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Abstract

Aortitis refers to inflammatory conditions affecting the aortic wall that cannot be ex-

plained by atherosclerosis alone. Large Vessel Vasculitis (LVV) is the main type of non-

infectious aortitis and can affect any of the large arteries. Aortitis and LVV are difficult to

diagnose and treat due to a variety of reasons such as non-specific symptoms and diagnos-

tic tests, a large number of potential causes, and risks involved in providing incorrect or

delayed treatment. [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed

Tomography (FDG PET-CT) imaging plays a key role in diagnosis of LVV due to its abil-

ity to detect inflammation early and non-invasively, but is mostly assessed qualitatively

making its interpretation vulnerable to bias and inter-observer variation. Therefore, there

is a need for more reliable imaging biomarkers which can be achieved with radiomic

analysis.

The aim of this thesis is to explore the diagnostic ability of radiomic features in FDG

PET-CT imaging of aortitis. First, the feasibility is determined and a methodological

pipeline established. Next, the findings are validated with data from multiple centres and

the overall method automated. The first step of the method is the aortic segmentation us-

ing an artificial intelligence which produces similar radiomic features as the manual seg-

mentation. When used as input in the diagnostic models, several individual radiomic fea-

tures and groups of radiomic features demonstrated high diagnostic performance across

the training, test and validation cohorts. In particular features based on heterogeneity

perform well. The method displayed good generalizability and transferability which is

important prerequisites for clinical use. These findings could be used to build an auto-

mated clinical decision tool which would facilitate objective and standardized assessment

regardless of observer experience.
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Chapter 1

Preface

Overview of Thesis

Aortitis and large vessel vasculitis (LVV) are notoriously difficult to diagnose and treat.

This is due to a variety of reasons such as non-specific symptoms and diagnostic tests,

a large number of potential causes, and risks involved in providing incorrect or delayed

treatment. Symptoms can include fever, headache, weight loss and lethargy which may

not immediately be picked up as potential aortitis or LVV [1]. Similarly diagnostic tests

include a combination of laboratory tests, imaging and review of clinical signs and symp-

toms which are non specific [2, 3]. Aortitis can be caused by a range of infectious or

non-infectious conditions. More information about the underlying cause can prevent the

use of immunosuppression in infectious cases and to prevent delays in providing the cor-

rect treatment that could reduce the risk of complications. Imaging plays an important

role in the diagnosis of aortitis but is mostly assessed qualitatively making it vulnerable

to bias and inter-observer variation.

Applying radiomic analysis and machine learning to [18F]-Fluorodeoxyglucose Positron

Emission Tomography-Computed Tomography (FDG PET-CT) scans of aortitis patients

produces a large quantity of previously unexplored information contained within the im-

ages. These imaging biomarkers can be used to address some of the difficulties in diag-

nosis and treatment by constructing diagnostic models that can aid in clinical decision-

1
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making while also standardizing assessment.

This thesis is comprised of four central chapters which explore the development of a

FDG PET radiomic pipeline to assist in the diagnosis of aortitis.

An overview of the chapters is presented below.

Background: This chapter describes in detail the fundamental concepts behind LVV

/ aortitis, PET imaging , and radiomic analysis. It explores the questions surrounding the

diagnosis of aortitis and the theory behind the methods used to address these questions.

Experiment Set 1 - Method Development: The first goal of this project was to ex-

plore the diagnostic utility of radiomic features in aortitis. This chapter serves as both a

proof of concept and explores developing a method using our initial single centre datasets.

Experiment Set 2 - Method Automation and Validation: The second set of experi-

ments look to validate the findings of the previous chapter in a multi centre study. Another

goal of these experiments was to automate the process using a convolutional neural net-

work to segment the aorta as this was a bottle neck in earlier versions of this pipeline.

Synopsis: This chapter summarises the findings of the project starting with the proof

of concept, development of the method and then validation. Limitations both in this study

and in the field of radiomics more generally are discussed and a comprehensive analysis

of where this work may progress is then given.

Key Contributions

The key contributions of this PhD are described below.

1. Several radiomic features and combinations of radiomic features have shown to

have diagnostic utility in aortitis similar to that of the current standard of care,

qualitative assessment.

2. An automated aortic segmentation method was developed and validated.

3. An open access automated methodology has been established which could stan-

dardize diagnosis of aortitis regardless of experience on observer variability.

(https://github.com/LisaDuff/ClassificationRadiomicsModelBuilder)
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4. Our findings and methodology open up the possibility of radiomic analysis to pro-

vide information about treatment response, outcome prediction and subtype classi-

fication within aortitis and large vessel vasculitis.
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Chapter 2

Background

2.1 Aortitis and Large Vessel Vasculitis

2.1.1 Overview

The aorta is the main artery in the human body and runs from the heart down the centre

of the chest and abdomen. Blood enters it from the heart via the aortic valve and from

there blood is distributed through the body via other arteries and then returned to the heart

through veins. Aortitis refers to inflammatory conditions affecting the aortic wall that

cannot be explained by atherosclerosis alone [1, 4, 5]. It can arise as an isolated condition

or in association with other infectious or non-infectious diseases, where non-infectious

causes are more common [1, 6]. Large vessel vasculitis (LVV) is the main type of non-

infectious aortitis and can affect the aorta and any of its branches (Figure 2.1). Giant cell

arteritis (GCA) and Takayasu arteritis (TAK) are the most common types of LVV [1, 7].

Immunoglobulin-G4-related disease (IgG4-RD) commonly has peri-aortic involvement

and is sometimes classified as a LVV rarer sub-type [8, 9]. The causes and processes of

aortitis can overlap with peri-aortitis where inflammation extends past the aortic wall to

the periaortic space [5].

GCA was initially considered a condition that affected branches of the external carotid

and vertebral arteries but modern imaging techniques have shown large vessel involve-

ment in up to 83% of patients [10–12]. GCA is now further categorised as cranial GCA

8
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Figure 2.1: Arteries of the body most commonly affected by large vessel vasculitis
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or large vessel GCA although both can be present [13, 14]. To be called aortitis, large ves-

sel involvement including the aorta would need to be present. GCA affects women more

than men, is most prevalent in people with northern european heritage, and is rarely found

in patients younger than 50 years old [15, 16]. Symptoms vary depending on the vascular

territories affected but aortic involvement often presents with systemic symptoms, such

as fever, weight loss and lethargy [1]. Cranial GCA symptoms include jaw claudication

(pain associated with reduced blood flow during chewing), headache, scalp tenderness

and vision loss [6, 17, 18]. Polymyalgia Rheumatica (PMR) is an overlapping inflam-

matory disorder that occurs along side about 40% of GCA cases adding symptoms of of

myalgia, arthralgia and stiffness [15]. The risk of aortic aneurysm formation is increased

in GCA, along with greater aneurysm growth rate and risk of dissection [19].

TAK presents similarly to GCA in terms of constitutional symptoms in the early

stages. It also predominantly affects women. The key difference is age of diagnosis

which generally occurs between the ages of 20 - 40 years old in TAK [20]. However TAK

is much rarer than GCA and this, along with subtle initial symptoms can cause a delay in

diagnosis [21] meaning some studies have populations with an average age of diagnosis

above 40 years old [22].TAK is often referred to as the pulse-less disease due to ischemic

complications in later stages from stenosis and occlusion, which occur more frequently

compared to GCA [21].

Both GCA and TAK are rare with the exact prevalence hard to define for this reason.

One retrospective study found a mean incidence rate for GCA of 112 people per 1 million

[23, 24], and another study found a mean rate for TAK of 0.8 people per million[25].

These are both UK based studies and the prevalence varies with location and race [16].

Regardless of the cause of aortitis it can lead to significant morbidity [26, 27]. A

major cause of morbidity is vascular complications such as stenosis, stroke,sight loss,

aortic dilatation and aneurysm formation [28, 29]. Morbidity can also be attributed to

side-effects of treatment as described in Section 2.1.2 [30]. There can be a diagnostic

delay in GCA, particularly if symptoms such as headaches are absent, and in TAK due to

subtle initial symptoms. This can lead to decreases in quality of life such as loss of sight

or stroke, particularly in GCA.

Mortality is significantly higher in infectious aortitis [1, 31]. Exact mortality rates in
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non-infectious aortitis are varied and conflicting but a general higher mortality rate has

been observed in those with non-infectious aortitis compared to similar demographics

without it [32, 33]. This contradicts earlier studies [34]. There is also a shown trend of

aortitis increasing mortality of conditions such as aneurysms and cardiovascular disease

when compared to patients without aortitis [1, 35]. It is worth noting that due to the

higher prevalence of GCA there is a natural bias toward those patients in aortitis mortality

studies. The younger age demographic affected by TAK means patients with TAK have a

higher mortality rate compared to similar controls who are statistically less likely to die

of other causes making the increase in mortality more noticeable [29].

2.1.2 Treatment

Treatment for aortitis usually includes glucocorticoids and/or immunosuppressants [36,

37]. GCs can induce remission but relapses during or after discontinuation of treatment

are common resulting in prolonged treatment. This increases the risk of glucocorticoid

related toxicity which can lead to infection, diabetes, cardiovascular disease, osteoporosis

or fracture [38–41]. It is recommended that glucocorticoids start at a higher dose, 40-

60mg, and are gradually tapered to 15-20mg within a few months and 5-10mg in a year

[37]. This is to balance the risks of toxicity and flare on discontinuation.

Other treatments include immunosuppressants, such as methotrexate, and more re-

cently Tocilizumab [42]. Which treatment is used can depend on disease activity state.

Tocilizumab in particular is mostly used to treat relapsing or refractory disease with

methotrexate used as an alternative [37].

Treatment of aortitis also includes treatment of drug side effects and complications

from aortitis or LVV itself. For example therapies can be applied to mitigate risks of

osteoporosis or infections. Interventions may be required in the case of complications

such as stroke, vision loss, aneurysm or stenosis in limbs.

Treatment for GCA and TAK are generally similar but different strategies may be

adopted based on age, symptoms or vascular territories and the risk of complications

associated with these factors.

Accurate, and quick diagnosis of aortitis is essential in order to treat correctly and
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minimise patient discomfort.

2.1.3 Diagnosis

Reliable diagnosis of aortitis and its underlying cause is essential to disease management

[1]. While infectious aortitis is much less common than non-infectious causes, it is es-

sential to exclude it to prevent the incorrect use of immunosuppression in treatment. It is

essential to provide the correct treatment but any delays in providing this treatment can

risk complications.

There are several diagnostic pathways a patient may go through, starting with symp-

toms arising or incidental histological (Figure 2.2) or radiological findings (Figures 2.3,

2.4, and 2.51). A combination of laboratory tests, imaging and review of clinical signs

and symptoms are used to then confirm diagnosis and determine the underlying cause [1].

Diagnosis of aortitis remains challenging as laboratory markers (C reactive protein (CRP)

and erythrocyte sedimentation rate (ESR)) and aortitis symptoms are non specific and not

always elevated [2, 3]. Other common tests such as temporal artery biopsy are also inva-

sive, can give false negatives and are not always feasible if the inflamed vascular territory

cannot be accessed.

Imaging plays an important role in diagnosis as it can help overcome some of these

problems [1, 14]. Imaging techniques for LVV include ultrasound (US) of the tempo-

ral and axillary arteries, magnetic resonance imaging and computed tomography with or

without angiography (MR(A) and CT(A))(Figure 2.3, and 2.4), and Positron Emission To-

mography (PET) (Figure 2.5) [14, 45]. US, MR(A) and CT(A) are considered anatomical

imaging and can be used to assess structural changes caused by aortitis. Wall thickening

can be used to assess inflammation but is non-specific since it can also represent vascular

damage. Wall thickening can be identified with MR(A), CT(A), and US [1, 45, 46]. Be-

sutti et al. set a threshold of 3mm to qualify as wall thickening [47]. Muto et al. found a

mean wall thickness of 3.8mm in LVV patients compared to 2.6mm in controls [48]. PET

1Scale of radiological images in Figures unclear/varied. Chang et al. found the average proximal de-

scending aortic diameter to be 24.8 ± 3.4 mm in a general hospital population [43]. Mensel et al. found the

average aortic wall thickness in a general population to be 1.26mm in females and 1.36mm in males [44].
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Figure 2.2: Histological analysis of temporal artery biopsies from a control patient (left)

and a LVV(GCA) patient (right). Image from Planas-Rigol et al. is licensed under Cre-

ative Commons Attribution License [51]. Exact scale unclear but Gajree et al. found a

mean temporal artery biopsy diameter of 2.35mm [52].
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imaging is used to observe functional processes within the body and in the case of LVV

highlight inflammation. It is not used for anatomical observation but PET activity can

be a precursor for angiographic changes [49]. Due to improvements in vascular imaging

more precise characterization of LVV and its sub-types has been achieved. While FDG

PET-CT is a useful imaging tool for LVV it can also highlight other vascular conditions,

mainly atherosclerosis. The two conditions can appear similarly in FDG PET-CT but a

review by Nienhuis et al. showed that the high intensity diffuse pattern of LVV can be

used with some success to differentiate between them [50]. Along side this calcification

in the arteries is visible by the accompanying CT.

2.2 PET

Positron emission tomography (PET) is a molecular imaging technique that is used to ob-

serve functional processes within the body [53, 54]. Patients receive radioactive tracers,

known as radiotracers, usually by injection, and the radiotracers distribute throughout the

body similarly to their non-radioactive counterparts. The tracer contains a radioisotope in

place of another constituent of the molecule. This radioisotope emits a positron which an-

nihilates with a nearby electron producing two gamma rays 180◦from one another (Figure

2.6), and the detection of pairs of gamma rays produce three-dimensional PET images.

The distribution of the radiotracer is used to determine if the functional processes are

working as expected. PET is used in the diagnosis and monitoring of several conditions.

As PET scans are used to image processes they are often paired with CT or Magnetic

resonance imaging (MRI) to provide anatomical reference [55].

2.2.1 PET Technical Aspects

The fundamental steps of PET imaging are set out in Figure 2.6.

Atoms have a central positively charged nucleus and surrounding electron shells. The

emitted positron originates from the nucleus [56]. Once emitted a positron will travel

until it meets it’s anti-particle, the electron. Small interactions with other particles and

their electric and magnetic fields will cause the path of the positron to not be straight.
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(a) Computed tomography angiography of a

healthy aorta showing minimal wall thick-

ness

(b) Computed tomography angiography of

an aorta with atherosclerotic plaques and a

co-occuring aneurysm

(c) Computed tomography angiography of

large vessel vasculitis showing wall thick-

ening

Figure 2.3: Computed tomography angiography of a) healthy aorta (aortic arch and de-

scending aorta), b) athersclerotic aorta (descending aorta), and c) large vessel vasculitis

(aortic arch and descending aorta).
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(a) Magnetic resonance angiography pre-

treatment

(b) Magnetic resonance angiography post-

treatment showing less intense signal in the

vessel wall

Figure 2.4: Magnetic resonance angiography of aortic arch and descending aorta in a)

pre-treatment large vessel vasculitis, b) post-treatment large vessel vasculitis
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(a) Positron emission tomography

imaging of a healthy aorta

(b) Positron emission tomography imaging of

ahtersclerosis showing active hotspots

(c) Positron emission tomography

imaging of large vessel vasculitis

showing a diffuse uptake pattern

Figure 2.5: Positron emission tomography imaging of a) a healthy aorta (aortic arch and

descending aorta), b) atherosclerosis (descending aorta), c) large vessel vasculitis (aortic

arch and descending aorta)
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Figure 2.6: Positron emission tomography (PET) scanning - emitted positron travels until

annihilation with electron producing anti-parallel gamma (γ) rays detected by PET de-

tectors. Detected coincidence events (one example in yellow and another in orange) are

detected and used to build an image representing radiotracer distribution.
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The measured positron range varied depending on the radiotracer used, detector size and

system diameter [57]. [18F]-Fluorodeoxyglucose ([18F]-FDG), a widely used radiotracer

and used for aortitis assessment, had a maximum radius of 2.4mm in water in a recent

study [58]. This annihilation produces two gamma rays with an energy of 511keV at

180◦from each other [59].

A PET detectors main components are scintillation crystals and photodetectors[59].

Scintillation crystals in the PET detectors detect the gamma photons, absorb those pho-

tons, and convert them to visible or UV light. This light is detected by photodetectors pro-

ducing an electrical signal [60, 61]. Four important characteristics of scintillation crystals

are the stopping power, decay constant, energy resolution and light output. Higher stop-

ping power results in a shorter travel distance in crystal. This is favourable for a better

detection efficiency. The decay constant dictates how long a scintillation flash occurs.

Shorter flashes are better to allow for more photons to be detected. A precise energy res-

olution is beneficial so scattered photons can be distinguished and discounted. Finally, a

high light output is preferable for better detection [59, 61].

Photo-multiplier tubes (PMTs) are a common photodetector. They take incoming light

photons and produce electrons that are accelerated and amplified. The current produced is

proportional to the energy deposited into crystal by pet photons. To determine the location

of the detected photon many small PMTs or position sensitive PMTs are used. Crystal

size is a key factor in determining resolution of PET images (approx crystal size 3mm).

PET has an inherent limitation on its spatial resolution due to positron range and hardware

features - especially in the detectors [62]. In this thesis a common voxel size of 4x4x4mm

was used. PET can also appear blurrier than CT or MR as fewer photons can be collected

per image [59]. Functions such as PSF (point spread function) can be used to improve

spatial resolution [63].

Coincidences are defined as two detected gamma photons registered as from the same

emission. Coincidences can be split into true coincidences and background events. Back-

ground events can be further split into randoms and scatter. Random coincidences are

when two detected photons inside the time window were not from the same emission.

Scatter occurs when two photons were from the same emission but were scattered so

not detected along the same line of response. The produced gamma rays can scatter in



20

multiple ways with human tissue but the most relevant is Compton Scatter. This results

in direction changes and attenuation. Approximately 7cm of human tissue will half the

number of photons detected in a straight line from where they were emitted. [59].

Further errors can be introduced by the fact simultaneous emission does not mean both

photons will be detected at the same time. Although two gamma photons are released

at 180◦from each other along the line of response it usually occurs closer to one side.

A detector can also have timing uncertainty caused by decay time of the scintillation

crystals and the PMT processing time. These factors together makes a time window

where detections could be same emission. Time-of-flight (TOF) PET imaging allows for

better localisation of signal due to pico-second differences in incident photon arrival times

[56, 64–66] (Equation 2.1).

location =
speed o f light × (time 2− time 1)

2
(2.1)

All of the detected coincidences passing through a single point are represented as a

sinogram. Several corrections are applied to these either before or during the reconstruc-

tion of an image. Attenuation correction is applied as photons are attenuated on their

way out of the body attenuation correction needs to be applied to give a better represen-

tation of radiotracer distribution in the body. Without it areas such as the lungs would

look disproportionately active as they are a less dense tissue. Attenuation is determined

for all lines of response using CT. As discussed earlier PET is also influenced by scatter

and randoms. Many scatter correction techniques have been proposed such as convolu-

tion subtraction [67] and Monte-Carlo modelling [68] , Single Scatter Simulation(SSS)

[69], model based [70]. Within this thesis model-based and SSS were most commonly

used by scanner manufacturers. Model based scatter correction and SSS are similar with

SSS being simpler [71]. Both calculate the mean number of scattered coincidences in

the data using information such as the attenuation map, emission data, the mechanism of

Compton Scattering, and information regarding scanner geometry and detector systems
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to calculate the mean number of scattered coincidences. Finally random coincidences can

estimated and subtracted using either singles rate estimation or delayed window method.

Singles rate calculates the mean random coincidence rate based on the coincidence time

window and the single photon rate for the two detectors involved in a coincidence detec-

tion. The delayed window method calculates coincidences at a delayed time (larger than

the coincidence time window) as well and uses the theory that the random coincidences

will be the same in both the delayed time window and the original to calculate the random

coincidences [72].

Reconstruction is process of assembling the collected detections into an image of the

distribution of radiotracer. As this is a computationally heavy task iterative algorithms are

used to reconstruct [73]. Iterative algorithms make an initial estimate and this is compared

to measured projections from the sinogram. Discrepancies are corrected and new estimate

is made. This process repeats until the two converge [73]. MLEM (Maximum- likelihood

expectation maximization) is an example of an iterative reconstruction method [73]. It

was first described by Shepp and Vardi in 1982 [74] and as indicated by it’s name, it

maximizes the likelihood function to improve the estimated image. The image contrast,

resolution and noise are improved as a function of the number of iterations [75]. OSEM

(ordered subsets expectation maximization) is a progression from MLEM and is faster to

apply [63, 76]. It divides the projections into subsets - usually equally distributed around

the field of view. MLEM is applied to each subset and the result of each subset is the

starting value for the following subset [77]. Methods incorporating different components

can also be used, such as PSF-TOF OSEM [63]. The process of reconstructing the image

can also introduce noise due to the non-negative restraint. TOF has improved image

quality in this respect but it is still limited and the issue is amplified in older scanners.

