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Abstract  

Our ability to socialise and interact with others is underpinned by our ability to 

extract social information from faces. However, these faces must first be detected 

from the complex visual environment before any social information is extracted. Prior 

face perception work has focused mainly on later stages of face processing. The early 

stage of face detection has been relatively neglected. As such, some basic questions in 

face detection are outstanding. Can we know that more than one face is present? How 

many faces can be detected at once? How do viewing conditions affect performance? 

This thesis adapted paradigms from face perception and numerical cognition research 

to address these questions. First, Chapter 2 used a ‘subitizing of faces’ approach to 

compare multiple target detection for faces and other types of stimuli. A detection 

advantage was found for faces over non-face stimuli, irrespective of face inversion. 

Chapter 3 used a novel ‘fixed/mixed’ judgment task to test for capacity limits in face 

detection. The findings supported an efficient parallel detection mechanism for 

multiple faces. Chapter 4 adapted search tasks to assess how multiple face detection 

is affected by different viewing conditions, including aspects of the task and 

presentations. The findings in this chapter indicate a typical face detection span of 

four faces, plus or minus one. They also show how the visual complexity and 

meaningfulness of the surrounding scene affect performance. This thesis establishes 

that detecting multiple faces in complex visual scenes is an efficient parallel process 

for up to four faces. It also contributes several methodological innovations that can be 

adapted to address related research questions. 
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Chapter 1 – General Introduction 

Face perception can be understood as a two-stage process. An initial detection 

stage registers the presence of a face in the environment, and a subsequent analysis 

stage extracts meaning from the face. The sheer number of faces we encounter in our 

social lives raises the question of bandwidth along this processing pipeline. Can we 

process multiple faces in parallel, or are we constrained to processing single faces 

serially? The current thesis addresses this question for the initial stage of face 

detection. 

 

To date, most psychological research on face perception has concentrated on 

later processes, such as analysis of emotional expression or personal identity (for 

reviews, see Bruce & Young, 2013; Calder, 2011; Freiwald et al., 2016; O’Toole, 

2005; O’Toole & Castillo, 2021; Valentine, 1991). As such, the initial detection stage 

remains comparatively underexplored as a topic in cognition. Most face detection 

literature stems from computer vision research concerned with developing automatic 

face detection algorithms (Sinha et al., 2006). These algorithms identify candidate 

face regions in an image so that processing resources can be allocated appropriately 

(Hjelmås & Low, 2001; Sinha et al., 2006; Wang & He, 2019). This task 

decomposition echoes the distinction between face detection and face processing in 

humans (Lewis & Ellis, 2003; Tsao & Livingstone, 2008). 

 

Interestingly, many face detection algorithms claim to be inspired by 

psychological and physiological findings (Sinha, 2002; Sinha et al., 2006). Yet the 

volume of automatic face detection research far exceeds the volume of underpinning 

psychological research. This dynamic suggests a potential for impact beyond 

experimental psychology. Further research into face detection by humans will not 

only deepen our understanding of visual cognition but also broaden the evidence base 

for bio-inspired computer vision allowing for meaningful comparisons of human and 

machine systems.  
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This General Introduction is divided into three sections. The first section 

reviews the psychological literature on face detection and argues that a quantitative 

understanding of face detection is missing. The second section draws on concepts 

from numerical cognition research and argues that these concepts could be usefully 

adapted for face detection research. The final section provides an overview of the 

experimental chapters in this thesis, setting out the central research questions and the 

methods used to address them. 

 

1.1 Face Detection: A Review of the Current Evidence 

Face detection involves registering the presence of faces by comparing regions 

of the visual environment to a stored face template. In this view, detection is a 

separate prerequisite step that selects appropriate stimuli for subsequent analysis 

(Lewis & Ellis, 2003; Robertson et al., 2017; Tsao & Livingstone, 2008). Although a 

few pioneering researchers have examined face detection directly (Bindemann & 

Burton, 2009; Burton & Bindemann, 2009; Lewis & Edmonds, 2003, 2005; 

Nothdurft, 1993; Purcell & Stewart, 1986, 1988), much of our current understanding 

is gleaned from studies of related processes, including face identification and visual 

search. The following section provides an overview of the current face detection 

evidence, discussing both the Face Detection Effect (FDE) for upright faces over 

other inverted faces as observed by (Purcell & Stewart, 1986, 1988) and the general 

advantage over non-face stimuli which is subsequently termed as the ‘Face Detection 

Advantage’. An overview of the role of face detection within face processing will 

also be presented. This section shall then discuss qualitative aspects of the face 

detection template and its properties before turning to the limited research on 

quantitative aspects of face detection.   
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1.1.1 Detection as a Prerequisite for Face Recognition  

Several strands of research have been used to make the case that faces, 

specifically in their upright orientation, are ‘special’ stimuli for the perception system 

(Farah et al., 1998; Kanwisher et al., 1997; Tanaka & Farah, 2007; Yin, 1969a). In a 

similar vein, early work on face detection suggested that detecting a single upright 

face differs from detecting other types of face stimuli. Purcell & Stewart (1986) 

reported a Face Detection Effect (FDE) whereby intact photographs of faces needed a 

shorter presentation time to be detected than when the internal configuration of eyes, 

nose, and mouth were arbitrarily jumbled. In a follow-up study, upright schematic 

faces were also detected at shorter presentation times than inverted faces (Figure 1.1; 

Purcell & Stewart, 1988). Manipulating exposure duration times is seemingly an 

effective way to limit face processing to detection alone, as the task demands no 

further action from the participant once a face is detected. However, the forced-choice 

task used by Purcell & Stewart (1986, 1988) was more akin to a visual search task 

than a detection task, as the participants had to indicate the presence or absence of a 

single target stimulus (Lewis & Ellis, 2003). Nonetheless, the FDE shows an 

advantage for detecting faces with the correct internal configuration over rearranged 

stimuli that are otherwise visually similar. 

Figure 1.1 Intact (A) and jumbled (B) faces used in experiments 6 in Purcell & Stewart (1988). 
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Face detection studies also point to a face advantage and a hierarchy in 

detection efficiency for different visual objects. Converging evidence from eye-

tracking and visual search studies show that a face can be detected more efficiently 

than a face-like object (such as a pareidolic or illusory face seen in Figure 1.2), which 

can, in turn, be detected more efficiently than a non-face object (Crouzet et al., 2010; 

Keys et al., 2021; Purcell & Stewart, 1986, 1988; Wardle et al., 2020). This enhanced 

detection performance also appears to emerge in infancy and be specific to human 

faces rather than generalising to other mammal or animal faces (Simpson, Buchin, et 

al., 2014; Simpson, Husband, et al., 2014; Simpson, Maylott, Leonard, et al., 2019; 

Simpson, Maylott, Mitsven, et al., 2019). The preferential detection of faces over 

other stimuli echoes findings from face perception literature on infant looking times 

(Di Giorgio et al., 2012; Farroni et al., 2002, 2005, 2007; Simion et al., 2005). This 

finding supports a detection mechanism specialised for detecting a face over another 

item and points to some level of specificity in the face detection template.  

 

Figure 1.2 Pareidolic faces (top row), matched non-face objects (middle row), and real faces (bottom row) used by 

Keys et al. (2021). 
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A similar face detection advantage is also seen in a series of eye-tracking 

studies by Crouzet et al. (2010). When two images (a face and a vehicle) were 

simultaneously presented in the left and right visual fields, automatic eye saccades 

towards faces occurred as early as 100 – 110 ms. These automatic eye saccades seem 

outside of conscious control as they were biased towards faces even when 

participants were instructed to look at the vehicle. Crouzet et al. (2010) and later 

Crouzet & Thorpe (2011) argue that the presence of a face can be determined within 

80 ms, given that around 20 ms is needed to initiate eye movements. These ultra-

rapid eye saccade findings show that the status of faces as ‘special stimuli’ is possibly 

present even at the detection stage — not just the later stage of extracting meaning 

from the face. When these findings are considered alongside the FDE, they suggest 

the presence of a specialised detection mechanism that is tuned to human faces.  

 

While faces may be preferentially detected over non-face stimuli, the precise 

tuning of the face detection template — what counts as a face to the face detection 

system — remains an open question. Sensitivity to orientation is interesting in this 

regard. It is well established that familiar faces are easier to identify when upright 

than when inverted (Farah et al., 1995, 1998; Tanaka & Farah, 2007). That is, face 

identification is orientation sensitive. However, upright and inverted faces appear 

equally potent in biasing spatial attention in a cueing task (Bindemann & Burton, 

2008). Consequently, face detection appears to be less sensitive than identification to 

stimulus orientation. The authors attribute this observation to shared featural qualities 

between upright and inverted faces. Similar findings emerged in saccadic eye 

movement studies. While the aforementioned Crouzet et al. (2010) study found 

automatic eye saccades for faces over vehicles, it did not incorporate faces in an 

inverted orientation. However, in other saccadic eye studies by Devue et al. (2012) 

and Laidlaw et al. (2015), upright and inverted faces were compared directly and 

found to bias saccadic eye movements and trajectories over a non-face target 

stimulus. This bias was present for upright and inverted faces but not scrambled faces 

or animate objects, suggesting that the detection template may be tuned to properties 
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that are common to upright and inverted faces. This finding further supports 

specificity in the face detection template, but not sensitivity.  

 

Whatever the precise tuning of the face detection mechanism, the findings 

reviewed above suggest that faces may be in some sense ‘special’ even at the 

detection stage. However, evidence of ‘specialness’ in face detection, as well as later 

face processes, does not imply unity of face perception. Several findings suggest that 

face detection is dissociable from identification. Robertson, Jenkins, & Burton, 

(2017) operationalised face detection as participants’ tendency to see faces in 

pareidolia images and photos of clouds. They also measured detection more directly 

through participants’ ability to locate a face image in a cluttered scene. Detection 

performance in these tasks showed no relationship to identification performance, as 

measured using a standard face matching task. Fysh (2018) replicated and extended 

these findings. In addition to different detection tasks and more challenging matching 

tasks, face memory tasks were included to measure face recognition. Face detection 

did not correlate with either face recognition (memory) or identification (perception), 

but the latter two processes were strongly correlated with each other. These 

observations all support the notion that face detection is separable from recognition 

and identification.  

 

Converging evidence from cognitive neuroscience also points to face 

detection as a separable process. Using magnetoencephalography (MEG), Liu, Harris, 

& Kanwisher (2002) found that face-selective M100 responses at 100 ms after face 

presentation correlated with behavioural performance in a face categorisation task but 

not face recognition. A later M170 response 170 ms post-stimulus correlated with 

both categorisation and recognition performance. A face categorisation task in which 

stimuli are presented at fixation does not require localising the face in a visual 

environment (Bindemann & Lewis, 2013a). Nonetheless, when these MEG results are 

considered alongside the aforementioned behavioural findings, they indicate an 
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ordered feed-forward progression in face perception whereby faces are first detected 

and then subject to deeper processing.  

 

However, evidence from neuropsychological studies points to a more nuanced 

division between detection and later face processes. Le Grand et al., (2006) and 

Garrido, Duchaine, & Nakayama (2008) report prosopagnosia patients with the 

expected deficits in recognition and identification, but some showed intact detection 

while others showed impaired detection. This calls into question whether impairments 

in recognition and identification sometimes stem from detection. In a feed-forward 

model of face perception, deficits in the early stages (i.e. detection) should impair 

later stages. However, if face detection was completely separable from later stages, 

then impairments in recognition and identification would be independent of 

impairments in detection, and vice versa. Xu & Biederman (2014) examined this 

issue directly with patient MJH who had bilateral lesions in the temporal-occipital 

cortices, including the fusiform and occipital face areas. Previously MJH was 

reported to have normal, or near-normal face detection but impaired face 

individuation. Xu & Biederman (2014) used a different detection paradigm from the 

experiments described above to further investigate detection abilities in MJH. Images 

of faces and cars were Fourier-transformed and subjected to visual noise—a means of 

manipulating detectability without affecting luminance or contrast. Participants were 

then presented with a face and a car on either side of fixation and asked to indicate 

which image was a face. Compared to controls, MJH was impaired on this detection 

task, as well as face individuation tasks. The researchers argue that, at least on a 

neurological level, there is some overlap between the detection and identification of 

faces. This finding further supports the proposed feed-forward model of face 

perception whereby detection leads into later processes, as well as indicates that these 

different stages are not completely independent of each other.  

 

Investigating capacity limits could shed further light on the dissociation 

between face detection and later stages of face perception. Bindemann, Jenkins, & 
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Burton (2007) propose that identification is capacity limited such that only one face 

can be identified at a time. In instances where a non-target face flanked a target face, 

only the target was identified; but the second flanker face was also attended to and 

detected. Bindemann et al. (2007) refer to this as a bottleneck in identification, 

arguing that when a face is being identified, it occupies all identification processing 

resources. A second face can still be detected; however, it cannot move to the 

identification stage when that is already occupied by the preceding face. This 

interpretation supports the notion of face detection as a separate prerequisite step to 

identification. However, it also raises the question of whether the bottleneck applies 

at the detection stage itself, or after it. One interpretation could be that detection is 

also capacity limited to one face. This single face then moves on to identification, 

which is also capacity-limited, freeing up its space in the detection stage and allowing 

for a single new face to occupy it. An equally plausible alternative interpretation 

could be that the detection stage is not strictly capacity limited to one face at a time. 

Instead, more than one face could be detected, but the bottleneck at the later face 

processes, as suggested by Bindemann et al. (2007), constraints face perception. 

These alternative hypotheses are presented visually in Figure 1.3. The current results 

and existing literature on face detection do not uphold one interpretation over the 

other. Directly testing for capacity limits at the detection stage should resolve this 

issue. However, doing so requires appropriate experimental methods to be developed.  

Figure 1.3 Alternative hypotheses accounting for the bottleneck of face processing if (A) detection was limited to 

one face at a time, or (B) more than one face at a time. 
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Most of the current face detection research uses variations of visual search 

tasks or face categorisation tasks to assess detection. Face categorisation tasks present 

participants with a stimulus near fixation on a blank background and instruct them to 

report if the stimulus is a face or not (Lewis & Ellis, 2003). These tasks can provide 

insight into how efficiently category membership is established for faces (that is, 

knowing that the stimulus is a face). On the other hand, visual search tasks have often 

been helpful in the localisation of faces (that is, finding the specified target in a visual 

scene). Visual search tasks were proposed by Treisman & Gelade (1980) to explore 

serial-vs-parallel processing. In these tasks, participants are required to search for a 

single target face among a varying number of distractors and then report whether the 

face is present or absent. Target detection time is taken as a proxy for serial or parallel 

processing. If detection time increases as the number of display items (set size) 

increases, then the search process is deemed serial as it requires each item to be 

checked in turn. However, if detection time remains relatively constant over set size, 

the search is considered parallel, as the target ‘pops out’ from an arbitrary number of 

distractors. Wolfe (1994) built upon this theoretical framework, suggesting that when 

targets pop out under a parallel search, it may be due to shared underlying properties 

being detected preattentively. On this view, visual search tasks can be very useful for 

understanding face detection. By distinguishing serial and parallel processes for 

different target–distractor combinations, we can elucidate properties of the cognitive 

face template.  

 

However, in the context of multiple face detection, categorisation and visual 

search tasks are limited in how informative they can be. Face categorisation tasks, 

which usually present a single face at fixation, eliminate the need to assess the visual 

environment for candidate face regions. While the distinction made between targets 

and distractors in visual search tasks could potentially prime and bias detection 

towards the target. Furthermore, visual search tasks necessitate a self-terminating 

scanning procedure where the participant must search all of the visual environment 

for a target. This active search seems at odds with the passive nature of face detection 
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outside of the laboratory. In everyday social life, a viewer may readily detect a face in 

the environment, even while daydreaming about unrelated matters. Moreover, the 

self-terminating nature of standard visual search tasks requires the participant to 

respond as soon as one face is found, whether or not additional faces are also present. 

This task design makes standard visual search unsuitable for assessing multiple face 

detection. The final section of the General Introduction expands on task design 

considerations.  

 

1.1.2 Serial-vs-Parallel Processing in Face Detection 

Nothdurft (1993) was among the first to explore face detection using visual 

search tasks. In a series of experiments, target faces were embedded among distractor 

faces that were either inverted, jumbled or varied in emotional expression (see Figure 

1.4). In each presentation, the target was equally likely to be present or absent, and set 

size varied up to 48 items. Across all experiments, increases in distractor and size led 

to increases in target detection times, suggesting a serial search process. Kuhn & 

Jolicoeur (1994) extended these findings, adding skin tone and hair colour and 

finding further evidence for serial processing in face detection. However, both of 

these experiments used schematic drawn faces that were the basic properties of a face 

but were not real faces.  

Figure 1.4 Upright and inverted schematic face displays used in experiment 7 of Nothdurft (1993). Visual search 

times for the target upright face increased as inverted face distractor set size increased.  
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When naturalistic visual environments with real faces were used to explore 

face detection, the process was found to be parallel rather than serial. Lewis & 

Edmonds (2005) ran a series of experiments where stills from a TV soap opera were 

divided into different-sized arrays and presented in colour (Figure 1.5). A single target 

(an upright face) could be either present or absent. Distractors varied across 

experiments and were either intact or scrambled natural backgrounds taken from the 

same scene, or inverted faces. Face detection was similarly efficient when distractors 

were intact or scrambled scenes, and each additional distractor added less than 10 ms 

to response times. This very shallow search slope was taken as evidence of parallel 

processing in which the target face pops out no matter the size of the visual array. 

However, the search slope indicated serial search process when upright faces were 

embedded among inverted faces (~20 ms per item). This pattern accords with the 

serial search findings of Northduft (1993) but seems at odds with Purcell and Stewart 

(1986; 1988) and Crouzet et al. (2010) on the upright face advantage in detection. 

Lewis and Edmonds (2005) argue that this pattern of results is due to the high 

similarity between upright and inverted faces. Target–distractor similarity is known to 

influence visual search task results (Duncan & Humphreys, 1989). The authors, 

therefore, propose that face detection proceeds in stages. A first stage involves 

extracting all common visual properties of the face, while a second stage deals with 

the rotation and matching of faces in the upright configuration. This account would 

explain how a single upright face embedded in a naturalistic environment is detected 

in a rapid manner. However, when a single face is embedded among inverted faces, 

the high level of visual similarity means that all the items are initially detected at 

once, but then a cost is incurred for extracting the upright face. This staged 

interpretation of face detection could resolve the discrepancy between the upright 

face advantage found by previous studies and the exception to the inversion effect in 

detection found by Bindemann & Burton (2008).  
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Lewis and Edmonds (2005) conducted further studies to explore the visual 

properties of faces implicated in the initial parallel detection stage. The same 

paradigm as their previous experiments was used, but images were manipulated so 

that colour was removed or reversed, the image was blurred, or luminance was 

reversed. In the first three cases, the results were the same as non-manipulated 

images. However, when luminance was reversed, parallel detection was 

compromised. Luminance reversal disrupts the veridical lighting pattern, producing 

images that resemble photographic negatives. Lewis and Edmonds (2005) suggest 

that detection initially picks up on common luminance patterns that are shared by all 

faces, no matter the orientation. Orientation then becomes important at the second 

stage of detection, depending on the task. However, the researchers do not entirely 

discount a role for colour in face detection.  

 

The role of colour was directly investigated by Bindemann & Burton (2009). 

They found that face detection performance was impaired when faces were presented 

in greyscale, whether or not the background visual environment was coloured. 

Figure 1.5 Example stimuli from Lewis and Edmonds (2005) including the unscrambled source image (A), the 4 × 4 

scrambled scenes with an upright face target used in experiment 1 (B), and the 4 x 4 displays containing an upright 

face target among inverted face distractors used in experiment 2. Actual stimulus displays were in colour and of a 

higher quality then the current reproductions. 
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Detection was also impaired when faces were hue reversed and rendered in unnatural 

colours (e.g. blue skin). This finding suggests that it is the loss of skin colour 

specifically that affects detection, rather than the loss of colour in general. 

Bindemann & Burton (2009) investigated this possibility further by retaining skin 

colour in only half of the face, with the other half in greyscale. In this condition, 

detection was impaired, suggesting that colour information and aspect ratio 

information both contribute. Pongakkasira & Bindemann (2015) further explored the 

role of aspect ratio by manipulating face height-to-width ratio. Unlike familiar face 

identification (Hole et al., 2002) face detection was impaired when shape was 

distorted. This finding underscores the importance of aspect ratio information in face 

detection. It also underscores the dissociation between detection and identification 

processes.  

 

Each of the studies mentioned above that used visual search tasks using 

naturalistic visual environments investigated a different aspect of face detection. 

However, they all seem to support the involvement of a template-matching procedure 

that lies on lower-level visual properties shared by upright and inverted faces, such as 

luminance, as well as general shape and colour cues. 

 

Taken together, the available evidence usefully constrains how face detection 

in humans could work. For example, it points to an important role for the local 

structure of luminance in the stimulus and appears to rule out a key role for global 

orientation. Even so, given the overall popularity of face perception as a topic in 

psychology, it is surprising how few studies have explored face detection directly. 

Fewer yet have examined face detection in naturalistic viewing conditions. The 

upshot is that basic questions in face detection remain unanswered. For example, it is 

not known whether humans can detect multiple faces concurrently. Given that 

humans evolved in social groups, and often encounter people in groups (Dunbar, 

1998, 2012; Zhou et al., 2005), it seems plausible that multiple face detection would 

be an asset. On the other hand, later processes in face perception (e.g. extraction of 
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personal identity, semantic information, eye direction) appear to be strictly capacity 

limited to one face at a time (Bindemann et al., 2007; Bindemann, Burton, et al., 

2005). Behavioural experiments could resolve this issue by presenting multiple faces 

in the visual environment in the context of a face detection task. 

 

1.2 Visual Item Enumeration: Evidence from Numerical Cognition  

Visual understanding of numerosity has been a topic in numerical cognition 

research for several decades. Numerical cognition methods offer a way to explore 

capacity limits in face detection and to investigate the maximum number of faces that 

can be detected. These paradigms were originally designed to assess how items in the 

visual environment are enumerated and represented non-symbolically. However, they 

can be adapted to evaluate multiple face detection in the visual environment. Doing 

so could shed light on whether face detection is capacity-free (and operates in 

parallel), or capacity-limited (and operates serially); and if there is a capacity limit, to 

quantify that limit: how many faces can we detect at once? If only one face can be 

detected at a time, we can infer a serial process. If all the faces in a visual scene can 

be detected simultaneously, we can infer a parallel process. The following section 

outlines theories and paradigms from numerical cognition literature that assess the 

visual item enumeration of small and large quantities.  

 

1.2.1  Subitizing: Small Exact Sense 

Subitizing refers to the rapid and accurate enumeration of multiple items in 

the visual environment (Kaufman & Lord, 1949). Typical subitizing paradigms 

involve 1-8 dots rapidly presented on the screen for a very brief duration. Participants 

are tasked with responding as quickly and accurately as possible, and both accuracy 

and reaction times are measured. Typically, up to 3 or 4 items can be rapidly and 

accurately enumerated but with 5 or more items, accuracy decreases, and reaction 

times increase. Importantly, the reaction time difference between the subitizing of 1-3 
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or 4 items is typically within a 100 ms range, and accuracy is usually at ceiling 

(Piazza et al., 2011). This observation is taken as support for rapid and parallel 

processing for the visual enumeration of small quantities. Subitizing has been 

replicated using bars instead of dots (Egeth et al., 1988), in the tactile domain as well 

as the visual domain (Riggs et al., 2006), in children as well as adults (albeit with 

slower overall reaction times; Chi & Klahr, 1975), and even in chimpanzees 

(Murofushi, 1997). 

 

Subitizing differs from counting or highly accurate estimation not only 

behaviourally, but also in terms of distinct brain regions involved (Choo & 

Franconeri, 2014; Demeyere et al., 2012). Unlike counting, subitizing is considered a 

capacity-limited preattentive process of visual item individuation. This theory stems 

from vision research and, in its most popular form, is termed ‘FINgers on 

INSTanitation’ or FINSTs (Trick & Pylyshyn, 1994). Trick & Pylyshyn's (1994) 

FINSTs theory suggests the presence of a domain-general capacity-limited process of 

item individuation, in which up to four mental indices can be occupied parallelly to 

track objects in the visual environment. Up to 3 or 4 FINSTs can be assigned at once, 

accounting for the high accuracy and short reaction time for up to 3 or 4 items in the 

visual environment. In some respects, subitizing is similar to detection. In both cases, 

particular visual objects must be segmented from their surroundings. In subitizing, 

these objects are merely enumerated, but in face detection, they may progress to 

further face processing. 

 

Subitizing has often been considered a preattentive process (for a review, see 

(Gilmore et al., 2018b; Katzin et al., 2019), but later studies have found that 

subitizing can be affected by attention and visual load and visual working memory 

(WM) (Alvarez & Cavanagh, 2004; Cavanagh & Alvarez, 2005; Cowan, 2001; Eayrs 

& Lavie, 2018; Eayrs & Lavie, 2021; Piazza et al., 2011; Railo et al., 2008). Eayrs & 

Lavie's (2021) recent work applying load theory (the influence of the perceptual load 

on attention; Lavie, 1995) to subitizing lends support to this claim. The authors found 
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that when visual memory was overloaded by distractor quantities within the 

subitizing range, visual item enumeration was distributed, but the effect disappeared 

beyond the subitizing range. Moreover, individual differences in WM were correlated 

with subitizing performance, but there was evidence to support a general capacity in 

visual perception (Eayrs & Lavie, 2018; Eayrs & Lavie, 2021). Piazza et al. (2011) 

agree that subitizing reflects a parallel process of visual item individuation, making it 

a viable method and paradigm to investigate capacity limits in face detection.  

 

1.2.2 Approximate Number Sense (ANS): Large Approximate Sense 

From a subitizing perspective, it is plausible that face detection is capacity 

limited to a small number of faces. However, it may be likely that larger quantities of 

faces can be detected. The approximate number sense is thought to be involved in 

instances where the number of items in the visual environment is too large for 

subitizing, and counting is too effortful. The ANS is a separate process from 

subitizing and is responsible for the imprecise estimation of large quantities of items 

in the visual environment (Feigenson et al., 2004). It gives an indication of the 

intuitive non-symbolic mental representation of these large quantities. Consequently, 

from an ANS perspective, it is plausible that we have the capacity to detect and 

extract the presence of many faces, but we do so with less precision.    

 

Non-symbolic comparison tasks are used to measure the ANS. Arrays of dots 

are presented on the left and right sides of the display, and the ratio of the number of 

dots is manipulated. Participants are tasked with selecting the array they perceive as 

being the largest, and accuracy is measured. The ratio difference is thought to drive 

performance rather than absolute differences between arrays such that the closer the 

ratios are to 1:1, the less accurate the ANS and performance are. However, when 

participants are additionally tasked with estimating the quantities presented, they 

show large variations in estimates as array size increases but tend to usually 
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underestimate the actual quantities (Gilmore et al., 2011; M. Guillaume et al., 2013; 

Izard & Dehaene, 2008; Lyons & Beilock, 2011).   

 

Accuracy and performance in these non-symbolic tasks are used to create a 

mental number line (MNL). The MNL represents the internal mental activation and 

representation of various large quantities. In the MNL, activation for large quantities 

is imprecise and overlaps with other nearby quantities making them harder to 

separate. This is akin to the large variations in estimation as array size increases. For 

instance, when participants are tasked with estimating the quantity of 200 dots, they 

may provide estimates of between 150-300 due to overlap in the activation of these 

quantities on the MNL. However, if participants are tasked with estimating an array 

of 20 dots, the estimates, they may provide might range between 15-25 dots (Gilmore 

et al., 2018a; Izard & Dehaene, 2008).  

 

One of the most important aspects of the ANS is its abstractness, it can be 

used for comparison, addition, and subtraction within and across format and modality 

(Barth et al., 2003). The ANS is thought to tap into this rapid intuitive mental 

representation of quantities. But it also demonstrates sensitivity to lower-level visual 

factors such as luminance or colour as well as other factors such as surface area and 

dot size. This may be due to the high volume of ANS studies in the visual domain. 

However, Gebuis, Cohen Kadosh, & Gevers (2016) propose an alternative 

explanation. While this explanation has not been extensively tested, it suggests that 

the ability to process large quantities of items is actually underlined by a sensory 

integration system that manifests as an ANS. Essentially the way items are 

enumerated in the visual environment is dependent on the common sensory properties 

of stimuli. In the case of face detection, this could be the luminance, colour, and 

aspect ratio information thought to be involved in template matching.  

 

The ability of the ANS to generalise across common visual properties shared 

by stimuli in the visual environment implicates it as a useful mechanism for detecting 
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large quantities of faces (e.g. crowds, demonstrations, large gatherings etc). If we 

have the capacity to register the presence of numerous faces, even if the quantity is 

approximate, it may point to a further distinction from later face processes that are 

capacity limited to one. However, by virtue of being approximate, the ANS does not 

easily lend itself to assessing the detection cost per additional face and, in turn, the 

capacity limits of face detection. Moreover, as later face processes are capacity 

limited to one, the first step would be to assess if face detection is – or is not – 

capacity limited to one. To do so, the first step would be to assess the detection of 

small quantities between 2 – 4 faces using subitizing paradigms. If detection capacity 

exceeds this small quantity, then ANS paradigms could be adapted to assess the 

approximate capacity of face detection.  

 

1.2.3 Adapting Numerical Cognition Paradigms for Face Detection 

One of the limitations of previous face detection experiments is the use of a 

single face in the visual environment. While this approach has provided insight into 

the serial vs parallel nature of the process, it has also led to some discrepancies. The 

use of a single target face does not adequately test the capacity limit of face detection 

as detection processing capacities are not overloaded. However, subitizing methods 

could easily be adapted for investigating multiple face detection. Previous subitizing 

studies have typically avoided presenting complex objects in their displays to 

eliminate non-numerical variables that may influence findings. As a standard, dots or 

circles are used instead of complex visual stimuli to control for effects of visual 

properties such as luminance, surface area, size, and density (De Marco & Cutini, 

2020). However, these dots and circles could be easily replaced with multiple faces 

and these visual properties hijacked to measure their effect on detection. The face 

detection literature already points to a different pattern in detecting single faces 

compared to other single stimuli. Examining subitizing for faces should enrich our 

understanding of this detection advantage, by establishing whether it extends beyond 

a single face. 
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There are already existing similarities between subitizing and face detection 

paradigms, specifically Purcell and Stewart’s (1986; 1988) FDE. Both of these 

paradigms rely on minimum presentation time to measure the detection of visually 

presented items. Moreover, the FINSTs theory underlying subitizing is originally a 

vision theory concerned with how items in the visual environment are located and 

tracked – processes that have much in common with detection. From a FINSTs 

perspective, replacing the 1 – 8 dots in subitizing studies with 1 – 8 faces could 

indicate how faces are individuated and detected by looking at both accuracy and 

reaction time measures. If the results suggest a pattern similar to subitizing, whereby 

a limited number of faces are rapidly and accurately enumerated, then this could be 

taken as evidence supporting parallel processing of more than one face. However, if 

accuracy decreases and reaction times increase even over the standard subitizing 

range, this could be taken as evidence for strictly serial processing. Additionally, 

comparing performance in subitizing upright faces to subitizing inverted faces or 

other visually similar items could help to understand the tuning of the face detection 

template, that is, what counts as a face to the visual system. Given that single face 

detection seems impervious to orientation (i.e. upright or inverted faces), an 

interesting question will be whether upright and inverted faces load onto the same 

face detection capacity limits. 

 

Once a foundation is established on the pattern of results for the subitizing of 

faces, these tasks could be adapted further to be visual search tasks. For instance, 

multiple upright faces could be embedded among inverted faces or even naturalistic 

scenes. If multiple upright faces are easily detected from naturalistic settings, then 

this would imply a parallel process of face detection. Furthermore, if upright faces are 

detected serially when embedded among inverted faces, then this would replicate 

Lewis and Edmonds (2005) findings and support a staged detection process.  
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There is precedent for adapting numerical cognition studies and subitizing 

studies to investigate how multiple items in the visual environment are detected. For 

instance, Vuilleumier & Rafal (2000) used subitizing paradigms with simple 

geometric shapes such as triangles and stars to investigate object detection in patients 

with visual extinction. They found evidence of parallel processing in patients with 

right partial lobe damage and left hemifield neglect. When these patients were shown 

objects in the left hemifield, the detection was impaired as expected. However, when 

objects were presented in the right hemifield or both hemifields simultaneously, they 

could accurately enumerate and detect the items displaying similar reaction times to 

controls. Subitizing has also been used to assess the parsing of biologically relevant 

stimuli from complex visual backgrounds. Railo et al. (2016) presented displays 

containing 1 – 6 human targets for 50 ms to assess visual item enumerations (See 

Figure 1.6 for examples). The faces of these human targets were not clearly visible, 

but up to three targets could be accurately and rapidly detected, while additional 

targets incurred a detection cost  

 

Moreover, Puce et al. (2013) demonstrate that studies of face perception can 

incorporate multiple faces to assess their necessary aims. In an ERP study, the authors 

Figure 1.6 Example displays adapted from Railo et al (2016) of One, Two, and Three bodies in full scenes and 

uniform backgrounds. 
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found that increases in the number of faces elicited corresponding increases in the 

amplitude of the N170 – a face-selective measure. However, this task did not involve 

parsing faces from complex backgrounds as would be expected in detection, and as 

the authors mention, it also did not involve determining whether the stimulus was a 

face or not. Similar amplitude responses in the N170 have been found for other non-

face objects (Guillaume et al., 2009; Rosburg et al., 2009; Rossion et al., 2003), and 

so increases in the number of these non-face objects may produce the same results.  

 

Nonetheless, Puce et al. (2013) show that multiple faces can be incorporated 

to assess face perception. In addition, Vuilleumier & Rafal (2000) and Railo et al. 

(2016) effectively show that subitizing paradigms can be adapted to investigate aims 

beyond just numerical cognition. But these studies also highlight an important 

consideration; paradigms from numerical cognition literature must be adapted 

appropriately to investigate face detection rather than investigating subitizing alone. 

Subitizing paradigms usually incorporate simple circular objects on plain 

backgrounds. A good starting point would be to replace these circles with faces. 

However, to adequately investigate the nuances of face detection, paradigms should 

be built further to incorporate inverted faces and non-face objects, as well as complex 

visual backgrounds and other scene contexts. The next section lays out an overview 

of the experimental work presented in this thesis to address the capacity limits of face 

detection.  

 

1.3 Overview of the Current Work 

A common characteristic of most face detection literature discussed in this 

chapter so far is that it neglects to consider multiple face detection. While discoveries 

have been made regarding the qualitative nature of the detection template and its 

visual properties, substantially less is known about the quantitative aspect. The 

experimental chapters of this thesis have three main aims. The first aim is to compare 

multiple target detection for faces and other types of stimuli. The second aim is to 
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assess capacity limits in face detection and investigate the serial-vs-parallel nature of 

face template matching. The third aim focuses on multiple face detection testing how 

it is affected by different viewing conditions, including aspects of the task and 

presentations 

 

Chapter 2 centres on the first aim of distinguishing between multiple face and 

multiple non-face detection. A ‘subitizing of faces’ methodology is used to test 

whether multiple faces can be detected simultaneously and whether their detection 

outperforms multiple non-faces. Experiment 1 uses an ‘absolute subitizing’ approach, 

comparing detection accuracy and reaction time for 1 – 8 upright faces, inverted 

faces, upright non-faces, and inverted non-faces in brief displays. Experiment 2 

replicates Experiment 1 but presents displays until response to assess the effect of 

display exposure duration. Experiment 3 adopts a ‘categorical subitizing’ approach, 

embedding multiple upright faces amongst non-faces to test whether multiple faces 

can be separated from other visual objects concurrently.   

 

Chapter 3 assesses the capacity limits of face detection and the serial-vs-

parallel nature of the template matching process. In this chapter, a new methodology 

is devised whereby participants saw face and non-face items in ‘fixed’ displays (all 

one stimulus type) or ‘mixed’ displays (a combination of both types). For each 

display, the participants’ task was to indicate whether the items were fixed or mixed. 

