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Abstract

We present the analysis of the dynamics for a scalar field in the universal covering space of
N–dimensional anti–de Sitter spacetime, AdSN (N ≥ 2), and for a spinor field satisfying
the Dirac equation in the universal covering space of two–dimensional anti-de Sitter
spacetime, AdS2. We apply a prescription for dynamics in static, non–globally hyperbolic
spacetimes based on the theory of self–adjoint extensions of operators on Hilbert spaces.
This prescription results in a family of field theories with a well–defined initial value
problem despite the lack of global–hyperbolicity of the spacetime manifold. Then, we
impose the invariance of the associated solution spaces under the infinitesimal action of the
isometry group of AdSN (S̃L(2,R) for N = 2 and S̃O(2, N − 1) for N ≥ 3) to determine
which among the family of theories obtained by the prescription for dynamics can be used
to construct a quantum field theory with a stationary vacuum state.
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1

Introduction

One of the cornerstones of modern mathematical and theoretical physics is the framework
of Quantum Field Theory (QFT). Its predictive power and validation against experimental
scrutiny to a remarkably high degree of accuracy has cemented QFT as one of the most
successful physical theories of the past century. However, despite its success, QFT has
failed to describe a comprehensive and consistent theory of quantum gravity, mostly due
to the mathematical inconsistencies that arise when the principles of General Relativity
are included in the theory. Nevertheless, attempts to reconcile QFT with the equally
successful theory of General Relativity have resulted in a vast number of theories that have
broadened the landscape of mathematical physics and have added to our understanding
of the possible limitations of the mathematical tools that are used to describe physical
phenomena.

Among these theories, Quantum Field Theory in curved spacetime is a framework that
aims to describe quantum phenomena in a regime where the influence of the gravitational
field on the propagation of the quantum fields is significant, but its description as a quantum
field itself can be neglected. Thus, QFT in curved spacetime can be understood as an
approximation that takes into account the effects that a gravitational field introduces to the
quantum interactions that fall in this particular threshold. Specifically, the gravitational
interaction in these theories enters the picture in the form of a background spacetime
satisfying Einstein’s field equations on which the quantum fields propagate. Several
interesting predictions have been obtained by applying this framework to situations in
which we believe these considerations do apply, including, but not limited to, the discovery
of Hawking radiation [4, 5], the Unruh effect [6, 7, 8], and the Casimir effect [9].

Ever since the effort of QFT in curved spacetime was proven to produce useful results,
there has been an ongoing interest in analysing the propagation of quantum fields on
a variety of curved backgrounds. A very interesting example is that of anti–de Sitter
spacetime, a maximally symmetric vacuum solution to Einstein’s field equations of constant
negative curvature. This spacetime has two prominent peculiarities. Firstly, it admits the
existence of closed timelike curves, a fact that violates the causality of events if taken to be
a physical spacetime. Nevertheless, one usually avoids this issue by considering instead the
universal covering space, AdSN , of the N–dimensional anti–de Sitter space as the physical
spacetime this solution describes. Secondly, the universal covering space AdSN is not a
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Chapter 1. Introduction 10

globally hyperbolic manifold. Hence, given a set of initial data on a region of spacetime,
the equations of motion describing the evolution of the fields may not be able to determine
the values of the field throughout the whole spacetime manifold. Despite this drawback,
AdSN has played a prominent role in many areas of mathematical and theoretical physics
in the last two decades. The interest to study anti–de Sitter spacetimes in the context of
QFT in curved spacetime may be attributed to the outstanding result from string theory
known as the AdS/CFT correspondence [10], which conjectures the equivalence between a
theory of quantum gravity on AdSN and a quantum field theory with no gravity defined in
its conformal boundary. Hence, the AdS/CFT conjecture may provide a way to describe
quantum gravitational effects while circumventing the notorious difficulties encountered
when defining a quantum theory of gravity. Interest in classical and quantum theories
in anti–de Sitter spacetime has gone well beyond its initial connection to the AdS/CFT
correspondence from the viewpoint of string theory and has resulted in the investigation of
their properties in a wide variety of different contexts.

Anti–de Sitter spacetime has proven to be a useful model to study QFT’s for which
the background manifold is not globally hyperbolic. The standard procedure to construct
a QFT consists of applying canonical quantisation to the solutions of the classical field
equations of motion. For this process to define a consistent quantum theory, the classical
field satisfying the equations of motion must have well–defined dynamics. If the spacetime
manifold fails to be globally hyperbolic, this last requirement is not guaranteed and, thus,
the heavy work for the quantisation of this kind of theories is usually done at the classical
level. For the particular case of AdSN , sensible dynamics for the classical field can be
obtained by imposing certain boundary conditions that the field must satisfy at spatial
infinity. Some properties of quantum field theories in anti–de Sitter spacetime obtained
from these boundary conditions have been studied in the past [11, 12, 13, 14] and more
recently [15, 16, 17, 18, 19]. Depending on the context in which such theories are analysed,
different arguments may be given for choosing a particular set of boundary conditions over
the others but, in general, there is no underlying principle that removes the ambiguity of
choice.

In a more general context, if the spacetime manifold admits a global timelike Killing
vector field, there exists a prescription that provides a way to obtain well–defined dynamics
for the equations of motion. This prescription for dynamics is due to Ishibashi and
Wald [20, 21] and, at its core, relies on the theory of self–adjoint extensions of operators
on Hilbert spaces. Since AdSN is maximally symmetric, it admits a global timelike Killing
vector and, thus, this prescription can be applied to this case. In particular, Ishibashi and
Wald analysed in Ref. [22] the classical scalar, vector and symmetric tensor field theories
defined on AdSN for all N ≥ 3. The interesting aspect of Ishibashi and Wald’s prescription
is that it is possible to obtain a family of boundary conditions on the field solutions that
result in well–defined dynamics. The usual choices of boundary conditions arise in this
prescription as particular cases of the family of admissible boundary conditions. The
results of Ishibashi and Wald for AdSN cover the higher–dimensional cases (N ≥ 3), all of
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which behave in a very similar way under their prescription. However, their results do not
immediately extend to the two–dimensional case.

The main goal of the research presented in this thesis is to apply the prescription for
dynamics of Ishibashi and Wald to free scalar and spinor field theories in the universal
covering space of two–dimensional anti–de Sitter spacetime, AdS2. Additionally, we aim to
extend the analysis of Ishibashi and Wald in Ref. [22] by determining which of the boundary
conditions resulting from applying their prescription to a scalar field theory in AdSN for all
N ≥ 2 and to a spinor field in AdS2 are invariant under the isometry group of the spacetime
manifold. For AdS2, the isometry group is isomorphic to the universal covering group,
S̃L(2,R), of SL(2,R), while for AdSN , with N ≥ 3, the isometry group is the connected
component of the special indefinite orthogonal group SO(2, N − 1). The invariance of
the associated solution spaces under the isometry group of the theory thus provides a
criterion to select certain boundary conditions over the others. Furthermore, with the
aim of constructing a quantum field theory using the solution spaces that result from
the invariant boundary conditions, we determine which among these admit an invariant
positive–frequency subspace.

Thus, the general outline of this thesis is the following. The rest of Chapter 1 includes
a brief remark on the notational conventions we use in this thesis. In Chapters 2–5 we
present the mathematical preliminaries used in our research, including the prescription
for dynamics by Ishibashi and Wald, some general properties of N–dimensional anti–de
Sitter spacetimes and a review of the representation theory of S̃L(2,R). We also present a
brief summary of the theory of self–adjoint extensions of operators on Hilbert spaces and
include a useful example in which the correspondence with the self–adjoint extensions of a
differential operator and a family of boundary conditions is made explicit. In Chapters 6–8,
we present the analysis of a minimally coupled, free scalar field in AdSN (N ≥ 2), and
that of a free spinor field satisfying the Dirac equation in AdS2. In Chapter 9 we provide
a summary of our results. The rest of this thesis consist of Appendices A–H, in which we
include some reference material regarding self–adjoint operators on Hilbert spaces as well
as some specific calculations used in this thesis.

1.1 notation

We clarify some of the notational conventions we use throughout this work.
Tensors and tensor fields of rank 2 on a smooth manifold are denoted with the use of

boldface, e.g., the metric tensor on an N–dimensional pseudo–Riemannian manifold,M is
written as g. Local coordinates onM are represented by the N–tuples (x0, x1, . . . , xN−1),
collectively written as (xµ), where 0 ≤ µ ≤ N − 1. If the manifoldM is Lorentzian with
signature (−1, 1, . . . , 1), we will denote the spacelike coordinates with Latin superscripts,
e.g., (xµ) = (x0, xi), where 1 ≤ i ≤ N − 1, and we usually make use of the shorthand
x := (xi). A tensor field g evaluated at a point p ∈ M with local coordinates (x0, x) is
denoted by g(x0,x). The action of vector fields on smooth functions onM will be denoted
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by the use of square brackets: For ξ ∈ X(M), and f ∈ C∞(M), we have ξ[f ] ∈ C∞(M).
We also denote partial differentiation of functions by the symbols

∂

∂x
and ∂x ,

interchangeably.
For a Hilbert space H , we adopt the convention in which the inner product 〈·, ·〉 in

H satisfies, for all x, y ∈H , and λ1, λ2 ∈ C,

〈λ1x, λ2y〉 = λ1λ2 〈x, y〉 ,

where λ1 is the complex conjugate of λ1.
The use of the superscript † will be relatively flexible and will depend on the type of

mathematical object it is used on. In general, it denotes the adjoint of a linear map acting
on a Hilbert space H . If T : H →H is a linear map, and 〈·, ·〉 denotes the inner product
in H , then T † is defined by the relation

〈x, Ty〉 =
〈
T †x, y

〉
, (1.1)

for all x, y ∈ H for which the above expression is well–defined (see Definition 2.2.2 in
Chapter 2). In particular, if H = CN with its standard inner product, then T is a complex
N ×N–matrix and T † is the conjugate transpose of T . If H is a more general Hilbert
space, and T is an abstract operator, then T † must be understood through Eq. (1.1).

We adopt the convention that defines the set of natural numbers as N = {1, 2, 3, . . . },
and we use the symbol N0 to refer to the set defined by

N0 = N ∪ {0} .

Finally, we denote the Gaussian hypergeometric function [23, Eq. 15.2.1] by

F (a, b; c; z) =
∞∑
k=0

(a)k(bk)
(c)kk! z

k , (1.2)

for a, b, c, z ∈ C, where

(a)k =
k−1∏
l=0

(a+ k) ,

= Γ(a+ k)
Γ(a) , −a /∈ N0 ,

denotes the Pochhammer symbol [23, Section 5.2(iii)], or rising factorial.
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Quantum field theory on static spacetime

The main idea behind quantum field theory (QFT) in curved spacetime is to formulate a
theory of a quantum field that propagates in an external, classically describable spacetime
generalising the methods and techniques used in usual QFT in Minkowski space as much
as possible. The extent to which this can be achieved depends quite substantially on the
geometric properties and causal structure of the curved background itself. Quantum fields
are first defined as classical solutions of the equations of motion which dictate the dynamics
of these fields on the given spacetime. Therefore, to have a deterministic evolution of the
system, the equations of motion should define a well–posed initial value problem for the
field. This narrows down the types of Lorentzian manifolds that can be treated as the
spacetime background for the theory. The most common requirement is that of global
hyperbolicity of the spacetime manifold [24]. This condition ensures that, given initial data
on a Cauchy surface, the values of the field at any point in spacetime will be completely
determined by the Cauchy evolution of the initial data through the equations of motion
without violating causality. Globally hyperbolic manifolds are not, however, necessary
for the dynamics of a field to be well defined in this sense. If the spacetime allows a
one–parameter group of isometries with everywhere timelike orbits which are hypersurface
orthogonal, then there is a prescription that ensures a deterministic dynamical evolution
of the field [20, 21, 22]. Spacetimes having this property are known as static [25, 26, 27],
and they usually have the physical interpretation of being solutions of Einstein’s equation
that represent equilibrium situations.

In this chapter we present the general outline of the canonical quantisation procedure
of free scalar and spinor fields on an arbitrary static spacetime. Our main goal is to
focus on the construction of the multi–particle Fock space for both cases, specifying the
requirements we need for this space to be well defined. Since anti–de Sitter spacetime is
a static solution to Einstein’s equations in the vacuum, the contents of this chapter will
serve as a guide for later calculations and methods that will be applied to the specific case
of anti–de Sitter spacetime we are interested in.

13
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2.1 standard static spacetimes

The term spacetime will refer to any connected N–dimensional pseudo–Riemannian man-
ifold, (M, g), with Lorentzian metric g with signature (−1, 1, . . . , 1). We recall that a
smooth manifold has an associated tangent space TpM at every point p ∈ M, and the
union of all tangent spaces of M forms a vector bundle over M, the tangent bundle
TM [25, 28, 29]. Smooth (local) sections of TM are called vector fields, and the space of
vector fields onM is denoted by X(M). A vector field ξ ∈ X(M) is a Killing vector field
if the Lie derivative of g along ξ vanishes, i.e., if Lξ g = 0 [25, 28, 29]. The one–parameter
group generated by a Killing vector field ξ is then an isometry of the spacetime. If the
spacetime (M, g) admits a global timelike Killing vector field, that is, if gp[ξ, ξ] < 0 for
every p ∈ M, then (M, g) is called stationary. On stationary spacetimes it is natural
to identify the “time direction” with that of the Killing vector ξ itself, and regard the
Killing parameter t ∈ R as a time coordinate for some local chart in M. In this sense,
the group of isometries generated by ξ expresses the time–translation symmetry of a
stationary spacetime. However, stationary spacetimes are not, in general, invariant under
time–reversal transformations. The following definition [30], although restrictive, ensures
that a stationary spacetime possess this additional invariance:

Definition 2.1.1 A stationary spacetime (M, g) is called a standard static spacetime
ifM is the product manifoldM = R× Σ, endowed with the metric tensor

g(t,x) = −N (x)2dt⊗ dt+ hx , (2.1)

at every (t, x) ∈ R×Σ, where (Σ,h) is an (N − 1)–dimensional Riemannian manifold and
N 2 = −g[ξ, ξ].

In this context, the timelike Killing vector field ξ is referred to as the static vector field.
From Eq. (2.1) it is clear that the components of the metric tensor are independent of t,
and thus, g is invariant under time–translations as well as time–reflections.

To analyse further properties of standard static spacetimes, we explore some useful
consequences of choosing the Killing parameter t as one of the coordinates forM. The
following analysis can be found in Ref. [25, Section 6.1]. First we choose arbitrary
coordinates on Σ, say

{
xi
}N−1
i=1 , so that a point (t, x) ∈ R×Σ has the coordinate expression

(t, x1, . . . , xN−1), and the static vector field takes the form ξ = ∂t. Fixing the time
coordinate t defines a spacelike hypersurface Σt := {t} × Σ inM which is referred to as a
static hypersurface or static slice. Since this coordinate system uses the Killing parameter
t as a coordinate function, every point of the hypersurface (t, x) ∈ Σt lies in a unique
integral curve of the static vector field ξ, and from Eq. (2.1) we have g(t,x)[ξ, ∂i] = 0 for
all 1 ≤ i ≤ N − 1. This means that the hypersurface Σt is orthogonal to the orbits of the
isometries generated by ξ. Letting the coordinate t vary over R makes it clear that the
whole spacetime is foliated into a family of hypersurfaces orthogonal to ξ parametrised by t.
Since every Σt ⊂M is isomorphic to Σ by construction, and the metric h is independent of
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t, the geometry of the static slices is constant in time. The manifold Σ is then interpreted
as the spatial slice of the spacetimeM which remains constant through time.

A stationary spacetime that admits a global timelike Killing vector field ξ and a
hypersurface Σ orthogonal to the orbits of the isometries generated by ξ is said to be
static [25, 27]. In contrast to standard static spacetimes, static ones allow a more general
topology ofM to that of a product manifold. However, if we adopt a coordinate system
for a static spacetime for which the timelike coordinate is once again the Killing parameter,
t, and identify the hypersurface Σ with all points in M with the same t–coordinate
by a suitable reparametrisation of the Killing orbits if necessary, then, following the
same construction as for the standard case above, the orthogonality condition around a
neighbourhood of Σ implies that the metric of any static spacetime is locally given by
Eq. (2.1). Since in Chapter 3 we will find that anti–de Sitter spacetimes are standard
static, we will restrict our analysis to standard static spacetimes from now on.

We address some causal properties of standard static spacetimes. First, we recall some
basic notions related to causality for arbitrary spacetimes. Most of the following concepts
and definitions are based on Refs. [24, 25, 26].

Let (M, g) be an arbitrary spacetime. For p ∈ M it is possible to define the light–
cone [25] passing through the origin of TpM, the tangent space at p, and assign in an
arbitrary fashion one half of the cone to be the future and the other to be the past. If this
designation can be made in a continuous fashion for every point inM, then (M, g) is said
to be a time–orientable spacetime.

A smooth curve c onM is a C∞ map from R, or an interval of R, intoM, c : R→M.
The number s is referred to as the parameter of the curve c. A smooth curve c is said to
be a future–directed timelike curve if for every p ∈ Image(c), the tangent vector ċp at p
is future–directed i.e., lies in the interior of the future light–cone of p. A smooth curve
is said to be future–directed causal curve if the tangent vector ċp at every p is either a
future–directed or a null vector. Past–directed timelike and causal curves are defined
analogously. Events on a spacetime, modelled as points inM, connected by (either future–
or past–) directed causal curves have the physical interpretation of being causally related
to each other, e.g., a material or light particle starting at p can only reach the event q if
there is a future–directed causal curve starting at p and containing q [25]. It is possible to
extend the definitions of future–directed timelike and causal curves to continuous curves
on M . A continuous curve c is said to be a future–directed timelike (causal) curve if, for
every point p ∈ Image(c), there exists a convex normal neighbourhood U of p such that
if c(s1), c(s2) ∈ U for some s1 < s2, then there exists a smooth future–directed timelike
(causal) curve connecting c(s1) and c(s2). A convex normal neighbourhood of p ∈M is an
open neighbourhood U of p such that for every q, r ∈ U , there exists a unique geodesic
connecting q and r staying entirely within U .

The future (past) endpoint of a future– (past–) directed causal curve c parametrised
by −∞ < s <∞, is a point p ∈M such that, for every open neighbourhood U of p, there
exists s0 ∈ R, such that, for every s > s0, we have c(s) ∈ U . If a curve c does not have a
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future (past) endpoint, then c is said to be future (past) inextendible. Endpoints of causal
curves may be interpreted heuristically as “limit points” of the curve as its parameter
s→ ±∞, and thus, inextendible curves are those which do not approach to a point p ∈M
as its parameter grows arbitrarily large. With these notions we are ready to define the
following two concepts:

Definition 2.1.2 Let (M, g) be a time–orientable spacetime. A closed subset S ⊂M is
called a Cauchy surface if every inextendible causal curve onM intersects S at exactly
one point. A spacetime that possesses a Cauchy surface is said to be globally hyperbolic.

Cauchy surfaces play an important role when the study of dynamical equations of
motion on spacetimes is concerned. The reason has to do with the causal properties
that these surfaces have which we shall now explain. A subset S ⊂ M is said to be an
achronal set if there do not exist p, q ∈ S such that p and q are connected by a future–
or past–directed timelike curve. For example, the static slices Σt of a static spacetime
are achronal so no directed timelike curves connect any two points in Σt, which follows
from the fact that R is simply connected, and the orthogonality of the static surfaces to
the orbits of the Killing field ξ. As any timelike curve connecting any two points on a
Cauchy surface S would necessarily intersect it more than once, from Definition 2.1.2 it
follows that any Cauchy surface must be achronal as well. Furthermore, globally hyperbolic
spacetimes do not admit closed timelike curves. If this was not the case, then a closed
timelike curve intersecting the Cauchy surface would contradict its achronality, while a
closed timelike curve not intersecting it would contradict global hyperbolicity [25]. Since
no directed causal curves connect any two points on a Cauchy surface S, no events on S
are causally related to each other, and thus, we may interpret S as representing an instant
of time throughout the spacetime.

Events on Cauchy surfaces influence events throughout the whole spacetime in the
following sense: For any closed achronal subset S ⊂ M, let D+(S) ⊂ M be the set of
all points p ∈M such that any inextendible past–directed causal curve passing through
p intersects S. The set D+(S) is called the future domain of dependence of S and the
set D−(S), defined analogously, is called the past domain of dependence of S. The full
domain of dependence of S is the set D(S) = D+(S) ∪D−(S). Definition 2.1.2 implies
that if S is a Cauchy surface, then we have D(S) =M. If S is a closed achronal subset,
but not a Cauchy surface, the interior of its domain of dependence, int[D(S)], is said to be
a globally hyperbolic region [25, 26], i.e., there is a subset in int[D(S)] for which S is a
Cauchy surface according to Definition 2.1.2.

Classical fields at any point of a globally hyperbolic spacetime can be predicted or
retrodicted from conditions on the instant of time the Cauchy surface S represents. More
specifically, for certain systems of linear partial differential equations called second order
normally hyperbolic systems on globally hyperbolic spacetimes, unique solutions which
depend continuously on initial data defined on a Cauchy surface S can be found such that
sufficiently small perturbations to the initial data corresponds to small changes in the
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solutions over a fixed compact region ofM and, in addition, changes in the initial data
over a closed region Ω of S should leave unchanged the solutions outside its future domain
of dependence D(Ω) (an extensive discussion regarding hyperbolic systems of equations
and their initial value problem can be found in [24, Chapter 7] or [25, Chapter 10]). If
solutions of this form can be found, then the differential equations are said to have a
well–posed initial value problem.

To determine if a given static spacetime is globally hyperbolic or not, we use the
following criterion, a proof of which can be found in [30, Proposition 3.5]:

Theorem 2.1.3 The static slices Σ of a standard static spacetimeM = R×Σ with metric
g given by Eq. (2.1) are Cauchy surfaces if and only if the metric gR := h/N 2 is complete,
i.e., if the Riemannian manifold (Σ, gR) is a complete metric space.

Remark 2.1.4 The completeness of a Riemannian manifold ensures that the associated
metric is geodesically complete, that is, that all inextendible geodesics have infinite proper
length [26, Chapter XII]. This result is called the Hopf–Rinow theorem.

Now, from Definition 2.1.2 it follows that if any of the static slices Σt for some t ∈ R of a
static spacetime is a Cauchy surface, then the spacetime is globally hyperbolic. On the
other hand, Theorem 2.1.3 asserts that an arbitrary static spacetime need not be globally
hyperbolic.

Definition 2.1.5 A time function on (M, g) is a differentiable function τ : M → R
such that the vector field dτ ], is always timelike.

Remark 2.1.6 Here, dτ ] ∈ X(M) is the gradient of the function τ , defined as the vector
field such that, for any ζ ∈ X(M), we have g[dτ ], ζ] = ζ[τ ].

Time functions play an important role to identify Cauchy surfaces in a manifold. The
characterisation is given as a consequence of Theorem 2.1.3 [26, Corollary 11.7]:

Corollary 2.1.7 On a globally hyperbolic spacetime (M, g), there exists a global time
function τ whose level sets are Cauchy surfaces.

We are interested in the problem of finding solutions to dynamical equations of motion
that define a well–posed initial value problem in non–globally hyperbolic standard static
spacetimes. As we have explained, the lack of global hyperbolicity implies that for these
spacetimes there is no spacelike hypersurface whose domain of dependence is the whole
spacetimeM, and thus, initial data defined on any spacelike region may fail to predict
the dynamical evolution of a system in certain regions of M. However, if the aim is
to construct a quantum field theory on a non–globally hyperbolic static spacetime via
canonical quantisation of solutions to dynamical equations of motion then, as it turns out,
there is one requirement that can be imposed on the theory in order to have a well–defined
Fock space of quantum states. In the rest of this chapter, we explain that for scalar and
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spinor field theories in an arbitrary static spacetime a quantum field theory can be defined
if a certain spatial component of the associated classical equations of motion defines a
self–adjoint (and additionally, for the case of a scalar field, positive) operator on the Hilbert
space of solutions.

2.2 scalar and spinor fields on standard static spacetimes

In this section we will consider a standard static spacetime (M, g) with metric tensor given
by Eq. (2.1). We will not require the spacetime to be globally hyperbolic. We will obtain
the classical field equations for free scalar and spinor theories from a standard variational
principle and discuss some of the properties of the associated differential operators when
taking into account a decomposition of the equations with respect to the time coordinate
given by the Killing parameter.

We first introduce the relevant geometric objects for an N–dimensional static spacetime
that will be used throughout this and subsequent chapters. Let us consider the static
coordinates introduced in Section 2.1, and denote them by (xµ) = (t, x1, . . . , xN−1), with
0 ≤ µ ≤ N − 1, so that x0 = t and xi with 1 ≤ i ≤ N − 1 are the local coordinates for Σ
as in Definition 2.1.1. Then, the line element associated to the metric (2.1) is given in this
coordinate system by

ds2 = gµνdxµdxν ,

= −N (x)2dt2 + hij(x)dxidxj , (2.2)

where gµν = g[∂µ, ∂ν ] are the components of the metric tensor g, and hij = h[∂i, ∂j ], with
1 ≤ i, j ≤ N − 1, are the components of the spatial metric tensor of Σ. The components of
the Levi–Civita connection are given by Γµνλ = 1

2g
µκ(∂λgνκ + ∂νgλκ − ∂κgνλ), and from

Eq. (2.2) they are found to be given by

Γ0
i0 = 1

N
∂iN , (2.3a)

Γi00 = hijN∂j N , (2.3b)

Γijk = 1
2h

il (∂jhkl + ∂khjl − ∂lhjk) , (2.3c)

with hij denoting the components of the inverse of the metric tensor h, and all other
components are found to be zero. The action of the covariant derivative associated to the
Levi–Civita connection on a vector field v ∈ X(M) is found to be given by

∇0v
µ = ∂tv

µ + δµi h
ijN∂j N v0 + δµ0

1
N
∂iN vi , (2.4a)

∇ivµ = δµ0
1
N
∂iN v0 + ∂iv

µ + δµkΓkijvj . (2.4b)

The Lagrangian for the minimally coupled scalar field φ(t, x) ∈ C∞(M) with mass M
in this spacetime [31, 32, 33] is

LKG =
∫

Σ
LKG (φ, ∂µφ) dx , (2.5)
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with Σ representing any of the static slices Σt for some t ∈ R, with dx := dx1 ∧ · · · ∧dxN−1

and where the Lagrangian density L is given by

LKG(φ, ∂µφ) = 1
2
√
h
[
N−1(∂tφ)2 −N hij(∂iφ)(∂jφ)−NM2φ2

]
, (2.6)

with h := det(hij). The Euler–Lagrange field equations [27, 34] are derived from the
Lagrangian (2.5) and result in

− 1
N 2∂

2
t φ+ 1√

hN
∂i(
√
hhijN∂jφ)−M2φ = 0 , (2.7)

which is the Klein–Gordon equation [25, 27] associated to the static metric (2.1). In fact,
we identify the Laplace–Beltrami operator on (M, g) as

� = 1
√
g
∂µ (√ggµν∂ν) ,

= − 1
N 2∂

2
t + 1√

hN
∂i(
√
hhijN∂j) , (2.8)

where g := |det(gµν)|, and gµν are the components of the inverse of the metric g. Now, if
the static spacetime (M, g) is not globally hyperbolic, then none of the static slices Σt are
Cauchy surfaces. In particular, if the initial data are specified on the slice Σ0 corresponding
to t = 0, then solutions of Eq. (2.7) will only be defined on the domain of dependence
D(Σ0) 6=M and thus, there may be regions inM outside D(Σ0) for which no solutions
continuously depending on the initial data can be determined. We will briefly describe
the general prescription used by Wald [20] to address this particular issue. This will be
presented in the form of a condition that a certain differential operator (defined below)
must satisfy in order to find solutions of Eq. (2.7) defined throughout allM.

The fact that the second term of Eq. (2.8) does not depend on the t–coordinate allows
us to view the linear differential operator A, defined by

A := − N√
h
∂i
√
hhijN∂j +M2N 2 , (2.9)

as an operator on the Hilbert space HKG := L2(Σ0; dV ) of square–integrable functions on
the static slice Σ0, where dV :=

√
hN−1dx. With respect to this volume measure we can

define the inner product between elements Φ1,Φ2 of the Hilbert space HKG by

〈Φ1,Φ2〉KG :=
∫

Σ0
Φ1(x)Φ2(x)dV , (2.10)

and thus, the norm of an element Φ ∈HKG is defined as ||Φ||
KG

= (〈Φ,Φ〉
KG

)1/2.
To fully describe a linear operator on a Hilbert space, we need to specify the subspace

in which it is defined, namely, the domain of the operator. In order to define the domain
of the operator A in Eq. (2.9), which we denote by Dom(A) ⊆HKG, we first recall some
important definitions for an arbitrary linear operator T on a Hilbert space H with inner
product 〈·, ·〉 [35, 36, 37]:
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Definition 2.2.1 A linear operator T is said to be densely defined if Dom(T ) is dense
in H , that is, that every element f ∈ H can be obtained as a limit of a sequence
{fn} ∈ Dom(T ). The operator A is said to be closed if, for a sequence {fn} ∈ Dom(T )
satisfying fn → f and Tfn → g, f ∈ Dom(T ) and Tf = g.

Equivalently [35], a densely defined operator T is said to be closed if its graph, GT :=
{(f, g) ∈H ×H |f ∈ Dom(T ) , g = Tf}, is a topologically closed subset of H ×H with
respect to the topology induced by the norm

〈f, g〉T := 〈f, g〉+ 〈Tf, Tg〉 . (2.11)

Given a densely defined operator T on H , let us define the subspace D as the space of
all f̃ ∈H , for which there exists a unique element F ∈H such that〈

f̃ , T f
〉

= 〈F, f〉 , (2.12)

for every f ∈ Dom(T ). Relating both functions, f̃ and F , gives rise to the next well–known
concept.

Definition 2.2.2 Let T be a closed, densely defined operator on H , such that (2.12) holds
for every f ∈ Dom(T ). Then, the operator T †, with domain Dom(T †) := D, defined by
T †f̃ := F , is called the adjoint of the operator A. Equivalently, the adjoint operator T †

of T , is uniquely characterised by 〈
f̃ , T f

〉
=
〈
T †f̃ , f

〉
.

The reason why we require T to be a densely defined operator is due to the fact that
Dom(T ) being dense in H ensures that F is uniquely determined by the relation (2.12).

Definition 2.2.3 A densely defined operator T on a Hilbert space H is called symmetric
if Dom(T ) ⊂ Dom(T †), and if Tf = T †f , for all f ∈ Dom(T ). Equivalently, the operator
T is symmetric if and only if

〈f, Tg〉 = 〈Tf, g〉 , (2.13)

for all f, g ∈ Dom(T ), that is, if the action of the adjoint T † on the elements in Dom(T )
is identical to that of T .

The defining relation for a symmetric operator, namely, (2.13), is only valid for elements
in the domain of T , not for any f ∈H . In order to make (2.13) valid for a broader set of
functions, we have to consider a more restrictive class of operators.

Definition 2.2.4 The operator T is called self-adjoint if and only if T is symmetric
and Dom(T ) = Dom(T †).
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From this definition, it is clear that not every symmetric operator is self–adjoint. Some
relevant properties of self–adjoint operators which will be used here and in subsequent
chapters can be found in Appendix A.

Returning to the operator A in Eq. (2.9), we will assume that its domain Dom(A)
is specified in such a way that A is a closed, densely defined, self–adjoint operator. We
will also require the operator A to be positive [36] with respect to the inner product in
Eq. (2.10), i.e., that for any Φ ∈ Dom(A), we have

〈Φ, AΦ〉
KG
≥ 0 . (2.14)

This requirement ensures that the spectrum of the operator A is strictly positive and, in
turn, that the operator A1/2 is well defined. The natural analogue of positive–frequency
solutions defined in QFT on Minkowski spacetime should obey the pseudo–differential
equation i∂tφ = A1/2φ [27, Chapter 3]. Thus, if A is strictly positive then the time
evolution of the field is unitary (see Eq. (2.16), below). From a more heuristic viewpoint, if
A is allowed to have non–positive eigenvalues, the time evolution of the solutions results in
field configurations which quickly diverge as the parameter t increases. The assumptions
we have imposed on Dom(A) are not as restrictive as they may seem at first. In fact, if
we require the operator A to be only symmetric instead of self–adjoint and positive with
respect to the inner product (2.10), then the domain of A can be chosen to be the subspace
C∞c (Σ0) of smooth functions of compact support [25, 35] on Σ0. With this domain, A is a
densely defined symmetric operator [20, 21, 35, 36]. In Chapter 5 we will present a general
prescription to obtain a positive self–adjoint operator from a symmetric operator, showing
that, under certain conditions, the symmetric operator can be suitably “replaced” by a
positive self–adjoint operator that correctly encodes the dynamics described by Eq. (2.7).

We can now reformulate the problem of solving Eq. (2.7) into the problem of finding a
one–parameter family of vectors φt ∈HKG satisfying the equation

Aφt = − d2

dt2φt . (2.15)

As noted by Wald [20], Eqs. (2.7) and (2.15) are not strictly equivalent: The existence
of the partial derivative at a fixed spatial position x ∈ Σ of the scalar function φ(t, x)
does not imply the existence of the derivative of the vector φt ∈ HKG with respect to
the parameter t in the Hilbert space sense, for which convergence is with respect to the
L2–norm of HKG. However, Ishibashi and Wald [20, 21], managed to show that if the
operator A is self–adjoint and positive, then Eqs. (2.7) and (2.15) are equivalent inside the
domain of dependence D(Σ0) of the initial data surface Σ0, and that solutions to Eq. (2.15)
extend those of the Klein–Gordon equation such that they continuously depend on initial
conditions on Σ0 and can be defined throughout allM. We summarise their results in the
following theorem:

Theorem 2.2.5 (Ishibashi-Wald) Let A be the operator from Eq. (2.9) acting on the
Hilbert space HKG with domain Dom(A). If A is a positive and self–adjoint operator on
Dom(A), then:
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1. Given the initial data (φ0, φ̇0) ∈ Dom(A)×Dom(A), the solution of Eq. (2.15) for
each t ∈ R is given by

φt = cos
(
A1/2t

)
φ0 +A−1/2 sin

(
A1/2t

)
φ̇0 , (2.16)

where the operators cos
(
A1/2t

)
and A−1/2 sin

(
A1/2t

)
, defined through the functional

calculus 1 of the self–adjoint operator A, are bounded.

2. There exists a unique φ ∈ C∞(M), such that, for all t ∈ R,

φ|Σt = φt , ξµ∇µφ|Σt = d
dtφt , (2.17)

and φ satisfies Eq. (2.7) throughoutM.

Remark 2.2.6 The original argument in [20, 21] does not require the operator A to
be self–adjoint, but only positive and symmetric. In their statement, they start with a
symmetric operator A with Dom(A) = C∞c (Σ0) and then show that any of its positive
self–adjoint extensions (see Chapter 5) satisfies points 1 and 2 above. Furthermore, in
Ref. [21] they show that their prescription is unique in the sense that any initial value
problem for Eq. (2.7) must arise from a particular choice of self–adjoint extension of A.

Theorem 2.2.5 ensures that if the operator A is a positive self–adjoint operator, then the
solution φ to Eq. (2.7) will be defined via initial data not just on the domain of dependence
D(Σ0) of the static slice Σ0 but on allM, even if the spacetime is not globally hyperbolic.

A similar argument can be made for a spinor field satisfying Dirac’s equation. In order
to define a spinor field on (M, g), we introduce a local orthonormal frame [25, 28, 29] at
each tangent space of the manifoldM as follows; let {ea}N−1

a=0 be a linearly independent
set of smooth vector fields and let e µ

a denote the components of each ea ∈ X(M) with
respect to the coordinates (xµ) = (t, x), i.e., ea = e µ

a ∂µ. We define these vector fields
such that at each point p ∈ M they form an orthonormal basis for the tangent space
TpM. Thus, we require gp[ea, eb] = ηab and êa[eb] = δab , where ηab are the components of
the flat Lorentzian metric η = diag = (−1, 1, . . . , 1), and {êa}N−1

a=0 is the dual basis for
each cotangent space T ∗pM consisting of the co–frame fields with components eaµ defined
through êa = eaµdxµ [29]. In terms of the components e µ

a , these orthonormality relations
read

gµνe
µ
a e

ν
b = ηab , e µ

a e
b
µ = δba , e µ

a e
a
ν = δµν . (2.18)

With respect to this local frame the associated connection 1–form [28, 29] ωab = ωab µdxµ,
can be defined through its spacetime components as

ωab µ =
(
∂µe

λ
b + Γλµνe ν

b

)
eaλ . (2.19)

1See Definition A.0.7 in Appendix A.
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An orthonormal frame compatible with the static metric g in Eq. (2.2) is obtained by
letting

e 0
0 = 1

N
, e i

0 = 0 = e0
i , for all 1 ≤ i ≤ N − 1 , (2.20)

and by defining e j
i for all 1 ≤ i, j ≤ N − 1 to be functions of the spatial coordinates x

satisfying Eq. (2.18). Defined in this way, the fields ea and êa are time–independent. With
this choice of orthogonal frame we find that the non–zero components of the connection
1–form in Eq. (2.19) are given by

ω0
i 0 = e j

i ∂jN (x) , (2.21a)

ωij k =
(
∂ke

l
j + Γl kme m

j

)
eil . (2.21b)

Next, we will consider the complex space CÑ , where Ñ := 2bN/2c, with bN/2c denoting
the floor function. We will use a representation for the N Dirac gamma matrices [38, 39],
γa, of dimension Ñ × Ñ for which (γ0)† = −γ0 and (γi)† = γi. Under our signature
convention the anticommutation relations read{

γa, γb
}

= 2ηabI , (2.22)

where {·, ·} denotes the matrix anticommutator. We will make use of the quantity Σab

defined as

Σab := 1
4
[
γa, γb

]
, (2.23)

where [·, ·] denotes the matrix commutator in CÑ . We will regard spinor fields on the
static spacetime (M, g) as elements of the space C∞(M,CÑ ) of smooth maps fromM to
CÑ [25, 40]. We assume that the spinor bundle is trivial. Given a spinor ψ, we define its
Dirac adjoint by ψ∗ := ψ†γ0. The spinor covariant derivative [41, 42] is given by

∇(D)
µ = ∂µ + 1

2ωab µ Σab , (2.24)

where ωab µ = ηacω
c
b µ. The spinor covariant derivatives in the time and spatial directions

are obtained using Eq. (2.21), and read

∇(D)
0 = ∂t − e j

i ∂jNΣ0i , (2.25a)

∇(D)
i = ∂i + 1

2ωjk i Σjk , (2.25b)

respectively.
The Lagrangian for a free Dirac spinor field ψ ∈ C∞(M,CÑ ) with mass M is [34]

LD =
∫

Σ0
LD(ψ,ψ∗)dx , (2.26)

with the Lagrangian density LD given by

LD(ψ,ψ∗) =
√
hNψ∗

(
γ̃µ∇(D)

µ −M
)
ψ , (2.27)
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where we have defined the spacetime gamma matrices γ̃µ = e µ
a γ

a. Variation of the action
functional SD[ψ,ψ∗] =

∫
LDdt with respect to the field ψ∗ yields the Euler–Lagrange field

equation [27, 34]

γ̃0∂tψ −
[
γ̃i
(
N 2∇(D)

i + 1
2N∂iN

)
−MN 2

]
ψ = 0 , (2.28)

which is the Dirac equation [25, 27] associated to the metric (2.1). Similarly to the case of
a scalar field, if the static spacetime is not globally hyperbolic, then Eq. (2.28) will not
determine the spinor ψ(t, x) outside the domain of dependence D(Σ0). Nevertheless, the
operator inside the square brackets of Eq. (2.28) is time–independent. This allows us to
view the differential operator

D := iN 2γ̃0
[
γ̃i
(
∇(D)
i + 1

2N
−1∂iN

)
−M

]
, (2.29)

as a linear operator on the Hilbert space HD := L2(Σ0,CÑ ; dV ′) of square–integrable
maps Σ0 → CÑ , with respect to the measure dV ′ :=

√
hdx. We will refer to the maps

Ψ : Σ0 → CÑ as spatial spinors. The inner product between elements Ψ1,Ψ2 ∈ HD is
defined by

〈Ψ1,Ψ2〉D :=
∫

Σ0
Ψ1(x)†Ψ2(x) dV ′ , (2.30)

and thus, the norm of a spatial spinor Ψ ∈HD is given by ||Ψ||D := (〈Ψ,Ψ〉D)1/2. We note
that due to the time–independence of the inner product (2.30), it can be defined as the
integral over any of the static slices Σt. We will once again impose the crucial assumption
that the domain Dom(D) ⊂HD of the operator in Eq. (2.29) is defined such that D is a
densely defined self–adjoint operator with respect to the inner product (2.30) in the sense
of Defs. 2.2.1 and 2.2.4.

Thus, following a similar argument as for the scalar field, we will reformulate the
problem of finding solutions to Eq. (2.28) into the problem of finding the one–parameter
family of vectors ψt ∈HD satisfying the equation

Dψt = −i d
dtψt , (2.31)

where once again, the derivative of ψt with respect to the parameter t is to be understood
in the sense of strong convergence in the Hilbert space norm [35, 43]. We will only concern
ourselves with solving Eq. (2.31) and showing that solutions to this equation are also
solutions of Eq. (2.28) throughout all D(Σ0). Then, with an additional assumption we will
arrive at an analogous result to Theorem 2.2.5 for the operator D, that is, the solution of
Eq. (2.31) depends on the set of smooth initial data on Σ0 and it defines a smooth solution
of Eq. (2.28) throughoutM.

Proposition 2.2.7 For any ψ0 ∈ Dom(D), the one–parameter family of vectors

ψt = exp (itD)ψ0 , t ∈ R , (2.32)



Chapter 2. Quantum field theory on static spacetime 25

where the operator exp (itD) is defined by the functional calculus of the self–adjoint operator
D in Eq. (2.29), gives a unique solution to Eq. (2.31), with ψt ∈ Dom(D) for all t ∈ R.

Proof: By point 1 of Proposition A.0.9 in Appendix A and by the self–adjointness of D
we have that, for all t ∈ R, u(t) := exp (itD) defines a strongly continuous one–parameter
unitary group on HD (see Definition A.0.8). Since ψ0 ∈ Dom(D), point 2 of the same
proposition implies that

Dψ0 = lim
t→0

exp (itD)ψ0 − ψ0
t

, (2.33)

where the convergence of the limit is with respect to the norm ||·||D. Thus, it follows that

lim
s→0

exp (i(t+ s)D)ψ0 − exp (itD)ψ0
s

= exp (itD) lim
s→0

exp (isD)ψ0 − ψ0
s

.

= i exp (itD)Dψ0 . (2.34)

On the other hand, we also have

lim
s→0

exp (i(t+ s)D)ψ0 − exp (itD)ψ0
s

= lim
s→0

exp (isD)ψt − ψt
s

, (2.35)

which by Eq. (2.34) exists. Therefore, point 3 of Proposition A.0.9, implies that ψt ∈
Dom(D) and the right–hand side of Eq. (2.35) is equal to iDψt. Furthermore, the left–hand
side of Eq. (2.35) reduces to dψt/dt. Hence, ψt as given by Eq. (2.32) is a solution of
Eq. (2.31) for all t ∈ R. Finally, to prove uniqueness, we consider two solutions ψt, ψ′t of
Eq. (2.31), with ψ0 = ψ′0 ∈ Dom(D). Define ϕt := ψt − ψ′t for all t ∈ R, so that ϕ0 = 0.
By the previous argument, ϕt ∈ Dom(D), thus, dϕt/dt = iDϕt, which implies that

d
dt 〈ϕt, ϕt〉D = i 〈ϕt,Dϕt〉D − i 〈Dϕt, ϕt〉D ,

= 0 , (2.36)

as D is a self–adjoint operator. Thus, ||ϕt||2D is constant throughout R. Since ϕ0 = 0, we
conclude ψt = ψ′t for all t ∈ R. �

Now we show that solutions to Eq. (2.31) reproduce the solutions of Eq. (2.28) obtained
by Cauchy evolution in the region D(Σ0) by adapting the argument made for the scalar
field in [20]. Let ϕ be a solution obtained through Cauchy evolution of Eq. (2.28) with
initial data ϕ(0, x) = ψ0, with ψ0 ∈ C∞(Σ0,CÑ ) ∩ Dom(D). For each static slice Σt we
define ϕt ∈ HD by ϕt(x) = ϕ(t, x) for all (t, x) ∈ Σt ∩ D(Σ0). Assume that ϕ and the
solution ψt from Eq. (2.32) differ from each other on D(Σ0). Then, there exists a static slice
Σt1 such that ϕt1 6= ψt1 , as elements of HD, on Σt1 ∩D(Σ0). Let S be a Cauchy surface
for D(Σ0) such that S includes an open neighbourhood within Σt1 on which ϕt1 6= ψt1 .
Let ft1 ∈ C∞c (S,CÑ ) be a spatial spinor of compact support contained in S ∩ Σt1 , with
the property that ∫

S∩Σt1
f †t1(x) (ϕt1(x)− ψt1(x)) dV ′ 6= 0 . (2.37)
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We define f throughout D(Σ0) to be the Cauchy development of the initial data ft1 on
S, and outside D(Σ0) in the region between Σ0 and Σt1 , we set f = 0. Thus, f satisfies
Eq. (2.28) throughout the region between Σ0 and Σt1 , and for all 0 ≤ t ≤ t1, the restriction
ft := f |Σt lies in C

∞
c (Σt,CÑ ). Consider the quantity

c(t) :=
∫

Σt1
f(t, x)† (ϕ(t, x)− ψt(x)) dV ′ , (2.38)

with t1 held fixed (we recall that dV ′ =
√
h dx is t–independent). The derivative of c with

respect to t is given by

d
dtc(t) =

∫
Σt1

[
f(t, x)†

(
∂tϕ(t, x)− d

dtψt(x)
)

+ ∂tf(t, x)† (ϕ(t, x)− ψt(x))
]

dV ′ ,

=
∫

Σt1

[
f(t, x)†∂tϕ(t, x) + ∂tf(t, x)†ϕ(t, x)

]
dV ′

−
∫

Σt1

[
f(t, x)† d

dtψt(x) + ∂tf(t, x)†ψt(x)
]

dV ′ , (2.39)

and, since the spinors f and ϕ are solutions of Eq. (2.28), we can replace their partial
derivatives with respect to t appearing in the first term of the second equality above with
(iDf)† and iDϕ, respectively. By integrating this term by parts, and recalling that ft1 is
of compact support, we find that it vanishes. Furthermore, we note that for any Σt with
0 ≤ t ≤ t1, we have ∂tf(t, x) = i(Dft)(x) by means of the way we have defined f . Thus,
using Eq. (2.31) for ψt, Eq. (2.39) now reads

d
dtc(t) =−

∫
Σt1

[
f(t, x)†(iDψt)(x)− i(Dft)†(x)ψt(x)

]
dV ′ ,

=− i 〈ft,Dψt〉D + i 〈Dft, ψt〉D ,

=0 , (2.40)

since D is a self–adjoint operator. From Eq. (2.38) it is clear that c(0) = 0 as ϕ0 = ψ0. On
the other hand, Eq. (2.37) implies that c(t1) 6= 0, and thus, we arrive at a contradiction.
Hence, we must have ϕt = ψt everywhere on D(Σ0).

We have shown that solutions to Eq. (2.28) obtained by Cauchy evolution of the initial
data ψ0 coincide with solutions of Eq. (2.31) on D(Σ0). Now, for any t ∈ R and x ∈ Σ0 the
solution ψt(x) given by Eq. (2.32) is well defined as long as ψ0 lies in Dom(D). However,
ψt and dψt/dt might fail to define spatial spinors that are smooth in the spatial variables.
The approach taken by Wald in Ref. [20] for the case of the scalar field relies on the fact
that one can apply an elliptic regularity theorem [44] to the operator Ak for all k ∈ N,
which cannot be directly adapted to the operator D in Eq. (2.29). Nevertheless, we will
find in Chapter 8 that, for the specific case of interest of two–dimensional anti-de Sitter
spacetime, solutions which are smooth on the spatial variable for fixed t can be found when
the operator D is self–adjoint. If the solution ψt and its derivative dψt/dt for fixed t are
smooth with respect to the spatial variables, then spacetime smoothness at an arbitrary
point (t, x) ∈M is proven as follows (even for the general case of a static spacetime). Let
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Σt be the static surface passing through (t, x) ∈M. Then on this surface ψt and dψt/dt
are smooth with respect to x. Therefore, the solution ϕ of Eq. (2.28) with initial data
ϕ(t, x) = ψt(x) will be smooth throughout D(Σt). Then, by the same argument leading
to Eq. (2.40), the solution ψt(x) agrees with ϕ(t, x) on D(Σt). Since (t, x) ∈ D(Σt), this
shows that ψ is smooth at (t, x) in the spacetime sense. This in turn also proves that the
existence of the derivative d/dt of ψt in the strong convergence sense implies the existence
of the partial derivative ∂t for the solution ϕ via spacetime smoothness.

2.3 canonical quantisation of scalar and spinor fields

In this section we will construct the quantum field theories for the scalar and spinor fields
satisfying Eqs. (2.7) and (2.28), respectively, through canonical quantisation. We assume
that the operators A and D in Eqs. (2.9) and (2.29) are self–adjoint and in addition, the
operator A is also assumed to be positive, i.e., it satisfies Eq. (2.14). We will explain that
these conditions are sufficient to obtain the associated multi–particle Fock spaces for the
quantum theories. We will follow the usual quantisation procedure which can be found
in Refs. [24, 25, 27, 34]. We also show that if the spacetime (M, g) admits an isometry
group [25, 29], such that the space of solutions of the dynamical equations obeys a certain
invariance condition, then the vacuum state of the theory will be invariant under the action
of the isometries.

We consider the Lagrangian density LKG(φ, ∂µφ) of a minimally coupled, free scalar field
φ on the standard static spacetime (M, g), given by Eq. (2.6). The conjugate momentum
density [27, 31, 34] is defined as

π(t, x) := ∂LKG

∂(∂tφ(t, x))

=
√
h(x)
N (x) ∂tφ(t, x) . (2.41)

Canonical quantisation of the scalar field theory is achieved by regarding the general
solution φ of the Klein–Gordon equation (2.7) obtained through the Lagrangian density
LKG and the conjugate momentum π in Eq. (2.41), not as functions of the spacetime
(M, g) but as operator–valued distributions [27, 34] onM. The idea is that for each point
(t, x) ∈ M, the quantity φ(t, x) defines a linear operator that acts on a Hilbert space
FKG of physical quantum states, which we will define shortly. This is analogous to the
way operators are defined in the Heisenberg picture of ordinary (point–particle) Quantum
Mechanics [37]. The distributional aspect of φ will be explained in more detail after writing
the field φ in a more explicit form (see Eq. (2.46)). Thus, from now on we will regard φ as
an operator–valued distribution and refer to it as a quantum field. We will require φ and π
to obey the equal–time canonical commutation relations [34] given by[

φ(t, x), π(t, x′)
]

= iδ(x;x′) , (2.42a)[
φ(t, x), φ(t, x′)

]
=
[
π(t, x), π(t, x′)

]
= 0 , (2.42b)
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where δ is defined in the distributional sense by∫
Σt
δ(x;x′)f(x′)dx = f(x) , (2.43)

for any smooth compactly supported function f on any of the static slices Σt.
Now we will consider solutions of Eq. (2.7) or, more precisely, solutions of Eq. (2.15)

which are defined for all (t, x) ∈M by virtue of Theorem 2.2.5. Since (M, g) is static, the
orthogonality between the static slices Σt and the orbits of the Killing vector ξ [25] allows
us to write these solutions2 in the form

φσ(t, x) = 1√
2ωσ

Φσ(x)e−iωσt , (2.44)

where σ labels the elements of the spectrum σ(A) of the operator A in Eq. (2.9), and
Φσ ∈HKG satisfies the equation

AΦσ = ω2
σΦσ . (2.45)

Now we will assume that the spectrum of the operator A is purely discrete, and
that ω2

σ > 0 for all σ, i.e., that A is a strictly positive operator. Then, Theorem A.0.3
in Appendix A tells us that the eigenfunctions Φσ of the operator A form a complete
orthonormal set for HKG, and we set 〈Φσ,Φσ′〉KG = δσσ′ . This allows us to write the
quantum field φ(t, x) as

φ(t, x) =
∑
σ

[
aσφσ(t, x) + a†σφσ(t, x)

]
, (2.46)

with ωσ > 0 and σ ∈ N, where the mode functions φσ(t, x) are defined by Eq. (2.44),
and the coefficients aσ, a†σ are the annihilation and creation operators, respectively. The
operational nature of these quantities will be made clear once the Hilbert space FKG is
properly defined below. The spectrum σ(A) is referred to as the frequency spectrum, and
its elements ωσ denote the allowed energy frequencies of the quantum field φ. We note
that Eq. (2.46) is a mode expansion in terms of positive–frequency solutions.