Boundaries between areas in PET of high and low activity can be unclear due to the

partial volume effect leading to segmentation and quantification errors.

Using one scanner from this thesis as an example, GE Healthcare Discovery 710 has

the following traits. It is made of a full cylindircal arrangement of detectors, the patient

port is 70cm in diameter, it has an axial field of view of 15.7cm and the scan range is 2m.

The acquisition is in 3D and uses a step and shoot approach to capturing images. The

scintillation crystals are 4.2mm x 6.3mm x 25 mm and there are 13,824 in total. This is
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followed by 256 PMTs. The dose of PET radiotracers is given in units of becquerels (Bq)

where 1 Bq is one decay per second. Doses are usually of the order of magnitude of MBq.

The sensitivity of a scanner can be given in counts per second (cps) per bequerel with Dis-

covery 710 being quoted as around 7 cps/kBq. It has a coincidence window of 4.9ns and a

TOF resolution of 544 ps [64, 78]. For acquisitions in this thesis it uses Model based scat-

ter correction, Singles random correction and a voxel size of 3.65mmx3.65mmx3.27mm

in resolution.

Developments are consistently being made to improve PET image quality [79, 80].

Artificial intelligence (AI) enhancement is being explored , for example improvements

to attenuation correction that reduce artifacts [81] and reconstruction either directly or

in-directly [82]. Scanner hardware is also progressing, for example total body PET, im-

proves the field of view and sensitivity allowing for faster acquisition times, lower doses

of radiotracer and a more complete picture of the radiotracer distribution [83, 84].

2.2.2 PET Quantification

PET can be semi-quantitatively analysed using standardized uptake value (SUV) (Eqn.

2.2). The measurement gives the ratio between the concentration of radiotracer in a pixel

and the concentration of radiotracer across the entire body. Doing so normalizes the mea-

sured signal for variations in body size and injected dose and allows comparison between

patients and different time points of the same patient. Abnormally high or low SUV val-

ues can signify illness or disease and variation in SUV over time can be used to monitor

progression [85]. SUV can be measured per pixel but it is more common for the mean

(SUVmean) or maximum SUV (SUVmax) of a region of interest (ROI) to be determined.

Other SUV metrics can be used to summarise as well as described below. SUV is com-

monly used as it is a useful parameter, is straightforward to calculate, reproducible, and

accounts for the patient’s body weight thus removing some variability [86]. However,

it is affected by respiratory motion, the blood glucose level of patients and the body fat

percentage [87]. These factors can introduce an element of variation between PET scans

of the same patient. Physiological variation can be harder to control for and quantifying

the exact extent of the variation has given varied results. Guidelines from PERCIST (PET
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Response Criteria in Solid Tumors) suggest a change in SUV of at least 30% is required

to ensure the change is due to a response in treatment rather than physiological variation

[88, 89].

Technical factors such as image processing and scanner variability can also influence

results [90–92]. The SUVmean is vulnerable to the variations in the segmentation of the

ROI but avoids issues with noise while the (SUVmax) has issues with noise but not with

segmentation. Therefore, an awareness of these factors is important in the design of

experiments.

SUV =
radioactivity concentration

in jection dose (MBq)/patient ′s weight (kg)
(2.2)

• SUV 90th Percentile – 90% of the voxels SUV value’s fall below this number

• SUV mean (SUVmean) – the mean SUV value in the ROI

• SUV maximum (SUVmax) - the maximum SUV value in the ROI

• (SUVx) (x=50, 60, 70, 80, 90) - mean of the voxels that are equal or greater than

x% of SUV maximum

2.2.3 PET in LVV

PET-CT imaging plays a key role in diagnosis of LVV due to its ability to detect in-

flammation early and non-invasively (Figure 2.7) [93]. Both of these features minimise

discomfort and prevent possible complications evolving from physical changes in the ar-

terial anatomy that may have otherwise been required for an imaging diagnosis [1, 94].

FDG PET-CT is recommended for early diagnosis in LVV by European Alliance of Asso-

ciations for Rheumatology (EULAR, formerly called European League Against Rheuma-

tism) [53]. It is also recommended in cranial GCA but with a lesser priority as PET

imaging of the cranial arteries is difficult but not impossible [95]. The high uptake seen

in Figure 2.7 in the brain, bladder and spine is normal physiological activity. Brain uses

a high amount of energy relative to other body parts so will take up more FDG. Radio-

tracer that has been used and is ready to be excreted will gather in the bladder. Spinal
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Figure 2.7: A more indepth depiction of positron emission tomography - computed to-

mography in large vessel vasculitis . A - coronal fused FDG PET-CT; B - sagittal fused

FDG PET-CT; C - axial fused FDG PET-CT. Arrows indicate areas of high FDG Uptake

in aorta (ascending aorta, aortic arch and descending aorta) and subclavian arteries, sug-

gesting probable LVV.
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uptake is not as fully explained but is well documented and can occur in healthy and dis-

eased spines. Relatively high uptake is especially noted in the spinal cord around T11 and

T12 and the main theory for this is poor clearance of tracer from nearby arteries. Some

vertebrae uptake is also documented as bone marrow can uptake FDG [96].

2.2.3.1 FDG Radiotracer

FDG is a commonly used PET radiotracer which is a glucose analogue and is metabolised

similarly by the body ((Figure 2.8 and 2.9). PET-CT scans using FDG highlight areas of

high glycolytic uptake which in turn indicates vascular wall inflammation in LVV al-

though it is not specific to this alone [94, 97, 98]. The link between FDG uptake and

inflammation is due to several factors. Firstly, the greater tissue permeability means more

FDG available at sites of inflammation. The glycolytic pathways are also augmented due

to cytokine release, increase in glucose transporter proteins and increase in hexokinase.

Chronic inflammation leads to more monocytes and macrophages with high glucose up-

take [99]. Due to the Warburg Effect, activated immune cells require higher amounts of

energy which they generate using aerobic glycolysis, therefore taking up more glucose

and FDG [100].

FDG is produced by electrophilic or nucleophilic fluorination and the [18F] radioiso-

tope is manufactures in a cyclotron with the irradiation of [18O] with a proton [101, 102].

It is recommended that FDG is stored at room temperature in a shielded container [103].

In most cases FDG should also be used within approximately 12 hours of synthesis. This

is due to the half life of [18F] which is 109.7 min [101]. Similar to most radiotracers it is

administered by injection up to an hour before imaging. Doses of FDG can vary but are

usually based on patient weight, e.g. 5 MBq/kg body weight [104–106].

FDG PET-CT imaging is mostly used at the diagnosis stage of LVV and less so for

monitoring because treatment with glucocorticoids reduces its sensitivity. Multiple stud-

ies have demonstrated this is the case but it has also been shown that there is a 3 day

window where the sensitivity remains high and that it does not decrease significantly un-

til 10 days of treatment [105–107]. This allows treatment to be started in urgent cases

without delaying for imaging.
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Figure 2.8: A comparison of the structures of a glucose molecule (left) and [18F]-

Fluorodeoxyglucose (FDG) molecule (Right).
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Figure 2.9: [18F]-Fluorodeoxyglucose (FDG) metabolism in the body. The kinetics of

these metabolic pathways occur faster than the half-life decay of FDG allowing for imag-

ing. Key - TCA = Tricarboxylic acid , [18F]-FDG = [18F]-Fluorodeoxyglucose, G6Pase =

glucose 6-phosphatase, 6P = 6-phosphate
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2.2.3.2 Current PET Analysis in LVV

FDG PET-CT images in patients with suspected LVV are often qualitatively assessed

using EANM/SNMMI imaging guidelines where FDG activity in the vessel wall is graded

compared to background liver uptake using the following criteria [53]:

0: no uptake (less than mediastinum)

1: low-grade uptake (less than liver)

2: intermediate-grade uptake (equal to liver), (possible LVV)

3: high-grade uptake (greater than liver), (positive active LVV)

Grading can be extrapolated further to encompass several vascular territories by using

the PET vascular activity score (PETVAS) [108, 109]. The same grading criteria is applied

to nine territories and summation of the individual scores gives the PETVAS. PETVAS

has been shown to be successful in PET activity measurement, treatment monitoring for

LVV and predicting relapse [108–110]. Although grading and PETVAS are conducted

by imaging specialists, visual assessment can be subjective and inconsistent [53, 111–

113]. PETVAS is also a more involved process than grading alone which may inhibit

wide-spread adoption. It is viewed as easier to apply than semiquantitative metrics such

as SUV measurements and easy to interpret. Dashora et al. found that semi-quantitative

measurements such as SUV were more reliable, and less vulnerable to assessors interpre-

tation [114]. Laffon and Marthan agreed and suggested that SUV measurements could be

made easier by manufacturers [115].

SUV based parameters can be determined (Eq. 2.2) for LVV analysis but defining an

ROI to measure SUV is complicated as vascular wall inflammation does not always have

a clear edge and is spread diffusely. Some of the issues with analysing LVV PET could

be addressed using automated quantitative analysis with radiomics [114].

2.3 Radiomic Analysis

Radiomics is a medical imaging analytical technique which involves extraction of a large

number of quantitative parameters, also referred to as radiomic features, to build decision

making tools to aid in diagnosis, prognosis and to better understand disease [113, 116–
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118]. The field of radiomics has rapidly expanded over the last ten years. The term

’radiomics’ was first used in 2012 [119] but studies extracting quantitative handcrafted

features from medical images were conducted prior to this date [120–122]. More recently

the term ’imiomics’ has been presented to mean the combination of whole body imaging

data and non-imaging data [123].

While in many cases medical imaging is assessed qualitatively, there are some com-

monly used quantitative features such as SUV metrics, volume and grading [80]. Ra-

diomics includes these features but expands on them with more complex descriptors of

the shape and spatial relationships between individual voxels. Most radiomic features

require complex calculations and are not visually appreciated [124].

The use of radiomics has been extensively studied in oncology but less so in cardiovas-

cular applications [125]. Similarly, there have been a larger number of studies evaluating

the use of radiomic features derived from CT and MRI rather than PET [126]. This may in

part relate to relatively smaller numbers of patients and scans being acquired limiting the

size of potential datasets for analysis. However, small datasets are no longer as much of an

obstacle as they once were as adjustments can be made and larger datasets are becoming

easier to acquire [126–128]. In general most radiomic studies have forgone typical calcu-

lations of statistical power to determine the sample size required. This is likely due to the

difficulty in many studies to acquire large datasets and the fact the number of extracted

features is often larger or similar to the number of patients [129]. Instead approaches such

as reducing dimensionality or adjusting p values, i.e. with the Bonferonni Correction, are

often conducted. Further establishment of PET in cardiovascular applications and in this

case aortitis and LVV could lead to the development of clinical decision support tools

[130].

2.3.1 Radiomic Workflow

While feature extraction is the defining step in radiomics analysis, several elements of

the process from initial image acquisition through to the final diagnostic and predictive

modelling have been shown to influence results [131, 132]. Radiomic workflows are

established to extract a large range of features in a systematic way as set out in Figure
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Figure 2.10: The key steps in a radiomic workflow. While radiomics is defined as the

extraction of large quantities of data, the methodology used for each of the described

steps must be considered in the workflow to gain reproducible and robust results.
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2.10.

Artificial Intelligence can be utilised at several points in the radiomic workflow. AI

has several listed definitions but essentially is building computer programs that can con-

duct logical processes, show intelligence, and perform tasks similarly or better than a

human [124]. Within AI there are several branches but of most note in medical imaging is

machine learning (ML). ML involves using data to learn how to conduct a task rather than

using a set of rules. Deep Learning (DL) sits within ML and uses multi-layered neural

networks composed of artificial neurons to emulate how a human brain works. In this the-

sis the most commonly used DL technique used is a convolutional neural network (CNN).

CNNs are a type of artificial neural network that are made up of several layers of inter-

connected ’neurons’ or processing units. A defining feature of CNNs is the convolutional

layer whose purpose is to extract features from an input. While CNNs have been used on

several types of input they have had great success in image analysis and in the context of

medical image analysis have been used for several tasks such as diagnosis, segmentation

and image quality improvement. An example architecture of a CNN can be seen in Fig-

ure 2.11. Following the convolutional layer the pooling layer downsamples the extracted

features most often with maximum or average pooling. This process is multi-layered in

order to learn several features and is also repeated several times with convolutions acting

on feature maps from previous convolutional layers to learn both large scale and small

scale features. Activation functions are also added either at the end or throughout CNNs

to transform non-linear data. Finally is the fully connected layer connected to each unit

of the previous layer, arranges then in a 1D arrary and every value contributes to the final

output. In the case of classification this will be the probability of the input being in a given

category. For example in Figure 2.11 categories A, B, C and D and given a probability

on a scale of 0-1 of the input being in that category. The CNN is trained using known

labelled data and minimising a loss function by altering parameters such as weighting in

the network [125, 133, 134].
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Figure 2.11: Example of a convolutional neural network architecture.
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2.3.2 Image Acquisition, Reconstruction and Pre-Processing

The steps preceding feature extraction alter the input image so cannot be overlooked.

These include the acquisition of the image including all scanner settings; corrections for

attenuation and scatter; reconstruction; and pre-processing of the images. In many cases

these steps have been optimised for visual analysis so may not produce the best radiomic

results [80]. However, the need for consistent methodologies means the visually opti-

mised images must be used.

The method of image acquisition includes several potential areas causing variation.

For example, time per bed position has some effect but little in comparison to other factors

[135]. Factors such as time between injection and scanning have a much greater effect.

In the case of performance of PET-CT in patients with suspected LVV the recommended

image acquisition protocol provided in guidelines by EANM/SNMMI is generally ad-

hered to in clinical practice [53]. Some steps in image acquisition vary depending on the

application or scanner manufacturer. For example, image noise can also be reduced with

longer scan times but this is not always clinically feasible [136].

Common reconstruction methods in PET include the more traditional filter back pro-

jection, progressing to iterative algorithms and more recently AI [82, 137]. Different com-

binations of corrections - such as scatter, attenuation and randoms - can also be applied by

scanners and have been shown to improve both visual and quantitative analysis but often

differ between scanners [80]. Reconstruction methods vary between different scanners

and several studies have demonstrated that this has a large influence on the variability

of features [122, 131, 136, 138]. Numerous studies have been conducted to determine

how large an influence these factors have and while there is some agreement there is no

consensus about the optimal settings which are application dependent [139]. Every factor

discussed has a proven influence so intuitively standardization of these steps is required

to improve the performance of diagnostic and predictive models built with radiomics.

There are several explored methods to harmonize or standardize data used in ra-

diomics and these fall into two categories - image-based and feature-based [140, 141].

Image based methods include, standardization of imaging protocols, applying deep learn-

ing to the image directly to harmonize, or processing the raw image data from the sensor-
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level to ensure corrections and reconstructions are all identical [142]. Generally imaging

protocols are established for prospective studies but a large percentage of radiomic stud-

ies are retrospective and strict inclusion and exclusion criteria based on acquisition and

reconstruction can reduce the dataset to a stage where no significant results can be deter-

mined. While a standardized clinical protocol would be ideal, any future clinical use of a

model relies on being useful in realistic data. Therefore if an optimised radiomic imaging

protocol is not clinically feasible or accepted the final model risks not being clinically

transferable. If the study purpose is to find underlying information about a condition and

not about clinical adoption then this may not be as important a consideration. The trade

off between standardization and the amount of data leads to a large amount of variation

in radiomic methodologies. DL image based harmonization consists mostly of general

adversarial networks (GAN) and convolutional neural networks (CNN) to recreate the in-

put image with more similar properties to the reference dataset particularly in terms of

voxel size and noise properties. This has mostly been explored in MRI and CT though

[143, 144]. Some studies have explored this approach in PET but further research is re-

quired [145]. It has also not been fully explored if this approach reduces the quantitative

information available more than conventional filtering and voxel size resampling [140].

Feature based techniques are utilised to allow the inclusion of numerous datasets taken

with different acquisition and reconstruction methodologies. Firstly, radiomic features

with high variation across scanners can be excluded from a study [135]. Normalization

or re-scaling of features can also be applied but it is argued that this is too simplistic in

many cases [140]. Some studies have explored DL for normalization, using it to learn and

apply both linear and non-linear transformations to collected feature data [140].

ComBat harmonization is widely used and has been shown to be effective in several

independent studies [146]. It retrospectively standardizes radiomic features from PET

images obtained using different protocols by removing the centre effect whilst keeping

patient-related features [147, 148]. This method was first developed by Johnson et al.

[149] for adjusting for batch effects in microarray data. Fortin et al. adapted it for appli-

cation to medical imaging [150] and Orlhac et al. applied it to PET radiomics [148]. The

effectiveness of ComBat was further verified by Da-Ano et al. [146] who also suggested

improvements to the method.
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Each feature is expressed using:

yij = α +X ijβ + γ i +δ iε ij (2.3)

α = average value for feature

X ij = design matrix for the covariates of interest

β = vector of regression coefficients for each covariate

γ i = additive effect of scanner i

δ i = multiplicative scanner effect

ε ij = error term that encompasses site specific factors and overall follows a normal distri-

bution with mean of zero

yij = value of each feature y measured in VOI (Volume of Interest) j and scanner i

The method aims to estimate γ i and δ i using empirical Bayes estimates. The har-

monization determines a transformation for each feature separately, based on the batch

effect observed on feature values. Batches are defined in this scenario as images taken

with the same imaging protocol. This can not always be achieved though either due to

too little data from each protocol or unknown details about how images were acquired or

reconstructed. Grouping images by scanner or centre is common.

Pre-processing steps are also used to minimize non-pathological variations in the data.

These can include spatial resampling, filtering and gray level discretization but not all

steps will necessarily be applied and in cases where the acquisition methods were sim-

ilar pre-processing may not be necessary. In some cases pre-processing is conducted

after segmentation to allow for more accurate delineation [151]. Providing the mask is

spatially re-sampled using the same method the effect on the result should be minimal.

Shafiq-ul-Hassan et al. found these pre-processing steps greatly reduced the radiomic

features dependencies on acquisition parameters and in some cases almost removed the

effects of different scanners [152]. As these steps are to prepare an image for feature ex-

traction the decisions concerning method design will be more influenced by the purpose

of the experiment and application. For example, filtering to smooth the image has been

shown to improve repeatability [136] due to reduced noise. However, using this method

should be carefully considered though as it removes information and depending on the
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size and shape of the ROI it may provide very little gain or even be detrimental.Shiri et

al. determined that voxel resampling size had the biggest impact with 56% of features

having a coefficient of variation larger than 20% [135]. Similar results were confirmed by

several others [138]. Spatial resampling has the added benefit of making textural features

independent of direction [151].

The discretization of intensity values is often conducted prior to feature extraction.

This is the process of dividing a continuous spectrum into discreet groups or ’bins’ and

is necessary for the calculation of several radiomic features and also makes the method

less computationally expensive. This has a similar effect as smoothing the image with

filtering so has similar benefits and disadvantages. The alterations to pixel values are

more controlled and tangible in this method. When exploring the effect of discretization

on radiomic features Leijenaar et al. found that the intraclass correlation coefficient for

every tested radiomic feature was low when two different discretization methods were

used showing that using different methods can make the features incomparable [153].

2.3.3 Image Segmentation

When utilising radiomic analysis a region of interest (ROI) is normally defined to analyse.

Analysis of the full imaging volume can be conducted but it is often computationally

expensive and appropriate only in selected scenarios. As segmentation in the case of

radiomics defines the region to be analysed it is logical that the method to segment must be

accurate and reproducible. For example, Gallivanone et al. found in their PET-CT study

using a phantom that only 20% of features were stable when the segmentation method was

varied [154]. Similarly, Altazi et al. demonstrated that 13% of features were insensitive

to whether a computer assisted or manual segmentation method was used [155].

Similarly practical aspects of the segmentation method must be considered, mainly

whether the process is manual or automated, or a combination of the two. Manual

methods are slow, require a large amount of expert human input and are vulnerable to

inter/intra-observer variation. However, it can be more accurate than automatic methods

especially in low resolution or non-contrast enhanced imaging, which is often the case in

PET-CT, or if the shape and structure of the ROI is abnormal. Automating the segmen-
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tation is generally faster and more reproducible allowing for analysis of larger datasets

and more significant results [156]. This approach may struggle with images that deviate

from normal anatomy or image processing, and are not high resolution or high contrast.

Compromises can be found with semi-automated methods

When selecting or developing a segmentation method for a radiomic workflow it needs

to be tested against a ground truth. Producing a ground truth segmentation can require a

significant time commitment from experts for both segmentation and validating the seg-

mentations of others. This is the case for both manual and automated segmentations.

