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Abstract

This thesis deals with the concept of Gassmann equivalence and its ap-
plication in obtaining isogenous and isomorphic products of Jacobians of
algebraic curves.

We study Gassmann equivalent G-sets with a particular emphasis on ra-
tionally, locally integral and integrally Gassmann equivalent G-sets. We
develop MAGMA functions that verify the only known example of transi-
tive integral Gassmann equivalent G-sets due to Leonard L. Scott [52] and
could potentially be used to obtain new intransitive examples.

Our main results generalize theorems of D. Prasad and C. S. Rajan [47], D.
Prasad [46] and D. Arapura et al., [4]. In particular, we show that if C is an
algebraic curve, G ≤ Aut(C) a finite group and X,Y rationally Gassmann
equivalent G-sets then the Jacobians J(C×X

G ) and J(C×Y
G ) are isogenous.

Moreover, if instead the G-sets X,Y are integrally Gassmann equivalent the
above isogeny becomes an isomorphism.
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Chapter 1

Introduction

The main goal of this thesis is to study Gassmann equivalent G-sets for various coef-
ficients and generalize results of [47], [46] and [4] that relate the Jacobians J(C×X

G ),
J(C×Y

G ) arising from Gassmann equivalent G-sets X,Y . We begin with some motiva-
tion on the questions that made us interested in studying these topics.

Motivation: L-equivalence

Our study of Gassmann equivalence was motivated by questions regarding the exis-
tence of L-equivalent algebraic curves over the complex numbers (check [55], [56] for
the definition of L-equivalence). Based on [20], L-equivalent curves have isogenous Ja-
cobians that will actually be isomorphic as soon as the curves are generic. Then, a
strategy to construct L-equivalent curves would be to find non-isomorphic curves with
isomorphic unpolarized Jacobians. We give a survey of known examples of such curves
(see [49],[50],[32],[33],[38],[15],[30],[31]) in Chapter 3. Since most of these examples are
not geometric, a more precise motivating question has been the geometric meaning of
isomorphism of Jacobians and this thesis aims to contribute in this direction.

While studying the curves with isomorphic Jacobians constructed in [32], we had to
understand the table in page 340 of [39] to gain insight on the choice of the equations
of curves. In doing this we obtained the reduced and full automorphism groups of
hyperelliptic curves defined over the field of complex numbers. This has been studied
before in several papers (see [37],[3],[8],[9],[54], [29],[62],[11]). We decided to include the
results in Chapter 2, Section 2.2 as they provide a source of examples for applications
in Chapter 8.

Most methods that give examples of distinct curves with isomorphic Jacobians only
work for curves of small genus (genus 2,3,4) and they are not geometric. The most
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CHAPTER 1. INTRODUCTION 9

geometric approach is the one in [46] and allows the construction of non-isomorphic
curves of genus at least 203 with isomorphic Jacobians. This lead us to study Gassmann
equivalence further.

Gassmann equivalence

Gassmann triples are a group theoretic construction introduced by F. Gassmann in [23].
Let G be a finite group and H1, H2 subgroups of G. Then (G,H1, H2) is a Gassmann
triple if and only if the permutation modules Q[G/H1], Q[G/H2] are isomorphic. We
will call such triples rational Gassmann triples. In [46], D. Prasad considers triples
such that Z[G/H1], Z[G/H2] are isomorphic as Z[G]-modules and calls them refined
Gassmann triples. From now on we will call them integral Gassmann triples. In [60], A.
V. Sutherland studies various stronger forms of Gassmann equivalence: local integral,
integral and solvable equivalence.

Transitive G-sets are isomorphic to G/H for some subgroup H of G. Based on this
observation the isomorphism Q[G/H1] ∼= Q[G/H2] can be interpreted as an isomor-
phism of permutation modules of transitive G-sets X = G/H1, Y = G/H2. In [43],
O. Parzanchevski uses this to generalize the notion of Gassmann equivalence to G-sets.
G-sets X,Y such that Q[X], Q[Y ] are isomorphic Q[G]-modules are called rationally
Gassmann equivalent G-sets. In Chapter [5] we follow [60] and study R-Gassmann
equivalence for commutative rings R. In particular we study rationally, p-locally, lo-
cally integral and integrally Gassmann equivalent G-sets. For the first three cases we
use the table of marks of the group G to compute pairs of Gassmann equivalent G-sets.
When R = Q or Zp this is essentially the same as finding Brauer relations in charac-
teristic zero or in positive characteristic. This has been studied in [5], [6], [7], [51], [61]
where explicit relations are given.

Gassmann equivalence has many applications in geometry and number theory and can
be used to construct non-isomorphic objects sharing many geometric or arithmetical
properties. T. Sunada in [58] used examples of rational Gassmann triples to construct
isospectral non-isometric Riemann surfaces. These examples give a negative answer to
the question of whether one ”can hear the shape of a drum” (see [35],[24]).

On the subject of algebraic curves and their Jacobians, Gassmann triples have been used
in [47], [25], [46]. In particular it has been shown that if f : C → C ′ is a Galois cover
(not necessarily unramified) of algebraic curves with Galois group G and (G,H1, H2) a
rational (integral) Gassmann triple, then the Jacobians of C/H1, C/H2 are isogenous
(isomorphic). One can use this result and Scott’s example [52] of integral Gassmann
triples to construct non-isomorphic curves whose Jacobians are isomorphic unpolarized
varieties (see [46]). In [4], D. Arapura et al., prove that if (G,H1, H2) is a rational
(respectively integral) Gassmann triple and f :M → N is an unramified Galois cover of
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algebraic varieties with Galois group G then H i(M/H1,Q), H i(M/H2,Q) (respectively
H i(M/H1,Z), H i(M/H2,Z)) are isomorphic unpolarised Hodge structures.

In geometric applications, O. Parzanchevski [43] uses rationally Gassmann equivalent
G-sets instead of traditional Gassmann triples and generalizes the results of T. Sunada
[58] by constructing disjoint unions of isospectral Riemann surfaces. Sunada’s theorem
is then a special case of this for transitive rationally Gassmann equivalent G-sets.

Our goal in this thesis is to deal with the same situation in the context of algebraic
curves and their Jacobians. In particular we want to extend the results of [47], [25], [46]
for R-Gassmann equivalent G-sets instead of traditional Gassmann triples. We explain
our results in the next section.

Main results

Our first result is:

Theorem 1.0.1 (Theorem 7.1.2). Let C be a projective algebraic curve over the field
of the complex numbers with an action of a finite group G ≤ Aut(C). Let X,Y be
rationally Gassmann equivalent transitive G-sets. Then the Jacobians of C×X

G and
C×Y
G are isogenous.

For complex algebraic curves, it extends [47], [25] to the case of rationally Gassmann
equivalent G-sets. Our proof is based on [4] and it is sligthly different from those in
[47], [25], as it uses the language of Hodge structures.

This proof cannot be generalized to integral Gassmann equivalence and we could not
generalize the method of [46] for G-sets.

To deal with this, we used the methods of [4]. Using the exact same approach as in [4]
we get:

Theorem 1.0.2 (Theorem 7.1.6). Let X,Y be R-Gassmann equivalent G-sets, M a
smooth projective algebraic variety over a field k with an action of a finite group G ≤
Aut(M) and f :M →M/G a Galois unramified cover. Then:

1. If R = Q we have an isomorphism of rational Hodge structures: Hk(M×X
G ,Q) ∼=

Hk(M×Y
G ,Q).

2. If R = Z we have an isomorphism of integral Hodge structures: Hk(M×X
G ,Z) ∼=

Hk(M×Y
G ,Z).

3. If R = Zp we have an isomorphism of etale cohomology groups: Hk
et(

M×X
G ,Zp) ∼=

Hk
et(

M×Y
G ,Zp).
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Finally, in the case where the varieties are curves, we generalized the theorem of Ara-
pura et al., for ramified covers. In order to do this we used the language of mixed
Hodge structures and constructible sheaves to obtain:

Theorem 1.0.3 (Theorem 7.2.4). Let X,Y be R-Gassmann equivalent G-sets, C a
smooth projective algebraic curve over the field of the complex numbers with an action
of a finite group G ≤ Aut(C) and f : C → C/G a Galois cover (not necessarily
unramified). Then:

1. If R = Q we have an isomorphism of rational Hodge structures: Hk(C×X
G ,Q) ∼=

Hk(C×Y
G ,Q).

2. If R = Z we have an isomorphism of integral Hodge structures: Hk(C×X
G ,Z) ∼=

Hk(C×Y
G ,Z).

In particular, this means that if X,Y are rationally (integrally) Gassmann equivalent
G-sets then the Jacobians of C×X

G , C×Y
G are isogenous (isomorphic) (Corollary 7.2.6).

Finally, we notice that there is a connection between the concept of rational Gassmann
equivalence and Kani’s character equivalence [36]. In particular we prove that:

Theorem 1.0.4 (Theorem 5.2.9). Let G be a finite group and consider the finite dimen-
sional group algebra Q[G]. Then X =

⊔
G/Hi, Y =

⊔
G/Ki are rational Gassmann

equivalent G-sets if and only if ϵX =
∑

i ϵHi , ϵY =
∑

i ϵKi are character equivalent (for
a subgroup H of G, ϵH is defined as ϵH = 1

|H|
∑

h∈H h).

There is a vast literature on the subject of decomposition of Jacobians up to isogeny
and Kani’s character equivalence [36] is one of the most commonly used methods. The-
orem 5.2.9 shows that these examples can also be obtained using examples of rational
Gassmann equivalence and Theorem 7.2.4. Examples of these applications are given in
Chapter 8.

Structure of this thesis

This thesis is organized in three main parts.

Part A consists of Chapter 2 and 3.

In Chapter 2 we review background material on algebraic curves and give a survey of
known results on the automorphism groups of hyperelliptic curves.

In Chapter 3 we introduce algebraic curves and summarize known results on the ex-
istence of distinct curves with isomorphic Jacobians. The aim of these chapters is to
provide motivation for the study of Gassmann equivalence and collect results that will
be used for applications of our main results in chapter 8.
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Part B consists of Chapters 4 and 5.

In Chapter 4 we review the necessary background material from representation theory
and set up notation that will be used in the next chapter.

In Chapter 5 we introduce the notion of Gassmann equivalent G-sets. We present
various examples and give connections with known results from the literature.

Part C consists of Chapters 6, 7 and 8.

In Chapter 6 we review background material on Hodge structures and constructible
sheaves. These are the main tools that will be used in the proofs of our main results.

In Chapter 7 we prove the main results of this thesis which generalize theorems of
Prasad and Arapura.

In Chapter 8 we discuss several applications of our main theorem with rational coeffi-
cients and obtain decompositions of Jacobians of hyperelliptic curves up to isogeny.



Chapter 2

Algebraic curves and their
automorphisms

In this chapter we study algebraic curves and their automorphisms. We start by giving
basic definitions of algebraic curves, study properties of algebraic curves with a group
action and their quotients, and introduce notation that will be used in the statements
of our main results. We review known results on the automorphism groups of algebraic
curves and in particular we mention an old theorem of Accola. We continue by focusing
on hyperelliptic curves and present known results on their automorphism groups and
defining equations.

§ 2.1 Algebraic curves

One of the main objects of interest in this thesis are algebraic curves. By an algebraic
curve C we mean a projective, smooth, one-dimensional variety defined over the field
of the complex numbers. In this case, the notion of a smooth projective algebraic
curve coincides with that of a compact Riemann surface and we will use the two terms
interchangeably. To every Riemann surface one can attach an integer called the genus
and denoted by gC , that topologically counts the number of its holes. The results of
this section are well known and our main references are [34], [40], [26].

It is well known that a non-constant map f between Riemann surfaces C and C ′ locally
looks like z 7→ zn for suitable coordinates around some point p. The integer n is called
the multiplicity of f at p. Points with non-trivial multiplicity are called ramification
points and they form a finite subset of C. The image of a ramification point under f is
called a branch point. Every such map f has a degree, denoted by deg(f). At a point

13
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p′ ∈ C ′ this is defined as the sum of multiplicities of points p ∈ C that map to p′ and
one can prove that it is independent of c′.

We now state the following well-known theorem that will be useful for counting the
genus of various algebraic curves in Chapter 8.

Theorem 2.1.1 ([40], Theorem 4.16, Hurwitz formula). Let f : C → C ′ be a non-
constant holomorphic map between compact Riemann surfaces with genus gC , gC′ re-
spectively. Then

2gC − 2 = deg(f)(2gC′ − 2) +
∑
p∈C

(multp(f)− 1). (2.1)

In this thesis we will be studying quotients of curves by the action of a finite group G.
We state the definition of a G-action which can be found in any introductory book on
algebra:

Definition 2.1.2 (Group action). Let G be a group and X a set. We say that G acts
on X or that X is a (left) G-set if there is a map from G×X to X (which we denote
by (g, x) 7→ g · x, for g ∈ G and x ∈ X) that satisfies:

g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G, x ∈ X,

eG · x = x for all x ∈ X.

If x ∈ X we define the G-orbit of x in X by

OrbG(x) := {g · x|g ∈ G}

and the stabilizer of x in G by

StabG(x) := {g ∈ G|g · x = x}.

In general, when M is a manifold the quotient space M/G has the structure of an
orbifold. However, in the case of algebraic curves, the quotient C/G is also an algebraic
curve. Moreover, the projection map p : C → C/G is holomorphic of degree |G| and
the multiplicity at a point p is equal to the order of the stabilizer subgroup Gp. By
applying 2.1.1 to such projection maps we get the following formula which will be used
for calculations in chapter 8:

Proposition 2.1.3 ([40], Corollary 3.7, Riemann-Hurwitz formula ). Let C be an
algebraic curve with an effective action by a finite group G. Let p : C → C/G be the
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projection map. Assume that there are n branch points. Above each branch point p′i lie
|G|/ri ramification points, where ri denotes the multiplicity of p at these points. Then:

2gC − 2 = |G|{(2gC/G − 2) +

n∑
i=1

(1− 1

ri
)}. (2.2)

In the following remark we introduce some notation that is used in the statement of
our main results. The name ”Tensor product of G manifolds” was introduced in [43].

Remark 2.1.4 (Products of G-sets with curves with G-action/Tensor product of G
manifolds). Later, in Chapter 7 we will consider products of Riemann surfaces with G-
sets. Let C be a Riemann surface, G a finite group that acts on C and X a finite G-set.
Then we can define an action of G on the product C×X in a natural way and consider
the quotient space C×X

G . It turns out that the quotient space is a disjoint union of
quotients of C by subgroups of G. In particular, if G =

⊔
G/Hi then

C×X
G =

⊔
C/Hi.

We will denote byMg the moduli space of genus g curves, which classifies isomorphism
classes of algebraic curves. While we will not be interested in the geometry of this
space, it will be useful to state its dimension, which is 3g− 3 when g ≥ 2. We will also
study stratifications of this space by automorphisms.

An automorphism of an algebraic curve C is an isomorphism f : C → C. The set of
all automorphisms is a group under composition and we denote it by Aut(C). Auto-
morphism groups of algebraic curves of genus g ≥ 2 are finite and the generic algebraic
curve of genus g ≥ 3 has no automorphisms. The following theorem gives an upper
bound on the size of Aut(C).

Theorem 2.1.5 ([40], Theorem 3.9, Hurwitz’s theorem). Let G be a finite group acting
on a Riemann surface C of genus g ≥ 2. Then |Aut(C)| ≤ 84(g − 1).

Now we present an old theorem by Accola that relates the genus gC of a Riemann
surface C with action by a finite group G, with the genus gCi of quotients of C by
various subgroups of G. First, we need a definition:

Definition 2.1.6 (Groups with partition). A finite group G is said to admit a partition
if there exists a collection of subgroups Hi, 1 ≤ i ≤ k so that G = ∪ki=1Hi and if
0 < i < j then Hi ∩Hj = {eG}.

Theorem 2.1.7 ([1], Theorem 5.9). Let C be a Riemann surface of genus gC . Suppose
that C has a finite group of automorphisms G and that G admits a partition by a
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collection of subgroups {Hi}, 1 ≤ i ≤ k. Let Ci := C/Hi be the quotients of C by the
groups of the partition and denote by gCi their genus. Then:

(k − 1)gC + |G|gC/G =
k∑

i=1

|Gi|gCi (2.3)

In Chapter 8 we will see a generalization of this theorem by Kani, which allows the
decompositions of Jacobians of curves with a partition, up to isogeny.

We will now focus on a particular class of algebraic curves, hyperelliptic curves.

Definition 2.1.8 (Hyperelliptic curves, [40]). An algebraic curve C is called hyperel-
liptic if and only if there is a holomorphic map f : C → P1 which has degree 2.

It is easy to check with Hurwitz’s formula 2.1.1 that if C has genus g then the double
cover has 2g + 2 ramification points which are called the Weierstrass points of C. An-
other way to think of hyperelliptic curves is as projective completions of smooth affine
plane curves given by an equation of the form y2 = f(x) where f(x) is a polynomial
of degree 2g + 1 or 2g + 2 with distinct roots. In that case the roots of the polynomial
are the Weierstrass points. Every hyperelliptic curve has an automorphism a : C → C
given by a(x, y) = (x,−y). This automorphism is an involution, called the hyperelliptic
involution. It is unique and fixes exactly the Weierstrass points.

We can always move 3 of the Weierstrass points to 0, 1,∞ by an autmorphism of P1

so the moduli space of hyperelliptic curves of genus g, which we denote by Hg, has
dimension 2g − 1. In the next section we will study the automorphism groups of
hyperelliptic curves in more detail.

§ 2.2 Automorphism groups of hyperelliptic curves

Automorphism groups of hyperelliptic curves have been studied by several authors
(see [37], [3],[8],[9],[54], [29],[62],[11]). In this section we give an exposition of results
appearing in these papers.

