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Abstract 
This thesis focuses on the effects of non-magnetic d10 and d0 B’’ cations in A2B’B’’O6 perovskites with 

magnetic B’ cations. Non-magnetic B’’= d10 or d0 cations can induce different types of magnetic 

ordering, as well as introduce frustration that supresses magnetic ordering.  

The d10/d0 effect was first investigated in Ba2MnTeO6 and Ba2MnWO6. These are ideal structures for 

Te6+ d10 vs W6+ d0 comparisons as they are isostructural, cubic and have classical spin-only Mn2+ S = 

5/2 interactions described using a simple J1-J2 Heisenberg model. The research in chapter 3 

confirmed Ba2MnTeO6 and Ba2MnWO6 are isostructural and display different types of 

antiferromagnetic order. This resulted from the contrasting d10 vs d0 contributions to superexchange. 

The filled Te6+ 4d10 orbital did not contribute to next-nearest neighbour (J2) superexchange, whereas 

the empty W6+ 5d0 orbital did. This established the d10/d0 effect where Te6+ d10 promotes a strong 

nearest neighbour (J1) interaction and W6+ d0 promotes a strong J2 interaction leading to different 

types of magnetic order.  

The d10/d0 effect was highlighted in a number of double perovskite structures. Chapter 4 

investigated whether the d10/d0 effect can be extended to hexagonal perovskites using a mixture of 

d10 and d0 cations at the B’’ site. Site-selective W6+ d0 substitution at the corner-sharing site was 

identified in the hexagonal perovskite Ba2CuTe1-xWxO6. Magnetic characterization in chapter 5 

showed this led to d10/d0 tuning of the magnetic interactions from a spin ladder towards a spin 

chain. The disorder introduced by the competing strong J1 (Te6+) vs strong J2 (W
6+) prevented Nèel 

ordering. Therefore, demonstrating the d10/d0 effect can be applied to both simple and complex 

perovskite structures to tune magnetic interactions.  

Continuing with the Ba2CuTeO6 structure, chapter 6 investigated the effect of non-magnetic Zn2+ 

(d10) substitution at the Cu2+ site in Ba2CuTeO6. Removal of Cu2+ cations changed the magnetic 

behaviour, with evidence of suppressed magnetic ordering beyond x > 0.1 in Ba2Cu1-xZnxTeO6. This 

demonstrates non-magnetic cations can be employed to modify the spin ladder behaviour at both 

the B’ and B’’ site. Further work is needed to determine how closely the magnetic structure of the x 

= 0.1, 0.2 and 0.3 Ba2Cu1-xZnxTeO6 samples resembles a two-leg spin ladder.   
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1. Abstract 
This chapter provides a background to the perovskite structure and magnetism in perovskites. The 

perovskite structure is discussed in general, before magnetism in metal oxides is introduced and 

discussed in relation to perovskites. Magnetic frustration is also considered as this is a property 

featured in various perovskite structures, including the structures presented in this thesis.  This 

provides the background to support the subsequent research chapters where the main focus is 

studying d10 vs d0 effects in A2B’B’’O6 double perovskites.   

     2. Introduction to the perovskite structure  
Magnetism arises due to the interaction between atoms with unpaired electrons. Many materials 

display magnetic properties. Magnetic materials are applied in every-day life and have an ever-

expanding list of applications, including data storage, energy, magneto-optics, magnetic control, 

materials design, to name but a few examples.1 Many magnetic materials are metal oxides. Metal 

oxides exhibit a diverse range of magnetic interactions as they commonly contain transition metal or 

rare earth ions with unpaired electron configurations. They are widely researched as in addition to 

their rich magnetic properties, they also display a range of dielectric and superconducting 

behaviours.2 Metal oxides can adopt many structures, including the perovskite structure.  

The perovskite family consists of a large range of compounds with the general formula: ABX3. The 

name is derived from the mineral perovskite (CaTeO3), from which the perovskite structure was first 

identified. There are two different types of cations: the A-cation and the B-cation. The A-cation is 

large and typically a group 2 cation.  The B-cation is small and is often a transition metal or rare 

earth cation. In metal oxides, the X-anion is oxygen, but it is also possible to have perovskites with 

nitrogen or halide X-anions. Perovskite structures are found naturally throughout the Earth’s crust, 

but are also widely synthesised due to their wide ranging properties.3 Famous examples include 

barium titanate, BaTiO3, whose ferroelectric and dielectric properties are used in various electronic 

applications such as in capacitors and transducers.4 Many other perovskites and perovskite-related 

structures have been discovered in addition to BaTiO3. This is largely a result of the versatility of the 

perovskite structure, which can accommodate a range of atomic substitutions. Atomic substitution 
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of the A- and B-cations alters the chemical and physical behaviour meaning new perovskite 

properties (and hence applications) are still being discovered today. 

The single perovskite structure (ABO3) is shown in Fig 1.1a. The structure is described using the cubic 

𝑃𝑚3̅𝑚 space group and consists of a network of corner-sharing BO6 octahedra. The A-cations sit in 

the cubo-octahedral interstitial sites of the BO6 network. Substitution at either the A- or B-cation site 

produces the double perovskite structure A’A’’B2O6 or A2B’B’’O6. Substitution of the B-site cations is 

popular as they influence many of the perovskites magnetic and electronic properties. Substitution 

of B-cations produces either: (1) Rock salt ordering or (2) layered ordering. In Rock salt ordering, the 

B-sites are occupied by alternating B’ and B’’ cations and follow the same pattern as the Na+ cation 

and Cl- anion ordering in NaCl, hence the name Rock salt ordered. In layered ordering, each layer 

contains only B’ or B’’, but the cation type alternates between layers. 

 

Fig. 1.1 (a) The single ABO3 perovskite structure with 𝑃𝑚3̅𝑚 symmetry. (b) The double A2B’B’’O6 

perovskite structure with 𝐹𝑚3̅𝑚 symmetry.  

Rock salt ordering is more electrostatically favourable as the distance between the highly charged B-

site cations is maximized. Rock salt ordering increases the volume of the unit cell by a factor of 8. 

The unit cell is now face centred instead of primitive. This changes the space group of the ideal 

perovskite structure from 𝑃𝑚3̅𝑚 to 𝐹𝑚3̅𝑚. The ideal Rock salt double perovskite structure is shown 

in Fig. 1.1b. Both the single perovskite and double perovskite structures compared in Fig. 1.1 are 

sensitive to changes in the A- and B-cation. A- or B-site substitution can lead to distortion of the 

ideal perovskite structure. Distortions arise because of three common effects: B-cation 

displacement, octahedral tilting and octahedral distortion.  

Hexagonal perovskite structures are also affected by the same type of distortions. Hexagonal 

perovskites differ to double perovskites in that they have both corner-and face-sharing octahedra. 
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As Fig. 1.1b shows, all of the BO6 octahedra in double perovskites are corner-sharing. Alternatively, 

the mixture of corner- and face-sharing in hexagonal perovskites results in different stacking 

sequences to produce a variety of structures. The closer cation-cation distance associated with face-

sharing can generate different magnetic properties to double perovskites. The types of distortion 

affecting double and hexagonal perovskites are outlined in the next section.  

a. B-cation displacement  
B-cation displacement occurs when the B-cations move along one of the symmetry axes. B-cation 

displacement occurs due to the second order Jahn-Teller effect, whereby filled and empty orbitals of 

similar symmetry interact to increase the electronic stability by symmetry breaking.5 This can occur 

for degenerate or nondegenerate orbitals and leads to structural distortion. To accommodate the 

small B-cation, the surrounding O2- cations in the BO6 octahedra retain their positions while the B-

cation is displaced along the tetra-, triad, or diad-axis. This lowers the perovskite symmetry from the 

ideal cubic to tetragonal (tetra (𝐶4) -axis), orthorhombic (triad (𝐶3) -axis) or trigonal (diad (𝐶2) -axis). 

The three types of B-cation displacements are illustrated in Fig. 1.2.  

 

Fig. 1.2 Illustration of B-cation displacement along the tetrad-, triad- and diad- axis of the BO6 

octahedra in perovskites.  

b. Octahedral tilting  
In most instances, octahedral tilting is caused by small A-cations that struggle to fill the cubo-

octahedral interstitial sites in the perovskite structure.6 In response, the BO6 octahedra tilt to avoid 

long A-O cation distances. The shape of the BO6 octahedra is retained upon rotation (or ‘tilted’) 

about the tetra-, triad, or diad-axis. The corner-sharing connectivity means tilting of one BO6 unit 

affects all the other octahedral units, creating a ‘ripple effect’ throughout the BO6 network. The 

nomenclature used to describe octahedral tilting is known as Glazer notation.7 Glazer notation uses 

the letters 𝑎, 𝑏 and 𝑐 to represent the degree of rotation away from the corresponding parallel 𝑥, 𝑦 

and 𝑧 axes. For example, for the Glazer tilt 𝑎0𝑏+𝑐−, 𝑎0 represents no tilting along 𝑎 (parallel to 𝑥), 

𝑏+ represents an in-phase tilt along 𝑏 (parallel to 𝑦), and 𝑐− represents an anti-phase tilt along 𝑐 

(parallel to 𝑧). If tilting is the same in more than one of the 𝑥, 𝑦 and 𝑧 axes, the symbol is repeated. 

For example, 𝑎0𝑎0𝑐+ denotes there is no tilting in either the 𝑎 or 𝑏 direction, but there is an in-

phase tilt along the 𝑐 direction as depicted in Fig. 1.3. There are 10 possible Glazer tilt combinations. 

Using these 10 tilt combinations, 23 different tilt systems can be derived from the ideal cubic 

perovskite structure. Of the 23 tilt systems, 12 are known to be exhibited by the double perovskite 



7 
 

structure and are known as subgroups of the 𝐹𝑚3̅𝑚 space group.8 The 11 subgroups of the 𝐹𝑚3̅𝑚 

space group and their Glazer tilts are shown in Fig. 1.4.  

 

 

 

 

 

 

 

 

 

Fig. 1.3 Illustration of the 𝑎0𝑎0𝑐+ Glazer tilt. Left shows the ideal cubic perovskite structure before 

the Glazer tilt is applied. The structure on the right shows the distorted perovskite structure after 

application of the 𝑎0𝑎0𝑐+ tilt. 𝑎0𝑎0𝑐+ tilts the BO6 octahedra in the 𝑐 direction, which points out the 

plane of the page. The octahedra along 𝑐 are tilted in-phase by a tilt angle of 𝜑. There is no 

octahedral tilting in the plane of the page, along the 𝑎 or 𝑏 directions.  

 

 

 

 

 

 

 

 

Fig. 1.4 The relationship between the 𝐹𝑚3̅𝑚 space group of the ideal double perovskite structure 

and the 11 subgroups derived from octahedral tilting. The Glazer tilt associated with each subgroup 

is shown.  

c. Octahedral distortion  
Octahedral distortion arises from the first order Jahn-Teller effect.9 The first order Jahn-Teller (J-T) 

effect is exhibited by cations with symmetric atomic configurations, but asymmetric degenerate 

electronic ground states. Half-filled degenerate d-orbitals are an example of an asymmetric 

degenerate electronic ground state. When transition metals form chemical bonds with anions, they 

move from a spherical field to either an octahedral, tetrahedral, or square planar field etc. 

depending on the coordination number. This results in crystal field splitting where the d-orbitals split 

into the higher energy degenerate 𝑒𝑔(𝑑𝑧2 and 𝑑𝑥2−𝑦2) orbitals and lower energy degenerate 

𝑡2𝑔(𝑑𝑧𝑦, 𝑑𝑥𝑦 and 𝑑𝑧𝑥) orbitals. The energy difference (known as the crystal field splitting parameter, 

𝑎0𝑎0𝑎0
 𝑎0𝑎0𝑐+

 



8 
 

∆𝑂) between the 𝑒𝑔 and 𝑡2𝑔  levels depends on the BO6 complex under discussion. If the 𝑒𝑔 or 𝑡2𝑔  

orbitals are half-filled, further crystal field splitting occurs. Cu2+ d9 is a classic example. The 𝑒𝑔 level 

consists of two degenerate d-orbitals, one of which is filled and the other half-filled. To remove the 

unstable asymmetric electronic degeneracy, the 𝑒𝑔  and 𝑡2𝑔  orbitals split further. The result is 

elongation or compression of two B-O bonds along the 𝐶4-axis (i.e. 𝑧-axis). Elongation/compression 

of the B-O bonds along 𝑧 due to crystal field splitting is known as the Jahn-Teller effect. The energy 

level diagrams for elongation and compression along 𝑧 are shown in Fig. 1.5, along with an 

illustration of the distorted BO6 octahedra.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5 Energy level diagrams for the two forms of Jahn-Teller distortion: (a) elongation along the 𝑧-

axis and (b) compression along the 𝑧-axis. Also, shown are diagrams illustrating the effect of Jahn-

Teller distortion on the B-O bonds along the 𝑧-axis in the BO6 octahedra. 
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     3. Magnetism in metal oxides   
In metal oxides, magnetic ions with unpaired electrons possess an atomic magnetic moment. The 

atomic magnetic moment of an individual ion is composed of a spin and orbital component. The spin 

moment (𝜇𝑆) arises from the intrinsic spin of the electron. The orbital moment (𝜇𝐿) comes from the 

motion of electrons in orbitals around the nucleus. Equations for both 𝜇𝑆 and 𝜇𝐿 are given in 

equations 1.1 and 1.2.  

𝜇𝑆 = −
𝑒

𝑚𝑒
𝑺  (1.1) 

𝜇𝐿 = −
𝑒

2𝑚𝑒
𝑳,   (1.2) 

or  𝜇𝐿 = −𝛾𝐿  𝑳  where, 𝛾𝐿 =
𝑒

2𝑚𝑒
 

Here, 𝑒 is the charge, 𝑚𝑒 is the mass of the electron, 𝛾𝐿 is the gyromagnetic ratio, 𝑳 is the orbital 

annular momentum and 𝑺 is the spin angular momentum. 𝑳 and 𝑺 are calculated from their 

respective total angular momentum quantum numbers, 𝐿 and 𝑆, defined in equations 1.3 and 1.4. 

The values of 𝐿 and 𝑆 are calculated for the ground state electron configuration using Hund’s rules. 

Hund’s rules state the ground state configuration will have maximum multiplicity (i.e. the highest 𝑆) 

and as a result also have maximal 𝐿. The values for 𝐿 and 𝑆 can be calculated for the ground state 

configuration which satisfies both these conditions by summing the spin momentum quantum 

numbers (𝑚𝑆) and orbital angular momentum quantum numbers (𝑚𝐿) of the electrons:  

|𝑺| = √𝑆(𝑆 + 1)ћ, where 𝑆 = 𝑚𝑆(1) + 𝑚𝑆(2) + 𝑚𝑆(3) … . . 𝑚𝑠(𝑛) (1.3) 

|𝑳| = √𝐿(𝐿 + 1)ћ, where 𝐿 = 𝑚𝐿(1) + 𝑚𝐿(2) + 𝑚𝐿(3) … . . 𝑚𝐿(𝑛) (1.4) 

The total angular momentum quantum number, 𝑱, is given by:  

𝑱 = |𝐿 ∓ 𝑆| (1.5) 

If the valence shell is less than half-filled, 𝐿 and 𝑆 are subtracted. If the valence shell is more than 

half-filled, 𝐿 and 𝑆 are added. The total angular momentum is given by 𝑱 = √𝐽(𝐽 + 1)ћ and is 

equivalent to the vector sum of 𝑳 and 𝑺. Because of the gyromagnetic term, the total magnetic 

moment is not parallel to the total angular momentum: 𝜇𝑡𝑜𝑡𝑎𝑙 = 𝜇𝐿 + 𝜇𝑆. Instead, 𝜇𝑡𝑜𝑡𝑎𝑙  precesses 

around 𝑱 producing the effective magnetic moment (𝜇𝑒𝑓𝑓) given in equation 1.6. This is illustrated in 

the vector diagram in Fig. 1.6.  

𝜇𝑒𝑓𝑓 = −𝑔
𝑒

2 𝑚𝑒
𝐽 (1.6) 

In equation 1.6, 𝑔 is the Landé 𝑔-factor given by,  

𝑔 =
3

2
+

𝑆(𝑆+1)−𝐿(𝐿+1)

2 𝐽(𝐽+1)
   (1.7) 

For a collection of magnetic ions, 𝐽 points in any direction in no applied field leading to no overall net 

magnetic moment when summed over all ions. Application of a magnetic field causes splitting of the 

total angular momentum into  2𝐽 + 1 energy levels. Magnetisation is quantized into +𝐽𝑍 to −𝐽𝑍 

energy levels. If the field is applied along the 𝑧-axis, the maximum magnetic moment along 𝑧 is 

obtained when all ions are in the −𝐽𝑍 energy level. The maximum moment along 𝑧 is given by: 

|𝜇𝑍| = 𝑔 𝑱 𝜇𝐵   (1.8) 
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Where, 𝜇𝐵 = 𝑒ћ/2𝑚𝑒 is the Bohr magneton. Under this condition the system is said to be saturated 

and can be macroscopically viewed as having rotated all the magnetic moments in the direction of 

the magnetic field, 𝐻. The magnetisation (𝑀) measures the net magnetic moment parallel to the 

applied field. For 𝑁 ions, the magnetisation at saturation is given by equation 1.9, in which 𝑁 is the 

number of magnetic atoms. 

𝑀 = 𝑁𝜇𝑍  (1.9) 

 

 

 

 

 

 

 

 

 

Fig. 1.6 Vector diagram illustrating the combination of the spin (𝐒) and orbital (𝑳) angular 

momentum vectors to give a total angular momentum vector (𝑱). This generates the total magnetic 

moment (𝜇𝑡𝑜𝑡𝑎𝑙) that precesses around 𝑱 to produce the effective magnetic moment (𝜇𝑒𝑓𝑓) of the 

magnetic ion.  

Curie’s Law can be used to determine the magnetisation at low fields. According to Curie’s Law, the 

magnetisation (𝑀) is expressed as:  

𝑀 =
𝑁 𝐽(𝐽+1)𝑔2 𝜇𝐵

2𝐻

3𝑘𝐵𝑇
  (1.10) 

Here, 𝑘𝐵  is the Boltzmann constant, 𝑁 is the number of magnetic atoms, 𝑇 is the temperature, 𝑔 the 

Landé 𝑔-factor, 𝜇𝐵  is the Bohr magneton and 𝐻 the externally applied magnetic field. From equation 

1.10, an expression for the magnetic susceptibility (𝜒) can be derived. The magnetic susceptibility 

measures the degree of magnetisation in an applied field (𝐻). The expression for 𝜒 is:  

𝜒 =
𝑀

𝐻
=

𝑁𝐴 𝐽(𝐽+1)𝑔2 𝜇𝐵
2𝐻

3𝑘𝐵𝑇𝐻
 (1.11) 

The constants in this equation are collected into the Curie constant below allowing the expression 

for 𝜒 to be simplified as follows:  

Curie constant (𝐶) =
𝑁𝐴  𝐽(𝐽+1)𝑔2 𝜇𝐵

2

3𝑘𝐵
  (1.12) 

𝜒 =
𝐶

𝑇
  (1.13) 

Curie’s Law assumes there is no interaction between ions. In reality, magnetic ions interact, and this 

interaction affects the magnetic susceptibility. To account for this, Weiss developed the mean field 

theory. The mean field approach assumes a given magnetic cation experiences an average 

|𝑺| = √𝑆(𝑆 + 1)ħ  

|𝑳| = √𝐿(𝐿 + 1)ħ  

|𝑱| = |𝑳 ± 𝑺| 

𝜇𝑆 = −
𝑒

𝑚𝑒
𝑺 

𝜇𝑡𝑜𝑡𝑎𝑙 = 𝜇𝐿 + 𝜇𝑆 

𝜇𝑒𝑓𝑓 

𝜇𝐿 = −
𝑒

2𝑚𝑒
𝑳 
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interaction known as a ‘molecular field’ from the surrounding magnetic ions. Curie’s Law was 

modified to include mean field effects by introducing the Weiss constant (𝜃𝑤). The Weiss constant 

(𝜃𝑤) indicates the strength of the magnetic interactions between ions. The resulting Curie-Weiss Law 

is shown in equation 1.14.  

𝜒 =
𝐶

𝑇−𝜃𝑤
  (1.14) 

If the inverse magnetic susceptibility (1/ 𝜒) is plotted as a function of temperature, the magnitude 

and sign of 𝜃𝑤 can be determined from the intercept. A value of zero for 𝜃𝑤  suggests the material is 

paramagnetic and obeys Curie’s law. Magnetic moments are randomly aligned in different 

directions. A positive value of 𝜃𝑤  suggests the material is ferromagnetic and the magnetic moments 

are aligned parallel.  A negative value of 𝜃𝑤 indicates antiferromagnetism, where spins are aligned 

anti-parallel. Other types of magnetism exist, such as diamagnetism where the material does not 

contain magnetic ions, but through Lenz’s Law generates a small field that opposes the applied 

magnetic field resulting in a negative 𝜒. Materials can also be ferrimagnetic. Ferrimagnetic materials 

have antiferromagnetically ordered moments that do not completely cancel, producing a net 

magnetic moment. These different types of magnetic ordering are summarized in Fig. 1.7. Fig. 1.7 

shows types of ordering where spins are co-parallel. However, it is also possible for spins to order in 

a canted fashion. In a spin canted antiferromagnet, the spins are tilted by a given angle instead of 

being at 180° with respect to one another.  
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Fig. 1.7 The different types of magnetic ordering including paramagnetic, diamagnetic, 

ferromagnetic, antiferromagnetic and ferrimagnetic ordering. The paramagnetic and diamagnetic 

response in both no external field and an externally applied field (𝐵) is shown. In a paramagnet, the 

magnetic moments point in all directions when no external field is applied; but quickly align when a 

field is applied. A diamagnetic material possesses no magnetic spins, but when an external field is 

applied, a small field is generated to oppose the external field.  

Above a certain temperature all magnetic materials are paramagnetic. However, as the temperature 

is reduced, the thermal energy becomes comparable to the energy of the interaction between 

magnetic ions. A magnetic transition occurs from the disordered paramagnetic state to an ordered 

magnetic state, resulting in magnetic symmetry breaking. The mean field approach provides an 

adequate description of the magnetic interactions, but it is purely phenomenological. Instead of an 

‘average interaction’, it is more accurate to describe magnetic interactions using a quantum 

mechanical description known as the exchange interaction. It is the exchange interaction and not a 

‘molecular field’ that drives long-range ordering in metal oxides. The exchange interaction is 

represented using the Heisenberg Hamiltonian:  

𝐻 = −2 ∑ 𝐽𝑖𝑗 𝑆𝑖  𝑆𝑗 𝑖𝑗   (1.15) 

𝑆𝑖  and  𝑆𝑗  are the spins on atoms 𝑖 and 𝑗. 𝐽𝑖𝑗 is known as the exchange integral. The sign of 𝐽𝑖𝑗 

indicates whether the material is antiferromagnetic (negative 𝐽𝑖𝑗) or ferromagnetic (positive 𝐽𝑖𝑗). The 

magnitude of 𝐽𝑖𝑗 indicates the strength of the magnetic interaction. The strength of the magnetic 

interaction is mediated by the degree of orbital overlap between the 𝑖 and 𝑗 atoms. Thus, 𝐽𝑖𝑗 
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depends on the atomic separation between the 𝑖 and 𝑗 atoms, 𝑟𝑎, and the diameter of the 

overlapping orbitals, 𝑟𝑏. The Bethe-Slater curve shown in Fig. 1.8 plots the exchange interaction 𝐽𝑖𝑗 

as a function of the ratio of 𝑟𝑎  and 𝑟𝑏.10,11 The exchange interactions for several 3d transition metals 

are indicated and follow the Bethe-Slater curve exactly. 3d transition metals with large ionic 

distances are ferromagnetic so reside in the portion of the curve above the horizontal axis (positive 

𝐽𝑖𝑗).  Parallel alignment is favourable as spins are further apart. For 3d transition metals with small 

ionic distances, antiparallel alignment is more favourable as the spins cancel. Therefore, 3d 

transition metals with small ionic distances are placed in the bottom portion of the curve below the 

horizontal axis (negative 𝐽𝑖𝑗).  

 

 

 

 

 

 

 

 

Fig. 1.8 The Bethe-Slater curve in which materials below the horizontal axis have a negative 

𝐽𝑖𝑗 exchange interaction (antiferromagnetic) and above the horizontal axis have a positive 

𝐽𝑖𝑗 exchange interaction (ferromagnetic). Whether 𝐽𝑖𝑗 is negative or positive, depends on the atomic 

separation (𝑟𝑎) and the diameter of the overlapping orbitals (𝑟𝑏).  

In the 3d transition metals marked on the Bethe-Slater curve in Fig. 1.8, the exchange interactions 

occur directly. This means the magnetic 𝑖 and 𝑗 ions communicate via a direct orbital overlap 

between the 3d orbitals to form metal-metal (M-M) interactions. In metal oxides, exchange is more 

complex. Instead, the 𝐽𝑖𝑗 exchange occurs indirectly through the oxygen anions. The d-orbitals of the 

M ions overlap with the 2p orbitals of neighbouring oxygen anions. Overlap of multiple M ions with 

the same oxygen anion results in the formation of metal-oxygen-metal (M-O-M) linkages through 

which magnetic exchange is communicated. This indirect M-O-M exchange is known as 

superexchange.  

As with direct exchange, the strength of the superexchange interaction depends on the distance 

between magnetic cations in the M-O-M linkage. Superexchange is also highly dependent on the 

geometry of the M-O-M pathway. In metal oxides, there are two main geometries: (1) 180° 

superexchange and (2) 90° superexchange. The two geometries for superexchange are shown in Fig. 

1.9. In 180° superexchange the M-O-M bonding angle is 180° and the M d-orbitals and O 2p orbitals 

overlap along a linear trajectory (Fig. 1.9a). Alternatively, M-O-M overlap can occur at a 90° bonding 

angle resulting in 90° superexchange (Fig. 1.9b).  
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Fig. 1.9 The two metal-oxygen-metal (M-O-M) superexchange pathways at (a) 180° and (b) 90° in 

metal oxides.  

Alignment of the spins on the magnetic M ions is predicted using the Goodenough-Kanamori 

rules.12–14 The Goodenough-Kanamori rules define whether M-O-M superexchange is 

antiferromagnetic or ferromagnetic based on the Pauli exclusion principle. The rules state that M-O-

M superexchange involving half-filled 𝑑 and 2𝑝 orbitals is antiferromagnetic (𝐽𝑖𝑗 negative). Whereas 

superexchange involving mixtures of filled and half-filled, or empty and half-filled orbitals results in 

ferromagnetic exchange (𝐽𝑖𝑗 positive). In distorted perovskite structures, it is possible for the 

superexchange angles to deviate from 90° and 180°, sometimes at the expense of weaker 

superexchange. The geometric requirements for antiferromagnetic exchange are less strict 

compared to ferromagnetic exchange.15 Hence, antiferromagnetic exchange results in most metal 

oxides.  

It is also possible for indirect exchange to involve another bridging ion in addition to oxygen. This so-

called extended superexchange M-O-M’-O-M interaction involves another metal ion (M’), but this 

ion is non-magnetic, for example a d0 or d10 cation.16 Like M-O-M superexchange, the exchange angle 

can be 180° or 90° and alignment of the magnetic moments is still predicted using the Goodenough-

Kanamori rules. Extended superexchange occurs in A2B’B’’O6 double and hexagonal perovskites in 

which B’ is a magnetic cation and B’’ is a non-magnetic cation. In such cases, the magnetic B’ cations 

communicate via B’-O-B’’-O-B’ superexchange via the non-magnetic B’’ cation.  

     4. Magnetic frustration  
In insulating materials such as metal oxides, where the interactions between magnetic ions are 

mediated by superexchange, a phenomenon known as magnetic frustration can occur. Magnetic 

frustration arises when there are multiple competing interactions between magnetic centres in a 

material.17 Evidence of magnetic frustration is manifested as suppressed magnetic ordering, partial 

magnetic ordering, or in extreme cases prevention of magnetic ordering. Suppressed magnetic 

ordering behaviours were first identified in ferrite materials in the 1950s by Anderson.18 In the 

1970s, the term ‘magnetic frustration’ was coined to account for the lack of magnetic ordering in 
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spin glass materials.19 In a spin glass material, magnetic frustration causes the magnetic moments to 

freeze in random directions, without any long-range magnetic ordering. In addition to spin glass 

behaviour, various other exotic magnetic behaviours arise in frustrated materials, for example spin 

liquid and spin ice behaviour.20 Interest in magnetically frustrated materials has grown and been 

discovered in a wide range of crystal systems, including perovskites.21 

The interest in magnetic frustration has been driven by the desire to understand the influence of 

frustrated interactions on the behaviours of technologically relevant materials, such as high 

temperature superconductors.22 Frustrated magnetic systems have also provided scientists with a 

wealth of exotic magnetic states to discover and investigate. Magnetic frustration is caused by either 

the geometry of the lattice or competing interactions. Magnetic frustration caused by the geometry 

of the lattice is known as geometric frustration.  

Geometric frustration arises in lattices with triangular and tetrahedral magnetic motifs. These 

magnetic motifs are shown in Fig. 1.10. The triangular motif in Fig. 1.10a is an equilateral triangle 

with a magnetic ion placed on each of the three vertices. Frustration arises when the spins attempt 

to order antiferromagnetically. This requires the spin on one of the vertices to be both up and down 

simultaneously to be antiparallel with the other two spins. Both interactions cannot be satisfied 

simultaneously so the system is said to be ‘frustrated’. A similar situation occurs in the three-

dimensional tetrahedral motif. The tetrahedral motif in Fig. 1.10b requires two of the spins to be 

spin-up and spin-down simultaneously. The more competing interactions, the more frustrated the 

lattice, hence lattices composed of tetrahedral motifs are more frustrated compared to triangular 

lattices.20 The square lattice motif in Fig. 1.10c can also exhibit geometric frustration, but only when 

the interactions along the face of the square (the nearest neighbour interaction) and the diagonal of 

the square (the next-nearest neighbour interaction) are comparable.  

Fig. 1.10 Geometric frustration in the (a) triangular, (b) tetrahedral and (c) square lattice motifs.  

The geometrically frustrated motifs connect to form geometrically frustrated lattices. There are four 

main geometrically frustrated crystal lattices: the triangular, kagomé, pyrochlore and face centred 

cubic (fcc) lattices.  In all four of these crystal systems, the lattices consist of an array of triangular or 

tetrahedral motifs. Frustration is measured using the frustration index. The frustration index in 

equation 1.16 is a quantitative measure of the degree of frustration.20  

𝑓 =
|𝜃𝑤|

𝑇𝐶
  (1.16) 

The frustration index (𝑓) is given by the ratio of the Weiss constant (𝜃𝑤) and the critical temperature 

(𝑇𝐶) at which long-range order occurs. If 𝑓 ~ 1, the system is not frustrated and magnetically orders 
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at a temperature exactly determined by the strength of the magnetic interactions. For values of 𝑓 = 

2-4, the system is only weakly frustrated. However, when 𝑓 > 10, the system is frustrated and may 

not exhibit long-range magnetic order at extremely low temperatures close to zero Kelvin. Instead, 

frustration could lead to the formation of a range of exotic magnetically disordered states such as 

spin ices, spin liquids and spin glasses.   

a. Spin ices 
Despite being a seemingly simple system, water ice has a deceptively complex ground state.23 The 

ground state of water ice is periodic due to the tetrahedral arrangement of the oxygen atoms. 

However, because of the large difference between the O-O and O-H bond lengths, two covalent 

bond distances arise resulting in two protons sitting close to the oxygen atom while the other two 

are kept further away. There are multiple ways this proton arrangement can be achieved within the 

structure leading to a highly degenerate ground state.24 

The pyrochlore lattice has been found to be an analogy for water ice.25,26 The pyrochlore lattice 

consists of a tetrahedral motif of magnetic ions with an oxygen ion in the centre of the tetrahedra. 

The vertices of the tetrahedra are connected along the 〈111〉 crystallographic axis. This creates a 

highly anisotropic geometry and forces all the spins on the vertices of the tetrahedra to be Ising in 

nature. Ising spins only point in two directions: ‘in’ or ‘out’ of the tetrahedra. In a spin ice, the 

ground state consists of a ‘two-in, two-out’ configuration where two Ising spins point into the centre 

of the tetrahedra and two Ising spins point out of the tetrahedra. For a single tetrahedron, there are 

six different ways this configuration can be achieved.27 When the ‘two-in, two-out’ Ising 

arrangement is extrapolated throughout the pyrochlore lattice, there are many energetically 

equivalent spin arrangements. This leads to a highly degenerate ground state that does not show 

long-range magnetic ordering and remains disordered even at zero Kelvin. Because of the analogy to 

water ice, pyrochlore systems displaying this behaviour are called ‘spin ices’. Ho2Ti2O7, Dy2Ti2O7 and 

Ho2Sn2O7 are examples of the pyrochlores which have been most conclusively identified as true 

ferromagnetic Ising spin ice systems.26,28–30  

b. Spin liquids  
Spin ices and spin liquids both have highly degenerate ground states and show no long-range 

magnetic order. The main distinction is the spins are not Ising in a spin liquid. Instead of being frozen 

along a particular axis, the spins remain dynamic at absolute zero and are said to be Heisenberg 

spins as they can point in any 𝑥, 𝑦 and 𝑧 direction in space.20 Spin liquids can be classical or quantum 

mechanical depending on the magnitude of the spin, 𝑆.27 In a classical spin liquid, 𝑆 > 1/2 and the 

dynamic behaviour is caused by thermal fluctuations. If 𝑆 < 1/2, quantum effects come into play. In 

a quantum spin liquid, the 𝑆 = 1/2 spins remain dynamic as magnetic frustration prevents the spins 

from ordering. This leads to strong quantum fluctuations. The fluctuating spins can be arranged in a 

multitude of ways creating many energetically equivalent configurations. The many degenerate 

configurations superimpose to form a strongly correlated ground state.   

Understanding the behaviour of strongly correlated materials is a key focus in condensed matter 

physics.31 Strongly correlated materials have applications in microelectronics, where entanglement 

of spins is required for realising quantum computation.32 Synthesis of spin liquid systems could 

provide models to understand strong correlations in quantum materials.33 Numerous models and 

predictions have been developed to describe spin liquid behaviour.34,35 However, finding quantum 

spin liquid candidates that can be synthesised experimentally is challenging. On top of this, proving 

candidate materials are ‘true’ representatives of quantum spin liquid behaviour is difficult and 

requires a combination of techniques, as well as theoretical support.36,37 Consequently, only a few 
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candidate spin liquids have been identified. The candidate materials have geometrically frustrated 

2D (triangular and kagomé) or 3D (hyperkagomé and distorted kagomé) lattices.27  

c. Spin glasses 
Magnetism in the 1970s was dominated by the study of dilute metal alloys such as CuMn, AgMn and 

AuFe.38 At specific concentrations, dilute metal alloys display a sharp cusp in their magnetic 

susceptibility vs temperature curve (𝜒 vs 𝑇), which is not seen for normal ferromagnets or 

antiferromagnets.39 This observation was shown to be characteristic of spin glass behaviour where 

the cusp represents the freezing temperature, 𝑇𝑓. At 𝑇𝑓, the magnetic moments freeze in random 

directions forming a metastable ‘glassy’ state where there is no long-range order. The spin glass 

state can be distinguished from antiferromagnets and ferromagnets using AC susceptibility (𝜒𝐴𝑐) 

measurements. About the freezing temperature the formation of the spin glass state is dynamic, 

shifting through a complex potential energy surface as the spins gradually freeze.40 As a result, the 

position and magnitude of 𝑇𝑓  depends on the timescale of the measurement. When measuring 𝜒𝐴𝑐  

vs 𝑇 in an alternating magnetic field with increasing frequencies, there will be an observable shift in 

𝑇𝑓.41 In ferromagnets and antiferromagnets ordering is instantaneous so there is no frequency 

dependent transition temperature.  

In addition to metal alloys, spin glass behaviour has been identified in insulators, including double 

perovskites. Formation of a spin glass requires randomness and competing interactions, otherwise 

the material will assume antiferromagnetic/ferromagnetic order.16 A number of disordered 

perovskites with frustrated magnetic interactions have been identified. They all have B-site cation 

disorder, which evokes spin glassiness as the spins feel a distribution of exchange interactions. An 

example is the disordered Sr2FeB’’O6 family where a spin glass forms if B’’= Nb, Ta or Ru.42–44 Spin 

glass behaviour is believed to arise from the competition between the two magnetic B-cations, Fe+3 

and M+5 (Na/Ta/Ru), distributed randomly across the B’ and B’’ sites with vacancies throughout. 

Different M+5 cations such as Sb5+ have been investigated in Sr2FeB’’O6, but they do not exhibit spin 

glass behaviour.43 This is supposedly due to the difference in cation size, reflecting the influence of 

the B-site cations on the magnetic and electric properties of the perovskite structure. Other double 

perovskite spin glasses include: La2B’B’’O6 (B’/B’’ = Co, Ni or Mn)45,46, Sr2CaReO6
47and Sr2MgReO6

48.  

     5. Magnetism in double perovskites  
Incorporating magnetic B-site cations into double perovskites produces interesting magnetic 

behaviours. The correct combination of B-site cations can lead to the formation of interesting low 

temperature magnetic behaviour, such as spin glassiness. However, as noted above in the Sr2FeB’’O6 

example such behaviour requires disorder of the B’ and B’’ site cations to introduce the competing 

interactions that lead to magnetic frustration. While disordered perovskites may form exotic 

magnetic ground states, the vast majority of B’/B’’ site ordered perovskites adopt antiferromagnetic 

or ferromagnetic ordering. Ferromagnetic order is less common because antiferromagnetic 

superexchange is favoured in metal oxides.15,49 Ferromagnetism  exist mainly in Rock salt ordered 

A2B’B’’O6 perovskites where both B’ and B’’ are magnetic.16 Special synthesis conditions such as high-

pressures or thin-layer depositions are required to produce a high degree of cation order and avoid 

disordered antiferromagnetic interactions.50,51 Notable examples of ferromagnetic double 

perovskites are La2NiMnO6 and La2CoMnO6.52 Both display attractive properties for electronic 

devices, including multiple magnetic, magnetoelectric, and semiconducting properties close to room 

temperature (Curie temperatures, 𝑇𝐶  = 310 K (La2NiMnO6) and 270 K (La2CoMnO6).53–55  
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Ferrimagnetism also exists in perovskites. Ferrimagnetic double perovskites have two magnetic 

cations ordered antiferromagnetically but with different magnetic moments which partially cancel to 

produce a net magnetic moment. Based on this definition, it could be deduced that all 

antiferromagnetically ordered systems with two magnetic cations are in fact ferrimagnetic. 

However, the interactions are not only based upon superexchange; they rely heavily on coupling 

between itinerant (unbound) electrons within the structure.16 Consequently, most examples of 

ferrimagnetic double perovskites are half-metallic structures, such as Sr2FeMoO6 and Sr2FeReO6.56,57 

Most perovskites order antiferromagnetically as super-exchange between B-cations with the same 

d-orbital configurations is most often antiferromagnetic. For a Rock salt ordered double perovskite 

with one magnetic B-cation, the Mn+ cations form a face-centred cubic (fcc) sub-lattice. The fcc sub-

lattice shown in Fig. 1.11 has two superexchange interactions: the nearest neighbour (NN, 𝐽1) and 

next-nearest neighbour (NNN, 𝐽2) exchange interactions. In a perfectly cubic perovskite, these 

interactions occur within three dimensionally equivalent square motifs. Distortion to lower 

symmetry introduces more superexchange interactions as the interactions are no longer equivalent 

in three-dimensions.58 The strength of these magnetic interactions depends on the degree of orbital 

overlap. Hence, if these interactions form by elongation of the cubic unit cell, they are weaker than 

the original interactions before distortion. This can lead to quasi two- or one-dimensional magnetic 

interactions.  

 

 

 

 

 

 

 

 

 

 

Fig. 1.11 The nearest neighbour (𝐽1) and next-nearest neighbour (𝐽1) superexchange interactions in 
the fcc sub-lattice. 

Depending on the magnitude and sign of the 𝐽1 and 𝐽2 interactions there are three stable types of 

antiferromagnetic ordering in the fcc lattice.59 These are labelled type I, type II and type III and are 

shown in Fig. 1.12. The ratio of 𝐽2 and 𝐽1 defines the phase boundary between the three phases. The 

boundary between the type I and type II phases lies at 𝐽2/𝐽1= 0 and the boundary between the type 

III and type II phases at 𝐽2/𝐽1= 0.5.60,61  In the type I phase, 𝐽2 is positive (i.e. ferromagnetic) and 𝐽1 is 

negative (i.e. antiferromagnetic) leading to ferromagnetically ordered layers along the (001) axis 

which are coupled antiferromagnetically. In both the type II and type III phase, 𝐽2 and 𝐽1 are 

antiferromagnetic leading to more complex ordering. The type II phase can be viewed as a derivative 

of the type I phase, however instead ferromagnetic interactions are in the (111) planes of the fcc 

sub-lattice with antiferromagnetic interactions between the (111) planes. The type III phase is most 

complex as the fcc sub-lattice is further sub-divided into one corner and three face-sharing 
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antiferromagnetically interacting lattices. In all three phases, the 𝐽1 and 𝐽2 interactions are described 

using the Heisenberg 𝐽1-𝐽2 model where the Hamiltonian for the interactions is given by:61 

𝐻 = −𝐽1 ∑ 𝑺𝑖 ∙ 𝑺𝑗 − 𝐽2 ∑ 𝑺𝑖 ∙ 𝑺𝑗〈𝑖𝑗〉〈𝑖𝑗〉  (1.17) 

Here, 𝐽1 is the NN interaction, 𝐽2 is the NNN interaction, 𝑆𝑖  is the spin on atom 𝑖 and 𝑆𝑗  is the spin on 

atom 𝑗. Both 𝑆𝑖  and 𝑆𝑗  are summed over all the NN and NNN interactions. Note, the 𝐽1 and 𝐽2 

interactions in equation 1.17 are defined so ferromagnetic interactions have a positive exchange 

interaction and antiferromagnetic exchange interactions have a negative exchange interaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.12 Types of antiferromagnetic order in the fcc sub-lattice. 

Disorder creates frustration in double perovskites due to the multiple competing superexchange 

interactions. In addition, double perovskites exhibit geometric frustration. When considering only 

the 𝐽1 interactions, the fcc sub-lattice seen in Fig. 1.13 is composed of interconnected tetrahedral 

motifs producing frustration between nearest neighbour spins. Geometric frustration is maximized 

when the 𝐽2 interaction is suppressed; and can lead to the formation of the degenerate magnetic 
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spin glass, spin liquid and spin ice states discussed above.62 Alternatively, geometric frustration can 

suppress magnetic ordering so 𝑇𝑁  occurs at temperatures lower than expected.63 The identity of the 

A-site and B’’ site cation can have a dramatic effect on the degree of frustration in double 

perovskites. It  has been demonstrated that the size of the A-site cation has a large effect on the 90° 

nearest neighbour interaction, irrespective of the identity of the B-site cations.63 Disorder introduced 

by the substitution of non-magnetic B-site cations can also reduce the magnetic ordering 

temperature, and even prevent ordering from occurring.64,65 For example, substitution of Te6+ d10 for 

W6+ d0 supresses antiferromagnetic ordering in Sr2CuTe1-xWxO6 due to the disorder induced 

frustration introduced by the competing d10 and d0 interactions.66  

 

 

 

 

 

 

 

 

 

Fig. 1.13 Geometrically frustrated tetrahedral motifs in the fcc lattice. 

     6. Conclusions 
This introductory chapter provides the background theory for investigating d10/d0 interactions in 

A2B’B’’O6 perovskites. The discussion on magnetic frustration aids research chapters where mixtures 

of d10 and d0 cations in A2B’B’’O6 perovskites are studied. d10 and d0 mixtures introduce competing 

magnetic interactions leading to frustration that could prevent magnetic ordering and generate 

exotic disordered magnetic states.  
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Chapter 2: Experimental techniques  
Contents  

1. Crystal structure determination using X-rays and Neutrons  

a. Diffraction instruments  

b. Analysis of powder diffraction patterns – Rietveld refinement  

2. Inelastic neutron scattering spectroscopy  

3. Extended X-ray Absorption Fine Structure (EXAFS) 

4. Superconducting Quantum Interference Device (SQUID) magnetometry  

5. Heat Capacity  

6. Muon Spin Relaxation (μSR) 

7. Polarized neutron scattering  

1. Crystal structure determination using X-rays and neutrons 
Crystal structure determination is underpinned by the interaction of X-rays and neutrons with the 

particles in crystalline materials. The diffraction limit tells us that for an object to be resolvable, the 

wavelength off the radiation employed must be of the same scale. In the electromagnetic spectrum, 

X-ray radiation has a wavelength of ~ 1 Å. This is comparable to the distances between atoms; 

therefore, crystalline structures can be observed using X-rays. While neutrons are more frequently 

regarded as particles, wave-particle duality means they can also be described as waves. Using the de 

Broglie relationship and kinetic energy equations given below it is possible to relate the neutron 

energy to its corresponding wavelength.  

