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Abstract

In this thesis, we introduce the concept of a minimal nanocomposite system
and use it to explore the wetting and dewetting behaviour that is observed
during the fabrication of nanocomposite materials, and the shear-induced
migration of a nanoparticle across the interface between two liquid polymer
phases. Having described the relevant equilibrium thermodynamics of poly-
mer blends, and the dynamics of phase separation when a polymer blend is
near its critical point, we present a theoretical framework for understanding
the motion of out-of-equilibrium, inhomogeneous liquids in the presence of
a solid surface. This framework is consistent with known results in colloidal
science, and with Onsager’s formalism for non-equilibrium thermodynamics,
and is derived by applying variational principles to a generic Gibbs free en-
ergy functional for a system in which there is a composition gradient, and an
interaction potential between the inhomogeneous liquid and the solid surface.

Within this framework, we construct a physical model of the minimal nanocom-
posite system. The model is grounded in continuum fluid dynamics, and uses
the fluid particle dynamics method to manage the boundary conditions in
a multi-phase system. One benefit of this approach is that a non-zero slip
length, of monomer length scale, naturally emerges when the system is de-
scribed in the correct physical terms. The result is a pair of coupled equations
for the velocity field and the order parameter (concentration) field, which we
solve numerically. Thus, our model can represent the effects of both hydro-
dynamic flows and diffusion in the minimal nanocomposite system.

We apply our model to systems with various degrees of entanglement, and
various degrees of segregation between the two liquid polymer phases. At
higher degrees of entanglement, we observe slower wetting and dewetting dy-
namics, and greater difficulty in inducing the particle to migrate from one
liquid phase to the other when the system is sheared. With weaker segrega-
tion between the liquid polymer phases, we observe a wider range of steady
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states when the system is sheared, and less predictability in the final steady
state. A simple geometrical model of dewetting under shear, combined with
a small dose of physical realism, is found to predict the dewetting simulation
results with fair accuracy.

Our model is grounded in the physics of continuum fluid dynamics and non-
equilibrium thermodynamics and, suitably adapted, has the potential to de-
scribe the behaviour of more complex systems, including those that contain
many nanoparticles.
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Chapter 1

Introduction and Background

1.1 A Minimal Nanocomposite System

It is sometimes said that we live in the information age; but it might be
said, with equal justice, that we live in the age of the synthetic polymer.
It is hard to think of any object we use in daily life that does not depend,
to some degree, on the ingenuity of chemists and material scientists, and on
their ability to develop materials with the properties - be they mechanical,
thermal, electrical, or optical - necessary for their intended application. A
cursory glance around a typical office or living space suffices to confirm this
important fact of modern life.

Yet the development of materials suitable for a given application is a process
fraught with difficulty, and subject to trial and error, with all the costs that
brings with it. For this reason, material scientists will often seek to fabricate
composite materials, from two or more materials with known properties. The
idea is that, if one material, A, is, for example, hard but brittle, while another,
B, is resilient but easily deformed, some composite of the two might combine
the best of both worlds, and have the perfect mechanical properties for the
application concerned. Finding the right pair of materials, combining them
in the correct proportions, and processing them appropriately, still involves
much trial and error, but the search is considerably narrowed.

The difficulty with this approach, at least as far as polymers are concerned,
is that the two components of a potential composite material are often re-
luctant to mix. Instead, the two polymers in the blend tend to separate into
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distinct phases, with large domains, relative to the desired microstructure.
The end result is a a composite material that is not fit for purpose because,
for example, it lacks the desired mechanical properties. Later in this chapter,
we describe the basis of this difficulty, in the equilibrium thermodynamics of
polymer blends.

The introduction of nanoparticles (of carbon or silica, for example) into the
polymer blend can, under the right circumstances, arrest the growth of these
phase domains, and thereby enhance the mechanical integrity of the com-
posite material. The use of nanoparticles to fine tune the properties of a
composite material is an area of active and growing research, a key aim of
which is to predict the macroscopic properties of a composite material from
knowledge of its microstructure [3]. Later in this chapter we describe some
of the experimental work on nanocomposite systems, and how such systems
might be modelled, computationally. However, the difficulties - practical
and theoretical - involved in the study of these complex multi-phase systems
are already apparent. For this reason, the approach taken in this thesis is
to radically simplify the problem and to focus on what we call a minimal
nanocomposite system (figure 1.1).

A minimal nanocomposite system consists of just three elements: two liquid
polymer phases, separated by a central interface, and a single naonparticle,
located at, or close to, this central interface. Once we have a model of this
system, it will be possible to vary parameters such as the degree of entangle-
ment in the polymer phases, and the Flory-Huggins interaction parameter,
which is introduced in the next section. We will also apply shear to this
minimal system, to explore whether the particle can be induced to migrate
across the boundary between the two liquid phases. Despite the simplicity
of this system, it exhibits a surprisingly rich variety of behaviour as these
model parameters are varied.

Therefore, this chapter introduces the background science we need to develop
a mathematical model of this minimal nanocomposite system. Firstly, we
describe the equilibrium thermodynamics, and introduce the Flory-Huggins
theory of the free energy density, of a polymer blend, which forms the foun-
dation of our model. Secondly, we introduce the Cahn-Hilliard equation,
which is essential to understanding the dynamics of phase separation of a
polymer blend in the unstable (or meta-stable) region of its phase diagram.
Although we do not explicitly focus on phase separation in this thesis, the
Cahn-Hilliard equation may be applied to any system in which there are in-
terfaces between two or more phases, including the minimal nanocomposite
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Figure 1.1: A minimal nanocomposite system, consisting of two liquid polymer phases,
separated by a central interface, and a single nanoparticle. The nanoparticle may be
located at the interface, or close to it, and various parameters of the model, such as
the degree of entanglement of the polymer phases, and the Flory-Huggins interaction
parameter may be varied.

system described above. Thirdly, we review some key concepts in the theory
of wetting and dewetting. Although our mathematical model automatically
reproduces the wetting and dewetting behaviour of the minimal nanocom-
posite system, it is useful to appreciate the underlying physical processes
involved, and the vocabulary that is used to describe them.

In the last two sections, we survey some of the milestones in the experimental
and theoretical study of nanocomposite systems. Most of these systems are
more complex than the minimal system that is the object of this thesis: for
example, they usually include many nanoparticles, instead of just one, and
some exhibit viscoelastic effects. Nevertheless, it is useful to review this work
on relatively complex systems, because it highlights the range of behaviour
in real systems that our model might be used to explore in future, while
situating our model in its broader practical and theoretical context.

We believe that the minimal nanocomposite system that is the subject of this
thesis is of significant theoretical interest in its own right, while also provid-
ing some insight into the practical difficulties involved in the fabrication of
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nanocomposite materials that are fit for their intended purposes.

1.2 Equilibrium Thermodynamics of Polymer

Blends

The thermodynamics of polymer blends is dominated by their low entropy
of mixing. This arises because the long, chain-like nature of the molecules
severely constrains the number of configurations they may adopt in the pres-
ence of other chains. As a result, polymers are usually reluctant to mix, and
tend to phase-separate when they are forced to do so. In this section we set
out the essential background theory to understand this behaviour, culminat-
ing in the phase diagram of a typical two polymer blend. This is one of the
building blocks we will need when we develop our mathematical model of a
minimal nanocomposite system in later chapters.

Flory and Huggins [4, 5] assume a lattice model, and use a mean field approxi-
mation to derive an expression for the free energy of mixing per lattice site for
polymer solutions. The former assumption is taken to mean that each indi-
vidual segment in a polymer chain, and each solvent molecule, fully occupies
one site in the lattice, so all segments and solvent molecules effectively have
the same volume. Depending on the polymers concerned, a segment may
be either an individual monomer, or a number of monomers with a com-
bined length equal to the Kuhn length [6]. The mean field approximation
amounts to the claim that the average concentration of either component,
in the neighbourhood of any given lattice site is equal to that component’s
global mean value (thus, it ignores the effect of local correlations on the free
energy of mixing). In addition to these two key assumptions, Flory-Huggins’
theory also assumes that polymer chains do not cross themselves, and that
all polymer chains of the same chemical species have the same length (an
idealisation, since any real polymer sample will have a distribution of chain
lengths).

Here, we present the derivation of the free energy of mixing of a polymer
blend, based on the Flory-Huggins theory. The derivation is best approached
by first considering a lattice model of of a simple binary fluid (figure 1.2a).

We define the free energy of mixing as:
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Figure 1.2: Lattice model of a simple solution, and of a polymer blend. The simple solution
in (a) consists of 50 molecules each of the solute and the solvent and, for simplicity, we
assume that each molecule occupies the same volume, equivalent to that of one lattice cell.
The polymer blend in (b) consists of five chains each of two different polymers, with ten
monomers in each chain. Again, for simplicity, we assume that each monomer occupies a
single lattice cell.

Fmix = FAB − (FA + FB) (1.1)

Where FAB is the free energy of the mixture, and Fi is the free energy of the
pure fluid sample, of chemical species i. Here, we take F to be the Helmholtz
free energy, F = U − TS, where U is the internal energy of the system, S is
its entropy, and T its temperature. Elsewhere in the thesis, we refer to the
Gibbs free energy, G = U − TS + PV (where P and V are the pressure and
the volume of the system), as is common in the literature on polymer blends.
This distinction is not critical because we assume incompressibility of the
polymer blend throughout, so the condition that the volume of the system
is constant, implied in the use of the Helmholtz free energy, is automatically
satisfied. This is an illustration of the general point that, in thermodynamics,
we are usually only interested in changes to thermodynamic potentials, not
in their absolute values.

Returning to equation 1.1, let us consider the entropy of mixing first:

Smix = SAB − (SA + SB) (1.2)
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Where each entropy term is defined analogously to the free energy terms
in equation 1.1. We may now use the Boltzmann formula to determine the
entropy of mixing per site:

S = −kB
∑
i

pi ln(pi) (1.3)

Where the sum is to be taken over all possible configurations of the system,
and pi is the probability of configuration i. Let us suppose that our simple
binary fluid consists of a volume fraction ψA of chemical species A, and
volume fraction ψB of chemical species B, and that the volume of the system
is constant and independent of its composition, so that ψA + ψB = 1. The
mean field approximation implies that the probability of finding a molecule of
species i at any given lattice site is ψi, and since there are only two chemical
species in the mixture, we obtain the entropy of mixing per lattice site:

Smix = −kB(ψA ln ψA + ψB ln ψB) (1.4)

Note that SA = SB = 0, since the entropy of a pure fluid is zero, so the
second term on the right hand side of equation 1.2 vanishes.

Turning now to the internal energy term in equation 1.1, we have:

Umix = UAB − (UA + UB) (1.5)

Let the interaction energy between a molecule of species i and a molecule of
species j be uij. Suppose, also, that each lattice site has z nearest neighbours,
where z is known as the coordination number, and that only interactions
between nearest neighbours need to be taken into account, when calculating
the average interaction energy per lattice site. Then, the average pairwise
energy of interaction of a molecule of A, with a neighbouring molecule is:

UA = uAAψA + uABψB (1.6)

And similarly, for the average pairwise energy of interaction of a molecule of
B:
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UA = uBBψB + uABψA (1.7)

So, the average interaction energy per lattice site in the mixture is given by:

UAB =
z

2
(UAψA + UBψB) (1.8)

Where the factor of one half is introduced to prevent double counting. Using
equations 1.6 and 1.7, and after some simplification, this becomes:

UAB =
z

2
(uAAψA

2 + 2uABψAψB + uBBψB
2) (1.9)

Finally, unlike the entropy, the internal energy of a pure fluid is non-zero, so
we must remember the second term on the right hand side of equation 1.5.
Similar reasoning to that used above gives the average interaction per lattice
site before mixing takes place:

UA + UB =
z

2
(uAAψA + uBBψB) (1.10)

Substituting equations 1.9 and 1.10 into equation 1.5 gives the desired ex-
pression for the energy of mixing per lattice site:

Umix =
z

2
ψAψB(2uAB − uAA − uBB) (1.11)

However, it is usual to introduce the Flory-Huggins interaction parameter,
χ, which is dimensionless, and defined as:

χ =
z

2

2uAB − uAA − uBB
kBT

(1.12)

The parameter χ represents the difference between the interaction energy of
two unlike molecules, and the mean of the interaction energies of two like
molecules (of either chemical species A, or chemical species B). When χ < 0
molecules of one chemical species are preferentially attracted to molecules of
the other species, and there is a tendency to form stable mixtures. When
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χ > 0, a stable mixture may or may not form, depending on the value of χ,
and how the free energy of mixing, per lattice site, varies with the volume
fractions, ψA and ψB. We return to this question of the stability of a mixture
(or polymer blend) shortly.

Meanwhile, having defined the Flory-Huggins interaction parameter, we can
write down the final version of our expression for the energy of mixing, per
lattice site, in a simple binary fluid:

Umix = χψAψBkBT (1.13)

The free energy of mixing is then obtained by substituting equations 1.4 and
1.13 into equation 1.1. As is common, we also let ψ = ψA so that, given
incompressibility, ψB = 1 − ψ. Thus, the free energy of mixing, per lattice
site, in a binary fluid is:

Fmix = kBT [ψ lnψ + (1− ψ) ln (1− ψ) + χψ(1− ψ)] (1.14)

Extension to the case of the polymer blend, represented in figure 1.2b is quite
straightforward. The logic of the mean field approximation implies that the
interaction energy term in equation 1.14 is unchanged. However, the entropy
terms need to be adjusted, to take into account the fact that a segment of
a given chemical species is more likely to have segments of the same species
as its nearest neighbours, than is the case in a simple binary fluid. This
is because polymer molecules exist as long chains of identical segments, so
it is more difficult to place segments of different chemical species next to
each other on the lattice (this is obvious, if we imagine placing long polymer
chains on a one-dimensional lattice, and contrast it with placing individual
molecules of two different chemical species). The effect of this constraint is
that the entropic terms in equation 1.14 are significantly reduced, and the
Flory-Huggins free energy of mixing, per lattice site, of a polymer blend is:

FFH = kBT

[
ψ

NA

ln ψ +
(1− ψ)

NB

ln (1− ψ) + χψ(1− ψ)

]
(1.15)

Where Ni is the degree of polymerisation of species i. Given that, for typical
polymer molecules, Ni >> 1, it is evident that the entropy of mixing of a
polymer blend is much less than that of a simple binary fluid. However, note
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also that the entropic terms in equation 1.15 always favour mixing, while the
energetic term may or may not favour mixing, depending on the balance of
the interaction energies between like and unlike segments at the molecular
level, as represented by the parameter χ. Finally, it is worth pointing out
that the free energy of mixing for a polymer solution may be obtained from
equation 1.15 by setting either NA = 1 or NB = 1 while, if NA = NB = 1,
we recover equation 1.14, the expression for the free energy of mixing of a
simple binary fluid, just as we would expect.

The easiest way to appreciate the nature of the Flory-Huggins free energy is
to plot it against the volume fraction, ψ, for various values of the parameter,
χ (figure 1.3).

Figure 1.3: The Flory-Huggins free energy of mixing, per lattice site, in a simple binary
fluid, for various values of the interaction parameter, χ. Note that when χ ≤ 2, the free
energy curve is concave in the entire interval 0 ≤ ψ ≤ 1. When χ > 2, the free energy
curve is convex in an interval between the upper and lower bounds of the volume fraction,
ψ, with a local maximum at ψ = 0.5. The critical value of the Flory-Huggins interaction
parameter, χC = 2 marks the transition between these two regimes.

For simplicity, we have plotted the Flory-Huggins free energy curves for a
simple binary fluid. In the case of a symmetric polymer blend, defined by
NA = NB = N , the free energy has an identical shape but the magnitude
of the free energy scales according to the value of N . The effect of relaxing
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this last assumption, so that NA 6= NB would be to make the free energy
curves asymmetrical about the line ψ = 0.5 which, as we will note later,
has implications for determining the volume fraction(s) at thermodynamic
equilibrium. The key point highlighted by figure 1.3 is that there exists
a critical value of the Flory-Huggins interaction parameter, χ = χC = 2.
When χ < χC , the free energy is concave for all values of ψ. In contrast,
when χ > χC , there is a range of values of ψ, at which the free energy curve
is convex.

We now show that the dependence of the shape of the free energy curve on
the value of the Flory-Huggins interaction parameter has important implica-
tions for the thermodynamic equilibrium of the mixture, or polymer blend.
Suppose we have a fixed volume of a homogeneous mixture of two chemical
species, A and B, and that the initial volume fraction of A is ψ0, so that
the initial volume fraction of B is 1− ψ0. Further, let the free energy of the
original mixture be F0. If this mixture separates into two distinct phases, of
volume fractions ψ1 and ψ2, we must have:

ψ0 = α1ψ1 + α2ψ2 (1.16)

Where αi = Vi
V

, with Vi being the volume of phase i, and V the total volume,
such that V1 + V2 = V , and α1 + α2 = 1. The free energy of the phase-
separated system is then given by:

F12 = α1F (ψ1) + α2F (ψ2) (1.17)

Where F (ψi) is the free energy of a mixture, in which the volume fraction of
species i is ψi.

Combining equation 1.17 with equation 1.16, and remembering that α1 +
α2 = 1, we obtain the following expression for the free energy of the phase
separated system:

F12 =
ψ0 − ψ2

ψ1 − ψ2

F (ψ1) +
ψ1 − ψ0

ψ1 − ψ2

F (ψ2) (1.18)

This situation is represented graphically in figure 1.4, for two cases, one in
which the free energy curve is concave in the interval 0 ≤ ψ ≤ 1, and one in
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which there is a convex region between the upper and lower bounds of this
interval.

Figure 1.4: Stability and instability in mixtures and polymer blends. For intervals in
which the free energy curve is concave (figure 1.4a), the system is locally stable: any
combination of two distinct phases has greater free energy than the single phase. Thus,
F12 > F0 , where F12 is the free energy of a system that contains distinct phases, with
volume fractions, ψ1 and ψ2, and F0 is the free energy of the original blend, with a volume
fraction of ψ0. For intervals in which the free energy curve is convex (figure 1.4b), the
system is unstable (F12 < F0), and separates into two distinct phases. This region of phase
separation is bounded by the limiting volume fractions, ψa and ψb, where local minima in
the free energy occur.

In both cases, the filled blue point represents the original mixed state of
the system, and the unfilled blue point represents the potential state of the
system, if phase separation occurs. In figure 1.4a, the energy of the two-
phase system is greater than that of the original mixture (F12 > F0), and a
little thought shows that this must be the case for a mixture with any initial
volume fraction, ψ0, no matter what values of ψ1 and ψ2 we choose. Thus,
for this value of χ, and for any value of χ < 2, a mixture is stable, whatever
the volume fractions of species A and B.

Contrast this case with that shown in figure 1.4b, in which χ > 2. Here,
there is a region of the curve where the free energy of the two-phase system
is less than that of the original mixture (F12 > F0). Again, a little thought
shows that this region must be bounded by the volume fractions marked
as ψa and ψb. These are known as coexisting compositions, and the locus
of all such points, as we vary the Flory-Huggins parameter, χ (and thus
the temperature, T ), defines what is known as the coexistence curve, or the
binodal.
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Note that, for simplicity, figure 1.4, assumes that NA = NB = N (taking
the curves to represent the free energy of mixing of a polymer blend). Thus
both curves are symmetrical about the line ψ = 0.5, and at the coexisting
compositions, ψa and ψb in figure 1.4b, the partial derivative of the free energy
with respect to ψ is zero. So, by differentiating equation 1.15 with respect to
ψ, equating the derivative to zero, and rearranging the result, we obtain the
following equation for the coexistence curve of a symmetrical polymer blend:

χco =
1

N

1

2ψ − 1
ln

(
ψ

1− ψ

)
(1.19)

Dropping the assumption that NA = NB = N in the case of a polymer blend
results in asymmetrical free energy curves. As in the symmetric case, the
coexisting compositions are determined by the points at which it is possible
to draw a common tangent to the free energy curve, but now it is no longer
the case that ∂F

∂ψ
= 0. However, recognising that this partial derivative is

equivalent to the chemical potential, µ, we can say that, in the general case,
at the coexisting compositions, ψa and ψb, we have µa = µb, where the
symbols either side have the equality have the natural interpretation.

Before we present the phase diagram of our binary system, we must note
one last nuance (figure 1.5). The argument is similar to the one just pre-
sented about the global stability of a mixture, but here, we focus on small
fluctuations about the original volume fraction, ψ0, which lies in the interval
ψa < ψ0 < ψb. If the curvature of the free energy curve is negative at ψ0, the
free energy of the two phase system with volume fractions ψ0−δψ and ψ0+δψ
is less than the free energy of the original state of the system (F12 < F0),
and small local fluctuations in the volume fraction will be amplified, leading
to phase separation. This system is unstable, both locally and globally. In
contrast, if the curvature of the free energy curve is positive at ψ0, the free
energy of the two phase system with volume fractions ψ0 − δψ and ψ0 + δψ
is greater than the free energy of the original state of the system (F12 > F0),
and small local fluctuations in the volume fraction will be damped. A sys-
tem in such a state is said to be metastable: although it is globally unstable,
and will separate into two distinct phases, if it is sufficiently perturbed, it is
locally stable to small fluctuations in the volume fraction, ψ.

Clearly the boundary between the unstable and metastable regions of the free
energy curve is marked by the point at which its curvature, ∂2χ

∂ψ2 = 0. The
locus of all such points, as we vary the Flory-Huggins parameter, χ, defines
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Figure 1.5: Unstable and metastable mixtures and polymer blends. In the unstable region
of the free energy curve, small fluctuations in the local volume fraction lower the free
energy of the system. Thus F12 < F0, where F12 is the free energy of a two-phase system
with volume fraction ψ+δψ and ψ−δψ, and F0 is the free energy of the original blend, and
phase separation occurs spontaneously. In the metastable region of the curve, F12 > F0,
and the single phase system remains stable, as long as the fluctuations remain small. The
transition between the unstable and the metastable regions occurs at the inflection point

of the free energy curve, where ∂2F
∂ψ2 = 0.

what is known as the spinodal line, which marks the boundary between the
unstable and metastable regions of the phase diagram. We may obtain the
equation of the spinodal line, for a symmetric polymer blend, by setting
the second derivative of equation 1.15 with respect to ψ equal to zero, and
rearranging the result:

χsp =
1

2N

1

ψ(1− ψ)
(1.20)

Knowing the equations of both the coexistence curve, and the spinodal line,
we are now in a position to construct the phase diagram for the symmetrical
binary system that has been the main focus of this section (figure 1.6).

The phase diagram is characterised by a region of instability, where phase
separation spontaneously occurs due to thermally induced concentration fluc-
tuations. This region is bounded by the spinodal line, and the process of
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Figure 1.6: Phase diagram in χ − ψ space for a polymer blend in which NA = NB = N .
In the region below the coexistence curve, the free energy of mixing is less than the free
energy of separation into two phases, so the blend is stable. In the region above the
spinodal line, the blend is unstable and will spontaneously separate into distinct phases.
Thus, a system at point A, with volume fraction ψ0 will separate into two phases of volume
fractions ψ1 and ψ2. Between the coexistence curve and the spinodal line, the blend is
metastable: phase separation may occur if fluctuations in the local volume fraction are
large (or if impurities in the sample act as sites for nucleation and growth). Note that it
is possible to construct a similar phase diagram in T −ψ space, but the coexistence curve
and the spinodal line will then be inverted since, in the simplest case, the temperature,
T ∝ 1

χ .

phase separation associated with it is known as spinodal decomposition. As
we shall see in the next section, the resulting phase-separated microstructure
takes a complex bicontinuous form, with a single characteristic length scale.
The phase diagram also includes a coexistence curve (or binodal line), which
marks the boundary between globally stable and globally unstable blends.
The region between the coexistence curve and the spinodal line defines the
meta-stable regime where phase separation occurs due to nucleation and
growth or, rarely, due to large spontaneous fluctuations in a homogeneous
blend. We have plotted the phase diagram in χ−ψ space, but we could just
as easily have plotted it in T − ψ space. Since χ ∝ 1

T
, such a phase diagram
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would appear inverted, with respect to figure 1.6. Thus, the critical point
shown in figure 1.6 represents the highest possible temperature, TC (or the
lowest possible value of the interaction parameter, χC) at which two distinct
phases can coexist.

Before moving on to consider the dynamics of phase separation, a brief re-
mark about the behaviour of real polymer blends is in order. The experi-
mental evidence [7] is that the interaction parameter, χ has a more complex
dependence on T , than equation 1.12 would lead us to believe. As a result,
the relationship between χ and T is commonly taken to be of the form:

χ(T ) = A+
B

T
(1.21)

Where A and B are constants, with appropriate dimensions. A is known
as the entropic term and reflects the effect of mixing on the conformational
entropy of a polymer chain, as opposed to the translational entropy, as repre-
sented in figure 1.2. Such effects might arise, for example, from the fact that
certain pairs of polymers pack more easily together than other pairs, contrary
to the assumptions of Flory-Huggins theory, which treats all monomers (or
segments of a polymer chain) as essentially alike. In reality, χ(T ) may be
more complex still, involving higher order terms due to additional packing
effects, chain stiffness and other factors [8, 9, 10]. These factors will influence
the miscibility of real polymer blends, and therefore the nature of their phase
diagram but, for the rest of this thesis, we take the simple phase diagram of
figure 1.6 as our model.

1.3 Dynamics of Phase Separation

So far, we have focused on the equilibrium thermodynamics of simple binary
fluids and polymer blends. Flory-Huggins theory describes how the free en-
ergy of such a system varies with its composition, represented by the volume
fraction, ψ, and with changes to the interaction parameter, χ. From this, it
is possible to construct a phase diagram of a typical binary system, with the
coexistence curve, and the spinodal line, marking the boundaries of global
stability and metastability, respectively. It is important to realise that this
description relates to a homogeneous, bulk, system, characterised by a single
variable, ψ, and a single parameter, χ.
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Towards the end of the last section, we saw how a homogeneous system could
separate into two distinct phases, when the interaction parameter takes cer-
tain values (χ > χC = 2), and the volume fraction, ψ, lies within the interval
determined by the coexistence curve. Practically, speaking, in many polymer
blends, phase separation is initiated by rapidly decreasing the temperature
(”quenching”), equivalent to a sudden increase in the Flory-Huggins interac-
tion parameter, so the point representing the system moves from the stable to
the unstable region of the phase diagram. As soon as the system is quenched,
phase separation begins to occur, regions of inhomogeneity appear, and the
equilibrium thermodynamics appropriate to the bulk system cannot be ap-
plied without modification. Furthermore, the composition at any given point
in the system changes, as spinodal decomposition proceeds, so we need an
account of the dynamics of phase separation.

This section presents one such account, based on the work of Cahn and
Hilliard, and developed by many other researchers since. The presentation
is brief because the development of our own model, introduced in the next
chapter, recapitulates most of the relevant content, while tailoring it to the
minimal nanocomposite system that is the focus of this thesis. In particular,
our aim in this thesis is not to model the process of spinodal decomposition.
However, any system consisting of distinct phases, with diffuse interfaces
between them - such as our minimal nanocomposite system - may be modelled
using some variant of Cahn and Hilliard’s approach. Therefore, it is useful
to see the Cahn-Hilliard theory of phase separation in its basic form, before
presenting our model in detail.

Before introducing Cahn-Hilliard’s theory, a clarification is needed. In the
previous section we sometimes refer, somewhat loosely, to the free energy of
the system. However, as is clear in the derivation of equation 1.15, this is,
strictly speaking, the free energy of mixing per lattice site and, in a continuous
system, a similar expression would describe the free energy density at a point
in the system. To mark this distinction we will use the notation f(ψ, r) to
denote the free energy density at a point with position vector r in the system,
at which the volume fraction is ψ. And, from now on, a capital letter, F ,
will be used to represent the total free energy of the system.

It might be thought that the total free energy, F , is the integral of the free
energy density, f(ψ, r), over the region occupied by the system, but this
ignores one of the fundamental effects of phase separation: as the blend
separates into distinct phases, boundaries form between them, and these
boundaries incur an energy cost. This energy cost must be taken into account,
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when calculating the total free energy of the system. The simplest way to do
this is to introduce a term that is proportional to the square of the gradient of
the free energy density, at any point in the system. This term will be greatest
when the interface between the two phases is sharpest, and will decrease as
the interface becomes more diffuse, vanishing entirely in single phase regions
of the system, where the gradient of the free energy density is zero.

With this clarification, we can now write down the expression for the total
free energy of an inhomogeneous system used by Cahn and Hilliard [11,
12, 13, 14, 15, 16, 17], to develop their theory of the dynamics of spinodal
decomposition:

FGL{ψ(r)}
kBT

=

∫ {
sψ2 + tψ4 +

κ

2
|∇ψ|2

}
d3r (1.22)

Where the total free energy is now expressed as a dimensionless quantity, as
is common, and is now a functional, which takes the composition field as its
input, and outputs a scalar quantity. In the integrand, on the right hand
side, s and t are parameters, and κ measures the strength of the interfacial
tension between the two phases. As discussed above, the square gradient
term in the integrand reflects the energy cost incurred when interfaces form
during spinodal decomposition. Taken together, the first two terms of the
integrand represent what is known as the Ginzburg-Landau bulk free energy.
The reason for this is that, Cahn and Hilliard’s work concerns spinodal de-
composition in metallic alloys, where diffusion within a fixed lattice is the
sole mechanism by which phase separation occurs. However, their approach
is easy to generalise to other two component systems, including systems of
magnetic spins [18] and, as in the present case, polymer blends. Thus, De
Gennes [19] adapts Cahn-Hilliard’s theory to obtain the following (Flory-
Huggins-de Gennes) form for the total free energy of a polymer blend:

FFHdG{ψ(r)}
kBT

=

∫ {
fFH{ψ(r)}

kBT
+ κ{ψ(r)}|∇ψ|2

}
d3r (1.23)

Where fFH{ψ(r)} is the Flory-Huggins free energy density, expressed as a
dimensionless quantity, and there is now a potential dependence of κ on ψ(r),
the volume fraction at a given point in the system. This dependence might
arise due to restrictions imposed on chain conformations at phase boundaries
and the consequent reduction in entropy, and hence the interfacial energy.
Although we assume no such composition dependence in our model, we note
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that, using a combination of mean field arguments and the random phase
approximation, De Gennes [19] derives the following expression for κ{ψ(r)}:

κ{ψ(r)} =
1

36

[
lA

2

ψ(r)
+

lB
2

1− ψ(r)

]
+ χλ2 (1.24)

Where li is the Kuhn segment length of polymer species i and λ is the effective
interaction distance between monomers. In practice, the smaller enthalpic
term, χλ2 is commonly omitted.

Returning to the dynamics of phase separation, it is natural to begin by
writing down a diffusion equation of the form:

∂ψ

∂t
= D∇2ψ (1.25)

Where D is a diffusion coefficient. However, this assumes that diffusion
transports material from regions of the system with a high concentration
(of polymer species A, say) to regions of low concentration. A moment’s
reflection is enough to conclude that this does not happen during spinodal
decomposition: as the system phase separates, we observe the formation of
regions with increasing concentration of polymer A (or polymer B). The
reason for this apparent reversal is that the quantity of fundamental ther-
modynamic significance is the chemical potential, not the concentration of
any particular chemical species. In a system that is out of equilibrium, the
thermodynamic forces act so as to equalise the chemical potential.

The chemical potential may be obtained by taking the functional derivative
of the total free energy of the system (equation 1.23, for polymer blends) with
respect to ψ. Locally, it is the gradient of the chemical potential, that deter-
mines the flow from one region of the system to another. This is equivalent
to the second derivative of the free energy, with respect to ψ which, as figure
1.5 shows may be either positive or negative, depending on whether we are in
the metastable or unstable region of the curve. The former case, of positive
curvature, corresponds with our everyday of experience that material flows
from regions of high concentration to regions of low concentration. However,
in the spinodal region of the curve, the curvature is negative, so material can
flow from regions of low concentration to regions of high concentration, as
happens during phase separation.
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Putting this together with equation 1.25 we obtain the most general form of
the Cahn-Hilliard equation for the dynamics of phase separation in a two-
component system:

∂ψ(r, t)

∂t
= M∇2 δF{ψ(r, t)}

δψ
(1.26)

Here, the δ notation used in the derivative signifies that it is the functional
derivative that is taken, and F is now a generic free energy. In the most
general case, M is a mobility tensor but, since we neglect viscoelastic effects,
and assume isotropy throughout this thesis, we take it to be a scalar constant.
Equation 1.26 may be modified by the addition of a thermal noise term, to
obtain what is known as the Cahn-Hilliard-Cook equation [20]:

∂ψ(r, t)

∂t
= M∇2 δF{ψ(r, t)}

δψ
+ θ(r, t) (1.27)

Where θ(r, t) is a thermal noise term with a time-averaged value of zero, and
other useful statistical properties. Broadly speaking, the effect of this thermal
noise term is to increase the sensitivity of the system to the small fluctuations
that lead to phase separation, since even random thermal fluctuations will
be amplified if the system is within the region of the phase diagram bounded
by the spinodal line. Intuitively, the spinodal line itself becomes a more
diffuse boundary as a result of the thermal noise in the system. However,
the magnitude of this effect is subject to some dispute [21, 22, 23] and, in
this thesis, we do not include a thermal noise term in our model. Therefore,
we will take equation 1.26 as our reference point, when we build a model of
the minimal nanocomposite system in the following chapters.

Before closing this section, it will be useful to briefly describe the solutions
to equation 1.26 that pertain to spinodal decomposition. The key insight is
that, although all fluctuations in the composition of the blend are amplified
in spinodal decomposition, not all fluctuations are amplified equally. Rea-
soning qualitatively, the driving force of spinodal decomposition is diffusion
along gradients of chemical potential, which implies that long wavelength
fluctuations will take longer to grow. Conversely, short wavelength fluctua-
tions, unchecked, increase the area of the interface between the two phases
and incur a higher energy cost than longer wavelength fluctuations. The re-
sult of the competition between these two factors is that there is a favoured
length scale that emerges in the early stages of spinodal decomposition.
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Quantitatively, this favoured length scale may be determined by a suitable
linearisation, valid for short time scales, of the Cahn-Hilliard equation, and
solving the resulting equation. It is customary to express the result in terms
of a characteristic wave number qc = 2π

λc
, where λc is the fluctuation wave-

length favoured by the balance of competing forces during spinodal decompo-

sition. Further, it is possible to show that qc ∝
√

1
κ
, where κ is the coefficient

of the square gradient term in the free energy functional (equations 1.22 and
1.23). Thus, the characteristic length scale will vary with the polymers in the
blend, and the strength of the interfacial tension between them, but values
of ∼ 1µm are not uncommon.

When the volume fraction, ψ, is close to 0.5, spinodal decomposition gives
rise to co-continuous regions of each phase, randomly orientated, but with
a uniform width, dictated by the favoured length scale [12, 17, 19]. In con-
trast, a blend with unequal volumes of the two polymers will phase separate
by spinodal decomposition into a droplet-matrix morphology. Figure 1.7
shows the results of three computer simulations of spinodal decomposition,
illustrating the various possibilities. Images of spinodal decomposition in real
polymer blends may be seen in Voit et. al. [24], and many other papers in
this field.

Figure 1.7: Computer simulation of spinodal decomposition in three polymer blends with
volume fractions ψ = 0.3, ψ = 0.5, and ψ = 0.7. Spinodal decomposition of the 50 : 50
blend results in an intricate morphoogy in which the two phases are co-continuous, and
the width of the phase domains is the characteristic length scale, λc. Significant deviations
from a 50 : 50 blend result in a droplet-matrix morphology. In all simulations, spinodal
decomposition was initiated by introducing random fluctuations of δψ = ±0.05 into a
uniform blend.

Although we do not consider it in this thesis, viscoelasticity further com-
plicates the dynamics of phase separation. For example, Tanaka [25] de-
scribes a novel viscoelastic mechanism for phase separation in some polymer
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blends, when there is a high degree of dynamic asymmetry between compo-
nents. This may be due either to a large difference in chain size, or to a
large difference in the glass transition temperature of the components. In
viscoelastic phase separation, the minority phase, in a volume-asymmetric
blend, can form a network structure. This contrasts with the droplet-matrix
morphology observed in dynamically symmetric blends far from the critical
composition (figure 1.7a and 1.7c). The network structure develops as a re-
sult of self-generated stresses in the more elastic phase, and coarsens with
time, eventually breaking up into separate domains.

The later stages of spinodal decomposition are characterised by the slow
growth of the phase separated domains, further reducing the interfacial area,
and thus the total free energy of the system. This process is known as coars-
ening, and is driven by non-linear mechanisms. It leads to an increase in
the characteristic length scale of the system that typically follows a scaling
law of the form λs(t) ∼ ta [26, 27], the value of a being dependent on the
precise mechanism responsible for coarsening at that stage in the evolution
of the system. For intermediate time scales, the mechanism of evaporation
and condensation at phase interfaces is expected to result in Lifshitz-Slyozov
scaling, in which a is of the order 1/3 [28, 21, 29, 22]. At longer time scales,
hydrodynamic coarsening mechanisms are expected to dominate the dynam-
ics, and coarsening is both theoretically predicted [30, 31], and observed in
numerical simulations [32, 33, 34, 35, 36] and experiments [26, 37, 38, 39] to
scale linearly with time (a = 1). However, it has been suggested that the
high viscosity of polymers tends to damp hydrodynamic effects, resulting in
slower scaling, even in the later stages of phase separation [29].

These considerations highlight an important limitation of Cahn-Hilliard-
Cook theory: the only phase separation mechanism it attempts to model
is diffusion. This is understandable, given the theory’s origin in the study
of binary alloys, but it is unlikely to be the whole story in binary fluid sys-
tems, including polymer blends, where interfacial tension between phases will
become salient at longer time scales, as the efficiency of the diffusive mecha-
nism diminishes. This interfacial tension gives rise to hydrodynamic effects,
as the interface between the two phases changes shape over time, generating
convection currents as it does so.

Therefore, any complete description of the dynamics of a polymer blend ought
to take into account the bulk flow of fluid within the system, as well as the
diffusive effects, that dominate the early stages of spinodal decomposition.
For this reason, our model of a minimal nanocomposite system incorporates
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both diffusive and hydrodynamic mechanisms.

1.4 Wetting and Dewetting

The behaviour of liquids in contact with solid surfaces is a field rich in the-
oretical interest and practical applications. These applications include the
formulation of paints, the design of car windscreens, and the manufacture of
contact lens solutions [40, 41]. Theoretical, computational, and experimental
studies have explored the static equilibrium properties of droplets on solid
substrates, and the dynamics of both wetting and dewetting. Such studies
have examined the effects of physical defects or chemical impurities in the
substrate on wetting behaviour [42, 43], and the wetting properties of thin
rubber films where dissipation due to viscoelastic effects may significantly
modify the dynamics [44].

In this thesis, we are interested in wetting and dewetting because we expect to
see both in our simulations of a minimal nanocomposite system. Therefore,
this section gives a brief overview of the theory of both wetting and dewetting
and introduces the concepts we will need to describe some of the effects we
aim to observe in our simulations.

The starting point for any discussion of wetting is the equilibrium state
of a liquid droplet on an ideal solid substrate, as depicted in figure 1.8. At
equilibrium, the balance of forces in the x-direction leads to Young’s equation:

γS = γSL + γL cos θe (1.28)

Where γS, γL, and γSL are the surface tensions of the solid, liquid and the
solid-liquid interface respectively, and θe is the equilibrium contact angle. It
is common to categorise solid-liquid interfaces according to their spreading
parameter, S, defined as:

S = γS − (γSL + γL) (1.29)

Physically, the spreading parameter represents the surface energy difference,
per unit area, between a dry substrate and the same substrate covered with
a thin film of liquid. If S > 0, the liquid spreads without limit (in principle)
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Figure 1.8: The balance of forces at the triple line of a liquid droplet on an ideal, solid
substrate, showing the equilibrium contact angle θe.

forming a thin film of microscopic thickness, and total wetting is said to occur.
In reality, as the thickness of the film approaches the molecular length scale,
the balance of intermolecular forces between the three phases often inhibits
further thinning of the film, due to the so-called disjoining pressure [41, 45].
If, on the other hand, S < 0 partial wetting occurs, and the liquid takes the
form of a droplet on the solid, with an equilibrium contact angle determined
by:

S = γL(cos θe − 1) (1.30)

Figure 1.9 illustrates the various regimes, from total wetting, through partial
wetting, to no wetting, which may occur, for example, when a droplet of
water is placed on a highly hydrophobic surface. On scales smaller than
what is known as the capillary length, the effect of gravity is negligible. This
length scale is typically of the order of a few millimetres [41].