Now, the infinite sum in Eq. (2.46) may not converge pointwise to an operator on the
Hilbert space FKG [24, 25, 27]. Thus, φ must be understood in a distributional sense, i.e.,
for any smooth compactly supported function f on the spacetimeM, the quantity∫

M
f(t, x)φ(t, x)√gdtdx , (2.47)

defines an operator acting on the Hilbert space FKG and has to be understood formally.
Using the fact that {Φσ}σ∈N is a complete orthonormal set for HKG, we find that

∑
σ

Φσ(x)Φσ(x′) = N (x)√
h(x)

δ(x, x′) . (2.48)

2Here we are implicitly assuming that the underlying field φ is a tempered distribution along the time
direction [35].
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This completeness relation allows one to show that the equal–time commutation rela-
tions (2.42) are equivalent to the commutation relations among the annihilation and
creation operators given by

[aσ, a†σ′ ] = δσσ′ , (2.49)

with all other commutators among aσ and a†σ′ vanishing.
We now introduce the definition of the Hilbert space FKG of quantum states. The

following construction is based on Ref. [25, Section 14.2]. Let us consider the Hilbert
space HKG of solutions of the Klein–Gordon equation and, from it, we construct the
n–fold symmetric tensor product space denoted by ⊗nSHKG. The space ⊗nSHKG consists
of continuous n–multilinear maps Φ(n) : HKG × · · · ×HKG → C which are invariant under
permutations of its arguments. This space can be shown to be a Hilbert space with respect
to the inner product induced from the tensor product structure in the usual way (see for
example Ref. [35, Section II.4, Proposition 1]). The algebraic direct sum of Hilbert spaces
defined by

FKG
0 := C⊕

∞⊕
n=1

(⊗nSHKG) , (2.50)

consists of terminating sequences of the form

|Φ〉B = (Φ(0),Φ(1),Φ(2), . . . ,Φ(n), 0, . . . ) , (2.51)

with Φ(0) ∈ C and with each Φ(j) ∈ ⊗jSHKG. The space FKG
0 is endowed with the norm

|| · ||FKG
, defined through

||Φ||2
FKG

= 〈Φ |Φ〉B := |Φ(0)|2 +
∞∑
n=0
||Φ(n)||2KG,n , (2.52)

for all |Φ〉B, where || · ||KG,n denotes the norm of ⊗nSHKG. The Hilbert space completion
FKG := FKG

0 with respect to the norm in Eq. (2.52) is known as the multi–particle bosonic
Fock space for the Klein–Gordon field, and it represents the Hilbert space of quantum states.
Elements in FKG consist of infinite sequences of finite norm. For each state Φ′ ∈HKG, we
define the unbounded operators a(Φ′) and a†(Φ′) on FKG with dense domain given by FKG

0
as follows. Given Φ′ ∈HKG, the action of a(Φ′) on the element |Φ〉B ∈ FKG

0 is defined as

a(Φ′) |Φ〉B := (Φ′ · Φ(1),
√

2 Φ′ · Φ(2), . . . ,
√
nΦ′ · Φ(n), 0, . . . ) , (2.53)

where Φ′ · Φ(j) ∈ ⊗j−1
S HKG denotes the insertion of Φ′ into one of the arguments of the

functional Φ(j). Similarly, for each Φ′ ∈ HKG, the action of the operator a†(Φ′) on an
element in the form of Eq. (2.51) is defined as

a†(Φ′) |Φ〉B := (0,Φ(0)Φ̃′,
√

2Φ(1) ⊗S Φ̃′, . . . ,
√
n+ 1Φ(n) ⊗S Φ̃′, 0, . . . ) , (2.54)
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where Φ̃′ ∈H ∗
KG is the unique continuous linear functional associated to Φ′ (i.e., Φ̃′(Φ) =

〈Φ′,Φ〉
KG

for all Φ ∈ HKG). For any Φ1,Φ2 ∈ HKG we can calculate the commutator
between the operators a(Φ1) and a†(Φ2). Indeed, using Eqs. (2.53) and (2.54), we obtain

a(Φ1)a†(Φ2) |Φ〉B =
(
Φ(0)Φ1 ·Φ̃2, 2Φ1 ·(Φ(1)⊗S Φ̃2), . . . , (n+ 1)Φ1 ·(Φ(n)⊗S Φ̃2), 0, . . .

)
,

a†(Φ2)a(Φ1) |Φ〉B =
(
0, (Φ1 · Φ(1))Φ̃2, 2(Φ1 · Φ(2))⊗S Φ̃2 · · · , n(Φ1 · Φ(n))⊗S Φ̃2, 0, . . .

)
,

and, since for each 1 ≤ j ≤ n, we have3

(j + 1)Φ1 · (Φ(j)⊗S Φ̃2)− j(Φ1 · Φ(j))⊗S Φ̃2 = (Φ1 · Φ̃2)Φ(j) ,

=
〈

Φ1,Φ2
〉
KG

Φ(j) , (2.55)

then it follows that [
a(Φ1), a†(Φ2)

]
|Φ〉B =

〈
Φ1,Φ2

〉
KG
|Φ〉B . (2.56)

Similar calculations show that all other commutators between the operators a(Φ) and a†(Φ)
vanish. Hence, if we consider the orthonormal basis {Φσ}σ∈σ(A) of HKG, we can define
the operators aσ := a(Φσ) and a†σ := a†(Φσ) for each basis element Φσ. Then, Eq. (2.56)
reduces to Eq. (2.49) and the operators aσ and a†σ are precisely the operators appearing in
the mode expansion of Eq. (2.46).

The definition of the action of the annihilation operators aσ through Eq. (2.53) implies
that the element

|0〉B := (1, 0, 0, . . . ) ∈ FKG , (2.57)

known as the bosonic vacuum state, is uniquely characterised, up to a phase factor, by the
condition

aσ |0〉B = 0 , (2.58)

for all σ ∈ σ(A). Note that Eq. (2.52) we obtain ||0||2
FKG

= 〈0 |0〉B := 1.
A basis for the space FKG can be constructed from the action of the creation operators

on the vacuum state. Consider the orthonormal basis {Φσ}σ∈σ(A) of HKG of eigenfunctions
of the operator A. Then, since the spectrum of A is assumed to be purely discrete, the
elements of the form Φ̃σ1 ⊗S · · · ⊗S Φ̃σn form a basis for the Hilbert spaces ⊗nSHKG, and
varying n ∈ N, we obtain a basis for FKG [27]. Now, we consider the elements in FKG of
the form∣∣n1 σ1 , n2 σ2 , . . . , nk σk

〉
B

:= 1√
n1!n2! · · ·nk!

(
a†σ1

)n1 (
a†σ2

)n2 · · ·
(
a†σk

)nk |0〉B , (2.59)

for some k ∈ N and n1, . . . , nk ∈ N. A straightforward calculation using Eqs. (2.54)
and (2.57) shows that for each k ∈ N and n1, . . . nk ∈ N, the element in Eq. (2.59) is

3This follows immediately after evaluating the left–hand side on (φ1, φ2, . . . , φj) and using the symmetry
of the functionals with respect to permutations of their arguments.
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proportional to the basis element Φ̃⊗n1
σ1 ⊗S · · · ⊗S Φ̃⊗nkσk

. Hence, the states of the form of
Eq. (2.59), form a basis of FKG. The normalisation of these basis elements is obtained
through 〈

n1 σ1 , . . . , nj σj

∣∣∣m1 σ′1 , . . . , mk σ′
k

〉
B

:= δjk
∑
α

δn1,mα(1) · · · δnj ,mα(k)δσ1,σ′α(1)
. . . δσj ,σ′α(k)

, (2.60)

where the sum is over all permutations α of the set of integers {1, 2, . . . , k}.
With respect to the inner product on FKG obtained by linear extension of Eq. (2.60), it

can be shown that the operators a†σ are in fact the conjugate transpose of the operators aσ
for every σ. The basis we have chosen is known as the occupancy number basis. Elements
of the basis are called Fock states. We may interpret the Fock states in Eq. (2.59) as
indicating the number of particles in a given quantum state. For example, the Fock state
|nσ〉B = (n!)−1/2(a†σ)n |0〉B indicates that there are n indistinguishable particles in the
state Φσ with associated energy frequency ωσ. From Eqs. (2.53) and (2.54) it follows that
the actions of the operators a†σ and aσ on this element are given by

a†σ |nσ〉B =
√
n+ 1 |(n+ 1)σ〉B , (2.61a)

aσ |nσ〉B =
√
n |(n− 1)σ〉B , (2.61b)

and thus, a†σ increases the number of particles in the state Φσ by one and aσ reduces the
number of particles by one, hence the naming convention of creation and annihilation
operators, respectively. The actions of these operators on the element (2.59) are carried
out using the commutation relations (2.49) and Eq. (2.61).

We note that the completeness and orthonormality of the set {Φσ}σ∈N, which was di-
rectly implied from the self–adjointness of the operator A in Eq. (2.9), played a fundamental
role in the construction of the Fock space FKG.

The analogous Fock space FD of quantum states of a spinor field satisfying the Dirac
equation is constructed in a similar way. Considering the Lagrangian density LD given by
Eq. (2.27), the conjugate momentum density is found to be

Π(t, x) = ∂L

∂(∂0ψ(t, x))

= i
√
h(x)ψ†(t, x) , (2.62)

where the first equality is obtained through the left–functional derivative of the action
SD. As with the scalar field, canonical quantisation of the spinor field theory is achieved
regarding the solution ψ of Eq. (2.28) and the conjugate momentum Π in Eq. (2.62) as
operator–valued distributions for the Hilbert space FD of quantum states instead of a
spinor field. Thus, the field ψ is now regarded as a fermionic quantum field.
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Now, denoting the Ñ component functions of the spinor ψ by ψȧ with ȧ = 1, . . . , Ñ ,
we impose the equal–time canonical anticommutation relations [27, 34] given by

{
ψȧ(t, x),Πḃ(t, y)

}
= δȧḃδ(x, y) , (2.63a){

ψȧ(t, x), ψḃ(t, y)
}

= 0 =
{
Πȧ(t, x),Πḃ(t, y)

}
, (2.63b)

where δ is once again defined through Eq. (2.43).
Solutions to Eq. (2.31) which are defined for all (t, x) ∈M can be found in the form

ψσ̃(t, x) = Ψσ̃(x)e−iωσ̃t , (2.64)

where σ̃ labels the elements of the spectrum σ(D) in Eq. (2.29), and the spatial spinor
Ψσ̃ ∈HD satisfies the equation

DΨσ̃ = ωσ̃Ψσ̃ . (2.65)

Now, suppose that the spectrum of the operator D is purely discrete. Since D is assumed
to be self–adjoint, then Theorem A.0.3 implies that the set of spatial spinors satisfying
Eq. (2.65) forms a complete orthonormal set for the Hilbert space HD. Furthermore, we
will assume that ωσ̃ 6= 0 for all σ̃. Thus, we set 〈Ψσ̃,Ψσ̃′〉D = δσ̃σ̃′ , and write the quantum
field ψ(t, x) as [27, 34]

ψ(t, x) =
∑
σ̃

[
aσ̃Ψσ̃(x)e−iωσ̃t + b†σ̃ (Ψσ̃(x))c eiωσ̃t

]
. (2.66)

Here, the coefficients aσ̃ and b†σ̃ are operators acting on the space FD. The spatial spinor
(Ψσ̃)c in Eq. (2.66) is the charge conjugate spinor, defined by

(Ψσ̃)c = C (Ψ∗σ̃)T , (2.67)

where the charge conjugation matrix C is defined through C−1γaC = −(γa)T , and required
to satisfy C−1 = C†. The reason to consider the charge conjugate spinor in the expansion
of the quantum field (2.66) is that if Ψσ̃ is a solution of Eq. (2.65) with ωσ̃ > 0, then a
solution of this equation with ωσ̃ → −ωσ̃ is given by Ψc

σ̃. Therefore, the sum in Eq. (2.66) is
over all σ such that ωσ̃ > 0, and in this way all positive– and negative–frequency solutions
are used for the expansion of the quantum field ψ.

The sum in Eq. (2.66) is again to be understood in the distributional sense: For any
smooth, compactly supported map F :M→ CÑ , the quantity∫

M
F (t, x)†ψ(t, x)√gdtdx , (2.68)

defines an operator on the space FD.
Since the set {Ψσ̃}σ̃∈N is a complete orthonormal set for HD, we find that

∑
σ̃

Ψσ̃(x′)†Ψσ̃(x) = 1√
h(x)

δ(x, x′) . (2.69)
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This relation is used to show that the anticommutation relations between the fields ψ and
ψ† in Eq. (2.63) are equivalent to the equal–time anticommutation relations between the
creation and annihilation operators given by{

aσ̃, a
†
σ̃′

}
= δσ̃σ̃′ =

{
bσ̃, b

†
σ̃′

}
, (2.70)

with all the other anticommutators vanishing.
The Hilbert space FD of fermionic quantum states is then defined in a way slightly

different to the case of a scalar field. From the space of solutions HD we construct the
n–fold antisymmetric tensor product space ⊗nASHD, whose elements are the continuous
alternating n–multilinear maps Ψ(n) : HD × · · · ×HD → C. For each n ∈ N, the space
⊗nASHD is a Hilbert space with respect to the inner product induced from the tensor
product structure [35, Section II.4]. We define the algebraic direct sum of Hilbert spaces
in analogy with Eq. (2.50) by

FD
0 := C⊕

∞⊕
n=1

(⊗nASHD) . (2.71)

Elements in FD
0 are finite sequences of the form

|Ψ〉F := (Ψ(0),Ψ(1), . . . ,Ψ(n), 0, . . . ) , (2.72)

where Ψ(0) ∈ C, and Ψ(j) ∈ ⊗jASHD. The norm in FD
0 is given by

||Ψ||2
FD

= 〈Ψ |Ψ〉F := |Ψ(0)|2 +
∞∑
n=0
||Ψ(n)||2D,n , (2.73)

for all |Ψ〉F , with || · ||D,n the norm in ⊗nASHD. The Hilbert space of quantum states for the
Dirac field, FD, is defined as the completion of FD

0 with respect to the norm in Eq. (2.73),
i.e., FD = FD

0 . For each Ψ′ ∈HD, we define the operators a(Ψ′) and b(Ψ′) with domain
FD

0 , whose action on elements of the form of Eq. (2.72) is given by

a(Ψ′) |Ψ〉F := (Ψ′c ·Ψ(1),
√

2Ψ′c ·Ψ(2), . . . ,
√
nΨ′c ·Ψ(n), 0, . . . ) , (2.74a)

b(Ψ′) |Ψ〉F := (Ψ′ ·Ψ(1),
√

2Ψ′ ·Ψ(2), . . . ,
√
nΨ′ ·Ψ(n), 0, . . . ) , (2.74b)

where Ψ′ ·Ψ(j),Ψ′c ·Ψ(j) ∈ ⊗j−1
AS HD denote the skew–symmetric insertions of Ψ′ and Ψ′c,

respectively, into one of the arguments of the functional Ψ(j). Similarly, for each Ψ′ ∈HD,
we define the operators a†(Ψ′) and b†(Ψ′) with dense domain FD

0 by the action on the
elements in Eq. (2.72) given by

a†(Ψ′) |Ψ〉F := (0,Ψ(0)Ψ̃′,
√

2Ψ̃′ ⊗AS Ψ(1), . . . ,
√
n+ 1Ψ̃′ ⊗AS Ψ(n), 0, . . . ) , (2.75a)

b†(Ψ′) |Ψ〉F := (0,Ψ(0)Ψ̃′c,
√

2Ψ̃′c ⊗AS Ψ(1), . . . ,
√
n+ 1Ψ̃′c ⊗AS Ψ(n), 0, . . . ) , (2.75b)

where Ψ̃′ and Ψ̃′c denote the continuous functionals associated to the elements Ψ′ and Ψ′c,
respectively. We note that a direct consequence of definitions (2.74) and (2.75) is that,
for any Ψ′ ∈ HD, we have a(Ψ′)2 = a†(Ψ′)2 = b(Ψ′)2 = b†(Ψ′)2 = 0. We calculate the
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anitcommutator between the operators a(Ψ1) and a†(Ψ2) for any two Ψ1,Ψ2 ∈HD. Using
Eqs. (2.74) and (2.75), we obtain

a(Ψ1)a†(Ψ2) |Ψ〉F =
(
Ψ(0)Ψc

1 ·Ψ̃2, 2Ψc
1 ·(Ψ̃2⊗ASΨ(1)), . . . , (n+ 1)Ψc

1 ·(Ψ̃2⊗ASΨ(n)), 0, . . .
)
,

a†(Ψ2)a(Ψ1) |Ψ〉F =
(
0, (Ψc

1 ·Ψ(1))Ψ̃2, 2Ψ̃2⊗AS (Ψc
1 ·Ψ(2)), . . . , nΨ̃2⊗AS (Ψc

1 ·Ψ(n)), 0, . . .
)
,

and, since for all 1 ≤ j ≤ n we have

(j + 1)Ψc
1 · (Ψ̃2⊗ASΨ(j)) + jΨ̃2⊗AS (Ψc

1 ·Ψ(j)) = Ψ̃2(Ψc
1)Ψ(j) ,

= 〈Ψ2,Ψc
1〉D Ψ(j) , (2.76)

then it follows that {
a(Ψ1), a†(Ψ2)

}
|Ψ〉F = 〈Ψ2,Ψc

1〉D |Ψ〉F . (2.77)

An analogous calculation can be done for the anticommutator between the operators b(Ψ1)
and b†(Ψ2), leading to {

b(Ψ1), b†(Ψ2)
}
|Ψ〉F = 〈Ψc

2,Ψ1〉D |Ψ〉F , (2.78)

and using Eqs. (2.74) and (2.75) it can readily be verified that all other anticommutators
vanish. Finally, let us consider the orthonormal basis {Ψσ̃}σ̃∈σ(D) and, for each positive–
frequency basis element Ψσ̃ let us define the operators aσ̃ := a(Ψσ̃), bσ̃ := b(Ψσ̃), a†σ̃ :=
a†(Ψc

σ̃), and b†σ̃ := b†(Ψc
σ̃). Then, Eqs. (2.77) and (2.78) with Ψ1 = Ψσ̃ and with Ψ2 = Ψc

σ̃′ ,
reduce4 to Eq. (2.70). Hence, the operators aσ̃ and b†σ̃ are precisely the ones appearing in
the mode expansion of the quantum field in Eq. (2.66).

Similarly to the case of a scalar field, Eq. (2.53) implies that the element

|0〉F := (1, 0, 0, . . . ) ∈ FD , (2.79)

is uniquely characterised by the condition

aσ̃ |0〉F = 0 = bσ̃ |0〉F , (2.80)

for all σ̃. The state |0〉F is known as the fermionic vacuum state. By means of Eq. (2.73),
the norm of the vacuum state is ||0||2

FD
= 〈0 |0〉F = 1.

The occupancy number basis for the fermionic Fock space is constructed in a similar
fashion to the bosonic case. Let {Ψσ̃}σ̃∈σ(D) be the orthonormal basis of HD of eigenvectors
of D. Note that the elements Ψc

σ̃ are included in the basis since they correspond to the
eigenvalues −ωσ̃. The elements of the form Ψ̃σ̃1 ⊗AS · · · ⊗AS Ψ̃σ̃n , with σ̃1 < · · · < σ̃n form
a basis for the space ⊗nASHD. Varying n ∈ N we obtain a basis for FD. Using Eqs. (2.75)
and (2.79), it can be shown that, for each j, k ∈ N, the element in FD defined by∣∣∣1σ̃1 , . . . , 1σ̃j ; 1σ̃j+1 , . . . , 1σ̃j+k

〉
F

:= a†σ̃1 · · · a
†
σ̃j
b†σ̃j+1

· · · b†σ̃j+k
|0〉F . (2.81)

4We use the fact that the inner product in HD satisfies 〈Ψc
1,Ψc

2〉D = 〈Ψ2,Ψ1〉D.
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where σ̃1 < · · · < σ̃j , and σ̃j+1 < · · · < σ̃j+k, is proportional to the basis element

Ψ̃σ̃1 ⊗AS · · · Ψ̃σ̃j ⊗AS Ψ̃c
σ̃j+1 ⊗AS · · · ⊗AS Ψ̃c

σ̃j+k ,

and, thus, the elements of the form of Eq. (2.81) provide a basis for the fermionic Fock
space. The normalisation of these elements is obtained using Eq. (2.73), and we obtain〈

1σ̃1 , . . . , 1σ̃j ; 1σ̃j+1 , . . . , 1σ̃j+k

∣∣∣1σ̃′1 , . . . , 1σ̃′l ; 1σ̃′
l+1
, . . . , 1σ̃′

l+m

〉
F

= δjlδkm
∑
α,β

sgn(α)sgn(β)δσ̃1σ̃α(1) · · · δσ̃j σ̃α(j)δσ̃j+1σ̃β(j+1) · · · δσ̃j+kσ̃β(j+k) , (2.82)

where the sum runs over all permutations α of the set {1, . . . , j} and all permutations β
of the set {j + 1, . . . , j + k}. In analogy with the particle interpretation for the bosonic
Fock space, the Fock state defined by |1σ̃; 0〉F := a†σ̃ |0〉F represents a particle occupying
the quantum state ψσ̃ with energy frequency ωσ̃. However, since (a†σ̃)2 = 0, we have
a†σ̃ |1σ̃; 0〉F = 0. The same is true for the Fock state defined by |0; 1σ̃〉F := b†σ̃ |0〉F repre-
senting a particle in the quantum state ψcσ̃ with energy frequency −ωσ̃, i.e., b†σ̃ |0; 1σ̃〉F = 0.
This behaviour reflects the fact that fermionic fields obey the Pauli exclusion principle [37],
so that only one particle can occupy a given quantum state at a time.

As for the case of a scalar field, a key requirement for the construction of the space
of quantum states for the spinor field theory is the self–adjointness of the operator D in
Eq. (2.29) as well as the absence of zero–modes.

2.3.1 Invariance of the vacuum states under the isometry group

Now that we have constructed the quantum field theories associated to free scalar and
spinor fields on a general standard static spacetime, we will explore additional properties
that the spaces of quantum states have if we further assume that the spacetime (M, g)
admits a larger group of isometries and if we require the spaces of solutions to the dynamical
equations to be invariant under these transformations. The isometries will be generated by
a set of linearly independent Killing vector fields which includes the static vector field ξ.

Let ξ′ be a Killing vector of the spacetime (M, g). The action of ξ′ on the quantum
scalar field φ is realised through the Lie derivative Lξ′ in the direction of ξ′. Since the
Laplace–Beltrami operator � in Eq. (2.8) commutes with Lξ′ , the space of solutions of the
Klein–Gordon equation (2.7) is invariant under the isometries of (M, g). Hence, for all σ
we obtain

Lξ′φσ(t, x) =
∑
σ′

Λσσ′φσ′(t, x) +
∑
σ′

Λ̃σσ′φσ′(t, x) , (2.83)

with Λσσ′ , Λ̃σσ′ ∈ C. Substituting this expression into Eq. (2.46), we have

Lξ′φ(t, x) =
∑
σ

∑
σ′

[
(aσ′Λσ′σ + a†σ′Λ̃σ′σ)φσ(t, x) + (a†σ′Λσ′σ + aσ′Λ̃σ′σ)φσ(t, x)

]
. (2.84)
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Thus, the infinitesimal transformation of the annihilation operators aσ corresponding to
the symmetry transformation generated by ξ′ is given by

δξ′aσ =
∑
σ′

(
aσ′Λσ′σ + a†σ′Λ̃σ′σ

)
. (2.85)

For the bosonic vacuum state |0〉B defined by Eq. (2.58) to be invariant under the spacetime
symmetry transformation corresponding to the Killing vector ξ′, we need to have Λ̃σσ′ = 0.
That is,

Lξ′φσ(t, x) =
∑
σ′

Λσσ′φσ′(t, x) . (2.86)

In other words, for |0〉B to be invariant under this symmetry transformation, the positive–
frequency solutions φσ(t, x) given by Eq. (2.44) with ωσ > 0 must transform among
themselves without any component of negative–frequency solutions. Using the Lie derivative,
we can also see that |0〉B is stationary, i.e. invariant under time–translation symmetry
induced by the static vector field ξ = ∂t. From the form of the solutions φσ in Eq. (2.44),
the Lie derivative in the direction of the static vector field reads Lξφσ = −iωσφσ. This
implies that

Lξφ = −i
∑
σ

ωσ
(
aσφσ(t, x)− a†σφσ(t, x)

)
, (2.87)

and thus, the transformed coefficients δξaσ = −iωσaσ and δξb†σ = iωσb
†
σ define the same

vacuum state |0〉B.
For the case of a spinor field, the action of the Killing vector ξ′ is realised through the

spinorial Lie derivative in the direction of ξ′, defined by [42, 41]

L(D)
ξ′ ψ = ξ′µ∇µψ + 1

4(∇µξ′ν)γµγνψ . (2.88)

As the Dirac operator γ̃µ∇(D)
µ commutes with the Lie derivative L(D)

ξ′ , space of solutions of
Eq. (2.28) must be invariant under the infinitesimal transformation induced by ξ′. Hence,

L(D)
ξ′ ψσ̃(t, x) =

∑
σ̃′

(
Λ(D)
σ̃σ̃′ψσ′(t, x) + Λ̃(D)

σ̃σ̃′ψ
c
σ̃′(t, x)

)
, (2.89)

where Λ(D)
σ̃σ̃′ , Λ̃

(D)
σ̃σ̃′ ∈ C. After substituting this expression into Eq. (2.64), we obtain

L(D)
ξ′ ψ(t, x) =

∑
σ̃′

∑
σ̃

[(
aσ̃Λ(D)

σ̃σ̃′ + b†σ̃Λ̃(D)
σ̃σ̃′

)
ψσ̃′(t, x) +

(
aσΛ̃(D)

σ̃σ̃′ + b†σ̃Λ(D)
σ̃σ̃′

)
ψcσ̃′(t, x)

]
, (2.90)

where we have used the fact that
(
L(D)
ξ′ ψ

)c
= L(D)

ξ′ ψ
c. Thus, we see that the Lie derivative

on ψ induces the transformation on the operators

aσ̃ 7→
∑
σ̃′

(
aσ̃′Λ(D)

σ̃′σ̃ + b†σ̃′Λ̃
(D)
σ̃′σ̃

)
, (2.91a)

b†σ̃ 7→
∑
σ̃′

(
aσ′Λ̃(D)

σ̃′σ̃ + b†σ̃′Λ
(D)
σ̃′σ̃

)
. (2.91b)
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Hence, for the fermionic vacuum state |0〉F defined by Eq. (2.80) to be invariant under
the spacetime symmetry transformation corresponding to the Killing vector ξ′, we need to
have Λ̃(D)

σ̃σ̃′ = 0. That is,

L(D)
ξ′ ψσ̃(t, x) =

∑
σ̃′

Λ(D)
σ̃σ̃′ψσ̃′(t, x) . (2.92)

Once again, this means for the vacuum state |0〉F to be invariant under this symmetry
transformation, the positive–frequency solutions must transform among themselves without
any of negative–frequency solutions. Finally, we note that |0〉F is also stationary: The
action of the spinorial Lie derivative (2.88) in the direction of ξ = ∂t on a spinor in the
form of Eq. (2.64) reads L(D)

ξ ψσ̃ = ∂tψσ̃ = −iωσ̃ψσ̃. Therefore, we have

L(D)
ξ ψ(t, x) = −i

∑
σ̃

ωσ̃
(
aσ̃ψσ̃(t, x)− b†σ̃ψcσ̃(t, x)

)
, (2.93)

and thus, the transformed operators δξaσ̃ = −iωσ̃aσ̃ and δξb
†
σ̃ = iωσ̃b

†
σ̃ define the same

vacuum state |0〉F .



3

The geometry of anti–de Sitter spacetimes

Einstein’s field equations, which relate the geometry of spacetime with the distribution
of matter and energy in the universe, are a system of coupled non–linear second order
partial differential equations for the components of the metric tensor [25, 45]. Due to the
complexity of Einstein’s equations, finding exact solutions is a highly non–trivial task.
Nevertheless, exact solutions were found not long after Einstein himself published his
seminal paper containing the field equations, albeit for a highly symmetric case in the
absence of matter or energy. Solutions to the Einstein’s field equations where no sources
of matter or energy are present are called vacuum solutions, and even if they do not fully
represent the “reality” of physical spacetimes, they provide an idea of the qualitative
properties that can arise in General Relativity and, thus, of the possible behaviour of
realistic solutions.

Amongst the vacuum solutions, those of constant scalar curvature [28, 29] represent the
simplest exact solutions to Einstein’s field equations. These solutions are characterised by
the sign of the scalar curvature, the trivial case of Minkowski spacetime, R1,3, corresponding
to the value of zero. The four–dimensional anti–de Sitter manifold is a static vacuum
solution with negative constant scalar curvature [24, 26, 27]. This solution, as well as
its N–dimensional analogues, are maximally symmetric spaces [25], meaning that the
number of linearly independent Killing vector fields that the metric admits is N(N + 1)/2.
In particular, this means that the isometry group generated by the Killing vectors acts
transitively on the anti de–Sitter manifold.

Even though anti–de Sitter manifolds are highly symmetric solutions to Einstein’s field
equations they are deemed as unphysical mainly due to a causal property they possess:
Closed timelike curves [24, 26]. This issue may be remedied by considering, not the anti
de–Sitter manifold as the physical spacetime, but instead its universal covering space [29].
This is achieved by “unrolling” the time coordinate of the original anti–de Sitter manifold1

to obtain an N–dimensional, simply connected Lorentzian manifold with no closed timelike
curves. We will refer to this universal covering space as the anti–de Sitter spacetime, AdSN .
Another issue arises when considering the universal covering space, that is, the lack of
global hyperbolicity of AdSN . However, as our main point of focus is the construction

1The concept of unrolling the time coordinate will be properly defined in Section 3.1.

38
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of scalar and spinor field theories in anti–de Sitter spacetimes, the machinery developed
by Wald described in Chapter 2 will help us circumvent the consequences that this issue
might produce for our specific goal.

In this chapter we will describe the geometric and causal properties of AdSN , introducing
a global coordinate system that will be used throughout this and subsequent chapters. We
will explain how the universal covering space is defined and show that the anti–de Sitter
spacetime is not globally hyperbolic. We will also pay special attention to the case N = 2
for which the geometry of the spacetime is slightly different from the higher–dimensional
cases. Since AdSN is a standard static spacetime in the sense of Definition 2.1.1, we will
be using most of the concepts and results introduced in Chapter 2.

3.1 the anti–de sitter manifold and its universal covering space

The N–dimensional anti–de Sitter manifold can be defined [46] as a one–sheeted hyper-
boloid, HypN , embedded in the (N + 1)–dimensional flat Lorentzian manifold, R2,N−1,
endowed with the metric η

N+1 = diag(−1,−1, 1, . . . , 1). Denoting the standard rectangu-
lar coordinates in the ambient space R2,N−1 by (y1, y2, . . . , yN+1), we can describe this
hyperboloid by the points satisfying the constraint

−
(
y1
)2
−
(
y2
)2

+
N+1∑
i=3

(
yi
)2

= −R2 , (3.1)

where the parameter R > 0 is known as the radius of curvature2. Here, and hereafter we
set R = 1, and choose the units c = ~ = 1, with c the speed of light and ~ the reduced
Planck’s constant.

The metric for the anti–de Sitter manifold is induced from the ambient metric η
N+1

of R2,N−1. The line element in the ambient space is given in terms of the rectangular
coordinates by

ds2
N+1 = −

(
dy1

)2
−
(
dy2

)2
+
N+1∑
i=3

(
dyi
)2

. (3.2)

A change of coordinates in R2,N−1 from the rectangular system to hyperspherical–like
coordinates given by

y1 = r sec ρ cos t̃ , (3.3a)

y2 = r sec ρ sin t̃ , (3.3b)

y3 = r tan ρ cos θ1 , (3.3c)

yi = r tan ρ

i−3∏
j=1

sin θj

 cos θi−2 , 3 < i ≤ N , (3.3d)

yN+1 = r tan ρ

N−2∏
j=1

sin θj

 , (3.3e)

2Viewed as a solution to Einstein’s field equations, the radius of curvature of the N–dimensional anti–de
Sitter manifold encodes the value of the (negative) cosmological constant via R2 = −(N − 1)(N − 2)/(2Λ)
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with r ∈ [0,∞) and with

t̃ ∈ [−π, π) , (3.4a)

ρ ∈
[
0, π2

)
, (3.4b)

θj ∈ [0, π] , 1 ≤ j ≤ N − 3 , (3.4c)

θN−2 ∈ [0, 2π) , (3.4d)

reduces the hyperboloid equation (3.1) to r2 = 1.
At this point it is worth pointing out that the parametrisation of R2,N−1 given by

Eqs. (3.3) and (3.4) does not provide a complete coordinate system for the case N = 2.
For this case, there are no angular coordinates θk, and thus, the variables in Eqs. (3.3d)
and (3.3e) are omitted, and we have y3 = r tan ρ. However, ρ ∈ [0, π/2) covers only the
half–space of R2,1 given by y3 ≥ 0. Hence, for the particular case N = 2 we will always
understand the variable ρ to be defined by ρ ∈ (−π/2, π/2) instead of Eq. (3.4b). The
fact that the N = 2 case allows this parametrisation will result in a very important and
non–trivial distinction between the behaviour of the scalar field theory in dimension N = 2
and those in in dimension N ≥ 3.

We can now define global coordinates for the anti–de Sitter manifold HypN as(
x̃0, x1, x2 . . . , xN−1

)
:=
(
t̃, ρ, θ1, . . . , θN−2

)
. (3.5)

With respect to these coordinates the line element induced from (3.2) takes the form

ds2
HypN

= sec2 ρ
(
−dt̃ 2 + dρ2 + sin2 ρ dΩ2

N−2

)
, (3.6)

where dΩ2
N−2 is the line element of the (N − 2)–sphere [28, 29] given by

dΩ2
N−2 = dθ2

1 +
N−1∑
i=3

(
i−2∏
l=1

sin2 θl

)
dθ2

i−1 . (3.7)

The parametrisation of the coordinates (3.5) in terms of the ranges of the parameters
defined in Eq. (3.4) makes clear that the anti–de Sitter manifold has the topology [24, 46]
of the product S1 × RN−1, where S1 is the unit circle and RN−1 corresponds to the
hypersurfaces of constant t̃. Due to this fact it is clear that any curve parametrised by t̃
whose image consists of points with constant spatial coordinates (ρ, θ1, . . . , θN2) is a closed
timelike curve. However, these curves are not contractible [24] and thus, the anti–de Sitter
manifold is not simply connected.

The universal covering space, AdSN , of HypN is realised by redefining the time coordi-
nate t̃→ t ∈ R, which can be interpreted as the “unrolling” of the unit circle S1. More
specifically, by considering the equivalence relation t ∼ t+ 2π for t ∈ R, we can interpret
the coordinate t̃ as the map t̃ : R → S1 that sends t to its equivalence class, and thus,
t̃ : t 7→ t̃(t) defines the covering map which is extended to AdSN → HypN . We will refer
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to the universal covering space AdSN as the N–dimensional anti–de Sitter spacetime.
The (global) coordinate system for AdSN is thus given by(

x0, x1, x2 . . . , xN−1
)

:= (t, ρ, θ1, . . . , θN−2) , (3.8)

with t ∈ R and with the range of the spatial variables x := (ρ, θ1, . . . , θN−2) given by
Eqs. (3.4b)–(3.4d). By construction, AdSN is the product manifold R × RN−1. Using
Eq. (3.6) we see that the metric tensor g of AdSN is given with respect to the coordinates
(t, x) by

g(t,x) = − sec2ρdt⊗ dt+ sec2ρ dρ⊗ dρ+ tan2ρdΩ2
N−2 , (3.9)

and thus, identifying

N (x)2 = sec2ρ , (3.10a)

hx = sec2ρ dρ⊗ dρ+ tan2ρ dΩ2
N−2 , (3.10b)

and Σ := RN−1, we see that (AdSN , g) is a standard static spacetime in the sense of
Definition 2.1.1. The coordinates (t, x) precisely correspond to a choice of the static
coordinates introduced in Chapter 2 and the static Killing vector field is given by ξ0 := ∂t,
as expected.

The Levi–Civita connection compatible with the metric tensor in Eq. (3.9) is calculated
using Eq. (2.3). We find that the non–zero components Γµνλ of the connection in terms of
the static coordinates (3.8) are found to be given by

Γ0
01 = Γ1

00 = Γ1
11 = −Γ1

22 = tan ρ , (3.11a)

Γ1
ii = − tan ρ

i−2∏
l=1

sin2 θl , (3.11b)

Γ2
12 = Γi1i = csc ρ sec ρ , (3.11c)

Γiji = cot θj−1 , (3.11d)

Γjii = − cot θj−1

i−2∏
l=j−1

sin2 θl , (3.11e)

for 3 ≤ i ≤ N − 1 and 2 ≤ j ≤ i− 1.
A t–independent orthogonal frame in the form of Eq. (2.20) can be chosen by defining

the vector fields ea ∈ X(AdSN ), with a = 0, 1, . . . , N − 1 given by

e0 = cos ρ ∂
∂t
, (3.12a)

e1 = cos ρ ∂

∂ρ
, (3.12b)

e2 = cot ρ ∂

∂θ1
, (3.12c)

ei = cot ρ
(
i−2∏
l=1

csc θl
)

∂

∂θi−1
, 3 ≤ i ≤ N − 1 . (3.12d)
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The components eµa of these vector fields are found to satisfy Eqs. (2.18), and thus, define
an orthogonal frame at each (t, x) ∈ AdSN except at the points for which any of the angular
coordinates θ1, . . . , θN−2 vanish, as the vector fields ei in Eq. (3.12d) become singular3.
With respect to the frame {ea}N−1

a=0 , the non–zero components ωab µ of the connection
1–form are obtained using Eq. (2.21) and read

ω0
1 0 = tan ρ , (3.13a)

ω2
1 2 = sec ρ , (3.13b)

ωi1 i = sec ρ
i−2∏
l=1

sin θl , (3.13c)

ωij i = cot θj−1

i−2∏
l=j−1

sin θl , (3.13d)

with 3 ≤ i ≤ N − 1 and 2 ≤ j ≤ i − 1. Using either Eqs. (3.9) and (3.11), or Eqs. (2.8)
and (3.10), we can calculate the Laplace–Beltrami operator [25] associated to the anti–de
Sitter spacetime. This is given by

�AdSN = cot2 ρ

(
− sin2 ρ

∂2

∂t2
+ sin2 ρ

∂2

∂ρ2 + (N − 2) tan ρ ∂

∂ρ
+ ∆N−2

)
(3.14)

where ∆N−2 is the Laplacian of the (N − 2)–sphere [28, 29].
We conclude this section with a discussion regarding the symmetries of anti–de Sitter

spacetime by analysing the properties of the isometry group of AdSN . We start by
considering the symmetry group of transformations of RN+1 preserving the metric ηN+1

in Eq. (3.2), that is, O(2, N − 1), the indefinite orthogonal group [47]. In full analogy
with the Lorentz group [29, 47, 48] we will consider the identity component of O(2, N − 1)
preserving time (y1 and y2 coordinates) and space (y3 . . . , yN−1 coordinates) orientations,
which we will denote4 by SO(2, N − 1).

An element G of SO(2, N − 1) is characterised, in the fundamental (matrix) representa-
tion acting on R2,N−1, by the condition GTη

N+1G = η
N+1, where GT denotes the transpose

of the (N + 1)× (N + 1)–matrix G, and by the requirement det(A) = 1 = det(D), where
A and D are 2× 2– and (N − 1)× (N − 1)–matrices, respectively, defined by

G =
(
A B

C D

)
, (3.15)

with B a 2× (N − 1)–matrix and C a (N − 1)× 2–matrix.
By denoting elements in R2,N−1 as column vectors y = (y1, . . . , yN+1)T , we can rewrite

the hyperboloid equation (3.1) that defines the anti–de Sitter manifold, HypN , as yTη
N+1y =

3If necessary we may choose a different chart in AdSN for which the point (t, ρ, θ1, . . . , θN−2) has none
of its angular coordinates equal to zero.

4The correct notation for this group should be SO+
0 (2, N − 1), whereas SO(2, N − 1) usually stands for

elements in O(2, N − 1) with unit determinant and no further constraints. As we will not deal with the
latter, we drop the cumbersome indices 0 and + for the sake of simplicity.
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−1. By applying the transformation y 7→ Gy, we see that (Gy)Tη
N+1Gy = yTη

N+1y, and
thus, for any y ∈ HypN , we have Gy ∈ HypN for all G ∈ SO(2, N −1). Since the metric for
the anti–de Sitter manifold can be obtained by the restriction of η

N+1 to the hyperboloid
HypN , SO(2, N − 1) is a symmetry group of this space preserving the metric structure.
Hence, it is the isometry group of the anti–de Sitter manifold.

Now, since anti de–Sitter spacetime, AdSN , is defined as the universal covering space
of HypN , the isometry group of AdSN is S̃O(2, N − 1), the universal covering group5

of SO(2, N − 1) [47, 49]. We will not concern ourselves with the full description of the
isometry group, but instead we will take the infinitesimal approach (which will prove to be
of greater relevance when we analyse the scalar and spinor fields on AdSN in Chapters 6, 7
and 8). Both Lie groups SO(2, N − 1) and S̃O(2, N − 1) share the Lie algebra so(2, N − 1)
consisting of real traceless matrices of the form [47]

X =



0 a b11 b12 · · · b1,N−1

−a 0 b21 b22 · · · b2,N−1

b11 b21 0 c12 · · · c1,N−1

b12 b22 −c12 0 · · · c2,N−1
...

...
...

... . . . ...
b1,N−1 b2,N−1 −c1,N−1 −c2,N−1 · · · 0


. (3.16)

A basis for the Lie algebra so(2, N − 1) is constructed as follows. Let Eij , with 1 ≤ i, j ≤
N +1 denote the (N +1)× (N +1) matrix with a 1 in the position (i, j) and zero elsewhere.
We define the N(N + 1)/2 matrices Oij := ηjkEki − ηikEkj where ηij denotes the (i, j)
element of η

N+1. The matrices Oij can be renamed for specific values of i, j as follows:

I12 := E12 − E21 , (3.17a)

Jij := Eij − Eji , 3 ≤ i < j ≤ N + 1 , (3.17b)

Kij := Eij + Eji , i = 1, 2, 3 ≤ j ≤ N + 1 , (3.17c)

Then, the matrix X ∈ so(2, N − 1) in Eq. (3.16) can be written as

X = aI12 +
2∑
i=1

N+1∑
j=3

bi,j−2Kij +
N+1∑
i<j

ci−2,j−2Jij . (3.18)

The matrices Oij form a basis for the Lie algebra so(2, N − 1) and obey the commutation
relations

[Oij , Okl] = ηikOjl − ηilOjk − ηjkOil + ηjlOik , (3.19)

and thus, they are the infinitesimal generators of SO(2, N − 1) and S̃O(2, N − 1). Using
Eqs. (3.17) and (3.19), we can determine the commutation relations between the individual
sectors of the so(2, N − 1) algebra. Indeed, the one–dimensional subalgebra generated

5We will give a rigorous characterisation of a universal covering group in Chapter 4, more specifically
in Proposition 4.1.3.
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by I12 is abelian and isomorphic to SO(2). All other non–zero commutation relations
involving I12 are given by

[Iij ,Kkl] = δjkKil − δikKjl , (3.20)

for all i, j, k = 1, 2 and 3 ≤ l ≤ N + 1. We also have, for i, j = 1, 2 and k, l,m, n =
3, . . . , N + 1, the following

[Jkl, Jmn] = δkmJln − δknJlm − δlmJkn + δlnJkm , (3.21a)

[Kik,Kjl] = δklIij − δijJkl , (3.21b)

[Kik, Jlm] = δklKim + δkmKil . (3.21c)

From these relations we see that the elements Jkl defined in Eq. (3.17b) span a subalgebra
isomorphic to so(N − 1).

For the special case of N = 2, the Lie algebra so(2, 1) has the three generators I12,K13

and K23 which satisfy the commutation relations

[I12,K23] = K13 , [I12,K13] = −K23 , [K13,K23] = I12 . (3.22)

These are the commutation relations of the Lie algebra sl(2,R), the special linear group
of real 2 × 2 matrices [47, 49]. This in turn implies that the isometry group for the
two–dimensional anti–de Sitter spacetime AdS2 is the universal covering group, S̃L(2,R),
of SL(2, R). We will discuss some technical aspects of this group and its unitary irreducible
representations in Chapter 4. For now we will continue to treat all cases for arbitrary N
in the same footing.

The action of S̃O(2, N − 1) on AdSN induces an action of so(2, N − 1) on smooth
functions of the spacetime realised in the algebra of vector fields X(AdSN ) [28, 29]. Since
S̃O(2, N − 1) is the isometry group of AdSN , for each generator Oij ∈ so(2, N − 1) there
is an associated Killing vector field. Given f ∈ C∞(R2,N−1) and X ∈ so(2, N − 1), we
calculate the action of the vector field ξ(X) on f as a function in R2,N−1, given by

ξ(X)[f ] := d
dεf ((I + εX)y)

∣∣∣∣
ε=0

, (3.23)

and then obtain the associated action on C∞(AdSN ) by restriction to the hyperboloid
HypN . Using Eqs. (3.17) and (3.23) we obtain the following vector fields

ξ0 := ξ(I12) = y2 ∂

∂y1 − y
1 ∂

∂y2 , (3.24a)

Kj := ξ(K1j) = y1 ∂

∂yj
+ yj

∂

∂y1 , 3 ≤ j ≤ N + 1 , (3.24b)

Bj := ξ(K2,j) = y2 ∂

∂yj
+ yj

∂

∂y2 , 3 ≤ j ≤ N + 1 , (3.24c)

J ij := ξ(Jij) = yj
∂

∂yi
− yi ∂

∂yj
, 3 ≤ i < j ≤ N + 1 . (3.24d)
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From these expressions it is clear that ξ0 describes an infinitesimal rotation of the y1y2–
plane in R2,N−1, and the vector fields J ij correspond to purely spatial infinitesimal
rotations [28, 29]. The vector fields Kj and Bj can be understood as generalised boosts,
in analogy with the Lorentz algebra structure [48]. (See Eq. (3.21).) Finally, to obtain the
action of the Killing vector fields (3.24) on AdSN we write the partial derivatives ∂/∂yi

in terms of the static coordinates (3.4) using the coordinate transformation in Eq. (3.3)
setting r = 1. We obtain

∂

∂y1 =− cos ρ sin t ∂
∂t

+ cot ρ cos ρ cos t ∂
∂ρ

, (3.25a)

∂

∂y2 = cos ρ cos t ∂
∂t

+ cot ρ cos ρ sin t ∂
∂ρ

, (3.25b)

∂

∂y3 =− cot ρ sin θ1
∂

∂θ1
, (3.25c)

∂

∂yi
= cot ρ

(
i−3∏
k=1

csc θk
)cos θi−2

i−3∑
j=1

cot θj

i−3∏
k=j

sin2 θk

 ∂

∂θj
− sin θi−2

∂

∂θi−2

 ,
(3.25d)

∂

∂yN+1
= cot ρ

(
N−3∏
k=1

csc θk
)N−2∑

j=1
cot θj

N−2∏
k=j

sin2 θk

 ∂

∂θj
+ cos θN−2

∂

∂θN−2

 , (3.25e)

where 4 ≤ i ≤ N . Then, the Killing vector fields in Eq. (3.24) may be written in terms
of (t, x). In particular, Eqs. (3.24a), (3.25a) and (3.25b) imply that ξ0 = ∂/∂t, and thus,
ξ0 corresponds to the static Killing vector field of AdSN . It is also worth pointing out
that Eqs. (3.3), (3.24d) and (3.25) imply that the Killing vectors J ij only depend on the
angular coordinates θ. Similarly, the two boost–like Killing vectors K3 and B3 are given
by

K3 = − cos θ1

(
sin t sin ρ ∂

∂t
− cos t cos ρ ∂

∂ρ

)
− cos t sin θ1

sin ρ
∂

∂θ1
, (3.26a)

B3 = cos θ1

(
cos t sin ρ ∂

∂t
+ sin t cos ρ ∂

∂ρ

)
− sin t sin θ1

sin ρ
∂

∂θ1
. (3.26b)

For the case N = 2, the only Killing vector fields are given by ξ0, K3 and B3, the latter
are obtained by setting θ1 = 0 in Eq. (3.26).

An N–dimensional spacetime that admits N(N + 1)/2 Killing vector fields is said to
be maximally symmetric [25, 45]. This is clearly the case for anti–de Sitter spacetime as
the dimension of so(2, N − 1) is the number of generators in Eq. (3.17). Since AdSN is a
maximally symmetric spacetimes of constant curvature, the components of the Riemann
curvature tensor can be written as [50]

Rµνκλ = −(gµκgνλ − gµλgνκ) , (3.27)

(we have taken into account our initial choice R = 1 in Eq. (3.1)) and the Ricci curvature
R is then proportional to the metric tensor, i.e., R = −(N − 1)g. Hence, the Ricci scalar,
defined as the trace of the Ricci curvature [25, 28, 29] with respect to the metric tensor,
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R := Tr(R) is given by R = −N(N − 1). By considering these facts, we see that the
metric g for AdSN satisfies

R− 1
2Rg = 1

2(N − 1)(N − 2)g , (3.28)

which is precisely the vacuum Einstein equation [25, 45] with cosmological constant
Λ = −(N − 1)(N − 2)/2.

3.2 lack of global hyperbolicity

Now that we have reviewed some of the relevant geometric properties of AdSN , we briefly
explain why this spacetime is not globally hyperbolic. This fact is well known and has
been analysed thoroughly, thus, we will limit ourselves to give an intuitive explanation for
why this is the case. Several arguments for the lack of global hyperbolicity of AdSN can
be found throughout the literature, for example in [24, 26, 27, 30, 34, 51, 52].

If we consider the static coordinates (t, ρ, θ1, . . . , θN−2), it follows that spatial infinity
is described by points in AdSN for which ρ → π/2, with all other coordinates fixed.
From Eq. (3.9) we see that the function N diverges as we take the limit to spatial
infinity, and thus, the metric is not defined for these points. We can analyse the causal
properties of AdSN by considering the conformally related metric gC satisfying g = N 2gC ,
where g is given by Eq. (3.9). The transformation given by g 7→ gC is known as a
conformal transformation [24, 25, 28, 29, 45], and it has the property that it preserves null
hypersurfaces. The non–physical metric tensor gC describes a pseudo–Riemannian manifold
ÃdSN in which the “points at infinity” of AdSN are represented as the timelike boundary
ρ = π/2, and the metric gC is well defined at this boundary. Since null hypersurfaces
and time orientation are preserved under the conformal transformation [24], the causal
structure of ÃdSN is the same as for anti–de Sitter spacetime.

The existence of this timelike boundary in ÃdSN is precisely what prevents AdSN to
be a globally hyperbolic spacetime. The line element associated to the metric gC is given
by

ds2
C = −dt2 + dρ2 + sin2ρdΩ2

N−2 . (3.29)

If we then consider a null geodesic c : I ⊂ R → ÃdSN emanating from the origin with
respect to the coordinates (t, x), and moving radially outwards, then we must have ds2

C = 0,
with dΩ2

N−2 = 0. The equation describing this geodesic parametrised by t0 is simply given
by dt = ±dρ, so that ρ(t0) = t0 and ρ(t0) = −t0 describe the geodesics starting at
p = (0, 0, θ0) with the angular coordinates θ0 ∈ SN−2 held fixed. This means that a null
geodesic from the origin intersects the timelike boundary ρ = π/2 after a finite coordinate
time, ∆t0 = π/2. Note that this argument is easily extended to any point p ∈ ÃdSN
other than the origin. In terms of AdSN , this implies that a light signal emanating from
p will escape to spatial infinity after a finite amount of time has elapsed. To see why
this fact implies the lack of global hyperbolicity, let us assume that AdSN is globally
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hyperbolic, and that there exists a Cauchy surface S containing p ∈ AdSN . Now, the
null geodesic described above is an inextendible future–directed causal curve in AdSN
(points with ρ = π/2 are only defined in ÃdSN , so the geodesic has no future endpoint).
By Corollary 2.1.7, there exists a global time function τ : AdSN → R, and the Cauchy
surface S can be described as the level curve τ = τ1 for some τ1 ∈ R. The time function τ
is clearly bounded along the null geodesic c starting at p and escaping to infinity at tmax,
the upper bound given by its value at c(tmax), say τ2 ∈ R. For any ε > 0, the level curve
τ = τ2 + ε is, by Corollary 2.1.7, a Cauchy surface, Sτ2+ε. However, as any point lying in
the null geodesic c satisfies τ(c(t)) ≤ τ2, the surface Sτ2+ε does not intersect c(t) for any
t, and thus, cannot be a Cauchy surface by Definition 2.1.2. Since Sτ2+ε was obtained
by Cauchy development of S through τ , S cannot be a Cauchy surface, so we arrive at a
contradiction. As S was chosen arbitrarily this argument implies that no Cauchy surfaces
can exist in AdSN , hence, it is not a globally hyperbolic spacetime.