From the discussion in the previous section, it is clear that every hyperelliptic curve
of genus g can be uniquely associated to an unordered set of 2g + 2 distinct points
(p1, ..., p2g+2) ∈ P1 × ... × P1 − ∆ where ∆ denotes the diagonal. Conversely, to any
such set of points we can associate the hyperelliptic curve given by the affine equation:

y2 = (x− p1)...(x− p2g+2). (2.4)
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Denote by (P1
n = P1 × ... × P1 − ∆)/Sn the subset of the n-th symmetric product of

P1 with itself consisting of n distinct points. The action of PGL2(C) on P1 induces an
action on P1

n. If P = (p1, ..., pn) is such a set of n points and M ∈ PGL2(C) then the
action is given by:

MP = (Mp1, ...,Mpn)

We can now consider the orbit of a set of n points P under the action of PGL2(C) and
thus define the moduli space of sets of n points as:

Mn := P1
n/PGL2(C).

We will denote by [P ] the image in Mn of a set of n points P .

Theorem 2.2.1. Let C,C ′ be two hyperelliptic curves of genus g. Suppose that C is
associated to the set of 2g + 2 points P = (p1, ..., p2g+2) and C

′ is associated to the set
of 2g + 2 points P ′ = (p′1, ..., p

′
2g+2). Then C and C ′ are isomorphic if and only if P

and P ′ have the same image in M2g+2.

Let P = [p1, ..., pn] ∈ P1
n. The group of automorphisms of P is defined as follows:

Aut(P ) = {M ∈ PGL2(C)|[MP ] = [P ]}.

Proposition 2.2.2. Let P be a set of n points in P1
n andM ∈ PGL2(C). Then Aut(P )

is a subgroup of the symmetric group of n letters Sn (and hence a finite group) and
moreover Aut(P ) and Aut(MP ) are isomorphic.

If C is a hyperelliptic curve and i the hyperelliptic involution then we denote by
Aut(C) := Aut(C)/⟨i⟩ the reduced automorphism group of C.

Now, let C be a hyperelliptic curve associated with the set of 2g + 2 points P =
(p1, ..., p2g+2). Then the reduced automorphism group of C is isomorphic with Aut(P ),
the automorphism group of the set of 2g + 2 points P .

Theorem 2.2.3. Let C be a hyperelliptic curve. The reduced automorphism group
Aut(C) of C is a finite subgroup of PGL2(C).

Finite subgroups of PGL2(C) are well known and we list them in the following theorem:

Theorem 2.2.4 (18, Section 1.1). Let G be a finite subgroup of PGL2(C). Then G is
isomorphic to one of the following groups: Zn (cyclic group of order n), Dn (dihedral
group of order 2n), A4, S4, A5. Moreover, isomorphic groups are conjugate, and we can
choose coordinates such that the action is described as follows:
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1. Zn : ⟨z 7→ ζz⟩, ζ is an n-th root of unity.

2. Dn : ⟨z 7→ ζz, z 7→ 1
z ⟩, ζ is an n-th root of unity.

3. A4 : ⟨z 7→ −z, z 7→ i z+1
z−1⟩, i

2 = −1.

4. S4 : ⟨z 7→ iz, z 7→ i z+1
z−1⟩, i

2 = −1.

5. A5 : ⟨z 7→ ϵz, z 7→ − x+b
bx+1⟩, where ϵ is a primitive 5-th root of unity and b =

−i(ϵ+ ϵ4), i2 = −1.

We also describe the possible orbits of these actions. These will be used later to find
equations of hyperelliptic curves with a given automorphism group.

Theorem 2.2.5 (8, 3 Proposition 4.1). The possible orbits of the groups in Theorem
2.2.4 are given as follows:

1. Zn : O1 = {1} which is the non-free orbit of ∞, O2 = {x} which is the non-free
orbit of 0 and finally the free orbit of some point a given by O3 = {ζa, ..., ζna}, ζ
an n-th root of unity. The sizes of these orbits are (1, 1, n).

2. Dn: The non-free orbit O1 = {0,∞}, the non-free orbit O2 = { roots of xn −
1}, the non-free orbit O3 = { roots of xn + 1} and finally the free orbit O4 =
{ roots of x2n + axn + 1} with a ̸= ±2. The sizes of these orbits are (2, n, n, 2n).

3. A4: The non-free orbit O1 = {0,∞,±1,±i}, the non-free orbit O2 = { roots of x4−
2i
√
3x2+1}, the non-free orbit O3 = { roots of x4+2i

√
3x2+1} and finally the free

orbit O4 = { roots of
∏3

i=1(x
4−aix2+1)} with a1 ̸= ±2,±2i

√
3 and a2 =

2a1+12
2−a1

,

a3 =
2a1−12
2+a1

. The sizes of these orbits are (6, 4, 4, 12).

4. S4: The non-free orbit O1 = {0,∞,±1,±i}, the non-free orbit O2 = { roots of x8+
14x4 +1}, the non-free orbit O3 = { roots of (x4 +1)(x8− 34x4) + 1} and finally
the free orbit O4 = { roots of (x8 + 14x4 + 1)3)− a(x5 − x)4} with a ̸= 108. The
sizes of these orbits are (6, 8, 12, 24).

5. A5: The non-free orbit O1 = {0,∞} ∪ { roots off1(x) = x(x10 + 11ix5 + 1)}, the
non-free orbit O2 = { roots of f2(x) = x20 − 228ix15 − 494x10 − 228ix5 + 1}, the
non-free orbit O3 = { roots of x30+522ix25+10005(x20−x10)− 522ix5− 1} and
finally the free orbit O4 = { roots of f2(x)

3 − af1(x)5} where a ̸= −1728i. The
sizes of these orbits are (12, 20, 30, 60).
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Remark 2.2.6. Based on the previous theorem, a hyperelliptic curve will have a non-
trivial reduced automorphism group if and only if its 2g + 2 Weierstrass points are a
union of the above free and non-free orbits. The equation that needs to be satisfied in
each case is:

1. Reduced automorphism group Zn : 2g + 2 = i+ nd, i can be equal to 0,1 or 2, d
can be any non-negative integer.

2. Reduced automorphism group Dn : 2g + 2 = ni+ 2j + 2nd, i can be equal to 0,1
or 2, j can be either 0 or 1, d can be any non negative integer.

3. Reduced automorphism group A4 : 2g + 2 = 4i+ 6j + 12d, i can be equal to 0,1
or 2, j can be either 0 or 1, d can be any non negative integer.

4. Reduced automorphism group S4 : 2g + 2 = 6i + 8j + 12k + 24d, i, j, k can be
either 0 or 1 and d can be any non negative integer.

5. Reduced automorphism group A5 : 2g + 2 = 12i+ 20j + 30k + 60d, i, j, k can be
either 0 or 1 and d can be any non negative integer.

We can now prove that ”most” hyperelliptic curves have trivial reduced automorphism
group by a dimension argument.

Theorem 2.2.7. Let C be a generic hyperelliptic curve in Hg (with g > 1), the moduli
space of genus g hyperelliptic curves. Then C has trivial reduced automorphism group.

Proof. We have seen that the dimension of Hg is 2g − 1 so it suffices to show that
hyperelliptic curves with non-trivial reduced automorphism group depend on fewer pa-
rameters. If C has reduced automorphism group Zn then we can partition the 2g + 2
points into free and non-free orbits. If all orbits are free then the number of parameters
is 2g+2

n . If the free orbit is {a, ζa, ..., ζn−1a} we have to move one of the points to 1 so
that we are using the same coordinates. This can be done by applying the transfor-
mation z 7→ z

a . So, the actual number of parameters for the hyperelliptic curve C with

reduced automorphism group Zn is 2g+2
n − 1 and when n is at least 2 this number is

strictly less than 2g − 1. If there are non-free orbits too, the number of parameters is
even smaller. If the reduced automorphism group belongs to one of the other 4 cases
we have even less parameters and this completes the proof.

Corollary 2.2.8. The locus of hyperelliptic curves with non-trivial reduced automor-
phism group G has dimension less than or equal to g.
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Proof. We just have to consider what is the maximum value of parameters that a
hyperelliptic curve with non-trivial reduced automorphism group depends on. Taking
into account the proof of the previous theorem we can see that the maximum value
occurs for hyperelliptic curves with reduced automorphism group Z2 and is equal to
2g+2
2 − 1 = g.

Having found the possible reduced automorphism groups of hyperelliptic curves, we
will now study their full automorphism groups. The following basic result can be found
in [9],[54].

Lemma 2.2.9. Let C be a hyperelliptic curve with automorphism group Aut(C) and
reduced automorphism group Aut(C). Let g ∈ Aut(C) and denote by g̃ its image in
Aut(C). Assume that g̃ has order |g̃|. Then the order of g is either equal to |g̃| in the
case that g does not fix any Weierstrass points or equal to 2|g̃| in the case that g fixes
some Weierstrass points.

The discussion that follows can be found in [54]. Let p : C → P1 be the double cover of
the hyperelliptic curve and denote by W the set of Weierstrass points. Consider the map
f : P1 → P1/Aut(C). The branching indices of f for the 5 different cases of reduced
automorphisms groups are (n, n), (2, 2, n), (2, 3, 3), (2, 3, 4) and (2, 3, 5). Let V be the
set consisting of pre-images of branch points of the map f . Then V = f−1(q1)∪f−1(q2)
when the reduced automorphism group is Zn and V = f−1(q1) ∪ f−1(q2) ∪ f−1(q3) in
the other four cases. When the reduced automorphism group is Zn there are four
possibilities for the intersection V ∩W : ∅, f−1(q1), f

−1(q2) and f
−1(q1)∪f−1(q1). The

equations of the corresponding curves will be given by y2 = f4(x), y
2 = f1(x)f4(x), y

2 =
f2(x)f4(x) and y

2 = f3(x)f4(x) where f1(x), ..., f4(x) are the polynomials appearing in
the four orbits of Zn in Theorem 2.2.5.

In the other four cases there are eight possibilities for the intersection V ∩W and eight
corresponding polynomials. Two of the branching indices are the same for Zn, Dn

and A4 so we expect to get three equations for Zn six equations for Dn, A4 and eight
equations for S4 and A5.

We are now ready to find the full automorphism groups of hyperelliptic curves. We
will treat the five cases separately.

Case 1: Reduced automorphism group Zn (see [9], [54])

We are looking for extensions of Zn by Z2 and these are classified by:

H2(Zn,Z2) ∼= Z(n,2). (2.5)

When n is odd the only possible extension is Zn × Z2. When n is even there are two
possible extensions, Zn × Z2 and Z2n.
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Based on the discussion above, the three different equations are:

1.

y2 = x2g+2 + a1x
n(t−1) + ...+ akx

n + 1, t =
2g + 2

n

In this case the intersection V ∩W is empty, elements of order n in Aut(C) lift
to elements of order n in Aut(C), so the full automorphism group is Zn × Z2.

2.

y2 = x2g+1 + a1x
n(t−1) + ...+ akx

n + 1, t =
2g + 1

n

In this case V ∩W = f−1(q1), elements of order n in Aut(C) lift to elements of
order 2n in Aut(C), so the full automorphism group is Z2n.

3.

y2 = x(xnt + a1x
n(t−1) + ...+ akx

n + 1), t =
2g

n

In this case V ∩W = f−1(q1) ∪ f−1(q2), elements of order n in Aut(C) lift to
elements of order 2n in Aut(C), so the full automorphism group is Z2n.

Case 2: Reduced automorphism group Dn (see [9], [54])

In this case we have that Aut(C) ∼= Dn and we are looking for extensions of dihedral
groups by Z2. We have that:

H2(D2,Z2) ∼= Z2 × Z2 × Z2.

Also if n > 1 and n ≡ 1mod2 then

H2(Dn,Z2) ∼= Z2

and if n > 2 and n ≡ 0mod2 then

H2(Dn,Z2) ∼= Z2 × Z2 × Z2.

In the first case the possible extensions are Z2×Z2×Z2, Z2×Z4, D4 or the quaternion
group Q. In the second case the possible extensions are Z2×Zn or Gn = ⟨x, y|x2n, xn =
y2, y−1xy = x−1⟩. In the last case the possible extensions are Z2 × Dn, D2n, Gn,
Hn = ⟨x, y|x2 = y2, (xy)n = x4 = 1⟩, Un = ⟨x, y|x2n = y2 = 1, yxy = xn−1⟩ and
Vn = ⟨x, y|x4 = yn = (xy)2 = (x−1y)2 = 1⟩.

The general equation of a hyperelliptic curve with reduced automorphism group Dn is:

y2 = xi(xn − 1)j(xn + 1)k
k∏

i=1

(x2n − λixn + 1).
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When (i, j, k) = (0, 0, 0) elements of Aut(C) lift to elements of orders (2, 2, n) in Aut(C)
and the full automorphism group is Z2 ×Dn.

When (i, j, k) = (1, 0, 0) elements of Aut(C) lift to elements of orders (2, 2, 2n) in
Aut(M) and the full automorphism group is D2n.

When (i, j, k) = (0, 1, 0) or (i, j, k) = (0, 0, 1) elements of Aut(C) lift to elements of
orders (2, 4, n) in Aut(C) and the full automorphism group is Vn.

When (i, j, k) = (1, 1, 0) or (i, j, k) = (1, 0, 1) elements of Aut(C) lift to elements of
orders (2, 4, 2n) in Aut(C) and the full automorphism group is Un.

When (i, j, k) = (0, 1, 1) elements of Aut(C) lift to elements of orders (4, 4, n) in Aut(C)
and the full automorphism group is Hn.

When (i, j, k) = (1, 1, 1) elements of Aut(C) lift to elements of orders (4, 4, 2n) in
Aut(C) and the full automorphism group is Gn.

Case 3: Reduced automorphism group A4 (see [9], [54])

In this case we have that Aut(C) ∼= A4 and we are looking for extensions of A4 by Z2.
We have that:

H2(A4,Z2) ∼= Z2

The two possible extensions are Z2 ×A4 and SL(2, 3).

The equations of curves with full automorphism group Z2 ×A4 are:

1.

y2 =

3∏
i=1

(x4 − aix2 + 1)

2.

y2 = (x4 − 2i
√
3x2 + 1)

3∏
i=1

(x4 − aix2 + 1)

3.

y2 = (x8 + 14x4 + 1)

3∏
i=1

(x4 − aix2 + 1)

The equations of curves with full automorphism group SL(2, 3) are:

1.

y2 = x(x4 − 1)

3∏
i=1

(x4 − aix2 + 1)
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2.

y2 = x(x4 − 1)(x4 − 2i
√
3x2 + 1)

3∏
i=1

(x4 − aix2 + 1)

3.

y2 = x(x4 − 1)(x8 + 14x4 + 1)

3∏
i=1

(x4 − aix2 + 1)

Case 4: Reduced automorphism group S4 (see [9], [54])

In this case we have that Aut(C) ∼= S4 and we are looking for extensions of S4 by Z2.
We have that:

H2(S4,Z2) ∼= Z2 × Z2

The four possible extensions are Z2 × S4, GL(2, 3), W2 = ⟨x, y|x4, y3, yx2y−1x2, (xy)4⟩
and W3 = ⟨x, y|x2, y3, x2(xy)4, (xy)8⟩.

The equations of curves with full automorphism group Z2 × S4 are:

1.

y2 = ((x8 + 14x4 + 1)3 − a(x5 − x)4)

2.

y2 = (x4 + 1)(x8 − 34x4 + 1)((x8 + 14x4 + 1)3 − a(x5 − x)4)

The equations of curves with full automorphism group GL(2, 3) are:

1.

y2 = (x8 + 14x4 + 1)((x8 + 14x4 + 1)3 − a(x5 − x)4)

2.

y2 = (x5 − x)((x8 + 14x4 + 1)3 − a(x5 − x)4)

The equations of curves with full automorphism group W2 are:

1.

y2 = (x4 + 1)(x8 − 34x4 + 1)(x8 + 14x4 + 1)((x8 + 14x4 + 1)3 − a(x5 − x)4)

2.

y2 = (x5 − x)(x8 + 14x4 + 1)((x8 + 14x4 + 1)3 − a(x5 − x)4)
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The equations of curves with full automorphism group W3 are:

1.

y2 = (x4 + 1)(x8 − 34x4 + 1)(x5 − x)((x8 + 14x4 + 1)3 − a(x5 − x)4)

2.

y2 = (x8+14x4+1)(x4+1)(x8− 34x4+1)(x5−x)((x8+14x4+1)3−a(x5−x)4)

Case 5: Reduced automorphism group A5 (see [9], [54])

In this case we have that Aut(C) ∼= A5 and we are looking for extensions of A5 by Z2.
We have that:

H2(A5,Z2) ∼= Z2

The two possible extensions are Z2 ×A4 and SL(2, 5).

Let f1(x) = x(x10 + 11x5 + 1), f2(x) = x20 − 228ix15 − 494x10 − 228ix5 + 1) and
f3(x) = f2(x)

3 − af1(x)5.

The equations of the curves with automorphism group Z2 ×A5 are:

1.

y2 = f3(x)

2.

y2 = f2(x) · f3(x)

3.

y2 = f1(x) · f3(x)

4.

y2 = (x30 + 522ix25 + 10005(x20 − x10)− 522ix5 − 1) · f3(x)

The equations of the curves with automorphism group SL(2, 5) are:

1.

y2 = f1(x) · f2(x) · f3(x)

2.

y2 = (x30 + 522ix25 + 10005(x20 − x10)− 522ix5 − 1) · f1(x) · f3(x)
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3.
y2 = (x30 + 522ix25 + 10005(x20 − x10)− 522ix5 − 1) · f2(x) · f3(x)

4.

y2 = (x30 + 522ix25 + 10005(x20 − x10)− 522ix5 − 1) · f1(x) · f2(x) · f3(x)



Chapter 3

Abelian Varieties

In this chapter we review some background material on complex tori and abelian va-
rieties with the goal of discussing some known methods of finding distinct curves with
isomorphic Jacobians. In the first section we follow [39] closely. We start with complex
tori, introduce polarizations and use them to define abelian varieties. We study the
possible endomorphism algebras of abelian varieties and finally we introduce Jacobians
of curves and state Torelli’s theorem. In the second section we review results from [49],
[50],[32],[33],[38],[15],[30],[31].

§ 3.1 Complex tori, Abelian varieties and Jacobians of curves

3.1.1 Complex tori

We will be working over the field of the complex numbers and start our study by
defining complex tori:

Definition 3.1.1 (39, Section 1.1). A complex torus X is a quotient V/Λ where V
is a finite-dimensional complex vector space and Λ a lattice of maximal rank. The
dimension of X is the same as that of V .

