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Abstract

Analysis of structural dynamics is of fundamental importance to countless engineering

applications. Analyses in both research and industrial settings have traditionally relied

on linear or close to linear approximations of the underlying physics. Perhaps the most

pervasive framework, modal analysis, has become the default framework for consider-

ation of linear dynamics. Modern hardware and software solutions have placed linear

analysis of structural dynamics squarely in the mainstream. However, as demands for

stronger and lighter structures increase, and as advanced manufacturing enables more

and more intricate geometries, the assumption of linearity is becoming less and less re-

alistic. This thesis envisages three grand challenges for the treatment of nonlinearity

in structural dynamics. These are: nonlinear system identification, exact solutions to

nonlinear differential equations, and a nonlinear extension to linear modal analysis. Of

these challenges, this thesis presents results pertaining to the latter two.

The first component of this thesis is the consideration of methods that may yield exact

solutions to nonlinear differential equations. Here, the task of finding an exact solution

is cast as a heuristic search problem. The structure of the search problem is analysed

with a view to motivate methods that are predisposed to finding exact solutions. To this

end, a novel methodology, the affine regression tree, is proposed. The novel approach is

compared against alternatives from the literature in an expansive benchmark study.

Also considered, are nonlinear extensions to linear modal analysis. Historically, several

frameworks have been proposed, each of which is able to retain only a subset of the

properties of the linear case. It is argued here that retention of the utilities of linear

modal analysis should be viewed as the criteria for a practical nonlinear modal decompo-

sition. A promising direction is seen to be the recently-proposed framework of Worden

and Green. The approach takes a machine-learning viewpoint that requires statistical

independence between the modal coordinates. In this thesis, a robust consideration of

the method from several directions is attempted. Results from several analyses demon-

strate that statistical-independence and other inductive biases can be sufficient for a

meaningful nonlinear modal decomposition, opening the door to a practical, nonlinear

extension to modal analysis.

The results in this thesis take small but positive steps towards two pressing challenges

facing nonlinear structural dynamics. It is hoped that further work will be able to build

upon the results presented here to develop a greater understanding and treatment of

nonlinearity in structural dynamics and elsewhere.
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Chapter 1

Introduction

It is perhaps a fact of nature, that all interesting things seem to change.1 Dynamics,

or the study of things that change with time, has fascinated humanity since time im-

memorial. This fascination has lead researchers of posterity to study the motions of the

planets, electromagnetism, the mind, and almost everything in-between. Understanding

how and why physical quantities change is of fundamental interest.

Of particular importance to engineers is the consideration of the dynamics of structures,

combinations of distinct elements each with their own dynamic properties. The analysis

of structural dynamics pervades engineering and beyond. Although bridges, buildings

and wind turbines may appear static, no real structure exists free from dynamic loading.

Bridges are buffeted by the wind, buildings are shaken by earthquakes, and wind turbines

are rocked by howling wind and sea. Designing, building and monitoring engineering

structures necessarily requires an understanding of how they will respond to their loading

conditions.

The most eminent type of structural motion is vibration. These periodic motions of

structures can be advantageous; musical instruments make use of resonances to am-

plify pleasing frequencies and energy harvesters scavenge power from ambient motion.

However, unplanned or excessive vibrations can have deleterious effects ranging from

unpleasant noise pollution to structural collapse.

Vibration in structural dynamics is inescapable. Mathematically, harmonic motion arises

directly from the physical laws that govern the dynamics. Forces acting on a structure

induce a response via Newton’s second law of motion,

F = mÿ

1That is, given sufficiently broad definitions of ‘interesting’ and ‘change’.

1
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where m is a structure’s inertia, and y the displacement, and each over-dot represents a

time derivative. Plainly, the application of a load on a structure causes it to accelerate

in the direction of the force. In reality, most structures tend to resist being deformed

and a restoring force acts to pull the structure back to equilibrium. For linear elasticity,

Hooke’s law describes this restoring force,

F = −ky

Equating these forces, results in a second-order homogeneous differential equation that

describes the dynamics of a simple oscillator. The simple-harmonic equation of motion

(EOM) is,

mÿ + ky = 0

The solutions to this equation are well known. All non-trivial solutions for physically

realistic values of m and k are periodic, the structure will oscillate in free-vibration with

a fixed period.

As the complexity of engineering structures increases, so too does the complexity of

analysis. However, even as complexity grows, the objectives of the structural dynamicist

remain constant. The work of the engineer can be broadly summarised by three tasks.2

• Identification: Specification of the equations of motion, from data or otherwise.

• Prediction: Time series solutions to the equations of motion for new loading or

environmental conditions.

• Simplification: Decoupling of the equations of motion to facilitate simpler analysis.

In modern engineering, the role of structural dynamics is more important than ever.

The design of increasingly-complex structures in order to fulfil ever-more demanding

requirements has been a driving factor in human progress. However, these advancements

come at a cost. Materials and geometries are increasingly being pushed into more

demanding regimes, wherein a straightforward analysis starts to break down.

2Other important tasks remain such as input reconstruction and parameter identification but these
rely on identification of a good model and a method of producing predictions.



Introduction 3

1.1 The linear elephant and the nonlinear zoo

The fundamental laws that govern simple structural dynamics are linear equations. New-

ton’s second law, viscous damping and Hooke’s law of elastic deformation all exhibit this

property. The presence of linearity in the equations of motion give rise to two properties

homogeneity and additivity. Collectively these properties are known as the principle of

superposition. For some linear dynamic system S,

y = S(x1 + ax2) = S(x1) + aS(x2)

The response from multiple inputs can be reconstructed via the sum of the individual

contributions. Structural dynamic analysis of linear systems is by now an extremely

advanced field. Since the 1970s, modal analysis [1], has emerged as the framework for

conducting linear analysis and has enjoyed enormous popularity. In Chapter 2 a detailed

account of the method will be introduced, but for now it will be sufficient to say that the

tasks of identification, prediction and simplification all yield to linear modal analysis.

Unfortunately, modal analysis is only valid for linear structures and cannot address

nonlinearity.

To describe the dynamics of a structure as nonlinear is a somewhat negative definition

of reality.3 No single text could possibly describe all the myriad ways in which the

conditions of linearity breakdown.

The effect of nonlinearity on structural dynamics ranges from the inconvenient to the

profound. For small nonlinear contributions, the breakdown of superposition leads to

an amplitude dependence in the resonance frequencies of harmonic systems. For more

significant nonlinearities, diverse phenomena are observed, including jump-phenomena

[2], bifurcations [3] and chaos [4] (extreme sensitivity to initial conditions). In some

cases, nonlinear effects can even be harnessed to produce smaller and more efficient

sensors [5] or energy harvesters [6].

In engineering, nonlinearity can enter the dynamics from many directions. A common

loss of linearity arises via the material properties. As the demand for ever lighter and

stronger materials drives material selection in engineering, the presence of nonlinearity

is becoming more and more difficult to ignore. A common example is the elastic limit.

When loaded, many materials will initially deform proportionally (i.e linearly). However,

past a certain level of deflection (termed the elastic limit), the stiffness begins to depend

3“Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-
elephant animals.” —Stanislaw Ulam.
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nonlinearly on the level of forcing, as changes are made to the atomic structure of the

material.

Another type of material nonlinearity is hysteresis. Hysteretic nonlinearities occur be-

cause of irreversible thermodynamic changes in the material and result in a lag in the

relationship between loading and response. Because of this ‘memory’ effect in the dy-

namics, hysteretic systems are particularly challenging to model [7].

As well as via material properties, linear assumptions can also be violated by geometry.

A classic example is the fixed-fixed beam. This idealised structure exhibits geometric

nonlinearity for deflections on the order of only the thickness of the beam at the midpoint

[2]. Another common example is the simple pendulum, which is patently nonlinear for

only moderate angular displacements.4

Driven by computer-aided design and advanced manufacturing techniques such as ad-

ditive manufacturing and multi-axis machining, the geometries available to the design

engineer are today more complex than they have ever been. This complexity brings

advantages in terms of performance, but also leads inevitably to increased nonlinearity.

As well as materials and geometries, the interfaces between components are another

common source of nonlinearity. Looseness in bolted joints gives rise to multi-linear

stiffness regimes that violate superposition. Common conditions such as friction and

impact lead to discontinuities in the restoring forces and thus to nonlinearity in the

dynamics.

As well as the nonlinearities presented above, linear analysis is similarly incapable of

dealing with other complex yet common phenomena such as buckling [8, 9], rocking [10],

and structural failure [11].

1.2 Motivation: Three challenges in nonlinear structural

dynamics

A thorough assessment of structural dynamics is critical to the development of current

and future engineering structures and vehicles; from larger wind turbines,5 to future

low-carbon modes of transportation. For the author, it is impossible to imagine that

the new materials, geometries and assemblies that will enable these advancements will

result in anything other than an increase in structural nonlinearity.

Nonlinearity breaks the analysis of linear structural dynamics in all three places.

4The linear assumption breaks down for restoring force from gravity F = mg sin(θ) ≈ mgθ.
5The capacity of a wind turbine can be related directly to its blade length.
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• Identification: Nonlinear phenomena such as amplitude dependence make identi-

fication challenging.

• Prediction: Exact solutions are unavailable for nonlinear differential equations in

general.

• Simplification: Decoupling of the equations of motion is not possible in general

because of the breakdown of the principle of superposition.

These analyses are the key tasks that an engineer must complete in order to design,

control, predict and monitor structures from a dynamical point of view. It is asserted

here, that addressing each of these undertakings in the nonlinear case constitutes a grand

challenge in structural dynamics research.

The remainder of this section will introduce three grand challenges for nonlinear struc-

tural dynamics as the motivation for the results of this thesis. The following chapter

will proceed by analysing each challenge in detail and so only an overview is included

here.

Challenge I: Nonlinear system identification

Central to scientific analysis is the connection of input actions to output results. Under-

standing (and describing mathematically), the complex relationship between cause and

effect is perhaps the most fundamental building block of engineering research.

In dynamic systems, the connection between time-varying input and time-varying output

data is the problem of system identification. The structural dynamics of linear systems6

can be cogently understood through the lens of modal analysis [1]. However, the zoo of

nonlinearity is resistant to a single all-encompassing approach.

The core challenge of nonlinear system identification (NLSI), is that nonlinear phenom-

ena are incommensurable compared to the linear case. The diverse phenomena that a

nonlinear system can exhibit does not lend itself to be encompassed by a single, physi-

cally meaningful description.

NLSI in structural dynamics has resulted in significant research effort in recent decades,

reviews of the state of the art can be found in [12, 13]. Despite significant progress, the

challenge is not solved. Major avenues for amelioration remain.

The first area in which NLSI methods stand to be improved is interpretability. Modern

machine-learning techniques such as neural networks [14] are able to learn complex

6Subject to some restrictions as shall be seen in the following chapter.
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dynamic relationships and give excellent performance in terms of error metrics. However,

the neural network does not afford the dynamicist any insight as to the nature of the

dynamics that have been learnt.

Another direction in which NLSI stands to make progress is the treatment of noise and

uncertainty. Data from real structures is inescapably corrupted by noise and errors. In

the presence of high levels of noise, the identification task is particularly challenging and

great care must be taken to avoid over-fitting and bias. Faced with noise and uncertainty,

the engineer must be upfront about the extent of their confidence.

Of the three challenges, NLSI is perhaps the most well-treated at the time of writing.

Although significant work remains to be completed, research over several decades has

generated a toolbox of methods for analysis.

Challenge II: Exact solutions to nonlinear differential equations

If one were tasked with enumerating the most pressing challenges in modern science, a

better understanding of nonlinear phenomena would feature among the most prevalent.

The mathematical object that encodes the relationships between physics and these phe-

nomena is usually the differential equation. These equations describe analytically, the

evolution of quantities in time and space.7 Specifying and solving differential equations

is the kernel problem in everything from the prediction of weather and stock market

fluctuations to the motions of the planets and particles. Indeed, one of the prestigious

Clay Institute Millennium Prizes [15] is concerned with solutions to a system of nonlinear

differential equations (the acclaimed Naiver-Stokes equations [16]).

Linear dynamics are governed by differential equations that can be solved exactly and

in closed-form.8 These closed-form solutions offer significant interpretability into the

nature of the dynamics. If the engineer wishes to investigate the effect of a particular

parameter on the overall response of the structure, the effect is directly discernible from

the closed-form solution.

Nonlinear differential equations can be found everywhere in engineering. At sufficiently

small (or large) scales, almost everything ceases to obey a linear relationship. Despite

their plurality, nonlinear differential equations are almost exclusively without closed-

form solution. It is enticing to imagine the potential insight into nonlinear phenomena

that might be afforded by nonlinear solutions to differential equations. Even an explicitly

parametric solution to a nonlinear differential equation may afford key insights into the

behaviour in the general case.

7And indeed many other things besides.
8For constant-coefficients and some cases of varying coefficients.
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Challenge II is perhaps the most blue-sky of those considered in this thesis. It is far from

certain that such exact, closed-form solutions even exist in general. Such solutions have

thus far evaded researchers employing traditional techniques. However, it is interesting

to imagine how recently-developed heuristic optimisation methods might offer a new

perspective.

Challenge III: A nonlinear extension to linear modal analysis

As has been stated many times already in this introduction, linear modal analysis is

pervasively useful for the analysis and interpretation of linear structural dynamics.

Frequency-based methods [17] and hardware9 have proliferated to the extent that the

method is practically standard in an industrial setting.

Modal analysis decomposes the structural dynamics into independent single degree-of-

freedom systems from which the overall response can be calculated by the principal of

superposition. Better yet, this decomposition can be expressed in terms of physically-

interpretable properties of the dynamics; the modeshapes, natural frequencies and damp-

ing ratios.

Nonlinear systems do not obey the principal of superposition and cannot be decoupled

by a linear transformation, linear modal analysis cannot be applied. The traditional

approach to addressing this shortcoming was to linearise, to consider only small am-

plitudes of vibration for which the structure could be considered approximately linear.

However, as stated already, the increasing demands of modern engineering structures

mean that the nonlinearity can no-longer be ignored. As nonlinearity increases, what

will happen to the modal testing that is so prevalent in industrial applications?

There is an urgent need to extend the utilities of modal analysis to the nonlinear case.

Indeed, several frameworks [18–20] have been proposed over the last fifty years that are

each only able to preserve a subset of the properties of the linear case.

The challenge for structural dynamicists going forward will be to find frameworks for

nonlinear normal modes (NNM), that can be applied in a practical industrial setting,

that are robust to noise, and that capture as much utility as possible from the linear

analysis.

9The Leuven Measurement Systems (’LMS box’) has become a standard commercial solution for
experimental testing.
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1.3 Objectives of this thesis

These grand challenges are not intended to constitute an exhaustive list. Other im-

portant areas of nonlinear structural dynamics research exist; including multi-physics

interactions, nonlinear control and a more thorough treatment of damping in real-world

structures. However, the challenges presented here arise directly from the fundamental

tasks of the structural dynamist.

No thesis (or book, or library) could be sufficient to address these grand challenges

completely or in isolation. It is inevitable that a more narrow view must be taken.

In this thesis, the objective will be to present work pertaining to challenges II and III.

It will not be expected that these challenges will be solved (how could it?), but the

intention will be to take meaningful steps towards addressing them.

Engineering research has recently seen something of a paradigm shift [21], away from

small-scale laboratory testing and modelling, and into a more data-driven view of analy-

sis. Techniques developed in statistics and computer science (collectively machine learn-

ing), have enabled engineers to make rapid progress in previously-intractable problems.

It is the viewpoint of the author that these techniques offer an important opportunity

to address longstanding challenges in engineering. It will therefore be the ethos of this

thesis to attempt to approach the challenges above from a machine learning point of

view.

In particular, the objectives of this thesis will be:

• To formulate the problem of finding exact solutions to nonlinear ODE problems

as a search problem.

• To seek methods of specifying such solutions in a heuristic manner.

• To motivate methods that might find solutions to as-yet unsolved nonlinear differ-

ential equations that describe nonlinear structural dynamics.

• To establish a criteria for a useful nonlinear extension to modal analysis.

• To examine frameworks for nonlinear modal analysis in the light of these criteria.

• To investigate the recently-proposed statistically-independent framework for NNMs,

both qualitatively and quantitatively against the criteria.

As well as these major objectives, some ancillary results are also presented. The novel

contributions of this thesis are summarised in Chapter 10.
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1.4 Thesis structure

For the reader’s convenience, a brief summary of each of the following chapters is included

here.

Chapter 2 : Presents a summary of the relevant literature and background pertain-

ing to each of the grand challenges identified above. The chapter concludes with the

specification of two research questions that the remainder of the thesis will attempt to

address.

Chapter 3 : The first of two chapters that considers heuristic approaches to the exact

solutions of nonlinear differential equations. The task of finding an exact solution is

recast as a search problem with a view to motivate techniques that might be tailored

towards exact solutions. Also presented, is a novel benchmark suite of ODE problems

that has several advantages over those seen in the literature.

Chapter 4 : Presents a novel heuristic methodology for exact solutions to ODE prob-

lems, the affine regression tree. The new methodology is motivated by the results of

the previous chapter and is compared to results from an expression tree method and to

results from the literature. The methods are compared on two benchmark sets of ODE

problems, one from the literature and also the new benchmark suite proposed in the

previous chapter.

Chapter 5 : The first chapter concerned with a practical nonlinear modal analysis. In

this chapter, the recently-proposed statistically-independent NNM framework is intro-

duced as a promising direction for investigation. The criteria for a practical framework

for NNMs are reviewed. A number of metrics are proposed for the assessment of these

criteria.

Chapter 6 : Approaches the statistically-independent NNMs from a theoretical stand-

point. The Fokker-Plank-Kolmogorov (FPK) equation is used to generate an exact

modal decomposition in the limited single-degree-of-freedom (SDOF) case for a Duffing

oscillator. An extension to the multiple-degree-of-freedom (MDOF) case is envisaged as

a nonlinear optimisation problem.

Chapter 7 : Constructs NNMs from the statistically-independent framework by two

methods; a multinomial transformation [22] and a cycle-GAN [23]. The utility of each

of the modal decompositions is assessed in a qualitative manner.

Chapter 8 : Presents results pertaining to the specification of higher-order frequency-

response functions (HFRFs). Convenient closed form expressions are derived for an en-

tire class of NLSI models that are shown to have several convenient properties including



Introduction 10

the ability to interpret black-box models and act as an extremely stringent test of model

fit. HFRFs are motivated as a convenient way to assess the statistically-independent

NNMs generated in the previous chapter in a qualitative manner.

Chapter 9 : Considers at last, the statistically-independent framework for nonlinear

modal analysis with regard to the criteria of Chapter 2. The principal angle of analysis

is to perform NLSI on the modal dynamics. For each of the criteria, several observations

are presented, demonstrating the utility of the framework.

Chapter 10 : Some concluding remarks are offered as well as a summary of the novel

contributions of this thesis. Finally, some directions for further investigation are de-

scribed.



Chapter 2

Background

In Chapter 1, three grand challenges in nonlinear structural dynamics were identified and

their impact on modern engineering was discussed. This chapter will now present the

background that pertains to each of the challenges. The aim here, will be to introduce

sufficient background to arrive in each case at the state-of-the-art. This chapter will

conclude by formulating two research questions that the remainder of the thesis will be

occupied in addressing.

2.1 Nonlinear system identification

Access to mathematical models of dynamical processes is a valuable endeavour that

enables the engineer to interpret and predict their future behaviour. These processes

are often given the extremely general term system, and approaches that attempt to find

mathematical descriptions of them as tools for system identification (SI). In the world of

dynamics, a system is simply a functional relationship between some time-varying inputs

and outputs. In its most general form then, system identification is simply the task of

specifying a functional map F 1, that describes the relationship between the time-varying

input variables x(t) and the time-varying output variables y(t).

F : x(t) → y(t) (2.1)

In structural dynamics, the output variables y could be any one of the physical quanti-

ties of the system. For example, the forces, displacements, velocities and accelerations

might all be considered. The second-order nature of Newton’s second law means that

1In this thesis the terms function and functional will be used strictly. The former shall refer to static
maps and the latter shall refer to dynamic maps i.e differential equations.

11
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for structural dynamic analysis it is often sufficient to consider only one of these, and

convert to the others by numerical or physical reasoning. Owing to the prevalence of

low-cost piezo-electric accelerometers, most practical dynamic testing is conducted via

collection of acceleration data [1]. Modern laser and scanning-laser vibrometers pro-

vide an exception to this trend and can provide accurate measurements of velocities

and displacements without the integration error associated with the conversion from

acceleration data. However, laser-vibrometers add both cost and complexity and are

therefore often unsuitable for large-scale deployment. A yet more general formulation is

the state-space model [24], a common formulation seen in the control community. For a

state-space model, the functional F connects the observed inputs to a number of state

variables that are not observed directly. The system outputs are then recovered by the

application of a static observation function.

When the dynamics of the functional F are linear, the task of identification is well

understood2, and several powerful techniques are available depending on the application.

In structural dynamics, linear modal analysis (LMA), has emerged as the lingua-franca

for system identification of linear dynamics. LMA has a number of highly-useful features

that provide both a compact, decoupled representation of the dynamics and physical

insight in terms of natural frequencies and modeshapes. A full discussion of LMA is

reserved for a following section. However, the reader is directed to the comprehensive

monograph [1] for a full treatment of linear modal analysis in an identification context.

For a nonlinear functional F , identification is more challenging. So-called nonlinear

system identification (NLSI) is a highly-active area of investigation that has attracted

much attention in recent decades.

Although NLSI is a significant challenge in structural dynamics, it is not a principal

aim of the current thesis and so the author feels that an extravagant treatment of the

relevant literature lies outside the remit of this chapter. For a more complete view

of the field, extensive surveys of the literature can be found over several decades in the

review papers [12, 13, 25]. Instead, this section will provide an elucidatory categorisation

of NLSI methods and introduce mathematically some models that will be required for

analysis later in this thesis.

2.1.1 The axes of NLSI

Categorisation of NLSI methods is not a straightforward task. The very general nature of

the problem (to find a functional mapping F between some input and output data), leads

2This is not to say solved, as meaningful work remains to be completed in the treatment of output-only
identification, uncertainty quantification, treatment of sensor error and other areas.
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Figure 2.1: The axes of NLSI methods.

naturally to a very general suite of techniques that can be applied. Indeed, researchers

from control [26–28], machine learning [29], mechanical engineering [30–32], biology [33]

and many others have developed and applied NLSI methods, and a growing interest has

been shown in ‘cross-pollinating’ research from these fields [34].

Evidently, NLSI encompasses a broad church of techniques and tools. In place of a

traditional hierarchical categorisation of NLSI methods it is perhaps more illustrative

to consider only the ‘axes’. In Figure 2.1 a number of attributes are considered for the

categorisation of NLSI methods. It should be noted that these attributes describe the

models and techniques used for conducting identification of a nonlinear system rather

than the properties of the structure of interest.

As alluded to above, perhaps the most fundamental distinction that can be made between

system identification approaches is that made between linear and nonlinear models. Al-

though this seems a dichotomy at first (clearly linear models can only represent linear

dynamics), techniques such as best-linear approximation (BLA) [35], quasi-linear meth-

ods [36] and Koopman operators [37] (infinite-dimensional linear expansions of nonlinear

functionals) serve to blur the line from an identification point of view.

Perhaps the next biggest distinction that can be drawn between NLSI techniques is time-

domain resolution. Continuous methods seek to infer a representation of the nonlinear

functional F that can be evaluated to arbitrary precision. Interest in continuous-time

identification methods spans several decades [38]. Methods of this type include tech-

niques based on wavelet transforms [39, 40], whereby a finite-basis of kernels in the

frequency domain are used to build a representation of the nonlinear functional. More

recently, neural-network models have been proposed to approximate the functional di-

rectly [14] in a time-continuous fashion. Methods based on the Volterra series [41] can

also be considered time-continuous as they give access to a functional series represen-

tation of F . Indeed, any method that specifies an analytic continuous representation

for F (parameter-estimation, linear modal analysis) can likewise be considered time-

continuous.
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In [12], the process of NLSI is broken down into three phases:

1. Detection of nonlinearity.

2. Characterisation of nonlinearity.

3. Parameter estimation.

This type of analysis is very much rooted in gaining a physically-meaningful represen-

tation of the dynamics (linear and otherwise), that are present in the system. So-called

white-box models rely on finding analytical descriptions of the types of nonlinearity

(friction, hysteresis, impact) that are present in structural dynamics from engineering

or physical insight. Conducting NLSI in this fashion permits access to the model struc-

ture of F directly. Thus, the NLSI problem is reduced to one of parameter estimation,

for which a plethora of applications can be found in the literature using tools such as

evolutionary optimisation [32, 42–44], particle-filters [45, 46] and several others.

In contrast to white-box models, Black-box approaches to NLSI make no attempt to

preserve physical insight in favour of better model performance. Classical model formu-

lations including the linear auto-regressive models with exogeneous inputs (ARX), the

nonlinear extension (NARX) and the nonlinear moving-average extension (NARMAX)

are examples of black-box techniques. For a comprehensive reference on the subject, the

reader is directed to [30]. Developments in machine learning have lead to an explosion of

black-box models including neural-network NARX (NN-NARX) [47] and kernel-NARX

models (of which an important member is the Gaussian process NARX (GP-NARX)

model [21, 48, 49]).

As well as these two extremities, there is considerable interest in so-called grey-box

approaches in NLSI [50, 51]. The ethos here is to marry the powerful representation

performance of black-box models with the physical insight of white-box models. A full

treatment of the many shades3 of grey that have been proposed is beyond the scope of

the current chapter; however, the interested reader is directed to [52] for an instructive

reference.

Another important delineation between methods is whether or not the model used is

parametric. A parametric model requires the specification of a number of parameters,

whereas in a non-parametric model, the model is fixed entirely by the observed data. In

practice, most NLSI approaches rely on some explicit parametrisation of either physical

quantities or black-box parameters. However some methods that permit a least squares

3Groans from the audience.
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Table 2.1: A categorisation of some common NLSI methods.

Model class Linearity Resolution Box Prob. Param.

LMA Linear Continuous White No Yes
SSI Linear Continuous White Yes Yes
BLA Linear Discrete Black No No
ARX Linear Discrete Black No No
White-box Nonlinear Continuous White No Yes
NARX Nonlinear Discrete Black No Yes
NARMAX Nonlinear Discrete Black No Yes
NN-NARX Nonlinear Discrete Black No Yes
NN-WT Nonlinear Continuous Black No Yes
NN-ODE Nonlinear Continuous Black No Yes
Kernel-NARX Nonlinear Discrete Black No Semi
GP-NARX Nonlinear Discrete Black Yes Semi
SMC2 Nonlinear Discrete Black Yes Yes

solution (such as ARX, BLA or the approach of Bai [53, 54]) can be considered non-

parametric.

Driven by a desire to quantify uncertainty in mathematical modelling in general, the field

of NLSI has seen a great deal of interest in probabilistic methods. Probabilistic interpre-

tations of many classical algorithms have been proposed. Bayesian approaches to NLSI

have likewise gained a lot of traction including reference-based subspace identification

(SSI) [55] for linear modal dynamics and powerful sampling-based approaches such as

Stochastic Monte-Carlo squared (SMC2) [56]. The rise of Gaussian-process regression

[57] techniques has also been felt in the NLSI community in the form of GP-NARX

models [21, 48, 49] that combine the flexibility of kernel methods with the uncertainty

quantification of the Gaussian process.

Table 2.1 positions several common NLSI methods on the axes of Figure 2.1. The entries

listed here are far from exhaustive (indeed one could imagine many more categories and

subcategories), but hopefully serve to give an indication as to the breadth of tools that

are available.

2.1.2 Some NLSI models used in this thesis

It is useful at this stage to introduce some NLSI models that will form part of the

analyses presented later in this thesis. Both linear and nonlinear models will be used

and so this section begins with a description of the ARX model.

ARX models are linear, discrete-time black-box models that predict the value of the

output at a future time point based on observations from the input and output at

previous time points. The explicit form of the model is,
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yt =

ny∑
i=1

aiyt−i +

nx−1∑
i=0

bixt−i (2.2)

where nx and ny refer to the number of lagged inputs and outputs respectively (i.e the

amount of ‘memory’ in the model) and a = [a1, a2, . . . , any] and b = [b1, b2, bnx] are

vectors of model parameters. For a given lag structure, ARX models also permit a

vectorised formulation,

y = H

[
a

b

]
(2.3)

where H is the Hankel matrix of lagged inputs and outputs at time t given by,

H =



yt−1 yt−2 . . . yt−ny xt xt−1 xt−2 . . . xt−nx+1

yt−2 yt−3 . . . yt−ny−1 xt−1 xt−2 xt−3 . . . xt−nx

yt−3 yt−4 . . . yt−ny−2 xt−2 xt−3 xt−4 . . . xt−nx−1

...
...

yt−N+p xt−N+p−1


(2.4)

whereN is the total number of temporal points in the training data and p = max(ny, nx).

ARX models are completely defined by the model weights ai and bi which can be simply

fitted to input output data by first constructing the Hankel matrix and then finding the

least-squares solution of the linear equation in (2.3).

Extending the ARX class to nonlinear models gives rise to the NARX formulation.

Rather than a linear expansion of the lagged variables, a static map is selected that

predicts the value of the output at the next time step.

yt = Φ(yt−1, yt−2, . . . , yt−ny , xt, xt−1, xt−2, . . . , xt−nx+1) (2.5)

where Φ is a static nonlinear map from the Hankel matrix to the predictions. As before,

NARX models can be expressed in terms of the Hankel matrix,

y = Φ(H) (2.6)
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In practice, Φ can be selected based on domain knowledge or by a sufficiently flexible set

of basis functions (polynomials or radial basis functions (RBFs) are common choices).

Training of NARX models can proceed in a number of ways depending on the choice

of the nonlinearity. For choices of Φ that are linear in the parameters (i.e polynomials,

RBF, etc), the vectorised formulation can be factorised as,

y = αTΦ(H) (2.7)

where α is a vector of model weights that can be solved by a least-squares procedure4.

A highly-flexible specific case of the NARX model is the GP-NARX model. The GP-

NARX formulation assumes that the nonlinear map Φ can be approximated by a Gaus-

sian process. This formulation comes with a number of advantages over more traditional

approaches, such as a polynomial expansion; uncertainty quantification is handled nat-

urally5, and the non-parametric form permits a high degree of model flexibility. A full

review of Gaussian process and GP-NARX literature is beyond the scope of this paper

and so only a description of the approach is included here; for excellent references on

the topics, the reader is directed to [21, 49, 57].

A Gaussian process (GP) is essentially a regression over a space of functions. For a multi-

input single-output (MISO) model the core of the GP is the regression formulation6,

yi = f(x) + ϵi, ϵi ∼ N (0, σ2
n) (2.8)

where f is a latent function that has not been observed directly, but can only be accessed

via the observations y. The GP is formed by assuming a distribution over possible values

of the latent function as,

f(x) ∼ GP(m(x), k(x,x)) (2.9)

where k is a positive semi-definite covariance kernel k(x, ·) → R+ and m(x) → R
is the mean function. Several choices for both of these functions are applicable and

their selection is often driven by domain knowledge [57]. In the absence of any prior

4It is important to note that any hyperparameters in the nonlinear function (model order, length-
scales, exponents) must be optimised separately.

5Uncertainty quantification for GP-NARX models is straightforward for one-step-ahead prediction,
for other prediction types the situation is (to put it lightly) more complex. The reader is directed to
[21] for a discussion.

6The Gaussian process model by itself is a static map and cannot represent functional objects. In
the notation that follows, inputs and outputs to the static map are indexed with i.
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knowledge, the zero-mean m(x) = 0 function is the safest assumption and ensures that

the GP function is entirely shaped by the data.

The real beauty of the GP formulation is that it allows one to marginalise over all

possible latent functions f . The result is a multivariate normal distribution over some

observed data {X,y} and unobserved testing points {X∗,y∗}.

(
y

y∗

)
∼ N

(
0,

[
K(X,X) + σ2

nI K (X,X∗)

K (X∗, X) K (X∗, X∗) + σ2
nI

])
(2.10)

where K(X, ·) → Rn
+ is a vectorised formulation of the covariance kernel for n training

inputs. From this distribution, it is straightforward to calculate the posterior predictive

distribution for unobserved variables y∗ as,

y∗ ∼ N (E[y∗],V[y∗]) (2.11)

where the posterior mean prediction is given by,

E[y∗] = K (X∗, X)
[
K(X,X) + σ2

nI
]−1

y (2.12)

and the posterior variance is given by,

V[y∗] = K (X∗, X∗)−K (X∗, X)
[
K(X,X) + σ2

nI
]−1

K (X,X∗) + σ2
n (2.13)

Substituting the zero-mean function and the posterior variance into the formulation of

a NARX model in (2.6) and taking the mean prediction of the posterior distribution

(equivalent to a maximum a posteriori (MAP) evaluation), gives the prediction or one-

step-ahead (OSA) prediction from the GP-NARX on some unseen lagged inputs H∗

as,

y∗
OSA = E[y∗] = K (H∗, H)

[
K(H,H) + σ2

nI
]−1

y (2.14)

where H is the Hankel matrix of training data as before and H∗ is the Hankel matrix of

inputs for the prediction points. A more rigorous test of the performance of the model

is the simulation or model-predicted output (MPO). To obtain this type of prediction,

the model predictions are fed back into the model as inputs to the next time step.

Such predictions give a more accurate picture of the dynamics that have been learned
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during training. MPO simulation requires new predictions for each time step and so

the vectorised form of the equations above cannot be used. The prediction at time t for

MPO prediction is given by,

y∗t = k (h∗
t , H)

[
K(H,H) + σ2

nI
]−1

y (2.15)

where h∗
t are the lagged inputs and lagged predicted outputs from the current time step,

h∗
t =

[
ŷ∗t−1 ŷ∗t−2 . . . ŷ∗t−ny

xt xt−1 xt−2 . . . xt−nx+1

]
(2.16)

where the ŷ∗ are model predictions from previous time steps that are fed back into the

model.

2.2 Solutions to differential equations

When the form of the functional F is known, the problem of NLSI is reduced to one of

parameter estimation. If one is able to identify the parameters (by physical insight or

otherwise), the equations of motion (EOMs) can be recovered in closed form. It may at

this stage be tempting to feel that the hard part is over. However, significant analytical

challenges remain.

Mathematically speaking, the equations of motion of a nonlinear structure in contin-

uous time are simply differential equations. Encoded within them is all the required

information necessary to make predictions and understand the dynamics. How then can

this pertinent information be extracted? In order to progress from the EOM to a time

domain prediction, the differential equation must first be solved.

As shall be seen, for linear dynamics (subject to proportional or Rayleigh-type damping),

this can be done in closed-form with little difficulty. However, when the dynamics

are nonlinear, this represents a significant challenge. For the nonlinear EOMs that

are commonly seen in structural dynamics, almost no closed-form solutions have been

discovered.

2.2.1 Differential equations disambiguation

Since the early descriptions of dynamic systems by Leibniz and Newton, it has been

apparent that not all systems are equivalent. The behaviour of structural dynamic sys-

tems alone includes a highly diverse set of observable phenomena including periodicity,
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decay, resonance and chaos. Given the wide variety of properties, it is unsurprising that

significant effort has been directed towards classification of differential equations.

The most immediate classification available to the researcher is based on the structure

of the differential equation itself. In order to facilitate the discussion that follows (and

as a useful nomenclature for the reader), some major definitions are included here.

Any general differential equation can, without loss of generality, be transformed into its

implicit form,

Ψ = 0 (2.17)

Where Ψ is a static function that maps a number of independent variables xi, unknown

functions of those variables fi (the dependent variables), and the derivatives and partial

derivatives of the fi to a real value7.

The highest order derivative r found in the arguments of Ψ is known as the order of the

differential equation. More than one such equation Ψ over the same set of independent

and dependent variables (coupled or otherwise) is termed a system of d differential

equations,

Ψ1 = 0

Ψ2 = 0
...

Ψd = 0

(2.18)

A differential equation is ordinary (an ODE) if the terms of Ψ contain only the derivatives

of a single independent variable x,

Ψ(x; f(x), f (1)(x), . . . , f (r)(x)) = 0 (2.19)

where superscripted indices refer to derivative orders. Or equivalently for systems of

ordinary differential equations (SODE),

7Here it is assumed that the differential equation is defined in continuous time. For a translation to
discrete time dynamics, the derivatives and partial derivatives can be replaced by lagged values of the
of the dependent variables.
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Ψ1

(
x, f(x), f (1)(x), . . . , f (r)(x)

)
= 0

Ψ2

(
x, f(x), f (1)(x), . . . , f (r)(x)

)
= 0

...