4

Representation theory of S̃L(2,R)

One of the main aspects of QFT in Minkowski spacetime, R1,3, is the role that the unitary
representations of the Poincaré group [48], the isometry group of R1,3, have in defining
physically acceptable quantum theories. Trying to reconcile Quantum Mechanics and
Special Relativity was what led to the framework of QFT in the first place, and this was
achieved, in broad terms, by requiring the fields that represent quantum observables to
form a unitary irreducible representation (UIR) of the Poincaré group [48, 53, 54].

Extending the methods and techniques of QFT in Minkowski spacetime to a QFT
defined in a more general curved background suggests, in a certain way, that requiring the
fields to be invariant under the isometry group (if any) of the curved spacetime may be a
sensible requirement for physically acceptable theories.

As we mentioned in Chapter 3, the isometry group of anti de–Sitter spacetime, AdSN ,
is the universal covering group of SO(2, N − 1), which in the two–dimensional case reduces
to S̃L(2,R), the universal covering group of SL(2,R). The classification of all possible
UIRs of S̃L(2,R) up to isomorphism was mainly due to Pukanszky [55] who followed an
approach similar to that of Bargmann [56] for the case of SL(2,R). The classification
of UIRs of SO(p, q), for p, q ∈ N, can be found in a series of papers by Limić, Niederle
and Rączka [57, 58, 59], while the UIRs for the universal covering group S̃O(2, 3) were
classified by Ehrman [60], and the generalisation to any p and q might be carried out in a
very similar way.

In this chapter we will briefly review some of the general concepts in the representation
theory of Lie groups and Lie algebras. We will present some fundamental definitions and
results for general Lie groups and then specialise to the properties of the groups of SL(2,R)
and S̃L(2,R) and the representations of their Lie algebra. Then we will explain how the
UIRs of S̃L(2,R) can be obtained via the representations of the Lie algebra sl(2,R), and
we will arrive at the classification given by Pukanszky. We will adopt the notation and
conventions of Ref. [61] which are more closely related to the way we will apply the theory
to the particular case of AdS2.

48
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4.1 lie groups, lie algebras and their representations

In this section we give some elementary definitions and results regarding Lie groups and
Lie algebras. Most of the material presented here is well known and can be found in
standard textbooks, but we will base our notation, definitions, and results mainly on
Refs. [47, 49, 62].

We will refer to a set S as a separable topological space if its underlying topology is
that of a separable metric space. A Lie group G is a separable topological group [47]
with the structure of a smooth manifold compatible with the given topology in such a way
that the group multiplication G×G → G and inversion are smooth maps. An analytic
group is a connected Lie group. If the underlying manifold defining the Lie group G is
compact, then G is said to be a compact group. A matrix Lie group, or closed linear Lie
group, is a topologically closed subgroup of GL(n,C), where GL(n,C) with n ∈ N is the
group of invertible n× n matrices with complex entries [49].

Let Φ : G → H be a smooth map between the Lie groups G and H. If Φ satisfies
Φ(g1g2) = Φ(g1)Φ(g2) for all g1, g2 ∈ G, then Φ is said to be a group homomorphism. A
local homomorphism between analytic Lie groups G and H, is a pair (Φ, U), where U ⊂ G
is an open connected neighbourhood of e ∈ G and Φ : G→ H is a smooth map such that
Φ(g1, g2) = Φ(g1)Φ(g2) whenever g1, g2 and g1g2 lie in U .

A finite dimensional Lie algebra g is a vector space over a field F with a bilinear map
[·, ·] : g× g→ g, called the Lie bracket, satisfying [X,Y ] = −[Y,X], and the Jacobi identity

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]] , (4.1)

for allX,Y, Z ∈ g. Given a basis {Xi}Di=1 of aD–dimensional Lie algebra g, the commutator
between the vectors Xi must satisfy

[Xi, Xj ] = ckijXk , (4.2)

for some ckij ∈ F, with 1 ≤ i, j, k ≤ D [47]. The quantities ckij ∈ F are the structure
constants of the Lie algebra g, and they are basis–dependent. The structure constants, by
linearity, determine the Lie brackets of all elements of g. If all the structure constants
vanish in a given basis, then the Lie algebra g is said to be commutative or abelian. A
subspace h ⊆ g is said to be a Lie subalgebra if, for any X,Y ∈ h, [X,Y ] ∈ h. A linear
map φ : g → h between two Lie algebras g and h, satisfying φ ([X,Y ]g) = [φ(X), φ(Y )]h
for all X,Y ∈ g is called a Lie algebra homomorphism.

Several important types of Lie algebras are found by analysing how certain subalgebras
behave under operations involving Lie brackets; we now review the definitions of some
of these that will be relevant for our purposes [47, Chapter 1]. Let g be a Lie algebra,
and for any two subspaces a, b ⊆ g, write [a, b] to denote the linear span of elements of
the form [X,Y ] with X ∈ a and Y ∈ b. An ideal a in g is a subspace satisfying [a, g] ⊆ a.
The centre of g is the subspace Zg consisting of all X ∈ g such that [X,Y ] = 0 for all
Y ∈ g. Now, consider the following subspaces of g: The subspaces gk defined recursively
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by g0 = g, g1 = [g, g], and gk+1 = [gk, gk], and the subspaces gk defined recursively by
g0 = g, g1 = [g, g], and gk+1 = [g, gk]. A lie algebra g is said to be solvable if gk = 0 for
some k. A Lie algebra g satisfying gk = 0 for some k is said to be nilpotent. If g has no
non–zero solvable ideals, then g is called a semisimple Lie algebra.

Now we briefly review the definition of a universal enveloping algebra, and refer to [47,
Chapter 3] for further details. Let g be a Lie algebra over C1. Since g is a vector space,
we can consider the tensor algebra of g defined by [47, 63]

T (g) :=
∞⊕
k=0

(
⊗kg

)
, (4.3)

where ⊗kg is the k–fold tensor product of the vector space g, and ⊗0g := C. T (g) is an
associative algebra with identity 1 in C. Consider the two–sided (left– and right–) ideal
generated by all (X⊗Y −Y ⊗X− [X,Y ]) ∈ T (g), with X,Y ∈ g. The quotient of T (g) by
this two–sided ideal, denoted by U(g), is known as the universal enveloping algebra of
g [47, 49, 63]. The universal enveloping algebra is also associative and unital (with identity
1 ∈ C), and has a universal mapping property [63, Proposition 3.1]. The Lie algebra g

naturally embeds in U(g) by means of Eq. (4.3). The centre of U(g) is the set Z(g) of
elements X̃ ∈ U(g) such that X̃Y = Y X̃ for all Y ∈ g [47, Proposition 5.22]. We will
return to universal enveloping algebras once we introduce the concept of representations.

The link between Lie groups and Lie algebras arises from the smooth manifold structure
of the Lie group G [47, Chapter 1]. For any g ∈ G, let Lg : G→ G be the left–translation
map by g, defined by Lg(g′) = gg′ for all g′ ∈ G. Now, consider a smooth vector field
X ∈ X(G). A vector field X is said to be a left–invariant vector field if, for any g, g′ ∈ G,
we have Xgg′ = (dLg)g′(Xg′), where (dLg)g′ : Tg′G → Tgg′G denotes the differential or
pushforward [28, 29] of the map Lg at g′. The subspace g of left–invariant vector fields on
G forms a Lie subalgebra of X(G), and g is said to be the Lie algebra of the Lie group
G. The map X 7→ Xe, with e ∈ G denoting the identity element of G, is a vector space
isomorphism g→ TeG onto the tangent space of G at the identity [47], and thus, we may
identify the Lie algebra of G with TeG. Hence, every Lie group G has a unique associated
Lie algebra g, up to vector space isomorphism canonically identified with its tangent space
at the identity.

This relation between Lie groups and Lie algebras also extends to homomorphisms [47,
Chaper I, Section 10]: Let Φ : G → H be a smooth homomorphism between the Lie
groups G and H with Lie algebras g and h, respectively. Let (dΦ)g : TgG→ TΦ(g)H be the
differential of Φ at g ∈ G. Then, the map (dΦ)e : g→ h is a Lie algebra homomorphism.
This means that for any Lie group homomorphism there is an associated Lie algebra
homomorphism. The passage in the reverse direction, in general, only works locally. The
result is that, given two analytic groups G and H and a homomorphism φ between their
Lie algebras g and h, respectively, then there exists a local homomorphism Φ : G → H,
such that dΦ = φ.

1If g is a real Lie algebra, then we shall take the complexification of g instead, given by gC = g⊕ ig [49].
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The lifting of homomorphisms of Lie algebras to homomorphisms of Lie groups described
above can be used to define the exponential map of a Lie algebra. We briefly review the
well–known definition and refer to Ref. [47, Chapter I, Section 10] for further details. Let
R the real additive group and denote by r its one–dimensional Lie algebra spanned by
T := d

dt

∣∣∣
t=0

. Let G be a Lie group with Lie algebra g. Given X ∈ g, the map T 7→ X defines
a Lie algebra homomorphism r→ g, and it lifts to a smooth (local) group homomorphism
ΦX : R → G. Now, the map ΦX defines a smooth curve on G with ΦX(0) = e, where
e ∈ G is the identity element, whose tangent vector at e is X. Hence, ΦX is an integral
curve of the left–invariant vector field X̃ associated to X by X̃e = X. The exponential
map of the Lie algebra g, denoted by exp : g→ G is then defined by exp(X) := ΦX(1).

The exponential map, exp : g → G, is a diffeomorphism for any sufficiently small
neighbourhood of 0 ∈ g onto an open neighbourhood of e ∈ G [63]. Using the exponential
map two local coordinate systems for G can be constructed [47, 63]. Given a basis {Xi}Di=1
of the Lie algebra g, the map

(x1, . . . , xD) 7→ g exp(x1X1 + · · ·xDXD) , (4.4)

carries a sufficiently small neighbourhood around 0 ∈ RD diffeomorphically onto an open
neighbourhood of g in G. Hence, the inverse map defines a compatible chart about g,
and defines canonical coordinates of the first kind. Similarly, if the Lie algebra g of an
analytic Lie group G is the direct sum of Lie algebras of one–dimensional subspaces,
g = g1 ⊕ · · · ⊕ gD, and if Uk is a sufficiently small open neighbourhood of 0 ∈ gk for
1 ≤ k ≤ D, then the map

(X1, . . . , XD) 7→ g exp(X1) · · · exp(XD) , (4.5)

is a diffeomorphism of U1 × · · · × UD onto an open neighbourhood of g ∈ G. The local
coordinates given by the inverse map of Eq. (4.5) are known as canonical coordinates of
the second kind.

The exponential map allows to map elements of a Lie algebra to the associated analytic
group but, in the general case, the surjectivity of exp only holds locally. This implies
that for a general analytic group G, it may not be possible to map the Lie algebra g onto
the entire Lie group through a single mapping of the form exp(X) with X ∈ g. In other
words, there may exist elements g ∈ G such that no X ∈ g satisfies g = exp(X) [49, 64].
However, Eq. (4.5) implies that if the Lie group G is connected, then any element g ∈ G
can be written as a product of exponentials of elements of the Lie algebra g. The algebraic
properties that the Lie algebra g has can thus be used to characterise the associated Lie
group via this correspondence. For example: A Lie group G with Lie algebra g is said to
be a nilpotent group if its Lie algebra is nilpotent and G is said to be a semisimple
group if g is a semisimple Lie algebra.

The local nature of the exponential map shows the reason why a Lie algebra g may
have two or more non–isomorphic analytic groups associated to it [49]; the exponential
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map does not provide information about the global nature of the group except in very few
specific cases [47]. However, there is a canonical way to assign a unique Lie group (up to
isomorphism) to a given Lie algebra, given by the following theorem [65, Corollary 3.43]:

Theorem 4.1.1 For any real or complex Lie algebra g, there is a unique, up to isomor-
phism, simply connected analytic group G whose Lie algebra is g. Any other analytic group
G′ with Lie algebra g must be of the form G′ = G/H, for some discrete central subgroup
H ⊂ G.

Remark 4.1.2 The key property of this unique Lie group associated to g is its simple
connectedness. A pathwise connected topological space is said to be simply connected if
every loop based at a point can be continuously deformed to the given point with the point
itself held fixed [47, 49]. A central subgroup H ⊂ G is a subgroup contained in the centre
Z of G, that is, the set of elements that commute with every element of G. A subgroup H
of G is discrete if the subspace topology induced from G is discrete.

Theorem 4.1.1 gives the form of all possible analytic groups with Lie algebra g. If one
starts with an analytic group G which is not simply connected we may use this result to
find an analytic group G̃ which is simply connected and that has the same Lie algebra as G.
If G is an analytic group, then it is pathwise connected, and locally simply connected [47].
Hence, G, as a separable topological space, admits a universal covering space, G̃. By
definition [29, 47], the universal covering space G̃ is the unique (up to isomorphism) simply
connected covering of G, and the following result ensures that G̃ is an analytic group [47,
Propositions 1.97 and 1.99]:

Proposition 4.1.3 Let G be an analytic group and let G̃ be its universal covering space.
Then there exists a unique multiplication on G̃ that makes G̃ into an analytic group such
that the covering map is a group homomorphism.

The group G̃ obtained in this proposition is known as the universal covering group
of G. If we apply Theorem 4.1.1 to G̃, then it follows that both G̃ and G have the same
Lie algebra and that G is isomorphic to G̃/H, with H a discrete subgroup of the centre of
G̃. In Section 4.2 we will explain how these results translate to the specific case of the
group SL(2,R).

Next, we review certain concepts regarding representations of Lie algebras and their
relation with representations of the associated Lie group. We begin by giving the general
definition [63]:

Definition 4.1.4 A representation of a Lie group G on a complex Hilbert space H

is a homomorphism Π of G into the group of bounded linear operators on H with bounded
inverses, such that the resulting map G×H →H is continuous. A representation of
a Lie algebra g on a complex Hilbert space H is a homomorphism π from the Lie algebra
g to the Lie algebra of all linear transformations of H into itself.
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An invariant subspace for a representation Π of G is a vector subspace I ⊆H such that
Π(g)I ⊆ I for all g ∈ G. A representation Π is said to be irreducible if it has no
closed invariant subspaces other than {0} and H . For g ∈ G, let Π(g)† denote the adjoint
operator of Π(g) with respect to the inner product of H as given by Definition 2.2.2. If
Π(g)Π(g)† = Π(g)†Π(g) = I for all g ∈ G, with I the identity operator on H , then the
representation Π is called unitary. Two representations Π on H and Π′ on H ′ of a Lie
group G are unitarily equivalent if there exists a bounded linear unitary map E : H →H ′

with a bounded inverse such that Π′(g)E = EΠ(g) for all g ∈ G. An important result
concerning unitary irreducible representations of Lie groups is given by Schur’s lemma [63,
Proposition 1.5]

Theorem 4.1.5 (Schur’s lemma) Let G be a topological group. A unitary representa-
tion Π of G on a Hilbert space H is irreducible if and only if the only bounded linear
operators on H commuting with all Π(g), g ∈ G, are the scalar operators.

Invariant subspaces and irreducible representations of Lie algebras are defined analo-
gously to those corresponding to Lie group representations. If π is a representation of a
Lie algebra g on a Hilbert space H , then there exists a unique algebra homomorphism π̃

from the universal enveloping algebra U(g) to the algebra of all linear transformations of
H into itself such that π̃(1) = I and π̃(X) = π(X) for all X ∈ g ⊂ U(g) [49, Proposition
9.9]. The homomorphism π̃ is a representation of the algebra U(g), and in this sense it
extends the representation π of g to U(g). An analogue of Theorem 4.1.5 for irreducible
representations of the universal enveloping algebra U(g) is given by the following result [47,
Corollary 3.6 and Proposition 5.19].

Theorem 4.1.6 (Dixmier) Let g be a complex Lie algebra, and let π̃ be an irreducible
representation of U(g) on H . Then, the only U(g)–linear maps H →H are the scalar
multiples of the identity.

Remark 4.1.7 A U(g)–linear map is an element of EndU(g)(H ,H ), with H identified
with a left U(g)–module [47, 63]. Explicitly, given f1, f2 ∈ H , a map L : H → H is
U(g)–linear if L(π̃(X̃)f1 + π̃(Ỹ )f2) = π̃(X̃)L(f1) + π̃(Ỹ )L(f2) for all X̃, Ỹ ∈ U(g). If
L = π̃(Z̃) for some Z̃ ∈ U(g), this means that Z̃ is an element of Z(g). Thus, any element
of Z(g) must be mapped to a multiple of the identity operator in H if π̃ is irreducible.

The result of this theorem gives a useful criterion to determine if a given representation of
a Lie algebra is irreducible: Any element of the centre Z(g) must act as a scalar operator
on a Hilbert space H on which a representation of U(g) and thus, a representation of g
acts. We will use this fact in Section 4.3 as a tool to classify irreducible representations of
sl(2,R).

Now we review the relation between representations of a Lie group and representations
of its Lie algebra. Given a Lie group with Lie algebra g and a representation Π of G on
a finite–dimensional Hilbert space H , the differential (dΠ)e of Π at the identity is a Lie
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algebra representation of g on H , and dΠ uniquely determines Π. Conversely, if π is a
representation of the Lie algebra g on a finite–dimensional Hilbert space H and if G is a
simply connected analytic Lie group with Lie algebra g, then there exists a representation
Π of G with dΠ = π [63, Chapter I, Section 3]. The relation between finite–dimensional
representations of a Lie group and finite–dimensional representations of the associated
Lie algebra gives a correspondence between invariant subspaces and irreducibility: If a
finite–dimensional representation of a Lie group admits an invariant subspace I , then I

is also an invariant subspace for the representation of the Lie algebra. Similarly, if the
representation Π of G on H is unitary, then differentiation at the identity implies that
dΠ = π maps elements of g to skew–Hermitian operators on H , i.e., π(X)† = −π(X) for
all X ∈ g.

The correspondence between representations of Lie groups and representations of Lie
algebras becomes more complicated when the underlying Hilbert space H is infinite–
dimensional. We will present a brief summary of the process needed to associate a
representation of the Lie algebra g of G to a representation Π of G on an infinite–dimensional
Hilbert space. We omit the more technical details and refer to [62, Chapter VI, Section 1]
and in [63, Chapter 3, Sections 3 and 4] for a complete discussion.

Let G be an analytic group and Π a representation of G on an infinite–dimensional
Hilbert space H . An element f ∈H is said to be a C∞–vector if the map g 7→ Π(g)f is
of class C∞. The C∞–vectors form a dense subspace of H , and we denote this subspace
by C∞(Π). Given f ∈ C∞(Π), and X ∈ g, we define the linear mapping C∞(Π)→ C∞(Π)
by

π(X)f := lim
t→0

Π(exp(tX))f − f
t

. (4.6)

For every X ∈ g, the map π(X) satisfies π(x)(C∞(Π)) ⊆ C∞(Π), and it defines a Lie
algebra representation of g on C∞(Π) [63, Proposition 3.9]. The representation Π of
G on H leaves C∞(Π) stable and thus, Eq. (4.6) is an analogue to dΠ = π for the
finite–dimensional case. The important fact about the subspace C∞(Π) is that it is dense
in H [63, Theorem 3.15]. Therefore, any f ∈H can be approximated by a sequence of
elements in C∞(Π) and in particular, of elements in π(C∞(Π)).

The reason to focus our attention to infinite dimensional representations of Lie al-
gebras and Lie groups is that for non–compact semisimple groups such as SL(2,R) and
SO(2, N − 1) [47] UIRs are, in general, infinite–dimensional. The relation between infinite–
dimensional representations at the Lie group and the Lie algebra level allows us to work
with representations of the Lie algebra to classify all UIRs which is a far simpler task than
dealing with the group representations.

4.2 general properties of SL(2,R), S̃L(2,R) and sl(2,R)

In this section we will present some properties of the Lie group SL(2,R), the realisation of
its universal covering group and some aspects of the structure of the Lie algebra sl(2,R). We
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will briefly describe the construction of all the finite–dimensional irreducible representations
of the Lie algebra and leave the classification of all possible UIRs of S̃L(2,R) for the next
section.

The real special linear group SL(2,R) is the matrix Lie group which in its linear
representation is given by the set of real 2× 2 invertible matrices of determinant 1, i.e.,

SL(2,R) =
{(

a b

c d

)∣∣∣∣∣ a, b, c, d ∈ R , ac− bd = 1
}
. (4.7)

Any element g ∈ SL(2,R), can be uniquely written in terms of the product of matrices
given by

g(θ, s, y) = k(θ)a(s)n(y) ,

=
(

cos θ sin θ
− sin θ cos θ

)(
es 0
0 e−s

)(
1 y

0 1

)
, (4.8)

with θ ∈ [0, 2π) and s, y ∈ R [47, Theorem 6.46]. The parametrisation of elements
g ∈ SL(2,R) of the form (4.8) provides a global description of SL(2,R) with the identity
element obtained by setting e = g(0, 0, 0). Using this parametrisation it is also possible to
show [49] that the centre Z of SL(2,R) consists of the two elements, e and −e = g(π, 0, 0).
From this decomposition it follows that the topology of SL(2,R) is that of S1 × R2, and
thus, SL(2,R) is a non–compact analytic group which is not simply connected.

Equation (4.8) also gives a decomposition of SL(2,R) in terms of the subgroups
K := {k(θ)| θ ∈ [0, 2π)}, A := {a(s)| s ∈ R} and N := {n(y)| y ∈ R}, where K ' SO(2)
is compact, A is abelian and N is nilpotent. This is the Iwasawa decomposition [47] of
SL(2,R). The multiplication map K ×A×N → SL(2,R) given by (k, a, n) 7→ kan defines
a surjective diffeomorphism [63, Theorem 5.12], but not a group homomorphism.

The group SL(2,R) is not simply connected [64, Section 7.2], but it admits a universal
covering group, S̃L(2,R). From its Iwasawa decomposition (4.8) it is clear that the
subgroup K = SO(2), topologically equivalent to S1, has the real additive group R as its
universal covering group, and the universal covering group of SL(2,R) can be understood
as associating this “unrolling” of S1 to the whole group. Instead of describing the group
S̃L(2,R) via a covering map on SL(2,R), we will use Theorem 4.1.1 to define the universal
covering group through the Lie algebra of SL(2,R), which we now review.

The Lie algebra sl(2,R) consists of the space of traceless 2× 2 matrices over the reals.
This is easily seen from the fact that any smooth curve c : R→ SL(2,R) passing through the
identity at t = 0 satisfies det(c(t)) = 1 and, thus, Tr(ċ(0)) = 0 [49]. We will take advantage
of the Iwasawa decomposition (4.8) to obtain the generators of the subgroups K, A and
N by defining the smooth curves on SL(2,R) given by c1(t) = g(t, 0, 0), c2(t) = g(0, t, 0)
and c3(t) = g(0, 0, t). We have ci(0) = e for all i = 1, 2, 3. The corresponding tangent
vectors in sl(2,R) are given by Xi := ċi(0), and we find

X1 =
(

0 1
−1 0

)
, X2 =

(
1 0
0 −1

)
, X3 =

(
0 1
0 0

)
. (4.9)
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The tangent vectors in Eq. (4.9) form a basis of sl(2,R), and are related to the more
familiar basis [49],

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
(4.10)

by X1 = E − F , X2 = H and X3 = E. The Lie brackets between the elements (4.10) are
given by

[H,E] = 2E , [H,F ] = −2F , [E,F ] = H . (4.11)

From these relations, it follows that sl(2,R) is non–abelian and the only ideal in sl(2,R) is
{0}, which means that it is a semisimple Lie algebra. This also implies that the centre
Zsl(2,R) of the Lie algebra is trivial.

A more convenient basis of sl(2,R) can be found as follows. Consider the adjoint
map ad : sl(2,R) → EndR(sl(2,R)), defined as adX(Y ) := [X,Y ] for all X,Y ∈ sl(2,R).
The map ad defines a three–dimensional representation of sl(2,R) on itself [49]. For this
representation, each X ∈ sl(2,R) is mapped to a linear operator on the Lie algebra given
by a 3× 3 matrix. Thus, we can define a bilinear form BK : sl(2,R)× sl(2,R)→ sl(2,R),
given by

BK(X,Y ) := Tr(adXadY ) , (4.12)

for X,Y ∈ sl(2,R). The bilinear map BK is known as the Killing form. A straightforward
calculation shows that BK(adX(Y ), Z) = −BK(Y, adX(Z)) for all X,Y, Z ∈ sl(2,R). A
very important result [47, Theorem 1.45], known as Cartan’s criterion for semisimplicity,
states that on any semisimple Lie algebra, BK is non–degenerate. Since sl(2,R) is semisim-
ple, the Killing form defines a (pseudo–) metric on the Lie algebra. This is directly seen
by choosing a basis for sl(2,R), say {H,E, F} in Eq. (4.10) and computing the matrix
representation B of BK in that basis. Using Eqs. (4.11) and (4.12) it can be shown that
BK has signature (−,+,+). The basis that diagonalises the Killing form is given by

Λ0 = 1
2(E − F ) , Λ1 = 1

2(E + F ) , Λ2 = 1
2H , (4.13)

and Eq. (4.11) implies that the commutation relations for these elements are given by

[Λ0,Λ1] = Λ2 , [Λ0,Λ2] = −Λ1 , [Λ1,Λ2] = −Λ0 . (4.14)

Note that these commutation relations correspond to those given by Eq. (3.22) for so(2, 1)
by identifying Λ0 → I12, Λ1 → K23 and Λ2 → K13. Hence, it is now clear that sl(2,R) and
so(2, 1) are indeed isomorphic.

Using the non–degeneracy of the Killing form we can find a basis for the dual vector
space sl(2,R)∗. The dual basis {Λ′0,Λ′1,Λ′2} is defined by requiring BK(Λ′i,Λj) = ηij . This
results in Λ′i = Λi/2 for i = 0, 1, 2. With this result, we can now consider the universal
enveloping algebra U(g), with g := sl(2,C), the complexification of sl(2,R) [49, Proposition
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3.38, Eq. 3.17]. Let us define the element Q := ∑
i X̃
′
iX̃i ∈ U(g) for any choice of basis

{X̃i}3i=1 of g ⊂ U(g). The element Q ∈ U(g) is known as the Casimir element and, in
terms of the basis elements {Λ0,Λ1,Λ2}, it is given by

Q = 1
2
(
−Λ̃2

0 + Λ̃2
1 + Λ̃2

2

)
, (4.15)

where we have used Eq. (4.14). For any complex semisimple Lie algebra g (not just
sl(2,C)) the element Q commutes in U(g) with all X̃ ∈ g which means that Q ∈ Z(g) [47,
Proposition 5.24]. The element Q in Eq. (4.15) will play a central role once we study
irreducible representations of sl(2,R) at the end of this section.

Now, if we consider the Lie algebra sl(2,R), then exponentiation of this Lie algebra
canonically defines the universal covering group S̃L(2,R) of SL(2,R) [61]. It is well known
that the Lie group S̃L(2,R) is not a matrix Lie group [49, Proposition 5.16] and, thus, it is
not possible to define convergence of exp(X) for X ∈ sl(2,R) with respect to the topology
of 2× 2 matrices. However, exponentiation of sl(2,R) can be defined abstractly using the
canonical coordinates of the second kind given by Eq. (4.5) which, for this case, read

(θ̃Λ0, aΛ1, bΛ2) 7→ g̃ exp(θ̃Λ0) exp(aΛ1) exp(bΛ2) , (4.16)

for θ̃, a, b ∈ R and g̃ ∈ S̃L(2,R). Furthermore, the canonical coordinates of the first
kind (4.4) define the inverse of the coordinate chart around g̃ ∈ S̃L(2,R), given by

(θ̃, a, b) 7→ g̃ exp
(
θ̃Λ0 + aΛ1 + bΛ2

)
. (4.17)

To relate S̃L(2,R) with the result of Theorem 4.1.1, we need to identify a discrete central
subgroup H ⊂ S̃L(2,R) mentioned in this statement. As it turns out, the centre of
S̃L(2,R) is the discrete subgroup Z̃ := {exp(2πnΛ0)|n ∈ Z}. Applying Theorem 4.1.1,
one finds that S̃L(2,R)/Z̃ = SO0(2, 1) [55, 56, 61]. Now, the group SL(2,R) is a double
cover of the group SO0(2, 1), and we have SL(2,R)/Z2 ' SO0(2, 1) [55] with Z2 the cyclic
group of order 2. Thus, Eq. (4.16) gives a simple way to understand the relation between
the groups S̃L(2,R), SL(2,R) and SO0(2, 1), at least near their identity elements. The
map in Eq. (4.16) with g̃ = ẽ, where ẽ denotes the identity in S̃L(2,R), takes the triple
(θ̃Λ0, aΛ1, bΛ2) and maps it to exp(θ̃Λ0) exp(aΛ1) exp(bΛ2). Now, we write θ̃ = θ + 4πn,
for some θ ∈ [0, 4π) and n ∈ Z. Thus, we have

exp(θ̃Λ0) exp(aΛ1) exp(bΛ2) = exp(θΛ0) exp(aΛ1) exp(bΛ2) exp(2πnΛ0) , (4.18)

where we have used the fact that exp(2πnΛ0) ∈ Z̃. This implies that, for elements near
the identity ẽ of S̃L(2,R), the quotient map q : S̃L(2,R)→ SO0(2, 1) is given by

exp(θ̃Λ0) exp(aΛ1) exp(bΛ2) 7→ exp(θΛ0) exp(aΛ1) exp(bΛ2) , (4.19)

and may be interpreted as the map induced by θ̃ = θ+4πn 7→ θ. For the particular purposes
of our analysis, a full description of the Lie group S̃L(2,R) will not be necessary as the
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classification of the UIRs of this group that will be used to analyse scalar and spinor fields
in AdS2 only depends on the Lie algebra sl(2,R) and the element exp(2πΛ0) ∈ Z̃ [55, 61].

To conclude this section we review a very well–known result that characterises all the
possible finite–dimensional irreducible representations of the Lie algebra sl(2,R), as the
structure of these representations resembles the that of some of the infinite–dimensional
representations that we will review in Section 4.3. We will note that none of the finite–
dimensional irreducible representations except for the trivial representation can be unitary,
which is precisely the reason why we will need to consider the infinite–dimensional case
if we require the representations to be unitary. The following construction is based on
Ref. [49, Chapter 4, Section 4.6]. A more exhaustive analysis can be found in Ref. [62,
Chapter 6, Section 2].

Let us consider the basis of sl(2,R) given by the elements {Λi} in Eq. (4.13). For any
representation π of sl(2,R), we define the ladder operators given by

L0 := iπ(Λ0) , (4.20a)

L± := π(Λ1)± iπ(Λ2) . (4.20b)

which, by means of Eq. (4.14), are found to satisfy the commutation relations

[L0, L+] = L+ , [L0, L−] = −L− , [L+, L−] = 2L0 . (4.21)

Now, let Vn be a complex vector space with dim(V ) = n+ 1 and let {vk}nk=0 be a basis
of Vn. Consider the representation πn : sl(2,R)→ EndC(Vn), defined by the formulae

L0vk :=
(
n

2 − k
)
vk , (4.22a)

L+vk :=
{
k(n− k + 1)vk−1 , k > 0 ,

0 , k = 0 ,
(4.22b)

L−vk :=
{
vk+1 , k < n ,

0 , k = n ,
(4.22c)

with L0 and L± defined by Eq. (4.20) with πn instead of π. Then, the representation
πn is irreducible and, every finite–dimensional irreducible representation of sl(2,R) is
isomorphic to πn for some n ∈ N0 [49, Theorem 4.32]. Thus, the finite–dimensional
irreducible representations of sl(2,R) are labelled by the non–negative integers n ≥ 0. The
representation labelled by n = 0 corresponding to the trivial representation for which
π0(X) = I for all X ∈ sl(2,R). Since the representations labelled by n are irreducible,
Theorem 4.1.6 tells us that the Casimir element (4.15) acts as a scalar multiple of the
identity. Indeed, in terms of the operators in Eq. (4.20) the Casimir element Q, up to a
constant, is mapped to the operator

Qn = L2
0 + 1

2 (L+L− + L−L+) , (4.23)

and, using Eq. (4.22), it can readily be verified that Qn = (n2/4)I. Thus, the Casimir
element in the representation is completely determined by its eigenvalue q = n2/4 which
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depends on the label n. A similar situation will be encountered in the infinite dimensional
case.

None of the representations πn, for n 6= 0 are unitary. Indeed, let πn be the irreducible
representation of sl(2,R) on the vector space Vn corresponding to the integer n > 0, with
dim(Vn) = n+1 given by (4.22). Then for πn to be unitary we must have πn(X)† = −πn(X)
for all X ∈ sl(2,R), where πn(X)† denotes conjugate transposition with respect to the
Hermitian inner product 〈·, ·〉 in Vn ' Cn+1. Thus, Eq. (4.20) implies that L†0 = L0 and
L†± = −L∓. If v0 ∈ Vn is normalised such that ||v0||2 = 〈v0, v0〉 = 1, then, for all k ≤ n, we
have

||vk||2 = 〈L−vk−1, vk〉 , (4.24)

= −〈vk−1, L+vk〉 , (4.25)

= −k(n− k + 1) ||vk−1||2 , (4.26)

where we have used Eq. (4.22b). However, n− k + 1 ≥ 1 for all 0 ≤ k ≤ n. In particular,
||v1||2 = −n ||v0||2 = −n, and we arrive at an inconsistent result. Hence, πn cannot be
unitary. Clearly the trivial representation n = 0 does not present this problem, and it is
the only finite–dimensional UIR of sl(2,R).

4.3 unitary irreducible representations of S̃L(2,R)

Now that we have identified all finite–dimensional irreducible representations of sl(2,R)
and verified that none of them, except for the trivial representation, are unitary, we will
briefly describe the classification of all the possible UIRs of sl(2,R) that arise from the
group representations of S̃L(2,R). We will use the notation and conventions similar to
those of Ref. [61] which, in turn, are based on the original results by Pukanszky [55].

The construction of finite–dimensional representations of sl(2,R) in Section 4.2 relied
on the diagonalisation of the operator L0, corresponding to the Lie algebra element iΛ0

(see Eq. (4.22a)). The basis for the vector space on which the representations act is the
eigenbasis of L0, and the operators L± act as ladder operators between the consecutive
one–dimensional eigenspaces. We will adopt the same approach to construct represen-
tations of sl(2,R) that are related to the group S̃L(2,R). The main difference between
representations associated to SL(2,R) and those associated to S̃L(2,R) will arise in the
admissible eigenvalues of the operator L0.

Let H be a separable Hilbert space with inner product 〈·, ·〉, and let π be a unitary
irreducible representation of sl(2,R) on the subspace of C∞–vectors of H (as discussed in
Section 4.1). We define the operators L0 and L± acting on H by the relations (4.20). If
the representation π comes from a unitary irreducible representation Π of S̃L(2,R) on H

defined through Eq. (4.6), then Theorem 4.1.5 implies that any element in the centre Z̃ of
S̃L(2,R) is mapped by Π to a bounded operator that acts as multiplication by a scalar
on H . In particular, the element exp(2πΛ0) ∈ Z̃ satisfies Π(exp(2πΛ0)) = e−2πiµI, for
some µ ∈ R/Z [61]. From this fact we note that representations of SL(2,R) correspond
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to the values e−2πiµ = 1. Now, let φω be an eigenvector of L0 with eigenvalue ω. Since
L0 = iπ(Λ0) and Π(exp(2πΛ0))φω = e−2πiµφω, the eigenvalue ω must satisfy ω = µ+ k,
for k ∈ Z.

Similarly, Theorem 4.1.6 tells us that the Casimir element is constant over an irreducible
representation. With a slight abuse of notation, we denote the operator π(2Q) on H by
Q. In terms of the operators L0 and L±, the operator Q will be given by the right–hand
side of Eq. (4.23). Let q := λ(λ− 1) be the eigenvalue of Q in this representation. Since
the representation π is unitary, the adjoint operators of L0 and L± with respect to the
inner product in H must satisfy L†0 = L0 and L†± = −L∓. Hence, the eigenvalue q of Q is
real. This allows us to restrict the values of the parameter λ as

λ ∈ 1
2 + iR+ or λ ∈ R and λ ≥ 1

2 , (4.27)

for which we have q < −1/4 and q ≥ −1/4, respectively. We have taken into account the
fact that q is invariant under the transformation λ 7→ 1− λ in restricting the values for λ
in Eq. (4.27).

Now, one finds from the commutation relations (4.21) that L0L±φω = (ω ± 1)L±φω.
We also find from Eqs. (4.21) and (4.23) that

〈L−φω, L−φω〉 = −〈φω, L+L−φω〉 = −q + ω2 − ω , (4.28a)

〈L+φω, L+φω〉 = −〈φω, L−L+φω〉 = −q + ω2 + ω . (4.28b)

If the representation is unitary, then the right–hand side of Eq. (4.28) must be non–negative.
Recalling ω = µ+ k, k ∈ Z and q = λ(λ− 1), we can write this requirement as

(k + µ− λ)(k + µ+ λ− 1) ≥ 0 , (4.29a)

(k + µ+ λ)(k + µ− λ+ 1) ≥ 0 , (4.29b)

for the value of k for every eigenvector φω in the given representation. Notice that
Eq. (4.29b) is obtained from Eq. (4.29a) by letting (k, µ) 7→ (−k,−µ).

The non–trivial UIRs are thus labelled by the pair (λ, µ), and they are classified
depending on the possible values that k and µ can take for a given λ in order to satisfy the
system of inequalities given by Eq. (4.29). Two of the types of representations are found
by requiring that Eqs. (4.29) are satisfied by all k ∈ Z, one corresponding to λ = 1/2 + is

and the other to 1/2 < λ < 1. Others are found by requiring that both Eqs. (4.29a) and
(4.29b) are satisfied for k ∈ N and that the equality in Eq. (4.29a) is satisfied by k = 0, or
that Eqs. (4.29a) and (4.29b) are satisfied for −k ∈ N and that the equality in Eq. (4.29b)
is satisfied by k = 0. In this manner, one finds the following UIRs, which exhaust all
non–trivial UIRs up to isomorphisms [55, 61]:

1. Principal series representations: Pµ
is for λ = 1/2 + is, with s ∈ R+, −1/2 <

µ ≤ 1/2, and ω = µ+ k, where k ∈ Z. The Casimir eigenvalue satisfies q < −1/4.

2. Complementary series representations: C µ
λ for 0 < λ < 1/2, with |µ| < λ and

ω = µ+ k, where k ∈ Z. The Casimir eigenvalue satisfies −1/4 < q < 0.
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3. Discrete series representations:

• D±λ for λ > 1/2, with µ = ±λ, and ω = ±(λ+ k), respectively, where k ∈ N0.

• D±1−λ for 1/2 < λ < 1, with µ = ±(1− λ) and ω = ±(1− λ+ k), respectively,
where k ∈ N0.

The Casimir eigenvalue satisfies q > −1/4.

4. Mock–discrete series representations: D±1/2 for µ = λ = 1/2, and ω = ±(1/2+k),
respectively, with k ∈ N0. The Casimir eigenvalue is q = −1/4.

The principal and complementary series representations are collectively referred to as
continuous series representations. For these representations, the spectrum of the operator
L0 consist of positive and negative eigenvalues ω = µ + k extending to infinity in both
directions separated by integer steps. The positive discrete series representations D+

λ

and D+
1−λ on the other hand are lowest–weight modules [49] with lowest weights λ and

1 − λ, respectively. Similarly, the negative discrete series D−λ and D−1−λ are highest–
weight modules with highest weights −λ and λ − 1, respectively. Mock–discrete series
representations D±1/2, are related to the limit of the reducible representation P

1/2
0 by

P
1/2
0 ' D+

1/2 ⊕D−1/2 [55, 61, 63].



5

Self–adjoint extensions of operators on Hilbert spaces

The formulation of Quantum Mechanics and QFT, heavily relies on the theory of linear
self–adjoint operators on a given Hilbert space. Indeed, quantum observables are defined
to be self–adjoint operators acting on the space of states. Having a well–defined set of
self–adjoint operators is essential in describing a mathematically rigorous and physically
coherent quantum theory. In Chapter 2 we found that the self–adjointness of the differential
operators A and D defined in Eqs. (2.9) and (2.29), respectively, was a key assumption
that allows to have a well–posed initial value problem for scalar and spinor field theories on
a standard static spacetime which is not globally hyperbolic, like anti–de Sitter spacetimes.
However, for most of the relevant systems in quantum theories, we do not start with a
self–adjoint operator, but only with a symmetric one. The task is then to modify the given
symmetric operator in such a way that we end up with a self–adjoint operator which is
related to the one we started with.

From a mathematical point of view, an operator acting on a Hilbert space is defined
via its action on the states and the domain on which it is allowed to act. One must make a
clear distinction between an operation, i.e., the action on states, and an operator, i.e., the
operation together with its domain. One must distinguish between a merely symmetric
(or Hermitian) operator and a self–adjoint one having the same operation but defined on
different domains. Constructing a self–adjoint operator from a symmetric operator consists
in extending the original domain in a specific way.

This process is known as finding a self–adjoint extension of an operator. It was originally
introduced by Weyl [66] in the context of differential operators, and then generalized by
von Neumann [67] for general linear operators defined on a Hilbert space. The main
result, von Neumann’s theorem, states that every admissible self–adjoint extension is in
one–to–one correspondence with the parameters of a unitary map on a certain subspace of
the domain of the adjoint operator. The literature describing this procedure is extensive
from a mathematical point of view [35, 36, 43, 68, 69], and it has only recently been
emphasised in physics related literature [37, 70, 71, 72, 73].

Even though the prescription given by von Neumann is elegant and self–contained, the
explicit construction of self–adjoint extensions of symmetric operators is usually presented
in the literature for specific examples. The explicit correspondence between the domain
of the resulting self–adjoint operator and the set of boundary conditions associated with

62
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them is most commonly introduced as a convenient way to describe the domain instead of
a consequence of the self–adjoint extension prescribed by von Neumann’s theorem.

In this chapter we will review the process of finding all the possible self–adjoint exten-
sions associated to a symmetric operator acting on a Hilbert space based on von Neumann’s
theorem. In Chapters 6 and 8 we will show that the operators A and D that arise from
the Klein–Gordon and Dirac equations in AdS2, respectively, can be reduced to a one–
dimensional Schrödinger operator with a symmetric potential acting on a certain Hilbert
space. Thus, after introducing the theory behind the self–adjoint extensions, we will apply
the resulting machinery to this particular operator. Furthermore, we will show an explicit
way in which the domains of all the possible self–adjoint extensions of this operator can be
associated in a one–to–one fashion to a family of boundary conditions. We will make use
of the definitions introduced in Chapter 2, Section 2.2 involving general linear operators
on a Hilbert space.

5.1 the theory of self–adjoint extensions

In this section we will review the theory behind the self–adjoint extensions of symmetric
operators on a Hilbert space. We will consider an arbitrary symmetric operator T in the
sense of Definition 2.2.3 acting on a separable Hilbert space H . Then we will describe
the requirements that T must satisfy in order to admit closed extensions that are self–
adjoint according to Definition 2.2.4. The admissible self–adjoint extensions, as given
by von Neumann’s theorem, are described in terms of their domains, which in turn are
parametrised by certain unitary maps. We will show that, if T is a second order differential
operator on a Hilbert space of functions, then this family of domains can be put into
a one–to–one correspondence with a family of boundary conditions that the functions
in these domains must satisfy. The material covered in this section is mostly based on
Refs. [35, 36, 37, 43].

We start with a simple criterion to determine if a symmetric operator is indeed self–
adjoint. Assume that T is a self–adjoint operator on H . From Definitions 2.2.2 and 2.2.4,
we have T † = T and Dom(T )† = Dom(T ). Now, we further assume that there is an element
g ∈ Dom(T ) = Dom(T †) such that T †g = ±iλg, for some real λ > 0. Then, using the fact
that Tg = ±iλg, it follows that

∓iλ 〈g, g〉 = 〈±iλg, g〉 = 〈Tg, g〉 =
〈
g, T †g

〉
= 〈g,±iλg〉 = ±iλ 〈g, g〉 , (5.1)

and, thus, g = 0. This means that if T is self–adjoint, then the equations T †g = ±iλg
cannot have non–trivial normalisable solutions. Note that the requirement λ > 0 is imposed
in order to satisfy (5.1), however this relation is valid even if we generalise to Tg = ±z±g,
with z+ ∈ C in the upper half–plane and z− ∈ C in the lower half–plane. We will restrict
ourselves to the imaginary axis, i.e., to ±iλ, in order to simplify calculations. This result
is part of the proof of the next statement.
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Theorem 5.1.1 (Basic criterion for self–adjointness) Let T be a densely defined,
symmetric operator on H . Then, the following statements are equivalent:

1. T is self-adjoint.

2. T is closed and Ker(T † ± iλ) = {0}.

3. Range(T ± iλ) = H .

The implication 1=⇒2 follows from the argument used in Eq. (5.1) and T † is closed if T is
symmetric. For a detailed proof of the other implications, see for example [36, Theorem
VIII.3].

From this criterion, it is clear that, for a given symmetric operator T , the spaces

K+ := Ker(T † − iλ) , K− := Ker(T † + iλ) , (5.2)

play an important role in determining whether or not T is self-adjoint. These subspaces of
H are called deficiency subspaces associated to T , while the numbers n± := dim K±,
are called deficiency indices.

Now, the problem we are interested in is the following. Given a densely defined
symmetric operator T which is not self–adjoint, we may ask if there is a way to construct
a self–adjoint operator whose action is identical to that of the original. In other words, the
question is: Is there a way to modify a symmetric operator T to make it self–adjoint? To
answer this question, we first introduce the concept of the extension of an operator.

Definition 5.1.2 Let T and TU be linear operators on H . The operator TU is said
to be an extension of T , if and only if Dom(T ) ⊂ Dom(TU ), and TUf = Tf , for all
f ∈ Dom (T ).

A relevant example of an extension is that of the closure of an operator. An operator
A is said to be closable if there exists a closed operator in the sense of Definition 2.2.1
whose domain contains Dom(T ) and it has the same action of T , i.e., if T admits a closed
extension. The smallest closed extension of T , denoted by T̄ is called the closure of T .
Similarly, Definition (2.2.2) implies that the adjoint T † of a symmetric operator T is an
extension of T and we have Dom(T ) ⊆ Dom(T †).

For a densely defined symmetric operator T , we will aim to find an extension TU which
is self–adjoint. Before introducing the formal result, we will first give a description of the
machinery involved in finding such extensions.

The prescription: Let us begin with a closed, densely defined symmetric operator T ,
such that K± 6= {0}. Hence, according to Theorem 5.1.1, T fails to be self–adjoint. This
means that at least one of the equations

T †g± = ±iλg± , λ > 0 , (5.3)

has non–trivial solutions in Dom(T †).
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For any closed, densely defined symmetric operator, T , the domain of the adjoint
operator T † is given by [36, Chapter X.I]

Dom(T †) = Dom(T )⊕T K+ ⊕T K− , (5.4)

where the sum of vector spaces is orthogonal with respect to the inner product

〈f1, f2〉T := 〈f1, f2〉+ 1
λ2

〈
T †f1, T

†f2
〉
, (5.5)

for all f1, f2 ∈ Dom(T †).
Now, consider a closed symmetric extension TU of the operator T in the sense of

Definition 5.1.2. If T †U denotes the adjoint operator of TU , then we have Dom(T †U ) ⊆
Dom(T †). Hence, by Eq. (5.4) and the fact that Dom(TU ) ⊆ Dom(T †U ), we must have

Dom(TU ) ⊆ Dom(T )⊕T K+ ⊕T K− . (5.6)

The explicit form of the domain of TU can be found from this inclusion in the following way.
First, Definition 5.1.2 states that Dom(T ) ⊆ Dom(TU ) and, thus, Eq. (5.6) implies that
there must exist a subspace S ⊆ K+ ⊕T K−, such that Dom(TU ) = Dom(T )⊕T S . This
means that any element f ∈ Dom(TU ) is of the form f = f0 +g+ +g−, where f0 ∈ Dom(T ),
and g± ∈ S±, with S± subspaces of K± such that S = S ⊕T S−. The fact that TU is a
symmetric operator by definition implies that for f ∈ Dom(TU ) we have

〈f0 + g− + g−, TU (f0 + g− + g−)〉 = 〈TU (f0 + g− + g−), f0 + g− + g−〉 . (5.7)

Using the fact that the action of the operators T †, T †U and TU is equal to the action of T
on f0 ∈ Dom(T ), we obtain〈

T †U (g+ + g−), g+ + g−
〉

=
〈
g+ + g−, T

†
U (g+ + g−)

〉
, (5.8)

and since T †U (g+ + g−) = T †(g+ + g−), Eq. (5.3) implies that

−iλ 〈g+ − g−, g+ + g−〉 = iλ 〈g+ + g−, g+ − g−〉 . (5.9)

Hence, g+ + g− ∈ S must satisfy ||g+|| = ||g−||. Now, consider an orthonormal basis for
the space S with respect to the inner product in Eq. (5.5) given by {s+

i + s−i }ki=1, with
k = dim(S ) and with s±i ∈ K±. Using the fact that the deficiency spaces are orthogonal
with respect to the inner product 〈·, ·〉T , and that, for any g+ + g− ∈ S we must have
||g+|| = ||g−||, it can be shown that the vectors s±i satisfy〈

s+
i , s

+
j

〉
=
〈
s−i , s

−
j

〉
= 1

4δij , (5.10)

for all 1 ≤ i, j ≤ k, with respect to the inner product in H . Thus, the subspace S+ is
spanned by the elements {s+

i }ki=1, and the condition ||g+|| = ||g−|| for all g+ + g− ∈ S tells
us that any element in S is of the form g + Ug, with g ∈ S+, and where U : S+ → K−
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is a partial isometry from the subspace S+ into K− with respect to the inner product in
H . Hence, the domain of any symmetric extension TU of T must be given by

Dom(TU ) = Dom(T )⊕T {g+ + g− ∈ K+ ⊕T K−| g+ ∈ S+ , g− = Ug+} , (5.11)

for some partial isometry U : S+ → K−. We note that the choice of map U determines
the subspace Dom(TU ), and this correspondence is one–to–one [36, Chapter X.I, Lemma].

For any symmetric extension TU of T , we can find the domain of the adjoint operator
T †U . Let f1 ∈ Dom(T †) and f2 ∈ Dom(TU ). By Eq. (5.4), we can write f1 = f1,0 +h+ +h−,
with f1,0 ∈ Dom(T ), and h± ∈ Dom(K±). Similarly, by Eq. (5.11) f2 can be written in
the form f2 = f2,0 + g+ + Ug+, with f2,0 ∈ Dom(T ) and g+ ∈ S+. Since TU is symmetric,
the requirement for f1 to be in Dom(TU )† is equivalent to

〈f1, TUf2〉 −
〈
T †f1, f2

〉
= 0 , (5.12)

for all f2 ∈ Dom(TU ). By expanding this expression and by using Eq. (5.3) we find that
Eq. (5.12) is equivalent to the requirement

〈h+, g+〉 − 〈h−, Ug+〉 = 0 , (5.13)

for all g+ ∈ S+. Let h+ = s+ + s⊥+, with s+ ∈ S+ and s⊥+ ∈ (S+)⊥, where (S+)⊥

denotes the orthogonal complement of S+ in K+ with respect to the inner product in H .
Similarly, we let h− = s− + s⊥−, where s− ∈ U(S+) and s⊥− ∈ [U(S+)]⊥ with [U(S+)]⊥

denoting the orthogonal complement of U(S+) in K−. Then, Eq. (5.13) reduces to the
condition

〈s+, g+〉 = 〈s−, Ug+〉 , (5.14)

for all g+, and no further restrictions on s⊥+ or s⊥−. This is satisfied if s− = Us+, that is, if
s+ + s− ∈ S . Hence, for f1 to be in Dom(T †U ) we must have

f1 = f1,0 + (s+ + Us+) + s⊥+ + s⊥− . (5.15)

Thus, the domain of T †U for a given symmetric extension TU is given by

Dom(T †U ) = Dom(TU )⊕T (S+)⊥ ⊕T [U(S+)]⊥ , (5.16)

where the sum of vector spaces is orthonormal due to the fact that if S1 ⊕ S2 is an
orthonormal sum, then so is S⊥1 ⊕ S⊥2 [35].

Thus far, we have shown that if we are given a closed, densely defined symmetric
operator T on a Hilbert space H with deficiency subspaces K±, then the symmetric
extensions TU of T are parametrised by all the possible subspaces S+. Furthermore, the
domains of TU and T †U are given by Eqs. (5.11) and (5.16), respectively.

