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Abstract

Repeated measurements of the smeared (averaged) stress-energy tensor
of a quantum field in the vacuum state produce random values described
by a probability distribution. This distribution is related non-trivially to
the choice of smearing function. For unitary, positive-energy conformal
field theories in 2-dimensions there are two methods available to determine
the distribution. One of which uses conformal welding to determine the
characteristic function while the other finds the moment generating function.
The aim of the thesis is to numerically implement the conformal welding
method and perform comparisons with these results to those generated
by the method of moments. We employ the method of conformal welding
to numerically analyse the effect of different smearing functions on the
probability distribution in a 2-dimensional conformal quantum field theory.
Several numerical methods were developed to ameliorate the difficulties
posed by each method and improve the quality of the data generated.
Both methods are compared to demonstrate their individual benefits and
pitfalls when calculating probability distributions. An interesting test case
is a smearing function given as the product of a Gaussian function and
a Lorentzian function. This is analysed numerically by both the welding
method and the method of moments. Furthermore some asymptotic results
are obtained from the moments method. Importantly, the Gauss-Lorentz
test function is the first known example of a positive test function in which
the probability distribution does not belong to the family of shifted Gamma
distributions. We also use the numerical welding method to analyse the
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effect of varying parameters of a plateau test function on the associated
probability distribution. This analysis gives numerical evidence that the
probability distribution associated to a plateau test function averaging the
stress-energy tensor depends on both the switch on parameters and the
length of the plateau used.
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Introduction

The use of mathematics to provide a framework to describe reality is not
new. First, human civilization used geometry to describe the position of
celestial bodies. Then, with the help of calculus, it was able to predict their
motion. Moreover, they were able to identify that this and other motions
were governed by Newton’s Laws. This was a remarkable discovery, as now
physical problems could be posed in terms of ordinary differential equations.
After some time, calculus was enhanced into vector calculus, which allowed
us to describe physical objects known as fields. So, by the end of the 19th
century, the so-called classical physics was a well-understood subject that
allowed us to understand fields and objects at a mesoscopic scale in the
language of ordinary and partial differential equations.

Quantum physics was born when classical physics broke down. Classical
physics calculates that one finds that an ideal black body will emit an un-
bounded amount of energy while it is at thermal equilibrium provided that
the wavelength is in the ultraviolet range. This prediction is incorrect and
can be explained away by discretising light into “quanta”. This discretisation
and the subsequent study thereof formed quantum physics.

In physics, an observable is a measurable physical quantity. Observables
are mathematically represented in classical physics by real-valued functions.
When one transitions into quantum physics the states of a quantum theory
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form a Hilbert space H. These observables instead are given by self-adjoint
operators on that space. In quantum field theory these observables in con-
tinuum are given by operator-valued distributions which yield operators
upon being averaged by a test function.

We use smooth test functions in order to smear our observables and
often denote these test functions on the real line by g. In this project we are
interested in the behaviour of the stress energy tensor T and we express the
smeared energy density T (g) in a general d dimensional theory for x ∈ Rd as

T (g) =
∫
Rd
T (x)g(x)ddx. (1.1)

In general we wish to calculate the probability distribution of the stress
energy tensor acting on a vacuum state. The expectation value [40] of
the stress energy density (when correctly renormalised) of a quantum field
can be used to describe the gravitational effects of quantum fields. This
semiclassical theory [42] has limitations when trying to describe mean value
fluctuations [27] and yet remains a foundation of current day research topics
[14, 25]. These calculations often amount [11] to calculation of the variance
or the second moment of the probability distribution of the smeared stress-
energy tensor.

Calculation of probability distributions in general is a challenging prob-
lem. It would be wonderful to perfectly understand these distributions for a
d dimensional theory, or even be able to understand the effects in an d = 4
dimensional theory. Unfortunately at this stage we struggle even in the
simplest cases and this project turns to Conformal Quantum Field theories
in 1+1 dimension in an attempt to analyse existing models and further the
understanding of the subject. Therefore this project we are not looking at the
case of a d dimensional quantum field theory but instead study the impact
of choosing a specific test function to smear against T on the probability
distribution in a 1 + 1 dimensional conformal quantum field theory (CFT).
CFT in 1 + 1 dimensions has a handful of analytic probability distributions
known [2, 11, 12]. The probability distributions that could be calculated ana-
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lytically were associated to a small group of infinite families of test functions.

In a 1 + 1 CFT the stress energy tensor T splits up into left and right-
moving components and the theory is partly characterised by a central
charge that shows up in the commutation relations of these components.
Familiar theories such as the free massless boson and the fermion in 1 + 1
are CFTs of this type [18].

We choose the observable T due to its importance in general relativity
through its entries dictating the behaviour of space time. In quantum field
theory the possibility of observation from its potential to initiate large
vacuum radiation pressure fluctuations [16] makes it of special interest. In
[16] they discuss how radiation pressure fluctuations are “due to cross terms
between vacuum and state dependent terms in a stress tensor operator
product”. These fluctuations, as was first analysed by Caves [6], impact the
sensitivity of laser interferometer detectors of gravitational radiation.

In this project we wish to calculate the probability measure dvf(λ) for
the smeared stress energy tensor T (g) using the analytic prescriptions given
in [11, 12]. We investigate the impact of using different test functions on
the probability distribution.

In general one finds the relationship [12] between the operator eiT (f),
t ∈ R and real valued f and the characteristic function of the vacuum
probability distribution dvf (λ)〈

Ω|eitT (f)Ω
〉

=
∫
eitλdvf (λ). (1.2)

The two known methods that one can use to calculate the probability distri-
bution are called conformal welding[12, 31] and the method of moments[12,
11, 2]. These methods approach the problem quite differently and as a
result they have different strengths and weaknesses. The method of welding
lends itself to a more direct and general numerical implementation but
generates the Fourier transform of the probability distribution which is often
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problematic to invert. As well as this the method precludes much in the way
of direct analytic calculation. Contrast this with the method of moments
which does not offer a clear general method for numerical analysis but offers
a more tractable analytic approach than the welding method.

The first analytically calculated probability distribution was given in
[11]. In this they used a Gaussian test function g(u) = e−(u/τ)2

/(τ
√
π) to

calculate that the vacuum probability distribution of the energy density was
given by a shifted Gamma distribution

dvf (λ) := ϑ(λ+ σ)β
α(λ+ σ)α−1

Γ(α) exp(−β(λ+ σ))dλ. (1.3)

We denote the Heaviside function with ϑ and the Gamma function with Γ,
the remaining terms are constants related to the probability distribution
and found when calculating it.

The test function parameter τ and the central charge of the theory c

dictate the behaviour of this distribution through their appearance in the
constants α = c/24, β = πτ 2 and σ = α/β. A shifted Gamma distribution
was also found to be the probability distribution when one uses a Lorentzian
test function

L(u) = k

u2 + b2 (1.4)

to average T as seen in [2] for constants k and b. In this same work it was
found that modified families of Gaussian and Lorentzian test functions also
gave shifted Gamma probability distributions.

1.1 quantum mechanics and probability

To glean an insight into the relationship between quantum mechanics and
probability we consider for example, H = L2(R) and the position operator
X on H defined by

(Xψ) (x) = xψ(x) (1.5)
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with ψ ∈ L2(R). Following [22] we have a spectral projection defined on any
interval I ⊂ R

(P (I)ψ) (x) = χI(x)ψ(x) (1.6)

with our indicator function χI of I

χI(x) =
 1 x ∈ I

0 x /∈ I
(1.7)

and P 2 = P = P ∗. The map I → P (I) extends to a projection-valued
measure and to each square integrable ψ that is normalised, I → ⟨ψ|P (I)ψ⟩
extends to a probability measure. So if one were interested in the probability
of finding ψ in the range (a, b) the calculation would then be

⟨ψ|P ([a, b])ψ⟩ =
∫
R
ψ(x)χ[a,b](x)ψ(x)dx (1.8)

which reduces to
⟨ψ|P ([a, b])ψ⟩ =

∫ b

a
|ψ(x)|2dx. (1.9)

To every self-adjoint operator A on bounded, complete and normed H there
exists a unique projection valued measure PA on the Borel σ-algebra in
σ(A), with values in projections on H∫

σ(A)
λdPA(λ) = A. (1.10)

I → PA(I) and to each state ψ ∈ H that is normalised ||ψ|| = 1, I →
⟨ψ|PA(I)ψ⟩ gives a probability measure. We can define

Prob (A ∈ I|ψ) = ⟨ψ|PA(I)ψ⟩ (1.11)

and have the following result for some bounded and measurable function g

⟨ψ|g(A)ψ⟩ =
∫
g(λ)d⟨ψ|PA(−∞, λ)ψ⟩ (1.12)

If one has a discrete spectrum of eigenvalues λn of A with basis |en⟩ one can
find the special case formula

⟨ψ|g(A)ψ⟩ =
∑
n

g(λn)|⟨en|ψ⟩|2. (1.13)
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1.2 conformal field theory

Conformal quantum field theory [38, 8, 4, 32] is defined to be a quantum
field theory which obeys conformal invariance or has an invariance under
transformations from the conformal group. Conformal transformations are
those which preserve angles within the spacetime. The main interest for
this project results in working on a 1 + 1 Minkowski spacetime which means
using only one spatial variable and one temporal variable on a flat spacetime.
The stress-energy tensor T µν is assumed to be symmetric and conserved
∂µT

µν = 0. These assumptions assure that the stress energy tensor is
traceless and has only two independent components T 00 and T 01 which we
can decompose into left and right moving chiral components

T 00(x0, x1) = TR(x0 − x1) + TL(x0 + x1)
T 01(x0, x1) = TR(x0 − x1) − TL(x0 + x1)

(1.14)

and we are able then to roll these light rays into circles. The ability to map
between these two representations of the line and the circle allows the use
of a larger class of techniques within the theory as a whole. The numerical
welding method used within this project is developed for the circle, but we
are able to translate results between the two representations via the Cayley
map which takes u ∈ R and maps it to the circle S via

u 7→ C(u) = 1 + iu

1 − iu
∈ S\{−1} (1.15)

defining C(∞) = −1 to create a bijection between the line and the circle.
Using this map we are able to create an equivalence between the stress
energy tensor on the line and circle and this allows for the translation of
information between the two pictures.

This scale invariance property means [36, 7] that a conformal trans-
formation is a local rescaling of the metric. Specifically, conformal field
theories obey the same physics at every length scale. This often allows for
simplification in calculation and CFTs can allow for exact calculations [15,
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20] within quantum field theories which is incredibly valuable.

CFT is also used throughout String theory[35, 39] due to the description
of the worldsheet of a string’s excitations. Other uses of CFTs include
statistical physics [5] and condensed matter [1].

1.2.1 Quantum energy inequalities

In classical relativity, if one focuses solely on Einstein’s equations and
doesn’t impose restrictions on the matter then they can find surprising
phenomena including traversable wormholes and superluminal “warp drive”
spacetimes[29]. These exotic solutions often have never been observed and re-
quire an explanation. Commonly this explanation is that spacetimes require
presence of matter fields with negative energy densities. Contextually, an
important role is held by energy conditions which pose pointwise restrictions
onto the stress-energy tensor. These energy conditions provide a key role
in ensuring the stability of gravitational collapse [23] via singularity theorems.

Quantum field theory violates these energy conditions [9] but can obey
weaker energy conditions [10]. In quantum field theories these energy condi-
tions or quantum energy inequalities are state independent lower bounds on
a smeared stress-energy tensor [13].

In [13] it is found that a sharp quantum energy inequality bound can
be derived in a 2-dimensional unitary conformal quantum field theory with
positive stress-energy tensor and Hamiltonian. The main result is given as
a theorem which we state for reference later.

Theorem 1. Consider a conformal field theory with a single component
T of stress energy. For any nonnegative G ∈ S(R), the quantum energy
inequality ∫

G(v) ⟨T (v)⟩ψ dv ≥ − c

12π

∫ (
d

dv

√
G(v)

)2

dv (1.16)

holds for all ψ ∈ D.
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Elucidating a few terms within that theorem, the differential of the
square root vanishes for all values of G(v) = 0 to avoid singularities. The
S(R) denotes a Schwarz class which is the class of functions that, along with
their derivatives, vanish more rapidly than any inverse power at infinity.
Lastly D ⊂ H denotes a dense domain of the Hilbert space.
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Conformal welding & probability

Within this chapter we shall discuss the theoretical background to the weld-
ing project. We begin with discussion of the Virasoro algebra and then
discuss the introductory step to using the welding method for calculating
probabilities. Following this, we end up with an elucidation of the welding
problem and an example calculation using this method to generate the prob-
ability distribution. The Lüscher-Mack theorem [17, 30] asserts (provided
the Wightman axioms are obeyed by the theory [41]) that if such a theory
has a conserved, symmetric stress-energy tensor field T µν which obeys∫

T µ0(x0, x1)dx1 = P µ, (2.1)

where x0, x1 are the spacetime coordinates in a 1 + 1 dimensional theory
and P µ are the energy-momentum operators which generate spacetime
translations then the stress-energy tensor is traceless and the independent
components T 00 and T 01 can be expressed using left and right-moving chiral
components.

2.1 virasoro algebra

The Virasoro algebra is a complex Lie algebra used in conformal field theory
and string theory [35]. It is defined by relation

[Ln, Lm] = (n−m)Ln+m + κ

12n(n2 − 1)δn,−m (2.2)

where the Ln are the generators of the algebra, κ = cI where c is called the
central charge of the algebra with n,m ∈ Z.
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From this algebra we define the stress tensor on the unit circle S, identifying
the points z = eiθ ∈ C and θ ∈ R. The stress tensor is an operator valued
distribution on H defined in the sense of distributions by the series

T (z) = − 1
2π

∞∑
n=−∞

Lnz
−n−2. (2.3)

Decomposing our spacetime coordinates into left and right moving light rays
as in (1.14) and denoting the right moving light ray coordinates by u (this
choice was arbitrary). The energy density in the CFT of the right moving
light ray shall be denoted by T (u) and satisfies a relation as in [13]

[T (u1) , T (u2)] =

i
(

−T ′ (u2) δ (u1 − u2) + 2T (u2) δ′ (u1 − u2) − c

24πδ
′′′ (u1 − u2) I

) (2.4)

with c defined as before.

So far we have discussed the energy density T on the real line (which
in this case is the right moving light ray u) and the circle. It is simple and
convenient to relate the stress energy tensor on the line to the circle via the
relation

Tline(u) ≡
(
dC(u)
du

)2

Tcircle(C(u)). (2.5)

Here we have used the Cayley map as defined by (1.15) demonstrating the
explicit relationship between the energy densities in the two pictures.

2.2 the flow equation

There are several steps in the process of calculating the probability distribu-
tion which are detailed in [12]. The first of which involves a flow equation
which we are required to solve in order to progress to the next step of the
welding method.

This flow solution needs to be inverted to be used in the next steps of
the welding problem so instead we will also invert the flow equation itself
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and produce a flow equation for the inverse of the flow solution. This inverse
flow solution is used in the numerical implementation of this method and
discussed for clarity.

We have the 1-parameter flow equation for diffeomorphisms generated
by the test function g ∈ C∞(R)

∂ρt(z)
∂t

= g(ρt(z)), (2.6)

with ρt ∈ Diff(S), ρ0 = id. We wish to generate a formula for the inverse flow.
In order to do this we integrate both sides with respect to the parameter t

∫ t

0

1
g(ρs(z))

∂ρs(z)
∂s

ds = t. (2.7)

To proceed, we perform a change of variables y = ρs(z) transforming our
limits and integrand ∫ ρt(z)

ρ0(z)

1
g(y)dy = t. (2.8)

Using the fact that ρ0(z) = z we can simplify the lower limit. At this stage
however, we aren’t interested in the flow ρt(z). We instead wish to find the
inverse flow ρ−1

t (z) and will do so by inverting the coordinates
∫ z

ρ−1
t (z)

1
g(y)dy = t. (2.9)

We define
G(x) =

∫ x

0

1
g(y)dy (2.10)

and recognise that (2.9) can be written as

G(z) −G
(
ρ−1
t (z)

)
= t. (2.11)

Differentiating with respect to t gives

−∂ρ−1
t (z)
∂t

1
g
(
ρ−1
t (z)

) = 1, (2.12)
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rearranged gives the modified flow equation for the inverse flow as seen in
[19]

∂ρ−1
t (z)
∂t

= −g
(
ρ−1
t (z)

)
. (2.13)

Mapping this result to the unit circle using ρ−1
t

(
eiθ
)

= eiχ
−1
t (θ) gives the

final result of
∂χ−1

t (θ)
∂t

= ie−iχ−1
t (θ)f

(
eiχ

−1
t (θ)

)
. (2.14)

The test function in this transformed equation will be mapped to the circle
using the Cayley transform (1.15) once more

f(z) = C ′
(
C−1(z)

)
g
(
C−1(z)

)
. (2.15)

2.3 the welding method

After mapping the test function g to the circle using the Cayley transform, a
boundary is created between the mapped upper and lower half planes. This
boundary (called a Jordan curve) is described by two univalent functions
w± : D± → ∆± from the interior/exterior of the unit disk (which we denote
by D±) to the inside/outside of this Jordan curve C separating the domains
which are denoted by ∆±. The welding condition can be expressed as

w+(z) =
(
w− ◦ ρ

)
(z) (2.16)

for boundary values on the circle z ∈ S [26]. There are several methods to
calculate these functions [12, 21, 26], including solving the Beltrami equation
∂z̄f(z) = µ(z)∂zf(z) by defining

µ(z) =

∂z̄ρ(z)/∂zρ(z) z ∈ D+

0 z /∈ D+.

Despite being a potential method to solve the welding problem, this method
was not used due to the alternative providing a simpler numerical imple-
mentation.
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An integral operator K on L2(0, 2π) = L2(S) is defined in the same way
as in [12, 26]

KG(θ) = i

4π

∫ 2π

0

(
cot

(
θ − θ′

2

)
− ∂χ−1

∂θ
cot

(
χ−1(θ) − χ−1(θ′)

2

))
G(θ′)dθ′.

(2.17)
The χ−1 is calculated by solving (2.14) and G ∈ L2(S) is an arbitrary
function to be operated on by K. It is possible to show

(I +K)w−(eiθ) = eiθ, (2.18)

giving an explicit method to calculate the function w−. This is necessary
because the calculation of the characteristic function associated to the prob-
ability distribution of the smeared stress-energy density is directly found
from its Schwarzian derivative and the test function f .

2.4 the schwarzian derivative and calculation of the
probability distribution

The Schwarzian derivative is used in many areas of mathematics. It is
used in second order ordinary differential equations, geometry and most
importantly to us conformal mapping [33, 24]. It is defined as follows

Sf(z) = {f, z} = f ′′′(z)
f ′(z) − 3

2

(
f ′′(z)
f ′(z)

)2

(2.19)

and has the remarkable property of being invariant under Möbius transforms.
Specifically, if

g(z) = af(x) + b

cf(x) + d
(2.20)

for the constants a, b, c, d either real or complex such that ad− bc ̸= 0 then
Sf = Sg [34].

We also have under composition a formula which we can use to change
variables [34]

S(f ◦ g) = S(f) ◦ g + S(g). (2.21)
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Having established the necessary background, one is now able to determine
the probability distribution for a specific test function on either the real line
or the circle in a (1+1) CFT. The equation for the Fourier transform of the
probability measure dvf (λ) is given by[12]

∫
R
eitλdvf (λ) = exp

(
− ic

24π

∫ t

0

∫
S
f(z)Sw−(t′, z)dzdt′

)
(2.22)

with t the same parameter used in (2.14). The characteristic function [3] of
a probability measure µ on the line is defined for t ∈ R by

φ(t) =
∫
R
eitxµ(dx). (2.23)

The characteristic function is called the Fourier transform in nonprobabilistic
contexts and is exactly what we are trying to calculate using (2.22). Due
to this the terms Fourier transform of the probability and characteristic
function will be used interchangeably.

