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• Williams, B., López-Garćıa, M., Gillard, J.J., Laws, T.R.,
Lythe, G., Carruthers, J. and Molina-Paŕıs, C. A mathemati-
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Abstract

This thesis explores mathematical models for the infection dynam-
ics of two types of pathogens, namely the specific bacterium Bacillus
anthracis, which is the causative agent of anthrax, and viruses more
generally. I present a stochastic multi-scale model for describing B.
anthracis infection at the intracellular and within-host levels. The
intracellular model uses a Markov chain to describe the key interac-
tion between B. anthracis spores and host cells, and to predict the
distribution of outcomes from this interaction. Key outputs are then
used to connect this intracellular model to a within-host model of
inhalational anthrax, which aims to offer a realistic mechanistic de-
scription of the infection dynamics, as well the probability of infection
for a given inhaled dose. The multi-scale model is calibrated via a
Bayesian approach, using various experimental in vitro and in vivo
data. Stochastic models of virus kinetics are also studied, with a fo-
cus on finding probability distributions for the burst size and cellular
reproduction number. It is shown how these distributions are affected
by modelling choices, and how these distributions in turn affect the
probability that the virus and infected cells will be eliminated before
an established infection can occur.

iv



Contents

1 Introduction 1
1.1 Biological introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Anthrax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Mathematical background 15
2.1 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Probability distributions . . . . . . . . . . . . . . . . . . . 18
2.2 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Transition probabilities . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Generator matrix . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Forward Kolmogorov differential equations . . . . . . . . . 24
2.2.4 Realisations of a CTMC . . . . . . . . . . . . . . . . . . . 25
2.2.5 Gillespie algorithm . . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Example: Poisson process . . . . . . . . . . . . . . . . . . 29
2.2.7 Example: Birth-and-death process . . . . . . . . . . . . . . 32

2.3 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Modelling intracellular anthrax infection with spore germination
heterogeneity 41
3.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Spore germination heterogeneity . . . . . . . . . . . . . . . 47
3.1.2 Number of intracellular spores and newly germinated bacteria 48

v



CONTENTS

3.1.3 Probabilities and times to reach absorbing states . . . . . 50
3.1.4 Rupture size distribution . . . . . . . . . . . . . . . . . . . 57
3.1.5 Number of intracellular vegetative bacteria . . . . . . . . . 59

3.2 Parameter calibration . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Approximate Bayesian Computation Sequential Monte Carlo 69

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Within-host model of inhalational anthrax 101
4.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Dose-response relationship . . . . . . . . . . . . . . . . . . 109
4.2 Parameter calibration . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.1 In vitro toxin production . . . . . . . . . . . . . . . . . . . 113
4.2.2 Dose-response and in vivo dynamics . . . . . . . . . . . . . 119

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Reproduction number probability distributions in stochastic mod-
els of viral dynamics with non-exponential infectious period 147
5.1 Model with constant viral production rate . . . . . . . . . . . . . 150

5.1.1 Burst size probability distribution . . . . . . . . . . . . . . 156
5.1.2 Reproduction number probability distribution . . . . . . . 160
5.1.3 Bursting versus budding . . . . . . . . . . . . . . . . . . . 166
5.1.4 Probability of viral extinction . . . . . . . . . . . . . . . . 170
5.1.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 172

5.2 Model with age-dependent viral production rate . . . . . . . . . . 188
5.2.1 Burst size probability distribution . . . . . . . . . . . . . . 192
5.2.2 Reproduction number probability distribution . . . . . . . 196
5.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 197

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6 Concluding remarks 205

vi



CONTENTS

References 208

vii



CONTENTS

viii



List of Figures

1.1 Bacillus anthracis bacteria. Image taken from European Pharmaceuti-

cal Review (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The initial steps of the infection process of inhalational anthrax. Figure

taken from Gupta (2015). . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The process of intoxication by anthrax toxin follows the A-B model.

In this case there are two alternative A-components, lethal factor (LF)

and oedema factor (EF). The B-component is protective antigen (PA),

which binds to receptors on host cells and is cleaved by a protease,

creating a binding site for either LF or EF. Once the A-B complex is

bound to the host cell receptor, the complex is taken into the cell by

receptor-mediated endocytosis. Then, acidification of the vesicle causes

the A and B components to separate, which allows the A component

to enter the cytosol of the cell and exert its toxic effect. Figure taken

from Tambe (2005). . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A sample path of a CTMC, indicating the waiting times, Wn, which are

the random variables for the time of the nth jump, and inter-event times,

Tn, which are the random variables for the times between successive

jumps. Figure taken from Allen (2010). . . . . . . . . . . . . . . . . 25
2.2 The rate diagram for a birth-and-death process. In this process, the

size of the population can only increase or decrease by one at a time

due to a birth or a death event. The birth and death rates for state i

are given by λi ≥ 0 and µi ≥ 0 respectively. . . . . . . . . . . . . . . 33

ix



LIST OF FIGURES

3.1 Diagram for the intracellular infection model. State 1S represents a

phagocytosed spore and state 1NGB a newly germinated bacterium

(NGB). The germination-maturation time is assumed to follow an Er-

lang(2, g) distribution, which is the simplest approach to consider a

non-exponential distribution for the time that it takes the spore to

become a vegetative bacterium, while including an intermediate, sus-

ceptible state as done by Pantha et al. (2018), and keeping the process

Markovian. The rate g is assumed to vary between spores. The death

rate of the newly germinated bacterium is given by µ̃ hours−1. States

i ∈ N ∪ {0} represent i intracellular bacteria. State 0 represents recov-

ery and state R the rupture of the cell, which are both absorbing states

for the stochastic process. Transitions between states i ∈ N represent

three types of events: transition to state i+1 (division of a bacterium),

to state i − 1 (death of a bacterium), and to state R (rupture of the

host cell with release of i bacteria). The per bacterium division, death,

and rupture rates are λ > 0, µ > 0, and γ > 0, respectively, all with

units (bacteria · hours)−1, leading to a linear birth-and-death process

with killing. The infected cell survives for as long as it does not reach

state R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Plots of the first-order (S1) and total-order (ST ) Sobol sensitivity in-

dices for each parameter in the model with the truncated Gaussian

germination rate distribution. The sensitivity indices indicate the im-

portance of each parameter in describing the dynamics of intracellular

spores and bacteria, on the top and bottom row of plots respectively,

during the first 24 hours of infection. The solid lines represent the

Sobol indices of each parameter over time, and the shaded regions in-

dicate 95% confidence intervals. The ranges over which each param-

eter is varied are: µg ∈ [10−2, 10], σg ∈ [10−2, 100.15], µ̃ ∈ [10−4, 10],

λ ∈ [10−1.5, 10], µ ∈ [10−4, 10], and γ ∈ [10−4, 1]. . . . . . . . . . . . . 65

x



LIST OF FIGURES

3.3 Plots of the first-order (S1) and total-order (ST ) Sobol sensitivity in-
dices for each parameter in the model with the Bernoulli germination
rate distribution. These sensitivity indices indicate the importance
of each parameter in describing the dynamics of intracellular spores
and bacteria, on the top and bottom row of plots respectively, dur-
ing the first 24 hours of infection. The solid lines represent the Sobol
indices of each parameter over time, and the shaded regions indicate
95% confidence intervals. The ranges over which each parameter is
varied are: ε ∈ [0, 1], gA ∈ [10−4, 10], gB ∈ [10−4, 10], µ̃ ∈ [10−4, 10],
λ ∈ [10−1.5, 10], µ ∈ [10−4, 10], and γ ∈ [10−4, 1]. . . . . . . . . . . . . 68

3.4 Intracellular infection model with a delay for phagocytosis. This is the
same as the model in Figure 3.1, with the addition of state ES , which
is the initial state here, representing one extracellular spore. The per
spore phagocytosis rate is ρ hours−1. . . . . . . . . . . . . . . . . . 71

3.5 A comparison between model predictions of the mean number of intra-
cellular spores for the first 0.5 hours of the experiments by Kang et al.
(2005), and the observed mean number of intracellular spores provided
in Table 3.2. These predictions have been obtained using the estimated
per spore phagocytosis rate of ρ = 0.66311 h−1. . . . . . . . . . . . . 71

3.6 Prior distributions considered (red) and posterior histograms obtained
(blue) when performing ABC-SMC with data from Akoachere et al.
(2007) of the proportion of dead macrophages at two different time
points, for the model with continuous heterogeneity in the germination
rate (top), and the model with two types of spores (bottom). . . . . . 77

3.7 Best predictions (solid lines) and pointwise 95% credible intervals (shaded
regions) of the fraction of cells that would be expected to rupture be-
fore time t in an experiment with MOI 20:1, compared to data from
Akoachere et al. (2007), for the model with two types of spores (left),
and the model with continuous distribution for the germination rate
(right). The best prediction is the model output obtained by using the
accepted parameter set with the smallest distance from the data. The
pointwise 95% credible intervals show the uncertainty in the predictions
given the posterior distributions for the model parameters. . . . . . . 78

xi



LIST OF FIGURES

3.8 Prior distributions (red) and posterior histograms (blue) when perform-

ing ABC-SMC for the model with continuous heterogeneity of germina-

tion rate (top), and the model with two types of spores (bottom), using

data from Kang et al. (2005) of the number of intracellular spores and

bacteria at different time points for MOIs 1:2, 1:10, and 1:20. . . . . . 82

3.9 Time-courses for the mean number of intracellular spores and bacteria,

for the model with continuous heterogeneity of germination rate (top),

and the model with two types of spores (bottom), compared to data

from Kang et al. (2005). The best predictions (solid lines) are the model

outputs obtained by using the accepted parameter set with the smallest

distance to the data, and the pointwise 95% credible intervals (shaded

regions) show the uncertainty in those predictions, given the range of

parameter values in the 103 accepted parameter sets from the final

iteration of ABC-SMC. The predictions from the model by Pantha et al.

(2018), using separate sets of parameter estimates for each MOI, are

shown as dashed lines. For my model, only the data for MOI 1:2, 1:10,

and 1:20 were used in the ABC-SMC to calibrate model parameters.

The comparison of the model predictions with the MOI 1:1 data is

shown here as a qualitative model validation. . . . . . . . . . . . . . 84

xii



LIST OF FIGURES

3.10 The top row of plots corresponds to a population of S0 = 30500 in-
fected cells, each containing a single spore at time 0, whereas the
bottom row corresponds to an initial condition of S0 = 100. Left:
The mean number of type A spores, εS0p1S (t; g = gA), type A newly
germinated bacteria, εS0p1NGB (t; g = gA), and vegetative bacteria,
εS0Bv(t; gA) = εS0

∑∞
i=1 ipi(t; g = gA), arising from the type A spores

in the infected macrophages. Centre: The analogous functions for
the populations arising from the initial spores with germination rate
gB. Right: The overall mean number of spores, S0S(t), newly germi-
nated bacteria, S0BNGB(t), and vegetative bacteria, S0Bv(t), obtained
by adding together the populations for each type of spore. The solid
lines indicate the means for the estimated parameter values in Table
3.8, while the shaded regions indicate the pointwise 95% credible inter-
vals for these means, when the uncertainty in the parameter values from
the posterior distributions is taken into account. The equations used to
compute these curves were Eqs. (3.1.7), (3.1.8), (3.1.11), (3.1.44), and
(3.1.45). The dots show values for the size of the different populations
over time from a single stochastic simulation beginning with S0 spores. 91

3.11 Top row: From left to right, the first two plots show the probabil-
ity density functions for the rupture time of a macrophage infected
with a spore of type A and type B, respectively, given by fT R

1S

(t; gA)
and fT R

1S

(t; gB). Also shown are approximations of these rupture time
distributions with Erlang distributions. The third plot shows these
densities on the same plot, when they are scaled by the relative fre-
quencies of each germination rate: εfT R

1S

(t; gA) and (1 − ε)fT R
1S

(t; gB).
The fourth plot shows as a solid line the probability density function for
the rupture time of a macrophage infected with a single spore, condi-
tioned on rupture occurring, which is given by fT R

1S

(t)/rR
1S

. Also shown
on the fourth plot is a histogram of the finite rupture times from 106

stochastic simulations of the model in Figure 3.1. Bottom row: Plots
correspond to the analogous densities for the time to recovery of an in-
fected macrophage. The estimated parameter values in Table 3.8 were
used to compute these functions. . . . . . . . . . . . . . . . . . . . . 93

xiii



LIST OF FIGURES

3.12 Left: The best predicted rupture size distribution for the model with

two types of spores, computed using Eq. (3.1.42), with the estimated

parameter values from Table 3.8. Inset is the conditional rupture size

distribution, for the number of bacteria released by a macrophage in-

fected with a single spore, given that it ruptures rather than recovers.

Right: Scatter plot of the probability of rupture against the expected

rupture size (conditioned on rupture occurring), for each parameter set

in the posterior distribution. Lines indicate the values which correspond

to the parameter set from Table 3.8. The colours of the points indicate

the conditional mean time to rupture for each parameter set considered. 94

4.1 Diagram of the within-host model for inhalational anthrax. In the air-

ways of the lungs, spores are cleared (with rate kc) by ciliated epithelial

cells that beat and propel material up the airways to be expelled. Some

spores are instead engulfed by phagocytes and are transported into the

lung tissue (with rate kp). It is assumed that each phagocyte only

phagocytoses one spore. The infected phagocyte then migrates to the

lymph nodes and after an Erlang-distributed time will either recover,

releasing zero bacteria, or rupture, releasing some positive number of

bacteria. The number of bacteria released is determined by the rupture

size distribution of the intracellular model, given in Eq. (3.1.42). In

the compartments containing extracellular bacteria, the bacteria pro-

liferate with a linear replication rate, and a linear death rate accounts

for multiple mechanisms of extracellular bacterial death in the lymph

nodes. Migration of extracellular bacteria from the lymph nodes to

the circulation compartment occurs with rate mBBLN if the number of

bacteria in the lymph nodes is greater than the migration threshold, M . 108

xiv



LIST OF FIGURES

4.2 Discrete-time model for the possible fates of a single spore during the
very early stages of inhalational anthrax infection. Within the lung, an
inhaled spore (represented by the yellow ball) becomes deposited in the
alveoli and ingested by a host phagocyte with probability ϕ. The intra-
cellular spore germinates and the phagocyte might kill the germinated
bacterium or the bacterium may survive the antimicrobial environment,
replicate and cause the phagocyte to rupture, as described by the in-
tracellular model in Chapter 3. The infected phagocyte migrates to the
lymph nodes and either recovers, or ruptures and releases some bac-
teria, according to the probabilities calculated from the intracellular
model, Rn

1S
. The population of bacteria released follows a birth and

death process, where an extracellular bacterium may be killed by host
immune cells with probability p or a bacterium will replicate extracellu-
larly with probability 1−p. In this birth and death process, ∅ represents
the state where there are no extracellular bacteria remaining. . . . . . 111

4.3 Kernel density estimates for the prior distribution for each parameter
in grey and the marginal posterior distribution for each parameter in
green, from calibration of the model of in vitro bacterial growth and
PA production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Kernel density estimate for the posterior distribution of the transfor-
mation βK/(ν0 + νK), which determines the steady state of PA in the
model of in vitro bacterial growth and PA production. The units of this
quantity are ng. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Scatter plots showing the relationships between the posterior distribu-
tions of pairs of parameters from the model of in vitro bacterial growth
and PA production. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Predictions for bacterial CFU (left) and PA concentration (right) over
time obtained by using ABC-SMC to fit the model in Eq. (4.2.1) to in
vitro experimental data from Charlton et al. (2007). Solid lines show
pointwise medians of the set of predictions using all the parameter sets
in the posterior sample, and the shaded regions represent the pointwise
95% credible intervals of these predictions. . . . . . . . . . . . . . . . 120

xv



LIST OF FIGURES

4.7 Left: Exponential dose-response model fit to pooled rabbit Ames strain
dose-response data, by Gutting et al. (2015). The probability that one
inhaled spore will cause a response is estimated as r = 6.75×10−6. Cen-
tre: Exponential model fit to pooled guinea-pig dose-response data, by
Gutting et al. (2015), obtaining an estimate of r = 9.79×10−6. Right:
Combinations of parameter values for p and ϕ that give r = 6.75×10−6

according to Eq. (4.1.1), for different rupture size distributions sampled
from the posterior distribution of the intracellular model. The average
of each rupture size distribution is indicated by the colour of the points. 122

4.8 (A) Bacterial CFU/ml and (B) PA levels (ng/ml) post-challenge, mea-
sured in the blood of guinea pigs exposed to a dose of 2 × 107 Ames
spores. Each dot represents a measurement taken from an individual
animal. Figure taken from Savransky et al. (2013). . . . . . . . . . . 124

4.9 Histogram for the probabilities of rupture obtained from the posterior
sample of the intracellular model calibration in Chapter 3. . . . . . . 130

4.10 Model predictions compared to the data used in the ABC-SMC for the
rabbit model calibration. Top row: Predictions from the system of
ODEs in Eq. (4.2.8) compared to the mean CFU loads in the TBLN
and blood from the rabbit data in Table 4.4. Bottom: Prediction of
the mechanistic exponential dose-response model given by Eqs. (4.1.1)
and (4.1.2) compared to rabbit dose-response data from Gutting et al.
(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.11 Binomial distributions for the number of deaths, given by the model
with the median parameter values from the posterior sample, for each
dose in the rabbit data set. The observed number of deaths is indicated
as a vertical line, for each dose. . . . . . . . . . . . . . . . . . . . . 133

4.12 Kernel density estimates for the prior distribution for each parame-
ter in grey and the marginal posterior distribution for each parameter
in green. These posterior distributions were obtained from fitting the
mechanistic dose-response model given by Eqs. (4.1.1) and (4.1.2) to
the rabbit dose-response data from Gutting et al. (2015), and simulta-
neously fitting the model in Eq. (4.2.8) to the mean CFU loads in the
TBLN and blood from the rabbit data in Table 4.4. . . . . . . . . . . 133

xvi



LIST OF FIGURES

4.13 Correlation coefficients between the posterior samples of pairs of pa-

rameters in the rabbit model calibration. . . . . . . . . . . . . . . . 134

4.14 Model predictions compared to the guinea-pig data used in the ABC-

SMC. Top row: Predictions from the model in Eq. (4.2.8) compared to

the CFU loads and PA amounts in the blood from the guinea-pig data

in Figure 4.8. Bottom: Prediction from the mechanistic exponential

dose-response model given by Eqs. (4.1.1) and (4.1.2), compared to

guinea-pig dose-response data from Gutting et al. (2015). . . . . . . . 139

4.15 Binomial distributions for the number of deaths, given by the model

with the median parameter values from the posterior sample, for some

of the doses in the guinea-pig dose-response data set used here. The

observed number of deaths is indicated as a vertical line, for each dose

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.16 Kernel density estimates for the prior distribution for each parame-

ter in grey and the marginal posterior distribution for each parameter

in green. These posterior distributions were obtained from fitting the

mechanistic dose-response model given by Eqs. (4.1.1) and (4.1.2) to

the guinea-pig dose-response data from Gutting et al. (2015), and si-

multaneously fitting the model in Eq. (4.2.8) to the mean CFU loads

and PA amounts in the blood from the guinea-pig data in Figure 4.8. . 141

4.17 Correlation coefficients between the posterior samples of pairs of pa-

rameters in the guinea-pig model calibration. . . . . . . . . . . . . . 142

xvii



LIST OF FIGURES

5.1 Diagram for the model with constant viral production rate. T repre-
sents a target cell, E represents an eclipse phase cell, I represents an
infectious phase cell, and V represents free virus. ϕ denotes the empty
set and represents clearance of infected cells or virus. The arrows show
the possible transitions and their corresponding rates, or the distribu-
tion of the time taken for the event in the case of non-exponentially
(Erlang) distributed transition times. Target cells are infected by virus
with rate β and enter the eclipse phase. Eclipse phase cells can be
cleared by the immune response with rate ν or they can eventually
transition into the infectious phase and begin to release virus at rate p.
Infectious cells can also be cleared by immune system cells with rate ν,
or eventually suffer virus-induced cell death. Free virus is cleared with
rate c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 I represents an infected cell that has produced B = 6 virions over its
lifetime. The free virions that have been released can then infect a new
cell with rate βT , or are cleared with rate c. The per virion infection
rate, βT , will change each time a secondary infection is produced, since
this will reduce the number of available target cells. If this reduction
in the number of uninfected target cells is ignored, then the number
of uninfected target cells will remain constant and so will the infection
rate. Then each virion will have probability θ = βT0/(c + βT0) of
infecting a new cell. In this case, all the virions are independent of each
other, so the number of secondary infections is the sum of independent
and identical Bernoulli random variables, and hence follows a binomial
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3 A depiction of the discrete-time Markov chain, Y, used to model the
number of secondary infections produced by a single infected cell that
has released B = b virions during its lifetime. State i represents i

secondary infections. The process begins in state Y0 = 0 and takes b

steps (one for each virion). The final state of the process after b steps is
the number of secondary infections produced. The maximum number
of secondary infections that can be produced is M = min{b, T0}, where
T0 is the initial number of available uninfected target cells. . . . . . . 163

xviii



LIST OF FIGURES

5.4 Probability distribution for B, the random variable for the amount of

virus released by a single infected cell during its lifetime. The parameter

values in Table 5.2 have been used to calculate this distribution, with

m = 1 and ν = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.5 Cumulative distribution functions for B, for different values of ν. Other

parameters are set to their values from Table 5.2, with m = 1. . . . . 174

5.6 Heatmap showing changes in the Hellinger distance between the two

distributions of the reproduction number, R, calculated using methods

Case 1 and Case 2, for different values of β and T0. All other parameter

values were fixed to the values in Table 5.2, with m = 1 and ν = 0. . . 175

5.7 Histograms for the probability distribution of the reproduction number,

for different values of β and T0. For each pair of parameter values, the

distributions obtained from methods of Case 1 (number of target cells

decreases as they become infected) and Case 2 (number of target cells

stays constant) are shown. All other parameter values are fixed to the

values in Table 5.2, with m = 1 and ν = 0. . . . . . . . . . . . . . . . 177

5.8 Probability distributions for the reproduction number, for different val-

ues of ν and T0. Each row corresponds to a different value of ν and

each column to a different value of T0. The three values of ν used are

0, 0.005, and 0.01, from top to bottom row, respectively. The three

values of T0 used are 50, 500, and 5000, corresponding to values of θ of

3 × 10−4, 3 × 10−3, and 3 × 10−2, respectively. The parameter values

in Table 5.2 have been used to calculate these distributions (using the

method of Case 2), with m = 1. . . . . . . . . . . . . . . . . . . . . 179

xix



LIST OF FIGURES

5.9 Left: Plot to show how the value of the mean basic reproduction num-

ber, R̄, changes depending on the size of the target cell population,

T0, for different values of m. The solid blue, orange, and green lines

correspond to the R̄ defined in Eq. (5.1.2), for the model considering

loss of virus due to infection of cells. The red line corresponds to the R̄

defined in Eq. (5.1.14), for the model that neglects this process in the

equations, which is independent of m. The dashed blue line indicates

the expected number of virions released by an infected cell, when m = 1

and ν = 0. The dots highlight the values of the mean basic reproduc-

tion numbers when T0 = 105, which are also indicated as vertical lines

on the right histograms. Right: Histograms for the negative binomial

distribution of the reproduction number, for different values of m, when

T0 = 105 and ν = 0. The parameter values in Table 5.2 have been used

to obtain these plots. . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.10 Probability distributions for B, the random variable for the number of

virions released by a single infected cell during the infectious phase.

The medians of each distribution are indicated by the vertical lines.

The parameter values in Table 5.3 are used for the two strains, with

ν = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.11 Probability distributions for R, the random variable for the number of

secondary infected cells due to an initial cell in an otherwise susceptible

population. Three different values of T0 are used: 102, 104, and 106.

The means of each distribution are indicated by the vertical lines. The

parameter values in Table 5.3 are used for the two strains, with ν = 0. 183
5.12 Reproduction number distributions for the bursting model, for different

numbers of infectious phase stages, nI . For each value of nI , the mean

of the Erlang-distributed time until cell burst is kept fixed to the value

of τI in Table 5.4. All other parameters are also set to their values from

Table 5.4. The probabilities of zero secondary infections for each nI are

shown on the left, and the distributions conditioned on positive values

of the reproduction number are shown on the right. . . . . . . . . . . 186

xx



LIST OF FIGURES

5.13 Left: Plot to show how the probability of viral extinction depends on
the initial number of infected cells, when virus is assumed to be released
in a burst only upon viral-induced cell death. The curves are shown for
different numbers of infectious phase stages, nI . For each value of nI ,
the mean of the Erlang-distributed time until cell burst is kept fixed to
the value of τI in Table 5.4. All other parameters are also set to their
values from Table 5.4. Right: Plot to show how the probability of viral
extinction starting from one infected cell changes as a function of θ, for
different values of nI . The value of θ used for the left plot is indicated
by the dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.14 A depiction of the continuous-time Markov chain, Z, used to model
a single infected cell. State i indicates that the cell contains i vRNA
copies that are available to be assembled into virions and released from
the cell. When the process is in state 0, the cell is still infected and
able to produce vRNA copies from some background level of replication
complexes that are not counted by this Markov chain. vRNA is pro-
duced within the cell with constant rate α, degraded with rate µ per
vRNA, and exported as virions with rate ρ per vRNA. After an Erlang-
distributed time, the process will enter state ϕ, which is an absorbing
state representing that viral production no longer occurs from the in-
fected cell. For example, the cell might have suffered a virus-induced
death, or might have been killed due to the action of the immune sys-
tem. This model is different to the one in Section 5.1, since here the
two competing mechanisms of cell death are not explicitly modelled,
but it is assumed that this competition results overall in an Erlang
distribution for the time until cell death. . . . . . . . . . . . . . . . . 191

5.15 Plots showing the probability distribution for B, the random variable
for the amount of virus released from a single cell whilst in the infectious
phase, for the model in Figure 5.14. In the plot on the left, α is varied
and all other parameters are fixed to their values in Table 5.5. In the
right hand side plot, nI is varied, but the average time spent in the
infectious phase, τI = nI/δI , remains constant. The medians of each
distribution are indicated on the plots. . . . . . . . . . . . . . . . . . 198

xxi



LIST OF FIGURES

5.16 Plots showing probability distributions for R, the random variable for
the number of secondary infections caused by a single infected cell.
The top row corresponds to the case where the distribution of the in-
fectious period is exponential. The bottom row corresponds to the case
where the infectious period follows an Erlang distribution with shape
parameter nI = 10. The distributions are shown for different values
of θ, which is the probability that a progeny virion released from an
infected cell will infect a new cell before it decays. These values of θ

were obtained by using estimates for the pair of parameters, β and c,
from Rong et al. (2013), Clausznitzer et al. (2016), and Neumann et al.
(1998), respectively, and assuming a constant population of T0 = 106

susceptible cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.17 Plot showing the probability of viral extinction as a function of the

initial number of infected cells, for different values of nI , which is the
number of stages in the Erlang-distributed infectious period. . . . . . 202

xxii



List of Tables

3.1 List of parameters for the intracellular infection model in Figure 3.1. . 47

3.2 Data taken from Table 2 of Pantha et al. (2018), giving the average

number of intracellular spores counted at 1 hour from two replicates of

the experiment using spores of a germination-deficient strain of B. an-

thracis. The number of intracellular spores of the germination-deficient

strain should have remained unchanged between 0.5 hours and 1 hour,

because they cannot germinate, and all extracellular spores were re-

moved by washing at 0.5 hours, so there would have been no more

phagocytosis after that time. Note that the value for MOI 1:10 re-

ported in Table 2 of Pantha et al. (2018) was inconsistent with that

observed in their Figure 2, so the second one is used here, since it is

more consistent with the trajectory over time for the spore counts in

Figure 2 of Pantha et al. (2018) for MOI 1:10, and also so that my

predictions are comparable with those of Pantha et al. (2018). . . . . 62

3.3 Data for the number of intracellular spores and bacteria present at dif-

ferent time points, which have been used to perform ABC-SMC. These

data have been taken from Tables 2 and 3 of Pantha et al. (2018),

although time points are shifted by 30 min to account for the first

phase of the experiment where phagocytosis occurs. The initial condi-

tions (t = 0) correspond to the values reported in Table 3.2 from the

germination-deficient experiment. The counts at each time point are

averages of two experimental replicates. . . . . . . . . . . . . . . . . 62

xxiii



LIST OF TABLES

3.4 Means of the total-order Sobol sensitivity indices (ST ) over the whole
time-course for each model parameter and variable in the model with
the truncated Gaussian germination rate distribution. Parameters are
listed in order of most to least important in the columns for each model
variable. Values are given to 2 decimal places. . . . . . . . . . . . . . 66

3.5 Means of the total-order Sobol sensitivity indices (ST ) over the whole
time-course for each model parameter and variable in the model with
the Bernoulli germination rate distribution. Parameters are listed in
order of most to least important in the columns for each model variable.
Values are given to 2 decimal places. . . . . . . . . . . . . . . . . . . 69

3.6 Prior distributions used in the ABC-SMC with data from Akoachere
et al. (2007), for the model with continuous heterogeneity of germina-
tion rate (top) and the model with two types of spores (bottom). For
the ABC-SMC using the data from Kang et al. (2005), all prior distri-
butions remain as reported here, apart from those for λ and γ. For these
two parameters, the marginal posterior distributions obtained from the
Akoachere et al. (2007) calibration (shown in blue in Figure 3.6) are
used as prior distributions in the calibration with the Kang et al. (2005)
data. Parameters µg, σg, gA, gB, and µ̃ all have units h−1, and λ, µ,
and γ have units (bacteria · h)−1. . . . . . . . . . . . . . . . . . . . 75

3.7 Summary statistics for the posterior sample of each parameter, shown
in blue in Figure 3.8, for the model with continuous heterogeneity of
germination rate (top) and two types of spores (bottom). Parameters
µg, σg, gA, gB, and µ̃ all have units h−1, and λ, µ, and γ have units
(bacteria · h)−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8 Parameter values that gave the smallest distance between the two types
of spores model and the data from Kang et al. (2005) in the ABC-SMC
analysis. Parameters gA, gB, and µ̃ all have units h−1, and λ, µ, and γ

have units (bacteria · h)−1. . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 The transitions and their corresponding rates in the Markov chain part
of the within-host model in Figure 4.1. 1A is an indicator function,
which is equal to 1 if A is true, and 0 otherwise. . . . . . . . . . . . . 107

xxiv



LIST OF TABLES

4.2 List of parameters for the within-host infection model. Units given here
correspond to the stochastic model, but some of these units will change
when incorporating these parameters into the ODEs provided in Section
4.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 List of model parameters and corresponding prior distributions used
in the ABC-SMC for the model of in vitro bacterial growth and PA
production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Data for the number of CFU (mean ± SEM) present in the tracheo-
bronchial lymph nodes (TBLN) and blood of groups of rabbits at differ-
ent times after exposure to a mean inhaled dose of 4.428× 107 spores.
The number of rabbits sacrificed to obtain the measurements at each
time point is specified in the final column. The CFU in the TBLN
could not be quantified for all rabbits at 24h and 36h, which is why
the number of rabbits is fewer for the TBLN than the blood at these
times. These data were obtained from the study published by Gut-
ting et al. (2012), and have been provided by Brad Gutting via private
communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5 Data for the mean number of CFU and amount of PA present in the
blood of groups of guinea pigs at different times after exposure to a
mean dose of 2×107 spores. These data have been obtained from Figure
4.8 and converted to the amounts in the whole blood compartment by
assuming a volume of 70 ml for the blood of a guinea pig. . . . . . . . 125

5.1 The transitions and their corresponding rates in the Markov chain ver-
sion of the model in Eq. (5.1.1). . . . . . . . . . . . . . . . . . . . . 154

5.2 Parameter values that have been used to obtain some numerical results
applicable to Ebola virus (EBOV). These are the modes of posterior
samples that Liao et al. (2020) obtained using data of EBOV infection
in vitro. The parameters p and β are transformed into units of virions
using a ratio of m infectious virus particles per TCID50. . . . . . . . . 172

5.3 Parameter values that have been used to obtain some numerical results
applicable to influenza. These are estimates that Yan et al. (2020)
obtained using data of in vitro influenza infection. . . . . . . . . . . . 182

xxv



LIST OF TABLES

5.4 Parameter values that have been used to obtain some numerical results
applicable to HIV. These parameter values are the same as ones used
by Yuan & Allen (2011), apart from the value of ν, which has been
reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Parameter values that have been used to obtain numerical results for
the HCV model. These are the estimates given for the parameters in the
deterministic model by Guedj et al. (2013). The only difference is that
the model by Guedj et al. (2013) assumes an exponentially distributed
infectious period (nI = 1), but this may not be realistic, as discussed
previously. Therefore a larger value of nI is used here for illustration. . 197

5.6 Values for the mean and median of the random variable B, when the
shape parameter of the Erlang infectious period distribution is varied.
For each value of nI , δI = nI/τI , where τI is the average length of the
infectious period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

xxvi



Chapter 1

Introduction

1.1 Biological introduction

The immune system needs a diverse array of mechanisms to deal with the diver-
sity of pathogens that it may encounter, which can have vastly different sizes and
lifecycles. For example, viruses are usually around 0.1 µm (Burrell et al. (2017))
and must be intracellular in order to replicate. On the other hand, bacteria
are usually around 1-2 µm and may replicate in the intracellular or extracellu-
lar environment, depending on the particular bacterium. The primary defences
against such pathogens are physical blockades such as the skin and mucosa. If a
pathogen manages to evade these barriers and enter the body, the second line of
defence is the innate immune response. The innate response involves generalised
recruitment and activation of a wide range of cells for the removal of the infec-
tious agent. If needed, this is followed by an adaptive immune response, which
involves specific pathogen-directed responses by a select group of cells. This the-
sis will explore mathematical models for the infection dynamics of two types of
pathogens - the specific bacterium Bacillus anthracis, and viruses more generally.

1.1.1 Anthrax

Anthrax is an infectious disease, caused by the gram-positive bacterial pathogen
Bacillus anthracis. Although anthrax has been associated with human history
for a long time, dating back to pre-biblical times, it was in the 1870s that Robert
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1. INTRODUCTION

Figure 1.1: Bacillus anthracis bacteria. Image taken from European Pharmaceutical
Review (2013).

Koch discovered that B. anthracis is the causative agent of the disease (Moayeri
et al. (2015)). B. anthracis bacteria are rod-shaped, measuring 1-1.2 µm in width
and 3-5 µm in length (Goel (2015)), and usually form chains of bacterial cells
as they multiply, shown in Figure 1.1. Under adverse conditions, B. anthracis
forms a dormant spore, which is highly resistant and unable to replicate. These
spores can remain viable for centuries in soil, air, and water, with a half-life
of around 100 years (Goel (2015)). The spores monitor their environment, and
when favourable conditions are detected, such as the nutrient content of a host,
the spores begin to germinate into vegetative bacteria (Setlow (2003)). These
bacteria can then replicate inside the host.

Anthrax is a zoonotic disease, which means that it can be transmitted from
animals to humans. It commonly affects domestic and wild animals in agricultural
regions in some areas of the world, and can be transferred to humans through
contact with infected animals or contaminated animal products. There are three
main routes of exposure to B. anthracis spores: the cutaneous, gastrointestinal,
and inhalation routes. If a human comes into contact with contaminated animal
products, then B. anthracis spores can enter the body through a cut or scratch in
the skin, which can lead to cutaneous anthrax. This is the most common type of
anthrax, but can usually be resolved with timely treatment, and only about 20%
of untreated cases are fatal. Consuming infected meat can lead to gastrointestinal
anthrax, which is the second most common form of anthrax infection and has
fatality rates of 25-60%. Thirdly, B. anthracis spores can enter the air from
industrial processing of contaminated materials such as wool, hide, or hair. Spores
in the surrounding air inhaled into the lungs can lead to inhalational anthrax,
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1.1 Biological introduction

which is usually fatal if not rapidly detected and treated (Cote et al. (2011)).
Even with treatment, fatality rates for inhalational anthrax can be rather high
if the treatment is not started early enough after exposure and symptoms onset.
One of the reasons that inhalational anthrax is a such a dangerous form of the
disease is that the initial symptoms resemble those of flu, so it is often difficult to
diagnose early (Goel (2015)). Once it is correctly diagnosed, it may be too late
to treat the infection. B. anthracis is viewed as a potential biological terrorism
threat because the spores can be produced and preserved and then deliberately
spread by release in the air (Goel (2015)). In 1979, an outbreak of 96 human
cases of inhalational anthrax occurred in Sverdlovsk in the Soviet Union, due to
an accidental release of B. anthracis spores from a Soviet facility (Moayeri et al.
(2015)). The first confirmed use of the bacterium as a weapon occurred in the
United States in 2001, when envelopes containing B. anthracis spores were posted
to several news media companies and government officials. This led to 22 cases
of the disease, including 5 fatalities (Jernigan et al. (2002)).

Inhalational anthrax is initiated by ungerminated, dormant B. anthracis spores,
inhaled by a host. The spores travel through the air passages and eventually reach
the alveoli of the lungs. There is some evidence that spores may be able to ger-
minate extracellularly in the lungs (Powell et al. (2015)). However the generally
accepted model of inhalational anthrax infection is the Trojan horse model, which
assumes that ungerminated spores must be engulfed by alveolar phagocytes be-
fore they begin to germinate (Guidi-Rontani (2002)). Once the spores have been
phagocytosed, the infected phagocytes migrate into the nearby lymph nodes in
the mediastinum. These initial steps are outlined in Figure 1.2. Since the vegeta-
tive bacteria are less resistant than the spore form of B. anthracis, it is possible
for the bacteria to die or be killed by the host phagocyte. Hence, the phagocytes
are sometimes able to recover if they eliminate all intracellular bacteria. The host
phagocytes that do not recover will eventually rupture and release the bacteria
into the extracellular environment (Day et al. (2011); Pantha et al. (2018)). It is
believed that the host phagocytes migrate to the lymph nodes before rupturing.
This is because bacteria are not normally found within the lungs after systemic
bacteraemia (Cote et al. (2011)), and inhalation anthrax does not usually cause
pneumonia (Day et al. (2011)). During the first stage of the infection, in which
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1. INTRODUCTION

Figure 1.2: The initial steps of the infection process of inhalational anthrax. Figure
taken from Gupta (2015).

bacteria germinate and replicate inside host cells, few symptoms present in the
host. Once host cells rupture, the extracellular bacteria continue to multiply,
leading to oedema and haemorrhage of the mediastinal lymph nodes. This re-
sults in large amounts of fluid entering the pleural cavity, which can severely
affect breathing (Guarner et al. (2003)). The bacteria can also spread into the
bloodstream and other organs to establish a systemic infection (Moayeri et al.
(2015)). In cases of inhalational anthrax, treatment is usually started after the
onset of this stage because this is when the flu-like symptoms start to appear
(Goel (2015)). Unfortunately, it is very difficult to cure the disease by antibiotic
therapy at this stage if the initial dose of spores was high.

Numerous in vitro and in vivo studies have been undertaken to improve
understanding about important events during B. anthracis infections. Alveo-
lar macrophages are one of the types of phagocytes that play a key role in the
early infection stages of inhalational anthrax. These cells can induce microbicidal
defences against intracellular pathogens and help to clear the infection (Guidi-
Rontani et al. (1999)), but are also involved with transportation of B. anthracis
spores to the mediastinal lymph nodes. Dixon et al. (2000) studied an in vitro
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system and found that once spores are internalized by macrophages, they be-
gin to germinate inside the phagosome. They also observed that 1-2 hours after
phagocytosis, newly germinated bacteria were able to escape from macrophage
phagosomes and begin to replicate in the cytosol. These bacteria were later re-
leased from the macrophage into the extracellular environment when the host cell
ruptured and died. Akoachere et al. (2007) have examined in vitro macrophage-
spore interactions by fluorescence microscopy. To do this, they used two different
dyes, SYTO 13 and PI, which both bind to DNA. SYTO 13 is a green dye that is
cell permeable, whereas PI is a red dye that is impermeable to cell membranes.
Therefore, when staining macrophages with these dyes, the nucleus of healthy
cells shows green fluorescence and the nucleus of dead cells shows red fluores-
cence. After infecting murine macrophages with B. anthracis spores at a spore to
macrophage ratio of 20:1, they noticed a large increase in PI fluorescence intensity
within 6 hours after B. anthracis inoculation. In particular, they observed 20%
PI-positive macrophages at 3.5 hours after exposure, and 90% at 7 hours after
exposure. They also observed that vegetative bacteria, which were stained green
by the SYTO 13 dye, were present extracellularly 7 hours following B. anthracis
inoculation. This is consistent with observations from Dixon et al. (2000), who
found that the release of bacteria from macrophages occurred 4-6 hours after in-
cubation of macrophages with spores. Dendritic cells are also thought to play a
role in the trafficking of B. anthracis to the lymph nodes during the early stages
of infection. These cells have been found to readily engulf B. anthracis spores
(Brittingham et al. (2005); Cleret et al. (2006)), and transport them to the lymph
nodes in a mouse model of inhalational anthrax (Cleret et al. (2007)).

Most pathogenic bacteria form virulence factors. These are structures of the
bacteria, or molecules produced by the bacteria, that add to its effectiveness
and ability to cause disease. Virulence factors help bacteria to evade or inhibit
the host’s immune system, enter and exit cells, and obtain nutrients from the
host. An important factor for the survival of B. anthracis bacteria in the host
is the anti-phagocytic capsule, which is a layer that lies outside of the cell wall
and is composed of poly-γ-D-glutamic acid. The capsule allows extracellular,
vegetative bacteria to avoid eradication by the immune system by preventing the
bacteria being phagocytosed and destroyed (Sharma et al. (2020)). It does this
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by covering molecules on the bacteria cell surface that might otherwise cause an
immune response in the host, and therefore allows the bacteria to go unnoticed
by the immune system (Cress et al. (2014); Jang et al. (2011)).

Another of the characteristic virulence factors that contributes to the pathogenic
success of B. anthracis is the production of three proteins that are collectively
termed anthrax toxin: protective antigen (PA), oedema factor (EF), and lethal
factor (LF). The anthrax toxin follows the A-B model, which comprises an ac-
tive component, “A”, and a binding component, “B”. The active component is
an enzyme that has a toxic effect on cells by interfering with their functions,
for example by inactivating a cell protein or signalling pathway. The binding
component binds the toxin to a receptor molecule on the surface of the host cell
membrane. In the case of the anthrax toxin, the B-component is PA and there
are two alternative A-components, EF and LF. PA binds to receptors on host
cells and is cleaved by a host protease called furin. This creates a binding site for
either EF or LF. Once the A-B complex is bound to the host cell receptor, the
complex is taken into the cell by receptor-mediated endocytosis. Then, acidifica-
tion of the vesicle causes the A and B components to separate, which allows the
A component to enter the cytosol of the cell and exert its toxic effect (Bhatnagar
& Batra (2001)). This process is shown in the diagram in Figure 1.3. EF and
LF are individually non-toxic, since they are not able to enter cells without PA
molecules present. EF in combination with PA forms the oedema toxin, and LF
in combination with PA forms the lethal toxin. These two toxins cause different
cellular responses and are essential factors for the survival of B. anthracis in an
infected host. Lethal toxin disrupts cell signalling pathways of macrophages and
some other cells, leading to cell death. On the other hand, oedema toxin inhibits
the phagocytosis of bacteria by neutrophils (Banks et al. (2005)). In some cell
types, oedema toxin also increases the levels of cyclic adenosine monophosphate,
which is a chemical messenger that plays a major role in controlling many intra-
cellular processes. During systemic infection, the toxins are distributed via the
bloodstream to different organs, where they affect the functioning of organs such
as the spleen, lymph nodes, liver, kidney, heart and brain. Together, the anthrax
toxins cause suppression of the host’s immune system, often leading to death of
the host.
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1.1 Biological introduction

Figure 1.3: The process of intoxication by anthrax toxin follows the A-B model. In
this case there are two alternative A-components, lethal factor (LF) and oedema factor
(EF). The B-component is protective antigen (PA), which binds to receptors on host
cells and is cleaved by a protease, creating a binding site for either LF or EF. Once the
A-B complex is bound to the host cell receptor, the complex is taken into the cell by
receptor-mediated endocytosis. Then, acidification of the vesicle causes the A and B
components to separate, which allows the A component to enter the cytosol of the cell
and exert its toxic effect. Figure taken from Tambe (2005).