The task of finding, amongst the possible symmetric extensions TU , a self–adjoint
extension of the operator T , thus reduces to determining the conditions needed for TU
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to satisfy Dom(TU ) = Dom(T †U ). By considering the description of Dom(T †U ) given in
Eq. (5.16), we see that, whenever (S+)⊥ = [U(S+)]⊥ = {0}, then this condition is
satisfied. Hence, if S+ = K+, the operator TU is a self–adjoint extension of the operator
T . Furthermore, we note that [U(K+)]⊥ = {0} implies that the deficiency indices satisfy
n+ = n−. If this is the case, Eq. (5.11) implies that the domains of the self–adjoint
extensions TU of the operator T are given by

Dom(TU ) = {f0 + g + Ug | f0 ∈ Dom(T ), g ∈ K+ } , (5.17)

for each unitary map U : K+ → K−. The action of TU on this domain is given by

TU (f0 + g + Ug) := T †f0 + iλg − iλUg . (5.18)

Equivalently, if S+ = K+ then the calculation leading to Eq. (5.11) implies that the
subspace S corresponds to a maximal subspace of Dom(T †) on which the operator T † is
symmetric, and we have [36, 68]

Dom(TU ) = Dom(T )⊕S , (5.19)

.
The prescription described above constitutes most of the proof of a well–known theorem,

originally proposed by Weyl [66], and then generalised by von Neumann [67]. In general
terms, the aforementioned theorem reads:

Theorem 5.1.3 Let T be a closed, densely defined symmetric operator on a Hilbert space
H , with deficiency indices n+, n−. Then,

1. T is self-adjoint if and only if n+ = 0 = n−.

2. T has self-adjoint extensions if and only if n+ = n−. The self-adjoint extensions of
T are in one–to–one correspondence with the unitary maps from K+ to K−.

3. If either n+ = 0 6= n−, or n− = 0 6= n+, then T has no non-trivial self-adjoint
extensions.

A detalied proof of this theorem can be found in standard literature [36, Theorem X.2].
Using this result, we can give a concise set of steps to find the self–adjoint extensions of a
symmetric operator in the following way. Let us assume T is a densely defined, symmetric
operator on H with domain Dom(T ). Then,

1. We verify that T is a closed operator in the sense of Definition 2.2.1. If not, we will
then consider the closure T̄ of the operator T . By Definition 2.2.1, we achieve this
by extending the original domain of T such that it is closed under the inner product
in Eq. (2.11) and T is still symmetric.
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2. Then, we calculate the deficiency indices for T̄ . In other words, we verify if the
deficiency equations (5.3) have normalisable solutions in the domain of T̄ †. If the
deficiency indices are not equal, then Theorem (5.1.3) implies that there are no
non–trivial self–adjoint extensions of the operator T . If the deficiency indices are
equal, say, n := n+ = n−, then T admits non–trivial self–adjoint extensions. For
the sake of simplicity, we shall assume that n is finite. The case in which n is not
finite can be treated in a similar manner to the finite case, see for example the
discussion in [69, Chapter 3]. Therefore, we denote the set of n linearly independent
(normalised) solutions of (5.3) by

(
gj+

)
and

(
gj−

)
, 1 ≤ j ≤ n, respectively.

3. If the deficiency indices both equal to zero, then the only self–adjoint extension of
T , is its closure, T̄ , otherwise, the self–adjoint extensions of T are parametrised by
the unitary maps U : K+ → K−. For finite n, these unitary maps admit matrix
representations given by unitary n×n matrices UM . Thus, we consider the extension
TU of T defined via its domain by Eq. (5.17) and its action on this domain in
Eq. (5.18).

4. Finally, we may explicitly describe the domain of the self–adjoint extension TU in
terms of the solutions of the deficiency equations (5.3) and the possible choices of
n× n unitary matrices UM . Considering the bases {g(i)

± }ni=1 of K±, we can write the
action of U : K+ → K− as

U

(
n∑
i=1

αig
(i)
+

)
=

n∑
i=1

βig
(i)
− , (5.20)

for αi ∈ C, and where the coefficients βi are given by

βi =
n∑
j=1

uijαj , (5.21)

where the numbers uij ∈ C are the elements of the n× n unitary matrix UM = (uij)
representing the map U . Hence, Eq. (5.17) implies that any f ∈ Dom(TU ) is given
by

f = f0 +
n∑
i=1

αig
(i)
+ +

n∑
i=1

 n∑
j=1

uijαj

 g(i)
− , (5.22)

where f0 ∈ Dom(T ).

The prescription presented above applies for an arbitrary densely defined symmetric
operator T on a Hilbert space H . However, if the Hilbert space H is a space of square–
integrable functions, and if T is a differential operator, then it is possible to obtain a
description of the admissible self–adjoint extensions, TU , of the operator T in terms of
boundary conditions that the elements in Dom(TU ) satisfy. This is seen as follows. Let TU
be a self–adjoint extension of T with domain given by Eq. (5.17). If 〈·, ·〉 is the L2–inner
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product, then Eqs. (5.4) and (5.19) imply that restricting the elements f ∈ Dom(T †) to
satisfy the condition

0 =
〈
f, TU f̃

〉
−
〈
T †f, f̃

〉
, (5.23)

for all f̃ ∈ Dom(TU ), is equivalent to finding the maximal subspace S ⊆ K+ ⊕T K−

that characterises the self–adjoint extension TU . However, if the domain of T † consists of
sufficiently differentiable functions1, then the right–hand side of Eq. (5.23) can be written
in terms of the boundary values of the functions f and f̃ using, for example, integration
by parts. Now, the functions f̃ are given by Eq. (5.22) and, thus, the values of f̃ at the
boundary are known and they depend on the entries of the unitary matrix UM . Hence,
Eq. (5.23) reduces to a boundary condition on the function f ∈ Dom(T †) that depends
on the matrix UM . Thus, for a given self–adjoint extension TU we end up with a set of
boundary conditions that determines Dom(TU ). We will refer to the boundary conditions
obtained in this way as self–adjoint boundary conditions.

Suppose that, for a given densely defined symmetric differential operator T with domain
Dom(T ) and deficiency indices satisfying n+ = n−, the domain of the adjoint operator T † is
known a priori. Then the existence of the self–adjoint extensions provided by Theorem 5.1.3
and the definition of the subspace S as a maximal subspace of Dom(T †) for which T † is a
symmetric operator, imply that we may find the self–adjoint boundary conditions directly
by imposing 〈

f, T †f
〉

=
〈
T †f, f

〉
, (5.24)

for f ∈ Dom(T †). Thus, imposing the symmetry condition (5.24) on Dom(T †), is usually
preferred for calculations whenever the domain of T † is known explicitly [71, 72, 73].
However, in practice, the domain Dom(T †) of T † does not always have a simple or
straightforward description as a subspace of square–integrable functions.

Having this in mind, we will now apply this machinery to the particular case of a
one–dimensional Schrödinger operator with symmetric potential on a finite interval to
show how the self–adjoint extensions of this operator can be given in terms of self–adjoint
boundary conditions as described above. Our aim is to classify all the possible self–adjoint
extensions for the associated operator with respect to different choices of unitary matrices
and find the explicit self–adjoint boundary conditions for each case.

5.2 self–adjoint extensions of the schrödinger operator

In this section we illustrate how the theory of self–adjoint extensions is applied to the
particular case of a differential operator T acting on a space of functions. The operator
T we are focusing on is a one–dimensional Schrödinger operator with a symmetric (even)
potential term acting on the Hilbert space of square–integrable functions on a finite interval.

1This condition on Dom(T †) is related to the regularity theorem for weak solutions of partial differential
equations. For further details we refer to [35, Chapter V] and [36, Chapter IX].
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The reason we are choosing this operator as an example is due to the fact that the problem
of finding well–defined dynamics of a scalar field theory in AdS2 and in AdSN , N ≥ 3, will
turn out to be equivalent to finding the self–adjoint extensions of Schrödinger operator of
this form associated to the Klein–Gordon equation for these cases (see Chapters 6 and 7).

Thus, we consider the operator defined on H = L2[−a, a], with a, a finite positive real
number, by

T := − d2

dx2 + V (x) , (5.25)

where the real–valued piecewise–continuous potential satisfies V (−x) = V (x), and such
that V ∈ L2

loc(−a, a), i.e., that if f ∈ C∞0 (−a, a), then V f ∈ L2[−a, a] [37, 43]. The
domain of the operator is given by

Dom(T ) =
{
f ∈ AC2[−a, a] | f(a) = f(−a) = f ′(a) = f ′(−a) = 0

}
, (5.26)

where AC2[−a, a] denotes the set of functions f ∈H whose weak derivatives up to second
order are in AC[−a, a], in particular, they are continuously differentiable [36, Chapter X,
Example 2]. We choose the domain in this manner to ensure that T is a closed, densely
defined symmetric operator [35, 68, 74]. It is clear that T is not a self–adjoint operator
because [35, 37]

Dom(T †) =
{
f ∈ AC2[−a, a]

}
, (5.27)

that is, even though the formal expressions for T and T † as differential operators are
identical, their domains are not the same.

We will now apply the prescription described in the Section 5.1 to find the self–adjoint
extensions of T , and we start by finding its deficiency indices. Thus, we look for normalisable
solutions of Eq. (5.3) with λ = 1. By the assumption that V (x) is an even potential, we may
choose the functions g+, g− ∈ AC2[−a, a] as the normalised even and odd eigenfunctions
of the equation

T † g±(x) = ig±(x) . (5.28)

We note that since g+, g− ∈ AC2[−a, a], all weak solutions of Eq. (5.28) are continuously
differentiable, and, thus, we can think of this equation as an ordinary differential equation,
i.e., we rule out distributional solutions. Thus, K+ = span{g+, g−}, where K+ is defined by
Eq. (5.2) and it immediately follows that K− = span{g+, g−}. Thus, we have n+ = n− = 2,
and, hence, by Theorem 5.1.3, the self–adjoint extensions of T are parametrised by a 2× 2
unitary matrix.

Let TU denote the self–adjoint extension of T . Then, by Eqs. (5.17) and (5.22), we
have that an element f ∈ Dom(TU ) must be of the form

f = f0 + c1f+ + c2f− ∈ AC2[−a, a] , (5.29)
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for some c1, c2 ∈ C, where f0 ∈ Dom(T ) and where we have defined the functions

f+(x) = g+(x) + u11g+(x) + u12g−(x) , (5.30a)

f−(x) = g−(x) + u21g+(x) + u22g−(x) , (5.30b)

with uij denoting the ij–elements of a 2 × 2 unitary matrix UM . Note that Eq. (5.30)
implies that c1f+ + c2f− belongs to a maximal subspace S ⊂ Dom(T †) for which T † is
symmetric.

Even though Eqs. (5.29) and (5.30) specify the domain of the self–adjoint extension
TU of T completely, it is not written in a form suitable for finding the spectrum of TU . It
is more convenient to specify the self–adjoint extension as a set of boundary conditions of
functions in AC2[−a, a] at x = ±a as discussed at the end of Section 5.1. This is achieved
by restricting an arbitrary function f ∈ Dom(T †) to satisfy Eq. (5.23) for all f̃ ∈ Dom(TU )
of the form of Eq. (5.29) above. This restriction leads to a set of boundary conditions for
the function f given by(

f ′(a)− if(a)
f ′(−a) + if(−a)

)
= U

(
f ′(a) + if(a)

f ′(−a)− if(−a)

)
, (5.31)

where the unitary matrix U is in one–to–one correspondence with the matrix UM of
Eq. (5.30). In Appendix B we present the explicit calculation that shows the correspon-
dence between the domain of TU described by Eqs. (5.29) and (5.30) and the boundary
condition (5.31). The proof given in Appendix B concerns the more general case of the
Schrödinger operator associated to the Klein–Gordon equation in AdS2, but the calcu-
lations follow analogously for the operator T in Eq. (5.25). We also note that the set
of boundary conditions (5.31) is the same as those inferred using other methods for free
quantum particle in a box [71].

To conclude this chapter, we will now write the self–adjoint boundary conditions in
Eq. (5.31) in a more familiar form. We will point out the types of boundary conditions
which are most frequently used as special cases.

We first write the boundary conditions (5.31) as follows:

(I− U)
(
f ′(a)
f ′(−a)

)
= i(I + U)

(
f(a)
−f(−a)

)
. (5.32)

To rewrite these boundary conditions in a more familiar form, it is useful to classify them
according to whether or not the matrices I− U or I + U are singular.

Case I: both I− U and I + U are regular. In this case we can write Eq. (5.32) as f ′(a)

f ′(−a)

 = H

 f(a)

−f(−a)

 , (5.33)

where

H := i(I− U)−1(I + U) . (5.34)
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We note that the matrix H is the Cayley transform of the unitary matrix U [35, 43]. One
can readily show that the 2× 2 matrix H is Hermitian and invertible. Furthermore, the
matrices H and U commute and U = (H − iI)−1(H + iI). Thus, the invertible 2 × 2
Hermitian matrix H and the 2× 2 unitary matrix U , such that I±U are non–singular, are
in one–to–one correspondence through the relation (5.34).

By writing

H =
(
α β

β −γ

)
, (5.35)

where α, γ ∈ R, β ∈ C and αγ + |β|2 6= 0, we find that Eq. (5.33) becomes

f ′(a) = αf(a)− βf(−a) , (5.36a)

f ′(−a) = βf(a) + γf(−a) . (5.36b)

Since the Hermitian matrix H is invertible, one may also express the boundary conditions
here by writing f(a) and f(−a) as linear combinations of f ′(a) and f ′(−a). Notice that if H
is diagonal, which implies by virtue of Eq. (5.34) that U is also diagonal, then Eqs. (5.36a)
and (5.36b) become f ′(a) = αf(a) and f ′(−a) = γf(−a), with α 6= 0 and γ 6= 0. These
boundary conditions are called the Robin boundary conditions.

Case II. I + U is singular and I − U is regular. This case is similar to case I and the
boundary conditions are given by Eq. (5.36) except that the Hermitian matrix H is not
invertible. Thus, f ′(a) and f ′(−a) are proportional to each other as linear combinations of
f(a) and f(−a). For the special case with U = −I we have H = 0, and conditions (5.36)
reduce to f ′(a) = f ′(−a) = 0, i.e., the Neumann boundary conditions at both ±a.

Case III. I− U is singular and I + U is regular. In this case the matrix H in Eq. (5.36) is
not defined. Instead, we can write Eq. (5.32) as(

f(a)
−f(−a)

)
= H ′

(
f ′(a)
f ′(−a)

)
, (5.37)

where

H ′ := −i(I + U)−1(I− U) , (5.38)

which is Hermitian but not invertible. By letting

H ′ =
(
α′ −β′

−β′ −γ′

)
, (5.39)

we find

f(a) = α′f ′(a)− β′f ′(−a) , (5.40a)

f(−a) = β
′
f ′(a) + γ′f ′(−a) , (5.40b)
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with α′, γ′ ∈ R, and β′ ∈ C. Since the matrix H ′ is singular, f(a) and f(−a) are
proportional to each other as linear combinations of f ′(a) and f ′(−a). For the special case
with U = I, that is, for H ′ = 0, the boundary conditions reduce to f(a) = f(−a) = 0,
namely, the Dirichlet boundary conditions at both ±a.

Case IV. Both I± U are singular. In this case U has 1 and −1 as eigenvalues. Then, U
can be given as

U =
(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
, (5.41)

where θ ∈ [0, π] and ϕ ∈ [0, 2π) are the polar and azimuthal angles, respectively, in the
standard spherical polar coordinates. (Thus, the matrix U is a Pauli spin matrix [29] in
the direction specified by the angles θ and ϕ.) By substituting this equation into Eq. (5.32)
we obtain

sin θ2

[
f ′(a) sin θ2 − f

′(−a)e−iϕ cos θ2

]
= i cos θ2

[
f(a) cos θ2 − f(−a)e−iϕ sin θ2

]
, (5.42a)

− cos θ2

[
f ′(a)eiϕ sin θ2 − f

′(−a) cos θ2

]
= i sin θ2

[
f(a)eiϕ cos θ2 − f(−a) sin θ2

]
. (5.42b)

These equations are equivalent to

f ′(−a) cos θ2 = f ′(a)eiϕ sin θ2 , (5.43a)

f(−a) sin θ2 = f(a)eiϕ cos θ2 . (5.43b)

If θ ∈ (0, π), then we can write these boundary conditions as

f(−a) = Kf(a) , (5.44a)

f ′(−a) = 1
K
f ′(a) , (5.44b)

where K = eiϕ cot(θ/2) is any non–zero complex number. For θ = π/2 (|K| = 1) we have
f(−a) = eiϕf(a) and f ′(−a) = eiϕf ′(a). The boundary condition given by this set of
equations is often called an automorphic boundary condition. In particular, if ϕ = 0
(K = 1), we have the periodic boundary condition, whereas if ϕ = π, we have the
anti–periodic boundary condition.

If θ = 0, then Eqs. (5.43a) and (5.43b) become f(a) = f ′(−a) = 0. Thus, we have the
Dirichlet boundary condition at a and the Neumann boundary condition at −a. On the
other hand, if θ = π, then they become f(−a) = f ′(a) = 0. Thus, we have the Dirichlet
boundary condition at −a and the Neumann boundary condition at a. These boundary
conditions will be collectively referred to as mixed boundary conditions.



6

Scalar field theory in AdS2

The main goal of this chapter is to study the dynamics of a free scalar field theory in
two–dimensional anti–de Sitter space, AdS2, using Theorem 2.2.5 to obtain a well–posed
initial value problem. We will note that the spatial component of the Klein–Gordon
operator in AdS2 is not a self–adjoint operator. Thus, in order to use Theorem 2.2.5,
we will first apply the machinery described in Chapter 5 to this operator to obtain the
self–adjoint extensions associated to it. As mentioned in Chapter 3, in this spacetime
there are two disjoint spatial boundaries unlike in the higher–dimensional case studied by
Ishibashi and Wald in Ref. [22]. Due to this fact the self–adjoint extensions for the spatial
component of the Klein–Gordon operator in AdS2 are richer than in the higher–dimensional
case. The results of Ishibashi and Wald give some special self–adjoint extensions in two
dimensions but not all of them, as we will show in Chapter 7. This is because, for low
values of the squared mass of the field, the self–adjoint extensions in AdSN with N ≥ 3
are parametrised by one real number whereas the extensions for the two–dimensional case
are parametrised by a 2× 2 unitary matrix.

We also note that not all of the consistent theories obtained through the self–adjoint
extensions associated to the Klein–Gordon operator may be of physical interest. Depending
on the context in which such theories are analysed, different arguments may be given for
choosing a particular theory over the others. One possibility is to require the invariance
under the isometry group of the spacetime. Applying this requirement to scalar field
theory in AdS2, among the family of different consistent theories arising from self–adjoint
boundary conditions we may choose those whose positive–frequency solutions form a UIR
of the symmetry group of AdS2, i.e. S̃L(2,R). We will refer to the classification of the UIRs
of S̃L(2,R) given in Chapter 4 in order to identify the self–adjoint boundary conditions
that are invariant under S̃L(2,R). Then, we identify the boundary conditions among these
that lead to an S̃L(2,R)–invariant positive–frequency subspace, which corresponds to an
S̃L(2,R)–invariant vacuum state as constructed for a general static spacetime in Chapter 2.
We also study the cases where the boundary conditions are invariant but the vacuum state
is not and identify the UIR to which the vacuum state belongs.

Free scalar and spinor field theories have previously been studied, under the lens of
supersymmetry by Sakai and Tanii in Ref. [14]. In their analysis the boundary conditions
for the mode functions are determined by imposing the vanishing of energy flux at the
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conformal boundaries. As we shall show, the boundary conditions stemming from the energy
flux condition coincide with the self–adjoint extensions corresponding to the boundary
conditions invariant under the action of S̃L(2,R).

Thus, we analyse a scalar field of mass M obeying the Klein–Gordon equation in AdS2.
More specifically, we study the self–adjoint boundary conditions for this equation and
find those such that the positive–frequency solutions allow to define a UIR of S̃L(2,R).
The type of self–adjoint boundary conditions depends on the value of the mass of the
field. If the mass is sufficiently large, the boundary conditions are uniquely determined
by requiring the solutions to the Klein–Gordon equation to be normalisable with respect
to the Klein–Gordon inner product, while in a certain range of low mass parameter the
boundary conditions need to be specified. The theory of self–adjoint extensions will be used
to obtain such boundary conditions. Then we determine for which self–adjoint extensions
the corresponding positive–frequency solutions form UIRs. It will be found that only two
types of boundary conditions preserve the symmetry of anti–de Sitter spacetime for the
positive–frequency subspace of the solution space.

6.1 solutions of the klein–gordon equation in AdS2

Let us consider the two–dimensional anti–de Sitter spacetime, AdS2. The static coordinate
system in Eq. (3.8) for N = 2 reduces to (t, ρ), with t ∈ R and ρ ∈ (−π/2, π/2). The static
slices Σt for t ∈ R then correspond to the lines of constant time, isomorphic to the interval
(−π/2, π/2). By Eq. (3.6), the line element for AdS2 written in these coordinates thus
reads

ds2 = sec2 ρ
(
−dt2 + dρ2

)
. (6.1)

As stated in Chapter 3, the three Killing vector fields of AdS2 are given by the static
vector field ξ0 = ∂/∂t, and the boost–like vector fields K3 and B3 given by Eq. (3.26) with
θ1 = 0. Since these vector fields leave the metric in Eq. (6.1) invariant, they correspond to
the generators of the group S̃L(2,R). Thus, we can identify these vector fields with the
basis {Λi}2i=0 of the Lie algebra sl(2,R) given by Eq. (4.13). We rename the boost–like
Killing vectors as ξ1 := K3, and ξ2 := B3, and we have

ξ0 = ∂

∂t
, (6.2a)

ξ1 = − sin t sin ρ ∂
∂t

+ cos t cos ρ ∂

∂ρ
, (6.2b)

ξ2 = cos t sin ρ ∂
∂t

+ sin t cos ρ ∂

∂ρ
. (6.2c)

Hence, the map Λi 7→ ξi, for i = 0, 1, 2, corresponds to the induced action of the Lie algebra
sl(2,R) on C∞(AdS2).
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Now, using Eq. (3.14), we see that the Laplace–Beltrami operator, �AdS2, for AdS2

takes the form

�AdS2 = cos2 ρ

(
− ∂2

∂t2
+ ∂2

∂ρ2

)
. (6.3)

On the other hand, the action of the Casimir element Q of S̃L(2,R) given by Eq. (4.15)
on a function f ∈ C∞(AdS2) is given, up to a constant factor, by Qf = −ξ0[ξ0f ] +
ξ1[ξ1f ] + ξ2[ξ2f ]. A simple calculation using Eq. (6.2) shows that the Laplace–Beltrami
operator (6.3) and the action of the Casimir element on AdS2 coincide, i.e., Q = �AdS2.

The Klein–Gordon equation for a scalar field φ of mass M in AdS2 is given by (�AdS2 −
M2)φ = 0, which in static coordinates (t, ρ) reads

cos2 ρ

[
− ∂2

∂t2
+ ∂2

∂ρ2 −
λ(λ− 1)

cos2 ρ

]
φ(t, ρ) = 0 . (6.4)

Here we have let M2 = λ(λ − 1) so that it is identified with the parametrisation of the
eigenvalue q of the Casimir element as given in Section 4.3 of Chapter 4.

We first describe the solutions to Eq. (6.4) of the form of Eq. (2.44), so that

φ(t, ρ) = Φω(ρ)e−iωt , ω > 0 . (6.5)

Thus, the spatial component Φω satisfies Eq. (2.45), i.e., AΦω = ω2Φω, where, for this
particular case, the differential operator A given in Eq. (2.9) reduces to

A = − d2

dρ2 + λ(λ− 1)
cos2 ρ

. (6.6)

By following the prescription for a scalar field in an arbitrary static spacetime introduced
in Chapter 2, we see that the operator A in Eq. (6.6) is defined on the Hilbert space
HKG of square–integrable functions on the static slice Σ0 = (−π/2, π/2) with respect
to the measure dV =

√
hN−1dρ. From Eq. (3.10), it follows that for AdS2 we have√

h = N = sec ρ. Hence, dV = dρ and, thus, the inner product in Eq. (2.10) between two
elements Φ1,Φ2 ∈HKG is given by

〈Φ1,Φ2〉KG =
∫ π/2

−π/2
Φ1(ρ) Φ2(ρ) dρ . (6.7)

The inner product in HKG induces an inner product on the solutions φ of the form (6.5).
Indeed, if φ1 and φ2 are solutions of Eq. (6.4) with ω1, ω2 > 0 and ω1 6= ω2, then the
pairing

(φ1, φ2)
KG

:= i

∫ π/2

−π/2

(
φ1(t, ρ)∂φ2(t, ρ)

∂t
− ∂φ1(t, ρ)

∂t
φ2(t, ρ)

)
dρ ,

= (ω2 − ω1)e−i(ω2−ω1)t 〈Φω1 ,Φω2〉KG , (6.8)

where in the last line we have used Eq. (6.4), is time–independent and defines a non–
degenerate bilinear form for each t ∈ R.
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In order to completely define the operator A in Eq. (6.6), we will consider the “natural”
domain [20, 22, 35, 43] given by Dom(A) = C∞c (−π/2, π/2), where C∞c (−π/2, π/2) stands
for the set of compactly supported smooth functions with support away from the boundary
ρ = ±π/2. On this domain, the operator A is symmetric in the sense of Definition 2.2.3
with respect to the inner product (6.7), that is, it satisfies 〈AΦ1,Φ2〉KG = 〈Φ1, AΦ2〉KG for
all Φ1,Φ2 ∈ Dom(A). This follows by a simple integration by parts. Furthermore, the set
C∞c (−π/2, π/2) is dense in HKG [35] and, thus, A is densely defined on this domain.

Now, we consider the adjoint operator, A†, of the operator A. From Definition 2.2.2,
we have that if Φ′ ∈ Dom(A†), then〈

Φ′, AΦ
〉
KG

=
〈
A†Φ′,Φ

〉
KG

, (6.9)

for all Φ ∈ Dom(A) = C∞c (−π/2, π/2). It is known that, if Φ ∈ Dom(A†), then the
derivative dΦ/dρ exists in L2(−π/2, π/2) and is absolutely continuous [36]. An important
consequence of this fact is that the operator A† is the same differential operator as A on
Φ ∈ Dom(A†) except on a measure–zero set, where Φ may not be twice differentiable, and
that, if Φ1 ∈ Dom(A†) and Φ2 ∈ Dom(A), then the following equality from integration by
parts holds:

〈
A†Φ1,Φ2

〉
KG
− 〈Φ1, AΦ2〉KG =

[
Φ1(ρ)dΦ2(ρ)

dρ − dΦ1(ρ)
dρ Φ2(ρ)

]ρ→π/2
ρ→−π/2

. (6.10)

We note also that A†Φ = AΦ if Φ ∈ Dom(A) = C∞c (−π/2, π/2).
The operator A is not self–adjoint because Dom(A) 6= Dom(A†), the latter being

larger [36, 43]. To define a quantum theory of this scalar field as described in Chapter 2,
Section 2.3, we need to find a self–adjoint operator AU with its domain satisfying Dom(A) ⊆
Dom(AU ) ⊆ Dom(A†), such that AUΦ = A†Φ if Φ ∈ Dom(AU ). Hence, we will apply the
theory of self–adjoint extensions from Chapter 5 to the operator A. Since the operator A
defined by Eq. (6.6) is of the form of Eq. (5.25), that is, a one–dimensional Schrödinger
differential operator with potential term given by

V (ρ) = λ(λ− 1)
cos2 ρ

, (6.11)

and with V Φ ∈ L2[−π/2, π/2] for all Φ ∈ C∞0 (−π/2, π/2), the analysis of the self–adjoint
extensions of A will follow closely the analysis developed for the operator T .

Now, from the prescription presented in Chapter 2, Section 2.3, we have that, given a
self–adjoint operator AU with positive spectrum, one can define a quantum theory with
a stationary vacuum state for this scalar field. Hence, we will only consider the positive
self–adjoint extensions of the operator A. Now the operator A is positive for λ ∈ R because

A =
(
− d

dρ + λ tan ρ
)( d

dρ + λ tan ρ
)

+ λ2 . (6.12)

It is shown in Appendix C that the operator A is unbounded from below ifM2 = λ(λ−1) <
−1/4, i.e., if λ is imaginary. (The method for the proof is similar to the higher–dimensional
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case [22].) For this reason, we assume that M2 ≥ −1/4 and, hence, that λ ∈ R and
λ ≥ 1/2 from now on. This constraint on the mass values is analogous to the Breitenlohner–
Freedman (B-F) bound that occurs in the four–dimensional case [13]. In Chapter 7 we will
find an analogous result for the N–dimensional cases.

We note that since A is a positive symmetric operator, then at least one positive
self–adjoint extension exists, namely, the Friedrichs extension [43, Section 10.4]. We will
briefly comment on the relation between this particular self–adjoint extension and the ones
obtained by applying von Neumann’s theorem in Section 6.2.

Having these facts in mind, we will proceed with the analysis of the self–adjoint
extensions of the operator A. Since A is not self–adjoint, we will begin by finding solutions
in HKG of the equation A†Φω = ω2Φω, which reads

− d2

dρ2 Φω(ρ) +
[
λ(λ− 1)

cos2 ρ
− ω2

]
Φω(ρ) = 0 . (6.13)

Then, we will use the machinery developed in Chapter 5 to obtain a family of boundary
conditions for these solutions that correspond to the family of self–adjoint extensions AU
of the operator A, effectively restricting the domain of A† in such a way that it coincides
with Dom(AU ) given by Theorem 5.1.3.

Two independent solutions of Eq. (6.13) are given in terms of the Gaussian hypergeo-
metric functions [23, Chapter 15] and read

Φ(1)
ω (ρ) = (cos ρ)λ F

(
λ+ ω

2 ,
λ− ω

2 ; 1
2; sin2 ρ

)
, (6.14a)

Φ(2)
ω (ρ) = sin ρ (cos ρ)λ F

(1 + λ+ ω

2 ,
1 + λ− ω

2 ; 3
2; sin2 ρ

)
. (6.14b)

To find self–adjoint extensions of the operator A we need to analyse the behaviour of
the solutions (6.14) at the boundaries ρ = ±π/2. We first find for which values of λ these
solutions are square–integrable by examining their asymptotic behaviour at the boundaries.
It turns out that it is convenient to analyse them in the following three cases separately:

1. λ > 3/2 with λ 6= k + 1/2 for any k ∈ N;

2. λ = 1/2 and λ = k + 1/2 for k ∈ N;

3. 1/2 < λ < 3/2.

For the cases 1 and 3, we use the following transformation formulas for the hypergeometric
function, which are valid for λ 6= k + 1

2 , k ∈ Z [23, Eq. 15.8.4]:

Φ(1)
ω (ρ) =(cos ρ)λA1(ω)F

(
λ+ ω

2 ,
λ− ω

2 ; 1
2 + λ; cos2 ρ

)
,

+ (cos ρ)1−λB1(ω)F
(1− λ+ ω

2 ,
1− λ− ω

2 ; 3
2 − λ; cos2 ρ

)
, (6.15a)

Φ(2)
ω (ρ) = sin ρ

[
(cos ρ)λA2(ω)F

(1 + λ+ ω

2 ,
1 + λ− ω

2 ; 1
2 + λ; cos2 ρ

)
,

+ (cos ρ)1−λB2(ω)F
(2− λ+ ω

2 ,
2− λ− ω

2 ; 3
2 − λ; cos2 ρ

)]
, (6.15b)
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where

A1(ω) :=
Γ
(

1
2

)
Γ
(

1
2 − λ

)
Γ
(

1−λ+ω
2

)
Γ
(

1−λ−ω
2

) , B1(ω) :=
Γ
(

1
2

)
Γ
(
λ− 1

2

)
Γ
(
λ+ω

2

)
Γ
(
λ−ω

2

) , (6.16a)

A2(ω) :=
Γ
(

3
2

)
Γ
(

1
2 − λ

)
Γ
(

2−λ+ω
2

)
Γ
(

2−λ−ω
2

) , B2(ω) :=
Γ
(

3
2

)
Γ
(
λ− 1

2

)
Γ
(

1+λ+ω
2

)
Γ
(

1+λ−ω
2

) . (6.16b)

We define the variable ρ̃ := π/2− |ρ|. Near the spatial boundaries, ρ → ±π/2, we have
ρ̃ → 0, and cos ρ ≈ ρ̃. Since F (a, b; c;x) = 1 + O(x) for |x| � 1, the behaviour of the
general solution Φ(ρ) = C1Φ(1)

ω (ρ) + C2Φ(2)
ω (ρ), with C1, C2 ∈ C, of Eq. (6.13) for the

cases 1 and 3 around ρ = ±π/2 is given by

Φ(ρ) ∼ ρ̃λ(C1A1(ω)± C2A2(ω) +O(ρ̃2)) + ρ̃1−λ(C1B1(ω)± C2B2(ω) +O(ρ̃2)) . (6.17)

For the solutions with λ = k + 1/2 in case 2 the transformation formulas given by
Eqs. (6.15) and (6.16) are ill–defined. For this case the following transformation formulas
are used instead [23, Eq. 15.8.9]

Φ(1)
ω (ρ) =H1(ω)(cos ρ)k+ 1

2

∞∑
j=0

(
k+ω

2 + 1
4

)
j

(
k−ω

2 + 1
4

)
j

j!(j + k)! (cos ρ)2j
(
ln(cos2 ρ) + h1(j)

)
,

+B1(ω)(cos ρ)−k+ 1
2

k−1∑
j=0

(
−k+ω

2 + 1
4

)
j

(
−k−ω

2 + 1
4

)
j

j!(1− k)j
(cos ρ)2j , (6.18a)

Φ(2)
ω (ρ) =H2(ω) sin ρ(cos ρ)k+ 1

2

∞∑
j=0

(
k+ω

2 + 3
4

)
j

(
k−ω

2 + 3
4

)
j

j!(j + k)! (cos ρ)2j
(
ln(cos2 ρ) + h2(j)

)
,

+B2(ω) sin ρ(cos ρ)−k+ 1
2

k−1∑
j=0

(
−k+ω

2 + 3
4

)
j

(
−k−ω

2 + 3
4

)
j

j!(1− k)j
(cos ρ)2j , (6.18b)

where we have defined

H1(ω) = (−1)k+1Γ(1/2)
Γ
(
−k+ω

2 + 1
4

)
Γ
(
−k−ω

2 + 1
4

) , B1(ω) = Γ(k)Γ(1/2)
Γ
(
k+ω

2 + 1
4

)
Γ
(
k−ω

2 + 1
4

) , (6.19a)

H2(ω) = (−1)k+1Γ(3/2)
Γ
(
−k+ω

2 + 3
4

)
Γ
(
−k−ω

2 + 3
4

) , B2(ω) = Γ(k)Γ(3/2)
Γ
(
k+ω

2 + 3
4

)
Γ
(
k−ω

2 + 3
4

) , (6.19b)

and the constants h1(j) and h2(j) are given by

h1(j) = ψ

(
k + ω

2 + 1
4 + j

)
+ ψ

(
k − ω

2 + 1
4 + j

)
− ψ(j + 1)− ψ(j + k + 1) , (6.20a)

h2(j) = ψ

(
k + ω

2 + 3
4 + j

)
+ ψ

(
k − ω

2 + 3
4 + j

)
− ψ(j + 1)− ψ(j + k + 1) , (6.20b)
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and ψ(x) is the digamma function [23, Eq. 5.2.2]. Note first that the leading behaviour
of these functions is the same as in case 1 if k ≥ 1 (λ ≥ 3/2). For k = 0 (λ = 1/2) the
leading behaviour for Φ(ρ) = C1Φ(1)

ω (ρ) + C2Φ(2)
ω (ρ) is found as

Φ(ρ) ∼ ρ̃
1
2
[
ln(ρ̃2)(C1H1(ω)± C2H2(ω)) + (C1H1(ω)h1(0)± C2H2(ω)h2(0))

]
+O(ρ̃

3
2 ln(ρ̃2)) . (6.21)

Using Eqs. (6.17) and (6.21) we can determine when we have square–integrable solutions
for each value of λ in cases 1–3 as follows.

1. For this case we have 2λ > 3. Hence, the first term in Eq. (6.17) is square–integrable.
However, because 2− 2λ < −1, the second term is not square–integrable unless it
vanishes. Hence, the solution Φ(ρ) is square–integrable if and only if C1B1(ω) ±
C2B2(ω) = 0. This can be achieved for both ρ = ±π/2 if and only if B1(ω) = 0 and
C2 = 0, or B2(ω) = 0 and C1 = 0. From Eq. (6.16a) we find that the conditions
B1(ω) = 0 and C2 = 0 give the even solution Φ(1)

ω (ρ) with ω = λ+2`, ` ∈ N0 while the
conditions B2(ω) = 0 and C1 = 0 give the odd solution Φ(2)

ω (ρ) with ω = λ+ 2`+ 1,
` ∈ N0. These two cases can be combined to give the positive–frequency functions
as [23]

φI
n(t, ρ) = N I

n(cos ρ)λ P (λ−1/2,λ−1/2)
n (sin ρ)e−iωI

nt , ωI = λ+ n . (6.22)

where P (a,b)
n (x), n ∈ N0 , are the Jacobi polynomials defined by [23, Eq. 18.5.7]

P (a,b)
n (x) := Γ(n+ a+ 1)

n!Γ(a+ 1) F

(
n+ a+ b+ 1,−n; a+ 1; 1− x

2

)
, (6.23)

and N I
n are normalisation constants such that the mode functions φI

n(t, ρ) are nor-
malised by the Klein–Gordon inner product (6.8),

(φI
m, φ

I
n)KG = 2ωn

〈
ΦI
m,ΦI

n

〉
KG

= δmn , (6.24)

if we write φI
n(t, ρ) = ΦI

n(ρ)e−iωI
nt. These constants are found by using the standard

normalisation integral for the Jacobi polynomials (see e.g., [23, Table 18.3.1]),∫ 1

−1
(1− x)a(1 + x)bP (a,b)

n (x)P (a,b)
m (x) dx

= 2a+b+1Γ(a+ n+ 1)Γ(b+ n+ 1)
n!(a+ b+ 1 + 2n)Γ(a+ b+ n+ 1)δnm , a, b > −1 . (6.25)

This gives the normalisation constant

N I
n =

√
n!Γ(2λ+ n)

2λΓ(λ+ n+ 1/2) . (6.26)

2. As we stated before, if k ≥ 1, then the leading terms for ρ→ ±π/2 are identical with
those in case 1. Hence, the only square–integrable functions (up to a normalisation
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factor) are given again by Φ(1)
ω (ρ) with ω = λ+ 2`, ` ∈ N0, in Eq. (6.18a) and Ψ(2)

ω (ρ)
with ω = λ + 2` + 1, ` ∈ N0 in Eq. (6.18b), where λ = k + 1/2. Equations (6.18a)
and (6.18b) are ill–defined for these values of ω as they stand, but by observing that,
for j ≤ `,

lim
ω→λ+2`

H1(ω)h1(j) =
(−1)`+1Γ(1

2)Γ(1 + k + `)
Γ(`+ 1

2)
, (6.27a)

lim
ω→λ+2`+1

H2(ω)h2(j) =
(−1)`+1Γ(3

2)Γ(1 + k + `)
Γ(`+ 3

2)
, (6.27b)

with these limits vanishing if j ≥ `+ 1, we find that Φ(1)
ω (ρ) and Φ(2)

ω (ρ) behave like
(cos ρ)λ as ρ → ±π/2 for ω = λ + 2` and ω = λ + 2` + 1, respectively. Thus, also
in these cases, the Klein–Gordon normalised positive–frequency mode functions are
given by Eq. (6.22). For the case λ = 1/2, the function Φ(ρ) in Eq. (6.21) is square
integrable for all C1, C2 and ω. To treat this case, we need to analyse the boundary
conditions which give self–adjoint extensions of the operator A given by Eq. (6.6).
This analysis will be given in Sec. 6.3.1.

3. Here, we have −1 < 2 − 2λ < 1, so the function Φ(ρ) in Eq. (6.17) is square
integrable for all values of C1, C2 and ω. Therefore, we need to determine the
boundary conditions which give self–adjoint extensions of the operator A. This task
will be carried out in Sec. 6.3.1.

In this section we have seen that the leading behaviour of the solutions to the eigenvalue
equation for the adjoint A† is uniquely determined if λ ≥ 3/2. In these cases, the adjoint
A† turns out to be self–adjoint, as we discuss below. On the other hand, for 1/2 ≤ λ < 3/2
all solutions are square integrable. For these cases, we need to find suitable boundary
conditions at ρ = ±π/2 which give self–adjoint extensions of the operator A in Eq. (6.6).
This task will be carried out next.

6.2 self–adjoint extensions of the operator A

Now we discuss the self–adjoint extensions of the operator A defined in Eq. (6.6) on the
domain Dom (A) = C∞c (−π/2, π/2).

Following a similar prescription to that of the operator T presented in Chapter 5, we
start by finding the deficiency subspaces K± defined by Eq. (5.2) of the symmetric operator
A, which are defined as the linear span of the (normalisable) solutions to the equations

A†Φ±(ρ) = ±2iΦ±(ρ) . (6.28)

Notice that this equation is Eq. (6.13) with ω2 = ±2i. Thus, each equation has two linearly
independent solutions. The solutions in K+, if they are square–integrable, are given by
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Eq. (6.14) with ω = 1 + i as

Φ(1)(ρ) = c1(cos ρ)λ F
(
λ+ 1 + i

2 ,
λ− 1− i

2 ; 1
2; sin2 ρ

)
, (6.29a)

Φ(2)(ρ) = c2 sin ρ (cos ρ)λ F
(
λ+ 2 + i

2 ,
λ− i

2 ; 3
2; sin2 ρ

)
, (6.29b)

where the normalisation constants cj ∈ R, j = 1, 2, are chosen so that〈
Φ(1),Φ(1)

〉
KG

=
〈

Φ(2),Φ(2)
〉
KG

= 1 . (6.30)

Note that 〈Φ(1),Φ(2)〉 = 0 because Φ(1) and Φ(2) are even and odd functions, respectively.
We have Φ(1),Φ(2) ∈ K+ and Φ(1),Φ(2) ∈ K− if Φ(1) and Φ(2) are square–integrable.

From the analysis preceding the solutions given by Eq. (6.22), we know that if λ ≥ 3/2,
then Eq. (6.13) has square–integrable solutions only if ω = ωI

n = λ+ n, with n ∈ N0. This
means that there are no square–integrable solutions to Eq. (6.28) for ω = 1± i. Then it
follows that the spaces K± defined by Eq. (5.2) are both zero–dimensional, i.e. n± = 0, and
so there is only one self–adjoint extension for A, namely, its closure Ā(= A†). In this case
the spectrum of Ā is discrete. That is, the eigenfunctions ΦI

n form an orthonormal basis for
L2[−π/2, π/2]. Note also that the eigenvalues, (ωI

n)2, are all positive. Since the self–adjoint
extension A is unique and, as mentioned in Section 6.1, A admits a Friedrichs extension
AF [36, Theorem X.26], we conclude that AF = A. With all these facts put together, we
conclude that, the quantum field theory and the vacuum state can be constructed using
the mode functions φI

n(t, ρ) following the general procedure outlined in Chapter 2.
For the cases 1/2 ≤ λ < 3/2 both solutions in Eq. (6.29) are square–integrable

and, hence, in Dom(A†). This follows from the fact that these functions have the same
asymptotic behaviour as that of Eq. (6.17) if 1/2 ≤ λ < 3/2, and of Eq. (6.21) if λ = 1/2,
which are both square–integrable for any value of ω, in particular, for ω = 1± i. Hence, we
have n+ = n− = 2. Thus, by Eq. (5.19), the self–adjoint extensions of A are characterised
by the subspaces S of K+ ⊕K− on which the operator A† is symmetric.

Let Φ(i) = Φ(i)
+ + Φ(i)

− , i = 1, 2, where Φ(i)
+ ∈ K+ and Φ(i)

− ∈ K−. Then, the condition
〈Φ(i), A†Φ(j)〉 = 〈A†Φ(i),Φ(j)〉 implies 〈Φ(i)

+ ,Φ(j)
+ 〉 = 〈Φ(i)

− ,Φ
(j)
− 〉. Thus, if Φ(i), i = 1, 2 is

in S , then Φ(i)
− = UΦ(i)

+ , where U : K+ → K− is a unitary map. Hence, the self–adjoint
extensions are characterised by the following 2× 2 unitary map U :

UΦ+ := U

Φ(1)

Φ(2)

 =

u11Φ(1) + u12Φ(2)

u21Φ(1) + u22Φ(2)

 , (6.31)

where the 2× 2 matrix,

UM =
(
u11 u12

u21 u22

)
, (6.32)

is unitary. By Eqs. (5.17) and (5.18), the domain of the self–adjoint extension AU is given
by

Dom (AU ) :=
{

Φ + Φ+ + UΦ+
∣∣∣Φ ∈ Dom(Ā), Φ+ ∈ K+

}
, (6.33)
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where the operator AU acts on this domain as

AU (Φ + Φ+ + UΦ+) = A†Φ + 2iΦ+ − 2iUΦ+ . (6.34)

Although Eqs. (6.31), (6.33) and (6.34) give all self–adjoint extensions of the operator
A, it will be more convenient to describe them in terms of boundary values of the functions
in the domain of AU as we did for the operator T in Chapter 5. Since the functions in the
deficiency subspace K+ ⊕K− behave either like (cos ρ)1−λ or (cos ρ)λ for 1/2 < λ < 3/2
and either like (cos ρ)1/2 or (cos ρ)1/2 ln(cos2 ρ) for λ = 1/2 as ρ → ±π/2, we define the
following quantities in order to extract the boundary behaviour of these functions:

Φ̃(λ)(ρ) := (cos ρ)λ−1Φ(ρ) , (6.35a)

DΦ̃(λ)(ρ) := (cos ρ)2−2λ d
dρ
(
(cos ρ)λ−1Φ(ρ)

)
, (6.35b)

for the case 1/2 < λ < 3/2, and

Φ̃(1/2)(ρ) := (cos ρ)−1/2

ln(cos2 ρ)− 1Φ(ρ) , (6.36a)

DΦ̃(1/2)(ρ) := (cos ρ)[ln(cos2 ρ)− 1]2 d
dρ

(
(cos ρ)−1/2

ln(cos2 ρ)− 1Φ(ρ)
)
, (6.36b)

if λ = 1/2. At least one of the boundary values Φ̃(λ)(±π/2) and DΦ̃(λ)(±π/2) is non–zero
for Φ ∈ K+ ⊕ K− (except for the zero function), and they vanish if Φ ∈ Dom(Ā) as
shown in Appendix D. Note also that for any given set of four values Φ̃(λ)(±π/2) and
DΦ̃(λ)(±π/2), one can find a function Φ ∈ Dom(A†) which has these boundary values.
(For example, for 1/2 < λ < 3/2 a smooth function Φ satisfying Φ(ρ) = (cos ρ)1−λ for
π/4 ≤ ρ < π/2 and Φ(ρ) = 0 for −π/2 ≤ ρ ≤ 0 is in Dom(A†) and has Φ̃(λ)(π/2) = 1
and Φ̃(λ)(−π/2) = DΦ̃(λ)(±π/2) = 0.) These facts imply that the four–dimensional
vector (Φ̃(λ)(−π/2), Φ̃(λ)(π/2), DΦ̃(λ)(−π/2), DΦ̃(λ)(π/2)) uniquely determines a function
Φ ∈ K+ ⊕ K−. Thus, a self–adjoint extension of A can be characterised by a two–
dimensional subspace of the four–dimensional vector space consisting of these vectors which
characterises a subspace S ⊂ K+ ⊕K−, for which the operator A† is symmetric. We now
find such subspaces of this four–dimensional vector space.

For either λ = 1/2 or 1/2 < λ < 3/2, if Φ1,Φ2 ∈ K+ ⊕K−, we have from Eq. (6.10)〈
A†Φ1,Φ2

〉
KG
−
〈

Φ1, A
†Φ2

〉
KG

= Φ̃(λ)
1 (π/2)DΦ̃(λ)

2 (π/2)−DΦ̃(λ)
1 (π/2)Φ̃(λ)

2 (π/2)

−
[
Φ̃(λ)

1 (−π/2)DΦ̃(λ)
2 (−π/2)−DΦ̃(λ)

1 (−π/2)Φ̃(λ)
2 (−π/2)

]
. (6.37)
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Thus, the condition
〈
A†Φ1,Φ2

〉
KG
−
〈

Φ1, A
†Φ2

〉
KG

= 0 can be written as

[
DΦ̃(λ)

1 (π/2)− iΦ̃(λ)
1 (π/2)

] [
DΦ̃(λ)

2 (π/2)− iΦ̃(λ)
2 (π/2)

]
+
[
DΦ̃(λ)

1 (−π/2) + iΦ̃(λ)
1 (−π/2)

] [
DΦ̃(λ)

2 (−π/2) + iΦ̃(λ)
2 (−π/2)

]
=
[
DΦ̃(λ)

1 (π/2) + iΦ̃(λ)
1 (π/2)

] [
DΦ̃(λ)

2 (π/2) + iΦ̃(λ)
2 (π/2)

]
+
[
DΦ̃(λ)

1 (−π/2)− iΦ̃(λ)
1 (−π/2)

] [
DΦ̃(λ)

2 (−π/2)− iΦ̃(λ)
2 (−π/2)

]
. (6.38)

This relation is equivalent to(
DΦ̃(λ) (π/2)− iΦ̃(λ) (π/2)

DΦ̃(λ) (−π/2) + iΦ̃(λ) (−π/2)

)
= U

(
DΦ̃(λ) (π/2) + iΦ̃(λ) (π/2)

DΦ̃(λ) (−π/2)− iΦ̃(λ) (−π/2)

)
, (6.39)

for all Φ ∈ S for a fixed 2 × 2 unitary matrix U . (This relation specifying the two–
dimensional subspace S of K+ ⊕K− is analogous to that for a free quantum particle in a
box.) Similarly to the case of the operator T in Chapter 2, the unitary matrices U above
and UM in Eq. (6.32) both characterise a subspace S . We find the explicit map UM 7→ U
which identifies the unitary matrix U that specifies the same subspace S as the unitary
matrix UM in Appendix B.

Note that the condition (6.39) can also be expressed in a similar way to the self–adjoint
boundary conditions of the Schrödinger operator T given by Eq. (5.32) as

(I− U)

 DΦ̃(λ) (π/2)

DΦ̃(λ) (−π/2)

 = i(I + U)

 Φ̃(λ) (π/2)

−Φ̃(λ) (−π/2)

 . (6.40)

Thus, we have a family of self–adjoint operators AU parametrised by the four entries
of the unitary matrix U . The quantities Φ̃(λ)(±π/2) and DΦ̃(λ)(±π/2) for the general
eigenfunctions C1Φ(1)

ω (ρ) + C2Φ(2)
ω (ρ), where Φ(1)

ω (ρ) and Φ(2)
ω (ρ) are given by Eq. (6.15),

are linear in C1 and C2 with their coefficients being functions of the frequency ω. Hence,
Eq. (6.40) gives two equations linear in C1 and C2. The condition for the existence of
non–trivial solutions for C1 and C2 gives the spectrum of ω2 for each unitary matrix U .
It is known that the spectrum of the self–adjoint extension of a second–order differential
operator with deficiency indices n± = 2 is discrete [71, 75]. Therefore, the eigenfunctions
of the operator AU satisfying the boundary conditions (6.40) form a basis for the Hilbert
space L2[−π/2, π/2]. If all eigenvalues ω2 are positive, then one can follow the standard
procedure to quantise this theory with a stationary vacuum state as outlined in Section 2.3
of Chapter 2. We provide an example of boundary conditions with negative eigenvalues for
ω2 in Appendix E.

Next, let us write the boundary conditions (6.40) in a more familiar form following the
same classification we found in Section 5.2 of Chapter 5. First let us consider the case for
which the matrix I− U is regular. In this case the matrix i(I− U)−1(I + U) is Hermitian
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(similarly to the matrix H in Eq. (5.34)). Hence, Eq. (6.40) can be written as

DΦ̃(λ) (π/2) = α Φ̃(λ) (π/2)− β Φ̃(λ) (−π/2) , (6.41a)

DΦ̃(λ) (−π/2) = β Φ̃(λ) (π/2) + γ Φ̃(λ) (−π/2) , (6.41b)

where α, γ ∈ R and β ∈ C. Notice that if U is a diagonal matrix, then β = 0 and Eq. (6.41)
reduces to what can be called a generalised Robin boundary condition, in a similar way
to the boundary condition of Case I in Section 5.2. A special case of Eq. (6.41) is given by
α = β = γ = 0 (corresponding to U = −I) as

DΦ̃(λ) (π/2) = DΦ̃(λ) (−π/2) = 0 . (6.42)

We note that Eq. (6.42) corresponds to the Case II in Section 5.2 for which the resulting
boundary condition is a Neumann boundary condition. Thus, we call Eq. (6.42) the
generalised Neumann boundary condition. If I + U is invertible, then the matrix
i(I + U)−1(I− U) is Hermitian, and Eq. (6.40) can be given as

Φ̃(λ) (π/2) = aDΦ̃(λ) (π/2)− bDΦ̃(λ) (−π/2) , (6.43a)

Φ̃(λ) (−π/2) = bDΦ̃(λ) (π/2) + cDΦ̃(λ) (−π/2) , (6.43b)

where a, c ∈ R and b ∈ C. The special case with a = b = c = 0 (corresponding to U = I) is

Φ̃(λ) (π/2) = Φ̃(λ) (−π/2) = 0 , (6.44)

which we call the generalised Dirichlet boundary condition in accordance with the
boundary condition we found for Case III in Section 5.2.