Equation 1.28 may also be derived from the physical picture represented by
figure 1.8 using a virtual work principle. In this approach, we imagine the
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Figure 1.9: Wetting regimes, from total wetting, to no wetting, characterised by the
spreading parameter, S, and the equilibrium contact angle θe.

work involved in moving the contact line a small distance (δx, say) along
the solid substrate, and equate this to the resulting variation of the total
interfacial energy. The limitation of both of these approaches is that they
are based on a coarse-grained description of the surface tension (or surface
energy), so they ignore the effect of non-localised forces (e.g. the van der
Waals force) in the vicinity of the interface. Although the range of these
forces is small (up to tens of nanometres), they give rise to novel physical
effects such as a thin (nanometre scale) precursor film that extends far beyond
the macroscopic droplet’s boundary [43, 46, 47], and are essential to a full
description of wetting dynamics, and other effects, such as diffusio-osmosis
[1]. We return to this point when we begin to develop our physical model,
in the next chapter.

When a liquid droplet is placed on a solid substrate, it is usually far from ther-
modynamic and mechanical equilibrium, and will relax towards equilibrium
by wetting the surface, either totally or partially. Instead of an equilibrium
contact angle, we observe a dynamic contact angle, θd > θe, and the radius of
the droplet increases, potentially without limit (but see the above comment
about the disjoining pressure) when total wetting occurs, leaving a molecular
scale film on the substrate.

The dynamics of wetting is governed by the balance between capillary and
viscous forces. For small contact angles, and low Reynolds number, the lu-
brication approximation applies, implying Poiseuille flow within the droplet,
and the spreading velocity V is given by [40]:

V =
θdγL(cos θe − cos θd)

3η ln r
(1.31)

where η is the viscosity of the liquid, and r is the ratio of the droplet radius,
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R, to a characteristic microscopic length scale (so, typically, | ln r| ∼ 10).
The dynamics of spreading resulting from interfacial tension effects has been
the subject of intense research for many years [48, 46]. For now, we note
that, again, the above description does not take into account non-localised
forces in the vicinity of the substrate, which modify wetting dynamics, just
as they modify the equilibrium properties of the droplet. We return to this
point in the next chapter.

In contrast dewetting refers to the retraction of a droplet, far from equilib-
rium, to its equilibrium state, exposing a dry region of the solid substrate
as it retreats. Dewetting is also observed when a thin liquid film on a solid
substrate ruptures (creating, in effect, a droplet of semi-infinite extent), ex-
posing a dry region, which then expands as the fluid retreats. In both cases,
a fluid ridge forms at the solid-liquid boundary, due to conservation of mat-
ter and, in the early stages of dewetting, grows in volume (figure 1.10). At
longer time scales, following the rupture of a thin film, the fluid ridge itself
may break into droplets, due to the Rayleigh-Plateau instability [41], which
then continue to dewet by retracting to form smaller droplets. Note that
when the liquid interface is between two different liquids, liquid A and liquid
B, wetting for one liquid is dewetting for the other. There is no fundamental
difference between wetting and dewetting in this respect. It is essentially a
matter of initial conditions seen from the point of view of liquid A or liquid
B.

Figure 1.10: Dewetting following the rupture of a thin fluid film of thickness e on a solid
substrate. The fluid retracts with a velocity of magnitude V , leaving behind a circular
region in its interior, of radius R(t). Conservation of mass implies that a fluid ridge forms
at the retracting boundary of the film, with a dynamic contact angle of θd, relative to the
substrate.
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Despite the similarity of the terms, dewetting does not resemble a time-
reversed version of wetting: while some of the physical mechanisms involved
are the same, the dynamics they give rise to are fundamentally different
[49]. For example, an ultra-thin polymer film, subject to viscoelastic effects,
can rupture and dewet at speeds high enough to generate a shockwave [41]
whereas, as noted previously, the spreading of a droplet is a relatively slow
process.

A better point of comparison for dewetting is the spinodal decomposition of a
binary system quenched below its critical point, as described in the previous
section. Just as small fluctuations in a polymer blend may be amplified and
grow rapidly, if the system is in the unstable region of its phase diagram,
local fluctuations in the height of a thin film may be amplified, and cause
the film to rupture. This instability may be induced by local chemical im-
purities, physical irregularities in the substrate or, as is the case in spinodal
decomposition, by thermal fluctuations, if the film is below a certain critical
thickness [50, 51]. In the first two cases, the film is in a metastable state, and
dewetting occurs by nucleation and growth, in contrast to spinodal dewet-
ting, which is driven by thermally induced local fluctuations in the height
of the film. The analogy with binary systems in metastable and unstable
regions of the phase diagram is apparent.

Like spinodal decomposition, spinodal dewetting has a characteristic length
scale, related to the critical film thickness, and this often results in patterns
of small droplets, or other structures, with long range order. These patterns
may be fine-tuned by varying the thickness of the initial film. This ability
to fine tune the droplet pattern, following spinodal dewetting, opens up the
possibility of a range of applications in, for example, the surface treatment
of materials, metallic film manufacturing, and the development of organic
semiconductors [52].

In the simulation results, presented in later chapters, we observe both wetting
and dewetting in a minimal nanocomposite system, and the existence of a
critical film thickness, below which spinodal dewetting occurs.
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1.5 Nanoparticles in Polymer Blends: Exper-

imental Perspectives

So far, we have focused on systems consisting of just two components, be
they simple fluids of low molecular weight, or polymers, with much greater
molecular weight. We have described both the equilibrium thermodynamics
of such systems, and the dynamics of phase separation, when the system is
quenched below its critical point. In this section, we consider the effect of
adding a third component: small, solid particles. Throughout this thesis,
we refer to these particles as nanoparticles (or, for brevity, simply as parti-
cles) although, in reality, they can range in size from a few nanometres to
a few microns in diameter. In terms of the previous section, these are the
surfaces that wet, or dewet, as an out of equilibrium system relaxes to a new
equilibrium or steady state.

The aim of this section is to identify some of the main themes and questions
that emerge in systems with two liquid, and one solid phase, thereby situating
the results presented in this thesis within the broader context of the study of
nanocomposite materials. Specifically, we highlight studies that consider the
stability of the structures that result when nanoparticles are added to binary
liquids, the effect of varying the geometry of those particles, and the effect of
varying other properties of those particles, notably their spreading parameter
with respect to the two liquids in the system. The study of nanocomposite
materials is is a large field, so we will be selective in the results we discuss.

Historically, one of the main reasons for adding nanoparticles to a binary
liquid system is to improve its stability. For example, nanoparticles may be
used as an alternative to such traditional methods as chemical emulsifiers,
electrostatic repulsion and steric repulsion to stabilise an emulsion. In the
resulting system, known as a Pickering emulsion [53, 54], small droplets of
one liquid are surrounded by nanoparticles, shielding them from the other
liquid, with which they would not ordinarily mix.

Of more relevance to this thesis are the interpenetrating, bicontinuous mi-
crophase structures that emerges in volume symmetric mixtures (and in some
volume asymmetric blends), commonly referred to as bijels. As well as en-
hancing mechanical properties, the continuous nature of the phase domains
opens up the possibility of exploiting the electrical properties of composite
materials in organic semiconductors with novel applications in photovoltaic
films and fuel cells. These novel structures were first predicted in computer
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simulations, using the Lattice Boltzmann method, of the de-mixing of bi-
nary fluids containing neutrally wetting nanoparticles (i.e. particles with
equal affinity for both liquid components in the mixture) [55]. Although the
simulations could not be run for long enough to confirm the long-term sta-
bility of the bijel structure, the energy threshold for ejecting a nanoparticle
from the interface between the two liquid phases was thought to be high
enough to prevent depercolation and collapse of the bijel.

Herzig et. al. [56] were the first researchers to observe this new class of
material in the laboratory in a mixture of low-molecular weight fluids (2,6-
lutidine and water), with added neutrally wetting fluorescent silica nanopar-
ticles. After spinodal decomposition induced by a rapid quench into the
two-phase region, it was found that the silica particles migrated to the phase
boundaries where, after sufficient numbers accumulated, jamming occurred
and arrested further phase domain growth. The result was a bicontinuous
structure akin to that predicted by Stratford et. al. [55] that was stable
on experimental timescales. Further work, conducted by Lu, Zaccarelli, and
their associates [57, 58], and using a different model system found that, for
weakly interacting nanoparticles, in a critical binary fluid, bijel formation
depends on the concentration of particles added to the binary liquid, the
strength of the inter-particle interaction (in thermal units), and the range of
the interactions (in units of the particle radius).

The important theoretical and practical question of the stability of bijels is
explored further by Reeves et. al. [59, 60]. The stability of a water-lutidine
bijel containing fluorescent silica nanoparticles is monitored by measuring
the mean interfacial curvature of phase boundaries using confocal microscopy
and x-ray computer tomography. The results indicate that smaller nanopar-
ticles, and more rapid quenching, result in ”optimally hyperbolic” bicontin-
uous structures that are more likely to remain stable beyond experimental
timescales. For larger particles, with a radius of the order of microns, the bi-
jels formed tend to diverge from this optimal structure over longer timescales
of around one hour.

As noted earlier, the geometry of the nanoparticles used might be expected
to play a role in the properties of the bijel produced, so rod-like particles,
or nano-rods, have also been the subject of experimental and theoretical
work. For example, one study by Hijnen et. al. [61], of the stabilisation
of bijels from a nitromethane and ethylene glycol mixture, using rod-like
silica NPs with an aspect ratio of approximately 10:1, finds that the kinetic
arrest of domain growth through the jamming mechanism leads to lower
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interfacial separation, and thus a smaller domain size, for any given particle
concentration than is the case using spherical nanoparticles, while leaving the
overall morphology broadly unchanged. Interestingly, the packing fraction
of nano-rods at the phase boundary exceeded theoretical predictions due to
the existence of “flippers” – rods that orient themselves perpendicular to the
interface, rather than parallel to it.

Polymer blends exhibit much of the same behaviour as mixtures of low molec-
ular weight liquids when nanoparticles are added to them. For example,
Chung et. al. [62] describe the formation of a three-dimensional bicontinu-
ous structure in a dPMMA/SAN blend in a thin film geometry when surface-
modified, neutrally-wetting silica NPs were added and the blend was allowed
to phase separate. The final morphology of the phase-separated system may
be tuned by varying the volume fraction of nanoparticles, their radius and
the film thickness. A similar study [63] of PMMA/SAN, phase-separating in
a thin-film of varying thickness, with silica nanoparticles (1-10% by weight)
produced a ”jamming map”, similar to a phase diagram, of bicontinuous
versus discrete morphologies for the polymer blend concerned. The result-
ing map is compatible with a simple geometrical model of hexagonal close
packing of nanoparticles at the phase interfaces.

The neutral-wetting requirement, needed for the production of most bijels
using liquids of low molecular weight, becomes onerous when trying to repro-
duce such structures using polymer blends. Fortunately, Li et. al. [64, 65]
show that it is not always necessary, especially if interactions between the
nanoparticles are favourable. These studies use a phase-separating blend of
PS/PVME and Cadmium Selenide (CdSe) nanoparticles (spheres and rods)
to observe the formation of bijels. The nanoparticles are preferentially wetted
by the PVME phase, but they are also mutually attractive. The study finds
that the critical volume fraction of nano-rods necessary to achieve kinetic
arrest of the bicontinuous structure is lower than that for spherical nanopar-
ticles. Although bijel formation is achieved, even without neutral wetting,
this comes at a price: the evolution of the system’s morphology becomes
sensitive to aggregation of the nanoparticles, due to their mutual attraction,
so good initial dispersion in the blend is required to achieve the desired final
state.

It is possible that the burden of finding neutrally wetting nanoparticles, for
a given polymer blend might be alleviated by the use of so-called Janus par-
ticles. These are particles with differentiated (usually contrasting) chemical
or physical properties, depending on the aspect. For example, a spherical
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nanoparticle may be treated chemically so that one half of it is hydrophobic,
while the other is hydrophilic. The development of such particles opens up
further theoretical and practical avenues, and Walther, Mueller, and their
collaborators [66, 67] review their synthesis, self-assembly, properties and
potential applications. Although the authors do not specifically refer to ap-
plications in phase separating polymer blends, it is clear that the additional
functionality provided by Janus particles might support efforts to fine tune
the dynamics and microstructure of these systems. Some of these possibilities
are explored by Walther et. al. in an earlier paper [68].

An alternative approach is to add two different types of nanoparticle, with
contrasting properties, to the polymer blend. In Elias et. al. [69], for ex-
ample, the stabilisation of an immiscible PP/EVA blend (80/20 by weight)
with chemically treated silica nanoparticles is achieved by using both hy-
drophilic and hydrophobic particles. In the droplet/matrix morphology in
which EVA is the minority phase, the droplet size was reduced by the presence
of both types of nanoparticles. Similar results were obtained for an immis-
cible polymer blend of PP/PS (70/30 by weight) with both hydrophilic and
hydrophobic nanoparticles.

The precise nature of the mechanism responsible for the stabilisation of mor-
phology by nanoparticles is open to some debate. Du et. al. [70] study a
phase separating PMMA/SAN blend, with fumed silica NPs, using a com-
bination of time-resolved small angle light scattering and dynamic rheology.
The blends considered range from 30/70 to 60/40, by volume, and the re-
sultant morphologies tend to be matrix/droplet in form but still show sta-
bilisation effects in the presence of nanoparticles, similar to those observed
in Pickering emulsions. A two stage process is proposed to account for the
final distribution of nanoparticles in the system, and for the size of phase
domains: firstly, spinodal decomposition transports particles to phase inter-
faces where, secondly, they act as nuclei promoting phase separation due to
nucleation and growth within the matrix of the majority phase.

Among studies of the viscoelastic phase separation of polymer blends with
nanoparticles, Zhong et. al. [71] consider the effect of silica particles in
several dynamically asymmetric blends (PES/PS, for example) undergoing
phase separation. Li et. al. [64, 65] find that the nanoparticles are preferen-
tially immersed in the slow phase of the system due, they surmise, to chain
entanglements. Similarly, Yeganeh et. al. [72] explore how nanoparticles
introduced into a dynamically asymmetric PS/PVME blend might be used
to fine tune the dynamics of phase separation and the resulting morphology.
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In this study, both hydrophobic fumed silica particles, which self-assemble in
the slow PS-rich phase, and hydrophilic fumed silica particles, which favour
self-assembly in the fast PVME-rich phase, are used. Transitions are ob-
served between thermodynamically controlled phase behaviour (i.e. spinodal
decomposition) and viscoelastic phase separation, depending on the concen-
tration and type of nanoparticle used.

The significance of these studies of viscoelastic phase separation is that the
minority phase is able to form a continuous network structure if it is more
elastic (slower) than the majority phase. This opens up the possibility of
novel applications. For example, if a conducting polymer is used as the mi-
nority component in a blend which undergoes viscoelastic phase separation,
it becomes feasible to fabricate a conductive polymer network using very low
volume fractions of the polymer concerned.

Finally, a review of the relevant research by Fenouillot et. al. [73] compares
the distribution of nanoparticles in a phase-separated polymer blend, with
their distribution in a phase separated system of liquids of low molecular
weight. The conclusion is that, other things being equal, nanoparticles in a
polymer blend tend to be more unevenly distributed after phase separation
than they are in systems of binary liquids of low molecular weight. This dif-
ference is accounted for in terms of the competition between thermodynamic
wetting effects and the dynamics of the mixing process in the polymer blend.
In any event, the tendency of nanoparticles to be distributed more unevenly,
following the phase separation of a polymer blend, is likely to complicate
the fabrication of composite materials with the desired electrical, thermal or
mechanical properties.

1.6 Nanoparticles in Polymer Blends: Com-

putational Perspectives

Complex three-phase systems that include many nanoparticles do not lend
themselves to analytical treatment, although there are some notable excep-
tions [74]. Therefore, in this section, we focus on computational approaches
to the modelling of such systems. The approach is similar to that of the
previous section, in that we highlight some key themes, such as the stability
of the phase-separated structure, and the effect of varying the nanoparticle
geometry, with a view to situating our research in its broader context. The
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section concludes with some general reflections about alternative approaches
to modelling these complex systems, and the motivation for the approach we
will take in the remainder of the thesis.

On the question of stability, Cates and Clegg [75] return to the simulation
work of Stratford et. al. [55] that first predicted the existence of bijels due
to the migration of nanoparticles to the interface between the two liquid
phases, and subsequent jamming at the interface. One concern arising from
this work is that the results of the computer simulations (which used the
Lattice-Boltzmann method) do not match the performance of bijels produced
experimentally. In particular, the simulations suggest that bijels can form
even when the interaction between nanoparticles is purely repulsive, but
experimental attempts to produce bijels using mutually repelling particles
do not support this prediction.

Similarly Kim and co-authors, including Stratford [76], note that, since the
original simulations [55], experiments have shown that bijels may be pro-
duced, after quenching, even when there is volume asymmetry between the
phases [56]. The Lattice-Boltzmann method is used to simulate the behaviour
of a binary solvent with neutrally wetting spherical nanoparticles. The sim-
ulations focus on the volume asymmetric case and are able to identify the
transition from a bicontinuous structure to the arrested droplet phase (de-
percolation) as the volume asymmetry of the mixture increases.

In Hore and Laradji [77], large-scale simulations, using dissipative particle
dynamics, of spherical nanoparticles in immiscible simple fluids show prefer-
ential segregation of neutrally wetting particles at the phase interfaces when
χAB ≥ |χAN − χBN |, where χ is an interaction parameter and the subscripts
A, B and N denote the liquid components A and B, and the nanoparticles,
respectively. In this regime, at long time scales, the average domain size
approaches r

φ
where r is the radius of the nanoparticles and φ is their volume

fraction.

Hore and Laradji also explore the effect of introducing rod-like nanoparti-
cles into a binary system of immiscible fluids [78]. The parameters of the
model are set so that the nano-rods favour dispersion in one of the liquid
components. As expected, phase separation is retarded with the addition of
nanoparticles, due to them jamming in the preferred component, leading to
microphase-separated structures, given a sufficient volume fraction of nano-
rods and/or nano-rods of sufficient length. The characteristic length scale of
the phase-separated structure is found to decrease as the length and volume
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fraction of the nano-rods increases.

In addition to these specific studies, a number of review articles are of note.
For example, Allegra et. al. [79] review nanocomposite materials from the
perspective of theoretical and computational materials science, taking into
account recent experimental results, while Zeng et. al. [80] review the mod-
elling and simulation of polymer nanocomposites at multiple length scales.
While the latter contains little about the microstructures that arise when
polymer blends containing nanoparticles phase separate, the review con-
tains much helpful background theory. Finally, Yan and Xie [81] offer a
wide-ranging survey of how the self-assembly of nanoparticles in a variety
of systems, including homopolymer blends and block copolymers, may be
modelled. Particles of various geometries are considered, as are potential ap-
plications that could exploit the mechanical, optical or electrical properties
of the novel materials that might be fabricated. In the final section, Yan and
Xie review attempts to simulate the influence of external fields, including
shear, electrical and magnetic fields, and how they might be used to further
tailor the microscopic structure - and therefore the macroscopic properties -
of nanocomposite materials.

Stepping away from the detail, we note the prevalence in computational stud-
ies of nanocomposite systems of what might be called mesoscale approaches:
that is, approaches based on length scales intermediate between the nanome-
tre scale that is characteristic of the molecular dynamics approach, and the
macro scale, that is the focus of continuum fluid mechanics. In some ways,
molecular dynamics is the natural candidate for modelling nanocomposite
systems, since the mechanisms responsible for the dynamics of phase sep-
aration, and the resulting microstructures, operate at the nanometre scale.
Molecular dynamics, arguably, promises a rigour, grounded in fundamen-
tal physical principles, that other computational approaches are unable to
match. The drawback is that the reach of simulations based on molecular
dynamics is curtailed by the current limits on computational power. Even
on very fast supercomputers, it has only been possible to simulate systems of
billions of particles for a few hundred nanoseconds [82]. This is not enough to
simulate the wetting and dewetting of a single nanoparticle in a two-polymer
system, let alone a three-phase system, containing many nanoparticles. Thus,
many problems of great interest to interfacial science and the study of soft
condensed matter are inaccessible to the molecular dynamics approach.

This accounts for the popularity of more coarse-grained computational ap-
proaches to the modelling of nanocomposite systems. Among such methods,
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the two main ones, alluded to earlier in this section, are the Lattice Boltz-
mann Method [83], and dissipative particle dynamics (DPD) [84], both of
which are based on the concept of a pseudoparticle. Dissipative particle dy-
namics, and its refinements, [85, 86, 87] addresses the challenge of modelling a
complex, multi-phase, system by coarse graining the system into a collection
of point-like particles interacting via both conservative and dissipative forces,
in a way that seeks to maintain thermodynamic consistency. While such an
approach improves computational efficiency, compared with molecular dy-
namics based simulations, it does so at the expense of a certain artificiality,
and the underlying physics is somewhat obscured. A similar criticism may
be made of the Lattice-Boltzmann method. While this criticism might not
be unanswerable - and much effort has gone into answering it - we prefer a
different approach, grounded in well-understood physical principles.

The more straightforward approach is to apply the familiar methods of con-
tinuum fluid mechanics to the problem of simulating the dynamics of our min-
imal nanocomposite system. It has been known for some time [88] that the
continuum approximation remains valid at surprisingly short length scales.
Therefore, it becomes feasible to apply continuum fluid mechanics to prob-
lems involving the wetting and dewetting of a nanoparticle, and also to the
migration of that particle from one liquid phase to another.

One difficulty with applying continuum fluid mechanics at these length scales
is that, in principle, the discrete, stochastic nature of the interactions of the
nanoparticle surface with molecules in the liquid (and of the interactions
between molecules of the liquid) ought to be represented. This may be
treated quite effectively by adding a stochastic force term to the Navier Stokes
equations [89]. The issues that arise here are analogous to those involved
when considering the addition of a thermal noise term to the Cahn-Hilliard
equation - essentially, the nanocomposite system becomes more sensitive to
thermal fluctuations. These effects are of some physical interest, but they
are not central to the concerns of this thesis, so we do not include them in
our model of the minimal nanocomposite system.

A further persistent difficulty in simulating wetting and dewetting behaviour
using fluid mechanical models is the treatment of boundary conditions in
multi-phase systems, and the hydrodynamic forces that may act on a par-
ticle in the system. These difficulties are not insuperable, but there is a
significant computational overhead associated with modelling the complex
boundary conditions that arise. Therefore, we adopt a recent approach to
overcoming these difficulties, known as fluid particle dynamics, which models
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solid particles as fluid particles of extremely high viscosity (typically 50 times
greater than that of the surrounding liquid). This method was developed by
Araki and Tanaka [90] and applied to a range of physical systems in a series
of later papers [91, 92, 93, 94, 95, 96, 97]. As well as computational efficiency,
and the ease with which boundary conditions are handled, the fluid particle
dynamics approach has other advantages that will become apparent when
we develop our model in detail.

1.7 Summary

In this chapter, we have introduced the minimal nanocomposite system that
will be the subject of the remainder of the thesis, and presented the essential
equilibrium thermodynamics needed to understand it. We have also intro-
duced the Cahn-Hilliard equation, which is used to describe the dynamics of
phase separation in two-phase systems, including metallic alloys and poly-
mer blends. Although this equation is usually applied to systems undergoing
phase separation, it is relevant to the dynamics of any out of equilibrium
system in which two or more phases, separated by phase boundaries, exist.
Thus, some version of this equation will be needed to describe our minimal
nanocomposite system.

We then explored some of the key concepts needed to understand the phe-
nomena of wetting and dewetting, which we expect to observe in our sim-
ulations of a minimal nanocomposite system. In addition to providing the
vocabulary to describe the results of our simulations, this also informs the
development of our model in the next two chapters, where our central concern
is with the behaviour of fluids close to a solid interface.

We then briefly surveyed experimental studies of nanocomposite systems, in-
cluding bijels, in which the two liquid phases are of low molecular weight,
focusing especially on questions of their stability, and the effect of varying
the physical and chemical properties of the nanoparticles, and their geometry.
The aim was to illustrate the complexity of the field, and to thereby moti-
vate the radical simplification involved in studying a minimal nanocomposite
system, while placing this thesis in its wider context.

Finally, we explored some computational approaches to modelling nanocom-
posite systems, moving rapidly from particular studies, to general reflections
about which approaches are most likely to be appropriate for the task of
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modelling a minimal nanocomposite system. Our conclusion is that contin-
uum fluid mechanics offers the most straightforward approach, and gives the
clearest description of the essential physics of such a system. Further, the
difficulties traditionally associated with applying continuum fluid mechan-
ics to multi-phase systems that include solid surfaces, may be mitigated by
the adoption of the method, developed by Araki & Tanaka, of fluid particle
dynamics.

In the next chapter, we describe the theoretical framework needed to build a
model that incorporates both the diffusive effects represented by the Cahn-
Hilliard equation, and the hydrodynamic flows that are the subject of con-
tinuum fluid mechanics.
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Chapter 2

Theoretical Framework

2.1 Introduction

A version of this chapter was previously published in the journal Soft Matter
(reference [1]). The theoretical framework and the derivations described in
that paper are the work of Didier Long, and were developed in the early stages
of this project. I contributed to discussions about the theoretical framework,
commented on draft versions of the paper and provided the figures used in
it. This chapter omits some parts of the paper that are not central to the
argument of my thesis, and harmonises the language used in the paper with
that used in the rest of this thesis.

Our aim in this chapter is to present a theoretical framework, within which it
is possible to describe the motion of an inhomogeneous liquid in the vicinity
of a solid interface. We approach the matter indirectly, starting with some
general reflections on what we call force-free motions in liquids. We then turn
to the phenomenon of diffusio-osmosis, whereby a concentration gradient of
a solute, within a solvent, gives rise to a flow, parallel to a solid surface. The
usual explanation of this effect, due to Derjaguin [98], posits the existence
of an excess pressure, typically confined within a layer of a few nanometres,
which arises from the interaction between the liquid and the solid surface.
Due to the concentration gradient in the liquid, a confined pressure gradient
parallel to the surface emerges, and it is this pressure gradient that drives the
diffusio-osmotic flow. However, this picture appears to be in contradiction
with the contact theorem of colloidal science, according to which such excess
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pressure does not exist.

Therefore, we propose an alternative theoretical approach to calculating the
hydrodynamic flow in a inhomogeneous liquid near a solid interface, which is
consistent with the contact theorem. This approach is based on a Gibbs free
energy and a virtual work principle, introduced by Doi [99], and is used to
derive a version of the Stokes equation consistent with the principles of non-
equilibrium thermodynamics. Our version of the Stokes equation is similar
to that used by Araki and Tanaka [90, 95, 91, 93].

After showing how our formalism may be applied to the simple case of
diffusio-osmotic flow in a capillary due to a uniform concentration gradi-
ent, we turn to the phenomenon of wetting. Within our approach, it is clear
that the same physics is at play in both diffusio-osmosis and wetting, since
we can go continuously from the latter to the former, simply by making the
concentration gradient sharper. Having established the applicability of our
version of the Stokes equation to systems in which wetting occurs, we are
then in a position to construct a model of the minimal nanocomposite system
that is the subject of this thesis.

2.2 Force-Free Motion and Diffusio-Osmosis

The most simple description of hydrodynamic motion is provided by the
Stokes equation, which is valid when inertial effects are negligible, in the so-
called low Reynolds number limit [89]. Despite this simplification, the Stokes
equation may usefully be applied to a broad range of physical phenomena.
For example, it is the relevant equation to describe the dynamics of a polymer
undergoing Rouse relaxation, or Zimm relaxation, which takes into account
long-range hydrodynamic interactions [99].

The Stokes equation is also used to describe the motion of an electrically
charged particle, under the influence of an external electric field, in a liquid
[100], a phenomenon known as electrophoresis. The same equation describes
the hydrodynamic flow created in a capillary when an electric field is applied
[100], which is known as electro-osmosis. The electric field exerts a force in
the vicinity of the capillary, where the liquid is electrically charged within
the Debye layer. This force pulls the liquid in the vicinity of the capillary
and a so-called plug flow is created: velocity gradients are non zero within a
few Debye lengths of the capillary wall and, beyond that, the hydrodynamic
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flow is uniform.

The Stokes equation is relevant, too, to the description of wetting phenomena
[40, 41]. Here, a central issue is accounting for how a droplet spreads on a
surface, in order to reduce the interfacial energy, which is the driving force of
the effect. As noted in the previous chapter, the reverse process, dewetting,
is the retraction of a thin film to form one or more droplets, after it has
been spread on a solid surface. Both of these processes are described by
Stokes equation in the presence of pulling forces resulting from surface tension
imbalances at the triple line between the solid substrate, the liquid, and the
atmosphere - or between the substrate and the two liquids, if the droplet is
situated within another liquid.

Wetting and dewetting are examples of what have been called force-free mo-
tions [101] since, in both cases, motion occurs as a result of internal forces in
the system, and in the absence of an external applied field. The contrast is
with electrophoresis and electro-osmosis, where the force driving the hydro-
dynamic flow is the result of an externally applied electric field. Other exam-
ples of force-free motions include diffusio-phoresis, in which a solid particle
moves in a liquid where there is a concentration gradient, and thermophore-
sis, in which a particle moves in a liquid with a temperature gradient [100].
A further example of force-free motion occurs when polymer blends undergo
the process of spinodal decomposition, described in the previous chapter.
As we noted, as well as the diffusive effects described by the Cahn-Hilliard
equation, there are also hydrodynamic effects, as the interface between the
two liquid phases deforms, pushing liquid from one region of the system to
another. The essential point is that this motion occurs in the absence of an
applied external field [102, 11].

Usually, each of these phenomena is described in its own specific way. Spin-
odal decomposition is described by the Cahn-Hilliard equation and its exten-
sions: a gradient of chemical potential results in diffusion and, possibly, also
in convection. The wetting dynamics of a droplet is described in terms of the
imbalance of capillary forces at the triple line, which induces a Poiseuille-
like Stokes flow in the droplet. Diffusio-osmosis and diffusio-phoresis are
described by the Derjaguin’s model [100, 103, 98, 104, 105, 106], which we
consider in the next section. However, given the features that all of these
effects have in common, it is desirable to seek a more unified theoretical
treatment.

In addition, we believe Derjaguin’s treatment of diffusio-osmosis, and the
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work on diffusio-phoresis that builds on it, to be problematic. It assumes that
the interfacial forces between the solid surface and the liquid, which have a
range of a few tens of nanometers, create a local pressure in the vicinity of the
interface. A gradient of composition along a capillary results in a gradient
of pressure due to the interaction between the liquid and the solid interface.
This gradient of pressure in the vicinity of the solid interface creates a diffusio-
osmotic flow, which takes the form of a plug flow, if the composition gradient
in the vicinity of the interface is constant along the capillary. Calculating
the pressure gradient requires a detailed description of forces on a local scale
between the liquid and the interface, including any ionized charges in its
vicinity when the interface becomes ionized. This description is complex and
cannot easily be checked experimentally. In any case, Derjaguin’s description
of diffusio-osmosis appears to contradict the well established contact theorem
of colloidal science [107, 108, 109, 110, 111, 112], according to which the
pressure between two plates immersed in a liquid is uniform between the
plates. The pressure becomes equal to the atmospheric pressure, assuming
that the system is equilibrated under standard conditions, when the distance
between the two plates is larger than a few tens of nanometers, depending
on the range of the interactions. In particular, the interfacial interactions
between a single plate and the liquid do not result in the presence of a pressure
in the vicinity of the solid surface. The pressure is uniform and is equal to
the pressure under which the system is at thermodynamic equilibrium.

Therefore, there is a need to reconcile what is known in colloidal science about
the equilibrium state in the vicinity of solid surfaces, and the description of
the physics of diffusio-osmosis. The description of the latter, in its present
state, is in contradiction with the former. We solve this problem by intro-
ducing a mesoscopic description of Stokes flow in inhomogeneous solutions,
and in the presence of solid interfaces, as a relaxation process towards ther-
modynamic equilibrium in a way that is consistent with the Onsager general
formulation. This description is based on a variational principle which relates
the Gibbs free energy of the system to the driving forces in the Stokes equa-
tion. This variational principle was introduced by Doi and Onuki [113] and is
directly linked to the fact that the Stokes equation is an Onsager-like equa-
tion [89, 114] which drives the evolution of the system in out-of-equilibrium
conditions, and which relate the fluxes to the thermodynamic forces in a
linear manner.

Our approach allows for the description of convection in inhomogeneous liq-
uids, and of flow in the presence of solid interfaces in situations correspond-
ing either to wetting, dewetting or diffusio-osmosis. In particular there is no
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need for a confined pressure field in the vicinity of solid surfaces for creat-
ing diffusio-osmotic flows. Our description allows for a common formalism
that encompasses both diffusio-osmosis and wetting as relaxation processes
towards thermodynamic equilibrium. In both cases, the essential physics is
the same, since one can go continuously from the former to the latter by
making the composition gradient sharper.

2.3 Derjaguin’s Theory of Diffusio-Osmosis

Derjaguin considers the case of a solution bounded by a solid surface. The
volume fraction of the solute is denoted by ψ. In the vicinity of the surface,
there is an interaction potential Φ which decays with the distance z from
the surface. This interaction potential exerts a body force due to the solute
concentration which is given by f ext = −ψ∇Φ which we assume to be oriented
in the direction opposite to the normal to the surface. The Stokes equations
read [89]:

−∇p+ ∇.η
(
∇v + ∇v+

)
− ψ∇Φ = 0

∇.v = 0 (2.1)

where η is the viscosity, p is the pressure, v is the velocity field, and the
second equation represents the assumption of incompressibility. The flow
velocity is zero in the z-direction and is parallel to the interface. Let us
suppose that the gradient of solute volume fraction is in the x-direction, and
is a decreasing function of x. By considering equation 2.1 in the z-direction,
we obtain:

−∂p
∂z
− ψ∂Φ(z)

∂z
= 0 (2.2)

Integrating between the current z-position and a point far from the solid
surface, we obtain an expression for the pressure term:

p(x, z) = −ψ(x)Φ(z) + p0 (2.3)
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where p0 is, for example, the atmospheric pressure under which the system is
equilibrated, in the absence of solute concentration gradient. This pressure
field is confined within a layer corresponding to the range of the interaction
potential, which may be a few nanometers, or up to a few tens of nanometers,
depending on the nature of the interactions, and the the depth of the Debye
layer of the solution due to ionic interactions.

We see that this pressure field is present even in the absence of a gradient
of solute concentration, provided the solute concentration is not zero. If one
considers a high volume fraction of solute, for example 1%, and if the inter-
action potential is 0.1 eV per molecular volume at the surface, the pressure
is of order 107 Pa and, beyond the interfacial layer, rapidly decays to the at-
mospheric pressure, under which the system is equilibrated. If the interface
we consider is that of a capillary with diameter a few micrometers or more,
which connects two reservoirs, one with a high solute concentration and the
other one without solute, a concentration gradient is established along the
capillary in the vicinity of its surface. The surface of the latter can be con-
sidered as flat if the diameter is much larger than the range of the potential,
Φ, as we assume. Then, the pressure gradient is described by equation 2.3
and equation 2.1 becomes:

∂ψ(x)

∂x
Φ(z) + η

∂2vx
∂z2

= 0 (2.4)

Let us assume that Φ is given by:

Φ(z) = Φ(0) exp

(
−z
λ

)
(2.5)

This equation allows us to calculate the flow velocity profile:

vx(z) =
λ2

η

∂ψ(x)

∂x
Φ(0)

(
exp

(
−z
λ

)
− 1

)
(2.6)

Equation 2.6 represents the so-called plug-flow observed in diffusio-osmosis
experiments, and also in electro-osmosis [115]. This is standard behaviour
when forces act on the liquid only within a thin layer in the vicinity of a
solid surface, as is the case for diffusio-osmotic flow. The driving force in
Derjaguin’s picture is the pressure field in the vicinity of the capillary wall.
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However, the term p(x, z) is difficult to interpret. Even in the absence of a
concentration gradient, it corresponds to a local pressure with an order of
magnitude between 106 Pa and 107 Pa. This pressure should be maximal at
the interface between the solid and the liquid, and decay towards the atmo-
spheric pressure over the distance represented by the range of the interaction
potential, Φ(z). As mentioned above, this picture contradicts the current
understanding of interactions between colloidal particles in solutions, and of
the thermodynamic equilibrium of a liquid in the vicinity of a solid surface.
For instance, if one considers two parallel plates in an electrolyte solution
[109], the Poisson-Boltzmann model predicts that the repulsive pressure be-
tween the two plates is homogeneous in the volume bounded by these two
plates and is given by :

P (z,D) = kBTρ0(D) + p0 (2.7)

where kB is the Boltzmann constant, T is the temperature, D is the distance
between the two plates, ρ0(D) the counterion density due to the surface
charges on the plates and z the coordinate in the direction normal to the
plates. In particular the pressure is uniform and decays to zero when the
plates are separated by a distance larger than the range of the molecular
interactions, which are typically of order a few nanometers, and up to a few
tens of nanometers. In a capillary of diameter greate than one micrometer,
say, this pressure is uniform and equal to the atmospheric pressure p0. This
result is known as the contact theorem [109, 107, 111, 110], and is considered
exact, beyond the Poisson-Boltzmann approach, and regardless of the nature
of the interactions.

The presence of a thin layer, with a pressure greater than the atmospheric
pressure under which the system is equilibrated, raises a further question
about the meaning of the grand-canonical equilibrium under an imposed
pressure (e.g. atmospheric pressure p0) if some regions of the system have a
higher pressure than the nominal pressure p0, as a result of the interactions
between parts of the system. For instance, the thin layer with a higher
pressure in Derjaguin’s picture should relax by slightly expanding to decrease
the pressure towards p0, thereby reducing the Gibbs free energy of the system.
The very presence of this thin layer with a higher pressure seems to contradict
the very concept of thermodynamic equilibrium under an imposed pressure.

Our view is that Derjaguin’s calculation only takes into account the part of
the stress tensor, corresponding with the long-range molecular interaction
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between the solid surface and the solute. However, this is not correct: for in-
stance, when one considers the thermodynamics of dielectric media one does
not consider separately the stress associated with intermolecular interactions,
and the stress of the electric field itself. One considers only the whole. This
is the meaning of the equilibrium condition discussed in Landau and Lifshitz
[116], for which the field and the density of the sample relax together towards
thermodynamic equilibrium. It is explicitly stated that there is no body force
in the dielectric. In contrast, in Derjaguin’s picture, the interaction between
the solid surface and the liquid are treated as external body forces acting on
the liquid. In a dielectric, all forces on an elementary volume are transmitted
through the boundaries by the local stress tensor σ which therefore satisfies
the condition [116]:

∇.σ = 0 (2.8)

Derjaguin’s approach violates this condition by introducing a body force.
Thermodynamic equilibrium is properly described by minimizing the con-
tribution of all the interactions, including that of the field and that of the
intermolecular forces, and these cannot be considered separately. This is
what makes necessary the introduction of the polarizability of a material.
Similarly, the body force in Derjaguin’s treatment of diffusio-osmosis is only
one component of the interaction. But one cannot suppose that only a part
of the local stress tensor acts on an elementary volume within the liquid,
without taking into account all the contributions to the stress tensor. And
when one does take into account all the contributions, the pressure is that
under which the system is equilibrated (in our example, the atmospheric pres-
sure p0). As a consequence, Derjaguin’s picture breaks down for describing
diffusio-osmosis.

Therefore, we propose another approach to the explanation of diffusio-osmosis,
consistent with what is known about the equilibrium thermodynamics of liq-
uids in the vicinity of colloidal particles, or solid surfaces, in general.
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2.4 Hydrodynamics in Out-of-Equilibrium Liq-

uids

In this section, we introduce a formalism for the Stokes equations in out-of-
equilibrium liquids, based on a virtual work principle, introduced by Doi and
Onuki [113]. This allows us to obtain equations which describe the Stokes
flow as a relaxation process towards thermodynamic equilibrium. We use a
non-specific Gibbs free energy, in contrast with the Ginzburg-Landau form in
equation 1.22 and the Flory-Huggins-de Gennes form in equation 1.23, as we
wish our treatment to remain as widely applicable as possible, for now. This
free energy is made dimensionless by considering the Gibbs free energy per
monomer (or per molecule), and by dividing the physical Gibbs free energy
by the thermal energy, while setting the unit length equal to the monomer
length, or the molecular radius, in simple liquids. In an out-of-equilibrium
situation, one can calculate the stress as a driving force in a liquid according
to a principle of virtual work. The total Gibbs free energy is given by:

G =

∫
g(ψ(r),∇ψ(r))d3r (2.9)

where g is the density of Gibbs free energy and is a function of ψ and ∇ψ.
The dependence of g on ∇ψ allows us to take into account the finite range
of the interactions. Following Doi and Onuki [113], let us consider a virtual
displacement in the liquid so that r is transformed into r+δr. The quantities
ψ and ∇ψ are varied by the amounts:

δψ = −δr.∇ψ; (2.10)

δ∇ψ = ∇δψ

Further, let us assume that the density of Gibbs free energy is the sum of
two contributions :

g(ψ,∇ψ) = g(0)(ψ) + g(1)(∇ψ) (2.11)

Then

G =

∫
g(r)d3r =

∫ (
g(0)(ψ) + g(1)(∇ψ)

)
d3r (2.12)
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and the variation in the Gibbs free energy is given by :

δG =

∫
δg(r)d3r =

∫ (
dg(0)

dψ
δψ +

dg(1)

d∇ψ
.δ∇ψ

)
d3r (2.13)

By substituting equation 2.11 into equation 2.13, and integrating the second
term by parts, we obtain:

δG =

∫
−δr.∇ψ

(
dg(0)

dψ
−
(
∇.

dg(1)

d∇ψ

))
d3r (2.14)

We assume that the term

dg(1)

d∇ψ
δr.∇ψ (2.15)

is zero on the boundaries. This is the case if the flow concerned is zero at
the boundaries, or if the fluid is homogeneous at these boundaries. If this is
not the case, an additional contribution at the boundaries should be added

(equal to ∇.dg(1)
d∇ψ δr∇ψ).