The genes that encode the anthrax toxin and capsule are found on two plas-
mids in the cytosol of the bacteria, pXO1 and pXO2. The pXO1 plasmid carries
genes that encode the production of the components of the anthrax toxin, and
the pXO2 plasmid carries genes that encode the production of the capsule. The
Sterne strain of anthrax, discovered in the 1930s by Max Sterne, contains the an-
thrax toxin plasmid, pXO1, but lacks the capsule forming plasmid, pXO2. This
means that the Sterne strain has a reduced ability to cause illness, in comparison
to strains that carry both plasmids. The Sterne strain has been used to vacci-
nate livestock since 1939 because immunisation with this strain has been found
to provide a protective immune response (Centers for Disease Control and Pre-
vention (2009)). The Sterne strain is also often used in laboratory settings (for
example in the in vitro experiment by Akoachere et al. (2007) described above)
since it poses a reduced infection risk to laboratory workers. Research with viru-
lent strains of B. anthracis, such as the Ames strain, requires enhanced biosafety
laboratories (Twenhafel (2010)). Another strain of B. anthracis, called A16R,
which also produces anthrax toxin but not the capsule, is currently used as a
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human anthrax vaccine in China (Zai et al. (2016)). The toxigenic properties of
B. anthracis were discovered in 1954 and this new experimental knowledge led to
the development of more effective, acellular vaccines for humans in the UK and
USA. These acellular vaccines are composed of culture filtrates containing toxin
proteins expressed by avirulent vaccine strains of B. anthracis. These vaccines
aim to counter toxin action by initiating the body to generate antibodies against
PA (Splino et al. (2005)). Anthrax vaccine adsorbed (AVA) was approved for
use in the United States in 1965. Although it contains all three toxin compo-
nents, PA is the most abundant protein and the main immunogen in this vaccine
(Pomerantsev et al. (2011)). Anthrax vaccine precipitated (AVP) is licensed in
the UK and contains significant amounts of PA and LF.

Experimental studies have been conducted to determine the biological activi-
ties of the toxin proteins and evaluate the quantities expressed by different strains
in culture conditions. For example, Zai et al. (2016) explored the expression of
PA and LF components by the A16R strain and the Sterne strain. The growth
kinetics of the bacteria were observed to follow a sigmoidal growth curve, reaching
a stationary phase of around 107 viable cells per ml. They found that the amount
of LF and PA increased as the bacteria grew, peaked after around 12-16 hours of
bacterial growth, and then declined rapidly. This rapid decline may be caused by
downregulation of the toxin genes due to the depletion of glucose in the culture
(Puziss & Wright (1959)). Zai et al. (2016) suggested that an accumulation of
proteases in the culture could be an alternative reason for the decrease in the
levels of toxin proteins. This is because it has been shown that certain proteases
secreted by B. anthracis, such as immune inhibitor A1 (InhA1), can cleave the
anthrax toxin proteins (Pflughoeft et al. (2014)). When protease inhibitors were
added to the culture, Zai et al. (2016) observed that the amount of PA and LF in-
creased and then maintained a high level, rather than decreasing. Charlton et al.
(2007) have simulated the AVP vaccine manufacturing process, and measured the
bacterial growth as well as PA and LF concentrations for up to 32 hours. They
observed much higher levels of PA and LF in the culture supernatants compared
to those of Zai et al. (2016), which could be due to different culture conditions.
Charlton et al. (2007) also did not observe increased breakdown of the toxin
proteins after the peak. In their experiment, once the glucose was exhausted,

8



1.1 Biological introduction

the bacteria appeared to use amino acids as an alternative carbon source. One
notable difference between the experimental setups of the two studies is that
Charlton et al. (2007) incubated the B. anthracis cultures statically, whereas Zai
et al. (2016) incubated the bottles with vigorous agitation. It is possible that if
the cultures were observed over a longer timescale in the experiment by Charlton
et al. (2007), a decline of the toxin proteins may have been observed. This would
be consistent with a study by Puziss & Wright (1959) in which the bacteria were
grown statically, and the levels of PA peaked at 38 hours before declining, which
is much later than the timing of the decline observed by Zai et al. (2016). As well
as these studies of the in vitro expression of toxin by B. anthracis, other studies
have aimed to quantify the toxin proteins in the serum of infected animals (Boyer
et al. (2007, 2009, 2015); Mabry et al. (2006); Tang et al. (2009)).

Animal species can have very different susceptibilities to anthrax. This de-
pends on their susceptibility to the effects of the toxins (Moayeri & Leppla
(2009)), and their susceptibility to the infection itself (i.e. their ability to con-
trol the bacteria). Therefore different animal models can be useful for answering
specific questions. Mice are the most widely used animal model, and are highly
susceptible to B. anthracis infection. Elimination of toxin production does not
alter virulence in a mouse model of B. anthracis infection, and both toxigenic
and non-toxigenic strains lead to uncontrolled infection. Although this may be
quite different to the human case, the use of the mouse model with an encap-
sulated non-toxigenic strain allows exploration of the host-bacterial interactions
and immune control mechanisms, without the confounding effects of the toxins
(Goossens (2009)). Guinea pigs have also been used to gain understanding of
the first steps in inhalational anthrax (Ross et al. (1957)). This species seems to
be sensitive to both the infection and the toxin, and non-toxigenic encapsulated
strains are attenuated. On the other hand, rabbits are quite resistant to the infec-
tion facet of anthrax, and they manage to eliminate encapsulated non-toxigenic
strains of B. anthracis (Lovchik et al. (2012)).
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1. INTRODUCTION

1.1.2 Viruses

Viruses are very diverse. Some viruses replicate rapidly and cause acute infec-
tions, for example influenza and Ebola virus. These viruses must be eliminated
by the immune system in order for host survival. On the other hand, some viruses
such as Human Immunodeficiency viruses (HIV) cause chronic infections in which
the virus will remain at a low level in the host for a long time. In the case of
HIV, the virus itself is not lethal, but the depletion of important immune system
cells can result in the infected individual becoming extremely susceptible to other
infections that an uncompromised immune system would easily be able to deal
with. Some viruses can result in either acute or chronic infection, depending on
genetic or environmental factors that determine the susceptibility of the host to
acute or chronic infection. An example of such a virus is hepatitis C virus (HCV).

A virion consists of a genome (either DNA or RNA) surrounded by a protein
coating, called a capsid. Together, the capsid and the nucleic acid core are called
a nucleocapsid. For some viruses, the nucleocapsid is surrounded by an outer
envelope made of protein and phospholipid membranes derived from the host cell
(Burrell et al. (2017)). In a general virus lifecycle, the virus will attach to a
host cell and be internalised into an endosome. Then the viral nucleocapsid is
released into the cytoplasm of the cell. For some viruses, viral genome replication
occurs in the cytoplasm, whereas for others it can occur in the nucleus. The
genome consists of genes coding for different structural proteins needed to form
new virus particles, and non-structural proteins needed for genome replication. If
a virus has a positive-sense genome, this means that the genome can be directly
translated into viral proteins. On the other hand, negative-sense genomes do
not directly code for proteins and have to first be transcribed into positive-sense
mRNA. Newly synthesised viral genomes and proteins form nucleocapsids, which
are then delivered to sites of viral assembly where they are packaged into new
virus particles. For some viruses, such as poliovirus, progeny virions accumulate
inside the host cell and eventually numerous virus particles exit at once in a
burst, killing the cell. On the other hand, for most enveloped viruses, new virus
particles are released at the cell membrane throughout the lifetime of the infected
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cell via a process called budding (Pornillos et al. (2002)). These released virus
particles can then go on to infect new cells and start the lifecycle again.

Chapter 5 of this thesis focusses on using stochastic viral dynamics models
to calculate a probability distribution for the number of new cells that become
infected due to an initial infected cell. The mathematical viral dynamics mod-
els considered in Chapter 5 are very simple and hence can be applied to a wide
variety of viruses. To present numerical results of the models, a few specific ex-
amples are considered: Ebola virus, influenza, HIV, and HCV. Parameter values
applicable to these viruses have been obtained from previous modelling studies in
the literature (Guedj et al. (2013); Liao et al. (2020); Yan et al. (2020); Yuan &
Allen (2011)). All of these examples of viruses are enveloped and so are released
from host cells by budding. Ebola and influenza both have negative-sense RNA,
whereas HIV and HCV have positive-sense RNA. The simplest model considered
in Chapter 5 consists of uninfected cells, eclipse phase cells that are infected with
virus but have not yet started to release virus, actively infected cells that are
releasing virus, and free (i.e., extracellular) virus particles. In this model, the
actively infected cells (also referred to as infectious phase cells) are assumed to
release virus particles at a constant rate until the cell dies. This model is analysed
using the parameter estimates for Ebola virus, influenza, and HIV. However, the
model considered in Chapter 5 for HCV is slightly different. In the HCV model,
the rate at which the virus particles are released from the host cell is assumed to
depend on the length of time since the cell became infectious, and the amount
of intracellular viral RNA. This assumption may also be realistic in the case of
many other viruses, but is only considered in the HCV case in Chapter 5. This is
because the model was previously applied to HCV infection in order to study the
potential effects of direct-acting antiviral agents (DAAs) on specific intracellular
processes (Guedj et al. (2013)).

1.2 Thesis objectives

Inhalational anthrax is generally a very rare disease, but it is also very dangerous,
and is a potential biological terrorism threat. If B. anthracis spores were made
into an aerosol and released, the spores could infect a large number of people in a
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short space of time. Although some cases of inhalational anthrax can be resolved
with antibiotic treatment, the fatality rates with treatment are still rather high
because often treatment is not started early enough. Due to the significant risk
posed if the bacterium was to be intentionally used as a bioweapon, it is important
to be able to defend against such an attack and to make optimal decisions about
treatment strategies. The aim of Chapters 3 and 4 of this thesis is therefore to
start to develop a mechanistic multi-scale mathematical model for inhalational
anthrax, by linking an intracellular model of anthrax infection with a within-host
model. This builds on the novel multi-scale methodologies recently developed
for Francisella tularensis infection (Carruthers et al. (2018, 2020)). The aim of
these multi-scale models is to help to improve understanding and quantify key
mechanisms of the infection. Ultimately, mathematical models like this would aim
to accurately predict how many individuals would become infected in different
exposure scenarios and also on what timescale this would occur. This could then
aid in the identification of a time period during which treatment would be most
effective.

In Chapter 3, a stochastic model is introduced to study the key interaction
between B. anthracis spores and phagocytes, which are cells of the innate immune
system that engulf the spores when they first enter the lungs. This Markov chain
model describes the dynamics of B. anthracis infection inside a single phagocyte,
including the germination of spores into vegetative bacteria and replication/death
of bacteria inside the cell. The ultimate outcome of the Markov chain is either
recovery of the host cell or death of the phagocyte and the release of bacteria.
The dynamics of the model are analytically studied through the calculation of
a number of summary statistics or “stochastic descriptors” of the process. In
particular, an important stochastic descriptor of the intracellular model is the
probability distribution for the rupture size, which is the amount of bacteria that
are ultimately released from an infected phagocyte. In vitro experimental data
are used to calibrate the intracellular model in a Bayesian setting, allowing for
the uncertainty in parameter estimates to be quantified.

The intracellular model is then connected to a within-host model of inhala-
tional anthrax, presented in Chapter 4. The within-host model aims to provide an
overall understanding of the early progression of the infection, and is parametrised
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with in vivo infection data from studies of rabbits and guinea pigs. Building a
model that offers a realistic mechanistic description of these different animal re-
sponses to the inhalation of B. anthracis spores is an important stepping-stone
towards the ultimate aim of obtaining a model that can predict the dynamics of
human infection. The model is stochastic so that it can capture the randomness
in the biological processes and describe the probabilities of different outcomes, for
example how likely it is that the infection will be cleared by the immune system.
The model includes variability in the rupture size between cells by incorporating
the rupture size distribution from the intracellular model, which is something
that has not been considered in previous models of inhalational anthrax. This
variability is particularly important for modelling the outcome of exposures that
result in a relatively small number of spores entering the lungs. The model also
includes the role of anthrax toxin in the infection, because this is a key part of
the disease and will also be important for modelling certain treatments in future
work. Some of the parameters used for this part of the model are informed by in
vitro experimental data on toxin production and degradation.

Chapter 5 focusses on using mathematical models to study virus kinetics.
Unlike inhalational anthrax, where the bacteria multiply extracellularly after the
initial stages of infection, during a viral infection viruses must reproduce intra-
cellularly. The number of progeny virus particles that each infected cell produces
and the number of new cells infected by these virus particles determine whether
the infection can be sustained. Traditional deterministic models of viral kinetics
focus on the average number of new infected cells produced by an initial infected
cell, as an indicator of whether or not an infection will become established. This
is called the basic reproduction number, and is denoted by R0. The objective of
Chapter 5 in this thesis is to build on this widely used descriptor by considering
the stochastic dynamics of infected cells in order to derive a probability distri-
bution of the reproduction number. Various previously published deterministic
models are considered in order to analyse the stochasticity of the reproduction
number in the Markov chain version of these models.
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Chapter 2

Mathematical background

This chapter provides an introduction to probability theory and stochastic pro-
cesses. Bayesian inference is also briefly introduced, since this approach will be
used in the following chapters to calibrate mathematical models with experimen-
tal data.

2.1 Probability theory

In this section, some basic principles from probability theory are introduced,
which will be necessary for the analysis of the stochastic processes that are the
basis of the models in this thesis. The definitions given here can be found in
Chapter 1 of Allen (2010).

A random variable, X, is a variable whose value is determined by the outcome
of a random phenomenon. It is a function that maps from possible outcomes in
a sample space to some measurable space, such as the real numbers. The set of
values that X can take is called the support of X. If X has a finite or countably
infinite support, then it is said to be a discrete random variable. If the support
is a continuous interval, then X is a continuous random variable.

Definition 2.1.1 Suppose X is a real-valued random variable. The cumulative
distribution function (cdf) of X is the function FX : R→ [0, 1], defined by

FX(x) = P(X ≤ x).
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2. MATHEMATICAL BACKGROUND

Definition 2.1.2 Suppose X is a discrete random variable, with support S. The
probability mass function (pmf) of X is defined by

fX(x) = P(X = x), x ∈ S.

Definition 2.1.3 Suppose X is a continuous random variable, and there exists
a non-negative, integrable function fX : R→ [0,∞) such that,

P(a ≤ x ≤ b) =
∫ b

a
fX(x) dx, a < b.

Then the function fX is called the probability density function (pdf) of X.

Definition 2.1.4 If X is a continuous random variable with pdf fX and support
S, then the expectation of X is defined as

E[X] =
∫

S
xfX(x) dx.

If X is a discrete random variable with pmf fX , and support S, then the expec-
tation of X is defined as

E[X] =
∑
x∈S

xfX(x).

The definition of the expectation of a random variable can be extended to the
expectation of a function of a random variable. If X is a continuous random
variable, then the expectation of g(X) is

E[g(X)] =
∫

S
g(x)fX(x) dx.

If X is a discrete random variable, then the expectation of g(X) is

E[g(X)] =
∑
x∈S

g(x)fX(x).

The mean, variance, and moments of X are defined in terms of the expectation,
as follows.

• The mean of a random variable X, denoted as µ or µX , is simply the
expectation of X,

E[X] = µX .
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2.1 Probability theory

• The variance of X, denoted by σ2, σ2
X , or V ar(X), is given by

V ar(X) = E[(X − µX)2] = E[X2]− µ2
X .

• The standard deviation of X is the square root of the variance,

σ =
√

V ar(X).

• The nth moment of X about the point a is

E[(X − a)n].

A helpful concept when analysing stochastic processes is that of generating
functions. There are several different generating functions that can be useful in
different contexts. Here, the probability generating function (pgf) is defined for a
discrete random variable, X, that takes values on the support {0, 1, 2, ...}. The
pgf can also be defined for discrete random variables that take negative integer
values, but since this thesis will focus on modelling biological quantities (e.g.
numbers of bacteria and cells), it is only defined here for positive integer values.

Definition 2.1.5 Suppose X is a discrete random variable, with support S =
{0, 1, 2, ...}. The probability generating function (pgf) of X is defined by

PX(z) = E[zX ] =
∞∑

j=0
P(X = j)zj,

for some z ∈ R.

The pgf generates the probabilities associated with the distribution by differen-
tiating and setting z = 0, to obtain,

P(X = k) = 1
k!

d(k)

dz(k)PX(z)
∣∣∣∣
z=0

, k ≥ 0.

The mean and variance can also be found from the pgf.

P
′

X(z)
∣∣∣∣
z=1

=
∞∑

j=0
jP(X = j) = E[X].

P
′′

X(1) + P
′

X(1)− [P′

X(1)]2 = E[X2]− E[X]2 = V ar(X).
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2.1.1 Probability distributions

Several well-known discrete distributions will appear in different contexts through-
out this thesis. Their pmfs are provided below.

Poisson

fX(x) =


λxe−λ

x! , x = 0, 1, 2, ...,

0, otherwise,

where λ is a positive constant.

Bernoulli

fX(x) =


p, x = 1,

1− p, x = 0,

0, otherwise,

where 0 < p < 1.

Binomial
The sum of n independent Bernoulli random variables is a binomial random
variable. That is, a binomial random variable can be thought of as the number of
successes in n independent Bernoulli trials, where p is the probability of success.

fX(x) =


(

n

x

)
px(1− p)n−x, x = 0, 1, 2, ..., n,

0, otherwise,

where n is a positive integer and 0 < p < 1.

Geometric
fX(x) = p(1− p)x, x = 0, 1, 2, ...,

where 0 < p < 1. A geometric random variable can be interpreted as the num-
ber of failed independent Bernoulli trials before the first success, where p is the
probability of success.
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Negative binomial

fX(x) =


(

x + n− 1
n− 1

)
pn(1− p)x, x = 0, 1, 2, ...,

0, otherwise,

where n is a positive integer and 0 < p < 1. A negative binomial random variable
can be interpreted as the number of failed independent Bernoulli trials before the
nth success, where p is the probability of success.

A continuous probability distribution that is very important when analysing
continuous-time Markov chain models is the exponential distribution. In these
models, the exponential distribution is associated with the time between succes-
sive events (typically referred to as the inter-event time).

Definition 2.1.6 The pdf of an exponentially distributed random vari-
able, X ∼ Exp(λ), is given by

fX(x) =

λe−λx, if x ≥ 0,

0, otherwise,

for some rate parameter λ > 0. The cdf of an exponential distribution is given by

FX(x) = 1− e−λx, x ≥ 0.

The mean and variance are given by

E[X] = 1
λ

, V ar(X) = 1
λ2 .

The sum of n independent exponentially distributed random variables, each
with rate λ > 0, is an Erlang(n, λ) distributed random variable, which has pdf
given by

fX(x) =


λnxn−1e−λx

(n− 1)! , if x ≥ 0,

0, otherwise,

where n is a positive integer, and is called the shape parameter. An extension of
this distribution is the Gamma distribution, with pdf given by,

fX(x) =


λαxα−1e−λx

Γ(α) , if x ≥ 0,

0, otherwise,
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where the shape parameter α is positive but not necessarily an integer.
Another very well-known continuous probability distribution is the normal

distribution.

Definition 2.1.7 The pdf of a normally distributed random variable, X ∼
N(µ, σ2), is given by

fX(x) = 1
σ
√

2π
e− 1

2(x−µ
σ )2

, x ∈ R.

The mean and variance are given by

E[X] = µ, V ar(X) = σ2.

2.2 Stochastic processes

This section provides some theory relevant to stochastic processes. In particular,
it focuses on continuous-time Markov chains. The main sources for this section
are Chapter 6 of Kulkarni (2010) and Chapters 5 and 6 of Allen (2010). Some
ideas have also come from Karlin & Taylor (1981).

Definition 2.2.1 A stochastic process is a collection of random variables,
{X(τ), τ ∈ T}, indexed by the parameter τ which takes values in the parameter
set T . The random variables take values in the set S, called the state-space of the
stochastic process.

The parameter set T can be discrete, for example T = {0, 1, 2, ...}, in which case
the stochastic process is said to be discrete-time, and usually written {Xn, n ≥ 0}.
If studying a population, for example, a stochastic process like this could be used
to denote the number of individuals in the nth generation. Alternatively, the
parameter set can be continuous, for example T = [0,∞), in which case the
stochastic process is said to be continuous-time, and usually written {X(t), t ∈
[0,∞)}. A stochastic process like this could be used to denote the number of
individuals alive at time t. The state-space can also be discrete, for example
S ⊆ {0, 1, 2, ...}, or continuous, for example S ⊆ (−∞,∞).

In this thesis, the main stochastic processes considered will be continuous-
time Markov chains. The term chain implies that the random variables X(t)
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take values in a discrete state-space. The term Markov (named after Andrey
Andreyevich Markov) implies that the future of the system only depends on the
present state of the system and is independent of the past. This property is called
the Markov property. The formal definition of a continuous-time Markov chain is
as follows.

Definition 2.2.2 Let X be a collection of random variables, X = {X(t), t ∈
[0,∞)}, taking values in a discrete state-space, S. The stochastic process X is a
continuous-time Markov chain (CTMC) if for any sequence of real num-
bers satisfying 0 ≤ t0 < t1 < ... < tn < tn+1,

P(X(tn+1) = in+1 | X(t0) = i0, X(t1) = i1, ..., X(tn) = in)
= P(X(tn+1) = in+1 | X(tn) = in),

for any i0, i1, ..., in+1 ∈ S.

That is, the probability of the process being in state in+1 at time tn+1 only depends
on the state of the process at the most recent time, tn, and does not depend on
the history of the process.

2.2.1 Transition probabilities

The transition probabilities describe the probability to transition from state i at
time s to state j at time t, and are defined as

pij(s, t) = P(X(t) = j | X(s) = i),

for s < t and i, j ∈ S.

Definition 2.2.3 The transition probability, pij(s, t), is called time-homogeneous
if it only depends on the length of the time interval, t−s, rather than on the values
of s and t themselves. If this is the case, then we can write

pij(s, t) = pij(t− s) = P(X(t− s) = j | X(0) = i), for s < t.

In general, the transition probabilities for continuous-time Markov chains are
time-homogeneous and have the following properties, for all s, t ∈ [0,∞):
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• 0 ≤ pij(t) ≤ 1, for any i, j ∈ S, because they are probabilities.

•
∑
j∈S

pij(t) = 1, for any i ∈ S, because if the process starts in state i at time

0, it will definitely be in some state, j, at time t, so the summation of the
transition probabilities over all possible j will equal 1.

• pij(t+s) =
∑
k∈S

pik(t)pkj(s), for any i, j ∈ S. These are called the Chapman-

Kolmogorov equations.

To show why the Chapman-Kolmogorov equations hold,

pij(t + s) = P(X(t + s) = j | X(0) = i),

=
∑
k∈S

P(X(t + s) = j | X(0) = i, X(t) = k)P(X(t) = k | X(0) = i),

=
∑
k∈S

P(X(t + s) = j | X(t) = k)pik(t), (from the Markov property)

=
∑
k∈S

pik(t)pkj(s). (from time-homogeneity)

Definition 2.2.4 The transition matrix is the matrix of transition probabili-
ties, denoted as

P (t) = (pij(t))i,j∈S.

In matrix form, the Chapman-Kolmogorov equations are written as

P (t + s) = P (t)P (s).

2.2.2 Generator matrix

The transition probabilities, pij(t), of a continuous-time Markov chain, can be
used to define the transition rates, qij. Assume that the transition probabilities
are continuous and differentiable for t ≥ 0 and that for t = 0 they satisfy,

pij(0) = 0 if i ̸= j, and pii(0) = 1.
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Definition 2.2.5 For any i, j ∈ S, the transition rate, qij, is the derivative of
pij(t), evaluated at t = 0. Therefore the transition rates can be defined as,

qij = lim
∆t→0+

pij(∆t)− pij(0)
∆t

= lim
∆t→0+

pij(∆t)
∆t

, i ̸= j,

qii = lim
∆t→0+

pii(∆t)− pii(0)
∆t

= lim
∆t→0+

pii(∆t)− 1
∆t

.

By expanding pij(∆t) as a Taylor series around ∆t = 0, it follows from this
definition that,

pij(∆t) = δij + qij∆t + o(∆t), (2.2.1)

where δij is Kronecker’s delta symbol. Then, since
∑
j∈S

pij(∆t) = 1, it follows that,

1− pii(∆t) =
∑

j∈S,j ̸=i

pij(∆t) =
∑

j∈S,j ̸=i

[qij∆t + o(∆t)].

Thus,

qii = lim
∆t→0+

−
∑

j∈S,j ̸=i

[qij∆t + o(∆t)]

∆t

= −
∑

j∈S,j ̸=i

qij, i ∈ S.

So we have, ∑
j∈S

qij = 0, i ∈ S.

Definition 2.2.6 The transition rates form a matrix, Q = (qij)i,j∈S, known as
the infinitesimal generator matrix. This square matrix can be infinite or
finite depending on the cardinality of S, and the sum of each of its rows is 0, by
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the above argument. For example, for S = {0, 1, 2...}, we get

Q =


q00 q01 q02 . . .

q10 q11 q12 . . .

q20 q21 q22 . . .
... ... ...



=



−∑∞
i=1 q0i q01 q02 . . .

q10 −∑∞
i=0,i ̸=1 q1i q12 . . .

q20 q21 −∑∞
i=0,i ̸=2 q2i . . .

... ... ...


.

2.2.3 Forward Kolmogorov differential equations

The forward Kolmogorov differential equations describe the rate of change of
transition probabilities with respect to time, and can be derived as follows. From
the Chapman-Kolmogorov equation, we can write

pij(t + ∆t) =
∑
k∈S

pik(t)pkj(∆t). (2.2.2)

From Eq. (2.2.1), we also have,

pkj(∆t) = δkj + qkj∆t + o(∆t),

where δkj is Kronecker’s delta symbol. Substituting this into Eq. (2.2.2) gives

pij(t + ∆t) =
∑
k∈S

pik(t)(δkj + qkj∆t + o(∆t)).

Subtracting pij(t) from both sides, dividing by ∆t, and letting ∆t→ 0 gives the
following differential equation,

dpij

dt
=
∑
k∈S

qkjpik(t), i, j ∈ S, (2.2.3)

known as the forward Kolmogorov equation or master equation.
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Figure 2.1: A sample path of a CTMC, indicating the waiting times, Wn, which are
the random variables for the time of the nth jump, and inter-event times, Tn, which are
the random variables for the times between successive jumps. Figure taken from Allen
(2010).

2.2.4 Realisations of a CTMC

Since each realisation of a continuous-time Markov chain remains in a particular
state for a random amount of time before making a jump to a new state, we can
define Wn to be the random variable for the time of the nth jump (let W0 = 0,
for convenience). These random variables, {Wn}n=0,1,2,..., are referred to as the
waiting times of the process. The random variables Tn = Wn+1 − Wn, n =
0, 1, 2, ..., are the times between successive jumps and are referred to as the inter-
event times. The waiting times Wn and inter-event times Tn are illustrated in
Figure 2.1.

Let Yn = X(Wn) be the state that the continuous-time Markov chain jumps to
at the nth jump. The discrete-time Markov chain, {Yn}∞

n=0, is called the embedded
Markov chain. Every continuous-time Markov chain has an embedded Markov
chain associated to it.

In order to calculate sample paths of continuous-time Markov chains, we need
to find the distribution of Tn, as follows. Assume that Yn = X(Wn) = i ∈ S. Let
αi∆t + o(∆t) be the probability that the process moves to a different state in the
time period ∆t, where,

αi =
∑

j∈S,j ̸=i

qij = −qii.
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Then the probability that the process stays at state i for the length of time ∆t,
is

pii(∆t) = 1− αi∆t + o(∆t).

Let Gn(t) be the probability that the process remains in state i for a time of
length at least t ≥ 0, which means that Tn = Wn+1 −Wn > t. That is,

Gn(t) = P(Tn > t).

For t = 0,
Gn(0) = P(Tn > 0) = 1.

For ∆t sufficiently small,

Gn(t + ∆t) = P(Tn > t + ∆t)
= P(Tn > t + ∆t | Tn > t)P(Tn > t)
= pii(∆t)Gn(t)
= Gn(t)(1− αi∆t + o(∆t)).

Subtracting Gn(t) from both sides, diving by ∆t, and taking the limit as ∆t→ 0,
one arrives at the following differential equation,

dGn(t)
dt

= −αiGn(t),

with initial condition, Gn(0) = 1. This can be solved by separation of variables
to obtain the solution,

Gn(t) = P(Tn > t) = e−αit.

Therefore the cumulative distribution function (cdf) of the random variable Tn,
representing the inter-event time, is,

P(Tn ≤ t) = 1−Gn(t) = 1− e−αit, for t ≥ 0.

This corresponds to an exponential random variable with parameter αi, so this
shows that if there is a positive probability of moving from state i to another
state (i.e. αi > 0 so state i is not absorbing), then the inter-event time Tn is
exponentially distributed, leading to the following theorem.
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Theorem 2.2.1
Let X = {X(t) : t ∈ [0,∞)} be a CTMC with a transition matrix P (t) =
(pij(t))i,j∈S, such that for ∆t sufficiently small,∑

j∈S,j ̸=i

pij(∆t) = αi∆t + o(∆t),

and
pii(∆t) = 1− αi∆t + o(∆t),

where αi =
∑

j∈S,j ̸=i

qij = −qii. Define the inter-event time as Tn = Wn+1 −Wn,

where Wn is time of the nth jump. Given X(Wn) = i, Tn is an exponential random
variable with parameter αi, as defined in Definition 2.1.6. The probability density
function (pdf) for Tn is fTn(t) = αie

−αit, for t ≥ 0. The mean and variance are

E[Tn] = 1
αi

, V ar(Tn) = 1
α2

i

, if αi > 0.

A state i for which 0 ≤ αi < ∞, is called stable. If for state i, we have
αi = 0, then this state is called absorbing because there are no events that will
take the system out of state i, so once state i is entered, the process remains there
permanently. Indeed, if αi = 0,

P(X(t) = i | X(0) = i) = P(T0 > t) = e−αit = 1,

for all t ≥ 0. This implies that T0 is infinite.
On the other hand, if αi > 0, then the time spent in state i is a random

variable, exponentially distributed with parameter αi > 0, so therefore some
transition out of state i occurs in finite time. Let pij be the conditional probability
of a transition from state i to state j, given that a transition occurs. Define
Rij(t) = P(X(t) = j | X(0) = i, X(t) ̸= i) for i ̸= j. Then,

pij = lim
∆t→0+

Rij(∆t).

If ∆t is small enough so that at most one transition can occur in this length of
time, then Rij(∆t) is the probability that the process transitions from i to j in
the length of time ∆t, given that the process does not stay in state i for the
length of time ∆t. Hence,

Rij(∆t) = pij(∆t)
1− pii(∆t) .
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Dividing the numerator and denominator by ∆t, letting ∆t → 0, and using
Definition 2.2.5, we have,

pij = qij

−qii

= qij

αi

, i ̸= j.

Therefore each sample path of a CTMC starts in a state X(0) = i0 and stays
in this state for a random duration of time, T0 ∼ Exp(αi0), before jumping to a
new state X(W1) = i1 with probability pi0,i1 , independent of the amount of time
spent in state i0. In general, after the nth transition at time Wn, the process
remains in state X(Wn) = in for a random duration of time, Tn ∼ Exp(αin),
before moving to state in+1 with probability pin,in+1 , independent of the history
of the process over the time interval [0, Wn+1).

2.2.5 Gillespie algorithm

The Gillespie algorithm can be used to numerically simulate Markovian stochastic
processes. This algorithm works by exploiting the fact that in a continuous-time
Markov chain, the time until the next jump is exponentially distributed and
independent of the state that the process jumps to. Hence at each step of the
algorithm, the inter-event time is sampled from the corresponding exponential
distribution, and the state that the stochastic process jumps to at this time is
independently sampled from the set of possible jumps according to their relative
probabilities. In order to exactly sample the exponentially distributed inter-event
times, the algorithm makes use of the following theorem, which is Theorem 5.5
in Allen (2010).

Theorem 2.2.2
Let U be a uniform random variable defined on [0, 1] and T be a continuous
random variable defined on [0,∞). Then T = F −1(U), where F is the cumulative
distribution function (cdf) of the random variable T .

Proof. Since P(T ≤ t) = F (t), we want to show that P(F −1(U) ≤ t) = F (t).
Note that F : [0,∞)→ [0, 1) is strictly increasing, so that F −1 exists. Also, since
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U is a uniform random variable on [0, 1], P(U ≤ x) = x for x ∈ [0, 1]. Therefore,
for t ∈ [0,∞),

P(F −1(U) ≤ t) = P(F (F −1(U)) ≤ F (t)), since F is strictly increasing,

= P(U ≤ F (t)),
= F (t).

Suppose that the Markov chain to be simulated is currently in state x. Let
r1, ..., rn be the set of possible events from this state, with each rk having an
associated transition rate, qk(x), and moving the process to potentially differ-
ent states xk. Then the next inter-event time, T , is an exponential random
variable, as stated in Theorem 2.2.1, and has cdf F (t) = 1 − e−α(x)t, where
α(x) = ∑n

k=1 qk(x). Therefore, by Theorem 2.2.2,

T = F −1(U [0, 1])

= − 1
α(x) log(1− U [0, 1])

= − 1
α(x) log(U [0, 1]).

Hence one can draw a number from a uniform distribution and use the above
transformation to obtain the inter-event time. To select the next event to occur,
the unit interval is partitioned into intervals corresponding to the probabilities of
each event. Then a number is drawn from a uniform distribution on [0, 1] and the
interval that it falls into determines which event occurs. For a continuous-time
Markov chain, the Gillespie algorithm (Gillespie (2007)) works by iterating these
steps at each time increment, until some condition is met, for example reaching
a fixed maximum time, Tmax. This is described in Algorithm 2.1.

2.2.6 Example: Poisson process

One of the simplest continuous-time Markov chains is the Poisson process. This
process has an infinite state-space, {0, 1, 2, ...}, and we will assume that the initial
state is X(0) = 0. In this process, X(t) represents the number of occurrences up
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Algorithm 2.1: Gillespie Algorithm
Select Tmax;

Set the initial time to be t = t0;

Set the initial state of the process to be x = x0;

while t < Tmax do
1. Generate two random numbers, u1 and u2, from the uniform
distribution on the unit interval;

2. Compute the propensity function, α(x) = ∑n
k=1 qk(x), where n is

the number of possible events from state x;

3. Set the intervent time to be ∆t = − 1
α(x) log(u1);

4. Select the event that occurs to be ri where i is the least integer
satisfying ∑i

k=1
qk(x)
α(x) ≥ u2;

5. Update the time, t← t + ∆t and update the state, x← xi;
end
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to time t, of an event that occurs randomly, but with a constant rate, λ. For ∆t

sufficiently small, the transition probabilities satisfy

pij(∆t) = P(X(t + ∆t) = j | X(t) = i),

=


λ∆t + o(∆t), j = i + 1,

1− λ∆t + o(∆t), j = i,

o(∆t), j ≥ i + 2,

0, j < i.

The generator matrix for the process is

Q =


−λ λ 0 0 . . .
0 −λ λ 0 . . .
0 0 −λ λ
... ... . . . . . .

 .

The transition probabilities can be used to derive the system of forward
Kolmogorov differential equations satisfied by the probabilities, p0i(t), for i =
0, 1, 2, .... Since the initial condition is assumed to be X(0) = 0, I will omit the
first index of the transition probabilities when it is equal to the initial state, so
that p0i(t) = pi(t) = P(X(t) = i). The system of differential equations obtained
can be solved to find expressions for the pi(t) probabilities, which define the state
distribution of the process at time t.

We have, by the Chapman-Kolmogorov equation, and for ∆t sufficiently small,

p0(t + ∆t) = p00(t)p00(∆t)

= p0(t)[1− λ∆t + o(∆t)].

Subtracting p0(t) from both sides, dividing by ∆t, and taking the limit as ∆t→ 0,
gives,

dp0(t)
dt

= −λp0(t).

Given the initial condition, p0(0) = P(X(0) = 0) = 1, the solution to this differ-
ential equation is,

p0(t) = e−λt.
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Similarly, for i ≥ 1, the Chapman-Kolmogorov equation gives,

p0i(t + ∆t) = p0i(t)pii(∆t) + p0,i−1(t)pi−1,i(∆t) +
i−2∑
k=0

p0k(t)pki(∆t),

which is equal to,

pi(t + ∆t) = pi(t)[1− λ∆t + o(∆t)] + pi−1(t)[λ∆t + o(∆t)] + o(∆t),

for ∆t sufficiently small. Subtracting pi(t) from both sides, dividing by ∆t and
taking the limit as ∆t→ 0, gives,

dpi(t)
dt

= −λpi(t) + λpi−1(t).

We now have the system of forward Kolmogorov differential equations for the
state probabilities, pi(t),

dp0(t)
dt

= −λp0(t),
dpi(t)

dt
= −λpi(t) + λpi−1(t), for i ≥ 1,

with initial conditions p0(0) = 1, pi(0) = 0 for i ≥ 1. This system can be solved
sequentially, and it can be shown by induction that the general solution is,

pi(t) = (λt)i e
−λt

i! , i = 0, 1, 2, ....

Hence, the probability distribution, {pi(t)}∞
i=0, represents a Poisson probability

distribution with parameter λt. Since X(t) ∼ Poisson(λt), X(t) has mean and
variance µ(t) = σ2(t) = λt.

2.2.7 Example: Birth-and-death process

Another well-known CTMC is the birth-and-death process. In this process, the
state-space is the set of discrete states, S = {0, 1, 2, . . . }, and in each jump of the
CTMC, the state can only increase or decrease by one, due to a ‘birth’ event or
a ‘death’ event. The process is specified by birth rates and death rates. When
the state of the process is X(t) = i, the birth rate is denoted by λi ≥ 0 and the
death rate is denoted by µi ≥ 0. We define µ0 = 0 since a death cannot occur

32



2.2 Stochastic processes

from state X(t) = 0 because it would take the CTMC outside of the state-space.
This process is depicted in Figure 2.2.

0 1 2 . . . i− 1 i i + 1 . . .

λ0

µ1

λ1

µ2

λi−1

µi

λi

µi+1

Figure 2.2: The rate diagram for a birth-and-death process. In this process, the size
of the population can only increase or decrease by one at a time due to a birth or a
death event. The birth and death rates for state i are given by λi ≥ 0 and µi ≥ 0
respectively.

For the linear birth-and-death process with infinite state-space, the rates are
defined by

λi = iλ and µi = iµ,

for some λ > 0, µ > 0. Hence, λi ≥ 0, µi ≥ 0 for i = 0, 1, 2, ... and λ0 = µ0 = 0,
so 0 is an absorbing state.

The transition rates for a linear birth-and-death process are

qij =


iλ, if j = i + 1,

iµ, if j = i− 1,

−i(λ + µ), if j = i,

0, otherwise.

Hence the generator matrix is

Q =


0 0 0 0 . . .
µ −(λ + µ) λ 0 . . .
0 2µ −2(λ + µ) 2λ . . .
... ... ... ...

 .

For ∆t sufficiently small, the transition probabilities of a linear birth-and-death
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process satisfy

pij(∆t) = P(X(t + ∆t) = j | X(t) = i),

=


iλ∆t + o(∆t), if j = i + 1,

iµ∆t + o(∆t), if j = i− 1,

1− i(λ + µ)∆t + o(∆t), if j = i,

o(∆t), otherwise.

One can derive the Kolmogorov differential equations for the state probabilities,
pi(t), as follows. For i = 0,

p0(t + ∆t) = p0(t)p00(∆t) + p1(t)p10(∆t) +
∞∑

j=2
pj(t)pj0(∆t)

= p0(t) + p1(t)[µ∆t + o(∆t)] +
∞∑

j=2
pj(t)o(∆t).

Subtracting p0(t) from both sides, dividing by ∆t, and taking the limit as ∆t→ 0,
one obtains,

dp0(t)
dt

= µp1(t).

Similarly, for i > 0,

dpi(t)
dt

= λ(i− 1)pi−1(t)− (λ + µ)ipi(t) + µ(i + 1)pi+1(t).

For the linear birth-and-death process, the state probabilities, {pi(t)}∞
i=0, cannot

be calculated easily by sequentially solving the Kolmogorov differential equations,
as in the Poisson process example. However they can be easily found by using
the probability generating function of the process.

Definition 2.2.7 The probability generating function (pgf) of a CTMC X,
with state-space S = {0, 1, 2, ...} and initial state X(0) = k, is defined by,

Gk(z, t) = E
[
zX(t)

]
=

∞∑
i=0

pki(t)zi,

where pki(t) = P(X(t) = i | X(0) = k).
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Suppose we have a linear birth-and-death process with initial state X(0) = 1.
For simplicity, let G1(z, t) be written as G(z, t). The pgf of the process can
be used to calculate the state probabilities, since pi(t) = 1

i!
∂iG
∂zi

∣∣∣
z=0

. To find an
explicit formula for G(z, t), one can form and solve a differential equation in G.
By considering the possible states that the process can be in at time ∆t, we can
write,

G(z, t + ∆t) = (1− (λ + µ)∆t)G(z, t) + µ∆t + λ∆tG2(z, t).

It can be seen that G2(z, t) = (G(z, t))2, since the linear birth-and-death process
starting in state 2 can be thought of as the sum of two independent processes
starting in state 1. Therefore we have the following ordinary differential equation
(ODE) in G,

dG

dt
= µ− (λ + µ)G + λG2,

with initial condition G(0) = z, since p1(0) = 1 and pi(0) = 0 for i ̸= 1.
This can be solved to obtain the solution,

G(z, t) = (zλ− µ)e(µ−λ)t − µ(z − 1)
(zλ− µ)e(µ−λ)t − λ(z − 1) , for λ ̸= µ.

We can now write down the state probabilities. For example,

p0(t) = G(0, t) = µ(1− e(µ−λ)t)
λ− µe(µ−λ)t .

Since zero is an absorbing state, p0(t) is the probability that the population
becomes extinct before time t, i.e. it gives the cdf of the extinction time. We can
then find the pdf of the extinction time by differentiating,

pext(t) = d

dt
p0(t) = µ(µ− λ)2e(µ−λ)t

(λ− µe(µ−λ)t)2 .

We can find the overall probability of extinction, by taking the limit of p0(t) as
t→∞, as follows,

p0(∞) = lim
t→∞

p0(t) =
1, if λ ≤ µ,

µ
λ
, if λ > µ.

Hence, when the death rate is greater or equal to the birth rate, then it is certain
that the population will eventually become extinct. Whereas, if the birth rate is
greater than the death rate, then the probability of eventual extinction is µ

λ
.
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2.3 Global sensitivity analysis

Sensitivity analysis of a model aims to quantify the relative importance of each
input parameter in determining the value of a particular output variable. Local
sensitivity analysis quantifies how the parameters affect the model output, by
considering the derivative of the model output with respect to each model input
parameter. To do this, it is necessary to consider a fixed set of input parameters
for the model, θ∗, then vary one parameter, θk, at a time, by a small fraction of
its nominal value, θ∗

k, and estimate the sensitivity of the model output, u, with
respect to θk by calculating ∂u

∂θk
|θ=θ∗ . On the other hand, the global sensitivity

approach does not specify an input θ = θ∗, and considers the model over the
whole parameter space (i.e. an n-dimensional box if the model has n parameters)
(Sobol (2001)). It quantifies how the uncertainty of the input parameters con-
tributes to the output uncertainty, and helps to identify key parameters whose
uncertainty affects the output most.

The Sobol method of global sensitivity analysis is explained by Sobol (1993)
as follows. Let θ be a vector of input parameters, θ = (θ1, θ2, .., θn). Suppose the
output of the mathematical model whose sensitivity to the input parameters is to
be assessed is described by a scalar function, f(θ). Each parameter is assumed to
range over some finite interval, which may be assumed to be [0,1], after rescaling.
Hence, assume that θ takes values on the unit n-dimensional cube,

Kn = {θ | 0 ≤ θi ≤ 1; i = 1, ..., n}.

The aim is to estimate the sensitivity of f(θ) with respect to its different input
parameters or groups of these parameters. Sobol (1993) describes how a function
f(θ1, θ2, ..., θn) can be written as an expansion into terms of increasing dimensions,
called the ANOVA representation of f(θ) (Theorem 1 in Sobol (1993)),

f(θ) = f0 +
n∑

k=1

∑
1≤i1<...<ik≤n

fi1,...,ik
(θi1 , ..., θik

),

= f0 +
n∑

i=1
fi +

∑
1≤i<j≤n

fi,j + ...

where ∫ 1

0
fi1,...,ik

(θi1 , ..., θik
)dθj = 0 for j = i1, ..., ik.
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Hence,
f0 =

∫
Kn

f(θ) dθ.

Assume θ is a point randomly uniformly distributed in Kn, so has pdf f ∗(θ) = 1.
Then the expectation of f(θ) is given by,∫

Kn
f ∗(θ)f(θ) dθ =

∫
Kn

f(θ) dθ = f0.

Hence the variance of the function f(θ), where θ is randomly uniformly dis-
tributed is,

D =
∫

Kn
f 2(θ) dθ − f 2

0 ,

and the other functions in the ANOVA representation have expectation 0 and
variance,

Di1,...,ik
=
∫ 1

0
...
∫ 1

0
f 2

i1,...,ik
dθi1 ...dθik

.