Similarly to Case IV in Section 5.2, if the matrices I± U are both singular, i.e., if the
eigenvalues of U are ±1, then it is a Pauli spin matrix and can be parametrised as

U =
(

cos 2θ eiϕ sin 2θ
e−iϕ sin 2θ − cos 2θ

)
, (6.45)

where θ, ϕ ∈ R. Then Eq. (6.40) reduces to

Φ̃(λ) (π/2) cos θ = Φ̃(λ) (−π/2) eiϕ sin θ , (6.46a)

DΦ̃(λ) (π/2) sin θ = DΦ̃(λ) (−π/2) eiϕ cos θ . (6.46b)

The special cases for which θ = π/4 give a set of boundary conditions that will be referred
to as the generalised automorphic boundary conditions. If we set ϕ = 0 as well, then
we have the periodic boundary condition. The special case with θ = π/2 reads

Φ̃(λ) (π/2) = DΦ̃(λ) (−π/2) = 0 , (6.47)

whereas the case with θ = 0 reads

Φ̃(λ) (−π/2) = DΦ̃(λ) (π/2) = 0 . (6.48)
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These boundary conditions will be called the mixed boundary conditions.
Most of the boundary conditions given by Eq. (6.40) will result in a rather complicated

spectrum of the frequency ω. This is related to the fact that they are not invariant under
the symmetry group S̃L(2,R) of AdS2. Next, we identify all boundary conditions among
those given by Eq. (6.40) that are invariant under this symmetry group.

6.3 the invariant self–adjoint boundary conditions

In order to determine which of the (positive) self–adjoint extensions of the operator A
result in a representation of S̃L(2,R), we first find the boundary conditions which are
invariant under the infinitesimal action of the group. To do so, we consider the Killing
vector fields from Eq. (6.2). For each Λi ∈ sl(2,R), i = 0, 1, 2, the map π : Λi 7→ ξi defines
a representation of sl(2,R) on smooth functions on AdS2. Thus, the action of the ladder
operators L0, L± defined by Eq. (4.20) on C∞(AdS2) is given by

L0 := iξ0 = ∂

∂t
, (6.49a)

L± : = ξ1 ± iξ2 = e±it
(

cos ρ ∂

∂ρ
± i sin ρ ∂

∂t

)
. (6.49b)

The action of these operators on the mode functions of the form φ(t, ρ) = Φω(ρ)e−iωt in
our local coordinates are found to be given by

∓iL±φ(t, ρ) = e−i(ω±1)t
(

cos ρ d
dρΦω(ρ)∓ ω sin ρΦω(ρ)

)
. (6.50)

Thus, at t = 0 the function Φω(ρ) and its derivative transform under the action of ∓iL±
as follows:

δ±Φω(ρ) = cos ρ d
dρΦω(ρ)∓ ω sin ρΦω(ρ) , (6.51a)

δ±

( d
dρΦω(ρ)

)
= (−1∓ ω) sin ρ d

dρΦω(ρ) + (−ω2 ∓ ω) cos ρΦω(ρ)

− λ(1− λ)
cos ρ Φω(ρ) , (6.51b)

where we have used the Klein–Gordon equation (6.4) to find Eq. (6.51b).
First, we examine the cases with 1/2 < λ < 3/2. Using the definitions of Φ̃(λ)

ω and
DΦ̃(λ)

ω in Eq. (6.35), we find from Eq. (6.51)

δ−Φ̃(λ)
ω (ρ) =(ω − 1 + λ) sin ρ Φ̃(λ)(ρ) + (cos ρ)2λ−1DΦ̃(λ)

ω (ρ) , (6.52a)

δ−DΦ̃(λ)
ω (ρ) =(ω − λ) sin ρDΦ̃(λ)

ω (ρ)

+ [λ(λ− 1)− ω(ω − 1)] (cos ρ)3−2λΦ̃(λ)
ω (ρ) . (6.52b)

The formulas for δ+ are obtained from these by letting ω 7→ −ω. Then

δ−Φ̃(λ)
ω (±π/2) = ±(ω − 1 + λ)Φ̃(λ)

ω (±π/2) , (6.53a)

δ−DΦ̃(λ)
ω (±π/2) = ±(ω − λ)DΦ̃(λ)

ω (±π/2) . (6.53b)
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Now, if Φω1 and Φω2 are eigenfunctions with the same boundary condition with
ω1, ω2 ∈ R, then

〈AUΦω1 ,Φω2〉KG − 〈Φω1 , AUΦω2〉KG

=
[
Φ̃(λ)
ω1 (π/2)DΦ̃(λ)

ω2 (π/2)−DΦ̃(λ)
ω1 (π/2)Φ̃(λ)

ω2 (π/2)
]

−
[
Φ̃(λ)
ω1 (−π/2)DΦ̃(λ)

ω2 (−π/2)−DΦ̃(λ)
ω1 (−π/2)Φ̃(λ)

ω2 (−π/2)
]

= 0 . (6.54)

If this boundary condition is invariant under the transformation δ
(λ)
− , then δ−Φω must

satisfy the same boundary condition as Φω. This implies

〈AUδ−Φω1 ,Φω2〉KG − 〈δ−Φω1 , AUΦω2〉KG = 0 . (6.55)

Then,

[〈AUδ−Φω1 ,Φω2〉KG − 〈δ−Φω1 , AUΦω2〉KG] + [〈AUΦω1 , δ−Φω2〉KG − 〈Φω1 , AUδ−Φω2〉KG]

= (ω1 + ω2 − 1)
[
Φ̃(λ)
ω1 (π/2)DΦ̃(λ)

ω2 (π/2)−DΦ̃(λ)
ω1 (π/2)Φ̃(λ)

ω2 (π/2)
]

+ (ω1 + ω2 − 1)
[
Φ̃(λ)
ω1 (−π/2)DΦ̃(λ)

ω2 (−π/2)−DΦ̃(λ)
ω1 (−π/2)Φ̃(λ)

ω2 (−π/2)
]

= 0 . (6.56)

Equations (6.54) and (6.56) are compatible with each other if and only if

Φ̃(λ)
ω1 (π/2)DΦ̃(λ)

ω2 (π/2)−DΦ̃(λ)
ω1 (π/2)Φ̃(λ)

ω2 (π/2)

= Φ̃(λ)
ω1 (−π/2)DΦ̃(λ)

ω2 (−π/2)−DΦ̃(λ)
ω1 (−π/2)Φ̃(λ)

ω2 (−π/2)

= 0 , (6.57)

for all pairs {Φω1 ,Φω2} such that ω1 + ω2 6= 1 (and there are infinitely many such pairs).
This implies that the unitary matrix U must be diagonal for the boundary condition to be
invariant under the S̃L(2,R) transformations. That is,

(1− eiα±)DΦ̃(λ)
ω (±π/2) = ±i(1 + eiα±)Φ̃(λ)

ω (±π/2) , (6.58)

where α± ∈ R. Applying δ− to these equations gives

±(ω − λ)(1− eiα±)DΦ̃(λ)
ω (±π/2) = i(ω − 1 + λ)(1 + eiα±)Φ̃(λ)

ω (±π/2) . (6.59)

Equations (6.58) and (6.59) are compatible with each other if and only if eiα± = ±1, i.e.,
if and only if Φ̃(λ)(π/2) = 0 or DΦ̃(λ)(π/2) = 0, and Φ̃(λ)(−π/2) = 0 or DΦ̃(λ)(−π/2) = 0.
Thus, the only S̃L(2,R)–invariant boundary conditions are the generalised Dirichlet and
Neumann boundary conditions, given by Eqs. (6.44) and (6.42), respectively, and the mixed
boundary conditions given by Eqs, (6.47) and (6.48). It can readily be seen that these
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boundary conditions are also invariant under the δ+–transformation, and hence under all
S̃L(2,R) transformations.

Next, we turn to the case λ = 1/2. The transformation of Φω and its derivative under
the infinitesimal group action is given by Eq. (6.51) with λ = 1/2. From the definitions of
Φ̃(1/2) and DΦ̃(1/2) given by Eq. (6.36), we find

δ−Φ̃(1/2)
ω (ρ) =

(
ω − 1

2 −
2

ln(cos2 ρ)− 1

)
sin ρ Φ̃(1/2)

ω (ρ)

+ 1
[ln(cos2 ρ)− 1]2

DΦ̃(1/2)
ω (ρ) , (6.60a)

δ−DΦ̃(1/2)
ω (ρ) =

{
−4 + cos2 ρ

[(
−ω2 + ω − 1

4

) [
ln(cos2 ρ)− 1

]2
+ 4

]}
Φ̃(1/2)
ω (ρ)

+
(
ω − 1

2 + 2
ln(cos2 ρ)− 1

)
sin ρDΦ̃(1/2)

ω (ρ) . (6.60b)

Thus, we obtain

δ−Φ̃(1/2)
ω (±π/2) = ± (ω − 1/2) Φ̃(1/2)

ω (±π/2) , (6.61a)

δ−DΦ̃(1/2)
ω (±π/2) = ± (ω − 1/2)DΦ̃(1/2)

ω (±π/2)− 4Φ̃(1/2)
ω (±π/2) . (6.61b)

It can be shown as in the cases with 1/2 < λ < 3/2 that, for the boundary condition
to be invariant under the δ−–transformation, the matrix U must be diagonal. Thus, we
have boundary conditions of the form given by Eq. (6.58) in this case as well. Then the
δ−–transformation gives

± (ω − 1/2)(1− eiα±)DΦ̃(1/2)
ω (±π/2)

=
[
i(ω − 1/2)(1 + eiα±)Φ̃(λ)

ω (±π/2) + 4(1− eiα±)
]

Φ̃(1/2)
ω (±π/2) . (6.62)

This equation is compatible with Eq. (6.58) if and only if eiα± = 1. Thus, the only
S̃L(2,R)-invariant boundary condition is the generalised Dirichlet boundary condition in
Eq. (6.44). This was expected because all invariant boundary conditions for 1/2 < λ < 3/2,
the generalised Dirichlet, Neumann and mixed boundary conditions, tend to the generalised
Dirichlet boundary condition in the limit λ→ 1/2.

6.3.1 Mode functions resulting from the invariant self–adjoint boundary conditions

Now that we have found the boundary conditions which are invariant under the group action
S̃L(2,R), we shall find the frequency spectrum and the corresponding mode functions
for these boundary conditions. Since all invariant boundary conditions are either the
generalised Dirichlet or Neumann boundary condition at each boundary, it is convenient
to use the solutions to Eq. (6.4) satisfying one of these conditions at ρ = π/2.

Let us start with the cases with 1/2 < λ < 3/2. The solutions which satisfy the
generalised Dirichlet or Neumann boundary condition at ρ = π/2 are

Φ(D,λ)
ω (ρ) = (cos ρ)λF

(
λ+ ω, λ− ω;λ+ 1

2; 1− sin ρ
2

)
, (6.63a)

Φ(N,λ)
ω (ρ) = (cos ρ)1−λF

(
1− λ+ ω, 1− λ− ω; 3

2 − λ; 1− sin ρ
2

)
, (6.63b)
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respectively. Note that the function Φ(N,λ)
ω (ρ) is obtained from Φ(D,λ)

ω (ρ) by letting λ 7→ 1−λ.
Using Eqs. (6.16) and (6.17), we obtain the behaviour of these functions for ρ → −π/2,
which is given by

Φ(D,λ)
ω (ρ) ≈ cosπω

cosπλ (cos ρ)λ +
Γ
(
λ+ 1

2

)
Γ
(
λ− 1

2

)
21−2λΓ (λ+ ω) Γ (λ− ω)(cos ρ)1−λ , (6.64a)

Φ(N,λ)
ω (ρ) ≈ −cosπω

cosπλ (cos ρ)1−λ +
Γ
(

3
2 − λ

)
Γ
(

1
2 − λ

)
22λ−1Γ (1− λ+ ω) Γ (1− λ− ω)(cos ρ)λ . (6.64b)

Dirichlet boundary condition. The function Φ(D,λ)
ω (ρ) given by Eq. (6.64a) satisfies

the generalised Dirichlet boundary condition also at ρ = −π/2 (with ω > 0) if and only if
Γ(λ− ω) =∞, i.e., if and only if ω = ωI

n := λ+ n, n ∈ N0. The mode functions are given
by Eq. (6.22).

Neumann boundary condition. We first discuss the cases with λ 6= 1. The function
Φ(N,λ)
ω (ρ) given by Eq. (6.64b) satisfies the generalised Neumann boundary condition also

at ρ = −π/2 (with ω > 0) if and only if Γ(1− λ− ω) =∞ or Γ(1− λ+ ω) =∞, i.e., if
and only if ω = 1− λ+ n, n ∈ N, or ω = |1− λ|. For either case the positive–frequency
mode functions are obtained by substituting these values of ω into Eq. (6.64b) and then
by using the definition of the Jacobi polynomials in Eq. (6.23). We obtain

φII
n (t, ρ) = N II

n (cos ρ)1−λP (1/2−λ,1/2−λ)
n (sin ρ)e−iωII

n t , (6.65)

where ωII
n = 1 − λ + n, n ∈ N, and ωII

0 = |1 − λ|. The normalisation constant such that
(φII
m, φ

II
n )KG = δmn can be found by using Eq. (6.25) as

N II
n =

√
n!|Γ(2− 2λ+ n)|

21−λΓ(3/2− λ+ n) . (6.66)

Notice that ω1 − ω0 = 3− 2λ 6= 1 if 1 < λ < 3/2.
For λ = 1, we can write the positive–frequency solutions with the Neumann boundary

condition as

φ(II,λ=1)
n (t, ρ) =


1√
πn

sinnρ e−int , n+ 1 ∈ 2N ,
1√
πn

cosnρ e−int , n ∈ 2N .
(6.67)

We have (φ(II,λ=1)
m , φ

(II,λ=1)
n )KG = δmn for m,n ∈ N. Note that there are solutions with

ω = 0:

φ
(II,λ=1)
0 (t, ρ) = At+B , (6.68)

where A and B are constants.

Mixed boundary conditions. The function Φ(D,λ)
ω (ρ) in Eq. (6.64a), which satisfies the

generalised Dirichlet boundary condition at ρ = π/2, will satisfy the generalised Neumann
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boundary condition at ρ = −π/2 if and only if cosπω = 0, i.e., ω = n+ 1/2, n ∈ N0 (for
ω > 0). Then

Φ(D,λ)
ω (ρ)|ω=n+1/2 = (cos ρ)λF

(
λ+ n+ 1

2 , λ− n−
1
2;λ+ 1

2; 1− sin ρ
2

)
= (cos ρ)λ

(1 + sin ρ
2

)1/2−λ
F

(
1 + n,−n;λ+ 1

2; 1− sin ρ
2

)
. (6.69)

The positive–frequency mode functions corresponding to this function are

φIII
n (t, ρ) = N III

n (cos ρ)λ (1 + sin ρ)1/2−λ P (λ−1/2,−λ+1/2)
n (sin ρ)e−iωIII

n t , (6.70)

where ωIII
n = n+ 1/2 and where the normalisation constant such that (φIII

m , φ
III
n )KG = δmn,

found using Eq. (6.25), is

N III
n = n!√

2Γ(λ+ n+ 1/2)Γ(3/2− λ+ n)
. (6.71)

The positive–frequency mode functions satisfying the generalised Dirichlet and Neumann
boundary conditions at ρ = −π/2 and ρ = π/2, respectively, are

φIV
n (t, ρ) = N III

n (cos ρ)λ (1− sin ρ)1/2−λ P (−λ+1/2,λ−1/2)
n (sin ρ)e−iωIII

n t . (6.72)

Since P (α,β)
n (−x) = P

(β,α)
n (x), we have

φIV
n (t, ρ) = φIII

n (t,−ρ) , (6.73)

as expected.
Next let us discuss the case λ = 1/2. As we saw, the only invariant boundary condition

in this case is the generalised Dirichlet boundary condition. We have

Φ(D,1/2)
ω (ρ) = (cos ρ)1/2F

(1
2 + ω,

1
2 − ω; 1; 1− sin ρ

2

)
= (cos ρ)1/2Pω−1/2(sin ρ) , (6.74)

where Pν(x) is the Legendre function of the first kind. Then, since [23, Eq. 14.9.10]

Pω−1/2(−x) = 2
π

cosπωQω−1/2(x) + sin πωPω−1/2(x) , (6.75)

where Qν(x) is the Legendre function of the second kind with Qν(x) ≈ − ln(1− x)/2 as
x→ 1 [23, Eq. 14.8.3], we must have cosπω = 0 to have the generalised Dirichlet boundary
condition at ρ = −π/2 as well. Thus, we obtain the positive–frequency mode functions in
this case as

φV
n (t, ρ) = 1√

2
(cos ρ)1/2Pn(sin ρ)e−iωV

n t , (6.76)

where ωV
n = n+ 1/2. Note that Pn(x) = P

(0,0)
n (x). These mode functions are normalised

so that (φV
m, φ

V
n )KG = δmn.
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6.3.2 Boundary conditions from vanishing energy flux at the boundaries

The S̃L(2,R)–invariant boundary conditions and the solutions to Eq. (6.4) found in
Section 6.3.1 are identical with the results of Sakai and Tanii [14] based on the requirement
that the energy flux should vanish at the endpoints ρ = ±π/2. (This requirement is
analogous to that used in the higher–dimensional case [11, 12, 76].) We briefly review this
derivation.

The stress–energy tensor with the conformal coupling constant β is given by [14]

Tµν = ∂µφ∂νφ−
1
2gµνg

κσ∂κφ∂σφ−
1
2gµνM

2φ2 + 1
2β(gµν�−∇µ∇ν +Rµν)φ2 , (6.77)

where Rµν = gµν is the Ricci curvature, and ∇µ is the covariant derivative given by
Eq. (2.4) with N = 2 and

√
h = N = sec ρ. The requirement of vanishing energy flux reads√
−det g g1µTµνξ

ν
0

∣∣∣
ρ=±π/2

= 0 , (6.78)

where ξµ0 = δµ0 are the components of the Killing vector field ξ0 in Eq. (6.2) in global
coordinates (t, ρ). From Eq. (6.1), we have g = sec2 ρdiag(−1, 1), and therefore by
Eq. (2.3), the only non–vanishing connection components are Γ0

01 = Γ1
00 = Γ1

11 = tan ρ. By
substituting the mode functions given as in Eq. (6.5) into Eq. (6.78), we find(

(1− 2β)dΦω(ρ)
dρ + β tan ρΦω(ρ)

)
Φω(ρ)

∣∣∣∣
ρ=±π/2

= 0 . (6.79)

For λ ≥ 3/2 we have Φω(ρ) ∼ (cos ρ)λ, and hence this condition is satisfied. For
1/2 < λ < 3/2, the condition (6.79) becomes{

(1− 2β)DΦ̃(λ)
ω (ρ)

+ [(3− 2λ)β − (1− λ)] (cos ρ)1−2λ sin ρ Φ̃(λ)
ω (ρ)

}
Φ̃(λ)
ω (ρ)

∣∣∣
ρ=±π/2

= 0 , (6.80)

where Φ̃(λ)
ω (ρ) and DΦ̃(λ)

ω (ρ) are defined by Eq. (6.35). This condition is satisfied by the
Dirichlet boundary condition Φ̃(λ)(±π/2) = 0 for all β. If we choose

β = 1− λ
3− 2λ , (6.81)

then the Neumann boundary condition DΦ̃(λ)(±π/2) = 0 and the mixed boundary con-
ditions DΦ̃(λ)(π/2) = Φ̃(λ)(−π/2) = 0 or DΦ̃(λ)(−π/2) = Φ̃(λ)(π/2) = 0 satisfy the
condition (6.80).

For λ = 1/2, Eq. (6.79) reads{
(1− 2β)DΦ̃(λ)(ρ) +

[(
2β − 1

2

) [
ln(cos2 ρ)− 1

]2
−2(1− 2β)

[
ln(cos2 ρ)− 1

] ]
tan ρ Φ̃(λ)(ρ)

}
Φ̃(λ)(ρ)

∣∣∣
ρ=±π/2

= 0 . (6.82)
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This is satisfied only by the Dirichlet boundary condition Φ̃(λ)(±π/2) = 0. Thus, for
all values of λ the energy fluxes at ρ = ±π/2 vanish for some values of β if and only if
S̃L(2,R)–invariant boundary conditions are imposed.

The above analysis shows that, among all the allowed self–adjoint boundary conditions,
only those which are invariant under S̃L(2,R) result in solution spaces satisfying the energy
flux condition at the endpoints ρ = ±π/2. The physical interpretation of the vanishing of
the energy flux at the boundary (not necessarily the vanishing of the energy flux at each
endpoint), is that the energy of the system is conserved and, thus, the model describes a
closed system. On the other hand, the self–adjointness of the operators AU also entails that
we are dealing with an isolated system. Thus, one might think that there is a contradiction
in place since not all self–adjoint boundary conditions satisfy the condition (6.78). This is
not, however, entirely the case: We note that the energy condition in Eq. (6.78) is stronger
than the similar but more general requirement

√
−det g g1µTµνξ

ν
0

∣∣∣π/2
−π/2

= 0 , (6.83)

for which conservation of energy is also guaranteed. It might be the case that certain non–
invariant self–adjoint boundary conditions do correspond to solutions satisfying Eq. (6.83).
Further analysis may be necessary to verify if this situation holds true. Another possibility
is that the non–invariant self–adjoint boundary conditions lead to solutions that satisfy
a different energy condition: One in which part of the energy flows along the boundary,
similar to the cases analysed in Ref. [77]. Once again, further analysis is needed to verify
these claims.

6.3.3 Boundary conditions leading to unitary irreducible representations

In this subsection we discuss the mode functions found in Section 6.3.1 with reference
to the UIRs of the group S̃L(2,R) listed in Section 4.3. Let us start with the cases with
λ ≥ 3/2. In each of these cases the positive–frequency mode functions were found to have
spatial components given by Eq. (6.22) and frequencies ωn = λ + n, with n ∈ N0. By
comparing the ranges for λ and the frequencies ω = µ + k with the classification given
in Section 4.3, we find that the eigenvectors of the Casimir operator, i.e., � in Eq. (6.3),
form a discrete series representation D+

λ labelled by the pair (λ, λ).
Next, let us discuss the cases with 1/2 < λ < 3/2. For each of these cases there are

four possible S̃L(2,R)–invariant self–adjoint extensions of the operator A. Correspondingly,
there are four sets of positive–frequency solutions to the Klein–Gordon equation. The
positive–frequency mode functions with the generalised Dirichlet boundary condition,
φI
n(t, ρ) in Eq. (6.22), form the discrete series representation D+

λ as in the cases λ ≥ 3/2.
For the positive–frequency mode functions with the generalised Neumann boundary

condition, φII
n (t, ρ) in Eq. (6.65), we need to discuss the cases 1/2 < λ < 1, λ = 1 and

1 < λ < 3/2 separately. If 1/2 < λ < 1, then these mode functions form a discrete series
representation D+

1−λ with the positive frequencies ωn = (1− λ) + n, n ∈ N0.
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If λ = 1, then the mode function φII
0 (t, ρ) has zero frequency. There is no S̃L(2,R)–

invariant vacuum state because of this mode function. This situation is analogous to the
absence of de Sitter–invariant vacuum state for the massless minimally–coupled scalar field
in de Sitter space [78]. Now, if we let the ladder operator L− act on φII

1 (t, ρ) ∝ sin ρ e−it

we have by Eq. (6.50)

iL−φ
II
1 (t, ρ) = 1√

π
. (6.84)

Since a constant function is orthogonal to all mode functions including itself with respect
to the Klein–Gordon inner product (6.7), we can identify it with 0. This amounts to
identifying φII

n (t, ρ) + constant with φII
n (t, ρ) for n ≥ 1. With this identification, the mode

functions φII
n (t, ρ) form the UIR D+

1 . Thus, it is possible to define an S̃L(2,R)–invariant
vacuum state if we “quotient out” the zero–frequency sector.(A de Sitter invariant vacuum
state can be constructed also for the massless minimally–coupled scalar field in de Sitter
space in this manner [79, 80].)

If 1 < λ < 3/2, then the positive–frequency mode function with n = 1 satisfies

iL−φ
II
1 (t, ρ) =

√
2(λ− 1) φII

0 (t, ρ) , (6.85)

where Eq. (6.50) has been used. That is, the infinitesimal transformation of the positive–
frequency mode φII

1 (t, ρ) leads to a negative–frequency mode φII
0 (t, ρ). Thus, the positive–

frequency subspace of the solutions to the Klein–Gordon equation and the vacuum state are
not invariant under S̃L(2,R) transformations (see Section 2.3). In this case, the positive–
frequency mode functions φII

n (t, ρ), n ∈ N, together with the negative–frequency mode
function φII

0 (t, ρ) form a representation in the non–unitary discrete series [61] denoted by
F±1−λ.

Next, let us discuss the solutions obeying the mixed boundary conditions for 1/2 < λ <

3/2. Also in this case, the space of positive–frequency solutions and the vacuum state are
non–invariant because positive–frequency mode functions and negative–frequency mode
functions mix under the S̃L(2,R) transformations. This can be seen by using Eq. (6.50) as

iL−φ
III
0 (t, ρ) =

(1
2 − λ

)
φIII

0 (t, ρ) , (6.86a)

iL−φ
IV
0 (t, ρ) = −

(1
2 − λ

)
φIV

0 (t, ρ) . (6.86b)

For either of the mixed boundary conditions, the positive– and negative–frequency mode
functions together form a non–unitary representation of S̃L(2,R).

For λ = 1/2, the positive–frequency mode functions with the generalised Dirichlet
boundary conditions, φV

n (t, ρ), n ∈ N0, form a unitary representation because in this case
we have L−φV

0 (t, ρ) = 0. This representation is D+
1/2, which is a representation in the

mock–discrete series, labelled by the pair (1/2, 1/2).
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6.4 invariant theories with no invariant positive–frequency subspace

In Section 6.3.3 we found that some boundary conditions lead to an S̃L(2,R)–invariant
theory with non–invariant vacuum state if 1/2 < λ < 3/2. The Klein–Gordon inner
product (6.8) is S̃L(2,R)–invariant with any of these boundary conditions. This implies
that the S̃L(2,R) transformations on the quantum field are Bogoliubov transformations [24,
27, 34], which mix annihilation and creation operators. Since a theory with any of these
boundary conditions is S̃L(2,R)–invariant but the vacuum state is not, it must be possible
to find a UIR of this group which the vacuum state belongs to. We may associate to these
cases a type of broken symmetry. In this section we identify this representation.

We start with the cases with the mixed boundary condition in Eq. (6.47) with 1/2 <
λ < 3/2. (The cases satisfying the boundary condition (6.48) are similar.) We expand the
quantum field operator φ(t, ρ) as in Eq. (2.46) so that

φ(t, ρ) =
∞∑
n=0

[
anφ

III
n (t, ρ) + a†nφ

III
n (t, ρ)

]
. (6.87)

Then, the conserved quantum charge for the symmetry generated by L± is

L̂± = 1
2(φ,L±φ)KG

= i

∫ π/2

−π/2

[
φ(t, ρ) ∂

∂t
L±φ(t, ρ)− ∂φ(t, ρ)

∂t
L±φ(t, ρ)

]
dρ . (6.88)

We use the ladder operators for the Jacobi polynomials [23, Eqs. 18.9.17, 18.9.18]

(2n+ α+ β)(1− x2) d
dxP

(α,β)
n (x)

= n(α− β − (2n+ α+ β)x)P (α,β)
n (x) + 2(n+ α)(n+ β)P (α,β)

n−1 (x) ,

(2n+ α+ β + 2)(1− x2) d
dxP

(α,β)
n (x) (6.89a)

= (n+ α+ β + 1)(α− β + (2n+ α+ β + 2)x)P (α,β)
n (x)

− 2(n+ 1)(n+ α+ β + 1)P (α,β)
n+1 (x) , (6.89b)

to find L+φ
III
n = −iknφIII

n+1 (n ≥ 0), L−φIII
n = −ikn−1φ

III
n−1 (n ≥ 1), L−φIII

n = iknφIII
n+1

(n ≥ 0), L+φIII
n = ikn−1φIII

n−1 (n ≥ 1), where

kn =
[(
λ+ n+ 1

2

)(
n+ 3

2 − λ
)]1/2

. (6.90)

On the other hand, we have L−φIII
0 = −i(1/2 − λ)φIII0 (see Eq. (6.86a)) and L+φIII

0 =
i(1/2− λ)φIII

0 . By using these formulas and the orthonormality relations (φIII
m , φ

III
n )KG =

−(φIII
m , φ

III
n )KG = δmn in Eq. (6.88), we find

iL̂+ =
∞∑
n=0

kna
†
n+1an −

1
2

(
λ− 1

2

)
(a†0)2 , (6.91)

iL̂− =
∞∑
n=0

kna
†
nan+1 −

1
2

(
λ− 1

2

)
(a0)2 . (6.92)
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Then,

[L̂+, L̂−] =
∞∑
n=1

k2
n(a†nan − a

†
n+1an+1) + 1

2

(
λ− 1

2

)2
(a†0a0 + a0a

†
0) . (6.93)

We note that the first term above should annihilate the bosonic vacuum state |0〉B,
thus, the manipulation of this sum must be understood formally, keeping the operators
normal–ordered. Thus, we obtain

[L̂+, L̂−] = 2L̂0 , (6.94)

where

L̂0 =
∞∑
n=0

(
n+ 1

2

)
a†nan + 1

4

(
λ− 1

2

)2
I . (6.95)

(If we substituted the equality a†nan − a
†
n+1an+1 = ana

†
n − an+1a

†
n+1 into Eq. (6.93) and

manipulated the summation formally, we would find an infinite constant added to L̂0.)
From Eq. (6.49), we know that the operator L0 = [L+, L−]/2 corresponds to the action

of the timelike Killing vector ξ0 on the solution space. Thus, by comparing the commutation
relation (6.94) with Eq. (4.21) we conclude that the operator L̂0 should be identified as the
time–translation generator, i.e., the energy operator. The vacuum state |0〉B annihilated by
all an, n = 0, 1, 2, . . ., satisfies L̂− |0〉B = 0 and L̂0 |0〉B = [(λ− 1/2)2/4] |0〉B. Hence, the
state |0〉B belongs to the representation D+

(λ−1/2)2/4. The other states in this representation
can be found by applying L̂+ repeatedly on |0〉B.

The theory with 1 < λ < 3/2 obtained by imposing the Neumann boundary condi-
tion (6.42) can be studied in the same manner. For these cases, we find L+φ

II
n = −iqnφII

n+1
(n ≥ 1), L−φII

n = iqn−1φ
II
n−1 (n ≥ 2), L−φII

n = iqnφII
n+1 (n ≥ 1) and L+φII

n = −iqn−1φII
n−1

(n ≥ 2), where
qn =

√
(n+ 1)(2− 2λ+ n) . (6.96)

On the other hand, we have L+φII
0 = i

√
2(λ− 1)φII

1 , L−φII
1 = i

√
2(λ− 1)φII

0 , L−φII
0 =

−i
√

2(λ− 1)φII
1 , L+φII

1 = −i
√

2(λ− 1)φII
0 and L−φII

0 = L+φ
II
0 = 0. Then we find

iL̂+ =
∞∑
n=1

qna
†
n+1an −

√
2(λ− 1)a†1a

†
0 , (6.97)

iL̂− =
∞∑
n=1

qna
†
nan+1 −

√
2(λ− 1)a1a0 . (6.98)

Then, in the same way as in the cases with the mixed boundary condition, we find

[L̂+, L̂−] = 2L̂0 , (6.99)

where
L̂0 =

∞∑
n=0

ωII
n a
†
nan + (λ− 1)I . (6.100)

Thus, the vacuum state in this theory belongs to the representation D+
λ−1.
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We conclude this chapter summarising our main results for the analysis of a scalar
field in AdS2 in Table 6.1. Here, the symbols −→Φ (λ) and −−→DΦ(λ) stand for the column vectors
(Φ̃(λ)(π/2),−Φ̃(λ)(−π/2))T and (DΦ̃(λ)(π/2), DΦ̃(λ)(−π/2))T , respectively. We also define
the matrices U+ := i(I + U) and U− := I− U .

Table 6.1: Self–adjoint boundary conditions for scalar field in AdS2

M (λ) SABCs Inv. SABCs Spectrum (ω) Inv. P-F solutions UIR

M2 ≥ 3
4(

λ ≥ 3
2

) Dirichlet Dirichlet
ω = ±ω(λ,D)

n

ω
(λ,D)
n = λ+ n

φI
n, ω

(λ,D)
n D+

λ

0<M2< 3
4(

1 < λ < 3
2

) U−
−−→
DΦ(λ) =U+

−→Φ (λ)

Dirichlet
ω = ±ω(λ,D)

n

ω
(λ,D)
n = λ+ n

φI
n, ω

(λ,D)
n D+

λ

Neumann
ω = ±ω(λ,N)

n

ω
(λ,N)
n = 1− λ+ n

– –

Mixed I
ω

(M)
j = j + 1

2

j ∈ Z

– –

Mixed II – –

M2 = 0
(λ = 1)

U−
−−→
DΦ(1) =U+

−→Φ (1)

Dirichlet
ω = ±ω(1,D)

n ,

ω
(1,D)
n = 1 + n

φI
n, ω

(1,D)
n

D+
1

Neumann
ω

(1,N)
j = j

j ∈ Z

[
φII
n+1
]
, ω(1,N)

n+1

Mixed I
ω

(M)
j = j + 1

2

j ∈ Z

– –

Mixed II – –

− 1
4 <M

2<0(
1
2 < λ < 1

) U−
−−→
DΦ(λ) =U+

−→Φ (λ)

Dirichlet
ω = ±ω(λ,D)

n ,

ω
(λ,D)
n = λ+ n

φI
n, ω

(λ,D)
n D+

λ

Neumann
ω = ±ω(λ,N)

n ,

ω
(λ,N)
n = 1− λ+ n

φII
n , ω

(λ,N)
n D+

1−λ

Mixed I
ω

(M)
j = j + 1

2 ,

j ∈ Z

– –

Mixed II – –

M2 = − 1
4(

λ = 1
2

) U−
−−→
DΦ( 1

2 ) =U+
−→Φ ( 1

2 ) Dirichlet
ω

(1/2,D)
j = j + 1

2 ,

j ∈ Z
φVn , ω

(1/2,D)
n D+

1/2

Here n is assumed to be in N0.
The symbol

[
φII
n+1
]
stands for the equivalence class of modes modulo a constant term.
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Scalar field theory in AdSN

Now that we have analysed a scalar field theory in the two–dimensional anti–de Sitter
space, we shall extend our analysis to the higher dimensional cases. We shall consider a
scalar field on an N–dimensional anti–de Sitter spacetime, AdSN , with N ≥ 3. We will
proceed in a very similar way to that of Chapter 6, first obtaining general solutions to
the Klein–Gordon equation in AdSN , then finding all possible self–adjoint extensions of a
certain one–dimensional operator in the form of boundary conditions and finally finding
which, among these, are invariant under the isometry group of the spacetime.

The analysis of a scalar field in AdSN using the theory of self–adjoint extensions has
been done by Ishibashi and Wald [22]. The main objective in their analysis was to prove
that a scalar field theory in AdSN can be constructed in a way such that the dynamics
for the classical field is well defined. They proceeded to show that the radial component
of the Klein–Gordon equation defines a densely defined symmetric operator on a certain
Hilbert space that admits a family of positive self–adjoint extensions. Then, they applied
von Neumann’s theorem (Theorem 5.1.3) to determine the domains of the self–adjoint
extensions using the method presented in Chapter 5. Following this, they found that the
positive self–adjoint extensions are parametrised by a real number.

In this chapter we will rework the analysis by Ishibashi and Wald for the scalar field
in AdSN , and, after replicating their results, we will extend their analysis by imposing
invariance under the isometry group of AdSN to determine which among these theories
result in invariant vacuum states. We will follow a similar method to the one used in
Ref. [21] (which is the same method used in Chapter 6 for a scalar field in AdS2). Thus,
we present the general positive–frequency solutions to the Klein–Gordon equation in AdSN
and analyse the behaviour of the radial component of the solutions for different ranges
of the mass of the field. For certain values of the mass parameter the associated radial
operator admits a family of self–adjoint extensions prescribed by von Neumann’s theorem.
After finding the domains of the admissible self–adjoint extensions of the radial operator,
we show that these domains can be put in a one–to–one correspondence with a family of
boundary conditions. Additionally, after we find the boundary conditions characterising
all possible self–adjoint extensions we will impose invariance under the isometry group,
SO(2, N − 1), of AdSN as a criterion to determine which among these boundary conditions
are of physical interest. Finally, we will consider the action of one of the boost–like Killing
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vector fields of AdSN on the mode solutions arising from the different boundary conditions
that characterise the admissible self–adjoint extensions of the radial operator.

7.1 solutions of the klein–gordon equation in AdSN

Let us consider the N–dimensional anti–de Sitter spacetime, AdSN , with N ≥ 3. We
use the static coordinate system given by Eq. (3.8), where the ranges of the coordinates
(t, ρ, θ1, . . . , θN−2) are given by Eq. (3.4). The line element for AdSN in these coordinates
is given by Eq. (3.6). Using Eqs. (3.7) and (3.10), we also see that for AdSN we have

N (ρ, θ) = sec ρ , (7.1a)√
h(ρ, θ) = sec ρ (tan ρ)N−2

N−3∏
k=1

(sin θk)N−k−2 , (7.1b)

where we have denoted θ = (θ1, . . . , θN−2).
A scalar field φ of mass M satisfies the Klein–Gordon equation

(
�AdSN −M2)φ = 0,

where �AdSN is the Laplace–Beltrami operator on AdSN given by Eq. (3.14). Similarly to
the two–dimensional case in Chapter 6, we are interested in positive–frequency solutions
of the form

φ(t, ρ, θ) = Φω(ρ, θ)e−iωt , ω > 0 . (7.2)

Expressing the solutions of the Klein–Gordon equation in this way, we can identify the
spatial component functions Φω as solutions to the equation

AΦω = ω2Φω , (7.3)

where the operator A, defined for a general static spacetime in Eq. (2.9), is obtained for
AdSN using Eq. (3.14), and reads

A := − ∂2

∂ρ2 −
N − 2

sin ρ cos ρ
∂

∂ρ
+ M2

cos2 ρ
− 1

sin2 ρ
∆N−2 . (7.4)

The space of solutions of Eq. (7.3) thus forms the Hilbert space HKG := L2(Σ,dV ),
where Σ corresponds to any of the hypersurfaces Σt of constant t–coordinate, and

dV =
√
hN−1dρdθ1 · · · dθN−2 ,

= (tan ρ)N−2
(
N−3∏
k=1

(sin θk)N−k−2
)

dρdθ1 · · · dθN−2 , (7.5)

where we have used Eq. (7.1). Following the theory presented in Chapter 2, the inner
product of HKG is given by Eq. (2.10), and for Φ1,Φ2 ∈HKG it reads

〈Φ1,Φ2〉KG =
∫

Σ
Φ1(ρ, θ)Φ2(ρ, θ)(tan ρ)N−2dρdΩN−2 , (7.6)
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where we have denoted the volume element of the unit (N − 2)–sphere as

dΩN−2 :=
(
N−3∏
k=1

(sin θk)N−k−2
)

dθ1 · · · dθN−2 . (7.7)

The inner product (7.6) induces an inner product on the space of positive–frequency
solutions of the Klein–Gordon equation. Indeed, for any two solutions φ1, φ2, of the form
of Eq. (7.2) with ω1, ω2 > 0 and ω1 6= ω2, the inner product is given by

(φ1, φ2)KG := i

∫
Σ

(
φ1(t, ρ, θ)∂φ2(t, ρ, θ)

∂t
− ∂φ1(t, ρ, θ)

∂t
φ2(t, ρ, θ)

)
(tan ρ)N−2dρdΩN−2 ,

= (ω2 + ω1)e−i(ω2−ω1)t 〈Φω1 ,Φω2〉KG . (7.8)

With these facts in mind, we now look for solutions of Eq. (7.3) which are normalisable
with respect to the inner product (7.6). We begin by finding the general solutions for
different values of the mass M of the field. Let us consider the separation of variables for
the function Φω of the form

Φω(ρ, θ) = Rω(ρ)Y (θ) . (7.9)

Substituting this expression into Eq. (7.3) and rearranging we obtain

sin2 ρ

Rω(ρ)

[
− d2

dρ2 −
N − 2

sin ρ cos ρ
d
dρ + M2

cos2 ρ
− ω2

]
Rω(ρ) = 1

Y (θ)∆N−2Y (θ) . (7.10)

Since the right–hand side of this expression equals a constant whenever Y (θ) is an
eigenfunction of the Laplace operator on the (N−2)–sphere, we can consider these functions
to be solutions of the equation

∆N−2Yl(θ) = −l1(l1 +N − 3)Yl(θ) , (7.11)

where l1 ∈ N0, and l labels the full spectrum of ∆N−2. Solutions to Eq. (7.11) are given
by the scalar hyperspherical harmonics [81, 82, 83]. Adopting a convention similar to that
of Ref. [84], the normalised solutions to Eq. (7.11) are given by

Yl(θ) = 1√
2π

(
N−3∏
k=1

P
l2
k,lk

(θk)
)
eilN−2θN−2 , (7.12)

where the integers l1, l2, . . . , lN−2 satisfying

l1 ≥ l2 ≥ · · · lN−3 ≥ |lN−2| , (7.13)

comprise the spectral label l := (l1, . . . , lN−2). The functions P lk,L in Eq. (7.12) depend on
the associated Legendre functions of the first kind [23, Eq. 14.3.9],

P−µν (x) = 1
Γ(1 + µ)

(
x− 1
x+ 1

)µ/2
F

(
ν + 1,−ν; 1 + µ; 1− x

2

)
, (7.14)
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via the definition

P
l
k,L(θ) := clk,L(sin θ)−(N−k−3)/2P

−l−(N−k−3)/2
L+(N−k−3)/2 (cos θ) . (7.15)

The constants clk,L are given by [84]

clk,L =
(2L+N − k − 2

2
(L+ l +N − k − 3)!

(L− l)!

)1/2
, (7.16)

and normalise the functions Yl with respect to the angular component of the inner product
in Eq. (7.6), that is, ∫

SN−2
Yl(θ)Yl′(θ)dΩN−2 = δl,l′ , (7.17)

where δl,l′ = δl1,l′1 · · · δlN−2,l′N−2
.

Substituting Eq. (7.11) into Eq. (7.10), we obtain a differential equation for the radial
function Rω,l1 given by[

− d2

dρ2 −
N − 2

sin ρ cos ρ
d
dρ + M2

cos2 ρ
+ l1(l1 +N − 3)

sin2 ρ

]
Rω,l1(ρ) = ω2Rω,l1(ρ) . (7.18)

In order to simplify this equation, let us consider the function rω,l1 defined through the
relation

Rω,l1(ρ) = (cot ρ)
N−2

2 rω,l1(ρ) . (7.19)

The radial equation (7.18) reduces to a differential equation for the function rω,l1 given by

ARadrω,l1 = ω2 rω,l1 , (7.20)

where the differential operator ARad is given by

ARad := − d2

dρ2 +
(
ν2 − 1/4

cos2 ρ
+ σ2 − 1/4

sin2 ρ

)
. (7.21)

with the constants σ and ν defined as

σ := l1 + N − 3
2 , ν :=

√
M2 +

(
N − 1

2

)2
. (7.22)

The operator ARad is of the form of the Schrödinger operator T in Eq. (5.25) with
potential term given by

V (ρ) =
N
2

(
N−2

2

)
+M2

cos2 ρ
+

(
N−2

2

)2
− N−2

2 + l1(l1 +N − 3)
sin2 ρ

. (7.23)

Hence, we are to investigate the properties of the radial operator in Eq. (7.21) in a way
similar to the analysis of the operator A for the two–dimensional case in Chapter 6.

We first note that the inner product of elements in the Hilbert space HKG of square–
integrable functions on the static slice Σ, given by Eq. (7.6) induces an inner product
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on the (scaled) radial component functions, rω,l1 , by means of the decomposition in
Eq. (7.2) and the definition in Eq. (7.19). Given two elements Φ1,Φ2 ∈ HKG such that
Φ1(ρ, θ) = Rω1,l1(ρ)Yl(θ) and Φ2(ρ, θ) = Rω2,l′1

(ρ)Yl′(θ), Eq. (7.6) together with Eq. (7.17)
imply that

〈Φ1,Φ2〉KG = δl,l′
∫ π/2

0
rω1,l1(ρ)rω2,l1(ρ)dρ . (7.24)

Hence, we will consider solutions to Eq. (7.20) lying in the Hilbert space L2[0, π/2], with
inner product given by

〈rω1,l1 , rω2,l1〉Rad =
∫ π/2

0
rω1,l1(ρ)rω2,l1(ρ)dρ . (7.25)

To completely specify the operator ARad we will consider its domain to be defined by
Dom(ARad) := C∞c (0, π/2), the space of compactly supported smooth functions on the
interval (0, π/2) with support away from the boundary at ρ = π/2 [22, 35]. On this domain,
the operator ARad is densely defined in the sense of Definition 2.2.1 and it is symmetric
with respect to the inner product of Eq. (7.25).

Since the operator ARad is symmetric and densely defined, the adjoint operator A†Rad

exists and it is given by Definition 2.2.2. For any r′ ∈ Dom(A†Rad), we have〈
r′, ARadr

〉
Rad =

〈
A†Radr

′, r
〉

Rad
, (7.26)

for all r ∈ Dom(ARad).
The operator ARad with domain C∞c (0, π/2) shares several properties with the operator

A in Eq. (6.6) from Chapter 6. In fact, for N = 2 and l1 = 0, Eq. (7.22) implies that
σ2 = 1/4 and ν2 = M2 + 1/4. Thus, Eq. (7.21) reduces to Eq. (6.6) as a differential
operator if we identify ν2 − 1/2 with λ(λ − 1) in Eq. (6.11). In this “limiting” case,
both operators ARad and A are defined on compactly supported smooth functions on a
finite interval. Hence, similarly to the case of the operator A, if r ∈ Dom(A†Rad), then
the derivative dr/dρ exists in L2(0, π/2) and it is absolutely continuous [36]. Therefore,
the operator A†Rad is the same differential operator as ARad on r ∈ Dom(A†Rad) except on a
measure–zero set where r may not be twice differentiable. Similarly, if r1, r2 ∈ Dom(A†Rad),
then we have〈

A†Radr1, r2
〉

Rad
− 〈r1, ARadr2〉Rad =

[
r1(ρ)dr2(ρ)

dρ − dr1(ρ)
dρ r2(ρ)

]ρ→π/2
ρ→0

, (7.27)

and, if r ∈ Dom(ARad), then A†Radr = ARadr.
The operator ARad is not self–adjoint since Dom(ARad) 6= Dom(A†Rad), the latter being

a larger subspace of L2[0, π/2] [36, 43]. We will thus apply the theory of self–adjoint
extensions of Chapter 5 to the operator ARad to find a family of operators (ARad)U satisfying
Dom(ARad) ⊆ Dom((ARad)U ) ⊆ Dom(A†Rad), and (ARad)Ur = ARadr for all r ∈ Dom(ARad).

Since our goal is to define a quantum theory with a stationary vacuum state for the
scalar field φ following the prescription of Chapter 2, we will only consider positive self–
adjoint extensions of the operator ARad. Then, each (ARad)U will be a self–adjoint operator
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with positive spectrum. Now, if ν2 ≥ 0, then the operator ARad in Eq. (7.21) can be written
as

ARad =
(
− d

dρ + F (ρ)
)( d

dρ + F (ρ)
)

+ (ν − σ − 1)2 , (7.28)

where we have defined

F (ρ) = −
(
ν − 1

2

)
tan ρ−

(
σ + 1

2

)
cot ρ . (7.29)

Then, for arbitrary r ∈ Dom(ARad) = C∞c (0, π/2), we have [22]

〈r,ARadr〉Rad = (ν − σ − 1)2
∫ π/2

0
|r(ρ)|2 dρ+

∫ π/2

0

∣∣∣∣dr(ρ)
dρ + F (ρ)r(ρ)

∣∣∣∣2 dρ , (7.30)

and, thus, the operator ARad is positive for ν2 ≥ 0. If, on the other hand, ν2 < 0, an
argument similar to that for the operator A presented in Appendix C shows that the
operator ARad is unbounded below, and thus, it is not a positive semi–definite operator [22,
Proposition 3.1]. Hence, we will only consider the values for ν such that ν2 ≥ 0 which,
by Eq. (7.22) corresponds to the mass of the scalar field φ taking on the values M2 ≥
−(N − 1)2/4. We note that this value corresponds to the generalisation of the B-F
bound [12, 22] for the higher–dimensional cases.

To find the self–adjoint extensions of the operator ARad we begin by finding square–
integrable solutions of the equation A†Radrω,l1 = ω2rωl1, that is,

− d2

dρ2 rω,l1(ρ) +
[
ν2 − 1/4

cos2 ρ
+ σ2 − 1/4

sin2 ρ
− ω2

]
rω,l1(ρ) = 0 . (7.31)

We note that the functional form of the general solutions of Eq. (7.31) depends on the
values of the constants σ and ν due to their roles as coefficients of the singular terms
in the differential equation. In particular, Eq. (7.31) can be taken to the form of a
hypergeometric equation whose second linearly independent solution depends on whether
or not the constant σ is an integer or a half–integer [23, Eqs. 15.10.6–15.10.10]. Thus, we
follow the analysis of Ref. [22, Section 3.2] to write the general solution of the differential
equation in terms of the hypergeometric functions as

rω,l1(ρ) =C1(sin ρ)σ+ 1
2 (cos ρ)ν+ 1

2F
(
ζων,σ, ζ

−ω
ν,σ ; 1 + σ; sin2 ρ

)
+ C2(sin ρ)

1
2−σ(cos ρ)ν+ 1

2Fν,σ(ρ) , (7.32)

where the quantities ζων,σ are defined by

ζων,σ := 1
2(1 + ν + σ + ω) , (7.33)

and where C1, C2 ∈ C are arbitrary constants. The function Fν,σ is given by the hypergeo-
metric function

Fν,σ(ρ) = F
(
ζων+1,−σ, ζ

−ω
ν+1,−σ; 1− σ; sin2 ρ

)
, (7.34)
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if σ /∈ N0, and by [23, Eq. 15.10.7b]

Fν,σ(ρ) = ln
(
sin2 ρ

)
F
(
ζων,σ, ζ

−ω
ν,σ ; 1 + σ; sin2 ρ

)
+
∞∑
k=0

(ζων,σ)k(ζ−ων,σ )k
(1 + σ)kk! (sin ρ)2k

[
ψ(ζων,σ + k)

+ ψ(ζ−ων,σ + k)− ψ(σ + k + 1)− ψ(k + 1)
]

−
σ∑
k=1

(−1)kσ!(k − 1)!
(σ − k)!(1− ζων,σ)k(1− ζ−ων,σ )k

(sin ρ)−2k , (7.35)

if σ ∈ N. For σ = 0 the function Fν,0 is given by Eq. (7.35) with the last sum understood
to be zero.

So far, the analysis of the operator ARad has been analogous to that of the operators T
of Chapter 5 and A of Chapter 6, including the differential equations for their respective
eigenvalue problems and their general solutions. However, for the particular case of AdSN
with N ≥ 3, the general solution in Eq. (7.32) needs to be restricted at this point in order
to be a physically acceptable radial component of the Klein–Gordon field. Indeed, before
proceeding any further we must verify that Eq. (7.32) defines a square–integrable function
at the coordinate origin of the static slice Σ which corresponds to the value ρ = 0. It
is worth pointing out that this regularity condition at ρ = 0 is already a restriction on
the domain of the operator ARad. We restrict the domain of ARad before we analyse its
self–adjoint extensions for the following reason. If we apply the theory of self–adjoint
extensions to the operator ARad with natural domain C∞0 (0, π/2) without any restrictions
at ρ = 0, then Eq. (7.27) implies that the self–adjoint extensions of ARad can be put in
correspondence with the boundary data at ρ = 0 and ρ = π/2, just as the two–dimensional
case. However, that would imply that we are regarding ρ = 0 as an endpoint of the
boundary. Since the coordinate origin ρ = 0 has no special bearing for the theory, simply
being a consequence of the chart we work with, there is no (physical) reason to consider
the SABCs of the operator ARad which depend on the data at ρ = 0.

