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Abstract

Using a simple perturbative approach to quantum gravity, we consider gravitational scattering

of high-energy, polarized photons on a massive scalar target. We find that due to the exchange of

virtual gravitons, there is a non-trivial polarization dependence in the photon scattering behavior,

not previously considered in the literature. Our results are considered in analogy with scattering

in quantum electrodynamics. We find that the polarization dependence in a gravitational field is

extremely weak relative to electromagnetic effects. A variety of possible experimental parameters

were considered in order to isolate the quantum gravity effects.

Using Monte-Carlo methods, this work models the gravitational scattering of galactic photons in

the Dark Matter Halo of the Milky Way. The likelihood of detecting these scattered photons on Earth

is then calculated, along with the degree of gravity-induced polarization. Detection of this polarization

would provide convincing evidence of the quantum effects of gravity and indirect proof of graviton

exchange. Our results indicate that Dark Matter can be thought as polarizing, even in scalar models

where Dark Matter only interacts gravitationally. Results also suggest a new method of bounding

the mass of the Dark Matter particle from above. Dark Matter was chosen as the scattering target to

mitigate interfering non-gravitational effects.

We also briefly discuss polarization effects of photon-scalar scattering as an entanglement breaking

channel for maximally entangled photons produced by pair annihilation, which is a fascinating avenue

for future research.
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Chapter 1

Introduction

1.1 History and Motivation

Since the rise of quantum mechanics in the 20th century, physicists have devised new models

and theories, which describe quantum effects of the fundamental forces of nature [1]. Over several

decades, a quantum theory of electromagnetism, known as Quantum Electrodynamics (QED) was

slowly developed [2]. In the years which followed, the Weak nuclear force was brought under this

umbrella through Electroweak Theory [3]. This was paralleled by the simultaneous development of

Quantum Chromodynamics, which describes the Strong force [4]. By the end of the century, the

last force of nature, which had no quantum description, was Gravity, arguably the universe’s most

enigmatic force [1, 5].

Once Einstein’s General Relativity (GR) replaced Newtonian gravity in 1905, our understanding

of gravity had greatly improved [6]. However, as the century progressed, it soon became evident

that this understanding was still incomplete. Specifically, GR is incapable of describing relativistic

phenomena where quantum effects become non-trivial, such as inside very strong gravitational fields,

or at energies greater than 1019 GeV [5]. These limitations preclude detailed description of phenomena

such as the very early universe and the space-time near a singularity. A fuller understanding of gravity

was therefore desired, and quickly became an area of modern research.

However, there exist major differences between GR and quantum theories. GR is an entirely

classical theory which is, roughly speaking, deterministic. One can predict the future of a system with

absolute certainty, given enough information about the system. Consider for example, the motion of a

body according to field equations of GR, as in Ref. [6]. In contrast, quantum mechanics predicts that
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the evolution of states is governed by probabilities, and hence the universe is entirely non-deterministic

(for a review, see textbook such as Ref. [7]). As Niels Bohr once wrote "One does not get an answer

to the question ‘what is the state after collision’ but only to the question ’how probable is a given

effect of the collision’" [8].

These fundamental, and almost-philosophical differences fueled several famous arguments be-

tween Einstein and the founders of quantum theory [8]. For most common purposes, these differences

have little practical relevance, due to the distinct range of applicability of each theory. GR is a theory

governing ‘macroscopic phenomena’ with large masses and over large distances, whereas quantum

mechanics typically governs ‘microscopic phenomena’ over such small scales where the uncertainty

principle (among other quantum effects) becomes non-trivial.

However, many real-world phenomena, such as black holes, involve both relativistic and quantum

effects [9]. Describing such phenomena is very challenging as these two great theories of physics

appear incompatible. However, to physicists, it is inconceivable that the universe should be governed

by two contradictory sets of laws. Some unified theory should therefore exist, and the search for

Quantum Gravity remains an area of active investigation [1, 5].

1.1.1 Search for Quantum Gravity

An exact theory of Quantum Gravity is as yet unknown. This is due to the extreme non-linearity

of Einstein’s field equations of GR. If these equations were quantized in a manner parallel to the usual

quantization of Maxwell’s electromagnetic field equations, the resulting quantum theory of gravity is

considered ’non-renormalizable’ [9]. Renormalization is an essential process of treating divergent

parts of quantum theory. Specifically, renormalization absorbs divergences by re-defining some of the

original parameters of the theory. Without renormalization, the theory loses predictive power and is

generally considered non-fundamental [10]. See Ref. [11] for a full review of this problem.

Many aim to circumvent this renormalization problem by using new approaches such as string

theories and loop quantum gravities [9]. Unfortunately, in such theories, the lack of experimental

evidence greatly hampers these efforts, and until today, there is no general consensus regarding the

quantum effects of gravity.

In order to better understand these effects, advances must be made in experimental observations.

To date, there has been limited success in this regard, due to the extreme weakness of gravity relative

to the other forces of nature. Additionally, quantum theories of gravity can be extremely complicated,
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where even simple calculations are largely intractable. However, an ’effective’ quantum theory known

as Perturbative Quantum Gravity presents a useful, and much simpler, framework for study of quantum

effects of gravity, in the low-energy regime [9, 12].

In the past, this framework has been dismissed as having low experimental value, as the force of

gravity is extremely weak in this limit, by necessity. However, as shall be seen in this work, quantum

effects of gravity might be observable within these limits and lead to an important application, in

Dark Matter research.

1.1.2 Search for Dark Matter

Experiments in modern astronomy have revealed that most of the matter in the universe is dark:

all the ordinary matter that can be readily observed comprises just 15 percent of the total matter in

the universe, and the rest is called Dark Matter (DM) [13]. The challenge in studying DM arises

as it is very difficult to detect, hence the epithet ’dark’. DM is apparently non-luminous, compared

to normal matter, although beyond this, little about DM is known with certainty. Many competing

models are proposed in the literature, with notable examples: MACHO’s (Massive Compact Halo

Objects) [14], axions [15], and WIMPS (Weakly Interacting Massive Particles) [16], which are each

viable candidates for dark matter. Interestingly, each of these three models suggest that DM is not

entirely dark, but there may be weak or indirect interactions with photons or other particles [13, 17].

However, there exist many popular models of DM, which predict that it is entirely dark to

everything except gravity. Such models include Klauza-Klein particles [18], quantum/primordial

black holes [19], and topological defects [20], among others [13]. Thus, study of DM may be limited

solely to the study of its gravitational effects on other matter. Today, this has been exploited through

gravitational lensing to reveal a nearly-spherical Dark Matter Halo around our galaxy [21]. However,

the exact nature of DM, such as particle mass, is subject to extensive debate. This question will

ultimately lead us to an important application of our research on quantum effects of gravity.

1.2 Research Aims

This work considers the effect of gravity on polarized photons. In GR, the gravitational scattering

of these photons should be independent of the polarization, due to Einstein’s Equivalence Principle,

which roughly states that any matter, which is solely under the influence of gravity, will follow
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the same null geodesic (i.e., the same path in space-time) regardless of internal composition [6].

Therefore, photon polarization should not affect the scattering of light, classically. However, in a

quantum theory of gravity, where gravity is mediated by the exchange of virtual particles (as is true in

all other quantum theories), one may calculate non-trivial polarization dependence in the scattering

behavior (see Ref. [12] for an example of a similar quantum effect). We chose to focus on scattering

linearly polarized photons (versus circularly polarized photons) due to the relative simplicity of

representing linear polarization mathematically and since there exist well-known sources of linear

polarization, both in nature and produced artificially (see [22] for an interesting example).

The mediator particle of gravity is theorized to be a massless, spin-2 particle, called the graviton

[11]. It shall be shown analytically that the coupling between a graviton and a photon does depend on

the polarization of the photon. Previous research [23, 24, 25] considered this type of graviton-mediated

scattering of photons, but did not consider polarization effects.

We find that this polarization dependence is very subtle, due to the weakness of gravity. To detect

this quantum effect may require a large number of scattering events. After choosing experimentally

realistic parameters, this work introduces a novel Monte-Carlo (MC) simulation to study these

quantum effects of gravitational scattering. Our primary application is scattering by Dark Matter. DM,

which interacts primarily gravitationally, presents an ideal scattering target, where we can minimize

interfering effects of non-gravitational forces. Due to the polarization dependence in gravitational

scattering, DM may in fact have polarizing properties even in the simplest scalar models, where DM

interacts only through gravity. Ultimately, we chose to model scattering on DM due to the fact that

gravity would most likely dominate the interaction (versus the other forces of nature), allowing us to

mitigate interfering non-gravitational effects.

1.3 Structure of Thesis

This thesis opens with brief review of the existing literature, contained in Chapter 2. In this

chapter, we re-derive several important expressions to support the research. Chapter 3 consists of

our novel analytic calculations and derivation of the polarization-dependent scattering machinery of

a single photon scattering off a massive scalar particle via graviton exchange. The relevant cross

sections and scattering yields for several applications and experimental arrangements is calculated.



1.3 Structure of Thesis | 23

These results comprise the bulk of the original work performed in this thesis. We compare our results

to prior work done on unpolarized photons, as well.

Chapter 4 then presents our computational results from the Monte-Carlo (MC) simulation. This

simulation, written in Python, models a chosen thought experiment involving a strong galactic source

of linearly polarized photons which scatter in the Dark Matter Halo surrounding the Milky Way

galaxy and are detected on earth. Polarization effects of the light due to this scattering is found to be

non-trivial, although the overall effect is small. Chapter 5 includes new calculations for scattering on

larger astronomical targets, and Chapters 6 and 7 discuss our analysis, conclusions, and prospects for

future research and experiment.

Perhaps the most intriguing future application of our research is the use of simple graviton

exchange as an entanglement breaking channel. This effect is briefly explored toward the end of this

work, and compared to similar entanglement decoherence due to gravity predicted in the semi-classical

framework of Quantum Field Theory in curved spacetime [26, 27]. This may someday present an

avenue for future experimentation.





Chapter 2

Theoretical Background

2.1 Perturbative Quantum Gravity

Perturbative Quantum Gravity (PQG) is a formalism which treats the force of gravity as an

"Effective" field theory. In the low-energy, weak field limit, PQG is generally considered a good

approximation for a quantum theory of gravity (see Ref. [28] for a full review). Essentially, instead of

working with the highly non-linear field equations of GR, we approximate gravity as a linear theory.

Linearized general relativity does not pose the same renormalization issues as traditional GR, and

thus PQG provides reasonable predictions of quantum effects of gravity. However, it is important to

note that PQG is not a fundamental theory of Quantum Gravity, due to ultraviolet divergences. Rather,

PQG is merely an effective theory which appears to work in certain limits. Additional comments on

these limits are included in Chapters 5 and 6.

In GR (see [6]), space-time is described using a curved metric gµν . The extent of the curvature at

a point on the metric corresponds to the strength of the gravitational field at that location. Whereas

GR allows for extremely large integrated curvature (ex. near a singularity), PGQ only allows for small

perturbations from the flat space-time metric. More precisely, we assume that that gµν = ηµν +κhµν ,

where ηµν is the flat Minkowski metric, κ is a constant, and hµν is the perturbation from the flat

metric. This linear perturbation represents the effect of gravity as seen by the metric.

As with other quantum field theories, PQG naturally leads to a propagator [29], corresponding to

a mediator particle of gravity. Whereas electromagnetism is mediated by photons, the strong force is

mediated by gluons, and the weak force is mediated by W and Z bosons, physicists have come to call

the mediator of gravity: the Graviton. The rank-2 tensor hµν can thus be thought as the graviton field

25



26 | Theoretical Background

(see Appendix A for discussion of tensors). Our first task is to derive the graviton propagator to be

used in our study of particle interactions via graviton exchange.

2.2 Deriving the Graviton Propogator

The following section involves several topics from GR and PQG, for which brief comments and

explanations are offered. For a more detailed review, see Ref. [29, 30, 28], although we will refer to

most of these topics only in passing.