Determining that they are fixed requires all items to be categorised. Experiments 4 

and 5 compared the detection of faces to Fourier-transformed scrambled faces in 

displays of two vs three items and two vs four items, respectively. Experiments 6 and 

7 replicated Experiments 4 and 5 but compared faces to inverted faces. Manipulating 

item numerosity and type allows for an estimate of the detection cost of each 

additional item in the display. If increasing the number of faces incurs a detection 

cost, this will indicate a serial capacity-limited detection process. If adding faces does 

not incur any detection costs, then face detection could be described as a parallel 

process.  
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The experiments in Chapter 4 assess multiple face detection in real scenes and 

the visual properties that may affect it. In the first six experiments, participants are 

presented with displays containing one, two, three, or four items of a fixed type 

embedded in different visual contexts. Similar to subitizing, the task is to indicate 

how many items are present as quickly and accurately as possible. In Experiments 8 

and 9, display presentation times are manipulated, and detection efficiencies for 

Upright, Inverted, or Scrambled Faces in real scenes are measured. Experiments 10 

and 11 manipulate background meaningfulness and complexity to investigate their 

effect on multiple face detection. Real scenes are once again used as visual context in 

Experiments 12 and 13, but item type and face orientation are manipulated to assess 

their effects on template matching in multiple face detection. Finally, Experiment 14 

uses real photographs in a large-scale single-trial design to evaluate spontaneous 

multiple face detection as it might occur outside of laboratory settings.   

 

To conclude, Chapter 5 discusses the implications of the current experimental 

work, contextualising it within face detection literature. First, it shall fill in the gaps 

regarding the quantitative aspect of the process, discuss what multiple face detection 

can tell us about the qualitative aspect of the process, and discuss the social and 

evolutionary advantages of detecting multiple faces. Chapter 5 shall also discuss the 

methodological implications of the current work before discussing some direction for 

future investigations into multiple face detection.   
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Chapter 2 – Subitizing Faces 

2.1 Introduction  

Our ability to derive social information from faces plays a foundational role in 

our ability to interact with people. Not only do faces attract more of our visual 

attention (Langton et al., 2008) but even from a few months old, we begin to 

preferentially tune to them, processing information about gaze, identity, emotion, and 

even race (Corkum & Moore, 1998; Farroni et al., 2005; Frank et al., 2009; Kelly et 

al., 2005, 2019; Pascalis et al., 1998; Scaife & Bruner, 1975). Much of this face 

processing is rapid but strictly capacity limited to one face at a time (Bindemann et 

al., 2007; Bindemann, Burton, et al., 2005). However, before any face can be 

processed, it must be detected by matching regions of the visual environment to a 

stored face template (Lewis & Ellis, 2003; Robertson et al., 2017; Tsao & 

Livingstone, 2008).  

 

How many faces we can detect remains an open question, but there is a large 

body of evidence supporting our ability to detect multiple objects at once. Subitizing 

refers to the rapid and accurate enumeration of up to three or four items in the visual 

environment (Kaufman & Lord, 1949). Beyond four items, enumeration accuracy and 

speed begin to decline. It has been proposed that subitizing is underlined by a general 

non-numerical process of multiple item individuation that operates in a parallel but 

capacity-limited manner (Mazza & Caramazza, 2015; Piazza et al., 2011; Trick & 

Pylyshyn, 1994). Subitizing paradigms involve rapidly presenting displays of 1 – 8 

non-salient objects to participants to assess visual item enumeration. Accuracy and 

reaction times are measured and usually follow the pattern shown in Figure 2.1 

(Piazza et al., 2011). For up to four items accuracy is high and reaction times are low, 

however beyond four items subitizing performance breaks down with lower accuracy 

and slower reaction times. The items used in subitizing paradigms tend to be non-

salient stimuli such as simple circles or squares to avoid interference from 
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confounding variables (De Marco & Cutini, 2020). But despite usually being assessed 

through simple geometric shapes, it appears that subitizing is a domain-general 

process (for a review, see Katzin et al., 2019).  

 

The non-domain specificity of subitizing further supports that detecting 

multiple faces is plausible. Moreover, there are at least two reasons to suggest that 

detecting multiple faces is better than detecting multiple non-faces. First, many have 

argued that faces are ‘special’, in the sense that they follow different perceptual 

principles than non-face objects (Farah et al., 1998; Kanwisher et al., 1997; Tanaka & 

Farah, 2007; Yin, 1969a). A consistent finding from face detection and face 

perception literature is a hierarchy for detecting different classes of objects. 

Converging evidence from eye-tracking and visual search studies show that detecting 

a face outperforms detecting a face-like object such as pareidolic or illusionary faces, 

which in turn outperforms the detection of a non-face object (Crouzet et al., 2010; 

Crouzet & Thorpe, 2011; Keys et al., 2021; Wardle et al., 2020). Upright schematic 

faces also require shorter presentation times to be detected than jumbled or inverted 

schematic faces (Purcell & Stewart, 1986, 1988). Moreover, this greater detection 

performance appears specific to human faces over other mammal, or animal faces 

(Simpson, Buchin, et al., 2014; Simpson, Maylott, Leonard, et al., 2019). This finding 

supports a detection mechanism specialised for detecting a face over another item and 

points to some specificity in the face detection template.  

Figure 2.1 Typical subitizing accuracy and reaction times based on set size, adapted from Piazza et al. (2011). 

Error rates and reactions times are flat over Set Size range 1–3. 
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However, there is also some evidence to suggest face detection, and therefore 

the face template is invariant to inversion. Bindemann & Burton (2008) found an 

inverted face was as likely to capture attention as an upright face. The authors suggest 

this may be due to some common visual attributes between upright and inverted 

faces. In the context of face detection, this may emerge in the orientation sensitivity 

of the detection template. However, the presence of inversion invariance at detection 

would contrast with inversion effects seen in later face processes (Farah et al., 1995; 

Yovel & Kanwisher, 2005a). But whether upright and inverted faces are detected in a 

similar manner requires further investigation. Nonetheless, it appears a detecting a 

face is biologically and socially prioritised over detecting a face-like or non-face 

object. In that case, subitizing may even be more efficient for faces than for other 

items, leading to a higher quantity of faces detected. 

 

The second reason to suspect that multiple faces are detected differently is the 

presence of a bottleneck strictly constraining later face processes to a limit of one 

face (Bindemann et al., 2007; Bindemann, Burton, et al., 2005). However, where this 

bottleneck lies within face perception is unclear. The bottleneck could either originate 

at the detection stage, constraining detection and subsequent processes. If this was the 

case, then the subitizing of faces would be limited. But it is also just as likely that the 

bottleneck is present after the detection stage such that multiple faces can be detected 

– or subitized – at once. But to assess the capacity limits, suitable paradigms using 

multiple faces must first be developed.  

 

Except for a few studies (e.g., Bindemann & Burton, 2008), face detection 

experiments usually utilise a single target within their tasks. Consequently, they have 

neglected to consider if we can detect multiple faces better than we can detect 

multiple non-faces. However, there have been successful attempts at incorporating 

more than one face within detection studies. Evidence from an ERP experiment by 

Puce et al., (2013) suggests that we might be capable of knowing if more than one 
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face is present. The N170, a face-selective marker, appears to be modulated as the 

number of faces presented increases. But the task did not compare the detection of 

multiple faces to the detection of multiple non-faces. Therefore, it is unclear if the 

greater detection performance towards a single face can extend to multiple faces.  

 

Typical subitizing paradigms present 1 – 8 non-salient objects for very brief 

durations and assess accuracy and reaction times. The studies in this experimental 

chapter adapt the basic set up of subitizing paradigms to investigate multiple face 

detection compared to multiple non-face detection. Experiments 1 and 2 manipulate 

display exposure duration and present Upright Faces, Inverted Faces, Upright Non-

Faces, and Inverted Non-Faces in Set Sizes of One to Eight. Each display only 

contains one type of item and is presented for 16 ms in Experiment 1 or until the 

participant responds in Experiment 2. Participants are tasked with indicating through 

button press how many items they saw in the display as quickly and accurately as 

possible. Suppose multiple face detection is a more rapid and accurate process than 

multiple non-face detection. In that case, this should emerge as greater performance 

for face items within the subitizing range of up to four items. Moreover, if the face 

detection template was orientation invariant, then Upright and Inverted Faces 

detection are expected to be detected similarly. Experiment 3 adopts a categorical 

detection approach, embedding faces and non-faces in different combinations within 

a single display of four items. Face detection is still expected to outperform non-face 

detection under these conditions. Furthermore, if the detection template is orientation 

invariant, this should be evident in poor detection efficiency for Upright and Inverted 

Faces within the same display.  

 

2.2 Experiment 1: Absolute Subitizing: 16 ms Exposure Time 

This first experiment investigates if faces are detected faster and with greater 

accuracy than non-faces. It directly compares Upright Faces, Inverted Faces, Upright 

Non-Faces, and Inverted Non-Faces in Set Sizes of One, Two, Three, Four, Five, Six, 
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Seven, and Eight items. Participants are presented with a single type of item in each 

display and given the task to respond with how many items they saw as quickly and 

accurately as possible. Crucially, each display was only presented for 16 ms (monitor 

frame refresh rate). The 16 ms exposure duration was adopted from prior subitizing 

studies as a minimum presentation threshold from which participants could accurately 

enumerate items on screen (Inglis & Gilmore, 2013). This limited exposure duration 

also ensures that face processing is constricted to the detection stage alone. As with 

prior subitizing experiments, accuracy and reaction time will be measured as an 

indicator of detection performance (Piazza et al., 2011). If a specialised detection 

mechanism is present for faces, then face stimuli should be detected faster and more 

accurately than non-face stimuli. Moreover, this should be evident within the 

subitising range consisting of the smaller Set Sizes of One through Four.  

 

2.2.1 Methods 

2.2.1.1 Participants 

Seventy participants were recruited from the University of York’s Human 

Participant Pool (SONA) and completed the experiment in exchange for a small 

payment. A total of thirty participants were excluded from the final analysis; 24 due 

to 0% accuracy in at least one condition, 3 due to accuracy scores below 70% in the 

training block, and 3 due to technical issues during testing. The final sample (N = 40) 

consisted of 36 females and 4 males (age range 18–24; M = 19.80, SD = 1.40).  

 

2.2.1.2 Design and Stimuli 

A local bank of 288 faces was created by collecting face images from AI 

Generated Faces (Karras et al. & Nvidia, 2018), MR2 face bank (Strohminger et al., 

2016) and other online sources. The bank contained an equal distribution of faces 

divided into 12 categories based on sex (male and female), age (young and old 

adults), and ethnicity (Asian, Black, and Caucasian; see Prunty et al., (2022) for 

details of demographic categorisation). Each face was segmented from the 

https://york-psychology.sona-systems.com/main.aspx
https://generated.photos/
https://generated.photos/
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background and cropped to outline using the InterFace software package (Kramer et 

al., 2017). The resulting face image was resized to 380 pixels wide × 570 pixels high 

to create Upright Face stimuli. Inverted Face stimuli were created by rotating 

Upright Faces 180° in the picture plane. 

 

Boots were chosen as the non-face item category as they can be divided into 

12 distinguishable categories and retain the same distribution in item variability as the 

face categories. A total of 288 boot images were collected from online sources, with 

an equal distribution based on sex (male and female), left- or right-facing, and type 

(Rain, Snow, Cowboy). To create the Upright Non-Face stimuli, boot images were 

cropped to outline and resized to 380 pixels wide × 570 pixels high. The Upright 

Non-Face stimuli were rotated 180° in the picture plane, creating Inverted Non-Face 

stimuli.  

 

Upright Face displays were generated by embedding between 1 and 8 faces 

on a blank grey background. Each display contained 25 predetermined locations in a 

hexagonal grid pattern within the central 75% of the screen where the face images 

could be allocated. For Set Size One, a single random location was chosen from the 

predetermined set. For Set Sizes greater than One, an item location-allocation method 

was developed. To avoid groupitizing, whereby the clustering of items in small 

subsets facilitates subitizing, equal distances were maintained between faces (Anobile 

et al., 2020; Starkey & McCandliss, 2014). First, a face is allocated to a randomly 

selected starting point from the predetermined locations. Due to the hexagonal grid 

pattern, the starting location contains three unoccupied adjacent locations where the 

second face could be allocated. Consequently, the second location could only contain 

up to two unoccupied adjacent locations. Faces can then continue to be assigned to 

the following unoccupied neighbouring location in the same manner until the number 

of faces meets that of the required Set Size. The displays were created live on each 

iteration of the experiment, so a new random set of faces was used for each display. 

However, no upright face item was repeated within the same display or throughout 
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the experiment. The same procedure was used to generate Inverted Face, Upright 

Non-Faces, and Inverted Non-Face displays. Example displays are presented in 

Figure 2.2.  

 

The experiment was created and hosted using MATLAB (R2019a) with the 

Psychtoolbox extension (v 3.0.16) (Brainard, 1997; Kleiner et al., 2007). The study 

was run on an HP EliteDesk 800 G3 TWR with an i7 intel core, and the displays were 

presented on a 23-inch HP EliteDisplay E223 monitor with a 1920 × 1080 resolution 

and 60Hz. 

 

The within-subjects factors of Set Size (One, Two, Three, Four, Five, Six, 

Seven, Eight) and Item Type (Upright Face, Inverted Face, Upright Non-Face, 

Inverted Non-Face) were manipulated in a fully counterbalanced 8 × 4 factorial 

design.  

 

Figure 2.2 Example displays used in Experiments 1 and 2. Top left – Three Upright Faces; top right – Five Upright 

Non-Faces; bottom left – Seven Inverted Faces; bottom right – Six Inverted Non-Faces. 
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2.2.1.3 Procedure  

Participants sat in front of the screen and asked to adjust themselves to be at a 

comfortable distance such that all sides of a red rectangle presented on the screen 

were visible. This was to ensure that all items on the screen were viewable to the 

participants. The participants were tasked with indicating how many items they saw 

in each display as quickly and accurately as possible. The response set-up involved 

the participants placing the four fingers of the left hand on the ‘1’, ‘2’, ‘3’, and ‘4’ 

keyboard number keys, and the four fingers of the right hand on the ‘5’, ‘6’, ‘7’, and 

‘8’ keyboard number keys. To respond, participants were instructed to press the 

number key that corresponded to how many items they thought were on the screen. 

First, the participants were given a training block of 16 trials (2 trials per response 

key) to familiarise them with the response set-up. Training trials consisted of a 

fixation cross presented for 500 ms followed by a number between 1 – 8 for 16 ms 

and then a visual mask with a response prompt screen. 

 

At the end of the training block, the experimental blocks were presented. Each 

experimental trial began with a 500 ms fixation cross, a 16 ms display exposure time, 

and then a response prompt screen containing a visual mask. The experiment 

consisted of 12 experimental blocks presented in random order. Each block consisted 

of 64 trials of a single condition, and there were three blocks for each of the Upright 

Faces, Inverted Faces, Upright Non-Faces, and Inverted Non-Faces conditions. 

Consequently, 192 trials contributed to each condition, with 24 trials per set size. 

Participants were given the opportunity to take short breaks between the blocks. The 

entire experiment took approximately 40 min to complete.  

 

2.2.2 Results and Discussion 

Mean accuracy, reaction time, and full two-way ANOVA of Set Size and Item 

Type for all conditions are reported as supplementary material in the appendices. 

Simple main effects found no accuracy differences based on orientation for Face and 
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Non-Face stimuli at any Set Size. Further t-tests comparing Upright Faces (M = 

62.64%, SE = 1.56%), and Inverted Faces conditions (M = 63.19%, SE =1.56%), 

(t(319) = -0.81, p = .421) and Upright Non-Faces (M = 61.17%, SE = 1.42%) and 

Inverted Non-Faces (M = 61.13%, SE = 1.44%), (t(319) = 0.49, p = .962) revealed no 

significant differences as well. The data was averaged across orientations to create 

new combined Face and Non-Face conditions. Figure 2.3 (A) displays the new 

combined data for accuracy and reaction time for Experiment 1.  

 

For concision of the results section, each individual condition will be referred 

to by the Set Size numeral followed by the Item Type initial. For instance, Faces at 

Set Size One will be 1F, while Non-Faces at Set Size Two will be 2N, and so forth. 

 

Figure 2.3 Mean percentage accuracy (%) and reaction time results (ms) for Face and Non-Face conditions in 

Experiment 1 (A) and Experiment 2 (B). Error bars show within-subject standard error (Cousineau, 2005). Yellow 

shaded areas indicate a significant difference between Faces and Non-Faces at a particular set size.  
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2.2.2.1 Detection Accuracy 
2.2.2.1 

To investigate detection accuracy for faces compared to non-faces, a two-way 

ANOVA with repeated measures of Set Size (One, Two, Three, Four, Five, Six, Seven, 

Eight) and Item Type (Faces, Non-Faces) was conducted on the new combined 

accuracy data. The analysis revealed a significant main effect of Set Size, with 

accuracy decreasing as the Set Size increased [F (7, 273) = 248.50, p < .001, η2 = 

0.86; One, M = 96.72%, SE = 0.88%; Two, M = 91.07%, SE = 0.93%; Three, M = 

75.52%, SE = 1.73%; Four, M = 65.03%, SE = 1.60%; Five, M = 51.8%, SE = 

1.96%; Six, M = 45.81%, SE = 1.39%; Seven, M = 41.02%, SE = 1.77%; Eight, M = 

29.32%, SE = 2.28%].As well as a main effect of Item Type, with greater overall 

accuracy for Faces (M = 62.92%, SE = 1.58%) compared to Non-Faces (M = 

61.15%, SE = 1.56%), [F (1, 39) = 9.00, p = .005, η2 = 0.19]. A significant interaction 

effect between Set Size and Item Type was also found [F (7, 273) = 12.04, p < .001, 

η2 = 0.24].  

 

Simple main effects revealed significant differences in accuracy for Faces as 

each Set Size increased [F (1, 564) = 224.91, p < .001, η2 = 0.74]. Detection accuracy 

for 1F and 2F is similarly high but decreased significantly with each additional face, 

and no differences were found between 6F and 7F either, (1F, M = 96.72%, SE = 

0.85%; 2F, M = 93.33%, SE = 0.85%; 3F, M = 78.91%, SE = 1.79%; 4F, M = 

69.22%, SE = 1.63%; 5F, M = 54.74%, SE = 2.11%; 6F, M = 44.95%, SE = 1.25%; 

7F, M = 39.17%, SE = 1.68%; 8F, M = 26.3%, SE = 2.46%).  

 

Accuracy for Non-Faces also decreased as Set Size increased [F (1, 564) = 

177.491, p < .001, η2 = 0.69], with significant differences found across all Set Sizes 

except between 5N, 6N, and 7N, (1N, M = 96.72%, SE = 0.91%; 2N, M = 88.8%, SE 

= 1.01%; 3N, M = 72.14%, SE = 1.67%; 4N, M = 60.83%, SE = 1.56%; 5N, M = 

48.85%, SE = 1.81%; 6N, M = 46.67%, SE = 1.54%; 7N, M = 42.87%, SE = 1.86%; 

8N, M = 32.34%, SE = 2.1%). 
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Simple main effects also revealed no difference in detection accuracy at Set 

Size One between 1F and 1N. However, Faces were detected more accurately than 

Non-Faces at Set Sizes Two to Five. At Set Size Six, detection accuracy was not 

significantly different between 6F and 6N, but beyond that, a switch over occurs 

where 7N and 8N were detected more accurately than 7F and 8F respectively, [Set 

Size One, F (1, 312) = 0.00, p = .999, η2 = 0.00; Set Size Two, F (1, 312) = 8.49, p = 

.004, η2 = 0.03; Set Size Three, F (1, 312) = 18.97, p < .001, η2 = 0.06; Set Size Four, 

F (1, 312) = 29.09, p < .001, η2 = 0.09; Set Size Five , F (1, 312) = 14.33, p < .001, 

η2 = 0.04; Set Size Six, F (1, 312) = 1.22, p = .270, η2 = 0.00; Set Size Seven, F (1, 

312) = 5.66, p = .018, η2 = 0.02; Set Size Eight, F (1, 312) = 15.1, p < .001, η2 = 

0.05]. 

 

2.2.2.2 Detection Reaction Time 

To further assess detection reaction time for faces compared to non-faces, 

another two-way repeated measures ANOVA with the same repeated measures was 

conducted on the combined RT data. The analysis found a significant main effect of 

Set Size, with longer RTs as Set Size increased [F (7, 273) = 44.87, p < .001, η2 = 0.5;  

One, M = 694 ms, SE = 39 ms; Two, M = 808 ms, SE = 36 ms; Three, M = 968 ms, 

SE = 34 ms; Four, M = 1063 ms, SE = 28 ms; Five, M = 1291 ms, SE = 30 ms; Six, 

M = 1334 ms, SE = 35 ms; Seven, M = 1388 ms, SE = 59 ms; Eight, M = 1340 ms, 

SE = 58 ms]. No main effect of Item type was found with similar overall RTs for 

Faces (M = 1127 ms, SE = 42 ms) and Non-Faces (M = 1095 ms, SE = 37 ms), [F (1, 

39) = 3.60, p = .065, η2 = 0.08]. However a significant interaction effect between Set 

Size and Item Type was found [F (7, 273) = 2.84, p < .001, η2 = 0.07].  

 

Simple main effects revealed significant differences in RTs for Faces as Set 

Size increased. Overall, RTs increased as the number of faces to detect increased, [F 

(7, 564) = 45.35, p < .001, η2 = 0.37].  For smaller Set Sizes between 1F and 4F, RTs 

for each Set Size were not significantly different from their immediate neighbouring 

Set Size, (IF, M = 686 ms, SE = 39 ms; 2F, M = 799 ms, SE = 36 ms; 3F, M = 950 
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ms, SE = 33 ms; 4F, M = 1060 ms, SE = 25 ms). However, RTs for the smaller Set 

Sizes were overall significantly quicker than RTs for larger Set Sizes of 5F to 8F, and 

no differences were found within the larger Set Sizes, (5F, M = 1311 ms, SE = 34 ms; 

6F, M = 1372 ms, SE = 39 ms; 7F, M = 1446 ms, SE = 67 ms; 8F, M = 1389 ms, SE = 

66 ms).  

 

Reaction times for Non-Faces followed the same pattern as Faces, [F (7, 564) 

= 30.85, p < .001, η2 = 0.28]. Again, for between 1N and 4N, RTs for each Set Size 

were not significantly different from their immediate neighbouring Set Size, (1N, M 

= 703 ms, SE = 40 ms; 2N, M = 818 ms, SE = 36 ms; 3N, M = 986 ms, SE = 35 ms; 

4F, M = 1066 ms, SE = 30 ms). Smaller Set Sizes were also found to be significantly 

quicker overall than larger Set Sizes of 5N to 8N, and no differences were found 

within these larger Set Sizes again, (5N, M = 1272 ms, SE = 25 ms; 6N, M = 1297 

ms, SE = 31 ms; 7N, M = 1331 ms, SE = 51 ms; 8N, M = 1290 ms, SE = 50 ms).  

 

Simple main effects also revealed no difference in RT between detecting a 

Face and a Non-Face at Set Size One through Five. Beyond that, Non-Faces were 

detected quicker than Faces at Set Sizes Six, Seven, and Eight [Set Size One, F (1, 

312) = 0.20, p = .656, η2 = 0.00; Set Size Two, F (1, 312) = 0.26, p = .613, η2 = 0.01; 

Set Size Three, F (1, 312) = 0.97, p = .326, η2 = 0.02; Set Size Four, F (1, 312) = 

0.02, p = .876, η2 = 0.03; Set Size Five, F (1, 312) = 1.11, p = .292, η2 = 0.04; Set 

Size Six, F (1, 312) = 4.20, p = .041, η2 = 0.01; Set Size Seven, F (1, 312) = 9.89, p = 

.002, η2 = 0.03; Set Size Eight, F (1, 312) = 7.31, p = .007, η2 = 0.02].  

 

Initial analyses in Experiment 1 found no differences in orientation for either 

Faces or Non-Faces across Set Sizes. This could point to an orientation-invariant 

element to face detection that contrasts with inversion effects reported in later stages 

of face perception. Further analyses directly compared the detection accuracy and 

RTs of Faces to Non-Faces in Set Sizes of up to eight items. Analyses show that 

while detection times are similar, Faces are detected more accurately than Non-Faces 
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at smaller Set Sizes (up to Four or Five). Within this range of faces, accuracy 

decreased incrementally to ~50% at Set Size five, but detection times were similar. At 

larger Set Sizes, a switchover between Faces and Non-Faces occurs where the times 

taken to detect Faces are longer, and accuracy is poorer. But face detection accuracy 

is still above chance even at Set Size Eight, suggesting that up to eight faces can still 

be detected but with great difficulty. These results support a possible detection 

mechanism preferential to Faces over Non-Faces (Purcell & Stewart, 1986, 1988). 

However, they also point to a limit to this advantage, which is constrained to smaller 

numbers of faces, e.g. up to four.  

 

The displays in Experiment 1 were presented for a very brief time of 16 ms. 

This rapid display exposure time was useful in constraining perception strictly to the 

detection stage, and in some conditions, participants were over 95% accurate in their 

responses. However, a short exposure time also led to the exclusion of a substantial 

number of participants before analysis due to scoring 0% in conditions at the larger 

Set Sizes. In the next experiment, we increase the display exposure time until 

response and increase the total number of participants recruited.  

 

2.3 Experiment 2: Absolute Subitizing: Until Response 

Experiment 2 extends upon Experiment 1 to investigate if face detection 

outperforms non-face detection. Here all aspects of Experiment 1 are replicated, 

except exposure duration time limits are removed. Allowing participants as much 

time as needed to respond should increase accuracy across the entire experiment. 

However, faces should still be detected faster at smaller Set Sizes of One through 

Four compared to larger Set Sizes of Five through Eight. 
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2.3.1 Methods 

2.3.1.1 Participants 

Sixty-one participants were recruited from the University of York’s Human 

Participant Pool (SONA) and completed the experiment in exchange for a small 

payment. One participant was excluded from the final analysis due to accuracy scores 

below 70% in the training block. The final sample (N = 60) consisted of 57 females 

and 3 males (age range 18–59; M = 20.58, SD = 5.42).  

 

2.3.1.2 Design and Stimuli 

The design and stimuli for Experiment 2 were identical to that of Experiment 

1.   

 

2.3.1.3 Procedure 

The procedure, task, and experimental set-up were identical to Experiment 1, 

except displays were presented until participants responded.  

 

2.3.2 Results and Discussion 

Mean accuracy, reaction time, and full two-way ANOVA of Set Size and Item 

Type for all conditions are reported in as supplementary material in the appendices. 

As with Experiment 1, simple main effects found no accuracy differences based on 

orientation for Face and Non-Face stimuli at any Set Size. Further t-tests comparing 

Upright Face (M = 90.09%, SE = 0.69%) and Inverted Face conditions (M = 

89.44%, SE = 0.70%), (t(479) = 1.69, p = .091) showed no significant difference 

either. However, a small but significant difference was found for Upright Non-Faces 

(M = 90.44%, SE = 0.69%) over Inverted Non-Faces (M = 89.63%, SE = 0.72%), 

(t(479) = 1.69, p = .091). Nonetheless, accuracy was at ceiling overall, so data were 

combined into new Face and Non-Face conditions. The new combined data accuracy 

https://york-psychology.sona-systems.com/main.aspx
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and RT data for Experiment 2 are displayed in Figure 2.3 (B). The same naming 

convention used for the results section in Experiment 1 is used here.  

 

 

2.3.2.1 Detection Accuracy 

To investigate detection accuracy for faces compared to non-faces, a two-way 

ANOVA with repeated measures of Set Size (One, Two, Three, Four, Five, Six, Seven, 

Eight) and Item Type (Faces, Non-Faces) was conducted on the new combined 

accuracy data. The analysis found a significant main effect of Set Size with accuracy 

decreasing slightly as Set Size increased, [F (7, 413) = 39.05, p < .001, η2 = 0.40, 

One, M = 98.68%, SE = 1.08%; Two, M = 96.7%, SE = 1.03%; Three, M = 95.28%, 

SE = 0.94%; Four, M = 94.17%, SE = 0.85%; Five, M = 89.13%, SE = 0.95%; Six, M 

= 81.48%, SE = 1.21%; Seven, M = 83.18%, SE = 1.32%; Eight, M = 80.59%, SE = 

1.74%]. No main effect of Item Type was found between Faces (M = 89.77%, SE = 

1.10%) compared to Non-Faces (M = 90.01%, SE = 1.18%), [F (1, 50) = 0.75, p = 

.391, η2 = 0.01], and no significant interaction effect was found between Set Size and 

Item Type [F (7, 413) = 0.49, p = .839, η2 = 0.01].  

 

Overall detection accuracy for Faces and Non-Faces was high at all Set Sizes, 

IF, M = 98.75%, SE = 1.06%; 2F, M = 96.42%, SE = 0.92%; 3F, M = 95.38%, SE = 

0.93%; 4F, M = 94.13%, SE = 0.92%; 5F, M = 89.06%, SE = 0.91%; 6F, M = 

81.67%, SE = 1.13%; 7F, M = 82.53%, SE = 1.21%; 8F, M = 80.17%, SE = 1.68%; 

1N, M = 98.61%, SE = 1.09%; 2N, M = 96.98%, SE = 1.13%; 3N, M = 95.17%, SE = 

0.95%; 4N, M = 94.2%, SE = 0.78%; 5N, M = 89.2%, SE = 0.99%; 6N, M = 81.28%, 

SE = 1.28%; 7N, M = 83.82%, SE = 1.42%; 8N, M = 81.01%, SE = 1.8%).    

 

2.3.2.2 Detection Reaction Time 

To further assess detection reaction time for faces compared to non-faces, 

another two-way repeated measures ANOVA with the same repeated measures was 
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conducted on the combined RT data. The analysis revealed a significant main effect 

of Set Size, with longer RTs as Set Size increased [F (7, 413) = 242.10, p < .001, η2 = 

0.80; One, M = 760 ms, SE = 41 ms; Two, M = 877 ms, SE = 35 ms; Three, M = 

1042 ms, SE = 30 ms; Four, M = 1204 ms, SE = 23 ms; Five, M = 1673 ms, SE = 20 

ms; Six, M = 2019 ms, SE = 34 ms; Seven, M = 2157 ms, SE = 44 ms; Eight, M = 

2113 ms, SE = 49 ms]. No main effect of Item type was found with similar overall 

RTs for Faces (M = 1474 ms, SE = 34 ms) and Non-Faces (M = 1487 ms, SE = 35 

ms), [F (1, 59) = 2.88, p = .095, η2 = 0.05]. However a significant interaction effect 

between Set Size and Item Type was found [F (7, 413) = 2.76, p = .008, η2 = 0.04].  

 

Simple main effects revealed significant differences in RTs for Faces as Set 

Size increased. Overall the RT pattern was similar to that of Experiment 1. Reaction 

times increased as the number of faces to be detected increased, [F (7, 826) = 233.09, 

p < .001, η2 = 0.66]. Within the smaller Set Sizes of 1F to 4F, no significant 

differences in RT were found between immediate neighbouring Set Sizes, (1F, M = 

750 ms, SE = 38 ms; 2F, M = 873 ms, SE = 34 ms; 3F, M = 1031 ms, SE = 29 ms; 4F, 

M = 1193 ms, SE = 25 ms). Moreover, RTs for the smaller Set Sizes were overall 

significantly quicker than RTs for larger Set Sizes of 5F to 8F, and no differences 

were found between these larger Set Sizes (5F, M = 1681 ms, SE = 21 ms; 6F, M = 

2025 ms, SE = 35 ms; 7F, M = 2160 ms, SE = 44 ms; 8F, M = 2082 ms, SE = 48 ms).  

 

The time taken to detect Non-Faces also increased with Set Size. Reaction 

times for 1N (M = 770 ms, SE = 43 ms) and 2N (M = 881 ms, SE = 35 ms) were 

quickest overall and not significantly different from each other. The 3N (M = 1053 

ms, SE = 30 ms) and 4N (M = 1215 ms, SE = 22 ms) were also not significantly 

different from each other and detected faster than larger Set Sizes. Reaction times for 

5N (M = 1665 ms, SE = 19 ms) differed significantly from all other Set Sizes, but no 

differences in RTs were found between the remaining Non-Face Set Sizes (6N, M = 

2013 ms, SE = 33 ms; 7N, M = 2154 ms, SE = 44 ms; 8N, M = 2145 ms, SE = 50 

ms).  
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Simple main effects also revealed no difference in RTs between detecting a 

Face and a Non-Face except at Set Size Eight, where detecting 8N took significantly 

longer than 8F [Set Size One, F (1, 472) = 1.52, p = .218, η2 = 0.00; Set Size Two, F 

(1, 472) = 0.27, p = .605, η2 = 0.00; Set Size Three, F (1, 472) = 1.82, p = .177, η2 = 

0.00; Set Size Four, F (1, 472) = 1.84, p = .175, η2 = 0.00; Set Size Five, F (1, 472) = 

1.00, p = .319, η2 = 0.00; Set Size Six, F (1, 472) = 0.54, p = .462, η2 = 0.00; Set Size 

Seven, F (1, 472) = 0.14, p = .713, η2 = 0.00; Set Size Eight, F (1, 472) = 15.13, p < 

.001, η2 = 0.03].  

 

Experiment 2 compared Face and Non-Face detection without display 

exposure time limits. As with Experiment 1, no differences were found between the 

two face orientations or the two non-face orientations. When participants had as much 

time as needed to respond, high accuracy was seen across all Set Sizes, and no 

differences were found between Faces and Non-Faces. While no effects are seen in 

face detection accuracy, there appears to be relatively similar high accuracy at smaller 

Set Sizes (up to four faces) followed by a steady but non-significant decline at larger 

Set Sizes (five or more faces). Reaction time results clearly highlight the distinction 

between smaller and larger Set Sizes. A boundary can be drawn at Five Faces where 

smaller Set Sizes are detected in a similar fast manner and larger Set Sizes in a 

similar but slower manner. This pattern of results echoes that of Experiment 1, where 

face detection for up to four faces was seen to be quicker and more accurate.  

2.4 Experiment 3: Categorical Subitizing 

The previous experiments supported a faster and more accurate detection 

mechanism for up to four faces compared to non-faces. Experiments 1 and 2 took an 

‘absolute detection’ approach by embedding a single Item Type in a display and 

instructing participants to report how many items they saw. This absolute detection 

approach helped assess if a difference in detection exists between faces and non-

faces. Absolute subitizing does not require the observer to discern between the 
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categories of items displayed to them. However face detection does require faces to 

be parsed from other items, consequently a slightly modified subitizing paradigm is 

required to assess this.  

 

Experiment 3 adopts a ‘categorical detection’ approach, embedding faces and 

non-faces in a single display to assess if face detection outperforms non-face 

detection under these circumstances. It directly compares different upright, inverted, 

and non-face TARGET–distractor combinations (UPRIGHT–inverted; UPRIGHT–

non-face; INVERTED–upright; INVERTED–non-face; NON-FACE–upright; NON-

FACE–inverted) at Set Sizes of One, Two, Three, and Four targets. Participants were 

asked to decide as quickly and accurately as possible how many items in the displays 

presented to them belonged to a specified target category. Each stimulus type could 

serve as a target in one condition and as a distractor in another condition as specified 

by the target–distractor conditions above. If face detection is an accurate and rapid 

process for up to four faces, then efficiency measures combining accuracy and 

reaction time should reveal no efficiency costs as more faces are added to the display.  

 

2.4.1 Methods 

2.4.1.1 Participants 

Fifty-one participants were recruited from the University of York’s Human 

Participant Pool (SONA) and completed the experiment in exchange for a small 

payment. Eleven participants were excluded from the final analysis; 10 due to 0% 

accuracy in at least one condition and one due to accuracy scores below 70% in the 

training block. The final sample (N = 40) consisted of 32 females and 8 males (age 

range 18–33; M = 20.93, SD = 3.76).  

 

2.4.1.2 Design and Stimuli 

The same local face bank of 288 faces was used to create Upright Face and 

Inverted Face stimuli. After removing the extraneous background, each face image 

https://york-psychology.sona-systems.com/main.aspx


 57 

was cropped to 380 pixels wide × 570 pixels high rectangle. Upright Face stimuli 

were rotated 180° in the picture plane to create Inverted Face stimuli. 

 

This experiment contained a single Non-Face item condition consisting of 

scrambled faces. Non-Faces were created by applying a Fourier phase transformation 

to the rectangular cropped faces. This transformation randomly scrambles the phase 

of component spatial frequencies while maintaining overall brightness, contrast, and 

other lower-level visual properties.  