If we choose bases for V and Λ we can describe a complex torus using its period matrix.
Let v1, ..., vg be a basis of V and λ!, ..., λ2g a basis of Λ. We can express the vectors λi
in terms of the basis of V as λi =

∑g
i=1 zjivj . Then the matrix Π ∈M(g × 2g,C):z1,1 · · · z1,2g
...

...
zg,1 · · · zg,2g
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is the period matrix of X and a given matrix Π ∈M(g× 2g,C) is the period matrix of

some complex torus if and only if

(
Π

Π

)
is nonsingular ([39], Proposition 1.1.2).

Morphisms between complex tori come in two types, translations and homomorphisms.
We can restrict our attention to homomorphisms as we can compose an arbitrary mor-
phism with a translation that sends 0 to 0. If f is a morphism between complex tori
X = V/Λ and X ′ = V ′/Λ′ then f is induced by a C linear map f̃ : V → V ′ such
that f̃(Λ) ⊆ Λ′ ([39], Proposition 1.2.1). The image of a homomorphism f of complex
tori X and X ′ is a complex subtorus of X ′ while the connected component of kerf
that contains the origin is a subtorus of X ([39], Proposition 1.2.4). This leads to the
following important definition.

Definition 3.1.2 (39, page 12). An isogeny is a surjective homomorphism of complex
tori with finite kernel.

Isogenies define an equivalence relation on the set of complex tori and it is clear that
isogenous complex tori have the same dimensions. An example of an isogeny is given
by the multiplication by n map. In this case the kernel consinsts of the n-torsion points
of the complex torus ([39], Proposition 1.2.5).

3.1.2 Polarizations, Abelian Varieties

In order to define abelian varieties we need the notion of polarization. We state the
relevant definitions below:

Definition 3.1.3 (Riemann form). Let X = V/Λ be a complex torus. A Riemann
form on X is a hermitian form H : V ×V → C such that ImH is integral on the lattice
Λ.

Proposition 3.1.4 (39, Lemma 2.1.7). There is a 1-1 correspondence between the set
of hermitian forms H : V × V → C and the set of alternating forms E : V × V → R
such that E(ix, iy) = E(x, y). The correspondence is given by:

E(x, y) = ImH(x, y), H(x, y) = E(ix, y) + iE(x, y).

for all x, y ∈ V .

Definition 3.1.5 (Polarization). A polarization on a complex torus X is a positive
definite Riemann form.

Finally we arrive to the definition of abelian varieties.
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Definition 3.1.6. An abelian variety is a complex torus that admits a polarization.

Using a theorem from linear algebra by Frobenius, we can find a basis of the lattice such
that the alternating form E acquires a special form ([39], Section 3.1). Let X = V/Λ
be a complex torus which admits a polarization given by a positive definite hermitian
form H with associated alternating form E. Then, there is a basis of the lattice Λ with
respect to which E is given by the matrix:

(
0 D
−D 0

)
where D is a diagonal matrix with integer entries d1, ..., dg such that di|di+1 for i =
1, ..., g − 1. In this case we say that X has a polarization of type (d1, ..., dg).

Definition 3.1.7 (Principal polarization). A principal polarization is a polarization
of type (1, ..., 1). An abelian variety admitting a principal polarization is called a
principally polarized abelian variety.

Now we will briefly describe where this mysterious alternating form is coming from.
This is done in detail in ([39], Chapter 2]) and it follows from ([39], Proposition 2.1.6)
that the alternating form E defining a polarization on a complex torusX is coming from
the first Chern class c1(L) of a holomorphic line bundle L on X. The set of equivalence
classes of holomorphic line bundles on X is the Neron-Severi group of X, denoted by
NS(X). One can use an ample line bundle on a complex torus X to construct an
embedding of X in a projective space and in that sense abelian varieties are projective
complex tori. This gives the connection with the definition of abelian varieties over
general fields.

Another way to view polarizations that will be useful when we study the possible
endomorphism types of abelian varieties is in terms of maps to the dual abelian variety
(see [39], Section 2.4). Let X = V/L be an abelian variety. Then Pic0(X) can be
given the structure of a complex torus which we call the dual complex torus of X and
denote it by X̂. The map ϕL : X → X̂ given by x 7→ t∗xL⊗L−1 is an isogeny of degree
deg(ϕL) = det(ImH) ([39], Proposition 2.4.9). In particular, for principal polarizations
ϕL is an isomorphism.

3.1.3 Endomorphism types

Now we are going to study the possible endomorphism algebras of polarized abelian
varieties. We will follow ([39], Chapter 5) closely. Let (X,L) be a polarized abelian
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variety and denote its endomorphism algebra by End0(X) := End(X)⊗Q. If f : X →
X is a morphism from X to itself then we also have a dual morphism f̂ : X̂ → X̂. This
extends to a map from End0(X) to End0(X̂) and we define the Rosati involution as
f t := ϕ−1

L f̂ϕL.

An element f ∈ End0(X) such that f t = f will be called symmetric and we denote by
End0sym the set of symmetric endomorphisms of End0(X). The following result will be
used in the next section:

Proposition 3.1.8 (39, Proposition 5.2.1). Let (X,L) be a polarized abelian variety.
The map: NS(X)⊗Q→ End0(X), M 7→ ϕ−1

L ϕM is an isomorphism of Q-vector spaces
that restricts to an isomorphism of groups NS(X)→ Endsym(X) when the polarization
L is principal.

An abelian variety is called simple when its only abelian subvarieties are itself and 0.
In general, we have the following:

Theorem 3.1.9 (Poincare’s complete reducibility, 39, Theorem 5.3.7). Let X be an
abelian variety. Then there exists an isogeny:

X → Xn1
1 × ...X

nr
r

such that Xi are simple and not isogenous to each other and they are completely deter-
mined up to isogeny and permutations.

The following result reduces the classification of endomorphism algebras of abelian
varieties to the classification of endomorphism algebras of simple abelian varieties:

Corollary 3.1.10 (39, Corollary 5.3.8 ). Let X be an abelian variety and consider the
isogeny of the previous theorem X → Xn1

1 × ...Xnr
r . We have that

End0(X) ∼=
r⊕

i=1

Matn1(End
0(Xi)).

Now when X is a simple abelian variety, End0(X) is a finite dimensional division
algebra over Q that possesses an involution (the Rosati involution) and such that the
trace map f 7→ Tr(ff t) is a positive definite quadratic form ([39], Theorem 5.1.8).
These algebras have been classified, for the classification see ([39], Section 5.5) or ([27],
Section 1.8) or ([17], Theorem 9.6).

As an example, the classification of endomorphism algebras of abelian surfaces is given
below:
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Example 3.1.11 (27, Example 1.59). Let X be an abelian surface.

1. If X is simple, the possibilities for End0(X) are:

(a) Q
(b) a real quadratic field

(c) a totally indefinite quaternion algebra over Q
(d) a CM field

2. If X is isogenous to a product of elliptic curves X ∼= E1×E2, the possibilities for
End0(X) are:

(a) Q×Q when E1 is not isogenous to E2

(b) Mat2(Q) when E1, E2 are isogenous and don’t have complex multiplication

(c) Mat2(F ) when E1, E2 are isogenous and have complex multiplication by a
CM field F

3.1.4 The moduli space of polarized abelian varieties

The results/notation of this short section can be found in ([39], Chapter 8).

We have seen conditions that ensure when a period matrix defines a complex torus.
Similarly, there are conditions which ensure when a period matrix defines a complex
torus that is an abelian variety, they are called the Riemann relations (see [39], Section
4.2).

Using this, we can define the Siegel upper half space of degree g as:

Ag := {Z ∈Matg(C) : Z = Zt, ImZ > 0}.

Given a point in this space and a diagonal matrix D, we can construct a complex torus
with period matrix (D|Z) that has polarization of type D and conversely to any such
complex torus we can associate a point in the Siegel upper half space. We say that Ag

is the moduli space parametrizing abelian varieties with polarization of type D. For
the dimension of this space we have that dimAg = g(g+1)

2 .

3.1.5 Jacobians of curves and Torelli’s theorem

Let C be an algebraic curve. There is a way to associate to C a principally polarized
abelian variety of dimension g, the Jacobian J(C) of C. We briefly describe this
construction, following ([39], Section 11.1).
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Let ω1, ..., ωg ∈ H0(C,Ω1) be a basis for the space of holomorphic 1-forms on C and
δ1, ..., δ2g a basis of H1(C,Z). The vectors Πi = (

∫
δi
ω1, ...,

∫
δi
ωg) are called the periods

of C and the g × 2g matrix Ω with the vectors Πi as its columns is called the period
matrix of C. The 2g periods Πi ∈ Cg generate a lattice Λ and we define the Jacobian
variety J(C) of C to be the complex torus Cg/Λ. According to Riemann’s bilinear
relations, for suitably chosen bases of H0(C,Ω1) and H1(C,Z) the period matrix Ω of
C takes the form Ω = (I|Z) with Z = Zt and ImZ > 0. This turns the Jacobian J(C)
of C into a principally polarized abelian variety. The alternating form E is coming
from a suitably chosen symplectic basis of H1(C,Z) and we can construct a line bundle
LE whose first Chern class is E. If θ denotes a global section of LE we can associate
E to a divisor Θ = (θ), up to translation. This divisor is called the Riemann theta
divisor. We can now state Torelli’s theorem:

Theorem 3.1.12 (Torelli’s theorem). Let C,C ′ be smooth projective algebraic curves
of genus g. Then C, C ′ are isomorphic if and only if (J(C),Θ) and (J(C ′),Θ′) are
isomorphic as principally polarized abelian varieties.

We can restate this in terms of the moduli spaces Mg and Ag by saying that the
Torelli map which associates a curve to its polarized Jacobian (J(C),Θ) is injective.
The dimensions of the two spaces coincide for g ≤ 3 and this will have important
implications in the next section. We will also need the following relevant result:

Proposition 3.1.13 (39, Corollary 11.8.2). a) A principally polarized abelian surface
is either the Jacobian of a genus 2 curve or a product of two elliptic curves with the
canonical product polarization.

b) A principally polarized abelian threefold is either the Jacobian of a genus 3 curve, a
principally polarized product of an abelian surface with an elliptic curve or a product of
three elliptic curves with the canonical product polarization.

While the principally polarized Jacobian of a curve determines the curve completely,
one can ask whether the same happens by just considering the Jacobian as a complex
torus. In the next section we will see that this doesn’t happen as there exist distinct
curves whose Jacobians are isomorphic complex tori.

§ 3.2 Distinct curves with isomorphic Jacobians

In this section we will present some known examples of distinct curves with isomorphic
Jacobians. The examples will take into consideration the structure of End0(J(C)).
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3.2.1 Generic case

We start with the description of End0(J(C)) for a generic genus g curve. The following
result is well known:

Theorem 3.2.1 (14, Theorem 3.1). Let C be a generic curve of genus g. Then, its
Jacobian J(C) does not have non-trivial endomorphisms and End(J(C)) ∼= Z.

Then, using 3.1.8 we see that NS(J(C)) ∼= Z which means that the unique principal
polarization of J(C) is coming from the theta divisor of C. In particular, generic curves
can not share the same unpolarized Jacobian and in order to find such examples we have
to look for curves whose Jacobians have non-trivial endomorphisms. The dimension
of the subvarieties of Mg that parametrize curves whose Jacobians have non-trivial
endomorphisms have been studied in [16].

It is also known that the number of distinct curves that can share the same unpolarized
Jacobian is finite, using a result of Narasimhan and Nori (see [41]).

3.2.2 Real multiplication

The results in this section are from [38]. Let A be a simple abelian variety of dimension
g over C with real multiplication, that is End0(A) contains a totally real number field
K of degree g over Q. Let o ⊂ K denote the maximal order of K and U denote its
group of units. If we have an abelian variety A such that End(A) = o and π(A) denotes
the number of isomorphism classes of principal polarizations then π(A) = #(U+/U2).
Now, using Proposition 3.1.13, a simple abelian variety of dimension 2 or 3 will be
the Jacobian of some curve. Using results on fundamental systems of units on totally
real quadratic and cubic fields it is possible to construct simple abelian varieties in
dimension 2 and 3 with several principal polarizations. These abelian varieties will be
Jacobians and the various principal polarizations will be coming from distinct curves
that share the same unpolarized Jacobian.

In dimension 4 the dimensions of Mg and Ag are no longer the same. One can still
use results on fundamental systems of units of totally real quartic fields to construct
simple abelian varieties of dimension 4 with several principal polarizations but it now
becomes more difficult to tell whether these abelian varieties are Jacobians of some
curve. However, using more elaborate results on the Satake compactification of Ag it
is shown in [15] that distinct curves of genus 4 with isomorphic Jacobians do exist.
Unfortunately, it is not possible to generalize this method in higher genus and this is
actually a common feature of the methods that we study in this section: they only
work in low genus.
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3.2.3 Quaternionic multiplication

This case has been studied in [50], [49]. In this paper, V. Rotger computes the number
of principal polarizations of abelian varieties A such that End(A) is a maximal order
in a totally indefinite quaternion algebra ([49], Theorem 1.1).

One can then use this to construct simple abelian varieties with quaternionic mul-
tiplications in dimension 2 and 3 with several principal polarizations and as before
these abelian varieties will be Jacobians of curves, with the non-isomorphic principal
polarizations coming from dinstinct curves.

While the number of principal polarizations of abelian varieties with real multiplcations
is bounded, abelian varieties of even dimension with quaternionic multiplication can
have arbitrarily many non-isomorphic principal polarizations. This implies that there
are arbitrarily large sets of distinct curves C1, ..., Cn such that J(C1) ∼= ... ∼= J(Cn)
([49], Corollary 1.3).

As in the case of real multiplication, the fact that dimMg ̸= dimAg when g > 3 makes
it difficult to construct such examples in higher genus.

3.2.4 Explicit equations - Products of elliptic curves

Explicit equations of distinct curves with isomorphic unpolarized Jacobians are given
in [32] and [33]. In particular, we have the following result:

Theorem 3.2.2 (32, Theorem 1). Let m be a positive, even, square-free integer with
n odd prime divisors. Let o denote the ring Z[

√
−m] and h its class number. Let

S be the set of positive real roots of the polynomial g(x) = (x + 1)hf(2
8x3

x+1 ), where
f is the polynomial whose roots are the j-invariants of elliptic curves with complex
multiplication by o. Then the set

{y2 = x6 − kx4 + kx2 − 1 : k ∈ S}

contains 2n non-isomorphic curves with isomorphic unpolarized Jacobian.

As before, using this method we can construct arbitrarily many distinct curves shar-
ing the same unpolarized Jacobian. Even more striking examples are given in ([33],
Theorem 1), where it is shown that it is possible for certain hyperelliptic and non-
hyperelliptic curves of genus 3 to have isomorphic unpolarized Jacobians.

These results rely on careful considerations regarding the lattice of the Jacobians of the
curves and generalizing them to higher genus would require tedious calculations.
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Finally, another method to construct curves with isomorphic Jacobians is to count the
number of principal polarizations of 2-dimensional abelian varieties that are products
of elliptic curves. This has been done in [30],[31],[38] where the number of principal
polarizations is associated to certain class numbers of quaternion algebras or hermitian
forms.

The number of curves on such an abelian surface is equal to the total number of
principal polarizations minus the number of decomposable principal polarizations. It
can be shown that in certain cases where A ∼= E1×E2 for isogenous elliptic curves with
complex multiplication the number of indecomposamble principal polarizations on A is
greater than 1.

Generalizing this method in higher dimension again presents difficulties. While in some
cases it is still possible to compute the total number of principal polarizations on an
abelian variety A ∼= E1 × ... × En, it would be much harder to say which of those
polarizations are coming from curves.

A more geometric method for constructing curves with isomorphic Jacobians relies on
Gassmann equivalence and Theorem 7.1.3. In the remainder of this thesis we will study
Gassmann equivalence in more detail.



Chapter 4

Representation theory

In this chapter we collect basic results from representation theory that will be used in
the proofs of Chapter 5. We start with the definitions of representations of groups and
their characters, define the operations of restriction and induction and state a property
of induced characters. We continue with some definitions on G-sets and study matrices
representing homomorphisms between G-sets. Then we meet permutation representa-
tions and their characters and finally we define the table of marks of a finite group G
and study some of its properties. The table of marks will be used for computations in
the next chapter. The results of this chapter can be found in many introductory books
on representation theory, for example [21],[63],[42],[53].

§ 4.1 Representation theory of groups

We start with the definition of a representation of a finite group G.

Definition 4.1.1 (Representation of a group G, 63, page 2). Let R be a commutative
ring with unity, G a finite group and V an R-module. Denote by GL(V ) the group
of invertible R −module homomorphisms from V to itself. A representation of G is a
group homomorphism:

ρ : G→ GL(V ). (4.1)

The simplest example of a representation is the trivial representation where we take
ρ(g) to be the identity mapping of the R-module V to itself.

In what follows we will treat group representations as R[G]-modules ([63], Proposition
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1.1.5). Elements of R[G] have the form
∑

g∈G agg and multiplication is given by

(
∑
g∈G

agg)(
∑
g′∈G

ag′g
′) =

∑
k∈G

(
∑
gg′=k

agag′)k. (4.2)

Next we define the character of a representation.

Definition 4.1.2 (Character of a representation, 63, page 24). Let ρ be a finite di-
mensional representation of a group G over a field k. The character of ρ, denoted by
χρ is the function χρ : G→ k defined as:

χρ(g) := tr(ρ(g)). (4.3)

Characters only depend on the conjugacy class of the group element g. Such functions
are called class functions. When k = C we can define a hermitian inner product on the
space of class function of a finite group G as ([63], page 32):

⟨χ, χ′⟩G :=
1

|G|
∑
g∈G

χ(g)χ′(g). (4.4)

Now we will define the operations of restriction and induction of representations ([63],
Section 4.3).

1. Restriction Let V be a representation of a group G and let H be a subgroup of
G. We can get a representation of H just by forgetting about the elements of G
that are not in H. We denote this representation by V ↓GH .