We begin with the Einstein-Hilbert action (S) for gravity, which is given by

S =
1

16πG

∫
d4x

√
−gR, (2.1)

where g = det(gµν), G is Newton’s constant, and R is the scalar curvature, to be defined momentarily.

It is a standard GR exercise to ’vary the action’ meaning, to consider what happens to S if we perturb

the metric by a tiny amount. After performing these manipulations, we can actually find the famous

Einstein field equations

Rµν −
1
2

gµνR =−8πGTµν , (2.2)

where T µν is the stress-energy tensor, which encodes the matter fields of the universe and Rµν is

the Ricci Tensor [29] To define the Ricci tensor Rµν and the scalar curvature R, recall the Riemann

curvature tensor

Rλ
µνκ = ∂νΓ

λ
µκ −∂κΓ

λ
µν +Γ

σ
µκΓ

λ
νσ −Γ

σ
µνΓ

λ
κσ , (2.3)

where we use the usual Riemann-Christoffel symbols

Γ
λ
µν =

1
2

gλρ(∂νgρµ +∂µgρν +∂ρgµν). (2.4)

Now, the Ricci Tensor is defined by simply contracting the indices Rµκ ≡ Rν
µνκ . The scalar curvature

is then defined as R ≡ gµνRµν .

Overall, this gravitational action may seem very different from those of the other field theories

[29]. Typically, space-time is merely a fixed background for the interactions, whereas here, the metric
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is a dynamical quantity, which itself governs the strength of the gravitational field. Nonetheless, this

action can be massaged into a more familiar structure, permitting easier study of gravitational field

theory [29].

Let us explicitly assume the weak field approximation of PQG where gµν = ηµν +κhµν . With

this assumption, we may expand the action in terms of hµν . This linearizes the effect of gravity. A

short glance at the equations above indicates that the scalar curvature R involves two partial derivatives

of gµν in its definition. This means that the weak field expansion of S includes the factor

∂h∂h+h∂h∂h+h2
∂h∂h+ · · · (2.5)

Here, the first term describes the graviton propagator and the later terms describe how the graviton

interacts with itself, which we will drop due to their incredible weakness. Notice that we temporarily

dropped the indices for convenience.

We must now remember to include the graviton coupling to matter in our action. This can be

done using the stress-energy tensor T µν in flat spacetime, which describes all the matter fields in the

universe. We thus need only to add the following term to the action, S

S′ = S−
∫

d4x
1
2

hµνT µν . (2.6)

Expanding the complete action to second order O(h2), keeping careful track of the indices, we get the

form

S′ =
∫

d4x
(

1
32πG

I − 1
2

hµνT µν

)
, (2.7)

where I is the invariant quantity

I ≡ 1
2

∂λ hµν
∂

λ hµν −
1
2

∂λ hµ

µ∂
λ hν

ν −∂λ hλν
∂

µhµν +∂
νhλ

λ
∂

µhµν . (2.8)

See Ref. [29] for additional details of this derivation. If we then impose the harmonic gauge condition

(which we will discuss later)

∂µhµ

ν =
1
2

∂νhλ

λ
, (2.9)
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we kill the second and last terms of I. We note that a gauge condition is merely a technique to relate

redundant degrees of freedom. As an analogy, consider that any rotation of a perfect sphere would

leave the sphere invariant. In this simple analogy, a gauge condition would essentially negate the

effect of rotation. In a similar way, the harmonic gauge removes unnecessary degrees of freedom

in GR. Specifically, GR explains that physics occurs independent of any coordinate system that we

choose, and the harmonic gauge is a way of relating all coordinate systems [6]. A similar gauge

condition will be employed later.

In this harmonic gauge, the action becomes

S′ =
∫

d4x
1
2

(
1

32πG

(
∂λ hµν

∂
λ hµν −

1
2

∂λ hµ

µ∂
λ hν

ν

)
−hµνT µν

)
=

1
32πG

∫
d4x

(
hµνKµν ;λσ (−∂

2)hλσ −hµνT µν

)
.

(2.10)

Here Kµν ;λσ ≡ 1
2(ηµλ ηνσ +ηµσ ηνλ −ηµνηλσ ) is the matrix we must invert to build the graviton

propagator [29], in analogy with the electromagnetic propagator. We note, as above, that the graviton

field hµν is coupled to the entire stress-energy tensor T µν . As the stress energy tensor encodes all the

energy/matter in the universe, this reflects that everything is subject to the graviton field and the effect

of gravity, as expected from GR. From the convenient fact that K = K−1, we find the propagator

Dµν ,λσ (k) =
1
2

ηµλ ηνσ +ηµσ ηνλ −ηµνηλσ

k2 + iε
, (2.11)

where k is the momentum transferred by the graviton exchange and ε is some infinitesimal quantity.

We shall use this graviton propagator Dµν ,λσ (k) in our study of graviton exchange.

Our research focuses on a particular type of interaction, namely, the scattering of a photon on

a scalar target. We have chosen a scalar target since a scalar particle is defined to have spin-0 and

positive parity. It is convenient that scalar particles do not show any interfering spin effects. In order

to study such an interaction from a quantum field-theoretic perspective, we must certainly calculate

the photon-photon-graviton vertex as used in Ref. [23, 24], which couples a photon with the gravtion,

and in the next section we calculate this vertex from the relevant Lagrangian.
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2.3 Scattering Fundamentals

We begin with the Lagrangian for the electromagnetic field coupled to the graviton field (see [30]

for an introduction):

L =
√
−g(−1

4
gµνgαβ FµαFνβ ), (2.12)

where
√
−g =

√
−det(gµν) as before. Here, Fµν is the EM tensor, defined as the exterior derivative

of the EM four-potential vector Aµ

Fµν = ∂
µAν −∂

µAν . (2.13)

In our weak-field approximation gµν = ηµν +κhµν , we expand the gravitational metric to first order1

in κ . More details about the notation and conventions can be found in Appendix A.

gµνgαβ FµαFνβ ≈ (ηµν
η

αβ −κhµν
η

αβ −κhαβ
η

µν)FµαFνβ

= η
µν

η
αβ FαµFβν +κhµ

ν η
νν

η
αβ FµαFβν +κhα

β
η

ββ
η

µνFµαFβν

= FµνFµν +2κhµ

ν FµαFαν .

(2.14)

Our simplification uses the antisymmetry of the EM-tensor Fµν = −Fνµ , and we raise and lower

the indices of Fµν and hµν as needed. Using the additional approximation common to the literature,
√
−g ≈ 1+ κ

2 ηαβ hαβ , we find the full Lagrangian becomes

L = (1+
κ

2
ηαβ hαβ )

[
−1

4
(FµνFµν +2κhµ

ν FµρFρν)

]
. (2.15)

We distribute and collect the terms for the interaction Lagrangian, keeping only those terms to the

first order 2 in κ

Lint =−κ

8
ηαβ hαβ FµνFµν +

κ

2
hµ

ν FµρFρν . (2.16)

So, after simplification, we obtain six terms of our Interaction Lagrangian

1We expand to first order since the κ-terms govern the EM-gravity coupling, whereas all κ2-terms denotes the graviton
field coupling with itself.

2i.e., we drop the constant terms, which govern the EM coupling with itself
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Lint =−κ

4
ηαβ hαβ

∂µAν∂
µAν +

κ

4
ηαβ hαβ

∂µAν∂
νAµ − κ

2
hµν

∂µAρ∂
ρAν

+
κ

2
hµν

∂ρAµ∂
ρAν +

κ

2
hµν

∂µAρ∂νAρ − κ

2
hµν

∂ρAµ∂νAρ .
(2.17)

Now, it is only a matter of applying Feymann Rules to calculate each photon-photon-graviton vertex.

We use the Feynman Rules derived for a spin two particle [31] in the massless limit [32] (see Ref. [9,

10] for a modern review). The calculations yield 10 terms as follows

Vk1,k2 =
iκ
2
[k1 · k2(η

ρα
η

βσ −η
ρβ

η
ασ −η

ρσ
η

αβ )+η
ρσ kβ

1 kα
2 +η

αβ kρ

1 kσ
2 −η

αβ kσ
1 kρ

2

−(ηαρkσ
2 kβ

1 +η
βρkρ

2 kβ

1 +η
βρkσ

1 kα
2 −η

βσ kρ

1 kα
2 )],

(2.18)

where k denotes the relativistic momentum and the subscripts 1 and 2 refer to the incoming and

outgoing particles, respectively. This is the vertex that we shall use in our study of the photon-scalar

interaction via graviton exchange, (which is confirmed by Ref. [33]).



Chapter 3

Scattering Machinery

3.1 Photon-Scalar Scattering

We begin our study of the quantum gravitational scattering of light by first considering a much

simpler example from quantum electrodynamics (QED). Consider the two Feynman diagrams below

(Fig 3.1). On the left is the diagram representing the desired photon-scalar scattering via graviton

exchange, while on the right is the lowest order diagram for electron-muon scattering via photon

exchange. The scattering machinery for either case are extracted from the relevant Feynman Rules.

We recall that a Feynman diagram is merely a convenient visualization of a perturbative contribution

to a quantum amplitude. Such an amplitude governs the transition from an initial state of a system

to a final state. We must use the Feynman rules to translate from the first order diagrams below to

scattering amplitudes which will be used to define the probability of the chosen scattering.

Fig. 3.1 Photon-Scalar Scattering via graviton exchange (left) and Electron-Muon Scattering via
photon exchange (right).

The Feynman rules for the analogous QED case (depicted by Fig. 3.1 on the right) are fairly

simple: we associate incoming fermions with a spinor u(s, p) and outgoing fermions with the spinor

31
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ū(s, p) for particles of momentum p and spin s. Here, spinors are the complex vector solutions to the

Dirac Equation, which is the wave equation that describes spin- 1
2 fermions like electrons and muons

[29]. We attach the factor ieγµ to each vertex, and since our particles exchange a virtual photon, we

introduce the EM propagator −igµν/(q2 + iε) (see Ref. [29]). This leads to the scattering amplitude

represented by the following:

iM = (ie)ū(s3,P3)γ
µu(s1,P1)

−igµν

q2 + iε
(ie)ū(s4,P4)γ

νu(s2,P2). (3.1)

Here, γµ denote a special set of 4x4 matrices,1 important in QED

γ
0 =

I 0

0 −I

 , γ
i =

 0 σ i

−σ i 0

 , (3.2)

where I is the 2×2 identity matrix and σ i are the familiar Pauli matrices of quantum mechanics. We

also note the relationship between spinors ū ≡ u†γ0. See Appendix B for additional details about

electron-muon scattering.

In a completely analogous way, we build the scattering amplitude for photon-scalar scattering via

graviton exchange. The associated scattering amplitude with this two body scattering is

iM = i[u(K1,ε1)VK1,K2 ū(K2,ε2)]Dµν ,λσ [v(P1)VP1,P2 v̄(P2)], (3.3)

where the K,P denote the momenta of the photon and scalar particles, ε denotes photon polarization,

and the subscripts 1 and 2 denote initial and final quantities, respectively. Note that the scalar

particle with momentum P carries no polarization. The spinors u, ū,v, v̄ represent the relevant arms

of the Feynman diagram, V represents the relevant vertex (see Eq. 2.19), and Dµν ,λσ is the graviton

propagator (Eq. 2.11).

In order to proceed further, we must set up the scattering kinematics and define the polarization

vectors of the photons. This will eventually lead us to the cross sections and additional scattering

machinery.