 

Each display always contained four items in a fixed square formation within 

the central 75% of the screen. Based on the target Set Size as determined by the 

condition, the ratio of target and distractor items was varied while counterbalancing 

for item location. Between 0 – 4 randomly selected targets could be present within a 

display, with distractors occupying the remaining locations (if available). Figure 2.4 

presents example displays. A new set of displays was created for each condition so 

that no display was used more than once throughout the experiment. 
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The experiment was created and hosted using MATLAB (R2019a) with the 

Psychtoolbox extension (v 3.0.16) (Brainard, 1997; Kleiner et al., 2007). The study 

was run on an HP EliteDesk 800 G3 TWR with an i7 intel core, and the displays were 

presented on a 23-inch HP EliteDisplay E223 monitor with a 1920 × 1080 resolution 

and 60Hz.  

 

The within-subjects factors of Set Size (Zero, One, Two, Three, Four) and 

TARGET–distractor Type (UPRIGHT–inverted; UPRIGHT–non-face; INVERTED–

upright; INVERTED–non-face; NON-FACE–upright; NON-FACE–inverted) and were 

manipulated in a fully counterbalanced 5 × 6 factorial design.  

 

Figure 2.3 Example displays used in Experiment 3. Examples within the same row are grouped by target type. 

Examples within boxes of the same colour are grouped based on display qualities of item type and ratio. 
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2.4.1.3 Procedure  

As with the previous experiments, participants sat in front of the screen and 

were asked to adjust themselves to be at a comfortable distance such that all sides of a 

red rectangle presented on the screen were visible to them. They were tasked with 

indicating as quickly and accurately as possible how many of a specific target they 

saw in each display. The response set-up involved the participants placing the four 

fingers of the left hand on the ‘1’, ‘2’, ‘3’, and ‘4’ keyboard number keys, their right-

hand index finger on the ‘0’. To respond, participants were instructed to press the 

number key that corresponded to how many items they thought were on the screen. 

First, the participants were given a training block of 25 trials (5 trials per response 

key) to familiarise them with the response set-up. Training trials consisted of a 

fixation cross presented for 500 ms, a display containing a number between 0 – 4 for 

100 ms, and then a visual mask with a response prompt screen. The experimental 

blocks were then presented.  

 

Three experimental blocks of 240 trials each were presented to the 

participants in random order. Each block was organised around a single target item, 

such that it contained two conditions with one common target and two distractor 

types, e.g., Upright Face in Inverted Faces (1) or Non-Faces (2).  Before each block, 

participants were reminded of the task and given the specific target for that block. 

Twenty-four trials contributed to each condition × Set Size level resulting in 120 trials 

per condition. The experimental trials began with a 500 ms fixation cross, followed 

by displays for 100 ms, and then a visual mask with a response prompt screen. 

Participants were allowed to take short breaks between the blocks, and the entire 

experiment took approximately 40 minutes to complete.  

 

2.4.2 Results and Discussion 

Overall accuracy across conditions was 75%, suggesting participants could 

perform the task. Trials with a reaction time below 15 ms and above 3000 ms (0.68%) 
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were excluded from the final analysis. Accuracy and reaction time data were used to 

calculate a new combined Inverse Efficiency Score metric (IES). The IES summarises 

speed-accuracy performance in a single efficiency measure reported in ms. Higher 

IES values indicate poorer performance (Bruyer & Brysbaert, 2011; Townsend & 

Ashby, 1978). Separate analyses of accuracy and reaction time measures are provided 

as Supplementary Materials in the appendices and support the same conclusions. 

Figure 2.5 summarises IES data for each condition in Experiment 3.  
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Figure 2.4 Mean IES data for each condition in Experiment 3. Lower scores indicate better efficiency. Error bars show 

within-subjects standard error (Cousineau, 2005). Bar labels display individual condition means and (SE). Brackets 

indicate statistical significance between set sizes. 
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2.4.2.1 Detection Efficiency  

To investigate detection efficiency, IES data were subjected to a two-way 

ANOVA with repeated measures of Set Size (Zero, One, Two, Three, Four) and 

TARGET–distractor Type (UPRIGHT–inverted; UPRIGHT–non-face; INVERTED–

upright; INVERTED–non-face; NON-FACE–upright; NON-FACE–inverted). The 

analysis revealed a significant main effect of Set Size whereby efficiency became 

poorer as Set Size increased, [F (4, 156) = 16.65, p < .001, η2 = 0.30; Zero, M = 1500 

ms, SE = 291 ms; One, M = 1686 ms, SE = 193 ms; Two, M = 1653 ms, SE = 175 

ms; Three, M = 2900 ms, SE = 373 ms; Four, M = 2817 ms, SE = 443 ms]. A 

significant main effect of TARGET–distractor Type was also found [F (5, 195) = 

60.69, p < .001, η2 = 0.61], with the poorest efficiency for UPRIGHT–inverted (M = 

3815 ms, SE = 409 ms) and INVERTED–upright (M = 5023 ms, SE = 808 ms) 

conditions compared to other conditions,  (UPRIGHT–non-face, M = 973 ms, SE = 

139 ms; INVERTED–non-face, M = 1140 ms, SE = 160 ms; NON-FACE–upright, M 

= 849 ms, SE = 127 ms; NON-FACE–inverted, M = 867 ms, SE = 128 ms). A 

significant interaction effect between Set Size and TARGET–distractor Type was also 

found [F (20, 780) = 8.83, p < .001, η2 = 0.18]. 

 

 

Simple main effects revealed significant differences between the Set Sizes 

only for UPRIGHT–inverted and INVERTED–upright conditions [F (4, 936) = 2.61, p 

= .034, η2 = 0.01; F (4, 936) = 55.66, p < .001, η2 = 0.19, respectively]. However, 

further Tukey’s HSD tests found no differences in efficiency between each Set Size 

for the UPRIGHT–inverted condition. Within the INVERTED–upright condition, 

significantly poorer efficiency was found for Set Sizes Three and Four compared to 

other Set Sizes. No other differences were found between the Set Sizes for the 

remaining conditions, and detection was consistently efficient.  

 

Simple main effects also revealed significant differences between TARGET–

distractor Types at each Set Size. At Set Size Zero [F (5, 975) = 8.95, p < .001, η2 = 



 63 

0.04], when all items in the display were distractors, UPRIGHT–inverted was 

significantly less efficient than all other conditions. At Set Size One through Three, 

UPRIGHT–inverted and INVERTED–upright were detected with the poorest 

efficiency compared to all other conditions but not each other, [Set Size One, F (5, 

975) = 9.89, p < .001, η2 = 0.05; Set Size Two, F (5, 975) = 7.08, p < .001, η2 = 0.04; 

Set Size Three, F (5, 975) = 43.27, p < .001, η2 = 0.18]. At Set Size Four, when all 

items are TARGETs, INVERTED–upright detection is the least efficient compared to 

all other conditions, while UPRIGHT–inverted is less efficient than NON-FACE–

upright and NON-FACE–inverted only [F (5, 975) = 44.26, p < .001, η2 = 0.18].  

 

Analyses of IES data within the UPRIGHT–inverted condition revealed no 

significant efficiency costs per additional face in the display. Overall detection 

efficiency for this condition is poorer compared to other conditions, indicating 

difficulty distinguishing between these two orientations of faces. Poor detection 

efficiency is also seen for Set Sizes Three and Four for the INVERTED–upright 

condition where more distractor upright faces are present than target inverted faces. 

Comparisons between TARGET–distractor Types at each Set Size also reveal a 

similar pattern. Detection efficiency for conditions that contain Non-Faces – either as 

targets or distractors – were the most efficient whilst UPRIGHT–inverted and 

INVERTED–upright were least efficient. This suggests that discriminating between 

Non-Faces and Upright or Inverted Faces is easier than discriminating between 

Upright and Inverted Face stimuli. This pattern or results further points to an 

orientation invariant element within the face detection process, as suggested by 

Experiments 1 and 2. If a difference between Upright and Inverted Face detection 

were present, then detecting one stimulus from the other would be an easier task with 

better efficiency. This was not found in Experiment 3.  

 

What remains evident from Experiment 3 is that when the surrounding 

environment does not resemble a face (i.e. contains Non-Faces), face detection is an 

efficient and parallel process that does not incur a detection cost per additional face. 
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This is explored further in the two following analyses, which combine conditions 

based on the Target as specified to the participant during the experiment or based on 

the display’s visual quality (i.e., when the number and type of items are matched 

regardless of the condition).  

 

2.4.2.2 Detection Efficiency by Target 

Inverse efficiency scores were combined based on common Targets to create 

an Upright Faces condition consisting of UPRIGHT–inverted and UPRIGHT–non-

face; an Inverted Faces condition consisting of INVERTED–upright; INVERTED–

non-face; and a Non-Faces condition consisting of NON-FACE–upright; NON-

FACE–inverted. Figure 2.5 (A) displays the mean IES score for each new Target Type 

condition at each Set Size for Experiment 3. 

 

To investigate the effect of Target Type IES, data were subjected to a two-way 

ANOVA with repeated measures of Set Size (Zero, One, Two, Three, Four) and 

Target Type (Upright Faces, Inverted Faces, Non-Faces). A significant main effect of 

Set Size was found where efficiency became poorer as Set Size increased [F (4, 156 = 

38.65, p < .001, η2 = 0.50; Zero, M = 939 ms, SE = 38 ms; Two, M = 1208 ms, SE = 

Figure 2.5 Mean IES scores (ms) for Experiment 3 grouped by Target Type (A) and by Display Type (B). Lower 

scores indicate better efficiency. Error bars show within-subjects standard error (Cousineau, 2005). Yellow shaded 

areas indicate a significant difference between groups at a particular set size.    
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44 ms; Three, M = 1644 ms, SE = 82 ms; One, M = 1123 ms, SE = 41 ms; Four, M = 

1725 ms, SE = 136 ms]. A significant main effect of Target Type was also found with 

the greatest efficiency for Non-Faces, [F (2, 78) = 67.13, p < .001, η2 = 0.63; Upright 

Faces, M = 1468 ms, SE = 71 ms; Inverted Faces, M = 1664 ms, SE = 93 ms; Non-

Faces, M = 851 ms, SE = 41 ms]. The ANOVA also revealed a significant interaction 

effect between Set Size and Item Type [F (8, 312 = 16.84, p < .001, η2 = 0.30].  

 

Simple main effects comparing Set Size for each Target Type revealed 

significant differences for Upright Faces [F (4, 468) = 10.52, p < .001, η2 = 0.08]. 

Conditions containing Three or Four Upright Faces were detected with poorer 

efficiency compared to other Set Sizes, (Zero Upright Faces, M = 1136 ms, SE = 42 

ms; One Upright Faces, M = 1344 ms, SE = 43 ms; Two Upright Faces, M = 1376 

ms, SE = 47 ms; Three Upright Faces, M = 1674 ms, SE = 54 ms; Four Upright 

Faces, M = 1811 ms, SE = 169 ms). Significant differences were also found between 

Set Sizes within Inverted Faces, [F (4, 468) = 67.47, p < .001, η2 = 0.37]. Conditions 

containing Zero Inverted Faces (M = 907 ms, SE = 37 ms) were detected with the 

greatest efficiency, followed by One (M = 1235 ms, SE = 38 ms) and Two Inverted 

Faces (M = 1400 ms, SE = 48 ms) which were detected with similar efficiency. Three 

(M = 2324 ms, SE = 144 ms) and Four Inverted Faces (M = 2453 ms, SE = 197 ms) 

were detected with the poorest efficiency overall. No Significant differences were 

found for the different Set Sizes of Non-Faces, Zero Non-Faces, M = 774 ms, SE = 

37 ms; One Non-Faces, M = 790 ms, SE = 40 ms; Two Non-Faces, M = 848 ms, SE = 

36 ms; Three Non-Faces, M = 933 ms, SE = 48 ms; Four Non-Faces, M = 912 ms, 

SE = 43 ms).   

 

Simple main effects also revealed significant differences between Target 

Types at each Set Size, [Zero, F (2, 390) = 4.49, p = .012, η2 = 0.02; Two, F (2, 390) = 

11.57, p < .001, η2 = 0.06; Three, F (2, 390) = 13.10, p < .001, η2 = 0.06; One, F (2, 

390) = 65.07, p < .001, η2 = 0.25; Four, F (2, 390) = 80.40, p < .001, η2 = 0.29]. 

Across all Set Sizes, Upright and Inverted Faces targets were detected with 
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significantly poorer efficiency than Non-Face Targets. Upright and Inverted Faces 

were also not significantly different from each other except at Set Size Three and 

Four, where they made up the majority of their respective displays.  

 

2.4.2.3 Detection Efficiency by Display 

Inverse efficiency scores were combined based on common visual qualities of 

item types and quantity in the display. For instance, Set Size Three UPRIGHT–

inverted condition and Set Size One INVERTED–upright contain the same item types 

in the same ratio of 3 Upright Faces: 2 Inverted Faces. Combining conditions based 

on displays results in three new Item Combination conditions; Upright:Inverted, 

Upright:Non-Face, and Inverted:Non-Face, as well as new Set Size Ratios of 

Zero:Four, One:Three, Two:Two, Three:One, Four:Zero. Figure 2.5 (B) displays the 

mean IES score for each new Item Type condition at each Set Size Ratio for 

Experiment 3.  

 

To investigate the effect of Display Type IES data were subjected to a two-

way ANOVA with repeated measures of Set Size (Zero:Four, One:Three, Two:Two, 

Three:One, Four:Zero) and Item Combination (Upright:Inverted, Upright:Non-Face, 

and Inverted:Non-Face). A significant main effect of Set Size Ratio was found [F (4, 

156 = 4.69, p < .001, η2 = 0.11]. Detection efficiency improved as Set Size Ratio 

proceeded in the following pattern: Zero:Four (M = 2180 ms, SE = 359 ms), 

One:Three, M = 2105 ms, SE = 159 ms, Two:Two, (M = 1579 ms, SE = 111 ms), 

Three:One (M = 1754 ms, SE = 134 ms), Four:Zero (M = 1330 ms, SE = 189 ms). A 

main effect of Item Combination was also found, [F (3, 78 = 105.53, p < .001, η2 = 

0.73]. Detection efficiency was poorest for Upright:Inverted (M = 3588 ms, SE = 391 

ms), while Upright:Non-Face (M = 871 ms, SE = 90 ms)  and Inverted:Non-Face (M 

= 909 ms, SE = 90 ms) were detected with similarly greater efficiency. An interaction 

effect between Set Size and Item Combination was also found [F (8, 312 = 7.12, p < 

.001, η2 = 0.15]. 
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Simple main effects comparing Set Size Ratio for each Item Combination 

revealed significant difference across Upright:Inverted condition only [F (4, 468) = 

18.67, p = .001, η2 = 0.14]. Detection efficiencies at Zero:Four Upright:Inverted (M 

= 4980 ms, SE = 890 ms) and One:Three Upright:Inverted (M = 4604 ms, SE = 295 

ms) were the poorest and not significantly different from each other. At these ratios, 

Inverted Face stimuli outnumber Upright Face stimuli. Detection efficiencies for 

Two:Two Upright:Inverted (M = 3004 ms, SE = 163 ms) and Three:One 

Upright:Inverted (M = 3372 ms, SE = 226 ms), where Upright Face stimuli are equal 

to or outnumber Inverted Face stimuli, were intermediate and non-significantly 

different from each other. The greatest detection efficiency within Upright:Inverted 

was found for Four:Zero (M = 1983 ms, SE = 381 ms) which contained four upright 

faces within the display.  

 

No Set Size differences were found within Upright:Non-Face [F (4, 468) = 

0.05, p = .995, η2 = 0.00; Zero:Four, M = 798 ms, SE = 92 ms; One:Three, M = 851 

ms, SE = 90 ms; Two:Two, M = 849 ms, SE = 86 ms; Three:One, M = 891 ms, SE = 

87 ms; Four:Zero, M = 968 ms, SE = 96 ms], or within Inverted:Non-Face [F(4, 468) 

= 0.16, p = .960, η2 = 0.00; Zero:Four, M = 761 ms, SE = 93 ms; One:Three, M = 

861 ms, SE = 93 ms; Two:Two, M = 883 ms, SE = 85 ms; Three:One, M = 999 ms, 

SE = 89 ms; Four:Zero, M = 1038 ms, SE = 90 ms]. 

 

Simple main effects also found significant differences between each Item 

Combination for the different Set Size Ratios. Across all Set Size Ratios, a clear 

separation in IES can be seen. Upright:Inverted was detected with significantly 

poorer efficiency, while Upright:Non-Face and Inverted:Non-Face were consistently 

detected with similarly greater efficiency [Zero:Four, F (2, 390) = 68.56, p = .001, η2 

= 0.26; One:Three, F (2, 390) = 54.56, p = .001, η2 = 0.22; Two:Two, F (2, 390) = 

17.76, p = .001, η2 = 0.08; Three:One, F (2, 390) = 22.92, p = .001, η2 = 0.11; 

Four:Zero, F (2, 390) = 3.75, p = .024, η2 = 0.02]. 
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Across the analyses by Target or Display type, a clear pattern emerges 

showing that detecting upright face stimuli from inverted face stimuli is a difficult 

task. This further suggests an orientation invariant element to the detection process. If 

the face detection mechanism was specialised to upright faces, then an advantage 

would have been seen when upright faces were the targets, or when they 

outnumbered other items in the display. But the results of Experiment 3 imply that 

this is not the case. However, detecting faces, regardless of orientation, from non-face 

stimuli was a substantially easier task that did not incur detection costs as the number 

of faces increases. Experiment 3 shows that yet again face detection outperforms non-

face detection. Moreover, within ‘categorical detection’ contexts, where faces and 

non-faces are present together, faces are still detected in a parallel and efficient 

manner.  

 

2.5 General Discussion 

Three main findings emerge from these experiments. First, up to four faces 

can be detected rapidly and accurately. Second, multiple face detection outperforms 

multiple non-face detection for up to four items. Third, detection of multiple upright 

and inverted faces does not differ.  

 

The first two findings concern the quantity, speed, and accuracy of multiple 

face detection. Experiments 1 and 2 revealed that up to four faces can be detected 

more quickly and accurately than non-face objects. More than four faces can still be 

detected, but beyond four, accuracy decreases (Experiment 1), and reaction times 

increase (Experiment 2) substantially for each additional face. The boundary in 

detection performance between the smaller and larger Set Sizes is in line with the 

observed subitizing limit of around four items (Piazza et al., 2011; Trick & Pylyshyn, 

1994). This boundary could result from a shared general item detection mechanism; 

however, the greater performance for faces over non-faces points to some specificity 

or speciality for face stimuli. Efficiency scores from Experiment 3 further support 
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this interpretation. No costs in efficiency were observed when faces are embedded 

amongst non-faces, or vice-versa, regardless of set size, suggesting that the two 

stimulus types were easily distinguishable even at the detection stage. Moreover, the 

non-faces used in Experiment 3 were highly similar phase-scrambled face equivalents 

that retained the lower-level visual properties of their source faces. Therefore even 

when non-faces are similar in this sense, multiple target detection was still more 

efficient for intact faces. 

 

A detection advantage for faces over non-faces has been reported in the 

limited prior detection literature (Crouzet et al., 2010; Keys et al., 2021; Purcell & 

Stewart, 1986, 1988; Wardle et al., 2020). However, the current experiments 

demonstrate for the first time that more than one face can be detected efficiently, and 

that the face advantage can be sustained over set sizes greater than one. Furthermore, 

by combining accuracy and reaction time into inverse efficiency scores, Experiment 3 

shows that no detection costs are incurred per additional face in the display. 

Compared to the strict capacity limit of one in the later face processes (Bindemann et 

al., 2007; Bindemann, Burton, et al., 2005), this pattern of results suggests that the 

bottleneck in face perception may only constrain processing bandwidth after the 

detection stage. The results also allude to parallel detection mechanism for up to four 

faces. However, this study was only designed to establish if a difference in multiple 

face detection existed compared to multiple non-face detection. Determining the 

exact face processing bottleneck or assessing the serial-vs-parallel nature of face 

detection (cf. Lewis & Edmonds, 2005; Lewis & Ellis, 2003; Nothdurft, 1993) 

requires experiments designed to test those ideas specifically.  

 

The third finding refers to an inversion-invariance at the detection stage. 

Across all three experiments, upright and inverted face stimuli were detected in the 

same manner regardless of Set Size. This pattern is especially evident in the poor 

detection efficiency for upright and inverted faces within the same displays in 

Experiment 3. Inversion-invariance in the detection stage contrasts with poorer 
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performance for inverted faces seen in later face processes (Farah et al., 1995; Yovel 

& Kanwisher, 2005a). However, it does support the conclusion of the detection 

template seems insensitive to vertical orientation. Consequently, detection may be 

driven by a qualitative aspect that is shared by upright and inverted faces but not their 

non-face comparisons (e.g. retained internal features).  

 

The combination of a face detection advantage that is inversion-invariant 

suggests a broadly tuned face detection template. It has been suggested that lower-

level visual properties may underlie this detection template (Crouzet et al., 2010; 

Crouzet & Thorpe, 2011), and hence inversion-invariance. But the difference in 

detection found for upright and inverted faces compared to scrambled faces in 

Experiment 3 may suggest otherwise. All three stimulus types share the same lower-

level visual qualities, such as spatial frequency and colour. Other theories have 

proposed a role for horizontal “bar-code” energies – the alternating dark and light 

regions of a face (Dakin & Watt, 2009a; Goffaux & Dakin, 2010) in detection. As 

well as a role for horizontal eye pairs, which have been found to be sufficient to elicit 

face detection (Kauffmann et al., 2021; Simpson, Maylott, Mitsven, et al., 2019). 

Future experiments could assess the role of bar-code representations and horizontal 

eye pairs by testing the detection of faces that are rotated by 90º rather than 180º. The 

resulting ‘sideways’ faces would lack both of the proposed characteristics.   

 

The current series of experiments explored multiple face detection to establish 

a foundation for future research. Across all three experiments, we found that up to 

four faces can be detected efficiently compared with non-faces. Unlike later stages of 

face perception, detection performance was unaffected by face inversion. Our 

findings raise further questions regarding the capacity limit and location of the face 

processing bottleneck, the serial-vs-parallel nature of face detection, and the qualities 

of the face detection template that might affect performance. 
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Chapter 3 – Capacity Limits in Face Detection  

This chapter has been published in the following journal, it has been adapted to fit the 

formatting of this thesis :  

 

Qarooni, R., Prunty, J., Bindemann, M., & Jenkins, R. (2022). Capacity limits in face 

detection. Cognition, 228, 105227. 

 

3.1 Abstract  

Face detection is a prerequisite for further face processing, such as extracting 

identity or semantic information. Those later processes appear to be subject to strict 

capacity limits, but the location of the bottleneck is unclear. In particular, it is not 

known whether the bottleneck occurs before or after face detection. Here we present a 

novel test of capacity limits in face detection. Across four behavioural experiments, 

we assessed detection of multiple faces via observers’ ability to differentiate between 

two types of display. Fixed displays comprised items of the same type (all faces or all 

non-faces). Mixed displays combined faces and non-faces. Critically, a ‘fixed’ 

response requires all items to be processed. We found that additional faces could be 

detected with no cost to efficiency, and that this capacity-free performance was 

contingent on visual context. The observed pattern was not specific to faces, but 

detection was more efficient for faces overall. Our findings suggest that strict 

capacity limits in face perception occur after the detection step. 
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3.2 Introduction  

Studies of face perception often emphasise the wealth of social information 

that we derive from faces. However, access to this information is gated by the prior 

step of face detection, in which the visual system registers the presence of a face. 

Despite its gatekeeper role, face detection has received little research attention 

compared to later stages of face perception (e.g. identification; social inferences). 

Most of the research on face detection concerns algorithm development in computer 

vision (see Hjelmås & Low, 2001; Kumar et al., 2018 for reviews ). As such, the 

cognitive process of face detection is not well understood. 

 

We follow previous researchers in assuming that face detection involves 

matching a region of the visual field to a stored face template (Lewis & Ellis, 2003; 

Robertson et al., 2017; Tsao & Livingstone, 2008). The few psychological studies that 

have addressed this process have tended to focus on qualitative aspects of the putative 

template, such as sensitivity to the colour, outline, or spatial layout of the face (Amso 

et al., 2014; Bindemann & Burton, 2009; Crouzet et al., 2010; Pongakkasira & 

Bindemann, 2015; Purcell & Stewart, 1986, 1988; Simpson, Maylott, Leonard, et al., 

2019; Stein et al., 2012). Less still is known about quantitative aspects of face 

detection, such as whether multiple faces can be detected at once. In some ways this 

is a puzzling omission, as quantitative aspects of later face perception processes (e.g. 

gaze perception, identification, semantic association) have been studied in some 

detail (Bindemann et al., 2007; Bindemann, Burton, et al., 2005; Bindemann & 

Burton, 2009; Jenkins et al., 2003).  

 

Several of those studies have recruited the notion of capacity limits—the basic 

observation that not all the available sensory information can be processed at once 

(Bruckmaier et al., 2020; Lavie & De Fockert, 2003; Norman & Bobrow, 1975). The 

further claim is that face processing may be subject to its own, face-specific capacity 
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limits (Jenkins et al., 2003). Surprisingly, this limit may be as low as a single face, 

such that face processing proceeds one face at a time. 

 

The evidence leading to this claim comes from a range of behavioural 

experiments. For example, patterns of response competition effects (Bindemann, 

Burton, et al., 2005; Jenkins et al., 2003; Thoma & Lavie, 2013) and repetition 

priming effects (Bindemann et al., 2007) indicate that processing one face selectively 

blocks processing of another face. This finding applies not only to later, cognitively 

deep processes involving extraction of personal identity or semantic information 

(Bindemann et al., 2007; Bindemann et al., 2005; Jenkins et al., 2003; Thoma & 

Lavie, 2013), but also to earlier, cognitively shallow processes such as classifying sex 

(male/female, Bindemann et al., 2005) or gaze direction (left/right, Bindemann & 

Burton, 2009).  

 

Together, these findings point to a bottleneck early in face processing (i.e. 

upstream of sex or gaze perception) that constrains face processing downstream of 

the bottleneck. One possibility is that face detection itself is the bottleneck. This 

possibility implies strict capacity limits at the detection stage, such that only one face 

at a time can be acquired from the visual environment (though still allowing rapid 

serial acquisition). Alternatively, detection itself could be capacity free. This 

possibility implies that multiple faces can be acquired in parallel, they just cannot be 

processed in parallel. On this view, the bottleneck occurs when extracting information 

from faces. 

 

Can we know that more than one face is present? ERP experiments offer some 

evidence on this point. The amplitude of the N170, a face-selective ERP marker, has 

been found to increase when multiple faces are presented (Puce et al., 2013). 

However, as the authors acknowledge, their task of reporting the number of stimuli 

(1–3) did not require participants to know whether or not the stimuli were faces. 

Registering the presence of any stimuli could produce the same results. 
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Several behavioural studies have addressed the related question of whether a 

target face ‘pops out’ from surrounding distractors in a visual search task (Brown et 

al., 1997; Kuehn & Jolicoeur, 1994; Lewis & Edmonds, 2005; Nothdurft, 1993; 

Treisman & Gelade, 1980). However, these studies have led to conflicting results. For 

instance, Nothdurft (1993) found that search times increased with the number of 

distractors (set size), suggesting serial processing. In contrast, Lewis & Edmonds 

(2005) found equivalently low search times regardless of set size, suggesting parallel 

processing. We return to this discrepancy in the General Discussion section. 

 

Although visual search can be informative, there are several reasons why it 

may be unsuitable for probing capacity limits in face detection. First, the task 

imposes a distinction between target and distractor stimuli. This distinction gives 

special status to the target category, potentially affecting attentional set (Bindemann 

et al., 2007; Wolfe & Horowitz, 2004). Second, visual search entails active scanning 

for the target (Jenkins et al., 2003), whereas everyday face detection often occurs 

incidentally during passive viewing. Third, and most importantly for the current 

study, visual search does not lend itself to testing detection of multiple faces. As the 

participant’s task is to indicate the presence or absence of a target, search can be 

terminated when a single target is found, even if other targets are present.  

 

Previous researchers have distinguished two components of face detection 

that are sometimes conflated — localising and categorising (Bindemann & Lewis, 

2013a). The localising component involves searching for a target under spatial 

uncertainty. Categorisation involves establishing whether or not a stimulus is a face. 

As we are primarily interested in template matching, our focus here was the 

categorisation aspect of detection. To probe capacity limits, we sought to assess the 

cognitive cost of increasing the number of items, while eliminating any cognitive 

costs associated with localising those items. 
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To this end, we devised a new task in which all items have equal status. 

Participants saw face and non-face items in ‘fixed’ displays (all one stimulus type) or 

‘mixed’ displays (a combination of both types). To reduce the need for visual 

scanning, these items appeared at predefined locations surrounding central fixation at 

low eccentricities (that is, with spatial certainty for addressable coordinates; Garner et 

al., 2021). For each display, the participants’ task was to indicate whether the items 

were fixed or mixed. Critically, this task involves assimilating multiple faces. In 

particular, correct ‘fixed’ responses require each item to match (or not match) a face 

detection template before a response is made. We take reportability via this 

fixed/mixed judgement as our detection criterion. Manipulating the type and number 

of items in the display allows us to estimate per-item detection costs separately for 

each stimulus type. We take positive cost per item to indicate that detection is 

capacity limited. Conversely, we take zero cost per item to indicate that detection is 

capacity free. 

 

3.3 Experiment 4: Two-vs-Three Faces and Non-Faces (Dissimilar) 

We began by comparing detection efficiency for faces and non-faces 

presented in ‘fixed’ or ‘mixed’ displays of set size two or three. Non-faces in this 

experiment were scrambled (phase-shifted) faces that matched the low-level visual 

energies of the intact face stimuli (Jenkins et al., 2003). For set size two, Fixed 

conditions contained either two faces (FF) or two non-faces (NN), while Mixed 

conditions contained one stimulus of each type (FN or NF, differentiated by spatial 

layout). Set size three conditions were constructed by adding an extra face or non-

face to the display. Thus, Fixed conditions contained either three faces (FFF) or three 

non-faces (NNN), while Mixed conditions combined both types of stimuli (FNN and 

NFF). Participants were asked to decide as quickly and accurately as possible 

whether each display was Fixed (all the same type of stimulus), or Mixed (a 

combination of both stimulus types). Comparing set size two and three allowed us to 

estimate the effect of an extra display item on these determinations. We expected that 
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capacity-limited face detection should enforce serial processing, resulting in greater 

efficiency for set size two than for set size three. On the other hand, capacity-free face 

detection should allow parallel processing, resulting in equivalent efficiency for set 

size two and for set size three. 

 

3.3.1 Methods 

3.3.1.1 Participants 

Seventy-seven participants were recruited through Prolific recruitment service 

(www.prolific.co) and completed the experiment in exchange for a small payment. 

Seventeen participants were excluded due to failed attention checks (as described 

below; exclusion criteria: 2 or more failed checks within the same block, or 3 across 

the whole experiment) or slow responses (>2.5 SD from the group mean). The final 

sample (N = 60) comprised 22 females and 38 males (age range 18–73; M=27.95, 

SD=11.09).  

 

The sample size of 60 participants was selected based on previous face 

perception studies (Bindemann et al., 2005, 2007; Fysh, 2018; Thoma & Lavie, 

2013), with a margin added to account for variations associated with online testing 

(Anwyl-Irvine et al., 2020). This allowed for greater confidence the experimental 

design's ability to detect statistically and psychologically meaningful differences 

between groups. The sample size of 60 participants was consistent throughout the 

experiments presented in this thesis, with the exception of Experiments 1, 2, and 3 

(laboratory testing only) and Experiment 14 (single trial design).   

 

3.3.1.2 Design and Stimuli  

Stimuli were generated using a local face bank of 288 faces. The local bank 

consisted of AI generated faces (Karras et al. & Nvidia, 2018) supplemented with real 

faces from the MR2 face bank (Strohminger et al., 2016) and other online sources. 

This local face bank contained an equal distribution of age (younger adults and older 

http://www.prolific.co/
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adults), sex (male and female), and ethnicity (Asian, Black, and Caucasian; see 

Prunty et al., (2022) for details of demographic categorisation). Each image was 

cropped to a 380-pixel wide × 570-pixel high rectangle to create the face items. To 

create the non-face items, each face was submitted to Fourier phase transformation 

that randomly scrambled the phase of component spatial frequencies while 

maintaining overall brightness, contrast, and orientation (Honey et al., 2008). Figure 

3.1 shows examples of this manipulation. 

 

To construct Set Size Two displays, we used 58 randomly selected faces from 

the local face bank together with their scrambled face counterparts. For Set Size 

Three, we used 87 faces and scrambled faces. No item was repeated within a display 

or within a condition. The selected items were randomly allocated to three 

predetermined locations that formed an upright equilateral triangle around central 

fixation (nearest contours ~95 pixels apart). 

 

Catch trials for each condition were created for use as attention checks. These 

catch trials were constructed in a similar manner and used the same spatial layout. 

Intact faces were substituted with a white vertical rectangle containing a smaller 

Figure 3.1 Example displays for each condition of Experiment 4 (A) and Experiment 5 (B). Fixed displays contained 

one type of stimulus (all faces or all non-faces). Mixed displays contained both types. Numbers refer to set sizes. F 

denotes face, N denotes non-face (scrambled faces in Experiments 4 & 5). Triangle and square segments are for 

visualisation only. In the actual experiments, the grey background filled the whole screen. 
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black rectangle in the centre. Scrambled faces were replaced with a phase-scrambled 

equivalent of these rectangles. 

 

The within-subjects factors of Display Type (Fixed, Mixed) and Set Size (Two, 

Three) were manipulated in a fully counterbalanced 2 × 2 factorial design, resulting 

in the experimental conditions summarised in Figure 3.1 (A).  

 

The experiment was created and hosted online at Gorilla Experiment Builder 

(gorilla.sc; Anwyl-Irvine et al., 2020). Participants could access the experiment on 

any desktop or laptop computer, precluding exact control over screen size. Mobile 

devices and tablets were excluded. 

 

3.3.1.3 Procedure  

Participants were asked to indicate as quickly and accurately as possible 

whether items in a display were Fixed and of the same type (i.e., all face or all non-

face), or Mixed and a combination of both types (i.e., faces and non-faces together). 

Each trial started with a fixation cross for 250 ms followed by stimulus displays 

presented until response. The experiment began with a practice block of 16 trials 

consisting of two different trials per condition in random order. This was followed by 

3 experimental blocks, each consisting of 72 experimental trials (9 trials per 

conditions) plus 4 catch trials in a random order. Participants were given the 

opportunity to take short breaks between the blocks. The entire experiment took 

approximately 10 minutes to complete. 

 

3.3.2 Results and discussion 

Overall accuracy for the Fixed/Mixed judgements was 95%, confirming that 

participants could distinguish between face and non-face stimuli. Trials with reaction 

times below 150 ms or above 3000 ms were excluded from analysis (0.57% of all 

trials).  

gorilla.sc
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The aims of this chapter require a sensitive metric of efficiency that could 

account for speed-accuracy trade-offs and measure the efficiency cost per additional 

item. Consequently, accuracy and reaction time data in Experiments 4 – 7 will be 

combined to create Linear Integrated Speed Accuracy Scores (LISAS; 

Vandierendonck, 2017, 2018, 2021). The LISAS metric is specific to within-subjects 

designs as scores for individual participants are calculated independently from other 

participants, making it especially appropriate for Chapter 3 experiments. Nonetheless 

IES metrics remain appropriate for the remaining experiments within this thesis due 

to their methodological and experimental design which spread speed-accuracy trade-

offs across conditions minimizing the impact.  

 

For concision, we combined accuracy and reaction time data to form Linear 

Integrated Speed-Accuracy Scores (LISAS) which summarise performance in a 

single efficiency metric while accounting for speed-accuracy trade-offs in responses 

(Vandierendonck, 2017, 2018, 2021). Separate analyses of accuracy and reaction time 

measures for each experiment are reported in Supplementary Materials and support 

the same conclusions. 

 

Figure 3.2 (A) summarises Linear Integrated Speed-Accuracy Scores for each 

condition in Experiment 1. LISAS data were submitted to a two-way ANOVA with the 

repeated measures factors of Set Size (Two, Three) and Display Type (Fixed, Mixed). 

This analysis revealed a significant main effect of Set Size, with more efficient 

detection for Two items (M = 768  ms, SE = 9 ms) than for Three items (M = 785 ms, 

SE = 10 ms) overall [F (1, 59) = 9.16, p = .004, η² = 0.31], and a significant main effect 

of Display Type, with more efficient detection for Fixed displays (M = 756 ms, SE = 10 

ms) than for Mixed displays (M = 797 ms, SE = 9 ms) overall [F (3, 177) = 13.08, p < 

.001, η² = 0.18]. There was also a significant interaction between Set Size and Display 

Type [F (3, 177) = 5.33, p = .002, η² = 0.08], reflecting stronger effects of Set Size for 

Mixed displays than for Fixed displays.  