The stress is related to the variation in the Gibbs free energy by:

δG = −
∫
δr.∇σGd

3r (2.16)

Thus, we obtain an expression for the hydrodynamic stress associated with
the release of excess Gibbs free energy:

∇.σG =

(
dg(0)

dψ
−∇.

dg(1)

d∇ψ

)
∇ψ (2.17)

This equation may also be written as

∇.σG =
dg

dψ
∇ψ = µ∇ψ (2.18)
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where dg
dψ

is the generalized chemical potential and is a functional derivative
that includes contributions from the gradient of the composition.

We may also introduce the quantities:

µ(0) =
dg(0)

dψ

µ(1) =
dg(1)

dψ
(2.19)

where µ(0) is the usual bulk chemical potential and µ(1) reflects the contri-
bution of ∇ψ to the Gibbs free energy. This is this term which gives rise to
surface tension in inhomogeneous liquids. The force term resulting from ther-
modynamic forces has to be included in the Stokes equation for describing
hydrodynamic flow in out of equilibrium conditions.

The stress tensor, σG, introduced above enables us to calculate the free
energy release associated with a flow field v, while the Stokes equation allows
us to calculate the dissipation due to the flow. When a liquid is subjected to
a body force fext, the dissipated power P is:

P = −
∫
d3r∇.σHydr.v =

∫
fext.v (2.20)

When the forces are purely internal, the dissipation is equal to minus the
rate of release of free energy, σG, and the equations read:

P = −dG
dt

=

∫
v.∇σGd

3r (2.21)

From which it follows that:

∇.σHydr + ∇.σG = 0 (2.22)

Where we now take the local form of this identity. This equation ensures that
the relaxation of the fluid towards equilibrium is consistent with Onsager
theory. The fluxes, (∇v), are proportional to the thermodynamic forces,
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−σG. The free energy release rate is equal to the dissipation rate, and this
equality is local. The basic equation regarding the hydrodynamic flow is
therefore:

−∇p+ ∇.η
(
∇v + ∇v+

)
+ µ∇ψ = 0

∇.v = 0 (2.23)

In addition to the term µ∇ψ, we may add an external force fext which would
drive the system out-of-equilibrium. The Stokes equations then read:

−∇p+ ∇.η
(
∇v + ∇v+

)
+ fext + µ∇ψ = 0

∇.v = 0 (2.24)

These are Onsager-like equations [89, 117, 114] and describe the relaxation
towards equilibrium of a system in a way that is consistent with the general
principles of out-of-equilibrium statistical physics [114, 89, 117].

2.5 Hydrodynamics and Non-Equilibrium Sta-

tistical Physics

The Navier-Stokes equations are described in Landau and Lifshitz [89] as
a branch of out-of-equilibrium statistical physics. Out-of-equilibrium sys-
tems are also described by Onsager, through the introduction of an out-of-
equilibrium entropy. This entropy is smaller than that at equilibrium, and is
expressed as a function of coarse-grained variables xa, while the derivative of
the entropy with respect to each of these variables provides the corresponding
thermodynamic forces Xa:

Xa = − ∂S
∂xa

(2.25)

Then, the variables xa relax towards equilibrium according to the Onsager
equations:
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dxa
dt

= −Σγa,bXb (2.26)

where the matrix of Onsager coefficients, γa,b, is symmetric positive defi-
nite. This equation describes how the entropy increases in order to reach
thermodynamic equilibrium, when it is at its maximum. The Navier-Stokes
equations can be accommodated within Onsager’s formalism by introducing
an explicit spatial aspect. The entropy production is then:

dS

dt
= −

∫
ΣXaẋadV (2.27)

From the expression of the entropy production derived from the Navier-
Stokes equations, which express the conservation of momentum, energy,
mass, and each component in a mixture, it is then possible to identify the ap-
propriate thermodynamic forces Xa and fluxes ẋa [89]. The thermodynamic
forces, as derived from the Navier-Stokes equations, appear as equal to the
thermal gradient and to the chemical potential gradient.

Therefore, the Navier-Stokes equations describe the relaxation processes for
Newtonian liquids, when they are out of thermodynamcial equilibrium, as
their entropy increases to its maximum possible value. These relaxation pro-
cesses, as described in Landau and Lifshitz [89] or in De Groot and Mazur
[114] are thermal diffusion, and solute diffusion. Note that no coupling be-
tween the out-of-equilibrium thermodynamical state and hydrodynamic flow
has been introduced, at this point.

Compared to the standard treatment, described above, we make two changes.
Firstly, instead of considering an out-of-equilibrium entropy S, we work
with an out-of-equilibrium Gibbs free energy, G. In introducing an out-
of-equilibrium entropy, the standard treatment treats each small volume ele-
ments in the liquid as a closed system. Then, the internal state of the volume
elements evolves so that their total entropy is maximised. The Navier-Stokes
equations allow for describing the exchange of energy between neighbouring
volume elements of the fluid by introducing energy conservation laws. How-
ever, when considering the phenomena of wetting or chemo-osmosis problems,
the full Navier-Stokes equations are not necessarily required, and the small
volume elements may be considered to be thermostated. In that case, the
relevant out-of-equilibrium function is the local excess of free energy. Fur-
ther, if the pressure is reckoned to be imposed, the relevant function is, again,
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the local excess of Gibbs free energy. Thus, in contrast with the standard
approach, we describe the relaxation processes in an out-of equilibrium fluid
in terms of the release of an excess of Gibbs free energy. This is what is
done, for example, when considering relaxation processes in polymer rheol-
ogy where the corresponding function denoted A is called the dynamical free
energy in Doi and Edwards [99], and is essentially the excess of Gibbs free
energy we have just described.

Secondly, we do not consider solute diffusion, because it is either very fast
in the direction normal to the solid surfaces concerned, or too slow in the
direction parallel to the solid surfaces that we consider. Nor do we consider
thermal diffusion because energy is not conserved in either the canonical
ensemble or in the Stokes equation - instead, energy is exchanged rapidly
with the thermostat. However, extension of the present theory to describe
solute and thermal diffusion, along the lines described in Landau and Lifshitz
[89] is possible. In fact, this has been has been done by Julicher and Prost
[118], without discussing the effects of convection, or the effect of interfaces,
characterised by surface tension gradients, on the flow.

The entropy production function, calculated with reference to the Navier-
Stokes equations [89, 114] is important because it relates fluxes to the rele-
vant thermodynamic forces, and allows us to identify them in a way that is
consistent with the general formalism of Onsager. Our approach is to do the
same for convection, which has not been considered in this way, to the best
of our knowledge.

Starting with equation 2.21, which has the required general form, we deduce
that v represents the relevant flux, and that ∇σG = µ∇ψ is the thermody-
namic force. The general solution is:

v = M∇.σG (2.28)

where M is a mobility tensor. The only solution for the flow which has the
required symmetry (i.e. which is invariant under translation and rotation)
is that given by the Stokes equation [89]. Hence the flow is given by the
solution of the Stokes equation 2.24.
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2.6 Hydrodynamics without Boundary Con-

ditions

Let us consider the Stokes equations in the presence of a chemical composition
gradient in unbounded three-dimensional space. In the absence of short-
ranged interactions, (i.e. when there is no surface tension term, or gradient
term in the free energy), a heterogeneous composition does not create any
flow in an unbounded fluid. Indeed, in these conditions, the quantity µ is
a function of ψ only and not of ∇ψ. The corresponding driving force in
equation 2.24 due to the composition gradient can be written as:

µ(ψ)∇ψ = ∇g(0)(ψ) (2.29)

since we have:
dg(0)(ψ)

dψ
= µ(ψ) (2.30)

The Stokes equation then reads:

−∇
(
p− g(0)(ψ)

)
+ ∇.η

(
∇v + ∇v+

)
= 0 (2.31)

∇.v = 0

where, for simplicity, we now assume there is no external force acting on the
liquid.

From these two equations, we obtain the following:

−∇
(
p− g(0)(ψ)

)
+ η∇2v = 0

∇2
(
p− g(0)(ψ)

)
= 0 (2.32)

Given the boundary conditions of uniform pressure and solute concentration
at infinity, and of no flow at infinity, we obtain the following solution:
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p− g(0)(ψ) = p0;

v = 0 (2.33)

The physical pressure is the entire term p − g(0)(ψ) and is uniform. The
quantity p is not the total pressure, it is just the Lagrange multiplier that
ensures the incompressibility of the flow. The term µ∇ψ, which appears
as a body force in the Stokes equation, would result in a longitudinal flow
with non zero divergence. This effect must be compensated for to maintain
the purely transverse nature of the flow. Without the non-local interactions,
as represented by the dependence of the Gibbs free energy on ∇ψ, a non-
homogeneous composition cannot create convection in an unbounded fluid,
and the relaxation towards equilibrium occurs entirely by diffusion. For
example, if we consider a salt gradient concentration in water, if there is
no long range interaction, and the chemical potential depends only on the
local concentration, ψ, such a gradient cannot create flow. In fact the local
Lagrange multiplier, p, adjusts so that p − g(0)(ψ) is uniform, and no flow
takes place. This issue has been discussed, with different arguments, by
Julicher and Prost [118].

In contrast, the term g(1) does contribute to convection flow in the presence
of concentration gradients. The corresponding term in the Gibbs free energy
is responsible for the surface tension between two phases of a polymer blend
(or a simple binary liquid) undergoing spinodal decomposition, [11, 119].
Thus, all the convection in such out-of-equilibrium systems is due to surface
tension-like effects; that is, all the contributions to convection come from the
dependence on ∇ψ of the Gibbs free energy.

Finally, another way to see that g(0) contributions cannot give rise to con-
vection is the following. Under an infinitesimal displacement, the new Gibbs
free energy is given by:

G′ =

∫
g(r)d3r =

∫
g(0)(ψ(r− δr))d3r (2.34)

Now, consider the change of variable r′ = r − δr. Since incompressibility
is assumed, the allowed displacements preserve the volume, and the corre-
sponding Jacobian of the change of variable is 1. Thus, we have:
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G′ =

∫
g(0)(ψ(r− δr))d3r =

∫
g(0)(ψ(r))d3r (2.35)

Virtual displacements which preserve the volume cannot change the Gibbs
free energy when the latter depends only on local variables. As a consequence,
there can be no convection due to purely local contributions to the Gibbs
free energy, such as those corresponding to ideal solutions. For convection
to occur, we need to introduce short-range interactions and a concentration
gradient contribution to the Gibbs free energy.

Therefore, when there are no short-range interactions, the concentration
evolves towards equilibrium only by diffusion (or, conceivably, by an im-
posed convection), but composition gradients do not cause convection. In
general, the complete equation for the evolution of the concentration field is
a convection-diffusion equation.

2.7 Hydrodynamics in the Presence of an In-

terface

2.7.1 General Considerations

Having established the hydrodynamic equations in an unbounded liquid, we
need to establish the equivalent equations in the presence of a solid surface, be
it the wall of a capillary, or the surface of a particle. The boundary conditions
must take into account two important physical effects. Firstly, it is important
that the interactions between the solid surface and the liquid have a finite
range. Though small, this range is not zero and, typically, it is of the order
of a few nanometers [100]. This fact is of fundamental importance to the
wetting and dewetting dynamics that we expect to observe in our minimal
nanocomposite system. The physical origins of these interactions are van der
Waals forces between molecules or, potentially, ionic interactions.

The second effect that must be taken into account when describing hydro-
dynamics in the presence of a solid interface is the so-called slipping length.
The macroscopic description of hydrodynamics assumes a no-slip boundary
condition for the flow. However, if we wish to understand wetting and dewet-
ting dynamics, we must suppose that there is a non-zero slipping length. In
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the case of the wetting dynamics of simple liquids, this slipping length may
be assumed to be of order one nanometer [40]. A larger slipping length has
been discussed in the literature, up to a few tens of nanometer [105] but the
issue is still under debate [120].

To describe the effect of the interface on the hydrodynamic flow, we introduce
an additional contribution to the Gibbs free energy density in the vicinity of
an interface. We denote this contribution by Γ(ψ, r), where ψ is the solute
volume fraction in the liquid just beyond the interfacial region. The range of
Γ is typically a few nanometers, and up to a few tens of nanometers, depend-
ing on the thickness of the interfacial layer. This is the contribution of the
solid surface to the free energy of the liquid in its vicinity. The contribution
of the interface to the Gibbs free energy is therefore:

GInt =

∫
Γ(ψ, r)d3r (2.36)

The quantity Γ(ψ, r) must be understood in the following way. We assume
that, at some distance from the interface, the solute volume fraction ψ is im-
posed by the flow. Then, the interfacial layer equilibrates locally to assume
a certain profile corresponding to the local minimum of Gibbs free energy,
given the specific nature of the interactions between the solute, the solvent
and the solid surface, and the imposed conditions on ψ, the solute concentra-
tion, a few correlation lengths from the solid surface [119]. This decription
relies on several assumptions. Firstly, local equilibration in the vicinity of
the solid surface is fast, compared to the flow. Secondly, the concentration
gradient imposed by the flow, parallel to the solid surface, corresponds to a
length scale much larger than the thickness of the interfacial region between
the solid and the liquid. Finally, the bulk of the capillary acts as a reservoir
for equilibrating the interfacial layer. Thus local equilibration is assured by
a diffusion process, which is faster on the scale of the interfacial layer than
the disturbance caused by the flow.

We now apply the same principle of virtual work as before to the liquid close
to the solid surface, to obtain the appropriate Stokes equation. Consider
a virtual displacement in the liquid so that r is changed into r + dr. The
quantity ψ is varied by an amount:
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δψ = −δr.∇ψ(r); (2.37)

So that:

δGInt =

∫
−δr.∇ψ(r)

∂Γ(ψ, r)

∂ψ
(2.38)

where the derivative of Γ is calculated with respect to the imposed solute
concentration beyond the interfacial layer, as described above. By adding the
corresponding term to the Stokes equation, we obtain the Stokes equation in
the presence of an interface:

−∇p(r) + ∇.η
(
∇v(r) + ∇v+(r)

)
+ µ(r)∇ψ(r) (2.39)

+
∂Γ(ψ, r)

∂ψ
∇ψ(r) = 0

∇.v = 0

The total chemical potential is given by

µtot = µ+
∂Γ(ψ, r)

∂ψ
(2.40)

The term µ represents the entire contribution from bulk liquid, where the
concentration gradient is imposed by the flow. The second term represents
the contribution which results from the interaction between the liquid and
the solid surface in the thin interfacial layer. Thus, the second term dΓ(ψ)

dψ

differs from zero only in the vicinity of the interface.

The variation in the surface tension, ∆γ(ψ), between the solid surface and the
liquid with solute concentration ψ and the liquid with solute concentration
zero is given by:

∆γ =

∫ ∞
0

(Γ(ψ, z)− Γ(0, z)) dz (2.41)
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This leads to:

dγ

dψ
=

∫ ∞
0

∂Γ(ψ, z)

∂ψ
dz =

∫ ∞
0

Ψ(ψ, z)dz (2.42)

where γ is the surface tension between the liquid and the solid, and we have
introduced the quantity:

Ψ(ψ, z) =
∂Γ(ψ, z)

∂ψ
(2.43)

for the sake of brevity.

2.7.2 Diffusio-Osmosis without Slipping Length

Let us apply this thinking to a capillary of sufficiently large diameter that its
surface can be considered locally flat. Suppose that the liquid has a uniform
gradient of composition which induces a uniform gradient of surface tension
between the liquid and the capillary in the x-direction. The normal to the flat
surface is the local z-direction. Further, let us suppose that the bulk chemical
potential µ in equation 2.40 does not contain contributions from µ(1), and
recall that contributions from µ(0) cannot give rise to convection, and can
therefore be discarded from the flow equations. Then the flow equation, 2.39
reduces to:

−∂p
∂x

+ η
∂2vx
∂z2

+
∂ψ

∂x

∂Γ

∂ψ
= 0 (2.44)

Finally, let us assume that the gradient of concentration ψ is constant along
the capillary as well as Ψ, which is the contribution of the interfacial interac-
tions to the local chemical potential. By taking the derivative of Eq.2.44 with
respect to x and by using the incompressibility condition and the invariance
by translation of the other terms, we deduce that the pressure p satisfies the
following equation:

∂2p

∂x2
= 0 (2.45)
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If the pressure at both ends of the capillary is identical (e.g. atmospheric
pressure), we deduce from this equation that the pressure is uniform within
the capillary and equal to the atmospheric pressure.

This equation allows us to calculate the flow velocity profile:

∂vx
∂z

(z) =
−1

η

∂ψ

∂x

(∫ z

0

Ψ(z′)dz′ −
∫ ∞

0

Ψ(z′)dz′
)

=
1

η

∂ψ

∂x

∫ ∞
z

Ψ(z′)dz′

(2.46)

We observe that the shear rate is a decreasing function of the distance from
the capillary wall, and is zero at distances larger than the range of the ther-
modynamic perturbation of the liquid by the interface. Thus:

∂vx
∂z

(0) =
1

η

∂ψ

∂x

∫ ∞
0

Ψ(z′)dz′ (2.47)

If we denote the range of Ψ by a, and assume a no slip boundary condition
at z = 0, we obtain the following approximate expression for the velocity of
the flow at a distance z > a:

vx(z) ≈ a

η

∂ψ

∂x

∫ ∞
0

Ψ(z′)dz′ (2.48)

The velocity field obtained by solving equation 2.46, and assuming a no slip
boundary condition at z = 0 is given by:

vx(z) =
1

η

∂ψ

∂x

∫ z

0

(∫ ∞
z′

Ψ(z′′)dz′′
)
dz′ (2.49)

Equation 2.49 represents the so-called plug-flow observed in diffusio-osmosis
in a capillary, and also in (for example) electro-osmosis. This is the standard
behaviour when forces act on the liquid only within a thin layer in the vicinity
of a solid surface, as is the case in these examples. We note, from equation
2.48 that the flow velocity depends on the range of the interfacial forces a.

The term ∂ψ
∂x

∂Γ
∂ψ

in equation 2.44 represents a pulling force parallel to the

interface. This term is analogous to the term ρE∞ in electro-osmosis [100,
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115] where ρ is the density of charge in the vicinity of a solid surface, and is
non zero within the Debye layer, and E∞ is the applied electric field in the
direction parallel to the capillary. In the diffusio-osmosis problem we consider
here, the forces are internal and result from the interaction between the liquid
and the solid. They appear as parallel to the solid surface: the surface pulls
the liquid in order to reduce the Gibbs free energy of the liquid, taking into
account the interaction between the solid and the liquid. These forces are
tangential and do not result in the appearance of a confined pressure, nor
are they the result of a pre-existing confined pressure in the vicinity of the
liquid-solid interface. As noted, the diffusio-osmotic flow is a so-called plug
flow when the tangential force is constant. When this is not the case, we
observe the superposition of local plug flow and a Poiseuille flow at longer
length scales. This situation is discussed in the case of electro-osmosis in
reference [115], for example.

For specificity, let us assume that Ψ(z) is given by:

Ψ(z) = Ψ(0) exp

(
−z
a

)
(2.50)

We then obtain:

dγ

dψ
= aΨ(0) (2.51)

These equations allow to calculate the flow velocity profile:

vx(z) =
a2

η

∂ψ

∂x
Ψ(0)

(
1− exp

(
−z
a

))
(2.52)

The diffusio-osmotic velocity in the capillary is then given by:

V =
a2

η

∂ψ

∂x
Ψ(0) =

a

η

∂ψ

∂x

dγ

dψ
(2.53)

and is illustrated in figure 2.1, where the reason this motion is known as plug
flow is apparent.

The diffusio-osmotic mobility defined by V = µ∇ψ is then given by:
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Figure 2.1: Diffusio-osmotic ”plug” flow in a capillary. The driving force in equation
2.44 appears as a tangential force in the liquid distributed within a distance a of the
solid surface. This force, though purely internal to the system, is analogous to the force
in electro-osmosis, due to an external electrical field, which is exerted within the Debye
length

µosmchem =
a

η

dγ

dψ
(2.54)

We conclude that the diffusio-osmotic mobility is proportional to the range
of the interaction, a, and to the derivative of the liquid-solid surface tension
with respect to the solute concentration in the bulk. When the gradient
of solute concentration is zero, equation 2.39 allows a no-flow and uniform
pressure solution (for example, the atmospheric pressure p0), contrary to the
description of diffusio-osmosis in Derjaguin’s model [98, 121, 100, 106], as
can be seen by referring to equation 2.3. The fact that the diffusio-osmotic
mobility is related to the gradient of surface tension has been recognized by
many authors [122, 121]. However, the calculations by Ruckenstein, or by
Anderson et. al., derive from Derjaguin’s picture, and rely on a confined
pressure gradient as a driving force. Levich describes the flow as being due
to a surface tension gradient, at a liquid-liquid interface, in his study of the
Marangoni effect [123]. However, this description cannot be extended to a
liquid-solid interface, which must take into account the physics of the thin
interfacial layer, which is absent from Levich’s description.

More recently, Marbach et. al. [106] and Liu et. al. [124] question the role
of the local pressure gradient and conclude that the osmotic flow is more
probably related to the chemical potential gradient. Equations 2.39 and 2.49
show an explicit dependence on the chemical potential of the driving forces
in the liquid, and of the resulting diffusio-osmotic flow. This driving force
in the vicinity of the surface is, apart from a pre-factor, the derivative of
the local excess Gibbs free energy density with respect to the imposed solute
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concentration beyond the interfacial layer. Our expression makes explicit the
detailed nature of the interaction between the surface and the liquid which
is responsible for the flow.

It is important to note that the driving force that we obtain is µ∇ψ in
equation 2.24. Araki and Tanaka [95] introduce a similar Stokes equation but
the driving force in their article is −ψ∇µ. With reference to our derivation
of the driving force, Araki and Tanaka’s equation may be obtained by an
additional integration by parts following equation 2.14, using the fact that
∇.δr = 0 due to incompressibility. However, this integration by parts should
come with a contribution at the boundaries which is:

−ψ
(
dg(0)

dψ
−
(
∇.

dg(1)

d∇ψ

)
+ Ψ(ψ(x), z)

)
δr (2.55)

The contribution of this term is zero on the boundary corresponding to the
solid interface since δr is zero there. But the contribution of this term is non
zero in general. This is the case, in particular, if we consider diffusio-osmosis
along a capillary which connects two reservoirs, of respective concentrations
ψ1 > ψ2. The quantities related to g(1) in equation 2.55 may be considered
as zero at the boundaries because the reservoirs have a homogeneous concen-

tration, but the two quantities ψ dg(0)

dψ
corresponding to the two reservoirs are

different. The integration by parts which leads to this different driving force
(as compared to µ∇ψ) is unwarranted, except in the special case of periodic
boundary conditions, relevant to the application considered by Araki and
Tanaka [95]. In this case the difference between µ∇ψ and −ψ∇µ is unim-
portant since the contributions at the boundaries cancel. An analogous term
ψ∇µ has also been considered by Marbach et al [106], and by Liu et al [124],
but without specifying µ in terms of the interfacial interactions, as we do. If
this term is used as a driving force in the Stokes equation, we obtain a descrip-
tion very similar to that of Derjaguin since this term leads to the appearence
of a confined pressure in the vicinity of the capillary, as we show in the paper
on which this chapter is based [1]. In principle this confined pressure should
be cancelled by the effect of the boundary terms just mentioned, but these
are absent in all descriptions in the literature [98, 121, 100, 95, 106, 124]. As
a consequence, the term −ψ∇µ cannot be considered as the local driving
force in the Stokes equation [95], and we therefore propose that the local
driving force is µ∇ψ.
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2.7.3 Diffusio-Osmosis and Slipping Length

We can also describe diffusio-osmosis by taking into account a non-zero slip-
ping length whereby the range of the interaction between the solid surface
and the liquid is zero (so the interaction is purely interfacial). The flow
equation is given by equation 2.44. We now assume that the interfacial per-
turbation due to the solid-liquid interface is non-zero only at the interface,
and that the flow is characterized by a slipping length b [41]. If the interface
is located at z = 0, Γ as a three-dimensional function may be written as:

Γ(ψ(r), z) = Γ(ψ(x, y, 0))δ(z) (2.56)

where δ(z) is the Dirac function.

Then, equation 2.44 can be solved by describing a virtual velocity profile for
z > −b. The slipping length, b, is the length at which the flow, extrapolated
in the negative z region vanishes [41]. The flow is then described with a no-
slip boundary condition at z = −b and with pulling forces located at z = 0.
We then obtain a plug like velocity profile where the velocity is uniform for
z > 0 and is given by:

vx(z) =
b

η

∂ψ

∂x

dΓ

dψ
(2.57)

The diffusio-osmotic mobility defined by V = µ∇ψ is then given by

µosmchem =
b

η

dΓ

dψ
(2.58)

Thus, we see that the diffusio-osmotic mobility is proportional either to the
slipping length, b, or to the range of the interaction, a. The general result
involves a combination of these two length scales as discussed by, for example,
Ajdari and Bocquet [105], although their interpretation of the origin of the
effect is different.
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2.7.4 Wetting

Wetting can also be described using the formalism developed in this chapter.
Considering equation 2.44, we note that the wetting of a liquid on a solid
surface corresponds to a situation in which there is a sharp concentration
gradient. We may assume that ψ = 0 on the right of the triple line in figure
2.2, and that ψ = 1 on the left, corresponding with the spreading droplet.
The term ∇ψ is essentially a Dirac δ function at the interface between the
liquid and the surrounding atmosphere, so we may write ∇ψ = −δ(x). The

quantity ∂Γ(ψ,z)
∂ψ

may be integrated in the z-direction, normal to the surface.

It yields the quantity dγ/dψ which is equal to γS − γSL, where γS is the
surface tension of the solid substrate with the atmosphere, and γSL is the
surface tension of the liquid with the solid surface. Note that we assume
a linear relationship for γ as a function of ψ, which is consistent with the
assumption made when deriving equation 2.44, but this assumption is not
critical. In either case, we deduce that the pulling force is γS − γSL.

This net force due to the interaction potential, combined with the −γL cos θd
term from the surface tension of the liquid, where θd is the dynamic contact
angle of the droplet with the solid substrate, recovers the net force at the
triple line, as represented in Young’s equation. The full picture is shown in
figure 2.2, which should be contrasted with figure 1.8.

The earlier figure is a macroscopic picture of the surface tension forces acting
at the triple line of the three-phase system. Applying a virtual work principle
to this picture (or simply considering the balance of forces in the x-direction)
recovers the standard description of wetting, as described in Young’s equa-
tion. Figure 2.2 is the corresponding microscopic picture, which our for-
malism aims to describe. Since our formalism results in the same standard
description of wetting [40, 41], we conclude that it enables us to describe wet-
ting or dewetting phenomena as special cases of diffusio-osmosis, in which
the composition gradient approaches a delta function.

2.8 Summary

We have introduced a formalism that enables us to describe the motion of
inhomogeneous liquids in the vicinity of a solid surface. This enables us to
describe diffusio-osmosis in a way that is consistent with the contact value
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Figure 2.2: The driving force term in equation2.44 is non zero in the vicinity of the liquid-
atmosphere interface. The net contribution is a tangential body force in the liquid over a
region of spatial extent a in the direction normal to the substrate and ξ in the direction
parallel to the substrate. When integrated over this region, it yields γS − γSL.

theorem of colloidal science [107, 109, 110, 111, 112]. Our approach contrasts
with a commonly accepted account, due to Derjaguin, in which an excess
pressure gradient, close to the solid surface, is used to account for diffusio-
osmotic flow. However, this feature of Derjaguin’s theory is not consistent
with the contact value theorem in colloidal science, according to which there
is no excess pressure in the vicinity of a solid surface immersed in a liquid.
More recently, the relevance of the assumed pressure gradient as the cause
of diffusio-osmotic flow has been questioned by Marbach et. al. [106] and by
Liu et. al. [124], both concluding that the chemical potential gradient is the
more relevant quantity. Our formalism supports this conclusion and provides
an explicit expression for the driving force of the diffusio-osmotic flow.

The formalism is based on a virtual work principle, and makes apparent
that the driving force in diffusio-osmosis is the consequence of the release of
an excess of Gibbs free energy, in a way that is consistent with Onsager’s
description of non-equilibrium thermodynamics. This excess of Gibbs free
energy, in an out of equilibrium situation, is located in the vicinity of the
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solid-liquid interface. In the presence of a gradient of composition of the
liquid along the solid surface, it gives rise to tangential body forces within the
interfacial layer. In a coarse-grained picture, this excess of free energy may
be related to a gradient of surface tension between the liquid and the solid.
What is key in this picture is that the driving forces are purely transverse
and have a spatial extension. They are not applied only at the point where
a no-slip boundary condition holds.

The formalism can also be applied to the description of wetting or dewet-
ting, which now appear as a limiting cases of diffusio-osmotic flow, in which
there is a sharp composition gradient between the liquids (or between the
liquid and the atmosphere). In wetting situations, our approach is consistent
with the driving forces implied by Young’s equation, which is the standard
macroscopic description. In particular, it makes no reference to a possible
region of excess pressure at the interface between the liquid and the solid, as
is implied by Derjaguin’s account.

Therefore, the principle of virtual work introduced by Doi and Onuki [113]
allows us to propose a unified and consistent picture for decribing wetting
[40, 41] and diffusio-osmosis [98, 104, 121, 100] which aligns with some key
results of colloidal science [107, 108, 110, 111, 112, 109]. In the next chapter
we build on this formalism to develop a mathematical model of a minimal
nanocomposite system, in which hydrodynamic flows in the context of wet-
ting or dewetting may be calculated.
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Chapter 3

Physical Model and First
Applications

3.1 Introduction

In the previous chapter, we presented a theoretical description of hydrody-
namic flow in inhomogeneous liquids in the vicinity of solid interfaces, consis-
tent with current theoretical descriptions of thermodynamic equilibrium in
multi-phase systems, and with the Onsager formalism for linear response the-
ory in out-of-equilibrium liquids. We showed that this theoretical framework
enables us to describe diffusio-osmosis along a capillary and also, in the limit,
as the concentration gradient approaches a delta function, the dynamics of
the wetting and dewetting of a liquid on a solid substrate.

This approach enables us to finesse a persistent difficulty in simulating wet-
ting and dewetting behaviour using continuum fluid mechanical models,
namely, the treatment of boundary conditions in multi-phase systems, and
how to account for the interfacial forces. Specifically, how can the no-slip
boundary condition commonly assumed in fluid mechanics be reconciled with
the requirement of relative motion between the liquid and the solid substrate,
at their interface, in both wetting and dewetting? An additional issue in such
sytems is where the interfacial forces in the liquids should be located, and
how they should be represented. Finally, the same no-slip condition also
leads to a divergence in the energy dissipated by the flow close to the contact
line, which forces truncation of the relevant integral at both the lower limit
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(of molecular length scale) and the upper limit (the size of the droplet, say)
[43].

In order to make progress, it was necessary to correctly describe the thermo-
dynamics of a system consisting of an inhomogeneous liquid phase in contact
with a third solid phase, using an appropriate Gibbs free energy functional.
This entailed showing how driving forces arise due to concentration gradi-
ents in the bulk and in the vicinity of the triple line, and how a non-zero
slip-length of ∼ 0.5nm (the monomer length scale) emerges naturally when
the system is described in the appropriate physical terms.

The Stokes equations then describe the convective contribution, in an out-
of-equilibrium liquid, to the relaxation towards thermodynamic equilibrium.
What is key in this picture is that the driving forces are purely transverse
and have a spatial extension. They are not applied exactly where a no-slip
boundary condition holds, which allows these forces to give rise to a flow.
This feature solves the apparent paradoxes regarding wetting, if the forces
are supposed to be applied right at the solid interface.

Thus, our approach is grounded in continuum fluid mechanics, supplemented
by a diffuse interface approach, versions of which are also used by Araki and
Tanaka [90, 95, 91, 93], and Anderson et. al. [125], among others . It enables
coupled equations of motion for the concentration field and the velocity field
to be solved numerically, thereby reproducing realistic wetting and dewetting
dynamics. In this chapter, we show how it is possible to apply the ideas of
the previous chapter to construct a model of our minimal nanocomposite
system. Details of the physical model are described in the next section, after
which we show how the model may be implemented, with the introduction
of dimensionless parameters, and other quantities.

Having built the model, we apply it to the simple case of the wetting of a
fixed particle, positioned symmetrically at the central interface between the
two liquid phases in the system. We then consider the case of dewetting in a
quiescent system, and use the simulation results to determine an approximate
value for the critical film thickness, below which spinodal dewetting occurs.
Having established that the model realistically simulates the dynamics of
wetting and dewetting in a quiescent system, we finally apply it to a system
subject to a constant shear rate. The aim is to further explore the dynamics
of dewetting, and to determine the conditions under which a particle may be
induced to migrate across an interface between two liquid phases, a problem
of great practical interest in the manufacture of composite materials.
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Anderson et. al. have also addressed this problem in a series of papers
[126, 127, 128, 129]. In the first paper, a constant external force, acting on
the particle, and perpendicular to the interface, is introduced to promote the
migration of the particle from one phase to the other. Without this external
force, the particle remains stuck at the interface between the liquid phases.
In the later papers, the same effect is achieved by modelling the interface
between a viscoelastic fluid and a Newtonian fluid, as shear is applied parallel
to the interface. In this chapter, we model the effect of shear perpendicular to
the interface between the liquid phases, and show that no special assumptions
about the rheological properties of the liquids are needed to observe the
migration of a particle from one liquid phase to the other.

All of the simulations described in this chapter take place in what is known as
the Rouse regime, where the effect of entanglement between polymer chains
at the microscopic level is small. We also assume strong segregation between
the two liquid phases in the minimal nanocomposite system, meaning that
the Flory-Huggins interaction parameter is high (χ = 4.0, in fact), and the
two polymers present in the system do not readily mix. Simulations in the
highly segregated Rouse regime are among the simplest to run, as will become
apparent in later chapters, where we relax both of these assumptions, in turn.

3.2 Physical Model

In building our model of a minimal nanocomposite system, we start with
the general expression for the total Gibbs free energy in a system in which
concentration gradients are present, as presented in the previous chapter:

G =

∫
g(r)d3r =

∫
{g(0)(ψ) + g(1)(∇ψ)}d3r (3.1)

As before, we assume that the density of the Gibbs free energy is the sum of
two contributions:

g(ψ,∇ψ) = g(0)(ψ) + g(1)(∇ψ) (3.2)

where ψ represents the concentration field and the first term is the Gibbs
free energy density of a homogeneous liquid with concentration ψ, while the
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second term is the contribution of the spatial gradient in ψ to the free energy
density.

In the presence of a solid interface, the Gibbs free energy may be written as:

G =

∫
g(r)d3r =

∫
{g(0)(ψ) + g(1)(∇ψ) + Γ(ψ, r)}d3r (3.3)

where we have introduced a generic interaction potential between the fluid
phases in the system and the solid surface of the particle. The properties
of this interaction potential are described in the previous chapter, and in
the paper upon which it is based [1]. Note that now, the quantity ψ in the
potential Γ(ψ, r) is the concentration in the liquid just beyond the interfacial
layer. It is imposed by the flow whereas the concentration profile within the
interfacial layer equilibrates so as to minimize the Gibbs free energy with ψ
as an imposed boundary condition just beyond the interfacial layer.

To make progress, we adapt the fluid particle dynamics method developed
by Araki and Tanaka [90]. In this approach, hard particles are modelled as
highly viscous fluids (typically 50 times more viscous than the surrounding
fluid). Thus, it is an example of a diffuse interface method, as discussed in
[125, 126], and avoids the difficulties with managing the boundary conditions
associated with hard surfaces in fluid flows. The fluid particle dynamics
approach has been applied to charged colloidal suspensions [96], colloidal
aggregation in liquid crystals [97], and nanoparticles in a phase separating
binary mixture [95, 91] but this is the first time it has been used to study
the dynamics of wetting and dewetting under shear, and the shear induced
migration of a particle from one fluid phase to another.

Taking this approach enables us to specify the form of each term in the
generic free energy functional (equation 3.3):

G{ψ, φ} =

∫
{g(ψ) +

κ

2
|∇ψ|2 +Weψ|∇φ|2 + ζφ(ψ − ψ̄)2}d3r (3.4)

The first and second terms correspond with the first two terms in equation
3.3. The bulk free energy term, g(ψ), is based on the Flory-Huggins free
energy density for a binary polymer mixture [6], which we encountered in
the introductory chapter:
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g(ψ)

kBT
= ψ ln(ψ) + (1− ψ) ln(1− ψ) + χψ(1− ψ) (3.5)

Here, we assume that both polymers have the same degree of polymeriza-
tion N . The Flory-Huggins interaction parameter, χ, may be considered as
proportional to N . As previously, T is the temperature.

The term that depends upon |∇ψ| represents the free energy density at the
interface between phases in the system, and the parameter κ is a measure of
the strength of the interfacial tension.

The third term in equation 3.4 is new, and represents the free energy density
at the particle-polymer interface, replacing the term Γ(ψ, r) in the generic
free energy functional. In this term, W is a wetting parameter, and represents
the degree to which the particle favours one liquid phase over the other, e
is the width of the particle interface and is typically of the monomer length
scale, and φ is an order parameter representing the presence of the particle
(that is, φ = 1 within the boundary of the particle, and φ = 0 elsewhere,
with a steep gradient at the interface).

The final term in equation 3.4 represents the energy barrier at the surface
of the particle and the parameter ζ is tuned to limit ingress of the polymer
across the particle boundary during the simulation. The mean value of the
concentration field in the system is represented by ψ̄, and we take this to be
zero in all our simulations - in other words, the two polymer species, A and
B, occupy equal volumes in the system.

Note that φ varies in value from 0 to 1, over a length scale equal to the width
of the particle interface, e. Thus, |∇φ| is of order 1

e
. We assume the width of

the interface to be the monomer length scale of approximately 0.5nm, which
we equate to 1, in the dimensionless units of the model (see section 3.4).

As in the previous chapter, we now apply variational principles to equation
3.3 to determine the evolution of this three-phase system. Based on the above
free energy functional, the relationship between the Gibbs free energy and the
chemical potential, and the equations of hydrodynamics, we obtain coupled
equations of motion for the velocity field (a modified Stokes equation) and
the concentration field (a modified Cahn-Hilliard equation):

−∇p+ ∇{η[∇v + (∇v)T ]}+ µ∇ψ = 0 (3.6)
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dψ

dt
= −v.∇ψ +D∇2µ (3.7)

The velocity field in the fluid is represented by v and the concentration field
by ψ. As is common, we also assume incompressibility:

∇.v = 0 (3.8)

In equation 3.7, D is the diffusion coefficient and depends on the degree
of polymerisation of the polymer (see section 3.4). In equation 3.6, p is
the pressure (which enforces the incompressibility condition), and η is the
viscosity of the fluid, while µ represents the chemical potential, defined as the
functional derivative with respect to ψ, of the Gibbs free energy in equation
3.4. The expression for µ obtained in this way is:

µ =
dg

dψ
− κ∇2ψ +We|∇φ|2 + 2ζφψ (3.9)

where dg
dψ

is just the ordinary derivative of g, the Flory-Huggins free energy
of mixing, with respect to the volume fraction, ψ, and we have used the fact
that ψ̄ = 0.

Due to the presence of a solid interface, this chemical potential has two
contributions, one from the liquid phases and the interface between them,
and one from the interaction of the liquid phases with the solid surface of
the particle. Comparing equation 3.9 with equation 2.40, we may identify
the former with the first two terms of equation 3.9, while the latter may be
identified with the last two terms (or, physically speaking, with the third
term, since the last term is, essentially, an artefact of our model). The
contribution to the total chemical potential of the interaction between the
liquid phases and the particle is non-zero only in the vicinity of the solid
surface. As argued in the previous chapter, this represents the driving force
on the liquid in the vicinity of the solid interface due to the interaction
potential.
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3.3 Implementation and Solution

To implement the model described in the previous section, we use a modified
version of the usual expression for the Flory-Huggins free energy of mixing
(equation 3.5):

g(ψ)

kBT
=

1 + ψ

2
ln(1 + ψ) +

1− ψ
2

ln(1− ψ) +
χ

4
(1 + ψ)(1− ψ)− χ

4
(3.10)

where now, ψ is an order parameter with values of ψ = ±1 corresponding to
the two pure polymers in the system, and the constant term is introduced to
ensure that the local maximum of free energy density occurs at the origin.
The equations of motion, 3.6, 3.7 and 3.8 are unchanged in form, by this
transformation of the variable ψ.