1These matrices are said to form a ‘Clifford Algebra’ due to anti-commutation relation {γµ γν}= 2ηµν
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3.1.1 Scattering Kinematics

We now set up the kinematics for photon-scalar scattering via graviton exchange. Let K1,K2

denote the 4-momentum of the initial and final photon respectively, and P1,P2 denote that of the initial

and final scalar particles. In the center-of-momentum (CoM) frame (where K⃗1 =−P⃗1) we have

K1 = (K,0,0,K),

K2 = (K,Ksinθ ,0,Kcosθ),

P1 = (P,0,0,−K),

P2 = (P,−Ksinθ ,0,−Kcosθ),

Observe that this 2-body scattering is elastic and is in the relativistic limit, where K0
1 = K0

2 and

P0
1 = P0

2 . We also define the usual scalar product of 4-momentum P = (E, P⃗) and P′ = (E ′, P⃗′) as

PP′ = EE ′−PxP′
x −PyP′

y −PzP′
z = M2

p. (3.4)

In other words, we implicitly contract 4-momenta with the Minkowski metric, using the sign conven-

tion (+,−,−,−).

3.1.2 Photon Polarization

Our research involves gravitational scattering of polarized photons. We therefore make several

comments about photon polarization. In the literature, there are many conventions, so we outline

basic ideas and background here.

In quantum mechanics, spin is a measure of the intrinsic angular momentum of an elementary

particle. Spin is quantized, meaning that there are only particular spin values which may be observed.

Which values are allowed is determined by the type of particle. Of interest to us are bosons, which

carry integer spin 0,1,2, .... For example, the photon is spin 1 and the graviton is spin 2. Other

particles, known as fermions, carry half-integer spin, such as the electron which is spin- 1
2 . For a

particle with spin-S, there are 2S+1 possible values of spin which can be observed; these values are

evenly spaced integers or half integers between +S and −S, see textbook such as [7].
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Hence, there are three distinct eigenstates of a spin-1 particle: +1, 0, and −1. However, as the

photon is a massless spin-1 particle, it may only carry spin +1 and −1. We shall refer to these spin

states as spin up and spin down 1 or |U⟩ and |D⟩. Thinking in terms of the ‘right hand rule’ of Calculus,

spin up corresponds to a counter-clockwise rotation of the oscillating electric and magnetic fields that

comprise the photon, whereas spin down determines a clockwise rotation. These two rotations are

always transverse to the direction of motion, and correspond to the classical left and right circular

polarization of light.

However, to simplify our calculations, we avoid circular and elliptical polarization, and instead

focus on linear polarization which are easier to represent mathematically. Additionally, linearly

polarized photons are readily accessible for future experimental applications, as they are abundant in

nature and can be produced in a lab (see Ref. [22] for an interesting example). Specifically, linearly

polarized photons are defined in terms of particular superpositions of the aforementioned up and down

states. The two orthogonal eigenstates of linear polarization are commonly denoted as horizontal and

vertical polarization states |H⟩ and |V ⟩

|H⟩= −i√
2
(|U⟩− |D⟩)

|V ⟩= 1√
2
(|U⟩+ |D⟩).

(3.5)

These correspond, to classical linearly polarized light. With this choice, we can happily denote photon

polarization using a simple vector oriented in some direction transverse to the direction of motion.

We now choose basis vectors for the photon polarization. As is typical [24], we choose one vector,

e∥ within the plane spanned by K1,K2, and the other vector, e⊥, we choose as orthogonal to this

scattering plane. Following the conventions in Ref. [23], we write

e⊥1 = (0,1,0)

e⊥2 = (0,1,0)

e∥1 = (1,0,0)

e∥2 = (−cosθ ,0,sinθ),

(3.6)

1Certainly the spin state of a photon may be in a superposition of the up and down states
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Here the subscripts 1 and 2 denote initial and final polarization. As expected (due to conservation

laws), the components of e⊥ are invariant under scattering, while e∥ rotates in the scattering plane

[24] (see Fig. 3.2-3 below1). We assume the gauge condition e0 = 0.

Fig. 3.2 Rotation of polarization basis vector in the scattering plane.

Fig. 3.3 Rotation of polarization basis vector which is orthogonal to the scattering plane.

3.2 Polarization Effects

Following Ref. [23], we calculate the matrix elements for arbitrary initial and final polarization

using Feynman rules and the appropriate interaction Lagrangian of effective quantum gravity. We find

the matrix element
1It is important to recall that the two depicted states are quantum states, i.e., there is no continuous change of polarization

between e∥ and e⊥. Just as there are only two possible circular states, so to, these are the only possible states of linear
polarization
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⟨K2,P2|M |K1,P1⟩=
λ 2δ 4(K2 +P2 −K1 −P1)

4(2π)2
√

K0
1 K0

2 P0
1 P0

2

4
−2K1K2

{(e2
(ρK2

α − e2
αK2

ρ)(e
1
σ Kα

1 − eα
1 K1

σ))−
1
4

δρσ (e2
αK2

β
− e2

β
K2

α)(e
α
1 Kβ

1 − eβ

1 Kα
1 )}

·
[

p(ρ1 pσ)
2 − 1

2
m2

δ
ρσ

]
, (3.7)

where Greek indices represent components of 4-vectors and the numbers 1,2 correspond to initial and

final particles respectively.

The quantity λ =
√

8πG governs the strength of the gravitational interaction and δ ρσ is the usual

Kronecker delta and A(ρBσ) denotes symmetrization with respect to the indices ρ and σ , as defined

in Appendix A.

For scalar particles, we know Pρ

1 Pσ
2 = Pσ

1 Pρ

2 due to boson symmetry. Hence, we simplify

P(ρ
1 Pσ)

2 = Pρ

1 Pσ
2 . The symmetrization of the expression in the curly brackets (in Eq. (4) above) is less

trivial

(e2
(ρK2

α − e2
αK2

ρ)(e
1
σ Kα

1 − eα
1 K1

σ)) =

1
2

[
(e2

ρK2
α − e2

αK2
ρ)(e

1
σ Kα

1 − eα
1 K1

σ )+(e2
σ K2

α − e2
αK2

σ )(e
1
ρKα

1 − eα
1 K1

ρ)
]
.

(3.8)

Substituting this expression back into Eq. (4), we distribute and simplify by contracting the 4-vectors

having equivalent indices.

This contraction produces several occurrences of the scalar products P1e1,P2e2,K1e1 and K2e2,

which are equal to zero in the CoM, since the polarization of light is transverse to the direction of

motion. Including only the nonzero terms, and grouping like terms, we obtain the full expression
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⟨K2,P2|M |K1,P1⟩=
λ 2δ 4(K2 +P2 −K1 −P1)

4(2π)2
√

K0
1 K0

2 P0
1 P0

2

4
−2K1K2

1
2
((P1e2)(P2e1)(K1K1)− (P1e2)(P2K1)(K2e1)− (P1K2)(P2e1)(K1e2)+(P1K2)(P2K1)(e1e2))

− 1
4
(−2(P1P2)(K1K2)(e1e2)+2(P1P2)(K1e2)(K2e1))

− 1
2

m2(2(K1e2)(K2e1)−2(e1e2)(K1K2))+
1
8

m2
δ

ρσ
δρσ (2(K1e2)(K2e1)−2(e1e2)(K1K2)). (3.9)

Now, due to properties of the Kronecker delta, δ ρσ δρσ = δ ρσ δσρ = δ ρρ = 4. We may thus cancel

the final two terms, leaving exactly 6 terms

⟨K2,P2|M |K1,P1⟩=
−λ 2δ 4(K2 +P2 −K1 −P1)

4(2π)2KP
1

K1K2

· {(K1K2)(e2P1)(e1,P2)− (e2K1)(K2P1)(e1P2)− (e1k2)(e2P1)(K1P2)

+(e1e2)(K2P1)(K1P2)− (e1e2)(K1K2)(P1P2)+(e1K2)(e2K1)(P1P2).} (3.10)

For convenience, we now use K = K0
i and P = P0

i for i = 1,2, thus associating K with the photon

energy and P with the energy of the scalar particle. We also correct an error in Ref. [23], where a

seventh term was mistakenly included.

By plugging our kinematics into the corrected equation above, we obtain for the sum in curly

brackets (for some specified initial and final polarization states)

e∥1 → e∥2 : K2(K +P)2cosθ

e∥1 → e⊥2 : 0

e⊥1 → e∥2 : 0

e⊥1 → e⊥2 : K2(K +P)2.

(3.11)

Thus our non-zero, polarization-dependent matrix elements, which governs the probability of the

transition between initial and final states of our system, become
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⟨K2,P2|M∥∥ |K1,P1⟩=
−λ 2δ 4(K2 +P2 −K1 −P1)(K +P)2

4(2π)2P
cosθ

1− cosθ
,

⟨K2,P2|M⊥⊥ |K1,P1⟩=
−λ 2δ 4(K2 +P2 −K1 −P1)(K +P)2

4(2π)2P
1

1− cosθ
.

(3.12)

3.2.1 Differential Cross Section

In scattering theories, there are well-known expressions which relates the invariant amplitude M

above to the differential cross section (in the CoM frame). In general,

dσ

dΩCoM
∝ |M|2,

where M represents matrix elements derived via Feynman rules, as done above. Following the lead

of Ref. [23, 24] our matrix elements, Eq. 3.12, above leads us to the polarization-dependent cross

sections

dσ∥∥

dΩ
=

λ 4(K +P)4cos2θ

16(2π)2P2(1− cosθ)2 ,

dσ⊥⊥
dΩ

=
λ 4(K +P)4

16(2π)2P2(1− cosθ)2.

(3.13)

We will discuss the dependencies of this cross section at the end of this chapter. However, we

immediately recognize a fascinating point of interest concerning these cross sections. Specifically,

the largest difference in cross section is at angles near 90 degrees. In fact, we observe that for one

polarization, there is no 90 degree scattering, while the other polarization has non-trivial likelihood of

90 degree scattering.

3.2.2 Unpolarized Photons

Our results also lead to the unpolarized cross sections, by summing over all initial and averaging

over final polarization states presented in Eq. (3.13)

|M|2 = ∑
pol.

∣∣Mi f
∣∣2. (3.14)
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Fig. 3.4 Shape of differential cross section as a function of scattering angle θ (averaged over all
azimuthal angles φ ). Blue and Red curves correspond to initial polarization e⊥ and e∥ respectively for
a 511 KeV photon scattering off a scalar particle.

This leads to the differential cross section

dσ

dΩ
=

λ 4(K +P)4

16(2π)2P2
1+ cos2θ

(1− cosθ)2 . (3.15)

However, in Ref. [23], the differential cross section for unpolarized photons is given as

dσ

dΩ
=

λ 4(K +P)4

16(2π)2P2
(1+ cosθ)2

(1− cosθ)2 , (3.16)

which includes ‘interference terms’. Similarly in Ref. [24]. There, the authors seem to consider a

photon whose initial polarization is given by a mixed state, i.e., is in a superposition of possible basis

states, leading to the above interference terms. In contrast, our result should apply to a collection of

photons in a pure state, where there is an equal distribution of photons with either polarization (but

each photon individually has some definite state), leading to no interference terms. The figure below

compares the shape of both options, which display the same long-term behavior.

3.2.3 Total Cross Sections

To calculate the polarization-dependent total cross section σ , we integrate using spherical coordi-

nates
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Fig. 3.5 Shape of unpolarized cross section, where red and blue curves correspond to our results for
unpolarized photons given in Eq. 3.15 and the analogous results of Ref. [23] in Eq. 3.16, respectively.

σ =
∫ dσ

dΩ
dΩ =

∫ 2π

0
dφ

∫
π

0

dσ

dΩ
sinθdθ . (3.17)

Integrating over all solid angles, we find that

σ∥∥ =
λ 4(K +P)4

16(2π)2P2

∫ 2π

0
dφ

∫
π

0

sinθ

(1− cosθ)2 dθ = ∞, (3.18)

σ⊥⊥ =
λ 4(K +P)4

16(2π)2P2

∫ 2π

0
dφ

∫
π

0

cos2θsinθ

(1− cosθ)2 dθ = ∞, (3.19)

reflecting the infinite range of gravity. However, the shape of the integral implies that at distances

near ±∞ from the target scalar particle, the strength of the interaction is very weak and likelihood of

scattering is essentially zero, meaning that the average scattering angle will be at or very near 0, as

expected intuitively.