𝜆 =
ℎ

𝑝
  , where 𝑝 =  𝑚𝑛𝑣   (de Broglie)  (2.1) 

𝐸 =
1

2
𝑚𝑛𝑣2  (Kinetic energy)   (2.2) 

Substituting equation 2.1 into 2.2 gives:  

𝐸 =
ℎ2

2𝑚𝑛𝜆2 (2.3) 

From this relationship, it can be deduced that neutrons of energy 81.8 meV have a wavelength that 

is comparable to inter-atomic distances of ~ 1 Å. This is lower than the X-ray energy required to 

meet the diffraction limit, where a wavelength of 𝜆 = 1 Å corresponds to an X-ray energy of 12.4 keV.  

Not only are the energies different, X-rays and neutrons also interact differently with the atomic 

nuclei in crystals. While X-rays are scattered by the interaction with the electron density surrounding 

the atom, neutrons interact with the atomic nuclei. This has several consequences discussed below. 

Firstly, scattering from the atomic nuclei allows neutrons to penetrate deeper into the sample. The 

short-range nuclear forces between neutrons and atomic nuclei are weak compared to the long-

range electromagnetic forces between X-rays and electrons. Consequently, the nuclei can be 

regarded as point scatterers. This affects the angular dependence of the scattering intensity versus 

X-rays. With X-rays, the long-range electronic forces spread out the electron density so it is 

comparable to the X-ray wavelength. Hence, the spread of the electronic density cloud and X-ray 

wavelength are of a similar magnitude. As a result, the X-ray scattering intensity is highly angle 

dependent and decreases quickly as the incident scattering angle increases. With neutrons, point 
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scattering leads to a significant difference between the nuclear density and neutron wavelength, so 

there is almost no angular dependence on the scattering intensity. The different angular 

dependence for the X-ray and neutron scattering intensity is illustrated in Fig. 2.1. While the neutron 

scattering intensity is clearly weaker than the X-ray in Fig. 2.1, the angle independence allows data 

to be collected over a wider angle providing more structural information compared to X-rays.  

 

 

 

 

 

 

 

 

Fig. 2.1 Comparison of the angular dependence on the scattering intensity for X-rays (red line) and 

neutrons (blue line). 

Secondly, neutrons are more sensitive towards secondary scattering mechanisms, such as the 

interaction between the neutron magnetic moment and magnetic moments in the sample. In a 

magnetically ordered material, this interaction results in magnetic scattering. Hence, neutron 

scattering can provide information on both the nuclear and magnetic structure. Given X-rays are 

electromagnetic waves, magnetic X-ray scattering also occurs from the interaction between X-rays 

and unpaired electrons in the sample. However, the small scattering cross-section leads to very 

weak magnetic X-ray scattering. Hence, magnetic neutron scattering is widely preferred.  

Thirdly, there are differences in element contrast between X-rays and neutrons. X-rays are more 

sensitive to heavier atoms as the X-ray scattering intensity depends on atomic number (Z). This 

complicates structural determination if the material contains numerous light elements (e.g. Li, H, O 

etc.). Conversely, neutron scattering is not a straightforward function of Z and is isotope specific. 

Light elements can be seen more clearly with neutrons and isotopes distinguished (e.g. hydrogen 

and deuterium). X-ray and neutron scattering are often used as complementary techniques, the 

former providing information on heavy elements in the sample, while the latter determining the 

position of light elements, and possibly information on the magnetic structure.  

Irrespective of their differences, X-ray and neutron scattering are described using the same theory. 

In an analogous manner to an optical grating, the regularly repeating structure within a crystal 

produces a diffraction pattern from constructive and destructive interference of scattered X-ray or 

neutron waves. This diffraction process can be described rigorously using the Laue method which 

considers diffraction from a 3D arrangement of atoms. Although more representative of a 3D crystal, 

this analysis is complex so the Bragg method is preferred. In the Bragg method, crystals are 

considered as sets of lattice planes separated by an inter-planar d-spacing, 𝑑. The lattice planes are 

assigned using Miller indices (hkl). h, k and l are determined from the inverse of the points where the 
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lattice plane intercepts the lattice vectors 𝑎, 𝑏 and 𝑐. Bragg’s Law is derived in Fig. 2.2 by considering 

diffraction of two X-ray/neutron waves from two planes, 1 and 2, belonging to a set of adjacent 

lattice planes separated by 𝑑.  

 

 

 

 

 

 

 

 

 

Fig. 2.2 Derivation of Bragg’s law 

In Fig. 2.2, the wave labelled BB’ has to travel an extra distance of 𝑥𝑦𝑧 compared to the AA’ wave. 

Using simple trigonometry, the 𝑥𝑦𝑧 distance is given by:  

𝑥𝑦𝑧 = 2𝑑sin(𝜃) (2.4) 

Where 𝜃, is the angle of incidence (also known as the Bragg angle). For interference to be 

constructive, 𝑥𝑦𝑧 must be equal to an integer number of wavelengths (i.e. 𝑥𝑦𝑧 = 𝑛𝜆), thus defining 

Bragg’s Law: 

𝑛𝜆 = 2𝑑sin(𝜃)  (2.5) 

For a given 𝑑-spacing, the Bragg condition is only met at particular angles of incidence. A variation in 

𝜃 by more than ∼0.001° is enough to break the Bragg condition and result in complete destructive 

interference of the scattered waves. By measuring the intensity of the scattered waves as a function 

of incident angle, a diffraction pattern containing peaks at particular angles of incidence is produced. 

By rearranging Bragg’s Law, the peak position is used to calculate the 𝑑-spacing between lattice 

planes; hence providing the unit cell dimensions. The peak positions are solely dependent on the 

crystal structure. A diffraction pattern is often referred to as a ‘fingerprint’ that is unique for a given 

crystal. Further information about the contents of the unit cell is obtained by considering the 

intensity, number and shape of the diffraction peaks.  

Peak intensity  
One of the most important factors affecting the peak intensity is the contents of the lattice plane. In 

the case of X-rays, planes containing heavier elements (i.e. more electron density) have higher 

intensities compared to planes with light elements. Thus, peak intensity (𝐼ℎ𝑘𝑙) is linked to atomic 

position within the unit cell and is proportional to the X-ray structure factor, 𝐹ℎ𝑘𝑙  (equation 2.6). 𝐹ℎ𝑘𝑙  

describes the amplitude and phase difference (𝛼ℎ𝑘𝑙) for a given ℎ𝑘𝑙 reflection:  



27 
 

𝐼ℎ𝑘𝑙 ∝ |𝐹ℎ𝑘𝑙|2  (2.6) 

𝐹ℎ𝑘𝑙 = ∑ 𝑓𝑗exp (𝑖𝑗 𝛼ℎ𝑘𝑙)  (2.7) 

𝐹ℎ𝑘𝑙  is summed over all 𝑗 atoms in the unit cell. 𝑓𝑗  is the X-ray atomic form factor of a single 𝑗 atom 

and is given by the Fourier transform of the charge density:  

𝑓(𝑄) = ∫ 𝜌(𝑥)exp−𝑖𝑄.𝑥𝑑𝑥 (2.8) 

Where, 𝜌(𝑥) is the charge density of the scatterer as a function of position, 𝑥, in real space and 𝑄 is 

the momentum transfer. 𝑄 represents the change in momentum during scattering and is given by 

the difference in the incident (𝑘𝑖) and scattered (𝑘𝑓) wavevectors of the wave i.e. 𝑄 = 𝑘𝑖 − 𝑘𝑓 . The 

𝑘𝑖  and 𝑘𝑓  wavevectors are related to the wavelength by 𝑘 = 2𝜋/𝜆. Bragg’s Law is concerned with 

elastic scattering (also known as Thompson scattering) where there is no change in momentum. In 

this case 𝑘𝑖 = 𝑘𝑓 , so the momentum is conserved and scattering is elastic, but the direction changes 

by Q as shown in Fig. 2.3. Again, using simple trigonometry, it is possible to relate the momentum 

transfer in Q-space, to the scattering angle and wavelength using the relationship 𝑘 = 2𝜋/𝜆:  

𝑄 =
4𝜋sin (𝜃)

𝜆
  (2.9) 

 

 

 

 

 

 

 

Fig. 2.3 Elastic scattering in momentum space.  

Referring back to the form factor equation, it can be seen the larger the charge density 𝜌(𝑥), the 

larger the scattering amplitude; hence, reasoning the strong dependence on the atomic number of 

the scattering atom. It is also true that the greater the spread in 𝜌(𝑥), the faster the decay in 𝑓(𝑞) 

with 𝑄. Equation 2.9 also shows the atomic form factor depends on both the scattering angle and 

wavelength since both 𝜃 and 𝜆 affect the magnitude of 𝑄.   

The structure factor in equation 2.7 can also be expressed in terms of the ℎ𝑘𝑙 values for the lattice 

plane and fractional 𝑥, 𝑦, 𝑧 coordinates of the atoms using the following relationship: 𝛼ℎ𝑘𝑙 =

2𝜋(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧). 𝛼ℎ𝑘𝑙 represents the difference in phase between the atoms at the unit cell origin 

and atoms at a fractional position (𝑥, 𝑦, 𝑧) for a given ℎ𝑘𝑙 lattice plane in any 3D unit cell. The X-ray 

structure factor is now expressed as:   

𝐹ℎ𝑘𝑙 = ∑ 𝑓𝑗exp (2𝜋𝑖𝑗 (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗))  (2.10) 
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The neutron structure factor is different to the X-ray structure factor in a subtle, but very important 

way.  The neutron structure factor displayed in equation 2.11 resembles that of equation 2.10 for X-

rays, but the X-ray atomic form factor, 𝑓𝑗 , has been replaced by 𝑏𝑗. 𝑏𝑗 is known as the neutron 

scattering length. As discussed, neutrons are point scatterers, therefore 𝑏𝑗 does not depend on the 

incident angle. Neither does 𝑏𝑗 depend on 𝑄; so accordingly, 𝑏𝑗 is also 𝜃 and 𝜆 independent. Instead, 

𝑏𝑗 varies irrationally for each isotope and must be determined experimentally for each elemental 

isotope. It is also possible for elements to have a negative neutron scattering length, for example 

vanadium for which the coherent (elastic) neutron scattering length is 𝑏𝑐𝑜ℎ = −0.38 𝑓𝑚. 

Consequently, vanadium canisters are used as sample holders in elastic neutron diffraction 

experiments as they contribute no Bragg peaks to the diffraction pattern.  

𝐹ℎ𝑘𝑙 = ∑ 𝑏𝑗exp (2𝜋𝑖𝑗 (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)  (2.11) 

Using the structure factor, it is possible to calculate the intensity of any ℎ𝑘𝑙 reflection if the 𝑥, 𝑦, 𝑧 

coordinates in the unit cell are known. For example, the body centred cubic structure has a basis 

consisting of two atoms at 𝑥, 𝑦, 𝑧 positions (0,0,0) and (½, ½, ½). For this basis, the X-ray structure 

factor is given by:  

𝐹ℎ𝑘𝑙 = 𝑓𝑗exp (2𝜋𝑖(ℎ0 + 𝑘0 + 𝑙0) + 𝑓𝑗exp (2𝜋𝑖 (ℎ
1

2
+ 𝑘

1

2
+ 𝑙

1

2
)  (2.12) 

𝐹ℎ𝑘𝑙 = 𝑓𝑗[1 + (exp(𝜋𝑖))ℎ+𝑘+𝑙] 

Using Euler’s identity (exp(𝜋𝑖)  = −1) this simplifies to:  

𝐹ℎ𝑘𝑙 = 𝑓𝑗[1 + (−1)ℎ+𝑘+𝑙] (2.13) 

For 𝐹ℎ𝑘𝑙  to be non-zero, the sum of ℎ + 𝑘 + 𝑙 must be even to give 𝐹ℎ𝑘𝑙 = 2𝑓𝑗 . If ℎ + 𝑘 + 𝑙 = odd, 

(−1)ℎ+𝑘+𝑙  will be raised to an odd power and 𝐹ℎ𝑘𝑙 = 0 so no reflections are observed. This imposes 

a reflection condition on the body centred cubic structure where only ℎ + 𝑘 + 𝑙 = even reflections 

are observed (e.g. the (110), (200), (222) reflections). The ℎ + 𝑘 + 𝑙 = odd reflections (e.g. (100), 

(111), (201) etc.) are said to be forbidden or systematically absent. Systematic absences occur in all 

non-primitive lattices and impose different reflection conditions depending on the lattice type. Using 

Fig. 2.4 it is possible to see why 𝐹ℎ𝑘𝑙 = 0 for the (100) plane in the body centred cubic lattice, I. The 

presence of the second atom at (½, ½, ½) between lattice planes results in destructive interference 

at the Bragg angle as the waves diffracted from the (0,0,0) and (½, ½, ½) planes are 𝜆/2 out of phase 

with each other. Consequently, they completely cancel and the (100) reflection is absent. If the 

lattice were primitive, the (100) reflection would be observed as there is no body centring atom in-

between the planes to prevent complete constructive interference. The reflection conditions for the 

different lattice centrings are summarized in Table 2.1.  
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Fig. 2.4 Systematic absences in the body centred cubic lattice.  

Table 2.1 Reflection conditions for the 7 different lattice centrings. 

Lattice type Lattice points Reflection conditions 

Primitive (P) (0,0,0) None 

Body centred (I) (0,0,0); (½, ½, ½) ℎ +  𝑘 +  𝑙 =  2𝑛 

Face centred (F) 
(0,0,0); (½, ½, 0); (½, 0, 

½); (0, ½, ½) 

ℎ, 𝑘, 𝑙 either all odd or all 

even 

Base centred (A) (0, 0, 0); (0, ½, ½) 𝑘 +  𝑙 =  2𝑛 

Base centred (B) (0, 0, 0); (½, 0, ½) ℎ +  𝑙 =  2𝑛 

Base centred (C) (0, 0, 0); (½, ½, 0) ℎ +  𝑘 =  2𝑛 

Hexagonal centred (R) ±(⅔, ⅓, ⅓) or ±(⅓, ⅔, ⅓) 
−ℎ +  𝑘 + 𝑙 =  3𝑛 or 

ℎ −  𝑘 + 𝑙 =  3𝑛 

There are other factors which can affect the peak intensity. Structural multiplicity and temperature 

factors also need to be considered to formulate a complete expression for the ℎ𝑘𝑙 peak intensities, 

𝐼ℎ𝑘𝑙. Sample absorption can be an issue depending on the elements present. Absorption issues are 

indicated when the modelled peak intensities are higher than the observed intensity. In a powdered 

sample, preferred orientation might affect the peak intensity. Powder samples composed of non-

spherical crystallites (e.g. needle-like crystals) may order in stacked arrangements when preparing 

the sample on a plate holder. Crystal stacking means not all ℎ𝑘𝑙 planes are viewed with equal 

probability, thus skewing the intensity in the diffraction pattern towards ℎ𝑘𝑙 planes that are more 

‘visible’ to the X-ray/neutron beam. Preferred orientation effects can be reduced by using capillary 
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sample holders. Generally, powder samples are disordered so preferred orientation should not be an 

issue. 

Peak number  
The number of peaks in a diffraction pattern provides an indication of the crystal symmetry. Higher 

symmetry crystal structures have fewer peaks due to peak overlap caused by multiple equivalent 

ℎ𝑘𝑙 reflections. The multiplicity (𝑀) defines the number of equivalent ℎ𝑘𝑙 reflections contributing to 

a given peak. For example, in the cubic crystal the unit cell lengths are the same (i.e. 𝑎 =  𝑏 =  𝑐), 

and consequently the (ℎ00), (ℎ̅00), (0ℎ0), (0ℎ̅0), (00ℎ) and (00ℎ̅) reflections are equivalent and can 

be represented as {ℎ00}, where the curly brackets indicate the 𝑀 = 6 equivalent reflections. The bar 

denotes the inverse (i.e. ℎ̅  = −ℎ). Therefore, 6 reflections contribute to the {ℎ00} peak in the 

diffraction pattern. If the symmetry is lowered, for example by having 𝑎 =  𝑏 ≠  𝑐 as in the 

tetragonal unit cell, the multiplicity of the {ℎ00} reflections is reduced. The diffraction planes along 𝑐 

are no longer equivalent to those along 𝑎 and 𝑏. This leads to two peaks in the diffraction pattern: 

the {ℎ00} reflection of 𝑀 = 4 ((ℎ00), (ℎ̅00), (0ℎ0) and (0ℎ̅0)) and the {00𝑙} reflection of 𝑀 = 2 ((00𝑙) 

and (00𝑙)̅). If the symmetry was further lowered to orthorhombic (i.e. 𝑎 ≠  𝑏 ≠  𝑐), there would be 

three peaks for {ℎ00}, {0𝑘0} and {00𝑙} each with a multiplicity of 𝑀 = 2.  

Peak shape  
In an ‘ideal’ world, diffraction peaks would be observed as sharp lines. In reality, there are 

instrumental and sample-related factors that cause peak broadening. Instrumental influences 

typically cause Gaussian broadening of the peaks and originate from sample height and 

transparency. Instrumental Gaussian broadening depends entirely on the diffractometer in question. 

A standard sample (e.g. silicon or LaB6) is measured to optimize the diffractometer parameters and 

minimize instrumental broadening. Sample-related broadening results in Lorentzian broadening of 

the peaks and may occur due to factors such as particle size and microstrain.  

In most cases, diffraction peaks display a combination of instrumental and sample-related 

broadening that can be modelled using the Pseudo-Voigt function. The Pseudo-Voigt function uses 

both Gaussian and Lorentzian contributions to model the peak shape. Peak shapes are also not 

always symmetric. Neutron diffraction patterns collected at pulsed neutron sources have 

asymmetric peak shapes due to the highly asymmetric neutron pulse from the moderator. The peak 

shape in time-of-flight neutron diffraction patterns is modelled using the Ikeda-Carpenter function, 

in which a Gaussian function is convoluted with a non-Gaussian function to describe the asymmetry.  

Temperature factors  
Temperature factors also affect the peak intensity. At all temperatures, the atoms in a crystal are 

vibrating. Atomic vibration causes the electron density to spread out. This increases destructive 

interference as the X-rays/neutrons scatter from different parts off the same vibrating atom. 

Temperature factors are stronger at higher temperatures as atomic vibration increases. 

Temperature factors are accounted for by including an additional term in the structure factor, so 

equations 2.10 and 2.11 become:  

𝐹ℎ𝑘𝑙 = ∑ 𝑓𝑗exp (2𝜋𝑖𝑗 (ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)). exp(−M)        (X-rays)  (2.15) 

𝐹ℎ𝑘𝑙 = ∑ 𝑏𝑗exp (2𝜋𝑖𝑗 (ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧). exp(−M)  (neutrons)  

Assuming atomic vibration is isotropic (equal in all directions) the expression for 𝑀 is given by:  

𝑀 = 𝐵
𝑠𝑖𝑛2𝜃

𝜆2  (2.16) 
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Note, the angle dependence in equation (2.16). As well as sample temperature, the Bragg angle also 

affects the value of 𝑀 in such a way that temperature factors become worse as 𝜃 increases. In 

equation 2.16, 𝐵 is the isotropic temperature factor. 𝐵 is related to the thermal atomic vibration 

using the expression in equation 2.17.  

𝐵 = 8 𝜋2𝑢2 (2.17) 

Here, 𝑢2 = 𝑈, where 𝑢2 is the mean squared atomic displacement. Temperature effects are 

parametrized either in terms of 𝐵 or 𝑈. A more complex expression for 𝑀 is employed for 

anisotropic atomic vibration.  

Magnetic diffraction  
It has been noted that neutrons are sensitive towards magnetic moments in crystalline samples. 

Neutrons are uncharged, but possess an effective magnetic dipole moment of 𝜇𝑛~ 0.001 𝜇𝐵  owing 

to their 𝑆 = ½ spin. The neutron magnetic dipole interacts with magnetic fields produced by unpaired 

electrons in the sample leading to magnetic scattering. Magnetic scattering is weaker compared to 

nuclear scattering and depends on the ions present in the sample (i.e. the number of unpaired 

electrons). Unlike X-rays, neutron magnetic scattering does not increase with atomic number, but it 

does depend on a form factor known as the magnetic form factor. The magnetic form factor has a 

greater angle dependence compared to the X-ray form factor; and decreases faster as a function of 

𝑄 as illustrated in Fig. 2.5. This is because scattering typically arises from unpaired electrons in the 

outer 𝑑 and 𝑓 orbitals whose electron density is more spread out; so like temperature factors, 

magnetic scattering becomes weaker at increasing angles.  

 

 

 

 

 

 

 

 

 

Fig. 2.5 The X-ray form factor (red line) and magnetic form factor for neutrons (green line) as a 

function of momentum transfer, 𝑄 = 4𝜋 𝑠𝑖𝑛 (𝜃)/𝜆.  

In a paramagnet, neutrons are scattered incoherently as the magnetic moments are disordered.  

Incoherent paramagnetic scattering contributes to the background intensity. If the material is 

magnetically ordered, coherent magnetic scattering results in a similar manner to nuclear scattering. 

The major difference is that magnetic scattering is not isotropic. Magnetic neutron scattering is only 

observed from magnetic moments (𝜇) that are perpendicular to the momentum transfer vector, 𝑄. 

The 𝑀 represents the overall direction of magnetisation and is comprised of the vectors 𝑀 || and 

𝑀 ⊥. If 𝑄 is parallel to 𝑀 ||, only scattering from the 𝑀 ⊥ component of the magnetisation will be 

observed. The opposite is true when 𝑄 is parallel to 𝑀 ⊥(i.e. only scattering from 𝑀 || observed). The 
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magnetic structure factor (𝐹𝑚𝑎𝑔) is a vector whose magnitude depends on the direction of the 

magnetic moments with respect to 𝑄.  

𝐹𝑚𝑎𝑔(ℎ𝑘𝑙) = ∑ 𝜇𝑗𝑓𝑗(𝑄)exp(2𝜋𝑖𝑗 (ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)) (2.18) 

Here, 𝜇𝑗  is the magnetic moment within the sample and 𝑓𝑗(𝑄) the magnetic form factor. The 

structure factor for scattering of unpolarized neutrons is given by the combination of the nuclear 

and magnetic scattering processes.  

𝐹𝑡𝑜𝑡𝑎𝑙(ℎ𝑘𝑙) = 𝐹𝑛𝑢𝑐(ℎ𝑘𝑙) + 𝐹𝑚𝑎𝑔(ℎ𝑘𝑙) (2.19) 

Ferromagnetically ordered materials possess the same symmetry as the nuclear unit cell due to 

parallel alignment of the spins. Below the Curie temperature (𝑇C), neutron and magnetic scattering 

superimpose, causing the peak intensity to increase as illustrated in Fig. 2.6a. In an 

antiferromagnetic material, symmetry breaking occurs due to antiparallel alignment below the Néel 

temperature (𝑇N). The nuclear and magnetic unit cells are no longer equivalent. Extra magnetic 

Bragg peaks are observed at different positions to the nuclear Bragg peaks, as illustrated in Fig.2.6b. 

The magnetic unit cell is related to the nuclear unit cell using the propagation vector, 𝑘. 𝑘 is the 

factor by which the nuclear periodicity must be multiplied to match the magnetic periodicity (i.e. 

magnetic periodicity = 𝑛 x nuclear periodicity). If 𝑛 is a rational number (e.g. 1 or ½), then the 

nuclear and magnetic unit cells are said to be commensurate. If the nuclear periodicity is multiplied 

by an irrational value of 𝑛, the nuclear and magnetic unit cells are incommensurate.  
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Fig. 2.6 (a) Neutron scattering from a ferromagnet. Above the ferromagnetic ordering temperature 

(𝑇𝐶) only nuclear scattering is observed. Below 𝑇𝐶 , magnetic scattering occurs in addition to nuclear 

scattering when the magnetic moment (𝜇) is perpendicular to 𝑄. The result is an increase in the peak 

intensity. (b) Magnetic scattering from an antiferromagnet. Now, the nuclear unit cell and magnetic 

unit cell are inequivalent resulting in additional peaks in the diffraction pattern below the 

antiferromagnetic ordering temperature (𝑇𝑁). Again, magnetic scattering is observed only when the 

magnetic moment (𝜇) is perpendicular to the momentum transfer vector (𝑄).  

a. Diffraction Instruments  
Laboratory Powder X-ray diffractometers  
Laboratory powder X-ray diffractometers are the most accessible instrumentation for diffraction 

analysis. There are three main components to a laboratory X-ray diffractometer: the X-ray source, 

the sample and detector. X-rays are produced at the source by heating a tungsten filament causing 
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the filament to emit electrons that are accelerated towards a target material (commonly made from 

copper or molybdenum metal). Electron collision with the target produces two types of X-ray 

radiation: characteristic and continuous. Characteristic X-rays are produced by removal of a core 

electron from an atom in the target material. This results in quantum transitions where electrons 

from higher energy levels ‘drop down’ to fill the electron hole and emit X-rays of characteristic 

wavelength. Continuous X-rays (known as Bremsstrahlung radiation) are produced by electron 

deceleration upon collision with the target. The X-ray emission spectrum consists of characteristic 

lines corresponding to quantum transitions from the K, L, M… shells of the target atom, on top of a 

background of continuous X-ray radiation.  

Powder X-ray diffraction patterns were performed on a Rigaku Miniflex diffractometer using a 

copper source. A filter is used to separate weaker 𝐾𝛽  X-ray radiation (3𝑝(M shell)-1𝑠(K shell)) from 

the more intense 𝐾𝛼 (2𝑝 (L shell)-1𝑠 (K shell)) radiation. This produces two characteristic Cu-𝐾𝛼 

wavelengths of 𝜆 = 1.5405 and 1.5443 Å for diffraction. The X-rays are focused onto the sample 

using a series of slits. Bragg-Brentano geometry is used in the Rigaku Miniflex diffractometer. In 

Bragg-Brentano geometry (Fig. 2.7) the powder sample is placed onto a flat specimen holder in the 

centre of the diffraction circle. The source and detector sit on the circumference of the diffraction 

circle allowing the incident and diffracted beams to be focused on a fixed radius from the sample. 

The source is fixed while the sample and detector are rotated by 𝜃 and 2𝜃, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Powder diffraction in Bragg-Brentano geometry.  

Synchrotron X-ray diffraction 
Synchrotron X-ray diffraction is performed at a synchrotron X-ray source. Synchrotron X-rays are 

produced by accelerating electrons to relativistic speeds in a storage ring. Changing the electrons 

direction using magnetic fields results in the emission of high intensity X-rays that are either 

continuous (bending magnet or wiggler magnet) or pulsed (undulator magnet). The X-rays from the 

storage ring are focused into experimental hutches placed around the circumference of the storage 

ring. Each hutch contains specialised synchrotron X-ray diffraction and/or spectroscopic instruments. 
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Synchrotron X-ray sources are expensive, both in terms of infrastructure and operation; therefore, 

they are located at large scale national facilities.  

Synchrotron X-ray diffraction is highly sought for several reasons. The most celebrated advantage is 

the superior brilliance. Synchrotron sources like the ESRF and Diamond are more than 1 billion times 

brighter than laboratory sources. In addition, the X-rays emitted from electron deceleration are near 

parallel and have less beam divergence compared to in a laboratory diffractometer. The high 

intensity combined with parallel X-rays offers greater intensity and angle precision. Consequently, 

the resolution in a synchrotron X-ray diffraction pattern is far superior to that of a laboratory X-ray 

diffraction pattern. The X-ray wavelength can also be tuned to match atomic excitations in the 

material providing spectroscopic information.  

Neutron powder diffraction  
Like synchrotron X-rays sources, neutron sources are located at national facilities due to their 

expense. Neutron sources are either pulsed or continuous.   

Continuous sources  

The ILL in Grenoble, France, is a continuous neutron source. Neutrons are produced by nuclear 

fission in a nuclear reactor using a highly enriched uranium source. The neutrons produced are too 

‘hot’ (too high energy) for diffraction experiments, so they are slowed down using a moderator. By 

collision with different moderators (liquid D2, liquid D2O or graphite), neutron wavelengths between 

1-20 Å are obtained. The thermal neutrons of 𝜆 = 1-3 Å obtained with a liquid D2O moderator are 

suited to diffraction experiments. The thermal neutrons are collimated using Soller slits and 

monochromated using single crystals. The identity of the single crystal monochromator determines 

the wavelength and the width of the Soller slits determines the spread of the wavelength. A 

common single crystal monochromator is germanium 333 which via Braggs law filters neutrons of 𝜆 

= 1.089 Å into a single wavelength beam. The monochromatic neutron beam is then focused onto 

the sample. Like in powder X-ray diffraction, the intensity of the diffracted neutrons is measured as a 

function of 2𝜃.  

Pulsed sources 
At a continuous source, the neutron beam consists of a constant stream of neutrons. At a pulsed 

source the neutrons arrive in ‘bunches’ known as pulses. Each pulse last for a duration known as the 

pulse width. The pulse frequency is the number of pulses per second. Pulsed neutron sources, such 

as The ISIS Neutron and Muon source, use spallation to produce a pulsed neutron beam. An ion 

source produces H- ions that are accelerated and separated into bunches using a quadrupole 

accelerator. A linear accelerator (LINAC) further accelerates the H- bunches and injects them into a 

synchrotron ring. In the synchrotron ring, H- is converted to H+ using a thin aluminium foil. When 

there are sufficient protons in the ring the, the protons are collected into two large bunches and are 

extracted by a kicker magnet that accelerates the protons at 84% of the speed of light towards a 

tungsten target. Collision with the target results in spallation, a reaction in which the high energy 

protons disintegrate the nuclei in the target releasing neutrons. The neutrons emerging from the 

target are moderated and collimated into a pulsed neutron beam.   

Spallation sources are approximately 10 times brighter per unit heat compared to continuous 

sources, however the neutron pulse contains a large spread of wavelengths. While it is possible to 

use monochromators and choppers to select specific neutron wavelengths, this greatly reduces the 

intensity of the incident beam. Instead, the neutron time-of-flight (TOF, 𝑡) over a fixed path length 

(𝐿) is measured in a pulsed neutron diffraction experiment. Bragg’s law is still in place, but instead of 

varying the diffraction angle, the wavelength is varied while 𝜃 is fixed. The neutron wavelength is 
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related to the neutron velocity (𝑣 = 𝐿/𝑡) using equation 2.1. In equation 2.20, the neutron time-of-

flight is related to the neutron wavelength.  

ℎ

𝜆
=

𝑚𝑛𝐿

𝑡
  (2.20) 

ℎ is Planck’s constant and 𝑚𝑛 the neutron mass. Combining equation 2.20 with Bragg’s law 

(𝜆 = 2𝑑sin(𝜃)) yields an expression relating the TOF to the inter-planar 𝑑-spacing:  

𝜆 =
ℎ𝑡

𝑚𝑛𝐿
= 2𝑑sin(𝜃)  (2.21) 

Rearranging to make 𝑡 (in milliseconds) the subject gives:  

𝑡(msec) = 505.56 𝐿(m)𝑑(Å)sin𝜃 (2.22) 

Hence, structural information is extracted from a time-of-flight neutron powder diffraction pattern 

in much the same way as that produced by a continuous source using the Rietveld method described 

below. Time-of-flight diffraction experiments were performed on the HRPD (picture 2.1a) and GEM 

(picture 2.1b) beamlines at the ISIS Neutron and Muon Source.  

 

 

 

 

 

 

 

 

 

 

 

Picture 2.1 (a) The High Resolution Powder Diffractometer (HRPD) and (b) the General Purpose 

Diffractometer (GEM) at the ISIS Neutron and Muon source.  

b. Analysis of powder diffraction patterns – Rietveld refinement  
In the powder diffraction pattern, only the intensity and not the phase of the diffracted wave is 

measured. The loss of phase information means it is not possible to determine the 3D structure from 

the intensities alone. To overcome the phase problem, Hugo Rietveld developed the Rietveld 

method to extract structural information from the height, width and position of the reflections in a 

1D histogram pattern. The Rietveld method is a least squares minimization method and has been 

used since the 1960s to analysed powder diffraction patterns.  

The recipe for the Rietveld method requires two key ingredients: (1) an experimental diffraction 

pattern and (2) a starting model of the 3D crystal structure. The first stage in the Rietveld method is 

to choose an appropriate model of the 3D crystal structure. The crystal structure for the compound 

(a) (b) 
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may already be known, in which case the space group and atomic positions for the known structure 

are used to create the 3D model. If the structure is unknown, either the model is developed using 

the structure from a related material, or a prediction is made based on the number of reflections, 

peak intensities, and peak positions. After developing a model, the powder pattern for the model 

can be calculated and compared to the experimental data. Initially, there will be a large difference 

between the experimentally observed (𝑌𝑜𝑏𝑠) and calculated (𝑌𝑐𝑎𝑙𝑐) pattern, as the example in Fig. 2.8 

shows, where the blue difference curve (𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙𝑐) shows points of noticeable deviation from 

zero. To improve the description of the experimental pattern the model parameters are ‘refined’.  

 

 

 

 

 

 

 

 

 

Fig. 2.8 Initial refinement results for Ba2MnTeO6 showing a poor fit between the observed and 
calculated powder pattern. 

The model parameters are refined using the Rietveld least squared minimisation algorithm. In the 

Rietveld algorithm, the model parameters (unit cell size, atomic positions, thermal displacement and 

sample absorption) and instrumental parameters (e.g. sample height and sample absorption) are 

varied in order to minimise the weighted sum of the squared difference between the observed 

(𝑌𝑜𝑏𝑠,𝑖 ) and calculated (𝑌𝑐𝑎𝑙𝑐,𝑖) intensities at each point, 𝑖. The sum of the square differences is 

expressed as:  

𝑆𝑈𝑀 = ∑ 𝑤𝑖(𝑌𝑜𝑏𝑠,𝑖 − 𝑌𝑐𝑎𝑙𝑐,𝑖)
2

𝑖  (2.23) 

The weighting factor (𝑤𝑖) is equal to 
1

𝜎2[𝑌𝑜𝑏𝑠,𝑖 ]
, where 𝜎[𝑌𝑜𝑏𝑠,𝑖 ] is the standard uncertainty. The 

standard uncertainty is the amount by which the experimental intensity (𝑌𝑜𝑏𝑠,𝑖 ) deviates from the 

‘true’ value of the intensity (𝑌𝑇 ). 𝑌𝑇  is determined by measuring the intensity an infinite number of 

times. This is impractical; therefore 𝜎[𝑌𝑜𝑏𝑠,𝑖 ] is determined indirectly by counting the number of 

individual phonons or neutrons reaching the detector, in which case 𝑌𝑜𝑏𝑠,𝑖 = 𝜎2[𝑌𝑜𝑏𝑠,𝑖 ].  

This minimization procedure is repeated iteratively until the sum of the square differences is 

minimized. All the parameters are not refined at the same time due to parameter correlation. Strong 

correlation means minimization of one parameter will result in a large shift in another parameter. 

Consequently, the system diverges away from the minimum. Instead, parameters are introduced to 

the refinement in a sequence with the parameters that have the largest effect on the square 

differences refined first. A typical refinement sequence starts with refinement of the scale.  Then 

unit cell parameters and the sample height are included. Subsequent parameters which have less 

effect on the fit are then introduced. For example, the peak shape, atomic positions and sample 
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absorption are introduced until the Rietveld algorithm converges to give a ‘good’ fit between the 

observed and calculated pattern.  

Whether a ‘good’ fit is obtained is determined using fitting parameters, known as 𝑅-factors. The 

profile 𝑅-factor, 𝑅𝑝, is given by equation 2.24:   

𝑅𝑝 = [
∑ (𝑌𝑜𝑏𝑠,𝑖 −𝑌𝑐𝑎𝑙𝑐,𝑖 )

2
𝑖

∑ (𝑌𝑜𝑏𝑠,𝑖 )
2

𝑖

]
1/2

  (2.24) 

Alternatively, the 𝑅𝑝  can be expressed as the weighted profile 𝑅-factor, 𝑅𝑤𝑝, where the expression 

for  𝑅𝑝  is scaled by the weighted intensity.  

𝑅𝑤𝑝 = [
∑ 𝑤𝑖(𝑌𝑜𝑏𝑠,𝑖 −𝑌𝑐𝑎𝑙𝑐,𝑖 )

2
𝑖

∑ 𝑤𝑖(𝑌𝑜𝑏𝑠,𝑖 )
2

𝑖

]
1/2

  (2.25) 

The values of 𝑅𝑝  and 𝑅𝑤𝑝  arguably provide the best indication of how well the Rietveld minimization 

has progressed as they contain the term which is being minimized: (𝑌𝑜𝑏𝑠,𝑖 − 𝑌𝑐𝑎𝑙𝑐,𝑖 )
2

. The ‘best 

possible 𝑅𝑤𝑝’ is called the experimental 𝑅-factor, 𝑅𝑒𝑥𝑝. 𝑅𝑒𝑥𝑝 is determined by assuming the model 

accurately predicts 𝑌𝑂,𝑖 , hence (𝑌𝑜𝑏𝑠,𝑖 − 𝑌𝑐𝑎𝑙𝑐,𝑖 )
2

 is equal to 𝜎2[𝑌𝑜𝑏𝑠,𝑖 ]. As a result, 𝑤𝑖(𝑌𝑜𝑏𝑠,𝑖 −

𝑌𝑐𝑎𝑙𝑐,𝑖 )
2

= 1. This is because 𝑤𝑖  is equal to 
1

𝜎2[𝑌𝑜𝑏𝑠,𝑖 ]
, and so 

1

𝜎2[𝑌𝑜𝑏𝑠,𝑖 ]
 x 𝜎2[𝑌𝑜𝑏𝑠,𝑖 ]  = 1. 𝑅𝑒𝑥𝑝 can 

then be expressed as:  

𝑅𝑒𝑥𝑝 = [
𝑁

∑ 𝑤𝑖(𝑌𝑜𝑏𝑠,𝑖 )
2

𝑖

]
1/2

  (2.26) 

Where, 𝑁 is the number of data points. Another statistical measure of the fit is ‘Chi squared’, 𝜒2. 𝜒2 

is defined as:  

𝜒2 =
1

𝑁

∑ 𝑤𝑖(𝑌𝑜𝑏𝑠,𝑖 −𝑌𝑐𝑎𝑙𝑐,𝑖 )
2

𝑖

𝜎2[𝑌𝑜𝑏𝑠,𝑖]
  (2.27) 

This is equivalent to the square of the ratio of 𝑅𝑤𝑝  and 𝑅𝑒𝑥𝑝: 

𝜒2 = [
𝑅𝑤𝑝 

𝑅𝑒𝑥𝑝
]

2

 (2.28) 

In the refinement, 𝜒2
 starts out large as the model is poor. As more parameters are included, the 

model improves causing 𝜒2 to decrease as 𝑅𝑤𝑝  becomes smaller. However, 𝜒2 should never drop 

below 1. If 𝜒2 < 1, this means 𝑅𝑤𝑝  is less than 𝑅𝑒𝑥𝑝 and the result is false as the model can never fit 

better than the actual data. Reasons why this situation may occur include over-estimation of the 

standard uncertainty, or refining too many parameters so the model also describes noise in the 

experimental data. Overall, the goal of Rietveld refinement is to obtain reasonably low 𝑅-factors 

(𝑅𝑝, 𝑅𝑤𝑝  and 𝑅𝑒𝑥𝑝 all less than 10) and a 𝜒2 > 1.  

2. Inelastic Neutron Scattering (INS) spectroscopy  
Neutron diffraction is an elastic scattering process (i.e. 𝑘𝑖 = 𝑘𝑓). Neutrons can also be scattered 

inelastically. In an inelastic scattering process, there is a change in the neutron momentum so 

𝑘𝑖 ≠ 𝑘𝑓. The neutron either gains energy from the sample or transfers some of its energy to the 

sample resulting in an overall change in momentum. The wavevector diagrams for both neutron 

energy loss and energy gain are shown in Fig. 2.9.  
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Neutron energy loss occurs when collision of the neutron with the sample leads to excitations. These 

excitations could correspond to lattice vibrational modes (known as phonons), atomic motions 

(diffusion), rotations, crystal field transitions or magnetic excitations. Measuring the change in 

neutron energy and momentum provides information about dynamics in the material. For example, 

phonon excitation provides information about the thermal and electrical properties of the sample. 

Magnetic excitations such as spin waves occur if the sample is magnetically ordered. Spin waves are 

collective oscillations of spins about an ordered ground state. The collective oscillations have a well-

defined energy dispersion in wavevector space and for each magnetic ion in the sample there is a 

corresponding spin wave branch.  

 

 

 

 

 

 

 

 

 

Fig. 2.9 Inelastic neutron scattering in momentum space showing energy loss and energy gain with 

respect to the neutron.   

Inelastic neutron scattering is described using the dynamic structure factor: 𝑆(𝑄, 𝜔). 𝑄 is the 

momentum transfer vector and 𝜔ħ (where  𝜔 = 2𝜋/𝜆) is the energy change experienced by the 

sample (i.e. amount of energy transferred to the sample). By measuring the energy change as a 

function of momentum transfer, an inelastic neutron spectrum is produced. Inelastic neutron 

scattering spectroscopy can be performed using triple axis spectrometers (continuous neutron 

sources) or time-of-flight spectrometers (pulsed neutron sources). With a triple axis spectrometer, 

the neutron energy before and after collision with the sample is measured. The three-step process 

involves: (1) monochromation of the incident neutron wavelength; (2) sample interaction and (3) 

analysis of the scattered neutron energy using a crystal analyser. The crystal analyser is rotated to 

detect the multiple scattered neutron energies using Bragg’s Law. The scattering intensity in Energy-

Momentum (𝐸 − 𝑄) space is obtained by scanning the neutron energy (𝐸) with constant 𝑘𝑖  or 𝑘𝑓  

while 𝑄 is constant, and the momentum transfer (𝑄) in any direction while 𝐸 is constant. In a triple 

axis experiment the wavelength (i.e. energy) of the neutrons is determined by the scattering angle. 

Alternatively, when performing inelastic neutron scattering using a time-of-flight spectrometer the 

initial and final neutron energies are instead selected based on the time it takes for the neutron to 

travel through the spectrometer to the detector. From the flight time over a known distance, the 

neutron energy is determined. The main advantage of time-of-flight spectrometers is that 𝐸 and 𝑄 

are measured simultaneously so a large region of 𝐸 − 𝑄 space, possibly containing multiple 

excitations, can be observed quickly. Overlap of magnetic and phonon excitations is generally 

avoided as phonon excitations are observed at large 𝑄 and diminish with reduced temperature. 
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Conversely, magnetic excitations diminish quickly with increasing 𝑄 and become stronger at low 

temperatures.   

3. Extended X-ray Absorption Fine Structure (EXAFS)  
The tuneable X-ray wavelength at synchrotron X-ray sources allows spectroscopy as well as 

diffraction to be performed. X-ray absorption occurs when the energy of a monochromatic beam of 

synchrotron X-rays matches the energy difference between the atomic energy levels of the sample 

atoms. Absorption results in the excitation or ejection of a core-electron. Through secondary 

processes, this results in fluorescence or electron emission as the core hole is filled by an electron 

from a higher energy level. By measuring changes in the beam intensity, sample fluorescence or 

number of ejected electrons, an X-ray absorption spectrum is produced. Fig. 2.10 shows an 

illustration of a typical X-ray absorption spectrum.1  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10 Illustration of a typical X-ray absorption spectrum.  

The sharp rise in X-ray absorption is known as the absorption edge. Below the absorption edge the 

X-ray photon energy is insufficient to excite a core-electron in the atom. At the edge, the X-ray 

energy is sufficient and X-ray absorption rises sharply. Above the edge, the X-ray absorption is low 

and gradually decreases as the probability of absorption decreases with increasing photon energy. 

Near the edge there may be shoulders or features. This is known as the X-ray Absorption Near-Edge 

Structure (XANES) and provides information about the local bonding between atoms. Above the 

edge, there are oscillations which represent the Extended X-ray Absorption Fine Structure (EXAFS). 

An electron ejected from an atom because of X-ray absorption processes can be viewed as a wave 

radiating from the atom in all directions. The electron wave interacts with the neighbouring atoms 

resulting in interference that is observed in the Extended X-ray Absorption Fine Structure. Hence, 

the EXAFS region provides information about the local structure surrounding the absorbing atom. 

The X-ray energy can be tuned to a specific core energy level to obtain element specific information 

on the local structure of a chosen atom through EXAFS.  
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4. Superconducting Quantum Interference Device (SQUID) 

magnetometry  
A Superconducting Quantum Interference Device (SQUID) is a very sensitive magnetic detector that 

can detect very weak magnetic fields (e.g. magnetic fields in living organisms). Weak magnetic fields 

are detected using Josephson Junctions. A Josephson Junction consists of a thin, non-

superconducting barrier separating two superconducting electrodes. The thickness of the barrier is 

such that electrons can ‘tunnel’ through the barrier at a critical current with no resistance. Below the 

critical current the voltage across the junction is zero, but above the critical current the voltage is 

non-zero and oscillates with time.   