2.5 an analytic example

To test the accuracy of the numerical implementation it is useful to have some
exact results to compare against. One explicit derivation of a probability
distribution is given in [12] which we summarise here to give a demonstration
of the welding method.

Using the infinite family of test functions fn on S given by

fn(z) = 1
2n

(
z−n+1 − zn+1

)
(2.24)

with n ∈ N. The flow equation (2.6) is solved with ρt(z) given by

ρt(z) = e
iπk

n

(−1)k
zn cosh

(
t
2

)
+ sinh

(
t
2

)
zn sinh

(
t
2

)
+ cosh

(
t
2

)


1
n

(2.25)

with k = 0, 1.., 2n− 1.
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To solve the welding problem we find that the univalent holomorphic
functions w+

n : D+ → ∆+ and w−
n : D− → ∆− are given by

w+
n (z) = z

(
cosh

(
t

2

))− 2
n
[
1 + zn tanh

(
t

2

)]− 1
n

(2.26)

and
w−
n (z) = z

[
1 − z−n tanh

(
t

2

)] 1
n

(2.27)

for z ∈ D+ and z ∈ D− respectively. These functions w+ and w− when
calculated for z = eiθ match and form the Jordan curve C [12] which is
the limiting dividing region between w+ and w−. One can then directly
calculate the Schwarzian derivative to be

Sw−
n (z, t) = n2 − 1

2z2

(
−1 + 1

(1 − z−n tanh t
2)2

)
. (2.28)

For t ≥ 0 this has poles at z = 0, e2iπk/n(tanh t
2)1/n for k = 0, 1.., n−1 inside

the unit disk and likewise for t ≤ 0. It is at this stage that the calculation
supposes that t ≥ 0 and makes use of the residue theorem to calculate

1
2πi

∫
S
fn(z)Sw−

n (z, t)dz = −n2 − 1
2n tanh t

2 . (2.29)

This is then substituted into (2.22) demonstrating that the Fourier transform
of the probability distribution dvn for T (fn) in the vacuum state is given by∫

R
eitλdvn(λ) =

(
sech

(
t

2

))p
, (2.30)

for n > 1 and
p = c

12

(
n− 1

n

)
. (2.31)

This Fourier transform can be inverted analytically and gives the probability
distribution

dvn(λ) = 2p−1

πΓ(p)

∣∣∣∣Γ(p2 − iλ
)∣∣∣∣2 dλ. (2.32)

We have investigated the method of conformal welding as a method to
calculate the probability distribution associated to the averaged stress-
energy tensor. We have given an example of using this method to analytically
calculate the probability distribution and outlined the key ideas in order to
be able to implement this numerically.
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Moments & probability

Similar to the previous chapter we aim to provide the necessary mathemat-
ical basis to understand how to use the moments method to procure the
probability distribution of T (g). We look at the benefits and drawbacks of
this method and provide a worked example for clarity.

Beginning with some real-valued test function g we have Θ(g) (denoting
the stress energy density on the line), a self-adjoint operator with an associ-
ated projection valued measure which we denote with Pg(dλ) existing on
the real line.

In the following we require that we are working in a general unitary and
positive energy CFT in 1 + 1 dimensional Minkowski space. It has been
shown that one use this method to determine the probability distribution in
the vacuum, thermal and highest weight states [12]. The vacuum probability
distribution of our smeared stress energy density Θ(g) is given by the measure

dvg(λ) = ⟨Ω|Pg(dλ)Ω⟩ (3.1)

and can be generalised to any state by simply replacing Ω with the state one
is interested in calculating. We are also able to calculate the n’th moment
mn of vg and it is given by the integral

mn =
∫ ∞

−∞
λndvg(λ). (3.2)

30
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One is then able to use functional calculus to use our formula (3.1) in the
calculation of the moment mn and we can calculate

mn =
∫ ∞

−∞
λn⟨Ω|Pg(dλ)Ω⟩ = ⟨Ω|Θ(g)nΩ⟩. (3.3)

It was shown in [11] how to connect the probability distribution to its
moments using the stress-energy density on the line. The moment generating
function

M [µg] =
∞∑
n=0

µn

n! ⟨Ω|Θ(g)nΩ⟩ =
∞∑
n=0

µn

n! Gn[g], (3.4)

defined by the weighted sum of moments, (we relabel our moments from
mn to Gn[g] to match with the related literature [11, 13]) is related to the
connected moment generating function W

M [µg] = eW [µg]. (3.5)

Calculation of the connected moment generating function is done by inte-
grating the second moment G2 twice

W [µg] =
∫ µ

0
dλ(µ− λ)⟨Ω|Θ(gλ)2Ω⟩. (3.6)

We require that gλ must solve the flow equation

dgλ
dλ

= gλ ∗ gλ, g0 = g. (3.7)

The ∗ operation is defined by the nonlinear integro-differential equation

(g ∗ g)(u) =
∫ ∞

−∞

g(w)g′(u) − g′(w)g(u)
2π(w − u) dw. (3.8)

The only known closed form solutions of (3.7) require that the initial condi-
tion g0 be a member of a small set of infinite families [11, 2] based on either
Gaussian or Lorenztian test functions or modifications thereof.

The zeroth moment obeys G0[g] = 1 and the first moment obeys G1[g] = 0
for any function g. For higher moments we have non-trivial results. Most



32

importantly in these methods, the second moment in (3.6) is related to
the moment generating function which can be related to the probability
distribution of Θ(g) acting on the vacuum state.

In the particular case of the second moment, one can show [11] that
G2(g) is given by

G2(g) = c

8π2

∫
R2

g(u)g(v)
(v − u− i0)4dudv (3.9)

which can be represented in Fourier space, often simplifying calculations.

To transform (3.9) one makes use of the identity

1
(u− iϵ)4 = 1

6

∫ ∞

0
ω3e−iω(u−iϵ)dω (3.10)

which itself is proved by recursive integration by parts. The factor of ϵ is
required to ensure that contributions at ∞ vanish but is often represented
simply by i0. Substituting a modified (3.10) into (3.9) we arrive at

G2(g) = c

8π2
1
6

∫
R2

∫ ∞

0
g(u)g(v)ω3e−iω(v−u−iϵ)dudvdω (3.11)

and then separate the exponential and integral terms

G2(g) = c

48π2

∫ ∞

0
ω3e−ϵω

∫
R
g(u)eiωudu

∫
R
g(v)e−iωvdvdω. (3.12)

In this form, one can safely take the limit ϵ → 0+ and define the Fourier
transform of the smearing function g with convention

ĝ(ω) =
∫ ∞

−∞
g(s)e−iωsds (3.13)

and this allows substitution of the Fourier transform and its complex conju-
gate

G2(g) = c

48π2

∫ ∞

0
ω3ĝ(ω)ĝ(ω)dω. (3.14)

This gives the second moment written in terms of the Fourier transform of
the test function and is often represented by

G2(g) = c

48π2

∫ ∞

0
ω3|ĝ(ω)|2dω. (3.15)
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Once the moment generating function corresponding to a specific test func-
tion has been found one can equate it [2] to the two-sided Laplace transform
of the probability distribution

M [µg] =
∫ ∞

−∞
P (t)eµtdt. (3.16)

This means that upon calculation of the moment generating function one is
able to take an inverse Laplace transform to find the probability distribution
corresponding to a particular test function smearing a particular observable,
in this case the stress energy density.

Although unlikely, the Laplace inversion can be done via inspection. One
example would be for the shifted Gamma distribution (1.3) which incurs a
moment generating function

M(µ) =
(

1 − µ

β

)−α

e−µσ (3.17)

which has associated to it the connected moment generating function

W (µ) = α log
(

β

β − µ

)
− µσ. (3.18)

The only way that the moment generating function and connected moment
generating function can exist in this form is if the second moment is given
by

G2[gλ] = α

(β − λ)2 (3.19)

and the quantum inequality bound σ, also calculated from (1.16), is given
by the ratio of constants α and β

σ = α

β
. (3.20)

To elucidate this method we will demonstrate its use with a normalised
Gaussian test function

f(u) = e−u2

√
π

(3.21)
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and recall that we require a one parameter family of functions fλ to solve
the flow equation

dfλ
dλ

= fλ ⋆ fλ, f0 = f. (3.22)

We calculate the integrand of the flow equation

f ′(u)f(w) − f ′(w)f(u)
2π(w − u) = e−u2−w2

π2 (3.23)

and then integrate over the variable w on the real line

(f ⋆ f)(u) =
∫
R

e−u2−w2

π2 dw = f(u)
π

. (3.24)

To proceed to solve the flow equation we make the ansatz

fλ(u) = B(λ)f(u), (3.25)

which reduces our flow equation to

dB(λ)
dλ

= B(λ)2

π
, B(0) = 1. (3.26)

Solving this equation we find our λ dependent term is given by

B(λ) = π

π − λ
(3.27)

and we can now calculate the second moment G2 without needing to consider
the λ dependence within the integral over ω

G2[fλ] = cB(λ)2

48π2

∫
R+
ω3|f̃(ω)|2dω = c

24π2
π2

(π − λ)2 . (3.28)

Direct comparison between this and the second moment for the shifted
Gamma distribution in the general sense with parameters α, β gives

α

(β − λ)2 = c

24
1

(π − λ)2 . (3.29)

Clearly this has generated an equation of the form (3.19) which means that
the probability distribution is given by a shifted Gamma distribution (1.3)
with parameters

α = c

24
β = π.

(3.30)
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This example demonstrates the potential power of the method of moments
but this is very dependent on the test function used.

One should note that despite the reasonably simple theoretical con-
nections between test function and associated probability distribution for
the stress energy density, numerically this method is fraught with areas of
difficulty.

Solving the integro-differential equation (3.7) numerically is challeng-
ing. In comparison, analytic methods often begin with a simple ansatz of
separation of variables. To generalise the solution of (3.7) to a numerical
method would require careful handling of (3.8) due to the potential of a
singularity emerging from the denominator. This is not the only problem in
constructing a general numerical method. The λ dependence introduced by
(3.7) brings further potential challenge as well.

Another issue is in the final step of calculation as numerical stability
in the process of inverting Laplace transforms is challenging and requires
very well behaved input data. This will be discussed more in forthcoming
sections but one should not be fooled by the comparative simplicity of the
moments method compared to the welding method. They both have merit
in specific scenarios.

Analytically the moments method is more tractable. The main challenge
of the method is finding a flow solution gλ which obeys (3.7). One can start
with the initial condition test function g0 and then find themselves unable to
solve (3.7) for a general gλ. This key difficulty is the reason that a general
numerical method was not developed for this approach.
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Implementation of the Welding method: Part 1

1 The first part of this two part chapter will give the main ideas of numerical
implementation of the welding method as well as highlight the vital im-
provements made to the method numerically. We discuss the need for these
improvements and how previous methods were unsuitably accurate for our
use. We also develop our own method of accurate high-precision calculation
of the Schwarzian derivative which is a key bottleneck for accuracy within
the numerical implementation.

As seen, the welding method appears to offer a way of calculating the
probability density of the averaged energy density in a vacuum state. This
probability density has been shown to be affected by the choice of the smear-
ing function used to average the energy density. Numerical implementation
of this method has several key steps that require careful data handling due to
the unstable nature of the problem at each step. One begins by numerically
solving the flow equation either on the line as in (2.6) or on the circle (2.14).
This already can be problematic because of the differential solving routines
used to generate the 1-parameter family of diffeomorphisms from the flow
equations.

Attempts to solve (2.14) using the in-built partial differential equation
solvers of Mathematica and Maple had issues with dealing with the large

1All codes created for this project are available upon request

36
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derivatives incurred after the parameter t had evolved to a certain point.
The value of t at which the solver will encounter problems depends entirely
on the test function chosen. The underlying issue common to all tests
performed was the occurrence of very large values being produced in the
derivative terms after t had sufficiently evolved.

Throughout initial implementation to verify the methods used, the code
was compared to the derivation of the probability density (2.32) given in
[12] which details every relevant step of the calculation that one should wish
to compare their numerical data to. This comparison made it evident that
it would be beneficial to use the method of lines [37] to convert the partial
differential flow equation to a finite set of ordinary differential equations.

The method of lines in this implementation solves the flow solution
ordinary differential equations for successive values of the spatial parameter.
The reason for choosing the spatial parameter over the parameter t is due
to the fact that in each ODE the initial condition of the flow is given by the
identity transforming the angular input into itself. Fig. 4.1 demonstrates
the high level of agreement between the method of lines and the original
method of flow solution. The method of lines solves the flow equation well
but with the aim to push the value of t as high as possible while maintaining
smooth and accurate data, further tests were performed.

For example, if one increases the value of t to 20, a value that would have
caused large issues for the partial differential equation solver, and compare
the flow solution to the analytic solution detailed in [12] one can see from Fig.
4.2 that the method of lines clearly has no issues in solving the flow equation
despite the divergent spatial differential values in the flow solution as t → ∞.

This crucial requirement, long term stability as we evolve t in the flow
equation solver, meant that the method of lines seemed like the only reason-
able choice to make. It goes without saying that if instead of large spatial
derivatives, the solver encountered large t derivatives then it is reasonable
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Figure 4.1: Plot comparing the flow solution methods of solving (2.14) for
the test function (2.24). The inbuilt Mathematica PDE solver NDsolve (red)
is compared to the method of lines which also uses NDsolve for the required
ODEs (blue points).
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Figure 4.2: Plot comparing the analytic argument of the flow solution (2.25)
(red) for the test function (2.24) against the method of lines in Mathematica
using NDsolve to calculate the solution to the vector of ODEs at t = 20.
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to assume that the flow solver could run into difficulty. Testing the method
of lines against the inbuilt partial differential solvers of Mathematica and
Maple to solve the flow equation, the method of lines performed better for
not only (2.24) but also for a Gaussian test function. The method of lines
also had the benefit that it solved the problem faster than the inbuilt partial
differential solvers.

After the value χ−1(θ) has been calculated from (2.14) we are ready to
try to solve the welding problem (2.18) which requires use of the integral
operator K defined by (2.17). Within the integrand of K we notice the
dependence on the inverse flow on the circle χ−1(θ) as well as the spatial
derivative (χ−1)′ (θ). We are able to calculate this derivative either using
analytic formula or finite difference methods. Instead of using the integral
definition of K we use a similar method as in [31] wherein the operator
integrand is discretised to form a matrix with each entry corresponding to a
different pair of angular points.

As is evident from the formula (2.17) one must take care with the point of
coincidence of the cotangent terms. The diagonal entries of the discretised K
integrand matrix Kab correspond to the points of angular coincidence. These
entries are calculated seperately to the bulk terms where the integrand
formula can be used as written in (2.17). To calculate the coincidence
formula we take the integrand and perturb one of the angular coordinates
from the other and then take the coincidence limit when the formula is
simplified. The near coincidence integrand KI is given by

KI(θ+ϵ, θ) = cot
(
θ + ϵ− θ

2

)
−(χ−1

t )′(θ) cot
(
χ−1(θ + ϵ) − χ−1(θ)

2

)
. (4.1)

We expand the cotangent terms using the series expansion

cot (ϵ) = 1
ϵ

− ϵ

3 + O(ϵ3), (4.2)

which is trivially substituted in the first term. The second term requires a
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further Taylor expansion of the function χ−1
t to give

KI(θ + ϵ, θ) = 2
ϵ

− (χ−1
t )′(θ)

(
2

(χ−1
t )′(θ)ϵ

− (χ−1
t )′′(θ)

(χ−1
t )′(θ)2

)
+ O(ϵ). (4.3)

We have a clear cancellation of singularities at coincidence due to the
cancellation of the derivative of the angular flow solution in the numerator
and the denominator of the subtracted term. This leaves us with an exact
value at coincidence which is

lim
ϵ→0

KI(θ + ϵ, θ) = (χ−1
t )′′(θ)

(χ−1
t )′(θ)

. (4.4)

For the remainder of the K matrix, one is able to populate the entries by
using the formula as described by (2.17). This step in the code presented
a large issue with the implementation. The density increase of angular
mesh points N resulted in an O(N2) increase in computation time from
the dimension of the matrix. Balancing reasonable calculation times with
accurate data output was a constant challenge with early calculations of the
welding solution looking erroneous and jagged. This is best demonstrated
when calculating for the welding solution using the test function given by
(2.24), choosing the integer n = 8, shown in Fig. 4.3. This jaggedness
was due to not being able to calculate a large value of angular points in a
reasonable time frame. Due to the O(N2) increase in data points of Kab,
memory is a necessary consideration. If one has enough free memory to
increase the total number of angular points N then this will improve the
data generated for all implemented versions of Kab.

After calculation of the K matrix we are ready to solve the welding
problem using (2.18). Numerically this was done using inbuilt linear algebra
libraries to solve the vector equation for the unknown w−

b (θ, t), the subscript
b denoting the discretised value of w−. After solving for w−

b for the test
function given by (2.24), one is then able to compare this to the analytic
result given in [12]. This comparison can be seen in Fig. 4.4 which clearly
demonstrates excellent agreement from the numerical data to the analytic
function. One should also note that if we are generating a good agreement
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Figure 4.3: Interpolated complex plot of the numerically calculated (2.27)
solving the welding problem for test function (2.24), choosing the integer
valued constant, n, to be 8 in this case. This plot demonstrates the initial
method used wherin the values at each stage of calculation were calculated
via the relevant formulae instead of allocating figures into static arrays to
expedite the calculation time.
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between the Jordan curve at the highest possible parameter value t and
the numerical output at this same value, then it is highly likely that all of
the Jordan curves at each step in t below this will match well. The reason
for this is at t = 0 the flow solution returns the identity and following this
through the welding process, the Jordan curve at t = 0 returns a circle. As
we increase t, the circle gradually deforms and evolves to create the Jordan
curve specific to the test function used.
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Figure 4.4: Jordan curve resulting from the test function (2.24) compared
to numerically calculated data from the welding method code. We used
5000 angular points to generate this plot at t = 3 and set n = 8. The blue
curve is the analytic value given by (2.27) and the red data points denote
the numerically calculated values.

With the welding problem solved to an acceptable level of accuracy, the
next step is the calculation of the Schwarzian derivative which requires 3
derivatives of the solution to the welding problem w−. It is unsurprising
that taking third derivatives of a numerically calculated quantity is prone to
generating large errors. More specifically, these errors not only deviated from
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the analytic comparison data but would often diverge leaving problematic
data to be passed to the remainder of the calculation.

The first approach tried was simply to increase the mesh density to
higher and higher order but this was problematic in its own right. We recall
that an increase in angular mesh density corresponds to a linear increase in
data points for the inverse solution to the flow equation χ−1

t (θ). However,
as stated this increase corresponds to a quadratic increase in data points for
Kab. This quadratic increase in data points correspondingly slowed compu-
tation time and increased memory usage. Due to these issues associated to
increasing mesh points, a higher priority was put to increasing the quality
and smoothness of the data being sent to Kab. The smoother the data that
was being sent in to the calculation of Kab, the smoother the data being
generated from the calculation of the Schwarzian derivative.

This smoothness of data being used was always limited by the value of
the parameter t. In every tested case there was a value of t at which the
derivatives of χ−1

t (θ) would numerically overflow, meaning that the data
being sent to the remainder of the code would be inaccurate and unusable.
Methods to ameliorate this issue included higher order finite difference
calculations of the derivatives of w−

b but these did not fix the issue as much
as was hoped. This problem in being unable to calculate the Schwarzian
derivative to a large value of t meant that only a small region of the Fourier
transform could be calculated via (2.22). This issue of calculating smooth
data to a high value of t was an issue throughout the project and is the
main issue facing numerical welding methods.