3.2.4 Likelihood of Scattering

Due to the presence of λ 4, we notice that the coefficient of the differential cross section is

proportional to G2 and (assuming that the energy of the scalar particle is much larger than the photon

energy P>>K) it is also proportional to P2. In our weak field approximation, we should consider only

small P, and thus, we expect very small cross sections in reasonable scattering scenarios. However,
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there is still non-zero probability that an ‘interesting’ or large angle scattering event will occur. We

are interested in large angles since the largest polarization dependence occurs in such scattering.

Unfortunately, when scattering a single photon, we expect only trivial or small angle scattering

(as the cross section is largest near 0 degrees). This cross section serves statistically as a type of

probability density function with low likelihood of large angle scattering. However, with a strong

enough source of photons, we may yet be able to detect polarization dependence of gravity scattering.

This motivates some new definitions. Specifically, we define the number of scattering events, also

known as the yield, as J = Lσ where L = Φρt l is the Luminosity. Here, Φ represents the photon flux

of photons through the target, ρt is the number density of the target, and l is the length of the target.

We shall discuss reasonable parameters for Φ and l for a variety of applications in the next chapters.

Also, we observe that the number density of the target ρt = N/V where N is the number of target

particles and V is the volume of the target. 1.

We consider the dependence of the scattering yield on mass of the scalar target. Consider scattering

on a cloud of matter with fixed mass M. Supposing this cloud is composed of N massive scalar

particles, each with mass m, we observe that the number density ρt is inversely proportional to the

individual mass m. From our results above, we observe that σ ∝ m2 and L ∝ ρt ∝ m−1. We thus

determine that J ∝ m. Hence, the number of scatteing events is sensitive to mass of the target scalar

particle. Thus, a target consisting of many heavy particles should produce more scattering than another

target consisting of many light particles - even if the total mass in both cases is equivalent! This result,

that the scattering yield is directly proportional to the particle mass, will be very important in the next

two sections, where we develop applications of our research.

1Note: this quantity is also related to mass density, as ρt = (NA/M)ρm where M is the molar mass of the target particles,
NA is Avagadro’s number, and ρm is the usual mass density





Chapter 4

Gravitational Polarization by Dark

Matter

We have seen that gravitational effects are generally very subtle compared to those of electro-

magnetism. To illustrate, recall that EM electron-muon scattering has an effect which is many orders

of magnitude larger than that of the analogous gravitational scattering of light. To study the desired

quantum gravitational phenomenon, we need physical parameters which lead to nontrivial probability

of light polarization by graviton exchange, without interfering EM or weak effects. We thus focus

on a particular type of matter, for which interactions are likely to be dominated by gravity: Dark

Matter (DM). This provides an ideal experimental scenario, where we need be less concerned about

interfering electromagnetic or weak effects.

As mentioned in the introduction, DM models predict a diverse range of possible interactions

with ordinary luminous matter [17]. In most cases, DM does not couple directly with photons - hence

the term dark [13]. Further, there is a large class of models, which predict that DM can only interact

gravitationally. In any case, it is inevitable that light should scatter gravitationally on DM particles.

Our analytical results from Chapter 3 indicate that even given the most typical, scalar models of DM,

this scattering will induce polarization, which essentially gives DM properties of a polarimeter.

Also, our results indicate that the probability of light scattering (and polarization) is dependent

on the mass of the target particle. This permits the possibility of introducing new upper-limits for

the mass of DM particles, as will be discussed in more detail below. Given the tremendous range of

masses predicted by different models of DM, this is a very intriguing application.

43



44 | Gravitational Polarization by Dark Matter

4.1 Galactic Halo

Let us consider a strong source of photons at the center of our Milky Way galaxy, emitted

isotropically. These photons are ejected into the roughly-spherical galactic halo of (DM) particles.

The vast majority of these photons would likely continue on a straight, undisturbed trajectory, but a

few photons may scatter at large angles, and these scattered photons may be detected by a device on

Earth. Given our results, gravity-induced polarization1 may subsequently be observed!

As the luminosity is proportional to the target number density, it is vital to choose an appropriate

density profile for the Dark Matter Halo. There are two general types of models for the density profile

[21]. The first type are known as Cored Halo models which display a central ‘plateau’ of finite density,

and beyond some scale radius, the density decreases proportional to the cube of the radius. The second

type are known as Central Cusp models, which predict an infinitely increasing central peak (with

similar long-term growth ρ ∝ r−3). See Fig 4.1 below which compares the two types of models.

Fig. 4.1 Example of Central Cusp (blue) and Cored Halo (red) density profiles: Navarro-Frenk-White
and Isothermal profiles respectively [21]. Dotted line indicates location of Earth on these normalized
axes.

Recent review of experimental data tends to support the Cored Halo models, as the DM density

at the core certainly must be finite [21]. However, for our needs, we use a combination of both the

realistic Cored Halo models and the algebraically simpler Central Cusp models. We begin with the

most popular central cusp model, the Navarro-Frenk-White (NFW) profile [34] given below

1Since photons of different polarizations have different probabilities of gravitational scattering
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Table 4.1 Parameters of Dark Matter Halo

Parameter Typical Units SI Units

Scale DM Density ρ0 840 GeV/cm3 1.35×10−1 J/m3

Local DM Density ρl .387 Gev/cm3 6.20×10−5 J/m3

Number Density nt 9×10−6 m−3 9×10−6 m−3

Scale Radius r0 10 kpc 3.1×1020 m
Total Radius R 100 kpc 3.1×1021 m
Particle Mass 1014 GeV/c2 1.8×10−13 kg

ρ(r) =
ρ0

r
rs
(1+ r

rs
)2 . (4.1)

Here, ρ0 is the experimentally determined scale density and rs is the scale radius. These parameters

are unique for each galaxy, and those of the Milky Way have been studied at length. Notice that at

radii r ≫ rs, the density ρ ∝ r−3 as expected. However, to avoid the obvious issue of having infinite

density at the core, we artificially impose a maximum density at small radii (to be discussed in more

detail later). Table 4.1 outlines some of the relevant parameters to calculate the likelihood of our

desired scattering. Note that our choice for the DM particle mass will be explained below. See Refs.

[21, 35] for a discussion on reasonable parameter values.

4.1.1 On the Dark Matter Particle Mass

Let us note that there is a general consensus regarding the constant, total mass of the galactic

DM halo, determined by astrophysical observations. However, as discussed in the introduction to

this paper, the mass of individual DM particles is subject to extensive debate. Certainly, the number

density of the DM halo nt is inversely proportional to the chosen mass of the DM particle. This

implies that the luminosity L = Φnt l is inversely proportional to mass. However, from Chapter 3,

we recall that the cross section, σ , is directly proportional to the square of the target particle mass.

Therefore, the scattering yield J = σL is directly proportional to the chosen DM particle mass, as

noted in Chapter 3.

Since the desired gravitational interaction is very weak, we are motivated to consider the heaviest

models of the DM particle, such as the so-called WIMPzilla models, with masses upward of 1014 GeV,

popular in string and super-symmetry theories. Selecting such a model will produce the highest rate of

scattering, and thus the highest chance of experimentally detecting polarization effects. This result can
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be used as a clever way to place upper bounds on the mass of the DM particle. After choosing a certain

particle mass, we predict a certain degree of polarization effects. Should an experiment fail to detect

predicted polarization effects, we may conclude that we overestimated the DM particle mass, thereby

placing a new upper bound on this mass1. More sensitive instruments can place additional upper

limits. Finding such an upper limit would be a significant contribution to this field, as the majority

of modern experiments constrain the mass from below, leaving only astrophysical observations to

constrain very large DM objects (such as MACHO’s as in Ref. [14]), from above. Our technique

provides an alternative approach to constrain the mass from above.

4.2 Monte Carlo Simulation

After having introduced the premise and the motivation for choosing the parameters in Tab. 4.1,

we now turn to a novel Monte-Carlo simulation to calculate the desired scattering effects, numerically.

Our simulation considers a random trajectory from a fixed origin, corresponding to isotropic emission

of a photon from the center of the galaxy. Specifically, we randomly select an emission altitude and

azimuth (θ0,φ0) for the photon. We then break the radial trajectory into small pieces. At the end of

our first step along the radius, we randomly choose scattering parameters (θ ,φ).

Given the (approximately) constant density over the radial step size, and using the cross sections

of Chapter 3, we calculate the scattering rate, given these arbitrarily chosen scattering angles. Then

using a random "dice throw" we determine whether this scattering event occurs. This "dice throw"

consists of two parts: first we randomly choose a scattering angle (ignoring small angle scattering less

than 5 degrees) and calculate the scattering yield J, using the cross section and luminosity for a single

photon. Next, we randomly choose a number from the range of possible scattering yield values and

compare with J to determine whether scattering has taken place. If not, we continue to along the next

step of the radius and repeat the above process. If no successful scattering events take place over the

total DM halo radius, we proceed to the next photon. Using a sufficiently large number of photons,

we thereby simulate the scattering machinery found in Chapter 3. Upon a successful scattering event,

using simple geometry, we calculate the eventual location of the photon in an imaginary plane centered

around earth (perpendicular to the radial line connecting the Earth and the galactic core). We use

histograms to record the photon flux through this plane, centered around Earth.

1Alternatively, a failure to detect polarization effects could point toward a breakdown of PQG, which formed the basis
of our results. Additional research would be needed to conclusively determine the cause of the effect
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We begin our simulation with an even number of photons of either linear polarization, which we

defined as e∥ and e⊥. Due to the distinct scattering behavior calculated in Chapter 3, we predict a

higher number of scattered photons of a particular polarization over the other. This is reflected on our

histograms which record scattered photons in the vicinity of Earth1, where we used the two different

cross sections found in Chapter 3. Our central result is that we expect to detect a higher number of

photons of one linear polarization than of the other linear polarization, and this result is reflected in

our histograms.

4.2.1 Geometry

Our simulation uses rotation matrices to encode the arbitrary emission and scattering angles,

which together define the trajectory of successfully scattered photons. Specifically, we consider

conventional axes2 and represent the path of a photon using a vector, initially along the positive z-axis.

Then, to denote emission at angles (θ0,φ0), we rotate about the y-axis by θ0 and rotate about the

z-axis by φ0. After these rotations, we have a new, rotated coordinate system with axes x′, y′, and z′,

where the photon trajectory vector is now pointing in the z′ direction. The axes (with respect to the

old coordinate system) are found using simple geometry

x′ =


cos(φ0)

sin(φ0)

−tan(θ0)

 , y′ =


−sin(φ0)

cos(θ0)

0

 , z′ =


cos(φ0)sin(θ0)

sin(φ0)sin(θ0)

cos(θ0)

 . (4.2)

It can be confirmed that these axes are mutually orthogonal and can be easily normalized. Note,

for φ0 >
π

2 the components of the x′-axis should change sign to preserve the proper cross-product

relationships between the axes according to the right-hand-rule of Calculus.

Now, the photon trajectory vector (now along the z′-axis) will be rotated again, representing

scattering at angles (θ ,φ) with respect to the new coordinate system. Specifically, we rotate about

the new y′-axis by θ and about the new z′-axis by φ . The new orientation of the vector now denotes

final trajectory of the photon. See Fig 4.2 for a graphical visualization.

Mathematically, we use the following matrix [36] to rotate about an arbitrary axis V by an angle θ

1one for either photon polarization
2where we associate the origin with the center of the galaxy, and we place Earth at the coordinates (R,0,0)
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Fig. 4.2 Visualization of the emission and scattering of photon relative to the galactic center and Earth.

R(V,θ) =
V 2

x +(V 2
y +V 2

z )cos(θ) VxVy(1− cos(θ))−Vzsin(θ) VxVz(1− cos(θ))−Vysin(θ)

VxVy(1− cos(θ))+Vzsin(θ) V 2
y +(V 2

x +V 2
z )cos(θ) VyVz(1− cos(θ))−Vxsin(θ)

VxVz(1− cos(θ))−Vysin(θ) VyVz(1− cos(θ))+Vxsin(θ) V 2
z +(V 2

x +V 2
y )cos(θ)

 .