Ψd

(
x, f(x), f (1)(x), . . . , f (r)(x)

)
= 0

(2.20)

where vector quantities are given boldface notation. Conversely, a differential equation is

partial (a PDE), if the unknown function is in several independent variables f(x1, . . . xn)

and their partial derivatives,

Ψ

(
x1, . . . xn; f(x1, . . . xn),

∂f

∂x1
, . . .

∂f

∂xn
;

∂2f

∂x1∂x1
, · · · ∂2f

∂x1∂xn
; . . .

)
= 0 (2.21)

As before, a system of PDEs (SPDE) is defined as a number of such equations over the

same basis of independent and dependent variables.

A very fundamental concept in the categorisation of differential equations is again lin-

earity. A linear differential equation (be it ODE or PDE) is one that can be expressed

as a purely linear combination of the derivatives of the independent variables,

Ψ = b(x) +
r∑

k=0

ak(x)f
(k)(x) = 0 (2.22)

Where the a(x), b(x) are functions of x. In the case where all ak(x) are constant, the

equation is referred to as having constant parameters or constant coefficients. This

property generalises to PDEs and SPDEs where the sum includes the partial derivative

terms. Any differential equation that does not have this property is nonlinear (NLODE,

NLPDE, etc.).

A homogenous differential equation, contains for every term an unknown function or

one of its derivatives. for structural systems, homogenous problems arise in the absence

of external excitation i.e free-vibration. Equations without this property are termed

inhomogeneous.

Alongside the structure of the differential equation, there are often restrictions placed

on the form of the dependent variables. These restrictions arise in physically interesting

problems because of the geometric and physical context being described. There are

conventionally two classes of problem.
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Table 2.2: Summary of properties of differential equations. Notation is in reference
to (2.23).

Property Description Has property Else

System d > 1 SDE DE

Ordinary ∂i+jf
∂xi∂xj

= 0 ODE PDE

Linear Ψ = b(x) +
∑r

i=0 ai(x)f
(i)(x) = 0 Linear DE NLDE

Homogenous g(x1, . . . xn) = 0 Homogenous Inhomogeneous
Parameter type ai(x) constant Constant Variable

Problem type Ψ = 0, f (i)(x0) = ui IVP BVP

An initial-value problem (IVP) fixes the values of the dependent variables fi at some

point in their domain. Solution of the IVP requires specification of a functional form

of the dependent variables that satisfies both the differential equation and the initial

condition. IVPs arise most frequently in physical time-varying problems where the state

of a system at some initial time is known8. Examples of typical IVPs include vibration

analysis, orbital mechanics and the motion of projectiles.

A boundary-value-problem (BVP) specifies the values of the dependent variables at the

boundary of some interval of interest. A solution to the BVP is defined as above, where

the values of the fi are given functional forms that fulfil both the differential equation

and the constraints. BVPs arise most often in physical PDE problems whereby a time-

varying quantity defined on a continuous domain is studied. For example, problems in

heat transfer, fluid dynamics and wave propagation are most often posed as BVPs.

Because most of the properties described thus far are independent, it is difficult to

summarise them within a hierarchical figure. One can more or less choose any properties

from above and describe a meaningful subset of differential equations. Instead, Table

2.2 provides a summary of abbreviations. Descriptions of properties in the table refer

to the general differential equation,

Ψi

(
f(x1, . . . xn);

∂f

∂x1
, . . . ,

∂f

∂xn
;

∂2f

∂x1∂x1
, · · · ∂2f

∂x1∂xn
; . . .

)
= g(x1, . . . xn), i = 1, . . . , d

(2.23)

Ever more general and granular classifications can be made to include objects such

as algebraic (including integrals) and stochastic (non-deterministic terms) differential

equations. The author feels that solution of nonlinear ODEs is itself a significantly

challenging task and so analysis will proceed for ODE problems only.

8This itself could be considered a boundary.
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Existence and uniqueness of solutions

Given the physical implications of solutions to differential equations it is perhaps not

surprising that much interest has been directed towards determining exactly when a

solution exists and whether or not it is unique. The answer to this question affords

significant philosophical insight. Non-unique solutions to physically expressive problems

carries implications for determinism, the non-existence of solutions may inform us that

our models might not be rich enough to describe the dynamics that can be observed.

By far the majority of differential equations that yet possess exact solutions are linear. As

luck would have it, many of the physical laws that govern the universe can be adequately

described by linear differential equations, Newton’s motion of solids, Faraday’s induction

of electric fields and Fourier’s heat flow are notable examples9. Concrete understanding

of the linear differential equation has provided the fundamental framework for much

of modern analysis into structural dynamics and control systems. Linear analysis has

become so pervasive that even in the presence of known nonlinear phenomena, it is

often the approach of the engineer to linearise [28, 35, 37]; to try to find the closest

approximation to a linear system such that the analysis techniques to which they are

familiar remain available.

The resistance to addressing the nonlinearity directly is understandable. Regrettably,

exact solutions exist for only a tiny subset of differential equations. Exact solutions

to many interesting and important problems remain unyielding. There are notable

exceptions, for example Duffing’s oscillator (in its unforced and undamped form) was

solved (by Duffing [58]) in terms of elliptic functions. The homogenous nonlinear IVP

is,

f ′′ + kf + kdf
3 = 0, f(0) = x0, f ′(0) = 0 (2.24)

The solution in terms of Jacobi elliptic functions is,

f(x) = x0 cn

(√
k + kdx

2
0t,

√
kdx

2
0

2
(
k + kdx

2
0

)) , k + kdx
2
0 ̸= 0 (2.25)

where cn(x,m) is the Jacobi elliptic cosine function [59].

Several important contributions have been made regarding the existence and uniqueness

of solutions to differential equations. The first such theorem, published (with the correct

proof), by Peano and Cauchy in 1890 [60] applies to initial-value problems. In the work,

9It is important to note that all these examples are themselves approximations.
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Table 2.3: Summary of existence and uniqueness theorems for different classes of
differential equation.

Theorem Applicable DEs Conditions Exist. Unique.

Peano ODE IVPs, SODE IVPs Ψ, g continuous Yes No
Piccard-Lindelöf ODEs IVPs, SODE IVPs Ψ, g Lipchitz Yes Yes
Carathéodory Inhomogeneous ODEs Ψ continuous Yes Yes
Cauchy-Kowalevski Cauchy PDE IVPs Ψ, g analytic Yes Yes

the authors are able to prove that any first order ODE IVP has a solution provided Ψ

is continuous over the support of the independent variable.

A more powerful but restrictive result was later proved for first-order ODE IVPs. The

so-called Piccard-Lindelöf theorem proves both the existence and uniqueness of solutions

provided that Ψ is Lipchitz continuous. An even more general result still is proved by

Carathéodory, requiring only that the homogenous terms of an ODE be continuous. The

result proves both existence and uniqueness for a number of non-smooth differential

equations. For PDEs with specific initial Cauchy boundary constraints, the Cauchy-

Kowalevski theorem proves uniqueness and existence of analytic PDE IVPs.

Table 2.3 contains the existence and uniqueness theories described above. The table is

only intended to illustrate the scope of what is and is not known. For a more detailed

reference, the reader is directed to [61].

It is one thing to be able to prove the existence or uniqueness of a solution, but it is

entirely different to be able to find that solution. Of the types of equations covered by

the theorems in Table 2.3, only a further subset are able to be solved directly. There are

scarce examples of general solutions to differential equations outside of the linear ODE

class.

2.2.2 So you want to solve a differential equation?

So far in this chapter, much has been stated about the existence and uniqueness of

solutions and the methods and challenges contingent in identifying them. But what

objects can constitute a solution? It has been stated already that the solution is the

unknown function f or functions f that satisfy both the differential equation and any

constraints placed upon it. Clearly there are a multitude of objects that might have this

property.

The term ‘solution’ has been applied to a great many objects in the differential equa-

tion literature. Analytical methods provide functional forms for f as expressions in

mathematical notation. Such objects can represent an exact solution (satisfying the
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DE and its conditions exactly across the entire domain), or approximately (providing

a close approximation in some subset of the domain). Numerical methods specify only

the values of f at a finite subset of the domain. Heuristic and hybrid methods vary in

their approaches, often combining a mixture of exact functional and numerical terms

(for example a vector of basis functions with numerically-optimised weights).

Approximate methods

A great number of tools are at the disposal of the engineer for providing solutions

to nonlinear ODEs in an approximate manner. Perhaps the most familiar approach

is that of numerical integration. Methods such as Euler’s method and Runge-Kutta

schemes, specify approximate solutions to differential equations by iteratively advancing

the dynamics forwards in time. At each time point, approximations of the derivatives

are taken and used to predict a system trajectory over some time interval h. For many

such methods, theorems have been proved placing upper bounds on the amount of

absolute and relative error accrued during integration for various sizes of h. Recently,

a probabilistic view of numerical integration has been taken [62, 63], that includes a

quantification of the uncertainty introduced by the integrator. A full review of numerical

methods lies squarely outside the remit of this chapter, the interested reader is directed

to [64] for a jumping off point.

As well as numerical methods, there are also a number of analytical approaches that

specify approximate solutions to differential equations. Examples include perturbation

methods [65] and approaches based on harmonic balance [66].

For many problems in structural dynamics, a numerical-integration solution is suffi-

ciently useful. However, approximate solutions can only provide a narrow view of the

response of a structure. What happens if a parameter changes value? What happens

if the excitation to the system is radically different? Approximate solutions cannot

approach these questions without recomputing the dynamics.

Although pervasive and useful, it will not be an objective of this thesis to produce

approximate solutions to differential equations. Instead the focus will be on methods

that might yield exact analytical solutions.

Exact methods

In order to specify an exact solution to a differential equation, one must primarily rely on

exact analytical tools. The general approach depends highly on the form of the problem,

but can be summarised as a search for a transformation into a canonical form for which
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the solution is known up to some parameterisation or change of variable. Although the

problem of knowing generally if one can make such a transformation is likely unknowable,

strong heuristic methods have been developed and widely implemented in computer

algebra systems (CAS). CAS software is, at the time of writing, highly proficient at

locating the known solutions to differential equations, with leading packages such as

Mathematica [67], Maple [68] and Sympy [69] able to specify exact forms for many

known solutions in seconds.

Despite their proficiency in solving known problems, CAS suites are completely unable to

approach problems with no known solution. In such cases, the researcher has essentially

two options; the first is to use some insight to the problem from physics or elsewhere in

order to glean insight into the form of the solution. The success of this approach is far

from guaranteed, with luck seeming to play as important a role as intuition.

Alternatively, one might try to leverage computational might in order to approach the

solution. Such an approach could be undertaken in the brute-force sense, sampling at

random from trial functions until one that satisfies the differential equation is found, or

conducted in a more principled manner using heuristic methods.

It is the heuristic approach that offers the most potential for exact solutions to as-yet

unsolved differential equations. Using computational effort to heuristically solve differ-

ential equations exactly is not a new proposal. In fact, Koza highlighted the viability of

symbolic regression in the widely-cited book [70] as early as 1992. It is the opinion of the

author that the computational resources available to the modern researcher combined

with recent advancements in the power of CAS tools provide an exciting opportunity. If

these components can be combined in a new framework for exact solutions, the author

believes that some previously-intractable problems may finally yield solutions.

2.2.3 Symbolic regression

One of the most pervasive approaches thus far considered for heuristic solution of dif-

ferential equations is symbolic regression; the advantages are several. The approach has

no ties to linearity or any other type of differential equation, a generic representation

can be constructed that can encode a broad array of functional forms and no restriction

is placed on the form of the objective function.

Symbolic regression performs optimisation over mathematical expressions. It is most

useful when neither the underlying model or its parameterisation are known to the

investigator or when an analytic (white-box) model is required. Most commonly, sym-

bolic regression is conducted as an application of genetic programming [70], but this is
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not necessarily the case. Several alternative symbolic regression frameworks have been

proposed including approaches based on deep learning [71] and Bayesian inference [72].

Despite these alternate frameworks, genetic programming remains the most common

tool. A major advantage is the degree of flexibility afforded by the approach. Authors

are able to select encodings, search operations and objective functions in order to most

suitably approach the problem at hand.

A great number of problems have been approached by authors using symbolic regression.

In addition to solving generic differential equations, authors have considered control

problems [73], financial time-series forecasting [74], chemical process modelling [75] and

many other problems.

As well as countless application papers, substantial academic effort has been invested in

developing ever more effective methodologies for performing symbolic regression. A full

review of the state of the art is beyond the scope of this chapter, but a recent review

in [76] summarises the relative benchmark performance of the field well. Important

contributions include regularisation based on order of nonlinearity in [77] and semantic

structure-preserving crossover and mutation operations for expressions in [78].

Symbolic regression of solutions to differential equations

The first serious consideration is given by Koza in his well-cited 1992 monograph [70]. In

the book, a Lisp-program encoded symbolic regression genetic program is presented that

is able to find approximate and exact solutions to several symbolic regression problems

including the solution of three differential equations with relatively compact solutions.

The features of the genetic program used (prefix encoding, tree crossover, subtree mu-

tation, numerical differentiation, L2-norm error for the fitness function), have come to

be recognised as the standard methodology. This approach is often used as the baseline

to which subsequent methods are compared.

After Koza, several authors presented variations on the method including string encod-

ings [79], reverse-Polish notation [80], a hybrid-analytical approach [81] and an extension

to systems of differential equations with separate parameter estimation in [82].

The next important result was generated by Tsoulos and contributors in 2006 [83]. In the

paper, the authors propose a grammar-based encoding combined with elementary single-

point crossover and mutation operations. Fitness is calculated using an L2 metric over

the right-hand side remainder of the target differential equation with additional terms

included for specifying boundary conditions. Differentiation of candidate expressions is

conducted numerically using automatic differentiation [84] at a number of pre-specified
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sampling points. In the opinion of the author, the most valuable contribution of the

article is the benchmark suite of differential equations included in the work. The authors

present nine linear ODE problems and four nonlinear ODE problems. An extended

method, capable of dealing with SODEs and PDEs, is also presented and applied to four

and seven such problems respectively. A problem with no closed form solution is even

attempted, returning an approximate solution. The article reports the performance of

their method on each of these problems recovering the exact solution in most cases.

A serious limitation of the work of Tsoulos et al. is the compactness of the solutions

to the differential equations considered. In almost every problem, the solution can be

represented by a compact expression tree, severely limiting the effective search space.

One imagines that the method presented would struggle to solve differential equations

with less compact solutions. Despite this, the problems presented in the paper have

been used subsequently as a benchmark, for example in [85].

A 2008 contribution in [86] presents an approach based on L2 optimisation of a num-

ber of co-location points for the solution of PDEs. On cases where the PDE boundary

conditions have a geometrically simple structure, the authors propose a method for ap-

pending terms to the candidate solutions such that the boundary conditions are satisfied

by construction. In non-simple cases, the expressions are given extra terms from the

output of a radial basis function network.

In 2010 the authors of [85] proposed that Cartesian genetic programming (CGP) be

applied to the solution of differential equations. In the paper, the authors demonstrate

an improved benchmark performance on a suite of problems similar to the ODEs used

in [83], compared to a standard tree-based genetic programming approach.

A 2015 paper [87] utilises the idea of grammar encodings and uses techniques from con-

tinuous space optimisation (namely differential evolution) in order to produce solutions.

Elements of the encoding vector are rounded to the nearest integer after genetic op-

erations to ensure validity. The results of this paper appear promising and a highly

accurate approximation to a form of Duffing’s equation is claimed. However, fitness is

only calculated on a very limited domain of the functions and in most cases this domain

is small enough that the solution defined on it is monotonic. This combined with unreal-

istic solutions (involving many nested transcendental functions or dramatically complex

structures) are significant limitations of this study.

A paper published in 2016 presents genetic programming and automatic differentiation

(GPAD) [88]. The method uses a tree encoding and numerical automatic differentiation

to evaluate fitness. The approach is demonstrated on a number of classes of differential

equation with promising results. As far as the author is aware this contribution is the
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first to leverage an object-oriented approach to tree representation. The approach was

later extended in 2018 to the domain of stochastic differential equations [89], employed

both in the specification and solution of models.

A recent contribution in [71] proposes a very different approach to those thus far consid-

ered. In the paper the authors recast the problem in a deep learning framework using a

sequence-to-sequence model [90] trained on a synthetic dataset comprised of equation-

solution pairs. The results of the study are promising, although there are significant

doubts about the ability of the proposed model to generalise beyond the training data.

A response to the paper is presented in [91] that outlines several weaknesses of the

approach.

Despite steady progress, no single approach has yet proved decisive in driving heuristic

solution of differential equations into new territory. Despite the significance of positive

results, the conditions for research in this direction are harsh, and not without risk.

However, the author retains a positive outlook. For a given nonlinear ODE problem,

essentially three scenarios can be envisaged:

1. Closed form solutions do not exist in terms of known transcendental functions and

objects.

2. Closed form solutions do exist, but heuristic methods are insufficiently powerful

to locate them.

3. Closed form solutions are available and can be found by heuristic means.

Of these scenarios, the author feels that the second is the least probable. If a closed-form

solution is available, then it stands to reason that given enough computational effort, it

may be found by heuristic means.

The first scenario raises some interesting questions. The lack of a solution in terms

of known transcendental functions, motivates a search for new objects that encode the

behaviour of nonlinear dynamic processes. It is often the case in mathematics that

the discovery of fundamental objects is driven by a need to explain phenomena which

can be readily observed, the famous Bessel functions discovered while investigating Ke-

pler’s planetary motion (and later applied to many other physical systems) are pertinent

examples.

The absence of any solution carries interesting philosophical ramifications. In a struc-

tural dynamics context, this could be interpreted as evidence that the differential equa-

tion is an inadequate description of the dynamics. To arrive at this conclusion one must
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only reason that a ‘solution’ to the true EOM can always be observed experimentally.

To quote the author’s supervisor “When I turn on the tap, water comes out!”.

It is the third scenario from which the author draws optimism. Considering only the

nonlinear ODEs that are commonly seen in nonlinear structural dynamics, it is hard to

imagine that there is not a single one that is inexpressible in terms of the transcendental

objects that are already known.

2.3 Nonlinear normal modes

In the absence of a solution to a nonlinear ODE, the engineer does not give up hope

that the dynamics might still be understood. For structural dynamics problems, linear

modal analysis has come to define the way that engineers interpret system behaviour.

Tracking of modal properties has enabled considerable further analysis in fields such as

engineering design, machining science [92] and structural health monitoring (SHM) [93].

In this section, the procedure of linear modal analysis is introduced. It is shown that

LMA has a great number of properties that make it ideal for practical analysis of struc-

tural dynamics. It is clear that a great deal of research effort has been expended in

the search for a nonlinear extension or alternative to LMA that is able to preserve

these desirable qualities. Some criteria for a useful nonlinear modal decomposition are

motivated.

2.3.1 Linear modal analysis

Before the nonlinear approaches can be reviewed, it will first be useful to revise the linear

theory.10 A multiple degree-of-freedom (MDOF) linear structural dynamical system

(spatially discretised), can without loss of generality be described entirely by the linear

ODE,

M ÿ + Cẏ +Ky = x(t) (2.26)

where the M,C,K are n×n parameter matrices of the n-DOF system, y are the system

displacements and x is the system excitation. In order to derive the modal properties,

one considers initially the undamped, homogenous case C = 0, x = 0,

10The theory here is well covered in many textbooks ([1] for example), but is reproduced here in the
interest of consistent notation if nothing else.
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M ÿ +Ky = 0 (2.27)

The above is now a homogenous linear ODE with nontrivial trial solution,

y = ϕ cos (ωt) (2.28)

where ϕ is a modeshape vector. Substituting the above into the ODE,

−Mω2ϕ cos (ωt) +Kϕ cos (ωt) = 0 (2.29)

and then cancelling out the cosines and rearranging gives,

Kϕ = ω2Mϕ (2.30)

which can be recognised as a generalised eigenvalue problem11, the nonzero solution of

which leads to n eigenvalue-eigenvector pairs (modes); the natural frequencies ω2
i and

modeshapes ϕi corresponding to the ith mode.

The significance of these quantities cannot be overstated. Apart from acting as a reduced

order model of the dynamics (näıvely n2+n parameters instead of 2n2 in the undamped

case)12, the properties of the eigen-decomposition allow the dynamics to be decoupled.

Consider now the effect of transforming the original coordinate system by the modeshape

matrix Φ. Let the modal coordinate space be y = Φu. Then the equation of motion

becomes,

MΦü+KΦu = x(t) (2.31)

Pre-multiplying now by ΦT,

ΦTMΦü+ΦTKΦu = ΦTx(t) (2.32)

11In practice for well-defined structural dynamics systems, the mass matrix M is invertible and so a
standard eigenvalue problem can be solved instead.

12There is some additional complexity here that arises from the fact that the modeshape vectors are
an orthogonal basis. Geometrically, the modeshapes lie on the compact Stiefel manifold in Rn×n, which

has dimension Rn2− 1
2
n(n+1). The overall number of free parameters is therefore 1

2
(n2 + n).
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Since from the properties of the eigen-decomposition, the parameter matrices are diag-

onalised by the eigenvector matrix.

ΦTMΦ = [M ] = I (2.33)

ΦTKΦ = [K] = ω2
nI (2.34)

whereby bracketed quantities refer to diagonal matrices. The equations of motion in

the modal space are completely uncoupled. In the case of proportional damping, the

damping parameter matrix C can be expressed as a linear combination of the mass and

stiffness matrices.

C = αM + βK (2.35)

substituting this into the equation of motion and once again taking the modal coordinate

transform,

MΦü+ CΦu+KΦu = x(t) (2.36)

ΦTMΦü+ΦT(αM + βK)Φu̇+ΦTKΦu = ΦTx(t) (2.37)

[M ]ü+ (α[M ] + β[K])u̇+ [K]u = ΦTx(t) (2.38)

[M ]ü+ [C]u̇+ [K]u = ΦTx(t) (2.39)

and the equations of motion are still uncoupled. For most structural systems, the quan-

tity of damping is closely related to the stiffness (and not the mass, i.e α = 0) and so

the parameters of [C] can be extracted as the damping ratios,

[C] = β[K] = 2ωnζI (2.40)
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Linear modal analysis (LMA)

EoMs can be
exactly decoupled
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Figure 2.2: The useful properties of linear modal analysis.

There are yet more advantages of the modal decomposition. As well as having a more

compact representation in terms of the natural frequencies, damping ratios and mode-

shapes, these properties also afford significant physical intuition. The natural frequencies

of a system inform the engineer about the locations of resonances. The damping ratios

give insight into how quickly the response of the system will decay close to each res-

onance. The modeshapes define hyper-planes in the configuration space that describe

the synchronous motion of the system at each mode. It would be easy to argue that

armed with only these three quantities, the structural dynamicist has enough informa-

tion to inform design choices, manage operating conditions and forecast performance at

new operating points. The set {ω2
n, ζ,Φ} is invariant given the system parameters, and

sufficient to completely describe the dynamics for all possible inputs [2].

Perhaps most miraculous of all, is that the physical coordinates can be exactly recon-

structed by an inverse transformation, y = Φ−1u. This allows the contribution of each

mode to be analysed independently and then recombined via the principle of super-

position. For structures of many DOFs (and therefore many modes), this permits a

considerable computational saving, and the potential to neglect modes that are far from

the operating condition, for a reduced-order representation.

In summary, linear modal analysis is so pervasive because it is so useful in practice.

Figure 2.2 depicts the principal utilities of LMA.

2.3.2 What is a mode anyway?

Given the advantages of LMA in practice, it is utterly unsurprising that considerable

research effort has been expended in the search for an extension to the nonlinear case;

a decomposition into nonlinear normal modes (NNM) of vibration.
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Before jumping straight into the deep end, it is useful at this stage to hold some discus-

sion into exactly what is meant by a ‘mode’ of vibration and how this might be extended

into the nonlinear case13. In the published literature, there has been some contention

as to what might constitute a nonlinear ‘mode’ of vibration. To illustrate, listed below

are some objects that have been described as nonlinear modes:

1. Nonlinear decompositions into modal coordinates ui = fi(y): The fi are the

modes.

2. Synchronous motions of a structure all passing through equilibrium at the same

point: yi = fj(y1): The fj are the modes.

3. Manifolds (in configuration or phase space) upon which modal dynamics remain

yi = fj(y1, ẏ1): The fj are the modes.

4. Latent directions that minimise the statistical correlation between displacements

ui = fi(y): The fi are the modes.

Rather than offer yet another definition, the author prefers instead to consider the useful

properties that a nonlinear normal mode might retain from the linear analysis. Taking

this viewpoint encourages a natural categorisation of approaches that have been thus

far proposed. In this section, NNM approaches are grouped by the qualities of linear

modal analysis that are preserved. In Figure 2.2, the properties of LMA are grouped

under four categories.

Independence

Independence14 is defined here as the ability of the decomposition to render the dynamics

into a basis of modal displacements that cannot excite each other in isolation. Should

motion be initiated in a single mode, the others should not be excited. In the linear

case, Φ represents an orthogonal basis for describing the dynamics (given damping or

proportional or Rayleigh type). Theoretically, many frameworks for NNMs appeal to the

results of Lyapunov that show that there exist at least n families of periodic solutions

around stable equilibria in a n-DOF nonlinear system. It stands to reason that any

nonlinear extension to modal analysis should therefore define at least n NNMs.

13The discussion in this section must necessarily deal with semantics, which is rarely a precise endeav-
our. It is worth pointing out at this stage that the categorisation of NNMs presented in this chapter are
derived from the authors opinion as to the meaning of vague notions such as ‘modal’, ‘decomposition’
and ‘nonlinear modeshape’. It is the opinion of the author that use dictates the meaning of such words.

14In other studies [94], this property has been termed invariance, however, the author prefers inde-
pendence as it does not give the false impression that the NNMs do not depend on the energy present
in the system.
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Decomposition

As noted in [94], the utility of any framework for nonlinear modal analysis is firmly

rooted in the ability of the method to explain the underlying dynamics in a way that

is intuitive. As has been shown in the linear case, the decomposition into natural

frequencies, damping ratios and modeshapes is appealing because these objects offer

immediate insight into the behaviour of the system. Further, in the linear case, the modal

properties are sufficient to form and complete description of the dynamics, subject to

arbitrary. Decomposition is therefore defined as the ability of the framework to present

a physically-meaningful explanation of the dynamics. A related quality is that the

nonlinear framework should reduce correctly to LMA in the limit of linearity.

Superposition

A great advantage of LMA is that the physical dynamics of the system can be recon-

structed in terms of a superposition of modal contributions. Regrettably, the principle of

superposition is predominantly absent in the nonlinear case. However, inverse nonlinear

transformations (approximate or otherwise) that enable the total system response to be

expressed in terms of nonlinear modal contributions are a highly desirable feature of a

nonlinear framework.

Invariance

In LMA, the modal properties are invariant to the excitation of the system and are

therefore sufficient to characterise the dynamics across the entire operating range. It

is well understood, that nonlinearity introduces energy dependence into the dynamics

[2]. Techniques that are able to generalise between input types and excitation levels are

therefore desirable in any nonlinear extension to LMA.

2.3.3 Frameworks for nonlinear modal analysis

In the last century, several frameworks have been proposed as nonlinear extensions to

linear modal analysis. Theoretic appeals have been made to Koopman theory [95, 96],

group theory [97], normal forms [98], complex manifolds [99], and spectral submanifolds

[100] in the search for a practical extension to LMA. Of the proposed frameworks, there

are two that have garnered particular attention; that of Rosenberg, and that of Shaw

and Pierre. These two frameworks are reviewed in the following sections.
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Rosenberg: Coherent motions

The earliest formulation for NNMs is that of Rosenberg [18, 101]. The formulation is

derived from the observation that in the linear case, for each mode, the displacements

can be written as a linear multiple of some arbitrary driving displacement DOF (chosen

in the notation that follows to be y1).

y
(r)
j = ϕrjy

(r)
1 (2.41)

Geometrically, this can be interpreted as a straight line in the configuration space. These

linear modal motions are visualised for a 2-DOF linear system in Figure 2.3 as dashed

lines. Rosenberg noticed that these straight lines in the linear case result in coherent

motions of the structure at each mode; displacements at every degree of freedom pass

through the equilibria and reach their extreme values at the same point in time. In order

to facilitate the nonlinear nature of the motions, Rosenberg proposed an extension to

equation (2.41), that permits the displacements at each mode to depend on a nonlinear

map from the driving coordinate. The new ansatz is therefore,

y
(r)
j = frj(y

(r)
1 ) (2.42)

where the frj describe the nonlinear motions at the rth nonlinear mode. In this way, the

NNMs in the Rosenberg framework are defined as the coherent motions of the structure.

In Figure 2.3, the in-phase (both masses translate in the same direction at the same

time), and out-of-phase (masses translate in opposite directions), NNMs of a nonlinear

2-DOF system are visualised by solid lines in the configuration space of the system. The

Rosenberg definition has several advantages, such as a convenient visualisation in the

configuration space as well as the property that if any single mode is excited then all

others will remain quiescent for all time. Evidently, for a nonlinear system that does not

obey the principle of superposition, the frj (and therefore the NNMs), will depend on

the energy present in the system. Tracking these NNMs through different energy levels

gives rise to a convenient visualisation strategy [94] in a frequency-energy plot (FEP).

Proponents of Rosenberg’s formulation of an NNM argue that the FEP enables the

structural dynamicist to interpret how the systems resonances (for all modes), depend

on the total system energy, which is a useful tool in both design and testing scenarios.

However, the original framework has a number of disadvantages that limit its utility in

practice. Chief among these is the limitation to conservative (i.e undamped), systems.

Although some extensions to the Rosenberg framework have been proposed to address
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Figure 2.3: The Rosenberg formulation of an NNM describes coherent motions of a
nonlinear system. Dashed line: LNM, solid line: NNM.
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Figure 2.4: The useful properties of the Rosenberg NNM framework.

this shortfall [102–104], it is largely argued that the damped dynamics are often close

enough to the undamped dynamics for the approach to remain useful. The practical

utilities of the Rosenberg NNMs are summarised relative to those of LMA in Figure 2.4.

Another limitation of the Rosenberg NNM framework is that it is not expressly possible

to reconstruct the overall physical displacements from the contributions of the individual

NNMs [103]. This limits the utility of the approach from a modelling point of view

whereby the dynamicist wishes to conduct analysis in a simplified modal space and then

reconstruct the overall dynamics.

Since the original proposition of the method [18, 101], considerable attention has been

paid to extending the framework. Important results include the extensions to non-

necessarily synchronous motions [94] in order to account for internal resonances, whereby

one DOF oscillates at a different frequency (a 1:3 harmonic as seen in Duffing oscillators

for example) and so the motion is no longer synchronous.
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In early contributions, the Rosenberg NNMs were calculated by analytical means, di-

rectly from the EOMs [105]. However, in the last decade, several data-driven ap-

proaches have gained popularity that can infer the Rosenberg NNMs from measured

data [106, 107]. Important results include an experimental scheme that can infer the

NNM from broadband excitation [108] and a method based on deep learning and auto-

encoder networks that derives the modal responses from output data [109]. In terms of

applications, there have been a number of contributions that demonstrate the Rosenberg

method. Examples include a light nonlinear attachment in [102], and a full-scale aircraft

in [110].

There are a number of excellent review texts that detail the developments in the Rosen-

berg NNM literature. The early developments are well summarised in references [111,

112], whereas more recent contributions can be found in references [94, 105].

Shaw-Pierre: Invariant manifolds

Several decades after the Rosenberg definition was proposed, an alternative formula-

tion based on the concept of invariant manifolds was introduced by Shaw and Pierre

[19, 113–115]. The Shaw-Pierre NNM was inspired by results from centre-manifold the-

ory, and extends the Rosenberg framework by lifting the ansatz into the phase space

of the dynamic system. As in the Rosenberg case, the dynamics of each mode are ex-

pressed in terms of a single driving DOF. However, in the Shaw-Pierre framework, both

displacements and velocities are considered. The ansatz is now,

y
(r)
i = fr(y1, ẏ1) (2.43)

ẏ
(r)
i = gr(y1, ẏ1) (2.44)

Geometrically, the Shaw-Pierre formulation leads to the the specification of invariant

manifolds in the phase space. It is known that the dynamics of linear systems also lie

on invariant manifolds in the phase space. These linear planar manifolds arise from

the eigenspace of the modal decomposition. In the nonlinear case, these manifolds are

non-planar but remain tangent to the linear modal plane at the equilibrium. This effect

is visualised in Figure 2.5 for a 2-DOF system possessed of two modes, one whereby the

motions of the DOFs are in phase and another where they are out of phase.

As well as the geometrically more general formulation, the Shaw-Pierre approach carries

a number of distinct advantages over that of Rosenberg. Principally, the inclusion of the
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ẏ1 ẏ1

In-phase NNM

Out of-phase NNM

Figure 2.5: The Shaw-Pierre formulation of an NNM; a curved manifold in the phase
space of the dynamics that is tangent at the equilibrium to the underlying linear mode.

Dashed line, LNM, solid line: NNM.
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Figure 2.6: The useful properties of the Shaw-Pierre NNM

velocity terms in the phase-space representation, allows a proxy for system energy and

therefore non-conservative systems are handled naturally.

Another advantage is that any motion initiated on one of the modal manifolds remains

there for all time. This is akin to the independence property of Rosenberg, but naturally

accommodates decaying orbits in the phase-space. The formulation also permits the

dynamics to be expressed in terms of modal coordinates that decouple the dynamics into

SDOF oscillators on the manifolds. The authors also suggest a method for obtaining

a forward transformation, from the physical to the modal dynamics on the manifold.

Also proposed is an approximate inverse transformation that can be used to reconstruct

the physical dynamics. The practical utilities of the Shaw-Pierre NNM are summarised

relative to those of LMA in Figure 2.6.

The core of the Shaw-Pierre framework relies on an appeal to centre manifold theory

[116]. A limitation of the Shaw-Pierre framework is therefore that the ethos of the
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method is local in nature, and the behaviour of the dynamics far from the equilibria

may not be well represented.

Another limitation is that the Shaw-Pierre framework as first described [19] is unable to

accommodate internal resonances, and other types of system including situations when

the underlying system cannot be decoupled. However the authors note that the method

can be extended to accommodate some types of internal resonances by including multiple

pairs of state variables as the driving DOFs.

Although originally defined for spatially discretised systems, the Shaw-Pierre framework

was extended to continuous systems in [117]. In the work, the authors give results for

several beam case studies and derive the governing equations of motions on the invariant

manifolds.

In [118], a Galerkin approach is taken to specifying the invariant manifolds. The au-

thors argue that taking this approach improves the range over which the calculated

manifolds are valid, as they are no longer restricted by a continuation approach close to

the linearised system at the equilibrium.

More recently, the method was applied as part of a deep learning framework [109] that

specifies the NNMs (of both Rosenberg and Shaw-Pierre type) by considering the bot-

tleneck layer of an auto-encoder network to be intrinsic directions in the modal space

and then interpreting the modes by projecting single driving DOFs through the decoder

layer. The approach operates in a data-driven manner that adds practical utility to the

method.

A recent generalisation of both the Rosenberg and Shaw-Pierre frameworks to the case

of non-conservative, period systems has been proposed by Haller and co-authors in [100].

Motivated by a desire to provide a consistent methodology, the frameworks are united

under the umbrella of spectral-submanifolds (SSM). The authors are able to provide

existence and uniqueness results for the underlying SSMs and motivate their use as

a tool for model order reduction. The computation of the SSMs is analytically very

demanding, however a recent contribution envisages a data-driven scheme [119].

Nonlinear decomposition methods

As well as theoretical frameworks for the consideration of nonlinear normal modes,

several approaches have been applied in a purely data-driven setting and carry many of

the utilities of LMA. At the core of such approaches is the nonlinear decomposition,

u = F (y) (2.45)



Background 41

that decomposes the physical displacements into an equal number of modal displace-

ments, wherein the dynamics are simplified (by some measure). Methods of this type

include principal orthogonal decomposition (POD) [120–123] and independent compo-

nent analysis (ICA) [124]. Despite a data-driven formulation, some of these methods are

able to interface with vibration theory. For example, in the linear case, the POD modes

are shown in [20] to converge to the linear modes15 as the amount of data increased.