 



 80 

For Fixed displays, there was no cost incurred by adding a face [FF, M = 734 ms, 

SE = 10 ms; FFF, M = 732 ms, SE = 11 ms; F (1, 236) = 0.02, p = .889, η² = 0.00] or a 

non-face [NN, M = 785 ms, SE = 11 ms; NNN, M = 775 ms, SE = 10 ms; F (1, 236) = 

0.76, p = .383, η² = 0.00]. However, for Mixed displays, there was a significant cost to 

adding either a face [NF, M = 788 ms, SE = 10 ms; NFF, M = 831, SE = 10 ms; F (1, 

236) = 13.65, p <.001, η² = 0.05] or a non-face [FN, M = 766 ms, SE = 7 ms; FNN, M = 

803 ms, SE = 8 ms; F (1, 236) = 10.55, p = .001, η² = 0.04]. The effect of Display Type 

was significant for Set Size Two [F (3, 354) = 5.49, p = .001, η² = 0.04] and also for Set 

Size Three [F (3, 354) = 15.90, p < .001, η² = 0.12]. 

 

Data from the Fixed conditions were submitted to separate t-tests to compare 

detection of faces and non-faces at each Set Size. Detection was significantly more 

efficient for faces than for non-faces at Set Size Two [t (59) = -2.97, p = .004, d = .38] 

and at Set Size Three [t (59) = -2.43, p=.018, d =.31]. 

 

Analysing responses to Fixed displays allowed us to compare detection 

efficiency for Two versus Three items of the same category (all faces or all non-faces). 

This comparison revealed no evidence of capacity limits, in the sense that there was no 

effect of set size: adding an extra item incurred no efficiency cost. However, at both set 

Figure 3.2 Mean linear integrated speed-accuracy scores (LISAS) for each condition in Experiment 4 (A) and 

Experiment 5 (B) Lower scores indicate better efficiency. F denotes face, N denotes non-face (scrambled faces in 

Experiments 4 & 5). Error bars show within-subjects standard error (Cousineau, 2005). Brackets indicate significant 

differences between groups.  
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sizes, detection was more efficient for faces than for non-faces. The next experiment 

introduces a stronger manipulation of set size. 

 

3.4 Experiment 5: Two-vs-Four Faces and Non-Faces (Dissimilar) 

To amplify possible effects of set size in this task, we next doubled the 

magnitude of the set size manipulation. Instead of adding one extra item to the 

displays (as in Experiment 4), we now added two extra items to the displays. We 

reasoned that doubling the strength of the set size manipulation should double the 

size of any latent performance costs. 

 

3.4.1 Methods 

3.4.1.1 Participants 

Eighty new participants were recruited through Prolific and completed the 

experiment in exchange for a small payment. Twenty participants were excluded due 

to failed attention checks (2 or more within the same block, or 3 across the whole 

experiment) or slow responses (>2.5 SD from the group mean). The final sample (N = 

60) comprised 21 females and 39 males (age range 18-49; M=26.10, SD=7.45). 

 

3.4.1.2 Design and Stimuli  

The stimuli and catch trials were the same as in Experiment 1 but were now 

presented in displays of either two items or four items. A total of 68 faces and 68 non-

faces were required for each of the Set Size Two conditions, and a total of 136 faces 

and 136 non-faces were required for each of the Set Size Four conditions. In each 

display, the selected items were randomly allocated to four predetermined locations 

that formed a square around central fixation (nearest contours ~95 pixels; see Figure 

3.1b).  
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3.4.1.3 Procedure 

The procedure was the same as in Experiment 4, except that we increased the 

number of experimental trials. Participants now completed 4 experimental blocks, 

each consisting of 64 experimental trials (8 trials per conditions plus 3 catch trials) in 

a random order. The entire experiment took approximately 10 minutes to complete. 

 

3.4.2 Results and Discussion 

Overall accuracy for the Fixed/Mixed judgements was 95%, confirming that 

participants could distinguish between face and non-face stimuli. Trials with reaction 

times below 150 ms or above 3000 ms were excluded from analysis (1.24% of all 

trials). 

 

Figure 3.2 (B) summarises Linear Integrated Speed-Accuracy Scores for each 

condition in Experiment 2. LISAS data were submitted to a two-way ANOVA with 

the repeated measures factors of Set Size (Two, Four) and Display Type (Fixed, 

Mixed). This analysis revealed a significant main effect of Set Size, with more 

efficient detection for Two items (M = 762 ms, SE = 8 ms) than for Four items (M = 

786 ms, SE = 9 ms) overall [F (1, 59) = 15.36, p < .001, η² = 0.21], and a significant 

main effect of display type, with more efficient detection for Fixed displays (M = 756 

ms, SE = 8 ms) than for Mixed displays (M = 793 ms, SE = 8 ms) overall [F (3, 177) 

= 25.44, p < .001, η² = 0.30]. There was also a significant interaction between Set 

Size and Display Type [F (3, 177) = 18.97, p < .001, η² = 0.26], reflecting stronger 

effects of Set Size for Mixed displays than for Fixed displays.  

 

For Fixed displays, there was no cost incurred by adding two extra faces [FF, 

M = 728 ms, SE = 8 ms; FFFF, M = 715 ms, SE =7 ms; F (1, 236) = 1.37, p = .243, 

η² = 0.01], or two extra non-faces [NN, M = 800 ms, SE = 8 ms; NNNN, M = 779 

ms, SE = 10 ms; F (1, 236) = 3.34, p = .069, η² = 0.01]. However, for Mixed displays, 

there was a significant cost to adding either two faces [NF, M = 764 ms, SE = 9 ms; 
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NFFF, M = 838, SE = 8 ms; F (1, 236) = 41.06, p < .001, η² = 0.15] or two non-faces 

[FN, M = 756 ms, SE = 6 ms; FNNN, M = 814 ms, SE = 7 ms; F (1, 236) = 25.86 p < 

.001, η² = 0.15]. The effect of Display Type was significant for Set Size Two [F (3, 

354) = 10.74, p < .001, η² = 0.08] and also for Set Size Four [F (3, 354) = 35.14, p < 

.001, η² = 0.23]. 

 

Data from the Fixed conditions were submitted to separate t-tests to compare 

detection of faces and non-faces at each set size. Detection was significantly more 

efficient for faces than for non-faces at Set Size Two, [t (59) = -5.12, p < .001, d = 

.66] and at Set Size Four [t (59) = -4.71, p < .001, d = .61]. 

 

As in Experiment 4, comparing detection efficiency for items of the same 

category revealed no evidence of capacity limits, despite the fact that the magnitude 

of the set size manipulation was now doubled. Apparently, acquiring four items was 

no less efficient than acquiring two. We again found that detection was more efficient 

for faces than for non-faces. Given that stimulus–template match depends on 

properties of the stimulus, we next asked what differences between faces and non-

faces are required for efficient detection of multiple faces. 

 

3.5 Experiment 6: Two-vs-Three Faces and Non-Faces (Similar) 

The high detection efficiency for faces in Experiments 4 and 5 cannot have 

been due to their low-level visual energies, given the different result for the phase-

shifted faces. However, phase-shifted faces do not control for contour and structural 

information in the intact face. In the next experiment, we used inverted faces as the 

comparison stimuli instead. For consistency across experiments, we refer to these 

inverted face stimuli as ‘non-faces’. Given that inverted faces are identical to upright 

faces in every respect except orientation, we expected the visual distinction between 

face and non-face stimuli to be less clear, potentially reducing task efficiency. 
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3.5.1 Methods 

3.5.1.1 Participants 

Seventy-three participants, who were recruited online via Prolific, completed 

the experiment in exchange for a small payment. Thirteen participants were excluded 

due to failed attention checks (2 or more within the same block, or 3 across the whole 

experiment) or slow responses (>2.5 SD from the group mean). The final sample (N = 

60) comprised 26 females and 34 males (age range 19–61; M = 30.22; SD = 9.11). 

 

3.5.1.2 Design and Stimuli 

The design was the same as for Experiment 4 except that the intact and 

scrambled faces were replaced with upright and inverted faces. The upright faces were 

taken from the original bank of 288 faces and segmented from the background using the 

InterFace software package (Kramer et al., 2017). The resulting images were resized to 

570 pixels high × 380 pixels wide. The non-face stimuli were created by rotating the 

upright faces 180º in the picture plane. As in Experiment 1, stimuli were combined to 

create Fixed and Mixed displays of Set Size Two and Set Size Three. Example displays 

are shown in Figure 3.3 (A). 

 

Figure 3.3 Example displays for each condition of Experiment 6 (A) and Experiment 7 (B). Fixed displays contained 

one type of stimulus (all faces or all non-faces). Mixed displays contained both types. Numbers refer to set sizes. F 

denotes face, N denotes non-face (scrambled faces in Inverted Faces 6 & 7). Triangle and square segments are for 

visualisation only. In the actual experiments, the grey background filled the whole screen. 
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Catch trials for each condition were again created for use as attention checks. 

These catch trials were constructed in a similar manner and used the same spatial 

layout as the experimental trials. White circles containing upward- or downward-

pointing black arrows were used in place of upright or inverted faces, respectively. 

 

3.5.1.3 Procedure 

The procedure was the same as in Experiment 4 and took approximately 10 

minutes to complete. 

 

3.5.2 Results and Discussion 

Overall accuracy for the Fixed/Mixed judgements was 94%, again confirming that 

participants could distinguish between face and non-face stimuli, despite their increased 

similarity in this experiment. Trials with reaction times below 150 ms or above 3000 ms 

were excluded from analysis (1.6% of all trials). 

 

Figure 3.4 (A) summarises Linear Integrated Speed-Accuracy Scores for each 

condition in Experiment 3. LISAS data were submitted to a two-way ANOVA with the 

repeated measures factors of Set Size (Two, Three) and Display Type (Fixed, Mixed) 

This analysis revealed a significant main effect of Set Size, with more efficient 

Figure 3.4 Mean linear integrated speed-accuracy scores (LISAS) for each condition in Experiment 6 (A) and Experiment 

7 (B). Lower scores indicate better efficiency. F denotes face, N denotes non-face (inverted faces in Experiments 6 & 7). 

Error bars show within-subjects standard error (Cousineau, 2005). Brackets indicate significance between groups. 
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detection for Two items (M = 991 ms, SE = 12 ms) than for Three items (M = 1092 ms, 

SE = 14 ms) overall [F (1, 59) = 127.29, p < .001, η² = 0.68], and a significant main 

effect of display type, with more efficient detection for Fixed displays (M = 985 ms, SE 

= 15 ms) than for Mixed displays (M = 1098 ms, SE = 13 ms) overall [F (3, 177) = 

31.68, p < .001, η² = 0.39]. There was also a significant interaction between Set Size 

and Display Type [F (3, 177) = 27.65, p < .001, η² = 0.32], reflecting stronger effects of 

Set Size for Mixed displays than for Fixed displays.  

 

For Fixed displays, there was a significant cost incurred by adding an extra 

face [FF M = 915 ms, SE = 12 ms; FFF, M = 952 ms, SE =14 ms; F (1, 236) = 4.89, p 

= .028, η² = 0.03] or an extra non-face [NN, M = 1018 ms, SE = 18 ms; NNN, M = 

1056 ms, SE = 17 ms; F (1, 236) = 4.99, p = .028, η² = 0.02].  

 

For Mixed displays, there was also a significant cost to adding an extra face 

[NF, M = 1022 ms, SE = 11 ms; NFF, M = 1131 ms, SE = 12 ms; F (1, 236) = 41,60, 

p < .001, η² = 0.15] or an extra non-face [FN, M = 1009 ms, SE = 11 ms; FNN, M = 

1230 ms, SE = 16 ms; – F (1, 236) = 171.91, p < .001, η² = 0.42]. The effect of 

Display Type was significant for Set Size Two [F (3, 354) = 11.04, p < .001, η² = 

0.09] and also for Set Size Three [F (3, 354) = 58.77, p < .001, η² = 0.33]. 

 

Data from the Fixed conditions were submitted to separate t-tests to compare 

detection of faces and non-faces at each set size. Detection was significantly more 

efficient for faces than for non-faces at Set Size Two, [t (59) = -4.33, p < .001, d = .56], 

and at Set Size Three [t (59) = -4.25, p < .001, d = .55]. 

 

Analysis of the Fixed conditions again allowed us to compare detection 

efficiency for Two versus Three items of the same category (all faces or all non-faces). 

Unlike Experiment 4, this comparison revealed clear evidence of capacity limits, in the 

sense that there was a significant effect of set size: adding an extra item incurred a 

substantial efficiency cost, as expected from the reduced distinction between face and 
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non-face stimuli. In keeping with the preceding experiments, detection was again more 

efficient for faces than for non-faces. This face advantage was seen not only in the 

Fixed conditions, but also in the Mixed conditions, where adding a face to a display 

incurred a smaller cost than adding a non-face. 

 

3.6 Experiment 7: Two-vs-Four Faces and Non-Faces (Similar) 

To better understand the effects of set size seen in Experiment 6, we doubled 

the magnitude of the set size manipulation (similar to Experiment 5). If performance 

is capacity-limited for these new stimuli, such that each extra item incurs its own 

performance cost, then doubling the number of extra items (from 1 to 2) should 

double the cost. 

 

3.6.1 Methods 

3.6.1.1 Participants 

Sixty-eight new participants were recruited through Prolific and completed 

the experiment in exchange for a small payment. Eight participants were excluded 

due to failed attention checks (2 or more within the same block, or 3 across the whole 

experiment) or slow responses (>2.5 SD from the group mean). The final sample (N = 

60) comprised 23 females and 37 males (age range 18–56; M = 27.25; SD = 8.93). 

 

3.6.1.2 Design and Stimuli  

The design, stimuli, and catch trials, were the same as in Experiment 6, except 

that the display items comprised either two or four items that were randomly 

allocated to four predetermined locations that formed a square around central fixation 

(see Figure 3.3 B). 
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3.6.1.3 Procedure 

The procedure was the same as in Experiment 5 and took approximately 10 

minutes to complete. 

 

3.6.2 Results and Discussion 

Overall accuracy for the Fixed/Mixed judgements was 92%, again confirming 

that participants could distinguish between face and non-face stimuli. Trials with 

reaction times below 150 ms or above 3000 ms were excluded from analysis (0.97% 

of all trials). 

 

Figure 3.4 (B) summarises Linear Integrated Speed-Accuracy Scores for each 

condition in Experiment 4. LISAS data were submitted to a two-way ANOVA with 

the repeated measures factors of Set Size (Two, Four) and Display Type (Fixed, 

Mixed). This analysis revealed a significant main effect of Set Size, with more 

efficient detection for Two items (M = 981 ms, SE = 14 ms) than for Four items (M = 

1202 ms, SE = 15 ms) overall [F (1, 59) = 313.66, p < .001, η² = 0.84], and a 

significant main effect of display type, with more efficient detection for Fixed 

displays (M = 1031 ms, SE = 15 ms) than for Mixed displays (M = 1132 ms, SE = 13 

ms) overall [F (3, 177) = 57.87, p < .001, η² = 0.50]. There was also a significant 

interaction between Set Size and Display Type [F (3, 177) = 46.62, p < .001, η² = 

0.44], reflecting stronger effects of Set Size for Mixed displays than for Fixed 

displays.  

 

For Fixed displays, there was a significant cost incurred by adding two extra 

faces [FF, M = 895 ms, SE = 14 ms; FFFF, M = 1021 ms, SE =13 ms; F (1, 236) = 

44.00, p < .001, η² = 0.16], or two extra non-faces [NN, M = 1023 ms, SE = 14 ms; 

NNNN, M = 1184 ms, SE = 119 ms; F (1, 236) = 70.82, p < .001, η² = 0.23] 
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Similarly, for Mixed displays, there was a significant cost to adding two extra 

faces [NF, M = 1014 ms, SE = 11 ms; NFFF, M = 1227 ms, SE = 14 ms; F (1, 236) = 

124.93, p < .001, η² = 0.35] or two extra non-faces [FN, M = 991 ms, SE = 11 ms; 

FNNN, M = 1375 ms, SE = 17 ms; F (1, 236) = 403.01, p < .001, η² = 0.63]. The 

effect of Display Type was significant for Set Size Two [F (3, 354) = 15.29, p < .001, 

η² = 0.11] and for Set Size Four [F (3, 354) = 93.51, p < .001, η² = 0.44]. 

 

Data from the Fixed conditions were submitted to separate t-tests to compare 

detection of faces and non-faces at each set size. Detection was significantly more 

efficient for faces than for non-faces at Set Size Two, [t (59) = -6.34, p < .001, d = 

.82] and at Set Size Four [t (59) = -6.41, p < .001, d = .83]. 

 

As with Experiment 6, the results of Experiment 7 are consistent with 

capacity-limited performance in which each additional display item contributes to 

performance costs. Detection was again more efficient for faces than for non-faces. 

This face advantage was observed across all experimental conditions. 

 

3.7 General Discussion 

Our experiments reveal at least four principles of multiple face detection. First 

and foremost, we show that viewers can capture additional faces at no extra cost. 

Second, cost-free capture is contingent on visual context. Third, this facility is not 

specific to faces. Fourth, it is efficient for faces. We address each of these points in 

turn. 

Can viewers know that more than one face is present? Yes. Figure 3.5 

summarises the cost per additional item for fixed/mixed judgements across 

experiments. Experiment 4 shows that adding an item to the display incurred no 

efficiency cost. Even when the number of items was doubled from two to four 

(Experiment 5), we found no impact on efficiency. In fact, in none of these cases was 

the per-item cost even numerically positive. We conclude that the visual system can 
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acquire multiple faces concurrently, at least over the range of 2–4 faces tested here. 

This finding is consistent with the ERP observation that multiple faces can enhance 

the N170 (Puce et al., 2013). However, the current task allows us to draw more 

specific conclusions. Unlike a simple numerosity task, the fixed/mixed task used here 

required participants to discern whether or not the seen items were intact upright 

faces. 

The observed multi-item capacity at the detection stage of face processing 

contrasts with surprisingly strict capacity limits seen for later stages of face 

processing. Response competition experiments requiring judgements of sex, eye 

direction, and semantic information have repeatedly found that processing one face 

precludes processing another face (Bindemann et al., 2007; Bindemann, Burton, et 

al., 2005; Burton & Bindemann, 2009; Jenkins et al., 2003). The cognitively earlier 

task of face detection apparently evades this strict limit of one. Taken together, these 

findings help to locate the putative bottleneck in face processing. We suggest that a 

processing bottleneck occurs after the detection step, such that coarse face/non-face 

discriminations may be conducted in parallel, but before further face information is 

extracted, such that finer discriminations among faces must be conducted in series. 

Future experiments could modify the method described here to test the upper bound 

Figure 3.5 Summary of cost per additional item for Fixed conditions (face and non-face) in Experiments 4 – 7. 
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of multiple face detection—in particular, whether detection capacity exceeds our 

maximum of four items. We expect that there will be some limit to the number of 

faces that can be detected concurrently, not least because overall visual bandwidth is 

limited. Establishing these upper limits for face detection will require careful 

experimentation, as increasing the number of display items necessitates increasing 

eccentricity, increasing crowding, or reducing item size, all of which can affect 

general visual discrimination. One interesting possibility relates to subitizing—rapid 

and accurate enumeration of up to 4 items (Kaufman & Lord, 1949; Piazza et al., 

2011; Pylyshyn, 2004). Although classic demonstrations of subitizing relied on 

simple visual objects (e.g. dots) as stimuli, more recent work has established 

subitizing-like phenomena for complex objects, including human figures (Railo et al., 

2016). The fixed/mixed task is clearly different from subitizing, as it requires 

participants to know whether or not display items are of the same type, rather than 

just enumerating them. Even so, the 4-item span associated with subitizing provides 

theoretical motivation to test larger set sizes in future experiments. For now, 

equivalent detection efficiency over the range of 2 to 4 items shows that face 

detection is not subject to a strict capacity limit of just one face. 

 

The comparison between Experiments 4 & 5 (in which the non-faces were 

scrambled faces) and Experiments 6 & 7 (in which the non-faces were inverted faces) 

underscores the importance of visual context in determining task performance (see 

Figure 3.5). Although multiple face detection can proceed in parallel (Experiments 4 

& 5), whether or not it actually does proceed in parallel depends on other factors—in 

this case, the nature of other items in the display (Experiments 6 & 7). This 

contingency is useful, as it suggests a way to probe what counts as a face to the visual 

system. Establishing that scrambled faces are not faces incurred no cognitive cost in 

this task, implying that an appropriate distribution of visual energies is not itself 

sufficient to match the face template. In contrast, establishing that inverted faces are 

not faces did incur a cognitive cost, implying that the spatial organisation of those 

visual energies makes a meaningful difference. We suggest that an inverted face 
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matches (or partially matches) the face detection template whereas a scrambled face 

does not. As a result, upright and inverted faces take additional cognitive resources to 

sort out, apparently one at a time. 

 

This interpretation fits with the broader notion that discriminations among 

stimuli that activate face processing (e.g. identification; extraction of social signals) 

are serial in nature. It also suggests a candidate behavioural marker of face template 

matching. If stimuli that give rise to serial processing in this task engage the template, 

and stimuli that give rise to parallel processing do not, it should be possible to 

characterise the ‘receptive field’ of the face template by varying the non-face stimuli 

in this task. Further iterations of the present task, with different kinds of carefully-

designed distractor items, could reveal what counts (and does not count) as a face to 

the visual system. 

 

It may seem counterintuitive to emphasise non-face visual content as a 

determinant of face perception, especially as so much previous work emphasises 

facial appearance. However, the distinction between face and non-face is key to the 

early perceptual step of face detection. From this perspective, we should expect 

performance to be determined as much by the rest of the visual environment as it is 

by faces themselves. The more closely visual properties of the environment resemble 

visual properties of faces (cf. scrambled faces in Experiments 4 & 5, inverted faces in 

Experiments 6 & 7), the more demanding the face/non-face discrimination becomes 

(Duncan & Humphreys, 1989; Lewis & Edmonds, 2005). This basic insight suggests 

that it will be difficult to generalise from detection experiments based on isolated 

faces only to face detection in the real world. It also suggests a principled means to 

reconcile seemingly discrepant findings in the literature. Visual search studies that 

have reported ‘pop-out’ for a target face have avoided presenting other face-like 

information in their displays (e.g. Lewis & Edmonds 2005, Experiment 7). Those that 

found no pop-out did present other face-like information (notably inverted faces, e.g. 

Lewis & Edmonds, 2005, Experiment 2; Nothdurft, 1993; Brown et al., 1997) This 
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distinction among studies of visual search for faces echoes more general findings in 

visual search. Search is most efficient when targets and distractors are dissimilar and 

displays contain homogeneous distractors; search becomes less efficient when target–

distractor similarity increases irrespective of display heterogeneity (Roper et al., 

2013). However, all of those studies relied specifically on a visual search task, in 

which the experimenters define faces as targets, display items must be localised, and 

a maximum of one target face is present. The current experiments emphasise the 

relation between face and non-face material in a very different task, in which no 

target category is defined, localisation is not required, and multiple faces are acquired 

from the visual environment simultaneously. 

 

Our final two points concern whether or not faces are ‘special’ in this 

situation. We note that response patterns across experiments were qualitatively 

similar for face and non-face displays. In Experiments 4 and 5, comparison of fixed 

conditions revealed no evidence of capacity limits for either stimulus category, in that 

adding extra items incurred no efficiency cost. In Experiments 6 and 7, the same 

comparison revealed set-size costs for both stimulus categories. As such, we make no 

claims concerning qualitative differences between multiple face detection and 

multiple stimulus detection generally. However, quantitative differences between 

categories were both clear and consistent. Across all four experiments, responses to 

faces were more efficient than responses to non-faces. This apparent face advantage 

accords with previous studies of face detection. For example, detection of upright 

intact faces has been shown to be more efficient than detection of other objects, 

pareidolic faces, and even faces with rearranged internal features (Crouzet et al., 

2010; Keys et al., 2021; Purcell & Stewart, 1986, 1988; Stein et al., 2012). In our 

view, there are many possible explanations for this apparent face advantage. The 

current experiments were not designed to disentangle them. Instead, we conclude that 

multiple faces can be detected concurrently, implying that the bottleneck in face 

processing follows the detection step, rather than preceding or coinciding with 



 94 

detection. Whether multiple faces actually are detected concurrently in a particular 

situation can depend on other aspects of the visual scene. 

  



 95 

Chapter 4 – Multiple Face Detection  

This chapter has been submitted for publication, it has been adapted to fit the 

formatting of this thesis :  

 

Qarooni, R., Prunty, J., Bindemann, M., & Jenkins, R. (2022). Multiple Face 

Detection. (Submitted). 

 

4.1 Abstract 

We often encounter several faces at once in complex social scenes. However, 

previous research on face detection has mainly focused on single targets and blank 

backgrounds. In the current study, participants reported the number of target items 

(upright, inverted, or scrambled faces) embedded in scenes of varying complexity. 

Across manipulations of exposure duration (Experiments 8 & 9), background 

complexity (Experiments 10 & 11), and target orientation (Experiments 12 & 13), we 

found rapid parallel detection for up to four faces in complex scenes. Performance 

was equivalent for upright and inverted faces, but less efficient for sideways faces, 

possibly reflecting a preference for vertical symmetry. In Experiment 14, we assessed 

spontaneous multiple face detection in a large-scale single-trial design (N = 1388) 

using 700 photographs of social groups. Presenting groups of up to six people 

allowed us to test the upper limits of multiple face detection. Beyond four faces, 

enumeration errors exceeded correct responses and were mainly underestimates. We 

conclude that humans can detect up to 4 ± 1 faces in complex scenes, efficiently and 

concurrently. Our findings illuminate an early process in social cognition that is often 

neglected. They also show that presenting multiple search targets can enrich our 

understanding of visual performance.  
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4.2 Introduction 

 

Humans readily form social groups of various sizes (Dunbar, 1998; Dunbar & 

Spoors, 1995; Zhou et al., 2005). It follows that when we encounter humans, we often 

encounter several at once rather than isolated individuals. Although work on social 

processes has examined group dynamics at different time scales (McGrath et al., 

2000), very little has looked at the earliest moments of a social encounter, when we 

first become aware that other people are present. 

 

Can we become aware of several people concurrently, or do we register each 

person in turn? One of the most reliable visual indicators of company is face 

detection. Pioneering studies on spatial orienting have found that a face in the visual 

field tends to capture attention (Bindemann, Burton, et al., 2005; Bindemann & 

Burton, 2008), and can be distinguished from non-face stimuli in as little as 100 ms 

(Crouzet et al., 2010; Crouzet & Thorpe, 2011). However, virtually all psychological 

literature on face detection has examined single faces (Bindemann & Lewis, 2013; 

Lewis & Edmonds, 2005). Detection of multiple faces has been almost entirely 

overlooked. While there is established literature on detecting multiple visual items 

(Katzin et al., 2019; Piazza et al., 2011; Riggs et al., 2006), much of it concerns 

numerical cognition and has not presented faces as detection targets.  

 

Face detection is thought to occur by matching regions of the visual 

environment to a stored face template (Lewis & Ellis, 2003; Robertson et al., 2017; 

Tsao & Livingstone, 2008). Previous research on face detection has focused on the 

specific qualitative properties involved during the template matching procedure. For 

efficient detection, a face template seems to require the correct integration of natural 

colour, shape, and internal spatial information. Manipulating face properties beyond 

these specific parameters has been shown to impair the detection process (Amso et 

al., 2014; Bindemann & Burton, 2009; Bindemann & Lewis, 2013; Crouzet & 
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Thorpe, 2011; Lewis & Edmonds, 2005; Pongakkasira & Bindemann, 2015; Purcell 

& Stewart, 1986, 1988; Stein et al., 2012). More recently, the role of the eyes has also 

been proposed as an important cue to face detection. Eye pairs alone have been 

shown to elicit rapid and accurate detection. However, an intact face representation 

with all its features was still the most efficient detection template (Kauffmann et al., 

2021; Omer et al., 2019). Much of this previous work explored face detection in 

laboratory settings through visual search or absent/present tasks of a single face in a 

plain backgrounds (but see (Bindemann & Lewis, 2013; Di Giorgio et al., 2012; 

Lewis & Edmonds, 2005; Pongakkasira & Bindemann, 2015) for important 

exceptions). However, face detection in everyday life often involves multiple faces 

embedded in a complex visual environment. Introducing this quantitative dimension 

raises an important question: is multiple face detection in naturalistic scenes a serial 

process or a parallel process?  

 

In a recent behavioural study (Qarooni et al., 2022), we addressed capacity 

limits in face detection, asking whether viewers can know that more than one face is 

present. Participants were instructed to decide whether or not a set of display items all 

belonged to the same category (all intact faces or all scrambled faces) or two different 

categories (both intact and scrambled faces). Judgements were equally efficient for 2, 

3, or 4 faces, demonstrating that several faces can be detected simultaneously 

(parallel processing). However, changing the scrambled faces to inverted faces 

introduced measurable per-item detection costs (serial processing), even when the 

intact faces remained the same. This observation suggests that surrounding visual 

context can determine the efficiency of multiple face detection. 

 

The displays presented in that study were tightly controlled, in the tradition of 

psychophysical experiments. While a psychophysical approach can be appropriate 

when probing cognitive architecture, it does not capture the variability in visual 

demands that we experience outside laboratory settings. In the current study, we 

sought to establish the impact of different viewing conditions on multiple face 
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detection. Previous work based on non-face targets suggests that the nature of the 

visual background is key here. For example, Wolfe et al. (2002) argued that 

segmenting objects from naturalistic backgrounds occurs in a single-preattentive step, 

only shifting to item-by-item selection when the background is visually similar to the 

targets. In a more recent study, Railo et al. (2016) found that increasing visual 

complexity of the background (from a blank canvas to a natural scene), slowed the 

parsing of biologically relevant stimuli from scenes. The stimuli used by Railo et al. 

(2016) depicted human figures in various poses, but importantly for the current study, 

faces were not always visible. Both studies found a similar pattern. Up to three items 

could be detected in parallel, and additional items beyond that incurred a detection 

cost. 

 

Wolfe et al. (2002) and Railo et al. (2016) suggest an essential role of visual 

background context in general detection. However, there are several reasons why the 

situation may be different for face detection. First, many studies have concluded that 

faces are a special category for the perceptual system, and may compete especially 

strongly for attentional resources (Farah et al., 1998; Tsao & Livingstone, 2008; 

Valentine, 1988; Yin, 1969a; Yovel & Kanwisher, 2005b). Second, later stages of face 

processing are known to be strictly capacity limited (one face at a time), implying a 

bottleneck at some earlier stage (Bindemann et al., 2007). Third, our recent 

experiments demonstrate parallel detection for up to four faces, but only presented 

stimuli against blank backgrounds (Qarooni et al., 2022). No studies have examined 

multiple face detection in naturalistic scenes. 

 

Here we ask how visual properties of search targets and search background 

affect capacity limits in face detection. In Experiments 8–13, participants were 

presented with displays containing 1, 2, 3, or 4 search targets embedded in different 

visual surrounds. Their task was to indicate, as quickly and accurately as possible, 

how many targets were present. In Experiments 8 & 9, we presented Upright, 

Inverted, or Scrambled Faces in real scenes, and measured detection efficiency for 
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different exposure durations. In Experiments 10 & 11 we manipulated the visual 

complexity and meaningfulness of the search backgrounds. In Experiments 12 & 13, 

we manipulated target type and orientation to probe the tuning of the face detection 

template. All of the preceding experiments (8–13) involved superimposing isolated 

search targets onto unrelated scenes. The resulting displays were artificial in the sense 

that they lacked the coherence of everyday social scenes. In Experiment 14, we 

tackled these limitations by presenting 700 social group photographs to 1400 

participants in a large-scale single-trial study. Replacing the previous search task with 

a retrospective enumeration judgement also allowed us to rule out possible effects of 

advance instructions or practice.  

 

4.3 Experiment 8: Upright, Inverted & Scrambled in Real Scenes 

(250 ms)  

The first experiment compares detection efficiency for Upright, Inverted and 

Scrambled targets presented at Set Sizes of One, Two, Three, and Four in real 

complex scenes. All items in a given scene were of the same target type, and 

participants were tasked with reporting how many targets they saw as quickly and 

accurately as possible. Comparing performance across target types should reveal any 

categorial differences in detection efficiency. Comparing across set sizes should allow 

us to estimate the cognitive cost imposed by each target. 

 

4.3.1 Methods 

4.3.1.1 Participants 

Eighty-two participants were recruited through Prolific recruitment service 

(www.prolific.co) and completed the experiment in exchange for a small payment. 

Twenty-two participants were excluded due to failed attention checks (2 or more 

within a block, or 3 across the entire experiment) or slow responses (>2.5 SD from 

https://www.prolific.co/
http://www.prolific.co/
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the group mean). The final sample (N = 60) comprised 22 females, 36 males, and 2 

who preferred not to answer (age range 19 – 58; M = 25.14, SD = 6.97). 

 

4.3.1.2 Design and Stimuli 

Stimuli were generated from a local face bank of 288 faces with an equal 

distribution of age (young and old adults), sex (male and female), and ethnicity 

(Asian, Black, and Caucasian; see Prunty et al., (2022) for details of demographic 

categorisation). Face images were collected from AI generated faces (Karras et al. & 

Nvidia, 2018) supplemented with real faces from the MR2 face bank (Strohminger et 

al., 2016) and other online sources.  

 

To create the face stimuli, the original face images were cropped to outline 

using the InterFace software package (Kramer et al., 2017), removing the extraneous 

background. The resultant images were then resized to 380 pixels wide × 570 pixels 

high. Inverted face stimuli were created by rotating face stimuli 180° in the picture 

plane.  

 

Scrambled face stimuli were created by cropping the same original face 

images to a 380 pixels wide × 570 pixels high rectangle. These cropped images were 

then submitted to Fourier phase transformation, randomly scrambling the phase of 

component spatial frequencies while maintaining overall brightness, contrast, and 

orientation (Honey et al., 2008).  

 

A bank of 300 scene images was used as complex naturalistic backgrounds 

(see Prunty et al., (2022) for details). All scenes were of real places that contained no 

faces or people. The bank consisted of 50 images for each of six scene categories: 

School, Garage, Home, Office, Restaurant, and Shop.  

 

The same procedure was used to generate displays for the Upright, Inverted, 

and Scrambled conditions. For instance, 180 images were randomly selected from the 

https://generated.photos/
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face stimuli set without repetition to create Upright conditions. Twelve scene images 

from each of the six scene categories we also randomly selected without repetition 

resulting in a total of 72 scenes allocated to the Upright condition. To avoid extreme 

peripheral presentations, 25 predetermined locations within the central 75% of the 

scene were chosen, and 1, 2, 3, or 4 faces were allocated to these locations depending 

on Set Size. A total of 18 experimental trials were generated for each target and 

evenly distributed across three blocks. In addition, four practice face trials (one for 

each target) were generated similarly. The same procedure was repeated for the 

Inverted and Scrambled conditions, with no item or scene being repeated across the 

whole experiment. Example displays can be seen in Figure 4.1(A).  

 

A total of 12 attention check trials were also created, one for each Target in 

each of the three blocks. These are similar to experimental trials but contain blue 

circles (average size equal to average target size) on a grey background.  

 

The within-subjects factors of Target Type (Upright, Inverted, Scrambled) and 

Set Size (One, Two, Three, Four) were manipulated in a fully counterbalanced 3 × 4 

factorial design. 

 

The experiment was hosted online at Gorilla Experiment Builder (Gorilla.sc; 

Anwyl-Irvine et al., 2020). Participants could access the experiment on any desktop 

or laptop computer resulting in variable screen sizes. Mobile devices and tablets were 

excluded.  

 

4.3.1.3 Procedure 

Participants were shown an example of each target type (Upright, Inverted, 

Scrambled) and were instructed that each display would contain targets of one type 

only (e.g. all Upright or all Inverted). For the participant, Upright, Inverted, and 

Scrambled targets were labelled Type A, Type B, and Type C, respectively. 