To solve the equations of motion, we use an FTCS (Forward-Time, Central-
Space) finite difference scheme on a discrete two-dimensional lattice, with
periodic boundary conditions. To avoid the numerical instability associated
with logarithmic functions, we approximate the Flory-Huggins free energy
density, equation 3.10, with a 10th order polynomial in even powers of ψ:

g(ψ) = a1ψ
10 + a2ψ

8 + a3ψ
6 + a4ψ

4 + a5ψ
2 (3.11)

where the ai are parameters obtained from fitting equation 3.10 to the poly-
nomial form of 3.11. Note that, as χ varies, only the term in ψ2 changes in
the approximation of the Flory-Huggins free energy density. Thus, changing
the coefficient of the ψ2 term in equation 3.11 enables us to represent the
variation of the Flory-Huggins interaction parameter, χ and thereby the con-
centrations of the equilibrium phases, and the interfacial width (and surface
tension) between them. For reference, we note that the critical point occurs
when χ = χC = 2.0 and that when χ > 4.8 or χ < 2.05, we consider our
numerical approximation to be unreliable. This still leaves a wide range of
χ values to explore, with higher values of χ signifying stronger segregation
between the phases.

In outline, the numerical solution of the equations of motion proceeds by
solving the Stokes equation without the pressure term, in order to calculate
an uncorrected velocity field. It is then possible to take the divergence of
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both sides of the complete Stokes equation (3.6), including the pressure term,
and to apply the incompressibility condition to calculate the pressure field
and thus the corrected velocity field. Having calculated the velocity field,
it is straightforward to solve the modified Cahn-Hilliard equation (3.7) to
calculate the ψ field. The interior of the particle is the region of the system
where the ψ field is near-zero and the φ field is unity. The motion of the
particle is tracked by integrating the velocity field within this region and
averaging over the region’s extent. The circularity of the particle boundary
is enforced after each step in the simulation, to reflect the physical reality
that it is a rigid particle.

Although our theoretical framework naturally allows for the modelling of
three dimensional systems, for the sake of computational efficiency, we re-
strict our simulations to two dimensions. This simplification sacrifices little,
if any, of the essential physics, especially when the minimal nature of the
system that is the topic of this thesis is taken into account. We choose a
default lattice size of 256 x 256 cells. The default particle radius is 25 lattice
cells (∼ 12.5nm) and the particle interface width is of order one lattice cell
(∼ 0.5nm) throughout. The ratio of the particle “fluid” viscosity to the
viscosity of the liquid phases is 50:1 in all simulations, and the parameter
that represents the energy barrier at the particle surface, ζ = 10 to limit
ingress of the liquid phases into the particle’s interior. With this value of ζ,
the order parameter field in the interior of the particle is typically ψ ∼ 10−4.

All simulations take place in the Rouse regime, where entanglement effects
of polymer chains at the molecular scale may be neglected. In our model
and, given the chosen time scale, this implies an effective diffusion coefficient
of D = 1, and a fluid viscosity of η ∼ 1. In the simulations described in
this chapter, we assume strong segregation between the polymers and set the
Flory-Huggins interaction parameter, χ = 4.0. For the wetting parameter,
we usually assume a high intermediate value of W = 4.0; in other words, the
particle has a marked preference for one phase over the other.

When the particle starts in the non-favoured liquid phase, its distance from
the central interface is specified in lattice cell units. Physically, a lattice cell
has dimensions comparable with a typical monomer length of 0.5nm. In the
dewetting simulations, the distance of the particle from the interface is varied
from 2.5nm to 10.0nm. Both a quiescent system and a system subject to
a shear rate of γ̇ = 1.0 × 104 s−1 and γ̇ = 2.0 × 104 s−1 are simulated. The
former shear rate implies 100 percent shear in 106 ×∆t = 100µs.
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In the next section, we discuss the mapping of dimensionless quantities to
physical quantities in greater detail and show that, given the above choices,
a single simulation time step equates to a physical time step of ∆t = 10−10 s.
When running simulations, snapshots of the system are taken after each 1000
simulation steps. Thus, the time resolution of the simulations is 10−7 s. This
strikes a good balance between data storage capacity and computation time,
on the one hand, and the ability to observe the system at short time scales,
on the other.

3.4 Dimensionless Quantities and Parameter

Settings

As alluded to in the previous section, to implement our physical model, we
wish to make certain parameters in it dimensionless. We do this by choosing
a suitable time scale, τ , length scale, a (which we take to be the monomer
length scale, ∼ 0.5nm) and energy scale, T (which we take to be the thermal
energy at room temperature, 0.025 eV ≈ 4 × 10−21 J). For the diffusion
coefficient and viscosity, we then have:

D̃ =
Dτ

a2
(3.12)

η̃ =
ηa3

Tτ
(3.13)

Here, where there is a need to make the distinction, Ã signifies a dimen-
sionless quantity corresponding with the physical quantity A. For notational
convenience, this convention is sometimes dropped outside of this section. In
particular, since we only ever need to refer to the dimensionless value of the
effective diffusion coefficient in the rest of this thesis, we use the notation,
D, rather than D̃.

Our aim is to determine the value of these quantities in the Rouse and the
entangled regimes, along with the physical values of other important dimen-
sionless quantities in our model - specifically, the time step, the shear rate,
and the viscosity of the liquid phases.
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In the Rouse regime, which is the focus of the current chapter, we have [6]:

D =
Na2

τrouse
(3.14)

η =
T

Na3
τrouse (3.15)

Where N is the degree of polymerisation, and τrouse is the Rouse time scale,
which is related to the monomer time scale τ0 according to: τrouse = τ0N

2.
We note that τ0 ∼ 10−9 s and that, in the Rouse regime, N . Ne ≈ 100,
with Ne being the entanglement limit. Here, the value of Ne is an order of
magnitude estimate, chosen for its arithmetical convenience, and represents
the upper limit of the degree of polymerisation in the Rouse regime. In real
polymer melts, entanglement can occur when the degree of polymerisation,
N , is less than 100, as is the case for polyethylene (Ne ≈ 50), or when N is
greater than 100, as is the case for poly(dimethyl siloxane) (Ne ≈ 160).

Then, choosing τ = τrouse
N

ensures that both D̃ = 1 and η̃ = 1.

We also have:

τ =
τrouse
N

=
τ0N

2

N
= τ0N (3.16)

Thus, physically, τ = 10−9 s× 100 = 10−7 s, where we have taken N = Ne =
100 for the sake of being specific. This sets an upper limit on the time scale
characteristic of the Rouse regime.

In our computational model, this implies that a dimensionless time of t̃ =
1 corresponds to a physical time of t = 10−7 s. Since our Rouse regime
simulations use a dimensionless time step of ∆̃t = 0.001. This implies that
each step equates to ∆t = 10−10 s in physical time. As noted earlier, we take
a snapshot of the system every 1000 steps, during our simulations, so the
temporal resolution achieved is 10−7 s.

We also need to know the physical shear rate associated with any given
dimensionless shear rate used in our simulations. Our model computes the
displacement due to shear as follows:
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∆γ = n× L× ˜̇γ × ∆̃t (3.17)

Where n is the number of simulation steps, L = 256 is the size of the system,
in lattice cell units, and ˜̇γ is the dimensionless shear rate which, in our Rouse
regime simulations, ranges from ∼ 0.001 to ∼ 0.002. Since ∆̃t = 0.001 and
taking, for example, ˜̇γ = 0.001, we have:

∆γ = n× L× 10−6 (3.18)

100% shear (γ = 1) occurs when ∆γ = L which, based on the above, is the
case after n = 106 simulation steps. Thus we may calculate the physical
shear rate that corresponds with our dimensionless shear rate of 0.001:

γ̇ =
γ

t
=

1

106 × 10−10 s
= 104 s−1 (3.19)

Other shear rates used in our Rouse regime simulations scale linearly with
this result so, for example, a shear rate of ˜̇γ = 0.002 corresponds with a
physical shear rate of γ̇ = 2× 104 s−1.

Finally, we return to equation 3.13 to calculate an order of magnitude es-
timate of the viscosity of our fluid in the Rouse regime. Rearranging, we
obtain:

η =
η̃T τ

a3
(3.20)

Substituting the relevant orders of magnitude:

η ∼ 100 × 10−21 J × 10−7 s

(10−9m)3
= 0.1Pa s (3.21)

This is equivalent to 100 centipoise, which is typical of a light engine oil.

We will need a corresponding set of results for the entanged regime, in which
the degree of polymerisation, N > Ne, the entanglement limit. Now, we
have:
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D =
Na2

τrept
(3.22)

η =
T

Nea3
τrept (3.23)

Where τrept is the reptation time scale (see chapter 4), given by:

τrept = τ0Ne
2

(
N

Ne

)3

(3.24)

This time we choose τ = τrept
Ne

to ensure that D̃ = N
Ne

, while η̃ = 1, as
previously.

We also have:

τ =
τrept
Ne

= τ0Ne

(
N

Ne

)3

(3.25)

In our entangled regime simulations, we initially use D̃ = N
Ne

= 10 so, recall-
ing that Ne = 100:

τ = τ0 × 100× 103 (3.26)

Since τ0 = 10−9 s, this implies that τ = 10−4 s. Thus, in our model, when
D̃ = 10, a dimensionless time of t̃ = 1 corresponds with a physical time of
t = 10−4 s. Our entangled regime simulations use a dimensionless time step of
∆̃t = 0.0001, which implies that each simulation step equates to ∆t = 10−8 s
in physical time.

Turning to the shear rate, our model computes the displacement due to shear
using equation 3.17, as before. Since ∆̃t = 0.0001 and again taking ˜̇γ = 0.001,
for the sake of being specific, we have:

∆γ = n× L× 10−7 (3.27)
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100% shear (γ = 1) occurs when ∆γ = L which, based on the above, is the
case after 107 simulation steps. Thus we may calculate the physical shear
rate that corresponds with our dimensionless shear rate of ˜̇γ = 0.001:

γ̇ =
γ

t
=

1

107 × 10−8 s
= 10 s−1 (3.28)

As before, other shear rates used in our simulations of the entangled regime,
with D̃ = 10, scale linearly so, for example, a dimensionless shear rate of
˜̇γ = 0.002 corresponds with a physical shear rate of γ̇ = 20 s−1.

Finally, turning to equation 3.13, we calculate an order of magnitude esti-
mate of the viscosity of our fluid in the entangled regime, with D̃ = 10.
Rearranging as before, and substituting the relevant orders of magnitude, we
obtain:

η ∼ 100 × 10−21 J × 10−4 s

(10−9m)3
= 100Pa s (3.29)

This is equivalent to 105 centipoise, which is comparable with the viscosity
of polypropolene melt or, in more familiar terms, peanut butter.

For ease of reference, we summarise the physical values corresponding with
the main dimensionless quantities used in our simulations, for all values of
D̃, in table 3.1.

Physical Value Corresponding with:

D̃ ∆̃t t̃ = 1 ˜̇γ = 0.001 η̃ = 1
[s] [s−1] [Pa s]

1 0.0010 1.00× 10−7 10000 0.10
2 0.0005 8.00× 10−7 1250 0.80
5 0.0002 1.25× 10−5 80 12.5
10 0.0001 1.00× 10−4 10 100

Table 3.1: Mapping physical values to dimensionless quantities, for various values of the
effective diffusion coefficient, D̃. The second column is the dimensionless time step asso-
ciated with the value of D̃ in the first column. Note that D̃× ∆̃t is constant; this ensures
the stability of our simulations. The physical time step used in a given simulation may be
found by multiplying the dimensionless time step, ∆̃t, by the physical time corresponding
with a dimensionless time of t̃ = 1, for the value of D̃ used in the simulation.
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We make two final observations about the use of dimensionless quantities in
the model. Firstly, inspecting table 3.1, we see that, as D̃ varies from the
value of unity, characteristic of the Rouse regime, the physical time scales
according to D̃3, as does the physical viscosity, while the physical shear rate
scales according to 1

D̃3 . Since, in the entangled regime, the dimensionless

diffusion coefficient, D̃ = N
Ne

, this implies that the physical viscosity also

scales with N3. Thus, our model reproduces the result, familiar from the
rheological study of polymer melts, that η ∝ N3.4 [6], but with the value of
the exponent changed from 3.4 to 3, for simplicity.

Secondly, note that the degree of polymerisation, N partly determines the
value of the dimensionless diffusion coefficient, D̃. This accounts for the
counter-intuitive feature of our model that, as the effective diffusion coeffi-
cient increases, the dynamics of the minimal nanocomposite system become
slower. The easiest way to see this is to express the dimensionless diffusion
coefficient in terms of the physical diffusion coefficient. In the Rouse regime,
we have D̃ = τ0N

a2
D, while the equivalent expression in the entangled regime

is D̃ = τ0N3

a2Ne
2D. In both regimes, the physical diffusion coefficient, D is mul-

tiplied by a factor involving N , the degree of polymerisation, to obtain the
dimensionless diffusion coefficient. It is this additional factor (N in the Rouse
regime, N3 in the entangled regime) that is responsible for the slowing of the
dynamics of the system when D̃ increases. Recalling that, in the entangled
regime, we also have D̃ = N

Ne
, it may be observed that the transition between

the Rouse regime and the entangled regime occurs when N = Ne, since the
two expressions for D̃ are the same, if this condition is satisfied. Therefore,
by varying the dimensionless diffusion coefficient, D̃ (which, in the rest of
the thesis, is referred to as D, for notational convenience) we may study the
behaviour of a representative polymer, in which entanglement effects are ob-
served when the degree of polymerisation, N = Ne = 100, at the edge of the
Rouse regime (D̃ = 1), and in the entangled regime (D̃ > 1).

3.5 Wetting of a Fixed Particle

Our focus in this chapter is on spinodal dewetting, which occurs when the film
thickness is of the order of a few nanometres, and which we therefore expect
to observe in our simulations of a particle close to the interface between the
two liquid phases. The effect of shear on such a system, and in particular on
whether shear promotes the migration of the particle from one liquid phase
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to the other, is also of great theoretical and practical interest. Additionally,
we may also use our model to explore the dynamics of wetting. To do this,
the particle is initially located symmetrically with respect to the central
interface between the two liquid phases, and its position is fixed. This is
an artificial constraint since a particle in a real system moves under the
influence of hydrodynamic forces, but it enables us to treat the surface of
the particle as analogous to the solid substrate in our earlier discussions of
wetting statics and dynamics. We vary the wetting parameter, W , from 1.0
to 8.0, and observe the evolution of the system in each case. The Flory-
Huggins interaction parameter is χ = 4.0 in all simulations, implying strong
segregation between the two phases, with an equilibrium value of the order
parameter of ψeq = ±0.9562. Denoting the favoured phase as A and the
non-favoured phase as B, Young’s equation becomes:

γSB = γSA + γAB cos θe (3.30)

Where the subscripts refer to the particle/phase B, particle/phase A, and
the phase A/phase B interfaces respectively. The spreading parameter, S is
defined in a similar fashion:

S = γSB − (γSA + γAB) (3.31)

Moreover, if we assume that the deformation of the interface between phase A
and phase B, as wetting proceeds, is relatively small, and that the thickness
of any film formed due to total wetting is also small, it remains the case
that total wetting occurs when S > 0. In fact, as we shall see, wetting does
distort the interface when the W parameter is high, but we can still make
valid deductions, based on our simpler approach.

To make further progress, we recall that the wetting parameter, W = 2(γSB−
γSA), so the condition for total wetting becomes:

W > 2γAB (3.32)

It is possible to derive various approximate expressions relating the surface
tension between the liquid phases to the Flory-Huggins parameter. For ex-
ample, a simple argument based on the energy of a polymer chain at the
interface [130] may be used to show that:
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γAB ∼ ρa
√
χ (3.33)

Where γAB is measured in units of kBT , ρ is the number density of monomers,
and a is the monomer length scale. In Helfand’s model of the polymer-
polymer interface [131] the latter two parameters are replaced by a pre-factor
of order unity. This is consistent with our model in which both ρ and a have
dimensionless values of order unity, and equation 3.33 reduces to γAB ∼

√
χ.

To be specific, if χ = 4.0, as it is in our Rouse regime simulations, γAB ∼ 2.
Therefore, from equations 3.32 and 3.33, we predict that total wetting will
occur when W & 4.

We turn now to the results of our wetting simulations. Figure 3.1 shows
typical dynamics for the W = 4.0 case.

Figure 3.1: Stages of wetting, with wetting parameter W = 4.0. The particle is initially
located symmetrically at the interface and immobilised, allowing the preferred phase to
wet its surface.

We also show the state of system after 1.0 × 107 ∆t (equivalent to 1.0ms),
for values of W from 1.0 to 8.0 (figure 3.2).

Figure 3.2: Long term wetting behaviour for W = 1.0 to W = 8.0. We show the state of
the system after 1.0ms; further relaxation of the interface is very slow, and beyond the
reach of our simulation time scales.
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Finally, we show the evolution of the mean free energy density of the system
as the favoured phase wets the particle, for values of W from 1.0 to 8.0.
(figure 3.3).

Figure 3.3: Evolution of the mean free energy density with time during wetting, for W =
1.0 to W = 8.0. In each case, the particle is positioned symmetrically, with respect to the
interface, where it is pinned, allowing the preferred phase to wet its surface.

Note that in the early stages of the simulation (0.1−0.2µs) the interface be-
tween the liquid phases rapidly equilibrates, and this effect is superimposed
on the wetting dynamics. This is unavoidable, but occurs rapidly enough not
to obscure the wetting dynamics. Thus our model is consistent with assump-
tions made in the previous chapter, and in our paper [1], about the relative
time scales associated with local equilibration close to the solid surface and
with the hydrodynamic flow itself.

From these results, we note that, qualitatively, the wetting behaviour appears
physically realistic for all values of W . As W increases, the degree of wetting
by the favoured polymer is greater, and the contact angle decreases.

Total wetting clearly occurs when W = 8.0. This appears to correspond to
a kink in the free energy density plot at t ≈ 0.7µs. From a video of the
early stages of wetting when W = 8.0, we estimate that complete wetting
occurs at t ∼ 0.9µs, supporting this hypothesis. Although not so obvious in
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the snapshots of the system’s evolution, it is possible that total wetting also
occurs when W = 4.0, as marked by a similar kink in the free energy density
plot, also at t ≈ 0.7µs. The occurrence of total wetting at W = 8.0 and
W = 4.0 is consistent with the condition for total wetting: W & 4 derived
above.

The characteristic time scale for wetting is ∼ 1.0µs for all values of W
considered. There is some evidence that higher values of W result in faster

wetting:
dḡ

dt
is greater at low values of t, for higher values of W ), although

this is accompanied by greater relaxation time scales.

3.6 Dewetting without Shear

To observe the qualitative dynamics of dewetting at a higher spatial resolu-
tion, we choose a system size of 1024 x 1024 cells, and a particle of radius 100
lattice cells (∼ 50nm). In this simulation, the particle is initially positioned
at d = 4.0nm from the central interface. Figure 3.4 shows the state of the
system in the early stages of its evolution, up to t = 80.0µs.

Figure 3.4: Qualitative dewetting dynamics in a larger system of 1024 × 1024 cells. The
particle starts at a distance d = 4.0nm from the central interface, and has radius r =
50nm, and the wetting parameter is W = 4.0.

As expected, we observe the formation of a rim of liquid, characteristic of
dewetting at around t = 20.0µs. At later times, the rim continues to grow
and moves outwards towards the edge of the system, at constant speed. At
longer time scales (not shown), the curvature of the interface becomes more
uniform, and the interface is expected to flatten over time scales that are
computationally inaccessible.

We also show the magnitude of the velocity field, at various times close to the
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dewetting point, in figure 3.5. The maximum speed of fluid flow is observed
close to the surface of the particle, just after dewetting occurs, and is of order
1.0ms−1.

Figure 3.5: Heat map of the magnitude of the fluid velocity field in a quiescent system at
the onset of dewetting, and shortly afterwards, when the energy associated with rapid flow
begins to dissipate. We focus on a region close to the surface of the particle (visible as a
curved dark region on the right of each snapshot), which starts at d = 4.5nm from the
interface between the two liquid phases. Dark blue shading indicates a quiescent region of
the system, while red indicates the highest flow speeds.

To study the quantitative dynamics of dewetting, we vary the initial distance
of the particle from the central interface and observe the time to the onset of
dewetting. In a strongly segregated system (W = 4.0), all stages of dewetting
occur in rapid succession: the time between the first sign of the interface
distorting, and first contact of the favoured phase with the particle service
is typically . 1.0µs. Thus, we take the dewetting point to be when the
favoured phase first makes contact with the particle surface. This is quite
straightforward to assess by inspection of snapshots of the system close to
the dewetting point.

With these parameters, we observe (table 3.2 and figure 3.8) that dewetting
occurs in less than 1.0µs when the particle starts at a distance d = 2.5nm
from the central interface, and the dewetting time increases to ∼ 60µs when
d = 4.5nm. At d = 5.0nm dewetting is not observed, indicating a critical
film thickness, dc ∼ 5nm, given our assumptions about the strength and
range of the intermolecular forces involved. This is broadly consistent with
the literature, where theoretical predictions and measurements of the critical
film thickness for spinodal dewetting range from a few nanometres to a few
tens of nanometres [130].

We end this section with a note about the dynamics of the polymer-polymer
interface long after dewetting has occurred. To observe the behaviour of
the interface over longer time scales, we use a smaller particle, of radius
r = 5.0nm, to reduce the computational load. In this simulation, the inter-
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face continues to flatten, carrying the particle with it, even after ∼ 2.2ms,
indicating that the system has not reached equilibrium. The final equilib-
rium state of the system, in which the interface is flat and meets the surface
of the particle at the true contact angle implied by the a wetting parameter
of W = 4.0, is inaccessible in the time scale of our simulations.

3.7 Dewetting with Shear

The study of dewetting behaviour under shear has special practical relevance
to the manufacture of composite materials, where nanoparticles are often
added to polymer blends to enhance the mechanical properties of the end
product. During the manufacturing process, particles can migrate to the
phase boundaries, where they can retard, or even halt, further phase separa-
tion, or remain embedded in one phase or the other. The final distribution of
particles in the composite material contributes to its mechanical properties
(toughness and elasticity, for example). Since the dispersion of nanoparti-
cles within a blend is commonly achieved by shearing the mixture, there
are potential practical benefits to understanding this process in a minimal
nanocomposite system.

The ability to model the behaviour of a particle near an interface under shear
is an important first step in understanding the behaviour of such systems,
and how to achieve the desired distribution of particles in the final prod-
uct. Anderson et. al. [129] study the behaviour of a single particle close
to an interface under shear, building on previous work on the dynamics of a
particle, subject to an external force, near the interface between two liquid
phases [126, 128]. In the later paper, the shear stress is applied parallel to
the interface, which separates a viscoelastic fluid (within which the particle
is initially situated), and a Newtonian fluid. Shearing the system induces a
gradient in the normal stress close to the interface, and also creates a Laplace
pressure as the interface is subtly distorted by the effect of shearing. The
motion of the particle is determined by the balance of these forces which, in
turn depend on dimensionless parameters in the model - chiefly the Weis-
senberg number, Wi (shear rate times relaxation time), and the Capillary
number, Ca (the ratio of viscous stress and capillary stress). The simulations
delineate four possible outcomes: migration of the particle away from the in-
terface; movement towards the interface (which eventually stalls); adhesion
to the interface; and migration across the interface into the Newtonian fluid.
By varying Wi and Ca, the authors are able to produce morphology plots,
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showing the dependence of the final state of the particle on the dimensionless
parameters. They also vary other parameters in the model - for example, the
equilibrium contact angle (determined by W in our model) and the mobility
of the particle (determined by D in our model) - and show how these changes
modify the morphology plots.

In a similar vein, Araki and Tanaka [95, 91] considers the movement of mul-
tiple particles, under hydrodynamic forces caused by phase separation in a
quenched homogeneous polymer blend, and show how the resultant morphol-
ogy of the system varies as the particle concentration and mobility is varied.
In these simulations, there is no external shear on the system.

In contrast, the approach taken in this chapter is to apply a shear force that is
perpendicular to the interface between the two liquid phases, and to observe
the behaviour of the particle at different shear rates: in particular, can the
particle be induced to migrate to its preferred phase, or does it adhere to
the interface and remain stuck there? We begin by studying the dewetting
of a thin film of the preferred phase at the surface of the particle, before
considering later stages of the process by which the particle might migrate
across the interface between the liquid phases.

As before, we use a wetting parameter of W = 4.0 in all simulations. The
particle is initially located in the non-favoured phase, 4.5nm from the inter-
face between the liquid phases, just less than the critical film thickness of
dc ∼ 5nm. We vary this distance up to d = 10nm, and observe the dynamics
of dewetting.

Initially, we consider the effect of two different shear rates on the dewetting
behaviour of the system: γ̇ = 1.0 × 104 s−1 and γ̇ = 2.0 × 104 s−1. The
former shear rate corresponds to a strain of 100% at 106 ×∆t = 100µs. In
all cases, the time at which dewetting occurs is estimated from snapshots of
the system.

First, we illustrate the qualitative dynamics of dewetting at the chosen shear
rates, compared with the dynamics of the quiescent system. Figure 3.6 shows
snapshots of the system near the point of dewetting, after dewetting, and at
a later stage, for the two shear rates considered, and at zero shear.

We also show the magnitude of the fluid velocity field, close to the surface of
the particle, at the dewetting point, and shortly afterwards (figure 3.7). As
in the quiescent system, the maximum speed of fluid flow is observed close
to the surface of the particle, just after dewetting occurs, and is ∼ 1.0ms−1.
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Figure 3.6: Stages of dewetting in a quiescent system, and at two different shear rates.
In each case, the particle starts at a distance d = 4.5nm) from the interface between the
liquid phases, and we show the system at or near the dewetting point, after dewetting,
and at a later stage, as shearing continues.

To quantify these observations, we plot the dewetting time, against the initial
distance of the particle from the interface, which ranges from d = 2.5nm to
d = 10.0nm, for the quiescent system and for the two shear rates used. Table
3.2 summarises the results, which are plotted in figure 3.8.

Again, we note a critical film thickness of dc ∼ 5nm. When d & dc, dewet-
ting only occurs under shear, as the externally imposed flow deforms the
interface between the liquid phases, bringing it closer to the surface of the
particle. This is consistent with the assumed range of the intermolecular
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Figure 3.7: Heat map of the magnitude of the fluid velocity field in a sheared system
(γ̇ = 2.0 × 104 s−1) at the onset of dewetting, and shortly afterwards. We focus on a
region close to the surface of the particle (visible as a circular region at the top-right of
each snapshot), which starts at a distance d = 4.5nm) from the interface between the
liquid phases. Dark blue shading indicates a quiescent region of the system, while red
indicates the highest flow speeds.

Dewetting Time [µs]
Distance γ̇ = 0 γ̇ = 1.0 γ̇ = 2.0

[nm] [×104 s−1] [×104 s−1] [×104 s−1]
2.5 1.2 1.2 1.2
4.0 10.4 10.6 10.8
4.5 57.4 49.7 46.8
5.0 - 64.2 54.5
6.0 - 76.5 61.1
7.0 - 86.4 65.9
8.0 - 96.2 70.5
9.0 - 107.0 74.9
10.0 - 118.4 79.0

Table 3.2: Dewetting time in a quiescent system and under a constant shear rate of
γ̇ = 1.0× 104 s−1 and γ̇ = 2.0× 104 s−1 as the distance of the particle from the interface
varies from d = 2.5nm to d = 10.0nm.

forces in our model, and with the range of values for the critical film thick-
ness seen in the literature [41]. The dewetting time ranges from ∼ 1µs to
∼ 100µs. Again, this is consistent with our assumptions about the range
of intermolecular forces, and the characteristic time scale used in our model.
Finally, the dewetting curves in figure 3.8 clearly show a transition from
the diffusive regime to the hydrodynamic regime, close to the critical film
thickness, dc. When d ≤ dc ∼ 5nm the dewetting time is almost indepen-
dent of the shear rate, because the dynamics of the system are dominated
by the rapid diffusive mechanism at these length scales. In contrast, when
d & 7.0nm, the dewetting time appears to vary almost linearly with d, since
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Figure 3.8: Dependence of the dewetting time, in the Rouse regime, on the initial distance
of the particle from the interface, with and without shear.

the constant shear applied to the system is now the dominant mechanism
in the dewetting process. In the next chapter, we show that these observed
dewetting times are consistent with a simple model, in which the interface
between the two liquid phases shears linearly with time, and dewetting oc-
curs almost instantaneously when the distance between the particle and the
interface is small (less than ∼ 3.0nm, say).

3.8 Shear-Induced Migration across an Inter-

face

Under shear, it is possible that the particle will be fully expelled from its non-
preferred phase, after dewetting has occurred. In this section, we consider
the steady state of the particle, beyond the dewetting point, at a range of
constant shear rates. We take an initial state in which the particle begins
d = 4.5nm (i.e. just below the critical film thickness, dc ∼ 5.0nm) from
the central interface as our base case, and vary the shear rate from γ̇ =
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1.0 × 104 s−1 to γ̇ = 2.4 × 104 s−1 in steps of ∆γ̇ = 0.2 × 104 s−1. In each
case, the simulation runs long enough to observe the complete expulsion of
the particle from its non-preferred phase or, if expulsion does not occur, any
alternative steady state that might arise.

When complete expulsion occurs, it is preceded by initial dewetting, breaking
of the central interface under shear-induced stress, a second dewetting, and
wetting of the particle by its preferred phase. Expulsion occurs when the
non-preferred phase detaches completely from the surface of the particle.
Some time after the particle is expelled, the system reaches its steady state.
Figure 3.9 illustrates the generic stages in the expulsion process. Note that,
in this figure, ”interface breaking” refers to the central interface between the
two liquid polymer phases, and not to the interface of either liquid phase
with the solid particle. Loosely speaking, breaking occurs when the central
interface detaches itself from the top edge of the system, under the effect
of shear strain. A more precise, operational definition of interface breaking
might be desirable for some purposes but we do not pursue this here, as our
main interest is in the other stages of the expulsion process.

However, in some cases, after the interface between the two liquid phases
breaks, the second dewetting fails to occur because the region of the preferred
phase fails to make contact with the surface of the particle, as it retracts.
In this scenario, which occurs at the lowest and highest shear rates used in
our simulations, an alternative steady state is reached in which the particle
adheres to the surface of a droplet of the preferred phase, embedded in the
non-preferred phase (figure 3.10).

The motion of the particle as the system is sheared, and dewetting occurs,
depends on the steady state reached. Figure 3.11 compares the trajectory
of the particle in real space for shear rates of γ̇ = 1.2 × 104 s−1 and γ̇ =
1.6 × 104 s−1. At the higher shear rate, the particle is expelled from its
non-preferred phase while, at the lower shear rate it reaches the alternative
steady state of figure 3.10. The trajectories shown in figure 3.11 are typical
of the two cases. Note that the displacement of the expelled particle, relative
to its starting position, is primarily in the positive y-direction, while the
displacement of the particle in the alternative steady state is primarily in the
negative x-direction

It is also instructive to consider the evolution of the mean free energy density
at various shear rates up to a point just after dewetting first occurs (figure
3.12).
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Figure 3.9: Generic stages of the expulsion process, from initial dewetting, via interface
breaking, to the point of expulsion, and the steady state at long time scales. In this
simulation, the particle starts at a distance d = 4.5nm from the central interface, and the
shear rate is γ̇ = 2.0 × 104 s−1. Interface breaking occurs at ∼ 200.0µs, and the steady
state shown occurs after ∼ 1.0ms.

Figure 3.12 shows a period of very early, rapid equilibration at the interface
of duration ∼ 1.0µs, during which the mean free energy density decreases
slightly. This is followed by a steady increase in the mean free energy den-
sity due to the increased strain at the interface as the system is sheared at a
constant rate. At all shear rates, dewetting occurs between 40µs and 50µs,
and is accompanied by a temporary decrease in the mean free energy density,
before it resumes its steady increase due to shear-induced strain at the in-
terface between the two liquid phases. The sawtooth pattern superimposed
on the mean free energy density curves is an artefact of the discretisation of
the lattice.

Finally, we turn to the time scales over which the various stages of the
particle’s expulsion from its non-preferred phase occur. Table 3.3 sum-
marises the results of simulations in the Rouse regime at shear rates between
γ̇ = 1.0× 104 s−1 and γ̇ = 2.4× 104 s−1. For completeness, we also show the
dewetting time in the quiescent system, where the other stages of expulsion
do not occur (instead, the particle adheres to the slowly flattening interface).
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Figure 3.10: Alternative steady state, observed at the lowest and highest shear rates used
in our simulations. In this case, γ̇ = 1.2× 104 s−1 and the initial distance of the particle
from the central interface is d = 4.5nm. The image shows the state of the system after
600µs.

Shear Rate Dewetting 1 Dewetting 2 Wetting Expulsion
[×104 s−1] [µs] [µs] [µs] [µs]
No Shear 57.4 - - -

1.0 49.7 A A A
1.2 48.9 A A A
1.4 48.2 225.6 245.8 310.8
1.6 47.7 201.0 220.8 295.4
1.8 47.2 175.9 194.3 270.3
1.9 47.0 159.7 176.7 251.3
2.0 46.8 144.6 159.6 160.3
2.2 46.4 A A A
2.4 46.0 A A A

Table 3.3: Stages of the expulsion process at constant shear rates from γ̇ = 1.0×104 s−1 to
γ̇ = 2.0× 104 s−1. In all simulations, the particle starts 4.5nm from the central interface.
A letter ’A’ indicates that the alternative steady state in which the particle adheres to a
droplet of its preferred phase is reached (i.e. after the initial dewetting, no further stages
of the expulsion process are observed).

The expulsion data summarised in table 3.3 is plotted in figure 3.13.

In these simulations, complete expulsion occurs at shear rates of 1.4×104 s−1 ≤
γ̇ ≤ 2.0 × 104 s−1. Outside this range, the system reaches the alternative

111



Figure 3.11: Typical particle trajectories at two shear rates, over a physical time period
of 400ms. At the higher shear rate of γ̇ = 1.6×104 s−1, the particle is fully expelled from
the non-preferred phase. Labels A to F correspond with the stages of expulsion depicted
in figure 3.9. At the lower shear rate of γ̇ = 1.2 × 104 s−1, dewetting 2 does not occur.
Instead, a droplet of the preferred phase forms, and the particle adheres to it. From the
point corresponding with D to the point G, the droplet contracts mainly in the x-direction.
From G to H, the droplet contracts mainly in the y-direction.

steady state in which the particle adheres to a droplet of its preferred phase.

The second dewetting time decreases (approximately) linearly as the shear
rate increases. Similarly, the wetting time decreases (approximately) lin-
early as the shear rate increases, and the time between second dewetting and
wetting is roughly constant (∼ 20µs) at all shear rates at which complete
expulsion occurs.

The relationship between the expulsion time and the shear rate is more com-
plex. Between γ̇ = 1.4 × 104 s−1 and γ̇ = 1.9 × 104 s−1 the expulsion time
decreases as the shear rate increases, but the relationship is notably less lin-
ear than that between the times of the earlier stages of expulsion, and the
shear rate. At γ̇ ≤ 2.0× 104 s−1, there is a sudden decrease in the expulsion
time, and the particle is expelled from its non-preferred phase very soon after
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Figure 3.12: Evolution of the mean free energy density under shear up to, and just after,
the first dewetting point for γ̇ = 1.0× 104 s−1 to γ̇ = 2.0× 104 s−1.

wetting occurs, In fact, these two events are almost simultaneous.

Finally, although it is not obvious in figure 3.13, the initial dewetting time
decreases as the shear rate increases. To highlight this point, we present the
corresponding simulation results and plot as previously, but with an initial
distance of the particle from the interface of d = 9.0nm, double the value
used in the earlier simulations (table 3.4 and figure 3.14).

As expected, the decrease in the initial dewetting time as the shear rate
increases is now more easily visible, although the relationship is still quite
weak due to the short time scales involved, compared with the time scales of
the later stages of the expulsion process. In contrast with simulations where
the particle starts d = 4.5nm from the interface, the particle is now almost
always expelled from its non-preferred phase. This indicates that the steady
state of the particle is determined by both the initial configuration of the
system, and the applied shear rate.

For shear rates between γ̇ = 1.0× 104 s−1 and γ̇ = 1.4× 104 s−1, figure 3.14
resembles the higher shear rate region of figure 3.13. That is, we observe
a somewhat linear relationship between the times of the various stages of

113



Figure 3.13: Stages of the expulsion process at constant shear rates from γ̇ = 1.0×104 s−1

to γ̇ = 2.4×104 s−1. In all simulations, the particle starts 4.5nm from the central interface.
At shear rates of γ̇ ≤ 1.2× 104 s−1 and γ̇ ≥ 2.2× 104 s−1 the alternative steady state, in
which the particle adheres to a droplet of its preferred phase, is reached.

Shear Rate Dewetting 1 Dewetting 2 Wetting Expulsion
[×104 s−1] [µs] [µs] [µs] [µs]
No Shear - - - -

1.0 106.9 291.4 315.6 381.0
1.2 92.5 243.9 267.8 329.6
1.4 85.1 214.1 235.0 300.7
1.6 80.5 159.8 189.7 190.7
1.8 77.2 158.5 178.4 180.4
2.0 74.7 162.7 206.0 217.2
2.2 73.0 192.1 267.4 300.2
2.4 71.9 A A A

Table 3.4: Stages of the expulsion process at constant shear rates from γ̇ = 1.0×104 s−1 to
γ̇ = 2.0× 104 s−1. In all simulations, the particle starts 9.0nm from the central interface.

the expulsion process and the shear rate. Again, the time between second
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Figure 3.14: Stages of the expulsion process at constant shear rates from γ̇ = 1.0×104 s−1

to γ̇ = 2.4×104 s−1. In all simulations, the particle starts 9.0nm from the central interface.
In contrast with the case when the particle starts 4.5nm from the central interface, the
particle is expelled into its preferred phase, at almost all shear rates.

dewetting and wetting is roughly constant at ∼ 20µs in this range of shear
rates.

At γ̇ = 1.6 × 104 s−1, there is a sudden decrease in the expulsion time, and
the particle is expelled from its non-preferred phase very soon after wetting
occurs (the two events are virtually simultaneous). This is similar to what
we observe in the previous simulations with d = 4.5nm at a shear rate of
γ̇ = 2.0× 104 s−1.

At shear rates of γ̇ ≥ 1.6× 104 s−1, the times of the later stages of expulsion
(second dewetting, wetting, and expulsion) remain relatively constant as the
shear rate increases, before beginning to increase when the shear rate is
γ̇ ∼ 2.0×104 s−1. This rising trend in the times to second dewetting, wetting
and expulsion continues up to a shear rate of γ̇ ∼ 2.4 × 104 s−1 when the
system abruptly reverts to the alternative steady state illustrated in figure
3.10.
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The behaviour of the system when the shear rate is γ̇ = 1.8 × 104 s−1 is
unusual. Although the particle is initially expelled from the non-preferred
phase at t = 180.4µs (as plotted in figure 3.14), it then repeatedly adheres
to, and detaches from, the interface between the liquid phases, before finally
reaching the steady state observed in the other simulations (figure 3.15).
The final expulsion of the particle from the non-preferred phase occurs at
t ∼ 550µs, much later than the initial expulsion time plotted in figure 3.14.

Figure 3.15: Stages of the expulsion process at γ̇ = 1.8× 104 s−1 when the particle starts
9.0nm from the central interface. Image (a) shows the initial expulsion of the particle at
t = 180.4µs. The system then alternates between states similar to those shown in images
(b) and (c), although (d) is also observed at t ≈ 450µs. Eventually, the state shown in
image (e) is reached, and the particle is finally expelled from it’s non-preferred phase at
t ≈ 550µs; image (f) shows the system shortly afterwards, as it evolves towards its steady
state.

Regardless of the starting position of the particle, two steady states are ob-
served: expulsion from the non-preferred phase; and adhesion to the interface
of a droplet of the preferred phase, in a matrix of the non-preferred phase.
Both of these regimes are seen in [95], where the migration of multiple par-
ticles is promoted by hydrodynamic currents in a phase-separating blend.
In contrast to [129], we do not observe steady states in which the particle
remains in the non-preferred phase. This is to be expected, since the effect
of shear in our simulations is to move the interface between the two liquid
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phases closer to the surface of the particle, until the the non-localised forces
in the vicinity of the particle surface become sufficient to initiate dewetting.