Inspired by ICA and the ansatz of Shaw-Pierre leading to a multinomial expression for

the forward modal transformation, a recent approach based on statistical-independence

was proposed [22, 125]. The approach casts the problem of specifying a nonlinear de-

composition as one in machine learning. The approach proceeds by specifying a number

of inductive biases within an objective function. The method was shown to produce

a decomposition into a modal basis wherein the power spectral densities (PSDs) have

distinct peaks on a number of case study examples. Since the original proposition, sev-

eral contributions have extended the method by considering alternative forms for the

nonlinear decomposition function and the inductive biases used. In [126], a number of

non-parametric learners are considered for the decomposition. In [127] some nonlinear

correlation functions are considered. The form of the nonlinear decomposition was fur-

ther extended to a normalising-flow based method in [128] and variational auto-encoder

in [129]. In [23], a cycle-consistent generative adversarial network (cycle-GAN) was em-

ployed. The cycle-GAN was shown to have a number of distinct advantages over other

approaches including the automatic specification of an inverse transformation and the

enforcement of conformality via the mapping.

The statistically-independent framework for modal analysis shows significant promise,

although there is a need to go beyond the visual assessments of [22, 23, 126] and consider

robustly the nature of the modal transformation in the context of LMA. This framework

will form the focus of the work presented in this thesis. To this end, a full description

of the approach is saved for a following chapter.

2.3.4 Towards a practical NNM for structural dynamics

It is clear that a great deal of research effort has been expended in the development of

nonlinear extensions to modal analysis. With the relevant literature reviewed, attention

can now be directed to the specification of some criteria for a practical NNM. Given the

many utilities of LMA it is a challenge to arrive at a compact set of criteria.

15Provided the mass matrix is proportional to the identity matrix.
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There are some properties that all sensible approaches to NNMs must obey. Firstly, it

is clear that any nonlinear method should specify16 at least as many nonlinear modes

of vibration as there are DOFs in the structural system. This follows directly from the

results of Lyapunov and is observed by all frameworks that have been explored in this

chapter. Another important property is that the NNMs can be derived from measured

data as well as from the EOMs of the structure. In practice, one does not always have

access to the EOMs of a structure and so nonlinear modal analysis in a data-driven

manner is essential. Once again, the author observes that data-driven formulations are

available for all frameworks so-far considered.

Given the immense utility of LMA in practice, it stands to reason that these utilities

should also be desirable in the nonlinear case. The following criteria are therefore defined

as the useful properties of a nonlinear extension to modal analysis.

1. Independence: The ability of the decomposition to render the dynamics into an

independent modal basis, preferably SISO.

2. Decomposition: The extent to which the decomposed modal dynamics represent a

physically-meaningful (by some measure), basis for understanding the structural

dynamics.

3. Superposition: The extent to which the original dynamics can be recovered from

the decomposition.

These criteria are essentially identical to the useful properties of LMA, as described in

Figure 2.2, with the exclusion of invariance. While validity at all excitation levels is a

useful property of the linear modal case, in the nonlinear case it is necessary to model

directly the energy dependence of the NNM. In Chapter 5, the above criteria will be

examined in detail with a view to specify metrics that might be used to assess them

more rigorously in a qualitative manner.

2.4 Summary and research questions

With the relevant literature considered, the aims of this thesis can now be stated more

formally into research questions. Of the three grand challenges in nonlinear structural

dynamics, identified in Chapter 1, it is the aim of this thesis to present novel con-

tributions pertaining to challenges II and III. The following summarises the literature

pertaining to these challenges.

16In the full-fidelity representation, i.e reduced order models notwithstanding.
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Exact solutions to nonlinear differential equations

The consideration of solutions of differential equations as a heuristic search problem

is not in itself a novel idea. For example, the work of Seaton and collaborators [85]

presents some convenient definitions. However, it is clear that in order to be successful,

a thorough consideration of the underlying search problem is critical.

Although a considerable amount of attention has been paid to approximate solutions

of differential equations, it appears that there are comparatively few heuristic methods

constructed within an ethos where only exact solutions will be accepted. A promising

tool for achieving this appears to be symbolic regression. Although a mature field of

research in its own right, applications of symbolic regression to the solution of differen-

tial equations are sparse in the literature. Of particular interest is the combination of

symbolic regression with CAS software for symbolic equality testing within the heuris-

tic framework. The combination of these two elements with a specific focus on exact

solutions constitutes a research gap within the published literature.

A great deal of important structural dynamics are governed by nonlinear ODEs and

PDEs. Exact, closed-form solutions to both types have the potential to make a profound

impact. However, given the exploratory nature of the investigation, an initially narrowed

view must be taken, and so the analysis presented in this thesis will consider ODE

problems only. An appropriate research question is therefore:

Can a heuristic search methodology be found that leverages CAS and techniques from

symbolic regression with the potential to find exact solutions to as-yet unsolved nonlinear

ODEs?

Chapters 3 and 4 of this thesis will be dedicated to answering this research question.

A practical nonlinear alternative to linear modal analysis

A nonlinear alternative to LMA has been an active area of research now for more than

fifty years. During this time, many frameworks for nonlinear modal analysis have been

proposed, each of which is able to preserve only a subset of the features of linear modal

analysis. Of the proposed frameworks, those which have received the most attention

are that of Rosenberg and the geometrically more general approach of Shaw and Pierre.

Despite steady progress in both camps, the practical use of both methods is hamstrung

by somewhat extended technicalities, limitations on types of excitation and the lack of

an inverse modal transformation.
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Of particular interest are NNM frameworks that take a machine learning viewpoint to-

wards NNMs. Of the frameworks taking this approach, the recently proposed statistically-

independent framework has shown promise. The approach permits a functional de-

composition into independent DOFs and constructs an inverse map. However, the ap-

proach is still fairly new, and a consideration of the effect of the modal transformation

on the modal dynamics has scarcely been considered. In this thesis, the statistically-

independent framework will be examined in detail and an attempt made to connect the

promising results obtained via the application of inductive biases and machine learning

to the underlying dynamics. The research question can be posed:

To what extent does the recently proposed statistically-independent framework for non-

linear modal analysis constitute a practical nonlinear extension to LMA?

The approach taken in this thesis shall be to measure practical utility by the con-

sideration of the criteria defined above. Chapters 5-9 inclusive will be dedicated to

consideration of this research question.



Chapter 3

Towards exact solutions of

nonlinear ODEs

This chapter and the one that follows, are concerned with the second of the grand

challenges identified in this thesis, that of finding truly exact solutions to nonlinear

ordinary differential equations.

The ethos here will be to approach the problem of finding solutions to differential equa-

tions in the same manner that one might approach any other task in machine learning or

optimisation. Critically however, approximate solutions will not be accepted. Because

of this strict outlook, many conventional techniques and wisdoms are not applicable.

For example, floating point arithmetic is too imprecise to evaluate the exact equalities

that are required. Similarly, methods that rely on meta-regression steps to specify the

values of constants will not be useful as they too are inexact.

In place of conventional techniques, new and existing approaches must be considered

specifically in the context of their ability to identify exact solutions to differential equa-

tions. To this end, the following chapter will present the problem of finding solutions to

ODEs as a heuristic search problem, whereby solutions may be found by the application

of heuristic optimisation.

Casting the problem of finding solutions to differential equations as one of optimisation

is not by itself a novel approach, several authors [71, 81, 83, 130, 131] have attempted

this task with varying degrees of success. However, formal study of the search problem

is limited in the literature. One such contribution [85], presents some discussion of the

relevant search spaces and defines a measure of search complexity based on the sizes of

the representation space of expressions and solutions. For compatibility, their notation

for the representation and solution spaces is adopted in the definitions developed here.

45
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As well as the search problem formulation, this chapter also considers two other impor-

tant aspects of the symbolic regression implementation. An enumeration of the various

search spaces and a consideration of suites of benchmark problems. After analysing the

properties of a useful benchmark, a novel benchmark suite of problems is proposed that

has several advantages over a commonly used problem set in the literature.

3.1 The needle in the infinite haystack

Solving differential equations by conventional means is hard.1 Solving them heuristically

is by no means an easy feat either. The core issue is that the underlying search problem

is extremely difficult. Even under strong assumptions, there is an uncountably infinite

number of possible trial functions that one might consider; blindly searching within them

for a solution would be akin to searching for a single needle in an infinite haystack.

Faced with such a daunting task, how can one hope to make progress? The approach

in this chapter, is to break down the search problem by considering the structure of the

various spaces in which the search takes place.

Function space

So, where must the search for solutions begin? The solution to an ordinary differen-

tial equation is (by definition) a function. The set of functions is highly diverse and

encompasses forms from simple polynomials to nonsmooth monstrosities. Consider the

following function attributed to Dirichlet for example,

f(x) =

{
1/b if x = a

b with a, b ∈ Z
0 otherwise

(3.1)

The above function is continuous for every irrational number and discontinuous every-

where else2. Fortunately, in order for a function to be the solution to a differential

equation, it must obey certain restrictions. In order to be a solution, a trial function

must satisfy both the differential equation itself as well as any boundary conditions

that may be imposed upon it. For this to be the case, the function must have defined

derivatives up to the order of the differential equation. Let,

Ψ(x, f(x), f (1)(x), ..., f (r)(x)) = 0 (3.2)

1PSPACE-hard, for a numerical solution given some smoothness requirements [132].
2Even thinking about it is enough to make the author shudder.
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f∗

Cr

Figure 3.1: The function space Cr(R), containing f∗.

describe a rth order ODE, subject to boundary constraints sufficient to make the solution

unique. Denoting the solution to Ψ as f∗, and the function space over the real numbers

with r continuous derivatives as Cr(R), it is required that f∗ : R → R ∈ Cr(R).
Furthermore, let ωCr be the set of all functions f ∈ Cr such that Ψ(f) = 0 and all

boundary constraints are satisfied. If the differential equation satisfies the conditions

for the solution f∗ to be unique, one has,

ωCr = {f∗} (3.3)

Or equivalently, the haystack contains only a single needle.

Figure 3.1 depicts Cr(R) and f∗ graphically. Suppose now that one is able to sample at

random from Cr(R); inspired by [85], the probability of finding f∗ in any given sample

is,

P(f = f∗) =
µ(ωCr)

µ(Cr(R))
(3.4)

Where µ(S) is the counting measure defined on some set S. This (potentially näıve)

line of reasoning finds that since there is only a single needle,

µ(f∗ ∈ Cr) = µ(ωCr) = 1 (3.5)

and a whole lot of hay,

µ(Cr) = ∞ (3.6)

the probability of finding the solution vanishes.
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P(f = f∗) ≈ 0 (3.7)

It is clear that any attempt to search for solutions within Cr(R) by sampling directly is

doomed to find only hay.

Expression trees

In reality, it is not even straightforward to (uniformly) sample from Cr(R).3 In practice,

one must adopt a notational scheme in order to express functions as expressions. Math-

ematical expressions are able to encode a broad church of function objects, including:

derivatives, conditionals, integrals, series and many other complex forms.

With the intent to reduce the complexity of the search problem somewhat, a strong

assumption is made here; that the solutions to some (interesting) nonlinear differential

equations are representable as closed-form analytical expressions. Although this may

seem a bold assumption, the author believes that there are certainly some interesting

solutions available as closed form expressions in terms of a finite basis of operators and

transcendental functions.

A closed-form analytical expression is a far easier object to work with. Structurally, a

closed-form analytical expression can always be represented as a directed acyclic graph

(a tree). The exact definition of a closed-form analytic expression, and what structures

it is permitted to contain is rather vague and varies from author to author.

However, by considering expressions as trees, a natural definition arises. A closed-form

analytic expression is defined as a tree, whereby each node represents a member of either

a function set F = {f1, ..., fm} (in which case the node is internal and must be the root

of a subtree), or a terminal set T = {t1, ..., tn}. The overall search basis (simply denoted

F hereafter), is given by the elements of these two sets.

This definition affords a degree of flexibility, as one is free to select the elements of F to

suit the problem domain.

Consider the following function,

f(x) = x2 − 1 (3.8)

3There are some methods that can draw samples from functions spaces, for example the Gaussian
process. However, closed form expressions for the samples are unavailable.
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Figure 3.2: A tree corresponding to the expression x2 − 1.
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Figure 3.3: Several other trees corresponding to x2 − 1.

The tree corresponding to this function might take the form of Figure 3.2; an issue is

immediately apparent. The tree in Figure 3.2 might well have taken a different form.

Figure 3.3 depicts several other trees that yield the same function.

In the absence of a limit on tree dimensions, there are an infinite number of trees that

correspond to any given function4.

Let T(F ) be the space of expression trees representing closed-form analytical expressions

containing functions and terminals from F . It is important to note here that T and

Cr have very different structures. There exists a many-to-one relationship between

expression trees in T and functions in Cr. Furthermore, not every expression tree in T

corresponds to a function in Cr. In order to directly evaluate functional similarity, one

must be able to project expressions into the function space via a mapping S : T → Cr.

The search problem in expression tree space can therefore be stated,

∃t ∈ T(F ), S(t) = f∗ (3.9)

Put simply, it is assumed that within a finite tree space T(F ) there exists a tree t, that

represents a solution to the differential equation of interest.

4This is easily proved by the consideration of any subtree that represents an identity mapping,
t(a) = a + a − a for example. Given no limit on tree dimensions, these identity mappings might be
recursively applied ad infinitum.
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Encoding space

In practice, additional restrictions are often levied on the elements of T(F ), to ensure

that trees are not arbitrarily large and do not contain expressions with undesirable prop-

erties such as complex terms, asymptotes or excessive compositions of transcendental

functions. After [85], this reduced space is termed the space of representable expressions

Ω ⊆ T.

Sampling (uniformly) from Ω given arbitrary constraints on the form and dimensionality

of the expressions is non-trivial. Practically, one often selects an encoding space from

which to draw samples instead. A decoding function P : E → Ω is then used to

recover expression representations. There are a number of representational encodings

that have been investigated in the literature. A brief categorisation of approaches thus

far considered is presented below.

• Näıve tree encodings i.e. Ω = T.

• Tree-interpretation methods (grammars, strings).

• Tree-representation methods (infix, prefix, Reverse Polish Notation (RPN)).

• Graph-based methods (Cartesian Genetic Programming (CGP)).

The search space can now be defined as the space of representable expressions, given some

encoding space E and a mapping P : E → Ω. In the language of genetic programming,

this mapping is the phenotyping function and elements of E and Ω are the genotype

and phenotype respectively.

Returning to the reasoning of (3.4), one recovers the so-called unguided complexity k

[85] of the search problem as,

k =
1

P(S(t ∈ Ω) = f∗)
=

µ(Ω)

µ(ω)
(3.10)

where ω is the set of expressions t ∈ Ω such that S(t) = f∗. Unlike in (3.4), this value

is tractable. Both µ(Ω) and µ(ω) can be assumed to be finite and fixed by the selection

of Ψ, P and E. In [85], the authors make meaningful contributions to estimating the

value of k (by experimentally fitting (3.10) to a binomial distribution) for a number of

different problems and two encoding spaces.

A further abstraction is possible; the total complexity K is defined as,
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T(F, T ) Ω ω

Figure 3.4: Hierarchy of expression spaces.

K =
1

P(S(P (e ∈ E)) = f∗)
=

µ(E)

µ(ωE)
(3.11)

where ωE is the set of encodings that represent the solutions to the differential equations.

In some instances it will more straightforward to work with this quantity, as µ(E) can

be more straightforward to evaluate than µ(Ω).

Fitness space

In order to translate a search problem into an optimisation problem, there must be an

objective function to be guided towards an optimum; a mapping from the function space

to the real line,

J : Cr → R (3.12)

In the language of evolutionary computing, this mapping is referred to as the fitness

function, with its value for any argument referred to as the fitness of that argument.

The selection of the fitness function is motivated in practice by a desire to guide the

optimisation procedure smoothly towards an optimum. For a given trial function, there

are several criteria that must be considered.

• If a trial solution agrees with a numerical solution of the ODE (f = f∗).

• If a trial solution represents a solution to the ODE (Ψ(f) = 0).

• Whether or not a trial solution respects any boundary/initial conditions.
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Because one has access to a numerical form for f , each of the above may be assessed by

the application of an error metric, for example the L2-norm. The overall optimisation

problem is therefore multi-objective and relative weights between the terms must be

selected.

In addition to the numerical terms above, in order to check for exact solutions, a symbolic

measure of the solution is also required. This can be implemented by substituting the

trial function into the ODE symbolically to assess agreement. If by this method, a true

solution to the ODE is found, then the optimisation run can be terminated.

Search operations

With the haystack assembled, how best to move around within it to search for a nee-

dle? As with any optimisation scheme, methods for exploring the search space must be

identified. It is clear that the choice of search operations will be strongly affected by the

choice of encoding scheme. For example, if an encoding space is comprised of vectors

of integers, then vector crossover and integer perturbation can be applied. If instead,

strings are used then different methods must be specified.

A common choice of representation scheme in the literature is a tree encoding [70, 88,

133]. Within such a space, common choices for search operations in this space are tree

crossover and subtree mutation. For a full treatment of search operations in tree search

spaces, the interested reader is directed to [70].

3.2 Heuristics

Considering the above, any optimisation-based approach to searching for solutions to a

differential equation must contain certain fundamental elements:

• An encoding space (Genotype): E.

• A decoding function (Phenotyping function): P : E → Ω.

• A functional interpretation scheme: S : Ω → Cr.

• An objective function (Fitness function): J : Cr → R.

• One or several perturbing search operations (Genetic operations): Mi : E → E.

What properties must these elements have in order for the search to have the best chance

of success in finding the solution to Ψ? This is an open question in the literature that
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Figure 3.5: Visualising the overall optimisation problem.



Towards exact solutions of nonlinear ODEs 54

has received little attention. The author is aware of two criteria that has been considered

in the context of differential equation solutions; those of complexity [85], and the notion

of locality [134].

Complexity

The unguided and total complexity of the search problem are defined in (3.10) and

(3.11) respectively. For a given Ψ, this involves the selection of the encoding space and

phenotyping function such that the quotients,

k =
µ(Ω)

µ(ω)
(3.13)

and,

K =
µ(E)

µ(ω)
(3.14)

are minimised. Intuitively, this is akin to maximising the number of needles and min-

imising the amount of hay. Practically, this can be achieved by selecting a compact

search basis containing as few operations as possible. This, inevitably leads to the para-

dox of knowing which search terms to include without knowing the form of the solution

a priori. However, engineering judgment is applicable here.5 If one is searching for

the solution for a nonlinear ODE with oscillatory behaviour, then it is reasonable to

include sinusoids. If there are trigonometric constants in the ODE then these should be

included in the search basis. ODEs of the Duffing-type should include the Jacobi elliptic

functions, and so on.

Locality

Locality is a measure of continuity of search space that was introduced in the evolution-

ary computation literature by Rothlauf [135]. Inspired by continuous-space optimisation,

the idea of locality is to ensure that nearby points in the encoding space are mapped

to nearby points in the fitness domain; this means that if e and e′ are adjacent points

in the encoding space E, then in mapping these points to the fitness domain R, they
return similar objective scores. Formally,

5It might seem that returning to engineering judgement here runs the risk of confining the search to
problems for which the solution is already known. The author would make the argument that the choice
of a basis in symbolic regression still affords extreme flexibility in terms of the expressions that can be
represented.
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|J(e)− J(e′)| ≤ ϵ (3.15)

where ϵ is some small value. The motivation for this requirement is that it naturally

promotes smoothness in the geometry of the search space. Smoothness is desirable in

an optimisation context as it reduces sharp local minima (in which routines can become

trapped) and promotes easier optimisation surfaces. These properties enable the search

operations to out-perform random search.

Several formal definitions of locality have been provided (the interested reader is directed

to [134] for a thorough treatment). A pervasive issue is how to measure the notion of

adjacency in the encoding space.

One approach might be to use a tree-distance metric [136]. However, two very similar

trees might represent two very different functions (consider the effect of replacing a

sine node with an exponential, say). Instead, the approach here will be to consider the

adjacency in the encoding space in terms of the perturbing search operations (Mi).

Thus, locality can be measured by the application of a single perturbing search operation

in the encoding space. For a search operation Mi the locality of that operation in the

search space (ℓ(Mi)) is given by,

ℓ(Mi) =

∑
E (P (ei)−Mi(P (ei)))

2

µ(E)
(3.16)

In practice, enumerating this quantity is not feasible as it requires sampling from every

point in the encoding space. In addition, the search operations Mi are often stochastic in

nature and so the expectation of the numerator must be approximated. Some statistical

results in this vein are available in [134], but these are not considered further. Owing to

the difficulty in calculation, the locality heuristic is employed hereafter in a qualitative

manner.

Encouraging locality motivates the selection of search operations that are able to make

small continuous perturbations to the underlying function. Clearly this is not possible

for all cases (it is difficult to imagine how a sine might be continuously mapped to an

exponential), but for some sub-structures and constants the idea of a local perturbation

is intuitive. The notion of locality in the encoding space will be used as motivation for

a new encoding scheme in the following chapter.
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3.3 Enumerating search spaces

Both of the heuristics identified above rely on enumeration of the search space sizes

µ(E) and µ(Ω) in their computation. Indeed, the size of the search space is itself a

useful heuristic for understanding the difficulty of a search problem. Because of this, it

is useful to enumerate and compare the sizes of some common search spaces.

A common choice [70, 88, 133] for E is to use a tree structure. This approach has the

convenient property that all mathematical expressions can be mapped in an isomorphic

way to a tree object,

Etree ≃ Ωtree (3.17)

and therefore the spaces have the same measure,

µ(Etree) = µ(Ωtree) (3.18)

The size of the search space of trees is discrete but naturally not finite. Practically

however, one places a restriction on the size of tree structures that are permitted. Several

approaches are possible including limits on tree depth or internal nodes [71]. However,

the approach here will be to restrict the total number of nodes in the expression tree.

This has the advantage of not subjecting any bias towards either very deep or very wide

trees. Another advantage of using the total number of nodes is that it is equivalent to

maximum tree depth by the relation n = mh where n is the number of nodes, m is the

maximum number of child nodes connected to any given node (hereafter referred to as

the arity of that node) and h is the tree depth.

The maximum arity of any node defines the arity of the tree structure. The number of

unlabelled m-ary trees with exactly n nodes is given by the Fuss-Catalan numbers [137],

Cn =
1

(m− 1)n+ 1

(
mn

n

)
(3.19)

However, the nodes in an expression tree representation are not unlabelled. Instead,

each node of arity i ∈ [0, . . . ,m] derives a label from set fi, the edges are unlabelled.

Thus, the overall label set,

F = {f0, f1, . . . , fi, . . . , fm} (3.20)
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is the search basis as above. In the literature, the case i = 0 is sometimes considered

separately with 0-ary nodes referred to as terminals or leaves and f0 = T referred to as

the terminal set. For compactness, this notation will not be used here.

Implementations of the search problem must necessarily select a basis that contains all

the mathematical objects needed to describe the solution, or only approximate solutions

will be possible.

The size of the tree space clearly depends on the maximum arity m, the maximum

number of nodes n and the basis set F . Let,

Tj = µ (T(m, j, F )) (3.21)

be the number of possible node-labelled m-ary trees with basis F comprised of exactly

j nodes. By considering trees of all sizes up to n, one has,

µ(Etree(m,n, F )) =
n∑

j=0

Tj (3.22)

In order to derive this quantity, consider the case n = 1. Since this can only be a single

node with no children, the number of possible labels (and therefore trees) is,

T1 = f0 (3.23)

Next, consider the case n = 2; there is still only a single possible tree structure (one

with one root and one child). The number of such trees is equal to the number of label

combinations,

T2 = f1f0 (3.24)

This process is displayed graphically up to n = 4 in Figure 3.6. A recurrence relation

can now be derived for the case n = k. In order to simplify the notation, the fol-

lowing derivation will continue with the case m = 2. For basis functions of analytical

expressions this is a realistic restriction as there are few common analytical expression

operations with an arity greater than two (an example might be a summation with limits

on indices - technically a trinary operation but these are not often seen in exact solutions

to differential equations).
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n

1

2

3

4

m

0

1

2

3

Possible trees

f0

f1f0

f2f
2
0 + f2

1 f0

f3f
3
0 + f2f1f

2
0 + f2f1f

2
0 + f3

1 f0

Figure 3.6: Possible labelled trees with up to n = 4 nodes.

k − 1 k − p p− 1

Figure 3.7: Possible trees with m = 2, n = k, p ∈ [2, k − 1].

In the case m = 2, n = k there are two important cases to consider, as shown in Figure

3.7. In the first, the root node is unary. Its single argument is a subtree with k − 1

nodes. In this case there are,

Tk,unary = f1Tk−1 (3.25)

possible trees. In the other case the root node is binary and the number of nodes in its

arguments sum to n− 1. In performing this sum one has,

Tk,binary = f2{Tk−2T1, Tk−3T2, . . . , T1Tk−2} = f2

k−1∑
p=2

Tk−pTp−1 (3.26)

The required relation is now the sum of these two possibilities,

Tk = Tk,unary + Tk,binary = f1Tk−1 + f2

k−1∑
p=2

Tk−pTp−1 (3.27)

Given T1 = f0 and T2 = f1f0 from above, one can construct a recursive scheme to

calculate any µ(Etree(2, n, F )), and thus the number of structurally-unique expressions

µ(Ωtree),
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µ(Etree) = µ(Ωtree) =

n∑
k=1

f1Tk−1 + f2

k−1∑
p=2

Tk−pTp−1

 (3.28)

Another common representation scheme is a grammar-based structure [83, 87]; these are

employed by several authors alongside techniques such as modular arithmetic to encode

expressions as vectors of integers. The search space of grammar-based representations

can conveniently be enumerated by considering the number of unique tree structures.

This process gives a better estimate of µ(Ωgrammar) than simply raising the maximum

integer value to the power of the vector length (i.e µ(Egrammar)). This advantage arises

because the modular arithmetic removes the need for a maximum integer value resulting

in a many-to-one mapping via the decoding function. Practically, this means that unlike

the expression tree representation,

µ(Egrammar) ≫ µ(Ωgrammar) (3.29)

In terms of heuristics, comparing equivalent tree space sizes permits a better comparison

between representation schemes. Since grammar-based structures sometimes include

trinary operations, an additional term in equation (3.27) is required. The number of

distinct trees with k nodes is now,

µ(Tgrammar(3, k, F )) = f1Tk−1+f2

k−1∑
p=2

Tk−pTp−1+f3

k−2∑
q=2

Tq−1

k−1∑
p=q+1

Tk−pTp−q

 (3.30)

However, there is some subtlety here; several of the nodes included in the grammar do

not alter the underlying function mathematically and only act as placeholders for the

decoding function P . Such nodes include the ‘expression’ and ‘operation’ nodes. In

considering µ(Ωgrammar), these meta-nodes can be safely collapsed (i.e ignored) in the

computation.

Figure 3.8 is a plot of µ(Ωtree), µ(Tgrammar) and µ(Ωgrammar) with increasing n. The

tree-space data are generated with a basis set of operations given by,

Ftree = {{x, [0, 9]},

{sin, cos, log, exp},

{+,−,×,÷}}

(3.31)
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Figure 3.8: Size of various spaces with increasing number of nodes n.

for the expression trees (indicative of the approach suggested by [88]). The grammar-

space data are generated with m = 3 and basis set,

Fgrammar = {{x, [0, 9]},

{sin, cos, log, exp, < expr >,< digit >},

{+,−,×,÷, < func >},

{< op >}}

(3.32)

for the grammar representation (indicative of the study by Tsoulos et al. in [83]). The

meta-operations (in angle brackets) are ignored in the computation of µ(Ωgrammar), re-

sulting in an identical basis. As can be seen in Figure 3.8, the size of these spaces

grows extremely quickly with the number of nodes in the tree6. The number of trees in

grammar-based approaches appears to grow more quickly because of the trinary opera-

tion. However, it can be seen that the number of expression trees representable by these

encodings is equivalent.

6Quickly exceeding both estimated number of particles in the observable universe and the recursion
limit of the authors laptop!
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Table 3.1: ODE problems of Tsoulos and Lagaris [83].

# ODE Domain Subject to

1 f ′ − 2t−f
t = 0 t ∈ [0.1, 1] f(0.1) = 20.1

2 f ′ − 1−f cos(t)
sin(t) = 0 t ∈ [0.1, 1] f(0.1) = 2.1

sin(0.1)

3 f ′ + 1
5f − e

−t
5 cos(t) = 0 t ∈ [0, 1] f(0) = 0

4 f ′′ + 100f = 0 t ∈ [0, 1] f(0) = 0, f ′(0) = 10
5 f ′′ − 6f ′ + 9f = 0 t ∈ [0, 1] f(0) = 0, f ′(0) = 2

6 f ′′ + 1
5f

′ + f + 1
5e

−t
5 cos(t) = 0 t ∈ [0, 2] f(0) = 0, f ′(0) = 1

7 f ′′ + 100f = 0 t ∈ [0, 1] f(0) = sin(10), f ′(0) = 0
8 tf ′′ + (t− 1)f ′ + f = 0 t ∈ [0, 1] f(0) = 1, f(1) = 0

9 f ′′ + 1
5f

′ + f + 1
5e

−t
5 cos(t) = 0 t ∈ [0, 1] f(1) = sin(0.1)

e
1
5

, f ′(0) = 1

Table 3.2: Exact solutions to the ODE problems of Tsoulos and Lagaris [83].

# Exact solution

1 f = t+ 2
t

2 f = t+2
sin(t)

3 f = e
−t
5 sin(t)

4 f = sin(10t)
5 f = 2te3t

6 f = e
−t
5 sin(t)

7 f = sin(10t)
8 f = 1− t

9 f = e
−t
5 sin(t)

3.4 On benchmarks for exact symbolic regression

An important consideration when assessing potential methods for performing exact sym-

bolic regression is a suite of benchmark problems upon which methodologies can be com-

pared. In the literature, there is little in the way of standardised benchmark problems

for comparison. Perhaps the closest available is the suite of problems from Tsoulos and

Lagaris [83]. In their paper, the authors propose several suites of problems including

ODEs, SODEs and PDEs.

Considered here is the suite of nine ODE problems reproduced in Table 3.1. The so-

lutions for the Tsoulos and Lagaris ODE problems (TL benchmark) are given in Table

3.2.

Several studies have presented results on the TL benchmark (including [85]). However,

it is the opinion of the author that there are several limitations to this benchmark.

The first is that the ODE problems vary dramatically in their difficulty (as shall be

demonstrated in a later chapter). This limitation is problematic because there is no

insight provided into exactly what it is that makes one ODE more difficult to solve than

another in the context of symbolic regression.
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Another problem with the TL benchmark is that there is no unified metric of perfor-

mance. In their paper, Tsoulos and Lagaris [83] report the average number of iterations

used by their method, in [85], the results (of a slightly altered benchmark set) are re-

ported in terms of the unguided and guided complexities.

These limitations are hereby used to motivate the specification of a new benchmark for

solving ODE problems by the method of symbolic regression. To begin, a consistent

metric of performance is established. One issue in reporting the average number of

function evaluations (NFEs) is how to treat runs where no exact solution is found. To

overcome this, the right-censored maximum likelihood estimate of the average number

of NFEs is used. Denoting this quantity as Λ, and assuming R runs of an algorithm

with N function evaluations per run,

Λ =
1

R∗

R∑
i

ni (3.33)

where R∗ is the number of times the exact solution is found in R trials and,

ni =

n∗
i , if exact solution found in n∗

i < N NFEs

N, otherwise
(3.34)

It is noted here that the one major factor in the difficulty of the solution is the size of the

minimum tree that can represent the solution. For example, the equation f = 1 + x is

much easier to identify than f = e−5x sin(3x− 2). For this reason, the proposed bench-

mark will feature a suite of ODE problems, the solution to each of which corresponds to

a minimum tree representation of n nodes, where n ∈ [1, 8]. As shall be seen, choosing

solutions with tree sizes in this range will provide a better gradation of difficulty. The

computational difficulty of finding exact solutions with tree representations larger than

8 nodes grows very quickly. For this reason, no larger solutions are considered in this

benchmark.7 It is also important to define domains that capture all the pertinent dy-

namics of the function of interest. With these considerations in mind, a suite of problems

is proposed in Table 3.3.

An interesting consideration is the effect of the form of the solution versus the form of

the ODE in the search problem. In order to control for this effect, a number of ODE

formulations are presented in Figure 3.4.

7A natural question is how many nodes might be required for the solution of as-yet unsolved nonlinear
ODEs. At this stage it is hard to envisage a satisfactory answer. However, a natural starting place is to
consider tree sizes that can be found with the computational resources available to the author.
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Table 3.3: Function solutions for proposed ODE benchmark.

n f∗ Domain Subject to

1 t t ∈ [0, 10] f(0) = 0, f ′(0) = 1
2 sin(t) t ∈ [0, 12] f(0) = 0, f ′(0) = 1
3 5t t ∈ [0, 5] f(0) = 0, f ′(0) = 5
4 cos(t− 1) t ∈ [0, 12] f(0) = cos(1), f ′(0) = sin(1)
5 etcos(t) t ∈ [0, 5] f(0) = 1, f ′(0) = 1
6 8t/et t ∈ [0, 10] f(0) = 1, f ′(0) = 8
7 2t/9t t ∈ [0, 8] f(0) = 0, f ′(0) = 2/9
8 2 sin(t) + t/3 t ∈ [0, 8] f(0) = 0, f ′(0) = 2 + 1/3

Table 3.4: ODEs used in the proposed benchmark.

ODE Homogenous ODE Ψ(f)

Trivial linear f ′

Second order linear f ′′ + f ′ + 2f
Duffing-type f ′′ + f ′ + 2f + 8f3

Note that any homogenous ODE of the form Ψ(f) = 0, can be transformed into an

inhomogeneous form Ψ′ with an arbitrary solution f∗ as,

Ψ′(f) = Ψ(f)−Ψ(f∗) (3.35)

In this manner, the proposed benchmark now consists of 24 ODE problems, of controlled

difficulty via the complexity of the solution and the complexity of the ODE.

3.5 Conclusions

This chapter has presented the problem of finding solutions to ODEs as a search problem.

Here, the notation of [85] has been extended to consider formally the various search

spaces and the maps between them.

Also considered, are a number of heuristics that encode information pertaining to the

difficulty of the underlying search problem. Each of these heuristics is used to motivate

practical choices that can be made when designing an optimisation procedure. The

first of these—complexity—is used to motivate a compact search basis. The second—

locality—is used to motivate encoding spaces and search operations that promote a

continuous optimisation surface. A limitation of the analysis presented here is that

these quantities are not enumerated for any concrete problems. Several works [85, 134]

present numerical calculations of these metrics in contexts including symbolic regression

and beyond. The interested reader is directed to those works for more details.
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This chapter has also presented an enumeration of the search space sizes for two commonly-

used encoding spaces in symbolic regression; expression grammars and expression trees.

It is shown that, for an identical search basis, the two encodings are able to represent

the same number of expressions, however, the expression grammar has a larger encoding

space because of the presence of auxiliary nodes in the trees.

Finally, symbolic regression benchmarks are discussed. One such benchmark found in

the literature (that of Tsoulos and Lagaris) is considered, and several weaknesses are

identified. In the light of these limitations, a new benchmark suite of ODE problems

is proposed, alongside a consistent metric of performance for symbolic regression algo-

rithms.



Chapter 4

Affine-regression trees for exact

symbolic regression

The objective of this chapter is to evaluate the performance of several symbolic regres-

sion approaches, to solving nonlinear ODEs on benchmark problems. This analysis is

conducted with a view to identifying promising techniques that might be able to search

heuristically for the solution to pertinent nonlinear ODEs typical of those seen in struc-

tural dynamics.

Inspired by the notion of locality (a local map between genotypes and objective scores),

this chapter also presents a novel encoding scheme, the affine symbolic regression tree.

Here, the affine-regression tree encoding is developed and the sizes of the relevant search

spaces are calculated and compared to existing approaches.

The new encoding scheme is introduced with with a specific focus on specifying exact

solutions to ODE problems, in order to assess this the performances of the novel method

is compared to two common expression representations; the tree based encoding and

to the grammar based approach of Tsoulos and Lagaris in [83]. The approaches are

compared on two benchmark suites of ODE both linear and nonlinear ODE problems.

4.1 Affine-regression trees

A novel encoding scheme for symbolic regression is proposed here. This encoding is

essentially an extension of the expression-tree encoding space with additional structure

at each node.

65
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The new approach is inspired by two observations. Firstly, the exact discovery of con-

stants in symbolic regression schemes is an open problem that has not been significantly

explored in the symbolic regression literature1. The second observation is the promotion

of locality. For many existing encoding schemes, adjacent points in E are unlikely to be

adjacent in R once projected there via the objective function. Put plainly, it is often

not trivial for the optimisation algorithm to increment towards the true solution despite

a high degree of semantic similarity to the solution. An intuitive way to understand

semantic similarity is the following. Consider an ODE with the solution,

f∗ = sin(2x) (4.1)

Now consider two trial expressions,

f1 = 2x− 4

3
x3 +

4

15
x5 − 8

315
x7

f2 = sin(3x)

Evaluated over a domain of x ∈ [−1, 1], an objective function (the L2 norm for example),

will prefer f1 over f2 despite the fact that semantically, f2 is far closer to the true

solution.