Participants were also instructed that they may see between 1 and 4 of the target types 

https://gorilla.sc/
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in the display. For each trial, the participants’ task was to indicate, as quickly and 

accurately as possible, how many of the specified items they saw in the display 

(numbered keypress response). Each trial began with a blank screen shown for 100 

ms, then a fixation cross for 250 ms, and another 100 ms blank screen. The stimulus 

display was then presented for 250 ms, followed by a text prompt that remained on 

screen until response. The experiment began with a block of 12 practice trials 

presented in random order. Three experimental blocks followed this practice block, 

each comprising 72 experimental trials and 4 attention check trials presented in 

random order. The experiment lasted an average of 10 minutes in total.  

 

4.3.2 Results and Discussion 

Trials with a reaction time below 150 ms or above 3000 ms were excluded (< 

0.01% of all trials). For concision, accuracy and reaction times for each trial were 

combined in a single Inverse Efficiency Score (IES; Bruyer & Brysbaert, 2011; 

Townsend & Ashby, 1978). Separate analyses of accuracy and reaction time measures 

are provided in the Supplementary Materials and support the same conclusions.  

 

Inverse Efficiency Scores for each condition are shown in Figure 4.1 (B). The 

IES data were submitted to a two-way ANOVA with within-subjects factors of Set 

Size (One, Two, Three, Four) and Target Type (Upright, Inverted, Scrambled). The 

analysis revealed a significant main effect of Set Size [F (3, 177) = 19.53, p < .001, 

η² = 0.25], with greatest detection efficiency for One item (M = 1212 ms, SE = 104 

ms), intermediate efficiency for Two (M = 2017 ms, SE = 186 ms) and Three items 

(M = 1875 ms, SE = 153 ms), and poorest efficiency for Four items (M = 2705 ms, 

SE = 238 ms). There was also a significant main effect of Target Type [F (2, 118) = 

113.66, p < .001, η² = 0.66], with better efficiency for Upright targets (M = 1077 ms, 

SE = 87 ms) and Inverted targets (M = 1156 ms, SE = 85 ms) than for Scrambled 

targets (M = 3625 ms, SE = 338 ms). The interaction effect between Set Size and 

Target Type was also significant [F (6, 354) = 23.03, p < .001, η² = 0.28]. 
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Simple main effects revealed no significant effect of Set Size in the Upright 

condition [One Upright, M = 1045 ms, SE = 95 ms; Two Upright, M = 1109 ms, SE = 

87 ms; Three Upright, M = 1159 ms, SE = 87 ms; Four Upright, M = 995 ms, SE = 

81 ms; F (3, 531) = 0.10, p = .960, η² = 0.00] or the Inverted condition [One Inverted, 

M = 1103 ms, SE = 92 ms; Two Inverted, M = 1254 ms, SE = 77 ms; Three Inverted, 

M = 1107 ms, SE = 86 ms; Four Inverted, M = 1159 ms, SE = 82 ms; F (3, 531) = 

0.09, p = .963, η² = 0.00]. In contrast, there was a highly significant effect of Set Size 

in the Scrambled condition [One Scrambled, M = 1489 ms, SE = 124 ms; Two 

Scrambled, M = 3687 ms, SE = 394 ms; Three Scrambled, M = 3361 ms, SE = 287 

Figure 4.1 Example displays used in Experiments 8 and 9 (A). Mean IES as a function of Set Size, shown separately 

for Upright, Inverted, and Scrambled targets for Experiment 8 (B) and Experiment 9 (C). Lower scores indicate better 

efficiency. Error bars show within-subjects standard error (Cousineau, 2005). Yellow shaded area indicates a 

significant difference Upright and Inverted targets compared to Scrambled targets at a particular set size. 
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ms; Four Scrambled, M = 5961 ms, SE = 550 ms; F (3, 531) = 65.00, p < .001, η² = 

0.27].  

 

There was no significant effect of Target Type at Set Size One [F (2, 472) = 

1.06, p = .349, η² = 0.00]. However, Upright and Inverted targets were detected more 

efficiently than Scrambled targets at every other Set Size, [Set Size Two, F (2, 472) = 

38.07, p < .001, η² = 0.14; Set Size Three, F (2, 472) = 30.04, p < .001, η² = 0.11; Set 

Size Four, F (2, 472) = 144.39, p < .001, η² = 0.38].  

 

No per-item cost was found over the tested range for Upright and Inverted 

targets. This flat set size function suggests parallel detection for upright and inverted 

faces, even in cluttered scenes. In contrast, increasing the number of Scrambled 

targets strongly affected detection efficiency, indicating serial detection for these 

items. One possible reason for this disparity is that the short exposure duration (250 

ms) made it difficult for participants to segment Scrambled targets from the 

surrounding scene. In the next experiment, we test this possibility by removing the 

exposure limit. 

 

4.4 Experiment 9: Upright, Inverted & Scrambled in Real Scenes 

(unlimited exposure)  

Experiment 9 replicates Experiment 8 and presents displays until participants’ 

response to investigate the effect of display presentation times on face detection 

efficiency. 

 

4.4.1 Methods 

4.4.1.1 Participants  

Sixty-three participants were recruited through Prolific recruitment service 

(www.prolific.co) and completed the experiment in exchange for a small payment. 

https://www.prolific.co/
http://www.prolific.co/
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Three participants were excluded due to failed attention checks (2 or more within a 

block, or 3 across the entire experiment) or slow responses (> 2.5 SD from the group 

mean). The final sample (N = 60) comprised 28 females and 32 males (age range 19 – 

56; M = 28.63, SD = 8.20). 

 

4.4.1.2 Design and Stimuli  

The design and stimuli were identical to Experiment 8 (See Figure 4.1 (A) for 

example displays).  

 

4.4.1.3 Procedure 

The procedure in Experiment 9 is identical to Experiment 8, except displays 

are now presented until response. The response prompt was presented once before 

each block rather than after each trial.   

 

4.4.2 Results and Discussion 

No trials were excluded as none fell below the 150 ms reaction time exclusion 

criteria. Accuracy and reaction times were again used to calculate IES data. Separate 

analyses of accuracy and reaction time measures are provided in the Supplementary 

Materials and support the same conclusions as IES.  

 

Figure 4.1 (C) shows IES data for each condition for Experiment 9. IES data 

were submitted to a two-way ANOVA with within-subjects factors of Set Size (One, 

Two, Three, Four) and Target Type (Upright, Inverted, Scrambled). The analysis 

revealed a significant main effect of Set Size [F (3, 177) = 4.83, p = .003, η² = 0.08], 

with good detection efficiency for One item (M = 1909 ms, SE = 47 ms), 

intermediate efficiency for Two (M = 2066 ms, SE = 52 ms) and Three items (M = 

2050 ms, SE = 53 ms), and greater efficiency was for Four items (M = 1882 ms, SE = 

78 ms). The analysis also revealed a significant main effect of Target Type was also 

found [F (2, 118) = 239.50, p < .001, η² = 0.80]. Upright Targets (M = 1524 ms, SE = 
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42 ms) were detected with the greatest efficiency, followed by intermediate efficiency 

for Inverted Targets (M = 1648 ms, SE = 35 ms), and poorest efficiency for 

Scrambled Targets (M = 2759 ms, SE = 95 ms). The interaction effect between Set 

Size and Target Type was also significant [F (6, 354) = 9.69, p < .001, η² = 0.14].  

 

Simple main effects revealed a significant effect of Set Size across the 

Upright condition. However, as in Experiment 8, no detection costs were incurred for 

each additional face in the display, [One Upright, M = 1593 ms, SE = 35 ms; Two 

Upright, M = 1584 ms, SE = 50 ms; Three Upright, M = 1622 ms, SE = 33 ms; Four 

Upright, M = 1308 ms, SE = 48 ms, F (3, 531) = 5.17, p = .002, η² = 0.03]. The same 

pattern was seen in the Inverted condition, a significant effect of Set Size was found 

but no efficiency costs were incurred per additional inverted face in the display [One 

Inverted, M = 1727 ms, SE = 36 ms; Two Inverted, M = 1778 ms, SE = 35 ms; Three 

Inverted, M = 1590 ms, SE = 29 ms; Four Inverted, M = 1497 ms, SE = 39 ms, F (3, 

531) = 4.02, p < .001, η² = 0.02]. As with Experiment 8, simple main effects revealed 

significant detection costs for additional items in the Scrambled condition [F (3, 531) 

= 13.25, p < .001, η² = 0.07]. One Scrambled Target (M = 2417 ms, SE = 69 ms) was 

detected more efficiency compared to Two (M = 2837 ms, SE = 72 ms), Three (M = 

2939 ms, SE = 96 ms), and Four (M = 2842 ms, SE = 145 ms) Scrambled Target.  

 

No significant effect of Target Type was found at any Set Size between 

Upright and Inverted Targets. However, both Target Types were significantly more 

efficient than Scrambled Targets at all Set Sizes [Set Size One, F (2, 472) = 44.87, p < 

.001, η² = 0.16; Set Size Two, F (2, 472) = 102.68, p < .001, η² = 0.30; Set Size 

Three, F (2, 472) = 133.62, p < .002, η² = 0.36; Set Size Four, F (2, 472) = 157.87, p< 

.001, η² = 0.40].  

 

The results from Experiment 9 replicate those of Experiment 8. While overall 

IES data was higher than in Experiment 8, no detection costs were found for Upright 

or Inverted Targets at any Set Size. Both conditions were detected efficiently for up to 
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four items tested here. But again, detection costs and poor efficiency were found for 

Scrambled Targets. 

 

The unlimited display presentation times in Experiment 9 suggest that the 

pattern of results seen in the previous experiment is not due to brief or limited 

exposure duration. Instead, it indicates that our visual system can efficiently discern 

the presence of multiple faces from real and complex scenes regardless of time limits. 

 

4.5 Experiment 10: Upright, Inverted & Scrambled in Blank Scenes 

(250 ms)  

In Experiment 10, we explore the effect of removing background complexity 

and meaningfulness on face detection efficiency. We repeat Experiment 8, but now 

One, Two, Three or Four Upright, Inverted, and Scrambled Targets are embedded in 

blank grey backgrounds. Removing all background information should reduce the 

need to segment Upright and Inverted Targets from the surrounding visual context 

facilitating detection. For the same reason, Scrambled Targets detection is also 

expected to be efficient. If detection for all Target Types is facilitated, then this would 

suggest an essential role of the background for the face detection process.  

 

4.5.1 Methods 

4.5.1.1 Participants  

Sixty-four participants were recruited through Prolific recruitment service 

(www.prolific.co) and completed the experiment in exchange for a small payment. 

Four participants were excluded due to failed attention checks (2 or more within a 

block, or 3 across the entire experiment) or slow responses (> 2.5 SD from the group 

mean). The final sample (N = 60) comprised 31 females and 29 males (age range 19 – 

62; M = 30.19, SD = 10.22). 

 

https://www.prolific.co/
http://www.prolific.co/
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4.5.1.2 Design and Stimuli  

The design and to-be-detected Targets were identical to previous experiments. 

The background scenes were now replaced with blank grey backgrounds to remove 

both meaningfulness and complexity. Example Displays are presented in Figure 4.2 

(A).  

 

4.5.1.3 Procedure 

The procedure in Experiment 10 is identical to Experiment 8 with displays 

presented for 250 ms.  

 

4.5.2 Results and Discussion 

Trials with a reaction time below 150 ms and above 3000 ms were excluded 

from the final analysis (< 0.01% of all trials). Accuracy and reaction times were again 

used to calculate IES data. Separate analyses of both constituent measures are 

provided in the Supplementary Materials and support the same conclusions as IES.  

 

Figure 4.2 (B) shows IES data for each condition for Experiment 10. The IES 

data were submitted to a two-way ANOVA with within-subjects factors of Set Size 

(One, Two, Three, Four) and Target Type (Upright, Inverted, Scrambled). The 

analysis revealed a significant main effect of Set Size [F (3, 177) = 51.09, p < .001, 

η² = 0.46]. Detection efficiency was greatest for One item (M = 485 ms, SE = 7 ms), 

and became poor as Set Size increased (Two, M = 509 ms, SE = 8 ms; Three items M 

= 593 ms, SE = 9 ms; Four, M = 597 ms, SE = 10 ms).  No significant main effect of 

Target Type was found [Upright Faces, M = 547 ms, SE = 42 ms; Inverted Faces, M 

= 545 ms, SE = 35 ms; Scrambled Faces M = 546 ms, SE = 95 ms; F (2, 118) = 0.10, 

p = .905, η² = 0.00]. However a significant interaction effect between Set Size and 

Target Type was revealed [F (6, 354) = 3.67, p = .002, η² = 0.06].  
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Simple main effects across Set Size revealed a different pattern of results to 

prior experiments. A significant effect of Set Size was found in the Upright condition, 

as Set Size increased detection efficiency for Upright Targets became poorer, and 

three and four Targets were detected with similar poor efficiency [One Upright, M = 

474 ms, SE = 6 ms; Two Upright, M = 515 ms, SE = 8 ms; Three Upright, M = 611 

ms, SE = 10 ms; Four Upright, M = 588 ms, SE = 9 ms, [F (3, 531) = 45.17, p < .001, 

η² = 0.20].  A significant difference in detection efficiency across Set Size was also 

for Inverted Targets. One Inverted (M = 588 ms, SE = 8 ms) and Two Inverted 

Targets (M = 506 ms, SE = 7 ms) were detected with similarly greater efficiency than 

Three Inverted (M = 587 ms, SE = 8 ms) and Four Inverted Targets (M = 598 ms, SE 

Figure 4.2 Example displays used in Experiments 10 (A – Left) and 11 (A – Right). Mean IES as a function of Set 

Size, shown separately for Upright, Inverted, and Scrambled targets for Experiment 10 (B) and Experiment 11 (C). 

Lower scores indicate better efficiency. Error bars show within-subjects standard error (Cousineau, 2005). Yellow 

shaded area indicates a significant difference Upright and Inverted targets compared to Scrambled targets at a 

particular set size. 
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= 11 ms) which were detected with similarly poorer efficiency [F (3, 531) = 34.32, p 

< .001, η² = 0.16]. This same significant effect across Set Size was found for 

Scrambled Targets [One Scrambled, M = 493 ms, SE = 8 ms; Two Scrambled, M = 

505 ms, SE = 8 ms; Three Scrambled, M = 583 ms, SE = 9 ms; Four Scrambled, M = 

597 ms, SE = 11 ms; F (3, 531) = 34.09, p < .001, η² = 0.16]. 

 

Simple main effects revealed no differences between the Upright, Inverted, 

and Scrambled conditions at each Set Size, except Set Size Three. Three Inverted and 

Three Scrambled Targets were detected more efficiently than Three Upright Targets 

[Set Size One, F (2, 472) = 2.54, p = .080, η² = 0.01; Set Size Two, F (2, 472) = 0.69, 

p = .503, η² = 0.00; Set Size Three, F (2, 472) = 5.90, p = .003, η² = 0.02; Set Size 

Four, F (2, 472) = 1.60, p = .203, η² = 0.01].  

 

Overall detection efficiency for Experiment 10 was greater than previous 

experiments for all Item Types; however, a different pattern of results was observed. 

When background complexity and meaningfulness are removed, upright face 

detection seems to incur a small (within ~90 ms) but significant detection cost per 

additional item. Both ‘non-face’ stimuli (inverted and scrambled faces) incurred a 

detection cost only from Two items to Three items. At the same time, no overall 

differences were found between Upright, Inverted and Scrambled conditions except 

at Set Size 3. It appears all Target Types were easier to segment from a background 

when meaningfulness and complexity were removed. These results support the 

importance of including real and/or complex backgrounds in face detection studies. 

The difference between face and ‘non-face’ information is vital within face detection. 

Therefore it would be difficult to deduce a pattern or capacity limits from 

experiments of isolated faces in plain backgrounds.  
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4.6 Experiment 11: Upright, Inverted, Scrambled in Voronoi Scenes 

(250 ms) 

Experiment 11 builds on the previous experiment and investigates face 

detection within Voronoi Scenes. These Voronoi Scenes remove background 

meaningfulness but retain reduced background complexity. Testing face detection 

under these conditions enables us to understand whether the meaningfulness of the 

scene is essential or if complexity, regardless of meaning, is needed for segmenting 

faces from the background.  

 

4.6.1 Methods 

4.6.1.1 Participants  

Sixty-nine participants were recruited through Prolific recruitment service 

(www.prolific.co) and completed the experiment in exchange for a small payment. 

Nine participants were excluded due to failed attention checks (2 or more within a 

block, or 3 across the entire experiment) or slow responses (> 2.5 SD from the group 

mean). The final sample (N = 60) comprised 38 females, 21 males, and 1 who 

preferred not to answer (age range 19 – 50; M = 25.65, SD = 7.36). 

 

4.6.1.2 Design and Stimuli  

The design and to-be-detected targets were identical to previous experiments, 

except Voronoi scenes equivalents were now used as background context. Voronoi 

scenes are created by drawing a boundary around a coplanar point connecting all 

points closer to it than points further away (Roos, 1993). This creates a tessellation of 

irregular polygon cells that reduces the overall meaningfulness and complexity of a 

scene but retains the same colour information. An example of a Voronoi scene is 

shown in Figure 4.2 (A) alongside other example displays from Experiment 11. 

Compared to a categorisation task of intact scenes (Mean accuracy 75.36%, SE = 

6.95%), Voronoi scenes were classified into their appropriate categories with 

https://www.prolific.co/
http://www.prolific.co/
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significantly lower accuracy (M = 28.40%, SE = 2.28%), [t (29) = 2.05, p < .001] 

suggesting lower overall complexity and meaningfulness.  

 

4.6.1.3 Procedure 

The procedure in Experiment 11 is identical to Experiment 8 with displays 

presented for 250 ms.  

 

4.6.2 Results and Discussion  

Trials with a reaction time below 150 ms and above 3000 ms were excluded 

from the final analysis (< 0.01% of all trials). IES data was calculated using accuracy 

and reaction time. Separate analyses of both measures are provided in the 

Supplementary Materials and support the same conclusions as IES.  

 

Figure 4.2 (C) shows IES data for each condition for Experiment 11. IES data 

were submitted to a two-way ANOVA with within-subjects factors of Set Size (One, 

Two, Three, Four) and Target Type (Upright, Inverted, Scrambled). The analysis 

revealed a significant main effect of Set Size [F (3, 177) = 2.85, p = .039, η² = 0.05]. 

Detection efficiency was greatest for One item (M = 485 ms, SE = 30 ms), and 

became poorer at Two items (M = 868 ms, SE = 38 ms), and then Three items (M = 

886 ms, SE = 25 ms), followed by slightly higher efficiency for Four items (M = 807 

ms, SE = 29 ms). A significant main effect of Target Type was also found with greater 

detection efficiency for Inverted (M = 810 ms, SE = 28 ms) and Upright Faces (M = 

827 ms, SE = 26 ms), and poorest efficiency for Scrambled Faces (M = 877 ms, SE = 

37 ms), [F (2, 118) = 4.57, p = .012, η² = 0.07]. A significant interaction effect 

between Set Size and Target Type was also revealed [F (6, 354) = 4.54, p < .001, η² = 

0.07]. 

 

Simple main effects revealed no significant differences in detection efficiency 

across Set Size for Upright Targets [One Upright, M = 831 ms, SE = 30 ms; Two 
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Upright, M = 810 ms, SE = 29 ms; Three Upright, M = 843 ms, SE = 21 ms; Four 

Upright, M = 824 ms, SE = 25 ms; F (3, 531) = 0.16, p = .920, η² = 0.00], or Inverted 

Targets, [One Inverted, M = 771, SE = 33; Two Inverted, M = 842 ms, SE = 29 ms; 

Three Inverted, M = 837 ms, SE = 23 ms; Four Inverted, M = 790 ms, SE = 32 ms; F 

(3, 531) = 1.09, p = .352, η² = 0.01]. However, Scrambled Targets showed differences 

in detection efficiency across Set Size, with Two (M = 951 ms, SE = 61 ms) and 

Three (M = 977 ms, SE = 30 ms) Scrambled Targets detected with a similarly poorer 

efficiency than One (M = 771 ms, SE = 26 ms) and Four (M = 808 ms, SE = 31 ms) 

Scrambled Targets [F (3, 531) = 9.09, p < .001, η² = 0.05].  

 

Simple main effects between Target Type at each Set Size revealed no 

differences at Set Size One [F (2, 472) = 1.69, p = .186, η² = 0.01]. At both Set Size 

Two and Set Size Three no differences were found for Upright and Inverted 

conditions, however both conditions were significantly more efficient than the 

Scrambled condition [Set Size Two, F (2, 472) = 7.50, p = .001, η² = 0.03; Set Size 

Three, F (2, 472) = 8.62, p < .001, η² = 0.04]. No differences between item Types 

were found at Set Size Four [F (2, 472) = 0.40, p = .669, η² = 0.00].  

 

Experiment 11 showed a similar pattern of results to Experiments 8 and 9 for 

upright and inverted faces. When background complexity is reduced and 

meaningfulness is removed, no detection costs are incurred for either upright or 

inverted faces. Nor are any differences found across Set Sizes. However, scrambled 

faces detection did incur a cost as Set Size increased. These results suggest that visual 

complexity is important for face detection, further reinforcing the need for 

incorporating real and/or complex scenes in face detection studies.  

 



 114 

4.7 Experiment 12: Scrambled and Sideways in Real Scenes (250 

ms) 

Across the previous four Experiments, detection efficiency for upright and 

inverted faces is highly similar. This pattern of results is in contrast to what is 

observed in later processes of recognition and identification, which are severely 

impaired by face inversion (Farah et al., 1998; Yin, 1969b). The inversion effect 

within face detection is contested, with some work specifying that an upright face 

template is needed for efficient detection (Purcell & Stewart, 1986, 1988). While 

other work, including our own, argues for an orientation invariant element to the 

detection template (Bindemann & Burton, 2008; Devue et al., 2012; Qarooni et al., 

2022). More evidence also suggests that detection can still occur with just a pair of 

eyes present (Kauffmann et al., 2021; Omer et al., 2019).  

 

Experiment 12 addresses how manipulating orientation affects the face 

detection template during multiple face detection. Specifically, we disturb the 

horizontal eye-pair orientation by comparing Sideways Targets (90° left or 90° right 

oriented faces) with Scrambled Targets. If face detection is specialised for detecting 

upright-oriented faces, then detection efficiency for Sideways Faces is expected to be 

similar to Scrambled Faces. If face detection is orientation invariant and it is merely 

the presence of a pair of eyes in any orientation, then Sideways Face detection should 

not incur a detection cost as Set Size increases and should be more efficient than 

Scrambled Faces 

 

4.7.1 Methods 

4.7.1.1 Participants  

Sixty-eight participants were recruited through Prolific recruitment service 

(www.prolific.co) and completed the experiment in exchange for a small payment. 

Eight participants were excluded due to failed attention checks (2 or more within a 

https://www.prolific.co/
http://www.prolific.co/
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block, or 3 across the entire experiment) or slow responses (> 2.5 SD from the group 

mean). The final sample (N = 60) comprised 40 females and 20 males (age range 19 – 

43; M = 25.73, SD = 6.09). 

 

4.7.1.2 Design and Stimuli  

The design and scene stimuli were identical to Experiments 8. Stimuli for 

Sideways conditions consisted of two separate conditions of faces rotated 90° left and 

90° right in the picture plane. The same Scrambled Targets condition as previous 

Experiments was used here. Example displays for Experiment 12 can be seen in 

Figure 4.3 (A). 

 

4.7.1.3 Procedure 

The procedure in Experiment 12 is identical to Experiment 8 with displays 

presented for 250 ms.  

 

4.7.2 Results and Discussion  

Trials with a reaction time below 150 ms and above 3000 ms were excluded 

from the final analysis (< 0.01% of all trials). IES data was calculated using accuracy 

and reaction time. Separate analyses of both measures are provided in the 

Supplementary Materials and support the same conclusions as IES.  

 

The separate 90° left and 90° right oriented face conditions were collapsed into 

the single Sideways Faces condition.  

 

Figure 4.3 (B) shows IES data for each condition for Experiment 12. IES data were 

submitted to a two-way ANOVA with within-subjects factors of Set Size (One, Two, 

Three, Four) and Target Type (Sideways, Scrambled). The analysis revealed a 

significant main effect of Set Size [F (3, 177) = 21.44, p < .001, η² = 0.27]. Detection 

efficiency was greatest for One item (M = 1313 ms, SE = 202 ms), followed by Two 
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items (M = 2137 ms, SE = 229 ms), and then Three items (M = 3421 ms, SE = 474 

ms), and Four items (M = 4003 ms, SE = 330 ms). A significant main effect of Target 

Type was found with greater detection efficiency for Sideways Targets (M = 1276 ms, 

SE = 186 ms) compared to Scrambled Targets (M = 4161 ms, SE = 431 ms), [F (1, 

59) = 61.94, p < .001, η² = 0.51]. A significant interaction effect between Set Size and 

Target Type was also found [F (3, 177) = 21.48, p < .001, η² = 0.27]. 

 

Simple main effects revealed no significant differences in detection efficiency 

across Set Size for Sideways Targets [One Sideways, M = 1198 ms, SE = 199 ms; 

Two Sideways, M = 1337 ms, SE = 191 ms; Three Sideways, M = 1251 ms, SE = 179 

ms; Four Sideways, M = 1320 ms, SE = 175 ms, [F (3, 354) = 0.03, p = .993, η² = 

0.00]. Differences in detection efficiency for Scrambled Targets were found, with 

efficiency becoming poorer as set size increases, but Three and Four Scrambled 

Targets were detected similarly (One Scrambled, M = 771 ms, SE = 26 ms; Two 

Scrambled, M = 771 ms, SE = 26 ms; Three Scrambled, M = 771 ms, SE = 26 ms; 

Four Scrambled, M = 771 ms, SE = 26 ms; F (3, 354) = 42.89, p < .001, η² = 0.27).  

 

Simple main effects between Target Type at each Set Size revealed no 

differences at Set Size One [F (1, 236) = 0.16, p = .688, η² = 0.00]. However 

efficiency for the Sideways condition was significantly better than Scrambled 

condition at each following Set Size [Set Size Two, F (1, 236) = 7.73, p = .006, η² = 

0.03; Set Size Three, F (1, 236) = 56.76, p < .001, η² = 0.19; Set Size Four [F (1, 236) 

= 86.81, p < .001, η² = 0.27].  
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The results of Experiment 12 show overall higher detection efficiency for 

sideways faces compared to scrambled faces. Sideways faces incurred no detection 

cost across Set Size supporting a parallel detection process for up to 4 items tested 

here. These findings suggest that the face detection template is invariant to 

Figure 4.3 Example displays used in Experiments 12 (A – Left) and 13 (A – Right). Mean IES as a function of Set 

Size, shown separately for Sideways and Scrambled targets for Experiment 12 (B), and for Upright and Sideways 

targets in Experiment 13 (C). Lower scores indicate better efficiency. Error bars show within-subjects standard 

error (Cousineau, 2005). Yellow shaded area indicates a significant difference Sideways targets and Scrambled 

targets (Experiment 12), and Sideways targets and Sideways targets (Experiment 13), at a particular set size. 
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orientation. Moreover, the findings suggest that a pair of eyes – regardless of whether 

they are oriented horizontally or vertically – can facilitate efficient detection. 

Experiment 13 explores this further by comparing Sideways Faces to Upright Faces.  

 

4.8 Experiment 13: Faces and Sideways in Real Scenes (250 ms) 

Experiment 13 builds on Experiment 12 to investigate the specificity of the 

face detection template in multiple face detection. It directly compares Upright Face 

Targets with Sideways Face Targets to test the extent of the orientation invariance of 

the face template. If multiple face detection can proceed regardless of orientation, 

then both conditions should be detected with similarly high efficiency. However, if 

multiple face detection is specific to upright-oriented faces, then Upright Targets 

should be detected more efficiently. Based on the prior experiments, no cost per 

additional item is expected as Set Size increases for both Upright and Sideways 

Targets.  

 

4.8.1 Methods 

4.8.1.1 Participants  

Seventy-one participants were recruited through Prolific recruitment service 

(www.prolific.co) and completed the experiment in exchange for a small payment. 

Eleven participants were excluded due to failed attention checks (2 or more within a 

block, or 3 across the entire experiment) or slow responses (> 2.5 SD from the group 

mean). The final sample (N = 60) comprised 37 females and 23 males (age range 19 – 

42; M = 26.71, SD = 5.91). 

 

4.8.1.2 Design and Stimuli  

The design and scene stimuli were identical to Experiment 8. In this 

experiment, to-be-detected stimuli were Upright Faces Targets and the same 

https://www.prolific.co/
http://www.prolific.co/
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Sideways Face Targets from Experiment 12. Example displays for Experiment 13 can 

be seen in Figure 4.3 (A). 

 

4.8.1.3 Procedure 

The procedure in Experiment 13 is identical to Experiment 8 with displays 

presented for 250 ms.  

 

4.8.2 Results and Discussion 

Trials with a reaction time below 150 ms and above 3000 ms were excluded 

from the final analysis (< 0.01% of all trials). IES data was calculated using accuracy 

and reaction time. Separate analyses of both measures are provided in the 

Supplementary Materials and support the same conclusions as IES.  

 

The separate 90° left and 90° right oriented face conditions were collapsed into 

a single Sideways Faces condition.  

 

Figure 4.3 (C) shows IES data for each condition for Experiment 13. IES data 

were subjected to a two-way ANOVA with within-subjects factors of Set Size (One, 

Two, Three, Four) and Target Type (Upright, Sideways). The analysis revealed a 

significant main effect of Set Size [F (3, 177) = 34.71, p < .001, η² = 0.37]. Detection 

efficiency was greatest for One item (M = 959 ms, SE = 36 ms), followed by Two 

items (M = 1010 ms, SE = 37 ms), and then Three items (M = 1389 ms, SE = 42 ms), 

and for Four items (M = 1507 ms, SE = 63 ms). A significant main effect of Target 

Type was also found, with greater detection efficiency for Upright Targets (M = 1065 

ms, SE = 42 ms) compared to Sideways Targets (M = 1368 ms, SE = 47 ms), [F (1, 

59) =121.11, p < .001, η² = 0.67]. A significant interaction effect between Set Size 

and Target Type was also found [F (3, 177) = 17.99, p < .001, η² = 0.23]. 
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Simple main effects revealed significant differences in detection efficiency 

across Set Size for Upright Targets [F (3, 354) = 16.04, p < .001, η² = 0.12]. One (M 

= 966 ms, SE = 38 ms) and Two (M = 858 ms, SE = 37 ms) Upright Targets were 

detected with similarly greater efficiency than Three (M = 1213 ms, SE = 42 ms) and 

Four (M = 1264 ms, SE = 63 ms) Upright Targets, which were detected with similarly 

poorer efficiency. The same pattern was observed for Sideways Targets [F (3, 354) = 

47.82, p < .001, η² = 0.29, One Sideways, M = 991 ms, SE = 35 ms; Two Sideways, 

M = 1163 ms, SE = 38 ms; Three Sideways, M = 1566 ms, SE = 48 ms; Four 

Sideways, M = 1751 ms, SE = 68 ms].  

 

Simple main effects between Target Type at each Set Size revealed no 

differences at Set Size One [F (1, 236) = 2.11, p = .147, η² = 0.01]. However 

efficiency for the Upright condition was significantly better than Sideways condition 

at each following Set Size [Set Size Two, F (1, 236) = 45.58, p < .001, η² = 0.16; Set 

Size Three, F (1, 236) = 60.94, p < .001, η² = 0.21; Set Size Four [F (1, 236) = 

115.99, p < .001, η² = 0.33].  

 

Experiment 13 shows overall greater detection efficiency for upright faces 

over sideways faces. These results suggest a preference in the face detection template 

for upright-oriented faces during multiple face detection. However, the detection of 

sideways faces was still efficient, suggesting that the face detection template can still 

detect these stimuli as faces regardless of orientation. The results of Experiments 13 

and 12 support a detection template invariant to orientation.   

 

Across Experiments 8 – 13, we investigated multiple face detection in real 

scenes and under different background manipulations. Regardless of background 

complexity and meaningfulness, face detection seems to operate in a highly efficient 

parallel manner. However, these experiments do not provide a complete picture of 

spontaneous multiple face detection. First, by giving specific instructions before the 

task, they do not adequately measure face detection as it might occur in the real 
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world. Second, while the stimuli are highly controlled, they are not realistic. The 

faces cropped to outline lack the necessary body context that would be expected in 

the real world. Third, the stimuli and displays do not account for the sheer variability 

of the real world, which contains massive variations in lighting, colour, viewpoint, 

brightness etc. Fourth, a maximum of four targets were used in these experiments, 

whereas we are likely to encounter more than four faces at times. These various 

experimental design choices were helpful in the initial investigation of multiple face 

detection in real scenes. However, a move towards realistic images of real-world 

situations is necessary to fully understand how more than one face is detected. 

Experiment 14 address this. 

 

4.9 Experiment 14: One–Shot Experiment 

In Experiment 14, we aim to investigate spontaneous multiple face detection 

in naturalistic settings using hundreds of real images. To circumvent the limitations of 

previous experiments, we adopt a novel single-trial design whereby each participant 

is presented with a single unique image without repetition. First, only after image 

presentation are participants given the task instructions to report how many faces they 

saw. Second, by using real images of real people the stimuli retain body context and 

information that were removed when faces are cropped to outline in the previous 

experiments. Third, visual properties, such as brightness, contrast, pose, lighting etc, 

were allowed to vary as much as possible. Having context and variability in the 

stimuli mimics what we experience in real world situations. Fourth, only the number 

of faces was controlled, and Set Size could range from 0 – 6, while the number of 

possible responses was 0 – 9. Expanding both the number of faces and the range of 

responses allows us to investigate the capacity limit of multiple face detection by 

assessing if participants incorrect responses are under- or over-estimations.  

 

The single-trial design is useful as it attempts to mimic spontaneous real-

world face detection while also providing the means of assessing it in laboratory 
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settings. To understand if we can detect faces even in these highly realistic examples, 

we would expect relatively high accuracy when faces are absent and when they are 

present, i.e., Set Size 0 and Set Size 1, respectively. If this is the case, then it would 

replicate previous findings of absent vs present face detection experiments. Moreover, 

if more than one face can be detected at a time, we would expect high accuracy past 

Set Size 1 up to Set Size 4, as tested in the previous experiments. Accuracy at larger 

Set Sizes (4 – 6) is expected to decrease as Set Size increases, but still remain above 

chance. Whilst incorrect responses at these larger Set Sizes are expected to be under-

estimations of the actual number of faces as opposed to over estimations. If accuracy 

remains above chance, and incorrect responses are under-estimations, then this would 

point towards a detection mechanism that can detect a larger number of faces but with 

greater difficulty and poorer efficiency.  

 

4.9.1 Methods 

4.9.1.1 Participants 

One thousand four hundred participants were recruited through Prolific 

recruitment service (www.prolific.co) and completed the experiment in exchange for 

a small payment. Twelve participants were excluded due to slow responses (>2.5 SD 

from the group mean). The final sample (N = 1388) comprised 652 females, 726 

males, and 10 who preferred not to answer (age range 18 – 76; M = 29.89 SD = 

10.51). 

 

4.9.1.2 Design and Stimuli 

Stimuli were gathered from creative commons, public Instagram accounts, and 

across the internet. A total of 700 naturalistic images were collected divided into 100 

unique examples for each of the seven conditions of Zero, One, Two, Three, Four, 

Five, or Six people. Only images with full frontal, or partial frontal face view were 

selected. All other image properties including size, lighting; brightness; pose etc were 

left to vary.  

https://www.prolific.co/
https://www.prolific.co/
http://www.prolific.co/
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A between-subjects design with the factor of Set Size (Zero, One, Two, Three, 

Four, Five, or Six) was used. Each participant saw a single unique image only once. 

Example images can be seen in Figure 4.4.  

  

Figure 4.4 Example images from each set size used in Experiment 14. Zero faces (MacEntee, 2010); One Face (Ming, 2014), 

Two Faces (Almazawi, 2013); Three Faces (Ashleigh, 2012), Four Faces (Kamaludin, 2011), Five Faces (Nojiri, 2011), Six 

Faces (Infusionsoft, 2009).   
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The experiment was hosted online at Gorilla Experiment Builder (Gorilla.sc; 

Anwyl-Irvine et al., 2020). Participants could access the experiment on any desktop 

or laptop computer resulting in variable screen sizes. Mobile devices and tablets were 

excluded.  

 

4.9.1.3 Procedure 

The experiment was conducted in two identical runs of 700 unique trials. 

Each run consisted of 100 trials from each of the 7 Set Sizes.  