A DC SQUID uses two Josephson junctions arranged in parallel to form a loop.2 The loop is connected 

to a detection coil forming a superconducting loop. A magnetically active sample is placed within the 

detection coils and calibrated to move up and down the coil between fixed distances. As the sample 

moves, the magnetic fields in the sample induce an electric current in the detection coils. The 

change in current changes the voltage across the Josephson junctions. The change in voltage is 

proportional to the change in current, which in turn depends on the strength of the magnetic fields 

in the sample. Josephson Junctions are sensitive to very small changes in current and using the linear 

current-to-voltage conversion can detect fields smaller than ≤10-8emu.3 This is the sensitivity limit of 

the Quantum Design MPMS 3 SQUID magnetometer used to perform measurements in this thesis. 

Other components of the MPMS 3 magnetometer include a superconducting magnet and sample 

temperature controls. A superconducting magnet can generate large magnetic fields between -7 to 7 

Tesla (T).4 This allows the samples magnetic response in an external field to be measured over a 

wide field range by producing a 𝑀 vs 𝐻 curve. A  𝑀 vs 𝐻  curve shows how the sample 

magnetization (𝑀) changes as a function of external magnetic field (𝐻) at a fixed temperature. The 

sample magnetization can also be measured as a function of temperature (𝑇) using the MPMS 3 

sample temperature control system. In this thesis, the closed-cycle helium cryostat was used to 

control the sample temperature and produce 𝑀 vs 𝑇 curves in the temperature range of 2-300 K or 

2-400 K. Both 𝑀 vs 𝐻 and 𝑀 vs 𝑇 measurements were performed in DC SQUID mode.  

The MPMS 3 can also be operated in alternating current (AC) mode. AC magnetometry employs an 

AC magnetic field in addition to a DC field.5 The AC field varies with time, therefore the sample 

moment is also time-dependent. The time-dependent magnetic moment is detected without moving 

the sample through the detector coil. The detection circuit is configured to detect a narrow 

frequency band corresponding to the frequency of the AC field. At low frequencies, AC 

measurements are useful for detecting small shifts in the magnetic behaviour. At low AC 

frequencies, the AC 𝑀 vs 𝐻 curve follows the same shape as a DC 𝑀 vs 𝐻 curve. The AC moment in 

the 𝑀 vs 𝐻 curve is given by:  

𝑀𝐴𝐶 = (
𝑑𝑀

𝑑𝐻
) ∙ 𝐻𝐴𝐶 𝑠𝑖𝑛(𝜔𝑡) (2.29) 

Here, 𝐻𝐴𝐶  is the amplitude of the AC drive field and 𝜔 is the AC drive frequency. The slope of the 𝑀 

vs 𝐻 curve is the AC susceptibility: 𝜒𝐴𝐶 = 𝑑𝑀/𝑑𝐻. As the AC field increases, during the 𝑀 vs 𝐻 

measurement, small changes in the magnetic response are detected from the change in the 𝜒𝐴𝐶 

slope. The AC frequency increases and the AC moment becomes dynamic and may lag behind the 

driving field. The detector circuit monitors both the magnitude of the AC susceptibility and the shift 

in the phase of the AC frequency relative to the drive frequency. These are designated as the real in-

phase (𝜒′) and imaginary out-of-phase (𝜒′′) components of the AC susceptibility. 𝜒′ is the value of 

the slope 𝜒𝐴𝐶 in the 𝑀 vs 𝐻 curve. 𝜒′′ is commonly zero, but in cases where the imaginary 
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component is non-zero, this indicates there are dissipative processes in the sample. A non-zero value 

of 𝜒′′ is observed for spin-glasses due to relaxation and irreversibility. The spin glass freezing 

temperature is observed by a cusp in the 𝜒′ vs 𝑇 AC susceptibility data. Irreversible spin freezing 

causes the position of the cusp to shift as the AC frequency changes. Consequently, AC susceptibility 

is a key technique for observing spin glass behaviour.  

5. Heat Capacity  
Heat capacity is defined as the amount of heat (𝑄) required to raise the temperature (𝑇) of a 

substance by a given temperature increment (𝑑𝑇). Under constant pressure the equation for the 

heat capacity (𝐶𝑝) is:  

𝐶𝑝 = (
𝑑𝑄

𝑑𝑇
)

𝑃
   (2.30) 

The laws of thermodynamics govern processes involving heat transfer. The second law of 

thermodynamics relates the change in heat to the entropy of the system and states that the entropy 

(degree of disorder) always increases for a spontaneous process. A spontaneous process occurs 

without any external influence under a specific set of conditions. The equation for the second law of 

thermodynamics is given by: 

𝑑𝑄 = 𝑇𝑑𝑆 (2.31) 

By combining and rearranging equations 2.30 and 2.31, the heat capacity between 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 is 

related to the entropy in equation 2.32.6 

𝑆 = ∫ (
𝐶𝑝

𝑇
)

𝑇𝑚𝑎𝑥

𝑇𝑚𝑖𝑛
𝑑𝑇 (2.32) 

Measuring the heat capacity provides a means to determine how the entropy of the system changes 

with temperature. The entropy, and hence the heat capacity, depends on the number of degrees of 

freedom (i.e. more degrees of freedom = higher entropy/heat capacity). Several factors contribute 

towards the total heat capacity (𝐶𝑡𝑜𝑡) in equation 2.33.  

𝐶𝑡𝑜𝑡 =  𝐶𝑙𝑎𝑡 + 𝐶𝑚𝑎𝑔 + 𝐶𝑒𝑙 + 𝐶𝑛𝑢𝑐  (2.33) 

𝐶𝑙𝑎𝑡  is the lattice contribution due to excitation of vibrational modes known as phonons in the 

lattice. 𝐶𝑚𝑎𝑔  is the magnetic contribution originating from excitation of magnetic modes known as 

spin waves. Spin waves are collective oscillations of the magnetic spins in the material. 𝐶𝑒𝑙  is the 

electronic Schottky contribution arising from thermal emission of electrons. 𝐶𝑛𝑢𝑐  is the hyperfine 

contribution arising from the interaction between the magnetic moments and the quadrupolar 

moment of the nuclei. In a magnetic lattice, the main contributions to consider are 𝐶𝑙𝑎𝑡  and 𝐶𝑚𝑎𝑔.7 If 

there are no phase transitions, 𝐶𝑡𝑜𝑡  as a function of temperature should be a smooth slope with a 

positive gradient as the 𝐶𝑙𝑎𝑡  contribution to 𝐶𝑡𝑜𝑡  increases at higher temperatures. Structural and 

magnetic phase transitions involve a large change in entropy and can be identified by a sharp ‘kink’ 

the 𝐶𝑝/𝑇 vs 𝑇 data. These kinks are called lambda transitions as their shape resembles the Greek 

letter 𝜆. Therefore, 𝐶𝑡𝑜𝑡  vs 𝑇 measurements offer another means to identify magnetic ordering in 

materials.  Heat capacity measurements were performed using a Quantum Design PPMS.  

6. Muon Spin Relaxation (μSR) 
Muon spin relaxation employs the muon’s intrinsic spin to study structural and dynamic processes in 

bulk materials on an atomic scale.8 Muons are unstable elementary particles with a lifetime of 2.2 
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μs. They can be +1 or -1 charged and have a mass that depends on their charge. While seemingly 

short-lived, muons actually have the second longest lifetime of all fundamental unstable particles 

and exist long enough to be used as probes in bulk materials. For example, muons are commonly 

implanted as probes in bulk magnetic materials wherein they can sense very weak magnetic fields. 

Furthermore, muons are sensitive towards both local static and dynamic magnetism; and can detect 

dynamic magnetic fields fluctuating at rates between ~104 – 1011 s-1. Muons have a strong 

advantage over bulk techniques such as SQUID magnetometry and heat capacity measurements. 

Bulk techniques provide information on the average magnetism of the whole sample, so cannot 

distinguish between local uniform and non-uniform magnetic behaviour. Muons are often called 

‘local magnetic probes’ and can detect magnetic behaviours which bulk techniques cannot.   

a. Muon production 
Muons are produced from the decay of unstable subatomic particles called pions (π). Pions are 

produced from the collision of high energy particles (e.g. protons) with a target. The mean pion 

lifetime for π+ and π- is much shorter than the muon (~26 ns) so they quickly decay into μ+ or μ-:  

𝜋+  → 𝜇+ + 𝜈𝜇   (2.34) 

𝜋−  → 𝜇− + �̅�𝜇  (2.35) 

Atmospheric muons are produced when high energy particles in cosmic rays collide with atomic 

nuclei in the Earth’s upper atmosphere. Atmospheric muons are useful for archaeological 

applications such as muography, were natural and man-made structures are imaged from the 

absorption or scattering of muons. The muon flux at ground level is too low for most other scientific 

applications. Instead, dedicated pulsed and continuous muon sources have been developed.  

The ISIS Neutron and Muon source is a pulsed source. As well as generating pulsed neutrons, ISIS 

also creates pulsed muons using a second graphite target placed upstream from the tungsten 

neutron target. Pulses of protons from the synchrotron ring collide with the target generating pions. 

The pions decay in flight or at the target surface forming a pulsed muon beam. Surface muons are 

most useful as they possess the highest degree of spin polarization. This ensures the muons are 

implanted in the sample with the same initial spin direction. Continuous sources, such as the Paul 

Scherrer Institut (PSI), use a cyclotron ring to generate a continuous muon beam. Protons are 

injected into the centre of the cyclotron ring and are accelerated using magnetic fields on a spiral 

path. The protons then collide with the graphite target to produce pions. The muons arrive randomly 

at the sample as a continuous beam. Continuous sources offer much better time resolution as it is 

possible to individually determine the arrival time of each muon using a muon counter. However, 

counting each muon event lengthens the measurement time compared to pulsed sources where 

many muon events are captured simultaneously within each muon pulse timescale.  

b. Muons spin relaxation and magnetism  
Muons are implanted into the sample with 100% spin polarization, with the muon spin pointing anti-

parallel to the direction of travel. In polycrystalline samples, muons reside in interstitial sites within 

the crystalline structure. There may be more than one interstitial muon stopping site in the material. 

Once implanted, the muon decays to produce a positron (𝑒+). Positron emission violates parity with 

a positron being emitted asymmetrically in the direction of the muon spin. Detectors are placed 

around the sample (as illustrated in Fig. 2.11), enabling the direction of positron emission to be 

determined. The positron detectors around the sample can also be seen in picture 2.2. Picture 2.2 is 

an image of the MUSR muon spectrometer (ISIS) that was used to perform muon experiments in this 
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thesis. As shown in equation 2.36, muon production also results in the production of an electron 

neutrino (𝑣𝑒) and a muon antineutrino ( �̅�𝜇).  

𝜇+  → 𝑒+ + 𝑣𝑒 + �̅�𝜇  (2.36) 

By detecting the positron emission, it is possible to measure the asymmetry of the muon decay. The 

asymmetry (𝐴(𝑡)) is determined by taking the difference in positron counts between the forward 

(𝑁𝐹) and backwards (𝑁𝐵) detectors.  

𝐴(𝑡) = (𝑁𝐹 − 𝛼𝑁𝐵)/( 𝑁𝐹 + 𝛼𝑁𝐵) (2.37) 

The 𝛼 term is a constant to correct for any differences in detector efficiency between the forwards 

and backwards positron detectors. The asymmetry of the muon signal is directly related to the muon 

polarization 𝑃(𝑡) as shown below:  

𝐴(𝑡) = 𝐴0𝑃(𝑡)   (2.38) 

The initial asymmetry (𝐴0) is the total asymmetry at time zero. By measuring 𝐴(𝑡) as a function of 

time, it is possible to determine how the local magnetic environment affects the muon spin 

polarization. In a magnetically ordered polycrystalline material, the muon spin precesses around the 

static magnetic field. The muon spin polarization oscillates generating an oscillation in the 𝐴(𝑡) 

signal when no external field is applied (known as a zero-field (ZF) measurement). Therefore, 

oscillations in the 𝐴(𝑡) signal indicate long-range magnetic ordering. The magnetic ordering 

temperature can be determined using transverse-field (TF) measurements. In a TF muon 

measurement, an external 𝐵𝑇𝐹  field is applied perpendicular to the initial muon spin polarization in 

the direction of the incoming muon beam. This is illustrated by the red arrow in Fig. 2.11. Upon 

implantation, the muons feel the effect of the applied field and the muon spin precesses around the 

𝐵𝑇𝐹  field. On approaching the ordering temperature, the oscillation of the transverse-field 

asymmetry (𝐴𝑇𝐹) is dampened as the muons begin to couple to the internal magnetic field instead of 

𝐵𝑇𝐹. The transition temperature is located by plotting 𝐴𝑇𝐹  as a function of temperature (𝑇).  
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Fig. 2.11 Illustration of the set-up for a muon spin relaxation experiment. The illustration shows muon 

generation by collision of protons with the target to produce pions that decay into muons. The muons 

are then collimated into a muon beam where they are counted, before implantation into the sample. 

Forwards and backwards positron detectors surround the sample. The muons are implanted into the 

sample with 100% spin polarization. Local fields within the sample affect the muons spin polarization. 

Positrons are emitted in the direction of the muon spin. By comparing the positron count of the 

forward and backwards detectors, information about the muon spin relaxation is obtained. The 

muon spin relaxation may be measured in zero-field, or a field may be applied to observe the effect 

of external fields on the muon polarization. External fields are applied either parallel or perpendicular 

to the direction of the initial muon polarization. These are known as longitudinal-field (LF) 

measurements (green arrow) and transverse-field (TF) measurements (red arrow). 



46 
 

 

 

 

 

 

 

 

 

 

 

 

Picture 2.2 The MUSR muon spectrometer at the ISIS Neutron and Muon source.  

Muons can also detect other types of magnetic behaviour. For example, instead of long-range 

magnetic order, the magnetic moments in a material may still be static, but in a disordered 

arrangement. In this case the muon spin feels a distribution of local internal fields in the 𝑥, 𝑦 and 𝑧 

directions. This field distribution may be Gaussian or Lorentzian, with the latter a more likely 

description in dilute magnetic systems. In the case of a static Gaussian field distribution, the muon 

polarization functions for the different 𝐵𝐼𝑛𝑡  fields superimpose so on average the muon asymmetry 

follows a static Kubo-Toyabe function (equation 2.39) as illustrated in Fig. 2.12a. Initially, there is a 

sharp drop in the initial asymmetry at low times followed by a 1/3 recovery of the initial asymmetry. 

The 1/3 tail represents the 1/3 of the magnetic fields that are parallel or antiparallel to the muon 

spin in the 𝑧 direction. The result is the static Gaussian Kubo-Toyabe function defined in equation 

2.39, in which 𝜎𝑠/𝛾𝜇 is the width of the field distribution and 𝑡 is time (𝜎𝑠 is the Gaussian decay rate 

and 𝛾𝜇 the gyromagnetic ratio of the muon). There is an analogous static Kubo-Toyabe function for 

Lorentzian fields describing dilute static disorder. The expression for the static Lorentzian Kubo-

Toyabe function is shown in equation 2.40, where the width of the distribution is given by 𝜆𝑠/𝛾𝜇 (𝜆𝑠 

is the Lorentzian decay rate). The static Lorentzian Kubo-Toyabe function plotted in Fig. 2.12b has a 

similar shape to the static Gaussian Kubo-Toyabe function in Fig. 2.12a, but the 1/3 tail is recovered 

more slowly.9  

𝑆𝑡𝑎𝑡𝑖𝑐 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐾𝑢𝑏𝑜 − 𝑇𝑜𝑦𝑎𝑏𝑒 −> 𝑃(𝑡) =
1

3
+

2

3
𝑒−

1

2
𝜎𝑠

2𝑡2

(1 − 𝜎𝑠
2𝑡2) (2.39) 

𝑆𝑡𝑎𝑡𝑖𝑐 𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛 𝐾𝑢𝑏𝑜 − 𝑇𝑜𝑦𝑎𝑏𝑒 −>  𝑃(𝑡) =
1

3
+

2

3
𝑒−𝜆𝑠𝑡(1 − 𝜆𝑠𝑡)  (2.40) 

Muons are also sensitive to dynamic behaviour. In a dynamic muon environment, the magnetic field 

felt by the muon fluctuates rather than being constant. Dynamic fields can arise due to muon 

hopping. Once implanted the muon does not necessarily remain stationary and may migrate or ‘hop’ 

between muon sites. As the muon hops, it experiences different magnetic fields. Alternatively, 

instead of the muon being dynamic, the surrounding magnetic fields may fluctuate, while the muon 

remains stationary. Fluctuation in the surrounding magnetic fields could originate from a variety of 
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different behaviours e.g. spin liquid. The fluctuating magnetic fields depolarise the muons so the 

𝐴(𝑡) signal follows an exponential relaxation.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.12 Illustration of (a) the static Gaussian Kubo-Toyabe muon spin relaxation function and (b) the 

static Lorentzian Kubo-Toyabe muon spin relaxation function.  

Transitions from static disorder to dynamic behaviour can be followed by measuring the 𝐴(𝑡) signal 

at various temperatures above and below the transition. At temperatures close to zero Kelvin, the 

muon spin relaxation follows a static Gaussian Kubo-Toyabe function. As the temperature increases, 

the 1/3 tail is reduced as the surrounding magnetic fields start to become dynamic. As the dynamics 

speed up, the muon relaxation transitions into an exponential relaxation function and at high 

fluctuation rates is described by the function in equation 2.41.  

𝑃(𝑡) = 𝑒−𝜆𝑡   (2.41) 

Here, 𝜆 =
2∆2

𝜈
 is the relaxation rate of the muon polarization, where ∆ is the field distribution and  𝜈 

the field fluctuation rate. The muon relaxation rate is inversely proportional to the field fluctuation 

rate because of motional narrowing. As the field fluctuation rate becomes faster, the muon spin 

begins to see more of an ‘average’ field and experiences less fluctuation in magnetic field. Therefore, 

the relaxation rate drops off more slowly as the surrounding field becomes more dynamic. It is 

useful to measure dynamic muon spin relaxation in the presence of an increasing external field that 

is applied in the direction (longitudinal) of the initial muon spin polarization as illustrated in Fig. 2.11. 

Measuring the longitudinal-field (LF) muon spin relaxation with increasing LF fields shows the 

strength of the field required to repolarize the muon spins. This gives an indication of the strength 

and nature (i.e. electronic or nuclear) of the dynamic magnetic fields.  

7. Polarized neutron scattering 
Polarized neutron scattering is another form of neutron scattering. The neutron diffraction pattern 

of a magnetically ordered crystalline material has both coherent and/or diffuse magnetic scattering 

contributions. Coherent magnetic scattering originates from the magnetically ordered moments.  

Diffuse magnetic scattering is caused by paramagnetic moments which arise from disorder or 

deviations from long-range magnetic order. Diffuse scattering provides information about magnetic 

correlations in the material and how they evolve with temperature. Studying diffuse scattering using 
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neutron diffraction is difficult as the scattering is dominated by coherent magnetic and nuclear 

scattering. Using polarized neutron scattering, it is possible to separate the magnetic and nuclear 

scattering to isolate the diffuse magnetic scattering.10  

To achieve this, polarized neutron scattering analyses the 𝑥𝑦𝑧-polarization of the neutron scattering 

using a dedicated 𝑥𝑦𝑧-polarization analysis spectrometer, such as D7 at the Institut Laue-Langevin 

(ILL). This instrument uses a polarized neutron beam in which the neutrons S = ½ spins are aligned in 

one direction prior to scattering. The effect of the sample magnetisation on the initial neutron 

polarization is measured. If there is no change in the neutron polarization (non-spin-flip (NSF) 

scattering), the component of the sample magnetization is parallel to the neutron spin. If the 

neutron spin is flipped (spin-flip (SF)) scattering, the perpendicular components of the sample 

magnetisation are sensed. In 𝑥𝑦𝑧-polarization analysis, the neutron polarization can be changed so 

the neutrons are polarized along 𝑥, 𝑦 or 𝑧. By measuring the NSF and SP scattering with the initial 

neutron polarization along 𝑥, 𝑦 and 𝑧; it is possible to separate out the magnetic scattering 

contribution using the equations below.10 These equations show the scattering contributions 

towards the NSF and SF neutron scattering cross sections along 𝑥, 𝑦 and 𝑧.  

(
𝑑𝜎

𝑑Ω
)

𝑥

NSF

=
1

2
sin2𝛼 (

𝑑𝜎

𝑑Ω
)

mag
+

1

3
(

𝑑𝜎

𝑑Ω
)

si
+ (

𝑑𝜎

𝑑Ω
)

nuc
 (2.42) 

(
𝑑𝜎

𝑑Ω
)

𝑥
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=
1

2
(cos2𝛼 + 1) (

𝑑𝜎

𝑑Ω
)

mag
+

2

3
(

𝑑𝜎

𝑑Ω
)

si
  (2.43) 
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)
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+

1
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(

𝑑𝜎
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)
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𝑑𝜎

𝑑Ω
)
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 (2.44) 
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(sin2𝛼 + 1) (
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)
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2

3
(

𝑑𝜎
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  (2.45) 
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𝑑𝜎
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)
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    (2.47) 

𝛼 is the angle between the scattering vector and an arbitrarily chosen 𝑥 axis. The total mag – 

magnetic, si – spin incoherent and nuc – nuclear scattering contributions are determined from linear 

combinations of the neutron scattering cross section equations above (see equations 2.48 to 2.50).  

(
𝑑𝜎

𝑑Ω
)

mag
= 2 (

𝑑𝜎

𝑑Ω
)

𝑥
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𝑦
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𝑧

SF

 (2.48) 

(
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)
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1

6
[2 (

𝑑𝜎

𝑑Ω
)

total NSF
− (

𝑑𝜎

𝑑Ω
)

total SF
] (2.49) 

(
𝑑𝜎

𝑑Ω
)

si
=

1

2
(

𝑑𝜎

𝑑Ω
)

total SF
− (

𝑑𝜎

𝑑Ω
)

mag
  (2.50) 

Having separated the magnetic contribution, the diffuse magnetic scattering can be plotted as a 

function of wavevector (|𝑄|) space. Diffuse magnetic scattering data is analysed using SPINVERT. 

SPINVERT uses a reverse Monte Carlo approach to simulate the experimental diffuse magnetic 

scattering data.11 In simple terms, SPINVERT is provided a box of defined size containing the spin 

configuration of the magnetic unit cell. The spin orientation is changed and the changes either 

accepted or rejected depending on the improvement in the fit to the experimental data. The process 

is repeated until a spin configuration is obtained that best replicates the experimental diffuse 
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scattering data. From this spin configuration, the spin-spin correlations between the magnetic 

centres in the sample are determined. Performing polarized neutron scattering experiments at 

various temperatures shows how the spin-spin correlations evolve with temperature.  
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1. Abstract  
Non-magnetic d10 and d0 B’’ cations can affect the behaviour of magnetic B’ cations in A2B’B’’O6 

double perovskites. d10/d0 effects have mainly been studied in distorted double perovskites, some of 

which have complex magnetic behaviours e.g. spin-orbit coupling or quantum effects. A comparison 

of d10 vs d0 cations in an ideal cubic perovskite system is required to establish the d10/d0 effect as a 

general feature of A2B’B’’O6 perovskites. Ba2MnTeO6 and Ba2MnWO6 are predicted to be cubic and 

have a classical Mn2+ S = 5/2 spin with no spin-orbit coupling. The structural and magnetic properties 

of Ba2MnWO6 are well known, but information on Ba2MnTeO6 was lacking. Characterization of 

Ba2MnTeO6 confirmed Ba2MnTeO6 and Ba2MnWO6 are isostructural, but exhibit different types of 

magnetic order due to the d10/d0 effect, where d10 cations promote a strong nearest neighbour (J1) 

interaction and d0 cations promote a strong next-nearest neighbour (J2) interaction. The d10/d0 effect 

extends beyond Ba2Mn(Te/W)O6 to a range of ordered double perovskites.  

2. Introduction  
Incorporation of Mnn+ cations into perovskite structures often procures valuable magnetic and 

electrical behaviours, for example magnetoresistance. Magnetoresistive materials change their 

electrical resistance in response to an externally applied field and have widespread applications in 

spintronic devices (e.g. magnetic read heads in hard disks, biosensors and random access memory 

storage).1–4 A classic example is the single perovskite La1-xAxMnO3, where A is a 2+ cation (e.g. Ca, Sr, 

Ba or Pb) leading to a mixture of Mn3+/Mn4+ cations. The mixture of Mn3+/Mn4+ cations facilitates 

‘colossal magnetoresistance’ via double exchange.5 Polycrystalline Mnn+ double perovskites also 

display magnetoresistance, but instead of double exchange, magnetoresistance originates from the 

formation of spin-polarized ferro-/ferrimagnetic domains across which electrons tunnel.6–9 The 
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discovery of near-room temperature magnetoresistance in La2NiMnO6 and La2CoMnO6 prompted 

the exploration of a range of A2MnB’’O6 perovskites with different A and B’’ cations.10,11  

By selectively changing the A- and B’’-site cations, the structural and magnetic properties of 

A2MnB’’O6 perovskites can be altered. Changing the A-site cation affects the perovskite structure 

through octahedral tilting.12–14 The B’’ cation can also affect the structure, but also plays an 

important role in the magnetic superexchange interactions. Magnetic cations (Mn+) couple indirectly 

through mediating oxygen 2p orbitals in a 90°or 180° Mn+-O-Mn+ superexchange interaction.15–17 If B’’ 

is a magnetic cation, then two magnetic sub-lattices are formed in A2MnB’’O6: one for each of the 

magnetic Mnn+ and B’’ cations. This occurs in La2NiMnO6 and La2CoMnO6 as both Co2+/3+ and Ni2+/3+ 

have unpaired electrons. If B’’ is non-magnetic (i.e. d10 or d0) the magnetic Mn2+ cations are further 

apart and extended superexchange interactions form through the O2- anions and the non-magnetic 

B’’ cation i.e. Mn-O-B’’-O-Mn. 

Different combinations of A = Ca2+, Sr2+ and Ba2+ with non-magnetic B’’ = W6+, Te6+ and Mo6+ cations 

have been studied in A2MnB’’O6 double perovskites. Table 3.1 provides a summary of the key 

structural and magnetic results for the 9 different structural combinations to date. 

Table 3.1: Structural and magnetic properties of the A2MnB’’O6 (A = Ca2+, Sr2+, Ba2+ and B’’ = W6+, 

Te6+, Mo6+) double perovskites  

A2MnB’O6 

composition 
Crystal structure Type of magnetic order 

Néel 
temperature 

(TN, K) 
Ref. 

Ba2MnWO6 Cubic (𝐹𝑚3̅𝑚) AFM Type II k = (½ ½ ½) 8-9 18–20 

Sr2MnWO6 Monoclinic (𝑃21/𝑛)* AFM Type II k = (½ 0 ½) 13 21,22 

Ca2MnWO6 Monoclinic (𝑃21/𝑛) AFM Type II k = (0 ½ ½) 16-17 22,23 

Ba2MnMoO6 Cubic (𝐹𝑚3̅𝑚) AFM Type II k = (½ ½ ½) 11 24,25 

Sr2MnMoO6 Tetragonal (𝑃42/𝑛) AFM Type II k = (½ 0 ½) 12-15 22,24,26 

Ca2MnMoO6 Monoclinic (𝑃21/𝑛) AFM - 27,28 

Ba2MnTeO6 - - - 29 

Sr2MnTeO6 Monoclinic (𝑃21/𝑛) AFM Type I k = (0 0 0) 20 30,31 

Ca2MnTeO6 Monoclinic (𝑃21/𝑛) AFM 10 32 

* Space group originally reported as tetragonal 𝑃42/𝑛 by refs.33,34, but later determined to be better 

described as monoclinic 𝑃21/𝑛 by refs.21,22 

There are clear trends associated with the identity of the A- and B’’-site cation in Table 3.1. Table 3.1 

shows when A = Ba2+, the A2MnB’’O6 structure is cubic.  Whereas when A = Sr2+ or Ca2+, the structure 

distorts from the ideal perovskite structure to a lower symmetry structure. The cation size decreases 

up Group 2: Ba2+ (1.61 Å) < Sr2+ (1.44 Å) < Ca2+ (1.34 Å).35 The ionic radii of Ba2+ is ‘optimum’ for the 

cubic structure, but as the cation size decreases, Sr2+ and Ca2+ struggle to fill the A-site. The MnO6 
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and B’’O6 octahedra tilt to optimize the A-O bond distances leading to a reduction in symmetry.13 

This demonstrates the effect of the A-site cation on the crystal structure. 

The identity of the B-site cation affects the magnetic properties of the compositions in Table 3.1. 

Structures with B’’= Mo6+ and W6+ (d0 cations) exhibit type II antiferromagnetic order. Alternatively, 

when B’’ = Te6+ (d10 cation) type I results. Fig. 3.1 depicts (a) type I and (b) type II ordering in the fcc 

sub-lattice. In both types of order, there are two main magnetic interactions.36,37 These are the 

nearest neighbour (NN)-J1 and next-nearest neighbour (NNN)-J2 interactions. The magnitude and sign 

of J1 and J2 determines whether type I or type II order is observed. The J1 and J2 interactions are 

described using the simple cubic Heisenberg J1-J2 model depicted in Fig. 3.1c. This J1-J2 model is 

described using the following Hamiltonian:38 

�̂� = −𝐽1 ∑ 𝑺𝑖 ∙ 𝑺𝑗 − 𝐽2 ∑ 𝑺𝑖 ∙ 𝑺𝑗〈𝑖𝑗〉〈𝑖𝑗〉  (3.1) 

Here, 𝐽1 is the NN interaction, 𝐽2 is the NNN interaction, 𝑆𝑖  is the spin on atom 𝑖 and 𝑆𝑗  is the spin on 

atom 𝑗. Both 𝑆𝑖  and 𝑆𝑗  are summed over all the NN and NNN interactions. In type I order, J1 is 

positive (ferromagnetic) and J2 is negative (antiferromagnetic) leading to ferromagnetically ordered 

layers of magnetic cations along the (001) axis that are coupled antiferromagnetically (Fig. 3.1a). 

Alternatively, both J1 and J2 are negative (antiferromagnetic) in type II order. This leads to 

ferromagnetic layers along the (111) planes of the fcc sub-lattice with antiferromagnetic interactions 

between the (111) planes (Fig. 3.1b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 The different types of antiferromagnetic ordering observed for cubic Ba2MnB’’O6 perovskites 

with different B’’ = d0 or d10 cations; where (a) shows type I ordering of the Mn2+ cations observed 

when B’’ = Te6+ (d10) and (b) shows type II ordering observed when B’’ = W6+ or Mo6+(d0). The 

magnetic interactions in the Mn2+ fcc sub-lattice are described using the simple cubic Heisenberg J1-J2 

model shown in (c). The magnitude and sign of the J1 and J2 interactions in (c) determines whether (a) 

type I or (b) type II ordering is observed.  
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The J1 and J2 interactions are facilitated by superexchange via O2- and B’’. The different types of 

magnetic ordering observed for the B’’ = W6+/Mo6+ and B’’ = Te6+ compositions in Table 3.1 suggest 

the valence of the outer d-orbital plays an important role in Mn-O-B’’-O-Mn superexchange. B’’ 

cations with completely filled or empty d-orbitals affect the magnetic interactions in other 

perovskite systems. For example, the antiferromagnetic ordering temperature (𝑇𝑁) of the osmium 

double perovskite, Sr2B’OsO6, depends on whether B’= Sc3+ (3d0), Y3+ (4d0) or In3+ (4d10).39–41 

Sr2ScOsO6, Sr2YOsO6 and Sr2InOsO6 all exhibit monoclinic (𝑃21/𝑛) symmetry but have different unit 

cell volumes (𝑉cell).
39 𝑉cell decreases so 𝑉cell(Y) > 𝑉cell(In) > 𝑉cell(Sc). It might be expected that 𝑇𝑁 

increases as 𝑉cell decreases as contraction of the unit cell reduces the B’-O and Os-O bond lengths, 

generating stronger superexchange. However, 𝑇𝑁 does not depend on 𝑉cell, and follows a different 

trend: 𝑇𝑁(Sc3+ (92 K) > 𝑇𝑁(Y3+ (53 K)) > 𝑇𝑁(In3+ (26 K).40 Instead, the strength of superexchange 

depends on the B’ cations contribution to Os-O-B’-O-Os superexchange. The Sc3+ 3d0 and Y3+ 4d0 d-

orbitals are closer in energy to the O2- 2p orbitals leading to stronger hybridization in Os-O-(Sc/Y)-O-

Os superexchange.41 Alternatively, the In3+ 4d10 orbital energy lies far below the O2- 2p orbitals 

leading to weak hybridisation. Hence, the Os-O-In-O-Os superexchange interactions are weak 

leading to a lower 𝑇𝑁 for Sr2InOsO6 compared to Sr2ScOsO6 and Sr2YOsO6.  Similar trends in 𝑇𝑁 have 

been observed for the barium analogue, Ba2B’OsO6 (B’= Sc3+, Y3+, In3+) and have also been attributed 

to differences in superexchange involving d10/d0 cations.42 

d10 vs d0
 cations have also been investigated in copper perovskites, for example, Sr2CuTeO6 and 

Sr2CuWO6. These isostructural tetragonal perovskites exhibit different types of magnetic order 

depending on whether the B’’ site is Te6+ 4d10 or W6+ 5d0.43–46 These structures have attracted 

significant interest as mixtures of W6+/Te6+ cations can be introduced to form a Sr2CuTe1-xWxO6 solid 

solution. The disorder induced by the d10 vs d0 competition destabilises magnetic ordering over a 

wide portion of the Sr2CuTe1-xWxO6 solid solution, leading to unusual quantum magnetic 

behaviour.47,48 Perovskites containing d10
 vs d0 mixtures will be the subject in subsequent chapters. 

Differences in magnetic ordering have also been observed in the cubic perovskite CaCu3B’’4O12, 

which is ferromagnetically ordered when B’’ = Ge4+ (3d10) or Sn4+ (4d10).49 But when B’’ = Ti4+ (3d0), 

antiferromagnetic order results as the greater Ti4+ 3d0
 contribution strengthens antiferromagnetic 

superexchange interactions that overcome the ferromagnetic interactions.  

While the d10/d0 effect can be observed in a number of perovskite structures, there is no study 

comparing the d10 and d0 B’’ cations in a simple cubic A2B’B’’O6 system. There are several reasons 

why the d10/d0 effect observed in the manganese, osmium and copper systems are not ideal 

examples to establish the d10/d0 effect in double perovskites. To begin with, the majority of these 

Mn2+, Os5+ and Cu2+
 double perovskites are distorted. Octahedral tilting changes the B’-O and B’’-O 

bond lengths and angles, therefore the B’-O-B’’-O-B’ superexchange pathways are not uniform in all 

directions. For example, the interactions in Sr2Cu(Te/W)O6 are highly two-dimensional as a result of 

Jahn-Teller distortion of the Cu2+ cations.50  Other factors can also affect the magnetic behaviour. For 

example, spin-orbital coupling may be present in osmium and manganese perovskites with oxidation 

states different to Os5+ and Mn2+.51,52 Quantum effects also need to be considered in copper 

containing double perovskites, where quantum fluctuations are likely due to the small Cu2+ S = 1/2 

spin.53  

The Ba2MnTe(d10)O6 and Ba2MnW(d0)O6 perovskites in Table 3.1 are an ideal structure to compare 

d10 and d0 interactions without the complications above. Ba2MnWO6 has an ideal cubic perovskite 

structure. The ionic radii of W6+ and Te6+ are nearly identical (Te6+ - 0.56 Å and W6+ - 0.6 Å).35 Hence, 

the Goldschmidt tolerance factors (𝑡) for Ba2MnTeO6 and Ba2MnWO6 are nearly identical and predict 

cubic symmetry: 𝑡(Ba2MnTeO6) = 0.9965 and 𝑡(Ba2MnTeO6) = 0.9873.54 Therefore, Ba2MnTeO6 is also 
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predicted to be cubic. As a result, superexchange can be regarded as equivalent in three dimensions 

and there are only two magnetic interactions to consider: the NN-J1 and NNN-J2 interactions. Mn2+ 

has a large spin (S = 5/2) so magnetism can be viewed classically. And there is no spin-orbital 

coupling as Mn2+ has zero orbital momentum.  

While Ba2MnWO6 has been well characterized, Table 3.1 shows information on Ba2MnTeO6 is 

lacking. To perform d10 vs d0 comparisons, the structural and magnetic properties of Ba2MnTeO6 

were characterized.  

3. Experimental  

Synthesis 
Polycrystalline samples of Ba2MnTeO6 were prepared using the solid-state ‘shake ‘n’ bake’ method. 

High purity BaCO3 (99.997%), MnO2 (99.9%) and TeO2 (99.995%) were mixed in an agate mortar. The 

Te4+ to is oxidised to Te6+ during the reaction, resulting in a corresponding reduction of Mn4+ to Mn2+. 

The reactant mixture was pressed into a pellet using a load of 1 tonne, before calcination at 900 °C in 

air. The calcined pellets were broken, re-ground and pressed again, before firing at reaction 

temperature of 1100 °C for 24 hours. Slow heating rates (1°C per minute) were used to prevent 

evaporation of TeO2. The reactant mixture was re-ground, pressed and heated again at 1100 °C for 

24 hours. This process was repeated while monitoring the sample purity using laboratory X-ray 

diffraction (Rigaku Miniflex diffractometer (Cu K𝛼1/K𝛼2 (λ = 1.5405 and 1.5443 Å))). The reaction was 

stopped when there was no change between successive firings.  

Neutron diffraction  
Time-of-flight neutron diffraction patterns were collected using the General Materials 

Diffractometer (GEM) at the ISIS Neutron and Muon source. The sample (~6 g) was loaded into a 

cylindrical vanadium can (8 mm diameter). The can was mounted into a low temperature cryostat 

aligned with the neutron beam. After cooling to 2 K, NPD patterns were recorded on warming at 

various temperatures between 2-100 K. Measurements were performed using smaller temperature 

intervals about the antiferromagnetic transition. The data were corrected for sample absorption and 

analysed using the FullProf refinement software package.55 

SQUID magnetometry  
Magnetic susceptibility measurements were performed using a Quantum Design MPMS 3 SQUID 

magnetometer. The sample was prepared by loading ~100 mg of Ba2MnTeO6 into a gelatine capsule. 

The capsule was sealed using PTFE tape and secured inside a plastic straw. The plastic straw was 

mounted into the MPMS 3 and cooled to 2 K in the absence of a magnetic field. The DC magnetic 

susceptibility was measured on warming from 2-300 K in an external field of 0.1 T producing a zero-

field cooled (ZFC) measurement. A field cooled (FC) measurement was made by measuring the DC 

magnetization in the presence of a weak magnetic field (0.1 T) on cooling from 300-2 K. 

Heat capacity  
Heat capacity measurements were performed using a Quantum Design PPMS-9. The heat capacity 

contribution from the sample platform (called the sample puck) and mounting grease was measured 

between 2-60 K. This is known as an addenda measurement. Afterwards, a shard of sintered pellet 

weighing 6.84 mg was placed into the sample puck using the grease as an adhesive to improve 

thermal contact. The heat capacity of the sample and puck was measured between 2-60 K. The heat 

capacity of the sample was obtained by subtracting the addenda measurement. 
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Inelastic neutron scattering  
Inelastic neutron scattering measurements were performed on the MERLIN time-of-flight direct 

geometry spectrometer as the ISIS Neutron and Muon Source. The sample was loaded into an 

aluminium can and cooled using a helium cryostat. Inelastic neutron scattering spectra were 

collected on warming at 6 K, 44 K and 109 K using an incident neutron energy of 10 meV and a Q-

space range of 0 - 4 Å-1.    

Polarized neutron scattering  
Polarized neutron scattering experiments were performed on the D7 𝑥𝑦𝑧-polarization analysis 

spectrometer at the Institut Laue-Langevin (ILL). Ba2MnTeO6 and Ba2MnWO6 were measured using 

an incident polarized neutron wavelength of 4.8 Å, equating to an incident neutron energy of 3.55 

meV. Non-spin-flip (NSF) and spin-flip (SF) scattering was measured with the incident neutron beam 

polarized along 𝑥, 𝑦 and 𝑧. From this it was possible to separate the magnetic scattering from the 

nuclear scattering contributions. Diffuse magnetic scattering spectra were obtained at various 

temperatures above 𝑇𝑁 for Ba2MnTeO6 and Ba2MnWO6 and were analysed using SPINVERT.56 

4. Results  
a. SQUID magnetometry  
Fig. 3.2 shows the DC susceptibility curve (𝜒 vs 𝑇) of Ba2MnTeO6 between 2-300 K. Ba2MnTeO6 

undergoes a paramagnetic to antiferromagnetic transition on cooling. In the paramagnetic phase, 

the susceptibility increases with reduced temperature, until reaching a broad cusp at ~ 20 K. Below 

20 K, the susceptibility decreases indicating antiferromagnetic ordering. The exact location of the 

Néel transition was determined from the first derivative 𝑑𝜒/𝑑𝑇 vs 𝑇. This placed 𝑇𝑁 at 20.3(2) K, 

which is higher than the 𝑇𝑁 of Ba2MnWO6 (𝑇𝑁  ~ 8 K).19 The transition is not featureless; there is a 

broad shoulder peak at ~ 40 K. This represents trace amounts of ferrimagnetic Mn3O4 in the 

sample.31,54 Mn3O4 is often observed in the 𝜒 vs 𝑇 curve of A2MnB’O6 perovskites synthesised in air, 

including those in Table 3.1.20,23,31,33 The amount of Mn3O4 is sufficiently small that it cannot be 

detected in the laboratory X-ray or neutron diffraction data. With SQUID magnetometry, the strong 

sensitivity to weak magnetic fields means even traces of magnetic impurity are detectable. The ZFC 

and FC divergence in the 𝜒 vs 𝑇 curve below 20 K also indicates the presence of ferrimagnetic 

Mn3O4. Divergence between the ZFC and FC curves is often observed for 

ferromagnetic/ferrimagnetic moments.57 It was not possible to remove the Mn3O4 impurity by 

heating under reducing conditions as this risked also reducing Te6+. However, Mn3O4 is present in 

such trace amounts that it was only detectable in the SQUID data and does not affect the other 

magnetic characterization results.  
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Fig. 3.2 DC susceptibility data (𝜒 vs 𝑇) of Ba2MnTeO6 between 2-300 K. The inset shows the Curie-

Weiss fit (solid red line) to the 150-300 K inverse susceptibility (1/𝜒 vs 𝑇) curve. The dotted red line is 

an extrapolation of the Curie-Weiss fit.  

Above 150 K, the 𝜒 vs 𝑇 data is linear and can be described using the inverse Curie-Weiss law in 

equation 3.2.  

1

𝜒
=

𝑇−𝜃

𝐶
   (3.2) 

The inset in Fig. 3.2 shows the Curie-Weiss fit to the inverse 1/𝜒 vs 𝑇 data. The Curie constant (𝐶) 

and Weiss constant (𝜃𝑤) were determined from the gradient and intercept, respectively. 𝜃𝑤= -157(1) 

K is strongly negative indicating strong antiferromagnetic interactions in Ba2MnTeO6. 𝐶 = 4.96(1) cm3 

K mol-1 was used to calculate the effective magnetic moment (𝜇𝑒𝑓𝑓) using the equation below:  

𝜇𝑒𝑓𝑓 = 2.84 √𝜒𝑇  (3.3) 

Where in equation 3.3, 𝐶 = 𝜒𝑇. The calculated 𝜇𝑒𝑓𝑓  = 6.31(7) 𝜇𝐵  per Mn2+ was found to be close to 

the theoretical spin-only moment of a Mn2+ ion (𝜇𝑒𝑓𝑓(spin-only)) = 5.92 𝜇𝐵  per Mn2+. This confirmed 

successful reduction of Mn4+ to Mn2+. The frustration index (𝑓) was determined by dividing the Weiss 

constant by the transition temperature (𝑓 = 𝜃𝑤/𝑇𝑁).58 For Ba2MnTeO6, 𝑓 ~ 8, showing the system is 

moderately frustrated, but not enough to prevent antiferromagnetic ordering.  
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b. Heat capacity  
The heat capacity (𝐶𝑝) of Ba2MnTeO6 is plotted in Fig. 3.3. There is a single large lambda (𝜆)-peak at 

20.1 K in the plot of 𝐶𝑝/𝑇 vs 𝑇. The position of the 𝜆-peak agrees very well with the 𝑇𝑁 determined 

in the DC susceptibility measurements; hence, represents the antiferromagnetic ordering transition. 

There are no other peaks or features present in the 𝐶𝑝/𝑇 vs 𝑇 curve. This confirms the broad peak at 

40 K in the DC susceptibility curve is from Mn3O4 and not a feature of the magnetic behaviour of 

Ba2MnTeO6.    