The affine symbolic regression tree is defined in the same manner as the expression tree.

The distinction is that each node η is now a 3-tuple,

η = {a, f, b} (4.2)

Where a and b are termed constants. During evaluation, nodes take the affine form,

η = af + b (4.3)

In this regard, the representation bears some similarity to the multiple regression ap-

proach in [138], whereby linear combinations of all tree subexpressions are used during

a meta-optimisation step. However, the current approach differs both in that an affine

combination is used and in that the constants are included as a part of the tree structure

itself.
1There are several notable techniques that specify constants approximately - the reader is directed

to [79, 138, 139] for examples.
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Table 4.1: Constant mutation operations proposed by the current study.

Operation Action Description

m0(θ) θ → 0 Zero constant
m1(θ) θ → 1 Unit constant
mi(θ) θ → θ ± 1 Increment/decrement

mr1(θ) θ → p±1
q Increment/decrement numerator

mr2(θ) θ → p
q±1 Increment/decrement denominator

ms(θ) θ → sθ, s ∈ S Multiply by transcendental constant
mr(θ) θ → θr, r ∈ R Raise to exponent
mpm(θ) θ → −θ flip sign of constant

Constants have their own structure and are represented by a 4-tuple,

θ = {s, p, q, r} (4.4)

where p and q are integers in the range [0, z] and [1, z] respectively. r is a member of

the set of permitted exponents R with a default value of 1. s is an element from the

permitted transcendental constants S, also with a default value of 1. Upon execution

constants are evaluated as,

θ = s

(
p

q

)r

(4.5)

Upon initialisation, a constants are given a value of 1 ({1, 1, 1, 1}) and b constants a

value of zero ({0, 1, 1, 1}). Initialising the constants in this way provides a bias towards

sparse solutions. Care is taken to ensure that q ̸= 0 so that illegal divisions are avoided

by design.

Constants are mutated during the run of the search by a number of constant mutation

operations that are defined in addition to more orthodox tree-based search operations

(the reader is directed to [133] for a reference). These constant mutation operations are

described in Table 4.1.

The advantages of this representation are several; consider the expression tree in Figure

4.1. The affine tree is far more compact, requiring only a fraction of the number of nodes

to represent the same expression. In fact, with affine trees there is no need to include

integers or other constants in the basis set F at all. Constant discovery is handled

entirely by the affine constant objects.

The size of the resulting search space can readily be estimated by extending the analysis

of expression trees in the previous chapter. The first step is to enumerate the number
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{a,×, 0}

{1, sin, 0}

{c, t,−d}{−b, t, 0}

{1, exp, 0}

t−b

−

d

×

exp

×

a

×

sin

tc

×

Figure 4.1: Comparison between compact affine and expression trees for the expres-
sion f = ae−bt sin(ct− d).

of possible values that an affine constant θ ∈ A can take; this is achieved by considering

the elements in the tuple,

µ(A) = µ(P )µ(Q)µ(R)µ(S) = z(z + 1)µ(R)µ(S) (4.6)

Since there are two constants per node, the expression for µ(Ωaffine) can be written,

µ(Ωaffine) =
n∑

k=0

[
(z(z + 1)µ(R)µ(S))2kTj

]
(4.7)

or explicitly,

µ(Ωaffine) =
n∑

k=0

(z(z + 1)µ(R)µ(S))2k

f1Tk−1 + f2

k−1∑
p=2

Tk−pTp+1

 (4.8)

Does size matter?

Comparing the above result to the results of Chapter 3 seems to suggest that this

approach is strictly worse (i.e larger in terms of search space size) than expression trees.

However, this is a false equivalence. While the affine tree representation is at least as

compact as the expression tree representation, in many cases it will be significantly more

so. In practice, one is able to select a lower value of n, when working with the affine

representation, and still maintain the same coverage of Cr. Figure 4.2 compares several

scenarios in which the affine representation is more compact and plots them against

the number of nodes required for an affine representation. The scenarios shown are

illustrated in Figure 4.3.
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Figure 4.2: Comparison of affine and expression trees in terms of search space size
versus minimum number of nodes required for affine representation.

The results of Figure 4.2 indicate that the affine representation has a smaller search space

for expressions that require four times as many nodes to represent as an expression tree.

For trivial expressions with only a few elementary integer constants, such a ratio is

perhaps unrealistic. However, the author would argue that for the type of expressions

seen in the solutions to ODEs in structural dynamics (such as the one depicted in Figure

4.1), a 1:4 ratio is more likely. The author would note that the tree representations in

Figure 4.1 assume that the constants a,−b, c,−d are specified in the search basis. In

reality, an expression tree would require further subtrees to represent these values (and

their negatives) adding yet more complexity to the expression tree.

The advantages of the affine tree representation extend beyond the compactness of the

search space. The constant-mutations described in Table 4.1, permit a continuous opti-

misation surface between expressions of the correct form (only errors in constants) and

the true solution. An informal explanation is thus. Consider any two affine trees of

the same structure α1 and α2 (but with different values of the constants a and b) with

objective function values j1 and j2 respectively such that j2 < j1. There must then be a

chain of constant mutation operations [m1, . . . ,mv], the successive application of which

will map α1 onto α2. It is furthermore argued that each application of the mutation
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xBest case 1:1

Affine case 1:4
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Figure 4.3: Comparison of the representation power of affine nodes compared to
standard expression trees.

operations in the chain is more likely to result in a monotonically-decreasing objective

score than an equivalent path based on orthodox search operations.

4.2 Methodology

In order to perform symbolic regression as optimisation, a suitable optimisation algo-

rithm must be chosen. For search problems defined on discrete encoding spaces, several

options are available, although a common choice is the genetic algorithm (GA) (also

referred to as genetic programming [70, 133]). These algorithms are inspired by the

biological process of evolution. The GA is a very flexible approach that encompasses

a great deal of methodologies that can be tailored to the search problem at hand. As

such, the GA approach will be adopted here. The algorithm consists of a population

of candidate solutions (genotypes) to a search problem are iterated over a number of
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Generation k

Trial population k

Generation k + 1

J J J J

Tree crossover Reproduction

Binary tournament

selection

Figure 4.4: Overview of the genetic algorithm implemented for this chapter.

generations towards a global optimum by the application of search methods (genetic op-

erations). During the optimisation, candidate members of the populations are allowed

to advance to the next generation depending on their objective scores (phenotype).

A standard GA is comprised of an initialisation step, a reproduction step and a selection

step. An overview of the GA used in this study is given in Figure 4.4.
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Initialisation

During initialisation, an initial population of candidate solutions is sampled from the

encoding space. Initialisation is implemented here by the recursive ‘grow’ method [133].

Nodes are sampled at random from the search basis F . If a node with an arity greater

than zero is sampled, then additional nodes are sampled as the arguments of that node.

This process is reclusively applied until either all terminal nodes have zero arity or until

a pre-specified number of nodes have been selected. In the latter case, all terminal nodes

are selected from the set of nodes with arity zero.

Reproduction

During reproduction, a number of genetic search operations are applied and a second

population of solutions is produced. This second population is referred to as the trial

population. The approach used here is to generate the trial population by sampling from

a number of genetic operations. The operations considered in this investigation are:

• Reproduction: A randomly-selected member of the current population is added to

the trial population.

• Tree crossover: Two randomly-selected parent trees are crossed over at random

nodes, and the resultant tree is added to the trial population.

• Random tree: A random tree (generated by the ‘grow’ method above), is added

to the trial population.

• Subtree mutation: A random node from a random parent is replaced with a random

subtree.

In order to further aid the search, the probability of selecting one of the above search

operations is adapted alongside the optimisation run. Adaption is a common approach

in evolutionary optimisation to overcome the problem of hyperparameter selection [140].

The methods identified above are initially assigned equal probabilities and then after

a period of generations Lp (referred to as the learning period), the (un-normalised)

probability of selecting search method mi is updated as,

p(m = mi) =
wi + 1

hi + 1
(4.9)
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where hi is the number of times search operation mi was applied in the previous learn-

ing period of Lp generations and wi is the number of successful entrants to the next

generation in the same interval.

In the affine case, the constant mutation operations are applied to the trial population at

this stage. Up to nmutations are applied with probability Pm. As above, the probability

of applying any one of the methods detailed in Table 4.1 is adapted during the course

of the optimisation run.

Selection

The trial vector is now established and the selection step is applied. In many applications

of genetic algorithms seen in the literature, this is achieved by tournament selection

[70, 133]. Here, binary tournament selection is used, whereby the objective scores of the

current and trial populations are compared elementwise with the lower objective score

being permitted to enter the next generation. One risk with tournament selection is

that promising solutions (i.e with semantic similarity) might be discarded in favour of

‘greedy’ approximate solutions (series approximations etc.). However, it is hoped that

this effect will be counteracted by the reproduction operation allowing some semantically

prominsing less-optimal solutions to progress to subsequent generations.

In order to reduce the complexity of the search problem, some inductive biases are

injected at this stage; trivial checks for illegal operations such as infinite terms or division

by zero are employed before the evaluation of the objective function. In addition, to

restrict the size of the search space, nested transcendental functions (sines, cosines and

exponentials) are disallowed. In the case that such a nesting is produced by the action

of the search operations, the trial expression is prevented from advancing to the next

generation.

An objective function is selected with four terms. The function is defined as the weighted

sum of the mean-squared error (MSE) over the ODE, the trial solution f , its first

derivative f ′ and initial or boundary conditions. The target quantities f̂ and f̂ ′ are

computed in advance of the run by a fixed-step fourth-order Runge-Kutta scheme with

a step size determined by the domain of the target problem. For first-order problems,

the MSE over f ′ is not used. The overall objective function is therefore,

J(f) =
1

d

d∑
i

[
λ1(Ψ(f̂)−Ψ(f))2 + λ2(f̂i − fi)

2 + λ3(f̂ ′
i − f ′

i)
2+
]
+λ4

∑
j

(Ij(f̂)−Ij(f))
2

(4.10)
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Table 4.2: Parameters pertaining to the genetic algorithm used in the case study.

Parameter Symbol Value

Population size N 400
Maximum generation G 500
Initialisation procedure ‘grow’ [70]
Selection procedure Tournament (k = 2)
Initial maximum tree depth d0 3
Maximum nodes in tree n 10
Learning period Lp 5

where Ψ(f) is the ODE of interest and the Ij are the initial or boundary conditions

applicable to that problem. The λi are the weights and are all set to unity with the

exception of λ4 which is set to 100. A computer algebra engine (in this case the symbolic

library available in the python language sympy [69]), is used for the exact evaluation of

derivatives and assessment of exact solutions.

Parameterisation

Parameters pertaining to the GA are collected for the convenience of the reader in Table

4.2. For both representations, a basis set given by,

F = {{t, },

{sin, cos, log, exp},

{+,−,×,÷}}

(4.11)

is used. For the expression tree representations, the digits [0, 9] are added to f1. Ini-

tialisation, mutation and application of affine constants is as described in the previous

section. In order to simplify the search, the sets of exponents R and transcendental

constants S are set to {1} and the corresponding affine mutations are excluded.

4.3 Results

Comparison of encoding schemes - TL benchmark

With the GA established, the results on the benchmark studies are presented here.

The figures in this section, are formatted in the following manner. Dots in the plots,

represent successful runs of the optimisation algorithm, whereas crosses represent runs
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of the algorithm that did not find an exact solution. Diamonds in the figure represent

the right-censured maximum likelihood estimates of the expected number of function

evaluations required to find an exact solution, calculated as per (3.33) The uncertainty

bars in the plots are the 90% confidence intervals of the above statistic, estimated by a

bootstrapping method.

For a more rigorous comparison, the data from the Tsoulos and Lagaris study is included

in the figures. For this dataset, only maximum, minimum and average values were

recorded in the paper and so the confidence intervals can be interpreted as the 100%

confidence intervals.2 Results for individual runs from [83] are not reported and therefore

these are omitted from the figure.

To aid with visualisation, the ODE problems have also been re-ordered in terms of search

difficulty, as measured by the number of nodes in the maximally compact expression tree.

The first comparison made in this chapter is between encoding spaces. In Figure 4.5,

the expression tree, affine-regression tree and the grammar-based encoding of Tsoulos

and Lagaris [83] are compared in terms of the number of function evaluations required

to find an exact solution. As can be seen in the figure, there are considerable differences

between the encoding schemes. The affine encoding significantly outperforms the oth-

ers on a subset of the easiest ODE problems. However, both affine and tree encodings

quickly degrade with problem difficulty. The Affine tree approach is unable to find the

exact solution in any of the runs for the three most difficult ODE problems, potentially

indicating a poor convergence towards larger tree sizes. This degradation with problem

difficulty is paradoxically not seen in the expression grammar approach, and it consider-

ably outperforms the other methods on the harder ODE problems. Interestingly, Figure

4.5 does not show any evidence that the maximum number of nodes in the tree (i.e

search space size) affects the MLE estimates of Λ.

Figure 4.6 depicts the same runs, compared to those where tree crossover is removed.

This study investigates the extent to which the GA population is evolving cooperatively

(whereby useful subtrees are shared between members of the populations). In the figure,

there is no discernible difference between the runs with and without crossover indicating

that each member of the population is evolving in isolation.

One issue with the TL benchmark, is that the ODE solutions are largely monotonic

within the chosen domains. This is problematic because smooth monotonic functions

can be approximated in myriad ways, leading to poor locality in the objective function.

It is desirable that the solution domain captures the salient dynamics of the problem so

2There is additional uncertainty as to the number of function evaluations used in the Tsoulos and
Lagaris study, as only the number of generations is reported and the population size is only given as an
interval. These uncertainties have been included in the error-bars in the figures.
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Figure 4.5: Comparison between expression and affine tree encodings.

Figure 4.6: Investigation into the effect of tree crossover operations.



Affine-regression trees for exact symbolic regression 77

Figure 4.7: Comparing the effect of increased domains sizes for the ODEs in the TL
benchmark set.

that the number of inexact solutions is minimised. To investigate this issue in the TL

benchmark, additional optimisation runs are conducted for the affine-encoding scheme

with extended domains. These are compared to the initial runs in Figure 4.7. Other

than a few successful runs in ODE3, there is little discernible difference between the

performances. This result indicates that the optimisation procedure is not hamstrung

by the limited domain sizes.

In the investigations presented thus far, there has been little observed difference between

the performances. A potentially-concerning explanation is that the dominant search

mechanism is random sampling. To assess the extent to which this is the case, Figure

4.8 presents the results of the previous runs against additional data collected from a

random-sampling approach (simply sampling a random expression tree with the ‘grow’

method). Alarmingly, the random search runs appear to perform similarly to the other

approaches.
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Figure 4.8: Performance comparison versus random search.

New benchmark

In Chapter 3, several limitations of the TL benchmark were identified, and a new bench-

mark was proposed for the assessment of optimisation-based solution of ODE problems.

In this section, results for the affine-regression and tree expression encoding schemes are

presented on the benchmark suite of problems proposed in Table 3.3. The first investiga-

tion, shown in Figure 4.9 compares performance on the encoding schemes. In the figure,

the performance of the optimisation (measured in terms of Λ) degrades significantly with

the number of nodes in the solution tree. An interesting exception to this trend is that

ODE4 seems to have been more straightforward to solve than ODE3. One explanation

for this is the presence of the comparatively-larger constant in ODE3, leading to less

compact than optimal representations.

As seen in the TL benchmark ODE problems, there is little significant difference between

the performances of the affine and tree-encoding schemes, aside from the more complex

nodes, whereby the tree encoding appears to perform marginally better. This result

is interpreted here as more evidence that the dominant search mechanism is random

sampling of the encoding space.
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Figure 4.9: Performance comparison between affine and expression tree encodings.

An interesting ancillary investigation is presented here. Optimisation runs (using the

affine-encoding scheme), were conducted for each of the homogeneous ODE problems

in the new benchmark. Each of the homogenous ODE problems considered are then

transformed into the inhomogeneous form by the procedure described in Chapter 3.

Each of the resulting optimisation problems are presented in Figure 4.10. Interestingly,

the different ODE problems do not appear to affect the performance of the optimisation

run. The author sees two possible explanations for this result; the first is that the form of

the homogeneous ODE does not affect the objective function in a meaningful way. This

explanation is supported by the fact that terms in the objective function are measured

in the function domain by an L2 metric that is insensitive to the algebraic form of the

solution. Another explanation is that once again, random search is the dominant search

modality and so the form of the ODE is irrelevant.

An aside on the claim - ‘Dsolve/Mathematica/Maple was unable to

solve this problem but the current approach can’

Several authors have made the claim stated above regarding one approach or another

in reference to some differential equation of interest. The author feels that this claim
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Figure 4.10: Comparison between solution size (nodes in tree) vs. ODE used in
objective function.

(or rather the implied equivalence) is somewhat disingenuous. The difficulty of solving

a differential equation in a purely analytical sense (the approach taken by computer

algebra packages) is entirely related to the form of the differential equation. In the

former case, the problem can largely be restated as ‘can the differential equation of

interest be transformed into one of several canonical forms for which the solution is

prescribed?’. Conversely, in a heuristic approach, the difficulty is largely prescribed

by the form of the solution. Figure 4.10 demonstrates this effect clearly. There is no

perceptible difference between the difficulty (as measured by Λ) between different ODE

problems which have the same functional form for the solution, despite wildly different

inhomogeneous ODE problems.

Optimisation of the Affine-regression method: TL benchmark

The results presented thus far depict mixed performance of the affine method that is

comparable to that of the tree encoding scheme. However, performance on the harder

ODE problems (as measured by solution-tree size), appears to be significantly worse.

At this stage, it is useful to examine the effects of some of the hyperparameters of the

affine-regression tree approach. For brevity, the presented results are given on a subset
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Figure 4.11: Investigating the effect of the mutation probability pm.

of the TL problems, namely OD8, ODE1 and ODE3. These problems are selected to

represent both the easiest and most difficult problems in the TL benchmark.

The first parameter considered here is the effect of the constant mutation probability

Pm. The parameter was varied between values of 0.1 and 0.9 and the results of the

optimisation runs are presented in Figure 4.11. In the figure, there is little effect from

variation in the parameter on problems ODE8 and ODE1. However, there appears to be

a slight preference for larger values of Pm on the more difficult ODE3 problem. One in-

teresting possibility is that the values of Pm might be adapted as per some meta-heuristic

hyperparameter optimisation scheme [140]. In this way the likelihood of applying the

mutation operation might be varied during the run of the algorithm to suit different

search regimes.

Figures 4.12 and 4.13, depict similar investigations on the values of the initial constant

values a0 and b0 respectively. As might be expected, there is a clear advantage to

selecting a0 = 1 and b0 = 0. This makes sense given the observation that the majority

of ODE solutions seen ‘in the wild’ admit an affine representation with a sparse constant

structure (i.e a = 1 and b = 0 for most nodes).
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Figure 4.12: Investigating the effect of the initial linear constant value a0.

Figure 4.13: Investigating the effect of the initial constant parameter b0.



Affine-regression trees for exact symbolic regression 83

The results presented thus far indicate that a dominant search mechanism (for tree

structures at least) is random sampling. A potential reason for this is that it is very

difficult to move locally within the encoding space without drastically altering the func-

tional form (and therefore objective score), of an expression. Inspired by this limitation

a novel constant specification scheme is introduced here.

Constant snap is a new mutation method that operates on the values of constants. The

constant snap method proceeds as follows. First, a random constant (a or b) is selected

from a random node in the tree. Next, a simulated annealing heuristic-optimisation

routine [141] is used to specify an approximate value of the constant, treating the selected

constant as an unknown and all other parameters in the tree as fixed. The resulting meta-

optimisation task is a 1-dimensional nonlinear optimisation problem and the objective

function is given by the L2 distance between the trial solution and the target values

(obtained by numerically integrating the ODE forward in time).

Finally, an exact rational approximation (up to some numerical tolerance), of the con-

stant value is taken by a numerical simplification algorithm. Here, the ‘n-simplify’

routine from Sympy [69] is used.

Figure 4.14 depicts the results of applying the constant snap mutation with probability

Psnap to each node in the trial population. In the figure, there is clear evidence that the

constant snap mutation improves search performance. On the harder ODE3 problem,

the optimisation runs with Psnap = 0.9 give the best performance of any approach yet

considered.

4.4 Conclusions

This chapter has presented a novel encoding scheme for expressions—the affine-regression

tree. The proposed approach has a number of potential advantages over traditional tree-

encoding schemes, including increased locality in the representation of constants, and

a more compact search space. Also presented are a number of mutation operations for

affine-regression trees that are designed to take small steps in the objective function,

permitting a continuous optimisation surface. The search space size of the affine tree

approach is computed and compared to those enumerated in the previous chapter. It

is found that, while on the surface, the affine approach results in larger search spaces,

much of this effect can be attributed to the specification of constants. For many real

world expressions, the affine approach leads to considerably more compact expression

representations.
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Figure 4.14: Investigating the effect of the probability of employing the snapping
method psnap.

The method of exact symbolic regression (using a GA) is demonstrated for affine and

expression trees on two benchmark suites of ODE problems. On the first, from Tsoulos

and Lagaris [83], mixed performances are seen. On ODE problems with the most com-

pact solutions, the affine approach is seen to perform best. However, for ODE problems

with the largest solutions, the affine tree encoding (as presented), failed to find any

exact solutions. Interestingly, the data from the grammar-based approach of Tsoulos

and Lagaris [83] does not seem to suffer from degradation with increasing search space

dimension.

Perhaps most concerningly, none of the approaches considered in this chapter are able to

significantly outperform random search (as seen in Figure 4.8). The obvious reasoning

here is that there is still insufficient locality between the encoding space and the objective

function for meaningful heuristic optimisation. It is the opinion of the author that further

work in this direction must prioritise methods that promote this locality, if meaningful

improvement over random sampling is to be found.

On the second benchmark, proposed in Chapter 3, the results are similar. There is little

discernible difference between the affine-regression tree and expression tree encodings,

and a strong degradation of performance with increasing numbers of nodes in the solution



Affine-regression trees for exact symbolic regression 85

tree. An interesting result obtained on this benchmark is that there does not appear

to be a strong correlation between the homogenous ODE problem and the difficulty of

the optimisation problem. Instead, (as has been seen empirically on the TL benchmark

problems), the difficulty of the optimisation problem seems to be controlled entirely by

the size of the solution.

A final set of results presented in this chapter consider the parameterisation of the

affine-regression approach. Several hyperparameters of the affine-regression method are

considered in the study. As might be expected, it is found that the initial values of

the constant coefficients in the affine formulation a0 = 1 and b0 = 0 give the best

performance. It is also shown that there is little sensitivity to the value of the mutation

probability Pm.

Also considered here, is an exact meta-optimisation mutation—constant snap. The

performance of this procedure is examined, and initial results are promising. When the

operation is applied to new entrants to the trial population with probability Psnap = 0.9,

the overall performance of the optimisation runs on ODE3 of the TL benchmark were

better than any approach thus far considered. The author believes that constant snap-

ping is a promising avenue for the exact specification of constants in symbolic regression,

and several refinements to the method can be envisaged at this stage, including multiple

heuristic regression of several constants at once, more powerful heuristic optimisation

tools (such as differential evolution [142]) and the inclusion of a basis set of transcen-

dental constants.

Overall, the performance of the affine-regression approach presented in this chapter has

been varied. Although the method shows promise in several areas (including constant

snapping and compactness of representation), the method has yet to provide a signifi-

cant improvement over the standard expression-tree approaches or even random search.

However, there yet remains fertile ground for investigation. The author considers several

directions as promising areas for further work: One interesting observation of Seaton

[85] is that the solutions to ODE problems tend to contain repeated sub-structures be-

cause of the application of the differential operator. No method so far considered in this

chapter has this functionality. To approach this, Seaton and contributors have applied

the method of Cartesian genetic programming (CGP) [85, 143] to the solution of ODEs

by symbolic regression. It is interesting to imagine a hybrid approach that combines the

structure detection of CGP with the constant specification of the affine tree.
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4.4.1 From here to the moon

Where do the current results leave the search for exact solutions for nonlinear ODE

problems? Although there has been little in the way of positive results, the author

believes that some interesting conclusions can be reached. Certainly, analytical solution

of as yet unsolved nonlinear ODE problems is a severe task, that has (by definition)

evaded solution. Motivated by a desire to circumvent this analytical difficulty, it seems

that symbolic regression may just exchange a difficult problem with one of comparable

difficulty.

In Chapter 2, the following line of reasoning was established. For a given unsolved

nonlinear ODE problem, either:

1. A closed form solution does not exist in terms of known transcendental functions

and objects.

2. A closed form solution does exist, but heuristic methods are insufficiently powerful

to locate it.

3. A closed form solution is available and can be found by heuristic means.

The author would argue that nothing presented thus far is sufficient to prefer any one

of these statements in general. As has been shown several times in the results of this

chapter, the difficulty in locating an ODE solution by heuristic means lies with the

complexity of the solutions and not the ODE. What this means in practice, is that,

should an exact solution to an as-yet unsolved ODE exist with a compact formulation

(in terms of tree size), then there is a strong chance that it can be found by heuristic

means.

Despite the negative results of this chapter, the author sees no reason to pull their hand

out of the haystack.



Chapter 5

Statistically-independent NNMs

for decoupling of nonlinear

structural dynamics

The previous chapters have been concerned with the second of the grand challenges in

nonlinear structural dynamics identified in this thesis; solutions to nonlinear ODEs. The

remaining chapters will now address the third challenge, a nonlinear extension to modal

analysis.

Although pervasively useful in the linear case, it has been shown that the effect of non-

linearity on modal analysis is very destructive. Retention of the practical properties of

modal analysis in the nonlinear case is an open area of research, that has attracted atten-

tion for many decades after the original works of Rosenberg [18]. Since Rosenberg, many

quantities have been introduced in the literature that have been described as a NNM

of vibration. Among these, the recently-proposed statistically independent framework

[22] shows particular promise. The approach differs from many other NNM frameworks,

by placing its focus on constructing a decomposition that is of practical utility to the

engineer. In Chapter 2, a number of criteria were established for a practical nonlinear

extension to linear modal analysis:

1. Independence: The ability of the decomposition to render the dynamics into an

independent modal basis, preferably SISO.

2. Decomposition: The extent to which the decomposed modal dynamics represent

a physically meaningful (by some measure) basis for understanding the structural

dynamics.

87



Statistically-independent NNMs 88

3. Superposition: The extent to which the original dynamics can be recovered from

the decomposition.

The objective of this chapter will be to introduce the statistically independent frame-

work and consider how the criteria of Chapter 2 might be employed both as metrics of

utility and also as inductive biases that can be incorporated into the machine learning

framework to induce a useful decomposition by construction.

5.1 The statistically-independent framework

In 2017, Worden and Green [22], proposed a new class of NNM, based on a nonlinear

decomposition into uncorrelated time series. A motivation for these NNMs was that

often during analysis, the engineer does not have access to the underlying EOM of their

system, and so methods that rely on harmonic balance or shooting approaches cannot

be applied.

The mathematical structure of the framework is very simple. By generalising the linear

idea of decomposition, the framework specifies a static map f from the physical displace-

ments to a new coordinate system, within which, the nonlinear modal displacements are

uncorrelated time series,

f(y) = u (5.1)

Figure 5.1 depicts the statistically-independent approach graphically. In the figure, dot-

ted lines are functionals and solid lines represent static maps. As can be seen, the

framework also defines the inverse map f−1, permitting an approximate nonlinear su-

perposition,

f−1(u) = y (5.2)

At first sight, this approach may seem to bear close resemblance to the NNM frame-

work introduced by Rosenberg. However, it is structurally distinct. In the statistically-

independent framework, each of the physical displacements are used to build a map onto

each of the modal displacements ui. In this fashion, there is no concept of a ‘driving

DOF’ as seen the in the NNM frameworks of Rosenberg and Shaw-Pierre. Instead, the

modal ansatz is,
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Figure 5.1: Overview of the novel NNM approach.

ui = fi(y1, y2, . . . , yn) ∀i = 1, . . . , n (5.3)

Several contributions have extended and implemented the framework. These include

nonparametric learners in [126], consideration of nonlinear correlation metrics in [127]

and a neural network formulation in [23].

A motivation for the investigation of the statistically-independent framework is that it

can be readily applied in a similar approach to a linear modal testing campaign. Faced

with the task of nonlinear system identification on an unknown structurally-nonlinear

system, the framework of statistically-independent NNMs remains an attractive alter-

native to a purely black-box SIMO identification scheme. A practical workflow might

be:

1. Capture some displacement data from some SIMO structure of interest, subject to

broadband excitation.

2. Presume or establish the presence of nonlinearity (for example by assessment of

the coherence).

3. Conduct statistically-independent modal analysis on the data and retrieve the

modal dynamics.
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4. Finally perform NLSI on the modal dynamics as SISO functionals.

What is possible with statistical independence?

At first sight, the statistically-independent framework may not appear sufficiently pow-

erful to produce useful decompositions for all of innumerable ways that a system can

be nonlinear. Indeed it is not claimed here that the framework can be applied in all

settings. At this stage, no formal proof can be offered that limits the approach to a

certain class of systems and excitation types. However it will be useful at this stage to

hold some discussion over when the approach might be applied in practice.

In order for the outputs of the nonlinear dynamic system to be projected into statistically-

independent coordinates, it must be required that the outputs are in some sense random

signals. It therefore follows that excitation signals should be sufficiently broadband such

that there is little to no contribution from coherent nonlinear effects such as stochas-

tic resonance, bifurcation and chaos. In terms of the classes of nonlinearities that the

method can be applied to, it is hard to imagine any limit on the functional form that

can be considered.

At its core, the statistically-independent framework relies on the specification of a num-

ber of cognitive biases that encourage a practical decomposition into modal coordinates.

It can therefore be imagined that the types of nonlinearity and excitation for which the

approach is valid will depend entirely on the choices of these biases.

In Chapter 2, it was argued that the criteria for a practical nonlinear modal decompo-

sition could be expressed as the following,

1. Independence: The ability of the decomposition to render the dynamics into an

independent modal basis, preferably SISO.

2. Decomposition: The extent to which the decomposed modal dynamics represent a

physically meaningful (by some measure), basis for understanding the structural

dynamics.

3. Superposition: The extent to which the original dynamics can be recovered from

the decomposition.

The remaining sections of this chapter present an investigation into practical metrics that

can be used to evaluate these criteria within the context of the statistically-independent

framework. This is done with a view to identifying metrics that can be used as objective

functions within a machine-learning approach.
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5.2 On measures of independence

The first criteria introduced in Chapter 2 is independence. In much of the work that

has so far been completed surrounding the statistically-independent framework, this has

been evaluated by a simple linear correlation metric [22]. However, as identified in [127],

this is a restricted view that does not account for the presence of nonlinear correlations.

Correlation is not the only measure of independence as defined above. As an additional

inductive bias, the original statistically-independent framework [22], sought to retain the

idea of orthogonality that is present in linear modal analysis (the mode shapes are a

weighted orthogonal basis). In [22], orthogonality was introduced by evaluation of the

pairwise inner products of the columns of the parameter matrices in the multinomial

expansion of the forward transformation.

In [23], the idea of orthogonality was extended by requiring that the forward and inverse

transformations be conformal and locally preserve orthogonality. A conformal map

f : X → Y locally preserves angles between vectors, but not necessarily lengths. Thus,

for two vectors xi,xj ∈ X, f is conformal if,

xi · xj

∥xi∥∥xj∥
=

f(xi) · f(xj)

∥f(xi)∥∥f(xj)∥
∀xi,xj ∈ X (5.4)

where · is the usual scalar product. Conformality is included as a term in the objective

function of [23], by the application of an orthogonality-assembly (essentially a pertur-

bation based test of conformality in the forward transformation) with a neural-network

structure. For additional detail on the implementation of the orthogonality-assembly,

the interested reader is directed to the original publication [23].

5.2.1 Metrics for analysis of correlation

An essential ingredient of this data-driven approach to nonlinear modal analysis is the

selection of a correlation metric. The notion of correlation between two time series

can be understood intuitively in a number of ways. For example, correlation can be

understood to be the extent to which one signal is predictable from the other (and vice

versa), or the amount of information (by some measure) that one signal contains about

another.

A common choice for the evaluation of correlation is the Pearson product moment corre-

lation coefficient (often simply referred to as the correlation coefficient). In fact, many
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such objects exist, each with a different subset of desirable properties. A number of such

metrics are compared here.

In the notation that follows, α and β are jointly-distributed signals, each of length n

with finite second moment.

Pearson’s product moment correlation

The first correlation metric considered here is Pearson’s product moment correlation

coefficient (Cor); it is a linear metric that is described for signals α and β by,

ρp =
K(α, β)

σασβ
(5.5)

where the covariance function K is given by,

K(α, β) = E
[
(α− E[α])(β − E[β])T

]
(5.6)

where E represents the expectation operator. However, for sample populations, the

sample Pearson correlation coefficient can be used,

ρp(α, β) ≈
∑n

i=1(αi − ᾱ)(βi − β̄)∑n
i=1(αi − ᾱ)2

∑n
i=1(βi − β̄)2

(5.7)

This representation is convenient in that the mean residuals can be efficiently computed

by vectorisation, allowing for a fast implementation. Additionally, because of the scaling

on the denominator, ρp is bounded on the interval [−1, 1], with a value of one indicating

two perfectly linearly correlated signals and a value of negative one indicating perfect

anti-correlation. A zero value indicates statistical independence up to second order.

In order for this metric to be useful for assessing modal correlation, the absolute value of

the coefficient is taken, so that it is mapped into the range [0, 1]. Because the objective

of the optimisation is to achieve statistical independence, it will be inconsequential

that correlations and anti-correlations are not distinguished. Although there are several

advantages in terms of ease and speed of implementation of this metric, it is limited in

that is is only able to encode linear correlations.
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Spearman’s rank monotonicity test

Spearman’s rank monotonicity test (ρs) is another correlation metric similar to that of

Cor, except that the correlation test is preformed on the indices of the sorted data (i.e

ranks) rather than on the values of the data directly. As such, the metric does not test

for correlation in the signal, but monotonicity.

Spearman’s rank monotonicity test is evaluated for two signals by first replacing each

signal point αi with it’s rank rαi . This can be achieved with any efficient sorting al-

gorithm. The Spearman coefficient can then be evaluated by taking the correlation of

these ranks as in,

ρs(rα, rβ) =
ρp(rα, rβ)

σrασrβ
(5.8)

In the absence of repeated ranks (no ‘ties’ in the signal values) the Spearman coefficient

can be efficiently computed by the approximation,

ρs(rα, rβ) = 1−
6
∑

iD
2
i

n(n2 − 1)
(5.9)

where n is the length of each signal and D is the difference in rank between each obser-

vation in the signal,

D = rα − rβ (5.10)

As with the Pearson coefficient, the Spearman metric returns values on the interval

[−1, 1]. As such, the absolute value is taken to ensure that independence represents a

minimal value.

Computationally, the Spearman rank coefficient is at least as expensive as the Pearson

correlation coefficient, as the expression is identical, apart from the calculation of the

ranks. However the Spearman rank coefficient is not limited to linear correlations as it

is a test for monotonicity. Significant savings are available in the absence of repeated

ranks, as the above approximation is computable in linear time; however, the process of

validating the lack of repeated ranks can add to the complexity.
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Figure 5.2: Graphical representation of mutual information and its relationship with
other information theoretic quantities.

Mutual information

The mutual information is another measure of dependence based on the ideas of infor-

mation and entropy. Put simply, it is the amount of information (by some measure)

that can be inferred about a signal by observing another. It is closely related to the idea

of Shannon entropy [144]. Figure 5.2 depicts a graphical representation of the mutual

information between two signals. The figure is based on the representation provided by

Mackay in [145].

The mutual information can be calculated form the joint and marginal entropies of the

signals α and β, given by,

H(α, β) = −
d∑
i

d∑
j

p(αi, βj) log(p(αi, βj)) (5.11)

H(α) = −
d∑
i

p(αi) log(p(αj)) (5.12)

The mutual information can then be calculated as,
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I(α;β) = H(α) +H(β)−H(α, β) (5.13)

As can be inferred from Figure 5.2, the standard metric of mutual information is bounded

on the interval [0, H(α, β)]. As such, it is necessary to divide through by the joint entropy

H(α, β) in order to recover a metric that is bounded on the interval [0, 1].

Imetric(α;β) =
I(α;β)

H(α, β)
(5.14)

The computation of the mutual information is theoretically inexpensive, but in practice

one does not usually have access to the probability distributions of α and β and so these

must be expensively estimated using a binning method. As such, the mutual information

is the most expensive of the metrics thus far considered.