 

Participants were asked to pay close attention to the screen but were not given 

specific instructions regarding the task. Once the participants indicated they were 

ready to begin the experiment a fixation cross appeared for 1400 ms with a 400 ms 

pause before and after. The stimulus image was then flashed for 200ms. Next, the 

participants saw a response screen where they were instructed to use either the 

number keys or the number buttons on screen to indicate how many faces they saw. 

Possible response options ranged from 0 – 9.  

 

4.9.2 Results and Discussion 

Total correct and incorrect participant responses were collated. Figure 4.5 

shows the percentage distribution of each 0 – 9 responses given for each Set Size, as 

well as the percentage agreement between the paired displays in 1st and 2nd run of the 

experiment.  

https://gorilla.sc/
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Figure 4.5 Heatmap (A) showing the percentage distribution of each response for each set size. Cells across the diagonal 

indicate percentage accuracy distribution. Cells off the diagonal indicate percentage error distribution. Bubble plot (B) 

showing percentage agreement between participants for paired displays in 1st and 2nd runs for each possible response value. 

Larger bubble size indicates greater agreement. 
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A Chi-Squared Test of Independence found significant differences in accuracy 

across Set Size, χ2 (6) = 496.34, p < .001. Accuracy was high for when no faces were 

present in the scene at Set Size Zero (87.69%). When faces were present in the scenes 

accuracy was also high but only for the smaller Set Sizes of One (97.49%), Two 

(94.39%), and Three (83.76%). Accuracy then decreased by ~21% between each of 

Set Sizes Four (62.12%), Five (40.61%), and Six (19.50%).  

 

A second Chi-Squared Test of Independence was conducted to investigate 

detection accuracy between the smaller Set Sizes (One, Two and Three) and larger 

Set Sizes (Four, Five, and Six). Significantly higher detection accuracy was found for 

smaller Set Sizes (M = 91.88%, SD = 7.20%), compared to larger Set Sizes (M = 

40.74%, SD = 21.31%), [χ2 (1) = 350.26, p < .001].  

 

To investigate whether participants over- or under-estimate the number of 

faces in a scene, errors across Set Sizes 1 – 6 were analysed with a further Chi-Square 

Test of Independence. A significant difference in the type of errors was found, χ2 (5) = 

69.28, p < .001. Overall errors were low at the smaller Set Sizes 1 – 3, and equally 

likely to be over- or under-estimations. At the larger Set Sizes, errors were more 

likely to be underestimations of the actual number of faces (Set Size Four, 60.00%; 

Five, 88.88%; Six, 77.02%).  

 

The high accuracy at Set Sizes Zero and One suggests that we can 

differentiate between the presence and absence of a face in a real scene. But can we 

detect more than one face at a time? The high accuracy at Set Sizes Two and Three 

suggest that we can detect more than one face at a time from real scenes. Past these 

smaller Set Sizes, detection accuracy decreases incrementally but remains above 

chance (>10%). Furthermore, as can be seen in Figure 4.5(A), incorrect responses at 

Set Size Five and Six are concentrated below the diagonal, pointing toward a 

tendency to underestimate the number of faces. The agreement bubble plot in Figure 

4.4(B), further supports this finding with higher agreement at small Set Sizes and 
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declined at larger Set Sizes. Participants are still able to detect more than three or four 

faces, however this is a more difficult and inefficient process. Experiment 14 goes 

beyond the previous experiments and shows that spontaneous real-world multiple 

face detection can and does occur in a parallel process.  

 

4.10 General Discussion  

In a series of seven experiments, we asked participants to report the number of 

target items presented in visual displays. When these targets were intact upright faces 

(Figure 4.6), we saw no change in detection efficiency as the number of targets 

increased from one to four. The only exceptions were Experiment 10 (when targets 

were presented against blank backgrounds) and Experiment 13 (when vertical 

symmetry was broken). We conclude that viewers can detect multiple faces 

simultaneously. 

 

Figure 4.6 Summary detection efficiency (IES) as a function of set size for upright faces in Experiments 8–11 and 13. 

Error bars show within-subjects SE (Cousineau, 2005). 
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This conclusion underscores the key findings of Qarooni et al. (2022) and 

generalises them beyond psychophysical methods. First, the current studies 

demonstrate multiple face detection in the context of a search task, in which spatial 

uncertainty requires localisation of targets as well as categorisation (Bindemann & 

Lewis, 2013b). The demand to localise was complicated by visual clutter—

naturalistic scenes in Experiments 8, 9, 10, 11, and 13; Voronoi scenes in Experiment 

11. Unlike blank backgrounds (Experiment 10), cluttered scenes require the viewer to 

segment face-containing regions from competing regions that are visually busy. Our 

results show that viewers can make the necessary discrimination at several locations 

simultaneously. 

 

Second, we estimate an upper bound on multiple face detection. Beyond four 

faces (Experiment 14), performance became markedly less efficient. Previous 

experiments have found equivalent face detection efficiency over the range 2–4 faces 

(Qarooni et al., 2022). However, while those experiments showed that capacity limits 

in face detection can exceed one face, they did not test for an upper bound; nor did 

they allow direct comparison of single versus multiple face detection.  

 

Third, we examined the effects of several visual factors on performance, 

delineating conditions under which multiple target detection is likely to be efficient or 

inefficient. In the following sections, we consider each of these factors in turn. 

 

4.10.1.1 Effects of exposure duration 

In Experiment 8, displays were presented for 250 ms, whereas in Experiment 

9, they remained on screen until response. In both of these experiments, detection was 

similarly efficient for upright and inverted faces. The small numerical advantage for 

upright faces was not statistically significant. Critically, there was no cost of 

increasing set size over the tested range of (1–4 items), indicating rapid (<250 ms) 

parallel detection for upright and inverted faces alike. 
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Detection was much less efficient for scrambled faces. In Experiment 8 

(limited exposure) increasing the number of scrambled faces impaired performance. 

This observation confirms the effectiveness of our set size manipulation, and implies 

serial detection for scrambled faces in this context. In Experiment 9 (unlimited 

exposure), participants could use additional viewing time to improve their 

performance. Even so, efficiency for scrambled faces did not approach efficiency for 

intact faces at any set size. In sum, restricted viewing time did not present a problem 

for intact faces; unrestricted viewing time did not solve the problem for scrambled 

faces. 

 

4.10.1.2 Effects of visual background 

Search tasks naturally incline us to focus on search targets. But comparison of 

Experiment 8 (cluttered scenes), Experiment 10 (blank background), and Experiment 

11 (Voronoi scenes) underscores the importance of visual context in determining task 

performance. 

 

Compared with a cluttered scene, a blank background greatly improved 

overall efficiency in this task. It also eliminated the main effect of the target type. 

This is perhaps unsurprising, given the high salience of any of these targets against 

the uniform grey surround. More interesting is that the blank background was 

associated with a small but significant effect of set size for all target types, possibly 

reflecting spatial uncertainty; cf. Qarooni et al. 2022). 

 

This pattern of findings for blank backgrounds is evidently fragile. Merely 

changing the background to a meaningless Voronoi scene (or a meaningful cluttered 

scene) was enough to abolish the effect of set size on upright faces, the overall high 

efficiency, and the convergence of target types. The fragility of the blank background 

findings urges caution when generalising to other viewing conditions. For non-blank 

backgrounds, we repeatedly found that viewers could detect multiple faces 

simultaneously. 
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4.10.1.3 Effects of target type 

With the exception of Experiment 10 (blank backgrounds), scrambled faces 

were detected less efficiently than upright or inverted faces. Given that all three target 

types were matched in terms of overall size, shape, colour, and low-level visual 

energies, the scrambled face deficit implies that the spatial structure of these energies 

is critical for detecting faces in scenes. This interpretation echoes previous studies 

(Purcell & Stewart, 1986, 1988). What the current experiments reveal is how 

profoundly set size can exacerbate performance differences (e.g. Experiments 8 and 

12). If we had only presented single targets in these experiments, we would have 

missed the sharp divergence between scrambled and intact faces. Only by testing 

multiple target detection can we see this bigger picture. 

 

Across experiments, detection efficiency for upright and inverted faces was 

virtually indistinguishable—a finding that resonates with visual search for faces 

(Bindemann & Burton, 2008; Lewis & Edmonds, 2005). This observation raises the 

question of category membership. What do upright and inverted faces have in 

common that scrambled faces do not? One possibility that has clear theoretical 

precedent is vertical symmetry. For example, the idea of a 1D ‘bar code’ for face 

perception relies on vertical symmetry (Dakin & Watt, 2009b)A related possibility is 

horizontally aligned eyes. A pair of eyes is a potent stimulus for the human attention 

system (Kingstone et al., 2004), and eyespot mimicry throughout the animal kingdom 

suggests that the salience of horizontal eye pairs is deeply rooted (Radford et al., 

2020; Skelhorn et al., 2016) 

 

One aspect of our findings suggests a role for such factors in multiple face 

detection. Although inverted faces were detected just as efficiently as upright faces 

(Experiments 8–11), sideways faces were detected less efficiently (Experiment 13). 

As this divergence between upright and sideways faces only emerged from set size 

two, it could only be revealed by presenting multiple targets. 
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The findings of Experiments 8–13 can be summed up as follows: (i) Viewers 

could detect several faces at once, even in cluttered scenes. (ii) Efficient performance 

was contingent on the internal spatial layout of the face, not overall colour or outline. 

(iii) Multiple face detection was inversion invariant, but not orientation invariant. 

 

4.10.1.4 Spontaneous multiple face detection 

Experiment 14 represents a deliberate departure from the preceding series. 

Using entirely different stimuli and methods, we found that viewers could detect three 

or four faces concurrently, even when single-trial presentation and retrospective task 

assignment ruled out expectation or practice effects. We also showed that multiple 

face detection generalises to coherent human figures photographed in hundreds of 

naturalistic scenes. 

 

Presenting up to six faces allowed us to estimate an upper bound for capacity 

limits in face detection. From set size five, errors outnumbered correct enumeration 

responses. Providing an expanded range of response options (zero to nine) allowed us 

to distinguish overestimates from underestimates at all set sizes. Underestimates were 

the dominant error from set size four. We propose that, under conditions of spatial 

uncertainty and in cluttered scenes, the upper limit for multiple face detection is four, 

plus or minus one. 

 

Our findings suggest a number of avenues for future research. In particular, it 

will be interesting to estimate the separate contributions of perceivers, scenes, and 

facial appearance to overall variability in face detection span. Given the importance 

of faces in social cognition and its disorders, an individual differences approach 

seems especially promising (Eayrs & Lavie, 2021b). For example, measuring the 

association between face detection span and social anxiety (Doty et al., 2013) or ASD 

(Schauder et al., 2019) would provide a novel test of plausible etiological pathways. 

Individual differences in face detection span could be assessed by combining the 
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multi-trial design of Experiments 8–13 with the expanded response options of 

Experiment 14.  

 

Another interesting question concerns the role of top-down expectations in 

multiple face detection. We saw in Experiment 14 that underestimates were more 

frequent than overestimates past four faces (Figure 4.5 heat map). One possibility that 

could account for this is social knowledge. Some human group sizes are more 

common than others, notably groups in the 3–5 range (Dunbar & Spoors, 1995; Zhou 

et al., 2005). Presumably, these regularities become internalised by members of 

society—either through the statistics of everyday experience or over the course of 

human evolution. Such top-down knowledge could influence perception when the 

bottom-up signal is weak (e.g. brief presentation and high set size in Experiment 14), 

thus biasing estimates towards the expected range. Future experiments could measure 

top-down influence more directly by manipulating perceptual uncertainty. For now, 

we show that humans can detect up to four faces (plus or minus one) in complex 

scenes efficiently and concurrently. Our findings illuminate an early process in social 

cognition that is often neglected. They also show that presenting multiple targets can 

transform our understanding of search performance. 
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Chapter 5 – General Discussion  

The current thesis had three main aims. The first aim was to compare multiple 

target detection for faces and other types of stimuli. The second aim was to estimate 

capacity limits in face detection and investigate the serial-vs-parallel nature of face 

template matching. The third aim was to test how multiple face detection is affected 

by different viewing conditions, including aspects of the task and presentations. 

Achieving these three aims improves our theoretical understanding of the quantitative 

dimension of face detection. It also expands our knowledge of the qualitative 

dimension. Moreover, the novel paradigms developed in this thesis contribute several 

new experimental methods for assessing face detection specifically.   

 

This general discussion shall briefly summarise the main findings of each 

experimental chapter. It shall then discuss the theoretical implications and 

methodological contributions of these findings. Finally, it shall reflect on the 

remaining questions of the capacity limits of face detection and suggest future 

directions for investigating these questions.  

 

5.1 Overview of the Current Experiment Work 

The three experimental studies within Chapter 2 aimed to distinguish between 

multiple face detection and multiple non-face detection. Using a ‘subitizing of faces’ 

approach, two main findings were established. First, detection of up to four faces 

outperformed detection of up to four non-faces. Second, upright and inverted faces 

were indistinguishable from each other based on detection performance. Together 

these findings establish a foundation for the subsequent studies in this thesis. More 

specifically, they point towards a special detection mechanism for faces over non-

faces that can be sustained for up to four faces.  
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Chapter 3 focused on addressing the capacity limits of face detection to assess 

the serial-vs-parallel nature of the process. The novel ‘fixed/mixed’ judgement task 

allowed for an estimate of the cost per additional item in the display without relying 

on visual search or enumeration. The four experiments reported in Chapter 3 revealed 

a parallel detection process in which two, three, or four faces could be detected with 

no discernible cost per item. However, this parallel cost-free detection was contingent 

on the surrounding visual context. Supporting prior findings from Chapter 2, Chapter 

3 also found a serial detection process for upright and inverted faces, which could not 

be distinguished from each other. Overall, these results further support an inversion-

invariant detection mechanism. They also aid in locating the bottleneck in face 

perception.  

 

The final series of experiments reported in Chapter 4 investigated multiple 

face detection from real scenes and factors that may affect it. First, even from real 

photographs of complex scenes, face detection proceeds in an efficient parallel 

manner for up to four faces. Beyond this range, enumeration accuracy declined, and 

underestimates were more likely than overestimates. Second, incorporating visual 

context in face detection experiments is vital to assess the process as it would occur 

in everyday life. Third, a small detection advantage was seen for upright faces in real 

scenes compared to sideways faces. Together these results demonstrate how face 

detection is a process that is largely unaffected by the complexity of the visual 

background or by inversion of the face. They also emphasise the importance of both 

the ‘template’ and the ‘visual environment’ aspects of face detection. 

 

5.2 Theoretical Implications 

The experimental chapters in this thesis suggest that detecting multiple faces 

from complex visual backgrounds is a parallel and efficient process for up to four 

faces. This section discusses the theoretical implications of these findings in the 

context of the current face detection literature. Specifically, it addresses quantitative 
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aspects of face detection by discussing how we can detect multiple faces at once and 

how this finding adds to our understanding of the bottleneck of face processing. Next, 

it addresses qualitative aspects of face detection, including the observed inversion-

invariance and the issue of category membership (i.e. what counts as a face). Finally, 

it will consider social and evolutionary implications of the ability to detect multiple 

faces.  

 

5.2.1 Quantitative Aspects of Face Detection  

This thesis provides two main takeaways regarding the quantitative aspect of 

face detection. First, we can detect multiple faces at once. This finding stands in 

contrast to later face processes, which appear to be strictly limited to one face at a 

time. Second, we can detect up to four of these faces in an efficient and parallel 

manner. These findings intersect with both numerical cognition and face detection 

literature.  

 

Face detection and subitizing share similar capacity limits and parallel 

processing of up to four items suggesting they may also share similar underlying 

mechanisms. To account for our subitizing abilities, Trick & Pylyshyn (1994) 

proposed the FINSTs theory. This theory suggests the presence of a capacity-limited 

process of item individuation. Up to four mental indices – termed FINSTs – can be 

occupied parallelly to track objects in the visual environment. Both subitizing and the 

FINSTs theory are domain-general in the sense that any object, regardless of its 

properties – or even if these properties change – can be enumerated and tracked in the 

visual environment (Katzin et al., 2019; Pylyshyn, 2004; Trick, 1992). Under this 

domain-general perspective, both faces and non-faces should be detected in parallel 

up to four items. Indeed Experiments 1 and 2 in this thesis show that faces and non-

faces alike can be detected/subitized accurately and rapidly. However, across all 

experiments in this thesis, including Experiments 1 and 2, face detection outperforms 

non-face detection. This finding supports the face detection advantage noted in 
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previous face detection work (Crouzet et al., 2010; Keys et al., 2021; Purcell & 

Stewart, 1986, 1988; Wardle et al., 2020). This general discussion argues that even 

though subitizing and, in turn, FINSTs theory are domain-general, there appears to be 

priority for detecting multiple faces over non-face stimuli. In the context of the 

FINSTs theory, it may be that priority is given to faces over non-faces to occupy the 

mental indices. This view of a ‘special’ status for faces at the detection stage fits well 

within established literature on the ‘special’ status for faces in later processes (Farah 

et al., 1998; Kanwisher et al., 1997; Tanaka & Farah, 2007).  

 

The finding of a parallel cost-free detection mechanism for up to four faces 

also resolves some discrepancies in the face detection literature. This specific 

detection pattern seems unaffected by some manipulations of the visual environment 

and emerges more clearly when faces are in real scenes. However, when faces are 

embedded amongst inverted faces (i.e. similar stimuli), detection shifts to a serial 

process where each additional face incurs a cost. Serial processing has been 

previously suggested by Nothdurft (1993), who found that search times increased as 

the number of jumbled or inverted face distractors increased. In this case, the target 

and distractor were similar. In contrast, Lewis & Edmonds (2005) argued for parallel 

processing after finding no increase in search times for a single target upright face as 

the distractor scrambled scene size increased. But in Experiment 2 of that study, 

Lewis & Edmonds (2005) also found serial detection when faces are embedded 

amongst inverted faces. The findings in this thesis suggest that the discrepancies in 

previous findings may be due to the high level of similarity between upright and 

inverted faces. The notion of inversion-invariance is examined in section 5.2.2. For 

now, inversion-invariance does seem to account for serial detection pattern found 

whenever upright and inverted faces must be differentiated.  

 

Nonetheless, inversion-invariance also supports the staged detection 

mechanism proposed by Lewis and Edmonds (2005). It appears that an initial stage 

relies on the broad tuning and orientation-invariance of the face detection template to 
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select any plausible candidate face region, which could include upright faces, 

inverted faces, sideways faces or pareidolic faces (Wardle et al., 2020). Then a 

second, more selective stage deals with orientation (if necessary) followed by later 

face processes. This staged detection process would account for the serial and costly 

detection displays that combined upright and inverted faces in this thesis. If all 

objects in these displays are detected as faces, then the detection process must slow 

down at the second stage to assess each face and rotate it if needed.  

 

The observation that we can detect multiple faces at once has also aided in 

locating the bottleneck in face perception. Later face processes, such as extraction of 

personal identity or semantic information, appear to be strictly capacity limited to one 

face at a time (Bindemann et al., 2007; Bindemann, Burton, et al., 2005). In contrast, 

face detection appears to have a capacity limit of up to four faces. Two alternative 

hypotheses regarding the bottleneck of face processing were outlined in the General 

Introduction and are depicted in Figure 1.3. The observed capacity limit of later face 

processes could originate at the detection stage, such that detection too is capacity 

limited to one face and constrains later processes. Alternatively, capacity limits could 

originate only after the detection stage, such that the detection process can 

accommodate more than one face, but later processes cannot. As discussed in Chapter 

3, the current findings point to a bottleneck in face processing after the detection 

stage, implying different processing bandwidth for detection and later face processes. 

Figure 5.1 illustrates this revised hypothesis regarding the bottleneck of face 

processing.  
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It is important to note that while up to four faces can be detected at once, 

capacity limits of face detection may still be malleable to some extent. Individual 

differences in processing capacities, visual load, and attention have been found to 

affect visual item enumeration (Alvarez & Cavanagh, 2004; Cavanagh & Alvarez, 

2005; Cowan, 2001; Eayrs & Lavie, 2018; Eayrs & Lavie, 2021; Railo et al., 2008). 

Moreover, accuracy results from Experiment 14 further suggest that capacity limits 

can fluctuate across specific displays. Underestimations were more likely than 

overestimations when five or six faces were presented in photographs. But accuracy 

at these set sizes was still above chance, suggesting that in some instances, five or six 

faces may be detected. The one-participant-one-trial design of Experiment 14 did not 

allow for further explorations of expanded capacity limits, be they individual 

differences, scene properties, or clustering of individual faces. However, the 

groupitizing phenomenon from numerical cognition, in which subitizing of items is 

facilitated through grouping, may offer one explanation. This point is returned to in 

section 5.4, which discusses avenues for future research. Nonetheless, whether or not 

capacity limits can expand or contract under certain special circumstances, it appears 

that a face detection span of four (plus or minus one) is typical for everyday face 

detection.  

Figure 5.1 Revised hypothesis for the bottleneck in face perception. Up to four faces can be detected in parallel 

suggesting the bottleneck is present after the detection stage.    
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5.2.2 Qualitative Aspects of Face Detection  

While this thesis has focused on quantitative aspects of face detection, 

qualitative aspects cannot be separated entirely, as multiple face detection requires 

multiple template matching. Throughout the experimental work presented here, 

whenever the face detection template is matched to different regions of the visual 

environment, interesting findings emerge regarding the different categories of objects. 

Specifically, there appears to be an inversion-invariant aspect to the detection 

template such that upright and inverted faces are detected in a similar manner. In the 

context of previous face detection literature, this points to a hierarchy in the detection 

of different classes of objects.  

 

The notion of an inversion-invariant face detection template contrasts with the 

face detection effect (FDE) reported by Purcell & Stewart (1986, 1988). The FDE 

found shorter presentation times were required for intact upright faces compared to 

inverted or jumbled faces. Inversion-invariance at the detection stage also contrasts 

with previous face perception literature that has long touted faces as ‘special’ stimuli 

preferentially processed over inverted faces and non-faces (Farah et al., 1998; 

Kanwisher et al., 1997; Tanaka & Farah, 2007; Yin, 1969b). In the context of multiple 

face detection, this inversion-invariance seems to come into effect in the earliest 

stages of detection, as suggested by Lewis and Edmonds (2005). It also suggests 

broad tuning in the face detection template, such that the template is selective for face 

stimuli but not especially sensitive to their vertical orientation (i.e. upright or 

inverted). This finding echoes recent face detection work exploring similar attentional 

bias to upright and inverted faces (Bindemann & Burton, 2008; Devue et al., 2012; 

Laidlaw et al., 2015). Moreover, this account could also explain why sideways faces 

in Experiment 13 were detected efficiently, but not as efficiently as upright faces.  

 

The inversion-invariance of the detection template appears to hinge on a 

general abstract representation of faces which may contain common features shared 
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between upright and inverted faces – as suggested by Bindemann & Burton (2008) 

and Lewis and Edmonds (2005). Horizontal eye pairs (Kauffmann et al., 2021; Omer 

et al., 2019) and horizontal spatial frequency ‘bar codes’ within the face (Dakin & 

Watt, 2009a; Goffaux & Dakin, 2010) have both been proposed as components of the 

detection template. Both these visual properties are preserved when a face is upright 

or inverted, but not when it is scrambled. Yet the major divergence between sideways 

faces and scrambled faces (Experiment 12) shows that eliminating these properties 

did not reduce a sideways face to ‘non-face’ status in this task. Conversely, the minor 

divergence between sideways faces and upright faces (Experiment 13) suggests a 

possible role for these properties in mediating match to template.   It is outside the 

scope of this thesis to determine the exact properties of the face detection template. 

But future work could adapt the methods developed in this thesis to pursue these 

qualitative questions. For instance, the fixed/mixed design could be adapted to 

compare upright faces with comparison stimuli that have been modified in other ways 

(e.g. orientation of eye pairs).   

 

Orientation aside, there does appear to be a detection advantage for faces as a 

category, relative to other classes of objects. Previous face detection eye-tracking and 

visual search studies have found preferential detection of faces over face-like stimuli 

(pareidolic and illusionary faces), which in turn, are preferentially detected over non-

faces (Crouzet et al., 2010; Keys et al., 2021; Wardle et al., 2020). Interestingly, the 

nuances of this hierarchy point to a detection template that is selective for faces, but 

broadly tuned. Wardle et al. (2020) investigated the brain representation of faces, 

pareidolic faces, and matched non-face objects in an fMRI and MEG study. The 

representation of pareidolic faces, i.e. illusionary faces, was initially more similar to 

real faces rather than to matched non-face objects. However, within 250 ms, this 

representation changed to be more like non-face objects than faces. The similar neural 

representations for faces and pareidolic faces were also echoed in a follow-up visual 

search study, which found fastest search times for faces, followed by pareidolic faces, 

followed by non-face objects (Keys et al., 2021).  
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5.2.3 Detecting Multiple Social Stimuli  

The detection hierarchy of different classes of objects seems to be topped by 

faces, a specific class of highly salient social stimuli. Moreover, the broad tuning of 

the detection template seems to suggest a specialised detection mechanism that errs 

on the side of caution, preferring false positives to misses. Regions of the visual 

environment that contain candidate faces are apparently detected in a rapid parallel 

manner. It is only after this initial detection stage that a more discerning process is 

implemented, perhaps through inversion rotation as suggested by Lewis and 

Edmonds (2005), or through changes in brain representation for pareidolic faces, as 

observed by Wardle et al. (2020) and Keys et al. (2021).  

 

Detecting multiple faces in parallel may serve as an evolutionary advantage, 

allowing rapid identification of the potential threats and benefits in the visual 

environment. Supporting this claim, New et al. (2007) found preferential and 

category-specific attention to animate over inanimate objects, arguing that it was 

membership to “ancestrally important categories” (pg. 16598) that drove this 

attention. Furthermore, experiments have found highly efficient visual search for 

human faces amongst primate or mammal faces (Simpson, Buchin, et al., 2014; 

Simpson, Husband, et al., 2014). These findings again point to a hierarchy within 

detection. Even amongst other non-human faces, a preference still persists for faces. 

With humans being highly social animals, whose success as a species could be 

attributed to our ability to socialise and understand each other (Dunbar, 2012; 

Tomasello, 2019), an expanded ability to assess the presence of faces would confer an 

advantage.  

 

5.3 Methodological Contributions  

The finding of a parallel detection mechanism for up to four faces was made 

possible by adapting existing paradigms from numerical cognition and face 
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perception to the current research questions. To date, most subitizing work has 

incorporated simple circle stimuli in displays with high control between luminance, 

surface area, size, and density (De Marco & Cutini, 2020), and only a few have 

incorporated other stimuli such as geometric shapes (Vuilleumier & Rafal, 2000), or 

human figures (Railo et al., 2016). At the same time, previous face perception 

research has relied on visual search or face categorisation tasks with a single face 

target (e.g. Lewis and Edmonds, 2005; Liu, Harris, & Kanwisher, 2002). The 

experimental work in this thesis has combined methods from both fields to assess 

multiple face detection.  

 

The first methodological contribution is the simple manipulation of adding 

multiple faces to the display. Across this thesis, comparisons of different items at set 

size one often failed to distinguish between faces and non-faces. If detection was 

assessed based on the difference between one face compared to one non-face, then no 

detection advantage would be noticed. Only when multiple faces or non-faces were 

presented could divergent patterns of performance be discerned. While this 

methodological contribution is simple, it is impactful. To understand multiple face 

detection, we need to present multiple faces.  

 

The second methodological contribution is the development of the 

fixed/mixed judgment task. Unlike visual search, the fixed/mixed task only requires 

participants to indicate whether or not all items in a set belong to the same category, 

without requiring them to know how many items are there and what type of items 

they are. This task directly assesses multiple face detection without directly 

measuring visual item enumeration of object category discrimination. It also lends 

itself to different manipulations. As mentioned earlier, qualitative aspects of the face 

detection template could be explored using the fixed/mixed task. For instance, 

detection of intact face stimuli could be compared to manipulated face stimuli to test 

whether the face detection template can (i) generalise to the manipulated faces, and 

(ii) similarly detect multiple faces and multiple manipulated faces. Affirmative results 
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would provide converging evidence for a selective but broadly tuned detection 

template. Thus, the fixed/mixed task can be used to investigate both quantitative and 

qualitative aspects of face detection.  

 

Third, it is important to consider the role of visual context. The pattern of a 

parallel face detection mechanism only emerged when multiple faces were embedded 

in complex visual backgrounds (e.g., Experiments 8 and 9). When this background 

was removed, parallel face detection was compromised (Experiments 10). 

Incorporating complex visual backgrounds into face detection experiments seems 

logical, if detection involves registering the presence of faces by comparing regions 

of the visual environment to a stored face template (Lewis & Ellis, 2003; Robertson 

et al., 2017; Tsao & Livingstone, 2008). If the visual environment is removed, then 

the number of candidate regions is drastically reduced, affecting detection. This 

situation could plausibly manifest as a rapid but serial process, as those remaining 

regions have to be assessed in turn to categorise them as faces rather than to localise 

them.  

 

A further benefit of incorporating complex backgrounds is that they more 

closely resemble the visual environments in which everyday face detection occurs. 

However, everyday face detection is also spontaneous; we neither consciously 

prepare to detect faces nor instruct our face processing system to detect the faces we 

see. Visual search for faces departs from this spontaneous situation by prescribing an 

experimental task in which faces are defined as targets. The one-trial one-participant 

design of Experiment 14 hinges on giving participants the task instructions only after 

the display is presented. This experimental design appears to successfully tap into 

spontaneous multiple face detection. Participants could not prepare to report the 

number of faces they saw, but their detection system could efficiently detect up to 

four faces in parallel. By extending the range of possible responses beyond the 

number of presented faces, this experiment also allowed us to estimate the upper limit 

of face detection. Even though five or six faces can be detected with above-chance 
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accuracy, viewers were more likely to generate underestimates at these large set sizes 

than to respond accurately or overestimate. More generally, Experiment 14 shows 

how a large-scale single-trial experiment can allow us to tackle research questions 

that do not fit conventional experimental designs. 

 

5.4 Future directions 

The theoretical and methodological advances presented here open up the 

neglected quantitative dimension of face detection. Their position at the intersection 

of face perception and numerical cognition show how these seemingly disparate areas 

can profit from each other. As well as addressing the research questions that first 

motivated this project, the thesis also identifies new research questions which can be 

explored in future research.  

 

The later parts of this thesis examined how visual factors, including 

surrounding visual context, affect face detection span. The typical limit appears to be 

around four faces, plus or minus one, across the conditions tested here. However, 

future research could assess the prospects for extending this limit, and numerical 

cognition paradigms offer novel ways to do so. Groupitizing is a phenomenon within 

subitizing in which items that are chunked together are enumerated together (Anobile 

et al., 2020; Gilmore et al., 2018b; Starkey & McCandliss, 2014). One interesting 

question is whether groupitizing can apply to multiple face detection, such that the 

apparent capacity of four faces can be artificially inflated. For instance, eight faces in 

a display could be presented in four groups of two faces each. From a groupitizing 

perspective, all four pairs would be detected as individual units; however, they would 

be enumerated as eight items. If parallel face detection is strictly limited to four faces, 

in a way that is immune to grouping principles, then the results should replicate those 

seen in this thesis. However, if groupitizing applies to face stimuli as it applies to 

simple stimuli, then all eight faces should be detected at once.   
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Chunking of social stimuli seems plausible. For example, the social binding 

hypothesis (Figure 5.2) suggests that within scenes, social interaction between people 

binds them into groups (Vestner et al., 2019). Vestner et al. (2019) find support for a 

group-based analysis of social scenes whereby an interacting dyad is perceived as a 

single unit. Preferential detection for social pairs is also seen in the work of Railo et 

al. (2016). In their work, up to three human figures could be detected rapidly and 

accurately, but performance was best for two figures. Following the social binding 

hypothesis, if we have the capacity to detect up to four faces simultaneously, but 

socially relevant stimuli can be grouped together in pairs, it may be possible to push 

the limits of face detection beyond the capacity of four.  

 

Future research into quantitative aspects of face detection can also help us 

understand the strengths and limitations of our own cognitive abilities, relative to 

those of computers. The vast majority of research into face detection concerns 

machine vision, not human vision. Computer algorithms are not restricted to the same 

capacity limits that biology imposes on humans. An increasingly pressing question is 

how humans can relate to cognitive abilities that greatly exceed our own—

particularly in the social realm where we take our fluency for granted. It seems 

plausible that understanding our own cognitive limit will become important for 

Figure 5.2 Visual representation of the Social Binding Hypothesis from Vestner et al. (2019). When viewing 

social scenes (top) it may be possible that interacting pairs are binded (bottom) together to simplify visual 

input and facilitate processing. 
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supplanting intuitions of what machine systems can or cannot do, and calibrating 

expectations more accurately. Given the rate of progress in automated systems, face 

perception may be a useful domain in which to study this emerging dynamic in 

human-computer interaction.  

 

5.5 Concluding Remarks  

By volume, research on later stages of face perception greatly exceeds 

research on face detection. Even within face detection, research on qualitative aspects 

exceeds research on quantitative aspects. Using novel paradigms inspired by the 

numerical cognition literature, current work tackles several quantitative questions 

concerning face detection by humans. The thesis establishes that detecting multiple 

faces in complex visual scenes is an efficient parallel process for up to four faces. It 

also contributes methodological innovations that can be adapted to address related 

research questions. Face detection and later stages of face processing are governed by 

different perceptual principles. 
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Appendices  

A.1 Supplementary Analyses: Chapter 2 

This section contains the supplementary material for Chapter 2: Subitizing 

Faces, including full accuracy and reaction time analyses of Experiment 1 – 3.  

 

A.1.1 Experiment 1: Absolute Subitizing 16 ms Exposure Time 

A.1.1.1 Detection Accuracy 

To investigate detection accuracy, a two-way ANOVA with repeated measures 

of Set Size (One, Two, Three, Four, Five, Six, Seven, Eight) and Item Type (Upright 

Face, Inverted Face, Upright Non-Face, Inverted Non-Face) was conducted. Table 

A.1 displays accuracy means and SE. The analysis revealed a significant main effect 

of Set Size, with accuracy decreasing as the Set Size increased [F (7, 273) = 248.50, p 

< .001, η2 = 0.86], as well as a main effect of Item Type, with greater overall accuracy 

for Upright and Inverted Faces compared to Upright and Inverted Non-Faces, [F (3, 

117) = 4.13, p = .008, η2 = 0.10]. A significant interaction effect between Set Size and 

Item Type was also found [F (21, 819) = 4.46, p < .001, η2 = 0.10].  
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Table A.1 Experiment 1 mean % accuracy data for Upright Face, Inverted Face, 

Upright Non-Face, and Inverted Non-Face conditions at each Set Size. Within-

subjects standard error in brackets (Cousineau, 2005). 

Set Size 
Upright  

Faces 

Inverted  

Faces 

Upright  

Non-Faces 

Inverted  

Non-Faces 
Grand Mean 

One 97.19 (0.96) 96.25 (1.00) 96.67 (0.95) 96.77 (0.99) 96.72 (0.97) 

Two 93.65 (1.03) 93.02 (0.96) 88.96 (1.20) 88.65 (1.45) 91.07 (1.16) 

Three 79.58 (1.98) 78.23 (2.13) 71.98 (2.03) 72.29 (1.92) 75.52 (2.02) 

Four 70.21 (2.10) 68.23 (1.88) 60.94 (2.27) 60.73 (1.87) 65.03 (2.03) 

Five 53.54 (2.53) 55.94 (2.39) 48.33 (1.86) 49.38 (2.61) 51.80 (2.35) 

Six 47.40 (1.47) 42.50 (1.83) 47.50 (1.90) 45.83 (2.19) 45.81 (1.85) 

Seven 39.17 (1.93) 39.17 (1.98) 42.92 (2.12) 42.81 (2.37) 41.02 (2.10) 

Eight 26.25 (2.48) 26.35 (2.72) 32.08 (2.22) 32.60 (2.64) 29.32 (2.51) 

Grand Mean 63.37 (1.81) 62.46 (1.86) 61.17 (1.82) 61.13 (2.01) 62.03 (1.87) 

 

Simple main effects revealed significant differences in accuracy for Upright 

Faces as each Set Size increased [F (1, 1092) = 163.18, p < .001, η2 = 0.52]. 

Detection accuracy for 1UF and 2UF is similarly high but decreased significantly 

with each additional face, and no differences were found between 6UF and 7UF. 