Fig. 3.3 Heat capacity data of Ba2MnTeO6 between 2-60 K. 

c. Crystal structure  
The crystal structure of perovskites can be predicted using the Goldschmidt tolerance factor: 

𝑡 = (𝑟𝐴 + 𝑟𝑂)/√2(𝑟𝐵 + 𝑟𝑂), where 𝑟𝐴 and 𝑟𝐵 are the ionic radii of the A and B cations, respectively. 

𝑟𝑂 is the radius of O2-. The Goldschmidt tolerance factor for Ba2MnTeO6 is close to unity (𝑡 = 0.9965 

~ 1) and closely matches the values of 𝑡 calculated for the cubic W6+ and Mn6+ analogues of 

Ba2MnB’’O6: Ba2MnWO6 (t = 0.9873) and Ba2MnMoO6 (t = 0.9896). This value of 𝑡 suggests 

Ba2MnTeO6 is cubic, 𝐹𝑚3̅𝑚. However, a single crystal diffraction study has suggested Ba2MnTeO6 is 

rhombohedral, 𝑅3̅𝑚.29 Subsequent studies in the literature have chosen to model Ba2MnTeO6 using 

𝑅3̅𝑚 symmetry59,60, while others have argued 𝐹𝑚3̅𝑚 symmetry.61,62 The 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 structural 

models are illustrated in Fig. 3.4a and Fig. 3.4b, respectively. The Goldschmidt tolerance factor only 

provides an indication of the possible perovskite structure; diffraction is essential for accurate 

structural determination. X-ray and neutron diffraction were performed and the data analysed using 

the 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 structural models. The results show the correct description of the Ba2MnTeO6 

crystal structure is cubic, 𝐹𝑚3̅𝑚.62  
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Fig. 3.4 The two proposed structures for Ba2MnTeO6: (a) cubic, 𝐹𝑚3̅𝑚 and (b) rhombohedral, 𝑅3̅𝑚. 

The cations and anions have the same colours in both structures:  Ba2+ (blue), Mn2+ (purple), Te6+ 

(grey) and O2- (red).  

i. Laboratory X-ray diffraction 

The laboratory X-ray diffraction pattern of Ba2MnTeO6 is shown in Fig. 3.5a. The additional Bragg 

peaks belong to a minor BaMnO3 impurity (𝑃63𝑐𝑚, 1.0(1) weight %). No other impurities (e.g. 

Mn3O4) were detected. The X-ray diffraction pattern was used to refine the 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 

structural models. Fig. 3.5b and Fig. 3.5c compare the Rietveld fits for each model. Visually, both 

models provide a good description of the experimental data. The R-values in Table 3.2 support this 

and are almost identical for 𝐹𝑚3̅𝑚 vs 𝑅3̅𝑚. Generally, the 𝑅3̅𝑚 model has slightly lower R-values. 

In the 𝑅3̅𝑚 model, there are additional degrees of freedom associated with the lattice parameters 

and Ba2+ and O2- atomic positions. Hence, the slightly lower R-values result from the additional 

refineable parameters in the 𝑅3̅𝑚 model. The additional degrees of freedom upon 𝐹𝑚3̅𝑚 to 𝑅3̅𝑚 

distortion result from octahedral tilting, whereby the Glazer tilt changes from 𝑎0𝑎0𝑎0 to 𝑎−𝑎−𝑎−. 

Displacement of light atoms is difficult to detect using X-rays as scattering is dominated by heavy 

elements i.e. Ba2+, Mn2+ and Te6+. The X-ray data showed Mn2+ and Te6+ are fully ordered with no 

anti-site disorder between the B’ and B’’ sites. However, to accurately determine the O2- anions 

positions neutron diffraction was required. This demonstrates why both X-ray and neutron 

diffraction are essential for accurate perovskite structural determination.63 

Table 3.2: Comparison of the R-factors for the 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 models refined using the X-ray data 

in Fig. 3.5. 

R-values 𝐹𝑚3̅𝑚 model 𝑅3̅𝑚 model 

𝑅𝑤𝑝(%) 11.3 11.2 

𝑅𝑝  (%) 9.36 9.41 

𝑅𝑒𝑥𝑝 (%) 4.37 4.36 

𝜒2  6.66 6.56 
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Fig. 3.5 (a) The laboratory X-ray diffraction pattern of Ba2MnTeO6 at 300 K. Panels (b) and (c) are 

Rietveld fits to the 300 K X-ray data using the 𝐹𝑚3̅𝑚 model (b) and 𝑅3̅𝑚 model (c). Both models 

appear to provide a good description of the experimentally observed diffraction pattern. The 

additional Bragg reflections are due to a minor BaMnO3 impurity (1 wt%).  

ii. Neutron diffraction  

Neutron diffraction patterns of Ba2MnTeO6 were collected between 2-100 K. No additional nuclear 

Bragg peaks were observed on cooling to 2 K. This shows the crystal symmetry is the same at 2 K, 

100 K and 300 K. Hence, except for the change in lattice parameter(s), the 100 K neutron diffraction 

pattern closely represents the room temperature crystal structure. Fig. 3.6a shows the 100 K 
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neutron diffraction pattern of Ba2MnTeO6. The peak intensities are affected by small displacements 

in the O2- anion positions. The simulated neutron diffraction patterns for the 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 

models are shown in Fig. 3.6b and Fig. 3.6c, respectively. The simulated pattern for the 𝐹𝑚3̅𝑚 

model closely resembles the observed pattern in Fig. 3.6a. In contrast, there are clear discrepancies 

between the simulated 𝑅3̅𝑚 pattern and observed pattern. The arrows in Fig. 3.6c indicate several 

peaks whose intensity is greater than in the observed pattern.  

Fig. 3.6 (a) The bank 3 (2𝜃 = 34.9574°) GEM neutron diffraction pattern of Ba2MnTeO6 at 100 K. (b) 

The simulated neutron diffraction pattern of Ba2MnTeO6 using the 𝐹𝑚3̅𝑚 model. (c) The simulated 

neutron diffraction pattern of Ba2MnTeO6 using the 𝑅3̅𝑚 model. The simulated pattern 𝐹𝑚3̅𝑚 

model matched the observed pattern well; whereas there are obvious peak intensity mismatches 

between the simulated 𝑅3̅𝑚 and observed neutron diffraction pattern. The 𝑅3̅𝑚 peaks with large 

intensity mismatches are indicated using black arrows.   

To further prove Ba2MnTeO6 is cubic, the 𝐹𝑚3̅𝑚 model was refined using the 100 K neutron data. 

The refined 𝐹𝑚3̅𝑚 model was then transformed to the 𝑅3̅𝑚 model using one of the four possible 

transformation matrices provided by the WYCKSPLIT tool on the Bilbao Crystallographic Server.64 The 

chosen matrix is given below:  
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𝑻 = [
−1/2 0 1
1/2 −1/2 1

0 1/2 1
] (3.4) 

The 𝐹𝑚3̅𝑚 to 𝑅3̅𝑚 transformation was performed using the TRANSTRU tool also provided by the 

Bilbao Crystallographic Server.65,66 The 𝑅3̅𝑚 model obtained was then refined using the same 100 K 

data. A significant improvement in the fit compared to the 𝐹𝑚3̅𝑚 model would support 𝑅3̅𝑚 

symmetry. The refinement was performed in the same way as for the original 𝐹𝑚3̅𝑚 model. The 

Rietveld fits for the 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 models are shown in Fig. 3.7b and Fig. 3.7c, respectively. 

Comparing the R-values for the Rietveld fits in Table 3.3 shows there is a minor improvement in the 

fit when converting to the 𝑅3̅𝑚 model. Again, the minor improvement results from the additional 

refineable parameters in the 𝑅3̅𝑚 model. Therefore, the neutron data does not support 𝐹𝑚3̅𝑚 to 

𝑅3̅𝑚 distortion of the O2- positions.   

Table 3.3: Comparison of R-values for the 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 models using the 100 K neutron data in 

Fig. 3.5. 

R-values 𝐹𝑚3̅𝑚 model 𝑅3̅𝑚 model 

𝑅𝑤𝑝  6.84 6.97 

𝑅𝑝  7.44 7.07 

𝑅𝑒𝑥𝑝 3.50 3.23 

𝜒2  3.82 4.66 

 

The refined 𝑅3̅𝑚 model was then converted back to the 𝐹𝑚3̅𝑚 model. From this the percentage 

rhombohedral distortion in the lattice parameters and oxygen positions could be calculated. The 

𝑅3̅𝑚 lattice parameters (𝑎𝑅 and 𝑐𝑅) were converted to the cubic lattice parameter (𝑎𝐶) using the 

ratio relationships in equations 3.5 and 3.6.  

𝑎𝐶

𝑎𝑅
 ≅

2

√2
  (3.5) 

𝑎𝐶

𝑐𝑅
≅

1

√3
  (3.6) 

Dividing equations 3.5 and 3.6 gives an expression for the percentage rhombohedral lattice 

distortion:  

𝑅3̅𝑚 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑑𝑖𝑠𝑜𝑟𝑡𝑖𝑜𝑛 (%)  = ([
2√3 𝑎𝑅(𝑒𝑥𝑝)

√2 𝑐𝑅(𝑒𝑥𝑝)
]  𝑥 100) − 100 (3.7) 

The percentage rhombohedral distortion in the oxygen positions was calculated as follows. The 

𝐹𝑚3̅𝑚 oxygen coordinates (𝑥, 0, 0) were converted to the 𝑅3̅𝑚 (𝑥, 2𝑥, 𝑧) using the subgroup basis 

(-4/3𝑥, -2/3𝑥, 1/3𝑥). By reversing this transform, the refined 𝑅3̅𝑚 oxygen positions could be 

converted back to the 𝐹𝑚3̅𝑚 oxygen parameters. The percentage rhombohedral distortion of the 

oxygen positions was then calculated using the ratio of the transformed 𝑂𝑥𝑅3̅𝑚  and 𝑂𝑧𝑅3̅𝑚   

parameters as in equation 3.8.  

𝑅3̅𝑚 𝑜𝑦𝑔𝑒𝑛 𝑝𝑜𝑠𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑜𝑟𝑡𝑖𝑜𝑛 (%)  = ([
𝑂(𝑥𝑅3̅𝑚 →𝑥𝐹𝑚3̅𝑚)

𝑂(𝑧𝑅3̅𝑚 →𝑥𝐹𝑚3̅𝑚
]  𝑥 100) − 100 (3.8) 

The percentage rhombohedral distortions of the lattice and oxygen positions are tabulated in Table 

3.4. The above calculations were also performed using the 𝑅3̅𝑚 lattice parameters and oxygen 
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positions reported in the single crystal X-ray diffraction study of Ba2MnTeO6.29 The percentage lattice 

and oxygen distortion determined from these values are listed in Table 3.4. 

Fig. 3.7 (a) The GEM neutron diffraction pattern of Ba2MnTeO6 at 100 K. The pattern is shown for the 

highest resolution bank: bank 6 (2𝜃 = 153.90°). (b) Rietveld refinement of the 𝐹𝑚3̅𝑚 model using the 

100 K neutron diffraction data. (c) Rietveld refinement of the 𝑅3̅𝑚 model using the 100 K neutron 

diffraction data.  
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Table 3.4: Percentage rhombohedral distortion in the lattice and oxygen positions determined from 

the 𝑅3̅𝑚 model reported here and 𝑅3̅𝑚 model reported in the single crystal diffraction study of 

Ba2MnTeO6 in ref.29.  

 This work 
Single crystal X-ray 
diffraction study29 

𝑅3̅𝑚 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑑𝑖𝑠𝑜𝑟𝑡𝑖𝑜𝑛 (%) 0.12 ± 0.017% 0.033±0.10% 

𝑅3̅𝑚 𝑜𝑦𝑔𝑒𝑛 𝑝𝑜𝑠𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑜𝑟𝑡𝑖𝑜𝑛 (%) 0.031 ± 0.34% 0.57 ± 0.54% 

 

Table 3.4 shows the percentage 𝑅3̅𝑚 distortion of the lattice and oxygen positions in Ba2MnTeO6 

are less than 1%. Thus, the structure is cubic within one standard deviation. Furthermore, a number 

of the distortion percentages in Table 3.4 have large errors. In some cases, the error is an order of 

magnitude greater than the value. For example, the lattice parameters reported in the single crystal 

diffraction study are distorted from the ideal cubic perovskite structure by 0.033% but there is an 

error of 0.10%. Similarly, there is a large error associated with the oxygen position in this work. 

Therefore, the neutron data does not support 𝐹𝑚3̅𝑚 to 𝑅3̅𝑚 distortion of the O2- positions.    

In summary, the X-ray and Neutron diffraction data do not support 𝑅3̅𝑚 symmetry. As per 

crystallographic convention, Ba2MnTeO6 is correctly described using the higher symmetry 𝐹𝑚3̅𝑚 

model. This agrees with the structure predicted by the tolerance factor. The results from the 

refinement of the 𝐹𝑚3̅𝑚 model using the 100 K and 2 K neutron diffraction data are shown in Table 

3.5. The R-values are shown for the highest backscattering bank (bank 6). Using the Ba-O, Mn-O and 

Te-O bond lengths from the 100 K data, bond valence sums (BVS) were calculated. The BVS values in 

Table 3.6 are close to the expected oxidation numbers for Ba2+, Mn2+ and Te6+.  

Table 3.5: Refined 𝐹𝑚3̅𝑚 model at 2 K and 100 K for the Ba2MnTeO6 neutron diffraction data. The R-

values are shown for bank 6 (2𝜃 = 153.90°). 

 2 K 100 K 

a (Å) 8.2066(3) 8.2106(4) 

Ba (100 x 𝑈iso  (Å
2)) 0.01(4) 0.13(4) 

Mn (100 x 𝑈iso  (Å
2)) 0.00(4) 0.03(4) 

Te  (100 x 𝑈iso (Å2)) 0.03(3) 0.07(3) 

O𝑥 0.2646(1) 0.2647(1) 

O (100 x 𝑈iso  (Å
2)) 0.22(2) 0.32(2) 

BaMnO3 (%) 1.0(1) 1.0(1) 

𝑅𝑝  (%) 6.61 7.44 

𝑅𝑤𝑝  (%) 6.47 6.84 

𝑅𝑒𝑥𝑝 (%) 1.89 3.50 

χ2 11.7 3.82 

 



64 
 

Table 3.6: Bond Valence Sums (BVS) for Ba, Mn and Te in Ba2MnTeO6 (𝐹𝑚3̅𝑚) calculated using the 

100 K neutron diffraction data. 

 Bond Valence Sum (BVS) Charge 

Ba-O 2.244 2+ 

Mn-O 2.132 2+ 

Te-O 5.755 6+ 

 

The structural results presented here were published in 2020.62 Since 2020, there have been 

subsequent publications on Ba2MnTeO6. Two of these publications have argued the 𝐹𝑚3̅𝑚 and 𝑅3̅𝑚 

models are marginally different; therefore either can be used to describe the structure of 

Ba2MnTeO6.57,58 The X-ray and neutron diffraction results here show this is incorrect.  𝑅3̅𝑚 

distortion of the 𝐹𝑚3̅𝑚 structure is so small it is non-existent, so the structure can only be assigned 

as cubic. Nevertheless, Ba2MnTeO6 has been described as an example of a two-dimensional 

triangular lattice using the 𝑅3̅𝑚 structure. The proposed two-dimensional triangular lattice is shown 

in Fig. 3.8a. The triangular layers are made by connecting each Mn2+ cation to six neighbouring Mn2+ 

cations within the 𝑎𝑏 plane of the 𝑅3̅𝑚 structure. The triangular layers are stacked in the 𝑐 

direction.  

 

Fig. 3.8 (a) The proposed two-dimensional triangular lattice in the 𝑅3̅𝑚 structure. The intra-layer 

connections between the Mn2+-Mn2+ in the triangular layers and its six neighbouring Mn2+ cations are 

shown by the solid black lines. (b)  and (c) show the symmetry equivalent inter-layer Mn2+-Mn2+ 

connections between the triangular layers. (d) The 3D network of equilateral triangles produced 

when the connections in (a), (b) and (c) are combined. This 3D network of equilateral triangles is a 

distinguishing feature of the face-centred cubic lattice.  
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If the structure in Fig. 3.8a was truly two-dimensional, the inter-layer distance between a Mn2+
 

cation and its six neighbouring Mn2+ cations in the adjacent layers along 𝑐 should be different to the 

intra-layer distance between the Mn2+ cation and its six Mn2+ neighbours within the triangular layers 

in the 𝑎𝑏 plane. However, these distances are almost identical: inter-layer Mn2+-Mn2+ distance = 

5.7566(6) Å; and intra-layer Mn2+-Mn2+ distance = 5.7533(6) Å.60 Similarly, the intra- and inter-layer 

Mn2+-Mn2+ distances were found to be near identical in the 𝑅3̅𝑚 model reported here: inter-layer 

Mn2+-Mn2+ distance = 5.806(4) Å; and intra-layer Mn2+-Mn2+ distance = 5.806(3) Å.  When the inter-

layer Mn2+-Mn2+ connections drawn in Fig. 3.8b and Fig. 3.8c are combined with the intra-layer 

connections in Fig. 3.8a, the result is a network of equilateral triangles shown in Fig. 3.8d. In three-

dimensions, this is the face-centred cubic lattice. Hence, the 𝑅3̅𝑚 structure is only generated by 

neglecting to consider half of the Mn2+-Mn2+ interactions. Neglecting these interactions ignores the 

three dimensional symmetry equivalence of the Mn2+-Mn2+ interactions and hence the true cubic 

symmetry. Symmetry equivalence is also supported by the values of the exchange interactions. The 

intra- and inter-layer Mn2+-Mn2+ exchange interactions were identical (J (intra-layer) = 0.27 (3) meV 

and J (inter-layer) = 0.27(3) meV) showing they represent equivalent superexchange pathways.60  

d. Magnetic structure  
Cooling Ba2MnTeO6 to 2K saw the arrival of several additional peaks in the neutron diffraction 

pattern. The extra peaks were non-coincident with the nuclear peaks of Ba2MnTeO6 and the BaMnO3 

impurity phase (1%). The extra peaks are magnetic Bragg peaks caused by antiferromagnetic 

ordering.  The magnetic Bragg peaks were strongest at 2 K and can clearly be distinguished from the 

nuclear Bragg peaks by comparing the 2 K and 100 K NPD patterns in Fig. 3.9, where the magnetic 

Bragg peaks are indicated by an asterisk.  

Fig. 3.9 Comparison of the neutron diffraction patterns of Ba2MnTeO6 at 2 K (black) and 100 K (red). 

The 100 K pattern contains contributions from nuclear scattering only, whereas the 2 K pattern 

contains additional magnetic Bragg peaks marked with an asterisk (*). 
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To describe the 2 K data, a two-phase (nuclear phase + magnetic phase) Rietveld refinement was 

performed. The nuclear phase was the 𝐹𝑚3̅𝑚 structure. The magnetic phase was either the type I or 

type II antiferromagnetic model. The type II antiferromagnetic model failed to describe the magnetic 

phase. The type I antiferromagnetic phase provided a good description of the magnetic Bragg peaks 

when the propagation vector was 𝑘 = (0,0,1). 𝑘 = (0,0,1) is equivalent to 𝑘 = (1,0,0) = (0,1,0) in the 

𝐹𝑚3̅𝑚 structure. Analysis using BASIREPS and SARAh showed there are two symmetry allowed 

representations for a propagation vector of 𝑘 = (0,0,1).55 In the first representation, the Mn2+ 

moment lies within the 𝑎𝑏 plane of the ferromagnetic layers. In the second representation, the Mn2+ 

spins point out of the 𝑎𝑏 plane along 𝑐. The second representation fails to describe the intensity of 

the magnetic Bragg peaks. Conversely, the first representation provides a very good description as 

demonstrated by the Rietveld plot in Fig. 3.10. It was not possible to determine the exact direction 

of the magnetic moment in the ab-pane using a powder sample. Conversely, in a single crystal 

experiment the crystal can be rotated to observe only the magnetisation that is perpendicular 𝑄.  

Fig. 3.11a shows the type I antiferromagnetic structure of Ba2MnTeO6, in which the magnetic 

moment was arbitrarily set to point along the 𝑎-axis. At 2 K, the refined Mn2+ magnetic moment was 

determined to be 𝜇 = 4.34(3) 𝜇𝐵  per Mn2+, close to the expected value for an Mn2+ S = 5/2 cation. 

The refined moment is slightly reduced as a result of spin wave excitation (i.e. inelastic scattering) 

causing collective oscillations of the magnetic moments. The refined Mn2+ moment is plotted as a 

function of temperature in Fig. 3.11b. The refined moment decreases as the temperature increases 

with the largest changes occurring about 20 K. This agrees well with the 𝑇𝑁 determined from DC 

susceptibility and heat capacity measurements. The refined moment does not decrease as quickly as 

would be expected above 𝑇𝑁 and does not reach zero upon approaching 25 K.   
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Fig. 3.10 Two-phase (nuclear + magnetic) Rietveld refinement using the 2 K Ba2MnTeO6 neutron 

diffraction data from bank 3 (2𝜃 = 34.9574°). The nuclear structure was described using the 𝐹𝑚3̅𝑚 

structure and the magnetic structure the type I antiferromagnetic model.  
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Fig. 3.11 (a) The type I antiferromagnetic structure of Ba2MnTeO6 and (b) the refined Mn2+ magnetic 

moment determined from the neutron diffraction data plotted as a function of temperature. In (b), 

the left axis shows the refined Mn2+ moment (𝜇𝑒𝑓𝑓) and the right axis is the square root of the 

integrated intensity of the main magnetic peak. The refined moment follows the square root of the 

integrated intensity well showing the refinement provides an accurate estimate of 𝜇𝑒𝑓𝑓.  

The waterfall plot in Fig. 3.12a shows the evolution of the magnetic Bragg peaks about the transition 

temperature between 14-25 K. As the temperature approaches ~20 K, the magnetic Bragg peaks 

become sharper, signifying the onset of antiferromagnetic ordering. The decay of the magnetic 

peaks was also investigated above 20 K. Unexpectedly, the magnetic Bragg peaks do not completely 

disappear above the transition temperature. This can be seen even more clearly in Fig. 3.12b, were 

the diffraction patterns at temperatures between 5 to 100 K are overlaid. The magnetic scattering 

peaks continue to make a visible contribution to the diffraction pattern well above 𝑇𝑁. The intensity 

of the (001) magnetic peak at ~8.3 Å is plotted as a function of temperature in Fig. 3.13. The peak 

intensity quickly decays above 20 K, but does not plateau to a constant value. Instead, the decrease 

in the peak intensity is spread out over a wide temperature range. The inset shows the (001) peak at 

40 K. The peak is broad indicating diffuse magnetic scattering. Diffuse magnetic scattering suggests 

the presence of a short-range magnetically ordered state. Diffuse magnetic scattering would explain 

the gradual decrease of the refined Mn2+ moment around the transition temperature. Similar diffuse 

magnetic scattering at temperatures far greater than 𝑇𝑁 has been observed for Ba2MnWO6.19 Diffuse 

magnetic scattering is no longer visible at 100 K (see inset in Fig. 3.13) implying Ba2MnTeO6 is fully 

paramagnetic. Inelastic neutron scattering and polarised magnetic scattering measurements were 

performed to investigate the disordered state above 𝑇𝑁. 
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Fig. 3.12 (a) Waterfall plot of the Ba2MnTeO6 neutron diffraction patterns between 14 to 25 K. The 

waterfall plot shows the evolution of the magnetic scattering peaks below and above 𝑇𝑁. (b) Plot 

overlaying the neutron diffraction patterns at various temperatures between 5-100 K. The intensity 

of the magnetic peaks decreases as the temperature approaches 𝑇𝑁, but the peaks do not completely 

disappear above 𝑇𝑁. Broad magnetic scattering peaks are still visible at 40 K (purple line).  

Fig. 3.13 Intensity of the (001) Ba2MnTeO6 magnetic reflection at ~8.3 Å as a function of 

temperature. The insets show the neutron diffraction patterns corresponding to the peak intensities 

at specified temperatures.  

e. Inelastic neutron scattering  
The inelastic neutron scattering spectra of Ba2MnTeO6 was measured below 𝑇𝑁 at 6 K, and above 𝑇𝑁 

at 44 K and 109 K. The spectra are shown in Fig. 3.14. The horizontal yellow band at 𝐸 = 0 meV 

represents the elastic line (i.e. the diffraction intensity). In the 6 K spectrum (Fig. 3.14a), there are 

clear excitations above the elastic line. The excitations represent spin-waves. Spin-waves in one 

dimension are modelled using linear spin-wave theory. SpinW uses linear spin wave theory and 

classical Monte Carlo methods to solve the spin Hamiltonian for a system and simulate the inelastic 

neutron scattering spectra.67 SpinW was used to simulate the low temperature inelastic neutron 
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scattering spectrum of Ba2MnTeO6. Ba2MnTeO6 was described using the Heisenberg J1-J2 model for 

which the spin Hamiltonian is given by equation 3.9.  

�̂� = −𝐽1 ∑ 𝑺𝑖 ∙ 𝑺𝑗〈𝑖𝑗〉 − 𝐽2 ∑ 𝑺𝑖 ∙ 𝑺𝑗〈〈𝑖𝑗〉〉  (3.9) 

Here, 𝐽1 and 𝐽2 are the nearest neighbour (NN) and next-nearest neighbour (NNN) exchange 

interactions. 𝑆𝑖  and 𝑆𝑗  are the spins on sites 𝑖 and 𝑗. The simulated inelastic neutron scattering 

spectrum is shown in Fig. 3.14d. The simulation reproduces the excitation features observed in the 6 

K spectrum well showing the excitations are consistent with spin-waves. Vertical slices of the data 

were summed over different |𝑄| ranges and plotted as a function of energy transfer (𝐸). Fig. 3.14e 

shows the vertical cuts for the 6 K spectra (data points) and the simulation (black solid lines). The 

black solid lines of the simulated data follow the vertical cuts of the 6 K spectra well. The close 

agreement between the simulated and experimental data allowed extraction of the exchange 

interactions using equation 3.9. The exchange interactions are consistent with type I ordering:  𝐽1 =   

-0.34 meV and 𝐽2 = 0.03 meV (𝐽2/𝐽1  = 0.088).  

Fig. 3.14 The inelastic neutron scattering spectrum of Ba2MnTeO6 at (a) 6 K, (b) 44 K and (c) 109 K. 

Inelastic neutron scattering spectra were collected on the MERLIN time-of-flight spectrometer. The 

simulated 6 K inelastic neutron scattering spectrum of Ba2MnTeO6 produced using SpinW is shown in 

(d). Panel (e) shows vertical slices of the 6 K data summed over different |𝑄| ranges. The data points 

with error bars are the vertical slices through the experimental data and the solid black lines show 

the vertical slices through the simulated data. The simulated vertical slices follow the experimental 

vertical slices well as a function of energy transfer (𝐸) allowing determination of the exchange 

interactions: 𝐽1= -0.34 meV and 𝐽2 = 0.03 meV. Panel (f) show horizontal slices through the spectra in 

(a)-(c) summed over an energy transfer range of 𝐸 = 1-2 meV. The excitations observed below 𝑇𝑁 

have the same peak positions and features as the high temperature excitations observed above 𝑇𝑁.  
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The spectra above 𝑇𝑁 at 44 K and 109 K are shown in Fig. 3.14b and Fig. 3.14c. Broad features 

reminiscent of the spin wave excitations still exist in the 44 K and 109 K spectra. Horizontal slices of 

the spectra between 𝐸= 1-2 meV were summed and plotted as a function of |𝑄| in Fig. 3.14f. The 

peaks in the horizontal slices of the 44 K and 109 K data have the same peak positions and features 

as the 6 K data.  This indicates the excitations above 𝑇𝑁 are magnetic in origin and resemble the 

magnetically ordered state. The excitations become weaker with temperature but are still 

discernible at 109 K. This agrees with the neutron diffraction data and shows a short-range magnetic 

correlated state exists even at 5 x 𝑇𝑁. Similar behaviour has been observed in the inelastic neutron 

spectra of Ba2MnWO6 where magnetic excitations are visible at 40 K (5 x 𝑇𝑁). Polarized neutron 

scattering experiments were performed to investigate the short-range correlated state above 𝑇𝑁 .  

f. Polarized Neutron Scattering  
The diffuse magnetic scattering of Ba2MnTeO6 (𝑇𝑁 = 20 K) and Ba2MnWO6 (𝑇𝑁 = 8 K) at various 

temperatures above 𝑇𝑁 are shown in Fig. 3.15a and 3.16a, respectively. Fig. 3.15a shows the diffuse 

magnetic scattering of Ba2MnTeO6 consists of two diffuse magnetic peaks at |𝑄| ~ 0.78 Å-1 and ~ 1.8 

Å-1. These peaks are clearly visible at both 30 K (10 K above 𝑇𝑁) and 100 K (5 x 𝑇𝑁). The position of 

the diffuse scattering peaks agrees well with the positions of the ordered magnetic Bragg peaks 

observed below 𝑇𝑁  = 20 K in the neutron diffraction data at |𝑄| = 0.78, 1.71 and 1.83 Å-1. Similarly, 

diffuse magnetic scattering was observed well above 𝑇𝑁 for Ba2MnWO6 in Fig. 3.16a. Now only one 

diffuse magnetic peak was clearly visible up to 100 K. The position of this main broad peak was 

slightly shifted compared to Ba2MnTeO6. This is expected given the different magnetic structures. 

The peak position at |𝑄|~ 0.68 Å-1 agrees well with the position of the main magnetic Bragg peak 

(|𝑄|=0.66 Å-1) in the neutron diffraction data below 𝑇𝑁 = 8 K. The close agreement between the 

positions of the diffuse magnetic peaks and magnetic Bragg peaks provides further evidence that the 

disordered magnetic state above 𝑇𝑁 closely resembles the magnetically ordered state below 𝑇𝑁.  

Reverse Monte Carlo modelling using SPINVERT gave the spin-spin correlations between the Mn2+ 

cations. Fig. 3.15b and Fig. 3.16b compare the spin-spin correlations of Ba2MnTeO6 and Ba2MnWO6, 

respectively. The J1 and 𝐽2 spin-spin correlations at different temperatures are indicated. The sign of 

the spin-spin correlations agrees well with the J1 and J2 interactions in the type I and type II magnetic 

structures of Ba2MnTeO6 and Ba2MnWO6. For type I order, the J1 spin-spin correlation is expected to 

be negative as 2/3 of the NN-J1 spins couple antiferromagnetically while 1/3 of the NN-J1 spin couple 

ferromagnetically. Overall, this produces a dominant antiferromagnetic correlation. The J2 spin-spin 

correlation is expected to be positive as all the NNN-J2 spins couple ferromagnetically. In Fig.3.15b, 

the J1 spin-spin correlation is strongly negative, while J2 is slightly weaker and positive. This agrees 

well with the antiferromagnetic J1 = -0.34 meV and ferromagnetic J2 = 0.03 meV interactions 

observed in type I ordered Ba2MnTeO6.  

For type II ordering, the J1 spin-spin correlation is expected to be zero as there are an equal number 

of antiferromagnetic and ferromagnetic NN-J2 interactions. The J2 spin-spin correlation should be 

negative as all the NNN interactions are antiferromagnetic. Fig. 3.16b shows the J2 spin-spin 

correlation for Ba2MnWO6 is negative as expected; but the J1 spin-spin correlation is also negative 

and slightly bigger than 𝐽2. Type II ordering is obtained when the J2/J1 ratio is above 0.5.38 For 

Ba2MnWO6 the ratio is close to 1 (J2/J1 = 0.95) placing Ba2MnWO6 on the strong J1 side of the type II 

antiferromagnetic phase. Inelastic neutron scattering showed the J1 interaction is almost equal to 

the J2 interaction in the magnetically ordered state: J1 = -0.080 meV and J2 = -0.076 meV.19  

Therefore, the negative J1 spin-spin correlation results due to the strongly antiferromagnetic J1. 

While these interactions are comparable (in fact J1 is slightly larger than J2), type II magnetic ordering 

still results as it is the strong antiferromagnetic J2 interaction that drives type II ordering.19,38 
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Fig. 3.15 D7 polarized neutron scattering data for Ba2MnTeO6 showing: (a) the diffuse magnetic 

scattering at various temperatures above 𝑇𝑁; and (b) the spin-spin correlations between Mn2+ spins 

calculated using SPINVERT between 30 to 150 K. The J1 and J2 spin-spin correlations are indicated.  

 

Fig. 3.16 D7 polarized neutron scattering data for Ba2MnWO6 showing: (a) the diffuse magnetic 

scattering at different temperatures above 𝑇𝑁; and (b) the spin-spin correlations between the Mn2+ 

spins calculated using SPINVERT between 13 to 100 K. The J1 and J2 spin-spin correlations are 

indicated.  

g. Density functional theory calculations  
Density functional theory (DFT) calculations were performed by O. Mustonen. The electronic 

structure of Ba2MnTeO6 and Ba2MnWO6 was modelled using the DFT+U method with U = 7 eV. The 

DFT calculations showed how the partial density of states for Ba2+, Mn2+, Te2+/W6+ and O2- contribute 

to the total density of states in Ba2MnTeO6 and Ba2MnWO6. The density of states shows the 

distribution of energy levels that can be occupied by electrons at a given energy.  

The total and partial density of states for Ba2MnTeO6 are shown in Fig. 3.17a. The total density of 

states shows a clear band gap of 𝐸𝑔 = 1.75 eV, as expected for an antiferromagnetic insulator. The 

main contributors to the valence band below the Fermi level (shown by the dotted line) are the 

hybridized Mn2+ 3𝑑 states and the O2- 2p states. Above the Fermi level, the empty Mn2+ 3d states 

hybridize with the O2- 2p states contributing to the conduction band. Te6+ barely contributes to the 
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total density of states. The panel for Te6+ shows there is a weak hybridization of the empty 5s and 5p 

states with the O2- 2p or Mn2+ 3d states, but there is no involvement from the filled 4d10 orbitals. The 

Te6+ 4d10 orbitals are not visible in the plot as they lie far below the Fermi level; so do not contribute 

to Mn-O-Te-O-Mn superexchange.  

Similarly, the total density of states in Fig. 3.17b shows Ba2MnWO6 has a comparable band gap of 

1.98 eV. Like Ba2MnTeO6, the valence band is composed of the Mn2+ 3d and O2- 2p states. Comparing 

Fig. 3.17b to Fig. 3.17a shows clear differences between the Te6+ and W6+ contributions to the 

conduction bands in Ba2MnTeO6 verses Ba2MnWO6. While Te6+ contributes very little to the 

conduction band, the partial density of states in Fig. 3.15b show W6+ makes a much larger 

contribution. The empty 5d0 states of W6+ hybridize strongly with the O2- 2p orbitals; as well as the 

Mn2+ 3d orbitals, but to a lesser degree. Unlike Ba2MnTeO6, the empty W6+ 5d0 orbitals are involved 

in superexchange. These differences in hybridization underpin the d10/d0 effect and determine 

whether the dominant exchange interaction is J1 or J2 in the J1-J2 Heisenberg model. 
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Fig. 3.17 The total and partial density of states of (a) Ba2MnTeO6 and (b) Ba2MnWO6 calculated using 

DFT+U (U = 7 eV) methods. The top panels show the total density of states for (a) Ba2MnTeO6 and (b) 

Ba2MnWO6, respectively. The partial density of states for Mn2+, Te/W6+ and O2- are shown below the 

total density of states. Comparing the partial density of states for Ba2MnTeO6 and Ba2MnWO6, shows 

Mn2+ and O2- hybridize similarly in these compounds. Conversely, Te6+ and W6+ contribute differently 

to hybridization with Mn2+ 3d and O2- 2p orbitals. The partial density of states of Te6+ shows the 5s 

and 5p orbitals contribute very little to hybridization in Mn-O-Te-O-Mn superexchange. The W6+ 

partial density of states shows the 5d0 orbitals contribute strongly to Mn-O-W-O-Mn superexchange 

in Ba2MnWO6. Hence, the W6+ participation in extended superexchange is much greater than Te6+.  
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5. Discussion  
Table 3.7 provides a summary comparing the key structural and magnetic properties of Ba2MnTeO6 

and Ba2MnWO6. 

Table 3.7: Comparison of the crystal structure and magnetic properties of Ba2MnTeO6 and 

Ba2MnWO6. 

   Ba2MnTeO6 Ba2MnWO6 

C
ry

st
al

 s
tr

u
ct

u
re

 

Unit cell parameters 

(300 K) 

a = 8.21565(2) Å 

Vol.= 554.531(3) Å3 

a = 8.18734(6) Å 

Vol.= 548.810(4) Å3 

Space group 𝐹𝑚3̅𝑚 (cubic) 𝐹𝑚3̅𝑚 (cubic) 

Bond lengths 
2.162(4) Å (Mn-O) 

1.945(4) Å (Te-O) 

2.1711(3)  Å (Mn-O) 

1.9225(3)  Å (W-O) 

Bond valence sums 

2.24 (Ba2+) 

2.13 (Mn2+) 

5.56 (Te6+) 

2.32 (Ba2+) 

2.14 (Mn2+) 

5.98 (W6+) 

M
ag

n
et

ic
 s

tr
u

ct
u

re
 

𝑇𝑁  20 K 8 K 

𝛩𝑤 -157(1) K -64 K 

𝜇𝑒𝑓𝑓  6.31(7) μB 6.3(3) μB 

Frustration index (𝑓) 8 8 

Magnetic structure Type I antiferromagnet Type II antiferromagnet 

Exchange constants 
𝐽1 = -0.34 meV 

𝐽2 = 0.03 meV 

𝐽1 = -0.080 meV 

𝐽2 = -0.076 meV 

Magnetic excitations 

above 𝑇𝑁  

✓ ✓ 

 

Comparing the crystal structure data clearly shows Ba2MnTeO6 and Ba2MnWO6 are isostructural. 

Using a combination of X-ray and neutron diffraction, Ba2MnTeO6 was found to be cubic and is 

described using the same 𝐹𝑚3̅𝑚 symmetry as Ba2MnWO6. Furthermore, Ba2MnTeO6 and 

Ba2MnWO6 have very similar lattice parameters and unit cell volumes; and there is little difference 

between the Mn-O and Te-O vs W-O bond lengths in Table 3.7. The similarity between the Te-O and 

W-O bond lengths and unit cell parameters is not surprising given the near-identical Te6+ and W6+ 

ionic radii (Te6+ = 0.56 Å and W6+ = 0.60 Å).35 As a result, the bond valence sums for Ba, Mn and Te/W 

are all nearly the same for Ba2MnTeO6 and Ba2MnWO6.  

The crystal structure similarities do not extend to the magnetic structure. Low temperature neutron 

diffraction revealed Ba2MnTeO6 has a type I antiferromagnetic structure. This is the same magnetic 

structure displayed by the B’’=Te6+ A2MnB’’O6 compounds in Table 3.1. Inelastic neutron scattering 

showed type I order results from a strong antiferromagnetic J1 = -0.34 meV and weak ferromagnetic 
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J2 = 0.03 meV interaction. The J2/J1 = -0.088 ratio produces a type 1 ordered structure of  

ferromagnetically coupled layers of Mn2+ cations in the (001) planes with antiferromagnetic coupling 

between layers (as seen in Fig. 3.1a). Conversely, both J1 = -0.080 meV and J2 = - 0.076 meV are 

antiferromagnetic for Ba2MnWO6.19 J2/J1 = 0.95 leading to type II antiferromagnetic ordering where 

ferromagnetic layers are directed along the (111) plane with antiferromagnetic interactions in-

between (as seen in Fig. 3.1b). The minor structural differences between Ba2MnTeO6 and Ba2MnWO6 

means the different exchange interactions must arise from the d10/d0 effect.  

The density functional theory (DFT) calculations reveal the origins of the d10/d0 effect. Te6+ was found 

to make a very weak contribution towards hybridization in Mn-O-Te-O-Mn superexchange. The filled 

4d10 orbitals do not contribute. Instead, superexchange relies upon the Te6+ 5s and 5p orbitals, which 

hybridize weakly with the Mn2+ 3d and O2- 2p orbitals. It is not clear why the 5s and 5p contribution 

to hybridisation is so weak. It could be that these orbitals are too compact to facilitate good orbital 

overlap.68 As Fig. 3.18 illustrates, the 180° J2 interaction passes through the B’’ cation. For the J2 

interaction to be significant, a d-orbital contribution is required to facilitate hybridisation with the 

O2- 2p orbitals in the 180° J2 Mn-O-B’’-O-Mn superexchange pathway. Te6+ does not have a d-orbital 

to contribute leading to a near-zero J2 interaction in Ba2MnTeO6 (J2 = 0.03 meV). The majority of 

superexchange occurs via the 90° J1 NN interaction (J1 = -0.34 meV). At 90°, superexchange between 

the Mn2+ cations can occur through a Mn-O-O-Mn interaction via the O2- 2p orbitals. The 5s and 5p 

orbitals may contribute, but as the arrow illustrates in Fig. 3.18 a strong J1 superexchange can be 

facilitated without Te6+ by passing through the O2- anions. The result is type I order.  

 

 

 

 

 

 

 

 

 

Fig. 3.18 The J1 and J2 exchange interactions in the cubic Ba2MnTeO6 structure. The key shows the 

cation colours in the structure. The exchange interactions are illustrated by the black arrows. In 

Ba2MnTeO6, the 180° J2 interaction along Mn-O-Te-O-Mn is weak as the 4d10 Te6+ cation (shown in 

grey) cannot provide the d-orbital contribution required to facilitate J2 superexchange. Instead, 

dominant exchange occurs through the 90° J1 interaction. The thickness of the arrows reflects the 

relative strength of the exchange interactions. Note, the black arrow for the J1 interaction does not 

pass through the Te6+ cation. At 90°, J1 superexchange between the Mn2+ cations (shown in purple) 

can be facilitated via a Mn-O-O-Mn interaction, with minimal involvement from Te6+
 (shown in grey).  

The situation is different for Ba2MnWO6. The empty 5d0 orbitals lie close to the Fermi level so can 

participate in hybridization with the O2- 2p and Mn2+ 3d orbitals. This facilitates strong 180° J2 

superexchange via Mn-O-W-O-Mn leading to type II ordering. One might expect stronger 

hybridization enhances the J1 interaction as well.  However, while the J1 and J2 interactions are 
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comparable (J2/J1 = 0.95) in Ba2MnWO6, the strength of the J1(= -0.080 meV) is weak compared to in 

Ba2MnTeO6 where J1 = -0.34 meV. A smaller unit cell volume for Ba2MnWO6 would suggest a 

stronger J1 from improved orbital overlap. Studies of other non-cubic B’’= W6+ or Te6+ double 

perovskites have found the J1 interaction is generally suppressed, with superexchange dominated 

mainly by the J2 interaction. This has been observed in Sr2CuWO6 and Ba2CuWO6.68–71 In the former 

case, the W6+ 5d0 orbitals introduce a ferromagnetic J1 interaction, in addition to the 

antiferromagnetic J1 interaction.70 The 5𝑑𝑥2−𝑦2 orbitals form the antiferromagnetic interaction 

through a sigma (𝜎)-bonding interaction with the O2- 2p orbitals. But the W6+ 5𝑑𝑥𝑧 and 5𝑑𝑦𝑧 orbitals 

also form a ferromagnetic pi (𝜋)-bonding interaction with the O2- 2p orbitals. The competing 

ferromagnetic vs antiferromagnetic interactions suppress J1 exchange. This is expected to be the 

origin of the suppressed J1 here, and in other B’’= W6+ or Te6+ double perovskites. Suppression of the 

J1 interaction explains why the 𝑇𝑁 and Weiss constant (𝜃𝑤) for Ba2MnWO6 are lower compared to 

Ba2MnTeO6. Despite suppression of J1, the strong J2 interaction still drives type II ordering.  

Table 3.8 compares the magnetic properties of a range of A2B’B’’O6 perovskites with different 

magnetic B’ cations in combination with B’’=Te6+ or W6+. Irrespective of the identity of the magnetic 

B’ cation, Table 3.8 clearly shows that double perovskites where B’’ = Te6+ are type I or Néel ordered. 

Whereas, when B’’= W6+ type II order is observed.   

Table 3.8: The magnetic properties of ordered double perovskites with d0 (Te6+) or d10 (W6+, Mo6+, Ti4+) 

B’’ cations in combination with different magnetic B’ cations. 

Structure Space 
group* 

𝑇𝑁 (K) Magnetic 
structure 

J1 (meV) J2 (meV) J2/J1 Ref. 