Distance correlation

The distance correlation (dCor) can be thought of as a generalisation of the Pearson

product moment correlation coefficient. Whereas the Pearson coefficient is only able to

detect linear correlations between signals of scalar variables, the distance correlation is

able to detect both linear and nonlinear correlations between pairs of random vector-

valued signals, that need not necessarily have the same dimension.

The distance correlation is defined for pairs of vector-valued signals a and b by first

calculating the distance matrices A and B, specified by,

akj = ||{αj} − {αk}||, k, j = 1, 2, .., l (5.15)

bkj = ||{βj} − {βk}||, k, j = 1, 2, .., l (5.16)

where ||...|| is taken to be Euclidean norm given by,

||X|| =
√∑

i

x2i (5.17)

In fact, any distance metric is appropriate. One is free to use instead the Mahalanobis

or rectilinear norms. In practice, the specification of the distance measure will depend

on the application and the dimensionality of the data.

Next, the doubly-centred distance matrices A′ and B′ are computed,
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A′
kj = akj − āj āk + Ā, k, j = 1, 2, .., d (5.18)

B′
kj = bkj − b̄j b̄k + B̄, k, j = 1, 2, .., d (5.19)

In these equations, the bar notation indicates the mean value with the subscript indicat-

ing whether it is over a row or column of the distance matrices A and B. the parameter

Ā represents the grand mean (mean of all elements) of the distance matrix A. The

distance covariance can now be recovered from,

dCov(α, β) =

√
1

n2

∑
j

∑
k

AkjBkj (5.20)

By considering the distance covariance of a signal with itself, the distance variance

(dVar) can be similarly calculated from,

dVar(α) =

√
1

n2

∑
j

A2
kj (5.21)

Finally the distance correlation can be evaluated from equation (5.15),

dCor(α, β) =
dCov(M,N)√

dVar(M) dVar(N)
(5.22)

Unlike other correlation metrics considered for this investigation, the distance correlation

is already bounded on the interval [0, 1] and so no re-scaling is required. In terms

of computational cost, dCor is by far the most expensive of the metrics considered.

This is because of the expense involved in the computation of the distance matrices

which quickly grows in cost with the length of the signals. However, this increase in

computational cost is offset by the ability of the distance correlation to detect nonlinear

correlations in the data.

5.2.2 Comparison on data with known correlations

The statistically-independent framework relies at its core on the inductive bias of un-

correlated modal displacements. Selection of an appropriate metric of correlation is

therefore an integral component in the framework. Given the correlation metrics iden-

tified above, it is useful to experimentally validate their performance on a number of

signals with known correlations. The correlations considered here are, independence (no
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Figure 5.3: Correlated data (x1 vs x2) considered in this investigation at a measure-
ment noise level of 20%.

correlation), linear correlation and nonlinear correlations including quadratic, cubic and

a sinusoidal relationship. For each test correlation signal, 105 points are sampled from a

standard normal distribution. The correlating signals are then generated and normalised

to zero-mean, unit standard deviation. Finally, some Gaussian measurement noise is ap-

plied (except in the independent case) with unit variance and relative magnitudes in the

range [0, 0.9] with an increment of 0.1. Overall, 41 test signals were generated. Figure

5.3 depicts test signals at a measurement noise level of 20%.

With the test correlation data established, the correlation metrics considered above can

be compared. Each of the dependence measures described earlier are applied to the

each of the 41 test cases. The results of the investigation, averaged over all noise levels

are shown in Figure 5.4. As can be seen from the figure, all measures were able to

correctly give a low score on the independent set. Performance on the linear correlation

is mostly good with all metrics except mutual information correctly attributing a high

level of correlation. In the nonlinear correlation tests, the performance is more mixed.

As is to be expected, the linear correlation metrics (ρp and ρs) perform well on the

odd nonlinearity but less well on the even functions (quadratic and sinusoidal). Overall,

the periodic nonlinear correlation proves the most difficult to detect, with the distance

correlation performing the best overall.
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Figure 5.4: Performance of the measures of statistical independence at every noise
level, error bars depict 90% confidence intervals estimated by bootstrapping.

The results in Figure 5.4 give the impression that the mutual information metric per-

forms strictly worse than the other metrics considered in all cases; however, this is an

artefact of the sensitivity to the level of measurement noise. Figure 5.5 depicts the

degradation of the mutual information metric with increasing measurement noise. In

the absence of any corruption, the mutual information metric performs extremely well

and attributes high levels of correlation between datasets. However, the performance

can be seen to degrade quickly as the noise increases.

Measurement noise is an inevitable part of engineering dynamics analysis. A measure of

statistical independence that depends so strongly on the level of measurement noise is

unlikely to be useful in detecting correlations in real-world datasets, and so the mutual

information metric is not considered further.

Overall, the most promising metrics for the analysis of correlations in the context of the

statistically-independent NNM frameworks are the Pearson product moment correlation

coefficient (ρp) and the distance correlation (dCor). Of these, dCor is by far the better

at detecting nonlinear correlations in data. However, this comes at the price of an

increased computational cost. In contrast, ρp is limited in its ability to only detect

linear correlations (although odd-type nonlinearities are well approximated). However,
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Figure 5.5: Degradation of the mutual information metric with increasing measure-
ment noise.

the computational cost of the linear metric is much lower than the nonlinear one1 and

this is an important consideration in a machine learning context, where the metric may

be required to be evaluated many thousands of times.

5.3 On measures of modal decomposition

Of perhaps equal importance to independence is the extent to which the decomposed

signals represent a practical decomposition that facilitates a simplified analysis. In [22],

it is argued that an intuitive requirement of a useful nonlinear modal decomposition is

one that results in distinct resonance peaks in the power spectral densities (PSDs) of

the modal dynamics. This idea of unimodality takes motivation from the observation

that the modal dynamics in the linear case are necessarily single peaks. In the paper,

the unimodality of the NNM PSDs was judged visually ‘by eye’. While this approach

is useful for a qualitative argument, it is useful to imagine methods that might include

1Pearson’s product moment coefficient can be computed inO(n) time whereas the distance correlation
requires O(n2) for the formulation given here. An alternate faster O(n logn) algorithm is given in [146]
which is the implementation used in the numerical study.
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modal unimodality as an additional inductive bias in the framework. To this end, some

additional measures of modal decomposition are included here.

Convolution unimodality test

One issue with the ‘by-eye’ approach used in [22], is the lack of repeatability of the

method. To address this, a measure of modal separation is presented based on the con-

volution operation. The proposed measure is motivated by the unimodality-preserving

properties of the convolution operation. it is therefore reasoned that if the PSDs of the

modal coordinates are convolved, the resultant signal can only be unimodal if each of

the modal directions was itself unimodal. The unimodality of the convolved signal can

then be assessed by a peak-picking algorithm or another method. Another advantage of

the convolution-unimodality test is that a highly-efficient implementation is available.

Leveraging the fact that the convolution operation in the frequency domain is equivalent

to a multiplication in the time domain, one is able to compute the convolved signal as,

Uconvolution = U1 ∗ U2 ∗ · · · ∗ Un = F

[
n∏
i

ui

]
(5.23)

where F is the Fourier transform operator. The proposed approach is depicted in Figure

5.6 where some test unimodal and bimodal signals, corrupted by noise, are convolved.

As can be seen, only the unimodal signals produce a unimodal convolution.

The convolution measure is limited in that it does not provide a strict measure of

decomposition, and is therefore still limited to the qualitative type of analysis considered

in [22].

Spearman rank unimodality test

Given the weaknesses of the method proposed above, a strict metric definition of uni-

modality is proposed here, motivated by the Spearman rank correlation coefficient de-

scribed above. For a true unimodal signal f(x), the following conditions must hold,

f(x1) ≤ f(x2), x1 < x2, x1, x2 < argmax f(x) (5.24)

f(x1) ≥ f(x2), x1 < x2, x1, x2 > argmax f(x) (5.25)
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Figure 5.6: Result of convolving toy PSD signals; (a) Unimodal with unimodal, (b)
Unimodal and bimodal, (c) Bimodal and bimodal.

In other words, if one were to divide f into two signals by splitting the series about the

maximum point of f , the resulting signals must be monotonically increasing (left of the

peak) and monotonically decreasing (right of the peak). For some trial signal g(x), the

unimodality can be measured by evaluating the normalised-product of a monotonicity

test on each of the two signals. For the left signal,

mlhs = ρp(x
−, g(x−)), x < argmax g(x) (5.26)

and the the right signal,

mrhs = −ρp(x
+, g(x+)), x > argmax g(x) (5.27)

The overall metric can then be calculated as,

munimodality(g) =
√
mlhsmrhs (5.28)
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Figure 5.7: Results of the proposed unimodality metric based on Spearman rank
monotonicity test on toy PSD data

The above metric is bounded on the interval [0, 1] for signals with a single maxima. only

a truly unimodal signal can produce a unity score. The proposed metric is demonstrated

on a small number of test cases in Figure 5.7. The test cases are chosen to simulate the

types of structures seen in modal PSD data; these are: a unimodal signal, a bimodal

signal with well separated peaks and a bimodal signal with considerable overlap above

the noise floor. As an additional challenge, the signals are corrupted by a Gaussian noise

with zero-mean and variance of 10−2.

As can be seen in the figure, the proposed metric performs well at detecting unimodality

in the presence of noise; correctly assigning the highest metric score to the unimodal

signal and lower scores to the others. The metric proposed in this study is a promising

tool for the assessment of modal decomposition; however, there are still limitations. For

example, the approach is still unable to account for the extent to which the resonance

peaks present in the physical displacements have been decomposed into an independent

single-peak basis. The current approach is limited in that a decomposition into modal

coordinates that each only contained resonance peaks at the same frequencies would be

attributed an equal score to one that produces an independent basis.
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A metric based on the cosine distance

In [23], a third metric of modal decomposition is introduced based on the idea of the inner

product between PSDs. The inspiration behind the metric is that for an independent

modal decomposition, each modal degree of freedom should have a PSD with a single

distinct peak that is not present in any of the others.

To achieve this, the authors in [23] calculate the average pairwise cosine distance between

the modal PSDs. The equation describing this quantity is,

mcosine =
1

N

N∑
i,j

Ui ·Uj

||Ui||||Uj ||
i ̸= j (5.29)

for a decomposition into N modal coordinates. The proposed metric is conveniently

bounded between [0, 1]. In practice, it is not possible to achieve a unity value, as the

effects of damping broaden the resonance peaks in the PSDs. However, the metric still

offers a useful measure of the modal separation. In [23], the measure is used as a post

processing step to select from a number of candidate decompositions, the one that best

decomposes the dynamics into single resonance peaks.

5.4 On metrics of modal superposition

Another important aspect of the statistically-independent framework is the notion of

modal superposition. This can be measured in the time domain by the evaluation of the

reconstruction error after the application of the forward and inverse modal mappings.

For example, taking a normalised mean-square error (NMSE),

Jreconstruction =
100

Nσy

N∑
j

(ŷj − yj)
2 (5.30)

where,

ŷ = f−1(f(y)) (5.31)
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5.5 Conclusions

In this chapter, the statistically-independent framework for nonlinear modal analysis

has been introduced. The framework is seen to offer a promising practical nonlinear

extension to liner modal analysis.

Despite its promise, there are a number of limitations to the framework as it is currently

posed. One such limitation is that it only considers displacements, and as such is

theoretically unable to handle some nonlinear phenomena such as internal resonances

[94]. Remedies to this situation are simple to envisage. For example, cross terms could

be added as extra dimensions to the modal transformation (as is done within a Rosenberg

framework [94]). Alternatively, the modal maps could be lifted into the phase space of

the dynamics (as in the Shaw-Pierre framework), such that velocity terms are decoupled

alongside displacements.

It is also interesting to imagine if any equivalence could be established linking the

statistically-independent NNMs to previous theoretical approaches such as that of Rosen-

berg [101] or Shaw-Pierre [19]. However, neither the author here nor those of [22] are

able to claim any such equivalence at this time.

Also in this chapter, the use of machine learning in the construction of the modal maps

has been used to motivate the selection of performance metrics. The idea is that these

metrics may be included as objective functions that encourage the specification of useful

modal decompositions as measured against the criteria established in Chapter 2.

For each of the criteria, a number of potential metrics have been introduced, including

two new methods for the assessment of unimodality in the PSDs of the decomposed

modal displacements.

For the measurement of independence, several statistical measures have been introduced,

and their performances compared, on a toy dataset with known linear and nonlinear

correlations. Of these, the most promising are the linear correlation measure and the

nonlinear distance correlation metric. Also considered is the idea of conformal mappings

and their use in specifying orthogonal nonlinear mappings.

A limitation of the measures of correlation proposed in this chapter is the lack of a time-

dependent measure of correlation. The issue is, that several of the correlation measures

considered do not factor in the temporal nature of the data. As such, the measures may

therefore fail to detect the presence of periodic dependencies in the data. To overcome

this limitation, one could make use of a cross-correlation metric; however, this would

incur additional computational expense.
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Another limitation is the limited view of what constitutes a good decomposition, as per

the criteria of Chapter 2. In this chapter, as in [22], decomposition has been measured

in terms of the unimodality of the decomposed PSDs. A potential shortcoming of this

approach is that nonlinear systems often display secondary (and tertiary etc.) resonances

at harmonics of the principal resonant frequencies. When adopting the statistically-

independent approach, the hope is that these harmonics will, in some sense, be ‘cancelled

out’ by the cognitive biases placed on the nonlinear decomposition. This assumption

may seem excessive, but it is not a new proposition. The related approach of ‘simplifying

transformations’ [147, 148] takes a similar viewpoint.

Although unimodality of the decomposed spectra is not a bad measure, (certainly, single

resonances in the decomposed spectra represent a useful basis for analysis), it is the

opinion of the author that this is a somewhat limited view of decomposition. Other

factors of at least equal importance include;

• The preservation of resonances present in the physical displacements.

• The extent to which the transformation correctly reduces to the linear modes in

the absence of nonlinearity.

• The extent to which the underlying linear dynamics are preserved.

• The extent to which the modal transformation is able to generalise between exci-

tation levels (locally or globally).

These factors are key challenges that any nonlinear extension to modal analysis must

overcome. However, measurement of these properties requires some additional analysis

which shall be explored in the chapters that follow.



Chapter 6

Statistically independent NNMs:

Towards exact NNMs

The statistically-independent NNM framework relies at its core on a nonlinear static

map from the physical displacements to the uncorrelated modal coordinates. Thus

far in the literature, a machine-learning approach has been taken to learn the modal

transformation [22]. However, it is of interest to ask at this stage; can the transformation

be derived directly from the equations of motion?

There are several motivations for attempting to compute the nonlinear modal mapping

directly from the equations of motion. A key motive is that it is manifestly possible in

the linear case. It is therefore argued here, that access to a modal mapping in the case

of perfect system knowledge (even in the SISO case), is an important theoretical result

in support of the statistically-independent framework. Another important motivation is

the reduction in computational cost that can be made by avoiding a machine learning

approach.

This chapter examines one method for the construction of analytic modal transforma-

tions from the equations of motion. The proposed approach is demonstrated for a single

degree of freedom, and challenges pertaining to the MDOF case are presented.

6.1 Direct results from the FPK equation

The approach undertaken here is inspired by the Fokker-Plank-Kolmogorov (FPK) equa-

tion. The FPK equation is a partial differential equation, the solution of which is the

so-called stationary probability density, p(y, ẏ|x) of a dynamic system. The stationary

probability density can be interpreted as the probability of observing a given system

106
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state over the entire time history of the system response, subject to some input x.

In the context of statistically-independent NNMs, the stationary probability density is

of particular interest. With access to p(y, ẏ|x), the problem of specifying the modal

transformation becomes the specification of a map f such that,

f(y) = u (6.1)

y ∼ p(y, ẏ|x) (6.2)

u ∼
n∏
i

αi(ui|x) (6.3)

where the αi are target distributions that can be selected arbitrarily to promote indepen-

dence. For example, one might require that the modal map decomposes displacements

into independent Gaussian distributions. The map can then specified either by exact

reasoning, or by the application of the change-of-variables equation. For example, in the

one-dimensional case, the change-of-variables equation is given by,

py(y) = pu(u)

∣∣∣∣dudy
∣∣∣∣ (6.4)

Now, substituting in the required form of the transformation,

py(y) = pu(f(y))

∣∣∣∣df(y)dy

∣∣∣∣ (6.5)

∣∣∣∣df(y)dy

∣∣∣∣ = p(u)

p(f(y))
(6.6)

One now has an ODE that, if solved (directly or otherwise), yields the nonlinear trans-

formation from the stationary density to some arbitrary target distribution as required.

Important results regarding the derivation of stationary probability densities for a class

of second-order dynamic systems with polynomial-stiffness nonlinearities were developed

by Caughey in [149]. The full derivation of the results used here goes beyond the scope

of the current investigation but the interested reader is directed to [149] for a thorough

reference.
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The salient result in the context of the present investigation is that for a nonlinear

system of the form,

ÿ + [C]ẏ + F(y) = x(t) (6.7)

where C is a diagonal matrix of damping coefficients c, and where x(t) ∼ N(0, σ2
xI).

The stationary probability density is given by,

ps(y, ẏ) = A× exp

[
−2c

D

[
1

2
ẏ2 +

∫ y

0
F(ζ) dζ

]]
(6.8)

Where D is the spectral density level of the white-noise Gaussian input, A is the nor-

malising constant and ζ is a dummy variable. For discrete data, D can be related to the

variance of the input and the sampling period (∆t) by,

D = σ2
x∆t (6.9)

6.2 Direct transformations in a single dimension

It may seem bizarre to perform nonlinear modal analysis on a SISO system (and indeed

it is!), but the author makes the arguments that the results established here provide an

important theoretical illustration for the statistically-independent NNM framework.

Before blindly applying machine learning to the problem of learning f(y), it is a worth-

while endeavour to consider which inductive biases are sufficient to induce the desired

properties of a nonlinear modal decomposition. Certainly, näıve application of the modal

transformation in a single dimension is insufficient to provide insight into the decom-

position and independence criteria, yet there are still important properties that can be

investigated.1 One such property is the extent to which the stationary distributions of

nonlinear dynamic systems can be altered by static maps. Another is the way in which

these static maps vary with nonlinear intensity and excitation level. Understanding

these properties is key to understanding which inductive biases should be built into the

machine-learning framework for nonlinear modal analysis.

1It is perhaps not even particularly meaningful to describe the transformed coordinates of a SISO
oscillator as ‘modal’ in this context. The term ‘transformed nonlinear displacements’ will therefore be
adopted in this section.
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The proposed approach is to learn directly the nonlinear transformation from the FPK

and a target distribution (chosen arbitrarily to be a Gaussian). The approach is demon-

strated here in the SISO case for a Duffing-type nonlinear system with the equation of

motion,

ÿ + cẏ + ky + ϵy3 = x(t) (6.10)

where x(t) ∼ N(0, σ2
x) is Gaussian, white-noise excitation, with variance σ2

x.

Starting with the stationary density for a second-order dynamic system with a stiffness

nonlinearity (6.8), and substituting in,

F = y + ϵy3 (6.11)

one finds,

ps(y, ẏ) = A× exp

[
−2c

D

[
1

2
ẏ2 +

∫ y

0
ζ + ϵζ3 dζ

]]
(6.12)

After performing the integration in the exponent, one has,

p(y, ẏ) = A× exp
[
− c

D

[
ẏ2 + ky2 +

ϵ

2
y4
]]

(6.13)

which is the joint stationary probability density of the displacement and velocity up to

some constant A.2

To recover the density of the displacement only, one notices that the above can be

re-written as,

p(y, ẏ) = ps(y)ps(ẏ) (6.14)

where the densities of the velocities and displacements are independent. Now marginal-

ising over the velocities, one has,

ps(y) =

∫
ẏ
ps(ẏ, y) dẏ (6.15)

2A closed form expression for A is available in terms of parabolic cylinder functions and other higher-
order transcendental functions. However in practice, a numerical approximation can be taken—here, a
quadrature-based numerical solver is employed—with no damage to the results presented here.
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or equivalently,

ps(y) = A× exp
[
− c

D

[
ky2 +

ϵ

2
y4
]] ∫ ∞

−∞
exp

[
− c

D
ẏ2
]
dẏ (6.16)

Because the integral in the above has the form of a Gaussian distribution, one can use

the result that the infinite integral over the distribution is equal to unity to recover,

ps(y) = A× exp
[
− c

D

[
ky2 +

ϵ

2
y4
]]√Dπ

c
(6.17)

Now let,

A′ = A×
√

Dπ

c
(6.18)

Then the stationary probability density of the displacement of the nonlinear Duffing

equation can be recovered as,

ps(y) = A′ × exp
[
− c

D

[
ky2 +

ϵ

2
y4
]]

(6.19)

A similar approach can be taken to recover an expression for the stationary probability

density of the displacements, yielding,

ps(ẏ) = A′′ × exp
[
− c

D
ẏ2
]

(6.20)

Which is clearly a Gaussian distribution. In order to validate the expressions derived

here, they are compared to the stationary distributions estimated empirically from simu-

lated data. The data are generated using a fixed-step fourth-order Runge-Kutta scheme.

Parameters pertaining to the simulation are collected in Table 6.1. Figure 6.1 depicts the

PSDs (estimated by the Welch method), for the linear (obtained by setting ϵ = 0) and

nonlinear data generated for this investigation. In the figure, there is clear evidence of

nonlinearity, including a hardening effect on the resonance peak and a visible harmonic

at three times the principal resonance.

The stationary distribution for the displacements derived above, is plotted against nu-

merical results in Figure 6.2 for the Duffing equation and the equivalent linear system.

As can be seen from the figures, there is excellent agreement between the numerical

results and those obtained from the FPK equation.
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Figure 6.1: PSD of linear versus nonlinear system.

Table 6.1: Parameters used to simulate the toy dynamics data.

Parameter Symbol Value

Mass m 1
Viscous damping c 20
Linear stiffness k 1
Cubic stiffness ϵ 100
Input excitation level σ2

x 1
Runge-Kutta method order 4
Sampling frequency (Hz) fs 10
Dataset size N 106
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Figure 6.2: Stationary densities of simulated data versus predictions from the FPK.

It is now interesting to consider a static nonlinear map that renders the transformed

displacements Gaussian. In the context of the statistically-independent framework, this

is akin to the statistical-independence criterion (albeit trivially in a single dimension for

now). The desired forward nonlinear transformation has the form,

f(y) = u, u ∼ N(µu, σ
2
u) (6.21)

It is required that f : y → u be a static, continuous and invertible map; one can thus

apply the change-of-variables equation and write,

∣∣∣∣df(y)dy

∣∣∣∣ = p(u)

p(f(y))
(6.22)

If f is additionally constrained to be a monotonic function,

df(y)

dy
> 0 ∀y (6.23)

then,
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df(y)

dy
=

p(u)

p(f(y))
(6.24)

Substituting in the definition of p(y) and replacing p(u) with the required form of a

Gaussian distribution gives,

df(y)

dy
=

A′√
2σ2

uπ
× exp

[
−(f(y)− µu)

2

2σ2
u

+
c

D

[
ky2 +

ϵ

2
y4
]]

(6.25)

Where the parameters of the target distribution are set to,

σ2
u =

ck

2D
(6.26)

µu = 0 (6.27)

The above is a first-order nonlinear ODE in f(y). Although the ODE is separable in

f and y, the integral in f is intractable analytically and so a numerical solution must

be adopted. Since all the distributions considered here are symmetric, it is sufficient

to only consider the half-plane IVP with y > 0 and f(0) = 0 as an initial condition.

The full map can then be recovered by reflecting the positive solution about y = 0. In

this investigation, a fixed-step Runge-Kutta IVP algorithm is used to solve (6.25). The

integration provides a discrete representation of f , that is interpolated linearly to form

a continuous mapping. Finally, the nonlinear displacements are transformed onto the

modal displacements u that now obey the target distribution.

Remark 6.1. Although a Gaussian target distribution has been selected for p(u), in

practice there is no restriction on the form of the target (besides independence). The

author envisages that the choice of p(u) will depend on physical insights (i.e. bounding,

distribution support) that one might be able to make about the nonlinear system under

investigation.

Figure 6.3 depicts histograms of the simulated nonlinear and transformed data against

the original and target distributions. As can be seen in the figure, the quality of the

transformation is excellent, the modal data fits the target distribution exactly.

It is of interest at this stage to consider the effects of varying nonlinearity and excitation

level on the form of the nonlinear transformation. In Figure 6.4, the physical and

transformed data are plotted and compared over a range of values for the nonlinear

stiffness parameter. Also plotted are third-order polynomial fits to the forward nonlinear
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Figure 6.3: Histograms of physical and transformed displacements compared to FPK
prediction and target distribution.

transformations in each case. As expected, with ϵ = 0 the nonlinear transformation

is trivially the unity map. As the level of nonlinearity increases, the cubic structure

of the required transformation becomes more pronounced. The data (obtained from

integrating equation (6.25) forward in time) are used to fit polynomial models of the

nonlinear transformation. Examination of the least-squares polynomial models of these

data is of interest as some insight can be gleaned as to the form of the mapping.

In several cases, towards the edges of the distributions, the measured samples are seen

to deviate from the least-squares polynomial fit. The author reasons that these discrep-

ancies are caused by numerical issues in the evaluation of (6.25). As the magnitude

|y| → ∞, the numerator and denominator of the change-of-variables equation both

rapidly approach zero, leading to instability in the numerical integration procedure.

Note however, that these errors do not cause any visible damage to the quality of the

fit in Figure 6.3; this is because the instability only affects the very extremes of the

distributions, where very few samples are observed.

Another important consideration at this stage is the amplitude invariance of the pro-

posed approach. Figure 6.5 depicts the forward nonlinear transformation and the cor-

responding least-squares polynomial fit, calculated at a range of excitation levels. It is
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Figure 6.4: Comparison of the nonlinear mapping f(y) with varying nonlinear stiffness
(σ2

x = 1).

interesting to note that the nonlinear transformations are not independent of amplitude.

This result implies that amplitude invariance cannot be guaranteed under the statisti-

cally independent framework using only a Gaussian target distribution. In order to

achieve a modal transformation with amplitude invariance, additional inductive biases

must be introduced to the framework.

6.2.1 A cautionary result

The choices of σ2
u = ck

2D and µu = 0 in the analysis above were not arbitrary, but

deliberate. Consider the effect of taking ϵ = 0 in equation (6.19).

ps(y) = A′ × exp

[
− c

D

[
ky2 +

0

2
y4
]]

ps(y) = A′ × exp

[
−ck

D
y2
]

(6.28)
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Figure 6.5: Comparison of the nonlinear mapping f(y) with varying excitation level
(ϵ = 100).

which is a Gaussian distribution with mean 0 and variance ck
2D . In effect, the map f

projects the density of the nonlinear displacements onto a distribution wherein there is

no effect from the nonlinearity.

The following line of reasoning is now a tempting (but erroneous) one. Because the

stationary probability density of u = f(y) is the same as that of the underlying linear

system (with ϵ = 0) given the same white-noise input, the dynamics of x → u should

therefore be linear.

Certainly, the converse argument is true. However a disproof of the above is straightfor-

ward. One begins by substituting the map f into the equation of motion for the Duffing

oscillator.

d2

dt2
g(u) + c

d

dt
g(u) + kg(u) + ϵg(u)3 = x(t) (6.29)

where,

g(u) = f−1(u) = y (6.30)
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Evaluating the time derivatives of g(u),

d

dt
g(u) =

dg

du

du

dt
= g′(u)u̇ (6.31)

d2

dt2
g(u) =

d

dt

[
g′(u)u̇

]
= g′′(u)u̇2 + g′(u)ü (6.32)

and substituting into the equation of motion, gives,

g′′(u)u̇2 + üg′(u) + cg′(u)u̇+ kg(u) + ϵg(u)3 = x(t) (6.33)

which, despite a Gaussian stationary density for x and u is clearly a nonlinear ODE.

6.3 Towards direct MDOF NNMs

Although it has been shown that a modal transformation (of sorts) is available in the

SISO case, it is of no practical interest for performing nonlinear modal analysis. Un-

fortunately, the method presented above cannot be trivially extended to the higher-

dimensional case. The principal issue is the form of the change-of-variables equation

for higher-dimensional mappings. For n degrees of freedom, the static forward modal

transformation f(y) = u, is a function with n inputs and n outputs. The change of

variables equation is thus,

|Jf | =
p(u)

p(f(y))
(6.34)

where Jf is the Jacobian of f , and | · | denotes the determinant operation. The above

expression cannot be uniquely solved for f and once again a machine learning-approach

must be adopted. However, for nonlinear systems where the equations of motions are

known exactly, the above expression can be used as an objective function whereby the

quantity,

JFPK(f,y) = |Jf | −
p(u)

p(f(y))
(6.35)

can be minimised within an optimisation framework to enforce an arbitrary target dis-

tribution in the modal space. Formulating the machine-learning problem in this way

bears close resemblance to the method of normalising flows (NF) [150]. Indeed, a NF
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approach to generating the statistically-independent NNMs has been presented in the

literature [128], with comparable results to other approaches.

Given the difficulty in solving (6.34), direct access to the modal transformation is not

considered further at this stage. However, there are still promising avenues for further

investigation, including the inclusion of the change-of-variables equation in the objective

function when the stationary density of the physical displacements can be accessed

(analytically from the FPK equation or otherwise).

6.4 Conclusions

In this chapter, the problem of specifying exact modal transformations under the statistically-

independent framework has been treated. An approach to constructing the maps using

the FPK equation and the change-of-variables equation is presented. In the limited

SISO case, it is shown that a nonlinear transformation can be specified by the numerical

solution of a nonlinear ODE. This has furthermore been demonstrated on a simulated

benchmark dataset. It is shown that the modal transformations specified in this way

depend locally on the level of input excitation.

It is interesting to imagine whether there might exist a choice of p(u) (parametrised

by the input excitation) that permits an amplitude-invariant forward nonlinear trans-

formation (excluding of course the trivial p(u) = p(y)). It is certainly hard to imagine

that this would be possible in general for nonlinear dynamic systems. However this is

an interesting avenue for further investigation.

Also considered in this chapter is the extension of the method to the multiple degree-

of-freedom case. It is shown that the differential equation arising from the change of

variables equation in this case cannot be directly solved for the modal transformation

f . Instead, a machine-learning approach is envisaged, that uses the Jacobian of the

modal transformation in the objective function to encourage conformance with a target

distribution in the modal coordinates.

Although the analysis in this chapter has produced some interesting results in the context

of the statistically-independent NNM framework, some important limitations remain.

Chief among these, is the lack of insight into the transformed modes. Of particular

interest in practice are the following questions;

• What effect does f have on the resonances of the response?

• Have the underlying linear dynamics been altered?
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• Does the modal transformation introduce additional nonlinearities?

Although some reasoning might be made in the context of the transformed equation

of motion in (6.33), a full investigation of these is saved for later chapters, once some

further machinery for analysis is established.



Chapter 7

Generating

statistically-independent NNMs

This chapter will present some case study examples of generating nonlinear normal

modes under the statistically-independent framework. Two approaches from the litera-

ture are considered for generating the forward and inverse modal maps f and f−1.

Although no resolutely novel methodology is presented here for specifying the NNMs1,

the novel analysis of the statistically-independent NNMs (in a following chapter), re-

quires that some NNMs be constructed. The objective of this chapter is therefore

twofold. Principally, NNMs are constructed for some case-study nonlinear systems for

later analysis. Additionally, the opportunity is taken to evaluate the effect that the

different inductive biases have on the qualitative performance of the modal transforma-

tions.

The first method for generating NNMs considered in this chapter is the original ap-

proach of Worden and Green in [22]. Here, the forward modal mapping is learned by

an explicitly-parametrised multinomial model of fixed order. The parameters of this

multinomial transformation are specified by the application of a heuristic optimisation

algorithm. Cognitive biases are introduced by an objective function that considers pair-

wise correlations between the decomposed displacements.

The second approach demonstrated in this chapter is derived from the recently proposed

work of [23]. In the paper, the authors propose a neural formulation of the forward and

inverse maps. By the application of a cycle-consistent generative adversarial network

(cycle-GAN) [151], the authors are able to jointly learn both the forward and inverse

1The consideration of the distance correlation metric from Chapter 5 in the multinomial decomposi-
tion may be viewed as a minor yet interesting contribution.

120



Generating statistically-independent NNMs 121

modal transformations. In addition, the inductive bias of conformality (as per the

cosine distance metric introduced in Chapter 5), encourages a practical decomposition

into independent resonances.

There are in fact several other approaches that have been presented in the literature for

the generation of NNMs in the statistically-independent framework that are not consid-

ered in this chapter. These include approaches based on non-parametric methods [126],

normalising flows [128] and another based on an auto-encoder model [129]. Although

these techniques have some desirable properties, the author feels that the best compari-

son for the sake of this chapter is between the original formulation of [22] and the state

of the art neural architecture method of [23].

In the literature, statistically-independent NNMs have already been generated for a

range of nonlinear structural dynamical systems undergoing random excitation. Both

numerical and experimental systems have been considered across a range of types of non-

linearities, including polynomial and impact types [22, 23]. It is the opinion of the author

that the efficacy of the statistically-independent framework is now well-established. It

is not of particular interest to explore additional types of nonlinearity or experimental

case studies in this thesis. Although such work is certainly fertile ground for future

consideration, the author feels that a more pressing requirement is the reconciliation of

the data-driven framework with physical insight.

With the above objectives in mind, the two approaches to generating the NNMs are

each demonstrated on two benchmark case studies. A 2-DOF and a 3-DOF nonlinear

system with a cubic stiffness element. Although is might seem that consideration of only

simulated case-studies is a weakness of the results here, direct access to the equations of

motion will prove valuable for the analysis that is to follow. The quality of the nonlinear

modal decompositions are judged visually (a more robust analysis is presented in a

later chapter), in terms of the extent to which the decomposed power spectral densities

(PSDs) show distinct resonance peaks.

7.1 Benchmark nonlinear dynamical systems

In this chapter, the NNMs of two systems with a static cubic stiffness nonlinearity will be

extracted. Figure 7.1 gives a schematic view of the 2-DOF system under investigation.

For both case studies, nonlinearity is introduced into the system by the addition of a

fixed cubic stiffness element between the first degree of freedom and the base. The

equations of motion for the two and three DOF systems are therefore given by,
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Figure 7.1: Schematic of the 2-DOF nonlinear system.

Table 7.1: Parameters for the nonlinear benchmark systems.

Parameter Description Value

m Mass (Kg) 1
c Viscous damping coefficient (Ns/m) 20
k Linear stiffness (N/m) 1× 104

k3 Cubic stiffness (N/m3) 5× 109

[ω1, ω2] Linear natural frequencies (2 DOF) (Hz) [15.9, 27.5]
[ω1, ω2, ω3] Linear natural frequencies (3 DOF) (Hz) [12.1, 22.5, 29.4]
fs Sampling frequency (Hz) 500
fc Lowpass cut-off frequency (Hz) 50
σx Excitation standard deviation (N) 20
Ns Points sampled 1× 105

M ÿ + Cẏ +Ky +K3y
3 = x(t) (7.1)

where, M,C,K,K3 are square parameter matrices corresponding to the nonlinear system

depicted in Figure 7.1, and have values as given by Table 7.1.

To generate the time-series data, the equations of motion are integrated forward in time

by a fixed-step fourth-order Runge-Kutta scheme. In total 105, points are generated in

order to achieve good estimates of the spectral densities. For excitation, white Gaussian

noise x ∼ N(0, σx) is applied to the first degree-of-freedom of each system. An additional

low-pass filter is applied to the excitations with a cut-off frequency of 50Hz. Overall,

data at three excitation levels of σx = [8, 14, 20] are collected for each configuration.

For convenience, all parameters pertaining to the numerical simulation are collected in

Table 7.1.

In order to verify that the dynamics are indeed nonlinear, the spectral densities (esti-

mated by the Welch method [152]) of the nonlinear data are compared to the equivalent

system with the nonlinear elements removed. Nonlinear cubic hardening is demonstrated

for the 2-DOF system and σx = 20 in Figure 7.2. In the plot there is clear evidence of

hardening of the resonance peaks from the inclusion of the cubic stiffness. In the modal
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Figure 7.2: PSDs (estimated by the Welch method [152]) for the 2-DOF nonlinear
and underlying linear system, the nonlinear data shows a clear hardening via shifts in

the principal resonance frequencies.

analyses that follow, the data from the highest level of excitation (i.e most nonlinear)

will be used.

