q)

B 256 224,256,288 28.2 9.6

C
256 224,256,288 27.7 9.2
384 352,384,416 27.8 9.2

[256; 512] 256,384,512 26.3 8.2

D
256 224,256,288 26.6 8.6
384 352,384,416 26.5 8.6

[256; 512] 256,384,512 24.8 7.5

E
256 224,256,288 26.9 8.7
384 352,384,416 26.7 8.6

[256; 512] 256,384,512 24.8 7.5

2.2.1.4 Network in Network (NiN) [31]

LeNet-5 [36], AlexNet [3] and VGGNet [4] all share the same basic structure,
with multiple convolutional layers, some of which are followed by a max pool-
ing layer, and fully connected layers plugged in at the end of the network. The
difference between VGGNet and ALexNet is that VGGNet uses small convo-
lution filters of size 3× 3 to increase the CNN’s depth. In general, this design
faces two primary challenges. First, the fully connected layers use an extremely
large number of parameters. Using VGGNet as an example (configurations in
Table 2.3), in order to add a fully connected layer with 4069 dimensions to the
last convolutional layer of size 7× 7× 512, we need about 7× 7× 512× 4096
parameters, which amounts to more than 102 million. The second issue is that
adding fully connected layers earlier in the network to increase non-linearity
is impossible. Network in network (NiN) [31] provides an alternative solution
capable of resolving both issues by using a straightforward technique. Instead
of using linear filters followed by non-linear activation functions, as in con-
ventional CNNs, NiN uses a micro-network comprised of multiple non-linear
layers to generate feature maps, which results in more abstract features for lo-
cal patches. By using global average pooling instead of fully connected layers,
the network is able to achieve better interpretable results while also eliminating
the need to optimise additional parameters.

Figure 2.3 depicts the primary architecture of NiN, which consists of stacked
multi-layer perceptron convolutional layers (MLPconv layers) followed by global
average pooling. The difference between the standard convolutional layers and
the MLPconv layers is explained in Figure 2.4, in which a shared multi-layer

Chapter 2. Background and Related Works 19

perceptron is applied by the latter to different image patches. Similar to CNN,
the feature maps are generated by sliding the multi-layer perceptron over the
input before being passed to the next layer. The MLPconv layer performs the
following calculation:

f 1
i,j,k1

= max(w1
k1

T
xi,j + bk1 , 0)

...

f n
i,j,kn

= max(wn
kn

T f n−1
i,j + bkn , 0),

(2.1)

where n denotes the number of layers in the multi-layer perceptron, (i, j) rep-
resents the pixel index of the feature map, k is the index of the feature map
channel, xi,j is the initial input, and fi,j represents the output of the previous
layer in the multi-layer perceptron.

FIGURE 2.3: The main architecture of Network in Network: a
CNN model with three mlpconv layers and one global average

pooling layer. Captured from [31].

The global average pooling plug-in at the end of the network works by av-
eraging each feature map and feeding the resulting vector straight into the soft-
max layer. One benefit of employing global average pooling is that it forces cor-
respondences between feature maps and categories. Additionally, there are no
parameters to optimise in global average pooling; therefore, there is no overfit-
ting at this layer. Moreover, global average pooling works by adding all spatial
information in each channel, making the output more invariant to spatial trans-
lations.

In [31], NiN was evaluated across four benchmarks, CIFAR-10, CIFAR-100,
MNIST and the Street View House Numbers database (SVHN). The network
presented state-of-the-art performance on the CIFAR-10 and CIFAR-100 databases,
with a CIFAR-10 accuracy of 89.59% and a CIFAR-100 accuracy of 64.32%. In

Chapter 2. Background and Related Works 20

FIGURE 2.4: Comparison between a) linear convolution layer and
b) mlpconv layer. The linear convolution layer slides a linear fil-
ter along the image, while the mlpconv layer slides a multi-layer

perceptron over the image.
Captured from [31].

MNIST (99.52%) and SVHN (97.65%), the network achieved excellent but not
state-of-the-art performance.

2.2.1.5 Maxout Network [7]

The Maxout network [7] is nothing more than a feed-forward architecture, such
as a multi-layer perceptron or deep convolutional neural network, although it
uses a new activation function that is referred to as the Maxout unit. Figure
2.5 provides a simple example of the Maxout unit. As shown in the figure, the
Maxout unit finds the maximum of weighted sum units. Given x ∈ Rd, which
represents the input or the output of any hidden layer, the mathematical ex-
pression of the Maxout unit can be described as follows:

h(x) = max(z1, z2, . . . , zn)

= max(xTW1 + b1, xTW2 + b2, . . . , xTWn + bn),
(2.2)

where [W1, W2, . . . , Wn] and [b1, b2, . . . , bn] are all trainable parameters. As in-
dicated by equation 2.2, the Maxout unit takes the maximum value among the
values from n linear functions. Figure 2.6 illustrates how it can approximate
several activation functions, including ReLU, absolute value and quadratic func-
tion. The figure shows that the Maxout can represent the ReLU and absolute
value activation functions using two linear functions while approximating the
quadratic function with four linear functions. In other words, the ReLU func-
tion is a special case of the Maxout activation function.

Chapter 2. Background and Related Works 21

z1

z2

z3

zn

x1

x2

xd

h(x)

Input Maxout
Unit

FIGURE 2.5: A single Maxout unit: a linear function that returns
the maximum of the inputs (z1 to zn in the figure).

FIGURE 2.6: Graphical depiction of how the Maxout activation
function can implement the rectified linear, absolute value recti-
fier, and approximate the quadratic activation function. Captured

from [7].

To generalise the previous idea, in each layer of a Maxout network, instead
of computing a single Maxout unit of the input, several Maxout units are com-
puted per layer. Given an input x ∈ Rd that needs to be transformed into m
dimension outputs h(x) ∈ Rm using the Maxout layer, m Maxout units are
needed, each consisting of k neurons, where k is a user-defined parameter. Ob-
viously, each Maxout unit must have at least two neurons (that is, k ≥ 2). In
other words, the number of output neurons is first increased by a factor of k,
which is at least two, and then the weighted sum of the hidden layer with the
new number of neurons (k×m) is computed using the following formula (see
Figure 2.7):

zij = xTWij + bij, (2.3)

where W ∈ Rd×(m×k) and b ∈ R1×(m×k) are learnable parameters. In order to

Chapter 2. Background and Related Works 22

get m outputs h(x) ∈ Rm, the largest value among each of the m units is chosen,
as shown below:

hi(x) = max
j∈[1,k]

zij, i = [1, 2, . . . , m]. (2.4)

j=1

j=2

j=k

h1(x)

Maxout
Unit

i=1

j=1

j=2

j=k

h2(x)

Maxout
Unit

i=2

j=1

j=2

j=k

hm(x)

Maxout
Unit

i=m

x1

x2

xd

Input

FIGURE 2.7: An example of m Maxout units needed to map x ∈
Rd to m dimension outputs h(x) ∈ Rm. k ≥ 2 in the figure is a

user-defined parameter.

In [7], the performance of Maxout networks was evaluated using four differ-
ent datasets, CIFAR-10, CIFAR-100, MNIST and SVHN. The network achieved
state-of-the-art performance across all datasets, reaching an accuracy of 88.32%
on CIFAR-10, 61.43% on CIFAR-100, 99.55% on MNIST and 97.53 on SVHN.
The Maxout activation function performed much better than the ReLU activa-
tion function when applying the same preprocessing on the CIFAR-10 database.
The performance of the Maxout algorithm was also demonstrated to be supe-
rior to that of the ReLU algorithm when increasing the network depth using
the MNIST database, as shown in Figure 2.8. However, Maxout requires at

Chapter 2. Background and Related Works 23

least twice as many parameters as other activation functions, making the net-
work more susceptible to the overfitting problem.

FIGURE 2.8: Comparasion between ReLU and Maxout with mul-
tiple layers on the MNIST database. This figure is captured from

[7].

2.2.1.6 Stochastic Network [8]

CNNs consist of several convolutional layers, some of which are followed by a
pooling layer, which is either max pooling or average pooling. Average pool-
ing considers all elements in a region, regardless of their magnitude [8]. For
example, combining average pooling with the ReLU activation function causes
down-weighting of strong activations, since many elements with zero value are
included in the average calculation. On the other hand, max pooling does not
suffer from such a problem but easily overfits the training samples. Stochastic
pooling was proposed as a scheme by [8] to take advantage of max pooling
while avoiding overfitting. This technique relies on sampling from activations
in each region based on multimodal distribution. The larger the value of the
activation, the more likely it is to be picked. To be more specific, the technique
begins with calculating probabilities p within a window j by normalising the
activations inside the window, as follows:

pi =
ai

∑k∈Rj
ak

. (2.5)

Chapter 2. Background and Related Works 24

The pooled activation (al) is then selected by sampling from the multinomial
distribution based on p in order to select a position l inside the region, as fol-
lows:

sj = al where ∼ P(p1, p2, . . . , p|Rj|). (2.6)

Figure 2.9 illustrates the concept of stochastic pooling. It indicates that 1.6
has a 40% chance of being selected, whereas 2.4 has a 60% chance; nevertheless,
the sampling procedure selects 1.6. In contrast to max pooling, which captures
only the highest activation within a region, stochastic pooling guarantees that
non-maximal activations, which may contain additional information, are also
considered. Through testing, the authors of [8] demonstrated that stochastic
pooling introduces noise to the network predictions, resulting in performance
degradation. Instead, a probabilistic form of averaging was used, which may
be formally represented as follows:

sj = ∑
i∈Rj

piai. (2.7)

FIGURE 2.9: An example explaining the stochastic pooling idea.
The activations inside a region is normalised to obtain the proba-
bilities pi. The pooled activation (1.6 in this example) is selected
using multinomial distribution applied to the computed probabil-

ities pi. Captured from [8].

The stochastic network in [8] was evaluated across many datasets, includ-
ing MNIST, CIFAR-10, CIFAR-100 and SVHN, and stochastic pooling was com-
pared with max and average pooling. The model’s accuracy on each of the four
datasets is summarised in Table 2.7. According to Table 2.7, the performance
of stochastic pooling was significantly better than that of maximum or aver-
age pooling. In addition, the accuracy attained was state-of-the-art across all
databases. Using a small subset of each database, the authors of [8] compared
max pooling, average pooling, and stochastic pooling and demonstrated that
stochastic pooling outperformed all the other pooling techniques in terms of

Chapter 2. Background and Related Works 25

accuracy.

TABLE 2.7: Stochastic pooling network compared with max and
average pooling using four databases: MNIST, CIFAR-10, CIFAR-

100 and SVHN.

Method Test Accuracy%
MNIST CIFAR-10 CIFAR-100 SVHN

Avg pooling 99.17 80.76 52.23 96.28
Max pooling 99.45 80.6 49.1 9619

Stochastic pooling 99.53 84.87 57.49 97.2

2.2.1.7 Residual Network [5]

Deep CNNs have led to tremendous success in image classification tasks. With
a top-5 test error rate of 15.3%, AlexNet [3] won the ILSVRC-2012 competition.
VGG [4], which came second in the 2014 ImageNet competition, with a top-5
error rate of 7.3%, emphasises the importance of network depth for achieving
high recognition rates. Despite the importance of network depth, the perfor-
mance of plain CNNs degrades when the network depth increases. Figure 2.10
depicts a specific illustration of this problem. The figure indicates that the CNN
with 56 layers had a higher error rate than the CNN with 20 layers. The authors
of [5] stated that this issue could not be a result of overfitting or vanishing gra-
dient descent, since the network had been trained using batch normalisation
(BN), which guarantees that the signals travelling in the forward direction have
non-zero values. Moreover, according to [5], the fundamental cause of this phe-
nomenon is unclear.

FIGURE 2.10: Training error rate (left) and test error rate (right) for
20-layer and 56-layer plain networks on CIFAR-10. This picture is

captured from [5].

Chapter 2. Background and Related Works 26

The authors of [5] proposed the deep residual network as a solution to the
degradation problem. The basic idea of their solution was based on considering
the deeper layers as identity mapping, and the other layers were copied from
a shallow depth network. In this new construction, the deeper model should
not produce a higher error rate than the shallower model. In order to put this
idea into practice, the authors of [5] used shortcut connections, shown in Figure
2.11, to skip one or more layers. The outputs of the shortcut connections were
added to those of the stacked layers, serving as identity mapping. The residual
learning building block shown in Figure 2.11 is technically described as follows:

y = F (x, {Wi}) + x, (2.8)

where x and y represent the layer’s input and output, respectively. The resid-

FIGURE 2.11: Residual learning: building block. This picture is
captured from [5].

ual learning function F in Figure 2.11 consists of two layers and can be ex-
pressed as follows:

F = W2σ(W1x), (2.9)

where σ is the ReLU activation function, and W1 and W2 are learnable parame-
ters. The dimensions of x and F should be the same to perform element-wise
addition between them. If this is not the case, the following two approaches
could be used to increase the dimension of x to match F :

• A: increase the size of x using zero-padding shortcuts; therefore, no addi-
tional learning parameters are required.

• B: Apply the following linear projection transformation to x to increase
its size:

y = F (x, {Wi}) + Wsx. (2.10)

Chapter 2. Background and Related Works 27

The residual network was evaluated in [5] using different architectures on
many benchmarks, including ImageNet, CIFAR-10 and the COCO object de-
tection database. Figure 2.12 shows the configurations used for the ImageNet
database. All of the networks followed the same design as VGGNet, albeit with
the addition of skip connections between two or more layers. Additionally, the
fully connected layers were replaced with the global average pooling that was
described in [31].

FIGURE 2.12: ResNet architectures on the ImageNet database.
This picture is captured from [5].

Figure 2.13 compares the error rates of ResNet with its plain counterpart on
the ImageNet database using 18 and 34 network architectures. ResNet showed
significant improvement in the error rate compared with its plain network
counterpart, demonstrating its capability to address the degradation problem.
Table 2.8 shows the performance of ResNet compared with state-of-the-art mod-
els on the ImageNet database. The results show that ResNet with 152 layers
generated the lowest top-1 and top-5 error rates compared with the other mod-
els. By combining six models with different depths, ResNet won 1st place in
ILSVRC 2015 with an error rate of 3.57%. ResNet was also tested on CIFAR-10
using different architectures with a number of layers ranging from 20 to 1202.
The best error rate achieved was 6.43% using 110 layers, and, as stated in [5],
the 1202 layers introduced an overfitting problem to the system. Finally, ResNet
was evaluated using the COCO database and won first place at the COCO 2015
competition.

Chapter 2. Background and Related Works 28

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

1×1, 64
3×3, 64

1×1, 256

×3

1×1, 64
3×3, 64

1×1, 256

×3

1×1, 64
3×3, 64

1×1, 256

×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

1×1, 256
3×3, 256
1×1, 1024

×6

1×1, 256
3×3, 256
1×1, 1024

×23

1×1, 256
3×3, 256

1×1, 1024

×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1, 512
3×3, 512

1×1, 2048

×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

plain-18
plain-34

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

ResNet-18
ResNet-34

18-layer

34-layer
18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

FIGURE 2.13: Training on the ImageNet database using 18 and
34 layer structure of (left) plain networks and (right) residual net-

works. This picture is captured from [5].

TABLE 2.8: ResNet performance on ImageNet, compared with
state-of-the-art results. These results were all reported by [5].

Method top-1 error rate top-5 error rate
VGG (v5) [4] 24.4 7.1

PReLU-net [42] 21.59 5.71
BN-inception [43] 21.99 5.81

ResNet-34 [5] 21.84 5.71
ResNet-50 [5] 20.74 5.25
ResNet-101 [5] 19.87 4.60
ResNet-152 [5] 19.38 4.49

2.2.1.8 The All Convolutional Net [9]

Deep CNNs such as LeNet-5 [36], AlexNet [3] and VGGNet[4] have the same
architecture, comprising a convolutional layer followed by max-pooling lay-
ers, fully connected layers and a softmax layer at the end of the network. The
all convolutional network [9] (ALL-CNN), as its name suggests, consists only
of convolutional layers followed by fully connected layers and a classifier. In
other words, ALL-CNN replaces the max pooling layer with a convolutional
layer that has a stride of more than 1. For example, a 3× 3 max pooling layer
with a stride of 2 is represented as a 3 × 3 convolutional layer with a stride
of 2. Without pooling layers, complex activation functions and response nor-
malisation, this basic design has achieved state-of-the-art results across many
benchmarks, including CIFAR-10 and CIFAR-100.

In [9], ALL-CNN was evaluated across three databases, CIFAR-10, CIFAR-
100 and ImageNet. The basic architectures used for CIFAR-10 and CIFAR-100
are described in Table 2.9. For each of these basic designs, three variants were

Chapter 2. Background and Related Works 29

examined in [9]. An example of these three variants for architecture (C) is de-
scribed in Table 2.10. In general, each basic architecture has the following ad-
ditional models:

• A model in which max-pooling layers are eliminated and the stride of the
convolution layers that come before the max-pooling layers is increased
by one (Strided-CNN-C in Table 2.10);

• A model replaces the max-pooling layers with convolutional layers (ALL-
CNN-C in Table 2.10);

• A model that increases the number of convolutional layers while retain-
ing the maximum pooling layers (ConvPool-CNN-C in Table 2.10). The
advantage of this model is that it ensures that ALL-CNN’s accuracy is not
affected by the increase in learnable parameters generated by the replace-
ment of max-pooling with convolutional layers.

TABLE 2.9: Three baseline architectures for the CIFAR-10 and
CIFAR-100 databases.

Models
A B C

32× 32 RGB image

5× 5 conv. 96 ReLU 5× 5 conv. 96 ReLU 3× 3 conv. 96 ReLU
1× 1 conv. 96 ReLU 3× 3 conv. 96 ReLU

3× 3 max-pooling stride = 2

5× 5 conv. 192 ReLU 5× 5 conv. 192 ReLU 3× 3 conv. 192 ReLU
1× 1 conv. 96 ReLU 3× 3 conv. 192 ReLU

3× 3 max-pooling stride = 2
3× 3 conv. 192 ReLU
1× 1 conv. 192 ReLU
1× 1 conv. 10 ReLU

Global average pooling over 6× 6 spatial dimensions
10 or 100 softmax

Table 2.11 compares the error rate of the baseline models with the additional
variants on the CIFAR-10 database with no data augmentation. The results
show that ALL-CNN-C achieved the best performance among the other ar-
chitecture, with an error rate of 9.08%. Table 2.12 compares the best accu-
racy achieved by ALL-CNN architecture with some state-of-the-art results on
CIFAR-10 and CIFAR-100 databases [9]. According to the table, ALL-CNN-
C achieved good results in both databases, indicating the effectiveness of the
network. ALL-CNN achieved state-of-the-art performance on the CIFAR-10

Chapter 2. Background and Related Works 30

TABLE 2.10: Three variants derived from model C described in
Table 2.9.

Models
Strided-CNN-C ConvPool-CNN-C ALL-CNN-C

32× 32 RGB image
3× 3 conv. 96 ReLU 3× 3 conv. 96 ReLU 3× 3 conv. 96 ReLU
3× 3 conv. 96 ReLU 3× 3 conv. 96 ReLU 3× 3 conv. 96 ReLU

with stride r = 2 3× 3 conv. 96 ReLU
3× 3 max-pooling stride = 2 3× 3 conv. 96 ReLU

with stride r = 2
3× 3 conv. 192 ReLU 3× 3 conv. 192 ReLU 3× 3 conv. 192 ReLU
3× 3 conv. 192 ReLU 3× 3 conv. 192 ReLU 3× 3 conv. 192 ReLU

with stride r = 2 3× 3 conv. 192 ReLU
3× 3 max-pooling stride= 2 3× 3 conv. 192 ReLU

with stride r = 2
...

database and competitive results on the CIFAR-100 database. On ImageNet,
ALL-CNN obtained results comparable with those produced by AlexNet, al-
beit with six times fewer parameters.

TABLE 2.11: Error rate of baseline models described in Table 2.9
and their variants (2.10) on the CIFAR-10 database with no data

augmentation.

Model Error rate (%)
Model A 12.47

Strided-CNN-A 13.46
ConvPool-CNN-A 10.21

ALL-CNN-A 10.30
Model B 10.20

Strided-CNN-B 10.98
ConvPool-CNN-B 9.33

ALL-CNN-B 9.10
Model C 9.74

Strided-CNN-C 10.19
ConvPool-CNN-C 9.31

ALL-CNN-C 9.08

2.2.1.9 Densely Connected Convolutional Neural Network [12]

To handle the vanishing gradient descent problem, the densely connected con-
volutional layer (DenseNet) [12] was introduced. The main idea of DenseNet is
that each layer receives as input the feature maps of all preceding levels. This

Chapter 2. Background and Related Works 31

TABLE 2.12: ALL-CNN error rate (%) compared with some net-
works on the CIFAR-10 and CIFAR-100 databases with and with-

out data augmentation. These results were reported in [9].

Model C10 C10+ C100 C100+
Maxout [7] 11.68 9.38 34.57 –
NiN [31] 10.41 8.81 35.68 –

Fractional pooling [6] [1 test] – – 31.45 –
Fractional pooling [12 tests] – – 26.39 –

Fractional pooling [100 tests] – – – 3.43
ALL-CNN [9] 9.08 7.25 33.71 4.41

indicates that a neural network with L layers has L (L−1)
2 connections. Figure

2.14 shows the architecture of DenseNet, which consists mainly of dense blocks
separated by transition layers. Before entering the first dense block, DenseNet
initially applies a 3× 3 convolution with a batch normalisation operation. The
first convolutional operation is applied with a stride of 1 and a padding of 1.
Every dense block consists of several dense layers, with the lth layer receiving
the outputs of all its predecessor layers (x0, x1, . . . , xl−1), as follows:

xl = Hl([x0, x1, . . . , xl−1]), (2.11)

where:

• [x0, x1, . . . , xl−1] is the concatenation of feature maps generated by layers
[0, 1, . . . , l − 1];

• Hl is a composite function of three operations: batch normalization (BN),
a rectified linear unit (ReLU) and a 3× 3 convolution. If dense layers are
defined as bottleneck layers (DenseNet-B in the paper), Hl is a function
comprised of the following consecutive operations: BN, ReLU, 1× 1 con-
volution, BN, ReLU and 3× 3 convolution.

If each layer in a dense block generates k features, the lth layer receives k0 +

k(l − 1) feature maps, where k0 represents the number of channels in the in-
put layer. The term ’growth rate’ is used throughout the paper to refer to the
parameter k. According to [12], with a specific growth rate of k, each 3 × 3
convolution operation generates k feature maps, but any 1× 1 convolution op-
eration generates 4k feature maps.

The transition blocks that exist between the DenseNet blocks work as a
downsampling step and consist of a 1× 1 convolutional layer followed by a

Chapter 2. Background and Related Works 32

C
onvolution

Pooling

Dense Block 1 C
onvolution

Pooling

Pooling

Linear

C
onvolution

Input
Prediction

“horse”
Dense Block 2 Dense Block 3

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

ResNets can improve its performance provided the depth is
sufficient [42]. FractalNets also achieve competitive results
on several datasets using a wide network structure [17].

Instead of drawing representational power from ex-
tremely deep or wide architectures, DenseNets exploit the
potential of the network through feature reuse, yielding con-
densed models that are easy to train and highly parameter-
efficient. Concatenating feature-maps learned by different
layers increases variation in the input of subsequent layers
and improves efficiency. This constitutes a major difference
between DenseNets and ResNets. Compared to Inception
networks [36, 37], which also concatenate features from dif-
ferent layers, DenseNets are simpler and more efficient.

There are other notable network architecture innovations
which have yielded competitive results. The Network in
Network (NIN) [22] structure includes micro multi-layer
perceptrons into the filters of convolutional layers to ex-
tract more complicated features. In Deeply Supervised Net-
work (DSN) [20], internal layers are directly supervised
by auxiliary classifiers, which can strengthen the gradients
received by earlier layers. Ladder Networks [27, 25] in-
troduce lateral connections into autoencoders, producing
impressive accuracies on semi-supervised learning tasks.
In [39], Deeply-Fused Nets (DFNs) were proposed to im-
prove information flow by combining intermediate layers
of different base networks. The augmentation of networks
with pathways that minimize reconstruction losses was also
shown to improve image classification models [43].

3. DenseNets
Consider a single image x0 that is passed through a con-

volutional network. The network comprises L layers, each
of which implements a non-linear transformation H`(·),
where ` indexes the layer. H`(·) can be a composite func-
tion of operations such as Batch Normalization (BN) [14],
rectified linear units (ReLU) [6], Pooling [19], or Convolu-
tion (Conv). We denote the output of the `th layer as x`.

ResNets. Traditional convolutional feed-forward net-
works connect the output of the `th layer as input to the
(` + 1)th layer [16], which gives rise to the following
layer transition: x` = H`(x`−1). ResNets [11] add a
skip-connection that bypasses the non-linear transforma-
tions with an identity function:

x` = H`(x`−1) + x`−1. (1)

An advantage of ResNets is that the gradient can flow di-
rectly through the identity function from later layers to the
earlier layers. However, the identity function and the output
of H` are combined by summation, which may impede the
information flow in the network.

Dense connectivity. To further improve the information
flow between layers we propose a different connectivity
pattern: we introduce direct connections from any layer
to all subsequent layers. Figure 1 illustrates the layout of
the resulting DenseNet schematically. Consequently, the
`th layer receives the feature-maps of all preceding layers,
x0, . . . ,x`−1, as input:

x` = H`([x0,x1, . . . ,x`−1]), (2)

where [x0,x1, . . . ,x`−1] refers to the concatenation of the
feature-maps produced in layers 0, . . . , `−1. Because of its
dense connectivity we refer to this network architecture as
Dense Convolutional Network (DenseNet). For ease of im-
plementation, we concatenate the multiple inputs of H`(·)
in eq. (2) into a single tensor.

Composite function. Motivated by [12], we define H`(·)
as a composite function of three consecutive operations:
batch normalization (BN) [14], followed by a rectified lin-
ear unit (ReLU) [6] and a 3× 3 convolution (Conv).

Pooling layers. The concatenation operation used in
Eq. (2) is not viable when the size of feature-maps changes.
However, an essential part of convolutional networks is
down-sampling layers that change the size of feature-maps.
To facilitate down-sampling in our architecture we divide
the network into multiple densely connected dense blocks;
see Figure 2. We refer to layers between blocks as transition
layers, which do convolution and pooling. The transition
layers used in our experiments consist of a batch normal-
ization layer and an 1×1 convolutional layer followed by a
2×2 average pooling layer.

Growth rate. If each function H` produces k feature-
maps, it follows that the `th layer has k0+k× (`−1) input
feature-maps, where k0 is the number of channels in the in-
put layer. An important difference between DenseNet and
existing network architectures is that DenseNet can have
very narrow layers, e.g., k = 12. We refer to the hyper-
parameter k as the growth rate of the network. We show in
Section 4 that a relatively small growth rate is sufficient to

FIGURE 2.14: DenseNet architecture: a deep learning model con-
sists of several dense blocks separated by transition blocks. This

picture is captured from [12].

2× 2 max-pooling layer with a stride of 2. The 1× 1 convolutional layer gener-
ates the same number of feature maps unless specifying a compression factor
(C); in such case (DenseNet-C in the paper), the convolution reduces the size
of the feature maps by C, which was specified as 0.5 in [12]. The last transition
block is followed by a global average pooling and a softmax layer.

DenseNet was evaluated using different architectures over four databases,
CIFAR-10, CIFAR-100, SVHN and ImageNet [12]. Table 2.13 shows the per-
formance of DenseNet compared with the models achieving state-of-the-art re-
sults across the CIFAR-10, CIFAR-100 and SVHN databases. According to Ta-
ble 2.13, DenseNet achieved state-of-the-art performance in the three databases
with a significant improvement over the existing models, achieving a 30% lower
error rate on the CIFAR-10 and CIFAR-100 databases than FractalNet with drop-
path regularisation. On the ImageNet database, DenseNet was evaluated using
different architectures and compared with ResNet. The results on this database
were comparable to those obtained by ResNet, with fewer parameters.

2.2.1.10 FractalNet [11]

The success of ResNet [11] has motivated other researchers to develop sim-
ilar networks based on it. Their research includes studies on pre-activation
ResNet [47], WRN [46], RiR [48], RoR [49] and stochastic depth [45]. The au-
thors of [11] presented an alternative non-residual network named FractalNet.
This network produced results competitive with ResNet’s findings on classifi-
cation tasks, including on the CIFAR and ImageNet databases. FractalNet has
therefore demonstrated that residual representations are not strictly required
for the success of deep convolutional neural networks.

The structure of FractalNet is illustrated in Figure 2.15. Let C represent the
index of the truncated fractal; the structure of the network, including its con-
nections and layer types, is specified by the function fC(.). In Figure 2.15 (the

Chapter 2. Background and Related Works 33

TABLE 2.13: DenseNet error rate (%) compared with other net-
works on the CIFAR-10, CIFAR-100 and SVHN databases. These
results were all reported by [12]. The "+" symbol in the table refers

to the use of data augmentation.

Method C10 C10+ C100 C100+ SVHN
Network in Network [31] 10.41 8.81 35.68 – 2.35

All-CNN [9] 9.08 7.25 – 33.71 –
Highway Network [44] – 7.72 – 32.39 –

FractalNet [11] 10.18 5.22 35.34 23.30 2.01
with Dropout/Drop-path 7.33 4.6 28.20 23.73 1.81

ResNet [5] – 6.61 – – –
Resnet reported by [45] 13.63 6.41 44.74 27.22 2.01

ResNet with stochastic depth [45] 11.66 5.23 37.80 24.58 1.75
Wide ResNet [46] – 4.81 – 22.01 –

with Dropout – – – – 1.64
DenseNet (k = 12, L = 40) [12] 7 5.24 27.55 24.42 1.79

DenseNet (k = 12, L = 100) 5.77 4.10 23.79 20.20 1.67
DenseNet (k = 24, L = 100) 5.83 3.74 23.42 19.25 1.59

DenseNet-BC (k = 12, L = 100) 5.92 4.51 24.15 22.27 1.76
DenseNet-BC (k = 24, L = 100) 5.19 3.62 19.64 17.60 1.74
DenseNet-BC (k = 40, L = 190) – 3.46 – 17.18 –

middle block), C denotes the total number of columns (C = 4 in the figure). To
begin, consider the base case f1(z) as a convolutional layer defined as follows:

f1(z) = conv(z). (2.12)

The recursive fractals (columns) are added as follows:

fC+1 = [(fC ◦ fC)(z)]⊕ [conv(z)], (2.13)

where ◦ is the decomposition operation and ⊕ is the element-wise mean (the
green layers in Figure 2.15). The network depth within a block consists of 2(C−1)

layers. In Figure 2.15, where the middle image represents a block and C =

4, the number of convolutional layers within the block is 23 = 8 layers. By
stacking five blocks (B = 5), as in FractalNet on the right side of Figure 2.15,
the number of convolutional layers within the entire network is B × 2(C−1),
which is 5× 23 = 40 layers. Moreover, 2× 2 max pooling is added between
every two blocks in the network to minimise the size of feature maps. After
each convolution, Batch Norm and ReLU are also used.

To reduce overfitting, the authors of [11] proposed a regularisation approach

Chapter 2. Background and Related Works 34

FIGURE 2.15: The architecture of FractalNet: simple Fractal ex-
pansion architecture (left), Fractal expansion stacked recursively
as a single block (centre), and five blocks cascaded as FractalNet

(right). Captured from [11].

named drop-path, which is represented in Figure 2.16. By randomly removing
the operands of the join layers (the green layers in the figure), the drop-path al-
gorithm prevents the co-adaptation of parallel paths. The following two types
of sampling strategies were considered in the paper:

• Local, where the join layer deactivates some inputs with a fixed probabil-
ity and ensures at least one input is activated.

• Global, where a single path or column is selected for the whole network.

The network was evaluated across four classification benchmarks, CIFAR-
10, CIFAR-100, SVHN and ImageNet, both with and without data augmen-
tation. Table 2.14 displays the error rates of the test set of FractalNet on three
datasets, CIFAR-10, CIFAR-100 and SVHN, compared with several ResNet vari-
ants. The results show that FractalNet achieved the lowest error rate compared
with ResNet and all of its variants except DenseNet in all databases with-
out data augmentation. For example, the error rate obtained by FractalNet
on CIFAR-100 with no data augmentation and no regularisation was 35.34%,
which was 9% lower than the 44.76% achieved by the original ResNet. With

Chapter 2. Background and Related Works 35

FIGURE 2.16: Drop-path: a fractal network block works with cer-
tain layer connections deactivated. Captured from [11].

data augmentation, FractalNet outperformed almost all ResNet variants except
for the wide residual network (WRN), CIFAR-10 and CIFAR-100. With heavy
data augmentations, FractalNet did not always achieve the best performance
compared with other networks on CIFAR-10 and CIFAR-100. Table 2.15 com-
pares the performance of FractalNet with that of ResNet-34 and VGG-16 on the
ImageNet database. The results show that FractalNet provided comparable re-
sults with those of ResNet-34, which is evidence of the network efficiency [11].

Chapter 2. Background and Related Works 36

TABLE 2.14: The error rate of FractalNet compared with other
methods on three databases, CIFAR-10, CIFAR-100 and SVHN.
These results were reported by [11]. The sign "+" in the table in-
dicates the use of data augmentation, while "++" indicates the use

of heavy data augmentations.

Method C100 C100+ C100++ C10 C10+ C10++ SVHN
NiN [31] 35.68 – – 10.41 8.81 – 2.35

Generalised pooling [50] 32.37 – – 7.62 6.05 – 1.69
Recurrent CNN [51] 31.75 – – 8.69 7.06 – 1.77

Multi-scale [52] 27.56 – – 6.87 – – 1.76
FitNet [53] – 35.04 – – 8.39 – 2.42

Deeply supervised [12] – 34.57 – 9.69 7.97 – 1.92
All-CNN [9] – 33.71 – 9.08 7.25 4.41 –

Highway Net [44] – 32.39 – – 7.72 – –
ELU [54] – 24.28 – – 6.55 – –

Scalable BO [55] – – 27.04 – – 6.37 1.77
Fractional max-pool [6] – – 26.32 – – 3.47 –

FitResNet [56] – 27.66 – – 5.84 – –
ResNet [57] – – – – 6.61 – –
ResNet [45] 44.76 27.22 – 13.63 6.41 – 2.01

Stochastic depth [45] 37.80 24.58 – 11.66 5.23 – 1.75
Identity mapping [47] – 22.68 – – 4.69 – –
ResNet in ResNet [48] – 22.90 – – 5.01 – –

Wide [46] – 20.50 – – 4.17 – –
DenseNet [12] 19.64 17.60 – 5.19 3.62 – 1.74

FractalNet [11] (20 layers, 38.6 M params) 35.34 23.30 22.85 10.18 5.22 5.11 2.01
+ drop-path + dropout 28.20 23.73 23.36 7.33 4.60 4.59 1.87
→ deepest column alone 29.05 24.32 23.60 7.27 4.68 4.63 1.89

FractalNet [11] (40 layers, 22.9 M params) – 22.49 21.49 – 5.24 5.21 –

TABLE 2.15: FractalNet performance compared with ResNet [4]
and VGG [5] on the ImageNet database.

Method Top-1 (%) Top-5 (%)
VGG-16 28.07 9.33

ResNet-34 24.19 7.40
FractalNet-34 24.12 7.39

Chapter 2. Background and Related Works 37

2.2.2 Deep Generative Models

Deep generative models aim to create an explicit probability distribution for
the data. The next sub-sections describe three generative models, the deep di-
rected network, the deep Boltzmann machine and the deep belief network. The
Boltzmann machine is also explained, as it is the basis of many models, such as
deep Boltzmann machine.

2.2.2.1 Boltzmann Machine [37]

This is a probability model that is represented by the undirected graph. The
primary purpose of the Boltzmann machine is ’to determine the probability
distribution of the input’ or to reconstruct the original data. There are two
types of Boltzmann machine: restricted and unrestricted (Figure 2.17). In the
unrestricted Boltzmann machine, every node is connected to all other nodes;
however connection between the nodes in the same layer is not permitted in
the restricted version. Each node in the Boltzmann machine has a binary state
of 0 or 1, and the hidden units contain the representations derived from the
model.

FIGURE 2.17: Two types of Boltzmann machine: restricted and
unrestricted. In the unrestricted Boltzmann machine every node
is connected to all other nodes. On the other hand, connection
between nodes in the same layer is prohibited in the restricted

version of Boltzmann machine.

The restricted Boltzmann machine is an energy-based function that focuses
on minimising the energy function (equation 2.14) to increase probability (equa-
tion 2.15).

E(v, h; θ) = −∑
i,j

viwihj −∑
j

bjhj −∑
i

civi = −vTwh− bTh− cTv (2.14)

Chapter 2. Background and Related Works 38

E(v, h; θ) =
1

z(θ)
exp(−E(v, h; θ)), (2.15)

where

• v is the visible unit and h is the hidden unit;

• W denotes the weight connecting the visible and the hidden units;

• b is the bias term related to the hidden units and c is the bias term of the
visible units;

• z is the partition function and the normalisation factor (z = ∑v,h e−E(v,h)),
which is an intractable term.

The conditional probabilities of the nodes are independent of one another
in the restricted Boltzmann machine. In addition, the following equation cal-
culates the probability that a hidden node or a visible node is active (equal to
one):

p(h = 1|v; θ) = σ(wTv + b) (2.16)

p(v = 1|h; θ) = σ(wTh + c), (2.17)

where

• σ is the sigmoid function;

• W is the weight connecting the visible unit with the hidden one.;

• h is the hidden unit and v is the visible one;

• b is the bias term for the hidden unit and c is the bias term for the visible
unit.

The learning rule in the Boltzmann machine involves the process of learning
the parameter θ in Equation 2.15, which involves the bias terms that relate to
both the visible and hidden units and the weights that connect the two layers.
This learning process is accomplished by applying stochastic gradient descent
to minimise the negative log loss between the input and the reconstructed im-
age, resulting in two terms (Equation 2.18). The first term (Equation 2.18) refers
to the positive term, where it is easy to calculate, while the second term is in-
tractable. There are many algorithms to approximate the second term, such

Chapter 2. Background and Related Works 39

as contrastive divergence with k-steps of Gibbs sampling. After computing the
second term, we can update the weights and proceed with the learning process.