Ba2MnTeO6 𝐹𝑚3̅𝑚 20 Type I -0.34 0.03 -0.088 62 

Sr2MnTeO6 𝑃21/𝑛 20 Type I - - - 30,31 

Sr2CoTeO6 𝑃21/𝑛 18 Type I - - - 72 

Sr2NiTeO6 𝑃21/𝑛 35 Type I - - - 73,74 

Ba2CuTeO6 𝐼4/𝑚 - Néel -20.22 0.23 -0.01 50,71 

Sr2CuTeO6 𝐼4/𝑚 29 Néel -7.18 -0.21 0.03 45,46,48 

Ba2MnWO6 𝐹𝑚3̅𝑚 8 Type II -0.080 -0.076 0.95 19 

Ba2CuWO6 𝐼4/𝑚 28 Type II -1.17 -11.94 10.18 50,71,75 

Sr2MnWO6 𝑃21/𝑛 14 Type II - - - 
20,21 

Sr2CoWO6 𝑃21/𝑛 24 Type II - - - 76 

Sr2NiWO6 𝐼4/𝑚 54 Type II -0.02 -1.81 90.5 74,77 

Sr2CuWO6 𝐼4/𝑚 24 Type II -1.2 -7.47 6.23 69,70,78,79 
Ca2MnWO6 𝑃21/𝑛 16-17 Type II    22,23 

Ba2MnMoO6 𝐹𝑚3̅𝑚 11 Type II -1.17 -0.87 0.74 
24,25,80 

Sr2MnMoO6 𝑃42/𝑛 12-15 Type II    
22,24,26 

Sr2CoMoO6 𝐼4/𝑚 36 Type II    
81 

Ba2NiMoO6 𝐹𝑚3̅𝑚 64 Type II    
82 

Sr2NiMoO6 𝐼4/𝑚 81 Type II    
82,83 

La2MnTiO6 𝑃21/𝑛 9 Type II    84 
* Space group at low temperatures. 
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Fig. 3.19 Comparison of (a) Type I antiferromagnetic order; (b) Type II antiferromagnetic order in the 

cubic unit cell; and (c) Néel order in the tetragonal unit cell.  

Fig. 3.19 compares the type I, type II and Néel ordered A2B’TeO6 structures. Beginning with the B’’= 

Te6+ perovskites, Néel ordering arises for the B’= Cu2+ double perovskites. The Jahn-Teller active Cu2+ 

cation elongates the unit cell along 𝑐 leading to tetragonal symmetry (𝐼4/𝑚). Elongation of the unit 

cell creates a highly two-dimensional magnetic structure. The exchange interactions in the 𝑎𝑏 plane 

dominate while the interactions between the 𝑎𝑏 planes along the 𝑐-axis are weak. Generating the 

Néel ordered structure in Fig. 3.19c in the tetragonal unit cell requires a dominant antiferromagnetic 

J1 interaction. This can be facilitated by Te6+ as superexchange prefers a strong J1 and weak J2 

interaction. But not W6+ as the 5d0 orbital promotes a strong J2 interaction. Consequently, 

isostructural (Sr,Ba)2CuTeO6 are Néel ordered, whereas (Sr,Ba)2CuWO6 are type II ordered.  

In addition to the Jahn-Teller distorted Cu2+ perovskites, the d10/d0 effect can also be observed in the 

distorted B’ = Mn2+, Co2+ and Ni2+ perovskites. These monoclinic and tetragonal (Sr, Ba)2B’(Te/W)O6 

(B’ = Mn2+, Co2+ and Ni2+) perovskites all display the d10/d0 effect: Te2+ - strong J1 (type II/Néel) and 

W6+ -strong J2 (type II). Furthermore, the J2/J1 ratios for the Te6+ and W6+ structures in Table 3.8 are 

similar to the J2/J1 ratios determined for cubic Ba2MnTeO6 and Ba2MnWO6, respectively. The J2/J1 

ratio is close to zero in all the (Sr, Ba)2B’TeO6 (B’ = Mn2+, Co2+ and Ni2+) perovskites. This shows Te6+ 

consistently produces a weak J2 superexchange interaction, despite the differences in crystal 

symmetry. This leads to type I order for (Sr, Ba)2B’TeO6 (B’ = Mn2+, Co2+ and Ni2+). Alternatively, J2 is 

enhanced by the W6+ 𝑑-orbital contribution to NNN exchange in the (Sr, Ba)2B’WO6 (B’ = Mn2+, Co2+ 

and Ni2+) perovskites, all of which are type II ordered. Similar to in Ba2MnWO6, the greater W6+ 5d0 

contribution to superexchange does not enhance the J1 interaction. The J1 interaction is either 

significantly smaller (producing a large J2/J1 ratio) or of similar magnitude to the J1 interaction (J2/J1 is 

close to unity). Thus, the difference in Te6+ 4d10 and W6+ 5d0 orbital hybridization affects the strength 

of superexchange in a similar manner, even when the superexchange distances and angles are 

distorted in the non-cubic structures. 

Also included in Table 3.8 are the magnetic properties of ordered double perovskites containing 
Mo6+ (4d0) and Ti4+ (3d0) cations. Identical to W6+ 5d0, the Mo6+ and Ti4+ perovskites exhibit type II 
antiferromagnetic ordering. As in the case of Ba2MnWO6, the greater hybridization between empty 
d0 orbitals and O 2p orbitals strengthens the J2 interaction leading to type II ordering.84 This suggests 
a variety of d10 and d0 cations can be used to manipulate magnetic ordering in a range of double 
perovskite structures.   

Ba2MnTeO6 and Ba2MnWO6 both show evidence of diffuse magnetic scattering in their inelastic 
neutron scattering spectra at 5 x 𝑇𝑁. The close correspondence between the magnetic excitations 
above 𝑇𝑁 and spin waves below 𝑇𝑁 in the inelastic neutron scattering data suggested the disordered 
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magnetic state resembles the ordered magnetic state. Diffuse magnetic scattering was observed at 
temperatures 5 x 𝑇𝑁 for both Ba2MnTeO6 and Ba2MnWO6. The positions of the diffuse magnetic 
peaks are close to the position of the magnetic Bragg peaks confirming a close resemblance between 
the disordered and ordered magnetic structures. The sign of the J1 and J2 spin-spin correlations 
agrees well with type I order for Ba2MnTeO6, with J1 negative (antiferromagnetic) and J2 positive 
(ferromagnetic). The J1 and J2 spin-spin correlations are both negative agreeing with type II ordering 
for Ba2MnWO6. Hence, the disordered magnetic state likely represents decay of the magnetically 
ordered state. Instead of occurring just above the transition, the magnetic state decays gradually 
above 𝑇𝑁. J1 and J2 spin-spin correlations still persist even at 150 K in the case of Ba2MnTeO6. Such 
behaviour is not novel to these perovskites. Diffuse magnetic scattering has been observed well 
above 𝑇𝑁 in the double perovskites Ba2YRuO6 and Sr2CuWO6.69,85 A range of double perovskites could 
display strong magnetic correlations above 𝑇𝑁. However, studying diffuse magnetic interactions is 
difficult and requires access to complex instruments, of which there are few. Hence, the low 
temperature magnetic properties often take precedence.  

6. Conclusions  
Ba2MnTeO6 and Ba2MnWO6 are isostructural, but adopt different antiferromagnetic ordering: 
Ba2MnTeO6 – type I (𝑇𝑁 = 20 K) and Ba2MnTeO6 – type II (𝑇𝑁 = 8 K). Differences in magnetic ordering 
are explained by the d10/d0 effect. Density functional theory calculations showed the d10/d0 effect 
arises from the contrasting Te6+ and W6+ contributions towards orbital hybridization. Te6+ 4d10 is 
unable to facilitate the 180° J2 superexchange interaction required for type II order due to the 
limited orbital contribution to hybridization. The J1 interaction can be facilitated without Te6+ via a 
Mn-O-O-Mn interaction. This leads to type I order with a strong J1 and near zero J2. The W6+ 5d0 
orbitals do contribute to hybridization leading to type II ordered Ba2MnWO6 from the strong J2 
interaction. This established the d10/d0 effect in an ideal cubic perovskite structure, in which there 
are no complex structural or magnetic influences. The d10/d0 effect was evaluated in distorted 
A2B’B’’O6 perovskites containing other magnetic B’ cations in combination with Te6+ and W6+, as well 
as  Mo6+ and Ti4+. The structures containing d10 B’’ cations exclusively adopted type I or Néel 
ordering, whereas structures containing d0 B’’ cations adopted type II ordering. Thus, the d10/d0

 

effect can be used to manipulate order in a range of double perovskite structures, where d10
 (strong 

J1) = type I/Néel ordering and d0 (strong J2) = type II ordering. The behaviour above the magnetic 
transition was also investigated. Ba2MnTeO6 and Ba2MnWO6 both exhibit evidence of short-range 
magnetic order at 5 x 𝑇𝑁 . The results suggest this represents decay of the magnetically ordered 
state. Other magnetic double perovskites could display similar behaviour above 𝑇𝑁.  
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1. Abstract  
Chapter 3 introduced the d10/d0 effect in double perovskites. Different types of magnetic order 

resulted when B’’ = d10
 (Te6+) versus B’’ = d10 (W6+, Mo6+). Recently, mixtures of d10 and d0 cations 

have been found to destabilise magnetic ordering in double perovskites. Examples include the 

Sr2CuTe1-xWxO6 solid solution. The aim in this chapter was to determine whether similar behaviours 

could be induced by introducing competing d10/d0
 interactions in more complex perovskite 

structures, such as hexagonal perovskites. The hexagonal perovskite Ba2CuTeO6 was an excellent 

structure for this investigation. It possesses a more complex crystal and magnetic structure 

compared to Sr2CuTeO6, whilst bearing an analogous Cu2+ magnetic geometry. A Ba2CuTe1-xWxO6 

solid solution was prepared between 0 ≤ x ≤ 0.3. A strong site-selectivity for W6+ substitution at the 

corner-sharing site was identified. The result was site-selective d10/d0 tuning of the intra-ladder 

interactions in the Cu2+ spin ladder structure of Ba2CuTe1-xWxO6. The effect on the magnetic 

interactions is investigated in chapter 5.  

2. Introduction  
The following two chapters are concerned with mixtures of d10 and d0 cations in perovskite systems. 

One example is the Sr2CuTe1-xWxO6 solid solution between the isostructural antiferromagnetic 

Sr2CuTeO6 and Sr2CuWO6 double perovskites. The competition between the d10- strong J1 and d0-

strong J2 exchange interactions destabilizes antiferromagnetic order and tunes Sr2CuTe1-xWxO6 into a 

magnetically disordered state.1–3 The ground state of Sr2CuTe0.5W0.5O6 (x = 0.5) closely resembles a 

quantum spin liquid, an exotic quantum magnetic state that has evoked much interest since its 

proposal in the 1970s.2,4–6 The Ba analogue of Sr2CuTeO6 possesses a hexagonal perovskite structure. 

The mixture of corner- and face-sharing creates a more complex structure compared to the purely 

corner-sharing Sr2CuTeO6 double perovskite. Despite these structural differences, Ba2CuTeO6 

possesses structural features similar to in Sr2CuTeO6, including a similar structural magnetic motif 

and the same type of magnetic ordering. Partial W6+ substitution of Te6+ in Ba2CuTeO6 to form 
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Ba2CuTe1-xWxO6 creates an ideal system to investigate d10/d0 mixtures in more complex perovskite 

structures.  

There are suggestions that the d10/d0 effect has a wide-ranging effect on the magnetic interactions, 

even in non-perovskite structures. For example, the ordering temperature in the inverse-trirutile 

Cr2(Te1-xWx)O6 structure is highly dependent on the W6+ (d0) vs Te6+ (d10) concentration.7 Magnetic 

ordering observed for Cr2TeO6 and Cr2WO6 is retained across the Cr2(Te1-xWx)O6 solution, but the 

ordering temperature decreases to a minimum at x = 0.7, whereupon the Cr2TeO6 and Cr2WO6 

magnetic states co-exist. Examples of the d10/d0
 effect in perovskites include the cubic perovskite 

CaCu3B4O12 (B = Ge, Ti and Sn), and the Sr2CuTeO6 and Sr2CuWO6 double perovskites and their 

aforementioned solid solution Sr2CuTe1-xWxO6. In the former case, different types of magnetic order 

are observed when B = Ge4+ or Sn4+ (d10) (ferromagnetic) vs B = Ti4+ (d0) (antiferromagnetic). In line 

with the d10/d0 effect, different types of ordering result as Ti4+ 3d0 possesses the necessary vacant d-

orbitals required for antiferromagnetic superexchange.8 The d10/d0 effect in the latter case has even 

more interesting effects on the magnetic behaviour of Sr2CuTe1-xWxO6. 

The Sr2CuTe1-xWxO6 solid solution is formed by W6+ substitution for Te6+ in Sr2CuTeO6 or vice versa for 

Sr2CuWO6. Magnetism in Sr2CuTeO6 and Sr2CuWO6 is highly two-dimensional owing to Jahn-Teller 

distortion of CuO6.9 Jahn-Teller distortion elongates the unit cell along the 𝑐-axis. As a result, the 

magnetic interactions along 𝑎, 𝑏 and 𝑐 are not equivalent. The magnetic structure is described as a 

square lattice Heisenberg antiferromagnet and consists of square lattices of Cu2+ cations in the 

𝑎𝑏 plane of the tetragonal unit cell. The square lattice planes are stacked along the 𝑐-axis as shown 

in Fig. 4.1. Within the 𝑎𝑏 square lattice planes, Cu2+ cations communicate via extended 

superexchange through O2- and Te/W6+ to form two in-plane J1 and J2 Cu-O-(Te/W)-O-Cu 

interactions. There are inter-plane interactions, J3 and J4, along 𝑐 between the square planes.  The 

inter-plane interactions are weak. Magnetism is dominated by the square lattice J1 and J2 

interactions leading to quasi-two-dimensional magnetism.10,11  

Different ordering results depending on whether Cu-O-(Te/W)-O-Cu superexchange involves Te6+ or 

W6+. In line with the d10/d0 effect, Te6+ does not participate in extended superexchange leading to a 

weak J2 (-0.21 meV). Instead, superexchange occurs mainly via the dominant J1 (-7.18 meV) 

interaction via Cu-O-O-Cu leading to Néel ordering for Sr2CuTeO6.2,12–14 Conversely, the empty 5d0 

orbitals allow W6+ to contribute towards Cu-O-W-O-Cu extended superexchange via J2. The result is 

columnar ordering for Sr2CuWO6 due to the weak J1 (-1.2 meV) and strong J2 (-9.5 meV).15,16 The 

different types of magnetic ordering for Sr2CuTeO6 and Sr2CuWO6 are depicted in Fig. 4.1.  
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Fig. 4.1 The magnetic interactions in the tetragonal Sr2Cu(Te/W)O6 structure. The Cu2+ interactions 

within the square planes form a Heisenberg square lattice antiferromagnet with two J1 and J2 in-

plane interactions between the Cu2+ cations in green. Between square planes there are two J3 and J4 

inter-plane interactions. Depending on whether the B’’ (cation shown in blue) is Te6+ or W6+, different 

types of magnetic order result. As depicted in the figure, the strong J1 leads to Néel order for 

Sr2CuTe(d10)O6, whereas a strong J2 generates columnar order for Sr2CuW(d0)O6.   

In the Sr2CuTe1-xWxO6 solution, the contrasting strong J2 (W6+) vs strong J1 (Te6+) interactions 

destabilises magnetic ordering.3 For Sr2CuTeO6, the competition introduced by W6+ substitutions 

levels as low as x = 0.05 are sufficient to prevent formation of the Néel ordered state.17,18 No 

magnetic order is detected in the muon spin relaxation spectrum of Sr2CuTe0.95W0.05O6.
18 It has been 

suggested even lower W6+ concentrations of x = 0.025 are enough to prevent ordering.17 As x 

increases, the J1 vs J2 competition escalates and the interactions become increasingly frustrated.1 

Disorder induced frustration leads to a quantum spin-liquid like state for x = 0.5.2 A quantum spin-

liquid is a non-magnetically ordered state where magnetic moments remain dynamic even at zero 

Kelvin, and are often characterized by a continuum of spin excitations known as a gapless 

system.5,19,20 Evidence to suggest spin-liquid behaviour includes muon spin relaxation 

measurements, where the local magnetism in Sr2CuTe0.5W0.5O6 is dynamic even at 19 mK.2 A linear 

low temperature heat capacity and a broad spectrum of excitations in the inelastic neutron 

scattering data also points towards a quantum spin liquid-like state.14 Beyond x = 0.6, the stronger J2 

interaction of W6+ (J2 = -9.5 meV) (c.f. the J1 interaction of Te6+ (J1 = -7.18 meV)) leads to columnar 

ordering for 0.7 ≤ x ≤ 1.1,17 Therefore, higher Te6+ concentrations are required to destabilise magnetic 

ordering in Sr2CuWO6. Through the d10/d0 effect, Sr2CuTe1-xWxO6 is tuned from magnetic order to 

quantum disorder then back to magnetic order across the solution series between x = 0 to 1.  

d10/d0 tuning in Sr2CuTe1-xWxO6
 provided the first identification of spin-liquid like behaviour in a 𝑆 = ½ 

square-lattice Heisenberg antiferromagnet. Realization of unusual quantum magnetic states such as 

quantum spin-liquids is experimentally challenging therefore the discovery in 2018 generated 

significant interest. There have been numerous subsequent studies to further understand the 

magnetic ground state of Sr2CuTe0.5W0.5O6.21–23 It also raises the question: can d10/d0 mixtures be 

applied to other perovskite structures? Furthermore, can they be applied in perovskite structures 

with more complex magnetic geometries than the square-lattice? Demonstrating both would 
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highlight the d10/d0 effect as an experimental tool for tuning magnetic ground states across the 

perovskite family.  

The Ba analogue of Sr2CuTeO6 is an excellent structure for these investigations. While Ba2CuWO6 

possesses the same double perovskite structure as Sr2CuTeO6 and Sr2CuWO6, Ba2CuTeO6 has a 

hexagonal perovskite structure at atmospheric pressure. The double perovskite structure consists of 

purely corner-sharing octahedra; whereas, the hexagonal perovskite structure has both corner- and 

face-sharing octahedra. The corner- and face-sharing stacking sequence creates a more complex 

structure where the shorter face-sharing cation-cation distance can garner different magnetic 

behaviours to purely corner-sharing structures.24 The Ba2CuTeO6 12R hexagonal structure is shown in 

Fig. 4.2a. Here, trimers of face-sharing [CuO6-TeO6-CuO6] octahedra are linked by corner-sharing 

TeO6 octahedra. This creates two-leg spin ladders of Cu2+ cations (Fig. 4.2b). In an analogous manner 

to Sr2CuTe1-xWxO6, the Cu2+ cations in the spin ladder are linked by extended Cu-O-Te-O-Cu 

superexchange via the intra-ladder Jleg and Jrung interactions indicated by the red arrows. There are 

additional inter-ladder interactions, of which the most dominant is the Jinter interaction indicated by 

the blue arrow through the face-sharing TeO6 octahedra.25 The resulting Cu2+ spin ladders illustrated 

by the solid lines in Fig. 4.2c run along the 𝑏-axis and are stacked in the 𝑎𝑏 plane.   

Fig. 4.2 (a) The room temperature structure of Ba2CuTeO6 (monoclinic, 𝐶2/𝑚) showing the 

hexagonal stacking sequence of face-sharing [CuO6-TeO6-CuO6] trimers linked by corner-sharing TeO6 

octahedra. Extended super-exchange between the Cu2+ cations in green via Te6+ (blue) and O2- (red) 

creates the intra-ladder (Jleg and Jrung) interactions (red arrows) and dominant inter-ladder interaction 

(Jinter) along the face-sharing trimer (blue arrow). (b) Ball-and-stick diagram of the two-leg Cu2+ spin 

ladders in the monoclinic unit cell. (c) Cu2+ spin ladders in Ba2CuTeO6 viewed from looking down the 

𝑎-axis. The spin ladders rung along 𝑏 and are stacked in the 𝑎𝑏 plane.      
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Whilst exhibiting different magnetic geometries, there are similarities between Sr2CuTeO6 and 

Ba2CuTeO6 that make them excellent structures for comparison. Sr2CuTeO6 and Ba2CuTeO6 both 

have a Néel ordered ground state below 29 K and 14 K, respectively.1,26 They also have highly two-

dimensional magnetic structures with similar Cu2+٠٠٠Cu2+ superexchange environments. As 

illustrated in Fig. 4.3, the intra-ladder Jleg and Jrung interactions in Ba2CuTeO6 resemble the J1 and J2 

interactions in the square lattice of Sr2CuTeO6. In both structures, the Cu2+ geometry features four 

Cu2+ cations interacting by extended Cu-O-Te-O-Cu superexchange in a square. Given these 

similarities, W6+ substitution in Ba2CuTeO6 might suppress magnetic ordering in a similar manner to 

in the Sr2CuTe1-xTexO6 solution. Furthermore, the hexagonal structure offers two sites for W6+
 

substitution: (1) the corner-sharing TeO6 site; and (2) the face-sharing TeO6. The two sites are 

labelled as the B’(c) and B’(f) site, respectively, where c denotes corner-sharing and f denotes face- 

sharing. If W6+ substitution were to favour one site, then the intra-ladder interactions could be tuned 

independently of the intra-ladder interactions or vice versa. This would demonstrate the d10/d0 

effect can also be applied site-selectively to tune specific magnetic interactions in a material.  

Fig. 4.3 Comparison of the Sr2CuTeO6 and Ba2CuTeO6 structures. The structures are drawn as a ball-

and stick model. Both structures possess the same structural motif of four corner Cu2+ cations linked 

by extended Cu-O-B’’-O-Cu superexchange.   

To investigate, a Ba2CuTe1-xWxO6 solid solution (0 ≤ x ≤ 0.3) solid solution was prepared using solid 

state techniques. This chapter presents the results from structural characterization of the Ba2CuTe1-

xWxO6 solid solution using a combination of laboratory X-rays, synchrotron X-rays, neutron 

diffraction and EXAFS. This identified a strong site preference for W6+ to reside on the B’’(c) site 

versus the B’’(f) site. The next chapter investigates how this affects magnetic behaviour of   

Ba2CuTe1-xWxO6 compared to Ba2CuTeO6.  

3. Experimental  

Synthesis 
Polycrystalline samples of x = 0, 0.05, 0.1. 0.2 and 0.3 were prepared by thoroughly grinding 

stoichiometric quantities of high purity BaCO3 (99.997%), CuO (99.9995%), TeO2 (99.995%) and WO3 

(99.998%) in an agate mortar. The reactant mixture was pressed into a pellet using a load of 1 tonne, 
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before calcination at 900 °C in air for 12 hours. The calcined pellets were broken, re-ground and 

pressed again, after which they were heated at reaction temperatures between 1000-1100 °C. 

Samples were repeatedly heated in 24 hour periods with re-grinding and pressing in between each 

heating. Between 72-120 hours was required to achieve phase purity in all samples, where upon the 

synthesis was stopped. Higher temperatures and longer reaction times were required to obtain 

single-phase samples as the W6+ content increased.  

Laboratory X-ray diffraction  
Laboratory X-ray diffraction was performed using a Rigaku Miniflex diffractometer (Cu K𝛼1/K𝛼2 (λ = 

1.5405 and 1.5443 Å)). Powder diffraction patterns were collected at 300 K between each 24 hour 

heating to monitor phase purity during the reaction. Upon achieving phase purity, long scan X-ray 

diffraction patterns were collected for Rietveld refinement. Rietveld refinement was performed 

using the Ba2CuTeO6 monoclinic 𝐶2/𝑚 structural model in GSAS-2.27,28  

Neutron diffraction  
The High-Resolution Powder Diffractometer (HRPD) at the ISIS Neutron and Muon source was used 

to collect high-resolution neutron diffraction patterns of the x = 0.1 and 0.3 samples.29 Al-alloy slab 

cans were loaded with ~ 8 g of powder and sealed using vanadium windows. Picture 4.1 below 

shows the slab-can mounted onto the sample rod. The can was covered in highly absorbing Gd and 

Cd foils to ensure only the ‘transparent’ vanadium windows of the can were exposed to the neutron 

flux.  The slab-can was aligned perpendicular to the neutron beam and cooled to 2 K using a close 

cycle cryostat. Time-of-flight neutron powder diffraction patterns were collected between 2-300 K. 

The data were normalized against the vanadium standard and corrected for sample absorption. 

Rietveld refinement was performed in GSAS-2 using the data from all three neutron banks (bank 1 - 

2θ = 168.567 °, bank 2 - 2θ = 90.6161° and bank 3 - 2θ = 29.6304 °.27,28 Bank 1 is the highest 

resolution bank on HRPD.  

 

 

 

 

 

 

 

 

Picture 4.1 Image of the neutron slab can mounted onto the sample rod and covered with absorbing 

Gd and Cd foils.  

Synchrotron X-ray diffraction  
Synchrotron X-ray diffraction experiments were performed using the PETRA III X-ray radiation source 

at the German Electron Synchrotron (DESY). The x = 0.1, 0.2 and 0.3 samples were loaded into glass 

capillaries 0.6 mm in diameter. Capillaries were placed 1169.45 mm away from the Perkin Elmer 

XRD1621 2D detector on the P02.1 beamline. Room temperature (300 K) synchrotron X-ray 

diffraction patterns were collected while the capillary was spun using an X-ray wavelength of 𝜆 = 

0.20742 Å. The collected 2D data was processed using DAWN Science to produce 1D diffraction 
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patterns.30 Refinements were performed in GSAS-II.27,28 The neutron and X-ray (laboratory and 

synchrotron) diffraction experiments were performed using samples from the same batch.  

Extended X-ray fine structure (EXAFS) 
Extended X-ray Absorption Fine Structure (EXAFS) measurements were performed at the National 

Synchrotron Light Source II (NSLS-II) on the Beamline for Materials Measurement (6-BM). The x = 0.3 

sample was finely ground and dispersed in polyethylene to create a sheet with a thickness of one 

absorption length. Room temperature (300 K) X-ray absorption spectra (XAS) were collected near 

the W L3 edge. Ionization chambers filled with mixtures of He and N2 to achieve a stable I/V curve 

were used to measure the intensity of the incident and transmitted beam. The internal energy was 

calibrated using a tungsten foil reference with the first inflection point in the W L3 edge. This defined 

the initial X-ray absorption energy as E0 = 10206.8 eV. A combination of the Athena, Artemis and 

Hephaestus programmes were used to perform the data reduction and analysis.31 Athena produced 

the EXAFS data which was examined using the ATOM and FEFF software in Artemis.   

4. Results  
a. Laboratory X-ray diffraction  
Laboratory X-ray powder diffraction patterns collected for samples x = 0, 0.05, 0.1. 0.2 and 0.3 were 

all single phase, with no impurities detected in any pattern. Synthesis of richer W6+ compositions 

beyond x = 0.3 were attempted. But when x ≥ 0.3, significant W6+ impurities (BaWO4) were present. 

Te6+ substitution for W6+ was also attempted from the Ba2CuWO6 side of the phase diagram. Even 

with low Te6+ concentrations where x = 0.9, two separate Ba2CuTeO6 and Ba2CuWO6 phases were 

observed. The phases remained immiscible after prolonged heating at 1100 °C and 1150 °C. Heating 

beyond 1150 °C was not possible because of tellurium evaporation. Therefore, the Ba2CuTe1-xWxO6 

solid solution is narrower (0 ≤ x ≤ 0.3) than the Sr2CuTe1-xWxO6 (0 ≤ x ≤ 1). The difference in solubility 

is not surprising given Sr2CuTeO6 and Sr2CuWO6 belong to the same crystal class, whereas Ba2CuTeO6 

(monoclinic (𝐶2/𝑚)) and Ba2CuWO6 (tetragonal (𝐼4/𝑚)) belong to different crystal classes.32–34 

Although, it was surprising that Ba2CuWO6 completely rejected Te6+
 doping given their near identical 

ionic radii (Te6+ (0.56 Å) and W6+ (0.6 Å)) and identical 6+ charge.35 The explanation for this is 

discussed later. 

The X-ray powder diffraction patterns of Ba2CuTe1-xWxO6 x = 0, 0.05, 0.1. 0.2 and 0.3 are well 

described using the monoclinic (𝐶2/𝑚) structural model showing the symmetry of the Ba2CuTeO6 

structure is retained. The Rietveld plot for x = 0.1 is shown as an example in Fig. 4.4 to demonstrate 

the excellent agreement between the monoclinic model and experimental diffraction pattern. The 

inset in Fig. 4.4 shows the unit cell volume as a function of x in Ba2CuTe1-xWxO6. The lattice 

parameters decrease linearly with x in agreement with Vegard’s Law. This demonstrates Te6+ was 

successfully substituted for W6+ between x = 0 to 0.3.  
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Fig. 4.4 The laboratory X-ray diffraction pattern of x = 0.1 recorded at 300 K using the Rigaku Miniflex 

diffractometer (Cu K𝛼1/K𝛼2 (λ = 1.5405 and 1.5443 Å). The inset shows a linear unit cell volume 

change as a function of x in Ba2CuTe1-xWxO6 across the 0 ≤ x ≤ 0.3 solid solution.  

b. Synchrotron X-ray diffraction  

Synchrotron X-ray diffraction patterns were collected at 300 K for x = 0.1, 0.2 and 0.3 to determine 

the W6+
 and Te6+ distribution across the B’’(c) and B’’(f) sites. There are three possible scenarios for 

W6+ substitution: 1) W6+ substitutes Te6+ exclusively on the B’’(c) site; (2) W6+ substitutes Te6+ 

exclusively on the B’’(f) site; and (3) Te6+ is substituted for W6+ on both the B’’(c) and B’’(f) sites. In 

model (3) W6+ was assumed to be equally distributed (50:50) across the two sites. The three site 

occupancy models were refined using the synchrotron diffraction data for each composition. The 

results of the Rietveld refinement are compared in Table 4.1.  

Table 4.1: The final 𝑅𝑤𝑝  and 𝜒2 values obtained from refinement of the three different W6+ site 

occupancy models using the x = 0.1, 0.2 and 0.3 synchrotron X-ray diffraction data. Note, 𝑅𝑤𝑝  and 

𝜒2 are consistently lowest for model (1).  

R-values 
Model (1) W6+ on 

B’’(c) site 
Model (2) W6+ on 

B’’(f) site 
Model (3) W6+ on 

B’’(c) and B’’(f) sites 

𝑅𝑤𝑝  (%) (x = 0.1) 1.54 2.03 1.65 

𝜒2 (𝑥 =  0.1) 3.42 5.86 3.88 

𝑅𝑤𝑝  (%) (x = 0.2) 1.76 3.10 2.07 

𝜒2 (x = 0.2) 4.58 14.29 6.35 

𝑅𝑤𝑝  (%) (x = 0.3) 2.65 4.81 3.14 

𝜒2 (𝑥 =  0.3) 10.69* 35.28 14.98 

* The larger χ2
 for x = 0.3 reflects a longer counting time compared to the x = 0.1 and 0.2 samples.  
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The 𝑅𝑤𝑝  and 𝜒2 values in Table 4.1 are consistently lowest when model (1) is used to describe the 

crystal structure of x = 0.1, 0.2 and 0.3. The example refinement for x = 0.2 in Fig. 4.5 shows model 

(1) reproduces the observed diffraction pattern very well. This reflects a strong preference for W6+ to 

occupy the corner-sharing B’’(c) site instead of the face-sharing B’’(f) site. The B’’(c) and B’’(f) site 

fractions of model (1) were refined within the stoichiometric constraints for each composition. The 

constraints ensured the total site-fraction (s.f.) of W6+ and Te6+ across the B’’(c) and B’’(f) sites did 

not exceed 1 (i.e. W6+ s.f. (B’’(c)) + W6+ s.f. B’’(f) = 1 and Te6+ s.f. (B’’(c)) + Te6+ s.f. B’’(f) = 1). Upon 

refinement, a small amount of W6+ shifted from the B’’(c) site to the B’’(f) site. Table 4.2 shows the 

W6+ site occupancy on the B’’(f) site increases linearly with x to a maximum value of ~3% for x = 0.3. 

By dividing the B’’(f) W6+ site occupancy by the total W6+ B’’(c) + B’’(f) site occupancy, it was possible 

to determine the percentage W6+ residing on the B’’(f) site in each composition. In x = 0.1, 0.2 and 

0.3, the majority ~95% of the total W6+ present in the composition resides on the B’’(c) site, while a 

minor ~5% resides on the B’’(f) site. The minor 5% occupancy of the B’’(f) site led to a slight, but 

noticeable improvement in the quality of the Rietveld fit. Comparing the R-values in Table 4.1 for 

model (1), when the site fractions were not refined, to those in Table 4.2, where the site fractions 

were refined, shows a slight reduction in the value of 𝑅𝑤𝑝  and 𝜒2 upon 5% occupation of the B’’(f) 

site. The strong site preference was confirmed by refining the site occupancies in model (2) where all 

the W6+ initially resides on the B’’(f) site. The refinement converged to the same result as when the 

model (1) site-occupancies were refined.  

Table 4.2: The refined site occupancies for the B’’(c) and B’’(f) sites obtained when model (1) is 

refined using the x = 0.1, 0.2 and 0.3 synchrotron X-ray diffraction data. The percentage of W6+ in 

each composition residing on the B’’(f) site was calculated by dividing the W6+ B’’(f) site fraction by 

the total W6+ B’’(c) + B’’(f) site fraction. Also shown in the far column are the R-values obtained when 

the site occupancies are refined for the different compositions. Note, the improved 𝑅𝑤𝑝(%) and 𝜒2 

compared to with model (1) in Table 4.1.  

 

B’’(c) B’’(f) 
Percentage 

W6+ on 
B’’(f) site 

R-values 

Te(1) W(1) Te(2) W(2) 𝑅𝑤𝑝 (%) 𝜒2 

x = 0.1 0.809(1) 0.191(1) 0.991(1) 0.009(1) 4.5(2)% 1.54 3.39 

x = 0.2 0.618(1) 0.382(1) 0.982(1) 0.018(1) 4.5(2)% 1.75 4.54 

x = 0.3 0.430(1) 0.570(1) 0.970(1) 0.030(1) 5.0(2)% 2.60 10.50* 

* The larger χ2
 for x = 0.3 reflects a longer counting time compared to the x = 0.1 and 0.2 samples.  
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Fig. 4.5 Rietveld fit obtained for Ba2CuTe0.8W0.2O6 using the DESY synchrotron X-ray diffraction data 

collected using a X-ray wavelength of 𝜆 = 0.20742 Å at 300 K. The refined structural model was model 

(1), where W6+ resided exclusively on the B’’(c) site. For this fit the 𝑅𝑤𝑝  = 1.76 % and 𝜒2 = 4.58.  
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c. Extended X-ray Absorption Fine Structure (EXAFS) 

The strong B’’(c) site preference was further investigated using Extended X-ray Absorption Fine 

Structure (EXAFS). Using the EXAFS data, it was possible to locally probe the W6+ environment within 

the Ba2CuTe0.7W0.3O6 structure. The EXAFS data collected for x = 0.3 was analysed using two site 

occupancy models: (1) W6+ fully substitutes Te6+
 on the B’’(c) site; and (2) W6+ fully substitutes Te6+ 

on the B’’(f) site. Fully substituted models were used as the Artemis programme does not easily 

accommodate structural models with fractional site occupancies.  

Fig. 4.6 compares the fits to the EXAFS data using (a) model (1) and (b) model (2). At low radial 

distances, models (1) and (2) describe the first shell W6+---O2+ scattering well and both provide a 

reasonable W-O bond distance of 1.900(7) Å and 1.90(15) Å, respectively. These are close to the 

average Te/W-O bond length on the Te/W(1)O6 site (1.920(5) Å) determined from the 300 K neutron 

diffraction data. At radial distances beyond 2 Å, model (1) continues to provide a good description of 

the EXAFS data across the whole fitting range between 1.15 < 𝑅(Å) < 4.0 in Fig. 4.6a. Table 4.3 shows 

the path lengths and Debye Waller factors for the fit in Fig. 4.6a are all reasonable and positive. 

Therefore, model (1) provides a plausible description of the W6+ environment.  Conversely, the fit 

using model (2) fails to describe the second shell scattering well beyond 2 Å, with noticeable 

discrepancies between the fit and experimental data in Fig. 4.6b. Consequently, the R-factor for 

model (2) is significantly higher compared to model (1): R-factor = 1.18% (model (1)) vs R-factor = 

9.07% (model (2)). Table 4.4 shows model (2) does not provide a plausible W6+ environment and has 

several paths with negative Debye-Waller factors. In good agreement with the synchrotron X-ray 

data, this supports dominant substitution for W6+ at the B’’(c) site.  

Table 4.3: The refined parameters for model (1) where W6+ fully substitutes the B’’(c) site using the 

Ba2CuTe0.7W0.3O6 EXAFS data. The scattering paths were generated using the ATOMS algorithm in 

Artemis.30 In the table, 𝑅 is the refined path length of the specified path and 𝜎2 is the EXAFS Debye-

Waller factor; 𝑁 is the path degeneracy, which corresponds to the co-ordination number in the first 

shell. The global parameters are: 𝑆0
2, the passive electron reduction factor; the energy alignment 

factor, 𝛥𝐸0; the number of independent data points, according to the Nyquist criterion, 𝑁𝑖𝑑𝑝; and the 

number of variables in the model, 𝑁𝑣𝑎𝑟. The fit ranges were 3.0 < 𝑘 < 11.0, with a Hanning window of 

𝑑𝑘 = 1.0 Å-1; and 1.15 < 𝑅 < 4.0. 

Shell Path 𝑁 𝑅(Å) 𝜎2(Å2) Global parameters 

1 
W(Te1)…O3.1 
(single scattering) 

6 1.900(7) 0.002(1) 

𝑆0
2 = 0.76(6) 

𝛥𝐸0 = 7.3(1.0) eV 
𝑁𝑖𝑑𝑝 = 14 

𝑁𝑣𝑎𝑟 = 8 
𝑅(%) =1.18 

2 
W(Te1)…O3.1…O4.1 
(double scattering) 

20 3.24(13) 0.003(2) 

2 
W(Te1)…Ba2.1 
(single scattering) 

8 3.61(14) 0.007(3) 

2 
W(Te1)…O3.1  
(hinge) 

24 3.80(15) 0.001(1) 

2 
W(Te1)…O4.1  
(forward though absorber) 

4 3.82(15) 0.002(5) 

2 
W(Te1)…O4.1…Cu1.1  
(forward scattering) 

8 3.85(15) 0.008(2) 

2 
W(Te1)…O4.1…Cu1.1…O4.1  
(double forward scattering) 

4 3.85(15) 0.006(3) 
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Fig. 4.6 Fits to the k-space and R-space W L3 edge EXAFS data for Ba2CuTe0.7W0.3O6 using the two 

different structural models. The solid black lines represent the experimental data; the solid red lines 

represent the fit; and the solid blue lines are the fitting window. (a) The 𝑘2𝜒(𝑘) and 𝜒(𝑅) EXAFS data 

with model (1), where W6+ is placed on the B’’(c) site. (b) The 𝑘2𝜒(𝑘) and 𝜒(𝑅) EXAFS data with model 

(2) where W6+ is oppositely placed on the B’’(f) site. Sections of the crystal structure depicting the 

different structural models are shown in the 𝜒(𝑅) vs radial distance plots. Here, W6+ is pink, Te6+ blue 

and the Cu2+ spin ladder cations are green.   

 

Attempts were made to capture the 5% occupancy of the B’’(f) site suggested by the synchrotron X-

ray data. This involved employing a linear constraint to fit the EXAFS data using contributions from 

model (1) and model (2). However, the minor occupation of the B’’(f) site meant it was not possible 

to stabilise the fit and the number of variables approached the number of data points. Closely 

examining the fits suggests signatures of W6+ occupation of the B’’(f) site are captured in the data. 

Comparing the fits in the range 2.0 < 𝑅 < 3.0 shows there is a slight intensity mismatch between the 

fit and experimental data in model (1) about the peaks at ~2.1 and ~2.7 Å in Fig. 4.6a. Conversely, 

these same peaks are described quite well by model (2) in Fig. 4.6b. This suggests the slight intensity 

mismatch observed between 2.0 < 𝑅 < 3.0 in the fit for model (1) represents the contribution from 

the B’’(f) site which could not be stabilized in the fit.   
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Table 4.4: The refined parameters for model (2) where W6+ fully substitutes the B’’(f) site using the 

Ba2CuTe0.7W0.3O6 EXAFS data. The scattering paths were generated using the ATOMS algorithm in 

Artemis.30 In the table, 𝑅 is the refined path length of the specified path and 𝜎2 is the EXAFS Debye-

Waller factor; 𝑁 is the path degeneracy, which corresponds to the co-ordination number in the first 

shell. The global parameters are: 𝑆0
2, the passive electron reduction factor; the energy alignment 

factor, 𝛥𝐸0; the number of independent data points, according to the Nyquist criterion, 𝑁𝑖𝑑𝑝; and the 

number of variables in the model, 𝑁𝑣𝑎𝑟. The fitted ranges were 3.0 < 𝑘 < 11.0, with a Hanning 

window of 𝑑𝑘 = 1.0 Å-1; and 1.15 < 𝑅 < 4.5. 

Shell Path 𝑁 𝑅(Å) 𝜎2(Å2) 
Global 

parameters 

1 
W(Te1)…O1.1 

(single scattering) 
6 1.90(15) -0.0004(25) 

𝑆0
2 = 0.62(13) 

𝛥𝐸0 = 7.6(2.3) eV 

𝑁𝑖𝑑𝑝 = 14 

𝑁𝑣𝑎𝑟 = 8 

𝑅(%) =9.07 

 

2 
W(Te1)…Cu1.1 

(double scattering) 
2 2.69(21) 0.03(10) 

2 
W(Te1)…O1.1…O2.1  

(double scattering) 
16 3.24(26) -0.006(12) 

2 
W(Te1)…Ba1.1  

(single scattering) 
4 3.45(27) 0.03(0.16) 

2 
W(Te1)…O1.1  

(forward though absorber) 
6 3.80(30) -0.012(3) 

2 
W(Te1)…O2.1…Ba2.2  

(non-forward linear) 
8 4.69(37) 0.008(0.012) 

 

d. Neutron diffraction 

Variable temperature neutron diffraction experiments were performed to investigate structural 

changes on cooling. A clear picture of the low temperature structure is important in low dimensional 

systems, where unusual magnetic behaviour often occurs due to the weaker magnetic interactions. 

Given the similar neutron scattering lengths of W6+ and Te6+, it was not possible to determine the 

B’’’(c) and B’’(f) site occupancies using neutrons. Ion migration becomes less energetically favourable 

on cooling making it highly unlikely for there to be any site-occupancy changes between 300 to 2 K. 

Therefore, it was accurate to use the site occupancies determined from the 300 K synchrotron X-ray 

data to analyse the low temperature neutron diffraction data.  

Variable temperature neutron diffraction – structural transition on cooling  

Variable temperature neutron diffraction patterns were collected for the x = 0.1 and 0.3 samples 

between 300 to 2 K. The 300 K structural models from the synchrotron X-ray diffraction data were 

used as the initial models. The data were sequentially refined on cooling from 300 to 2 K. For both 

the x = 0.1 and 0.3 data, a point was reached where the 𝐶2/𝑚 model failed to describe the observed 

powder pattern. The rise in the 𝑅𝑤𝑝  and 𝜒2 values below 240 K (x = 0.1) and 120 K (x = 0.3) can be 

seen in plots (c) and (d) in Fig. 4.7. Below these temperatures, the powder pattern is better 

described using triclinic symmetry. The triclinic 𝑃1̅ space group provided a significantly improved fit 

for the low temperature crystal structure as seen in the Rietveld fits for x = 0.3 at (a) 1.44 K (𝑃1̅) and 

(b) 300 K (𝐶2/𝑚) in Fig. 4.8. The refined low temperature (∼2 K) 𝐶2/𝑚 and high temperature (300 

K) 𝑃1̅ structures for x = 0.1 and x = 0.3 are presented in Tables 4.5-4.8.   
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The same 𝐶2/𝑚 to 𝑃1̅ transition is observed for Ba2CuTeO6 close to room temperature at 287 K. The 

transition to lower symmetry can also be observed from the introduction of additional reflections in 

the powder diffraction patterns on cooling. The waterfall plots in Fig. 4.7a and Fig. 4.7b show the 

evolution of peak splitting with temperature. This places the structural transition between 235-240 K 

for x = 0.1 and 100-120 K for x = 0.3. The reduction in the structural transition temperature (𝑇𝑡𝑟𝑎𝑛𝑠) 

with larger x is a result of the increasing cation disorder introduced by W6+ substitution. It is 

expected 𝑇𝑡𝑟𝑎𝑛𝑠  will be reduced in the x = 0.05 and 0.2 samples and follow a decreasing trend across 

the solution as W6+ doping (and hence cation disorder) increases.  

 

Fig. 4.7 Monoclinic to triclinic distortion in the variable temperature HRPD data of x = 0.1 and x = 0.3. 

(a) and (b) are waterfall plots showing the evolution of peak splitting for Ba2CuTe0.9W0.1O6 and 

Ba2CuTe0.7W0.3O6, respectively. (c) 𝑅𝑤𝑝  and 𝜒2 as a function of temperature, 𝑇, for Ba2CuTe0.9W0.1O6. 