There are several metrics to evaluate the quality of a segmentation method when com-

paring it to a reference or ground truth. One of the most popular is the Dice similarity

coefficient (DSC) which quantifies overlap (Eqn. 2.4, Fig. 2.12). The DSC does have

some limitations. Firstly, is it’s relaince on size of ROI/VOI. Errors in smaller structures

disproportionately influence the metric compared to larger structures. Therefore in some

applications, a final average DSC may not give a true representation of segmentation

quality. Similarly, due to it’s reliance on size it can favour oversemgentation to under-

segmentation, and does not treat sensitivity and specificity equally making its usefulness

application dependent. DSC also does not include any information regarding shape un-

like boundary based metrics, nor does it account for a segmentation methods ability to

approximate location as no priority is given to the centre of an object [157]. While a

few different metrics exist for evaluating segmentation DSC was still used in this thesis

as it allowed for comparison to other published methods and the size of the aorta was

sufficiently large and consistent.

DSC =
2|A

⋂
B|

|A|+ |B|
(2.4)

Aortic and other major arterial anatomical segmentation using contrast-enhanced CT

or MRA is well established, but there is no consensus on segmentation methods when us-

ing unenhanced CT - the NHS clinical standard in PET-CT imaging used as the anatom-

ical reference for PET. In low-dose CT it is harder to segment the major arteries, both

manually or automatically. Methods for low dose CT have been established but have

limitations [158]. Manually, expert knowledge and experience is required to segment the
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Figure 2.12: The Dice Similarity Coefficient is used for evaluating agreement between

segmentations. It is based on the ratio between overlapped area to the total area of the two

compared segmentations with one being a perfect agreement and zero being no overlap.
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arteries other than the aorta due to lower image quality. Automated methods that rely on

manual segmentations as reference are limited in the same way. Many automated methods

that do not require labelled input, such as circle detection and growth methods, are inhib-

ited by low or no edge contrast making the arteries indistinguishable [159, 160]. In many

cases the aorta can be segmented in PET-CT but not the other arteries. The exception to

this is threshold-based segmentation on PET vessel wall activity but this cannot be used

for control cases as their lower uptake would mean they lay below any useful threshold

and would not be delineated.

When manual segmentation can be conducted either on the aorta alone or all relevant

arteries this can be performed on a sample set to then establish other semi-automated or

automated methods [161]. For example, atlas based or deformable methods can work but

AI methods are more commonly used [162]. A common example of an AI based within

segmentation applications is a (CNN) that makes pixel-wise predictions (Figure 2.11).

Traditional CNN architectures have been used for segmentation but another popular ar-

chitecture is U shaped and is referred to as U-Nets [163]. U-Nets consist of a prediction

part and a synthesis part to construct a segmentation. Using DL for segmentation is pop-

ular and has proven repeatedly to work. However, it requires a large manually segmented

dataset and can be computationally expensive to run [164–167].

Currently most established artery segmentation methods use the entire artery includ-

ing the lumen [162, 168]. Segmentations using lumen removal could allow more specific

radiomic analysis of the vessel wall, removing redundant information and noise, but this is

more difficult to implement particularly in low dose CT or PET [156, 169]. Several aortic

wall segmentation methods utilised CTA or MRA so were not conducted using low-dose

non-contrast enhanced CT as was used in this thesis [170]. Piri et al. implemented lumen

removal but did so using a predefined thickness of wall which is not precise and does

not account for physiological variation [156]. The diffuse nature of LVV uptake makes

it more challenging to either manually segment active areas or decide on an appropri-

ate thresholding value for PET without introducing bias [80]. Thresholding can be used

to isolate the aortic wall but selection of a cut-off point that does not make controls re-

dundant is complicated. Creating an automated method to select a threshold value based

on SUV of the lumen is viable but as wall activity can be both higher and lower than this
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value (Section 2.2.3.2) this would only segment areas of activity meaning only LVV cases

could be studied and not controls. Thresholding also introduces problems with respect to

volume of the ROI. Several radiomic values are highly correlated with volume and may

only give additional information in ROIs with a volume above 45cm3 [80, 171]. While

there is some leniency in this cut-off value, thresholding the aorta would likely inhibit ra-

diomic evaluation as the diffuse uptake pattern would create several hot spots smaller than

this volume. Excluding small ROIs would remove a large amount of textural information.

2.3.4 Radiomic Feature Extraction

Most radiomic features, other than shape, are formed based on the idea that every pixel

represents a value, SUV in the case of PET. There are hundreds of defined radiomic fea-

tures and potentially thousands when individual researchers alterations are considered

[80]. General definitions of each type or category of radiomic feature are described be-

low but it is essential that radiomic studies give reproducible definitions of their included

features or refer to a set of standardized definitions such as the Image Biomarker Standard-

ization Initiative (IBSI) [139, 172]. Other radiomic features aside from those discussed

have been formulated, such as fractal-based features, but they currently have much less

evidence of clinical utility and have not been standardized by the IBSI.

While individuals can develop their own methods for feature extraction, it is more

common to use software or coding packages. There are several open source options such

as PyRadiomics, LifeX, IBEX and MaZda [173–175], and reviews vary with their results

when exploring which is the most popular [176, 177] . Being open source allows for more

wider dissemination of the method and easier transfer to a clinical use. Using established

software or packages reduces variation in extracted features - although does not elimi-

nate it, allows for comparison with other studies, and in most cases ensures compliance

with standardized definitions e.g. IBSI. Variation between these different softwares and

packages can still reduce reproducibility so full details of this step is advised [174].
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2.3.4.1 Conventional Features

Conventional features refer to quantitative parameters that are well established in medical

image analysis independently of the growth in the field of radiomics. Some conventional

features are used in radiomics, either alone or alongside other radiomic features. While

established parameters are often useful for the diagnosis and monitoring of conditions,

other radiomic features may provide additional useful information and prove to be more

accurate and reproducible.

Vessel diameter is commonly used to identify stenosis, dilation and aneurysms all of

which may be present in LVV patients [178–180]. Depending on application either in-

ternal, external or both diameters may be measured [181, 182]. In some modalities such

as low-dose CT the vessel wall can not be distinguished making only one measurable

diameter. Diameter is easily extracted from most images but requires a sufficient resolu-

tion which is not always possible in PET or low-dose CT especially for smaller vessels.

Volume is similar as another shape related measurement. Different methods for grading

PET scans based on activity are described in Section 2.2.3 and are a form of conventional

features. An example of a feature commonly extracted from PET is SUV (Eq. 2.2) which

can be used to identify abnormal FDG uptake such as inflamed tissue making it a useful

indicator of LVV. SUV can be determined per voxel but is normally summarised for a

ROI by the metrics discussed in Section 2.2.2.

2.3.4.2 First Order Features

First order features are derived from voxel intensity values but exclude the spatial rela-

tionships between voxels. They describe the intensities within the ROI and how they are

distributed which is commonly expressed as a histogram where the intensity values are

binned either by a defined bin width or number of bins. First order features describe

properties of the distribution such as averages and standard deviation, skewness and kur-

tosis, and uniformity and randomness (Figure 2.13). Although first order features provide

diagnostic and prognostic information, they exclude information concerning the spatial

relationship between voxels so are inherently limited.
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Figure 2.13: Visualization of histogram-based features. In PET the pixel intensity/SUV

values are binned to convert from a continuous to a categorical measurement. Kurtosis is

defined by the ’peakedness’ of the histogram. Skew is a measurement of how much the

histogram lays to the left or right. A fully uniform histogram would be when each bin

has an equal frequency. A histogram with high randomness or entropy occurs when the

values follow no specific distribution and occur at random.
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Figure 2.14: An example of the Gray-Level Co-occurrence Matrix (GLCM). Each ele-

ment of a GLCM determines how many times a pair of intensity values occur in neigh-

bouring voxels for a given direction. In this case 1 appears directly to the left (0o) of 2

twice.
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2.3.4.3 Second and Higher Order Features

Second and higher order features explore the spatial relationships and patterns between

voxels. Second order features express the relationship between two voxels while higher

order features express the relationship between three more voxels. It is important to in-

clude spatial information as its utility is already well established in several conditions. In

the case of LVV, the distribution of FDG uptake is known to visually appear different to

other aortic conditions such as atherosclerosis proving the diagnostic potential of these

features.

Gray-level co-occurrence matrices (GLCMs) express how often an intensity value i

(columns) occurs in a neighbouring voxel to intensity value j (rows) (Figure 2.14). Only

four directions are required when looking at the relationship in 2D (0◦, 45◦, 90◦and 135◦)

as the remaining angles are accounted for by the GLCM in other voxels. There are sev-

eral equivalents in higher order features such as a Gray-level run length matrix (GLRLM)

which assesses how many voxels are next to each other with the same value (run length),

and the Gray-level zone length matrix which provides information of the size of homoge-

nous zones. The matrices discussed contain a lot of information but several parameters

have been formulated to either summarises the matrices or extract desired information.

2.3.4.4 Shape-based Features

Some shape-based features are intuitive and can be considered conventional features.

More intricate shape-based features have been crafted and are measured as well in ra-

diomics. They include features such as compactness, sphericity and ratios of pairs of

shape-based features. Shape-based features are independent from intensity values but can

be combined with them to form other features such as Total Legion Glycolisis (TLG) in

PET. Shape-based features can be measured in both 2 and 3 dimensions.

The comprehensibility of shape-based features makes them easier to translate to clin-

ical practice. They are less reliant on intensity, so are less affected by external factors but

can be complicated to measure due to natural patient variation and there are not always

established methods to normalize [135]. A couple of examples of shape based features

can be seen in Figure 2.15.
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Figure 2.15: A representation of two shape based radiomic features, sphericity and elon-

gation. Sphericity measures the roundness of a ROI and equals one when it is a perfect

sphere. As spheres have the smallest possible surface area for a given volume it is calcu-

lated using both surface area and volume. Elongation is based on the relationship between

the major (largest) and minor (second largest) axis in an ellipsoid that encapulates the

ROI. An elongation of one represents a sphere and an elongation of zero is a maximally

elongated object / straight line in 1D.
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2.3.5 Feature Selection and Analysis

Once the radiomic features have been extracted they are analysed to find relationships

with clinical data such as diagnosis, outcomes, and treatment response.

The number of extracted features often reach into the hundreds so feature selection

is important to reduce noise, redundant information, and to minimize the risk of Type 1

(false discovery) errors. The methods used to select features can be driven by the appli-

cation but some of the most common are to use Principal Component Analysis (PCA),

eliminate features based on individual diagnostic and predictive performance, remove

those that correlate highly with other features, and use feature selection methods that are

built into the classification method [147].

PCA is a method based on linear algebra that reduces the dimensionality of a dataset.

Extracted radiomic features have as many dimensions as there are features and PCA com-

bines these dimensions to form principal components that retain a high amount of data

variation but eliminates redundant information [183].

One intuitive method is to remove features that are not useful for diagnosis. This

involves analyzing the diagnostic or predictive performance of each feature individually

and eliminated those that do not perform well. This method is useful when combinations

of features will be used in the final modelling but if features are used individually this

arguably is vulnerable to Type 1 error [147].

As one purpose of feature selection is to remove redundant information it is sensible to

remove highly correlated features. Many features are related to the same underlying val-

ues or patterns. Keeping only the highest performing diagnostic or predictive features and

eliminating those correlated to them is a increasingly utilized method in feature selection

[147].

Finally, some diagnostic and predictive models and algorithms discussed later have

feature selection embedded so these steps can be combined.

Once the radiomic feature dataset has been reduced, the diagnostic and predictive

utility of the remaining extracted features is determined if not already conducted as part

of feature selection. In some cases, this is performed using traditional statistical analysis

- such as the Mann Whitney U test, Pearson’s Correlation, Elastic Net Regularisation and
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Cox Regression - but ML classifiers have grown in popularity. Traditional statistical tests

can be used to determine if the radiomic features are statistically significantly different

between two or more populations, i.e. positive for a condition and healthy control. To

use this information for diagnostic or predictive purposes a cut-off or threshold point is

determined. However, this method is similar to simple ML classifiers such as linear or

logistic regression leading to these classifiers and others becoming well established for

building diagnostic or predictive models [147].

ML classifiers are easily applied with current software and programming packages,

and can give extensive information about the relationship between radiomic features and

clinical data. There are several types of ML classifier but most fall within three main

categories based on the underlying principals used for classification (Figure 2.16). Firstly,

some use regression analysis to predict a result. Examples of classifiers in this category

include linear regression, logistic regression and to some extent support vector machine

(Figure 2.16a). Support vector machine also lies within the second category that uses

clustering to find similarities in the data (Figure 2.16b). This technique is used more in

unlabeled data. Lastly decision trees can be constructed to classify patients based on the

values in their radiomic features (Figure 2.16c) [147].

There are several metrics for evaluating the ability of radiomic feature and ML clas-

sifier combinations to diagnose or predict outcomes. Accuracy is most well known and

while informative is vulnerable to imbalanced datasets and treats false positives and false

negatives as equal errors where in a medical scenario this may not be the case. Class im-

balance can be mitigated using balanced accuracy but still treats sensitivity and specificity

equally. Several other metrics for evaluation are used but most common in LVV diagnosis

and imaging is the Area Under the Receiver Operating Characteristic (ROC) Curve. The

ROC curve plots the false positive rate along the x axis and the true positive rate along

the y-axis at several predicition probability thresholds. It shows the trade-off between

increased true positives, which is desired, and increased false positives, which should be

minimised. The larger the area under the ROC curve (AUC) the higher the classification,

or in this case diagnostic or predictive, ability of the classifier [184]. Major benefits of

AUC as a performance metric is that it is not vulnerable to changes in the aortitis:control

ratio and can with stand a large imbalance in the dataset - around 100:1 [185]. Another
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significant benefit of ROC curves is that visualising the trade off between sensitivity and

specificity at several thresholds allows threshold selection that is more suitable for the

given application [186]. AUC is considered a robust metric and good summary of clas-

sifier performance [187, 188]. However, while AUC is widely adopted in diagnostics it

is not as relevant for many clinicians. Firstly, it treats sensitivity and specificity equally

which is not reflective of many clinical applications. Many clinicians prefer metrics that

reflect what a diagnostic test means for an individual patient which AUC does not encom-

pass [189]. In this regard using AUC for building a diagnostic method can be useful for

determining a optimum threshold but may not be the most suitable metric to summarise a

finalized model. In this thesis AUC was used to summarise models and compare but more

clinical input would be required to determine the best trade off between sensitivity and

specificity. One additional limitation of AUC relevant to this thesis is the comparison of

qualitative and quantitative ROC curves. Confidence scales are reproducibly calculated in

quantitative methods but less so in qualitative diagnostics[190]. Therefore, comparisons

should be considered carefully.

False discovery is prevalent in radiomic analysis due to high ratios of radiomic fea-

tures to patients, multiple non-biological factors influencing the dataset and poor under-

standing of some of the complex statistics. Chalkidou, O’Doherty and Marsden used

statistical corrections to disapprove all fifteen studies they analysed which had reported

statistically significant results [191]. Furthermore, when image derived parameters were

replaced with random variables they found 10% came out as significant predictors. This

makes multi-centre validation essential to determine which discoveries are generalisable

and transferable [80, 192]. Insufficient data, over training, or too many radiomic features -

reinforcing the need for feature selection - can also lead ML classifiers to under or over-fit

their models [151].

2.4 Challenges and Outlook

Despite promising results, radiomics has yet to be adopted in clinical practice even in

oncology where the field is more established due to several factors discussed in this chap-
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(a) Logistic Regression (b) K Nearest Neighbours

(c) Decision Tree

Figure 2.16: Three examples of machine learning classifiers and how they distinguish dif-

ferent categories from one another. There are several types of machine learning classifiers

but most work similarly to these three with small alterations in the method. a) Logistic

regression models the probability of an outcome based on an input variable, in this case a

radiomic feature. b) K nearest neighbours defines clusters based on training data and then

assigns new inputs to a cluster. c) Decision trees use a list of conditions to categorise the

input.
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ter. The vulnerability of radiomic features to image reconstruction, image acquisition,

segmentation methods and feature calculation are increasingly recognized and mitigation

strategies to minimize variation are being developed. Similarly, the analytical process

is complex resulting in low reproducibility, several opportunities for variation and lack

of translation into clinical practice. Some methods require human input that can be time-

consuming, and introduce bias and variability [193]. A common limitation listed in papers

is a small cohort size and a trade-off between a small cohort size or a non-homogeneous

cohort. Single centre studies are also a common limitation as multi-centre studies are

difficult to establish and introduce more variations [151].

Progress has been made in tackling all these issues [80]. The need for method stan-

dardization is widely accepted and several initiatives have been established. For example,

the IBSI had standardized the definitions of 169 radiomic features which are widely used

in different open source software and coding packages. When studies do deviate from

the definitions the deviations can be easily described using it as a reference point in a

way that was often overlooked previously. Many journals also require a set of guidelines

to be adhered to for radiomic studies such as the STARD or TRIPOD guidelines [194,

195]. Standardization has also helped reduce the variation in human input and the growth

of AI, ML and DL has allowed for more automation in the radiomic pipeline making

the process more manageable. Automation has made large cohort sizes easier to analyse

leading to more significant results. Large datasets are not always possible to acquire but

an increase in open-source data and large online data collections such as the UK Biobank

and Scottish Medical Imaging Service have helped mitigate this issue. Where variations

in the data acquisition and processing are the issue data harmonization has been proven

to remove centre effects whilst keeping patient-related features and outperforms similar

techniques [148, 196]. Techniques such as distributed learning can help overcome prob-

lems with data sharing in multi-centre studies [197]. This is where a model is trained on

several datasets that cannot be shared by each data owner individually and then the model

updates alone are shared [198]. This is a useful technique but has some disadvantages.

Firstly, some people question if some sensitive data can still be extracted from shared

model updates [199]. Secondly, there is debate about how to best parallelize the model

and then create a coherent model after all training is conducted. There can be some prac-
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tical difficulties as well such as ensuring implementation is consistent, recreating exact

programming environments and avoiding software incompatibilities, and differences in

computational abilities and hardware . Finally, despite not sharing sensitive data there is

still a need to protect intellectual property around the model’s design [200].

Several components of radiomics can be replaced by DL methods adding many bene-

fits such as automation and reproducibility. However, these methods require large datasets

that are not always conceivable. They also need to be interpretable and understandable in

a clinical context to encourage trust, avoid unnoticed bias in training data, and overcome

privacy, legal and accountability issues [124, 147, 201]. These limitations do not eliminate

the use of DL and are likely to be easier to overcome in coming years. It does leave room

for other techniques like handcrafted radiomic features and simpler ML classifiers. While

DL is popular, its application to steps in the radiomic workflow do not always produce

better results than other well-established methods. There is growing interest in combining

handcrafted radiomic features with DL as combining both methods can provide compli-

mentary information. For example DL based features tend to characterise local features

while radiomics characterise over a larger structure. So far only a small number of studies

have explored this method but have shown promising results [202, 203].

2.5 Project Justification

The purpose of this project was to investigate the diagnostic utility of radiomic analysis

in PET-CT imaging of LVV. Firstly, the feasibility had to be determined and a method-

ological pipeline established. Following this, the findings needed to be validated and the

overall method automated to improve the likelihood of clinical acceptance. The overall

aim of the project was to develop an automated decision-support tool for a more objective

and standardized assessment of aortitis [130]. The project focused around diagnosis of

LVV and more specifically aortitis due to imaging data availability and limitations in the

segmentation method. Further vascular territories and applications of radiomics could be

explored in future work.



Chapter 3

Experiment Set 1 - Method
Development

The purpose of this chapter is to evaluate the potential utility of radiomic features ex-

tracted from FDG PET-CT for improving the accuracy of detecting active aortitis. The

methodological framework established combines radiomic features and ML classifiers to

develop a prototype and rigorous semi-automated decision-making tool for a more objec-

tive and standardized assessment of aortitis. The key steps in a radiomic methodology are

set out in Figure 3.1. As this is an initial analysis, at this stage the study is concentrated

on data from a single centre and makes use of manual segmentation of the ROI. Further

validation and automation are conducted in the following chapter.

3.1 Methods

3.1.1 Patient Selection

Patients undergoing FDG PET-CT with a systemic inflammatory response (pyrexia of un-

known origin, high acute phase response, weight loss) or suspected active aortitis were

identified retrospectively from a single institution, Leeds Teaching Hospitals NHS Trust,

between January 2011 and December 2019. The ground truth diagnoses for all patients

and controls were confirmed by a consultant rheumatologist with 17 years’ experience

52
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Figure 3.1: The key stages in the methodological framework established in this chapter.
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of vasculitis (supervisor AWM) based on clinical assessment, blood tests, biopsies and

qualitative assessment of FDG PET-CT scans by a dual certified radiologist and nuclear

medicine physician (supervisor AFS) with more than 15 years’ experience of reporting

FDG PET-CT. Exclusion criteria included synchronous metabolically active conditions

obscuring or interfering with the aorta, such as malignancy. Patients with known LVV

were excluded if they did not have imaging evidence of active aortitis. Control patients

were excluded if they had activity in the aorta related to atherosclerosis. For LVV patients

who had undergone multiple FDG- PET scans, only the first scan that showed aortitis

was selected. This study included a combination of newly-diagnosed patients and pa-

tients with relapse. The imaging data for the selected aortitis patients (n=50) and controls

(n=25) were extracted from the institutional PACS (Picture Archiving and Communica-

tion System) and pseudoanonymised.

