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Abstract

Livestreaming is the act of live broadcasting via the internet and allows viewer-host interac-

tion via a text-based chat system. In particular, video game livestreaming is prevalent, where

streamers host individual play sessions or present esports competitions. While livestream-

ing is an emerging entertainment medium, it is popular. For example, every minute, about

1900 hours of footage is livestreamed on Twitch.tv, currently the most popular video game

livestreaming platform.

It can be challenging for viewers to access the content they are most likely to enjoy.

One solution is ‘highlight videos’, which can entertain users who did not watch a broadcast,

e.g. due to a lack of awareness, availability, or willingness. Furthermore, livestream content

creators can grow their audiences by using highlights to advertise their streams and engage

casual followers. However, hand-generating these videos is laborious. Thus there is great

value in developing automatic highlight detection methods.

Video game streaming provides the viewer with a rich set of audio-visual data, conveying

information about the game through game footage and the streamer’s emotional state via we-

bcam footage. Analysing both the game and the behaviour of broadcast personnel is crucial

for modelling the exciting aspects of livestreams. Furthermore, livestreaming offers a unique

opportunity to understand the viewing experience through the text-based chat system. How-

ever, livestream data has a significant set of challenges, e.g. how to fuse multimodal data

captured by different sources in uncontrolled, noisy conditions. Thus deep learning models

able to leverage complex data are appealing for highlight detection methods.

This thesis explores the application of deep learning highlight detection models to the do-

main of livestreaming. Multimodal highlight detection methods are developed for personality-

driven livestreams and esports broadcasts. The unique nature of livestream audience chat

language is explored, and audience-based highlight methods are proposed. Finally, a model

capable of modelling all these modalities in one system is presented.
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Chapter 1

Introduction

This thesis details research into applying artificial intelligence techniques, namely deep learn-

ing, to the challenge of detecting the most interesting and exciting ‘highlight’ moments during

a video game livestream. Video game livestream broadcasts are live-broadcast entertainment

containing a wide range of video game based content. Livestream broadcasts are primarily

video data, i.e. audio-visual data, although livestreaming is unique in that viewers can also

interact with the stream hosts and other viewers through a textual ‘chat’ system. Therefore,

to achieve high-quality modelling in this domain, a wide range of deep learning techniques

are required from various fields, e.g. Computer Vision, Digital Signal Processing, Affective

Computing, and Natural Language Processing.

1.1 An Introduction to Livestreaming

Livestreaming is a broadcast format which has become popular as stable access to high-speed

internet has become widespread, at least in the western world [189]. It focuses solely on live

broadcasts rather than pre-recorded, edited, media. These livestream broadcasts are dis-

tributed through online platforms, e.g. Twitch.tv1, Youtube Gaming2, Facebook Gaming3

and Huya Live4. Of these, Twitch.tv is the most popular with an average of 26.5 million

daily viewers [208], and will be the focus of this thesis. Livestreaming, like video sharing

platforms, e.g. YouTube, has a low barrier to entry for content creators compared to tra-

1www.twitch.tv
2gaming.youtube.com
3www.facebook.com/gaming/
4www.huya.com
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Table 1.1: A comparison of different broadcast formats

Broadcast Format Live/Prerecorded Interactive Barrier to Entry Distribution Channel Example Platforms

Livestreaming Live Yes Low Internet Twitch.Tv
Video Sharing Platforms Prerecorded Delayed Low Internet Youtube
Video Streaming Platforms Prerecorded No High Internet Netflix, Disney+
Television Broadcasts Both No High Television Fox (US), BBC (UK)
Radio Broadcasts Both Occasionally High Radio/Internet Sirius XM (US), BBC (UK)

ditional broadcast mediums such as television and radio. Livestreaming requires affordable,

easy-to-attain broadcast equipment, e.g. a computer and internet connection, although ex-

ternal equipment such as cameras and microphones can be useful [207]. This accessibility

is part of the reason that livestreaming has seen such a meteoric growth over the last few

years [158]. Table 1.1 details the key differences between livestreaming and other forms of

broadcast media.

Livestreaming has become so popular in recent years that it is now a leading form of

video game based entertainment, with emerging communities of millions of broadcasters and

viewers [93]. Video game playing is the most prevalent genre on livestreaming platforms

that ‘livestreaming’ is often synonymous with ‘video game livestreaming’; indeed, this thesis

focuses only on such streams. Livestream viewership is large enough that some video game

streamers can treat livestreaming as a full-time occupation [87]. Initially, Twitch.tv began

as a category on the now-defunct general-purpose livestreaming platform Justin.tv. The

video gaming category became so popular that Justin.tv transformed it into a dedicated

service and ultimately shut down Justin.tv. Of course, as Twitch.tv grew, the number of

non-gaming broadcasts have grown. Therefore, while Twitch.tv remains primarily focused

on video games related content; there are other categories, e.g. the ‘Just Chatting’ category,

a catch-all for various types of broadcasts, which is often the most popular category on the

platform [206].

Visitors to Twitch.tv are presented with an interface where select streams are promoted

and otherwise different categories, i.e. games, are shown. Visitors can then use this interface

to select a game and then subsequently select a channel streaming that game. Additionally,

channel recommendations and search tools aid visitors in finding a channel that they wish

to watch. This interface is demonstrated in Figure 1.1. Once visitors have selected a stream

to watch, they are presented with the interface in Figure 1.2. In this interface, visitors are

shown the stream in the main window. The interface also provides a chat message box to

the right, where users can type messages, and a chat window where they can read messages
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Figure 1.1: The interface for Twitch.tv. Viewers are shown promoted streams as well as
recommend popular streams and categories.

Figure 1.2: A typical stream as it appears to viewers in a ‘personality-driven’ broadcast

already sent. These messages can be used to interact with other viewers, the streamer(s),

and to act as a form of cheering, as is common in traditional sports. There are additional

ways in which viewers can interact, e.g. they can choose to follow a stream and receive

notifications or subscribe to a stream, a paid option that often has additional in-stream

benefits like having their name read by the streamer or a special set of images (emotes)

usable in chat messages. Finally, the visitor can use the left-most pane to browse for a new

stream to watch from a promoted selection.
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1.1.1 Types of Video Game Livestream Broadcasts

How channels present themselves on livestreaming platforms varies, although there are some

commonalities. This thesis distinguishes between ‘Personality-Driven’ and ‘Game-Driven’

broadcasts. While both are video game livestreams, they have different broadcast styles and

attract viewers in different manners.

1.1.1.1 ‘Personality-Driven’ Broadcasts

‘Personality-driven broadcasts’ describes a single streamer broadcasting and presenting to

the viewers. During a typical personality-driven stream, the streamer broadcasts both game

footage and video of their face via a webcam while communicating with viewers via audio

and text chat. Personality-driven streams are enriched with social signals conveyed between

streamers and viewers via facial expressions, body movements, vocal cues, and written lan-

guage. Furthermore, the various data sources in a broadcast, e.g., camera stream, game

footage, audio, text chat, can be considered data views that carry inherent correlations since

they all describe events occurring during a stream. This unique interactive setting facilitates

the joint, multi-view analysis of data sources in a coherent and self-contained manner. Figure

1.4 details the large number of possible interactions. Personality-driven streams are typified

by a high amount of interaction between the streamer, and the audience, e.g. the streamer

will often ask and answer questions as well and thank viewers. These streams tend to have

a loose structure, with no set itinerary. Some streamers focus on a particular game while

others play a variety. The audience expects the streamer to play games while providing

entertainment, e.g. through chatting and making jokes. The stream presented in Figure

1.2 is a prime example of a personality-driven broadcast. This paradigm has challenges for

modelling the audio-visual elements of the stream, i.e. as required for highlight detection

models. This is especially so when considering occlusions in the streamer’s webcam, e.g.

Figure 1.3. While this broadcast type is referred to as ‘personality-driven’ broadcasts, they

are not restricted to only having one personality presenting content, although most streams

do.

1.1.1.2 ‘Game-Driven’ Broadcasts

The other broadcasts studied in the thesis are ‘game-driven’ esports broadcasts. These are

presented very differently from personality-driven broadcasts. While single streamer broad-
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Figure 1.3: Common occlusions present in a ‘personality-driven’ livestream webcams.
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Figure 1.4: Illustration of main opportunities presented by personality-driven livestream data
and related research areas. The broadcast includes a video stream capturing the streamer’s
face and upper body and an audio recording from the streamer’s microphone. This is accom-
panied by the footage of the game, including in-game audio. The streamer interacts with
viewers by video, voice, and text. The viewers interact with streamers and other viewers via
text and stream-specific events. A frequent setting includes the streamer interacting with
other streamers via webcam video and voice (e.g., during a co-op game). [167]
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(a) Advertisements (b) Analyst Desk (c) Gameplay

(d) Commentators (e) Crowd (f) Transition Shots

(g) Feature Pieces (h) Draft Results (i) Player Cameras

Figure 1.5: The many different constituent elements which make up a League of Legends
esports broadcast.

casts are informal, esports broadcasts are generally professionally produced and presented in

a style similar to their traditional sports cousins. Esports are a growing multi-billion dollar

industry. Rather than the intimate, casual and highly interactive nature of single streamer

broadcasts, esports broadcasts generally function as organised, non-interactive shows with

a ridged structure. Esports are often presented similarly to their traditional sports cousins,

e.g. between games an ‘analyst desk’ discusses the results of previous matches and upcoming

games. During a match, a set of commentators commentate on the gameplay video footage.

The visual feed shows various scenes, e.g. gameplay, the analyst desk, and advertisements.

Elements of this broadcast structure is shown in Figure 1.5. The critical difference com-

pared to traditional sports broadcasts is the format of the games. There are no constraints

to the content of esports, bar the need for it to be digital, whereas sports are constrained by

physics and human performance. This variance results in significant differences in the visual

appearance of different esports.
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1.2 The Case for Automatic Highlight Detection

This thesis explores applying deep learning methods to this rich, emerging livestream data

paradigm. In particular, it will focus on how it is possible to model, detect and extract

the most salient moments in a stream under the moniker ‘highlight detection’. Highlight

detection is a broad term for a range of techniques which aim to identify the most ‘important’

moments from an input video. It is impossible to strictly define a highlight because it is

subjective, and thus it becomes essential to rely on proxy highlight signals or crowd-sourced

data.

Despite these challenges, highlight detection has significant potential applications. Livestream-

ing is not only popular with viewers but also with those wishing to make content. For in-

stance, Twitch.tv has an average of 95, 839 concurrent channels, with a maximum peak of

233, 935 during December 2020 [206]. Illustrated another way, every minute, 500 hours of

footage is uploaded to Youtube5 and about 1900 hours of footage is livestreamed on Twitch6.

Most streams, especially those with smaller audiences, are personality-driven broadcasts.

The quantity of these broadcasts can make it difficult for less popular streamers to stand out

and grow their audience. It is equally challenging for viewers to find the content they are

most likely to enjoy. Advertising longer-form livestreams via shorter edited videos, i.e. high-

light videos, distributed via video-sharing platforms and social media is a potential solution

to this problem.

This work is motivated by the observation that automatic highlight detection offers ad-

ditional avenues for streamers/broadcasters to reach their audience and for viewers to find

content that suits them. Highlight videos allow streamers to reach viewers who would not oth-

erwise watch a livestream, e.g. because they are unable or unwilling to commit to watching a

specific broadcast at a particular time. It is no surprise that streamers utilise video-sharing

platforms to distribute highlight videos7. However, manual generation of these highlights is

time-consuming. Because of the time implication of editing videos, many successful stream-

ers choose to employ editing teams, which are costly. Therefore, producing these highlight

videos costs time, money, or both. These are resources that less popular streamers may

not have. For example, their income from streaming is likely to be far lower than the most

5https://www.statista.com/
6https://twitchtracker.com/statistics
7One concrete example is the streamer Dr DisRespect, although there are numerous
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subscribed channels; therefore, they are likely to work full-time jobs alongside building their

streaming business. Access to low-cost, fast, highlight video editing solutions is likely at-

tractive for these streamers. Hence, there is a natural opportunity to utilise deep learning

models of highlight moments to aid these streamers.

Highlight videos are also helpful for those livestreaming game-driven broadcasts, i.e. es-

ports organisations. Firstly, many motivations for personality-driven broadcast highlights

also apply to esports broadcasts. Esports can be seen as analogous to traditional sports

broadcasts, and it is prevalent for old media, especially television, to broadcast sports high-

lights rather than, or as well as, the entire event. There is no reason to believe that esports

would not also be popular when presented in a similar format. Furthermore, automatic

highlight detection offers additional benefits. For example, such techniques can likely run

in, or near, real-time and thus, it would be possible to retrieve highlights while the event is

occurring and then upload them immediately after a match has finished or even post par-

tial highlights, e.g. a small clip, to social media during an event. Such functionality would

allow the event organisers to advertise to potential viewers while the event is occurring and

improve viewer numbers.

There is also the potential for personalised highlights, especially for larger channels with

a diverse audience. These highlights could be tuned to the viewer’s preferences, e.g. by

biasing a detection system for the kind of events a particular viewer enjoys. This type of

content would be infeasible without automatic systems, as it would require a human editor to

learn the preferences of many viewers and then edit a unique video for each one. Therefore,

research into automatic highlight detection for livestreamed esports has practical, real-world

applications that benefit many stakeholders.

1.2.1 Defining Highlights

Until this point, the term ‘highlight’ has been used without clarity or precision. This is

by design. Highlights are nebulous and hard to define. Formal definitions, e.g. from dic-

tionaries, describe highlights in vague terms, e.g. as the most interesting, entertaining, or

exciting moments in ‘something’8. This is not particularly useful for developing a compu-

tational highlight model because such models require a binary definition of which moments

are highlights and which are not. While the ‘something’ in formal definitions is relatively

8www.merriam-webster.com/, https://dictionary.cambridge.org/, https://www.collinsdictionary.com/



CHAPTER 1. INTRODUCTION 28

straightforward in this case, i.e. a livestream video game broadcast, determining a ground

truth value for which moments are interesting, entertaining, or exciting is a challenge in

its own right. Furthermore, consider that for each viewer, there are likely to be different

moments that they consider to be the most interesting, entertaining, or exciting.

This problem is further exacerbated by the realisation that, while livestream data is

abundant, formalised datasets with ground truth annotations do not exist in an easily acces-

sible way, in contrast to similar challenges such as image recognition, where the ImageNet

dataset [41] is widely used by the computer vision community, e.g. it has over 32, 000 ci-

tations. Developing such a dataset for livestream highlight detection is challenging and

extremely time-consuming, especially if a group of human annotators decides on ground

truth labels. Furthermore, as deep learning models get ever more complex, they require

training on more extensive datasets. This makes training data which relies on a strict input

to ground truth label mapping through manual annotation even less attractive. Scaling the

annotation process is laborious.

In this thesis, several approaches to tackling this problem are explored. In parts, a

supervised dataset is gathered and annotated, although small. In other sections, proxy signals

are used, e.g. information more easily gathered, which may align closely with when highlight

moments occur. Finally, and perhaps most successfully, crowd-sourced data is utilised, where

large datasets of edited broadcasts posted to video sharing sites, e.g. YouTube, are leveraged.

Each approach has unique advantages and disadvantages, which will be discussed in detail

in the relevant chapters. Some models presented in this thesis also use unlabelled data

to aid pre-training. Again this is detailed more thoroughly where appropriate. Therefore,

this thesis details research which explores Supervised, Unsupervised, Semi-Supervised and

Self-Supervised approaches to highlight detection.

1.2.2 The Suitability of Deep Learning for Highlight Detection

The above discussion motivates the value of developing techniques for performing highlight

detection on livestream data to various stakeholders. Next, it is essential to discuss why

Deep Learning is the most appropriate method for developing such techniques given this

data domain. Deep Learning is a subset of Machine Learning, which can be considered a

subset of Artificial Intelligence (AI). If AI is the field of algorithms which can make decisions,

then Machine Learning is the field of algorithms which can learn to make decisions. Rather
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than prescribe a behaviour pattern for an algorithm, e.g., in Expert Systems or Finite State

Machines, Machine Learning prescribes both a behaviour pattern and a method of improv-

ing that behaviour through minimising error. Machine Learning algorithms are varied. For

instance, decision trees, k-nearest neighbours, and perceptrons all approach learning in very

different ways. The last approach, the perceptron, forms the foundation of the neural net-

work, which is at the heart of deep leaning. In general, the difference between ‘machine

learning’ and ‘deep learning’ is often the complexity of the model used; deep learning mod-

els often involve millions of weights, compared to some machine learning techniques, which

require very few.

Deep Learning is primarily driven by two observations. Firstly, that accessible computa-

tional power is growing near exponential, as predicted by Moore’s law. Secondly, as internet-

enabled devices become ubiquitous, at least in the western world, the amount of data that

can be gathered about how humans live is becoming immeasurable. Deep learning, as a

field, focuses on developing algorithms which can assimilate a vast volume of complex data,

e.g. images, audio, and text, and model them in valuable ways, e.g. spatially or temporally.

Figure 1.6 details the relationship between AI, Machine Learning, and Deep Learning, as

well as the role that adjacent fields such as data science (and subsequently big data) play.

Livestreaming data is incredibly complex. A stream contains at least one video feed, con-

sisting of a series of images, an audio feed, and a chat log. It would be impossible or very

problematic to model this data satisfactorily using more straightforward machine learning

or data science techniques. However, deep learning techniques have been developed precisely

for complex data. Furthermore, as discussed above, available livestream data are abundant.

Therefore, Deep Learning is the natural approach; it benefits from large-scale data and can

model highly complex inputs.

1.2.3 Selecting Modalities

Data presented to a viewer during a livestream is rich and complex. Unlike traditional

broadcast media, e.g. television, alongside the audio-visual video broadcast, livestreams

display a text chat where the viewers can interact with each other and the host. This thesis

is interested in audio, visual and textual data. Most games have some form of ‘telemetry’

data, moment-to-moment tabular data, which describes the state of the game associated with

them. This data should, in theory, provide strong cues to highlight moments. For example,
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Artificial Intelligence 
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Figure 1.6: A venn diagram of the family of Artificial Intelligence techniques, along side
related fields.

a model could easily determine if the player had accomplished a particular task. However,

such data is often propriety and thus is not readily available, especially in conjunction with

a live video feed. Therefore, while the potential utility of such data is evident, this thesis

only examines data accessible to the viewer, i.e. audio, visual and textual data. Throughout

the thesis, the term ‘modality’ will describe a single data stream, e.g. audio data. However,

in parts, input data from a given data stream will be handled differently, e.g. video data

may be segmented into a streamer feed and a video game feed. In these cases, for simplicity

of discussion, the term modality is extended to include different data stream handling.

1.3 Research Goals

There are several core challenges to this research. Firstly, the livestream data format has not

been widely explored, especially for highlight detection techniques. Therefore, in order to

satisfactorily model highlight moments first the data itself must be understood. Next, both

audio-visual and textual models must be developed. Finally, unification of these models to

predict highlights in a holistic manner is likely to prove fruitful and thus warrants exploration.

As such, the core goals of this thesis can be summarised by the following:

• Explore dataset properties, preprocessing, and labelling required to successfully model

the most exciting moments in livestreamed esports broadcasts.

• Develop methods for utilising video data to perform audio-visual highlight detection

suitable for both personality-driven livestreams and game-driven livestreams.



CHAPTER 1. INTRODUCTION 31

• Develop methods for utilising chat to perform Natural Language based highlight de-

tection.

• Explore the potential for multimodal models using Audio, Visual and Language data.

1.4 Contributions

The key contributions of this thesis can be summarised by the following:

• The first publicly available dataset of livestream chat data, alongside an analysis of

the dataset [165].

• The first unsupervised architecture for multimodal audio-visual highlight detection for

personality-driven broadcasts.

• State-of-the-art multimodal audio-visual highlight detection for game-driven broad-

casts.

• State-of-the-art textual highlight detection for game-driven broadcasts.

• A unified audio-visual-textual highlight detection model performs exceptionally well

compared to just broadcast (video) or audience (textural) data.

1.5 Thesis Structure

The following chapter, Chapter 2, contains a review of existing literature, covering deep learn-

ing methods, deep learning applications, and the livestreaming phenomenon in detail. Next,

Chapter 3, presents potential highlight detection methodologies for personality-driven broad-

casts. Subsequently, Chapter 4 explores crowd-sourced highlight detection for game-driven

broadcasts. Chapter 5 explores livestream chat and its suitability for highlight detection.

The final research chapter, Chapter 6, proposes a unified audio-visual-textual model and

proposes future work. Finally, Chapter 7 concludes the thesis.



Chapter 2

Literature Review

The work presented in the thesis spans many research communities. While livestreaming

is a relatively new broadcast media, there is a wealth of related literature. This chapter

introduces an overview of this literature in three sections. Firstly, appropriate deep learning

methods are introduced and explained. Next, the application of these methods in related

domains is discussed. Finally, moving away from deep learning, the existing literature around

livestreaming is presented.

2.1 Deep Learning Methods

Many Deep Learning models are constructed from several core ‘building block’ techniques,

e.g. those discussed in Section 2.2. In the case of this thesis, which deals with audio, visual,

and language data, these building blocks are techniques which can accommodate spatial

data, e.g. images, temporal data, e.g. data over time, or textual data, e.g. converting

text to numeric values. This section will describe the fundamentals of how these techniques

function.

2.1.1 Multilayer Perceptrons

The most basic neural network building block is the Perceptron [173]. The Perceptron

is a ‘universal function approximator’ that, in theory, can approximate any mathematical

function. To achieve this, the Perceptron is provided with a rank one tensor of scalar inputs,

which are then multiplied by a similarly sized tensor of weights. The resultant values are

summed and then ‘activated’ through a non-linear function. This activated value is multiplied

32
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Figure 2.1: A simple perceptron with three inputs and one output. i values are inputs, w
values are weights, and o values are outputs. a() is the activation function.

by a final weight to determine the output value of the Perceptron. A mechanism, alongside

training data formed from pairs of inputs and expected outputs, is then applied to modify

the weights such that the model outputs match the expected outputs. The architecture of

a Perceptron with three inputs and one output is shown in Figure 2.1 and is defined as

f(x) = wo · a(
∑

ii · wi) where w is a learnt weight, i is an input value and a is an activation

function. The summing and activation operation is referred to as a neuron and is inspired

by the human brain. The activation function can be any non-linear function. Sigmoidal

functions,e.g. σ(x) = 1
1+e−x , are historically popular [137], although the Rectified Linear

Unit (ReLU) [2], which replaces negative input values with 0, i.e. ReLU(x) = max(0, x), has

become more common in modern deep learning applications.

A common extension to the Perceptron, especially as computing power has increased, is

the Multilayer Perceptron (MLP). MLPs have the same basic approach as the Perceptron;

however they allow for multiple neurons both in terms of in a ‘layer’, e.g. inputs are connected

to many neurons rather than just one, and multiple layers of neurons, i.e. the output from

the first set of neurons is feed into a second layer and so on. MLPs work well for data that

exists as a vector of distinct features with no spatial relationship between features. This

thesis does not particular use of data in this form as audio-visual and language livestream

data is too complex to be formatted in such a manner. However, MLPs are also extremely

useful in more complex networks where data is first processed by one of the techniques. For

example, often, a model, e.g. a highlight classification system, will first process complex

data such that a single vector of latent features is recovered. Then an MLP can be applied
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to these latent features to decide whether this data is a highlight.

2.1.2 Convolutional Neural Networks

While MLPs work well for tabular and vectorised data, they do not work well in situations

where the input is not a rank one tensor or where there is a spatial relationship between

features. Digital photographs are one example of input data with a tensor rank greater than

one which contain a spatial relationship between input features, i.e. pixels. This is because

a digital photograph is represented as a tensor with shape h · w · d, where h is the number

of pixels an image has in the y dimension, w is the number of pixels an image is in the x

dimension, and d is a depth value relating to the number of colour channels an image has.

Usually, for a colour image, d is three because computer graphics are based on a red, green,

and blue (RGB) colour channel system. Likewise, there is only a single d dimension for a

greyscale image.

Image data has a complex three-dimensional shape and a spatial relationship between

features that is not contingent on their global location within an image. Imagine a machine

learning model trained to detect if an image contains a human face. Intuitively, it is more

important to identify if an image contains groups of features that resemble an eye or a

mouth and that these groups are the correct distance apart than it does to train a model

to recognise that certain features are located in exact locations, given that images are often

cropped differently or taken from different angles. Without this additional characteristic, it

would have been possible to flatten an image into a single rank one tensor and then treat

it as tabular data, e.g. by modelling via an MLP. Figure 2.2 demonstrates this issue, using

synthetic images of digits.

Convolutional Neural Networks (CNNs) [3] are a solution to this problem because they

can be formatted for input data tensors with a rank greater than one and also allow for

spatial modelling between features. They achieve this by replacing the neurons in a typical

neural network with convolution kernels, the weights of which are learnt during training.

Convolution kernels are an established technique in wider image and signal processing

applications. For image processing, each kernel is a small matrix of weights, typically 3× 3

or 5× 5 which are applied in a sliding window fashion to each pixel in an image to produce

a new value for that pixel based on surrounding pixel values. Equation 2.1 demonstrates a

generalised application of a convolution kernel w with dimensions 2a + 1, 2b + 1 to an input
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Figure 2.2: Synthetic images demonstrating the need for spatial modelling for images. Left,
the digit ‘1’. Centre, the digit ‘1’ is offset to the left. Right, the digit 7. Note that the
images left and centre should be classified as the same, but if the input data is flattened and
the values are compared, the right image is closer to the left image than the centre image.

image f(x, y).

g(x, y) =
a∑

dx=−a

b∑
dx=−b

w(dx, dy)f(x− dx, y − dy) (2.1)

When these kernels are determined by humans, i.e. during traditional image processing,

they are often designed for a single task, e.g. ridge detection or image blurring, examples of

which are demonstrated in Figure 2.3. However, inside a CNN the kernel weights are learnt

during the training process. Thus they do not necessarily map to human-understandable

concepts such as blurring. Further, there can often be many kernels per layer, sometimes

hundreds, allowing a single CNN to learn to identify a wide range of visually important

features.

CNNs are not just constructed of these convolutional layers. There are several other

aspects. Firstly, pooling operations are ubiquitous [61]. A pooling layer takes the input from

one convolutional layer and reduces its size prior to the next convolutional layer. There are

many mechanics for this, although the most common is Max Pooling. Max Pooling works by

sliding a filter across the output of a layer and, for each position, selecting the max value to

carry through to the next layer, illustrated in Figure 2.4. This has the effect that the input to

the next layer shrinks for each pooling operation. CNNs tend to have many convolutional and

pooling layers such that while the input size may be significant, e.g. 224×224×3 is a typical

size [187], after processing, the output can be very small. This output is often flattened into

a single vector to be used as input to an MLP, which then performs classification. The CNN
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Figure 2.3: Examples of hand crafted convolution kernels used in image processing.
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Figure 2.4: Example of 2× 2 Max Pooling with a stride of 2

segment of the network is referred to as a ‘feature extractor’.

So far, the application of CNNs to image processing has been discussed. However, the

convolutions can operate across an arbitrary number of dimensions. While 2D convolution is

very popular for image processing, 1D convolutional neural networks are commonly used for

audio processing, e.g. [72, 136]. Additionally, recent works in video processing have begun

to apply 3D convolution to visual video data, e.g. [84], an approach which is explored in

Chapter 4.

2.1.3 Recurrent Neural Networks

The previous section explored the use of CNNs for spatial modelling. While CNNs can also

be used for temporal modelling, e.g. 1D CNNs for audio processing or 3D CNNs for video

processing, it is more common for a specific layer to be utilised to model temporality, namely

a Recurrent Neural Network (RNN). An RNN is constructed of a series of recurrent layers
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Unrolled

Figure 2.5: Basic RNN neuron architecture. Left shows a single pass through the network,
right unrolls this across several time stamps.

containing one or more recurrent neurons. A recurrent neuron works by retaining a hidden

state h between input samples. This hidden state is then added to the next input state such

that the output for that sample is biased by previous samples, f(xt) = a(
∑

xit · wi + ht). h

for the next sample is then calculated based on a learnt weight, ht+1 = hw ·a(
∑

xit · wi+ht).

Figure 2.5 demonstrates this architecture.

Basic RNN neurons can, in theory, model relationships along an arbitrarily long sequence.

However, in practice, the long-term gradients tend to either ‘vanish’, i.e. tend towards zero,

or ‘explode’, i.e. tend towards infinity. This can make training RNNs difficult, especially

for long sequences. One of the most popular variants of the recurrent neuron is the Long

Short-Term Memory (LSTM) neuron [73]. The LSTM aims to enable long-term modelling.

This is achieved by adding an internal state cell for each neuron. The state consists of three

gates. The ‘forget gate’ is responsible for learning how much information from previous

samples to retain and how much to ‘forget’. The ‘input gate’ is responsible for learning how

much of the current input to use. Finally, the ‘output gate’ is responsible for learning how

much to output. The forget gate is calculated via ft = σ(xt · Uf + ht−1 ·Wf), where Uf is

the input weight and Wf is the hidden state weight matrix; in Figure 2.6 this is represented

by the left-most σ operation. The input gate is calculated via it = σ(xt · Ui + ht−1 ·Wi)

where Ui is an input weight and Wi is the hidden state weight matrix associated with the

input; in Figure 2.6 this is represented by the middle σ operation. Finally, the output gate

is calculated via ot = σ(xt · Uo + ht−1 ·Wo), the right-most σ operation. LSTMs have two

hidden state values. The hidden state h is responsible for short-term memory, and the cell

state c is responsible for long-term memory. The hidden state for a time step is calculated as
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Figure 2.6: Long Short-Term Memory (LSTM) Neuron Architecture.

ht = o+ t · tanh(Ct) where tanh is the hyperbolic tangent function, tanh = ex−e−x

ex+e−x . The cell

state is calculated as ct = ft · ct−1 + it · tanh(xt ·Uc+Ht−1 ·Wc) where Ux and Wc are both

learnt weights. This ability for LSTMs to model long-term memory without vanishing or

exploding gradients means that it performs very well across many tasks compared to basic

RNNs. Therefore LSTMs have become ubiquitous as the go-to time series modelling neuron.

The biggest weakness of the LSTM neuron is that the additional weights required to

model the three gates and two states results in slower training and inference compared to a

basic RNN. However, the forget gate approach is very valuable. Therefore, more recently,

Han et al. [34] proposed the Gated Recurrent Unit (GRU), a neuron which retains a forget

gate, thus being able to model long-term relationships, but is more straightforward than

an LSTM because it omits the output gate. GRU layers have shown good performance

in many applications when used as a replacement to LSTMs, e.g. [39], although there can

sometimes be variations in performance metrics, e.g. recall, between models trained with the

two approaches despite overall similar performance [65]. The GRU architecture is displayed

in Figure 2.7.

All of the RNNs discussed so far have been unidirectional. Each sample in a sequence

is biased only by those samples that occur before it. However, it is possible that for certain

problems, the predictions for a given timestep should be biased on samples before and after

the input. For these problems, often a Bi-Directional RNN is used. Here each layer in the

RNN consists of two sets of neurons. One set is fed an input sequence in the standard

order, i.e. [i0, i1, i2...it], and one set is fed the reversed sequence, i.e. [it, it−1, it−2...i0]. This
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Figure 2.7: Gated Recurrent Unit (GRU) Neuron Architecture.

doubles the layer weights. However, it is necessary if a training target for a time step relies

on information from samples that appear before and after it. This approach has been used

in certain livestream highlight detection models, e.g. [69].

2.1.4 Word Vectorisation

MLPs, CNNs and RNNs all rely on inputs formatted as a tensor of scalar values. This

is because, as shown in Figure 2.1, the heart of neural networks is the multiplication of

input values by weights, which are then improved throughout training. This poses a serious

problem for any neural network approach to modelling language because there is no simple

way to convert words to scalar values. As a result, considerable research has been carried

out into the process of ‘word vectorisation’. That is, finding some way to convert a word into

a meaningful vector of scalars. This processing is foundational in studying neural network-

based natural language processing models [126, 205]. These word vectors are then usable in

downstream tasks, e.g. an MLP or LSTM, [12]. An advantage of many word vector training

models for this domain is that they do not require prior knowledge of the semantic meaning

of tokens, which is useful when dealing with livestream-specific words and emotes whose

meanings are uncertain.

There are multiple methods for generating these word vectors, and each has similar

components. First, they take some input data sampled from a corpus of text. Next, they

project the input into a latent vector space. Finally, an output is generated and compared
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Figure 2.8: Continuous Bag-of-Words (CBOW) and Skip-Gram training schemes.

to the training target. This process aims to learn a vector space where tokens with similar

semantic meanings are co-located. In theory, this vector space is such that meaningful

vector operations can be applied to words. For example, the result for ‘king’ minus ‘male’

may result in a vector co-located near words such as ‘queen’. Two popular training methods

are Continuous Bag-of-Words (CBOW), and Skip-Grams [126]. Both techniques train a

model by sampling a sequence of text. The Skip-Gram model selects the middle word from a

sequence as input and expects the model to output the other words in the sequence. CBOW

is the opposite, where the central word is predicted from its surrounding context. Figure

2.8 demonstrates these schemes. While these techniques are powerful, they can both be

computationally expensive during training given they output, for each word, a distribution

across the entire vocabulary, i.e. while CBOW is trained against a single token, it must

output a value for each word and thus the final layer has many weights.

Of particular interest to the research presented in the first study of Chapter 5 are Skip-

Gram Negative Sampling (SGNS) methods [128], which are particularly attractive for two

reasons. Firstly, they are weight-efficient compared to CBOW and Skip-Grams because they

reframe the problem into a classification problem where two input samples are provided, and

the model must classify if they are co-located. Secondly, they require data in the format of

two tokens and a label. This label is usually a [0, 1] binary value, describing if the samples

are close together in the corpus, a formulation which can be modified to accommodate the

temporal aspect of livestream chat. Analysis of SGNS models has shown that they gener-
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ate unusually shaped vector spaces [130] due to the negative sampling objective, although

they still retain the ability to encode semantics. A detailed discussion of SGNS methods is

presented in Chapter 5 and thus is omitted from this literature review.

2.1.5 Transformers

A significant update to word vectorisation approaches is recent work into using Trans-

former architectures to model natural language, e.g. [212]. Transformers have become a

go-to method for ‘Language Models’ (LM), models designed for general-purpose language

understanding. These models can then be fine-tuned for a range of downstream tasks, e.g.

as discussed in [46]. The term transformer is used both to describe a transformer model, e.g.

an encoder-decoder machine translation system as shown in Figure 2.9 and a component in

the system, the ‘transformer block’, a set of layers which lend the model its name. Standard

transformers have two parts, the encoder and the decoder, both of which consist of a set of

transformer blocks [212]. The encoder takes a text segment and converts it into a vector

of latent features, much like word vectorisation techniques but applied at the sequence, e.g.

sentence, level. The decoder then decodes this latent vector back into text. However, the

target text the decoder is trained to predict is often different from the input data. For ex-

ample, the transformer may be trained for neural machine translation and thus expected to

output translated language, or trained in natural language generation where the transformer

outputs the next word in a sequence. Encoder-only models are often used for tasks where

decoding is not required, e.g. text classification models.

Before processing by the transformer blocks, the first stage in a transformer model is

to find a vector for each word in the input. These vectors are conceptually identical to the

word vectors discussed above, although they are trained end-to-end as part of the trans-

former model rather than learnt separately through co-location schemes such as CBOW or

Skip-Grams. Next, each word vector is combined with a positional encoding vector repre-

senting that token’s position in the input sequence. There are multiple ways to generate

this positional encoding. For instance, initially, a sine encoding was proposed [212] where

the encoding was generated as a series of sine values uniquely representing positions in a

sequence. Alternatively, other works, e.g. [46], have moved away from the hard-coded sine

encoding and instead implement a learnt position vector, which is learnt in the same manner

as the word vector. The choice of positional encoding technique is important. For instance,
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Figure 2.9: A generic transformer architecture, e.g. for neural translation or language gen-
eration. Adapted from [212].

the sine approach offers relative positional encoding, i.e. comparing two encodings reveals

how far apart the source words were, and absolute encoding, i.e. where the word appears in

the sequence. In contrast, a learnt vector encoding is only capable of absolute encoding, but

because the vector space is learnt during training, in theory, the quality of the absolute en-

coding should be better. An, albeit more complex, alternative which retains both the quality

of learnt vector encoding and the absolute/relative position properties of sine encoding is to

generate a pairwise encoding for each pair of tokens in the input sequence [75,185].