σ
− log p(vt)

σθ
= Eh

[
σE(v(t), h)

σθ
|v(t)

]
− Ev,h

[
σE(v, h)

σθ

]
, (2.18)

where σ
− log p(vt)

σθ is the derivative of the log probability of the training vector,
v is the visible unit, h is the hidden unit and θ refers to the model parameters,
including the bias terms related to the hidden and the visible units and the
weight between them.

2.2.2.2 Deep Directed Network [38]

Figure 2.18 defines the structure of this network, where the lowest level con-
tains the observed data and the remaining layers are hidden. It is also a prob-
abilistic model in which the nodes are binary. If the conditional probability
function is a logistic function, the directed network is called a sigmoid belief
network. The following equation defines the joint probability of the model:

p(h1, h2, h3, v|θ) = ∏
i

Ber(vi|sign(hT
1 w0i))∏

j
Ber(h1j|sign(hT

2 w1j))

∏
k

Ber(h2k|sign(hT
3 w2k))∏

L
Ber(h3L|w3L),

(2.19)

where Ber is the Bernoulli distribution, h1, h2 and h3 are the hidden units, v is
the symbol for the visible nodes and w is the weight connecting the visible and
the hidden units.

The main problem with the directed network is the explaining-away prob-
lem. Figure 2.19 shows an example of this problem, where ’the earthquake’
and ’the truck hits the house’ cause the house to jump, and these nodes are in-
dependent of each other. However, if there is an ’earth-quick’, we know that
the house will jump, and so we do not need to check if there is a truck that has
hit the house. Thus, we can say the earthquick node explains away the truck
hits the house one. In other words, the inference in the directed networks is
intractable because the nodes are correlated.

Chapter 2. Background and Related Works 40

FIGURE 2.18: Deep directed network architecture

2.2.2.3 Deep Boltzmann Machine [39]

The Deep Boltzmann machine is a deep undirected model composed of a stack
of Boltzmann machines (Figure 2.20). The following equation shows the joint
probability of the model:

p(h1, h2, h3, v|θ) = 1
z(θ)

exp

(
∑
i,j

vih1jw1ij + ∑
jk

h1jh2jw2jk + ∑
kL

h2kh2Lw3kL

)
,

(2.20)
where, h1, h2, h3 are the set of the hidden units, w is the model parameter rep-
resenting the interactions between the visible and the hidden units and v is the
visible unit.

The main advantage of using this model over the directed one is its ability
to perform Gibbs sampling or block mean-field, since all of its nodes are condi-
tionally independent of each other. However, the undirected graph is hard to
train because of the intractable term Z.

2.2.2.4 Deep Belief Network [38]

This is a mixed model between the directed and undirected models (Figure
2.21). The following equation defines the model:

p(h1, h2, h3, v|θ) = ∏
i

Ber
(

vi|sigm(hT
1 w1)

)
∏

j
Ber

(
hij|sigm(hT

2 w2i)
) 1

z(θ)
exp

(
∑
kL

h2kh3Lw3k

)
,

(2.21)

Chapter 2. Background and Related Works 41

FIGURE 2.19: An example of the explaining-away problem. The
nodes "earth-quick" and "truck hits the house" end to be depen-

dent on each other.

where h is the hidden unit, v is the visible unit and w is the model parameter
representing the interactions between the visible and the hidden units.

The two upper levels serve as allocation memories, while the other remain-
ing levels generate the output. The model uses greedy layer-by-layer learning
and top-down procedures to fine-tune the weights. The authors of [38] tested
the model on the MNIST database (Figure 2.22) by linking the top restricted
Boltzmann machine with a softmax layer of 10 neurons. The number of param-
eters was 28× 28× 500 + 500× 500 + 510× 500 = 1, 662, 000; the top-down
process took a week, and the error rate reached was 1.25%.

Chapter 2. Background and Related Works 42

FIGURE 2.20: Deep Boltzmann machine structure.

FIGURE 2.21: Deep belief net architecture.

500 units

500 units

2000 top-level units

10 labels

FIGURE 2.22: Deep belief net on the MNIST database.

Chapter 2. Background and Related Works 43

2.3 Non Gradient-Based Networks

This section summarises some non-differentiable networks. A non-differentiable
network is any network that is trained without gradient descent or backprop-
agation. Examples of such networks include PCANet [15], ScatNet [16] and
deep forest [13].

2.3.1 Deep-SVM [34]

The SVM is a powerful binary classifier that aims to select the best hyperplane
that divides two sets (Figure 2.23 (a)). This is accomplished by maximising
the distance between the points close to the hyperplane, known as the support
vectors, and the hyperplane itself. Moreover, the support vector machine can
convert the linear space into a non-linear one using the kernel trick (Figure
2.23 (b)), by which we do not need to know the mapping itself as long as we
know the kernel function. There are many kernel functions, such as linear,
polynomial, RBF and sigmoid functions. Therefore, choosing the right kernel
function that fits our data is not a trivial task. For this reason, the authors of
[34] introduced deep SVM.

FIGURE 2.23: a) SVM maximises margin. b) Kernel trick of SVM.

The structure of deep-SVM is simple and displayed in Figure 2.24. Algo-
rithm 1 presents the procedures for training deep SVM. The first layer’s train-
ing is similar to the support vector machine’s regular training, with the RBF
kernel applied to the input data. The output signals of this layer are P support
vectors (Si) and P Lagrange multipliers (αi). The RBF kernel is then applied
for each support vector (Si) with each input X, and the result is multiplied by
the corresponding target (ti) and the Lagrange multiplier at this point (αi). The

Chapter 2. Background and Related Works 44

FIGURE 2.24: Structure of deep SVM. Captured from [34].

same process is repeated for the subsequent layers until the desired number of
layers is reached.

Algorithm 1 Training deep-SVM

Input: Training set: X1 = [x1, x2, . . . , xN], target: t = [t1, t2, . . . , tN], RBF kernel
function: K() and number of Layers: nlayers

Output: ErrorRate
1: for i← 1 to nlayers do
2: [Si, ai, bi]← trainsvm(Xi, t)
3: tsi ← target labels corresponding to Si
4: p← number of support vectors corresponding to Si
5: for j← 1 to N do
6: xi+1

j ← ti
s1 × ai

1 × K(Si
1, Xi

j), . . . , ti
sp × ai

p × K(Si
p, Xi

j)

7: end for
8: end for

In [34], the network was tested on the Breast Cancer Database, which is
a small database with only 384 instances with eight attributes. The authors
compared their network to the ordinary support vector machine (Table 2.16)
and demonstrated that their approach produced better results.

TABLE 2.16: The performance of deep-SVM compared to the stan-
dard support vector machine using the Breast cancer database.

SVM Deep-SVM
Training accuracy 100% 100%

Test accuracy 91.2% 95.6%

Chapter 2. Background and Related Works 45

2.3.2 Deep Forest [13]

The idea of the deep forest [13] was inspired by the training of neural networks.
The model consists of the cascade forest, Instead of the deep layers concept in
CNNs, and the multi-grain scan level in the deep forest corresponds to the
convolution layers in the CNN. After expanding the model to a new level, the
authors of [13] validated it using a validation set. If there is no improvement,
the algorithm ends, and the number of layers is determined.

FIGURE 2.25: Two phases deep forest architecture: multi-grained
scanning and cascade forest. This picture is taken from [13].

The deep forest model (Figure 2.25) consists of two independent phases,
namely multi-grained scanning and cascade forest. In multi-grained scanning,
different sliding windows are used to convert the input (either image or text)
into many instances. These instances are then sent to two forests, each with 500
trees. The output of each forest is the averaged class distribution, which is then
chained to other outputs to get the final level 1 output. The second stage takes
the input (either the output of the first stage or the row data) and sends it to
four forests, two of which are completely random forests and random forests,
each with 500 trees. Similar to the first phase, the four random forests estimate
the averaged class distributions, concatenate them and pass them to the next
level. Before expanding to a new level, the entire model is validated in the
validation set. If there is no improvement, the algorithm is stopped, and the
output is defined.

Zhi-Hua and Ji [13] tested the deep-forest model across various areas, in-
cluding image classification, face recognition, music classification, sentiment
classification and low-dimensional data. They showed that their method deliv-
ers competitive results, especially for small datasets. They also emphasised the

Chapter 2. Background and Related Works 46

importance of multi-grained scanning for features representation. Tables 2.17
and 2.18 show the accuracy results of the deep forest model on the MNIST and
CIFAR-10 databases, respectively. The performance of the model on challeng-
ing database such as CIFAR-10 was not as good as that of CNNs, but it was still
better than other machine learning algorithms.

TABLE 2.17: The performance of gcForest on the MNIST database.
All of these results were reported by [13].

Method Accuracy%
gcForest 99.26%

SVM (RBF) kernel 98.75% [38]
Deep belief network 98.75%

Random forest 96.80%

TABLE 2.18: The performance of gcForest on the CIFAR-10
database. These results were reported by [13].

Method Accuracy%
ResNet 93.57%
AlexNet 83.00%

gcForest (gbdt) 69.00%
gcForest (5 grains) 63.37%

Deep belief network 62.20%
gcForest (default) 61.78%

Random forest 50.17%
MLP 42.20%

Logistic regression 37.32%
SVM (linear kernel) 16.32%

2.3.3 PCANet

PCANet [15] is a simple deep learning network that does not rely on stochastic
gradient descent in its learning process. Instead, the features are extracted us-
ing cascaded principal component analysis (PCA), which is applied to localised
patches of the images. Figure 2.26 shows the architecture of PCANet. As
shown in the figure, PCANet is comprised of three primary processing steps,
namely cascaded principal component analysis, binary hashing and block-wise
histogram, and the entire architecture is used as a feature extractor. After ex-
tracting the features using PCANet, the authors of [15] classified the extracted
features using the linear SVM classifier.

Chapter 2. Background and Related Works 47

MxN
k1xk1

MxN
k1xk1

1

MxN
k1xk1

2
....

MxN
k1xk1

L1

L1 images

L2 images

MxN

MxN

.........

MxN

L2 images

MxN

MxN

.........

MxN

L2 images

MxN

MxN

.........

MxN

L1xL2
images

....

L1 images

MxN

1

MxN

2

MxN

L1

............

............

............

......

SVM

Binarization and
local binary

patternFirst stage

Original image

Second stage

Histogram-based
features for each

patch

Concatenated
features

PCA filters

WL1
(1)

WL2
(2)

L2

2

1

L2

L2

2

1

2

1

20

21

2L2

21

21

20

20

2L2

2L2

FIGURE 2.26: The main architecture of PCANet.

PCANet was evaluated using a maximum of two cascaded PCA stages [15].
Figure 2.26 is an example of a two-stage PCANet. The first stage consists
mainly of two steps. The first step is patch-mean removal, in which the im-
ages are divided into patches of a specific size defined by the user. Then the
patches of each image are centralised to their local mean. In the second step
of the first stage, PCA is applied to the centralised patches to produce L1 prin-
cipal components as the PCA filters for this stage, where L1 is the number of
filters for the first stage and a user-defined parameter. After zero-padding the
original images, the output of the first stage is computed by convolving the L1
principal components with the original images. The spatial dimensions of the
resulting images are the same size as the original ones.

The second stage is similar to the first stage, but the output of the first con-
volution layer is used instead of the original dataset. In fact, the PCA filters are
applied on a one-channel basis. For example, each filter operates on one chan-
nel and produces one new greyscale image. As a result, the number of images
in this stage is equivalent to L1 × L2, where L2 is the number of filters for the
second stage.

After the filter learning stages, the output of the last convolutional layer is bi-
narized using the Heaviside function. The local binary pattern is then used to
combine the L2 binary images into a single image, producing images with L1

Chapter 2. Background and Related Works 48

channels. Then each of the L1 images is divided into B blocks, the histogram
of the decimal values is computed in each block and all of the B-histograms are
concatenated into a single vector. The resulting L1 vectors are combined to rep-
resent the features extracted from the corresponding original images. Finally,
the SVM classifier is applied to classify the images. PCANet’s user-defined
hyper-parameters include the size of the patches, the number of filters within
each level and the total number of levels.

PCANet shares some similarities with CNNs. For example, patch-mean
removal in PCANet corresponds with local contrast normalisation in CNNs.
However, in contrast to CNNs and ScatNet, PCANet does not have any non-
linearity between its convolutional layers. Therefore, the whole process before
the binarisation step is linear. The authors of [15] showed that the use of quan-
tisation and local histograms in the last stage causes sufficient invariance for
the final features. They also introduced two other networks, R-NET and LDA-
NET. The difference between those and PCANet is that the cascaded filters are
selected either randomly in R-Net or by learning a linear discriminant analy-
sis in LDA-Net. The findings of the experiments in [15] showed that LDA-Net
and PCANet are equivalent, although R-Net produced results with the highest
error rate.

PCANet was designed mainly for classification tasks and tested on different
databases, including LFW for face verification, MultiPIE, Extended Yale B, AR
and FERET for face recognition, MNIST for hand-written digit recognition and
CIFAR-10 for pattern recognition. Comparing PCANet’s performance with the
state-of-the-art results and hand-crafted features showed that the network’s re-
sults were comparable [15]. On the MNIST database, PCANet reported an error
rate of 0.6%, which was considered to be state-of-the-art at that time. In addi-
tion, the network set new records on other databases, including Extended Yale
B, AR and FERET, confirming its exceptional capabilities across various tasks.
Despite its success, PCANet may not be able to deal with extreme variability
in some challenging databases due to its simple architecture, which relies on
extracting unsupervised PCA features. Such databases include PASCAL VOC,
which contains roughly aligned scales and a variety of poses.

2.3.4 PCANet+ [24]

PCANet is a shallow, deep structure that shows excellent results across differ-
ent benchmarks, including image classification and face verification. However,

Chapter 2. Background and Related Works 49

this simple stacked deep architecture suffers from the feature’s explosion prob-
lem, which limits its depth to only two layers. The feature explosion problem
refers to the fact that the number of features extracted by the PCA layers in the
network grows rapidly as the depth of the network increases, which makes it
difficult for the classifier to classify the extracted features after adding a few
layers. The problem is caused by the fact that PCANet learns the filter weights
on a per-channel basis. For instance, when given an input of size h × w × c
and a filter of size k× k, PCANet learns k× k weights for each channel c in the
input. In other words, the number of feature maps in one layer depends on
the number of feature maps in its previous layers. As the depth of the network
increases, the size of the feature maps also increases, leading to high computa-
tional cost, high memory consumption and an increased number of parameters
required for training subsequent layers. PCANet+, proposed by Low, Teoh,
and Toh [24], provided an alternate solution to the feature explosion problem
by conforming to CNN’s constraints. The proposed network employed a filter
ensembling mechanism to directly determine the number of feature maps for
each layer. This mechanism aggregates the feature maps across all channels to
extract k× k× c patches, similar to CNNs. In this context, k denotes the filter
size, and c represents the number of channels in the previous layer.

Figure 2.27 illustrates the structure of PCANet+ as an entirely unsupervised
network. The designers of the network [24] used a mean-pooling layer be-
tween any two convolution layers as a replacement for the non-linear func-
tions in CNNs. Moreover, they changed the topology of the PCANet filters
by proposing an ensemble learning technique that conforms to CNN’s struc-
ture. Given a layer L − 1 with dL−1 images of size M × N, all overlapping
patches are extracted from each channel and concatenated, so the result is of
size kL × kL × dL−1, where kL is the size of the filters in layer L. Next, the ex-
tracted patches are standardised to their unit variance using the z-score method
before the PCA of the normalised patches is computed and dL principal compo-
nents are chosen to be the PCA filters, where dL is the number of the filters for
layer L. The output is calculated by convolving the dL principal components
with the input images after zero-padding them. After several PCA learning
stages, the output of each layer is binarised and the histogram-based features
are found in the way described in PCANet [15]. Then all extracted features
from all layers are concatenated, and PCA whitening is applied to them to re-
duce their dimensions. To classify the data, the cosine similarity between the
training and the test samples is used.

Chapter 2. Background and Related Works 50

M*N*d1

k1xk1xd1
M*N*d2

k2xk2xd2

M*N*dLM*N*3

k0xk0x3

Input image Convolution
layer#1

Convolution
layer#2

......

PCA
filters

Whitening PCA

O
pt

io
na

l
av

g-
po

ol
in
g

..................
Histogram-based features

O
pt

io
na

l
av

g-
po

ol
in
g

Convolution
layer#L

PCA
filters

PCA
filters

Histogram-based features Histogram-based
features

FIGURE 2.27: The main architecture of PCANet+.

In [24], PCANet+ was evaluated across three face recognition databases, in-
cluding face recognition technology (FERET), LFW and YouTube faces (YTF).
In all experiments, PCANet produced better accuracy results than PCANet.
Figure 2.28 compares the performance of PCANet+ with that of the original
PCANet using a different number of layers on the FERET DUP I and II probe
sets. According to the results, PCANet+ outperformed the original PCANet in
both one- and two-layer architectures. In addition, the average performance of
PCANet+ increased from 70.09% in layer 1 to 89.73% in layer 4, indicating the
importance of the network depth to achieve better accuracy. Figure 2.29 illus-
trates the significance of mean-pooling layers to the accuracy of the PCANet+
model. As shown in the figure, the performance of PCANet+ degraded some-
what without the mean pooling layers, with roughly 1% less accuracy in all
topologies.

FIGURE 2.28: Accuracy of PCANet+ and PCANet on FERET DUP
I and DUP II using different layers architectures. The figure is

captured from [24].

Chapter 2. Background and Related Works 51

FIGURE 2.29: Accuracy of PCANet+ and PCANet on FERET DUP
I and DUP II with and without mean pooling layers. The figure is

captured from [24].

2.3.5 PCANet-II [23]

PCANet, as mentioned in Section 2.3.4, suffers from the feature explosion prob-
lem, which limits its depth to two layers. Histogram pooling, which results
in exponential growth in the total number of features, is one of the factors
that contribute to this issue. PCANet-II [23] replaced the histogram pooling
in PCANet with second-order pooling, which is popular in CNNs. Examples
of CNNs using second-order pooling include [58, 59, 60, 61] and [62]. Figure
2.30 illustrates PCANet-II architecture in detail. PCANet-II starts by comput-
ing the PCA filters, as in the original PCANet [15]. However, Tian, Hong et al.
[23] calculated a pixel-wise binary feature difference (BDF) in each layer and
considered it to be a new feature map added to that layer. The main purpose of
adding a BFD image is to preserve more discriminant information because the
binarisation step in PCANet [15] cuts the filters’ responses into only 0’s and 1’s,
leading to a large discriminant information loss. After the filter learning pro-
cess, the resulting images are divided into blocks of size r× c, where r and c are
user-defined parameters representing the width and height of each block. Then
each block is reshaped into r× c rows and dL columns, where dL is the number
of filters in layer L. After that, the covariance matrix is calculated for each block
and the resulting features are concatenated. Finally, the second-order features
are sent to a classifier to classify the data.

PCANet-II has been tested on different benchmarks for classification and
progression tasks. Among these databases are CAS-PEAL-R1 for classification
and the UNBC-McMaster pain dataset for the regression task. The results of

Chapter 2. Background and Related Works 52

FIGURE 2.30: The main architecture of PCANet-II.

the experiments proved the effectiveness of using both second-order pooling
and the BFD scheme, with improved running time and fewer features.

2.3.6 ScatNet [16]

Rigid and non-rigid transformations of the images inside a class make the clas-
sification task difficult, and the Euclidean distance cannot measure the similar-
ity within a class due to this variability [16]. As a result, the authors of [16]
concentrated on creating an invariant of each class and maintaining useful in-
formation from the images included inside this class.

The researchers initially focused on the translation transformation and proved
that the Fourier transform is not stable for small deformations. This instability
of low distortion becomes large at high frequencies, not at low rates. As a result,
some researchers have used the Fourier transform to kill the high-frequency
signals, resulting in the loss of such information. In contrast, the wavelet trans-
form is stable for deformations. Thus, if we have a signal x, we can compute
the wavelet operator by multiplying the Fourier transform of the signal by that
of the wavelet and applying a band pass filter to cover the low frequencies that
are not covered by the wavelet, such as described in the following equation:

pUx = x ∗∅(t), x ∗ ψγ with ψγ(t) = 2−jQψ(2−jQ(t)), and γ = 2−jQ, (2.22)

Chapter 2. Background and Related Works 53

where Q is the wavelet bandwidth (number of wavelets per octave), γ is the
location in the frequency and ψγ is the band-pass filter.

After applying the wavelet to the signal, the authors of [16] found that
higher frequencies to be localised in time, but not in the frequency domain.
They removed this sensitivity by averaging and restoring the lost information
by adding more layers (deep network). They also found the use of a non-linear
map to be mandatory, since the integration of a linear activation function re-
sults in zero at all times (

∫
x ∗ ψ(t) dt = 0). They also proved the module to

be the best nonlinear function for their work. Hence, the scattering transfor-
mation is calculated by scattering the signal information along different paths
γ1, γ2, . . . , γm with a cascade of wavelet module operators implemented in a
deep network (Figure 2.31).

FIGURE 2.31: Iterating scattering propagator W̃ defines the con-
volution network. Captured from [16].

Both ScatNet [16] and CNNs use nonlinearity across layers, a pooling mech-
anism (max pooling or averaging) and the convolution concept (Wavelet in
ScatNet). The primary difference between the two networks is that only the
last layer of the CNN produces outputs, while each layer of ScatNet generates
coefficients. In addition, in ScatNet, the entire structure is known in advance as
we bring the high frequencies back to low rates, when the depth of the network
increases and the energy at the end of the structure becomes zero.

Chapter 2. Background and Related Works 54

The scattering network was designed for classification tasks. The authors
of [16] first tested their network using the MNIST dataset, with the only trans-
formation of the images being translation. The size of the invariant used to
test the MNIST was of the order of eight pixels 2j = 8, and so the number of
the windows was 16 in each layer, and the architecture consisted only of two
layers. After applying the scattering network to the entire database, the result
was a vector that combined all the first- and second-order coefficients. The re-
searchers ended by applying PCA to the output of the network to transfer it to
the PCA space. Therefore, to test a new sample, the scattering network is used
to extract the features, move the output to the PCA space and measure the dis-
tance between it and the training examples to find the closest class, which is
the nominated one. In [16], the scattering network achieved a state-of-the-art
result in the MNIST database with an error rate of 0.6%. The authors also tested
ScatNet on the UIUC database, which they referred to as a type of texture clas-
sification, and three types of transformation were also considered, including
translation, scaling and rotation. They achieved a state-of-the-art result in the
UIUC dataset, with an error rate of 1%. The authors also used the SVM to test
their network and found a slight improvement in the results.

2.4 Conclusions and Discussion

The ability of a system to learn complex non-linear functions that map the raw
input directly to the output, known as "representation learning", is a crucial
capability in deep learning techniques. Having the ability to learn complex
functions automatically is becoming increasingly important as the amount of
data and potential applications for machine learning techniques increase [34].
This chapter provided an overview of deep learning models that can auto-
matically learn representations from raw data using gradient-based or non-
gradient-based techniques. The content of this section is divided into three
subsections: a summary of gradient-based models with their limitations (Sec-
tion 2.4.1), an overview of non-gradient-based style models (Section 2.4.2) and
a justification for selecting PCANet as the baseline for the upcoming chapters
(Section 2.4.3).

Chapter 2. Background and Related Works 55

2.4.1 Gradient-Based Models and Their Limitations

In Section 2.2.1, we provided a comprehensive overview of standard gradient-
based convolutional architectures that are specifically designed for classifica-
tion tasks. We started the section by describing LeNet-5, as this network served
as the baseline architecture for all CNNs designs. Next, we discussed AlexNet,
a convolutional neural network that has influenced many others and contributed
significantly to deep learning for computer vision. Then we reviewed other
standard state-of-the-art convolutional architectures, such as VGGNet, network
in network, ResNet, Maxout, stochastic pooling, fractal network and many oth-
ers.

Despite the remarkable achievements of deep gradient-based models in im-
age classification, these models suffer from some problems. The vanishing or
exploding problem is one example of these problems. Although various tech-
niques, such as normalisation layers or ReLU activations, have been developed
to mitigate this problem, it remains a relevant challenge in the deep learning
era. Another problem with deep gradient-based models is the large number of
parameters these models require for the training. Transfer learning [63] may be
used to reduce the number of parameters needed for training a deep learning
model and improve performance on a particular task. However, it is essen-
tial to carefully consider the choice of the pre-trained model, the fine-tuning
dataset, and any additional techniques needed to mitigate potential issues such
as overfitting.

The backpropagation is also a problem related to the gradient-based mod-
els since prior knowledge of the forward architecture is required [64], and not
all properties in the world are differentiable. Deep generative models such as
those discussed in Section 2.2.2 are probabilistic models that do not require
backpropagation during their pre-training phase, although they can still be
fine-tuned using backpropagation. During pre-training of the deep belief net-
work, for example, each layer is trained as a Restricted Boltzmann Machine
(RBM) using the Contrastive Divergence (CD) loss, which involves sampling
from the distribution of the RBM and then using the difference between the
positive and negative phase distributions to compute the gradient of the weights.
The CD loss is computationally expensive as it involves repeatedly sampling
from the model’s distribution to update the network weights. In general, deep
generative models offer an alternative to deep gradient-based models with
backpropagation, but they also suffer from computational challenges that should
be carefully considered.

Chapter 2. Background and Related Works 56

2.4.2 Non-Gradient-Based Models And Their Advantages

In Section 2.3 of this chapter, we reviewed non-gradient-based models that are
trained without backpropagation or gradient descent. Examples of such net-
works include deep SVM, deep forest, scattering network and PCANet. Al-
though non-gradient-based models may not have the same level of computa-
tional capability as gradient-based models, they present some advantages over
them. For example, these networks involve no gradient calculations, which
eliminates the need to deal with vanishing or exploding gradient problems.
Moreover, these networks are trained sequentially, one layer after another, which
provides a faster training time advantage to these models over traditional gradient-
based models.

Deep non-gradient-based models have achieved state-of-the-art performance
in some databases, such as UIUC and MNIST. However, their overall per-
formance is not comparable to that of standard deep gradient-based models.
Therefore, this thesis aims to explore the limitations of non-gradient-based
models and develop techniques to improve their performance.

2.4.3 PCANet As Baseline Model

PCANet is chosen as the baseline for our works for the subsequent chapters for
the following reasons:

• PCANet has achieved state-of-the-art performance in many benchmarks,
including MNIST for hand-written recognition and many other face recog-
nition and verification databases, including Extended Yale, AR and FERET,
which confirms its generalisation abilities across different classification
tasks;

• Compared to other non-gradient-based models, such as scattering net-
work, PCANet architecture is simple and easy to implement, which makes
this network an ideal candidate for a baseline model.

PCANet has proven successful in image classification tasks, but it suffers
from some limitations. Firstly, the filters’ learning process involves using the
PCA method, which is not designed specifically to perceive relationships be-
tween classes in the context of image classification. Secondly, despite the im-
portance of network depth in achieving good classification accuracy, PCANet
depth is limited to only two layers. Thirdly, PCANet did not provide good
accuracy performance with databases that contains variability in the images,
such as in the CIFAR-10 database. This thesis focuses on the development of

Chapter 2. Background and Related Works 57

networks that are robust against these types of weaknesses. In the following
chapters, we discuss these networks and their abilities to address the previous
limitations.

58

Chapter 3

Multi-Layer PCANet for Image
Classification

3.1 Introduction

In the context of networks trained without backpropagation, PCANet [15] of-
fers remarkably simple architecture for image classification. The network’s
topology relies on three main stages, which are 1) filter learning, 2) binarisation
and encoding and 3) histogram pooling. The filter bank is generated using an
unsupervised PCA method applied to stacking patches of images. The filters
are applied to the images on a single-channel basis, meaning that each filter is
applied to one channel to produce one new greyscale image. Consequently, the
number of channels in the subsequent layer grows rapidly to channels×filters.
The binarisation step in PCANet cuts the filters’ responses into only zeros and
ones using the Heaviside function. The local binary pattern method then en-
codes the binary feature maps into a single representation that is sent to the
histogram pooling to generate the features required for the classification.

PCANet has shown good performance across several benchmarks and state-
of-the-art results in the MNIST database. However, some potential problems
associated with its structure include:

• A shallow network structure that is limited to two layers, which may
cause losses in performance, especially with complex databases;

• A feature maps binarisation step that restricts the filters’ responses to only
ones or zeros, leading to a significant information loss;

• Histogram-pooling and one-channel basis convolution mechanisms that
lead to features explosion problem;

Chapter 3. Multi-Layer PCANet for Image Classification 59

• An unsupervised filter learning technique in which it is possible for the
subsequent layers to lose discriminative information of the previous lev-
els.

In this chapter, we present the Multi-Layer PCANet network, which aims
to tackle the main problems with PCANet. First, we employ late fusion to in-
tegrate class posteriors, incorporating supervised learning into PCANet while
maintaining its single-pass structure. Second, we reduce the total number of
features using second-order pooling, which was recently adopted by CNNs
and PCANet-II [23]. We also refine the approach by replacing the binarisa-
tion step in PCANet with z-score normalisation, which provides more informa-
tive features. Finally, we use the standard PCANet+ [24] convolutional layers,
which were inspired by CNN.

The chapter is organised as follows: Section 3.2 introduces the network
architecture with its main components, namely convolutional layers (Section
3.2.1), second-order pooling (Section 3.2.2), spatial pyramid pooling (Section
3.2.3) and late fusion (Section 3.2.4). Section 3.3 then summarises the results ob-
tained by using our network, including a description of the databases (Section
3.3.1), ablation study to show the importance of each component in the net-
work (Section 3.3.2), the effect of the network hyper-parameters (Section 3.3.3)
and classification performance across four benchmarks (Section 3.3.4). Finally,
the conclusion of the chapter is presented in Section 3.4.

3.2 Multi-Layer PCANet Structure

The overall structure of Multi-Layer PCANet, as described in Figure 3.1, com-
prises a stack of PCA convolutional layers; on top of each one lies a second-
order pooling and a classifier. The probabilities generated by all layers are com-
bined using a final classifier, which is referred to as late fusion. Spatial pyramid
pooling [65] can be added between the second-order pooling and the classifier
to reduce the number of dimensions. The following subsections highlight the
key components of the network: PCA convolutional layers, second-order pool-
ing, spatial pyramid pooling and late fusion.

Chapter 3. Multi-Layer PCANet for Image Classification 60

FIGURE 3.1: Multi-Layer PCANet structure

3.2.1 PCA Convolutional Layers

Unlike CNNs, PCA convolutional layers rely on learning W(L) from X(L−1)

with no backpropagation, where XL−1 represents the previous layer’s output.
For N training images, i.e. X(L−1) = {{Xi}}N

i=1 : Xi ∈ Rm×n×dL−1}, where
dL−1 represents the number of filters in layer (L − 1), the PCA filters can be
calculated as follows:

1. Given an input image X(L−1) and a filter size kL × kL, we first scan ev-
ery possible location in the input feature maps to extract local windows.

Chapter 3. Multi-Layer PCANet for Image Classification 61

Figure 3.2 gives an example of such a process, whereby a vector is con-
structed from each local window and then the vectors are combined to
form a matrix.

2. We subtract the mean from the matrix generated by the previous step,
resulting in a matrix X̄i ∈ R(k2

LdL−1)×m̃ñ, where m̃ = (m − kL) + 1, ñ =

(n− kL) + 1 and m and n are the width and the height of the image, re-
spectively;

3. We repeat the previous operation for all images in the dataset. We then
concatenate the vectorised version of all zero-mean patches to form a ma-
trix X̄ ∈ R(k2

LdL−1)×Nm̃ñ;

4. We solve the following equation to find dL principle components of (X̄L−1X̄L−1T
):

min
V∈R(k2

L)×dL−1

||X̄L−1 −VVTX̄L−1||2F, VTV = IdL−1, (3.1)

where IdL−1 is the identity matrix of size dL−1 × dL−1;

5. We can express the PCA filters as the following:

WL
s = mat

kL×kL×dL−1
qs, s = 1, 2, . . . , dL, (3.2)

where mat
kL×kL×dL−1

(v) is the function that maps the vector v ∈ Rk2
LdL−1 to

tensor W ∈ RkL×kL×dL−1 , qs is the sth principal eigenvector of X̄L−1X̄L−1T

and dL is the number of filters chosen for the layer (L);

6. We obtain the output of each convolution layer by convolving each filter
with the sample images.

XL
i = XL−1

i ∗WL
s ∈ Rm×n×dL , (3.3)

where s = 1, 2, . . . , dL and XL−1
i is zero-padded to get the same image

size.
In fact, the convolution operation could be transformed into a matrix mul-
tiplication [66]. Thus, after dividing the image into zero-mean patches as
described in step 2, we multiply the resulting matrix by the vectorized
filter and reshape the image.

Chapter 3. Multi-Layer PCANet for Image Classification 62

FIGURE 3.2: Example of extracting image patches using a filter of
size kL × KL.

3.2.2 Second-Order Pooling

Second-order pooling, as shown in Figure 3.1, is attached to the output of each
convolutional layer. The computation of the second-order features is done lo-
cally for every single image in the database. Therefore, for N training samples
XL

i ∈ Rm×n×dL , where dL is the number of filters in layer L, we first divide
each tensor into patches of the same size, e.g. (r × c). These patches could be
overlapped. Then, unlike PCANet [3] and its variant, we normalise each patch
using the z-score normalisation method, which is defined as follows:

z =
x− µ

σ
, (3.4)

where µ is the mean of the patch data and σ is the standard deviation of the
patch observed values. Finally, we compute the covariance matrix of the chan-
nels using the samples from the patch. This could be done by reshaping every

Chapter 3. Multi-Layer PCANet for Image Classification 63

single patch into (rc × dL) before calculating the covariance metrics. The co-
variance matrix is positive semidefinite and has a symmetric property. As a
result, we only require the upper or lower triangle of the covariance matrix to
capture the second-order features of each patch rather than the whole matrix.
Figure 3.3 summarises the procedure of computing the second-order features
from the tensor XL

i . More details about computing the covariance matrix are
illustrated in the following subsection.

FIGURE 3.3: Example of extracting the second-order features from
a tensor XL.

3.2.2.1 Covariance Computation

For M data points X ∈ RM×d, where d is the number of the features and X is
drawn from the Gaussian distribution, the covariance matrix of X is defined as
follows:

Σ =
1
M

M

∑
k=1

(xk − µ)T(xk − µ), (3.5)

where µ is the sample mean defined as follows:

µ =
1
M

M

∑
i=1

Xi. (3.6)

One of the fundamental properties of the covariance matrix is that it is a
symmetric non-negative semi-definitive matrix that lies on a Riemannian man-
ifold. Most of the classifiers, including SVM, are developed in the Euclidean
space. Therefore, using these classifiers directly to the covariance features is
inappropriate. In order to consider the characteristic of the Riemannian mani-
fold, the covariance features should be encoded to the Euclidean space before
using the classifiers, e.g. SVM. The mapping to the Euclidean space could be
done using the logarithmic matrix [67] or the root square matrix (Σ

1
2) [59, 67,

68]. In general, the square root matrix tends to produce good results compared

Chapter 3. Multi-Layer PCANet for Image Classification 64

to the logarithmic matrix [67].

To calculate the square root matrix of (Σ), we first factorise (Σ) using eigen
decomposition or singular value decomposition, as in the following:

Σ = UΛUT, (3.7)

where Λ = diag(λi : i = 1, 2, 3, . . . d) is the diagonal matrix with eigenvalues
[λi : i = 1, 2, 3, . . . d]. U represents the orthogonal matrix whose column Ui is
the eigenvector that corresponds to λi eigenvalue. The square root matrix is
then defined as the following:

Σ
1
2 = U diag(λ

1
2
1 , λ

1
2
2 , . . . λ

1
2
d)U

T. (3.8)

The covariance matrix in our method, as mentioned previously, is computed
locally in a patch-wise, channel-wise manner. Since a covariance matrix is cre-
ated for each patch, the number of samples, which corresponds to the number
of pixels in a patch, may be smaller than the number of filters. Therefore, the
square root matrix cannot be estimated accurately using equation 3.8. To tackle
this problem, we use the following equation, as described in [69], to estimate
the covariance matrix, whereby Σ̃ is a regularized estimate of Σ1/2:

Σ̃ = Udiag(δi : i = 1, 2, . . . , d)UT , δi =

√(
1− α

2α

)2

+
λi

2α
− 1− α

2α
, (3.9)

where U is the orthogonal matrix with the eigenvectors as its columns, (λi, i =
1 . . . d) are the eigenvalues in decreasing order and α is a regularising parame-
ter that sets to 1

2 in all experiments, as in [59].

To gain more discriminative information, we combined the first-order statis-
tic (mean) with the second-order statistic, as in [59], using the following sym-
metric positive definitive matrix:

N (µ, Σ̃) ∼
(

Σ̃ + µµT µ

µT 1,

)
(3.10)

where Σ̃ and µ are the estimated covariance and the sample mean, respectively.

In summary, for any PCA features, we first use equations 3.5 and 3.6 to cal-
culate the mean and covariance of the samples, respectively. We then compute

Chapter 3. Multi-Layer PCANet for Image Classification 65

the estimated covariance through equation 3.9. Finally, we combine the mean
and the covariance using equation 3.10. The number of features for each con-
volution layer is (dL + 1)(dL + 2)/2− 1× the number of patches.

3.2.3 Spatial Pyramid Pooling

Spatial pyramid pooling (SPP) was introduced in [65] to eliminate the require-
ment for training CNN with a fixed size image input (e.g. 244× 244) and there-
fore enable the CNN to be trained with images of different sizes. The basic idea
of SPP is to generate a fixed representation by pooling features in arbitrary re-
gions or sub-images called bins.