7.2 Meta-heuristic optimisation

With the nonlinear benchmark data established, the NNMs can be generated. The first

approach presented in this chapter is derived from the multinomial expansion of [22]. In

the paper, the authors choose a parametric form for the forward modal transformation

f . The parameters of the transformation are then optimised according to an objective

function that encodes the inductive biases of the NNM framework. In [22], a multinomial

expansion of f is taken,

u = A1y +A2Π2(y) +A3Π2(y) + . . . (7.2)

where the Ai are parameter matrices and where Πi(y) represents a vector of products of

length m combinations of the elements of y. Clearly, the number of free parameters in
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the above equation grows combinatorically2 with the order of the multinomial and the

number of degrees of freedom. In order to reduce the difficulty of the resulting optimi-

sation problem somewhat, the authors of [22] reason that for a cubic-type nonlinearity,

only the linear and third-order terms need be included. The resultant transformation is

thus,

[
u1

u2

]
=

[
a11 a12

a21 a22

][
y1

y2

]
+

[
a11 a12 a13 a14

a21 a22 a23 a24

]
y31

y21y2

y1y
2
2

y32

 (7.3)

for the 2-DOF system and,


u1

u2

u3

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33



y1

y2

y3

+


a11 a12 ... a1;10

a21 a22 ... a2;10

a31 a32 ... a3;10





y31

y21y2

y21y3

y32

y22y1

y22y3

y33

y23y1

y23y2

y1y2y3



(7.4)

for the 3-DOF system.

For the objective function, the inductive biases of independence and orthogonality are

enforced. For the former, the pairwise correlations between the transformed modal coor-

dinates are calculated. Here, two metrics for the assessment of correlation are considered.

Following the analysis presented in Chapter 5, optimisation runs are conducted using

both the Pearson product correlation coefficient and the distance correlation metrics.

In order to encourage orthogonality, an additional objective term is included that pe-

nalises the cosine distance between the columns of the linear part of the transformation.

This approach (taken from [22]), is motivated by the fact that in linear modal analysis

the columns of the modal matrix are all orthogonal to each other. The overall objective

function can be written,

2The number of free parameters in a multinomial transformation up to order k in n variables (i.e

degrees of freedom) is given by
∑k

i=1
(i+2n−1)!
i!(2n−1)!

.
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J = λ1Jorthogonality + λ2Jcorrelation (7.5)

Jorthogonality =
∑
i

∑
j

|a(i)1 · a(j)1 |+ |a(i)2 · a(j)2 |+ . . . i ̸= j (7.6)

Jcorrelation =
∑
i

∑
j

| cor(u1, u2)|+ | cor(u1, u3)|+ . . . i ̸= j (7.7)

Where λ1, λ2 are weighting terms that are each (arbitrarily) set to unity.3 It should be

noted here that the objective function presented above differs slightly from that which

was employed in [22]. In the paper, the authors explicitly include third-order correlations

(i.e. cor(u1, u
3
2) etc.) in the objective function. These terms are neglected here with

the reasoning that distance correlation metric should be able to handle the nonlinear

correlations implicitly.

Differential evolution

With the objective function established, all that remains is to perform the optimisation of

the multinomial coefficients. Because the gradients of the above objective function with

respect to the parameters are not (trivially) available in closed-form, the optimisation

will be performed by heuristic means.

Heuristic optimisation encompasses a class of algorithms that are able to perform opti-

misation in the absence of gradients or in the presence of challenging optimisation envi-

ronments (multiple objectives, local minima, nonsmooth search spaces). Many heuristic

optimisation algorithms are derived from the more general class of genetic algorithms

(GAs), that are introduced in Chapter 4. Although a great number of algorithms have

been presented in the literature (a subset of popular algorithms can be found in [141, 153–

155]), a popular choice is methods based on differential evolution (DE) [142].

The structure of DE is essentially identical to that of a genetic algorithm. The algorithm

is comprised of an initialisation step, followed by a number of generations during which

a population of trial solutions is optimised towards a global optimum. During each gen-

eration, new candidate vectors are produced by taking the numerical difference between

parent vectors (from the previous generation), and adding them to a third parent vec-

tor. This genetic reproduction procedure imitates the evaluation of gradient information

3It is argued here that a priori there is no reason to weight one of these terms more strongly than
the other in the objective function.
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Figure 7.3: Schematic depiction of a single generation of the DE algorithm.

and makes the DE algorithm particularly effective at optimisation within smooth local

minima.

Several extensions to the original DE algorithm have been proposed in the literature,

including a greedy-search approach (JADE) [156]. The DE algorithm was extended to

the class of meta-heuristic optimisers (whereby hyperparameters are optimised during

the run) by Qin and Suganthan in [140]. So-called Self-adapting differential evolution

(or SADE to her mates), has been applied to a great number of problems in engineering

and beyond [31, 32, 42, 157, 158] and so is an excellent candidate for the optimisation

task at hand.

A full description of the DE/SADE algorithm is somewhat beyond the scope of the

current chapter (and indeed is well treated elsewhere), the interested reader is directed

to the original papers [142, 159] for additional detail on implementation or to [160] for

a benchmark comparison of several heuristic optimisation methods. The implementa-

tion used in the studies presented here is taken from the python package ‘FreeLunch’,

developed by the author, which is available on the python package index4. However, a

schematic of the procedure of a single generation of the DE algorithm is depicted for

the readers convenience in Figure 7.3.

4https://pypi.org/project/freelunch/

https://pypi.org/project/freelunch/
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Table 7.2: Parameters pertaining to the SADE optimisation procedure, note that
smaller optimisation sizing parameters are used to account for the significantly increased

computational complexity of the distance correlation method.

Parameter Description Value

G Number of generations (per run) {104, 2× 103}
N Population size {104, 2× 103}
Fµ Learning rate initial mean 0.5
Fσ Learning rate initial standard deviation 0.2
Crµ Crossover rate initial mean 0.2
Crσ Crossover rate initial standard deviation 0.1
Lp Learning rate 10

To specify parameters to the nonlinear map, the SADE algorithm is employed here.

First, an initial population of candidate parameters is generated. In order to assist

the search, the linear parameters (the elements of the A1 matrix), are initialised from a

Gaussian distribution centred around the PCA components of the physical displacements

and with standard deviation σa = 0.5. Parameters of the nonlinear terms are initialised

uniformly on the interval [−0.5, 0.5]. During each optimisation run, parameter values

are prevented from exceeding an absolute value of 100.

For each system the optimisation was re-initialised and run 100 times. Both the Pear-

son correlation coefficient and the distance correlation metrics are considered. For the

former, 104 points were used to evaluate the correlation and the population size was set

to 103 individuals optimised over 103 generations. Because of the increased computa-

tional complexity of the distance correlation metric5, only 2 × 103 points were used to

evaluate the metric, and population size was set to 500 individuals optimised over only

500 generations. Parameters pertaining to the optimisation problem are collected for

the readers convenience in Table 7.2.

Results

Once each of the optimisation runs are completed, the best transformation is selected

as the parameter set that provides the lowest objective function score. These parameter

vectors are then used to generate the modal displacements for the entire time-series.

PSDs of the physical and modal coordinates are estimated by the Welch method and

compared in the following figures.

Figures 7.4 and 7.5 depict the original and transformed PSDs for the 2-DOF system for

the Pearson and distance correlation metrics respectively. In the former, the quality of

5Pearson product moment correlation coefficient can be computed in O(n) time whereas the distance
correlation metric requires nominally O(n2). A O(n logn) algorithm was also recently proposed [146].
Results in this chapter use the implementation available as part of the ‘dcor’ python library [161].
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Figure 7.4: 2-DOf system: Physical vs. modal PSDs - multinomial expansion with
cor.

the separation (as judged ‘by-eye’ for independent resonances) is poor. In comparison,

the decomposed spectra generated by minimisation of the distance correlation in Figure

7.5 shows a far greater level of separation. At first sight it might appear that the

improved separation can be attributed to the nonlinear correlation metric. However,

visual assessment of each of the 100 best solutions from each run, finds examples from

both metrics that provide a good decomposition by-eye. It should be noted here that the

ordering of the modal decomposition is essentially random, this is because the columns

of the transformation matrices can arise in arbitrary order without affecting the value

of the objective function.

The resultant nonlinear maps for the 2-DOF system are plotted in Figures 7.6 and 7.7.

As expected, both figures depict a linear region close to the origin and cubic structure

in the extremities.

Results from the 3-DOF investigation are depicted in Figure 7.8 for the Pearson corre-

lation coefficient and Figure 7.9 for the distance correlation metric. As before, the best

performing transformation trained to minimise the pairwise cross-correlations measured

by Pearson’s correlation coefficient has failed to produce a visually-distinct set of reso-

nant peaks. The performance of the best performing distance correlation has likewise
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Figure 7.5: 2-DOf system: Physical vs. modal PSDs - multinomial expansion with
dcor.

Figure 7.6: Forward nonlinear map - multinomial expansion with cor.
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Figure 7.7: Forward nonlinear map - multinomial expansion with dcor.

failed to produce visually-distinct resonances, indicating that elimination of the corre-

lations (linear or otherwise) is insufficient to guarantee a decomposition into distinct

resonance peaks.

Once again, examples of transformations that perform visually better (and worse), can

be found amongst the best transformations from each of the 100 runs of the optimiser,

adding further evidence that an additional inductive bias is required to achieve a con-

sistent decomposition into distinct resonances.

7.3 Cycle-GAN

Although there is evidence that good modal decompositions can be found by the heuris-

tic optimisation approach of [22], several disadvantages remain. A recent contribution

[23], demonstrates that cycle-consistent generative adversarial networks (cycle-GAN)

can provide several advantages. The inverse mapping is handled naturally by the neural

architecture and network parameters can be optimised via gradient descent. Another

useful contribution of the work is the proposal of an inner-product metric for evaluating

the separation of the modes in the frequency domain.
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Figure 7.8: 3-DOf system: Physical vs. modal PSDs - multinomial expansion with
the cor.

The notion of using a neural architecture to learn a decomposition mapping is not a

new one. There are several techniques such as auto-encoders [162] or their variational

extensions [163, 164] that attempt to build latent representations of data based on

inductive biases. However, any reasonable framework for NNMs should have as many

modal directions as there are physical degrees-of-freedom.6 Network architectures that

rely on a bottleneck layer become problematic in this regard. If the dimensionality of the

latent space is selected to be equal to that of the input, the network becomes susceptible

to the degenerate unity-map case. The cycle-GAN does not have such a limitation,

the specification of a target latent dimension forces the network to learn a meaningful

decomposition.

The structure of the cycle-GAN model is essentially comprised of two generative adver-

sarial networks (GANs) [165], tasked with learning the forward (f : Y → U) and inverse

(f−1 : U → Y ) mapping to the modal coordinates. Within each GAN, are two neural

networks7 each possessed of a single hidden layer. Of these two networks, the first, -

6Even if a reduced-order representation is desirable, it is natural that the full-fidelity representation
should have as many modes as degrees-of-freedom. The author notes that this must be the case if a
reduction to linear modal analysis is desired in the limit of linearity.

7Historically referred to as a multi-layer perceptron (MLP).
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Figure 7.9: 3-DOf system: Physical vs. modal PSDs - multinomial expansion with
dcor.

the generators (f , f−1) - learn the desired mapping, while a second - the discriminators

(Df , Df−1) - learn to classify according to the target distributions.

Here, as in [23], the targeted distribution for the modal coordinates is a pair of inde-

pendent Gaussian distributions. The target distribution for the physical coordinates is

learnt from the measured samples. The adversarial training of the GANs ensures that

the generator models learn the required mappings, while respecting the target distribu-

tions. Adversarial training leads to a number of loss functions for the cycle-GAN that

are optimised simultaneously by a stochastic gradient-descent algorithm. The first are

the adversarial losses, computed as in the original cycle-GAN paper [151],

Ly
1 = E[logDf (y)] + E[log(1−Df (f(u)))]

Lu
1 = E[logDf−1(u)] + E[log(1−Df−1(f−1(u)))]

(7.8)

where E is the expectation operator, f (resp. f−1), are the forward and inverse modal

transformations and Df (resp. Df−1), are the discriminator models trained to clas-

sify the target modal and physical distributions. The next objective function is the
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reconstruction loss,

Ly
2 = ∥y − f(f−1(y))∥2

Lu
2 = ∥u∗ − f−1(f(u∗))∥2

(7.9)

where the u∗ are samples from independent Gaussian distributions. Finally, the in-

ductive bias of orthogonality is introduced by a third loss term L3, that ensures the

conformality of the inverse modal transformation u → y. It is only required to place

this restriction on one of either f of f−1 since the conformal property necessarily applies

to inverses. In the interest of brevity, the algorithm used to compute L3 is not in-

cluded here. For a detailed explanation of the orthogonality enforcement assembly, the

interested reader is directed to [23]. The networks are trained over a number of epochs

consisting of 2048 samples per epoch using an ADAM [166], stochastic gradient-descent

algorithm. The loss from a given training epoch is given by,

L = λ1(Ly
1 + Lu

1 ) + λ2(Ly
1 + Lu

1 ) + λ3L3 (7.10)

where the λi are weights in the objective function. Following the approach of [23] and

here, values of λ1 = 1, λ2 = 10 and λ3 = 1 are used.

During each training epoch, gradient descent is performed on the cycle-GAN in both

forward and inverse passes. Each pass consists of feedforward and backpropagation steps.

In the forward configuration, the observed physical displacements y are mapped onto

their modal counterparts via the generator of f and back onto the reconstructed physical

displacements ŷ by the generator of f−1. Gradient is then backpropagated through all

models according to the ADAM optimiser. In the inverse pass, the model is inverted

and draws from a Gaussian distribution are mapped onto samples from a distribution

learnt from the physical displacements by the inverse mapping f−1 and then back onto

the random samples by f . A graphical depiction of the forward pass through the model

is depicted in Figure 7.10.

Following [23], in order to remove any dominant linear correlations, the input displace-

ments are first transformed by a PCA decomposition. Transforming the data in this

way frees the neural architecture to learn any nonlinearity that might be required for f

without having to learn all the linear transformations as well. The same structure is of

course present in the inverse mapping.
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f f−1y
u ŷ

Df Reconstruction loss
L2

û

Adversarial loss
L1

Orthogonality loss
L3

Figure 7.10: Overview of the cycle-GAN structure for the forward pass.

Table 7.3: Network parameters for the cycle-GAN network.

Parameter Description Value

nr Training repeats 10
ne Training epochs 5000
nse Training examples per epoch 2048
nl Number of hidden layers in f and f−1 1
hl Min. hidden nodes in f and f−1 10
hm Max. hidden nodes in f and f−1 200
ns Hidden node step size 10
Whann Samples per Welch segment 2048
Wo Welch segment overlap 0

The network structures and parameters are detailed in Table 7.3. The number of hidden

nodes in both the forward and inverse mappings are set to the same value and training

is repeated over a range of values to ensure the best possible chance of learning a good

decomposition, and to ensure validation of the model architecture. For this paper, values

between 10 and 200 are considered, with an increment of 10, with 10 training repeats

per increment.

All networks, across all repeats, are trained for 5000 epochs each consisting of 2048

training examples. Once trained, an inner-product metric is used to select the best

encoder and decoder pair. This metric ensures that the transformation gives good

separation of peaks in the frequency domain. To simplify the computational complexity

of the approach, the inner-product score is computed every 100 training epochs. The

metric is defined over the power-spectral densities (PSDs) of modal coordinates Pu and

is given by,

Linner =

ndof∑
i=1,j=i+1

Pui · Puj
∥Pui∥ ∥Puj∥

(7.11)
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Figure 7.11: 2-DOf system: Physical vs. modal PSDs - cycle-GAN decomposition.

In the above, the Pui and Puj are estimated by a Welch method [152]. This choice leads

to the introduction of some additional hyperparameters arising from the window length

and overlap size in the Welch method. The author’s experience with the cycle-GAN

approach has shown that too much noise in the PSD can lead to poor performance and

so values of the parameters that promote smoothness are selected. In the present study,

a Hamming window of length 211 samples is used with zero overlap.

The PSDs of the modal coordinates are compared to those of the physical coordinates

for the 2-DOF and 3-DOF systems in Figures 7.11 and 7.12. When judged visually, the

peaks in the PSDs are well separated, indicative of a good decomposition.

7.4 Conclusions

In this chapter, two methods for generating nonlinear normal modes under the statistically-

independent framework have been presented and compared. The quality of the modal

decomposition has been evaluated qualitatively in terms of the separation of the reso-

nance structures in the decomposed PSDs.
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Figure 7.12: 3-DOf system: Physical vs. modal PSDs - cycle-GAN decomposition.

Judged visually, the modal decompositions constructed by the heuristic decomposition

method exhibit mixed performance. Although there is some evidence that the inclusion

of the distance correlation improves the performance, it is evident that the correlation

metric and column-wise orthogonality of the linear part of the multinomial transfor-

mation are insufficient inductive biases to guarantee visually distinct peaks in every

run.

In comparison, the cycle-GAN approach has performed significantly better. A likely ex-

planation for this observation is that the inclusion of the additional inductive biases of

conformality via the orthogonality assembly and independence through the inner prod-

uct metric used to select the best overall transformation. In addition to the increased

performance, the cycle-GAN approach also offers several desirable properties including a

non-parametric formulation, concurrent specification of the inverse transformation and

optimisation by gradient descent. Given the considerable advantages of the cycle-GAN

approach, only the NNMs generated by this method will be considered in the analysis

that follows

Although the ‘by-eye’ assessment of the modal decompositions is convenient, there re-

mains an urgent need to quantitively evaluate the NNMs in terms of the criteria of

Chapter 2.
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1. Independence: The ability of the decomposition to render the dynamics into an

independent modal basis, preferably SISO.

2. Decomposition: The extent to which the decomposed modal dynamics represent

a physically meaningful (by some measure) basis for understanding the structural

dynamics.

3. Superposition: The extent to which the original dynamics can be recovered from

the decomposition.

It is certainly the case that the visual assessment of the modes in this chapter gives an

indication of both independence and decomposition, but concrete conclusions cannot be

reached before the completion of more robust analysis in the following chapters.



Chapter 8

Higher-order FRFs for analysis of

nonlinear modal dynamics

The previous three chapters have considered in detail, aspects of the statistically-independent

framework for nonlinear modal analysis. In the previous chapter, the nonlinear modal

transformations were established in a data-driven setting and it was qualitatively shown

that the modes had desirable properties. However, questions remain as to the nature of

the decomposed modal dynamics.

In this chapter, a powerful tool for understanding and visualising nonlinear dynamics

is explored, higher-order frequency response functions (HFRFs). These objects have

several advantages for understanding the dynamics of nonlinear normal modes. HFRFs

arise from a frequency-domain representation of the Volterra series [41]. Each HFRF

encodes the dynamic properties of a system independently at a given order, in much

the same way as Taylor series coefficients of static functions. In this way, the linear and

nonlinear components of the dynamics can be evaluated separately. In general, there are

an infinite number of HFRFs for a given nonlinear system (since the Volterra series is an

infinite series). However, meaningful assessment of the salient aspects of the dynamics

(underlying linear component, presence of odd and even nonlinearities) can be obtained

by considering only the first few HFRFs.

As well as the present requirement for interpreting the dynamics of the nonlinear modes

generated under the statistically-independent framework, HFRFs have considerable util-

ity for the validation of black-box techniques in nonlinear system identification (NLSI).

One area of particular interest is the interpretability of models that are constructed in

the black-box setting. To this end, a number of approaches have been proposed in the

NLSI literature [167]. A common approach to gleaning physical insight from black-box

models is to use the Volterra series [2].

138
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In this chapter, closed form expressions for the HFRFs of kernel-NARX models are

developed by the application of the method of harmonic probing [168]. These expressions

are furthermore validated against a numerical case study where the HFRFs are extracted

from a Gaussian process NARX model (for a variety of common kernel choices), trained

on data from a nonlinear dynamic system with polynomial stiffness elements.

8.1 The Volterra series

The Volterra series [41], can be thought of as a generalisation of the Taylor series to the

case of functionals, that allows for ‘memory’ effects to be captured. Whereas the Taylor

series encodes information about a function at a given position in the input space,

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n + . . . (8.1)

The Volterra series is able to capture the effect of previous values of the input. In

continuous time, the series is given by,

y(t) = y1(t) + y2(t) + y3(t) + · · ·+ yn(t) (8.2)

where,

y1(t) =

∫ +∞

−∞
h1(τ)x(t− τ)dτ (8.3)

y2(t) =

∫ +∞

−∞

∫ +∞

−∞
h2 (τ1, τ2)x (t− τ1) dτ1dτ2x (t− τ2) (8.4)

yn(t) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
hn (τ1, · · · , τn)x (t− τ1) · · ·x (t− τn) dτ1 · · · dτn (8.5)

In the above, the hi are known as the Volterra kernels. These kernels are akin to the

Taylor coefficients of a static function. The Volterra kernels encode the nonlinearity of

the functional at various orders. Of particular interest in an NLSI context is h1, which

encodes the linear impulse response of the dynamics. Just as in the linear case with

Duhamel’s integral, the Volterra series admits a frequency-domain representation. The

expression for arbitrary functionals is beyond the scope of the results in this chapter, but
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for the single-input single-output (SISO) dynamic system subject to harmonic excitation,

taking the Fourier transform of the series yields [2],

y(t) = H1(ω)e
iωt +H2(ω, ω)e

i2ωt +H3(ω, ω, ω)e
i3ωt + · · · (8.6)

In the above, the Volterra kernels in the time domain become the higher-order frequency

response functions Hi. These HFRFs have a number of desirable properties in terms

of interpreting the dynamics of the nonlinear system. For example, just as h1 encodes

the linear impulse response of the system, H1 encodes the FRF of the linear dynamics.

Clearly, this is a useful tool for model interpretation in an NLSI context. With access

to the HFRFs of a model, an engineer is able to evaluate common modelling pitfalls,

such as bias in the linear dynamics1 and spurious higher-order behaviour, for exam-

ple, the presence of even nonlinearities in systems that are known to only contain odd

nonlinearities.

8.2 Harmonic probing

HFRFs can be derived analytically from the equations of motion of a dynamic system

using the harmonic-probing algorithm [168, 169]. For simple dynamics, this is straight-

forward, but quickly grows in complexity with model order. Given the utility of the

HFRFs in interpreting NLSI models, it is unsurprising that a fair amount of attention

has been generated in deriving closed-form expressions for the HFRFs for various model

types. For example, expressions are available for a simple neural-network nonlinear-

autoregressive model with exogeneous inputs (NARX) in [170], and a Gaussian-process

NARX (GP-NARX) model with a squared exponential kernel in [49, 171] (and extended

to the multi-lengthscale case in [172]).

In order to demonstrate the method of harmonic probing when the equations of motion

are known, the HFRFs of a nonlinear quadratic-cubic Duffing equation are derived here.

The derivations established here, largely follow the work of Gifford et al. [168]. The

system under investigation obeys the equation of motion,

mÿ + cẏ + ky + k2y
2 + k3y

3 = x(t) (8.7)

In order to extract H1(ω), a harmonic probing input is assumed of the form,

1In the case that the true underlying linear stiffness is available.
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x(t) = eiωt (8.8)

From the Volterra series, the appropriate probing output is given by,

y(t) = eiωtH1(ω) + 2ei(ω+ω)tH2(ω, ω) + · · · (8.9)

It is important to note that all higher-order terms (containing H2, H3 etc.) can be

neglected here. This is because of the orthogonality property of the harmonic terms.

Notice that once the harmonic probing input and output are substituted into the equa-

tion of motion, the only term in (8.9) that can generate coefficients of eiωt is the first

term, eiωtH1(ω). This truncation is important, because by equating coefficients of eiωt,

one can retrieve an equation that can be solved for H1. Thus, for compactness the

harmonic probing response is written as,

y(t) = eiωtH1(ω) (8.10)

Substituting this and the probing input into the equation of motion above, one has,

keiωtH1(ω) + c
d

dt

[
eiωtH1(ω)

]
+m

d2

dt2
[
eiωtH1(ω)

]
+k2

(
eiωtH1(ω)

)2
+ k3

(
eiωtH1(ω)

)3
= eiωt

k
[
eiωtH1(ω)

]
+ ciωeiωtH1(ω) +m(iω)2eiωtH1(ω)

+k2e
2iωtH1(ω)

2 + k3e
3iωtH1(ω)

3 = eiωt
(8.11)

Extracting only the coefficients of eiωt,

H1(ω) [k + (iω)c+ (iω)m] = 1 (8.12)

is in an expression that can be solved trivially for H1.

H1(ω) =
[
−ω2m+ iωc+ k

]−1
(8.13)
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It is interesting to note that H1 encodes the underlying linear dynamics of the system, or

the FRF of the linear system if all nonlinear elements were removed. This is a valuable

property of the HFRFs, as it allows the engineer to assess the extent to which a black-

box model may have biased the underlying linear system. It is argued here that this

represents a more stringent method of model validation than assessment of L2 error

metrics alone.

Continuing the method of harmonic probing for H2, the appropriate input is now,

x(t) = eiω1t + eiω2t (8.14)

for which the response from the Volterra series is,

y(t) = eiω1tH1(ω1) + eiω2tH1(ω2) + ei(ω1+ω2)tH2(ω1, ω2) + · · · (8.15)

where once again, the higher-order terms can be neglected on the basis that they cannot

produce coefficients of ei(ω1+ω2)t. Substituting these as before into the equations of

motion and extracting all coefficients of ei(ω1+ω2)t, yields an expression which may be

solved for H2(ω1, ω2); the result is,

H2(ω1, ω2) = −k2H1(ω1)H1(ω2)H1(ω1 + ω2) (8.16)

Notice that this expression contains the quadratic stiffness as a scaling factor and so has

useful interpretability in terms of the extent to which the quadratic stiffness has been

recovered by the model. The process can be repeated in a similar (read: tedious) fashion

for H3, by considering three independent harmonics in the probing input. The result is,

H3(ω1, ω2,ω3) = −1

3
H1(ω1 + ω2 + ω3)

[
3k3H1(ω1)H1(ω2)H1(ω3)

+ 2k2(H1(ω1)H2(ω2, ω3) +H1(ω2)H2(ω1, ω3) +H1(ω3)H2(ω1, ω2))
] (8.17)

Once again, notice that the expression for H3 can be constructed entirely from H1 and

the nonlinear stiffness coefficients, affording important insight into the characteristics

of the nonlinear system. Note also the effect of taking k2 = 0, the entire expression is

parameterised by k3 and H1.
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8.2.1 The kernel-NARX model

The principal contributions of this chapter are general expressions for the HFRFs of an

entire class of stationary kernel-NARX models, parameterised entirely in terms of the

training data and the choice of kernel κ(d), where d is some metric that describes the

distance between two points on the input space. An important member of the stationary-

kernel NARX class is the GP-NARX model [21, 48]. These models have a number of

advantages including a non-parametric form, a small number of hyperparameters and

uncertainty quantification.

The models in this class have the explicit predictive form given by,

yt =
N∑
j

αjκ

( ny∑
k=1

||yt−k − vjk||+
nx∑

m=0

||xt−m − ujm||

)
(8.18)

where αi are the learned model weights, xi, yi are the unseen lagged inputs and outputs

to the system and u, v are the training data; nx and ny are the maximum numbers of

lags in the inputs and outputs. The above expression also permits a vectorised form,

yt = αTκ (||h−H||) (8.19)

where h are the unseen lagged inputs and outputs to the model,

h =

[
y

x

]
=

[
yt−1, yt−2, · · · , yt−ny

xt, xt−1, · · · , xt−nx−1

]
(8.20)

H is the Hankel matrix of training inputs and outputs and ||x− x′|| is a vector norm,

H =

[
V

U

]
=



yt−1 yt−2 . . . yt−ny xt xt−1 xt−2 . . . xt−nx+1

yt−2 yt−3 . . . yt−ny−1 xt−1 xt−2 xt−3 . . . xt−nx

yt−3 yt−4 . . . yt−ny−2 xt−2 xt−3 xt−4 . . . xt−nx−1

...
...

yt−N+p xt−N+p−1



T

(8.21)

The derivations presented here make the assumption that || · || is the L2 norm. Rewriting

the above expression, one has
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yt = αTκ
(√

d2
)

(8.22)

where,

d2 =

N∑
j

([
y

x

]
−

[
vj

uj

])2

= (y − U)T(y − U) + (x− V )T(x− V ) (8.23)

Now let,

q = yTy − 2yV + xTx− 2xU (8.24)

and,

γ2 = −
N∑
j

v2
j −

N∑
k

u2
k (8.25)

Equation (8.23) can then be rewritten,

d2 = q+ γ2 (8.26)

The trick here is to now expand the kernel function κ as a Taylor series around d2 = γ2,

resulting in,

κ ≈ A0 +A1(d
2 − γ2) +A2(d

2 − γ2)2 + . . . (8.27)

Or equivalently,

κ ≈ A0 +A1q+A2q
2 + . . . (8.28)

Where the Ai are the Taylor series coefficients, computed in the usual manner, that now

depend on the norm of training data, γ2. Thus, equation (8.22) becomes,

yt = αT
(
A0 +A1q+A2q

2 + . . .
)

(8.29)
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which is essentially a discrete-time polynomial NARX model in y with input x. The

method of harmonic probing can now be applied, following the approach of [173]. How-

ever, it is useful to first establish some notation to ensure the compactness of the forth-

coming expressions. First, let,

Ej = eiωjt (8.30)

be a harmonic signal consisting of a single frequency. Now define,

∆y(ω) = e−ikω∆t k ∈ 1, . . . , ny (8.31)

∆x(ω) = e−imω∆t m ∈ 1, . . . , nx (8.32)

as vectors of lag operators that apply the discrete-time lag operation, where ∆t = f−1
s

is the sampling period of the discrete-time method.

The appropriate probing signals for the discrete time model are now,

x = E1∆x(ω) (8.33)

y = E1∆y(ω)H1(ω) (8.34)

As before, H1 can be evaluated by substituting the above into equation (8.29) and pulling

out the coefficient of E1. One might be tempted to think that because equation (8.29)

is an infinite series, there will be an infinite number of terms that produce coefficients of

E1. However, this is not the case. In fact, the only term that can generate the required

coefficients is A1q. The algebra is not included explicitly here for reasons of space but

the result can be found as,

H1(ω) =
2A1∆x(ω)Uα

1 + 2A1∆y(ω)V α
(8.35)

Continuing in this fashion for H2 and H3 yields (arduously), to the following expressions,
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H2(ω1, ω2) =
[
1 + 2A1∆y(ω1 + ω2)V α

]−1 ×
[

+H1(ω1)H1(ω2)
[
4A2(∆y(ω1)V ) ◦ (∆y(ω2)V ) +A1∆y(ω1)

T∆y(ω2)
]
α

+H1(ω1) [4A2(∆y(ω1)V ) ◦ (∆x(ω2)U)]α

+H1(ω2) [4A2(∆y(ω2)V ) ◦ (∆x(ω1)U)]α

+
[
4A2(∆x(ω1)U) ◦ (∆x(ω2)U) +A1∆x(ω1)

T∆x(ω2)
]
α
]

(8.36)
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H3(ω1, ω2, ω3) =
[
1 + 2A1∆y(ω1 + ω2 + ω3)V α

]−1 ×
[

+H1(ω1)H1(ω2)H1(ω3)×[
−12A3(∆y(ω1)V ) ◦ (∆y(ω2)V ) ◦ (∆y(ω3)V )− 6A2∆y(ω1)

T∆y(ω2) ◦∆y(ω3)V
]
α

+H1(ω1)H1(ω2)[
−12A3(∆y(ω1)V ) ◦ (∆y(ω2)V ) ◦ (∆x(ω3)U)− 2A2∆y(ω1)

T∆y(ω2) ◦∆x(ω3)U
]
α

+H1(ω2)H1(ω3)[
−12A3(∆y(ω2)V ) ◦ (∆y(ω3)V ) ◦ (∆x(ω1)U)− 2A2∆y(ω2)

T∆y(ω3) ◦∆x(ω1)U
]
α

+H1(ω1)H1(ω3)[
−12A3(∆y(ω1)V ) ◦ (∆y(ω3)V ) ◦ (∆x(ω2)U)− 2A2∆y(ω1)

T∆y(ω3) ◦∆x(ω2)U
]
α

+H1(ω1)H1(ω2, ω3)

[4A2(∆y(ω1)V ) ◦ (∆y(ω2 + ω3)V )]α

+H1(ω2)H1(ω1, ω3)

[4A2(∆y(ω2)V ) ◦ (∆y(ω1 + ω3)V )]α

+H1(ω3)H1(ω2, ω3)

[4A2(∆y(ω3)V ) ◦ (∆y(ω1 + ω2)V )]α

+H1(ω1, ω2)

[4A2(∆y(ω1 + ω2)V ) ◦ (∆x(ω1)U)]α

+H1(ω2, ω3)

[4A2(∆y(ω2 + ω3)V ) ◦ (∆x(ω2)U)]α

+H1(ω1, ω3)

[4A2(∆y(ω1 + ω3)V ) ◦ (∆x(ω3)U)]α

+H1(ω1)[
−12A3(∆y(ω1)V ) ◦ (∆x(ω2)U) ◦ (∆x(ω3)U)− 2A2∆x(ω2)

T∆x(ω3) ◦∆y(ω1)V
]
α

+H1(ω2)[
−12A3(∆y(ω2)V ) ◦ (∆x(ω3)U) ◦ (∆x(ω1)U)− 2A2∆x(ω1)

T∆x(ω3) ◦∆y(ω2)V
]
α

+H1(ω3)[
−12A3(∆y(ω1)V ) ◦ (∆x(ω3)U) ◦ (∆x(ω2)U)− 2A2∆x(ω2)

T∆x(ω3) ◦∆y(ω3)V
]
α

+
[
−12A3(∆x(ω1)U) ◦ (∆x(ω2)U) ◦ (∆x(ω3)U)− 6A2∆x(ω1)

T∆x(ω2) ◦∆x(ω3)U
]
α
]

(8.37)
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where ◦ denotes an elementwise product between vectors. It is noteworthy that these

expressions are far more complicated than those of the continuous-time systems consid-

ered earlier in this chapter. This dramatic increase in complexity can be attributed to

the far more flexible nature of these expressions. They are able to encode a far more

rich set of functional that the polynomial stiffness models considered above.

Extension to the GP-NARX case

Note that the above equations can be extended to include the GP-NARX models consid-

ered in this work by including the signal variance parameter within the kernel weights,

α′ = ασ2
f (8.38)

Lengthscales, including ARD can be also be included by elementwise scaling of the data

matrices and lag operator vectors,

U ′ =
U

ℓ
(8.39)

V ′ =
V

ℓ
(8.40)

∆x(ω)
′ =

∆x(ω)

ℓ
(8.41)

∆y(ω)
′ =

∆y(ω)

ℓ
(8.42)

Note also, that the noise variance parameter is included by construction from the defi-

nition of the kernel weights in the GP-NARX model.

α =
[
κ(H,H) + σ2

nI
]−1

y (8.43)

Substituting these values into the equations above returns the HFRFs of the GP-NARX

model. Additional hyperparameters can be explicitly included when computing the

Taylor series of the kernel.
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Table 8.1: Parameters pertaining to the simulation of the nonlinear system.

Parameter Symbol Value

Mass m 1
Viscous damping c 20
Linear stiffness k 104

Quadratic stiffness k2 107

Cubic stiffness k3 5× 109

Input excitation level σ2
x 2

Low-pass cut-off frequency (Hz) fc 50
Filter order 4
Sampling frequency (Hz) fs 1024
RMS noise level 0.1%
Dataset size N 103

8.3 Case study

To illustrate the effectiveness of the HFRFs as a tool for verification in NLSI, a case

study example is developed here. For the present study, the system under investigation

will be a single degree-of-freedom (SDOF) nonlinear quadratic-cubic Duffing equation.

The equation of motion for this dynamic system is given by,

mÿ + cẏ + ky + k2y
2 + k3y

3 = x(t) (8.44)

For the simulation data, the equations of motion are integrated forward in time by a

fixed-step fourth-order Runge-Kutta method with a sampling frequency of 1024 Hz. For

excitation, a white Gaussian signal low-pass filtered onto the interval [0, 50] Hz is applied

with a mean of zero and a standard deviation of 2N. All parameters pertaining to the

benchmark system and the simulation are collected for the convenience of the reader in

Table 8.1.

Overall, 105 points are simulated. After simulation, the first 2×104 points are discarded

in order to remove the effects of transients from the initial conditions or integrator.

In order to simplify the training of nonlinear models, the remaining data were then

standardised to zero-mean and unit variance. To stabilise the numerical methods, a

small amount of process noise was added at 0.1% of the root-mean-squared (RMS)

signal level. Finally, a training, validation and testing set are extracted from the scaled

data, each comprised of 103 points.