With the higher order finite differencing methods, the code was able
to generate good bulk agreement of the Schwarzian derivative to the an-
alytic comparison but the end points of the curves were problematic in
the sense they would have a propensity to return very large values and in
some cases these would numerically overflow. We can see one such plot
of the failure of the edge points in even the best case in Fig. 4.5 where
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Figure 4.5: Plot of the real part of the analytic Schwarzian derivative (2.28)
(black) against the numerically generated data from the method of lines flow
solution for (2.24). This plot uses 500 angular data points and is calculated
for t = 1 and n = 2.

the plot has been scaled to ignore the largest negative end point values
to demonstrate the good agreement in the bulk calculation and the points
at which the numerical derivative begins to fall away from the analytic values.

A major challenge in the project was to improve the stability and quality
of the data being calculated by the Schwarzian derivative. This is unsur-
prising as the calculation of the Schwarzian derivative is one of the final
steps after several numerically challenging steps. Even if the data from the
welding solution created a smooth Jordan curve it would often not look
smooth in the context of the Schwarzian plots. This highlighted that there
were still several systematic errors remaining in the code that would have to
be improved.

When the calculation of the Schwarzian derivative was done, the only
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remaining part of the welding method to be implemented was the integral
(2.22). This does not include the step of inverting the Fourier transform
(2.22) to generate an explicit probability density. To numerically resolve the
two integrals in (2.22) we split them up into the angular integral and then
integrate this over t.

The angular integral Θ(θ, t′) given by

Θ(θ, t′) =
∫
S
f(z)Sw−(t′, z)dz, (4.5)

is not quite the form that the code calculates. Instead of calculating for
some z on the circle, the code calculates the value in θ. This means we
need to use the change of variable relationship for the Schwarzian derivative
(2.21), transforming our integral over the circle to

Θ(θ, t′) =
∫
S
f
(
eiθ
)(1

2 − SF (θ, t′)
)
e−2iθieiθdθ. (4.6)

The function F is the t dependent analogue of w− (F (t, θ) = w−(t, exp (iθ)))
calculated by the code which is given in terms of angular dependency. Note
that the simplicity of this change of variables is due to S(exp (iθ)) = 1/2.
Calculating the angular contribution is best done simply using the Euler
method of integration

Θ(θ, t′) ≈
N∑
j=1

f
(
eiθj

)(1
2 − SF (θj, t′)

)
e−2iθj ieiθjh. (4.7)

The parameter h = 2π/N replaces the metric and the value N is the number
of angular points we have calculated. Due to the periodicity of the integrand
we do not wish to alter the first and last contributions from the angular
array as one would with perhaps Simpson’s or Trapezium rules. Hence we
use the method of Euler. This is because of the fact that the Euler method
has a rotationally invariant set of integration weights.

This integral formula can be simplified when included with the integral
over t, T with the constant pre-factors included to give

T (t) = c

24π

∫ t

0

∫
S

f
(
eiθ
)

(1 − 2SF (θ, t′)) e−iθ

2 dθ. (4.8)
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Calculation of the integral over t is set by definition to give 0 when the
integral is calculating the first point. After this we use Simpson’s rule
to reduce the error to O(h4) compared to the O(h2) from the trapezoidal
method. This reduction in error is vital due to often only having a small
number of steps in t (relative to angular discretisation).

Following the exponentiation of T , one has successfully used the welding
method to calculate the Fourier transform of the probability distribution of
the stress energy tensor corresponding to the smearing function f on the
circle given by (2.22).

As discussed previously, the calculation of the welding method is trou-
blesome for large values of t due to compounding numerical errors at many
stages of the calculation. We mitigate this issue by using the method of
lines to solve for the flow solution ρt. The bottleneck of accurate Schwarzian
calculation requires very smooth data generated from both solving the flow
equation and solving the welding problem via the integral operator K. With
this in mind, if one simply runs the code with the large value of t that they
wish to achieve then the data collected from the Fourier transform of the
probability distribution is inevitably fraught with error.

To avoid this issue one is forced to run the code to very low values of t,
often as low as t = 5, which means that very little of the transformed proba-
bility distribution is represented by the code and nullifies any possibility of
accurately inverting the Fourier transform in future calculations.

This requirement of running the calculation to low t does not mean
that one is unable to generate data which includes more of the transformed
distribution. By increasing the central charge of the Virasoro algebra c in
(2.22), one changes the representation of the distribution in Fourier space by
increasing the weights of the integral contributions in the exponent (2.22).
This change affects the Fourier distribution in an unsurprising manner.
The values of the Fourier distribution begin at 1 (by definition) and then
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Figure 4.6: Numerically calculated and then interpolated Fourier distribution
(interpolation computed by inbuilt Mathematica program) of the probability
distribution (red) plotted against the analytic curve given in [12](blue) using
a central charge of 1 as well as 5000 angular points and t running up to 10

monotonically decrease in magnitude below this value as the parameter t
increases. Larger negative values in this exponent from increasing the value
of c will cause the decay to occur faster than if c were untouched. This
means that the code is able to calculate more of the support of the Fourier
distribution.

To clarify this point we can once more use the toy model used throughout
the generation of the welding code from [12] and observe just how much
increasing the central charge can improve the data. In Fig. 4.6, only by
using a large number of angular points (N = 5000) was the code able to
run to t → 10 and even then the data near t = 10 was beginning to incur
progressively larger errors.

If one increases the central charge for the same distribution then far more
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Figure 4.7: Numerically calculated and interpolated Fourier distribution
(interpolation computed by inbuilt Mathematica program) of the probability
distribution (red) plotted against the analytic curve given in [12] (blue)
using a central charge of 24 as well as 5000 angular points and t with a
maximal value of 5

of the support of the distribution can be observed, as evidenced by Fig. 4.7.
Almost the full support of the transformed distribution is represented by the
code despite calculating the Fourier distribution to only t = 5 in contrast
to the calculation done to generate Fig. 4.6. After calculating the Fourier
transform of the probability distribution (2.22), one would hope to invert
back to real space. This is seen in the welding example where after inverting
the Fourier transform one is able to calculate the probability distribution
(2.32).

If we use a Gaussian test function and run the welding code and then
invert our characteristic function to real space, then one can identify the
failure of the welding method by the inability to agree with the singular part
of the probability distribution. This is demonstrated in Fig. 4.8 and this
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Figure 4.8: Comparison between analytic probability distribution incurred by
a Gaussian test function (1.3) (blue) and the numerically Fourier transformed
welding solution (red). The central charge was set as c = 12, we used 2000
angular points. 100 steps in t to an upper value of t = 30.

deviation as the code approaches the singularity is explained by not control-
ling enough of the behaviour near the tail of the distribution in Fourier space.

To calculate more of the detail in the tails of the Fourier transformed
probability distributions, one would need to run the welding code to much
higher values of t which is a limiting factor of the numerical welding method
done in this way. The issue of simply increasing the central charge to cover
more of the dominant behaviour of the transformed probability is that the
singular behaviour disappears as the α parameter increases past 1. This can
be seen in the context of (1.3) where the β + σ factor in the numerator is
raised to the power of α − 1. Clearly for all α < 1, λ → −σ this induces
singular behaviour in the probability distribution which is erased as α > 1.

Calculation of the Fourier inversion in the case of Fig. 4.8 is not done
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using fast Fourier transform methods but instead we use the analytic Fourier
inversion formula and calculate the result numerically. This method of using
analytic results but computed partially by using numerical methods will
referenced as a “quasi-analytic” approach. By integrating the generated
values from (2.22) against the exponential factor in the inverse Fourier
transform for a set of calculated values, one is able to generate a continuous
function in real space from specific values in the Fourier domain.

Fast Fourier transform methods were not used due to the fact that there
were too few data points in the t parameter domain. It was also the case
that we were unable to run the code to a high enough value of t for accurate
data. It was due to these facts that the alternative method of quasi-analytic
inversion was used.

4.1 numerical calculation of the schwarzian derivative

Numerically calculating the third derivative of w− is problematic for produc-
ing smooth data. Finite differencing methods for calculation of derivatives
is sensitive in even the first and second order cases. To ensure smooth data
from the calculation of the Schwarzian derivative after several initial numer-
ical steps in the welding method, a different approach was needed. There
are geometric methods [26] which can ameliorate this issue in some cases
but it was unsuccessful for this project due to the proximity of the angular
points which generated denominators that approached 0. These methods
are based on calculating the Schwarzian derivative of F (t, θ) = w−(t, θ) by
computing the cross ratio

(F (x+ 2h) − F (x))(F (x+ h) − F (x− h))
(F (x+ h) − F (x+ 2h))(F (x− h) − F (x)) , (4.9)

choosing an angular point separation h.

One is able to reduce the number of angular steps to improve this problem
of singular denominators but then the calculation of the K matrix would
not generate smooth data for high enough diffeomorphism parameters. To
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assist the code in generating accurate data that was sensitive to reasonable
perturbations in the data we made use of the welding problem itself.

4.2 functional analytic calculation

We wish to use the welding relation (2.18) to improve the stability and
accuracy of the numerical Schwarzian derivative calculation. To do this we
successively apply differential operators D to each side of (2.18) until we
have calculated up to the third derivative DDDw−.

Applying the third derivative operator and understanding the impact
of it onto the welding problem (2.18) means that we have generated all of
the necessary derivative components needed to calculate the Schwarzian
derivative (2.19). By doing this, using the method we describe below, we
completely remove the necessity for finite differencing methods or any ex-
plicit numerical differentiation. Instead we aim to generate far more stable
and accurate data. This will mean that numerically, for each differential
operator order, we transform the problem once more into a linear algebra
problem exactly as we did in calculating (2.18).

We begin with recasting the welding problem (2.18), using en = einθ and
F in place of w−

e1 = (I +K)F. (4.10)

The integral operator K can be re-written as

K =
Σ − UρΣU−1

ρ

2 , (4.11)

defining Σ and Uρ as in [[31],[12]]

UρF (z) = F (ρ−1(z)),
ΣF = −F + 2e1.

(4.12)

Applying a differential operator D to both sides of (4.10) gives

ie1 = D(I +K)F (4.13)
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where D interacts trivially with the identity. This leaves us to understand
how the differential operator interacts with K. We find that [D,Σ] = 0 and
via the chain rule we can find

(DUρF ) (θ) =
(
χ−1

)′
(θ)F ′

(
χ−1(θ)

)
. (4.14)

This interaction can be written

DUρ = M(χ−1)′UρD, (4.15)

defining Mϕ as the operation of multiplication by ϕ. We find a comparable
result can be found for the inverse U−1

ρ

DU−1
ρ = U−1

ρ M−1
(χ−1)′D. (4.16)

We are now able to calculate the full effect of the differential operator on K

DK =
ΣD −M(χ−1)′UρΣUρM−1

(χ−1)′D

2 = K̃D, (4.17)

where K̃ is the transformed operator after being affected by the differential
operator. This means we have found a welding relationship for the first
order derivative of F

ie1 = (I + K̃)DF. (4.18)

This formula (4.18) means that we will numerically implement K̃ and solve
this transformed welding problem for DF which we will use in calculation
of the Schwarzian derivative.

We wish to continue this analysis to higher order but to do so we need to
understand the behaviour of applying D onto our multiplication operators.
We look at the general case DM(χ−1)′

DMn
(χ−1)′ = nM(χ−1)′′Mn−1

(χ−1)′ +Mn
(χ−1)′D (4.19)

and now use this to calculate the second derivative of the welding solution. In
the forthcoming calculations the analysis will concentrate on the non-trivial
part of

(
Σ − UρΣU−1

ρ

)
/2, ignoring in both remaining cases the isolated Σ
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term due to its commutivity with the differential operator D. We have now
to calculate

−e1 = DD(I +K)F = D(I + K̃)DF (4.20)

to find the formula in terms of DDF in order to calculate the second order
derivative. We now need to apply the differential operator to the identity
and our new integral operator K̃. Once again we ignore the contribution of
Σ and only look at DM(χ−1)′UρΣUρM−1

(χ−1)′

DM(χ−1)′UρΣUρM−1
(χ−1)′ =

(
M(χ−1)′′ +M(χ−1)′D

)
UρΣU−1

ρ M−1
(χ−1)′ . (4.21)

We will now separate this equation into its two parts, using the chain rule
we find

M(χ−1)′′UρΣU−1
ρ M−1

(χ−1)′+

M2
(χ−1)′UρΣU−1

ρ M−1
(χ−1)′

(
−M(χ−1)′′M−2

(χ−1)′ +M−1
(χ−1)′D

)
= M(χ−1)′′UρΣU−1

ρ M−1
(χ−1)′−

M2
(χ−1)′UρΣU−1

ρ M(χ−1)′′M−3
(χ−1)′ +M2

(χ−1)′UρΣU−1
ρ M−2

(χ−1)′D.

(4.22)

Our equation has therefore become

− e1 =
(
I + 1

2
(
Σ −M2

(χ−1)′UρΣU−1
ρ M−2

(χ−1)′

))
DDF+

1
2
(
M2

(χ−1)′UρΣU−1
ρ M(χ−1)′′M−3

(χ−1)′ −M(χ−1)′′UρΣU−1
ρ M−1

(χ−1)′

)
DF (4.23)

where we condense terms for brevity and find

−e1 = (I +K2)DDF +K1DF. (4.24)

Once more we have found a welding problem to be solved which will allow
us to calculate DDF without needing to differentiate it numerically. This
means by using (4.18) and (4.24) we have found results which allow us to
calculate the first and second order derivatives of F without needing to
resort to numerical methods of differentiation.
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4.3 integral operator realisation and validation of
continuity

From the calculations in the previous section we have generated expressions
which gives us the first and second derivatives of the conformal welding
solution. We will use this to improve the accuracy in the Schwarzian
derivative. Following the implementation of the techniques for the second
derivative, we will extend this idea to try to generate a continuous integral
operator that will give us access to the third derivative of our welding
solution. We can write KF as an integral equation and then write an
analogous formula for calculation of DDKF

KF (θ) = i

4π

∫ 2π

0

[
cot

(
θ − θ′

2

)
−

(
χ−1

)′
(θ′) cot

(
χ−1(θ) − χ−1 (θ′)

2

)]
F (θ′) dθ′.

(4.25)

We will now group like terms to isolate potential singularities in our integral
kernels looking first at

K2DDF (θ) = i

4π

∫ 2π

0

[
cot

(
θ − θ′

2

)
−

(χ−1)′ (θ)2

(χ−1)′ (θ′)
cot

(
χ−1(θ) − χ−1 (θ′)

2

)]
DDF (θ′) dθ′,

(4.26)

with K1, K2 as in (4.24)

K1DF (θ) = i

4π

∫ 2π

0

[
(χ−1)′ (θ)2 (χ−1)′′ (θ′)

(χ−1)′ (θ′)2 −

(
χ−1

)′′
(θ)
]

cot
(
χ−1(θ) − χ−1 (θ′)

2

)
DF (θ′) dθ′.

(4.27)

We have generated these integral kernels for K1 and K2 by using the same
logic as in [12, 31].

Using expansions around coincidence one can show that both K1 and K2

are continuous including the point at coincidence. Substituting θ = θ′ + ε
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we first check K2. Recall the series expansion

cot
(
f (θ′ + ε) − f (θ′)

2

)
= 2
f ′(θ)ε

−1 − f ′′(θ)
f ′(θ)2 +O(ε). (4.28)

Using this we can calculate the coincidence value of the kernel of K2 which
we denote K2(θ, θ′) and find

K2(θ, θ) = −3i (χ−1)′′ (θ)
4 (χ−1)′ (θ)π

. (4.29)

Now with careful substitution into the kernel of K1 (denoted K1(θ, θ′)) we
generate the coincidence expression

K1(θ, θ) = i
(χ−1)′′ (θ)2

(χ−1)′ (θ)2π
− i

(χ−1)′′′ (θ)
2π (χ−1)′ (θ)

. (4.30)

4.4 numerical implementation of the second derivative
method.

We have shown that our integral kernels are continuous. We now discuss the
numerical implementation for this to be of use. Previously we have converted
(4.10) into a matrix problem with special consideration at coincidence. This
method for our new results will be similar. We rearrange (4.24) to the
following

(I +K2)DDF = −e1 −K1DF, (4.31)

and will then solve the equation by discretising K1 and K2 as we did for
K to Kab. This will then allow us to use inbuilt linear algebra methods in
Maple after calculating DF by solving (4.18).

The plot in Fig. 4.9 shows the comparison between the two methods of
DDF calculation, one using our new method and the other using central
differencing methods for low values of t. Although the overlayed graphs are
visually indistinguishable, the average percentage deviation is 0.0088% with
a maximum value of 0.1348%.
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Figure 4.9: Plot demonstrating previous methods of central differencing
calculating the second derivative of F for low t (ensuring stable calculation
values) compared to the methods detailed using the welding method to
generate direct methods of calculating DDF as in (4.31). This demonstrates
the efficacy of the new method in that it agrees with our previous methods
and can maintain stable solutions for higher values of t.
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The new method for DDF should be more accurate because it avoids
numerical differentiation. Although the errors in the old method relative to
the new one are small, they would be amplified when fed into further stages
of numerical differentiation (as was done using the original method) which
was a large source of issues before.

We need to apply one further differential operator D to (4.24) to generate
an expression for DDDF . This is the last calculation of this type needed
because we only require an understanding of 3 derivatives to calculate the
Schwarzian derivative. We will also verify smoothness of this last calculation.

4.5 the third derivative of the conformal welding solution

We now wish to calculate DDDF by applying 3 differential operators D to
(4.23). The left hand side is given by −ie1 but the right hand side requires
more explicit calculation. Once more we will ignore the identity term in
our total integral operator as well as the initial Σ term due to commutivity.
The calculation will be broken down into 3 stages and then like terms will
be grouped. We begin with the second order derivative term in (4.23) due
to this giving us the third order differential of F and therefore need to
understand

−D
(
M2

(χ−1)′UρΣU−1
ρ M−2

(χ−1)′DDF
)
. (4.32)

This derivative first affects our multiplicative operator and generates the
expression

−D
(
M2

(χ−1)′UρΣU−1
ρ M−2

(χ−1)′DDF
)

= −
(
2M(χ−1)′′M(χ−1)′ +M2

(χ−1)′D
)
UρΣU−1

ρ M−2
(χ−1)′DDF,

(4.33)

with the derivative operator passing through our Uρ and associated inverse
in the standard way to give us

−D
(
M2

(χ−1)′UρΣU−1
ρ M−2

(χ−1)′DDF
)

= −
[
2M(χ−1)′′M(χ−1)′UρΣU−1

ρ M−2
(χ−1)′DDF+

M3
(χ−1)′UρΣU−1

ρ M−1
(χ−1)′DM−2

(χ−1)′DDF
]
.

(4.34)
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This is resolved to give

−D
(
M2

(χ−1)′UρΣU−1
ρ M−2

(χ−1)′DDF
)

= −
[
2M(χ−1)′′M(χ−1)′UρΣU−1

ρ M−2
(χ−1)′DDF+

M3
(χ−1)′UρΣU−1

ρ M−1
(χ−1)′

(
−2M(χ−1)′′M−3

(χ−1)′ +M−2
(χ−1)′D

)
DDF

]
.

(4.35)

This expression can be tidied up and ordered by descending derivative order
to give one of our 3 calculated derivatives as

−D
(
M2

(χ−1)′UρΣU−1
ρ M−2

(χ−1)′DDF
)

= −M3
(χ−1)′UρΣU−1

ρ M−3
(χ−1)′D3F+

2
(
M3

(χ−1)′UρΣU−1
ρ M(χ−1)′′M−4

(χ−1)′−

M(χ−1)′′M(χ−1)′UρΣU−1
ρ M−2

(χ−1)′

)
D2F.