2. Induction Let W be a representation of H which is a subgroup of a group G. We
can view W as an R[H]-module and define the R[G]-module W↑GH := R[G]⊗R[H]

W.

We will later need an important property of restriction and induction which we state
below for reference.

Proposition 4.1.3 (Frobenius reciprocity, 63, Corollary 4.3.8, Corollary 4.3.9). Let
G a finite group and H a subgroup of G. Let V be an R[H]-module and W an R[G]-
module. We have the following isomorphisms:

HomR[G](V ↑GH ,W ) ∼= HomR[H](V,W↓GH)

HomR[G](W,V ↑GH) ∼= HomR[H](W↓GH , V )
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These can also be stated in terms of characters. If χ↑GH and ψ↓GH denote the characters
of V ↑GH and W↓GH respectively, than we have:

⟨χ↑GH , ψ⟩G = ⟨χ, ψ↓GH⟩H

and

⟨ψ, χ↑GH⟩G = ⟨ψ↓GH , χ⟩H .

Finally, one can use the following proposition to compute characters of induced repre-
sentations.

Proposition 4.1.4 (63, Proposition 4.3.5 and 42, Remark 3.4.1). Let G be a finite
group and H a subgroup of G. Let V be an R[H]-module with character χ and R a set
of representatives of G/H. The character of V ↑GH is:

χ↑GH(g) =
1

|H|
∑

r∈G,r−1gr∈H

χ(r−1gr) =
∑

r∈R,r−1gr∈H

χ(r−1gr). (4.5)

In the special case where we have the trivial representation 1H of H with character
χ1H and the induced representation 1GH on G with character χ1GH

we get that:

χ1GH
(g) =

|CG(g)| · |gG ∩H|
|H|

(4.6)

where gG denotes the conjugacy class of g in G.

§ 4.2 G-sets, permutation representations and permutation characters

We met G-sets in Chapter 2. We will now study G-sets and their homomorphisms in
more detail. A G-map is a map f : X → Y between two G-sets X,Y that satisfies:

f(g · x) = g · f(x) for all g ∈ G, x ∈ X.

We will denote the set of G-maps between X,Y by HomG(X,Y ).

A transitive G-set is a G-set which is a G-orbit. Every G-set can be written as a
disjoint union of transitive G-sets. Moreover, if X,Y are isomorphic transitive G-sets
then X ∼= G/H and Y ∼= G/K where H,K are conjugate subgroups of G. In general a
G-set is isomorphic to

⊔
G/Hi for some subgroups Hi of G. Two G-sets X =

⊔
G/Hi

and Y =
⊔
G/Ki are isomorphic if (after possibly reordering) Hi is conjugate to Ki.
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G-sets are closely related to a particular class of representations, permutation repre-
sentations. Let X be a G-set. Then, the action of G permutes its elements. Let R
be a commutative ring and consider R[X], the free R-module with elements of X as a
basis. By extending the action of G on X to an R-linear action of R[G] on R[X] we
can consider R[X] as an R[G]-module. The corresponding representation is called a
permutation representation (see [63]).

We will now see a simple example that gives insight on the characters of permutation
representations. Let σ be a permutation representation of a G-set X by matrices. For
any element g ∈ G the matrix M = [σ(g)] is a permutation matrix and if we use the
elements of X to denote its rows and columns, its entries are

Mx1x2 =

{
1 if x1 = g · x2
0 otherwise

Example 4.2.1. Consider the symmetric group S3 acting on a set of three letters
X = {x1, x2, x3} by σ·xi = xσ(i). S3 is generated by (12) and (23) and the corresponding
matrices of this permutation representation are:

(12) 7→

0 1 0
1 0 0
0 0 1


and

(23) 7→

1 0 0
0 0 1
0 1 0

 .
We see that the trace of these matrices equals the number of points of X that are fixed
by (12),(23) respectively.

This holds in general. The permutation matrix corresponding to an element g ∈ G has
entries 0 and 1 and there is a 1 on the diagonal if and only if the corresponding basis
element of X is fixed by g. We have that:

χR[X](g) = |FixX(g)|.

Moreover, for a transitive G-set X = G/H we have that the permutation representation
R[G/H] coincides with the representation of G induced by the trivial representation on
H (see [63], Proposition 4.3.2 and Example 4.3.4). Combining this with 4.1.4, we get
that:
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Proposition 4.2.2. Let G be a finite group and X = ⊔G/Hi a finite G set. Denote by
R[X] the permutation representation of X where R is a commutative ring and by χ1GH
the character of the induced representation of G by the trivial representation of H. We
have the following equalities:

χR[X](g) = |FixX(g)| = |CG(g)|
∑
i

|gG ∩Hi|
|Hi|

.

For a subgroup K of G, define FixX(K) = ∩g∈KFixX(g). We will use the following
notation: χR[X](K) = |FixX(K)|. Observe that for a cyclic group ⟨g⟩ we have that
χR[X](g) = χR[X](⟨g⟩)

If X,Y are G-sets and ϕ : X → Y is a G-map then we can extend it to an R-linear map
from R[X] to R[Y ]. We want to study R[G]-homomorphisms between permutation
modules. The following proposition classifies HomR[G](R[X], R[Y ]) for transitive G-
sets X,Y .

Proposition 4.2.3 (59, Lemma 4.5, page 32). Let X ∼= G/H and Y ∼= G/K be
transitive G-sets where H,K are subgroups of G. We have an R-module isomorphism

Φ(H,K) : RK\G/H → HomR[G](R[X], R[Y ])

defined by:

f 7→ (g1H 7→
∑

g2K∈G/K

f(Kg−1
2 g1H)g2K).

For what follows, see the discussion before Proposition 2.6 in [60].

Elements of HomR[G](R[G/H], R[G/K]) can be identified with matrices M ∈ M(m×
n,R) where m is the index of K in G and n the index of H in G. If we choose some
ordering for the G-sets and ρ1, ρ2 denote the permutation representations of G acting
on {1, ..., n} and {1, ...,m} respectively then the entries of M satisfy

Mij =Mρ1(g)(i),ρ2(g)(j)

for all g ∈ G.

For transitive G-sets the following lemma gives a way to calculate the number of vari-
ables of the matrix using the hermitian product of induced characters.

Lemma 4.2.4 (42, Lemma 3.4.2). Let H,K be subgroups of G. Then ⟨1GH , 1GK⟩G is the
number of orbits of K on G/H and also equals the number of (K,H)-double cosets of
K and H in G.
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For intransitive G-sets X =
⊔
G/Hi, Y =

⊔
G/Hi we can build a similar matrix made

up from smaller block matrices corresponding to elements ofHomR[G](R[G/Hi], R[G/Kj ]).

The number of variables is going to be
∑

i

∑
j⟨1GHi

, 1GKj
⟩G.

Example 4.2.5. Let G be the symmetric group on 3 letters S3. It has four conjugacy
classes of subgroups: H1 = {e}, H2 = {e, (12)}, H3 = {e, (123)} and G. Consider the
G-sets X ∼= G/H2 ⊔ G/H2 ⊔ G/H3 and Y ∼= G/{e} ⊔ G/G ⊔ G/G. The matrix M
corresponding to an element of HomR[G](R[X], R[Y ]) is given below:



x2 x3 x1 x1 x2 x3 x9 x12
x1 x2 x2 x3 x3 x1 x9 x12
x3 x1 x3 x2 x1 x2 x9 x12
x5 x6 x4 x4 x5 x6 x10 x13
x4 x5 x5 x6 x6 x4 x10 x13
x6 x4 x6 x5 x4 x5 x10 x13
x7 x7 x8 x7 x8 x8 x11 x14
x8 x8 x7 x8 x7 x7 x11 x14


The code for the construction of this matrix is given in Appendix 9.4. In Chapter 5 we
will be interested in the determinant of such matrices.

§ 4.3 The table of marks of a finite group

In this section we define the table of marks of a finite group G and provide some
examples. The material is standard and taken from ([42], Section 3.5). For more
details on the table of marks see [12], [45].

Let L(G) = {H1, ...,Hn} be a complete list of representatives of conjugacy classes of
subgroups of a finite group G. From now on we assume that |Hi| ≤ |Hj | for i ≤ j. Let
X be a finite G-set. Consider the function:

mH(X) := |FixX(H)|

measuring the cardinality of the set of H-fixed points on X. It is called the H-mark
on X.

Definition 4.3.1 (42, Definition 3.5.1). The table of marks of G is the square matrix:

M(G) = [mG/Hi
(Hj)]1≤i,j≤n.

Note that conjugate subgroups have the same number of fixed points on any G-set so
M(G) is independent of the choice of representatives of L(G). However it does depend
on its ordering.
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The table of marks has some interesting properties that are summarized in the following
proposition:

Proposition 4.3.2 (42, Lemma 3.5.3, Corollary 3.5.4). LetM(G) be the table of marks
of a finite group G. Then:

1. M(G) is invertible.

2. mij = [NG(Hi) : Hi] · bij where bij is the number of subgroups conjugate to Hi.
In particular mii = [NG(Hi) : Hi].

3. The first entry of every row is the index of the corresponding subgroup in G, that
is mi1 = [G : Hi].

4. The number cij of subgroups of Hi which are conjugate in G to Hj is equal to

cij =
mij ·mj1

mi1 ·mjj
= |Hi| ·mij · |NG(Hj)|−1.

We now give some examples which will be used later in the study of Gassmann equiv-
alence.

Example 4.3.3. Let G = S3 and L(G) = {C1, C2, C3, S3}. The table of marks is:
6
3 1
2 0 2
1 1 1 1


Example 4.3.4 (42, Example 3.5.6). LetG = A5 and L(G) = {C1, C2, C3, V4, C5, S3, D10, A4, A5}.
The table of marks is: 

60
30 2
20 0 2
15 3 0 3
12 0 0 0 2
10 2 1 0 0 1
6 2 0 0 1 0 1
5 1 2 1 0 0 0 1
1 1 1 1 1 1 1 1 1





Chapter 5

Gassmann Equivalent G-sets

In this chapter we study the notion of Gassmann equivalence. The structure is based on
[60] but instead of Gassmann triples we consider Gassmann equivalent G-sets. We start
with some definitions and in the following sections we treat various cases of Gassmann
equivalence for different coefficients. We close the chapter with some questions for
further research.

§ 5.1 Gassmann equivalent G-sets

Let G be a finite group and X,Y finite G-sets. When X,Y are isomorphic, they give
rise to isomorphic permutation representations. However the converse is not true and
it is possible for non-isomorphic G-sets to have equivalent permutation representations.
This gives rise to the following definition:

Definition 5.1.1 (Gassmann equivalent G-sets). Let R be a commutative ring, G a
finite group and X,Y finite G-sets. Then X,Y are R-Gassmann equivalent if and only
if R[X] and R[Y ] are isomorphic as R[G]-modules.

We will focus on the following cases: a) R = Q where we will call X and Y rationally
Gassmann equivalent b) R = Zp (field with p elements) for some prime number p, where
we will call X and Y locally Gassmann equivalent c) R = Zp for all prime numbers p,
where we will call X and Y locally integrally Gassmann equivalent d) R = Z where we
will call X and Y integrally Gassmann equivalent.

Remark 5.1.2. As we have seen, when X and Y are transitive G-sets we can write
them as X ∼= G/H and Y ∼= G/K for some subgroups H,K of G. In this sense, our

42
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definition is inspired by the classical examples of Gassmann triples (see [23]). According
to our definition these were examples of rationally Gassmann equivalent transitive G-
sets. Examples of rationally Gassmann equivalent intransitive G-sets have been studied
in [43]. The terminology for cases a)-d) is coming from [60] where the same topic is
studied for transitive G-sets.

In each of the cases a) - d) we want to answer the following questions:

• Question 1 Do examples of R-Gassmann equivalent G-sets exist? Do such ex-
amples exist for both transitive and intransitive G-sets?

• Question 2 Is there an easy computational way to construct such examples?

• Question 3 Which classes of groups have such examples? What is the order of
the smallest group for which such examples exist?

• Question 4 Is there an explicit description of all R-Gassmann equivalent G-sets
for a given group G?

§ 5.2 Rational Gassmann equivalence

The following proposition gives equivalent conditions for G-sets X and Y to be ratio-
nally Gassmann equivalent. It is the analogue of (Sutherland [60], Proposition 2.6) and
works for either transitive or intransitive G-sets.

Proposition 5.2.1. Let G be a finite group and X,Y finite G-sets. The following are
equivalent:

1. Q[X] ∼= Q[Y ] as Q[G] modules;

2. χQ[X](K) = χQ[Y ](K) for every cyclic subgroup K of G;

3. X ∼=
⊔
G/Hi and Y ∼=

⊔
G/Ki, where Hi,Ki ≤ G satisfy

∑
i

|gc ∩Hi|
|Hi|

=
∑
i

|gc ∩Ki|
|Ki|

, ∀g ∈ G. (5.1)

4. Let M ∈ HomZ[G](Z[X],Z[Y ]). Then, there is a choice of the entries of M that
make it invertible.
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Proof. (1) clearly implies (2) because equivalent representations have the same charac-
ter and we saw in Chapter 4 that for cyclic subgroups K = ⟨g⟩, χR[X](K) = χR[X](g).
Proposition 4.2.2 shows that (2) is equivalent to (3). Clearing the denominators in
HomQ[G](Q[X],Q[Y ]) gives the equivalence of (1) and (4).

Using this definition and the table of marks it is easy to compute examples of rationally
Gassmann equivalent G-sets for a given group G. One can start with the table of marks
M of G. By deleting rows of the transpose of the table of marksM t that correspond to
non-cyclic subgroups of G we get a new matrix A. Then the nullspace of A gives a basis
of rationally Gassmann equivalent G-sets for the group G. This is done using GAP in
[43] and we give a MAGMA implementation of the same program in the appendix.

The next theorem characterizes the class of subgroups that have rationally Gassmann
equivalent, non-isomorphic G-sets.

Theorem 5.2.2. Let G be a finite group. Then a pair of non-isomorphic, rationally
Gassmann equivalent G-sets X and Y exists if and only if G is non-cyclic. The number
of such pairs is equal to the number of conjugacy classes of non-cyclic subgroups of G.

Proof. We have seen that the table of marks is a lower triangular matrix with non-zero
diagonal entries. Also, all subgroups of a cyclic group are cyclic. From the previous
discussion and Proposition 5.2.1 it is clear that we will only remove rows fromM t when
G is non-cyclic and the nullspace of a A will be non-trivial when the number of rows is
less than the number of columns.

Now we are going to look at some examples.

Example 5.2.3 (43, Section 1.1). Let G = {e, a, b, ab} be the non-cyclic group of
size four (G ∼= Z2 × Z2). Consider the following subgroups of G: H1 = {e, a}, H2 =
{e, b}, H3 = {e, ab}. Then the G-sets X ∼= G/H1⊔G/H2⊔G/H3 and Y ∼= G/e⊔G/G⊔
G/G are rationally Gassmann equivalent.

It follows from Theorem 5.2.2 that this is the the group of smallest order for which
rationally Gassmann equivalent G-sets exist. Another well known example that we will
use for decompositions of Jacobians in Chapter 8 is the following:

Example 5.2.4. Let G be the symmetric group on 3 letters S3. It has four conjugacy
classes of subgroups: H1 = {e}, H2 = {e, (12)}, H3 = {e, (123)} and G. The G-sets
X ∼= G/H2 ⊔ G/H2 ⊔ G/H3 and Y ∼= G/{e} ⊔ G/G ⊔ G/G are rationally Gassmann
equivalent.
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Now we are going to present some more examples for general classes of groups. They
have been discovered in [43].

Example 5.2.5 (43, Section 4.2). Let G ∼= Zp × Zp where p is a prime number (Zp is
the cyclic group of order p). G has p + 1 subgroups of size (and index) p denoted by
Hi, 1 ≤ i ≤ p + 1. The G-sets X = ⊔1≤i≤p+1G/Hi and Y = G/G ⊔ ...G/G ⊔ G/{e}
(G/G appears p times in Y ) are rationally Gassmann equivalent.

Example 5.2.6 (43, Section 4.3). Let G ∼= Zp ⋊ Zq where p ̸= q are prime numbers.
G has one subgroup Q of size q and q subgroups P1, ..., Pq of size p which are all
conjugate. The G-sets X = G/P ⊔ ... ⊔ G/P ⊔ G/P (G/P appears p times) and
Y = G/G ⊔ ...G/G ⊔ G/{e} (G/G appears p times in Y ) are rationally Gassmann
equivalent.

Example 5.2.7 (43, Section 4.3.1). A special case of the previous example (with
p = 2 and q an odd prime) are the dihedral groups Dq = ⟨σ, τ |σq, τ2, (στ)2⟩ of order
2q. Then the rationally Gassmann equivalent G-sets that we obtained above are X =
Dq/⟨τ⟩ ⊔Dq/⟨τ⟩ ⊔Dq/⟨σ⟩ and Y = Dq/Dq ⊔Dq/Dq ⊔Dq/{e}.

We will now show that in the case of the group algebra Q[G], rational Gassmann
equivalence coincides with the notion of character equivalence introduced by E. Kani
in [36]. First we give the definition of character equivalence.

Definition 5.2.8 (Character equivalence,36). Let A be a finite dimensional algebra.
Then a, a′ ∈ A are character equivalent if and only if:

χρ(a) = χρ(a
′)

for every representation ρ of A.

Kani applies this in the case where A = Q[G] and the elements of A are idempotents of
the form ϵH = 1

|H|
∑

h∈H h ∈ Q[G]. For a G-set X =
⊔
G/Hi, we define ϵX :=

∑
i ϵHi .

The following result shows that rational Gassmann equivalence coincides with character
equivalence in Q[G]. The ingredients for the proof are already there in [36]. What this
equivalence shows is that the plethora of examples of decompositions of Jacobians
derived using Kani’s theorems in [36] can also be derived using rational Gassmann
equivalence. We will study this in more detail in Chapter 8.