In our network, adding SPP is optional. The images have fixed size (e.g.
32× 32× 3), and the SPP is connected optionally to the second-order pooling
(SOP) to reduce the number of features and extract information invariant to
complex backgrounds and large poses. As described in Section 3.2.2, the num-
ber of features depends not only on the covariance matrix dimension but also
on the number of blocks (patches) each tensor is divided into. Attaching SPP
to SOP helps to reduce the number of blocks (patches) and, in general, the SOP
features.

Figure 3.4 provides an example of using SPP to reduce the number of patch
features from 64 to 21 where the features fi, i = [1, 2, 3, . . . , 64] are the second-

order features fi ∈ R
dL×dL

2 +
dL
2 and dL is the number of responses (filters) in layer

(L).

SPP utilises fixed multi-level spatial bins. For instance, in Figure 3.4, we
have three-level spatial pyramid pooling with a number of bins equal to 16, 4
and 1, respectively. SPP can consistently maintain spatial information by pool-
ing data in those locally-defined bins whose sizes scale with the number of
patches. Thus, for every single bin, we pool the data using max-pooling to
get a feature Pi, where i = [1, 2, . . . , number of bins]. As a result, the num-

ber of the features in the example is reduced from f ∈ R(
dL×dL

2 +
dL
2)×64, where

f = [{ fi}64
i=1, fi ∈ R

dL×dL
2 +

dL
2] to P ∈ R(

dL×dL
2 +

dL
2)×21, where P = [{Pi}21

i=1, Pi ∈
R

dL×dL
2 +

dL
2], and (21) is the total number of bins.

Chapter 3. Multi-Layer PCANet for Image Classification 66

3.2.4 Late Fusion

The output of the intermediate convolutional layers could provide interesting
information about the images, e.g. local parts, edges and low-level features.
Therefore, fusion strategies are essential for improving the recognition rate and
offering precise results [70]. The data fusion aims to combine multiple convo-
lutional layers’ outputs for a better performing recognition model, as opposed
to using a single layer’s output. We can distinguish two fusion approaches, as
shown in Figure 3.5: early fusion, where the features extracted by each layer
are concatenated before classification, and late fusion, where the layers-wise
classification results are merged.

Early fusion, also known as feature-level fusion, relies on fusing the second-
order features we obtain from the convolutional layers to create a new repre-
sentation that is more expressive than the separate representation generated by
a single layer. In this kind of fusion, we combine the features first and send
the fused features to a classifier to predict the final recognition rate. Table 3.1
describes possible fusion methods to incorporate the layers’ features, including
concatenation, max pooling and the statistical mean. One disadvantage of us-
ing early fusion is that the number of features grows faster if we concatenate
the features, and when we use the max/mean fusion method, we are restricted
to using the same number of filters for all layers. Applying a selection method
to the fused features is sometimes preferable for achieving better recognition
results.

Late fusion, also called decision-level fusion, combines the posteriors’ prob-
abilities (the decisions) from multiple convolutional layers’ classifiers to make
a more precise and reliable decision. The methods explained in Table 3.1 can
be used to combine the posteriors of the convolutional layers. The late fusion
method significantly reduces the number of features compared to the early fu-
sion one. Moreover, researchers [70, 71] have shown that the late fusion strat-
egy could produce a comparable and even better recognition rate than the early
fusion method.

In our experiments, we use the late fusion method. In particular, our proce-
dure starts with extracting the second-order features from each convolutional
layer separately. Then we average the classifiers’ scores and send the fused
scores to the support vector machine (SVM) classifier for the final prediction.

Chapter 3. Multi-Layer PCANet for Image Classification 67

TABLE 3.1: Fusion methodology

Fusion method Definition
Concatenation f = [f1, f2, . . . , fN], where fi ∈ Rdi f ∈ R∑N

k=1 dk

Max fk = maxd
i=1(f i

k), where k = 1, . . . , N and f ∈ RN

Sum fk = ∑d
i=1(f i

k), where k = 1, . . . , N and f ∈ RN

FIGURE 3.4: Example of using SPP to reduce the number of
patches from 64 to 21 using 3-level SPP with 16, 4 and 1 bin re-

spectively.

Chapter 3. Multi-Layer PCANet for Image Classification 68

FIGURE 3.5: Late fusion methods versus early fusion methods.
Early fusion methods work on the feature space while late fusion
ones split the problem into multiple classification problems and

combine the classifiers’ decisions.

Chapter 3. Multi-Layer PCANet for Image Classification 69

3.3 Experiments and Results

In this section, we start by introducing the four primary datasets we use to
evaluate this network (Section 3.3.1). Then, we study the importance of second-
order pooling, z-score normalisation and late fusion on classification accuracy
(Section 3.3.2). The choice of the network hyper-parameters is also presented
in Section 3.3.3, indicating the significant impact of the second-order pooling
block size on the recognition rate. Finally, the classification performance of our
network using MNIST, CIFAR-10, CIFAR-100 and TinyImageNet is revealed in
Section 3.3.4, showing that our network achieves good results, improves on
PCANet [15] and is competitive with old neural networks–based methods, but
not with recent ones.

3.3.1 Databases

We used four standard benchmarks in our experiments: CIFAR-10 [72], CIFAR-
100 [72], MNIST [73] and TinyImageNet [74].

The modified National Institute of Standards and Technology (MNIST) [73]
is an open resource dataset consisting of handwritten digits images to test ma-
chine learning models while saving effort in terms of preprocessing the images.
The database is composed of 60000 training examples and 10000 test images.
All images are drawn from the same distribution, normalised and centered in a
fixed-size image. All images have a size of 28× 28 pixels, and their centroid is
in the centre of the image. Figure 3.6 shows some examples from this database.

FIGURE 3.6: Mixed examples from the MNIST database.

Chapter 3. Multi-Layer PCANet for Image Classification 70

The CIFAR-10 database [72], named after the Canadian Institute for Ad-
vanced Research, which funded the project, consists of 10 classes with 50000
images for training and 10000 test images. The classes include aeroplane, ship,
automobile, truck, bird, cat, dog, deer, frog and horse. The database is a bal-
anced set, with 5000 training examples per class. All of the images are coloured
and have a size of 32× 32× 3. As shown in Figure 3.7, the images are low-
resolution with different angles and poses.

FIGURE 3.7: Some examples from CIFAR-10 database.

CIFAR-100 [72] is similar to CIFAR-10, but with 100 classes. Each class con-
tains 500 images for the training and 100 examples for the testing. The total
number of training samples is 50000, while the test set consists of 10000 sam-
ples. The 100 classes are grouped into 20 super-classes. Table 3.2 describes the
names of the classes and their super-classes. Every super-class consists of five
classes, and it is hard to distinguish the classes belonging to the same super-
class.

The TinyImageNet database [74] consists of 100000 training images of size
64× 64× 3. The images are divided into 200 categories, with 500 images each.
The validation and the test sets contain 10000 images each, with 50 images per
class. The test set is not labelled, and our experiments’ performance is reported
on the validation set.

Chapter 3. Multi-Layer PCANet for Image Classification 71

Super-class Classes
aquatic mammals beaver, dolphin, otter, seal, whale

fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips

food containers bottles, bowls, cans, cups, plates
fruit and vegetables c apples, mushrooms, oranges, pears, sweet peppers

household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf

large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

TABLE 3.2: Classes and super-classes of the CIFAR-100 database.

3.3.2 Ablation Study on Multi-Layer PCANet Structure

In this section, we use simple configurations (Table 3.3) on the CIFAR-10 database.
These configurations are chosen carefully with different layers, different filter
sizes and a different number of filters. So, we can show the effect of these
parameters on the accuracy of the proposed network, as discussed in Section
3.3.3. In this section, we use the architectures in Table 3.3 to conduct ablation
study on some network components to show their importance. We start by
studying the impact of replacing the histogram descriptor (used in PCANet
[15]) with second-order pooling. We then analyse the effectiveness of using the
late fusion methods over the early fusion ones. More details are described in
the following subsections.

3.3.2.1 The Impact of Using Second-Order Pooling and Z-score Normalisa-
tion

To show the effectiveness of using SOP features over the histogram descriptor,
we tested both by using the configurations described in Table 3.3. Each entry
gives the receptive field size and the number of output filters for that layer. For
example, configuration A has two layers each with 32 filters generated from a
5× 5 window.

Chapter 3. Multi-Layer PCANet for Image Classification 72

TABLE 3.3: Simple configurations to evaluate the Multi-Layer
PCANet on the CIFAR-10 database.

A B C D E F G
Input image 32× 32× 3

5× 5
conv-32

3× 3
conv-24

3× 3
conv-24

5× 5
conv-40

5× 5
conv-40

5× 5
conv-40

5× 5
conv-64

5× 5
conv-32

3× 3
conv-128

3× 3
conv-128

5× 5
conv-8

5× 5
conv-64

5× 5
conv-128

3× 3
conv-40

The method for calculating the histogram descriptor is described in [24].
First, we converted the output of each convolution layer into binary using the
Heaviside function. We then combined every eight responses to form a single
image using local binary patterns. Next, we divided the resulting images into
patches and computed the histogram for each of them. Finally, we concate-
nated the output histograms of all convolution layers and sent it to a classi-
fier, which is SVM in this experiment. To extract the second-order features, we
again converted the filter’s responses to binary using the Heaviside function.
We then calculated the covariance matrix for the filter’s responses as groups of
eight after dividing them into patches.

We studied the effectiveness of replacing the Heaviside function by z-score
normalisation for the second-order pooling. Therefore, assuming that the out-
put of a convolution layer (L) is Y ∈ Rm×n×dL , where dL is the number of filters
in layer (L) and m and n are the width and the height of the output images, re-
spectively, we first divide each m × n image into P patches using a specific
block size and stride, resulting in Y = [pi ∈ Rr×c, i = [1, 2, 3, . . . , P]]dL

1 . We then
vectorise the features of every single patch (pi) and normalise them using the z-
score method. In this experiment, we divided each image into 16 patches with
block size = 8 and stride = 8 before calculating the features (e.g., histogram or
SOP).

Figure 3.8 shows the accuracy and number of dimensions of the models
(A − G) using the three described methods. In terms of accuracy, the results
show a mixed picture. The z-score normalisation was always better than the
step function and confirmed that more discriminative information was retained.
In some configurations, the histogram was better, although the SOP was better
in others. The best result was obtained by histograms in configuration C, with

Chapter 3. Multi-Layer PCANet for Image Classification 73

a 3% advantage over SOP. However, the histogram method generated approx-
imately six times as many features. Our justification for using SOP is therefore
that, while it degrades performance in a specific configuration, the huge reduc-
tion in number of features allows us to apply more complex architectures.

FIGURE 3.8: A) The accuracy of the models (A − G) using his-
togram descriptors and second-order features. We computed the
second-order features after applying either z-score patch normal-
ization (sop z-score) or the Heaviside function (sop step). B) The
number of dimensions generated using the models (A− G) after
either using the histogram pooling (histogram in the figure) or the
second-order pooling (sop). In both sub figures A and B, we used

the CIFAR-10 database.

3.3.2.2 Second-Order Pooling for All Feature Maps and Late Fusion

In [15], the number of histogram bins were assigned to 2L2, where L2 repre-
sents the number of filters in the second stage. This implies that the number of
features increases exponentially with the number of feature maps in the second
layer (L2), limiting the number of feature maps in the second layer to eight. In
[24] and [23], the histogram-based pooling and second-order pooling were cal-
culated after every eight filters’ responses, and the features were concatenated.
In [60, 61, 62], all feature maps were combined to compute the covariance fea-
tures for the hand-crafted and neural network–based methods.

In this experiment, we computed the second-order pooling for the models
in Table 3.3 as combinations of 8, 16 and 24 filter responses. This experiment
aimed to show how accuracy would be affected by combining more feature
maps. Therefore, we first divided the feature maps of every convolution layer
into 16 patches with block size = 8 and stride = 8. We then normalised each
patch using the z-score method. Finally, we calculated the covariance features

Chapter 3. Multi-Layer PCANet for Image Classification 74

for each patch of images by dividing them into sets of 8s, 16s or 24s and con-
catenating the results. The second-order features grew quadratically with the
size of the feature maps, and so the number of features extracted from each
convolution layer was reduced by PCA while keeping 95% of the data. Linear
discriminant analysis was used as the classifier in this experiment.

Figure 3.9 presents the accuracy of calculating the covariance features for
each 8, 16 or 24 feature maps on the models described in Table 3.3. The figure
also displays the accuracy of some configurations (A, D, E and F) when us-
ing all filter responses to compute the covariance features. With more feature
maps involved in computing the covariance features, the accuracy improves.
As a result, we decided to use all filters’ responses to compute the covariance
features.

Finally, we added the late fusion method, whereby we ran an LDA classifier
for each layer and combined the posteriors by concatenating them. This, again,
radically reduced the number of features we needed to use at each stage. Figure
3.10 shows the accuracy of using the late fusion method for computing the
covariance features for the same models described in Table 3.3. The late fusion
method generated comparable or even better results than the early fusion one,
with fewer features for each layer.

FIGURE 3.9: An experiment on the early fusion method with
second-order pooling and z-score normalisation for models A−G
described by Table 3.3 using the CIFAR-10 database, where fea-
tures of all layers are concatenated and processed every 8’s, 16’s,
24’s, and all feature maps before being sent to a linear discrimi-

nant analysis classifier for final prediction.

Chapter 3. Multi-Layer PCANet for Image Classification 75

FIGURE 3.10: An experiment with the late fusion method us-
ing second-order pooling and z-score normalisation techniques
for models A − G, as outlined in Table 3.3, using the CIFAR-10
database. The experiment involves running a linear discriminant
analysis (LDA) classifier on each layer, followed by concatenating
the resulting posteriors from all layers before sending them to a
final LDA classifier for prediction. Second-order pooling is calcu-

lated every 8, 16, 24, and all feature maps.

3.3.3 The Network Hyper-parameters

Hyper-parameters in this section refers to the parameters set by the user and
related to the network structure. These parameters include the filter size, num-
ber of layers, number of filters in each layer and the second-order pooling block
size. The network is trained in a layer-wise manner, and so, the number of lay-
ers is easy to determine; e.g., if the recognition accuracy does not improve, the
training terminates. The following subsections study the effect of the filter size
and second-order pooling block size on the classification task accuracy.

3.3.3.1 The Impact of the Filter Size on the Classification Task Performance

We used the CIFAR-10 database to study the impact of the filter size on the
models (A− G) described in Table 3.3. The filter sizes used in this experiment
were 3× 3, 5× 5 and 7× 7. The min-max normalisation (equation 3.11) was
used between the layers, and the second-order pooling block size was fixed to
8× 8 with stride=8. SVM was the classifier used for each layer, and the proba-
bilities of the layers were averaged and sent to another SVM.

X =
X−min(X)

max(X)−min(X)
. (3.11)

Chapter 3. Multi-Layer PCANet for Image Classification 76

Figure 3.11 shows the accuracy of using different filter sizes on the struc-
tures (A− G) defined in Table 3.3. The results stated that the filter size slightly
impacts the recognition rate. The accuracy when using filter size 7 × 7 was
the worst in all models. However, this degradation was not significant, e.g.,
the difference between the best and the worst accuracy in configuration A was
around 1.93%. Hence, filter size does not seem to be a significant factor.

FIGURE 3.11: Accuracy of the models (A − G) (Table 3.3) using
different filter sizes on the CIFAR-10 database.

3.3.3.2 The Impact of the Second-Order Pooling Block Size on the Recogni-
tion Rate

We used the CIFAR-10 database to test the configurations (A− G) with differ-
ent block sizes to study the impact of the second-order pooling block size. The
experiment was conducted with 8 × 8, 16 × 16 and 32 × 32 block sizes. The
stride of the chosen block sizes was equivalent to the size of the block sizes
themselves. The classifier used was the SVM.

Figure 3.12 shows that the second-order pooling block size dramatically af-
fects the recognition rate. We found that the smaller the SOP block sizes, the
better the model’s accuracy was. On the other hand, using large block sizes
like 32× 32 caused a significant drop in the performance. This indicates that
the smaller block sizes can capture more local information than the full image
size while increasing the number of features.

3.3.4 Multi-Layer PCANet for Image Classification Task

We investigated the performance of different architectures using the four databases,
including CIFAR-10, CIFAR-100, MNIST and TinyImageNet (described in Sec-
tion 3.3.1). We found that the best performances were achieved using the archi-
tectures displayed in Table 3.4. Each entry in Table 3.4 represents the receptive

Chapter 3. Multi-Layer PCANet for Image Classification 77

FIGURE 3.12: Accuracy of the models (A − G) (Table 3.3) using
different SOP block-sizes on the CIFAR-10 database.

field size and number of output filters for that layer. The databases were used
without data augmentation. The only preprocessing used was the min-max
normalisation of the input images (equation 3.11). We set the filter size to 3× 3
in all of the experiments, and the classifier used in every layer was the linear
discriminant analysis (LDA). The LDA classifier was chosen because of its ef-
ficiency, as it generates decision boundaries quicker than other classifiers. The
posteriors of all layers were averaged and classified by SVM classifier. Min-
max normalisation was also applied between the convolutional layers. The
following subsections provide more details about the architectures and their
accuracies.

3.3.4.1 Evalutaion of CIFAR-10 Database

The architecture used to evaluate our network on the CIFAR-10 database is de-
scribed in Table 3.4. The network consisted of eight convolutional layers with
27 filters for the first layer and 50 for the remaining layers. In every layer, the
second-order pooling block size was set to 8× 8 with stride= 1. SPP had been
attached to every layer with 4× 4, 2× 2 and 1× 1 subregions. The first layer

Chapter 3. Multi-Layer PCANet for Image Classification 78

TABLE 3.4: Configurations for CIFAR-10/100, MNIST and Tiny-
ImageNet

MNIST
Layer Number Input Size Filter Size Output Size

1 28× 28× 1 3× 3× 1× 9 28× 28× 9
2 28× 28× 9 3× 3× 9× 40 28× 28× 40
3 28× 28× 40 3× 3× 40× 40 28× 28× 40
4 28× 28× 40 3× 3× 40× 40 28× 28× 40
5 28× 28× 40 3× 3× 40× 40 28× 28× 40
6 28× 28× 40 3× 3× 40× 40 28× 28× 40
7 28× 28× 40 3× 3× 40× 40 28× 28× 40
8 28× 28× 40 3× 3× 40× 40 28× 28× 40
9 28× 28× 40 3× 3× 40× 40 28× 28× 40

CIFAR-10
Layer Number Input Size Filter Size Output Size

1 32× 32× 3 3× 3× 3× 27 32× 32× 27
2 32× 32× 27 3× 3× 27× 50 32× 32× 50
3 32× 32× 50 3× 3× 50× 50 32× 32× 50
4 32× 32× 50 3× 3× 50× 50 32× 32× 50
5 32× 32× 50 3× 3× 50× 50 32× 32× 50
6 32× 32× 50 3× 3× 50× 50 32× 32× 50
7 32× 32× 50 3× 3× 50× 50 32× 32× 50
8 32× 32× 50 3× 3× 50× 50 32× 32× 50

CIFAR-100
Layer Number Input Size Filter Size Output Size

1 32× 32× 3 3× 3× 3× 27 32× 32× 27
2 32× 32× 27 3× 3× 27× 50 32× 32× 50
3 32× 32× 50 3× 3× 50× 50 32× 32× 50
4 32× 32× 50 3× 3× 50× 50 32× 32× 50
5 32× 32× 50 3× 3× 50× 50 32× 32× 50

TinyImageNet
Layer Number Input Size Filter Size Output Size

1 64× 64× 3 3× 3× 3× 27 64× 64× 27
2 64× 64× 27 2× 2 Max Pooling, stride= 2 32× 32× 27
3 32× 32× 27 3× 3× 27× 70 32× 32× 70
4 32× 32× 70 3× 3× 70× 70 32× 32× 70
5 32× 32× 70 3× 3× 70× 70 32× 32× 70

Chapter 3. Multi-Layer PCANet for Image Classification 79

generated 8508 features, while subsequent layers yielded 27,825 dimensions.

Table 3.5 compares the performance achieved by our model with the per-
formance obtained using PCANet-2 and current state-of-the-art models with
no data augmentation. Our eight-layers model gained 81.72% accuracy, which
is 4.58% better than PCANet with only two layers. However, the current state-
of-the-art architectures obtained better accuracy than the one we achieved. We
also compared our model to its CNN counterpart model, which has the same
structure as our network but is trained using backpropagation. The model was
trained by attaching a fully connected layer with ten neurons to the output of
the last convolutional layer. When the training had finished, we disconnected
the fully connected layer and added second-order pooling, spatial pyramid
pooling and an LDA classifier to each convolutional layer. The neural network
counterpart of our model had trained for 100 epochs with Adam optimiser and
a start learning rate of 0.001. The CNN’s counterpart of our model achieved
an accuracy of 85.1%, which is 3.39% better than our network. However, our
model learns the features faster and is competitive with some simpler deep
learning methods.

Our architecture is a simple yet improved version of PCANet. To further il-
lustrate the efficacy of our network, we compared the number of floating point
operations (FLOPs 1) required by our model to those of PCANet and other ex-
isting methods during the training phase of these networks. Such comparisons
are described in Table 3.5. We re-implemented four residual networks, includ-
ing ResNet-20, ResNet-32, ResNet-44 and ResNet-56, using the same parame-
ters described by [5], and the reported results are the average of five runs. Our
findings demonstrated that our network produced the fewest FLOPs on the
CIFAR-10 database without data augmentation. Although our model’s accu-
racy was not comparable to that of the state-of-the-art gradient-based models,
it improved more than 4% over the original PCANet and used fewer FLOPs.
Overall, the accuracy achieved by our model is promising, considering that
it was trained without complex non-linear functions or regularization tech-
niques.

1Measured in quadrillions (P)

Chapter 3. Multi-Layer PCANet for Image Classification 80

TABLE 3.5: Comparison of the accuracy (%) of some methods on
the CIFAR-10/CIFAR-100 database with no data augmentation.

We re-implemented the networks marked with (*).

Method CIFAR-10 CIFAR-100 #FLOPs (P)
Stochastic pooling [8] 84.87 57.49 0.608
Maxout network [7] 88.32 61.43 –

Network in network [31] 89.59 64.32 –
ALL CNN [9] 90.2 - 14.0

Fractal network [11] 89.82 64.66 –
110 ResNet, reported by [45, 75] 86.82 55.26 7.14

ResNet stochastic depth [45] - 62.20 –
164-ResNet (pre-activation), reported by [75] - 64.42 –

Dense network(k=24) [75] 94.08 76.58 625
Dense network-BC (k=24) [75] 94.81 80.36 –

ResNet-20* 84.442 – 1.29
ResNet-32* 84.664 – 2.1444
ResNet-44* 83.17 – 2.8953
ResNet-56* 83.29 – 3.844

PCANet-2 [15] 77.14 – 0.0166
PCANet-2* – 51.62 0.0176

PCANet-2 (combined) [15] 78.67 - –
Multi-Layer PCANet-8 81.72 – 0.00824
Multi-Layer PCANet-5 – 57.86 0.00501

Multi-Layer PCANet-8 CNN counterpart 85.1 – 4.56
Multi-Layer PCANet-5 CNN counterpart – 56.96 2.49

3.3.4.2 Evaluation on CIFAR-100 Database

We adopted the same network structure used for the CIFAR-10 database, albeit
with the number of layers reduced to five. After the fifth layer, no performance
gain was noticed; therefore, we stopped adding layers. Table 3.5 compares the
accuracy and FLOPs obtained by our model with that of PCANet and previous
neural networks-based works with no data augmentation. PCANet accuracy
result was achieved by adopting the same model used in [15] for the CIFAR-
10 database, albeit with the CIFAR-100 database. The CNN counterpart of our
network is a neural network-based model trained with the same structure as
our network but with backpropagation. The CNN counterpart of our model
is trained using Adam optimiser with an initial learning rate of 0.001, and the
number of epochs is 100.

As shown in Table 3.5, we obtained an accuracy of 57.86% on this dataset,
which is an improvement of more than 6% compared to PCANet with two lay-
ers. Our five-layer model also showed a significant enhancement of 2.60% over
ResNet with 110 layers with fewer FLOPs required for training. Moreover, the

Chapter 3. Multi-Layer PCANet for Image Classification 81

proposed network generated about the same error rate as the stochastic pool-
ing method [8] and its CNN counterpart but showed a considerable reduc-
tion in the number of FLOPs compared to these networks. The dense network
obtained the best performance among the other networks, with an error rate
of 22% less than the one we achieved. Overall, our approach improved on
PCANet-2 in terms of accuracy and number of FLOPs required for training and
was competitive against some older CNN-based networks, but not as good as
more recent ones.

3.3.4.3 Evaluation on the MNIST Database

In this experiment, we used nine convolutional layers with 9 filters for the first
layer and 40 for succeeding layers. The last convolutional layer was connected
to a second-order pooling with a 7× 7 block size and a stride of 1. The features
generated by the second-order pooling were reduced using a three-level SPP of
16,4 and 1 bins. On this database, the accuracy was not improved by using the
late fusion technique. Hence the late fusion method was not used in this ex-
periment; instead, the accuracy of the last layer is provided as the performance
result.

Table 3.6 displays the accuracy of our model compared to that of PCANet
with one and two layers. We obtained the same results as those obtained by
PCANet, which indicates that adding more layers to the MNIST database does
not necessarily improve accuracy. Table 3.6 also compares the number of fea-
tures generated by our network to that generated by two layers PCANet and
LDANet. Our network produced approximately six times fewer features than
the original baseline. This indicates that despite achieving similar performance
as PCANet, our network significantly reduces the number of features a classi-
fier needs to handle.

TABLE 3.6: Comparison of the accuracy and number of features
of some PCANet methods on the MNIST database with no data

augmentation.

Method Accuracy(%) #Features
PCANet-1 [15] 99.06 –
PCANet-2 [15] 99.34 73728
LDANet-1 [15] 99.02 –
LDANet-2 [15] 99.38 73728

PCANet-1 (k = 13) [15] 99.38 –
Multi-Layer PCANet (ours) 99.40 18060

Chapter 3. Multi-Layer PCANet for Image Classification 82

3.3.4.4 Evaluation on TinyImageNet Database

The network structure used in this experiment consisted of five convolutional
layers and one max-pooling layer (Table 3.4). The first layer was a convolu-
tional layer with 27 filters followed by a max-pooling layer to reduce the num-
ber of dimensions—finally, four convolutional layers with 70 filters each. The
second-order pooling attached to each convolutional layer had a block size of
16 × 16 with a stride of 1. The covariance features of the first convolutional
layer were reduced using three-level SPP with 16,4 and 1 bins. A two-level SPP
with 2× 2 and 1× 1 subregions was attached to the subsequent convolutional
layers’ second-order features. We ran the LDA classifier for each layer, and the
SVM classifier made the final prediction on the averaged posteriors. The accu-
racy reported was in the validation set, since the test set was not labelled. It
is important to note that the validation set was utilised only as the test set and
was not included in any training procedures. In addition, the first convolu-
tional layer generated 8505 features, while the following convolutional layers
produced 9450 dimensions.

Table 3.7 compares the accuracy of our model with those obtained by PCANet-
2, ResNet-34 and ResNet-50, as reported by [76], with no data augmentation.
The optimal parameters we found for PCANet-2 consisted of a filter size k1 =

k2 = 5, number of filters L1 = 30, L2 = 8 and histogramming block size=
16× 16 with overlapping ratio= 0.5. We achieved the best error rate with no
data augmentation to the best of our knowledge.

TABLE 3.7: Comparison of the accuracy of some methods on the
TinyImageNet database with no data augmentation

Method Accuracy%
ResNet-34 [76] 33.50
ResNet-50 [76] 26.20

PCANet-2 30.00
Multi-Layer PCANet (ours) 40.87

3.4 Conclusion

In this chapter, we have presented the Multi-Layer PCANet, which improves
the performance of PCANet [15] and reduces the number of features. The net-
work structure relies on three main components and one optional layer. The

Chapter 3. Multi-Layer PCANet for Image Classification 83

three main elements of the network include late fusion, multi-channel convo-
lutional layers and second-order pooling. The spatial pyramid pooling is an
optional layer applied to reduce the number of dimensions. The z-score nor-
malisation has replaced the binarisation step in the original PCANet.

The experiments section indicates the importance of each component in
the network. It shows that replacing the histogram pooling with the second-
order pooling generated good performance while reducing the number of di-
mensions and allowing a deeper structure. The usage of z-score normalisa-
tion showed better performance than the Heaviside function. Moreover, we
have shown that Multi-Layer PCANet improved performance over PCANet
and achieved competitive results with some simpler CNN architectures.

The Multi-Layer PCANet could be presented as a hybrid model that com-
bines the CNN-like filter from PCANet+ [24] with the second-order pooling
used in PCANet-II [23], along with other refinements, such as z-score normal-
ization and late fusion. The experimental section did not compare Multi-Layer
PCANet to PCANet+ or PCANet-II, as these networks use histogram pooling
or 1-D convolution, which generates many features that a classifier cannot han-
dle. For example, using PCANet+ with one layer and 40 filters, we would
require to compute 240 histogram features, which is challenging for a classifier
to handle.

In summary, the Multi-Layer PCANet has demonstrated better accuracy
and fewer FLOPs than the original PCANet, as well as outperforming all gradient-
based models in terms of the number of FLOPs required for training. The
performance achieved by the Multi-Layer PCANet is promising for a method
whereby the features are unsupervised, but this is also a weakness of the archi-
tecture because we cannot learn which features are essential for the classifica-
tion task. The next chapter studies supervised convolutional layers whereby
the filters are learned with straightforward closed-form solutions similar to
PCANet.

84

Chapter 4

Stacked Linear Discriminant
Analysis (Stacked-LDA)

4.1 Introduction

The work in [15] presented a two-stage network named PCANet for image
classification tasks. The filters in this network are obtained with the principal
component analysis (PCA) algorithm with convolutional layers to carry out
the learning process. Post-processing procedures, such as binary hashing and
block-wise histograms, are applied to the extracted features, which can then
be used in the final classification step. While PCANet may not have the same
capabilities as conventional CNNs, which often use backpropagation to extract
features, its accuracy has been proven to be competitive in benchmark datasets.
The authors of [15] reported good accuracy in many tasks, including hand dig-
its and face recognition and face verification. Moreover, the network achieved
state-of-the-art results with the MNIST dataset.

Inspired by PCANet [15], we presented Multi-Layer PCANet for image clas-
sification tasks in the previous chapter. The main contribution of this network
is that it increases the depth of PCANet while reducing the computational cost.
With the adoption of CNN-like filters [24] and usage of second-order pooling,
it is possible to reduce the number of features and subsequently increase the
number of convolutional layers. The late fusion method reduces the num-
ber of features that the final classifier can handle while providing competitive
performance. Z-score normalisation replaces the binary-hashing operation in
the original network and provides more stable information. In general, Multi-
Layer PCANet achieved satisfactory results in terms of accuracy and computa-
tional cost. The network presented better accuracy than the original architec-
ture and was competitive with old CNN-based networks, although not recent

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 85

ones.

PCANet [15] and Multi-Layer PCANet (Chapter 3) are feature extractor
methods that use unsupervised PCA to learn the filters bank without class in-
formation. This architecture’s weakness prevents the network from learning
essential features for the classification task. LDANet, described in [15], incor-
porates class information by replacing the PCA filters in the original architec-
ture with filters learned using multi-class linear discriminant analysis (LDA).
However, the authors of [15] stated that LDANet did not show improved clas-
sification performance over its PCANet counterpart. Therefore, in this chap-
ter, we propose the Stacked-LDA model to incorporate class information while
maintaining reasonable accuracy over the baseline architecture.

In contrast to PCANet and Multi-Layer PCANet, the supervised Stacked-
LDA network is a suitable alternative to the single-layer neural network since
it is faster to train and does not need gradient computations to update the net-
work’s weights. The proposed algorithm is composed by stacking two LDA
classifiers. The first classifier converts the original samples into a higher di-
mensional space using a set of new labels. The second is then trained to classify
the posteriors resulting from the previous layer into the actual classes. Section
4.2 provides a detailed description of the Stacked-LDA algorithm (4.2.1), two
possible ways to generate the new labels by considering the classifier’s error
iteratively (4.2.1) and two experiments on digits recognition using the MNIST
database (4.2.2.1 and 4.2.2.2). The results from the experiments show that our
model presents good accuracy, reduces training time and compares well to
the full-image architectures. The following section (Section 4.3) proposes a
new relabelling technique to generate the desired number of classes in a non-
iterative form. The proposed approach, which is evaluated on two databases
(4.3.2), CIFAR-10 and MNIST, reduces training time and consequently gains
performance. Section 4.4 of this chapter presents the convolutional version
of the Stacked-LDA network. The network architecture, described in 4.4.1,
consists mainly of several convolutional layers followed by a non-linear ac-
tivation layer, second-order pooling and an optional spatial pyramid pooling
layer. The convolutional filters are obtained by training the stacked-LDA algo-
rithm in each layer. The proposed model has been evaluated on four databases
(4.4.2): CIFAR-10, CIFAR-100, MNIST and TinyImageNet. The error results in
comparison with PCANet and Multi-Layer PCANet show that the proposed
architecture has a lower error rate in all of the evaluated datasets except the

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 86

MNIST database, as it provides the same performance as the baseline architec-
tures. Finally, we conclude the work of this chapter in Section 4.5.

4.2 General Stacked-LDA Model

4.2.1 Description and Algorithm

Stacked-LDA is a single-layer network, and its design is inspired by how the
traditional neural network works with non-linearly separable datasets. Fig-
ure 4.1 shows an example of a dataset consisting of two non-linearly separable
classes. This binary classification problem involves 200 instances with two in-
put features. A single-layer neural network like the one shown in Figure 4.2 is
sufficient to distinguish the classes in this database. This neural network model
transforms the two input features into a higher-dimensional space, for exam-
ple four dimensions. Then the output of the hidden layer’s nodes is processed
and passed to the last layer, where the final classification decision is made. The
number of hidden units can be four, eight or ten; however, the minimum num-
ber for representing this dataset is four. The backpropagation method is then
used to update the weights concerning the output error. A non-linear activa-
tion function, such as the ReLU or sigmoid, is also used between the layers.

FIGURE 4.1: An example of a non-linearly separable data set.

In Stacked-LDA, we convert the data into a higher-dimensional space con-
sidering the output errors, albeit with no gradient descent or backpropagation,

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 87

sigmoid or
ReLU

FIGURE 4.2: Simple feed-forward neural network.

similar to the neural networks. Algorithm 2 describes the procedures for ap-
plying the Stacked-LDA model to a set of samples X ∈ RN×M and original
classes Target ∈ RN×1. We start by applying a regular LDA to the data. In
our example, the hyperplane found by the initial LDA is shown in Figure 4.3.
Then we assign a new label to each instance based on the actual class and the
predicted one, giving up to (c× c) classes at the next level, where c is the num-
ber of the original classes. For example, with a binary classification task with
two classes (0 or 1), we get at most four new labels at the next level, such as
0E, 0C, 1E and 1C (check if class 0 is correctly classified as 0 (0C), or incorrectly
as 1 (0E)). Figure 4.4 shows the new predicted labels in our example (Figure
4.1). After generating the new labels, an LDA using the original samples and
the new labels is trained, equivalent to training the neural network’s first layer
(Figure 4.2). We then train another LDA using the output of the last LDA as
an input and the original classes (equivalent to the last layer of the NN in Fig-
ure 4.2). The sigmoid function is applied between the layers to represent the
class probabilities. The model works because if the first layer is trained to dis-
criminate the new labelled data, the last layer would recognise the sub-classes
that belong to the same original class. For example, suppose we generate new
classes ’0E’, ’0C,’ ’1E’ and ’1C’ from the first layer; in that case, the last layer
would learn that all instances belong to ’0E’ (0 whilst classified incorrectly as 1)
or ’0C’ (0 and classified correctly as 0) belong to class 0, and so on. We proceed
by generating more classes or converting to more higher-dimensional space in
the same way. However, we take the last generated labels (e.g. four classes)
and create other new sub-classes (e.g. 16 classes) by comparing them to the
previous labels generated and not to the original ones. Again, we train the last
layer’s LDA with the original target. This process is repeated, and we validate
the model using a validation set. If the error rate is not enhanced, the algorithm

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 88

terminates.

Algorithm 2 Stacked-LDA

Input: Training set: X ∈ RN×M, where {xN
i , xi ∈ RM}, original classes:

Target ∈ RN×1

Output: ErrorRate
1: T ← Target.
2: Find the linear discriminant analysis (LDA) between the input X and the

true classes T: L1 = LDA(X, T).
3: Find the predicted classes: predictedy = prediction(L1, X).
4: current_error_rate← the previous LDA′s per f ormance(L1).
5: previous_error_rate← 1.
6: while current_error_rate < previous_error_rate do
7: Find the new classes based on both true and predicted labels:

new_classes = label(predictedy, T).
8: T ← new_classes.
9: Find the LDA between the original samples and the new classes: L1 =

LDA(X, T).
▷ The name L1 is chosen to resemble the training of the first layer of the
neural network (Figure 4.3).

10: Find the predicted classes: predictedy = prediction(L1, X).
11: Find the LDA between the previous LDA’s output and the original

classes: L2 = LDA(L1Outputs , Target).
12: previous_error_rate← current_error_rate.
13: current_error_rate← the last LDA′s per f ormance(L2).
14: end while
15: ErrorRate← previous_error_rate.

Since the LDA is a linear classifier for the binary classification task, we ex-
tend it to the multi-class classification problem using the one-versus-all decom-
position method [77]. This method is chosen because of its simplicity, paral-
lelism and scalable properties [78]. The other methods may not be scalable like
the one-vs-one [77], have difficulty finding a split point like hierarchical clas-
sifiers [79, 80, 81, 82, 83, 84, 85], need to average over several samples like the
weighted one-versus-all [78] or struggle to find strings matrix like the ECOC
[86]. Furthermore, we use the posteriors’ results from the LDA classifier to de-
termine the nominated classes.