Although the expressions for HFRFs developed in this work are valid for the class of

stationary kernel-NARX models generally, the model chosen for this case-study is the

GP-NARX model.
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Figure 8.1: Lag structure cost surface on unseen validation data for the ARX model.

An open problem in the GP-NARX literature (and in NARX models more generally)

is the efficient and robust selection of the lag structure (also know as lag-structure

optimisation (LSO)). Many approaches based on the Akaike information criteria [174]

or a Bayesian extension [175] have been proposed, but these all suffer from expensive

computational cost, as a new model must be trained for each lag structure under con-

sideration (a problem that scales combinatorically with input and output dimension).

In the present study, LSO is simply conducted by a näıve grid search on the maximum

lags nx and ny using a surrogate ARX model.

Maximum lags up to a value of 15 are considered and the resultant simulation NMSE of

the ARX model on the unseen validation data is presented in Figure 8.1. As can be seen

from the figure, the performance of the ARX model appears to be largely insensitive

to the lag structure above some (low) threshold number of lags in the output. With

this in mind, the lag structure used for all GP-models is therefore chosen (somewhat

arbitrarily) as nx = 3 and ny = 5.

With the lag structure established, the GP-NARX models can be trained. An important

choice when working with any kernel-NARX method is the choice of kernel function.

Much has been written on the subject of kernel selection for GPs, and the interested

reader is directed to reference [57] for additional detail. The focus of the current study



On Higher-order FRFs 151

Table 8.2: Covariance kernel functions used in this study.

Kernel Function Hyperparameters

RBF σ2
fe

− 1
2
d2 {σ2

n, ℓ, σ
2
f}

Rational Quadratic σ2
f (1 +

1
αd

2)−α {σ2
n, ℓ, σ

2
f , α = 2}

Matérn(12) σ2
fe

−d {σ2
n, ℓ, σ

2
f}

Matérn(32) σ2
f (1 +

√
3d)e−

√
3d {σ2

n, ℓ, σ
2
f}

Matérn(52) σ2
f (1 +

√
5d+ 5

3d
2)e−

√
5d {σ2

n, ℓ, σ
2
f}

Table 8.3: Taylor series expansions of the kernels used in this study.

Kernel Taylor series about γ2

RBF e−
1
2
γ2
(1− q

2 + q2

8 − q3

48 + . . . )

Rational Quadratic 4
(γ2+2)2

− 8q
(γ2+2)3

+ 12q2

(γ2+2)4
− 16q3

(γ2+2)5
+ . . .

Matérn(12) e−γ(1− q
2γ + (1+γ)q2

8γ3 − (3+3γ+γ3)q3

48γ5 + . . . )

Matérn(32) e−
√
3γ((

√
3γ + 1)− 3q

2 + 3
√
3q2

8γ − (
√
3+3γ)q3

16γ5 + . . . )

Matérn(52) e−
√
5γ((13(5γ2 + 3

√
5γ + 3))− 5(

√
5γ+1)q
6 + 25q2

24γ − 25
√
5q3

144γ + . . . )

is to extract HFRFs from a number of stationary kernels. To this end, a number of

common kernels have been selected. Details of the kernels considered in this investigation

are given in Table 8.2. For compactness, the kernel functions are given in terms of the

stationary scaled L2 distance d,

d =

√(
x− x′

ℓ

)2

(8.45)

where ℓ is the lengthscale hyperparameter. In order to simplify the optimisation, the

models trained in the present study do not have an ARD lengthscale structure.

For each kernel in 8.2, the GP still has a small number of hyperparameters that must be

optimised. Optimisation is conducted by the minimisation of the negative log marginal

likelihood,

logP (θ|H) = −1

2
yT
[
κ(H,H) + σ2

nI
]
y − 1

2
log
∣∣κ(H,H) + σ2

nI
∣∣ (8.46)

where θ is the vector of hyperparameters. Since the derivative of the above is available in

closed form, the optimisation of θ is conducted by gradient descent. For each kernel, the

optimisation procedure is repeated for 25 random initialisations, each proceeding until a

convergence criteria was met. The lowest overall objective score is then selected. With

the models trained, the quality of the model fit is assessed by a normalised mean-square

error metric given by,
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Figure 8.2: Simulation performance of the GP-NARX models on the unseen testing
data.

JNMSE =
100

Nσy

N∑
j

(yj − ŷj)
2 (8.47)

where yj are unseen testing data and ŷj are the simulations from the model. The NMSE

performances of each kernel are collected in Table 8.4 and the predicted time series are

plotted in Figure 8.2.

The quality of the model fit is excellent for every kernel except the Matérn(12). This is

not unexpected. The Matérn kernel classes is known to produce very non-smooth models

[57] for low values of the free parameter. Given that the true dynamics are governed by

a very smooth differential equation with a smoothed input (filtered Gaussian noise) it

is unsurprising that the Matérn(12) kernel produces a poor fit.

With the expressions for the HFRF developed, these are now used to assess the quality

of the GP-NARX models that where fitted in the previous section. The HFRFs for

the stationary kernel NARX models require Taylor expansions of the kernels about the

training data. These were computed using the computer algebra software MAPLE 2018

[68]. The results are collected in Table 8.3.
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Table 8.4: NMSE simulation performance of the GP-NARX models on the unseen
testing data.

Kernel Simulation NMSE

RBF 0.0229 %
Rational Quadratic 0.0233 %
Matérn(12) 27.8 %
Matérn(32) 0.0435 %
Matérn(52) 0.0234 %

Figure 8.3: H1(ω) calculated from the GP-NARX models compared to theoretical
values.

Finally, the HFRFs can be computed and compared to the theoretical values. Figure

8.3 depicts the estimates of H1 against the theoretical values. The results show strong

agreement in almost every case indicating that the models have learnt an unbiased

representation of the underlying linear dynamics. As before, the GP-NARX model with

the Matérn(12) kernel has performed poorly. In this case, the linear dynamics are clearly

biased to compensate for the effect of the smooth nonlinearities.

Figure 8.6 depicts the main diagonal of the calculated and theoretical H2; here, the

agreement is still strong for the smooth kernels but each of the Matérn kernels, show

some degradation in capturing the quadratic stiffness nonlinearity. This can also be seen

in the H2 surfaces plotted in Figures 8.4 and 8.5.
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Figure 8.4: Surface plots of |H2(ω1, ω2)| calculated from the GP-NARX models com-
pared to theoretical values.
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Figure 8.5: Surface plots of ∠H2(ω1, ω2) calculated from the GP-NARX models com-
pared to theoretical values.
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Figure 8.6: Main diagonal of H2(ω1, ω2) calculated from the GP-NARX models com-
pared to theoretical values.

The results for H3 are plotted in Figure 8.7. In the plot, the main diagonals (i.e.

H3(ω, ω, ω)) of the three-dimensional manifolds are plotted. Once again, the smooth

kernels have achieved a good reconstruction of the true dynamics, with some noise visible

in the phase information. As before, the non-smooth Matérn kernels have struggled to

reconstruct the higher-order nonlinear terms accurately.

8.4 Conclusions

This chapter presents closed-form expressions for the HFRFs of stationary kernel-NARX

models, of which an important member is the GP-NARX model. The development of

these expressions is motivated by a desire to use NLSI and the HFRFs to interpret

the dynamics of the nonlinear normal modes presented in the previous chapters. The

developed expressions are validated here on a numerical case study, whereby GP-NARX

models are trained to represent the dynamics of a nonlinear Duffing-type equation with

quadratic and cubic stiffness elements.

In the numerical case study, the quality of the model agreement on the unseen testing

data is excellent (except in the case of the very rough Matérn(12) kernel). The model
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Figure 8.7: Main diagonal of H3(ω1, ω2, ω3) calculated from the GP-NARX models
compared to theoretical values.

agreement with H1 indicates that all other models have done a reasonable job of learning

unbiased estimates of the nonlinear dynamics. As expected, the smooth kernels (RBF,

rational quadratic) have excellent agreement, whereas the non-smooth kernels (Matérn

class) have performed less well. This trend only grows more pronounced as the order of

the HFRF increases. By H3, the model agreement with kernels from the Matérn class

is quite poor as seen in Figure 8.7.

These results clearly indicate the utility of HFRFs as a stringent test of model validation

and bias. The poor quality of the HFRF agreement, despite strong NMSE scores, for

the Matérn kernels is of particular interest. Ultimately, bias such as this will manifest

as poor generalisation; the training data have been explained by spurious higher-order

nonlinearities and biased linear terms.

Access to the HFRFs of powerful NLSI models opens the door to powerful analysis

in the context of the NNMs generated in this thesis. In particular, it will now be

possible to examine to what extent the underlying linear dynamics of the modes are the

same as the linear modes of the underlying nonlinear system (modal decomposition).

Additionally, the conservation of odd and even nonlinearities can be investigated through

the consideration of the magnitudes of the higher-order HFRFs.
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A current limitation of the results in this chapter is the reliance on the L2 norm in the

expansion of the Taylor series. In practice, many other norms are appropriate. Although

the L2 is a popular choice when implementing stationary kernels, it would be to extend

the results in this chapter to other possible distance metrics.

Efficient computation of HFRFs is also an open question. The convenient vectorised

notation used here offers a considerable saving over the explicit notation used in [49].

However, a tensor formulation can be envisaged that may offer a dramatic speedup on

modern computing architecture.

Another avenue for investigation is the quantification of uncertainty of the HFRF models.

In [49], a data-driven approach is adopted that estimates the uncertainty on the HFRFs

by making draws from the posterior distribution of the GP and then estimates the

HFRFs via a Monte-Carlo method. It is interesting to imagine if the uncertainty on the

HFRFs might be calculated in closed form. However, this is left as further work at this

stage and no assessment of the uncertainty in the HFRFs is included here.



Chapter 9

Quantitative analysis of

statistically-independent NNMs

with NLSI

With the nonlinear modes established by the cycle-GAN approach in Chapter 7 and all

the machinery for analysis in place; the attention of this chapter can be turned to a

qualitative assessment of the criteria of Chapter 2.

1. Independence: The ability of the decomposition to render the dynamics into an

independent modal basis, preferably SISO.

2. Decomposition: The extent to which the decomposed modal dynamics represent a

physically-meaningful (by some measure), basis for understanding the structural

dynamics.

3. Superposition: The extent to which the original dynamics can be recovered from

the decomposition.

The structure of this chapter as as follows: Firstly, the NLSI procedure for fitting GP-

NARX models to the physical and modal displacements will be developed. Next, for

each of the criteria above, a number of quantitative observations are presented, with a

view to understand the nature of the NNM under a statistically-independent framework.

159
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9.1 Nonlinear system identification

In this chapter, the approach will be to fit both linear and nonlinear models to the

physical and modal displacements that were calculated in Chapter 7. The reasoning

for employing both linear and nonlinear models in the identification task is to enable

a comparison between both the quality of fit and quality of generalisation between

excitation levels. In this way it will be possible to examine the extent to which the

decomposed basis is governed by nonlinear functionals.

For the linear models, an ARX formulation will be employed as described in Chapter 2.

For the nonlinear models, a GP-NARX formulation will be employed. Although practi-

cally, a large number of black-box nonlinear system identification models are applicable

to this task, the GP-NARX model offers several advantages including a low number of

hyperparameters and a kernel-based formulation1.

The training approach for GP-NARX models is the following: First, a training, vali-

dation and testing dataset is taken from both the simulated physical and transformed

modal data, each comprising 103 points. In the author’s experience with NLSI models,

datasets of this size represent a good trade-off between generalisation performance and

computational-complexity. The next step is to fix the lag structure of the discrete-time

models; here, this is achieved by performing a grid search over the maximum number of

lags in the input nx and output ny respectively.

A more thorough approach might be to consider a fully combinatorial lag selection

scheme, whereby all possible combinations of lagged inputs (up to some maximum value)

are considered. However, a full combinatorial lag selection is not deemed efficient as it

can be assumed that the effect of any unnecessary lags will be removed by the model

weights in the ARX models or the lengthscales in the GP-NARX models. For each

point in the grid, ARX and GP-NARX models are trained on the training data and

any hyperparameters (σ2
n, σ

2
f , ℓ) are optimised. In order to alleviate some of the com-

putational difficulties associated with training GP-NARX models in such a brute-force

approach, the optimisation of the hyperparameters during lag structure optimisation

(LSO) is completed using an evidence framework for which the objective function is

given by the negative log of the marginal likelihood,

JLSO(σ
2
n, σ

2
f , ℓ) = −1

2
yT
[
K(X,X) + σ2

nI
]
y − 1

2
log
∣∣K(X,X) + σ2

nI
∣∣ (9.1)

1Quantification of uncertainty is another advantage, but that is not the focus of the work conducted
in this chapter, and so is not considered.
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Figure 9.1: GP-NARX NMSE surface during LSO training. NMSE scores exceeding
100 are excluded from the plot.

With ARX and GP-NARX models trained at each point on the grid, predictions are

then generated for the validation data using the MPO approach described above. The

lag structure is chosen to be the one that produces the lowest normalised mean-square

error (NMSE) on the validation data. The NMSE metric is defined by,

JNMSE =
100

σ2
yNJ

NJ∑
i

(yi − ŷi)
2 (9.2)

where NJ = Np − (nx + ny). A visualisation of the resultant cost surfaces is given for

the GP-NARX models of the 2-DOF system in Figure 9.1. As can be seen in the figures,

the cost surfaces show a steep gradient for low integer numbers of lags but beyond this

threshold there is a noisy plateau indicating that an appropriate number of lags has been

considered. With the lag structure set, the models are re-trained using an NMSE loss

function on the MPO predictions; this is done to more strongly encourage the models to

learn the underlying dynamics of the data rather than simply providing good prediction

performance.

All GP-NARX hyperparameter optimisations are completed using a quantum particle

swarm optimisation (QPSO) algorithm [176]. The optimisation and training parameters
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Table 9.1: Parameters used in the optimisation of the GP-NARX models.

Parameter Description Value

ntrain Training points 1000
nval Validation points 1000
ntest Testing points 1000
σ2
RMS Regularisation noise (MPO training only) 1% RMS

nG Number of generations in the QPSO optimiser 200
nP Population size in the QPSO optimiser 200

are collected in Table 9.1 for the reader’s convenience.

For each SISO functional mapping xi → yi and xi → ui, both ARX and GP-NARX

models are fitted using the approach described above.

9.2 Independence

With the NLSI models trained, attention can be turned to analysis. The first criteria

of Chapter 2 is independence. Independence is measured here in terms of the extent to

which the modal basis can be modelled as a discrete set of SISO functionals.

Observation: The modal transformation permits a high-fidelity SISO

model basis

As might be expected from the nonlinear systems considered in this thesis, a good SISO

representation is possible and this is seen in the quality of the model fit. Indeed, both

the physical and modal displacements admit a high-fidelity SISO model basis.

For the 2-DOF system, the MPO predictions on the unseen training data are depicted in

Figures 9.2 and 9.3 for the physical and modal displacements respectively. MPO NMSE

scores and lag structures are collected in Table 9.2. Overall, the GP-NARX models are

outperforming the linear ARX models in every case except u2, where the performance

is similar. This is quantitative evidence that the decomposed SISO basis is comprised

of independent nonlinear functionals. This finding is in line with the observations of

Chapter 6, where even in the SDOF case, mapping to a target Gaussian distribution

induces a nonlinear functional.

As can be seen from the results, the quality of fit is fair for the ARX models (NMSE

generally less than 5%), and excellent for the GP-NARX models (NMSE generally less

than 1%). It is interesting to note the wide range of lag structures that are present in

the results. This can likely be attributed to the difficulty of the optimisation problem
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Figure 9.2: MPO predictions on the unseen testing data for the NLSI models of the
functional x → y for the 2-DOF system.

Table 9.2: Lag structures and MPO NMSE scores for the trained models on the
unseen testing data for the 2-DOF system.

Model Target nx ny MPO NMSE

ARX y1 11 13 4.08
y2 3 14 4.95
u1 7 9 4.25
u2 15 13 3.62

GP-NARX y1 17 22 0.0502
y2 21 34 0.234
u1 39 38 0.154
u2 1 26 3.16

leading to very rough LSO surfaces like the one seen in Figure 9.1. It is likely that there

are a number of ‘good’ choices for lag structure in the NLSI models and so it is imagined

that prediction accuracy on the unseen testing data is fairly insensitive to the actual

values of nx and ny beyond a certain level. Adding to the difficulty is the difference in

signal to noise ratios between the modal dynamics, increasing the optimisation difficulty

and further leading to rough LSO cost surfaces.

For the 3-DOF system, the model predictions on y and u are shown in Figures 9.4 and

9.5 respectively. Lag structures and NMSE scores are collected in Table 9.3.
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Figure 9.3: MPO predictions on the unseen testing data for the NLSI models of the
functional x → u for the 2-DOF system.

Table 9.3: Lag structures and MPO NMSE scores for the trained models on the
unseen testing data for the 3-DOF system.

Model Target nx ny MPO NMSE

ARX y1 37 39 4.52
y2 35 3 3.85
y3 25 25 4.28
u1 31 8 3.38
u2 33 24 5.65
u3 33 11 4.49

GP-NARX y1 27 35 0.510
y2 13 38 0.687
y3 19 35 1.36
u1 35 22 0.575
u2 13 13 4.25
u3 23 2 3.28
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Figure 9.4: MPO predictions on the unseen testing data for the NLSO models of the
functional x → y for the 3-DOF system.

Although it is unsurprising that a SISO model basis is possible for the modal displace-

ments (indeed it is also possible for the physical displacements), it is promising that the

modal decomposition does not introduce any coupling between coordinates that might

affect the quality of fit of the SISO GP-NARX models used here.

Observation: The decomposed SISO basis shows approximate generali-

sation between excitation levels

As well as the three criteria of Chapter 2, linear modal analysis is also invariant to the

excitation level.

Although it was shown in Chapter 6 that a Gaussian target corresponding to the un-

derlying linear system is insufficient to produce amplitude invariance in general, Figure

6.5 shows that the exact transformation varies only weakly with changing amplitudes.

It is therefore interesting to examine the extent to which the SISO model basis that has

been established is able to generalise (locally), between excitation levels.

In order to assess approximate generalisation, additional nonlinear data are generated

for both the 2-DOF and 3-DOF systems at the lower excitation levels of σx = 14 and
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Figure 9.5: MPO predictions on the unseen testing data for the NLSO models of the
functional x → u for the 3-DOF system.

σx = 8. The modal displacements for these additional data are then produced by the

same forward modal transformation f that was used for the data at σx = 20. The

resultant MPO prediction NMSE scores (on the unseen testing data), from the NLSI

models trained above are then collected for the modal displacements in Figures 9.6 and

9.7.

The figures show good generalisation of the nonlinear models compared to linear models

which constitutes further evidence of nonlinearity in the functional x → u. As one

would expect, the best generalisation performance for linear and nonlinear models is

present when the training excitation level is close to the testing level. For the 2-DOF

system, the nonlinear models show an extremely good level of generalisation (all but one

NMSE < 1%), for the first DOF and fairly strong generalisation between excitation levels

for the second DOF. For the 3-DOF system there is a similar pattern with very good

generalisation (all but one NMSE < 2%), in the first DOF and reasonable generalisation

in the second and third DOFs.

A particularly interesting observation is that, for some of the modal coordinates ui, i >

1, the linear models also show a reasonable level of generalisation. The author offers two

explanations for this phenomena. The first is that the NLSI may be entirely limited by
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Figure 9.6: Cross-validation NMSE of GP-NARX and ARX models of modal dis-
placements at different excitation levels for the 2-DOF system.

the poor signal-to-noise ratio in the data and so the GP-NARX makes a simplistic linear

approximation. This seems unlikely, given the flexibility of the GP-NARX model and

the relatively good NMSE scores that are found by both model classes when trained and

tested at the same excitation level. A second potentially very interesting explanation

is that the cycle-GAN has learned a static map that is able to decouple the SIMO

nonlinear functional into SISO nonlinear and SISO linear functionals. Although unlikely

to be possible in general, for some types of nonlinear systems2, such a decoupling would

represent a highly-useful tool in the analysis of nonlinear structural dynamics. Although

the generalisation study presented here provides some evidence of such a decomposition,

there is certainly insufficient proof at this stage.

One possible hindrance to the generalisation performance here is the normalisation

scheme in the training of the cycle-GAN. All input displacements to the model are pre-

scaled onto the interval [−1, 1]. Although this is common practice in machine-learning,

the scaling may be acting to limit the generalisation potential of the modal transfor-

mation, as both low and high-amplitude responses are mapped to the same interval

2For example, systems with a single nonlinear element such as those considered here.
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Figure 9.7: Cross-validation NMSE of GP-NARX and ARX models of modal dis-
placements at different excitation levels for the 3-DOF system.

despite having potentially very dissimilar dynamics. A more sophisticated normalisa-

tion scheme (or even an approach based on second order statistical moments), is an

interesting avenue for additional work and may enable a greater generalisation of the

modal transformation between excitation levels.

9.3 Decomposition

In Chapter 5, several metrics for assessment of decomposition of modes were presented;

however, in the conclusions of that chapter it was argued that the following properties

must be approached for a better assessment:

• The preservation of resonances present in the physical displacements.

• The extent to which the transformation correctly reduces to the linear modes in

the absence of nonlinearity.

• The extent to which the underlying linear dynamics are preserved.
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• The extent to which the modal transformation is able to generalise between exci-

tation levels (locally or globally).

Thus far, it is only really the first and last of these that have been evaluated. The

inductive bias of independent resonances has been applied within the machine learning-

framework and this has successfully generated a single resonance structure as can be

seen in the results of Chapter 7.

Now that access to both NLSI models of the functionals x → y and x → u and the

HFRFs of those models have been established, quantitative assessment of the remaining

properties can at last proceed.

Observation: The underlying linear dynamics correspond closely to the

linear modes

The second and third properties proposed in Chapter 5 can really be thought of as two

sides of the same coin. If the underlying linear modal structure is preserved by the modal

transformation then in the limit of linearity (for example close to the equilibrium), it is

those dynamics that will be present. In order to assess the underlying linear structure, it

is sufficient to consider the H1 of the NLSI models. H1(ω) is plotted for the x → y and

x → u functionals in Figure 9.8 for the 2-DOF system and in Figure 9.9 for the 3-DOF

system. Also plotted in each figure is the true H1(ω) as derived from the equations of

motion see Appendix A.

The first observation from the figures is that the agreement between the H1(ω) for the

original system x → y and the theoretical values from harmonic probing are excellent.

This is a promising result as it indicates that the NLSI scheme employed here is suffi-

ciently powerful to permit good agreement with the HFRFs without bias in the linear

components. This result is a good indication that the HFRFs of x → u can be trusted

to be accurate even though no theoretical comparison is available.

Further indications of a good decomposition into SISO functionals are the largely single-

peak structures of the H1 for the modal coordinates, as might be expected of the under-

lying linear modal decomposition. Another particularly encouraging observation is that

the peaks of the modal H1 are very close to the underlying linear natural frequencies.

Percentage differences between the peaks in the modal H1 and underlying linear natural

frequencies are [0.45%, 4.1%] for the 2-DOF system and [0.33%, 1.73%, 6.85%] for the

3-DOF system.

These results indicate that the underlying linear modal structure has been largely re-

tained by the modal transformation. The discrepancies above can likely be explained
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Figure 9.8: Comparison of the H1s for the 2-DOF nonlinear system.

Figure 9.9: Comparison of the H1s for the 3-DOF nonlinear system.
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by errors accumulated during the training of the nonlinear models. That the percentage

error increases with increasing resonance frequency is perhaps unsurprising. Consider-

ing the PSDs of the physical displacements, the relative magnitudes of the resonances

in both systems decreases dramatically. Practically, this effect results in drastically-

different signal-to-noise ratios that negatively affects the quality of nonlinear models.

This effect is furthermore visible in the deterioration of the MPO NMSE scores of the

nonlinear models of the modal dynamics.

The retention of the underlying linear structure (as measured in terms of the loca-

tion of the underlying linear natural frequencies), is an encouraging result in favour of

statistically-independent NNMs.

Observation: The modal transformation induces a non-physical quadratic

nonlinear structure in the modal dynamics

The magnitudes and phases of the H2(ω, ω) for the modal dynamics are plotted in

Figure 9.10. Neither of the benchmark systems considered here have any even nonlin-

earities present and so it might be expected that the H2(ω, ω) should all be strictly

zero in the modal transformation. However, this is not what is observed. Figure 9.10

depicts evidence of structure in the H2. How might this spurious quadratic structure be

explained?

The author believes that there are two factors that contribute to the presence of quadratic

nonlinearity in the modal dynamics. The first can be attributed to the flexibility of the

GP-NARX model and the form of H2. Consider the form of the second order HFRF3,

H2(ω1, ω2) = −K2H1(ω1) ◦H1(ω2) ◦H1(ω1 + ω2) (9.3)

Because the above term is constructed from a product of H1 terms, any quadratic

structure in the nonlinear model (even noise) will manifest as peaks at ω1, ω2 and ω1+ω2.

Given the extreme flexibility of the GP-NARX model with a squared-exponential kernel

it is perhaps unsurprising that some spurious quadratic component is generated.

The second factor contributing to the nonlinear structure of Figure 9.10 is the nature of

the nonlinear transformation itself. Consider again the result of Chapter 6 whereby the

modal transformation is applied directly to the equation of motion for the SDOF case,

g′′(u)u̇2 + üg′(u) + cg′(u)u̇+ kg(u) + ϵg(u)3 = x(t) (9.4)

3A full derivation of these HFRFs is available in Appendix A.1.
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Figure 9.10: H2 of the GP-NARX model of x → u.

Calculating now the HFRFs of this modal equation of motion reveals that quadratic

structure has been introduced4.

H2(ω1, ω2) = H1(ω1)H1(ω2)H1(ω1+ω2)
[
a2(ci(ω1 + ω2)− ω2

1 − ω2
2 + k) + 3a3i(ω1 + ω2)

]
(9.5)

Now, for a nonlinear mapping that is purely-odd (as might be expected for the odd-type

nonlinearities that are seen in the systems considered here), the second order Taylor

series coefficient must be zero (a2 = 0). The above can now be re-written,

H2(ω1, ω2) = 3a3i(ω1 + ω2)H1(ω1)H1(ω2)H1(ω1 + ω2) (9.6)

The effect of the g′(u) terms in the equation of motion is such that even for a purely-cubic

system with a purely odd nonlinear mapping, some non-physical quadratic structure is

still introduced to the modal dynamics.

4For a full derivation of these HFRFs, the author is directed to Section A.2 of the appendices of this
thesis.
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Although these effects are perhaps not a desirable property of the statistically-independent

NNMs, it is an important realisation that must be considered when applying the method-

ology of statistically-independent NNMs in practice.

9.4 Superposition

Another important measure of the quality of the modal decomposition is superposition.

In Chapter 5, it was argued that an appropriate measure of modal superposition is the

extent to which the original dynamics can be reconstructed via the inverse mapping.

Quantitative assessment of superposition will be measured in this chapter using the

familiar normalised mean-square error metric,

JNMSE =

n∑
j

[
100

σ2
yj
N

N∑
i

(yji − ŷji)
2

]
(9.7)

where ŷj are the reconstructed physical displacements from the jth degree of freedom.

Observation : The decomposition permits a highly accurate inverse

transformation

The superposition performance of the transformations learned by the cycle-GAN are

excellent. An advantage of the cycle-GAN is that the inverse mapping is constructed

alongside the forward modal transformation. Practically, this structure results in ex-

cellent reconstruction performance. For the 2-DOF system, the overall reconstruction

introduces NMSEs of 0.0262% and 0.0133% for each DOF respectively over the entire

105 simulated points. Reconstruction performance for the 2-DOF dataset is depicted in

Figure 9.11 for a subset of 103 points. As can be seen in the figure, the agreement is

excellent, and the reconstructed displacements are visually indistinguishable from the

true displacements.

Performance on the 3-DOF system degrades slightly, but still provides a high-fidelity

reconstruction with NMSE scores of 0.0972%, 1.032% and 0.371% for the three degrees

of freedom respectively. A subset of the reconstructed signal is plotted in Figure 9.12

for visualisation.

Once the cycle-GAN is trained, the overall mapping from y to ŷ or f(f−1(y)), is itself

a static map. If the the modal inverse function f−1 is a true inverse, the map from y

to ŷ should be close to the identity. This map is plotted in Figure 9.13 for the 2-DOF
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Figure 9.11: Original vs. reconstructed displacements for the 2-DOF system.

Figure 9.12: Original vs. reconstructed displacements for the 3-DOF system.
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Figure 9.13: Overall functional reconstruction of the forward and inverse modal trans-
formations for the 2-DOF system.

transformation. As can be seen in the figure, the overall reconstruction mapping is very

close to unity, indicating an excellent level of nonlinear reconstruction. The regions of

Figure 9.13 that depart from unity are the regions of the input-space corresponding to

high amplitudes in the displacements. Because of the nature of the Duffing-like equations

of motion, these regions of the input-space are inevitably under-sampled, compared to

lower amplitude regions, and it is therefore unsurprising that these regions are less well

reconstructed.

Observation: The decomposed SISO model basis reconstructs the dy-

namics accurately

Perhaps a more stringent test of both the SISO decomposition and reconstruction is to

project the MPO model predictions of the modal coordinates back onto the physical

coordinate system via the inverse modal transformation. These estimates can then

be compared to the true observed physical displacements by the NMSE score above.

This reconstruction enables a quantitative measure of how well the NNMs function

as a SISO basis for representing the SIMO dynamics of the problem. In effect, this

allows one to measure the effectiveness of the decomposition quantitatively. The results
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Table 9.4: Comparison of NMSE reconstruction performance between the SISO modal
models and the reconstructed input.

System DOF Cycle-GAN reconstruction SISO reconstruction

2-DOF 1 0.0347 0.660
2 0.0252 0.765

3-DOF 1 0.103 2.25
2 0.704 1.34
3 0.319 1.74

of such an investigation are presented in Table 9.4. In the table, the SISO model

reconstruction (the yi reconstructed from the NLSI predictions of the ui), are compared

to the reconstructions from the SIMO case (ŷ = f−1(f(y))) for 900 sampling points

from the unseen testing set (the first 100 points are discarded to remove the effects of

differing lag structures between NLSI models).

As can be seen in Table 9.4, the SISO decomposition produces excellent reconstructions

for the 2-DOF and good reconstructions for the 3-DOF systems. This result indicates

quantitatively that the modal decomposition represents a practical nonlinear decompo-

sition of the SIMO functional into SISO models. It is interesting to note that some of the

SISO reconstruction errors are worse than the NMSE MPO errors on the corresponding

modal coordinates. An example is present for the 3-DOF system; the SISO reconstruc-

tion of y1 is 2.25% but the NMSE MPO error for u1 is 0.575%. This is not an unexpected

result. The reconstruction is known to introduce some error because of the inevitable

difficulty of finding an invertible map from y → u. Another important consideration is

that the inverse map f−1 constructs each yi from all modal coordinates in a nonlinear

way resulting in SISO reconstructions that may be worse than the corresponding NLSI

model for the modal coordinates. However, it is still preferable to conduct the NLSI on

an independent basis. Assuming a priori that the modal DOFs are independent allows

one to ignore all cross dependencies between DOFs. In the example of a polynomial-

NARX model, the number of terms in a SISO polynomial basis of order r with d DOFs

is given by,

d×

(
r + nx + ny

r

)
(9.8)

where nx and ny are the number of lags on the input and output respectively. In the

full MIMO case the number of terms scales combinatorically, representing a significant

increase in the difficulty of the identification problem.
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9.5 Conclusions

This chapter has introduced for the first time some quantitative assessment of the dy-

namics of the modes constructed under the statistically-independent framework. The

approach has been to first model the dynamics of the physical and modal displacements

using ARX and GP-NARX models. Once fitted, the quality of fit, generalisation per-

formance, HFRFs and reconstruction performance of these models has been tested with

a view to offer practical observations of the criteria of Chapter 2.

In terms of independence, the quality of the SISO model fit to the modal coordinates

was evaluated and found to be excellent for the 2-DOF system and good for the 3-DOF

system. It was also observed that the model performances of the nonlinear GP-NARX

models were far stronger than those of the linear ARX models, adding further evidence to

the analysis in Chapter 6 that the modal dynamics are governed by nonlinear functionals.

The approximate generalisation of the SISO models has been assessed and shown to be

favourable when nonlinear models are used. This too, is in line with analysis of the

SISO case in Chapter 6 where the modal transformation is shown to only vary weakly

with changing amplitudes when a Gaussian target distribution is used.

Modal decomposition is assessed by analysis of the HFRFs of the nonlinear models of

the physical and modal dynamics. It is shown that the underlying linear components

of the physical displacements has reconstructed the true linear dynamics with good

accuracy. The underlying linear component of the modal dynamics is shown to have a

largely single-peak structure that corresponds closely to that of the linear modes. These

results indicate that the NNMs are able to retain the underlying linear modes in a purely

data-driven manner. It is also shown by analysis of the H2 that the application of the

nonlinear map necessarily introduces a quadratic structure into the modal dynamics,

even when the nonlinear map is purely odd.

The superposition performance of the modes is assessed for both the SIMO (whereby

ŷ = f(f−1(y))), and SISO reconstruction cases (whereby the SISO models are used

to perform the reconstructions), by an NMSE metric. It is found in both cases that

the reconstruction performance is strong, and that the degradation in moving to the

SISO reconstruction is not extreme. This result indicates that the overall nonlinear map

f(f−1(y)) is close to the identity, and that the SISO basis offers a complete picture of

the dynamics (within some local amplitude regime).

As well as the criteria of Chapter 2, the statistically-independent NNM framework has

other desirable properties that make it an attractive option in a practical setting. Prin-

cipally, the NNMs are constructed in an output-only and data driven way with very little
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prior information required to produce the decomposition. Additionally, the neural ar-

chitecture permits both forward and inverse transformations to be learnt simultaneously

in such a way that ensures invertibility of the modal dynamics.

Despite the propitious results of this chapter, several limitations of the statistically-

independent framework persist. Perhaps the most pressing of these is that thus far

consideration has only been given to SIMO structural systems. Although this type

of system is common in real-world structural dynamics (multi-storey buildings subject

to ground vibrations, monopiles subject to wave loading, modal tests etc.), it is an

interesting open question how the framework could be extended to the fully MIMO

case. Some discussion in this vein is saved for the following chapter.

Another limitation of the present methodology is the time taken to learn and validate the

maps in the cycle-GAN model. Whilst not insurmountable for the low numbers of DOFs

considered here, the complexity increases somewhat with increasing dimensionality. At

the core of the statistically-independent framework is the machine-learning problem

of specifying the forward and inverse maps, the computational complexity of which

is strongly related to model choice. Indeed, the cycle-GAN approach presented in [23]

already represents a significant computational saving over the approach of [22]. However

it interesting to imagine other methods that might lessen the computational cost.

At this stage, no formal equivalence can be currently claimed between the present frame-

work and the previous approaches of Rosenberg and Shaw-Pierre, because of to struc-

tural differences in the modal ansatz. However, it is interesting to imagine extensions to

the present investigation that might reconcile these differences. Certainly, if theoretical

manifolds of Shaw-Pierre could be learnt via a data-driven statistical framework (per-

haps by the application of additional inductive biases), it would represent a significant

tool in the analysis of nonlinear structural dynamics.

A motivation for the investigation of the statistically-independent framework was that

it can be readily applied in a similar approach to a linear modal testing campaign. An

indicative workflow was:

1. Capture some displacement data from some SIMO structure of interest, subject to

broadband excitation.

2. Presume or establish the presence of nonlinearity (for example by assessment of

the coherence).

3. Conduct statistically-independent modal analysis on the data and retrieve the

modal dynamics.
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4. Finally perform NLSI on the modal dynamics as SISO functionals.

When applied successfully, a compact set of modal coordinates are established that have

been shown here to reduce (in the limit of linearity), to the underlying linear modes.



Chapter 10

Conclusions and further work

10.1 Concluding remarks

As the demand for lighter, stronger and high-performance structures increases, nonlin-

earity is becoming an inescapable facet of the modern engineering design landscape.

Cutting edge materials, geometries and assemblies break the assumptions of linearity

and linear analyses can no longer be applied.

In this thesis, three significant challenges in nonlinear structural dynamics have been

identified.

• Challenge I: Nonlinear system identification.

• Challenge II: Exact solutions to nonlinear differential equations.

• Challenge III: A nonlinear extension to linear modal analysis.

These challenges are motivated by the pressing need for advanced treatment of nonlin-

earity in structural dynamics.