Theorem 5.2.9 (Equivalence of Kani’s character equivalence and rational Gassmann
equivalence). Let G be a finite group and consider the finite dimensional group algebra
Q[G]. Then X,Y are rational Gassmann equivalent G-sets if and only if ϵX , ϵY are
character equivalent.
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Proof. Assume that X,Y can be written as X =
⊔
G/Hi, Y =

⊔
G/Ki. The first

thing is to notice that Gassmann equivalence can be written as the following character
relation: ∑

χ1GHi

=
∑

χ1GKi

. (5.2)

Here χ1GH
denotes the induced character from the trivial representation on H. If g ∈ G

then χ1GH
(g) = |CG(g)||gG

⋂
H|

|H| , so (5.2) is equivalent to:

∑ |gG
⋂
Hi|

|Hi|
=

∑ |gG
⋂
Ki|

|Ki|

for every g ∈ G. Now let χ denote any character in the ring of virtual characters of
Q[G]. Using Frobenius reciprocity we have that:

χ(ϵX) =
∑

χ(ϵHi) =
∑
⟨χ↓GHi

, 1Hi⟩Hi =
∑
⟨χ, χ1GHi

)G = ⟨χ,
∑

χ1GHi

⟩G

and since ⟨, ⟩G is non-degenerate this completes the proof.

Finally, regarding Question 3, explicit description of rationally Gassmann equivalent
G-sets is given in [5].

§ 5.3 p-Local Gassmann equivalence

For this type of Gassmann equivalence it is useful to look at the class of p-hypoelementary
subgroups. The following definition is standard.

Definition 5.3.1. Let p be a prime. A finite group G is said to be p-hypoelementary if
the quotient of G by Op(G), the intersection of its p-Sylow subgroups, is cyclic. Op(G)
is a normal p-subgroup of G and G can be written as Op(G)⋊ Cn, (p, n) = 1.

As in [60], we define

d(X,Y ) := gcd{detM :M ∈ HomZ[G](Z[X],Z[Y ])}.

The following proposition is the analogue of Proposition 5.2.1 for p-Local Gassmann
equivalence. It is just a modified version of (Sutherland [60], Proposition 3.1) that
works for both transitive and intransitive G-sets.

Proposition 5.3.2. Let G be a finite group and X,Y G-sets. The following are equiv-
alent:
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1. Zp[X] ∼= Zp[Y ]

2. χZp[X](K) = χZp[Y ](K) for every p-hypoelementary subgroup K of G

3. p ∤ d(X,Y ).

As before, it is easy to use the table of marks of G to compute p-locally Gassmann
equivalent G-sets. We start with the table of marksM of G and delete rows ofM t that
correspond to subgroups of G that are not p-hypoelementary. This way we create a
new matrix A and we just have to compute the nullspace of A. This gives the following
obvious result:

Theorem 5.3.3. Let G be a finite group. If G is not p-hypoelementary there exists a
pair of non-isomorphic, locally Gassmann equivalent G-sets. The number of such pairs
is equal to the number of conjugacy classes of subgroups that are not p-hypoelementary.

It is possible to explicitely describe examples of p-Local Gassmann equivalent G-sets
and this has been done in [51].

§ 5.4 Locally Integral Gassmann equivalence

Definition 5.4.1. A finite groupG is said to be hypoelementary if it is p-hypoelementary
for some prime number p.

Definition 5.4.2. Let G be a finite group and X,Y G-sets. If Zp[X] ∼= Zp[Y ] for every
prime p then X and Y are locally integrally equivalent.

Finding examples of locally integrally Gassmann equivalent G-sets computationally can
be done in the same way as before. Starting with the table of marks M we delete rows
of M t that correspond to subgroups of G which are not hypoelementary. This way we
get a new matrix A and we compute the nullspace of this matrix. We get the following
obvious result:

Theorem 5.4.3. Let G be a finite group. If G is not hypoelementary there exists a
pair of non-isomorphic, locally integrally Gassmann equivalent G-sets.

Example 5.4.4. The smallest non-hypoelementary group is the dihedral group D6 of
order 12. Using the code in the appendix it is easy to find locally integrally Gasmann
equivalent G-sets for this group. The lattice of conjugacy classes of subgroups of D6 is
given below:
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{e}

Z2Z2 Z2Z3

Z2
2S3 S3Z6

D6

3 3

3

Let X = D6/D6 ⊔ D6/D6 ⊔ D6/Z3 ⊔ D6/Z2 ⊔ D6/Z2 ⊔ D6/Z2 and Y = D6/S3 ⊔
D6/S3⊔D6/Z6⊔D6/Z2

2⊔D6/Z2
2⊔D6/{e}. Then X,Y are locally integrallly Gassmann

equivalent.

§ 5.5 Integral Gassmann equivalence

The following proposition gives equivalent conditions for integral Gassmann equiva-
lence.

Proposition 5.5.1 (Sutherland [60], Proposition 3.2, Remark 3.3). Let G be a finite
group and X,Y G-sets. The following are equivalent:

1. Z[X] ∼= Z[Y ]

2. There exists some M ∈ HomZ[G](Z[X],Z[Y ]) such that detM = ±1.

Example 5.5.2 (L.Scott, 52). Let G = PSL2(F29). G contains two non-conjugate
subgroups H1 and H2 isomorphic to A5. It is easy to check that the G-sets X = G/H1

and Y = G/H2 are locally integrally Gassmann equivalent. In order to show that
they are integrally Gassmann equivalent we can use Proposition 5.5.1. Using the func-
tion OrbitMatrix(G,H1, H2) provided in the appendix, a homomorphism from Z[X] to
Z[Y ] can be represented by a 203 x 203 matrix with 8 variables x1, ..., x8 ∈ Z corre-
sponding to the decomposition of G into 8 double cosets H1gH2. Using the function
DoubleCosetUnions(G,H1, H2), each of these cosets consists of 5,6,10,12,20,30,60,60
right cosets of H1 respectively. We want to find an assignment of the variables that
makes the determinant of this matrix equal to ±1. In order to guess the right assign-
ment, one can notice that any isomorphism of Z[X] to Z[Y ] will carry the augmentation
map Z[X]→ Z into the augmentation map Z[Y ]→ Z or its negative. This means that
we want an assignment such that the following equation holds:

5x1 + 6x2 + 10x3 + 12x4 + 20x5 + 30x6 + 60x7 + 60x8 = ±1. (5.3)
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An obvious choice would be to set x1 equal to 1, x2 equal to -1 and all the other
variables equal to 0 and we can see in the appendix 9.3 that this choice actually works.

Examples of intransitive rational, p-local and locally integral Gassmann equivalent G-
sets are more abundant compared to transitive ones and one can in general find them
in groups of smaller order. As we will see in the next few results, the situation remains
the same in the case of integral equivalence. However, as the verification of integral
equivalence involves guesswork in the assignment of the variables, it is much harder to
actually find explicit examples.

Proposition 5.5.3 (48 Corollary 8.9, 28). Let Λ be an R-order and M,N a pair of
Λ-lattices. Then N ∈ Γ(M) if and only if M

⊕
k ∼= N

⊕
k for some positive integer k.

In particular, let Λ = Z[G] and X,Y be locally integral G-sets. Then Z[X],Z[Y ] are
in the same genus and by adding k disjoint copies of X,Y respectively we have that
Z[X

⊕
k] and Z[Y

⊕
k] are integrally Gassmann equivalent.

Proposition 5.5.4. Let G be a finite group. If G is not hypoelementary then there
exists a pair of non-isomorphic, integrally Gassmann equivalent G-sets.

Proof. The proof is immediate from the above discussion and theorem 5.4.3.

While existence of integrally Gassmann equivalent intransitive G-sets is guaranteed by
the previous proposition, there are still no known explicit examples. In what follows
we are going to discuss some computational ways that could be used to search for such
examples and the difficulties that are involved in this search.

A strategy to find examples of integral Gassmann equivalence would be to find locally
integral Gassmann equivalent G-sets, compute the matrix M of Proposition 5.5.1 us-
ing the code in the appendix and try to guess values of the variables that make the
determinant of this matrix equal to 1, as we did in Example 5.5.2. In cases where we
can compute the determinant symbolically, we can actually solve systems of equations
to see if there are values of the variables that accomplish this. This method has been
used in ([60], Sections 4.3 and 4.4) for examples of transitive locally integral Gassmann
equivalent G-sets. It turns out that these examples are not integrally equivalent.

Example 5.5.5. Here we revisit Example 5.2.4. We computed the corresponding
matrix in 4.2.5. It is possible to compute the determinant of this matrix and we get:

−9(x2x6 − x3x6 − x1x7 + x3x7 + x1x8 − x2x8)2(x11 − x12)(−3x5x9x11 + 3x4x10x11 −
3x5x9x12 + 3x4x10x12 + 2x5x6x13 + 2x5x7x13 + 2x5x8x13 − 2x1x10x13 − 2x2x10x13 −
2x3x10x13 − 2x4x6x14 − 2x4x7x14 − 2x4x8x14 + 2x1x9x14 + 2x2x9x14 + 2x3x9x14).
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One can check that there are choices of the variables that make this determinant non-
zero. However, as expected, the factor of 9 means that the two G-sets are not locally
integrally Gassmann equivalent.

The challenge with matrices coming from intransitive locally integral Gassmann equiv-
alent G-sets is that the number of variables grows and symbolic computation of the
determinant is much more difficult. One needs to find examples where the number of
variables of the matrix is small and use random substitutions of some of the variables.
The table in the next page summarizes the results of some calculations regarding the
matrix size and number of variables in matrices representing homomorphisms between
locally integral Gassmann equivalent G-sets.

In the case of the intransitive example in D12 we get a 24×24 matrix with 68 variables.
Unfortunately we were not able to compute its determinant symbolically or find choices
of the variables that make this determinant equal to 1. Another good source of groups
where one could try to find explicit intransitive integrally Gassmann equivalent G-sets
are the groups PSL(2, p).

We close this chapter with some questions for further research:

Question A: Are the locally integral intransitive G-sets of Example 5.4.4 integrally
Gassmann equivalent?

Question B: Can we find explicit intransitive examples of integrally Gassmann equiv-
alent G-sets in the groups PSL(2, p)?
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Group Matrix Size Number of variables
D12 24 68
D24 48 146

24 68
24 38

S4 40 90
S5 192 372

123 162
222 596

A5 81 119
Z6 × Z6 144 1152
PSL(2, 7) 212 299

106 86
70 60

PSL(2, 11) 983 1600
497 430
309 182
121 32

PSL(2, 13) 3188 9806
1366 1746

PSL(2, 17) 3470 5146
1735 1339
1632 1256

PSL(2, 19) 5657 2999
2148 1423
2661 2175
399 62

PSL(2, 23) 25582 116198
7384 9041
8190 11325
16880 48130



Chapter 6

Hodge structures and
constructible sheaves

In this section we present some background material on Hodge structures and con-
structible sheaves that will be necessary for the proof of our results in Chapter 7. In
the first section we focus on Grothendieck’s formalism of six functors, local systems,
Thom-Whitney stratifications and constructible sheaves. Our main references are [19]
and [2]. In the second section we review basic definitions on pure and mixed Hodge
structures, variations of pure and mixed Hodge structures and explain some connections
with constructible sheaves. Our main references are [13] and [57].

§ 6.1 Six functors and Constructible Sheaves

6.1.1 The category Sh(M,R) and operations on sheaves

Let M be a topological space and R a commutative ring. By Sh(M,R) we denote the
category of sheaves of R−modules on M . Let f : M → N be a continuous map. In
what follows we assume that our topological spaces are locally compact and the maps
proper.

We start with a very basic example of a sheaf, which however lies behind many of the
cases we treat in Chapter 7.

Example 6.1.1. Let S be an R-module. The constant sheaf S on M , denoted by SM

is defined by:

S(U) = { locally constant functions s : U → S}

52
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resV,U (s) = (s|U : U → S).

We now define various operations on sheaves (see [2], Chapter 1):

1. Pull-back or inverse image functor f∗: Let F ∈ Sh(N,R). The pull-back of
F denoted by f∗F is the sheafification of the presheaf

U 7→ lim→
V⊂N open
V⊃f(U)

F(V ).

2. Push-forward or direct image functor f∗: Let F ∈ Sh(M,R). Its push-
forward is the sheaf f∗F ∈ Sh(N,R) given by

f∗(V ) = F(f−1(V )).

for open V ⊂ N . When N is a point we denote f∗F by Γ(M,F) and call it the
set of global sections of F on M .

3. Internal Hom functor Hom: Let F ,G ∈ Sh(M,R). We define Hom(F ,G) ∈
Sh(M,R) as the sheaf defined by:

Hom(F ,G)(U) = Hom(F|U ,G|U ).

4. Tensor product functor − ⊗ −: Let F ,G ∈ Sh(M,R). We define F ⊗ G ∈
Sh(M,R) as the sheaf associated to the following presheaf:

U 7→ F(U)⊗ G(U).

5. Proper push-forwrd functor f!: Let F ∈ Sh(M,R). Its proper push-forward
is the sheaf f!F ∈ Sh(N,R) given by

f!(U) = {s ∈ F(f−1(U)) : f |supps : supps→ U is proper }.

When N is a point we denote f!F by Γc(M,F) and call it the set of global sections
with compact support of F on M .

The following proposition collects various exactness properties of the functors we have
just defined (see [2], Chapter 1).

Proposition 6.1.2. Let f :M → N be a continuous map of topological spaces. Then:
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1. f∗ : Sh(M,R)→ Sh(N,R) is left exact. This also implies that Γ is left exact. If
we also assume that f is a closed embedding then f∗ is exact.

2. f∗ : Sh(N,R)→ Sh(M,R) is exact.

3. f! : Sh(M,R)→ Sh(N,R) is left exact (here we also assume thatM,N are locally
compact). If we also assume that f is a locally closed embedding then f! is exact.

4. ⊗ : Sh(M,R)× Sh(M,R)→ Sh(M,R) is right exact (exact when R is a field).

5. Hom : Sh(M,R)op × Sh(M,R)→ Sh(M,R) is left exact.

Constant sheaves were introduced in Example 6.1.1. The following definition introduces
a generalization of this notion.

Definition 6.1.3 (2, Definition 1.7.1). A local system is a sheaf L on a space M such
that there exists an open covering (Ui)i∈I ofM so that L|Ui is a constant sheaf for each
i ∈ I. We denote by Loc(M,R) the full subcategory of Sh(M,R) consisting of local
systems.

We will mostly be interested in local systems that have finitely generated modules as
fibers, these are called local systems of finite type.

We also state two propositions that we will use in the proof of Theorem 7.2.4.

Proposition 6.1.4 (2, Section 1.7). Let M be a connected topological space and x0 a
basepoint on M . Then the category Loc(M,R) of local systems on M is equivalent with
the abelian category Rep(π1(M,x0), R) of representations of π1(M,x0) on R-modules
over a commutative ring.

Proposition 6.1.5 (2, Lemma 2.1.22). LetM be a smooth, connected variety, U ⊂M a
Zariski open subset and x0 ∈ U any point. Then the natural map π1(U, x0)→ π1(M,x0)
is surjective.

6.1.2 The derived category D(Sh(M,R)) and the functor f !

The category Sh(M,R) is abelian and has enough injectives. As a result, it is possible
to derive functors which are left exact on Sh(M,R). We can thus define the derived
category D(Sh(M,R)). By Db(Sh(M,R)), D+(Sh(M,R)), D−(Sh(M,R)) we denote
the derived categories of complexes of sheaves bounded, bounded below and bounded
above respectively.

So, if f :M → N is a continuous map between topological spaces we have:
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• Rf∗ : D+(Sh(M,R))→ D+(Sh(N,R))

• Rf! : D+(Sh(M,R))→ D+(Sh(N,R)) (here M,N are locally compact).

• RHom : D−(Sh(M,R))op ×D+(Sh(M,R))→ D+(Sh(M,R))

• ∗ and − ⊗ − which are exact so they already define functors on the derived
category of sheaves.

The upshot of working with the derived category is that now we can obtain an adjuc-
ntion formula for Rf!.

Definition 6.1.6 (2, Theorem 1.5.4). Let f : M → N be a continuous map between
locally compact topological spaces and R a Noetherian ring with finite global dimension.
Assume that f! has finite cohomological dimension. Then there exists a triangulated
functor:

f ! : D+(Sh(N,R))→ D+(Sh(M,R))

such that if F ∈ D−(Sh(M,R)) and G ∈ D+(Sh(N,R)), then we have the following
natural transformations:

RHom(Rf!F ,G) ∼= Rf∗RHom(F , f !G),

RHom(Rf!F ,G) ∼= Rf∗RHom(F , f !G),

Hom(Rf!F ,G) ∼= Rf∗Hom(F , f !G).

We have now defined Grothendieck’s six operations. The six functor formalism is
behind many properties of cohomology.

For example (see [2], Definition 1.1.17 and Theorem 1.1.18), letM be a topological space
and F ∈ D+(Sh(M,R)). The k-th hypercohomology of F , denoted by Hk(M,F), is
the R-module given by

Hk(M,F) := Hk(RΓ(F)).

Similary, the k-th hypercohomology with compact support of F , denoted by Hk
c (M,F),

is the R-module given by

Hk
c (M,F) := Hk(RΓc(F)).

In particular, when M is locally contractible and hereditary paracompact ([10], page
21), and R the constant sheaf on M , we have the following natural isomorphisms:

Hk(M,R) ∼= Hk
sing(M,R)
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and
Hk

c (M,R) ∼= Hk
sing,c(M,R).

We now consider some useful properties of open-closed decompositions and obtain the
sequence of relative cohomology that will be used in Chapter 7. LetM be a topological
space with a decomposition M = U ⊔ Z into U open and Z closed. Let i : Z ↪→ M
be a closed embedding and let j : U ↪→M the complementary open embedding. Then
(see [2], Chapter 1):

1. We have that i∗ ◦ j! = 0, i! ◦ j∗ = 0 and j∗ ◦ i∗ = 0.

2. If F ∈ D+(Sh(M,R)) then we have a natural distinguished triangle:

j!j
∗F → F → i∗i

∗F → [+1].

3. If F ∈ D+(Sh(M,R)) then we have a natural distinguished triangle:

i∗i
!F → F → j∗j

∗F → [+1].