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 89

FIGURE 4.3: A single LDA to distinguish the two classes.

FIGURE 4.4: The new classes generated in the first iteration.

In step 7 of the Stacked-LDA algorithm (Algorithm 2), the labelling process
tries to find new labels based on both the true and the predicted classes. In this
section, we use two different approaches. The first method relies on assigning
a new label to an instance based on the actual class and the predicted classes,
giving us at most c × c new labels at the next level. For example, if we have
three classes, such as 0, 1 and 2, we will have nine new classes in the next
iteration, namely 00, 01, 02, 10, 11, 12, 20, 21, 22 (0 classified as 0, 1 or 2, and
so on). The second method is to assign a new label to an example based on the
real class and whether the class is correctly or mistakenly classified, giving up
to 2× c new classes at the following level. For example, for a classification task
with three classes, such as 0, 1 and 2, we will get at most six classes in the next

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 90

iteration, which are 01, 00, 10, 11, 20, and 21 (class 0 correctly classified as 0 (01)
or incorrectly classified as 1 or 2 (00)).

4.2.2 Experiments

In this section, we implement two experiments. The first one (Section 4.2.2.1)
aims to choose the best decomposition method for allowing the LDA to be ex-
tended to the multi-class problem. In the second experiment (Section 4.2.2.2),
we evaluate the Stacked-LDA model on the handwritten digits (MNIST) database.
The results from the first experiment show that one-versus-all is the best de-
composition method because of its scalability, simplicity and parallelism. The
second experiment demonstrates the effectiveness of the Stacked-LDA model
as a non-convolutional architecture compares well to other full-image methods.
It also highlights the impact of the relabelling techniques on the model’s perfor-
mance. We achieved approximately the same performance using two different
relabelling approaches. However, we reached the performance faster in the
first method with a larger number of classes, while we needed more iterations
with fewer classes in the second approach.

4.2.2.1 Multi-Class Classifier

The LDA is a binary classifier. To extend it to the multi-class problem, we need
to convert the multi-class problem into multiple binary classification tasks and
combine their results. Selecting the proper classifier that decomposes the multi-
class problem into many binary classifiers is essential, and it affects the final
performance of the Stacked-LDA model. In this section, we use the LDA with
multiple decomposition methods, which include one-versus-one [77], one-versus-
all [77], one-versus-all with sampling [87], weighing one-versus-all [78] and the
hierarchical classification described in [79, 80, 81, 82, 83, 84, 85]. The regulation
factor used to solve the singularity problem of the LDA was set to 0.001 for
all methods. Moreover, Table 4.1 describes the evaluation metrics used in this
experiment.

Table 4.2 shows the LDA’s performance with different decomposition meth-
ods on the MNIST database. We noticed that the hierarchal classifiers (5 to 9
in Table 4.2) were the worst in terms of accuracy, and their performance varied
with the different split points used. The other methods (1 to 4) achieved almost
similar results. However, we averaged 100 samples’ results to obtain the final

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 91

TABLE 4.1: Evaluation metrics

Metric Definition Formula
True positive The model predicts the positive

class correctly.
TP

True negative The model predicts the negative
class correctly.

TN

False positive The model predicts the nega-
tive class incorrectly as a positive
class.

FP

False negative The model predicts the positive
class incorrectly as a negative
one.

FN

Accuracy The ratio of the number of cor-
rect predictions to the total num-
ber of predictions.

TP + TN
TP + TN + FP + FN

Recall The fraction of the true positives
to all instances should be classi-
fied as positive.

TP
TP + FN

Precision The fraction of true positives to
all instances predicted as posi-
tive.

TP
TP + FP

F measure The weighted measure between
the recall and precision.

2× recall × precision
recall + precision

Error rate The ratio of incorrect predic-
tions to the total number of the
dataset.

1− Accuracy

Log loss The negative average of the log
of corrected predicted probabili-
ties for each sample.

− 1
N

N

∑
i=1

log(Pi)

RSME The square root of the mean dif-
ference between the real and pre-
dicted values.

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 92

output in the weighted one-versus-all and one-versus-all with sample balanc-
ing. Moreover, the one-versus-one method is expensive and not scalable, since
we need to run K(K-1)/2 binary classifiers, where K is the number of classes.
As a result, we choose to use the one-versus-all method, which is more inter-
pretable, scalable and simple.

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 93

TABLE 4.2: Different decomposition methods on the MNIST
database

Method name Evaluation metric Validation set Test set

1. One vs one

Accuracy 0.8648833 0.8735
Log loss 0.6852399 0.6540918

F measure 0.8649321 0.8732151
Recall 0.8634923 0.8722464

Precision 0.8663769 0.8741859
RMSE 1.523091 1.456491

2. One vs all

Accuracy 0.8654001 0.87326
Log loss 0.6774291 0.6429743

F measure 0.8650675 0.8727013
Recall 0.8637264 0.8717764

Precision 0.8664128 0.873628
RMSE 1.523114 1.459275

3. One vs all (sample balancing)

Accuracy 0.8656667 0.87405
Log loss 0.3813066 0.3650582

F measure 0.865335 0.8734523
Recall 0.8641324 0.8726922

Precision 0.8665411 0.8742135
RMSE 1.520169 1.450719

4. Weighted one vs all reduced to
binary classification using costing

Accuracy 0.8653501 0.87334
Log loss 0.5852362 0.5565949

F measure 0.8650177 0.8727835
Recall 0.86367 0.871856

Precision 0.8663651 0.8737131
RMSE 1.522441 1.458412

5. Hierarchical classifier scatter parameter

S = ||m1−m2||2
s2

1+s2
2

Accuracy 0.7929167 0.80066
Error rate 0.2070833 0.19934
F measure 0.7908518 0.798878

Recall 0.786377 0.7939879
Precision 0.7953807 0.8038287

RMSE 1.752254 1.704249

6. Hierarchical classifier, Bhattacharyya distance.

Accuracy 0.8299834 0.8357099
Error rate 0.1700167 0.16429
F measure 0.8285081 0.83392

Recall 0.8272302 0.8328396
Precision 0.8297904 0.8350035

RMSE 1.661152 1.632243

7. Hierarchical classifier (centre of gravity)

Accuracy 0.78085 0.78617
Error rate 0.21915 0.21383
F measure 0.779009 0.7846838

Recall 0.7777537 0.7841641
Precision 0.780 0.7852071

RMSE 1.91367 1.828576

8. Hierarchical classifier scatter parameter

S = ||m1−m2||2
cov2

1+cov2
2

Accuracy 0.82605 0.83098
Error rate 0.17395 0.16902
F measure 0.8253298 0.8297455

Recall 0.822922 0.8281859
Precision 0.8277534 0.8313118

RMSE 1.670007 1.621838

9. Hierarchical classifier using
LDA’s confusion matrix

Accuracy 0.82605 0.83098
Error rate 0.1801333 0.17358
F measure 0.8180751 0.8243912

Recall 0.8173777 0.8244576
Precision 0.8187745 0.8243259

RMSE 1.729855 1.708418

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 94

4.2.2.2 Digit Recognition on MNIST Dataset

In this experiment, we evaluated the Stacked-LDA model discussed in Section
4.2.1 on the MNIST dataset. We vectorised the images to represent our training
samples. To solve the singularity problem of the LDA, we applied PCA to the
data followed by an LDA classifier, keeping 95% of our data after applying the
PCA to them. The sigmoid function is the non-linear activation used between
the layers with a sigmoid scale parameter chosen to be 16, as follows:

sigmoid(x) =
1

1 + e−x/16 . (4.1)

We used the whole 60, 000 training samples with tenfold cross-validation to val-
idate the model. Moreover, we tested our model using the entire 10, 000 test set.

Table 4.3 displays the training and testing accuracies after applying the stan-
dard LDA algorithm to the original MNIST database. Tables 4.4 and 4.5 show
the results after implementing the Stacked-LDA model on the MNIST using
the two different labelling techniques discussed in 4.2.1. Compared with the
standard LDA classifier, the Stacked-LDA model saw significantly improved
accuracy. The architecture reached accuracy of 96.812%, which was ∼ 9%
higher than that obtained by the regular LDA classifier. The best performance
achieved by each of the two relabelling methods was approximately the same;
however, the first method required few iterations with more labels, while the
second obtained the same performance with more iterations and fewer classes.
Therefore, the relabelling technique is a key factor for obtaining good accuracy
by the Stacked-LDA model.

TABLE 4.3: Accuracy (%) after applying a single LDA classifier to
the MNIST database

Validation set Test set
86.88 87.47

The Stacked-LDA model’s accuracy was good, but it did not provide a state-
of-the-art result. In [88], the authors designed a single-layer neural network for
the MNIST database. The sigmoid function was the non-linear function used,
and the network was trained to minimise the cross-entropy loss function. The
researchers varied the number of hidden units from 10 to 50 (Table 4.6) and
recorded the error rates. The number of hidden units was equivalent to the

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 95

TABLE 4.4: Stacked-LDA model’s accuracy (%) on the MNIST
database using the first labelling method

Iteration number Validation set Test set Number of classes produced
1 88.672 89.246 98
2 95.3817 95.365 1396
3 96.7583 96.682 4779
4 96.9183 96.812 9298
5 96.6217 96.584 14184

TABLE 4.5: Stacked-LDA model’s accuracy (%) on the MNIST
database using the second labelling method

Iteration number Validation set Test set Number of classes produced
1 86.78 87.446 20
2 86.948 87.96 40
3 87.845 88.378 80
4 89.978 90.4 160
5 92.42 92.689 299
6 93.6033 93.868 524
7 94.3667 94.56 798
8 94.7967 94.96 1130
9 95.1617 95.367 1526

10 95.4383 95.664 1944
11 95.6667 95.859 2376
12 95.8483 96.041 2839
13 95.975 96.17 3303
14 96.165 96.316 3757
15 96.2767 96.448 4217
16 96.425 96.501 4661
17 96.545 96.558 5096
18 96.5633 96.629 5475
19 96.66 96.68 5827
20 96.67 96.71 6109
21 96.7383 96.739 6372
22 96.7333 96.772 6603

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 96

number of classes in the Stacked-LDA model, which achieved better perfor-
mance. The authors [88] also stated that the error rate could be enhanced with
more units, and the best error rate was achieved by the use of the convolu-
tional neural network. Therefore, Stacked-LDA compares well with the full-
image neural network models, and to achieve better performance, we should
consider the relabelling method and use of the convolution concept.

TABLE 4.6: Accuracy (%) with different hidden units using NN
on the MNIST database [88]

Number of hidden units 10 20 30 40 50
Accuracy 92.1 93.8 94,4 95.1 95.7

4.2.3 Section Summary

In this section, we presented the general Stacked-LDA model as a single-layer
network motivated by the design of the traditional neural network (Section
4.2.1). Since Stacked-LDA model considers network error without backprop-
agation or gradient descent, we used the LDA classifier with two relabelling
methods that would generate the middle classes based on the incorrectly pre-
dicted values iteratively. The experiments section demonstrated the effective-
ness of our model, as we improved on the standard LDA with an accuracy of
∼9% higher on the MNIST database (Section 4.2.2.2). The importance of the
relabelling techniques in achieving good accuracy of the model was also in-
dicated. Moreover, we think it is essential to use the convolutional layers to
improve the model’s performance.

4.3 New Relabelling Technique

In the previous section (Section 4.2.1), we discussed two relabelling approaches
that depend on the LDA’s errors. The first method gives a new label to an in-
stance based on the true class and the predicted one, giving up to c × c new
labels at the next level. The second approach assigns a new class to an example
based on the actual class and whether the class is accurately or inaccurately
classified, giving up to 2 × c new classes at most in the next iteration. For
simplicity, we shall name the first approach ’relabelling-I’ and the second one
’relabelling-II’ for the rest of this chapter .

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 97

The relabelling-I and relabelling-II approaches produce the same perfor-
mance (Section 4.2.2.2) but with more classes in the first method and more
iterations in the second one, indicating the significance of the relabelling tech-
niques. The number of classes generated automatically grows exponentially
with the relabelling-I method and doubles with each iteration in the relabelling-
II method. Therefore, it becomes harder for the LDA to classify the data after a
few iterations.

In this section, we describe a new relabelling approach, named ’relabelling-
III’ for simplicity (Section 4.3.1). We then compare its performance with the
previous relabelling methods (Section 4.3.2).

4.3.1 Description of Relabelling-III

The Stacked-LDA (Algorithm 2) is a single-layer network that consists of an
input layer, a hidden layer and an output layer. The main network structure
relies on running two LDA classifiers. The first of these is applied between the
original sample and the hidden layer’s units. The second is applied between
the previous LDA’s output (after applying a non-linear activation) and the orig-
inal classes. The hidden layer’s units are the new labels generated iteratively
concerning the previous iteration’s errors. If we could immediately find the
optimal new labels, the Stacked-LDA model’s algorithm would be re-written
as described in Algorithm 3.

The relabelling-III technique is inspired by how relabelling-I and II generate
the final classes. Figure 4.5 describes an example of how class 5 in the MNIST
database is divided using the relabelling-I approach for two iterations. In the
first iteration, class 5 with 5421 instances is divided into ten new labels with
a different number of instances. In the second iteration, we have shown how
the previous new class, number 6, is divided into nine new classes. We notice
that the number of instances per class becomes significantly smaller with more
iterations. The minimum number of instances to represent a class is one. The
relabelling-III technique aims to find such small classes that separate the data
perfectly. Our method for finding these classes is simple and described in Al-
gorithm 4.

Algorithm 4, which describes the procedures for applying the relabelling-III
technique, starts by picking a random class c from the original classes. We then

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 98

FIGURE 4.5: An example of dividing class 5 from the MNIST
database into subclasses for two iterations.

Algorithm 3 Modified Stacked-LDA

Input: Training set: X ∈ RN×M, where {xN
i , xi ∈ RM}, original classes:

Target ∈ RN×1, new labels: new_classes ∈ RN×1

Output: ErrorRate
1: Find the LDA between the original samples and the new labels: L1 =

LDA(X, new_classes).
2: Find the LDA between the previous LDA’s output and the original classes:

L2 = LDA(L1Outputs , Target).
3: ErrorRate← the last LDA′s per f ormance(L2).

choose Npositive random instances that belong to class c and Nnegative random
examples that are not in class c, where Npositive and Nnegative are the number
of positive and negative samples and are user-predefined parameters. Next,
an LDA classifier discriminates between the positive and the negative sam-
ples. After that, we check if our chosen random samples are linearly separable,
which can be done by comparing the error rate of the LDA classifier with a
small value of nearly zero called tolerance (tol) and chosen by the user. If the
LDA’s error rate is lower than the tolerance, we consider the positive class to
be a new class and collect the weights of the LDA. On the other hand, if the
LDA’s error rate is greater than the tolerance, the chosen samples are not sim-
ilar and cannot be grouped. Therefore, the algorithm proceeds to find other

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 99

classes that separate the data accurately in the same way until reaching the re-
quired number of classes (N_classes). When algorithm 4 terminates, we can
use the generated LDA’s weights to find the output of the first LDA (step 1 in
Algorithm 3). We then follow the steps in Algorithm 3 to find the performance
of the Stacked-LDA model.

Algorithm 4 Relabelling-III method

Input: Training set: X ∈ RN×M, where {xN
i , xi ∈ RM}, original classes:

Target ∈ RN×1, number of classes user wants to generate: N_classes, num-
ber of positive samples: Npositives, number of negative samples: Nnegatives
and tolerance of performance user can afford: tol

Output: LDA’s weights: weights ∈ RN×N_classes and LDA’s bias or constant:
bias ∈ RN_classes

1: weights← [].
2: bias← [].
3: i← 1.
4: while i < N_classes do
5: Pick a random class c from the Target.
6: Pick random Npositives samples from class c (Spositives).
7: Choose Nnegatives samples that are not in class c (Snegatives) randomly.
8: Combine the negative and positive samples: S← [Spositives, Snegatives].
9: T ← [ones(Npositives), zeros(Nnegatives)].

10: Find the linear discriminant analysis (LDA) between S and T: L =
LDA(S, T).

11: Find the perfromance (ErrorRate) of S using L.
12: if ErrorRate < tol then
13: weights← [weights, LDA′sweights].
14: bias← [bias, LDA′sbias].
15: i← i + 1.
16: end if
17: end while

4.3.2 Experiments

In this section, we conduct two experiments on two datasets to compare the
performance of the Stacked-LDA model with different relabelling methods.
The first experiment, which was described in Section 4.3.3, compared the three
relabelling methods (I, II and III) on the MNIST database. The second method
discriminated between the relabelling-I and II approaches using the CIFAR-10
dataset (Section 4.3.4).

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 100

4.3.3 Digits Classification on the MNIST Database

This experiment aimed to compare the Stacked-LDA model’s performance us-
ing three relabelling techniques, I (4.2.1), II (4.2.1) and III (4.3.1), on the MNIST
dataset. The number of the negative and positive examples (Nnegatives and
Npositives) in the third relabelling approach was set to 32 and 2, respectively. We
chose the number of new labels to be equivalent to those generated previously
by the relabelling I and II methods (Tables 4.4 and 4.5). The tolerance (tol) in
Algorithm 4 was set to zero. For a fair comparison between the methods, and
because we used tenfold cross-validation in the previous experiment (Section
4.2.2.2), we ran the Stacked-LDA with relabelling-III ten times and averaged
the accuracies.

Table 4.7 shows the accuracy of the Stacked-LDA using the three labelling
techniques, I, II and III, on the test set of the MNIST database. When the num-
ber of classes was small, the performance of the Stacked-LDA model using
relabelling-III was worse than the performance when using both I and II re-
labelling techniques. The big difference in the accuracy was ∼ 2% between
relabelling-I and III with 98 classes. On the other hand, the performance of the
Stacked-LDA model with relabelling-III was enhanced by using a more signifi-
cant number of labels. The best performances reported on the MNIST database
in Section 4.2.2.2 were 96.812% using relabelling-I and 9298 classes and 96.772%
using relabelling-II and 6372 labels. Using relabelling-III with the same num-
ber of classes, we achieved 0.5% better accuracy. Moreover, unlike relabelling-I
and II, the model’s performance was enhanced with more hidden units, such
as 6603 and 14,184, as shown in Table 4.7.

TABLE 4.7: Accuracy (%) on MNIST database using three rela-
belling methods.

Number of Classes Accuracy
relabelling-I relabelling-II relabelling-III

98 89.246 — 87.758
1396 95.365 — 95.793
4779 96.682 — 97.023
9298 96.812 — 97.399

14184 96.584 — 97.61
160 — 90.4 90.28
524 — 93.852 93.999

3303 — 96.17 96.709
6372 — 96.739 97.167
6603 — 96.772 97.212

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 101

4.3.4 Pattern Recognition on CIFAR-10 Database

This experiment compared the Stacked-LDA’s model performance using differ-
ent labelling techniques (Section 4.2.1 and 4.3.1) on a more challenging database
(CIFAR-10). Relabelling-I and II generated the same error rate, albeit with more
iterations in the second method. Therefore, in this experiment, we focused on
the relabelling-I method. To preprocess the images, we used the preprocessing
steps mentioned in Sections 4.2.2.2 and 4.3.3. The accuracy achieved by apply-
ing the regular LDA classifier to the training and testing data of CIFAR-10 is
shown in Table 4.8.

Table 4.9 displays the accuracy of the Stacked-LDA model on the CIFAR-
10 database using relabelling-I and III methods. Using validation sets, the
performance of the Stacked-LDA using relabelling-I stopped enhancing after
the ninth iteration with 18,402 classes. The two relabelling methods I and
III generated almost the same accuracy when the number of classes was 100.
With more labels, the relabelling-III method produced better performance than
the relabelling-I method. The difference in performance between the two ap-
proaches was around 3%.

TABLE 4.8: Accuracy (%) after applying LDA on CIFAR-10

Validation set Test set
40.884 40.425

TABLE 4.9: Accuracy (%) on the CIFAR-10 database using rela-
belling methods I and III

Number of classes Accuracy %
relabelling-I relabelling-III

100 39.971 39.834
3476 47.601 52.77
10262 51.4445 55.296
14115 52.496 55.848
16128 53.042 56.01
17213 53.235 56.218
17840 53.409 56.224
18192 53.46 56.283
18402 53.485 56.398
18519 53.549 56.41

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 102

4.3.5 Section Summary

In this section, we presented the relabelling-III technique (Section 4.3.1). The
advantage of this method over the other relabelling approaches (described in
Section 4.2.1) is its ability to generate the desired number of classes in a non-
iterative form. The experiments (Section 4.3.2) showed the effectiveness of the
new relabelling technique in producing new classes immediately and improv-
ing the model’s accuracy.

Inspired by the promising results we obtained in Chapter 3, which showed
that convolutional layers are highly effective in achieving good classification
accuracy, the following section aims to explore the effectiveness of using the
Stacked-LDA method to generate filters for these layers.

4.4 Convolutional Stacked-LDA model

The Stacked-LDA model was evaluated on two databases (Sections 4.3.2 and
4.2.2.2), and it showed improved accuracy compared to the original LDA clas-
sifier. The architecture reached an accuracy of 97.212% on the MNIST database
and 56.41% on the CIFAR-10 database, which was much higher than the accu-
racy obtained by the standard LDA classifier. The relabelling-III method out-
performed the other techniques in terms of accuracy and training speed.

Despite the excellent performance of the Stacked-LDA model, it is still be-
low the accuracy achieved by convolutional architecture such as Multi-Layer
PCANet (described in Chapter 3). To overcome this issue, we study in this sec-
tion how to use the Stacked-LDA model as a convolutional kernel to replace
PCA filters in Multi-Layer PCANet (Chapter 3). The first part of this section
(Subsection 4.4.1) describes the architecture of the convolutional Stacked-LDA
network. The experimental part (4.4.2) compares the performance of the pro-
posed network to Multi-Layer PCANet across four benchmarks. It also studies
the impact of the network hyperparameters on the model’s accuracy.

4.4.1 Network Structure

Convolutional Stacked-LDA is a shallow depth network, and its structure is
shown in Figure 4.6. Like the Multi-Layer PCANet architecture described in
Chapter 3, the framework comprises three essential parts and one optional
component. The key components include the Stacked-LDA convolutional layer,

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 103

second-order features and final LDA classifier. Spatial pyramid pooling is an
optional step that can be applied between the second-order features and the
LDA classifier to reduce the number of dimensions. A non-linear activation
function is applied after each convolutional layer, albeit not between the lay-
ers. Section 4.4.1.1 describes the Stacked-LDA convolutional layer. The other
network components were described in Chapter 3 (Sections 3.2.2 and 3.2.3).

FIGURE 4.6: Convolutional Stacked-LDA model.

4.4.1.1 Stacked-LDA convolutional layer

For N feature maps at a layer L− 1 (X(L−1): {X(L−1)
i ∈ Rm×n×c}) with actual

classes Target ∈ RN×1, where m and n are the spatial dimensions of the im-
age and c is the number of channels, we compute the Stacked-LDA filters as
follows:

1. Given a single image X(L−1)
i ∈ Rm×n×c and a filter size kL× kL, we extract

and vectorise all overlapping patches of size kL × kL × c each. The result-
ing matrix is Yi ∈ R(k2

Lc)×m̃ñ, where m̃ = (m− kL) + 1, ñ = (n− kL) + 1
and m and n are the spatial dimensions of the image, respectively. Note
that kL × kL, which denotes the size of patches, is a user predefined pa-
rameter;

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 104

2. We repeat the previous step for all images in the dataset to obtain Y ∈
R(k2

Lc)×m̃ñN;

3. We create a vector T ∈ R1×m̃ñN that contains the class labels of the patches.
A single patch is assigned a label equivalent to the class of its full image;

4. Using random samples and specific tolerance, we apply Algorithm 4 on
Y and T to obtain the Stacked-LDA filters’ weights WL

s and bias BL
s ;

5. We can express the Stacked-LDA filters as follows:

WL
s = mat

kL×kL×c
qs, s = 1, 2, . . . , dL,

BL
s = mat

1×1×c
qs, s = 1, 2, . . . , dL,

(4.2)

where dL is the number of filters chosen by the user, which is equivalent
to the number of classes in Algorithm 4;

6. We convolve the original images with the filters as follows:

XL
i = XL−1

i ∗WL
s + BL

s ∈ Rm×n×dL , (4.3)

where s = 1, 2, . . . , dL and XL−1
i is zero-padded to get the same image

size;

7. After computing the convolutional layer output, we apply a non-linear
activation function that converts the data into a non-linear space.

4.4.2 Experiments

4.4.2.1 Network Hyper Parameters

This section aims to study the effect of two network parameters on the Stacked-
LDA model’s accuracy and compare its performance with Multi-Layer PCANet
(described in Chapter 3) on the CIFAR10 database. The two parameters include
the number of filters and the number of layers; therefore, we have three main
experiments, as follows:

• Experiment 1: testing the impact of the number of filters on the Stacked-
LDA network.

• Experiment 2: studying the effect of the number of layers on the Stacked-
LDA network’s accuracy.

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 105

• Ex[eriment 3: showing the accuracy when combining two types of filters
(PCA and stacked-LDA) on the CIFAR-10 database.

4.4.2.1.1 Experiment 1. To study the impact of the number of filters on the
Stacked-LDA model’s accuracy, we used a simple network consisting of a sin-
gle convolutional layer followed by ReLU activation, second-order pooling,
spatial pyramid pooling and a support vector machine (SVM) classifier. The
filter size was set to 5 × 5, and the number of filters varied between 10 and
75. The second-order block size was set to 8× 8 with stride = 1. A three-level
spatial pyramid pooling was attached to the second-order features with 1× 1,
2× 2 and 4× 4 subregions. We used the LIBLINEAR library described in [89]
to classify the features. To compute the Stacked-LDA filters, we set the num-
ber of positive samples (Npositives) to 2, while the number of negative samples
(Nnegatives) was 32. The tolerance (tol) in Algorithm 4 was set to zero.

Figure 4.7 compares the accuracy of Stacked-LDA to that of Multi-Layer
PCANet on the CIFAR-10 database. Stacked-LDA-1 and PCA-1 in Figure 4.7
represent the accuracy of a single-layer network using two types of filters (Stacked-
LDA and PCA) on the CIFAR-10 database. When the number of filters was
small, such as 10 filters in Figure 4.7, the recognition rate of the single-layer net-
work using the two types of filters (Stacked-LDA and PCA) was the same. On
the other hand, a noticeable improvement in performance using the Stacked-
LDA filters could be seen when the number of filters increased. The best perfor-
mance achieved using the PCA filters was 76.14% with 70 filters. In contrast, we
obtained an accuracy of 80.2% with 75 Stacked-LDA filters, which was ∼ 5%
higher than the accuracy achieved by the PCA filters. Therefore, the number
of filters is an essential factor for affecting the recognition rate in the Stacked-
LDA network. When the number of filters increases, more discriminant infor-
mation is obtained, and the model’s accuracy is enhanced. Additionally, the
difference in the performance between the PCA and the Stacked-LDA filters
becomes higher with more filters.

4.4.2.1.2 Experiment 2. We used a two-level network with the same number
of filters in each layer to study the effect of the number of layers on the Stacked-
LDA model’s performance. The second layer had the same parameters settings
as the first layer, as described in Experiment 1 (4.4.2.1.1). The posteriors of the

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 106

FIGURE 4.7: Accuracy of the CIFAR-10 database using different
types of filters and different numbers of layers.

two layers were averaged and sent to SVM for the final prediction.

The accuracy of the two-layer network using two types of filters (PCA and
Stacked-LDA) with several filters varied between 10 and 75 is described in Fig-
ure 4.7 (see Stacked-LDA-2 and PCA-2). From the results, we observed the
following:

• Increasing the depth of the two networks (Stacked-LDA and Multi-Layer
PCANet) led to better accuracy of results.

• Multi-Layer PCANet’s accuracy increased sharply with more layers. There-
fore, the gap in performance between the two networks (Stacked-LDA
and Multi-Layer PCANet) shrunk with more layers. The best accuracy
obtained by the Multi-Layer PCANet was 80.87%, with 70 filters in each
layer. On the other hand, the best performance recorded for the two-
layers Stacked-LDA network was 81.44%, which was around 1% better
than the one achieved by its PCANet counterpart.

• The performance of the two-layer architectures (Stacked-LDA and Multi-
Layer PCANet) was the same when the number of filters was between 10
and 50. With more filters, the recognition rate of the Stacked-LDA tended
to increase more than its PCANet counterpart, indicating the importance
of the number of filters on the accuracy of the model.

4.4.2.1.3 Experiment 3. The Stacked-LDA network presented high accuracy
with a single-layer architecture compared to its PCANet counterpart. On the

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 107

other hand, Multi-Layer PCANet showed promising results with more layers
added. For this reason, we built a filter bank that was a combination of PCA
and Stacked-LDA filters and evaluated its performance using single-layer and
two-level networks on the CIFAR-10 database. The parameter settings in this
experiment were similar to those described in Experiments 1 and 2 (4.4.2.1.1
and 4.4.2.1.2). In this experiment, we used half of the filters as Stacked-LDA
filters and the other half as PCA filters. For example, with 15 filters, the filter
bank consisted of 7 Stacked-LDA filters and 8 PCA filters.

Figure 4.7 shows the performance of the single-layer and two-layer LDA-
PCA network on the CIFAR-10 database. We noticed that the model’s accuracy
increased gradually with the addition of more filters. The architecture reached
an accuracy of 82.26% with two layers and 75 filters, which was about 2% better
than the one achieved by PCA filters alone. Therefore, the filter type is an
essential factor for enhancing the recognition performance of the convolutional
networks.

4.4.2.2 Image Classification on four Databases

This section aims to show the performance of the convolutional Stacked-LDA
network on four datasets, MNIST, CIFAR-10, CIFAR-100 and TinyImageNet,
described in Chapter 3 (Section 3.3.1). We start by defining the general set-
tings of the network parameters and the image processing procedures (Sec-
tions 4.4.2.2.1 and 4.4.2.2.2). We then analyse the performance of the Stacked-
LDA model using the four databases and compare it with Multi-Layer PCANet
(Chapter 3).

4.4.2.2.1 Image Processing. The databases in this section were used with no
data augmentation. To preprocess the images, we only applied min-max nor-
malisation to every image in the database individually. Min-max normalisa-
tion, which transforms data into a range between 0 and 1, is defined using
equation 3.11.

4.4.2.2.2 Parameter Settings. We investigated multiple architectures to eval-
uate the convolutional Stacked-LDA network on four databases, namely MNIST,
CIFAR-10, CIFAR-100 and TinyImageNet. The best configurations we found
for the four datasets are described in Table 4.10. We could not immediately use
the architectures described in Table 3.4 in Chapter 3, as we noticed from exper-
iment 1 (4.4.2.1.1) that we could achieve high accuracy with more filters being

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 108

added. Therefore, we chose to implement these configurations with a larger
number of filters. We also used a 3× 3 filter size for all databases except for
the MNIST, whose filter size was set to 13× 13. Moreover, we ran an SVM clas-
sifier in each layer, and the posteriors were averaged and sent to a final SVM
classifier to obtain the accuracy of the models. The rectified linear activation
function (ReLU) was used after each convolutional layer. Moreover, min–max
normalisation was applied to the input of each convolutional layer.

TABLE 4.10: Configurations for CIFAR-10/100, MNIST and Tiny-
ImageNet.

MNIST
Layer number Input Size Filter size Output size

1 28× 28× 1 13× 13× 1× 60 28× 28× 60
CIFAR-10

Layer number Input size Filter size Output size
1 32× 32× 3 3× 3× 3× 200 32× 32× 200
2 32× 32× 200 3× 3× 200× 200 32× 32× 200

CIFAR-100
Layer number Input size Filter size Output size

1 32× 32× 3 3× 3× 3× 150 32× 32× 150
2 32× 32× 150 3× 3× 150× 100 32× 32× 100

TinyImageNet
Layer number Input size Filter size Output size

1 64× 64× 3 3× 3× 3× 40 64× 64× 40
2 64× 64× 40 2× 2 Max Pooling, stride= 2 32× 32× 40
3 32× 32× 40 3× 3× 40× 90 32× 32× 90
4 32× 32× 90 3× 3× 90× 90 32× 32× 90
5 32× 32× 90 3× 3× 90× 90 32× 32× 90

To compute the stacked-LDA filters (Algorithm 4), we set the number of
negative samples (Nnegatives) to 32, the number of positive examples (Npositives)
to 2 and the tolerance (tol) to zero in all experiments.

4.4.2.2.3 Performance Analysis. In the following subsections, we discuss
the architectures described in Table 4.10 for each database (CIFAR10, CIFAR-
100, MNIST and TinyImageNet) and analyse their performance compared with
other methods, such as Multi-Layer PCANet (Chapter 3).

4.4.2.2.3.1 Digits Recognition on the MNIST Database. The model used
in this experiment consisted only of a single layer with 60 filters, as described
in Table 4.10. Adding more filters or layers did not improve the accuracy of this

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 109

database. To extract the second-order features, we used a 7× 7 second-order
pooling block size with stride = 7.

Table 4.11 compares the accuracy of the Stacked-LDA network with PCANet
[15], LDANet [15], Multi-Layer PCANet (Chapter 3) and its single-layer PCANet
counterpart. The single-layer PCANet had the same structure and parameter
settings as the Stacked-LDA network. However, we replaced the Stacked-LDA
filters with the PCA filters. From the results in Table 4.11, the Stacked-LDA
network achieved 0.1% greater accuracy than its single-layer PCANet counter-
part. In fact, the architecture provided the same accuracy as the other models,
including PCANet, LDANet and Multi-Layer PCANet. However, the Stacked-
LDA reached this accuracy with fewer features than PCANet and LDANet and
with fewer layers than Multi-Layer PCANet.

TABLE 4.11: Accuracy of the Stacked-LDA network compared
with different methods on the MNIST database with no data aug-

mentation.

Method Accuracy (%)
PCANet-1 [15] 99.06
PCANet-2 [15] 99.34
LDANet-1 [15] 99.02
LDANet-2 [15] 99.38

PCANet-1 (k = 13) [15] 99.38
Multi-Layer PCANet 99.40

Stacked-LDA 99.39
Single-layer PCANet 99.29

4.4.2.2.3.2 Testing on the CIFAR-10 Dataset. To evaluate the Stacked-
LDA network on the CIFAR-10 database, we used a two-layer network with
the number of filters = 200 in each layer, as shown in Table 4.10. In each layer,
the second-order pooling block size was set to 8× 8 with a stride = 1. A three-
level spatial pyramid pooling was attached to each layer’s second-order pool-
ing with 4× 4, 2× 2 and 1× 1 subregions.

Table 4.12 shows the performance of the Stacked-LDA network compared
with methods such as ResNet, PCANet [15], Multi-Layer PCANet (Chapter
3) and NoFilterNet on the CIFAR-10 database. To show the effectiveness of
the convolutional layers on the model’s performance, we proposed the NoFil-
terNet architecture. The proposed architecture has the same structure as the

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 110

TABLE 4.12: Accuracy of the Stacked-LDA network compared to
some methods on the CIFAR-10 and CIFAR-100 databases with no

data augmentation.

Model #Params Accuracy %
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Residual networks reported by [90]
ResNet-18 11.05M 10.96M 86.29 59.15
ResNet-34 21.07M 21.16M 87.97 56.05

PCANet [15] and Multi-Layer PCANet (Chapter 3)
PCANet-2 2.16M 21.52M 77.14 51.62

Multi-Layer PCANet 2.18M 12.06M 81.72 57.86
No convolutional layers used

NoFilterNet 0.09M 0.85M 65.68 39.35
Stacked-LDA descibed in this chapter

Stacked-LDA-1 1.08M 10.81M 81.73 56.88
Stacked-LDA 8.89M 35.05M 84.55 59.41

Stacked-LDA model but without the convolutional layers and is a single-layer
model. Therefore, we divided the original images (after zero-padding them)
into patches of size 3× 3 each, obtaining 27 dimensions to replace the filters in
the Stacked-LDA model. Then we applied second-order pooling, spatial pyra-
mid pooling and the SVM classifier similar to the Stacked-LDA network.

As shown in Table 4.12, the NoFilterNet achieved the worst result, with an
accuracy of 65.68%, indicating the importance of the filters for gaining good ac-
curacy. The other networks, such as ResNet, PCANet and Multi-Layer PCANet,
presented good accuracy. The best accuracy achieved by the Stacked-LDA
model was 84.55%, and it improved by 3% on Multi-Layer PCANet and 7% on
PCANet [15]. However, the Stacked-LDA model presented a higher number of
parameters, namely 4× the number of parameters in PCANet and Multi-Layer
PCANet. For this reason, we tested the Stacked-LDA on a single-layer architec-
ture with only 100 filters; this is named Stacked-LDA-1 in Table 4.12. Stacked-
LDA-1 provided the same accuracy as Multi-Layer PCANet, albeit with fewer
trained parameters. The best accuracy result in Table 4.12 was 87.97%, which
was achieved by ResNet-34 and was 3% higher than the Stacked-LDA model
but with 2× the number of parameters. Therefore, the accuracy results demon-
strate the effectiveness of the Stacked-LDA filters in the classification problem
because they include discriminative information, which can explain the good
accuracy results.

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 111

4.4.2.2.3.3 Testing on the CIFAR-100 Dataset. The architecture used to
evaluate the Stacked-LDA network on CIFAR-100 consisted of two layers, as
shown in Table 4.10. The first layer had 150 filters, while the latter had 100 fil-
ters. As with the CIFAR-10 database, we used an 8× 8 second-order pooling
block size with a stride of 1. A spatial pyramid pooling with three levels was
used to pool each layer’s second-order features with the number of bins = 16,
8 and 1, respectively.