(4.36)

We now move to the calculation of the the positive first order derivative
term of (4.23)

D
(
M2

(χ−1)′UρΣU−1
ρ M(χ−1)′′M−3

(χ−1)′

)
DF. (4.37)

We begin by noticing the derivative is operating on the same multiplicative
factor as for the previous term and find

D
(
M2

(χ−1)′UρΣU−1
ρ M(χ−1)′′M−3

(χ−1)′

)
DF

= 2M(χ−1)′′M(χ−1)′UρΣU−1
ρ M(χ−1)′′M−3

(χ−1)′DF+

M3
(χ−1)′UρΣU−1

ρ M−1
(χ−1)′DM(χ−1)′′M−3

(χ−1)′DF.

(4.38)

Resolving the differential of both multiplication operators gives the final
result for this second calculation to be

D
(
M2

(χ−1)′UρΣU−1
ρ M(χ−1)′′M−3

(χ−1)′

)
DF

= M3
(χ−1)′UρΣU−1

ρ M(χ−1)′′M−4
(χ−1)′D2F+(

2M(χ−1)′′M(χ−1)′UρΣU−1
ρ M(χ−1)′′M−3

(χ−1)′+

+M3
(χ−1)′UρΣU−1

ρ M(χ−1)′′′M−4
(χ−1)′−

3M3
(χ−1)′UρΣU−1

ρ M2
(χ−1)′′M−5

(χ−1)′

)
DF.

(4.39)
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Lastly we need to compute

−D
(
M(χ−1)′′UρΣU−1

ρ M−1
(χ−1)′

)
DF (4.40)

and find
−D

(
M(χ−1)′′UρΣU−1

ρ M−1
(χ−1)′

)
DF

= −
[
M(χ−1)′′M(χ−1)′UρΣU−1

ρ M−2
(χ−1)′D2F+

+
(
M(χ−1)′′′UρΣU−1

ρ M−1
(χ−1)′−

M(χ−1)′′M(χ−1)′UρΣU−1
ρ M(χ−1)′′M−3

(χ−1)′

)
DF

]
.

(4.41)

At this stage we are able to break this set of equations into respective
parts to find the integral operators for each order of differentiation on our
conformal welding solution F . We list the grouped terms for each order and
assign to them a shorthand before checking smoothness of the constituent
parts. We begin with the highest order differential operator and descend

−P3D
3F = −M3

(χ−1)′UρΣU−1
ρ M−3

(χ−1)′D3F, (4.42)

P2D
2F = 3

(
M3

(χ−1)′UρΣU−1
ρ M(χ−1)′′M−4

(χ−1)′−

M(χ−1)′′M(χ−1)′UρΣU−1
ρ M−2

(χ−1)′

)
D2F

(4.43)

and lastly

P1DF

=
[
M3

(χ−1)′UρΣU−1
ρ M(χ−1)′′′M−4

(χ−1)′ −M(χ−1)′′′UρΣU−1
ρ M−1

(χ−1)′+

+3
(
M(χ−1)′′M(χ−1)′UρΣU−1

ρ M(χ−1)′′M−3
(χ−1)′−

M3
(χ−1)′UρΣU−1

ρ M2
(χ−1)′′M−5

(χ−1)′

)]
DF.

(4.44)

With these components we have found the welding equation that can be
solved for DDDF = D3F is

−ie1 =
(
I + Σ − P3

2

)
D3F + P2D

2F + P1DF. (4.45)

Once more we verify the smoothness of these individual terms before pro-
gressing to identification of the coincidence behaviour for numerical imple-
mentation.
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4.6 verification of smooth behaviour of the third derivative
integral operator

We begin the analysis with (4.43) to understand the less obvious calculations
first

P2D
2F (θ) = i

4π

∫ 2π

0
3
[

(χ−1)′ (θ)3 (χ−1)′′ (θ′)
(χ−1)′ (θ′)3 −

(χ−1)′′ (θ) (χ−1)′ (θ)
(χ−1)′ (θ′)

]
cot

(
χ−1(θ) − χ−1 (θ′)

2

)
D2F (θ′) dθ′.

(4.46)

We perform the analysis around coincidence with the substitution θ = θ′ + ε,
denote the integrand P2(θ, θ′) and find that we are left with the smooth
result around coincidence of

P2(θ, θ) = 3i
2π (χ−1)′ (θ)2

[
2
(
χ−1

)′′
(θ)2 −

(
χ−1

)′′′
(θ)

(
χ−1

)′
(θ)
]
. (4.47)

The next case to analyse will be P1DF (θ). We will resolve (4.44) in two
parts to break down the calculation into terms which more clearly cancel
upon performing the coincidence analysis.

The resolution of (4.44) will amount to looking at the terms with third
derivatives of χ−1 and the terms with the factor of 3 in front. First the
terms with third derivatives produce the integral

i

4π

∫ 2π

0

[
(χ−1)′ (θ)3 (χ−1)′′′ (θ′)

(χ−1)′ (θ′)3 −

(
χ−1

)′′′
(θ)
]

cot
(
χ−1(θ) − χ−1 (θ′)

2

)
DF (θ′) dθ′

(4.48)

which produces the value at coincidence to be
i

2π (χ−1)′ (θ)2

[
3
(
χ−1

)′′
(θ)

(
χ−1

)′′′
(θ) −

(
χ−1

)′′′′
(θ)
]
. (4.49)

The remaining terms in (4.44) produce the integral expression

3i
4π

∫ 2π

0

[
(χ−1)′′ (θ′) (χ−1)′ (θ) (χ−1)′′ (θ)

(χ−1)′ (θ′)2 −

(χ−1)′ (θ)3 (χ−1)′′ (θ′)2

(χ−1)′ (θ′)4

]
cot

(
χ−1(θ) − χ−1 (θ′)

2

)
DF (θ′) dθ′

(4.50)
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which upon expansion around coincidence gives the expression

3i (χ−1)′′ (θ)
2π (χ−1)′ (θ)3

[(
χ−1

)′′′
(θ)

(
χ−1

)′
(θ) − 2

(
χ−1

)′′
(θ)2

]
. (4.51)

This results in the total combined coincidence value of the integrand of the
first order differential operator P1DF as

P1(θ, θ) = 3i (χ−1)′′ (θ)
2π (χ−1)′ (θ)3

[(
χ−1

)′′′
(θ)

(
χ−1

)′
(θ) − 2

(
χ−1

)′′
(θ)2

]
+

i

2π (χ−1)′ (θ)2

[
3
(
χ−1

)′′
(θ)

(
χ−1

)′′′
(θ) −

(
χ−1

)′′′′
(θ)
]
, (4.52)

using P1(θ, θ) to denote the integrand coincidence value.

We have reached the final stage of the verification of smoothness. We
have to include the neglected Σ term because this will operate on D3F as
well. This gives us (Σ − P3)D3F/2 which is represented by

(Σ − P3)D3F/2 = i

4π

∫ 2π

0

[
cot

(
θ − θ′

2

)
−

(χ−1)′ (θ)3

(χ−1)′ (θ′)2 cot
(
χ−1(θ) − χ−1 (θ′)

2

)]
D3F (θ′) dθ′.

(4.53)

We use the same kernel expansion technique and find that the value at
coincidence for the third derivative integrand P3(θ, θ′) of our welding solution
is given by

P3(θ, θ) = −5(χ−1)′′ (θ)
(χ−1)′ (θ)

. (4.54)

We have now verified that all factors of this third order derivative give
smooth integral kernels and is appropriate to be used within the numerical
techniques of the welding method. The numerical implementation of D3F is
similar to the methods for the D2F and the discretisation of K to Kab. The
obvious limiting factor to this method is in the quality of the derivatives of
χ−1. If one is able to generate analytic derivatives of χ−1 up to fourth order
which are smooth throughout the range, then this should allow for sensible
data to be produced.
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We have demonstrated the key ideas required for numerical implemen-
tation of the extended welding method as well as the analytic techniques
used to further assist the code. At this stage one is able to use the welding
method to improve the calculation of the Schwarzian derivative in accuracy
and stability.
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Implementation of the welding method: Part 2

Following the last chapter, a further method of analytic assistance is demon-
strated to aid the numerical welding method. As discussed, the Schwarzian
derivative is prone to instability due to the requirement for third order
derivatives of the welding solution in order to calculate it. We have used the
welding problem to generate analytic derivative values to ameliorate this
issue but we also can aid the data going into the Schwarzian calculation step.
We wish to develop a method, which we call “pre-processing”, that allows us
to maintain good numerical stability for larger values of t by appropriately
adjusting the data as it enters the numerical solvers.

5.1 pre-processing to facilitate longer term numerical
stability

Recall that in the welding problem, given some ρ ∈ Diff+(S) we wish to find
w± such that

w+(z) = w− ◦ ρ(z) z ∈ S, (5.1)

with w+ holomorphic in ∆+ = {z ∈ C||z| < 1} and w− holomorphic in
∆− = {z ∈ C||z| > 1}, just as before.

Consider a modified family of diffeomorphisms

ρ̃ = µ ◦ ρ, (5.2)

65
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for Moebius transforms µ ∈ Diff(S). Suppose also that we have that w̃±

solves the welding problem for ρ̃ then

w̃+ = w̃− ◦ ρ̃ = w̃− ◦ µ ◦ ρ. (5.3)

This means that
w+ = w̃+ (5.4)

and
w− = w̃− ◦ µ (5.5)

solve the welding problem for ρ.

The Schwarzian chain rule gives

(Sw−)(z) = S
(
w̃−(µ(z))

)
= µ′(z)2

(
Sw̃−

)
(µ(z)) (5.6)

allowing us to modify the integrand in (2.22) to correct for the pre-processing
and generate the Fourier transform of the probability distribution as if we
had not performed this change. We begin with the integrand as before∫

S
f(z)Sw−(z)dz =

∫
S
f(z)µ′(z)2

(
Sw̃−

)
(µ(z))dz (5.7)

and use the coordinate change ω = µ(z)∫
S
f(z)Sw−(z)dz =

∫
f(µ−1(ω))µ′(µ−1(ω))

(
Sw̃−

)
(ω)dω. (5.8)

Using the identity µ′(µ−1(ω)) = 1/(µ−1)′(ω) we reach the formula
∫
S
f(z)Sw−(z)dz =

∫
S

f(µ−1(ω))
(µ−1)′(ω)

(
Sw̃−

)
(ω)dω. (5.9)

Generally when using the numerical solver we begin by solving the flow on
the line and then transform to the circle in order to benefit from the methods
detailed in [12]. The equivalent problem on R is given via Θ(g) → T (f),
g ∈ C∞(R) and f ∈ C∞(T) where the test functions are related using the
transformation rule

f(z) = C ′
(
C−1(z)

)
g
(
C−1(z)

)
, (5.10)
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C and its inverse denoting Cayley transforms (1.15). We can then relate
the flow ψt on the line to the flow ρt on the circle

ψt = C−1 ◦ ρt ◦ C (5.11)

and ψt obeys conditions equivalent to the rules for the flow on the circle

∂tψt(u) = g(ψt(u)), ψ0(u) = u. (5.12)

Using these properties we can determine ρt from the smearing function on
the line by solving (5.12) and inverting (5.11)

ρt(z) =
(
C ◦ ψt ◦ C−1

)
(z). (5.13)

Expressed in terms of θ we have

ρt
(
eiθ
)

= eiχt(θ), (5.14)

which can therefore be related to the flow on the line

eiχt(θ) = C
(
ψt
(
C−1

(
eiθ
)))

. (5.15)

We can use the definition C−1(eiθ) = tan (θ/2) to rewrite this expression in
terms of the angular flow χt(θ) = 2 tan−1(ψt(tan (θ/2))). The solution to
the welding problem requires knowledge of the inverse of the angular flow
χ−1
t and the derivative of the angular flow

(
χ−1
t

)′
. We can simply find the

inverse of the angular flow as

χ−1
t (θ) = 2 tan−1

(
ψ−1
t

(
tan

(
θ

2

)))
. (5.16)

One should note that the inverse of the flow in either case is given by
replacing the parameter t by −t. The same can not be said in generality for
pre-processed flows. Calculation of the derivatives of the flows (ψt)′ can be
done by recasting (5.12) as in (2.11)

G(u) −G(ψ−t(u)) = −t. (5.17)
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From this point we take a spatial derivative and we can rearrange to find

(ψ−t)′ (u) = g (ψ−t(u))
g(u) , (5.18)

which can be used in

(χ−t)′ (θ) =
(ψ−t)′ (tan

(
θ
2

)
)

cos
(
θ
2

)2 (
1 + ψ−t(tan

(
θ
2

)
)2
) , (5.19)

following from (5.16), to give the general result

(χ−t)′ (θ) =
g
(
ψ−t

(
tan

(
θ
2

)))
g(tan

(
θ
2

)
)

1
cos

(
θ
2

)2 (
1 + ψ−t(tan

(
θ
2

)
)2
) . (5.20)

This shows that provided we have the test function g, the flow ψt and
derivative g′ we don’t require numerical derivatives of the flow on the circle
χ−t.

5.1.1 Pre-processing for the Gauss, Lorentz and Gauss-Lorentz test
functions

With the general framework constructed we can calculate the specific impact
of choosing one such pre-processing to aid in the calculation of the Fourier
transform of the probability distribution incurred through using a Gaussian,
Lorentzian or combination test function. Let ψt be the flow on the line as
before induced by a test function g related via the flow equation (5.12). We
define a modified flow ψ̃t via

ψ̃t(u) = ψt(u) − ψt(0). (5.21)

This modified flow has the property ψ̃t(0) = 0 because we wish to keep the
peak centred at 0. The issue without this pre-processing is that after enough
evolution of the parameter t the peak moves outside of the numerical grid.
We have the relationship (5.13) from which we will extend and define

ρ̃t(z) =
(
C ◦ ψ̃t ◦ C−1

)
(z) = C

(
C−1(ρt(z)) − ψt(0)

)
= (µt ◦ ρt) (z),

(5.22)
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with µt(ω) = C (C−1(ω) − ψt(0)) a Möbius transform and inverse µ−1
t (ω) =

C (C−1(ω) + ψt(0)). We are able to relate the test function g to the test
function f using this specific pre-processing and substituting in (5.10) to
find

f(µ−1
t (z)) = C ′

(
C−1(µ−1

t (z))
)
g(ψt(0) + C−1(z)), (5.23)

specifying also the derivative of the inverse of the pre-processing
(
µ−1
t

)′
(z) = C ′

(
C−1

(
µ−1
t (z)

)) (
C−1

)′
(z). (5.24)

Using these formulae we can re-write (5.9) as well as changing coordinates
(z = eiθ) to find

∫
S
f(z)Sw−(z)dz = i

∫ π

−π

g(ψt(0) + tan
(
θ
2

)
)

(C−1)′ (eiθ)
(Sw̃−)(eiθ)eiθdθ (5.25)

which upon substitution of the denominator and the Schwarzian chain rule
(2.21) for F (θ) = w̃−(eiθ)

(Sw̃−)(eiθ) =
(1

2 − SF (θ)
)
e−2iθ. (5.26)

We simplify (5.25) to

∫
S
f(z)Sw−(z)dz = −

∫ π

−π
g(ψt(0) + tan

(
θ

2

)
)(1 − 2SF (θ))e−iθ cos

(
θ

2

)2

dθ.

(5.27)
The pre-processed flow on the circle in angular coordinates is given by

χ̃−1
t (θ) = 2 tan−1

(
ψ−t

(
ψt(0) + tan

(
θ

2

)))
, (5.28)

from which we can obtain

(
χ̃−1
t

)′
(θ) =

cos
(
χ̃−1

t (θ)
2

)2

cos
(
θ
2

)2

g(tan
(
χ̃−1

t (θ)
2

)
)

g(ψt(0) + tan
(
θ
2

)
)
. (5.29)
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To take full advantage of this analytic assistance to the numerical method
we take two more derivatives of this function to be used in the code. The
second order derivative is given by

(
χ̃−1
t

)′′
(θ) =

(
χ̃−1
t

)′
(θ)2


L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
2 cos

(
χ̃−1

t (θ)
2

)2 − tan
(
χ̃−1
t (θ)
2

)−

(χ̃−1
t )′(θ)

L
(
g
(
tan

(
θ
2

)))
2 cos

(
θ
2

)2 − tan
(
θ

2

) , (5.30)

using L to denote (in a slight abuse of notation)

L(f(x)) = f ′(x)
f(x) . (5.31)

With terms in (5.30) grouped for simplification we are able to take one
further derivative to arrive at the third derivative of the inverse of the
pre-processed flow solution on the circle. This is a lengthier calculation and
as such is broken up into constituent parts before final reassembly. First we
simply take the angular derivative

(
χ̃−1
t

)′′′
(θ) = 2

(
χ̃−1
t

)′′
(θ)

(
χ̃−1
t

)′
(θ)


L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
2 cos

(
χ̃−1

t (θ)
2

)2 − tan
(
χ̃−1
t (θ)
2

)+

+
(
χ̃−1
t

)′
(θ)2


L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
2 cos

(
χ̃−1

t (θ)
2

)2 − tan
(
χ̃−1
t (θ)
2

)
′

−

−
(
χ̃−1
t

)′′
(θ)

L
(
g
(
ψt(0) + tan

(
θ
2

)))
2 cos

(
θ
2

)2 − tan
(
θ

2

)−

−
(
χ̃−1
t

)′
(θ)

L
(
g
(
ψt(0) + tan

(
θ
2

)))
2 cos

(
θ
2

)2 − tan
(
θ

2

)
′

.

(5.32)
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Looking at the second term we find


L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
2 cos

(
χ̃−1

t (θ)
2

)2 − tan
(
χ̃−1
t (θ)
2

)
′

=
g′′
(

tan
(
χ̃−1

t (θ)
2

))(
χ̃−1
t

)′
(θ)

4g
(

tan
(
χ̃−1

t (θ)
2

))
cos

(
χ̃−1

t (θ)
2

)4 −

−
L2
(
g
(

tan
(
χ̃−1

t (θ)
2

))) (
χ̃−1
t

)′
(θ)

4 cos
(
χ̃−1

t (θ)
2

)4 +

+
L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
tan

(
χ̃−1

t (θ)
2

) (
χ̃−1
t

)′
(θ)

2 cos
(
χ̃−1

t (θ)
2

)2 −

−

(
χ̃−1
t

)′
(θ)

2 cos
(
χ̃−1

t (θ)
2

)2 ,

(5.33)
the fourth term is similar and gives us

L
(
g
(
ψt(0) + tan

(
θ
2

)))
2 cos

(
θ
2

)2 − tan
(
θ

2

)
′

=
tan

(
θ
2

)
L
(
g
(
ψt(0) + tan

(
θ
2

)))
2 cos

(
θ
2

)2 +

+
g′′
(
ψt(0) + tan

(
θ
2

))
4g
(
ψt(0) + tan

(
θ
2

))
cos

(
θ
2

)4 −

−
L
(
g
(
ψt(0) + tan

(
θ
2

)))2

4 cos
(
θ
2

)4 −

− 1
2 cos

(
θ
2

)2 .