Once a vectorised representation of the input sequence has been generated, the next step

is to pass this data into a transformer block. This block consists of several layers which

can be repeated an arbitrary number of times, e.g. as with CNN or RNN layers. The key

feature of the transformer block is the multi-head attention layer (MHA). MHA allows each

word in the input to ‘attend’ to other input words, which allows the embeddings for each
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word to become conditioned on the other words in the input. For each attention ‘head’, this

is carried out by first calculating Key, Query, and Value embedding tensors for the input

embeddings. The dot product for the Key tensor for an input and all Query values is then

calculated. This, combined with the Value tensors, allows each input to understand which

other inputs are important to them.

MHA uses multiple attention heads, which allows the model to attend to tokens in

different ways, e.g. learning different types of relationships. In some ways, this is similar to

the multiple filters used in CNNs. Using an MHA layer on its own is equivalent to modelling

the input data as a bag-of-words, i.e. there is no understanding of the order of tokens.

This is why the positional encoding discussed above is vital for a transformer, especially

in a language modelling context where the order of words is critical. The final step of the

transformer block is to process the output from the MHA layer using a fully connected

feed-forward layer, i.e. one layer from an MLP. This processes the MHA output ready for

the next stage, be it another attention layer or the downstream task. Figure 2.9 details an

encoder-decoder architecture. The encoder follows the mechanisms outlined above. During

training, the decoder is passed the ground truth target sequence and includes a layer where

this sequence, after encoding and an MHA layer, is combined with the output from the

encoder.

2.1.6 Multimodal Machine Learning

Livestream data is inherently multimodal, i.e. an event, in this case, a livestream, is described

by multiple ‘views’, e.g. visual data, audio data and textual data. The problem of analysing

multiple views is an open challenge and an active area of research. Generally speaking,

attempts to tackle this problem have focused on the question of fusion, i.e. how can multiple

views be joined, or fused, into a single model. There is no consensus on the most appropriate

fusion technique, with studies performing fusion in different ways [90, 159]. Some of the

most popular techniques for fusion in ‘end-to-end’ systems, where the inputs are raw data

extracted from the video and the outputs are the classifications, include early (feature) fusion

and late (decision-level) fusion. While early fusion refers to concatenating raw features

or representations, e.g. [141, 217], late fusion is usually performed on bottleneck features,

e.g. [183]. Other fusion approaches exist, e.g. model fusion, where separate models are

utilised for each view and subsequently aggregated, e.g. EmoNets [88]. Such approaches are
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not naturally suited to end-to-end systems, e.g. as presented in the second study of Chapter

3, as it is often not possible to perform the aggregation during training. However, when

modalities are trained separately, model fusion becomes useful, especially if fusing features

or raw inputs from modalities is complex. Chapters 4 and 6 discusses examples where model

fusion is helpful because of challenges in other fusion approaches.

A significant advantage of utilising multimodal data, as Ngaim et al. [141] note, is that

exploiting information from multiple views can significantly aid learning from noisy and

imperfect data, for example, when audio is noisy, or there are occlusions in the visual data.

This suggests that multimodal fusion may be well suited to modelling livestream data, where

noise is introduced due to uncontrolled conditions. Multimodal learning is also crucial for

modelling behaviour and affect, discussed in more detail in Section 2.2.3 and Chapter 3

because it is well known that audio information is more suited to predicting emotional

arousal and visual data is more suited for modelling valence [209]. Therefore, fusing these

views allows for holistic modelling of affect.

2.1.7 Training Methods

There are many ways to formulate input and target data when training a neural network.

Perhaps the most common is supervised learning, the paradigm under which the techniques

above have been introduced. In a supervised setting a known target label exists for each

input sample. Therefore training a model is relatively straightforward. The model is tasked

with learning the mapping between inputs and labels. These labels can be derived in many

ways. For instance, when training using tabular data, selecting one variable as the training

target is typical. To illustrate this, imagine training a model to predict how much a house

is worth. There may be historical information about house sales regarding the number of

bedrooms, the house’s location, if it has a garage and so on, alongside its value. In this

case, the model is tasked with learning a regression to map the variables describing a house

to its selling price. Then, when the model is deployed, information about a new house can

be input, and the model will predict its selling price based on this learnt mapping. It is

also possible to generate these ground truth labels by querying humans through a process

known as annotation. This is particularly common in emotion detection literature, discussed

in Section 2.2.3, where subjective judgements about a person’s emotional state need to be

made.
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While supervised learning is the traditional method for training a predictive model, it has

several drawbacks. Namely, it is a requirement that every data sample has a corresponding

label. While this restriction may seem trivial for a small, tabular dataset, it becomes an

issue for large-scale deep models. In part, the power of deep learning is due to the ability

of these complex networks and neuron architectures to leverage massive datasets. Learning

on massive datasets not only allows the models to learn very complex mappings, but it is

also necessary to prevent common training issues, e.g. overfitting, exacerbated by a deep

models’ complicated nature. Furthermore, the richer the training data, the more likely that

determining a training label is non-trivial, e.g. livestream highlight detection would likely

rely on the time-consuming subjective annotation process if supervised training schemes were

always used.

Therefore, in recent years other training methods have become more popular. These

aim to mitigate the penalty for gathering human-annotated supervised data. Firstly, unsu-

pervised learning is the process of learning from the data itself. Often this is in the form

of clustering where the space of data points is examined to find patterns, e.g. traditional

machine learning methods such as K-Means [114] or topic modelling [4]. Auto-encoders are a

popular approach for unsupervised deep models, utilised in Chapter 3. Here a model, the ‘en-

coder’, which can be constructed from any of the building blocks discussed above, is used to

generate latent features from an input sample. Then a set of layers, the ‘decoder’, mirroring

the initial layers, is used to reconstruct the original input. Once trained, this autoencoder

can be used in a variety of applications. For example, the encoder can act as a feature

extractor in a system which requires one but has no way of pre-training on structured, e.g.

labelled data. Additionally, auto-encoders can be used in novelty detection systems through

reconstruction error based novelty detection, as reviewed by Pimentel et al. [155] and used

for highlight detection in Chapter 3. While not directly explored in this thesis, an extension

of unsupervised learning is self-supervised learning [48]. Here proxy labels from the training

data are used to pre-train a general feature extraction model, which is then fine-tuned on a

specific task or used as a feature extractor in conjunction with a predictive model. An exam-

ple of a self-supervised pre-training task is the transformer pre-training utilised in Chapter

5.

Finally, training methods exist that are neither completely supervised nor completely

unsupervised. These are referred to by several terms, such as weakly-supervised learning
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or semi-supervised learning. These methods use datasets where some samples have known

ground truth labels and some samples have unknown or uncertain labels. These methods

can be beneficial for leveraging massive data without the human effort cost required to label

and clean the data and where unsupervised or self-supervised learning is not suitable. Semi-

supervision relies on the assumption that data samples with similar ground truth values are

co-located in latent space and that it is possible to cluster these co-located samples [30].

This is a requirement because there only exists ground truth labels for certain parts of the

input data distribution. In particular, Chapter 4 takes a positive-unlabelled approach to

training data, where there are concrete labels for only positive training samples. This is a

special case of standard semi-supervised learning because only labels relating to one class are

known. These techniques can result in noisier training than traditional supervised learning,

so research studies how best to compensate for this noisy data. Chapter 4 implements a noise

aware ranking model proposed by [218] which itself was inspired by [79]. This approach can

mitigate noise by utilising a bagging approach alongside a heuristic noise prior. Additionally,

for the binary classifier comparison model, the weighting methodology proposed by [52] is

implemented to weight the output by the performance on positive data. Other attempts at

learning from very noisy data include [139] which focused on noisy labels in both positive

and negative data and proposed probabilistic ‘flipping’ of labels to tackle this problem.

Similarly, Sukhbaatar et al. [196] proposed label flipping for computer vision tasks with

convolutional neural networks. Further work into noise label vision tasks includes [108]

where ‘side’ information, e.g. clean data, is used to improve learning under noisy conditions.

Reed and Lee [163] applied bootstrapping to this problem, finding that it creates a robust

classifier in multi-class scenarios. Additionally, [112] applied Importance Reweighting to

noisy label classification. Finally, ∝-SVM [224] is a Support Vector Machine model which

models the latent labels for unknown data alongside the proportions of known labels. This

concept has been applied to event detection in video data, e.g. [104].

2.1.8 Tensor Decompositions

The final deep learning concept discussed in this section is tensor decomposition meth-

ods. These are not nearly as common as the methods discussed above but are nevertheless

essential to discuss given the application of Tensor-Train decomposition [146, 148] to the

fusion challenge in the second study of Chapter 3. The Tensor-Train layer approximately
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decomposes a large tensor into a set of smaller, simpler tensors in a weight-efficient man-

ner. Importantly, it can do this without constructing the tensor. Therefore it is possible

to utilise tensor decompositions as a fusion mechanism to model high-order relationships

between multiple modalities, which are very large tensors, in a weight-efficient manner. This

approach is similar to Zadeh et al. [225], where Tensor Fusion was employed to fuse multiple

modalities in a sentiment analysis task. Other researchers have used similar approaches to

aid different tasks, e.g. Yang et al. [222] utilises a (recurrent) Tensor Train layer directly

on the pixels of a video, replacing the convolutional layers. Kossaifi et al. [101] used similar

tensor methods on the unflattened output of a Convolutional Neural Network and showed

that these types of decomposition could be trained in an end-to-end model. Anandkumar et

al. [7] provide a comprehensive overview of tensor decompositions for learning latent variable

models and Panagakis et al. [149] provide a discussion of tensor methods for computer vision

applications.

2.2 Deep Learning Applications

The previous section briefly introduced this thesis’s key deep learning methods. However,

deep learning, by its nature, is general-purpose and thus, it makes sense to introduce research

where these methods have been applied to problems either similar to livestream highlight

detection or related to video game playing in general.

2.2.1 Detecting Interesting Moments in Videos

2.2.1.1 Livestream Highlight Detection

Naturally, the most pertinent prior work is the small body of work examining livestream

highlight detection. Livestreaming is relatively new and therefore there is not a huge amount

of research on this task, most of which being published during this research. Chu et al. [37,38]

examined various facets of League of Legends esports broadcasts, building models of highlight

detection by focusing on modelling hand-crafted features such as the number of players on

screen. They also experimented with event detection by utilising text recognition on in-game

messages, e.g. when the first kill occurs. While Chu et al. was an excellent first work in

this area, the reliance on hand-crafted features results in techniques that require significant

human processing to generate training data and may not generalise well to other games,
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e.g. because these features are game-specific. Song [191] examined single frame-based visual

highlight detection, i.e. omitting temporality, for esports streamed on Yahoo. The lack of

temporal consideration was a conscious decision to enable the system to operate fast enough

for deployment within Yahoo Esports. More recently, Wang et al. [213] experimented with

rank-based highlight detection for the mobile title Honor of Kings. This particular work takes

a multimodal ranking approach similar to the proposed approach in Chapter 4. Finally, Fu

et al. [58] examined audio-visual highlight detection through a CNN-LSTM architecture, and

chat data through a character-level LSTM model discussed in Chapter 5.

The works discussed above focus on audio-visual data (i.e. videos), except for [58].

However, esports are nearly always livestreamed in settings that allow for viewer interaction

via text chat. There is some emerging research into how cues from the chat domain can

indicate when a highlight occurs in the game. Han et al. [69] utilised a bidirectional GRU in

a supervised setting to learn a highlight detection model from text chat only, with promising

results which outperformed baseline models. Additionally, Liaw and Dai [109] proposed an

attention-based model for highlight detection, utilising the text in crowd-sourced highlight

clips as highlight cues. Ping and Chen [156,157] explored vectorised chat messages, focusing

on time-lag alignment due to the audience members having to react to events. Finally, Jiang

et al. [86] used chat messages to broadly identify the parts of a stream where a highlight is

likely to have occurred. Highlight segments are then recovered from these parts by modelling

how a user interacts with the video, e.g. pausing and skipping.

Tangentially related, Ishii et al. looked at gameplay generation through highlight cues

[80,81]. Hand-crafted highlight features optimised an AI Agent to create exciting gameplay.

This work aimed to create entertaining agents for a livestream setting. Similarly, Yang et

al. [221] used computer vision methods, e.g. optical flow, alongside a human-determined

notion of what entertaining gameplay is, to generate Angry Birds agents who played the

game in an entertaining manner. These works do not formally model ‘highlights’ but instead

use some notion of which type of events may be considered highlights to a viewer to guide

AI game-playing agents.

2.2.1.2 Sports Highlight Detection

Professional sports are a popular domain for event detection research and have natural par-

allels with this thesis. Ren et al. [164] studied highlight detection in soccer games, studying
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four matches with good results, especially when detecting goals scored. In this work, they

used a set of hand-crafted features based on audio and visual data, using these features as

input to a multi-resolution auto-regressive model that simulates temporal attention to focus

on exciting moments in the match. Xu and Chua [220] used not just audio-visual features

but also external, text-based information in their work towards the detection of highlights

in both soccer and American football. A similar approach, applied to baseball games, is

proposed by Chiu et al. [33] where webcast text was aligned with video content detection to

determine salient moments. The use of external text logs detailing the game in these works

is particularly interesting as, in some ways, it mirrors the chat logs present in livestreams,

although it is safe to assume that text logs used in [33] are likely to provide a less noisy

highlight signal than chat logs because in a livestream participants are free to type what

they wish when they wish, rather than solely focusing on the stream.

Sun et al. in [198] analysed the excitement level of sports commentators using audio

features, mainly Mel Frequency Cepstrum Coefficients (MFCCs) and pitch data, to detect

highlights. This approach demonstrates the link between affect, as detected in the commen-

tator’s voice, and salient moments in the stimulus, i.e. the game highlights. There are clear

parallels to this research, especially in personality-driven streams where the streamer is not

just the game player but also the commentator. Nguyen and Yoshitaka [142] adopted a cin-

ematography and motion-based approach, whereby they analysed the type of camera shots

used to detect highlights, particularly emotional events. Whilst this is not necessarily di-

rectly applicable to this research as often the webcam angle is fixed, and players rarely change

the in-game camera angle to create drama, video games sometimes employ these techniques,

especially when presenting the gamer with gameplay elements such as quick-time events.

Spijkerman and van der Haar [192] utilised convolutional neural networks trained on

footage directly obtained from the Formula 1 video game to detect highlights in broadcasts

from physical Formula 1 races. This approach is made possible because the video game is

designed to look as realistic as possible. In this work, the models were trained to detect

cars within a scene as the authors suggested that such signals are indicators for highlights.

Additionally, Moodley and van der Haar [133] also used CNN models for detecting events

in Cricket matches. Specifically, an AlexNet was trained to detect when a ‘stroke’ occurred,

i.e. the batsman hit the ball. Finally, approaches focused on Optical Flow calculations, the

change in a scene between frames, show promise when summarising sports videos, e.g. [125].
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Zhu et al. [230] utilised behaviour analysis alongside optical flow to detect the behaviour of

racket sport players and thus classify in-game events. While some of these sports highlight

detection methodologies are not suitable for livestreaming, e.g. they fuse techniques that have

since been superseded or use data unavailable in a livestream, they do serve as inspiration

for the types of techniques that are useful, e.g. convolutional networks and the use of optical

flow vectors.

2.2.1.3 Video Highlight and Event Detection

As well as detecting interesting moments in sports, it is also important to consider the

literature on the topic of detection events in general videos. Simonyan and Zisserman [186]

and Feichtenhofer et al. [55] utilised optical flow combined with object detection to detect

actions performed by humans. This two-stream network can detect a single action from a

pool of 101 actions, such as an archer drawing a bow. These works present promising results

with the highest reported accuracy of 90.62% in [55]. This is interesting for this research as

the types of actions presented in the dataset are also present in some popular video games,

especially those that employ a 3D 1st or 3rd person viewpoint. More recently there has

been work on state-of-the-art inflated 3D convolutional networks from [28] pre-trained for

action recognition on kinetics tasks, [91], which are utilised in Chapter 4. There are other

examples of using motion features to understand scenes. For example, Giannakopoulos et

al. [63] considered motion, audio data, and text data gathered from video comments in their

work on detecting violence in videos shared on video-sharing platforms. When all three

modalities were considered, the proposed system performed well at 82% accuracy. However,

using visual data only was not particularly successful, with 59% accuracy, although the

authors offer no suggestions as to why this is except that the extracted feature set could be

improved. While applied to a domain completely dissimilar to this research, Xu et al. [219]

used unsupervised learning to detect events partly based on motion when analysing scenes

of pedestrians walking. This work was focused on detecting anomalies that, when reframed

into a video game setting, may constitute rare in-game events such as winning and losing.

In terms of rank-based highlight detection for videos, a technique utilisedm in Chapter

4, there have been several recent works. For example, Sridevi and Kharde [193] discussed a

pairwise approach to ranking for video summarisation. Hong et al. [74] proposed a multiple

instance ranking architecture for this problem. Additionally, [218] is a crucial piece of work in
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video highlight detection. The authors utilised crowd-sourced videos assuming that a short

clip would contain a highlight. It used ranking models for state-of-the-art highlight detection

in a range of kinetic tasks, e.g. surfing. Sun et al. [197] took a ranking approach to detect

highlights in human action videos utilising crowd-sourced data. Additionally, Video2Gif [67]

is a rank-based detection system trained to generate gifs from longer videos using human-

generated gifs as training data. Finally, Yao et al. [223] also utilised ranking for video

summarisation in first-person videos.

2.2.2 Deep Learning in Video Games

Some work has examined how deep learning can be applied to video games. These span

an extremely wide range of applications. For example, Procedural Content Generation,

e.g. [111, 171], game-playing agents, e.g. [132], and player behaviour modelling, e.g. [20] are

all popular research topics. Two particular areas are most relevant to this thesis; analysing

gameplay content and analysing player experience. These will be explored below.

2.2.2.1 Game Content Analysis

Game content analysis describes a broad range of methods that attempt to learn meaningful

information about the game content, e.g. events in a gameplay session, through techniques

such as analysing the game screen. Guzdial and Riedl [66] developed unsupervised tech-

niques for building complete game levels from observing gameplay videos. This system first

determines sections of game levels by comparing the content in subsequent frames. Once the

level has been built, a probabilistic graph model is derived, representing how components

appear in levels. Finally, new content is generated from this model. Lewis et al. [107] used

Starcraft replays to discover strategies. This was achieved using reasonably simple statisti-

cal models after first extracting features from the reply, such as actions per minute and the

ratio between macro and micro actions. This was achievable because Starcraft replays are

not merely videos. They also contain other extractable metadata. The authors learned key

strategy points, such as distributing units around the map and keeping track of them, which

leads to more success than grouping units. Similarly, Rioult et al. [170] used the player’s

in-game positions to predict winners in Defence of the Ancients, arguing that topological

clues can help in analysing performance and team balance in MOBA games.

Trivedi et al. [203] proposed contrastive learning for learning generalised game repre-
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sentations based on the game screen, finding that it appears to be better than supervised

learning. The authors suggest that these representations can be used in various tasks, for

example, gameplaying agents, game world models, procedural content generation and player

modelling. Similarly, [132], while known as a critical piece of reinforcement learning litera-

ture, used a CNN approach to learn a representation of the game state from which an agent

was trained. More generally, general video game playing has moved to provide a pixel-based

representation of the game state for agent learning, [103]. Finally, particularly interesting

to the first study in this thesis, Alvernaz and Togelius [5] used an autoencoder to take a

video game scene, in this case, the Visual Doom environment, and learn a latent space rep-

resentation of the game scene, transforming the 120x160x3 pixel image into a 128 feature

representation. These 128 features were then used in a behaviour network, trained to play

the game using neuroevolution, expressly Covariance Matrix Adaptation Evolution Strategy.

While, unfortunately, the results were not as good as competing algorithms such as Deep

Q-Learning, this work does show that a lower latent space representation can still be used

as input to an AI agent with some success.

2.2.2.2 Player Experience Analysis

Most prior work into audio-visual player experience models do not use livestreaming plat-

forms as their data source. For example, the Platform Experience Dataset [89] is a data set

of players playing the platformer game Infinite Mario Bros. This data set has been utilised

in several studies. For example, Asteriadis et al. [9] used this data set to cluster player

types. Additionally, Shaker et al.’s [184] work focused on modelling player experience using

visual and behavioural cues. This work explored fusing visual cues from captured webcam

data and behaviour data from in-game play traces. A model of neuroevolutionary preference

learning and automatic feature selection was proposed, which provided very accurate mod-

els of engagement (91%), frustration (92%) and challenge (88%). This is perhaps the most

exciting work into visual affect detection for video game players because it uses real-world

video game data and appears to perform well in various affective modelling tasks important

to video games, such as engagement, frustration, and challenge. However, it relies on in-game

data to train the model. This makes it very difficult to apply to a video game streaming

setting as game data is challenging to gather.

Additionally, ‘off-the-shelf’ affect models, i.e. software-as-a-service solutions, have been
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used to study player experience. For example, Blom et al. [19] explored how these models

could be used to personalise game content, and Tan et al. [200] performed a feasibility

study exploring player experience modelling via visual cues, concluding that facial analysis

is a rich data source which warrants more exploration. Another work exploring visual affect

detection applied to games is Cao et al.’s [25] work which proposed a purposefully lightweight

computational model that can be deployed in a video game setting with little overhead.

The model, an improvement on and modification of Local Binary Pattern, performed very

well; however, the test set was small and contained participants performing posed emotions.

Thus it is unclear how well this approach would translate to an ‘in-the-wild’ affect detection

scenario such as real-world livestream video game players.

Makantasis et al. [117,118] used supervised learning to learn player affect not from images

of the player’s face but from the gameplay itself, both in terms of visual data, using CNNs,

and audio data, using MFCCs. This is particularly relevant to this thesis, considering that

player affect is likely to be a strong indicator of highlight moments. The challenge with

such an approach is that it requires a dataset of affect annotations to be gathered, which,

as discussed in Chapter 3, is a challenging task. Mavromoustakos-Blom et al. [120] explored

if in-game affect cues correlated with post-game experience reports for Hearthstone players.

This work is especially interesting for modelling important emotional events for the player,

rather than those important moments for the viewer, as with highlight detection. Research

has also explored the impact that a player’s emotions have on other players in multiplayer

games, for instance, [182] which showed that manifestations of player emotion impact other

players.

Such is the interest in affect modelling for game players that several datasets of annotated

gameplay have been released, although none are focused on the livestream paradigm. The

MUMBAI dataset [49] focused on board games rather than video games but is interesting be-

cause video footage of the players is gathered in a naturalistic setting, similar to a livestream

setting. The AGAIN dataset [124] covered nine games and, like the works mentioned above,

contained gameplay and annotation without the player’s voice or facial features.
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2.2.3 Affective Computing

2.2.3.1 Developing Computational Models of Affect

Previously the small body of work into games as a medium for affect elicitation has been

discussed. More generally, there is a wealth of research in affective computing, which has

influenced the various computational models used in this thesis, especially when considering

personality-driven livestreams. These models are typically developed using data dissimilar

to a livestream setting, for example, using posed actors, e.g. the Extended Cohn-Kanade

Dataset [116] or synthetic interactions, e.g. the SEMAINE dataset [123]. In contrast, stream-

ing platforms offer a more naturalistic setting where affect and behaviour are spontaneous.

Computational models of affect have been built using a variety of data sources. Perhaps

most common are visual and audio affect models, discussed in detail below. Textual models

have been developed from written text through a process often referred to as sentiment anal-

ysis, [17]. It is also possible to develop models based on the physiological signals released

by the body, such as Galvanic Skin Response data, e.g. [10]. Other techniques for modelling

affect exist but are significantly less common. Examples include DeepMood [26] which uses

the way participants input data into their mobile phones to model affect. Additionally, these

modalities can be combined into multimodal, or multi-view, models of affect. The models are

often trained on a classification task, in the case of predicting categorical emotions such as

Ekman’s ‘7 basic emotions’ model [50,51] or a regression task, if using a continuous model of

emotion such as the circumplex model [174]. The key difference between these tasks is that

‘basic emotion’ classification aims to detect particular emotions, in this case, fear, anger, joy,

sadness, contempt, disgust, and surprise, whereas the circumplex model splits affect into two

axes. ‘Valence’ describes whether the person’s emotional state is positive or negative, and

‘Arousal’ describes how strongly the person feels this emotion.

2.2.3.2 Speech Emotion Recognition

Audio models of affect often focus on using extractable features such as Mel-frequency Cep-

stral Coefficients (MFCCS), spectral features such as a Fourier transform or other values,

e.g. fundamental frequency, to determine the affect of the speaker. There are various meth-

ods for doing this with no fixed consensus best approach. For a holistic overview of speech

emotion recognition, the overview by Schuller [179] is very informative.
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MFCCs are extremely popular for affect detection and have been used in multiple stud-

ies. An early approach to using these hand-crafted features was Busso et al. [24] who used

the features derived from the pitch of the fundamental frequency. The study discovered that

features such as the average and range of pitch over time are important for determining emo-

tional speech. The approach, while simple, showed reasonable success, 77% accuracy, when

performing binary classification between neutral and emotional speech. Kishore et al. [97]

used MFCCs and a Subband based Cepstral parameter as input to a Gaussian Mixture

Model in a classification task, using classes based on the ‘basic emotions’ model. Another

work using MFCCs to tackle classification is Lalitha et al. [105] who trained a neural network

as a classifier, again using the ‘basic emotions’ model. This work’s interesting insight is that

sad audio samples were often misclassified as happy samples. This demonstrates the under-

lying difficulty that affect modelling from audio data has when detecting valence, compared

to arousal, where it excels. Aounai and Ayed [8] also used MFCCs and the ‘basic emotion’

model. This work aimed to improve on Kishore et al. [97], finding that a stacked Support

Vector Machine autoencoder architecture performed best, with a classification accuracy of

73.01%. Ghosh et al. [62] used Fourier Coefficients and MFCCs fed to a variety of autoen-

coders for learning affect from speech using the same database as [24], further reinforcing

the value of MFCCs for emotion classification tasks.

Some approaches use unsupervised learning for feature extraction rather than prede-

termined features or spectral features (e.g. MFCCs). One example of this is Huang, and

Mao [76] who used methods such as K-means clustering, sparse auto-encoders and sparse

restricted Boltzmann machines to learn feature representation of affect and suggest that this

feature learning improves results over using raw data when tested on a variety of speech

corpora. Unsupervised learning also appears popular in domain adaptation of pre-trained

affective models. Sun et al. in [198] analysed the excitement level of sports commentators

using audio features, mainly MFCCs and pitch data, to detect highlights. In doing so, they

took a trained Gaussian Mixture Model model and updated it through unsupervised learning

to account for differences between the training and test data. Additionally, Wang et al. [54]

used a deep autoencoder for feature extraction. Zhang et al. [228] trained across six corpora

of affective speech data and argued that whilst unsupervised learning does not outperform

supervised learning, adding unlabelled data to the dataset can improve results. Furthermore,

Zhang et al. pointed out that a plethora of unlabelled data exists, whereas labelled data
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is more challenging to produce. This is true for livestream data. Deng et al. [44] identified

similar issues to [198] where variance in the training data and test data considerably impacts

the quality of the affect detection. They present an Adaptive Denoising Autoencoder capable

of affect modelling across corpora, improving performance against other baseline approaches

to overcome this. Lastly, Chang and Scherer [29] used a deep convolutional generative ad-

versarial network and unlabelled data to learn representations of emotion in speech, allowing

their system to outperform supervised only approaches on the IEMOCAP dataset [22].

2.2.3.3 Visual Affect Modelling

Visual models are also a popular approach for modelling affect [227]. Often they consist

of taking images of participants’ faces, either captured as stills or extracted from a video,

annotating them and then using a supervised learning algorithm to train a model, often

constructed at least in part from a convolutional neural network. As briefly mentioned in

Section 2.2.2.2, there are several commercial solutions for visual affect modelling, e.g. by

Microsoft, Affectiva, nViso, and Kairos [60]. Numerous solutions to visual modelling exist

because visual data can more easily model basic emotions, given that these categories tend

to relate more to valence than arousal.

Kollias et al. [99] explored visual affect detection using retrainable deep networks for

online learning. While online learning is not directly explored in the thesis, there are ob-

vious benefits to such an approach when deploying a highlight detection model, especially

considering how much data is generated on Twitch.tv. Jain et al. [82] used a CNN-RNN

architecture for emotion classification on video data, similar to the approach in the second

study of Chapter 3. Their approach achieved state-of-the-art results on the dataset. Deep

models are complex by nature, which can be a problem when modelling visual affect because

images are feature-rich, resulting in potentially slow inference. This has resulted in research

focused on deep, but fast models. For example, Schwan et al. [180] applied fine-tuning

to a modified VGG-16 network [187] with good results. Additionally, in [77] the authors

used a VGG-16 network for real-time facial and emotional recognition. Finally, Salunke and

Patil [175] used a small, lightweight CNN architecture for training categorical emotions, with

good results.

There has been some work investigating visual affect modelling but not using RGB images

and facial/body gesture recognition for affect detection. For example, Szwoch and Pawel
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[199] investigated detecting affect using a Microsoft Kinect sensor to gather depth data.

Whilst this work is not hugely relevant to the study of game streamers, it uses technology

developed for games, the Kinect, and hints at potential affect detection applications within

video games. Recently, DeepPhys [31] used visual data through a webcam, to measure

affect by detecting physiological data through visible changes in participants. DeepPhys

can determine heart and breathing rates data using convolutional attention networks on the

webcam data. This approach to recovering physiological data is exciting for livestream affect

modelling because heart rate and breathing rate are likely indicators of player experience,

especially during particularly tense or exciting moments in a game. Soleymani et al. [190]

examined continuous valance detection using EEG signals and facial expressions. This work

proposed affect detection for video highlight detection, which is very fitting for this thesis

and is similar in intent to the system proposed in the second study of Chapter 3.

Finally, hand-crafted visual features have also been used, rather than feature extraction

from raw images. For example, optical flow of key facial points was used in [188] to predict

happy, sad or angry faces. Similarly, Strupp et al. [195] used point-based features to detect

basic emotions with applications in robotics research. Support Vector Machines were used

in [161] on hand-crafted features, although the model could only predict categorical basic

emotions. Of potential interest to livestreamed affect detection is the work of Miyakoshi

and Kato [131] who used Bayesian Networks applied to key facial points to model affect

in partially occluded faces. This approach seems to show promise, although the use of the

‘basic emotions’ model makes it of questionable worth compared to approaches trained on

circumplex style annotations.

2.2.3.4 Multimodal Affect Models

Generally speaking, the visual models outlined perform well at detecting. On the other

hand, audio models are generally good at detecting arousal because vocal features reveal

how strongly people feel rather than what they are feeling. Therefore, given the presence of

audio and visual data in most videos, it makes sense to combine these modelling techniques

to develop robust ways to model both arousal and valence.

Fusion is the biggest challenge for multimodal affect models [159]. Busso et al. [23] pro-

posed a method for emotion recognition using facial data, expressly expressions, and speech

data, examining a selection of fusion techniques. Firstly they used a decision level fusion
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technique where the decision, in this case, an emotion classification, is made by giving the

decisions made by each model a weighted score and classifying by the sum of these weights.

They also explored feature-level fusion, where latent space features from all modalities are

combined as inputs into the classification decision process. They found that, as expected,

performance using multimodal data outperformed unimodal data. Additionally, they found

that decision fusion and feature fusion had similar overall results, but there were variances

for certain emotions. Similarly, Kessous et al. [94] conducted a study into emotion recog-

nition for speech-based interaction, e.g. conversations, using facial data, body features and

speech. A collection of Bayesian classifiers was employed where one classifier took input

from all input views and performed feature-level fusion. In contrast, outputs from the other

models, each trained on a single, different, view, were used for decision fusion by combining

the posterior class probabilities. These models were trained to predict affect using the ‘basic

emotions’ model, with the authors finding that both decision level and feature level fusion

significantly improved results over unimodal modes.

Approaching similar data, albeit using a valence-arousal emotional model, is Nicolaou et

al. [143] who sought emotion detection improvements, especially in naturalistic settings, by

utilising a more complex model of emotion. Two predictive models were discussed, bidirec-

tional LSTM networks and Support Vector Machines for Regression, along with a method

for fusion which accounts for correlations and covariances in views. A further work [144]

examined measuring ‘interest’, a particularly interesting task for this thesis as measuring

interest within a game streaming context provides insights into modelling player experience.

This work used the SEMAINE dataset, with the addition of interest annotations, and em-

ployed Robust Canonical Correlation Analysis to fuse audio and visual views, showing a

strong correlation between interest and other emotion dimensions.

Lin et al. [110] took a probabilistic approach to audio-visual fusion when applying Semi-

Coupled Hidden Markov Models to artificially noisy data. In this work, the authors argue

that given noisy data, the Semi-Coupled Hidden Markov Models approach showed promise

compared to feature-level fusion at preventing over-fitting. This model-level fusion is a

departure from more common feature-level or decision-level fusion. Kahou et al. [88] used an

‘in-the-wild’ style database gathered from clips of Hollywood films which, whilst containing

acted affect, was designed to mimic natural emotions. It also contained a variety of camera

angles, lighting, and poses which added an extra challenge to the dataset. The task was to
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classify this data using the ‘basic emotions’ model, which was achieved using a convolutional

neural network to detect visual affect and a deep belief network for audio feature extraction

combined with temporal pooling for audio classification. These models appear to have success

given the difficulty of the dataset. Gan et al. [59] used a multimodal deep regression Bayesian

network for affect detection in videos. Two evaluation methods were used; a classification

task based on MediaEval 2015 [106] classes with three possible classifications, low, medium,

and high, for both arousal and valence, and a regression task based on MediaEval 2016 [64].

The extracted features from the modalities were whichever features were proposed in the

original dataset rather than hand-crafted by the authors or learnt as part of the model.

Comparisons were made to various other fusion techniques, such as Canonical Correlation

Analysis, with the method appearing to outperform other fusion methods.

With deep learning, it is possible to construct end-to-end models, i.e. from raw video

input to predictions, with state-of-the-art results. Tzirakis et al. [210] proposed an architec-

ture where two convolutional networks are used to extract features. An 2D image processing

CNN was used for visual feature extraction. The audio network used temporal convolution

to extract features from the raw audio. Features from both models were then concatenated

into a single feature vector which was used as input to an LSTM for feature fusion and va-

lence/arousal regression. This architecture is somewhat similar in layout to the architecture

used during the first study of Chapter 3, although a different set of features are used as

input into the LSTM layers. In the work, the authors compared this approach to existing

state-of-the-art models, with the proposed model significantly outperforming these compar-

isons on the RECOLA dataset used in the AVEC competitions [177,178]. End-to-end models

are very attractive because they remove the requirement for human-designed features and

instead allow the network to learn which features are essential for the given task.

Many works in this section have discussed multimodal fusion as the key challenge in

audio-visual modelling. However, another issue with audio-visual data is that it is both

multimodal and temporal. Martinez and Yannakakis [119] have investigated ways in which

temporal features can be extracted from multimodal data in an affect detection for video

game settings. They argue that sequence mining has some advantages over traditional ap-

proaches to multimodal feature extraction, stating that this approach, on the given data,

outperforms statistical feature extraction techniques for affect detection. One key takeaway

from this work for this thesis is the discovery that changes in player arousal, measured
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through physiological measures and self-reporting, have a relationship with critical game

events, reinforcing the belief that there is a link between game content/events and player

affect.

2.3 Livestreaming

As an emerging entertainment medium, livestreaming is a fertile field for research on a range

of topics, e.g. from talent scouting [16] to emotional labour [215], and by utilising a range

of disciplines, e.g. from sports science [83] to deep learning [213]. Primarily, research has

focused on the sociological aspects of streaming and why watching somebody else play is

compelling. That said, some artificial intelligence techniques have been explored, mainly

applied to livestream chat. These research interests are discussed in detail below.

2.3.1 Analysis of Game Streams

Prior research has often focused on viewer communities [201]. For example, Hamilton et al.

[68] performed an interview-based study of streamers and viewers, finding that livestreaming

platforms serve as ‘third places’, i.e. a place which hosts gathering of individuals but which is

not work or home. Further, they describe livestream audiences as having both cool and hot

moments, i.e. there are moments within the stream that elicit a strong reaction in the crowd,

and this reaction then allows participants to share in the emotion. Flores-Saviaga et al. [56]

also examined streamer communities, finding that there are several types of livestreams, from

very popular streams hosting esports tournaments and featuring celebrities down to ‘clique’

streamers broadcasting to only a handful of viewers. Interestingly, despite the opportunity

to build intimate relationships with viewers in these clique streams, there seem to be issues

with viewer retention in these streams.