3.1.2 Imaging Protocol

FDG PET-CT scans were acquired using a standard protocol: images were acquired from

the upper thighs to the skull vertex in the supine position[53, 204, 205]. Patients fasted

for 6 hours before FDG injection, and scanning was conducted 1 hour after injection.

Where possible, patients were not currently being treated with glucocorticoids. Imag-

ing was acquired on three different scanners during the study period including a 64-slice

Gemini TF64 scanner (Philips Healthcare, Best, Netherlands; n=29), a 64-slice Discov-

ery 690 scanner (GE Healthcare, Chicago, IL, USA; n=12) or a 64-slice Discovery 710

scanner (GE Healthcare, Chicago, IL, USA; n=34). Each scanner used iterative recon-

struction, CT for attenuation correction, applied scatter and randoms correction. Image

reconstruction parameters for the different scanners are shown in Table 3.1. Acquisition

and reconstruction parameters were the same for all patients within each scanner.
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Scanner Reconstruction
Scatter Correc-

tion

Randoms

Correction
Matrix

Voxel size

in mm3

Philips

Gemini

TF64

BLOB-OS-TF SS-SIMUL DLYD 144 4×4×4

GE Health-

care Dis-

covery

690/710

VPFX Model based Singles 192
3.65 ×
3.65×3.27

Table 3.1: PET reconstruction parameters for each PET-CT system. Key – BLOB-OS-TF

= spherically symmetric basis function ordered subset algorithm; SS-SIMUL = single-

scatter simulation; VPFX = Vue Point FX (3D time of flight); DLYD = delayed event

subtraction

3.1.3 Segmentation

The entire aorta was manually segmented using 3D Slicer 1 on the baseline FDG PET-CT

scan of each patient [206, 207]. Segmentation was conducted by a single observer (can-

didate LD, physics and engineering researcher, limited experience) under supervision of

supervisor AFS. 3D Slicer was selected for segmentation as it is open source, has intuitive

graphical user interface and comprehensive user documentation and support. Segmenta-

tion was conducted in the axial plane of the CT image on every slice with no filters or

interpolation applied. Segmentation started from the aortic valve to the point of bifurca-

tion. Once completed the ROI was exported in both the PET and CT resolution. An initial

batch (n=15) of segmented volumes were validated against those performed by a clinical

radiologist with 3 years’ experience (acknowledged PA) to confirm inter-observer concor-

dance. Segmentation was conducted in the axial plane of the CT image on every slice with

no filters or interpolation applied. Segmentation started from the aortic valve to the point

of bifurcation. Once completed the ROI was exported in both the PET and CT resolution.

1Version 4.10.2, https: //www.slicer.org/
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Intra-observer variation was not evaluated as over the timeline of this study the observer

conducting segmentation (candidate LD) gained experience making a comparison of the

two sets un-informative. Supervision during this time ensured segmentations were of high

enough quality to proceed. DSC (Eqn. 2.4) was used for contour comparison. The PET

images and segmented masks were then resampled to a 4mm isotropic voxel size to en-

sure a uniform sampling across the entire cohort. This voxel size was selected as it was

the lowest resolution of our 3 scanners.

3.1.4 Feature Extraction

Pyradiomics (Version 3.0.1, https: //www.radiomics.io/pyradiomics.html) was used to

extract 102 radiomic features from the entire 3D volume of the segmented aorta in the

PET images [175]. Pyradiomics complies with the IBSI standards for most radiomics

features and SUV metrics; any minor deviations are clearly described in their documen-

tation (https://pyradiomics.readthedocs.io/en/latest/). All features available through Pyra-

diomics were used. The SUV bin width was set to 0.075 in the Pyradiomics parame-

ter input file. This bin width was selected by finding the max SUV value in the ROIs

and dividing it by 64, a commonly used bin number in radiomics. No additional filters

were used, and all other parameters were left as default. Five SUV features not included

in Pyradiomics (SUVx) were calculated separately and added to the radiomic features

dataset using Python packages Numpy (Version 1.18.1) and Simple ITK (Version 2.01).

Full definitions of each radiomic feature are described in the Pyradiomics documentation.

The SUV metrics are defined in the previous chapter.

Extracted radiomic features and SUV metrics were harmonized using the ComBat

method (neuroCombat, Version 0.2.7) (Section 2.3.2). A list of all radiomic features and

SUV features (107 in total) used is provided in Supplemental Material 6.1.1. SUV metrics

were used instead of target-to-blood pool ratio as it not commonly used with aortitis and

liver is a more common reference point as discussed in Section 4.1.4.
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3.1.5 Qualitative Grading of Vessel Wall FDG Activity

A radiologist (supervisor AFS) reanalyzed all scans and documented the vascular uptake

score based on EANM/SNMMI guidelines [53]:

0: no uptake ( ≤ mediastinum)

1: low-grade uptake (< liver)

2: intermediate-grade uptake (= liver), (possible aortitis)

3: high-grade uptake (> liver), (positive active aortitis)

3.1.6 SUV Metrics and Radiomic Feature Diagnostic Utility Analysis

The diagnostic utility of a range of commonly used SUV metrics and extracted radiomic

features was evaluated using two methods. Firstly, the Mann Whitney U test was used.

The p value for significance was adjusted using Bonferroni correction (p = 0.05 / number

of features) to reduce the risk of false discovery (type 1 error) related to multiple testing.

The second method of evaluating feature diagnostic utility was to use ML classifiers.

Logistic Regression (LR) classifiers were trained with each feature individually (Sci-kit

Learn Version 0.23.2). First the hyperparameters for each feature were tuned using the

Sci-kit Learn function GridSearchCV where every combination of hyperparameters pro-

vided to the function are tested to find the optimal set.

Stratified 5-fold cross validation was used for both hyperparameter tuning and training

of all final ML algorithms meaning the ratio of patients to controls in each fold was equal

to the ratio in the total population. The AUC and the accuracy ( correct predictions
all predictions ) were both

used to select the best performing hyperparameters. The tuned hyperparameters for each

feature were then used to train the final logistic regression model for that feature and the

overall diagnostic utility was determined using the mean accuracy and mean AUC from

stratified 5-fold cross validation. Confidence intervals were determined using the standard

error of the five testing AUCs and accuracies. Only cross validation scores are reported

in this study as splitting the data into training and test samples would be inappropriate for

the sample size available [208]. In this report of model development we therefore focus

on internal validation.
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3.1.7 Radiomic Fingerprint Building

Many radiomic features can be extracted but not all of the derived features may provide

useful information [124]. Several radiomic features can be clustered together to achieve a

higher diagnostic performance than single features. However, using all available features

retains a large amount of redundant information and creates noise in the final diagnostic

model. Therefore, Fingerprints of a smaller number of features were built to reduce the

noise of the larger dataset while retaining the useful information provided. Three Finger-

prints were built using the methods described below.

3.1.7.1 Performance Criteria and Correlation

The first method involved selecting features with high individual diagnostic utility. For

Fingerprint A, features had to meet the following criteria: AUC≥0.5, accuracy≥0.7,

Mann Whitney U test p value≤ 0.05
n where n = number of features (n=107). Features

were filtered based on their evaluation results from section 3.1.4 using Python package

Pandas (Version 1.1.4). Features which met these criteria formed Fingerprint A. Finger-

print B was generated by removing highly correlated features from Fingerprint A: for

each pair of features, if the correlation coefficient was greater than 0.9, the feature with

the lower AUC was removed.

3.1.7.2 PCA

The number of features can be reduced using PCA. PCA represents a large set of vari-

ables as a smaller set of principal components by finding relationships between features

and combining them to reduce redundancy and minimize loss of information. PCA was

applied using Sci-kit Learn (Version 0.23.2) and the number of principal components

needed to account for 90% of the information were retained. These principal components

formed the third Fingerprint, C.
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3.1.8 Machine Learning

Once relevant features had been determined and feature sets reduced,the resulting ra-

diomics Fingerprints were used as an input for a ML algorithm to be used collectively

to diagnose active aortitis [209–211]. In order to determine the best ML algorithm for

distinguishing aortitis nine different classifiers were built, trained and tested using Sci-kit

Learn (Version 0.23.2): support vector machine, random forest, passive aggressive, LR,

k nearest neighbours, perceptron, multi-layered perceptron, decision tree and gaussian

process classification. The nine ML classifiers were trained on the radiomics Fingerprints

using the same methodology described in section 3.1.7 for logistic regressiontraining on

individual radiomics features. The best classifier for each Fingerprint was determined

using the mean AUC of each classifier with a minimum mean accuracy of 80% or 70% if

that was not possible. The tuned hyperparameters for each of the ten classifiers for Fin-

gerprint A, B and C can be found in Supplemental Material 6.1.2.1, 6.1.2.2 and 6.1.2.3,

respectively.

3.1.9 The Utility of Harmonization

As stated above, harmonization was applied to all methods and any presented results

used harmonized data unless stated otherwise. However, the developed methodology was

repeated without harmonization to determine the effect. The effect of harmonization was

evaluated with the Mann Whitney U test. It was used to evaluate whether two populations

– the feature distribution for scanner x and y- were different populations (p < 0.05).

Scanner 1 (GE Discovery 710) was compared to scanner 2 (Phillips Gemini TF64), 2

to 3 (GE Discovery 690) and 1 to 3 before and after harmonization for each of the 107

features (radiomics features and SUV metrics). The effect of emitting harmonization was

also examined on the performance of all diagnostic models discussed above.
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3.2 Results

3.2.1 Patient Characteristics

In total 75 participants were included, 50 of whom had a FDG PET-CT scan indicating

active aortitis (Table 4.3). The age of the patients and female predominance reflects the

typical demographic of patients with LVV, the commonest cause of which is GCA. The

sensitivity of FDG PET-CT is significantly reduced within a few days of starting glucocor-

ticoid treatment so doses were zero at the time of scanning unless stated otherwise [106].

CRP (C-reactive Protein) and ESR (Erythrocyte sedimentation rate) are biomarkers of

inflammation.

3.2.2 Segmentation

The manual segmentation method was shown to be reproducible and accurate when com-

pared to those performed by an experienced radiologist. Inter-observer variability scored

an average DSC of 0.91 (0.90-0.92 95% Confidence Interval (CI)).

3.2.3 Qualitative Grading

Guidelines advocate qualitative grading of PET-CT scans based on FDG activity in the

aortic wall relative to the liver [53]. Table 3.3 shows the grades assigned by an experienced

radiologist on retrospective review of the images. Note that the single aortitis patient who

was graded as 1 rather than 3 was taking 25mg of prednisolone at the time reducing the

sensitivity of FDG PET-CT.

3.2.4 Diagnostic Utility of SUV Metrics

All SUV metrics evaluated, except SUVmin and SUV 10th percentile, fulfilled the criteria

based on the Mann-Whitney U test that there was a statistically significant difference

between the mean metric value for the aortitis and control group (Bonferroni-corrected

p< 0.00047). Figure 3.2a demonstrates the performance of SUV features in an logistic
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regression classifier where higher accuracy and AUC are preferable and indicate good

diagnostic utility. The performance of all SUV metrics in logistic regression classifiers

and in the Mann Whitney U test can be viewed in Supplemental Material 6.1.3.

3.2.5 Diagnostic Utility of Radiomic Features

In the Mann Whitney U test 65 of 107 radiomic features fulfilled the criteria based on the

Mann-Whitney U test that there was a statistically significant difference between the mean

feature value for the aortic LVV and control group (Bonferroni-corrected p<0.00047).

Furthermore, their p values were 2-3 orders of magnitude smaller than SUV features

(Supplemental Material 6.1.3). The five-best performing radiomic features in terms of

AUC, when used individually in an logistic regression classifier, are shown in Figure

3.2b. The performance of all individual radiomic features in logistic regression classifiers

and in the Mann Whitney U test can be viewed in Supplemental Material 6.1.3.

3.2.6 Correlation between SUV Metrics and Best Performing Ra-
diomic Features

Table 3.3 displays the correlation matrix of SUV metrics and the best performing ra-

diomics features. It shows an intuitive split between the two groups but also emphasizes

that GLSZM Size Zone Non-Uniformity Normalized is only weakly correlated to other

well performing radiomics features.

3.2.7 Radiomic Feature Fingerprint Building and Machine Learning

Fingerprint A was based on passing minimum thresholds of diagnostic performance met-

rics. For this fingerprint the best performing ML classifier was the support vector machine

with an accuracy of 82.7% (71.5-93.9% 95% CI) and an AUC of 0.86 (0.68-1.00 95% CI).

The ROC curve is shown in Figure 3.6a. The diagnostic performance thresholds were set

at equal to or higher than a Machine Learning model that classified at random. There-

fore, all features included in Fingerprint A will hold some diagnostic utility. Minimum

accuracy is adjusted to 0.7 from 0.5 due to the imbalanced dataset.
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Table 3.2: A description of patient demographics

Key - Large Vessel Vasculitis (LVV), Giant Cell Arteritis (GCA), Takayasu’s arteritis

(TAK), IgG4 related disease (IgG4) and Retroperitoneal Fibrosis (RPF), Not Applicable

(n/a), CRP (C-reactive Protein), ESR(Erythrocyte sedimentation rate)

Characteristic Aortitis Controls

Participants 50 25

Age at time of scan,

years - median (range)
60 (41-84) 68 (37-82)

Sex (male/female) 17/33 13/12

LVV type GCA: 37, TAK: 4,

IgG4 or RPF: 4, Misc: 5
n/a

Prednisolone dose

(at time of scan,

mg - median (range))

0 (0-40)* 0 (0-60)

Polymyalgic symptoms yes (n=15), no (n=24),

not known (n=11)
n/a

Cranial Symptoms yes (n=11), no (n=25), not know (n=14) n/a

Claudication yes (n=12), no (n=25), not known (n=13) n/a

CRP (mg/L)

- median (range)

39 (5-164),

not performed (n=8), not known (n=1)
n/a

ESR (mm/Hr)

- median (range)

54 (0-143),

not performed (n=32), not known (n=3)
n/a

Blood Glucose (mmol/L)

- median (range)
5.7 (4.2-9.9) 5.9 (4.2-12.0)

*12 Aortitis Patients were taking presnisolone at the time of scanning at the following doses:

< 5mg (n=7), 20mg (n=1), 25mg (n=2), 40mg (n=2)



63

Table 3.3: Grading of patient dataset based on the EANM/SNMMI guidelines [53]

Grade No. of Scans (LVV) No. of Scans (Control) Ground Truth Diagnosis of Aortitis Ground Truth Diagnosis of No Aortitis (Control)

0 0 25 0 25

1 1 0 0 0

2 0 0 0 0

3 49 0 50 0
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(a) SUV metrics

(b) 5-best performing radiomic features

Figure 3.2: Diagnostic utility of SUV metrics and the 5-best performing radiomic

features for distinguishing active aortitis after harmonization.

Key - SUV (standardized uptake value), GLDM (Gray-Level Dependence Matrix),

GLCM (Gray-Level Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix),

and GLSZM (Gray-Level Size Zone Matrix).

This figure by Duff et al. is licensed under CC BY 4.0.

https://doi.org/10.1007/s12350-022-02927-4
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Figure 3.3: Correlation matrix of the best performing radiomic features and SUV met-

rics (harmonized). Key - SUV (standardized uptake value), GLCM (Gray-Level Co-

Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-Level

Size Zone Matrix). This figure by Duff et al. is licensed under CC BY 4.0.

https://doi.org/10.1007/s12350-022-02927-4
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Fingerprint B was built using the same thresholds but also removed highly correlated

features. For this fingerprint the best performing ML classifier was random forest with

an accuracy of 84.0% (72.8-95.2% 95% CI) and an AUC of 0.91 (0.80-1.00 95% CI).

The ROC curve is shown in Figure 3.6b. The results are not sensitive to the correlation

threshold. Varying the threshold between 70-95% (generally considered range for high

correlation) shows almost no variation in the best results. Some variation can be seen in

the machine learning models that do not perform well but these would not be utilised in a

final analytical pipeline so are not considered important.

Six principal components were produced to account for 90% of the information in

the original dataset. These principal components were used in Fingerprint C. The best

performing ML classifier was support vector machine with an accuracy of 82.7% (71.5-

93.9% 95% CI) and an AUC of 0.87 (0.74-1.00 95% CI). The ROC curve is shown in

Figure 3.6c.

The performance of all ML classifiers with Fingerprints A, B and C can be viewed in

Tables 3.5a, 3.5b, 3.5c, respectively.

3.2.8 The Utility of Harmonization

The Mann-Whitney U test was used to evaluate the effect of harmonization. The null

hypothesis was defined as both feature distributions (before and after) being from the

same population. The average p value increased in all cases as did the number of features

where the null hypothesis was accepted (Table 3.4). When the two GE scanners were

compared with the Mann-Whitney U test, we found sufficient difference that we chose to

analyse them separately rather than combining the two GE scanners into a single batch.

Figures 3.5a and 3.5b show the accuracy and AUC of non-harmonized SUV metrics

and radiomics features respectively. The main difference between the two sets of results

is a different set of radiomics features being ranked in the top five however overall per-

formance of each feature was similar. The confidence intervals are too large to determine

if there is a significant difference. No noticeable decrease in diagnostic utility along with

the results from Table 3.4 justify keeping harmonization as a step in the proposed method-

ology to improve the potential for generalizability. Further investigation into the utility of
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Table 3.4: Mann Whitney U test results when feature distributions were compared before

and after harmonization. Key – Scanner 1 = GE Discovery 710, Scanner 2 = Phillips

Gemini TF64, Scanner 3 = GE Discovery 690

Before Harmonization After Harmonization

Scanners compared 1 vs 2 2 vs 3 1 vs 3 1 vs 2 2 vs 3 1 vs 3

Number of features where the null hypothesis was accepted (out of 107) 52 97 66 81 99 85

Average p value 0.148 0.224 0.144 0.199 0.230 0.182
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(a) Fingerprint A - Support Vector Machine Learning Classifier
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(b) Fingerprint B - Random Forest Classifier
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(c) Fingerprint C - Support Vector Machine Classifier

Figure 3.4: ROC curves of the best performing machine learning classifier trained on

Fingerprints A, B and C. This figure by Duff et al. is licensed under CC BY 4.0.

https://doi.org/10.1007/s12350-022-02927-4
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Table 3.5: All fingerprint ML classifier results. Key - ML = Machine Learning, ACC =

Accuracy , CI = Confidence Interval, AUC = Area Under the Receiver Operating Charac-

teristic Curve.

ML Type ACC ACC CI (±) AUC AUC CI (±)

Random Forest 0.760 0.170 0.838 0.187

Logistic Regression 0.787 0.122 0.804 0.114

Support Vector Machine 0.827 0.112 0.864 0.179

Decision Tree 0.813 0.142 0.810 0.168

Gaussain Process Classifier 0.333 0.000 0.500 0.000

Perceptron 0.627 0.193 0.772 0.288

Passive Aggressive 0.680 0.122 0.772 0.098

Neural Net 0.760 0.112 0.808 0.123

K Nearest Neighbour 0.800 0.209 0.826 0.179

(a) Fingerprint A ML Classifier Results
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ML Type ACC ACC CI (±) AUC AUC CI (±)

Random Forest 0.840 0.112 0.908 0.107

Logistic Regression 0.693 0.112 0.868 0.116

Support Vector Machine 0.813 0.097 0.860 0.158

Decision Tree 0.760 0.134 0.806 0.168

Gaussain Process Classifier 0.480 0.110 0.500 0.000

Perceptron 0.640 0.066 0.720 0.207

Passive Aggressive 0.667 0.052 0.884 0.163

Neural Net 0.640 0.154 0.642 0.247

K Nearest Neighbour 0.827 0.112 0.822 0.181

(b) Fingerprint B ML Classifier Results

ML Type ACC ACC CI (±) AUC AUC CI (±)

Random Forest 0.827 0.084 0.866 0.104

Logistic Regression 0.747 0.184 0.796 0.177

Support Vector Machine 0.827 0.112 0.872 0.137

Decision Tree 0.720 0.169 0.724 0.203

Gaussain Process Classifier 0.813 0.152 0.852 0.137

Perceptron 0.747 0.177 0.800 0.174

Passive Aggressive 0.733 0.074 0.792 0.105

Neural Net 0.827 0.124 0.852 0.122

K Nearest Neighbour 0.773 0.124 0.792 0.198

(c) Fingerprint C ML Classifier Results
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harmonization will be conducted in the multi-centre validation in the following chapter

but a likely reason for its lack of impact in these results is that all images were prepro-

cessed to the same voxel size removing a major source of variability [141]. With further

prepossessing, such as filtering, the need for harmonization may be further reduced.