The necessary integrals to compute the variances can be estimated by a Monte
Carlo integration method (Sobol (2001)). These variances characterise how much
the functions vary, so to estimate the sensitivity of the model to certain param-
eters or groups of parameters one can use the Sobol global sensitivity indices,
given by,

Si1,...,ik
= Di1,...,ik

D
≥ 0,

which show how each function in the ANOVA representation varies compared to
how the model function varies as a whole. These sensitivity indices all sum to 1.
Also fi1,...,ik

= 0 ⇐⇒ Si1,...,ik
= 0, so the function f(θ) is independent of θi if

and only if all the Si1,...,ik
containing the index i are zero.

Once the sensitivity indices have been estimated, one can order the parameters
according to the values S1, ..., Sn. These are called the first order sensitivity
indices and they describe the contribution to the total variance, D, due to each
parameter alone.

To consider sensitivity indices for a subset of m parameters, y = (θj1 , ..., θjm),
with J = {j1, ..., jm}, the variance corresponding to the subset y is defined as,

Dy =
m∑

k=1

∑
(i1<...<ik)∈J

Di1,...,ik
,
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which sums over all subsets of indices in J . Also the total variance corresponding
to the subset y is defined as,

Dtot
y = D −Dz,

where Dz = {θ1, ..., θn} \ y. That is, the sum of variances over all subsets of
indices where at least one element is a member of J . Finally,

Sy = Dy

D
, Stot

y =
Dtot

y

D
,

where Stot
y = 1 − Sz and 0 ≤ Sy ≤ Stot

y ≤ 1. If Sy = Stot
y = 0, then f(θ)

is independent of all parameters in the subset y. If Sy = Stot
y = 1, then f(θ)

depends only on y and is independent of z.
The total order sensitivity index for parameter θi is STi

= Stot
y , where y = {θi},

and this provides a measure of the total effect of parameter θi, including its first
order effect and all the effects of interactions with other parameters (Homma &
Saltelli (1996)). The difference STi

−Si is a measure of how much θi is involved in
interactions with other parameters. If there is a significant difference between STi

and Si, this indicates that there are important interactions involving parameter
θi (Saltelli et al. (2008)).

Usually the full set of first order sensitivity indices and the full set of total
order sensitivity indices are computed (Saltelli (2002)). The Python sensitivity
analysis library, SALib, is used in this thesis to implement the Sobol method of
global sensitivity analysis, to calculate the effects over time of different model
parameters on the populations of the intracellular model in Chapter 3.

2.4 Bayesian inference

Throughout this thesis, Bayesian inference will be performed in order to de-
termine estimates for unknown parameters in the mathematical models, using
available data. The goal of Bayesian inference is to infer a posterior distribution,
π(θ|X), over the model parameters, θ, given the data, X. This is usually done
via Bayes’ Theorem,

π(θ|X) ∝ π(X|θ)π(θ), (2.4.1)

38



2.4 Bayesian inference

which says that the posterior density is proportional to the product of the likeli-
hood, π(X|θ), and the prior density, π(θ). Hence the likelihood of observing the
data under a given model parametrisation is used to update prior information
and beliefs about the model parameters, encoded in the prior distribution.

However, the main method of inference used here will be Approximate Bayesian
computation (ABC), in which the evaluation of the likelihood function is replaced
by simulating data for given parameters and comparing this simulated data with
the observed data. Classical ABC is performed by the following steps,

1. sample parameters θ ∼ π(θ),

2. simulate data, X∗, from the model, given θ,

3. accept θ if d(X∗, X) ≤ ε,

for some distance function, d, and acceptance threshold, ε. This is repeated until
N parameters have been accepted, and these accepted parameters represent a
sample of size N from the approximate posterior distribution, π(θ|d(X∗, X) ≤ ε).
If ε is chosen small enough, then this will be a good approximation to the posterior
distribution. However, decreasing ε can also decrease the acceptance rate.

ABC can be combined with a sequential Monte Carlo scheme (ABC-SMC)
(Toni et al. (2009)), which can improve acceptance rates by using an iterative
reduction of the acceptance thresholds, ε1 ≥ ε2 · · · ≥ εT ≥ 0. At each iteration,
parameter values are sampled from the accepted parameters of the previous iter-
ation and are perturbed with a kernel function. For example, a component-wise
uniform perturbation kernel can be used, so that each component of the parameter
set is perturbed independently in a uniform interval. The perturbed parameter
set is then used to simulate data from the model and is accepted if the distance
between the simulated and observed data falls below the acceptance threshold
for that iteration. This generates a set of intermediate distributions of accepted
parameters, π(θ|d(X∗, X) ≤ εi) for i = 1, . . . , T , that gradually converge towards
the target posterior. This is described in Algorithm 2.2.
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Algorithm 2.2: Algorithm for ABC-SMC
Select prior distribution, π(θ);

Select distance function, d;

Select values of ε1 ≥ ε2 · · · ≥ εT ≥ 0;

Select perturbation kernel(s), Kt;

Set the population indicator to t = 1;

while t ≤ T do
Set the particle indicator to i = 1;
while i ≤ N do

if t=1 then
Sample θ∗∗ from π(θ);

end
else

Sample θ∗ from the previous population {θ(i)
t−1}N

i=1 with
associated weights {w(i)

t−1}N
i=1;

Perturb the particle to obtain θ∗∗ ∼ Kt(θ|θ∗);
end
if π(θ∗∗) > 0 then

Simulate the data, X∗, from the model, given θ∗∗;
if d(X∗, X) ≤ εt then

Set θ
(i)
t = θ∗∗;

Calculate the weight for particle θ
(i)
t ,

w
(i)
t =


1 if t = 1,

π(θ(i)
t )∑N

j=1 w
(j)
t−1Kt(θ(i)

t |θ(j)
t−1)

if t > 1.

Set i = i + 1;
end

end
end
Normalise the weights;
Set t = t + 1;

end
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Chapter 3

Modelling intracellular anthrax
infection with spore germination
heterogeneity

Following inhalation of Bacillus anthracis spores, these are ingested by alveolar
phagocytes. Phagocytosed spores then begin to germinate and divide intracel-
lularly. Meanwhile, the host cell can migrate across the lung lining to transport
B. anthracis spores and bacteria to the nearby lymph nodes. Some phagocytes
successfully eliminate the intracellular bacteria and will recover. On the other
hand, phagocytosis of spores can lead to the eventual death of the host cell and
the extracellular release of bacterial progeny. These events are referred to as the
Trojan Horse model, and although this hypothesis is widely accepted, the fraction
of germinated spores that are killed rather than escaping to replicate extracellu-
larly is unknown. More work is needed in order to answer this question and to
quantify this key host-pathogen interaction during inhalational anthrax.

In this chapter I will present a stochastic mathematical model of the intracel-
lular infection dynamics of inhalational anthrax, which adapts and extends the
deterministic one of Pantha et al. (2018). The model by Pantha et al. (2018) is
a system of ODEs representing the interaction between macrophages and B. an-
thracis spores, and considers two intracellular bacterial populations: newly germi-
nated bacteria, which are susceptible to macrophage killing but unable to repli-
cate, and vegetative bacteria, which are susceptible to macrophage killing and
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capable of replicating. Spores germinate into newly germinated bacteria, and the
newly germinated bacteria must mature into vegetative bacteria before they can
begin to replicate. Similarly to the model by Pantha et al. (2018), the model
in this chapter considers the germination of spores, replication of bacteria, and
killing of bacteria by the host cell. Still, I make use of a stochastic approach,
instead of a deterministic one, to describe the population dynamics of spores and
bacteria. I follow the methods recently developed by Carruthers et al. (2020)
for Francisella tularensis infection, extended here to include spores and spore
germination, since B. anthracis is a spore-forming bacteria and F. tularensis is
not. Thus, the resulting stochastic model is a linear birth-and-death process
with killing, extended to account for the mechanisms of spore germination and
maturation of B. anthracis.

An important mechanism in the stochastic model is the consideration of
macrophage rupture, not explicitly considered by Pantha et al. (2018). The rup-
ture of host cells and the release of bacteria into the extracellular environment
is an important mechanism in the pathogenesis of anthrax. Thus, incorporating
this event into the model allows one to better understand both the timescales of
macrophage rupture, and the rupture size distribution (i.e., the number of vegeta-
tive bacteria released upon rupture). These summary statistics can then play an
important role when considering within-host infection dynamics and when linking
to dose-response data (Pratt et al. (2020)), which is studied in Chapter 4. In the
same way as Carruthers et al. (2020), I assume that an infected macrophage’s
rupture probability per unit time is proportional to its bacterial load. Thus, cells
with a high bacterial load at a given time are more likely to rupture than those
with a lower one. This hypothesis is supported by Ruthel et al. (2004), who sug-
gest that the intracellular bacterial load may be a contributing factor to whether
a macrophage will survive an infection.

The model is used to explore the potential for heterogeneity in the spore ger-
mination rate. Motivation for this comes from the work by Setlow (2003, 2013,
2014), where it is shown that germination rates are highly heterogeneous for the
Bacillus species spores, with germination times ranging from a few minutes to
longer than 24 hours. It is thought that this spore germination heterogeneity
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is primarily due to variation in the germinant receptor levels between individ-
ual spores. Setlow mentions that spores with very low germinant receptor levels
germinate extremely slowly and are termed superdormant (Setlow (2003, 2013,
2014)). Hence, the model is used to explore different hypotheses for this het-
erogeneity, with the consideration of two extreme cases for the rate distribution:
continuous Gaussian and discrete Bernoulli. The first hypothesis is that the ger-
mination rate is continuously distributed in a population of spores and follows
a truncated normal distribution. The second hypothesis is that the population
of spores can be roughly split into two discrete groups, with different germina-
tion rates, where one group corresponds to the spores with “average” germinant
receptor levels, and the other corresponds to the superdormant spores.

For the linear birth-and-death process with killing including spore germination
rate heterogeneity, I show how to compute the probability of either rupture or
recovery of the infected cell and the conditional mean times taken to reach these
fates. Furthermore, I adapt some of the results from Carruthers et al. (2020) in
order to compute the probability distribution of rupture times, which is shown to
be proportional to the mean number of vegetative bacteria in the cell over time. I
also compute the probability distribution of the rupture size, which is the number
of bacteria that are eventually released into the extracellular environment from
a single infected cell.

Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC)
(Toni et al. (2009)) is used to calibrate the model, using experimental measure-
ments of spore and bacterial counts from in vitro infection of murine peritoneal
macrophages with spores of the Sterne 34F2 strain of B. anthracis (Kang et al.
(2005)). The calibrated stochastic model is then used to obtain numerical re-
sults to quantify the implications of the model. In particular, I compute the
probability of rupture, mean time to rupture, and rupture size distribution, of
a macrophage that has been infected with one spore. I also obtain the mean
spore and bacterial loads over time for a population of cells, each assumed to be
initially infected with a single spore. The results support the existence of sig-
nificant heterogeneity in the germination rate, with a subset of spores expected
to germinate much later than the majority. Furthermore, in agreement with ex-
perimental evidence, the results suggest that the majority of spores taken up by
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macrophages are likely to be eliminated by the host cell, but a few germinated
spores may survive phagocytosis and lead to the death of the infected cell.

3.1 Mathematical model

This section introduces the stochastic model for the dynamics of B. anthracis
spores and bacteria in a single infected phagocyte, starting at the time when the
cell phagocytoses a spore, and ending either with rupture and death of the cell
and the release of bacteria into the extracellular environment, or with recovery
of the cell and the elimination of any intracellular spores or bacteria. When
considering low dose exposures, for which the multiplicity of infection (MOI),
which represents the ratio between the numbers of spores and phagocytes, will
be low, it is reasonable to assume that each phagocyte will only engulf one spore.
Therefore, in what follows I only consider infection of a cell that has phagocytosed
a single spore. The model presented here includes germination of the spore into
a newly germinated bacterium, maturation of the newly germinated bacterium
into a vegetative bacterium, replication of vegetative bacteria, death of bacteria,
and rupturing of the host cell to release the intracellular bacteria (see Figure 3.1).

The intracellular infection model, depicted in Figure 3.1, corresponds to a
continuous-time Markov chain (CTMC), X = {X(t) : t ≥ 0}, taking values in
the state-space S = {1S, 1NGB, 0, 1, 2, ...} ∪ {R}, where:

• 1S corresponds to the state where the host cell contains a spore and no
bacteria,

• 1NGB corresponds to the state where the host cell contains a single newly
germinated bacterium,

• {0, 1, 2, ...} represent the number of vegetative bacteria inside the host cell,
so that 0 corresponds to the cell’s recovery, and

• R corresponds to the state of the host cell having ruptured.

Time t = 0 is the time at which the spore is phagocytosed, so the initial
state of the process is assumed to be X(0) = 1S. Experimental work using
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Figure 3.1: Diagram for the intracellular infection model. State 1S represents
a phagocytosed spore and state 1NGB a newly germinated bacterium (NGB). The
germination-maturation time is assumed to follow an Erlang(2, g) distribution, which
is the simplest approach to consider a non-exponential distribution for the time that
it takes the spore to become a vegetative bacterium, while including an intermediate,
susceptible state as done by Pantha et al. (2018), and keeping the process Markovian.
The rate g is assumed to vary between spores. The death rate of the newly germinated
bacterium is given by µ̃ hours−1. States i ∈ N ∪ {0} represent i intracellular bacteria.
State 0 represents recovery and state R the rupture of the cell, which are both absorb-
ing states for the stochastic process. Transitions between states i ∈ N represent three
types of events: transition to state i + 1 (division of a bacterium), to state i− 1 (death
of a bacterium), and to state R (rupture of the host cell with release of i bacteria). The
per bacterium division, death, and rupture rates are λ > 0, µ > 0, and γ > 0, respec-
tively, all with units (bacteria · hours)−1, leading to a linear birth-and-death process
with killing. The infected cell survives for as long as it does not reach state R.
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murine macrophages has indicated that the ungerminated spore form of anthrax
is not easily eliminated by host cells (Kang et al. (2005)), so the model assumes
that the initial spore will not die or be killed by the cell. The germination-
maturation time is represented as an Erlang(2, g) distribution, as depicted in
Figure 3.1, where the rate g has units hours−1. As discussed in Section 3.4, a
limitation of the model here is that the same rate is considered for each step of
the germination-maturation process, since to my knowledge there is no data to
properly characterise the difference in the time taken for these two steps. Due
to this lack of data, I chose to use an Erlang(2, g) representation because this
is the simplest approach to consider a non-exponential distribution for the time
that it takes the spore to become a vegetative bacterium, while including an in-
termediate, susceptible state as done by Pantha et al. (2018), and keeping the
process Markovian. During the germination process, there is an increase in the
hydration of the spore core and the spore cortex is broken down (Setlow (2003)).
These changes mean that the spore loses some of its resistance against the anti-
microbial environment within the host cell and may be killed by the reactive
oxygen and nitrogen species, and anti-microbial peptides within the phagolyso-
some (Banks et al. (2005)). As a result, modelling the germination-maturation
process with two stages allows one to incorporate this loss of resistance into the
intermediate state 1NGB. The newly germinated bacterium can be killed by the
cell, with rate µ̃ hours−1, but cannot replicate unless it matures into a vegetative
bacterium, represented by state 1. If the stochastic process reaches state 1, the
subsequent replication of bacteria, death of bacteria, and rupture of the host cell
is modelled as a birth-and-death process with killing (Karlin & Tavaré (1982)),
with state-space {0, 1, 2, ...} ∪ {R} (see Figure 3.1). The per bacterium division,
death, and rupture rates are denoted by λ, µ and γ, respectively, all with units
(bacteria · hours)−1. The stochastic process has two absorbing states: the re-
covery state, 0, representing elimination of any intracellular spores and bacteria,
and the rupture state, R, representing rupture of the infected cell and release of
its entire content of bacteria. Table 3.1 lists the parameters of the model, for
reference.

In the subsequent sections, the dynamics of the model will be analytically
studied. In Section 3.1.1, two hypotheses for the germination rate distribution
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Parameter Description
g Germination and maturation rate of spores
µ̃ Death rate of newly germinated bacteria
λ Replication rate of vegetative bacteria
µ Death rate of vegetative bacteria
γ Rupture rate

Table 3.1: List of parameters for the intracellular infection model in Figure 3.1.

will be introduced. Then in Section 3.1.2, expressions will be found for the
mean number of spores and newly germinated bacteria in a single cell over time.
The model will also be studied through the calculation of stochastic descriptors,
such as the probabilities of recovery and rupture, the distribution and mean
of the times to reach recovery and rupture, and the probability distribution of
the number of bacteria released from an infected cell (Sections 3.1.3 and 3.1.4,
respectively). Finally, Section 3.1.5 will show how to calculate the mean number
of intracellular vegetative bacteria over time, which is found to be proportional
to the probability density function of the rupture time.

3.1.1 Spore germination heterogeneity

For each spore, its germination-maturation time is assumed to follow an Er-
lang(2, g) distribution. However, in order to reflect the large heterogeneity in
spore germination times as reported in the literature (Setlow (2003, 2013, 2014)),
the germination rate g is assumed to vary between spores. Here two different
distributions are introduced for the germination rate. These two hypotheses will
later be explored and compared, making use of experimental data, in Section 3.2.

Continuous Gaussian distribution

This hypothesis assumes that the germination rate varies continuously among
spores, according to a normal distribution on the positive axis. In this case,
the germination rate g for a given spore is a realisation of the continuous random
variable G ∼ N(0,+∞)(µg, σ2

g), which is normally distributed with mean µg hours−1

47



3. MODELLING INTRACELLULAR ANTHRAX INFECTION
WITH SPORE GERMINATION HETEROGENEITY

and standard deviation σg hours−1, and is truncated to the interval (0, +∞).
Therefore, the germination rate has probability density function given by

fG(g) = 1
Z

1
σg

√
2π

e
− 1

2

(
g−µg

σg

)2

, for g ∈ (0, +∞), (3.1.1)

where Z = Φ
(

µg

σg

)
is a normalisation factor, and Φ is the cumulative distribution

function of the standard normal distribution.

Discrete Bernoulli distribution

Setlow (2013, 2014) explains that some spores can be described as superdormant
because they have very low germinant receptor levels and germinate extremely
slowly, taking many hours or even days. Therefore, a second choice for the ger-
mination rate distribution is proposed here, which assumes that the population
of spores can be roughly split into two discrete groups, type A and type B, with
type A having a faster germination rate than type B. Here, type A corresponds
to the spores with “typical” germinant receptor levels, and type B corresponds
to spores with significantly lower levels. This is represented here as a discrete
Bernoulli distribution with probability mass function as follows

fB(g) =
ε if g = gA,

1− ε if g = gB,
(3.1.2)

for some parameter values gA > gB and ε ∈ (0, 1).

3.1.2 Number of intracellular spores and newly germi-
nated bacteria

The transition probability from state i ∈ S to state j ∈ S in time t is defined by,

pij(t) = P(X(t) = j | X(0) = i). (3.1.3)

We are interested in the dynamics of the process when the initial state is X(0) =
1S, representing an intracellular spore which was just phagocytosed. Therefore,
when the initial state is i = 1S, the first index will be omitted in the notation, so
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that the probability that the process is in state j at time t, given that it started
with one spore, is denoted by

pj(t) = P(X(t) = j | X(0) = 1S). (3.1.4)

To describe the dynamics of the germination-maturation process, one can con-
sider the transient state probabilities, pj(t), for each of the states, j ∈ {1S, 1NGB}.
These probabilities obey the following Kolmogorov differential equations, with
initial conditions p1S

(0) = 1 and p1NGB
(0) = 0,

dp1S

dt
= −gp1S

, (3.1.5)
dp1NGB

dt
= gp1S

− (g + µ̃)p1NGB
. (3.1.6)

If a phagocyte engulfs a spore with germination rate g at time t = 0, then the cell
will contain one spore at time t, if X(t) = 1S, and zero spores if X(t) ̸= 1S. Hence,
the mean number of intracellular spores at time t is equal to p1S

(t). Similarly,
the mean number of intracellular newly germinated bacteria at time t is equal to
p1NGB

(t). These are given by the solutions to Eqs. (3.1.5) and (3.1.6),

p1S
(t) = e−gt, (3.1.7)

p1NGB
(t) = g

µ̃

(
e−gt − e−(g+µ̃)t

)
, (3.1.8)

for any t ≥ 0.
Given the truncated normal distribution for the germination rate, the mean

number of spores inside the infected cell at time t ≥ 0 is given by

S(t) =
∫ +∞

0
fG(g)p1S

(t) dg

=
∫ +∞

0
fG(g)e−gt dg

= 1
Z

exp
(

σ2
gt2

2 − µgt

)
Φ
(

µg − σ2
gt

σg

)
.

(3.1.9)

Similarly, the mean number of newly germinated bacteria inside the infected cell
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at time t ≥ 0 is given by

BNGB(t) =
∫ +∞

0
fG(g)p1NGB

(t) dg

=
∫ +∞

0
fG(g) g

µ̃

(
e−gt − e−(g+µ̃)t

)
dg

= 1
µ̃Z

(1− e−µ̃t)
[

σg√
2π

e
−

µ2
g

2σ2
g + (µg − σ2

gt) exp
(

σ2
gt2

2 − µgt

)
Φ
(

µg − σ2
gt

σg

)]
.

(3.1.10)

For the Bernoulli distribution, the mean number of spores and newly germi-
nated bacteria inside the infected cell at time t ≥ 0 are, respectively,

S(t) = εe−gAt + (1− ε)e−gBt,

BNGB(t) = εgA

µ̃

[
e−gAt − e−(gA+µ̃)t

]
+ (1− ε)gB

µ̃

(
e−gBt − e−(gB+µ̃)t

)
.

(3.1.11)

.

3.1.3 Probabilities and times to reach absorbing states

The CTMC in Figure 3.1 has two absorbing states, R and 0, which denote rupture
and recovery of the host cell, respectively. In this section I show how to compute
the probability of either rupture or recovery of the cell, and the probability density
functions of the recovery and rupture times. I also explain how to compute the
conditional mean times taken to reach each of the two cellular fates.

The transient probabilities for the states j ∈ N ∪ {0, R}, obey the following
system of Kolmogorov differential equations

dp1

dt
= gp1NGB

+ 2µp2 − (λ + µ + γ)p1,

dpj

dt
= λ(j − 1)pj−1 + µ(j + 1)pj+1 − (λ + µ + γ)jpj, for j ≥ 2,

dp0

dt
= µ̃p1NGB

+ µp1,

dpR

dt
=

+∞∑
j=1

γjpj.

(3.1.12)
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The long-term probabilities of recovery or rupture for an infected cell, starting
from any state i ∈ S can be denoted, respectively, by

r0
i = lim

t→+∞
pi,0(t), rR

i = lim
t→+∞

pi,R(t). (3.1.13)

These probabilities can also be expressed in terms of the times it takes the process
X to reach states 0 and R, respectively. In particular, one can denote the times
taken for the process to travel from state i to states 0 or R, respectively, by

T 0
i = inf{t ≥ 0 : X(t) = 0 | X(0) = i}, T R

i = inf{t ≥ 0 : X(t) = R | X(0) = i}.
(3.1.14)

Since there is a choice of two possible absorbing fates (recovery or rupture), the
random variables T 0

i and T R
i may be infinite with non-zero probability. That is,

the time to recovery, T 0
i , will be infinite if the process ends in the rupture state,

and vice versa. Thus, we can write

pi,0(t) = P(T 0
i ≤ t), pi,R(t) = P(T R

i ≤ t), (3.1.15)

and
r0

i = P(T 0
i < +∞) = 1− P(T R

i < +∞) = 1− rR
i , (3.1.16)

where r0
i and rR

i represent the recovery and rupture probabilities, respectively.
Carruthers et al. (2020) studied a very similar process to the one described here,
for the non-sporulating bacteria F. tularensis. This section makes use some of
their results. For instance, survival analysis allowed Carruthers et al. (2020) to
show that the probability density function of the random variable T R

1 (the rupture
time starting from state 1, representing a single fully vegetative bacterium), is
given by

fT R
1

(t) = γ(b− a)2e−λ(b−a)t

[b− 1 + (1− a)e−λ(b−a)t]2 , t ≥ 0, (3.1.17)

with

a =
(λ + µ + γ)−

√
(λ + µ + γ)2 − 4µλ

2λ
,

b =
(λ + µ + γ) +

√
(λ + µ + γ)2 − 4µλ

2λ
.

(3.1.18)
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They also showed that the probability that a cell eventually ruptures, starting
in state 1 with one vegetative bacterium, is rR

1 = 1 − a, and the probability
that a cell eventually recovers is r0

1 = a. One can adapt these results to the
model studied here with the help of first-step analysis, to find the probabilities of
rupture and recovery starting with one initial spore in state 1S. If a phagocyte is
infected with a spore at time t = 0, then at some time point, the initial spore will
germinate, transitioning to the intermediate state of newly germinated bacterium
(NGB). At some later time, the NGB will either die, with probability µ̃/(µ̃ + g),
or will mature into a vegetative bacterium with probability g/(µ̃ + g). Since it is
certain that the first step of the process will be the transition from spore to newly
germinated bacterium, the probability of eventual recovery or rupture starting
from state 1S is the same as the probability of recovery or rupture starting from
state 1NGB. The only way that the process will eventually reach the rupture state
is if the newly germinated bacterium matures into a vegetative bacterium, and
then the cell eventually ruptures starting from state 1. On the other hand, the
cell can recover if either the newly germinated bacterium dies before it matures
into a vegetative bacterium, or the newly germinated bacterium matures and the
cell eventually recovers starting from state 1. In particular, given a germination
rate g for the initial spore, the probabilities for rupture and recovery, starting
from state 1S, are given by

rR
1S

(g) = rR
1NGB

(g) = g

µ̃ + g
rR

1 = g(1− a)
µ̃ + g

,

r0
1S

(g) = r0
1NGB

(g) = µ̃

µ̃ + g
+ g

µ̃ + g
r0

1 = µ̃ + ga

µ̃ + g
.

(3.1.19)

One can also derive the probability density functions of the time to rupture
and the time to recovery. These shed light on the distribution of times to rupture
and recovery across cells that have been infected with one spore. In what follows,
the random variable for the time to transition from state i to state j is denoted
by T j

i = inf{t ≥ 0 : X(t) = j | X(0) = i}, and the probability density function
for this random variable is denoted by fT j

i
(t).

First, let us consider the total time for the initial intracellular spore to germi-
nate and mature into a vegetative bacterium, given by the random variable T 1

1S
,
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with probability density function, fT 1
1S

(t). This function will be needed later to
calculate the probability density function of the times to rupture and recovery.
To find the function fT 1

1S
(t), let FT 1

1S
(t) = P(T 1

1S
≤ t) be the probability that

the cell has reached state 1 by time t, given that the germination rate of the
initial spore is equal to g. Let us consider a small time step ∆t, such that only
one transition can occur in the interval (t, t + ∆t). If the cell has not entered
state 1, representing a vegetative bacterium, before time t, then it will only be
possible to enter state 1 before time t + ∆t if the cell is in state 1NGB at time t.
Furthermore, if the phagocyte contains a newly germinated bacterium at time t,
then the probability to transition to a vegetative bacterium between time t and
t + ∆t is g∆t. Hence,

FT 1
1S

(t + ∆t) = FT 1
1S

(t) + p1NGB
(t)g∆t. (3.1.20)

The function FT 1
1S

(t) is the cumulative distribution function of the random vari-
able, T 1

1S
, for the time that the process takes to reach a vegetative bacterium,

starting from one spore. Therefore, the probability density function for this ran-
dom variable is

fT 1
1S

(t; g) =
dFT 1

1S
(t)

dt
= g p1NGB

(t) = g2

µ̃

(
e−gt − e−(g+µ̃)t

)
, t ≥ 0 , (3.1.21)

where it is written explicitly that fT 1
1S

is a function of the germination rate g. It
can be verified that

P(T 1
1S

< +∞) =
∫ +∞

0
fT 1

1S
(t; g) dt = g

g + µ̃
, (3.1.22)

which is the probability that the process will eventually reach state 1, or equiva-
lently, the probability that a spore will mature into a vegetative bacterium instead
of being cleared by the infected cell.

Time to recovery

Here I show how to compute the probability density function, fT 0
1S

(t), for the
time to recovery of an infected cell starting with one spore. Following the same
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approach as above, the probability density function for the random variable T 0
1S

,
given that the spore has germination rate g, is

fT 0
1S

(t; g) =
dFT 0

1S
(t)

dt
= µ̃p1NGB

(t) + µp1(t)

= g
(
e−gt − e−(g+µ̃)t

)
+ µ

∫ t

0
fT 1

1S
(s; g)p1,1(t− s) ds, t ≥ 0,

(3.1.23)

where p1,1(t) is the probability that the process, starting in state 1, is in state 1
at time t, and can be derived from results of Carruthers et al. (2020) as follows,

p1,1(t) = (a− b)2e−λ(b−a)t

(ae−λ(b−a)t − b)2 , (3.1.24)

with a and b defined in Eq. (3.1.18). Note that the probability density function
for the time to recovery from state 1 can be written as

fT 0
1
(t) = µp1,1(t). (3.1.25)

When the germination rate follows a continuous Gaussian distribution (see Eq.
(3.1.1)), the probability density of the recovery time starting from state 1S is
given by

fT 0
1S

(t) =
∫ +∞

0
fG(g)fT 0

1S
(t; g) dg. (3.1.26)

Alternatively, if the germination rate follows a discrete Bernoulli distribution (see
Eq. (3.1.2)), the probability density of recovery times is given by

fT 0
1S

(t) = εfT 0
1S

(t; gA) + (1− ε)fT 0
1S

(t; gB). (3.1.27)

The probability density of recovery times yields the distribution of recovery times
across cells, since each phagocyte is assumed to be initially infected by a single
spore. To gain insights into the expected time of recovery, one can also compute
the conditional mean time to recovery of an infected cell, which is the expected
time to recovery, given that the cell eventually recovers. This is denoted by
E[T 0

1S
| T 0

1S
< +∞], given that the eventual recovery of a cell is equivalent to

its recovery time being finite. For any initial state i ∈ S, one can define the
restricted mean time to recovery as τ 0

i = E[T 0
i · δT 0

i <+∞], where δA is equal to 1
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if A is satisfied and 0 otherwise. Then the conditional mean time to recovery,
starting from state i ∈ S, is defined by

E[T 0
i | T 0

i < +∞] = τ 0
i

r0
i

. (3.1.28)

Hence, in order to calculate the conditional expectation, E[T 0
1S
| T 0

1S
< +∞], one

must restrict the sample space of T 0
1S

to finite values, and divide by the probability
that the recovery time is finite. The set of finite recovery times can be partitioned
into the set where T 1

1S
= +∞ and the set where T 1

1S
< +∞. In other words, the

cell can either recover without ever containing vegetative bacteria, or the cell can
recover after having contained at least one vegetative bacterium. Therefore, the
restricted mean time to recovery can be written as follows

τ 0
1S

= E[T 0
1S
· δT 1

1S
=+∞] + E[T 0

1S
· δT 1

1S
<+∞ · δT 0

1 <+∞].

Using the fact that T 0
1S
·δT 1

1S
<+∞ ·δT 0

1 <+∞ = (T 1
1S

+T 0
1 )·δT 1

1S
<+∞ ·δT 0

1 <+∞, and that
T 1

1S
and T 0

1 are independent, one finds that the restricted mean time to recovery
for a cell infected with one spore with germination rate g, is

τ 0
1S

(g) =
(

1
g

+ 1
µ̃ + g

)
µ̃

µ̃ + g
+ E[T 1

1S
· δT 1

1S
<+∞]P(T 0

1 < +∞)

+ E[T 0
1 · δT 0

1 <+∞]P(T 1
1S

< +∞)

= µ̃(µ̃ + 2g)
g(µ̃ + g)2 + a

∫ +∞

0
tfT 1

1S
(t; g) dt + g

g + µ̃

∫ +∞

0
tfT 0

1
(t) dt

= g

µ̃ + g

[
(µ̃ + 2g)(ga + µ̃)

g2(µ̃ + g) + 1
λ

log
(

b

b− a

)]
,

(3.1.29)

where I have made use of Eqs. (3.1.21), (3.1.22), and (3.1.25). The values a and
b are defined in Eq. (3.1.18).

With this restricted mean time at hand, and the probability of recovery in
Eq. (3.1.19), one can use Eq. (3.1.28) to find the conditional mean time until
recovery for the two different distributions of the germination rate. In particu-
lar, when the germination rate follows the continuous Gaussian distribution in
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Eq. (3.1.1), the conditional mean time to recovery for an infected cell starting
with one spore is given by

E[T 0
1S
| T 0

1S
< +∞] =

∫+∞
0 fG(g)τ 0

1S
(g) dg∫+∞

0 fG(g)r0
1S

(g) dg
. (3.1.30)

Alternatively, if one considers the discrete Bernoulli distribution for the germi-
nation rate, the conditional mean time to recovery is given by

E[T 0
1S
| T 0

1S
< +∞] =

ετ 0
1S

(gA) + (1− ε)τ 0
1S

(gB)
εr0

1S
(gA) + (1− ε)r0

1S
(gB) . (3.1.31)

Time to rupture

The time taken for the initial phagocytosed spore to transition into a vegetative
bacterium is given by the random variable T 1

1S
and the time from vegetative

bacterium to rupture is denoted by T R
1 . Thus, the total time between the cell

engulfing a spore, and the time of rupture, is T R
1S

= T 1
1S

+ T R
1 . The corresponding

probability density function for T 1
1S

was given by fT 1
1S

(t; g) in Eq. (3.1.21), and
the probability density function for the rupture time starting from one vegetative
bacterium was given by fT R

1
(t) in Eq. (3.1.17). One can convolve these two

functions to find the probability density function for the total time to rupture,
giving

fT R
1S

(t; g) =
∫ t

0
fT 1

1S
(s; g)fT R

1
(t− s) ds. (3.1.32)

When the germination rate across spores follows the continuous Gaussian distri-
bution, the density of rupture times is given by

fT R
1S

(t) =
∫ +∞

0
fG(g)fT R

1S
(t; g) dg. (3.1.33)

Alternatively, in the discrete Bernoulli case, the density of rupture times is given
by

fT R
1S

(t) = εfT R
1S

(t; gA) + (1− ε)fT R
1S

(t; gB). (3.1.34)

As done previously for recovery, one can also calculate the conditional mean time
to rupture, denoted E[T R

1S
| T R

1S
< +∞] and defined similarly to Eq. (3.1.28) with

0 replaced by R. Since the random variables T 1
1S

and T R
1 are independent, it can
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be shown that the restricted mean time to rupture, for a cell initially infected
with a spore with germination rate g, is

τR
1S

(g) = E[T 1
1S
· δT 1

1S
<+∞]P(T R

1 < +∞) + E[T R
1 · δT R

1 <+∞]P(T 1
1S

< +∞)

= (1− a)
∫ +∞

0
tfT 1

1S
(t; g) dt + g

g + µ̃

∫ +∞

0
tfT R

1
(t) dt

= g

µ̃ + g

[
(µ̃ + 2g)(1− a)

g(µ̃ + g) + 1
λ

log
(

b− a

b− 1

)]
,

(3.1.35)

where I have made use of Eqs. (3.1.21), (3.1.22) and (3.1.17). The values a and
b are defined in Eq. (3.1.18).

Given this restricted mean time, and the probability of rupture from Eq. (3.1.19),
one can use Eq. (3.1.28), with 0 replaced by R, to find the conditional mean time
until rupture, for the two different distributions of the germination rate. In partic-
ular, when the germination rate across spores follows a continuous Gaussian dis-
tribution, the conditional mean time to rupture is of the same form as Eq. (3.1.30),
with 0 replaced by R. Similarly, if one considers the discrete Bernoulli distribu-
tion for the germination rate, the conditional mean time to rupture is of the same
form as Eq. (3.1.31), with 0 replaced by R.

3.1.4 Rupture size distribution

For an infected cell described by the CTMC X it is possible to find the probability
distribution of its rupture size, which is the number of bacteria released into the
extracellular environment from the infected cell. If the time for the process to
enter state 0 is finite, then the rupture size is equal to 0, indicating that the host
cell recovers and does not release any bacteria. On the other hand, if the time
to reach state R, denoted by T R

1S
, is finite, and X(T R

1S
− ∆t) = n for small and

positive ∆t, this means that the process transitions into the rupture state from
state n ∈ N. This corresponds to the death and rupture of the host cell, and
the release of n bacteria into the extracellular environment. Let Rn

i denote the
probability that the cell will release n bacteria in total, given that the process
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starts at state i ∈ S. This is defined as

Rn
i =

P(T 0
i < +∞), for n = 0,

P((T R
i < +∞) and (X(T R

i −∆t) = n)), for n ∈ N.
(3.1.36)

With this definition, R0
i is the probability that the cell recovers, so r0

i = R0
i . For

n ∈ N, Rn
i is the probability that the cell ruptures and releases n bacteria, so the

overall probability of rupture is rR
i = ∑+∞

n=1 Rn
i . For states i ∈ N, the probabilities

Rn
i do not depend on the germination rate, g. However for i ∈ {1S, 1NGB}, these

probabilities do depend on the germination rate, and so will be denoted by Rn
1S

(g)
and Rn

1NGB
(g).

One can use the method of Karlin & Tavaré (1982) to find the probabilities
Rn

1 , as follows. If the cell begins with a vegetative bacterium, so that X(0) = 1,
then for a small time interval ∆t→ 0, one has,

P((X(t) = n) and (t < T R
1 ≤ t + ∆t)) = P(X(t) = n)P(t < T R

1 ≤ t + ∆t | X(t) = n)
= p1,n(t)nγ∆t,

(3.1.37)

since if the cell contains n bacteria at time t, the probability of rupture between
time t and t+∆t is nγ∆t. An expression for p1,n(t), which is the probability that
a cell contains n bacteria at time t, given that it contains one bacterium at time
0, was given by Carruthers et al. (2020),

p1,n(t) = (b− a)2e−λ(b−a)t(e−λ(b−a)t − 1)n−1

(ae−λ(b−a)t − b)n+1 , n ≥ 1. (3.1.38)

Hence for an infected phagocyte starting with one vegetative bacterium, the prob-
ability that the cell releases n ≥ 1 bacteria, Rn

1 , is then

Rn
1 =

∫ +∞

0
p1,n(t)nγ dt = (1− a)(b− 1)

bn
, (3.1.39)

with a and b defined in Eq. (3.1.18). Moreover, a first-step argument allows one
to obtain the probability Rn

1S
(g) from Rn

1 . For n ≥ 1 and germination rate g, one
has

Rn
1S

(g) = Rn
1NGB

(g) = g

µ̃ + g
Rn

1 . (3.1.40)
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When the germination rate across spores follows the continuous Gaussian distri-
bution, the probability that the rupture size of a cell initially infected with one
spore is equal to n ∈ N bacteria, is given by

Rn
1S

=



∫ +∞

0
fG(g) µ̃ + ga

µ̃ + g
dg, n = 0,

Rn
1

∫ +∞

0
fG(g) g

µ̃ + g
dg, n ≥ 1.

(3.1.41)

Alternatively, if one considers the discrete Bernoulli distribution for the germi-
nation rate, the probability that the rupture size of a cell initially infected with
one spore is equal to n ∈ N bacteria, is given by

Rn
1S

=



ε(µ̃ + gAa)
µ̃ + gA

+ (1− ε)(µ̃ + gBa)
µ̃ + gB

, n = 0,

Rn
1

(
εgA

µ̃ + gA

+ (1− ε)gB

µ̃ + gB

)
, n ≥ 1.

(3.1.42)

3.1.5 Number of intracellular vegetative bacteria

Given a particular germination rate g for the phagocytosed spore, the mean
number of intracellular vegetative bacteria at time t is denoted here by Bv(t; g),
where

Bv(t; g) =
+∞∑
j=1

jpj(t) = 1
γ

dpR(t)
dt

, (3.1.43)

with the second equality arising from Eq. (3.1.12). Since pR(t) represents the
cumulative distribution function of the rupture time starting with one spore,
this means that the average number of vegetative bacteria is proportional to the
probability density function of the rupture time. That is, the mean number of
vegetative bacteria at time t, given germination rate g, is

Bv(t; g) =
fT R

1S
(t; g)
γ

. (3.1.44)

Once this is averaged over the possible values of the germination rate, g, for either
germination rate distribution hypothesis, the mean number of vegetative bacteria
inside a cell at time t, is given by

Bv(t) =
fT R

1S
(t)

γ
, (3.1.45)
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where fT R
1S

(t) is defined in Eqs. (3.1.33) and (3.1.34) for the two germination rate
distributions.

3.2 Parameter calibration

This section makes use of experimental data from in vitro studies to calibrate
the intracellular model and to compare the two hypotheses of germination het-
erogeneity in their ability to describe the data. I have performed Approximate
Bayesian Computation Sequential Monte Carlo (ABC-SMC) (Toni et al. (2009))
to estimate the model parameters.

3.2.1 Experimental data

The main experimental data set used for the calibration comes from an in vitro
study by Kang et al. (2005), that was discussed by Pantha et al. (2018) and used to
calibrate their ODE model. In the experiment 106 murine peritoneal macrophages
were incubated with different numbers of Sterne 34F2 strain spores for 30 minutes,
during which time phagocytosis occurred (Kang et al. (2005)). The ratio of
spores to cells in the solution at the start of the incubation period is called the
multiplicity of infection (MOI) and in this case the four MOIs considered were
spore to macrophage ratios of 1:1, 1:2, 1:10 and 1:20, corresponding to the initial
number of spores in the solution of 106, 5 × 105, 105, and 5 × 104. At the end
of 30 minutes, the solutions were washed, so no extracellular spores remained,
and no more spores were phagocytosed after this time. Then the solutions were
incubated with an antibacterial agent called gentamicin for 30 minutes to remove
any extracellular bacteria. At various time points after this, samples of parallel
replicates of the experiment were washed and the number of intracellular spores
and bacteria determined.

While in reality cells could phagocytose more than one spore each in this
experiment, this is less likely to happen when the average number of spores per
cell in the solution is low. Therefore only the data for MOI 1:2, 1:10 and 1:20
have been used to perform the parameter calibration, since these low MOIs will be
more consistent with the model assumption in Section 3.1 that each macrophage
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engulfs at most one spore, leading to the initial condition for the model in Figure
3.1. Still, once the posterior samples of the parameters are obtained, the model
predictions will be compared to the MOI 1:1 data, as a qualitative validation.

The experiment described above was also performed using a germination-
deficient strain of B. anthracis spores, in which spore germination is inhibited.
The average spore counts at one hour from two duplicate samples that used the
germination-deficient strain are provided in Table 3.2. The number of spores
of the germination-deficient strain would have remained unchanged between 0.5
hours and 1 hour, because they will not have germinated, and all extracellular
spores were removed by washing at 0.5 hours, so there would have been no more
phagocytosis after this time. Thus, if one assumes that there is no difference in
spore phagocytosis rates between the germination-deficient and Sterne strains,
one concludes that the spore counts for the germination-deficient strain are a
good representation of the total number of Sterne strain spores that would have
been phagocytosed during the first 0.5 hours of the experiment for each MOI.
In the parameter calibration for their Phase II subsystem model, Pantha et al.
(2018) used these numbers of intracellular spores from the germination-deficient
experiment as the initial condition for the intracellular dynamics. The justifica-
tion given is that germination does not seem to be a dominating process at 0.5
hours, so the number of spores of the Sterne strain at 0.5 hours will be similar to
the number of germination-deficient spores at the same time point. Therefore, I
have made the same assumption, that no germination of the Sterne strain spores
has occurred before 0.5 hours. Because of this, the estimates for gA and gB in the
discrete Bernoulli model should be interpreted with this 30 min delay in mind,
and in particular the estimated germination rates might be slightly overestimated
as a result. However, this delay could possibly be interpreted as a time-lag af-
ter phagocytosis for the activation of germination to occur. Furthermore, after
learning about the parameters with ABC-SMC inference, it can be seen that
even the spores with a quicker germination rate (type A) take on average longer
than an hour to germinate, so it seems (a posteriori) reasonable to assume that
germination does not happen in the first 30 minutes of the experiment.

In the data from the experiment, time t = 0 corresponds to the start of the
incubation period of cells and spores (Kang et al. (2005)). On the other hand,
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Intracellular germination-deficient spore count at one hour

MOI 1:2 139000
MOI 1:10 30500
MOI 1:20 13925

Table 3.2: Data taken from Table 2 of Pantha et al. (2018), giving the average number
of intracellular spores counted at 1 hour from two replicates of the experiment using
spores of a germination-deficient strain of B. anthracis. The number of intracellular
spores of the germination-deficient strain should have remained unchanged between 0.5
hours and 1 hour, because they cannot germinate, and all extracellular spores were
removed by washing at 0.5 hours, so there would have been no more phagocytosis after
that time. Note that the value for MOI 1:10 reported in Table 2 of Pantha et al. (2018)
was inconsistent with that observed in their Figure 2, so the second one is used here,
since it is more consistent with the trajectory over time for the spore counts in Figure
2 of Pantha et al. (2018) for MOI 1:10, and also so that my predictions are comparable
with those of Pantha et al. (2018).