Diwanji et al. [47] performed a small-scale study of three streaming sessions to examine

audience behaviour. They found that the most common type of behaviour was reaction, i.e.

the audience reacting to an in-stream event. This is particularly useful for this thesis as these

types of interactions are precisely what the highlight detection system in Chapter 5 aims to

model. Continuing the trend of using streams to study interactions between the streamer and

the viewer Kaytoue et al. [92] examined the viewership of streams. They discovered that the

number of viewers a stream has and how this changes over time is predictable. This prediction



CHAPTER 2. LITERATURE REVIEW 61

is based on correlating popularity at the start of a stream and after time has passed. They

also observed that peaks in audience size are explainable by factors such as the day of the

week and time of day. For instance, viewership increases towards the end of the week and is

affected by the streamer’s local time. Finally, they presented a methodology for ranking the

popularity of streamers based on a Condorcet method. Wulf et al. [216] studied livestream

viewers, discovering that the sorts of things viewers enjoy in mainstream broadcasts, e.g.

sports, translate to Twitch.tv, for example, suspense is linked with enjoyment. Deng et

al. [40,43] found that several factors differentiate Twitch.tv from other streaming platforms

which do not feature live data, e.g. YouTube. For instance, the popularity trends seem to

be more predictable, i.e. popular games remain popular, and flash crowds are event-driven,

indicating the value of studying esport tournaments. Some work has also been undertaken

on modelling streamers and viewers through graphs and finite state machines. For example,

Nascimento et al. [138] found that spectators show clear behavioural patterns such as channel

surfing, and most viewers tend to watch a small fraction of streamers.

Smith et al. [189] discussed many aspects of live-streaming, focusing on ‘Let’s Play’

streams. These are streams where the streamer is playing through a particular video game

whilst interacting with the audience. Let’s Play streams are an environment very similar

to what this thesis studies, albeit with the additional restriction that the games are gen-

erally single-player or co-operative and have some story or campaign progression to work

through. In contrast, many of the most popular streams are of players playing competitive

online multiplayer games, e.g. Fortnite, League of Legends, and Hearthstone. The authors

discuss how streaming is a naturally interactive domain because the viewers can directly

interact with the streamer via text chat. Therefore, they argue, it is impossible to fully

disentangle the streamer’s experience and viewers because viewers can ‘co-labour’ play with

the streamer. Another study into the streamer-spectator relationship is ‘All the Feels’ by

Robinson et al. [172]. ‘All the Feels’ is a visual overlay that presents biometric and emotional

information, such as heart rate, to the viewers. This lets viewers feel more in touch with the

streamer’s emotional state and gaming experience. This work contained a small study where

streamers used this overlay and showed that the availability of this data made spectators

feel more connected to the streamer. This study did not develop modelling techniques for

understanding emotion and biometrics. Instead, it used an off-the-shelf product, Affdex1,

1Developed by Affectiva.
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which is suitable for a design-oriented task such as ‘All the Feels’ but does not offer the

quality or fidelity required for this thesis. Off-the-shelf modelling, especially Affdex, has also

been used by other parties interested in emotions in games. For example, the game Never-

mind2 uses affect detection to change the game’s content based on biometrics and affect in

a psychological horror game setting.

2.3.2 Livestream Chat Analysis

Text-based chat interaction is one of the defining features of livestreaming compared to other

broadcast media. Such is the importance of chat, Chapter 5 focuses entirely on modelling

this data. Prior work into understanding chat data has primarily been disparate with little

in the way of shared data or goals, hence the desire to publish the TwitchChat dataset as

part of this thesis to build a shared foundation for livestream chat study.

Nematzadeh et al. [140] studied the large-scale nature of livesteam chats and, in par-

ticular, focused on the difficulties for meaningful communication when there are many par-

ticipants. In particular, they found that as the number of viewers in a stream increases,

there is a transition between conversational chat environments to ‘cacophonous’ large-scale

chats where there is lower per capita participation, more repetition and less information per

message. This cacophony is analogous to the cheering effect observed in traditional sports

settings. An important observation is that while there are often many individual users send-

ing messages, thus leading to the cacophony, there tends to be a set of coherent ‘voices’ or

personas. For instance, Ford et al. [57] found that when the number of chat participants

increases, the number of unique voices remains relatively stable. Despite this, Musabirov

et al. [134] used Topic Modelling, a form of unsupervised clustering which generates a set

of ‘topics’ from a corpus to explore equality between voices, finding that as the number of

chat participants increased, the more unequal the topics present were. This ‘crowd speak’,

especially understanding that massive chats do not result in an explosion of topics, results

in a surprisingly coherent chat stream, even if the messages come from many authors.

One area of research which has received attention is modelling toxicity from chat partic-

ipants. In particular, Poyane [160] studied Dota2, a Multi-Player Online Battle Area game

similar to the League of Legends game studied in parts of this thesis. The study showed a

statistically significant increase in toxic communication as chat size increases. Kim et al. [95]

2Released in 2015 by Flying Mollusk
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focused on identifying toxic emotes. In particular, they manually labelled a small dataset of

29, 721 samples which was used to train a classifier to identify toxic chat messages which were

previously undetected due to their use of Twitch.tv specific emotes. The work from Seering

et al. [181] examined how livestream chat moderators could promote pro-social behaviour

and reduce toxic messages, e.g. by banning toxic members.

Sentiment analysis of the chat logs has the potential to provide insights about viewers.

For instance, Kobs et al. [98] found that emotes are sentimentally valuable and thus can aid

in sentiment detection. They also found that sentiment values from chat correlate to in-

stream events. Similar to the finding in Chapter 5, Kobs et al. found that Twitch chat is so

unique that existing sentiment analysis techniques are unsuitable. Similarly, Topic Modelling

was used by Konstantinova et al. [100] to discover that chat messages were more likely to

be short but contain emotionally charged content during an esports match, compared to

messages sent outside of the match, where messages tend to be social or analytical. Carnein

et al. [27] explored clustering for livestream chats using a modified DBSTREAM clustering

algorithm which allows for new data points to be added to a clustering. Carnein et al. found

that this approach seemed to work well at clustering the data, although it was trained on a

small dataset of about one million messages, and no insights about the nature of livestream

chats were gained.

Outside of natural language processing, there has been a linguistic study of livestream

chat that observed significant variations compared to other internet communities [147], and

that chat content is heavily related to stream content [162]. While these prior works begin

to uncover the properties of livestream chats, they do not offer a statistical or machine

learning approach to understanding the meaning of tokens through analysis of how the chat

is constructed. For instance, some prior works attempt to uncover the meaning of stream-

specific tokens, e.g. [15], and generally, these works assume that tokens, such as ‘Kappa’,

have a particular meaning. Finally, Nakandala et al. [135] explored the use of gendered

conversation in the livestream context by utilising vectorisation techniques.

Emoji and other ideograms are popular within livestream chats, so a recent analysis

of how emojis are used is relevant. For instance, [214] shows that ideograms often have a

complicated and highly personal meaning. Therefore, it can reasonably be assumed that

particular emojis and emotes evolve to have a rich Twitch.tv specific meaning, although

the meaning of ideograms within livestream chats is not the direct subject of this thesis.
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More generally, work has been carried out on how ideograms are used in conversant text.

For instance, research shows that norms surrounding the meaning of ideograms propagate

through social networks [151] and that geographic location, in the case of livestreaming,

perhaps tied to the nationality of the streamer, can affect ideogram usage [113].



Chapter 3

Personality-Driven Livestream

Highlight Detection

3.1 Introduction

Highlight detection for personality-driven livestreams is a challenging task due to the lack

of available labelled data to train a model with. While there is abundant livestream data,

evinced by the massive number of concurrent streams, edited highlight videos for personality-

driven livestreams are not nearly as accessible. Twitch.tv has a ‘Clips’ feature where viewers

can select entertaining moments and clip them from a stream. Users of the site can then

browse and watch these clips. However, this feature is not popular enough to build a high-

quality supervised learning dataset.

Furthermore, edited broadcasts are often posted on separate video-sharing platforms.

However, tracing the original livestream from the edited broadcast is challenging. This is

due to the observation that for personality-driven broadcasts, highlight videos are often titled

to entice a potential viewer rather than factual information, such as when the original stream

occurred. Thus, building a suitable supervised training set from this data for personality-

driven broadcasts is also complicated. Therefore, establishing a strong indicator for highlight

moments is very difficult. Because highlights are subjective, there are not necessarily clear

indicators from audio-visual data. Furthermore, manual annotation is extremely expensive

and time-consuming. As a result it is reasonable to approach highlight detection through

the detection of signals which can be considered proxies for highlights, which is the focus of

this chapter.

65
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While it may be possible to construct a semi-supervised dataset with the data avail-

able, it is expected that such an approach would be less successful for personality-driven

broadcasts due to the heterogeneity of stream presentation. Stream features such as web-

cam placements and lighting are often highly personal to individual streamers. Therefore

semi-supervised is likely to be much more suited to game-driven broadcasts where there is

more homogeneity between broadcasts and, as such, is explored in Chapter 4. This chapter

will explore two alternative methods for explicitly training a highlight detection model on

personality-driven streams. Firstly, an unsupervised learning approach is discussed where

‘novelty’ is considered a proxy measure for highlights, assuming that highlights must be

novel to differentiate themselves from non-highlight moments. Secondly, a supervised model

is trained on hand-labelled data. Here, the labels are not strictly binary highlight labels

but describe both the streamer’s emotion and the game context. Utilising the streamer’s

emotions is one way to leverage the unique features of personality-driven livestreams because

they focus on a presentation and performance.

This chapter focuses on two studies. The first, detailed in Section 3.2, explores novelty

as a proxy for highlighting via unsupervised learning. The second, detailed in Section 3.3,

utilises more objective supervised labels, e.g. game events and streamer emotion, to build

a supervised model which can predict proxy signals for highlights. Finally, Section 3.4

concludes these two studies’ findings.

3.2 Novelty as a Highlight Signal

Novelty detection algorithms are a suite of techniques which aim to detect samples in a

dataset which are outliers and, thus, unlike the others. The vast majority of stream segments

can not be considered highlights. Otherwise, the act of highlight detection lacks purpose.

Because highlights are expected to be rare, one may reasonably assume that the outlier

moments, i.e. those most unlike others, are likely to constitute a highlight. Thus novelty

detection aims to find the moments in a stream most unlike the others under the assumption

that these novel moments are likely to be attractive to the viewer. This is achieved by

analysing both audio and visual feeds for a stream. The audio data from a stream represents

a mixture of the in-game audio, the streamer’s voice, and other audio artifacts, e.g. stream

notifications. This mirrors the audio feed that is presented to a viewer. The visual feed,
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i.e. video, is split into two streams, one for the streamer’s webcam and one for the in-game

footage. This is achieved by manually retrieving the coordinates of the streamer’s webcam

and then extracting that portion of the frame as a separate image while replacing the webcam

with a black patch in the game feed.

Novelty detection as a proxy for highlight detection has the added benefit that novelty

detection methods can act in unsupervised settings. Unsupervised models, assuming suffi-

ciently cost-effective processing, would allow for the complete democratisation of highlight

generation. Streamers would only need to upload their stream without requiring prior infor-

mation about what sorts of moments are highlights or not, e.g. as required in a supervised

learning setting. While it is undoubtedly a difficult challenge to develop a highlight model

from only unsupervised data, the benefits of such a system, should novelty be a suitable

proxy, are evident. The system described in this section was the first highlight detection

system for audio-visual livestream data proposed using entirely unlabelled data. Other sys-

tems have either used labelled data or taken a supervised approach. e.g. [169, 219, 220], or

inferred labels through the crowd-sourced video editing, e.g. [168,213].

Further to neatly sidestepping the challenge of labelling data, unsupervised learning

modelling has the potential to work well considering the inherently ‘in-the-wild’ paradigm.

Personality-driven livestreams generate organic, real-world data [145, 194] and are subject

to many complicating factors such as visual and audio occlusions. Such occlusions can

either be temporary, e.g. the streamer looking away from the camera, or permanent, e.g.

overlays placed over the game scene or the music that the streamer is listening to. Other

difficulties include streamers having their webcams at various angles, using varying lighting

levels, and choosing different volume levels between their voice, music and the game audio.

Unsupervised learning in a novelty detection setting may mitigate the variance resulting

from the heterogeneity of presentation in personality-driven broadcasts.

The rest of this section is organised in the following manner; in Section 3.2.1, the unsu-

pervised system is described, in Section 3.2.2 the dataset used is presented, in Section 3.2.3

the experiment is described, with the results presented in Section 3.2.4, finally discussion

and conclusions are provided in Sections 3.2.5 and 3.2.6 respectively.
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Figure 3.1: Overview of the system

3.2.1 Methodology

The unsupervised highlight detection architecture proposed is a multi-stage system. Firstly,

‘novelty’ features are extracted from each modality, i.e. webcam, game footage, and audio.

These novelty features describe when a particular input, i.e. moment in the stream, is novel

compared to other moments in the stream. Next, these features are scaled and fused using a

recurrent network. The time series output from the recurrent network is then used to assess

which stream segments are highlights. Each part of this system is described in detail below.

The network architecture is illustrated in Figure 3.1. The architecture is similar to the one

utilised by Malhotra et al. [150].

3.2.1.1 Face and Game Scene Analysis

For novelty detection, convolutional autoencoders are utilised to analyse the player’s webcam

and in-game footage. The networks are composed of two stacked VGG16-like networks [187],

omitting the fully-connected layers. Given a video frame, the first network, the encoder,

produces a 512-filter encoding. The second network, the decoder, is the reverse of the

encoder, employing up-sampling rather than max-pooling. A final convolutional layer then

takes the 64 filter output and reconstructs the input image. This architecture is shown

in Figure 3.2. Each convolutional layer has a 3 × 3 filter window, and each Max Pooling

and Up-Sampling layer uses a 2 × 2 window with a stride of two, following works such as

Deep Convolutional Auto-Encoder with Pooling - Unpooling layers [204], and Stacked What-

Where Auto-Encoders [229]. The reconstruction errors from both networks are then utilised

as indicators of novelty.

For the face autoencoder, the weights from the VGG Face Descriptor model [26,152] are

used for the encoder, something made possible because the VGG Face Descriptor model is

trained on photographs of people, a setting very similar to the extracted webcam footage.
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Figure 3.2: Autoencoder architecture

These were frozen during training as no noticeable improvement was observed from fine-

tuning the encoder or training both end-to-end. Utilising pretrained weights reduced the

amount of computation needed at training time. However, no such pretrained network exists

for game footage; so both the game footage encoder and decoder were trained together. All

models were trained until convergence, generally about 50 epochs. Once trained on frames

from a video, the reconstruction error can be used as an indicator for novel frames in a

video. This novelty is then used in the downstream system. This downstream system takes

novelty measures from all modalities to determine which segments are likely highlights. Using

reconstruction error as an indicator of novelty is an established technique. More details on

reconstruction-based novelty detection can be found in Primentel et al.’s recent survey [155].

3.2.1.2 Audio Stream Analysis

Considering the arousal and valence axis of affect models, intuitively, arousal would seem

like the most important element to model, given that it describes how strongly a person

feels an emotion. Moments where the streamer is very excited or angry may be entertaining,

but moments with low arousal, regardless of valence, e.g. misery and contentment, are less

likely to be highlights. Since detecting arousal is most likely to yield results, this section’s

approaches focus on processing and modelling critical audio frequencies since these relate

most closely to arousal.

The audio stream is split into segments via a sliding window. Each window is 400ms long,

and there is a 300ms overlap between sequential windows. This yields a sampling rate of 10

samples per second. A large window was utilised to alleviate potential issues arising from

asynchrony between audio and video modalities, e.g., the preservatory and anticipatory co-
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articulation phenomena often causing audio cues to be delayed by around 0.12 seconds [90].

For each window, the Short-Term Fourier Transform is computed, and the magnitudes are

retained since they are deemed good indicators for arousal [11]. Additionally, uncommon

frequencies in human speech are discarded to isolate the streamer’s voice from the game

sounds. Frequencies between 300 - 3400 hertz were retained. This range was chosen because

it is the standard frequency range for telephone calls and thus is likely to represent the

streamer’s voice. Principal Component Analysis (PCA) is applied to the entire broadcast,

with the k first principal components retained. This is aimed at capturing variation in the

broadcast, and thus discovering novelty, while reducing dimensionality and noise.

3.2.1.3 Recurrent Layer for Late Fusion

A recurrent layer is utilised for indicating reconstruction-based novelty across all modali-

ties. The recurrent layer is fed with a time series consisting of reconstruction errors from

face and game scene autoencoders and the extracted audio features, in-effect performing a

multi-dimensional smoothing operation. Values are normalised between [0, 1] to avoid bias-

ing modalities that cover different ranges, e.g. video compared to audio. Training entails

forecasting reconstruction error values corresponding to the next frame, t+ 1 at time t, thus

effectively incorporating information from all modalities. Two Long Short-Term Memory

(LSTM) [73] layers are utilised, each with three neurons and a fully connected layer with a

single output neuron using a sigmoid activation. Each neuron in the LSTM layer retains a

latent state that captures helpful information from previous time frames and generates the

output values along with the current input.

3.2.1.4 Highlight Detection as Reconstruction-based Novelty

The prediction error of the recurrent layer on a given stream is used as a highlight indicator.

A threshold is applied to the error from the recurrent layers to select highlight segments,

empirically determined as 0.01%. The frames with the highest prediction error are then

selected as highlight frames. These highlight frames are then used to generate the full

highlight clips. Each detected frame is treated as an ‘apex frame’ of a highlight event. Like

the Twitch.tv clip system, a highlight clip is considered the stream segment 10 seconds before

the apex frame and 5 seconds after. Proximal apex frames are linked together if not doing so

would cause an overlap between clips. This approach ensures that the appropriate context
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is included in the highlight clip and that the clip is self-contained, e.g. a reaction from

the streamer can be detected as a highlight frame, with a preceding game or stream event

causing the reaction being included in the clip.

3.2.2 Data

Player Unknown’s Battlegrounds (PUBG) is a multiplayer online battle royale game. A

number of players are spawned simultaneously to explore an island, collect weapons and

other items, kill other players and ultimately be the last player alive. The playable area

of the island shrinks over time, and so, while the players start fairly spaced out, as the

game continues, players are forced closer together, increasing the likelihood of interesting

moments later in the game. While ultimately, PUBG is a game of being the last player

alive and therefore necessitating killing other players, it is largely a game of avoiding other

players, at least until the player can gather enough resources or position themselves well

enough to make encounters favourable. PUBG is a particular applicable game for novelty-

based unsupervised highlight detection because it often has long periods of low-intensity

gameplay and short bursts of concentrated action. Thus it can be expected that these

short bursts would be detected as novel moments. Furthermore, the low and high-intensity

gameplay ratio makes highlight detection a worthwhile task. Finally, there is an abundance

of high-quality streams available due to the game’s popularity.

A dataset was gathered by downloading livestreams from Twitch.tv as they were be-

ing played. Each recorded stream was segmented into videos spanning a single game, and

downtime between games was removed. It makes little sense to look for highlights when

the game is not being played, as streamers often take short breaks in-between games where

they will leave the stream or browse social media. The dataset consists of videos from two

male streamers, one American and one German, streaming in English. There is a total of

11 videos, and each video is between 19 minutes 30 seconds and 30 minutes 40 seconds

long. Each video was preprocessed as follows. Firstly, the video data is down-sampled to a

sampling rate of 10 frames per second, improving training speed while retaining granularity.

Secondly, the player’s face is extracted from the game footage stream, and replaced with a

mask, resulting in 2 images per source frame, one from the game and one from the webcam.

Finally, each frame, webcam and game footage is resized to 224 ·224 ·3 to match the VGG16

input dimensions.
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3.2.3 Experiment

To explore the applicability of the proposed novelty approach, it is essential to apply the

model and then perform a post hoc classification of the generated highlights to explore the

kinds of highlights the model generates. Each clip is annotated by the researchers into one

of four categories: ‘funny’, ‘action’, ‘social-interaction’, and finally, ‘no highlight’. Funny

videos are streamer-focused events where the streamer makes a joke, laughs, or is, in other

ways, amused. Action highlights stem from game events, e.g. the streamer is engaged in a

firefight. Highlights tagged as ‘social-interaction’ include community-led events, where the

streamer interacts with viewers meaningfully, e.g., thanking subscribers, answering ques-

tions, or reacting during a similar interaction. ‘Social-interaction’ highlights are important

for a compelling personality-driven stream and are often found in streamer highlight clips

that are manually segmented. Finally, clips containing no noteworthy events are labelled ‘no

highlight’. The model is trained individually on each video in the data, following a one-shot

approach. The resultant model is used to generate highlights. The model was implemented

using Tensorflow [1] and Keras [36], using the ADADELTA [226] optimiser for both au-

toencoders and the recurrent network, employing a mean-squared error loss function for all

models.

3.2.4 Results

In total, 98 segmented highlight clips were generated by applying the method to the dataset.

Table 3.1 shows the results by using all available modalities, i.e. the streamer’s face, the

game, and the audio stream, where out of 75 clips with interesting content, 51 are tagged as

‘funny’ or ‘action’, with the remaining 24 labelled as ‘social-interaction’. Figure 3.3 shows

visual examples of the types of highlights generated with this approach.

3.2.4.1 Modalities and Highlight Detection

Evaluating the proposed architecture when observing different combinations of modalities

is valuable to examine which impacts positive prediction most. The results of this abla-

tion study are summarised In Table 3.2. The complete model was compared to individual

modalities, Face, Game, and Audio, and the Face and Audio domains combined. Overall,

the model fusing all modalities performs the best. This is an expected result since utilising
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Video Funny Action Interaction Highlight Total No Highlight

S1.1 1 2 4 7 0
S1.2 0 1 1 2 4
S1.3 0 3 2 5 3
S1.4 2 2 4 8 2
S1.5 0 3 4 7 4
S1.6 0 1 1 2 2

S2.1 5 2 0 7 1
S2.2 3 1 2 6 1
S2.3 6 4 2 12 2
S2.4 3 1 3 7 1
S2.5 6 5 1 12 3

Total 26 25 24 75 23

Table 3.1: Generated highlight clips by category using all modalities.

Figure 3.3: Example highlights discovered by the proposed method. Left: The streamer
begins aiming their rifle, which changes the game scene enough to trigger a highlight, agreeing
with a change in the facial expression. Center: The streamer wins a game and shouts in
celebration; detected by indicating novelty in the audio features. Right: During a firefight,
gunfire causes a spike in the audio, triggering a highlight.

audio-visual information from streamer behaviour and the game provides a more informed

approach.

Interestingly the number of generated highlights segments across all modality combina-

tions is similar, except for the audio-only model, which produced considerably more. This is

likely due to the impact of in-game audio (e.g. gunfire) on detecting novelty. These moments

are novel compared to the usual sounds in a stream, e.g. the player talking and in-game

ambient noises. The observation further supports that 29% of highlights selected were action

highlights, containing only a few funny or social interaction clips. The face modality is better

at determining funny and social-interaction highlights, although it has a worse precision in

action clips, which is expected given that using only data from the streamer’s face does not

consider any context regarding the game. The percentage of No Highlight clips is compa-



CHAPTER 3. PERSONALITY-DRIVEN LIVESTREAM HIGHLIGHT DETECTION 74

Modalities No. Videos Funny % Action% Interaction% Total Highlight% No Highlight%

Face, Game, Audio 98 27 26 24 77 23
Face, Audio 95 22 23 28 74 26
Face Only 96 14 14 24 52 48
Game Only 94 4 18 7 29 70
Audio Only 126 8 29 18 56 44

Table 3.2: Summary comparison of highlight-detection over multiple modalities

rable for the audio-only and face-only models and is often due to unusual gestures that the

streamer might perform that can potentially occlude the face. This is expected since ‘face

novelty’ itself is not necessarily sufficient to guarantee a highlight, although it may indicate

it.

The game footage model is the worst highlight predictor, given the results. Whilst this

poor performance might appear counter-intuitive, the results show that using game footage

is mainly helpful at generating action highlights1. This is likely due to the lack of social

cues from the streamer’s face and audio, as omitting such modalities makes the problem of

detecting when the game scene is interesting to the viewer rather than merely anomalous

more challenging. Finally, using a face and audio model provides better results than all

single-modality models and slightly worse results than all available modalities. This finding

suggests that the game alone is a poor indicator of highlights, other than action clips however

it can be helpful to corroborate information extracted from other modalities and improve

performance.

3.2.4.2 Highlights over Time

There are fewer ‘no highlight’ segments detected towards the end of a video than at the

start, as shown in Figure 3.4. This indicates that detected clips later in the broadcast are

more likely to be interesting. In more detail, 61% of ‘no highlight’ results occur in the first

30% of a video, as opposed to 19% of funny clips, 4% off action clips and 41% of interaction

clips. Furthermore, most action clips, 92%, and funny clips, 69%, occur in the last 50% of

the video, as opposed to only 22% of ‘no highlight’ clips. 60% of action clips occur in the

last 20% of the video duration. By considering only segments generated from the last half

of each video, 91% of clips are interesting in some way. Several likely explanations for this

1Although on-screen events may be indicators of other highlight types, for example, new subscribers pop-
ups or humorous on-screen events.
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Figure 3.4: Highlights by type over time

are mostly related to the game’s design. Firstly, the game is designed so that the play area

shrinks over time, forcing interaction between players towards the end of the game. Hence

the more considerable amount of action highlights towards the end of the video. Secondly,

there are fewer viewer interactions as the game progresses since the game intensity increases,

and players must focus more on the game. Finally, the number of funny highlight segments

initially increases due to more in-game events occurring and, therefore, more events for the

streamer to react to, but then at the end of a game, the number of these moments reduces,

likely because the streamer needs to focus on gameplay and has less capacity to be humorous.

3.2.4.3 Novelty Across Modalities

Figure 3.5 shows (a) the RNN prediction error fusing all modalities, (b) the output from

the face autoencoder, (c) the output from the game autoencoder, and (d) the first principal

component of the Fourier coefficients of the audio channel. Errors over time are plotted for

a particular video, S1.1, colouring samples selected as highlight apexes in red. In general,

for the face and game modalities, sharp ‘spikes’ indicating highlights can be observed in the

distribution, with errors on game footage being less clear because data in this domain results

in higher average output with a wider spread. For this particular stream, the game footage

appears to have less impact on the final highlight frame detection than the face and audio

modalities, where clear spikes are transferred to the fused results. Finally, spikes which
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(a) Fused (b) Face

(c) Game (d) Audio

Figure 3.5: Errors over time indicating novel events for a particular video (S1.1). (a) Fused
prediction error. (b) Face video reconstruction error. (c) Game footage reconstruction error.
(d) Audio features over time.

only occur in one modality are often smoothed out in the final fused model, while spikes

appearing in more than one modality are accentuated. This further affirms a multimodal

model’s benefits compared to just a single modality.

3.2.5 Discussion

There are several key observations. Firstly, it is clear how critical multimodal approaches

are for highlight detection. Secondly, analysis of the types of highlights generated suggests

that the streamer’s emotions, modelled through webcam and audio data, significantly impact

the generation of highlights. This is evidenced both in Figure 3.6, which shows examples of

the kinds of social cues present in generated clips, and Figure 3.7, where you can see the
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Figure 3.6: Streamer webcam Sequences from detected highlight segments.

impact that the audio waveform of the streamer laughing has on prediction. Thirdly, this

work shows that highlight moments are triggered by the streamer, the gameplay, and the

audience. Therefore, it is evident that models can consider cues for all domains that are

likely to perform well.

While it is clear that the face and audio domain are beneficial, it is surprising that the

game modality struggles so much, given that it offers much visual information about the

game. This is likely due to the lack of a ‘baseline’ state for game footage. The audio and

face modalities have a baseline state, e.g. the streamers at rest and speaking typically, which

allows the novelty detection algorithm to accurately model which moments are genuinely

novel. However, the game footage has no baseline state as the environment is complex and

regularly changing. This likely makes it much more difficult for the game autoencoder to

learn a robust model, and thus the novelty detection is negatively impacted.

Finally, there is a limitation with this work in that it is unlikely to perform well in all

games. Player Unknown’s Battlegrounds was chosen because it is a Multiplayer Battle Royale

game. This genre is known for its generally high downtime, containing only a handful of

short, high-intensity gameplay segments. This method was trialled on several other settings,

including strategy games such as Hearthstone, where it was observed that nuanced gameplay,

with a more even mixture of low and high-intensity moments, led to poor performance.

There is no obvious way this model can be improved for these games inside the novelty-

based approach. While the assumption that novelty is a reasonable indicator of a highlight

moment for high-downtime, low-action games like Player Unknown’s Battlegrounds, it is not

the case for other, more complex games; thus, a different approach is likely warranted.
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Figure 3.7: Example highlights. Audio waveform, face frames, game frames, and the pre-
diction error are shown. Above: The streamer makes a joke after picking up a good item
at a crate. Below: The streamer initiates a firefight with another player. In both cases, the
highlight apex is the centre frame.
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3.2.6 Conclusions

This section presents an unsupervised deep learning architecture for highlight detection based

on audio-visual data broadcast during a typical game stream and represents the first such

approach for this problem. The model considers a measure of reconstruction-based nov-

elty as a proxy for indicating highlights while jointly analysing the player’s facial footage,

streamed game footage, and audio. It shows that multimodal models are much more likely

to perform well than single modality models. In particular, this work shows the signifi-

cance of considering social signals from the streamer when detecting interesting highlights

in personality-driven streams. Furthermore, it shows that an unsupervised approach, if suf-

ficiently performant, would likely be beneficial in a real-world setting. However, this chapter

also shows there are limitations to this approach, and as such, for specific genres of games,

a supervised or semi-supervised approach may be more applicable.

3.3 Streamer Emotion & Game Context as a Highlight Signal

Section 3.2 explored highlight detection through unsupervised learning. In contrast, this

section will study highlight detection in personality-driven streams via supervised learning.

In particular, Section 3.2 indicated that streamer affect is likely to have a large impact on if

a moment is a highlight. Thus the models in this section explore joint streamer emotion and

game event detection under the assumption that detecting both in-game events and moments

of high arousal are likely to aid in highlight detection. Therefore, this study presents a series

of models trained to identify various game and affect-based labels.

As well as examining the applicability of supervised learning to predicting these mo-

ments, and thus the suitability of such a proxy-based approach to highlight detection, this

section explores two additional concepts. Firstly the effect that jointly learning emotion and

game context has on model performance is tested. Because the dataset utilised in this study,

detailed in Section 3.3.2, is relatively small compared to the vast datasets used to train

some modern deep learning systems, e.g. the datasets used in Chapters 4 and 5, the models

may overfit when trained on a single task. Thus training on all tasks simultaneously may

aid prediction performance by minimising overfitting. Secondly, this section explores fusion

mechanisms. Several novel architectures are presented to achieve this, focusing on multi-

modal approaches. In particular, a novel method for fusing multiple modalities by modelling
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Figure 3.8: Example screenshot from a League of Legends livestream.

high-order interactions using a ‘Tensor Train layer’ [222] is presented and evaluated.

This section, and many of the following chapters, focuses on the game League of Legends.

League of Legends is a ‘Multiplayer Online Battle Arena’ game where two teams of five

players compete to reach and destroy the opposing team’s base. To achieve this goal, players

will have to fight computer-controlled monsters, fight other human players, and destroy static

buildings on the map. Simultaneously teams must protect their base from the other team.

Unlike traditional sports where the rules and game mechanics tend to be simple, League of

Legends is highly complex, e.g. players can choose from over 150 characters to play, each

with unique abilities and gameplay. It is one of the most popular esports, with at least

five professional leagues and numerous global competitions2. In addition, it is an incredibly

popular game for streamers and is regularly in the top 3 most popular games being streamed

on Twitch.tv3. Figure 3.8 gives an example of gameplay for a personality-driven stream

featuring League of Legends.

The study presented in this section is motivated by the observation that unsupervised

learning, while successful when applied to Player Unknown’s Battleground, has limited ap-

plicability when generalising to other games. Therefore, exploring supervised learning may

2https://eu.lolesports.com/
3https://twitchstats.net/
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aid in developing generalisable detection techniques across broadcast settings. As discussed

previously in this chapter, labelling highlight moments through annotation is infeasible.

However, it is simpler to annotate video segments based on more objective measures such

as the in-game content. These labels can then be used as a guide for a highlight detection

system. For example, a system could select the moments where the player was engaged in

combat or those where the player demonstrates high levels of arousal.

The rest of this section is organised in the following manner; in Section 3.3.1, the mul-

timodal supervised system is described, in Section 3.3.2 the dataset used is presented, in

Section 3.3.3 the experiment is described, with the results presented in Section 3.3.4. Fi-

nally, discussion and conclusions are provided in Sections 3.3.5 and 3.3.6 respectively.

3.3.1 Methodology

Three models with similar underlying structures are presented to compare fusion techniques.

Like the previous section, three modalities are used, the streamer’s webcam and game footage

alongside the audio stream. For each modality, a set of latent features are extracted from

each frame using a set of CNNs. When considering modalities containing image data, a 2D

CNN is used, whereas a 1D CNN is applied to the audio stream due to the one-dimensional

shape of the audio data. These features are then modelled temporally using several Long

Short-Term Memory (LSTM) [73] recurrent layers. Finally, several fully connected layers are

used to extract a set of classifications, depending on the task presented to the network. The

difference between models, discussed in Section 3.3.1.2, lies in how the multimodal latent

representations after the feature extraction stage are fused to build a shared representation

of the input. The high-level architecture for each model is demonstrated in Fig. 3.9.

3.3.1.1 Feature Extraction

All models use the same set of CNN architectures for extracting a vector of latent features

from each modality. A visual layout of these feature extraction architectures and the struc-

ture of the residual and convolutional building blocks can be found in Fig. 3.10. Each feature

extraction model generates 512 features per frame. These features are then fused and used

in the downstream classification task.

The two image networks use a 2D CNN with a series of residual blocks for streamer and

game data. These residual blocks aid in back-propagating gradient by utilising connections
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Figure 3.9: Comparison between the high level architectures of the three fusion techniques
presented in this paper. All modes use the same feature extraction and fully connected
classification layer shapes but differ in how the input modalities are fused.

which skip several layers, allowing the gradient to flow more easily to layers earlier in the

model. This technique works well for deep CNN models and is well established in the

literature, further discussion of this concept can be found in [71]. The main difference

between the two image networks is that the input for the streamer network is a smaller

input image, and as a result, this network requires fewer layers and weights to model the

features required satisfactorily.

Rather than using a Principal Component Analysis approach to audio modelling, this

section adopts a CNN. This is because it was observed during the previous study that training

a CNN autoencoder was extremely tricky and often led to mode collapse. Thus, given the

unsupervised setting, a Principal Component Analysis approach was necessary to avoid this

issue. However, this chapter focuses on supervised learning; thus, mode collapse is less of

a concern. Therefore this study is applied to take a more sophisticated CNN approach. A

feature extractor with three 1D convolutional layers followed by a dense layer was used for

modelling audio. After each convolutional layer across all feature extractors, ReLU activation

and Batch Normalisation are applied. This audio feature extractor is trained to operate on

the raw audio signal extracted from video data.
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Figure 3.10: Architectures of feature extraction modules. Each ‘Convolutional Block’ and
‘Residual Block’ is a set of multiple layers, shown right.

3.3.1.2 Multimodal Fusion and Temporal Modelling

Once latent features have been extracted from the various modalities, the next step is to

fuse the modalities in addition to temporally modelling per-frame features. This process

aims to extract a single feature vector corresponding to a joint representation across both

modalities and time. Traditionally, concatenating input or representation space vectors has

been one of the most popular approaches [90]. Nevertheless, this method can fail in terms

of modelling interactions between modalities. The fusion approaches detailed in this work

include both early and late fusion and a novel method based on tensor decompositions to

facilitate efficiently modelling high-order interactions between modalities. The methods are

detailed in the following sections.

3.3.1.3 Early Fusion

In the early fusion model, fusion is performed by taking the 512 features extracted for each

modality per frame and fusing them into a single vector of l = 1536. The resulting vector
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represents the fused representation of an input clip across modalities and time. A stack of

20 feature vectors, one for each frame in the segment, is then fed into 2 LSTM layers, each

with 384 neurons. Before and after the LSTM layers, batch normalisation and 20% drop out

are applied to guard against overfitting and aid generalisation.

3.3.1.4 Late Fusion

Late fusion is implemented with separate LSTM sections, each with 128 neurons per layer,

for each modality. Batch Normalisation and Dropout layers are applied before and after

the layers. Concatenation of the various modalities occurs after the LSTM step and right

before classification. As such, a single feature vector with 128 features for each modality,

384 features total, represents the latent representation of the entire clip.