(5.34)
Putting the parts together we find the lengthy expression for our third
derivative to be
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(
χ̃−1
t

)′′′
(θ) =

2
(
χ̃−1
t

)′′
(θ)

(
χ̃−1
t

)′
(θ)

(
χ̃−1
t

)′
(θ)


L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
2 cos

(
χ̃−1

t (θ)
2

)2 − tan
(
χ̃−1
t (θ)
2

)+

(
χ̃−1
t

)′
(θ)2(

g′′
(

tan
(
χ̃−1

t (θ)
2

)) (
χ̃−1
t

)′
(θ)

4g
(

tan
(
χ̃−1

t (θ)
2

))
cos

(
χ̃−1

t (θ)
2

)4 −

L2
(
g
(

tan
(
χ̃−1

t (θ)
2

))) (
χ̃−1
t

)′
(θ)

4 cos
(
χ̃−1

t (θ)
2

)4 +

L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
tan

(
χ̃−1

t (θ)
2

) (
χ̃−1
t

)′
(θ)

2 cos
(
χ̃−1

t (θ)
2

)2 −

(
χ̃−1
t

)′
(θ)

2 cos
(
χ̃−1

t (θ)
2

)2 )−

(
χ̃−1
t

)′′
(θ)

L
(
g
(
ψt(0) + tan

(
θ
2

)))
2 cos

(
θ
2

)2 − tan
(
θ

2

)−

−
(
χ̃−1
t

)′
(θ)

tan
(
θ
2

)
L
(
g
(
ψt(0) + tan

(
θ
2

)))
2 cos

(
θ
2

)2 +
g′′
(
ψt(0) + tan

(
θ
2

))
4g
(
ψt(0) + tan

(
θ
2

))
cos

(
θ
2

)4 −

−
L
(
g
(
ψt(0) + tan

(
θ
2

)))2

4 cos
(
θ
2

)4 − 1
2 cos

(
θ
2

)2

 .
(5.35)
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Using (5.30) we can further manipulate (5.35) to find our third derivative

(
χ̃−1
t

)′′′
(θ) =

(
χ̃−1
t

)′′
(θ)

(
χ̃−1
t

)′
(θ)


L
(
g
(

tan
(
χ̃−1

t (θ)
2

)))
2 cos

(
χ̃−1

t (θ)
2

)2 − tan
(
χ̃−1
t (θ)
2

)
+

(
χ̃−1
t

)′′
(θ)2(

χ̃−1
t

)′
(θ)

+

+
(
χ̃−1
t

)′
(θ)2

sec
(
χ̃−1

t (θ)
2

)2

2

(
tan

(
χ̃−1
t (θ)
2

)
L

(
g

(
tan

(
χ̃−1
t (θ)
2

)))(
χ̃−1
t

)′
(θ)−(

χ̃−1
t

)′
(θ)+

sec
(

χ̃−1
t

(θ)
2

)2

2

(
χ̃−1
t

)′
(θ)

g′′

(
tan
(

χ̃−1
t

(θ)
2

))
g

(
tan
(

χ̃−1
t

(θ)
2

)) −

sec
(
χ̃−1

t (θ)
2

)2

2 L2
(
g

(
tan

(
χ̃−1
t (θ)
2

)))(
χ̃−1
t

)′
(θ)

−
(
χ̃−1
t

)′
(θ)

sec
(
θ
2

)2

2

(
tan

(
θ

2

)
L

(
g

(
ψt(0) + tan

(
θ

2

)))
+

sec
(
θ
2

)2

2
g′′
(
ψt(0) + tan

(
θ
2

))
g
(
ψt(0) + tan

(
θ
2

)) −

sec
(
θ
2

)2

2 L2
(
g

(
ψt(0) + tan

(
θ

2

)))
− 1

 .
(5.36)

5.1.2 Pre-processing for the plateau test function

One pre-processing method will not suit all test functions, they have to be
tailored specifically for the properties of the test function itself. We wish
to test the effects of varying plateau length and switch on length of the
averaging function on the probability distribution. As a basis we choose the
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switch on function

S(x) = 1
β(4, 4)

(
−1

7x
7 + 1

2x
6 − 3

5x
5 + 1

4x
4
)
, (5.37)

using β to denote the Beta function which we define in terms of Γ functions

β(x, y) = Γ(x)Γ(y)
Γ(x+ y) . (5.38)

This switch on function is used as well as a shifted and mirrored equivalent
which forms the switch off function and these are connected by a constant
plateau. Using the β function ensures that the switch on and switch off
functions peak at 1 and then are connected by a constant value of 1 until the
switch off portion occurs. Numerically this is implemented using Heaviside
functions and the test function is given by

g(x) = (ϑ (x) − ϑ (x− s))S
(
x

s

)
+ϑ (x− s) − ϑ (x− τ − s)

+ (ϑ (x− τ − s) − ϑ (x− τ − 2 s))S
(

−x− τ − 2 s
s

) (5.39)

defining s as the switch on length, τ as the plateau length and using ϑ to
denote the Heaviside function. We plot (5.39) centered around the origin in
Fig. 5.1. We choose the pre-processing for the plateau case to be

ψ̃t(u) = (1 + t)ψt(u), ψ̃0(u) = ψ0(u) = u. (5.40)

Following a similar pattern of analysis as in the Gauss-Lorentz case we
identify comparable formulae to calculate the transformed probability distri-
bution. We define our pre-processing

µt(ω) = C
(
(1 + t)C−1(ω)

)
(5.41)

and its inverse
µ−1
t (ω) = C

(
C−1(ω)
1 + t

)
. (5.42)

Once more calculating the derivative of this pre-processing to use in the
transformed integral(

µ−1
t

)′
(z) = C ′

(
C−1

(
µ−1
t (z)

))(C−1(z)
1 + t

)′

(5.43)
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Figure 5.1: Plot of (5.39) with a switch on length of 1, a plateau length of 1
and switch off length equal to 1 as well.
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and the test function relationship can be derived in this case once more
using (5.10)

f(µ−1
t (z)) = C ′

(
C−1

(
µ−1
t (z)

))
g

(
C−1(z)
1 + t

)
. (5.44)

With these formulae we are now able to calculate the specific method of
correcting for the use of pre-processing in our integrand. We use the same
change of coordinates as before giving
∫
S
f(z)Sw−(z)dz = −

∫ π

−π
(1 + t)g

tan
(
θ
2

)
1 + t

 (1 − 2SF (θ))e−iθ cos
(
θ

2

)2

dθ.

(5.45)
The inverse angular flow can be found in a similar way as before as well

χ̃−1
t (θ) = 2 tan−1

ψ−t

tan
(
θ
2

)
1 + t

 (5.46)

which we differentiate

(
χ̃−1
t

)′
(θ) =

(ψ−t)′
(

tan ( θ
2)

1+t

)(
1 + tan

(
θ
2

)2
)

(1 + t)(1 + ψ−t

(
tan ( θ

2)
1+t

)2
)

(5.47)

and simplify using (5.18) to find

(
χ̃−1
t

)′
(θ) =

g(ψ−t

(
tan ( θ

2)
1+t

)
g
(

tan ( θ
2)

1+t

) 1

(1 + t) cos
(
θ
2

)2
(

1 + ψ−t

(
tan ( θ

2)
1+t

)2) . (5.48)

We calculate one further derivative to fully take advantage of the values
that the code is able to calculate analytically. Differentiating (5.48) and
substituting ϕ = θ/2 and ξ = tan (ϕ)/(1 + t) gives(

χ̃−1
t

)′′
(θ) = g′(ψ(ξ))(ψ−t)′(ξ)

(1 + t)2g(ξ) cos (ϕ)4 (1 + ψ−t(ϕ)2)
−

g(ψ−t(ξ))g′(ξ)
g(ξ)2(1 + t)2 cos (ϕ)4(1 + ψ−t(ξ)2)

+ g(ψ−t(ξ)) sin (ϕ)
g(ξ)(1 + t) cos (ϕ)(1 + ψ−t(ξ)2)−

2g(ψ−t(ξ))ψ−t(ξ)(ψ−t)′(ξ)
g(ξ)(1 + t)2 cos (ϕ)4(1 + ψ−t(ξ)2)2

(5.49)
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which we will simplify to remove the derivatives of the flow solution on the
line and factorise using the same simplifying substitutions as before to find
(
χ̃−1
t

)′′
(θ) = g′(ψ−t(ξ))

g(ξ)
1

(1 + t)2 cos (ϕ)4(1 + ψ−t(ξ)2)

(
g(ψ−t(ξ))
g(ξ) −

g′(ξ)
g(ξ) + sin (ϕ) cos (ϕ)(1 + t) − 2g(ψ−t(ξ))ψ−t(ξ)

g(ξ)(1 + ψ−t(ξ)2)

)
.

(5.50)

We can in fact simplify this once more by using the definition (5.48) as our
pre-factor to our enclosed terms

(
χ̃−1
t

)′′
(θ) =

(
χ̃−1
t

)′
(θ)

cos (ϕ)2

(
g(ψ−t(ξ))
g(ξ) − g′(ξ)

g(ξ) +

sin (ϕ) cos (ϕ)(1 + t) − 2g(ψ−t(ξ))ψ−t(ξ)
g(ξ)(1 + ψ−t(ξ)2)

)
.

(5.51)

These derivative equations in the pre-processed methods allow us to vastly
reduce the required amount of numerically calculated derivatives which have
been fraught with potential issues of large numerical error.

The calculation of the analytic formulas for
(
χ−1
t

)′
and

(
χ−1
t

)′′
will im-

prove the accuracy of the code but we still require the code to calculate
ψ−t numerically to be able to generate the modified inverse flow on the
circle χ̃−1

t . If the data from the flow solver is poorly behaved this inaccuracy
will obviously continue to be used throughout the code. One such area of
difficulty is when Maple is looking outside of the support of the test function.
Maple has difficulty identifying that (5.48) does not diverge due to the fact
that the division of the test function g is at a point outside of its support.
Analytically,

(
χ−1
t

)′
and

(
χ−1
t

)′′
are well behaved over the whole range of

the test function. In the areas of numerical difficulty these terms either tend
to a constant or vanish completely. This means that the code requires extra
logic to handle these regions sensibly and correctly.

The issues in using the analytic values are outweighed by the benefits.
To rely only on numerical derivatives incurs problems in any case of rapid
(perhaps erroneous) rates of change of the data. These problematic areas
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need specific numerical assistance so moving to the analytic formulas for(
χ−1
t

)′
and

(
χ−1
t

)′′
where guidance is still needed is no problem. In the

latter case of moving to analytic formulae however the erroneous points are
minimised and one only needs to concern themselves with divergence.

In this chapter we have seen how pre-processing offers a method to
improve the behaviour of the flow solutions being used to calculate the
remainder of the welding problem. The pre-processing requires the user to
choose the method of pre-processing to change the behaviour as is needed.
We demonstrated how one would calculate derivatives of χ−1

t analytically
to help the numerical handing of the data. It was also discussed that
these analytic formulae can incur issues when blindly used in numerical
calculations. In most cases, these issues can be fixed by simply understanding
why the numerical approach is failing and then substituting the correct
limiting value instead.
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Numerical verification of the completed welding code

We have developed a numerical method of welding which we have tested
against analytic results given in [12]. Following this, we generated methods
to improve the numerical implementation and in this chapter we use the
welding method for two known analytic results which we can compare against
in each case. We will then use the welding method for test functions which
we have no data for.

We will first test the code against two test functions, a normalised
Gaussian

g(u) = e−u2

√
π

(6.1)

and Lorenztian (1.4) (setting b = 1 and k = 1/π to normalise) to demon-
strate the accuracy of the code.

The Gaussian test function will mean that the probability distribution
is given by the shifted Gamma distribution (1.3) with parameters

• α = c/24

• β = π

• σ = α/β

79
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Figure 6.1: Comparison of the real part of the numerically computed welding
data (points) and the shifted Gamma distribution (solid curve) (1.3) for
a Gaussian test function. 750 angular points were used, 10 steps in t and
c = 1.

and is compared to the numerically computed data from the welding code
in Fig. 6.1.

For a more quantative comparison between the welding code and the
analytic form, we have a plot of the percentage difference between the data
points at concurrent steps in parameter t in Fig. 6.2 which highlights the
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Figure 6.2: Plot demonstrating the percentage difference between the ana-
lytic and numerically calculated points in Fig. 6.1

prevailing features of the numerical welding method. The first of which is
that it is possible to get excellent agreement with analytic data. The largest
value of percentage deviation is equal to approximately 0.01316%. This
agreement has been achieved using 750 angular grid points and 10 steps in
the parameter t.

The other key feature demonstrated by Figs. 6.1, 6.2 is that the error
increases rapidly as a function of t. This increase in error, as far as this
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project has found, is unavoidable past a certain value of t. This value of t
depends on the test function and ameliorating methods used within the code.

Looking now at the Lorentzian test function (1.4), we have the parameters

• α = c/72

• β = 4π/3

• σ = α/β

for use in the shifted Gamma distribution (1.3). Once more we use the
welding code to compare against the analytic probability distribution and
plot them against each other in Fig. 6.3 as another verification of the welding
method.

Once more we see a deviation from the analytic values and produce
another percentage deviation plot given in Fig. 6.4 to more quantitatively
discuss them.

A comparison of the two plots given in Figures [6.2,6.4] demonstrates
the consistent features of the numerical welding method. In both cases we
observe good agreement between the analytic values and the numerically
calculated data. More importantly the rate of increase of error highlights
the fundamental problem of the welding method. This issue is that it can
only be used and trusted to a certain value of the parameter t.

6.1 analysis of the gaussian and lorentzian test function via
the welding method

After completion of the generation of the welding code one item of great
interest is the fact that all known test functions produced a shifted Gamma
distribution for the probability distribution.



83

Figure 6.3: Comparison of the real part of the numerically computed welding
data (points) and the shifted Gamma distribution (solid curve) (1.3) for a
Lorentzian test function. 750 angular points were used, 10 steps in t and
c = 1.
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Figure 6.4: Plot demonstrating the percentage difference between the ana-
lytic and numerically calculated points in Fig. 6.3
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Granted there were only a handful of infinite families of test functions
that could, in closed-form, produce a solution to either the welding method or
the moments method but the fact remained that the probability distribution
for all known cases of positive test functions was described by a shifted
Gamma distribution. We are interested in the behaviour of the probability
distribution associated with using a test function which multiplies a Gaussian
and Lorentzian function

f(u) = N
e−u2

1 + u2 (6.2)

which we call the Gauss-Lorentz test function. We define N to ensure that
f(u) is normalised when integrated along the real line. The welding code
was used to calculate the Fourier transform of the probability distribution
associated with the Gauss-Lorentz test function. This calculation can be
represented in the form of the complex plot given by Figure 6.5 and one
can see the close agreement between the Fourier transform of the shifted
Gamma distribution given by

F(P )(ω) =
(

1 − iω

β

)−α

e−iωσ (6.3)

closely related to (3.17).

The parameters α, β and σ are all related to the test function used. We
are able to calculate σ due to it being the upper bound for the quantum
energy inequality (1.16). The formula for calculating this quantum energy
inequality bound is given by

σ = c

12π

∫ ∞

−∞

(
d

du

√
f(u)

)2

du, (6.4)

with the differential of the square root of the test function defined as

d

du

√
f(u) =

f
′(u)/2

√
f(u) if f(u) ̸= 0

0 if f(u) = 0
. (6.5)

We also choose α = c/24 and β being given as the ratio of α and σ

β = α

σ
. (6.6)
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We can obtain α from c and β can be obtained from c and f . If we have
chosen our test function we are able to use the quantum energy inequality
bound (6.4) to at least numerically calculate σ to arbitrary precision.

Using these parameters we are able to compare the plots of the Fourier
transformed probability distribution against the numerically calculated
equivalent from the welding method to generate Fig. 6.5.

Clearly there is a good agreement between the curves which tells us
that at least in a large part the Gauss-Lorentz test function obeys a shifted
Gamma distribution. However, once more due to the fact that the distribu-
tion can only be numerically computed to an upper value of the parameter
t = 10 it leaves the question as to whether we are in a regime of t to be able
to identify the potential deviation of the Fourier transformed probability dis-
tribution from the shifted Gamma distribution with the expected parameters.

As t begins at 0 the plot begins at 1, corresponding to the total integral
of the probability distribution being equal to 1. As t increases the spiral
tends towards 0 which indicates a decaying transform. As the plot progresses
the analytic shifted Gamma distribution deviates from the centre of the data
points to the edge of the point markers. This means that the true curve
is likely governed by something that looks a lot like the shifted Gamma
it is plotted against but with another influence which we wish to better
understand. If we were able to run the welding code to a higher value of
t we would potentially be able to get a better understanding of how the
probability distribution behaves when plotted against the shifted Gamma.

With the welding code as it is, one would not likely be able to generate
data to a high enough value of t to fully understand the Fourier distribution
generated by the Gauss-Lorentz test function. It is at this stage that we
will proceed to analyse the Gauss-Lorentz test function using the method
of moments. This analysis will enlighten us as to how the probability
distribution behaves for both large and small t.
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6.2 using the welding code to understand the effect of a
plateau on the probability distribution

Using the test function (5.39) we wish to understand the effect of varying
switch on lengths and plateau lengths of the test function on the associated
probability distribution. It is reasonable to ask whether the effect of chang-
ing the plateau length will have any effect on the probability distribution.

In the first instance this computation was performed using the pre-
processing outlined in subsection 5.1.2. It was found however that due
to the specific pre-processing used in this case that the plateau lengths
needed to be of large values to avoid singular terms appearing in the cal-
culations of

(
χ−1
t

)′
and subsequent derivatives. Due to this, two plateau

lengths were chosen, τ = 2000 and τ = 200000 which produced smooth and
sensible data as can be seen in the complex plot comparison given by Fig. 6.6.

The extent of the match was at first encouraging, but it was found that
due to the very large plateau lengths when the test function is mapped to the
circle the two mapped plateaus would require a much higher mesh density to
be able to differentiate between them. This means that the pre-processing
used in this case did not turn out to be the correct one to use to improve
the quality of data.

This was surprising following the success of the pre-processing method
in the calculation of the Gauss-Lorentz case but we opted instead to remove
the pre-processing portion of the code. The other improvements to the code
were more than enough to return smooth data and a range of tests were
conducted varying both plateau lengths and plateau switch on.

Immediately the improvement of the code was apparent. The code did
not require large plateaus in order to produce smooth data and allowed us
to analyse for small plateau values. This is demonstrated in Fig. 6.7 where
the switch on time was held constant for 3 cases and only the plateau value
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Figure 6.6: Complex plot comparing the Fourier transform of the probability
distributions generated by using the test function (5.39) and the welding
method to generate two Fourier transformed probability distributions one
for a plateau length of 2000 (red) and one for a plateau length of 200000
(black). Both data sets used the pre-processing method for a central charge
c = 1, 1250 angular steps and 100 steps in the diffeomorphism parameter t
up to a maximum tmax = 1. The plot demonstrates both Fourier transforms
begin at 1 and then decay, note that despite the plateau differences the
match in position for the two sets of data.
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Figure 6.7: Plot of the real part of the Fourier transforms of the probability
distributions calculated by the method of welding for plateau test functions
of varying plateau lengths. Plateau length 1 is the black plot, 2 is the blue
and 20 is the red. In each calculation, 1250 angular steps were used as well
as 100 steps in t to tmax = 1 and c = 1
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was changed. It demonstrates a clear dependence of the Fourier transform
of the probability distribution to the plateau which implies that a shorter
plateau creates a more spread out probability distribution when inverted
back from Fourier space. It can also be seen that the larger the plateau the
slower the decay in Fourier space which corresponds to a much more precise
peak location when transformed into the probability.

An identical analysis was performed for the case of a variable switch on
time and is shown in Fig. 6.8. Once more we can see a clear dependence of
the Fourier distribution to the length of switch on time of the test function.
The shorter the switch on time incurs a faster decay in Fourier space which
corresponds to a wider peak in the probability distribution. The longer
switch on times clearly decay far slower which means that the probability
distribution is going to be have a more localised peak.

These novel results demonstrate that the variance in parameters in a
plateau test function do affect the probability distribution of the energy
density they are smeared against. It was unfortunate that in this case the
pre-processing did not improve the data. This is not an admonishment of
the method as it made a large difference in the case of the Gauss-Lorentz
calculation. It highlights the vital importance in the specific choice of pre-
processing.

We have seen how the welding code accurately matches the existing
analytic results in the comparisons of the Gaussian and Lorentzian data
sets. We understand that the welding code fundamentally cannot produce
data to an arbitrary t.