However, it is not necessarily the case that the particle cannot remain in the
non-preferred phase, when the system is sheared. As figure 3.11 shows, the
particle initially moves away from the interface, under the influence of shear-
induced flow. It is also possible that different parameter choices might lead
to a wider variety of steady states, like those observed in [129]. In particular,
we hypothesise that the relative strength of the particle’s affinity for the two
liquid phases, as represented by the W parameter, will partially determine
the final steady state of the system under shear.

3.9 Methodological Note

We end this chapter with some methodological remarks about how the dewet-
ting point - and the other stages of the particle’s migration across the inter-
face between the two liquid phases - is determined. Earlier, we stated that
we take our cue from snapshots of the system, as it approaches the dewetting
point, and that we take dewetting to occur when the preferred phase first
makes clear contact with the surface of the particle. An alternative approach
is to observe the evolution of the mean free energy density of the system as
it approaches the dewetting point. As figure 3.12 makes clear, dewetting is
accompanied by a spontaneous and rapid decrease in the mean free energy
density. Figure 3.16 compares these two approaches for a quiescent system
(so, for clarity, the increase in the mean free energy density due to shear is
absent), when the initial distance of the particle from the central interface is
d = 4.5nm.

Dewetting occurs rapidly in the strongly segregated regime, in which the
Flory-Huggins interaction parameter, χ = 4.0. Nevertheless, there is a dif-
ference of more than 1.0µs between the dewetting times, as measured by
the two methodologies. It is tempting to insist that the first method, which
identifies the dewetting point with the point at which the mean free energy
density spontaneously decreases, is the correct one, since it is firmly grounded
in the thermodynamics of the system. However, this approach falls foul of
a practical difficulty, as illustrated by figure 3.17, which plots the evolution
of the mean free energy density of the system over a longer period, up to
the point at which it is expelled from its non-preferred phase, or reaches the
alternative steady state. Note that the labels in figure 3.17 match the labels
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Figure 3.16: Comparison of two methods of determining the dewetting point. The system
is quiescent, and the initial distance of the particle from the central interface is d = 4.5nm.
If we take dewetting to occur when there is a spontaneous and rapid decrease in the mean
free energy density of the system, the dewetting time is t = 55.8µs. If we take dewetting
to occur when the preferred phase first makes clear contact with the surface of the particle,
the dewetting time is t = 57.4µs.

in figure 3.11, and mark key stages in the particle’s trajectory, as the system
is sheared.

In figure 3.17 we observe the first dewetting at both shear rates as a tempo-
rary decrease in the mean free energy density, before it continues to rise due
to the shear induced strain at the interface between the two liquid phases.
When the interface breaks, the mean free energy density rapidly decreases,
and the variations in the mean free energy density due to the second dewet-
ting, and later stages of the expulsion process, are very difficult to discern.
The later variations in mean free energy density may be attributed to the
net effect of shear, which tends to increase the total free energy of the sys-
tem, and the relaxation of the interface between the two liquid phases, which
tends to decrease the free energy. In any case, it is difficult to correlate the
key events in the particle’s migration across the interface between the two
liquid phases, with changes in the evolution of the mean free energy density
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Figure 3.17: Evolution of mean free energy density, at two shear rates, over a physical
time period of 400ms. At the higher shear rate of γ̇ = 1.6× 104 s−1, the particle is fully
expelled from the non-preferred phase, while at the lower shear rate of γ̇ = 1.2× 104 s−1,
the particle adheres to a droplet of the preferred phase. Labels A to H correspond with
the same labels in figure 3.11.

of the system.

Before leaving figure 3.17, it is interesting to note that the mean free en-
ergy density in the alternative steady state (figure 3.10) is higher than the
mean free energy density when the particle is expelled from the non-preferred
phase. This may be due to a combination of two factors. Firstly, there is
an energy cost to the particle remaining in contact with the non-preferred
phase. Secondly, the droplet of the preferred phase in the alternative steady
state remains subject to shear, which prevents it from reaching an energy-
minimising shape, and increases the total free energy. In contrast, when the
particle is expelled from the non-preferred phase, both interfaces between the
liquid phases are parallel to the applied shear field, which therefore performs
no work on them.

A further difficulty with using a plot of the mean free energy density to
determine the dewetting point, and the timing of other key events in the
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particle’s migration will become apparent in chapter 5, where we consider
weakly segregated systems. The issue here is that dewetting is a much more
gradual process in a weakly segregated system, due to the lower energy of
the central interface between the two liquid phases. Thus, the determination
of the dewetting point, by inspection of the evolution of the mean free energy
density, is not straightforward, and determination of the timing of other key
events in the particle’s migration is even more difficult.

For these reasons, we prefer to determine the timing of key events in the
particle’s migration across the central interface by inspecting snapshots of
the system, as it is sheared. Although this approach is not strictly grounded
in the thermodynamics of wetting and dewetting, it is more practical, given
the effect of shear on the mean free energy density of the system, and it
may be applied consistently to a wide range of systems in which the degree
of entanglement, and the strength of the segregation between the two liquid
phases is varied.

3.10 Summary

Building on the theoretical work of the previous chapter, we have constructed
and solved a physical model for the Stokes equations of a non-homogenous
liquid in the presence of solid interfaces, and applied it to a minimal nanocom-
posite system. Our model is consistent with the contact value theorem re-
garding thermodynamical equilibrium of liquids in contact with solid inter-
faces [107, 109, 112, 110] and with the general formalism of Onsager regarding
the linear response theory of out-of-equilibrium systems [114, 117, 89]. It al-
lows us to describe how non-homogeneous liquids relax towards equilibrium
by diffusion and convection. A key feature of our model is that the interfacial
forces on solid interfaces are not located on the interface itself but are dis-
tributed in their vicinity and appear as body forces in the Stokes equations.

To solve the physical model, we use a numerical approach introduced by
Araki and Tanaka where the particle is described as a highly viscous liquid;
this allows us to solve the Stokes equations in the whole system without
managing complex boundary conditions. The model enables us to describe
wetting and dewetting of particles at, or in the vicinity of, liquid interfaces, at
rest or in the presence of an imposed shear. It also enables us to realistically
model the migration of a particle from one liquid phase to another, via a
process of first dewetting, second dewetting, wetting by the preferred phase,
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and expulsion, when shear is applied to the system, while enabling us to
explore the factors which determine whether expulsion eventually occurs, or
whether an alternative steady state is reached.

All the results described in this chapter refer to systems in the Rouse regime,
where D = 1, and the effects of the entanglement of polymer chains at the
microscopic level are not significant. In addition, the minimal nanocompos-
ite system considered in this chapter is strongly segregated (χ = 4.0). That
is, the liquid phases in the system are close to being pure polymers of either
species A or species B, and the interfacial energy between the two liquid
phases is high. Both of these factors make it relatively straightforward to
simulate the behaviour of the minimal nanocomposite system. In the remain-
der of the thesis, we relax each in turn, and observe how the behaviour of the
minimal nanocomposite system changes, while also becoming more difficult
to simulate.
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Chapter 4

Entangled Systems

4.1 Introduction

In this chapter we consider the behaviour, in the entangled regime, of a
particle close to the interface between the two liquid phases in a minimal
nanocomposite system. In the terms of our model, this means that the degree
of polymerisation, N exceeds the entanglement limit, Ne, which we take to
be 100. At the molecular scale, this implies that polymer chain dynamics
may be described by the theory of reptation.

In brief, the reptation model treats a single, test polymer chain as if it were
moving within a tube defined by topological constraints (entanglements) im-
posed by other chains in the melt (or solution) [99, 132]. It is a mean field
theory in the sense that it abstracts from the detail of local interactions with
other chains and, in effect, replaces the potential they create with an average
potential represented by the tube, within which the test chain is said to be
confined. This means that the tube may only move parallel to the axis of
the tube defined by these topological constraints: in other words, it reptates
through the tangle of other chains in the system, as a snake slithers through
grass. Such entangled systems are defined by a characteristic reptation time,
τrept, which determines what fraction of the test chain, at time t, is still lo-
cated within the tube that enclosed it at the earlier time t′. The relaxation
of an entangled polymer system (as characterised by its plateau modulus) is
determined by this characteristic timescale, τrept.

Further refinement of this model is possible, and the dynamics of entangled
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polymer systems remains an active area of research. For example, the dou-
ble reptation model developed by des Cloiseaux [133] and Tsenoglou [134]
recognises that the physical reality of the tube that constrains the test chain
in the reptation model lies in the topological constraints imposed by other
polymer chains in the melt. To take account of the fact that these other
tubes are themselves in motion, the double reptation model treats the tube
defined by their entanglements with the test chain as subject to relaxation
with its own characteristic timescale.

In our model, we focus on the mesoscale, and abstract from these compli-
cations at the molecular level. The degree of entanglement in the system
is represented by the parameter D (a dimensionless effective diffusion coeffi-
cient), which equates to the ratio of N , the number of monomers in a polymer
chain, to the entanglement limit, Ne = 100. The use of a single parameter, D
to represent the underlying complexity at the molecular scale means that we
also neglect viscoelastic effects, and effects attributable to the non-isotropy
at the molecular scale, of long polymer chains. Nevertheless, as we will see,
varying D gives rise to a rich variety of dewetting behaviour in the minimal
nanocomposite system that is the focus of our study.

The chapter is structured as follows. Firstly, we consider the case when
D = 10. This corresponds with a degree of polymerisation of N = 1000
monomers per chain. This is the close to largest value of N accessible,
given the computational resources available. Although much larger poly-
mer molecules exist, the case of N = 1000 places us well into the entangled
regime, and is sufficient to exhibit behaviour that contrasts with the be-
haviour of our system in the Rouse regime.

Next, we turn to the two intermediate cases of D = 5 and D = 2, and
compare the dewetting behaviour of our system with the behaviour of both
the maximally entangled system (D = 10) and the system in the Rouse
regime.

Finally, we review some of the main results obtained so far, and consider
their implications for the mechanisms at work in the dewetting process. In
particular, we assess the influence of shear-induced hydrodynamic flow and
the forces associated with it on the shear strain of the system at the first
dewetting point. A simple geometrical model of dewetting under shear, based
on three key assumptions, is used to guide the analysis.
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4.2 Parameter Settings

The parameters that define the strength of interactions between polymers
and between each polymer and the particle remain unchanged. That is, as
in the Rouse regime simulations, we take χ = 4.0 and W = 4.0.

The main change is that the effective diffusion coefficient, D, is no longer
equal to 1, but is instead set, initially, to the higher value of D = 10 to
reflect the entanglement of polymer chains at the molecular level. In our
model, D equates to N

Ne
, where N is the degree of polymerisation, and Ne

is the entanglement limit. Thus D = 10 implies that each polymer chain in
our system consists of 1000 monomers, and we are well into the entangled
regime.

To maintain computational stability, we decrease the time step in our sim-
ulations from ∆̃t = 0.001 to ∆̃t = 0.0001. Physically, this means that each
time step equates to 10−8 s in our entangled regime simulations, compared
with 10−10 s in the Rouse regime.

From our earlier discussion (section 3.4) of dimensionless quantities in the
model, we can deduce that varying D will also change some of the other
physical quantities represented by the model. For example, the increase in
the effective diffusion coefficient from D = 1 to D = 10 reduces the physical
shear rate. In the entangled regime, with D = 10, a dimensionless shear rate
of ˜̇γ = 0.001 implies a physical shear rate of γ̇ = 10 s−1; in contrast, the same
dimensionless shear rate implies a physical shear rate of γ̇ = 1.0 × 104 s−1

in the Rouse regime. In general, the relationship between the physical shear
rate and the effective diffusion coefficient is given by: γ̇ ∝ 1

D3 .

Similarly, increasing D increases the mean physical viscosity, η, of the system.
Consideration of the relationships between the various quantities in the model
shows that η ∝ D3.

4.3 Dewetting in a Highly Entangled System

In this section, we consider the dewetting behaviour of a minimal nanocom-
posite system when the effective diffusion coefficient, D = 10. This is the
highest value of D used in our simulations due to computational resource
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constraints, and corresponds with a polymer chain length of N = 1000. Hav-
ing already validated our model with simple wetting simulations in the Rouse
regime (section 3.5), we proceed directly to an investigation of the dewetting
behaviour of our entangled system.

As in the Rouse regime simulations, we first vary the initial distance d of the
particle from the central interface and observe the time it takes for spinodal
dewetting to occur. In a quiescent system, this enables us to determine
the critical film thickness. We then explore dewetting behaviour under two
different shear rates (γ̇ = 10 s−1 and γ̇ = 20 s−1) for a range of values of d
above and below the critical film thickness.

Table 4.1 summarises the results of our simulations, and these are plotted in
figure 4.1.

Dewetting Time [ms]
Distance γ̇ = 0 γ̇ = 10 s−1 γ̇ = 20 s−1

[nm]
2.5 0.2 0.1 0.1
4.0 3.6 3.6 3.6
4.5 24.8 24.5 22.9
5.0 - 53.0 45.1
6.0 - 67.1 53.3
7.0 - 78.5 59.1
8.0 - 89.8 64.2
9.0 - 101.6 68.9
10.0 - 113.6 73.2

Table 4.1: Dewetting time in a quiescent system, and at constant shear rates of γ̇ = 10 s−1

and γ̇ = 20 s−1. The distance of the particle from the interface is varied from d = 2.5nm
to d = 10.0nm. The system is highly entangled, with an effective diffusion coefficient,
D = 10.

Comparing these results with those in the Rouse regime, we first note the
similarity in the overall shape of the dewetting curves at the upper and
lower shear rates used in the simulations. A second important observation
is that, in both regimes, the critical film thickness, dc, lies between 4.5nm
and 5.0nm. This is to be expected as the principal effect of increasing D is
to slow down the dynamics of the system, while leaving many of its other
essential physical properties intact.

The slower dynamics of the highly entangled system is shown by the dewet-
ting times which are of the order of milliseconds, in contrast to dewetting
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Figure 4.1: Dependence of dewetting time on the distance of the particle from the interface,
with and without shear. At rates much greater than 20 s−1 shear is not sustainable. The
system is highly entangled, with an effective diffusion coefficient, D = 10.

times in the Rouse regime, which are of the order of microseconds. For ex-
ample, when d = 10.0nm and the dimensionless shear rate is ˜̇γ = 0.002,
the dewetting time in the Rouse regime is approximately 79µs, while in the
highly entangled regime, the dewetting time is approximately 73ms. In this
example, a factor of roughly 1000 separates the two dewetting times. It is
no coincidence that D3 = 103 = 1000, since the parameter D determines the
dynamics of our system. In particular, as noted in our earlier discussion of
parameter settings, the physical shear rate scales with D3. Since shear is
applied to the system at a constant rate, a simple model in which the cen-
tral interface approaches the particle linearly, with dewetting occurring just
before the interface becomes tangential to the surface of the particle predicts
that the dewetting time will also vary with D3.

The comparison of dewetting times in the quiescent system is a little more
complicated. Since there is no shear, we cannot appeal to the relationship be-
tween the physical shear rate and the parameter D to explain the difference.
Instead, we note that dewetting in the quiescent system is governed almost
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entirely by a diffusive mechanism, for which the time scale is determined by
the physical time associated with each step in the simulation. Referring to
our earlier discussion of parameter settings, one simulation step in the highly
entangled regime corresponds with a physical time increment of ∆t = 10−8 s
while in the Rouse regime, the corresponding time increment is ∆t = 10−10 s,
so the two time increments differ by a factor of 100. We might expect this to
be reflected in the dewetting times in a quiescent system in the two regimes,
but this is not quite what we observe. For example, when d = 4.5nm, the
dewetting time of a quiescent system in the Rouse regime is approximately
57µs, while in the highly entangled regime, the dewetting time is approx-
imately 25ms, which is approximately 400 times longer. Similarly, when
d = 2.5nm. the ratio between the dewetting times in the two regimes is
approximately 160. The reason for this discrepancy with what might be ex-
pected is not clear, but we speculate that it might be related to the fact that
the particle is free to move under the influence of hydrodynamic forces. As
we saw in sections 3.6 and 3.7, the fluid flows associated with dewetting are
not negligible, and tend to push the particle away from the central interface,
even as the interface is breached. It is plausible to suppose that this con-
tributes to a small increase in the dewetting time. We consider the influence
of hydrodynamic forces on the motion of the particle, and the implications
of this for the dewetting time, further in section 5.6.

Turning to the specific shape of the dewetting curves, we see that when
d ≤ dc ∼ 4.5nm the dewetting time is almost independent of the shear rate
(and, indeed, of whether shear is applied at all). This is because dewetting at
these length scales is dominated by the rapid diffusive mechanism, so there
is insufficient time for the effect of shear to become apparent. In contrast,
for d & 7.0nm , the dewetting time varies almost linearly with d, consistent
with a simple linear model in which shear is uniform and dewetting occurs
very rapidly, once the central interface is close (d < dc) to the surface of
the particle. It is worth noting that, for any given value of d & 7.0nm, the
dewetting time at the higher shear rate is approximately half the dewetting
time at the lower shear rate. For example, when d = 10.0nm, the dewetting
times are 73.2ms and 113.6ms, respectively. The fact that the former is
not exactly half of the latter is mostly due to the confounding effect of the
diffusive mechanism, which is influential when the central interface nears the
surface of the particle.

In the range dc ≤ d . 7.0nm, the system transitions from the diffusive
regime to the hydrodynamic regime where the dewetting time depends almost
linearly on d. There is some evidence that the transition to the hydrodynamic
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regime occurs more rapidly at the lower shear rate of γ̇ = 10 s−1, as indicated
by the gradient of the two curves at d = 4.5nm. Again, we hypothesise that
this reflects the differential effect of hydrodynamic flows at the two shear
rates.

4.4 Expulsion in a Highly Entangled System

We now explore the behaviour of our highly entangled system under shear
over a longer time period - in principle, up to the steady state in which the
particle resides in its preferred phase, after being expelled from the non-
preferred phase. From the simulations in the Rouse regime, we expect to
observe four main stages in the expulsion process: initial dewetting, sec-
ond dewetting (following the breaking of the central interface at high shear
strain), wetting, and expulsion (figure 3.9). However, in practice, lower shear
rates in the highly entangled regime, when D = 10, tend to result in the al-
ternative steady state previously observed in Rouse regime simulations, in
which the particle adheres to a droplet of its preferred phase, within a matrix
of the non-preferred phase (figure 3.10)

Furthermore, even at higher shear rates, up to the maximum value used in our
simulations in this highly entangled regime, the particle is never completely
expelled from its non-preferred phase. Instead, it adheres to the interface
between the two polymers, which is now horizontal, due to prolonged shear,
as the interface continues to relax. Figure 4.2 shows this new alternative
steady state.

The state shown in figure 4.2 was achieved after 20 days of simulation time.
At this point, the upper interface between the two liquid phases was continu-
ing to relax, so this cannot accurately be described as the final steady state.
However, we expect the final steady state to closely resemble this snapshot
of the system. In particular, we do not expect the particle to be expelled
into its preferred phase since the applied shear is now almost parallel to the
interfaces, and is unlikely to be of sufficient magnitude to overcome the forces
that bind the particle to the interface. Instead, we expect the upper interface
to continue to relax (flatten), taking the particle with it, until it reaches a
final steady state. At this point, we would expect to see a contact angle
between the interface and the surface of the particle that is consistent with
Young’s equation.
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Figure 4.2: Alternative steady state of a simulation in the entangled regime after 900ms.
In this simulation, the particle begins 9.0 lattice cells (∼ 4.5nm) from the interface and
the system is sheared at γ̇ = 20 s−1.

In summary, and in contrast with the Rouse regime, simulations in the highly
entangled regime, exhibit the stages of the ”expulsion” process depicted in
figure 4.3.

Having described the typical long term evolution of the system under shear,
we now present the quantitative results of our simulations. Table 4.2 shows
the times to the various stages in the evolution of the system at shear rates
ranging from γ̇ = 10 s−1 to γ̇ = 20 s−1. As in the corresponding Rouse regime
simulations, the initial distance of the particle from the central interface is
d = 4.5nm in all cases (i.e. just below the critical film thickness, dc). These
results are then plotted in figure 4.4.

The most striking thing about figure 4.4 is its simplicity compared with the
corresponding plots for the Rouse regime (figures 3.13 and 3.14). For a range
of shear rates, from γ̇ = 10 s−1 to γ̇ . 16 s−1, only the first dewetting occurs.
Following that, interface between the two liquid phases fails to make contact
with the surface of the particle after it breaks due to shear-induced strain,
and the steady state in which the particle adheres to a droplet of its preferred
phase is reached. Furthermore, as previously noted, even when the second
dewetting does occur, at shear rates of γ̇ ≥ 160 s−1, the particle is never fully
expelled from its non-preferred phase.

In common with the Rouse regime results, there is an approximately linear
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Figure 4.3: Generic stages of the expulsion process in the highly entangled regime (D =
10), from initial dewetting to the end state observed at long time scales. In this simulation,
the particle starts at d ∼ 4.5nm from the interface, and the shear rate is γ̇ = 18 s−1.
Interface breaking occurs at approximately t = 132ms, and the end state shown is at t =
900ms. An earlier state of the system at t = 200ms (Adhesion) is shown for illustrative
purposes.

Shear Rate Dewetting 1 Dewetting 2 Wetting Expulsion
[s−1] [ms] [ms] [ms] [ms]
10 24.5 A1 A1 A1
12 24.3 A1 A1 A1
14 24.0 A1 A1 A1
16 23.6 189.0 199.4 A2
18 23.2 163.4 174.3 A2
20 22.8 137.7 148.1 A2

Table 4.2: Summary of times to various stages in the long-term evolution of the highly
entangled (D = 10) system at shear rates γ̇ = 10 s−1 to γ̇ = 20 s−1. A1 denotes the
alternative steady state in which the particle adheres to a droplet of its preferred phase in
a matrix of the non-preferred phase, previously observed at low shear rates in the Rouse
regime. A2 denotes an steady state in which the particle remains stuck at one of the
horizontal interfaces between the two phases at long physical time scales (of the order of
one second).
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Figure 4.4: Dependence of the evolution of the highly entangled (D = 10) system on shear
rate. In all simulations, the particle starts at ∼ 4.5nm from the interface and the system
is sheared at various rates. At higher shear rates of γ̇ ≥ 16 s−1 the stages observed are
dewetting 1, dewetting 2, wetting, and adhesion/flattening.

relationship between the second dewetting time and the shear rate, with
the former decreasing as the latter increases. A similar linear relationship
is observed between the wetting time and the shear rate. It is interesting
that, amid the apparent unpredictability introduced by the breaking of the
central interface under sustained shear, a quite regular linear relationship
persists between these two pairs of variables. It is also worth noting that the
interval between the second dewetting time and the wetting time, for any
given shear rate in the upper end of the range, is approximately constant at
∼ 10ms. Again, this is an example of regularity persisting in the midst of
unpredictability. The ultimate source of both of these regularities is almost
certainly the uniform shear rate applied to the system.

Finally, as in the Rouse regime, the first dewetting time decreases as the shear
rate increases, although this effect is not easy to discern, given the scale used
in figure 4.4. In addition, given that the particle starts at d = 4.5nm from the
central interface in all simulations, the rapid diffusive mechanism dominates
the dewetting process, and the dewetting time is largely independent of the
shear rate.
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It is also useful to show the evolution of the system’s mean free energy den-
sity under shear up to just after the first dewetting point (figure 4.5). As
previously, the sawtooth pattern superimposed on the free energy curves is
an artefact of the discrete numerical scheme used in the simulation.

Figure 4.5: Evolution of the mean free energy density of the system under shear up to,
and just after, the first dewetting point, for γ̇ = 10 s−1 to γ̇ = 20 s−1.

As in the Rouse regime, figure 4.5 shows a period of rapid equilibration at the
interface (∼ 0.5ms), during which the mean free energy density decreases
slightly. This is followed by a steady increase in the mean free energy density
due to the increase in the length of the interface as the system is sheared
at a constant rate. At all shear rates, dewetting occurs between 20.0ms
and 25.0ms, and is accompanied by a temporary drop in the mean free
energy density, before it rises again as the system continues to be sheared
at a constant rate. In this respect, the timing of the fall in the mean free
energy density is consistent with the first dewetting times deduced from
inspecting snapshots of the system close to the dewetting point. We note
that the value of the mean free energy density in the system is not sensitive
to the parameter D. In both the Rouse regime (D = 1) and the highly
entangled regime (D = 10), the initial value of the mean free energy density
is approximately −0.2955 kBT . This is consistent with the fact that the total
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free energy of the system, as given by equation 3.4, does not depend on D.

However, the range of mean free energy densities at which dewetting occurs
does vary between the two regimes. In the Rouse regime, this range extends
from roughly −0.2940 kBT to −0.2890 kBT , as the shear rate increases from
γ̇ = 10 s−1 to γ̇ = 20 s−1. In the highly entangled regime, the corresponding
range (allowing for appropriate scaling of the physical shear rates) extends
from roughly −0.2950 kBT to −0.2930 kBT . The interpretion of this result is
not straightforward but, intuitively, it is likely to reflect the difference in the
way the central interface deforms under shear in the two regimes (see section
4.6).

4.5 Dewetting and Expulsion in Moderately

Entangled Systems

Having investigated the Rouse regime, and what we have called the highly
entangled regime, where the effective diffusion coefficient D = 10, we now
consider two intermediate cases in which D = 2 and D = 5. The former
implies a polymer chain of double the length of a chain in the Rouse regime,
while the latter implies a chain length half of that in the highly entangled
regime (200 and 500 monomers, respectively). The aim of the section is to
assess how sensitive the behaviour of our system is to changes in the effective
diffusion coefficient, and to understand how this behaviour changes between
the two limiting values of D considered so far.

Thus, we run the same set of simulations as previously with D = 2 and
D = 5. Now, a dimensionless shear rate of ˜̇γ = 0.001 equates to a physical
shear rate of γ̇ = 1.25 × 103 s−1 (D = 2) and γ̇ = 80 s−1 (D = 5). For each
intermediate value of D, we present the two main plots as before: dewetting
time versus the initial distance of the particle from the central interface (in a
quiescent system and at a lower and higher shear rate); and the times to the
various stages of expulsion versus the shear rate. Tables 4.3 and 4.4 show the
first dewetting times, as the initial distance of the particle from the central
interface is varied for D = 2 and D = 5 respectively, and these results are
plotted in figures 4.6 and 4.7.

In both of these intermediate cases, the dewetting results closely resemble
the results in both the Rouse regime and the highly entangled regime. In
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Dewetting Time [µs]
Distance γ̇ = 0 γ̇ = 1.25× 103 s−1 γ̇ = 2.50× 103 s−1

[nm]
2.5 5.6 5.6 5.2
4.0 65.6 65.6 65.2
4.5 376.8 357.6 340.4
5.0 - 492.4 417.6
6.0 - 592.4 471.2
7.0 - 672.8 512.0
8.0 - 752.8 549.6
9.0 - 839.2 584.0
10.0 - 930.8 616.8

Table 4.3: Dewetting time in a quiescent system, and at constant shear rates of γ̇ =
1.25× 103 s−1 and γ̇ = 2.50× 103 s−1 when D = 2. The distance of the particle from the
interface is varied from d = 2.5nm to d = 10.0nm.

Figure 4.6: Dependence of dewetting time on the initial distance of the particle from
the interface, with and without shear when D = 2. At shear rates much greater than
2.50× 103 s−1 shear is not sustainable.

particular, all four plots show rapid dewetting as a result of the rapid dif-
fusive mechanism when the particle’s initial position is close to the central
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Dewetting Time [ms]
Distance γ̇ = 0 γ̇ = 80 s−1 γ̇ = 160 s−1

[nm]
2.5 0.04 0.04 0.04
4.0 0.70 0.70 0.70
4.5 4.27 4.28 3.95
5.0 - 7.15 6.08
6.0 - 8.79 7.01
7.0 - 10.12 7.69
8.0 - 11.45 8.29
9.0 - 12.86 8.85
10.0 - 14.34 9.38

Table 4.4: Dewetting time in a quiescent system, and at constant shear rates of γ̇ = 80 s−1

and γ̇ = 160 s−1 when D = 5. The distance of the particle from the interface is varied
from d = 2.5nm to d = 10.0nm.

Figure 4.7: Dependence of dewetting time on the distance of the particle from the interface,
with and without shear when D = 5. At shear rates much greater than 160 s−1 shear is
not sustainable.

interface, and a critical film thickness, dc in the range 4.5nm < dc < 5.0nm.
This confirms our earlier observation that the critical film thickness does
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not depend on the degree of entanglement of the system. Again, in all four
cases, the system transitions from the diffusive regime to the hydrodynamic
regime, where the effect of shear becomes apparent, from roughly d = 4.0nm
d = 7.0nm. In the hydrodynamic regime, the dewetting time varies almost
linearly with the initial distance of the particle from the central interface,
reflecting the fact that the system is sheared at a constant rate.

As in the highly entangled regime, the main effect of changing D is to dilate
the time scales in which dewetting occurs and once again, our results at higher
shear rates are consistent with the fact that the physical shear rate scales
with 1

D3 . To take just one example, when d = 10.0nm and the dimensionless

shear rate is ˜̇γ = 0.002, the dewetting time when D = 2 is 616.8µs compared
with a dewetting time in the Rouse regime of 79.0µs. These dewetting times
differ by a factor of roughly 7.8, which is close to D3 = 23 = 8, as we
would predict. There is similar dilation of the dewetting time scales at lower
values of d, where the diffusive mechanism is dominant but, as in the highly
entangled regime, these results are harder to interpret due to the difficulty
of isolating the several mechanisms that contribute to ultimate value of the
dewetting time.

Turning to the longer term evolution of the system under shear, up to and
including the potential expulsion of the particle into its preferred phase,
tables 4.5 and 4.6 summarise the relevant results when D = 2 and D = 5,
respectively; these results are then plotted in figures 4.8 and 4.9.

Shear Rate Dewetting 1 Dewetting 2 Wetting Expulsion
[×103 s−1] [µs] [µs] [µs] [µs]

1.25 358 A1 A1 A1
1.50 354 A1 A1 A1
1.75 350 1774 1900 2448
2.00 347 1570 1698 2314
2.25 345 1382 1505 2135
2.50 340 1128 1228 1232

Table 4.5: Summary of times to various stages in the long-term evolution of the system
when D = 2, at shear rates from γ̇ = 1.25× 103 s−1 to γ̇ = 2.50× 103 s−1. A1 denotes the
alternative steady state in which the particle adheres to a droplet of its preferred phase in
a matrix of the non-preferred phase, previously observed at low shear rates in the Rouse
regime.

Before comparing these results with those in the Rouse and the highly entan-
gled regime, we must note an interesting anomaly in the results when D = 5.
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Figure 4.8: Dependence of the expulsion process on shear rate when D = 2. The initial
distance of the particle from the central interface is 4.5nm in all simulations, and the
system is sheared at various rates. The time to each of the stages of expulsion (dewetting
1, dewetting 2, wetting and expulsion) is determined from snapshots of the system.

Shear Rate Dewetting 1 Dewetting 2 Wetting Expulsion
[s−1] [ms] [ms] [ms] [ms]
80 4.28 A1 A1 A1
96 4.27 A1 A1 A1
112 4.24 A1 A1 A1
128 4.17 23.83 25.44 A2
144 4.07 20.80 22.41 A2
160 3.95 17.31 18.76 18.97
176 3.80 13.83 14.90 A2

Table 4.6: Summary of times to various stages in the long-term evolution of the system
when D = 5, at shear rates from γ̇ = 80 s−1 to γ̇ = 160 s−1. A1 denotes the alternative
steady state in which the particle adheres to a droplet of its preferred phase in a matrix
of the non-preferred phase, previously observed at low shear rates in the Rouse regime.
A2 denotes an steady state in which the particle remains stuck at one of the horizontal
interfaces between the two phases at long time scales (of the order of one second).

137



Figure 4.9: Dependence of the expulsion process on shear rate when D = 5. The initial
distance of the particle from the central interface is 4.5nm in all simulations, and the
system is sheared at various rates. The time to each of the stages of expulsion (dewetting
1, dewetting 2, wetting and expulsion) is determined from snapshots of the system.

The trend at higher shear rates is for the particle to reach a steady state in
which it adheres to one of the horizontal interfaces between the two phases in
the fully sheared system. The one exception to this occurs when γ̇ = 160 s−1,
when the particle is expelled from its non-preferred phase in approximately
19ms. Note that this occurs almost simultaneously with the wetting of the
particle’s surface by its preferred phase, which is the penultimate stage of
the expulsion process. For the sake of clarity, this data point is not plotted
in figure 4.9. A simulation at the higher shear rate of γ̇ = 176 s−1 shows
the particle reverting to its previous behaviour and reaching a steady state
in which it adheres to a horizontal interface between the two phases. This
result is noted in table 4.6 and, for clarity, is plotted in figure 4.9. We return
to these results towards the end of this section.

Turning now to the D = 2 intermediate case, inspection of figure 4.8 reveals
its similarity with the corresponding plot for the Rouse regime (figure 3.13).
In both sets of results, the steady state at lower shear rates is that in which
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the particle adheres to a droplet of its preferred phase, within a matrix of the
non-preferred phase. At higher shear rates, γ̇ ≥ 1.75× 103 s−1 when D = 2,
both the second dewetting time and the wetting time decrease almost linearly
as the shear rate increases, just as they do in the Rouse regime. This reflects
the fact that the system is being sheared at a constant rate. In addition, the
difference between the second dewetting time and the dewetting time, when
D = 2 is almost constant (∼ 100µs), a regularity that survives the apparent
unpredictability of the breaking of the central interface, just as it does in the
Rouse regime.

However, the most striking similarity occurs at the highest shear rate used
in both sets of simulations, when expulsion of the particle into its preferred
phase occurs almost simultaneously with the wetting of the particle. Thus,
in both figure 4.8 and figure 3.13, the data points representing these distinct
events almost coincide. Although time constraints precluded running a sim-
ulation with D = 2 and ˜̇γ = 0.0019, the overall similarity these two figures
suggests that the onset of the near collapse of these two events into each
other when D = 2 is just as precipitous as it is in the Rouse regime.

The expulsion behaviour in the system when D = 5 contrasts sharply with
the expulsion behaviour when D = 2. Looking at figure 4.9, it is obvious
that the behaviour it represents is much closer to that of the highly entangled
regime, when D = 10, than it is to the behaviour of the system in the Rouse
regime. In particular, the key result of the highly entangled regime - that
the particle is not expelled into its preferred phase at any of the shear rates
considered - is replicated in the moderately entangled system when D = 5.
Beyond this key result, the overall form of figure 4.9 closely resembles that
of figure 4.4. In both cases, lower shear rates result in the droplet steady
state, and higher shear rates result in the steady state in which the particle
adheres to one of the horizontal interfaces between the liquid phases, in the
fully sheared system. Likewise, and in common with the results in the Rouse
regime and the moderately entangled regime when D = 2 there is an almost
linear decrease in both the second dewetting time and the wetting time, as
the shear rate increases. And, again, the difference between these two times
is almost constant: ∼ 1.5ms, in this case. The only significant difference
with the D = 10 case is that, as noted above, the particle is fully expelled
into its preferred phase at the higher physical shear rate corresponding with
a dimensionless shear rate of ˜̇γ = 0.002.

To summarise so far, there is a contrast between the expulsion behaviour
of the two cases in the intermediately entangled regime we have considered:
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when D = 2, the behaviour closely resembles that in the Rouse regime;
when D = 5, the behaviour closely resembles that in the highly entangled
regime in which D = 10. The implication is that there is a transition point
somewhere between these two intermediate values of D, where the expulsion
behaviour changes. The most important aspect of this change in behaviour
is that the particle is not expelled into its preferred phase at the higher shear
rates considered. Simulations are time consuming and constrain the size of
the relevant parameter space we can explore, so it has not been possible to
identify the exact value of D at which this transition occurs, or to clarify
the manner in which the transition occurs (for example, is it a gradual or a
sudden change, as D varies).

However, the anomalous result highlighted earlier might offer a clue about
when this transition occurs. Recall that when D = 5 and γ̇ = 160 s−1,
the particle is fully expelled into its preferred phase, contrary to what we
would expect, given the close similarity of the D = 5 case with the highly
entangled regime, in all other aspects. Moreover, the expulsion of the particle
at this shear rate is almost simultaneous with its wetting. This is precisely
the behaviour we observe at the higher shear rate in both the Rouse regime
and the moderately entangled regime when D = 2. This suggests that the
transition between the two kinds of expulsion behaviour may occur when
D . 5. Likewise, the fact that complete expulsion either does or does not
occur as we vary D suggests that the transition in the behaviour of the
system might occur suddenly, across a narrow range of values of D, but this
can only be a speculative conclusion, given the limited region of parameter
space considered.

Finally, although the nature of the simulations, and the way we plot the
results, encourages us to directly compare the various regimes, we must not
forget that changing the effective diffusion coefficient, D, changes the physical
shear rates associated with the range of dimensionless shear rates used (˜̇γ =
0.001 to ˜̇γ = 0.002). Thus, the simplest, and probably correct, conclusion to
draw from these results is that higher shear rates of ∼ 103 s−1 − 104 s−1 are
needed to fully expel the particle into its preferred phase, This is, perhaps, an
unsurprising conclusion, but it is pleasing to see it so clearly demonstrated
in our model.

For completeness, we conclude this section with plots of the evolution of
the mean free energy density in the system up to, and just after, the first
dewetting point, when D = 2 and D = 5 (figures 4.10 and 4.11, respectively).
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Figure 4.10: Evolution of mean free energy density under shear up to, and just beyond,
the first dewetting point for γ̇ = 1.25× 103 s−1 to γ̇ = 2.50× 103 s−1, and D = 2.

Both plots are very similar to figure 4.5, confirming that the mean free energy
is essentially independent of the effective diffusion coefficient, as we expect,
given the underlying mathematical model. As before, and as in the Rouse
regime, the initial mean free energy density is approximately −0.2955 kBT ,
and this rapidly decreases in the early stages of each simulation as the central
interface equilibriates. This is followed by a period of steadily increasing
mean free energy density as the applied shear increases the extent of the
central interface. At dewetting, this increase in the mean free energy density
is momentarily reversed, before it resumes again as the the shearing of the
system continues. There are small variations (compared with the Rouse
regime and the highly entangled regime) in the range of free energy densities
at which dewetting occurs. Besides observing that that these must ultimately
depend on the geometry of the central interface - its length and the variations
in its local curvature), we make no attempt to account for these differences
here.
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Figure 4.11: Evolution of mean free energy density under shear up to, and just beyond,
the first dewetting point for γ̇ = 80 s−1 to γ̇ = 160 s−1, and D = 5.

4.6 The Geometry of Dewetting

In this section we consider, in greater depth, the mechanisms that might
account for the complete set of simulation results in the strongly segregated
regime, for all values of the effective diffusion coefficient, D. We focus on
the first dewetting results, because these are quite regular, and free of the
potentially unpredictable influence of the breaking of the central interface.
Although the breaking of the central interface does not completely erase regu-
larities in the simulation results (for example, the linear relationship between
both the second dewetting time and the wetting time, and the shear rate is
preserved, across a range of shear rates), it does introduce complications
that we may avoid by concentrating on an earlier stage in the evolution of
the system under shear.

Direct comparison of the first dewetting times is difficult because, within the
range of dimensionless shear rates we are interested in, those times vary with
D3, and therefore cover a wide range of physical time scales. For this reason,
it is more productive, and convenient, to consider the shear strain within the
system at the first dewetting point, γ, where γ = γ̇×t. This is a dimensionless
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quantity and is a simple measure of how far the central interface between the
two phases has moved at any given time, thus facilitating the comparison
of results over a wide range of physical time scales. This marks a shift
from a temporal perspective (how long does dewetting take?) to a spatial
perspective (what is the geometry of the system at the dewetting point?).
Therefore, our intention is to produce a master plot of the first dewetting
results obtained so far, with the shear strain at dewetting plotted against
the initial distance of the particle from the central interface, for the range
of effective diffusion coefficients, D, used in the simulations. We will show
this data for the upper and lower bounds of the range of dimensionless shear
rates used in our simulations: ˜̇γ = 0.002 and ˜̇γ = 0.001, respectively.

Before presenting this master plot, it is helpful to introduce a simple (even
naive) geometrical model of the dewetting process. The model is geometrical
in the sense that it takes no account of the physical mechanisms involved in
dewetting, and ignores other physically realistic aspects of the behaviour of
our system. In particular, this model makes three key assumptions:

Assumption 1: The particle is immobile. It does not move under the
influence of hydrodynamic flow, as the system is sheared; nor is it subject to
Van der Waals forces, when the central interface is near.