4. Define the relative cohomology of a closed pair (M,Z) by

Hk(M,Z,R) = Hk(M, j!RM\Z).

Then there is a natural long exact sequence:

...→ Hk(M,Z,R)→ Hk(M,R)→ Hk(Z,R)→ Hk+1(M,Z,R)→ ...

Finally we state two results that will play an important role in the proof of Theorem
7.2.4.

Proposition 6.1.7 (Exceptional direct image on a closed subset, [2). , Chapter 1]
Let i : Z → X be the inclusion of an orientable submanifold into another orientable
manifold, d be the real codimension of Z in X and assume that F · ∈ Db

c(X) has locally
constant cohomology on X. Then, i!F · has locally constant cohomology on Z and:

i!F · ∼= i∗F ·[−d].

Proposition 6.1.8 (Derived proper base change, 2, Chapter 1). Consider the following
cartesian diagram:

M̃ Ñ

M N

g̃ g

f̃

f



CHAPTER 6. HODGE STRUCTURES AND CONSTRUCTIBLE
SHEAVES 57

Then, there exist natural isomorphisms:

Rf̃!g̃
∗ ∼= g∗Rf!

and

Rf̃∗g̃
! ∼= g!Rf̃∗.

6.1.3 Stratifications and constructible sheaves

Let f : M → N be a morphism of complex algebraic varieties and F a local system
on M . Without introducing extra assumptions, the sheaves Rkf∗F on N are not
necessarily locally constant. We will now introduce the notions of stratifications and
constructibility and show that the six functors preserve constructibility (see [2], Chapter
2).

Definition 6.1.9. LetM be a variety. A stratification ofM is a finite collection (Mi)i∈I
of disjoint, smooth, connected, locally closed subvarieties such that M = ∪i∈IMi and
such that for any two i, j we have thatM i∩Mj is either empty orMj . The subvarieties
Mi are called the strata of the stratification. The set I carries a natural partial order
called the closure partial order, given by j ≤ i if Mj ⊂Mi.

Example 6.1.10. Let G be a connected algebraic group and M a variety with G-
action. Suppose that the action has finitely many orbits. Then the G-orbits constitute
a stratification.

Example 6.1.11. LetM be a smooth variety and Z ⊂M a divisor with simple normal
crossings. Then we can use the irreducible components of Z to define a stratification
of M , called the normal crossings stratification.

Definition 6.1.12. Let M be a variety and (Mi)i∈I a stratification. A sheaf F ∈
Sh(M,R) is said to be constructible with respect to I if each FMi is a local system. A
sheaf F is said to be constructible if there exists a stratification with respect to which it
is constructible. The full subcategory of constructible sheaves is denoted by Shc(M,R).
An object in Db(Sh(M,R)) is said to be constructible if there is a stratification with
respect to which each cohomology sheaf Hk(F) is constructible. The full subcategory
of Db(Sh(M,R)) consisting of constructible complexes is denoted by Db

c(Sh(M,R)).

The next result shows that the six functors preserve constructibility.

Proposition 6.1.13 (2, Section 2.7). Let f :M → N be a morphism of varieties. Let
F ∈ Db

c(Sh(M,R)) and G ∈ Db
c(Sh(N,R)). Then:
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1. f∗G, f !G ∈ Db
c(Sh(M,R))

2. Rf∗F , Rf!F ∈ Db
c(Sh(N,R)) if f is algebraic or f |suppF is proper.

3. RHom(F ,F ′),F ⊗ F ′ ∈ Db
c(Sh(M,R)).

6.1.4 Poincare-Verdier duality

We will now define the Poincare-Verdier duality functor D and explore its various
properties. We follow [2], Section 2.8 closely.

Definition 6.1.14 (The (relative) dualizing complex). Let f :M → N be a continuous
map of finite cohomological dimension so that f ! is well defined. We call ωM/N :=

f !CN ∈ Db
c(Sh(N,R)) the relative dualizing complex on M over N . When N is a

single point we set ωM := ωM/N and call it the dualizing complex on M .

Definition 6.1.15 (Poincare-Verdier duality). The Poincare-Verdier duality func-
tor D = DM : Db(Sh(M,R))→ Db(Sh(M,R)) is defined as

F → RHom(F , ωM ).

It is a contravariant endofunctor.

Proposition 6.1.16. Let f :M → N be a continuous map and M,N locally compact.
Let F ∈ Db(Sh(M,R)) and G ∈ Db(Sh(N,R). The functor D satisfies the following
properties:

1. f !D = Df∗.

2. DRf! = Rf∗D.

Proposition 6.1.17. Let f :M → N be a topological submersion with fiber dimension
d. Then:

1. Hk(ωM/N ) = 0 if k ̸= d and H−d(ωM/N ) is a local system of rank 1. When N is
a point it is called the orientation sheaf of M .

2. If M,N are orientable manifolds then ωM/N
∼= CM [d]. Thus in particular f∗[d] ∼=

f !.

Example 6.1.18 (Poincare duality). Let M be a topological manifold. For f : M →
{pt} we apply DRf! ∼= Rf∗D to CM and get DRf!CM

∼= Rf∗DCM or:

DRΓc(M,CM ) ∼= RΓ(M,ωM ).
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By taking cohomology we have that Hk
c (M,CM )∨ ∼= H−k(M,ωM ). Moreover, if M is

orientable, then ωM
∼= CM [d] where d = dimM . Thus we have:

Hk
c (M,CM ) ∼= Hd−k(M,CM )

which is Poincare duality on M .

Example 6.1.19 (Alexander duality). Let M be an orientable manifold, Z ⊂ M a
closed subset and i : Z →M the closed embedding of Z to M . Then we have:

RΓZD ∼= Rf∗f
!D ∼= Rf∗Df∗ ∼= DRf!f∗

Applying this to CM
∼= ωM [−d] we have:

RΓZC[d] ∼= DCZ .

Taking cohomology on both sides, we finally get:

Hd−k
Z (M,CM ) ∼= Hk

c (Z,CZ)
∨

which is Alexander duality.

Unfortunately D is not a duality on the whole Db(Sh(M,R)). However, we have the
following result:

Proposition 6.1.20. Let M be a complex analytic space. Then the restriction of D
on Db

c(Sh(M,R) is a contravariant endofunctor D : Db
c(Sh(M,R) → Db

c(Sh(M,R)op.
Furthermore it is an involution, hence it satisfies D ◦ D = id.

§ 6.2 Hodge Structures

In this section we state basic definitions and results on (mixed) Hodge structures and
variations of (mixed) Hodge structures that will be used in the proofs of our main
results in Chapter 7.

6.2.1 Pure Hodge Structures

We start with the familiar definition of pure Hodge structures inspired by the Hodge
Decomposition theorem on Kähler manifolds (Theorem 6.2.4).
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Definition 6.2.1 (Pure Hodge structure, 13, Definition 3.1.1). Let HZ be a finitely
generated free abelian group (lattice) and HC := HZ⊗Z C its complexification. A pure
Hodge structure of weight k ∈ Z onHC is a direct sum decompositionHC = ⊕p+q=kH

p,q

that satisfies Hp,q = Hq,p.

One can also speak about rational (real) Hodge structures by replacing the lattice HZ
with a rational (real) vector space. There is also another way to define Hodge structures
using filtrations on HC.

This alternative (but equivalent) definition of pure Hodge structures makes it easier to
generalize them to mixed Hodge structures.

Definition 6.2.2 (Pure Hodge Structure - alternative definition). A decreasing filtra-
tion

HC = F 0 ⊃ F 1 ⊃ ... ⊃ F k ⊃ {0} (6.1)

such that F p ∩ F q = 0 whenever p+ q = k + 1 defines a weight k Hodge structure.

The condition F p ∩F q = 0 whenever p+ q = k+1 is equivalent to F p⊕F k−p+1 = HC.
Moreover, the two definitions are equivalent. Given a decomposition HC := HZ ⊗Z C
we can define a filtration {F p} as F p = ⊕r≥pH

r,r−p. Conversely, given a filtration {F p}
we can define a decomposition of HC by setting Hp,q = F p ∩ F q.

Definition 6.2.3 (Morphisms of pure Hodge structures). A morphism f of pure Hodge
structures of weight k is a homomorphism of abelian groups f : HZ → H ′

Z such that
fC : HC → H ′

C is compatible with the decomposition.

Given some pure Hodge structures, one can use classical linear algebra operations to
define new ones.

1. Direct Sum: Given two Hodge structures of weight k we can define their direct
sum by taking the underlying lattice to be the direct sum of the two lattices and
the (p, q) components to be the direct sum of the (p, q) components of each term.
The direct sum is also a Hodge structure of weight k.

2. Dual Hodge Structure: Let (HZ, H
p,q) be a Hodge structure of weight k. Letting

H∗
Z := Hom(HZ,Z) and (H∗)p,q := (H−p,−q)∗ defines a new Hodge structure of

weight −k.

3. Tensor product: Let (HZ, H
p,q), (H ′

Z, H
′p,q) be two Hodge structures of weights k

and k′. Let H ′′
Z = HZ⊗H ′

Z and H ′′p,q = ⊕r+r′=p,s+s′=qH
r,s⊗H ′r′,s′ . This defines

a new Hodge structure of weight k + k′.
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One of the most important examples of Hodge structures comes from the cohomology
of Kähler manifolds.

Theorem 6.2.4 (Hodge Decomposition). Let M be a compact Kähler manifold. Then,
there exists a decomposition

Hk(M,C) = ⊕p+q=kH
p,q(M) (6.2)

where Hp,q(M) = Hq(M,Ωp
M ) and Hp,q(M) = Hq,p(M). If we let HZ = Hk(M,Z)/torsion,

then the data (HZ, H
p,q(M)) defines a pure Hodge structure.

Example 6.2.5 (Tate Hodge structure). Let HZ = 2πiZ and set HZ = H−1,−1. This
defines a pure Hodge structure of weight −2. We will denote it by Z(1), as it is the
unique 1-dimensional pure Hodge structure of weight -2 up to isomorphism.

Example 6.2.6 (Complex torus associated to a Hodge structure, 22, Remark 1). Let
(HZ, H

p,q) be a Hodge structure of weight 2k−1 and consider the corresponding Hodge
filtration on HC:

HC = F 0 ⊃ F 1 ⊃ ... ⊃ F 2k−1 ⊃ {0}. (6.3)

Then we can define the following complex torus:

Jk(H) =
HC

F kHC ⊕HZ
. (6.4)

Moreover, morphisms of Hodge structures induce morphisms of the corresponding com-
plex tori. In the particular case where we have a Kähler manifold with the Hodge
structure coming from the Hodge decomposition, we get the Intermediate Jacobian.

6.2.2 (Variations of) Mixed Hodge Structures

According to Theorem 6.2.4 every smooth projective algebraic variety over the complex
numbers has a pure Hodge structure. Deligne showed that it is possible to extend the
definition of pure Hodge structures, in a way that allows considering possibly non-
smooth or non-singular varieties, by introducing mixed Hodge structures. We are now
going to give the definition of this term.

Definition 6.2.7 (Mixed Hodge structure, 13, Definition 3.2.15). Amixed Hodge struc-
ture is defined by the following data:

1. A lattice HZ.
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2. An increasing filtration W of HZ ⊗Q :

... ⊂W0 ⊂W1 ⊂W2 ⊂ ...

This is called the weight filtration.

3. A decreasing filtration F of HC ⊗ C :

HC = F 0 ⊃ F 1 ⊃ F 2 ⊃ ...

called the Hodge filtration, which defines a pure Hodge structure of weight k on
the graded piece GrWk HQ =W kHQ/W

k+1HQ.

This definition depends solely on linear algebra data. It has been shown by Deligne
that the cohomology of any complex algebraic variety can be endowed with a mixed
Hodge structure ([13], Theorem 3.4.1). The construction of this mixed Hodge structure
is described in detail in ([13], Section 3.4).

In the next chapter we will be interested in the mixed Hodge structure of a punctured
algebraic curve. The construction of this mixed Hodge structure is described in detail
in ([13], Example 3.4.9).

Finally, in the next chapter we will need to describe the mixed Hodge structure on
the fibers of morphisms of varieties f : M → N and for this we need the definition of
variations of mixed Hodge structures.

Definition 6.2.8 (Variations of mixed Hodge structures, 13, Definition 8.1.13). A vari-
ation of mixed Hodge structures on an analytic manifold M is defined by the following
data:

1. A local system HZ.

2. A finite increasing filtration W of HZ ⊗Q by sublocal systems of rational vector
spaces.

3. A finite decreasing filtration F by locally free analytic subsheaves of HZ ⊗ OM

whose sections on M satisfy the Griffiths transversality condition with respect to
the connection ∇ defined on HZ ⊗OM by the local system HC := HZ ⊗ C

∇(Fp) ⊂ Ω1
M ⊗OM

Fp−1

(for more details on connections and the Griffiths transversality condition see [13]
Chapter 7 and Chapter 8, Section 8.1.2).
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4. The filtrations W and F define a mixed Hodge structure on each fiber of the
bundle HZ ⊗OM at a point n.

Remark 6.2.9 (13, Corollary 8.1.22). We will be using this in the case where we have
a morphism of varieties f : M → N and the constant sheaf ZM on M . We will also
have a stratification on N . We deduce from the above definitions that for each stratum
S and for every i the sheaf (Rif∗ZM )|S underlies a variation of mixed Hodge structures.



Chapter 7

Main Results

§ 7.1 Overview of previous results

In this section we are going to discuss some results concerning Gassmann triples and
Jacobians of curves. We will deal with the following situation: C is going to be an
algebraic curve and G ≤ Aut(C) a finite group that acts on C, while X,Y will be
transitive R-Gassmann equivalent G-sets, where R is going to be either Z or Q. We
have the following diagram with mappings between various quotients of C:

C

C/H1 C/H2

C/G

p1 p2

f

f1 f2

When R = Q we have the following result:

Theorem 7.1.1 (Prasad-Rajan 47, Gordon-Makover-Webb 25). Let C be a projective
algebraic curve over the field of the complex numbers with an action of a finite group
G ≤ Aut(C). Let X = G/H1, Y = G/H2 be rationally Gassmann equivalent transitive
G-sets. Then the Jacobians of C/H1 and C/H2 are isogenous.

The following proof uses a variation of the methods of [47], [25] and [4] and the language
of Hodge structures.

64
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Proof. The pullbacks p∗1, p
∗
2 give isomorphisms of vector spaces:

H1(C/H1,Q) ∼= H1(C,Q)H1 (7.1)

and

H1(C/H2,Q) ∼= H1(C,Q)H2 . (7.2)

We also have that ([47], Lemma 1):

H1(C,Q)H1 ∼= (H1(C,Q)⊗Q[G/H1])
G (7.3)

and

H1(C,Q)H2 ∼= (H1(C,Q)⊗Q[G/H2])
G. (7.4)

Since X,Y are rationally Gassmann equivalent we have that Q[G/H1] ∼= Q[G/H2].
Combining these together we get an isomorphism of vector spaces: Hk(C/H1,Q) ∼=
Hk(C/H2,Q). As pullbacks are compatible with Hodge structures, this is actually an
isomorphism of Hodge structures. Finally, the isomorphism of rational Hodge structures
implies that the Jacobians of C/H1 and C/H2 are isogenous (this follows from Example
6.2.6).

Using the exact same method, we can drop the assumption that the G-sets X,Y are
transitive. In what follows we will use the notation of tensor products of G manifolds.
We get the following result:

Theorem 7.1.2. Let C be a projective algebraic curve over the field of the complex
numbers with an action of a finite group G ≤ Aut(C). Let X,Y be rationally Gassmann
equivalent G-sets. Then the Jacobians of C×X

G and C×Y
G are isogenous.

Proof. Since X,Y are rationally Gassmann equivalent we have that Q[X] ∼= Q[Y ]. We
have the following isomorphisms of Hodge structures:

H1(
C ×X
G

,Q) ∼= H1(C ×X,Q)G ∼= (H1(C,Q)⊗Q[X])G (7.5)

and similarly

H1(
C × Y
G

,Q) ∼= H1(C × Y,Q)G ∼= (H1(C,Q)⊗Q[Y ])G (7.6)

Together, these give the desired isomorphism of rational Hodge structures and the proof
is complete.
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This method cannot be used if we replaceQ with Z because we can’t identifyHk(C/G,Z)
with Hk(C,Z)G. However, using a different method, Prasad showed in [46] the follow-
ing:

Theorem 7.1.3 (Prasad, 46). Let C be a projective algebraic curve over a field k with
an action of a finite group G ≤ Aut(C) and f : C → C/G the corresponding Galois
cover (not necessarily unramified). Let X = G/H1, Y = G/H2 be integrally Gassmann
equivalent transitive G-sets. Then the Jacobians of C/H1 and C/H2 are isomorphic
over k.

The proof is based on the following lemma of Shimura.

Lemma 7.1.4 (46, Lemma 2). The natural homomorphism (constructed in [46], Lemma
1) from HomG(Z[G/H1],Z[G/H2]) to Hom(J(C/H1), Jac(C/H2)) has the property
that for any subgroup H3 of G with corresponding algebraic curve C/H3 the natural
composition of G-homomorphisms:

Z[G/H1]→ Z[G/H2]→ Z[G/H3] (7.7)

corresponds to a composition of the corresponding maps on the Jacobian:

Jac(C/H1)← Jac(C/H2)← Jac(C/H3). (7.8)

Proof. (of Theorem 7.1.3) Since X,Y are intergrally Gassmann equivalent we have an
isomorphism Z[G/H1] ∼= Z[G/H2] and from the previous lemma this gives an isomor-
phism Jac(C/H1) ∼= Jac(C/H2).

In [4], Arapura et al., consider similar questions regarding the cohomology and Hodge
structure of Kähler manifolds. Their method of proof allows more flexibility for various
coefficients. They prove the following:

Theorem 7.1.5 (4, Theorem 1.4). Let X = G/H1, Y = G/H2 be transitive R-
Gassmann equivalent G-sets, M a smooth projective algebraic variety over a field k
with an action of a finite group G ≤ Aut(M) and f : M → M/G a Galois unramified
cover. Then:

1. If R = Q we have an isomorphism of rational Hodge structures: Hk(M/H1,Q) ∼=
Hk(M/H2,Q).

2. If R = Z we have an isomorphism of integral Hodge structures: Hk(M/H1,Z) ∼=
Hk(M/H2,Z).
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3. If R = Zp we have an isomorphism of etale cohomology groups: Hk
et(M/H1,Zp) ∼=

Hk
et(M/H2,Zp).