Pre-processing as a method has demonstrated its strengths in calculating
the probability distribution associated to a Gauss-Lorentz test function.
Using it produced clear, well behaved data throughout the range and intro-
duced the possibility of deviation from a shifted Gamma distribution.
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Figure 6.8: Plot of the real part of the Fourier transforms of the probability
distributions calculated by the method of welding for plateau test functions
of varying switch on and switch off lengths. The switch on lengths are 1 for
the green curve, 2 for the black and 5 is the purple curve. In each calculation,
1250 angular steps were used as well as 100 steps in t to tmax = 1 and c = 1
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It was also highlighted that the importance of choosing the correct
method of pre-processing can severely limit the welding method as seen in
the first calculation of the plateau associated probability distributions.

Lastly the other existing analytic aids to the numerical method of welding
are sufficient on their own depending on the test function used. This was
clearly seen in the comparisons of the plateau data after removal of pre-
processing.
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Analysis of the Gauss-Lorentz probability distribution
using the method of moments

Using the method of moments we can glean information regarding the prob-
ability distribution resulting from a product of Gaussian and Lorentzian
test functions. Following the potential deviation from shifted Gamma dis-
tribution which arose in the previous chapter, we wish to see if we can
corroborate this using the method of moments.

The test function which acts as initial data for (3.7) is given by

f(u) = N
e−u2

1 + u2 , (7.1)

normalised by N . We need to find the generalised test function to use
with this method in terms of λ. In unpublished work by my supervisor (C.
Fewster), this is done by making an ansatz gλ = fa(λ) in (3.7). From this we
are able to construct two simultaneous equations which we are able to use
to generate an a dependent coefficient, denoted by B(a), and a relationship
between a and λ. By using computer algebra to extract equations for B(a)
and a(λ), subject to B(1) = exp (−1/2) and a(0) = 1, it was found that
these equations can be solved to obtain for the test function

fa(u) = B(a) e− u2
2

a2 + u2 (7.2)

94
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where B(a) is given by

B(a) =
√

2
2

(
ae− a2

2
√

2 +
√
π (a− 1) (a+ 1)

(
erf

(
a
√

2
2

)
− 1

))
. (7.3)

Taking the limit a → 1 returns B(1) = e− 1
2 and reduces (7.2) to its simplest

form. Notice that we have intentionally chosen a different subscript to (3.7).
Understanding the coordinate relationship λ → a comes from one of the two
simultaneous equations discussed in the context of calculating (7.3). We
can draw a relationship between the two coordinates by understanding the
effect of coordinate changing the differential equation (3.22). This gives a
differential equation which allows us to infer the coordinate relationship
given by

λ(a) = (−2 a2 + 2)
√
π(

ae− a2
2

√
2 +

√
π (a− 1) (a+ 1)

(
erf

(
a

√
2

2

)
− 1

)) , (7.4)

and clearly, taking the limit a → 1 returns λ → 0 giving g0 = g as is needed
to solve the flow equation for the method of moments. This coordinate rela-
tion is plotted in Fig 7.1 and demonstrates the key regions and behaviours
important in this analysis. At a → 0+ we find λ → 2 smoothly, as we
increase a to approach the axis intersection at a = 1 we have λ = 0 which is
the initial position we require to solve the flow equation (3.7). As a increases
we see that λ(a) → −∞ rapidly in a.

This behaviour of (7.4) is most obviously seen if one takes series expan-
sions about the points a = 0 and a → ∞. In the case of a = 0, one finds
the expansion

λ(a) ∼ (2 − 4
√

2
3

√
π
a3 − 6

√
2

5
√
π
a5 +O

(
a6
)
), (7.5)

clearly demonstrating the smooth approach to λ(a) → 2. If one does a
similar analysis for the case a → ∞ one has

λ(a) ∼
(

−
√
π

√
2a3

2 −
√
π

√
2a

2 +O
(
a−1

))√
ea2 (7.6)
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Figure 7.1: Plot of (7.4) for a ∈ [0, 2].
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which explains how the function grows in the large a limit.

Having found the correct general test function we can progress using
the moments method (detailed in the example at the end of chapter 3)
by calculating the Fourier transform of fa to calculate the second moment
(3.15) which we will denote by G2(a).

Due to (7.2) being even in the Fourier transform variable we can instead
calculate twice the cosine transform which via computer algebra gives us
the following expression in k

G2(a) = Y(a)
∫ ∞

0
k3
(
eak erfc

(
a+ k√

2

)
+ e−ak erfc

(
a− k√

2

))2

dk, (7.7)

where the function Y is given by

Y(a) =

(
ae− a2

2
√

2 +
√
π (a− 1) (a+ 1)

(
erf

(
a

√
2

2

)
− 1

))2
ea

2

384a2 . (7.8)

We wish to understand as much of the probability distribution analytically
as possible, but we are unable to evaluate G2(a) in closed form and follow
the prescription to generate an analytic probability across the support of the
distribution. Instead, we calculate asymptotic contributions of (7.7) for both
a → 0 and a → ∞ which will correspond in λ to values near 2 and λ → −∞
as seen in Fig 7.1. The remainder of the range will be understood numerically
which we will compare against asymptotic formulae describing these key
regions in an attempt to corroborate the findings. Before proceeding we
re-define our second moment into two formulae via

G2(a) = Y(a)K(a), (7.9)

having grouped the integral term into K(a). We will use this formula to
calculate separate asymptotic formulae for Y and K in the two regimes
a → 0 and a → ∞. Before conducting the asymptotic analysis we will
describe the numerical methods used to calculate the bulk contribution to
the probability distribution.
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7.1 numerically implementing the moments method

Numerically implementing the moments method is rather simple in this
case. Comparing it to the more general method of welding implementation
is unfair. This is because we are only looking to understand the moments
method in the case of the Gauss-Lorentz test function (7.2). The challenge
of the moments method is finding a λ-dependent test function which solves
(3.7). In the case of Gauss-Lorentz this has been done and G2 has been
found as a function of a given by (7.7).

From (7.7) we wish to generate G2(a(λ)) which will require us to invert
the coordinate relation (7.4). This is done numerically using the Python
library “pynverse”.

After calculating a numerically coordinate changed G2(λ), we are able
to then calculate W by numerically integrating G2(λ) as described in (3.6).
This integration is done using the inbuilt quadrature method of the “mp-
math” Python library.

At this stage we can calculate M via (3.5) which returns the moment
generating function. While performing this numerical implementation we
noticed that near the singularity or for large negative values of λ the nu-
merics were very poorly behaved. This demonstrates the importance of the
asymptotic methods that we are going to develop.

From calculating M we need to invert the Laplace transform (3.16) to
calculate the probability distribution and once more this is done numerically.
We employ the “mpmath” inbuilt numerical Laplace transform opting to
use the Gaver-Stehfest algorithm.

The Gaver-Stehfest algorithm [28] aims to approximate the Laplace
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inversion f of the function F by a sequence of functions

fn(x) = log (2)x−1
2n∑
k=1

ak(n)F (k log (2)x−1), (7.10)

requiring n ≥ 1 and x > 0 and the coefficients a(k) are given by

ak(n) = (−1)n+k

n!

min(k,n)∑
j=(k+1)/2

jn+1
(
n

j

)(
2j
j

)(
j

k − j

)
, (7.11)

enforcing 1 ≤ k ≤ 2n. The method requires high precision to avoid the
coefficients growing too large and not being able to accurately control the
approximation. After calculating the numerical Laplace inverse of M we
have generated the approximation to the bulk values of the probability
distribution. These values are used to compare against the asymptotics
calculated in later subsections and generate a measure of the accuracy of
the asymptotic series.

7.2 asymptotic analysis of the second moment a → 0 limit

The calculation of the asymptotic series near zero or approaching infinity is
simple in the case of Y and we are able to generate as many terms in the
series as we would need. Using Maple this is given by

Y(a) ∼ π

384a2 − π

384 +
√

2π
288 a− π

768a
2 −

√
2π

2880a
3 + O

(
a4
)

(7.12)

which clearly possesses a singularity as we approach a → 0. Calculation
of K is done as follows. We begin by splitting the function into K(a) =
K1(a) + K2(a) + K3(a), where

• K1(a) =
∫∞

0 k3e2ak erfc
(
a+k√

2

)2
dk

• K2(a) =
∫∞

0 k3e−2ak erfc
(
a−k√

2

)2
dk

• K3(a) =
∫∞

0 2k3 erfc
(
a+k√

2

)
erfc

(
a−k√

2

)
dk.

We can perform a numerical analysis on these terms to determine which
is going to contribute most to the singularity in K(a) near a → 0. To
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differentiate between asymptotic cases we introduce the notation K0(a) to
discuss K(a) in the small a limit and K∞(a) for large a. We find that
K1,0 and K3,0 are both of order 1 but K2,0 diverges. With this foresight
we begin our analysis of K0 by looking at K2,0 first using the identity
erfc (x) = 2 − erfc (−x)

∫ ∞

0
k3e−2ak erfc

(
a− k√

2

)2

dk =
∫ ∞

0
k3e−2ak

(
2 − erfc

(
k − a√

2

))2

dk (7.13)

and upon expanding the square and then separating terms we find

K2,0(a) =
∫ ∞

0
k3e−2ak erfc

(
a− k√

2

)2

dk =
∫ ∞

0
4k3e−2akdk−

∫ ∞

0
4k3e−2ak erfc

(
k − a√

2

)
dk +

∫ ∞

0
k3e−2ak erfc

(
k − a√

2

)2

dk.

(7.14)

The first and second terms can be integrated in closed form, but we keep
the second represented as an integral for brevity, giving

K2,0(a) = 3
2a4 −

∫ ∞

0
4k3e−2ak erfc

(
k − a√

2

)
+

∫ ∞

0
k3e−2ak erfc

(
k − a√

2

)2

dk.

(7.15)

This shows a clear singularity at a → 0 from the first term whereas the
second and third term are both continuous as a → 0. At this point we will
regroup our K, subtract off the singular term and then take the limit a → 0
to find

lim
a→0+

(
K0(a) − 3

2a4

)
=
∫ ∞

0
k3 erfc

(
k√
2

)2

dk + lim
a→0+

(
K2,0(a) − 3

2a4

)
+

∫ ∞

0
2k3 erfc

(
k√
2

)
erfc

(
−k√

2

)
dk.

(7.16)
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Upon substitution of K2(a) and the use of the identity erfc (−x) = 2−erfc (x)
once more we find

lim
a→0+

(
K0(a) − 3

2a4

)
=
∫ ∞

0
k3 erfc

(
k√
2

)2

dk −
∫ ∞

0
4k3 erfc

(
k√
2

)
+

+
∫ ∞

0
k3 erfc

(
k√
2

)2

dk +
∫ ∞

0
4k3 erfc

(
k√
2

)
dk

−
∫ ∞

0
2k3 erfc

(
k√
2

)2

dk = 0.

(7.17)

This demonstrates that we have removed all of the singular parts in K0(a)
and that there is no constant term. Now we proceed by differentiating
under the integral and take another limit to calculate the subdominant
contributions. This is the same as taking a Taylor series under the integral.

If we calculate this differential and take the appropriate limit using
computer algebra in Maple we find

[
d

da

(
K0(a) − 3

2a4

)]∣∣∣∣∣
a=0

= −16
√

2
5

√
π

(7.18)

and performing the same analysis at the second order gives
[
d2

da2

(
K0(a) − 3

2a4

)]∣∣∣∣∣
a=0

= 40
3π − 8, (7.19)

allowing us to calculate

K0(a) ∼ 3
2a4 − 16

√
2

5
√
π
a+ 1

2

( 40
3π − 8

)
a2 + O(a3). (7.20)

This expansion combined with (7.12) generates

G2,0(a) ∼ π

256 a6 − π

256 a4 +
√

2
√
π

192 a3 −

π

512 a2 − 17
√

2
√
π

1920 a − 31 π
1536 + 11

288 + O(a).
(7.21)
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7.2.1 Asymptotic analysis of the second moment in the a → ∞ limit

Once more we begin with Y(a) (this time we denote with a subscript ∞)
because Maple can generate as many terms in this expansion as we need.
We find

Y∞(a) ∼ 1
48 a4 − 1

12 a6 + 11
24a8 +O

(
a−10

)
(7.22)

clearly converging as a grows. We now look at K∞(a) for large a. First we
will expand out the square

K∞(a) =
∫ ∞

0
k3

e2ak erfc
(
a+ k√

2

)2

+ 2 erfc
(
a+ k√

2

)
erfc

(
a− k√

2

)
+

+e−2ak erfc
(
a− k√

2

)2
 dk

(7.23)
and remind ourselves of the asymptotic expansion of the complementary
error function for large x

erfc (x) ∼ 1
ex2

(
1√
πx

− 1
2

√
πx3 + 3

4
√
πx5 − 15

8
√
πx7 +O

(
x−9

))
. (7.24)

We consider the first four terms of this and using computer algebra we
substitute this directly into (7.23). Upon substitution we perform another
asymptotic expansion for large a and calculate the integrand Kintegrand(a)
of (7.23) to be

Kintegrand(a) ∼ 1
ea2

(
8 e

−k2
k3

π a2 + 8 (2 k2 − 2) k3e−k2

π a4

+8 (3 k4 − 14 k2 + 7) k3e−k2

π a6

+8 (4 k6 − 44 k4 + 108 k2 − 36) k3e−k2

π a8 +O
(
a−10

))
.

(7.25)

We integrate (7.25) to calculate (7.23) using computer algebra and find

K∞(a) ∼ 1
ea2

(
4 1
π a2 + 8 1

π a4 − 12 1
π a6 + 48 1

π a8

)
+ O(e−a2

/a10). (7.26)
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We then combine (7.22) and (7.26) to find

G2,∞(a) ∼
( 1

12a6 − 1
6a8 + 11

12πa10

)
e−a2 + O

(
e−a2

a12

)
. (7.27)

We test this formula against the numerically calculated equivalent in Fig. 7.2
and can see that the asymptotics quickly approach high levels of agreement
as we increase a. We require (7.27) to be accurate as a → ∞ and as is
demonstrated in Fig. 7.2 this condition is fulfilled to a good degree for
values of a of order 10 and larger.

7.2.2 Asymptotic calculation of the coordinate inverted second moments

7.2.2.1 calculation in the λ → 2 limit We have G2(a) as a function
of a in both asymptotic regimes. In this section we will transform our second
moment into the related coordinate λ and then calculate the connected
moment generating function from this. When we have the connected mo-
ment generating function W as in (3.18), we can then attempt to perform a
Laplace inversion to generate an asymptotic approximation of the probability
density function in the large t regime.

The coordinate relationship between a and λ is given by

λ(a) = (−2 a2 + 2)
√
π(

ae− a2
2

√
2 +

√
π (a− 1) (a+ 1)

(
erf

(
a

√
2

2

)
− 1

)) (7.28)

and from this formula one can predict that asymptotic inversion of this
coordinate relationship is non-trivial. Due to this fact generating an inverse
relationship between λ and a must be done in their specific asymptotic
regimes.

7.3 the second moment in a small a regime

Calculation of the small a asymptotics of our second moment gives the
following series

G2(a) ∼ π

256 a6 − π

256 a4 +
√

2π
192 a3 − π

512 a2 + O(a−1). (7.29)
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Figure 7.2: Percentage difference between the second moment asymptotics
(7.27) and the numerical data in a for a ∈ (1, 13)
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The first approach of calculating G2(a(λ)) was using successive asymptotic
approximations in the relevant regime for a. This was cumbersome, so
instead we opt for a method which matches the constants associated with
the power series in a.

If one makes the educated guess that the dominant singular term in
G2(a(λ)) is proportional to 1/(2−λ)2, we then take the series as a approaches
0 to check how well the expansion matches (7.29) and find

1
72(2 − λ(a))2 ∼ π

256 a6 − 9π
1280 a4 +

√
π

√
2

192 a3 + 213 π
89600 a2 + O(a−1). (7.30)

Clearly this is the correct leading term in our expansion but we wish to
correct the subleading terms as well and so using the correction of 1/(2−λ) 4

3

with appropriate constants we find

1
72 (2 − λ (a))2 +

3
√

18π
360 (2 − λ (a))

4
3

∼ π

256 a6 − π

256 a4 +
√

2π
192 a3 − 123 π

89600 a2 +O(a−1),

(7.31)
giving agreement in the first 3 singular terms of (7.29). We will get one
further term to improve the accuracy when implemented into numerical
calculations. Therefore we will perform this once more and we find that our
second moment in λ is asymptotically given by

G2(λ) ∼ 1
72 (2 − λ)2 + (18π)1/3

360 (2 − λ)
4
3

− 13π2/322/331/3

33600 (2 − λ)
2
3
. (7.32)

We are able to make this brute force coordinate matching method more
systematic by using computer algebra in Maple. If we are to take a → 0 the
corresponding limit is to take λ → 2. We calculate the series of λ(a) for
small a and find

λ(a) ∼ 2 − 4
√

2a3

3
√
π

− 6
√

2a5

5
√
π

+ 16 a6

9 π − 17
√

2a7

14
√
π

+ 16 a8

5π + O(a9). (7.33)

We use recursion with the first order contribution being given by

a(λ) ∼
(

3
√
π(2 − λ)
4
√

2

) 1
3

, (7.34)
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choosing the positive root as we require a > 0. Upon several recursions we
generate the series

a(λ) ∼
3
√

3 3
√√

2
√
π

2
3
√

2 − λ− 9
√

2
√
π (2 − λ)
80 +

3
√

3 6
√

2 6
√
π

12 (2 − λ)
4
3

+237π5/632/325/6

44800 (2 − λ)
5
3

−9
√

2
√
π (2 − λ)2

160 +
6
√
π (5097π + 44800) 3

√
3 6
√

2
1612800 (2 − λ)

7
3 +O

(
(2 − λ)

8
3
)

(7.35)

which we substitute into (7.21) and then expand in powers of (2 − λ). This
substitution will generate singular terms and then non-singular terms. We
may split G2(λ) into singular and integrable parts

G2(λ) = Gsing
2 (λ) + Ḡ2(λ). (7.36)

The singularities are all contained within Gsing
2 (λ) so when we substitute

(7.35) into (7.21) we will have a lengthy expression which we can simplify
by taking only the singular part and then group the rest into Ḡ2

Gsing
2 (λ) ∼ 1

72 (2 − λ)2 + (18π) 1
3

360 (2 − λ)
4
3

+ O
(
(2 − λ)−2/3

)
. (7.37)

Clearly agreeing to the results obtained using the method of matching
constants. The benefit of the brute force method is that provided the ex-
pansion is simple, one is able to guess and then verify the power law of the
λ contributions. However it could be challenging to be able to produce the
subleading terms in λ that would generate the correct powers in a.

We compare this calculation of the second moment in this regime to
the numerically calculated equivalent to gauge how well the asymptotic
expansion matches the data produced from the code. Clearly Fig. 7.3
demonstrates that the approximation begins poorly but quickly approaches
a percentage difference below 1% as we approach the relevant limit in λ.
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Figure 7.3: Percentage difference between the second moment asymptotics
(7.37) and the numerical data for λ ∈ (1.5, 1.99).
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7.3.1 The second moment in a large a regime

Similarly to the small a regime, for the large a regime we begin with 1/λ(a)2

1
λ(a)2 ∼ 2

πa6 e
−a2 + O

(
e−a2

a8

)
(7.38)

and notice once more that the dominant term of our expansion in this region
of λ(a) will be dominated by 1/λ(a)2. By enforcing the agreement of the
dominant term in (7.27) by simply dividing by 24 and exchanging our square
of λ to concur with the asymptotics for a → 0 we find

1
24(2 − λ(a))2 ∼

( 1
12πa6 − 1

6πa8 + 17
12πa10

)
e−a2 + O

(
e−a2

a12

)
. (7.39)

Somewhat remarkably, simply by enforcing that the constants match on the
initial term of (7.27), the second term agrees perfectly as well.