Table 4.12 compares the accuracy of the Stacked-LDA with other convolu-
tional architectures on the CIFAR-100 database. The NoFilterNet was trained
using the settings described in 4.4.2.2.3.2, albeit with CIFAR-100 images. The
results showed that the Stacked-LDA network provided the best accuracy, at
around 2% better than Multi-Layer PCANet, 9% better than PCANet, 3% higher
than ResNet-34 and about the same performance as ResNet-18. However, the
number of the trained parameters of the Stacked-LDA model was much higher
than those of the other architectures. Therefore, we trained a single-layer Stacked-
LDA model with 100 filters to reduce the number of parameters (Stacked-LDA-
1 in Table 4.12). The single-layer Stacked-LDA model showed good accuracy
of 56.88%, at around 1% lower than Multi-Layer PCANet, albeit with signifi-
cantly reduced trained parameters. Again, the NoFilterNet obtained the worst
accuracy, showing the implication of the convolutional filters for enhancing the
performance of the networks.

4.4.2.2.3.4 Testing on the TinyImageNet Dataset. As shown in Table 4.10,
the model used to evaluate the Stacked-LDA on TinyImageNet consisted of five
layers. The first layer was a convolutional layer with 40 filters. The second layer
was a max-pooling layer with a block size = 2× 2 and stride = 2. The use of
the max-pooling layer reduced the spatial dimensions of the images and thus
reduced the processing time. The last three layers were convolutional layers
with 90 filters each. We used a 16× 16 second-order pooling block size with
a stride of 1 for every convolutional layer to extract the second-order features.
A three-level spatial pyramid pooling with 4× 4, 2× 2 and 1× 1 subregions
was used to pool the second-order features of the first layer. For the remaining
layers, we used a two-level spatial pyramid pooling with 2× 2 and 1× 1 sub-
regions.

Table 4.13 compares the accuracy of the Stacked-LDA model with other con-
volutional networks, including ResNet, PCANet and Multi-Layer PCANet, on

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 112

the TinyImageNet database. In comparison with PCANet, the Stacked-LDA
model obtained better accuracy with a notable reduction in the number of train-
able parameters. The Stacked-LDA also improved on the Multi-Layer PCANet
by around 2%, albeit with more parameters. The two residual networks ob-
tained similar accuracy results, at around 1.5% better than the Stacked-LDA
model. However, the number of parameters in ResNet-34 was significantly
larger than that obtained by the Stacked-LDA. In general, the Stacked-LDA
model provided good results on par with other convolutional structures with
no data augmentation.

TABLE 4.13: Comparison of the accuracy of some methods on the
TinyImageNet database with no data augmentation.

Method Accuracy% #Params
ResNet-18 [90] 43.02 11.15M
ResNet-34 [90] 42.65 21.26M

PCANet-2 30.00 32.26M
Multi-Layer PCANet (ours) 40.87 9.47M

Stacked-LDA 41.76 16.34M

4.5 Conclusions

In this chapter, we first proposed a novel Stacked-LDA algorithm as an alter-
native for the single-layer neural network. The new architecture, constructed
by stacking two LDA classifiers, relies on dividing the data into clusters and
considering the classification errors iteratively. The experimental results indi-
cate the effectiveness of our algorithm, as it enhanced by more than 9% the
standard LDA classifier and was on par with other full-image architectures.
We then studied the effect of the relabelling techniques on the Stacked-LDA
model’s performance and introduced the relabelling-III method. Relabelling-
III provided better accuracy results and did not require many iterations to ad-
just the weights of the hidden layer. We followed this by presenting a con-
volutional architecture with filters being trained using the Stacked-LDA algo-
rithm. Like Multi-Layer PCANet, the convolutional Stacked-LDA model in-
cludes three key components: (i) a convolutional layer with filters being learnt
through the use of the Stacked-LDA method; (ii) a ReLU non-linear processing
layer; and (iii) a second-order pooling layer followed optionally by a spatial
pyramid pooling layer. We tested the proposed architecture on four bench-
marks: MNIST, CIFAR-10, CIFAR-100 and TinyImageNet. The results showed

Chapter 4. Stacked Linear Discriminant Analysis (Stacked-LDA) 113

that the convolutional Stacked-LDA model outperformed Multi-Layer PCANet
in image classification by 3% on CIFAR-10 and by 2% on CIFAR-100 and Tiny-
ImageNet. Moreover, the proposed network obtained accuracy that was 3%
higher than ResNet-34 on the CIFAR-100 database. Despite the good accuracy
of the Stacked-LDA network, the number of parameters increased gradually.
However, we showed that a single-layer Stacked-LDA obtained the same accu-
racy results as Multi-Layer PCANet and with fewer parameters.

Based on the scenarios and the preliminary experiments in this chapter, we
can draw the following conclusions:

• The Stacked-LDA algorithm can be used as a classifier to classify data,
and the two LDAs can be replaced with other types of classifiers, includ-
ing SVM;

• To increase data representation capacity, we need to use many Stacked-
LDA filters, as our experiments showed that using a small number of
filters is not sufficient to provide high accuracy;

• Increasing the number of layers in the convolutional Stacked-LDA net-
work leads to better accuracy compared to single-layer architecture. How-
ever, this enhancement is not significant when compared with using PCA
filters, as PCA filters seem to take more advantage of network depth than
the Stacked-LDA network;

• In general, the convolutional Stacked-LDA network shows good accu-
racy results, which are comparable with architectures such as ResNet and
Multi-Layer PCANet, indicating the efficiency of the network.

In the following chapters, and based on our findings, we highlight the fol-
lowing directions:

1. Strategies for incorporating more convolutional layers while maintaining
or improving accuracy, training speed, and computational cost;

2. Development of novel convolutional architectures inspired by traditional
deep learning designs;

3. Optimised implementation of a clustering technique to enhance the accu-
racy of the Stacked-LDA network;

4. Investigating the possibility of replacing backpropagation with nonlinear
approaches for updating convolutional layer weights.

114

Chapter 5

Class-Embedding Networks

5.1 Introduction

Although PCANet [15] and Multi-Layer PCANet [1] achieve high accuracy on a
variety of classification benchmarks, PCA is not designed to maintain the rela-
tionship between classes, which is often essential for pattern recognition tasks;
hence it is possible that these networks may not extract discriminative features.
To address this problem, the supervised stacked linear discriminant analysis
algorithm (Stacked-LDA) (Chapter 4) is used to produce the filter banks. This
algorithm incorporates class information by grouping some patches while en-
suring that the LDA classifier can discriminate between the new groups. The
Stacked-LDA network presents the following advantages over PCANet, Multi-
Layer PCANet and LDANet [15]:

• In a Stacked-LDA network, there is no restriction on the number of fil-
ters that we can choose for any given filter size. On the other hand, the
number of filters in the other architectures, namely PCANet and Multi-
Layer PCANet, cannot exceed the maximum number of eigenvectors of
the image-based patches’ covariance matrix. The number of filters in the
LDANet is also limited to the maximum number of eigenvectors of the
scattering matrix (the ratio of within-class to between-class scatter ma-
trix);

• In contrast to PCANet, Multi-Layer PCANet and LDANet, the Stacked-
LDA weights may represent more discriminative information about the
same object by considering the classification errors;

• When compared against multiple classification benchmarks (CIFAR-10,
CIFAR-100, TinyImageNet and MNIST), the Stacked-LDA network pro-
vided the best accuracy results and significantly improved on PCANet
and Multi-Layer PCANet.

Chapter 5. Class-Embedding Networks 115

According to [30], the accuracy of different shallow-depth structures varies
depending on the database employed. In order to determine the best gener-
alisable architecture for the classification tasks, this chapter investigates four
supervised architectures for feature extraction and learning tasks. Multi-layer
PCANet (Chapter 3) was chosen as the fundamental framework for the pro-
posed architectures. All supervised networks follow the same concepts used
by Multi-Layer PCANet and use a similar architecture; however, the networks’
filter banks are produced by different supervised approaches; hence, every net-
work generates unique features. In other words, the primary objective of this
chapter is to investigate four supervised strategies, which preserve class infor-
mation, for producing different filter banks to improve the feature represen-
tations. The first network, called the clustering network, was inspired by the
Stacked-LDA network, but it groups the images’ patches based on the spectral
clustering algorithm. This network studies if alternative grouping techniques
improve the Stacked-LDA network results. Despite producing discriminative
features, the Stacked-LDA network’s filters are linear. To add nonlinearity, we
propose a supervised Laplacian eigenmaps network (SLE) to generate filters
that map the input into a nonlinear space based on the classification labels. The
SLE network generates new filters based on the separation criteria in which
the distance between samples from different classes is maximised and the dis-
tance within the class is minimised. The Hilbert–Schmidt independence crite-
rion network (HSIC Net), which uses the information criteria to increase the
dependency on the labels while compressing the inputs, is also presented. The
weights of the HSIC network are calculated using a linear kernel-based ap-
proach. The final network, known as the supervised extreme learning machine
(S-ELM), attempts to compress the image patches’ features while preserving
discriminative information. The filter bank is obtained by training the extreme
learning machine autoencoder with both image-based patches and their corre-
sponding classes.

Therefore, this chapter provides the following contributions:

• We develop four new filter banks based on spectral clustering, super-
vised Laplacian eigenmaps, the Hilbert–Schmidt independence criterion
and supervised extreme learning machine auto-encoder. In contrast to
PCANet, these filters are generated using discriminant information ob-
tained from supervised data;

• We propose four semi-supervised networks that resemble the supervised

Chapter 5. Class-Embedding Networks 116

networks, namely SLE, HSIC, S-ELM, and clustering networks, with the
difference being that the filters of each supervised technique are coupled
with PCA filters at a 50% ratio in the semi-supervised networks versions;

• We present a new supervised network developed by integrating the con-
volutional outputs of the four proposed networks, namely clustering,
SLE, S-ELM and HSIC networks, with 25% of each type of filter.

In summary, this chapter is structured as follows. Section 5.2 gives a de-
tailed description of the proposed networks (clustering, SLE, S-ELM and HISC).
The section starts with explanations of preliminary concepts such as spectral
clustering (Section 5.2.1.1), extreme learning machine (Section 5.2.1.2), super-
vised laplacian eigenmaps (Section 5.2.1.3) and Hilbert Schmidt independence
criterion (Section 5.2.1.4). Then we describe the networks’ architecture and the
procedures for generating the filter banks in each network, namely clustering
architecture (Section 5.2.3.1), SLE (Section 5.2.3.3), S-ELM (Section 5.2.3.2) and
HSIC (Section 5.2.3.4). Section 5.3 summarises the accuracy results of the four
proposed networks using four benchmarks: CIFAR-10, CIFAR-100, MNIST and
TinyImageNet. The experiments include: (i) evaluating the four proposed net-
works on the four databases with a single-layer network architecture (Section
5.3.3); (ii) testing the new networks on the four classification benchmarks with
a two-layer architecture (Section 5.3.4); and (iii) evaluating the proposed net-
works using a combination of filters regardless of their learning paradigm with
single-layer and two-layer network architectures (Section 5.3.5). In each exper-
iment, the proposed networks are compared with Multi-Layer PCANet (Chap-
ter 3) and Stacked-LDA (Chapter 4). Finally, Section 5.4 presents the conclu-
sions and a discussion.

5.2 Deep Supervised Networks

In this section, we propose four supervised shallow-depth frameworks (cluster-
ing network, S-ELM Net, SLE Net and HSIC Net). The networks have a unified
architecture, similar to the one described in Chapter 4, composed of several
convolutional layers. Each layer is followed by non-linear activation, second-
order pooling, an optional spatial pyramid pooling and a classifier. The final
decision is made by combining the posteriors of all convolutional layers. Figure
5.1 describes the conceptual framework for all of these supervised networks.
The difference between the four architectures is in the filter learning process,

Chapter 5. Class-Embedding Networks 117

as each network produces different local receptive fields and, accordingly, dif-
ferent features. Besides employing class information to increase accuracy, each
network has a specific objective that can be described in the following para-
graphs:

The clustering network is conceptually related to the Stacked-LDA network
described in the previous chapter. As described in Chapter 4, the Stacked-
LDA network consists of two linear discriminant analysis layers: the first is
trained using new labels derived from the original ones, while the second is
trained with the actual classes. Additionally, in Chapter 4, we demonstrated the
Stacked-LDA network’s effectiveness and the impact of the relabeling strate-
gies on its accuracy. The clustering network discussed in this chapter is a spe-
cial case of the Stacked-LDA network; however, the spectral clustering method
is used as the relabeling technique. The spectral clustering algorithm [91] in-
volves mapping the data into a new embedding based on the similarities be-
tween the samples and then dividing the embedding data points into clusters.
Other clustering approaches might be utilised; however, the clustering network
aims to determine whether using clustering techniques as the relabeling meth-
ods in the Stacked-LDA would improve its performance. In other words, the
clustering network tries to identify an alternative technique to group image-
based patches using spectral clustering and investigate whether this clustering
method would improve Stacked-LDA accuracy.

All previously studied networks, including PCANet [15], Multi-Layer PCANet
[1], and Stacked-LDA (Chapter 4), use linear filters created by a linear transfor-
mation of the data, as in the PCANet or Multi-Layer PCANet networks, or
by a linear classifier, such as the LDA, in the Stacked-LDA architecture. Con-
sequently, the primary objective of the SLE and HSIC networks is to explore
non-linear approaches to design the filter banks and investigate if such filters
are effective for providing good representations and enhancing the network’s
performance. Precisely, the SLE network relies on the use of supervised Lapla-
cian eigenmaps [92] to generate non-linear embedding of image-based patches.
This embedding is generated using the separation criterion, which maximises
the distance between samples from different classes while minimising it within
the class. We then use an extreme learning machine [17] to learn the weights
that map the image-based patches into the non-linear embedding space; these
weights serve as SLE filter banks. HSIC network, on the other hand, employs
information criterion rather than separation criterion to maximise dependency

Chapter 5. Class-Embedding Networks 118

on the labels while compressing input data.

Extreme learning machine (ELM) is an alternative training approach for
neural networks that offers less computational complexity than gradient de-
scent and backpropagation [17]. The ELM was specifically designed to train a
single hidden layer feed-forward neural network, and it consists of three ba-
sic steps: random projection, non-linear transformation, and regression model
[93]. The low computational cost of the ELM has attracted the interest of several
academics, particularly those dealing with high-dimensional and huge data
sets [94]. The ELM is then generalised to deep neural networks such as autoen-
coders. The extreme learning machine autoencoder (ELM-AE) efficiently used
the straightforward procedures of the original ELM to learn compressed repre-
sentations [19]. The S-ELM network relies on using ELM-AE to extract features.
However, the network aims to use a supervised version of the ELM-AE to learn
compact representations while maintaining class information.

Input Data Convolutional
Layer (1)

Post-processing

Classification

Convolutional
Layer (2)

Post-processing

Classification

Convolutional
Layer (N)

Post-processing

Classification

Classification

FIGURE 5.1: Conceptual illustration of the proposed shallow depth networks.
The architecture consists of several convolutional layers that learn filter banks
through supervised methods. The post-processing step involves applying a
non-linear function to convert the data into a non-linear space, followed by
second-order pooling. To reduce the high dimensionality of the features, the
second-order pooling can be followed by a spatial pyramid pooling. Then
we apply a classifier to the output of each layer and combine the classifier’s

posteriors to make the final decision.

The content of this section is organized as follows. We start by describ-
ing preliminary concepts such as spectral clustering (Section 5.2.1.1), extreme

Chapter 5. Class-Embedding Networks 119

learning machine (Section 5.2.1.2), supervised laplacian eigenmaps (Section 5.2.1.3)
and Hilbert Schmidt Independent Criteria (Section 5.2.1.4). Then, we describe
the procedures for generating the filter banks in all architectures, including
clustering network (Section 5.2.3.1), S-ELM Net (Section 5.2.3.2), SLE Net (Sec-
tion 5.2.3.3) and HSIC Net (Section 5.2.3.4). The problem settings are also de-
scribed in Section 5.2.2.

5.2.1 Preliminary Principles

5.2.1.1 Spectral Clustering

Spectral clustering, described by Algorithm 5, is a popular unsupervised tech-
nique that usually outperforms traditional clustering algorithms such as k-
means [91]. The algorithm training involves three main steps: (i) constructing
a graph; (ii) calculating the Laplacian matrix in the defined neighbourhood;
and (iii) finding K eigenvectors of the Laplacian matrix to split the graph into
K clusters. A set of data points {xi}N

1 , xi ∈ Rd can be represented as a graph
G = (V , E), where the vertices V represent the data points and the edges eij ∈ E
connect two vertices vi and vj with a specific weight, using one of the following
constructions:

• ϵ-neighbourhood graph, where all data points with distances smaller than
a value called ϵ are connected;

• k-nearest neighbour graph, which connects two vertices vj and vj with an
undirected edge if vi is among the k-nearest neighbours of vj;

• a fully-connected graph, which connects all pairwise data points using a
predefined similarity measure sij.

To define the edges connecting vertices in a graph, including ϵ-neighbourhood,
k-nearest neighbour or a fully-connected graph, pairwise distances ||xi − xj||
between all points i and j in the neighbourhood are computed. These distances
are then transformed into similarity measures using a kernel transformation as
follows:

s(xi, xj) = exp(−||xi − xj||2
2σ2), (5.1)

where σ defines the width of the neighbourhood.

Following the computation of the graph’s similarity matrix, we compute the
unnormalised Laplacian matrix as explained in step 3 of Algorithm 5. It is also

Chapter 5. Class-Embedding Networks 120

possible to use the normalised versions of the Laplacian matrix as described in
step 4 of Algorithm 5. Next, we create the new embedding Y ∈ RN×K, where
its columns are the K eigenvectors corresponding to the K smallest eigenvalues
of the Laplacian matrix. Using the normalised Laplacian matrix described in
[95], we normalise each row of the eigenvectors to have a unit length (step 7 in
Algorithm 5). Finally, treating each row of Y ∈ RN×K as a point, we divide the
N points into K clusters using the k-means method.

Algorithm 5 Spectral Clustering

Input: Data points: X ∈ RN×d, where {xN
i , xi ∈ Rd}; number of clusters: K

Output: K clusters (C1, C2, . . . , CK)
1: Define the local neighbourhood for each point xi in the dataset using ϵ-

neighbourhood, k-nearst neighbourhood or a fully-connected graph.
2: Construct (N × N) affinity matrix S, where sij denotes the similarity be-

tween the points xi and xj in the neighbourhood.
3: Calculate the unnormalised Laplacian matrix as L = D− S, where the de-

gree matrix D is defined as the row sum of the affinity matrix: Di = ∑j Si,j.
4: Optionally, normalise the Laplacian matrix (L) by one of the following

equations:
L = D−1L [96],
L = D−

1
2 LD−

1
2 [95].

5: Compute the largest K eigenvalues (λk) and eigenvectors (vk) of L.
6: The embedding of each point (xi) is the vector (yi), with (yik) representing

the ith element of the kth principal eigenvector vk of L.
7: When using the normalised equation [95] to normalise the Laplacian ma-

trix, Y = {yi}N
1 , yi ∈ RK should be normalised as the following:

yij = yij/

(
∑
k

yik
2

) 1
2

.

8: Cluster the points (yi) i = 1, . . . , N with the k-means algorithm into K
clusters (C1, . . . , CK).

5.2.1.2 Extreme Learning Machine

5.2.1.2.1 Description and Algorithm An ELM is a fast training single-layer
feedforward neural network (SLFN) that avoids gradient calculations to up-
date the network weights. Figure 5.2 describes the basic architecture of the
ELM mechanism. Unlike gradient-based networks, the hidden node parame-
ters are assigned randomly and never updated during the network’s training.

Chapter 5. Class-Embedding Networks 121

The output layer weights are usually learnt by the least-square method in a sin-
gle step [19].

x1

x2

xn

h1

h2

hL

o1

o2

om

........

........

........

In
pu

ts

O
ut

pu
ts

Input Layer Hidden Layer Output Layer

FIGURE 5.2: Structure of single-layer feedforward neural net-
work.

Algorithm 6 describes the procedures of training a single-layer feedforward
network through the ELM method. Given a training set S = {(xi, ti) : xi ∈
R1×n, ti ∈ R1×m, and i = [1, 2, . . . , N]}, where xi represents the inputs and ti

denotes the desired target, the algorithm starts by calculating the output of the
hidden layer with L neurons, as follows:

hj = g(
n

∑
i=1

xiwij + bj), j = [1, 2, . . . , L], (5.2)

where g(x) represents a non-linear activation function, wij and bi are the hidden
layer’s weights assigned randomly and fixed during the training and hj is the
network response at the single hidden layer node. The ELM aims to minimise
the mean square error (MSE) between the actual targets and the ELM outputs,
as follows:

Minimise||Hβ− T||2, (5.3)

where T = [t1, t2, . . . , tm] represents the desired targets, H = [h1, h2, . . . , hL] is
the hidden layer’s outputs and the output weights β can be computed using
the Moore–Penrose inverse of matrix H, as follows:

β = H†T. (5.4)

Chapter 5. Class-Embedding Networks 122

The authors of [17] investigated an alternative method that was better for cal-
culating β by introducing a regularisation parameter C, as follows:

β =

HT (I
C + HHT) −1T if N < L

(I
C + HT H

) −1HTT otherwise,
(5.5)

where L denotes the number of the hidden layer’s nodes, N is the number of
training examples and I is the identity matrix.

Algorithm 6 Training SLFN through the ELM learning method

Input: Set of inputs: X ∈ RN×n, where {xN
i , xi ∈ Rn}; Targets: T ∈ RN×m,

where {tN
i , ti ∈ Rm}; number of hidden nodes: L

Output: βi, where i = [1, 2, . . . , m]

Initialisation:
1. Generate random weights (W ∈ Rn×L, B ∈ R1×L) between the input and
hidden layers (wij, bi in Figure 5.2).
2. Calculate the outputs of the hidden layer: H = XW + B.
3. Apply a non-linear activation function to the hidden layer’s outputs: H =
g(H).
Analytical solution:
Use Moore–Penrose inverse of H to find the weights between the hidden and
the output layers (β): β = H†T.

5.2.1.2.2 ELM Autoencoder ELM is extended to ELM autoencoder (ELM-
AE), which works with unsupervised feature representations. Figure 5.3-a de-
scribes a single-layer ELM-AE architecture that modifies the original ELM struc-
ture by using the input data as the output data. The random parameters of the
hidden layer (wij, bi) are chosen to be orthogonal, according to [18]. As with
conventional auto encoders, the ELM-AE is composed of encoder and decoder
parts. The encoder maps the data points X ∈ RN×n into a non-linear space
using random weights and bias (equation 5.2). The decoder maps the output
of the hidden layer (H ∈ RN×L) back to X ∈ RN×n through the output weights
β ∈ RL×n, which can be estimated using either equation 5.4 or 5.5. The ELM-
AE can learn different representations of the data input, which include: (i) com-
pressed features if L < n; (ii) equal dimension feature representation if L = n;
and (iii) sparse representation if L > n. For any new data point xi ∈ R1×n, the
new representation can be found as follows, which is also described in Figure
5.3-b.

Hnew = XβT (5.6)

Chapter 5. Class-Embedding Networks 123

x1

x2

xn

h1

h2

hL

x1

x2

xn

........

........

........

In
pu

ts

O
ut

pu
ts

Input Layer Hidden Layer Output Layer

x1

x2

xn

h1

h2

hL

........

........

In
pu

ts

DecoderEncoder

(a) (b)

FIGURE 5.3: Structure of single-layer ELM-AE.

5.2.1.3 Supervised Laplacian Eigenmaps

SLE is a type of manifold learning [92]. Given N data points {xi}N
i=1 in a high

dimensional space Rp, the SLE aims to map the data points X ∈ RN×p into a
non-linear lower-dimensional space Z ∈ RN×d, where d << p. The non-linear
embedding obtained by SLE should maximise the separation between samples
from different classes while minimising the distances between examples from
the same class. The following equation defines the objective function of the
SLE:

min
Z

tr(ZT LwZ)

max
Z

tr(ZT LbZ)

s.t. ZTDwZ = I,

(5.7)

where:

• Lb ∈ RN×N denotes the between-class Laplacian matrix, which is defined
as follows:

Lb = Db −Wb; (5.8)

• Lw ∈ RN×N represents the within-class Laplacian matrix, which is de-
fined as

Lw = Dw −Ww; (5.9)

• The weights matrices Ww and Wb can be defined for a set of classes T, as
the follows:

Ww(i, j) =

exp(− ||xi−xj||2
σ2) if Ti = Tj

0 Otherwise,
(5.10)

Chapter 5. Class-Embedding Networks 124

Wb(i, j) =

1 if Ti ̸= Tj

0 Otherwise;
(5.11)

• Dw and Db are the within-class and between-class degree matrices that
are defined as

Dw =
N

∑
k=1

Ww(i, k) i = [1, 2, . . . , N], (5.12)

Db =
N

∑
k=1

Wb(i, k) i = [1, 2, . . . , N]; (5.13)

• I is the identity matrix of size N × N.

• The constraint ensures that Z has unit norm rows and is orthogonal with
respect to the within-class degree matrix defined by Dw.

The optimal solution for the optimisation problem (equation 5.7) using the
eigendecomposition, according to [92], is described as

Bz = λDwz, (5.14)

where B = γLb + (1− γ)Ww, γ is a user-predefined parameter that is used to
balance equation 5.14, Ww is within class similarity matrix defined by equation
5.10, Lb is the between-class Laplacian matrix defined by equation 5.8 and λ

represent the eigenvalues in descending order.

5.2.1.4 Hilbert–Schmidt Independence Criterion

5.2.1.4.1 HSIC Description HSIC is a kernel-based measure that relies on
estimating the Hilbert–Schmidt norm of the cross-covariance operator between
the distributions in reproducing kernel Hilbert spaces [97]. The following for-
mula describes the formulation of the HSIC in two separable Hilbert spaces H
and G:

HSIC(PXY,H,G)) = ||CXY||2

= EXYX′Y′ [KX(X, X′)KY′(Y, Y′)]

+ EXX′ [KX(X, X′)]EY′ [KY(Y, Y′)]

− 2EXY[EX′ [KX(X, X′)]EY′ [KY(Y, Y′)]],

(5.15)

where PXY denotes probability distributions over (X ×Y), KX and KY are ker-
nel functions and EXY is Expectation over X and Y.

Chapter 5. Class-Embedding Networks 125

Given a set of m independent data points S = {(x1, y1), . . . , (xm, ym} drawn
from PXY, the empirical estimation of HSIC can be described by the following
equation:

HSIC(S ,H,G) = (m− 1)−2 tr(KX HKY H), (5.16)

where KX, KY ∈ Rm×m represent the kernel functions of X and Y, respectively,
and H is the centring matrix that is defined as follows:

H = Im −
1
m

1m1T
m, (5.17)

where I ∈ Rm×m is the identity matrix.

5.2.1.4.2 Information Bottleneck Given the two random variables X and Y,
where X represents the input and Y is the class labels, information bottleneck
(IB) aims to find the minimal representation that is independent of the dimen-
sions by capturing as much mutual information between X and Y as possible
[98].

The BI objective function with respect to the conditional distribution p(t|x)
can be expressed as follows:

min
p(t|x)

I(X; T)− βI(X; Y), (5.18)

where the Lagrange multiplier β controls the trade-off between the compres-
sion and preserving more information about X (with large β, we attain more
information about X, while small β implies more compressed data), and T is
the hidden representation. The mutual information between two random vari-
ables X and Y with joint distribution p(x, y) is defined as follows:

I(X; Y) = H(X)− H(X|Y), (5.19)

where H is the entropy that measures the information or randomness in X.
In general, the IB objective function (5.18) tries to preserve the information of
the hidden representations about the label and compress information about the
input data.

Chapter 5. Class-Embedding Networks 126

5.2.1.4.3 HSIC Bottleneck The authors of [99] proposed a training mecha-
nism named HSIC training to train deep neural networks without backprop-
agation. HSIC training relies on replacing the mutual information in the IB
optimisation problem (equation 5.18) with a normalised version of HSIC, as
follows:

min
θi

nHSIC(Ti(Zi−1, θi), X)− nHSIC(Ti(Zi−1, θi), Y), (5.20)

where:

• X and Y are the input data and the class labels, respectively;

• Ti is the transformation applied to the current layer;

• Zi−1 is the output of the previous hidden layer;

• nHSIC is the normalised Hilbert–Schmith criterion (information criteria),
which can be defined from independent and identically distributed (i.i.d.)
samples D = {(xi, yi) : [i = 1, . . . , m], where: xi ∈ Rdx and yi ∈ Rdy}, as
follows:

nHSIC(D,H,G) = tr(K̃xK̃y), (5.21)

where K̃x = (K̄x(K̄x + λmIm)), K̃y = (K̄y(K̄y + λmIm)) are the centered
kernels for X and Y and G andH are the Hilbert spaces.

5.2.1.4.4 HSIC Training with Linear Kernels We aim to solve equation 5.20
using a straightforward solution that allows us to achieve fast feature learning
without iterations or intensive network parameter updates. One possible way
to achieve this goal is to rewrite the objective function of the HSIC bottleneck
as follows:

min
θ

K0.5
Z (HKX H)K0.5

Z

max
θ

K0.5
Z (HKY H)K0.5

Z ,
(5.22)

where:

• HKX H and HKY H are fixed symmetric matrices;

• KX and KY represent the kernel functions of the input data and class la-
bels, respectively;

• H is the centring matrix defined for m data points by equation 5.17;

• KZ = K(Ti(Zi−1, θ)), where Zi−1 denotes the output of the previous hid-
den layer and Ti is the transformation applied to the current layer.

Chapter 5. Class-Embedding Networks 127

Finding a single-step solution to equation 5.22 using non-linear kernels is
difficult. Therefore, we solved the optimisation problem in equation 5.22 using
linear kernels. A detailed description of our solution is described in Appendix
A. Our solution shows that the transformation weights matrix (θ) is provided
by solving the following eigenvector problem:

ZT(HKX H)Zθ = λZT(HKY H)Zθ, (5.23)

where Z is the previous layer’s outputs and θ is represented by the eigenvectors
corresponding to the smallest eigenvalues (λ). The eigenvectors are sorted by
the smallest eigenvalues as the objective function (equation 5.22) is re-written
as a minimisation problem (Appendix A).

5.2.2 Problem Settings

Let us consider a learning problem with N images output from a previous
layer L− 1 {X(L−1) : Xi ∈ Rm×n×dL−1} and C classes Target ∈ RN×1 , where
m and n represent the image’s spatial dimensions and dL−1 is the number of
filters in layer L − 1. The primary goal of the supervised architectures, such
as clustering, SLE, S-ELM and HSIC networks, is to generate supervised fil-
ters that maximise the classification results subject to the training data avail-
able. To achieve this goal, we first divide each image Xi ∈ Rm×n×dL−1 into
patches Pi ∈ R(k2

LdL−1)×m̃ñ, where kL × kL represents the kernel size in layer L,
m̃ = (m− kL) + 1) and ñ = (n− kL) + 1). Likewise, we extract all overlapping
patches P ∈ R(k2

LdL−1)×(m̃ñN) of all images in the database. Next, we create a vec-
tor T ∈ Rm̃ñN×1 containing the class labels of the patches P ∈ R(k2

LdL−1)×(m̃ñN).
Each patch is assigned a class identical to its full-image one. Finally, using
a random subspace of P and T, we compute the supervised filters using the
methods explained in sections 5.2.3.1, 5.2.3.2, 5.2.3.3 and 5.2.3.4.

5.2.3 Producing Networks Filter Banks

5.2.3.1 Clustering Network

Given a random set with M patches Ps ∈ R(k2
LdL−1)×M ⊂ P ∈ R(k2

LdL−1)×(m̃ñN)

and C classes Ts ∈ RM×1 ⊂ T ∈ Rm̃ñN×1, we compute the filters of the cluster-
ing network as follows:

Chapter 5. Class-Embedding Networks 128

1. For each class c ∈ C, we find all instances Pc that belong to c, as {Pc ∈ Ps :
if Ts = c};

2. We divide each class c into K clusters using Algorithm 5 with the subset
Pc;

3. We create a vector containing the new classes for all training images,
where the number of the new labels = K× C;

4. We apply the multi-class LDA classifier to distinguish between Ps and the
new classes;

5. The filters WL
s obtained by the multi-class LDA can be expressed as fol-

lows:

WL
s = mat

kL×kL×dL−1
qs, s = [1, 2, . . . , dL], (5.24)

where dL represents the number of filters chosen for the current layer L;

6 We convolve the images in layer (L− 1) with the computed filters as the
follows:

XL
i = XL−1

i ∗WL
s , (5.25)

where ∗ denotes the convolution operation.

5.2.3.2 Supervised Extreme Learning Machine

The S-ELM-based filters can be computed as follows:

1. We create a matrix Ts ∈ RC×(m̃ñN), which represents the one-hot encoding
of the original classes T;

2. We subtract the mean from Ts as follows:

Ts(i, j) = Ts(i, j)− µi, i = [1, 2, . . . , m̃ñN], (5.26)

where µi denotes the mean of each column in matrix Ts and is described
by the following equation:

µi =
1
C

C

∑
j=1

Ts(j, i), i = [1, 2, . . . , m̃ñN]; (5.27)

3. We construct a matrix Ps ∈ R((k2
LdL−1)+C)×(m̃ñN) by concatenating the im-

ages’ patches P ∈ R(k2
LdL−1)×(m̃ñN) and the zero-mean targets Ts ∈ RC×(m̃ñN);

Chapter 5. Class-Embedding Networks 129

4. We find β in equation 5.4 using the data points Ps and the ELM-AE con-
cept described in Section 5.2.1.2.2;

5. The S-ELM-based filters can be expressed as follows:

WL
s = mat

kL×kL×dL−1+C
qs, s = [1, 2, . . . , dL], (5.28)

where WL
s = β and dL is a user-predefined parameter that represents the

number of filters in layer L.

To convolve an image XL−1
i ∈ Rm×n×dL−1 with the S-ELM-based filters WL

s , we
first divide the image into patches P ∈ Rmn×kL

2dL−1 using a kernel size = kL ×
kL after zero-padding it. Then, to replace the zero-mean targets in the training
phase, we add C dimensions to P and fill them with zeros. The convolution
operation can be expressed by the following matrix multiplication:

XL
i ∈ Rmn×dL = P ∈ Rmn×(k2

LdL−1+C) ×WL
s ∈ R(k2

LdL+C)×dL , (5.29)

where dL is the number of the filters in layer L. We can obtain the convolutional
outputs by reshaping the resulting matrix into XL

i ∈ Rm×n×dL .

5.2.3.3 Supervised Laplacian Eigenmaps

Given a subset of patches Ps ∈ R(k2
LdL−1)×M and C classes Ts ∈ RM×1 ⊂ T ∈

Rm̃ñN×1, the procedures for computing SLE-based filters involve two primary
steps:

(i) We convert Ps to a non-linear embedding space Z ∈ RM×dL using the
supervised Laplacian eigenmaps approach described in Section 5.2.1.3,
where dL is the number of filters in layer L;

(ii) We determine the weights W(L)
1 and W(L)

2 that map Ps to Z using the ELM
mechanism defined in Section 5.2.1.2.

To generate the non-linear embedding Z ∈ RM×dL of the input data Ps and
Ts, the within-class and between-class weight matrices are first computed us-
ing Equations 5.10 and 5.11. Using Equations 5.13 and 5.12, the degree matrices
within and between classes are calculated. Ultimately, we solve the generalised
eigenvector problem represented by equation 5.14 for Z, where the Lb can be
obtained using equation 5.8.

Chapter 5. Class-Embedding Networks 130

The convolutional filters W(L)
1 and W(L)

2 that map the input data Ps into Z
can be computed using the ELM method, as follows:

1. We project Ps into a non-linear space using random weights W(L)
1 ∈ Rk2

LdL−1×dh

and bias B(L)
1 , as follows:

H = g(PT
s W(L)

1 + B(L)
1), (5.30)

where dh is a user-defined parameter that represents the number of di-
mensions in the ELM’s hidden layer and g is a non-linear activation func-
tion;

2. We convert H ∈ RM×dh into Z ∈ RM×dL using the weights β, which can
be estimated using equation 5.4 or 5.5. Then we set W(L)

2 = β;

3. The weights of the convolutional layers W(L)
1 ∈ RK2

LdL−1×dh and W(L)
2 ∈

Rdh×dL can be represented as follows:

W(L)
1 = mat

kL×kL×dL−1
qs, s = 1, 2, . . . , dh,

B(L)
1 = mat

1×1×dL−1
qs, s = 1, 2, . . . , dh,

W(L)
2 = mat

1×1×dh
qs, s = 1, 2, . . . , dL,

(5.31)

where dh and dL are predefined user parameters;

4. To convolve X(L−1)
i with SLE filters, we use the formula

X(L)
i = g(X(L−1)

i ∗W(L)
1 + B(L)

1) ∗W(L)
2 , (5.32)

where ∗ is the convolution operation and g represents a non-linear acti-
vation function.

5.2.3.4 Hilbert–Schmidt Independent Criteria Network

If we have N images X(0) = {X(0)
i ∈ Rm×n×d0 , d0 ∈ {1, 3}} , a set of classes

Target ∈ RN×1 corresponding to them and a set of feature maps in layer L− 1
X(L−1) = {X(L−1)

i ∈ Rm×n×dL−1}, then the HSIC-based filters can be computed
as follows:

1. After zero-padding the original images X(0), we divide them into patches
P(0) ∈ Rk2d0×mnN, where k × k is the size of the kernel and n and m are
the image’s spatial dimensions;

Chapter 5. Class-Embedding Networks 131

2. We divide the zero-padded feature maps X(L−1) into patches P(L−1) ∈
Rk2

LdL−1×mnN using a kernel size of kL × kL;

3. We create a vector T ∈ R1×mnN containing the class labels for patches,
where each patch is allocated a class identical to its full-image class;

4. Using the one-hot encoding approach, we transform T to Ts ∈ RC×mnN,
where C denotes the number of classes;

5. Using random subsets with M patches S(0) ∈ Rk2d0×M ⊂ P(0), S(L−1) ∈
Rk2

LdL−1×M ⊂ P(L−1) and Y ∈ RC×M ⊂ Ts, we compute the Gaussian
kernel defined by equation 5.1 on S(0) and Y to obtain KX and KY;

6. We solve the optimisation problem (equation 5.22) for θ using KX, KY and
S(L−1) as Z in equation 5.22;

7. The HSIC convolutional weights W(L)
s can be expressed as follows:

W(L)
s = mat

kL×kL×dL−1
qs, s = 1, 2, . . . , dL, (5.33)

where dL represents the number of filters chosen for layer L and W(L)
s = θ;

8. We convolve any image X(L−1)
i with the HSIC-based filters, as follows:

X(L)
i = X(L−1)

i ∗W(L)
s , (5.34)

where ∗ denotes the convolution operation.