By direct inspection of Eqs. (7.32), (7.34) and (7.35), it is clear that the function
with coefficient C2 is not square–integrable at ρ = 0 for σ ≥ 1 due to the prefactor
(sin ρ)1/2−σ. Hence, for these values of σ we must impose the condition C2 = 0 on the
general solution (7.32). (Note that this issue was not present in the case of the spatial
component of the scalar field in AdS2 since none of the functions in Eq. (6.14) were
ill–defined at ρ = 0.) The cases with σ = 0 (occurring only for a scalar field in AdS3 with
l1 = 0) and σ = 1/2 (occurring only for a scalar field in AdS4 with l1 = 0) do not yield
physically acceptable solutions unless C2 = 0, as pointed out by Ishibashi and Wald [22,
Section 3.2]. Therefore, from this point onwards we will set C2 = 0 for all N ≥ 3 and all
values of σ, and consider the general solution of Eq. (7.31) given by

rω,l1(ρ) = Nl1,ω(sin ρ)σ+ 1
2 (cos ρ)ν+ 1

2F
(
ζων,σ, ζ

−ω
ν,σ ; 1 + σ; sin2 ρ

)
, (7.36)

where Nl1,ω is a normalisation constant.
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7.2 self-adjoint extensions of the radial operator

Now that we have found the general solution of the radial component of the Klein–Gordon
equation, we will apply the theory of Chapert 5 to find the positive self–adjoint extensions
of the operator ARad defined in Eq. (7.21) with domain given by Dom(ARad) = C∞c (0, π/2).
We will take a similar approach to that of the scalar field on two–dimensional anti–de
Sitter spacetime presented in Chapter 6. Thus, we begin by finding solutions in L2[0, π/2]
of the equation A†Radr± = ±2ir± which defines the deficiency spaces K± of the operator
ARad as given by Eq. (5.2) with λ = 2. The number of linearly independent solutions to
these equations gives the deficiency indices n± which in turn determine whether or not
the operator ARad admits any self–adjoint extensions by means of Theorem 5.1.3. The
following calculations, up to and including Eq. (7.46) are adapted from the analysis in
Ref. [22, Section 3.3].

Thus, let us consider the equations

− d2

dρ2 r±(ρ) +
[
ν2 − 1/4

cos2 ρ
+ σ2 − 1/4

sin2 ρ

]
r±(ρ) = ±2ir±(ρ) , (7.37)

for r± ∈ L2(0, π/2) and ν ≥ 0. Since σ, ν ∈ R, it follows that if r+ is a solution to the
positive eigenvalue equation, then the function r− := r+ is a solution to the negative
eigenvalue equation. Now, Eq. (7.37) for r+ is of the same form of Eq. (7.31) for rω,l1
with ω2 = 2i, that is, ω = 1 + i. Hence, the general solutions to Eq. (7.37) which are
square–integrable at ρ = 0 are given by

r±(ρ) = N±(sin ρ)σ+1/2(cos ρ)ν+1/2F
(
ζ1±i
ν,σ , ζ

−1∓i
ν,σ ; 1 + σ; sin2 ρ

)
, (7.38)

where we have used Eq. (7.33), and N± ∈ C are normalisation constants satisfying
N+ = N−.

We now determine for which values of the mass parameter ν ∈ R the functions in
Eq. (7.38) are square–integrable at ρ = π/2. To do this, we analyse the asymptotic
behaviour of r± as ρ→ π/2 by transforming the argument sin2 ρ of the hypergeometric
function in Eq. (7.38) to cos2 ρ. Since the functions r± in Eq. (7.38) can be obtained
by taking ω = 1± i in Eq. (7.32), we can analyse the asymptotic expansions of rω,l1 for
arbitrary ω ∈ C and then specialise to the cases of interest [22, Section 3.3].

If ν /∈ N0, then we use the transformation of the hypergeometric function [23, Eq.
15.8.4] to write rω,l1 as

rω,l1(ρ) =Nω,l1(sin ρ)σ+ 1
2
[
Aω−ν(cos ρ)ν+ 1

2F
(
ζων,σ, ζ

−ω
ν,σ ; 1 + ν; cos2 ρ

)
+Aων (cos ρ)−ν+ 1

2F
(
ζω−ν,σ, ζ

−ω
−ν,σ; 1− ν; cos2 ρ

)]
, (7.39)

where we have defined

Aων := Γ(1 + σ)Γ(ν)
Γ(ζων,σ)Γ(ζ−ων,σ )

. (7.40)
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For ν = m ∈ N0, the transformation of the hypergeometric function leading to Eq. (7.39)
is not well defined. Instead, we can use the limiting case of the transformation [23, Eqs.
15.8.10 and 15.8.12] to obtain

rω,l1(ρ) =Nω,l1(sin ρ)σ+ 1
2

[
Hω
m(cos ρ)m+ 1

2

∞∑
k=0

(ζωm,σ)k(ζ−ωm,σ)k
k!(m+ k)!

[
ln(cos2 ρ) + hω(k)

]
(cos ρ)2k

+ (−1)m−1Hω
−m(cos ρ)−m+ 1

2

m−1∑
k=0

(ζω−m,σ)k(ζ−ω−m,σ)k
k!(1−m)k

(cos ρ)2k
]
, (7.41)

where we have defined the quantities

Hω
m := (−1)m+1Γ(1 + σ)

Γ(ζω−m,σ)Γ(ζ−ω−m,σ)
, (7.42)

and

hω(k) := ψ(ζωm,σ + k) + ψ(ζ−ωm,σ + k)− ψ(k +m+ 1)− ψ(k + 1) . (7.43)

Defining the variable ρ̃ = π/2− ρ, we see that cos ρ ∼ ρ̃ as ρ̃→ 0. Let us first consider
the case for which ν /∈ N0. The asymptotic expansion of Eq. (7.39) as ρ̃→ 0, is given by

rω,l1(ρ) ∼Nω,l1

[
Aω−ν ρ̃

ν+ 1
2 +Aων ρ̃

−ν+ 1
2
] [

1 +O
(
ρ̃ 2
)]

. (7.44)

Now, if ν > 1, the second term in Eq. (7.44) is not square–integrable near the spatial
boundary ρ = π/2 since the exponent of ρ̃ satisfies −ν + 1/2 < −1/2. Hence, for ω = 1± i
the only acceptable solution is obtained by setting N1±i,l1 = 0. This means that, for this
range of ν, the positive deficiency subspace K+ (and thus, K− as well) is zero–dimensional
and we have n± = 0. Hence, as a consequence of Theorem 5.1.3, the only self–adjoint
extension of ARad is its closure, ARad. On the other hand, if 0 < ν < 1, Eq. (7.44) implies
that rω,l1 is a square–integrable solution near the boundary. Therefore, we have n± = 1
and, thus, Theorem 5.1.3 implies the existence of a family of self–adjoint extensions (ARad)U
of ARad parametrised by a unitary map U : K+ → K−. Since both deficiency spaces are
one–dimensional, Eq. (5.20) implies that we can represent the map U as

U : r+ 7→ Ur+ := eiαr− , (7.45)

with α ∈ [−π, π), and r− ∈ K−.
Similarly, for the case with ν = m ∈ N0, the asymptotic behaviour of rω,l1 in Eq. (7.41)

as ρ̃→ 0 is given by

rω,l1(ρ) ∼ Nω,l1

[
Hω
mρ̃

m+ 1
2 ln(ρ̃ 2) + (−1)m−1Hω

−mρ̃
−m+ 1

2
] [

1 +O
(
ρ̃ 2
)]

. (7.46)

From this expression it follows that if m ≥ 1, then the second term in Eq. (7.46) is not
square–integrable for any ω ∈ C, since the exponent of ρ̃ satisfies −m+1/2 < −1/2. Hence,
the deficiency spaces are again zero-dimensional, and we have n± = 0. If m = 0, the second
term is absent, and the term proportional to ρ̃ 1/2 ln(ρ̃ 2) goes to zero as ρ̃ → 0. This
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means that for m = 0, the solution in Eq. (7.46) is square–integrable, and the deficiency
spaces are both one–dimensional. By Theorem (5.1.3), the only self–adjoint extension of
ARad with ν = m ≥ 1 is its closure, ARad, while if m = 0, there exists a family of self–adjoint
extensions of ARad parametrised by α ∈ (−π, π] through Eq. (7.45).

From the analysis above, we have found that the admissible self–adjoint extensions
of the operator ARad depend on the value of the mass parameter ν. Therefore, it will be
convenient to separate the rest of the analysis of the self–adjoint extensions of ARad into
the following three cases:

1. ν ≥ 1,

2. 0 < ν < 1,

3. ν = 0.

For Case 1 we have n± = 0. Hence, Theorem 5.1.3 implies that the unique self–
adjoint extension of ARad is its closure ARad. A simple argument using the fact that
ARad = (A†Rad)† [35] shows that if r ∈ Dom(ARad), then r must satisfy the boundary
condition [

(cos ρ)ν−1/2r(ρ)
]∣∣∣
ρ=π

2
= 0 . (7.47)

We leave the proof of this result in Appendix F. Thus, the boundary condition in Eq. (7.47)
uniquely determines the self–adjoint extension of ARad for this particular case.

For Case 2 we have n± = 1, and thus, the self–adjoint extensions of ARad are parametrised
by the unitary maps in Eq. (7.45). Theorem 5.1.3 together with Eqs. (5.17) and (7.45)
provide the description of the self–adjoint extensions (ARad)α in terms of their domains
given by

Dom ((ARad)α) =
{
r0 + r+ + eiαr+

∣∣∣ r0 ∈ Dom(ARad), r+ ∈ K+
}
, (7.48)

where the action of (ARad)α on Dom((ARad)α) is given by

(ARad)α(r0 + r+ + eiαr+) = A†Radr0 + 2ir+ − 2ieiαr+ . (7.49)

Using the prescription presented in Section 5.1, we find the boundary conditions that
elements in Dom ((ARad)α) satisfy by identifying the corresponding maximal subspace
S ⊆ Dom(A†Rad) on which A†Rad is symmetric for all elements in Dom((ARad)α). This is
achieved by restricting the functions in Dom(A†Rad) via Eq. (5.23). We write this condition
for r ∈ Dom(A†Rad) as

〈r, (ARad)αs〉Rad −
〈
A†Radr, s

〉
Rad

= 0 (7.50)

for all s ∈ Dom((ARad)α). Equation (7.48) allows us to write s = s0 + s+ + e−iαs+ with
s0 ∈ Dom(ARad) and s+ ∈ K+. Now we use Eq. (7.27), to rewrite this condition as

r(π/2)
[
s′+(π/2) + e−iαs′+(π/2)

]
− r′(π/2)

[
s+(π/2) + e−iαs+(π/2)

]
= 0 , (7.51)
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where we have used Eq. (7.49) and the fact that

〈r, (ARad)αs0〉Rad −
〈
A†Radr, s0

〉
Rad

= 0 , (7.52)

by the symmetry of A†Rad. A straightforward calculation shows that Eq. (7.51) is equivalent
to

0 =r̃ (ν)(π/2)
[
Ds̃+

(ν)(π/2) + e−iαDs̃+
(ν)(π/2)

]
−Dr̃ (ν)(π/2)

[
s̃+

(ν)(π/2) + e−iαs̃+
(ν)(π/2)

]
, (7.53)

where the functions r̃ (ν), Dr̃ (ν), are defined by

r̃ (ν)(ρ) := (cos ρ)ν−
1
2 r(ρ) , (7.54a)

Dr̃ (ν)(ρ) := (cos ρ)1−2ν d
dρr̃

(ν)(ρ) , (7.54b)

for 0 < ν < 1. Similarly to the case of a scalar field in AdS2, the functions in Eqs. (7.54) are
defined in order to extract the boundary behaviour of the solutions at ρ = π/2. (Compare
with Eqs. (6.35) and (6.36).) The functions s̃+

(ν) and Ds̃+
(ν) are defined analogously

using Eq. (7.54). Since the function s+ admits the transformation given by Eq. (7.39), the
definitions in Eq. (7.54) imply that

s̃+
(ν)(π/2) = A1+i

ν , Ds̃+
(ν)(π/2) = −2νA1+i

−ν . (7.55)

Hence, by substituting this into Eq. (7.53) we obtain

2νr̃ (ν)(π/2)
[
A1+i
−ν + e−iαA1+i

−ν

]
+Dr̃ (ν)(π/2)

[
A1+i
ν + e−iαA1+i

ν

]
= 0 . (7.56)

A simple rearrangement shows that Eq. (7.56) can be rewritten as[
A1+i
ν + 2iνA1+i

−ν + e−iα(A1+i
ν + 2iνA1+i

−ν )
] (
Dr̃ (ν)(π/2)− ir̃ (ν)(π/2)

)
= −

[
A1+i
ν − 2iνA1+i

−ν + e−iα(A1+i
ν − 2iνA1+i

−ν )
] (
Dr̃ (ν)(π/2) + ir̃ (ν)(π/2)

)
. (7.57)

Now, from the definition of Aων in Eq. (7.40) it follows that the expressions inside square
brackets in Eq. (7.57) are never zero. Hence, we can write Eq. (7.57) as(

Dr̃ (ν)(π/2)− ir̃ (ν)(π/2)
)

= Uα
(
Dr̃ (ν)(π/2) + ir̃ (ν)(π/2)

)
, (7.58)

where we have defined

Uα := −A
1+i
ν − 2iνA1+i

−ν + e−iα(A1+i
ν − 2iνA1+i

−ν )
A1+i
ν + 2iνA1+i

−ν + e−iα(A1+i
ν + 2iνA1+i

−ν )
. (7.59)

Substituting Eq. (7.40) into Eq. (7.59), and applying the identity Γ(x+ 1) = xΓ(x) for the
gamma function, we obtain a simpler expression for Uα, given by

Uα = −Cν,σe
iα +Dν,σ

Dν,σeiα + Cν,σ
(7.60)
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where we have defined

Cν,σ = (σ + ν + i)Γ(ν)
∣∣∣Γ(ζ1+i

−ν,σ)
∣∣∣2 + 2i(σ − ν + i)Γ(1− ν)

∣∣∣Γ(ζ1+i
ν,σ )

∣∣∣2 , (7.61a)

Dν,σ = (σ + ν − i)Γ(ν)
∣∣∣Γ(ζ1+i

−ν,σ)
∣∣∣2 + 2i(σ − ν − i)Γ(1− ν)

∣∣∣Γ(ζ1+i
ν,σ )

∣∣∣2 . (7.61b)

Since σ, ν and α are real parameters, Eq. (7.60) implies that |Uα| = 1, and we write
Uα = eiu for some u ∈ (−π, π]. Now, it is clear from Eq. (7.60) and from the fact that
|Cν,σ|2 6= |Dν,σ|2 that, given α1, α2 ∈ (−π, π] with α1 6= α2, we have Uα1 6= Uα2 . Hence,
given α ∈ (−π, π] there exists a unique u ∈ (−π, π] such that Uα = eiu. Similarly, given
u ∈ (−π, π] we can find

eiα = −Dν,σ + Cν,σe
iu

Dν,σeiu + Cν,σ
. (7.62)

Thus, given u1, u2 ∈ (−π, π], with u1 6= u2, we have eiα1 6= eiα2 since |Cν,σ|2 6= |Dν,σ|2.
Hence, the correspondence α 7→ Uα is one–to–one. This means that Eq. (7.58) is a
one–dimensional analogue of Eq. (5.31), and thus, can be rearranged into(

1− eiu
)
Dr̃ (ν)(π/2) = i

(
1 + eiu

)
r̃ (ν)(π/2) . (7.63)

The correspondence between α and u implies that Eq. (7.63) is, in the terminology
introduced in Chapter 5, a family of self–adjoint boundary conditions which completely
determines the domains of the self–adjoint extensions of the operator ARad. We note that
if u = 0, Eq. (7.63) describes a generalised Dirichlet boundary condition, that is,[

(cos ρ)ν−
1
2 r(ρ)

]∣∣∣
ρ=π

2
= 0 . (7.64)

If u = π then we have a generalised Neumann boundary condition, given by[
(cos ρ)1−2ν d

dρ
(
(cos ρ)ν−

1
2 r(ρ)

)]∣∣∣∣
ρ=π

2

= 0 . (7.65)

All other values of u give generalised Robin boundary conditions, which we write as

sin u2

[
(cos ρ)1−2ν d

dρ
(
(cos ρ)ν−

1
2 r(ρ)

)]∣∣∣∣
ρ=π

2

+ cos u2
[
(cos ρ)ν−

1
2 r(ρ)

]∣∣∣
ρ=π

2
= 0 . (7.66)

Now we perform a similar analysis for Case 3, that is, for ν = 0. For this value we
have n± = 1 and, thus, by Theorem 5.1.3, we have that the self–adjoint extensions of
ARad are also parametrised by a real number α ∈ (−π, π]. The domain of the self–adjoint
extension (ARad)α is given by Eq. (7.48), but with the solutions of the deficiency spaces,
r± given instead by Eq. (7.41) with ν = m = 0. Thus, the problem of finding the maximal
subspace S , on which A†Rad is symmetric, characterising the domain of (ARad)α follows
analogously to the treatment of Case 2 above. Indeed, the condition for r ∈ Dom(A†Rad)
given by Eq. (7.50) is equivalent to finding the subspace S for which A†Rad is a symmetric
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operator for all elements Dom((ARad)α). However, for this case, Eq. (7.50) reduces instead
to

0 =r̃ (0)(π/2)
[
Ds̃+

(0)(π/2) + e−iαDs̃+
(0)(π/2)

]
−Dr̃ (0)(π/2)

[
s̃+

(0)(π/2) + e−iαs̃+
(0)(π/2)

]
, (7.67)

where the functions r̃ (0), Dr̃ (0) are defined in a way such that the asymptotic behaviour
at ρ = π/2 is finite. These are given by

r̃ (0)(ρ) := (cos ρ)−1/2

ln(cos2 ρ) r(ρ) , (7.68a)

Dr̃ (0)(ρ) := cos ρ
[
ln(cos2 ρ)

]2 d
dρr̃

(0)(ρ) , (7.68b)

and the functions s̃+
(0) and Ds̃+

(0) are defined analogously. (Compare with functions
defined for Case 1 by Eq. (7.54)) We take the function s+ given in the form of Eq. (7.41)
and use Eq. (7.68) to obtain

s̃+
(0)(π/2) = H1+i

0 , Ds̃+
(0)(π/2) = −2H1+i

0 h1+i(0) , (7.69)

where H1+i
0 and h1+i(0) are given by Eqs. (7.42) and (7.43), respectively.

We substitute Eq. (7.69) into Eq. (7.67) to obtain

0 =2r̃ (0)(π/2)
[
H1+i

0 h1+i(0) + e−iαH1+i
0 h1+i(0)

]
+Dr̃ (0)(π/2)

[
H1+i

0 + e−iαH1+i
0

]
, (7.70)

which, after rearranging appropriately can be taken to the form

−
[
H1+i

0

(
1 + 2ih1+i(0)

)
+ e−iαH1+i

0 (1 + 2ih1+i(0))
] (
Dr̃ (0)(π/2)− ir̃ (0)(π/2)

)
=[

H1+i
0

(
1− 2ih1+i(0)

)
+ e−iαH1+i

0 (1− 2ih1+i(0))
] (
Dr̃ (0)(π/2) + ir̃ (0)(π/2)

)
. (7.71)

The definitions in Eqs. (7.42) and (7.43) of the quantities H1+i
0 and h1+i(0) imply that

the expressions in square brackets in Eq. (7.71) are never zero. Thus, we may write this
equation as Eq. (7.58) with ν = 0, and Uα given instead by

Uα = −
H1+i

0

(
1 + 2ih1+i(0)

)
+ e−iαH1+i

0 (1 + 2ih1+i(0))

H1+i
0

(
1− 2ih1+i(0)

)
+ e−iαH1+i

0 (1− 2ih1+i(0))
. (7.72)

From this expression it is clear that the numerator is the complex conjugate of the
denominator and, thus, we have |Uα| = 1. Finally, a straightforward calculation similar to
that involving Eq. (7.59) shows that the correspondence α 7→ Uα is one–to–one. Hence, given
α ∈ (−π, π] there is a unique u ∈ (−π, π] such that Uα = eiu. Therefore, the condition
in Eq. (7.71) for the function r ∈ Dom(A†Rad) completely characterises Dom((ARad)α).
Rearranging this equation, we obtain the self–adjoint boundary condition(

1− eiu
)
Dr̃ (0)(π/2) = i

(
1 + eiu

)
r̃ (0)(π/2) , (7.73)
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parametrised by u. Since Eq. (7.73) is of the same form of Eq. (7.63), we have the same
types of boundary conditions as for Case 2, that is, a generalised Dirichlet boundary
condition, [

(cos ρ)−1/2

ln(cos2 ρ) r(ρ)
]∣∣∣∣∣
ρ=π

2

= 0 , (7.74)

for u = 0, a generalised Neumann boundary condition,[
cos ρ

[
ln(cos2 ρ)

]2 d
dρ

(
(cos ρ)−1/2

ln(cos2 ρ) r(ρ)
)]∣∣∣∣∣

ρ=π
2

= 0 , (7.75)

for u = π, and a family of generalised Robin boundary conditions for all other values of u
given by

sin u2

[
cos ρ

[
ln(cos2 ρ)

]2 d
dρ

(
(cos ρ)−1/2

ln(cos2 ρ) r(ρ)
)]∣∣∣∣∣

ρ=π
2

+ cos u2

[
(cos ρ)−1/2

ln(cos2 ρ) r(ρ)
]∣∣∣∣∣
ρ=π

2

= 0 . (7.76)

7.3 invariant self–adjoint boundary conditions

Now that we have found the family of self–adjoint boundary conditions parametrised
by u ∈ (−π, π], we will find for which values of u Eqs. (7.63) and (7.73) result in mode
solutions of the Klein–Gordon equation which are invariant under the isometry group,
SO(2, N − 1). Similarly to the analysis in Chapter 6, we will take an infinitesimal approach
and, thus, we will analyse the action of the Killing vector fields of AdSN on the mode
functions resulting from the self–adjoint boundary conditions obtained in the previous
section.

Before we proceed with the analysis of the invariance of the self–adjoint boundary con-
ditions, we point out some useful remarks regarding the infinitesimal action of SO(2, N −1)
on the space of solutions of the Klein–Gordon equation given in terms of the decomposition
in Eq. (7.2). This will be useful to simplify the task we are concerned with. First, we recall
that the Killing vector fields of AdSN , introduced in Chapter 3, are given by Eqs. (3.24)
and (3.25). The decomposition into positive–frequency solutions for the Klein–Gordon
equation given in Eq. (7.2) that we are considering corresponds to finding simultaneous
eigenfunctions of the operator �AdSN and the static Killing vector field ξ0 = ∂t in Eq. (3.24a).
Hence, the space of solutions φω,l1 of this particular form we are considering is invariant
under ξ0 and we clearly have ξ0φω,l1 = −iωφω,l1 .

Now, the commutation relations in Eq. (3.21) for the generators of so(2, N − 1) imply
that the Killing vector fields J ij , with 3 ≤ i, j ≤ N + 1 given by Eq. (3.24d) correspond to
spatial rotations of the static slices Σt. Since we have considered solutions φ(t, ρ, θ) of the
form

φω,l1(t, ρ, θ) = (cot ρ)
N−2

2 rω,l1(ρ)Yl(θ)e−iωt , (7.77)
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we have that the Killing vector J ij for any 3 ≤ i, j ≤ N + 1 acts on φ by

(J ijφω,l1)(t, ρ, θ) = (cot ρ)
N−2

2 rω,l1(ρ) [J ijYl] (θ)e−iωt , (7.78)

where we have used the fact that the Killing vectors J ij do not depend on the variables t
and ρ, which follows from Eqs. (3.24) and (3.25). Now, since the hyperspherical harmonics
are eigenfunctions of the Laplacian operator ∆N−2 of the (N − 2)–sphere and this operator
commutes with all J ij , the function J ijYl is a linear combination of hyperspherical
harmonics with the same label l1 [85, Chapter 9]. (Indeed, the space of functions Yl1,...,lN−2

with fixed l1 forms an irreducible representation of the group SO(N−1) whose infinitesimal
generators are given by J ij , and the Casimir element corresponds to the Laplacian ∆N−2.)
From this result it follows that any function φ of the form of Eq. (7.2) is invariant under
the action of the Killing vectors J ij , regardless of the boundary condition (7.63) the radial
function rω,l1 defined by Eq. (7.19) obeys.

Finally, let us assume that the space of solutions φω,l1 is invariant under the action
of at least one of the two boost–like Killing vector fields, Kk in Eq. (3.24b) or Bk in
Eq. (3.24c). Let us denote these Killing vectors collectively as Kik, with i ∈ {1, 2} and
k ∈ {3, . . . , N + 1}, so that K1k = Kk and K2k = Bk. This implies that we must have

[Kikφω,l1 ](t, ρ, θ) =
∑
ω′,l′1

C(ω, ω′; l1, l′1)Rω′,l′1(ρ)Yl′(θ)e−iω
′t , (7.79)

for some coefficients C(ω, ω′; l1, l′1), and where the sum runs through the allowed eigenvalues
ω and l1. Now, the commutation relations of the elements in so(2, N−1) given in Eq. (3.21)
imply that the Killing vectors must satisfy

[Kik,Jkl] = Kil . (7.80)

Since the Killing vector Jkl leaves the space of solutions φω,l1 invariant, and we have
assumed that Eq. (7.79) holds, the function Jkl◦Kikφω,l1 must also be a linear combination
of solutions φω′,l′1 . On the other hand, we have, by Eq. (7.80)

Jkl ◦Kikφω,l1 = [Jkl,Kik]φω,l1 +Kik ◦ Jklφω,l1 ,

= −Kilφω,l1 +Kik ◦ Jklφω,l1 . (7.81)

and by the invariance of the space of solutions under Jkl, the last term is a linear
combination of solutions as well. Hence, the function Kilφω,l1 must be of the form of
Eq. (7.79) and, thus, we conclude that if the space of solutions of the Klein–Gordon
equation is invariant under the action of any of the boost–like Killing vector fields Kik,
then it must also be invariant under the action of all Killing vector fields, that is, solutions
are invariant under the infinitesimal action of SO(2, N − 1).

Thus, we will determine which of the self–adjoint boundary conditions in Eqs. (7.63)
and (7.73) result in invariant solutions spaces under the action of the Killing vector field
K3 given by Eq. (3.26a), that is,

K3 = − cos θ1

(
sin t sin ρ ∂

∂t
− cos t cos ρ ∂

∂ρ

)
− cos t sin θ1

sin ρ
∂

∂θ1
. (7.82)
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By the argument presented above, this requirement is sufficient to prove invariance of the
resulting solution spaces under the infinitesimal action of SO(2, , N − 1).

Let us consider the solution φω,l1 given by Eq. (7.77) and calculate the function that
results after applying K3 to this solution. First we note that the last term of Eq. (7.82)
acts only on the hyperspherical harmonic Yl(θ). For the sake of clarity, we change the
notation of the label l = (l1, . . . , lN−2) of the hyperspherical harmonics to l = (l1, l̃ ). Thus,
we begin by differentiating the function P l21,l1(θ1) defined in Eq. (7.15) with respect to θ1,
to obtain

d
dθ1

P
l2
1,l1(θ1) =cl21,l1(sin θ1)−

N−4
2

[ d
dθ1

P
−(l2+(N−4)/2)
l1+(N−4)/2 (cos θ1)

− N − 4
2 cot θ1P

−(l2+(N−4)/2)
l1+(N−4)/2 (cos θ1)

]
,

=
cl21,l1

sin θ1

 l1(l1 + l2 +N − 3)
cl21,l1+1(2l1 +N − 3)

P
l2
1,l1+1(θ1)

− (l1 − l2)(l1 +N − 3)
cl21,l1−1(2l1 +N − 3)

P
l2
l,l1−1(θ1)

 , (7.83)

where we have used the identities for the associated Legendre functions [23, Eqs. 14.10.3
and 14.10.5]

xP−µν = ν + µ+ 1
2ν + 1 P−µν+1(x) + ν − µ

2ν + 1P
−µ
ν−1(x) , (7.84a)√

1− x2 d
dxP

−µ
ν (x) = − 1√

1− x2

(
νxP−µν (x)− (ν − µ)P−µν−1(x)

)
, (7.84b)

Thus, using Eq. (7.83) and the definition of the functions Yl1,l̃ (θ) in Eq. (7.12) we obtain
the following:

sin θ1
∂

∂θ1
Yl1,l̃ (θ) = l1c1Yl1+1,l̃ (θ)− (l1 +N − 3)c2Yl1−1,l̃ (θ) , (7.85)

where we have defined the constants

c1 :=
((l1 − l2 + 1)(l1 + l2 +N − 3)

(2l1 +N − 1)(2l1 +N − 3)

)1/2
,

c2 :=
( (l1 − l2)(l1 + l2 +N − 4)

(2l1 +N − 3)(2l1 +N − 5)

)1/2
. (7.86)

The action of K3 on the solution φω,l1 in Eq. (7.77) is thus obtained from Eqs. (7.82)
and (7.85), and reads

[K3φω,l1 ](t, ρ, θ)

= (cot ρ)
N−2

2

[
cos θ1Yl1,l̃ (θ)

(
cos t cos ρ d

dρ + iω sin t sin ρ− N − 2
2

cos t
sin ρ

)
rω,l1(ρ)

− cos t
sin ρ

(
l1c1Yl1+1,l̃ (θ)− (l1 +N − 3)c2Yl1−1,l̃ (θ)

)
rω,l1(ρ)

]
e−iωt . (7.87)
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Using the identity (7.84) for the Legendre functions, we obtain the relation between the
hyperspherical harmonics given by

cos θ1Yl1,l̃ (θ) = c1Yl1+1,l̃ (θ) + c2Yl1−1,l̃ (θ) , (7.88)

where the constants c1 and c2 are given by Eq. (7.86). Thus, we substitute Eq. (7.88) into
Eq. (7.87) and we write the functions sin t and cos t in terms of exponentials to obtain

[K3φω,l1 ](t, ρ, θ)

= 1
2(cot ρ)

N−2
2

{[(
c1Yl1+1,l̃ (θ) + c2Yl1−1,l̃ (θ)

)(
cos ρ d

dρ −
N − 2
2 sin ρ + ω sin ρ

)
rω,l1(ρ)

− 1
sin ρ

(
l1c1Yl1+1,l̃ (θ)− (l1 +N − 3)c2Yl1−1,l̃ (θ)

)
rω,l1(ρ)

]
e−i(ω−1)t

+
[(
c1Yl1+1,l̃ (θ) + c2Yl1−1,l̃ (θ)

)(
cos ρ d

dρ −
N − 2
2 sin ρ − ω sin ρ

)
rω,l1(ρ)

− 1
sin ρ

(
l1c1Yl1+1,l̃ (θ)− (l1 +N − 3)c2Yl1−1l̃ (θ)

)
rω,l1(ρ)

]
e−i(ω+1)t

}
. (7.89)

Finally, after grouping the terms with the same hyperspherical harmonic factor together,
we get

[K3φω,l1 ](t, ρ, θ)

= 1
2(cot ρ)

N−2
2

{
c1Yl1+1,l̃ (θ)e

−i(ω−1)t
[
cos ρ d

dρ −
σ + 1/2

sin ρ + ω sin ρ
]
rω,l1(ρ)

+ c2Yl1−1,l̃ (θ)e
−i(ω−1)t

[
cos ρ d

dρ + σ − 1/2
sin ρ + ω sin ρ

]
rω,l1(ρ)

+ c1Yl1+1,l̃ (θ)e
−i(ω+1)t

[
cos ρ d

dρ −
σ + 1/2

sin ρ − ω sin ρ
]
rω,l1(ρ)

+ c2Yl1−1,l̃ (θ)e
−i(ω+1)t

[
cos ρ d

dρ + σ − 1/2
sin ρ − ω sin ρ

]
rω,l1(ρ)

}
. (7.90)

where we have used the definition of the label σ from Eq. (7.22) to identify the quantities
l1 + (N − 2)/2 = σ + 1/2 and l1 + (N − 4)/2 = σ − 1/2.

Now, we define the following operators acting on the radial function rω,l1(ρ) by

[L+±rω,l1 ] (ρ) :=
(

cos ρ d
dρ −

σ + 1
2

sin ρ ∓ ω sin ρ
)
rω,l1(ρ) , (7.91a)

[L−±rω,l1 ] (ρ) :=
(

cos ρ d
dρ +

σ − 1
2

sin ρ ∓ ω sin ρ
)
rω,l1(ρ) , (7.91b)

which correspond to the expressions in square brackets in Eq. (7.90). Since K3 commutes
with the Casimir operator, i.e., the Laplace–Beltrami operator in Eq. (3.14), direct
inspection of Eq. (7.90) shows that the functions resulting from the above expressions must
be proportional to solutions with the appropriate labels (ω, l1), that is, that L±,±rω,l1 ∝
rω±1,l1±1 and L±,∓rω,l1 ∝ rω±1,l1∓1. We leave the proof showing that these transformations
are indeed satisfied in Appendix G, where we obtain that the operator K3 acting on φω,l1



Chapter 7. Scalar field theory in AdSN 114

results in a linear combination of solutions. Hence, Eq. (7.90) reads

[K3φω,l1 ](t, ρ, θ)

= Nω,l1

[
c1ζ
−ω
ν,σ (ζων,σ − σ − 1)

Nω−1,l1+1(1 + σ) φω−1,l1+1(t, ρ, θ) + c2σ

Nω−1,l1−1
φω−1,l1−1(t, ρ, θ)

+
c1ζ

ω
ν,σ(ζ−ων,σ − σ − 1)

Nω+1,l1+1(1 + σ) φω+1,l1+1(t, ρ, θ) + c2σ

Nω+1,l1−1
φω+1,l1−1(t, ρ, θ)

]
, (7.92)

where Nω,l1 is the normalisation constant of rω,l1 with respect to the inner product in
Eq. (7.25).

We now find for which values of u ∈ (−π, π] the space of solutions of Eq. (7.31)
satisfying the self–adjoint boundary conditions are invariant under the action of the vector
field K3. Once again, we divide the analysis into three cases.

For Case 1 we have 1 ≤ ν, and the only self–adjoint boundary condition is given by
Eq. (7.47). Let rω,l1 be be a solution of Eq. (7.31) satisfying the boundary condition in
Eq. (7.47). Now, let us consider the function r̂+− := L+−rω,l1 and calculate the quantities˜̂r+−

(ν) and D ˜̂r+−
(ν) defined through Eq. (7.54). We obtain

˜̂r+−
(ν)(ρ) =(cos ρ)2νDr̃ω,l1

(ν)(ρ) +
[(
ω + ν − 1

2

)
sin ρ−

σ + 1
2

sin ρ

]
r̃ω,l1

(ν)(ρ) , (7.93a)

D ˜̂r+−
(ν)(ρ) =

[(
ω − ν − 1

2

)
sin ρ−

σ + 1
2

sin ρ

]
Dr̃ω,l1

(ν)(ρ)

+

ν2 − 1
4 + ω(1− ω) +

(
σ + 1

2

)2

sin2 ρ

 (cos ρ)2−2ν r̃ω,l1
(ν)(ρ) , (7.93b)

where we have used Eq. (7.31) to obtain Eq. (7.93b). We note that the function Dr̃ω,l1 (ν)

takes on a finite value at ρ = π/2. This is seen from Eqs. (7.44) and (7.46) and the
definition of Dr̃ω,l1 (ν) in Eq. (7.54).

Now, since the function rω,l1 satisfies Eq. (7.47) and since Dr̃ω,l1 (ν) is finite at ρ = π/2,
Eq. (7.93) implies that ˜̂r+−

(ν)(π/2) = 0 and D ˜̂r+−
(ν)(π/2) remains finite. A similar

argument shows that the analogously defined functions r̂±± and r̂−+ also satisfy Eq. (7.47).
Hence, this boundary condition results in a space of solutions which is invariant under K3

and, thus, under the infinitesimal action of SO(2, N − 1).
For Case 2 we have 0 < ν < 1, and the self-adjoint boundary conditions determining

Dom((ARad)α) are given by Eq. (7.63), which we rewrite as

sin u2Dr̃
(ν)(π/2) + cos u2 r̃

(ν)(π/2) = 0 , (7.94)

for all r ∈ Dom((ARad)α). Assume rω,l1 is a solution of Eq. (7.31) satisfying Eq. (7.94), and
let r̂+− := L+−rω,l1 . The functions ˜̂r+−

(ν) and D ˜̂r+−
(ν) are calculated using Eqs. (7.54)

and (7.91a), and they are found to be given by Eq. (7.93) with the appropriate range of
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the parameter ν. Thus, we evaluate Eq. (7.93) at ρ = π/2 to obtain
˜̂r+−

(ν)(π/2) = (ω + ν − σ − 1) r̃ω,l1 (ν)(π/2) , (7.95a)

D ˜̂r+−
(ν)(π/2) = (ω − ν − σ − 1)Dr̃ω,l1 (ν)(π/2) . (7.95b)

Hence, we have

sin u2D
˜̂r+−

(ν)(π/2) + cos u2
˜̂r+−

(ν)(π/2)

= (ω − ν − σ − 1) sin u2Dr̃ω,l1
(ν)(π/2) + (ω + ν − σ − 1) cos u2 r̃ω,l1

(ν)(π/2) . (7.96)

Now, let u 6= 0 and u 6= π, so that Eq. (7.94) corresponds to a generalised Robin boundary
condition. Then, since rω,l1 satisfies the boundary condition in Eq. (7.94), we can write
D ˜̂r+−

(ν)(π/2) = − cot(u/2)˜̂r+−
(ν)(π/2), and by substituting this into Eq. (7.96) we obtain

sin u2D
˜̂r+−

(ν)(π/2) + cos u2
˜̂r+−

(ν)(π/2) = 2νr̃ω,l1 (ν)(π/2) . (7.97)

Since ν 6= 0, the right–hand side of this expression is never zero and, thus, the functions˜̂r+−
(ν) and D ˜̂r+−

(ν) do not satisfy Eq. (7.94). Hence, the generalised Robin boundary
conditions (7.66) do not result in an invariant space of solutions.

Now if u = 0, i.e., if we have a generalised Dirichlet boundary condition, then Eq. (7.94)
reduces to r̃ω,l1 (ν)(π/2) = 0. However, Eq. (7.95a) directly implies that if rω,l1 satisfies
this condition, then so does r̂+−. A similar argument using Eq. (7.91) shows that this is
also the case for the functions. Thus, the Dirichlet boundary condition (7.64) results in an
invariant space of solutions.

Similarly, if u = π, then Eq. (7.94) reduces to Dr̃ω,l1 (ν)(π/2) = 0, that is, a generalised
Neumann boundary condition. If rω,l1 satisfies this condition, then Eq. (7.95b) implies that
D ˜̂r+−

(ν)(π/2) = 0 and, once again, the same holds true for the functions L±±rω,l1 and
L−+rω,l1 . Hence, the generalised Neumann boundary condition (7.65) yields an invariant
space of solutions.

Finally, we consider the Case 3. The self–adjoint boundary conditions in Eq. (7.73) are
written as

sin u2Dr̃
(0)(π/2) + cos u2 r̃

(0)(π/2) = 0 , (7.98)

for all r ∈ Dom((ARad)α). Equations (7.68) and (7.91) imply that if rω,l1 is a solution of
Eq. (7.31) and r̂+− = L+−rω,l1 , then the functions ˜̂r+−

(0) and D ˜̂r+−
(0), are given by

˜̂r+−
(0)(ρ) =

[
ω sin ρ−

σ + 1
2

sin ρ −
[ln(cos2 ρ) + 4]

2 ln(cos2 ρ)

]
r̃ω,l1

(0)(ρ)

+ 1
[ln(cos2 ρ)]2

Dr̃ω,l1
(0)(ρ) , (7.99a)

D ˜̂r+−
(0)(ρ) =

cos2 ρ[ln(cos2 ρ)]2
ω(1− ω)− 1

4 +

(
σ + 1

2

)2

sin2 ρ

− 4 sin2 ρ

 r̃ω,l1 (0)(ρ)

+
[(
ω − 1

2

)
sin ρ−

σ + 1
2

sin ρ + 2 sin ρ
ln(cos2 ρ)

]
Dr̃ω,l1

(0)(ρ) . (7.99b)
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We evaluate these functions at ρ = π/2 to obtain

˜̂r+−
(0)(π/2) = (ω − σ − 1)r̃ω,l1 (0)(π/2) , (7.100a)

D ˜̂r+−
(0)(π/2) = (ω − σ − 1)Dr̃ω,l1 (0)(π/2)− 4r̃ω,l1 (0)(π/2) . (7.100b)

Let us assume that rω,l1 satisfies Eq. (7.98) with u 6= 0 and u 6= π. Then, we calculate

sin u2D
˜̂r+−

(0)(π/2) + cos u2
˜̂r+−

(0)(π/2)

= (ω − σ − 1)
[
sin u2Dr̃ω,l1

(0)(π/2) + cos u2 r̃ω,l1
(0)(π/2)

]
− 4 sin u2 r̃ω,l1

(0)(π/2) . (7.101)

Then, since rω,l1 satisfies the boundary condition, Eq. (7.98) implies that the terms in
square brackets above vanish. Thus, Eq. (7.101) reduces to

sin u2Dr̃ω,l1
(0)(π/2) + cos u2

˜̂r+−
(0)(π/2) = −4 sin u2 r̃ω,l1

(0)(π/2) , (7.102)

and the right–hand side is never zero. Hence, the function r̂+− does not satisfy the
self–adjoint boundary condition (7.98). This implies that the generalised Robin boundary
conditions (7.76) do not result in an invariant space of solutions.

Now, if rω,l1 satisfies Eq. (7.98) with u = 0, that is, the generalised Dirichlet boundary
condition r̃ω,l1 (0)(π/2) = 0, then Eq. (7.100a) directly implies that ˜̂r+−

(0)(π/2) = 0. A
similar argument shows that all other functions obtained by applying the operators in
Eq. (7.91) to the Dirichlet function rω,l1 satisfy the boundary condition as well. Thus, the
generalised Dirichlet boundary condition (7.74) yields an invariant space of solutions.

Finally, let us assume that rω,l1 satisfies the boundary condition in Eq. (7.98) with
u = π, and we have Dr̃ω,l1 (0)(π/2) = 0. This time, Eq. (7.100a) implies that

D ˜̂r+−
(0)(π/2) = −4r̃ω,l1 (0)(π/2) , (7.103)

and, thus, the function r̂+− does not satisfy the same boundary condition that rω,l1 does.
Hence, the generalised Neumann boundary condition (7.75) does not result in an invariant
space of solutions.

7.4 mode functions satisfying the invariant boundary conditions

Now that we have determined which amongst all the possible self–adjoint boundary
conditions result in solution spaces which are invariant under SO(2, N − 1), we can give
the explicit form of the associated mode solutions for each of these cases. The frequency
spectrum for the Dirichlet, Neumann and Robin mode solutions can be found, for example,
in Ref. [16]. We note that the values of the frequencies we obtain for the Dirichlet and
Neumann modes correspond to these results.
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Let us begin by considering all cases for which ν /∈ N0. Thus, we can consider the
general solution of Eq. (7.31) in the form given by Eq. (7.39). We use the definition given
in Eq. (7.54a), to obtain the function r̃ω,l1 (ν), namely,

r̃ω,l1
(ν)(ρ) =Nω,l1(sin ρ)σ+ 1

2
[
Aω−ν(cos ρ)2νF

(
ζων,σ, ζ

−ω
ν,σ ; 1 + ν; cos2 ρ

)
+ AωνF

(
ζω−ν,σ, ζ

−ω
−ν,σ; 1− ν; cos2 ρ

)]
, (7.104)

where we have extended the definition in Eq. (7.54a) to encompass the cases where ν > 1
and ν /∈ N. Using the definition in Eq. (7.54b), and the identity for the hypergeometric
function [23, Eq. 15.5.1]

d
dxF (a, b; c;x) = ab

c
F (a+ 1, b+ 1; c+ 1;x) , (7.105)

we calculate the function Dr̃ω,l1 (ν), which reads

Dr̃ω,l1
(ν)(ρ) =Nω,l1(sin ρ)σ+ 3

2

[
Aω−ν cos2 ρ

(
σ + 1/2

sin ρ F1(ρ)− 2
ζων,σζ

−ω
ν,σ

1 + ν
F̃1(ρ)

)

+ Aων (cos ρ)2−2ν
(
σ + 1/2

sin ρ − 2
ζω−ν,σζ

−ω
−ν,σ

1− ν F̃2(ρ)
)
− 2νAω−νF1(ρ)

]
, (7.106)

where we have defined the functions

F1(ρ) := F
(
ζων,σ, ζ

−ω
ν,σ ; 1 + ν; cos2 ρ

)
, (7.107a)

F2(ρ) := F
(
ζω−ν,σ, ζ

−ω
−ν,σ; 1− ν; cos2 ρ

)
, (7.107b)

F̃1(ρ) := F
(
1 + ζων,σ, 1 + ζ−ων,σ ; 2 + ν; cos2 ρ

)
, (7.107c)

F̃2(ρ) := F
(
1 + ζω−ν,σ, 1 + ζ−ω−ν,σ; 2− ν; cos2 ρ

)
. (7.107d)

Let us then apply the generalised Dirichlet boundary condition (7.64) to the solution
rω,l1 , that is, r̃ω,l1 (ν)(π/2) = 0. (We note that the unique self–adjoint boundary condition
for 1 < ν given by Eq. (7.47) is also a Dirichlet boundary condition of this type.) Hence,
we evaluate Eq. (7.104) at ρ = π/2. Since F (a, b; c; 0) = 1 for all a, b, c ∈ C, we have that
r̃ω,l1

(ν)(π/2) = Nω,l1A
ω
ν . Thus, the function rω,l1 satisfies the Dirichlet boundary condition

if Aων = 0. The definition of Aων in Eq. (7.40) implies that this is satisfied whenever
Γ(ζ±ων,σ )−1 = 0, that is, whenever

1 + σ + ν ± ω
2 = −n , (7.108)

for any n ∈ N0. Hence, the Dirichlet boundary condition is satisfied if we constrain the
frequency values to ω = ±ω(ν,D)

n , where we have defined

ω(ν,D)
n := 2n+ 1 + σ + ν , (7.109)

for n ∈ N0. Since we are interested in positive–frequency solutions, we choose the positive
frequency parameter in Eq. (7.109). We substitute ω = ω

(ν,D)
n into Eq. (7.39) to obtain
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the Dirichlet solution r(ν,N)
n,l1

:= r
ω

(ν,D)
n ,l1

. We find

r
(ν,D)
n,l1

(ρ) = N
ω

(ν,D)
n ,l1

Aω
(ν,D)
n
−ν (sin ρ)σ+ 1

2 (cos ρ)ν+ 1
2F
(
n+ ν + σ + 1,−n; 1 + ν; cos2 ρ

)
,

= N
(ν,D)
n,l1

(sin ρ)σ+ 1
2 (cos ρ)ν+ 1

2P (σ,ν)
n (cos 2ρ) , (7.110)

where P (a,b)
n (x) is a Jacobi polynomial given by Eq. (6.23) and N (ν,D)

n,l1
is a normalisation

constant.
Now, for special case for which ν ∈ N the function rω,l1 given by Eq. (7.39) is ill–defined.

Hence, we consider the transformation given Eq. (7.41) instead. Using this definition of
the solution rω,l1 , we calculate

(cos ρ)m−
1
2 rω,l1(ρ) =Nω,l1(sin ρ)σ+ 1

2

[
Hω
m(cos ρ)2m+1

∞∑
k=0

Ck
[
ln(cos2 ρ) + hω(k)

]
(cos ρ)2k

+ (−1)m−1Hω
−m

m−1∑
k=0

Dk(cos ρ)2k
]
, (7.111)

where we have defined the coefficients Ck and Dk as

Ck :=
(ζωm,σ)k(ζ−ωm,σ)k
k!(m+ k)! , Dk :=

(ζω−m,σ)k(ζ−ω−m,σ)k
k!(1−m)k

. (7.112)

We impose the boundary condition (7.47) on the function rω,l1 by evaluating Eq. (7.111)
at ρ = π/2 and equating the result to zero. Since (cos ρ)2m+1 ln(cos ρ) → 0 as ρ → π/2,
Eq. (7.111) implies that[

(cos ρ)m−
1
2 rω,l1(ρ)

]∣∣∣
ρ=0π/2

= Nω,l1(−1)m−1Hω
−m . (7.113)

Hence, the function rω,l1 satisfies the Dirichlet boundary condition if Hω
−m = 0. Using the

definition of the constant Hω
−m given by Eq. (7.42), we see that this condition is equivalent

to Γ(ζ±ωm,σ)−1 = 0, which is satisfied if and only if ω = ±ω(m,D)
n , that is, if the frequency

spectrum is given by Eq. (7.109) with ν = m. Once again, since we are considering
positive–frequency solutions we take ω = ω

(m,D)
n . The substitution of this value of ω into

Eq. (7.41) is a bit more subtle compared to the case where ν /∈ N. If we substitute ω(m,D)
n

into Hω
m, Eq. (7.42) implies that

Hω
(m,D)
n

m = (−1)m+1Γ(1 + σ)
Γ(2n+ 1 + σ)Γ(−m) = 0 . (7.114)

Thus, it would appear that the Dirichlet solution r
ω

(m,D)
n ,l1

is trivial. However, we note

that not all the combinations Hω
(m,D)
n

m h
ω

(m,D)
n

(k) in Eq. (7.41) vanish. From the definition
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of the constants hω in Eq. (7.43) and the result in Eq. (7.114), we see that

Hω
(m,D)
n

m h
ω

(m,D)
n

(k) = lim
ε→0

(−1)m+1Γ(1 + σ)
Γ(2n+ 1 + σ)Γ(−m+ ε)ψ(k −m+ ε) ,

= (−1)m+1Γ(1 + σ)
Γ(2n+ 1 + σ) lim

ε→0

ψ(k −m+ ε)
Γ(−m+ ε) ,

= (−1)m+1Γ(1 + σ)
Γ(2n+ 1 + σ) (−1)mm! lim

ε→0

ψ(ε)
Γ(ε) ,

= Γ(1 + σ)m!
Γ(2n+ 1 + σ) , (7.115)

where we have used the fact that ψ(x)/Γ(x) → −1 as x → 0. Thus, a straightforward
calculation shows that, after substituting ω = ω

(m,D)
n into Eq. (7.41) and applying the

result of Eq. (7.115), the solution r
ω

(m,D)
n ,l1

reduces to Eq. (7.110) with ν = m. Thus, by
this analysis we conclude that the generalised Dirichlet boundary conditions result in the
mode functions given by Eq. (7.110) for all 1 ≤ ν and 0 < ν < 1.

Now let us consider 0 < ν < 1. For these values of the parameter ν, the general solution
is also given by Eq. (7.39) and the functions r̃ω,l1 (ν) and Dr̃ω,l1 (ν) are given by Eqs. (7.104)
and (7.106). We evaluate Eq. (7.106) at ρ = π/2 and we obtain

Dr̃ω,l1
(ν)(π/2) = −2νAω−ν . (7.116)

Now, let rω,l1 be a solution satisfying the generalised Neumann boundary condition in
Eq (7.65). Hence, we must have Dr̃ω,l1 (ν)(π/2) = 0, which is satisfied if Aω−ν = 0. The
definition in Eq. (7.40) implies that this is satisfied whenever Γ(ζ±ω−ν,σ)−1 = 0, that is,

1 + σ − ν ± ω
2 = −n , (7.117)

with n ∈ N0. Hence, the frequency spectrum is constrained by ω = ±ω(ν,N)
n , where

ω(ν,N)
n := 2n+ 1 + σ − ν . (7.118)

We choose the positive frequencies and substitute ω = ω
(ν,N)
n into Eq. (7.39) to obtain the

Neumann modes r(ν,N)
n,l1

:= r
ω

(ν,N)
n ,l1

. We find

r
(ν,N)
n,l1

(ρ) = N
ω

(ν,N)
n ,l1

Aω
(ν,N)
n
ν (sin ρ)σ+ 1

2 (cos ρ)
1
2−νF

(
n− ν + σ + 1,−n; 1− ν; cos2 ρ

)
,

= N (ν,N)
n (sin ρ)σ+ 1

2 (cos ρ)
1
2−νP (σ,−ν)

n (cos 2ρ) , (7.119)

where we have used the definition of the Jacobi polynomials in Eq. (6.23) and N (ν,N)
n is a

normalisation constant.
Finally, we consider the case ν = 0. The general solution rω,l1 is given by Eq. (7.41)

with m = 0 (the last term omitted). Now, Eq. (7.68) implies that the function r̃ω,l1 (0) is
given by

r̃ω,l1
(0)(ρ) = Nω,l1(sin ρ)σ+ 1

2

[
Hω

0

∞∑
k=0

(ζω0,σ)k(ζ−ω0,σ )k
(k!)2

(
1 + hω(k)

ln(cos2 ρ)

)
(cos ρ)2k

]
. (7.120)
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The only invariant self–adjoint boundary condition in this case corresponds to the gen-
eralised Dirichlet boundary condition in Eq. (7.74), that is, r̃ω,l1 (0)(π/2) = 0. From
Eq. (7.120) we have r̃ω,l1 (0)(π/2) = Nω,l1H

ω
0 . Hence, the solution rω,l1 satisfies the Dirich-

let condition if Hω
0 = 0. The definition in Eq. (7.42) implies that this is the case whenever

Γ(ζ±ω0,σ )−1 = 0, that is, if

1 + σ ± ω
2 = −n , (7.121)

with n ∈ N0. This constrains the allowed frequencies to satisfy ω = ±ω(0,D)
n , where ω(0,D)

n

is defined by taking ν = 0 in either Eq. (7.109) or (7.118). We take the positive frequency
spectrum and set ω = ω

(0,D)
n . We substitute this value of ω into Eq. (7.41) in a very similar

way to the case ν ∈ N above. Thus, using Eq. (7.114), we obtain the Dirichlet solution
r

(0,D)
n,l1

:= r
ω

(0,D)
n,l1

, given by

r
(0,D)
n,l1

(ρ) = N
ω

(0,D)
n ,l1

(sin ρ)σ+ 1
2 (cos ρ)

1
2F
(
−n, n+ σ + 1; 1 + σ; sin2 ρ

)
,

= N
(0,D)
n,l1

(sin ρ)σ+ 1
2 (cos ρ)

1
2P (σ,0)

n (cos 2ρ) , (7.122)

where we have used Eq. (6.23), and N (0,D)
n,l1

is a normalisation constant.
To conclude this section we present the full mode solutions of the Klein–Gordon

equation given by Eq. (7.2) associated to all the SO(2, N − 1)–invariant self–adjoint
boundary conditions for the different values of the mass parameter ν. The normalisation
constants of the radial components are obtained by imposing the condition〈

rn,l1 , rn′,l1
〉

Rad = δnn′ , (7.123)

with the inner product defined in Eq. (7.25). We have made use of the orthonormality
of the Jacobi polynomials given in Eq. (6.25). We adopt our original notation used in
Section 7.1 and denote the hyperspherical harmonics defined by Eqs. (7.12) and (7.15) by
Yl(θ) where l = (l1, . . . , lN−2). We also use the definition of σ in Eq. (7.22) to write the
mode functions in terms of the angular number l1.