Time (hours) 0 0.5 2.5 4.5 23.5

MOI 1:2
Number of spores 139000 105000 11400 10250 29500

Number of bacteria 0 23000 67100 52250 20000

MOI 1:10
Number of spores 30500 27000 12000 9100 2750

Number of bacteria 0 9500 14000 7650 2500

MOI 1:20
Number of spores 13925 7900 6450 3100 300

Number of bacteria 0 6000 2250 1750 1000

Table 3.3: Data for the number of intracellular spores and bacteria present at different
time points, which have been used to perform ABC-SMC. These data have been taken
from Tables 2 and 3 of Pantha et al. (2018), although time points are shifted by 30 min

to account for the first phase of the experiment where phagocytosis occurs. The initial
conditions (t = 0) correspond to the values reported in Table 3.2 from the germination-
deficient experiment. The counts at each time point are averages of two experimental
replicates.
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the intracellular model described in Section 3.1 considers a single host cell that
begins with one intracellular spore, and t = 0 is assumed to be the start of the
germination process of this spore. Since phagocytosis only occurs during the
first 0.5 hours of the experiment, and it is assumed that germination does not
occur until after the first 0.5 hours of the experiment, phagocytosis has not been
explicitly included in the mathematical model in Section 3.1. Instead, the time
points are modified so that t = 0.5 in the experiment corresponds to t = 0 in the
model. That is, the number of intracellular spores from the germination-deficient
experiment, given in Table 3.2, is taken to be the initial conditions for t = 0, and
the data is used as it is shown in Table 3.3.

Some of the model parameters are not identifiable from the measurements of
intracellular spore and bacterial counts alone, since, for instance, it is difficult
to determine whether a reduction in the number of intracellular bacteria is due
to bacterial death or macrophage rupture. Therefore, I have also used a small
amount of data regarding the rupture time of cells from a study by Akoachere
et al. (2007), in order to gain preliminary knowledge about some of the model
parameters. Akoachere et al. (2007) examined macrophage-spore interactions
by fluorescence microscopy. To do this, they used two different dyes, SYTO 13
and PI, which both bind to DNA. SYTO 13 is a green dye that is cell perme-
able, whereas PI is a red dye that is impermeable to cell membranes. Therefore,
when staining macrophages with these dyes, the nucleus of healthy cells shows
green fluorescence and the nucleus of dead cells shows red fluorescence. After
infecting murine macrophages with B. anthracis Sterne strain spores at a spore
to macrophage ratio (MOI) of 20:1, they observed 20% PI-positive (ruptured)
macrophages at 3.5 hours after exposure, and 90% at 7 hours after exposure,
respectively. I fit the intracellular model to these data and used the results to
inform the selection of some of the prior distributions to be used in the fitting
with the data in Table 3.3.

3.2.2 Sensitivity analysis

Before performing parameter calibration, it is useful to investigate the effects
that the model parameters have on the model output. To do this, I have used the
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Sobol approach to global sensitivity analysis (Sobol (1993)). This allows one to
quantify how variation in the parameter values affects the variation in the model
output. I have focused on the model outputs of the expected number of spores
and bacteria present inside a single cell over time, making use of the expressions
in Sections 3.1.2 and 3.1.5. The sensitivity indices have been evaluated for times
up to 24 hours, corresponding to the length of the time-course of the data in Table
3.3, which will be used in the parameter calibration. First-order and total-order
sensitivity indices are presented. The first-order indices measure the contribution
to the variance of the model output from varying each parameter alone. The
total-order indices measure the total contribution to the output variance caused
by each parameter, including both from the effect of varying the parameter alone,
and the effect of all higher order interactions, which are found from varying the
parameter along with groups of other parameters.

Model with continuous Gaussian germination rate distribution

The top row of plots in Figure 3.2 shows the first-order (S1) and total-order
(ST ) sensitivity indices of each model parameter, for the model with a truncated
Gaussian germination rate distribution, when we consider the model output as
the mean number of intracellular spores. It can be seen that variance in the
parameter µg, corresponding to the most likely value for the germination rate of
a given spore, plays a large part in contributing to the output variance. Variance
in the standard deviation, σg, of the Gaussian distribution also has some effect on
the output variance. The sensitivity indices of µg and σg are time-dependent. At
early times the expected number of spores in the cell mostly depends on the mode
of the germination rate distribution. Then at later times, the expected number
of spores becomes gradually more dependent on the variance of the germination
rate distribution. Apart from µg and σg, none of the other parameters have any
influence on the output variance since they do not appear in the expression for
the mean number of spores.

The sensitivity indices corresponding to the model output of the mean num-
ber of intracellular bacteria are shown in the bottom row of Figure 3.2. The
parameters λ and γ affect the bacteria model output most significantly. These
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Figure 3.2: Plots of the first-order (S1) and total-order (ST ) Sobol sensitivity in-
dices for each parameter in the model with the truncated Gaussian germination rate
distribution. The sensitivity indices indicate the importance of each parameter in de-
scribing the dynamics of intracellular spores and bacteria, on the top and bottom row
of plots respectively, during the first 24 hours of infection. The solid lines represent the
Sobol indices of each parameter over time, and the shaded regions indicate 95% confi-
dence intervals. The ranges over which each parameter is varied are: µg ∈ [10−2, 10],
σg ∈ [10−2, 100.15], µ̃ ∈ [10−4, 10], λ ∈ [10−1.5, 10], µ ∈ [10−4, 10], and γ ∈ [10−4, 1].
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Spores Bacteria
Parameter Units ST mean Parameter Units ST mean

µg h−1 0.89 λ (bacteria · h)−1 0.78
σg h−1 0.36 γ (bacteria · h)−1 0.67
λ (bacteria · h)−1 0.00 µg h−1 0.37
γ (bacteria · h)−1 0.00 µ (bacteria · h)−1 0.33
µ (bacteria · h)−1 0.00 σg h−1 0.22
µ̃ h−1 0.00 µ̃ h−1 0.11

Table 3.4: Means of the total-order Sobol sensitivity indices (ST ) over the whole
time-course for each model parameter and variable in the model with the truncated
Gaussian germination rate distribution. Parameters are listed in order of most to least
important in the columns for each model variable. Values are given to 2 decimal places.

parameters have an increasing effect at later times, because the probability that
the spore has germinated into a bacterium increases over time and the popula-
tion of bacteria begins to be more affected by replication and the rupture of cells.
The parameters concerning the germination of spores, µg and σg, provide a large
contribution to the variance of the model output at the initial stages, when the
initial spore begins to germinate, but the effect of these parameters diminishes
at time progresses. The parameter µ also plays a fairly significant role in the
model output, but less so than λ and γ. On the other hand, the death rate of
newly germinated bacteria, µ̃, has very small sensitivity indices over the entire
time-course, indicating that it has very little effect on the model output. Since
the uncertainty in the value of µ̃ does not have a large contribution to the un-
certainty of the model output, the need to reduce the uncertainty in the value
of this parameter through performing the parameter calibration is less important
than for other parameters.

For both the spores and bacteria model outputs, the plots show that the
total-order indices are generally larger than the first-order indices, indicating
that higher order interactions are having an effect on the output variance. The
means of ST over the whole time-course for each parameter and model variable
are reported in Table 3.4, to indicate which parameters are the most influential
overall for each model variable.
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Model with discrete Bernoulli germination rate distribution

The top row of plots in Figure 3.3 shows the first-order and total-order Sobol
indices for the model with a Bernoulli germination rate distribution, when we
consider the model output as the mean number of intracellular spores. It can
be seen that the variance in the germination rates, gA and gB, contributes the
most to the variance in the model output, since these parameters determine how
quickly the spores germinate into bacteria. When calculating these sensitivity
indices, gA and gB have been varied over the same ranges and it has not been
specified that gA is larger than gB. Therefore the two germination rates can be
interchanged without changing the model. Thus, due to this symmetry, the first-
order sensitivity index for ε is zero. When interactions between parameters are
considered, the sensitivity index for ε is non-zero, since this parameter affects the
proportion of spores associated with each germination rate. Hence varying ε will
change how quickly spores are expected to germinate, when the germination rates
are also allowed to vary. Interestingly, the Sobol indices in the top row of Figure
3.3 are time-independent, in contrast with those in Figure 3.2 for the truncated
Gaussian distribution. This is because the values of gA, gB, and ε determine
how quickly the majority of spores germinate, as well as how spread out the
germination rate distribution is. Therefore, even though the total variance of the
spore output decreases with time, the portion of this variance that is explained by
the uncertainty in each parameter stays the same, so that the sensitivity indices
remain constant with time. As with the previous model, the sensitivity indices
for all other parameters are exactly zero, since they do not affect the germination
of spores, which is the only process that changes the size of the intracellular spore
population.

For the model output of the expected number of intracellular bacteria, the
sensitivity indices are shown in the bottom row of Figure 3.3. As in the previ-
ous model, the most influential parameters are the replication rate, λ, and the
rupture rate, γ. In addition to λ and γ, the germination rates, gA and gB, are
important for describing the mean number of intracellular bacteria, since these
rates determine how quickly the bacteria population grows initially, as the spore
germinates into a newly germinated bacterium and then a vegetative bacterium.
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Figure 3.3: Plots of the first-order (S1) and total-order (ST ) Sobol sensitivity indices
for each parameter in the model with the Bernoulli germination rate distribution. These
sensitivity indices indicate the importance of each parameter in describing the dynamics
of intracellular spores and bacteria, on the top and bottom row of plots respectively,
during the first 24 hours of infection. The solid lines represent the Sobol indices of
each parameter over time, and the shaded regions indicate 95% confidence intervals.
The ranges over which each parameter is varied are: ε ∈ [0, 1], gA ∈ [10−4, 10], gB ∈
[10−4, 10], µ̃ ∈ [10−4, 10], λ ∈ [10−1.5, 10], µ ∈ [10−4, 10], and γ ∈ [10−4, 1].
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Spores Bacteria
Parameter Units ST mean Parameter Units ST mean

gA h−1 0.50 λ (bacteria · h)−1 0.81
gB h−1 0.50 γ (bacteria · h)−1 0.67
ε - 0.25 µ (bacteria · h)−1 0.33
λ (bacteria · h)−1 0.00 gA h−1 0.32
γ (bacteria · h)−1 0.00 gB h−1 0.32
µ (bacteria · h)−1 0.00 ε - 0.16
µ̃ h−1 0.00 µ̃ h−1 0.09

Table 3.5: Means of the total-order Sobol sensitivity indices (ST ) over the whole
time-course for each model parameter and variable in the model with the Bernoulli
germination rate distribution. Parameters are listed in order of most to least important
in the columns for each model variable. Values are given to 2 decimal places.

Together with ε and µ̃, they also determine with what probability a spore will
survive the germination process to become a fully vegetative bacteria. The sensi-
tivity analysis shows that the uncertainty in the death rate of newly germinated
bacteria, µ̃, does not have as much effect on the variance of the model output as
the other parameters.

The means of ST over the whole time-course for each parameter and model
variable are reported in Table 3.5. Overall, the parameters that seem to be the
most important are λ, γ, gA and gB. These are the parameters that one would
hope to learn most about when performing parameter calibration.

3.2.3 Approximate Bayesian Computation Sequential Monte
Carlo

Determination of prior distributions with data from Akoachere et al.

I have carried out parameter calibration for the intracellular model by means of
Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) (Toni
et al. (2009)), and by making use of the spore and bacterial counts measured
in experiments by Kang et al. (2005). However, I first leveraged rupture time
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data from an experiment by Akoachere et al. (2007) to estimate potential prior
distributions for some of the model parameters.

In order to compare the model with the observations from Akoachere et al.
(2007) that 20% of cells had ruptured by 3.5 hours and 90% had ruptured by
7 hours, it is necessary to introduce a delay for phagocytosis into the model,
because time t = 0 in this experiment represents the time when the macrophages
and spores were placed in contact, rather than the time when the spores were
phagocytosed. The process with a delay for phagocytosis is shown in Figure 3.4.

In order to estimate this delay for phagocytosis, I have used maximum likeli-
hood estimation (MLE) to find an estimate for the phagocytosis rate of spores,
using the data reported in Table 3.2. As described in Section 3.2.1, the values in
Table 3.2 are assumed to be the numbers of spores that were phagocytosed within
the first 0.5 hours of the experiment by Kang et al. (2005), for the three multi-
plicities of infection (MOI). Since there were the same number of macrophages in
the experiment for each MOI, one can consider the same per spore phagocytosis
rate, and obtain a single estimate for this rate. If we assume that each spore is
independently phagocytosed at a rate ρ h−1, then the probability that a given
spore has been phagocytosed before time t hours is 1− e−ρt. The initial number
of extracellular spores was 5× 105, 105, and 5× 104 for MOI 1:2, 1:10, and 1:20,
respectively. Therefore, the likelihood that the intracellular spore counts at 0.5
hours are equal to the values in Table 3.2, given phagocytosis rate ρ, is

L(ρ) =
(

5× 105

139000

)
(1− e− ρ

2 )139000(e− ρ
2 )5×105−139000

×
(

105

30500

)
(1− e− ρ

2 )30500(e− ρ
2 )105−30500

×
(

5× 104

13925

)
(1− e− ρ

2 )13925(e− ρ
2 )5×104−13925 ,

and the log-likelihood is given by

log L(ρ) = 183425 log(1− e− ρ
2 )− 466575ρ

2 ,

which is maximised for a value of the per spore phagocytosis rate equal to ρ =
0.66311 h−1. Figure 3.5 shows the estimated mean number of intracellular spores
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Figure 3.4: Intracellular infection model with a delay for phagocytosis. This is the
same as the model in Figure 3.1, with the addition of state ES , which is the initial
state here, representing one extracellular spore. The per spore phagocytosis rate is
ρ hours−1.

Figure 3.5: A comparison between model predictions of the mean number of intra-
cellular spores for the first 0.5 hours of the experiments by Kang et al. (2005), and the
observed mean number of intracellular spores provided in Table 3.2. These predictions
have been obtained using the estimated per spore phagocytosis rate of ρ = 0.66311 h−1.
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over the first 0.5 hours of the experiment, with this value of the phagocytosis
rate, ρ, for each of the three MOIs.

The process in Figure 3.4 starting with one extracellular spore has initial
condition X(0) = ES. For i ∈ {ES, 1S, 1NGB} ∪ N, let pi(t) be the probability
that the CTMC is in state i at time t, given that it started in state ES. That is,

pi(t) = P(X(t) = i | X(0) = ES).

One can write the system of Kolmogorov differential equations for these state
probabilities, given by

dpES

dt
= −ρpES

,

dp1S

dt
= ρpES

− gp1S
,

dp1NGB

dt
= gp1S

− (g + µ̃)p1NGB
,

dp1

dt
= gp1NGB

+ 2µp2 − (λ + µ + γ)p1,

dpi

dt
= λ(i− 1)pi−1 + µ(i + 1)pi+1 − (λ + µ + γ)ipi, for i ≥ 2.

The first three equations can be easily solved to obtain, for g ̸= ρ,

pES
(t) = e−ρt,

p1S
(t) = ρ

g − ρ
(e−ρt − e−gt),

p1NGB
(t) = gρ

(g − ρ)(g + µ̃− ρ)e−ρt − gρ

(g − ρ)µ̃e−gt + gρ

µ̃(g + µ̃− ρ)e−(g+µ̃)t.

The time to rupture of a cell following the process in Figure 3.4 is a random
variable, T R

ES
. The probability density function for this random variable, given

that the spore has germination rate g, is obtained by convolving the function
fT 1

ES
(t; g), which is the density function for the time to reach state 1, representing

72



3.2 Parameter calibration

a fully vegetative bacteria, with fT R
1

(t), which is the density for the time to reach
rupture from state 1. Hence, one has

fT R
ES

(t; g) =
∫ t

0
fT 1

ES
(s; g)fT R

1
(t− s) ds,

where fT 1
ES

(t; g) = gp1NGB
(t), and fT R

1
(t) was given in Eq. (3.1.17).

Taking into account the distribution of the germination rate, the overall den-
sity function of the rupture time is given by

fT R
ES

(t) =
∫ +∞

0
fG(g)fT R

ES

(t; g) dg,

in the case where the germination rate follows a truncated normal distribution,
and,

fT R
ES

(t) = εfT R
ES

(t; gA) + (1− ε)fT R
ES

(t; gB),

in the case of the discrete Bernoulli distribution. Then, for both hypotheses, the
survival function of a cell starting with one extracellular spore can be written as

S1(t) = P(X(t) ̸= R | X(0) = ES) = 1−
∫ t

0
fT R

ES

(t) dt.

However, since the MOI in the experiment by Akoachere et al. (2007) was a spore
to macrophage ratio of 20:1, with many more spores than host cells, the assump-
tion that each cell only phagocytoses one spore might be invalid. Therefore, we
can consider that at the beginning of the experiment by Akoachere et al. (2007),
each macrophage is surrounded by a “pool” of spores, and that each spore can
only be phagocytosed by its nearest cell at the beginning of the experiment. If
the suspension of spores and cells is well mixed, then the cell that is closest
to each spore will be completely random. Suppose that the cells are numbered
i = 1, ..., m, and the spores are randomly distributed between host cells. Then
for each spore, a cell is sampled with replacement so that cell i is chosen with
probability 1/m. Hence, the distribution of spores for all host cells is multino-
mial, and the number of spores in a given pool (for a fiducial cell) is binomially
distributed with parameters n = 20m and p = 1/m, since an MOI of 20:1 indi-
cates there are 20 times as many spores as cells. If we assume that there are large
numbers of spores and cells in the experiment, then n will be large and p will
be very small. In this limit, a Poisson distribution with mean np = 20 provides
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a good approximation to the binomial distribution for the number of spores in
a fiducial pool. Hence, we can assume the number of spores in a host cell pool
to be Poisson distributed with mean np = 20. If we consider one such cell in
the experiment, then each of its k surrounding spores will follow the process in
Figure 3.4, and given all rates are linear, the stochastic process for each of the
k spores will be independent, up until the time when the first stochastic process
enters the rupture state.

Following the argument above, the probability that a cell starting with k

surrounding spores has not ruptured by time t is the same as the probability that
k processes each starting with one extracellular spore have all not reached the
rupture state by time t. That is, Sk(t) = (S1(t))k, where Sk(t) is the survival
function of a cell starting with k extracellular spores in its pool. Thus, we can
define the probability that a given cell in this experiment has not ruptured before
time t by,

S(t) =
+∞∑
k=0

20ke−20

k! [S1(t)]k.

In practise I have only included values of k up to k = 40 in this sum because
P(k > 40) < 10−4.

I used ABC-SMC to calibrate the model parameters with the experimental
measurements from Akoachere et al. (2007); namely, 20% of cells had ruptured
before 3.5 hours and 90% had ruptured before 7 hours, or equivalently, 80% of
cells were still alive at 3.5 hours, and 10% of the cells were alive at 7 hours. The
per spore phagocytosis rate was fixed to be the maximum likelihood estimate
ρ = 0.66311 h−1. Uniform prior distributions were considered for the remaining
parameters, as reported in Table 3.6. These parameters are log-transformed be-
cause the prior range spans multiple orders of magnitude. For the model with
two types of spores, I fixed gA > gB to represent that, without any loss of gen-
erality, type A spores have a faster germination rate than those of type B. In
order to sample parameter values gA and gB with prior distributions reported in
Table 3.6, and under the constraint gA > gB, I followed the ideas from Goggans
et al. (2014). I used the Euclidean distance function,

[S(3.5)− 0.8]2 + [S(7)− 0.1]2,
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Parameter Description Prior distribution

Model with continuous germination rate distribution

µg Mean of the normal distribution for G log10µg ∼ U(-2, 1)
σg Standard deviation of the normal distribution for G log10σg ∼ U(-2, 0.15)
µ̃ Death rate of newly germinated bacteria log10µ̃ ∼ U(-4, 1)
λ Replication rate of vegetative bacteria log10λ ∼ U(-4, 1)
µ Death rate of vegetative bacteria log10µ ∼ U(-4, 1)
γ Rupture rate log10γ ∼ U(-4, 1)

Model with discrete Bernoulli germination rate distribution

ε Probability that a given spore is of type A ε ∼ U(0, 1)
gA Germination and maturation rate of spores of type A log10gA ∼ U(-4, 1)
gB Germination and maturation rate of spores of type B log10gB ∼ U(-4, 1)
µ̃ Death rate of newly germinated bacteria log10µ̃ ∼ U(-4, 1)
λ Replication rate of vegetative bacteria log10λ ∼ U(-4, 1)
µ Death rate of vegetative bacteria log10µ ∼ U(-4, 1)
γ Rupture rate log10γ ∼ U(-4, 1)

Table 3.6: Prior distributions used in the ABC-SMC with data from Akoachere et al.
(2007), for the model with continuous heterogeneity of germination rate (top) and the
model with two types of spores (bottom). For the ABC-SMC using the data from
Kang et al. (2005), all prior distributions remain as reported here, apart from those for
λ and γ. For these two parameters, the marginal posterior distributions obtained from
the Akoachere et al. (2007) calibration (shown in blue in Figure 3.6) are used as prior
distributions in the calibration with the Kang et al. (2005) data. Parameters µg, σg,
gA, gB, and µ̃ all have units h−1, and λ, µ, and γ have units (bacteria · h)−1.
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to compare the expected fraction of cells still alive, predicted by the analyti-
cal expression for the survival function, to the fraction of cells still alive in the
experiment at the two time points.

Histograms of the posterior distributions from the final iteration of ABC-SMC
are shown in Figure 3.6 for every model parameter and for both hypotheses.
By using this small amount of data regarding the rupture time of cells, it was
possible to learn significantly about the intracellular replication rate λ and the
rupture rate γ, since in the model the rupture rate is proportional to the size
of the bacterial population, which in turn depends on the replication rate of the
bacteria. However, we are unable to learn much about the other model parameters
in this way, since only two data points based on a single experiment are available.
Therefore, only the posterior distributions obtained for λ and γ will be used as
prior distributions in the subsequent application of ABC-SMC, with experimental
data from Kang et al. (2005) for the time-course of the number of intracellular
spores and bacteria. This second round of ABC-SMC will allow us to learn about
the rest of the model parameters.

The distributions obtained for λ and γ seem to agree well for the two differ-
ent germination hypotheses. The medians of the distributions for λ are around
0.9 (bacteria ·h)−1, which is consistent with the doubling time of 0.78 hours, mea-
sured by Kalns et al. (2002) and used as an estimate in the within-host model
by Day et al. (2011). Furthermore, these preliminary estimates lead to a good
representation of the rupture dynamics, as shown in Figure 3.7, where the pre-
diction of the function 1 − S(t), giving the expected fraction of cells to rupture
before time t, is plotted together with the two data points from Akoachere et al.
(2007), for each of the two germination heterogeneity hypotheses. The solid line
shows the model prediction using the accepted parameter set that gave the small-
est distance in the ABC-SMC, while the shaded region shows the pointwise 95%
credible interval of the predictions from the complete posterior sample.
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Figure 3.6: Prior distributions considered (red) and posterior histograms obtained
(blue) when performing ABC-SMC with data from Akoachere et al. (2007) of the pro-
portion of dead macrophages at two different time points, for the model with continuous
heterogeneity in the germination rate (top), and the model with two types of spores
(bottom).
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Figure 3.7: Best predictions (solid lines) and pointwise 95% credible intervals (shaded
regions) of the fraction of cells that would be expected to rupture before time t in an
experiment with MOI 20:1, compared to data from Akoachere et al. (2007), for the
model with two types of spores (left), and the model with continuous distribution
for the germination rate (right). The best prediction is the model output obtained
by using the accepted parameter set with the smallest distance from the data. The
pointwise 95% credible intervals show the uncertainty in the predictions given the
posterior distributions for the model parameters.

ABC-SMC with experimental data of numbers of intracellular spores
and bacteria over time

This section presents the results obtained from using the MOI 1:2, 1:10 and
1:20 data sets from Table 3.3 to obtain posterior parameter distributions, for
the continuous model of germination rate, and for the discrete Bernoulli model.
Pantha et al. (2018) used these data to estimate different parameter sets for each
MOI, mentioning that for lower MOIs the smaller average intracellular burden
could give a better environment for spores to germinate and bacteria to replicate,
leading to larger values of the parameters. However, since I am assuming that
every infected cell begins with only a single intracellular spore, this means that
the cellular MOI is assumed to be identical across all data sets, and in this way
the MOI is simply a measure of the system size. Hence the parameters considered
in the stochastic model may not depend on the initial conditions given by the
MOI. Thus, I have used the three data sets together to obtain a single set of
estimates for the parameters, aiming to give a reasonable fit to the data sets with
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a significantly smaller number of parameters in the model (compared to Pantha
et al. (2018)).

In the experiment, the samples were washed each time before counting the
number of intracellular spores and bacteria. Therefore, any bacteria released
from a ruptured macrophage would be removed during the washing process and
would not contribute to the number of bacteria observed in the data. Thus,
to compare the model with the data, the model is used to calculate the per
cell mean number of intracellular spores and bacteria over time. For the model
with continuous distribution for the germination rate, Eqs. (3.1.9), (3.1.10), and
(3.1.45) define the expected number of spores and bacteria in a cell at time t,
given that it contained a spore at time t = 0. Since each infected cell is assumed
to be independent, these can be multiplied by the number of initial spores, to
obtain the mean number of spores and bacteria present inside the population
of cells at time t. Let S0 be the total number of initial intracellular spores for
the population of cells at time t = 0. Then for the hypothesis of continuous
heterogeneity in the germination rate, the total expected number of spores in all
cells at time t is given by

S∗(t) = S0

Z
exp

(
σ2

gt2

2 − µgt

)
Φ
(

µg − σ2
gt

σg

)
. (3.2.1)

The total (in all cells) expected number of intracellular bacteria at time t hours,
including newly germinated bacteria and vegetative bacteria, is given by

B∗(t) =S0
1

µ̃Z
(1− e−µ̃t)

(
σg√
2π

e
−

µ2
g

2σ2
g + (µg − σ2

gt) exp
(

σ2
gt2

2 − µgt

)
Φ
(

µg − σ2
gt

σg

))
+ S0Bv(t),

(3.2.2)

where Bv(t) is the expected number of vegetative bacteria in one cell at time t,
defined in Eq. (3.1.45). Similarly, for the model with two discrete germination
rates, the model predictions for number of spores and bacteria are given by

S∗(t) = S0

[
εe−gAt + (1− ε)e−gBt

]
, (3.2.3)
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and

B∗(t) = S0

[
εgA

µ̃

(
e−gAt − e−(gA+µ̃)t

)
+ (1− ε)gB

µ̃

(
e−gBt − e−(gB+µ̃)t

)
+ Bv(t)

]
,

(3.2.4)
where Bv(t) is the expected number of vegetative bacteria in one cell at time t.

In the ABC-SMC, the numbers of intracellular spores and bacteria over time
from the experiment by Kang et al. (2005) are compared to the model outputs
given by S∗(t) and B∗(t), with the initial number of spores equal to S0 = 139000
for MOI 1:2, S0 = 30500 for MOI 1:10 and S0 = 13925 for MOI 1:20. The model
outputs are compared with the data via a distance function. I have used the
Euclidean distance for the logarithm of the predicted values and observed data,
given by

d(Model prediction, Data) =

√√√√√ ∑
i∈{2,10,20}

∑
t∈T

(
log

(
S∗

i (t)
si(t)

))2

+
(

log

(
B∗

i (t)
bi(t)

))2

,

(3.2.5)
where T = {0.5, 2.5, 4.5, 23.5}, S∗

i (t) and B∗
i (t) are the respective model predic-

tions for the number of spores and bacteria at time t for MOI 1 : i, and si(t),
bi(t) are the respective observed number of spores and bacteria at time t, given
by the data for MOI 1 : i.

In the model with continuous germination rate distribution, where the ger-
mination rate follows a truncated normal distribution, G ∼ N(0,+∞)(µg, σ2

g), the
parameters characterising germination are the mean germination rate µg and its
standard deviation σg. In the discrete Bernoulli model, the parameters charac-
terising germination are the probability ε that a given spore is of type A, and the
two germination rates, gA and gB. The rest of the parameters to be estimated are
common to both versions of the model: the death rate of newly germinated bac-
teria, µ̃, the replication rate of vegetative bacteria, λ, the death rate of vegetative
bacteria, µ, and the rupture rate, γ.

To perform ABC-SMC, one needs to choose prior distributions from which to
sample the parameter values at the first iteration. The distributions obtained for
λ and γ from the fitting to the Akoachere et al. (2007) data are used as the prior
distributions for these two parameters. Uniform prior distributions are considered
for the remaining parameters, as reported in Table 3.6.

80



3.2 Parameter calibration

Figure 3.8 shows the posterior histograms obtained by performing ABC-SMC
for the two hypotheses considered, using the Kang et al. (2005) data, while sum-
mary statistics for these posteriors are reported in Table 3.7. By comparing the
posterior histograms in blue with the prior distributions in red, one can see that
it has been possible to learn significantly about most of the parameters for both
hypotheses. For the model with continuous germination rate distribution, the
value of µg, corresponding to the most likely value for the germination rate of
a given spore, is likely to be between 10−2 and 10−1 h−1. For the model with
two germination rates, the value of ε is likely to be between 0.5 and 1, so that
the majority of the spores will germinate with rate gA, which is likely to be of
the order of 10−1 h−1, and the rest will germinate with rate gB, which is likely
to be of the order of 10−2 h−1. For both hypotheses we learn that the death
rate of newly germinated bacteria, µ̃, is likely to be very small. For the model
with continuous heterogeneity in the germination rate, the posterior histograms
for λ and γ show that the value of these parameters that produce a good match
between this model and the Kang et al. (2005) data, are similar to the values that
gave a good fit to the data from Akoachere et al. (2007) that was used to inform
the prior distributions for these parameters. For the model with two types of
spores, the posterior histogram for λ is shifted slightly to the left from the prior
distribution. For both hypotheses we have been able to learn significantly about
the death rate of bacteria, µ, and these accepted values are usually larger than
the corresponding values for the replication rate, λ. This is shown in the posterior
histograms for the ratio between the birth and death rate of bacteria, λ/µ, which
mostly contain values less than 1, indicating that the bacteria are likely to die
more quickly than they replicate.

Model predictions were obtained for each accepted parameter set from the
ABC-SMC. Figure 3.9 shows the pointwise 95% credible intervals of these time-
courses, which indicate the uncertainty in the mean number of intracellular spores
and bacteria from the model, due to the range of accepted parameter sets. The
solid lines show the model output for the parameter sets with the smallest dis-
tance to the data, referred to as the best model predictions. For the model with
continuous germination rate distribution, the predictions are close to the data at
some time points, but overall this model struggles to capture the data, since the
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Figure 3.8: Prior distributions (red) and posterior histograms (blue) when perform-
ing ABC-SMC for the model with continuous heterogeneity of germination rate (top),
and the model with two types of spores (bottom), using data from Kang et al. (2005)
of the number of intracellular spores and bacteria at different time points for MOIs 1:2,
1:10, and 1:20.
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Parameter Min Median Mean Max 95% Credible Interval

Model with continuous germination rate distribution

µg 1.0× 10−2 3.3× 10−2 3.6× 10−2 2.4× 10−1 (1.2× 10−2, 1.6× 10−1)
σg 4.4× 10−1 6.3× 10−1 6.2× 10−1 8.4× 10−1 (5.0× 10−1, 7.7× 10−1)
µ̃ 1.0× 10−4 1.2× 10−3 1.2× 10−3 1.7× 10−2 (1.5× 10−4, 9.6× 10−3)
λ 1.4× 10−1 6.9× 10−1 7.3× 10−1 5.0× 100 (2.8× 10−1, 2.4× 100)
µ 9.7× 10−1 2.6× 100 2.8× 100 9.7× 100 (1.3× 100, 7.5× 100)
γ 3.6× 10−3 4.0× 10−2 4.2× 10−2 1.8× 10−1 (1.1× 10−2, 1.3× 10−1)

Model with discrete Bernoulli germination rate distribution

ε 5.3× 10−1 7.5× 10−1 7.5× 10−1 9.1× 10−1 (5.9× 10−1, 8.5× 10−1)
gA 4.9× 10−1 8.2× 10−1 8.5× 10−1 2.7× 100 (5.4× 10−1, 1.7× 100)
gB 1.2× 10−3 4.9× 10−2 4.7× 10−2 1.0× 10−1 (2.2× 10−2, 8.8× 10−2)
µ̃ 1.0× 10−4 2.2× 10−3 2.3× 10−3 5.0× 100 (1.3× 10−4, 4.3× 10−2)
λ 2.0× 10−1 4.9× 10−1 5.3× 10−1 4.3× 100 (2.1× 10−1, 2.0× 100)
µ 5.0× 10−4 1.9× 100 2.0× 100 1× 101 (5.8× 10−1, 8.2× 100)
γ 4.1× 10−4 3.0× 10−2 2.3× 10−2 2.2× 10−1 (9.6× 10−4, 1.9× 10−1)

Table 3.7: Summary statistics for the posterior sample of each parameter, shown
in blue in Figure 3.8, for the model with continuous heterogeneity of germination rate
(top) and two types of spores (bottom). Parameters µg, σg, gA, gB, and µ̃ all have
units h−1, and λ, µ, and γ have units (bacteria · h)−1.
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Figure 3.9: Time-courses for the mean number of intracellular spores and bacteria,
for the model with continuous heterogeneity of germination rate (top), and the model
with two types of spores (bottom), compared to data from Kang et al. (2005). The
best predictions (solid lines) are the model outputs obtained by using the accepted
parameter set with the smallest distance to the data, and the pointwise 95% credible
intervals (shaded regions) show the uncertainty in those predictions, given the range of
parameter values in the 103 accepted parameter sets from the final iteration of ABC-
SMC. The predictions from the model by Pantha et al. (2018), using separate sets of
parameter estimates for each MOI, are shown as dashed lines. For my model, only
the data for MOI 1:2, 1:10, and 1:20 were used in the ABC-SMC to calibrate model
parameters. The comparison of the model predictions with the MOI 1:1 data is shown
here as a qualitative model validation.
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peak of intracellular bacteria in the model predictions seems to be lower than the
peak indicated by the data. On the other hand, the predictions of the model with
two types of spores show a fairly good agreement with all data sets. It seems that
this latter model, with two discrete germination rates, is better able to describe
the pattern of biphasic decay in the number of spores seen in the data. This
model also explains the bacterial data significantly better than the hypothesis of
continuous germination rate distribution.

Only the data for MOI 1:2, 1:10, and 1:20 were used in the ABC-SMC analysis
to calibrate model parameters. Still, the calibrated model predictions are also
compared with the MOI 1:1 data, by making use of the corresponding initial
condition for this MOI, S0 = 377500. For the model with two types of spores,
the best prediction is very close to the MOI 1:1 data at some time points, which
demonstrates a possibility that the model could be used to extrapolate between
MOIs. However, the assumption that each cell will only phagocytose a single
spore is less viable at MOI 1:1, so the model may need to be adapted slightly in
order to explain the dynamics at higher MOIs. Note that the long-term behaviour
of spores for MOI 1:1, where a significant unexpected increase in the number
of spores over time is observed, was not explained by Kang et al. (2005) or
Pantha et al. (2018), and cannot be mechanistically explained by the intracellular
infection model proposed here either, regardless of the choice of parameters.

Comparing models using Akaike’s information criterion

Figure 3.9 also shows, as dashed lines, the predictions of the model by Pantha
et al. (2018) using their parameter estimates. When these are compared to the
predictions of my model, it seems that with the consideration of heterogeneity
in the germination rate, my model provides a better explanation for the number
of intracellular spores seen in the data, especially for MOI 1:10 and MOI 1:20.
However, the fit of my model to the bacterial data does not look quite as good
as the predictions by Pantha et al. (2018). This is not surprising, since Pantha
et al. (2018) allow different parameter values for each data set (i.e. for each MOI),
meaning that their model has more parameters and higher complexity, giving it
more freedom to fit the data.

85



3. MODELLING INTRACELLULAR ANTHRAX INFECTION
WITH SPORE GERMINATION HETEROGENEITY

To compare the goodness-of-fit of the models, I have used Akaike’s information
criterion (AIC), which penalises models with a higher number of parameters if
there is not enough improvement in the goodness-of-fit to warrant the additional
complexity. Since there are only 32 data points in total to compare the model
predictions to, I used a form of the AIC that is corrected for small sample sizes.
The formula for this is given by Burnham & Anderson (2002), as follows

AICC = −2log(L(θ̂, σ̂)) + 2Kn

n−K − 1 .

In this formula, log(L(θ̂, σ̂)) is the maximised log-likelihood, n is the number of
data points, and K = r+1, where r is the dimensionality of the model parameter
space. Roughly speaking, lower values of the AICC indicate a better fit to the
observed data.

I make the assumption that once one log-transforms the observed data and
the predicted values from the model, the errors are normally distributed. Hence,
let

log(d(t)) = log(m(θ, t)) + εt for t ∈ T,

where d(t) is the experimental data point at time t, and m(θ, t) is the pre-
dicted model output at the same time, for each of the n time points in T =
{t1, t2, . . . , tn}. The errors, εt, are assumed to be independent, normally dis-
tributed with a constant variance σ2. Therefore, these residuals have the following
joint probability distribution

f(ε | θ, σ) =
∏
t∈T

1√
2πσ2

e− 1
2 ( εt

σ
)2

,

and hence the likelihood is,

L(θ, σ) =
(

1√
2πσ2

)n

e− 1
2
∑

t∈T
( εt

σ
)2

.

Then the log-likelihood is given by

log(L(θ, σ)) = −nlog(
√

2π)− nlog(σ)− 1
2σ2

∑
t∈T

ε2
t .

The Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC)
algorithm was used for the parameter calibration to obtain parameter estimates,
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θ̂, which minimise ∑ ε̂2
t , and hence maximise the log-likelihood with respect to the

errors εt. To maximise the log-likelihood with respect to σ, one can differentiate
with respect to σ and equate to 0, giving the MLE of σ2 to be

σ̂2 =
∑

t∈T ε2
t

n
.

Thus, the maximised log-likelihood is

log
(
L(θ̂, σ̂)

)
= −1

2nlog(σ̂2)− n

2 log(2π)− n

2 .

The additive constants can be discarded because they will be equal for all models
with the same data set. Thus, we obtain

log
(
L(θ̂, σ̂)

)
= −1

2nlog(σ̂2).

Then the final formula that I used for the AIC is

AICC = nlog
(

SSR
n

)
+ 2Kn

n−K − 1 , (3.2.6)

where n is the number of data points and K the number of parameters to be
estimated, including the r model parameters and the variance of the residuals,
σ2. In this formula, SSR is the sum of the squared residuals, given by,

SSR =
∑
t∈T

[
log(d(t))− log(m(θ̂, t))

]2
.

I have calculated the value of AICC for the model by Pantha et al. (2018) and
the two versions of my model with different distributions for the germination rate.
For my models the value of AICC was calculated using the parameter set that
gave the smallest distance in the ABC-SMC, obtaining a value of AICC = 1.42
for the model in which the germination rate is a continuous random variable, and
a value of AICC = −3.8 for the one with two types of spores. For the model
by Pantha et al. (2018), the value of AICC was calculated using the parameter
estimates reported in Table 7 of their paper, giving a value of AICC = 176.73. My
models have a lower AICC than the model by Pantha et al. (2018), mainly because
I used the same parameter estimates for each MOI, whereas Pantha et al. (2018)
obtained separate estimates for each MOI, meaning that they have many more
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free parameters. Even with the inclusion of heterogeneity in the germination rate,
the version of my model with continuously distributed germination rates is not
able to properly capture all the data. Instead, a bi-modal model of heterogeneity
in the germination rate is needed to explain both the spore and the bacterial
data. This is supported by the fact that the AICC value is lower for the discrete
Bernoulli hypothesis, even though it has one more parameter. This indicates
that this model may explain the data better than the model with continuously
distributed germination rates.

3.3 Results

The results of the parameter calibration suggest that the hypothesis of germi-
nation rate heterogeneity with two discrete types of spores is better supported
by the data than the model with continuous heterogeneity. The model with two
types of spores is able to describe the biphasic decay seen in the spore data, es-
pecially for MOIs 1:10 and 1:20, as well as the behaviour of the bacterial data.
Therefore, this section will only focus on the model with two types of spores.
The set of parameter values that gave the smallest distance to the data in the
ABC-SMC is provided in Table 3.8. In this section, these parameter values are
used to calculate the various descriptors of the model discussed in Section 3.1.
The effect of the uncertainty in the parameter values indicated by the posterior
distributions obtained from ABC-SMC is also investigated.

Section 3.1.2 gave expressions for the probabilities, p1S
(t) and p1NGB

(t), that
an infected macrophage will contain a spore or newly germinated bacterium,
respectively, at time t ≥ 0, given that the macrophage contained a spore with
germination rate g at time 0. Note that since in the model the macrophage is
assumed to only contain at most one spore or newly germinated bacterium at
any one time, these probabilities are equal to the mean number of spores and
newly germinated bacteria inside the macrophage at time t ≥ 0. Section 3.1.5
explained how to calculate the mean number of vegetative bacteria, Bv(t; g), in
an infected macrophage at time t ≥ 0, given that the macrophage contained a
spore with germination rate g at time 0. One can then consider a population of
S0 independent infected cells, each containing a single spore at time 0. Assuming
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Parameter Description Value
ε Probability that a given spore is of type A 0.778846

gA Germination and maturation rate of spores of type A 0.894274
gB Germination and maturation rate of spores of type B 0.046794
µ̃ Death rate of newly germinated bacteria 0.003502
λ Replication rate of vegetative bacteria 0.643111
µ Death rate of vegetative bacteria 1.637989
γ Rupture rate 0.043792

Table 3.8: Parameter values that gave the smallest distance between the two types
of spores model and the data from Kang et al. (2005) in the ABC-SMC analysis.
Parameters gA, gB, and µ̃ all have units h−1, and λ, µ, and γ have units (bacteria·h)−1.

that each initial spore can have one of two possible germination rates (either rate
gA with probability ε, or rate gB with rate 1− ε), one can calculate a time-course
for the total mean number of intracellular spores, newly germinated bacteria, and
vegetative bacteria, for a population of infected cells, split into the populations
arising from each of the two types of spores. This is depicted in Figure 3.10,
where the first column corresponds to the populations arising from spores of type
A, the second column corresponds to the populations arising from spores of type
B, and the third column shows the sum of the populations from both types of
spores. The solid lines indicate the means for the estimated parameter values in
Table 3.8, while the shaded regions indicate the pointwise 95% credible intervals
for these means, when the uncertainty in the parameter values from the posterior
is considered. The first two plots show two very different timescales for the
dynamics of each kind of spore, and when these populations are added together
in the third plot, one can observe the biphasic behaviour in the number of spores
that is observed in the data from Kang et al. (2005). The blue curve here indicates
the prediction from the model for the total mean number of intracellular spores
over time. The other two curves indicate the predictions for the mean number of
intracellular newly germinated bacteria (orange), and vegetative bacteria (green),
so that when these are added together, one obtains the prediction for the total
number of intracellular bacteria, as shown in the predictions from the parameter
calibration in Figure 3.9. The top row of plots in Figure 3.10 corresponds to an
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initial condition of S0 = 30500 spores, equal to the initial condition from the MOI
1:10 data used in the ABC-SMC. On the other hand, the bottom row corresponds
to an initial condition of S0 = 100. In both cases, the coloured dots indicate the
sizes of the different populations over time, from a stochastic simulation of the
model starting with S0 spores. The results from the simulations show that when
there are many initial spores (top row), the behaviour is very deterministic, but
when the number of initial spores is relatively small (bottom row), there is much
more stochasticity. This stochasticity could be relevant in in vivo settings, where
infection might depend on a small group of spores germinating and producing a
relatively small number of bacteria.