Accuracy for Inverted Faces followed the same pattern [F (1, 1092) = 161.77 p < 

.001, η2 = 0.51], with no differences between 1IF and 2IF, or 6IF and 7IF. Accuracy 

for Upright Non-Faces also decreased significantly with each Set Size [F (1, 1092) = 

128.17, p < .001, η2 = 0.45], but no differences were found between 1UN and 2UN, 

and between 5UN, 6UN, and 7UN. The same significant decrease in accuracy pattern 

was seen for Inverted Non-Faces as Set Size increased - [F (1, 1092) = 127.94, p < 

.001, η2 = 0.45]. No differences were found between 1IN and 2IN, and between 5IN, 

6IN, and 7IN 

 

Simple main effects also revealed no difference in detection accuracy at Set 

Size One between any condition, [F (3, 1092) = 0.06, p = .979, η2 = 0.00]. A 
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significant difference was found at Set Size Two, but further Tukey’s HSD tests 

revealed no differences between conditions [F (3, 1092) = 3.00, p = .030, η2 = 0.01]. 

At Set Sizes Three and Four, significant differences were found based on category, 

such that Upright and Inverted Faces were detected with similarly greater accuracy 

than Upright and Inverted Non-Faces, (Set Size Three [F (3, 1092) = 6.76, p < .001, 

η2 = 0.02], Set Size Four [F (3, 1092) = 10.44, p < .001, η2  = 0.03]). At Set Size Five, 

accuracy for Inverted Faces was significantly higher than both Upright and Inverted 

Non-Faces, but not Upright Faces [F (3, 1092) = 5.49, p < .001, η2= 0.02]. At Set 

Size Six, significant simple main effects were found but further Tukey’s HSD tests 

revealed no differences between conditions [F (3, 1092) = 2.36, p < .070, η2 = 0.01]. 

No significant differences were found at Set Size Seven [F (3, 1092) = 1.97, p < .116, 

η2 = 0.01]. At Set Size Eight, significant differences were found based on category 

again, however, now Upright and Inverted Non-Faces were detected with greater 

accuracy than Upright and Inverted Faces.  

 

A.1.1.2 Detection Reaction Time 

To investigate detection reaction time, a two-way ANOVA with repeated 

measures of Set Size (One, Two, Three, Four, Five, Six, Seven, Eight) and Item Type 

(Upright Face, Inverted Face, Upright Non-Face, Inverted Non-Face) was 

conducted. Table A.2 displays RT means and SE. The analysis revealed a significant 

main effect of Set Size, with RT increasing as the Set Size increased [F (7, 273) = 

44.87, p < .001, η2 = 0.53]. No main effect of Item Type was found, [F (3, 117) = 

2.23, p = .089, η2 = 0.05]. However, a significant interaction effect between Set Size 

and Item Type was revealed [F (21, 819) = 1.63, p = .036, η2 = 0.04].  
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Table A.2 Experiment 1 mean reaction time data in ms for Upright Face, Inverted 

Face, Upright Non-Face, and Inverted Non-Face conditions at each Set Size. Within-

subjects standard error in brackets (Cousineau, 2005). 

Set Size 
Upright  

Faces 

Inverted  

Faces 

Upright  

Non-Faces 

Inverted  

Non-Faces 
Grand Mean 

One 686 (39) 686 (39) 699 (42) 706 (39) 694 (40) 

Two 789 (35) 810 (37) 810 (39) 826 (34) 809 (36) 

Three 941 (32) 959 (35) 1008 (35) 965 (36) 968 (35) 

Four 1065 (29) 1055 (27) 1074 (36) 1058 (31) 1063 (31) 

Five 1334 (41) 1287 (38) 1270 (28) 1274 (28) 1291 (34) 

Six 1371 (41) 1372 (42) 1283 (38) 1310 (42) 1334 (41) 

Seven 1457 (88) 1435 (56) 1334 (71) 1328 (53) 1389 (67) 

Eight 1449 (82) 1329 (77) 1320 (66) 1260 (52) 1340 (69) 

Grand Mean 1137 (48) 1117 (44) 1100 (44) 1091 (39) 1111 (44) 

 

Simple main effects revealed significant increases in RTs for all conditions as 

Set Size increased. Reaction times for both Upright and Inverted Faces followed the 

same pattern [F (7, 1092) = 40.19, p < .001, η2 = 0.20, and F (7, 1092) = 33.37, p < 

.001, η2 = 0.18, respectively]. For both conditions, RTs for smaller Set Sizes between 

One and Four were not significantly different from their immediate neighbouring Set 

Size. However, RTs for these smaller Set Sizes were overall significantly quicker than 

RTs for larger Set Sizes between Five and Eight, which were not different from each 

other. The same basic pattern mentioned above was also found for Upright and 

Inverted Non-Faces [F (7, 1092) = 25.53, p < .001, η2 = 0.14, and F (7, 1092) = 

24.39, p < .001, η2 =  0.14, respectively]. But in addition to this pattern, 4 Upright 

Non-Faces were not significantly different from 5 and 6 Upright Non-Faces. Whilst 4 

Inverted Non-Faces were not significantly different from 8 Inverted Non-Faces.  

 

Simple main effects revealed no significant differences between any Item 

Types at Set Sizes One to Six. However, at Set Size Seven, Upright Faces were 
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significantly slower than either Non-Face condition. Whilst at Set Size Eight, Upright 

Faces were significantly slower than all other conditions Set Size One, F (3, 1092) = 

0.09, p = .965, η2 =  0.00; Set Size Two, F (3, 1092) = 0.21, p = .887, η2 = 0.00; Set 

Size Three, F (3, 1092) = 0.74, p = .530, η2 = 0.00; Set Size Four, F (3, 1092) = 0.07, 

p = .978, η2 = 0.00; Set Size Five, F (3, 1092) = 0.81, p = .490, η2 = 0.00; Set Size 

Six, F (3, 1092) = 1.87, p = .134, η2 = 0.01; Set Size Seven, F (3, 1092) = 4.21, p = 

.006, η2 = 0.01; Set Size Eight, F (3, 1092) = 5.86, p = .001, η2 = 0.02].  
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A.1.2 Experiment 2: Absolute Subitizing: Until Response 

A.1.2.1 Detection Accuracy 

To investigate detection accuracy, a two-way ANOVA with repeated measures 

of Set Size (One, Two, Three, Four, Five, Six, Seven, Eight) and Item Type (Upright 

Face, Inverted Face, Upright Non-Face, Inverted Non-Face) was conducted. Table 

A.3 displays accuracy means and SE. The analysis revealed a significant main effect 

of Set Size, with accuracy decreasing as the Set Size increased [F (7, 413) = 39.05, p 

< .001, η2 = 0.40]. No main effect of Item Type was found, [F (3, 413) = 2.23, p = 

.087, η2 = 0.04]. No significant interaction effect between Set Size and Item Type was 

found either [F (21, 1239) = 0.71, p < .892, η2 = 0.01].  

 

Table A.3 Experiment 2 mean % accuracy data for Upright Face, Inverted Face, 

Upright Non-Face, and Inverted Non-Face conditions at each Set Size. Within-

subjects standard error in brackets (Cousineau, 2005). 

Set Size 
Upright  

Faces 

Inverted  

Faces 

Upright  

Non-Faces 

Inverted  

Non-Faces 
Grand Mean 

One 98.82 (1.10) 98.68 (1.05) 98.54 (1.09) 98.68 (1.13) 98.68 (1.09) 

Two 96.32 (0.94) 96.53 (1.03) 97.08 (1.14) 96.88 (1.18) 96.70 (1.07) 

Three 95.76 (1.00) 95.00 (0.98) 95.14 (1.04) 95.21 (0.99) 95.37 (1.00) 

Four 93.96 (1.05) 94.31 (1.08) 95.00 (0.96) 93.40 (0.87) 94.14 (0.99) 

Five 89.38 (1.14) 88.75 (1.21) 89.45 (0.93) 88.96 (1.25) 89.14 (1.13) 

Six 82.36 (1.33) 80.97 (1.29) 81.88 (1.31) 80.69 (1.51) 81.48 (1.36) 

Seven 82.64 (1.41) 82.43 (1.36) 85.00 (1.59) 82.64 (1.49) 82.57 (1.46) 

Eight 81.53 (1.69) 78.82 (1.91) 81.46 (1.94) 80.56 (1.91) 80.59 (1.86) 

Grand Mean 90.10 (1.26) 88.64 (1.24) 90.59 (1.25) 89.09 (1.29) 89.83 (1.25) 

 

 

A.1.2.2 Detection Reaction Time 

To investigate detection reaction time, a two-way ANOVA with repeated 

measures of Set Size (One, Two, Three, Four, Five, Six, Seven, Eight) and Item Type 
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(Upright Face, Inverted Face, Upright Non-Face, Inverted Non-Face) was 

conducted. Table A.4 displays RT means and SE. The analysis revealed a significant 

main effect of Set Size, with RTs increasing as the Set Size increased [F (7, 413) = 

242.10, p < .001, η2 = 0.80]. A main effect of Item Type was also found, [F (3, 413) = 

3.04, p = .031, η2 = 0.05], with longer RTs for Inverted Non-Faces, but similar RTs 

for the remaining conditions. However, no significant interaction effect between Set 

Size and Item Type was found [F (21, 1239) = 1.04, p < .416, η2 = 0.02].  

 

Table A.4 Experiment 2 mean reaction time data in ms for Upright Face, Inverted 

Face, Upright Non-Face, and Inverted Non-Face conditions at each Set Size. Within-

subjects standard error in brackets (Cousineau, 2005). 

Set Size 
Upright  

Faces 

Inverted  

Faces 

Upright  

Non-Faces 

Inverted  

Non-Faces 
Grand Mean 

One 753 (39) 747 (38) 753 (38) 788 (53) 760 (42) 

Two 868 (35) 877 (35) 866 (35) 896 (37) 877 (36) 

Three 1030 (30) 1032 (30) 1028 (30) 1078 (32) 1042 (31) 

Four 1208 (26) 1179 (27) 1207 (26) 1223 (23) 1204 (26) 

Five 1673 (23) 1690 (28) 1657 (24) 1673 (22) 1673 (24) 

Six 2026 (37) 2024 (39) 1999 (38) 2027 (39) 2019 (38) 

Seven 2152 (46) 2169 (48) 2141 (47) 2168 (51) 2157 (48) 

Eight 2068 (51) 2096 (50) 2112 (50) 2178 (56) 2113 (52) 

Grand Mean 1472 (36) 1477 (37) 1470 (36) 1504 (39) 1481 (37) 
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A.1.3 Experiment 3: Categorical Subitizing 

A.1.3.1 Detection Accuracy 

 

  

Figure A.1 Mean % accuracy data for each condition in Experiment 3. Error bars show within-subjects standard 

error (Cousineau, 2005). Bar labels display individual condition means and (SE).  
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To investigate detection accuracy, the data were subjected to a two-way 

ANOVA with repeated measures of Set Size (Zero, One, Two, Three, Four) and 

TARGET–distractor Type (UPRIGHT–inverted; UPRIGHT–non-face; INVERTED–

upright; INVERTED–non-face; NON-FACE–upright; NON-FACE–inverted). The 

analysis revealed a significant main effect of Set Size whereby accuracy became 

poorer as Set Size increased, [F (4, 156) = 70.48, p < .001, η2 = 0.64; Zero, M = 

83.88%, SE = 1.79%; One, M = 76.24%, SE = 1.69%; Two, M = 74.53%, SE = 

1.65%; Three, M = 65.17%, SE = 1.86%; Four, M = 63.80%, SE = 2.56%). A 

significant main effect of TARGET–distractor Type was also found [F (4, 156) 

=496.73, p < .001, η2 = 0.93], with the poorest accuracy for UPRIGHT–inverted (M = 

41.79%, SE = 2.70%) and INVERTED–upright (M = 44.68%, SE = 2.75%) 

conditions compared to other conditions (UPRIGHT–non-face, M = 87.35%, SE = 

1.52%; INVERTED–non-face, M = 83.21%, SE = 1.91%; NON-FACE–upright, M = 

90.78%, SE = 1.18%; NON-FACE–inverted, M = 88.53%, SE = 1.39%). A significant 

interaction effect between Set Size and TARGET–distractor Type was also found [F 

(20, 780) = 21.85, p < .001, η2 = 0.36].  

 

 Simple main effects revealed significant differences in accuracy 

between the Set Sizes for all conditions except NON-FACE–upright [F (4, 936) = 

2.36, p = .052, η2 = 0.01].  At UPRIGHT–inverted [F (4, 936) = 13.04, p < .001, η2 = 

0.05], Set Sizes One and Three were significantly lower than the other Set Sizes.  At 

INVERTED–upright [F (4, 936) = 110.47, p < .001, η2 = 0.32], accuracy was highest 

for Set Size Zero and decreased significantly as Set Size increased, however Set Sizes 

One and Two were not significantly different from each other and Set Sizes Three and 

Four were also not significantly different from each other. At UPRIGHT–non-face [F 

(4, 936) = 25.23, p < .001, η2 = 0.1] accuracy was the lowest at Set Size Four, but no 

other significant differences were found. At INVERTED–non-face [F (4, 936) = 

43.96, p < .001, η2 = 0.16] accuracy was similarly significantly lower for Set Sizes 

Three and Four. At NON-FACE–inverted [F (4, 936) = 2.57, p = .037, η2 = 0.01] only 
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accuracy at Set Size One was significantly higher than Set Size Four and no other 

differences were found.  

 

Simple main effects also revealed significant differences between TARGET–

distractor Types at each Set Size. At Set Size Zero [F (5, 975) = 90.31, p < .001, η2 = 

0.32] and Set Size One [F (5, 975) = 156.10, p < .001, η2 = 0.44], accuracy for 

UPRIGHT–inverted was the lowest, and both UPRIGHT–inverted and INVERTED–

upright were significantly lower than all other conditions. At Set Size Two [F (5, 975) 

= 133.12, p < .001, η2 = 0.41] neither UPRIGHT–inverted and INVERTED–upright 

were different from each other but accuracy for both conditions was again lower than 

the remaining conditions. At Set Size Three [F (5, 975) = 206.10, p < .001, η2 = 0.51] 

accuracy for UPRIGHT–non-face, NON-FACE–upright, and NON-FACE–inverted 

was significantly higher compared to the other conditions. At Set Size Four [F (5, 

975) = 117.53, < = .001, η2 = 0.38], accuracy for UPRIGHT–non-face and 

INVERTED–non-face was similarly lower than all other conditions, whilst accuracy 

at NON-FACE–upright, and NON-FACE–inverted was not different.  
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A.1.3.2 Detection Reaction Time 

  

Figure A.2 Mean RT [ms] data for each condition in Experiment 3. Error bars show within-subjects standard 

error (Cousineau, 2005). Bar labels display individual condition means and (SE). 
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To investigate detection reaction, the data were subjected to a two-way 

ANOVA with repeated measures of Set Size (Zero, One, Two, Three, Four) and 

TARGET–distractor Type (UPRIGHT–inverted; UPRIGHT–non-face; INVERTED–

upright; INVERTED–non-face; NON-FACE–upright; NON-FACE–inverted). The 

analysis revealed a significant main effect of Set Size whereby reaction times became 

slower as Set Size increased, [F (4, 156) = 30.48, p < .001, η2 = 0.44; Zero, M = 813 

ms, SE = 24 ms; One, M = 877 ms, SE = 23 ms; Two, M = 906 ms, SE = 22 ms; 

Three, M = 992 ms, SE = 27 ms] but then RTs became faster at Set Size Four [M = 

892 ms, SE = 24 ms]. A significant main effect of TARGET–distractor Type was also 

found [F (5, 195) = 119.73, p < .001, η2 = 0.75], with the slowest RTs for UPRIGHT–

inverted (M = 1181 ms, SE = 37 ms) and INVERTED–upright (M = 1114 ms, SE = 33 

ms) conditions compared to other conditions,  (UPRIGHT–non-face, M = 784 ms, SE 

= 19 ms; INVERTED–non-face, M = 796 ms, SE = 18 ms; NON-FACE–upright, M = 

754 ms, SE = 18 ms; NON-FACE–inverted, M = 745 ms, SE = 19 ms). A significant 

interaction effect between Set Size and TARGET–distractor Type was also found [F 

(20, 780) = 8.66, p < .001, η2 = 0.18]. 

 

 Simple main effects revealed significant differences in accuracy 

between the Set Sizes for all conditions except NON-FACE–inverted [F (4, 936) = 

3.30, p = .011, η2 = 0.01]. For UPRIGHT–inverted [F (4, 936) = 18.40, p < .001, η2 = 

0.07], RT at Set Size Zero was slightly slower than Set Size Three. Reaction time at 

Set Size Four was also significantly faster than all other Set Sizes, and no other 

differences were found. For the INVERTED–upright condition [F (4, 936) = 22.46, p 

< .001, η2  = 0.09], RTs at Set Size Zero and Set Size Three were significantly 

different from all the other conditions, but Set Size Three RTs were the slowest. At 

the UPRIGHT–non-face [F (4, 936) = 13.13, p < .001, η2  = 0.05] condition RTs for 

Set Sizes Zero and One were all similarly faster than Set Sizes Two, Three and Four, 

which were not significantly different from each other. A similar same pattern was 

seen for INVERTED–non-face [F (4, 936) = 27.87, p < .001, η2  = 0.11], whereby Set 

Sizes Zero, One, and Two were similarly faster than Set Sizes Three and Four, which 
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did not differ from each other. At NON-FACE–upright [F (4, 936) = 3.77, p = .005, η2  

= 0.02] RTs for Set Size Three were slower than Set Sizes Zero and One but no other 

differences were found.  

 

 Simple main effects also revealed significant differences between 

TARGET–distractor Types at each Set Size. At Set Size Zero [F (5, 975) = 65.95, p < 

.001, η2 = 0.25], Set Size One [F (5, 975) = 81.65, p < .001, η2 = 0.3], and Set Size 

Two [F (5, 975) = 69.37, p < .001, η2 = 0.26], RTs for UPRIGHT–inverted and 

INVERTED–upright were similarly slower than all other conditions. The same pattern 

was seen in the remaining Set Sizes. However at, both Set Size Three [F (5, 975) = 

72.19, p < .001, η2 = 0.27] and Set Size Four [F (5, 975) = 28.76, p < .001, η2 = 0.13] 

the INVERTED–non-face condition was also significantly slower. Across all Set 

Sizes, no differences between UPRIGHT–non-face, NON-FACE–upright, and NON-

FACE–inverted were found.  
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A.2 Supplementary Analyses: Chapter 3 

This section contains the supplementary material for Chapter 3: Capacity 

Limits in Face Detection, including full accuracy and reaction time analyses of 

Experiment 4 – 7.  

 

A.2.1 Experiment 4: Two-vs-Three Faces and Non-Faces (Dissimilar) 

A.2.1.1 Detection Accuracy 

Figure A.3 Mean accuracy scores for each condition in (a) Experiment 4 and (b) Experiment 5. F denotes face, N 

denotes non-face. Error bars show within-subjects standard error (Cousineau, 2005). 

 

Figure A.3a summarises the accuracy scores for each condition of Experiment 

4. A two-way ANOVA with the repeated measures factors of Set Size (Two, Three) and 

Display Type (Fixed, Mixed) revealed no main effect of Set Size with no differences in 

accuracy between Two items (M = 94.72%, SE = 0.61%) and Three items (M = 95.29%, 

SE = 0.54%) overall [F (1, 59) = 2.04, p=.158, η² = 0.03]. A significant main effect of 

Display Type was found with slightly lower detection accuracy for Fixed displays (M 

= 94.72%, SE = 0.61%) compared to Mixed displays (M = 95.78%, SE = 0.54%), [F 

(3, 177) = 25.40, p<.001, η² = 0.30]. However, no interaction effect between Set Size 

and Display Type was found, [F (3, 177) = 1.17, p=.322, η² = 0.02].  
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A.2.1.2 Detection Reaction Time  

Figure A.4 Mean reaction times for each condition in (a) Experiment 4 and (b) Experiment 5. F denotes face, N 

denotes non-face. Error bars show within-subjects standard error (Cousineau, 2005).  

 

Figure A.4a summarises the reaction times for each condition of Experiment 

4. A two-way ANOVA with the repeated measures factors of Set Size (Two, Three) 

and Display Type (Fixed, Mixed) revealed a significant main effect of Set Size, with 

faster detection times for Two items (M = 722ms, SE = 7ms) than for Three items (M 

= 743ms, SE = 7ms) overall, [F (1, 59) = 22.86, p<.001, η² = 0.28], and a significant 

main effect of Display Type with faster detection times for Fixed displays (M = 

703ms, SE = 7ms) than Mixed displays (M = 762ms, SE = 7ms) overall, [F (3, 177) = 

31.70, p<.001, η² = 0.35]. There was also a significant interaction between Set Size 

and Display Type [F (3, 177) = 6.14, p=.001, η² = 0.09]. 

 

Simple main effects revealed no detection time costs per additional item for 

Fixed displays when adding an upright face [FF, M = 705ms, SE = 6ms; FFF, M = 

703ms, SE = 7ms; F (1, 263) = 0.05, p=.821, η² = 0.00], or when adding a non-face 

[NN, M = 699ms, SE = 7ms; NNN, M = 707ms, SE = 7ms; F (1, 263) = 0.89, p=.346, 

η² = 0.00].  

 

However, detection time costs per additional item were found in Mixed displays when 

adding an upright face [NF, M = 749ms, SE = 8ms, NFF, = 791ms, SE = 9ms; F (1, 
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263) = 22.70, p<.001, η² = 0.09], and when adding a non-face [FN, M = 735ms, SE = 

5ms; FNN, M = 773ms, SE = 6ms, F (1, 263) = 18.35, p<.001, η² = 0.07].  

 

The effect of Display Type was significant for Set Size Two [F (3, 354) = 10.09, 

p<.001, η² = 0.08] and Set Size Three [F (3, 354) = 35.85, p<.001, η² = 0.23]. Separate 

t-tests were run to directly compare the detection of faces to non-faces within each Set 

Size. No differences in detection time were found for faces over non-faces in Set Size 

Two, [t (59) = 0.55, p=.586] or in Set Size Three [t (59) = -0.44,  p=.660]. 
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A.2.2 Experiment 5: Two-vs-Four Faces and Non-Faces (Dissimilar) 

A.2.2.1 Detection Accuracy  

Figure A.3b summarises the accuracy scores for each condition of Experiment 

5. A two-way ANOVA with the repeated measures factors of Set Size (Two, Four) and 

Display Type (Fixed, Mixed) revealed no main effect of Set Size with no differences 

in accuracy between Two items (M = 94.99%, SE = 0.47%) and Four items (M = 

95.55%, SE = 0.47%) overall [F (1, 59) = 2.84, p=.097, η² = 0.05]. A significant main 

effect of Display Type was found with slightly lower detection accuracy for Fixed 

displays (M = 94.17%, SE = 0.54%), compared to Mixed displays (M = 96.38%, SE = 

0.40%), [F (3, 177) = 35.53, p<.001, η² = 0.37]. There was also a significant 

interaction between Set Size and Display Type [F (3, 177) = 2.79, p=.042, η² = 0.05].  

 

Simple main effects revealed greater accuracy when adding Two additional 

upright face to a Fixed display [FF, M = 95.93%, SE = 0.50%; FFFF, M = 97.37%, SE 

= 0.46%; F (1, 263) = 5.02, p=.026, η² = 0.02]. But no differences in accuracy were 

found when adding Two non-faces to a Fixed display [NN, M = 91.11%, SE = 0.57%; 

NNNN, M = 92.26%, SE = 0.65%; F (1, 263) = 3.13, p=.078, η² = 0.01].  

 

No detection accuracy costs were found per additional item in Mixed displays 

when adding Two upright faces [NF, M = 96.52%, SE = 0.43%; NFFF, M = 95.56%, 

SE = 0.46%; F (1, 263) = 2.22, p=.138, η² = 0.01], or when adding Two non-faces [FN, 

M = 96.42%, SE = 0.36%; FNNN, M = 97.02%, SE = 0.33%; F (1, 263) = 0.86, p=.355, 

η² = 0.00]  

 

The effect of Display Type was significant for Set Size Two [F (3, 354) = 

24.94, p<.001, η² = 0.17] and Set Size Four [F (3, 354) = 20,06, p<.001, η² = 0.15]. 

Separate t-tests were run to directly compare the detection of faces to non-faces 

within each Set Size. Significantly greater detection accuracy was found for faces 
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over non-faces in Set Size Two, [t (59) = 5.08, p<.001], and in Set Size Four [t (59) = 

5.63, p<.001]. 

 

A.2.2.2 Detection Reaction Time 

Figure A.4b summarises the reaction times for each condition of Experiment 

5. A two-way ANOVA with the repeated measures factors of Set Size (Two, Four) and 

Display Type (Fixed, Mixed) revealed a significant main effect of Set Size, with faster 

detection times for Two items (M = 711ms, SE = 6ms) than for Four items (M = 

741ms, SE = 6ms) overall, [F (1, 59) = 43.29, p<.001, η² = 0.42], and a significant 

main effect of Display Type with faster detection times for Fixed displays (M = 

696ms, SE = 6ms) than Mixed displays (M = 756ms, SE = 6ms) overall, [F (3, 177) = 

52.89, p<.001, η² = 0.47]. There was also a significant interaction between Set Size 

and Display Type [F (3, 177) = 22.71, p<.001, η² = 0.28].  

 

Simple main effects revealed no detection time costs per additional item for 

Fixed displays when adding Two upright faces [FF, M = 691ms, SE = 5ms; FFFF, M 

= 689ms, SE = 6ms; F (1, 263) = 0.05, p=.831, η² = 0.00], or when adding a non-face 

[NN, M = 705ms, SE = 6ms; NNNN, M = 697ms, SE = 6ms; F (1, 263) = 0.94, 

p=.332, η² = 0.00].  

 

However, detection time costs per additional item were found in Mixed displays when 

adding Two upright faces [NF, M = 729ms, SE = 6ms, NFFF, = 793ms, SE = 7ms; F 

(1, 263) = 53.73, p<.001, η² = 0.19], and when adding Two non-faces [FN, M = 718ms, 

SE = 5ms; FNNN, M = 785ms, SE = 6ms, F (1, 263) = 58.79, p<.001, η² = 0.20].  

 

The effect of Display Type was significant for Set Size Two [F (3, 354) = 

6.25, p<.001, η² = 0.05] and Set Size Four [F (3, 354) = 73.15, p<.001, η² = 0.38]. 

Separate t-tests were run to directly compare the detection of faces to non-faces 

within each Set Size. No differences in detection time were found for faces over non-
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faces in Set Size Two, [t (59) = -1.62, p=.110] or in Set Size Four [t (59) = 0.90, 

p=.372]. 
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A.2.3 Experiment 6: Two-vs-Three Faces and Non-Faces (Similar) 

A.2.3.1 Detection Accuracy  

Figure A.5. Mean accuracy scores for each condition in (a) Experiment 5 and (b) Experiment 6. F denotes face, N 

denotes non-face. Error bars show within-subjects standard error (Cousineau, 2005). 

 

Figure A.5a summarises the accuracy scores for each condition of Experiment 

6. A two-way ANOVA with the repeated measures factors of Set Size (Two, Three) 

and Display Type (Fixed, Mixed) revealed a significant main effect of Set Size, with 

slightly lower detection accuracy for Two items (M = 93.63%, SE = 0.73%) compared 

to Three items (M = 94.82%, SE = 0.67%) overall [F (1, 59) = 8.06, p=.006, η² = 

0.12], and a significant main effect of Display Type, with slightly lower detection 

accuracy for Fixed displays (M = 93.54%, SE = 0.80%) compared to Mixed displays 

(M = 94.91%, SE = 0.61%) overall [F (3, 177) = 10.01, p<.001, η² = 0.15]. There was 

also a significant interaction between Set Size and Display Type [F (3, 177) = 12.97, 

p<.001, η² = 0.18].  

 

Simple main effects revealed greater detection accuracy when adding an 

additional upright face to a Fixed display [FF, M = 94.53 %, SE = 0.66%; FFF, M = 

96.91%, SE = 0.53%; F (1, 263) = 8.17, p=.005, η² = 0.03]. As well as greater 

detection accuracy when adding a non-face to a Fixed display [NN, M = 89.46 %, SE 

= 1.10%; NNN, M = 93.25%, SE = 0.90%; F (1, 263) = 20.72, p<.001, η² = 0.08].  

 

However, detection accuracy was slightly higher when adding an upright face 

to a Mixed display [NF, M = 95.27%, SE = 0.59%; NFF, M = 96.95%, SE = 0.49%; F 
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(1, 263) = 4.06, p=.045, η² = 0.02], But, when adding a non-face to a Mixed display 

detection accuracy decreased [FN, M = 95.27%, SE = 0.59%; FNN, M = 92.15%, SE 

= 0.76%; F (1, 263) = 14.03, p<.001, η² = 0.06]  

 

The effect of Display Type was significant for Set Size Two [F (3, 354) = 

12.09, p<.001, η² = 0.09] and Set Size Three [F (3, 354) = 9.50, p<.001, η² = 0.07]. 

Separate t-tests were run to directly compare the detection of faces to non-faces 

within each Set Size. Significantly greater detection accuracy was found for faces 

over non-faces in Set Size Two, [t (59) = 3.54, p=.001] and in Set Size Three [t (59) = 

3.01, p=.004]. 

 

A.2.3.2 Detection Reaction Time  

Figure A.6. Mean reaction times for each condition in (a) Experiment 6 and (b) Experiment 7. F denotes face, N 

denotes non-face. Error bars show within-subjects standard error (Cousineau, 2005). 

 

Figure A.6a summarises the reaction times for each condition of Experiment 

6. A two-way ANOVA with the repeated measures factors of Set Size (Two, Three) 

and Display Type (Fixed, Mixed) revealed a significant main effect of Set Size, with 

faster detection times for Two items (M = 914ms, SE = 8ms) than for Three items (M 

= 1033ms, SE = 10ms) overall, [F (1, 59) = 240.84, p<.001, η² = 0.80], and a 

significant main effect of Display Type with faster detection times for Fixed displays 

(M = 912ms, SE = 9ms) than Mixed displays (M = 1034ms, SE = 9ms) overall, [– F 



 169 

(3, 177) = 96.38, p<.001, η² = 0.62]. There was also a significant interaction between 

Set Size and Display Type [F (3, 177) = 16.87, p<.001, η² = 0.22].  

 

Simple main effects revealed detection time costs per additional item for 

Fixed displays when adding an upright face [FF, M = 848ms, SE = 8ms; FFF, M = 

918ms, SE = 9ms; F (1, 263) = 29.02, p<.001, η² = 0.11], and when adding a non-face 

[NN, M = 895ms, SE = 9ms; NNN, M = 987ms, SE = 11ms; F (1, 263) = 49.87, 

p<.001, η² = 0.17].  

 

Furthermore, detection time costs per additional item were found in Mixed 

displays when adding an upright face [NF, M = 965ms, SE = 8ms, NFF, = 1095ms, 

SE = 11ms; F (1, 263) = 100.22, p<.001, η² = 0.30], and when adding a non-face [FN, 

M = 947ms, SE = 7ms; FNN, M = 1131ms, SE = 10ms, F (1, 263) = 199.59, p<.001, 

η² = 0.46].  

 

The effect of Display Type was significant for Set Size Two [F (3, 354) = 

29.40, p<.001, η² = 0.20] and Set Size Three [F (3, 354) = 101.25, p<.001, η² = 0.46]. 

Separate t-tests were run to directly compare the detection of faces to non-faces 

within each Set Size. Significantly lower detection times were found for faces over 

non-faces in Set Size Two, [t (59) = -4.62, p<.001] and in Set Size Three [t (59) = -

4.71, p<.001]. 
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A.2.4 Experiment 7: Two-vs-Four Faces and Non-Faces (Similar) 

A.2.4.1 Detection Accuracy 

Figure A.6b summaries the Accuracy scores for each condition of Experiment 

7. A two-way ANOVA with the repeated measures factors of Set Size (Two, Four) and 

Display Type (Fixed, Mixed) revealed a main effect of Set Size greater detection 

accuracy for Two items (M = 92.40%, SE = 0.63%) compared to Four items (M = 

90.97%, SE = 0.72%) overall [F (1, 59) = 6.91, p=.011, η² = 0.10]. A significant main 

effect of Display Type was found with greater detection accuracy for Fixed displays 

(M = 92.58%, SE = 0.65%), compared to Mixed displays (M = 90.79%, SE = 0.69%), 

[F (3, 177) = 22.89, p<.001 η² = 0.28]. There was also a significant interaction 

between Set Size and Display Type [F (3, 177) = 42.64, p<.001, η² = 0.42].  

 

Simple main effects revealed greater accuracy when adding Two additional upright 

face to a Fixed display [FF, M = 93.87%, SE = 0.59%; FFFF, M = 95.92%, SE = 

0.50%; F (1, 263) = 4.52, p=.035, η² = 0.02]. As well as when adding Two non-faces 

to a Fixed display [NN, M = 88.66%, SE = 0.76%; NNNN, M = 91.87%, SE = 

0.77%; F (1, 263) = 11.06, p=.001, η² = 0.05].  

 

No detection accuracy costs were found per additional item in Mixed displays when 

adding Two upright faces [NF, M = 93.19%, SE = 0.45%; NFFF, M = 92.30%, SE = 

0.67%; F (1, 263) = 0.85, p=.356, η² = 0.00]. However, detection accuracy costs were 

found when adding Two non-faces [FN, M = 93.87%, SE = 0.62%; FNNN, M = 

83.80%, SE = 0.93%; F (1, 263) = 108.95, p<.001 η² = 0.32].  

 

The effect of Display Type was significant for Set Size Two [F (3, 354) = 11.99, 

p<.001, η² = 0.09] and Set Size Four [F (3, 354) = 49.73, p<.001, η² = 0.30]. Separate 

t-tests were run to directly compare the detection of faces to non-faces within each 

Set Size. Significantly greater detection accuracy was found for faces over non-faces 

in Set Size Two, [t (59) = 5.43, p<.001] and in Set Size Four [t (59) = 4.23, p<.001]. 
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A.2.4.2 Detection Reaction Time  

Figure A.6b summarises the reaction times for each condition of Experiment 7. A 

two-way ANOVA with the repeated measures factors of Set Size (Two, Four) and 

Display Type (Fixed, Mixed) revealed a significant main effect of Set Size, with faster 

detection times for Two items (M = 893ms, SE = 9ms) compared to Four items (M = 

1100ms, SE = 12ms) overall, [F (1, 59) = 333.18, p<.001, η² = 0.53], and a significant 

main effect of Display Type with faster detection times for Fixed displays (M = 

942ms, SE = 11ms) compared to Mixed displays (M = 1050ms, SE = 10ms) overall, 

[F (3, 177) = 67.55, p<.001 η² = 0.85]. There was also a significant interaction 

between Set Size and Display Type [F (3, 177) = 18.18, p<.001, η² = 0.24].  

 

Simple main effects revealed detection time costs per additional item for Fixed 

displays when adding Two upright faces [FF, M = 820ms, SE = 11ms; FFFF, M = 

977ms, SE = 12ms; F (1, 263) = 111.68, p<.001, η² = 0.32], and when adding a non-

face [NN, M = 886ms, SE = 9ms; NNNN, M = 1087ms, SE = 14ms; F (1, 263) = 

183.41, p<.001, η² = 0.44].  

 

Furthermore, detection time costs per additional item were found in Mixed displays 

when adding Two upright faces [NF, M = 941ms, SE = 8ms, NFFF, = 1144ms, SE = 

12ms; F (1, 263) = 186.36, p<.001, η² = 0.44], and when adding Two non-faces [FN, 

M = 923ms, SE = 8ms; FNNN, M = 1193ms, SE = 12ms, F (1, 263) = 332.16, p<.001 

η² = 0.58].  

 

The effect of Display Type was significant for Set Size Two [F (3, 354) = 26.74, 

p<.001, η² = 0.18] and Set Size Four [F (3, 354) = 80.62, p<.001, η² = 0.41]. Separate 

t-tests were run to directly compare the detection of faces to non-faces within each 

Set Size. Significantly lower detection times were found for faces over non-faces in 

Set Size Two, [t (59) = -4.87, p<.001] or in Set Size Four [t (59) = -6.11, p<.001]. 
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A.3 Supplementary Analyses: Chapter 4 

This section contains the supplementary material for Chapter 4: Multiple Face 

Detection, including full accuracy and reaction time analyses of Experiment 8 – 13.  