When the three fingerprints were built using non-harmonized features there was no

significant change to results. A slight improvement can be seen in Fingerprint A when

the data is not harmonized and it is the only fingerprint where a different classifier is the

highest ranked (random forest instead of support vector machine). It is of interest that ran-

dom forest is the best classifier for Fingerprint B in both harmonized and non-harmonized

cases meaning the non-harmonized Fingerprint A may be more similar to Fingerprint B.

Overall, there is not enough evidence to select non-harmonized or harmonized as the su-

perior method so both results were retained.
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(a) Diagnostic utility metrics of of SUV metrics for distinguishing active

aortitis using logistic regression classifiers - before harmonization

(b) Diagnostic utility metrics of the 5-best performing radiomic features for

distinguishing active aortitis using logistic regression classifiers - before

harmonization

Figure 3.5: Diagnostic utility of SUV metrics and the 5-best performing radiomic

features for distinguishing active aortitis - before harmonization. Key -

SUV(standardized uptake value), GLDM (Gray-Level Dependence Matrix), GLCM

(Gray-Level Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and

GLSZM (Gray-Level Size Zone Matrix). This figure by Duff et al. is licensed under CC

BY 4.0.

https://doi.org/10.1007/s12350-022-02927-4
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(a) Fingerprint A - Random Forest Classifier – non-Harmonized
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(b) Fingerprint B - Random Forest Classifier - non-Harmonized
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(c) Fingerprint C - Support Vector Machine Classifier - non-Harmonized

Figure 3.6: ROC curves of the best performing machine learning classifier trained on

Fingerprints A, B and C when the radiomic features were not harmonized. This figure by

Duff et al. is licensed under CC BY 4.0.

https://doi.org/10.1007/s12350-022-02927-4
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Table 3.6: Summary of the best diagnostic performance of each method. Key -

SUV(standardized uptake value), GLDM (Gray-Level Dependence Matrix), GLCM

(Gray-Level Co-Occurrence Matrix), GLRLM ( Gray-Level Run Length Matrix), and

GLSZM (Gray-Level Size Zone Matrix)

Method

Qualitative Assessment AUC - Literature [53] 0.81-0.98

Harmonized Non-harmonized

AUC AUC 95% CI (±) AUC AUC 95% CI (±)

SUV Feature - SUV 90th percentile 0.83 0.14 0.83 0.14

Radiomic Feature - GLSZM Size Zone Non Uniformity Normalized (harmonized)

/ GLDM Dependence Entropy(non-harmonized)
0.9 0.07 0.9 0.13

Fingerprint A 0.86 0.18 0.9 0.13

Fingerprint B 0.91 0.11 0.9 0.11

Fingerprint C 0.87 0.14 0.86 0.14

3.2.9 Summary of Diagnostic Performance

A summary of the diagnostic performance of each method is shown in Table 3.6. The

AUC range presented for qualitative assessment were determined by a meta-analysis ex-

ploring the diagnostic accuracy of FDG PET-CT imaging in LVV [53]. In the case of

SUV metrics and radiomic features the best individual feature was determined by their

AUC but with a minimum accuracy of 70%. The best SUV metric and radiomic feature

for distinguishing aortitis was SUV 90th percentile and GLSZM High Gray Level Zone

Emphasis, respectively.

3.3 Discussion

The purpose of this set of experiments was to develop a methodological framework to

support AI-assisted diagnosis of active aortitis, using ML classifiers trained with radiomic

features from FDG PET-CT. The best performing individual radiomic feature (GLSZM

Size Zone Non-Uniformity Normalized) had an AUC of 0.9 (0.83-0.97 95% CI), similar to

the current clinical standard of qualitative assessment by an experienced nuclear medicine

physician (AUC=0.81-0.98 [53]). The three fingerprints performed similarly to the best-

performing individual radiomic features. Of particular promise is Fingerprint B with an
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AUC of 0.91 (0.80-1.00 95% CI). This was the highest AUC of any of the proposed

methods and taking the confidence intervals into account performs very similar to the

current standard of qualitative assessment [53]. This method has potential to be used as

an automated quantitative analysis tool alongside standard clinical assessment towards a

more rapid, objective, and standardized evaluation of aortitis to guide therapeutic choices.

Visual scores assigned using the EANM/SNMMI guidelines [53] showed good agree-

ment with ground truth diagnoses. As borderline cases weren’t used in our analysis all but

one case was graded as either 0 or 3 meaning there was no uptake or high-grade uptake

respectively. One case was graded as 1 (low grade uptake) but this reduced signal was a

result of prednisolone treatment (25mg daily) which dimishes PET sensitivity. A similar

scoring system based on arterial uptake across different regions was proposed by Grayson

et al. named PET Vascular Activity Score (PETVAS) [113]. PETVAS is not routinely

used in clinical practice as it is time consuming. Kang et al. showed that PETVAS is

superior to SUVmax, but it is unclear if it is better than a single visual score assigned using

the EANM/SNMMI guidelines [109].

The diagnostic utility of semi-quantitative measurements using SUV, which are widely

utilised in PET, was compared against other features for detecting active aortitis. SUV

90th percentile (90% of voxels in the ROI are less than this value) performed best with

an AUC of 0.83, only slightly below the best performing radiomic features. Overall SUV

metrics demonstrated some utility for distinguishing aortitis from controls when measured

with Mann Whitney U and logistic regression classifier testing but radiomic features were

superior. The performance of SUVmax is disproportionately affected by noise. This may

suggest why it did not perform well but SUV 90th percentile did despite it also being

based on high intensity values [212]. SUV 90th percentile gives the value for which 90%

of SUV values lie beneath meaning outliers created by noise are removed. Similarly,

atherosclerosis can be associated with FDG activity and although patients and controls

with a large amount of atherosclerotic plaque were removed from the cohort some degree

of the condition is present in the relevant age group [54]. Together, these two factors may

have lowered the diagnostic utility of SUVmax. The ability to reliably distinguish aortitis

from atherosclerosis will need to be considered in any automated diagnostic methods

and in any longitudinal studies conducted in the future. SUVx also relies on SUVmax. In
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particular, SUV50 perform s better than other SUVx metrics, probably because it covers a

larger percentage of the voxels, so the effect of noise and bright patches is mitigated. SUV

90th percentile is a result of high activity over a larger volume so it is more resistant to

small focal areas of high activity. SUVmean and SUV50 would likely perform better if only

active tissue had been included in the ROI rather than the whole aorta.

All SUV features explored were found to be significantly different between patients

with active aortitis and controls using the Mann Whitney U Test. Radiomic features shown

to have the highest diagnostic utility focus mainly on high gray levels and heterogeneity.

The GLSZM Size Zone Non-Uniformity Normalized was the best radiomic featureaccord-

ing to AUC and performed also well in terms of accuracy and the Mann Whitney U test.

Its value is higher in active aortitis than controls, which means there is more heterogene-

ity in zone size volumes in aortic LVV imaging. This is an expected finding as it reflects

greater metabolic activity in the aortic wall of patients with active aortitis than in controls.

However, since it has superior performance compared to SUV parameters which are based

on metabolic activity, this is a potentially useful new association. The importance of high

gray values and zones, and heterogeneity is further emphasised in other radiomic features

with high diagnostic utility. The addition of heterogeneity, encompassing spacial relation-

ship between voxels, may help explain why radiomic features outperformed SUV metrics

which focus on voxel values alone.



Chapter 4

Experiment Set 2 - Method Automation
and Validation

In the previous chapter a methodological framework for assisting the diagnosis of active

aortitis using radiomic analysis of FDG PET-CT was established [213]. In this chapter

the aim was to continue this work by developing, testing and validating with multi-centre

data an automated radiomic analysis pipeline to assist the diagnosis of active aortitis.

The pipeline combines automated segmentation, radiomic analysis and machine learning

(ML) with the aim of producing a reproducible and standardized method which could

be applied to a clinical decision support tool in the future. By validating with external

data and automating the process this addresses two key barriers to clinical transferability

[214]. Places where the methodology varies from the previous chapter is explained.

An updated version of this chapter has now been published in Biomolecules [215]. In

this paper reviewers comments were addressed altering the numerical results slightly but

the conclusions remained the same. The most significant change was an improvement in

Fingerprint B.

81
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4.1 Method

4.1.1 Patient Selection

Figure 4.1 demonstrates the distribution of the imaging cohorts - training, test and valida-

tion. The data acquired from Leeds Teaching Hospitals NHS Trust was split into training

and test (80:20) datasets. The training dataset was used to train ML models including

optimisation of hyper-parameters, and the test dataset was used to confirm initial findings

were generalizable. The validation dataset acquired from external centres and used to

determine if model performance was transferable to imaging acquired elsewhere.

4.1.1.1 Training and Test Patient Dataset

The training and test dataset was procured from Leeds Teaching Hospitals NHS Trust.

The same collating procedure, determination of the ground truth diagnosis, and inclusion

and exclusion criteria were used as described in the previous chapter. The only additional

criteria applied was that only aortitis caused by GCA and TAK were included in order to

homogenize the dataset. The overall dataset is mostly the same as the data used in the

previous chapter but some additional cases were added. The collated data was then split

into the training and test dataset (80:20) unlike the previous chapter.

4.1.1.2 Validation Patient Dataset

To evaluate multi-centre transferability, a validation dataset was formed using data from

external institutions. Data from patients recruited to the UK GCA consortium (REC Ref.

05/Q1108/28) [216] with suspected aortitis, and had FDG PET-CT scans performed as

part of routine clinical care at Alliance Medical Ltd (AML) centres in England was ex-

tracted from the organizational PACS (IntelePACS Version 4, Intelerad Medical Systems).

The AML centres included Addenbrookes Hospital, Freeman Hospital, Norfolk and Nor-

wich PET CT Centre, Musgrove Park PET-CT Centre, Derriford Hospital, Bradford Royal

Infirmary, Guildford Diagnostic Imaging, Sheffield PET-CT Centre, Poole Hospital and

The Royal Liverpool University Hospital. The validation cohort was further supplemented
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Figure 4.1: The distribution of datasets into training, test and validation cohorts
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by data from the PITA (PET Imaging of Giant Cell and Takayasu Arteritis) (REC ap-

proval: 19/EE/0043 Clinical trials registration: NCT04071691) study in the University of

Cambridge and Imperial College London.

4.1.2 Imaging Protocol

FDG PET-CT scans from all three cohorts were acquired using the imaging protocol de-

scribed in the previous chapter. Nine scanners from 3 different manufacturers were used.

Table 4.1 describes the acquisition parameters in further detail.

The retrospectively gathered FDG PET-CT imaging was converted from DICOM to

Nifti file format including converting the PET component to SUV using Simple ITK and

PET DICOM (3D slicer extension from the University of Iowa )1.

1www.slicer.org/wiki/Documentation/Nightly/Modules/SUVFactorCalculator - Accessed September

2021
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Table 4.1: PET reconstruction parameters for each PET-CT system. Key – BLOB-OS-TF

= spherically symmetric basis function ordered subset algorithm; SS-SIMUL = single-

scatter simulation; VPFX = Vue Point FX (3D time of flight); DLYD = delayed event

subtraction

Scanner Reconstruction
Scatter

Correction

Randoms

Correction
Matrix Voxel Size

Gemini TF64 BLOB-OS-TF SS-SIMUL DLYD 144 4.00 x 4.00 x 4.00

Discovery 710 VPFX, QCFX,

or VPHD
Model based Singles 192 3.65 x 3.65x 3.27

Discovery 690 VPFX or VPFX Model-based Singles 193 3.65 x 3.65x 3.28

Discovery MI DR VPFX, QCFX,

or VPHD
Model-based SING 256 2.73 x 2.73 x 3.27

Discovery ST OSEM Convolution

subtraction
DLYD 128 4.69x 4.69 x 3.27

Discovery STE OSEM Convolution

subtraction
SING 128 5.47 x 5.47 x 3.27

Biograph6 TruePoint OSEM2D 4i8s Model-based DLYD 168 4.07 x 4.07 x 3.00

Biograph 6 OSEM2D 4i8s Model-based DLYD 168 4.07 x 4.07 x 3.00

Biograph64 mCT PSF+TOF 2i21s

or OSEM3D 2i24s
Model-based DLYD 200 4.07 x 4.07 x 3.00

4.1.3 Segmentation

The segmentation method built into the overall pipeline was a CNN. A subset of the

training and test patient dataset (aortitis n=50, control n=25) was manually segmented in

the previous chapter and given as input to the CNN in order to provide ground truth data to

learn. Each FDG PET-CT scan of these patients was segmented manually using 3D slicer

and the entire aorta was delineated (Version 4.10.2 2) [206, 207]. The CT component was

used as the main reference as it provides more anatomical information but the result was

checked against the PET scan.

2https: //www.slicer.org/
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The DSC where values range from 0 to 1 where a higher value is a higher degree of

similarity (Eqn. 2.4) [217] was used to evaluate segmentation quality.

The PET and CT components, and segmented masks were then resampled to a 4mm

isotropic voxel size to ensure uniform sampling across the entire cohort. Linear interpola-

tion in Simple ITK was used for downsampling. This voxel size was selected as it was the

lowest resolution of the 3 scanners in the training and test dataset meaning downsampling

alone was applied. A lower resolution was present in multi-centre data collected later

(5.47 mm) but the 4mm voxel size was maintained to ensure a valid comparison, and to

keep an integer voxel size preventing rounding errors. The images and masks were also

cropped to the same window size (144×144 pixels) as the CNN required the same slice

sizes. Data was manually checked to ensure the aorta was central and unaffected by the

crop.

A CNN with U-Net architecture was built for automated segmentation (Tensorflow

Version 2.4.1). The full architecture is shown in Figure 4.2. Training was undertaken

on ARC4, part of the high-performance computing facilities at the University of Leeds,

UK. On ARC4 a single NVIDIA V100 GPU (graphics processing unit) was used. In

total training and then segmentation of all data took 11:51:20 (HH:MM:SS). The average

segmentation time per patient was 1 minute 12 seconds.

The manually segmented dataset was split into training and testing cohorts for the

development of the CNN(70:30) and each CT image was read in slice by slice with its

corresponding labelled slice as the input layer. The performance of the CNN was mea-

sured using the DSC (Eqn. 2.4). The batch size was set to 32 slices. The number of

epochs was set to 100 with early stopping if the loss function (DSC loss) did not improve

which led to training stopping at 41 epochs. The activation function was leaky rectified

linear unit (ReLU). Convolution stride was 1 and pooling stride was 2. Kernel size was

3x3 for convolution and 2x2 for pooling. Once trained the entire patient dataset was pro-

vided as input and the predicted segmentations were output. Small ’islands’ were found

in the predicted segmentations. These were clusters of pixels in the background of the

scan and other parts of the body that were orders of magnitude smaller than the aorta.

These were removed by creating new segmentations that only retained the largest cluster

of pixels in the slice using Python packages Numpy (Version 1.18.1) and Simple ITK
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(Version 2.01). The CNN outputs did not fully fill the aorta or encapsualte the aorta wall

so a dilation filter was applied using Simple ITK (Version 2.01). The segmented slices

were then reassembled into 3D volumes for use in feature extraction (Section 4.1.5).
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4.1.4 Qualitative Grading of Vessel Wall FDG Activity

All scans were evaluated based on EANM/SNMMI guidelines [53] and assigned a vascu-

lar uptake score by an experienced radiologist (supervisor AFS).

0: no uptake (less than mediastinum)

1: low-grade uptake (less than liver)

2: intermediate-grade uptake (equal to liver), (possible aortitis)

3: high-grade uptake (greater than liver), (positive active aortitis)

4.1.5 Feature Extraction

Radiomic features encompass a large number of quantitative parameters. This includes,

but is not limited to, SUV metrics. SUV metrics will be referred to when studied sep-

arately from radiomic features. SUV metrics were used instead of target-to-blood pool

ratio as liver is a more common reference point as discussed in Section 4.1.4.

Radiomic features (n=102) were extracted with Pyradiomics 3. A further five SUV

metrics (SUVx) were calculated separately using Numpy (Version 1.18.1) and Simple

ITK (Version 2.01) and added to the radiomic features dataset. Each SUV metric was

calculated as follows:

• SUV 90th Percentile – 90% of the voxel’s SUV value fall below this number

• SUV mean – the mean SUV value in the region of interest

• SUV maximum - the maximum SUV value in the region of interest

• SUV x (x=50, 60, 70, 80, 90) - mean of the voxels that are equal or greater than x%

of SUV maximum

In both cases the radiomic features were extracted from the entire segmented 3D vol-

ume of the aorta in the PET image [218]. In most cases Pyradiomics is broadly compliant

with the IBSI standards but deviates in some cases as described in their documentation
3Version 3.0.1, radiomics.io/pyradiomics
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4. This will affect some of the extracted features in this study where the feature relies on

gray value discretization. Features were calculated with a SUV bin width of 0.075. This

bin width was determined by dividing the maximum SUV value in the segmented areas

across the whole dataset by 64 - a commonly used bin number in radiomics. No filters

were applied through Pyradiomics, and all other parameters were left as default.

A complete list of all radiomic features and SUV features (n=107) extracted is pro-

vided in Supplemental Material 6.2.1.

4.1.6 Harmonization

The ComBat method (neuroCombat, Version 0.2.7) was used to reduce the effect of dif-

ferent imaging protocols on radiomic features [148–150]. These factors cannot be stan-

dardized retrospectively without reducing the size of the dataset, so harmonization is rec-

ommended to minimize the effect [148]. The overall dataset (training, test and validation

combined) was grouped in batches as shown in Table 4.2 based on similar imaging pro-

tocol parameters. A less thorough comparison between non-harmonized and harmonized

radiomic results was conducted in this chapter due to much smaller populations in each

batch making comparisons such as the Mann Whitney U Test not applicable. A brief

comparison of the effect on final diagnostic ability was conducted.

4https://pyradiomics.readthedocs.io/en/latest/faq.html
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Table 4.2: Distribution of participants across scanners

Training Test Validation Harmonization

Batch

Scanner Aortitis Control Aortitis Control Aortitis Control

Discovery 710 14 7 4 4 3 3 1

Gemini TF64 14 11 3 0 0 0 2

Discovery 690 15 3 5 1 9 2 3

Biograph 6 and Biograph 6 TruePoint 0 0 0 0 5 2 4

Biograph64 mCT 0 0 0 0 1 2 5

Discovery MI DR 0 0 0 0 6 3 6

Discovery ST and STE 0 0 0 0 0 2 7

Discovery scanners from GE Healthcare - Chicago, IL, USA. Gemini Scanner from Philips

Healthcare - Best, Netherlands. Biograph scanners from Siemens Healthineers - Erlangen,

Germany

4.1.7 Diagnostic Utility of Individual SUV Metrics and Radiomic Fea-
tures

The diagnostic utility, also referred to as diagnostic performance, of the following meth-

ods was measured with AUC primarily, along with balanced accuracy as confirmation.

Balanced accuracy was used as it adjusts for imbalanced datasets and allowed for compar-

ison between our training, test and validation datasets. The AUC of the validation dataset

was prioritised as it demonstrated both generalizability to other datasets and transferabil-

ity to other institutions which is vital for clinical use [147]. As the benchmark AUCs for

qualitative assessment of PET-CT in suspected aortitis quoted in the literature are 0.81-

0.98 [53], any AUC value greater than 0.8 was considered a good performance. Where

possible, methods with any balanced accuracy across the three cohorts ≤ 50% was dis-

counted.

The diagnostic utility of all radiomic features and SUV metrics were first evaluated in-

dividually using logistic regression classifiers (Sci-kit Learn Version 0.23.2). While SUV

metrics can be included as radiomic features (Section 4.1.5) they were separated and com-
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pared to all remaining radiomic features at this stage to determine if the newer radiomic

features added value. To train the logistic regression classifiers the hyper-parameters

for each feature were tuned using the Sci-kit Optimise function BayesSearchCV using

the training cohort with stratified 5-fold cross validation meaning the ratio of patients to

controls in each fold was equal to the ratio in the total cohort. The hyperparameter opti-

misation method was changed to BayesSearchCV from GridSearchCV from the previous

chapter as it more thoroughly searches the parameter options. The final diagnostic model

for each individual feature was then trained with the best hyper-parameters on the training

cohort with stratified 5- fold cross validation. The trained model was then applied to the

test and validation dataset.

4.1.8 Forming Radiomic Fingerprints

Individually radiomic features (including SUV metrics) can be used as metrics but when

used collectively they can provide complimentary information to improve diagnostic per-

formance [219]. Using all or most extracted radiomic features can introduce a significant

amount of redundant information and creates noise in the diagnostic model [124]. There-

fore, radiomic fingerprints were created with the extracted radiomic features (including

SUV metrics). Three radiomic fingerprints were built using the methods described below.