Assumption 2: The central interface shears linearly and, in any given small
increment of time, instantaneously. That is, if the interface is initially a
vertical line through the centre of the system, at a small interval of time
later, it remains perfectly straight, but at a slight incline, having pivoted
about the central point of the system. At 100% shear (γ = 1.00), the interface
is a straight diagonal line, between opposite corners of the system.

Assumption 3: Dewetting occurs when the interface between the two
phases in the system is tangential to the surface of the particle, and not
before.

In addition to these, there are further assumptions - for example, that all
interfaces are perfectly sharp - but assumptions 1 to 3 are most important
in what follows. Figure 4.12 shows how this simple geometrical model is
supposed to work.

The centre of the system, a square box of size 2L is at the point O, and the
particle, centred at P and of radius r is initially positioned at a distance d
from the central interface. At the dewetting point, the central interface is
tangential to the surface of the particle, having shifted a distance S along
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Figure 4.12: A simple geometrical model of dewetting, based on three key assumptions
described in the main text. The initial configuration of the system is shown in (a). Dewet-
ting, shown in (b), occurs when the central interface is sheared such that it is tangential
to the surface of the particle.

the edge of the system. The shear strain at the dewetting point is γ = S
L

,
which it is straightforward to express in terms of known parameters. From
the known properties of circles and tangent lines, we deduce that triangles
OAB and OPQ are similar. This implies that γ = S

L
is equal to the ratio of

the lengths of the lines OQ and PQ. Application of the Pythagorean theorem
then gives the expression we require:

γdewet =
S

L
=

1

r

√
(r + d)2 − r2 (4.1)

As a quick reality check, we note that, when d = 0, γdewet = 0, as expected,
since the central interface is tangential to the particle from the outset, before
any shear is applied. We also note that this expression does not depend on
either the shear rate or the effective diffusion coefficient, D but, for a given
particle size, varies only with the particle’s initial distance from the central
interface. In other words, if our simulation results are consistent with this
geometrical model, all of the associated data points should lie on a single
curve.

Figure 4.13 is the master plot we described earlier in this section, with the
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theoretical prediction of our model added (the black dotted line).

Figure 4.13: Dewetting master plot showing the shear strain at which dewetting occurs,
as the distance of the particle from the central interface varies. Shown are the data points
when D = 1, D = 2, D = 5 and D = 10. The two bands represent the upper and lower
ends of the range of dimensionless shear rates used in the simulations (˜̇γ = 0.002 and
˜̇γ = 0.001). The physical value of the shear rate varies, according to the value of the
effective diffusion coefficient, D. The predicted values, shown as a black, dotted line, are
those of the simple geometrical model described in the text and represented in figure 4.12.

It is immediately obvious that the results of our simulations do not all lie on
the single curve implied by our simple geometrical model. Given the complete
absence of realistic physics in the model, this is not so surprising. What is
surprising is that our results fall clearly into an upper band and a lower band,
corresponding with dimensionless shear rates of ˜̇γ = 0.002 and ˜̇γ = 0.001,
respectively. The data from simulations that use intermediate dimensionless
shear rates is not plotted, for reasons of clarity, but we would expect to see
a separate band of results for each of these intermediate values. Within each
band, individual curves refer to the value of the effective diffusion coefficient,
D, used in the simulations. Thus, each band includes four distinct curves,
corresponding with the four values of D (1 in the Rouse regime, 10 in the
highly entangled regime, and 2 or 5 in the intermediate regime). Interestingly,
for any given value of the dimensionless shear rate (i.e. within a given band)
and initial distance of the particle from the central interface, the shear strain
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at dewetting decreases as D increases. The other feature of note in figure 4.13
is that all of the curves are approximately linear. This reflects the fact that
the shear rate is constant, and that, in the range of values of d shown, the
applied shear, and its associated hydrodynamic effect, dominates the rapid
diffusive mechanism, as far as dewetting is concerned.

We begin to make sense of these results by reminding ourselves that all
three of the key assumptions underpinning the simple geometrical model
are physically unrealistic. For example, the first assumption does not hold
because, in our simulations, the particle is free to move, under the influence
of hydrodynamic forces,as the shear is applied to the system. Figures 4.14
and 4.15 demonstrate that the particle does indeed move.

Figure 4.14: Displacement of the particle, relative to its initial position (d = 5.0nm from
the central interface between the phases) up to the point of first dewetting. The particle
trajectory is shown for D = 1, D = 5 and D = 10, and for the the upper and lower end of
the range of dimensionless shear rates used in the simulations (˜̇γ = 0.002 and ˜̇γ = 0.001).
The physical value of the shear rate varies, according to the value of the effective diffusion
coefficient, D.

These figures show the spatial trajectory of the particle as the system is
sheared, from its starting position, up to the point at which dewetting occurs,
for various combinations of D and γ̇. Figure 4.14 assumes that the initial
distance of the particle from the central interface is d = 5.0nm, while figure
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Figure 4.15: Displacement of the particle, relative to its initial position (d = 10.0nm from
the central interface between the phases) up to the point of first dewetting. The particle
trajectory is shown for D = 1, D = 5 and D = 10, and for the the upper and lower end of
the range of dimensionless shear rates used in the simulations (˜̇γ = 0.002 and ˜̇γ = 0.001).
The physical value of the shear rate varies, according to the value of the effective diffusion
coefficient, D.

4.15 assumes an initial distance of d = 10.0nm. In both figures, we omit the
case when D = 2, for visual clarity. As in figure 4.13, dashed lines represent
a lower dimensionless shear rate of ˜̇γ = 0.001 and solid lines represent the
higher dimensionless shear rate of ˜̇γ = 0.002. The colour coding represents
different values of the effective diffusion coefficient, D.

We make several broad observations about the particle trajectories, as rep-
resented in figures 4.14 and 4.15. Firstly, in all cases, at the dewetting point,
the particle is displaced in the positive x and the positive y direction, rela-
tive to its initial position. From figure 4.12, and the snapshots of the system
under shear throughout this chapter, this is consistent with the the particle
being subject to the hydrodynamic forces set in motion by the shearing of
the central interface between the two phases.

Secondly, noting the differing scales on the x and y axes of figures 4.14 and
4.15, the movement of the particle in the y-direction is significantly greater
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than the movement in the x-direction in nearly all cases. Movement in the
x-direction is typically ∼ 0.5nm, while movement in the y-direction ranges
from ∼ 0.5nm to ∼ 2.5nm. This suggests that the shear-induced flow in the
vicinity of the surface of the particle is, predominantly, in the y-direction,
as might be expected since, relative to a point on the lower surface of the
particle, the central interface rises upwards, as the system is sheared. This
hypothesis is supported by the fact that, in all cases, an initial period of
gradual movement in the positive x-direction, gives way to gradual movement
in the positive y-direction as the dewetting point is approached. In the early
stages of shear, the central interface has not yet reached a point on the edge
of the system immediately below the bottom surface of the particle, even as
the horizontal distance between the lower half of the central interface and
the surface of the particle gradually decreases.

It is possible that this tendency is accentuated by the fact that the initial
state of the system has mirror symmetry with respect to the x-axis, but lacks
mirror symmetry with respect to the y-axis, due to the addition of a second
interface between the two liquid phases near the left hand side of the system
to compensate for the volume of the non-preferred phase displaced by the
particle on the right hand side of the central interface. However, it is not
possible to quantify the size of any such effect which, in any case is likely
to be small, since the symmetry of the system is broken far away from the
particle, and the flows that influence it. Other factors that might influence
the particle’s trajectory include the spatial discretisation of the system, nec-
essary to solve the model computationally, and the rapid equilibration of the
central interface in the very early stages of each simulation. However, both
of these effects are likely to be minor, if they exist at all, and we view the
simple geometrical explanation of the shape of the particle’s trajectory, set
out in the previous paragraph, as essentially correct.

Our third, and final, broad observation is that the particle does not move
much in any scenario. As previously noted, the maximum displacement in the
y-direction is ∼ 2.5nm, while its displacement in the x-direction is ∼ 0.5nm.
This is an important point, to which we return after describing the results
shown in figures 4.14 and 4.15 in greater detail.

Firstly, note that, for any given value of the effective diffusion coefficient, D,
there is less movement in the y-direction, prior to dewetting, at the lower
shear rate, than there is at the higher shear rate. However, the movement
in the x-direction is roughly the same. However, this difference in the dis-
placement in the y-direction is never great, typically being of the order of
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1.0nm.

In contrast, for any given choice of the two dimensionless shear rates repre-
sented, the higher the value of D, the less movement in the x-direction there
is, before the particle starts to move in the y-direction, as the dewetting point
approaches. In general, higher values of D result in less movement in the x-
direction and more movement in the y-direction, prior to dewetting, than
lower values of D. A final point to note is that, for higher values of D, the
transition between motion in the x-direction and motion in the y-direction is
more gradual (the particle’s trajectory curves more smoothly) than it is for
lower values of D. It is likely that this reflects the slower dynamics of the
system, as the effective diffusion coefficient, D, increases.

There are a few interesting points of difference between figure 4.14 and 4.15.
For example, the latter figure is harder to interpret because there is greater
overlap between the curves associated with different values of D. The physi-
cal explanation for this is not clear, but it correlates with the closer spacing
between points in both bands of figure 4.13, when d = 10.0nm, in comparison
with the spacing between points when d = 5.0nm. Another difference is that
there is generally less movement of the particle in the x-direction in figure
4.15, where d = 10.0nm than there is in figure 4.14, where d = 5.0nm, even
though the movement of the particle in the y-direction is broadly compara-
ble in the two figures. Finally, an intriguing feature of figure 4.15 is the long
”tails” of the particle trajectories, compared with those in figure 4.14, even
though the end of every trajectory represented in these figures corresponds
with the same point, physically speaking - the point at which the preferred
phase first makes contact with the particle’s surface. However, since these
observations play no role in what follows, we do not explore them further.

What bearing does all of this have on the features of the master dewetting
plot (figure 4.13) we described earlier? The main point is that relaxing the
first key assumption of our simplified geometrical model, in recognition of
the physical reality that the particle moves as the system is sheared, opens
up the possibility that at least some of our simulation results might deviate
from the curve predicted by the model. If the particle moves, and the degree
of movement varies with both D and the shear rate, this must surely be
reflected in the value of the shear strain when dewetting occurs. Although
this is correct, neither the magnitude, nor the direction of the particle’s
movement is enough to account for the main features of figure 4.13. Firstly,
the displacement of the particle at the dewetting point, relative to its initial
position is not great, rarely exceeding ∼ 2.5nm in the results shown in figures
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4.14 and 4.15. In addition, for any given initial displacement of the particle
from the central interface, and effective diffusion coefficient, D, doubling
the dimensionless shear rate from ˜̇γ = 0.001 to ˜̇γ = 0.002 has little effect
on the final displacement of the particle, the difference being ∼ 1.0nm at
most. Taken together, these two observations mean that the movement of
the particle as the system is sheared cannot account for the two bands of
curves seen in figure 4.13. The separation of these two bands is too great to
be attributable to the relatively small movements of the particle.

This leaves open the possibility that the movement of the particle under
shear might account for the separation of curves (corresponding with differ-
ent values of D) within the bands (corresponding with different values of the
dimensionless shear rate) shown in figure 4.13. However, a plausible account
of how this separation within a band might occur cannot account for the
ordering in which the curves do occur in each band. The plausible account is
that the particle moves under the influence of shear, so the more the particle
moves, the greater the shear strain at the dewetting point will be. Hence, for
a given initial distance, d from the central interface, and dimensionless shear
rate, different values of D will result in different shear strains at dewetting,
and we will observe a band of curves on the master plot, with each curve
in the band corresponding with a different value of D. The problem is that
figures 4.14 and 4.15 show that, other parameters being equal, increasing the
effective diffusion coefficient, D, increases the displacement of the particle
relative to its initial position, when dewetting occurs. Thus increasing D
should increase the shear strain at the dewetting point. This is the oppo-
site of what we observe in the master plot where, for a given value of d,
and dimensionless shear rate, increasing D decreases the shear strain at the
dewetting point - data points are ”stacked” vertically, with the lowest point
corresponding with the highest value of D.

In summary, it is important to acknowledge that the particle is free to move,
and that the extent of its movement is influenced by various parameters of
the model. However, the movement of the particle is too limited to account
for the two bands seen in the master plot, and the relationship between D
and the displacement of the particle points in the wrong direction, as far as
the ordering of the dewetting curves within each band is concerned.

Perhaps we will make more progress by scrutinising the second key assump-
tion of our geometrical model: does the central interface really deform in a
perfectly linear fashion when shear is applied to the system? The simplest
way to answer this question is to look at a specific example (figure 4.16).
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Figure 4.16: The state of the system at 100% shear (γ = 1.00) when the dimensionless
shear rate is ˜̇γ = 0.001 and ˜̇γ = 0.002. In both cases, D = 10 and the initial distance
of the particle from the central interface is d = 10.0nm. The third image represents the
difference in the order parameter at every point in the system (the ”delta” of the first two
images).

Figure 4.16 shows two snapshots of a system where the shear strain γ = 1.00.
We are in the highly entangled regime (D = 10) and, in both cases, the
particle is located at d = 10.0nm from the central interface. The only
difference is the rate at which shear is applied: ˜̇γ = 0.001 in the first snapshot,
and ˜̇γ = 0.002 in the second (corresponding with physical shear rates of
γ̇ = 10 s−1 and γ̇ = 20 s−1, respectively).

It is clear, by inspection alone, that the central interface has deformed very
differently under the two shear rates. In particular, the central interface at
the lower shear rate is more linear, and closer to what we would expect if the
simple geometrical model were correct. In contrast, at the higher shear rate,
there is noticeable curvature to the central interface and therefore significant
deviation from the geometrical model. The most likely explanation of this
difference is that, at the higher shear rate, the interior of the system takes
longer to ”catch up” with the edge of the system as it is sheared. That is,
the displacement of a layer of fluid lags further behind the movement at the
edge, the closer to the centre of the system it is. Ultimately, this physical
feature is responsible for the difficulty of sustaining dimensionless shear rates
much greater than ˜̇γ = 0.002 in our simulations. If the edge of the system is
sheared at a rate much greater than this, it becomes unstable. This difficulty
becomes acute in the weak segregation regime, which we consider in the next
chapter.

This visual impression is confirmed by the third image in figure 4.16, which
represents the difference (or ”delta”) in the order parameter at every point in
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the system, when the two system snapshots are compared. The third image
uses the same colour scheme as is used throughout this thesis, so it is not
surprising that most points in the system are coloured cyan, signifying that
the system with the higher shear rate is almost identical to the system with
the lower shear rate, at that point. The narrow yellow segment that extends
from the centre of the system to the bottom-right corner implies that there
is an excess of the non-preferred phase in this region of the system with
the higher shear rate, compared with the system with the lower shear rate
(and similarly, for the thin blue segment that extends from the centre of the
system to the top-left corner). In other words, at the higher shear rate, the
particle is further away from its preferred phase, than it is at the lower shear
rate, even when the shear strain and all other parameters are identical.

All of the above implies that the shear strain at dewetting is higher in the
system with the higher shear rate, than it is in the system with the lower
shear rate. Furthermore, this is not a small effect - the curvature of the cen-
tral interface at the higher shear rate deviates significantly from near-linear
central interface at the lower shear rate. The natural conclusion, which we
believe to be correct, is that this effect accounts for the appearance of two
bands in the master dewetting plot (figure 4.13), one for each of the dimen-
sionless shear rates represented. In particular, the band of curves associated
with the higher dimensionless shear rate of ˜̇γ = 0.002 occupies a higher
range along the shear strain axis than does the band associated with the
lower dimensionless shear rate of ˜̇γ = 0.001, just as we would expect from
the deformation of the central interface at the higher shear rate. Note that,
although, for simplicity, we have based this conclusion on just one point of
comparison, similar comparisons show the same pattern seen in figure 4.16.

We can use similar reasoning to account for the order of the individual dewet-
ting curves within each band. Now, we wish to compare the state of the
system at 100% shear (for consistency) with different values of the effective
diffusion coefficient, D, while holding all other parameters, including the
shear rate, constant. Let us compare the Rouse regime (D = 1) with the
highly entangled regime (D = 10), as this ought to give us the greatest con-
trast. As before, the initial distance of the particle from the central interface
is d = 10.0nm in all cases. Figures 4.17 and 4.18 show the results of this
comparison when ˜̇γ = 0.002 and ˜̇γ = 0.001, respectively.

The colour scheme in these images, and its interpretation, is as before. Thus,
in figure 4.17, the narrow blue band that extends from the centre of the
system to its bottom-right corner represents an excess of the preferred phase
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Figure 4.17: The state of the system at 100% shear (γ = 1.00) when the effective diffusion
coefficient is D = 1 and D = 10. In both cases the dimensionless shear rate is ˜̇γ = 0.002,
and the initial distance of the particle from the central interface is d = 10.0nm. The third
image represents the difference in the order parameter at every point in the system (the
”delta” of the first two images).

Figure 4.18: The state of the system at 100% shear (γ = 1.00) when the effective diffusion
coefficient is D = 1 and D = 10. In both cases the dimensionless shear rate is ˜̇γ = 0.001,
and the initial distance of the particle from the central interface is d = 10.0nm. The third
image represents the difference in the order parameter at every point in the system (the
”delta” of the first two images).

in that region of the highly entangled system, compared with the the system
in the Rouse regime. In other words, when D = 10, the particle is closer to
its preferred phase than it is when D = 1, even though the shear strain is
identical, and all other parameters, including the shear rate are held constant.
The physical reason for this is not entirely clear, but we speculate that it is a
mark of the slower dynamics in the system with the higher effective diffusion
coefficient: for any given dimensionless shear rate, a higher value of D implies
a system that is slower to reach local equilibrium in the vicinity of the central
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interface, as it deforms under the applied shear. The effect is a subtle one,
however. Note the advantage of computing the delta of the two snapshots
in this figure: it exposes a difference that is not nearly as obvious as the
difference between the snapshots in figure 4.16.

Now, by similar reasoning to that used previously, this implies that the shear
strain at dewetting ought to be lower in the system with the higher value
of D, than in the system with the lower value. Referring back to figure
4.13, we see that this is indeed consistent with the ordering of individual
dewetting curves within each band of curves. Comparing figure 4.17 with
figure 4.16, this is a relatively small effect. However, logically, it must be
more than enough to counter the effect of particle movement on the strain
at the dewetting point, since the latter tends to order the dewetting curves
within a band in the opposite (incorrect) direction.

Identical logic yields the same conclusion when applied to figure 4.18. The
only difference is that the effect is weaker still, as shown by the relative
faintness of the blue and yellow regions of the system in the final image,
compared with figure 4.17. In physical terms, there is simply not much
difference between the two systems shown in figure 4.18 though, as before,
what difference there is favours dewetting at a lower shear strain in the
system with the higher effective diffusion coefficient. This is consistent with
our master plot where individual dewetting curves in the band corresponding
with a dimensionless shear rate of ˜̇γ = 0.001 are much more closely spaced
than the curves in the band corresponding with the higher dimensionless
shear rate.

So far, we have accounted for both the existence of two distinct bands of
dewetting curves in the master plot, and the ordering and spacing of individ-
ual dewetting curves within each band. The only puzzle that remains is the
position of the curve representing the predictions of our geometrical model.
The assumptions of the model - especially the second key assumption, that
the shearing of the central interface is perfectly linear - suggest that the
strain at dewetting ought to track the results represented by the lower band
of dewetting curves. This is because the dewetting curves in the lower band
correspond with the lower dimensionsless shear rate, ˜̇γ = 0.001, at which the
shearing of the central interface is almost linear, in close agreement with the
behaviour of the geometrical model. However, the theoretical curve predicted
by the model lies within the band of dewetting curves corresponding with
the higher dimensionsless shear rate, ˜̇γ = 0.002, contrary to what we might
expect.
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The solution to this difficulty is to abandon the third key assumption of
the geometrical model, that dewetting occurs when the central interface is
just tangential to the surface of the particle. This is unphysical because we
know that, as the central interface approaches the surface of the particle,
and d < dc, the rapid diffusive mechanism becomes increasingly important,
and that this leads to dewetting in time scales that are much shorter than
the timescales over which the central interface is sheared. To capture this
effect in the geometrical model, we introduce a further length scale, e < dc,
at which dewetting is almost instantaneous, in comparison with the time it
takes to shear the system from its initial configuration the point where the
shortest distance from the surface of the particle to the central interface is e.
The required modification to the geometrical model is straightforward (figure
4.19).

Figure 4.19: A revised geometrical model of dewetting, based on two of the three key
assumptions described earlier in this section. The initial configuration of the system is
shown in (a). In the revised model, dewetting, shown in (b), occurs when the central
interface is sheared such that it is a distance e < dc from the surface of the particle.

The expression for the shear strain at the dewetting point becomes:

γdewet =
S

L
=

1

r + e

√
(r + d)2 − (r + e)2 (4.2)

There is some discretion in the choice of the parameter e - any value that
is sufficiently low that dewetting occurs very rapidly is defensible. Looking
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back at various dewetting curves, such as those shown in figure 4.1, a value
of e = 2.5nm looks to be overly conservative, so we make the somewhat
arbitrary choice of e = 3.0nm. Figure 4.20 reproduces the master plot of
figure 4.13 with the predictions of the original model replaced by those of
the revised model.

Figure 4.20: Dewetting master plot showing the shear strain at which dewetting occurs,
as the distance of the particle from the central interface varies. Shown are the data points
when D = 1, D = 2, D = 5 and D = 10. The two bands represent the upper and lower
ends of the range of dimensionless shear rates used in the simulations (˜̇γ = 0.002 and
˜̇γ = 0.001). The physical value of the shear rate varies, according to the value of the
effective diffusion coefficient, D. The predicted values, shown as a black, dotted line, are
those of the revised geometrical model described in the main text and represented in figure
4.19.

The predictions of the revised geometrical model now align closely with our
simulation results when the dimensionless shear rate is ˜̇γ = 0.001, consistent
with the fact that the shearing of the central interface is almost linear at
the lower shear rate, resulting in lower shear strain at the dewetting point.
Moreover, the predicted shear strain at dewetting is slightly lower than it
is in any of our simulations. This reflects the fact that even the revised
geometrical model represents a highly idealised system in which the shear
strain at the dewetting point is likely to be minimised. Any deviations from
this ideal behaviour, including those that result from features represented
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in our physical model and its computational implementation, will tend to
increase the shear strain at the dewetting point, relative to that predicted by
the geometrical model.

4.7 Summary

In the highly entangled systems (D = 10), the dynamics of the system are
slow, with dewetting and wetting times ∼ D3 = 1000 times greater than
in the corresponding simulations in the Rouse regime. One effect of this
slowing down in the dynamics is that the particle is no longer be expelled
into its preferred phase through the application of shear to the system. This
is probably due to the fact that the higher value of D implies a lower range
of sustainable shear rates. Thus our results are consistent with the physical
intuition that higher shear rates are more effective at promoting the migration
of the particle from its non-preferred phase to its preferred phase.

In the intermediate cases (D = 5 and D = 2), we see evidence of a transition
between the Rouse regime and the highly entangled regime. The former case
resembles the highly entangled regime in that, with one significant exception,
the particle is not expelled into its preferred phase under shear. We interpret
the exception, when γ̇ = 160 s−1, as a sign that the system is close to transi-
tioning to behaviour more reminiscent of the Rouse regime. The simulation
results for the intermediate case when D = 2 support this conclusion. Now,
the application of shear can expel the particle into its preferred phase, across
a range of shear rates. In this respect, this case resembles a system in the
Rouse regime. In both intermediate cases, the dewetting and wetting times
scale roughly according to D3, as expected, given the relationships between
the dimensionless quantities used in the model.

Finally, we invoke a simple geometrical model, based on three key assump-
tions, to shed light on a subset of our results, in which the shear rate is the
main factor that determines when dewetting occurs. These results may be
represented on a master plot of the shear strain at dewetting against the
initial distance of the particle from the interface (figure 4.13). The appear-
ance, in this plot, of a distinct band of curves for each dimensionless shear
rate is explained by the non-linear shearing of the central interface at higher
shear rates, contrary to assumption 2 of the simple geometrical model. More
subtle variations in the deformation of the interface, as it is sheared, account
for the ordering of curves within each band. Modification of assumption 3,
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by the introduction of a small distance, e, between the central interface and
the surface of the particle, at which dewetting occurs almost instantaneously,
brings the predictions of our geometrical model into line with the simulation
results at the lower dimensionless shear rate, at which the shearing of the
central interface is almost linear. In comparison, relaxing assumption 1 of
the geometrical model, and allowing the particle to move under the influence
of hydrodynamic forces, has relatively little explanatory value. The shear
strain at the dewetting point is the result of the interplay between all of
these factors, with the nature of the deformation of the central interface as
it is sheared being the dominant influence.

158



Chapter 5

Weakly Segregated Systems

5.1 Introduction

In this chapter, we turn to the weakly segregated regime, in which the
strength of the interaction between monomers is much lower than it is when
strong segregation is present. The effect of this reduction is to lower the mean
free energy density in the system as a whole. In particular, it lowers the in-
terfacial energy between the two liquid phases at the centre of the system.
The effect of this is to broaden the interface and to make it more ”fragile”, so
it becomes harder to shear without breaking. A further effect is to slow down
the dynamics of wetting and dewetting, since there is less energy to drive the
hydrodynamic flows that are necessary for these processes to occur. All these
effects - the broader, more fragile interface, and the slower dynamics - create
difficulties when we attempt to simulate systems where the two liquid phases
are weakly segregated.

Our aim in this chapter is to compare and contrast the behaviour of weakly
and strongly segregated systems, with and without shear, and to thereby
begin to construct a map of the phenomenology of this particular region of
the parameter space of our model.

The chapter begins with a brief review of the required parameter settings
before an initial attempt is made to explore the weakly segregated regime.
To do this, we choose a value of the Flory-Huggins parameter, χ = 2.1, close
to the critical value, χc = 2.0 in our model. The purpose of the section
is to illustrate the difficulty of simulating weakly segregated systems, and
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its conclusion is broadly negative: to obtain satisfactory results, we need to
consider less weakly segregated systems.

The following section presents the results of simulations in which χ = 2.5.
Although there is no established convention, we consider this to be at the
upper end of the weakly segregated regime. Nevertheless, the segregation
between the liquid phases is weak enough for the dewetting behaviour of the
system, and its behaviour under shear, to differ markedly from the behaviour
of the strongly segregated systems we have examined so far. These differ-
ences may have useful consequences for tailoring microstructure during the
processing of polymer blends containing nanoparticles. The benefit of this
approach is that it enables us to run a complete set of simulations, compara-
ble to those already performed in the strongly-segregated regime, for several
values of the D parameter. However, due to time constraints, we consider
only the case of D = 1 (Rouse regime), and the moderately entangled case
in which D = 2.

In the final section of this chapter, we return to the geometrical consider-
ations of section 4.6. In particular, we consider how well our simple and
modified geometrical models of dewetting fit with dewetting results from the
weakly segregated regime. Despite a relative lack of data, compared with
the results obtained in the strongly segregated regime, we observe several
notable differences in the dewetting behaviour, under shear, of weakly segre-
gated systems.

5.2 Parameter Settings and Initial Conditions

Recall that, in our model, the critical point for the blend occurs when the
Flory-Huggins interaction parameter, χ = 2.0. All the simulations so far
take place in the strongly segregated regime, with χ = 4.0, and equilibrium
values of the order parameter of ψeq = ±0.9562. Also, recall that the 10th
order polynomial approximation of the Flory-Huggins free energy density is
not reliable when χ . 2.05. Figure 5.1 shows how the absolute value of the
order parameter at equilibrium changes, as the Flory-Huggins interaction
parameter is varied.

Let us define strong segregation, in our model, as applying to any system in
which the equilibrium value of the order parameter is |ψeq| & 0.90 (χ & 3.3),
while weak segregation refers to systems in which |ψeq| . 0.75 (χ . 2.6),
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Figure 5.1: Absolute value of the order parameter at equilibrium, |ψeq|, plotted against
the Flory-Huggins interaction parameter, χ. Note that the critical point occurs when
χ = χC = 2.0, and that our tenth order polynomial approximation of the Flory-Huggins
free energy density is unreliable when χ . 2.05.

with any value in between corresponding to a system in which there is an
intermediate degree of segregation.

This gives us a wide range of values of χ to choose from, when thinking about
weakly segregated systems, but let us begin, somewhat arbitrarily, by taking
χ = 2.1. This is close to the point at which our numerical approximation for
the Flory-Huggins free energy density falters, and is unambiguously at the
lower end of the range of values of χ that give meaningful results in our model.
A value of χ = 2.1 implies equilibrium values of the order parameter, ψeq =
±0.3957 (corresponding to polymer volume fractions in the two liquid phases
of approximately 0.7 and 0.3). This might appear to be overly conservative,
since the phases remain quite distinct. However, the segregation between the
phases is already weak enough to cause significant issues in our simulations,
as we will see in the next section.

Almost all other parameters remain unchanged. In particular, we operate ini-
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tially in the Rouse regime, where D = 1, although this condition is relaxed
later, when we consider a system that is both weakly segregated (χ = 2.5)
and moderately entangled (D = 2). Because D is unchanged, for now, the
finite difference method used to solve the equations of motion operates with
the same dimensionless time step, ∆̃t = 0.001, as in chapter 3, corresponding
with a physical time step of ∆t = 10−10 s. Similarly, the correspondence be-
tween dimensionless and physical shear rates is unchanged with a dimension-
less shear rate of ˜̇γ = 0.001 implying a physical shear rate of γ̇ = 1.0×104 s−1.
It turns out that we must use a lower range of shear rates in simulations of
weakly segregated systems, because the central interface between the two
liquid phases is more likely to break at higher rates. However, the physical
shear rate varies linearly with the dimensionless shear rate, for any given
value of D, and is easy to determine, from the above reference value.

The exception to the general rule that all parameters, apart from χ, re-
main unchanged is the wetting parameter, W . This is changed to bring
the strength of the interaction between the liquid phases and the surface of
the particle approximately into line with the strength of the interaction be-
tween monomers. There is nothing intrinsically unphysical about a system in
which W is significantly less than or significantly greater than χ, and some
systems that satisfy this description might be of theoretical and practical
interest. However, for simplicity, we always set W = χ in our simulations
of weakly segregated systems, just as in the strongly segregated regime we
put W = χ = 4.0. Later, we will see that decreasing χ from 4.0 to 2.1 has
a significant (orders of magnitude) effect on the mean free energy density
of the system, so insisting that W = χ is prudent, and likely to avoid any
complications that might arise from too great a disparity in the strengths of
the various interactions in the system.

One final point concerns the initial condition of the system: at the start of
the simulations in the weakly segregated regime, the width of the interface
between the two liquid phases is arbitrarily set to be ∼ 1nm, consistent with
the approach taken in the strongly segregated regime. However, a narrow
interfacial region is expected in a strongly segregated system, whereas it is
less physically realistic in a weakly segregated system, where the interface
will be both broader and more diffuse at equilibrium. Physically, starting
the simulation of a weakly segregated system at this point corresponds with
driving the system closer to its critical point, from a point in phase space
that is some distance away. Practically, this might be achieved by means
of a rapid increase in the temperature. In principle, we could approximate
the width, at equilibrium, of the interface in the weakly segregated system,
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and start the simulation from that point. In practice, the broadening of the
interface, as it equilibrates, occurs rapidly, due to the short characteristic
time scale of the diffusive mechanism involved. This is true in both the
strongly segregated regime and the weakly segregated regime, so we start all
our simulations with a narrow interfacial region, of width ∼ 1nm for the
sake of consistency and convenience.

5.3 Dewetting: Methodological Challenges

The purpose of this section is to describe some of the methodological diffi-
culties that arise in attempts to simulate dewetting in a weakly segregated
system, in which χ = 2.1 and ψeq = ±0.3957. Ultimately, these difficulties
necessitate the use of a higher value of χ in the remainder of the chapter.
As usual, we proceed by attempting to determine the critical film thickness,
beyond which dewetting no longer occurs in a quiescent system. We do this
by starting the particle in its non-favoured phase, ∼ 2.5nm from the cen-
tral interface. We then increase the initial distance of the particle from the
central interface in small increments, until dewetting is no longer observed.

As soon as we attempt to reproduce this earlier approach to determining the
critical film thickness, the lower energy and slower dynamics in the weakly
segregated system raises a methodological issue. In the strongly segregated
systems we have studied, the process of dewetting is extremely rapid, due
to the high energy of the interface between the two liquid phases. Thus,
our choice of when the dewetting point occurs is of little consequence to
any trends in the observed behaviour of the system. However, when we
inspect snapshots of the dewetting process in a weakly segregated system,
we are compelled to be more precise about when dewetting occurs. Figure
5.2 illustrates this point.

Careful inspection of figure 5.2 reveals that there are at least three points at
which dewetting might be said to occur. The first possibility is that dewet-
ting occurs as soon as the central interface between the two liquid phases
shows any sign of being breached. A second option is that the dewetting
point occurs at the later time, at which none of the non-preferred polymer
makes contact with the particle (or, equivalently, the order parameter, ψ,
close to the surface of the particle is zero). The third and final option is that
dewetting occurs when the preferred polymer first makes contact with the
surface of the particle. Of these options, the third is probably the most intu-
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Figure 5.2: Stages of dewetting in a weakly segregated system (χ = 2.1): stage A is the
initial breach of the interface between the two liquid phases; stage B is the point at which
the non-preferred phase no longer makes contact with the particle; and stage C is the
initial contact of the preferred phase with the particle. The initial distance of the particle
from the central interface is d = 4.5nm and the effective diffusion coefficient is D = 1
(Rouse regime).

itive and is the one we have used to determine the dewetting time in strongly
segregated systems (see section 3.9). However, in the strongly segregated
regime, the choice is not critical, because all three stages of dewetting occur
in rapid succession. In comparison, the dewetting process occurs much more
slowly in a weakly segregated system (figure 5.3).

If we take the duration of the dewetting process to be the time interval
between stage A and stage C then, in the example shown in figure 5.3, the
process takes 25.5µs in the weakly segregated system, and 0.9µs in the
strongly segregated system. Thus the duration of the dewetting process is
more than twenty times longer in the weakly segregated system.

This nicely illustrates the slower dynamics of the weakly segregated regime.
This is a general feature of such systems, and it raises another practical
difficulty when we try to study their dewetting behaviour: the dynamics of
the system are so slow that the computation time required for the simulations
starts to become prohibitive. This is especially the case, if we insist on
defining dewetting as the point at which the preferred phase first makes
contact with the surface of the particle, since this is the latest stage of the
dewetting process. The difficulty here is compounded by the diffuse nature
of the central interface in weakly segregated systems, which makes it hard to
be certain that the final stage of dewetting has occurred. In short, when the
Flory-Huggins interaction parameter, χ = 2.1, dewetting data takes a long
time to collect and is inherently unreliable. These difficulties are apparent in
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Figure 5.3: Comparison of the dynamics of dewetting in the strong (χ = 4.0) and weak
(χ = 2.1) segregation regimes. The dewetting period, as measured by the time interval
between stage A and stage C of the dewetting process, occurs much more rapidly in
the strongly segregated system (approximately 20× faster than in the weakly segregated
system).

table 5.1 and figure 5.4, which present the results of one attempt to determine
the critical film thickness in this weakly segregated system.

Although the data plotted in figure 5.4 is clearly flawed, and is hard to
directly compare with previous plots of dewetting time against the initial
distance of the particle from the central interface, we can make a few obser-
vations. Firstly, we see the start of the divergence in the dewetting time that
is characteristic of the existence of a critical film thickness: each increase of
∼ 3nm in the initial distance of the particle from the central interface ap-
proximately doubles the dewetting time. Secondly, the dewetting time when
the particle is initially 2.5nm from the central interface between the two
liquid phases is approximately ten times greater than in the strongly seg-
regated regime (9.0µs, compared with 1.0µs). This is consistent with the
slower dynamics we have already observed in the weakly segregated regime.

It is interesting that, at an initial distance of 4.5nm from the central inter-
face, this situation is reversed: the dewetting time in the weakly segregated
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Distance Dewetting Time Comment
[nm] [µs]
2.5 9.0
4.5 28.0
5.0 34.0
6.0 50.4 estimate
7.0 - not used
9.0 108.6 estimate
10.0 157.4 estimate
12.0 225.8 estimate
14.0 421.2 estimate

Table 5.1: Variation of the stage C dewetting time with the initial distance of the particle
from the central interface in a quiescent, weakly segregated system (χ = 2.1). Due to
the difficulty of determining when stage C dewetting has occurred, most times are rough
estimates. The result of the simulation when d = 7.0nm is too unreliable to use.

system is approximately half the dewetting time in the strongly segregated
system (28.4µs, compared with 57.4µs). This might reflect an error in the
measurement of the dewetting time, due to the uncertainty introduced by the
diffuse interface associated with the weakly segregated regime. But it might
also reflect the fact that, at 4.5nm from the central interface, we are close to
the critical film thickness in the strongly segregated system, so dewetting is
highly retarded at this point. On the other hand, the results of the simula-
tions in the weakly segregated regime indicate that the particle continues to
dewet, even when the initial distance of the particle from the central interface
is much greater than 4.5nm. Therefore, we are not close to the critical film
thickness of the weakly segregated system at this point, and dewetting can
occur relatively quickly, via the usual diffusive mechanism.

Given the issues identified so far, further progress is not possible. An alterna-
tive approach to obtaining usable data in the weakly segregated regime is to
focus on an earlier stage of the dewetting process - specifically, stage A, the
point at which the interface between the two liquid phases is first breached.
This cuts down the simulation time needed and produces clearer, less un-
certain, results (table 5.2 and figure 5.5). On this occasion, our plot of the
dewetting time includes error bars that reflect the difficulty of determining
the precise time at which stage A dewetting occurs.

As before, the divergence in the dewetting time as the critical film thickness
is approached is apparent, but now the curve is free of the kinks, attributed

166



Figure 5.4: Dependence of the stage C dewetting time on the initial distance of the particle
from the central interface, in a weakly segregated system (χ = 2.1), showing the beginning
of the divergence in dewetting time as the critical film thickness is approached. Note that
the data is flawed due to the difficulty of determining when dewetting occurs with a diffuse
central interface.

to unreliable data, in figure 5.4. Comparing the new dewetting times with
the corresponding times for stage C dewetting (table 5.1), we note that they
are generally much shorter, as we would expect. For example, at a starting
distance of d = 12nm from the central interface, stage C dewetting takes
approximately twice as long as stage A dewetting (225.8µs, compared with
91.5µs). The effect is even more obvious when the particle starts closer to
the interface between the two liquid phases: when the initial distance of the
particle from the central interface is d = 5nm, stage C of the dewetting
process occurs after 34.0µs, while stage A occurs after just 2.0µs.

The drawback of redefining the dewetting point in this way is that it is
no longer possible to directly compare dewetting times in the strongly and
weakly segregated regimes. Additionally, although focusing on the earliest
stage of dewetting saves computation time, the simulations remain resource
intensive. This is exacerbated by the fact that the critical film thickness in the
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Distance Dewetting Time Uncertainty
[nm] [µs] [µs]
2.5 0.1 ± 0.2
4.5 1.2 ± 0.9
5.0 2.0 ± 1.2
6.0 4.0 ± 0.8
7.0 7.7 ± 1.4
9.0 21.5 ± 3.0
10.0 38.7 ± 7.4
12.0 91.5 ± 17.0
14.0 207.0 ± 14.0

Table 5.2: Variation of the stage A dewetting time with the initial distance of the particle
from the central interface in a quiescent, weakly segregated system (χ = 2.1). The stage A
dewetting time is easier to determine than the stage C dewetting time due, in part, to the
reduction in the computation time required to reach this point in the dewetting process.

weakly segregated regime is clearly much greater than∼ 5nm, its value in the
strongly segregated regime. This leads to ever greater simulation times, as the
distance of the particle from the central interface is increased. Note that table
5.2 and figure 5.5 show dewetting occurring even when d = 14.0nm, more
than twice the value of the critical film thickness in the strongly segregated
regime. It is not clear from this data how much further the particle needs
to be from the central interface, at the start of the simulation, to prevent
dewetting from occurring.

This brings us to a further methodological difficulty in simulating the be-
haviour of a weakly segregated system. This difficulty is a consequence of
the periodic boundary conditions used in our simulations, and is best illus-
trated with a diagram (figure 5.6).