 

A.3.1 Experiment 8: Upright, Inverted & Scrambled in Real Scenes (250 

ms)  

A.3.1.1 Detection Accuracy  

 

Figure A.7 reports accuracy data for Experiment 8 for each Target Type at 

each Set Size. To investigate detection accuracy, the data were subjected to a two-way 

ANOVA with within-subjects factors of Set Size (One, Two, Three, Four) and Target 

Type (Upright, Inverted, Scrambled). The analysis revealed a significant main effect 

of Set Size [F (3, 177) = 21.62, p < .001, η² = 0.27], with highest detection accuracy 

for One Target (M = 67.24%, SE = 1.8%),  but similar detection accuracy for the 

remaining Set Sizes, (Two, M = 53.62 %, SE = 1.53%; Three, M = 55.72 %, SE = 

1.45%; Four, M = 54.71 %, SE = 1.75 %). There was also a significant main effect of 

Target Type [F (2, 118) = 444.12, p < .001, η² = 0.88], with higher accuracy for 

Figure A.7 Mean percentage accuracy detection for Upright, Inverted, and Scrambled conditions at each Set Size. 

Error bars show within-subjects standard error (Cousineau, 2005). 
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Upright Targets (M = 69.78%, SE = 1.56%) and  Inverted Targets (M = 65.54%, SE = 

1.46%) compared to Scrambled Targets (M = 38.15%, SE = 1.87%). The interaction 

effect between Set Size and Target Type was also significant [F (6, 354) = 73.40, p < 

.001, η² = 0.55]. 

 

Simple main effects revealed significant differences in accuracy across Set 

Size for each Target Type. At the Upright condition [F (3, 531) = 4.15, p = .006, η2 = 

0.02], accuracy for Four Upright Targets (M = 75.04 %, SE = 1.46 %) was 

significantly higher than One Upright (M = 68.09%, SE = 1.74%) and Three Upright 

(M = 67.28 %, SE = 1.49%) but not Two Upright (M = 68.72 %, SE = 1.57%). At the 

Inverted condition [F (3, 1.57) = 6.40, p < .001, η2 = 0.03] accuracy for Two Inverted 

Targets was significantly lower than all other Set Sizes [One Inverted, M = 68.24%, 

SE = 1.64%; Two Inverted, M = 59.05 %, SE = 1.24%; Three Inverted, M = 68.42 %, 

SE = 1.29%; Four Inverted, M = 66.44 %, SE = 1.68 %). At the Scrambled condition 

[F (3, 1.57) = 115.06, p = .001, η2 = 0.39] accuracy was significantly higher at One 

Scrambled Targets, and significantly lower at Four Scrambled Targets, (One 

Scrambled, M = 65.39%, SE = 2.02%; Two Scrambled, M = 33.09 %, SE = 1.78%; 

Three Scrambled M = 31.47 %, SE = 1.58%; Four Scrambled, M = 22.64 %, SE = 

2.11 %).  

 

There was no significant difference in accuracy between Target Types at Set 

Size One [F (2, 472) = 71.63, p < .001, η2 = 0.23]. However, Upright and Inverted 

Targets were detected more efficiently than Scrambled Targets at every other Set 

Size, [Set Size Two, F (2, 472) = 43.16, p < .001, η² = 0.15; Set Size Three, F (2, 472) 

= 26.73, p < .001, η² = 0.10; Set Size Four, F (2, 472) = 18.68, p < .001, η² = 0.07].  
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A.3.1.2 Detection Reaction Time  

Figure A.8 reports RT data for Experiment 8 for each Target Type at each Set 

Size. To investigate detection RT, the data were subjected to a two-way ANOVA with 

within-subjects factors of Set Size (One, Two, Three, Four) and Target Type (Upright, 

Inverted, Scrambled). The analysis revealed no significant main effect of Set Size [F 

(3, 177) = 0.60, p = .618, η² = 0.01], with similar RTs for One (M = 761 ms, SE = 14 

ms), Two (M = 767 ms, SE = 15 ms), Three (M = 772 ms, SE = 12 ms), and Four (M 

= 756 ms, SE = 13 ms). However, there was a significant main effect of Target Type 

[F (2, 118) = 97.71, p < .001, η² = 0.62], with faster RTs for Upright Targets (M = 710 

ms, SE = 10 ms) and  Inverted Targets (M = 718 ms, SE = 11 ms), compared to 

Scrambled Targets (M = 864 ms, SE = 19 ms). The interaction effect between Set 

Size and Target Type was also significant [F (6, 354) = 4.57, p < .001, η² = 0.07]. 

 

Simple main effects revealed significant differences in RT across Set Size for 

Target Type at the Upright [F (3, 531) = 3.66, p = .012, η2 = 0.02] and Scrambled [F 

(3, 1.57) = 4.76, p = .003, η2 = 0.03] conditions. One Upright Targets were detected 

significantly faster than Three Upright Targets, but no other differences were found 

(One Upright, M = 672 ms, SE = 10 ms; Two Upright, M = 717 ms, SE = 12 ms; 

Three Upright, M = 733 ms, SE = 9 ms; Four Upright, M = 718 ms, SE = 10 ms). At 
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Figure A.8 Mean detection RT detection for Upright, Inverted, and Scrambled conditions at each Set Size. Error 

bars show within-subjects standard error (Cousineau, 2005). 
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the Scrambled condition, One Scrambled Target was detected significantly slower 

than Four Scrambled Targets, but no other differences were found [One Scrambled, 

M = 898 ms, SE = 21 ms; Two Scrambled, M = 874 ms, SE = 21 ms; Three 

Scrambled, M = 857 ms, SE = 16 ms; Four Scrambled, M = 827 ms, SE = 17 ms). No 

significant differences in RT were found for the Inverted condition [F (3, 1.57) = 

0.35, p = .793, η2 = 0.00, One Inverted, M = 714 ms, SE = 10 ms; Two Inverted, M = 

708 ms, SE = 11 ms; Three Inverted, M = 726 ms, SE = 12 ms; Four Inverted, M = 

723 ms, SE = 11 ms].  

 

Simple main effects also revealed significantly slower detection RTs for the 

Scrambled condition compared to Upright and Inverted at each Set Size. [Set Size 

One, F (2, 472) = 71.63, p < .001, η2 = 0.23; Set Size Two, F (2, 472) = 43.16, p < 

.001, η2 = 0.15; Set Size Three, F (2, 472) = 26.73, p < .001, η2 = 0.10; Set Size Four, 

F (2, 472) = 18.68, p < .001, η2 = 0.07].  
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A.3.2 Experiment 9: Upright, Inverted & Scrambled in Real Scenes 

(unlimited exposure)  

A.3.2.1 Detection Accuracy  

 

Figure A.9 reports accuracy data for Experiment 9 for each Target Type at 

each Set Size. To investigate detection accuracy, the data were subjected to a two-way 

ANOVA with within-subjects factors of Set Size (One, Two, Three, Four) and Target 

Type (Upright, Inverted, Scrambled). The analysis revealed a significant main effect 

of Set Size [F (3, 177) = 85.28, p < .001, η² = 0.59], with highest detection accuracy 

for One Target (M = 95.73%, SE = 0.85%), but similar detection accuracy for the 

remaining Set Sizes, (Two M = 84.62%, SE = 1.03%; Three, M = 82.51%, SE = 

0.94%; Four, M = 81.22%, SE = 1.18%). There was also a significant main effect of 

Target Type [F (2, 118) = 231.41, p < .001, η² = 0.80], with higher accuracy for 

Upright Targets (M = 94.14%, SE = 0.83%) and  Inverted Targets (M = 90.12%, SE = 

0.88%) compared to Scrambled Targets (M = 73.81%, SE = 1.29%). The interaction 

effect between Set Size and Target Type was also significant [F (6, 354) = 63.38, p < 

.001, η² = 0.52]. 

 

0

10

20

30

40

50

60

70

80

90

100

One Two Three Four

Set Size

%
 A

c
c
u

ra
c
y

Face

Inverted

Scrambled

E2 Graph

Figure A.9 Mean percentage accuracy detection for Upright, Inverted, and Scrambled conditions at each Set Size. 

Error bars show within-subjects standard error (Cousineau, 2005). 
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Simple main effects revealed significant differences in accuracy across Set 

Size for each Target Type. At the Upright condition [F (3, 531) = 5.22, p < .001, η2 = 

0.03], accuracy for Three Upright Targets was significantly lower than One or Two 

Upright Targets, but no other differences were found (One Upright, M = 96.30%, SE 

= 0.83%; Two Upright, M = 95.83%, SE = 0.69%; Three Upright, M = 91.76%, SE = 

0.87%; Four Upright, M = 92.69%, SE = 0.92%). At the Inverted condition [F (3, 

0.69) = 18.70, p < .001, η2 = 0.10] accuracy for One Inverted Targets was 

significantly higher than all other Set Sizes (One Inverted, M = 96.45%, SE = 0.76%; 

Two Inverted, M = 87.85%, SE = 0.93%; Three Inverted, M = 88.89%, SE = 0.74%; 

Four Inverted, M = 87.28%, SE = 1.08%). At the Scrambled condition [F (3, 0.69) = 

200.79, p < .001, η2 = 0.53] accuracy was highest for One Scrambled Target, 

followed by Two Scrambled Targets but no other differences were found (One 

Scrambled , M = 94.44%, SE = 0.96%; Two Scrambled , M = 70.19%, SE = 1.46%; 

Three Scrambled , M = 66.89%, SE = 1.21%; Four Scrambled , M = 63.70%, SE = 

1.53%) 

 

No significant differences in accuracy were found between the Target Types at 

Set Size One [F (2, 472) = 1.22, p = .296, η2 = 0.01]. But at the remaining Set Sizes, 

accuracy for Scrambled Targets was significantly poorer than Upright or Inverted 

Targets Set Size Two [F (2, 472) = 168.46, p < .001, η2 = 0.42; Set Size Three [F (2, 

472) = 181.02, p < .001, η2 = 0.43; Set Size Four [F (2, 472) = 232.27, p < .001, η2 = 

0.50].  
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A.3.2.2 Detection Reaction Time  

Figure A.10 reports RT data for Experiment 9 for each Target Type at each Set 

Size. To investigate detection RT, the data were subjected to a two-way ANOVA with 

within-subjects factors of Set Size (One, Two, Three, Four) and Target Type (Upright, 

Inverted, Scrambled). The analysis revealed a significant main effect of Set Size [F 

(3, 177) = 48.25, p < .001, η² = 0.45], with higher RTs for One Target (M = 1825 ms, 

SE = 37 ms) compared to Two (M = 1669 ms, SE = 33 ms), Three Targets (M = 1605 

ms, SE = 34 ms), while Four Targets were detected the fastest (M = 1378 ms, SE = 

33 ms). However, there was a significant main effect of Target Type [F (2, 118) = 

139.37, p < .001, η² = 0.70], with faster RTs for Upright Targets (M = 1434 ms, SE = 

31 ms) and  Inverted Targets (M = 1479 ms, SE = 24 ms), compared to Scrambled 

Targets (M = 1944 ms, SE = 47 ms). The interaction effect between Set Size and 

Target Type was also significant [F (6, 354) = 10.30, p < .001, η² = 0.15]. 

 

Simple main effects revealed significant differences in RT across Set Size for 

each Target Type. For the Upright condition [F (3, 531) = 18.2, p < .001, η2 = 0.09], 

RTs for Four Upright Targets were significantly faster than the other Set Sizes (One 

Upright, M = 1522 ms, SE = 23 ms; Two Upright, M = 1521 ms, SE = 41 ms; Three 
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Figure A.10 Mean detection RT detection for Upright, Inverted, and Scrambled conditions at each Set Size. Error bars 

show within-subjects standard error (Cousineau, 2005). 
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Upright, M = 1488 ms, SE = 22 ms; Four Upright, M = 1206 ms, SE = 37 ms). For 

the Inverted condition [F (3, 531) = 21.22, p < .001, η2 = 0.11], RTs for One and Two 

Inverted Targets were similarly significantly slower than Three and Four Inverted 

Targets, which also did not differ from each other (One Inverted, M = 1665 ms, SE = 

28 ms; Two Inverted, M = 1554 ms, SE = 19 ms; Three Inverted, M = 1412 ms, SE = 

19 ms; Four Inverted, M = 1286 ms, SE = 30 ms). Whilst RTs at the Scrambled 

condition [F (3, 531) = 54.68, p = .001, η2 = 0.24] were slowest for One Scrambled 

Target (M = 2288 ms, SE = 60 ms), intermediate and not significantly different at 

Two Scrambled (M = 1933 ms, SE = 39 ms) and Three Scrambled Targets (M = 1914 

ms, SE = 60 ms), and significantly faster at Four Scrambled Targets (M = 1641 ms, 

SE = 31 ms).  

 

Simple main effects also revealed significantly slower detection RTs for the 

Scrambled condition compared to Upright and Inverted at each Set Size [Set Size 

One, F (2, 472) = 136.29, p < .001, η2 = 0.37; Set Size Two, F (2, 472) = 43.11, p < 

.001, η2 = 0.15; Set Size Three, F (2, 472) = 60.24, p < .001, η2 = 0.20; Set Size Four, 

F (2, 472) = 43.99, p = .001, η2 = 0.16].  
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A.3.3 Experiment 10: Upright, Inverted & Scrambled in Blank Scenes (250 

ms)  

A.3.3.1 Detection Accuracy  

Figure A.11 reports accuracy data for Experiment 10 for each Target Type at 

each Set Size. To investigate detection accuracy, the data were subjected to a two-way 

ANOVA with within-subjects factors of Set Size (One, Two, Three, Four) and Target 

Type (Upright, Inverted, Scrambled). The analysis revealed a significant main effect 

of Set Size [F (3, 177) = 10.34, p < .001, η² = 0.15], with lowest accuracy seen for 

Three Targets (M = 94.87%, SE = 0.65%) compared to One (M = 97.72%, SE = 

0.46%), Two (M = 96.63%, SE = 0.53%), and Four Targets (M = 96.45%, SE = 

0.55%). There was no significant main effect of Target Type [F (2, 118) = 2.53, p = 

.084, η² = 0.04], and accuracy was similarly high for all Target Types (Upright 

Targets, M = 96.35%, SE = 0.59%); Inverted Targets, M = 96.89%, SE = 0.53%; 

Scrambled Targets, M = 96.00%, SE = 0.53%) . The interaction effect between Set 

Size and Target Type was also non-significant [F (6, 354) = 0.60, p = .734, η² = 0.01]. 

 

Accuracy was at ceiling across all Set Sizes and Target Types (One Upright, 

M = 97.74%, SE = 0.45%; Two Upright, M = 96.38%, SE = 0.57%; Three Upright, M 
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Figure A.11 Mean percentage accuracy detection for Upright, Inverted, and Scrambled conditions at each Set Size. 

Error bars show within-subjects standard error (Cousineau, 2005). 
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= 94.53%, SE = 0.86%; Four Upright, M = 96.76%, SE = 0.46%; One Inverted, M = 

98.61%, SE = 0.48%; Two Inverted, M = 96.93%, SE = 0.49%; Three Inverted, M = 

95.17%, SE = 0.6%; Four Inverted, M = 96.85%, SE = 0.56%; One Scrambled , M = 

96.81%, SE = 0.45%; Two Scrambled , M = 96.57%, SE = 0.52%; Three Scrambled , 

M = 94.90%, SE = 0.5%; Four Scrambled , M = 95.74%, SE = 0.64%).  

 

A.3.3.2 Detection Reaction Time  

  

 

Figure A.12 reports RT data for Experiment 10 for each Target Type at each 

Set Size. To investigate detection RT, the data were subjected to a two-way ANOVA 

with within-subjects factors of Set Size (One, Two, Three, Four) and Target Type 

(Upright, Inverted, Scrambled). The analysis revealed a significant main effect of Set 

Size [F (3, 177) = 49.52, p < .001, η² = 0.46], with faster RTs for One Target (M = 

474 ms, SE = 7 ms) and Two Targets (M = 491 ms, SE = 7 ms) compared to Three 

Targets (M = 563 ms, SE = 7 ms) and Four Targets (M = 575 ms, SE = 9 ms). There 

was also a significant main effect of Target Type [F (2, 118) = 0.64, p = .531, η² = 

0.01], with faster RTs for Upright Targets (M = 1434, SE = 31) and  Inverted Targets 

(M = 1479, SE = 24), compared to Scrambled Targets (M = 1944, SE = 47). The 
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Figure A.12 Mean detection RT for Upright, Inverted, and Scrambled conditions at each Set Size. Error bars show 

within-subjects standard error (Cousineau, 2005). 
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interaction effect between Set Size and Target Type was also significant [F (6, 354) = 

3.19, p = .005, η² = 0.05]. 

 

Simple main effects revealed significant differences in RT across Set Size for 

each Target Type. For the Upright condition [F (3, 531) = 45.02, p < .001, η2 = 0.02], 

RTs for Four Upright Targets were significantly faster than One and Two Targets, but 

not Three Targets (One Upright, M = 464 ms, SE = 6 ms; Two Upright, M = 496 ms, 

SE = 7 ms; Three Upright, M = 576 ms, SE = 8 ms; Four Upright, M = 571 ms, SE = 

8 ms). For the Inverted [F (3, 531) = 34.03, p < .001, η2 = 0.16] and Scrambled 

conditions [F (3, 531) = 34.42, p = .001, η2 = 0.16], RTs for One and Two Targets 

were similarly significantly faster than Three and Four Targets, which also did not 

differ from each other (One Inverted, M = 482 ms, SE = 7 ms; Two Inverted, M = 491 

ms, SE = 7 ms; Three Inverted, M = 558 ms, SE = 6 ms; Four Inverted, M = 579 ms, 

SE = 10 ms; One Scrambled , M = 477 ms, SE = 7 ms; Two Scrambled , M = 487 ms, 

SE = 7 ms; Three Scrambled , M = 554 ms, SE = 8 ms; Four Scrambled , M = 576 

ms, SE = 8 ms).  

 

A significant difference between Target Types was found at Set Size One, 

where Upright Targets were detected significantly faster than Inverted but not 

Scrambled Targets [F (2, 472) = 3.29, p = .038, η2 = 0.01]. At Set Size Three, Upright 

Targets were detected significantly slower than Inverted and Scrambled Targets [F (2, 

472) = 5.29, p = .005, η2 = 0.02]. No other differences were found at either Set Size 

Two [F (2, 472) = 0.68, p = .507, η2 = 0.00] or Set Size Four [F (2, 472) = 0.70, p = 

.495, η2 = 0.00].  
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A.3.4 Experiment 11: Upright, Inverted, Scrambled in Voronoi Scenes (250 

ms) 

A.3.4.1 Detection Accuracy 

Figure A.13 reports accuracy data for Experiment 11 for each Target Type at 

each Set Size. To investigate detection accuracy, the data were subjected to a two-way 

ANOVA with within-subjects factors of Set Size (One, Two, Three, Four) and Target 

Type (Upright, Inverted, Scrambled). The analysis revealed a significant main effect 

of Set Size [F (3, 177) = 7.05, p < .001, η² = 0.11], with intermediate accuracy for 

One (M = 82.07%, SE = 1.24%) and Two (M = 80.38%, SE = 1.32%) Targets, lowest 

accuracy for Three (M = 78.99%, SE = 1.16%) Targets, and the highest accuracy for 

Four (M = 85.09%, SE = 1.35%) Targets. There was no significant main effect of 

Target Type [F (2, 118) = 0.37, p = .689, η² = 0.01], and accuracy was similarly high 

for all Target Types (Upright Targets, M = 81.93%, SE = 1.25%; Inverted Targets, M 

= M = 81.75%, SE = 1.22%; Scrambled Targets, M = 81.21%, SE = 1.34%) . The 

interaction effect between Set Size and Target Type was also non-significant [F (6, 

354) = 6.57, p < .001, η² = 0.10]. 
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Figure A.13 Mean percentage accuracy detection for Upright, Inverted, and Scrambled conditions at each Set 

Size. Error bars show within-subjects standard error (Cousineau, 2005). 
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Simple main effects revealed significant differences in accuracy across Set 

Size only for the Scrambled condition [F (3, 1.26) = 17.29, p = .001, η2 = 0.09]. 

Accuracy for Two and Three Scrambled Targets was similarly significantly lower 

than for One and Four Scrambled Targets (One Scrambled , M = 84.43%, SE = 

1.16%; Two Scrambled , M = 78.46%, SE = 1.57%; Three Scrambled , M = 74.78%, 

SE = 1.28%; Four Scrambled , M = 87.18%, SE = 1.35%). No accuracy differences 

across Set Size were found for Upright [F (3, 531) = 1.26, p = .286, η2 = 0.01] or 

Inverted conditions [F (3, 1.26) = 1.94, p = .123, η2 = 0.01], (One Upright, M = 

80.07%, SE = 1.36%; Two Upright, M = 82.46%, SE = 1.26%; Three Upright, M = 

81.54%, SE = 1.02%; Four Upright, M = 83.67%, SE = 1.34%; One Inverted, M = 

81.72%, SE = 1.20%; Two Inverted, M = 80.23%, SE = 1.12%; Three Inverted, M = 

80.64%, SE = 1.18%; Four Inverted, M = 84.41%, SE = 1.37%).  

 

Simple main effects between Target Types at each Set Size revealed 

significant differences at Set Sizes One and Three. At Set Size One [F (2, 472) = 3.63, 

p = .027, η2 = 0.02], accuracy for One Upright Target was significantly lower than 

One Scrambled Target. At Set Size Three [F (2, 472) = 10.1, p < .001, η2 = 0.04], 

accuracy for Three Scrambled Targets was significantly lower than Three Upright and 

Inverted Targets. No differences between Target Types were found at Set Size Two [F 

(2, 472) = 3.00, p = .051, η2 = 0.01], or Set Size Four [F (2, 472) = 2.56, p = .079, η2 

= 0.01].  
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A.3.4.2 Detection Reaction Time 

Figure A.14 reports RT data for Experiment 11 for each Target Type at each 

Set Size. To investigate detection RT, the data were subjected to a two-way ANOVA 

with within-subjects factors of Set Size (One, Two, Three, Four) and Target Type 

(Upright, Inverted, Scrambled). The analysis revealed a significant main effect of Set 

Size [F (3, 177) = 20.63, p < .001, η² = 0.26], with fastest RTs for One Target (M = 

592 ms, SE = 10 ms) followed by Two Targets (M = 626 ms, SE = 8 ms) then 

similarly slower RTs for Three Targets (M = 664 ms, SE = 7 ms) and Four Targets (M 

= 662 ms, SE = 10 ms). There was also a significant main effect of Target Type [F (2, 

118) = 5.99, p = .003, η² = 0.09], with faster RTs for Inverted Targets (M = 625 ms, 

SE = 8 ms) compared to Upright Targets (M = 639 ms, SE = 10 ms), and Scrambled 

Targets (M = 644 ms, SE = 9 ms). But the interaction effect between Set Size and 

Target Type was non-significant [F (6, 354) = 1.04, p = .400, η² = 0.05]. 

 

Reaction times for all Target Types across all Set Sizes were similar (One 

Upright, M = 606 ms, SE = 11 ms; Two Upright, M = 619 ms, SE = 10 ms; Three 

Upright, M = 663 ms, SE = 7 ms; Four Upright, M = 667 ms, SE = 10 ms; One 

Inverted, M = 575 ms, SE = 9 ms; Two Inverted, M = 620 ms, SE = 7 ms; Three 

0

500

1000

1500

2000

2500

3000

One Two Three Four

Set Size

R
e

a
c
ti
o

n
 T

im
e

 (
m

s
)

Face

Inverted

Scrambled

E4 Graph

Figure A.14 Mean detection RT for Upright, Inverted, and Scrambled conditions at each Set Size. Error bars show 

within-subjects standard error (Cousineau, 2005). 
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Inverted, M = 654 ms, SE = 8 ms; Four Inverted, M = 653 ms, SE = 10 ms; One 

Scrambled, M = 594 ms, SE = 11 ms; Two Scrambled, M = 639 ms, SE = 9 ms; Three 

Scrambled, M = 675 ms, SE = 7 ms; Four Scrambled, M = 666 ms, SE = 11 ms).  
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A.3.5 Experiment 12: Scrambled and Sideways in Real Scenes (250 ms) 

A.3.5.1 Detection Accuracy 

 

Figure A.15 reports accuracy data for Experiment 12 for each Target Type at 

each Set Size. To investigate detection accuracy, the data were subjected to a two-way 

ANOVA with within-subjects factors of Set Size (One, Two, Three, Four) and Target 

Type (Left, Right, Scrambled). The analysis revealed a significant main effect of Set 

Size [F (3, 177) = 38.78, p < .001, η² = 0.40], accuracy decreasing as Set Size 

increased, (One, M = 65.81%, SE = 1.97%; Two, M = 51.83%, SE = 1.53%; Three, M 

= 49.47%, SE = 1.27%; Four, M = 45.73%, SE = 1.6%). There was also a significant 

main effect of Target Type [F (2, 118) = 425.00, p < .001, η² = 0.88], with accuracy 

for Scrambled Targets (M = 37.63%, SE = 1.72%) significantly lower than Left (M = 

60.02%, SE = 1.67%) and Right Targets (M = 61.98%, SE = 1.38%). The interaction 

effect between Set Size and Target Type was also significant [F (6, 354) = 67.73, p < 

.001, η² = 0.53]. 

 

Simple main effects revealed significant differences across Set Size at each 

Target Type. For Left Targets [F (3, 531) = 3.58, p = .014, η2 = 0.02], accuracy was 
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Figure A.15 Mean percentage detection accuracy for Left, Right, and Scrambled conditions at each Set Size. Error 

bars show within-subjects standard error (Cousineau, 2005). 
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significantly lower for Four Left Targets than Two Left Targets, but no other 

differences were found (One Left, M = 60.94%, SE = 2.06%; Two Left, M = 63.19%, 

SE = 1.49%; Three Left, M = 60.68%, SE = 1.14%; Four Left, M = 55.28%, SE = 

2.00%). For Right Targets [F (3, 1.49) = 13.46, p < .001, η2 = 0.07], accuracy was 

significantly higher for One Right Target compared to other Set Sizes. Accuracy was 

also lower for Two compared to Four Right Targets (One Right, M = 70.46%, SE = 

1.61%; Two Right, M = 54.8%, SE = 1.44%; Three Right, M = 60.15%, SE = 1.13%; 

Four Right, M = 62.52%, SE = 1.35%). Accuracy for Scrambled Targets [F (3, 1.49) 

= 131.43, p < .001, η2 = 0.43] decreased significantly as Set Size increased (One 

Scrambled, M = 66.03%, SE = 2.23%; Two Scrambled, M = 37.49%, SE = 1.67%; 

Three Scrambled, M = 27.59%, SE = 1.52%; Four Scrambled, M = 19.4%, SE = 

1.46%).  

 

Simple main effects also found significant differences between Target Types 

at each Set Size. At Set Size One [F (2, 472) = 13.05, p < .001, η2 = 0.05], accuracy 

was highest for Right, then Scrambled, followed by Left Targets. At Set Size Two [F 

(2, 472) = 98.73, p < .001, η2 = 0.29], accuracy was highest for Left, Right, and then 

Scrambled Targets. At Set Size Three [F (2, 472) = 206.57, p < .001, η2 = 0.47], 

accuracy for Left and Right Targets was not significantly different and both conditions 

were higher in accuracy than Scrambled Targets. At Set Size Four [F (2, 472) = 

306.51, p < .001, η2 = 0.56], accuracy was highest for Right, followed by Left, and 

then Scrambled Targets.  
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A.3.5.2 Detection Reaction Time 

Figure A.16 reports RT data for Experiment 12 for each Target Type at each 

Set Size. To investigate detection RT, the data were subjected to a two-way ANOVA 

with within-subjects factors of Set Size (One, Two, Three, Four) and Target Type 

(Left, Right, Scrambled). The analysis revealed no significant main effect of Set Size 

[F (3, 177) = 1.55, p = .203, η² = 0.03], with similar RTs for One (M = 792 ms, SE = 

14 ms), Two (M = 801 ms, SE = 15 ms), Three (M = 822 ms, SE = 20 ms), and Four 

Targets (M = 792 ms, SE = 18 ms). However, there was a significant main effect of 

Target Type [F (2, 118) = 81.87, p < .001, η² = 0.58], with similarly fast RTs for Left 

(M = 751 ms, SE = 13 ms) and Right Targets (M = 739 ms, SE = 13 ms) compared to 

Scrambled Targets (M = 915 ms, SE = 24 ms). A significant interaction effect 

between Set Size and Target Type was also found [F (6, 354) = 3.80, p = .001, η² = 

0.06]. 

 

Simple main effects revealed no significant differences across Set Sizes for 

either Left [F (3, 531) = 0.56, p = .640, η² = 0.00] or Right conditions [F (3, 1.49) = 

1.32, p = .268, η² =  0.01] (One Left, M = 757 ms, SE = 11 ms; Two Left, M = 732 

ms, SE = 13 ms; Three Left, M = 753 ms, SE = 13 ms; Four Left, M = 763 ms, SE = 
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Figure A.16 Mean detection RT for Left, Right, and Scrambled conditions at each Set Size. Error bars show 

within-subjects standard error (Cousineau, 2005). 
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14 ms; One Right, M = 746 ms, SE = 14 ms; Two Right, M = 764 ms, SE = 10 ms; 

Three Right, M = 730 ms, SE = 12 ms; Four Right, M = 717 ms, SE = 16 ms). 

However a significant difference was found at the Scrambled condition [F (3, 1.49) = 

6.86, p < .001, η² = 0.04] where RTs slowed from One, to Two, to Three Scrambled 

Targets, and then became slightly faster at Four Scrambled Targets (One Scrambled , 

M = 874 ms, SE = 15 ms; Two Scrambled , M = 908 ms, SE = 21 ms; Three 

Scrambled , M = 982 ms, SE = 35 ms; Four Scrambled , M = 895 ms, SE = 23 ms).  

 

Simple main effects for Target Type at each Set Size revealed the same 

pattern. Left and Right Targets were not significantly different from each other but 

were significantly faster than Scrambled Targets [Set Size One, F (2, 472) = 14.98, p 

< .001, η² = 0.06; Set Size Two, F (2, 472) = 26.14, p < .001, η² = 0.10; Set Size 

Three, F (2, 472) = 57.73, p < .001, η² = 0.20; Set Size Four, F (2, 472) = 25.48, p < 

.001, η² = 0.10].  
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A.3.6 Experiment 13: Faces and Sideways in Real Scenes (250 ms) 

A.3.6.1 Detection Accuracy 

 

Figure A.17 reports accuracy data for Experiment 13 for each Target Type at 

each Set Size. To investigate detection accuracy, the data were subjected to a two-way 

ANOVA with within-subjects factors of Set Size (One, Two, Three, Four) and Target 

Type (Upright, Left, Right). The analysis revealed a significant main effect of Set Size 

[F (3, 177) = 66.07, p < .001, η² = 0.53], with the accuracy decreasing as Set Size 

increased (One , M = 76.48%, SE = 1.59%; Two , M = 69.16%, SE = 1.42%; Three , 

M = 56.89%, SE = 1.44%; Four , M = 53.16%, SE = 1.72%). There was also a 

significant main effect of Target Type [F (2, 118) = 84.11, p < .001, η² = 0.59], with 

accuracy for Upright Targets (M = 71.14%, SE = 1.54%) significantly higher than 

Left (M = 60.58%, SE = 1.42%) and Right Targets (M = 60.05%, SE = 1.67%). The 

interaction effect between Set Size and Target Type was also significant [F (6, 354) = 

23.50, p < .001, η² = 0.28]. 

 

Simple main effects revealed significant differences across Set Size at each 

Target Type. For the Upright condition [F (3, 531) = 16.66, p < .001, η² = 0.09], 

Figure A.17 Mean percentage detection accuracy for Left, Right, and Scrambled conditions at each Set Size. Error 

bars show within-subjects standard error (Cousineau, 2005). 



 192 

accuracy was similarly high at One and Two Upright Targets compared to Three and 

Four Upright Targets which did not differ in accuracy (One Upright, M = 75.17%, SE 

= 1.77%; Two Upright, M = 78.72%, SE = 1.2%; Three Upright, M = 65.7%, SE = 

1.32%; Four Upright, M = 64.99%, SE = 1.88%). For the Left condition [F (3, 531) = 

49.62, p < .001, η² = 0.22], accuracy was significantly higher at One Left Target 

compared to the other condition, accuracy for Two Left Targets was also higher than 

Four Left Targets (One Left, M = 77.39%, SE = 1.40%; Two Left, M = 59.96%, SE = 

1.43%; Three Left, M = 54.2%, SE = 1.41%; Four Left, M = 50.78%, SE = 1.45%). 

For the Right condition [F (3, 531) = 84.26, p < .001, η² = 0.32], accuracy decreased 

as Set Size increased (One Right, M = 76.88%, SE = 1.61%; Two Right, M = 

68.82%, SE = 1.64%; Three Right, M = 50.77%, SE = 1.6%; Four Right, M = 

43.72%, SE = 1.83%).  

 

Simple main effects also revealed significant differences between Target 

Types at each Set Size, except Set Size One [F (2, 472) = 0.82, p = .441, η² = 0.00]. 

Across Set Size Two [F (2, 472) = 53.39, p < .001, η² = 0.18], accuracy was highest 

for Upright, followed by Right, and then Left Targets. At Set Size Three [F (2, 472) = 

37.11, p = .001, η2 = 0.14], accuracy for Upright was significantly higher than Left 

and Right which did not differ from each other. At Set Size Four [F (2, 472) = 71.15, 

p < .001, η² =  0.23], accuracy was highest for Upright, followed by Left, and then 

Right Targets.  
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A.3.6.2 Detection Reaction Time 

Figure A.18 reports RT data for Experiment 13 for each Target Type at each 

Set Size. To investigate detection RTs, the data were subjected to a two-way ANOVA 

with within-subjects factors of Set Size (One, Two, Three, Four) and Target Type 

(Upright, Left, Right). The analysis revealed a significant main effect of Set Size [F 

(3, 177) = 14.79, p < .001, η² = 0.20], with intermediate RT for One (M = 737, SE = 

11), followed by faster RT at Two (M = 700, SE = 10), that increased at Three (M = 

768, SE = 11), and Four Targets (M = 780, SE = 13). There was also a significant 

main effect of Target Type [F (2, 118) = 20.81, p < .001, η² = 0.26], with similarly fast 

RTs for Upright Targets (M = 721, SE = 11) compared to Left (M = 760, SE = 11) and 

Right Targets (M = 758, SE = 12). A significant interaction effect between Set Size 

and Target Type was also found [F (6, 354) = 4.09, p = .001, η² = 0.06]. 

 

Simple main effects revealed significant differences across Set Sizes for 

Upright [F (3, 531) = 14.34, p < .001, η² = 0.07] and Right conditions [F (3, 1.2) = 

14.28, p < .001, η² = 0.07], but not the Left condition [F (3, 1.2) = 1.55, p = .200, η² = 

0.01]. At the Upright condition, RT was similarly faster at One and Two Upright 

Targets compared to Three and Four Upright Targets which did not differ in from 

each other (One Upright, M = 694 ms, SE = 10 ms; Two Upright, M = 669 ms, SE = 

Figure A.18 Mean detection RT for Upright, Left, and Right conditions at each Set Size. Error bars show within-

subjects standard error (Cousineau, 2005). 
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9 ms; Three Upright, M = 750 ms, SE = 11 ms; Four Upright, M = 770 ms, SE = 13 

ms). At the Right condition, RT was slowest at Four Right Targets, whilst RTs for One 

Right and Three Right Targets did not differ from each other (One Right, M = 753 

ms, SE = 11 ms; Two Right, M = 694 ms, SE = 9 ms; Three Right, M = 783 ms, SE = 

11 ms; Four Right, M = 802 ms, SE = 17 ms). RTs at the Left condition were similar 

(One Left, M = 764 ms, SE = 11 ms; Two Left, M = 737 ms, SE = 11 ms; Three Left, 

M = 770 ms, SE = 12 ms; Four Left, M = 769 ms, SE = 11 ms).  

 

Simple main effects also compared between Target Types at each Set Size. 

Significant differences were found at Set Size One [F (2, 472) = 14, p < .001, η² = 

0.06], where Upright Targets were detected the fastest. At Set Size Two [F (2, 472) = 

11.96, p = .001, η2 = 0.05], RT for Left Targets was slowest compared to Upright and 

Right Targets. No significant differences were found at Set Size Three [F (2, 472) = 

2.81, p = .061, η²= 0.01]. A significant simple main effect was reported at Set Size 

Four [F (2, 472) = 3.40, p = .034, η²= 0.01], but further Tukey’s HSD tests revealed 

no differences.  
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