4.1.8.1 Fingerprint A - Performance Criteria and Correlation

Fingerprint A was produced by selecting features with high individual diagnostic util-

ity based on their training dataset performance in section 4.1.7 : AUC≥0.5, balanced

accuracy≥0.5. Features were filtered using Python package Pandas (Version 1.1.4).

Highly correlated features were then removed. For every combination of feature pairs,

if the correlation coefficient was > 0.9, the feature with the lower AUC was removed.

4.1.8.2 Fingerprint B - PCA

PCA represents a large set of variables as a smaller set of principal components by finding

relationships between features and combining them to reduce redundancy and minimize
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loss of information. PCA was applied using Sci-kit Learn (Version 0.23.2). Fingerprint B

was formed with principal components needed to account for at least 90% of variance in

the radiomic data.

4.1.8.3 Fingerprint C - Random Forest

Fingerprint C used the Sci-kit Learn (Version 0.23.2) random forest ML classifier. The

classifier has intrinsic feature selection so all 107 extracted features were provided as

input and the classifier will select the features that produce the best performance.

4.1.9 Diagnostic Utility of Fingerprints

The diagnostic utility of radiomic fingerprints A and B were evaluated using the same

methodology described in section 4.1.7 but additional ML classifiers were tested along-

side logistic regression [209–211]. Ten different ML classifiers were built, trained, and

tested: support vector machine, random forest, passive aggressive, LR, k nearest neigh-

bours, perceptron, multi-layered perceptron, decision tree, stochastic gradient descent and

gaussian process classification.

Fingerprint C was evaluated as in section 4.1.7 using only the Random Forest Classi-

fier as it uses the embedded feature selection in this ML classifier.

4.2 Results

4.2.1 Patient Characteristics

Overall, 114 participants were included in the training, test and validation datasets collec-

tively (Table 4.3). The age of the patients and female predominance reflects the typical

demographic of patients with LVV, the most common cause of which is GCA. The sensi-

tivity of FDG PET-CT is significantly reduced within a few days of starting glucocorticoid

treatment, so glucocorticoid (prednisolone) doses were zero at the time of scanning un-

less stated otherwise [106]. CRP and ESR are laboratory markers of inflammation used

in clinical care.



94

Less clinical data was available for the validation dataset but as shown in Table 4.3 the

gender distribution, LVV Type, prednisolone dose, CRP, ESR, blood glucose and median

age of all datasets are similar.

4.2.2 Segmentation

The manually segmented data had a mean DSC of 0.91 when a sample was compared

to segmentations conducted by a second observer. The CNN achieved a mean DSC of

0.66 (median 0.72) before small ’islands’ were removed and dilation filters added, and

0.71 (median = 0.80) after when compared to the original manual segmentations used for

training. The time taken to segment the aorta automatically per patient was 1 minute 12

seconds.

An example of the CNN segmentations is shown in Figure 4.3.

4.2.3 Qualitative Grading of Vessel Wall FDG Activity

Recent guidelines advocate qualitative grading of PET-CT scans based on FDG activity in

the aortic wall relative to the liver [53]. Table 4.4 shows the grades assigned to the train-

ing, test and validation cohorts respectively by an experienced radiologist on retrospective

review of the images.

4.2.4 Diagnostic Utility of Individual SUV Metrics and Radiomic Fea-
tures

Figure 4.4 demonstrates the performance of SUV metrics in a logistic regression classifier

where higher accuracy and AUC indicate good diagnostic utility. In general SUV met-

rics performed poorly when accuracy was considered. SUV 90th percentile performed

better consistently across all three cohorts with a validation AUC of 0.8 and an balanced

accuracy of 62%.

The five-best performing radiomic features, when used individually in an logistic re-

gression classifier, are shown in Figure 4.5. Performance was based on validation AUC

but a minimum balanced accuracy of 50% had to be met across the training, testing and
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Table 4.3: Patient demographics

Key - Large vessel vasculitis (LVV), giant cell arteritis (GCA), Takayasu’s arteritis (TAK),

Not applicable (n/a), CRP (C-reactive protein), ESR(erythrocyte sedimentation rate)

Training Test Validation

Aortitis Controls Aortitis Controls Aortitis Controls

Number of

Participants
43 21 12 5 19 14

Age at time of scan,

years

- median (range)

67 (23-85) 67 (41-84) 70 (58-76) 60.5 (49 - 70) 67 (55 - 85) 68 (50-79)

Sex

(male/female)
11 / 32 11 / 10 4 /8 2 / 3 4 / 15 5 / 9

LVV

type

40 GCA

3 TAK
n/a 12 GCA n/a

17 GCA

2 TAK
n/a

Prednisolone dose

at time of scan,

mg - median (range)

0 (0-40) 0 (0-30) 0 (0-40) 0 (0-60) 0 (0-40) 3.5 (0-40)

CRP (mg/L)

- median (range)

41 (5-165),

not done

(n=8)

n/a

39 (11-149),

not done

(n=3)

n/a

36 (10-112),

not known

(n=15)

n/a

ESR (mm/Hr)

- median (range)

71 (3 -143),

not done

(n=29)

n/a

37 (n=1),

not done

(n=11)

n/a

90 (12-120),

not known

(n=15)

n/a

Blood Glucose

(mmol/L)

- median (range)

5.5 (4.2 - 9.9) ,

not known

(n=11)

5.9 (4.6 - 12),

not known

(n=13)

5.8 (5-7.3),

not known

(n=3)

5.9 (5.1-7.4),

not known

(n=2)

5.8 (4.4 - 7.5),

not known

(n=7)

6.65(5.4 - 9.5),

not known

(n=2)
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Figure 4.3: An example segmentation produced by the automated method. A) The refer-

ence CT scan B) The original output, C) The output filtered to remove pixels not part of

the largest segmentation and then a dilation filter set to one pixel was applied.

Table 4.4: Grading of patient dataset based on EANM/SNMMI guidelines [53]

Training Test Validation

Grade Aortitis Control Aortitis Control Aortitis Control

0 0 21 0 5 0 11

1 1 0 0 0 0 3

2 2 0 0 0 2 0

3 40 0 12 0 17 0

Ground Truth Grade 3

n = 43

Grade 0

n = 21

Grade 3

n = 12

Grade 0

n = 5

Grade 3

n = 19

Grade 0

n = 14
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validation cohorts. In some cases a radiomic feature would perform well in either test-

ing or validation AUC but had poor accuracy. The radiomic features given in Figure 4.5

suggests heterogeneity is an important characteristic in distinguishing aortitis from con-

trols. The first two features are based on energy which is based on voxel intensities. High

intensities in PET images was already known as a feature of LVV. The following three

features indicate the importance of heterogeneity. GLRLM Run Entropy characterises

the randomness in run lengths (number of voxels of the same gray level in a run) and

gray levels. GLCM Sum Entropy is the summation of the differences in neighbouring

voxels intensity values. GLDLM Dependence Non-Uniformity quanitifies how dissimilar

dependencies are throughout the ROI.

The performance of all individual radiomic features and SUV metrics in logistic re-

gression classifiers, and in all three cohorts, are listed in Supplemental Material 6.2.1.

4.2.5 Diagnostic Utility of Fingerprints

Fingerprint A was based on minimum thresholds of diagnostic performance for each fea-

ture and a maximum correlation to other features. While Perceptron and Passive Aggres-

sive classifiers produced higher validation AUCs their accuracies were low (≤ 50%) in

either one or both of the testing and validation cohorts. Logistic Regression performed

more consistently across the training, testing and validation cohorts in both AUC and

balanced accuracy (Figure 4.6), suggesting this method may have multi-centre transfer-

ability. Random Forest also performed well in all three cohorts. The performance of all

explored ML classifiers is shown in Table 4.5.

Fingerprint B was based on PCA. For this fingerprint the best validation AUC was

achieved by a Passive Aggressive Classifier with a validation AUC=0.65 (Figure 4.7). In

the case of Fingerprint B it was not possible to filter the model performances based on

balanced accuracy as all produced an balanced accuracy of ≤ 50% in at least one cohort.

Overall, the performance in the testing and validation cohorts was poor demonstrating

that this method is not generalizable or transferable. The performance of all explored ML

classifiers is shown in Table 4.6.

Fingerprint C used the feature selection that is intrinsically part of Random Forest
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Figure 4.4: The diagnostic utility, expressed as balanced accuracy and AUC, of individual

SUV metrics to demonstrate where current semi-quantitative methods stand
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Figure 4.5: Diagnostic utility of the five highest performing individual radiomic features

- performance ranked by validation AUC with an balanced accuracy above 50%
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classification and did not include any other ML classifiers. This method produced good

results in both the testing (balanced accuracy = 66%, AUC = 0.90) and validation (bal-

anced accuracy = 75%, AUC = 0.88) cohorts, demonstrating Fingerprint C is a promising

method for the diagnosis of aortitis. Figure 4.8 displays the ROC curves for Fingerprint

C. As this method only used Random Forest it was not tested in all ML classifiers.
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Figure 4.6: ROC curves of the best performing (by validation AUC and minimum accu-

racies) machine learning classifier trained on Fingerprint A (high performing individual

features with highly correlated features removed) - Logistic Regression.

Key : Mean CV ROC - Mean cross validation ROC from training dataset, Test ROC -

ROC from test dataset, Validation ROC - ROC from validation dataset.
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Figure 4.7: ROC curves of the best performing machine learning classifier (by validation

AUC) trained on Fingerprint B (PCA)- Passive Aggressive

Key : Mean CV ROC - Mean cross validation ROC from training dataset, Test ROC -

ROC from test dataset, Validation ROC - ROC from validation dataset
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Figure 4.8: ROC curves of the Random Forest classifier in Fingerprint C

Key : Mean CV ROC - Mean cross validation ROC from training dataset, Test ROC -

ROC from test dataset, Validation ROC - ROC from validation dataset
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Table 4.5: Diagnostic performance of Fingerprint A - after harmonization

ML Type Accuracy

Training

Accuracy

CI

AUC

Training

AUC CI Accuracy

Test

AUC

Test

Accuracy

Valida-

tion

AUC

Valida-

tion

Perceptron 0.50 (0.5-0.5) 0.82 (0.78-

0.87)

0.50 0.90 0.50 0.89

Passive Aggres-

sive

0.58 (0.44-

0.72)

0.86 (0.82-

0.9)

0.50 0.92 0.58 0.86

Logistic Regres-

sion

0.68 (0.51-

0.84)

0.89 (0.81-

0.96)

0.76 0.85 0.79 0.83

Random Forest 0.71 (0.63-

0.78)

0.84 (0.8-

0.88)

0.72 0.87 0.73 0.83

Decision Tree 0.74 (0.65-

0.82)

0.76 (0.7-

0.82)

0.92 0.92 0.72 0.77

K Nearest Neigh-

bours

0.73 (0.62-

0.84)

0.79 (0.69-

0.89)

0.72 0.78 0.66 0.74

Stochastic Gradi-

ent Descent

0.69 (0.55-

0.84)

0.69 (0.55-

0.84)

0.50 0.50 0.58 0.58

Neural Network 0.65 (0.54-

0.76)

0.77 (0.63-

0.92)

0.50 0.60 0.50 0.58

Gaussian Process 0.50 (0.5-0.5) 0.50 (0.5-0.5) 0.50 0.50 0.50 0.50
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Table 4.6: Diagnostic performance of Fingerprint B - after harmonization

ML Type Accuracy

Training

Accuracy

CI

AUC

Training

AUC CI Accuracy

Test

AUC

Test

Accuracy

Valida-

tion

AUC

Valida-

tion

Passive Aggres-

sive

0.81 (0.72-

0.91)

0.81 (0.71-

0.91)

0.50 0.82 0.54 0.65

Perceptron 0.68 (0.57-

0.78)

0.74 (0.68-

0.81)

0.50 0.82 0.54 0.64

K Nearest Neigh-

bours

0.73 (0.65-

0.8)

0.77 (0.72-

0.82)

0.50 0.60 0.50 0.57

Random Forest 0.77 (0.7-

0.83)

0.81 (0.7-

0.92)

0.60 0.58 0.49 0.54

Logistic Regres-

sion

0.75 (0.71-

0.79)

0.82 (0.74-

0.89)

0.50 0.50 0.54 0.54

Stochastic Gradi-

ent

0.76 (0.72-

0.81)

0.79 (0.72-

0.86)

0.50 0.50 0.51 0.51

Support Vector

Machine

0.75 (0.68-

0.82)

0.84 (0.73-

0.95)

0.50 0.50 0.50 0.50

Decision Tree 0.65 (0.61-

0.69)

0.70 (0.65-

0.74)

0.50 0.50 0.50 0.50

Gaussian Process 0.75 (0.66-

0.84)

0.84 (0.76-

0.92)

0.50 0.50 0.50 0.50

Neural Network 0.72 (0.64-

0.79)

0.81 (0.7-

0.92)

0.50 0.50 0.50 0.50

4.2.6 Comparison of Selected Features

Table 4.7 shows the features selected in Fingerprint A and the top 10 features (by feature

importance) in Fingerprint C. As Fingerprint B used PCA and produces new components

it is not simple to directly compare them. Table 4.7 demonstrates that heterogeneity is

important in distinguishing aortitis from controls. This is confirmed by earlier results in

Section 4.2.4
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Table 4.7: Features selected for Fingerprint A and C. Key - SUV (standardized uptake

value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level Co-Occurrence

Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-Level Size Zone

Matrix)

Features Selected in:

Fingerprint A Fingerprint C (10 most important)
SUV 90th Percentile GLCM Joint Energy

GLCM Difference Variance Energy

GLCM InverseVariance Shape - Major Axis Length

GLRLM Run Entropy GLSZM Small Area Emphasis

Energy Skewness

GLSZM ZonePercentage Gray Level Variance

GLDM LargeDependenceEmphasis SUV 80

GLSZM SmallAreaHighGrayLevelEmphasis GLRLM Run Percentage

GLSZM SizeZoneNonUniformity GLDM Dependence Variance

GLRLM RunLengthNonUniformity GLCM Difference Variance
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4.2.7 Comparison of Results from Different Segmentation Methods

A subset of patients (50 aortitis and 25 controls) had both manual and automatic segmen-

tations. The above methods were repeated on these patients using both segmentations

separately in order to compare the effect the segmentation method had on performance.

There were insufficient numbers to have a test and validation cohort so the results given

in Table 4.8 are the mean AUC values for cross validation in training. These results show

comparable performance for both segmentation methods. In the case of individual SUV

metrics and Radiomic Features the confidence intervals narrowed while maintaining sim-

ilar mean values. This suggests and automated method causes less variation in individual

quantitative measurements. Fingerprint A and C both dropped in performance and both

used the same classifier. One potential reason for this could be the receding ROI wall

from the aorta edge shown in Figure 4.3. While the DSC determined the segmentations

were similar it does not account for boundary variations which may be a useful addition

for future aortitis work as the vessel wall is essential. Fingerprint B improved in perfor-

mance but also changed the best performing classifier and was shown to be less reliable

in multi-centre studies so the effect of segmentation is hard to conclude.

4.2.8 Summary of Results

Table 4.9 summarises the best results from each of the explored methods for diagnosis of

aortitis. The best result was determined as described in each of the previous sections but in

all cases validation AUC was used to initially rank the results and where possible results

with an balanced accuracy ≤50% were removed. While the displayed results ranked the

best in each method by the given criteria, none were significantly better than each other

(p > 0.05, DeLong’s Algorithm [220, 221]).

4.3 Discussion

This study presents an automated pipeline to assist diagnosis of active aortitis using ra-

diomic analysis and ML. The main component in automation was aortic segmentation
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Table 4.8: Comparison of segmentation methods

Manual Segmentation

Training AUC

Mean ( 95% CI)

Automated Segmentation

Training AUC

Mean ( 95% CI)

SUV Feature -

SUV 90th Per-

centile

0.85 ( 0.77-0.93) 0.86 ( 0.81-0.91 )

Radiomic Feature

- GLSZM High

Gray Level Zone

Emphasis (man-

ual , GLCM Dif-

ference Variance

(Automated)

0.91 ( 0.84-0.98 ) 0.89 ( 0.87-0.91 )

Fingerprint A -

Random Forest

(both)

0.91 ( 0.80-1.0 ) 0.85 ( 0.81-0.89 )

Fingerprint B

- Random For-

est (Manual),

Support Vector

Machine (Auto-

mated)

0.88 ( 0.81-0.95 ) 0.91 ( 0.84-0.98 )

Fingerprint C -

Random Forest

(both)

0.86 ( 0.78-0.94 ) 0.81 ( 0.74-0.89 )



109

Table 4.9: Summary of results

Method
Training

Accuracy

mean ( 95% CI)

Training AUC

mean (95% CI)

Test

Accuracy

Test

AUC

Validation

Accuracy

Validation

AUC

Qualitative

Assessment -

Literature [53]

0.81-0.98

Overall AUC
- - - - -

SUV Feature -

SUV 90th Per-

centile

0.62 ( 0.51-0.72 ) 0.85 ( 0.81-0.90 ) 0.60 0.92 0.620 0.80

Radiomic Feature

- Energy

0.64 ( 0.55-0.74 ) 0.83 ( 0.78-0.88 ) 0.70 0.90 0.62 0.89

Fingerprint A -

Logistic Regres-

sion

0.68 ( 0.51-0.84 ) 0.89 ( 0.81-0.96 ) 0.76 0.85 0.79 0.83

Fingerprint B -

Passive Aggres-

sive

0.81 ( 0.72-0.91 ) 0.81 ( 0.71-0.91 ) 0.50 0.82 0.54 0.65

Fingerprint C -

Random Forest

0.77 ( 0.7-0.83 ) 0.81 ( 0.74-0.89 ) 0.66 0.90 0.75 0.88
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using a CNN which achieved a median DSC of 0.80 and allowed the diagnostic models

to achieve a good performance. A good diagnostic performance or utility was defined

as a validation AUC ≥ 0.8, therefore similar to the benchmark AUCs for qualitative as-

sessment of PET-CT in suspected aortitis [53], and a (balanced) accuracy > 0.5 in all

three cohorts. When compared to the performance using manual segmentations (Table

4.8) comparable results were achieved. Automating the method reduces the likelihood of

inter and intra observer variability, increasing reproducibility [222]. It also makes routine

clinical adoption a more realistic proposition.

Some diagnostic performance was shown in the proposed methods. SUV metrics

performed well in training cohorts but did not demonstrate good transferability to the

testing or validation cohort from other institutions. SUV 90th Percentile demonstrated

the most diagnostic utility from all the explored SUV metrics and did so in all three

cohorts. In future work it may be worth investigating the effect of adjusting for lean

body mass rather than body weight, as is the case for SUV metrics, as the results from

van Praagh et al. suggest this could be more reliable [87]. Several individual radiomic

features produced high AUC values and met the minimum balanced accuracy values. In

particular features based on heterogeneity performed well across all three cohorts with

the highest validation AUC coming from Energy (AUC = 0.89).The features selected in

Fingerprint A and C further demonstrate that heterogeneity is important in distinguishing

aortitis (Table 4.7).

Most ML classifiers when given the proposed radiomic Fingerprints A and B as input

did not show generalizability in the test and validation cohorts. In particular, Fingerprint

B, where PCA was used to reduce the number of features, achieved an balanced accu-

racy ≤ 50% in at least one cohort in every ML classifier. Fingerprint A performed better

with two ML classifiers (Logistic Regression and Random Forest) achieving AUC and

balanced accuracy values above the minimum thresholds stated earlier. However, Finger-

print C (Random Forest) performed the best achieving higher AUC values in both the test

and validation cohorts (AUC = 0.9 and 0.88 respectively) and higher balanced accuracy

values than either other fingerprint.



Chapter 5

Synopsis

5.1 Overview of Results

This project presents an automated pipeline to assist diagnosis of active aortitis using

radiomic analysis of PET-CT and classification with ML.

The purpose of the first set of experiments was to develop a methodological frame-

work and explore the feasibility of the radiomic pipeline for this application. Overall,

promising results were attained. The best performing individual radiomic feature GLSZM

Size Zone Non-Uniformity Normalized had an AUC of 0.9 (0.83-0.97 95% CI), similar

to the current clinical benchmark of qualitative assessment by an experienced radiologist

or nuclear medicine physician (AUC=0.81-0.98) [53]. The three fingerprints, groups of

selected radiomic features, performed similarly to the best-performing individual RFs.

Of particular promise was Fingerprint B, features with high individual diagnostic perfor-

mance and removal of highly correlated features, with an AUC of 0.91 (0.80-1.00 95%

CI).