(4.3)

Here, the axis of rotation is defined with respect to the original coordinate system V = (Vx,Vy,VZ). In

order to describe the final vector, we need only multiply R(z′,φ) ·R(y′,θ) · z′ ≡ z′′.

To get the final coordinates of our photon after both emission and scattering, we assume that

the photon is emitted along z′ over a radial distance r1 at which point the photon scatters and then

travels parallel to z′′ over the distance r2. This second distance should be long enough such that

r1z′x + r2z′′x = R which is the distance from the origin (the galactic center) and an imaginary plane

centered at (0,0,R) and perpendicular to the x-axis. One might note that we will neglect those photons

whose final trajectory points away from this plane. Rearranging, we get r2 = (R− r1z′x)/z′′x .

Our final coordinates are thus simply

x = r1z′x + r2z′′x ,

y = r1z′y + r2z′′y ,

z = r1z′z + r2z′′z .

(4.4)
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To ensure accuracy of this geometry, we calculated several cross checks of our program. For example,

we considered many combinations of emission and scattering angles (assuming the basic case where

r1 = r2 = 1), and calculated the final coordinates with respect to the old coordinate system, and we

found the expected scattering behavior. Basic results of this test are included in Appendix D.

4.3 Computational Results

Figure 4.3 below denotes the number of scattered photons that hit an imaginary plane centered

around the Earth1. Each plot records photons of particular linear polarization.

Fig. 4.3 Each ‘hit’ on the histograms represents the final location of an appropriately scattered photon
in an imaginary plane centered around Earth. Each histogram records photons of particular linear
polarization.

The total photon flux considered here is 1051 photons, which is roughly the flux (per second)

associated with a large supernova. However, due to the dilute nature of the DM halo and the incredible

weakness of gravity (reflected in the small cross section), results are reported as yields per 10−41

photons.

Figure 4.4 similarly denotes the number of scattered photons of each polarization, now per unit

area (i.e., per m2) which pass through the above-mentioned plane near Earth. Here, results are reported

at the incredibly small scale of 10−79 photons.Figure 4.5, our final histogram, records the difference

between the number of scattered photons of each polarization. Implications of these results will be

further discussed in Chapter 6.

1perpendicular to the line connecting the Earth and the galactic core
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Fig. 4.4 Each ‘hit’ on the histograms represents the final location of an appropriately scattered photon
in an imaginary plane centered around Earth. Results here are reported in number of hits per unit area.
Each histogram records photons of particular linear polarization.

Fig. 4.5 Each ‘hit’ on the above histogram represents the difference between the number of scattered
photons of each polarizations at various points on an imaginary plane centered around Earth.
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As a quick cross-check, we plot the number of scattering events at each step along the radius of the

galactic halo. The resulting histogram matches the normalized NFW profile, as expected. See Fig.

4.6-7 below.

Fig. 4.6 Scattering events vs radius. 10 million photons, log plot.

Fig. 4.7 Scattering events vs radius with normalized NFW density profile (orange line). 1 million
photons, log plot.





Chapter 5

Applications

5.1 Additional Considerations

In Chapter 3, it is found that the cross section for gravitational photon-scalar scattering is

proportional to the constant λ 4/c6 ≈ 3.9× 10−69 in SI units. The weakness of gravity relative

to EM interactions is apparent upon a comparison with the coupling constant for electron-muon

scattering considered in Appendix B, which is proportional to the square of the fine structure constant

α2 = 1
137 .

We also may note that in the gravity case, the cross section increases in direct proportion with

the mass of the target particle. It may be instructive to plot the cross section versus this mass, but we

note that even for the heaviest particles 1, the cross section is still incredibly small. To illustrate this,

we calculate the relevant cross sections for scattering over large angles (between 85 and 95 degrees),

where we expect the highest polarization dependence. This is shown in Fig. 5.1.

The small size of this cross section arises due to the tiny coupling constant mentioned above. This

problem motivated the MC simulation of Chapter 4, where we attempted to compensate by choosing

a very large number of target particles over a large distance. Alternatively, we may consider a variety

of larger, ‘macroscopic’ targets, which are often approximated as very massive scalar particles (as

they carry 0 net spin, see Ref. [37]). However, we admit that this case might stretch the limits of

reasonability of the effective field theory discussed in Chapter 2.

1such as those allowed by supersymmetric theories [35]
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Fig. 5.1 Cross Section for large angle scattering vs mass energy of target, in double log scale. Red
and blue curves correspond to photons of each of the two linear polarization states

5.2 Scattering on Macroscopic Targets

Consider a large object, such as the sun, with a fixed mass within a certain radius. Such a target

may be easily modeled as a large scalar particle [37]. If a polarized photon scatters on this target, with

mass M, at the outer edge of its radius r, classical relativity predicts that the angle of deflection is

approximately governed by [38]

θ =
4GM
rc2 . (5.1)

Here, G is the gravitational constant and c is the speed of light This angle represents roughly the

‘most common’ scattering angle for the photon. According to the Equivalence Principle of GR, all

photons which pass near the Sun at distance r must scatter at this angle. However, as we have seen,

the polarization-dependent behavior of photon-scalar scattering will violate this rule [37]. Using the

equations of Chapter 3, we can calculate the cross section corresponding to this angle for selected

targets. To do this, we only need to integrate the differential cross sections given by Eq. (3.14)-(3.15)

over a chosen range of angles.

We consider three astronomical target masses: the Sun, the elliptical galaxy M87, and the

supermassive black hole M87*. Choosing the impact parameter as simply the radius of each target,

we find that the resulting cross sections indicate very little induced polarization by the scattering,

with the exception of scattering near the black hole M87*. Results are included in Table 5.1 on the

following page.
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Table 5.1 Cross Sections for Typical Bending Angles (according to GR).

Target Mass
Typical Bending Angle Cross Sections

Radius θ (radians) σ∥∥ σ⊥⊥
2.0×1030 kg (Sun) 7.0×108 m 8.5×10−6 6.1×1016 m2 6.1×1016 m2

6.0×1012 ∗M⊙ (M87) 1.5×1021 m 8.9×10−6 3.0×1041 m2 3.0×1041 m2

6.5×109 ∗M⊙ (M87*) 3.8×1014m 1.0 2.4×1025 m2 1.5×1026 m2

As a follow-up test, we calculate the cross sections corresponding to larger-angle scattering (which

is certainly possible according to scattering theory, but less likely than the typical bending angle

above), we find considerable polarization of the light, summarized in Table 5.2 below, which reports

the cross sections integrated between 85 and 95 degrees.

5.2.1 Range of Applicability

Having discussed a variety of application, we must discuss the range of applicability of our

equations (i.e., the reasonability of the above predictions). We first recognize that our model is built

using Perturbative Quantum Gravity (PQG), which, as discussed in the introduction, is an effective

theory of quantum gravity with certain limits. The primary limitation of this model is that the curved

space-time metric is assumed to consist of simple perturbations from the flat Minkowski metric.

Practically, this would likely preclude discussion of extremely massive objects such as black holes.

However, moderately heavy objects (such as the sun or earth) can be described perturbatively, as the

local curvature is still relatively small. However, when the total integrated curvature grows large,

the predictions will become less accurate [28]. Further, at the Planck energy scale, the "effective"

theory breaks down completely [28]. We thus conclude that while scattering on the Sun and M87 are

reasonable, as argued in Ref. [37], but scattering on the supermassive M87* is outside the range of

applicability of our initial assumptions.

Table 5.2 Cross Sections for Large Bending Angles.

Target
Cross Sections (large angles)

σ∥∥ σ⊥⊥
Sun 6.1×1016 m2 6.1×1016 m2

M87 3.0×1041 m2 3.0×1041 m2

M87* 2.4×1025 m2 1.5×1026 m2
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5.3 On the Subject of Entanglement

We next examine another implication of polarization effects in gravitational scattering. Consider

high-energy gamma rays, for which the photon polarization has been maximally entangled. Such

photons are commonly produced by electron-positron annihilation [39]. Given an entangled pair of

such photons, the polarization vectors of each photon are perpendicular to each other [40]. Classically,

these polarization vectors are parallel transported during relativistic gravitational lensing [38], and

thus we expect the polarization entanglement to be ’intact’ after scattering. However, this is not the

case when considering quantum effects. Using the polarization-dependent cross sections calculated in

Chapter 3, we expect each entangled photon to display distinct scattering behavior. This would be a

direct violation of the equivalence principle of GR, which predicts that photons of either polarization

would follow the same trajectory [38, 37]. Further, this would mean that the photon entanglement will

decohere!

We reflect back to our Monte-Carlo simulation of Chapter 4. The galactic center is a strong source

of entangled gamma rays, with over 1043 positron annihilation events per second [41]. We are thus

motivated to consider scattering of entangled photons in the Dark Matter halo of our galaxy. Through

the exchange of virtual gravitons with Dark Matter, we expect that photon entanglement will decohere,

albeit to only a small degree. This entanglement breaking channel would occur entirely through a

quantum gravity effect.

As an important aside, we compare this quantum gravity effect to a related entanglement breaking

channel, predicted by Quantum Field Theory (QFT) in curved space-time. This formalism extends

ordinary QFT to describe quantum effects on a curved background metric, i.e., under the influence

of classical gravity (in contrast with the Perturbative Quantum Gravity used in this work, in which

gravity itself is also quantized). The literature predicts a wide range of entanglement breaking by

gravity in this formalism [26, 27], which we roughly estimate to be orders of magnitude larger than

entanglement breaking via graviton exchange. Our effects therefore likely present a small correction to

the semi-classical entanglement breaking on QFT in curved space-time (see Ref. [42] for an example

of proposed experiment to test entanglement breaking in QFT in curved space-time), and future

research will be required to carefully identify the cause of any experimentally observed phenomena.

It may be essential to find a signature of the effects produced by graviton exchange, as reported in

this paper. Future research can perhaps be conducted in analogy with Compton scattering of polarized
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photons [43, 44]. It has been shown [45, 46, 47] that polarization-dependent Compton scattering can

be encoded in a unique matrix representation, which acts on Stokes’ vectors representing polarized

photons. Current research [48] uses this scattering matrix on the Stokes’ vectors denoting entangled

photons. See [49] for a good review of this notation. Using the scattering machinery presented

in Chapter 3, we are able to build an analogous matrix encoding the polarization effects of our

photon-scalar gravitational scattering. This 3× 3 matrix acts on Stokes’ vectors and predicts the

quantum state of the entangled pair after scattering. Using traditional quantum mechanics, the precise

degree of entanglement breaking can be calculated.

Previous research [33] has considered a similar interaction in PQG: graviton exchange between

two entangled photons. This light-by-light gravitational scattering is predicted to decohere the

entanglement of the photon pair. We now suggest that photon-scalar scattering would have this

same effect. This would be a novel implication, as we continue to build the case that entanglement

decoherence can be indirect evidence for the existence of gravitons, see Ref. [50] for a similar

experiment. We note that experimentally, our photon-scalar scattering may be more reasonable than

photon-photon scattering, which is dominated by interfering electromagnetic effects.





Chapter 6

Analysis

6.1 Polarization Effects of Photon Scattering

From the results in Chapters 3-5, we may now analyze the expected polarization effects in graviton-

mediated photon-scalar scattering. Results from Chapter 3 are clear that some polarization effects are

expected, although the tiny coupling constant indicates that this effect will be very small in most cases.

In Chapter 4, we attempted to overcome the weakness of the effect by using a very large collection of

target particles, over a large distance, specifically, examining gravitational scattering of light on the

Dark Matter halo of the Milky Way galaxy. From the resulting histograms which denote the scattered

photons which pass through a region near earth, it is clear that photons of one polarization will scatter

more often that photons of the other polarization. However, the small pre-factor indicates, that even

for a large number of photons, comparable to a very luminous supernova, there are simply not enough

photons which reach Earth to be detected.