3.3.1.5 TensorTrain Fusion

Both early and late fusion models concatenate feature vectors from each modality into a

single vector. However, this fusion approach has no explicit representations which capture

the relationship between variables in different modalities. To better capture interactions be-

tween different modalities, a tensor is constructed that models up to third order interactions

between modalities. That is, given feature vectors vx, vy, vz each corresponding to separate

modalities, the cross product is calculated via Equations 3.1 and 3.2. As such the fused

feature tensor z ∈ R129×129×129 is created which contains vx, vy, vz, vx⊗ vy, vx⊗ vz, vy ⊗ vz,

and vx ⊗ vy ⊗ vz. The resulting tensor is shown in Fig. 3.11. .

z =

 1

vx

⊗
 1

vy

⊗
 1

vz

 (3.1)

 1

vx

⊗
 1

vy

 =

 1 vx

vy vx ⊗ vy

 (3.2)

At this point, it would be possible to flatten this feature tensor and then pass it through

a series of dense classification layers. However, due to the size of the tensor, 2, 146, 689

elements, this is computationally infeasible. Connecting this tensor to a fully connected

layer with 384 neurons would result in 384 · 2, 146, 689 = 824, 328, 576 weights for this layer

alone. Therefore, a Tensor Train layer [222] is used to connect the latent tensor with the
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Figure 3.11: Exploded structure of the 1st, 2nd and 3rd order interaction tensor constructed
before the Tensor Train layer. Note: Each feature here represents 16 features in the model.
Best viewed on a computer.

classification layers. This layer replaces a dense layer and represents its weight matrix as a

series of smaller tensors, the tensor cores. A tensor train with ranks (1, 2, 4, 4, 2, 1) is used in

this case. Each element in the weight tensor is then approximately represented as a product

of these tensors, thus allowing the model to learn the weighted mapping between the input

tensor z and the output vector with far fewer parameters, around 11, 000, resulting in a

space-saving of 4× 10−5. The Tensor Train layer extracts 384 features, the same number of

features concatenating the original feature vectors, which are then passed to the classification

layers. This approach thus incurs only a small increase in weights whilst, in theory, modelling

these important higher-order interactions.

3.3.1.6 Classification

Regardless of the fusion mechanic, the fused feature vector is then passed into several dense

layers to perform classification. These layers act as separate task-specific ‘heads’ for each

task. Three heads are used, one for game context classification and two for emotion detection,

as each sample has two emotion labels, one for arousal and one for valence. For each of these
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Table 3.3: Distribution of annotations in the raw data set.

Valence Arousal Game Context

Neg Neut Pos Neut Pos In Lane Shopping Ret. to Lane Roaming Fighting Pushing Defending Dead Misc.

246 6,227 727 6,755 445 2,418 294 591 1,422 892 213 233 831 308

heads, the feature vector is passed through a 128 neuron dense layer with ReLU activation

before a final classification layer, which applies a softmax across n neurons where n = the

number of classes (e.g. for valence n = 3).

3.3.2 Data

Video data was gathered from streamers playing League of Legends on Twitch.tv. The data

set consists of 10 streamers, five male and five female, streaming in English. 20 minutes

of footage was gathered from 3 games for each streamer for a total of 10 hours of footage.

This data was then segmented into five-second long non-overlapping segments for 7200 video

clips. Each clip was manually annotated by the researchers across three labels, two related

to the streamer’s affect and one related to what the streamer was doing in the game. While

the number of streamers is limited by the effort required to manually annotated data, the

size of the data set is in keeping with other works, e.g. [37, 38].

3.3.2.1 Affect Annotation

Each clip was annotated for affect, using the streamer’s facial, bodily and vocal cues to judge

their emotional state. Affect was annotated across two dimensions, valence and arousal.

‘Valence’ relates to the positive/negative axis of emotion, whereas ‘arousal’ relates to how

strongly someone is feeling/displaying emotion. For valence, each clip was rated on a three-

point scale, positive, neutral or negative. For arousal, a two-point scale, neutral or positive,

was used because video games, especially League of Legends, are not generally designed to

elicit negative arousal, and thus, negative arousal samples were not present in the data set.

Therefore each clip receives a valance and arousal classification according to visual displays

of the following:

Negative Valence Negative feeling, e.g. sadness.

Neutral Valence A lack of discernible valence.
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Positive Valence Positive feeling, e.g. happiness.

Neutral Arousal A lack of discernible arousal.

Positive Arousal Strong emotional response, e.g. anger or excitement.

As seen from Table 3.3 there is a considerable imbalance between classes with a skew

towards neutral affect in both dimensions. This is to be expected; often, gamers are engrossed

in gameplay and, as a result, do not show outward emotion. This adds another complicating

factor to the difficulty of learning affect in a livestream setting.

3.3.2.2 Game Annotation

Each clip was also annotated for game context, relating to what the streamer was doing

during the clip. This behaviour is not always represented on screen for the duration of the

clip, in most cases, due to players switching their camera in-game to observe what others are

doing. Still, the annotation represents the majority of frames in the video. Eight categories

were chosen, which represent the majority of gameplay events. A ninth ‘miscellaneous’

category was also used. This category was for occasions where the player was not doing one

of the other categories.

In Lane The player is farming, i.e. killing for in-game resources, ‘creeps’ (game-controlled

enemies) in one of the three main lanes. Often the default action, especially during

the early parts of a game.

Shopping The player is spending in-game resources on items to power up the player’s hero.

This is done by selecting items from a tabular menu.

Returning to Lane The player is walking back to the lane after respawning, shopping or

returning to base for health.

Roaming The player is roaming the ‘jungle’ area, the space between lanes. Potentially the

player is also fighting jungle-specific creeps.

Fighting The player is engaged in player vs player combat with the enemy team. This can

be one vs one or as part of group combat.

Pushing The player is pushing into and attacking the enemy base. This often occurs after

the player has spent sufficient time in the lane.
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Defending The player is defending their base. This can be seen as the opposite of Pushing,

i.e. when one team is pushing, the other is often defending.

Dead The player has been killed and is awaiting respawn.

Miscellaneous Something not covered above, for example, the streamer has briefly left the

game and is browsing the internet (e.g. if they are dead and waiting for a respawn).

Similarly to the affect annotations, there is an imbalance between game event classes,

although less pronounced. ‘In Lane’ and ‘Roaming’ are the most popular activities, repre-

senting 33.58% and 19.75% of the data, respectively, shown in Table 3.3. Likewise, Pushing

and Defending are the least common events, likely due to the ’snowball’ effect present in

League of Legends games, where once a team has established a dominant position, the game

can end very quickly.

3.3.2.3 Data Preprocessing and Over-Sampling

Because there are large sample imbalances across all classification tasks, over-sampling is

applied to aid in balancing the samples and thus improving training performance. Over-

sampling our multi-label data is complex because it is crucial to ensure that over-sampling a

minority class in one task does not increase the majority class in a different task. Therefore,

the least and most represented classes across all annotations are calculated, with a weighting

applied to account for the varying number of classes between outputs, wc = Tc/(Td/(1/Nc))

where wc is the representation weight for a class c, Tc is the total for this class, Td is the

total data points in the data set, and Nc is the number of classes for this output. Next, a

data point is selected randomly, which is in the least represented class and not in the most

represented class. The selected sample is then over-sampled in the data set. This process

is repeated until either a predefined threshold is reached, the chosen threshold for this work

was the size of the initial dataset, or no data satisfies the selection requirement. The result

of this oversampling is shown in Table 3.4.

The data is preprocessed by taking each five-second clip and extracting visual and audio

frames at a rate of four frames per second. Game images are 128 × 128 × 3 down-sampled

images taken from the frame. They represent the game context on the screen and, similar to

the previous section, have a black patch placed over the streamer’s webcam. The streamer’s

webcam images are 64×64×3 down-sampled images taken from the frame represent what is
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Table 3.4: Impact of the Oversampling Technique on the Training Dataset. Values listed as
a percentage of the dataset with this label.

Valence Arousal Game Context

Neg Neut Pos Neut Pos In Lane Shopping Ret. to Lane Roaming Fighting Pushing Defending Dead

Before 0.033 0.862 0.104 0.937 0.063 0.35 0.043 0.084 0.206 0.13 0.03 0.033 0.123

After 0.259 0.483 0.257 0.725 0.275 0.181 0.097 0.097 0.146 0.103 0.181 0.097 0.181

present in the streamer’s webcam and contain no gameplay data. The audio represents a joint

stream containing the streamer’s voice, the game audio, and occlusions such as any music

the streamer is listening to and represents the raw audio waveform as a single vector of 5512.

Therefore, the input data for each clip consists of 20 frames (4 fps × 5 seconds) represented

as two image tensors and one audio vector. The temporal and spatial down-sampling was

chosen empirically to provide a reasonable middle ground between representing the original

clip and reducing the data passed into the network for performance reasons.

3.3.3 Experiment

Each model presented in Section 3.3.1 was trained on three tasks. Firstly, to learn a joint

representation of both game context and streamer affect, and thus classify valence, arousal

and game context simultaneously. Secondly, the task of only learning the game context.

Finally, the task was learning just the streamer’s affect.

Keras [36] with the Tensorflow backend is used for implementing each model. Models

were optimized with ADAM [96] with α = 0.0005. Each network was trained for 100 epochs

for each learning task using an NVIDIA GTX 1080 GPU. The number of weights per model

can be found in Table 3.5. For each output, a set of class weights were implemented as an

additional measure to tackle the bias in the data set. To calculate class weights for each

class x, an initial weight ix is calculated as ix = Td/(Tx × Nc) then a scaled weight wx is

calculated so that all weights for an output sum to one via Equation 3.3. For these equations

Td is the total data points in the data set, Tx is the total data points for class x and Nc is

the number of classes for this output, e.g. for a valence class Nc = 3 as there are 3 possible

valence classifications.

wx, wy, ... =
ix

sum(ix, iy, ...)
,

iy
sum(ix, iy, ...)

, ... (3.3)
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Table 3.5: Comparison of Trainable Weights Across Models.

Task Early Fusion Late Fusion Tensor Train Fusion

Affect + Game 9,382,029 6,629,517 6,640,939
Affect 9,331,717 6,579,205 6,590,627
Game 9,282,824 6,530,312 6,541,734

Table 3.6: F1 Scores for each affect label across all models. For each model F1 scores for
each task and each label are reported. Best result for each class in bold.

Fusion Task Neg V Neut V Pos V Neut A Pos A

Early Single 0.206 0.905 0.345 0.966 0.540
Late Single 0.088 0.918 0.340 0.968 0.491
TT Single 0.135 0.928 0.315 0.969 0.537

Early Joint 0.194 0.911 0.362 0.969 0.509
Late Joint 0.286 0.925 0.297 0.964 0.465
TT Joint 0.102 0.926 0.325 0.971 0.476

3.3.4 Results

3.3.4.1 Affect and Game Context Classification

Model and label values for Precision, Recall, and F1 Score are calculated for each task. These

metrics were used because accuracy, e.g. the average correct classifications across a whole

data set, is not necessarily the best measure of success when testing on unbalanced data. In

these cases, high accuracy can be achieved by simply always classifying the majority class,

e.g. for arousal outputting only Neutral Arousal classifications would yield an accuracy of

0.94. As such, the discussion of the results will focus on the individual class F1 Score values

because it represents the harmonic average of Precision and Recall. F1 scores for all models

Table 3.7: F1 Scores for each game context across all models. For each model F1 scores for
each task and each label are reported. Best result for each class in bold.

Fusion Task In Lane Shopping Returning Roaming Fighting Pushing Defending Dead

Early Single 0.842 0.724 0.591 0.794 0.565 0.610 0.667 0.924
Late Single 0.791 0.776 0.513 0.774 0.581 0.582 0.452 0.937
TT Single 0.837 0.777 0.518 0.819 0.557 0.405 0.473 0.948

Early Joint 0.778 0.797 0.496 0.667 0.515 0.568 0.544 0.899
Late Joint 0.840 0.828 0.615 0.805 0.635 0.652 0.557 0.906
TT Joint 0.848 0.765 0.580 0.791 0.630 0.635 0.574 0.930
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Figure 3.12: Delta change in F1 Score performance. Positive values occur when joint task
learning outperforms single task learning. Negative values occur when single task learning
outperforms joint task learning.

across all classes in both single and joint task learning are shown in Tables 3.6 and 3.7.

3.3.4.2 Joint vs Single Task Learning

One of the aims of this study is to explore if learning both game context and affect classifica-

tions simultaneously would improve results. While learning these tasks simultaneously has

the drawback that the model has fewer variables to dedicate to each task, jointly learning the

task may also lead to learning more generalisable and thus robust representations. Addition-

ally, joint task learning requires only a single model to perform recognition across all tasks,

thus resulting in faster training and inference as only one model needs to be trained/queried.

Fig. 3.12 shows the delta in performance between single and joint task learning, showing

that whilst there is a large degree of between-class variance, the models which perform

fusion after the LSTM step see an improvement when learning jointly, whereas the early

fusion model performs worse.
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3.3.5 Discussion

3.3.5.1 Affect and Game Context Classification

Tables 3.6 and 3.7 shows that affect classification is a much harder task than game context

classification, further reinforcing the discussion regarding the difficulty of in-the-wild affect

detection. Importantly, while results such as a high of 0.362 for F1 Score for positive valence

and a high of 0.286 for negative valence may seem poor, they are significantly higher than

a random baseline, which has expected F1 scores of 0.044 (negative) and 0.106 (positive),

because of the hugely imbalanced data set. These affect detection results are in keeping

with similar works, for instance, [202]. There is still interesting research to be done to

accurately model streamer emotions. However, a deep analysis of suitable techniques is

outside this thesis’s scope. It is clear from these studies that affect detection is an important

but challenging task. However, Section 3.2 indicates that modelling highlight moments may

inherently model some elements of affect.

Regarding game context in general, all models perform better when classifying examples

of ‘In Lane’, ‘Shopping’, ‘Roaming’ and ‘Dead’, where F1 scores range from 0.667 (Early

Fusion, ‘Roaming’, joint task learning) to 0.948 (TT Fusion, ‘Dead’, single-task learning),

compared to other context classes. It is difficult to know precisely why the models perform

better in these categories, but it is possible confusion arises for classes such as ‘Pushing’

and ‘Defending’, which can be visually similar. Consider two players on opposite teams

are very close to each other and at the edge of a base. Only players’ positions and prior

knowledge about which side they are on provide clues as to if the streamer is pushing or

defending. Contrast this with the ‘Dead’ class, where the screen is mainly greyscaled with a

fixed message, resulting in a more straightforward classification.

3.3.5.2 Joint vs Single Task Learning

As Figure 3.12 shows, for late fusion and TT Fusion, there is a general if inconsistent im-

provement when learning a joint representation with average F1 Score improvements of 0.044

and 0.026. However, early fusion degrades F1 Score performance with an average change of

−0.036. Furthermore, a Wilcoxon Signed-Rank Test shows that both the change in early

fusion and late fusion are statistically significant at P < 0.05, P = 0.047 and P = 0.03 re-

spectively. A key takeaway from these results is that seemingly fusion techniques occurring
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after temporal modelling see improved results from learning both tasks jointly, but early

fusion, which occurs before the LSTM, sees a performance reduction.

3.3.5.3 Determining the ‘Best’ Model

It is difficult to ascertain from these results which model performs the best. No model

is a ‘winner’, i.e., outperforming the other approaches across all categories. Each model

appears to perform better on some tasks and worse on others. Early fusion outperforms

TT fusion and late fusion for emotion prediction tasks, although TT fusion appears best at

classifying the neutral, majority, classes. This is possibly due to the LSTM layers applied to

the fused representation in the early fusion systems. This format may facilitate a temporal,

multimodal representation that can account for cross-modality cues manifesting at different

points in time, e.g. anticipatory co-articulation. In general, post-LSTM fusion (late, TT-

fusion) provides better performance at game context recognition. Furthermore, TT fusion

seems to slightly outperform late fusion in emotion recognition, perhaps due to TT fusion

better modelling the interactions between modalities.

The early fusion network has significantly more weights than the other two models, Table

3.5. Additionally, it is the only model that sees performance degradation when joint task

learning. Therefore whilst its performance is comparable to other models, it uses approxi-

mately 3 million more weights and therefore has a much higher computational cost. Late

and TT fusion models are roughly only 2/3rds of the size of the early fusion network.

3.3.5.4 Applying Joint Task Learning to Highlight Detection

This thesis is interested in highlight detection. Until this point, this study has not directly

considered this application, although the value in understanding affect and game context is

clear. The classification models presented in this chapter can be used for highlight detection

by segmenting a video across time and then processing each video segment by calculating

the predictions for each class across all tasks. These signals can then be used, alongside

prescriptive measures of highlight, e.g. the player is in a fight and has high arousal, to select

moments.

As discussed previously, determining ground truth highlight labels is exceptionally chal-

lenging. The downside of this approach is that initially, it appears a human editor is required

to define which combination of signals represents a highlight. However, it may be possible
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to mitigate this by employing a second model which can learn the mapping between signals

from the models presented in this work and highlights. This model would require only a few

weights, given that the inputs would be at maximum 13 scalar [0, 1] values. However, this

lightweight model, alongside initial human-sculpted highlight definitions, could potentially

be deployed and fine-tuned over time using crowd-sourcing labels, e.g. via social media

feedback. Furthermore, this approach has the advantage that because the definition of a

highlight can be easily tweaked, it is possible to develop personalised highlight detection

models.

3.3.6 Conclusions

In this section, the problem of modelling streamer affect jointly with game context is posed

within the framework of a deep learning architecture that fuses audio-visual stream data.

Furthermore, an annotated dataset of emotion and game context for video game livestreams

is discussed, the first of its kind at the time of research. The benefits of such data were

discussed. For example, the ease of training supervised learning models. The pitfalls, for

example, the difficulty in annotating such data, are also discussed.

Furthermore, results comparing early and late fusion approaches are presented. Results

show that the, in general, post-temporal modelling fusion generally outperforms early fu-

sion across tasks. Additionally, the difficulty of affect classification in this environment is

shown. Jointly modelling game context and streamer affect in a multimodal setting con-

stitutes an extremely challenging problem. That said, the performance of the supervised

approach suggests that should a suitable game context and emotion to highlight mapping be

developed, either manually or through crowd-sourced fine-tuning, this approach may perform

and generalise better than the unsupervised approach.

3.4 Personality-Driven Livestream Highlight Detection Con-

clusions

This chapter has explored two techniques for highlight detection in personality-driven livestreams.

These techniques were both, in part, successful. However they were also very different and

thus spotlight different challenges. For example, it is clear from the novelty study that

unsupervised learning is helpful because it does not require human data curation. This is
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extremely valuable in livestream highlight detection, given the vast quantity of data across

hundreds of different games. However, the model has several limitations. Firstly, it is unlikely

to generalise well to certain games as it requires games with large amounts of low-intensity

gameplay and a few short moments of high-intensity gameplay. Secondly, it approaches mod-

elling through a one-shot style approach where the model is fit for each stream which, while

effective, has the downside that processing is time-consuming. However, it did indicate how

strong the streamer’s emotional reaction was in determining highlights.

These observations drove the development of the second study discussed in this chapter.

While the joint emotion and in-game event modelling showed promise, especially in classify-

ing in-game events, this study highlighted how challenging hand annotation could be when

training machine learning models which require massive datasets. For instance, the 10 hours

of data took several days to annotate. This challenge would be even more significant if the

model were instead trained to predict highlights, given that highlight annotation requires

subjective judgement and an understanding of the broader context, which would increase

the annotation effort. This study also showed that various fusion mechanisms perform bet-

ter under different circumstances. For instance, early fusion is generally better for affect

modelling, but late/TT fusion is generally better for game context modelling.



Chapter 4

Game-Driven Livestream Highlight

Detection

4.1 Introduction

While Chapter 3 dealt with audio-visual highlight detection for personality-driven livestreams,

this chapter examines game-driven livestreams. These game-driven livestreams are funda-

mentally different to personality-driven livestreams. Certain features of personality-driven

streams are not present in game-driven streams, for example, the streamer’s webcam overlay

as well as their focus on interacting with viewers. However, because game-driven streams

are popular, it affords additional opportunities for highlight detection, especially considering

determining highlight labels.

Automatic sports highlight detection has been a popular area of research for some time.

In recent years the rise of esports, competitive video games often broadcast on livestream-

ing services, has generated a demand for esports specific highlight detection tools. This

chapter, as with the second study in Chapter 3, focuses on League of Legends1. However,

this chapter exclusively studies professional esports broadcasts, unlike the previous chapter

where personality-driven League of Legends livestreams were used. Due to their video game-

based nature, esports have the advantage that those who play them professionally often also

livestream out-of-competition play sessions as an additional revenue source. A typical con-

tent cycle would be for a live broadcast to occur, either as part of an esports competition

or from an individual streamer, and then a highlight video would be manually created by a

1https://www.leagueoflegends.com/

96



CHAPTER 4. GAME-DRIVEN LIVESTREAM HIGHLIGHT DETECTION 97

video editor. This highlight video shows the most exciting moments of the broadcast and can

be shared through video-sharing platforms, e.g. YouTube. This dual content system allows

fans to catch up on a broadcast if it was missed and mirrors traditional sports highlights

broadcasts, although for esports the two streams are often on different platforms rather than

both being televised. This chapter contains a single study into esports highlight detection,

presented in Section 4.2, while Section 4.3 concludes this chapter.

4.2 Crowd-Sourced Highlight Detection

This section tackles audio-visual highlight detection through weakly supervised learning with

positive-unlabelled data. The use of positive-unlabelled data is motivated by the challenges

in labelling data discussed in Chapter 3. Weakly supervised learning has many apparent

advantages over traditional supervised learning. Namely, it is possible to leverage massive

amounts of data due to the minimised human cost of data gathering. For this study, this is

achieved by gathering two datasets. One is of raw, unedited broadcasts, and the second is

a dataset of edited highlight videos. Human editors have made these highlight videos and

released them on video-sharing platforms like YouTube. Moments are considered a highlight

if these video editors select them, and thus this work takes a crowd-sourced approach to

highlight definition, similar to [218]. By selecting a range of highlight videos from multiple

highlight editors, this study aims to generate highlight detection methods that can broadly

recreate the style of already popular videos. This data formulation, therefore, results in one

dataset, the broadcasts, with unknown labels, and the other with only positive labels, hence

the application of positive-unlabelled weak supervision.

In particular, this study focuses on using data in its raw format, i.e. unedited broadcasts

and highlight videos, as these most closely mimic a real-world use case for such a technology.

Therefore, videos often contain adverts, analyst desk segments, and other non-game footage.

This decision is motivated by the desire to evaluate operationalisable techniques and the

observation that human data processing is a bottleneck for such a system. Additionally,

several state-of-the-art highlight detection methods are implemented to provide comparisons

for the ‘Auto-Highlight’ models introduced in this study.
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4.2.1 Methodology

Existing state-of-the-art weakly-supervised highlight detection models primarily have similar

components to those discussed in Chapter 3. The raw data is generally passed through feature

extraction systems, e.g. a Convolutional Neural Network (CNN) or audio frequency analysis

techniques. These features are then used in the downstream systems. Towards the end of

the pipeline, there must be a decision-making mechanism that determines if the incoming

features form part of a highlight or not. The output from this decision-making mechanism is

usually the final output of the system and consists of a time-series signal over the length of a

video, where each point in the signal relates to the likelihood that a single video segment is

a highlight. For these weakly-supervised systems ranking networks have become popular for

this task. Finally, at some point the data from each input modality, e.g. visual and audio

data, must be fused. Once again, exactly how this fusion mechanism is implemented can

vary between models. Two methods are trialled in this study, feature fusion, i.e. fusion of

the latent features, via concatenation and model fusion, i.e. aggregation across a selection

of models. For a particular penitent example of model fusion, see [213].

For this study, these three processes; feature extraction, fusion, and decision making, are

deliberately separated rather than trained end-to-end as with the emotion and game event

work in Chapter 3. This is done to explore the utility of using pretrained feature extraction

networks. The system architecture proposed in this work is discussed in detail below and is

additionally presented in Figure 4.1.

Very few state-of-the-art models utilise data in a format similar to the proposed labelled-

unlabelled data. The only existing model which approaches audio-visual highlight detection

for esports titles using this approach is [213], which is implemented as a state-of-the-art

comparison model. Additionally, the architecture from [218] is implemented as it inspired

the Auto-Highlight approach, although it cannot utilise the benefits of the multimodal nature

of broadcast data because it omits a fusion step.

4.2.1.1 Feature Extraction

Different pretrained feature extraction models are required for each modality. While there

are only two data sources, video frames and audio, the data is treated as four separate

modalities. Firstly, a stack of RGB video frames. Secondly, RGB frames are converted

into optical flow frames to represent motion within a video segment. Thirdly, features are
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Figure 4.1: Full system architecture for Auto-Highlight model using multimodal hybrid
fusion and smoothing. This figure details the end-to-end system, from input data, i.e. video
data, through preprocessing, feature extraction, segment prediction and finally, smoothing
and thresholding operations. The output is a binary vector where each element relates to if
a video segment is predicted as a highlight or not.
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extracted from only a single frame. Finally, features from audio samples. Note that there is

no need to extract webcam frames from the game scene for game-driven streams because this

paradigm does not feature a single personality and therefore lacks the need for a webcam

overlay. Precisely how these features are extracted is detailed below.

Video Feature Extraction There is evidence that pretraining a network on a large,

generic dataset outperforms training a network to generate features for a particular task,

e.g. [6]. To this end, this study utilises a state-of-the-art inflated 3D convolutional network

from [28] which has been pretrained for action recognition on the kinetics dataset [91]. This

two-stream model considers RGB video frames (RGB) and optical flow frames (Flow). It

processes both modalities separately but using the same convolutional architecture. A 3D

CNN is similar to a 2D CNN, e.g. as used in Chapter 3, but with an additional convolution

dimension that convolves over time, represented as a stack of frames. A 3D CNN is used

rather than a CNN-RNN style architecture like in Chapter 3. This is motivated by recent

works which have shown that, at least for short video clips, a 3D CNN is generally more

performant [28]. Using a pretrained inflated 3D convolutional network has the limitation of

requiring a fixed input dimension equal to the pretrained model. This means that the input

time dimension is a constraint, unlike a CNN-RNN architecture. Therefore visual models

use frame sizes of 224 · 224· pixels and a stack of 64 frames total. Video data is sampled at

25 frames per second, and therefore 64 frames equate to 2.56 seconds of video per training

sample. For both data streams, RGB and Flow, 1024 features are generated for each 64

frame video segment. The RGB network receives raw frames taken directly from the video.

This study uses the optical flow method proposed in [53] on greyscale frame data for the

optical flow network.

Audio Feature Extraction Audio data is represented as a time-series vector of data

sampled at 192, 000 hertz. To keep the length of the audio samples consistent with the video

data, 491, 520 audio samples, i.e. 2.56 seconds, are grouped into a single audio training

example. These samples are then processed by calculating the mel-frequency spectrograms

and passing these into a state-of-the-art pretrained speech feature encoder [85]. The encoder

consists of several LSTM layers and generates 256 audio features for use in the downstream

decision-making model.
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Figure 4.2: Comparison of Feature (a), Model (b), and Hybrid (c) fusion architectures. For
simplicity three modalities are shown but in practice any number of modalities can be used.

Single Frame Extraction One of the existing state-of-the-art approaches implemented,

[213], uses features from a 2D CNN that extracts features from only a single frame in addition

to the video features detailed above. An Alexnet [102] network trained in object recognition

on the ImageNet database [42] is utilised as a frame-based feature extractor. Features are

extracted from the final bottleneck layer before classification is performed, resulting in a

feature vector of 9216 features for a single frame.

4.2.1.2 Fusion

Three fusion methods, detailed below, are presented in this work. For a visual overview of

how these fusion methods differ, see Figure 4.2.

Feature Fusion Feature fusion is perhaps the most intuitive method for fusion. After

feature extraction, the modalities are fused, e.g. via concatenation, resulting in a single
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decision model provided with all modalities. However, multimodal feature fusion may not

work well in certain situations. For example, if there is a significant disparity between

the number of features from the modalities, the modality with more features will likely be

over-represented in the decision-making model output. This is especially worth considering

when comparing audio feature extraction, which has 256 features, and single-frame feature

extraction, which has 9216 features. Therefore, this approach is reserved for the modalities

which produce the same number of features, i.e. RGB and Flow. Furthermore, feature fusion

is performed by concatenation and not Tensor-Train fusion because it is only used for fusing

RGB and Flow inputs, which are unlikely to benefit from the more complex fusion method

given that they come from the same data source.

Model Fusion Model fusion utilises a decision-making model for each modality and then

fuses them via weighted aggregation of the outputs. For a given video segment, a highlight

prediction is generated for each modality via separately trained decision-making models,

pm. The predictions for each modality are then weighted by wm. This weighting allows

the mechanism to be fine-tuned based on the performance of each modality if desired, equal

weighting is equivalent to aggregation. The weighted predictions are then summed to produce

a single segment prediction p, i.e. p =
∑

m∈modalities pmwm. Past studies, for example, the

second study in Chapter 3 have shown that sometimes fusing later in the system can improve

performance. That said, model fusion is performed on decisions rather than features and thus

loses fidelity in the fusion step, although it is unclear how much this impacts performance.

In a positive-unlabelled setting such as this study, the weights for each modality need to be

determined heuristically. This is because it is impossible to evaluate the model performance

on training data that mimics the test data, unlike in a supervised setting. For all models, an

equal weighting for each modality is used. However, this is not a requirement, e.g. [213] used

uneven weighting, which put more focus on the video model. For their work, they selected

the weights {0.7, 0.15, 0.15} for RGB, Frame, and Audio outputs, respectively.

Hybrid Fusion Finally, a mixed ‘hybrid fusion’ approach is proposed. The RGB and

Flow feature extraction networks are applied to the same input data domain and have the

same number of features. Therefore it makes sense to perform feature fusion because it

is performed on the rich domain features, thus providing more information to the decision

model. However, feature fusion is not appropriate for cross-domain modalities, i.e. visual
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Figure 4.3: The rank network architecture. f(x) and h(x) are both multi-layer perceptrons.

and audio data, due to the disparity in feature vector size. Therefore model fusion needs to

be employed to fuse audio and visual modalities. Feature fusion is applied to the two visual

modalities to maximise performance, and model fusion is applied to fuse the visual decision-

making model and the audio decision-making model. Hybrid fusion has the added benefit

of equally weighing visual and audio decision-making. This hybrid fusion technique allows

the system to utilise rich features from the same domain, e.g. RGB and Flow data, while

maintaining the ability for the model to work with other modalities, e.g. audio, without

having a significant imbalance in terms of the number of features per feature set. Thus,

hybrid fusion provides the best characteristics of feature fusion of the visual modalities and

RGB, Flow, and Audio model fusion.

4.2.1.3 Decision Making

Ranking Models At some point, a decision needs to be made about if the extracted

features constitute a highlight or not. In Chapter 3 this was achieved as part of the LSTM

layers in the first study or fully connected layers in the second study. However, this is a

trickier task for this study because the training labels are known to be extremely noisy. Data

within the ‘highlight’ dataset are established as positive labels, as segments in this dataset

are selected by a video editor to be a highlight. However, it is known with certainty that the

broadcast dataset is noisy. It must contain a mixture of highlight and non-highlight moments

because the highlight moments are sampled from the original broadcast data. Therefore,

a noisy-label mitigation mechanism is likely worthwhile regardless of the decision-making
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mechanism.

Ranking networks are popular in highlight detection literature; thus, this study employs

one for decision-making. A ranking network is a multilayer perceptron with a single output.

The model is provided with pairs of samples during training, one from each dataset. The

expected output is that the sample from the highlight dataset is ‘ranked’ higher than the

sample from the broadcast dataset, i.e. the output for the highlight sample is greater than

the broadcast sample. Each sample uses the same set of layers such that weight updates

affect the ranking of samples from both datasets. Often for such models, a Hinge loss is used

for weight adjustment.

The Auto-Highlight models follow the modifications proposed by [218]. Namely, the

addition of a secondary network responsible for determining if an input pairing is ‘valid’ or

not. This is a noisy-data mitigation technique aimed at alleviating issues when a particular

input pairing contains a sample from the broadcast dataset which should be considered a

highlight. In this case neither sample should be ranked higher than the other. Therefore

this secondary network takes a group of samples and, using a heuristic noise prior, applies a

weighting to all losses in that batch. This modification performed well in [218] and given that

their noisy data is similar to this study, such a modification is likely to yield good results.

For this study, the assumption is that one in eight samples is invalid. This heuristic

was determined from the observation that matches are often around 40 minutes to one hour

long and highlight videos tend to be between five and eight minutes. Therefore eight pairs

of samples are grouped per training input. A softmax is applied to the output from the

‘validity’ network for these eight samples and then used to weight the ranking loss function,

detailed in Equation 4.1 where f is the ranking network, h is the validity network, s denotes

a sample, and Pg denotes a group of samples. All layers use a ReLU activation function;

thus, the output from the model is positively unbounded, which is necessary to rank samples

correctly. For a further detailed discussion regarding this modification and its motivation,

the interested reader is referred to [218]. Figure 4.3 details the architecture used.

Loss =
m∑
g=1

∑
(si,sj)∈Pg

w̃ijmax(0, 1− f(xi) + f(xj))

s.t.
∑

(si,sj)∈Pg

w̃ij =
∑

(si,sj)∈Pg

σg(h(xi, xj)) = 1

w̃ij ∈ [0, 1]

(4.1)
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Table 4.1: Architectures for each ranking model. The architecture is detailed as a list of
feedforward neuron layers, reading left to right. The weights of the ranking network, f(x),
and validity network, h(x), are also detailed. Memory requirements are listed in MB and
are an approximation. *Feature fusion, † [213].

f(x) h(x) Training Inference
Modality Architecture Weights Weights Memory Memory

RGB [512, 128, 1] 590,593 1,114,883 281.10 0.60
Flow [512, 128, 1] 590,593 1,114,883 281.10 0.60

RGB + Flow* [1024, 512, 128, 1] 2,688,769 4,785,923 572.08 2.70
Audio A† [64, 1] 16,513 32,899 68.68 0.02
Audio B [512, 128, 1] 197,377 328,451 78.60 0.20
Frame [4096, 1024, 512, 256, 128, 64, 1] 42,645,507 80,394,243 2,639.04 42.71

Ranking Model Weights Because each modality has a different number of input fea-

tures, it makes sense to vary the number of layers in the ranking network accordingly. The

architectures used are detailed in Table 4.1, alongside details about the number of weights

and memory requirements of the models. Two values are given for the memory requirements

of each model. Training memory refers to training both f(x) and h(x) whereas inference

memory refers to just calculating a single prediction value from f(x). Accurate memory

profiling with Keras is currently an open issue, and thus this study presents an approxima-

tion2. Note that the implementation for [213] uses an architecture of shape [64, 1] for the

audio ranking network (Audio A). However, it performed poorly. A [512, 128, 1] architecture

(Audio B) is used for all models except the comparison to [213].

4.2.1.4 Binary Classifier

Section 4.2.4.4 compares the ranking approach to a binary classifier. Ranking models are

popular in literature, yet comparing ranking with binary classification is still valuable, given

that most prior studies do not do this. This comparison examines if the assumed benefits of

using a ranking network exist compared to using a more a straightforward binary classifier.

To test a binary classification network, the ranking models used in the hybrid fusion model

are replaced with binary classifiers. These classifiers are multilayer perceptrons with the

same topology as a single instance of the ranking network f(x), without the additional

validity network. They are trained on the same data by assuming that all samples in the

2https://github.com/tensorflow/tensorflow/issues/36327. The solution proposed by James Mishra is used
for this work.
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highlight dataset are positive samples and all samples in the broadcast dataset are negative,

although it is known that the broadcast dataset contains mixed labels. Additionally, because

the classifier network is performing binary classification, the activation for the neuron in the

final layer is sigmoidal, not ReLU, and the loss is calculated using binary cross-entropy.

To mitigate the known deficits of this training paradigm, i.e. that broadcast samples

are known to be noisy, a positive-unlabelled weighting technique, presented by [52], is im-

plemented. A small portion of the training dataset is reserved, in this case 10%. Then the

average output for all positive samples, op in this reserved data is calculated. This value is

then used as a weighting for the output when determining if a sample is a highlight or not,

i.e. for a sample x the output f(x) becomes f(x) × op. Intuitively, the average output for

all positive samples can be seen as a confidence score relating to how confident the network

is that a known positive sample is positive. Using this confidence as a weighting reduces

the model’s output and, as [52] shows, shrinks the decision boundary, thus making positive

classifications less likely but improving precision. This weighting does not affect average pre-

cision calculation, the main metric used in experiments for this study, but has a noticeable

effect on classification given a fixed decision threshold, i.e. as in a deployed setting. These

weighting constants were calculated as; RGB and Flow: 0.97, Audio: 0.71.