Section 3.1.3 explained how to calculate the probability density functions for
the times to recovery and rupture of a macrophage initially infected with one
spore. The probability density functions for the time to rupture are plotted
along the top row of Figure 3.11, for the inferred parameter values in Table 3.8.
From left to right, the first two plots show the density functions for the time to
rupture of an infected cell containing a spore of type A and type B, respectively.
Very different rupture timescales are observed for each kind of spore. The third
plot shows these densities on the same plot, when they are scaled by the relative
frequencies of each germination rate, so that the sum of these two densities gives
the overall probability density function for the rupture time of a cell infected with
a single spore. Note that this probability density function does not integrate to 1,
but instead the probability of rupture. Nevertheless, one can divide the density
by the probability of rupture, giving the conditional density function of rupture
time, shown as a solid line in the fourth plot. Also shown on the fourth plot is a
histogram of the finite rupture times from 106 stochastic simulations of the model
in Figure 3.1. On the bottom row of Figure 3.11 are the analogous functions for
the recovery time. Interestingly, the conditional probability density functions for
the rupture and recovery times are almost identical. This is likely due to the fact
that these timescales are heavily dominated by the germination time of the spore,
and once the spore has germinated, rupture or recovery of the phagocyte happens
relatively quickly. One can also compute the conditional mean times to rupture
or recovery of a macrophage infected with a single spore, which are the means of
the rightmost histograms in Figure 3.11. For the parameter values in Table 3.8,

90



3.3 Results

Figure 3.10: The top row of plots corresponds to a population of S0 = 30500
infected cells, each containing a single spore at time 0, whereas the bottom row corre-
sponds to an initial condition of S0 = 100. Left: The mean number of type A spores,
εS0p1S (t; g = gA), type A newly germinated bacteria, εS0p1NGB (t; g = gA), and vege-
tative bacteria, εS0Bv(t; gA) = εS0

∑∞
i=1 ipi(t; g = gA), arising from the type A spores

in the infected macrophages. Centre: The analogous functions for the populations
arising from the initial spores with germination rate gB. Right: The overall mean
number of spores, S0S(t), newly germinated bacteria, S0BNGB(t), and vegetative bac-
teria, S0Bv(t), obtained by adding together the populations for each type of spore. The
solid lines indicate the means for the estimated parameter values in Table 3.8, while the
shaded regions indicate the pointwise 95% credible intervals for these means, when the
uncertainty in the parameter values from the posterior distributions is taken into ac-
count. The equations used to compute these curves were Eqs. (3.1.7), (3.1.8), (3.1.11),
(3.1.44), and (3.1.45). The dots show values for the size of the different populations
over time from a single stochastic simulation beginning with S0 spores.
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the conditional mean rupture and recovery times are approximately 11.3 hours
and 11.6 hours, respectively. However, the uncertainty in the parameter values,
shown in the posterior distributions, leads to uncertainty in these timescales. For
instance, this is indicated by the range of conditional mean times until rupture
shown in the plot on the right of Figure 3.12.

The rupture time distribution is a key quantity that will be used to link with
the within-host model in Chapter 4, in order to simulate multiple cells rupturing,
without having to simulate the dynamics inside each individual cell. In order for
this rupture process to be Markovian, which simplifies stochastic simulations and
calculations, we can make use of the fact that the rupture time distribution can be
well approximated by an Erlang distribution. To obtain parameters of an Erlang
distribution that give a good approximation to the true rupture time distribution
of the intracellular model, I minimized the euclidean distance between the first
two moments of each distribution. From this, I found that the conditional rupture
time distribution of cells infected with a spore of type A is well approximated
by an Erlang distribution with shape parameter n = 3, and mean 3.17 hours.
Similarly, the conditional rupture time distribution of cells infected with a spore
of type B is well approximated by an Erlang distribution with shape parameter
n = 2 and mean 41.67 hours. These approximations are shown on the relevant
plots in Figure 3.11.

The probability distribution for the number of bacteria released by an in-
fected macrophage, for the parameter values in Table 3.8, is provided in Figure
3.12 (left). The probability that no bacteria are released by the macrophage is
predicted to be 0.96, which suggests that most macrophages will be able to re-
cover and eliminate the intracellular infection, and that one would expect only
4% of infected macrophages to eventually rupture and release bacteria. The re-
sults also indicate that when macrophages do rupture, they will only release a
few bacteria, with an average of 1.6 bacteria released from a macrophage that
ruptures. This is consistent with the fact that a high dose of spores is required for
infection, reported to be between 8× 103 and 5× 104 spores for humans (Oyston
et al. (2004)). Cote et al. (2008) explain that although macrophages kill most of
the germinated bacteria that they encounter, a low percentage of bacteria sur-
vive the antimicrobial environment in the macrophage and escape to begin the
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Figure 3.11: Top row: From left to right, the first two plots show the probability
density functions for the rupture time of a macrophage infected with a spore of type A
and type B, respectively, given by fT R

1S

(t; gA) and fT R
1S

(t; gB). Also shown are approx-
imations of these rupture time distributions with Erlang distributions. The third plot
shows these densities on the same plot, when they are scaled by the relative frequencies
of each germination rate: εfT R

1S

(t; gA) and (1−ε)fT R
1S

(t; gB). The fourth plot shows as a
solid line the probability density function for the rupture time of a macrophage infected
with a single spore, conditioned on rupture occurring, which is given by fT R

1S

(t)/rR
1S

.
Also shown on the fourth plot is a histogram of the finite rupture times from 106

stochastic simulations of the model in Figure 3.1. Bottom row: Plots correspond
to the analogous densities for the time to recovery of an infected macrophage. The
estimated parameter values in Table 3.8 were used to compute these functions.
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Figure 3.12: Left: The best predicted rupture size distribution for the model with
two types of spores, computed using Eq. (3.1.42), with the estimated parameter values
from Table 3.8. Inset is the conditional rupture size distribution, for the number of
bacteria released by a macrophage infected with a single spore, given that it ruptures
rather than recovers. Right: Scatter plot of the probability of rupture against the
expected rupture size (conditioned on rupture occurring), for each parameter set in the
posterior distribution. Lines indicate the values which correspond to the parameter set
from Table 3.8. The colours of the points indicate the conditional mean time to rupture
for each parameter set considered.

extracellular infection. This is further supported by findings from Jones et al.
(1967), who observed that after infection of a guinea pig with 107 spores, 99%
of the germinated spores were killed within an hour, but the 1% that survived
managed to replicate extracellularly and ultimately reached a concentration of
108 bacteria/ml in the blood at the time of death.

Table 3.8 reports the best prediction for the parameter values according to
the distance in the ABC-SMC. Yet, the advantage of a Bayesian approach in the
parameter calibration is that it quantifies the uncertainty in the parameter values,
which translates into the uncertainty in the descriptors of the model. The scatter
plot on the right of Figure 3.12 shows the probability of rupture plotted against
the average of the conditional rupture size distribution, for each parameter set
in the posterior sample shown in Figure 3.8 (bottom), with the lines indicating
the corresponding values for the parameter set in Table 3.8. There is a positive
correlation between these two descriptors, indicating that if macrophages are
more likely to rupture, they are also likely to release more bacteria when they
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do rupture. Parameter sets leading to a very small probability of rupture will
likely correspond to death rates much larger than the replication rate. Conversely,
parameter sets leading to a larger probability of rupture correspond to bacterial
death rates closer to the replication rate. This would allow for greater bacterial
replication on average before rupture, and in turn a larger average rupture size.
The colours of the points on this scatter plot indicate the conditional mean time
until rupture for each parameter set. This illustrates the uncertainty of the
timescale for rupture, with the possible mean rupture times from the posterior
distributions ranging from around 7.5 to 25 hours. Furthermore, it is possible to
find pairs of parameter sets that give differing average rupture times, but with
similar probabilities of rupture and conditional average rupture sizes.

3.4 Discussion

I have proposed a stochastic model for the dynamics of B. anthracis spores and
bacteria inside an infected phagocyte. One of the main features of the model
is the consideration of heterogeneity in the germination rate of spores. Two hy-
potheses were considered to characterise this heterogeneity. The first hypothesis
was that the germination rate is continuously distributed in a population of spores
and follows a truncated normal distribution. The second hypothesis was that the
spore population can be split into two kinds that germinate at different rates. I
carried out parameter calibration, for each hypotheses, by means of Approximate
Bayesian Computation Sequential Monte Carlo (ABC-SMC) (Toni et al. (2009)).
The results suggest that the discrete germination rates hypothesis is better sup-
ported by the data, since the model with this distribution of germination rates
accounts for the biphasic decline seen in the spore counts, as well as the observed
behaviour of the bacterial counts. This assumption of two types of spores also
agrees with experimental evidence showing that in some Bacillus spore popu-
lations, a subset of the spores germinate much more slowly than the average
spore, and are termed superdormant (Setlow (2013)). This leads to qualitatively
different predictions for the mean number of spores over time in a population
of in vitro cells, compared to previous theoretical predictions made by Pantha
et al. (2018), as shown in Figure 3.9. Although the posterior estimated values
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of the germination rate of spores of type A are similar to the germination rates
predicted in by Pantha et al. (2018), the model predicts that a subset of spores
will germinate much more slowly than this. The discrete distribution with two
rates, gA and gB, considered here, is the most simple way to define a bi-modal
distribution of the germination rate, but more complex descriptions of the ger-
mination rate heterogeneity could be considered. Experimental quantification of
germination times would allow the exploration and validation of more complex
models. A limitation of the model here is that the same rate is considered for
each step of the germination-maturation process, compared to the model by Pan-
tha et al. (2018), where a separate rate, m, was considered for the maturation
step. However, Pantha et al. (2018) did not calibrate this rate m, and instead
performed a sensitivity analysis. Since the available experimental data is limited,
it would be difficult to calibrate different rates for each germination-maturation
step. However, if further data were to become available which allowed one to dis-
tinguish between newly germinated and vegetative bacteria, then a separate rate
could be incorporated for the maturation step of the germination process. This
would also allow for more complicated distributions to account for heterogeneity
in the germination and maturation rates.

Another important feature of the model is the consideration of rupture of
infected phagocytes. This means that different behaviours can be described by
the model compared to the model by Pantha et al. (2018), since in my model
there is a chance that some intracellular bacteria will survive the microbicidal
environment of the phagocyte and cause the cell to rupture. In the experiment
by Kang et al. (2005), if bacteria were released into the extracellular medium then
they would have been washed away before intracellular numbers of spores and
bacteria were measured, and hence the decrease of intracellular bacteria seen in
the data may not have been purely due to macrophage-induced killing of bacteria
but may have been due to the release of intracellular bacteria from dying cells.
Further data including information about macrophage rupture versus survival
would be needed in order to disentangle these processes.

The stochastic model in Figure 3.1 allows one to compute the probability that
an infected cell will eliminate the infection and recover, and the probability that
an infected cell will rupture and release its bacterial content. I have also computed
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the mean time for an infected cell to reach each of these two fates, conditioned
on the event occurring. The probability distribution for the number of bacteria
released by an infected macrophage has also been calculated. By calibrating the
parameters using in vitro experimental data, the rupture size distribution shown
in Figure 3.12 is able to capture the fact that the majority of spores taken up by
macrophages are likely to be eliminated by the host cell, releasing no bacteria,
but a few germinated spores may survive phagocytosis, leading to death of the
host cell and release of a small number of bacteria. This is in agreement with
previous experimental work (Banks et al. (2005)).

Although the model has been parametrised with data from a study that used
macrophages, there is also evidence to suggest that dendritic cells play a role
in the early infection stages of anthrax (Cleret et al. (2007)). Therefore, this is
another important cell type to consider. If in vitro infection data for dendritic
cells become available, it would be relevant to re-parametrise the model with such
data to investigate the differences between the roles of the two host cell types in
anthrax disease. For example, work by Shetron-Rama et al. (2010) indicates that
dendritic cells may not be as capable as macrophages in their abilities to reduce
bacterial numbers.

A restrictive assumption of the intracellular model introduced here is that
it only considers a macrophage infection by a single phagocytosed spore. How-
ever at higher exposures, it is possible that some macrophages may phagocytose
more than one spore. For example, in an experiment by Ruthel et al. (2004) an
average of 4 spores were engulfed per macrophage, with a range of 1-11 spores
per macrophage. Thus, when modelling scenarios with higher MOIs, it would
be necessary to include this consideration in the intracellular model. Further-
more, a linear death rate of intracellular bacteria was proposed, in order to keep
the model analytically tractable. There is evidence that macrophages with a
low intracellular bacterial burden are much more efficient at killing bacteria than
those with a higher burden (Cote et al. (2008, 2011); Kang et al. (2005); Ruthel
et al. (2004)). The model could be generalised to include a non-linear, density-
dependent death rate of intracellular bacteria, similar to the burden-dependent
killing function used by Pantha et al. (2018). However, the model predicts that
the intracellular burden of a cell initially infected with a single spore will remain
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very low, so the inclusion of a density-dependent death rate may be more appro-
priate when considering higher multiplicities of infection, when each macrophage
will phagocytose more than one spore.

To calibrate the parameters of the model, I made use of experimental mea-
surements from a study by Kang et al. (2005), of mouse peritoneal macrophage
infection with the attenuated non-capsule-producing Sterne strain of B. anthracis.
This enabled a mathematical description of a system which can be characterised
easily in the laboratory. In fact, one of the more commonly used animal models
of anthrax is the AJ mouse model infected with Sterne strain (Twenhafel (2010)).
Ideally, for modelling human inhalational anthrax, spores from a fully virulent
strain and cells more similar to a human alveolar macrophage would be used.
However, this type of data for anthrax is extremely limited. The more clinically
relevant alveolar macrophage is complex to isolate and culture, so in the same
way that mice are used as a surrogate for primates, peritoneal macrophages are
used as a surrogate for the lung’s resident phagocytes. Moreover, the Sterne
strain is often used in laboratory settings since it poses a reduced infection risk
to laboratory workers, and research with virulent strains of B. anthracis, such
as the Ames strain, requires enhanced biosafety laboratories (Twenhafel (2010)).
However, it can be generally agreed that its value has limitations when modelling
disease (Twenhafel (2010)).

The capsule is known to protect extracellular bacteria from phagocytosis (Jang
et al. (2011); Sharma et al. (2020)), and thus should be considered when modelling
the extracellular dynamics of anthrax infection. It is possible that the capsule also
plays a role in protecting emerging intracellular bacteria from the antimicrobial
environment of the host cell, since germinating spores are able to quickly produce
and coat themselves in the capsule (Ezzell Jr & Welkos (1999); WHO (2008)).
However, it has been shown that macrophages are still able to kill intracellular
bacteria even when they are from a strain that is coated in an antiphagocytic
capsule, like the Ames strain (Welkos et al. (2002)), and the capsule does not seem
to be fully protective against the bactericidal activity of macrophages (Gimenez
et al. (2004)). Therefore, re-parametrising the intracellular model using data
from a fully virulent strain would be extremely useful in determining whether
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the capsule has a significant effect on the intracellular dynamics and fate of a
phagocytosed spore.

In conclusion, I have developed and analysed a novel stochastic mathematical
model of the intracellular bacterial dynamics of a macrophage infected with a
single anthrax spore. By calibrating the model with experimental data, I have
found support for a discrete Bernoulli distribution of the spore germination rate,
which provides independent evidence for the role of superdormant spores (Setlow
(2013, 2014)). This is both of clinical and biological interest. From a clinical
perspective, it indicates the importance to maintain antibiotic dosing for long
periods, given the potential for the slow germinating spores to contribute to the
characteristic persistence of spores in the lungs after inhalational exposure (Jenk-
ins & Xu (2013)). From a biological perspective, it demonstrates that there might
be selective pressure for spores to distribute their germination rates in a heteroge-
neous manner. This might protect spore populations by ensuring that a reservoir
of spores is maintained in case of accidental germination in environments not suit-
able for growth (Titball & Manchee (1987)). The results of the calibrated model
also predict, in agreement with experimental findings, that many macrophages
may be able to recover and resolve the bacterial infection, provided their initial
intracellular burden is low. Yet, the results predict a low but non-zero risk of
cellular rupture, leading to the release of bacteria from the cell.
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Chapter 4

Within-host model of
inhalational anthrax

In this chapter, the intracellular stochastic model proposed in Chapter 3 is ex-
tended towards an in vivo infection setting. A mechanistic within-host model
of inhalational anthrax infection is presented, which describes the dynamics of
B. anthracis within the lungs and lymph nodes of an individual, following inhala-
tion of some initial dose of spores.

Several types of mathematical models have previously been developed to study
inhalational anthrax. Statistical dose-response models can be used to describe
the probability of response for different initial inhaled doses of spores, at the
population level. However, these provide limited information about the within-
host disease mechanisms, or the timescale of disease. A standard approach in
dose-response assessment is the use of single-hit models. These models assume
that when an individual is infected with a pathogen, the organisms act indepen-
dently in the host so that the probability that any one organism in the initial
dose produces an eventual infection is independent of the size of the dose, and
the probability of infection is equivalent to the probability that at least one of
the organisms in the initial dose will lead to an infection. An example is the ex-
ponential dose-response model, which involves a single parameter to denote the
probability that an individual organism will produce a response. The competing-
risks model for inhalational anthrax was proposed by Brookmeyer et al. (2005)
as an extension of the exponential dose-response model. This is also a single-hit
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model, but allows some insight into disease mechanisms because it includes pa-
rameters describing the germination rate of spores and the rate at which spores
are cleared from the lungs. However, it is still a very simple model. The hypoth-
esis of the competing risks model for anthrax is that if a single spore survives
ingestion by a macrophage and successfully germinates without getting cleared,
then the resulting bacterium will be certain to establish an infection. However,
some immune system cells may be able to kill vegetative B. anthracis bacteria
(Liu et al. (2018)), which means that once a spore in an infected cell has ger-
minated and a bacterium is released, there is no guarantee that the bacterium
will survive and cause infection. Another simplification used in the competing
risks model is that germination and clearance of spores are both assumed to be
exponential processes. However, this might not be the case. For instance, in the
intracellular model presented in Chapter 3, as well as the one by Pantha et al.
(2018), the consideration of the newly germinated bacterium means that the total
germination-maturation time is non-exponential.

Deterministic models have also been developed for inhalational anthrax, con-
sisting of differential equations to model variables of the within-host disease dy-
namics. These models can capture and quantify key biological mechanisms. Some
deterministic models are very complex, for example the model by Day et al. (2011)
includes variables for spores, bacteria, toxins, different types of immune system
cells, and antibiotics. It models the dynamics in two compartments representing
the lungs and the lymph nodes. The model parameters are not calibrated with
specific data, but the model aims to provide a qualitative description of the dis-
ease in humans. On the other hand, Gutting (2014) has developed a simple model
to describe the bacterial kinetics in a rabbit model of inhalational anthrax, and
used various datasets to calibrate the model parameters. However, this model
only describes the amount of bacteria within the lung airways and the rabbit
body as a whole, rather than dividing the body into multiple compartments.

Here, a novel model of the within-host dynamics of inhalational anthrax is
presented, which falls between the one by Day et al. (2011) and Gutting (2014)
in terms of model complexity. Furthermore, the stochastic nature of the within-
host model presented here allows it to capture the variability and randomness of
the biological processes, and to explain dose-response data for anthrax infection.
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For example, the model considers inter-phagocyte variability in rupture size by
incorporating the rupture size distribution from the intracellular model into the
within-host infection dynamics. Heterogeneity of the rupture size has been shown
to be important in a similar model for the pathogen F. tularensis (Carruthers
et al. (2018)). The stochastic modelling approach, together with dose-response
data sets, is used to investigate the individual infection risk given an initial inhaled
dose. As well as computing the probability of a host response to infection, the
approach also allows quantification of the timescale of symptom onset.

The within-host model incorporates the role played by the anthrax toxins
during infection, since the toxins are a key component of anthrax pathogenesis.
The role of toxins was included in the model by Day et al. (2011), but the toxin
level was modelled as a number between 0 and 1, with arbitrary units. Here I
instead make use of in vitro data on toxin production in order to obtain bio-
logically relevant parameter values that can be used in the within-host model.
Parameter calibration of the within-host model is then performed by comparing
the mean-field approximation of the stochastic model to in vivo data from rab-
bit and guinea pig infections, as well as linking the model to dose-response data
in order to ensure that the model reliably describes the probability of response
following exposure to different doses of spores.

This chapter is organised into two main sections. Section 4.1 outlines the
model, and a simple discrete-time version of the model at early times is described,
which is used to obtain a mechanistic expression for the dose-response parameter
of the exponential dose-response model. Section 4.2 reports the results of the
parameter calibration.

4.1 Mathematical model

This section outlines the within-host model of inhalational anthrax. It is a hy-
brid model comprising both discrete-valued and continuous variables. A multi-
dimensional continuous-time Markov chain is used to describe the numbers of
extracellular spores and bacterial colony-forming units (CFU) within various com-
partments of the body following exposure, whereas ODEs describe the amount
of the protective antigen (PA) component of the anthrax toxin present in the
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compartments. Since PA is thought to be the limiting toxin component and is
the component that the therapeutic antibody targets, the model only includes
a variable for the amount of PA, and neglects the other two toxin components,
EF and LF. The compartments considered here are the airways of the lungs (A),
the mediastinal lymph nodes (LN), and the blood/circulation (C). However, other
compartments could easily be included, if relevant in vivo data sets were available.

The within-host model, depicted in Figure 4.1, contains the following vari-
ables:

• SA(t) is the number of extracellular spores in the airways of the lungs.

• P (t) is the number of infected phagocytes migrating from the lungs to the
mediastinal lymph nodes.

• BLN(t) is the number of extracellular vegetative bacterial CFU in the lymph
nodes compartment.

• BC(t) is the number of extracellular vegetative bacterial CFU in the blood
compartment.

• TLN(t) is the amount of PA (units ng) in the lymph nodes compartment.

• TC(t) is the amount of PA in the blood compartment.

After inhalation, spores are transported through the respiratory system and
can become deposited in different areas, or may be exhaled without becoming
deposited. Hence the initial dose of spores that is delivered to the lungs is gener-
ally smaller than the original inhaled dose (Weir & Haas (2011)). In the model,
time t = 0 represents the time at which inhaled spores become deposited in the
lungs. If an individual is exposed through inhalation to a dose of D spores, the
initial number of spores deposited in the airways will be sampled from a binomial
distribution, SA(0) ∼ Bin(D, ϕ̂), where ϕ̂ is the probability that a given inhaled
spore is deposited in the lungs (Pratt et al. (2020)).

In the airways of the lungs, spores can be mechanically cleared due to ciliated
epithelial cells that beat and propel material up the airways to be expelled. Al-
ternatively, spores that reach the alveoli of the lungs have the chance to cause an
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infection and can be engulfed by phagocytes and transported from the airways
into the lung tissue. Similarly to the model by Gutting (2014), it is assumed here
that spores in the lung airways are cleared with rate kc, or phagocytosed and
transported into the lung tissue with rate kp. Thus there is a competition be-
tween the two mechanisms of removal of spores from the airways, and the overall
rate of removal is denoted by,

ρ = kc + kp.

Furthermore, we are mainly interested in the spores that have the possibility to go
on to cause an infection, namely the ones that are phagocytosed and transported
into the lung tissue. Therefore, let us define a second parameter,

ϕ = ϕ̂
kp

kc + kp

,

which is the probability for a given inhaled spore to be deposited in the lungs and
ultimately phagocytosed rather than mechanically cleared. The phagocytosed
spores are then transported intracellularly to the lymph nodes.

The within-host model proposed here is in the form of a compartmental model,
and does not explicitly consider the dynamics inside each individual infected cell
as in the intracellular model presented in Chapter 3. Instead, the intracellular
dynamics are implicitly incorporated by using key quantities calculated from the
intracellular model to link with the within-host model. These key quantities are
the rupture size distribution and the rupture time distribution. With these quan-
tities, the intracellular dynamics can be implicitly modelled under the assumption
that each infected phagocyte ruptures after an amount of time sampled from the
rupture time distribution, and subsequently releases some number of bacteria,
which is sampled from the rupture size distribution. In order for the within-
host model to remain Markovian, the rupture time distribution is approximated
by an Erlang distribution. Specific Erlang approximations for the rupture time
distributions were given in Section 3.3 for the best parameter estimates of the
intracellular model. However, since the intracellular model was calibrated with
data from an in vitro experiment that used mouse peritoneal macrophages, the
timing of rupture from this in vitro system may not be realistic in a model of in
vivo dynamics. Thus, in the within-host model, it is assumed that the time taken
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for phagocytes to migrate to the lymph nodes and rupture follows an Erlang
distribution with shape parameter n = 3 and unknown rate parameter δ. This
is represented in the model by partitioning the infected phagocytes into three
stages, giving P (t) = ∑3

i=1 Pi(t), where Pi(t) represents the number of infected
phagocytes in stage i. Each phagocyte passes through the three stages, and re-
leases some number n ∈ N∪{0} of vegetative bacteria into the lymph nodes upon
leaving the third stage, with probability Rn

1S
. The time spent in each stage is

exponentially distributed with rate δ.
In the lymph nodes compartment, extracellular bacteria replicate with per

bacterium rate λLN , and die with per bacterium rate µLN . Death of extracellu-
lar bacteria in the lymph nodes with rate µLN occurs due to the action of the
host immune defences, and this single term accounts for multiple mechanisms of
extracellular bacterial death, such as from neutrophils, macrophages, dendritic
cells, lymphocytes, and soluble components of the innate immune system (Day
et al. (2011)). This single term is used to represent all of the mechanisms since
there is not the necessary data available at the moment to distinguish between
the contribution to bacterial death from each of the different mechanisms.

If an infection becomes established in the lymph nodes and the number of
bacteria continues to grow, this will eventually result in an inflammatory re-
sponse. This can cause damage to the lymph nodes, and the tissues and blood
vessels can become leaky in order to facilitate an influx of immune system cells.
However, this can also allow bacteria to escape from the lymph nodes and find
their way into the circulation. This is included in the model by assuming that
once the number of bacteria in the lymph nodes reaches a certain threshold, M

(representing a certain level of damage to the lymph nodes), bacteria can begin
to migrate to the blood compartment with per bacterium rate mB. In the blood
compartment, extracellular bacteria proliferate with per bacterium rate λC . This
does not necessarily represent replication within the blood itself, but it reflects the
accumulation of bacteria in the blood due to replication and migration from nu-
merous colonised organs throughout the body, which are not explicitly modelled
here in terms of different compartments. It would be preferable to also include
possible death of bacteria in the circulation compartment. However, it would not
be possible to identify separate birth and death rates from the data that is used
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Transition Rate
SA −→ SA − 1 kcSA

(SA, P1) −→ (SA − 1, P1 + 1) kpSA

(Pi, Pi+1) −→ (Pi − 1, Pi+1 + 1) δPi, i = 1, 2

(P3, BLN) −→ (P3 − 1, BLN + n) Rn
1S

δP3, n ∈ N ∪ {0}

BLN −→ BLN + 1 λLNBLN

BLN −→ BLN − 1 µLNBLN

(BLN , BC) −→ (BLN − 1, BC + 1) mBBLN1BLN >M

BC −→ BC + 1 λCBC

Table 4.1: The transitions and their corresponding rates in the Markov chain part
of the within-host model in Figure 4.1. 1A is an indicator function, which is equal to 1
if A is true, and 0 otherwise.

to calibrate the model parameters in Section 4.2.2. In the deterministic version
of the model, given in Section 4.2.2, λC can be interpreted as a single parameter
representing the net growth rate (i.e., division rate minus death rate).

The model is depicted in Figure 4.1, and the possible transitions considered
in the CTMC part of the within-host model are shown in Table 4.1. Additionally,
the amount of PA in the lymph nodes and blood compartments are real numbers
given by TLN(t) and TC(t) respectively. These follow the equations,

dTLN

dt
= βBLN − (µT + νBLN)TLN ,

dTC

dt
= βBC − (µT + νBC)TC .

PA increases from production at a rate proportional to the number of extracellular
bacterial CFU, where β is the production rate of PA per bacterial CFU. Three
factors will contribute to the removal of PA in vivo. It will naturally break
down at a rate perhaps similar to the degradation that is observed in vitro in
the absence of bacteria. Secondly, the PA will interact with host cell membranes
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LUNG AIRWAYS LYMPH NODES CIRCULATION

P

Recovery/rupture

SA

BLN BC

dTLN

dt = βBLN − (µT + νBLN)TLN
dTC

dt = βBC − (µT + νBC)TC

SA(0) ∼ Bin(D, ϕ̂)

kcSA

kpSA

Erlang(3, δ)

λLNBLN

µLNBLN

mBBLN1BLN >M

λCBC

Figure 4.1: Diagram of the within-host model for inhalational anthrax. In the
airways of the lungs, spores are cleared (with rate kc) by ciliated epithelial cells that beat
and propel material up the airways to be expelled. Some spores are instead engulfed by
phagocytes and are transported into the lung tissue (with rate kp). It is assumed that
each phagocyte only phagocytoses one spore. The infected phagocyte then migrates
to the lymph nodes and after an Erlang-distributed time will either recover, releasing
zero bacteria, or rupture, releasing some positive number of bacteria. The number
of bacteria released is determined by the rupture size distribution of the intracellular
model, given in Eq. (3.1.42). In the compartments containing extracellular bacteria,
the bacteria proliferate with a linear replication rate, and a linear death rate accounts
for multiple mechanisms of extracellular bacterial death in the lymph nodes. Migration
of extracellular bacteria from the lymph nodes to the circulation compartment occurs
with rate mBBLN if the number of bacteria in the lymph nodes is greater than the
migration threshold, M .
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and be cleaved by the host furin, to create a binding site for the active toxin
components, LF and EF. To model these removal mechanisms, the PA decreases
at a rate proportional to the current amount of PA, where µT is the rate of
decrease from natural decay and binding. Thirdly, some of the PA will actively
be digested due to proteases produced by the bacteria, at a rate proportional to
the bacterial CFU (See Section 4.2.1). When the within-host model is simulated
using the Gillespie algorithm, the values of TLN and TC are updated via the Euler
method. For example, given a small time-step, ∆t, and the value of TLN(t), this
variable is updated to

TLN(t + ∆t) = TLN(t) + ∆t [βBLN(t)− (µT + νBLN(t))TLN(t)] .

4.1.1 Dose-response relationship

If an individual inhales a dose of B. anthracis spores, it is possible that their
immune system will be capable of clearing the pathogen, without resulting in a
detectable infection. However, in some cases the infection cannot be contained,
and an infection will become established. The within-host model can be used
to investigate the probability that infection becomes established, given a known
initial dose of inhaled spores.

In order to find the probability of infection, one can consider a simplification
of the model in Figure 4.1 in which the timings of the events are ignored. We
only need to focus on the chain of events that occur, leading to a discrete-time
process that represents the probabilities of different outcomes at each initial stage
of the infection. Furthermore, due to the presence of the migration threshold, M ,
it can be assumed that migration of bacteria to the blood will not occur until the
infection is established in the lymph nodes, and therefore migration is neglected
in the very early stages; that is, the probability of a response for a given dose
depends on the early-time dynamics in the airways and lymph nodes, but not
in the blood. This approximation leads to the simple discrete-time model shown
in Figure 4.2, which can be used to predict the infection risk from exposure to
different doses of spores.
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Parameter Units Description
ϕ − Probability that an inhaled spore will become

deposited in the lungs and will then become
phagocytosed rather than mechanically
cleared

ρ (spore · h)−1 Rate of clearance of spores from the airways
(by either phagocytosis or mucociliated
clearance)

δ (phagocyte · h)−1 Rate parameter of Erlang-distributed time
for migration to the lymph nodes and
rupture of host cells

λLN (CFU · h)−1 Growth rate of extracellular bacteria in the
lymph nodes

λC (CFU · h)−1 Growth rate of extracellular bacteria in
circulation

µLN (CFU · h)−1 Killing rate of extracellular bacteria in lymph
nodes

mB (CFU · h)−1 Migration rate of extracellular bacteria from
the lymph nodes into the circulation

M CFU Threshold number of extracellular bacteria
needed in the lymph nodes before migration
into the circulation can occur

β ng (CFU · h)−1 Production rate of PA by extracellular
bacteria

µT h−1 Removal rate of PA due to natural
degradation, and binding to cells

ν (CFU · h)−1 Removal rate of PA due to degradation by
proteases produced by the bacteria

Table 4.2: List of parameters for the within-host infection model. Units given here
correspond to the stochastic model, but some of these units will change when incorpo-
rating these parameters into the ODEs provided in Section 4.2.2.
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LUNG LYMPH NODES
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∅
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Figure 4.2: Discrete-time model for the possible fates of a single spore during the
very early stages of inhalational anthrax infection. Within the lung, an inhaled spore
(represented by the yellow ball) becomes deposited in the alveoli and ingested by a host
phagocyte with probability ϕ. The intracellular spore germinates and the phagocyte
might kill the germinated bacterium or the bacterium may survive the antimicrobial
environment, replicate and cause the phagocyte to rupture, as described by the in-
tracellular model in Chapter 3. The infected phagocyte migrates to the lymph nodes
and either recovers, or ruptures and releases some bacteria, according to the probabil-
ities calculated from the intracellular model, Rn

1S
. The population of bacteria released

follows a birth and death process, where an extracellular bacterium may be killed by
host immune cells with probability p or a bacterium will replicate extracellularly with
probability 1 − p. In this birth and death process, ∅ represents the state where there
are no extracellular bacteria remaining.
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Figure 4.2 shows a representation of the possible fates of each inhaled spore in
the early stages of inhalational anthrax infection in the lungs and lymph nodes.
It is assumed that only the inhaled spores that are deposited in the lungs and
phagocytosed have the ability to cause an infection. As mentioned previously,
the parameter ϕ gives the probability for an inhaled spore to be deposited in the
alveoli of the lungs and ultimately phagocytosed. The infected host phagocyte
then migrates to the mediastinal lymph nodes and releases n ∈ N ∪ {0} bacteria
with probability Rn

1S
calculated from the intracellular model. Once released into

the lymph nodes, each extracellular bacterium can be killed by host immune cells
with probability p = µLN

µLN +λLN
, or proliferate extracellularly with probability 1−p.

It is assumed that p < 0.5, otherwise the bacterial population would be certain
to go extinct.

Each inhaled spore has two possible fates: established infection or clearance.
Starting with a single inhaled spore, an infection will become established if all
three of the following occur. First, the spore must be deposited in the lungs and
be phagocytosed. Then this infected host cell must release some positive number,
n ≥ 1, of bacteria into the lymph nodes. Finally, the population of bacteria in
the lymph nodes, starting at size n, must not become extinct. The size of the
bacterial population in the lymph nodes follows a simple one-dimensional random
walk, with zero the only absorbing state, and probabilities p and 1− p of moving
from state j to j − 1 and j + 1, respectively. If the population starts at state n

after a rupture event, it is well known that the probability of ultimate extinction
of this process is

(
p

1−p

)n
. Therefore the probability that infection is established

by a single inhaled spore is given by,

r = ϕ
∞∑

n=1
Rn

1S

(
1−

(
p

1− p

)n)
,

= ϕ(1−R0
1S

)
[
1− p

1− p

(
1− 1

b

) ∞∑
n=0

(
p

(1− p)b

)n]
,

= ϕ(1−R0
1S

)
1− p

1− p

(
1− 1

b

) 1
1− p

(1−p)b

 ,

= ϕ(1−R0
1S

)
1− p

1−p

1− p
(1−p)b

,

(4.1.1)
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where b is a combination of parameters from the intracellular model (see Eq.
(3.1.18)) that is involved in the definition of the rupture size distribution, given
by Eq. (3.1.39) and Eq. (3.1.42).

If multiple spores are initially inhaled, the probability of an infection becoming
established is equal to the probability that not all of the inhaled spores are cleared,
i.e. at least one of the inhaled spores leads to an established infection. Since
the initial spores are assumed to be independent of each other, the dose-response
curve can therefore be described using the exponential dose-response model. That
is, for a Poisson-distributed dose with mean D, the probability of infection is given
by,

I(D; r) = 1− e−rD, (4.1.2)

where r is the probability that a single spore will produce a response, given by
Eq. (4.1.1).

Similar to the competing risks model by Brookmeyer et al. (2005), the model
presented here is an extension of the exponential dose-response model in which
mechanistic detail has been incorporated into the dose-response parameter, r.
The competing risks model involves parameters for the two competing processes of
spore germination and spore clearance but does not explicitly consider macrophage
rupture or intracellular bacterial dynamics. Here, a fully mechanistic model has
been proposed, which goes beyond the simple competing risks assumptions. A
formula for r has been obtained that takes into account the deposition probabil-
ity of inhaled spores, the stochasticity of rupture events, and the possibility that
even if a few bacteria are released from a rupturing cell, infection might not occur
if these few bacteria are killed by the host immune defences before they are able
to proliferate to a sufficient number to cause a response. This novel methodology
could potentially also be applied to other pathogens.

4.2 Parameter calibration

4.2.1 In vitro toxin production

In this section in vitro data of B. anthracis bacterial growth and toxin production
are used to obtain preliminary estimates for the replication rate of extracellular
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bacteria, and the rate at which the bacteria produce PA, to help with the cali-
bration of the within-host model. The dataset used comes from an experiment
by Charlton et al. (2007). In this experiment, they simulated the UK anthrax
vaccine manufacturing process, which uses the Sterne 34F2 strain, and obtained
in vitro data on anthrax toxin production. Specifically, Thompson bottles con-
taining 450 ml of basal medium were sterilized by autoclaving at 121°C for 15 min
and then warmed to 37°C prior to inoculation with 50 ml of a spore suspension
that had a concentration of 2 × 104 CFU/ml, giving an initial spore concentra-
tion in the Thompson bottles of 2× 103 CFU/ml. These Thompson bottles were
then incubated statically at 37°C for up to 32 hours. At various time points,
three Thompson bottles were sacrificed, and the numbers of spore and bacterial
CFU in the culture were measured. Individual bottle sacrificing was used be-
cause repeated sampling from the same bottle was found to disturb the growing
cultures.

It was found that the spore counts of each bottle remained fairly constant
throughout the 32 hours, at around 30% of the number used to inoculate each
bottle. This is because the spores were heat activated prior to inoculation, so
would have germinated extremely quickly on contact with the glucose and amino
acids of the culture media, and therefore the only remaining spores by the time
the first CFU measurements were obtained were those spores that would not go
on to germinate during the timescale of the experiment. Therefore the spore data
are not used in the subsequent model calibration presented in this section.

As well as the CFU measurements, the protective antigen (PA) and lethal
factor (LF) levels in the culture supernatants of each sacrificed bottle were also
determined, using antigen-capture ELISA. Only the PA concentration data is
used in the following analysis, since this is the toxin component included in the
within-host model.

The data of PA concentration (ng/ml) and bacterial growth can be used to
calibrate a deterministic model for the number of newly desporulated bacteria,
N(t), the number of vegetative bacterial CFU, V (t), and the amount of PA,
T (t), over time in vitro. The proposed model of in vitro bacterial growth and PA
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production takes the form of the following system of differential equations.

dN

dt
= −mN,

dV

dt
= mN + λeV

(
1− V

K

)
,

dT

dt
= βV − (ν0 + νV )T.

(4.2.1)

The total bacterial CFU is given by B(t) = N(t) + V (t). The inclusion of the
newly desporulated bacteria helps to explain the lag period in the bacterial growth
curve observed in the data (see Figure 4.6), because these newly desporulated
bacteria must mature into vegetative bacteria with rate m before they are able
to proliferate. The proliferation of the vegetative bacterial CFU is modelled by
logistic growth. It is assumed that PA is produced at a constant rate by each
vegetative bacterial CFU, but is not produced by the newly desporulated bacteria.

Collaborators at Dstl have conducted an experiment which aimed to find how
quickly PA decays. To do this they incubated a culture of bacteria for 24 hours,
during which the bacteria were proliferating and producing PA. After these 24
hours of growth, the bacteria were filtered out. The supernantant was then incu-
bated again and at various time points the supernatant was sampled to quantify
how much PA remained. From this, it was found that the rate that PA naturally
breaks down in the absence of bacteria is around ν0 = 0.0365 h−1 (unpublished
data). However, this is much slower than the rapid rate of PA degradation ob-
served in some in vitro scenarios where bacteria are present throughout (Zai et al.
(2016), see Section 1.1.1). It is known that B. anthracis produces proteases that
contribute to the pathology of anthrax through the degradation of host tissues
and modulation of host defences (Chung et al. (2006)). However, it has been
found that these proteases are also able to degrade PA and LF, since knock-
ing out genes encoding certain proteases, or adding protease inhibitors, has been
found to increase yields of the toxin components (Pflughoeft et al. (2014); Pomer-
antsev et al. (2011); Zai et al. (2016)). This implies that the production of these
proteases by the bacteria may be inadvertently self-inhibiting in some way. Due
to the large discrepancy between the rate of PA degradation in the presence and
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absence of bacteria, there is reason to believe that proteases produced by the bac-
teria are the dominant mechanism of PA degradation in vitro. Hence, a second
mechanism of PA degradation is included in the in vitro model, in which the rate
of PA removal is assumed to be proportional to the vegetative bacterial CFU.
The natural degradation rate of PA is fixed to ν0 = 0.0365 h−1, and the value of
ν is estimated.

I have used the model in Eq. (4.2.1), along with the in vitro data from
Charlton et al. (2007), to obtain estimates for the rate of PA production per
bacterial CFU, the rate of PA degradation, and the parameters determining the
logistic growth of the bacteria. All bacterial CFU are assumed to be initially in
the newly desporulated state, and thus the initial conditions of the model are
taken to be N(0) = 102.29 (the first data point used), B(0) = 0, and T (0) = 0.
I have performed a Bayesian approach to the parameter calibration, via ABC-
SMC. During the model simulation step of the ABC-SMC algorithm, noise is
added to each simulated data point, to take into account measurement errors in
the observed data (Alahmadi et al. (2020)). These added errors are independent
Gaussian with zero mean and standard deviation equal to the standard deviation
of the experimental data at the corresponding time-point.

Since the model is simultaneously being fitted to two datasets of different
types (bacterial CFU measurements and PA measurements) with different units
(CFU vs ng/ml), it is necessary to ensure that the calculation of the distance
between the model and the data is not affected by scale differences between the
data types. For example, if one simply added together the squared errors between
the model and data for each data point, the bacteria fit would be prioritised much
more than the toxin fit in the calibration because the numbers are so much higher.
Therefore I have defined two distance functions,

d1(Model prediction, Data) =
∑

t∈T imes

(
log10

(
B∗(t)
B(t)

))2

, (4.2.2)

d2(Model prediction, Data) =
∑

t∈T imes

(
T ∗(t)− T (t)

)2

, (4.2.3)

where B∗(t) and T ∗(t) are the respective model predictions for the amount of bac-
terial CFU and PA at time t, B(t) is the geometric mean of the observed number
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Parameter Units Prior
m h−1 log10m ∼ U(−3, 1)
λe h−1 log10λe ∼ U(−1, 1)
K CFU ml−1 log10K ∼ U(5, 9)
β ng (CFU · h)−1 log10β ∼ U(−7,−2)
ν (CFU · h)−1 log10ν ∼ U(−15,−5)

Table 4.3: List of model parameters and corresponding prior distributions used in
the ABC-SMC for the model of in vitro bacterial growth and PA production.

of bacterial CFU across the three Thompson bottles sacrificed at time t in the
experiment by Charlton et al. (2007), and T (t) is the arithmetic mean amount of
PA observed at time t in the experiment. The values of the bacterial CFU predic-
tions and data are log-transformed since they span a large range of magnitudes.
At each iteration of the ABC-SMC algorithm, two distance thresholds are used, ε1

and ε2, and parameter sets are only accepted if d1(Model prediction, Data) < ε1

and d2(Model prediction, Data) < ε2.
Uniform priors were used for each (log-transformed) parameter over the ranges

in Table 4.3. From the posterior histograms in Figure 4.3 one can see that it has
been possible to learn a lot about most of the parameters. Furthermore, the
parameter estimates obtained seem realistic. For example, the estimates for λe

are similar to the one used by Day et al. (2011) in their within-host model, which
was 0.8 h−1. They are also consistent with the best estimate for the intracellular
bacterial replication rate from the calibration of the intracellular model in Chapter
3, which was 0.64 h−1.

The scatter plots in Figure 4.5 show correlations between some pairs of pa-
rameters. For example, there is a strong negative correlation between λe and
m, because if the desporulated spores mature quickly, then there needs to be a
slower replication rate of vegetative bacterial CFU in order to explain the data,
and vice versa. There is a strong positive correlation between β and ν, and a
fairly wide range of values of these parameters were accepted. However, we can
learn more about the ratio βK/(ν0 + νK), which determines the steady state
of PA in the model and is estimated to be around 8 × 103 ng/ml, as shown in
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Figure 4.3: Kernel density estimates for the prior distribution for each parameter in
grey and the marginal posterior distribution for each parameter in green, from calibra-
tion of the model of in vitro bacterial growth and PA production.
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4.2 Parameter calibration

Figure 4.4: Kernel density estimate for the posterior distribution of the transforma-
tion βK/(ν0 + νK), which determines the steady state of PA in the model of in vitro
bacterial growth and PA production. The units of this quantity are ng.

Figure 4.4. It may be helpful in future to use data from experiments where an
effort has been made to reduce the degradation of PA by bacterial proteases, for
example through the use of protease inhibitors (Zai et al. (2016)), in order to
more accurately estimate the production rate of PA and help to disentangle the
pair of parameters, β and ν.

Figure 4.6 shows the predicted amount of bacteria and PA versus the in vitro
observations (dots showing the mean of three runs and bars showing the stan-
dard deviation). The solid lines represent the pointwise median of the model
predictions from all parameter estimates in the posterior sample obtained via
ABC-SMC. These predicted curves seem to follow the data quite well.