As possible work-arounds for this challenge, we are free to run the simulation under new parame-

ters. Specifically, we can consider a larger photon flux, perhaps corresponding to an ultra-luminous

quasar, which are referred to as the brightest objects in the universe. We can also expand our choice

for DM mass, by choosing some form of highly exotic matter, such as topological defects, quantum

black holes, etc, whose masses are far larger than the WIMP-zilla mass chosen here [51]. With these

changes, it may in fact be feasible to detect the scattered photons (of both polarizations) here on Earth.

The results from such a test are displayed in Appendix D.

Scattering on a macroscopic targets in Chapter 5 also leads to some interesting results. We found

that the desired polarization effects are large enough to be observed, although we relied heavily on
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some classical assumptions and in one case, perhaps exceeded the range of applicability of PQG.

Despite these limitations, the desired effect may still be found.

It may be advantageous to consider recent stunning advancements in observational astronomy. In

2021, for the first time, using the enormously successful Event Horizon Telescope (EHT) astronomers

detected polarization of photons around supermassive black holes [52]. Certainly a wide variety of

effects are behind light polarization, but we note that if similar observations around other macroscopic

targets yield polarization, which cannot be explained by other forces, we could support the hypothesis

that gravity too has polarizing properties, due to exchange of gravitons.

6.2 Additional Applications

It may be beneficial to point out that the Monte-Carlo simulation used to calculate gravitational

scattering on Dark Matter can be modified for other purposes. Specifically, current research has

suggested novel light-quark models for Dark Matter, notably the d*(2380) hexaquark, which is

expected to interact with light in predictable ways [53]. In order to test this hypothesis, we are free to

substitute the parameters1 for the desired interactions. Our code is versatile enough to be convenient

for such modifications.

1cross sections, densities, etc.
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Conclusions

7.1 Discussion

7.1.1 Impact on Quantum Gravity

In our discussion of photon-scalar scattering via graviton exchange, we build on previous research

on the exchange of gravitons between elementary particle of different spin, such as [54]. In our

research, we find polarization dependence in gravitational deflection of light. This polarization

dependence is a purely quantum effect, similar to the tiny quantum corrections to the gravitational

potential in Refs. [12, 28]. Such a scenario is a violation of the equivalence principle of GR [38], and

if detected, provides convincing evidence for a field-theoretic description of gravity. In other words,

this effect would highly suggest the existence of gravitons as the mediator of the gravitational force.

7.1.2 Impact of Dark Matter Research

Our application to Dark Matter is also highly suggestive. Our results from the Monte-Carlo

simulation predict that galactic photons will become polarized by the Dark Matter Halo of the Milky

Way, although the effect is small. This polarization dependence is directly proportional to the mass of

the Dark Matter particle1. A wide range of Dark Matter particle masses are predicted by the literature,

from a fraction of an eV to ultra-heavy WIMPzilla particles ≥ 1014 GeV [13] to primordial black

holes with masses upward of 1000 solar masses [51]. Our predictions may thus be theoretically useful

as a method to bound the Dark Matter particle mass from above, which would complement the usual

1or any other chosen scattering target
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methods of bounding this mass from below. As mentioned in Chapter 4, it would be vital to determine

that the fault does not lie with PQG to conclusively set this upper bound for the DM particle mass.

We must recognize that our calculations considered a very strong source of linearly polarized

photons. Such linear polarization is reasonable as ordinary radiation from the galactic core can

become plane polarized by an anisotropic process, such as scattering by interstellar dust or from

stellar sources [22]. However, the predicted quantum-gravity effect considered is very small, even

restricting our attention to extremely luminous events, such as supernovae, gamma-ray bursts, and

quasars. Our alternative option is to consider macroscopic targets as in Chapter 5, although we must

ensure that we do not overstep the range of applicability of our effective field theory of gravity

7.1.3 Entanglement Breaking

As seen in our research, the polarization of photons can be used as an entanglement breaking

channel. Further research is planned by the author to investigate the degree of entanglement deco-

herence after the scattering of entangled photons in the Dark Matter Halo, given a diverse range of

Dark Matter models. This entanglement breaking could be measured by a detector at earth and can be

further evidence for the quantum effects of gravity and serve to bound the mass of the hypothesized

Dark Matter particle.
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Appendix A

Conventions

Einstein Summation Convention

This convention is simply a convenient notation used to denote implicit summation over indexed

terms in an expression. In the following pages, Latin indices take the values 1,2,3 whereas Greek

indices take the values 0,1,2,3.

Tensors

Variables may be given one or more indices. If a variable carries no index, it is called a rank 0

tensor, and it represents a scalar quantity. If a variable carries a single index, it is called a rank 1 tensor

and it is represented by a vector. For example, consider the 4-momentum kµ = (k0,ki) = (k0,k1,k2,k3)

where k0 is the relativistic energy and ki denotes the spatial components of momentum.

Note: a vector quantity will never carry more than a single index. If a vector ever appears to

carry multiple indices, then the extra subscript or superscript is actually a label, not an index. For

example, when describing momentum of a particle, we may use kµ

1 and kµ

2 . The subscripts 1 and 2 are

simply labels, which perhaps refer to initial and final momentum, respectively. Diagrams and in-text

comments will explain any potential ambiguity as needed.

If a variable does carry 2 indices, such as ηµν , gµν , or hµν , then it is a rank 2 tensor and is

characterized by a 3×3 or 4×4 matrix (depending on whether the indices are Latin or Greek).
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Summation

Traditionally, when taking the dot product of two vectors, we use the formula

Σ
3
i=1aibi = a1b1 +a2b2 +a3b3. (A.1)

Notice that the index i is present once in the lower position and once in the upper position. The

result of the summation is a scalar quantity. In the Einstein notation, we omit the cumbersome sigma

notation and simply write

aibi = a1b1 +a2b2 +a3b3, (A.2)

where the repetition of the index i (once downstairs and once upstairs) implies summation over all

possible values of i. Notice that by summing, the index disappears and is not present on the right hand

side of the equation

Now, the product of rank 2 tensors will behave similarly. For example, in chapter 2, just prior to

Eq. 2.14, we use the expression

√
−g ≈ 1+

κ

2
ηαβ hαβ . (A.3)

Now, the tensor product on the right hand side of this equation includes repetition of the indices α

and β , which implies summation. As with the dot product of vectors, the result of this summation is a

scalar. Notice the left hand side is also a scalar quantity (as expected), see Chapter 2 for details.

Example

To determine which indices are summed in an equation which has many indices, there are a couple

of basic rules. If a single term of an equation contains a repeated index (once in the upper position,

and once in the lower position), then we must sum over all index values. However, if an index appears

only once in a term, then there is no summation. For example consider the equation

F i j = η
ik

η
jlFkl. (A.4)
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Notice that the term on the right hand side repeats the indices k and l, which each appear in the upper

and lower position of tensors. We thus sum over all values of k and l, and these indices subsequently

vanish. In contrast, the indices i and j are only present once per term, in the upper position (and there

is no corresponding tensor which carries those indices in the lower position), and hence they are not

summed.

It is important that all terms carry identical unsummed indices. For example, the equation ai = b jc j

makes no sense, because we have an unsummed index on the left, but only summed indices on the

right (i.e., a scalar product of vectors)1. Compare with a better equation ai = di(b jc j). Here, the

unsummed indices are consistent on the left and right (i.e., there is a vector quantity on both sides of

this equation).

Raising and Lowering Indices

It is important that summed indices appear once upstairs and once downstairs. In many cases it is

necessary to raise or lower indices to correctly contract the indices. Given a tensor Tµν , we may raise

the indices using a metric tensor as follows

T αβ = gαµT β

µ = gαµgβνTµν ,

Tαβ = gαµT µ

β
= gαµgβνT µν .

(A.5)

We shall frequently perform this manipulation using the Minkowski metric ηµν , which is simply the

4×4 matrix with zeros everywhere except the diagonal, and diag(ηµν) = (+1,−1,−1,−1).

Note: The indices themselves are merely ’dummy variables’ and may be interchanged for new

symbols, provided that each term will contain at most two occurrences of each index (otherwise, we

would encounter ambiguity on which tensors are contracted with each other).

Summary

In summary, tensors may have 0,1,2 or more indices, and repeated indices in a particular term

(with one downstairs and one upstairs) are implicitly summed. Non-repeated indices, in contrast, are

not summed. An index can appear at most twice in any term of an equation, and each term must

1In other words, we have a vector on the left and a scalar on the right
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contain identical unsummed indices. Indices of a tensor can also be raised or lowered by contracting

with the metric tensor, as needed.

Other

In this thesis, certain equations may use natural units where h = c = 1. In all cases, Planck’s

Constant and the speed of light are restored prior to conversion to SI units (unless otherwise stated).

Kronecker Delta

We define the Kronecker delta

δ
ρσ =


1 if ρ = σ

0 if ρ ̸= σ

. (A.6)

Immediately from the definition, we know that the Kronecker is symmetric δ ρσ = δ σρ . Also we can

derive that δ ρσ δστ = δ ρτ . An immediate implication is that

δ
ρσ

δσρ = δ
ρρ = δ

00 +δ
11 +δ

22 +δ
33 = 1+1+1+1 = 4, (A.7)

where the repeated index ρ implies summation over all possible values of ρ . This fact is used to

derive Eq. 3.9

Symmetrization

Very often, there are underlying symmetries behind indices used. With that in mind, we let A(ρBσ)

denote symmetrization with respect to the indices ρ and σ . More precisely

A(ρBσ) =
1
2
(AρBσ +Aβ Bα). (A.8)

This abbreviation is used throughout Chapter 3.
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Mandelstam Variables

In two body scattering p1 + p2 → p3 + p4 it is often convenient to write the scattering machinery

in terms of Mandelstam variables, which are quantities which encode the 4-momenta of particles in a

Lorentz-invariant way. The variables can be defined as follows

s = (p1 + p2)
2 = (p3 + p4)

2,

t = (p1 − p3)
2 = (p2 − p4)

2,

u = (p1 − p4)
2 = (p2 − p3)

2,

(A.9)

where p1, p2 and p3, p4 are the 4-momenta of the ingoing and outgoing particles respectively. Notice

that we drop the indices for readability. Now, if we use mi to denote the mass of the particle with

momentum pi, we get the property

s+ t +u = m2
1 +m2

2 +m2
3 +m2

4. (A.10)

We can further derive that

(p1 · p2) = (p2 · p4) = (s−m2
1 −m2

2)/2

−(p1 · p3) =−(p2 · p4) = (m2
1 +m2

3 − t)/2

−(p1 · p4) =−(p2 · p3) = (m2
1 +m2

4 −u)/2.

(A.11)





Appendix B

Parellel with Electromagentsim

In Chapter 3 we discussed the matrix elements for lowest order diagram for electron-muon

scattering

iM = ieū(sc, pc)γ
µu(sa, pa)

−igµν

q2 + iε
ieū(sd , pd)γ

νu(sb, pb). (B.1)

We now derive additional machinery for this important QED example for comparison with the

analogous gravity case.

Complex Conjugation of the "Spinor Sandwich"

We know that our cross section will eventually involve the square of the modulus of our scattering

amplitude (i.e. |M |2). Hence, we need to find the complex conjugate of our amplitude. Now, we

focus on the "spinor sandwich’ i.e. the ū(pb)γ
µu(pa) factors in the amplitude. Notice we temporarily

drop the spin labels for brevity.

From our definitions of our gamma matrices, we can easily verify the relationships (γµ)† = γ0γµγ0,

γ0γµ†γ0 = γµ , and (γ0)2 =+1, and. Hence, we calculate1

[ū(pb)γ
µu(pa)]

∗ = [ū(pb)γ
µu(pa)]

† =
[
u†(pb)γ

0
γ

µu(pa)
]†

=[
u†(pa)γ

µ†
γ

0u(pb)
]
=
[
u†(pa)γ

0
γ

0
γ

µ†
γ

0u(pb)
]
= [ū(pa)γ

µu(pb)] . (B.2)

1By recognizing that our "spinor sandwich" is nothing more than a Lorentz scalar, we know that the complex conjugate
is the same as the Hermitian conjugate.
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In general, we find that taking the complex conjugate of ū(pb)γ
µ ...γνu(pa) reverses the order of our

gamma matrices and exchanges the two spinors, eventually giving ū(pa)γ
ν ...γµu(pb).