Case 1: ν ≥ 1 (M2 ≥ (N − 3)(N + 1)/4). The only self–adjoint boundary condition for
the radial component is the generalised Dirichlet boundary condition given by Eq. (7.47).
The normalised positive–frequency mode solutions are given by

φ(ν,D)
n (t, ρ, θ) = N

(ν,D)
n,l1

(sin ρ)l1(cos ρ)ν+N−1
2 P

(l1+N−3
2 ,ν)

n (cos 2ρ)Yl(θ)e
−iω(ν,D)

n,l1
t
, (7.124)

with frequency spectrum given by

ω
(ν,D)
n,l1

= 2n+ ν + l1 + N − 1
2 , n ∈ N0 , (7.125)

and normalisation constant given by

N
(ν,D)
n,l1

=

2ω(ν,D)
n,l1

n!Γ
(
n+ ν + l1 + N−1

2

)
Γ(n+ ν + 1)Γ

(
n+ l1 + N−1

2

)


1
2

. (7.126)
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Case 2: 0 < ν < 1 (−(N − 1)2/4 < M2 < (N − 3)(N + 1)/4). The invariant self–
adjoint boundary conditions are the generalised Dirichlet (7.64) and Neumann (7.65)
boundary conditions. The Dirichlet modes are given by Eq. (7.124). The normalised
positive–frequency Neumann modes are given by

φ(ν,N)
n (t, ρ, θ) = N

(ν,N)
n,l1

(sin ρ)l1(cos ρ)
N−1

2 −νP
(l1+N−3

2 ,−ν)
n (cos 2ρ)Yl(θ)e

−iω(ν,N)
n,l1

t
, (7.127)

with frequency spectrum given by

ω
(ν,N)
n,l1

= 2n− ν + l1 + N − 1
2 , n ∈ N0 , (7.128)

and normalisation constant given by

N
(ν,N)
n,l1

=

2ω(ν,N)
n,l1

n!Γ
(
n− ν + l1 + N−1

2

)
Γ(n− ν + 1)Γ

(
n+ l1 + N−1

2

)


1
2

, (7.129)

We note that, for the case N = 4, that is, for a scalar field in AdS4, the Dirchlet and
Neumann mode functions given by Eq. (7.124) and (7.127), respectively, reduce to those
found by Breitenlöhner and Freedman in Refs. [12, 13]. In their analysis, they showed
that for −9/4 < M2 < −5/4 two types of mode solutions, corresponding to Dirichlet and
Neumann boundary conditions, make the energy flux at the boundaries to be zero. The
freedom of choice between these two sets of mode functions can then be explained using the
fact that only these two solution spaces coming from the self–adjoint boundary conditions
are invariant under S̃O(2, N − 1).

Case 3: ν = 0 (M2 = −(N−1)2/4). The only invariant self–adjoint boundary condition
for this case is the generalised Dirichlet boundary condition (7.74). The normalised positive–
frequency Dirichlet modes are given by

φ(0,D)
n (t, ρ, θ) = N

(0,D)
n,l1

(sin ρ)l1(cos ρ)
N−1

2 P
(l1+N−3

2 ,0)
n (cos 2ρ)Yl(θ)e

−iω(ν,D)
n,l1

t
, (7.130)

with frequency spectrum given by

ω
(0,D)
n,l1

= 2n+ l1 + N − 1
2 , n ∈ N0 , (7.131)

and normalisation constant given by

N
(ν,D)
n,l1

=
[
2ω(0,D)

n,l1

] 1
2 . (7.132)

We note that these mode solutions correspond to Eqs. (7.124) and (7.127) with ν = 0.
Thus, the Dirichlet and Neumann mode solutions in Eqs. (7.124) and (7.127) for 0 < ν < 1
approach the Dirichlet modes in Eq. (7.130) in the limit as the mass squared approaches
to the critical value −(N − 1)2/4. We also note that the Dirichlet modes in Eq. (7.130)
for N = 4 coincide with those found by imposing the vanishing of the energy flux at the
spatial boundary in Refs. [11, 12].
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7.5 invariant positive–frequency subspaces

In Section 7.3 we have shown that if the space of solutions to Klein–Gordon equation is
invariant under the action of the Killing vector field K3, then it is invariant under the
infinitesimal action of SO(2, N − 1). We found in Section 7.4 that only the Dirichlet and
Neumann modes form invariant solution spaces. We now turn to the task of determining
whether or not the space of solutions for these cases, namely, the ones spanned by the mode
functions in Eqs. (7.124), (7.127) and (7.130), respectively, results in invariant positive–
frequency spaces. We will first show that for any of these sets of mode solutions, the
action of the boost–like Killing vector K3 in Eq. (7.82) on any positive–frequency mode is
a linear combination of positive–frequency modes. Then, using the Killing algebra, we will
show that this fact implies that any other Killing vector field preserves positive–frequency
solutions.

Let φωn,l1 be any of the three mode solutions of Eqs. (7.124), (7.127), or (7.130) such
that the associated frequency satisfies ωn > 0. Then, the action of the vector field K3

on φωn,l1 is given by Eq. (7.92). From this expression, it follows that K3φωn,l1 is a linear
combination of the four mode solutions φωn±1,l1±1, and φωn±1,l1∓1. Also, if n = 0 = l1,
then Eqs. (7.86) and (7.92) imply that K3φω0,0 ∝ φω0+1,l1+1. Now, since ωn > 0 for
all n ∈ N0, the two modes, φωn+1,l1±1, have positive frequencies. The other two mode
functions have frequencies ωn−1, with l1−1 and l1 + 1, respectively. Thus, the frequencies
ωn − 1 will be positive unless ωn < 1 for some n. The explicit form of the frequency
spectrum for the invariant spaces is given by ωn = 2n+ εν + l1 + (N − 1)/2, where ε = ±1,
so that ε = 1 corresponds to the Dirichlet modes and ε = −1 corresponds to the Neumann
modes. If ν ≥ 1, then only the Dirichlet modes (ε = 1) are invariant, and for these
cases it follows that ωn ≥ 2 for all n, l1 ∈ N0, since (N − 1)/2 ≥ 1 for all N ≥ 3. Hence,
K3φωn,l1 is a linear combination of positive frequency modes for all n ∈ N0. Now, for
the Dirichlet modes (ε = 1) with 0 ≤ ν < 1, we have ωn ≥ 1 for all n, l1 ∈ N0 and, thus,
K3φωn,l1 is again positive–frequency. Finally, for the Neumann modes (ε = −1) which
only appear for 0 < ν < 1, we have ωn ≥ 1 for all n, l1 ∈ N, since the frequency ω0 with
l1 = 0 does satisfy 0 < ω0 < 1 (since if N = 3, we have ω0 = −ν + (N − 1)/2 < 1).
However, as mentioned above, we have K3φω0,0 ∝ φω0+1,l1+1, so no negative frequency
solution appears for this particular case either. Hence, K3φωn,l1 is a linear combination of
positive–frequency solutions for all n, l1 ∈ N0 for the Neumann modes as well. Therefore,
we have shown that for any of the invariant mode solution spaces, the positive–frequency
subspaces are invariant under the action of the Killing vector K3.

Now, let φn,l1 be any of the positive–frequency mode solutions with ωn,l1 > 0 coming
from the Dirichlet or Neumann boundary conditions. The first thing to note is that,
since [ξ0,Jkl] = 0 for all 3 ≤ k < l < N − 2, where ξ0 is the time–like Killing vector
field and Jkl is defined in Eq. (3.24d), the action of Jkl leaves the frequency invariant.
Thus, Jklφn,l1 must be a linear combination of modes with the same frequency ωn,l1 .
Similarly, by our previous result, we can write K3φn,l1 = ∑

Cn,n′;l1,l′1φn′,l′1 , with each φn′,l′1
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a positive–frequency mode. Since Eq. (7.80) implies that

Kj = [K3,J3j ] , (7.133)

for all j > 3, where Kj is given by Eq. (3.24b), the action of Kj on the mode function
φn,l1 reduces to

Kjφn,l1 = (K3 ◦ J3j)φn,l1 −
∑
n,l′1

Cn,n′;l1,l′1J3jφn′,l′1 . (7.134)

We immediately note that the second term is a linear combination of positive–frequency
modes due to the invariance of the frequency by the action of J3j . Similarly, the function
J3jφn,l1 is a linear combination of positive–frequency modes and the action of K3 on
these functions preserves the positive–frequency subspace. Hence, Eq. (7.134) implies that
the mode function Kjφn,l1 is a linear combination of positive–frequency modes for all
j > 3. Finally, we note that Eq. (3.20) implies that Bj = [Kj , ξ0] for all j ≥ 3, where the
boost–like Killing vector Bj is given by Eq. (3.24c). Thus, we calculate the action of Bj

on the mode φn,l1 to obtain

Bjφn,l1 = −iωn,l1Kjφn,l1 − ξ0Kjφn,l1 , (7.135)

we have used ξ0φn,l1 = −iωn,l1φn,l1 . Since we previously found that Kjφn,l1 is a linear
combination of positive–frequency mode solutions for all j ≥ 3, Eq. (7.135) implies that
Bjφn,l1 must also be a linear combination of positive–frequency modes for all j ≥ 3. Hence,
we can conclude that the subspace of positive–frequency solutions for the Dirichlet and
Neumann boundary conditions is invariant under the action of the Killing vectors Kj , Bj

and Jkl for all j, k, l.
In conclusion, we have shown that the Dirichlet modes φ(ν,D)

n,l1
for all 0 ≤ ν, and the

Neumann modes φ(ν,N)
n,l1

for 0 < ν < 1, form invariant positive–frequency subspaces. Thus,
it is possible to construct quantum field theories with a stationary vacuum state for these
solution spaces by following the general prescription presented in Section 2.3 of Chapter 2.

We conclude this chapter summarising our main results for the analysis of a scalar field
in AdSN in Table 7.1. In this table, the symbols r̃(ν) and Dr̃(ν) represent the evaluations
r̃(ν)(π/2) and Dr̃(ν)(π/2), respectively. We have also defined the numbers u− := 1− eiu

and u+ := i(1 + eiu).
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Table 7.1: Self–adjoint boundary conditions for scalar field in AdSN

M (ν) SABCs Inv. SABCs Spectrum (ω) Inv. P-F sol.

M2 ≥MBF

(ν ≥ 1)
Dirichlet Dirichlet

ω = ±ω(ν,D)
n,l1

,

ω
(ν,D)
n,l1

= 2n+ ν + σ + 1
φ

(ν,D)
n , ω(ν,D)

n,l1

−1−MBF < M2 < MBF

(0 < ν < 1)
u−Dr̃(ν) = u+r̃(ν)

Dirichlet
ω = ±ω(ν,D)

n,l1
,

ω
(ν,D)
n,l1

= 2n+ ν + σ + 1
φ

(ν,D)
n , ω(ν,D)

n,l1

Neumann
ω = ±ω(ν,N)

n,l1
,

ω
(ν,N)
n,l1

= 2n− ν + σ + 1
φ

(ν,N)
n , ω(ν,N)

n,l1

M2 = −1−MBF

(ν = 0)
u−Dr̃(0) = u+r̃(0) Dirichlet

ω = ±ω(0,D)
n,l1

,

ω
(0,D)
n,l1

= 2n+ σ + 1
φ

(0,D)
n , ω(0,D)

n,l1

The number MBF := (N − 3)(N + 1)/4 is the B-F bound.
Here n is always assumed to be in N0.

We have taken the definition σ = l1 + (N − 3)/2



8

Dirac spinors in AdS2

In this chapter we analyse a spinor field of mass 0 ≤ M obeying the Dirac equation in
AdS2. We will apply the prescription introduced in Chapter 2 for spinor fields. Following
the approach taken for the scalar field case in Chapter 6, we will first obtain the general
solutions of the Dirac equation via separation of variables, decomposing the solution with
respect to the frequency spectrum. Since our goal is to prescribe well–defined dynamics
for the classical field in order to obtain a quantum field theory via canonical quantisation
(as in Section 2.3), we consider only positive–frequency solutions. The spatial component
of the Dirac operator, defined on a suitable Hilbert space of functions, is a densely defined
symmetric operator which fails to be self–adjoint. Hence, we will apply the theory of
self–adjoint extensions presented in Chapter 5 to this operator. The theory of self–adjoint
extensions has been applied to a Dirac field in AdS4 in a slightly different way to the
one we have used for the scalar field in AdSN by Bachelot [86], where certain boundary
conditions are highlighted.

The admissible self–adjoint extensions provided by von Neumann’s theorem 5.1.3 are
given in terms of their domains. Similarly to the analysis of scalar field theory in AdS2 and
AdSN , N ≥ 3, we associate to each self–adjoint extension a self–adjoint boundary condition
that the elements in its domain must satisfy. However, we will use a different method to
obtain the associated self–adjoint boundary conditions to the one we applied in Chapters 6
and 7 for the case of scalar field theories. This equivalent approach is based on the analysis
in Ref. [71]. The type of self–adjoint boundary condition depends on the absolute value
of the mass of the field. If |M | is sufficiently large, the boundary conditions are uniquely
determined by requiring the solutions to the Dirac equation to be normalisable with respect
to the Dirac inner product, which is equivalent to the fact that the spatial Dirac operator
for this mass range is essentially self–adjoint and thus, has a unique self–adjoint extension.
On the other hand, in a certain range of low mass parameter, similarly to the case of a
scalar field, the self–adjoint extensions will be parametrised by a 2× 2 unitary matrix.

We will then determine which of the self–adjoint boundary conditions result in invariant
mode solutions under the infinitesimal action of S̃L(2,R), which can be realised through a
certain Lie derivative operator defined on spinor solutions. We will then find which of the
resulting invariant mode solution spaces admit an invariant positive– or negative–frequency
subspace and hence, result in a vacuum state invariant under the S̃L(2,R) action following

125
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the prescription of Section 2.3. Finally, we analyse the cases for which the invariant
boundary conditions result in modes which do not admit this frequency spectrum splitting
and thus, describe quantum theories with non–invariant vacuum sectors.

8.1 solutions of the dirac equation in AdS2

Let us consider the two–dimensional anti–de Sitter spacetime, AdS2. We use the static
coordinate system defined in Eq. (3.8) which, for N = 2, reduces to (x0, x1) = (t, ρ), with
t ∈ R and ρ ∈ (−π/2, π/2). The line element for AdS2 is given by Eq. (6.1). With respect
to the metric tensor, the non–zero components of the Levi–Civita connection are given
by Eq. (3.11), and for N = 2, they reduce to Γ0

01 = Γ1
00 = Γ1

11 = tan ρ. We adopt the
local orthonormal frame {ea}a=0,1 given by Eq. (3.12). For the two–dimensional case, the
non–zero components e µ

a of the frame fields are given by

e 0
0 = cos ρ = e 1

1 . (8.1)

With respect to the orthonormal frame, the connection 1–form ωab, defined in Eq. (2.19),
has non–zero components ωab µ given by Eq. (3.13), which read ω0

1 0 = ω1
0 0 = tan ρ

Following a convention similar to that of Ref. [14], we will use the 2–dimensional
representation of the 2× 2–gamma matrices γa given by

γ0 =
(

0 i

i 0

)
, γ1 =

(
−1 0
0 1

)
, (8.2)

which satisfy the anticommutation relation in Eq. (2.22), that is, {γa, γb} = 2ηabI, with
ηab = diag(−1, 1). For this choice of gamma matrices, we have (γ0)† = −γ0 and (γ1)† = γ1.
From Eq. (2.23), we see that the quantities Σab for the gamma matrices in Eq.(8.2) are
given by

Σ01 = 1
2

(
0 i

−i 0

)
, (8.3)

and by Σ10 = −Σ01. In this representation the charge conjugation matrix C is given by
C = 2zΣ01 for any z ∈ C on the unit circle. We choose z = −1, and write

C :=
(

0 −i
i 0

)
, (8.4)

and, from Eq. (8.2), it follows that we have C = −γ0γ1.
As discussed in Chapter 2, spinor fields in AdS2 will be regarded as elements of the

space C∞(AdS2,C2), of C2–valued smooth functions on anti–de Sitter spacetime. The
spin covariant derivative acting on a spinor ψ(t, ρ) in AdS2 is defined using Eqs. (2.24)
and (2.25). With respect to our choice of orthonormal frame (8.1), the spinor covariant
derivatives in the time and spatial directions are found to be given by

∇(D)
0 = ∂t −

1
2 tan ρΣ01 , (8.5a)

∇(D)
1 = ∂ρ , (8.5b)
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respectively. We recall that the spacetime gamma matrices are defined by the relation
γ̃µ := e µ

a γ
a. Hence, the Dirac equation defined for a standard static spacetime in Eq. (2.28)

reduces, for the case of AdS2 in global coordinates (t, ρ), to

cos ρ
[
γ0∂t + γ1

(
∂ρ + 1

2 tan ρ
)]

ψ(t, ρ) = Mψ(t, ρ) , (8.6)

where ψ ∈ C∞
(
AdS2;C2), and M ∈ R denotes the mass of the field.

It will be convenient to define the two–component spinor ψ̃ via the relation

ψ(t, ρ) = (cos ρ)
1
2 ψ̃(t, ρ) , (8.7)

so that Eq. (8.6) is equivalent to the equation for the spinor ψ̃ given by(
γ0∂t + γ1∂ρ

)
ψ̃(t, ρ) = M sec ρ ψ̃(t, ρ) . (8.8)

A simple substitution shows that if ψ̃ is a solution of this equation with mass M , then
iΣ01ψ̃ is a solution with mass −M . Then, without loss of generality, we will only consider
solutions to Eq. (8.8) with M ≥ 0.

Since we are interested in the description of the solutions of Eq. (8.6) in terms of
positive– and negative–frequency mode spinors, we will consider solutions ψ̃ of the form

ψ̃(t, ρ) = Ψω(ρ)e−iωt , ω 6= 0 , (8.9)

where Ψω ∈ C∞((−π/2, π/2),C2). Following the description of spinors in standard
static spacetimes given in Chapter 2, we identify the spatial spinor associated to ψ with
(cos ρ)1/2Ψω. We recall that the Hilbert space HD was defined as L2 ([−π/2, π/2];C2), the
space of square–integrable spatial spinors with respect to the measure dV ′ =

√
hdρ =

sec ρ dρ (which follows by Eq. (7.1)). Considering the scaling of the spatial spinor defined
in Eq. (8.7), the scaled spatial spinors Ψω can be identified with the elements of the Hilbert
space L2 ([−π/2, π/2];C2) with respect to the measure dρ. Since the multiplication map
by the factor (cos ρ)1/2 is a unitary isomorphism between these two Hilbert spaces, we will
refer to the latter by the same symbol, HD.

With these considerations in mind, we see that Eq. (2.30) implies that the inner product
between the elements Ψ1,Ψ2 ∈HD, is given by

〈Ψ1,Ψ2〉D =
∫ π/2

−π/2
Ψ1(ρ)†Ψ2(ρ)dρ , (8.10)

where Ψ† denotes the conjugate transpose of Ψ(ρ) ∈ C2. The inner product of HD induces
an inner product between the spinors ψ ∈ L2 (AdS2;C2). Given two solutions, ψ1 and ψ2 of
Eq. (8.6), of the form ψj(t, ρ) = (cos ρ)1/2Ψωj (ρ)e−iωjt, j = 1, 2, with non–zero frequencies
ω1 6= ω2, the pairing

(ψ1, ψ2)
D

:=
∫ π/2

−π/2
ψ1(t, ρ)†ψ2(t, ρ) dρ

cos ρ ,

= e−i(ω2−ω1)t 〈Ψω1 ,Ψω2〉D , (8.11)
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defines a non–degenerate bilinear form for a fixed t ∈ R.
From Eqs. (8.6) and (8.8), it follows that the spatial spinor Ψω satisfies the equation

DΨω(ρ) = ωΨω(ρ) , (8.12)

where we have defined the operator1

D := iγ0γ1 d
dρ − iγ

0M sec ρ . (8.13)

Analogously to the case of a scalar field in AdS2, we will consider the operator D acting on
the natural domain Dom(D) = C∞c

(
(−π/2, π/2),C2), that is, the subspace of compactly

supported smooth maps (−π/2, π/2) → C2 with support away from the boundary. We
note that, since any element in HD can be approximated arbitrarily well by elements in
C∞c

(
(−π/2, π/2);C2), we have Dom(D) = HD. Hence, D is a densely defined operator.

Furthermore, the operator D is a symmetric operator with respect to the inner product
given by Eq. (8.10), that is, for all Ψ1,Ψ2 ∈ Dom(D), we have

〈Ψ1,DΨ2〉D = 〈DΨ1,Ψ2〉D , (8.14)

which follows by using Eq. (8.10) and integrating by parts.
Now, we consider the adjoint operator D† of D. From Definition 2.2.2 we have that if

Ψ′ ∈ Dom(D†), then
〈
Ψ′,DΨ

〉
D

=
〈
D†Ψ′,Ψ

〉
D
, (8.15)

for all Ψ ∈ Dom(D). In general, Dom(D) 6= Dom(D†), and thus, the operator D is not
self–adjoint2. In fact, the domain of the adjoint operator is found to satisfy

Dom(D) ⊆ Dom(D†) , (8.16)

but we can easily find elements in HD not contained in the domain of D satisfying
Eq. (8.15) (e.g., spatial spinors Ψ′ for which the component functions Ψ′(1),Ψ′(2) are
absolutely continuous functions on (−π/2, π/2) do satisfy Eq. (8.15) and are not contained
in Dom(D)).

Thus, we will apply the theory of self–adjoint extensions presented in Chapter 5
to the operator D to find a family of self–adjoint operators DU . Following the general
prescription of Section 5.1, we will first look for solutions in HD satisfying the equations
D†Ψ± = ±iΨ± in order to find the deficiency indices n± of the operator D. Then, we
will apply von Neumann’s theorem to identify the domains of the admissible self–adjoint
extensions of D.

1The operator D above and the one defined in Eq. (2.29) are not the same for N = 2, but instead
related by the intertwiner defined as multiplication by (cos ρ)1/2.

2We will explicitly prove the lack of self–adjointness of D shortly by calculating its deficiency indices
and applying von Neumann’s theorem.
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Similarly to the case of a scalar field, we determine if normalisable solutions of D†Ψω =
ωΨ, that is, [

iγ0γ1 d
dρ − iγ

0M sec ρ
]

Ψω(ρ) = ωΨω(ρ) , (8.17)

exist for ω ∈ C. Thus, by specialising to the particular values of ω = ±i, solving Eq. (8.17)
is equivalent to determining the deficiency subspaces K± of the operator D. The number
of linearly independent solutions will thus provide the deficiency indices of D.

In order to find the general solutions, we project Eq. (8.17) onto the components of the
spinor Ψω with respect to the gamma matrix representation we have chosen. Let us define

Ψω =

Ψ(1)
ω

Ψ(2)
ω

 , (8.18)

with Ψ(1)
ω ,Ψ(2)

ω complex–valued functions on the interval (−π/2, π/2). Hence, Eq. (8.17) is
equivalent to the coupled system of equations given by

d
dρΨ(1)

ω (ρ) +M sec ρΨ(1)
ω (ρ) = ωΨ(2)

ω (ρ) , (8.19a)

− d
dρΨ(2)

ω (ρ) +M sec ρΨ(2)
ω (ρ) = ωΨ(1)

ω (ρ) . (8.19b)

We note that if Ψω is a solution of Eq. (8.12) with ω ∈ R and ω > 0, then the charge
conjugate spinor Ψc

ω := C(γ0)TΨω, where C is given by Eq. (8.4), is a solution of Eq. (8.12)
with −ω.

Now, by eliminating Ψ(2)
ω in Eq. (8.19) we obtain the second order equation

d2

dρ2 Ψ(1)
ω (ρ) +

[
ω2 +M sec ρ tan ρ−M2 sec2 ρ

]
Ψ(1)
ω (ρ) = 0 . (8.20)

A general solution to this equation when M − 1/2 /∈ N0 is given in terms of the Gaussian
hypergeometric functions [23], and reads

Ψ(1)
ω (ρ) =(2M + 1)C1 σ(ρ)MF

(
ω,−ω; 1

2 +M ; 1− sin ρ
2

)
+ ω C2 cos ρ σ(ρ)−MF

(
1 + ω, 1− ω; 3

2 −M ; 1− sin ρ
2

)
, (8.21)

where we have defined

σ(ρ) :=
(1− sin ρ

1 + sin ρ

) 1
2
, (8.22)

and with C1, C2 ∈ C arbitrary constants. Using this solution, we now define the second
spinor component Ψ(2)

ω through Eq. (8.19a). By using Eq. (7.105) it can readily be verified
that the second component Ψ(2)

ω is given by

Ψ(2)
ω (ρ) =ω C1 cos ρ σ(ρ)MF

(
1 + ω, 1− ω; 3

2 +M ; 1− sin ρ
2

)
+ (2M − 1)C2 σ(ρ)−MF

(
ω,−ω; 1

2 −M ; 1− sin ρ
2

)
. (8.23)
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If M = 1/2 + k, with k ∈ N0, then it can be shown that the general solutions are instead
given by

Ψ(1)
ω (ρ) =σ(ρ)

1
2
[
C1
(
P−kω (sin ρ) + P−kω−1(sin ρ)

)
+ C2

(
Q−kω (sin ρ) + Q−kω−1(sin ρ)

)]
, (8.24a)

Ψ(2)
ω (ρ) =σ(ρ)−

1
2
[
C1
(
P−kω−1(sin ρ)− P−kω (sin ρ)

)
+ C2

(
Q−kω−1(sin ρ)− Q−kω (sin ρ)

)]
, (8.24b)

where Pµν and Qµ
ν are Ferrers functions of the first and second kind, respectively. These are

given by [23, Eqs. 14.3.1, 14.3.2]

Pµν (x) = 1
Γ(1− µ)

(1 + x

1− x

)µ/2
F

(
ν + 1,−ν; 1− µ; 1− x

2

)
, (8.25a)

Qµ
ν (x) = π

sinµπ

(
cosµπ Pµν (x)− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)P−µν (x)
)
. (8.25b)

The functions Q−kν with k ∈ N0 can be defined by substituting Eq. 14.9.3 in Ref. [23] into
Eq. (8.25b) and taking the limit µ → −k. Solutions for M = 1/2 reduce to Legendre
functions by means of the relation P0

ω(x) = Pω(x). We also note that the solutions for
the massless spinor field can be directly obtained from Eqs. (8.19a) and (8.20) by setting
M = 0, in which case the components are simply given by

Ψ(1)
ω,M=0(ρ) = C̃1 cosωρ+ C̃2 sinωρ , (8.26a)

Ψ(2)
ω,M=0(ρ) = −C̃1 sinωρ+ C̃2 cosωρ , (8.26b)

for some C̃1, C̃2 ∈ C.
In order to determine if square–integrable solutions exist, we need to find for which

values ofM the functions in Eqs. (8.21) and (8.23) are square–integrable. This can be done
by analysing the asymptotic behaviour of these solutions at the boundary. The leading
behaviour of the hypergeometric functions appearing in these solutions at ρ = ±π/2 is
different for different values of the mass of the spinor field M , thus, it will be convenient
to perform this analysis separately for the following cases:

1. 0 ≤M < 1/2.

2. M > 1/2, with M − 1/2 /∈ N.

3. M = 1/2 + k, with k ∈ N0.

We analyse cases 1 and 2 first. If M = 0, then it is clear from Eq. (8.26) that both
solutions are square–integrable for any C̃1, C̃2, ω ∈ C. Therefore, the deficiency indices for
the massless case are given by n± = 2. Now, for the non–zero values of M falling on these
ranges, we evaluate the functions (8.21) and (8.23) at ρ = π/2 − ε for sufficiently small
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ε > 0. Then, using the fact that F (a, b; c; ε) = 1 +O(ε) as ε→ 0, it follows that

Ψ(1)
ω

(
π

2 − ε
)

=
[
(2M + 1)C1 +O

(
ε2
)]
εM +

[
ω C2 +O

(
ε2
)]
ε1−M , (8.27a)

Ψ(2)
ω

(
π

2 − ε
)

=
[
ω C1 +O

(
ε2
)]
ε1+M +

[
(2M − 1)C2 +O

(
ε2
)]
ε−M . (8.27b)

To evaluate the component functions near ρ = −π/2, we use the transformation formula
for the hypergeometric function [23, Eq. 15.8.4],

F (a, b; c;x) =Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1− x)c−a−bF (c− a, c− b; c− a− b+ 1; 1− x)

+ Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a, b; a+ b− c+ 1; 1− x) , (8.28)

so that we can write Eqs. (8.21) and (8.23) as

Ψ(1)
ω (ρ) = (2M + 1)C1σ(ρ)M

[
A

(M)
1 FM1 (ρ) +A

(M)
2 (1 + sin ρ)M+ 1

2 FM2 (ρ)
]

+ ωC2 cos ρ σ(ρ)−M
[
B

(M)
1 FM3 (ρ) +B

(M)
2 (1 + sin ρ)−M−

1
2FM4 (ρ)

]
, (8.29)

and

Ψ(2)
ω (ρ) = ω C1 cos ρ σ(ρ)−M

[
B

(−M)
1 F−M3 (ρ) +B

(−M)
2 (1 + sin ρ)M−

1
2 F−M4 (ρ)

]
+ (2M − 1)C2σ(ρ)−M

[
A

(−M)
1 F−M1 (ρ) +A

(−M)
2 (1 + sin ρ)

1
2−M F−M2 (ρ)

]
, (8.30)

respectively, where we have defined the quantities

A
(M)
1 =

Γ
(

1
2 +M

)2

Γ
(

1
2 +M + ω

)
Γ
(

1
2 +M − ω

) , A
(M)
2 =

Γ
(

1
2 +M

)
Γ
(
−1

2 −M
)

Γ (ω) Γ (−ω) , (8.31a)

B
(M)
1 =

Γ
(

3
2 −M

)
Γ
(
−M − 1

2

)
Γ
(

1
2 −M + ω

)
Γ
(

1
2 −M − ω

) , B
(M)
2 =

Γ
(

3
2 −M

)
Γ
(

1
2 +M

)
Γ (1 + ω) Γ (1− ω) . (8.31b)

and the functions FMj (ρ), j = 1, . . . 4, are the hypergeometric functions of argument
(1 + sin ρ)/2 that result from the transformations in Eq. (8.28) and satisfy FMj (ρ) =
1 +O(1 + sin ρ) as x→ −π/2. We are now able to evaluate these functions at ρ = ε− π/2,
for the same small parameter ε > 0 above. This results in

Ψ(1)
ω

(
ε− π

2

)
=
[
(2M + 1)C1A

(M)
1 + C2ωB

(M)
2 +O

(
ε2
)]
ε−M

+
[
(2M + 1)C1A

(M)
2 + C2ωB

(M)
1 +O

(
ε2
)]
εM+1 , (8.32a)

Ψ(2)
ω

(
ε− π

2

)
=
[
C1 ωB

(−M)
1 + (2M − 1)C2A

(−M)
2 +O

(
ε2
)]
ε1−M ,

+
[
C1 ωB

(−M)
2 + (2M − 1)C2A

(−M)
1 O

(
ε2
)]
εM . (8.32b)

Since the inner product in Eq. (8.10) is written in terms of the components in Eq. (8.18) as

〈Ψ1,Ψ2〉D =
∫ π/2

−π/2

(
Ψ(1)

1 (ρ)Ψ(1)
2 (ρ) + Ψ(2)

1 (ρ)Ψ(2)
2 (ρ)

)
dρ , (8.33)
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it follows that the spinor Ψω will be normalisable if the asymptotic behaviour of the
function |Ψ(1)

ω (ρ)|2 + |Ψ(2)
ω (ρ)|2 as ρ→ ±π/2 is given by (π/2− |ρ|)r with r > −1. Using

Eq. (8.27) and the fact that M ≥ 0 for the cases we are considering, we have that∣∣∣∣Ψ(1)
ω

(
π

2 − ε
)∣∣∣∣2 +

∣∣∣∣Ψ(2)
ω

(
π

2 − ε
)∣∣∣∣2 ∼ |C2|2

(
|ω|2ε2−2M + (2M − 1)2ε−2M

)
, (8.34)

and,∣∣∣∣Ψ(1)
ω

(
ε− π

2

)∣∣∣∣2 +
∣∣∣∣Ψ(2)

ω

(
ε− π

2

)∣∣∣∣2 ∼ ∣∣∣C1 ωB
(−M)
1 + (2M − 1)C2A

(−M)
2

∣∣∣2 ε2−2M

+
∣∣∣(2M + 1)C1A

(M)
1 + C2 ωB

(M)
2

∣∣∣2 ε−2M , (8.35)

as ε→ 0. Thus, it follows that if 0 < M < 1/2, then the leading term of these expressions
is proportional to εr, with r > −1 at both endpoints. Therefore, the two component
functions Ψ(1)

ω and Ψ(2)
ω are square–integrable for any C1, C2, ω ∈ C, in particular, for

ω = ±i, and thus, the deficiency subspaces of D for this mass range have dimension n± = 2.
By von Neumann’s theorem 5.1.3, the operator D admits a family of self–adjoint extensions
parametrised by the isometries from K+ to K− which, due to finite–dimensionality, can
be realised as 2× 2–unitary matrices. The self–adjoint extensions of the operator D for
this case will be obtained in Sec. 8.2.

On the other hand, for Case 2, if 1/2 < M < 3/2, the terms with ε2−2M decay faster
than ε−1, so the singular behaviour comes from the terms proportional to ε−2M . For the
spinor Ψω to be square–integrable at both endpoints, we must have

C2 = 0 , and A
(M)
1 = 0 . (8.36)

If M > 3/2 and M − 1/2 /∈ N, then terms proportional to ε2−2M are also singular, so
square–integrable solutions for this range need to satisfy Eq. (8.36) as well as the additional
condition

ωB
(−M)
1 = 0 . (8.37)

Using the definitions of these quantities in Eq. (8.31) we note that B(−M)
1 is proportional

to A(M)
1 as a function of ω, so the only positive values of ω for which A(M)

1 , and therefore
B

(−M)
1 , vanish are given by ω = ωIn, where

ωIn := 1
2 +M + n , n ∈ N0 . (8.38)

This implies that no square–integrable solutions exist for ω = ±i, and therefore, the
deficiency spaces are both zero–dimensional and thus, by von Neumann’s theorem, the
operator D is essentially self–adjoint. This means that the unique self–adjoint extension
for the operator D is its closure, D.

A similar conclusion holds for Case 3. First we note that for the values of M we
are considering, the general solution to Eq. (8.19a) with ω = 0 is given by Ψ(ρ) =
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C1(σ(ρ)M , 0)T +C2(0, σ(ρ)−M )T , where σ(ρ) is defined by Eq. (8.22). This solution is not
square–integrable for any M ≥ 1/2, so we will continue the analysis for these values of M
assuming ω 6= 0. Let us now consider the functions in Eq. (8.24) with k > 0. As shown in
Appendix H, the asymptotic behaviour of the these component functions at ρ = π/2− ε,
for sufficiently small ε > 0 is given by

Ψ(1)
ω

(
π

2 − ε
)

=
[
C2ωA

(k)
3 +O

(
ε2
)]
ε−k+ 1

2 , (8.39a)

Ψ(2)
ω

(
π

2 − ε
)

=
[
C2kA

(k)
3 +O

(
ε2
)]
ε−k−

1
2 , (8.39b)

and similarly, at ρ = ε− π/2, we have

Ψ(1)
ω

(
ε− π

2

)
= k A

(k)
3

[
C1

2
π

sin π(ω − k) + C2 cosπ(ω − k) +O
(
ε2
)]
ε−k−

1
2 , (8.40a)

Ψ(2)
ω

(
ε− π

2

)
= ωA

(k)
3

[
C1

2
π

sin π(ω − k) + C2 cosπ(ω − k) +O
(
ε2
)]
ε−k+ 1

2 , (8.40b)

where we have defined

A
(k)
3 := 2kΓ(k)Γ(ω − k)

Γ(ω + k + 1) . (8.41)

The behaviour of the modulus squared of the spinor at the boundary is obtained using
Eqs. (8.39) and (8.40) and it can readily be verified that it is given by Eq. (8.34) at ρ = π/2
and by Eq. (8.35) at ρ = −π/2, with M = k + 1/2. From these approximations it is clear
that the leading terms at both endpoints are of the form εr with r < −1, so in order
to obtain square–integrable solutions the expressions on the left–hand side must vanish
simultaneously. This occurs only when |A(k)

3 |2 = 0, or when C2 = 0 and sin π(ω − k) = 0.
From Eq. (8.41), the former case only happens when ω = −n − k − 1 with n ∈ N0, and
the latter only happens when ω = n+ k + 1. Therefore, no square–integrable solutions for
ω = ±i exist for this case either, thus, the deficiency indices are once again n± = 0, hence,
the unique self–adjoint extension is given by the closure D.

If k = 0, then the solutions in Eq. (8.24) are given in terms of Legendre functions which
have a different asymptotic expansion at the endpoints of the boundary. From the analysis
in Appendix H we find that∣∣∣∣Ψ(1)

ω

(
π

2 − ε
)∣∣∣∣2 +

∣∣∣∣Ψ(2)
ω

(
π

2 − ε
)∣∣∣∣2 ∼ |C2|2

|ω|2
ε−1 , (8.42a)∣∣∣∣Ψ(1)

ω

(
ε− π

2

)∣∣∣∣2 +
∣∣∣∣Ψ(2)

ω

(
ε− π

2

)∣∣∣∣2 ∼ ∣∣∣∣C1
2
πω

sin πω + C2
1
ω

cosπω
∣∣∣∣2 ε−1 , (8.42b)

as ε→ 0. Once again, the spinor solution will be square–integrable if the above expressions
on the left–hand side vanish. This only happens if C2 = 0 and sin πω = 0, the latter
condition restricting the values of ω to be ω ∈ Z, and we once again note that these values
are also of the form ω

(I)
n in Eq. (8.38) with M = 1/2. Thus, by the same argument as for

the case k > 0, the deficiency spaces are zero–dimensional, and thus we will treat this case
in a way similar to the Case 2.



Chapter 8. Dirac spinors in AdS2 134

Let us summarise the results of this section. Looking at the asymptotic behaviour of
the solutions at the boundary we have found that the deficiency indices of the operator D
are n± = 2 when 0 ≤M < 1/2 (Case 1 above) and n± = 0 when the mass of the spinor
field satisfies M ≥ 1/2 (Cases 2 and 3). For the latter case, square–integrable solutions
exist only for the frequencies given by Eq. (8.38). Now that we have found the deficiency
indices of the operator D, we will proceed to obtain the associated self–adjoint extensions
DU .

8.2 self-adjoint extensions of the operator D

In this section we will find the self–adjoint extensions of the operator D. We start by
analysing the case with 0 ≤ M < 1/2 for which we have found that n± = 2. Since the
operator D is densely defined and symmetric, the domain of its adjoint operator is given by
Eq. (5.4). Hence, based on the theory presented in Chapter 5, we know that the domain of
the admissible self–adjoint extensions DU of D must be of the form of Eq. (5.19), that is,

Dom(DU ) = Dom(D)⊕D S , (8.43)

where S ⊆ K+ ⊕D K− is a maximal subspace on which the operator D† is symmetric.
This fact makes possible the description of all the self–adjoint extensions of the operator
D in terms of boundary conditions which we will impose on the solutions of Eq. (8.17).
These boundary conditions can then be obtained by finding the conditions that elements of
S satisfy. This equivalent approach to finding the self–adjoint extensions of D was applied
to several one–dimensional differential operators in Ref. [71]. We expand that analysis and
apply it to the present case.

For the analysis that follows, we will need to manipulate the boundary values of the
solutions with 0 ≤M < 1/2 which, by the analysis in Section 8.1, were found to be given
only in terms of the asymptotic behaviour of the solutions at the boundary. Therefore,
it will be convenient to define the component functions Ψ̃(1) and Ψ̃(2) that contain the
same leading behaviour as the components Ψ(1) and Ψ(2) but take on finite values when
evaluated at ρ = ±π/2. Hence, given Φ ∈ Dom(D†) and 0 < M < 1/2, we define

Ψ̃(1)(ρ) := σ(ρ)−MΨ(1)(ρ) , (8.44a)

Ψ̃(2)(ρ) := σ(ρ)MΨ(2)(ρ) . (8.44b)

For the case M = 0 the functions on the left–hand side are defined trivially by Ψ̃(1) = Ψ(1)

and Ψ̃(2) = Ψ(2). Thus, if Φω is any solution of Eq. (8.17) with 0 < M < 1/2 and fixed
ω ∈ C then, with Eqs. (8.27) and (8.32), a straightforward calculation shows that the
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component functions defined through Eq. (8.44) satisfyΨ̃(1)
ω
(
π
2
)

Ψ̃(2)
ω
(
π
2
)
 =

(2M + 1)C1

(2M − 1)C2

 , (8.45a)

Ψ̃(1)
ω
(
−π

2
)

Ψ̃(2)
ω
(
−π

2
)
 =

 (2M + 1)C1A
(M)
1 + 2M+ 1

2C2 ωB
(M)
2

2M− 1
2C1 ωB

(−M)
2 + (2M − 1)C2A

(−M)
1

 , (8.45b)

and from Eq. (8.26) it is clear that solutions for M = 0 satisfy the simpler relationsΨ̃(1)
ω
(
±π

2
)

Ψ̃(2)
ω
(
±π

2
)
 =

 C̃1 cos ωπ2 ± C̃2 sin ωπ
2

∓C̃1 sin ωπ
2 + C̃2 cos ωπ2

 . (8.46)

Let us recall that the elements of deficiency subspaces K+ and K− are linear combina-
tions of the solutions Ψω of Eq. (8.12) with ω = ±i, respectively. If M = 0, a solution Ψ±i
of this equation is given by Eq. (8.26) and, if M 6= 0 it is given by Eqs. (8.21) and (8.23)
instead. Since K± is two–dimensional, its elements are characterised by the two coefficients
of the solution Ψ±i which we can denote by C±1 and C±2 . Equations (8.45) and (8.46),
with C1, C2, C̃1, C̃2 replaced by C±1 and C±2 , imply that these coefficients are completely
determined by the values of the functions Ψ̃(1)

±i and Ψ̃(2)
±i at the boundary. Therefore, an

element Ψ = Ψi + Ψ−i ∈ K+ ⊕D K− is in one–to–one correspondence with the vector(
Ψ̃(1)

(
π

2

)
, Ψ̃(2)

(
π

2

)
, Ψ̃(1)

(
−π2

)
, Ψ̃(2)

(
−π2

))T
∈ C4 , (8.47)

of boundary data. This means that finding the two–dimensional subspace S that charac-
terises a self–adjoint extension of D is equivalent to finding the two–dimensional subspace
of C4 of boundary data on which D† is symmetric. Now, from the definition of the subspace
S , any element Ψ ∈ S must satisfy

0 =
〈
D†Ψ,Ψ

〉
D
−
〈

Ψ,D†Ψ
〉
D
. (8.48)

Using the inner product from Eq. (8.33), expanding in terms of the components Ψ(1) and
Ψ(2) of the spinor Ψ and integrating by parts, we find that this condition becomes

0 =
[
Ψ(1)(ρ)Ψ(2)(ρ)−Ψ(2)(ρ)Ψ(1)(ρ)

]∣∣∣π/2
−π/2

,

=
[
Ψ̃(1)(ρ)Ψ̃(2)(ρ)− Ψ̃(2)(ρ)Ψ̃(1)(ρ)

]∣∣∣∣π/2
−π/2

, (8.49)

where the second equality is obtained using the definition in Eq. (8.44). We can rewrite
Eq. (8.49) as

0 =
∣∣∣∣Ψ̃(2)

(
π

2

)
+ iΨ̃(1)

(
π

2

)∣∣∣∣2 − ∣∣∣∣Ψ̃(2)
(
π

2

)
− iΨ̃(1)

(
π

2

)∣∣∣∣2
+
∣∣∣∣Ψ̃(2)

(
−π2

)
− iΨ̃(1)

(
−π2

)∣∣∣∣2 − ∣∣∣∣Ψ̃(2)
(
−π2

)
+ iΨ̃(1)

(
−π2

)∣∣∣∣2 . (8.50)
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This expression implies that the components of the vectors of the form of Eq. (8.47) that
belong to the symmetric subspace S must satisfy∣∣∣∣∣∣

 Ψ̃(2) (π
2
)

+ iΨ̃(1) (π
2
)

Ψ̃(2) (−π
2
)
− iΨ̃(1) (−π

2
)
∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
 Ψ̃(2) (π

2
)
− iΨ̃(1) (π

2
)

Ψ̃(2) (−π
2
)

+ iΨ̃(1) (−π
2
)
∣∣∣∣∣∣

2

. (8.51)

By writing the element from Eq. (8.47) as (Ψ1,Ψ2)T , where

Ψ1 =

 Ψ̃(2) (π
2
)

+ iΨ̃(1) (π
2
)

Ψ̃(2) (−π
2
)
− iΨ̃(1) (−π

2
)
 , Ψ2 =

 Ψ̃(2) (π
2
)
− iΨ̃(1) (π

2
)

Ψ̃(2) (−π
2
)

+ iΨ̃(1) (−π
2
)
 , (8.52)

we find that Eq. (8.51) and the linearity of S , imply that if (0,Ψ2)T ∈ S , then Ψ2 = 0,
and thus, if (Ψ1,Ψ2)T , (Ψ1,Ψ′

2)T ∈ S , then Ψ2 = Ψ′
2. Therefore, any (Ψ1,Ψ2)T ∈ S

must satisfy Ψ2 = U(Ψ1) for some linear function U . Hence, for any Ψ ∈ S , we must
have

U

 Ψ̃(2) (π
2
)

+ iΨ̃(1) (π
2
)

Ψ̃(2) (−π
2
)
− iΨ̃(1) (−π

2
)
 =

 Ψ̃(2) (π
2
)
− iΨ̃(1) (π

2
)

Ψ̃(2) (−π
2
)

+ iΨ̃(1) (−π
2
)
 , (8.53)

where U is a 2× 2 matrix. For the boundary values of Ψ ∈ S to span a two–dimensional
space under this condition, the vector Ψ1 of Eq. (8.52) must take on all possible values.
This fact, together with Eq. (8.51), implies that U must be a unitary matrix. Conversely,
for any two Ψ,Ψ′ ∈ K+ ⊕D K− satisfying Eq. (8.53) for a fixed unitary matrix U , we
have

〈
D†Ψ,Ψ′

〉
=
〈

Ψ,D†Ψ′
〉
. Thus, we conclude that the unitary matrix U specifies a

self–adjoint extension DU of the operator D through the boundary data of the element Ψ. In
this way, every self–adjoint extension DU is characterised by the boundary condition (8.53)
which we rewrite as

(I− U)

 Ψ̃(2) (π
2
)

Ψ̃(2) (−π
2
)
 = i(I + U)

 Ψ̃(1) (π
2
)

−Ψ̃(1) (−π
2
)
 . (8.54)

With this, we are now able to solve the eigenvalue problem of Eq. (8.17). We will solve the
equation D†Φω = ωΨω now with ω ∈ R to be determined by requiring that the solutions as
given by Eqs. (8.21) and (8.23) are elements of Dom(DU ). Based on the analysis carried
out in this section, we note that this is equivalent to finding solutions to this equation
satisfying the boundary condition in Eq. (8.54) for each matrix U .

Finally, for the solutions with mass satisfying M ≥ 1/2, as shown in Section 8.1, the
deficiency indices satisfy n± = 0 and thus, the only self–adjoint extension of the operator
D is its closure D. From Eq. (5.4), it follows that Dom(D) = Dom(D†), so finding solutions
in Dom(D) is equivalent to finding square–integrable solutions of D†Ψω = ωΨω. We recall
that, from the analysis of the deficiency spaces in Section 8.1, square–integrable solutions
for this equation exist only when the frequency ω is restricted to be of the form ωIn as given
in Eq. (8.38). We can rephrase this fact in a way more similar to that of the cases with
0 ≤ M < /2, that is, in terms of a boundary condition as follows: From the definitions
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of the component functions Ψ̃(1)
ω and Ψ̃(2)

ω in Eq. (8.44), it can be directly verified that
imposing the boundary condition, which we will refer to as Dirichlet type I boundary
condition, given by

Ψ̃(2)
ω

(
π

2

)
= 0 = Ψ̃(1)

ω

(
−π2

)
, (8.55)

on the general solutions in Eqs. (8.21) and (8.23) if M − 1/2 /∈ N0 and, in Eq. (8.24) if
M − 1/2 ∈ N0, results in the same frequency spectrum ωIn and restriction C2 = 0 that
were obtained in Section 8.1 by requiring square–integrability of the spatial spinor Ψω.
Hence, we can conclude that for all M ≥ 1/2, the unique self–adjoint extension of D is
characterised by the Dirichlet type I boundary condition. This fact will be used in Sec. 8.3
when analysing the invariance of the solutions under the action of S̃L(2,R).

8.3 invariant self–adjoint boundary conditions

Instead of finding the spectrum of the operator DU for every unitary matrix U , we will
only focus on those matrices which, via Eq. (8.54), result in boundary conditions that
remain invariant under infinitesimal S̃L(2,R)–transformations. In order to do this, we
need to consider the infinitesimal action of the Lie algebra sl(2,R) on the space of spinors,
C∞(AdS2;C2).