When f is unramified we can drop the assumption that the G-sets are transitive. Using
the exact same method of ([4], page 10) we get the following result:

Theorem 7.1.6. Let X,Y be R-Gassmann equivalent G-sets, M a smooth projective
algebraic variety over a field k with an action of a finite group G ≤ Aut(M) and
f :M →M/G a Galois unramified cover. Then:

1. If R = Q we have an isomorphism of rational Hodge structures: Hk(M×X
G ,Q) ∼=

Hk(M×Y
G ,Q).

2. If R = Z we have an isomorphism of integral Hodge structures: Hk(M×X
G ,Z) ∼=

Hk(M×Y
G ,Z).

3. If R = Zp we have an isomorphism of etale cohomology groups: Hk
et(

M×X
G ,Zp) ∼=

Hk
et(

M×Y
G ,Zp).

Proof. Let R = Q or Z and consider the locally constant sheaves RM×X
G

and RM×Y
G

on
M×X

G , M×Y
G respectively. We have the following diagram:

M

M×X
G

M×Y
G

M/G

f

f1

f2

Let F1 = (f1)∗(RM×X
G

), F2 = (f2)∗(RM×Y
G

) be the pushforward sheaves onM/G. They

are local systems and correspond to representations of the fundamental group of M/G.
We also have the monodromy action of π1(M/G) on the fibers of f1, f2 which are X
and Y respectively. Moreover, the covering map f : M → M/G gives a surjective
group homomorphism f̃ : π1(M/G)→ G. It follows that F1 and F2 correspond to the
π1(M/G) representations R[X] and R[Y ] respectively.

SinceX and Y are R-Gassmann equivalent, we have that R[X] and R[Y ] are isomorphic
R[G]-modules. It follows that F1 and F2 are isomorphic and we have that:

Hk(M/G,F1) ∼= Hk(M/G,F2).
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Since the maps f1, f2 are finite sheeted covers, the Leray spectral sequence collapses to
give isomorphisms:

Hk(
M ×X
G

,RM×X
G

) ∼= Hk(M/G,F1)

and

Hk(
M × Y
G

,RM×Y
G

) ∼= Hk(M/G,F2).

Combining these together, we finally get that:

Hk(
M ×X
G

,RM×X
G

) ∼= Hk(
M × Y
G

,RM×Y
G

).

This is an isomorphism of cohomology groups. Now we need to notice that the local
systems F1 and F2 carry Hodge structures and the last isomorphism is compatible with
them (see Remark 6.2.9).

The last case when R = Zp can be dealt in the same way by using the corresponding
etale notions (See [4] for details).

In the next section we are going to focus to the case where dimM = 1. We will show
that in that case we can drop the assumption that f is unramified.

§ 7.2 Proof of Main theorem

The goal of this section is to prove the main result of this thesis. We will start by
describing the setup and proceed by proving two lemmas before stating and proving
the main theorem. In what follows C is a smooth algebraic curve and G ≤ Aut(C)
is a finite subgroup of the automorphism group of C that acts on it, possibly with
ramification.

Consider the map f : C → C/G. Let Z = {p1, ..., pr} where p1, ..., pr are points of C
fixed by the action of G. Let U = C \ Z be the open complement.

Let R = Z or Q and consider the locally constant sheaves RC×X
G

and RC×Y
G

on C×X
G ,

C×Y
G respectively. Let F1 = (f1)∗(RC×X

G
), F2 = (f2)∗(RC×Y

G
) be the pushforward

sheaves on C/G. Since the covering is possibly ramified, we can’t claim that the
pushforward sheaves are locally constant. However, F1,F2 are constructible sheaves,
locally constant outside of the ramification locus.

First, we are going to prove that the restrictions of the pushforwards sheaves on the
unramified locus are isomorphic.
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Lemma 7.2.1. Consider the following diagram:

U

U×X
G

U×Y
G

U/G

f

f1

f2

Then, we have that:
F1 |U/G

∼= F2 |U/G .

Proof. The covering is unramified over U/G. The restrictions of the pushforward
sheaves on U/G, F1 |U/G and F2 |U/G are local systems and correspond to repre-
sentations of the fundamental group of U/G. We also have the monodromy action of
π1(U/G) on the fibers of f1, f2 which are X and Y respectively. Moreover, the cover-
ing map f : U → U/G gives a surjective group homomorphism f̃ : π1(U/G) → G. It
follows that F1 |U/G and F2 |U/G correspond to the π1(U/G) representations R[X] and
R[Y ] respectively.

Since X and Y are R-Gassmann equivalent we have that R[X] and R[Y ] are isomorphic
R[G]-modules. It follows that F1 |U/G and F2 |U/G are isomorphic.

This means that:
Hk(U/G,F1 |U/G) ∼= Hk(U/G,F2 |U/G)

and since the maps f1.f2 are finite sheeted covers, the Leray spectral sequences collapse
to give isomorphisms:

Hk(
U ×X
G

,RU×X
G

) ∼= Hk(U/G,F1 |U/G)

and

Hk(
U × Y
G

,RU×Y
G

) ∼= Hk(U/G,F2 |U/G).

Combining these together, we finally get that:

Hk(
U ×X
G

,RU×X
G

) ∼= Hk(
U × Y
G

,RU×Y
G

).

Now, let Z1 =
Z×X
G , Z2 =

Z×Y
G be the closed complements of U×X

G , U×Y
G in C×X

G , C×Y
G

respectively. We have the following lemma:
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Lemma 7.2.2 (Purity isomorphism). Let i1 : Z1 → C×X
G and i2 : Z2 → C×Y

G . Then:

i!1(RC×X
G

) ∼= RZ1
[−2]

and similarly

i!2(RC×Y
G

) ∼= RZ2
[−2].

Proof. Since Z1, Z2 are smooth, this is an immediate application of proposition 6.1.7.

Next, we need a lemma to show how Fi are made up from Fi |U and Fi |Z . Consider
the following diagrams of morphisms of open/closed pairs:

Z×X
G

C×X
G

U×X
G

Z/G C/G U/G

i1

g1 f1

j1

h1

i j

and
Z×Y
G

C×Y
G

U×Y
G

Z/G C/G U/G

i2

g2 f2

j2

h2

i j

.

Lemma 7.2.3. Consider the distinguished triangle:

i∗i
! → 1→ j∗j

∗ → [+1].

applied to F1,F2. Then we have the following isomorphisms for Rj∗F1 |U and Rj∗F2 |U :

R0j∗F1 |U∼= F1

and

R0j∗F2 |U∼= F2.

In particular, as F1 |U∼= F2 |U from Lemma 7.2.1, we get that F1
∼= F2.
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Proof. Taking the long exact sequence of cohomology sheaves coming from the distin-
guished triangle and using the purity isomorphism and base change for i!, we get the
following:

0 F1 R0j∗F1 |U

0 0 R1j∗F1 |U

i∗g1∗RC×X
G

0 ...

This gives the desired isomorphisms for F1 and similarly we obtain the desired isomor-
phisms for F2.

Theorem 7.2.4. Let X,Y be R-Gassmann equivalent G-sets, C a smooth projective
algebraic curve over the complex numbers with an action of a finite group G ≤ Aut(C)
and f : C → C/G a Galois cover (not necessarily unramified). Then:

1. If R = Q we have an isomorphism of rational Hodge structures: Hk(C×X
G ,Q) ∼=

Hk(C×Y
G ,Q).

2. If R = Z we have an isomorphism of integral Hodge structures: Hk(C×X
G ,Z) ∼=

Hk(C×Y
G ,Z).

Proof of main theorem. By Lemma 7.2.1 we see that for each i:

H i(
U ×X
G

,RU×X
G

) ∼= H i(
U × Y
G

,RU×Y
G

). (7.9)

Using Lemma 7.2.3:

H2(
Z ×X
G

,RZ×X
G

) ∼= H2(Z/G,F1 |Z/G) ∼= H2(Z/G, g1∗(RM×X
G

)) ∼= H2(M/G, i∗g1∗(RM×X
G

))

(7.10)
and

H2(
Z × Y
G

,RZ×Y
G

) ∼= H2(Z/G,F2 |Z/G) ∼= H2(Z/G, g2∗(RM×Y
G

)) ∼= H2(M/G, i∗g2∗(RM×Y
G

)).

(7.11)
Moreover, the cohomology groups are zero in all other degrees. This means that:

H i(
Z × Y
G

,RZ×Y
G

) ∼= H i(
Z × Y
G

,RZ×Y
G

) (7.12)
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for every i. Using Remark 6.2.9, since Z/G is finite and over U/G the covering is
unramified, the isomorphisms of (7.9) and (7.12) are isomorphisms of mixed Hodge
structures.

The morphisms of open/closed pairs after Lemma 7.2.2 give the following commutative
diagram of mixed Hodge structures with exact rows:

H i(C×X
G , RC×X

G
) H i(U×X

G , RU×X
G

) H i+1(Z×X
G , RZ×X

G
)

H i(C×Y
G , RM×Y

G
) H i(U×Y

G , RU×Y
G

) H i+1(Z×Y
G , RZ×Y

G
)

∼= ∼=

and it follows that H i(C×X
G , RC×X

G
), H i(C×Y

G , RC×Y
G

) are isomorphic Hodge structures,

which completes the proof.

Remark 7.2.5. As in Theorem 7.1.6, the case when R = Zp can be dealt in the
same way using the corresponding etale notions and one can show that we have an
isomorphism of etale cohomology groups: Hk

et(
C×X
G ,Zp) ∼= Hk

et(
C×Y
G ,Zp).

Corollary 7.2.6. Let X,Y be rationally (integrally) Gassmann equivalent G-sets, C
a smooth projective algebraic curve over the field of the complex numbers such that
G ≤ Aut(C) acts on C and f : C → C/G a Galois cover (not necessarily unramified).
Then the Jacobians of C×X

G and C×Y
G are isogenous (isomorphic).
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Applications

In this chapter we provide some applications of our main theorem (Theorem 7.2.4 and
Corollary 7.2.6) in the case of rational coefficients and show how it can be used to
get decompositions of Jacobians of algebraic curves up to isogeny. Decompositions up
to isogeny have been studied extensively (see [44]), often using Kani’s theorem (see
[36]). We begin by reviewing Kani’s theorem. We have seen the relationship between
Kani’s character equivalence and rationally Gassmann equivalent G-sets in Theorem
5.2.9. Based on this, any decomposition up to isogeny obtained using Kani’s theorem,
can also be obtained by using examples of rationally Gassmann equivalent G-sets and
Corollary 7.2.6 instead. We give some examples and explain a small difference between
the two approaches.

§ 8.1 Kani’s theorem and rational Gassmann equivalence

We have already discussed Kani’s concept of character equivalence and shown that it
is equivalent to rational Gassmann equivalence in chapter 5. In [36], it is shown that
idempotent relations can be used to get isogeny relations of abelian varieties.

Theorem 8.1.1 (36, Theorem A). Let A be an abelian variety. Then the idempotent
relation

n∑
i=1

ϵi ∼
m∑
i=1

ϵ′i (8.1)

holds in End0(A) if and only if we have the following isogeny relation

n∏
i=1

ϵi(A) ∼
m∏
i=1

ϵ′i(A). (8.2)
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In [36], relations among idempotents of the form ϵH =
∑

h∈H h ∈ Q[G] are considered.
Let C be a smooth projective curve with G ≤ Aut(C) and H a subgroup of G. There
is a canonical map of Q-algebras, ρ : Q[G] → End0JC (see [39]) and we have that
ρ(ϵH)(JC) is isogenous to JC/H (see [36]). So, if we had a character relation of such
idempotents, Theorem 8.1.1 would give us an isogeny relation of Jacobians of quotient
curves of C.

In order to apply this theorem, one needs to exhibit such idempotent relations. In this
direction, Kani gives the following result which generalizes Theorem 2.1.7.

Theorem 8.1.2 (36, Theorem B). Let C be an algebraic curve and G ≤ Aut(C) a finite
group. Let Hi ≤ G be subgroups of G such that G = H1 ∪ ... ∪Hm and Hi ∩Hj = {e}
if i ̸= j. Then we have the following isogeny relation:

Jm−1
C × Jg

C/G
∼= Jh1

C/H1
× ...Jhm

C/Hm
.

where g = |G| and hi = |Hi|.

This theorem has been used in several papers to obtain decompositions of Jacobians of
curves with non-trivial automorphism groups. One issue with this result is that it is not
clear which groups admit partitions and also the subgroups Hi are not explicitly given.
As character equivalence is equivalent to rational Gassmann equivalence, instead of
using Theorem 8.1.2 one can use our Corollary 7.2.6 and examples of rational Gassmann
equivalence to produce the same examples. The advantage of this is that the subgroups
Hi can be computed explicitely. Also, the decomposition in Theorem 8.1.2 is often
coming from a multiple of the basis for rational Gassmann equivalence and one has to
use Poincare reducibility to simplify the decomposition. By using rationally Gassmann
equivalent G-sets and Corollary 7.2.6 there is no need to use Poincare reducibility. We
illustrate this in the following example.

Example 8.1.3 (44, page 5). Let C be an algebraic curve and assume that G =
Z2 × Z2

∼= ⟨a, b⟩ is contained in the automorphism group of C. Consider the following
subgroups of G: H1 = {e, a}, H2 = {e, b}, H3 = {e, ab}. These groups give a partition
of G and one can apply Theorem 8.1.2 to obtain:

J2
C × J4

C/G ∼ J
2
C/H1

× J2
C/H2

× J2
C/H3

.

We are interested in relations involving the Jacobian of C so now we have to apply
Poincare’s reducibility theorem to obtain

JC × J2
C/G ∼ JC/H1

× JC/H2
× JC/H3

. (8.3)
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The same example can be obtained with our theorem and the rational Gassmann equiv-
alence for Z2 × Z2. In that case, one obtains the relation 8.3 directly, without having
to use Poincare’s reducibility theorem. We illustrate it together with other similar
examples in the next section.

§ 8.2 Some known examples obtained through rationally Gassmann
equivalent G-sets

We start by redoing Example 8.3 using Gassmann equivalence. In all these examples
C is a smooth projective algebraic curve and G ≤ Aut(C).

Example 8.2.1. Again, let G ∼= Z2 × Z2 and its subgroups H1 = {e, a}, H2 =
{e, b}, H3 = {e, ab}. Then, we have seen in Example 5.2.3 that the G-sets X ∼=
G/H1⊔G/H2⊔G/H3 and Y ∼= G/{e}⊔G/G⊔G/G are rationally Gassmann equivalent.
Applying Corollary 7.2.6 we obtain the isogeny relation of Example 8.1.3:

JC × J2
C/G ∼ JC/H1

× JC/H2
× JC/H3

.

Similary, using the rationally Gassmann equivalent G-sets in S3, that we studied in
Example 5.2.4, we obtain:

Example 8.2.2. Let G be the symmetric group on 3 letters S3 and consider its
subgroups H1 = {e}, H2 = {e, (12)}, H3 = {e, (123)} and G. The G-sets X ∼=
G/H2⊔G/H2⊔G/H3 and Y ∼= G/{e}⊔G/G⊔G/G are rationally Gassmann equivalent.
Applying Corollary 7.2.6 we get:

J2
H2
× JH3

∼= JC × J2
C/G.

Now we consider the group G ∼= Zp×Zp and the Gassmann equivalent G-sets obtained
in 5.2.5.

Example 8.2.3. Applying Corollary 7.2.6 we obtain the following isogeny relation:

JC × Jp
C/G
∼= JC/H1

× ...× JC/Hp+1
.

This is the same as ([36], Example 1, Section 5).

Finally, an example with the Gassmann equivalent G-sets in the dihedral group Dq,
that we obtained in Example 5.2.7.

Example 8.2.4. Applying Corollary 7.2.6 we obtain the following isogeny relation:

JC/⟨σ⟩ × J2
C/⟨τ⟩

∼= J2
C/Dq

× JC .
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This is the same as ([44], Example 3.1.2).

In the case where we know more details about the generators of the automorphism
group of the curve C, we can use the Riemann Hurwitz formula of Chapter 2 to find
the genus of the quotient curves and obtain more explicit decompositions. We illustrate
this with three examples that can be found in [44].

Example 8.2.5 (44, Theorem 5). Let C be a hyperelliptic curve of the form y2 =
x2g+2+a1x

2g+a2x
2g−2+...+agx

2+1. Any such hyperelliptic curve has an automorphism
group that contains the group G ∼= Z2×Z2. The three non-trivial automorphisms are:
a : (x, y) → (−x, y), the hyperelliptic involution b : (x, y) → (x,−y) and ab : (x, y) →
(−x,−y). Example 8.2.1 gives the decomposition:

JC/{e} × JC/{G} × JC/{G} ∼= JC/⟨a⟩ × JC/⟨b⟩ × JC/⟨ab⟩.

Disregarding genus 0 curves, we get:

JC ∼= JC1 × JC2

where C1 = C/⟨a⟩ and C2 = C/⟨ab⟩.

Using the Riemann Hurwitz formula we get that when gC is even gC1 = gC2 = gC/2
and when gC is odd gC1 = (gC − 1)/2 and gC2 = (gC + 1)/2.

Example 8.2.6 (44, Example 3.2.3). Consider the 1-dimensional family of genus 3
curves C : y2 = x(x6 + ax3 + 1). Any such curve has automorphism group D12 with
generators r : (x, y) → (ζ3x, ζ6y) and s : (x, y) → (1/x, y/x4). This group has a
subgroup isomorphic to S3 generated by r2 and s. Corollary 7.2.6 and Example 5.2.4
give the following isogeny relation:

JC/{e} × JC/{G} × JC/{G} ∼= JC/⟨r2⟩ × JC/⟨s⟩ × JC/⟨sr2⟩.