Toward the Cross Section

From the above section, we calculate

|M |2 = e4

q4 [ū(pc)γ
µu(pa)ū(pd)γνu(pb)]

[
ū(pa)γ

νu(pc)ū(pb)γµu(pd)
]

=
e4

q4 [ū(pc)γ
µu(pa)ū(pa)γ

νu(pc)]
[
ū(pb)γ)µu(pd)ū(pd)γνu(pb)

]
. (B.3)

We will first consider initially unpolarized electrons. We thus average over initial spins and sum over

final spins using

1
4 ∑

spins
|M |2 = e4

4q4 ∑
sa

∑
sc

[ū(pc)γ
µu(pa)ū(pa)γ

νu(pc)]∑
sb

∑
sd

[
ū(pb)γµu(pd)ū(pd)γνu(pb)

]
≡ e4

4q4 LµνMµν . (B.4)

The factor of 1/4 arises because we are averaging over initial spins (and we consider 4 initial spin

states). Also, we implicitly define the Lepton tensors Lµν and Mµν for the electron and muon

respectively. Notice that we can now use the completeness relations (to be derived shortly) which

gives

Lµν = Tr(γµ(/pa +me)γ
ν(/pc +me)),

Mµν = Tr(γµ(/pd −M)γν(/pd −M)),
(B.5)

where M is the mass of the muon. Because our gamma matrices satisfy the anti-commutation relation

{γµ ,γν}= 2ηµν , there exist convenient formulas to evaluate the traces of produts of gamma matrices.

Using these relations, we get
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Lµν = 4(pµ
a pν

c + pν
a pµ

c −η
µν pa · pc)+4η

µνm2
e ,

Mµν = 4(pµb pνd + pνb pµd −ηµν pb · pd)+4ηµνM2.
(B.6)

Now, we put these together to obtain

1
4 ∑

spins
|M |2

=
e4

4q4 ×4
[
pµ

a pν
c + pν

a pµ
c +(m2

e − pa · pc)η
µν
]
×4

[
pµb pνd + pνb pµd +(M2 − pb · pd)ηµν

]
=

4e4

q4 [2(pa · pb)(pc · pd)+2(pa · pd)(pc · pb)+2(pa · pc)(M2 − pb · pd)+2(pb · pd)(m2
e − pa · pc)

+4(M2 − pb · pd)(m2
e − pa · pc)]

=
4e4

q4 [2(pa · pb)(pc · pd)+2(pa · pd)(pc · pb)−2(pa · pc)M2 −2(pb · pd)m2
e +4m2

eM2. (B.7)

Now, to make this expression more concise, we can express the momenta in terms of the Mandelstam

variables where we use the fact that p2
a = p2

c = m2
e and p2

b = p2
d = M. Then, we get the exact answer

1
4 ∑

spins
|M |2 = 2e4

t2 [s2 +u2 +4(m2
e +M2)(s+u)+6(m2

e +M2)2]. (B.8)

The Cross Section (High Energy Limit)

Returning to Figure 1., we can describe each 4-momentum in the center of mass frame, in the

high energy limit E ≫ me,M, as follows

pa = (E,0,0,E),

pb = (E,0,0,−E),

pc = (E,Esin(θ),0,Ecos(θ)),

pd = (E,−Esin(θ),0,−Ecos(θ)).

(B.9)

This leads to the high energy approximations
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s ≈ 2(pa · pb)
2 = 2(pc · pd)

2 = 4E2

t ≈−2(pa · pc)
2 =−2(pb · pd)

2 =−2E2(1− cos(θ))

u ≈−2(pa · pd)
2 =−2(pb · pc)

2 =−2E2(1+ cos(θ)).

In this limit, we can ignore me and M, and plugging into Eq. B.10, we get that

|M |2 = 8e4 1+ 1
4(1+ cos(θ))2

(1− cos(θ))2 . (B.10)

We now recall the formula for the cross-section for pa + pb → pc + pd scattering in the center of mass

frame [55]

dσ

dΩ
=

1
64π2W 2

|pc|
|pa|

|M |2, (B.11)

where W 2 = (pa + pb)
2 = (2E)2 denotes the square of the total energy of the system (in CoM frame)

and is equivalent to our Mandelestam variable s. Now, simply plugging into this formula, we get1

dσ

dΩ
=

e4

8π2(2E)2

1+ 1
4(1+ cos(θ))2

(1− cos(θ))2 . (B.12)

Additional Approximations

Now, with the above framework in place, we are able to consider electron-muon scattering under

additional approximations.

Muon Mass Very Large

At around 106 MeV, the muon rest mass is over 200 times that of the electron. Nonetheless, during

the scattering, the muon should experience some small recoil. However, in a new approximation, we

shall suppose our muon is extremely massive and will thus have no recoil at all. Our goal is to better

understand how our revised differential cross section should behave.

1Notice we approximate |pc|
|pa| ≈ 1
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Cross Section (No Recoil)

In the limit that M/me → ∞ we can use for the muon the spinors for a particle at rest, i.e.

ū(pb)γ
iu(pd)≈ 0,

ū(pb)γ
0u(pd)≈ 1,

(B.13)

so that our new scattering amplitude becomes

M =
−ie2

q2 ū(pa)γ
0u(pc). (B.14)

Hence, averaging over initial spins gives

1
4 ∑

spins
|M |2 = e4

4q4 ∑
spins

[ū(pa)γ
0u(pc)][ū(pc)γ

0u(pa)] =
e4

4q4 Tr(γ0(/pa −me)γ
0(/pc −me)). (B.15)

Suppose we neglect the mass of the electron and note that the trace is invariant under cyclic permuta-

tions. Then, moving around the terms and noting γ0γ0 = I, we find

1
4 ∑

spins
|M |2 = 4e4

q4 (pa · pb). (B.16)

Whereas before we approximated s ≈ 2(pa · pb) in the relativistic limit, we now must consider large

M, so we must write (pa · pc)≈ (s−M2)/2 and so on. Hence, our expression above becomes

=
2e4s2

t2 (s−M2).

Now this leads to the relatively simple cross section

dσ

dΩ
=

e4

64π2s
(s−M2)

t2 , (B.17)

where we denote the heavy muon mass as M. As before, we note that s −M2 = 2E2 and t =

4E2sin2(θ/2) so we can substitute
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dσ

dΩ
=

α2

4W
2E2

16E4sin4(θ/2)
, (B.18)

which is our desired cross section. We observe the leading behavior of this scattering (for θ ≪ 1)

dσ

dΩ
∝

1
θ 4 . (B.19)

Derive Completeness Relation (i.e. Sum Over Spins)

Since our QED field must satisfy the Dirac Equation in momentum space, we know

(/p−m)u(p) = 0, (B.20)

where /p = γµ pµ and pµ = (m, pi) for i = 1,2,3 and where we set c = 1. Due to Lorentz invariance

and basis independence [29], we can evaluate the above equation in the rest frame in a convenient

basis, which will tell us about the general cases as well.

In the rest frame pµ = (m,0), so the Dirac Equation becomes (γ0 − 1)u = 0 leading to two

independent spinors


1

0

0

0

 and


0

1

0

0

 , (B.21)

which we associate with positive and negative spin respectively.

Then, using ū ≡ u†γ0, we find that the ū are just the corresponding row vectors. Thus, the

normalized spinors obey ū(p)u(p) = 1. Restoring the spin labels, we can now sum over all possible

spin as follows
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∑
s

u(s)(p)ū(s)(p) =


1

0

0

0


(

1 0 0 0
)
+


0

1

0

0


(

0 1 0 0
)

=


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

=

I 0

0 0

=
1
2
(γ0 +1), (B.22)

Now, by invoking Lorentz invariance (i.e. we move out of the rest frame) and basis independence, we

write our completeness relation

∑
s

u(s)(p)ū(s)(p) =
1

2m
(γµ p+m) = (/p+m), (B.23)

where we temporarily ignore the normalization factor 1/(2m). This can easily be restored as needed

[29].





Appendix C

Form Factors

Scattering on Earth

In Chapter 5, we considered a photon being scattered by a large astronomical target, represented

by very heavy scalar particle. To make our predictions more precise, we may introduce a form factor,

where we can approximate the target as a uniform, spherically symmetric sphere. The appropriate

mass distribution is given as a step function

ρ(x) = {
m

4
3 πr

if r ≤ R

0 if r > R
, (C.1)

where R and m are the radius and the mass of the target. The formula for this simple form factor is

given by

F(q) =
∫

eiqx
ρ(x)dx3, (C.2)

and calculating this integral gives

F(q) =
3m
qR

(
sin(qR)
(qR)2 − cos(qR)

(qR)

)
. (C.3)

Plugging in K1 −K2 for momentum transfer q and 6.378×106 m for the radius, we get an appropriate

form factor that we can use to improve our results above.
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Additional Monte-Carlo Tests and Results

Test of Scattering Geometry

Tables D.1-D.4 record the final coordinates of a unit vector which undergoes basic rotations (from

the initial state along the z axis) corresponding to various emission and scattering angles, as discussed

in Chapter 4. These tables were constructed as a cross check of the rotation matrices used in our

simulation. As in Chapter 4, (θ0,φ0) denotes initial altitudal and azimuthal angles (corresponding

to emission) while (θ ,φ) denotes a rotation from the initial trajectory (corresponding to scattering).

Tables D.1-D.4 confirms that the geometry used in our simulation behaves as expected. More extensive

tables and cross checks are available upon request but for brevity are omitted here.

Choosing Larger DM Masses

The figures below report the results after running the Monte-Carlo simulation, where the Dark

Matter ’particle’ mass is taken to be 1000 Solar Masses, which is in the upper bound region predicted

by primordial black hole models of Dark Matter [51]. The photon flux, density, and all other

parameters are identical to those discussed in Chapter 4.
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Table D.1 Geometry Tests for Emission and Scattering Angles

_ θ0 φ0 θ φ x y z

0 0.0pi 0.0pi 0.0pi 0.0pi 0 0 1
1 0.0pi 0.0pi 0.0pi 0.5pi 0 0 1
2 0.0pi 0.0pi 0.0pi 1.0pi 0 0 1
3 0.0pi 0.0pi 0.0pi 1.5pi 0 0 1
4 0.0pi 0.0pi 0.5pi 0.0pi 1 0 0
5 0.0pi 0.0pi 0.5pi 0.5pi 0 1 0
6 0.0pi 0.0pi 0.5pi 1.0pi -1 0 0
7 0.0pi 0.0pi 0.5pi 1.5pi 0 -1 0
8 0.0pi 0.0pi 1.0pi 0.0pi 0 0 -1
9 0.0pi 0.0pi 1.0pi 0.5pi 0 0 -1
10 0.0pi 0.0pi 1.0pi 1.0pi 0 0 -1
11 0.0pi 0.0pi 1.0pi 1.5pi 0 0 -1
12 0.0pi 0.5pi 0.0pi 0.0pi 0 0 1
13 0.0pi 0.5pi 0.0pi 0.5pi 0 0 1
14 0.0pi 0.5pi 0.0pi 1.0pi 0 0 1
15 0.0pi 0.5pi 0.0pi 1.5pi 0 0 1
16 0.0pi 0.5pi 0.5pi 0.0pi 0 1 0
17 0.0pi 0.5pi 0.5pi 0.5pi -1 0 0
18 0.0pi 0.5pi 0.5pi 1.0pi 0 -1 0
19 0.0pi 0.5pi 0.5pi 1.5pi 1 0 0
20 0.0pi 0.5pi 1.0pi 0.0pi 0 0 -1
21 0.0pi 0.5pi 1.0pi 0.5pi 0 0 -1
22 0.0pi 0.5pi 1.0pi 1.0pi 0 0 -1
23 0.0pi 0.5pi 1.0pi 1.5pi 0 0 -1
24 0.0pi 1.0pi 0.0pi 0.0pi 0 0 1
25 0.0pi 1.0pi 0.0pi 0.5pi 0 0 1
26 0.0pi 1.0pi 0.0pi 1.0pi 0 0 1
27 0.0pi 1.0pi 0.0pi 1.5pi 0 0 1
28 0.0pi 1.0pi 0.5pi 0.0pi -1 0 0
29 0.0pi 1.0pi 0.5pi 0.5pi 0 -1 0
30 0.0pi 1.0pi 0.5pi 1.0pi 1 0 0
31 0.0pi 1.0pi 0.5pi 1.5pi 0 1 0
32 0.0pi 1.0pi 1.0pi 0.0pi 0 0 -1
33 0.0pi 1.0pi 1.0pi 0.5pi 0 0 -1
34 0.0pi 1.0pi 1.0pi 1.0pi 0 0 -1
35 0.0pi 1.0pi 1.0pi 1.5pi 0 0 -1
36 0.0pi 1.5pi 0.0pi 0.0pi 0 0 1
37 0.0pi 1.5pi 0.0pi 0.5pi 0 0 1
38 0.0pi 1.5pi 0.0pi 1.0pi 0 0 1
39 0.0pi 1.5pi 0.0pi 1.5pi 0 0 1
40 0.0pi 1.5pi 0.5pi 0.0pi 0 -1 0
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Table D.2 Geometry Tests for Emission and Scattering Angles Cont’d