The diagnostic utility of semi-quantitative measurements using SUV were compared

against other radiomics features for detecting active aortitis. The best performing SUV

based feature was SUV 90th percentile, which gives the value that 90% of SUV values

in the ROI are equal or less than. It has similarities to SUVpeak in the sense it is related

to SUVmax but altered in order to reduce the effect of noise. Unlike SUVpeak it does not

111
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incorporate spatial location in it’s definition. SUV 90th percentile scored an AUC of 0.83,

only slightly below the best performing radiomic features when confidence intervals are

included. All SUV features explored were found to be significantly different between

patients with active aortitis and controls using the Mann Whitney U Test. Overall SUV

metrics had some diagnostic utility in Mann Whitney U and logistic regression classifier

testing but did not perform as well as RFs.

Radiomic features shown to have the highest diagnostic utility focus mainly on high

gray levels and heterogeneity. The GLSZM Size Zone Non-Uniformity Normalized was

the best RF according to AUC and performed well in terms of accuracy and the Mann

Whitney U test. Its value is higher in active aortitis than controls, which means there

may be more heterogeneity in zone size volumes in aortic LVV imaging. This is an

expected finding as it reflects greater metabolic activity in the aortic wall of patients with

active aortitis than in controls. However, since it has superior performance compared

to SUV parameters which are based on metabolic activity, this is a potentially useful

new association. The importance of high gray values and zones, and heterogeneity is

further emphasised in other radiomic features with high diagnostic utility. The addition of

heterogeneity, encompassing spacial relationship between voxels, may help explain why

radiomic features outperformed SUV metrics which focus on voxel values alone. They

also demonstrated better transferability to the validation cohort suggesting heterogeneity

also provides more robustness.

With the feasibility of radiomic analysis in LVV PET determined and a methodology

established, the next set of experiments aimed to validate the results with multi-centre

data. The secondary aim was to automate the process to facilitate use of the pipeline

making routine clinical adoption a more realistic proposition.

The main component in automation was aortic segmentation using a CNN which

achieved a median DSC of 0.80 and allowed the diagnostic models to achieve a good

performance. A good diagnostic performance or utility was defined as a Validation AUC

≥ 0.8, therefore similar to the benchmark AUCs for qualitative assessment of PET-CT

in suspected aortitis [53], and a (balanced) accuracy > 0.5 in all three cohorts. When

compared to the performance using manual segmentations (Table 4.8) comparable results

were achieved. Automating the method reduces the likelihood of inter and intra observer
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variation, increasing reproducibility [222]. Other automated segmentation methods were

considered but a CNN was selected due to more successful and reproducible results both

in the published literature and our own experiments [223].

Sollini et al. concluded in their systematic review that the lack of external validation

was the key issue preventing radiomics translating into routine clinical practice [224].

Some diagnostic performance was shown when validating the proposed methods in multi-

centre data. SUV metrics performed well in training cohorts but did not demonstrate

good transferability to the testing or validation cohort from other institutions. SUV 90th

percentile demonstrated the most diagnostic utility from all the explored SUV metrics

and did so in all three cohorts (validation AUC = 0.8). In future work it may be worth

investigating the effect of adjusting for lean body mass rather than body weight, as is the

case for SUV metrics, as the results from van Praagh et al. suggest this could be more

reliable [87]. Several individual radiomic features produced high AUC values and met the

minimum accuracy values. In particular features based on heterogeneity performed well

across all three cohorts with the highest validation AUC coming from ’Energy’ (AUC =

0.89).The features selected in Fingerprint A and C further demonstrate that heterogeneity

is important in distinguishing aortitis (Table 4.7).

Most ML classifiers when given the proposed radiomic Fingerprints A and B as input

did not show generalizability in the test and validation cohorts. In particular, Fingerprint

B, where PCA was used to reduce the number of features, achieved an accuracy ≤ 50%

in at least one cohort in every ML classifier. Fingerprint A performed better with two ML

classifiers (Logistic Regression and Random Forest) achieving AUC and accuracy values

above the minimum thresholds stated earlier. However, Fingerprint C (Random Forest)

performed the best achieving higher AUC values in both the test and validation cohorts

(AUC=0.9 and 0.88 respectively) and high accuracy values (66% and 0.75% respectively).

This demonstrates good generalizability and transferability which are important prereq-

uisites for clinical use [224]. Fingerprint C is different to the others as it uses embedded

feature selection in the ML classifier(i.e. Random Forest) rather than preselecting fea-

tures. A similar result was reported by Da-ano et al. [225].

The key points from the two sets of experiments are that heterogeneity-based features

show the greatest potential in distinguishing aortitis from controls, that the pipeline can



114

be automated, and that a few diagnostic models performed well in external data demon-

strating potential for transferability and generalizability.

A key point discussed in numerous radiomic studies and reviews is the need for stan-

dardized methodology. This allows for reproducibility which is a common limitation of

radiomic studies. TRIPOD reporting guidelines were adhered to in this project to en-

sure transparency of methodological details [194]. Feature extraction software (PyRa-

diomics) that mostly adheres to IBSI radiomic feature standardization was utilized. The

IBSI definitions are discussed in their paper by Zwannenburg et al. [139]. Deviations

from these definitions are discussed in the user documentation 1 and accompanying pub-

lication [175]. IBSI found that even with well-defined rules there was still a lot of inter-

nal variation due lack of communication, different interpretations of the same rules and

variation in workstations so care still needs to be given to standardization after a method-

ological pipeline is established and reported [139]. There is no clear consensus on the

optimal settings for some steps in the radiomic workflow. This is intentional as they can

be situation dependent [139]. Providing sufficient detail is given in any publications or

standard operating procedure, reproducibility is still achievable within the same clinical

application.

In the case of this thesis the code will be made open access in the near future to

maximise transparency and promote reproducibility.

The cohort size is reasonably large, especially when sub-optimal sample size is a

common limitation in radiomic studies. This is especially the case in the second set of

experiments. It is difficult to directly compare our sample size to other radiomic studies

as aortitis is less common than cancers, aortitis is PET imaged less than cancers, and PET

is generally used less than CT or MRI. The importance of a good sample size is also

becoming more well known so reviews and meta-analyses of sample sizes in radiomic

studies quickly become outdated. In our final experiments we reached a sample size of

114 patients in total which splits into 74 aortitis cases and 40 controls. It is not uncommon

for oncological radiomic studies to have greater than one hundred or very occasionally

thousands of cases [176, 226, 227]. However, it has been recognised in a recent position

1https://pyradiomics.readthedocs.io/en/latest/features
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paper by European Association of Nuclear Medicine and the European Association of

Cardiovascular Imaging that applications of AI in cardiovascular imaging with PET are

much less common. Cardiovascular radiomic studies with CT or MRI with a sample size

in the early hundreds have become more frequent [228] but similar sample sizes using

PET have only been achieved recently, are still rare, and studied more common conditions

such as coronary artery disease [229, 230]. Sample size is an important consideration

because over-fitting and type 1 errors are prone when smaller cohorts are used [191, 231].

Bonferroni correction and feature reduction were used to reduce the risk of these errors

but over-fitting is still possible. The cohort size in the case of this project is sufficient to

have reasonable confidence in the results but more data would solidify the conclusions

drawn, and open up other applications of radiomics in LVV such as treatment response

prediction, outcome prediction and classification by cause of LVV. As LVV and aortitis

are relatively rare when compared to many oncological conditions, establishing a multi-

centre repository of imaging data in order to promulgate clinical translation is a key future

aim.

There remains debate as to the validity of harmonization with ComBat [118, 232,

233]. Orlhac et al. stated that ComBat is only appropriate in situations described in

their guide [234]. As this study uses data from several institutions and scanners, har-

monization was deemed necessary, although the effect on the data was not confirmed.

Papadimitroulas et al. described several other alternatives to ComBat but also concluded

that ComBat performed well overall [147]. ComBat requires a minimum number of cases

per batch to produce a transform to be applied to all cases in that batch. Individual cases

can be harmonized if they are part of a pre-defined batch but new centres would need to

form a new transform and essentially calibrate a radiomic method that uses ComBat if

they wanted to use the radiomic method. This could be a hurdle to smaller centres. Stan-

dardization of imaging protocols was not feasible as this was a retrospective study with

insufficient data to exclude patients based on a unified imaging protocol. All steps after

reconstruction were kept consistent as this has been proven to have a significant effect

[235]. This included voxel size resampling to uniform voxel size which may partially

explain the lack of impact of harmonization [141]. In future prospective work a standard-

ized protocol would be possible [236, 237], but may not be implemented if the radiomic
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pipeline was ever utilised in a clinical setting. Other image based approaches, as opposed

to feature based approaches, are likely more feasible in a clinical setting as it can be ap-

plied in centres with a small number of cases but more exploration would be required to

determine the best method [140, 141].

5.2 Outlook

Feature selection was conducted in this project but one method that was overlooked was

removing non-reproducible features. Retrospectively it was determined that the best per-

forming and most relevant features appeared to do well across all datasets but further

analysis is warranted. However, this was achieved somewhat as any method that did not

perform well across all three cohort was discounted, just not prior to feature selection.

There is a risk of over-fitting if feature selection is done on test and validation data as

well. Repeatability of the results from variaitons in methods is worth exploring further

as well but not essential as good results were achieved with the current method and any

observed change in results due to method alterations would be expected and not a sign

that features should be removed. Removing features excessively can lead to a large loss

in information and providing future users follow the same method reproducibility due to

unforeseen alterations in the method are not a limitation of this project.

While standardization is important, specific recommendations for steps are rarely

made as optimal methods vary based on modality, condition and application. Some spe-

cific recommendations are published for PET imaging in LVV but there are little or no

studies reporting use of radiomics in this setting, meaning there is no specific guidance.

The results of this project provide initial results but further optimisation of each step could

be explored to produce specific advice to this application. Meanwhile, thorough reporting

of methods is sufficient to overcome most issues caused by a lack of standardization. As

IBSI found, even with well-defined rules there can be discrepancies in application so fol-

lowing guidelines such as IBSI, STARD or TRIPOD when reporting can help convey the

most important details [139, 194]. Some decisions made in this project have been in areas

still debated in literature. Examples include how to define the bin width or bin number
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when conducting gray level discretization, or whether to upsample or downsample when

spatially resampling. While they are not limitations, they may be improved upon in future

studies [139, 151].

The automated segmentation method used in the second set of experiments in this

project could be further refined. Other automated segmentation methods were attempted

but did not work well on our dataset. It would be preferable to only analyse the aortic

wall, but a segmentation method which reliably distinguishes wall from the lumen at non-

contrast enhanced CT has not been developed to the extent that it reliably worked on the

patient cohort in this study. Other segmentation methods or adaptations of the current

method may be explored going forward. For example, threshold-based segmentation of

PET data was initially discounted as a method as it was conventional in LVV to use the

liver SUV as a cut off value and this method would not be suitable for normal controls.

Another common threshold used in clinical PET evaluation is mediastinal blood pool ac-

tivity which would work in all patients. It was initially too difficult to automatically seg-

ment but a potential method for measuring blood pool activity in this project’s data has

been solidified recently. Advantages to reintroducing thresholding would be more spe-

cific feature extraction as the lumen would no longer be in the ROI. An alternative route

would be further study of confirmed aortitis cases without normal controls, for example,

to evaluate the utility of radiomics for prognostication/prediction of vascular calcification

but due to the low event rate this would likely require a large data cohort. Location of in-

flammation in the aortic wall could also be considered for differentiating causes of aortitis

as this varies. These were beyond the scope of the present work.

There are other radiotracers explored for use in LVV PET imaging or other inflam-

matory conditions. While not widely used they may provide additional insights into LVV

or facilitate more straight-forward segmentation of imaging data [93, 156]. Other trac-

ers include copper or gallium labelled DOTATE - a peptide that targets somatostatin re-

ceptors which can be found on macrophages [238, 239], and immuno-PET approaches

such zirconium labelled antibodies [240], and [11C]-PK11195 which selectively bonds to

translocator proteins in activated macrophages [241, 242]. Applying the method devel-

oped in this thesis to PET images acquired with other radiotracers would likely result in

reduced diagnostic utility. Due to different radiotracer distribution patterns the features
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would probably not be transferable. However, the process used to develop the models

could be used in the same way meaning any progression in PET imaging for aortitis and

LVV would not make radiomic analysis obsolete. Steps such as retraining the models,

feature selection and possibly segmentation would need to be repeated but the radiomic

pipeline presented could be adapted to accommodate changes.

The next stage in this project would be to test this pipeline on the whole spectrum of

those presenting with suspected aortitis; atherosclerosis is common in this age group [54].

Another group has reported promising results using SUV metrics so there is potential for

further success with radiomics [243]. Patients with atherosclerosis were excluded from

the study cohort, for both aortitis patients and controls, as atherosclerosis can also cause

increased FDG uptake in the vessel wall [244–246]. This was part of the exclusion criteria

as the purpose of the study was to initially develop an artificial intelligence-based pipeline

using unequivocal cases and controls. Going forward it would be clinically useful to

determine if radiomics can differentiate LVV from atherosclerosis.

Similarly it would be of interest to determine whether any of the radiomic features

with high diagnostic utility can detect aortitis after treatment has started as this currently

limits the use of PET imaging. FDG PET-CT is mostly used for baseline imaging of aorti-

tis for diagnosis as glucocorticoids reduce its sensitivity [105–107]. While the diagnostic

accuracy decreases significantly after 10 days, uptake is not eradicated completely. Van

der Geest et al. determined that FDG PET still had some moderate diagnostic utility for

monitoring treatment but that the individual results were highly variable and any conclu-

sions drawn from imaging should only be interpreted in the context of clinical presentation

[85]. This evaluation was based on visual assessment which is based on vessel activity

compared to the liver and the distribution of uptake. Potentially, some of the radiomic

features that demonstrated a high diagnostic performance, but are based on information

that is not easily appreciated by eye, could help utilise FDG PET for monitoring aortitis.

In future prospective imaging studies of LVV and aortitis multi-modality approaches

could be expanded upon. While FDG PET-CT utilises low dose CT for anatomical in-

formation, CTA or MRA provide much clearer images and are currently used to detect

anatomical changes such as aneurysms and stenosis. Using these imaging techniques

within the same acquisition would allow better direct comparison between the charac-
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teristics of both images and would be synergistic in quantitative analysis. The clearer

images would improve segmentation of the other major arteries expanding the analysis

from aortitis to LVV as a whole. Functional MRI techniques could also add to metabolic

characterisation of LVV.

All of the issues discussed remain important but there have been concerted efforts

to tackle these by the international radiomics research community happening in parallel

during the conduct of this project [80]. Therefore, when undertaking radiomics research

it is essential to remain abreast of the literature and routinely review relevant emerging

research studies as this field of study remains dynamic and continues to evolve with step-

wise improvements in quality and reproducibility of more recently published work . As

more of the discussed limitations are resolved or minimised, in particular standardiza-

tion and procuring large datasets, more in-depth radiomic analysis can be conducted and

combined with fields such as digital pathology and genomics [124]. This is already be-

ing explored but is still in the initial stages [247]. These developments are exciting as it

should facilitate a deeper understanding of the pathophysiological basis of several med-

ical conditions and in the case of PET-CT the utility of advanced imaging analysis for

non-invasive monitoring of disease. Incorporation of other clinical data will require more

consistent reporting in patient records and the practicalities of implementing this are not

trivial [126].

If larger datasets are acquired for LVV including sufficient controls further appli-

cations of radiomics in LVV and aortitis could be explored. For example, cohort size

prevented significant results being obtained when classification by cause of aortitis was

attempted. However, this would be a useful progression in order to guide treatment [1].

Establishing a repository containing imaging and clinical meta-data would help facilitate

studies such as these and would open up opportunities to make tools to aid prediction

of outcomes, treatment response, relapse or refractory risk and the likelihood of adverse

events as all of these have too low an occurrence rate for the current dataset to produce

significant results. Larger datasets would also although for further exploration of deep

learning applications.
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5.3 Conclusion

The purpose of this study was to develop and validate an automated pipeline that as-

sists the diagnosis of active aortitis. The pipeline included an automated segmentation

method with a CNN, radiomic analysis and ML. Some of the proposed methods demon-

strated good diagnostic performance across the training, testing and validation datasets

showing that a radiomic pipeline can be generalizable and transferable. Similarly, it was

shown that radiomic features outperform conventional SUV metrics but that radiomic

fingerprints only perform slightly better if not the same when used in machine learning

classifiers. This is important knowledge gained as diagnosis if aortitis can be difficult and

is vulnerable to intra- and inter-observer variability. These findings could be used to build

an automated clinical decision tool which would facilitate objective and standardized as-

sessment regardless of observer experience.
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Chapter 6

Appendix

6.1 Experiment Set 1

6.1.1 Individual radiomic featuresand SUV Metrics Tuned Hyperpa-
rameters

In the case a hyperparameter is not listed the default for the given Sci-kit Learn version

number was used. Key - SUV (standardized uptake value), GLDM (Gray-Level Depen-

dence Matrix), GLCM (Gray-Level Co-Occurrence Matrix), GLRLM (Gray-Level Run

Length Matrix), and GLSZM (Gray-Level Size Zone Matrix)

Feature Params

0
GLSZM Small Area High

Gray Level Emphasis

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 3,

’max iter’: 10000, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-07}

1
GLSZM High Gray Level

Zone Emphasis

{’C’: 2, ’class weight’: ’balanced’, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 4,

’max iter’: 750, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.1}

149
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2 GLRLM Run Entropy

{’C’: 2, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: True, ’intercept scaling’:

1, ’max iter’: 1250, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-06}

3
GLSZM Size Zone Non Uni-

formity Normalized

{’C’: 2, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: True, ’intercept scaling’:

1, ’max iter’: 10, ’penalty’: ’l1’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.0001}

4
firstorder Mean Absolute De-

viation

{’C’: 4, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 2,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

5 GLDM Dependence Entropy

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 4,

’max iter’: 50, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-07}

6 GLRLM Gray Level Variance

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 3,

’max iter’: 250, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

7
GLDM Small Dependence

High Gray Level Emphasis

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 5000, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.001}

8 firstorder Entropy

{’C’: 2, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 5,

’max iter’: 50, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.01}
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9 firstorder Variance

{’C’: 1.5, ’class weight’: ’balanced’, ’dual’:

True, ’fit intercept’: True, ’intercept scaling’: 3,

’max iter’: 10, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.0001}

10 GLCM Cluster Tendency

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 5000, ’penalty’: ’l1’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.001}

11 GLCM Contrast

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 5,

’max iter’: 10000, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-07}

12 GLCM Sum Squares

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 3000, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.01}

13 GLDM Gray Level Variance

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 5,

’max iter’: 10000, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-07}

14 GLCM Difference Variance

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 500, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-06}

15
GLSZM Small Area Empha-

sis

{’C’: 2, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: True, ’intercept scaling’:

5, ’max iter’: 10000, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-07}
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16
GLSZM Size Zone Non Uni-

formity

{’C’: 2, ’class weight’: ’balanced’, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 4,

’max iter’: 750, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.01}

17 GLCM Sum Entropy

{’C’: 2, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 3,

’max iter’: 50, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

18
GLRLM High Gray Level

Run Emphasis

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 5,

’max iter’: 250, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.001}

19
GLRLM Short Run High

Gray Level Emphasis

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 5,

’max iter’: 250, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-06}

20 GLSZM Gray Level Variance

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 1250, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.0001}

21 GLCM Difference Entropy

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

22
GLRLM Long Run High

Gray Level Emphasis

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 5,

’max iter’: 250, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’lbfgs’, ’tol’: 1e-05}
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23 firstorder Energy

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

24 firstorder Total Energy

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

25 SUV 50

{’C’: 3, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

26
firstorder Robust Mean Abso-

lute Deviation

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

27 GLCM Autocorrelation

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 1750, ’penalty’: ’l1’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.01}

28 GLCM Joint Entropy

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

29
GLDM High Gray Level Em-

phasis

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 4,

’max iter’: 3000, ’penalty’: ’l1’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-07}
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30 firstorder Interquartile Range

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

31 GLCM Inverse Variance

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

32 GLCM Difference Average

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

33 firstorder Range

{’C’: 4, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 2,

’max iter’: 100, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-07}

34 GLCM Joint Average

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

35 GLCM Sum Average

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 5,

’max iter’: 2500, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-07}

36
GLSZM Small Area Low

Gray Level Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}
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37 SUV 60

{’C’: 2, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 2,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

38 firstorder 90 Percentile

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

39 firstorder Maximum

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 4,

’max iter’: 100, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

40 GLCM Id

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

41
GLDM Dependence Non

Uniformity

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

42
GLDM Small Dependence

Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

43
GLRLM Gray Level Non

Uniformity Normalized

{’C’: 4, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: False, ’intercept scaling’:

5, ’max iter’: 10000, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’lbfgs’, ’tol’: 1e-07}
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44 GLSZM Zone Percentage