4.2.1.5 Time-Series Smoothing

One apparent weakness of this ranking approach is that the model must decide if a video

segment is a highlight based on only that segment. However, in reality, a human video

editor would not do this. Instead, they would use the context of surrounding video clips to

inform their decision. For instance, an uninteresting segment would likely be included if it

links two exciting sections. Likewise, a short but exciting section may be omitted from the

highlight video if clips before or after are uninteresting or contribute little to the match’s

narrative. However, influencing the segment decision-making based on factors outside that

segment is impossible during training because positive label samples, i.e. those taken from

the highlight dataset, are gathered without non-highlight context. The only way in which it

would be possible to intrinsically model context would be if the dataset was fully labelled, e.g.

scenarios (a) and (b) in Figure 4.4, although as discussed in Section 4.2.2, this is infeasible

for the data set gathered in this study. Therefore, a feature-agnostic context modelling

technique may be valuable if applied to decision-making.
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A solution to this challenge is to apply a smoothing convolution to the highlight signal

across the whole video, which allows for context modelling in a heuristic manner. This

smoothing increases the highlight signal for segments in a broadly engaging video portion and

reduces the signal for moments in a generally uninteresting segment. Because the smoothing

convolution is applied to the highlight signal rather than included as part of the rank model

training, it can be applied to positive-unlabelled data. A convolution kernel of length L = 101

is used because this roughly equates to 30 seconds of footage surrounding the sample due

to the sliding window segmentation approach described in Section 4.2.3. The convolution

kernels are all symmetrical, so, for technical reasons, a half-kernel length is used in kernel

initialisation of n = ⌈L/2⌉. It is not clear which values would be most appropriate for this

smoothing kernel, so three options are implemented:

• Linear: A uniform smoothing kernel where each kernel element has the same value.

The kernel initialisation is defined as k = 1 ∈ Rn.

• Gaussian: A Gaussian with height 1 and the peak at the centre of the kernel. The

standard deviation is set to n/2. The kernel initialisation is defined as

k = Gaussian(i, 1, 0, n/2), ∀i ≤ n.

• Power of 2: Each element is calculated as 2−x where x is the distance to the centre of

the kernel. The kernel initialisation is defined as k = 2−i, ∀i ≤ n.

All kernels are then normalised such that the kernel sums to 1 by Equation 4.2. For

a given point in the time-series highlight signal xi and kernel k the smoothed value x′i is

calculated via Equation 4.3. In theoretical terms, position one in a kernel vector represents

the kernel’s centre, position two represents the two values on either side of the centre and so

on. When calculating the resultant value, the absolute index is used to correctly index the

right element of the kernel vector when calculating the value for time-series samples before

the current time step.

k′ =
ki/min(k)∀Ki ∈ k∑k

i=0 ki
(4.2)

x′i =

n∑
j=−n

xi+j · k|j| (4.3)
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4.2.2 Data

4.2.2.1 Training Data

This work tackles highlight detection through weakly-supervised learning by utilising two

datasets, one of positive samples and one of unlabelled samples. This data-label formulation

is similar to traditional semi-supervised learning, but labels only exist for positive samples.

There is a considerable wealth of both broadcast data and fan-made highlight videos. Broad-

cast data contains a mixture of highlight moments, which the model aims to capture, and

non-highlight moments, whereas highlight videos contain only highlight moments. In an ideal

world, it would be possible to find the highlight moments in the broadcast through manual

annotation, for example, by utilising a set of participants who would watch the broadcast

and select their favourite moments. However, as discussed throughout this thesis manual

annotation is extremely expensive and time-consuming, prohibiting leveraging the benefits

of applying deep learning to massive datasets. Another reasonable approach would be to

align the highlight video segments with those in the original broadcast, e.g. by detecting

which frames from the broadcast are also in the related highlight video, e.g. the text dataset

detailed in [58], discussed in Chapter 5. However, while less time-consuming than manual

annotation, it still has a significant data gathering penalty as naming conventions for both

broadcasts and highlights are inconsistent, requiring human preprocessing. Furthermore, the

frame-matching process can be computationally expensive. Such an approach also requires a

corresponding highlight video for every broadcast video and a broadcast video for each high-

light video in the dataset. These challenges make automated broadcast-highlight matching

impractical for large-scale datasets.

Instead, a positive-unlabelled approach is proposed in this study, inspired by [218]. This

approach involves collecting two datasets, one of the mixed labels from broadcasts, and one

of positive labels, from highlight videos. The key to minimising the cost of gathering data

is that there is no connection between the datasets, i.e. the datasets do not necessarily

contain matching source broadcasts and highlight videos. The broadcast dataset contains

replays of League of Legends professional broadcasts from various competitions. The dataset

of human-made highlight videos was gathered from multiple highlight makers who post their

videos online. Some highlight videos contain footage from a single game. Others show

highlights from multiple games, especially if the contest is in a ‘best of n’ format. Figure 4.4
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Figure 4.4: Comparison of the different potential dataset formulations. Notice that for tradi-
tional manual annotation (a) or frame-matched annotation (b), each video in the broadcast
dataset needs a corresponding set of labels, either through expensive manual annotation or
a matched dataset of highlights. This is not the case with the positive-unlabelled data (c).
The cost to gather training data is therefore minimised, and there is no requirement to have
corresponding highlight videos for each broadcast video.

demonstrates how this data differs from the two options for supervised learning and, in doing

so, minimises the cost of gathering data. In total, 257 broadcast videos and 676 highlight

videos were gathered, resulting in more than 193 hours of broadcast video and more than

178 hours of highlight footage. Minimal preprocessing was applied to most closely mimic

a real-world automated system. Each video was processed by converting frame dimensions

to 224 × 224 × 3. Additionally, the frame rate was set to 25 frames per second. No audio

preprocessing was applied.

4.2.2.2 Test Data

While the training data structure follows the positive-unlabelled paradigm, highlight detec-

tion in esports broadcasts is an emerging area of research, so there is currently a lack of test

sets with which to evaluate models. Therefore, a test set of data with labels is constructed
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and used to evaluate the range of models presented in this study. 20 games are selected, five

each for the four major League of Legends esports leagues - LCS (North America), LEC (Eu-

rope), LPL (China), and LCK (Korea). Following the frame matching annotation technique

described above, the human-made highlights from the two most popular highlight channels

are manually retrieved, and frame matched to the original broadcast to find which points

in the main broadcast the highlights appear. These highlight channels are popular, having

275, 000 and 356, 000 subscribers. In contrast, the official League of Legends esports channel

hosting full-length games has fewer subscribers with 252, 000, and no other highlight chan-

nels have more than 40, 000 subscribers. This process results in a test set of 20 complete

games, constituting 18 hours, 6 minutes and 51 seconds of broadcast data. It also contains a

broad mix of broadcast settings, players, advertisements, and commentators from across the

world, thus mimicking real-world challenges, as shown in Figure 1.5. This size of the test

set is in keeping with prior works; [213] used just four videos for evaluation, and [37] used

24 games but from only one tournament, the 2014 World Championship.

Frames from both highlight videos are compared to the associated source broadcast to

determine ground truth annotations for a given broadcast video. The broadcast frame that is

the closest match is selected, given a distance threshold because some highlight videos contain

content absent in the original broadcast, e.g. the content creator’s brand. Frames are sub-

sampled by a factor of eight for processing speed, resulting in a highlight annotation fidelity

of 0.32 seconds. This process is still computationally expensive; thus, it took several days to

calculate labels for the test dataset. This observation further highlights the advantage of the

positive-unlabelled approach for training data because it deliberately minimises processing

time. Segments are labelled as a highlight if they appear in either of the two highlight videos

to capture the breadth of content, which can be considered a highlight. This process results

in 203805 individual test set samples, with the shortest video contributing 4840 samples and

the longest contributing 14498 samples. Overall each video in the test set contributed a

median of 10003 samples.

4.2.3 Experiment

In total, four experiments are presented in this study. Firstly, a comparison of all single

modality models, including [218]. Secondly, a comparison of all multimodal models, including

the Auto-Highlight Hybrid fusion approach and [213]. Thirdly, experimentation of applying a
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time-series smoothing step. Finally, a comparison of ranking models and binary classification,

with and without noisy label mitigation. All models are implemented in Python using a range

of popular machine learning libraries. PyTorch [153], Keras [35], and Tensorflow [1] were all

used to compose and train models, with Numpy [70], Scikit Learn [154], Librosa [121] and

OpenCV [21] used for a range of auxiliary functions. There is a highlight label fidelity of 0.32

seconds. However, due to the limitations of the feature extraction models, each clip must be

of length 2.56 seconds. Therefore a sliding window system is applied to input samples. For

this sliding window, a segment’s annotation is calculated from the timestamp in the middle

of the segment. All models were trained using 2 PCs. The first has a Ryzen 5 1600 CPU,

16GB of RAM and an Nvidia 2080ti GPU. The second had an Intel i7 9700 CPU, 64GB of

RAM, and 2x Nvidia Titan RTX GPUs. These machines were chosen because they represent

consumer-grade hardware and thus indicate if the techniques described in this work are likely

to be operationalisable.

All experiments compare several models by evaluating their performance on the test set.

The principal metric for performance is the mean average precision (m̄AP ). This metric is

popular in rank-based highlight detection literature because it evaluates performance without

determining a decision boundary for the model, which is a tricky task given that ranking

networks are deliberately trained without one. m̄AP is calculated by taking the mean of

the average precision (AP ) for all videos in the test set. AP is calculated by averaging

the precision achieved at all recall values for all samples in a video. It is unclear if this

average precision is expected to be normally distributed, and as such, the median average

precision (m̃AP ) is also reported. Precision, in general, is a reasonable metric for evaluating

the models because the quality of a highlight video suffers if it contains many dull non-

highlight moments. A high recall and low precision model would generate a very long video

that would be unlikely to function as a ‘highlight reel’. Additionally, accuracy is an inferior

measurement because the positive class constitutes a small amount of the test data.

4.2.4 Results

4.2.4.1 Experiment One - Modalities Comparison

The first experiment compares the performance of each modality if it is treated as the sole

model for highlight detection. Here the four modalities, RGB video frames (RGB), optical

flow video frames (Flow), audio (Audio), and single-frame features (Frame), are compared
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Table 4.2: Results for Experiment One. Minimum Average Precision, Maximum Average
Precision, Mean Average Precision, and Medium Average Precision are shown for four single
modality models alongside a random baseline. 1 [218].

Modality Min. AP Max. AP m̄AP m̃AP

Random 0.025 0.394 0.118 0.104
RGB1 0.049 0.454 0.328 0.325
Flow 0.064 0.513 0.335 0.332
Audio 0.041 0.574 0.366 0.343
Frame 0.031 0.371 0.151 0.147

Figure 4.5: Box and Whisker plots for all models evaluated in Experiment One.

alongside a random baseline. The random baseline assigns a random value between [0−1] for

each sample for all videos in the test set. It is included to demonstrate the baseline challenge

of this task. Note that because [218] uses just RGB frames to determine highlights, the RGB

modality here represents the implementation of that approach.

Table 4.2 details the minimum AP (Min AP), maximum AP (Max AP) as well as both
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averaged AP measures (m̄AP and m̃AP ) across all videos in the test set for the five models

tested in this experiment. To accompany this, Figure 4.5 presents box and whisker plots

showing the distribution of results for each model across each video in the test set. Un-

derstandably, the random baseline performs very poorly. More interestingly is how poorly

the Frame model performed. This is likely due to two effects. Firstly, the Frame model is

the only one that does not consider temporality and thus has less information about what

events occur in a segment. Additionally, the Frame ranking architecture, following [213] is

much larger and more complex than other networks and thus may train poorly, e.g. over-

fitting. The other three models, RGB, Flow and Audio, all perform similarly, with the Audio

network slightly outperforming the visual modalities in both m̄AP and m̃AP .

A Wilcoxon signed-rank test is performed to test the statistical significance of these

results, which can be found in Table 4.3. Assuming that a p-value of < 0.05 indicates

statistical significance, unsurprisingly, the random model is significantly different from all

other models. Likewise, the single-frame features are also significantly different from the

modalities that capture temporal dynamics in some way (RGB, Flow, and Audio). Perhaps

unsurprisingly, given that the feature extraction models are trained similarly following a

similar architecture, the RGB and Flow models are not significantly different. The RGB

and Flow models are close in performance to the Audio model, indicating the importance of

all three modalities. However, the Audio model predictions are significantly different from

the visual models, perhaps due to audio cues indicating different types of highlight to visual

cues. This difference may further indicate the benefits of a multimodal approach.

Additionally, the Vargha Delaney A measure [211] is also calculated and found in Table

4.3. This is a statistical test for effect size, which describes not just if a pair of models

are significantly different, but how much one is statistically ‘better’ than the other. An A-

measure value of a > 0.5 indicates that one model is better than another, with values a > 0.56

indicating a small effect, a > 0.64 indicating a medium effect, and a > 0.71 indicating a large

effect. The A-measure for a pair of models is symmetric around 0.5 and sums to one. This

means that additionally a > 0.44, a > 0.36, and a > 0.29 and indicate small, medium and

large effect, albeit negative effect. There is a large effect in the performance improvements

of the temporal models, i.e. RGB, Flow, Audio, over the single-frame model. There is

also a medium effect size when comparing Audio to RGB and Flow, indicating a genuine

performance benefit in using Audio data over Visual data if only one modality is used.
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Table 4.3: Statistical testing results for Experiment One. The upper right triangle details
Vargha Delaney A measure. Values less than 0.5 indicate column outperforms row and values
more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44∨a >
0.56). ‡ denote a medium effect size (a < 0.36∨ a > 0.64). ⋄ and bold denotes a large effect
size (a < 0.29∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon
signed-rank test. Bold denotes significant values, i.e p < 0.05.

Random RGB Flow Audio Frame

Random - 0.06⋄ 0.06⋄ 0.05⋄ 0.32‡

RGB 2× 10−6 - 0.48 0.39† 0.91⋄

Flow 2× 10−6 5× 10−1 - 0.42† 0.91⋄

Audio 2× 10−6 3× 10−3 3× 10−2 - 0.92⋄

Frame 3× 10−3 2× 10−6 2× 10−6 2× 10−6 -

Table 4.4: Results for Experiment Two. Minimum Average Precision, Maximum Average
Precision, Mean Average Precision, and Medium Average Precision are shown for 6 multi-
modal models. 2 [213].

Modalities Fusion Min. AP Max. AP m̄AP m̃AP

RGB+Flow Model 0.064 0.514 0.375 0.379
RGB+Audio Model 0.081 0.654 0.444 0.456
RGB+Flow+Audio Model 0.075 0.616 0.436 0.431
RGB+Audio+Frame2 Model 0.025 0.647 0.264 0.280
RGB+Flow Feature 0.070 0.567 0.418 0.424
RGB+Flow+Audio Hybrid 0.072 0.642 0.462 0.452

4.2.4.2 Experiment Two - Comparison of Multimodal Models

Experiment Two provides a comparison between several multimodal approaches. The system

proposed by [213] is presented alongside the hybrid fusion model and a selection of other

models indicative of the performance gains from multimodal systems. Three model fusion

models are presented, RGB + Flow, RGB + Audio, RGB + Flow + Audio, and one feature

fusion model, RGB + Flow.

Similarly to Experiment One, Table 4.4 shows the minimum and maximum AP and

both average AP measures for all multimodal models. Likewise, Figure 4.6 contains the

corresponding box and whisker plots. The RGB + Audio + Frame architecture presented

in [213] is the worst performing model. The hybrid approach is the best performing system

in terms of m̄AP , although just using RGB + Audio model fusion performs surprisingly
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Figure 4.6: Box and Whisker plots for all models evaluated in Experiment Two.

well, perhaps due to the similarities in RGB and Flow data.

The hybrid Auto-Highlight model also produces significantly different predictions for all

models except for the RGB + Audio model fusion model, Table 4.5. Again, this may be

due to the similarities in RGB and Flow prediction. Table 4.5 also details the A-measure

calculations for this experiment. A large effect size is seen when comparing the hybrid

approach to the RGB + Flow model fusion model and a medium effect compared to the

RGB + Flow feature fusion model. This large effect size indicates the performance benefits

of using hybrid fusion across audio and visual modalities compared to visual data.

Interestingly no real effect is demonstrated when comparing RGB + Audio and RGB

+ Flow + Audio model fusion models, perhaps given that these both include the Audio

domain, which appears to be the single strongest indicator of a highlight. The medium

effect over the RGB+Flow+Audio model fusion model demonstrates the value of the hybrid

fusion Auto-Highlight model over only using model fusion. The RGB + Frame + Audio

model., i.e. [213], performs very poorly in this test, likely due to the Frame model being a
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Table 4.5: Statistical testing results for Experiment Two. The upper right triangle details
Vargha Delaney A measure. Values less than 0.5 indicate column outperforms row and values
more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44∨a >
0.56). ‡ denote a medium effect size (a < 0.36∨ a > 0.64). ⋄ and bold denotes a large effect
size (a < 0.29∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon
signed-rank test. Bold denotes significant values, i.e p < 0.05. R - RGB, Fl - Flow, A -
Audio, Fr - Frame.

Model Feature Hybrid

RFl RA RFlA RFlFr RFl RFlA

Model RFl - 0.31‡ 0.32‡ 0.75⋄ 0.35‡ 0.24⋄

RA 1× 10−5 - 0.53 0.84⋄ 0.58† 0.46
RFlA 2× 10−6 3× 10−1 - 0.84⋄ 0.56 0.40†

RFlFr 1× 10−2 8× 10−5 3× 10−4 - 0.17⋄ 0.12⋄

Feature RFl 9× 10−6 8× 10−2 5× 10−2 6× 10−4 - 0.37†

Hybrid RFlA 2× 10−6 9× 10−2 7× 10−4 1× 10−5 4× 10−6 -

poor indicator of highlights, thus causing prediction noise.

4.2.4.3 Experiment Three - Time-Series Smoothing Convolutions

For this experiment, smoothing convolutions were applied to the hybrid fusion Auto-Highlight

model. All smoothing kernels are experimented with and compared to the model’s perfor-

mance without smoothing. Once again, key results are presented in Table 4.6 and Figure

4.7. While the ‘Power of 2’ smoothing kernel works poorly, both ‘Linear’ and ‘Gaussian’

outperformed the non-smoothing model. Furthermore, the ‘Gaussian’ smoothing performed

better than the ‘Linear’ model. Additionally, all smoothing kernels produce significantly

different predictions except for the Power of 2 model compared to No Smoothing. Gaussian

smoothing is the only technique that produced an improvement with a notable effect size

compared to not using smoothing. The full Wilcoxon signed-rank test and Vargha Delaney

A measure results are presented in Table 4.7.

4.2.4.4 Experiment Four - Comparison of Ranking Network vs Binary Classifier

Throughout the first three experiments, all models use a ranking network to make pre-

dictions. However, this fourth experiment compares ranking to binary classification using

hybrid fusion and Gaussian smoothing. These are fundamentally different models, one is
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Table 4.6: Results for Experiment Three. Minimum Average Precision, Maximum Average
Precision, Mean Average Precision, and Medium Average Precision are shown for the hybrid
model with various smoothing kernels applied.

Smoothing Min. AP Max. AP m̄AP m̃AP

No Smoothing 0.072 0.642 0.462 0.452
Linear 0.087 0.719 0.487 0.484
Gaussian 0.079 0.726 0.511 0.503
Power of 2 0.073 0.642 0.442 0.438

Figure 4.7: Box and Whisker plots for all models evaluated in Experiment Three.
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Table 4.7: Statistical testing results for Experiment Three. The upper right triangle details
Vargha Delaney A measure. Values less than 0.5 indicate column outperforms row and values
more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44∨a >
0.56). ‡ denote a medium effect size (a < 0.36∨ a > 0.64). ⋄ and bold denotes a large effect
size (a < 0.29∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon
signed-rank test. Bold denotes significant values, i.e p < 0.05.

No Smoothing Linear Gaussian Power of 2

No Smoothing - 0.44 0.34‡ 0.58‡

Linear 3× 10−3 - 0.42‡ 0.63‡

Gaussian 2× 10−6 2× 10−3 - 0.71⋄

Power of 2 2× 10−3 2× 10−6 2× 10−6 -

Table 4.8: Results for Experiment Four. Minimum Average Precision, Maximum Average
Precision, Mean Average Precision, and Medium Average Precision are shown for the hybrid
model alongside a binary classifier.

Decision Model Min. AP Max. AP m̄AP m̃AP

Classifier 0.046 0.719 0.499 0.542
Ranker 0.079 0.726 0.511 0.503

binary classification and the other outputs unbounded ranks. However, the post-processing

applied to the ranking models transforms the unbounded ranks into binary classification.

Thus the two models can be compared like for like. Table 4.8 details the minimum AP,

maximum AP, and both average AP measures for the hybrid model and a binary classifier

model and Figure 4.8 details the test set box plots. Only one set of scores for the binary

classifier is presented in these results because the weighting to account for uncertain labels

does not affect average precision calculations.

Initial experiments are also presented to set a detection threshold rather than relying

solely on m̄AP . Selecting a suitable threshold is vital for deploying Auto-Highlight in a

real-world situation because it is necessary to convert the continuous, unbounded highlight

Table 4.9: Accuracy, Precision, Recall and F1 score for Experiment Four.

Decision Model Accuracy Precision Recall F1

Classifier 0.878 0.411 0.295 0.343
Weighted Classifier 0.893 0.559 0.074 0.131
Ranker 0.888 0.488 0.559 0.521
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Figure 4.8: Box and Whisker plots for all models evaluated in Experiment Four.

signal into binary segment predictions. This threshold selection is trivial for the classifier

because the model is trained using an exact threshold value, in this case, 0.5. The weighting

constant requires the threshold to be set at 0.5 to function correctly because it operates by

reducing the decision boundary under this assumption. Selecting a threshold for the ranking

model is less straightforward and must be determined heuristically. The ranking model has

been trained under the assumption that one in eight pairings are invalid, i.e. one in eight

samples (12.5%) in the broadcast dataset are highlights. Following this, a dynamic threshold

is used, where the 12.5% of samples for a given video with the highest ranks are selected as

highlights. This dynamic threshold technique is established in ranking-network literature,

for example, [218]. Importantly, this means that models which require a decision boundary

to be set heuristically, i.e. ranking models, may appear worse than they are because a

poorly chosen threshold may artificially affect results. However, deploying a ranking model

in a real-world application would require setting this threshold. Furthermore, the noisy-label

mitigation weighting for the classifier model can be applied.
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When comparing thresholded models output, calculating the m̄AP becomes impossible,

but more traditional metrics such as accuracy, precision, recall and F1 Score are useful. These

are shown in Table 4.9. Measuring accuracy is not particularly useful for this task because

there is a considerable class imbalance in the data, and accuracy does not weigh one class as

more important than the other. In this data, many more video segments are non-highlights,

but the task is to detect moments in the minority highlight class. As such, accuracy may lead

to models which appear successful but, in practice, rarely detect the exciting moments and

instead overclassify the majority non-highlight class. Precision, recall and F1 are concerned

only with the positive class, i.e. highlights, and therefore are more suitable. While precision

measures are helpful for highlight detection evaluation, as evidenced by their prevalence in

literature, recall is also valuable when examining thresholded results. Recall ensures that

the model maximises interesting moments. Therefore the F1 Score, the harmonic mean of

the precision and recall, is a reasonable metric for evaluating the ultimate performance of a

model.

The highlight signal produced by these two approaches is very different. Figure 4.9 shows

the output for an indicative game for both the weighted classifier and ranking model. The

signals from each half of the model (i.e. RGB + Flow and Audio) alongside the fused weighted

signal are shown. Furthermore, the unweighted signals appeared to be more correlated in

the ranking model. To test this empirically, the Pearson’s correlation coefficient for these

signals is calculated for all videos in the test set. On average, the ranking network’s decision

models are more often correlated. The median correlation was 0.434 for the rank model and

0.291 for the classifier.

4.2.5 Discussion

These results show several important discoveries. Firstly, the proposed Auto-Highlight hy-

brid fusion model outperforms the current state-of-the-art ranking models. This performance

improvement is evidenced both with and without the time-series smoothing. The perfor-

mance benefit of the smoothing is also an important finding. It shows that modelling video

data as part of a time series, rather than merely individual 2.56 second segments, signif-

icantly improves performance, even if that modelling is via post hoc heuristic smoothing.

This is further evidence that context is essential for modelling the highlight moments in a

broadcast.
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(a) Ranker Model

(b) Classifier Model

Figure 4.9: Time-series highlight signal for the Ranker (a) and Classifier (b) models from
Experiment Four on a single video in the test set.
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One somewhat surprising finding is that audio appears to perform the best of all single

modalities. This is an exciting result because it would be expected that the visual data, es-

pecially in-game, would be more consistent between training examples, and thus, the ranker

would be able to better model which moments are interesting. However, sports commenta-

tors are trained to make the audience ‘feel’ when moments are exciting by delivering their

commentary with high arousal. The high arousal levels in commentator speech appear to

be a powerful indicator of highlight moments, mirroring [198]. That said, there is a broader

range of results (MaxAP −MinAP ) for the audio modality compared to both visual do-

mains, which may indicate that while it performs well in average metrics, it is less consistent.

Furthermore, the confidence value determined for the weighted classifier model is lower for

the audio model. The findings indicate that audio is a potent indicator but that it also

appears in some ways less reliable than visual data, perhaps due to the natural noise present

in commentator speech, e.g. they may get animated when arguing about the effectiveness of

a particular play, which would falsely appear to be an indicator of a highlight.

The method from [218] performs worse on this domain than in the original paper. How-

ever, the method from [213] performs better on this dataset. It is valuable to point out

that [218] was evaluated on significantly different data, human action highlight recognition,

but [213] was evaluated on similar data, esports coverage of a game similar to League of Leg-

ends. It is expected that this video game highlight setting would be complex and perhaps

more challenging than related tasks, e.g. human action highlight recognition. Firstly be-

cause, as discussed above, context is vital and secondly because the visual range of gameplay

is small, e.g. the difference between a highlight and non-highlight frame is likely smaller than

in human actions. This might also explain the generally poor performance of the single-frame

model.

There does appear to be one video in the dataset where all models perform poorly,

evidenced by the low-performing outlier in most box plots and Figure 4.10, which shows the

precision-recall curves used to calculate the average precision for test set videos using the

full Auto-Highlight model, i.e. hybrid fusion with smoothing. Upon manual inspection, this

video has much non-game content, especially highlights from previous matches and replays

of celebrations with excited commentators providing the voiceover. This extra content is

unusual among the test set and explains the poor performance. A human editor would

easily understand that these moments are outside of the game being played, but these models
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currently cannot. This could be solved using a second model trained only to identify the

start and end of a match and then applying the Auto-Highlight model to that section of the

broadcast.

Table 4.10 details the average execution time for various parts of the system. These times

were calculated using the test set and the Nvidia 2080ti GPU-equipped machine detailed in

Section 4.2.3. Feature extraction directly from video data is the most computationally ex-

pensive part of the process. This is understandable due to the high complexity of video data.

By comparison, calculating the initial segment decisions is very fast, with all models taking

around 0.004 seconds. Therefore, even the most complex hybrid fusion model is capable

of ‘real-time’ prediction, i.e. processing faster than data is generated, utilising consumer-

grade hardware. However, such prediction is currently infeasible due to the thresholding

requirement and smoothing, which are applied to the entire broadcast. These processes are

computationally fast, taking approximately 0.5 seconds per video, although this time varies

slightly depending on video length. Therefore it would be possible to process segments in

real-time and then apply the smoothing and thresholding techniques when the broadcast

ends and thus generate and distribute the highlight video extremely quickly.

Calculating the memory usage of the models presented in this work is challenging due to

the choice of implementation library for the ranking decision models. Keras has no native

method for accurate profiling memory usage. However, approximate solutions exist, e.g. the

one used for Table 4.1. Table 4.1 details the number of weights for each ranking model used

in this work. From this, it is clear that the Frame only model is huge, ∼ 42 million weights,

compared to all other models. This is approximately 15 times larger than the next largest

ranking model in terms of weights, requiring nearly five times more memory during training

and over 15 times more during inference. Thus [213] has a much larger memory footprint

than other approaches. Not only does the larger model size increase run-time and memory

footprint, but it also likely contributed to the poor performance of the frame model due to

over-fitting. Comparing weights also determines the relative complexity of models, if not the

total memory cost.

To demonstrate the processing time differences between feature extraction and ranking,

the RGB and Flow feature extraction models have a combined ∼ 25 million weights, and

each require over 1300MB of memory during inference, while the RGB + Flow feature fusion

decision model requires just 2.7MB. Therefore it is evident that the decision part of the
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Table 4.10: Average Execution Time per sample in seconds for both Feature Extraction
(including preprocessing) and the Segment Decision Process.

Component Average Time (seconds)

RGB Feature Extraction 0.215
Flow Feature Extraction 0.298
RGB + Flow Feature Extraction 0.495
Audio Feature Extraction 0.013
Segment Decision Process 0.004

network is extremely lightweight compared to feature extraction. Thus, while the hybrid

fusion Auto-Highlight model has approximately six times the weights and nearly five times

the memory requirements compared to [218] it still operates quickly and adds little total

operating time to the system. However, this approach provides significant performance

benefits, which appear worth the additional time and memory requirements. Additionally,

all decision models other than the Frame model, owing to its size, are lightweight enough to

train quickly, with each model taking just one to two hours to train on consumer hardware.

Finally, discussing the implications of Experiment Four, specifically Table 4.9 is worth-

while. While the performance between the two models is similar when calculating m̄AP

and m̃AP , when a threshold is selected, the ranking model performs very well, despite the

threshold being chosen heuristically, compared to the, in theory, ‘perfectly’ selected threshold

for the binary classifiers, i.e. the threshold with which the model was trained. The ranking

model has similar precision to the weighted classifier and is better than the unweighted classi-

fier. However, it has far better recall and thus a better F1 score. This suggests that a ranking

approach is more suitable for deployment than the corresponding classifier model, even with

a heuristically decided threshold. Furthermore, the classification noisy label weighting has

a large effect. It is the most precise model. However, it seriously affects the recall of the

model. This results in an ineffectual model for this domain. The highlights are intended to

entertain but also present an abridged narrative of the match. While precision is arguable

the most important single metric, such a low recall score would, in practice, lead to a model

which fails in this respect.
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Figure 4.10: Precision Recall curves for all videos in the dataset with the hybrid fusion model
with gaussian smoothing.

4.2.6 Conclusion

This study presents a multimodal hybrid fusion model for automatic highlight detection in

esports broadcasts. It shows significant improvement over existing techniques, in some cases

achieving a m̄AP nearly twice as high as existing state-of-the-art multimodal approaches in

this domain. Furthermore, applying a smoothing kernel convolution to the output signal of

the model is proposed, which further significantly improves results. Lastly, the assumption

that ranking approaches outperform corresponding classification approaches is examined.

While classification performance is comparable when averaging across all potential thresh-

olds, when even a heuristically chosen threshold is selected, the ranking model outperforms

the classifier model on critical metrics such as F1 Score. While this Auto-Highlight approach

has some limitations, e.g. context is only modelled crudely, it provides a solid foundation

to operationalise automatic highlight detection for game-driven broadcasts. The results are

an improvement over other state-of-the-art models, and additionally, the model can be run

quickly, just a few minutes per video, on consumer-grade hardware, which would allow es-



CHAPTER 4. GAME-DRIVEN LIVESTREAM HIGHLIGHT DETECTION 126

ports broadcasters to quickly edit and release highlight videos after a match has finished.

4.3 Game-Driven Livestream Highlight Detection Conclusions

This chapter has presented a study into highlight detection using game-driven broadcasts.

This study is the first in this thesis which has, through positive-unlabelled data, been able to

leverage massive datasets of video data. The ability to minimise the cost of data gathering,

e.g. in terms of time and human effort, while still being able to train effective detection

models is desirable for deployment in a real-world setting. Furthermore, the Auto-Highlight

model presented works very well compared to state-of-the-art ranking-based highlight mod-

els, and smoothing provides significant benifits as a post-processing technique for context

modelling.

The results of this study in some respects a breakthrough concerning livestream high-

light detection. By utilising these extremely popular esports broadcasts with an established

community of highlight editors, much higher quality highlight detection models are possi-

ble compared to Chapter 3. Thus the techniques presented in this chapter are much more

likely to be useful within the esports broadcast industry as they are of sufficient quality to

be used in a real-world setting and operate quickly enough to allow this. The drawback

of the Auto-Highlight model and the positive-unlabelled data is that it is only suitable for

game-driven esports broadcasts and not personality-driven broadcasts. This is due to the

broadcast-highlight content cycle for esports games. Many personality-driven broadcasts are

not edited into highlight videos and those which are often feature extra content, e.g. pop-up

images and audio, not present in the source broadcast. However, the esports industry is enor-

mous; thus, while personality streamers cannot benefit from this work, many stakeholders

can.



Chapter 5

Highlight Detection from Text

Chat Data

5.1 Introduction

So far, this thesis has focused on audio-visual modelling of highlight moments. Audio-visual

data goes hand-in-hand because they represent constituent parts of video data. Therefore, it

makes sense to develop systems which utilise a combination of these modalities. Furthermore,

these modalities have been studied together in detail in wider literature. However, one of the

potential benefits of studying highlight detection methods for livestreaming is that text chat

data almost always accompanies audio-visual broadcast data. Livestream chat is valuable

for this research because chat may be an indicator of events in the stream [86], as well as an

interesting language domain to study. Therefore, this chapter investigates livestream chat

and its suitability as a signal for highlight detection.

Livestream data is significantly different from typical natural language. These varia-

tions, discussed in detail in Section 5.2, make livestream language unique and cause many

complicating factors. The way chat is generated is distinctive. For example, it is format-

ted differently from prosaic text, i.e. there are many authors, sometimes up to thousands.

Further, chat is presented as a scrolling window of chat messages, as shown in Figure 5.2.

Messages are displayed until enough new messages have been sent that the message leaves

the chat window. The higher the volume of messages being sent, the less time a message is

visible. Thus, often messages must be sent promptly so that chat participants can respond

to in-stream events. Additionally, chat messages make liberal use of slang and often contain

127
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:)
Emoticon Emoji Emote

Figure 5.1: Example of the different types of pictographic tokens. Emoticons are created
by combining standard characters. emoji are pictograms included in some modern character
encodings. Emotes are platform specific pictograms.

Figure 5.2: Example screenshot of livestream chat from a League of Legends livestream.
Author names have been removed for anonymity.

many misspellings.

This can be due to, for example, viewers speedily typing messages reacting to the stream.

These misspellings can also be intentional, e.g. ‘leet’ speak and other spelling modifications

[18]. Additionally, chats heavily use pictographic tokens, for example, emoticons, emoji, and

‘emotes’ [14], domain-specific emoji with rich, complicated meanings. These pictographic

tokens are demonstrated in Figure 5.1. Therefore, carefully analysing livestream data and

its properties is vital to developing effective livestream highlight detection models using chat

data. Furthermore, a specialised neural network is needed because of the unique qualities of

chat data.

This chapter focuses on two studies. The first, detailed in Section 5.2, performs a general

exploration of livestream chat and details its idiosyncrasies compared to typical language.
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The second, detailed in Section 5.3, details a novel architecture for state-of-the-art highlight

detection, alongside comparisons to competing approaches. This approach utilises a custom

stacked transformer architecture designed to model the unique features of Livestream chat

data, i.e. the temporal nature of chat logs. Finally, Section 5.4 concludes the finding from

these two studies.

5.2 Understanding Livestream Chat - The TwitchChat Dataset

There has been increasing research into livestream chat, for example, works discussed in Sec-

tion 2.3. However, these works tend to be carried out in isolation, and at the time of research

there are no publicly available datasets of Twitch chat data. A result of this is that there

is no one study which can provide a foundation for livestream natural language processing

research. We, therefore, present a large-scale dataset of chat text alongside an analysis of

its content. This dataset has been open-sourced as a contribution to the research commu-

nity1. Additionally, this section presents baseline investigations of the dataset, highlighting

the uniqueness and challenges of livestream chat analysis. Skip-Gram Negative Sampling

(SGNS) word vectors [128] and human evaluation of the learnt space are employed to achieve

this. SGNS is known to produce curious vector spaces [130] but, even still, livestream chat

vector spaces seem to have a particularly strange shape compared to SGNS models trained

on typical English language text.

While livestream chat has some similarities with other non-traditional language data,

e.g. social media data, it is strongly evinced in the literature that livestream chat has unique

properties. Primarily, chat is strongly linked to streamed content [134,162], e.g., viewers react

to events in the stream and is thus fundamental in understanding the context of livestreams.

Secondly, due to the vast chat size and time constraints when writing messages, viewers

need to respond quickly, resulting in unique properties. Notably, most tokens are entirely

unknown to existing social media-focused lexicons, e.g. Vader [78]. Therefore, understanding

this domain is both highly challenging and essential as the popularity of livestreaming as

entertainment continues to rise.

1https://osf.io/39ev7/
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Table 5.1: Games chosen for the TwitchChat dataset, alongside their genre and the game
ID used in the Twitch API to retrieve chat data.