Other analysis suggested that the subsequent term contained a factor
proportional to 1/((2 −λ(a))2 log (2 − λ(a))2). By generating an asymptotic
series for this term as a → ∞ one finds

1
(2 − λ(a))2 log (2 − λ(a))2 ∼ 8

πa10 e
−a2 + O

(
e−a2

a12

)
. (7.40)

Due to the fact that the lowest order contribution from (7.40) in a is
unrelated completely to the lowest order terms in (7.27), we can subtract
the logarithmic term after correcting the constant to generate

1
24(2 − λ)2 − 1

16(2 − λ(a))2 log (2 − λ(a))2 ∼

( 1
12πa6 − 1

6πa8 + 11
12πa10

)
e−a2 + O

(
e−a2

a12

)
,

(7.41)

giving exactly the correct expansion up to the relevant order.

From this brute force manipulation of the λ terms we have found the
second moment in the λ coordinate for the large a limit which corresponds
to the large negative λ limit

G2(λ) ∼ 1
24(2 − λ)2 − 1

16(2 − λ)2 log (2 − λ)2 + O
(

1
λ2 log (λ)3

)
. (7.42)
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7.4 calculation of the connected moment generating
function

After calculating G2(λ(a)) in their relevant asymptotic regimes, (7.37), (7.42)
we are able to now begin the calculation of the connected moment generating
function. This will allow us to calculate asymptotic information about the
Laplace transform of the probability distribution.

The method for calculating the connected moment generating function
in both cases is similar. We have previously separated the second moments
calculated into their singular regions as well as the non-singular parts.

This method of separation into singular and non-singular contributions
from the second moment means that we are able to control and understand
the singular behaviour and then numerically calculate the remainder.

We begin with the connected moment generating function

W (µ) =
∫ µ

0
(µ− λ) G2(λ)dλ (7.43)

and split our second moment into the singular and sub-leading terms

G2(λ) = Gsing
2 (λ) + Ḡ2(λ). (7.44)

This is then substituted into (7.43)

W (µ) =
∫ µ

0
(µ− λ) Gsing

2 (λ) +
∫ µ

0
(µ− λ)Ḡ2(λ)dλ (7.45)

and we have generated W (µ) which will be in part resolved analytically
where possible. The remaining parts of W (µ) are resolved numerically and
will be a potential source of error.
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7.4.1 Resolution of the connected moment generating function in the
λ → 2 limit

With the general framework outlined, we find that substitution of the leading
terms from (7.37) into (7.45) gives

W (µ) =
∫ µ

0
(µ− λ)

 1
72(2 − λ)2 + (18π) 1

3

360(2 − λ) 4
3

 dλ+
∫ µ

0
(µ− λ)Ḡ2(λ)dλ.

(7.46)

At this point we will separate out the integral for the barred term and find

W (µ) =
∫ µ

0
(µ− λ)

 1
72(2 − λ)2 + (18π) 1

3

360(2 − λ) 4
3

 dλ+
∫ 2

0
(µ− λ) Ḡ2(λ)dλ−

∫ 2

µ
(µ− λ) Ḡ2(λ)dλ+ O

(
(2 − λ) 4

3
)
.

(7.47)

One should note that the O
(
(2 − λ)−2/3

)
terms from (7.37) have been

grouped into the barred term. The error term in (7.47) is found because
the most singular part of Ḡ2 is given by (2 − λ)−2/3 and is multiplied in the
integral by a linear contribution proportional to λ.

By separating the subdominant integral we are able to resolve the second
additive term fully in all cases. Provided we are performing analysis in the
region µ → 2, the third term will tend to zero.

Computation of the first term can be done analytically and then the
subdominant terms are computed numerically, one linear in µ and one
constant. Combining terms we find

W2(µ) ∼ −σ2µ+K2 + 1
72 log

(
2

2 − µ

)
−

(18π) 1
3 (2 − µ) 2

3

80 + O
(
(2 − µ) 4

3
) (7.48)

where the two constants σ2 and K2 are calculated numerically and are given
by
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• σ2 ≈ 0.04794083416

• K2 ≈ 0.10032095454

to the numercial accuracy employed.

To verify the accuracy of the connected moment generating function in
this limit we compare our expansion to the numerically calculated equivalent.
We can see in Fig. 7.4 the percentage difference between the two values
which demonstrates that approaching the limit µ → 2 the difference is
shrinking.

One would be justified to ask why we wish to calculate the asymptotics
of the connected moment generating function if we are going to simply
calculate a large part of the distribution numerically. The answer to this
is that while in the bulk of the range, the numerical calculation is stable.
The code is unable to control the large values of W (µ) as µ → 2 and is
unable to symbolically investigate the large negative independent variable
as it approaches infinity.

As one can see from Fig. 7.4 the asymptotic approximation begins fairly
poorly being almost 30% away from the numerically calculated value at
µ = 1.5 but it tends towards the percentage value of 0 as the independent
variable approaches 2. To ensure viability of the approximation, the same
analysis is performed closer to the region of validity and generates the plot
Fig. 7.5.

Clearly as we enter into a region past µ = 1.99 the approximation
becomes far better. A percentage error of far less than one percent and
still decreasing as the variable approaches 2 means that this asymptotic
expansion can be used with confidence provided that µ is in a small region
near 2.
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Figure 7.4: Percentage difference between the asymptotic expansion (7.48)
and the numerically calculated value of W in the µ → 2 regime for µ ∈
(1.5, 1.99).
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Figure 7.5: Percentage difference between the asymptotic expansion (7.48)
and the numerically calculated value of W in the µ → 2 regime for µ ∈
(1.99, 1.9999).
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7.4.2 Resolution of the connected moment generating function in the
λ → −∞ limit

Calculation of the connected moment generating function is done in a similar
way for the λ → −∞ as in the case λ → 2. We begin by separating once
more the second moment into its dominant and subdominant parts. When
this is done we generate an integral that can be resolved numerically and
another which converges to zero as λ → −∞

W (µ) =
∫ µ

0
(µ−λ)

(
G2(λ) − 1

24(2 − λ)2

)
dλ+

∫ µ

0
(µ−λ) 1

24(2 − λ)2dλ.

(7.49)

The sub-leading singular term in this is calculated numerically, analogously
to the case of λ → 2 and once more we are able to calculate a term linear in
µ and another which is just a constant.

Substituting our integrand into the singular contribution of the second
moment, we find

W (µ) = 1
24 log

(
2

2 − µ

)
− µ

48 +
∫ µ

−∞
(µ− λ)

(
G2 − 1

24(2 − λ)2

)
dλ−

∫ 0

−∞
(µ− λ)

(
G2 − 1

24(2 − λ)2

)
dλ.

(7.50)
Once more the first term in the first integral is calculated from 1/λ2 and
generates the logarithmic term as in the other limiting case.

Calculation of the second integral gives the connected moment generating
function

W (µ) ∼ 1
24 log

(
2

2 − µ

)
− µ

48 + (µ− 2) Ei (1, ln (2 − µ))
16 −Dµ+C (7.51)

with constants D and C given by

• D = 0.035222497541
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• C = −0.03324548778

and
Ei (a, z) = za−1Γ(1 − a, z). (7.52)

The exponential integral term can be asymptotically represented in the
regime µ → −∞ giving a more comparable expansion to the case µ → 2

W (µ) ∼ −σ∞µ+K∞ + 1
24 log

(
2

2 − µ

)
− 1

16 log (2 − µ)+

O
(∫ µ

0

1
16(2 − λ) log (2 − λ)2dλ

)
,

(7.53)

with the constants σ∞ and K∞ given by

• σ∞ = 0.05605583087

• K∞ = −0.03324548783.

7.5 calculation of the moment generating function

Recall that the moment generating function M is related to the connected
moment generating function W by M = exp (W ).

This is done in both asymptotic cases to allow us to then move onto
calculation of the probability distribution contributions from each end of
the distributions.

For comparison, recall that the connected moment generating function
for a shifted Gamma distribution is

W (µ) = α log
(

β

β − µ

)
− σµ (7.54)

and then upon exponentiation to calculate the moment generating function
one finds

M(µ) = e−µσ

(1 − µ/β)α (7.55)
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Figure 7.6: Percentage difference between the asymptotic equation (7.53)
and the numerically calculated value of W for µ ∈ (−90000,−10000).
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for parameters α and β. This moment generating function would then
correspond to the probability distribution

dvf (λ) := ϑ(λ+ σ)β
α(λ+ σ)α−1

Γ(α) exp(−β(λ+ σ))dλ. (7.56)

7.5.1 Calculation in the λ → 2 case

In the case of the limit approaching 2 we have the connected moment
generating function given by 7.48. Exponentiating this function and ignoring
higher order contributions for now gives the asymptotic moment generating
function

M(µ) ∼ exp
(

−σ2µ+K2 + 1
72 log

(
2

2 − µ

)
−

(18π) 1
3 (2 − µ) 2

3

80 + O
(
(2 − λ) 4

3
)

∼
(

2
2 − µ

) 1
72

exp
−σ2µ+K2 − (18π) 1

3 (2 − µ) 2
3

80

(1 + O
(
(2 − λ) 4

3
))
.

(7.57)
Clearly there are strong comparisons between this and the moment gener-
ating function (7.55), demonstrating that the dominant behaviour of the
Gauss-Lorentz test function’s associated probability distribution is given
by a shifted Gamma distribution at each end. This is valid as µ → 2
which means we will gain information about the tail end of the probability
distribution but not much more.

This also shows that in the regime close to µ → 2 that the Gauss-Lorentz
test function’s associated probability does indeed deviate from the shifted
Gamma probability distribution exhibited by every other known positive
test function. It does however demonstrate that while this test function
deviates from the shifted Gamma it is still dominated by it.
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7.5.2 Calculation in the λ → −∞ case

Similarly to the case λ → 2 we begin with the connected moment generating
function for the relevant asymptotic limit (7.53)

M(µ) ∼ exp
(

−σ∞µ+K∞ + 1
24 log

(
2

2 − µ

)

− 1
16 log (2 − µ) + O

(
log (2 − µ)−2

))

∼
(

2
2 − µ

) 1
24

exp
(

−σ∞µ+K∞ − 1
16 log (2 − µ)

)(
1 + O

(
log (2 − µ)−2

))
.

(7.58)
This demonstrates agreement with the shifted Gamma distribution in the
first order of the expansion but then deviation in the next order. The region
of validity for this is µ → −∞ which means that this will determine the
singular behaviour of the probability distribution but not much more.

Both ends of the moment generating function have exhibited behaviour
that would be similar to the shifted Gamma distribution but have also both
shown that they deviate from the shifted Gamma in the next order of the
expansion.

7.6 asymptotic calculation of the probability distribution

Plotting the analytic distribution as in Fig. 7.7 for both the Gauss and
Lorentz contributions to the test function demonstrates how in each regime
the numerical calculation appears to tend towards the shifted Gamma
distributions while disagreeing in the bulk.

7.6.1 Deviation from shifted Gamma

We have demonstrated that the Gaussian-Lorentzian test function smeared
against the energy density (to first order in the second moment expansion)
obeys the shifted Gamma distribution. However due to there being different
parameters at each end, the overall distribution cannot be exactly described
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Figure 7.7: Plot showing the numerically calculated (squares) probability
distribution for the Gauss-Lorentz test function compared to the first order
asymptotic shifted gamma distribtions, (1.3) with Gaussian (blue) and
Lorentzian (red) parameters. This plot demonstrates the agreement between
the relevant shifted gamma distributions in both the large and small s
regimes.
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by the shifted Gamma probability density function. We will use a self-
referential and uncontrolled analysis to attempt to invert these moment
generating functions to calculate a more explicit effect on the probability
distribution.

7.6.2 Laplace inversion of the moment generating function as µ → 2

We wish to calculate the probability distribution associated to the moment
generating function (7.57). We begin by substituting

• χ = 1/72

• ω = (18π) 1
3/80

and re-write M

M(s) =
( 2

2 − s

)χ
exp

(
−ω(2 − s)2/3 − σ2s+K2

)
, (7.59)

ignoring higher order terms for now. Recalling that

M(s) = e−σs

(β − s)α → P (t) = ϑ(t+ σ)(t+ σ)α−1

Γ(α) e−β(t+σ), (7.60)

we expand the exponent in (7.59) to find

M(s) = 2χeK2e−σ2s

(
1

(2 − s)χ − ω

(2 − s)χ− 2
3

+ O((2 − s) 4
3 −χ)

)
. (7.61)

At this stage we can now proceed to perform a term by term transformation
using (7.60) in each case to find the probability distribution A∞(t)

A∞(t) = 2χeK2ϑ(t+ σ2)e−2(t+σ2)

(t+ σ2)χ−1

Γ(χ) − ω (t+ σ2)χ− 5
3

Γ(χ− 2
3)

 . (7.62)

In the first order of A∞ we have found the prescribed shifted Gamma
distribution and then a correcting term by the higher order.
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7.6.3 The higher order Laplace inversion of moment generating function
as µ → −∞

We aim to calculate the probability density function as an inverse Laplace
transform

p(t) = lim
T→∞

1
2πi

∫ γ+iT

γ−iT
esteW (−s)ds, (7.63)

integrating along the vertical line Re(s) = γ. We use the Bromwich inver-
sion of the asymptotics of our connected moment generating function W .
The formula (7.63) is exact but we are replacing W with our asymptotic
approximations and attempt to compute the integral. We can recall W
(7.53)

W (s) = α log
(

β

β − s

)
+ k − sσ − 1

16 log (β − s) , (7.64)

where the constants α, β, σ and k are all given in the original formula. We
substitute this into (7.63) and find

p(t) = lim
T→∞

1
2πi

∫ iT

−iT
exp

(
st+ α log

(
β

β + s

)
+ k + sσ

)
exp

(
−1

16 log (β + s)

)
ds,

(7.65)
having chosen γ = 0 due to this not passing through any singular points. We
argue that provided we do not cross any singularities we are free to choose γ
as we wish. If we choose γ near −β, the 1/ log (β + s) term is small which
would allow us to accurately expand the exponential term. We then argue
that this choice does not change the closed path integral value, nor does it
change the value of the branch cut integrals as we take T → ∞. Therefore
we argue that this expansion will hold reasonably for γ = 0. Doing this we
find

p(t) = lim
T→∞

1
2πi

∫ iT

−iT
exp

(
st+ α log

(
β

β + s

)
+ k + sσ

)
(1

− 1
16 log (β + s) + O

( −1
16 log (β + s)

)2
 ds (7.66)

which gives us 2 integrals. The first term is identically the inverse Laplace
transform of M which corresponds to a shifted Gamma distribution. The
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second term is calculated to give an indication as to the deviation from the
shifted Gamma.

Our aim is to calculate the following integral

p1(t) = − lim
T→∞

∫ iT

−iT

exp
(
st+ α log

(
β
β+s

)
+ k + sσ

)
16 log (β + s) ds (7.67)

via the method of contour integration. A sketch of the contour we will be
using is given by Fig 7.8. We therefore have to calculate

1
2πi

∮
C

exp
(
st+ α log

(
β
β+s

)
+ k + sσ

)
16 log (β + s) ds =

lim
T→∞

1
2πi

(∫
Γ

+
∫
R1

+
∫
R2

+
∫
B1

+
∫
B2

+
∫
J

) exp
(
st+ α log

(
β
β+s

)
+ k + sσ

)
16 log (β + s) ds

(7.68)
where the 6 curves are defined as follows

• Γ The vertical curve we wish to calculate running from −iT to iT

• R1 Arc running from π/2 to π − δ

• R2 Arc running from π + δ to 3π/2

• B1 Branch cut above the negative real line

• B2 Branch cut below negative real line

• J Semicircle centered at −2, joining the branch cut curves.

We will also use the notation IX(t) where we denote each individual con-
tribution by the subscript X describing the curve. For example, we denote
IΓ(t) when discussing the integral (7.67).

We have a pole at s = −1 which allows us to calculate the integral using
the residue theorem by computing the residue at the enclosed pole. We also
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expect the integrals along the 3 radial parametrisations to vanish when we
take the large or small limits in each case. This will leave us to compute

IΓ(t) = 1
2πi

∮
C

exp
(
st+ α log

(
β
β+s

)
+ k + sσ

)
16 log (β + s) ds− IB1(t) + IB2(t) (7.69)

to calculate (7.67).

Figure 7.8: Scaled down contour demonstrating key ideas of path integral
(7.68).

Beginning with proving the radial contributions vanish we choose s = Teiθ
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with θ ∈ (π/2, π − δ) giving

IR1(t) = ek

2πi

∫ π−δ

π
2

iTeiθ
exp

(
Teiθ(t+ σ) + c

24 log
(

2
2+Teiθ

))
16 log (2 + Teiθ) dθ (7.70)

where we have substituted β = 2 and replaced α with c/24 with c the central
charge of the theory. We bring the logarithm down from the exponent
and analyse how the integrand behaves when we take the limit T → ∞.
Expanding also the complex exponential we have

IR1(t) = ek

2πi

∫ π−δ

π
2

iTeiθ
( 2

2 + Teiθ

) c
24 exp (T (cos θ + i sin θ)(t+ σ))

16 log (2 + Teiθ) dθ,

(7.71)
noticing that the real part in the exponent is negative in the range θ ∈
(π/2, 3π/2). The exponential term will dominate this integrand and con-
verge to 0 when we take the limit T → ∞. This fact is only true if we have
t > −σ, otherwies we face divergence from the exponential. Due to the
parametrisation of the other radial contribution R2 we can argue the same
fact and find that both contributions vanish as we take the limit T → ∞.

We now calculate the branch cut contributions

IB1(t) + IB2(t) = ek

2πi

(∫
B1

+
∫
B2

) exp
(
st+ α log

(
β
β+s

)
+ k + sσ

)
16 log (β + s) ds,

(7.72)
with parameters as follows (ignoring the effect of the 2 on the T → ∞)

• B1, s ∈ (−T + iδ,−2 + iδ)

• B2, s ∈ (−2 − iδ,−T − iδ).

In both cases we will change parameters via s = −2 − p and write the
integrand used for both integrals as

I(−2 − p) =
(

−p

2

)− c
24 exp (−2 − p)(t+ σ)

16 log (−p) (7.73)

which transforms our boundary conditions to
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• B1, p ∈ (T + iδ, iδ)

• B2, p ∈ (−iδ, T − iδ).