After a review of the background theory and literature in Chapter 2, the objectives of the

thesis were established. The objectives were to conduct novel analyses pertaining to two

of the three challenges; exact solutions to nonlinear ODEs and a nonlinear alternative to

linear modal analysis. For each of these challenges, some concluding remarks are offered

here.

180
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Towards exact solutions to nonlinear ODEs

Nonlinearity arises in structural dynamics from the physical laws that govern structures.

Applying the physical conditions and appealing to conservation laws, leads to nonlinear

differential equations that encode the dynamics. Whereas in the linear case exact closed

form-solutions are available, precious few solutions are available in the nonlinear case.

Exact, closed form solutions to nonlinear differential equations have the potential to

revolutionise understanding of nonlinear phenomena. It could be argued that even par-

ticular solutions to some differential equations could give vital insight into the behaviour

of nonlinearities in real-world structures.

In Chapter 2, some background to the task of solving differential equations was pre-

sented. Some structural classifications of differential equations were reviewed and some

theorems relating to existence and uniqueness were revised. Discussion was held over

what exactly constitutes a solution to a differential equation. Both approximate and

analytical methods were considered, with a particular focus on methods that are able to

specify exact, closed-form solutions by heuristic search. Of such methods, a promising

technique was found to be symbolic regression. Several authors have applied symbolic

regression techniques to solving differential equations with varying degrees of success.

However, in the considered literature, almost no authors have placed the emphasis of

their efforts on exact solutions only.

A research gap was therefore identified; to combine results from symbolic regression,

computer algebra software and insights from heuristic search problems to attempt to find

a novel methodology with the potential to address as-yet unsolved nonlinear differential

equations.

With the research question established, Chapter 3 began the consideration of exact

solutions by investigating the task of solving a differential equation as a heuristic search

problem. The aspects of the search spaces present in the problem were considered and

some heuristic measures for search-problem difficulty (complexity and locality). were

reviewed. Expressions were also derived for the search space sizes of several common

expression encoding schemes. The chapter concluded with a consideration of benchmark

suites of differential equation problems seen in the literature. A common benchmark

suite (that of Tsoulos and Lagaris), was found to confound results by not separating

the difficulty in solving the differential equation from the complexity of the solution. A

novel suite of benchmark problems was proposed to address this issue.

Chapter 4 presented a novel encoding scheme for symbolic regression of differential equa-

tions – the affine regression tree. The new approach combines the structure detection
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of a traditional expression tree encoding with additional structure at each node, mo-

tivated by the idea of locality in the constants. The sizes of the search spaces arising

from the new encoding scheme were calculated and compared to traditional approaches.

Although larger, the search spaces of the affine regression tree were found to encourage

a more compact representation for sparsely-parameterised equations.

The remainder of Chapter 4 was concerned with a comprehensive benchmark test of the

affine regression tree and two other approaches; an expression tree scheme implemented

by the author and the expression grammar approach in [83]. The methods were compared

on two benchmark suites of linear and nonlinear ODE problems, that of Tsoulos and

Lagaris, and the new benchmarks proposed in Chapter 3.

Results from the benchmarking tests were mixed. It was shown that for the most com-

pact expressions, (representable with just one or two nodes), the affine scheme requires

fewer objective function evaluations on average to find the exact solution. However,

as the complexity (i.e representation size), of the solution increases, there is significant

degradation. For the most complex solutions (requiring a greater number of nodes to

represent), almost no exact solutions were found. Perhaps most concerning, is that none

of the approaches considered were able to significantly outperform a random-sampling

based approach. Several additional investigations were presented that demonstrated the

effects of hyperparameters in the affine encoding scheme. In particular it is found that

a sparse initialisation of the constants (a0 = 1 and b0 = 0) improves performance.

Particularly interesting are the results from the proposed ‘parameter snap’ meta regres-

sion procedure. The method, whereby values of parameters are first specified approxi-

mately by a simulated annealing procedure and then ‘snapped’ to nearby exact integers

and constants, gave the best overall performance on the benchmark problems. Espe-

cially encouraging was that the inclusion of the procedure increased the number of runs

that found the exact solution to one of the more challenging ODE problems.

A trend seen throughout the benchmark study was that the homogenous structure of

the ODE had almost no bearing on the difficulty when measured in terms of number

of function evaluations required on average to find the exact solution. Instead, the

complexity of any given ODE problem under the heuristic search problem is governed

entirely by the form of the solution itself. This is evidenced by the results on the new

benchmark suite in Figure 4.10. The author draws encouragement from these results. It

is clear that the proposed methodology has no ties to linearity and the traditional metrics

of what makes a differential equation easy (or difficult) to solve. One might therefore

imagine that if the methods proposed in this thesis could be improved sufficiently there

is no reason that a solution could not be found given a suitable basis set of functions

and constants.
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In Chapters 2 and 4, the following line of reasoning was established. For a given nonlinear

differential equation, either:

1. Closed form solutions do not exist in terms of known transcendental functions and

objects.

2. Closed form solutions do exist, but heuristic methods are insufficiently powerful

to locate them.

3. Closed form solutions are available and can be found by heuristic means.

In the opinion of the author, the results of this thesis do not give cause to prefer any one

of these statements in general. Certainly, symbolic regression of differential equations

has been shown to be an arduous task. However, the key advantage here is that symbolic

regression does not hold any preference for the form of the differential equation under

consideration, be it linear or otherwise.

The author sees at this point no cause to abandon hope that closed-form solutions can be

found. Even in the absence of general solutions, lesser results may yet be instrumental

in developing understanding of nonlinear phenomena.

Statistically-independent nonlinear normal modes

Linear modal analysis has become the dominant framework for the identification, mod-

elling and simplification of linear structural dynamics. Modern hardware and software

tools have rendered LMA highly accessible in both industrial and research environments.

Lamentably, LMA cannot be applied in the case of nonlinear dynamics. The presence

of nonlinearity in cutting-edge engineering design is only increasing. There is therefore

an urgent need to develop methods that can act as a practical nonlinear alternative to

LMA.

In Chapter 2, the LMA theory was reviewed with a focus on the aspects of the method

that make it useful in practice. These were found to be;

• Independence: The modal transformation decouples the equations of motion ex-

actly.

• Decomposition: The modal properties (natural frequencies, damping ratios and

modeshapes), are a physically meaningful description of the dynamics.

• Superposition: The physical displacements can be exactly reconstructed from the

modal contributions.
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• Invariance: The modal parameters are invariant to changes in the level of excita-

tion.

In the nonlinear literature, a great many objects have been described as an NNM, each

able to preserve only a subset of the useful properties of the linear case. The author

presents the argument that the criteria for a practical nonlinear extension to nonlinear

modal analysis should be defined in terms of these useful properties. The following

definitions were offered;

1. Independence: The ability of the decomposition to render the dynamics into an

independent modal basis, preferably SISO.

2. Decomposition: The extent to which the decomposed modal dynamics represent a

physically meaningful (by some measure), basis for understanding the structural

dynamics.

3. Superposition: The extent to which the original dynamics can be recovered from

the decomposition.

The above criteria were then used to assess the utility of NNM frameworks that have

been suggested in the literature. The two major viewpoints to have gained traction are

that of Rosenberg [18, 101], and that of Shaw and Pierre [19, 113, 114, 117]. Both ap-

proaches to NNMs have attracted a great deal of development, and the major waypoints

were reviewed. Despite their popularity, the methods are both shown to have practical

limitations, including an inability to model the dynamics away from resonances and a

somewhat technical formulation.

Data-driven approaches to NNMs were also considered. Of these approaches, the re-

cently proposed statistically-independent framework [22] is viewed as a promising ap-

proach. However, additional investigation is required to establish the extent to which

the properties of LMA are retained. Although several studies [23, 126–129], have demon-

strated the method on both simulated and experimental datasets, analysis of the modal

decomposition had thus far only been presented in a qualitative manner.

A research opportunity was therefore identified; to assess the statistically-independent

framework for nonlinear modal analysis, quantitively, in terms of the criteria identified

in Chapter 2.

Consideration of the problem here commences in Chapter 5. The chapter began by

introducing the background for the statistically-independent framework. Furthermore,

for each of the criteria of Chapter 2, a number of quantitative metrics were introduced.
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The motivation for this was two-fold. The metrics would be able to serve as a measure of

the utility of the method and as inductive biases within a machine-learning framework

that might be used to ensure a useful decomposition by construction. Of the proposed

metrics, two novel measures of unimodality are proposed; one based on the convolution

operation and another that appeals to monotonicity tests. The new metrics are shown

to be effective in a simplified test comprised of toy data corrupted by Gaussian noise.

Despite the utility of the proposed metrics, the need to gain a greater understanding of

the modal dynamics is motivated.

In Chapter 6, an attempt is made to learn the nonlinear modal transformation directly

from the equations of motion. An approach is suggested based on the application of

the Fokker-Plank-Kolmogorov (FPK) equation. Results are demonstrated for a triv-

ial single degree-of-freedom system. It is shown that, via the application of the FPK

equation, the stationary density of a nonlinear SISO functional can be mapped arbi-

trarily into a different probability distribution by the numerical solution of an ODE

problem. Although simplistic, the SISO results lend important theoretical support to

the statistically-independent framework. The chapter continues by demonstrating that

even if the stationary distribution of a system is Gaussian, it is not necessarily gov-

erned by linear dynamics despite the converse being true. Exact modal decompositions

from MDOF systems are also considered. It is shown that the FPK and change-of-

variables equations alone are insufficient to derive the modal transformation. Instead, a

machine-learning approach based on the residuals between the ratio of the physical and

target modal distributions and the determinant of the Jacobian of the nonlinear modal

transformation is envisaged.

Chapter 7 introduces two benchmark nonlinear systems that are used as a case-study

for the rest of the thesis. For these two systems, NNMs are constructed by two methods:

The multinomial approach of [22] (modified to consider alternative nonlinear measures

of correlation), and the neural approach of [23]. The performance of the nonlinear

decomposition arising from the two methods is compared in a qualitative manner. It is

found that the cycle-GAN approach produces a better decomposition as measured by

the extent to which the modal PSDs have single-frequency peaks. It is reasoned that

the inclusion of several inductive biases (including conformality and orthogonality of

the convolved spectra), lead to the increased performance. The chapter concludes by

motivating analysis that is able to directly assess the nature of the decomposed modal

dynamics.

Machinery for the assessment of the modal dynamics is established in Chapter 8. The

use of NLSI as a method of investigating the modal dynamics is introduced. However, it

is recognised that interpretation of the NLSI models is an open problem. A convenient
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method for the interpretation of black-box NLSI models is the Volterra series. It is

shown that, in the frequency domain, the Volterra kernels become higher-order FRFs

that encode the frequency responses (HFRFs) of dynamic systems at higher orders. The

chapter proceeds by developing closed-form expressions for the HFRFs for an entire class

of black-box NLSI models with a stationary kernel-NARX formulation. The derived

expressions are demonstrated in a case-study example of GP-NARX models fitted to

data generated from a simulated nonlinear system with quadratic and cubic stiffness

nonlinearities. Five stationary kernels are selected and the HFRFs of the trained models

are calculated. It is shown that the HFRFs act as both a convenient way to interpret

the lower order dynamics and as an extremely stringent test of model fit that goes far

beyond validation-error metrics.

With all the required tools in place, quantitative assessment of the modal dynamics is

conducted at last in Chapter 9. The chapter considers a series of analyses corresponding

to each of the criteria of Chapter 2. To begin, NLSI models are fitted to both the physical

and modal coordinates of the nonlinear dynamics from both case studies. It is shown

that for both physical and modal displacements, a high-quality SISO representation is

possible. Via a generalisation study, it is also shown that the decomposed SISO basis

enables approximate generalisation between local excitation levels.

With access now to the HFRFs of the modal dynamics, it is demonstrated that the un-

derlying linear components of the nonlinear SISO models of the modal dynamics align

closely with the linear modes of the physical system. This result is a promising indica-

tion that the inductive biases employed are sufficient to retain a physically-meaningful

modal transformation. An interesting ancillary result is that the modal transformation

introduces spurious second-order structure. This effect is demonstrated empirically by

consideration of the second-order HFRFs of the modal dynamics and analytically for

the exact map of a SDOF system in the appendices.

Finally, the superposition performance of the nonlinear transformations is considered.

It is observed that the overall map f−1(f(y)) is very close to unity and that the SISO

model basis can be projected back onto the physical coordinates without accumulating

much error.

Overall, the statistically-independent framework shows significant promise as a nonlinear

extension to linear modal analysis, as measured by the extent to which the useful aspects

of LMA are preserved. In particular:

• The method can be applied in a data-driven and output-only manner.
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• The transformation is shown to permit an independent, high-fidelity SISO

model basis.

• The decomposed SISO modal basis shows fair generalisation between local ex-

citation levels.

• The underlying linear part of the nonlinear modal dynamics correspond closely

to the true linear modes.

• The physical displacements can be recovered accurately from the modal contribu-

tions by a nonlinear superposition.

It cannot be claimed here that the statistically-independent approach is a drop-in re-

placement for LMA in the case of nonlinearity. Certainly, it is difficult to imagine

that any such method could be able to preserve all of the features of the linear analysis.

Faced with this challenge, the engineer must seek methods that are able to preserve only

the most desirable aspects of a modal decomposition. In this regard, the statistically-

independent framework for NNMs shows considerable promise.

10.2 Summary of novel contributions

The novel contributions presented in this thesis are summarised here.

Towards exact solutions to nonlinear ODEs

• Heuristic solution to differential equations is considered as a multi-level search

problem, extending the description of Seaton et. al [85].

• The sizes of search spaces corresponding to several expression encoding schemes

are enumerated.

• A novel benchmarking suite of ODE problems is proposed that separates the effects

of expression size and homogenous ODE problem.

• A novel expression representation scheme is proposed – the affine regression tree.

• A number of mutation operations are proposed for the affine regression tree, in-

cluding an exact parameter meta-optimisation scheme.

• The new approach is compared to two traditional approaches (tree-based and

grammar-based encodings) in a comprehensive benchmark study on two suites of

ODE problems.
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Statistically independent nonlinear normal modes

• Several criteria are established for the assessment of a practical nonlinear extension

to linear modal analysis.

• With a view to promote independence in the modal decomposition, two metrics of

monotonicity in the decomposed PSDs are proposed.

• A nonlinear correlation metric (distance correlation), is used within the framework

of [22], extending the approach.

• The FPK equation is employed to generate a modal transformations for the SISO

case, directly from the equations of motion.

• The HFRFs of the transformed dynamics (via the FPK equation) are constructed

in SISO case, it is shown that a non-physical quadratic structure is introduced to

the modal dynamics by the mapping.

• NLSI models are fitted to the NNMs (constructed using the neural approach of [23])

in order to assess qualitatively the practical utility of the statistically-independent

framework for NNMs.

• The modal dynamics are analysed by extracting HFRFs from the NLSI models of

the modal displacements.

• The generalisation performance of the SISO modal representation is investigated

by consideration of prediction performance at several excitation levels.

Other contributions

• Closed-form expressions are derived for the HFRFs of an entire class of NLSI

models – the stationary kernel-NARX model.

• The utility of the derived expressions for the HFRFs are demonstrated in a case

study example for five different choices of the kernel function.

10.3 Further work

Nonlinear system identification

Although consideration of nonlinear system identification was not a principal aim of this

thesis, some interesting results have still arisen. In particular, work presented in Chapter
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8 has yielded novel closed-form expressions for the HFRFs of an entire class of NLSI

model – the stationary kernel-NARX model. These results offer a convenient tool for

the engineer to interpret the dynamics of NLSI models trained in an entirely data-driven

manner. The HFRFs have also been demonstrated to be an extremely stringent1 test

of model adherence when the true dynamics are known; thus opening the door to more

robust analysis of generalisation.

Some limitations of the derived expressions persist. Some avenues for future investi-

gation can therefore be considered. For one, the expressions derived currently rely on

the distance metric in the stationary kernel to be the L2 norm. Further work might

investigate alternative metrics. Furthermore, the expressions for the HFRFs are derived

for stationary kernels only. Extensions to alternative kernels (based on inner products

for example), are therefore of interest.

Although HFRF expressions for other types of model are to be found in the literature

[49, 170, 171], these are largely for specific model types and not for generic model classes.

Recent interest in neural and other architectures for NLSI motivates the derivation of

yet more generic expressions for the HFRFs of other such classes of black-box NLSI

models.

Another open problem is computational efficiency. As the order of the HFRF increases,

the number of computed points that must be specified increases geometrically. Numer-

ically, this relies on a series of tensor operations that have been (for the purposes of

computer algebra assistance), recast as matrix operations. Returning to a full tensor

formulation of the Volterra series expansion could open the door to significant compu-

tational advantages.

Exact solutions of nonlinear ODEs

In this thesis, a heuristic search approach to identifying exact solutions to nonlinear dif-

ferential equations was presented. Although the results of the benchmark investigation

were mixed, the author envisages several directions for future investigation. A common

finding throughout the research presented here was that, during a heuristic search, it is

the complexity of the solution that controls the search difficulty rather than the form

of the differential equation itself. This theme runs opposite to traditional approaches

to solving differential equations that rely on canonical forms or computer algebra assis-

tance. This observation motivates the need to identify methods that are able to sparsely

represent solutions in the search space. The heuristic metric of locality is a related topic

1Far more so than a mean-squared error statistic on validation data.
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[134] in evolutionary optimisation from which techniques might be borrowed in order to

make progress.

The specification of exact constants in the heuristic search approach is an open problem.

The affine regression tree approach presented in this thesis attempts to separate the

twin tasks of structure detection and parameterisation. Although several methods for

parameter mutation are proposed, consideration of further methods is of interest.

Of all the parameter mutation operations considered in the benchmark investigation

of Chapter 4, the constant-snap algorithm showed the greatest potential. the imple-

mentation of the method used in this thesis is a very early prototype and a great deal

more investigation into the approach is warranted. Of particular interest is the choice

of heuristic optimisation algorithm (here simulated annealing was used but it is clear

that many such algorithms would be appropriate2), and the ‘snapping’ method. For the

latter, the field of integer-relation algorithms [178] may provide a coherent method of

specifying constants in terms of rational and transcendental objects.

Another interesting observation is that the structure of parameters in the affine represen-

tation is largely sparse for most differential equation problems. Most of the a coefficients

are seen to be equal to unity and many of the b coefficients equal to zero. It was shown in

Chapter 4 that performance increases as these values are initialised close to these sparse

values. It is of interest then, to consider methods that might take further advantage of

this apparent sparsity.

A related phenomena (noticed also by Seaton [85]), is that the action of the differential

operator on composed functions (i.e the chain rule for differentiation), tends to lead to

repeated sub-structures in the form of the solution (for example the natural frequency

appears in both the decaying and harmonic terms for a damped linear oscillator). In

[85], this structure was exploited using Cartesian genetic programming (CGP) [143, 179].

Further effort would be well spent in assessing if this type of repeated structure could

be incorporated into the affine regression tree framework.

Statistically independent nonlinear normal modes

The statistically-independent framework for nonlinear modal analysis has been shown

in this thesis to offer a practical nonlinear extension to linear modal analysis. Despite

the promising results, several limitations of the method remain. So far, the method has

only been applied in a SIMO setting. Although this is a common scenario in practice,

it is unrealistic to not consider the fully MIMO case. Modal testing in practice can, for

2There is no https://github.com/MDCHAMP/FreeLunch in optimisation after all [177].

https://github.com/MDCHAMP/FreeLunch
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the linear case, be done in a SIMO manner and then use the principal of reciprocity to

obtain a full model of the dynamics. Regrettably, the principle of reciprocity cannot be

relied upon in the nonlinear case [2]. As such, it is of significant interest to consider the

application of the method in the MIMO case.

A similar consideration is the effect of non-Gaussian input signals. In Chapter 6, the

analysis from the FPK equation relies on a Gaussian excitation signal. Although many

real-world loading scenarios might be approximately Gaussian, there remains a signifi-

cant number that are patently non-Gaussian. Extensions to the method should therefore

be envisaged that are able to accommodate other excitation types. A first port of call in

this direction might be to investigate how the performance of the method degrades as the

input is driven further and further from a Gaussian distribution. This approach would

assess robustness of the method and may also give insights into what a non-Gaussian

modal decomposition might look like.

The application of the method in a practical setting is also of interest. A campaign of

nonlinear testing on real-world engineering structures with nonlinearity would provide

a solid demonstration of the practical utility of the approach.

One area in which the statistically-independent framework lags behind other NNM ap-

proaches is visual interpretation. The modes of the Rosenberg type are neatly sum-

marised by the frequency-energy plot. Those of Shaw and Pierre are conveniently visu-

alised (for 2-DOF systems), by the invariant manifolds upon which the modal dynamics

persist. In order for the method to offer practical interpretability, similar methods of

visualisation should be sought for the statistically-independent framework.

The data-driven approach of the statistically-independent framework is remarkable, in

that the modes are constructed form the data and inductive biases only. Although at

this stage no formal equivalence between NNMs from the present approach and those of

traditional approaches can be claimed, it is very interesting to imagine which inductive

biases would be required to align the approach with that of Rosenberg or Shaw and

Pierre. In [96, 109], a deep-learning data-driven approach is presented that constructs

modes aligned with both such frameworks. It is of particular interest to investigate

how the inductive biases used in that study might be included within the statistically-

independent framework.

Modal invariance is defined here as the property of linear modes that means they are

independent of the level (or type) of excitation. This property is unavailable in the

nonlinear case and so approaches to nonlinear modal analysis must either ignore or

explicitly model the energy dependence of the modes. In this work, the SISO modal

basis is shown to generalise approximately between local excitation levels. However, the
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explicit parameterisation of the energy level in the system is an interesting avenue for

investigation. This parameterisation could be implemented within the neural architec-

ture, or by consideration of velocities in the decompositions as in the Shaw and Pierre

framework.

A final point for consideration is the full decoupling of the nonlinear dynamics. Consider

the form of the decoupled equations of motion in the linear case,

ΦTMΦü+ΦTKΦu = ΦTx(t) (10.1)

Notice that the input has also been transformed for the EOMs to be fully decoupled.

Although this might not affect the SIMO systems considered thus far, it might be the

case that in the general MIMO formulation it will also be required to take a nonlinear

transformation on the input as well as the output for the dynamics to be fully decoupled.

It is also interesting to envisage applications in which the principal research directions

from this thesis might be combined. For this, the author imagines two possible ap-

proaches.

One possible direction is a slight relaxation of the requirement that the symbolic re-

gression scheme should find exact solutions. Instead, the heuristic search could target a

decoupled set of approximate solutions to a nonlinear functional such that they represent

a useful (as per the criteria of Chapter 2) set of ‘modal’ SISO solutions to the coupled

nonlinear SODE of interest. The decoupled solutions may be targeted in a number of

ways. For example, an emphasis might be placed on compact solutions (by some lim-

itation on tree dimensions) or near-linear equations (by imposing a prior structure on

the trees). Access to closed-form expressions for approximate decoupled solutions to a

nonlinear ODE may open the door for greater understanding of nonlinear phenomena

in structural dynamics and permit insight into new methods for performing nonlinear

decomposition and reduced-order modelling.

Another enticing possibility is to target the nonlinear decomposition function f with the

methodology developed in this thesis for symbolic regression. In this way, the nonlinear

function may be specified in closed-form directly from the collected nonlinear data.

Access to a closed-form expression for the transformation may offer key insights into

which biases are required to produce a practical nonlinear decomposition. This approach

could also be applied to other frameworks for the simplification of nonlinear SODEs such

as normal form analysis and Poincaré problems of exact linearisations.



Epilogue

Must find that needle,

that elephant in the zoo;

but do they exist?



Appendix A

Derivations

A.1 Harmonic probing of a quadratic-cubic SIMO Duffing

oscillator

The derivations presented in this section follow the results derived in [168] for the HFRFs

of MDOF nonlinear systems but are presented in a convenient vectorised formulation.

The application of the harmonic probing algorithm permits the derivation of analytical

HFRFs, when the equations-of-motion are known. For the SIMO quadratic-cubic system

with n DOFs under consideration, the EOM in matrix form are given by,

M ÿ + Cẏ +Ky +K2y
2 +K3y

3 = x(t) (A.1)

where y and x are vectors, and M , C, K, K2, and K3 are square n × n parameter

matrices.

The Hk encode the kth-order frequency domain response of the system to an input at

location jinput.

The H1 encode the linear responses of the structure. The appropriate probing input is,

x(t) = peiωt (A.2)

where,

p = δjjinput (A.3)
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is a one-hot vector corresponding to the input location of the SIMO system. The gen-

eralised probing output is given by,

y(t) =


H

(1:1)
1 (ω)eiωt +H

(1:1,1)
2 (ω, ω)ei2Ωt + . . .
...

H
(n:1)
1 (ω)eiωt +H

(1:1,1)
2 (ω, ω)ei2Ωt + . . .

 = H1e
iωt (A.4)

In the above expression, the coefficients of the H1 are all eiωt. By utilising the orthog-

onality properties of independent harmonic inputs, all higher-order terms in the above

expansion can be neglected leaving,

y(t) =


H

(1:1)
1 (ω)eiωt

...

H
(n:1)
1 (ω)eiωt

 = H1e
iωt (A.5)

Substituting (A.2) and (A.5) into the equation-of-motion gives,

H1(ω)e
iωt[M(iω)2 + C(iω) +K] +N = peiωt (A.6)

where N contains the terms with harmonics at integer multiples of ω from the quadratic

and cubic stiffness terms. Equating coefficients of eiωt in (A.6) gives,

H1(ω)[M(iω)2 + C(iω) +K] = p (A.7)

and so the H1 can be read off,

H1(ω) = [M(iω)2 + C(iω) +K]−1p (A.8)

As expected, the expression is identical to the FRF of the underlying linear SIMO system

(the case where K2 = 0 and K3 = 0).

In order to analyse the nonlinear behaviour of the system, the higher-order Hk must be

extracted. The process of harmonic-probing for H2(ω, ω) is identical, although this time

the probing input is comprised of two harmonics,

x(t) = p
(
eiω1t + eiω2t

)
(A.9)
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so that the effect of interacting harmonics can be captured. The system response to

this input can be derived from the Volterra series. Considering only the terms that can

generate coefficients of the harmonic ei(ω1+ω2)t one has,

y(t) = H1(ω1)e
iω1t +H1(ω2)e

iω2t + 2H2(ω1, ω2)e
i(ω1+ω2)t (A.10)

Substituting (A.9) and (A.10) into (A.1) as before and extracting the coefficients of

ei(ω1+ω2)t results in

[
−2Mω2

1 + (2iC − 4Mω2)ω1 + 2iC − 2Mω2
2 + 2K

]
H2 (ω1, ω2)+2K2H1 (ω1)H1 (ω2) = 0

(A.11)

Solving the above for H2 results in,

H2(ω1, ω2) = −K2H1(ω1) ◦H1(ω2)[M(i(ω1 + ω2))
2 + C(i(ω1 + ω2)) +K]−1 (A.12)

where ◦ denotes an elementwise product over the degrees-of-freedom. Simplifying in

terms of the previously computed H1(ω),

H2(ω1, ω2) = −K2H1(ω1) ◦H1(ω2) ◦H1(ω1 + ω2) (A.13)

It is clear that in the absence of any quadratic nonlinear terms (K2 = 0) there can be

no contribution from H2(ω1, ω2) to the overall response.

The calculation for H3 is somewhat more tedious, but follows the same approach as the

lower-order terms. Starting with the probing input,

x(t) = p
(
eiω1t + eiω2t + eiω3t

)
(A.14)

the output from the Volterra series is given by,
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y(t) =H1(ω1)e
iω1t +H1(ω2)e

iω2t +H1(ω3)e
iω3t

+ 2H2(ω1, ω2)e
i(ω1+ω2)t + 2H2(ω2, ω3)e

i(ω2+ω3)t ++2H2(ω1, ω3)e
i(ω1+ω3)t

+ 6H3(ω1, ω2, ω3)e
i(ω1+ω2+ω3)t

(A.15)

where higher-order terms that cannot produce coefficients of ei(ω1+ω2+ω3)t can be ignored.

Substituting (A.14) and (A.15) into (A.1) and extracting the coefficients of the harmonic

ei(ω1+ω2+ω3)t gives,

6H3(ω1, ω2, ω3) =(
−6 (ω1 + ω2 + ω3)

2M + 6iCω1 + 6iCω2 + 6iCω3 + 6K
)
H3 (ω1, ω2, ω3)

+ 6H1 (ω1)H1 (ω2)H1 (ω3)K3 + 4K2H1 (ω2)H2 (ω1, ω3)

+ 4K2H1 (ω3)H2 (ω1, ω2) + 4H1 (ω1)H2 (ω2, ω3)K2

(A.16)

Solving finally for H3(ω1, ω2, ω3) and substituting in the definitions of H1 and H2 gives

the simplified solution,

H3(ω1, ω2, ω3) = −1

6
H1 (ω1 + ω2 + ω3)

◦
[

4K2H1 (ω1) ◦H2 (ω2, ω3)

+4K2H1 (ω2) ◦H2 (ω3, ω1)

+4K2H1 (ω3) ◦H2 (ω1, ω2)

+6K3H1 (ω1) ◦H1 (ω2) ◦H1 (ω3)
]

(A.17)
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A.2 Harmonic probing of the NNM of a SISO Duffing os-

cillator

In Chapter 6 the following SISO equation of motion was considered.

ÿ + cẏ + ky + ϵy3 = x(t) (A.18)

Subjecting the dynamics of the above to a general forward modal transformation u =

f(y), with inverse given by y = g(u), it was shown that the equation of motion in terms

of the modal coordinate u is,

g′′(u)u̇2 + üg′(u) + cg′(u)u̇+ kg(u) + ϵg(u)3 = x(t) (A.19)

Now expanding the inverse modal transformation out as a Taylor series,

g(u) ≈ a0 + a1u+ a2u
2 + a3u

3 . . . (A.20)

where the ai are the coefficients of the Taylor series expansion of g(u). In the analysis

that follow, it is assumed that a0 = 0 as the constant offset term in the map will

produce infinitely many terms in the HFRF expressions. The author does not view this

a limitation of the results however as g(0) = 0 (and therefore a0 = 0) was in fact a

requirement of the analysis in Chapter 6.

Considering terms now up to third order1 and substituting the usual probing inputs for

H1(ω) results in a large expression from which the coefficient of eiωt can be extracted

to yield,

H1(ω) = iH1(ω)ca1ω + 2ia2ωH1(ω)−H1(ω)a1ω
2 +H1(ω)ka1 (A.21)

Which can be solved for H1 to reveal,

H1(ω) =
1

2a2iω + a1(ciω − ω2 + k)
(A.22)

1As the reader is probably well aware at this stage, the series truncation can be done with no loss to
the generality to the expressions derived here, owing to the extraction of low-order harmonics from the
general output of the Volterra series.
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Note in the above that for the case a1 = 1 and a2 = 0 (i.e unit linearity and no quadratic

component), the underlying linear dynamics of the system are exactly preserved. In the

case that there is a quadratic component to the nonlinear inverse map, this acts to bias

the damping only, the biased damping can be expressed,

c∗ = a1c+ 2a2 (A.23)

The underlying natural frequency is unaffected.

Continuing in the usual fashion for H2(ω1, ω2), with some effort2, the result can be found

as,

H2(ω1, ω2) = H1(ω1)H1(ω2)H1(ω1+ω2)
[
a2(ci(ω1 + ω2)− ω2

1 − ω2
2 + k) + 3a3i(ω1 + ω2)

]
(A.24)

An interesting observation from the above is that even if a2 = 0, structure is introduced

in the H2. The higher order HFRFs can be accessed in the familiar manner, this is left

as an exercise (in futility) to the reader.

2And with some assistance from a computer algebra solver! [68]
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Publications

Listed here are the publications arising from work completed during the PhD leading to

this thesis. Many of the results presented in this thesis can be found in the publications

below.

Journal papers

M. D. Champneys, G. Tsialiamanis, T. J. Rogers, N. Dervilis, K. Worden (2022). On

the dynamic properties of statistically-independent nonlinear normal modes. Mechanical

Systems and Signal Processing, 181, 109510.

G. Tsialiamanis, M. D. Champneys, N. Dervilis, J. D. Wagg, K. Worden (2022). On

the application of generative adversarial networks for nonlinear modal analysis. Me-

chanical Systems and Signal Processing, 166, 108473.

M. D. Champneys, A. Green, J. Morales, M. Silva, D. Mascarenas (2021). On the

vulnerability of data-driven structural health monitoring models to adversarial attack.

Structural Health Monitoring, 20(4), 1476-1493.

Conference papers

M. D. Champneys, G. Tsialiamanis, T. J. Rogers, N. Dervilis, K. Worden (2023). To-

wards Exact Statistically Independent Nonlinear Normal Modes via the FPK Equation.

(In press)

M. D. Champneys, G. Tsialiamanis, T. J. Rogers, N. Dervilis, K. Worden (2023). On

higher-order frequency response functions from kernel-NARX methods. (In press)
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J. D. Longbottom, M. D. Champneys, E. J. Cross, U. T. Tygesen, T. J. Rogers (2023).

Probabilistic numerical integration and sequential Monte Carlo for online identification

of nonlinear dynamic systems. (In press)

G. Tsialiamanis, M. D. Champneys, J. D. Wagg, N. Dervilis, K. Worden (2023).

On the Use of Cycle-Consistent Generative Adversarial Networks for Nonlinear Modal

Analysis. In Topics in Modal Analysis and Parameter Identification, Volume 8 (pp.

45-57). Springer, Cham.

M. D. Champneys, G. Tsialiamanis, T. J. Rogers, N. Dervilis, K. Worden (2023).

On Modelling Statistically Independent Nonlinear Normal Modes with Gaussian Process

NARXModels. In Nonlinear Structures and Systems, Volume 1 (pp. 135-147). Springer,

Cham.

M. D. Champneys, N. Dervilis, K. Worden (2022). On Affine Symbolic Regression

Trees for the Solution of Functional Problems. In Nonlinear Structures and Systems,

Volume 1 (pp. 95-108). Springer, Cham.

M. D. Champneys, K. Worden, N. Dervilis (2019). Nonlinear modal analysis based

on complete statistical independence. In Nonlinear Vibrations, Localization And Energy

Transfer, 4.
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Additional projects

As well as the results presented in this thesis, the author has contributed work to a

number of other projects which are summarised here.

Adversarial machine learning and structural health moni-

toring

In the first year of the PhD the author was fortunate enough to have the opportunity to

visit Los Alamos national laboratories (LANL) and collaborate with researchers there

over the course of four weeks in the autumn of 2019. During that time the author was

able to collaborate on a number of interesting projects.

Most notably, a body of work was completed on the vulnerability of data-driven algo-

rithms in the field of Structural Health Monitoring (SHM) to adversarial attack. The

work applied some of the emerging trends in the computer science and machine learning

communities to a SHM framework and found that even in the näıve case there were

significant vulnerabilities and life-safety implications. The work went on to develop a

threat model pertaining directly to adversarial attacks in SHM applications.

The principle output of the collaboration was a journal paper [180] written by the

author and collaborators at the lab which was published in the journal of structural

health monitoring in May 2020.
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Figure C.1: Consideration of attack vectors from the work on adversarial robustness.

Meta-heuristic optimisation

As well as academic outputs, the author has also invested time in the development of an

open-source library of meta-heuristic optimisation algorithms developed for the python

language. The package features several common algorithms for heuristic optimisation

including simulated annealing, differential evolution and particle swarm methods. The

library is developed with ease of use and extensibility in mind and has been used for

several of the authors projects as well as projects of colleagues and others. The package

also supports benchmarking and parallel optimisations for significant computational

advantage.

The FreeLunch package is freely available on the python package index https://pypi.

org/project/freelunch/.

Probabilistic parameter estimation

In the fourth year of the doctoral program, the author collaborated with colleagues from

the dynamics research group (DRG) on a probabilistic parameter identification scheme

that incorporates a full account of the uncertainty contingent in the time integration

step. The approach employed recent results from the field of probabilistic numerics [63]

in order to identify parameters of a nonlinear hysteretic Bouc-Wen system. The results

of the project were presented by colleagues at both the workshop on nonlinear system

identification and uncertainty quantification in structural dynamics conferences.

https://pypi.org/project/freelunch/
https://pypi.org/project/freelunch/
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[105] M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, and J.-C. Golinval. Nonlinear

normal modes, part II: Toward a practical computation using numerical continu-

ation techniques. Mechanical systems and signal processing, 2009.

[106] L. Renson, G. Kerschen, and B. Cochelin. Numerical computation of nonlinear

normal modes in mechanical engineering. Journal of Sound and Vibration, 2016.

[107] J. C. Slater. A numerical method for determining nonlinear normal modes. Non-

linear Dynamics, 1996.
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