Game Genre Twitch Game ID

League of Legends Multi-Player Online Battle Arena 21779
Fortnite Battle Royale 33214
Grand Theft Auto V Action-Adventure Game 32982
World of Warcraft Massively Multi-Player Online Role-Playing Game 18122
Dota2 Multi-Player Online Role-Playing Game 29595
CounterStrike: Global Offensive First-Person Shooter 32399
Hearthstone Strategy Card Game 138585
Player Unknown’s Battlegrounds Multi-player Online Battle Arena 493057
Overwatch First-Person Shooter 488552
Rainbow 6 Siege First-Person Shooter 460630
Apex Legends Battle Royale 511224
Fifa 19 Sports Game 506103
Minecraft Sandbox Game 27471
Total War: Three Kingdoms Grand Strategy Game 502377
Dead by Daylight Multi-Player Survival Horror Game 491487
Call of Duty: Black Ops 4 First-Person Shooter 504462
Starcraft 2 Real-Time Strategy Game 490422
Magic: the Gathering Strategy Card Game 2748
Diablo 3 Action Role-Playing Game 313558
Rocket League Sports Game 30921

5.2.1 The Twitch Chat Dataset

5.2.1.1 Data Collection

The dataset was gathered from Twitch.tv between June and October of 2019 by selecting the

most popular channel for a set of games, motivated by [92], and recording all messages being

sent in that channel until it went offline, then repeating this process. Twenty different games

were selected, representing the most popular games on the platform when data gathering

started. These games are listed, alongside their genre, in Table 5.1. Channels were only

considered if they were streaming in English, as that is the most popular language on the

platform and the common language among the researchers involved in curating this dataset.

That said, there is no requirement that chat is communicated in English, only that the

streamer has selected English as the channel’s language.

The above process resulted in a large dataset of over 60 million tokens from 1,951 doc-

uments. ‘Token’ is a generic term which refers to a single ‘unit’ of language. In the case of

this dataset, a token refers to a single word, emoticon, emoji, or emote. Each ‘document’

represents text from a single stream session. Data was gathered from 666 different streamers.

Summary statistics regarding the distribution of document features, e.g. the distribution of
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Table 5.2: Summary statistics describing the distribution of several dataset features. ‘View-
ers per Stream’ was recorded at the start of data gathering.

Feature Median Interquartile Range Min Max

Stream Documents per Streamer 1 2 1 21
Viewers per Stream 2,211 5,586 0 165,371
Messages per Stream Document 5,196 124,340 2 483,230
Message Length 2 4 1 266

messages per stream document, can be found in Table 5.2. These statistics are not expected

to be normally distributed; thus, the Interquartile Range is reported rather than the Stan-

dard Deviation. Visualisation of the relationship between these features is omitted here for

brevity. However, these figures can be found in Appendix A.

For privacy purposes, all direct references to usernames, both streamers and viewers, in

the dataset have been replaced with a random string. This was achieved using a ‘salt and

hash’ anonymisation function where the username was concatenated with a private salt, and

the resultant string was then hashed using the SHA1 hashing algorithm. This was done so

that despite the anonymisation, it is possible to encode new data using the same process

should the dataset be expanded.

5.2.1.2 Data Cleaning Process

The publicly available version of the TwitchChat dataset is published with minimal cleaning

and processing. The initial chat logs have been anonymised and formatted into CSV files,

alongside a separate metadata file containing features about the stream itself, e.g. the number

of viewers. This allows researchers with different goals to access the data in the rawest form

and process it in a way that suits their work. During the course of the research presented

in this chapter, several additional data processing steps are undertaken to make the dataset

suitable for SGNS training.

The data cleaning process’s first stage is removing unwanted tokens and messages. For

instance, ‘stop words’, commonly used words, e.g. ‘the’, ‘and’, and ‘is’, are removed because

they provide very little information. This is especially important for the SGNS models

because, as discussed in detail below, they are trained based on tokens co-located in the text.

Retaining stop words would harm training. Additionally, any private messages received are

removed as they are not sent to contribute to the general chat but are generally targeted
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Table 5.3: Dataset size (in terms of number of tokens and number of unique tokens) before
and after data cleaning stages.

Metric Raw Dataset After Stage 1 After Stages 2 & 3

Tokens 61,040,692 47,783,915 38,751,630
Unique Tokens 1,658,055 1,405,084 10,011

messages. Further, these often appear when data scraping begins, e.g. welcoming the scraper

to the stream. In a similar vein, ‘bot’ messages are removed. These are messages sent to the

general chat by an automatic bot rather than a human and often are used to help moderate

the chat and provide broadcast information, e.g. the details of a giveaway if the streamer is

running one. Finally, generally malformed and unusual tokens are removed because curating

a massive dataset inevitably results in some errant data.

Next, lemmatisation is performed. This takes similar words and processes them to rep-

resent them with the same token in the data. For example ‘plays’, ‘playing’, and ‘played’

are lemmatised to their stem work ‘play’. This is a typical part of most text preprocess-

ing. This generic lemmatisation is performed using tools provided by the NLTK Wordnet

engine [115, 129]. Due to its unique properties, livestream chat data requires several addi-

tional lemmatisation steps. Firstly, popular emotes often have many variants. These can

be streamer-specific or celebrating some other aspect, e.g. pride. To highlight the breadth

of emote variants, a selection of ‘Kappas’ are shown in Figure 5.3. Emote lemmatisation

is applied to ‘Kappa’, ‘lul’, ‘pog’, ‘pepe’, ‘jebait’, and ‘lmfao’. Secondly, livestream chat

contains a large amount of word expansion, e.g. ‘goooood’ is used rather than ‘good’, and

other common slang spellings, e.g. ‘would’ve’ is spelt ‘woulda’. Regex pattern matching is

used to recognise and lemmatise 38 expansion and slang misspellings. Cleaning the data in

this manner resulted in a dataset of approx 47 million tokens.

Stage two of the cleaning process is to select a subset of the cleaned and lemmatised tokens

to train the models. Only a subset of unique tokens are used for computational feasibility.

This is because a data representation for each token must be stored in the model. Thus the

more unique words modelled, the larger the model weight requirements. As Table 5.3 shows,

there are still ∼ 1.4 million unique tokens after stage one of the cleaning process. Inspired

by [127], the ‘vocabulary’, i.e. the set of all unique tokens, is limited to the ∼ 10, 000 most

popular tokens. These tokens are selected by assigning each token a ‘document frequency’

score, representing the number of documents in which the token appears. All tokens with a



CHAPTER 5. HIGHLIGHT DETECTION FROM TEXT CHAT DATA 133

Figure 5.3: Variations of ‘Kappa’ (top left) collected using the ‘View Similar Emotes’ feature
on https://twitchemotes.com (accessed 08-10-2019).

Figure 5.4: Log Frequency/Log Rank for the cleaned dataset. Zipfian distributions are linear
when log transformed.
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document frequency score greater than or equal to the 10, 000th most frequent token were

selected, resulting in a 10, 011 token vocabulary. Tokens were selected based on document

frequency rather than total frequency because certain tokens are heavily used in the streams

of certain channels but not elsewhere. This dataset is intended to be general-purpose and

describe the overall landscape of livestream chat across many streamers and games. Selecting

tokens based on raw frequency would have resulted in certain tokens, mostly emotes, which

are streamer specific and thus not used across Twitch in general.

Once the vocabulary has been determined, stage three is to remove all tokens that were

not selected. Once completed, the total tokens in the dataset is ∼ 39 million, around 63%

of the initial dataset, Table 5.3. This is evidence that it is possible to reduce the number

of unique tokens and thus model size while retaining a large amount of data. Furthermore,

more tokens were removed during phase one of the data cleaning process, where fairly typical

processes in natural language work were carried out than were removed to ensure the model

was of a computationally feasible size. This cleaned dataset of popular words is used for the

remainder of this section, and references to the dataset refer to this cleaned data.

5.2.1.3 Exploring the Distribution of Token Popularity

Zipf’s law [231] is an empirical law which describes the relationship between the frequency

of a token in data and its ‘rank popularity’, i.e. the popularity of a word where the most

popular word is assigned the rank 1 and so on. This law suggests that the frequency of

a token is roughly inversely proportional to its ‘rank popularity’. Most languages roughly

follow a Zipfian distribution, and thus the second most popular token occurs about half as

often as the most popular, the third most popular, about a third as often and so on. Such is

the power of this law that it is very surprising to find an example of a language which does

not follow it. To test for a ‘Zipfian’ distribution, the log-rank for each token is plotted against

its log frequency. Distributions which follow Zipf’s law have a roughly linear relationship

between tokens.

Figure 5.4 shows the log-rank log-frequency graph of all∼ 10, 000 tokens in the TwitchChat

dataset. Surprisingly, both the most and least popular tokens in the dataset do not follow

Zipf’s law. Instead, it appears that the distribution initially becomes Zipfian after the ∼ 26

most popular tokens. These 26 most popular tokens are used more often than expected.

These 26 tokens include many Twitch specific words and those, e.g. clap, which are likely
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to be prevalent in ‘cheering’ style communications. They are; ‘lul*’, ‘pog*’, ‘haha*’, ‘pepe*’,

‘no*’, ’lulw’, ‘so*’, ‘go*’, ‘hehe*’, ‘lol*’, ‘kekw’, ‘way*’, ‘clap’, ‘what*’, ‘kappa*’, ‘wa’, ‘chat’,

‘why*’, ‘like’, ‘get’, ‘trihard’, ‘¡3’, ‘game’, ‘na’, ‘:)*’, and ‘ewww*’. In the above list ‘*’

denotes the stem token for tokens which underwent lemmatisation.

Additionally, the dataset stops becoming Zipfian starting with tokens with rank ∼ 3, 000.

After this point, tokens are used less frequently than expected. This interesting finding shows

that Twitch chat is very different from ordinary language. In particular, it seems that there

are certain tokens which are more or less popular than expected. The overuse of popular

tokens is potentially due to the ‘cheering’ effect observed in certain large streams, where the

channel is inundated with a small subset of tokens used to cheer on the streamer or show

support. Additionally, it seems that the use of language, in general, is fairly limited on

Twitch.tv; only about 3,000 tokens are used as often as expected. This may be due to the

fast-paced and time-limited nature of livestreaming - fewer tokens are appropriate for use in

the chat context than in traditional natural language.

5.2.2 Case Study: Word Vector Models

To demonstrate the TwitchChat dataset’s unique features, an analysis using four SGNS word

vector models is carried out. These word vector models are particularly useful for showing

the peculiarities of the learnt vector spaces. Additionally, human evaluation of the vector

spaces and cluster-based analysis is performed.

5.2.2.1 Skip-gram Negative Sampling Word Vectors

Skip-gram Negative Sampling (SGNS) word vectorisation is a method for taking a set of

tokens and finding a semantically meaningful vector space for those tokens. In doing so,

each token is assigned a vector, and, ideally, semantically similar tokens have vectors which

are similarly located in vector space. Traditionally, SGNS models, much like other forms

of word vector models such as Continuous Bag of Words (CBOW) or Skip-Grams [126],

use the spatial distance, i.e. the number of tokens in between two selected tokens, as cues

for semantic similarity. This spatial distance is key to training an SGNS model and is

why including stopwords negatively affects models; many tokens appear spatially close to a

stopword token because they are highly prevalent in the text.

The key to training an SGNS model is how samples are selected from the text corpus.



CHAPTER 5. HIGHLIGHT DETECTION FROM TEXT CHAT DATA 136

The Quick Brown Fox Jumps Over The Lazy Dog

Target Token

Context Tokens
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Jumps Lazy

1
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Figure 5.5: Example sampling process for SGNS model. Context window l = 2. The
positive training sample is sampled from the context window. The negative training sample
is sampled from the entire vocabulary.

Unlike CBOW or Skip-Grams, where the architecture is trained to output a token prediction

given co-located tokens, SGNS models are trained similarly to binary classification. SGNS

input data contains a mixture of ‘positive’ samples, i.e. co-located words, and ‘negative’

samples, i.e. non-co-located words. First, a context ‘window’ hyper-parameter, l, must be

selected to achieve this. Given a selected ‘target’ token, randomly selected from the corpus,

all tokens within l tokens are considered potential context tokens. From these, a ‘context’

token is randomly selected. This token pair is assigned a label of 1 for training. Next, a

‘negative’ token is selected. This is carried out by randomly sampling a token from the entire

vocabulary. This token pair is assigned the label 0 and acts as noise to aid learning semantic

vectors [128]. This sampling process is visually displayed in Figure 5.5. There are many

ways this negative context word can be sampled from the vocabulary, e.g. by randomly

selecting a word from the document, uniformly sampling the vocabulary, or, as in this case,

by weighted vocabulary sampling. To carry out this weighted sampling, first, a sampling

table is created, where each token value is determined using v = min(1,
√

(fs + 1) · fs ), where

f is the token’s normalised frequency and s is a sampling factor hyper-parameter. For this

section s = 1e−5. Tokens are then selected as the negative sample based on this sampling

table. This results in selection probabilities which are inversely proportional to the popularity

of a token. Intuitively, this is because high-frequency tokens are more likely to be selected

as ‘target’ tokens and thus need to be selected less frequently as context tokens to allow the

model to learn all tokens in the vocabulary [128] evenly.

Once these positive and negative training samples have been generated, the model, con-

sisting of only a few layers, can be trained. Firstly, the corresponding embedding, i.e. vector,

is found for both input tokens. This is done by assigning each token with a unique numeric

id, often in the range [1, vocabularysize]. This id is then used to index into the embedding
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Figure 5.6: The Skip-Gram Negative Sampling (SGNS) training architecture. Once trained
the embedding layer can be queried to retrieve token vectors.

layer, which has a weight matrix of size vocabularysize·embeddingsize where the embedding

size refers to the length of each vector and thus influences the number of dimensions in the

vector space. Once the vectors have been retrieved, the dot product is computed, followed

by Sigmoid activation. This results in an output from the network between [0, 1]. Output

values closer to 1 represent vectors closer in the vector space. This output value, alongside

the training label, is then used to calculate Binary Cross-Entropy Loss. This way, token pairs

commonly co-located in the corpus are co-located in the vector space. This architecture is

visually displayed in Figure 5.6.

5.2.2.2 Dynamic and Temporal SGNS

Developing a livestream vector model requires special attention due to several observations.

Firstly, livestream chat is naturally temporal. Typical English language used to train vector

models, e.g. prosaic text, is written without time factors, e.g. there is no sense that two

sentences which follow each other in prosaic text have a particular time distance between

them. Contrast this with livestream chat messages where two messages sent one after another

may be sent at similar times, e.g. reacting to a stream event, or sent minutes apart, e.g.

during a quiet period in the chat. This fluctuation is often triggered by viewers reacting

to stream events, so it seems probable that the temporal distance between messages may
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indicate token-relatedness. Intuitively, if two messages are sent at similar times in reaction

to an in-game event, their content is likely semantically similar. However, if two messages

are sent a long time apart, even if they are co-located in the corpus, they are less likely to

be related. Furthermore, this inherent time constraint results in messages that often need

to be written promptly to engage with fellow viewers during particular moments. This can

have the effect that livestream chat messages often have many repeated tokens and are not

formed of complete sentences but instead focus on ‘quick fire’ reactions. This, especially

the repeating tokens issue, suggests that using a fixed window size may not be appropriate

for livestream chat. Therefore, this section presents two modifications to the SGNS model,

designed to account for the peculiarities of livestream chat compared to typical prosaic text.

Firstly, a proposed model dynamically expands the context window to include all tokens

within a message that are not the target token. This allows the model to overcome the

issues with repeated tokens while neatly handling the challenge of messages, which are often

very different lengths, and the concerns over blanketly allowing tokens to be considered part

of the context if they are inside the context window but sent by a different viewer.

Secondly, rather than sampling negative samples from the entire vocabulary, using the

frequency table method described above, negative samples are sampled from messages sent

during the stream. Additionally, if they are sufficiently close temporally, some samples

are not assigned a 0 label but are instead assigned some label 0 < l < 1. In theory,

this allows the sampling procedure to have a sampling distribution which approximates

the unigram distribution whilst incorporating temporal distances between messages into the

model. Furthermore, this allows the models to sample negative training data from real-world

examples. Given that the TwitchChat corpus is gathered from many streamers, each of whom

may have a particular community who favours particular words, sampling in this manner

is expected to create improved vector spaces. This is achieved by reformulating the initial

binary classification task into a regression task and then allowing ‘negative’ training labels

to be in the range [0, 1], derived from a transformation of the temporal distance between

messages containing the paired tokens.

This transformation is achieved using a Gaussian Radial Basis Function (RBF), f(x) =

ae
−

(x− b)2

2c2 , where x is the temporal distance between messages in seconds. e, a, b and c are

all constants. e is Euler’s number. a controls the maximum output value for the function,

in this case a = 1. b controls the x input value, which results in the peak output. For



CHAPTER 5. HIGHLIGHT DETECTION FROM TEXT CHAT DATA 139

Figure 5.7: Visualisation of RBF transformations for temporal distances between messages.

the purpose of this study, b = 0. Therefore the maximum value, 1, occurs when there is 0

temporal distance between the messages. Finally, c is the standard deviation and determines

the slope of the function. Two different values for c, c = 2, and c = 5 are experimented

with because it is not initially clear what the most appropriate hyper-parameter is. An RBF

is used because it is hypothesised that the curve is similar to the ground-truth value. A

visualisation of this function is shown in Figure 5.7.

5.2.3 Experiment

In total, four word-vector models are employed. Firstly, a traditional SGNS algorithm.

Secondly, a variant using dynamic windowing with l = message length (DW-SGNS). Both of

these treat training as a binary classification problem, and so use Binary Cross-Entropy loss.

The key difference is that the DW-SGNS model should, in theory, better sample training

examples through the dynamic-windowing and sampling from the same document. Finally,

two temporal model SGNS variants, 2T-SGNS (c = 2) and 5T-SGNS (c = 5) are trained.

These models frame the negative sampling challenge as a regression task and thus use Mean
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Squared Error loss.

For all models, inspired by [127], an embedding dimension of 300 is used. Each model

is trained for a total of 5, 000 epochs, where each epoch consists of 500 mini-batches, and

each minibatch contains 16, 384 training samples drawn randomly from the dataset. All

models are implemented using Tensorflow’s Keras API [1, 36]. Two evaluation techniques

are applied. Firstly, a relatedness test, detailed below, is performed, which uses human

evaluation of semantic embeddings. Secondly, the vector spaces themselves are explored

through a range of techniques.

5.2.3.1 Relatedness Test Details

Evaluating the vector spaces is a difficult task because livestreaming is a unique domain

and, as such, traditional techniques are not currently suitable. For example, evaluating

vector spaces against a predetermined test set is standard. However, such an approach is

inappropriate for livestream data because most tokens popular in the livestream context are

unique to livestreams and thus not represented in typical language test sets. For comparison,

only 13% of the tokens in the Twitch-Chat vocabulary exist in the Vader sentiment engine

[78]. Furthermore, livestream-specific testing sets do not currently exist and curating one

constitutes a large body of work and is outside this thesis’s scope. Therefore, the evaluation

techniques employed cannot require prior knowledge about the meaning of tokens, hence the

advantages of a relatedness test over other evaluation methodologies.

The relatedness test employed to evaluate these vector spaces is inspired by [176] and

utilises crowd-sourced testing. First, the 100 most popular tokens from the vocabulary are

selected, referred to as ‘target’ tokens. Next, each model is queried, and the 1st, 5th and 50th

nearest ‘neighbours’ for each target token are retrieved. Human participants were shown

20 target tokens alongside their neighbours from all models and were asked to select the

neighbour they considered the most related to the target. If two competing models share

a neighbour, the neighbour is only presented once. The relatedness test was constructed as

an online survey using the Qualtrics platform. Participants were gathered through online

advertising on social media sites, such as reddit.com and twitter.com, which deliberately

targeted participants who have experience with Twitch.tv due to the unique nature of the

language used on the platform.
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5.2.4 Results

5.2.4.1 Relatedness Test

After cleaning invalid responses, e.g. where respondents who either did not respond or only

answered ‘None/Don’t Know’ were removed, there were a total of 154 respondents. Respon-

dents were not forced to answer every question presented, and there was some randomness

in the way questions were selected. Therefore there is variance in the number of responses to

each question. Each question was answered by a median of 24 respondents, with each target

token receiving a minimum of 14 responses and no more than 35 responses.

To analyse this study’s results, each model’s performance is compared. Performance is

determined by the percentage of respondents who, for a target token, selected one of the

neighbours generated by that model. Because two different models can suggest the same

neighbour, summing the percentages across all models may sum to more than 100%. Figure

5.8 (a) shows the ‘percentage selected’ performance in the relatedness for all models across

3 token rank strata; those with token ranks 1 to 7, i.e. the 7 most popular tokens, those

with ranks 8 to 26, and those with rank greater than 26. This stratification is motivated by

Figure 5.4 because the Log Frequency - Log Rank graph gradient shifts after the token with

rank 7 and rank 26. Figure 5.8 (b) shows the percentage amount that each neighbour, 1st,

5th and 50th, was selected when a model was chosen by the participants.

As with the results in Section 3.3, no model outperforms the others in all situations.

SGNS is the most selected model in general and is overwhelmingly the best model with very

popular tokens. However, the performance gap is closed for lower-ranked tokens, with DW-

SGNS and 5T-SGNS models being selected more often than SGNS for tokens with rank ≥ 26.

That said, in general, the models performed poorly. Respondents selected the ‘None/Don’t

Know’ answer more than 35% of the time. SGNS for high-ranked tokens is the only instance

where a single model was selected more than the ‘None/Don’t Know’ option. In hindsight,

it was not ideal to couple ‘None’, i.e. all models failed to produce a token related to the

target, and ‘Don’t Know’, i.e. the respondent cannot answer the question, e.g. because they

are not familiar with the target word. This coupling makes it challenging to evaluate if the

models performed poorly or if the meaning of tokens in the livestream context is obscure,

even to those who frequent such platforms.

Because it is unclear if poor performance on lower-ranked tokens is due to poor quality
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(a)

(b)

Figure 5.8: Relatedness survey results. (a) shows the % each model was selected across
different frequency rank bands. (b) shows the % a neighbour was selected for each model.
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models or because participants understand these tokens less, and thus the quality of response

is lower, several tests are performed. Firstly, the Vader [78] dictionary is queried to see which

tokens exist in its lexicon and which are Twitch.tv specific. In total, 21 tokens, i.e. 21%, exist

in Vader, which is still a relatively small number, despite Vader-known tokens being more

represented in the top 100 words compared to the general dataset where only 13% of tokens

are in Vader. Because Vader contains words more typically used in common parlance, it can

be expected that ‘known’ tokens are likely to be understood by participants. Next, given that

respondents are more likely to respond ‘None/Don’t Know’ for lower-ranked tokens, a Mann-

Whitney U test is performed comparing the ranks of ‘known’ (to Vader) and ‘unknown’ (to

Vader) tokens across the test set. In theory, if the ‘known’ tokens also tend to have high

ranks, this may help explain the increase in ‘None/Don’t Know’ responses for lower-ranked

tokens. However, this test shows no statistically significant difference between the ranks

of the known and unknown tokens, meaning that the known tokens are evenly distributed.

Therefore, it is reasonable to believe that the performance difference is likely due to these

models finding worse vectors for less common tokens. It is interesting to observe how the

performance of the SGNS and 5T-SGNS changes as the popularity of tokens decreases. SGNS

steadily becomes less often selected as token rank decreases, while 5T-SGNS is more often

selected for lower-ranked tokens. This may be due to the sampling procedure for 5T-SGNS,

where a much more extensive selection of tokens can produce non-0 labels, thus allowing the

model to learn vectors for less popular tokens better. Unfortunately, this relatedness test

only examined the most popular 100 tokens, so further experimentation would be required

to confirm this.

Focusing on Figure 5.8 (b), we would expect to see that neighbours closer in the vector

space are selected more often than those further away. This would show that the vector spaces

are learning semantic token embedding. In general, this figure confirms this expectation,

evidenced by the fact that the 50th neighbour is consistently the least selected answer for

all models. This confirms the assumption that the models are learning to co-locate tokens

semantically. Interestingly, for both SGNS and 2T-SGNS, the 5th neighbours are selected

more than the 1st neighbour, which is an unexpected result. It is not clear exactly why this

is. Indeed, for 2T-SGNS, the percentage selected for both the 1st and 5th are near identical

and may indicate that the space learnt by the 2T-SGNS model is better at co-locating many

tokens which are all semantically similar. In fact, for the 5T-SGNS model, there is only a 5%
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(a) SGNS (b) DW-SGNS

(c) 2T-SGNS (d) 5T-SGNS

Figure 5.9: UMAP transformation of the vector space for each model (a-d). Each data-point
represents a token in the vocabulary. Data-points are coloured based on the which k-means
cluster they belong to.

difference between how often the 1st and 5th neighbour are selected. Perhaps this ability to

more accurately co-locate many tokens is a benefit of the temporal SGNS models, although

future work further examining the intricacies of chat data vector spaces would be required.

5.2.4.2 Visualising the Vector Spaces

The vector spaces have a dimension of 300, so the shape of the space is challenging to visu-

alise. Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)

[122] is a dimensionality reduction technique which can decompose a high dimensional space

into a very low dimension space, e.g. two dimensions. This low dimension space can then be

visualised. UMAP is particularly attractive as a decomposition technique because it promises

to retain both the global and local geometry of the original vector space in the transformed,

lower-dimensional space. Additionally, the space can be clustered, e.g. by using k-means
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(a) Median Chat Speed (b) Median Message Length

(c) Median Streamer Rank (d) Median tf-idf

(e) Document Frequency Rank (f) Token Frequency Rank

Figure 5.10: KDE plots comparing the distributions of the 100 tokens closest to the centre
of each cluster for SGNS.

clustering, which, combined with the UMAP visualisation, indicates the underlying structure

of the high dimensional space. Applying k-means clustering to each model reveals that all

models have two core clusters selected through the elbow method. The UMAP decomposi-

tions and clustering for all models are shown in Figure 5.9.

It is not initially clear why the models have two clusters. This property is remarkable,

given that typical word vectors, e.g. those available in Tensorflow’s Projector tool2 form a

single cluster. While all models produce a space which can be split into two clusters, each

model generates differently sized, and shaped clusters, e.g. 5T-SGNS has a much larger clus-

ter 0 and data-points, bar several outlier tokens, which are generally closer together. It may

be that relaxing the label constraint allows for a less fragmented vector space because some

token pairs may never appear in the same message, despite them appearing temporally close

together. The vector space learnt by SGNS contains a strange crescent-shaped cluster. This

specific shape is likely an artifact of the UMAP process rather than accurately represented

in the vector space. However, it does indicate that the SGNS space may have even stranger

geometry than the other models.

To further understand cluster make-up, it is possible to examine the properties that

tokens in these clusters contain. Figure 5.10 shows kernel density estimation (KDE) plots of

features for the 100 words closest to each cluster centroid. This section presents only plots

for the SGNS model for brevity. The other models exhibit similar behaviour, and plots for

these models can be found in Appendix B. ‘Chat speed’ refers to the number of messages

sent in the 10 seconds surrounding a token’s appearance. Cluster distributions which skew

2https://projector.tensorflow.org/.
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higher in ‘Chat speed’ indicate tokens used more often when many messages are being sent,

e.g. because the streamer has many viewers or because a reaction-worthy event has occurred

in the stream. ‘Message Length’ is the average length of the messages containing the token.

‘Streamer Rank’ describes the popularity of the streamers whose stream this token appears

in. Streamer Rank is calculated by ranking the mean number of views the streamer had

for all documents for that streamer. The most popular streamer is assigned the rank of 1.

‘Term Frequency-Inverse Document Frequency’ (tf-idf) describes how important a certain

token is to a given document. It is calculated by multiplying the ‘term frequency’, the

number of times the token appears in a given document, i.e. tf(t,d) =
ft,d∑

t′∈d ft′,d
by the

‘inverse document frequency’, the log of the number of documents divided by the number

of documents the token appears in, i.e. idf(i,D) = log N
|{d∈D:t∈d}| . Thus tf-idf becomes

tf-idf(t, d,D) = tf(t, d) · idf(i,D) . High tf-idf indicates tokens often appearing in a given

document but not in many other documents. These may be tokens specific to a particular

game, streamer, or subculture. ‘Document Frequency Rank’ is the number of documents

a token appears in, and ‘Token Frequency Rank’ is the total number of appearances for a

given token.

These KDE plots show that the most significant difference between the clusters is how

popular a token is, both in terms of ‘Token Rank’, i.e. overall popularity, and ‘Document

Rank’, how many documents each token appears in. Cluster 0 tokens tend to be more critical

to the documents they appear in, despite being less used. The message length is reasonably

consistent between the two clusters, but cluster 0 tokens appear more often when chat is

slower. Overall, it is evident that cluster 0 tokens are less prevalent in general but often have

a high tf-idf and a flatter distribution across median stream rank. This can be interpreted

to mean that cluster 0 tokens are probably tokens specific to certain streamers or games,

possibly indicating game-specific terms or personalised emotes. Cluster 1, on the other hand,

appears to be made up of more platform-wide terms, as they are more popular terms that

appear in more documents. Further, because Cluster 0 tokens are more likely to appear when

chat is slower, it is possible that these tokens are used in genuine discourse, e.g. discussing

game strategy, rather than cheering.



CHAPTER 5. HIGHLIGHT DETECTION FROM TEXT CHAT DATA 147

5.2.5 Discussion

Livestream data is very different to typical text data. For instance, the popularity of tokens

does not follow a Zipfian distribution, and the vast majority of popular tokens are not used

outside of the platform. This, alongside the lack of existing datasets, makes studying this

domain challenging. The TwitchChat dataset provides a foundation for shared livestream

chat research, and the analysis presented in this section highlights the challenges in this

domain.

Additionally, the learned vector space appears to cluster tokens into two clusters, rather

than the expected once cluster which is observed from vectorising traditional language. Fur-

thermore, minor changes to the model, e.g. varying the ‘c’ value in temporal models, results

in very different spaces. However, all models are separable into two clusters which is an

important discovery. The differentiating factor for these clusters seems to be how the tokens

are used, measured through metrics such as token rank, document rank and tf-idf.

5.2.6 Conclusions

The TwitchChat dataset is a large-scale livestream chat dataset designed to empower the

research community to begin exploring this domain, given the apparent differences from

typical text domains. Several key challenges exist, for example, further understanding these

vector spaces and research into models which can generate vector spaces with strong semantic

or sentimental links between tokens, potentially uncovering the meaning of livestream-specific

tokens and emotes. Likewise, given that these spaces are clusterable, it may be possible to

explore the homogeneity of these clusters, e.g. through Hopkins Statistic [13]. Additionally,

tracking tokens from each cluster over time may uncover information about what is happening

in the stream and how the audience reacts. Another avenue of research could be to explore

the implication of context on token use, especially given that distinct communities form

around channels [68,181].

This data is beneficial for understanding how highlight detection models can be developed

using chat data. For instance, the models in Chapter 4 use pretrained networks. However,

these do not exist currently for chat data due to the lack of attention from the Machine

Learning research communities at the time of writing. This large-scale dataset can be used

to pretrain such a model. Furthermore, the comparison between different SGNS models

suggests that modelling the temporal aspect of chat is important, especially when modelling
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less popular tokens. The next section in this chapter will use the Twitch-Chat dataset, as

well as certain features, e.g. which tokens are popular when pretraining models can predict

highlights from chat data.

Finally, an evaluation of the dataset shows that careful work in designing testing metrics

for modelling chat data is required. While the crowd-sourced relatedness test enabled vector

spaces to be compared, it appears less suitable for evaluating livestream vectors than spaces

learnt through more typical text. This would likely result in significant research output but

is beyond the scope of this thesis.

5.3 Textual Highlight Detection

The previous section explored the unique nature of livestream chat data and presented a

curated livestream chat dataset. Analysis was performed via word vectorisation models.

These vector models are extremely useful for understanding the nature of the dataset on a

token basis. However, while these vectors are learnt using context, they are not necessarily

immediately useful for modelling large segments of text because word vectors are designed

to find a vector space for single words and not for sentences/messages. In order to perform

textual highlight detection, longer-form text needs to be analysed, i.e. messages or sets of

messages. This is not without its challenges. Not only is livestream text data challenging to

model for the reasons discussed above, but long-form sections of data are temporal and thus

require significantly more complex models than current language models.

For livestream highlight detection, a unique architecture is likely required for several

reasons. In particular, unlike word vectors where input data needs to consider the distance

between two tokens, highlight detection needs to operate on a ‘window’ of message data.

Data from standard text, i.e. prose or social media text, can be easily converted into a

vector of tokens. However, a window of livestream text is conceptually a vector of messages,

each of which is a vector of tokens. Additionally, each message contains auxiliary data, e.g.

the timestamp and author, which may be helpful when modelling. It is technically possible

to ignore the auxiliary data and flatten all the messages into a single token vector, either

across the window or on a per-second basis. Indeed this is the approach of many prior works

into livestream highlight detection, e.g. [69]. However, this reduces the information passed to

the network. For example, an increase in message frequency may indicate a highlight event
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Figure 5.11: Comparison between data processing on typical language data, competing
livestream processing, and this work.

in the stream, but this information is lost when the input data is collapsed. Therefore, the

model presented in this study deliberately models both messages and timestamps to capture

as much information as possible. Figure 5.11 demonstrates the difference between typical

natural language data, how other livestream models often process data, and the method used

for the model presented in this section.

For this work, the author of a message is not considered. This is for several reasons re-

garding the number of authors, i.e. commentating viewers, and the expected impact that the

author has on predictive performance. Streams can be vast. For example, in the TwitchChat

dataset, the largest number of viewers recorded was 165, 371, although the platform has seen

larger numbers [206]. This makes it very difficult to build models which utilise authorship,

as the number of additional variables to account for would be too large. Furthermore, it is

unlikely that explicit authorship modelling will improve performance significantly given that

livestream chats rarely have more than a handful of coherent voices [32,57,189], i.e. it does

not matter a considerable amount exactly which author is writing a message.

5.3.1 Methodology

A novel transformer architecture, the ‘Time-Aware Stacked Transformer Encoder’ (TASTE)

model, is proposed and compared to several competing chat-based highlight detection meth-

ods in this study to tackle the challenge of livestream highlight detection. The TASTE model

is a stacked transformer architecture which uses two transformer blocks, each with a different

purpose. The first transformer block, the ‘message transformer’, is akin to the transformer
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layers in a typical language model encoder. It takes a single message, i.e. a vector of to-

kens, and produces a latent feature vector. This transformer block uses a learnt positional

embedding to encode the position of each token and performs pooling via the ‘CLS pooling’

method proposed in [45]. This is where a ‘CLS’, i.e. classification token, is prepended to

each message and the latent vector produced for this token is carried forward to the next

stage of the model. The vectors for each token in a message are discarded. The second

transformer block is the ‘stack of messages transformer’. This takes a stack of latent feature

vectors produced by the message transformer and encodes each with the time stamp that

the message was sent. This is achieved using a Sine Encoding because the Sine Encoding

produces an absolute encoding, i.e. encoding the particular time the message was sent, and a

relative encoding, i.e. the time difference between two messages. This is important because

the absolute position of a message is useful for mapping input message time to output label

time while modelling the relative position between messages allows for the inherent mod-

elling of features such as message frequency. This second transformer block allows the model

to be ‘time-aware’, i.e. the architecture explicitly models the time messages were sent. This

is one of the benefits of TASTE over competing approaches, which often collapse the time

dimension of inputs and therefore lose information. After the stack of messages transformer

has been applied, the resulting vectors, one for each message in the input, are then pooled

via global average pooling (GAP) to produce a single latent vector which describes the chat

activity over a period of time. GAP is used rather than CLS pooling as it is impossible to

prepend the equivalent of the CLS token to the stack of messages input because the inputs

are latent vectors for each model rather than a token embedding. This single latent vector

is then passed to the downstream classification task, in this case, predicting highlights. This

classification task is modelled through a series of fully connected neural network layers with

a number of output heads equal to the number of labels. In this case each label represents

if a highlight was occurring during a given time stamp or not. This model only requires

the encoder architecture, unlike standard LM models, which are pretrained with an encoder

and decoder, because it is designed for a classification task. Figure 5.12 demonstrates the

TASTE architecture.

The TASTE model is trained by taking a stack of messages covering a particular time

frame, in this case, c + s + c where s is the sample window and directly corresponds to

the number of output labels and c is a context window parameter to include data before
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Figure 5.12: The TASTE architecture.

and after s. For ease of notation the entire window c + s + c will be referred to using w.