Recall that, in order to compensate for the volume of the non-preferred
phase displaced by the particle in its initial position, we introduce a sec-
ond ”dummy” interface between the two liquid phases at the left edge of
the system. This, combined with periodic boundary conditions, means that,
as the initial distance of the particle from the central interface increases, it
moves closer to the second interface near the opposite edge of the system.
For example, if the particle starts at d = 14nm from the central interface,
periodic boundary conditions imply that it is d′ = 27nm from the additional
interface at the left edge of the system. And, to take a more salient example,
if the particle is initially located at d = 20nm from the central interface, it is
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Figure 5.5: Stage A dewetting time against the initial distance of the particle from the
central interface in a quiescent, weakly segregated system (χ = 2.1). Although the stage
A dewetting time is easier to determine than the stage C dewetting time, comparison with
dewetting in the strong segregation regime is more difficult, due to the use of a different
operational definition of dewetting.

just d′ = 21nm - virtually equidistant - from the second interface. This raises
the possibility, and even the likelihood, that the second interface between the
two liquid phases will start to exert a significant influence on the particle,
confounding any attempt to accurately determine the dewetting time, and
the critical film thickness. Although we do not reach this point in our sim-
ulations of the weakly segregated regime, when χ = 2.1, we know that the
critical film thickness is greater than 14nm and there is no indication that
the critical film thickness will be reached any time soon.

An obvious solution to this difficulty is to increase the system size, but this
significantly increases the computation time needed to complete each simu-
lation. A less obvious option is to decrease the particle size, which has the
additional advantage of decreasing the computation time required for any
given initial distance of the particle from the central interface. The result of
one such simulation is shown in figure 5.7.
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Figure 5.6: A potential effect of periodic boundary conditions on dewetting dynamics. The
right-hand side of the figure is the continuation of the left-hand side. When the particle is,
for example, 14nm from the central interface, the periodic boundary conditions entail that
it is 27nm from the additional interface near the left edge of the system. As the former
distance increases, the latter will decrease. Note that, for clarity these images show the
initial state of a simulation in the Rouse regime.

Inspecting figure 5.7, it appears that the size of the particle does not signif-
icantly change the physical dewetting time, though, the computation time
needed to reach the final state shown in each row of figure 5.7 is reduced from
∼ 80 hours to ∼ 70 hours a small, yet worthwhile saving. However, although
the dynamics of dewetting do not appear to be significantly affected by the
reduction in the radius of the particle, we cannot be certain that there is no
effect whatsoever. The application of constant shear to the system, to pro-
mote the migration of the particle from one phase to the other, introduces
further opportunities for the radius of the particle to influence the outcome of
the simulation. In particular, the second dewetting that usually follows the
breaking of the central interface under shear stress is sensitive to the position
of the surface of the particle relative to the broken interface, as it retracts.
This, in turn, will depend on the radius of the particle. Put simply, based
on the results of our previous simulations, there is a greater chance that the
smaller particle will miss the second dewetting point entirely, leading to a
steady state in which the particle adheres to a droplet of the preferred phase,
surrounded by the non-preferred phase. In short, although there is a small
reduction in the computation time needed when a smaller particle is used,
this is meagre compensation for losing direct comparability of results in the
weakly separated regime, with our previous results in the strongly segregated
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Figure 5.7: Dewetting in a weakly segregated system (χ = 2.1) with a particle of radius
r = 6.0nm compared with a particle of default radius r = 12.5nm. In both cases,
snapshots are taken at 50µs, 100µs and 150µs, and the initial distance of the particle
from the central interface is d = 5.0nm.

regime.

The application of shear to a weakly segregated system introduces one final
methodological difficulty. The low energy of the central interface, compared
with the central interface in a strongly segregated system, means that it
is delicate. A consequence of this is that the central interface in a weakly
segregated system is unable to sustain the shear rates studied in strongly
segregated systems which, in the Rouse regime, ranged, roughly, from γ̇ =
1.0×104 s−1 to γ̇ = 2.0×104 s−1. Figure 5.8 illustrates the effect of applying
a shear rates at the upper and lower end of this range to a weakly segregated
system:

At the higher of the two shear rates, especially, the interface is not sheared
smoothly and becomes detached from the top and bottom edges of the system
in an unpredictable way. This problem persists even when we apply a lower
shear rate to the system of γ̇ = 5.0× 103 s−1 (figure 5.9).

In this simulation we note that the dewetting time scale is largely determined
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Figure 5.8: Dewetting in a weakly segregated system (χ = 2.1) at two higher shear rates.
Note the fragility of the interface and its detachment from the top and bottom edges as
the shear strain increases, especially when γ̇ = 2.0× 104 s−1.

by diffusive effects (the applied shear has had little effect on the location of
the middle section of the central interface, when dewetting begins). More to
the point, while the central interface appears to shear quite smoothly at first,
it eventually becomes less stable, especially after dewetting has occurred.
We could experiment with even lower shear rates to maintain the stability
of the central interface, but then the combination of a low shear rate, and
gradually increasing the distance of the particle from the central interface,
implies prohibitively long simulation times.

To summarise the discussion of this section, in the weakly segregated regime,
when the Flory-Huggins interaction parameter, χ = 2.1, the interface be-
tween the two liquid phases is diffuse and delicate. This makes accurate
determination of the dewetting time difficult and time-consuming, even if we
modify our operational definition of dewetting. In addition, the critical film
thickness is greater than it is in the strongly segregated regime, which raises
the possibility that periodic boundary conditions, combined with the addi-
tional interface at the edge of the system, will confound our measurements.
Using a smaller particle gains little, and compromises our ability to compare
results in the weakly segregated regime with those from earlier simulations.
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Figure 5.9: Dewetting in a weakly segregated system (χ = 2.1) at a shear rate of γ̇ =
5.0 × 103 s−1. The shearing of the interface is initially quite smooth, but becomes more
less regular with the onset of dewetting, due to the fragility of the low energy interface.

Finally, attempts to apply higher shear rates on the fragile interface cause it
to become unstable, while lower shear rates add to the computational burden.

For all of these reasons, we take a pragmatic approach and work with a value
of the Flory-Huggins parameter, χ, at the upper end of the range of values
we associate with the weakly segregated regime, in the remainder of this
chapter.

5.4 Dewetting in Weakly Segregated Systems

In this section we present the results of dewetting simulations in the weakly
segregated regime, when the Flory-Huggins parameter, χ = 2.5, and the
equilibrium value of the order parameter is ψeq = ±0.7108. This is at the
upper end of the range of values we use to mark the weakly segregated
regime, while still being significantly lower than the equilibrium value of
ψeq = ±0.9562 when χ = 4.0, which we take to be representative of the
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strongly segregated regime. Importantly, it is now possible to obtain usable
data from our simulations, and we can revert to our original conception of the
dewetting point, as the moment when the preferred phase first makes contact
with the surface of the particle, thereby enabling like for like comparison
with results in the strongly segregated regime. In addition to results in
the Rouse regime (D = 1), we present a set of results for a moderately
entangled system, in which D = 2. The aim is to see how far the behaviour
of a weakly segregated, entangled system deviates from the behaviour of the
strongly segregated system in the Rouse regime, with which we began our
investigations.

As always, we begin by determining the critical film thickness. We proceed
by varying the distance of the particle from the central interface between the
two liquid phases, in a quiescent system, until dewetting no longer occurs.
Since increasing the Flory-Huggins interaction parameter to χ = 2.5 enables
us to determine the stage C dewetting time with some accuracy, we now
refer simply to the ”dewetting time”, consistent with the terminology used
in previous chapters, and drop the use of error bars, since any uncertainty in
the dewetting time is small, compared with the range of dewetting times we
observe.

We then determine the dewetting time at two different shear rates, as the
distance of the particle from the central interface is increased beyond the
critical film thickness, so that shear must be applied to promote dewetting.
The shear rates used are lower than those used in simulations of the strongly
segregated regime because the central interface between the two liquid phases
remains delicate, despite the increase from χ = 2.1 to χ = 2.5. Table 5.3 and
figure 5.10 show the results in the Rouse regime, while table 5.4 and figure
5.11 show the corresponding results in the moderately entangled regime,
when D = 2.

Note that, figures 5.10 and 5.11 omit the data point when the initial distance
of the particle from the central interface is d = 9.0nm because the dewetting
time is so great that it would distort the rest of the plot. The divergence
in the dewetting time of the quiescent system at this point is so marked
we may immediately conclude that the critical film thickness in this weakly
segregated system is dc ∼ 9nm, approximately twice its value in the strongly
segregated systems we have studied.

Before comparing these results directly with those in the strongly segregated
regime, we first note that the relationship between dewetting times in the
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Dewetting Time [µs]
Distance γ̇ = 0 γ̇ = 2.0 γ̇ = 8.0

[nm] [×103 s−1] [×103 s−1] [×103 s−1]
4.0 9.0 8.0 8.0
5.0 15.0 15.0 15.0
6.0 25.0 26.0 27.0
7.0 46.0 49.0 49.0
8.0 95.0 96.0 94.0
8.5 151.0 141.0 119.0
9.0 1947.0 204.0 133.0
10.0 - 302.0 151.0
11.0 - 361.0 165.0
12.0 - 405.0 176.0
13.0 - 446.0 187.0
14.0 - 485.0 197.0
15.0 - 522.0 208.0

Table 5.3: Dewetting time in a weakly segregated (χ = 2.5), quiescent system and at a
constant shear rate of γ̇ = 2.0 × 103 s−1 and γ̇ = 8.0 × 103 s−1 as the distance of the
particle from the interface varies from d = 4.0nm to d = 15.0nm.

Dewetting Time [µs]
Distance γ̇ = 0 γ̇ = 0.25 γ̇ = 1.00

[nm] [×103 s−1] [×103 s−1] [×103 s−1]
4.0 56 56 56
5.0 90 92 92
6.0 160 160 160
7.0 296 300 300
8.0 628 628 628
8.5 1044 1000 864
9.0 6920 1540 992
10.0 - 2312 1140
11.0 - 2768 1244
12.0 - 3132 1336
13.0 - 3460 1420
14.0 - 3764 1500
15.0 - 4060 1580

Table 5.4: Dewetting time in a weakly segregated, moderately entangled (χ = 2.5, D = 2),
quiescent system, and at a constant shear rate of γ̇ = 0.25×103 s−1 and γ̇ = 1.00×103 s−1

as the distance of the particle from the interface varies from d = 4.0nm to d = 15.0nm.
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Figure 5.10: Dewetting time against the initial distance of the particle from the central
interface in a weakly segregated system (χ = 2.5) in the Rouse regime, in a quiescent
state, and at two shear rates (γ̇ = 2.0×103 s−1 and γ̇ = 8.0×103 s−1). Note that the long
dewetting time in the quiescent system when d = 9.0nm has been omitted to improve
resolution in the y-direction.

Rouse regime (D = 1) and in the moderately entangled regime (D = 2),
when the system is weakly segregated, parallels what we observe when D is
varied in the strongly segregated regime. In particular, all other parameters
being equal, the dewetting time scales roughly with D3, especially in the
near-linear region of each dewetting curve, where the shear rate is the main
determinant of the dewetting time. This is most apparent when the initial
distance of the particle from the central interface is high, and the system is
sheared. For example, when d = 15.0nm, the dewetting time in the Rouse
regime, at the higher shear rate is approximately 200µs, compared with a
dewetting time of approximately 1600µs in the moderately entangled regime
at the higher shear rate. The factor of D3 = 23 = 8 between these two times
reflects the fact that the same dimensionless shear rate implies a physical
shear rate in the Rouse regime that is eight times the physical shear rate in
the moderately entangled regime.

176



Figure 5.11: Dewetting time against the initial distance of the particle from the central
interface in a weakly segregated, moderately entangled system (χ = 2.5; D = 2), in a
quiescent state, and at two shear rates (γ̇ = 0.25× 103 s−1 and γ̇ = 1.00× 103 s−1). Note
that the long dewetting time in the quiescent system when d = 9.0nm has been omitted
to preserve a sensible vertical scale.

As usual, the results are less clear cut when the system is quiescent and/or
the initial distance of the particle from the central interface is significantly
less than the critical film thickness of dc ∼ 9.0nm. Having discussed this
at some length in the previous chapter, we make no further comment here,
other than to observe that, when these conditions apply, dewetting times
in the moderately entangled regime tend to be lower than what would be
predicted if they scaled with D3. This is due to diffusive effects, which play
a significant role when d < dc, especially in weakly segregated systems.

Turning to a more direct comparison with the results in the strongly seg-
regated regime, the most obvious point is that the dewetting curves have a
broadly similar shape, regardless of the value of the Flory-Huggins interac-
tion parameter, χ. In both regimes, for each curve plotted, there is a region in
which the initial distance of the particle from the central interface is less than
the critical film thickness, dc, where diffusive effects dominate the dynamics
of the system. Similarly, all curves have a region in which d > dc where the
hydrodynamic effects of applying shear to the system are apparent. In the

177



latter region, the dewetting time increases approximately linearly with the
initial distance of the particle from the central interface, because the system
is sheared at a constant rate. Between these two regions, in every case, there
is a transition zone, at around d = dc.

The most interesting difference between the dewetting curves in the weakly
and strongly segregated regimes is the rapidity at which this transition from
the diffusive to the hydrodynamic regime occurs. In the strongly segregated
regime, the transition is quite rapid, as shown in figures 3.8 (Rouse regime)
and figure 4.6 (moderately entangled regime, with D = 2) by the large in-
crease in the dewetting time, when the distance of the particle from the
central interface increases from 4.0nm to 4.5nm, just before the dewetting
time diverges in the quiescent system. This is the case at both the higher
and the lower shear rates used in these simulations. In contrast, the transi-
tion from the diffusive to the hydrodynamic regime in the weakly segregated
system is notably more gradual, as shown by the relatively smooth plots of
the dewetting time against the initial distance of the particle from the cen-
tral interface in figures 5.10 and 5.11. Note, especially the smoothness of the
dewetting curves in the vicinity of d = dc ∼ 9.0nm, when the dewetting time
diverges in the quiescent system, and that the transition is gradual at both
of the shear rates used in these simulations. We attribute this difference in
the rapidity of the transition from the diffusive to the hydrodynamic regime
to the greater effectiveness of the diffusive mechanism in weakly segregated
systems. This, in turn, is due to the increase in the critical film thickness
(so diffusive mechanisms have more time to influence the dynamics), and the
broader central interface between the two liquid phases, in a weakly segre-
gated system.

The increase in the critical film thickness makes further detailed compari-
son of the dewetting time in a quiescent system in the weakly and strongly
segregated regime difficult, because there is little overlap in the range of d,
the initial distance of the particle from the central interface, at which dewet-
ting occurs. However, we note that, when d = 4.0nm the dewetting time is
10.4µs in the strongly segregated system, and 9.0µs. Although, in theory,
the dynamics ought to be slower in the weakly segregated system, the ini-
tial distance of the particle from the central interface is much closer to the
critical film thickness of the strongly segregated system, so we would expect
dewetting to be significantly retarded in this case. This is similar to what we
observed in the much more weakly segregated system, where χ = 2.1, and
supports the hypothesis that, in both cases, the more rapid dewetting (com-
pared with the strongly segregated system) is due to a real physical effect,
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rather than uncertainty in the measurement of the dewetting time.

Similarly, direct comparison, between the two regimes, of the dewetting time
under shear is not straightforward because the shear rates used differ. This is
a matter of necessity, as the central interface in the weakly segregated regime
is too delicate to sustain the higher shear rates used to study the strongly
segregated regime. However, the higher shear rate used in our simulations of
weakly segregated systems is just 20% lower than the lower shear rate used in
simulations of strongly segregated systems, so we can gain some impression
of how the dynamics compare by considering initial distances, d, that are
common to both sets of simulations. For example, in the strongly segregated
regime, with a shear rate of γ̇ = 1.0 × 104 s−1, we observe dewetting times
of 96.2µs, 107.0µs, and 118.4µs respectively when the initial distance of
the particle from the central interface is 8.0nm, 9.0nm, and 10.0nm. in
the weakly segregated system, with a slightly lower shear rate of γ̇ = 8.0 ×
103 s−1 respectively, the corresponding dewetting times are 94.0µs, 133.0µs,
and 151.0µs. So, as the initial distance of the particle from the central
interface increases, the dewetting time in the weakly segregated system begins
to exceed the dewetting time in the strongly segregated system, to a degree
that may be hard to account for solely in terms of the lower shear rate in the
latter.

However, the above comparison is confounded by the fact that the range
of values of d considered is clearly above the critical film thickness, dc ∼
5.0nm in the strongly segregated regime, while it includes the critical film
thickness, dc ∼ 9.0nm in the weakly segregated regime. Therefore, let us
compare values of the dewetting time in the linear section of the dewetting
curves, well above the point at which the transition from the diffusive to the
hydrodynamic regime occurs. For example, in a strongly segregated system
in the Rouse regime, at d = 8.0nm ∼ 1.6 dc, the dewetting times are 96.2µs
and 72.5µs respectively, at the lower and higher shear rates. That is, the
ratio of the two dewetting times, at this point, is approximately 0.75, when
the shear rate doubles. In a weakly segregated system in the Rouse regime,
at d = 14.4nm ∼ 1.6 dc, we estimate the corresponding dewetting times to
be 499.8µs and 201.4µs (interpolating linearly, between known data points).
So, the ratio of the two dewetting times, at this point, is approximately 0.40,
when the shear rate quadruples. This is close to, but not exactly, half the
corresponding ratio at this point in the strongly segregated regime, indicating
that mechanisms other than the ratio of the two shear rates influence the
dewetting times. We believe this to be yet another effect of the wider, more
diffuse, interface that is characteristic of the weakly segregated regime.
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5.5 Expulsion in Weakly Segregated Systems

As in previous chapters, we now consider the long term behaviour of the
particle as the system is sheared and, in particular, its eventual steady state:
is the particle completely expelled from the non-preferred phase; does it
adhere to a droplet of the preferred phase, or to the interface between the two
liquid phases; or does it reach some other steady state? In these simulations,
we vary the shear rate from γ̇ = 0.1 × 104 s−1 to γ̇ = 1.0 × 104 s−1, in
recognition of the fragility of the interface between the two liquid phases,
compared with the strong segregation regime. Although the central interface
is more robust than it is when χ = 2.1, shear rates much greater than the
upper end of this range create instability, similar to that observed in figure
5.8. As in the strongly segregated regime, the initial distance of the particle
from the central interface is the same in all simulations, and is just less than
the critical film thickness; thus, we choose d = 8.5nm in all cases. As in the
previous section, we run simulations in both the Rouse regime, and in the
moderately entangled regime, when D = 2.

Before presenting the results of these simulations in detail, we note that a
previously unobserved steady state occurs at some shear rates, in both the
Rouse regime and the moderately entangled regime. In this steady state, the
particle is caught in the middle of the system, apparently adhering to the
rightmost edge of one droplet of the preferred phase, and the leftmost edge
of another. In fact, periodic boundary conditions imply that this is the same
droplet so, strictly speaking, this represents an unphysical state in which the
particle is in two places at the the same time (the left and right edge of the
droplet). Of course, in a real physical system, a particle might adhere to
two different droplets at the same time, but it is not clear that this could
ever be a stable steady state, as the two droplets will tend to coalesce, as the
system evolves, especially if shear is being applied. For these reasons, this
new steady state is best seen as a special case of the one observed in previous
simulations, in which the particle adheres to a droplet of its preferred phase.
However, for clarity, we show this steady state as a distinct alternative in
what follows. Figure 5.12 summarises the full set of alternative steady states
available to a weakly segregated system, for the range of shear rates we have
investigated. It is worth noting that the labelling of these states reflects the
order in which they occurred in our simulations. In terms of the expulsion
process, the correct ordering is A1, A3 and A2, corresponding to steady
states in which the expulsion process is arrested after the first dewetting, the
second dewetting, and the first wetting, respectively.

180



Figure 5.12: Alternative steady states when a weakly segregated system (χ = 2.5) is
sheared. In steady state A1 (γ̇ = 1.0 × 103 s−1), the particle adheres to a droplet of
its preferred phase in a matrix of the non-preferred phase. In steady state A2 (γ̇ =
4.0 × 103 s−1), the particle remains attached to the now horizontal interface between
the two phases. And in steady state A3 (γ̇ = 5.0 × 103 s−1), which is not observed
in simulations of the strongly segregated regime, the particle appears to adhere to two
droplets of the non-preferred phase, one to its left and one to its right. In all simulations,
the initial distance of the particle from the central interface is d = 8.5nm, and D = 1
(Rouse regime).

The results of the Rouse regime simulations are summarised in table 5.5
and plotted in figure 5.13, while the results of simulations in the moderately
entangled regime (D = 2) are shown in table 5.6 and figure 5.14.

Shear Rate Dewetting 1 Dewetting 2 Wetting Expulsion
[×103 s−1] [ms] [ms] [ms] [ms]

0.0 0.151 - - -
1.0 0.148 A1 A1 A1
2.0 0.141 1.023 1.103 1.127
3.0 0.135 0.723 0.789 0.800
4.0 0.130 0.575 0.784 A2
5.0 0.126 0.473 A3 A3
6.0 0.123 0.393 A3 A3
8.0 0.119 0.281 0.505 A2
10.0 0.116 A1 A1 A1

Table 5.5: Summary of times to the various stages of expulsion at a range of shear rates in
a weakly segregated system (χ = 2.5), in the Rouse regime (D = 1). A1, A2 and A3 denote
alternative steady states where the particle is not fully expelled from the non-preferred
phase (see figure 5.12). At shear rates of γ̇ & 12.0× 103 s−1 the interface between the two
liquid phases starts to become unstable under shear.

Comparing figures 5.13 and 5.14 with figures 3.13 and 4.8, the most striking
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Figure 5.13: Stages of the expulsion process in a weakly segregated system (χ = 2.5) at
constant shear rates from γ̇ = 1.0×103 s−1 to γ̇ = 1.0×104 s−1. In all simulations, D = 1
and the initial distance of the particle from the central interface is d = 8.5nm.

Shear Rate Dewetting 1 Dewetting 2 Wetting Expulsion
[×103 s−1] [ms] [ms] [ms] [ms]

0.0 1.044 - - -
0.125 1.036 15.48 16.00 16.16
0.250 1.000 A1 A1 A1
0.375 0.968 5.836 6.308 6.344
0.500 0.932 4.508 5.220 A2
0.625 0.904 3.672 A3 A3
0.750 0.884 3.044 3.684 A2
1.000 0.864 2.120 A3 A3
1.250 0.836 A1 A1 A1

Table 5.6: Summary of times to the various stages of expulsion at a range of shear rates
in a weakly segregated system (χ = 2.5), with moderate entanglement (D = 2). A1, A2
and A3 denote alternative steady states where the particle is not fully expelled from the
non-preferred phase (see figure 5.12). Note that at shear rates of γ̇ & 12.0 × 103 s−1 the
interface between the two liquid phases starts to become unstable under shear.

182



Figure 5.14: Stages of the expulsion process in a weakly segregated system (χ = 2.5) at
constant shear rates from γ̇ = 0.25 × 103 s−1 to γ̇ = 1.25 × 103 s−1. In all simulations,
D = 2 and the initial distance of the particle from the central interface is d = 8.5nm.

difference is the complexity of the behaviour of the sheared system in the
weakly segregated regime. Compared with the strongly segregated regime,
we observe both a greater range of steady states, and less predictability in
the steady state the system reaches. Regardless of the value of D, there
are relatively few regions, in figures 5.13 and 5.14, where the same steady
state is reached across a range of different shear rates. In contrast, in the
strongly segregated regime, the particle is expelled from the non-preferred
phase, across a range of higher shear rates, in both the Rouse regime, and
the moderately entangled regime, when D = 2. We attribute the greater
sensitivity of the weakly entangled system to the applied shear rate, and
other parameters, to its more diffuse and delicate interface. It is natural
to suppose that such an interface will be more sensitive to small changes in
the variables and parameters used in the simulation, than will the sharply
defined, high energy interface that is characteristic of the strongly segregated
regime.

A common feature in both the strongly and weakly segregated regimes ap-
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pears to be that increasing the effective diffusion coefficient, D, tends to
lead to alternative steady states, in which the particle is not expelled from
the non-preferred phase. In the strongly segregated regime, these alterna-
tive steady states are seen more frequently when D = 5 or D = 10 (recall
that, in the latter case, we did not observe expulsion of the particle from the
non-preferred phase, at any of the applied shear rates). In the weakly segre-
gated regime, we observe alternative steady states (including the new steady
state, in which the particle appears to adhere to two particles) even when
D = 2. For example, at the same dimensionless shear rate of ˜̇γ = 0.0002, the
particle is expelled into its preferred phase in the weakly segregated system
in which D = 1 (physical shear rate: γ̇ = 2.0 × 103 s−1), while it adheres
to a droplet of its preferred phase in a mildly entangled (D = 2) version of
the same system (physical shear rate: γ̇ = 0.25× 103 s−1). Interestingly, the
reverse effect is observed when the dimensionless shear rate is ˜̇γ = 0.0001.
However, broadly speaking, the complete migration of the particle across the
central interface, and into its preferred phase, is less commonly observed in
the weakly segregated system, when D = 2. In addition to being a point of
contrast with results in the strongly segregated regime, this again illustrates
the sensitivity of the eventual steady state, in a weakly segregated system,
to the applied shear, and to the parameters used in the simulation.

Turning to a more detailed inspection of figure 5.13, we note the familiar
presence of a first dewetting curve that is almost independent of the shear
rate: because the initial distance of the particle from the central interface
is just less than the critical film thickness, dc ∼ 9.0nm), diffusive effects
tend to dominate and the applied shear rate has relatively little influence on
the dewetting time. The complete migration of the particle from the non-
preferred to the preferred phase is a relatively rare event, ocurring only at two
of the lowest shear rates (γ̇ = 2.0× 103 s−1 and γ̇ = 3.0× 103 s−1). Similarly,
the wetting of the particle, the penultimate stage of the expulsion process, is
quite uncommon, and the particle often reaches one of the alternative steady
states instead.

The most interesting contrast with the results from the strongly segregated
regime results is seen in the second dewetting curve. Second dewetting does
not occur at the upper and lower ends of the range of shear rates used. This
is reminiscent of simulation results in the strongly segregated regime, where
the steady state in which the particle adheres to a droplet of its preferred
phase is common at lower and higher shear rates. However, in the strongly
segregated regime, the time to the second dewetting (when it does occur)
tends to decrease linearly with the shear rate. This is not surprising, since
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the shear rate is constant, and we expect a higher shear rate to result in
shorter dewetting times. In contrast, the second dewetting curve in figure
5.13 is clearly not linear. In fact, the second dewetting time appears to be
approximately inversely proportional to the shear rate. We return to this
point after reviewing the expulsion results in the weakly segregated system,
when D = 2.

Finally, although it is not apparent in figure 5.13, at some shear rates, the
sequence from first dewetting to final expulsion differs slightly from that in
the strong segregation regime. In particular, sometimes, the second dewet-
ting occurs before (or very close to the point at which) the central interface
breaks. Figure 5.15 shows this alternative dewetting scenario when the shear
rate is γ̇ = 2.0× 103 s−1.

Figure 5.15: An unusual case of second dewetting. This occurs when the shear rate is
γ̇ = 2.0 × 103 s−1 and, as usual, d = 8.5nm. It differs from the usual case because
the second dewetting precedes the breaking of the central interface as a result of shear
stress. The second and third images show the wetting and expulsion of the particle into
its preferred phase, respectively.

We attribute this effect to the greater initial distance of the particle from
the central interface in these simulations (8.5nm, compared with 4.5nm in
simulations of the strongly segregated regime), which means that the particle
is closer to the interface between the two liquid phases, before it breaks and
retracts. It is possible that the more diffuse central interface in the weakly
segregated regime also plays a role, but we expect this to be a relatively small
effect.

The results in the weakly segregated regime when the effective diffusion co-
efficient, D = 2 (figure 5.14) are similar to the corresponding results in the
Rouse regime (figure 5.13). The main difference is that, at most shear rates,

185



the expulsion process is arrested at an earlier stage, leading to a greater di-
versity in the steady states reached, and greater fragmentation of the four
curves plotted, for each set of simulations. Despite this fragmentation, the
approximate inverse proportionality between the second dewetting time and
the shear rate appears to survive the transition to the moderately entangled
regime.

To probe this relationship further, let us assume a power law of the form,
t2 = Aγ̇n, where t2 is the time at which second dewetting occurs, and A and n
are numerical constants, the former having appropriate dimensions, and the
latter being dimensionless. It is apparent from figures 5.13 and 5.14 that n
must be negative, and we assume that, if it were physically possible to sustain
an arbitrarily high shear rate, the second dewetting time, t2, would approach
zero (as would all other times associated with the stages of expulsion). Figure
5.16 is a log-log plot of the second dewetting data for the weakly segregated
system in both the Rouse regime (D = 1) and the moderately entangled
regime (D = 2).

Note that, here, we treat t2 (measured in µs) as dimensionless, through
implicit multiplication by a quantity of appropriate dimensions (µs−1), and
magnitude unity. In a similar fashion, the shear rate, γ̇, is also treated as a
dimensionless quantity.

Figure 5.16 shows that the power law model is an excellent fit in both the
Rouse regime, and the moderately entangled regime, with R2 > 0.99 in
both cases, meaning that more than 99% of the variation in ln(t2) can be
accounted for by the variation in ln(γ̇). Moreover, the two lines of best
fit are almost identical. This shows that changing the effective diffusion
coefficient, D, enables us, among other things, to access a different range of
shear rates, while leaving the fundamental dynamics of the system more or
less unchanged.

However, the fact that the two lines of best fit don’t quite coincide indicates
that varying D subtly changes the dynamics of the system. We saw this
in the previous chapter, in our discussion of the simple geometrical model
of dewetting. There, we discovered that, for any given dimensionless shear
rate, changing the value of D subtly affects the way in which the central
interface between the two liquid phases deforms, resulting in a lower shear
strain at the first dewetting point, at higher values of D (figures 4.17 and
4.18). In the master dewetting plot (figure 4.13), this gives rise to a band of
dewetting curves (one for each value of D) at each dimensionless shear rate.
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Figure 5.16: Plots of ln(t2) against ln(γ̇) in a weakly segregated system, where t2 is the
time at which second dewetting occurs, and both quantities are treated as dimensionless.
Plots are shown for both D = 1 and D = 2, and lines of best fit are marked for each
dataset. The lines of best fit indicate a power law relationship between t2 and γ̇.

We believe the appearance of two distinct but, similar, lines of best fit in
figure 5.16 is an example of the same phenomenon. Taking mean values of
the coefficients from these two lines, we may say that the relationship between
the second dewetting time and the shear rate is a power law, of the form,
t2 ≈ 1.26 γ̇−0.925, where, for presentational simplicity, t2 is now measured in
seconds, and appropriate units are implied in the numerical factor on the
right hand side. Thus, as suspected, the time at which second dewetting
occurs in this weakly segregated system is almost inversely proportional to
the applied shear rate.

The reason for this apparent relationship of near-inverse proportionality,
and the contrast with near-linear second dewetting curves we observe in the
strongly segregated regime is not clear. One hypothesis is that the time at
which the central interface breaks, under shear stress, influences the form of
the relationship between the second dewetting time and the shear rate (recall
that second dewetting usually occurs after the interface breaks). As a matter
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of fact, in the weakly segregated regime, this breaking of the central interface
tends to occur at a lower shear strain than it does in a strongly segregated
system, and the shear strain at breaking depends on the shear rate. Figure
5.17 illustrates this point, contrasting a strongly segregated system in the
Rouse regime, with a weakly segregated system, also in the Rouse regime,
that is sheared at two different rates.

Figure 5.17: Breaking of the central interface in a strongly segregated system (χ = 4.0) and
in a weakly segregated system (χ = 2.5) at two different shear rates. The dimensionless
shear rates shown correspond with physical shear rates of γ̇ = 1.0 × 104 s−1, γ̇ = 1.0 ×
103 s−1 and (again) γ̇ = 1.0 × 104 s−1, respectively. All three simulations take place in
the Rouse regime, in which D = 1. The initial distance of the particle from the central
interface is d = 9.0nm in the first image, and d = 8.5nm in the second and third images.

The shear strain in the strongly segregated system, just after the central
interface breaks is γ ∼ 2.5, while the shear strain in the weakly segregated
system is γ ∼ 1.7 at the lower shear rate, and γ ∼ 1.6 at the higher rate.
However, it is hard to see how this effect, in itself, could give rise to the
relationship we see in figure 5.16.

Another possibility is that this relationship is a mathematical coincidence,
but the high R2 value for both the the Rouse regime data, and the data from
the moderately entangled regime, makes it difficult to defend this claim.
Nevertheless, this idea is on the right lines, as may be seen by revisiting the
second dewetting data from the strongly segregated regime when D = 1 and
D = 2. Figure 5.18 plots this data using the same method as figure 5.16.
Although the fit is not quite as good as it is for the same data in the weakly
segregated regime, it is clear that a power law, with an exponent of n ≈ −1.2
is an excellent fit (R2 ≈ 0.97) for the second dewetting data in the strongly
segregated regime.

On reflection, this is not so surprising. Although there are more confounding
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Figure 5.18: Plots of ln(t2) against ln(γ̇) in a strongly segregated system, where t2 is the
time at which second dewetting occurs, and both quantities are treated as dimensionless.
Plots are shown for both D = 1 and D = 2, and lines of best fit are marked for each
dataset. The lines of best fit indicate a power law relationship between t2 and γ̇.

factors - notably, the timing of the breaking of the central interface - these
results are reminiscent of the first dewetting results summarised in section
4.6 (which we revisit, in the weakly segregated regime, in section 5.6). The
tight banding of the dewetting curves in figures 4.13 and 4.20 indicates that,
for a given initial distance, d, of the particle from the central interface, and
a given dimensionless shear rate, ˜̇γ, the shear strain at the first dewetting
point is almost constant. Since the shear strain at the first dewetting point is
the product of the first dewetting time and the shear rate, this is equivalent
to saying that the former is (almost) inversely proportional to the latter. In
section 4.6, we saw how this could be explained by a geometrical model, in
which the central interface shears linearly, until its distance from the sur-
face of the particle approaches a critical distance, e, when dewetting occurs
rapidly, compared with the time scale over which the system is sheared.

The second dewetting results, in both the strongly and weakly segregated
regimes, are similar in that they imply the shear strain of the system at the
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second dewetting point is almost constant. This then gives rise to the near
inverse proportionality between t2 and γ̇ we observe in these results. The de-
viation from inverse proportionality is due to the confounding factors alluded
to above. Although we do not attempt this here, it might be possible to con-
struct a model of the second dewetting process, similar to the geometrical
model of the first dewetting process, in which the second dewetting times
are explained by the linear shearing of the system, up to the breaking of the
central interface, after which second dewetting occurs relatively quickly, as
the region of the preferred phase retracts and makes contact with the surface
of the particle. We believe that such a model could ultimately account for
the near inverse proportionality between t2 and γ̇. This conclusion highlights
the danger of attempting to deduce a mathematical relationship between two
variables from a visual inspection of a plot of one against the other: although
the second dewetting curves in the strongly segregated regime look linear, the
underlying logic should lead us to expect a relationship of inverse proportion-
ality. It is an interesting question why the true form of this relationship is so
much more apparent in the weakly segregated regime, but we do not pursue
this here.

As in previous chapters, we end this section with plots of the mean free
energy density, as the system is sheared up to, and just beyond, the first
dewetting point. Figures 5.19 and 5.20 show the evolution of the mean free
energy density in the weakly segregated system when D = 1 and D = 2,
respectively.

These figures have much in common with the corresponding figures in pre-
vious chapters, so we omit the detailed description of the mean free energy
density curves here. However, there are some interesting differences. Firstly,
the curves are significantly smoother at the dewetting point than are the
same curves in strongly segregated systems; in fact, at the lowest shear rate,
it is quite hard to discern the point at which the mean free energy decreases,
as dewetting occurs. This is another example of the relatively broad, diffuse
interface in the weakly segregated system resulting in more gradual dynam-
ics. The second difference is that, at the highest shear rate, there is a further,
large decrease in the mean free energy density, after the dewetting point, in
the weakly segregated system. Examination of the state of the system at
this time reveals that this is the point at which the central interface begins
to break. This is further confirmation of the fact that the lower energy, more
delicate interface in a weakly segregated system tends to break at a lower
level of shear strain than its counterpart in a strongly segregated system.
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Figure 5.19: Evolution of the mean free energy density under shear in a weakly segregated
system up to, and just beyond, the first dewetting point for γ̇ = 2.0 × 103 s−1 to γ̇ =
1.0 × 104 s−1. In all cases, D = 1 (Rouse regime), χ = 2.5 (weak segregation) and the
initial distance of the particle from the central interface is d = 8.5nm. The sudden
decrease in the mean free energy density at the highest shear rate, when t ≈ 135µs is due
to the central interface beginning to break under shear stress.

Finally, it is interesting to compare the the mean free energy density in the
early stages of the evolution of the system, for all three values of the Flory-
Huggins interaction parameter, χ, used in our simulations (figure 5.21).

Note that, when considering the effect of varying the Flory-Huggins inter-
action parameter, it is the magnitude of the mean free energy density that
matters. Thus, figure 5.21 appears to show the mean free energy density
increasing, at all three values of χ although, physically, the mean free energy
density becomes more negative, over time (also, practically, the log scale used
requires positive values). Figure 5.21 is interesting because it shows how sen-
sitive the mean free energy density is to changes in the Flory-Huggins inter-
action parameter. In fact, the absolute value of the mean free energy density
increases by roughly an order of magnitude when we increase χ from 2.1 to
2.5, and then increases by another order of magnitude when χ increases from
2.5 to 4.0.
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Figure 5.20: Evolution of the mean free energy density under shear in a weakly segregated
system up to, and just beyond, the first dewetting point for γ̇ = 2.0 × 103 s−1 to γ̇ =
1.0 × 104 s−1. In all cases, D = 2 (moderate entanglement), χ = 2.5 (weak segregation)
and the initial distance of the particle from the central interface is d = 8.5nm. The sudden
decrease in the mean free energy density at the highest shear rate, when t ≈ 1.1ms is due
to the central interface beginning to break under shear stress.

Therefore, it is not surprising that the particle behaves so differently in a
weakly segregate system when the system is sheared. There is much less free
energy available for use in the system, compared with an otherwise identical
system in the strongly segregated regime. The overall effect is that it becomes
more difficult to expel the particle from its non-preferred phase. This effect is
compounded by the generally lower shear rates, necessary to ensure that the
diffuse and delicate central interface of the weakly segregated system remains
stable, as it is sheared.

5.6 The Geometry of Dewetting Revisited

To close this chapter, we revisit the geometrical model of dewetting we in-
troduced to clarify the results of our simulations in the strongly segregated
regime. Can this geometrical model shed light on dewetting behaviour in
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Figure 5.21: Magnitude of the mean free energy density in the early stages of our dewetting
simulations, with various values of the Flory-Huggins interaction parameter, χ. In all cases,
the system is quiescent and the particle is initially located d = 5.0nm from the central
interface. Note that the interface equilibrates in all three stages but this is only apparent
for the lowest value of χ = 2.1 due to the scaling of the y-axis.

weakly segregated systems?

The data from the weakly segregated regime is relatively limited, since we
only have simulation results for two values of the effective diffusion coefficient,
D, rather than the four sets of results available in the strongly segregated
regime. However, there is enough data to observe many similarities between
the two regimes, as the dewetting master plot for the weakly segregated
systems we have studied shows (figure 5.22).

As in the previous chapter, we plot the shear strain at the first dewetting
point against the initial distance of the particle from the central interface,
at two dimensionless shear rates (˜̇γ = 0.0002 and ˜̇γ = 0.0008) and for the
two values of D used in the simulations (D = 1 and D = 2). Figure 5.22
also shows the predictions of the geometrical model. The solid black line
is predicted by the naive version of the model, in which dewetting occurs
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Figure 5.22: Dewetting master plot showing the shear strain at which dewetting occurs,
as the distance of the particle from the central interface varies. Shown are the data points
when D = 1 and D = 2. The two bands represent the upper and lower ends of the range
of dimensionless shear rates used in the simulations (˜̇γ = 0.0008 and ˜̇γ = 0.0002). The
physical value of the shear rate varies, according to the value of the effective diffusion
coefficient, D. The predicted values are those of the simple geometrical model described
in section 4.6, and represented in figures 4.12 and 4.19. The revised predicted values come
from the modified geometrical model, with parameter e = 5.0nm.

when the sharply defined interface is just tangential to the surface of the
particle. The dashed black line is the prediction of the revised model in which
dewetting occurs almost instantaneously, compared with the time scale over
which the system is sheared, when the distance between the central interface
and the surface of the particle is equal to some length scale, e. Based on
dewetting curves shown earlier in this chapter (figures 5.10 and 5.11) we
have chosen e = 5.0nm. This already contrasts with the strongly segregated
regime in which we set e = 3.0nm.

It is clear that figure 5.22 shares many features with the dewetting master plot
for the strongly segregated regime (figure 4.20). Firstly, there is a distinct
band of dewetting curves associated with each value of the dimensionless
shear rate used in the simulations. Furthermore, the higher dimensionless
shear rate is associated with the higher band: so, for a given initial distance

194



of the particle from the central interface, dewetting occurs later, as measured
by the shear strain of the system, at the higher shear rate. Within each band,
the curve corresponding with the lower value of D = 1 is higher than the
curve corresponding with the higher value of D = 2. Despite the limited data
sample, this is consistent with the pattern observed in the strongly segregated
regime, and we are confident that the full pattern would be repeated, if data
for more values of D were available.