(d) 𝑅𝑤𝑝  and 𝜒2 as a function of 𝑇 for Ba2CuTe0.7W0.3O6. The position of 𝑇𝑡𝑟𝑎𝑛𝑠  is determined from the 

point at which the 𝑅𝑤𝑝  and 𝜒2 values for the 𝐶2/𝑚 model increase, after which the 𝑃1̅ model 

becomes a better description of the crystal structure. The low 𝑅𝑤𝑝  and 𝜒2 values for the 2 K, 100 K, 

200 K and 300 K data in plots  (c) and (d) represents the longer counting time used for these datasets.  
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Fig. 4.8 Rietveld fits of the Ba2CuTe0.7W0.3O6 structure using the 𝑃1̅ structural model for the 1.44 K 

HRPD data and the 𝐶2/𝑚 structural model for the 300 K HRPD data. 
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Table 4.5: The refined 𝐶2/𝑚 crystal structure of Ba2CuTe0.9W0.1O6 at 300 K.    

Space Group: 𝐶2/𝑚, No. 12, 300 K 
RP (%) = 3.10, Rwp (%) = 3.85, Rexp (%) = 1.22, 𝜒2 = 19.10, var. 86 
a = 10.2278(2) Å, b = 5.72160(4) Å, c = 10.0958(2) Å, 𝛽 = 107.9556(5)° 
Vol. = 562.03(1) Å3 

Site 
Wyckoff 
Position 

x y z Site fraction Uiso (Å2) 

Ba1 4i 0.12823(18) 0 0.37994(18) 1.0 0.00553(46) 

Ba2 4i 0.28256(19) 0 0.84900(18) 1.0 0.01041(50) 

Te1 2a 0 0 0 0.809* 0.00704(57) 

W1 2a 0 0 0 0.191* 0.00704(57) 

Te2 2d 0 0.5 0.5 0.991* 0.00761(56) 

W2 2d 0 0.5 0.5 0.009* 0.00761(56) 

Cu1 4i 0.90579(13) 0.5 0.21445(11) 1.0 0.00981(41) 

O1 4i 0.13295(17) 0.5 0.40048(18) 1.0 0.01445(50) 

O2 8j 0.89497(11) 0.72871(21) 0.36907(11) 1.0 0.01020(36) 

O3 4i 0.31753(19) 0.5 0.87535(19) 1.0 0.01884(54) 

O4 8j 0.04970(14) 0.76066(27) 0.88914(13) 1.0 0.01698(40) 

* B’’(c) and B’’(f) site fractions determined from synchrotron X-ray diffraction data. 

Table 4.6: The refined 𝑃1̅ crystal structure of Ba2CuTe0.9W0.1O6 at 1.55 K.    

Space Group: 𝑃1̅, No. 2, 1.44 K 
RP (%) = 3.45, Rwp (%) = 3.97%, Rexp (%) = 1.66%, 𝜒2 = 8.94, 111 var. 
a = 5.7065(2) Å, b = 5.8490(2) Å, c = 10.2555(7) Å 
𝛼 = 108.464(1)°,  𝛽 = 107.0747(8)°, 𝛾 = 60.7373(3)° 
Vol. = 279.233(5) Å3 

Site 
Wyckoff 
Position 

x y z Site fraction Uiso (Å2) 

Ba1 2i 0.13093(40) 0.12213(35) 0.38101(19) 1.0 0.00192(32) 

Ba2 2i 0.27722(40) 0.28124(34) 0.85036(18) 1.0 0.0019 

Te1 1a 0 0 0 0.809* 0.00403(53) 

W1 1a 0 0 0 0.191* 0.00403 

Te2 1h 0.5 0.5 0.5 0.991* 0.00388(56) 

W2 1h 0.5 0.5 0.5 0.009* 0.00388(56) 

Cu1 2i 0.41345(26) 0.40522(25) 0.21466(12) 1.0 0.0055(38) 

O1 2i 0.62858(35) 0.58280(40) 0.37455(17) 1.0 0.00619(47) 

O2 2i 0.16934(33) 0.57361(38) 0.36287(19) 1.0 0.00551(45) 

O3 2i 0.35992(37) 0.86776(31) 0.59887(18) 1.0 0.00793(48) 

O4 2i 0.79881(42) 0.78944(41) 0.90323(18) 1.0 0.00710(44) 

O5 2i 0.26919(41) 0.78131(40) 0.87853(19) 1.0 0.00631(49) 

O6 2i 0.20133(42) 0.76452(33) 0.12686(18) 1.0 0.00790(48) 

* B’’(c) and B’’(f) site fractions determined from synchrotron X-ray diffraction data. 
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Table 4.7: The refined 𝐶2/𝑚 crystal structure of Ba2CuTe0.7W0.3O6 at 300 K.    

Space Group: 𝐶2/𝑚, No. 12, 300 K 
RP = 3.35%, Rwp = 3.84%, Rexp = 1.74%, 𝜒2 = 11.02, var. 86 
a = 10.2118(3) Å, b = 5.71745(5) Å, c = 10.0866(3) Å, 𝛽 = 107.9193(6)° 
Vol. = 560.35(1) Å3 

Site 
Wyckoff 
Position 

x y z Site fraction Uiso (Å2) 

Ba1 4i 0.12841(23) 0 0.38015(22) 1.0 0.00394(55) 

Ba2 4i 0.28318(25) 0 0.84944(23) 1.0 0.01013(63) 

Te1 2a 0 0 0 0.43* 0.00850(75) 

W1 2a 0 0 0 0.57* 0.00850(75) 

Te2 2d 0 0.5 0.5 0.97* 0.00865(70) 

W2 2d 0 0.5 0.5 0.03* 0.00865(70) 

Cu1 4i 0.90545(17) 0.5 0.21486(14) 1.0 0.01123(51) 

O1 4i 0.13336(23) 0.5 0.39967(23) 1.0 0.01726(64) 

O2 8j 0.89457(14) 0.72904(27) 0.36959(14) 1.0 0.01200(45) 

O3 4i 0.31705(24) 0.5 0.87607(23) 1.0 0.01712(65) 

O4 8j 0.04946(17) 0.76007(34) 0.88959(16) 1.0 0.01577(48) 

* B’’(c) and B’’(f) site fractions determined from synchrotron X-ray diffraction data. 

Table 4.8: The refined 𝑃1̅ crystal structure of Ba2CuTe0.7W0.3O6 at 1.44 K.    

Space Group: 𝑃1̅, No. 2, 1.44 K 
RP = 4.18%, Rwp = 4.72%, Rexp = 1.75%, 𝜒2 = 11.97, 111 var. 
a = 5.7008(4) Å, b = 5.8402(5) Å, c = 10.223(1) Å 
𝛼 = 108.250(2)°,  𝛽 = 106.693(2)°, 𝛾 = 60.7631(6)° 
Vol. = 278.328(9) Å3 

Site 
Wyckoff 
Position 

x y z Site fraction Uiso (Å2) 

Ba1 2i 0.13036(72) 0.12442(51) 0.38204(29) 1.0 0.00091(45) 

Ba2 2i 0.28212(74) 0.28020(49) 0.85115(27) 1.0 0.00091(45) 

Te1 1a 0 0 0 0.43* 0.00363(78) 

W1 1a 0 0 0 0.57* 0.00363(78) 

Te2 1h 0.5 0.5 0.5 0.97* 0.00354(79) 

W2 1h 0.5 0.5 0.5 0.03* 0.00354(79) 

Cu1 2i 0.40939(45) 0.4028(38) 0.21492(18) 1.0 0.00605(54) 

O1 2i 0.62719(60) 0.58563(71) 0.37253(29) 1.0 0.00537(76) 

O2 2i 0.16580(58) 0.57569(67) 0.36446(31) 1.0 0.00490(73) 

O3 2i 0.36352(71) 0.86942(46) 0.59997(28) 1.0 0.01037(70) 

O4 2i 0.80705(75) 0.78764(76) 0.89856(34) 1.0 0.00751(74) 

O5 2i 0.28312(74) 0.78123(74) 0.88446(36) 1.0 0.00682(79) 

O6 2i 0.19415(73) 0.76774(51) 0.12851(27) 1.0 0.00822(73) 

* B’’(c) and B’’(f) site fractions determined from synchrotron X-ray diffraction data. 
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Jahn-Teller distortion  

The transition from 𝐶2/𝑚 to 𝑃1̅ symmetry arises from enhanced Jahn-Teller (J-T) distortion of the 

CuO6 octahedra on cooling. J-T distortion was measured empirically as a function of temperature (𝑇) 

using the J-T distortion parameter (𝜎𝐽𝑇):36  

𝜎𝐽𝑇 = √
1

6
∑ [(𝐵 − O)𝑖 − 〈𝐵 − O〉]2

𝑖  (4.1) 

𝜎𝐽𝑇 is calculated by averaging the sum of the difference between each of the six individual Cu-O 

bond lengths ((𝐵 − 𝑂)𝑖) on the 𝑖-Cu(1)O6 site and the mean Cu-O bond length (〈𝐵 − 𝑂〉). 𝜎𝐽𝑇 is 

plotted as a function of temperature (𝑇) in Fig. 4.9. As expected, 𝜎𝐽𝑇 is non-zero and large at 300 K. 

The CuO6 octahedra display the classic axial J-T distortion with two of the Cu-O bonds elongated in 

the direction of the 𝑑𝑧2 orbital. Uncharacteristically, elongation is uneven with the Cu-O(1) bond 

extending further than the Cu-O(6) bond to accommodate both corner- and face-sharing with the 

connecting TeO6 octahedra. The equatorial bond lengths are approximately equal at all 

temperatures between 2-300 K. 

The plot of 𝜎𝐽𝑇vs 𝑇 shows as the temperature decreases, distortion gradually increases in both x = 

0.1 and x = 0.3, until reaching a plateau at 100 K. This indicates both structures possess the same 

distortion limit. There are no large discontinuities about 𝑇𝑡𝑟𝑎𝑛𝑠 . This reflects a weak structural 

transition, with no major changes in bond length or angle. The 𝐶2/𝑚 to 𝑃1̅ transition in Ba2CuTeO6 

has also been identified as weak with only minor changes in bond angles and bond lengths.  

Fig. 4.9 The Jahn-Teller distortion parameter, 𝜎𝐽𝑇, as a function of temperature for Ba2CuTe0.1W0.9O6  

(x = 0.1) and Ba2CuTe0.3W0.7O6  (x = 0.3). 𝜎𝐽𝑇 was calculated using the Cu-O bond lengths determined 

from the neutron diffraction data.  

The weak  𝐶2/𝑚 to 𝑃1̅ transition means the spin ladder structure is retained upon the transition to 

lower symmetry. Fig. 4.10 compares the high temperature monoclinic and low temperature triclinic 

unit cells. Enhanced J-T distortion of the CuO6 octahedra is noticeable in the low temperature 

triclinic structure. But, the 12R stacking sequence remains the same. The Cu2+ cations still 

communicate via B’-O-B’’-O-B’ superexchange via the B’’(c) and B’’(f) octahedra as they do in the 

monoclinic unit cells forming the intra- and inter-ladder interactions depicted by the arrows in Fig. 



103 
 

4.10. The monoclinic and triclinic unit cells can therefore be regarded as almost the same. The close 

structural similarity is advantageous as it allows the low temperature Ba2CuTeO6 magnetic 

interactions to be modelled within the monoclinic unit cell, greatly simplifying calculations.37   

Fig. 4.10 The Cu2+ spin ladder structure in (a) the high temperature monoclinic unit cell and (b) the 

low temperature triclinic unit cell. Comparing (a) and (b) shows the spin ladder geometry remains 

unchanged upon the transition to lower symmetry. The main difference is increased distortion of the 

CuO6 octahedra on cooling, which is notable when comparing the shape of the CuO6 octahedra 

(shown in green) in the (a) and (b) structures.  

It is notable in the 𝜎𝐽𝑇 vs 𝑇 plot in Fig. 4.9 that the CuO6 octahedra are less distorted in the x = 0.3 

structure compared to in the x = 0.1. The 𝜎𝐽𝑇 values for x = 0.3 are consistently lower in the 

monoclinic phase. The individual Cu-O bond lengths agree with this observation. There is less 

elongation of the axial Cu-O bonds and an overall smaller variance in the Cu-O bond lengths on the 𝑖-

Cu(1)O6 site in x = 0.3. The almost identical Te6+ and W6+ cation size makes differences in metal 

oxygen bonding involving d10 versus d0 cations the most probable cause. The filled d10 orbitals of Te6+ 

are likely to promote a more covalent bonding nature leading to improved orbital overlap and 

enhanced J-T distortion. Conversely, empty d0 orbitals promote ionic bonding due to the greater 𝑑-

orbital contribution. This reduces J-T distortion by diluting the covalent bonding nature as more Te6+ 

is substituted for W6+ with increasing x. While noticeable, the difference in 𝜎𝐽𝑇 is small and there are 

reasonably large errors associated with the 𝜎𝐽𝑇 values. Hence, except for the different structural 

transition temperatures, it is accurate to assume a minor difference between the x = 0.3 and x = 0.1 

structures.   

Lattice parameters and unit cell volume 

The unit cell volumes (𝑉cell ) within the high temperature 𝐶2/𝑚 and low temperature 𝑃1̅ structures 

are plotted as a function of temperature (𝑇) in Fig. 4.11. 𝑉cell is linear within the 𝐶2/𝑚 structure 

(see Fig. 4.11a and Fig. 4.11b). This occurs due to linear reduction of the 𝑎, 𝑏, 𝑐 and 𝛽 lattice 

parameters as the temperature decreases. The 𝐶2/𝑚 lattice parameters are plotted for x = 0.1 and x 

= 0.3 in appendix Fig. A4.1 and A4.2. Conversely, the unit cell volume change within the 𝑃1̅ phase is 

non-linear. Below 𝑇𝑡𝑟𝑎𝑛𝑠 , 𝑉cell 
 increasingly deviates from linear behaviour (see Fig 4.11c and Fig. 

4.11d). The lattice parameters also behave non-linearly. Instead of decreasing, c, 𝛼, and 𝛽 increased 

on cooling to 2 K. The low temperature unit cell behaviour is the same for x = 0.1 and x = 0.3. 
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Therefore, only the 𝑃1̅ lattice parameters for x = 0.1 are shown as an example in Fig. 4.12. The 𝑃1̅ 

lattice parameters for x = 0.3 are shown in appendix Fig. A4.3. 

 

Fig. 4.11 The unit cell volumes 𝑉cell  as a function of temperature in the high temperature 𝐶2/𝑚 and 

low temperature 𝑃1̅ structures of Ba2CuTe0.1W0.9O6 (x = 0.1) and Ba2CuTe0.3W0.7O6 (x = 0.3). Plots (a) 

and (c) show the unit cell volume change for x = 0.1 in the 𝐶2/𝑚 and 𝑃1̅ structure, respectively. Plots 

(b) and (d) show the unit cell volume change for x = 0.3 in the 𝐶2/𝑚 and 𝑃1̅ structure, respectively. 
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Fig. 4.12 The lattice parameters as a function of temperature (𝑇) within the low temperature triclinic 

𝑃1̅ unit cell of Ba2CuTe0.1W0.9O6 (x = 0.1). The resulting non-linear unit cell volume (𝑉cell ) change is 

shown in the bottom panel.  

The non-linear unit cell volume change in the 𝑃1̅ structure arises due to hexagonal stacking. As 

illustrated in Fig. 4.10, 12R hexagonal stacking is identical in the 𝑃1̅ and 𝐶2/𝑚 structures. In both 

structures, the face-sharing Cu-B’’(f)-Cu trimers are aligned along the 𝑐-axis and are bridged by TeO6 

octahedra. Plotting the Cu-B’’(f) distance in the trimer as a function of temperatures reveals there is 

very little change in the overall length of the Cu-B’’(f)-Cu trimer with temperature (see Appendix Fig. 

A4.4 and A4.5). Face-sharing places the positively charged Cu2+ and Te6+ cations in close proximity. 

Further reducing the Cu-B’’(f) trimer distance brings the positive cations even closer. This is 

electrostatically unfavourable so the Cu-B’’(f)-Cu distance resists reduction along 𝑐. Instead, the 

𝑎 and 𝑏 unit cell lengths are reduced by decreasing the B’’(c)-O-Cu angles within the corner-sharing 

linkers (see Appendix Fig. A4.6 (x = 0.1) and Fig. A4.7 (x = 0.3)). The B’’(c)-O-Cu bond angles do not 

alter by the same amount, with the B’’(c)-O(4, 5)-Cu angles decreasing more than the B’’(c)-O(6)-Cu 

angle. This reduces 𝛾 but increases 𝛽 and 𝛼 as the temperature lowers. This can be viewed as 

pushing the 𝑎𝑏 planes at the top and bottom of the unit cell up and down, respectively. While this 
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occurs, the unit cell is expanded along 𝑐. The net effect is still a decrease in 𝑉cell 
 with reduced 𝑇. But 

the decrease in 𝑉cell  is non-linear due to the competition between reduction of the unit cell along 𝑎 

and 𝑏 versus expansion along 𝑐.  

5. Discussion  
Using a combination of structural techniques, site-selective W6+ substitution for Te6+ in Ba2CuTeO6

 

was identified in the Ba2CuTe1-xWxO6 0 ≤ x ≤ 0.3 solid solution. In both the synchrotron X-ray 

diffraction and neutron diffraction data, the structural model providing the best description of the 

experimental data was the one in which W6+ resides almost exclusively on the corner-sharing B’’(c) 

site. Specifically, only 5% of the total W6+ in each composition resided on the face-sharing B’’(f) site 

in the x = 0.1, 0.2 and 0.3 samples, while the remaining 95% resided on the B’’(c) site. The EXAFS 

data agreed with the diffraction results. A plausible fit to the EXAFS data was only obtained when 

the model place W6+ on the B’’(c) site.  

The strong preference for W6+ substitution at the B’’(c) site initially appears surprising. W6+ and Te6+ 

have the same charge and near-identical ionic radii: Te6+ (0.56 Å) and W6+ (0.6 Å).35 As a result, the 

Goldschmidt tolerance factors (𝑡) for Ba2CuTeO6 and Ba2CuWO6 are almost identical: 𝑡 = 1.04 

(Ba2CuTeO6) and 𝑡 = 1.03 (Ba2CuWO6). There are only small changes in the bond lengths and bond 

angles upon W6+ substitution that lead to minor differences in J-T distortion between x = 0.1 and x = 

0.3. The only major difference is the reduction of the monoclinic to triclinic distortion temperature. 

The position of 𝑇𝑡𝑟𝑎𝑛𝑠  is reduced from 287 K (x = 0) to 100-120 K (x = 0.3) due to the increasing B’’ 

cation disorder. Based on this knowledge, it might be expected that W6+ and Te6+ would be randomly 

distributed across the B’’(c) and B’’(f) sites.  

The strong site preference can only be explained by considering structural influences other than 

ionic radii. Reviews of perovskite structures have found W6+ and Mo6+(d0) containing perovskites 

exclusively form double perovskite structures.38 Whereas, Te6+(d10) containing perovskites can also 

form hexagonal perovskites.38 The inability for W6+ and Mo6+ perovskites to form hexagonal 

structures stems from differences in metal-oxygen (M-O) bonding involving d10 vs d0 cations.  

M-O bonding in isolated TeO6 octahedra relies on a significant p0 orbital contribution as a result of 

the filled 4d10
 orbital.  The Te6+ p0 orbitals overlap with the oxygen 2p forming Te-O bonds through a 

𝜎-bonding interaction. 𝜎-bonding directs the electron density towards the oxide anions and away 

from the surface of the [TeO6]6- octahedra.38 Directional Te-O bonding helps to minimize repulsion 

between Te6+ and the neighbouring similarly charged cations. This allows Te6+ to accommodate close 

cation-cation distances, such as the face-sharing sites in hexagonal perovskites. The converse is true 

for W6+ and Mo6+ perovskites. W6+ and Mo6+ both have empty d-orbitals to contribute to M-O 

bonding. The dominant d0 contribution to M-O bonding generates 𝜎- and 𝜋-bonding interactions. As 

a result, M-O bonding is less directional and the [W/MoO6]6- units are highly regular with a spherical 

charge distribution.39 The [W/MoO6]6- octahedra prefer to maximize their distance from identically 

charged neighbouring cations. W6+ and Mo6+ only assume corner-sharing sites, where the cation-

cation distances are greater than at face-sharing sites. Therefore, W6+ and Mo6+ are unable to form 

hexagonal structures, but Te6+ can adopt either the double or hexagonal perovskite structures.  

The strong dislike for W6+ to occupy face-sharing sites explains why the majority of W6+ resides on 

the B’’(c) site in Ba2CuTe1-xWxO6. The Cu2+ -B’’6+ cation distance is significantly smaller within the 

face-sharing Cu-B’’(f)-Te trimer compared to within the corner-sharing Cu-B’’(c)-Cu linkers. For 

example, the B’’(c)-Cu2+ distance is 3.962(2) Å and the B’’(f)-Cu2+ distance is 2.738(1) Å in the x = 0.3 

structure at 300 K. Similar B’’6+-Cu2+ cation distances are observed in the x = 0.1 structure. The 
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difference between the cation-cation distances at the B’’(c) and B’’(f) sites is the same in the triclinic 

structure. Hence, the strong site-selectivity is observed at all temperatures from 300 to 2 K, 

irrespective of the structural transition. The strong dislike for W6+ to adopt the face-sharing site 

explains why the Ba2CuTe1-xWxO6 solution is limited to 0 ≤ x ≤ 0.3. The synchrotron X-ray diffraction 

data suggests the W6+ B’’(f) site occupancy reaches ~3% in the x = 0.3 sample. Significant W6+
 

impurities are observed beyond x = 0.3 indicating the structure cannot accommodate further 

electrostatically unfavourable W6+ substitution onto the B’’(f) site. Furthermore, the strong corner-

sharing preference explains why Ba2CuTeO6 and Ba2CuWO6 adopt different structures. The 

Goldschmidt tolerance factor predicts either hexagonal or tetragonal symmetry.40 For Ba2CuWO6, 

the purely corner-sharing tetragonal structure is formed to maximize the W6+-Cu2+ cation distance. 

Alternatively, Te6+ can accommodate the closer Te6+-Cu2+ cation distance to form tetragonal or 

hexagonal Ba2CuTeO6. The hexagonal structure is formed at ambient pressures, whereas high 

pressure synthesis generates the tetragonal structure.  

6. Conclusions 
Site-selective W6+ substitution of Te6+ has been demonstrated in the spin ladder structure of 

hexagonal Ba2CuTeO6. Across the Ba2CuTe1-xWxO6 solution, 95% of the total W6+ in each x 

composition resided on the corner-sharing B’’(c) site within the hexagonal structure. The strong 

selectivity for corner-sharing is a result of the differences in metal-oxygen bonding between Te6+ 

4d10 and W6+ 5d0 with the O2- 2p orbitals in [(Te/W)O6]6-. The [WO6]6- units have a more spherical 

charge distribution compared to [TeO6]6-. The spherical charge distribution maximizes cation-cation 

repulsions. As a result, W6+ strongly dislikes the close B’’(f)-Cu2+ cation distance at the face-sharing 

site. Instead, W6+ prefers to reside on the corner-sharing site where the B’’(c)-Cu2+ distance is larger. 

The strong W6+ selectivity for the B’’(c) site means the Jleg and Jrung intra-ladder interactions will be 

directly modified by the d0 orbitals. This is illustrated in the summary figure in Fig. 4.13. The next 

chapter investigates how the mixture of d0 and d10 orbitals at the B’’(c) site affects the intra-ladder 

interactions and the magnetic behaviour compared to Ba2CuTeO6.  

 

 

 

 

 

 

 

 

 

Fig. 4.13 Summary figure illustrating site-selective W6+ substitution in the Ba2CuTe1-xWxO6 solid 

solution. The orange arrows show Te6+ was almost exclusively substituted for W6+ at the corner-

sharing B’’(c) site, in preference to the face-sharing B’’(f) site. Synchrotron X-ray diffraction showed 

95% of the total W6+ in each composition was located at the B’’(c) site, while the remaining 5% went 

to the B’’(f) site. The strong site-selectivity means the intra-ladder interactions in the Cu2+ spin 

ladders will be most affected by the W6+ d0 orbitals.  
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8. Appendix 

 

Fig. A4.1 Unit cell parameters of Ba2CuTe0.9W0.1O6 in the monoclinic (𝐶2/𝑚) phase between 240-300 

K.  
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Fig. A4.2 Unit cell parameters of Ba2CuTe0.7W0.3O6 in the monoclinic (𝐶2/𝑚) phase between 140-300 

K.  
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Fig. A4.3 Unit cell parameters of Ba2CuTe0.7W0.3O6 in the triclinic (𝑃1̅) phase between 1.44-120 K. 
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Fig. A4.4 The B’’(c)-O(5-6)-Cu bond lengths and the B’’(f)-Cu bond lengths in Ba2CuTe0.9W0.1O6 in the 

triclinic (𝑃1̅) phase between 1.5-200 K. The illustration of the triclinic structure shows the atom 

positions and measured bond lengths.   
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Fig. A4.5 The B’’(c)-O(5-6)-Cu bond lengths and the B’’(f)-Cu bond lengths in Ba2CuTe0.7W0.3O6 in the 

triclinic (𝑃1̅) phase between 1.44-100 K. The illustration of the triclinic structure shows the atom 

positions and measured bond lengths.   
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Fig. A4.6 The B’’(c)-O(4-6)-Cu and B’’(f)-O(1-3)-Cu bond angles in Ba2CuTe0.9W0.1O6 in the triclinic (𝑃1̅) 

phase between 1.5-200 K.  

Fig. A4.7 The B’’(c)-O(4-6)-Cu and B’’(f)-O(1-3)-Cu bond angles in Ba2CuTe0.7W0.3O6 in the triclinic (𝑃1̅) 

phase between 1.44-100 K. 
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1. Abstract  
This chapter characterizes the magnetic properties of Ba2CuTe1-xWxO6 to investigate the effect of 

site-selective W6+ substitution. Bulk characterization showed a clear change in the magnetic 

behaviour compared to Ba2CuTeO6. By modelling the DC magnetic susceptibility data, it was possible 

to quantify the effect of W6+ on the intra-ladder interactions. The Jrung/Jleg ratio decreases from near 

unity for x = 0, towards zero for x = 0.3. This showed the d10/d0 effect tunes the system from a spin 

ladder towards a spin chain. Muon spin relaxation experiments confirm the 0.05 ≤ x ≤ 0.3 Ba2CuTe1-

xWxO6 samples do not exhibit long-range magnetic order. Inelastic neutron scattering experiments 

are required to determine the exact nature of the ground state, which is likely to be a disorder 

induced quantum magnetic state, possibly similar to that observed in Sr2CuTe1-xWxO6. Meanwhile, 

this shows d0 and d10
 cations are powerful tools for tuning the magnetic interactions in double and 

hexagonal perovskites.  

2. Introduction 
The strong site-selectivity for the corner-sharing site in Ba2CuTe1-xWxO6 means the intra-ladder 

interactions will be most affected by W6+ substitution. The competition between the Te6+ d10 and W6+ 

d0 interactions could have a range of effects on the magnetic behaviour. A likely scenario is 

suppressed magnetic ordering, as observed from the disorder induced frustration in Sr2CuTe1-

xWxO6.1–3 Before investigating the magnetic interactions in Ba2CuTe1-xWxO6, the magnetic properties 

of Ba2CuTeO6 will first be discussed to observe how they are affected by W6+.   
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The Cu2+ spin ladder in Ba2CuTeO6 is described by the two-leg S = ½ spin ladder model. The two-leg 

spin ladder model is formed when spin chains of Cu2+ cations interact. The interaction between spin 

chains creates a two-leg spin ladder in which each Cu2+ is connected to three neighbours via two Jleg  

and one Jrung interaction.4 This magnetic geometry resembles a chain of square lattice plaquettes. As 

noted in chapter 4, the square plaquettes resemble the Heisenberg square lattice J1 and J2 

interactions in Sr2CuTe1-xWxO6. The two-leg spin ladders interact via the inter-ladder Jinter interaction. 

The magnitude of the Jinter interaction determines where the system lies on the magnetic phase 

diagram shown in Fig. 5.1.  

 

 

 

 

 

 

 

 

Fig. 5.1 The magnetic phase diagram of a two-leg spin ladder. The ground state is tuned between the 

Nèel ordered phase and singlet phase by varying the inter-ladder interaction Jinter. The two phases are 

separated by the quantum critical point, which Ba2CuTeO6 lies close to. 

The magnetic phase diagram consists of a spin singlet phase and Nèel ordered phase separated by a 

quantum critical point.5,6 A quantum critical point (QCP) is an electronic phase transition at absolute 

zero.7 There are no thermal fluctuations at zero Kelvin, therefore quantum critical transitions are 

brought about by non-thermal influences such as pressure, magnetic fields, or magnetic interactions 

that create quantum fluctuations.8 Strictly, the QCP is only present at absolute zero, but the effects 

of the quantum fluctuations associated with the QCP can be observed at temperatures above 

absolute zero.9,10 Quantum critical transitions are present in phase diagrams of many quantum 

materials including superconductors, insulators and semiconductors.  

The QCP is reached by tuning the inter-ladder Jinter interaction towards the critical value (JC). The 

value of 𝐽𝑐   depends on the ratio of the intra-ladder interactions. When the intra-ladder interactions 

are equal (Jleg = Jrung = J), the value of the critical inter-ladder coupling is JC = 0.314J.11 Below JC = 

0.314 J, the two-leg spin ladder forms the spin singlet phase.9,12,13 Fig. 5.1 provides an illustration of 

the singlet state, which consists of an array of spins that have paired (or dimerized) to form singlets 

with their spins aligned antiparallel so the spins cancel to give a total spin of |𝑆| = ½ + -½ = 0. The 

singlet state is represented by  
1

√2
(ǀ ↑↓⟩ − ǀ ↓↑⟩) in Dirac notation.  

Evidence for the spin singlet state is obtained from quantum excitations. At a specific energy, the 

singlet state (|𝑆| = 0) is excited to the triplet state (|𝑆| = ½ + ½ = 1).9,12 Excitations can be observed 

using inelastic neutron scattering. Excitation features are observed when the neutron energy 
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matches the singlet-triplet energy gap.13 Inelastic neutron scattering can also be used to identify the 

Nèel ordered state. The Nèel state is observed when Jinter is strong and above the critical value of JC = 

0.314J. The spins on the corners of the square plaquettes in the ladder align antiparallel with respect 

to on another, resulting in long-range antiferromagnetic ordering.5,14 This leads to spin waves in the 

inelastic neutron scattering spectrum.  

For Ba2CuTeO6, the value of Jinter when Jleg = Jrung has been calculated as Jinter = 0.58J.6 This is larger 

than the critical value of JC = 0.314J placing Ba2CuTeO6 in the Nèel ordered phase. While Nèel 

ordered, a variety of experimental techniques have shown Ba2CuTeO6 lies very close to the quantum 

critical point.6,15,16 There is no clear indication of antiferromagnetic ordering in the magnetic 

susceptibility, heat capacity, or neutron diffraction data (where magnetic Bragg peaks might be 

expected). Instead, a weak Nèel transition at 𝑇𝑁~ 14 K has been detected by probing the local 

magnetism using muon spin relaxation (μSR) techniques.15  Inelastic neutron scattering has also been 

used to demonstrate magnetic ordering. Spin waves representing Nèel order are observed below 

𝑇𝑁.6 The weak transition indicates the value of Jinter is just large enough to induce magnetic ordering 

and there are strong fluctuations in the magnetic interactions. Strong quantum fluctuations imply 

Ba2CuTeO6 lies close to the quantum critical point.   

W6+ substitution could modify the Jinter interaction between the two-leg spin ladders and tune the 

ground state towards the QCP. However, W6+ substitution occurs almost exclusively at the corner-

sharing site within the ladder. Hence, the d0 effect on the Jinter interaction is likely to be minor. It can 

be assumed that the W6+ d0 orbitals directly affect the Jleg and Jrung interactions, while  Jinter  is mostly 

unaffected. The d10/d0 effect shows the W6+ and Te6+ cations produce different dominant 

interactions in a square plaquette geometry.  W6+
 5d0 promotes a strong diagonal J2 interaction and 

suppresses J1. Alternatively, Te6+
 4d10 promotes a strong nearest neighbour J1 interaction and near 

zero J2. The square plaquette geometry of four Cu2+ cations in the Ba2CuTeO6 spin ladder is similar to 

the square lattice J1-J2 interactions in Ba2Mn(Te/W)O6 and Sr2Cu(Te/W)O6. Hence, it is more likely 

that W6+ substitution tunes the Jleg and Jrung interactions through the d0/d10 competition. If Jleg ≠  Jrung, 

this would place Ba2CuTe1-xWxO6 on an alternate phase diagram to that of the isolated two-leg spin 

ladder shown in Fig. 5.1.  

To investigate how W6+ influences the Jleg and Jrung interactions magnetic characterization was 

performed on the Ba2CuTe1-xWxO6 samples. The following presents the results and comparison to 

Ba2CuTeO6. There is clear evidence showing d10/d0 tuning of the spin ladder interactions.  

3. Experimental  

Magnetic susceptibility 
A Quantum Design MPMS3 SQUID magnetometer was used to perform magnetic susceptibility 

measurements on the x = 0, 0.05, 0.1, 0.2 and 0.3 Ba2CuTe1-xWxO6 samples. The sample was 

prepared using the same method described in chapter 3. Zero-field cooled (ZFC) and field-cooled 

(FC) measurements were performed between 2-300 K using an external field of 0.1 T. The AC 

susceptibility (𝜒′𝐴𝐶) of the x = 0.1 and x = 0.3 samples was measured between 2-100 K. To improve 

the signal, a weak DC field of 25 Oe was applied during the AC measurement. The AC field was 5 Oe 

producing AC frequencies in the range of 10 to 467 Hz.  
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Heat capacity 
Measurements were performed on the Ba2CuTe1-xWxO6 (0 ≤ x ≤ 0.3) samples using a Quantum 

Design PPMS instrument. The samples were prepared by mixing the polycrystalline powders with 

silver (99.99%) in a 1:1 gravimetric ratio. The silver helped to improve the thermal conductivity 

between the sample and the sample holder at low temperatures. The Ba2CuTe1-xWxO6:Ag powder 

was then pressed into a pellet and the pellet broken into shards. Shards weighing ∼10 mg were 

placed onto the sample puck. The heat capacity of each sample was measured using the thermal 

relaxation method between 2-120 K. In the thermal relaxation method, the time dependence of the 

temperature is monitored after applying a heat pulse. The heat capacity is determined from the 

temperature difference before and after the pulse and the relaxation time. By subtracting the silver 

contribution from the total heat capacity, the sample heat capacity was obtained. The silver 

contribution was modelled using heat capacity measurements of the pure silver powder. 

Muon Spin Relaxation (μSR) 
Muon Spin Relaxation (μSR) measurements were performed using the HIFI and MUSR beamlines at 

the ISIS Neutron and Muon Source. Polycrystalline powders (ca. 3 g) were sealed inside silver foil 

packets. The silver foil packet was placed onto the sample rod and inserted into a closed cycle 

helium cryostat. On the HIFI beamline the cryostat has an operating range between 2-300 K. The μSR 

measurements were performed on the x = 0, 0.05, 0.1, 0.2 and 0.3 samples down to the minimum 

temperature of 2 K on the HIFI beamline. Measurements below 2 K were performed using the MUSR 

beamline equipped with a helium dilution fridge to obtain temperatures down to 50 mK. To improve 

the thermal conductivity between the sample and sample holder, the polycrystalline powders were 

mixed with GE varnish. μSR measurements were performed on the x = 0.05 and x = 0.1 samples 

down to 90 mK and 50 mK, respectively. The μSR measurements included zero-field (ZF), transverse-

field (TF) and longitudinal-field (LF) measurements. The data were analysed using MANTID.  

4. Results 

a. DC magnetic susceptibility 
Fig. 5.2 shows the DC magnetic susceptibility (𝜒) of the x = 0, 0.05, 0.1, 0.2 and 0.3 samples between 

2-400 K. The behaviour above 35 K is the same with a broad maximum at 𝑇𝑚𝑎𝑥 ~ 70 K. Broad 

features are common in low dimensional magnetic systems and indicate the establishment of short-

range ladder interactions. Table 5.1 shows 𝑇𝑚𝑎𝑥 shifts to lower temperatures as x increases, 

implying W6+ weakens the short-range ladder interactions. Below 𝑇𝑚𝑎𝑥, the susceptibility of all 

samples decreases. In the case of x = 0, 𝜒 decreases before leading onto a small upturn beyond 

𝑇𝑚𝑖𝑛~14 K. This behaviour has been previously observed in the 𝜒 vs 𝑇 curve of Ba2CuTeO6.16,17 The 

low temperature upturn is not a classical indication of antiferromagnetic order, where a sharp peak 

about a maximum would be expected. Hence, the upturn alone does not show antiferromagnetic 

order, but is thought to be related to the transition from spin ladder behaviour to the Nèel ordered 

state.16 Hence, DC magnetic susceptibility (𝜒) cannot confirm antiferromagnetic order, and advanced 

muon techniques were required to determine the 𝑇𝑁 of 14.1 K.15 The close agreement between the 

position of 𝑇𝑁 = 14.1 K and the uptrun at 𝑇𝑚𝑖𝑛~14 K is a coincidence.  
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Fig. 5.2 The DC magnetic susceptibility data of Ba2CuTe1-xWxO6 x = 0, 0.05, 0.1, 0.2 and 0.3 plotted as 

a function of temperature (𝑇) between 2-400 K. The broad 𝑇𝑚𝑎𝑥 feature is indicated in the plot. The 

expansion shows the low temperature susceptibility data between 2 – 50 K, where the upturn in the x 

= 0 data and growing Curie-tails in the x = 0.05, 0.1, 0.2 and 0.3 samples are more visible.  

Table 5.1: Results from analysis of the DC magnetic susceptibility data of Ba2CuTe1-xWxO6.  

x 0 0.05 0.1 0.2 0.3 

𝑇𝑚𝑎𝑥  (K) 73.9 72.3 70.5 67.1 63.8 

𝐶 (cm3 K mol-1) 0.5018(4) 0.4582(3) 0.5189(2) 0.5450(5) 0.5048(4) 

𝜃𝑊  (K) -102.9(3) -94.2(1) -113.4(1) -124.1(2) -102.0(2) 

𝜇𝑒𝑓𝑓  (µB per Cu2+) 2.003(9) 1.914(2) 2.037(1) 2.088(3) 2.009(2) 

 

Upon substitution of Te6+ for W6+, the upturn feature becomes stronger with increasing x. The 

upturn is strongest for the x = 0.3 sample, at which point the low temperature behaviour resembles 

a ‘Curie-tail’. A Curie-tail is a sharp almost linear rise in the low temperature susceptibility, indicating 

paramagnetic-like behaviour. The susceptibility measurements were performed on various sample 

batches. The ‘Curie-tail’ like feature does not change between sample batches, indicating the feature 

is intrinsic to the sample and not representative of an impurity. The Curie-tails also show no field 

dependence when measuring the susceptibility in a higher DC field of 1 T. There was no divergence 

between the ZFC and FC curves for any of the samples.  

The high temperature 𝜒 vs 𝑇 data between 200-400 K were fitted using the inverse Curie-Weiss law. 

Panel (a) in Fig. 5.3 provides an example Curie-Weiss fit to the x = 0.1 𝜒 vs 𝑇 data. The Curie-Weiss 

fits for the other samples are shown in the Appendix. Panels (c) and (d) show the value of 𝜃𝑊 and 

𝜇𝑒𝑓𝑓  as a function of x in Ba2CuTe1-xWxO6. The values of 𝜃𝑊 in Table 1 are negative for all samples 

showing the interactions are antiferromagnetic and the strength remains approximately constant as 

W6+ increases. The values of 𝜇𝑒𝑓𝑓  shown in Table 5.1 and panel (d) are close to the previously 

reported value for Cu2+ in Ba2CuTeO6, where 𝜇𝑒𝑓𝑓  was 1.96 𝜇𝐵  per Cu2+.  
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Fig. 5.3 (a) Curie-Weiss fit to the inverse 1/ 𝜒 vs 𝑇 data of x = 0.2 between 200-400 K. The Curie-Weiss 

fit shown by the red line describes the 1/ 𝜒 vs 𝑇 data well in this region. The black line shows an 

extrapolation of the Curie-Weiss fit. Panel (b) shows the Curie constant (𝐶) as a function of x in 

Ba2CuTe1-xWxO6. Panel (c) shows the Weiss constant (𝜃𝑊) as a function of x in Ba2CuTe1-xWxO6. Panel 

(d) shows the effective magnetic moment 𝜇𝑒𝑓𝑓  as a function of x in Ba2CuTe1-xWxO6.  

b. AC susceptibility  
The AC susceptibility curves of x = 0.1 and x = 0.3 are shown in Fig. 5.4. Neither dataset shows the 

characteristic shift in the 𝜒′𝐴𝐶 vs 𝑇 data associated with spin glass behaviour. Further evidence to 

support no spin glass behaviour is shown by the imaginary component (𝜒′′𝐴𝐶) of the AC 

susceptibilities in panels (c) and (d) of Fig. 5.4. There are no peaks in the 𝜒′′𝐴𝐶  vs 𝑇 data which would 

be expected if Ba2CuTe1-xWxO6 was a spin glass. 
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Fig. 5.4 The AC magnetic susceptibility data (𝜒′𝐴𝐶 vs 𝑇) of (a) x = 0.1 and (b) x = 0.3. No frequency 

dependent shift is observed in panels (a) and (b). Panels (c) and (d) show the imaginary component of 

the AC susceptibility (𝜒′′𝐴𝐶) as a function of temperature (𝑇). There are no peaks in the 𝜒′′𝐴𝐶 vs 𝑇 

plots of x = 0.1 or x = 0.3 in panels (c) and (d), respectively. This confirms the Ba2CuTe1-xWxO6 samples 

are not spin glasses.  

c. Modelling the DC susceptibility data  
The DC susceptibility data between 35 to 300 K was modelled using the isolated two-leg spin ladder 

model. The isolated two-leg spin ladder model has been used to model Ba2CuTeO6 previously and is 

based on Quantum Monte Carlo (QMC) simulations of an isolated two-leg spin ladder.13,16 The model 

is valid when 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 ≤ 1, where 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 is the ratio of the intra-ladder interactions. The 

equations for the isolated two-leg spin ladder model are shown in the Appendix. The main equation 

for the molar magnetic susceptibility is shown below:13 

𝜒(𝑇) =  
𝑁𝐴𝑔2𝜇𝐵

2 𝑒
−

Δ𝐽
𝑇

4𝑘𝐵𝑇
𝑃6

6 (
𝑇

𝐽𝑙𝑒𝑔
) + 𝜒0 Where, 𝛥 = 0.4030 (

𝐽𝑟𝑢𝑛𝑔

𝐽𝑙𝑒𝑔
) + 0.0989 (

𝐽𝑟𝑢𝑛𝑔

𝐽𝑙𝑒𝑔
)

3

 (5.1) 

There are three fitting parameters: the intra-ladder 𝐽𝑙𝑒𝑔 interaction, the 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 ratio, and the 

Landè 𝑔-factor. The plots in Fig. 5.5 show fitting of the isolated two-leg spin ladder model to the (a) x 

= 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2 and (e) x = 0.3 DC susceptibility data. Table 5.2 displays the 

values of 𝐽𝑙𝑒𝑔, 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 and 𝑔 determined for each x composition. The plots in Fig. 5.5 show the 

isolated spin ladder model depicted in panel (f) describes the magnetic susceptibility of all samples 

well. The 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 ratio obtained for x = 0 was near unity showing the intra-ladder 𝐽𝑙𝑒𝑔 and 𝐽𝑟𝑢𝑛𝑔  

interactions are almost equal. The values of 𝐽𝑙𝑒𝑔 and 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔  are similar to the values obtained 

when x = 0 was modelled using the spin ladder model previously: 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 = 0.98(2) and 𝐽𝑙𝑒𝑔  = 
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𝐽𝑟𝑢𝑛𝑔  = 7.07 meV = 82.04 K.16 These values were used to model the inelastic neutron spectra and 

provide a good description supporting  𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔~ 1.  

Fig. 5.5 Modelling the Ba2CuTe1-xWxO6 susceptibility data using the isolated two-leg spin ladder 

model. The fits to the (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2 and (e) x = 0.3 susceptibility data are 

shown by the red line. The legend in the plots show the values obtained for the fitting parameters: 

𝐽𝑙𝑒𝑔, 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 and 𝑔. Panel (f) is a depiction of the spin ladder model.    
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Table 5.2: The values of the 𝐽𝑙𝑒𝑔, 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 and 𝑔 parameters determined from fitting the     

Ba2CuTe1-xWxO6 susceptibility data using the isolated two-leg spin ladder model.   

x 0 0.05 0.1 0.2 0.3 

𝐽𝑙𝑒𝑔(K) 85.35(4) 92.0(4) 98.8(2) 102.8(1) 102(1) 

𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 1.0483(6) 0.816(9) 0.546(6) 0.278(4) 0.11(14) 

𝑔 2.2234(9) 2.186(2) 2.190(1) 2.1360(5) 2.08(2) 

 

Table 5.2 shows W6+ substitution at the corner-sharing site decreases the value of the 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 

ratio from 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔~ 1 for x = 0 to a value of 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 = 0.11(14) upon reaching x = 0.3. The slight 

increase in the value of 𝐽𝑙𝑒𝑔 with increasing x is too small to account for the large reduction in 

𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔; suppression of the 𝐽𝑟𝑢𝑛𝑔  interaction must also contribute. The decrease in 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 is 

caused by slight strengthening of 𝐽𝑙𝑒𝑔 and strong suppression of 𝐽𝑟𝑢𝑛𝑔  by W6+. As the illustration 

depicts in Fig. 5.6, weakening of the 𝐽𝑟𝑢𝑛𝑔  interaction causes the magnetic geometry to increasingly 

resemble a spin chain rather than a ladder as x increases. To assess this, the magnetic susceptibility 

data was also modelled using the Heisenberg spin chain model defined in equation 5.2.18,19   

𝜒 =
𝑁𝜇B

2

𝑘B

0.25+0.14995(
𝐽𝑐ℎ𝑎𝑖𝑛

𝑇
)+0.30094(

𝐽𝑐ℎ𝑎𝑖𝑛
𝑇

)
2

1+1.9862(
𝐽𝑐ℎ𝑎𝑖𝑛

𝑇
)++0.68854(

𝐽𝑐ℎ𝑎𝑖𝑛
𝑇

)
2

+6.0626(
𝐽𝑐ℎ𝑎𝑖𝑛

𝑇
)

3 + 𝜒0 (5.2) 

The fitting parameters in the spin chain model are the Landè 𝑔-factor and the chain interaction 

(𝐽𝑐ℎ𝑎𝑖𝑛). The plots in Fig. 5.7 show the Heisenberg spin chain fits to the magnetic susceptibility data. 

Comparing the spin chain and spin ladder fits in Fig. 5.5 and Fig. 5.7, respectively, shows both models 

adequately describe the high temperature susceptibility. Differences between the models occur at 

lower temperatures, about the broad 𝑇𝑚𝑎𝑥 feature. Panels (a) to (c) show the spin chain fit provides 

a poor description of the x = 0, 0.05 and 0.1 susceptibility curves about 𝑇𝑚𝑎𝑥. However, beyond x = 

0.1 the spin chain model depicted in panel (f) begins to describe the 𝑇𝑚𝑎𝑥 feature well as the 

𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 ratio decreases and 𝑇𝑚𝑎𝑥 becomes broader.  
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Fig. 5.6 Illustration depicting suppression of the 𝐽𝑟𝑢𝑛𝑔  interaction as x in Ba2CuTe1-xWxO6 increases. 

Suppression of the 𝐽𝑟𝑢𝑛𝑔  interaction leads to a gradual transition from a spin ladder towards a spin 

chain-like magnetic geometry on approaching x = 0.3.    

These observations are in agreement with the calculated features of the spin ladder and spin chain 

models. The isolated two-leg spin ladder model and Heisenberg spin chain models are similar at high 

temperatures. But at low temperatures the spin ladder model has a sharp, asymmetric 𝑇𝑚𝑎𝑥 feature 

when 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 = 1. Alternatively, the Heisenberg spin chain produces a more symmetric, broader 

𝑇𝑚𝑎𝑥 feature. The magnetic susceptibility of the isolated two-leg spin ladder model has also been 

calculated using different 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 ratios.13 As the 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 ratio decreases, the calculated 𝑇𝑚𝑎𝑥 

feature becomes broader and symmetric i.e. more like the spin chain model. The observation of this 

behaviour in the experimental magnetic susceptibility curves in Fig. 5.5 and Fig. 5.7 supports the 

decrease in 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔.  

Spin ladder 

Spin chain-like 
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Fig. 5.7 Modelling of the Ba2CuTe1-xWxO6 susceptibility data using the Heisenberg spin chain model. 

The fits to the (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2 and (e) x = 0.3 susceptibility data are shown 

by the red line. The legend in the plots show the values obtained for the fitting parameters: 𝐽𝑐ℎ𝑎𝑖𝑛 

and 𝑔. Panel (f) is a depiction of the spin ladder model.    

To illustrate further, the spin ladder fits with 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 = 1 and spin chain fits for x = 0 and x = 0.2 

are compared in Fig. 5.8. The spin ladder fit shown in red clearly provides the best description of the 

x = 0 susceptibility data, but fails to adequately describe the x = 0.2 data. The model produces a 

𝑇𝑚𝑎𝑥 feature that is sharper than that experimentally observed for x = 0.2. The reverse occurs for 

the spin chain fits shown in blue. Now, the spin chain model describes the sharp 𝑇𝑚𝑎𝑥 feature of x = 

0 poorly, while the fit to the x = 0.2 data is superior to the spin ladder. The broad, symmetric 𝑇𝑚𝑎𝑥 

feature is reproduced almost exactly, and the description of the high temperature susceptibility is 

also improved. This further supports a shift in the magnetic geometry from spin ladder towards a 

spin chain as a result of site-selective W6+ substitution. 
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Fig. 5.8 Comparison of the spin ladder and spin chain fits to the Ba2CuTeO6 (x = 0) and 

Ba2CuTe0.8W0.2O6 (x = 0.2) susceptibility data. Panel (a) compares the DC magnetic susceptibility data 

of x = 0 and x = 0.2 about the position of 𝑇𝑚𝑎𝑥. The 𝑇𝑚𝑎𝑥 peak is broader and more symmetric in the 

x = 0.2 data compared to the x = 0. Panel (b) compares the spin ladder fit with 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 = 1 (red 

line) and the spin chain (blue line) to the x = 0 susceptibility data. The spin ladder model provides a 

much better description of the sharper, asymmetric  𝑇𝑚𝑎𝑥 peak. Panel (c) shows the corresponding 

spin ladder with 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 = 1 and spin chain fit to the x = 0.2 susceptibility data. Now, the broader, 

symmetric 𝑇𝑚𝑎𝑥 peak is best described by the spin chain model (blue line), instead of the spin ladder 

(red line).  

d. Heat capacity  
Fig. 5.9a shows the zero-field heat capacity 𝐶𝑃  of the x = 0, 0.05, 0.1, 0.2 and 0.3 samples. The 𝐶𝑃/𝑇 

vs 𝑇 curve for x = 0 shown in green possesses no lambda peak to indicate magnetic ordering. The 

inset shows an expansion of the low temperature data. There are no features to indicate a transition 

about the known position of 𝑇𝑁 at ~ 14 K. This agrees with previous heat capacity measurements of 

Ba2CuTeO6.16,17 Unless a very small temperature step is used, heat capacity measurements are 

insensitive to the Nèel ordering transition in Ba2CuTeO6 as the large quantum fluctuations spread 

out the magnetic entropy making it difficult to distinguish a clear lambda peak.6,15–17 

The 𝐶𝑃/𝑇 vs 𝑇 curve for x = 0 was compared to the W6+ substituted Ba2CuTe1-xWxO6 samples. The 

shape of the curves are similar, and there are no clear signatures of a lambda ordering peak in the x 

= 0.05, 0.1, 0.2 and 0.3 data. There appears to be a trend in the heat capacity data at high 

temperatures. The high temperature heat capacity generally decreases with increasing x, with the 
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exception of x = 0.2, where the high temperature heat capacity is higher than the other samples. 

This behaviour arises from the silver contribution to the heat capacity. At high temperatures, the 

silver contribution to the heat capacity dominates over the sample contribution. This makes the 

silver correction at high temperatures less accurate leading to variations in the high temperature 

data. The low temperature data is not affected as the silver contribution is much smaller.  

The expansion of the low temperature 𝐶𝑃/𝑇 vs 𝑇2 data in Fig. 5.9b shows the heat capacity of the 

W6+ substituted samples does not tend towards zero, unlike the Ba2CuTeO6 sample. This implies a 

non-zero magnetic entropy exists at zero Kelvin. The linear data can be fitted using the Debye-

Einstein model in equation 5.3. The Debye-Einstein model combines the Debye model and Einstein 

models to describe the lattice (phonon) and electronic contributions to the heat capacity of a 

material, where 𝛾 is the electronic contribution to 𝐶𝑃  and  𝛽𝐷 is the phonon contribution.  

𝐶𝑃  =  𝛾𝑇 +  𝛽𝐷𝑇3 (5.3) 

The 𝛾 contribution to 𝐶𝑃  was calculated from the intercept of the fit to the 𝐶𝑃/𝑇 vs 𝑇2
 data plotted 

in Fig. 5.9b. The values of  𝛾 are plotted as a function of x in Ba2CuTe1-xWxO6 in Fig. 5.9c. 𝛾 for x = 0 is 

almost zero, as expected for an antiferromagnetic insulator. As x increases, the value of 𝛾 increases 

from near zero to a value of 29.6(2) mJ mol-1 K-2
  for the x = 0.3 sample. A significant 𝛾 contribution 

was observed in the Sr2CuTe1-xWxO6 samples. The 𝛾 value for x = 0.3 is over 50% of the value 

determined for Sr2CuTe0.5W0.5O6, where 𝛾 = 54.2(5) mJ mol-1 K-2. The polycrystalline Ba2CuTe1-xWxO6 

samples are all yellow implying a significant band gap. The colour changes from a light yellow to 

darker yellow as x increases suggesting W6+ modifies the band gap. Therefore, the Ba2CuTe1-xWxO6 

samples can be regarded as insulators. For an insulator, the electronic contribution to the heat 

capacity must originate from magnetic excitations, and not conduction electrons.   
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Fig. 5.9 The heat capacity data of the Ba2CuTe1-xWxO6 x = 0, 0.05, 0.1, 0.2 and 0.3 samples. Panel (a) 

shows the 𝐶𝑃/𝑇 vs 𝑇 data from 2-120 K. The inset is an expansion of the low temperature heat 

capacity. There is no evidence of a lambda peak in any of the Ba2CuTe1-xWxO6 samples, including x = 

0. Panel (b) shows the 𝐶𝑃/𝑇 vs 𝑇2 data of all samples. The 𝐶𝑃/𝑇 vs 𝑇2 data is linear and can be fitted 

using the Debye-Einstein model. The Debye-Einstein fits are shown by the black lines. From the 

Debye-Einstein fits it was possible to determine the electronic contribution (𝛾) to the heat capacity 

which is plotted as a function of x in Ba2CuTe1-xWxO6 in panel (c).  

e. Muon Spin Relaxation (μSR) 
Bulk magnetic characterisation is mostly insensitive to antiferromagnetic ordering in Ba2CuTeO6. 

Zero-field (ZF)-μSR experiments were one of the key techniques that confirmed magnetic order.15 

Therefore, muon experiments were performed on the Ba2CuTe1-xWxO6 samples. ZF-μSR experiments 

were performed using the HIFI muon beamline. The ZF-μSR measurement of x = 0 at 2 K are shown 

in Fig. 5.10a. There are clear oscillations that can be fitted using a similar function to that employed 

by Ref. 15 previously. The muon polarization function (𝑃(𝑡)) in equation 5.4 combines an 

exponentially relaxing cosine with an exponential relaxation function; with an additional 𝐴𝑏𝑘𝑔𝑑 term 

to describe the background.  

𝑃(𝑡) = 𝐴𝐿𝑒−𝜆𝐿𝑡 + 𝐴𝑇𝑒−𝜆𝑇𝑡 cos(2𝜋𝑓𝑡 + ø) + 𝐴𝑏𝑘𝑔𝑑   (5.4) 
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𝐴𝐿 and 𝐴𝑇 are the asymmetry of the longitudinal and traverse muon polarization at time zero, 

respectively. 𝜆𝐿 and 𝜆𝑇 are the longitudinal and transverse muon polarization relaxation rates, 

respectively. 𝑓 is the frequency and ø the phase of the oscillation. The fit to the 2 K ZF-μSR data is 

shown by the red line in Fig. 5.10a. The ZF muon polarization is described well using this function 

and produces values of  𝜆𝑇 = 1.40(5) μs-1 and 𝑓 = 3.815(5) MHz. These are close to the values 

reported previously where 𝜆𝑇 ~ 1.7 μs-1 and 𝑓 ~ 4 MH.15  

Fig. 5.10 The HIFI ZF-μSR measurements of (a) Ba2CuTeO6 (x = 0), (b) Ba2CuTe0.95W0.05O6 (x = 0.05), (c) 

Ba2CuTe0.9W0.1O6 (x = 0.1), (d) Ba2CuTe0.8W0.2O6  (x = 0.2) and (e) Ba2CuTe0.7W0.3O6 (x = 0.3) at 2 K. In 

panel (a) there are clear oscillations indicating magnetic order for x = 0. In contrast, there are no 

oscillations in panels (b) to (e) to indicate magnetic ordering in the x = 0.05 to x = 0.3 samples. The 

red lines in the plots are the fits to the experimentally measured muon polarization. The x = 0 ZF-μSR 

data was fitted using an exponential relaxation function combined with an exponentially relaxing 

cosine function. The x = 0.05 to 0.3 data were all fitted using the dynamic Kubo-Toyabe function. The 

blue lines show the difference between the experimental data and the calculated fit.  

The ordering temperature of x = 0 was determined using transverse-field (TF)-μSR experiments. In a 

90 G TF field, paramagnetic behaviour was observed at 20 K. The muons precessed in the direction 

of the external TF field generating an oscillatory signal. The initial TF asymmetry of the oscillation 

was maintained on cooling until the magnetic transition temperature was reached. At the transition, 
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the TF oscillations began to dampen as the muons coupled to the internal magnetic field. 

Dampening of the TF oscillations is observed by comparing the TF-μSR measurements at 20 K and 2 K 

in Fig. 5.11a and 5.11b, respectively. The TF oscillations were fitted using equation 5.4 to determine 

how the normalized transverse asymmetry (𝐴𝑇(𝑇)/𝐴𝑇(45 𝐾)) evolved with temperature (𝑇). 

𝐴𝑇(𝑇)/𝐴𝑇(45 𝐾) is plotted as a function of 𝑇 in Fig. 5.11c. Dampening of 𝐴𝑇(𝑇)/𝐴𝑇(45 𝐾) occurs 

between 14-15 K; in agreement with the 𝑇𝑁 = 14.1 K obtained for Ba2CuTeO6 using ZF-μSR 

measurements.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 (a) The TF-μSR measurements of Ba2CuTeO6 (x = 0) at 20 K. The muon senses a 

paramagnetic environment and precesses around the externally applied transverse magnetic field of 

90 G. (b) The TF-μSR measurement of x = 0 at 2 K. Now, long-range ordering causes the muon spin to 

couple to the internal magnetic field, thus dampening the transverse asymmetry (𝐴𝑇). Panel (c) plots 

the normalized 𝐴𝑇(𝑇)/𝐴𝑇(45 𝐾) as a function of temperature.  

In Fig. 5.10 the 2 K ZF-μSR measurements of x = 0.05, 0.1, 0.2 and 0.3 in panels (b) to (e) are 

compared to the 2 K ZF-μSR measurement of x = 0 in panel (a). There is a clear difference between 

the muon polarization of the Ba2CuTeO6 and Ba2CuTe1-xWxO6 samples (x > 0). There are no 

oscillations present in the x = 0.05, 0.1, 0.2 and 0.3 ZF-μSR data. Instead, the muon polarization 
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resembles the dynamic Kubo-Toyabe function. The red line in the plots in panels (b)-(e) are the fits 

to the ZF-μSR data using the dynamic Kubo-Toyabe function in equation 5.5.  

𝑃𝑧(𝑡) = 𝑝
𝑧
(𝑡) + 𝑣 ∫ 𝑝

𝑧
(𝑡′)

𝑡

0
𝑃𝑧(𝑡 − 𝑡′)𝑑𝑡′ (5.5) 

The dynamic Kubo-Toyabe function is examined between time 𝑡 and 𝑡′ and contains the static Kubo-

Toyabe function, 𝑝𝑧(𝑡) and the fluctuation rate, 𝑣. The dynamic Kubo-Toyabe function provided a 

good description of the x = 0.05, 0.1, 0.2 and 0.3 ZF-μSR data showing the muon spins experience a 

dynamic magnetic environment down to 2 K.  

Fig. 5.12 The MUSR ZF-μSR measurements of (a) Ba2CuTe0.95W0.05O6 (x = 0.05) and (b) 

Ba2CuTe0.9W0.1O6 (x = 0.1) at 90 mK and 50 mK, respectively. For x = 0.05, the muon polarization 

relaxes faster at short times cf. x = 0.1. The x = 0.05 ZF muon polarization can be described using an 

exponential muon decay function (goodness of fit, 𝜒2 = 1.170). The x = 0.1 muon polarization is 

described using the Keren function (goodness of fit, 𝜒2 = 1.161). The red lines in the plots are the 

calculated fits to the observed muon polarization.  

The x = 0.05 and x = 0.1 samples were further investigated in a helium dilution fridge experiment on 

the MUSR beamline. Fig. 5.12 compares the ZF-μSR measurements of x = 0.05 and x =0.1 at 90 mK 

and 50 mK, respectively. Neither contains oscillations to suggest long-range order; and there is no 

1/3 recovery of the initial polarization to suggest a static local field. Panel (b) in Fig. 5.10 shows the 

muon polarization for x = 0.05 relaxes faster at low times compared to the other samples in panels 

(c) to (e). In Fig. 5.12a at 90 mK, the faster ZF relaxation is accentuated. The x = 0.05 muon 

polarization is exponential and could be fitted using the 𝑃(𝑡) function in equation 5.6.  

𝑃(𝑡) = 𝐴𝑒−𝜆𝑡 + 𝐴𝑏𝑘𝑔𝑑  (5.6) 

Here, 𝜆 is the decay rate of the initial muon polarization, 𝐴. A faster muon relaxation at low times 

suggests there is more electronic relaxation compared to nuclear. Both nuclear and electronic spins 

contribute to muon depolarization, but the effect of nuclear spins is weaker. ZF-μSR measurements 

performed at higher temperatures in Fig. 5.13a were fitted using equation 5.6. The value of 𝜆 

derived from the fits is plotted as a function of temperature in Fig. 5.13b. 𝜆 increases as the 

temperature decreases, implying slowing down of the spin fluctuations. Faster relaxation occurs as 

the dynamics slow down at lower temperatures. This causes the muon to experience less of an 
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average field and more of the fluctuating magnetic field resulting in faster muon relaxation. The 

decay rate plateaus to a constant value of 𝜆 ~ 0.21 μs-1 below 1.25 K. Plateauing of 𝜆 is a common 

feature observed in the ZF-μSR of a quantum spin liquid. Therefore, the behaviour of x = 0.05 is 

dynamic down to 90 mK and resembles a quantum spin liquid.1,20 

 Fig. 5.13 (a) The MUSR ZF-μSR measurements of Ba2CuTe0.95W0.05O6 (x = 0.05) at various 

temperatures between 90 mK and 4 K. The data have been offset to observe the changes clearly. The 

red lines show the fits to the ZF data using the function in equation 5.6. (b) The muon relaxation rate 

(𝜆) plotted as a function of temperature. (c) The initial asymmetry (𝐴) as a function of temperature.  

The low time muon relaxation for x = 0.1 does not decay as quickly as x = 0.05 (see Fig. 5.12). 

Longitudinal-field (LF) measurements were performed to determine the field strength required to 

repolarize the ZF muon polarization. Fig. 5.14 compares the LF-μSR data of (a) x = 0.05 and (b) x = 0.1 

at fields between 20 to 1000 G. Only 20 G was required to repolarize the muon spins in x = 0.1 (Fig. 

5.14b). Conversely, repolarization of the muon spin in x = 0.05 was more gradual and required larger 

fields (Fig. 5.14a). Decoupling of the muon spin from electronic fields requires larger fields. This 

implies muon relaxation of x = 0.05 has a greater dynamic electronic contribution. Whereas, slower 

muon relaxation in x = 0.1 implies a suppressed dynamic electronic contribution. Relaxation in x = 

0.1 is likely to occur from a static nuclear and weak dynamic electronic contribution. The static 

nuclear contribution is generated by static random nuclear fields which depolarize the muon spin.  
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Fig. 5.14 The LF-μSR measurements of (a) Ba2CuTe0.95W0.05O6 (x = 0.05) at 90 mK and (b) 

Ba2CuTe0.9W0.1O6 (x = 0.1) at 50 mK. The plot shows the muon polarization when longitudinal-fields 

between 20 – 1000 G were applied in the direction of the incoming muon beam.  For comparison, the 

ZF-μSR measurements in a 0 G field are also shown.   

The x = 0.1 ZF-μSR data was fitted using the combination of a static Kubo-Toyabe and exponential 

relaxation to describe the respective static nuclear and dynamic electronic contributions to the 

muon depolarization. The fit to the 50 mK ZF-μSR data using the function in equation 5.7 is shown in 

Fig. 5.15a. 𝛿 is the decay rate of the muon polarization. This function provides an adequate 

description of the muon polarization at long times, but overestimates the initial asymmetry at short 

times.  

𝑃(𝑡) = 𝐴𝑒−𝜆𝑡 (
1

3
+

2

3
𝑒−

1

2
𝛿2𝑡2

(1 − 𝛿2𝑡2)) + 𝐴𝑏𝑘𝑔𝑑 (5.7) 

Instead, fitting was performed using a function known as the Keren function. The Keren function is 

designed to describe muon environments where both dynamic and static fields contribute to the 

muon relaxation.21 The Keren function is shown in equation 5.8.  

𝑃𝑧(𝑡) = 𝐴𝑒𝑥𝑝[−𝛤(𝑡)𝑡]  (5.8) 

Where, Γ(𝑡) is the relaxation rate given by:  

Γ(𝑡)𝑡 =2∆2 {(𝜔𝐿
2+𝑣2)𝑣𝑡+(𝜔𝐿

2−𝑣2)(1−𝑒−𝑣𝑡 cos(𝜔𝐿𝑡))−2𝑣𝜔𝐿𝑒−𝑣𝑡 sin(𝜔𝐿𝑡)}

(𝜔𝐿
2+𝑣2)2   (5.9) 

The expression for the relaxation rate contains the muon fluctuation rate (𝑣) the width of the 

distribution of local fields (∆) and the Larmor precession frequency of the muon spin (𝜔𝐿). The fit 

using the Keren function is shown in Fig. 5.15b. The Keren function provides a much better 

description of the x = 0.1 ZF-μSR data at short times. The Keren function also describes the high 

temperature data well. Fig. 5.16a shows the Keren function fits to the ZF-μSR muon polarization up 

to 2 K. The fit quality reduces above 2 K indicating a change in the behaviour towards the dynamic 

Kubo-Toyabe behaviour observed in the HIFI data. From the fits in Fig. 5.16a, the values of 𝑣 and ∆ 
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were determined. The distribution width of the local fields is ~ 0.2 MHz (Fig. 5.16c) and is 

approximately constant between 50 mK to 2 K. The fluctuation rate increases as the system becomes 

more dynamic with increasing temperature (Fig. 5.16d). The value of 𝑣 does not reach zero showing 

a dynamic component still exists at 50 mK. 

Fig. 5.15 (a) The ZF-μSR data of Ba2CuTe0.9W0.1O6 (x = 0.1) at 50 mK in which the muon polarization is 

described using the combination of a static Kubo-Toyabe function multiplied by an exponential muon 

decay function. (b) Fitting of the same ZF-μSR data for x = 0.1 at 50 mK using the Keren function. The 

fits are shown by the red lines. The fit using the Keren function provides a much better description of 

the relaxation at low times and provides the best fit. The goodness of fit in panel (a) was 𝜒2 = 1.269 

(static KT x expmuon) and in panel (b) 𝜒2 = 1.161 (Keren).  
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Fig. 5.16: (a) The ZF-μSR measurements of Ba2CuTe0.9W0.1O6 (x = 0.1) between 50 mK and 2 K. The red 

lines in the plot are the fits to the muon relaxation using the Keren function.20 Panels (b) to (c) plot 

the Keren function parameters determined from the fits: (b) The initial asymmetry (𝐴) of the ZF muon 

relaxation as a function of temperature; (c) The width of the local field distribution (∆) as a function 

of temperature; and (d) The muon fluctuation rate (𝑣) as a function of temperature.  

5. Discussion 
Modelling the DC magnetic susceptibility data shows W6+

 substitution at the corner-sharing site 

directly modified the intra-ladder interactions. Jleg was slightly strengthened, while Jrung was strongly 

suppressed causing the Jrung/Jleg ratio to decrease from near unity for x = 0 (Jrung/ Jleg = 1.0483(6)) to 

nearly zero for x = 0.3 (Jrung/ Jleg = 0.11(14)). This tuned the magnetic interactions from a spin ladder 

towards a spin chain. Weakening of the Jrung interaction agrees with the shift in the position of 𝑇𝑚𝑎𝑥. 

As x increases, 𝑇𝑚𝑎𝑥 shifts from ~ 74 K to ~ 64 K. Given strong suppression of Jrung, the decrease in 

𝑇𝑚𝑎𝑥 might be expected to be more significant. Also, the Weiss constant does not suggest 

weakening of the magnetic interactions and remains approximately constant across the Ba2CuTe1-

xWxO6 solid solution. The small shift in 𝑇𝑚𝑎𝑥 is explained by considering the number of Jrung and Jleg 

interactions per Cu2+ site in the two-leg spin ladder model. Each Cu2+ cation is connected to three 

other Cu2+ cations via one Jrung and two Jleg interactions. Although Jrung is strongly supressed, the net 

effect is moderate weakening of the overall intra-ladder interactions as twice the number of Jleg 

interactions are slightly strengthened. It is unclear why the Weiss constant does not increase with 
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the decreasing Jrung/ Jleg ratio. One possibility could be strong quantum fluctuations, combined with 

overall moderate weakening of the intra-ladder interactions that could obscure detection of minor 

changes in 𝜃𝑊.   

Introduction of W6+ produced a marked change in the DC susceptibility data. The upturn feature at 

14 K gradually transitioned into a large Curie-tail like feature as x increased. This suggests W6+ doping 

produces a different ground state to Nèel ordered Ba2CuTeO6. The AC susceptibility data showed no 

evidence of spin glass behaviour. The heat capacity data shows no evidence of a lambda peak to 

indicate magnetic ordering; however, the large quantum fluctuations make detection of a lambda 

ordering peak unlikely. A notable electronic contribution to the heat capacity was observed for the 

Ba2CuTe1-xWxO6 (0.05 ≤ x ≤ 0.3) samples, that was not present for x = 0. The large electronic 

contribution is similar to that observed for Sr2CuTe1-xWxO6 and must arise from free spins.  

The HIFI and MUSR muon spin relaxation results confirmed supressed Nèel ordering. No oscillations 

were observed in the 2 K ZF-μSR HIFI data of x = 0.05, 0.1, 0.2 and 0.3. The MUSR ZF-μSR data of x = 

0.05 at 50 mK and x = 0.1 at 90 mK contained no oscillations or 1/3 recovery of the initial muon 

polarization to suggest long-range or static ordering. Hence, substituting 5% Te6+ for W6+ prevented 

Nèel ordering. This is similar to Sr2CuTe1-xWxO6 where W6+ concentrations of x = 0.025 and x = 0.05 

prevent Nèel ordering.22,23 Hence, despite the differences in magnetic geometry, the disorder 

introduced by a small degree of competing W6+ d0 vs Te6+ d10 interactions has a powerful effect on 

the magnetic behaviour in these perovskites.  

To summarise, the results show the main characteristics of the magnetic behaviour in Ba2CuTe1-

xWxO6 are:  

(1) A large Curie tail-like feature in the DC magnetic susceptibility.  

(2) Large reduction in the Jrung/Jleg ratio with increasing x showing tuning of the system from 

a spin ladder towards a spin chain. 

(3) No frequency dependent shift in the AC susceptibility.  

(4) Significant electronic contribution to the heat capacity of the 0.05 ≤ x ≤ 0.3 samples.  

(5) No evidence of any oscillations or 1/3 recovery of the initial asymmetry in the muon spin 

relaxation data of the x = 0.05, 0.1, 0.2 and 0.3 samples. 

(6) Small electronic contribution to depolarization of the x = 0.1 muon spin relaxation.  

The question remains: what type of ground state is created in Ba2CuTe1-xWxO6?  One might theorize 

that W6+
 substitution pushes Ba2CuTeO6 through the quantum critical point and into the spin singlet 

phase in Fig. 5.1. The spin singlet phase is consistent with a number of the observations above. For 

example, the large Curie tails observed in the DC susceptibility data could represent ‘orphan spins’ 

left over from singlet formation. The large electronic contribution to the heat capacity suggests low 

energy spin excitations, which could be singlet excitations. Formation of singlet dimers in an 

antiparallel orientation results in spin cancellation, thus reducing the magnitude of the dynamic 

electronic fields felt by the muon. This is consistent with the slow relaxation in the x = 0.1 ZF-μSR 

data. However, the singlet state is reached by tuning of the Jinter ladder interaction in the two-leg 

spin ladder phase diagram. The two-leg spin ladder model phase diagram shown in Fig. 5.1 is only 

consistent for Jleg = Jrung. Suppression of the Jrung/Jleg ratio towards a spin chain-like system puts 

Ba2CuTe1-xWxO6 on a different phase diagram to Ba2CuTeO6. Even if the intra-ladder interactions 

were unaffected and Jrung/Jleg ~ 1, the minor 5% occupancy of the face-sharing B’’(f) site makes it 
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unlikely that W6+ supresses Jinter enough for Ba2CuTe1-xWxO6 to pass through the QCP into the singlet 

state.  

Some of the magnetic behaviours observed for Ba2CuTe1-xWxO6 are similar to Sr2CuTe1-xWxO6. 

Recently, the spin-liquid like behaviour observed for Sr2CuTe1-xWxO6 has been ascribed as disorder 

induced.24,25 The disorder introduced from the competing W6+ d0 and Te6+
 d10 interactions in  

Sr2CuTe1-xWxO6 forms a ground state with dynamic and partially frozen spins. The partially frozen 

spins are arranged in random networks with both Nèel and columnar magnetic correlations creating 

a short-range ordered random bond state.24 To unambiguously determine if this state forms in 

Ba2CuTe1-xWxO6, inelastic neutron scattering experiments are required. For a partially short-range 

ordered ground state, dispersive spin-wave like excitations would be expected in the inelastic 

neutron scattering spectra at low temperatures.  

Alternatively, disorder could form a random singlet state (RSS). Simply viewed, the random singlet 

state consists of a random lattice covering of singlet dimers.26 Singlet dimers are distance indifferent 

so can form between both neighbouring spins and spins further away. Singlet dimers can be isolated 

or form resonating singlet dimer clusters containing the superposition of more than one singlet 

dimer configurations. Singlet formation results in a fraction of disentangled (so called ‘orphan spins’) 

as a result of incomplete dimerization. Orphan spins can also be incorporated in resonating singlets. 

Therefore, each spin site in an RSS belongs to one of three possible spin configurations: isolated 

singlet, resonating singlet or orphan spin. The ground state consists of a mixture of all three spin 

configurations, with the proportion of each spin state varying.  

The defining characteristics of a random singlet state are: T-linear low temperature heat capacity, 

Curie tails in the magnetic susceptibility data and a continuum of excitations in the inelastic neutron 

scattering spectra. The T-linear heat capacity originates from low energy singlet excitations and the 

Curie tails from the orphan spins. A continuum of excitations is expected as RSS formation leads to a 

distribution of exchange couplings resulting in gapless singlet-triplet excitations. There are no 

predictions of the RSS in a two-leg spin ladder. But, the random singlet state has been observed or 

predicted in a variety of frustrated lattices including the Kagomè27,28, triangular29, honeycomb 

lattice30 and square lattice25. A RSS state induced by W6+/Te6+ disorder was predicted to be the 

ground state behind quantum spin liquid-like behaviour in Sr2CuTe1-xWxO6, but was ruled out 

because of the lack of any continuous excitations in the inelastic neutron spectra.24,25,31,32 Two of the 

features for an RSS state are observed for Ba2CuTe1-xWxO6, but conclusive proof requires inelastic 

neutron scattering.   

6. Conclusions 
The effect of W6+ substitution on the magnetic behaviour of Ba2CuTeO6 was investigated using bulk 

magnetic characterization techniques, susceptibility modelling and muon spin relaxation 

experiments. Modelling the DC susceptibility data showed site-selective W6+ substitution modified 

the intra-ladder magnetic interactions, tuning the system from a spin ladder towards a spin chain. 

Muon spin relaxation experiments showed this prevented Nèel ordering. Site-specific tuning of the 

intra-ladder interactions means Ba2CuTe1-xWxO6 lies on a different phase diagram to the two-leg spin 

ladder. Disorder introduced by the mixture of W6+ and Te6+ cations might induce a random bond 

partially ordered state, as observed for Sr2CuTe1-xWxO6. A number of the magnetic behaviours 

observed for Ba2CuTe1-xWxO6 are also consistent with the characteristics of a random singlet state. 
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Inelastic neutron scattering experiments are required to determine the exact nature of the ground 

state. While the nature of the ground state is still unclear, it is clear that W6+ substitution levels as 

low as 5% are enough to prevent magnetic ordering through site-selective tuning of the spin ladder 

interactions. Quantifying the ratio of the intra-ladder interactions (Jrung/Jleg) conclusively proved the 

d10/d0 effect can modify the magnetic interactions in double and hexagonal perovskites.   
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8. Appendix 
A1. Curie-Weiss fits of the Ba2CuTe1-xWxO6 DC susceptibility data 

Fig. A5.1 Curie-Weiss fit of Ba2CuTeO6 (x = 0) between 200-400K.  

 

Fig. A5.2 Curie-Weiss fit of Ba2CuTe0.95W0.05O6 (x = 0.05) between 200-400 K.  
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Fig. A5.3 Curie-Weiss fit of Ba2CuTe0.8W0.2O6 (x = 0.2) between 200-400 K.  

 

Fig. A5.4 Curie-Weiss fit of Ba2CuTe0.7W0.3O6 (x = 0.3) between 200-400 K.  
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A2. Isolated two-leg spin ladder model  

The full equations for the isolated two-leg spin ladder model from ref. 13 are presented below. The 

model has three fitting parameters: 𝐽𝑙𝑒𝑔, 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 and 𝑔 and defines the molar magentic 

susceptibility as:  

𝜒(𝑇) =  
𝑁𝐴𝑔2𝜇𝐵

2 𝑒
−

𝛥𝐽
𝑇
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6 (
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and 

𝑁𝑛 = 𝑁𝑛0 + 𝑁1𝑛1 (
𝐽𝑟𝑢𝑛𝑔

𝐽𝑙𝑒𝑔
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and 
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The values of the 𝑁𝑛 and 𝐷𝑛 coefficients were obtained from Table VII in ref [4] cited in ref. 13. The 

powers of 𝐽𝑟𝑢𝑛𝑔/𝐽𝑙𝑒𝑔 up to 6 and 9 are only needed for 𝐷2 with and 𝐷3, respectively. In these 

equations, the ladder interactions (𝐽𝑟𝑢𝑛𝑔  and 𝐽𝑙𝑒𝑔) are expressed in units of Kelvin, K.  

 

 

 

 

 

 

 



144 
 

Chapter 6: Non-magnetic Zn2+ cations in 
Ba2Cu1-xZnxTeO6 
Contents  

1. Abstract  

2. Introduction 

3. Experimental  

4. Results 

a. Crystal structure  

b. DC susceptibility  

c. AC susceptibility  

d. Muon Spin Relaxation (μSR) 

e. Heat capacity  

5. Discussion  

6. Conclusions  

7. References 

1. Abstract 
Continuing working with the Ba2CuTeO6 structure, this chapter investigates substitution of the 

magnetic Cu2+ cation with a non-magnetic B’ cation. Non-magnetic cations such as Zn2+ have been 

investigated in two-leg spin ladders with singlet ground states, but not in the Nèel ordered 

Ba2CuTeO6 ground state. Cu2+ was substituted for Zn2+
 forming a Ba2Cu1-xZnxTeO6 solid solution 

between 0 ≤ x ≤ 0.6 with monoclinic (𝐶2/𝑚) symmetry. Magnetic characterization using magnetic 

susceptibility and muon measurements show Zn2+ changes the magnetic behaviour compared to 

Ba2CuTeO6. Further work is needed to determine whether the Cu2+ spin ladder structure is retained 

upon Zn2+ substitution.  

2. Introduction  
Substitution of non-magnetic d10 and d0 cations at the B’’ site has been investigated in detail in 

double and hexagonal A2B’B’’O6 perovskites. This chapter investigates substitution of the magnetic 

B’ cations with non-magnetic B’ = d10 cations in the Ba2CuTeO6 spin ladder. Substitution of the 

magnetic Cu2+ cations is expected to produce a different magnetic response to B’’ = d0 substitution at 

the B’’(c) site. Hence, demonstrating the spin ladder behaviour can be altered by substitution at 

either the magnetic B’ and non-magnetic B’’ site. Nonmagnetic impurities have been shown to 

induce unexpected magnetic behaviours in other two-leg spin ladder systems. Such behaviours 

might be expected for Ba2Cu1-xZnxTeO6.  

Non-magnetic Zn2+
 (3d10) impurities have been studied in the two-leg spin ladder system Sr(Cu1-

xZnx)2O3. The ladder structure of Sr(Cu1-xZnx)2O3 differs to that of Ba2CuTeO6. The two-leg ladders are 

parallel with respect to one another, but the rungs of Cu2+ cations in adjacent ladders are offset by 

half the Jleg distance forming a ‘trellis’ layered structure.1 The intra-ladder interactions are 

approximately equal in magnitude (Jrung/Jrung ~ 1). Staggering of the ladders in the trellis structure 
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weakens the inter-ladder interaction (Jinter) so the two-leg ladders are ‘isolated’. Referring to the 

two-leg spin ladder magnetic phase diagram in Fig. 6.1, this places Sr(Cu1-xZnx)2O3 in the singlet 

phase. It was expected ‘free spins’ would be generated as the Cu2+···Cu2+ singlet dimers are broken 

by Zn2+. At high temperatures, the magnetic susceptibility has a paramagnetic tail indicating free 

spins.2 However, at low temperatures, the material unexpectedly long-range antiferromagnetically 

orders, even when the Zn2+ substitution level is as low as 1%.3,4  

 

 

 

 

 

 

 

 

Fig. 6.1 The two-leg spin ladder magnetic phase diagram.  

Zn2+ impurities have been studied in other two-leg spin ladder systems with gapped singlet ground 

states. Examples include Bi(Cu1-xZnx)2PO6 and (C7H10N)2Cu1-xZnx(Br/Cl)4.5–8 BiCu2PO6 differs from to 

Sr(Cu1-xZnx)2O3 because the inter-ladder coupling is not negligible. The spin ladders are not 

completely isolated, but Jinter is still weak enough for BiCu2PO6 to reside on the singlet side of the 

quantum critical point. Muon spin relaxation experiments suggest 2% Zn2+ induces static ordering 

and is believe to represent the formation of antiferromagnetic clusters.8 The interactions in 

(C7H10N)2Cu1-xZnxCl4 also differ to Sr(Cu1-xZnx)2O3. In this two-leg ladder structure, 1% Zn2+ 

substitution does not induce antiferromagnetic ordering. Alternatively, the muon data suggests 

faster relaxation of the muon spins due to fluctuation of the ‘free’ Cu2+ spins generated by the Zn2+ 

impurity.7 The ‘free’ Cu2+ spins are thought to be generated in the vicinity of the Zn2+ impurity and 

create an induced magnetic moment. Theoretical calculations show induced Cu2+
 moments in these 

gapped two-leg spin ladders interact in three dimensions and generate antiferromagnetic 

correlations.8 The antiferromagnetic correlations are independent of geometry and the spin gap so 

can drive impurity induced antiferromagnetic ordering.  

The Ba2CuTeO6 spin ladder lies on the Nèel ordered side of the two-leg spin ladder phase diagram as 

Jinter is above the critical value. Information on the effects of non-magnetic impurities in a Nèel 

ordered two-leg spin ladder is lacking. In the gapped two-leg spin ladders discussed above, the Zn2+ 

impurity affected the nearby Cu2+ spin singlets. Calculations have shown the extended Cu2+ spin 

ladder interactions are unaffected.9 Therefore, the spin ladder interactions are not destroyed by Zn2+ 

doping, but segmented. The extended Cu2+ ladder structure is expected to remain intact upon Zn2+ 

substitution; except for at the substitution site where the Zn2+ impurity breaks the local Cu2+ intra-

ladder interactions creating unpaired spins. This is illustrated in Fig. 6.2. The free spins would lead to 

a paramagnetic contribution to the susceptibility.  As the Zn2+ concentration increases, the spin 
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ladders would be increasingly segmented. Eventually, the Cu2+ interactions will be too segmented to 

resemble a spin ladder, at which point clusters of short-range correlated Cu2+ spins are expected. 

However, before this occurs, it might be possible to tune the spin ladder length based on Zn2+ 

concentration if the extended Cu2+ spin ladder interactions are unaffected by Zn2+ doping. This would 

allow the magnetic behaviour to be studied as a function of ladder length.  

 

 

 

 

 

 

 

 

 

Fig. 6.2 Illustration of the proposed effect of Zn2+ substitution in the Ba2CuTeO6 spin ladder structure. 

Replacing magnetic S = ½ Cu2+ cations (green) with non-magnetic Zn2+
 cations (pink) is predicted to 

segment the local intra-ladder interactions (solid black lines) producing unpaired Cu2+ spins. The Zn2+ 

cation effects the Cu2+ interactions in the vicinity of the non-magnetic impurity, with the extended 

two-leg spin ladder structure remaining intact below a given Zn2+ concentration.  

To investigate, Ba2Cu1-xZnxTeO6 samples were prepared using solid state methods. Synthesis and 

brief structural characterization of Ba2Cu1-xZnxTeO6 has been reported previously10, but not magnetic 

characterization. The monoclinic (𝐶2/𝑚) Ba2CuTeO6 structure was observed between 0 ≤ x ≤ 0.6.10 

The laboratory X-rays and neutron diffraction results presented here agreed with previous analysis. 

Magnetic characterization was performed using DC and AC magnetic susceptibility, followed by 

muon spin relaxation experiments. As discussed in the previous chapter, muon spin relaxation 

experiments are essential for the Ba2CuTeO6 system and its substituted structures due to the weak 

Cu2+ moment and large quantum fluctuations.11,12 This chapter presents the results and discusses 

further work required to fully understand the effects of Zn2+ impurities in Ba2CuTeO6.     

3. Experimental  

Synthesis   
Polycrystalline samples of Ba2Cu1-xZnxTeO6 between 0 ≤ x ≤ 1 (in incremental steps of x = 0.1) were 

prepared using the ‘shake n’ bake’ method. Stoichiometric quantities of high purity BaCO3 

(99.997%), CuO (99.9995%), ZnO (99.99%) and TeO2 (99.995%) were ground in an agate mortar. The 

pellets were pressed (load 1 tonne) and calcined in air at 900 °C for 12 hours. The calcined pellets 

were then re-ground and pressed, before heating at reaction temperatures between 1050 – 1100 °C 
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whilst under a flow of oxygen to speed up oxidation of Te4+. Reaction times between 48-96 hours 

were required to reach phase purity in all 0 ≤ x ≤ 1 samples.  

Laboratory X-ray Diffraction  
Laboratory X-ray diffraction was performed using a Rigaku Miniflex diffractometer (Cu K𝛼1/K𝛼2 (λ = 

1.5405 and 1.5443 Å)). The Rigaku Miniflex was used to monitor sample purity and obtain a final 

diffraction pattern of the phase pure sample. Analysis was performed using GSAS-2.13,14 

Neutron Diffraction  
Neutron diffraction was performed on the x = 0.5 sample using the Polaris time-of-flight (TOF) 

diffractometer at the ISIS Neutron and Muon source. ~3 g of sample was loaded into a cylindrical 

vanadium canister (8 mm diameter). The canister was mounted into a carousel sample holder and 

aligned with the neutron beam. Time-of-flight neutron diffraction patterns were recorded at 300 K. 

The data were corrected for sample absorption and analysed using GSAS-2.13,14 

Magnetic susceptibility 
Measurements were performed using a Quantum Design MPMS3 SQUID magnetometer. Sample 

preparation was identical to in chapter 5. The zero-field cooled (ZFC) and field cooled (FC) DC 

susceptibility (𝜒 vs 𝑇) was measured between 2- 300 K in an external field of 0.1 T. Magnetization (𝑀 

vs 𝐻) measurements were performed by measuring the DC magnetization (𝑀) as a function of 

applied field (𝐻) between -5 T to 5 T at a fixed temperature of 2 K.  The AC susceptibility (𝜒′𝐴𝐶) of 

the x = 0.1, x = 0.2 and x = 0.3 samples was measured between 2-100 K. The DC field was 25 Oe and 

the AC field was 5 Oe producing AC frequencies in the range of 10 to 467 Hz.  

Muon Spin Relaxation (μSR) 
Muon spin relaxation experiments were performed on samples x = 0, 0.1, 0.2 and 0.3 using the GPS 

muon beamline at the Paul Scherrer Institut (PSI). The polycrystalline powder (~1 g) was sandwiched 

into a square silver foil packet and secured onto the fork sample holder. The sample holder was 

inserted into the muon beamline and cooled using a cryostat to a temperature of ~ 1.5 K. The muon 

spin relaxation was measured in zero-field (ZF), transverse-field (TF) and longitudinal-field (LF) 

geometries at base temperature and on warming. The data were analysed using the web based 

version of MUSRFIT, which can be found at http://musruser.psi.ch/cgi-bin/musrfit.cgi.  