For the experiments in this chapter the parameters c = 4 and s = 15 are used (TASTE),

inspired by [69], as well as c = 2 and s = 5 to highlight the impact of using a smaller

window (TASTE Small). In practice, any values can be used, although larger windows will

result in more memory consumption and thus may not be appropriate depending on the

compute capacity available. Each message consists of two parts, the message body, a list

of tokens, and the message timestamp, an integer value. For each input to the model, the

timestamps are normalised to between 0 and w. This is done for two reasons. Firstly, it

simplifies the sine encoding as, during initialisation, a fixed upper threshold needs to be set.

Normalising the values removes the concern for test-set or deployment samples being outside

the bounds of the sine encoding. Secondly, this allows the model to learn a mapping between

input message time and label. This stack of messages, relating to w seconds of real-time,

is then trained against a vector of binary labels of length s. This input-output mapping

is demonstrated in Figure 5.13. Because a variable number of messages are sent in the w

window, the model is trained using a fixed upper bound for the number of messages, set
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Figure 5.13: The input data to label mapping for TASTE.

extremely high, and each sample is padded to this size. The decision to set this upper bound

very high, in this case, 320 messages, is motivated by the fact that there is no obvious way

to safely truncate the message stack while retaining the ability to predict across a window

of time. The maximum length for a message can be set to allow for truncation and is set

at 64 tokens. Truncating token vectors is established in the literature, and therefore, this

study applied suffix truncation for messages with length > 64, although these long messages

represent only 0.0005% of the training data.

5.3.1.1 Single-Second Transformer Model

An additional transformer model is trained on data from each second of the game. Every

message from a given timestamp is collapsed into a single token vector, as illustrated in

Figure 5.11. Then the TASTE message transformer, CLS pooling and dense classification

layers with a single output is trained to predict if this vector of tokens represents a highlight

or not. This model, therefore, removes nearly all context for the highlight prediction and

thus examines the assumed need for such data.

5.3.1.2 Pre-Training

The message transformer is pre-trained on three data sets. Firstly, the TwitchChat dataset

presented in Section 5.2. Secondly, the Worlds dataset discussed in Section 5.3.2. Finally,

data from a prior work, [58], again discussed in Section 5.3.2. Pre-training was carried out

using the Masked Language Model (MLM) approach proposed in [46]. MLM pre-training

works by first applying a mask to input token vectors, i.e. messages. This is done proba-
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bilistically. For each message in the pre-training data, each non-CLS token is selected for

masking with a probability of 15%. If a token is selected, it is masked in three ways. 80%

of the time, the token is replaced with a blank MASK token. 10% of the time, the token

is replaced with another token from the vocabulary. Finally, 10% of the time, the token is

not masked at all but treated as such to bias the model when initially learning [46]. The

pre-training task is to take this masked message and recover the original message. This

allows the model to learn the general relationship between tokens in the corpus.

5.3.1.3 Highlight Selection

Like the audio-visual ‘Auto-Highlight’ model described in Chapter 4, TASTE utilises a se-

lection threshold. However, the TASTE training task is supervised, and thus it is possible to

better fit the threshold hyper-parameter by analysing the ratio of highlight to non-highlight

segments in the training data. In the case of the data used in this chapter, around 12.5% is

labelled as highlights. Interestingly this is identical to the heuristic value used in Chapter

4, although that was selected through casually observing the dataset rather than empirical

analysis. Because TASTE is trained using supervised learning, it is possible, rather than

using a threshold, to use the training output boundary to determine if a segment is a high-

light or not, similar to the binary classification model discussed in the previous Chapter 4.

Therefore both approaches will be tested and the results discussed in Section 5.3.4. The

thresholding approach will be the default approach because it is the standard technique in

highlight detection literature.

5.3.1.4 Comparison Approaches

Several competing approaches are presented to establish the competing state-of-the-art mod-

els for textual highlight detection. These models are detailed below.

5.3.1.4.1 Message Density Model Firstly, and most simply, the frequency of messages

is used as a highlight indicator. This model acts under the assumption that changes in the

number of messages being sent are directly related to how interesting what is happening in

the stream is. First, a window, w, is determined to predict highlights using message density.

In keeping with the other models presented in this section, the window used for this chapter

is 23 seconds, i.e. a 15 second highlight segment s and two 4 second context windows, c.
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Then the density for a given 1 second timestamp t is calculated by retrieving the number of

messages sent for all windows which cover the timestamp in the highlight window, D(x) =

|mi : ∀x− c < i < x + h + c|, and then finding the average, tsd = 1
h

∑
D(x) : ∀t− h < x < t.

Once a time stamp density, tsd, is calculated, the top n% time stamps with the highest

densities are selected as highlights. As with other approaches n = 12.5. This approach has

been proposed in several prior works, for example, [69].

5.3.1.4.2 biGRU-DNN Model The first deep learning comparison approach is the

biGRU-DNN method proposed in [69]. Unfortunately, no publicly available code exists for

this model, nor did the authors respond to requests for code and data to be shared. Therefore,

the model version in this thesis has been implemented using the author’s description in [69].

The model operates on a window of data. However, unlike TASTE, where each message is

modelled, messages sent in the exact second are concatenated, i.e. the ‘collapsed across time

stamps’ format from Figure 5.11. All tokens are converted to word vectors with l = 50. For

this purpose, a word vector model, as discussed in the previous section, with an embedding

space of 50 is pre-trained using the TwitchChat dataset. Then all tokens sent in a particular

second are pooled by finding the mean value for each vector element. This results in a w · l

latent space. This tensor is then passed through two Bi-Directional Gated Recurrent Unit

(biGRU) layers. Finally, a set of feed-forward layers are used with a single [0, 1] output

value. This output value is used to determine whether or not the input data constitutes a

highlight. This is a brief explanation of the system; a more thorough discussion is presented

in [69].

5.3.1.4.3 L-Char-LSTM The second deep learning approach is the L-Char-LSTM pro-

posed in [58]. This is another model based on recurrent units. Importantly, L-Char-LSTM

operates on the character level, i.e. the input is a series of characters rather than a series

of tokens. The authors choose to utilise a character-level model because, as found with the

TwitchChat dataset, they recognise the challenges of misspellings and emotes. The model’s

vocabulary is reduced by training on just ASCII characters, 128 tokens. This reduces the

size of the embedding part of the network. However, it has the consequence that words are

not entirely understood, so analysis similar to that carried out with the TwitchChat dataset

is impossible. Furthermore, it requires the recurrent layers to correctly model the meaning

of the order of tokens, given that each token has no inherent meaning, unlike word tokens.
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This approach is in contrast to the preprocessing and lemmatisation approach taken with

the TwitchChat dataset, although initially, it is unclear which approach is more appropri-

ate. The authors have released source code as well as trained models and data. Thus the

L-Char-LSTM model used in this thesis is taken directly from the author’s released work.

5.3.2 Data

Three datasets are utilised for this study. Firstly, the TwitchChat dataset is used when pre-

training word vector models (e.g. for the biGRU-DNN). Secondly, the text data from [58],

a total of 218 games, is used as training data. Finally, a new dataset is gathered from the

2020 League of Legends World Championship. This was gathered for two reasons. Firstly,

due to technical reasons, it was impossible to collect the video data associated with the

chat data from [58]. It was impossible to compare a visual model, e.g. the Auto Highlight

model proposed in Chapter 4, to textual highlight detection. Secondly, at the time of data

gathering, it was the most recent large-scale tournament and therefore represented the most

recent League of Legends esports presentation. The world’s data is split into test and train

data. All group-stage games, 49 games, are added to the 218 games from [58] to form the

training data. The test set for this work is all of the knockout games from the tournament,

27 games in total. For all of these games, ground truth highlight annotations are gathered

through crowd-sourced annotations, either through the method discussed in [58] for games

in that dataset or through the method detailed in Chapter 4 for games from the 2020 League

of Legends World Championship. For the biGRU-DNN and L-Char-LSTM models, the raw

data was processed as required by those models. The data was prepossessed and lemmatised

for both transformer architectures using the techniques outlined in Section 5.2.1.2.

5.3.3 Experiment

Several experiments are carried out to explore the efficacy of the proposed TASTE trans-

former and further analyse the predictions that the model makes. The first task is to compare

the transformer-based models proposed in this thesis with competing approaches. Six models

are presented; the single-second transformer, two TASTE models, and the three competing

approaches. Two TASTE models are presented to examine the impact that window size has.

Furthermore, several hyperparameters and other features of the TASTE model are examined.

All models are implemented in Python using a range of popular machine learning libraries.
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PyTorch [153], Keras [35], and Tensorflow [1] were all used to compose and train models,

with Numpy [70], and Scikit Learn [154] used for a range of auxiliary functions. All models

were trained on using 2 PCs. The first has a Ryzen 5 1600 CPU, 16GB of RAM and an

Nvidia 2080ti GPU. The second had an Intel i7 9700 CPU, 64GB of RAM, and 2x Nvidia

Titan RTX GPUs. The models in this study are trained in a supervised setting; therefore,

the key metrics reports are Accuracy, Precision, Recall and F1 Score.

5.3.4 Results

5.3.4.1 Experiment 1 - Comparison of Textual Highlight Models.

Table 5.4 details the performance for each model on the test set. Understandably, the Density

model did not perform particularly well. This is to be expected. It is the least complex

model and fails to consider the content of messages. Perhaps more interestingly, the single-

second transformer performed poorly despite its more complex architecture. This is likely

because, like the density model, it is not provided with enough information to make a reliable

decision. Not only does the single-second transformer model not have the context of how

many messages are being sent, but it is also expected that there may be some ‘lag’ between

a highlight moment occurring and the chat reacting due to participants needing to type

messages. Finally, the biGRU-DNN model performed very poorly. Upon further reflection on

the model, this is likely due to the judicious use of pooling and collapsing functions, resulting

in a model which does not have enough information to learn an effective mapping. It was also

observed that the biGRU-DNN model struggled to converge during training. Unfortunately,

this model could not be improved without further information from the authors. In terms of

the models which performed better, the L-Char-LSTM model appears slightly worse than the

TASTE Small model, with the full TASTE model performing much better. It is unsurprising

that the larger TASTE model outperforms the smaller one across all metrics. However, it is

interesting to observe that it is much better the larger window is because this suggests that

highlight cues from text data often lag by over 6 seconds. Furthermore, the performance of

both TASTE models compared to the L-Char-LSTM model indicates the value of using the

custom transformer architecture.

Figure 5.14 show the distribution of F1 Scores across the test set for all models, and Table

5.5 details the Min, Max and Median F1 Scores. From these, it is clear that there is a large

variance in how models performed across the test set. This is different to the performance
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Table 5.4: Results from Experiment 1. Bold denotes a model outperformed all other models
in the metric.

Model Accuracy Precision Recall F1

Density 0.775 0.212 0.173 0.190
biGRU-DNN [69] 0.751 0.118 0.097 0.107
L-Char-LSTM [58] 0.577 0.200 0.580 0.300
Single-Second Transformer 0.773 0.202 0.166 0.182
TASTE Small 0.809 0.349 0.286 0.314
TASTE 0.838 0.463 0.378 0.416

Table 5.5: F1 scores distributions across the dataset for Experiment 1. Bold denotes a model
outperformed all other models in the metric.

Model Min F1 Max F1 Median F1

Density 0.038 0.479 0.192
biGRU-DNN [69] 0.033 0.210 0.095
L-Char-LSTM [58] 0.149 0.365 0.287
Single-Second Transformer 0.104 0.248 0.179
TASTE Small 0.061 0.447 0.332
TASTE 0.061 0.542 0.431

of audio-visual models, i.e. Chapter 4, where models performed more consistently, except

for an outlier game. Unfortunately, it is unclear if this is because there is a higher level

of variance and noise within chat data leading to inconsistent performance prediction or if

this is merely an artefact resulting from plotting F1 Score rather than Average Precision.

What is clear is that the biGRU-DNN model is consistently poor, likely a result of the

training issues discussed above. Surprisingly, there is one sample where the density model

performed very well, perhaps because the game was particularly engaging, and the high-

density segments were more often due to exciting gameplay rather than other factors. While

the best performing in terms of total F1 Score across the dataset and Median F1 score, the

TASTE model appears less consistent. It is not entirely clear why this is, although Section

5.3.5 discusses some of the model’s prediction errors.

Finally, Table 5.6 shows both the Wilcoxon signed-rank test and Vargha-Delaney A mea-

sure results comparing these models. As with the models presented in Chapter 4, most

models are statistically distinct, measured through Wilcoxon signed-rank test, in their pre-

dictions. The most interesting result is that the Density and Single-Second models are highly

similar in terms of both statistical metrics. At first, this appears puzzling, given that the
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Figure 5.14: Box and Whisker plots for all models evaluated in Experiment One.

Density model is provided with only the number of messages being sent and not their con-

tent, while the Single-Second model only has the content of messages and not the frequency.

However, this similarity may be due to factors influencing both models. For example, the

Single-Second model receives vectors of all tokens sent at a given time stamp. If many mes-

sages are being sent, this vector is likely to be very long, and the model may be learning

that the length of a message is important to highlight prediction, i.e. implicitly learning a

density-based prediction. Secondly, there is an observed ‘cheering’ effect in esport tourna-

ment broadcasts. Often this is indicated through a small subset of tokens being used rapidly

and repeatedly. This may be both observable through the content of messages and an in-

crease in density; hence both models perform similarly. Finally, the TASTE model shows a

substantial improvement in effect size compared to all other models, and even the smaller

TASTE model is much better than all models other than the L-Char model from [58]. This

is further evidence of the power of the TASTE approach compared to competing approaches.
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Table 5.6: Statistical testing results for Experiment One. The upper right triangle details
Vargha-Delaney A measure. Values less than 0.5 indicate column outperforms row and values
more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44∨a >
0.56). ‡ denote a medium effect size (a < 0.36∨ a > 0.64). ⋄ and bold denotes a large effect
size (a < 0.29∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon
signed-rank test. Bold denotes significant values, i.e p < 0.05.

Density BiGRU L-Char Second TASTE TASTE Small

Density - 0.77⋄ 0.19⋄ 0.51 0.09⋄ 0.14⋄

BiGRU 2× 10−3 - 0.01⋄ 0.12⋄ 0.03⋄ 0.04⋄

L-Char 2× 10−4 6× 10−6 - 0.96⋄ 0.10⋄ 0.39†

Single Second 9× 10−1 3× 10−5 6× 10−6 - 0.04⋄ 0.07⋄

TASTE 7× 10−6 6× 10−6 3× 10−5 6× 10−6 - 0.86⋄

TASTE Small 6× 10−5 8× 10−6 2× 10−1 9× 10−6 6× 10−6 -

5.3.4.2 Experiment 2 - Impact of Thresholding

The initial decision threshold was set at 12.5% of the video’s length, in line with the amount of

stream content annotated as highlights in the training data. However, the model is imperfect

and thus makes false-positive errors, i.e. segments are selected despite not being labelled as

a highlight, and false-negative errors, i.e. highlight segments, are not detected by the model.

It may be possible to improve the models’ performance metrics by relaxing or tightening this

threshold. Figure 5.15 displays the Accuracy, Precision, Recall and F1 Score across a sweep

of thresholds from 6.75% to 50% in increments of 6.75. Selected thresholds, where various

metrics scored highest, are further detailed in Table 5.7. As expected, when the threshold

is lowered, i.e. fewer segments are selected as highlights, accuracy and precision increase

but recall decreases. If the model selected the entire stream as a highlight, it would achieve

perfect recall but have low precision. Likewise, if the model were only allowed to select a

single segment, assuming that segment was a ground truth highlight, it would achieve perfect

precision but low recall. Selecting the ideal threshold value is about finding a balance between

these two extremes, represented in part by F1 Score. That said, there is an additional concern

not modelled by Precision, Recall, and F1 metrics; video length. For example, the threshold

12.5% was initially selected because it is precisely the video length the average viewer is

likely to expect, given that it was empirically decided from the training data. Likewise, it is

clear that selecting a large threshold value, e.g. 50% of a video, is unlikely to be helpful in a

real-world setting because the video will be too long. The best performing threshold value in
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Table 5.7: Selected video threshold. The full sweep of thresholds is shown in Figure 5.15.

Threshold Accuracy Precision Recall F1

6.75% 0.851 0.527 0.233 0.323
12.5% 0.838 0.463 0.378 0.416

19.25% 0.810 0.403 0.507 0.449
50% 0.601 0.254 0.830 0.389

Figure 5.15: Accuracy, Precision, Recall and F1 Score across a range of video thresholds.

terms of F1 Score is 19.25%, slightly higher than the initially set value because it sacrifices

minimal precision, i.e. makes a smaller number of additional false-positive predictions while

recalling around 12.9% more ground truth highlight moments. It seems evident from these

results that some threshold value between 12.5% and 19.25% is likely the most appropriate.

In a deployed model, the user could easily control this parameter based on whether they feel

slightly longer videos are worthwhile.

TASTE is trained in a supervised setting, and therefore it is possible to, rather than

threshold across a video, threshold across the output from the network, much like the classi-

fication models discussed in Chapter 4. This would allow the model to dynamically change

how much of a particular video is considered a highlight, i.e. in theory, in a less interesting

stream, fewer highlights would be selected. Figure 5.16 displays the Accuracy, Precision, Re-
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Table 5.8: Selected model threshold. The full sweep of thresholds is shown in Figure 5.16.

Threshold Avg. Video Threshold Accuracy Precision Recall F1

0.1 76.5% 0.369 0.188 0.938 0.313
0.3 27% 0.763 0.345 0.609 0.441
0.4 13.7% 0.833 0.450 0.404 0.426
0.5 6% 0.853 0.552 0.217 0.312
0.6 2% 0.850 0.573 0.069 0.129

call and F1 across a sweep of thresholds from 0.1 to 0.6 in increments of 0.1. Where various

metrics scored highest, selected thresholds are further detailed in Table 5.8. The average

percentage of segments selected as highlights is also detailed in Table 5.8. The model thresh-

old 0.3 scores highest in F1 Score. On average, this is equivalent to 27% of a video being

selected. The model value 0.4 is the closest to the 12.5% video threshold initially applied.

From this, it is clear that the model performs better on the test set when the threshold is

slightly relaxed. Naturally, as discussed above, the relaxation increased the video length. In

some respects, the length of a highlight video is just as important to model evaluation as if

the video captures all annotated highlight clips or does not include dull moments because

the goal of a highlight video is to be succinct. Video length is accounted for explicitly in

the video thresholding discussed above because the same percentage of segments are selected

for each video. However, this is not the case in model thresholding hence the average being

reported. The distribution of video length is discussed in more detail below.

The test set has largely been discussed as a single set of video segments. However, it

is a set of videos, each of which is constructed of segments. Therefore it is also possible

to plot the distributions of metrics for each video. This is done for two threshold values, a

video threshold of 12.5%, i.e. the original empirically determined value, and a model value of

0.4125, which averages to the same 12.5% of segments in the test set selected as highlights.

Figure 5.17 and Table 5.9 demonstrate these distributions. Accuracy is omitted from these

plots because it is the least useful metric given its lack of focus on the minority highlight

class. Instead, the number of video segments selected by each method is plotted. This shows

the difference in the number of segments selected by each technique. The model threshold

technique has a wide distribution, whereas the video threshold technique distribution is much

tighter, despite both having similar averages. The tighter distribution of video threshold

segments was expected, given that most matches have roughly similar lengths, and the model
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Figure 5.16: Accuracy, Precision, Recall and F1 Score across a range of model thresholds.

Table 5.9: Metric distributions for both video and model thresholding techniques across the
test set.

Threshold Metric Minimum Maximum Mean Median

Video Segments 307 696 420.407 418
Model Segments 72 812 420.185 467

Video Precision 0.066 0.626 0.463 0.499
Model Precision 0.023 0.792 0.472 0.485

Video Recall 0.057 0.571 0.378 0.386
Model Recall 0.010 0.613 0.370 0.404

Video F1 Score 0.061 0.543 0.412 0.447
Model F1 Score 0.013 0.551 0.394 0.427

predictions are tied to this length. What is more interesting is how wide the distribution

of segments is selected by the model threshold technique, resulting in some very short or

long highlight videos. To explore this further, Figure 5.18 shows the distribution of the

percentage of a video selected as a highlight for both the ground truth labels as well as the

model threshold approach. The actual ground truth labels have a much tighter distribution

than the predictions. Note that the video threshold results are not presented because there

is no distribution to speak of. The model always selects the same percentage as highlights.
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(a) N. segments selected distribution across test
set. (b) Precision distribution across test set.

(c) Recall distribution across test set. (d) F1 Score distribution across test set.

Figure 5.17: Metric distribution for all videos in the test set for equivalent video and model
thresholds (model threshold 0.4125 relates to an average video threshold of 12.5%) .
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Figure 5.18: Histogram of the percentage of each video in the test set selected as a highlight
when using model thresholding with the threshold set at 0.4125.

In general, it seems that using a model threshold results in a model with higher variance.

For some videos, the model performs very well, perhaps those most similar to the training

data, but the model performs more poorly for others. The video threshold appears to have

less variance. Judging the models on F1 Score video threshold is clearly better and is likely

the safer choice for a deployed system given the distribution of segments selected; the model

threshold may generate videos which are either very long or very short, although judging by

Figure 5.18 they are likely to be shorter than a human editor. Ultimately, it is impossible

to firmly argue that thresholding in one way or the other is best. Both offer positives and

negatives. That said, video thresholding will likely be more reliable in a deployed setting.

Finally, it is essential to note that each model’s highlight signal does not change when

experimenting with thresholding techniques. The only change is what part of the signal is

classified as a highlight.
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5.3.4.3 Iterative Threshold

Another thresholding approach, building off the video thresholding above, is to iteratively

relax the threshold boundary while having some metric for filtering out segments selected

as highlights that are likely to be low quality. For example, such a metric may be segment

length. If the segment is very short, it may not make sense to the viewer and thus should

be removed from the highlight output. When applying iterative thresholding, it would still

be important to predict the same percentage of highlights, in this case, set at 12.5% as

in the original experiments. However, the iterative relaxing would lower the model output

threshold at which highlights are recognised while enforcing a minimum length for video

segments. Thus, segments which are broadly exciting but may have a less interesting middle

section are more likely to be recognised, while very short segments which may, in a vacuum,

seem interesting but lack interesting context are likely to be omitted. This technique is

motivated by the observation that human editors are likely to perform a similar pruning

operation when editing a highlight video. Iterative thresholding is performed via Algorithm

1. Briefly, the initial threshold predictions are made. Next, all highlight segments shorter

than the minimum highlight length parameter are removed. Then, if enough segments have

been selected, the algorithm finishes. Otherwise, the threshold is relaxed to allow select one

more prediction and the process is repeated.

Algorithm 1 Iterative Thresholding

1: procedure Iterative Thresholding(predictions, threshold, minSegmentLength)
2: cuttoff ← count(predictions) × threshold
3: sortedPredictions ← sortDescending(predictions)
4: while True do
5: iterThreshold ← sortedPredictions[cuttoff]
6: highlights ← all predictions > itterThreshold
7: processedHighlights ← ProcessHighlights(highlights, minSegmentLength)
8: if count(processedHighlights)/count(predictions) > threshold then
9: return processedHighlights

10: else
11: cuttoff ← cuttoff+1

12: procedure Process Highlights(highlights, minSegmentLength)
13: segments ← all highlight segments in highlights
14: segments ← all segments > minSegmentLength
15: return segments

Minimum segment lengths ranging from 1 second, i.e. no iterative thresholding is applied,

to 120 second long segments are explored to test this iterative thresholding approach. The
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Table 5.10: Selected iterative threshold in values. The full sweep of thresholds is shown in
Figure 5.19.

Minimum Length Accuracy Precision Recall F1

1 0.838 0.463 0.378 0.416
5 0.838 0.462 0.378 0.416
8 0.838 0.464 0.38 0.418
33 0.847 0.498 0.418 0.455
120 0.788 0.387 0.295 0.335

accuracy, precision, recall and F1 score for these values is shown in Figure 5.19, as well as

selected values in Table 5.7. From this, setting a minimum length for segments shows an

improvement in F1 Score, up to a point. The best performing Iterative Threshold model has

a minimum length of 33 seconds. However, this is likely impractical; analysing the length

of segments in the training data shows that the most common segment length is 5 seconds,

with a median length of 13 seconds, a lower quartile of 8 seconds and an upper quartile of

23 seconds. Therefore values of 5, i.e. the mode, or 8, the lower quartile, are likely to be

more appropriate as minimum lengths and produce more realistic results. These values are

also reported in Table 5.7. Unfortunately, these more realistic values have only a minimal

impact on the performance metrics. This is not to say that utilising iterative thresholding

would not produce highlight videos which appear more realistic to the viewer, just that the

standard testing metrics across the whole dataset do not change greatly. Testing if using

iterative thresholding would make more realistic videos is extraordinarily hard to model via

metrics and thus would require extensive testing with human evaluators.

5.3.4.4 Experiment 3 - Time-Series Manipulation

Two techniques for improving the model’s performance via time-series prediction manipu-

lation are reported. Both are applied to the standard TASTE model, and unless otherwise

stated, the standard threshold hyperparameter, i.e. 12.5%, is retained.

Firstly, manual observation of the output from the TASTE model suggests that perfor-

mance benefits may be achieved if the time series prediction is offset by a fixed number of

seconds. Such a technique makes sense for textual highlight detection from audience reaction

because there is an expected time delay between an event happening in the game and the

chat reaction. In theory, this is modelled with the input data context window, but it may be

that additional alignment is fruitful. This offsetting is particularly interesting in the context
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Figure 5.19: Accuracy, Precision, Recall and F1 Score across a range of iterative threshold
minimum segment lengths.

of the results from the iterative thresholding experiment. These results show that grouping

highlight segments into long, i.e. > 30second segments results in performance increases.

This may be a result of the need to offset. For example, long highlight segments enforce

context from before or after the local maxima of the highlight signal. Correctly offsetting the

signal to align better with the in-stream event may result in a more realistic prime iterative

threshold value.

Figure 5.20 details the Accuracy, Precision, Recall and F1 Score that the TASTE model

achieved across a range of offset values, from −30 seconds to +30 seconds. From this, it is

clear that offsetting the predictions by a negative amount, i.e. aligning reactions with the

triggering in-stream event, has a very positive effect on prediction. The best performing

offset in the F1 Score is −15, which achieved an F1 Score of 0.529, a huge improvement over

the standard output. This plot also clearly shows that offset values > 0 harm prediction,

which is natural given that chat messages rarely indicate that an exciting moment is about

to happen.

As discussed previously, offsetting and iterative thresholding are likely to interact. Both

iterative thresholding and offsetting are applied simultaneously to examine this. For sim-
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Figure 5.20: Accuracy, Precision, Recall and F1 Score across a range of offsets.

(a) F1 Score heatmap. (b) Differential heatmap.

Figure 5.21: F1 Score and F1 Score differential heatmaps show model performance when
both Iterative Thresholding and Offsetting are applied. Higher values in (a) indicate better
performance overall, higher values in (b) indicate values for a larger impact when applying
Iterative Thresholding.

plicity, only offset values between −30 and 0 are experimented with, and iterative threshold

values between 1 and 33. Figure 5.21 (a) shows the F1 Score across a range of offset and

iterative threshold values. The best performing combination of these two approaches was to

offset by −17 and apply an iterative threshold of 23, which achieved an F1 score of 0.539.

Figure 5.21 (b) shows the change in F1 Score when applying iterative thresholding and
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offsetting simultaneously. This change is the delta between no iterative thresholding and

applying it. In general, iterative thresholding has only a small impact on performance,

although it is noticeable in certain situations. Firstly, large iterative threshold values are

helpful when an inappropriate offset is selected, e.g. large or small values. However, this is

not a particularly useful discovery because this effect does not make up for the performance

deficit of the poorly selected offset. Secondly, it is clear that iterative thresholding values ¿

15 seconds are generally better at ‘correcting’ this poorly chosen offset value. Finally, there

is a very subtle improvement when considering the best-performing offsets. For example,

offset −15 performed best using a minimum segment length of 6. However, the improvement

is minimal, improving F1 by 0.001. While iterative thresholding has minimal performance

improvement when offsetting, it does not negatively impact results, and thus a small value,

e.g. ∼ 4− ∼ 10, may help provide context to the viewer and thus be desirable.

The second time-series manipulation technique is to apply Time-Series smoothing using

a Gaussian smoothing kernel, as in Chapter 4. While the TASTE model can understand

significantly more context than the audio-visual model from Chapter 4 because it receives

up to 23 seconds of chat data, there may still be some benefits to smoothing for longer

context-awareness. This may be especially useful given the assumption that there is a lag

between highlight moments and audience reaction. That said, this lag is unidirectional, i.e.

audience reaction always lags behind in-stream events. However, the smoothing technique

was proposed to include context from surrounding events in the context of audio-visual

prediction and thus has a symmetric kernel. Therefore, it is unlikely that smoothing will

prove as effective as it was in Chapter 4.

A sweep of potential candidates is proposed to test the most appropriate value for the

smoothing kernel. Kernel sizes ranging from 3 to 120 are experimented with. Accuracy,

Precision, Recall and F1 Score across the sweep of values is shown in Figure 5.22. From this,

the optimal kernel length for TASTE is 77, with an F1 Score of 0.432. In a vacuum, this

seems like a more negligible improvement than the initial iterative thresholding experiments.

However, further investigation showed that while promising on a non-offset time series, an

iterative threshold is unnecessary when applied to an offset signal. Iterative thresholding is

conceptually different to smoothing because it was designed to model tendencies in segment

length selections. However, it appears to function better as a way to force context to be

included, similar to the goal of smoothing. Since iterative thresholding is not particularly
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Figure 5.22: Accuracy, Precision, Recall and F1 Score across a range of blur kernel sizes for
the TASTE model with no offsetting.

Figure 5.23: Accuracy, Precision, Recall and F1 Score across a range of blur kernel sizes for
the TASTE model with a −15 offset.
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Table 5.11: Blurred vs Non-Blurred.

Model Kernel Size Accuracy Precision Recall F1

Standard - 0.838 0.463 0.378 0.416
Smoothed 77 0.86 0.480 0.393 0.432
Offset - 0.869 0.587 0.480 0.528
Offset + Smoothed 22 0.870 0.593 0.485 0.534

effective when the time series is correctly aligned, it seems valuable to test smoothing with

an offset signal. Therefore, the performance of various kernel sizes is also considered when

applied to a signal offset by −15. Interestingly, the best performing kernel size for the offset

signal is 22, much smaller than the best kernel size for the non-offset signal, Figure 5.23.

This is likely because, as with iterative thresholding, smoothing is less helpful after offsetting

has been applied and the signal aligned.

Table 5.11 details comparison between applying smoothing and offsetting. Offsetting is

the most useful time-series manipulation approach. As expected, the improvements seen by

implementing smoothing are not as dramatic as in Chapter 4. That said, smoothing still has

clear utility for the offset and non-offset time series. Therefore it is likely to include both

techniques if deploying a TASTE model. Iterative thresholding provides no real noticeable

performance benefit when using both offsetting and smoothing, at least in terms of F1 Score.

5.3.5 Discussion

Livestream chat is capable of contributing solid indicators of in-stream highlight moments.

That said, careful consideration needs to be made regarding the model architecture. For in-

stance, the various competing approaches presented in this work have apparent performance

deficits due to loss of information, e.g. through collapsing messages into single-timestamp

vectors. TASTE performs very well and is similar in performance to the Auto-Highlight

model presented in Chapter 4. This is an exciting result given that, unlike that model,

which gets its cues from what is happening in the stream, TASTE is only provided with

time-delayed audience reactions.

5.3.5.1 Exploring prediction errors

Figure 5.24 provides a visual example of how the model makes predictions for a single game.

Most ground truth highlights are correctly identified, but there are examples of incorrectly
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Figure 5.24: Time Series Highlight Prediction using and offset of −15, smoothing, and an
iterative threshold minimum length of 6 seconds.

selected and non-selected elements. The ground truth highlight which occurs shortly before

the 500 second point is an interesting example. This segment shows the character selections

made by the players before the game starts. This is included within a highlight video made

by human editors not because it is exciting or interesting but because it provides context to

viewers. However, because this moment is not noteworthy in itself, there is little audience

reaction, and thus the TASTE model cannot recognise it. This is one potential weakness of

audience-based highlight detection, given that an audio-visual model trained on the editing

style of human editors is more likely to recognise the importance of this moment.

Conversely, the moment selected as a highlight just after the 3500 second point is inter-

esting to the model and thus a moment which provoked a strong audience reaction. However,

it occurs after all ground truth highlight segments and thus occurs after the end of the game.

Interestingly, manual inspection of this segment appears to show the opposite of the missed

segment discussed above. Here a piece of post-game analysis is shown detailing statistics

from the game. These statistics were exciting or interesting enough to trigger a significant
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reaction from the audience, e.g. because a particular team played well. This content could be

interesting to the highlight viewer, despite being omitted from the original video. This may

be an example of the TASTE model being able to detect moments outside of those selected

by a human editor but are still attractive, at least to the live audience. The Auto-Highlight

model is trained on audio-visual, which is the same information the human editor has access

to and thus is likely to more closely replicate the style of human-edited highlights, regardless

of if moments prove to be exciting to the live audience or not.

Finally, there is a large ground truth highlight segment at around 2000 seconds which

the TASTE model misses. Further, it appears that TASTE outputs generally low values for

this segment, i.e. it is evaluated as reasonably uninteresting. This segment contains combat

between the two teams, but where both teams were cautious, and only one player died. It

is likely, therefore, that the audience did not react strongly to this segment. Ultimately this

segment of the game was relatively unexciting to the live audience. However, the editor felt

it was important to include it, perhaps due to one player dying or because it indicated a

shift in the game’s momentum. Naturally, such moments are impossible to detect from chat

data alone if they do not evoke an audience reaction.

5.3.5.2 Exploring the deployability of TASTE in a ‘real-world’ setting

Like the Auto-Highlight model discussed in Chapter 4, the TASTE model performs well.

Thus it is both interesting and essential to assess its deployability in a real-world setting,

i.e. can the be model run sufficiently quickly that it is useful as part of a highlight detection

product. To test this, the TASTE model’s execution time and memory requirements are

examined and compared to competing approaches. Once again, this is deliberately performed

on consumer-grade hardware, the same NVIDIA 2080ti equipped machine as in Chapter 4,

to allow fair comparisons between textual and audio-visual highlight models, as well as to

indicate if these approaches are likely to be able to be operationalised in a real-world setting.

Once again, the memory requirements for the models implemented in Keras (BiGru-DNN,

Single Second Transformer, and both TASTE models) are approximated. The L-Char-LSTM

implementation is the one released by [58] and is thus implemented in PyTorch.

Table 5.12 details the number of weights each model has, their training and inference

memory requirements, and the average time it takes for the model to predict a single second

segment at run time. Interestingly, the L-Char-LSTM model is parameter and memory light
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Table 5.12: Weights, memory, and time requirements for each neural network model. Mem-
ory requirements are listed in MB and are an approximation.

Modality Weights Training Memory Inference Memory Average Time (seconds)

BiGru-DNN 3,408,953 1334.15 6.07 0.0022
L-Char-LSTM 382,210 - 1.53 0.0277
Single Second Transformer 3,567,873 21.31 7.54 0.0003
TASTE 5,746,319 536.79 27.87 0.0167
TASTE Small 5,741,445 289.10 14.60 0.0062

but takes a long time to execute. This is likely because the model is applied to characters

and thus processes more inputs for a message. The BiGru-DNN model is memory expensive

when training because the default batch size is large compared to the TASTE models. This

is not an issue during inference because predictions are made for one sample at a time.

Besides the L-Char-LSTM model, the TASTE architecture takes the longest time to execute

a sample during inference and requires the most memory. However, the execution time is

still very fast, taking about as long as just the Audio Auto-Highlight model and an order of

magnitude faster than any Visual Auto-Highlight model. Therefore, TASTE is easily capable

of real-time prediction and thus suitable for deployment.

5.3.6 Conclusions

This study presented the TASTE architecture and comparisons to other state-of-the-art

approaches. TASTE performs exceptionally well at livestream highlight detection from text

data cues. This is due to its ability to more completely model the temporal aspect of text chat

compared to comparison approaches. However, despite the added complexity of the TASTE

architecture, it still executes very quickly, performing fast enough for real-time prediction

and operating faster than most Auto-Highlight models. This is because, unlike audio-visual

models, TASTE does not require input feature extraction and can operate on raw messages,

albeit with light prepossessing. Furthermore, as with Chapter 4, time-series post-processing

techniques are proposed, improving performance again.

5.4 Highlight Detection from Textual Data Conclusions

This chapter has presented two studies which outline the challenges and opportunities of

working with Livestream chat data. The Twitch-Chat dataset provides the first publicly
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available large-scale dataset of audience chat logs from a wide range of livestreams. Fur-

thermore, it allows for the analysis of livestream data, particularly its form, i.e. temporal,

time-sensitive, and with many authors, as well as its contents, i.e. many tokens, e.g. emotes,

unique to the platform. The word vector models trained as part of that study show the

strange nature of the vector space and the challenge in evaluating livestream chat models,

given how many of the popular Twitch chat tokens are not in common usage.