To account for these features of the dewetting master plot, we repeat the
analysis of the previous chapter, considering each of the three key assump-
tions of the simple geometrical model in turn:

Assumption 1: The particle is immobile. It does not move under the
influence of hydrodynamic, or other forces.

Assumption 2: The central interface shears linearly and, in any given small
increment of time, instantaneously.

Assumption 3: Dewetting occurs when the interface between the two
phases in the system is tangential to the surface of the particle, and not
before.

The first assumption is not true of our simulations, in which the particle is
free to move. Figures 5.23 and 5.24 show the extent of this movement when
the initial distance of the particle from the central interface is d = 10.0nm
and d = 15.0nm, respectively. The trajectory of the particle is shown up to
the point of the first dewetting, for various combinations of the dimensionless
shear rate and the effective diffusion coefficient used in the simulations.

Figures 5.23 and 5.24 resemble the corresponding figures in the strongly
segregated regime, in that they show a general tendency of the particle to
move first rightwards, and then upwards, as the the system is sheared, and
approaches its first dewetting point. This is consistent with our previous
hypothesis that, initially, the particle only ”sees” movement of the central
interface in the x-direction. It is only when the system is under a certain
amount of shear strain that the vertical distance between the central interface
and the bottom surface of the particle begins to decrease, pushing it upwards
in the y-direction. Further support for this hypothesis comes from the fact
that, typically, the movement in the x-direction is greater in figures 5.23 and
5.24, than it is in the figures that illustrate the trajectory of the particle
in the strongly segregated regime. This is most likely due to the fact that
the initial distance of the particle from the central interface is greater in the
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Figure 5.23: Displacement of the particle, relative to its initial position (d = 10.0nm from
the central interface between the phases) up to the point of first dewetting. The particle
trajectory is shown for D = 1 and D = 2, and for the the upper and lower end of the
range of dimensionless shear rates used in the simulations (˜̇γ = 0.0002 and ˜̇γ = 0.0008).
The physical value of the shear rate varies, according to the value of the effective diffusion
coefficient, D.

simulations we have chosen to represent the weakly segregated regime, so it
takes longer for the central interface’s influence in the y-direction to be felt
by the particle.

A point of contrast with the earlier simulations is that the transition, in
the particle’s trajectory, from movement in the x-direction, to movement in
the y-direction is more gradual in weakly segregated systems, than it is in
their strongly segregated counterparts. This might be another effect of the
broader, more diffuse central interface that is characteristic of the weakly
segregated system; intuitively, the particle will ”feel” the approach of such an
interface sooner than it would, if the interface were more sharply defined, as it
is in the strongly segregated regime. The effect here is similar to the gradual
transition from the diffusive to the hydrodynamic regime in the dewetting
curves (figures 5.10 and 5.11), and the underlying mechanism is likely to be
the same.
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Figure 5.24: Displacement of the particle, relative to its initial position (d = 15.0nm from
the central interface between the phases) up to the point of first dewetting. The particle
trajectory is shown for D = 1 and D = 2, and for the the upper and lower end of the
range of dimensionless shear rates used in the simulations (˜̇γ = 0.0002 and ˜̇γ = 0.0008).
The physical value of the shear rate varies, according to the value of the effective diffusion
coefficient, D.

Turning to the second key assumption of the geometrical model, that the
deformation of the central interface, under shear, is perfectly linear, we see
that this is not the case in figure 5.25, which shows the state of the system
at 100% shear strain (γ = 1.0) at the lower and higher shear rates used in
our dewetting simulations of a weakly segregated system in the Rouse regime
(D = 1).

The third image in figure 5.25 shows the difference in the order parameter
(the ”delta”), at every point in the system. It is clear, by inspection alone,
that the deformation of the central interface at the higher shear rate deviates
significantly from the perfectly linear form assumed in the geometrical model,
and the image of the delta in figure 5.25 merely emphasises the point. Thus,
the central interface of our weakly segregated system behaves, at higher shear
rates, in the same way as the interface in a strongly segregated system,
and the argument used in the previous chapter may be used to explain the
existence of two distinct bands of dewetting curves in figure 5.22.
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Figure 5.25: The state of the system at 100% shear (γ = 1.00) when the dimensionless
shear rate is ˜̇γ = 0.0002 and ˜̇γ = 0.0008. In both cases, D = 1 and the initial distance
of the particle from the central interface is d = 15.0nm. The third image represents the
difference in the order parameter at every point in the system (the ”delta” of the first two
images).

Just as in the strongly segregated regime, a similar analysis can account for
the ordering of dewetting curves, within each band (figures 5.26 and 5.27).

Figure 5.26: The state of the system at 100% shear (γ = 1.00) when the effective diffusion
coefficient is D = 1 and D = 2. In both cases the dimensionless shear rate is ˜̇γ = 0.0008,
and the initial distance of the particle from the central interface is d = 15.0nm. The
third image represents the difference in the order parameter at every point in the system
(the ”delta” of the first two images). For clarity, the contrast in the third image has been
increased.

Now, we vary the effective diffusion coefficient, D, and observe the delta
when the shear strain of γ = 1.0, at each of the two dimensionless shear
rates used in these simulations. Again, the results strongly resemble those
in the strongly segregated regime, although the effect is much harder to
detect in a weakly segregated system. The relative weakness of the effect,
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Figure 5.27: The state of the system at 100% shear (γ = 1.00) when the effective diffusion
coefficient is D = 1 and D = 2. In both cases the dimensionless shear rate is ˜̇γ = 0.0002,
and the initial distance of the particle from the central interface is d = 15.0nm. The
third image represents the difference in the order parameter at every point in the system
(the ”delta” of the first two images). For clarity, the contrast in the third image has been
increased.

in the weakly segregated system, necessitates increasing the contrast in the
image of the delta, by compressing the colour scale used in the third image
of both figures 5.26 and 5.27. A minor quirk, at the lower dimensionless
shear rate, is that a shear strain of γ = 1.0 coincides with the onset of
dewetting. It is clear in figure 5.27 that the dewetting process is slightly
more advanced in the moderately entangled system, in which D = 2, than
it is in the system in the Rouse regime. This is a vivid illustration of the
fact, previously observed in the strongly entangled regime, that, at a given
dimensionless shear rate, dewetting occurs at lower shear strains, as the
degree of entanglement increases.

The third key assumption of the geometrical model is that dewetting oc-
curs when the sheared central interface is just tangential to the surface of
the particle. This is inconsistent with the physics of the dewetting process,
which tends to occur much sooner (i.e. at lower shear strain) than the naive
geometrical model implies. To some degree, figure 5.22 pre-empts this point
by already showing the predictions of the revised geometrical model, which
incorporates the parameter e, the length scale at which dewetting occurs
almost instantaneously. What is striking about figure 5.22 is the amount
by which the predictions of the naive geometrical model exceed the actual
shear strain at dewetting that we observe in our simulations. This contrasts
sharply with the dewetting master plot for the strongly segregated regime, in
which the the curve predicted by the naive geometrical model fell within one
of the bands of dewetting curves observed in our simulations. As it happens,
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this was the incorrect band, but the revised geometrical model corrected this
error and predicted a curve that was broadly in line with the simulation
results.

The same strategy, of revising the geometrical model by introducing the
parameter e is not nearly so successful in the weakly entangled regime. To
bring the geometrical model into line with the simulation results, its revised
predictions would have to lie in the vicinity of the lower band of dewetting
curves shown in figure 5.22, since the lower dimensionless shear rate used in
this set of simulations deforms the central interface in a near-linear fashion.
Instead, the predictions of the revised geometrical model lie above the lower
band of dewetting curves in figure 5.22: in simulations, at lower shear rates,
dewetting occurs at significantly lower levels of shear strain than are predicted
by even our revised model.

Again, it is likely that the explanation for this effect lies in the broader,
more diffuse interface observed in weakly segregated systems. The parameter
e, in the revised geometrical model, tries to take account of the width of
the central interface between the liquid phases, and it appears to do this
adequately when the interface is narrow and sharp, as it is in the strongly
segregated regime. However, as the central interface becomes broader and
more diffuse, the particle will feel the effect of its approach sooner, even if
this effect is quite weak at lower levels of shear strain in the system. The
strength of this effect will increase as shear brings the central interface closer
to the particle until, eventually, dewetting occurs rapidly, when the distance
separating the two is ∼ e = 5.0nm. But the important point is that, in a
weakly segregated system, there is a gradual build up to this moment, during
which the influence of the broader, diffuse central interface has a cumulative
effect. A complete model of this process would describe the physics of the
dewetting process in greater depth, and integrate the influence of the broad,
diffuse interface over the interval between the start of the simulation and the
dewetting point. However, we consider this to be beyond the scope of the
present work.

Instead, we consider the simpler question of how the parameter e should
be adjusted to bring the predictions of the revised geometrical model into
agreement with the simulation results at the lower shear rate. It turns out
that a value of e ≈ 7.0nm, gives the best fit with the simulation results
(figure 5.28). We may, if we wish, think of this as the effective width, e′, of
the the central interface in the weakly segregated system when χ = 2.5, and
it is reassuring to note that, physically, this is a realistic value [130].
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Figure 5.28: Dewetting master plot showing the shear strain at which dewetting occurs,
as the distance of the particle from the central interface varies. Shown are the data points
when D = 1 and D = 2. The two bands represent the upper and lower ends of the range
of dimensionless shear rates used in the simulations (˜̇γ = 0.0008 and ˜̇γ = 0.0002). The
physical value of the shear rate varies, according to the value of the effective diffusion
coefficient, D. The predicted values are those of the simple geometrical model described
in section 4.6, and represented in figures 4.12 and 4.19, now revised to include an effective
interface width of e′ = 7.0nm.

5.7 Summary

We began the chapter with a review of the practical difficulties that arise
when we try to simulate the behaviour of a weakly segregated system with
χ = 2.1. Most of these stem from the physical nature of such a system. For
example, the broad and diffuse interface between the two liquid phases in the
system makes it hard to discern the dewetting point, and the low free energy
density of the interface makes it delicate, and susceptible to instability at
higher shear rates. These physical difficulties are compounded by the use
of periodic boundary conditions in the implementation of our model, which
risks confounding the results of dewetting simulations as the initial distance
of the particle from the central interface increases. This motivates the study
of a less weakly segregated system, in which χ = 2.5.
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The results of dewetting simulations for this system show many similarities
with the corresponding results in the strongly segregated regime. The main
difference is that the transition from the regime in which diffusive effects
dominate, to the hydrodynamic regime, in which, at a given shear rate, the
dewetting time tends to increase linearly with the initial distance of the
particle from the central interface is notably more gradual in the weakly
segregated regime. We attribute this to the broader, more diffuse interface.
Also of note is that the critical film thickness in the weakly segregated regime,
when χ = 2.5 is dc ∼ 9.0nm, almost double its value of dc ∼ 5.0nm in the
strongly segregated regime with χ = 4.0.

The migration, under shear, of the particle from its non-preferred phase to its
preferred phase also shows some similarities with its behaviour in the strongly
segregated regime, but there are some important differences. In particular,
a new steady state is observed in the weakly segregated regime and, broadly
speaking, the eventual steady state of the particle is less predictable, with
most of the apparent trends in the behaviour of the particle as the shear
rate increases being short-lived. A plausible explanation for this is that the
diffuse and delicate nature of the central interface in a weakly segregated
system makes the eventual steady state more sensitive to small variations in
the shear rate. It is also the case that, for a given value of the effective diffu-
sion coefficient, D, complete expulsion of the particle from its non-preferred
phase, occurs less frequently in the weakly segregated regime than it does in
strongly segregated systems. Here, we see the net result of several competing
factors. Firstly the diffuse interface should favour migration of the particle
into its preferred phase, because it presents less of an energy barrier. How-
ever, secondly, there is less energy in the system to drive this migration and,
thirdly, the delicate interface necessitates the use of lower shear rates, which
further limits the energy available to the particle. Our results indicate that,
in most cases, the second and third factors prevail over the first.

Finally, we revisited the simple geometrical model of section 4.6, and saw how
it may be used to shed light on the results of our simulations in the weakly
segregated regime. The argument parallels that in the previous chapter, but
it is necessary, at the end, to introduce the concept of the effective interface
width, e′, to bring the predictions of the revised geometrical model into line
with the simulation results.
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Chapter 6

Conclusion

6.1 Review of Research

Chapter 1 introduces the idea of a minimal nanocomposite system consist-
ing of a single nanoparticle at, or close to, the interface between two liquid
phases. In the remainder of the chapter we assemble the building blocks we
need to develop a model of this system, chiefly, the theory of the equilib-
rium thermodynamics of polymer blends, and the Cahn-Hilliard equation,
which describes the dynamics of phase separation in binary systems, in-
cluding polymer blends, near their critical point. The chapter also presents
the fundamental concepts needed to describe the wetting and dewetting be-
haviour of the minimal nanocomposite system, which we aim to observe
in our simulations. Finally, we present a brief survey of experimental and
computational work on polymer blends, and binary fluids, undergoing phase
separation, when nanoparticles are present, with a view to contextualising
the results described in this thesis. Some reflections about the advantages
and disadvantages of common computational approaches to the simulation
of complex, multi-phase systems lead us to conclude that a model based on
continuum fluid mechanics is likely to provide the most transparent insight
into the essential physics of the minimal nanocomposite system.

The theoretical underpinnings of our model are laid out in chapter 2. We
approach the task indirectly, via some general thoughts about force-free mo-
tion, before turning to the question of how to account for the phenomenon
of diffusio-osmosis. A common theory, due to Derjaguin [98], is found to be
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inconsistent with the contact theorem in colloidal science, which is known to
be generally valid. This motivates a different approach to the explanation of
diffusio-osmosis, based on the Gibbs free energy of the system, and a virtual
work principle. This approach enables us to account for the phenomena of
the plug flow of a liquid, within which there is a concentration gradient, in
a capillary. The connection with wetting and dewetting is that the inter-
face between the two liquid and vapour phase in a typical wetting situation,
may be treated as a special case of inhomogeneous composition, in which the
concentration gradient is sharp (in the limit, a delta function), rather than
gradual, as it is in the case of diffusio-osmosis. One benefit of this approach
to wetting and dewetting is that it delivers a more realistic picture of the
forces acting in the small region where the three phases of the system meet,
and has the potential to explain phenomenon such as the thin precursor film
which, in many cases, accompanies the spreading of a macroscopic droplet
on a solid substrate.

The extension of our account of diffusio-osmosis to sharper interfaces in three-
phase systems, in which wetting and dewetting occur, is the key insight
needed to develop a model that can be applied to a minimal nanocomposite
system. The final piece of the puzzle is provided by Araki and Tanaka’s
fluid particle dynamics method, which makes the management of interfaces
between solid and liquid phases tractable, by modelling the solid phase as
a highly viscous liquid. By considering the Gibbs free energy of such a
system, we derive coupled equations of motion for the evolution of the order
parameter field, and the fluid flow within the minimal nanocomposite system.
These equations are then solved numerically using a finite difference method,
implemented on the CUDA architecture, which enables us to take advantage
of the computational efficiency of modern GPUs.

The model is initially applied to the wetting of a stationary particle sym-
metrically position at the interface between the two liquid phases, thereby
illustrating the transition to total wetting as the parameter W is increased.
Having validated the model for these relatively straigtforward initial condi-
tions, we examine dewetting behaviour in the minimal nanocomposite system
in more depth, varying the initial distance of the particle from the central
interface, in a quiescent system, to determine the critical film thickness.
Dewetting times in the quiescent system are also compared with dewetting
times when the system is sheared at a lower and a higher rate. Where the
system is sheared, we also track the evolution of the mean free energy density
up to, and just beyond, the dewetting point.
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Finally, the model is used to explore the behaviour of a particle close to
the central interface, when the system is sheared at a constant rate. In
particular, we focus on whether the particle migrates across the interface,
into its preferred phase, or whether the process of migration is arrested, and
the particle reaches an alternative steady state, in which it remains stuck
at the interface. This is a question of some relevance to the fabrication of
nanocomposite materials, as discussed in the introduction to this thesis.

The dewetting behaviour of the system, and the question of whether the
particle migrates to its preferred phase under shear, are explored in both
the Rouse regime, where the effective diffusion coefficient, D = 1, and the
entangled regime, with various values of D. Similarly, we explore both ques-
tions in a strongly segregated system, in which the Flory-Huggins interaction
parameter χ = 4.0, and in weakly segregated systems, in which χ = 2.1 and
χ = 2.5. Methodological difficulties associated with the lower value of χ are
identified, and this motivates our use of the higher value.

In these later chapters, we introduce a simple, purely geometrical model, and
use it to guide our thinking about the mechanisms responsible for dewetting
under shear. With the addition of a small amount of physical realism, this
geometrical model can account for our simulation data on the shear strain of
the system at the dewetting point.

6.2 Key Results

Simulations, in the Rouse regime, of the wetting of a particle fixed sym-
metrically at the interface between the two liquid phases show a range of
outcomes, from partial to total wetting. The latter outcome is confirmed
by both visual inspection of snapshots of the system, and tracking the evo-
lution of the mean free energy density of the system, as wetting proceeds.
We find that total wetting occurs when W & 4.0, consistent with a simple
model that relates the surface tension between the two liquid phases to the
Flory-Huggins interaction parameter, χ.

Turning to dewetting, our simulations reproduce the the correct qualitative
behaviour, in the form of a ridge of the non-preferred phase that grows as it
withdraws from the surface of the particle. This is most clearly seen in the
simulation in which the dimensions of the system are quadrupled (L = 1024
lattice cells), while scaling the radius of the particle accordingly.
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All other dewetting simulations are carried out in a system of size L = 256
lattice cells, and show, in the quiescent case, that the critical film thickness is
dc ∼ 5.0nm, which is physically plausible. When the system is sheared at two
different rates, and the dewetting time plotted against the initial distance, d,
of the particle from the central interface, we see a clear transition from the
diffusive regime, which prevails at low values of d, significantly less than dc,
to the hydrodynamic regime, when d > dc. In the latter case, the dewetting
time varies almost linearly with d, reflecting the constant shear rate.

Remaining in the Rouse regime, simulation results show that the particle
tends to migrate across the phase boundary, and into its preferred phase, at
higher shear rates. At lower shear rates, the result is an alternative steady
state in which the particle adheres to a droplet of its preferred phase, in a
matrix of the non-preferred phase. Although there are some differences in
these results when we double the initial distance of the particle from the
central interface to d = 4.5nm to d = 9.0nm, the essential conclusions are
unchanged. It is worth noting that there is a limit to the rate at which
shear may be applied to the system: when the dimensionless shear rate,
˜̇γ, is significantly greater than 0.002 (equivalent to a physical shear rate of
γ̇ = 2.0 × 104 s−1), the interface between the liquid phases does not shear
stably at the upper and lower boundaries of the system.

In the entangled regime, regardless of the value of D, we find the critical film
thickness in the quiescent system to be dc ∼ 5.0nm, as it is in the Rouse
regime. In addition, the dewetting curves when the system is sheared, exhibit
the same transition from the diffusive regime to the hydrodynamic regime, as
the initial distance of the particle from the central interface is increased. In
the entangled regime, when D = 10, the main difference is that the dewetting
times are of the order of milliseconds, rather than microseconds, as in the
Rouse regime. In the linear part of the dewetting curve, where the shear rate
is the main determinant of the dewetting time, there is a factor of ∼ 1000
between the two wetting times, other things being equal. This, and similar
results when D = 2 and D = 5, is consistent with the fact that the physical
shear rate, γ̇ ∝ 1

D3 .

The complete expulsion of the particle into its preferred phase is less common
in the entangled regime than it is in the Rouse regime, This is especially the
case for the higher values of the effective diffusion coefficient (D = 5 and
D = 10) used in our simulations. We noted evidence, in the form of a single
anomalous result, of a transition from the highly entangled regime (D = 10)
to Rouse-like behaviour when D ' 5. Finally, in these simulations of the
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entangled regime, we observe a new steady state in which the particle adheres
to the interface between the two liquid phases, even when the system is fully
sheared: the complete migration of the particle into its preferred phase is
arrested at this penultimate stage.

Combining the simulation results for strongly segregated systems (χ = 4.0)
in both the Rouse regime and the entangled regime, we produce a master plot
of the shear strain at the first dewetting point, against the intial distance of
the particle from the central interface. The plot shows two bands of curves,
one for each of the dimensionless shear rates used in our simulations and,
within each band, a distinct curve for each value of the effective diffusion
coefficient, D.

The simple geometrical model, introduced in section 4.6 is used to account
for these features of the dewetting master plot. The presence of two bands
of curves is explained by the fact that the central interface between the two
liquid phases does not shear linearly at the higher dimensionless shear rate
used in the simulations. Thus the shear strain at dewetting exceeds that at
the lower shear rate, for any given value of D. The ordering of dewetting
curves within each band is explained by more subtle differences in the way
the central interface deforms, at any given dimensionless shear rate, as D
varies. A higher value of D leads to a lower value of the shear strain at the
dewetting point. We also observe movement of the particle, as the system
is sheared, but this effect is small and does not play a significant role in
explaining the main features of the dewetting master plot. Finally, in order
to bring the predictions of the geometrical model into line with the simulation
results, it is necessary to introduce an additional parameter e. Physically,
this represents the distance of the sheared interface from the surface of the
particle at which dewetting occurs almost instantaneously, compared with
the time scale over which the system is sheared. Thus, a purely geometrical
model of dewetting under shear is shown to be inadequate, but the model
can be fixed by the addition of a small amount of physical realism.

Initial attempts to apply our model to a weakly segregated system, in which
χ = 2.1, run into methodological difficulties, caused mainly by the diffuse
nature of the interface between the liquid phases, and its low energy, and con-
sequent fragility under shear. This motivates the use of a weakly segregated
system in which χ = 2.5, which we find to be more tractable. Nevertheless,
the interface between the liquid phases remains delicate, even at this higher
value of χ, necessitating the use of a lower range of dimensionless shear rates
in our simulations.
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The shape of the dewetting curves for this system, resemble those for strongly
segregated systems, for all values of D, but the transition from the diffusive
to the hydrodynamic regime is more gradual due to the enhanced efficiency
of the diffusive mechanism at low values of χ. In effect, the particle feels the
influence of the diffuse interface sooner, and there is a cumulative effect as
the interface approaches the surface of the particle. The more diffuse nature
of the interface in the weakly segregated system also accounts for the greater
critical film thickness found in the quiescent system (dc ∼ 9.0nm).

When the weakly segregated system is sheared, the migration of the particle
across the phase boundary is less common than it is in the highly segregated
system, for a given value of D. In addition, complete migration of the particle
into its preferred phase tends to occur at lower shear rates in the weakly
segregated system, in contrast with the higher shear rates needed in strongly
segregated systems. This might be a sign that, for a given value of the Flory
Huggins interaction parameter, χ, there is specific range of shear rates which
allow the particle to migrate into its preferred phase.

In addition, the steady state of the system, when it is sheared, exhibits
more variety - and is therefore less predictable - than is seen in the strongly
segregated regime. We attribute this to the lower mean free energy density in
the weakly segregated system, making it more sensitive to small changes in
the parameter values and initial conditions. In fact, we observe yet another
new steady state in the weakly segregated regime - the two droplet formation
- although this is an artefact of the use of periodic boundary conditions, and
is therefore not physically realistic.

An interesting feature of these simulation results is that the time at which the
second dewetting occurs (following the breaking and retraction of the central
interface) is almost inversely proportional to the shear rate. The agreement
with a power law of the form t2 = Aγ̇n, with A = 1.26 and n = −0.925, is
good, and contrasts with the apparently near-linear relationship between the
second dewetting time and the shear rate observed in strongly segregated sys-
tems. In fact, the near-linear relationship in the strongly segregated regime
is something of a coincidence, and the underlying logic of shearing the sys-
tem at a constant rate should lead us to expect a relationship of approximate
inverse proportionality between t2 and γ̇. Why this underlying logic is much
more apparent in the weakly segregated regime is not understood.

Finally, we revisit the simple geometrical model of the previous chapter. Us-
ing similar arguments, we show that it may be used to account for the main
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features of the dewetting master plots of simulation results in the weakly
segregated regime. However, the natural value of the parameter e, which
modifies the simple geometrical model, is no longer enough to align the pre-
dictions of the geometrical model with the simulation results. This motivates
the introduction of the concept of an effective interface width, somewhat
greater than the natural value of e suggested by the dewetting simulations.
Physically, this reflects the fact that the interface in the weakly segregated
system is more diffuse, influences the particle sooner, and therefore has a cu-
mulative effect, over a longer period of time than in the strongly segregated
system, where dewetting occurs almost instantly when d ∼ e.

For ease of reference, figure 6.1 presents an overview of the final steady state
observed in all simulations in which the system is sheared.

Figure 6.1: Summary of the effect of the shear rate and other parameters on the steady
state of the system. In each row, the dimensionless (and physical) shear rate increases
from left to right, with the exception of the rightmost cell when χ = 2.5, and the leftmost
cell when χ = 4.0, when the shear rates are equal. The effective diffusion coefficient, D,
increases from the top of a column to the bottom, implying a decrease in the physical shear
rate. The colour of a cell indicates the steady state of the system, for that combination
of parameters and dimensionless shear rate. The initial distance of the particle from the
interface is d = 8.5nm when χ = 2.5 and d = 4.5nm when χ = 4.0.

The colour coding of the final steady state highlights the relative predictabil-
ity of the simulation results in the strongly segregated regime, regardless of
the value of the effective diffusion coefficient, D, compared with those in the
weakly segregated regime.

6.3 Critique and Prospects

Finally, we turn to an appraisal of the work on the minimal nanocomposite
system described in this thesis, and offer some thoughts about how it might
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be extended to more complex systems.

It is clear that our model of the minimal nanocomposite system could be more
physically realistic. Most obviously, it is a two-dimensional model, whereas
real nanocomposite systems (even very thin films) are three-dimensional.
Generally speaking, a two-dimensional model can recreate much of the es-
sential physics, in many systems, but there is no doubt that exclusively three-
dimensional effects exist in some systems, and need to be captured in any
realistic model. That said, the simplicity of the minimal nanocomposite sys-
tem is a mitigating factor here, and it is hard to imagine any significant
physical effect in three dimensions that does not have an analogue in two.
The restriction to two dimensions is likely to be more of a limitation if the
model is extended to some of the more complex systems, described later in
this section.

Our model of a minimal nanocomposite system also omits some potentially
interesting physical mechanisms. For example, the equations of motion it
uses do not include terms for thermal noise, which might be expected to
have some effect at the length and time scales of interest, vitiating the de-
cision to apply continuum fluid mechanics to the minimal nanocomposite
system. This point applies equally to the modified Cahn-Hilliard equation,
and to the modified Stokes equation used in our model. While this is an
omission, we do not believe it to be a significant one. As discussed in the in-
troduction to the thesis, the broad effect of such terms is to make the system
more sensitive to small changes, rendering the relevant boundaries its phase
diagram more diffuse. Still, it would be interesting to compare at least some
of our simulation results with a corresponding set of results from a noisy
system.

A further physical phenomenon that our model does not take into account
is the viscoelasticity of many polymers. It might be argued that this is a
significant omission, given the novel effects associated with viscoelasticity -
for example the formation of a network structure in the minority phase, as a
dynamically asymmetric blend undergoes spinodal decomposition [25]. How-
ever, in a minimal nanocomposite system, it is not clear what significantly
different qualitative effects we would observe, if our model incorporated vis-
coelasticity, although we would expect to observe quantitative differences.

Some issues of methodology are worth noting, before we consider how our
model might be extended to more complex systems. Firstly, throughout the
thesis, we take it that the end result of a simulation - the eventual steady
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state - is fully determined by the parameter values and the initial conditions.
That is, if we keep the same parameter values and initial conditions, we
will always observe the same steady state. To be certain of this, we ought
to run duplicates of every single simulation, but this is clearly not feasible,
given the time and resource constraints. Despite this limitation, we have
some confidence that the results of our simulations represent genuine physical
outcomes, that are replicable. The reason is that duplicate simulations were
run, whenever we encountered an unexpected result (for example, a data
point that was contrary to an apparent trend), and the outcome was always
consistent with the first simulation. Although the limited use of duplicate
simulations can never be conclusive, we believe it provides enough evidence
to be confident in our results.

A second methodological issue concerns the question of initial conditions: in
particular, how sensitive is the eventual steady state of the sheared system to
the initial distance of the particle from the central interface? The question
arises because, for any given set of simulations in which the shear rate is
varied, the initial distance of the particle from the interface is held constant,
usually just under the critical film thickness, dc. Yet, it is clear from the
second set of simulations with shear in chapter 3, where the initial distance
of the particle from the central interface is d = 9.0nm, that the initial state
of the system has some influence on its eventual steady state. The key stage
of the entire process is the second dewetting, which occurs after the broken
central interface retracts and either makes contact with the particle, or fails
to make contact. Which of these happens must depend, to some degree, on
the initial position of the particle, with respect to the interface. Although
the second set of simulations in chapter 3 resembles the first, there are some
differences. We feel that the question of the effect of varying the initial
distance of the particle from the central interface on the steady state, when
the system is sheared, is under-explored, although this is understandable,
given the significant time and resource implications of such an investigation.

Finally, there are some gaps in figure 6.1, where simulations were not carried
out, either by design, or due to a lack of time. The gaps in the simulations
of strongly segregated systems (χ = 4.0) are all deliberate choices and we do
not believe them to be a serious issue: given the overall predictability in the
pattern of outcomes, it is reasonable to interpolate the appropriate steady
state, where the data is missing. In the weakly segregated regime, the missing
simulations when D = 5 and D = 10, are due to a lack of time. Based on
simulation results in the strongly segregated regime, we would expect to see
more of steady state A1, in which the particle adheres to a droplet of its
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preferred phase, as we increase D in the weakly segregated regime, but it
would be helpful to have the simulation results to confirm this.

This highlights an issue that has a pervasive presence in this thesis, and in any
similar project: given the size of the parameter space, how do we explore it
in a principled way, to obtain a representative cross-section of the behaviour
of the system? The problem is rendered especially acute by the inevitable
constraints on time and resources that attend any research project. Careful
planning is needed, combined with a willingness to change one’s plans as
results become available, but sometimes even that is not enough. That said,
we believe that our simulation results represent a rich and interesting cross-
section of the totality of possible behaviour in the minimal nanocomposite
system, while remaining conscious of the regions of parameter space that
remain unexplored due to time constraints.

We now offer some brief thoughts about how our model - or one very simi-
lar - might be extended to represent more complex nanocomposite systems.
Proceeding cautiously, the obvious first step is to consider a system in which
there are two particles close to an interface between two liquid phases. This
introduces the additional physical effect of interactions between particles into
the model, which may be readily represented by a Lennard-Jones type po-
tential. Several initial configurations are possible in the two-particle case,
but figure 6.2 shows the main options.

Figure 6.2: Some initial configurations of a simple, two-particle nanocomposite system. In
(a), the particles are initially located on the opposite sides of the central interface between
the liquid phases. In (b) and (c), the particles are initially located on the the same side, in
the non-preferred phase, and aligned either horizontally, or vertically. Clearly, other initial
configurations are possible, including ones that break horizontal and vertical symmetry.

Our preference would be to run simulations for the third of these initial
states (figure 6.2c), since, intuitively, it ought to be easier to disentangle the
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effect of the inter-particle interaction, from the diffusive and hydrodynamic
effects in the liquid phases of the system, and to thereby appreciate the
interplay between them. The initial distance between the particles becomes
an additional variable in the model, further extending the range of parameters
and initial conditions that would need to be considered.

The extension from a two-particle system to a many-particle system, more
representative of a real nanocomposite, is then a natural one, albeit one with
significant implications for the computational resources required. Various
choices would need to be made in the modelling of such a system, including
the size of the ”box”, the radius of the particles, and their initial positions.
If the intention is to model a real system, it would be natural to either
distribute the particles randomly, or to bunch them together at the start of
the simulation, as if they had just been added to the polymer blend. At this
point, it also becomes natural to begin the simulation with the polymer blend
close to its critical point, and to allow it to undergo spinodal decomposition,
as occurs in the fabrication of real nanocomposite materials. This would
require some quantitative measure of the distribution of particles in the blend,
and how it evolves during phase separation, but such measures are available
[95]. The equations of motion in our model of the minimal nanocomposite
system can readily accommodate this additional complexity

The final extension we might consider is to vary the geometry of the parti-
cles in the system from spheres to ellipsoids or nano-rods. This would lead
to questions about how the eventual distribution of such particles compares
with that of spherical particles in the same system, with the same param-
eter values and initial conditions, and the effect of varying the aspect ratio
of the ellipsoids or rods. Given the anisotropy of the non-spherical parti-
cles, rotational motion, and the way in which the particles align along phase
boundaries is likely to become a factor of some interest, even though particle
movement is generally quite limited in our simulations.

In conclusion, we have described a mathematical framework, consistent with
the principles of non-equilibrium thermodynamics, through which we may
understand the motion of inhomogeneous fluids near a solid surface. Within
this framework, we have constructed a model of a minimal nanocomposite
system, and used it to explore the wetting and dewetting dynamics of a
nanoparticle close to the interface between two liquid polymer phases. We
have also considered whether applying shear to the system promotes the mi-
gration of the nanoparticle across the interface between the two liquid phases,
into its preferred phase, or whether the particle is arrested at the interface.
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A simple geometrical model of dewetting under shear has been shown to be
predictive, as long as the purely geometrical perspective is complemented
with a modest dose of physical realism.

We have varied the degree of entanglement in the system, represented by
the effective diffusion coefficient, D, and the degree of segregation between
the liquid polymer phases, represented by the Flory-Huggins interaction pa-
rameter, χ, while attempting to account for the similarities and differences
observed in the simulation results. There remains much to explore, but the
comparative simplicity of our model, grounded in continuum fluid mechan-
ics and the Cahn-Hilliard theory of phase separation, means that it will be
quite straightforward to adapt it to describe the behaviour of more complex
nanocomposite systems.

214



References

[1] N. Clarke, N. Gibbions, and D. R. Long. Diffusio-osmosis and wet-
ting on solid surfaces: a unified description based on a virtual work
principle. Soft Matter, 16(14):3485–3497, 2020.

[2] N. Gibbions, N. Clarke, and D. R. Long. Migration of nanoparticles
across a polymer-polymer interface: theory and simulation. Soft Mat-
ter, 17(31):7294–7310, 2021.

[3] J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J.
Lesser, S. S. Sternstein, and M. J. Buehler. Current issues in research on
structure-property relationships in polymer nanocomposites. Polymer,
51(15):3321–3343, 2010.

[4] P. J. Flory and W. R. Krigbaum. Thermodynamics of high polymer
solutions. Annu. Rev. Phys. Chem., 2:383–402, 1951.

[5] M. L. Huggins. Solutions of long chain compounds. J. Chem. Phys.,
9(5):440, 1941.

[6] M. Rubinstein and R. H. Colby. Polymer Physics. Oxford University
Press, Oxford, UK, 2003.

[7] J. E. Mark. Physical Properties of Polymers Handbook. AIP Press,
New York, 1996.

[8] K. F. Freed. New lattice model for interacting, avoiding polymers with
controlled length distribution. J. Phys. A-Math. Gen., 18(5):871–887,
1985.

[9] M. G. Bawendi, K. F. Freed, and U. Mohanty. A lattice model for self-
avoiding polymers with controlled length distributions .II. corrections
to flory-huggins mean field. J. Chem. Phys., 84(12):7036–7047, 1986.

215



[10] M. G. Bawendi, K. F. Freed, and U. Mohanty. A lattice field-theory for
polymer systems with nearest-neighbor interaction energies. J. Chem.
Phys., 87(9):5534–5540, 1987.

[11] J. W. Cahn and J. E. Hilliard. Free energy of a non-uniform system.
I. interfacial free energy. J. Chem. Phys., 28:258–267, 1958.

[12] J. W. Cahn. On spinodal decomposition. Acta Metall. Mater.,
9(9):795–801, 1961.

[13] J. W. Cahn. Free energy of a nonuniform system .II. thermodynamic
basis. J. Chem. Phys., 30(5):1121–1124, 1959.

[14] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system
.III. nucleation in a 2-component incompressible fluid. J. Chem. Phys.,
31(3):688–699, 1959.

[15] J. W. Cahn. Phase separation by spinodal decomposition in isotropic
systems. J. Chem. Phys., 42(1):93–99, 1965.

[16] J. W. Cahn. Initial stages of phase separation. Am. Ceram. Soc. Bull.,
44(4):307, 1965.

[17] J. W. Cahn. The later stages of spinodal decomposition and the begin-
nings of particle coarsening. Acta Metall. Mater., 14(12):1685–1692,
1966.

[18] T. C. Lubensky and M. H. Rubin. Critical phenomena in semi-infinite
systems .II. mean-field theory. Phys. Rev. B, 12(9):3885–3901, 1975.

[19] P. G. de Gennes. Dynamics of fluctuations and spinodal decomposition
in polymer blends. J. Chem. Phys., 72:572–579, 1980.

[20] H. E. Cook. Brownian motion in spinodal decomposition. Acta. Metall.
Mater., 18(3):297–306, 1970.

[21] T. M. Rogers, K. R. Elder, and R. C. Desai. Numerical study of the
late stages of spinodal decomposition. Phys. Rev. B, 37(16):9638–9649,
1988.

[22] K. R. Elder, T. M. Rogers, and R. C. Desai. Early stages of spinodal
decomposition for the cahn-hilliard-cook model of phase-separation.
Phys. Rev. B, 38(7):4725–4739, 1988.

216



[23] G. Brown and A. Chakrabarti. Phase separation dynamics in off-critical
polymer blends. J. Chem. Phys., 98(3):2451–2458, 1993.

[24] A. Voit, A. Krekhov, and W. Koehler. Quenching a UCST polymer
blend into phase separation by local heating. Macromolecules, 40(1):9–
11, 2007.

[25] H Tanaka. Viscoelastic phase separation. J. Phys-Condens. Mat.,
12(15):R207–R264, 2000.

[26] C. C. Han and A. Z. Akcasu. Phase-decomposition in polymers. Annu.
Rev. Phys. Chem., 43:61–90, 1992.

[27] K. Binder. Phase transitions in polymer blends and block copolymer
melts: Some recent developments. Adv. Polym. Sci., 112:181–299, 1994.

[28] I. M. Lifshitz and V. V. Slyozov. The kinetics of precipitation from
supersaturated solid solutions. J. Phys. Chem. Solids, 19(1):35–50,
1961.

[29] N. Kuwahara, H. Sato, and K. Kubota. Kinetics of spinodal decompo-
sition in a polymer mixture. Phys. Rev. E, 47(2):1132–1138, 1993.

[30] K. Kawasaki and T. Ohta. Kinetics of fluctuations for systems undergo-
ing phase-transitions - interfacial approach. Physica A, 118(1):175–190,
1983.

[31] E. D. Siggia. Late stages of spinodal decomposition in binary-mixtures.
Phys. Rev. A, 20(2):595–605, 1979.

[32] S. Puri and B. Dunweg. Temporally linear domain growth in the seg-
regation of binary fluids. Phys. Rev. A, 45(10):R6977–R6980, 1992.

[33] K. Koga, T. Kawasaki. Spinodal decomposition in binary fluids - effects
of hydrodynamic interactions. Phys. Rev. A, 44(2):R817–R820, 1991.

[34] K. Koga, T. Kawasaki. Late-stage dynamics of spinodal decomposition
in binary fluid mixtures. Physica A, 196(3):389–415, 1993.

[35] K. Koga, T. Kawasaki, M. Takenaka, and T. Hashimoto. Late-
stage spinodal decomposition in binary fluids - comparison between
computer-simulation and experimental results. Physica A, 198(3-
4):473–492, 1993.

217



[36] K. Kawasaki and T. Koga. Relaxation and growth of concentration
fluctuations in binary fluids and polymer blends. Physica A, 201(1-
3):115–128, 1993.

[37] Y. C. Chou and W. I. Goldburg. Angular-distribution of light scattered
from critically quenched liquid-mixtures. Phys. Rev. A, 23(2):858–864,
1981.

[38] N. C. Wong and C. M. Knobler. Light-scattering-studies of phase-
separation in isobutyric acid and water mixtures - hydrodynamic ef-
fects. Phys. Rev. A, 24(6):3205–3211, 1981.

[39] C. M. Knobler and N. C. Wong. Light-scattering-studies of phase-
separation in isobutyric acid and water mixtures .II. test of scaling. J.
Phys. Chem., 85(14):1972–1976, 1981.

[40] P. G. de Gennes. Wetting: Statics and dynamics. Rev. Mod. Phys.,
57(3):827–863, 1985.

[41] P. G. de Gennes, F. Brochard-Wyart, and D. Quéré. Capillarity and
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