4.2.2 Dose-response and in vivo dynamics

The exponential dose-response model, given by the function in Eq. (4.1.2), is
widely used in microbial risk assessment, and has been previously used many
times to establish dose-response curves for inhalational anthrax. For example,
Gutting et al. (2015) have previously fitted the model to dose-response data sets
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Figure 4.5: Scatter plots showing the relationships between the posterior distri-
butions of pairs of parameters from the model of in vitro bacterial growth and PA
production.

Figure 4.6: Predictions for bacterial CFU (left) and PA concentration (right) over
time obtained by using ABC-SMC to fit the model in Eq. (4.2.1) to in vitro exper-
imental data from Charlton et al. (2007). Solid lines show pointwise medians of the
set of predictions using all the parameter sets in the posterior sample, and the shaded
regions represent the pointwise 95% credible intervals of these predictions.
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for a number of different animal species, in order to estimate the parameter r for
each species. Gutting (2014) has also separately calibrated a simple deterministic
within-host model of inhalational anthrax, using bacterial counts from infected
rabbits. This section will focus on calibrating the model in Figure 4.1 using data
from various studies of rabbits and guinea pigs, as well as making use of some of
the parameters calibrated using the in vitro data in Section 4.2.1.

Dose-response data

When fitting the exponential model to pooled dose-response data for rabbits in-
fected with the Ames strain of B. anthracis, Gutting et al. (2015) found the value
of r that gave the best fit to be r = 6.75× 10−6. Gutting et al. (2015) also fit the
exponential model to dose-response data for guinea pigs, and obtained a parame-
ter estimate of r = 9.79×10−6. Figure 4.7 shows these exponential dose-response
curves compared to the rabbit and guinea-pig data sets. Using the model in
Figure 4.1, a formula for the probability r has been obtained instead in terms of
parameters (ε, gA, gB, µ̃, λ, µ, γ, ϕ̂, kc, kp, λLN , µLN) with mechanistic interpre-
tations, given in Eq. (4.1.1). However, many combinations of these parameters
can produce the same value of r. The parameter calibration of the intracellular
model in Chapter 3 incorporates parameter uncertainty, encoded in the posterior
distributions (see Figure 3.8). Thus, different parameter sets will lead to different
predicted rupture size distributions, which is one of the main components of the
mechanistic description of r in Eq. (4.1.1). Depending on the rupture size distri-
bution used, the same dose-response curve can be obtained using a large number
of combinations of the parameters ϕ = ϕ̂ kp

kc+kp
and p = µLN

µLN +λLN
. The rightmost

plot of Figure 4.7 shows a wide range of parameter sets involving the value of p,
the probability of deposition and phagocytosis ϕ, and the average rupture size
derived from the intracellular model parameters, which all lead to the same value
of r obtained by fitting the exponential dose-response curve to the rabbit dose-
response data. In general, as the average rupture size or deposition/phagocytosis
probability ϕ decrease, the required value of p decreases, since more replication
will be required to establish a population of bacteria in the lymph nodes.
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Figure 4.7: Left: Exponential dose-response model fit to pooled rabbit Ames strain
dose-response data, by Gutting et al. (2015). The probability that one inhaled spore
will cause a response is estimated as r = 6.75×10−6. Centre: Exponential model fit to
pooled guinea-pig dose-response data, by Gutting et al. (2015), obtaining an estimate
of r = 9.79 × 10−6. Right: Combinations of parameter values for p and ϕ that give
r = 6.75×10−6 according to Eq. (4.1.1), for different rupture size distributions sampled
from the posterior distribution of the intracellular model. The average of each rupture
size distribution is indicated by the colour of the points.

In vivo data

Since different combinations of parameter values can provide the same value of
r and hence the same dose-response curve, it is not possible to estimate specific
values of the mechanistic parameters using dose-response data alone. Further
experimental data, such as measurements of CFU in different compartments over
time in infected animals, is needed to calibrate the parameters in the within-host
model of inhalational anthrax. I have therefore made use of in vivo data sets
from infection studies of rabbits and guinea pigs in order to find estimates for the
model parameters that are listed in Table 4.2. For each species, the model is fitted
to measurements of CFU from animals that have been exposed to a high dose of
spores, as well as mortality rates from dose-response data sets, simultaneously.
In this way, it is possible to ensure that the model accurately describes both the
in vivo dynamics of infection, as well as the probability of response after exposure
to various doses of spores.

I have used data from a study by Gutting et al. (2012) in which rabbits
were infected with the highly virulent Ames strain of B. anthracis in order to
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Time (hours) CFU in TBLN CFU in blood Number of rabbits
1 0.0± 0.0 0.0± 0.0 4
6 0.0± 0.0 0.0± 0.0 5
12 10± 3.8 0.0± 0.0 5
24 3.167± 2.467(×103) 4.31± 1.66(×105) 5 (TBLN), 10 (blood)
36 3.057± 1.486(×107) 1.18± 0.97(×107) 5 (TBLN), 8 (blood)

Table 4.4: Data for the number of CFU (mean ± SEM) present in the tracheo-
bronchial lymph nodes (TBLN) and blood of groups of rabbits at different times after
exposure to a mean inhaled dose of 4.428×107 spores. The number of rabbits sacrificed
to obtain the measurements at each time point is specified in the final column. The
CFU in the TBLN could not be quantified for all rabbits at 24h and 36h, which is why
the number of rabbits is fewer for the TBLN than the blood at these times. These
data were obtained from the study published by Gutting et al. (2012), and have been
provided by Brad Gutting via private communication.

characterise bacterial dissemination following exposure to a high aerosol dose of
spores. The mean inhaled dose given was 4.428× 107 spores. Data was provided
(mean ± SEM) for the number of bacterial CFU in the tracheobronchial lymph
nodes (TBLN) and blood of rabbits at times 1, 6, 12, 24, and 36 hours after
exposure. For the measurements of CFU in the TBLN, Gutting et al. (2012)
pooled all lymph nodes that they could find from the tracheal and bronchial
regions, to obtain a number of CFU in the TBLN of each animal. However, the
lymph nodes varied in size and number from animal to animal. For the blood
measurements, Gutting et al. (2012) used a conversion factor of 56 ml blood/kg
body weight to convert CFU/ml blood to total CFU counts in the circulation. For
some of the time points, data was provided for two separate experiments. I have
combined the data into a single mean ± SEM for each compartment at each time
point, provided in Table 4.4. Gutting (2014) used similar data to parametrise
a simple deterministic model for inhalational anthrax in rabbits, but the data
from Gutting et al. (2012) is used here because it reports numbers of CFU in the
lymph nodes and blood separately, rather than the numbers in the whole rabbit
body, as reported by Gutting (2014).

I have also made use of data from a study by Savransky et al. (2013) in which
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Figure 4.8: (A) Bacterial CFU/ml and (B) PA levels (ng/ml) post-challenge, mea-
sured in the blood of guinea pigs exposed to a dose of 2× 107 Ames spores. Each dot
represents a measurement taken from an individual animal. Figure taken from Savran-
sky et al. (2013).

guinea pigs were infected with the Ames strain of B. anthracis using nose-only
aerosol exposure. The exposed dose given was calculated to be 2 × 107 spores.
They measured the number of CFU per ml of blood, for which the lower limit of
detection was 100 CFU/ml. They also measured the amount of PA in sera. The
lower limit of detection for the PA measurements was 1.3 ng/ml. The bacteria
and PA levels are shown in Figure 4.8, taken from Savransky et al. (2013). I have
used the means of the measurements for each time point from 30 hours onward,
since all measurements at 24 hours were below the limits of detection. To convert
the values of CFU/ml and PA concentration to the total CFU counts and PA
amount in the circulation, a volume of 70ml is assumed for the circulating blood
of a guinea pig (Williams & Kendall (2015)). The data used is given in Table 4.5.

Deterministic equations

The stochastic nature of the within-host model in Figure 4.1 allows the variability
of the infection processes to be captured, which is especially important at low
doses of spores. However, the animals in the studies by Gutting et al. (2012)
and Savransky et al. (2013) were exposed to very large numbers of spores. In
the case of a large initial dose of spores, there is less stochasticity in the model
realisations for each particular set of parameter values. Therefore, a deterministic
version of the model can be used to describe the dynamics of infection after a
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Time (hours) CFU in blood PA in blood (ng)
30 8.14× 103 1.06× 102

36 2.65× 104 3.30× 102

48 3.16× 106 1.73× 103

72 3.07× 1010 1.87× 106

Table 4.5: Data for the mean number of CFU and amount of PA present in the blood
of groups of guinea pigs at different times after exposure to a mean dose of 2 × 107

spores. These data have been obtained from Figure 4.8 and converted to the amounts
in the whole blood compartment by assuming a volume of 70 ml for the blood of a
guinea pig.

high initial dose of spores. Here, a system of ODEs is formed using a mean-field
approximation of the expected population levels over time for the model in Figure
4.1. This deterministic version of the model is used to compare with the in vivo
average measurements of CFU counts from groups of animals infected with large
doses of spores in the studies by Gutting et al. (2012) and Savransky et al. (2013).
Note that in these ODEs the number of spores, phagocytes, and bacterial CFU
are seen as dimensionless quantities, so that the parameters ρ, δ, λLN , λC , µLN ,
and mB will now have units h−1, instead of the units given in Table 4.2 for the
stochastic model.

As described in Section 4.1, the model assumes that spores in the lung airways
are removed either by physical clearance with rate kc, or are phagocytosed and
transported into the lung tissue with rate kp. Thus, the average number of spores
remaining in the airways over time can be described by the following differential
equation,

dSA

dt
= −(kc + kp)SA,

with initial condition, SA(0) = ϕ̂D, since this is the average number of spores
to be initially deposited in the lungs, given an inhaled dose D, and a deposition
probability ϕ̂. This ODE can be easily solved, giving

SA(t) = ϕ̂De−(kc+kp)t = ϕ̂De−ρt,

where ρ = kp + kc is the overall removal rate of spores from the lung airways.
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The time until rupture of infected cells is assumed to follow an Erlang(3,

δ) distribution, which is implemented by introducing three infected phagocyte

compartments, Pi, i ∈ {1, 2, 3}. The mean number of cells in each compartment

can be described by the differential equations,

dP1

dt
= kpSA − δP1,

dP2

dt
= δP1 − δP2,

dP3

dt
= δP2 − δP3,

(4.2.4)

with initial conditions P1(0) = P2(0) = P3(0) = 0. The equation for P1(t) can be

rewritten as

dP1

dt
= ϕ̂Dkpe−ρt − δP1 = ϕDρe−ρt − δP1,

where ϕ = ϕ̂ kp

kp+kc
. Solving the equations for the mean numbers of infected

phagocytes in each compartment gives, for δ ̸= ρ,

P1(t) = ϕDρ

δ − ρ

(
e−ρt − e−δt

)
,

P2(t) = ϕDρδ

δ − ρ

[
1

δ − ρ

(
e−ρt − e−δt

)
− te−δt

]
,

P3(t) = ϕDρδ2

δ − ρ

[
1

(δ − ρ)2

(
e−ρt − e−δt

)
− te−δt

δ − ρ
− t2e−δt

2

]
.

(4.2.5)
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If δ = ρ, the solutions are

P1(t) = ϕDρte−δt,

P2(t) = ϕDρδt2e−δt

2 ,

P3(t) = ϕDρδ2t3e−δt

6 .

(4.2.6)

Then the average release rate of bacteria into the lymph nodes is given by,

R(t) = δE[R1S
]P3(t),

=



ϕDρδ3E[R1S
]

δ − ρ

[
1

(δ − ρ)2

(
e−ρt − e−δt

)
− te−δt

δ − ρ
− t2e−δt

2

]
, δ ̸= ρ,

ϕDρδ3E[R1S
]t3e−δt

6 , δ = ρ,

(4.2.7)

where R1S
is the random variable for the number of bacteria released from a

phagocyte initially infected with a single spore, and E[R1S
] =

(
1−R0

1S

) b

b− 1.
Finally, the differential equations for the bacterial and PA levels in the lymph

nodes and circulation are given by (see Figure 4.1),

dBLN

dt
= R(t) + (λLN − µLN)BLN −mBBLN1BLN >M ,

dBC

dt
= mBBLN1BLN >M + λCBC ,

dTLN

dt
= βBLN − (µT + νBLN)TLN ,

dTC

dt
= βBC − (µT + νBC)TC .

(4.2.8)
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The set of ODEs in Eq. (4.2.8) describes the number of CFU in the lymph
nodes and circulation, given by BLN(t) and BC(t) respectively, and the amount
of PA in the lymph nodes and circulation, given by TLN(t) and TC(t) respectively.
Initially all four populations are zero (i.e. BLN(0) = TLN(0) = BC(0) = TC(0) =
0). Bacteria arrive in the lymph nodes due to transportation from the lungs,
described by the rate R(t), which was defined in Eq. (4.2.7). These bacteria
then proliferate in the lymph nodes with a linear growth rate, can be killed by
the immune response, or can migrate into the blood (once a threshold of bacteria
is reached, representing damage to the lymph nodes resulting in the migration
of bacteria). In the blood compartment, the bacterial population also grows
with a linear rate, reflecting the general proliferation of bacteria within various
organs of the body. Bacteria are assumed to produce PA at a constant rate β

per CFU, and multiple mechanisms of PA removal are modelled. PA is removed
by natural degradation, and through binding with host cell membranes, at a rate
proportional to the current amount of PA. PA can also be actively digested due
to proteases produced by the bacteria, which occurs at a rate proportional to the
bacterial CFU.

Rabbit model calibration

Gutting (2014) has estimated a deposition probability for inhaled B. anthracis
spores in the tracheobronchial and pulmonary regions of rabbit lungs of ϕ̂ =
0.092, using a combination of particle deposition data and Regional Deposited
Dose Ratio (RDDR) software. A similar software is the Multiple-Path Particle
Dosimetry (MPPD) model, which is a computational model that can be used
for estimating the deposition and clearance of aerosols in the respiratory tract
of humans and various laboratory animal species. I used MPPD with similar
inputs to those used by Gutting (2014), and found very consistent values for the
deposition fractions. Therefore, I am fairly confident in the deposition probability
used by Gutting (2014), and have chosen to fix its value in the model to ϕ̂ = 0.092.
Furthermore, Gutting (2014) used data for the decrease of spores in the airways
to estimate values for the mucociliated (physical) clearance rate of spores from
rabbit airways, kc = 0.0628 h−1, and the rate of transport of spores from the
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lung airways into the lung tissue, kp = 0.0107 h−1. These two parameters can
be combined to obtain a probability for a given spore to be phagocytosed in the
lungs rather than cleared from the lungs, given by kp

kc+kp
. When I have previously

attempted to calibrate a value for this phagocytosis probability as well as the
probability for the infected phagocytes to rupture and release bacteria once they
enter the lymph nodes, I found an extremely strong correlation between these two
probabilities, with a correlation coefficient very close to -1. This introduces an
issue of identifiability, since only the product of the probabilities can be identified
with the available data. For instance, multiplying the phagocytosis probability by
some amount and dividing the rupture probability by the same amount will not
change the estimated number of bacteria entering the lymph nodes. Therefore, I
have decided to make use of the estimates from Gutting (2014) to set values for

ϕ = ϕ̂
kp

kc + kp

= 0.013,

and
ρ = kc + kp = 0.0735 h−1.

The rupture size distribution depends on multiple parameters from the intra-
cellular model. It is not practical to re-calibrate all these parameters with the
available in vivo data. Therefore, I have fixed the conditional rupture size distri-
bution to the best estimate from the intracellular model, shown in the inset in
Figure 3.12. This distribution has a mean of 1.6, meaning that if a phagocyte en-
gulfs a spore and eventually ruptures, it will release 1.6 bacteria on average. This
is actually very similar to the (per spore) rupture size in the model by Day et al.
(2011), where it was assumed that a phagocyte would release 5 bacteria into the
lymph nodes after engulfing 3 spores in the lungs. There was large variation in
the probabilities of rupture from the posterior sample of the intracellular model,
spanning a wide range of orders of magnitude, from as small as 9× 10−5 to 0.53
(see Figure 4.9). Therefore I have allowed the rupture probability, 1−R0

1S
, to be

estimated as a parameter in the calibration of the within-host model with the in
vivo data and dose-response data.

For calibrating the model with the rabbit data from Table 4.4, I found that
it was necessary to include a carrying capacity for the growth of bacteria in
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Figure 4.9: Histogram for the probabilities of rupture obtained from the posterior
sample of the intracellular model calibration in Chapter 3.

the circulation compartment. This is because the bacteria in the blood is not
observed to grow much above 107 CFU, indicating that there must be limiting
growth at some stage. Hence, the equation describing the bacterial dynamics
in the circulation compartment for rabbits is modified to incorporate a logistic
growth term,

dBC

dt
= mBBLN1BLN >M + λCBC

(
1− BC

KC

)
,

where KC is the introduced carrying capacity. The same saturation is not ob-
served in the lymph node data during the time period of observation, so it is not
necessary to include a carrying capacity in the lymph nodes, since it would not
be possible to identify a value for it with the available data.

The model in Figure 4.1 has been simultaneously fitted to the rabbit dose-
response data shown in Figure 4.7 and the in vivo numbers of bacteria in Table 4.4,
using ABC-SMC. To do this, values of most of the (log-transformed) parameters
were sampled from uniform prior distributions, with the exception of λLN . For the
replication rate in the lymph nodes, λLN , the posterior sample for the replication
rate in the in vitro model in Eq. (4.2.1) (obtained from fitting the model to the
data from Charlton et al. (2007), see Figure 4.3) was used as a prior distribution
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here. For each sampled parameter set, the exponential dose-response curve was
calculated according to Eqs. (4.1.1) and (4.1.2), to obtain values of the probability
of infection pD = I(D; r) for each dose D in the dose-response data set. Then
for each dose D, a number of infections was sampled from a Binomial(ND, pD)
distribution, where ND is the size of the exposed group for dose D in the data set.
While the endpoint of the dose-response studies was lethality, and pD has been
referred to as a probability of infection, it is assumed here that infection with
inhalational anthrax will invariably lead to death in the absence of treatment, so
that the number of animals that die in the study is assumed to be equivalent to
the number infected (Toth et al. (2013)). Therefore, the Euclidean distance was
computed between the set of sampled numbers of infections from the model and
the observed numbers of deaths in each group from the data, giving a distance
measure between the model and the dose-response data for a particular parameter
set. To obtain a distance measure between the model and the in vivo bacterial
counts from Table 4.4, the output from the system of ODEs in Eq. (4.2.8) (with
adapted equation for BC to include logistic growth) was compared to the data of
mean numbers of CFU in the TBLN and blood. For this, only the equations for
BLN and BC are needed, since we do not have any data for toxin amount in this
dataset, and the numbers of bacteria do not depend on the amount of PA in this
model. Therefore, values of β, µT , and ν were not calibrated using this data.

The model predictions from this calibration are shown in Figure 4.10, where
the top row shows the predicted amount of bacteria versus the in vivo observations
(dots showing the mean CFU measurements from groups of rabbits and bars show-
ing the SEM). The solid lines represent the pointwise median of the model pre-
dictions from all parameter estimates in the posterior sample obtained via ABC-
SMC. The plot on the bottom row shows the predictions of the dose-response
curve compared to the observed dose-dependent mortality rates in groups of rab-
bits exposed to different doses. Figure 4.11 shows the binomial distributions for
the number of infections, given by the model with the median parameter values
from the posterior sample, for each dose in the rabbit data set. The observed
number of deaths is indicated as a vertical line, for each dose.

From the posterior histograms in Figure 4.12 one can see that it has been
possible to learn a lot about most of the parameters. One parameter with a
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Figure 4.10: Model predictions compared to the data used in the ABC-SMC for
the rabbit model calibration. Top row: Predictions from the system of ODEs in Eq.
(4.2.8) compared to the mean CFU loads in the TBLN and blood from the rabbit data
in Table 4.4. Bottom: Prediction of the mechanistic exponential dose-response model
given by Eqs. (4.1.1) and (4.1.2) compared to rabbit dose-response data from Gutting
et al. (2015).
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Figure 4.11: Binomial distributions for the number of deaths, given by the model
with the median parameter values from the posterior sample, for each dose in the rabbit
data set. The observed number of deaths is indicated as a vertical line, for each dose.

Figure 4.12: Kernel density estimates for the prior distribution for each parameter
in grey and the marginal posterior distribution for each parameter in green. These
posterior distributions were obtained from fitting the mechanistic dose-response model
given by Eqs. (4.1.1) and (4.1.2) to the rabbit dose-response data from Gutting et al.
(2015), and simultaneously fitting the model in Eq. (4.2.8) to the mean CFU loads in
the TBLN and blood from the rabbit data in Table 4.4.
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Figure 4.13: Correlation coefficients between the posterior samples of pairs of pa-
rameters in the rabbit model calibration.
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particularly narrow posterior distribution is δ, which determines how quickly
infected phagocytes migrate from the lungs to the lymph nodes and rupture.
With the median value of δ = 0.04 h−1, the Erlang(3, δ) distribution of the time
for phagocytes to rupture has a mean of 75 hours. Compared to the average
rupture time of 20 hours used in the model by Day et al. (2011), rupture is
occurring very slowly in the model predictions in Figure 4.10, and only a fairly
small proportion of the infected phagocytes will be expected to rupture during
the 40 hour time period shown in the plots. However, once a few phagocytes
have ruptured and released bacteria into the lymph nodes, the dynamics in the
lymph nodes begins to be dominated by the extracellular replication of bacteria,
and the subsequent rupture events do not have a great impact on the dynamics.

The probability of rupture is estimated to be around 5 × 10−4 which is to-
wards the lower end of the prior range. However, this is still consistent with the
estimates from the intracellular model, since around 7% of the rupture proba-
bilities in the histogram in Figure 4.9 are below 10−3. Since the intracellular
model was calibrated with in vitro data, this difference in the estimated proba-
bility of rupture could indicate that macrophages are better at killing bacteria
in vivo. Also, the cells used in the in vitro experiment were murine peritoneal
macrophages, so rabbit alveolar macrophages and dendritic cells may react quite
differently. Note that parameter estimates from Gutting (2014) were used to fix
the probability for spores to be phagocytosed in the lungs. If the true phagocyto-
sis probability was actually smaller than the one used here, one would expect the
estimated rupture probability to increase. This is because these two probabilities
are highly related, in the sense that only the product of the two probabilities can
be identified from the data used here. Fortunately, when previously including the
phagocytosis probability in the list of parameters to be estimated, there was no
substantial correlation observed between the phagocytosis probability and any
parameter other than the rupture probability. Hence, it seems that the other
parameter estimates will be robust to changes in the phagocytosis probability.

Some parameters have fairly wide posterior distributions, such as the killing
rate of bacteria in the lymph nodes, µLN , and the migration rate of bacteria from
the lymph nodes to the blood, mB. Both of these parameters are estimated to be
very small. In fact, when µLN was set to zero before the calibration, the posterior
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distributions of the other parameters were not affected. This is consistent with
the competing risks hypothesis, for example, that if a bacterium is released from
a phagocyte, then it will be almost certain to proliferate and cause an infection.

The replication rate in the lymph nodes, λLN , is estimated to be very similar
to, but slightly larger on average than the values in the posterior sample from
the previous fitting to the data from Charlton et al. (2007). Here the median
value λLN is 0.56 h−1, which is also similar to the value of 0.8 h−1 used by Day
et al. (2011) in their within-host model, and the estimate of 0.64 h−1 for the
intracellular bacterial replication rate from the calibration of the intracellular
model in Chapter 3.

The threshold, M , for the number of bacteria present in the lymph nodes
before migration into the circulation compartment can occur is estimated to be
around 101 or 102, and values of zero were very rarely accepted into the posterior
sample. This small migration threshold is needed in order to explain the counts
of zero CFU up to 12 hours in the blood (see Table 4.4). Once bacteria start to
arrive in the blood, the population of bacteria in the blood grows very quickly,
reflected by the large values of λC , giving a doubling time of around 30 minutes.
The values of λC are much larger than the replication rate of bacteria in the lymph
nodes, but this is because the growth rate in the blood is representing migration
into the blood from multiple infected organs and tissues, where proliferation of
bacteria will be happening, rather than direct replication in the blood. There is a
strong positive correlation between M and λC in the posterior sample (see Figure
4.13). This is because the later that bacteria start migrating into the blood, the
larger the growth rate in the blood needs to be in order to be consistent with the
observed data points at 24h.

Guinea-pig model calibration

Here I have used ABC-SMC to obtain some estimates for the parameter values of
the within-host model that describe the guinea-pig model of infection. As with the
rabbit data, I have simultaneously fitted the model in Figure 4.1 to the guinea-
pig dose-response data from Gutting et al. (2015) and the in vivo numbers of
bacterial CFU and PA amount from Savransky et al. (2013), shown in Figure 4.8
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and Table 4.5. I compared the exponential dose-response curve, computed using
Eqs. (4.1.1) and (4.1.2), to the guinea-pig dose-response data in Figure 4.7, in
the same way as described for the rabbit data. I also compared the deterministic
model outputs from the set of ODEs in Eq. (4.2.8) to the means of the data in
Figure 4.8 at each time point from 30 hours onward, since all measurements at
24 hours were below the limits of detection.

For guinea pigs, Gutting et al. (2015) estimated that the deposition probability
was ϕ̂ = 0.3. I have therefore used this value, along with the estimates from
rabbits for the physical clearance rate of spores out of the lungs, and the transport
rate of spores from the lung airways into the lung tissue. Thus for guinea pigs,
values are fixed to ϕ = 0.0437, and ρ = 0.0735 h−1.

With only the data from the blood, it is difficult to quantitatively estimate
what is happening in the lymph nodes. Therefore, when I previously tried to
calibrate all parameters using this data, confidence in the values of most of the
parameters was limited, as indicated by wide posterior distributions. Because
of this, I have aimed to reduce the parameter space by assuming that some
parameters determining the dynamics in the lymph nodes will be similar to the
ones for rabbits. In this way, I have fixed the values of some parameters to
those estimated for the rabbit model of infection, while still allowing important
differences between the two models of infection. In particular, I have fixed the
values for δ = 0.04 h−1, λLN = 0.56 h−1, and mB = 0.008 h−1 to the median values
estimated for rabbits. However, ϕ is different between the two animal models,
since it has been estimated that the proportion of inhaled spores deposited in
the lungs is larger in guinea pigs than rabbits (Gutting et al. (2015)). I also
allow values for µLN and λC to be different between the two animal models, since
guinea pigs and rabbits may have different strengths of immune response against
the extracellular bacteria in the lymph nodes and in other organs, as well as
different sizes of organs.

The model predictions from this calibration are shown in Figure 4.14. For the
rabbit model, a carrying capacity was included in order to explain the data that
was observed for rabbits, whereas for the guinea-pig model it was not necessary
to include logistic growth in the blood, since no obvious saturation was observed
in the data during the time period of observation. However, it is possible that
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the saturation observed in the rabbit blood could be an artefact, and if there was
data for a longer timescale, more growth might be observed in the blood, similar
to the guinea-pig data. Overall, the growth of bacteria in the blood is slower in
the guinea-pig data than for the rabbits. For example, at 36 hours post infection,
the mean number of CFU in the blood of guinea pigs is around 400 CFU/ml,
whereas for rabbits it is around 7 × 104 CFU/ml, assuming a volume of blood
of 168 ml for rabbits. This has an effect on the posterior distributions, shown
in Figure 4.16. For example, the growth rate in the blood, λC , is estimated to
be much smaller for guinea pigs than it was for rabbits. Since the amount of
bacteria in the blood depends strongly on the amount of bacteria in the lymph
nodes in this model, the guinea-pig model also needs much slower growth in the
lymph nodes in order to explain the slower growth in the blood compartment.
Therefore, the death rate of bacteria in the lymph nodes, µLN , is estimated to be
larger for guinea pigs than rabbits, and the probability of rupture is estimated to
be slightly smaller. Since the amount of bacteria in the lymph nodes is predicted
to be smaller, the value of the migration threshold, M , is also estimated to be
smaller for guinea pigs.

For the production rate of PA, β, the posterior distribution from the previous
calibration with the in vitro data from Charlton et al. (2007) was used as the prior
distribution here for this parameter. Some values from this prior distribution also
work well for the in vivo data, but the posterior is shifted slightly to the right,
indicating that the bacteria are predicted to be producing PA at a slightly faster
rate in vivo.

With a smaller probability of rupture, and a larger death rate of extracellular
bacteria in the lymph nodes, this means that each spore that is deposited in
the lungs has a smaller probability to cause an infection in the guinea-pig model
compared with the rabbit model. However, each inhaled spore has a higher
chance of becoming deposited in the guinea-pig model. Figure 4.15 shows the
binomial distributions for the number of infections, given by the model with the
median parameter values, for some of the doses in the guinea-pig dose-response
data set used here. The observed number of deaths is indicated for each dose
shown. There is quite a lot of variability in the dose-response data used here.
If each animal in an exposed group has an identical probability of infection for
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Figure 4.14: Model predictions compared to the guinea-pig data used in the ABC-
SMC. Top row: Predictions from the model in Eq. (4.2.8) compared to the CFU
loads and PA amounts in the blood from the guinea-pig data in Figure 4.8. Bottom:
Prediction from the mechanistic exponential dose-response model given by Eqs. (4.1.1)
and (4.1.2), compared to guinea-pig dose-response data from Gutting et al. (2015).
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Figure 4.15: Binomial distributions for the number of deaths, given by the model
with the median parameter values from the posterior sample, for some of the doses in
the guinea-pig dose-response data set used here. The observed number of deaths is
indicated as a vertical line, for each dose shown.
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Figure 4.16: Kernel density estimates for the prior distribution for each parameter
in grey and the marginal posterior distribution for each parameter in green. These
posterior distributions were obtained from fitting the mechanistic dose-response model
given by Eqs. (4.1.1) and (4.1.2) to the guinea-pig dose-response data from Gutting
et al. (2015), and simultaneously fitting the model in Eq. (4.2.8) to the mean CFU
loads and PA amounts in the blood from the guinea-pig data in Figure 4.8.
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Figure 4.17: Correlation coefficients between the posterior samples of pairs of pa-
rameters in the guinea-pig model calibration.
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a given dose, as assumed by the model, then the variability would purely be
due to the variance of the binomial distribution that determines the number of
observed infections in this model. However, individual animals are likely to have
slightly different susceptibilities to infection, so this could also be a reason for
the observed variability. For example, exposed groups with a slightly higher or
lower mortality rate than expected may include animals with an unusually high
or low susceptibility to infection, respectively. Furthermore, the exposed dose and
deposited dose of spores received by each animal may also be highly stochastic,
since the deposition probability, ϕ̂, depends on a number of different factors, such
as breathing rate, which will vary between individual animals. Therefore, this
could also be introducing a lot of variability.

4.3 Discussion

In this Chapter, I have proposed a stochastic within-host model of inhalational an-
thrax infection, which incorporates inter-phagocyte variability in rupture size by
making use of the rupture size distribution from the intracellular model of Chap-
ter 3. This rupture size probability distribution plays an important role when
using the model to determine the probability of infection following inhalation of
some dose of spores. The within-host model proposed here also incorporates the
dynamics of PA, which is the anthrax toxin component that the therapeutic an-
tibody targets, so this will be an important aspect of the model if it is used to
model certain treatments in future work. In vitro data of bacterial growth and
PA production by B. anthracis Sterne strain was leveraged to obtain preliminary
estimates for the replication rate of extracellular bacteria, and the production
rate of PA. Making use of these preliminary estimates as prior distributions, the
within-host model was then calibrated by comparing the mean-field approxima-
tion of the stochastic model with in vivo bacterial counts from rabbits and guinea
pigs infected with the highly virulent Ames strain of B. anthracis. At the same
time, the probability of infection resulting from the stochastic model was fitted to
dose-response data sets from infection of rabbits with the Ames strain, and infec-
tion of guinea pigs with the M36 strain or Ames strain. This resulted in a single
model structure that is able to describe both the in vivo dynamics of infection, as
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well as the probability of response, in two different animal species with slightly
different values of the parameters. Due to lack of data, it has been necessary
to merge data corresponding to different strains of B. anthracis (Sterne, Ames,
M36) and different animals; for example, the cells used in the in vitro experiment
that informed the conditional rupture size distribution used in the within-host
model were from mice, whereas the within-host model was eventually calibrated
with data from rabbits and guinea pigs.

During the calibration with rabbit and guinea-pig data, some of the param-
eters were set equal between the two animal models, due to a lack of data for
the lymph nodes compartment in guinea pigs. It is clear from the data that with
the current structure of the model, there needs to be lower numbers of CFU in
the lymph nodes in the guinea-pig model compared with what is predicted for
the rabbit model. However, since we do not have data for the CFU in the lymph
nodes of guinea pigs, I set most of the parameters determining these dynamics to
be equal to their median estimates from rabbits. The only one of these parame-
ters that I did not fix was the death rate of bacteria in the lymph nodes, which
specified that it must be a difference in the death rate that is accounting for
differences in the lymph nodes compartment dynamics between the two species.
These assumptions might change if more data became available.

Although I have followed a Bayesian approach of model calibration, which
allows for the uncertainty in parameter estimates to be quantified, I have not
considered the parameter values to vary between individual animals. This is
a simplification, and could be improved with approaches such as mixed effects
modelling, which allow a probability distribution to be estimated to describe how
the parameters vary across individuals. However, this would be difficult in this
particular situation, since we do not have more than one data measurement for
each animal. Some parameters may be easier to assign a probability distribution
to than others. For example, in a dose-response model for Q fever (a bacterial
infection caused by Coxiella burnetii), Heppell et al. (2017) approximated a dis-
tribution for the probability of deposition, ϕ̂, using the MPPD model software
package.

As the model stands, it cannot explain the existence of spores in the lymph
nodes, since the model assumes that at most one spore is engulfed by each phago-
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cyte in the lungs and only bacteria are released from rupturing phagocytes. How-
ever, in future the model could be extended to allow the uptake of multiple spores
by individual phagocytes, which may be likely at high inhaled doses. This would
also allow the consideration that cells may release a mixture of spores and bacteria
when they rupture, which would explain observations such as spores identified in
the lymph nodes of mice (Loving et al. (2007)). The model may then need to also
include the consideration that these spores may be engulfed by further phago-
cytes in the lymph nodes and lead to further rounds of intracellular replication,
which is not currently considered in the model.

A benefit of the mechanistic modelling approach proposed here is that the
underlying mechanisms of the model can be extended and modified as new sci-
entific knowledge and data is generated. Furthermore, because the parameters
of the model have mechanistic interpretations, the model can be used to inves-
tigate the effects of different biological parameters, and changes can be made to
model different situations, such as incorporating additional mechanisms to rep-
resent treatments. In future work, the aim will be to include medical treatments
into this stochastic multi-scale model of B. anthracis infection, to quantify their
efficacy. This will be done using pharmacokinetic (PK) data that describes how
the within-host concentration of the treatment will change through time, as well
as pharmacodynamic (PD) data that could, for example, be used to define an
extracellular killing rate of bacteria as a function of antibiotic concentration (Fo-
erster et al. (2016)). It will then be possible to use the resulting model to quantify
the effect that the initial timing, frequency, and dosage of treatment has on re-
ducing the probability of infection. In this way, the multi-scale framework could
provide useful information for the design and optimisation of medical treatments
for inhalational anthrax.
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Chapter 5

Reproduction number probability
distributions in stochastic models
of viral dynamics with
non-exponential infectious period

The basic reproduction number, R0, was introduced in an epidemiological context
to denote the mean number of secondary infections caused by an initial infected
individual in an otherwise susceptible population. In this chapter I will consider
the cellular-level equivalent in the context of within-host and in vitro viral dy-
namics (Burg et al. (2009); Nowak & May (2000); Pearson et al. (2011); Wodarz
& Nowak (2002); Yan et al. (2020)). In this chapter the cellular-level basic re-
production number will be understood as a random variable, R, representing the
number of new cells infected by one initial infected cell in an otherwise suscepti-
ble cell population. The expected value of the basic reproduction number will be
denoted by R̄.

Viral dynamics models are often deterministic and formulated as sets of or-
dinary differential equations. For these models, the mean value of the basic
reproduction number determines the outcome of infection. If R̄ < 1 then the
virus-free steady state is stable and the infection will rapidly die out. In stochas-
tic models, if the expected number of secondary infections caused by each infected
cell is smaller than one, the infection can grow, but will also certainly die out
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eventually. Conversely, when the mean basic reproduction number is greater than
one, deterministic models predict that an infection will be established. However,
for stochastic models, even if R̄ > 1, there can be a positive probability that
the virus and infected cells will be eliminated before an established infection can
occur. This probability depends on the probability distribution of the reproduc-
tion number. By exclusively focusing on the expected value of the reproduction
number, one may fail to capture important dynamics during the early events in
infection, which are inherently stochastic, particularly if an individual is only
exposed to a low level of virus.

When a free virus particle is taken up by a host cell, the genome is replicated
and used to produce viral proteins. New virus particles are then assembled in the
cell. For some viruses, progeny virions accumulate inside the host cell and eventu-
ally numerous virus particles exit at once in a burst, killing the cell. On the other
hand, for most enveloped viruses, new virus particles are released throughout the
lifetime of the infected cell via a process called budding. The total number of
virions produced by an infected cell during its lifetime is usually referred to as
the “burst size”, even if the virus is released continuously by budding (Liao et al.
(2020); Rong et al. (2013)). The progeny virus particles produced by an infected
cell may infect further host cells, or may degrade before they manage to do this.
Hence, the reproduction number, which is the number of secondary infections
caused by an initial infected cell, will depend on the burst size of the infected
cell and the likelihood that these progeny virions will go on to infect new cells
before they degrade. The stochasticity of the intracellular processes of the viral
lifecycle, coupled with variation in the lifetime of infected cells, can lead to large
variation in the number of virions released by individual cells. Bacsik et al. (2022)
measured progeny production from single influenza-virus-infected cells and found
that this was extremely heterogeneous. This variation in the burst size is likely to
have a large impact on the overall variability in the reproduction number between
cells.

Finding the reproduction number distribution is particularly important in
order to characterise the viral dynamics at the very early stages of infection,
when there may only be small numbers of virions and infected cells. This is
because stochastic effects are very important at this stage, and the distribution
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of the reproduction number determines the probability that the virus will be
cleared before a major infection is established. Even if the expected reproduction
number is fairly large, the initial infection may die out by chance, due to a positive
probability that an infected cell will cause zero secondary infections. Previous
studies have focussed on calculating the probability of viral extinction during the
early stages of infection for different models. For example, Pearson et al. (2011)
calculated the probability of viral extinction in models with either a geometric or
Poisson distribution for the reproduction number.

In this chapter I will study stochastic, Markov chain versions of two sim-
ple deterministic viral infection models, with non-exponential infectious period
distributions. I will derive the probability distributions for the burst size and
reproduction number in these models. The first model considered is one of the
simplest deterministic models for viral infection, consisting of a system of ODEs
for the populations of target cells, infected cells, and virions, in which infected
cells are assumed to release virus at a constant rate while they are productively
infectious (Perelson (2002)). Pearson et al. (2011) studied the stochastic version
of this model, with one infected cell compartment, but I will consider a more gen-
eralised model in which the infected cell state is split into multiple compartments,
creating an Erlang-distributed instead of exponentially-distributed infectious pe-
riod. Models often incorporate this multistage representation (Beauchemin et al.
(2017); Liao et al. (2020); Yan et al. (2020)). It has been shown that distribu-
tions like the Erlang may be more appropriate than an exponential distribution to
model the infectious period, and can lead to different estimates of the key infec-
tion parameters, such as the basic reproduction number (Holder & Beauchemin
(2011)). The second model considered is one developed by Guedj et al. (2013)
for Hepatitis C virus (HCV) infection, which includes an additional equation for
the intracellular viral genome. This model accounts for the increase in intracel-
lular genome level due to replication, and its depletion due to decay or release
from the cell via budding in the form of progeny virions (Guedj et al. (2013)).
In this model, the inclusion of these simple intracellular dynamics means that
the viral production rate from infected cells is not constant but depends on the
intracellular state of the cell. Deterministic models like these are very successful
in describing viral infections when the populations of infected cells and virions
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are large, and have been used to estimate values for viral kinetic parameters. In
this chapter I use some such parameter values estimated in previous modelling
studies for Ebola virus, Influenza, Human Immunodeficiency virus-1 (HIV-1), and
HCV (Guedj et al. (2013); Liao et al. (2020); Yan et al. (2020); Yuan & Allen
(2011)) to present numerical results for the burst size and reproduction number
distributions of the models.

5.1 Model with constant viral production rate

Deterministic model

This section considers a model of viral dynamics described by the following ODEs
(Bai et al. (2019); Liao et al. (2020); Yan et al. (2020); Yuan & Allen (2011)),

dT

dt
= −βTV,

dE1

dt
= βTV −

(
nE

τE

+ ν
)

E1,

dEi

dt
= nE

τE

(Ei−1 − Ei)− νEi, i = 2, ..., nE,

dI1

dt
= nE

τE

EnE
−
(

nI

τI

+ ν
)

I1,

dIi

dt
= nI

τI

(Ii−1 − Ii)− νIi, i = 2, ..., nI ,

dV

dt
= p

nI∑
i=1

Ii − cV − βTV,

(5.1.1)

where the variable T is the number of uninfected target cells, ∑nE
i=1 Ei + ∑nI

i=1 Ii

is the number of infected cells, and V is the amount of free (i.e. extracellular)
infectious virus. A diagram of the model is provided in Figure 5.1.

The model equations in Eq. (5.1.1) are based on those of Yan et al. (2020)
and Liao et al. (2020), with a modification to represent removal of infected cells
by the immune response (Bai et al. (2019); Yuan & Allen (2011)). This additional
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mechanism is included by specifying that infected cells can be cleared with rate
ν. The model without immune response can be recovered by setting ν = 0, for
example in order to represent in vitro dynamics (Liao et al. (2020); Yan et al.
(2020)). Some models similar to the one in Eq . (5.1.1) also include dynamics of
production and death of uninfected target cells, however these dynamics can be
neglected when only considering a short timescale (Pearson et al. (2011)). Here,
only the transition of uninfected target cells to an infected state is included, as is
usually the case for models describing in vitro viral dynamics (Liao et al. (2020);
Yan et al. (2020)), or dynamics of in vivo acute infections, where the viral load
increases to a viral peak and then declines due to the depletion of target cells.

In the model, the uninfected target cells are infected by virus with rate β.
The population of infected cells is partitioned into eclipse phase cells, ∑nE

i=1 Ei,
and infectious phase cells, ∑nI

i=1 Ii. When target cells become infected, they enter
the eclipse phase, which is a period after infection of the cell but before the cell
has begun to release virus particles. Eventually the cell can transition into the
infectious phase in which it begins to release virus. The model incorporates a mul-
tistage representation of the eclipse and infectious periods in order to represent
an Erlang distribution for the time that a cell spends in each phase. The eclipse
phase is split into nE stages, with rate δE = nE

τE
of moving to the next stage.

When the cell exits the last state of the eclipse phase, it enters the infectious
phase. Similarly, the infectious phase is divided into nI stages, with rate δI = nI

τI

of moving to the next stage. Thus, when ν = 0, the eclipse and infectious periods
follow Erlang distributions with means equal to τE and τI , and shape parameters
nE and nI , respectively. When ν > 0, these Erlang distributions compete with
the possibility of cell death due to the immune response. That is, there is the
possibility for the eclipse or infectious period to “complete early” because of the
possibility of the cell dying due to the immune response, which occurs with rate
ν. It is assumed that infected cells may be cleared by the immune system before
beginning active viral production (Bai et al. (2019)). For example, eclipse phase
cells have been found to express viral peptides, so CD8+ T cells can recognise
and kill them (Baral et al. (2019); Sacha et al. (2010)). In the model considered
here, CD8+ T cells are assumed to kill eclipse phase cells and infectious cells at
the same rate, ν. However, it would be straight forward to adapt the results
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obtained for the case of differing death rates between cells in the eclipse and
infectious phases.

The infectious cells produce virus at a constant rate p per cell. Free virus is
cleared with rate c. In the equation for V , the term corresponding to loss of virus
due to infection is explicitly included here, however this is sometimes neglected in
the literature because the term βTV is usually small compared to cV (Perelson
& Nelson (1999)). Also, if the number of target cells T is assumed to stay fairly
constant, both viral loss terms can be incorporated into one constant, c′ = c+βT

(Canini & Perelson (2014)). Interestingly, the units for β differ between the
equations for T and I, and the equation for V because βTV is in units of virions
in the equation for V , whereas in the other two equations, βTV is in units of
cells. However, since the model assumes that one virion infects one cell with rate
βTV , the rate can be taken to be the same for all three equations.

Some proportion of the virus released from infected cells is usually non-
infectious and is not able to infect new cells. However it will be assumed through-
out this chapter that p denotes the production rate of infectious virus, so that
the variable V represents the amount of extracellular infectious virus rather than
total virus.