However, the word vector models are unlikely to be useful for highlight detection, hence,

the proposal of the TASTE architecture. TASTE uses state-of-the-art transformers in a

custom architecture designed to model the unique format of livestream chat data. TASTE

performs very well at detecting highlights, especially when the audience reaction signal is

correctly aligned with the triggering event. Furthermore, TASTE operates quickly enough to

be suitable for deployment in a live setting using readily available consumer-grade hardware

if desired.



Chapter 6

Towards Unified Audio, Visual &

Chat Models

6.1 Introduction

Until now, chat data has been modelled separately to video, i.e. audio-visual, data. This

is for several reasons. For instance, the process for obtaining audio-visual data is different

to chat data. At several points in this thesis, research could only be carried out on audio-

visual or chat data. For example, audio-visual data was sometimes gathered post-broadcast

from video-sharing platforms to alleviate the necessity for gathering data live, which would

have taken months to gather a suitably sized dataset. Unfortunately, this post-broadcast

format does not contain chat data, and thus it is impossible to explore audience reactions

with this data. Additionally, the TwitchChat dataset was gathered by monitoring the Inter

Relay Chat channels associated with each stream, and thus it was impossible to recover the

broadcasts occurring via the same method. Furthermore, these full-length broadcasts are

incredibly long and broadcast in high definition, sometimes 4K, resulting in datasets with

exorbitant disk requirements.

Building a unified highlight detection model that includes cues for the video feed and

audience reaction can be expected to yield higher quality highlight videos than just the

broadcast or chat data. Chapter 4 shows how valuable audio-visual data is, Chapter 5

demonstrates the utility of Chat data, and the benefits of multimodal fusion have been shown

throughout the thesis. Therefore, it naturally follows that modelling all modalities is likely

to produce the most accurate models. However, fusing these three domains is trickier than

176
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audio-visual fusion, which was utilised in Chapters 3 and 4. This challenge is mainly due to

the complexities of handling the time-lagged audience reaction alongside the broadcast feed.

Therefore comprehensive study into audio-visual-textual fusion for highlight detection is,

unfortunately, outside of the scope of this thesis. That said, rudimentary fusion approaches

may yield surprisingly effective results. This chapter presents the beginnings of research into

this audio-visual-textual highlight detection task utilising model fusion in Section 6.2 and

outlines future directions for unified highlight detection in Section 6.3.

6.2 Unification through Model Fusion

Chapters 4 and 5 detail successful methods for modelling audio-visual and textual data,

respectively, for highlight detection in game-driven broadcasts. This study utilises these

models to explore a unified audio, visual, and textual model. It also compares this unified to

models using fewer modalities. Additionally, analysis is carried out to explore the relationship

between highlight signals from different modalities, given that they are trained independently

on different data views of the same events.

This study shows that even when using a straightforward fusion method, there is the po-

tential for considerable improvements to prediction, with the best performing model achiev-

ing a 20% increase over both Auto-Highlight and TASTE, each of which outperforms com-

parable state-of-the-art approaches. Furthermore, segments which are falsely rated highly

by one modality, but are not rated highly by the other modalities, are shown to be less

represented in the final model, reducing false-positive predictions.

6.2.1 Methodology

Model fusion is one approach utilised in Chapter 4 and describes modelling each modality

separately and averaging the highlight signals. It is a particularly attractive technique for fus-

ing these domains because performing fusion on richer data, i.e. feature fusion, is challenging

given the inherent time lag and variations in feature representation in chat data compared

to audio-visual data. Three predictive models are used. Firstly, the Auto-Highlight visual

ranking model from Chapter 4, uses a stack of RGB and Flow frames. Secondly, the Auto-

Highlight audio ranking model operates on a segment of audio data. Finally, the TASTE

model from Chapter 5, models text data. To fully explore the relationship between modal-
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Figure 6.1: Unified Audio, Visual and Textual modelling through model fusion. The left
hand section represents the visual model from Chapter 4, the middle section represents the
audio model from Chapter 4, and the right hand section represents the text model from
Chapter 5.

ities, the Auto-Highlight visual and audio networks are treated separately for this chapter.

Performing model fusion on these two networks produces the same result as the hybrid-fusion

Auto-Highlight model.

The model weights used are taken verbatim from the studies in Chapters 4 and 5. How-

ever, the dataset is the ‘worlds’ dataset from Chapter 5. This means that the Auto-Highlight

models have no fine-tuning on the worlds group games and thus are not exposed to the world

championship setting, i.e. the broadcast set or presenters. This study, therefore, additionally

acts as a test of the generalisability of the Auto-Highlight model to an unseen setting. How-

ever, this has the downside that it biases comparisons between TASTE and Auto-Highlight,

assuming that fine-tuning on the group stages, as with TASTE, noticeably impacts predictive

performance. Therefore, this study does not claim that audio-visual modelling is better than

chat or vice versa but, rather, explores how effective unifying the two approaches through

model fusion is.
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6.2.2 Data

For this study, the ‘worlds’ dataset described in Chapter 5 is used to evaluate models. This is

because it is the only dataset presented in this thesis that contains audio, visual and textual

data for the same broadcasts. The data used in Chapters 3 and 4 is audio-visual only, and

the TwitchChat dataset contains only text data. All models are evaluated on the knockout

games from the worlds data, i.e. the evaluation set from the second study in Chapter 5.

Therefore the performance of the text-only model, TASTE, in this study is identical.

6.2.3 Experiment

The performance of model fusion across the two Auto-Highlight models and TASTE is com-

pared to the performance of these models without fusion. This experiment also details the

correlations between the three inputs to the model fusion mechanism. As with prior studies,

all models are implemented in Python using a range of popular machine learning libraries.

PyTorch [153], Keras [35], and Tensorflow [1] were all used to compose and train models,

with Numpy [70], and Scikit Learn [154] used for a range of auxiliary functions. All models

were evaluated using a PC with a Ryzen 5 1600 CPU, 16GB of RAM and an Nvidia 2080ti

GPU.

6.2.4 Results

Table 6.1 shows the performance across the whole test set for seven models. Three unimodal

models are tested, Audio (Auto-Highlight), Visual (Auto-Highlight) and Textual (TASTE).

Additionally, the hybrid fusion Auto-Highlight model is presented. Three model fusion

models which fuse audio-visual domains with textual data are also reported.

These results show that model fusion textual data with other modalities is highly effective

despite the simple model-fusion mechanism. For instance, including textual information

alongside visual data improved the F1 score by 0.118 compared to visual data alone, a 23.3%

increase, and 0.090 compared to only textual data, a 16.8% increase. Likewise, combining

audio and textual data sees an improvement of 0.161 over the audio-only model, and 0.059

over the textual-only model, for increases of 37.2% and 11% respectively. Unsurprisingly, the

Audio-Visual-Textual model performs the best with a 0.018 improvement in F1 score over

the Visual-Textual model and percentage improvements of 48.6% over audio-only, 26.9% over
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Table 6.1: Comparison of modality performance for the entire test set.

Model Accuracy Precision Recall F1

Audio 0.842 0.479 0.392 0.432
Visual 0.862 0.562 0.460 0.506
Auto-Highlight 0.872 0.600 0.491 0.540
TASTE 0.870 0.593 0.485 0.534
Visual-Textual 0.896 0.693 0.568 0.624
Audio-Textual 0.887 0.659 0.540 0.593
Audio-Visual-Textual 0.900 0.713 0.584 0.642

Table 6.2: Results for Experiment One. Minimum F1 Score, Maximum F1 Score, Mean F1
Score, and Medium F1 Score are shown for a selection of models across each video in the
dataset. 1 [218].

Modality Min. F1 Max. F1 m̄ F1 m̃ F1

Audio 0.178 0.699 0.433 0.456
Visual 0.377 0.613 0.504 0.505
Auto-Highlight 0.361 0.687 0.539 0.539
TASTE 0.074 0.719 0.535 0.548
Audio-Visual-Textual 0.410 0.779 0.640 0.637

visual only, and 20.2% over textual only. This model also outperformed all other models in

every metric presented in Table 6.1, i.e. Accuracy, Precision, and Recall.

As expected, the Audio-Visual-Textual model is the best of the unified broadcast-audience

models. Therefore, because this study is primarily exploring the performance change com-

pared to established models from previous chapters and for brevity, this will be the only

video-textual model discussed. Table 6.1 showed the performance of a selection of models

across the entire dataset. However, this does not highlight how a model performs on individ-

ual videos. For example, it may be possible that a model performs extremely well with one

video and poorly on another. However, such a finding is not captured in this table. Therefore

Table 6.2 demonstrates how models perform across the test set on an individual video basis.

As discussed in previous chapters, F1 score is one of the more powerful metrics for describing

highlight performance, and thus this table details the distribution of F1 Scores.

These results are exciting because they demonstrate that the audio-visual-textual model

improves performance on average and that the worst performance on a video is better than

other models, as is the best performance. This is further demonstrated by Figure 6.2 which
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Figure 6.2: Box and Whisker plots for a selection of models presented in Experiment One.

shows box and whisker plots for all videos in the test set. This shows that some models,

namely the TASTE model, have a wide range, i.e. sometimes the model performs very poorly,

and sometimes it performs very well. However, in general, the models which utilise more

than one modality appear to have smaller distributions of F1 Scores, especially compared

to TASTE or the audio Auto-Highlight model. This is further evidence, as discussed in the

literature that multimodal models are likely to reduce prediction noise.

Finally, Table 6.3 details the Vargha Delaney A measure and Wilcoxon signed-rank test

values for pairs of models. Unsurprisingly, there is a large effect size and a statistically

significant difference in prediction for the audio-visual-textual compared to all other models.

This further highlights how important the improvement to performance is when all modalities

are used, given that this study uses a simplistic model fusion approach. Unsurprisingly,

because TASTE is the best performing non-unified model, it is the model where unification

has the smallest effect on performance. However, even still here, the effect size would be

considered ‘large’. Likewise, the audio-only model, which is the worse performing model in
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Table 6.3: Statistical testing results for Experiment One. The upper right triangle details
Vargha Delaney A measure. Values less than 0.5 indicate column outperforms row and values
more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44∨a >
0.56). ‡ denote a medium effect size (a < 0.36∨ a > 0.64). ⋄ and bold denotes a large effect
size (a < 0.29∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon
signed-rank test. Bold denotes significant values, i.e p < 0.05.

Audio Visual Auto-Highlight Taste Audio-Visual-Textual

Audio - 0.361† 0.252⋄ 0.252⋄ 0.082⋄

Visual 1× 10−1 - 0.345‡ 0.318‡ 0.091⋄

Auto-Highlight 5× 10−5 2× 10−2 - 0.581† 0.159⋄

TASTE 1× 10−2 9× 10−2 6× 10−1 - 0.217⋄

Audio-Visual-Textual 7× 10−6 7× 10−6 4× 10−5 2× 10−5 -

terms of F1 score, is also improved upon with a large effect size by using any other model

except the visual-only model.

6.2.5 Discussion

The implications of Table 6.2 and Figure 6.2 are important for understanding how the fusion

mechanism influences prediction, especially the range of F1 scores across the test set. For

instance, the model with the smallest range, and therefore the most robust to variance in

different videos, is the visual-only model. On the other hand, both the audio and TASTE

models demonstrate a wider range. This may be for several reasons. For instance, there may

be a variety of commentators, and some may have commentating styles with clearer highlight

signals than others. Likewise, some matches may attract particularly vocal audiences, e.g.

because of the teams involved, making highlight detection more or less difficult. On the other

hand, the visual cues are more consistent between matches. Fusing audio or textual data

with visual data reduced the range of F1 scores per video compared to these modalities but,

naturally, increased the range compared to just visual data. The audio-visual-textual has an

F1 Score range of 0.369, which is worse than the visual and auto-highlight models. However,

the model performs very well in general compared to these models, and the worst-performing

game for the unified model scored higher than the visual model.

It is interesting to consider how these individual modality models, i.e. Audio, Visual and

Textual (TASTE), correlate with each other and the final unified model. Figure 6.3 displays

a correlation matrix for these models. Perhaps unsurprisingly, the unified model correlates
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Figure 6.3: Correlation matrix between output values for the unified model as well as each
of it’s constituent models.

strongly with its constituent models, even though these models do not correlate strongly

with each other. The weakest correlation is between the audio model and TASTE. This may

be because these are the modalities most susceptible to noisy data. It is unlikely that noisy

false positive/negative highlight cues would be correlated across these modalities, and thus

when one makes a false prediction, the other is unlikely to do.

Finally, Figure 6.4 demonstrates the time series prediction for a selected video from

the test set. The grey columns represent the ground truth labels, and the pink sections

of the highlight signal for each model denote segments selected as highlights. A pink line

segment which is not aligned with a grey column denotes false positive predictions, whereas

ground truth segments where the signal is not above the threshold, i.e. pink, represent false-

negative predictions. From this, it is clear how segments rated very highly from one of the

constituent models are often not represented in the unified signal if the other models do not

also rate that segment highly. For example, there is a segment at about 3100 seconds which
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Figure 6.4: Time Series Highlight Prediction for each modality for a selected game.

the visual model ranks highly. However, the other models do not, and thus it is correctly

not selected as a highlight in the unified model. This may be a replay segment, e.g. during

post-match analysis, which would appear visually to be a highlight but perhaps lacks excited

commentator speech or audience reaction. Incorrectly identifying these moments was an issue

with the original Auto-Highlight model because, in general, it lacked context and thus could

not determine if a segment was part of the match or surrounding analysis. Incorporating chat

data into the model enables it to model context through audience reaction. For example,

the audience is less likely to react strongly to a replay than to a live game event, even if

visually, these segments are identical.

6.2.6 Conclusion

Model fusion for audio-visual-textual modalities is an effective technique for building high-

light detection models, significantly outperforming all other models presented in the thesis.

This is a somewhat surprising result. It is expected that modelling highlight signals from

the video feed alongside audience reactions would improve results. However, model fusion
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is a straightforward mechanism, and thus the extent to which it improves performance is

unexpected. While modelling of all potential modalities has only been explored preliminarily

in this study, in many ways, the huge performance increase is one of the more important

findings for this thesis. That said, it is likely that more complex fusion mechanisms discussed

in the next section will yield even more fruitful results.

6.3 Future Directions for Highlight Detection

The work discussed in the previous section marks the last research study contributing to

this thesis. However, this body of research by no means exhaustively explores this challenge.

Thus, it is pertinent to discuss potential future directions for modelling the interesting mo-

ments in livestreams.

6.3.1 Improved Fusion Approaches

The main mechanisms for fusion in this work have been concatenation and aggregation.

Concatenation is used in early and feature fusion models because it is a straightforward

way to join a set of latent feature vectors that does not lose any information. However,

concatenation also fails to generate new information, i.e. it does not model combinations

of features from different modalities. Aggregation is helpful for model fusion as, unlike

concatenation, it reduces multiple features to a single value, which is required when fusing

model outputs because the result of the aggregation becomes the output for the model.

However, like concatenation, this is a simplistic mechanism. That said, it also benefits from

being easily applied, e.g. in settings which are not strictly supervised, i.e. Chapter 4.

Chapter 3 explored using Tensor-Train fusion, which sought to more intelligently fuse la-

tent features by modelling higher-order interactions between features from different modal-

ities. While it appeared to yield performance benefits, at least in some tasks, it added

some amount of complexity, both in terms of the number of weights in the model and the

challenges of developing models which optimally utilise the Tensor-Train layer, given the

number of hyper-parameters involved. While this was an interesting application of Tensor-

Train for multimodal fusion, it was also clear from this study that exploring the most fruitful

multimodal fusion techniques is a complex issue outside this thesis’s scope.

Therefore, future work into intelligent fusion mechanisms will likely improve modelling
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results or contribute to a better understanding of how best to fuse multimodal data. For

instance, one of the most significant challenges is modelling context, which is handled via

a series of transformer blocks in the TASTE model. This may well prove to be a fruitful

technique for modelling and fusing across audio-visual and textual data. Transformers could

be utilised in a supervised setting by replacing the stack of messages transformer from the

TASTE model with a transformer that includes input from audio-visual data. The trans-

former would allow the model to naturally learn the inherent time lag between audio-visual

and chat data and attend to cues at different time stamps in the various modalities. The

key challenge here would be ensuring that the sampling rate for all modalities is compatible.

6.3.2 Enhanced Audio-Visual Modelling

The Autohighlight audio-visual hybrid fusion model performs well compared to other state-

of-the-art ranking models. However, like them, it selects highlights based only on short

segments and does not explicitly model events outside these segments, which could provide

additional context. While applying smoothing introduces consideration for the context of a

given sample, this is not modelled in the original ranking model. It is challenging to model

context in a weakly-supervised setting. While the context in a given segment is present in

the broadcast dataset, as, in the original unedited broadcast, this is not the case for the

highlight dataset because it has been edited. Careful consideration is required to include

context data into these models to improve prediction, as doing so will likely yield positive

results. There are no clear solutions to this problem; thus, while improving this is likely

to improve audio-visual modelling significantly, it is also likely to represent an extensive

research undertaking.

Additionally, the pretrained feature extraction used for audio-visual models is generic

feature extractors, e.g. trained on kinetics. While these models produce a set of features

useful for prediction, a pretrained feature extractor focused on esports titles, either on a per-

title basis or genre-based, could improve results. There are several methods for achieving this,

but one currently popular approach is self-supervised learning. For instance, it may be helpful

to utilise a training scheme similar to the successful ‘jigsaw’ scheme but using temporal stacks

of frames to build latent feature extractors that describe esports-specific features, e.g., user

interface elements. This would then, in theory, improve the ranking/classification models by

providing them with more relevant information. Custom feature extraction would also allow
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the highlight detection research to ensure the sampling size is such that cross audio-visual-

textual modelling through a transformer is possible.

6.3.3 Highlight Detection Though the Lens of Computational Creativity

It is arguable that the highlight models in Chapters 4 and 5 create highlights as a pastiche

of the video editors who made the original highlight videos in the training data. While

this aids in creating human-like highlight videos, it fails to fully explore the potential for

highlight video generation using computational creativity techniques. For example, this

thesis primarily considers highlight detection as essentially a classification problem where

there exist some ground truth highlight labels. However, highlight generation is subjective.

Therefore this ground truth may not be the optimal set of highlight segments or several

distinct sets of optimal highlight clips may exist. Many areas of computational creativity

seek to allow the algorithm to find exciting moments without strictly training them to detect

human-style moments, something akin to the Novelty based method in Chapter 3. Pursuing

this avenue of research may yield surprising, unique, but still highly entertaining highlight

videos.

One potential application of this would be to utilise the active community of esports fans

on social media sites to improve detection models. This could work by posting generated

highlight clips to social media channels and judging the responses it receives as a form of fine-

tuning. This would allow the model to transform from predicting the most similar segments

to the source highlight videos to predicting the segments most enjoyed by esports fans. This

could also lead to personalised highlight systems where viewers are shown a highlight video

conditioned on the kind of content the particular viewer has historically enjoyed.

Alternatively, techniques like those presented in this thesis may serve as a jumping-off

point for human-in-the-loop co-creativity systems where the system aids a human editor

rather than replacing them. Such a system could work by, e.g. presenting the editor with

a set of segments the model ranks highly. The human editor could then select, dismiss, or

edit segments based on their judgement. This would speed up the human editing process

and fine-tune the model over time.
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6.3.4 Other Titles

Finally, this thesis studies only two titles. Playerunkown’s Battlegrounds was deliberately

chosen because it was expected that the novelty approach would be particularly suitable for

the game due to its properties, i.e. largely low-intensity gameplay with moments of high-

intensity action which correlates strongly to a highlight moment occurring. The rest of the

thesis focuses on League of Legends because it is popular and thus has abundant data. In

particular League of Legends was a very attractive game because it has many worldwide

professional leagues making it very straightforward to study many game-driven settings.

Furthermore, League of Legends has a community of highlight video editors, which enabled

the semi-supervised approach used for Chapter 4.

However, numerous other games are commonly streamed, e.g. the games included in

the TwitchChat dataset. These games and the streamers playing them would benefit from

automatic highlight detection. Further study into whether the techniques that have proved

successful in this thesis generalise to other games would be helpful. In general, deep learning

methods are designed to be general models. However, there may be games with robust and

low noise highlight signals, e.g. a particular message that appears on the screen strongly

correlated with highlight moments. Equally, there may be games with nosier highlight sig-

nals, for example, a strategy game where a particular event could be a highlight or not based

on the game’s history. Therefore, developing a dataset containing various games would help

understand the kinds of games with which these techniques work well.



Chapter 7

Conclusions

7.1 Introduction

The research chapters present this thesis’s contributions in exploring deep learning methods

for highlight detection. This chapter, therefore, concludes the thesis. To achieve this, Section

7.2 revisits all the research goals presented in Chapter 1 and evaluates them. The limitations

of this research are then discussed in Section 7.3. Finally, 7.4 presents the closing remarks.

7.2 Revisiting Research Goals

The below sections explore whether the original research goals have been achieved during

this thesis.

Explore dataset properties, preprocessing, and labelling required to suc-

cessfully model the most exciting moments in livestreamed esports broad-

casts.

Data has consistently been an issue with building models in this domain. This is mainly due

to the lack of supervised training and evaluation data. Several solutions were explored. For

instance, Section 3.2 approached the highlight problem via unsupervised novelty modelling.

This approach was deliberately chosen because the labelling issue could be sidestepped if

unsupervised approaches were suitable. While this study was successful with the studied

game, it did not generalise to other games, and thus fully unsupervised approaches are not

suitable for generalised methods for highlight detection. The other study into personality-

189
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driven highlight detection used supervised learning but, like Section 3.2, did so via proxy

signals for highlights. While the training was partially successful, especially for predicting

game events, the requirement for annotation resulted in a smaller than ideal dataset. A sig-

nificant effort is required for successful supervised learning, either human if hand-annotating

or computationally if frame-matching. Weakly-supervised learning, a compromise between

supervised and unsupervised methods, proved very useful for audio-visual highlight detec-

tion. However, League of Legends is one of the most popular esports titles. This means

there is an abundance of this crowd-sourced highlight data available. There may not be

such an abundance of this data for other esports titles, especially those aiming to grow their

audience.

Text data from the audience chat system presented significant challenges. Not only are

there labelling obstacles as with audio-visual data, but the text chat format is unique, as

outlined in Chapter 5. Significant study into understanding the data format, for example,

the temporal nature and the extensive use of platform-specific tokens, was required before

a predictive model could be applied. This culminated in the release of the TwitchChat

dataset [165]. Once this was performed, the TwitchChat dataset could be used for model

pretraining. Fortunately, there also existed an easily accessible dataset of chat data an-

notated for highlight moments, making supervised highlight models for this data relatively

straightforward, at least in terms of preparing the input data.

Develop methods for utilising video data to perform audio-visual highlight

detection suitable for both personality-driven livestreams and game-driven

livestreams.

While each audio-visual study in this thesis used slightly different approaches, there was some

commonality between the architectures. For instance, CNNs were very useful for modelling

the visual aspects of streams, either using 2D CNNs on a per-frame basis or 3D CNNs on

video segments. It is less clear what the best method for audio modelling is; for example,

frequency-based approaches have shown promise, as did directly modelling raw data with a

CNN.

While personality-driven and game-driven broadcasts are fundamentally constructed

from the same data sources, they share minor differences. The primary difference is that

personality-driven livestreams tend to contain additional visual modalities in the form of the
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streamer’s webcam. This was handled by adding extra visual inputs to the models, which

was easily achieved because the feature extraction techniques were trained separately, and

the fusion methods can accept an arbitrary number of input modalities.

Therefore, while the data-label formulation was different for all three audio-visual studies,

the primary techniques, especially visual techniques, share a common theme. Thus, Deep

Learning techniques clearly work well for modelling this complex data.

Develop methods for utilising chat to perform Natural Language based

highlight detection.

In contrast to the audio-visual modelling discussed above, chat modelling was significantly

complex. This was primarily due to the unknown qualities of livestream chat data compared

to more typical prosaic English text, for example, the large quantity of non-standard tokens

precluding the use of any pretrained vectorisation techniques. Thus a significant amount

of research time was spent investigating these properties and developing the TwitchChat

dataset, which, while extremely valuable to this research, did not directly contribute highlight

detection methods.

Fortunately, natural language techniques have been the subject of considerable research

attention, and one technique, transformers, has become the prevailing method for modelling

text. The TASTE architecture discussed in Chapter 5 builds upon the standard Transformer

encoder architecture to incorporate the temporal nature of livestream. It is clear from

the performance of the TASTE model that this transformer-based approach is potent for

predicting highlights from text data. Therefore, while this area was not explored through

many studies, as with audio-visual data, it is clear that at least one technique, transformers,

is successful.

Explore the potential for multi-modal models using Audio, Visual and Lan-

guage data.

Chapter 6 explores the potential for fusing audio, visual and textual data into a single

prediction and outlining potential future directions for this research. It is evident from this

study that fusing across video cues, i.e. audio-visual data, and audience cues, i.e. textual

data, has a hugely positive effect on predictive performance. Not only does the unified

model outperform Auto-Highlight and TASTE in average performance metrics, but it is also
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appears more robust than non-visual models. Overall this research goal can be considered

to have been met, although only lightly.

Fusing across all modalities is a complex problem that requires satisfactorily modelling

the individual modalities. This is not a simple task, especially considering the challenges

with handling livestream data, hence the focus in this thesis on modelling the modalities well

versus modelling all modalities simultaneously. There was only space within this thesis to

explore preliminary techniques for audio-visual-textual fusion. The model fusion mechanism

used for this study is relatively straightforward. Therefore, given that such a straightforward

technique provides such a considerable performance improvement, it is likely that the more

complex techniques outlined in the future direction section will yield even better predictive

models.

7.3 Limitations

There are several limitations to this work. Firstly, the majority of this thesis has only ap-

plied the highlight detection techniques to one game, League of Legends. Therefore, the

approaches discussed in this thesis may not generalise well to other games. This was already

the case with the unsupervised novelty detection approach applied to the game PlayerUnk-

nown’s Battlegrounds, hence abandoning that line of research after the initial study. However,

the other methods used in this thesis were chosen because they are well known for being

generalisable to different problems. Therefore, while techniques in this thesis have not been

tested on other games, there is some expectation that they will work. League of Legends was

chosen because of the abundance of available livestream data, allowing the training processes

to leverage large-scale datasets. Therefore, the primary concern concerning the generalis-

ability of the work in this thesis, bar novelty detection, is not the models themselves but the

availability of suitable training data.

One challenge in evaluating highlight detection models is that no apparent metrics neatly

explain the models’ performance. Precision-based metrics are standard in the literature,

which is understandable given that including dull moments is harmful to deploying a high-

light detection model. However, highlight detection in game-driven esports broadcasts also

requires the match’s narrative to be captured. Therefore, arguably in this context, Recall is

equally important, and thus F1 Score has been adopted in several studies. However, none
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of these metrics satisfactorily measure a model’s effectiveness at highlight detection because

they fail to capture how realistic an edited video is. For instance, consider a video with a

long ground-truth highlight segment. If most of this is correctly detected as a highlight, but

several short sub-segments are incorrectly classified as non-highlight, the model may score

highly on the above metrics yet fail to produce a realistic video. One potential solution is to

perform human-based evaluation of the produced highlight models. This would ensure that

the videos are evaluated in a scenario similar to the use case for such techniques. However,

human evaluation was not used for these studies because doing so is not straightforward.

There is a significant overhead in performing human-focused evaluation, especially consid-

ering the subjective nature of highlight generation. Therefore, while the commonly used

metrics are not ideal compared to human evaluation, they are significantly more practical.

Finally, Chapter 6 explored preliminary experimentation into models which use audio,

visual, and chat data. It is clear from these results that using all modalities is very powerful.

However, the study does not explore fusion methods in-depth, especially considering using

audio-visual data with chat data. Furthermore, as outlined in the same chapter, there is

potential for more complex fusion methods, especially those which can more intelligently

fuse chat data with the other modalities. However, these approaches are not covered in this

thesis. Therefore, while the models in the thesis are largely successful, especially the audio,

visual, and chat model fusion model, there is potential for significant improvement.

7.4 Closing Remarks

This thesis has explored using a suite of techniques for detecting the most exciting moments

in a livestream broadcast under the guise of ‘highlight detection’. It is clear from the research

that deep, multi-modal models are effective at modelling these moments, at least in the games

studied. Furthermore, the generalist characteristics of these models suggest that they are

likely to perform similarly for other games. In the course of this research, the value of

both the broadcast itself, i.e. the audio-visual data, and the reaction from the audience,

i.e. textual chat data, became evident. Therefore, the most successful approach utilises all

available modalities, i.e. Chapter 6.
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(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.1: Features for each streamer sorted by document count.
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(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.2: Features for each streamer sorted by message count.



APPENDIX A. ADDITIONAL PLOTS FOR THE TWITCHCHAT DATA-SET 198

(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.3: Features for each streamer sorted by token count.
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(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.4: Features for each streamer sorted by median viewer count.
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(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.5: Features for each game sorted by document count.



APPENDIX A. ADDITIONAL PLOTS FOR THE TWITCHCHAT DATA-SET 201

(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.6: Features for each game sorted by message count.



APPENDIX A. ADDITIONAL PLOTS FOR THE TWITCHCHAT DATA-SET 202

(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.7: Features for each game sorted by token count.
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(a) Document Count (b) Message Count

(c) Token Count (d) Median Viewer Count at Start of Stream

Figure A.8: Features for each game sorted by median viewer count.
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(a) Median Chat Speed (b) Median Message Length

(c) Median Streamer Rank (d) Median tf-idf

(e) Document Frequency Rank (f) Token Frequency Rank

Figure B.1: KDE plots comparing the distributions of the 100 tokens closest to the centre
of each cluster for DW-SGNS.

(a) Median Chat Speed (b) Median Message Length

(c) Median Streamer Rank (d) Median tf-idf

(e) Document Frequency Rank (f) Token Frequency Rank

Figure B.2: KDE plots comparing the distributions of the 100 tokens closest to the centre
of each cluster for 2T-SGNS.

(a) Median Chat Speed (b) Median Message Length

(c) Median Streamer Rank (d) Median tf-idf

(e) Document Frequency Rank (f) Token Frequency Rank

Figure B.3: KDE plots comparing the distributions of the 100 tokens closest to the centre
of each cluster for 5T-SGNS.



List of References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,

Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow,

I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
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C., Vasconcelos, T., and Meira, W. Modeling and analyzing the video game

live-streaming community. In 2014 9th Latin American Web Congress (2014), pp. 1–9.

[139] Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari, A. Learning

with noisy labels. In Advances in Neural Information Processing Systems 26, C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran

Associates, Inc., 2013, pp. 1196–1204.



LIST OF REFERENCES 222

[140] Nematzadeh, A., Ciampaglia, G., Ahn, Y.-Y., and Flammini, A. Information

overload in group communication: From conversation to cacophony in the twitch chat.

Royal Society Open Science 6 (10 2016).

[141] Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. Multimodal

deep learning. In Proceedings of the 28th International Conference on International

Conference on Machine Learning (USA, 2011), ICML’11, Omnipress, pp. 689–696.

[142] Nguyen, N., and Yoshitaka, A. Soccer video summarization based on cinematog-

raphy and motion analysis. Multimedia Signal Processing (MMSP) (2014), 1–6.

[143] Nicolaou, M. A., Gunes, H., and Pantic, M. Continuous prediction of sponta-

neous affect from multiple cues and modalities in valence-arousal space. IEEE Trans-

actions on Affective Computing 2, 2 (2011), 92–105.

[144] Nicolaou, M. A., Panagakis, Y., Zafeiriou, S., and Pantic, M. Robust canon-

ical correlation analysis: Audio-visual fusion for learning continuous interest. ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing - Proceed-

ings (2014), 1522–1526.

[145] Nicolaou, M. A., and Ringer, C. Streaming behaviour: Live streaming as a

paradigm for multi-view analysis of emotional and social signals. In Twitch Workshop,

13th International Conference on the Foundations of Digital Games (2018), FDG ’18.

[146] Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. Tensorizing neural

networks. In Proceedings of the 28th International Conference on Neural Information

Processing Systems - Volume 1 (Cambridge, MA, USA, 2015), NIPS’15, MIT Press,

pp. 442–450.

[147] Olejniczak, J. A Linguistic Study Of Language Variety Used On Twitch . Tv

: Desriptive And Corpus-based Approaches. Redefining Community in Intercultural

Context 4, May (2015), 329–334.

[148] Oseledets, I. Tensor-train decomposition. SIAM Journal on Scientific Computing

33, 5 (2011), 2295–2317.



LIST OF REFERENCES 223

[149] Panagakis, Y., Kossaifi, J., Chrysos, G. G., Oldfield, J., Nicolaou, M. A.,

Anandkumar, A., and Zafeiriou, S. Tensor methods in computer vision and deep

learning. Proceedings of the IEEE 109, 5 (2021), 863–890.

[150] Pankaj Malhotra, Lovekesh Vig, G. S., and Agarwal1, P. Long short term

memory networks for anomaly detection in time series. In 23rd European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning (2015).

[151] Park, J., Barash, V., Fink, C., and Cha, M. Emoticon style: Interpreting differ-

ences in emoticons across cultures. Proceedings of the International AAAI Conference

on Web and Social Media 7, 1 (Aug. 2021), 466–475.

[152] Parkhi, O. M., Vedaldi, A., and Zisserman, A. Deep Face Recognition. Proced-

ings of the British Machine Vision Conference 2015, Section 3 (2015), 41.1–41.12.

[153] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,

Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,

B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-

performance deep learning library. In Advances in Neural Information Processing Sys-

tems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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[202] Thomas, T., Doḿınguez, M., and Ptucha, R. Deep independent audio-visual

affect analysis. In 2017 IEEE Global Conference on Signal and Information Processing

(GlobalSIP) (2017), pp. 1417–1421.

[203] Trivedi, C., Liapis, A., and Yannakakis, G. N. Contrastive learning of gen-

eralized game representations. In 2021 IEEE Conference on Games (CoG) (2021),

pp. 1–8.

[204] Turchenko, V., and Luczak, A. Creation of a deep convolutional auto-encoder in

caffe. In 2017 9th IEEE International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications (IDAACS) (2017), vol. 2,

pp. 651–659.

[205] Turney, P. D., and Pantel, P. From Frequency to Meaning: Vector Space Models

of Semantics. Journal of Artificial Intelligence Research 37 (Feb. 2010), 141–188.

arXiv: 1003.1141.

[206] TwitchTracker. Twitch statistics & charts. https://twitchtracker.com/statistics,

2021.

[207] Twitch.tv. Hardware recommendations. https://www.twitch.tv/creatorcamp/en/setting-

up-your-stream/hardware-recommendations/, 2021.

[208] Twitch.tv. Twitch press center. https://www.twitch.tv/p/press-center/, 2021.

[209] Tzirakis, P., Trigeorgis, G., Nicolaou, M., Schuller, B., and Zafeiriou,

S. End-to-end multimodal emotion recognition using deep neural networks. IEEE

Journal of Selected Topics in Signal Processing PP (04 2017).

[210] Tzirakis, P., Trigeorgis, G., Nicolaou, M. A., Schuller, B. W., and

Zafeiriou, S. End-to-end multimodal emotion recognition using deep neural net-

works. CoRR abs/1704.08619 (2017).

[211] Vargha, A., and Delaney, H. D. A critique and improvement of the ”cl” com-

mon language effect size statistics of mcgraw and wong. Journal of Educational and

Behavioral Statistics 25, 2 (2000), 101–132.



LIST OF REFERENCES 230

[212] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser, L., and Polosukhin, I. Attention is all you need. In Proceedings

of the 31st International Conference on Neural Information Processing Systems (Red

Hook, NY, USA, 2017), NIPS’17, Curran Associates Inc., p. 6000–6010.

[213] Wang, L., Sun, Z., Yao, W., Zhan, H., and Zhu, C. Unsupervised multi-stream

highlight detection for the game ”honor of kings”, 2019.

[214] Wiseman, S., and Gould, S. J. J. Repurposing Emoji for Personalised Commu-

nication: Why [pizza slice emoji] means “I love you”. In Proceedings of the 2018

CHI Conference on Human Factors in Computing Systems - CHI ’18 (Montreal QC,

Canada, 2018), ACM Press, pp. 1–10.

[215] Woodcock, J., and Johnson, M. R. The affective labor and performance of live

streaming on twitch.tv. Television & New Media 20, 8 (2019), 813–823.

[216] Wulf, T., Schneider, F. M., and Beckert, S. Watching Players: An Exploration

of Media Enjoyment on Twitch. Games and Culture 15, 3 (May 2020), 328–346.
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