5.3 Experiments and Results

In this section, we analyse the performance of the four proposed networks us-
ing several classification benchmarks, namely CIFAR-10, CIFAR-100, TinyIm-
ageNet and MNIST. Our experiments are organised into three main sections.
In Section 5.3.3, we analyse the efficacy of the proposed networks employing a
single-layer architecture with a sufficient number of filters. The second exper-
iment, described in Section 5.3.4, investigates the impact of network depth on
the accuracy of the proposed networks. In the last experiment (Section 5.3.5),
we study the effect of combining different filters in the convolutional layers
on the accuracy of the models. In addition, in Section 5.3.2, we describe the
complexity of the networks used in our experiments, and in Section 5.3.1, we
explain how we set the networks’ parameters.

Chapter 5. Class-Embedding Networks 132

5.3.1 Selecting Hyperparameters for Proposed Architectures

The selection of optimal parameters is essential for achieving good accuracy in
any machine learning algorithm. In all experiments, we evaluated the perfor-
mance of our models using different parameter settings on a validation set and
chose the parameters that led to the best accuracy results. For instance, with
the spectral clustering network, we evaluated the model’s performance using
different graphs and similarity matrices with different parameters. We then
selected the parameters that led to the highest accuracy results on the valida-
tion set. Similarly, we tested various parameter values using a validation set
for the other networks and chose the hyperparameters that resulted in the best
performance.

5.3.2 Networks Complexity

In this section, we discuss the computational complexity of the four proposed
networks, namely SLE, HSIC, S-ELM and clustering networks. We also com-
pare their computational costs to the Multi-Layer PCANet (Chapter 3) and the
Stacked-LDA (Chapter 4). In all experiments (Sections 5.3.3, 5.3.4 and 5.3.5), we
used the same network architecture, either with a single-layer or two-layer de-
sign. Therefore, the number of parameters in all networks in our experiments
was the same. However, the complexity of the networks varied based on the
algorithm used to compute the convolution filters.

For image-based patches with n data points and d dimensions, the convolu-
tional filters for both the clustering network and SLE-Net rely on computing the
Laplacian matrix and performing eigendecomposition on the resulting matrix.
The complexity of computing the graph Laplacian is typically O(n2) while per-
forming eigendecomposition requires O(n3) in the worst-case scenario. There-
fore, the complexity of these steps is approximately O(n3 + n2). Running k-
means clustering, in the case of spectral clustering, for t iterations and k clus-
ters results in an O(tknd) complexity. Therefore, the overall complexity of the
spectral clustering algorithm is O(n3 + n2 + tknd). To generate the filters in the
clustering network, we also applied an LDA between the image-based patches
and the labels generated by the spectral clustering, which adds around O(nd2)

more complexity. In the case of the SLE network, we generalised to the unseen
data using the extreme learning machine, which involves two steps: random
projection, which transforms the input into hidden representation and linear

Chapter 5. Class-Embedding Networks 133

regression model, which transforms the hidden representation into the non-
linear embedding space computed by the SLE. As so, the complexity added to
the computation of the SLE is about O(nd + nm2 + m3), where m is the size of
the embedded features computed by SLE. The computation of the S-ELM filters
involves using the supervised ELM-auto-encoder, which is similar to the origi-
nal ELM, but its output is equal to its inputs. For this reason, the complexity of
these filters is around O(nd + nd2 + d3). Finally, the computational complex-
ity of HSIC filters is dominated by the computation of the Kx and Ky kernels
(equation 5.23), which require around O(n2) computational complexity. Table
5.1 provides a summary of the estimated complexity of the filters generated by
the four proposed architectures (SLE, HSIC, S-ELM, and clustering) in compar-
ison to those associated with generating PCA and LDA filters (Chapters 3 and
4).

TABLE 5.1: The estimated computational complexity of the fil-
ters generated by the four proposed networks: SLE, HSIC, S-ELM,
and clustering, in comparison to those associated with generating

PCA and LDA filters (Chapters 3 and 4).

Network’s name Complexity
Multi-Layer PCANet (Chapter 3) O(n)

Stacked-LDA (Chapter 4) O(n)
SLE Net O(n3)

Clustering network O(n3)
S-ELM network O(n)

HSIC Net O(n2)

In summary, the computational complexity discussed in this section is ex-
clusively computed for the filters of the four proposed networks (SLE, HSIC,
S-ELM, and clustering) compared to those generated in Chapters 3 and 4. The
other components of the networks, including second-order pooling, spatial
pyramid pooling and the classifier, are the same across all networks. For this
reason, we do not compute their complexity.

5.3.3 Single-Layer Networks

5.3.3.1 Parameter Settings

This experiment aimed to determine if the addition of supervised information
would improve the discriminational ability of the proposed networks, namely
the clustering network, SLE Net, S-ELM Net and HSIC Net when compared

Chapter 5. Class-Embedding Networks 134

with PCANet. To perform this experiment, we used a single-layer network ar-
chitecture with 75, 75, 60 and 27 filters for the CIFAR-10, CIFAR-100, MNIST
and TinyImageNet databases, respectively. Following each network’s convo-
lutional layer, a ReLU activation function, second-order pooling and support
vector machine (SVM) classifier were applied. The filter size was set to 5× 5
using the CIFAR-10 and CIFAR-100 databases, 13× 13 for the MNIST database
and 3 × 3 for the TinyImageNet database. For the CIFAR-10 and CIFAR-100
databases, we employed an 8× 8 second-order pooling block size with a stride
of 1 and connected the second-order features to a three-level spatial pyramid
pooling of 4× 4, 2× 2 and 1× 1 subwindows. We extracted the second-order
features for the MNIST database using a second-order pooling block size of
7× 7 and a stride of 7. In the TinyImageNet database, we used a 16× 16 second-
order pooling block size with a stride of 1 followed by a spatial pyramid pool-
ing of 4× 4, 2× 2 and 1× 1 subregions.

To implement the clustering network, we defined the local neighbourhood
for each point in the dataset using a k-nearest neighbour graph with k = 5.
The similarity matrix was computed using the Gaussian kernel (equation 5.1)
with the kernel scale σ = 1. To compute the Laplacian matrix, we used the nor-
malised random walk Laplacian matrix described in [96] (step 4 of Algorithm
5). In addition, we used the standard deviation of the patches rather than the
patches themselves as input for Algorithm 5. The number of clusters per class
in all databases was set to 15.

In order to implement the S-ELM Net, we assigned a uniformly distributed
random number to the W and B variables in equation 5.2 and defined g as a
ReLU activation function. We also estimated β using equation 5.5 with a regu-
larisation factor C = 0.001.

After finding the patch-based images’ embedding as detailed in Section
5.2.3.3 for the SLE Net, we assigned uniformly random numbers to W(L)

1 and
B (equation 5.30). The number of filters dh in equation 5.30 was selected to be
twice the number of embedding features. For instance, in this section and for
the CIFAR-10 database, we employed a single-layer architecture with 75 filters;
hence, we assigned 150 to the middle layer’s number of filters dh. In addition,
β was calculated using equation 5.5, and a ReLU activation function was used
between the layers.

Chapter 5. Class-Embedding Networks 135

For the implementation of the HSIC Net, we employed the Gaussian kernel
defined by equation 5.1 with kernel scale σ = 1 for both training patches and
hot-encoding targets.

5.3.3.2 Performance Analysis

Table 5.2 compares the accuracy of the proposed supervised architectures to
that of Multi-Layer PCANet (Chapter 3) and Stacked-LDA (Chapter 4) using
single-layer structures on four databases (CIFAR-10, CIFAR-100, MNIST and
TinyImageNet). For an adequate comparison, we used the same parameters as
the supervised models described in Section 5.3.3.1 for the PCANet and Stacked-
LDA architectures. In addition, we generated the Stacked-LDA filters using the
settings provided in Section 4.4.2.1.1 of Chapter 4.

TABLE 5.2: Accuracy (%) using different networks on the CIFAR-
10, CIFAR-100, MNIST and TinyImageNet databases. PCANet in

the table refers to Multi-Layer PCANet (Chapter 3).

Single-Layer Network
Filter Type CIFAR-10 CIFAR-100 MNIST TinyImageNet Learning Paradigm

Stacked-LDA-1 80.20 54.9 99.39 30.20 Supervised
PCANet-1 75.96 53.68 99.29 24.14 Unsupervised

Clustering Net-1 77.31 52.38 99.30 25.28 Supervised
S-ELM Net-1 77.08 52.82 99.41 30.38 Supervised

SLE Net-1 77.00 51.64 99.20 26.80 Supervised
HSIC Net-1 76.16 52.12 99.23 26.32 Supervised

Two-Layer Network
Filter Type CIFAR-10 CIFAR-100 MNIST TinyImageNet Learning Paradigm

Stacked-LDA-2 81.44 55.94 99.40 32.3 Supervised
PCANet-2 80.87 58.74 99.30 31.06 Unsupervised

Clustering Net-2 77.91 52.1 99.28 25.9 Supervised
S-ELM Net-2 78.82 54.37 99.35 32.38 Supervised

SLE Net-2 78.80 52.26 99.18 25.86 Supervised
HSIC Net-2 77.91 52.05 99.13 27.33 Supervised

Combination of Filters in Single-Layer Architectures
Filter Type CIFAR-10 CIFAR-100 MNIST TinyImageNet Learning Paradigm

Stacked-LDA+PCA-1 80.87 57.75 99.33 30.88 Semi-supervised
Clustering+PCA Net-1 79.76 57.6 99.35 26.27 Semi-supervised

S-ELM+PCA Net-1 79.76 58.29 99.35 29.82 Semi-supervised
SLE+PCA Net-1 80.20 57.89 99.31 28.56 Semi-supervised

HSIC+PCA Net-1 78.08 57.32 99.30 27.91 Semi-supervised
Supervised Net-1 79.3 56.23 99.32 28.24 Supervised

Combination of Filters in Two-Layer Architectures
Filter Type CIFAR-10 CIFAR-100 MNIST TinyImageNet Learning Paradigm

Stacked-LDA+PCA-2 82.26 58.65 99.33 33.34 Semi-supervised
Clustering+PCA Net-2 81.39 58.47 99.36 29.67 Semi-supervised

S-ELM+PCA Net-2 81.51 59.20 99.33 33.79 Semi-supervised
SLE+PCA Net-2 81.65 59.39 99.43 32.79 Semi-supervised

HSIC+PCA Net-2 80.23 59.08 99.33 31.78 Semi-supervised
Supervised Net-2 81 57.28 99.30 31.19 Supervised

Chapter 5. Class-Embedding Networks 136

For the CIFAR-10 database, as shown in Table 5.2, the supervised networks
presented interesting results regarding accuracy when compared with the un-
supervised PCANet. All of the proposed networks outperformed the accuracy
metric of the PCANet by about 2%, showing that the feature representation in
these networks was sufficient for reaching good performance results. However,
one can note that the Stacked-LDA network outperformed all other models in
terms of accuracy, achieving approximately 3% higher accuracy than all the su-
pervised approaches and around 5% higher than PCANet, demonstrating its
good generalisation ability in this benchmark dataset.

According to Table 5.2, PCANet and Stacked-LDA outperformed all the
new supervised methods (clustering, S-ELM, SLE and HSIC networks) on the
CIFAR-100 database. The best accuracy result obtained by the Stacked-LDA
network did not demonstrate a significant improvement over PCANet, being
only about 1% better. Likewise, there was no significant difference between
the accuracy values achieved by PCANet and the new supervised approaches,
since PCANet outperformed them by around 1%. Therefore, all of the mod-
els provided satisfactory results in terms of accuracy in the CIFAR-100 bench-
mark. Nevertheless, PCANet and Stacked-LDA Net were the optimal models
for this database due to their lower computational cost when compared with
other methods.

For the MNIST database, all networks presented good accuracy results of
over 99%, as shown in Table 5.2. The best accuracy result was 99.41%, which
was achieved by using the S-ELM network, showing the excellent representa-
tiveness of the extracted features and generalisation ability of ELM models.
However, the Stacked-LDA provided a result comparable with the one ob-
tained by S-ELM in terms not only of accuracy but also of computational cost.
Although SLE Net provided the lowest accuracy (99.20%), this was still com-
parable with the results produced by PCANet and other models.

As shown in Table 5.2, in the TinyImageNet database, all of the supervised
architectures presented better accuracy results than PCANet. The S-ELM ar-
chitecture reached an accuracy of 30.38% in the database, which was equiv-
alent to the accuracy obtained by the Stacked-LDA network and around 6%
higher than that of PCANet. The other supervised networks provided similar
performance, which improved on PCANet by about 2%, except for the clus-
tering network, which improved by 1% over PCANet. Therefore, the use of

Chapter 5. Class-Embedding Networks 137

supervised networks increased the discriminability of features and efficiency,
even with a limited number of training instances per class, as was the case in
this database. However, the Stacked-LDA and S-ELM networks provided the
best accuracy results, which made them the optimal networks to use with this
benchmark dataset.

In general, and based on the results obtained by different single-layer archi-
tectures using CIFAR-10, CIFAR-100, MNIST and TinyImageNet databases, we
highlight the following key findings:

• The filter type has a significant influence on the model’s performance. For
example, the Stacked-LDA network obtained 5% higher accuracy than
PCANet on the CIFAR-10 database. Likewise, the S-ELM network repre-
sented an approximately 6% enhancement over PCANet on the TinyIm-
ageNet database. Therefore, if there is time to perform more research, it
should be utilised to identify filters that generalise well for the database
in question.

• Supervised architectures are not necessarily superior to unsupervised ap-
proaches, especially for databases with significantly similar classes, such
as CIFAR-100. Because the filters are learned in a single step with no
mechanism to guarantee that the patches are separated appropriately, the
supervised techniques are prone not only to a problem with overfitting
but also to classification errors that could propagate through the network.

• When compared with all the other single-layer architectures across all the
databases, the Stacked-LDA provided the highest accuracy results. The
S-ELM network showed equivalent performance on TinyImagenet and
MNIST, making it an excellent alternative to the Stacked-LDA model in
these two databases. Learning the stacked-LDA filters involves grouping
some patches and ensuring that the chosen groups are separable. Con-
sequently, the Stacked-LDA model produced expressive results across all
the datasets for object recognition and written hand-digit classification,
indicating that this model had significant generalisation capacity over all
the other models.

Chapter 5. Class-Embedding Networks 138

5.3.4 Two-layer Networks

5.3.4.1 Parameter Settings

The aim of this experiment was to show the impact of the network depth on
the performance of the proposed networks (clustering, HSIC, S-ELM and SLE).
To achieve this goal, we added a layer to the single-layer structures described
in section 5.3.3 using the same parameter settings with the exception of the
MNIST database, for which we utilised a 1× 1 filter size instead of a 13× 13 fil-
ter size. We used a small filter size for the second layer of the MNIST database
as using a larger filter size did not improve the performance and instead im-
posed a higher overhead. In addition, we compared the results of the proposed
networks with those of two-layer PCANet and Stacked-LDA using the param-
eters stated in Section 4.4.2.1.1 of Chapter 4.

5.3.4.2 Performance Analysis

Table 5.2 reports the accuracy results of the four proposed networks on differ-
ent classification benchmarks using two-layer architectures. The proposed ar-
chitectures were also compared with the two-layer PCANet and Stacked-LDA
models. As shown in Table 5.2, different architectures yielded different accu-
racy results for each database, emphasising our hypothesis about the impact of
the filter type on the model’s performance.

According to Table 5.2, increasing the number of layers improved the accu-
racy of all models using the CIFAR-10 database. This improvement did not
appear to be significant for any of the supervised approaches, since it was
only around 1% better than their single-layer structures. In comparison, the
PCANet’s performance increased from 75.97% to 80.87%, outperforming all su-
pervised network except the Stacked-LDA. While the two-layer Stacked-LDA
network outperformed the other networks in terms of accuracy, the single-
layer Stacked-LDA network produced results that were on par with those of
the two-layer PCANet network. As a result, the Stacked-LDA network is an
excellent option to use in this database. The other supervised networks (HSIC,
S-ELM, SLE and clustering) produced equivalent results that were 2% lower
than PCANet in the two-layer architectures, indicating they are more appro-
priate for wider networks (fewer layers with more filters in each layer) than
deeper ones.

Chapter 5. Class-Embedding Networks 139

For the CIFAR-100 database, adding a layer to PCANet resulted in a consid-
erable improvement of roughly 5% over its single-layer architecture, as shown
in Table 5.2. Increasing the network depth also improved the recognition rates
of two supervised models, namely the S-ELM and Stacked-LDA networks,
in the same dataset. However, the improvement obtained by these two net-
works was not statistically significant, at approximately 1% for the Stacked-
LDA model and 2% for the S-ELM network. The accuracy of the HSIC, SLE
and clustering networks did not improve with the network depth. Overall,
two-layer PCANet provided the best accuracy result, at 58.74%, which was
around 3% higher than Stacked-LDA, 4% better than S-ELM and 7% more than
the other supervised techniques. According to the results, PCANet is the best
network for this database.

Table 5.2 demonstrates that, for the MNIST database, all two-layer struc-
tures, regardless of the learning paradigm, provided nearly the same recog-
nition rates as their single-layer counterparts, with the exception of the SLE
network, whose two-layer architecture performed 0.10% worse than its single-
layer architecture. This implies that when additional layers are added, the gen-
eralisation capability of these shallow-depth networks using this database de-
creases, which may lead to an overfitting problem. As a result, in this database,
using a single-layer architecture is enough to reach good accuracy results.

Based on the results reported in Table 5.2 when using the TinyImageNet
database, we noticed that the two-layer Stacked-LDA and S-ELM networks
achieved the best recognition rates, with a 2% improvement over their single-
layer counterparts. Two-layer PCANet, on the other hand, provided very com-
petitive results, with an accuracy of 31.06%, which was 1% lower than the
best results obtained and 6% higher than its single-layer architecture. The re-
sults also showed that the two-layer SLE and clustering networks provided
the worst results, since they did not improve on their single-layer architectures
and were 7% lower than the best accuracy results. The two-layer HSIC network
showed a 1% improvement over its single-layer counterpart but was 5% lower
than the highest accuracy. Consequently, three of the supervised techniques,
the HSIC, SLE and clustering networks, are inappropriate for use as deep ar-
chitectures, while the Stacked-LDA and S-ELM networks are the two optimal
models for this database.

Chapter 5. Class-Embedding Networks 140

To summarise the results of the two-layer network shown in Table 5.2, we
highlight the following two main findings:

• In the context of supervised networks, increasing the depth of the Stacked-
LDA and S-ELM networks always resulted in improved accuracy for all
databases except for the MNIST database, for which a single-layer struc-
ture was sufficient for obtaining the desired results, even though this im-
provement was not significant. The SLE, HSIC and clustering networks,
on the other hand, did not perform well when additional layers were
added. As a result, adopting supervised architectures with more filters
and a single layer was sufficient to achieve good performance.

• Two-layer PCANet provided a significant improvement over its single-
layer counterpart. This improvement was about 5% or even higher using
the CIFAR-10, CIFAR-100 and TinyImageNet databases. Consequently,
PCANet became competitive with the supervised shallow-depth networks
obtaining the best accuracy results. For example, the two-layer PCANet
provided 1% less accuracy than the Stacked-LDA network using two databases,
CIFAR-10 and TinyImageNet, while achieving the best accuracy com-
pared with the other architectures on the CIFAR-100 database.

5.3.5 Combination of Filters

5.3.5.1 Motivation and Parameter Settings

From the previous experiments (Sections 5.3.3 and 5.3.4), we noticed that su-
pervised architectures generally had good convergence and better performance
than unsupervised PCANet with single-layer architectures. However, PCANet
provided competitive results when the network depth increased. As a con-
sequence, we combined in this experiment the convolutional outputs of the
supervised techniques with the feature maps produced by the unsupervised
PCANet, which we refer to in Table 5.2 as semi-supervised methods, in or-
der to exploit the unique characteristics of both supervised and unsupervised
approaches. Figure 5.4 shows an example of a two-layer semi-supervised net-
work. The post-processing step in the figure involves nonlinearity, second-
order pooling and an optional spatial pyramid pooling.

For the implementation of semi-supervised networks, the same parame-
ters mentioned in Sections 5.3.3 and 5.3.4 were employed. However, we used
50% of the total number of filters to produce supervised feature maps and

Chapter 5. Class-Embedding Networks 141

MxNxd

MxNxd1

MxNxd2

PCA
filters

Supervised
filters

MxNx(d1+d2)

Feature maps
concatenationInput Image

Layer #1

Post-processing

Classification

MxNxd3

MxNxd4

PCA
filters

Supervised
filters

MxNx(d3+d4)

Feature maps
concatenation

Layer #2

Post-processing

Classification

MxNx(d1+d2)

Cl
as

si
fi

ca
ti

on

+

+

FIGURE 5.4: Two-layer semi-supervised network.

the remaining 50% to construct unsupervised feature maps. In the CIFAR-10
database, for instance, there were 75 filters; hence, 38 supervised and 37 unsu-
pervised feature maps were combined. We also evaluated a semi-supervised
Stacked-LDA network in which the Stacked-LDA followed the configurations
outlined in Section 4.4.2.1.1 of Chapter 4. In addition, we developed a super-
vised network named "Supervised Net" in Table 5.2 to show how the perfor-
mance would be affected by integrating only supervised filters. This network
used the same settings as the other networks, but only 25% of the total number
of filters were used to generate the feature maps for all the supervised net-
works (HSCI, SLE, S-ELM and clustering). For instance, in the TinyImageNet
database, we used 27 filters; therefore, we combined seven feature maps of each
network, including SLE, clustering and S-ELM, with six HSIC filters’ responses.

5.3.5.2 Performance Analysis

Table 5.2 compares the accuracy of the semi-supervised networks against each
other and against the supervised network "Supervised Net" using single-layer
and two-layer architectures. The supervised network incorporated SLE, clus-
tering, S-ELM and HSIC feature maps, using 25% of the total number of filters

Chapter 5. Class-Embedding Networks 142

for each filter type.

According to Table 5.2, the investigated shallow-depth networks performed
similarly in both single-layer and two-layer architectures, independent of the
learning paradigm employed. There were cases where it was evident that one
learning paradigm would provide a slight improvement over the other. For
instance, when the classes were similar, such as in the CIFAR-100 database, the
semi-supervised techniques were superior to the supervised ones. Addition-
ally, it was noticeable that some networks performed significantly better than
others, depending on the datasets used. More specifically, in the TinyImageNet
database, the Stacked-LDA and S-ELM networks outperformed the other ap-
proaches by 2% to 4% on single-layer and two-layer structures, respectively.
This observation suggests that the semi-supervised S-ELM and Stacked-LDA
networks are the optimal architectures for the classification task.

As shown in Table 3.3, for the CIFAR-10 database, all networks provided
competitive accuracy results, with the semi-supervised Stacked-LDA network
obtaining the best accuracy in the single-layer and two-layer architectures. The
accuracy of all semi-supervised networks was around 3% higher than that of
their supervised counterparts, with the exception of the Stacked-LDA, which
improved by approximately 1% over its supervised counterpart. The Super-
vised Net, created by combining four supervised networks’ feature maps (HSIC,
S-ELM, SLE and clustering), achieved substantially higher accuracy than any
of them individually. This finding implies that we can still attain excellent ac-
curacy by combining filters with the same learning paradigms. In all the net-
works, two-layer semi-supervised structures outperformed their single-layer
architectures by approximately 2%. This improvement was not significant com-
pared with that reached by unsupervised PCANet as its depth increased, but it
was superior to that attained by any of the supervised structures as their depth
increased.

Using the CIFAR-100 database as an example, Table 5.2 demonstrates that
combining different filters significantly improved the performance compared
with using each filter type alone. For example, the semi-supervised Stacked-
LDA outperformed its supervised counterpart by around 3%. Other semi-
supervised networks outperformed their supervised counterparts by more than
5% in terms of accuracy. This suggests that combining several convolutional
outputs might produce more robust representations than employing a single

Chapter 5. Class-Embedding Networks 143

filter type. The semi-supervised S-ELM network obtained the best accuracy
with the single-layer architecture, which was equivalent to two-layer PCANet
accuracy and 5% better than its supervised architecture. In two-layer semi-
supervised networks, the SLE network showed superior performance, whereas
the HSIC and S-ELM networks produced comparable results. On the other
hand, Supervised Net achieved the worst performance in single-layer and two-
layer architectures. However, the degradation was only 2% worse than the best
accuracy, indicating that combining supervised and unsupervised techniques
would be preferable when dealing with a database of similar classes. More-
over, increasing the network depth across all networks improved performance
by 1% to 2%.

According to Table 5.2, when using the MNIST database, all semi-supervised
networks insignificantly outperformed their supervised counterparts, with the
exception of the S-ELM and Stacked-LDA networks, whose accuracy dropped
by 0.06%. The semi-supervised S-ELM network provided the best accuracy
results when compared with all the other architectures, with an accuracy of
99.35%, which was 0.06% lower than its supervised architecture. Moreover, in-
creasing network depth resulted in the same accuracy for all the networks, ex-
cept for the SLE, which reached the highest accuracy in this database, at 99.43%.
However, this accuracy was equivalent to the single-layer supervised Stacked-
LDA and S-ELM networks. This findings suggest that one layer of supervised
Stacked-LDA or S-ELM networks for the MNIST database would be sufficient
to provide results with good accuracy.

For the TinyImageNet database, Table 5.2 shows that the semi-supervised
Stacked-LDA and S-ELM provided results with the same accuracy as their
supervised architectures in single-layer architecture. The other networks im-
proved the accuracy by around 1% to 2% over their supervised counterparts.
The results also stated that increasing the network depth led to 3% to 5% bet-
ter performance. The S-ELM network achieved the best accuracy in semi-
supervised two-layer architectures. This performance of 33.79% was compa-
rable with that of the Stacked-LDA network, 2% better than the HSIC and Su-
pervised networks and 4% higher than the clustering network. Based on the
results, we can conclude that semi-supervised Stacked-LDA and S-ELM net-
works have good generalisation performance in this database.

Chapter 5. Class-Embedding Networks 144

Based on the experimental results presented in this section, we can draw
the following conclusions:

• The best performance across all databases was achieved by semi-supervised
networks, indicating that using a combination of different filters in the
convolutional layers could result in a good generalisation capacity.

• Adding a layer to the architectures with integrated filters always boosted
performance by 1% to 3% on average.

• Combining filters in convolutional layers improved accuracy in most sit-
uations, independent of the learning paradigm used by the filters.

5.4 Conclusions

In this chapter, we introduced four supervised networks, namely the clustering,
supervised extreme learning machine (S-ELM), supervised Laplacian eigen-
maps (SLE) and Hilbert–Schmidt independence criterion (HSIC) networks. The
proposed networks followed a similar architecture that consisted of convolu-
tional layers, non-linear activation, second-order pooling and a classifier. The
spatial pyramid pooling could be added between the second-order pooling and
the classifier. With multilayer architectures, we combined the classification de-
cisions of all layers to make the final decision. The four proposed architectures
differed in their filter types, with each network using a different filter type and
extracting different features. In the following, we summarise the objective of
each network:

• The clustering network aims to optimise the Stacked-LDA implementa-
tion by grouping the image-based patches using the spectral clustering
algorithm;

• The SLE network attempts to replace linear filters with filters that map
data into a non-linear space using the separation criteria, which try to
maximise the distance between samples from different classes while min-
imising the distance inside the class;

• The HSIC network’s objective is to create a filter bank using the infor-
mation criteria rather than the separation criteria, where the information
criteria aims to maximise the dependency on the labels while compress-
ing the input data;

Chapter 5. Class-Embedding Networks 145

• The S-ELM uses the supervised extreme learning machine autoencoder to
compress the features while preserving information about the classes.

The proposed networks were evaluated on four classification databases,
CIFAR-10, CIFAR-100, MNIST and TinyImageNet, using single-layer and two-
layer architectures (Sections 5.3.3 and 5.3.4). The new networks were also com-
pared to the Multi-Layer PCANet (Chapter 3) and Stacked-LDA (Chapter 4).
Using sufficient training data and based on our experiments in Sections 5.3.3
and 5.3.4, we could generalise the following findings:

• The supervised architectures outperformed the Multi-Layer PCANet in
single-layer architectures. However, as the number of layers increased,
the performance of supervised networks improved somewhat less than
that of the unsupervised Multi-Layer PCANet when an additional layer
was added. This observation makes the performance of the unsupervised
network (Multi-Layer PCANet) comparable with that of other supervised
approaches as network depth increases;

• While the S-ELM network achieved competitive accuracy results in some
databases, the Stacked-LDA network presented better data representa-
tion and generalisation capabilities than the other networks in most cases.
A single-layer Stacked-LDA architecture with a large number of filters
also outperformed two-layer PCANet architecture.

In order to make use of the unique characteristics of the supervised and
unsupervised networks, we investigated four semi-supervised architectures
that were similar to the supervised networks (clustering, HSIC, SLE and S-
ELM). However, we combined 50% supervised and 50% PCA filters to pro-
duce the convolutional layers’ outputs. In addition, to investigate the efficacy
of the combination mechanism employing different learning paradigms, we
constructed a supervised network to combine the convolutional outputs of the
four supervised networks, with 25% of each filter type. We evaluated the per-
formance of the proposed networks on four classification benchmarks, CIFAR-
10, CIFAR-100, MNIST and TinyImageNet, utilising both single-layer and two-
layer structures. Our experiments (Section 5.3.5) can be summarised as follows:

• Regardless of the learning paradigm used, combining the convolutional
outputs of many filters resulted in better performance than using each
filter type alone;

Chapter 5. Class-Embedding Networks 146

• Two-layer architectures improved on their single-layer counterparts; how-
ever, this improvement of 1–3% was smaller than the one of 5–6% im-
provement that was achieved by adding a layer to PCANet;

• Compared with all the other networks, the semi-supervised S-ELM and
Stacked-LDA networks achieved high accuracy and generalised well across
all datasets.

Despite the many advantages of shallow-depth architectures, such as rea-
sonable training time and good accuracy, several open challenges may serve as
motivation for future research, which is the focus of the following chapter.

The number of layers affects a neural network’s generalisation capacity.
CNNs, for example, achieve excellent accuracy through the use of many con-
volution layers. However, when the number of layers increases in both super-
vised and unsupervised architectures, a problem with the loss of generalisation
capacity emerges, which may lead to an overfitting problem. We believe that
the subsampling mechanism in these shallow-depth networks causes this limi-
tation. Using PCANet as an example, we use a subset of the eigenvectors gen-
erated by PCA to compute the convolutional outputs of the first layer. In the
second layer, we generate filters using the first subspace’s processed images,
which might represent 90% of the original dataset. As we progress by adding
more layers, we lose more information about the original dataset, resulting in
weak network representation and poor accuracy results. The residual blocks
for each layer are introduced in the following chapter to alleviate this limita-
tion.

In many cases, the Stacked-LDA network showed good performance com-
pared with other shallow-depth networks. We believe its high performance is
due to the fact that it involves procedures that consider classification errors.
Because shallow-depth networks are trained in a single step, classification er-
rors are likely to propagate across the network. Therefore, one of the challenges
addressed in the next chapter is to increase the network depth while including
a mechanism that corrects classification errors when traversing the network.

It is noticeable that unsupervised networks have an advantage over the su-
pervised ones when the number of training samples per class is small, as shown
in the case of the CIFAR-100 database (Section 5.3.4). The following chapter ex-
plores augmenting data to increase the training sample size.

147

Chapter 6

Deep Residual Compensation
Convolutional Network

6.1 Introduction

The findings obtained in Chapter 4 provided evidence that the filter type has
a significant impact on the accuracy of the model. Motivated by the excel-
lent performance of the supervised Stacked-LDA network (Chapter 4), we pre-
sented four more supervised networks (Chapter 5): clustering, supervised ex-
treme learning machine (S-ELM), supervised Laplacian eigenmaps (SLE) and
Hilbert–Schmidt independence criterion (HSIC) networks. All networks use
the same architecture consisting of convolutional layers; each convolutional
layer is followed by non-linear activation, second-order pooling and a classifier.
However, the four networks produce different supervised features depending
on the filter type employed. The clustering network uses the spectral cluster-
ing approach to create new classes for randomly chosen image-based patches.
After that, the filters are obtained using LDA applied with the newly gener-
ated classes, rather than the original ones. The SLE network utilises non-linear
filters to maximise the distance between data from different classes while de-
creasing the distance between samples within a class. The HSIC network cre-
ates a filter bank using the information criterion, which tries to maximise the
dependence on labels while compressing original features. The S-ELM gener-
ates its filter bank using the supervised extreme learning machine autoencoder,
which helps in the compression of features while preserving class information.
The four networks were evaluated on the CIFAR-10, CIFAR-100, TinyImageNet
and MNIST databases, demonstrating their effectiveness compared with Multi-
Layer PCANet in specific datasets. In the majority of situations, however, the
experiments performed in Chapter 5 showed that the Stacked-LDA network

Chapter 6. Deep Residual Compensation Convolutional Network 148

achieved a higher level of recognition accuracy than did the other shallow-
depth networks. The experimental results from Chapter 5 also showed that
although the supervised networks used class labels to boost classification per-
formance, the unsupervised Multi-Layer PCANet generated equivalent accu-
racy results as network depth increased. By combining supervised and unsu-
pervised filters at a ratio of 50:50, we presented four semi-supervised shallow-
depth networks (clustering, HSIC, SLE and S-ELM) capable of exploding both
learning paradigms in an effective manner, resulting in a highly adaptable ar-
chitecture and better accuracy results. To test the combination mechanism us-
ing the same learning paradigm, we created a supervised network to combine
the convolutional outputs of HSIC, S-ELM, clustering and SLE with 25% of
each filter type. The findings indicated that integrating several filters improved
performance independent of the learning paradigm. While semi-supervised
ELM performed comparably, the semi-supervised Stacked-LDA network out-
performed all other approaches.

In general, the shallow-depth networks presented in Chapters 3, 4 and 5
provided good accuracy results. However, increasing the network depth leads
to a considerable degradation in performance. Despite the importance of net-
work depth for image classification, the maximum number of layers reached
in our experiments was small (between six and nine). We believe that the sub-
space nature of these shallow-depth networks causes this limitation. As we
progress by going deeper across the network, we lose more information about
the original data, and unlike neural networks, there is no mechanism to adjust
the weights concerning the classification errors; thus, errors propagate with
more layers being added.

This chapter introduces a residual compensation convolutional learning ar-
chitecture, which is inspired by the residual network [5] and is designed to
obtain accuracy from considerably increased depth while effectively correcting
network errors with more layers being added. The organisation of the chapter
is as follows. The overall chapter is divided into two primary sections. The
first section (Section 6.2) provides a detailed explanation of the network’s de-
sign with its training algorithm. The second (section 6.3) consists of the exper-
iments that were carried out to demonstrate the effectiveness of the proposed
framework and is divided into three subsections. The first examines the in-
fluence of several network parameters, such as the number of filters (6.3.1.1)

Chapter 6. Deep Residual Compensation Convolutional Network 149

and the learning rate (6.3.1.2), on the accuracy of the deep residual compensa-
tion convolutional network. In Section 6.3.2, we evaluate the performance of
the proposed networks on MNIST, CIFAR-10, CIFAR-100 and TinyImageNet
against gradient-based and non-gradient architectures without data augmen-
tation. The final subsection (Section 6.3.3) analyses the possibility of improving
the proposed model’s accuracy through the use of data augmentation. Finally,
in Section 6.4, the findings are summarised along with suggestions for further
study.

6.2 Network Architecture

Figure 6.1 shows the architecture of the proposed network. The first layer of
the model is a single-layer architecture, similar to those discussed in Chapters
3, 4 and 5, consisting of a convolutional layer with any filter type, non-linear
activation, second-order pooling and an LDA classifier trained using the orig-
inal classes. The deeper layers are residual compensation layers, which have
the same structure as the first layer. However, the LDA classifier in the resid-
ual compensation layers is trained using new classes learned from the resid-
ual information of the previous layers. The input to each residual compensa-
tion layer is the previous layer’s output combined with the original features.
In the second layer, for instance, the convolutional output of the first layer
{O(1)

i ∈ Rm×n×d1 : i = [1, 2, . . . , N]} is concatenated with the original fea-
tures {X(1)

i ∈ Rm×n×d : i = [1, 2, . . . , N]} to create input {X(2)
i ∈ Rm×n×(d+d1) :

i = [1, 2, . . . , N]} for the second layer. As network depth increases, the deeper
layers compensate for earlier layers’ errors; consequently, combining the pre-
dicted values of the residual compensation layers enables the model to reach
high accuracy. Moreover, it is worth mentioning that the layers in our proposed
network are added sequentially, one by one, and trained in a single-pass non-
iterative manner without gradient descent or backpropagation.

Given a dataset with N points {X(1)
i ∈ Rm×n×d : i = [1, 2, . . . , N]} and C

classes T(1) ∈ RN×1, the first layer of the proposed model, as shown in Figure
6.1, starts by computing the convolutional outputs using d1 filters of any type.
The convolutional outputs {O(1)

i ∈ Rm×n×d1 : i = [1, 2, . . . , N]} are then post-
processed by applying a ReLU non-linear activation followed by second-order
pooling. We then train an LDA classifier using the second-order features and
the original classes T(1) to produce the posterior probabilities Ỹ(1) ∈ RN×C of
the first layer. T(2) ∈ RN×1 in the figure represents the new classes that we use

Chapter 6. Deep Residual Compensation Convolutional Network 150

to train the LDA classifier of the next layer. To compute T(2), we first calculate
the residual errors between the predicted outputs Ỹ(1) and the actual classes
Y ∈ RN×C, as follows:

R(1) = λY− Ỹ(1), (6.1)

where Y denotes the real classes in one-hot encoding, and 0 ≤ λ ≤ 1 deter-
mines the maximum probability that a class may achieve. That is to say, the
network’s probabilities will be constrained to values between zero and λ. T(2)

can then be defined as the classes with the maximum absolute residual errors,
which can be expressed as follows:

T(2)
i = class(|R(1)

ij |, ∀j) i = [1, . . . , N], (6.2)

where class(x) denotes the name of the class whose residual error magnitude
is the largest. For instance, having three classes, A, B and C, with residual error
values of 0.4, −0.6, and 0, respectively, class B is the nominated class because it
has the maximum absolute residual error.