Using the Riemann Hurwitz formula, the three curves on the right have genus 1 and
since ⟨r2⟩ and ⟨sr2⟩ are conjugate, the last two Jacobians are isogenous. Disregarding
genus 0 curves, we get:

JC ∼= E1 × E2
2

where E1, E2 are elliptic curves.

Example 8.2.7 (44, Example 3.2.4). Consider the genus 3 curve C : y2 = x8+14x+1.
It is the only genus 3 curve with automorphism group S4 × Z2. The generators are
(12) : (x, y) → (1−x

1+x ,−
4y

(1+x)4
), (1234) : (x, y) → (ix, y), τ : (x, y) → (x,−y). This

group has a particular subgroup isomorphic to the Klein group Z2 × Z2 and using
Corollary 7.2.6 and Example 5.2.3 we get the following isogeny relation:

JC/{e} × JC/{G} × JC/{G} ∼= JC/⟨((12)(34),e)⟩ × JC/⟨((13)(24),e)⟩ × JC/⟨((14)(23),e)⟩.
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In this case all the subgroups on the right side are conjugate and the corresponding
Jacobians of the quotient curves are isogenous. This means that:

JC ∼ E3

where E is an elliptic curve.

Similarly, using the results on the full automorphism groups of hyperelliptic curves of
Chapter 2 we can obtain most of the other decompositions of Jacobians that are given
in [44].

§ 8.3 Conclusions - Future work

While decompositions of Jacobians up to isogeny have been studied extensively, de-
compositions up to isomorphism are only known in a few special cases. The advantage
of Theorem 7.2.4 and Corollary 7.2.6 is that it can give relations of Jacobians up to
isomorphism, provided that one knows how to find examples of integrally Gassmann
equivalent G-sets. Unfortunately there is currently only one known example (Example
5.5.2) of transitive integrally Gassmann equivalent G-sets. In all the other cases of
Gassmann equivalence, such as rational, p-local and locally integral, intransitive exam-
ples appear to be more abundant. We expect that it will be possible to find intransitive
integrally Gassmann equivalent G-sets and it will be interesting to see what type of
isomorphism relations of Jacobians can be obtained through them. For example, if one
manages to find such examples in certain groups of type PSL(2, q) it might be possible
to decompose Jacobians of Hurwitz curves up to isomorphism.
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Appendix

§ 9.1 Code for Rational Gassmann equivalence

f unc t i on RationalGassmann (G)
tom:=TableOfMarks (G) ;
M:=Transpose ( tom ) ;
Q: = [ ] ;
L:=SubgroupLatt ice (G) ;
f o r i in [ 1 . .#L ] do i f I sCy c l i c (L [ i ] ) then Append(˜Q, i ) ;
end i f ;
end f o r ;
A:=[Q [ 1 ] ] ;
f o r i in [ 2 . .#Q] do
f o r j in [ 1 . . i −1] do
i f Q[ i ] ne Q[ j ] then counter :=0; e l s e counter :=1;
end i f ;
end f o r ;
i f counter ne 1 then Append(˜A,Q[ i ] ) ; end i f ;
end f o r ;
FinalMatrixT :=Matrix ( [M[ 1 ] ] ) ;
f o r i in [ 1 . .#L ] do
i f i in A then Ve r t i c a l J o i n (˜ FinalMatrixT ,M[ i ] ) ;
end i f ;
end f o r ;
RemoveRow(˜ FinalMatrixT , 1 ) ;
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FinalMatr ix :=Transpose ( FinalMatrixT ) ;
So lu t i on :=Nul l space ( FinalMatr ix ) ;
r e turn So lu t i on ;

end func t i on ;

RationalGassmann ( SymmetricGroup ( 3 ) ) ;
RSpace o f degree 4 , dimension 1 over In t eg e r Ring
Eche lon ized ba s i s :
( 1 −2 −1 2)

§ 9.2 Code for Locally Integral Gassmann Equivalence

f unc t i on Local lyIntegra lGassmann (G)
tom:=TableOfMarks (G) ;
M:=Transpose ( tom ) ;
Q: = [ ] ;

K:=PrimeDiv isors ( Order (G) ) ;
L:=SubgroupLatt ice (G) ;
f o r i in [ 1 . .#L ] do f o r j in [ 1 . .#K] do
i f I sCy c l i c (L [ i ] / pCore (L [ i ] ,K[ j ] ) ) then Append(˜Q, i ) ;
end i f ;
end f o r ;
end f o r ;
A:=[Q [ 1 ] ] ;
f o r i in [ 2 . .#Q] do
f o r j in [ 1 . . i −1] do
i f Q[ i ] ne Q[ j ] then counter :=0; e l s e counter :=1;
end i f ;
end f o r ;
i f counter ne 1 then Append(˜A,Q[ i ] ) ; end i f ;
end f o r ;
FinalMatrixT :=Matrix ( [M[ 1 ] ] ) ;
f o r i in [ 1 . .#L ] do
i f i in A then Ve r t i c a l J o i n (˜ FinalMatrixT ,M[ i ] ) ;
end i f ;
end f o r ;
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RemoveRow(˜ FinalMatrixT , 1 ) ;
FinalMatr ix :=Transpose ( FinalMatrixT ) ;
L i s t S o l u t i on :=Nul l space ( FinalMatr ix ) ;
r e turn L i s t S o l u t i on ;

end func t i on ;

Local lyIntegra lGassmann ( DihedralGroup ( 6 ) ) ;
RSpace o f degree 10 , dimension 1 over In t eg e r Ring
Eche lon ized ba s i s :
( 1 −1 −1 −1 −1 2 1 1 1 −2)

§ 9.3 Scott’s example of integrally Gassmann equivalent G-sets

f unc t i on OrbitMatrix (G,H1 ,H2)
i f Type (G) ne GrpPerm then

pi ,G, :=CosetAction (G, sub<G|>) ;
H1:=pi (H1 ) ; H2:=pi (H2 ) ;

end i f ;
pi1 , P1 ,K1:=CosetAction (G,H1 ) ;
pi2 , P2 ,K2:=CosetAction (G,H2 ) ;
n1:=Degree (P1 ) ;
n2:=Degree (P2 ) ;
X:={< i , j >: i in [ 1 . . n1 ] , j in [ 1 . . n2 ] } ;
XxG:=Cartes ianProduct (X,G) ;
f :=map<XxG−>X | x:−><x [ 1 ] [ 1 ] ˆ p i1 ( x [ 2 ] ) , x [ 1 ] [ 2 ] ˆ p i2 ( x [2])>> ;
O:=Orbits (G, GSet (G,X, f ) ) ;
A:=Assoc ia t iveArray (X) ;
f o r i in [ 1 . .#O] do f o r a in O[ i ] do A[ a ] := i ;
end f o r ; end f o r ;
M:=Matrix ( [ [A[< i , j > ] : i in [ 1 . . n1 ] ] : j in [ 1 . . n2 ] ] ) ;
r e turn M,#O, [ ExactQuotient(#o , n2 ) : o in O] ;

end func t i on ;

func t i on DoubleCosetUnions (G,H1 ,H2)
i f Type (G) ne GrpPerm then

pi ,G, :=CosetAction (G, sub<G|>) ;
H1:=pi (H1 ) ; H2:=pi (H2 ) ;

end i f ;
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pi1 , P1 ,K1:=CosetAction (G,H1 ) ;
pi2 , P2 ,K2:=CosetAction (G,H2 ) ;
n1:=Degree (P1 ) ;
n2:=Degree (P2 ) ;
X:={< i , j >: i in [ 1 . . n1 ] , j in [ 1 . . n2 ] } ;
XxG:=Cartes ianProduct (X,G) ;
f :=map<XxG−>X | x:−><x [ 1 ] [ 1 ] ˆ p i1 ( x [ 2 ] ) , x [ 1 ] [ 2 ] ˆ p i2 ( x [2])>> ;
O:=Orbits (G, GSet (G,X, f ) ) ;
r e turn [ ExactQuotient(#o , n2 ) : o in O] ;

end func t i on ;

G:=PSL( 2 , 2 9 ) ;
S :=[H‘ subgroup :H in Subgroups (G: IndexEqual :=203) |
#Core (G,H‘ subgroup ) eq 1 ] ;
DoubleCosetUnions (G, S [ 1 ] , S [ 2 ] ) ;
M:=OrbitMatrix (G, S [ 1 ] , S [ 2 ] ) ;
f o r i in [ 1 . . 2 0 3 ] do
f o r j in [ 1 . . 2 0 3 ] do
i f M[ i , j ] eq 1 then

M[ i , j ] :=1 ;
e l i f M[ i , j ] eq 2 then

M[ i , j ] :=−1;
e l s e

M[ i , j ] :=0 ;
end i f ;
end f o r ;
end f o r ;
Determinant (M) ;

[ 5 , 6 , 10 , 12 , 20 , 30 , 60 , 60 ]
1

§ 9.4 Code for Example 4.2.5

G:=SymmetricGroup ( 3 ) ;
tom:=TableOfMarks (G) ;
M:=Transpose ( tom ) ;
Q: = [ ] ;
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K:=PrimeDiv isors ( Order (G) ) ;
L:=SubgroupLatt ice (G) ;
f o r i in [ 1 . .#L ] do i f I sCy c l i c (L [ i ] ) then Append(˜Q, i ) ;
end i f ; end f o r ;

A:=[Q [ 1 ] ] ;
f o r i in [ 2 . .#Q] do
f o r j in [ 1 . . i −1] do
i f Q[ i ] ne Q[ j ] then counter :=0; e l s e counter :=1;
end i f ;
end f o r ;
i f counter ne 1 then Append(˜A,Q[ i ] ) ; end i f ;
end f o r ;
FinalMatrixT :=Matrix ( [M[ 1 ] ] ) ;
f o r i in [ 1 . .#L ] do
i f i in A then Ve r t i c a l J o i n (˜ FinalMatrixT ,M[ i ] ) ;
end i f ;
end f o r ;
RemoveRow(˜ FinalMatrixT , 1 ) ;
FinalMatr ix :=Transpose ( FinalMatrixT ) ;
So lu t i on :=Nul l space ( FinalMatr ix ) ;
So lu t i on ;

func t i on DoubleCosetUnions (G,H1 ,H2)
i f Type (G) ne GrpPerm then

pi ,G, :=CosetAction (G, sub<G|>) ;
H1:=pi (H1 ) ; H2:=pi (H2 ) ;

end i f ;
pi1 , P1 ,K1:=CosetAction (G,H1 ) ;
pi2 , P2 ,K2:=CosetAction (G,H2 ) ;
n1:=Degree (P1 ) ;
n2:=Degree (P2 ) ;
X:={< i , j >: i in [ 1 . . n1 ] , j in [ 1 . . n2 ] } ;
XxG:=Cartes ianProduct (X,G) ;
f :=map<XxG−>X | x:−><x [ 1 ] [ 1 ] ˆ p i1 ( x [ 2 ] ) , x [ 1 ] [ 2 ] ˆ p i2 ( x [2])>> ;
O:=Orbits (G, GSet (G,X, f ) ) ;
r e turn [ ExactQuotient(#o , n2 ) : o in O] ;

end func t i on ;
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Gsetx :=[L [ 1 ] , L [ 4 ] , L [ 4 ] ] ;
Gsety :=[L [ 2 ] , L [ 2 ] , L [ 3 ] ] ;

s i z e s :=[∗ ∗ ] ;
f o r i in [ 1 . .# Gsetx ] do
f o r j in [ 1 . .# Gsety ] do
Append(˜ s i z e s , DoubleCosetUnions (G, Gsetx [ i ] , Gsety [ j ] ) ) ;
end f o r ;
end f o r ;

s i z e s ;

f unc t i on NumberOfOrbits (G,H1 ,H2)
i f Type (G) ne GrpPerm then

pi ,G, :=CosetAction (G, sub<G|>) ;
H1:=pi (H1 ) ; H2:=pi (H2 ) ;

end i f ;
pi1 , P1 ,K1:=CosetAction (G,H1 ) ;
pi2 , P2 ,K2:=CosetAction (G,H2 ) ;
n1:=Degree (P1 ) ;
n2:=Degree (P2 ) ;
X:={< i , j >: i in [ 1 . . n1 ] , j in [ 1 . . n2 ] } ;
XxG:=Cartes ianProduct (X,G) ;
f :=map<XxG−>X | x:−><x [ 1 ] [ 1 ] ˆ p i1 ( x [ 2 ] ) , x [ 1 ] [ 2 ] ˆ p i2 ( x [2])>> ;
O:=Orbits (G, GSet (G,X, f ) ) ;
r e turn #O;

end func t i on ;

func t i on OrbitMatrix (G,H1 ,H2)
i f Type (G) ne GrpPerm then

pi ,G, :=CosetAction (G, sub<G|>) ;
H1:=pi (H1 ) ; H2:=pi (H2 ) ;

end i f ;
pi1 , P1 ,K1:=CosetAction (G,H1 ) ;
pi2 , P2 ,K2:=CosetAction (G,H2 ) ;
n1:=Degree (P1 ) ;
n2:=Degree (P2 ) ;
X:={< i , j >: i in [ 1 . . n1 ] , j in [ 1 . . n2 ] } ;
XxG:=Cartes ianProduct (X,G) ;
f :=map<XxG−>X | x:−><x [ 1 ] [ 1 ] ˆ p i1 ( x [ 2 ] ) , x [ 1 ] [ 2 ] ˆ p i2 ( x [2])>> ;
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O:=Orbits (G, GSet (G,X, f ) ) ;
A:=Assoc ia t iveArray (X) ;
f o r i in [ 1 . .#O] do f o r a in O[ i ] do A[ a ] := i ;

end f o r ; end f o r ;
M:=Matrix ( [ [A[< i , j > ] : i in [ 1 . . n1 ] ] : j in [ 1 . . n2 ] ] ) ;
r e turn M,#O, [ ExactQuotient(#o , n2 ) : o in O] ;

end func t i on ;

M:=[∗ ∗ ] ;
counter :=0;
f o r i in [ 1 . .# Gsetx ] do
f o r j in [ 1 . .# Gsety ] do
K:=OrbitMatrix (G, Gsetx [ i ] , Gsety [ j ] ) ;
rows :=NumberOfRows(K) ;
columns :=NumberOfColumns (K) ;
f o r k in [ 1 . . rows ] do
f o r l in [ 1 . . columns ] do
K[ k , l ] :=K[ k , l ]+ counter ;
end f o r ;
end f o r ;
Append(˜M,K) ;
counter := counter+NumberOfOrbits (G, Gsetx [ i ] , Gsety [ j ] ) ;
end f o r ;
end f o r ;

Ve r t i c a l :=[∗ ∗ ] ;
f o r i in [ 1 . .# Gsetx ] do
Append(˜ Ver t i ca l ,M[1+( i −1)∗(#Gsetx ) ] ) ;
end f o r ;
F i n a lVe r t i c a l :=[∗ ∗ ] ;
f o r i in [ 1 . .# Gsetx ] do
F i na lVe r t i c a l [ i ] := Ve r t i c a l [ i ] ;
f o r j in [ 2 . .# Gsetx ] do
F i na lVe r t i c a l [ i ] := Ve r t i c a l J o i n ( F i n a lVe r t i c a l [ i ] ,
M[ ( i −1)∗(#Gsetx)+ j ] ) ;
end f o r ;
end f o r ;
FinalMatr ix := F ina lVe r t i c a l [ 1 ] ;
f o r i in [ 2 . .# Gsetx ] do
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FinalMatr ix :=Hor i zonta lJo in ( FinalMatrix , F i n a lVe r t i c a l [ i ] ) ;
end f o r ;
FinalMatr ix ;
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[8] R. Brandt, Über die Automorphismengruppen von Algebraischen Funktio-
nenkörpern, Ph.D. thesis, Essen Universität, (1988).

[9] R. Brandt, H. Stichtenoth, Die Automorphismengruppen hyperelliptischer Kurven.
Manuscripta Math. 55(1), 83–92, (1986).

[10] G. E. Bredon, Sheaf theory, Springer New York, (2012).

[11] E. Bujalance, J. M. Gamboa, G. Gromadzki, The full automorphism groups of
hyperelliptic Riemann surfaces, Manuscripta Math. 79, 267–282, (1993).

[12] W. Burnside, chapter XII of Theory of Groups of Finite Order, Dover Publications
(2004).

86



BIBLIOGRAPHY 87

[13] E. Cattani, P.Griffiths, F. E. Zein, Hodge Theory, Princeton University Press,
(2014).

[14] C. Ciliberto, Endomorfismi di jacobiane, Rendiconti del Seminario Matematico e
Fisico di Milano, 59(1), 213-242, (1989).

[15] C. Ciliberto, G. van der Geer, Non-isomorphic curves of genus four with isomor-
phic (nonpolarized) jacobians, in “Classification of Algebraic Varieties” (C. Cilib-
erto, E. L. Livorni, and A. J. Sommese, Eds.), pp. 129-133, Contemp. Math., Vol.
162, Amer. Math. Soc., Providence, RI, (1994).

[16] C. Ciliberto, G. van der Geer, Subvarieties of the Moduli Space of Curves
Parametrizing Jacobians with Non-Trivial Endomorphisms, American Journal of
Mathematics Vol. 114, No. 3, pp. 551-570, (1992).

[17] T. Doktchitser, Notes on Abelian Varieties [Part I], Lecture notes,
https://people.maths.bris.ac.uk/ matyd/av1.pdf.

[18] I. V. Dolgachev, McKay correspondence, Lecture notes,
http://www.math.lsa.umich.edu/ idolga/McKaybook.pdf, (Winter 2006/07).

[19] A. Dimca, Sheaves in Topology, Springer, (2004).

[20] A.I. Efimov, Some remarks on L-equivalence of algebraic varieties, Selecta Math-
ematica, volume 24, 3753–3762, (2018).

[21] P. I. Etingof, Introduction to Representation theory, American Mathematical So-
ciety, (2011).

[22] S. A. Filippini, H Ruddat, A Thompson, An introduction to Hodge structures,
https://arxiv.org/pdf/1412.8499.pdf

[23] F. Gassmann, Bemerkungen zu der vorstehenden Arbeit von Hurwitz z (comments
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