Stochastic model

I will consider a stochastic version of the model in Eq. (5.1.1) in order to find the
probability distribution of the burst size and reproduction number for this model.
In particular, the model can be formulated as a continuous-time Markov chain
(CTMC) where T (t), V (t), Ei(t), and Ij(t) (for i ∈ {1, ..., nE} and j ∈ {1, ..., nI})
are discrete random variables with values in the set of non-negative integers, for
t ∈ [0,∞). The possible transitions considered in the stochastic model are shown
in Table 5.1.

Average burst size and reproduction number

The burst size is defined as the total number of virions produced by an infected
cell during its lifetime. If ν = 0, then the average time that an infected cell
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T

E I

V
ϕ

ϕ
β

Erlang(nI , δI)

ν
ν

Erlang(nE, δE)

c

p

Figure 5.1: Diagram for the model with constant viral production rate. T represents
a target cell, E represents an eclipse phase cell, I represents an infectious phase cell, and
V represents free virus. ϕ denotes the empty set and represents clearance of infected
cells or virus. The arrows show the possible transitions and their corresponding rates,
or the distribution of the time taken for the event in the case of non-exponentially
(Erlang) distributed transition times. Target cells are infected by virus with rate β and
enter the eclipse phase. Eclipse phase cells can be cleared by the immune response with
rate ν or they can eventually transition into the infectious phase and begin to release
virus at rate p. Infectious cells can also be cleared by immune system cells with rate
ν, or eventually suffer virus-induced cell death. Free virus is cleared with rate c.
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Transition Rate
(V, T, E1) −→ (V − 1, T − 1, E1 + 1) βTV

(Ei, Ei+1) −→ (Ei − 1, Ei+1 + 1) nE

τE
Ei, i ∈ {1, ..., nE − 1}

(EnE
, I1) −→ (EnE

− 1, I1 + 1) nE

τE
EnE

Ei −→ Ei − 1 νEi, i ∈ {1, ..., nE}

(Ii, Ii+1) −→ (Ii − 1, Ii+1 + 1) nI

τI
Ii, i ∈ {1, ..., nI − 1}

Ii −→ Ii − 1 νIi, i ∈ {1, ..., nI − 1}

InI
−→ InI

− 1 (nI

τI
+ ν)InI

V −→ V + 1 p
∑nI

i=1 Ii

V −→ V − 1 cV

Table 5.1: The transitions and their corresponding rates in the Markov chain version
of the model in Eq. (5.1.1).

spends infectious is τI , and the rate of virion production is p. Thus the average
burst size in the model with ν = 0 is given by pτI .

The expected value of the basic reproduction number can be calculated from
Eq. (5.1.1) using the next generation matrix approach. It can also be derived from
the Jacobian matrix of the system of ODEs, as a threshold quantity determining
the stability of the infection-free steady state. For the model with ν = 0, the
mean basic reproduction number is given by,

R̄ = pτIβT0

c + βT0
, (5.1.2)

where T0 denotes the size of the target cell population in the infection-free steady
state. It should be noted that the basic reproduction number can be defined
differently if the infected cells and extracellular virus are instead assumed to be
separate infected classes. In that case, the basic reproduction number is defined
as the average number of new infectives produced per infective in any class per
generation, and becomes the square root of the R̄ defined in Eq. (5.1.2), since
there are two infected classes in the infection cycle (Heffernan et al. (2005)).
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The reproduction number considered here is sometimes instead called a type
reproduction number because it gives the average number of infectives of the
same type produced by a single infective of that type (Yuan & Allen (2011)).

Now let us consider the case when the removal of infected cells due to the
immune response is included (ν > 0). In this case, it is possible for cells to
be killed by the immune system before passing through all nI infectious stages,
and hence infectious phase cells will progress through some (unknown) number of
stages, k ∈ {1, ..., nI}, before dying from stage k. In each infectious stage, the rate
of death of the cell due to the immune response is ν, and the rate of progressing
to the next stage is δI = nI/τI . Thus, the time taken to exit each stage will be
the minimum of two competing exponential random variables, T1 ∼ Exp(ν) and
T2 ∼ Exp(δI). It is well known that the minimum of T1 and T2 is an exponential
random variable with rate δI + ν, and this is independent of whether the cell is
killed by the immune response or progresses to the next stage. That is, the rate
of leaving a particular infectious stage will always be δI + ν, even if we condition
on progression to the next stage. Thus, given that a cell dies from infectious stage
k, the infected cell will pass through k infectious stages until it stops producing
virus, and the time spent in each stage is exponentially distributed with rate
δI + ν. So the distribution of time that the cell spends producing progeny virus
is equivalent to the sum of k exponential distributions, each with rate δI + ν,
which is an Erlang(k, δI + ν) distribution. Therefore, the overall distribution of
the infectious period, TI (i.e., the random variable representing the time since
a cell starts releasing virions until it dies), will be a weighted sum of Erlang
distributions with rate δI + ν and shape parameters k = 1, ..., nI , where nI is the
maximum number of stages that an infected cell can pass through before it dies.
The weights of each of these distributions will be given by the probability that an
infectious cell progresses to stage k and dies from stage k, which can be found as
follows. For an infected cell in infectious stage i ∈ {1, ..., nI − 1}, the exit rate of
the cell out of this stage is δI + ν, and when the cell exits this stage it will either
die with probability ν

δI+ν
, or move to the next infectious stage with probability

δI

δI+ν
. Note that for the final infectious stage, nI , the cell will always die when

exiting this stage. Therefore the probability that an infectious cell progresses to
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stage k and dies from stage k is given by
(

δI

δI+ν

)k−1 (
ν

δI+ν

)
for k = 1, ..., nI − 1,(

δI

δI+ν

)nI−1
for k = nI .

Thus, the density function of the infectious period is given by,

fTI
(t) =

nI−1∑
k=1

( δI

δI + ν

)k−1 (
ν

δI + ν

) (δI + ν)ktk−1e−(δI+ν)t

(k − 1)!


+
(

δI

δI + ν

)nI−1 (δI + ν)nI tnI−1e−(δI+ν)t

(nI − 1)! .

Then the mean infectious period is

E[TI ] =
∫ +∞

0
tfTI

(t) dt = 1
ν

(
1−

(
nI

nI + τIν

)nI
)

,

which tends to τI as ν → 0, by l’Hôpital’s rule. Furthermore, virus particles will
only be released from an infected cell if it survives all the stages of the eclipse
phase and progresses to the infectious phase. For an infected cell in any given
eclipse stage, the exit rate of the cell out of this stage is (nE

τE
+ ν), and when the

cell exits this stage it will either die with probability τEν
nE+τEν

, or move to the next
stage with probability nE

nE+τEν
. Hence the probability that the cell will survive all

nE eclipse stages and progress to the infectious phase is
(

nE

nE+τEν

)nE . Thus, the
mean basic reproduction number when ν > 0 is given by,

R̄ = pβT0

ν(c + βT0)

(
nE

nE + τEν

)nE
(

1−
(

nI

nI + τIν

)nI
)

.

5.1.1 Burst size probability distribution

Let B be the random variable representing the viral burst size, i.e., the total
number of virions released from an infected cell during its lifetime. The burst
size does not depend on the whole process shown in Figure 5.1 but only on the
dynamics of viral production from a single infected cell. Therefore to find the
distribution of B one can simply consider a discrete-time Markov chain for an
individual infected cell and the amount of virus produced.
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As mentioned previously, an infected cell will only produce virus if it survives
all the stages of the eclipse phase and progresses to the infectious phase, which
occurs with probability

(
nE

nE+τEν

)nE . On the other hand, the infected cell will die
before becoming infectious with probability 1 −

(
nE

nE+τEν

)nE , in which case the
burst size will certainly be zero. If the cell does enter the infectious phase, it will
progress through some (unknown) number of stages, k ∈ {1, ..., nI}, before dying
from stage k, and as explained in the previous section, the probability that an
infected cell progresses to stage k and dies from stage k is given by


(

δI

δI+ν

)k−1 (
ν

δI+ν

)
for k = 1, ..., nI − 1,(

δI

δI+ν

)nI−1
for k = nI .

I will first consider the burst size distribution for an infectious cell, conditioned
on the value of k, and then compute a weighted sum over the possible values of
k.

Assume that an infectious cell progresses through exactly k stages and dies
from stage k. Then consider the two dimensional discrete-time Markov chain,
X = {Xn = (In, Vn) : n ∈ {0, 1, 2, ...}}, where In ∈ {1, ..., k, k + 1} denotes the
infectious stage of the infected cell, and Vn ∈ N ∪ {0} represents the number
of virions produced by the infected cell by step n. Here the state I = k + 1
is an absorbing state representing the death of the cell, when no more virus
can be produced. The initial state, when the cell first becomes infectious, is
(I0, V0) = (1, 0), since the infected cell will begin in stage 1 of the infectious period,
and 0 infectious virions have been produced by the infected cell. During the time
that it is infected, the cell is assumed to produce virus at a constant rate, p, so that
the amount of virus produced follows a Poisson process, with an exponentially
distributed time between the production of each new virion. The cell will also
progress to each new stage of the infectious phase with rate δI + ν. Hence, one
can think of the infected cell as progressing through a series of events, where
each event is either the production of a virion with probability p/(p + δI + ν), or
progression to the next infectious stage with probability (δI +ν)/(p+δI +ν). That
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is, the Markov chain X can be defined by the one-step transition probabilities,

p(i,j),(m,n) =P(Xn+1 = (m, n) |Xn = (i, j))

=


δI+ν

p+δI+ν
if (m, n) = (i + 1, j),

p
p+δI+ν

if (m, n) = (i, j + 1),
0 otherwise,

for states (i, j) ∈ {1, ..., k} × (N ∪ {0}). The total number of progeny virions
produced by the infected cell is the number of virions produced before the cell
dies from stage k and stops producing virus, V∞. This can be thought of as the
number of “successes” before the kth “failure”, where a “success” is the production
of a virion with probability p/(p + δI + ν) and a “failure” is progression to the
next infectious stage with probability (δI + ν)/(p + δI + ν). Therefore, given that
the cell starts in infectious stage 1 and dies from stage k, the burst size B follows
a negative binomial distribution, with parameters k and p/(p + δI + ν).

Once we sum over the possible values of k, the probability mass function
(p.m.f.) for the burst size of a cell starting in infectious stage 1 is

P(B = b | cell starts in stage I1)

=
nI∑

k=1
P(B = b | cell dies from stage k)P(cell dies from stage k)

=
nI−1∑
k=1

(k + b− 1
b

)(
p

p + δI + ν

)b
δk−1

I ν

(p + δI + ν)k


+
(

nI + b− 1
b

)(
p

p + δI + ν

)b
δnI−1

I (δI + ν)
(p + δI + ν)nI

, b ∈ {0, 1, 2, ...}.

If the infectious period is assumed to be exponentially distributed (nI = 1), then
this is a geometric distribution.

Taking into account the probability of death during the eclipse phase, the
overall p.m.f. for the burst size distribution of a cell that enters into the eclipse
phase is

P(B = 0) =
[
1−

(
nE

nE + τEν

)nE
]

+
(

nE

nE + τEν

)nE

P(B = 0 | cell starts in stage I1),

and for b > 0,

P(B = b) =
(

nE

nE + τEν

)nE

P(B = b | cell starts in stage I1). (5.1.3)
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For ν = 0, the p.m.f. for the number of virions released from an infected cell
is

P(B = b) =
(

nI + b− 1
b

)(
p

p + δI

)b (
δI

p + δI

)nI

, b ∈ {0, 1, 2, . . . }, (5.1.4)

with
E[B] = pnI

δI

= pτI ,

and

Var[B] = E[B]
(

1 + E[B]
nI

)
= pnI

δI

+ p2nI

δ2
I

.

Weighted production rates

Although the model in Eq. (5.1.1) with constant viral production rate has often
been used to describe viral dynamics (with ν = 0), this model could be extended
slightly by allowing the viral production rate of infected cells to be weighted
according to their stage in the infectious phase. That is, the equation for V

would become,
dV

dt
= p

nI∑
i=1

γiIi − cV − βTV,

for some weights γi ≥ 0, i ∈ {1, . . . , nI}. For this extended model, and in the
particular case ν = 0, the burst size, B, would be defined as a sum of independent
random variables, X1 + X2 + ... + XnI

, where Xi is geometrically distributed with
mean pγi/δI .

For example, if one wished to model the situation in which the viral production
rate increases linearly each time the infected cell moves to a new stage, one could
define,

γi = 2i

nI + 1 .

In this case, the average burst size would remain as

E[B] = p
∑nI

i=1 γi

δI

= pnI

δI

,

whereas the variance of the burst size would increase to

Var[B] = p
∑nI

i=1 γi(δI + pγi)
δ2

I

= pnI

δI

+ 2p2nI(2nI + 1)
3(nI + 1)δ2

I

.
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Of course the weights γi could be defined in many different ways depending on
what is known about the particular virus being modelled.

5.1.2 Reproduction number probability distribution

Let R be the random variable representing the cellular-level basic reproduction
number, i.e., the number of secondary infections produced by a single infected
cell in an otherwise susceptible cell population. The p.m.f. of R may be written
in terms of the burst size probabilities as

P(R = r) =
∞∑

b=0
P(R = r | B = b)P(B = b).

Hence, I will find the probabilities P(R = r | B = b), defining the probability
distribution for the number of secondary infections produced, given that the
initial infected cell releases B = b virions throughout its lifetime. Then I will use
these together with the probability distribution for B in Eq. (5.1.3) to find the
probability distribution for R.

The only possible outcomes for each released virion are that it eventually
infects another cell, or it eventually decays and does not infect another cell, as
shown in Figure 5.2. Usually, calculations of the basic reproduction number
assume that the number of infectious virus particles is low enough so that the
number of uninfected target cells is not strongly affected by the transformation
to infected cells. Thus the number of target cells is usually assumed to remain
constant (Czuppon et al. (2021)). However, if the number of available target cells
at the start of infection is fairly small and the infection process is much faster than
the dynamics of production and death of uninfected cells, it can become important
to consider the transition of target cells to infected cells. This is because newly
infected cells are produced with rate βTV , which depends on the number of
available target cells, T . Therefore the depletion of uninfected target cells will
affect the ability for virus particles produced from an initially infected cell to
infect new cells. Hence the number of secondary infections caused by a single
infected cell will be affected by, (i) competition between virus produced by the
initial infected cell for available target cells, and (ii) competition for target cells
from virions being produced by secondary infections. Here I address the former
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I

B = 6

ϕ

βT

c

Figure 5.2: I represents an infected cell that has produced B = 6 virions over its
lifetime. The free virions that have been released can then infect a new cell with rate
βT , or are cleared with rate c. The per virion infection rate, βT , will change each time
a secondary infection is produced, since this will reduce the number of available target
cells. If this reduction in the number of uninfected target cells is ignored, then the
number of uninfected target cells will remain constant and so will the infection rate.
Then each virion will have probability θ = βT0/(c+βT0) of infecting a new cell. In this
case, all the virions are independent of each other, so the number of secondary infections
is the sum of independent and identical Bernoulli random variables, and hence follows
a binomial distribution.
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source of competition, while ignoring the second. That is, I consider depletion of
the number of target cells due to secondary infections caused by virus particles
released from the initially infected cell, but do not consider depletion of target
cells due to virus particles released from subsequently infected cells.

Limited number of target cells (Case 1)

The probability of a given virion successfully infecting a cell before it decays
depends on the number of available target cells for it to infect. Thus, the virions
will not be independent, but their probability of successfully infecting a cell will
depend on how many target cells are still available after previous virions have
infected some of the target cells. Let us assume that there are T0 target cells
in the population to begin with, and B = b infectious virions are released while
the initial infected cell is in the infectious phase. Since we are only interested
in the number of secondary infections produced, and not the timings of these
infections, we can imagine that at discrete time steps, one of these virions is
chosen uniformly at random to either decay or infect an available target cell. A
Markov chain can be set up to calculate the probability distribution of the number
of secondary infections. Consider the discrete-time Markov chain, Y = {Yn : n ∈
{0, 1, 2, ..., b}}, where Yn denotes the number of secondary infections that have
occurred after n of the infectious extracellular virions have either decayed or
infected an available target cell. The initial state of the process will be Y0 = 0 and
the state space of Y will be given by SY = {0, 1, 2, ..., M}, where M = min{b, T0}
is the maximum number of secondary infections that can be produced.

The Markov chain Y, depicted in Figure 5.3, can be defined by the following
one-step transition probabilities, for states i, j ∈ SY. For i ̸= M ,

pi,j = P(Yn+1 = j | Yn = i) =


β(T0−i)

β(T0−i)+c
if j = i + 1,

c
β(T0−i)+c

if j = i,

0 otherwise.

pM,j =
1 if j = M,

0 otherwise.

The probability that r secondary infections will occur, given that the cell
released b infectious virions, will be given by P(R = r | B = b) = P(Yb = r |
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0 1 2 M

βT0
βT0+c

β(T0−1)
β(T0−1)+c

β(T0−2)
β(T0−2)+c

β(T0+1−M)
β(T0+1−M)+c

c
βT0+c

c
β(T0−1)+c

c
β(T0−2)+c

1

Figure 5.3: A depiction of the discrete-time Markov chain, Y, used to model the
number of secondary infections produced by a single infected cell that has released
B = b virions during its lifetime. State i represents i secondary infections. The process
begins in state Y0 = 0 and takes b steps (one for each virion). The final state of the
process after b steps is the number of secondary infections produced. The maximum
number of secondary infections that can be produced is M = min{b, T0}, where T0 is
the initial number of available uninfected target cells.

Y0 = 0), which is the probability that the process Y is in state r after the b

infectious extracellular virions have either decayed or infected new cells. For ease
of notation, let pi(n) = P(Yn = i | Y0 = 0).

Using first step analysis, these probabilities can be calculated recursively, as
follows. We have p0(0) = 1. Then for n ≥ 1,

pi(n) =
p0(n− 1)p0,0, if i = 0,

pi−1(n− 1)pi−1,i + pi(n− 1)pi,i, if 0 < i ≤M.

Thus, substituting the one-step transition probabilities from above,

pi(n) =


(

c
βT0+c

)n
if i = 0,

pi−1(n− 1) β(T0+1−i)
β(T0+1−i)+c

+ pi(n− 1) c
β(T0−i)+c

if 0 < i ≤ min(n, T0),
0 if i > min(n, T0).

These can be solved sequentially to obtain pr(b) for all required values of r and
b. Then we have,

P
(
R = r

)
=

∞∑
b=0

pr(b)P(B = b). (5.1.5)

Number of target cells remains constant (Case 2)

If the number of target cells is small and infected cells are not quickly replenished
by new target cells, it is important to take into account the reduction of uninfected
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target cells as they become infected, as considered above. However, if the number
of uninfected target cells is assumed to be very large, things can be simplified
by neglecting the loss of uninfected target cells due to infection, so that the
population of uninfected target cells is assumed to be constant. In this case,
all virions are independent of each other, in the sense that they will have the
same probability of successfully infecting a new cell, regardless of the fate of
other virions. For each infectious virion released from the infected cell during the
infectious phase, the probability that it will go on to infect another cell is

θ = βT0

c + βT0
,

where β is the rate at which extracellular virus infects target cells, T0 is a constant
number of target cells in the population, and c is the rate of degradation of
extracellular virus. Therefore the number of secondary infections will be the sum
of b independent and identical Bernoulli random variables. Hence, R | B = b

follows a binomial distribution with parameters (b, θ). Then we have,

P
(
R = r

)
=

∞∑
b=r

(
b

r

)
θr(1− θ)b−rP(B = b).

Substituting in the p.m.f of the burst size distribution from Eq. (5.1.3), it can
be found that the p.m.f of the reproduction number has the same form as the
burst size p.m.f., but with the parameter p replaced by θp, which is equivalent to
assuming that secondary infections are produced from infected cells at a constant
rate, θp. This makes sense since each virion produced from an infected cell is
assumed to infect a new cell with probability θ, and when focusing only on the
number of secondary infections produced, the timescale of these events can be
ignored.

If ν = 0 and the burst size, B, follows a negative binomial distribution as in
Eq. (5.1.4), then the p.m.f. of the reproduction number can be simplified to

P(R = r) =
(

nI + r − 1
r

)(
θp

θp + δI

)r (
δI

θp + δI

)nI

, (5.1.6)

so the number of secondary infections also follows a negative binomial distribu-
tion.
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This has a correspondence to the analysis of the epidemic reproduction num-
ber at the population level, since if infected individuals are assumed to infect
others at a constant rate while they are infectious, the same distribution can be
obtained for the epidemic setting. Lloyd-Smith et al. (2005) investigated the vari-
ation in infectiousness for various disease outbreaks, and compared the diseases
through their dispersion parameter, k. Assuming a negative binomial distribu-
tion for the number of new infections caused by an infectious individual, the
dispersion parameter, k, is the shape parameter of this distribution, and repre-
sents the degree of transmission heterogeneity. If k is much larger than one, there
is a fairly low degree of dispersion, whereas a low value of k corresponds to a
higher level of dispersion in the distribution and suggests that a small number
of infected individuals, known as “superspreaders”, may trigger many secondary
infections. The value of the dispersion parameter is particularly important for
the early dynamics of an epidemic when there are only a few infected individuals.
For example Lloyd-Smith et al. (2005) investigated the probability of stochastic
extinction for an outbreak beginning with one infected individual, for different
values of k. Smaller values of k were shown to increase the probability of stochas-
tic extinction, but small values of k also mean that an epidemic can quickly take
off due to the possibility of superspreading events, leading to infrequent but ex-
plosive epidemics. In the case studied here, for the cellular reproduction number,
the dispersion parameter of the negative binomial distribution in Eq. (5.1.6) is
given by nI , and will be important during the early dynamics of a viral infection.
Due to the way the model is defined, nI must always be an integer greater than
or equal to one, since it is the shape parameter of the Erlang distribution for the
infectious period. As nI → ∞, the infectious period distribution approaches a
Dirac delta distribution, i.e. a fixed infectious period (when ν = 0). Therefore,
a value of nI ≫ 1 means that there will be little variation in the number of viri-
ons released from each cell, and in the reproduction number between cells, when
ν = 0. An Erlang distribution is chosen in order for the model to be Marko-
vian. However if the infectious period was assumed to be Gamma distributed
with shape parameter smaller than 1, then there would be much more variation
in the infectious period and consequently in the distribution of virions released
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from infected cells. This would decrease the chance of successful establishment
of disease, but would also introduce the potential for superspreader cells.

5.1.3 Bursting versus budding

I have so far focused on a model in which virus particles are produced and released
from infectious cells gradually via budding. However for some viruses, progeny
virions accumulate inside the host cell and are released in a burst upon cell lysis.
Yuan & Allen (2011) have previously considered a model of the bursting strategy
and made the assumption that if the death of an infected cell is virus-induced
then virions will be released in a burst, but if the infected cell is cleared due to the
action of the immune response, no virions will be released. They also assumed
that each infected cell that bursts will have the same burst size.

To include into the ODEs in Eq. (5.1.1) the assumption that when an infected
cell bursts (on leaving the final infectious stage with rate nI

τI
) it releases exactly

N virions, this would result in changing the equation for V to,

dV

dt
= N

nI

τI

InI
− cV − βTV. (5.1.7)

Eq. (5.1.7) also has the interpretation that cells release virions at a constant rate
NnI/τI during their time in infectious stage nI , so it is not possible to model
a burst at a discrete time using ODEs, since the dynamics are averaged across
time. However, for larger values of nI or smaller values of τI , one can achieve
something almost like a burst at a discrete time, related to a very short stay in
infectious stage nI . On the other hand, in the Markov chain version of the model
it is possible to accurately describe bursts at discrete times, and this corresponds
to changing the event,

V −→ V + 1,

which happens with rate p
∑nI

i=1 Ii in the budding model, to the event,

V −→ V + N,

which happens with rate nI

τI
InI

.
Yuan & Allen (2011) assumed that in the bursting case, if an infected cell

bursts, its burst size would always be N = pτI and would not depend on the time
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that the cell bursts. For example, this might be the case if the accumulation of
virions inside the cell and the burst of the cell are coupled in such a way that
the burst of the cell is caused by the number of intracellular virions reaching a
particular level of N virions. On the other hand, one could consider a case in
which the accumulation of virions and the burst of the cell are assumed to be
independent processes. In this case, cells that burst earlier may not produce as
many virus particles as those that survive longer. This would introduce variability
in the burst size, related to the timings of the bursts.

As well as viruses, the bursting strategy is also used by some intracellular
bacteria. For example, the stochastic model in Chapter 3 of this thesis was used
to predict the number of B. anthracis bacteria released from a host phagocyte.
In this intracellular anthrax model, the bursting process depended on the intra-
cellular dynamics. An alternative approach is that by Carruthers et al. (2018),
where the burst size distribution was predicted for the bacterium Francisella tu-
larensis using a model in which the rate that the burst occurs was assumed to
be independent of the number of bacteria within the cell. This was done by con-
sidering a stochastic model for the intracellular accumulation of bacteria, so that
the number of bacteria released from an infected cell when it bursts depends on
the stochastic dynamics of this intracellular process, as well as on the time that
the burst takes place. A similar method to the one used by Carruthers et al.
(2018) for Francisella tularensis could be applied to viruses that are released by
bursting in order to estimate the burst size distribution. For example, instead
of a fixed burst size for all bursting cells, one could assume that in the bursting
case, virus particles are produced inside the cell at a constant rate p during the
“infectious” period, but are not released unless the cell bursts. Note that under
this assumption, the eclipse phase would represent a period in which the cell be-
gins to synthesise the viral proteins and replicate the viral genome, but progeny
virions have not yet started to be assembled.

To include this into the ODE model, let us introduce variables Pi, i ∈ {1, ..., nI}
to represent the total number of virions inside all cells in infectious stage i, via
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the following equations,

dP1

dt
= pI1 −

(
nI

τI

+ ν
)

P1,

dPi

dt
= nI

τI

Pi−1 + pIi −
(

nI

τI

+ ν
)

Pi, i = 2, ..., nI ,

dV

dt
= nI

τI

PnI
− cV − βTV.

Each Pi increases due to viral production at a rate proportional to the number
of cells in infectious stage i and due to cells entering stage i, and decreases when
cells exit stage i. The rate that a cell in stage i will transition to stage i + 1 is
nI

τI
Ii and, in the deterministic model, the Pi virions are equally shared between

all cells in stage i. Therefore, the number of virions that will transition to the
next stage when an event like this happens will be Pi/Ii. Thus, the overall rate
that virions transition from compartment Pi to Pi+1 is

nI

τI

Ii
Pi

Ii

= nI

τI

Pi.

Similarly, νPi is the rate at which virions in stage i are lost when infectious cells
are killed due to the action of the immune response.

In the corresponding Markov process, each infected cell is independent, with
its own number of intracellular virions that increases at a constant rate, until the
infected cell dies. If the infected cell reaches stage nI and the death of the cell
is virus-induced (with rate nI

τI
), then the virions present in the infected cell at its

time of death will be released in a burst into the extracellular environment. On
the other hand, if the infected cell is cleared due to the action of the immune
response (with rate ν), it is assumed that no virions will be released.

When ν = 0, corresponding to the model without the action of the immune
response, the distribution of the burst size is equal for the two strategies of
budding and bursting, since the number of virus particles produced inside the
cell has the same distribution in each case, but they are either released from the
cell gradually in the case of budding, or remain in the cell until the infected cell
dies in the case of bursting. However, when the action of the immune response
is included by modelling the clearing of infected cells by killer cells or cytotoxic
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lymphocytes (CTLs), the two strategies produce different distributions for the
burst size. This is because in the budding strategy some virions may bud from
the infected cell before the cell is detected and destroyed by CTLs. Whereas
in the bursting strategy, if a CTL detects and destroys an infected cell before
it bursts, then all intracellular virions are also destroyed in the process and the
burst size is zero. Hence, in the case of the bursting strategy, virions will only
be released from the infected cell if the cell is not cleared by CTLs from any of
the eclipse phase stages or infectious phase stages, and exits the final infectious
stage by bursting. Given that a burst does occur, the burst size will be negative
binomially distributed with parameters nI and p

p+δI+ν
, as shown in Section 5.1.1.

Thus the probability of a burst size of zero is given by

P(B = 0) = 1−
(

δE

δE + ν

)nE
(

δI

δI + ν

)nI
[
1−

(
δI + ν

p + δI + ν

)nI
]

,

and for b > 0,

P(B = b) =
(

δE

δE + ν

)nE
(

nI + b− 1
b

)(
p

p + δI + ν

)b (
δI

p + δI + ν

)nI

.

In the case of a constant number of uninfected target cells where each virion
has probability θ to infect a new cell, the reproduction number distribution can
be obtained by taking the p.m.f. of the burst size distribution and replacing p by
θp, so that the probability of zero secondary infections is given by

P(R = 0) = 1−
(

δE

δE + ν

)nE
(

δI

δI + ν

)nI
[
1−

(
δI + ν

θp + δI + ν

)nI
]

,

and for r > 0,

P(R = r) =
(

δE

δE + ν

)nE
(

nI + b− 1
b

)(
θp

θp + δI + ν

)b (
δI

θp + δI + ν

)nI

.

(5.1.8)
This gives an expected reproduction number of,

R̄ = τIθp

(
δE

δE + ν

)nE ( nI

nI + τIν

)nI+1
. (5.1.9)
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5.1.4 Probability of viral extinction

It is useful to be able to calculate the probability of viral extinction during the
early stages of infection. When the number of uninfected target cells is assumed
to stay constant, the initial dynamics of the models considered here can be de-
scribed by branching processes in which each infected cell produces a number of
new infected cells according to the reproduction number distribution. In such a
branching process, the probability of extinction starting with one infected cell is
equal to the smallest fixed point of the probability generating function (p.g.f.) of
the offspring distribution (Csernica (2015)). If the branching process is counting
the number of infected cells at each generation, then the offspring distribution
will be the reproduction number distribution.

In the case of budding, the p.g.f. of the reproduction number distribution
(when the number of uninfected target cells remains constant) is

πbud(s) =
∞∑

r=0
srP(R = r),

= P(R = 0) +
∞∑

r=1
srP(R = r),

= 1−
(

δE

δE + ν

)nE
[
1−

nI−1∑
k=1

δk−1
I ν

zk
− δnI−1

I (δI + ν)
znI

]

+
(

δE

δE + ν

)nE ∞∑
r=1

sr

 nI−1∑
k=1

[(
k + r − 1

r

)(
θp

z

)r
δk−1

I ν

zk

]

+
(

nI + r − 1
r

)(
θp

z

)r
δnI−1

I (δI + ν)
znI

,

= 1−
(

δE

δE + ν

)nE
1−

nI−1∑
k=1

[ ∞∑
r=0

sr

(
k + r − 1

r

)(
θp

z

)r
δk−1

I ν

zk

]

−
∞∑

r=0
sr

(
nI + r − 1

r

)(
θp

z

)r
δnI−1

I (δI + ν)
znI

,

= 1−
(

δE

δE + ν

)nE
1−

nI−1∑
k=1

τIνnk−1
I

(nI + τIν + (1− s)τIθp)k

− nnI−1
I (nI + τIν)

(nI + τIν + (1− s)τIθp)nI

,

(5.1.10)
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where z = θp + δI + ν. In the last step I have used δI = nI/τI to remove δI from
the formula, and have also used the fact that the p.g.f. of a negative binomial
random variable, X, with p.m.f

P(X = x) =
(

n + x− 1
x

)
qx(1− q)n

is
π(s) =

(
1− q

1− qs

)n

.

In the case of bursting, considered in Section 5.1.3, the p.g.f. of the reproduc-
tion number distribution in Eq. (5.1.8) is

πburst(s) = 1−
(

δE

δE + ν

)nE ( nI

nI + τIν

)nI
[
1−

(
nI + τIν

nI + τIν + (1− s)τIθp

)nI
]

.

(5.1.11)

When nI = 1, corresponding to an exponentially distributed time until infected
cell death, the fixed points of these functions can be found explicitly. For nI = 1,
the solutions to πbud(s) = s are s1 = 1 and

s2 = 1−
(

δE

δE + ν

)nE (
1− 1

R̄

)
,

where R̄ =
(

δE

δE+ν

)nE θp
δI+ν

is the average reproduction number. The smallest
fixed point of the p.g.f. gives the probability of viral extinction starting with one
infected cell, so in this case extinction will be certain if s2 ≥ 1 and will occur with
probability s2 if s2 < 1. Similarly, the solutions to πburst(s) = s, when nI = 1,
are s1 = 1 and

s2 = 1−
(

δE

δE + ν

)nE δI

δI + ν

(
1− 1

R̄

)
,

where R̄ =
(

δE

δE+ν

)nE θpδI

(δI+ν)2 is the average reproduction number. In each case,
the probability of extinction starting with one infected cell is s1 = 1 if R̄ ≤ 1,
and s2 if R̄ > 1.

For nI > 1, the smallest fixed points of the p.g.f.s can be found numerically,
giving the probability of viral extinction starting with one infected cell. Since
each initial infected cell is independent, the probability of extinction starting
with one cell can easily be used to find the probability of extinction starting with
multiple cells.
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Parameter Units Value
p virions (cell · h)−1 m · 101.12

τI h 83.2
nI - 14
τE h 30.5
nE - 13
β (cell · virion · h)−1 10−6.48/m

c (virion · h)−1 6.14× 10−2

Table 5.2: Parameter values that have been used to obtain some numerical results
applicable to Ebola virus (EBOV). These are the modes of posterior samples that Liao
et al. (2020) obtained using data of EBOV infection in vitro. The parameters p and
β are transformed into units of virions using a ratio of m infectious virus particles per
TCID50.

5.1.5 Numerical results

Example: Ebola virus

Liao et al. (2020) fitted a mathematical model similar to Eq. (5.1.1) with ν = 0
to data of Ebola virus (EBOV) infection in vitro. In this section I present some
numerical results for the burst size and reproduction number distributions, using
parameter estimates which are the modes of posterior samples obtained by Liao
et al. (2020). In order to measure the infectious viral load, the study by Liao
et al. (2020) used the 50% Tissue Culture Infectious Dose (TCID50) assay, in
which varying virus dilutions are added to cell populations with the same number
of cells and incubated until a cytopathic effect can be seen. The TCID50 value
represents the amount of virus dilution required to induce cytopathic effects in
50% of wells containing the inoculated cell culture. Therefore the data measures
infectious virus in units of TCID50, where one unit of TCID50 is the dose of virus
for which there is approximately a 50% chance to induce cytopathic effects. It
is likely that one TCID50 unit corresponds to multiple infectious virus particles.
Hence, the parameter values need to be transformed into units of virions rather
than TCID50 in order to be used in the calculations of the reproduction number
distribution. For the values presented in Table 5.2, m ≥ 1 is defined to be the
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number of infectious virus particles per unit of TCID50, and the transformed
parameters are left in terms of m. It will later be shown how the value of m

affects the predictions for the reproduction number distribution.

Burst size

B is the random variable representing the amount of virus released by an infected
cell during its lifetime. When an in vitro situation is considered (corresponding
to ν = 0 in the model), B follows a negative binomial distribution with mean pτI

and shape parameter nI , given in Eq. (5.1.4). The only parameter involved in
this distribution that is affected by the value of m is the viral production rate,
p, which is proportional to m. So as m increases, the distribution of the burst
size remains a negative binomial distribution with shape parameter nI , but with
a mean proportional to m. For the parameters in Table 5.2, with ν = 0, the
expected amount of infectious virus produced over an infected cell’s lifetime is

E[B] = pτI ≈ 1097m virions.

The p.m.f. for B is shown in Figure 5.4, for m = 1 and ν = 0. Figure 5.5 shows
how the cumulative distribution function for the burst size changes for different
values of the immune killing rate ν.

Figure 5.4: Probability distribution for B, the random variable for the amount of
virus released by a single infected cell during its lifetime. The parameter values in
Table 5.2 have been used to calculate this distribution, with m = 1 and ν = 0.
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Figure 5.5: Cumulative distribution functions for B, for different values of ν. Other
parameters are set to their values from Table 5.2, with m = 1.

Reproduction number

R is the random variable representing the number of secondary infections caused
by a single infected cell in an otherwise susceptible population. Section 5.1.2
described how to calculate the distribution of the reproduction number, R. If
the number of target cells is assumed to be a limiting factor for the number of
secondary infections that can be produced, the reproduction number distribution
can be calculated using Eq. (5.1.5) (Case 1). Alternatively, when the number of
target cells is not limited because the population is very large or is constantly
replenished (Case 2), the p.m.f. of the reproduction number has the same form
as the burst size p.m.f. given in Eq. (5.1.3), but with p substituted by θp. When
ν = 0, this simplifies to the negative binomial distribution in Eq. (5.1.6). For
the latter case, in which the target cells are assumed to be in excess, the mean
number of secondary infections produced will be

R̄ = E[R] = θE[B] = βT0

βT0 + c
E[B] = βT0

βT0 + c
pE[TI ], (5.1.12)

where TI is the random variable for the amount of time that an infected cell will
spend infectious. Note that TI = 0 if the infected cell is killed while in the eclipse
phase. When the value of R̄ is much smaller than T0, and only a small proportion
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Figure 5.6: Heatmap showing changes in the Hellinger distance between the two
distributions of the reproduction number, R, calculated using methods Case 1 and
Case 2, for different values of β and T0. All other parameter values were fixed to the
values in Table 5.2, with m = 1 and ν = 0.

of the available cells are likely to become infected, the probability distributions
obtained for R are similar when using either the Case 1 or Case 2 method. Note
that T0 ≫ R̄ will be true if T0 ≫ E[B], but if T0 < E[B] it is still possible to have
T0 ≫ R̄ if

β ≪ c

E[B]− T0
. (5.1.13)

The smaller the difference is between the number of available cells and the ex-
pected number to become infected (i.e. T0 − R̄), the more different the distri-
butions obtained from the two methods become. The heatmap in Figure 5.6
illustrates how the difference between the two distributions changes as the values
of β and T0 are varied, but with all other parameters fixed to the values in Table
5.2, with m = 1 and ν = 0. The difference between the distributions is quantified
by calculating the Hellinger distance, giving a value between 0 and 1, where 0
indicates that the two distributions are identical. In general, for larger values
of the infection rate, β, and smaller values of T0, the distributions become more
different, since these parameter values will mean that the virus is likely to infect
a higher proportion of the available target cells.

Figure 5.7 shows some examples of the probability distributions for R calcu-
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lated with the Case 1 and Case 2 methods, for different values of the infection
rate, β, and number of available cells, T0. The Case 1 method assumes that there
is a population of T0 susceptible cells to begin with, but each secondary infection
reduces this number by one, meaning that it is not possible for more than T0

secondary infections to occur. On the other hand, Case 2 assumes that there is a
constant population of T0 susceptible cells that does not decrease as cells become
infected. The two plots in the top row of Figure 5.7 have parameter values of β

and T0, such that θ = 0.016 and the average reproduction number is R̄ = 17.6 (for
Case 2, from Eq. (5.1.12)). However for the plot on the left, T0 = 10 < R̄, making
the distribution for R very different, depending on whether it is calculated using
the method for Case 1 or Case 2. In this case, the Hellinger distance between
the two distributions is 0.81. When T0 = 103 ≫ R̄, the two distributions become
very similar, with a much smaller Hellinger distance of 0.01. For the plots on the
bottom row of Figure 5.7, the values of β and T0 give θ = 0.62 and R̄ = 680.
For the plot on the left, where T0 = 103 is only slightly larger than R̄, there is
clear difference between the two distributions, and the Hellinger distance is 0.33.
When T0 is increased to 105 in the plot on the right, this difference becomes much
smaller and the Hellinger distance is 0.002.

The value for β that was estimated by Liao et al. (2020) was 10−6.48 (cell ·
TCID50 · h)−1. To transform this into units of virions, I have set β = 10−6.48/m,
where m ≥ 1 is the number of infectious virus particles in a single unit of TCID50.
For this value of β, with any m ≥ 1, the average reproduction number will be
much smaller than T0, for any T0 ∈ N, due to Eq. (5.1.13) with c, p, and τI set
to their values in Table 5.2. Therefore the distribution of R will be very similar
when obtained using either method. Nevertheless, the distribution will strongly
depend on the assumption of the value for T0, which is the number of target cells
available to be infected. In the in vitro experiment described by Liao et al. (2020),
there was an initial population of T0 = 105 susceptible cells/ml. However in an
in vivo situation, the number of target cells at the site of initial infection may
be smaller than this, and this will affect the overall probability of an infection
becoming established in the host. The reproduction number distribution is also
very sensitive to the rate ν at which the immune system clears infected cells in
vivo. The distribution for R is shown in Figure 5.8 for a few different values
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Figure 5.7: Histograms for the probability distribution of the reproduction number,
for different values of β and T0. For each pair of parameter values, the distributions
obtained from methods of Case 1 (number of target cells decreases as they become
infected) and Case 2 (number of target cells stays constant) are shown. All other
parameter values are fixed to the values in Table 5.2, with m = 1 and ν = 0.
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of ν and T0. The distributions shown have been calculated according to the
assumption that the number of uninfected target cells remains constant and thus
infectious cells are assumed to produce new infections at a constant rate θp. The
Hellinger distances between these distributions and the ones obtained using the
method in Eq. (5.1.5) are on the order of 10−3.

The value of the mean basic reproduction number calculated by Liao et al.
(2020) differs from the one calculated here. This is because their model did not
consider the loss of virus due to infection of cells, so that the R̄ of their model
has a slightly different formula. For the R̄ defined in Eq. (5.1.12), as T0 → ∞,
we have R̄ → pE[TI ], which is the average number of virions released from an
infected cell. However for models that neglect the term corresponding to loss of
virus due to infection, the mean basic reproduction number is given by

R̄ = βT0

c
pE[TI ], (5.1.14)

which becomes infinite as T0 → ∞. This means that there is no finite limit
on the expected number of secondary infections produced by an infected cell, so
that as the initial target cell population becomes larger, the expected number of
secondary infections will eventually become larger than the expected number of
virions released from the infected cell. This is not really consistent because each
virion can only infect at most one cell.
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Figure 5.8: Probability distributions for the reproduction number, for different values
of ν and T0. Each row corresponds to a different value of ν and each column to a different
value of T0. The three values of ν used are 0, 0.005, and 0.01, from top to bottom row,
respectively. The three values of T0 used are 50, 500, and 5000, corresponding to values
of θ of 3 × 10−4, 3 × 10−3, and 3 × 10−2, respectively. The parameter values in Table
5.2 have been used to calculate these distributions (using the method of Case 2), with
m = 1.
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Figure 5.9: Left: Plot to show how the value of the mean basic reproduction number,
R̄, changes depending on the size of the target cell population, T0, for different values
of m. The solid blue, orange, and green lines correspond to the R̄ defined in Eq.
(5.1.2), for the model considering loss of virus due to infection of cells. The red line
corresponds to the R̄ defined in Eq. (5.1.14), for the model that neglects this process in
the equations, which is independent of m. The dashed blue line indicates the expected
number of virions released by an infected cell, when m = 1 and ν = 0. The dots
highlight the values of the mean basic reproduction numbers when T0 = 105, which
are also indicated as vertical lines on the right histograms. Right: Histograms for the
negative binomial distribution of the reproduction number, for different values of m,
when T0 = 105 and ν = 0. The parameter values in Table 5.2 have been used to obtain
these plots.

Figure 5.8 shows that the reproduction number distribution can depend strongly
on the number of available target cells. In addition to this, the reproduction num-
ber distribution will also be affected by the value of m, which is defined here to
be the number of infectious virus particles in a single unit of TCID50. As m

increases, the infection rate per virion, denoted by β, will decrease, but the pro-
duction rate of virions from the infected cell, p, will increase, meaning that the
product βp will remain unchanged. Thus, the mean basic reproduction number
in Eq. (5.1.14), for the model neglecting loss of virions due to infection, does
not depend on the value of m. However, the mean basic reproduction number
defined in Eq. (5.1.12) will increase with m, and will in fact converge to the mean
basic reproduction number in Eq. (5.1.14) as m→∞. The value of R̄ from Eq.
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(5.1.12) as a function of T0 is shown in the left plot of Figure 5.9 for a few values
of m, and is compared to the R̄ formula from Eq. (5.1.14), when ν = 0. The right
of Figure 5.9 shows the whole reproduction number distribution for the same val-
ues of m, when T0 = 105. These plots demonstrate that the average reproduction
number is very sensitive to m for small values of m, whereas when m is large
(for example larger than 100) the results will become much less sensitive to this
parameter and the average reproduction number can be fairly well estimated by
using Eq. (5.1.14). In reality, it is challenging to estimate the value of m, but it
is likely to be quite high. For example Yan et al. (2020) estimated this value to
be between around 10 and 300, indicating that it may be reasonable to use the
average reproduction number from Eq. (5.1.14).