As shown in Figure 6.1, the second layer receives the first layer’s output
combined with the original features as input and calculates d2 filters of any
type for the second convolutional layer. After convoluting the images X(2) ∈
Rm×n×(d1+d)×N with the d2 filters, we apply a ReLU non-linear activation func-
tion and then extract the second-order features. After identifying the features
of the second layer, an LDA classifier is trained using these features and the
newly generated classes T(2) to provide a correction term that is then added
to the first layer’s classification results Ỹ(1) to obtain more accurate predictions
Ỹ(2). This correction term may take either a positive or negative value to main-
tain the network probabilities at the second layer Ỹ(2) to be within the range
of 0 to λ (equation 6.1). In other words, the first layer’s posteriors Ỹ(1) can be
corrected by adding or subtracting the posteriors of the second layer to obtain
more accurate classification results (Ỹ(2)). To do so, we introduce an indicator
variable of the same size as the new labels (T(2)), but with only two possible
values, namely −1 or 1. This variable is defined as the signum function of the
maximum absolute residual errors of the previous layer, as follows:

s(2)i = sign(R(1)
i∗), i∗ = arg max

i
|R(1)

i |. (6.3)

The indicator variable is responsible for indicating when to add or subtract
from the previous layer’s probabilities to maintain the correct range for the

Chapter 6. Deep Residual Compensation Convolutional Network 151

combined probabilities. With a positive indicator value, both the first- and
second-layer probabilities are added. In contrast, negative indicator values in-
dicate that the predicted probabilities of the second layer are subtracted from
the predicted probabilities of the first layer. Suppose we have N images ({X(1)

i ∈
Rm×n×d : i = [1, 2, . . . , N]}) that need to be classified into one of three groups
(A, B or C). For simplicity, let’s assume that given an image X(1)

i of actual class
A, the first layer predicts probabilities of 0.4, 0.6 and 0 for the classes A, B and
C, respectively. To add a second layer, the residual errors of the classes A, B
and C are computed as 0.4, −0.6 and 0 using equation 6.1 and λ = 0.8. Con-
sequently, the new label for this image is B, since it has the highest magnitude,
and the indicator is −1, as the maximum absolute residual error has a negative
sign. Suppose that the second layer’s features were trained using class B and
accurately predicted probabilities of 0, 1 and 0 for the three classes, A, B and
C, respectively. Because the indicator variable has a negative sign, subtract-
ing the predicted probabilities of the second layer from those for the first layer
provides final predictions of 0.4, −0.4 and 0 for the three classes, A, B and C,
respectively. Therefore, this approach enables the network to correct the first
layer’s outputs and accurately predict that the image belongs to the A class,
which is its actual label. In order to implement the previously mentioned idea
and extend it to the test set whose classes are not seen, we divide the train-
ing dataset into negative and positive samples according to the values of their
indicator variables. The positive instances are those with positive indicator
values, whereas the negative examples have negative ones. Then we train two
LDA classifiers for each layer, one for positive samples with their new classes
{T(2)

p ⊂ T(2) : s(2) = 1} and the other for negative instances with their new

labels {T(2)
n ⊂ T(2) : s(2) = −1}. It should be emphasised that both classifiers

have complete access to all training images. That is to say; the negative classi-
fier is trained by treating each class in the positive samples as a negative class
(its class is zero in one-versus-all decomposition). To the same extent, each
class in the negative samples is considered a negative class during the training
of the positive classifier. Ultimately, the output of the network at the second
layer Ỹ(2) is represented as follows:

Ỹ(2) = Ỹ(1) + α[
np

N
Ỹp

(2) − nn

N
Ỹn

(2)
], (6.4)

where Ỹn
(2) and Ỹp

(2) represent the N predictions made by the classifiers trained
on negative and positive samples, nn and np denote the number of negative and
positive samples, respectively, N is the total number of training samples and α

Chapter 6. Deep Residual Compensation Convolutional Network 152

is the learning rate. The learning rate, similar to that used in neural networks,
is introduced to reduce oscillations when adding more layers.

To add a third layer, we first find the new labels T(3) by computing the
residual errors between the network’s outputs at the second layer Ỹ(2) and the
actual classes in one-hot encoding Y ∈ RN×C, as shown below:

T(3)
i = class(|R(2)

ij |, ∀j)

= class(|Yi,j − Ỹ(2)
i,j |, ∀j), i = [1, . . . , N]

(6.5)

where class(x) represents the name of the class with the largest residual error
magnitude, and N is the total number of instances in the database. The indica-
tor variable for the third layer can be defined using the residual information of
the previous layers, as follows:

s(3)i = sign(R(2)
i∗), i∗ = arg max

i
|R(2)

i |. (6.6)

Once the indicator variable and new labels for the third layer have been iden-
tified, the third layer employs the same procedures as the second layer. To
calculate the output of the third convolutional layer, the output of the second
layer is first concatenated with the original features to generate d3 filters. Fol-
lowing the calculation of the convolutional layer, a ReLU activation is applied,
and the second-order features are extracted. Moreover, the output of the third
layer, Ỹ(3), can be calculated using the following equation:

Ỹ(3) = Ỹ(2) + α[
np

N
Ỹp

(3) − nn

N
Ỹn

(3)
], (6.7)

where

• Ỹp
(3) represents the probabilities predicted by a classifier trained using

positive samples whose classes T(3)
p ⊂ T(3) have positive indicator values

s(3) = 1;

• Ỹn
(3) shows the probabilities predicted by a classifier trained on negative

examples with classes T(3)
n ⊂ T(3) containing negative indicator values

s(3) = −1;

• np and nn represent the number of the positive and negative samples,
respectively;

• N is the total number of instances in the database;

Chapter 6. Deep Residual Compensation Convolutional Network 153

• α, whose value is between 0 and 1, is a learning rate that prevents the os-
cillation in performance when additional layers are added.

Algorithm 7 summarises the training procedures of the deep residual com-
pensation convolutional network with L layers. For deeper residual compen-
sation layers, it is possible to compute the network outputs at layer L (Ỹ(L))
using the new classes (T(L)) learnt from the residual errors of the previous lay-
ers, which can be defined as follows:

T(L) = class(|R(L−1)|)
= class(|Y− Ỹ(L−1)|)
= class(|Y− [ỸL−2 +

α

N
(n(L−2)

p Ỹ(L−2)
p − n(L−2)

n Ỹ(L−2)
n)])

= . . .

= class(|Y− [Ỹ(1) +
α

N

L−1

∑
i=2

(ni
pỸi

p − ni
nỸi

n)]),

(6.8)

where Y is the original classes in one-hot encoding, ni
p and ni

n are the number of
positive and negative samples in layer i, respectively, and N denotes the total
number of samples in the database.

Chapter 6. Deep Residual Compensation Convolutional Network 154

O(1):
mxnxd1

Filters
Post-

processing

LDA
classifier

with original
classes.

+ Input X(2):
mxnx(d+d1)

O(2):
mxnxd2

Post-
processing

LDA
classifier
with T(2)

Input X(3):
mxnx(d+d2)

O(3):
mxnxd3

Post-
processing

LDA
classifier
with T(3)

+

..
.

..
.

..
.

..
.

..
.

..
.

Input X(L-1):
mxnx(d+dL-2)

O(L-1):
mxnxdL-1

Post-
processing

LDA
classifier
with T(L-1)

Input X(L):
mxnx(d+dL-1)

O(L):
mxnxdL

Post-
processing

LDA
classifier
with T(L)

+

+

Filters

Filters

Filters

Filters

Convolution
with filters

Post-
processing Classification

Original input:
X(1): (mxnxd)

Input to each
layer

FIGURE 6.1: Deep residual compensation convolutional network.

Chapter 6. Deep Residual Compensation Convolutional Network 155

Algorithm 7 Deep Residual Compensation Convolutional Network Training

Input: Training images: {X(1)
i ∈ Rm×n×d : i = [1, 2, . . . , N]}, C classes T(1) ∈

RN×1, learning rate: α, number of layers: L and λ to determine the highest
probability a class can reach.

Output: Model’s accuracy: accuracy
1: Generate Y ∈ RN×C, which is the one-hot encoding of T(1).
2: i← 1.
3: Ỹ(0) ← 0
4: s(i) = 1N×1 ▷ fill all entries of the indicator variable of the first layer with

the value 1.
5: while i < L do
6: if i > 1 then ▷ for the residual compensation layers
7: Normalise O(i−1) such that all of its elements have values between 0

and 1, as follows:

O(i−1) =
O(i−1) −min(O(i−1))

max(O(i−1))−min(O(i−1))
. (6.9)

8: Concatenate the output of the previous layer, O(i−1) ∈ Rm×n×di−1×N,
with the original features, X(1) ∈ Rm×n×d×N, to get the input of the
current layer, X(i) ∈ Rm×n×(di−1+d)×N.

9: Compute the residual errors between the previous layer’s output
and the original classes Y, as follows:

R(i−1) = λY− Ỹ(i−1). (6.10)

10: The current layer’s new labels are defined as the maximum absolute
residual error, as follows:

T(i)
j = class(|R(i−1)

jk |, ∀k), j = [1, 2, . . . , N]. (6.11)

11: Define the indicator variable for the current layer as the signum
function of the maximum absolute residual errors, as follows:

s(i)j = sign(R(i−1)
j∗), j∗ = arg max

j
|R(i−1)

j |. (6.12)

12: end if
13: Compute di filters (W(i)) using the inputs X(i).
14: Find the convolutional outputs of the current layer O(i) using X(i) and

the di filters, as follows:

O(i) = X(i) ∗W(i), (6.13)

where X(i) is zero-padded to generate images with the same spatial di-
mensions as the input images.

Chapter 6. Deep Residual Compensation Convolutional Network 156

15: Apply a ReLU non-linear activation to the convolutional outputs O(i),
as follows:

Out(i) = ReLU(O(i)). (6.14)

16: Extract the second-order features (F(i)) of Out(i).
17: Find F(i)

n ⊂ F(i) and T(i)
n ⊂ T(i), for which their indicator values are

negative.

18: Find F(i)
p ⊂ F(i) and T(i)

p ⊂ T(i), which have positive indicator values.

19: if T(i)
p ̸= ∅ then

20: Find an LDA classifier between F(i)
p and T(i)

p : L1 = LDA(F(i)
p , T(i)

p).

21: Predict the posterior probabilities Ỹ(i)
p using L1, as follows:

Ỹ(i)
p = prediction(L1, F(i)). (6.15)

22: else
23: Ỹ(i)

p ← 0.
24: end if
25: if T(i)

n ̸= ∅ then
26: Find an LDA classifier between F(i)

n and T(i)
n : L2 = LDA(F(i)

n , T(i)
n).

27: Predict the posterior probabilities Ỹ(i)
n using L2, as follows:

Ỹ(i)
n = prediction(L2, F(i)). (6.16)

28: else
29: Ỹ(i)

n ← 0.
30: end if
31: Compute the current’s layer output Ỹ(i), as follows:

Ỹ(i) = Ỹ(i−1) + α[
np

N
Ỹp

(i) − nn

N
Ỹn

(i)
], (6.17)

where, np and nn represent the number of the positive and negative
samples, respectively.

32: i← i + 1
33: end while
34: Compute the accuracy of the model at layer L using Ỹ(L).

Chapter 6. Deep Residual Compensation Convolutional Network 157

6.3 Experiments and Results

This section has three primary subsections. The first subsection (Section 6.3.1)
aims to investigate how increasing the number of filters (Section 6.3.1.1) or
the learning rate (Section 6.3.1.2) affects the performance of the deep residual
compensation convolutional network. In the second subsection (Section 6.3.2),
we evaluate the proposed network over four databases, namely the MNIST,
CIFAR-10, CIFAR-100 and TinyImageNet, and compare the network’s accuracy
to that of some gradient-based and non-gradient-based architectures with no
data augmentation. The final subsection (Section 6.3.3) looks at enhancing the
model’s accuracy using data augmentation.

6.3.1 Network Parameters

This section aims to analyse how increasing the number of filters or the learn-
ing rate would affect the performance of the deep residual compensation con-
volutional network. The database used in this section is the CIFAR-10, and the
experiments are organised into two subsections as follows:

• Experiment 1: Testing the effect of increasing the number of filters on the
deep residual compensation convolutional network’s accuracy;

• Experiment 2: Studying the effect of changing the learning rate on the
model’s performance.

6.3.1.1 Experiment 1

6.3.1.1.1 Parameter Settings This experiment aimed to determine how in-
creasing the number of filters affects the accuracy of the deep residual com-
pensation convolutional network. In this experiment, and throughout the rest
of the chapter, we used the same number of filters for all layers and stopped
adding layers when the training error rate reached 0%. In order to achieve our
objective of investigating how the number of filters affects the network’s per-
formance, we created two deep residual compensation convolutional networks
with the same network parameters but different numbers of filters. The first
network used 30 filters across all of its layers, whereas the second employed
50 in the same way. The two networks used the semi-supervised Stacked-LDA
filters described in Chapter 5, which consisted of 50% PCA and 50% Stacked-
LDA filters. For instance, in the network with 30 filters across all of its layers,

Chapter 6. Deep Residual Compensation Convolutional Network 158

the total number of filters in each layer was calculated by combining 15 PCA fil-
ters and 15 stacked LDA filters. The Stacked-LDA filters were computed using
the settings discussed in Section 4.4.2.1.1 of Chapter 4. After obtaining the out-
put of each convolutional layer, we used a ReLU non-linear activation function;
however, this function was not utilised between the layers. Across all layers of
the two networks, the second-order pooling block size was set to 8× 8 with a
stride of 1 pixel. The output of the second-order pooling was linked to three-
level spatial pyramid pooling with 16, 4 and 1 bin, respectively, at each level.
In addition, the learning rate (α) was set to 0.4, while λ (equation 6.10) was
fixed to 0.8. LDA using the one versus all decomposition approach, discussed
in Section 4.2.2.1, was used as the classifier in each layer of the two networks.
To calculate the posterior probabilities, we used the sigmoid function with the
scaling parameter set to 16, as shown in equation 4.1 of Chapter 4.

6.3.1.1.2 Performance Analysis In this section, we report the performance
of the two investigated networks using 30 and 50 filters on the CIFAR-10 database.
For simplicity, we refer to the residual compensation layer network with 30 fil-
ters in all of its layers as ResCNet-30, while the network with 50 filters in all of
its layers is referred to as ResCNet-50.

Figures 6.2 and 6.3 show the error rates of the training and testing sets of
the CIFAR-10 database using the ResCNet-30 and ResCNet-50 networks, re-
spectively. According to the figures, the performance was the same for both
ResCNet-30 and ResCNet-50, despite the fact that ResCNet-30 required more
layers to achieve the same level of performance. ResCNet-50 obtained a train-
ing error rate of 0% at layer 127, while ResCNet-30 achieved that of 0% at
layer 781. The test error rate for both 127- and 781-layer networks was around
13.72%. This finding suggested that increasing the number of filters in the
ResCNet architecture from 30 to 50 did not significantly improve performance.
Surprisingly, we achieved comparable performance results using either a smaller
(30) or larger (50) number of filters. Nonetheless, using a smaller number of fil-
ters would require many layers to reach the same level of performance. There-
fore, throughout the rest of this chapter, we evaluated the deep residual com-
pensation convolutional network using the maximum possible number of fil-
ters.

Chapter 6. Deep Residual Compensation Convolutional Network 159

0 200 400 600 800

Layers

0

2

4

6

8

10

12
E

rr
or

 r
at

e
Training Performance

0 200 400 600 800

Layers

13

14

15

16

17

18

19

20

21

22

23

E
rr

or
 r

at
e

Testing Performance

FIGURE 6.2: The performance (error rate %) of a deep residual
compensation convolutional network with 30 filters throughout

all of its layers on the CIFAR-10 database.

0 50 100 150

Layers

0

0.5

1

1.5

2

2.5

E
rr

or
 r

at
e

Training Performance

0 50 100 150

Layers

13

14

15

16

17

18

19

20

21

E
rr

or
 r

at
e

Testing Performance

FIGURE 6.3: The performance (error rate%) of a deep residual
compensation convolutional network with 50 filters throughout

all of its layers on the CIFAR-10 database.

Chapter 6. Deep Residual Compensation Convolutional Network 160

From Figures 6.2 and 6.3, we can observe that the error rate of both ResCNet-
30 and ResCNet-50 dropped rapidly in the first few layers and remained rela-
tively stable when the training error rate was close to zero. ResCNet-50’s per-
formance, for instance, remained steady after 100 layers, but ResCNet-30’s er-
ror rate curve stabilised after 500 layers. In other words, training ResCNet-50
with 100 layers and ResCNet-30 with 500 layers was sufficient to obtain good
performance. The test error rate obtained by 500-layer ResCNet-30 and 100-
layer ResCNet-50 was 13.67%.

In general, the deep residual compensation network achieved high accuracy
(86.33%) on the CIFAR-10 database, with no data augmentation. This perfor-
mance demonstrated the effectiveness of our network over all of the shallow-
depth networks described in Chapters 3, 4 and 5. Our findings in this section
showed that while increasing the number of filters did not necessarily improve
ResCNet’s accuracy, using a higher number of filters is generally better than
relying on a small number of filters. If no improvement has been observed in
accuracy, the model converges faster with a large number of filters. It is also
worth mentioning that we used only two filters values to study the impact
of increasing the number of filters in the ResCNet architecture, as reducing the
number of filters (< 30) would require adding many layers while using a larger
number of filters (e.g., 100) would generate a large number of features.

6.3.1.2 Experiment 2

6.3.1.2.1 Parameter Settings This experiment aims to show the impact of
the learning rate, denoted by α in Equation 6.17, on the proposed model’s ac-
curacy. The learning rate in our model is intended to avoid oscillations and
produce faster convergence, similar to that of neural networks. In contrast to
neural networks, the learning rate in our model also serves as a weight to in-
tegrate the probabilities of multiple layers, similar to weighted sum techniques.

To understand the influence of the learning rate on the model’s perfor-
mance, we created different networks with identical configurations but dif-
ferent learning rates (α) and evaluated them on the CIFAR-10 database. All
networks used 50 filters throughout all of their layers, with α being set to dif-
ferent numbers ranging from 0.2 to 1. The number of layers in all networks
was fixed at 30. For convenience, we referred to a network with α = L and 50
filters in each of its layer as ResCNet-50–L; hence the network with α = 0.4 is

Chapter 6. Deep Residual Compensation Convolutional Network 161

referred to as ResCNet-50–0.4. In all networks, we implemented the 3× 3 semi-
supervised Stacked-LDA filters described in Chapter 4 by combining 50% PCA
filters and 50% stacked-LDA filters. In addition, the Stacked-LDA filters were
generated using the parameters defined in Section 4.4.2.1.1 of Chapter 4. Af-
ter each convolutional layer, the ReLU activation function was applied, and
the second-order features were retrieved using 16× 16 blocks with stride = 1.
The second-order features were then pooled using three-level spatial pyramid
pooling with the number of bins equal to 16, 4 and 1. Moreover, the linear dis-
criminant analysis with one-versus-all binary decomposition was the classifier
used for each layer. The probabilities were obtained using the sigmoid function
with a scale parameter of 16, as in equation 4.1 (Chapter 4).

6.3.1.2.2 Performance Analysis Figure 6.4 shows the training and testing er-
ror rates of ResCNet-50 with different learning rates ranging from 0.2 to 1 on the
CIFAR-10 dataset. As shown in the figure, both the training and testing error
rates consistently decreased over time. However, the convergence was slower
when using lower learning rates. For instance, at layer 30, the training error
rate of ResCNet-50–1 was 3.6% (accuracy=96.40%), while the testing error rate
was 15.7% (accuracy = 84.30%). In comparison, at the same layer, the training
error rate of ResCNet-50–0.2 was much higher at 7.05% (accuracy = 92.95%),
while the testing error rate was 16.87% (accuracy = 83.18%). Overall, running
ResCNet-50 for 30 layers with a learning rate of 1 provided the best accuracy
and faster convergence rate. However, selecting an appropriate learning rate
to balance the trade-off between speed and accuracy is essential.

Chapter 6. Deep Residual Compensation Convolutional Network 162

0 10 20 30
Layers

3

4

5

6

7

8

9

10

11

E
rr

or
 r

at
e

Training Performance

=0.2
=0.4
=0.6
=1

0 10 20 30
Layers

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

E
rr

or
 r

at
e

Testing Performance

=0.2
=0.4
=0.6
=1

FIGURE 6.4: The performance (error rate %) of a deep residual
compensation convolutional network with 50 filters throughout
all of its layers on the CIFAR-10 database. The experiment was
evaluated by setting α (in equation 6.17) to different values rang-

ing from 0.2 to 1, and the number of layers was set to 30.

To further illustrate the impact of the learning rate on the accuracy of the
deep residual compensation convolutional network, we trained ResCNet-50–
1 and ResCNet-50–0.4 until their training error rates reached 0%. Figures 6.5
and 6.6 show the error rates of training and testing these two networks on the
CIFAR-10 database. In ResCNet-50-1, the training error rate went to 0% at layer
348, whereas the testing error rate at that layer was 13.09% (testing accuracy
was 86.91%). In contrast, ResCNet-50–0.4 achieved a training error rate of 0%
at layer 970, with a testing error rate of 12.59% (accuracy of 87.41%). The best
testing error rate obtained by ResCNet-50–1 was 12.98% at layer 208 (accuracy:
87.02%). In contrast, ResCNet-50–0.4 reached its best testing error rate, 12.46%
(accuracy: 87.54%), at layer 937. Figure 6.6 shows that the training error rate of
ResCNet-50–0.4 did not significantly improve after 600 layers; hence, 600 layers
were sufficient to train ResCNet-50–0.4, for which the testing error rate at that
layer was 12.91% (accuracy: 87.09%). The above findings are summarised in
Table 6.1.

Chapter 6. Deep Residual Compensation Convolutional Network 163

TABLE 6.1: Accuracy (%) on the CIFAR-10 database test set us-
ing ResCNet-50–1 and ResCNet-50–0.4 with different numbers of

layers.

Network # Layers Accuracy (%)
ResCNet-50–1 348 86.91
ResCNet-50–1 208 87.02

ResCNet-50–0.4 970 87.41
ResCNet-50–0.4 937 87.54
ResCNet-50–0.4 600 87.09

0 100 200 300 400
Layers

0

2

4

6

8

10

12

E
rr

or
 r

at
e

Training Performance

0 100 200 300 400
Layers

12

13

14

15

16

17

18

19

20

E
rr

or
 r

at
e

Testing Performance

FIGURE 6.5: The performance (error rate %) of a deep residual
compensation convolutional network with 50 filters throughout
all of its layers on the CIFAR-10 database, where α (in equation

6.17) was set to 1.

Chapter 6. Deep Residual Compensation Convolutional Network 164

0 200 400 600 800 1000
Layers

0

2

4

6

8

10

12

E
rr

or
 r

at
e

Training Performance

0 200 400 600 800 1000
Layers

12

13

14

15

16

17

18

19

20

E
rr

or
 r

at
e

Testing Performance

FIGURE 6.6: The performance (error rate %) of a deep residual
compensation convolutional network with 50 filters throughout
all of its layers on the CIFAR-10 database, where α (in equation

6.17) was set to 0.4.

Based on the findings of this section and Section 6.3.1.1, we can derive the
following conclusions:

• Using the CIFAR-10 database, the second-order block size had an impact
on the accuracy of the deep residual compensation convolutional net-
work. For instance, the highest accuracy attained in this section (87.54%)
was around 1% higher than the best accuracy achieved in Section 6.3.1.1
(86.33%), with the only difference between the models being the modifi-
cation of the second-order block size. In the previous section, the models
used 8× 8 second-order blocks; however, in this section, 16× 16 second-
order blocks were utilised. Even though the improvement was just 1%,
time could be spent modifying the model’s parameters, such as the filter
type, second-order block size and non-linear activation, to improve the
model’s accuracy further.

• The learning rate determines how fast the model adapts to the prob-
lem, and this section’s findings indicate that it was a crucial aspect in
training the deep residual compensation convolutional network. Using
the CIFAR-10 database as an example, the results in this section demon-
strated that the learning rate α = 0.4 was small, since the model needed

Chapter 6. Deep Residual Compensation Convolutional Network 165

a number of layers for coverage (600 layers). If the training error rate os-
cillates, which is not the case in the CIFAR-10 database, the learning rate
must be decreased to avoid oscillations.

6.3.2 Image Classification over Four Benchmarks with No Data

Augmentation

In this section, we evaluate the deep residual compensation convolutional net-
work on four benchmarks, namely the MNIST (Section 6.3.2.1), CIFAR-10 (Sec-
tion 6.3.2.2), CIFAR-100 (Section 6.3.2.3) and TinyImageNet (Section 6.3.2.4). In
the previous section (Section 6.3.1), our experiments showed that we could use
either a big or small number of filters and still achieve the same level of ac-
curacy, albeit with more layers in the latter case. However, the accuracy was
shown to be affected by the second-order pooling block size, as stated in Sec-
tion 6.3.1.2. As a result, the number of filters we use in all experiments de-
scribed in this section has been determined to be as large as possible, given
the available resources. To determine the values for the other network pa-
rameters, such as the second-order pooling block size and stride, we examine
a variety of architectural configurations, each of which having different pa-
rameters, and then report the results of the configuration that works the best.
Our experiments in this section indicate that, in terms of accuracy, our network
outperforms all non-differentiable networks and is comparable with standard
gradient-based models. The experiments also show that our network presents
an advantage over gradient-based models regarding the number of floating op-
erations (FLOPs) required.

6.3.2.1 Handwritten Digit Recognition on the MNIST Database

6.3.2.1.1 Parameters Settings The optimal settings that we identified for the
MNIST database after examining several parameters are listed in Table 6.2. As
shown in Table 6.2, the network architecture consisted of 231 layers, each con-
taining 60 filters. Based on the results of our experiments in Chapters 3, 4 and
5, it was found that there is no remarkable improvement in the accuracy of
the MNIST database when different filter types are being used. As a result, we
used PCA to generate the filters for all layers in this experiment, as this method
is generally considered a computationally efficient algorithm. The implemen-
tation of the PCA filters was discussed in Section 3.2.1 of Chapter 3. The initial
layer of the architecture in this experiment used a 13× 13 filter size, while the

Chapter 6. Deep Residual Compensation Convolutional Network 166

subsequent layers utilised a 3× 3 filter size. In addition, we used a ReLU ac-
tivation function after each convolutional layer but not between layers. The
filter responses of each layer were post-processed using second-order pooling
with a block size of 7× 7 and a stride of 4 pixels. The second-order features
of each layer were then pooled using three-level spatial pyramid pooling with
16, 4 and 1 bins per level. We ran the LDA classifier for each layer with the
probabilities extracted using the softmax function, as follows:

softmax(yi) =
exp(βyi)

∑C
j=1 exp(βyj)

, (6.18)

where β was assigned to 0.001, C denotes the number of classes and y repre-
sents the outputs of the LDA classifier.

TABLE 6.2: Network architectures using the MNIST, CIFAR-100
and TinyImageNet databases.

The MNIST database: 28× 28× 1
Filter size SOP SPP (#bins) Output size

13× 13× 1× 60 7× 7, Stride= 4 [16 4 1] 28× 28× 60
[3× 3× 60× 60]× 230 7× 7, Stride= 4 [16 4 1] 28× 28× 60

The CIFAR-100 database: 32× 32× 3
Filter size SOP SPP (#bins) Output size

3× 3× 3× 50 16× 16, Stride= 4 [16 4 1] 32× 32× 50
[3× 3× 50× 50]× 435 16× 16, Stride= 4 [16 4 1] 32× 32× 50

The TinyImageNet database: 64× 64× 3
Filter size SOP SPP (#bins) Output size

3× 3× 3× 40 32× 32, Stride= 8 [16 4 1] 64× 64× 40
[3× 3× 40× 40]× 511 32× 32, Stride= 8 [16 4 1] 64× 64× 40

6.3.2.1.2 Performance Analysis Figure 6.7 shows the training and testing
error rates of 231-layer ResCNet-60 on the MNIST database, while Table 6.3
compares its accuracy with that of PCANet, LDANet, Stacked-LDA, Maxout
network, Network in Network and Stochastic pooling. As shown in Figure
6.7, the training error rate decreased dramatically over the first few layers and
fluctuated somewhat towards the end; nonetheless, the overall training error
rate curve was smooth, since the training started with a very low error rate.
Similarly, the testing error rate dropped rapidly at first and fluttered when
it reached 0.54%. Adding more layers to the 231-layer network did not en-
hance the network’s performance; thus, the training was terminated. With a
99.52% accuracy, ResCNet-60 outperformed all non-differentiable models such

Chapter 6. Deep Residual Compensation Convolutional Network 167

as PCANet, Multi-Layer PCANet, LDANet, and Stacked-LDA, as shown in Ta-
ble 6.3. Our model improved on the best non-differentiable network results by
around 0.12%. Furthermore, as shown in the table, our network produced re-
sults that were comparable to, but not better than, gradient-based networks
such as the Maxout network, Network in Network, and stochastic pooling.
Based on these results, it can be deduced that our network is reliable and on
par with standard gradient-based models.

0 50 100 150 200 250
Layers

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
rr

or
 r

at
e

Training Performance

0 50 100 150 200 250
Layers

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

E
rr

or
 r

at
e

Testing Performance

FIGURE 6.7: The training and testing error rates using the deep
residual compensation network on the MNIST database.

Chapter 6. Deep Residual Compensation Convolutional Network 168

TABLE 6.3: Accuracy of the deep residual compensation network
compared with different methods on the MNIST database, with

no data augmentation.

Non-differentiable networks
Method Accuracy (%)

PCANet-1 [15] 99.06

PCANet-2 [15] 99.34

LDANet-1 [15] 99.02

LDANet-2 [15] 99.38

PCANet-1 (k = 13) [15] 99.38

Multi-Layer PCANet (Chapter 3) 99.40

Stacked-LDA (Chapter 4) 99.39

ResCNet-60 (this chapter) 99.52

Gradient-based networks
Method Accuracy (%)

Stochastic pooling [8] 99.53

Maxout network [7]+Dropout 99.55

Network in network [31]+Dropout 99.53

6.3.2.2 Pattern Recognition on the CIFAR-10 Database

The ResCNet-50–0.4 model with 937 layers, presented in Section 6.3.1.2, achieved
the best accuracy on the CIFAR-10 database, at 87.54%. Table 6.4 compares the
accuracy achieved by this network with that obtained by other architectures,
namely PCANet, Multi-Layer PCANet (Chapter 3), Stacked-LDA (Chapter 3),
Maxout, Network in Network and Stochastic pooling. According to the results
shown in the table, our non-differentiable deep residual compensation convo-
lutional network (ResCNet) outperformed all of the other non-differentiable
networks, namely PCANet, Multi-Layer PCANet and Stacked-LDA, in terms
of accuracy. The accuracy of the proposed network (highlighted in blue in Ta-
ble 6.4) was around 10% better than the performance achieved by the origi-
nal PCANet, 6% higher than that of the Multi-Layer PCANet and 3% more
than the one produced by the Stacked-LDA model. This achievement shows
that our model was the best alternative to use compared with all other non-
differentiable networks.

In order to demonstrate how well our model performs in comparison to

Chapter 6. Deep Residual Compensation Convolutional Network 169

neural networks, we compared its performance with that of other gradient-
based models, namely Maxout, Network in Network and Stochastic pooling,
as well as several residual networks. The results of these comparisons are pre-
sented in Table 6.4. Despite the fact that ResCNet’s accuracy was around 1%
lower than that of the Maxout network and 2% worse than that of Network in
Network, our model achieved accuracy comparable with that of ResNet-34, 1%
higher than ResNet-18 and ResNet-110, and 3% greater than stochastic pooling.
In general, the results obtained by our model demonstrated its superiority over
all existing non-differentiable networks and its competitiveness over standard
gradient-based models.

TABLE 6.4: Accuracy of the deep residual compensation network
compared with different methods on the CIFAR-10 and CIFAR-

100 databases with no data augmentation.

Non-differentiable networks
Method CIFAR-10 CIFAR-100

PCANet-2 [15] 77.14 51.62
PCANet (combined) [15] 78.68 –

Multi-Layer PCANet (Chapter 3) 81.72 57.86
Stacked-LDA (Chapter 4) 84.44 59.41

ResCNet (this chapter) 87.54 64.9
Gradient-based networks

Method CIFAR-10 CIFAR-100
Stochastic pooling [8] 84.87 57.49

Maxout network [7] with dropout 88.32 61.43
Network in network [31] with dropout 89.59 64.32

Network in network [31] without dropout 85.49 –
110 ResNet, reported by [45, 75] 86.82 55.26

ResNet stochastic depth [45] - 62.20
164-ResNet (pre-activation), reported by [75] - 64.42

ResNet-18, reported by [90] 86.29 59.15
ResNet-34, reported by [90] 87.97 56.05

In terms of accuracy, the results that our model produced were on par with
those produced by standard gradient-based models. However, to highlight the
advantages of using our model over gradient-based models, we compared our
model’s total number of FLOPs1 during the training phase on the CIFAR-10
database with those of different residual networks, namely ResNet-20, ResNet-
32, ResNet-44 and ResNet-56. The results of these comparisons are described
in Table 6.5. With the same settings as in [5] and [100], we re-ran the residual

1Measured in quadrillions (P)

Chapter 6. Deep Residual Compensation Convolutional Network 170

networks using the CIFAR-10 images but with no data augmentation; the re-
sults reported in Table 6.5 are the average of five runs. Table 6.5 shows that
compared to other residual networks, not only did our model have the best ac-
curacy, but it also required the fewest FLOPs. ResCNet, with 937 layers, used
somewhat fewer FLOPs than ResNet-20 in the worst-case scenario. The other
versions of the ResCNet required a much fewer number of FLOPs compared
with the residual networks. These findings suggest that our non-differentiable
network can compete with standard gradient-based models in terms of accu-
racy and the number of FLOPs needed for training.

TABLE 6.5: Accuracy and number of FLOPs of the deep resid-
ual compensation network compared with different residual net-

works on the CIFAR-10 database with no data augmentation.

Residual networks
Method Accuracy (%) #FLOPs (P)

Residual network (ResNet-20) 84.442 1.2951
Residual network (ResNet-32) 84.664 2.1444
Residual network (ResNet-44) 83.176 2.8953
Residual network (ResNet-56) 83.29 3.8433
Deep residual compensation convolutional network (this chapter)

Method Accuracy (%) #FLOPs (P)
ResCNet-50–0.4 (937 layers), [Section 6.3.1.2] 87.54 1.1263
ResCNet-50–1 (208 layers), [Section 6.3.1.2] 87.07 0.2512
ResCNet-50 (100 layers), [Section 6.3.1.1] 86.33 0.1256

6.3.2.3 Image Classification on the CIFAR-100 Database

6.3.2.3.1 Parameter Settings Table 6.2 describes the architecture used to eval-
uate the deep residual compensation convolutional network on the CIFAR-100
database. As shown in the table, the architecture consisted of 436 layers with
50 filters used for each layer. We used a combination of 25 PCA filters and
25 Stacked-LDA filters per layer, with the filter size for each layer being 3× 3.
The Stacked-LDA filters were implemented with the configurations described
in Section 4.4.2.1.1 of Chapter 4. After each convolutional layer, we applied a
ReLU function followed by second-order pooling with a block size of 16× 16
and a stride of 4. The second-order features were then pooled using three-level
spatial pyramid pooling with 4× 4, 2× 2 and 1× 1 subwindows. The LDA was
employed as the classifier for each layer, with the sigmoid function utilised to
extract the probabilities. The scale parameter for the sigmoid function was set

Chapter 6. Deep Residual Compensation Convolutional Network 171

to 16, as described by equation 4.1. λ in equation 6.1 was set to 0.8, and the
initial value of the learning rate was 1, after which its value was reduced by
10% for every ten layers using the following formula:

α = α− 10
100

α. (6.19)

The learning rate continued to fall by 10% every ten layers until it hit 0.387, at
which point it stopped decreasing further.

6.3.2.3.2 Performance Analysis Figure 6.8 shows the training and testing er-
ror rates of each layer of the proposed network on the CIFAR-100 database. As
shown in the figure, the error rate of the training decreased considerably dur-
ing the first 57 layers, but the improvement in error rate was small afterwards.
The training accuracy at layer 57 was 99.72%, whereas the accuracy on the test
set was 63.22%. The network’s optimal performance was achieved at layer 436,
where training accuracy was 99.92% and testing accuracy was 64.92%.

0 100 200 300 400
Layers

0

1

2

3

4

5

6

7

8

9

10

E
rr

or
 r

at
e

Training Performance

0 100 200 300 400
Layers

35

36

37

38

39

40

41

42

43

44

E
rr

or
 r

at
e

Testing Performance

FIGURE 6.8: The training and testing error rates (%) for the
deep residual compensation convolutional network trained on

the CIFAR-100 database.

Chapter 6. Deep Residual Compensation Convolutional Network 172

Table 6.4 compares the accuracy of the deep residual compensation convo-
lutional network with that of several other networks, such as PCANet, Multi-
Layer PCANet, Stacked-LDA, Stochastic pooling, Maxout network, Network in
Network and other residual networks, on the CIFAR-100 database. The accu-
racy attained by our network, which is highlighted in blue in the table, was the
highest among all the networks. The accuracy of 64.91% was 6% higher than
that of Stacked-LDA and ResNet-18, around 8% higher than that of Multi-Layer
PCANet and stochastic pooling, more than 9% higher than that of ResNet-110
and ResNet-34, 14% higher than the original PCANet and more than 2% higher
than that of Maxout and ResNet with stochastic depth. Moreover, the results
achieved by our network were approximately equivalent to those obtained by
ResNet with 164 layers and Network in Network using the dropout technique.
This gain in accuracy once again showed that our network outperformed every
non-gradient-based model and was on par with standard gradient-based mod-
els that achieved the best results.