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

45 firstorder Uniformity

{’C’: 2, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

46 GLCM Idm

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

47 firstorder Root Mean Squared

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

48 firstorder Mean

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

49
GLDM Dependence Non

Uniformity Normalized

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

50 GLSZM Zone Entropy

{’C’: 4, ’class weight’: ’balanced’, ’dual’:

True, ’fit intercept’: True, ’intercept scaling’:

3, ’max iter’: 2000, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.1}
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51 SUV 70

{’C’: 1.5, ’class weight’: ’balanced’, ’dual’:

True, ’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-06}

52
GLRLM Run Length Non

Uniformity Normalized

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

53 SUV 90

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

54 SUV 80

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

55 GLRLM Run Percentage

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

56 GLRLM Short Run Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

57
GLDM Large Dependence

Emphasis

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: False, ’intercept scaling’: 2,

’max iter’: 50, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.001}
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58
GLSZM Gray Level Non

Uniformity

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

59 firstorder Median

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

60
GLRLM Run Length Non

Uniformity

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

61 firstorder 10 Percentile

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

62 GLDM Dependence Variance

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

63
GLDM Small Dependence

Low Gray Level Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

64 shape Surface Volume Ratio

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}
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65 GLCM Imc2

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

66 shape Flatness

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

67 GLCM Cluster Prominence

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

68 GLCM Cluster Shade

{’C’: 4, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: False, ’intercept scaling’:

5, ’max iter’: 10000, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’lbfgs’, ’tol’: 1e-07}

69 shape Mesh Volume

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

70 shape Voxel Volume

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

71 shape Least Axis Length

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}
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72 firstorder Skewness

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

73 shape Surface Area

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

74
GLSZM Large Area High

Gray Level Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

75 GLRLM Long Run Emphasis

{’C’: 4, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: False, ’intercept scaling’: 2,

’max iter’: 50, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.1}

76
GLDM Gray Level Non Uni-

formity

{’C’: 1.5, ’class weight’: ’balanced’, ’dual’:

True, ’fit intercept’: True, ’intercept scaling’: 4,

’max iter’: 5000, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-07}

77 GLCM M C C

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

78 GLSZM Zone Variance

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}
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79 shape Sphericity

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

80
GLRLM Gray Level Non

Uniformity

{’C’: 4, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: False, ’intercept scaling’:

5, ’max iter’: 10000, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’lbfgs’, ’tol’: 1e-07}

81
GLDM Large Dependence

High Gray Level Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

82 GLCM Idmn

{’C’: 1, ’class weight’: ’balanced’, ’dual’:

True, ’fit intercept’: False, ’intercept scaling’:

3, ’max iter’: 5000, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.1}

83 GLCM Correlation

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

84
GLSZM Large Area Empha-

sis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

85
GLDM Large Dependence

Low Gray Level Emphasis

{’C’: 4, ’class weight’: None, ’dual’: True,

’fit intercept’: False, ’intercept scaling’: 3,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-06}
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86 shape Elongation

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

87
GLSZM Large Area Low

Gray Level Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

88
GLRLM Short Run Low

Gray Level Emphasis

{’C’: 4, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: False, ’intercept scaling’:

5, ’max iter’: 10000, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’lbfgs’, ’tol’: 1e-07}

89
shape Maximum2 D Diame-

ter Slice

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

90 shape Major Axis Length

{’C’: 3, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 5000, ’penalty’: ’l2’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 0.0001}

91 shape Minor Axis Length

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

92 GLCM Idn

{’C’: 3, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 2,

’max iter’: 10, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-06}
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93 firstorder Kurtosis

{’C’: 3, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: False, ’intercept scaling’: 1,

’max iter’: 50, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.01}

94
shape Maximum2 D Diame-

ter Column

{’C’: 4, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: False, ’intercept scaling’: 1,

’max iter’: 100, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.1}

95 firstorder Minimum

{’C’: 2, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

96
GLSZM Gray Level Non

Uniformity Normalized

{’C’: 4, ’class weight’: ’balanced’, ’dual’: False,

’fit intercept’: False, ’intercept scaling’: 1,

’max iter’: 50, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.1}

97
shape Maximum3 D Diame-

ter

{’C’: 4, ’class weight’: ’balanced’, ’dual’: True,

’fit intercept’: False, ’intercept scaling’: 1,

’max iter’: 100, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.1}

98
shape Maximum2 D Diame-

ter Row

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

99 GLCM Imc1

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}
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100 GLCM Joint Energy

{’C’: 3, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: True, ’intercept scaling’:

1, ’max iter’: 2000, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.01}

101
GLCM Maximum Probabil-

ity

{’C’: 1.5, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: True, ’intercept scaling’: 3,

’max iter’: 100, ’penalty’: ’l1’, ’random state’: 1,

’solver’: ’liblinear’, ’tol’: 1e-06}

102
GLDM Low Gray Level Em-

phasis

{’C’: 1, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: False, ’intercept scaling’:

4, ’max iter’: 5000, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.01}

103
GLRLM Low Gray Level

Run Emphasis

{’C’: 2, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: True, ’intercept scaling’:

4, ’max iter’: 2000, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 1e-07}

104
GLSZM Low Gray Level

Zone Emphasis

{’C’: 3, ’class weight’: ’balanced’, ’dual’:

False, ’fit intercept’: True, ’intercept scaling’:

1, ’max iter’: 2000, ’penalty’: ’l1’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.01}

105
GLRLM Long Run Low Gray

Level Emphasis

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}

106 GLRLM Run Variance

{’C’: 1, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1,

’max iter’: 10, ’penalty’: ’l2’, ’random state’:

1, ’solver’: ’liblinear’, ’tol’: 0.0001}
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6.1.2 Fingerprint Tuned Hyperparameters

In the case a hyperparameter is not listed the default for the given Sci-kit Learn version

number was used. Key - ML = Machine Learning, Params = parameters, rf = Random

Forest, lgr = Logistic Regression, svm = Support Vector Machine, dt = Decision Tree,

gpc = Gaussain Process Classifier, perc = Perceptron, pasagr = Passive Aggressive, nnet

= Neural Network, kneigh = K Nearest Neighbours

6.1.2.1 Fingerprint A

ML Type Params

rf

{’bootstrap’: True, ’max depth’: 100, ’max features’: None,

’min samples leaf’: 10, ’min samples split’: 10, ’n estimators’: 500,

’random state’: 1}

lgr
{’C’: 3, ’dual’: False, ’fit intercept’: True, ’intercept scaling’: 1, ’max iter’:

50, ’penalty’: ’l1’, ’random state’: 1, ’solver’: ’liblinear’, ’tol’: 0.0001}
svm {’C’: 1, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’random state’: 1}

dt

{’ccp alpha’: 0.1, ’criterion’: ’entropy’, ’max depth’: None,

’max features’: ’auto’, ’max leaf nodes’: 10, ’min impurity decrease’:

0.1, ’min samples leaf’: 1, ’min samples split’: 2, ’random state’: 1,

’splitter’: ’best’}
gpc {’max iter predict’: 100, ’random state’: 1}

perc
{’alpha’: 0.1, ’fit intercept’: False, ’max iter’: 1000, ’penalty’: ’None’, ’ran-

dom state’: 1}

pasagr
{’C’: 1.0, ’average’: True, ’fit intercept’: True, ’max iter’: 500, ’ran-

dom state’: 1}

nnet
{’alpha’: 0.0001, ’hidden layer sizes’: (10,), ’max iter’: 200, ’random state’:

1}
kneigh {’algorithm’: ’brute’, ’leaf size’: 10, ’n neighbors’: 5, ’weights’: ’uniform’}
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6.1.2.2 Fingerprint B

ML Type Params

rf

{’bootstrap’: True, ’max depth’: 10, ’max features’: ’sqrt’,

’min samples leaf’: 10, ’min samples split’: 10, ’n estimators’: 1000,

’random state’: 1}

lgr
{’C’: 1, ’dual’: True, ’fit intercept’: True, ’intercept scaling’: 4, ’max iter’:

1500, ’penalty’: ’l2’, ’random state’: 1, ’solver’: ’liblinear’, ’tol’: 1e-07}

dt

{’ccp alpha’: 0.0, ’criterion’: ’gini’, ’max depth’: 50, ’max features’: ’sqrt’,

’max leaf nodes’: None, ’min impurity decrease’: 0.0, ’min samples leaf’:

1, ’min samples split’: 10, ’random state’: 1, ’splitter’: ’random’}
gpc {’max iter predict’: 100, ’random state’: 1}

perc
{’alpha’: 0.01, ’fit intercept’: True, ’max iter’: 500, ’penalty’: ’l2’, ’ran-

dom state’: 1}

pasagr
{’C’: 1.0, ’average’: True, ’fit intercept’: True, ’max iter’: 500, ’ran-

dom state’: 1}

nnet
{’alpha’: 0.001, ’hidden layer sizes’: (5,), ’max iter’: 2000, ’random state’:

1}
kneigh {’algorithm’: ’brute’, ’leaf size’: 50, ’n neighbors’: 5, ’weights’: ’uniform’}
svm {’C’: 1, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’random state’: 1}
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6.1.2.3 Fingerprint C

ML Type Params

0 rf

{’bootstrap’: False, ’max depth’: 100, ’max features’: ’sqrt’,

’min samples leaf’: 10, ’min samples split’: 10, ’n estimators’: 10,

’random state’: 1}

1 lgr

{’C’: 4, ’dual’: False, ’fit intercept’: True, ’intercept scaling’: 3,

’max iter’: 2500, ’penalty’: ’l1’, ’random state’: 1, ’solver’: ’liblin-

ear’, ’tol’: 0.1}
2 svm {’C’: 2, ’gamma’: ’auto’, ’kernel’: ’rbf’, ’random state’: 1}

3 dt

{’ccp alpha’: 0.0, ’criterion’: ’gini’, ’max depth’: 50, ’max features’:

’auto’, ’max leaf nodes’: 10, ’min impurity decrease’: 0.0,

’min samples leaf’: 1, ’min samples split’: 5, ’random state’: 1,

’splitter’: ’random’}
4 gpc {’max iter predict’: 100, ’random state’: 1}

6 perc
{’alpha’: 0.01, ’fit intercept’: True, ’max iter’: 500, ’penalty’: ’l1’,

’random state’: 1}

7 pasagr
{’C’: 1.0, ’average’: False, ’fit intercept’: True, ’max iter’: 500, ’ran-

dom state’: 1}

8 nnet
{’alpha’: 0.1, ’hidden layer sizes’: (2000,), ’max iter’: 2000, ’ran-

dom state’: 1}

9 kneigh
{’algorithm’: ’ball tree’, ’leaf size’: 50, ’n neighbors’: 5, ’weights’:

’distance’}
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6.1.3 Individual Radiomic Features and SUV Metrics Results

Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

GLSZM Size Zone Non

Uniformity Normalized
0.853 0.097 0.896 0.066 5.82e-08

GLSZM High Gray

Level Zone Emphasis
0.787 0.110 0.892 0.140 4.01e-08

GLSZM Small Area

High Gray Level

Emphasis

0.773 0.154 0.892 0.129 4.83e-08

GLRLM Gray Level

Variance
0.760 0.066 0.888 0.087 8.92e-08

GLRLM Long Run

High Gray Level

Emphasis

0.800 0.228 0.884 0.163 3.92e-07

GLDM Dependence

Entropy
0.800 0.117 0.884 0.107 2.75e-08

GLRLM Short Run

High Gray Level

Emphasis

0.827 0.186 0.884 0.147 1.94e-07

firstorder Variance 0.773 0.099 0.884 0.088 1.07e-07

GLDM Gray Level

Variance
0.800 0.091 0.884 0.088 1.07e-07
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

GLSZM Small Area

Emphasis
0.800 0.128 0.884 0.105 2.61e-07

GLRLM High Gray

Level Run Emphasis
0.827 0.186 0.880 0.146 1.94e-07

GLDM Small Depen-

dence High Gray Level

Emphasis

0.760 0.099 0.880 0.122 1.36e-07

GLRLM Run Entropy 0.787 0.097 0.880 0.097 4.83e-08

GLCM Cluster Ten-

dency
0.800 0.091 0.880 0.077 1.07e-07

GLCM Sum Squares 0.800 0.052 0.876 0.076 1.28e-07

GLDM High Gray

Level Emphasis
0.827 0.186 0.872 0.141 3.11e-07

GLCM Autocorrelation 0.813 0.184 0.868 0.150 5.84e-07

firstorder Mean Abso-

lute Deviation
0.787 0.097 0.864 0.095 1.83e-07

GLCM Sum Average 0.800 0.181 0.860 0.159 1.08e-06

GLCM Joint Average 0.653 0.033 0.860 0.159 1.08e-06

GLCM Sum Entropy 0.800 0.052 0.860 0.096 2.76e-07

GLSZM Size Zone Non

Uniformity
0.813 0.062 0.856 0.096 4.93e-07

firstorder Entropy 0.787 0.062 0.856 0.102 3.29e-07
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

GLCM Difference

Variance
0.787 0.122 0.844 0.109 4.65e-07

GLCM Joint Entropy 0.653 0.033 0.844 0.108 1.02e-06

firstorder Robust Mean

Absolute Deviation
0.667 0.000 0.844 0.103 1.68e-06

GLSZM Gray Level

Variance
0.787 0.033 0.840 0.099 8.20e-07

GLCM Difference En-

tropy
0.653 0.033 0.840 0.114 1.51e-06

GLCM Contrast 0.800 0.105 0.840 0.116 5.52e-07

firstorder Total Energy 0.667 0.000 0.840 0.116 1.02e-06

firstorder Energy 0.667 0.000 0.840 0.116 1.02e-06

GLDM Dependence

Non Uniformity
0.667 0.000 0.836 0.135 2.20e-06

GLCM Inverse Vari-

ance
0.667 0.000 0.832 0.122 3.20e-06

GLCM Difference Av-

erage
0.707 0.066 0.828 0.124 2.20e-06

firstorder 90 Percentile 0.653 0.033 0.828 0.139 3.04e-06

GLSZM Small Area

Low Gray Level

Emphasis

0.667 0.000 0.820 0.112 2.59e-06
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

GLSZM Zone Percent-

age
0.667 0.000 0.816 0.113 1.10e-05

firstorder Interquartile

Range
0.653 0.033 0.816 0.106 4.17e-06

GLCM Id 0.667 0.000 0.812 0.126 1.28e-05

SUV 50 0.773 0.186 0.808 0.217 7.37e-06

GLDM Small Depen-

dence Emphasis
0.667 0.000 0.808 0.118 9.03e-06

firstorder Uniformity 0.667 0.000 0.808 0.105 4.88e-06

GLRLM Gray Level

Non Uniformity Nor-

malized

0.333 0.000 0.808 0.105 6.65e-06

firstorder Root Mean

Squared
0.653 0.033 0.804 0.185 8.16e-06

GLSZM Zone Entropy 0.573 0.134 0.800 0.108 6.65e-06

GLCM Idm 0.667 0.000 0.800 0.143 1.90e-05

firstorder Mean 0.653 0.033 0.788 0.170 1.72e-05

firstorder Range 0.720 0.081 0.780 0.200 5.16e-05

SUV 60 0.773 0.226 0.780 0.251 2.54e-05

firstorder Median 0.653 0.033 0.780 0.164 9.31e-05
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

GLRLM Run Length

Non Uniformity Nor-

malized

0.667 0.000 0.780 0.127 6.79e-05

GLSZM Gray Level

Non Uniformity
0.667 0.000 0.768 0.108 1.16e-04

GLRLM Run Percent-

age
0.667 0.000 0.768 0.128 8.90e-05

GLRLM Run Length

Non Uniformity
0.667 0.000 0.768 0.177 1.27e-04

shape Surface Volume

Ratio
0.667 0.000 0.768 0.243 1.39e-04

firstorder Maximum 0.693 0.066 0.764 0.240 8.51e-05

SUV 70 0.787 0.212 0.760 0.239 8.90e-05

GLRLM Short Run

Emphasis
0.667 0.000 0.756 0.116 1.33e-04

GLDM Dependence

Non Uniformity Nor-

malized

0.667 0.000 0.756 0.136 1.21e-04

SUV 80 0.653 0.033 0.744 0.266 2.22e-04

SUV 90 0.653 0.033 0.744 0.266 1.72e-04

GLDM Large Depen-

dence Emphasis
0.347 0.033 0.740 0.164 5.47e-04
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

shape Voxel Volume 0.667 0.000 0.732 0.237 1.10e-03

shape Mesh Volume 0.667 0.000 0.732 0.237 1.14e-03

shape Flatness 0.667 0.000 0.724 0.241 5.93e-04

GLDM Dependence

Variance
0.653 0.033 0.724 0.179 1.71e-03

firstorder 10 Percentile 0.653 0.033 0.720 0.203 8.74e-04

GLDM Small Depen-

dence Low Gray Level

Emphasis

0.667 0.000 0.716 0.188 4.86e-04

shape Least Axis

Length
0.667 0.000 0.716 0.256 1.90e-03

GLCM Imc2 0.667 0.000 0.716 0.157 8.74e-04

shape Surface Area 0.667 0.000 0.704 0.237 3.68e-03

GLCM Cluster Shade 0.600 0.091 0.696 0.066 3.10e-03

firstorder Skewness 0.667 0.052 0.692 0.136 5.63e-03

shape Sphericity 0.667 0.000 0.680 0.242 7.25e-03

GLDM Gray Level Non

Uniformity
0.387 0.097 0.664 0.163 1.14e-02

GLRLM Long Run

Emphasis
0.333 0.000 0.632 0.244 2.18e-02
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

GLDM Large Depen-

dence High Gray Level

Emphasis

0.667 0.000 0.628 0.175 3.93e-02

GLCM Correlation 0.667 0.000 0.608 0.207 4.33e-02

GLCM M C C 0.667 0.000 0.604 0.159 4.43e-02

shape Elongation 0.667 0.000 0.596 0.195 1.07e-01

shape Minor Axis

Length
0.667 0.000 0.580 0.181 1.65e-01

shape Maximum2 D

Diameter Slice
0.667 0.000 0.572 0.190 1.60e-01

shape Major Axis

Length
0.333 0.000 0.568 0.231 1.29e-01

GLSZM Gray Level

Non Uniformity Nor-

malized

0.333 0.000 0.536 0.089 6.65e-06

GLCM Imc1 0.667 0.000 0.536 0.148 3.74e-01

GLCM Cluster Promi-

nence
0.547 0.192 0.532 0.245 2.70e-03

shape Maximum2 D

Diameter Column
0.333 0.000 0.520 0.223 4.73e-01

shape Maximum2 D

Diameter Row
0.667 0.000 0.506 0.213 4.24e-01
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

shape Maximum3 D

Diameter
0.333 0.000 0.504 0.258 4.84e-01

GLRLM Low Gray

Level Run Emphasis
0.333 0.000 0.500 0.000 1.11e-02

GLDM Low Gray

Level Emphasis
0.333 0.000 0.500 0.000 1.18e-02

GLCM Idn 0.667 0.000 0.500 0.000 3.08e-01

GLCM Maximum

Probability
0.333 0.000 0.500 0.000 2.13e-04

GLCM Joint Energy 0.333 0.000 0.500 0.000 3.93e-03

GLSZM Low Gray

Level Zone Emphasis
0.333 0.000 0.500 0.000 4.95e-03

firstorder Kurtosis 0.667 0.000 0.492 0.167 4.93e-01

GLCM Idmn 0.400 0.166 0.468 0.206 1.86e-01

GLRLM Gray Level

Non Uniformity
0.400 0.166 0.464 0.254 3.48e-02

GLRLM Short Run

Low Gray Level

Emphasis

0.467 0.203 0.460 0.434 2.67e-05

firstorder Minimum 0.667 0.000 0.432 0.167 2.66e-01

GLSZM Zone Variance 0.400 0.117 0.352 0.149 3.07e-02
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Table 6.2: Individual radiomic features and SUV Metrics Results : Key - CI (Confidence

Interval), AUC (Area Under the Receiver Operating Characteristic Curve), SUV (Stan-

dardized Uptake Value), GLDM (Gray-Level Dependence Matrix), GLCM (Gray-Level

Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-

Level Size Zone Matrix)

Feature Accuracy
Accuracy

CI
ROC AUC

ROC

AUC CI
p value

GLSZM Large Area

Emphasis
0.400 0.117 0.336 0.203 1.13e-01

GLSZM Large Area

High Gray Level

Emphasis

0.400 0.117 0.332 0.213 2.56e-02

GLRLM Long Run

Low Gray Level

Emphasis

0.653 0.033 0.324 0.193 8.60e-02

GLSZM Large Area

Low Gray Level

Emphasis

0.400 0.117 0.324 0.196 1.27e-01

GLRLM Run Variance 0.653 0.033 0.320 0.178 1.75e-02

GLDM Large Depen-

dence Low Gray Level

Emphasis

0.400 0.117 0.320 0.194 1.07e-01
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6.2 Experiment Set 2
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