4. Results 
a. Crystal structure  

The monoclinic (𝐶2/𝑚) Ba2CuTeO6 structural model was used to refine the Ba2Cu1-xZnxTeO6 structure 

using the laboratory X-ray diffraction data. Fig. 6.3 provides an example of the Rietveld fit to the x = 

0.3 experimental data. The monoclinic model (red line) provides a good description of the observed 

diffraction peaks, showing 𝐶2/𝑚 symmetry is retained upon Zn2+ substitution. 𝐶2/𝑚 symmetry was 

observed between 0 ≤ x ≤ 0.6. Beyond x = 0.6, the diffraction profile changed indicating a change in 

symmetry. Between x = 0.7 to x = 1, the rhombohedral (𝑅3̅𝑚) Ba2ZnTeO6 structure is adopted.15 The 

structural phase diagram illustrated in Fig. 6.4 is identical to previous structural characterization.10 

The main focus is the monoclinic phase (0 ≤ x  ≤ 0.6), wherein the effect of increasing Zn2+ dilution on 

the Cu2+ spin ladders of Ba2CuTeO6 can be observed.  
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Fig. 6.3 Example Rietveld refinement using the monoclinic structural model. The plot shows the 

Rietveld fit to the Ba2Cu0.7Zn0.3TeO6 (x = 0.3) laboratory X-ray diffraction data (Rwp = 6.40, 𝜒2 = 5.38). 



149 
 

Fig. 6.4 The structural phase diagram of the Ba2Cu1-xZnxTeO6 solid solution in which the transition 

from the monoclinic to rhombohedral phase occurs between x = 0.6 and x = 0.7. 

The unit cell volume (𝑉cell) of the monoclinic unit cell as a function of x in Ba2Cu1-xZnxTeO6 is shown 

in Fig. 6.5b. Between 0 ≤ x ≤ 0.3, 𝑉cell decreases linearly. Between x = 0.3 and x = 0.4,  𝑉cell remains 

approximately constant, before linearly decreasing again between x = 0.4 and x = 0.6. A similar 

deviation between x = 0.3 and x = 0.4 is observed in the 𝑎, 𝑏, 𝑐 and 𝛽 lattice parameters in panels 

(c)-(f) of Fig. 6.5. A likely cause of the deviation in 𝑉cell is the large change in Jahn-Teller distortion 

that occurs as Cu2+ is increasingly substituted for Zn2+. Using the Cu-O(1-4) bond lengths (indicated in 

Fig. 6.6a) determined using the X-ray diffraction data, the Jahn-Teller distortion parameter (𝜎𝐽𝑇) was 

calculated using equation 6.1 and plotted as a function of x in Fig. 6.6b.16 

𝜎𝐽𝑇 = √
1

6
∑ [(𝐵 − O)𝑖 − 〈𝐵 − O〉]2

𝑖  (6.1) 

As x in Ba2Cu1-xZnxTeO6 increases towards x = 0.5, the magnitude of 𝜎𝐽𝑇 is approximately halved. This 

shows replacing half the amount of Cu2+ for Jahn-Teller inactive Zn2+ in x = 0, halves the distortion of 

the CuO6 octahedra in x = 0.5. The Cu-O(1-4) bond lengths plotted in panels (c) to (f) agree with 

reduced Jahn-Teller distortion. The axial Cu/Zn-O(1) and Cu/Zn-O(3) bonds become shorter as x 

increases, while the slight compression of the equatorial Cu/Zn-O(2) and Cu/Zn-O(4) bonds is 

reduced. There is a similar deviation in the 𝜎𝐽𝑇 vs x in Ba2Cu1-xZnxTeO6 data between x = 0.3 and x = 

0.4 to that observed for 𝑉cell vs x and in the lattice parameters. This suggests the deviation in 𝑉cell is 

linked to the large changes in Cu/ZnO6 distortion that occur between x = 0.3 and x = 0.4.  

While Zn2+ substitution reduced distortion of the (Cu/Zn)O6 octahedra, the value of 𝜎𝐽𝑇 is still 

substantial. Given Zn2+ is Jahn-Teller inactive, substitution of Zn2+ for Cu2+ might result in symmetry 

breaking as Zn2+ is unable to assume the highly distorted (Cu/Zn)O6 site. No additional peaks were 

detected in the X-ray diffraction data to suggest symmetry breaking. However, the atomic number of 

Cu (Z = 29) and Zn2+ (Z = 30) differ by one unit. Hence, it was not possible to differentiate between 
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the Cu2+ and Zn2+ scattering contributions using X-rays. Neutron diffraction was performed due to 

the improved contrast between the neutron scattering lengths of Cu2+ and Zn2+.  

 

Fig. 6.5 The lattice parameters and unit cell volumes determined from refinement of the monoclinic  

𝐶2/𝑚 structural model shown in panel (a). The atom colours are: green/grey (Cu2+/Zn2+), blue (Te6+) 

and red (O2-). Panel (b) shows the unit cell volume as a function of x in Ba2Cu1-xZnxTeO6. Panels (c) – 

(f) show the monoclinic lattice parameters (𝑎, 𝑏, 𝑐 and 𝛽) as a function of x in Ba2Cu1-xZnxTeO6.  
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Fig. 6.6 Geometry of the (Cu/Zn)O6 octahedra in the monoclinic Ba2Cu1-xZnxTeO6 (0 ≤ x ≤ 0.6) 

structure. Panel (a) shows an image of the (Cu/Zn)O6 octahedral geometry, in which asymmetric 

elongation of the axial Cu/Zn-O(3) and Cu/Zn-O(1) bonds is clearly visible. The Cu/Zn-O bond lengths 

plotted in panels (c)-(f) are indicated in the structural image. Panel (b) plots the Jahn-Teller distortion 

parameter (𝜎𝐽𝑇) as a function of x in Ba2Cu1-xZnxTeO6. Panels (c) to (f) show how the Cu/Zn-O bond 

lengths used to calculate 𝜎𝐽𝑇 change as a function of x in Ba2Cu1-xZnxTeO6.  

The neutron diffraction pattern of x = 0.5 was measured at 300 K on Polaris and used to refine the 

𝐶2/𝑚 structural model. Fig. 6.7 shows the resulting Rietveld refinement. The 𝐶2/𝑚 model agrees 

well with the observed diffraction pattern, with no additional Bragg peaks to suggest symmetry 

breaking. Instead of being equivalent for the same site, the positions of Cu2+ and Zn2+ were allowed 
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to refine. There was a negligible difference between the 𝑥 and 𝑧 positions of Cu2+ and Zn2+ upon 

refinement. Table 6.1 shows the refined Ba2Cu0.5Zn0.5TeO6 structure without and with Cu2+ and Zn2+ 𝑥 

and 𝑧 positions refined.  Hence, it is accurate to assume Cu2+ and Zn2+ occupy the same Cu/Zn(1)O6 

site across the Ba2Cu1-xZnxTeO6 0 ≤ x ≤ 0.6 solid solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7 Rietveld fit to the x = 0.5 Ba2Cu0.5Zn0.5TeO6 Polaris neutron diffraction data from bank 5 (2𝜃 = 

146.942°) (Rwp = 3.19, 𝜒2 = 12.25).  
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Table 6.1: Refined structure of Ba2Cu0.5Zn0.5TeO6 obtained using the Polaris neutron diffraction data. 

The table shows the refined Cu2+ and Zn2+ site fractions. The refined Cu2+ and Zn2+ 𝑥 and 𝑧 positions 

are marked by an asterisk (*). 

Space Group: 𝐶2/𝑚, No. 12, 300 K 

RP (%) = 3.78, Rwp (%) = 3.19, Rexp (%) = 1.03 , 𝜒2 = 12.25 , var. 79 

a = 10.1404(6) Å, b = 5.78117(11) Å, c = 10.1123(6) Å, 𝛽 = 108.7862(13)° 

Vol. = 561.233(31) Å3 

Site 
Wyckoff 

Position 
x y z 

Site 

fraction 
Uiso (Å2) 

Ba1 4i 0.12795(21) 0 0.38118(14) 1.0 0.00316(22) 

Ba2 4i 0.28159(24) 0 0.84489(15) 1.0 0.00635(29) 

Te1 2a 0 0 0 1 0.00025(24) 

Te2 2d 0 0.5 0.5 1 0.00144(26) 

Cu1 4i 
-0.09746(15) 

-0.09746(15)* 
0.5 

0.21105(10) 

0.21105(10)* 
0.5 0.00452(20) 

Zn1 4i 
-0.09746(15) 

-0.09745(15)* 
0.5 

0.21105(10) 

0.21104(10)* 
0.5 0.00452(20) 

O1 4i 0.12419(19) 0.5 0.39104(18) 1.0 0.0111(4) 

O2 8j -0.11081(11) 0.72873(21) 0.37391(11) 1.0 0.00894(22) 

O3 4i   0.30922(20) 0.5 0.87878(22) 1.0 0.0127(4) 

O4 8j 0.04409(16) 0.76549(27) 0.88591(14) 1.0 0.01260(23) 

 

b. DC susceptibility  

The DC susceptibility data (𝜒 vs 𝑇) of the x = 0, 0.1, 0.2, 0.3, 0.5 and 0.6 samples are shown in Fig. 

6.8. Introduction of Zn2+ has a profound effect upon the susceptibility curve of x = 0. As described in 

chapter 5, the x = 0 𝜒 vs 𝑇 curve possesses a broad 𝑇𝑚𝑎𝑥~ 74 K feature representing the short-range 

ladder interactions. Below 𝑇𝑚𝑎𝑥, the susceptibility decreases and deviates from ladder behaviour 

leading onto a small upturn feature about 𝑇𝑚𝑖𝑛~ 14 K. Introduction of 10%  Zn2+ changes the upturn 

feature. When x > 0, there is a sharp rise in the low temperature upturn, resulting in a paramagnetic 

tail-like feature. Panel (b) shows an expansion of the x = 0.1 low temperature susceptibility. Looking 

closely at the paramagnetic tail in the expansion shows there is a ‘kink’ at ~10 K; close to the 

position of the 𝑇𝑚𝑖𝑛  upturn in the x = 0 data. This kink disappears in the x = 0.2 data as the expansion 

between 0-50 K in panel (c) shows. The paramagnetic tail continues to grow and dominates over the 

𝑇𝑚𝑎𝑥 feature which is no longer visible beyond x ≥ 0.3 in panel (d). Beyond x = 0.3, the susceptibility 

curve resembles that of a paramagnet with no deviations or kinks in the curve. Instead, the 

susceptibility rises gradually on cooling from 300 K, before sharply rising below 50 K to form the 

large paramagnetic tail.  
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Fig. 6.8 The DC susceptibility data of the Ba2Cu1-xZnxTeO6 (a) x = 0, (b) x = 0.1, (c) x = 0.2, (d) x = 0.3, 

(e) x = 0.5 and (f) x = 0.6 samples. In panels (b) and (c), there are expansions of the low temperature 

data between 0 and 50 K. The DC susceptibility data of x = 0.4 was near-identical to the x > 0.3 

samples. 

The 0 ≤ x ≤ 0.6 1/𝜒 vs 𝑇 data was linear between 150-300 K and could be fitted using the inverse 

Curie-Weiss law. Table 6.2 shows the values of the Curie constant (𝐶), Weiss constant (𝜃𝑊) and 

effective magnetic moment (𝜇𝑒𝑓𝑓) for each x composition. The values for x = 0 are similar to that 

obtained from Ba2CuTeO6 in chapter 5, confirming consistency between sample batches. Table 6.2 

shows there are large changes in 𝐶, 𝜃𝑊 and 𝜇𝑒𝑓𝑓  as x increases. The values of 𝐶, 𝜃𝑊 and 𝜇𝑒𝑓𝑓  are 

plotted as a function of x in Ba2CuxZn1-xTeO6 in Fig. 6.9. Fig. 6.9 shows 𝐶 decreases linearly with 

increasing x. The changes in  𝜃𝑊 and 𝜇𝑒𝑓𝑓  are also linear. 𝜃𝑊 increases linearly from -89.3(4) K for x = 

0 towards zero reaching a value of -9.9(5) K upon reaching x = 0.6. Hence, Zn2+ greatly weakens the 

antiferromagnetic interactions. 𝑇𝑚𝑎𝑥 in Table 6.2 also decreased between x = 0 to x = 0.2 implying 

weakening of the interactions. The value of 𝜇𝑒𝑓𝑓  is similar for all compositions and close to the 

previously reported value for Ba2CuTeO6 and Ba2CuTe1-xWxTeO6.11,17 The value of 𝜇𝑒𝑓𝑓  slightly 

decreases with increasing x supporting weakening of the Cu2+ interactions. 
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Table 6.2: Results from analysis of the DC susceptibility data of Ba2CuxZn1-xTeO6  

x 𝑇𝑚𝑎𝑥 (K) 𝐶 (cm3 K mol-1) 𝜃𝑊  (K) 𝜇𝑒𝑓𝑓  (µB per Cu2+) 

0 73.7 0.4450(7) -89.3(4) 1.890(5) 

0.1 64 0.4219(6) -84.0(4) 1.936(2) 

0.2 ~57 0.3551(3) -71.7(2) 1.8840(8) 

0.3 - 0.3056(3) -58.6(3) 1.869(1) 

0.4 - 0.2574(2) -44.3(2) 1.852(1) 

0.5 - 0.2107(1) -36.5(1) 1.835(1) 

0.6 - 0.1500(3) -9.9(5) 1.732(2) 

 

Fig. 6.9 Graphical plots of the Curie-Weiss fitting parameters in Table 6.2. The three panels show: (a) 

the Curie constant (𝐶); (b) the Weiss constant (𝜃𝑊); and (c) the effective magnetic moment (𝜇𝑒𝑓𝑓) as 

a function of x in Ba2CuxZn1-xTeO6. 

The DC magnetisation (𝑀) as a function of applied field (𝐻) was measured at 2 K. The 𝑀 vs 𝐻 plots 

between -5 T to 5 T for the 0 ≤ x ≤ 0.6 samples are shown in Fig. 6.10. None of the x compositions 

display any evidence of hysteresis in their magnetisation curve. The 𝑀 vs 𝐻 plot of x = 0 is shown in 

black. The magnetization is linear and shows no signs of saturation. Upon introduction of Zn2+, the 

shape of the magnetization curve changes from linear to curved. The curvature increases with x 

resulting in a corresponding increase in the magnetisation. The curvature also introduces saturation. 

The change in the shape of the 𝑀 vs 𝐻 curve further supports a change in the magnetic behaviour 

upon introduction of Zn2+.  
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Fig. 6.10 DC 𝑀vs 𝐻 data of the Ba2CuxZn1-xTeO6 compositions between 0 ≤ x ≤ 0.6. 

c. AC susceptibility  

AC susceptibility measurements were performed on the x = 0.1, 0.2 and 0.3 samples. The 𝜒′𝐴𝐶 vs 𝑇 

curves of (a) x = 0.1, (c) x = 0.2 and (e) x = 0.3 are shown in Fig. 6.11. No frequency dependent shift 

was observed in the AC susceptibility of any sample. Nor were there any distinctive peaks detected 

in the imaginary  𝜒′′𝐴𝐶 susceptibilities plotted in panels (b) x = 0.1, (d) x = 0.2 and (f) x = 0.3 in Fig. 

6.11. Hence, there is no evidence to suggest Zn2+ induces spin glass behaviour. 
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Fig. 6.11 The 𝜒′𝐴𝐶 vs 𝑇 data of (a) Ba2Cu0.9Zn0.1TeO6 (x = 0.1), (c) Ba2Cu0.8Zn0.2TeO6 (x = 0.2) and (e) 

Ba2Cu0.7Zn0.3TeO6 (x = 0.3) between 2-100 K. The imaginary component 𝜒′′𝐴𝐶  vs 𝑇 is shown in panels 

(b) x = 0.1, (d) x = 0.2 and (f) x = 0.3. No frequency shifts were detected in the 𝜒′𝐴𝐶 vs 𝑇 data and 

there were no distinctive peaks in the 𝜒′′𝐴𝐶 vs 𝑇 data to support spin glass behaviour.  

 d. Muon spin relaxation (μSR)  

Muon spin relaxation (μSR) measurements were performed on the x = 0, 0.1, 0.2 and 0.3 samples to 

learn more about how the local magnetic environment changes upon Zn2+ substitution. The results 

from μSR experiments on GPS are presented below.  

x = 0 

ZF-μSR measurements on x = 0 were presented in chapter 5, and by ref. 12 previously. Both 

measurements were independently performed using the pulsed muon source at the ISIS Neutron 

and Muon facility. Continuous muon sources offer improved time resolution and can detect higher 

frequency oscillations compared to pulsed muon sources. This is because at a continuous source the 

arrival time of each muon event is known. Whereas, at a pulsed source muons arrive in bunches 

creating a distribution of arrival times. Hence, by performing measurements on GPS using the 
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continuous muon source at PSI, more detailed information about the muon environment in the x = 0 

sample can be obtained.  

The GPS ZF-μSR data for x = 0 at 1.5 K is shown in Fig. 6.12b. As seen previously, there are clear 

oscillations signifying long-range magnetic order. However, there are differences in the oscillatory 

features when comparing the HIFI and PSI data in Fig. 6.12a and Fig. 6.12b, respectively. The HIFI 

data contains a single oscillation, while two oscillatory features can be observed in the PSI ZF-μSR 

data. The ZF-μSR PSI data for x = 0 could be fitted using the sum of a Gaussian cosine and 

exponentially relaxing cosine to describe the two oscillations as shown in equation 6.2. The 

exponential term describes the background.  

𝑃(𝑡) = 𝐴0𝑒−𝜎2𝑡2
cos(2𝜋𝑓1𝑡 + ø1) + 𝐴1𝑒−𝜆1𝑡 cos(2𝜋𝑓2𝑡 + ø2) + 𝐴2𝑒−𝜆2𝑡  (6.2) 

Here, 𝐴0,1,2 are the asymmetry at time zero, 𝜎 is the decay rate of the Gaussian oscillation, 𝜆1 is the 

decay rate of the exponentially relaxing cosine, 𝜆2 is the decay rate of the exponential background 

term, 𝑓1 and 𝑓2 are the frequencies of the oscillations, and ø1 and ø2 the phases of the oscillations. 

The red fit line in Fig. 6.12b shows equation 6.2 provides a good description of the ZF data. The 

frequencies of the oscillations were determined as: 𝑓1 = 3.81(1) MHz and 𝑓2 = 6.67(9) MHz. 

Therefore, the PSI data allowed the higher frequency oscillation to be resolved. The presence of two 

oscillations shows there are two muon stopping sites in the material. The decay rates of the 

Gaussian cosine and exponentially relaxing cosine were: 𝜎 = 1.4(1) μs-1 and 𝜆1 = 12.3(8) μs-1, 

respectively (the decay rate of the background term was 𝜆2 = 0.007(1) μs-1). The values for 𝜎 and 𝜆1 

show the muon polarization decays faster in the muon stopping site described by an exponentially 

relaxing cosine. 



159 
 

Fig. 6.12 (a) The ZF-μSR data of Ba2CuTeO6 (x = 0) measured at 1.5 K using the HIFI beamline (pulsed-

ISIS). (b) The ZF-μSR data of x = 0 measured at 2 K using the GPS beamline (continuous-PSI). There are 

two oscillations in the PSI data, which could not be resolved in the lower time resolution HIFI data. 

The x = 0 data in panel (b) was fitted using the muon polarization function in equation 6.2. (c) The ZF-

μSR data of Ba2Cu0.9Zn0.1TeO6 (x = 0.1) measured at 1.5 K using GPS. Oscillations are still present, 

indicating magnetic ordering, but the fit using the same polarization function (equation 6.2) for x = 0 

in panel (c) is poor. Instead, the muon polarization is better described using a function involving 

Bessel functions implying an incommensurate magnetic structure. (d) The fit to the 2 K ZF-μSR data of 

x = 0.1 using Bessel functions in equation 6.6. The improvement in the fit can be observed visually by 

comparison to panel (c), and also from the improved goodness of fit (𝜒2). The fits to the data are 

show by the solid red lines.  

x = 0.1 

Fig. 6.12c shows the ZF-μSR data for x = 0.1 at 1.5 K. The data show oscillations are still present upon 

10% Zn2+ substitution showing x = 0.1 is long-range ordered. Initially, fitting was performed using the 

x = 0 polarization function in equation 6.2. The fit in Fig. 6.12c shows equation 6.2 failed to 
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adequately describe the oscillations. Instead, the ZF-μSR data was more accurately described using 

zeroth order Bessel functions. Bessel functions are the solutions to the differential equation:  

𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝑛2)𝑦 = 0  (6.3) 

Where, 𝑛 is a non-negative real number. The first order differential solutions of equation 6.3 are 

called Bessel functions of the first kind (𝐽𝑛(𝑥)) and the second order differential solutions are Bessel 

functions of the second kind (𝑌𝑛(𝑥)). Bessel functions of the first kind (𝐽0(𝑥)) are used to describe 

the muon polarization 𝑃(𝑡) below:  

𝑃(𝑡) = 𝐴0𝐽0(2𝜋𝜈𝑡 + ø)  (6.4) 

𝐽0(𝑥) = ∑
(−1)𝑙

22𝑙(𝑙!)2 𝑥2𝑙∞
𝑙=0      Where, 𝑥 = 2𝜋𝜈𝑡 + ø  (6.5) 

The x = 0.1 muon polarization was fitted using a combination of two exponential Bessel functions for 

each of the two muon sites and an exponential relaxation function to describe the background. The 

𝑃(𝑡) function is shown below:  

𝑃(𝑡) = 𝐴0𝑒−𝜆1𝑡𝐽0(2𝜋𝜈1𝑡 + ø1) + 𝐴1𝑒−𝜆2𝑡𝐽0(2𝜋𝜈2𝑡 + ø2) + 𝐴2𝑒−𝜆3𝑡   (6.6) 

The fit using equation 6.6 is shown in Fig. 6.12d. Compared to the fit using equation 6.2 in Fig. 612c, 

the fit involving Bessel functions clearly provides a superior description of the muon polarization. 

The use of Bessel functions implies the magnetic structure is incommensurate.  

Commensurate structures have a magnetic periodicity that is related to the crystallographic 

periodicity by an integer or half-integer value of n; where, magnetic unit cell = n x nuclear unit cell. In 

an incommensurate magnetic structure, n is not an integer or half-integer number, but an irrational 

number. When muons are implanted into a sample they can reside in a number of magnetically 

inequivalent sites at different positions within the crystal lattice.  In a commensurate structure, the 

total number of magnetically inequivalent sites is finite due to the integer/half-integer relationship 

between the magnetic and nuclear unit cells. As a result, the muons located at the different muon 

sites experience a sharp distribution of local fields that can be described as Gaussian.18 Alternatively, 

in an incommensurate structure there are an infinite number of inequivalent muons sites. Each 

muon senses a different local field, resulting in a continuous distribution of local fields up to a 

maximum cut off field (Bmax).
19 This type of field distribution is described using a first order Bessel 

function (equation 6.5).20 With cosine functions the phase is constant; however Bessel functions 

introduce a constantly changing phase which can produce a phase shift.18,21,22 The data in Fig. 6.12d 

was only described well using equation 6.6 when the phases of the Bessel functions were non-zero. 

The phases derived from the fit were approximately the same magnitude but have opposite signs, 

with ø1= 33.9(4.2)° and ø2= -35.9(4.4)°.  

ZF measurements on warming in Fig. 6.13a show the oscillations decay and are no longer visible 

above 8 K. This indicates Zn2+ substitution lowered the transition temperature compared to 

Ba2CuTeO6 (𝑇N = 14 K). The ZF data above 1.5 K was fitted using equation 6.6 and the fitting 

parameters plotted in Fig. 6.13c-d. The values show the muon oscillations decay, with the values of 

the decay rates (𝜆1 and 𝜆2) increasing as the spin fluctuations increase as the temperature rises to 

10 K. Above 10 K the values of 𝜆1 and 𝜆2 are zero showing complete decay of the oscillations.  



161 
 

Fig. 6.13 (a) The ZF-μSR data for Ba2Cu0.9Zn0.1TeO6 (x = 0.1) on warming between 1.5-20 K. The 1.5 K 

oscillations are damped as the temperature increases, with no clear oscillations observed above 8 K. 

Panels (b) to (d) show the values of the parameters obtained from the fit using equation 6.6. Panel 

(b) shows the values of the frequencies (𝜈1 and 𝜈2); (c) the values of the decay rates (𝜆1 and 𝜆2); and 

(d) the values of the asymmetries (𝐴1 and 𝐴2); as a function of temperature.  

x = 0.2 

The ZF-μSR data of x = 0.2 at 1.5 K is shown in Fig. 6.14a. Now there are no clear oscillations at 1.5 K 

showing the x = 0.2 sample is not long-range magnetically ordered. Instead, the ZF muon 

polarization sharply drops at low times, but then recovers 1/3 of the initial asymmetry at long times. 

Recovery of 1/3 of the initial asymmetry implies there is a static component to the magnetism. In a 

random statically ordered material, 1/3 of the initial asymmetry is retained as this represents the 1/3 

fraction of spins in the direction of the muon spin along 𝑧. The remaining 2/3 of the spins 

perpendicular to 𝑧 along the 𝑥 and 𝑦 directions are depolarized. This behaviour is described using 

the static Kubo-Toyabe function. The lack of a minimum and fast relaxation at low times indicates 

there is also a dynamic component to the magnetism. The combination of static and dynamic 

behaviour could be phenomenologically described using the dynamic Kubo-Toyabe function and an 

exponential term using equation 6.7. 

𝑃(𝑡) = (𝑔𝑧(𝑡) + 𝑣 ∫ 𝑔𝑧(𝑡1)𝑃𝑧(𝑡 − 𝑡1)𝑑𝑡1
𝑡

0
) + 𝐴1𝑒−𝜆𝑡  (6.7) 
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𝑔𝑧(𝑡) = 𝐴0 (
1

3
+

2

3
𝑒−

1

2
𝛿2𝑡2

(1 − 𝛿2𝑡2)) (6.8) 

𝑔𝑧(𝑡) is the static Kubo-Toyabe function (defined in equation 6.8). 𝑣 is the muon hopping rate, 𝜆 the 

exponential decay rate and 𝛿 is the width of the local field distribution. Equation 6.7 was used to fit 

the 1.5 K ZF-μSR data in Fig. 6.14a and the ZF data on warming in Fig. 6.15. Fig. 6.15c shows at low 

temperatures the muon hopping rate is close to zero, therefore the static Kubo-Toyabe function 

(𝑔𝑧(𝑡)) mainly contributes to the relaxation. This accounts for the 1/3 recovery of the initial 

asymmetry. Hence, at 1.5 K the spins are mostly frozen in the x = 0.2 sample. Fig. 6.15c shows the 

hopping rate increases on warming as spin fluctuations increase. 𝜆 is inversely proportional to 𝑣, 

meaning as the hopping rate increases at higher temperatures, the muon feels more of an average 

field leading to a decrease in the muon decay rate in Fig. 6.15d. Fig. 6.15a shows the 1/3 tail is lost 

around 4 K implying spin freezing develops below this temperature.    

Fig. 6.14 (a) The Ba2Cu0.8Zn0.2TeO6 (x = 0.2) ZF-μSR data at 1.5 K. Fitting (shown by the solid red line) 

was performed using the muon polarization function in equation 6.7. Recovery of 1/3 of the initial 

asymmetry implies a static disordered contribution to the relaxation. The fast relaxation at low times 

indicates there is also a dynamic component to the relaxation. (b) The Ba2Cu0.7Zn0.3TeO6 (x = 0.3) ZF-

μSR data at 1.5 K. No clear oscillations or recovery of 1/3 of the initial asymmetry is observed 

implying a mainly dynamic magnetic environment. The data was fitted using equation 6.11 which 

uses two exponential functions to account for the two muon sites.  
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Fig. 6.15 (a) The ZF-μSR data of Ba2Cu0.8Zn0.2TeO6 (x = 0.2) between 1.5-10 K. The data were fitted 

using the muon polarization function in equation 6.7. The parameters obtained from the fit are 

plotted as a function of temperature (𝑇) in panels (b) - (d). Panel (b) shows the initial asymmetry 

(𝐴1), (c) the muon hopping rate (𝑣) and (d) the exponential decay rate (𝜆).  

The x = 0.2 ZF-μSR data also resembles that of a spin glass. The AC susceptibility data provided no 

indication of spin glass behaviour. To confirm, the x = 0.2 ZF-μSR data was also fitted using stretched 

exponentials (equation 6.9).  

𝑃(𝑡) = 𝐴𝑒(−𝜆𝑡)𝛽
 (6.9) 

Here, 𝐴 is the initial asymmetry, 𝜆 is the decay rate and 𝛽 is the stretching exponent. A value of 𝛽 = 1 

indicates a typical exponential relaxation, 𝛽 = 2 indicates a Gaussian relaxation and 𝛽 < 0.5 indicates 

a spin glass.22-24 The ZF-μSR data was fitted using a combination of two stretched exponentials and 

an exponential term to describe the background. While seemingly providing a good fit, the values 

obtained for 𝛽 were meaningless (𝛽1 = 2.95 and 𝛽2 = -2.9) and do not indicate spin glass behaviour.  

x = 0.3 

The ZF-μSR data for x = 0.3 at 1.5 K in Fig. 6.14b shows no indication of magnetic ordering. There are 

no oscillations or 1/3 recovery of the initial asymmetry. Instead, the muon polarization relaxes 

exponentially reflecting a dynamic muon environment. The muon polarization was described using a 
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combination of two exponential relaxation functions to account for the two muon sites. The 

equation for 𝑃(𝑡) is given below:  

𝑃(𝑡) = 𝐴1𝑒−𝜆1𝑡 + 𝐴2𝑒−𝜆2𝑡 (6.10) 

The fit in Fig. 6.14b describes the muon polarization well. Fig. 6.16a shows the ZF-μSR data on 

warming. Above 1.5 K, the high temperature muon polarization is quickly recovered. The initial 

asymmetries (𝐴1 and 𝐴2) determined from the fits are plotted as a function of temperature in Fig. 

6.16b. As the temperature approaches 5 K, the value of 𝐴2 decreases towards zero while 𝐴1 

increases to a plateau showing the high temperature muon polarization is recovered above 5 K. This 

is in agreement with the values of the decay rates 𝜆1 and 𝜆2 in Fig. 6.16c and Fig. 6.16d, respectively. 

The value of 𝜆2 is much higher at low temperatures compared to 𝜆1 showing the majority of the low 

temperature relaxation is accounted for by the second exponential term. The value of 𝜆2 increases 

as the field fluctuation increases above 1.5 K. 𝜆2 increases up to 5 K, after which the value falls 

indicating the field fluctuation rate is on a timescale faster than the muon relaxation rate.  

Fig. 6.16 (a) The ZF-μSR data of Ba2Cu0.7Zn0.3TeO6 (x = 0.3) between 1.5-10 K. The data were fitted 

using the muon polarization function in equation 6.10. The parameters obtained from the fit are 

plotted as a function of temperature (𝑇) in panels (b)-(d); where (b) shows the initial asymmetries 

(𝐴1and 𝐴2) and (c) and (d) are the decay rates, 𝜆1 and 𝜆2, of the respective exponential terms.  
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Transverse-Field (TF)-μSR measurements 

Transverse-field (TF)-μSR measurements were performed on the x = 0.1, 0.2 and 0.3 samples at 

temperatures between 1.5-20 K. A 30 G transverse-field was applied and the muon response 

measured. At 20 K, the muon spins oscillated in the direction of the applied TF field. On cooling, 

dampening of the TF oscillation was clearly observed for x = 0.1 and x = 0.2. This indicates static 

magnetic ordering as the muon spins begin to decouple from the TF field and couple to the 

developing internal magnetic field. The TF-μSR data for x = 0.1 and x = 0.2 are shown in Fig. 6.17a 

and Fig. 6.17b, respectively. The TF asymmetry (𝐴𝑇(𝑇)) was determined by fitting the TF-μSR data 

using equation 6.11.  

𝑃(𝑡) = 𝐴𝐿𝑒−𝜆𝐿𝑡 + 𝐴𝑇𝑒−𝜆𝑇𝑡 cos(2𝜋𝑓𝑡 + ø) + 𝐴𝐵𝑘𝑔𝑑𝑒−𝜆𝐿𝑡 (6.11) 

By plotting the normalized TF asymmetry (𝐴𝑇(𝑇)/ 𝐴𝑇(40 K)) as a function of temperature (𝑇) the 

transition temperatures were determined. Fig. 6.17d shows the value of 𝐴𝑇(𝑇)/ 𝐴𝑇(40 K) decreases 

gradually on cooling for both x = 0.1 and x = 0.2. The transitions are gradual, occurring over a wide 

temperature range. The value of 𝐴𝑇(𝑇)/ 𝐴𝑇(40 K) approaches zero at 8 K for x = 0.1 showing long-

range magnetic order is complete. For x = 0.2, the value of 𝐴𝑇(𝑇)/ 𝐴𝑇(40 K) plateaus to a constant 

value below 4 K indicating spin freezing is complete below 4 K. It was noted that the value of 

𝐴𝑇(𝑇)/ 𝐴𝑇(40 K) does not completely go to zero and there are still weak oscillations visible in the 

TF-μSR data of x = 0.2 at 1.5 K in Fig. 6.17b, whereas the TF oscillations were completely damped for 

x = 0.1 in Fig. 6.17a.  This suggests a small ∼ 6% dynamic fraction exists at 1.5 K for x = 0.2. 

While the ZF-μSR data for x = 0.3 suggests a purely dynamic system, dampening of the TF oscillations 

was observed on cooling as the temperatures approached 1.5 K. Slight dampening of the TF 

oscillations can be seen in the TF-μSR data for x = 0.3 in Fig. 6.17c. This suggests a small fraction of 

frozen spins. The 𝐴𝑇(𝑇)/ 𝐴𝑇(40 K) data for x = 0.3 in Fig. 6.17d shows dampening occurs below 10 

K. From the ratio of the 𝐴𝑇(𝑇)/ 𝐴𝑇(40 K) value at 1.5 K and 20 K, the frozen fraction was calculated 

to be ∼ 14%.  
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Fig. 6.17 The TF-μSR data for (a) Ba2Cu0.9Zn0.1TeO6 (x = 0.1), (b) Ba2Cu0.8Zn0.2TeO6 (x = 0.2) and (c) 

Ba2Cu0.7Zn0.3TeO6 (x = 0.3) collected between 1.5-20 K using a TF field of 30 G. Complete dampening is 

observed for x = 0.1, and the TF oscillations for x = 0.2 are almost completely damped. Only slight 

dampening is observed for x = 0.3 showing only partial freezing of the magnetic moments. The TF 

asymmetry (𝐴𝑇(𝑇)) was determined by fitting the data using equation 6.9. The normalized 

𝐴𝑇(𝑇)/ 𝐴𝑇(40 𝐾) is plotted as a function of temperature (𝑇) for the x = 0.1, x = 0.2 and x = 0.3 

samples in panel (d).  

Longitudinal-field (LF)-μSR measurements 

Longitudinal-field (LF)-μSR measurements were performed at 1.5 K on the x = 0.1, 0.2 and 0.3 

samples using LF fields between 50-1000 G. The LF-μSR measurements in Fig. 6.18 help to indicate 

the strength of the LF field required to decouple the muon spin from the magnetic moments in the 

sample, hence providing information on the nature of the sample magnetic moments. The data for x 

= 0.1 in Fig. 6.18a shows only above 100 G did the muons begin to decouple from the internal 

magnetic field and repolarize in the direction of the LF field. Complete repolarization occurs 

between the relatively weak LF fields of 500-1000 G owing to the weak Cu2+ moment and quantum 

fluctuations. Small decoupling was observed at 50 G, and represents decoupling from weaker static 

nuclear magnetic moments. The data above 100 G represents decoupling from stronger electronic 

magnetic moments.   

Repolarization requires weaker LF fields for x = 0.2. Decoupling from the internal fields is clearly 

visible at 100 G in the x = 0.2 LF-μSR data in Fig. 6.18b. Stronger repolarization below 100 G is likely 

to represent decoupling from a combination of dynamic and static electronic spins, as well as static 

nuclear spins. The muon spin is almost fully repolarized at fields of 500 G.  

The behaviour of x = 0.3 is different to the other samples. The data in Fig. 6.18c shows the muon 

polarization is gradually recovered as the LF field increases. As with the other samples, decoupling 

from static nuclear spins, as well as electronic spins, contributes to the repolarization below 100 G. 
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The gradual recovery above 50 G is typical of the LF field repolarization of a system with dynamic 

electronic spins. 

Fig. 6.18 The LF-μSR data of (a) Ba2Cu0.9Zn0.1TeO6 (x = 0.1), (b) Ba2Cu0.8Zn0.2TeO6 (x = 0.2) and (c) 

Ba2Cu0.7Zn0.3TeO6 (x = 0.3) measured at 1.5 K using LF fields between 50-1000 G. The 0 G ZF-μSR data 

is shown for comparison.  

5. Discussion   
The X-ray and neutron data confirmed successful Cu2+ substitution for Zn2+ in Ba2Cu1-xZnxTeO6, with 

the results from structural characterization agreeing with previous reports. Magnetic 

characterization showed the spin ladder behaviour changed upon introduction of Zn2+, and might 

represent segmentation of the spin ladders. The DC susceptibility data shows weakening of the 

magnetic interactions from the increase in the Weiss constant (𝜃𝑊) and decrease in the effective 

magnetic moment between x = 0 to x = 0.6. 𝜃𝑊 increases towards zero showing the interactions 

become increasingly paramagnetic-like. A large paramagnetic tail developed upon introduction of 

Zn2+. The paramagnetic tail grew with increasing x, implying an increasing concentration of ‘free 

spins’ as Zn2+ breaks the spin ladder interactions. The DC susceptibility data did not reveal whether 

the introduction of ‘free’ spins prevented antiferromagnetic ordering due to the weak magnetism in 

these samples. Therefore, muon spin relaxation (μSR) experiments were performed.  

The μSR experiments on GPS provided more detailed information about the muon environment in 

Ba2CuTeO6 compared to the HIFI data. There were two oscillations in the 1.5 K x = 0 ZF-μSR data, 

indicating the presence of two muon stopping sites. To reflect this, two components were employed 

when fitting the Ba2CuTeO6 and Ba2Cu1-xZnxTeO6 data to describe the two muon sites. There were 

clear oscillations in the x = 0.1 data showing 10% Zn2+ does not prevent ordering. The transition 

temperature was reduced from 𝑇N(x = 0) = 14 K to 𝑇N(x = 0.1) = 8. The low temperature oscillations 

at 1.5 K were described well using Bessel functions with non-zero phases instead of cosines. The use 

of Bessel functions implies the magnetic structure of Ba2Cu0.9Zn0.1TeO6 is incommensurate. The 

phases were of the same magnitude, but with opposite signs. This could imply a helical 
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incommensurate structure composed of two helices that are out-of-phase with each other. Low 

temperature neutron diffraction experiments are required to confirm this. This would show how 

closely the low temperature magnetic structure resembles a two-leg spin ladder.   

No clear oscillations were observed for x = 0.2, although recovery of 1/3 of the initial asymmetry 

implies static magnetic ordering. The relaxation could be described using the combination of a 

dynamic Kubo-Toyabe function and an exponential relaxation term. Dampening of the transverse-

field (TF)-μSR oscillations confirmed the establishment of a static magnetic state below 4 K. The 

transition occurred gradually and does not represent long-range magnetic order or a spin glass. 

Instead, 1/3 recovery implies the presence of a long-range disordered static magnetic state, 

generated by segmentation of the ladders by Zn2+. This might create fragments of ladder interactions 

that are statically ordered within the fragment, but between fragments are long-range disordered. 

The fast muon relaxation at low times and weak TF oscillations at 1.5 K imply there is also a dynamic 

contribution, most likely from free Cu2+ spins introduced by Zn2+.  

The zero-field muon environment in x = 0.3 appears to be completely dynamic at 1.5 K, with no 

oscillations or 1/3 recovery of the initial asymmetry. However, the TF-μSR data on cooling shows 

slight dampening of the TF asymmetry below 10 K. At 1.5 K, ~ 14% of the spins are ‘frozen’ while the 

majority are dynamic. Dilution fridge experiments are required to determine whether the frozen 

fraction increases below 1.5 K.  Based on these findings it is expected the frozen fraction will be 

further diminished or non-existent in the x ≥ 0.4 samples. Therefore, even if further spin freezing 

occurs below 1.5 K in x = 0.3, the magnetic interactions are unlikely to resemble a two-leg spin 

ladder beyond x = 0.3 due to extensive segmentation of the ladder interactions.   

6. Conclusions  
The Cu2+ spin ladder cations were successfully substituted for non-magnetic Zn2+ in Ba2Cu1-xZnxTeO6. 

This demonstrates the hexagonal Ba2CuTeO6 structure can accommodate chemical substitution at 

the magnetic B’ site and non-magnetic B’’ site. Comparing the magnetic properties of Ba2Cu1-

xZnxTeO6 to that of Ba2CuTeO6 showed a clear change in the magnetic behaviour. The DC 

susceptibility data indicated the introduction of ‘free’ spins and weakening of the antiferromagnetic 

interactions. The muon spin relaxation data shows Zn2+ prevented long-range magnetic ordering 

beyond x = 0.2, however it remains unclear how closely the magnetic interactions in Ba2Cu1-xZnxTeO6 

resemble that of a Nèel ordered spin ladder. The muon data for x = 0.1 implies the magnetic 

structure might be incommensurate. Neutron diffraction studies are required to establish this and 

determine whether the extended two-leg spin ladder structure is retained upon Zn2+ substitution.   
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Conclusions and further work   
Non-magnetic d10 and d0 cations have been studied in double and hexagonal A2B’B’’O6 perovskites. 

Using a simple cubic Ba2Mn(Te/W)O6 double perovskite, the underlying causes of the d10/d0 effect 

were understood. Differences in the dominant superexchange pathway arise due to the limited 

contribution of the d0 cation towards next-nearest neighbour (J2) superexchange. This leads to the 

d10/d0 effect, where d10 cations promote a strong nearest neighbour (J1) and near-zero J2 interaction, 

whereas d0 cations promote as strong J2
 and suppressed J1 interaction. The d10/d0 effect is observed 

in a number of antiferromagnetically ordered Te6+ and W6+ double perovskites, as well as Mo6+ 

perovskites.  

Having established the d10/d0 effect, more complex perovskite structures were investigated. The 

hexagonal Ba2CuTeO6 perovskite allowed d10/d0 interactions to be studied in a corner- and face-

sharing structure, instead of a purely corner-sharing double perovskite. Ba2CuTeO6 also has a similar 

Cu2+ magnetic geometry to the Sr2CuTe1-xWxO6 perovskite structure, where mixtures of d10 and d0 

cations suppress magnetic ordering. W6+ substitution in Ba2CuTeO6 was shown to occur site-

selectively at the corner-sharing site. This modified the Cu2+ spin ladder interactions, tuning the 

system from a spin ladder towards a spin-chain. Muon spin relaxation experiments indicated 

suppressed magnetic ordering when x ≥ 0.05 in Ba2CuTe1-xWxO6.  The exact nature of the ground 

state is unclear without further inelastic neutron scattering experiments. d10/d0 mixtures could be a 

useful tool for tuning ordered perovskites into the realms of magnetic disorder. The technique could 

be shown to be universal if d10/d0 mixtures were studied in other systems. It would be interesting to 

observe whether the d10 - strong J1 vs d0 - strong J2 competition suppresses magnetic ordering in 

Ba2MnTe1-xWxO6.  Different behaviours might also be garnered for Mo6+ substitution in Ba2CuTeO6. 

The strong selectivity for the corner-sharing site is still expected as face-sharing is unfavourable for 

Mo6+ d0
 cations.  

The effect of non-magnetic cations at the magnetic B’ site was also investigated in Ba2Cu1-xZnxTeO6. 

The magnetic S = ½ Cu2+ spin ladder cations were substituted for non-magnetic Zn2+ (3d10). There was 

a change in the magnetic behaviour with large paramagnetic tails in the susceptibility indicating 

generation of ‘free spins’ due to segmentation of the ladder interactions by Zn2+.  Muon analysis 

indicates long-range ordering for x = 0.1 and spin freezing for x = 0.2. The behaviour of x = 0.3 was 

mostly dynamic, with a small frozen fraction (~ 14%) occurring at 1.5 K. Further muon experiments 

are required to learn whether the frozen fraction increases below 1.5 K. Neutron diffraction 

experiments would provide more information on the magnetic structure of x = 0.1 and determine 

whether it is incommensurate. This, along with inelastic neutron scattering experiments, would help 

determine whether the extended spin ladder structure remains intact upon Zn2+ substitution. At 

present, this work shows non-magnetic cations can garner a range of behaviours through chemical 

substitution at either the B’ or B’’ site in Ba2CuTeO6.  

 