_ θ0 φ0 θ φ x y z

41 0.0pi 1.5pi 0.5pi 0.5pi 1 0 0
42 0.0pi 1.5pi 0.5pi 1.0pi 0 1 0
43 0.0pi 1.5pi 0.5pi 1.5pi -1 0 0
44 0.0pi 1.5pi 1.0pi 0.0pi 0 0 -1
45 0.0pi 1.5pi 1.0pi 0.5pi 0 0 -1
46 0.0pi 1.5pi 1.0pi 1.0pi 0 0 -1
47 0.0pi 1.5pi 1.0pi 1.5pi 0 0 -1
48 0.5pi 0.0pi 0.0pi 0.0pi 1 0 0
49 0.5pi 0.0pi 0.0pi 0.5pi 1 0 0
50 0.5pi 0.0pi 0.0pi 1.0pi 1 0 0
51 0.5pi 0.0pi 0.0pi 1.5pi 1 0 0
52 0.5pi 0.0pi 0.5pi 0.0pi 0 0 -1
53 0.5pi 0.0pi 0.5pi 0.5pi 0 1 0
54 0.5pi 0.0pi 0.5pi 1.0pi 0 0 1
55 0.5pi 0.0pi 0.5pi 1.5pi 0 -1 0
56 0.5pi 0.0pi 1.0pi 0.0pi -1 0 0
57 0.5pi 0.0pi 1.0pi 0.5pi -1 0 0
58 0.5pi 0.0pi 1.0pi 1.0pi -1 0 0
59 0.5pi 0.0pi 1.0pi 1.5pi -1 0 0
60 0.5pi 0.5pi 0.0pi 0.0pi 0 1 0
61 0.5pi 0.5pi 0.0pi 0.5pi 0 1 0
62 0.5pi 0.5pi 0.0pi 1.0pi 0 1 0
63 0.5pi 0.5pi 0.0pi 1.5pi 0 1 0
64 0.5pi 0.5pi 0.5pi 0.0pi 0 0 -1
65 0.5pi 0.5pi 0.5pi 0.5pi -1 0 0
66 0.5pi 0.5pi 0.5pi 1.0pi 0 0 1
67 0.5pi 0.5pi 0.5pi 1.5pi 1 0 0
68 0.5pi 0.5pi 1.0pi 0.0pi 0 -1 0
69 0.5pi 0.5pi 1.0pi 0.5pi 0 -1 0
70 0.5pi 0.5pi 1.0pi 1.0pi 0 -1 0
71 0.5pi 0.5pi 1.0pi 1.5pi 0 -1 0
72 0.5pi 1.0pi 0.0pi 0.0pi -1 0 0
73 0.5pi 1.0pi 0.0pi 0.5pi -1 0 0
74 0.5pi 1.0pi 0.0pi 1.0pi -1 0 0
75 0.5pi 1.0pi 0.0pi 1.5pi -1 0 0
76 0.5pi 1.0pi 0.5pi 0.0pi 0 0 -1
77 0.5pi 1.0pi 0.5pi 0.5pi 0 -1 0
78 0.5pi 1.0pi 0.5pi 1.0pi 0 0 1
79 0.5pi 1.0pi 0.5pi 1.5pi 0 1 0
80 0.5pi 1.0pi 1.0pi 0.0pi 1 0 0
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Table D.3 Geometry Tests for Emission and Scattering Angles Cont’d

_ θ0 φ0 θ φ x y z

81 0.5pi 1.0pi 1.0pi 0.5pi 1 0 0
82 0.5pi 1.0pi 1.0pi 1.0pi 1 0 0
83 0.5pi 1.0pi 1.0pi 1.5pi 1 0 0
84 0.5pi 1.5pi 0.0pi 0.0pi 0 -1 0
85 0.5pi 1.5pi 0.0pi 0.5pi 0 -1 0
86 0.5pi 1.5pi 0.0pi 1.0pi 0 -1 0
87 0.5pi 1.5pi 0.0pi 1.5pi 0 -1 0
88 0.5pi 1.5pi 0.5pi 0.0pi 0 0 -1
89 0.5pi 1.5pi 0.5pi 0.5pi 1 0 0
90 0.5pi 1.5pi 0.5pi 1.0pi 0 0 1
91 0.5pi 1.5pi 0.5pi 1.5pi -1 0 0
92 0.5pi 1.5pi 1.0pi 0.0pi 0 1 0
93 0.5pi 1.5pi 1.0pi 0.5pi 0 1 0
94 0.5pi 1.5pi 1.0pi 1.0pi 0 1 0
95 0.5pi 1.5pi 1.0pi 1.5pi 0 1 0
96 1.0pi 0.0pi 0.0pi 0.0pi 0 0 -1
97 1.0pi 0.0pi 0.0pi 0.5pi 0 0 -1
98 1.0pi 0.0pi 0.0pi 1.0pi 0 0 -1
99 1.0pi 0.0pi 0.0pi 1.5pi 0 0 -1
100 1.0pi 0.0pi 0.5pi 0.0pi -1 0 0
101 1.0pi 0.0pi 0.5pi 0.5pi 0 1 0
102 1.0pi 0.0pi 0.5pi 1.0pi 1 0 0
103 1.0pi 0.0pi 0.5pi 1.5pi 0 -1 0
104 1.0pi 0.0pi 1.0pi 0.0pi 0 0 1
105 1.0pi 0.0pi 1.0pi 0.5pi 0 0 1
106 1.0pi 0.0pi 1.0pi 1.0pi 0 0 1
107 1.0pi 0.0pi 1.0pi 1.5pi 0 0 1
108 1.0pi 0.5pi 0.0pi 0.0pi 0 0 -1
109 1.0pi 0.5pi 0.0pi 0.5pi 0 0 -1
110 1.0pi 0.5pi 0.0pi 1.0pi 0 0 -1
111 1.0pi 0.5pi 0.0pi 1.5pi 0 0 -1
112 1.0pi 0.5pi 0.5pi 0.0pi 0 -1 0
113 1.0pi 0.5pi 0.5pi 0.5pi -1 0 0
114 1.0pi 0.5pi 0.5pi 1.0pi 0 1 0
115 1.0pi 0.5pi 0.5pi 1.5pi 1 0 0
116 1.0pi 0.5pi 1.0pi 0.0pi 0 0 1
117 1.0pi 0.5pi 1.0pi 0.5pi 0 0 1
118 1.0pi 0.5pi 1.0pi 1.0pi 0 0 1
119 1.0pi 0.5pi 1.0pi 1.5pi 0 0 1
120 1.0pi 1.0pi 0.0pi 0.0pi 0 0 -1
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Table D.4 Geometry Tests for Emission and Scattering Angles Cont’d

_ θ0 φ0 θ φ x y z

121 1.0pi 1.0pi 0.0pi 0.5pi 0 0 -1
122 1.0pi 1.0pi 0.0pi 1.0pi 0 0 -1
123 1.0pi 1.0pi 0.0pi 1.5pi 0 0 -1
124 1.0pi 1.0pi 0.5pi 0.0pi 1 0 0
125 1.0pi 1.0pi 0.5pi 0.5pi 0 -1 0
126 1.0pi 1.0pi 0.5pi 1.0pi -1 0 0
127 1.0pi 1.0pi 0.5pi 1.5pi 0 1 0
128 1.0pi 1.0pi 1.0pi 0.0pi 0 0 1
129 1.0pi 1.0pi 1.0pi 0.5pi 0 0 1
130 1.0pi 1.0pi 1.0pi 1.0pi 0 0 1
131 1.0pi 1.0pi 1.0pi 1.5pi 0 0 1
132 1.0pi 1.5pi 0.0pi 0.0pi 0 0 -1
133 1.0pi 1.5pi 0.0pi 0.5pi 0 0 -1
134 1.0pi 1.5pi 0.0pi 1.0pi 0 0 -1
135 1.0pi 1.5pi 0.0pi 1.5pi 0 0 -1
136 1.0pi 1.5pi 0.5pi 0.0pi 0 1 0
137 1.0pi 1.5pi 0.5pi 0.5pi 1 0 0
138 1.0pi 1.5pi 0.5pi 1.0pi 0 -1 0
139 1.0pi 1.5pi 0.5pi 1.5pi -1 0 0
140 1.0pi 1.5pi 1.0pi 0.0pi 0 0 1
141 1.0pi 1.5pi 1.0pi 0.5pi 0 0 1
142 1.0pi 1.5pi 1.0pi 1.0pi 0 0 1
143 1.0pi 1.5pi 1.0pi 1.5pi 0 0 1

Fig. D.1 Photon hits near Earth (a) and (b) correspond to the two states of linear polarization.
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Fig. D.2 Difference between photon hits of either polarization per unit area.

Fig. D.3 Difference between photon hits of either polarization.


	7c0bb6f6-5adf-4d86-8ac8-8ac8fea9c10b.pdf
	Abstract
	Acknowledgements
	Declaration
	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 History and Motivation
	1.1.1 Search for Quantum Gravity
	1.1.2 Search for Dark Matter

	1.2 Research Aims
	1.3 Structure of Thesis

	2 Theoretical Background
	2.1 Perturbative Quantum Gravity
	2.2 Deriving the Graviton Propogator
	2.3 Scattering Fundamentals

	3 Scattering Machinery
	3.1 Photon-Scalar Scattering
	3.1.1 Scattering Kinematics
	3.1.2 Photon Polarization

	3.2 Polarization Effects
	3.2.1 Differential Cross Section
	3.2.2 Unpolarized Photons
	3.2.3 Total Cross Sections
	3.2.4 Likelihood of Scattering


	4 Gravitational Polarization by Dark Matter
	4.1 Galactic Halo
	4.1.1 On the Dark Matter Particle Mass

	4.2 Monte Carlo Simulation
	4.2.1 Geometry

	4.3 Computational Results

	5 Applications
	5.1 Additional Considerations
	5.2 Scattering on Macroscopic TargetsMacro Examples
	5.2.1 Range of Applicability

	5.3 On the Subject of Entanglement

	6 Analysis
	6.1 Polarization Effects of Photon Scattering
	6.2 Additional Applications

	7 Conclusions
	7.1 Discussion
	7.1.1 Impact on Quantum Gravity
	7.1.2 Impact of Dark Matter Research
	7.1.3 Entanglement Breaking


	Appendix A Conventions
	Appendix B Parellel with Electromagentsim
	Appendix C Form Factors
	Appendix D Additional Monte-Carlo Tests and Results