Example: Influenza

In a recent study, Yan et al. (2020) fitted a model to in vitro data and com-
pared estimates of growth rate, reproduction number, and generation time, for
six influenza A strains. In this section I use estimated parameter values from
Yan et al. (2020) for two of these strains, to identify the distributions of the
number of virions released from a single infected cell, and the number of sec-
ondary infections produced. The parameter values used are presented in Table
5.3, for the strain A/Canada/RV733/2003 (seasonal H1N1), and A/Mexico/IN-
DRE4487/2009 (pandemic H1N1). Infectious virus was again measured in units
of TCID50, but values for the conversion between amount of TCID50 and num-
ber of infectious virus particles were estimated by Yan et al. (2020) during the
process of fitting the model to the data. Therefore I have used these estimated
values to transform the necessary parameter values into units of virions rather
than TCID50.

B is the random variable representing the amount of virus released by an
infected cell during its lifetime. The probability distribution for B for the two
strains is shown in Figure 5.10, for the case where ν = 0.

The distribution for the number of secondary infections, R, has been calcu-
lated according to the negative binomial distribution in Eq. (5.1.6), for different
values of the initial population of susceptible cells, T0, as shown in Figure 5.11.
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Parameter Units sH1N1 pH1N1
p virions (cell · h)−1 1082.57 119.88
τI h 7.40 41.32
nI - 10 10
β (cell · virion · h)−1 7.81× 10−10 2.41× 10−8

c (virion · h)−1 5.15× 10−2 4.69× 10−2

Table 5.3: Parameter values that have been used to obtain some numerical results
applicable to influenza. These are estimates that Yan et al. (2020) obtained using data
of in vitro influenza infection.

Figure 5.10: Probability distributions for B, the random variable for the number of
virions released by a single infected cell during the infectious phase. The medians of
each distribution are indicated by the vertical lines. The parameter values in Table 5.3
are used for the two strains, with ν = 0.
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Figure 5.11: Probability distributions for R, the random variable for the number of
secondary infected cells due to an initial cell in an otherwise susceptible population.
Three different values of T0 are used: 102, 104, and 106. The means of each distribution
are indicated by the vertical lines. The parameter values in Table 5.3 are used for the
two strains, with ν = 0.

In the in vitro experiment described by Yan et al. (2020), there was an initial
population of T0 = 106 susceptible cells, however it is unknown how many cells
would initially be available to the virus in an in vivo situation. In each column of
Figure 5.11, the value of T0 is set equal for the two strains, but the resulting value
of θ = βT0

c+βT0
differs because the values of β and c are different for each strain.

The expected value of virus released from an infected cell is much larger for
the seasonal strain than the pandemic strain. However, as can be seen in the plots
of the distribution for the reproduction number, the pandemic strain always has
a higher mean basic reproduction number due to a higher infectivity rate and
lower clearance rate.
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Parameter Units Value
p virions (cell · day)−1 100
τI days 1.25
nE - 0
ν (cell · day)−1 1.6
β (cell · virion · day)−1 2× 10−6

c (virion · day)−1 7.3
T0 cells 106

Table 5.4: Parameter values that have been used to obtain some numerical results
applicable to HIV. These parameter values are the same as ones used by Yuan & Allen
(2011), apart from the value of ν, which has been reduced.

Example: HIV

Yuan & Allen (2011) have considered a similar model to Eq. (5.1.1) but without
an eclipse phase and with only one infectious stage. They analysed this model
using parameters applicable to Human Immunodeficiency Virus-1 (HIV-1) and
studied the difference in the probability of viral extinction when comparing a
model of the budding strategy with a geometrically distributed burst size, and the
bursting strategy with a fixed burst size. They showed that the bursting strategy
was more successful for viral invasion when a model without immune response
was considered, but that the more successful strategy switched to budding when
the immune response was included in the model. In each case, the average burst
size and reproduction number in the budding case were equal to their values in the
bursting case, indicating that the distributions of the burst size and reproduction
number are important in determining the probability of viral extinction; the mean
alone is not enough.

In this section I use the parameter values in Table 5.4 to study the probability
of viral extinction for the model of bursting considered in Section 5.1.3. I focus on
the effect of changing the number of infectious phase stages in the model, given
by the parameter nI .

Yuan & Allen (2011) assumed a constant burst size of N = pτI virions from
bursting cells, whereas the model considered here allows variation in the burst
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size. It assumes that virus particles are produced inside the cell at a constant
rate p and are released when the cell bursts. Furthermore, it assumes that the
timing of the burst is independent of the number of intracellular virions. When
the immune response is not included in the model (ν = 0), the average burst
size in the model considered here is the same as that of Yuan & Allen (2011).
However, in the model considered here, the average number of virions released
from bursting cells changes when the immune response is included in the model.
The reason for this is that once the immune response is included in the model,
a competition is introduced between the two mechanisms of death of infected
cells, so that the cells that do burst will do so more quickly on average than they
would have if the immune response was not included. This is because cells that
are destined to burst quickly are more likely to burst before they are killed by the
immune response, but those that would burst later are more likely to be cleared
by immune system cells before they have a chance to burst. Cells that burst
earlier will not have produced as many virus particles on average as those that
survive longer. Hence when the immune response is included in the model, the
average number of virions released from bursting cells is reduced, reflecting the
reduced average time until these cells burst. Due to this, the parameter values
considered by Yuan & Allen (2011) result in average burst sizes of less than one
when used with these model assumptions. This means that the probability of viral
extinction is certain, which is not a relevant case for the results I would like to
illustrate. For the purpose of this illustration, I have therefore reduced the value
of ν from 10 to 1.6. The chosen value of ν = 1.6 means that the immune system
clearance of infected cells occurs on average two times faster than virus-induced
cell death.

As shown in Section 5.1.3, the reproduction number distribution of the burst-
ing model is given by a zero-inflated negative binomial distribution. This is
because if an infected cell does burst and release virions, then the number of
secondary infections caused by the cell follows a negative binomial distribution
with shape parameter nI and probability θp

θp+δI+ν
. However, the probability of

zero secondary infections is inflated, since if the initial infected cell is killed by
immune system cells before it bursts (either in the eclipse phase or infectious
phase), then zero virions will be released and zero secondary infections can be
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Figure 5.12: Reproduction number distributions for the bursting model, for different
numbers of infectious phase stages, nI . For each value of nI , the mean of the Erlang-
distributed time until cell burst is kept fixed to the value of τI in Table 5.4. All
other parameters are also set to their values from Table 5.4. The probabilities of zero
secondary infections for each nI are shown on the left, and the distributions conditioned
on positive values of the reproduction number are shown on the right.

produced. Figure 5.12 shows the reproduction number distribution for different
values of nI , when the parameters in Table 5.4 are used in the bursting model.
Note that as nI is varied, δI = nI/τI also changes, since it depends on nI . As nI

increases, the initial infected cell must survive more infectious stages in order for
a burst to occur, so there is a higher chance that it will be killed before it bursts,
leading to a higher probability of zero secondary infections produced. However, if
the infected cell does burst, it will release a higher number of virions on average
when the value of nI is higher. Therefore, when conditioned on positive numbers
of secondary infections, the reproduction number distribution moves to the right
with increasing nI .

Figure 5.13 presents some interesting results about the probability of viral
extinction, which is found by numerically calculating the smallest fixed point
of the p.g.f in Eq. (5.1.11). The number of infectious stages, nI , is varied, but
with the average of the Erlang-distributed time until cell burst kept constant. The
probability that a given extracellular virion goes on to infect a new cell rather than
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Figure 5.13: Left: Plot to show how the probability of viral extinction depends on
the initial number of infected cells, when virus is assumed to be released in a burst only
upon viral-induced cell death. The curves are shown for different numbers of infectious
phase stages, nI . For each value of nI , the mean of the Erlang-distributed time until
cell burst is kept fixed to the value of τI in Table 5.4. All other parameters are also
set to their values from Table 5.4. Right: Plot to show how the probability of viral
extinction starting from one infected cell changes as a function of θ, for different values
of nI . The value of θ used for the left plot is indicated by the dashed line.

be cleared is given by θ and this is also varied in Figure 5.13. For the parameter
values in Table 5.4 and the values of nI considered, the expected reproduction
number in the bursting case, given in Eq. (5.1.9), increases with the value of nI .
For the model without immune response (ν = 0), the chance of viral extinction
reduces as the number of infectious stages increases. This is also the case when
the immune response is included in the model of the budding strategy. However,
for large enough θ, the opposite is true when the bursting strategy is considered.
That is, for some values of θ, the probability of extinction is an increasing function
of nI . This is surprising, considering the expected reproduction number increases
with nI , and gives further evidence that focusing only on the mean reproduction
number can be very misleading.

The plot on the left of Figure 5.13 shows how the probability of extinction
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depends on the initial number infected cells, for the fixed value of θ ≈ 0.22 which
comes from the parameter values in Table 5.4. For this value of θ, it can be seen
that the probability of extinction is an increasing function of nI , even though
the average reproduction number R̄ grows with nI . The plot on the right of
Figure 5.13 shows how the probability of extinction starting from one infected
cell changes as a function of θ, for different values of nI . When θ is very small,
extinction is certain for all values of nI because the average reproduction numbers
are less than 1. When θ grows large enough to increase the average reproduction
number above 1, initially there is a larger probability of extinction for smaller nI ,
but as θ grows, the ordering changes and eventually the probability of extinction
is largest for the largest value of nI .

5.2 Model with age-dependent viral production
rate

Many models of viral dynamics assume a constant budding rate of virus from
infected cells, for example the model considered in Section 5.1. However some
models of viral dynamics have instead used an age-dependent viral production
rate, since it is realistic to assume that the rate of production and release of
new virus is not constant but depends on the length of time the cell has been
infected and the internal state of the cell (Heldt et al. (2013); Nelson et al. (2004);
Quintela et al. (2018)). This section focuses on an example of such a model by
Guedj et al. (2013), which includes basic intracellular dynamics.

Macroscopic model

Guedj et al. (2013) have modelled hepatitis C virus (HCV) infection with a deter-
ministic multi-scale model in order to study the potential effects of direct-acting
antiviral agents (DAAs) on intracellular viral RNA (vRNA) production, degra-
dation, and secretion of progeny virus into the extracellular environment. The
model was originally presented as a set of PDEs, but it has been shown by Kita-
gawa et al. (2018) that the model can be transformed into a set of ODEs. The
model by Guedj et al. (2013) assumes an exponentially-distributed infected cell
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lifetime. However, as mentioned previously, other distributions may be more ap-
propriate. In fact, for HCV, some models have actually neglected infected cell
death altogether in the time frame of their study, since HCV is thought to be
non-cytolytic (Ribeiro et al. (2012)). Since cells infected with HCV are relatively
long lived, it seems unrealistic to assume that a significant fraction of cells would
die almost immediately after infection, which is an assumption of the exponential
distribution. Hence, I will generalise this model by assuming that the time that a
cell spends in the infectious phase has an Erlang(nI , δI) distribution. The expo-
nential distribution is a particular case, with nI = 1, allowing an easy comparison
with larger values of nI . In the case of an Erlang-distributed infectious period,
the model can be written as follows.

dT

dt
= s− λT − βTV,

dI1

dt
= βTV − δII1,

dIi

dt
= δI(Ii−1 − Ii), i = 2, ..., nI ,

dP1

dt
= βTV + αI1 − (µ + ρ + δI)P1,

dPi

dt
= δIPi−1 + αIi − (µ + ρ + δI)Pi, i = 2, ..., nI ,

dV

dt
= ρ

nI∑
i=1

Pi − cV − βTV.

(5.2.1)

In this model, infected cells must pass through nI stages before cell death
occurs, and the rate of moving between each stage is equal. The variable Ii

denotes the number of infected cells in stage i, and the variable Pi denotes the
total amount of intracellular positive HCV RNA in all infected cells in stage i.
The intracellular RNA is assumed to be produced at a constant rate α, and is
exported as virions and degraded with per capita rates ρ and µ, respectively.
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Microscopic model of a single infected cell

I will now consider the dynamics of a single infected cell from a stochastic point
of view, based on the assumptions of the intracellular dynamics from the model in
Eq. (5.2.1). In particular, a continuous-time Markov chain, Z = {Z(t) : t ≥ 0},
can be used to describe the viral dynamics inside a single infected cell, where Z(t)
represents the amount of vRNA (copies of the RNA genome) inside a cell at time
t after it becomes infected. It is assumed that Z(t) only counts the vRNA copies
that are available to be assembled into virions and released from the cell. When
the process is in state Z(t) = 0, the cell is still infected and able to produce vRNA
copies from some background level of replication complexes that are not counted
by this Markov chain. As shown in Figure 5.14, the intracellular viral load of
a single cell in the infectious phase is modelled by a birth-and-death process,
where the birth event represents synthesis of a new copy of intracellular positive
vRNA, and the death event represents either the decay of an intracellular vRNA
copy, or the release of a single copy of vRNA from the cell, in the form of a
virus particle. Following the assumptions of the intracellular virus dynamics in
the multi-scale model for HCV by Guedj et al. (2013), vRNA is produced within
infected cells with constant rate α (day−1), degraded with rate µ (vRNA ·day)−1,
and exported as virions with rate ρ (vRNA · day)−1. After an Erlang-distributed
time, the process will enter state ϕ, which is an absorbing state representing that
viral production no longer occurs from the infected cell, for example if the cell
has died due to the action of the immune system. Up until this point, the process
describing the amount of intracellular vRNA and the process of cell death are
assumed to be independent of each other. When the cell dies, the remaining
intracellular vRNA does not get released as virions, since it is assumed that these
vRNA copies have not yet been packaged into virus particles. Therefore, the total
number of virions released (the burst size) is just as a result of the budding that
has occurred throughout the infectious period with rate ρ.

Some models have included multiple viral RNA species (Quintela et al. (2018))
and viral proteins (Heldt et al. (2012)), so that more complicated feedback mech-
anisms can be considered. For a model that includes only one viral RNA species,
one might assume that as the amount of vRNA inside an infected cell increases,
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1 2 30

ϕ

α α α α

µ + ρ 2(µ + ρ) 3(µ + ρ) 4(µ + ρ)

Erlang(nI , δI)

Figure 5.14: A depiction of the continuous-time Markov chain, Z, used to model
a single infected cell. State i indicates that the cell contains i vRNA copies that are
available to be assembled into virions and released from the cell. When the process
is in state 0, the cell is still infected and able to produce vRNA copies from some
background level of replication complexes that are not counted by this Markov chain.
vRNA is produced within the cell with constant rate α, degraded with rate µ per
vRNA, and exported as virions with rate ρ per vRNA. After an Erlang-distributed
time, the process will enter state ϕ, which is an absorbing state representing that viral
production no longer occurs from the infected cell. For example, the cell might have
suffered a virus-induced death, or might have been killed due to the action of the
immune system. This model is different to the one in Section 5.1, since here the two
competing mechanisms of cell death are not explicitly modelled, but it is assumed that
this competition results overall in an Erlang distribution for the time until cell death.
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faster replication of the genome will occur. In general, this assumption can be
justified early on in the cellular infection, since the copies of vRNA are used as
templates for replication. However, a linear replication rate also assumes that
there are unlimited resources available for this replication. The process of viral
genome replication requires sufficient levels of viral proteins to be present in the
cell, and also depends on the cell machinery. Hence these may become limiting
factors for the speed of the genome replication. Therefore, since the model in
Eq. (5.2.1) is a very simple model that does not explicitly include the dynamics
of viral proteins and host factors, it is more realistic to assume a constant rate
of viral replication, α, which does not depend on the intracellular viral load. On
the other hand, the budding rate is mainly limited by the amount of intracellular
vRNA, and hence this rate is assumed to be linear, so that higher intracellular
viral loads will lead to increased rates of budding. Therefore, this model assumes
that the viral budding rate can change over time, depending on the amount of
vRNA inside the cell.

5.2.1 Burst size probability distribution

For the stochastic model of a single infected cell, depicted in Figure 5.14, I will
describe how to find the probability distribution for the number of virions released
by an infected cell. Once this distribution has been obtained, the distribution
for the number of secondary infections produced by a single infected cell in a
completely susceptible population can be calculated as described in Section 5.1.2.

Let µ̂ = µ + ρ. Then the process depicted in Figure 5.14, for the amount of
vRNA inside an infected cell, is of the form of an M/M/∞ queueing system with
arrival rate α and service rate µ̂ (D’Auria (2010)). That is, vRNA is produced
or “arrives” in the cell with constant rate α, and each vRNA that is produced
stays in the cell for an exponentially distributed amount of time, before either
degrading with probability µ/µ̂ or being exported from the cell by budding with
probability ρ/µ̂. Therefore the history of events for each vRNA (e.g time that it
is produced, time that it leaves the cell, and whether it is removed by degradation
or budding), is independent of any other vRNA.
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Assume that the cell begins the infectious phase with zero vRNA copies ready
to be packaged into virions, i.e. state Z(0) = 0. Let us for the moment ignore
the process of cell death, and let N(t) be the total cumulative number of vRNA
produced inside the cell by time t. Then N(t) includes the number of vRNA
currently inside the cell at time t, denoted Z(t), those that have been removed by
budding before time t, denoted B(t), and those removed by degradation, denoted
D(t). That is, N(t) = Z(t) + B(t) + D(t). Following ideas from D’Auria (2010),
I will now show that at a fixed time t ≥ 0, B(t), D(t), and Z(t) are independent
and Poisson distributed.

If it is known that a vRNA has been produced at some random time u that is
smaller than a fixed time t, then since the production of vRNA follows a Poisson
process, the random variable u is uniformly distributed on the interval (0, t), as
shown by D’Auria (2012). Also, the time between a vRNA being produced and
removed from the cell is exponentially distributed with parameter µ̂. Hence, given
that a vRNA copy has been produced before time t, the probability that it has
been removed before time t is,

p(t) =
∫ t

0
(1− e−µ̂(t−u))1

t
du

= 1 + 1
tµ̂

(e−µ̂t − 1),

and the probability that it is still in the cell at time t is q(t) = 1− p(t). Let

pb(t) = ρ

µ̂
p(t), pd(t) = µ

µ̂
p(t),

be the probabilities that it has been exported or degraded before time t, respec-
tively. Then we have,

P(B(t) = nb, D(t) = nd, Z(t) = ni)
= P(B(t) = nb, D(t) = nd, Z(t) = ni | N(t) = nb + nd + ni)P(N(t) = nb + nd + ni),

= (nb + nd + ni)!
nb!nd!ni!

pb(t)nbpd(t)ndq(t)ni
(αt)nb+nd+nie−αt

(nb + nd + ni)!
,

=
(

(αtpb(t))nbe−αtpb(t)

nb!

)(
(αtpd(t))nde−αtpd(t)

nd!

)(
(αtq(t))nie−αtq(t)

ni!

)
.
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Thus, if a cell begins the infectious phase with zero vRNA copies ready to
be packaged into virions, the number of vRNA copies inside the cell at time t,
denoted by Z(t), is Poisson distributed with mean,

αtq(t) = α

µ̂
(1− e−µ̂t).

This distribution converges to a Poisson distribution with mean α/µ̂ as t → ∞,
which is the stationary distribution of the Markov chain describing the intracel-
lular vRNA, if cell death is ignored.

Similarly, B(t), the random variable for the number of virions released by
budding before time t, is Poisson distributed with mean,

αtpb(t) = αρ

µ̂

(
t + 1

µ̂
(e−µ̂t − 1)

)
.

That is, the probability that b virions have been released by time t, given that
the Markov chain Z began in state Z(0) = 0, is,

P(B(t) = b | Z(0) = 0) = exp (−αtpb(t))
(αtpb(t))b

b! . (5.2.2)

If we assumed that each newly produced copy of vRNA immediately decays or is
assembled and released as a virion, the mean of the Poisson distribution in Eq.
(5.2.2) would become αρ

µ̂
t, and we would recover the model with a constant viral

production rate of αρ
µ̂

.
For the model shown in Eq. (5.2.1), infected cells are assumed to begin

producing and releasing virus as soon as they become infected. However, in
reality, when a target cell becomes infected, there is usually a period of time
during which the virus is being replicated but no virus is being released, known
as the eclipse phase. The dynamics during the eclipse phase may need to be taken
into account because the dynamics of viral RNA replication during the eclipse
phase may affect the initial state distribution of a cell entering the infectious
phase, and in turn will have an effect on the rate that the cell begins to produce
virus. For example, in a model for HCV by Quintela et al. (2018), the authors
included an eclipse phase in the form of a fixed time of 12 hours, during which the
viral RNA inside the cell is involved in the processes of replication and translation
but is not yet being assembled into virions and released. To incorporate this into
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the Markov chain in Figure 5.14, one could assume that prior to the infectious
stage, the cell has already begun replicating the viral genome, so that the Markov
chain Z begins with i ∈ N copies of vRNA at time t = 0 (representing the
beginning of the infectious phase), where this initial state i is sampled from some
distribution corresponding to the assumptions of the eclipse phase dynamics. In
the Markov chain Z, each vRNA is independent of any other vRNA. Hence if we
assume that the cell begins the infectious phase with i copies of vRNA, we can
think of the number of virions released from the cell as the sum of those released
from two independent processes: the ones generated by the initial i copies of
vRNA that are within the cell at the beginning of the infectious phase, and the
ones generated by new vRNA produced during the infectious phase. If the initial
state of the Markov chain is Z(0) = i, then the number of these initial copies of
vRNA that are released by budding before time t will follow a Binomial(i, p̃(t))
distribution, with

p̃(t) = ρ

µ̂
(1− e−µ̂t).

Therefore, to find the probability that b virions are released in total by time t,
we need to sum over the possible values of k, where k out of the original vRNA
copies (the ones present in the cell at time 0) are released by budding before t,
and b − k virions are released that were produced inside the cell after time 0.
Hence, the probability that b virions are released in total by time t is given by,

P(B(t) = b | Z(0) = i) =
min(i,b)∑

k=0

(
i

k

)
p̃(t)k(1− p̃(t))i−kP(B(t) = b− k | Z(0) = 0).

Since the time that the cell spends in the infectious phase is Erlang(nI , δI)
distributed and independent of the intracellular dynamics, the probability that b

virions are released over the entire infectious period is

P(B = b | Z(0) = i) =
∫ ∞

0
P(B(t) = b | Z(0) = i)δnI

I tnI−1e−δI t

(nI − 1)! dt. (5.2.3)

The expected burst size is given by

E[B | Z(0) = i] =
∞∑

b=0
bP(B = b | Z(0) = i)

= ρα

µ̂

[
nI

δI

+
(

i

α
− 1

µ̂

)(
1−

(
δI

µ̂ + δI

)nI
)]

,

(5.2.4)
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and the variance of the burst size is given by

Var[B | Z(0) = i] = E[B] + ρ2α2

µ̂2

[
2
(

i

α2 −
nI

δI(µ̂ + δI)

)(
δI

µ̂ + δI

)nI

+
(

i(i− 1)
α2 + 1

µ̂2

)(
δI

2µ̂ + δI

)nI

−
(

i2

α2 + 1
µ̂2

)(
δI

µ̂ + δI

)2nI

− i

α2

]
.

(5.2.5)

5.2.2 Reproduction number probability distribution

Once the distribution for the number of virions released has been obtained, using
Eq. (5.2.3), the distribution of the number of secondary infections caused by
an initial infected cell can be calculated using the methods described in Section
5.1.2.

If the number of target cells is limiting, the method from Eq. (5.1.5) should
be used,

P
(
R = r

)
=

∞∑
b=0

pr(b)P(B = b),

with the pr(b) defined recursively in Section 5.1.2 and P(B = b) defined in Eq.
(5.2.3) (with Z(0) chosen according to some initial state distribution that de-
pends on the assumptions of the eclipse phase dynamics). Otherwise, if there
is assumed to be a constant number of T0 target cells, then each virion released
from an infected cell will infect a new cell with probability θ = βT0

c+βT0
, and will

be cleared with probability 1− θ. Since only the number of secondary infections
produced is being considered and not the timings of these infections, the model
in Figure 5.14 can be used to count the number of secondary infections produced
rather than the number of virions released, if the rates are adjusted slightly to
reflect this. To count the number of secondary infections produced, the rate of
budding and subsequent infection is set to θρ, and the rate of intracellular decay
or budding and extracellular clearance is set to µ + (1− θ)ρ. Then the reproduc-
tion number distribution can be calculated using the same methods as the burst
size distribution from Eq. (5.2.3), but with these adjusted rates.
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Parameter Units Value
α d−1 40
ρ (vRNA · d)−1 8.18
µ (vRNA · d)−1 1.46
τI d 1/0.14 ≈ 7.14
nI - 10
c (vRNA · d)−1 22.3

Table 5.5: Parameter values that have been used to obtain numerical results for the
HCV model. These are the estimates given for the parameters in the deterministic
model by Guedj et al. (2013). The only difference is that the model by Guedj et al.
(2013) assumes an exponentially distributed infectious period (nI = 1), but this may
not be realistic, as discussed previously. Therefore a larger value of nI is used here for
illustration.

5.2.3 Numerical results

The results in this section have been calculated using parameter values estimated
by Guedj et al. (2013) for their model of HCV infection. Guedj et al. (2013)
estimated the degradation rate µ after the effect of the antiviral daclatasvir, since
they fit their model to data from patients treated with this antiviral. However
they mention that this treatment is likely to only have a small effect on enhancing
vRNA degradation, so the same value of the degradation rate is used in the
calculations here. The parameter values used are presented in Table 5.5.

Burst size distribution

B is the random variable representing the amount of virus released by a cell whilst
in the infectious phase. The probability distribution for B is shown in Figure 5.15,
for varying values of α and nI . The plot on the left of Figure 5.15 shows how
the distribution changes if the intracellular replication rate changes but all other
parameters remain equal to their values in Table 5.5. It can be seen that there
is quite a lot of variability in the distribution for the number of virions released
from an individual infected cell, and this variability increases as α increases. The
plot on the right of Figure 5.15 shows how the distribution of B changes for
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Figure 5.15: Plots showing the probability distribution for B, the random variable
for the amount of virus released from a single cell whilst in the infectious phase, for
the model in Figure 5.14. In the plot on the left, α is varied and all other parameters
are fixed to their values in Table 5.5. In the right hand side plot, nI is varied, but the
average time spent in the infectious phase, τI = nI/δI , remains constant. The medians
of each distribution are indicated on the plots.

different infectious period distributions. For each value of nI , the average time
spent in the infectious phase remains constant at the value of τI in Table 5.5,
and δI = nI/τI . When nI = 1 the infectious period is exponentially distributed
and there is a fairly wide distribution for the number of virions released from an
individual infected cell, with the mode at zero. As nI increases, the distribution
becomes narrower and peaks much closer to the mean. This is because as nI

increases, the Erlang distribution of time spent in the infectious phase becomes
similar to a normal distribution.

The expected values and medians of B when using the different values of nI

are shown in Table 5.6. Here I have used the analytical formula for the expected
value of B in Eq. (5.2.4), with the assumption Z(0) = 0. The mean of B

decreases slightly as nI increases, even though the average infectious period is
kept the same. However the median of the distribution is much more sensitive
to changes in nI , as can be seen in the plot on the right of Figure 5.15, and the
values in Table 5.6.
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nI Mean Median
1 238.972 164
2 238.924 200
10 238.921 231
50 238.921 237

Table 5.6: Values for the mean and median of the random variable B, when the
shape parameter of the Erlang infectious period distribution is varied. For each value
of nI , δI = nI/τI , where τI is the average length of the infectious period.

Reproduction number distribution

R is the random variable representing the number of secondary infections caused
by a single infected cell in a completely susceptible population. Guedj et al. (2013)
assumed that no new infections occurred after the initiation of treatment, so they
set the infection rate to β = 0. However estimates of the infection rate from other
models of HCV infection are on the order of 10−7 and 10−8 (Clausznitzer et al.
(2016); Neumann et al. (1998); Rong et al. (2013)). With such a small value
of β, the two methods described in Section 5.2.2 for calculating the distribution
of secondary infections give very similar results, as discussed in Section 5.1.5.
Therefore I have used the case of a constant number of target cells to obtain the
results in this section. This distribution assumes that each virion released from
the initial infected cell will have the same probability of infecting another cell,
given by,

θ = βT0

βT0 + c
,

which depends on the infection rate, the number of susceptible cells that are
available to be infected, and the viral decay rate. In general, a larger value of θ

corresponds to a larger infection rate, more available target cells, or a smaller viral
decay rate. Estimates in the literature for these parameters vary, but in general,
the value of θ is quite small. For example, Ribeiro et al. (2012) estimated the
median value across patients studied to be θ = 0.018.

Probability distributions for the reproduction number are shown in the plots in
Figure 5.16, for three different values of θ that are similar to estimates from Rong
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et al. (2013), Clausznitzer et al. (2016), and Neumann et al. (1998), respectively,
when assuming a constant population of T0 = 106 susceptible cells. The top row
of plots shows the distributions when nI = 1 and the bottom row corresponds
to the case nI = 10. All three values of θ used predict a fairly small number
of secondary infections due to an individual infected cell. However, there are
substantial differences in the mean, R̄, for the different parameter estimates in
these three papers, from around 0.5 secondary infections up to 14.

The distribution of R changes dramatically (particularly for larger values of
θ) when the infectious period is assumed to be Erlang distributed with nI = 10
rather than exponentially distributed with the same mean. For the value of
θ = 0.012, the model with exponentially distributed infectious period predicts
that there is around a 27% chance that an initial infected cell would cause zero
secondary infections. However, when the infectious period is assumed to be Er-
lang distributed with nI = 10, the model predicts only an 8% chance of zero
secondary infections, even though the mean number of secondary infections is
very similar to the exponential case. Therefore, the choice of distribution for the
infectious period can be very influential in model predictions of infection outcome
at early stages of infection. For example, if the number of secondary infections is
distributed according to the model with exponential infectious period, recovery
from infection can be fairly likely if there are only a small number of infected cells
at the start of an infection, as shown in Figure 5.17. As the number of stages
of the Erlang-distributed infectious period increases, recovery from infection be-
comes much less likely.

5.3 Discussion

The mean value of the basic cellular reproduction number has been calculated
from deterministic models for a number of viruses (Baccam et al. (2006); González-
Parra et al. (2018); Iwami et al. (2012)) and in some cases these values have been
compared between different viral strains as a measure of relative fitness (Iwanami
et al. (2017)). Although the value of R̄ is often used to compare viruses and pre-
dict the outcome of infection, there may be complexities that are not revealed by
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Figure 5.16: Plots showing probability distributions for R, the random variable
for the number of secondary infections caused by a single infected cell. The top row
corresponds to the case where the distribution of the infectious period is exponential.
The bottom row corresponds to the case where the infectious period follows an Erlang
distribution with shape parameter nI = 10. The distributions are shown for different
values of θ, which is the probability that a progeny virion released from an infected
cell will infect a new cell before it decays. These values of θ were obtained by using
estimates for the pair of parameters, β and c, from Rong et al. (2013), Clausznitzer et al.
(2016), and Neumann et al. (1998), respectively, and assuming a constant population
of T0 = 106 susceptible cells.
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IN STOCHASTIC MODELS OF VIRAL DYNAMICS WITH
NON-EXPONENTIAL INFECTIOUS PERIOD

Figure 5.17: Plot showing the probability of viral extinction as a function of the
initial number of infected cells, for different values of nI , which is the number of stages
in the Erlang-distributed infectious period.

this single number alone. When stochastic effects are considered, there is hetero-
geneity in the viral burst size, which is the number of viral progeny generated from
an infected cell during its lifetime, and heterogeneity in the reproduction num-
ber, which is the number of secondary infections that an infected cell produces.
One can capture this heterogeneity by computing the probability distributions of
these variables of interest. Indeed, two viruses may have the same R̄ but exhibit
reproduction number distributions with very different shapes, for example owing
to different variability in infected cell lifespans. Here I have shown how to calcu-
late distributions of the random variables for the burst size and the reproduction
number, for stochastic versions of two previously used deterministic models of
viral dynamics.

I first considered a model in which virus is produced from infected cells at
a constant rate. This model, shown in Eq. (5.1.1), includes an eclipse phase
to represent the period of time after a virus infects a target cell, in which the
virus is replicating but no virus has yet been released. The time until transition
of eclipse phase cells into the infectious phase follows an Erlang distribution, as
does the time spent in the infectious phase until virus-induced cell death. The
time until clearance of infected cells by the immune system is assumed to follow
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5.3 Discussion

an Exponential distribution. Thus, the resulting time until infected cell death is
the minimum of these two competing mechanisms. In an in vitro situation, the
effect of the immune system can be removed by setting ν = 0 in the model, as in
the models by Liao et al. (2020) and Yan et al. (2020), from which I have used
parameter values to illustrate some numerical examples in Section 5.1.5. In the
case where ν = 0, the distribution of the burst size has been shown to follow a
negative binomial distribution.

In addition to the model of viral dynamics with constant viral production
rate, I also calculated the burst size distribution for an age-structured model of
HCV infection in which the rate of virus production is not constant but depends
on the intracellular viral dynamics (Guedj et al. (2013)). The model considered
here only included very simple intracellular dynamics, and it would be more
complicated to implement this method for models with more detail around the
intracellular viral kinetics. However, it would be fairly straightforward for models
in which the production of virus from infected cells is a Poisson process and a
functional form of the age-dependent viral production rate can be found. For
example, the deterministic model by Guedj et al. (2013), presented in Eq. (5.2.1),
is equivalent to a model in which the rate of viral production varies continuously
over an infected cell’s lifespan, described by the function,

p(a) = αρ

µ̂
(1− e−µ̂a),

where a denotes the age of the infected cell (i.e. the length of time it has been
in the infectious phase). The method shown here to calculate the burst size
distribution for this particular model of HCV dynamics can be generalised for
models with other forms of p(a), and other infectious period distributions. For a
general production rate function, the burst size distribution would be calculated
as,

P(B = b) =
∫ ∞

0
exp

(
−
∫ t

0
p(a) da

) (
∫ t

0 p(a) da)b

b! f(t) dt,

where f(t) is the probability density function of the time a cell spends in the
infectious phase.

Given the burst size distribution, I have presented two methods to calculate
the reproduction number distribution. One method assumed that the target cell

203
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population is depleted as these cells become infected and the other assumed that
the target cell population remains constant. The latter assumption is valid if the
system is well mixed and there are a large number of target cells, which could
be the case early in infection, for example if a virus is introduced into the blood.
However, for some routes of infection, or for particular viruses, the availability of
target cells may be limited. Thus, in this case the first method should be used, in
which target cell numbers are assumed to decrease due to cells becoming infected.

The reproduction number distribution will have an impact during the very
early dynamics of infection, where stochastic effects are not negligible. In par-
ticular, the distribution of the reproduction number can be used in order to
calculate the probability that disease will become established in an individual,
given an initial dose of virus. For example, by comparing a model with a ge-
ometric reproduction number distribution and one with a Poisson distribution,
Pearson et al. (2011) showed that with the greater variability of the geometric
distribution, there was a greater chance of viral extinction and a lower probability
of successful establishment of disease. This has also been recognised in the case
of epidemic models, where increased variability in individual infectiousness has
been shown to increase the probability of stochastic extinction in an outbreak
beginning with one infected individual (Lloyd-Smith et al. (2005)). I have shown
that models with the same average burst size and basic reproduction number can
produce very different burst size and reproduction number distributions, due to
different distributions of infected cell lifetimes for example. The reproduction
number distribution determines the probability of viral extinction in a stochas-
tic model, so it is important to consider the range of shapes it may take under
different model assumptions.
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Chapter 6

Concluding remarks

In this thesis, a multi-scale mathematical model has been developed for the infec-
tion dynamics of inhalational anthrax, which is caused by the bacterium Bacillus
anthracis. Mathematical models of virus dynamics have also been studied.

The multi-scale inhalational anthrax model features a stochastic model for
the dynamics of B. anthracis spores and bacteria inside an infected phagocyte,
presented in Chapter 3. This model considers the germination rate of spores to be
heterogeneous across the spore population, and two hypotheses for the germina-
tion rate distribution were compared. Results from the calibration of the model
with experimental in vitro data suggested that the hypothesis of a Bernoulli ger-
mination rate distribution is better supported by the data. Furthermore, this
hypothesis agrees with other experimental evidence that has indicated the exis-
tence of superdormant spores, which have a much slower germination rate than
the majority of the spore population (Setlow (2013)). However, the hypothesis of
a Bernoulli distribution for the germination rate is the simplest way to define a
bi-modal distribution, and more complex distributions may help to describe the
data more accurately. Furthermore, for a given spore, the rate of germination
into a newly germinated bacterium, and the rate of maturation into a vegetative
bacterium are assumed to be equal. In future, if further data were to become
available that allowed one to distinguish between newly germinated and vegeta-
tive bacteria, then a separate rate could be incorporated for the maturation step
of the germination process. This would also allow for more complicated distribu-
tions to account for heterogeneity in the germination and maturation rates.
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6. CONCLUDING REMARKS

The dynamics of the intracellular model were analytically studied through the
calculation of a number of summary statistics, such as the probabilities that an
infected cell will eliminate the infection and recover, or will rupture and release its
bacterial content. The distribution of time taken for these fates to occur was also
computed. Additionally, an expression was given for the probability distribution
of the rupture size, which is the amount of bacteria that are ultimately released
from an infected phagocyte. These are key quantities that were used to link the
intracellular model to a model at the within-host level, presented in Chapter 4.

A stochastic approach was also used for the within-host model of inhalational
anthrax, allowing the model to capture the randomness in the biological processes
and describe the probabilities of different outcomes, for example how likely it is
that the infection will be cleared by the immune system. This stochasticity
is particularly important for modelling the outcome of exposures that result in
a relatively small number of spores entering the lungs. However, during the
calibration of the model, a deterministic description was used to compare the
model with in vivo bacterial counts from rabbits and guinea pigs that had been
infected with a very high dose of B. anthracis spores. At the same time, the
probability of infection resulting from the stochastic model was fitted to rabbit
and guinea-pig dose-response data sets. This resulted in a single model structure
that is able to describe both the in vivo dynamics of infection, as well as the
probability of response, in two different animal species with slightly different
values of the parameters.

In future work, the aim will be to extend the novel multi-scale mathemat-
ical model for inhalational anthrax developed in Chapters 3 and 4 to link to
human data and the population level scale, in order to estimate infection risk
and timescales for symptom onset during an accidental or deliberate release of
B. anthracis spores. The within-host model could be adapted to be able to de-
scribe human inhalational anthrax infection, by leveraging non-human primate
data and human outbreak-related epidemiological data (Wilkening (2008)). Then
the within-host model could also be linked to Quantitative Microbial Risk As-
sessment (QMRA) techniques (Sze To & Chao (2010)), making use of similar
methodologies previously used by Carruthers et al. (2018) for the bacteria Fran-
cisella tularensis. For example, dispersion models can be used to describe the
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airborne spread of B. anthracis spores in indoor or outdoor settings, and to pre-
dict a distribution of initial doses of spores among an exposed population. This
can then be linked to the outputs of the within-host model (e.g. likelihood of
symptom onset for a given dose) to predict quantities like the distribution of the
number of casualties and fatalities, and the earliest time of symptom onset, in
different scenarios such as bioterrorist attacks or accidental releases.

In Chapter 5, stochastic models of virus dynamics were studied in order to
obtain probability distributions for the burst size, which is the number of viral
progeny generated from an infected cell during its lifetime, and the reproduction
number, which is the number of secondary infected cells caused by a single infected
cell in a completely susceptible population. It was shown that by considering
heterogeneity in the viral burst size and reproduction number, interesting results
can be observed, such as the probability of viral extinction becoming an increasing
function of the average reproduction number, for some shapes of the reproduction
number distribution. The work in this chapter was theoretical and not compared
with experimental data. However, some numerical examples were illustrated using
parameter values that have been estimated using experimental data in previous
modelling work in the literature (Guedj et al. (2013); Liao et al. (2020); Yan et al.
(2020)). The models considered here were fairly simple, but future work could
focus on implementing these methods for models that include more detail around
the intracellular viral kinetics.
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Oyston, P.C., Sjöstedt, A. & Titball, R.W. (2004). Tularaemia: bioter-
rorism defence renews interest in Francisella tularensis. Nature Reviews Micro-
biology, 2, 967–978. 92

Pantha, B., Cross, A., Lenhart, S. & Day, J. (2018). Modeling the
macrophage-anthrax spore interaction: Implications for early host-pathogen

218



REFERENCES

interactions. Mathematical biosciences, 305, 18–28. x, xii, xxiii, 3, 41, 42, 45,
46, 60, 61, 62, 78, 79, 84, 85, 87, 95, 96, 97, 102

Pearson, J.E., Krapivsky, P. & Perelson, A.S. (2011). Stochastic theory
of early viral infection: continuous versus burst production of virions. PLoS
computational biology, 7, e1001058. 147, 149, 151, 204

Perelson, A.S. (2002). Modelling viral and immune system dynamics. Nature
reviews immunology, 2, 28–36. 149

Perelson, A.S. & Nelson, P.W. (1999). Mathematical analysis of HIV-1
dynamics in vivo. SIAM review, 41, 3–44. 152

Pflughoeft, K.J., Swick, M.C., Engler, D.A., Yeo, H.J. & Koehler,
T.M. (2014). Modulation of the Bacillus anthracis secretome by the immune
inhibitor A1 protease. Journal of bacteriology, 196, 424–435. 8, 115

Pomerantsev, A.P., Pomerantseva, O.M., Moayeri, M., Fattah, R.,
Tallant, C. & Leppla, S.H. (2011). A Bacillus anthracis strain deleted for
six proteases serves as an effective host for production of recombinant proteins.
Protein expression and purification, 80, 80–90. 8, 115

Pornillos, O., Garrus, J.E. & Sundquist, W.I. (2002). Mechanisms of
enveloped RNA virus budding. Trends in cell biology, 12, 569–579. 11

Powell, J.D., Hutchison, J.R., Hess, B.M. & Straub, T.M. (2015).
Bacillus anthracis spores germinate extracellularly at air–liquid interface in an
in vitro lung model under serum-free conditions. Journal of applied microbiol-
ogy, 119, 711–723. 3

Pratt, A., Bennett, E., Gillard, J., Leach, S. & Hall, I. (2020).
Dose–response modeling: Extrapolating from experimental data to real-world
populations. Risk Analysis. 42, 104

Puziss, M. & Wright, G.G. (1959). STUDIES ON IMMUNITY IN AN-
THRAX: VII. Carbohydrate metabolism of Bacillus anthracis in relation to
elaboration of protective antigen. Journal of Bacteriology, 78, 137–145. 8, 9

219



REFERENCES

Quintela, B.d.M., Conway, J.M., Hyman, J.M., Guedj, J., Dos San-
tos, R.W., Lobosco, M. & Perelson, A.S. (2018). A new age-structured
multiscale model of the hepatitis C virus life-cycle during infection and therapy
with direct-acting antiviral agents. Frontiers in microbiology, 9, 601. 188, 190,
194

Ribeiro, R.M., Li, H., Wang, S., Stoddard, M.B., Learn, G.H., Kor-
ber, B.T., Bhattacharya, T., Guedj, J., Parrish, E.H., Hahn, B.H.
et al. (2012). Quantifying the diversification of hepatitis C virus (HCV) dur-
ing primary infection: estimates of the in vivo mutation rate. 189, 199

Rong, L., Guedj, J., Dahari, H., Coffield Jr, D.J., Levi, M., Smith,
P. & Perelson, A.S. (2013). Analysis of hepatitis C virus decline during
treatment with the protease inhibitor danoprevir using a multiscale model.
PLoS computational biology, 9, e1002959. xxii, 148, 199, 201

Ross, J.M. et al. (1957). The pathogenesis of anthrax following the administra-
tion of spores by the respiratory route. Journal of Pathology and Bacteriology,
73, 485–94. 9

Ruthel, G., Ribot, W.J., Bavari, S. & Hoover, T.A. (2004). Time-lapse
confocal imaging of development of Bacillus anthracis in macrophages. Journal
of Infectious Diseases, 189, 1313–1316. 42, 97

Sacha, J.B., Buechler, M.B., Newman, L.P., Reed, J., Wallace, L.T.,
Loffredo, J.T., Wilson, N.A. & Watkins, D.I. (2010). Simian immun-
odeficiency virus-specific cd8+ t cells recognize vpr-and rev-derived epitopes
early after infection. Journal of virology, 84, 10907–10912. 151

Saltelli, A. (2002). Making best use of model evaluations to compute sensitiv-
ity indices. Computer physics communications, 145, 280–297. 38

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,
Gatelli, D., Saisana, M. & Tarantola, S. (2008). Global sensitivity
analysis: the primer . John Wiley & Sons. 38

220



REFERENCES

Savransky, V., Sanford, D.C., Syar, E., Austin, J.L., Tordoff, K.P.,
Anderson, M.S., Stark, G.V., Barnewall, R.E., Briscoe, C.M.,
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