6.3.2.4 Classification on the TinyImageNet Database

6.3.2.4.1 Parameter Settings As shown in Table 6.2, the architecture used
for the TinyImageNet database consisted of 512 layers, each of which had 40
filters. The input to each convolutional layer was normalised to have values
of between 0 and 1, and each layer used 3 × 3 semi-supervised filters that
were created by combining 20 PCA with 20 Stacked-LDA filters. The Stacked-
LDA filters were produced using the parameters specified in Section 4.4.2.1.1
of Chapter 4. After each convolutional layer, a ReLU non-linear activation fol-
lowed by a second-order pooling and spatial pyramid pooling were applied.
The feature maps were pooled using a 32× 32 second-order pooling with an
8-step stride, and then the pooled features were sent to a three-level spatial
pyramid pooling with a total of 21 bins. The LDA was applied to each layer
as a classifier, and the probabilities were calculated using the sigmoid function
specified in equation 4.1. λ in equation 6.1 was set to 0.5, and the learning rate’s
initial value was set to 1. The value of the learning rate dropped by 10% every
ten layers (equation 6.19) until it reached 0.478, at which point it stabilised.

6.3.2.4.2 Performance Analysis Figure 6.9 depicts the error rate of training
and testing each layer of the deep residual compensation convolutional net-
work on the TinyImageNet database. As indicated in the figure, the error rate
dropped rapidly for the first 74 layers and more gradually afterwards. The

Chapter 6. Deep Residual Compensation Convolutional Network 173

testing accuracy at layer 74 was 43.01%, and the training accuracy was 91.06%.
With 200 layers, the training accuracy increased to 98.37%, and the testing accu-
racy reached 43.23%. The best accuracy obtained by the network was achieved
at layer 512, with 99.43% training accuracy and 44.37% testing accuracy. Table
6.6 compares the performance obtained by our network with that of some resid-
ual networks and non-gradient-based models. According to Table 6.6, our net-
work achieved the highest accuracy compared with all other networks, without
any data augmentation. This performance was around 3% greater than that of
the Stacked-LDA model, 2% higher than that of the ResNet-34 model and 1%
better than that of the ResNet-18 model. Again, our model with simple pro-
cessing steps and no complicated functions or regulation approaches produced
results equivalent to those of standard differentiable networks and superior to
those of all non-gradient-based models.

0 200 400 600

Layers

0

5

10

15

20

25

30

35

40

E
rr

or
 r

at
e

Training Performance

0 200 400 600

Layers

55

56

57

58

59

60

61

62

63

64

65

E
rr

or
 r

at
e

Testing Performance

FIGURE 6.9: The training and testing error rates (%) for the
deep residual compensation convolutional network trained on

the TinyImageNet database without data augmentation.

Chapter 6. Deep Residual Compensation Convolutional Network 174

TABLE 6.6: Accuracy (%) of the deep residual compensation con-
volutional network compared with other methods on the TinyIm-

ageNet database, without data augmentation.

Residual networks
Method Accuracy (%)

ResNet-18, reported by [90] 43.02
ResNet-34, reported by [90] 42.65

Non-differentiable networks
Method Accuracy (%)

PCANet-2 30.00
Multi-Layer PCANet (Chapter 3) 40.87

Stacked-LDA (Chapter 4) 41.76
ResCNet (this chapter) 44.37

6.3.3 Image Classification on Three Benchmarks with Data Aug-

mentation

This section aims to enhance the classification performance by increasing the
size of the training images using data augmentation. The horizontal flipping is
the only type of data augmentation used in this section. We evaluate the deep
residual compensation convolutional network using three databases, namely
CIFAR-10, CIFAR-100 and TinyImageNet. The only image preprocessing used
is the min–max normalisation before each convolutional layer, as described in
Algorithm 7.

6.3.3.1 Parameter Settings

Table 6.7 provides an overview of the architectures that were implemented
for CIFAR-10, CIFAR-100 and TinyImageNet with data augmentation. The
three architectures shared the same design, consisting of several convolutional
layers, each followed by a ReLU non-linear activation, second-order pooling,
three-level spatial pyramid pooling and an LDA classifier. All architectures
used 3× 3-pixel filters created by combining 50% PCA and Stacked-LDA fil-
ters. For example, by combining 15 PCA filters with 15 Stacked-LDA filters, a
total of 30 filters were utilised in each layer of the TinyImageNet database. The
number of layers beyond which an accuracy gain was no longer observed was
490 for the CIFAR-10 database, 507 for the CIFAR-100 database and 480 for the
TinyImageNet database. After convolving the images and applying ReLU non-
linear activation on the feature maps, we utilised 16× 16 second-order pooling
with a stride of 4 pixels for the CIFAR-10 and CIFAR-100 databases. For the
TinyImageNet database, we used 32× 32 second-order pooling with a stride of

Chapter 6. Deep Residual Compensation Convolutional Network 175

8 pixels. In all designs, the second-order features were subsequently pooled us-
ing three-level spatial pyramid pooling with 4× 4, 2× 2 and 1× 1 subregions.
The LDA classifier was used to classify the resulting features, with the sigmoid
applied to obtain the probabilities (equation 4.1). During the training phase of
the three architectures, the value of λ in equation 6.1 was set to 0.8 for the archi-
tectures that were designed for the CIFAR-10 and CIFAR-100 databases, and it
was set to 0.5 for the TinyImageNet database. For the CIFAR-10 database, the
learning rate (σ) was fixed at 0.35. However, for the other databases, the learn-
ing rate’s initial value was set to 1 and dropped by 10% every ten layers, as
shown in equation 6.19. The learning rate stopped decreasing when it reached
0.478 for the CIFAR-100 database and 0.81 for the TinyImageNet database.

TABLE 6.7: Network architectures for the MNIST, CIFAR-100 and
TinyImageNet databases, with data augmentation.

The CIFAR-10 database: 32× 32× 3
Filter size SOP SPP (#bins) Output size

3× 3× 3× 50 16× 16, stride = 4 [16 4 1] 32× 32× 50
[3× 3× 50× 50]× 489 16× 16, stride = 4 [16 4 1] 32× 32× 50

The CIFAR-100 database: 32× 32× 3
Filter size SOP SPP (#bins) Output size

3× 3× 3× 50 16× 16, stride = 4 [16 4 1] 32× 32× 50
[3× 3× 50× 50]× 506 16× 16, stride = 4 [16 4 1] 32× 32× 50

The TinyImageNet database: 64× 64× 3
Filter size SOP SPP (#bins) Output size

3× 3× 3× 30 32× 32, stride = 8 [16 4 1] 64× 64× 30
[3× 3× 30× 30]× 479 32× 32, stride = 8 [16 4 1] 64× 64× 30

6.3.3.2 Performance Analysis

Table 6.8 reports the accuracy of the deep residual compensation convolutional
network on the CIFAR-10, CIFAR-100 and TinyImageNet databases, both with
and without the use of data augmentation. We have shown in Section 6.3.1 that
the number of filters does not necessarily affect the accuracy of the proposed
model, but second-order pooling does. Consequently, the reported accuracy
for the CIFAR-100 and TinyImageNet databases without data augmentation
was the same as those shown in Sections 6.3.2.3 and 6.3.2.4. For the CIFAR-10
database, however, and since we used a different second-order pooling block
size in this section, we re-implemented the deep residual compensation convo-
lutional network using the same settings illustrated in Section 6.3.3.1 but with
193 layers.

Chapter 6. Deep Residual Compensation Convolutional Network 176

TABLE 6.8: Accuracy (%) of deep residual compensation convo-
lutional network on the CIFAR-10, CIFAR-100 and TinyImageNet

databases, with and without data augmentation.

Data augmentation CIFAR-10 CIFAR-100 TinyImageNet
✗ 86.82 64.9 44.33
✓ 88.35 67.8 45.37

According to Table 6.8, using horizontal flipping to double the size of the
databases enhanced the performance of the model across all three databases.
This improvement was around 1% for the TinyImageNet database, 2% for the
CIFAR-10 database and 3% for the CIFAR-100 database. For the CIFAR-10
database, the accuracy achieved with data augmentation was also 1% higher
than the best result (87.54%) reported in Section 6.3.1.2. In general, the findings
produced in this section indicated the importance of data augmentation for
enhancing the model’s generalisation ability and gain better accuracy. Incor-
porating other types of data augmentation is necessary to improve the model’s
accuracy further.

6.4 Conclusions and Future Work

In this chapter, we introduced the deep residual compensation convolutional
network, a non-differentiable model that significantly increases network depth
while simultaneously correcting classification errors when traversing it. The
network’s structure comprises several convolutional layers, each followed by
a ReLU non-linear activation, second-order pooling, spatial pyramid pooling
and a classifier. The LDA classifier of the first layer is trained using the origi-
nal classes. In contrast, the LDA classifiers of the deeper layers, known as the
compensation layers, are learned with new classes derived from the residual
information of the previous layers. The new classes in each residual compen-
sation layer are defined as the classes with the maximum absolute residual er-
ror between the predicted probabilities of preceding layers and original classes.
The probabilities obtained by any residual compensation layer are then either
added to or subtracted from the previous layers’ outputs to correct their out-
puts and maintain the resulting probabilities within the range 0 to 1. The indi-
cator variable, which is defined as the sign of maximum absolute residual error
between the previous layers’ predicted probabilities and the original classes, is
responsible for indicating when to add to or subtract from the probabilities of
a specific layer. With positive indicator values, the probabilities of a particular

Chapter 6. Deep Residual Compensation Convolutional Network 177

layer are added to those of previous layers. Negative indicator values, on the
other hand, indicate subtraction from the probabilities of the earlier levels. In
fact, the indicator divides the training samples into negative samples with neg-
ative indicator values and positive samples with positive indicator values. Two
LDA classifiers are then run using the positive and negative examples with
their corresponding classes. The probabilities predicted by LDA trained on
positive samples are added to the probabilities of the preceding layer, whereas
the probabilities predicted by LDA trained on negative samples are subtracted.
As more layers are added, the succeeding layers compensate for previous lay-
ers’ errors; therefore, by combining the predicted values of the residual com-
pensation layers, the model can reach a high level of accuracy.

The proposed model was evaluated on different benchmarks, namely the
CIFAR-10, CIFAR-100, MNIST and TinyImageNet databases. We summarise
our findings as follows:

• The findings presented in Section 6.3.1.2 demonstrated that we were ca-
pable of increasing the depth of our network to more than 950 layers, and
to the best of our knowledge, the model that we have proposed is the first
non-differentiable model that is capable of reaching such a large number
of layers.

• In contrast to traditional neural networks, which have many user-defined
parameters, we used the same number of filters for each layer in all of our
experiments, and the model’s training was terminated when there was no
noticeable improvement in the training error rate. However, someone still
has to specify specific parameters, such as the second-order block size and
the spatial pyramid pooling bins.

• Comparing our model to several residual networks on the CIFAR-10 database,
Section 6.3.2.2 proved that our model used fewer FLOPs.

• Our model with basic preprocessing steps showed excellent results in all
of the four databases, namely CIFAR-10, CIFAR-100, TinyImageNet and
MNIST (Section 6.3.2). It outperformed the existing non-differentiable
networks and was on par with the performance of certain gradient-based
models. This was accomplished without the use of complicated functions,
dropout or regulation techniques.

• Using a single form of data augmentation (horizontal flipping; Section
6.3.3), the accuracy of our models increased across all datasets, including

Chapter 6. Deep Residual Compensation Convolutional Network 178

CIFRA-10, CIFAR-100 and TinyImageNet. This improvement was con-
siderable in some datasets, such as CIFAR-100 (3%).

The performance of our model is improves as the size of the databases in-
creases by utilising data augmentation techniques. However, increasing the
number of samples leads to higher computational costs. To overcome this is-
sue and in future work, we will investigate the possibility of transforming the
current network into a batch-based system, similar to the neural network. In
addition, the network may be developed further by modifying the filter types
or by using other metrics to define the residual errors, and thus the new classes.

179

Chapter 7

Conclusions

The primary purpose of this research was to investigate deep, non-differentiable
networks that are trained in a single pass with no gradient descent or back-
propagation. The investigated networks were designed mainly for classifica-
tion tasks. In all chapters, we used four standard databases to test our models,
namely CIFAR-10, CIFAR-100, MNIST and TinyImageNet. Section 7.1 of this
chapter summarises the key contributions, and Section 7.2 lists some of the po-
tential future works in the field.

7.1 Summary of Contributions

In Chapter 3, we presented the Multi-Layer PCANet, which was inspired by
the design of PCANet. The main contribution of this network is to reduce
the number of features while increasing the network depth from two layers
in the original PCANet structure to nine layers. Using second-order pooling
and CNN-like filters decreased the data’s dimensionality, allowing for deeper
networks. In addition, the z-score approach had been shown to be an excellent
alternative to the binarisation step in PCANet and its variants for maintaining
more information. The late fusion also reduced the number of features further.
The network was evaluated across four benchmarks, CIFAR-10, CIFAR-100,
MNIST and TinyImageNet and proven to be effective, outperforming the orig-
inal PCANet design in terms of accuracy and number of features generated.

In Chapters 4 and 5, new filters were implemented to replace the PCA fil-
ters in the Multi-Layer PCANet. Our experiments showed that different types
of filters had different impacts on shallow-depth networks’ efficiency. The per-
formance of the networks was affected by the filters used, since each generated
different features. Our investigations also showed that combining 50% PCA
filters with 50% Stacked-LDA filters, referred to as semi-supervised Stacked-
LDA, produced the best performance. When searching for separable classes,

Chapter 7. Conclusions 180

the Stacked-LDA filters were generated by repeatedly applying a linear dis-
criminant analysis classifier to a different subset of image-based patches.

Chapter 6 introduced the deep residual compensation convolutional net-
work (ResCNet). The network structure consisted of multiple convolutional
layers, each followed by post-processing steps and a classifier. The first layer,
known as the baseline, was trained using the original classes. The subsequent
layers were residual layers and were trained with new labels learnt from the
residual information of all its previous layers. As we progressed by going
deeper into ResCNet, the subsequent layers compensated for the classification
errors of the preceding layers. Our experiments showed that, unlike neural
networks in which the structure needs to be known in advance, we could use
a different number of filters and still achieve the same level of performance.
When no improvement was seen in the training error rate, we stopped adding
more layers to ResCNet. The experiments also showed that ResCNet had been
trained with more than 900 layers, making it the first non-differentiable net-
work to reach such a high number of layers. Regarding performance, ResC-
Net outperformed all existing non-differentiable networks and was on par with
some gradient-based models, such as network in network [31], stochastic pool-
ing [8] and many residual networks.

7.2 Future Research Directions

In terms of future development, we emphasise the following suggestions for
improving the performance of ResCNet:

• Investigating the possibility of adding non-linearity between convolu-
tional layers or attempting to identify a suitable non-linear filter that would
improve the network’s performance;

• Transforming the current ResCNet into a neural network–like batch-based
system. Instead of training the model using all training examples at once,
we aim to train it in batches. However, unlike typical neural networks,
the weights connecting the layers will not be iteratively learnable. In-
stead, we expand to a new layer again using information about the new
labels of all batches. The main challenge with transforming the current
ResCNet into a batch-based system is that for any batch to be processed,

Chapter 7. Conclusions 181

we need to find the convolutional output and the probabilities using the
information of all previous layers, which is time-consuming. As so, one
of the future suggestions is to improve the inference time of the ResCNet
and reduce its dependency on all layers;

• Examining if using alternative error metrics, post-processing steps, or fil-
ter types would enhance the existing ResCNet performance;

• Investigating the effect of incorporating some regularisation techniques,
such as dropout and drop-connect, on ResCNet accuracy.

182

References

[1] Mubarakah Alotaibi and Richard C Wilson. “Multi-layer PCA Network
for Image Classification”. In: Joint IAPR International Workshops on Sta-
tistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR). Springer. 2021, pp. 292–301.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” na-
ture 521.7553 (2015): 436”. In: DOI: https://doi. org/10.1038/nature14539
https://doi. org/10.1038/nature14539 ().

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet clas-
sification with deep convolutional neural networks”. In: Communica-
tions of the ACM 60.6 (2017), pp. 84–90.

[4] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[5] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 770–778.

[6] Benjamin Graham. “Fractional max-pooling”. In: arXiv preprint arXiv:1412.6071
(2014).

[7] Ian Goodfellow et al. “Maxout networks”. In: International conference on
machine learning. PMLR. 2013, pp. 1319–1327.

[8] Matthew D Zeiler and Rob Fergus. “Stochastic pooling for regulariza-
tion of deep convolutional neural networks”. In: arXiv preprint arXiv:1301.3557
(2013).

[9] Jost Tobias Springenberg et al. “Striving for simplicity: The all convolu-
tional net”. In: arXiv preprint arXiv:1412.6806 (2014).

[10] Mohammad Rastegari et al. “Xnor-net: Imagenet classification using bi-
nary convolutional neural networks”. In: European conference on computer
vision. Springer. 2016, pp. 525–542.

References 183

[11] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. “Fractal-
net: Ultra-deep neural networks without residuals”. In: arXiv preprint
arXiv:1605.07648 (2016).

[12] Gao Huang et al. “Densely connected convolutional networks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4700–4708.

[13] Zhi-Hua Zhou and Ji Feng. “Deep forest”. In: arXiv preprint arXiv:1702.08835
(2017).

[14] Guang-Bin Huang et al. “Local receptive fields based extreme learn-
ing machine”. In: IEEE Computational intelligence magazine 10.2 (2015),
pp. 18–29.

[15] Tsung-Han Chan et al. “PCANet: A simple deep learning baseline for
image classification?” In: IEEE transactions on image processing 24.12 (2015),
pp. 5017–5032.

[16] Joan Bruna and Stéphane Mallat. “Invariant scattering convolution net-
works”. In: IEEE transactions on pattern analysis and machine intelligence
35.8 (2013), pp. 1872–1886.

[17] Guang-Bin Huang et al. “Extreme learning machine for regression and
multiclass classification”. In: IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics) 42.2 (2011), pp. 513–529.

[18] Erik Cambria et al. “Extreme learning machines [trends & controver-
sies]”. In: IEEE intelligent systems 28.6 (2013), pp. 30–59.

[19] Deepak Ranjan Nayak et al. “Deep extreme learning machine with leaky
rectified linear unit for multiclass classification of pathological brain im-
ages”. In: Multimedia Tools and Applications 79.21 (2020), pp. 15381–15396.

[20] Cong Jie Ng and Andrew Beng Jin Teoh. “DCTNet: A simple learning-
free approach for face recognition”. In: 2015 Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference (APSIPA).
IEEE. 2015, pp. 761–768.

[21] Meng Xi et al. “Local binary pattern network: A deep learning approach
for face recognition”. In: 2016 IEEE international conference on Image pro-
cessing (ICIP). IEEE. 2016, pp. 3224–3228.

[22] Yongqing Zhang et al. “ICANet: a simple cascade linear convolution
network for face recognition”. In: EURASIP Journal on Image and Video
Processing 2018.1 (2018), p. 51.

References 184

[23] Chunxiao Fan et al. “PCANet-II: When PCANet Meets the Second Order
Pooling”. In: IEICE TRANSACTIONS on Information and Systems 101.8
(2018), pp. 2159–2162.

[24] Cheng-Yaw Low, Andrew Beng-Jin Teoh, and Kar-Ann Toh. “Stacking
PCANet+: An overly simplified convnets baseline for face recognition”.
In: IEEE Signal Processing Letters 24.11 (2017), pp. 1581–1585.

[25] Xinghao Yang et al. “Canonical correlation analysis networks for two-
view image recognition”. In: Information Sciences 385 (2017), pp. 338–
352.

[26] Dongshun Cui et al. “Compact feature representation for image classifi-
cation using elms”. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops. 2017, pp. 1015–1022.

[27] Bernardo B Gatto and Eulanda M dos Santos. “Discriminative canoni-
cal correlation analysis network for image classification”. In: 2017 IEEE
International Conference on Image Processing (ICIP). IEEE. 2017, pp. 4487–
4491.

[28] Bernardo Bentes Gatto, Eulanda Miranda dos Santos, and Kazuhiro Fukui.
“Subspace-based convolutional network for handwritten character recog-
nition”. In: 2017 14th IAPR international conference on document analysis
and recognition (ICDAR). Vol. 1. IEEE. 2017, pp. 1044–1049.

[29] Mohammad Reza Mohammadnia-Qaraei, Reza Monsefi, and Kamaledin
Ghiasi-Shirazi. “Convolutional kernel networks based on a convex com-
bination of cosine kernels”. In: Pattern Recognition Letters 116 (2018),
pp. 127–134.

[30] Bernardo B Gatto et al. “A semi-supervised convolutional neural net-
work based on subspace representation for image classification”. In:
EURASIP Journal on Image and Video Processing 2020.1 (2020), pp. 1–21.

[31] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In:
arXiv preprint arXiv:1312.4400 (2013).

[32] Md Zahangir Alom et al. “The history began from alexnet: A compre-
hensive survey on deep learning approaches”. In: arXiv preprint arXiv:1803.01164
(2018).

[33] Pierre Foret et al. “Sharpness-aware minimization for efficiently improv-
ing generalization”. In: arXiv preprint arXiv:2010.01412 (2020).

References 185

[34] Sangwook Kim, Swathi Kavuri, and Minho Lee. “Deep network with
support vector machines”. In: International Conference on Neural Informa-
tion Processing. Springer. 2013, pp. 458–465.

[35] Dan Wu et al. “Kernel principal component analysis network for image
classification”. In: arXiv preprint arXiv:1512.06337 (2015).

[36] Yann LeCun et al. “Gradient-based learning applied to document recog-
nition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[37] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[38] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learn-
ing algorithm for deep belief nets”. In: Neural computation 18.7 (2006),
pp. 1527–1554.

[39] Ruslan Salakhutdinov and Geoffrey Hinton. “Deep boltzmann machines”.
In: Artificial intelligence and statistics. 2009, pp. 448–455.

[40] Nurshazlyn Mohd Aszemi and PDD Dominic. “Hyperparameter Opti-
mization in Convolutional Neural Network using Genetic Algorithms”.
In: ().

[41] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

[42] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: Proceedings of the IEEE in-
ternational conference on computer vision. 2015, pp. 1026–1034.

[43] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: Interna-
tional conference on machine learning. PMLR. 2015, pp. 448–456.

[44] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “High-
way networks”. In: arXiv preprint arXiv:1505.00387 (2015).

[45] Gao Huang et al. “Deep networks with stochastic depth”. In: European
conference on computer vision. Springer. 2016, pp. 646–661.

[46] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”.
In: arXiv preprint arXiv:1605.07146 (2016).

[47] Kaiming He et al. “Identity mappings in deep residual networks”. In:
European conference on computer vision. Springer. 2016, pp. 630–645.

References 186

[48] Sasha Targ, Diogo Almeida, and Kevin Lyman. “Resnet in resnet: Gener-
alizing residual architectures”. In: arXiv preprint arXiv:1603.08029 (2016).

[49] Ke Zhang et al. “Residual networks of residual networks: Multilevel
residual networks”. In: IEEE Transactions on Circuits and Systems for Video
Technology 28.6 (2017), pp. 1303–1314.

[50] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. “Generalizing pool-
ing functions in convolutional neural networks: Mixed, gated, and tree”.
In: Artificial intelligence and statistics. PMLR. 2016, pp. 464–472.

[51] Ming Liang and Xiaolin Hu. “Recurrent convolutional neural network
for object recognition”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 3367–3375.

[52] Zhibin Liao and Gustavo Carneiro. “Competitive multi-scale convolu-
tion”. In: arXiv preprint arXiv:1511.05635 (2015).

[53] Adriana Romero et al. “Fitnets: Hints for thin deep nets”. In: arXiv preprint
arXiv:1412.6550 (2014).

[54] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast
and accurate deep network learning by exponential linear units (elus)”.
In: arXiv preprint arXiv:1511.07289 (2015).

[55] Jasper Snoek et al. “Scalable bayesian optimization using deep neural
networks”. In: International conference on machine learning. PMLR. 2015,
pp. 2171–2180.

[56] Dmytro Mishkin and Jiri Matas. “All you need is a good init”. In: arXiv
preprint arXiv:1511.06422 (2015).

[57] Kaiming He et al. “Deep residual learning for image recognition. CVPR.
2016”. In: arXiv preprint arXiv:1512.03385 (2016).

[58] Kaicheng Yu and Mathieu Salzmann. “Statistically-motivated second-
order pooling”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 600–616.

[59] Qilong Wang et al. “Deep cnns meet global covariance pooling: Better
representation and generalization”. In: arXiv preprint arXiv:1904.06836
(2019).

[60] Peihua Li et al. “Towards faster training of global covariance pooling
networks by iterative matrix square root normalization”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 947–955.

References 187

[61] Yunbo Wang et al. “Spatiotemporal pyramid network for video action
recognition”. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 2017, pp. 1529–1538.

[62] Hao Wang et al. “Multi-scale location-aware kernel representation for
object detection”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 1248–1257.

[63] Fuzhen Zhuang et al. “A comprehensive survey on transfer learning”.
In: Proceedings of the IEEE 109.1 (2020), pp. 43–76.

[64] Geoffrey Hinton. “The forward-forward algorithm: Some preliminary
investigations”. In: arXiv preprint arXiv:2212.13345 (2022).

[65] Kaiming He et al. “Spatial pyramid pooling in deep convolutional net-
works for visual recognition”. In: IEEE transactions on pattern analysis and
machine intelligence 37.9 (2015), pp. 1904–1916.

[66] Atmane Khellal, Hongbin Ma, and Qing Fei. “Convolutional neural net-
work based on extreme learning machine for maritime ships recognition
in infrared images”. In: Sensors 18.5 (2018), p. 1490.

[67] Kaicheng Yu and Mathieu Salzmann. “Statistically-motivated second-
order pooling”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 600–616.

[68] Joao Carreira et al. “Semantic segmentation with second-order pooling”.
In: European Conference on Computer Vision. Springer. 2012, pp. 430–443.

[69] Qilong Wang et al. “RAID-G: Robust estimation of approximate infinite
dimensional Gaussian with application to material recognition”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 4433–4441.

[70] Yu Liu et al. “Fusion that matters: convolutional fusion networks for
visual recognition”. In: Multimedia Tools and Applications 77.22 (2018),
pp. 29407–29434.

[71] Mike Ebersbach, Robert Herms, and Maximilian Eibl. “Fusion Methods
for ICD10 Code Classification of Death Certificates in Multilingual Cor-
pora.” In: CLEF (Working Notes). 2017, p. 36.

[72] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of
features from tiny images”. In: (2009).

References 188

[73] Li Deng. “The mnist database of handwritten digit images for machine
learning research [best of the web]”. In: IEEE Signal Processing Magazine
29.6 (2012), pp. 141–142.

[74] Tiny ImageNet. https://tiny-imagenet.herokuapp.com/.

[75] Gao Huang et al. “Densely connected convolutional networks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4700–4708.

[76] Zoheb Abai and Nishad Rajmalwar. “DenseNet models for tiny ima-
genet classification”. In: arXiv preprint arXiv:1904.10429 (2019).

[77] Christopher M Bishop. Pattern recognition and machine learning. Vol. 4. 4.
Springer.

[78] Alina Beygelzimer, John Langford, and Bianca Zadrozny. “Weighted
one-against-all”. In: AAAI. 2005, pp. 720–725.

[79] Carlos N Silla and Alex A Freitas. “A survey of hierarchical classification
across different application domains”. In: Data Mining and Knowledge
Discovery 22.1-2 (2011), pp. 31–72.

[80] Susan Dumais and Hao Chen. “Hierarchical classification of web con-
tent”. In: Proceedings of the 23rd annual international ACM SIGIR conference
on Research and development in information retrieval. 2000, pp. 256–263.

[81] Cecille Freeman. “Feature selection and hierarchical classifier design
with applications to human motion recognition”. In: (2014).

[82] Daniel Silva-Palacios, Cesar Ferri, and Maria Jose Ramirez-Quintana.
“Improving performance of multiclass classification by inducing class
hierarchies”. In: Procedia Computer Science 108 (2017), pp. 1692–1701.

[83] Gjorgji Madzarov and Dejan Gjorgjevikj. “Multi-class classification us-
ing support vector machines in decision tree architecture”. In: IEEE EU-
ROCON 2009. IEEE. 2009, pp. 288–295.

[84] Sungmoon Cheong, Sang Hoon Oh, and Soo-Young Lee. “Support vec-
tor machines with binary tree architecture for multi-class classification”.
In: Neural Information Processing-Letters and Reviews 2.3 (2004), pp. 47–51.

[85] Daniel Silva-Palacios, Cesar Ferri, and Maria Jose Ramirez-Quintana.
“Improving performance of multiclass classification by inducing class
hierarchies”. In: Procedia Computer Science 108 (2017), pp. 1692–1701.

https://tiny-imagenet.herokuapp.com/

References 189

[86] Thomas G Dietterich and Ghulum Bakiri. “Solving multiclass learning
problems via error-correcting output codes”. In: Journal of artificial intel-
ligence research 2 (1994), pp. 263–286.

[87] Wiesław Chmielnicki and Katarzyna Stąpor. “Using the one–versus–rest
strategy with samples balancing to improve pairwise coupling classifi-
cation”. In: International Journal of Applied Mathematics and Computer Sci-
ence 26.1 (2016), pp. 191–201.

[88] Bitna Kim and Young Ho Park. “Beginner’s guide to neural networks
for the MNIST dataset using MATLAB”. In: The Korean Journal of Mathe-
matics 26.2 (2018), pp. 337–348.

[89] Rong-En Fan et al. “LIBLINEAR: A Library for Large Linear Classifica-
tion”. In: Journal of Machine Learning Research 9 (2008), pp. 1871–1874.

[90] Pranav Jeevan et al. “Convolutional Xformers for Vision”. In: arXiv preprint
arXiv:2201.10271 (2022).

[91] Ulrike Von Luxburg. “A tutorial on spectral clustering”. In: Statistics and
computing 17.4 (2007), pp. 395–416.

[92] Bogdan Raducanu and Fadi Dornaika. “A supervised non-linear dimen-
sionality reduction approach for manifold learning”. In: Pattern Recog-
nition 45.6 (2012), pp. 2432–2444.

[93] Wen-bing Huang, Fu-chun Sun, et al. “Building feature space of extreme
learning machine with sparse denoising stacked-autoencoder”. In: Neu-
rocomputing 174 (2016), pp. 60–71.

[94] Iago Richard Rodrigues et al. “Convolutional Extreme Learning Ma-
chines: A Systematic Review”. In: Informatics. Vol. 8. 2. MDPI. 2021, p. 33.

[95] Andrew Ng, Michael Jordan, and Yair Weiss. “On spectral clustering:
Analysis and an algorithm”. In: Advances in neural information processing
systems 14 (2001), pp. 849–856.

[96] Jianbo Shi and Jitendra Malik. “Normalized cuts and image segmenta-
tion”. In: IEEE Transactions on pattern analysis and machine intelligence 22.8
(2000), pp. 888–905.

[97] Arthur Gretton et al. “Measuring statistical dependence with Hilbert-
Schmidt norms”. In: International conference on algorithmic learning theory.
Springer. 2005, pp. 63–77.

References 190

[98] Mohammad Ali Alomrani. “A Critical Review of Information Bottle-
neck Theory and its Applications to Deep Learning”. In: arXiv preprint
arXiv:2105.04405 (2021).

[99] Wan-Duo Kurt Ma, JP Lewis, and W Bastiaan Kleijn. “The HSIC bot-
tleneck: Deep learning without back-propagation”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 5085–5092.

[100] Yerlan Idelbayev. Proper ResNet Implementation for CIFAR10/CIFAR100 in
PyTorch. https://github.com/akamaster/pytorch_resnet_cifar10.
Accessed: 20xx-xx-xx.

https://github.com/akamaster/pytorch_resnet_cifar10

191

Appendix A

Solution to HSIC Optimisation
Problem

As described in Chapter 5, our goal is to find a straightforward solution to the
optimisation problem described by equation 5.22 using linear kernels. Since
HKX H and HKY H are fixed symmetric metrics, the optimisation problem (equa-
tion 5.22) can be rewritten as follows:

min
Kz

tr(K0.5
z AK0.5

z)− tr(K0.5
z BK0.5

z), (A.1)

where A represents HKX H and HKY H is denoted by B. The optimisation prob-
lem in equation A.1 can then be reformulated as follows:

min
Kz

tr(K0.5
z AK0.5

z)

tr(K0.5
z BK0.5

z)
, (A.2)

which is equivalent to:
min

Kz
tr(K0.5

z AK0.5
z)

s.t. tr(K0.5
z BK0.5

z = I),
(A.3)

where Kz = K(T(Zi−1, θ)). Assuming we have linear transformation and we
use linear kernels, as follows:

Kzn = ZnZT
n , Zn = Zθ (A.4)

By substituting A.4 into A.3, we obtain the following formula:

min
θ

tr(((Zθ)(Zθ)T)
0.5

A((Zθ)(Zθ)T)
0.5
)

s.t. tr(((Zθ)(Zθ)T)
0.5

B((Zθ)(Zθ)T)
0.5

= I)
(A.5)

Appendix A. Solution to HSIC Optimisation Problem 192

Our loss function then can be rewritten as follows:

Loss = min
θ

(tr((Zθ)(Zθ)T)A)− λ tr((((Zθ)(Zθ)T)B− I)) (A.6)

We find the derivative of the loss function with respect to θ as follows:

∂Loss
∂θ

= tr(2ZZTθA)− tr(λ2ZZTθB) = 0 (A.7)

From the trace property:

ZT AZθ − λZTBZθ = 0 ⇒ ZT AZθ = λZTBZθ (A.8)

Therefore, to find θ, we solve the following generalised eigenvalue/vector de-
composition problem:

eig(ZT AZ, ZTBZ), (A.9)

where Z is the previous layer’s output.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation and Context
	Challenges
	Objectives and Research Questions
	Contributions
	Outline of the Thesis

	Background and Related Works
	Introduction
	Gradient-Based Networks
	Convolutional Neural Networks
	LeNet-5
	AlexNet
	VGGNet
	Network in Network (NiN)
	Maxout Network
	Stochastic Network
	Residual Network
	The All Convolutional Net
	Densely Connected Convolutional Neural Network
	FractalNet

	Deep Generative Models
	Boltzmann Machine
	Deep Directed Network
	Deep Boltzmann Machine
	Deep Belief Network

	Non Gradient-Based Networks
	Deep-SVM
	deep Forest
	PCANet
	PCANet+
	PCANet-II
	ScatNet

	Conclusions and Discussion
	Gradient-Based Models and Their Limitations
	Non-Gradient-Based Models And Their Advantages
	PCANet As Baseline Model

	Multi-Layer PCANet for Image Classification
	Introduction
	Multi-Layer PCANet Structure
	 PCA Convolutional Layers
	Second-Order Pooling
	Covariance Computation

	Spatial Pyramid Pooling
	Late Fusion

	Experiments and Results
	Databases
	Ablation Study on Multi-Layer PCANet Structure
	The Impact of Using Second-Order Pooling and Z-score Normalisation
	Second-Order Pooling for All Feature Maps and Late Fusion

	The Network Hyper-parameters
	The Impact of the Filter Size on the Classification Task Performance
	The Impact of the Second-Order Pooling Block Size on the Recognition Rate

	Multi-Layer PCANet for Image Classification Task
	Evalutaion of CIFAR-10 Database
	Evaluation on CIFAR-100 Database
	Evaluation on the MNIST Database
	Evaluation on TinyImageNet Database

	Conclusion

	Stacked Linear Discriminant Analysis (Stacked-LDA)
	Introduction
	General Stacked-LDA Model
	Description and Algorithm
	Experiments
	Multi-Class Classifier
	Digit Recognition on MNIST Dataset

	Section Summary

	New Relabelling Technique
	Description of Relabelling-III
	Experiments
	Digits Classification on the MNIST Database
	Pattern Recognition on CIFAR-10 Database
	Section Summary

	Convolutional Stacked-LDA model
	Network Structure
	Stacked-LDA convolutional layer

	Experiments
	Network Hyper Parameters
	Image Classification on four Databases

	Conclusions

	Class-Embedding Networks
	Introduction
	Deep Supervised Networks
	Preliminary Principles
	Spectral Clustering
	Extreme Learning Machine
	Supervised Laplacian Eigenmaps
	Hilbert–Schmidt Independence Criterion

	Problem Settings
	Producing Networks Filter Banks
	Clustering Network
	Supervised Extreme Learning Machine
	Supervised Laplacian Eigenmaps
	Hilbert–Schmidt Independent Criteria Network

	Experiments and Results
	Selecting Hyperparameters for Proposed Architectures
	Networks Complexity
	Single-Layer Networks
	Parameter Settings
	Performance Analysis

	Two-layer Networks
	Parameter Settings
	Performance Analysis

	Combination of Filters
	Motivation and Parameter Settings
	Performance Analysis

	Conclusions

	Deep Residual Compensation Convolutional Network
	Introduction
	Network Architecture
	Experiments and Results
	Network Parameters
	Experiment 1
	Experiment 2

	Image Classification over Four Benchmarks with No Data Augmentation
	Handwritten Digit Recognition on the MNIST Database
	Pattern Recognition on the CIFAR-10 Database
	Image Classification on the CIFAR-100 Database
	Classification on the TinyImageNet Database

	Image Classification on Three Benchmarks with Data Augmentation
	Parameter Settings
	Performance Analysis

	Conclusions and Future Work

	Conclusions
	Summary of Contributions
	Future Research Directions

	References
	Solution to HSIC Optimisation Problem