We can take care of the slight shift away from the real axis by setting
−p = |p|ei(π−ϵ) for the first integral and −p = |p|e−i(π−ϵ) for the second,
giving us the following integrals. First we look at IB1

IB1(t) = − ek

2πi

∫ 0

T

(
|p|
2

)− c
24

e− icπ
24

exp ((−2 − p)(t+ σ))
16 log (|p|) + 16iπ dp, (7.74)

noticing that we have picked up a minus from the metric after coordinate
transform. We have taken the limit ϵ → 0 carefully and if we restrict our p
to the positive real axis we can re-write this as

IB1(t) = ek

2πi

∫ T

0

(
p

2

)− c
24
e

icπ
24

exp ((−2 − p)(t+ σ))
16 log (p) + 16iπ dp. (7.75)

Performing a similar analysis for IB2 we find

IB2(t) = − ek

2πi

∫ T

0

(
|p|
2

)− c
24

e− icπ
24

exp ((−2 − p)(t+ σ))
16 log (|p|) − 16iπ dp. (7.76)

Simplifying the latter integral and performing the addition required of the
two integrals and grouping terms we find

IB1(t) + IB2(t) =

ek

2πi

∫ T

0

(p
2

)− c
24

exp ((−2 − p)(t+ σ))
 e− icπ

24

16 log (p) + 16iπ − e
icπ
24

16 log (p) − 16iπ

 dp.
(7.77)

Simplifying this to trigonometric terms we have

IB1(t) + IB2(t) =

ek

2πi

∫ T

0

(p
2

)− c
24

exp ((−2 − p)(t+ σ))
−

2i log (p) sin
(
cπ
24

)
− 2iπ cos

(
cπ
24

)
16π2 + 16 log (p)2

 dp
(7.78)

which we cancel and it becomes purely real. This is encouraging because we
require the probability to be real and this is a part of a correction to our
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probability asymptotics

IB1(t) + IB2(t) =

−ek

π

∫ T

0

(p
2

)− c
24

exp ((−2 − p)(t+ σ))
 log (p) sin

(
cπ
24

)
+ π cos

(
cπ
24

)
16π2 + 16 log (p)2

 dp.
(7.79)

This leaves us to find 2πi multiplied by the residue which can be found to
be

1
2πi

∮
C

exp
(
st+ α log

(
β
β+s

)
+ k + sσ

)
16 log (β + s) ds = 2 c

24

16 exp (k − t− σ). (7.80)

We have already cancelled the factor of 2πi appearing in the Bromwich
inversion formula and the residue formula for evaluating contour integrals.
Combining this we find

lim
T→∞

1
2πi

∫ iT

−iT

exp
(
st+ c

24 log
(

2
2+s

)
+ k + sσ

)
16 log (2 + s) ds =

2 c
24

16 exp (k − t− σ)+

ek

π

∫ ∞

0

(p
2

)− c
24

exp ((−2 − p)(t+ σ))
 log (p) sin

(
cπ
24

)
+ π cos

(
cπ
24

)
16π2 + 16 log (p)2

 dp
(7.81)

which is a formula that should allow one to find numerical information about
the Laplace transform of the higher order asymptotic contribution. However,
we need to be careful here due to the convergence of IB1(t) + IB2(t). We
wish to take the inverse transform for some

G(s) =
(2 + s

s

)
F (s), (7.82)

with
F (s) =

(2 + s

2

)−1− c
24 ek+sσ

16 log (2 + s) . (7.83)

We use standard properties of Laplace transforms to find that this relation-
ship gives us

2g(t) = f ′(t) + 2f(t), f(0) = 0 (7.84)
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defining g as the inverse transform of G and

f(t) = d

dt

e2t lim
T→∞

1
2πi

∫ iT

−iT

exp
(
st+ c

24 log
(

2
2+s

)
+ k + sσ

)
16 log (2 + s) ds

 (7.85)

as the inverse of F .

We rearrange this formula to find

g(t) = 1
2e

−2td (e2tf(t))
dt

(7.86)

and we can now to move directly from (7.81) to calculating g(t) by replacing
c = c+ 24 and performing the operations prescribed by the transform laws.
Multiplying by the exponential of twice the transform variable gives

e2tf(t) = 21+ c
24

16 exp (k + t− σ)+

ek

π

∫ ∞

0

(p
2

)−1− c
24

exp (−pt− 2σ − pσ)
− log (p) sin

(
cπ
24

)
− π cos

(
cπ
24

)
16π2 + 16 log (p)2

 dp,
(7.87)

where the change in central charge caused the negative trigonometric terms.
We simplify and differentiate this with respect to t to find

d

dt

(
e2tf(t)

)
= 21+ c

24

16 exp (k + t− σ)+

ek

π

∫ ∞

0

(p
2

)−1− c
24

exp (−pt− 2σ − pσ)
− log (p) sin

(
cπ
24

)
− π cos

(
cπ
24

)
16π2 + 16 log (p)2

 dp,
(7.88)

noticing that the negatives in the integrand now cancel as well as one factor
of p leaving us with

d

dt

(
e2tf(t)

)
= 21+ c

24

16 exp (k + t− σ)+

2e
k

π

∫ ∞

0

(p
2

)− c
24

exp (−pt− 2σ − pσ)
 log (p) sin

(
cπ
24

)
+ π cos

(
cπ
24

)
16π2 + 16 log (p)2

 dp.
(7.89)
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Finally we multiply out the exponential contribution and then halve the
remainder giving us

g(t) = 2 c
24

16 exp (k − t− σ)+

ek

π

∫ ∞

0

(p
2

)− c
24

exp (−2t− pt− 2σ − pσ)
 log (p) sin

(
cπ
24

)
+ π cos

(
cπ
24

)
16π2 + 16 log (p)2

 dp.
(7.90)

This higher order correction to the asymptotic probability distribution allows
us to improve the asymptotic agreement of the probability and increase the
region of validity of the asymptotic formula.

The integral in the second term of the correction (7.90) is resolved nu-
merically but is stable for all values of t which we are interested in computing.

The total probability distribution in this regime is given by

A0(t) = βα

Γ(α) (t+ σ)α−1 e−β(t+σ) − g(t) (7.91)

which to first order obeys the shifted Gamma distribution just as in the case
(7.62).

To understand the benefits that the higher order asymptotic expansions
(7.62) and (7.91) have given, we compare these two formulae to the numeri-
cally calculated probability distribution. In Fig. 7.9 we have set the vertical
axis onto a logarithmic scale to allow for a clearer comparison between the
data and the asymptotic probability formulae. It is clear that the higher
order (7.62) behaves far better than the first order shifted Gamma approxi-
mation made. This improvement gives evidence to the deviation from the
shifted Gamma in this regime.

We also wish to see the improvement made by (7.91) towards the singu-
larity of the probability distribution. This can be seen in Fig. 7.10 which
compares the behaviour of (7.91) to the first order shifted Gamma distribu-
tion and the numerically calculated probability distribution in this regime.
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Figure 7.9: Plot comparing the numerically calculated probability distri-
bution (points) against the shifted Gamma distribution for Lorentzian
parameters (red) and the plot containing all terms of (7.62).

Once more there is a clear improvement to the agreement of the probability
distribution by including the higher order contribution. However, what is
not shown on this plot is the very poor agreement by (7.91) as one moves
away from the singularity. This is unsurprising because asymptotics often
fail when too far from their region of validity.

Having used the method of moments to calculate asymptotics of the
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Figure 7.10: Plot comparing the numerically calculated probability dis-
tribution (points) against the shifted Gamma distribution for Gaussian
parameters (red) and the plot containing all terms of (7.91).

probability distribution in the relevant regimes, we have shown an argument
for deviation from shifted Gamma in each end of the probability distri-
bution. We had already shown that the Gauss-Lorentz test function was
not purely governed by a shifted Gamma distribution. By inverting the
Laplace transforms we have shown that this deviation is still apparent and
we have given an asymptotic description as to how it deviates. In comparing
the bulk numerical Laplace inversion to the asymptotics at each end of
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the distribution (7.62), (7.91), we found that these asymptotics perform
well against the numerical results. The numerical calculation will fail if
it approaches the singularity or for too large a value of t. This failure for
larger values of t can be seen beginning in Fig. 7.7 and is more visible in Fig.
7.9. It is at this point we will have to trust that the asymptotics accurately
describe the behaviour in their respective limits.
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Verification of the asymptotic moments method &
conformal welding

We have discussed two methods for the calculation of the probability distri-
bution of the smeared energy density depending upon the test function used
to smear the observable. Recall that p(t) is the probability density function
for individual measurements t of T (f) in the vacuum state. We wish to
compare the two methods in the case of the Gauss-Lorentz test function.
The welding method calculates the Fourier transform of the probability dis-
tribution which we will compare to the Fourier transform of the distribution
calculated from the moments method using a mixture of numerical and
asymptotic techniques. We compute p(t) by different methods in different
regimes which may be expressed as a piecewise defined function from the
moments method

p(t) =


A0(t)ϑ(t+ σ) t < δ

N(t) δ ≤ t < ∆

A∞(t) t ≥ ∆

, (8.1)

defining the asymptotic contributions by the character A and the numerically
calculated region by N . One should note we are using the definitions A0 as
in (7.91) and A∞ as in (7.62). Strictly speaking p(t) is an approximation to
the true probability distribution because we have only computed the first
few terms of the asymptotics. We wish to calculate

F(p)(ω) = p̃(ω) =
∫
R
p(t)eiωtdt (8.2)

132
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which can be split into 3 integrals, one numeric and two analytic. This
simplifies to

p̃(ω) =
∫ δ

−σ
A0(t)eiωtdt+

∫ ∆

δ
N(t)eiωtdt+

∫ ∞

∆
A∞(t)eiωtdt, (8.3)

choosing values for (δ,∆) such that the asymptotic calculations of the
probabilities A0 and A∞ provide good approximation of the probability. We
define Ã0 and Ã∞ as the integrals

Ã0 =
∫ δ

−σ
A0(t)eiωtdt, (8.4)

Ã∞ =
∫ ∞

∆
A∞(t)eiωtdt. (8.5)

Separating (8.3) into 3 distinct parts we begin with the region near the
singularity related to the quantum energy inequality∫ δ

−σ
A0(t)eiωtdt =

∫ δ

−σ

βα

Γ(α) (t+ σ)α−1 e−β(t+σ)eiωtdt−
∫ δ

−σ
g(t)eiωtdt, (8.6)

simplifying the higher order asymptotic contribution to the function g(t)
defined by (7.90).

8.1 first order fourier contributions from the asymptotic
probability density

We further separate the integral, first analysing the effect of the dominant
term in the asymptotic series. We use the following expressions for the
Gamma function and upper incomplete Gamma function∫ ∞

0
xa−1e−bxdx = Γ(a)

ba
(8.7)

∫ ∞

L
xa−1e−bxdx = Γ(a, bL)

ba
, (8.8)∫ L

0
xa−1e−bxdx = Γ(a)

ba
− Γ(a, bL)

ba
. (8.9)

Taking complex arguments into (8.9) allows us to calculate∫ δ

−σ

βα

Γ(α) (t+ σ)α−1 e−β(t+σ)eiωtdt =

βα

(β − iω)α
e−iωσ

Γ(α) (Γ(α) − Γ(α, (β − iω) (δ + σ))) .
(8.10)
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At this stage we have only calculated the first order contributions to Ã0 and
we progress to calculating Ã∞.

Ultimately we aim to calculate∫ ∞

∆
A∞(t)eiωtdt =∫ ∞

∆
2χeη−2t−2ζ+iωt (t+ ζ)χ−1

Γ(χ) dt−

∫ ∞

∆
2χeη−2t−2ζ+iωtΩ (t+ ζ)χ− 5

3

Γ(χ− 2
3) dt,

(8.11)

for χ, η, and ζ the same constants as in (7.62) and Ω = (18π) 1
3/80. For now

we are only interested in calculating the effect of the dominant part of A∞.

We use the identity (8.8) with complex arguments to calculate
∫ ∞

∆
2χeη−2t−2ζ+iωt (t+ ζ)χ−1

Γ(χ) dt = 2χeη−iωζ

Γ(χ)
Γ(χ, (2 − iω)(∆ + ζ))

(2 − iω)χ . (8.12)

This gives us a first order approximation to p̃ from (8.3) using (8.10) and
(8.12)

p̃(ω) = βα

(β − iω)α
e−iωσ

Γ(α) (Γ(a) − Γ(α, (β − iω) (δ + σ))) +∫ ∆

δ
N(t)eiωtdt+

2χeη−iωζ

Γ(χ)
Γ(χ, (2 − iω)(∆ + ζ))

(2 − iω)χ .

(8.13)

We need to calculate p̃ analytically near the singularity in A0. This is because
numerically, one is unable to accurately calculate the contribution to the
distribution resulting from this region. The value of the Fourier transform at
0 gives the total integrated value of the probability distribution. This means
that one would hope to generate a value very near or equal to 1. If one
neglects to include the contribution Ã0 then the value at 0 is calculated to be
approximately 0.43. The inclusion of Ã0 increases this value to 0.9961145947
meaning we are capturing well over 50% more of the distribution compared
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to neglecting A0. We also wish to demonstrate a comparison between p̃

and the corresponding curve generated using the welding method which
is shown in Fig. 8.1. To understand this more quantitatively we consider

Figure 8.1: Numerical plot of the real parts of the Fourier distribution
calculated using the welding method (black) (same as in Fig. 6.5) associated
to a Gauss-Lorentz test function) and (8.13) calculated from the moments
method.

the percentage difference of the two in the range as demonstrated by Fig. 8.1.

As discussed previously, the welding method ensures that the character-
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Figure 8.2: Plot of the percentage difference of the points within 8.1.

istic function of the probability distribution begins at 1. This can clearly be
seen in (2.22) where if we integrate to t = 0 the exponent vanishes generating
a value of 1 for the characteristic function. The asymptotic moments method
does not benefit from this and the fact that the method of moments is able
to closely approach a value of 1 is a consistency check on the calculation
performed.
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8.2 higher order corrections to p̃

We now include the higher order asypmtotic contributions for A0 and A∞.
We begin by calculating the fourier transform of A∞ as defined by (7.62),
using (8.8) ∫ ∞

∆
2χeη−2t−2ζ+iωtΩ (t+ ζ)χ− 5

3

Γ(χ− 2
3) dt =

−2χΩeη−iωζ

Γ(χ− 2
3)

Γ(χ− 2
3 , (2 − iω)(∆ + ζ))

(2 − iω)(χ− 2
3) .

(8.14)

This means that we have found Ã∞

Ã∞(ω) =
∫ ∞

∆
A∞(t)eiωtdt =

2χeη−iωζ

Γ(χ, (2 − iω)(∆ + ζ))
Γ(χ)(2 − iω)χ −

ΩΓ(χ− 2
3 , (2 − iω)(∆ + ζ))

Γ(χ− 2
3)(2 − iω)(χ− 2

3)

 , (8.15)

leaving us only to calculate the contribution from the singular region of the
probability density.

We have already calculated the Fourier transform of the shifted Gamma
in the singular region so we need only to transform (7.90)

g̃(ω) =
∫ δ

−σ
eiωt

(
2 c

24

16 exp (k − t− σ) +

ek

π

∫ ∞

0

((
p

2

)− c
24

exp (−2t− pt− 2σ − pσ)F (p)
)
dp

)
dt.

(8.16)

We exchange the order of integration which allows us to integrate over t and
then once more we are left with an integral over the p domain

2 c
24

16
ek−σ

iω − 1
(
eδ(iω−1) − e−σ(iω−1)

)
+

ek

π

∫ ∞

0

(
p

2

)− c
24 F (p)e−2(p+σ)

iω − 2 − p

(
eδ(iω−2−p) − e−σ(iω−2−p)

)
dp.

(8.17)
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This gives the higher order approximation to the Fourier transform as

p̃(ω) = βα

(β − iω)α
e−iωσ

Γ(α) (Γ(α) − Γ(α, (β − iω) (δ + σ))) −

2 c
24

16
ek−σ

iω − 1
(
eδ(iω−1) − e−σ(iω−1)

)
−

ek

π

∫ ∞

0

(
p

2

)− c
24 F (p)e−2(p+σ)

iω − 2 − p

(
eδ(iω−2−p) − e−σ(iω−2−p)

)
dp+∫ ∆

δ
N(t)eiωtdt+

2χeη−iωζ

Γ(χ)
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(8.18)

With this formula we can draw a comparison between the welding method
and the higher order moments method in Fourier space by choosing δ = 0.01
and ∆ = 2.44. This comparison can be seen in Fig. 8.3. Both curves were
calculated numerically but clearly there is no real improvement compared
to Fig. 8.1. We can compare the percentage differences between the welding
method and the higher order correction by generating Fig. 8.4. This plot can
then be compared to Fig. 8.1 and it is clear that the percentage difference
plots both follow the same general path of increase but using the higher
order corrections to the asymptotics there are regions where the new method
performs worse and others where it performs better.

It is unfortunate that in the Fourier domain the higher order corrections
to the probability asymptotics do not give an obviously better match to
the welding results when compared to the first order calculation. This
underwhelming improvement of the higher order method and periodic re-
gions of worse performance means that the improvements in the probability
asymptotics did not carry over to the Fourier domain when transformed as
well as we would have hoped.

We have seen that the asymptotic and numerical results can be trans-
formed into the Fourier domain as a verification of moment method generated
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Figure 8.3: Numerical plot of the real parts of the Fourier distribution
calculated using the welding method (black) associated to a Gauss-Lorentz
test function) and (8.18) calculated from the moments method.
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Figure 8.4: Plot of the percentage difference of the points within Fig. 8.3.



141

probability asymptotics when compared to the characteristic function calcu-
lated by the welding method. In the lower and higher order cases we can
see that the moments method in the Fourier domain does get close to the
calculation generated by the moment method. This is impressive considering
the fact that we have to perform a partially analytic and partially numeric
Fourier transform of the piecewise moment probability function (8.1) which
itself is based on asymptotic results.



9

Conclusions

This project has been concerned with the probability distributions exhib-
ited from the choice of smearing function in a (1+1)d conformal quantum
field theory. The project began with an exploratory numerical study into
the method of conformal welding to identify and explore these probability
distributions. We have implemented the method proposed in [12] that uses
conformal welding to generate the probability distribution for T (f) in the
vacuum.

This method was implemented numerically and found to be able to
produce the probability distributions associated with the test function used.
The code was verified by achieving high levels of agreement to the known
analytic results provided. It was also found that travelling to large Fourier
transform parameters incurred large numerical errors. These errors were
mitigated by a myriad of techniques designed specifically to ameliorate the
issues incurred during large Fourier transform parameter investigations and
would be of use to anyone interested in the calculation of these distributions.

It was found that Fourier inversion of the numerically calculated welding
data behaved poorly unless one was able to calculate to a large enough value
in the transform parameter. Due to this issue the welding method with this
implementation is better used to compare different probability distributions
to observe how the Fourier transform of the probability distribution is af-
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fected by certain changes to the test functions used. This was demonstrated
in the plateau case.

If one were able to better control these calculation issues presented by
the numerical implementation of the welding method then it would become
a very powerful method of discovering how the effects of different test func-
tion behaviours will affect the probability distribution of the associated
observable.

The methods of calculation of the Schwarzian derivative were novel and
of use to anyone intending to calculate the Schwarzian derivative in a weld-
ing context. As discussed, the third derivative in a numerical environment
presents inevitably large errors compared to lower order derivatives but using
the analytic methods presented these errors were well controlled allowing
for far better and smoother data calculated from this step.

The plateau results were a success of the implemented welding method
and these confirmed that there is a dependence on the probability distribu-
tion associated to the plateau length and switch on times of the function
averaging the stress-energy tensor. This dependence was unreachable using
analytic techniques and highlights the benefit of a stable numerical method.

It would also be interesting to apply the welding method to the context
of moving mirrors as outlined in [13, 16] to understand the impact this
would have on the probability distribution as well as studying the impact of
accelerated trajectories.

Prior to this project, all known examples of probability distributions with
nonnegative sampling functions gave shifted Gamma distributions. We have
shown that a the Gauss-Lorentz test function breaks this rule by producing
a probability distribution which is not purely governed by a shifted Gamma
distribution.
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The Gauss-Lorentz test function exhibits instead a probability distribu-
tion which transfers from one distribution in the relevant limit and then
tends towards the shifted Gamma distribution associated with the other
and deviates non-trivially from each shifted Gamma distribution in between.
This behaviour of the constituent parts of the constructed test function
still affecting the probability distribution is interesting. Perhaps taking a
combination of three test functions could be analysed to understand bet-
ter this effect. The challenge of this would be seeing the impacts of all
3. In the case of the Gauss-Lorentz test function it was only through the
asymptotics of the distribution were we able to notice the effects of the
original test functions. Perhaps the inclusion of a third would either domi-
nate in one of the two ends or be invisible in terms of the asymptotic analysis.

The method of moments demonstrated in [12, 2] gives a clear analytic
method in which one begins with a test function and then calculates in
a tractable way the second moment which is then used to calculate the
probability distribution. This summary does not demonstrate the difficulty
one can find when trying to analytically solve the flow equation (3.22). This
vital step prevents this method from being useable in a completely general
case. Even in the case of Gauss-Lorentz, where individually results are
known for the Gaussian and Lorentzian cases, a non-trivial formula was
found to solve the flow equation.

Despite this key issue with the method of moments. This analysis has
proved that if one is able to solve (3.22) then information can be found
regarding the probability distribution, even if just asymptotically as in the
case of Gauss-Lorentz.
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