We recall that, for a spinor field ψ ∈ C∞(AdS2,C2), the spinorial Lie derivative in
the direction of an arbitrary vector field ξ ∈ X(AdS2), is given by Eq. (2.88). Thus, the
spinorial Lie derivatives in the direction of the Killing vector fields of AdS2 from Eq. (6.2)
define an infinitesimal action of S̃L(2,R) on the space of spinor fields. These read

Lξ0 = ∂t , (8.56a)

Lξ1 = cos t sin ρ ∂t + sin t cos ρ ∂ρ + cos t cos ρΣ01 , (8.56b)

Lξ2 = − sin t sin ρ ∂t + cos t cos ρ ∂ρ − sin t cos ρΣ01 . (8.56c)

From these operators we can construct the associated time–translation operator L0 := iLξ0

and the ladder operators

L± := Lξ1 ± iLξ2 ,

= e∓it
(
±i cos ρ ∂ρ + sin ρ ∂t + cos ρΣ01

)
, (8.57)

which will be more convenient to use once we obtain a mode decomposition of the solutions.
We note that the commutation relations between these operators are given by

[L0,L±] = ±L± , [L+,L−] = 2L0 . (8.58)

On the representation of sl(2,R) on the space of spinors, the Casimir element Q defined
by Eq. (4.15) acts by

Q = L2
0 + 1

2 (L+L− + L−L+) . (8.59)
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It can readily be verified using Eqs. (8.56) and (8.57), that the Dirac operator γ̃µ∇(D)
µ on

AdS2, given by the left–hand side of Eq. (8.6) is related to the Casimir operator Q in
Eq. (8.59) by (

γ̃µ∇(D)

µ

)2
= Q+ 1

4I . (8.60)

Hence, the eigenvalue q of the Casimir operator for the representation on C∞
(
AdS2,C2)

satisfies, by Eq. (8.6), the relation

q = M2 − 1
4 . (8.61)

We recall the fact that we have been considering spinor solutions of the form given by
Eq. (8.7). Hence, we will denote by L± the associated ladder operators acting on the spinor
ψ̃ = (cos ρ)−1/2ψ. From the decomposition into mode solutions in Eq. (8.9), it follows that
the action of the ladder operators on spinors of the form ψ̃(t, ρ) = Ψω(ρ)e−iωt is given by

L±
[
Ψω(ρ)e−iωt

]
= ±i

[
cos ρ d

dρ −
(1

2 ± ω
)

sin ρ∓ i cos ρΣ01
]

Ψω(ρ)e−i(ω±1)t . (8.62)

From this expression we see that at t = 0, the component functions Ψ(1)
ω and Ψ(2)

ω of the
spinor Ψω transform under the action of ∓iL± as

(δ±Ψω)(1)(ρ) := −
[
M +

(1
2 ± ω

)
sin ρ

]
Ψ(1)
ω (ρ) +

(
ω ± 1

2

)
cos ρΨ(2)

ω (ρ) , (8.63a)

(δ±Ψω)(2)(ρ) := −
(
ω ± 1

2

)
cos ρΨ(1)

ω (ρ) +
[
M −

(1
2 ± ω

)
sin ρ

]
Ψ(2)
ω (ρ) . (8.63b)

where we have used Eq. (8.19a) to eliminate the derivative terms. Using the definitions of
the components Ψ̃(1)

ω and Ψ̃(2)
ω in Eq. (8.44), we find that

˜(δ±Ψω)(1)(ρ) =−
[
M +

(1
2 ± ω

)
sin ρ

]
Ψ̃(1)
ω (ρ)

+
(
ω ± 1

2

)
cos ρ σ(ρ)−2M Ψ̃(2)

ω (ρ) , (8.64a)

˜(δ±Ψω)(2)(ρ) =−
(
ω ± 1

2

)
cos ρ σ(ρ)2M Ψ̃(1)

ω (ρ)

+
[
M −

(1
2 ± ω

)
sin ρ

]
Ψ̃(2)
ω (ρ) . (8.64b)

In particular, for the δ−–transformation, we have

˜(δ−Ψω)(1)
(
±π2

)
= −

[
M ±

(1
2 − ω

)]
Ψ̃(1)
ω

(
±π2

)
, (8.65a)

˜(δ−Ψω)(2)
(
±π2

)
=
[
M ∓

(1
2 − ω

)]
Ψ̃(2)
ω

(
±π2

)
. (8.65b)

and the values for δ+ are obtained by replacing ω 7→ −ω. We also note that these boundary
values are valid for the massless case by setting M = 0.
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Now, if Ψω1 and Ψω2 are two solutions of the equation DUΨ = ωΨ, with ω1, ω2 ∈ R,
satisfying the same boundary condition (8.54) for a fixed matrix U , then we must have
0 = 〈DUΨω1 ,Ψω2〉D − 〈Ψω1 ,DUΨω2〉D, that is,

0 =
[
Ψ̃(1)
ω1

(
π

2

)
Ψ̃(2)
ω2

(
π

2

)
− Ψ̃(2)

ω1

(
π

2

)
Ψ̃(1)
ω2

(
π

2

)]

−
[
Ψ̃(1)
ω1

(
−π2

)
Ψ̃(2)
ω2

(
−π2

)
− Ψ̃(2)

ω1

(
−π2

)
Ψ̃(1)
ω2

(
−π2

)]
. (8.66)

From Eq. (8.65), it follows that if the boundary condition is invariant under the transfor-
mation induced by L±, then the relation

0 = [〈DUδ−Ψω1 ,Ψω2〉 − 〈δ−Ψω1 ,DUΨω2〉] ,

=− (1− ω1 − ω2)
[
Ψ̃(1)
ω1

(
π

2

)
Ψ̃(2)
ω2

(
π

2

)
− Ψ̃(2)

ω1

(
π

2

)
Ψ̃(1)
ω2

(
π

2

)]

− (1− ω1 − ω2)
[
Ψ̃(1)
ω1

(
−π2

)
Ψ̃(2)
ω2

(
−π2

)
− Ψ̃(2)

ω1

(
−π2

)
Ψ̃(1)
ω2

(
−π2

)]
, (8.67)

(here, the operator DU is not transformed) must also be satisfied. Eqs. (8.66) and (8.67)
are compatible with each other if and only if the two equations[

Ψ̃(1)
ω1

(
±π2

)
Ψ̃(2)
ω2

(
±π2

)
− Ψ̃(2)

ω1

(
±π2

)
Ψ̃(1)
ω2

(
±π2

)]
= 0 , (8.68)

are simultaneously satisfied. For this to hold for all pairs {ω1, ω2}, we must have

Ψ̃(2)
ω

(
±π2

)
∝ Ψ̃(1)

ω

(
±π2

)
, (8.69)

for both ω1 and ω2, with the proportionality constant being the same real number, or
Ψ̃(1)
ω = 0 at each endpoint. This is only true if the unitary matrix U in Eq. (8.54) is

diagonal, that is, if

(1− eiα±)Ψ̃(2)
ω

(
±π2

)
= ±i(1 + eiα±)Ψ̃(1)

ω

(
±π2

)
, (8.70)

for some α± ∈ R.
Now, using Eq. (8.64), we see that that if these boundary conditions are invariant, then

the components (δ−Ψω)(1) and (δ−Ψω)(2) must satisfy(1
2 − ω ∓M

)
(1− eiα±)Ψ̃(2)

ω

(
±π2

)
= ±i

(1
2 − ω ±M

)
(1 + eiα±)Ψ̃(1)

ω

(
±π2

)
. (8.71)

From these relations, it is clear that if M = 0, then Eq. (8.71) reduces to Eq. (8.70), thus,
the self–adjoint extensions parametrised by a diagonal matrix U are all invariant under
both ladder operators. In contrast, if 0 < M < 1/2, then for Eq. (8.70) to be consistent
with Eq. (8.71), there are only 4 different cases for the values that the numbers eiα± can
take:
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1. eiα± = ∓1, i.e., U = diag(−1, 1). Then the invariant boundary condition is the
Dirichlet type I condition that was also found for the case M ≥ 1/2 in Eq. (8.55),
namely,

Ψ̃(2)
ω

(
π

2

)
= 0 = Ψ̃(1)

ω

(
−π2

)
. (8.72)

2. eiα± = ±1, i.e., U = diag(1,−1). Then, Eq. (8.54) reduces to

Ψ̃(1)
ω

(
π

2

)
= 0 = Ψ̃(2)

ω

(
−π2

)
, (8.73)

which we will refer to as the Dirichlet type II condition.

3. eiα± = 1, i.e., U = I. This self–adjoint boundary condition then takes the form of a
Dirichlet boundary condition for the first weighted component of the spinor, namely,

Ψ̃(1)
ω

(
π

2

)
= 0 = Ψ̃(1)

ω

(
−π2

)
. (8.74)

We will call this boundary condition Dirichlet type III.

4. eiα± = −1, i.e., U = −I. In this case, we have a Dirichlet boundary condition for
the second weighted component of the spinor, namely,

Ψ̃(2)
ω

(
π

2

)
= 0 = Ψ̃(2)

ω

(
−π2

)
. (8.75)

This boundary condition will be referred to as Dirichlet type IV.

For the case M ≥ 1/2 we recall that the unique self–adjoint extension of the operator
D is its closure D. As pointed out at the end of Sec. 8.2, square–integrable solutions of
D†Ψω = ωΨω can be characterised by solutions satisfying the Dirichlet type I boundary
condition in Eq. (8.55). This boundary condition is the same as those found in Eq. (8.73)
above, and thus, also invariant under the infinitesimal action of S̃L(2,R).

8.4 mode solutions satisfying the invariant boundary conditions

Now that we have found which of the boundary conditions that characterise the admissible
self–adjoint extensions of the operator D are invariant under S̃L(2,R), we shall find the
frequency spectrum and the corresponding mode solutions for each of these boundary
conditions. It will be convenient to analyse the massless and massive cases separately.

8.4.1 Massless field

We know from the analysis in Sec. 8.3 that any boundary condition of the form given by
Eq. (8.54) with a diagonal matrix U will result in an invariant self–adjoint extension of D.
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Let us reparametrise this matrix as U = diag(e2iβ+ , e2iβ−), with 0 ≤ β± ≤ π, so that the
boundary condition for this case is now written as

cosβ±Ψ(1)
ω

(
±π2

)
= ∓ sin β±Ψ(2)

ω

(
±π2

)
, (8.76)

which, by Eq. (8.46), read

cos
(
ωπ

2 + β±

)
C̃1 ± sin

(
ωπ

2 + β±

)
C̃2 = 0 . (8.77)

To have non–trivial solutions for C̃1 and C̃2, the determinant of the associated linear
system of equations should vanish, that is, sin (ωπ + β+ + β−) = 0, which means that the
frequency ω is restricted by this condition to be of the form

ωj = − 1
π

(β+ + β−) + j , j ∈ Z . (8.78)

In order to substitute these values back into Eq. (8.77), we need to treat the cases for
which j is even and odd separately. By a direct calculation it can readily be verified that
the constants C̃1 and C̃2 must then satisfy

cos
(
β+ − β−

2

)
C̃1 + sin

(
β+ − β−

2

)
C̃2 = 0 , if j = 2m,

sin
(
β+ − β−

2

)
C̃1 − cos

(
β+ − β−

2

)
C̃2 = 0 , if j = 2m+ 1 , (8.79)

for m ∈ Z. Substituting the values of C̃1 and C̃2 into Eq. (8.77), and relabelling the index
m to m + 1 ∈ Z for later convenience, we find that the mode solutions of the form of
Eq. (8.9) will be given by

ψ̃2m,0(t, ρ) = N2m

 cos [(2m+ 1− β) ρ−B]

− sin [(2m+ 1− β) ρ−B]

 e−i(2m+1−β)t , (8.80a)

ψ̃2m+1,0(t, ρ) = N2m+1

sin [(2m+ 2− β) ρ−B]

cos [(2m+ 2− β) ρ−B]

 e−i(2m+2−β)t , (8.80b)

where we have used Eq. (8.9) and where we have defined β := (β+ + β−)/π and B :=
(β+ − β−)/2. Using the inner product in Eq. (8.10), we find that Nj = π−1/2 for all j ∈ Z.

8.4.2 Massive field

For the massive spinor field with mass satisfying 0 < M < 1/2, we only have four unitary
matrices U leading to invariant self–adjoint extensions as listed at the end of Sec. 8.3. In
each of these cases we impose the associated boundary conditions to the general solutions
Ψω given by Eqs. (8.21) and (8.23) and then we substitute the resulting spatial components
into the scaled Dirac spinors ψ̃ via Eq. (8.9). For all the mode functions obtained below,
we use the definition of the Jacobi polynomials given by Eq. (6.23).
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1. U = diag(−1, 1): The Dirichlet type I boundary condition in Eq. (8.72) applied to
Eq. (8.45) reduces to the requirement C2 = 0 and A(M)

1 = 0, which restricts the values
of ω to be of the form ±ωIn = ±(1/2 +M + n), with n ∈ N0. Then the solutions take
the form

ψ̃In,M (t, ρ) = N I
n,M (cos ρ)M

(1 + sin ρ) 1
2P

(− 1
2 +M, 1

2 +M)
n (sin ρ)

(1− sin ρ) 1
2P

( 1
2 +M,− 1

2 +M)
n (sin ρ)

 e−iωInt , (8.81a)

ψ̃I−n,M (t, ρ) = N I
n,M (cos ρ)M

 (1 + sin ρ) 1
2P

(− 1
2 +M, 1

2 +M)
n (sin ρ)

−(1− sin ρ) 1
2P

( 1
2 +M,− 1

2 +M)
n (sin ρ)

 eiωInt , (8.81b)

with the normalisation constant given by

N I
n,M =

√
n!Γ(n+ 2M + 1)

2M+ 1
2 Γ(1/2 +M + n)

. (8.82)

2. U = diag(1,−1): The Dirichlet type II boundary condition given in Eq. (8.73) reduces
to C1 = 0 and A(−M)

1 = 0, which restricts the values of ω to be of the form ω = ωIIn :=
n −M + 1/2, with n ∈ N0 for the positive–frequency modes, and ω = −ωIIn for the
negative–frequency modes. Then the solutions are found to be given by

ψ̃IIn,M (t, ρ) = N II
n,M (cos ρ)−M

 (1− sin ρ) 1
2P

( 1
2−M,− 1

2−M)
n (sin ρ)

−(1 + sin ρ) 1
2P

(− 1
2−M, 1

2−M)
n (sin ρ)

 e−iωIIn t , (8.83a)

ψ̃II−n,M (t, ρ) = N II
n,M (cos ρ)−M

(1− sin ρ) 1
2P

( 1
2−M,− 1

2−M)
n (sin ρ)

(1 + sin ρ) 1
2P

(− 1
2−M, 1

2−M)
n (sin ρ)

 eiωIIn t , (8.83b)

with

N II
n,M =

√
n!Γ(n− 2M + 1)

2 1
2−MΓ(1/2−M + n)

. (8.84)

3. U = I: The Dirichlet type III boundary condition for the first component in Eq. (8.74)
implies that C1 = 0 and B(M)

2 = 0. Using the definitions in Eq. (8.31), we find that this
boundary condition restricts the value of ω to be either zero or of the form ω = ωIIIn := n,
with n ∈ N for the positive–frequency modes and ω = −ωIIIn for the negative–frequency
modes. By substituting these values into Eqs. (8.21) and (8.23), we find that the mode
solutions ψ̃ reduce to the forms

ψ̃IIIn,M (t, ρ) = N III
n,M

(1 + sin ρ
1− sin ρ

)M
2

 cos ρP ( 1
2−M, 1

2 +M)
n−1 (sin ρ)

−2P (− 1
2−M,− 1

2 +M)
n (sin ρ)

 e−iωIIIn t , (8.85a)

ψ̃III0,M (t, ρ) = N III
0,M

(1 + sin ρ
1− sin ρ

)M
2
(

0
−2

)
, (8.85b)

ψ̃III−n,M (t, ρ) = N III
n,M

(1 + sin ρ
1− sin ρ

)M
2

cos ρP ( 1
2−M, 1

2 +M)
n−1 (sin ρ)

2P (− 1
2−M,− 1

2 +M)
n (sin ρ)

 eiωIIIn t , (8.85c)
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where

N III
n,M = n!

2
√

Γ(1/2 +M + n)Γ(1/2−M + n)
. (8.86)

4. U = −I: The Dirichlet type IV boundary condition in Eq. (8.75) implies that C2 = 0
and ωB(−M)

2 = 0. Once again, the definitions in Eq. (8.31) imply that these conditions
restrict the value of ω to be either zero or once again of the form ω = ωIIIn = n, with
n ∈ N for the positive–frequency modes and ω = −ωIIIn for the negative–frequency
modes. Thus, the associated mode solutions ψ̃ reduce to the form

ψ̃IVn,M (t, ρ) = N IV
n,M

(1− sin ρ
1 + sin ρ

)M
2

 2P (− 1
2 +M,− 1

2−M)
n (sin ρ)

cos ρP ( 1
2 +M, 1

2−M)
n−1 (sin ρ)

 e−iωIIIn t , (8.87a)

ψ̃IV0,M (t, ρ) = N IV
0,M

(1− sin ρ
1 + sin ρ

)M
2
(

2
0

)
, (8.87b)

ψ̃IV−n,M (t, ρ) = N IV
n,M

(1− sin ρ
1 + sin ρ

)M
2

 2P (− 1
2 +M,− 1

2−M)
n (sin ρ)

− cos ρP ( 1
2 +M, 1

2−M)
n−1 (sin ρ)

 eiωIIIn t , (8.87c)

with N IV
n,M = N III

n,M as given in Eq. (8.86).

From the remarks at the end of Section 8.3, all square–integrable solutions withM ≥ 1/2
are invariant under S̃L(2,R) and satisfy the boundary condition in Eq. (8.55). As shown
in Sec. 8.1, imposing this boundary condition (or equivalently, requiring square–integrable
solutions) restricts the values of the frequencies to be ωIn and requires the second linearly
independent solution to vanish. We substitute these conditions into the general solutions
found for M ≥ 1/2 as follows:

1. For M − 1/2 /∈ N0: We substitute C2 = 0 and ωIn = 1/2 +M + n, n ∈ N0 into the
general solutions given by Eq. (8.21) and (8.23). This results in the mode solutions
ψ̃In,M in Eq. (8.81a). This was indeed expected as both sets satisfy the same boundary
condition (8.55), the only difference being the values of the mass M in each in case.

2. For M = k+ 1/2, with k ∈ N: We substitute C2 = 0 and ωIn = k+n+ 1, n ∈ N0 into
the general solutions given by Eq. (8.24). This results in the spatial components

Ψ(1)
ωIn

(ρ) = C1σ(ρ)
1
2
(
P−kk+n+1(sin ρ) + P−kk+n(sin ρ)

)
, (8.88a)

Ψ(2)
ωIn

(ρ) = C1σ(ρ)−
1
2
(
P−kk+n(sin ρ)− P−kk+n+1(sin ρ)

)
. (8.88b)

After writing the Ferrers functions above in terms of Gaussian hypergeometric
functions using Eq. (8.25), we find that the components above reduce, via Eq. (6.23),
to Jacobi polynomials, and thus, the mode solutions are found to be given by

ψ̃Vn,k(t, ρ) = NV
n,k(cos ρ)k+ 1

2

(1 + sin ρ) 1
2P

(k,k+1)
n (sin ρ)

(1− sin ρ) 1
2P

(k+1,k)
n (sin ρ)

 e−i(k+n+1)t , (8.89)
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with

NV
n,k =

√
n!(2k + n+ 1)!
2k+1(n+ k)! . (8.90)

From these expressions it is clear that the mode solutions ψ̃Vn,k are of the same form
as ψ̃In,M in Eq. (8.81a) with M = k + 1/2.

3. For M = 1/2: Substituting C2 = 0 and ωIn = m, where m ∈ N into Eq. (8.24) with
k = 0, we find the spatial components of the spinor solutions as

Ψ(1)
ωIm

= C1σ(ρ)
1
2 (Pm+1(sin ρ) + Pm(sin ρ)) , (8.91a)

Ψ(2)
ωIm

= C1σ(ρ)−
1
2 (Pm(sin ρ)− Pm+1(sin ρ)) . (8.91b)

To match the functional form of these component functions to the previous cases,
we use the fact that Legendre polynomials are related to Jacobi polynomials by
Pm(x) = P

(0,0)
m (x). By applying recursion relations for the combinations above, it

can readily be verified that the resulting mode solutions reduce to

ψ̃VIn,1/2(t, ρ) = NVI
n (cos ρ)

1
2

(1 + sin ρ) 1
2P

(0,1)
n (sin ρ)

(1− sin ρ) 1
2P

(1,0)
n (sin ρ)

 e−i(n+1)t , (8.92)

where n ∈ N0, and NVI
n =

√
n+ 1/2. From these expressions it follows that these

modes are of the form of ψ̃In,M (and thus, of ψ̃Vn,k) withM = 1/2 (k = 0, respectively).

Thus, the mode solutions found for all possible values of M ≥ 1/2 reduce to the form
of the spinors ψ̃In,M as given by Eq. (8.81a).

8.5 mode solutions leading to invariant positive–frequency subspaces

We will now determine which of the solution spaces that result from the S̃L(2,R)–invariant
self–adjoint boundary conditions found in the previous section split into invariant positive–
and negative–frequency subspaces and thus, lead to an invariant vacuum state via the
fermionic Fock space construction outlined in chapter 2, Section 2.3. It is clear that all
the sets of mode solutions listed in Section 8.4 form a unitary representation of S̃L(2,R)
with respect to the inner product in Eq. (8.10), as from Eq. (8.62) we have L†± = −L∓,
and 〈Ψω,M ,Ψω,M 〉D > 0 for all values of M and all ω in the frequency spectrum. In order
to determine if any of these representations admits a splitting into invariant positive– or
negative–frequency subspaces, we will use the action of the operators L± from Eqs. (8.62)
and (8.63) on each of the sets of mode solutions to determine if a particular mode is
annihilated by any of these operators and thus, defines a highest– or lowest–weight vector
of an invariant subspace. Once again, it will be more convenient to treat the massless and
massive cases separately.
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8.5.1 Massless spinor

We consider the modes in Eq. (8.80) collectively written as ψ̃j,0 for j ∈ Z. By applying the
operators L± on both ψ̃2n,0 and ψ̃2n+1,0, it can readily be verified that

(L±ψ̃j,0)(t, ρ) = i(−1)j+1
(1

2 ± ωj
)
ψ̃j±1,0(t, ρ) . (8.93)

We recall that the frequencies are given by ωj = j + 1− β, with β = (β+ + β−)/π so that
0 ≤ β < 2. This implies that the right–hand side of the expression above vanishes only
for β = 1/2 or β = 3/2. Thus, for any other possible value of β and j ∈ Z all elements
ψ̃j,0 can be reached by applying the operators L±. Hence, the representation is irreducible
for β 6= 1/2, 3/2. In order to relate this irreducible representation to the UIRs of S̃L(2,R)
given by the classification at the end of Section 4.3, we need only note that Eq. (8.61)
implies that the mass of the spinor field M relates to the eigenvalue parameter λ (where
q = λ(λ− 1)), by λ = M + 1/2. Hence, we identify these irreducible representations with
the unitary principal series of the form Pµ

0 , with the values of µ given by

µ =


−β, 0 ≤ β < 1

2

1− β, 1
2 < β < 3

2 ,

2− β, 3
2 < β < 2 .

(8.94)

Now we turn to the specific cases in which the resulting representations are reducible.
When β = 1/2, we see from Eq. (8.93) that L+ψ̃−1,0 and L−ψ̃0,0, with frequencies
ω−1 = −1/2 and ω0 = 1/2 respectively, vanish. Therefore, the representation splits into
the two invariant subspaces spanned by the positive–frequency modes

{
ψ̃n,0

}
n∈N0

, and

the negative–frequency modes
{
ψ̃−n,0

}
n∈N

, respectively. The explicit form of the mode
solutions is obtained by writing Eq. (8.80) in terms of one of the parameters, say β+, so
that β− = π/2− β+ ≥ 0 and B = β+ − π/4. By doing this, we find that, for β+ ∈ [0, π/2)
and n ∈ N0, the invariant positive–frequency subspace is spanned by the modes

ψ̃
β+
2n,0(t, ρ) = 1√

π
R

(
π

4 − β+

) cos
(
2n+ 1

2

)
ρ

− sin
(
2n+ 1

2

)
ρ

 e−i(2n+ 1
2 )t , (8.95a)

ψ̃
β+
2n+1,0(t, ρ) = 1√

π
R

(
π

4 − β+

)sin
(
2n+ 1 + 1

2

)
ρ

cos
(
2n+ 1 + 1

2

)
ρ

 e−i(2n+1+ 1
2 )t , (8.95b)

where we have defined R(θ) as the 2× 2 rotation matrix parametrised by the angle θ. The
negative–frequency subspace is obtained by taking −n ∈ N.

Similarly, when β = 3/2, the transformed modes L+ψ̃0,0 and L−ψ̃1,0, with frequencies
ω0 = −1/2 and ω1 = 1/2 respectively, are the only ones vanishing, and thus, the repre-
sentation once again splits into the two invariant subspaces spanned by

{
ψ̃n,0

}
n∈N

and{
ψ̃−n,0

}
n∈N0

. The explicit form of the mode solutions is once again obtained by writing
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Eq. (8.80) in terms of β+, so that β− = 3π/2− β+ < π and B = β+ − 3π/4. Also, after
shifting the labels of the spinors so that the lowest positive–frequency mode is Ψ0,0, we
have that, for β+ > π/2 and n ∈ N0, the positive–frequency subspace is spanned by

ψ̃
β+
2n,0(t, ρ) = 1√

π
R

(3π
4 − β+

)sin
(
2n+ 1

2

)
ρ

cos
(
2n+ 1

2

)
ρ

 e−i(2n+ 1
2 )t , (8.96a)

ψ̃
β+
2n+1,0(t, ρ) = 1√

π
R

(3π
4 − β+

) cos
(
2n+ 1 + 1

2

)
ρ

− sin
(
2n+ 1 + 1

2

)
ρ

 e−i(2n+1+ 1
2 )t , (8.96b)

and the negative–frequency modes are obtained by considering instead −n ∈ N. However,
by writing R(3π/4− β+) = R(π/4− β+)R(π/2) above, and noting that the matrix R(π/2)
maps a two component spinor (a, b)T to (b,−a)T , we note that the modes in Eq. (8.96)
in fact reduce to the same form of the modes in Eq. (8.95) (up to a minus sign for the
odd modes). Therefore, regardless of the value of β+ ∈ [0, π), the invariant subspaces the
representation splits into are given by the linear span of the modes appearing in Eq. (8.95).

Before we identify the resulting subspaces with the known UIR’s, we write the mode
solutions in terms of Jacobi polynomials so that we can match the functional form of the
spinors with M 6= 0 found in Section 8.4.2. If we use the fact that3

cos
(
n+ 1

2

)
ρ =Cn

√
2
π

(
(−1)n(1 + sin ρ)

1
2P

(− 1
2 ,

1
2 )

n (sin ρ)

+(1− sin ρ)
1
2P

( 1
2 ,−

1
2 )

n (sin ρ)
)
, (8.97a)

sin
(
n+ 1

2

)
ρ =Cn

√
2
π

(
(1 + sin ρ)

1
2P

(− 1
2 ,

1
2 )

n (sin ρ)

+(−1)n(1− sin ρ)
1
2P

( 1
2 ,−

1
2 )

n (sin ρ)
)
, (8.97b)

where we have defined the constants

Cn := (−1)bn2 cn!
√

2Γ
(
n+ 1

2

) , (8.98)

then a straightforward calculation shows that the modes in Eq. (8.95) can be collectively
written as

ψ̃
β+
n,0(t, ρ) = CnR

(
π

2 − β+

)(1 + sin ρ) 1
2P

(− 1
2 ,

1
2 )

n (sin ρ)

(1− sin ρ) 1
2P

( 1
2 ,−

1
2 )

n (sin ρ)

 e−i( 1
2 +n)t , (8.99a)

ψ̃
β+
−n,0(t, ρ) = CnR

(
π

2 − β+

) (1 + sin ρ) 1
2P

(− 1
2 ,

1
2 )

n (sin ρ)

−(1− sin ρ) 1
2P

( 1
2 ,−

1
2 )

n (sin ρ)

 ei( 1
2 +n)t , (8.99b)

3These identities can be obtained using the power series expansions for the Jacobi polynomials [23, Eqs.
18.5.7, 18.5.8]. For this particular case the author found it more convenient to prove these formulas via
induction.
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for all β+ ∈ [0, π) and n ∈ N0. We note that the matrix R(θ) can be written as R(θ) =
exp(−2iθΣ01) by means of Eq. (8.3). Now, it is a well–known fact that the massless Dirac
equation has a global internal chiral symmetry [42]. In a two–dimensional spacetime,
chirality corresponds to the spinor components of the solutions to Eq. (8.6) with M = 0
being left– or right–moving plane waves. In terms of the gamma matrix representation
in Eq. (8.2), the chiral transformation is given by ψ 7→ exp(2iθΣ01)ψ and two massless
Dirac spinors differing by a chiral transformation are taken to be equivalent under this
symmetry. Then, the action of the rotation matrix R(π/2 − β) in Eq. (8.99) is in fact
a chiral transformation on the modes ψ̃β+

±n,0. Therefore, the sets of mode functions with
different values of β+ define a unique representation up to chiral equivalence. If we refer
to the classification of UIR’s in Section 4.3, we can directly identify the linear span of the
positive–frequency mode solutions in Eq. (8.99a) with the positive mock–discrete series
representation D+

1/2. Similarly, the negative–frequency subspace spanned by the modes in
Eq. (8.99b) is identified with the negative mock–discrete series D−1/2. The fact that the
unitary representation spanned by both positive– and negative–frequency subspaces splits
into the two invariant subspaces is consistent with the representation theory of S̃L(2,R).
This follows from the fact that the reducible representation spanned by both positive–
and negative–frequency modes corresponds to the unitary principal series P

1/2
0 which, as

discussed in Section 4.3, is known to have the decomposition into irreducible subspaces
P

1/2
0 ' D+

1/2 ⊕D−1/2.
We also note that the invariant sets of mode functions corresponding to the Dirichlet

types I–IV boundary conditions in Eqs. (8.81)–(8.87) reduce to certain massless sets of
modes in the limit M → 0. The Dirichlet type I and type II modes with M = 0 reduce to
Eq. (8.99) with β+ = π/2 and β+ = 0, respectively. To see the correspondence with the
Dirichlet type III and type IV modes, we consider the invariant massless mode functions in
Eq. (8.80) forming the principal series Pµ

0 , with µ = 0. From Eq. (8.94) we note that this
restricts the values of β± to satisfy β = 1. Thus, by setting β− = π− β+ in Eq. (8.80), the
invariant massless modes reduce to

ψ̃2m,0(t, ρ) = 1√
π
R(−β+)

− sin 2mρ

− cos 2mρ

 e−2imt , (8.100a)

ψ̃2m+1,0(t, ρ) = 1√
π
R(−β+)

 cos(2m+ 1)ρ

− sin(2m+ 1)ρ

 e−i(2m+1)t , (8.100b)

where R(β+) is a rotation matrix by the angle β+. We now write these modes in a
form more readily recognisable as the massless limit of the massive cases. Consider the
identities [23, Eqs. 18.5.1, 18.5.2] cos nθ = Tn(cos θ), and sin nθ = sin θUn−1(cos θ), where
n ∈ N0 and Tn, Un are Chebyshev polynomials of the first and second kind, respectively,
and the relations [87, Eq. 8.962.3]

Tn(x) = n!
√
π

Γ(n+ 1/2)P
(−1/2,−1/2)
n (x) , Un(x) = (n+ 1)!

√
π

2Γ(n+ 3/2)P
(1/2,1/2)
n (x) . (8.101)
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Hence, Eq. (8.100) can be written, for n ∈ N, as

ψ̃n,0(t, ρ) = (−1)nN III
n,0 R(−β+)

 cos ρP (1/2,1/2)
n−1 (sin ρ)

−2P (−1/2,−1/2)
n (sin ρ)

 e−int , (8.102a)

ψ̃0,0(t, ρ) = N III
0,0 R(−β+)

 0

−2

 , (8.102b)

ψ̃−n,0(t, ρ) = (−1)nN III
n,0 R(−β+)

− cos ρP (1/2,1/2)
n−1 (sin ρ)

−2P (−1/2,−1/2)
n (sin ρ)

 eint . (8.102c)

From these expressions it follows that if β+ = 0, then the modes above are the Dirichlet
type III mode solutions in Eq. (8.85) with M = 0, and if β+ = π/2, then we obtain the
Dirichlet type IV mode solutions in Eq. (8.87) with M = 0. Similarly to the previous
situation, all other values of β+ are equivalent to either of these two mode solutions up to
a chiral transformation.

8.5.2 Massive spinor

Now we analyse the massive mode solutions that resulted from imposing the self–adjoint
boundary conditions which are invariant under S̃L(2,R). Thus, we will determine which of
the sets of mode solutions appearing in Eqs. (8.81)–(8.87) span a solution space with an
invariant positive– or negative–frequency subspace by applying the ladder operators L±
on the lowest positive– and highest negative–frequency modes and determine for which
cases these modes are annihilated.

We first consider the two sets of mode solutions ψ̃In,M for all M > 0 and ψ̃IIn,M for
0 < M < 1/2, given by Eqs. (8.81) and (8.83). Using Eq. (8.62) and standard recurrence
relations for the Jacobi polynomials [23, Secs. 18.9(i), 18.9(iii)] we find that the set of
Dirichlet type I modes transform under the ladder operators L± as

L±ψ̃
I
n,M = −i

√
(n+ 1/2± 1/2)(n+ 2M + 1/2± 1/2)ψ̃In±1,M , (8.103a)

L±ψ̃
I
−n,M = i

√
(n+ 1/2∓ 1/2)(n+ 2M + 1/2∓ 1/2)ψ̃I−n±1,M , (8.103b)

for all n ≥ 0 (here, we use the notation ψ̃I−0,M to denote the highest negative–frequency
mode). Similarly, the Dirichlet type II mode solutions transform as in Eq. (8.103) with M
replaced by −M . From these expressions we see that L−ψ̃0,M = 0 = L+ψ̃−0,M , and thus,
both the positive– and negative–frequency subspaces are invariant for these two sets of
mode solutions. Furthermore, using the classification of UIR’s at the end of Sec. 8.1, we can
identify these subspaces with the discrete series representations: The mode solutions ψ̃I±n,M
form the representation D±1/2+M , while the mode solutions ψ̃II±n,M form the representation
D±1/2−M .

On the other hand, Dirichlet type III and type IV mode solutions in Eqs. (8.85)
and (8.87), respectively, form an irreducible representation and thus, do not split into
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invariant positive– and negative–frequency subspaces. This can be seen as follows: Using
Eq. (8.62) we find that both sets of mode solutions, ψ̃IIIn and ψ̃IVn , transform under the
action of the ladder operators L± as

L±ψ̃n = −i
√

(n+M ± 1/2)(n−M ± 1/2)ψ̃n±1 , (8.104a)

L±ψ̃−n = i
√

(n+M ∓ 1/2)(n−M ∓ 1/2)ψ̃−n±1 , (8.104b)

for all n ≥ 1, and

L±ψ̃0 = ∓i
√

1/4−M2ψ̃±1 . (8.105)

Since these solutions are valid only for 0 < M < 1/2, the right–hand sides of Eqs. (8.104)
and (8.105) are never zero for any n ∈ N0, and thus, all consecutive modes appearing in
Eqs. (8.85) and (8.87) can be reached by applying ladder operators L±, so the associated
spaces spanned by these modes are irreducible under the action of S̃L(2,R). In fact,
using the classification of UIRs, we can identify both of these solution spaces with the
complementary series representations C 0

1/2+M .
We have found that only the mode solutions stemming from the invariant self–adjoint

boundary conditions that span a solution space with invariant positive– and negative–
frequency subspaces are those coming from Dirichlet type I boundary condition given
by Eq. (8.81) and from the Dirichlet type II boundary condition given by Eq. (8.83),
which correspond to the self–adjoint extensions of the operator D labelled by the matrices
U = diag(∓1,±1), respectively.

It is also worth noting that the massless and massive mode solutions that result
from imposing the Dirichlet type I–IV boundary conditions are invariant under charge
conjugation, ψ̃ 7→ ψ̃c = C(γ0)T ψ̃ with C = −2Σ01. This fact follows immediately by
noting that all of the negative–frequency modes from these sets of mode solutions satisfy
ψ̃−n = −γ1ψ̃n for all n ≥ 0. From Eqs. (8.2) and (8.3), we have C(γ0)T = −γ1 and
thus, all Dirichlet type I–IV modes satisfy ψ̃cn = ψ̃−n. Furthermore, the only self–adjoint
boundary conditions that are invariant under both, charge conjugation and S̃L(2,R)–
transformations, are those corresponding to the four unitary matrices U = diag(±1,∓1)
and U = ±I. A simple calculation shows that if ψ̃ω satisfies the general self–adjoint
boundary condition of Eq. (8.54), then the charge conjugate ψ̃cω = −γ1ψ̃ω satisfies the same
boundary condition if and only if the matrix U satisfies U = U . We can then determine
which of these charge conjugation–invariant boundary conditions are also invariant under
S̃L(2,R)–transformations using the analysis of Sec. 8.3 but assuming U = U . We find that
if M = 0 the matrix U must also be diagonal and the only unitary matrices satisfying
both of these requirements are U = diag(±1,∓1) and U = ±I. If M 6= 0, we find the same
four unitary matrices.

8.6 invariant theories with no invariant positive–frequency subspaces

In Section 8.5 we have found that only certain S̃L(2,R)–invariant self–adjoint boundary
conditions result in invariant positive–frequency subspaces, and thus, in an invariant
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vacuum state once the fermionic Fock space construction, as outlined in Section 2.3, is
performed. We also noted that the rest of the S̃L(2,R)–invariant self–adjoint boundary
conditions result in unitary representations that do not split into positive– or negative–
frequency subspaces and thus, no invariant vacuum state can be found. Instead, since the
inner product (8.10) is S̃L(2,R)–invariant for any of these boundary conditions, the ladder
operators L± acting on the quantum field are Bogoliubov transformations [24, 27, 25] that
mix the creation and annihilation operators. This implies that for these theories there
must be UIRs of S̃L(2,R) to which the associated vacuum states belong. In this section
we find these representations.

We will start by considering the massless modes in Eq. (8.80). Without loss of generality,
we will choose the parameters β± of the unitary matrix U such that ω0 = µ > 0 is the
lowest positive frequency. The analysis for the other representations labelled by µ in
Eq. (8.94) can be carried out by appropriately relabelling the frequency index. The case
µ = 0 will be analysed separately.

We recall that the frequency spectrum is given by ωj = j + µ, j ∈ Z, and for the sake
of simplicity, we will denote the associated mode solutions by ψ̃j instead of ψ̃j,0. The
negative–frequency modes are given by ψ̃−j for j > 0 and, thus, the quantum field ψ̃ is
expanded in terms of the complete set of mode solutions as

ψ̃ =
∑
j≥0

(
ajψ̃j + b†jψ̃−j−1

)
, (8.106)

where the operators aj , bk satisfy{
aj , a

†
k

}
= δjkI =

{
bj , b

†
k

}
, (8.107)

and all other anticommutators vanish. Using the action of the ladder operators on the
modes ψ̃j given by Eq. (8.93), we find that

L+ψ̃ =i
∑
j≥0

(−1)j+1
((

ωj + 1
2

)
ajψ̃j+1 +

(
ω−j−1 −

1
2

)
b†j+1ψ̃−j−1

)

+ i

(
µ− 1

2

)
b†0ψ̃0 , (8.108a)

L−ψ̃ =i
∑
j≥0

(−1)j+1
((

ωj + 1
2

)
aj+1ψ̃j +

(
ω−j−1 −

1
2

)
b†jψ̃−j−2

)

+ i

(
µ− 1

2

)
a0ψ̃−1 . (8.108b)

Using the inner product in Eq. (8.11) in terms of the field ψ̃ = (cos ρ)−1/2ψ, for which
the mode solutions ψ̃j satisfy

(
ψ̃j , ψ̃k

)
D

= δjk, we define the conserved quantum charges
for the symmetry generated by L± by

L̂± :=
(
ψ̃, L±ψ̃

)
D
, (8.109)
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and from Eq. (8.108), we find that these can be written in terms of the annihilation and
creation operators as

L̂+ = i
∑
j≥0

(−1)j+1
((

ωj + 1
2

)
a†j+1aj +

(1
2 − ω−j−1

)
b†j+1bj

)
+ i

(
µ− 1

2

)
a†0b
†
0 , (8.110a)

L̂− = i
∑
j≥0

(−1)j+1
((

ωj + 1
2

)
a†jaj+1 +

(1
2 − ω−j−1

)
b†jbj+1

)
− i

(
µ− 1

2

)
a0b0 . (8.110b)

Next, we calculate the commutators between these charges. Using the anticommutation
relations in Eq. (8.107) and the fact that ωj = j + µ for j ∈ Z, it can readily be verified
that [

L̂+, L̂−
]

= 2
∑
j≥0

(
ωja

†
jaj − ω−j−1b

†
jbj
)

+
(
µ− 1

2

)2
I . (8.111)

We then define the operator

L̂0 :=
∑
j≥0

(
ωja

†
jaj − ω−j−1b

†
jbj
)

+ 2κI , (8.112)

with κ = (µ− 1/2)2/2. If we then compare Eq. (8.111) with Eq. (8.58), we can identify L̂0

with the time–translation charge induced from L0. By applying the general prescription
in Section 2.3, the fermionic vacuum state |0〉F is defined by the requirement that for all
j ≥ 0, aj |0〉F = 0 = bj |0〉F , and we see that

L̂0 |0〉F = λ |0〉F , L̂− |0〉F = 0 , (8.113)

the latter resulting directly from Eq. (8.110b). The fermionic Fock space is thus a weight–
module with lowest weight κ and lowest–weight vector |0〉F . From the classification of
UIRs at the end of Section 4.3 we see that this representation is isomorphic to the discrete
series D+

κ .
We now turn to the analysis of the massless modes with µ = 0 and the massive modes

with 0 < M < 1/2 satisfying the self–adjoint boundary condition with U = I, given by
Eq. (8.85). We recall the fact that the massless modes with µ = 0 can be written as in
Eq. (8.102) and thus, are equivalent to the Dirichlet type III modes with M = 0 up to
a chiral transformation, therefore, this analysis includes the case for which M = 0 and
µ = 0. Furthermore, the massive Dirichlet type IV modes in Eq. (8.87) are related to the
Dirichlet type III modes by ψ̃IVn = (−1)nPψ̃IIIn , where Pψ̃(t, ρ) = iγ0ψ̃(t,−ρ) is the parity
transformation acting on the spinor ψ̃. From the fact that PL±P = −L±, it follows that
the ladder operators take the same form for the Dirichlet type IV modes as for the Dirichlet
type III modes. Thus, without loss of generality, we will consider the mode solutions ψ̃III±n
with 0 ≤M < 1/2 to include all remaining cases. For these theories, the quantum field is
expanded as

ψ̃III =
∞∑
n=1

(
anψ̃

III
n + b†nψ̃

III
−n

)
+ a0ψ̃

III
0 , (8.114)
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with the annihilation and creation operators satisfying Eq. (8.107). Using the transforma-
tion in Eq. (8.104), we find that the action of the ladder operators on the quantum field is
given by

L+ψ̃
III =− i

∞∑
n=1

Cn
(
anψ̃

III
n+1 − b

†
n+1ψ̃

III
−n

)
+ iC0

(
b†1ψ̃

III
0 − a0ΨIII

1

)
, (8.115a)

L−ψ̃
III =− i

∞∑
n=1

Cn
(
an+1ψ̃

III
n − b†nψ̃III−n−1

)
+ iC0

(
a0ψ̃

III
−1 − a1ψ̃

III
0

)
, (8.115b)

where we have defined the constants Cn =
√

(n+M + 1/2)(n−M + 1/2).
Once again, we define the conserved quantum charges L̂± by Eq. (8.109), and considering

the fact that the mode solutions ψ̃IIIn are also orthonormal with respect to the inner product
(8.11), we find the quantum operators L̂± to be given by

L̂+ = −i
∞∑
n=1

Cn
(
a†n+1an + b†n+1bn

)
+ iC0

(
a†0b
†
1 − a

†
1a0
)
, (8.116a)

L̂− = −i
∞∑
n=1

Cn
(
a†nan+1 + b†nbn+1

)
+ iC0

(
b1a0 − a†0a1

)
. (8.116b)

The commutator between these charges is calculated using the anticommutation relations
in Eq. (8.107) and the fact that C2

n − C2
n−1 = 2n. This is found to be given by[

L̂+, L̂−
]

= 2
∞∑
n=1

n
(
a†nan + b†nbn

)
+ C2

0 I . (8.117)

By comparing this with Eq. (8.58), we identify the right–hand side with 2L̂0, where

L̂0 =
∞∑
n=1

n
(
a†nan + b†nbn

)
+ 1

2

(1
4 −M

2
)
I , (8.118)

is the time–translation charge operator. The canonical vacuum state |0〉F satisfies

L̂0 |0〉F = 1
2

(1
4 −M

2
)
|0〉F , L̂− |0〉F = 0 . (8.119)

However, in contrast to the previous case, the vacuum sector with energy (1/4−M2)/2
has a double degeneracy: The state a†0 |0〉F also satisfies

L̂0a
†
0 |0〉F =

(
(1/4−M2)/2

)
a†0 |0〉F , L̂−a

†
0 |0〉F = 0 (8.120)

This was indeed expected from the fact that there is a zero–frequency mode ψ̃III0 in the
solution space. We therefore have a two–parameter family of (normalised) vacuum states,
given by

|0;α〉F := α |0〉F +
(
1− |α|2

) 1
2 a†0 |0〉F , α ∈ C , (8.121)

which implies that for every α ∈ C, the vacuum sector for these theories generates the
lowest–weight module isomorphic to the discrete series representation D+

(1/4−M2)/2.
We conclude this chapter summarising our main results on the analysis of a Dirac

field in AdS2 in Table 8.1. The symbols −→Ψ (1) and −→Ψ (2) stand for the column vectors
(Ψ̃(1)(π/2),−Ψ̃(1)(−π/2))T and (Ψ̃(2)(π/2), Ψ̃(2)(−π/2))T , respectively. We have also de-
fined the matrices U+ := i(I + U), U− := I− U and H := −diag(tan β+, tan β−).
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Table 8.1: Self–adjoint boundary conditions for a Dirac field in AdS2

M SABCs Inv. SABCs Spectrum (ω) Inv. P-F sol. Rep.

M ≥ 1
2 Dirichlet I Dirichlet I

ω = ±ωIn,

ωIn = 1
2 +M + n

ψ̃In,M , ωIn D+
1
2 +M ⊕ D−1

2 +M

0 < M < 1
2 U−

−→Ψ (2) = U+
−→Ψ (1)

Dirichlet I
ω = ±ωIn,

ωIn = 1
2 +M + n

ψ̃In,M , ωIn D+
1
2 +M ⊕ D−1

2 +M

Dirichlet II
ω = ±ωIIn ,

ωIIn = 1
2 −M + n

ψ̃IIn,M , ωIIn D+
1
2−M
⊕ D−1

2−M

Dirichlet III

ωIIIj = j ∈ Z

– C 0
1
2 +M

Dirichlet IV – C 0
1
2 +M

M = 0 U−
−→Ψ (2) = U+

−→Ψ (1) −→Ψ (1) = H
−→Ψ (2)

ωj = 1
2 + j,

j ∈ Z

[
ψ̃In,0

]
, ωn

(Chir. Equiv.)

D+
1
2
⊕ D−1

2

('P
1
2
0 )

ωj = j − β,

j ∈ Z, β ∈
[
0, 1

2

) – Pβ
0

ωj = j − β,

j ∈ Z, β ∈
(

1
2 ,

3
2

) – P1−β
0

ωj = j − β,

j ∈ Z, β ∈
(

3
2 , 2
) – P2−β

0

Here n is always assumed to be in N0. We also write β = (β+ + β−)/π.
The symbol

[
ψ̃In,0

]
denotes the equivalence class of ψ̃In,0 w.r.t. chiral equivalence.
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Conclusions

In this thesis we have presented the analysis of the dynamics for a scalar field in N–
dimensional anti–de Sitter spacetime AdSN (N ≥ 2), and for a spinor field satisfying
the Dirac equation in two–dimensional anti-de Sitter spacetime, AdS2. The case of a
scalar field in AdSN for N ≥ 3 was based on the original results by Ishibashi and Wald
in Ref. [22], which we reworked to more closely resemble the way we approached the
two–dimensional case. By applying the prescription for dynamics in static, non–globally
hyperbolic spacetimes of Ishibashi and Wald, we have found a family of field theories with a
well–defined initial value problem despite the lack of global–hyperbolicity of the spacetime
manifold. Additionally, we studied the invariance of the associated solution spaces under
the infinitesimal action of the isometry group of the spacetime (S̃L(2,R) for AdS2 and
S̃O(2, N − 1) for AdSN ). We determined which, among the family of theories obtained
by the prescription for dynamics, can be used to construct a quantum field theory with a
stationary vacuum state.

We summarise our results for each of the cases we analysed as follows:

• For a free scalar field of mass M in AdS2, the prescription for dynamics reduces to
determining the admissible positive self–adjoint extensions of the spatial component,
A, of the Klein–Gordon equation. We associated a unique boundary condition for the
spatial solutions at infinity (ρ = ±π/2) to each self–adjoint extension of the operator A.
The number of admissible self–adjoint extensions and, thus, of boundary conditions, is
given by von Neumann’s theorem, and we found that it depends on the value of the
mass parameter λ, defined by M2 = λ(λ− 1). If the eigenvalues ω2 for the self-adjoint
extension AU of the operator A are positive, then one can define a quantum field theory
with a stationary vacuum state following the standard procedure. We noted that λ
has to be real for A to be a positive operator and, since M2 remains unchanged under
λ↔ 1− λ, we were able to restrict our analysis to λ ≥ 1/2.

For λ ≥ 3/2 the self–adjoint extension of the operator A is unique and determined to
correspond to the generalised Dirichlet boundary condition. For 1/2 ≤ λ < 3/2 the
self–adjoint extensions of A are labelled by a 2×2 unitary matrix U , which parametrises
the boundary conditions. These boundary conditions are analogous to the self–adjoint
boundary conditions for the free quantum particle in a box [71].
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Next, we determined the self–adjoint boundary conditions which are invariant under
the action of the group S̃L(2,R). The generalised Dirichlet boundary condition is
invariant for all λ ≥ 1/2. For 1/2 < λ < 3/2, there are additional invariant boundary
conditions, which are the generalised Neumann boundary condition and the mixed
boundary conditions consisting of the generalised Dirichlet boundary condition at one
end and the generalised Neumann boundary condition at the other. We also noted
that the mode solutions obtained from these boundary conditions are identical to those
obtained by Sakai and Tanii [14] by requiring the vanishing of the energy flux at each
boundary.

The set of solutions to the Klein–Gordon equation satisfying an invariant boundary
condition forms a representation of the group S̃L(2,R), but this representation may not
be unitary. For the stationary vacuum state to be invariant under the S̃L(2,R) symmetry,
the positive–frequency (ω > 0) subset of the solutions must form a unitary representation.
We found that the positive–frequency solutions form a unitary representation for the
generalized Dirichlet boundary condition for all λ ≥ 1/2 and for the generalised Neumann
boundary condition for 1/2 < λ < 1. The generalised Neumann boundary condition
does not lead to a unitary representation for 1 < λ < 3/2, and the mixed boundary
conditions do not lead to a unitary representation for any value of λ. For λ = 1
(M2 = 0), the Neumann boundary condition allows spatially constant solutions. For
this case, the spatially non–constant positive–frequency mode functions form a unitary
representation.

Finally, we studied the cases where the boundary condition is S̃L(2,R)–invariant but
the positive–frequency subspace is not. This situation occurs for the cases with the
mixed boundary conditions with 1/2 < λ < 3/2 and those with the Neumann boundary
condition with 1 < λ < 3/2. In particular, we found that the vacuum state, which is
not invariant under the S̃L(2,R) transformations, belongs to a UIR in each case: For
the former, the vacuum belongs to the discrete series D+

(λ−1/2)2/4, and for the latter, the
vacuum state belongs to D+

1−λ.

• For a free scalar field in AdSN with N ≥ 3, the prescription for dynamics reduces to
determining the positive self–adjoint extensions of the radial component ARad of the
Klein–Gordon operator. The analysis originally done by Ishibashi and Wald in Ref. [22]
for this case concluded that the number of self–adjoint extensions of ARad depends on
the mass of the field M , and the dimension, N , of the spacetime. In particular, they
showed that the mass of the field has to satisfy M2 ≥ −(N − 1)2/4 for ARad to be a
positive operator and, thus, to have positive self–adjoint extensions. Similarly, they
found that if M2 ≥ (N − 3)(N + 1)/4, then the self–adjoint extension of ARad is unique,
and determined to be the closure of ARad. For −(N − 1)2/4 ≤M2 < (N − 3)(N + 1)/4,
the self–adjoint extensions of ARad are parametrised by a real number α ∈ (−π, π]. This
situation differs from the two–dimensional case (scalar field in AdS2) since the radial
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coordinate characterises spatial infinity in AdSN as a single point, ρ = π/2, instead of a
pair of endpoints, ρ = ±π/2, which characterises spatial infinity in AdS2.

Using a slightly more explicit approach to that of Ishibashi and Wald, we associated a
unique boundary condition for the radial solutions to each of the admissible positive
self–adjoint extensions of the operator ARad. For the case with M2 ≥ (N − 3)(N + 1)/4
the unique self–adjoint extension of ARad was determined to correspond to a generalised
Dirichlet boundary condition at ρ = π/2. When the mass satisfies −(N −1)2/4 ≤M2 <

(N−3)(N+1)/4, the self–adjoint extensions correspond to a family of generalised Robin
boundary conditions parametrised by u ∈ (−π, π], with the generalised Dirichlet and
Neumann boundary conditions arising as special cases (u = 0 and u = π, respectively).

Next, we imposed invariance under the infinitesimal action of S̃O(2, N−1) on the sets of
solutions corresponding to the admissible self–adjoint boundary conditions. We showed
that it is sufficient to verify if a given set of mode solutions is invariant under the action of
any of the boost–like Killing vector fields of AdSN in order for this space to be invariant
under all infinitesimal S̃O(2, N − 1)–transformations. Considering this, the generalised
Dirichlet boundary condition was found to be invariant for all M2 ≥ −(N − 1)2/4. For
−(N − 1)2/4 < M2 < (N − 3)(N + 1)/4, the only other type of boundary condition
that results in invariant mode solutions is the generalised Neumann boundary condition.
We noted that for N = 4, these two sets of mode solutions correspond to the ones found
in Refs. [11, 12, 13].

Finally, we explored the behaviour of the sets of mode solutions resulting from the
invariant self–adjoint boundary conditions under the action of the boost–like Killing
vector field K3 in Eq. (7.82). In particular, we considered the positive–frequency modes
for the generalised Dirichlet and Neumann boundary conditions. We found that these
mode functions are mapped to positive–frequency modes by action of the Killing vector
fieldK3. By means of the Lie algebra structure of the Killing vector fields of AdSN , this
result implies that all the sets of mode solutions resulting from the invariant self–adjoint
boundary conditions form invariant positive–frequency subspaces and, thus, a unitary
representation of S̃O(2, N − 1). Hence, for each of these cases a quantum field theory
with an invariant vacuum state can be constructed by following the general prescription
of Section 2.3.

• For a free spinor field of mass M satisfying the Dirac equation in AdS2, the prescription
of dynamics is equivalent to finding the admissible self–adjoint extensions of the spatial
component D of the Dirac operator. Similarly to the scalar field case, the number of
self–adjoint boundary conditions depends on the mass of the field M . Since solutions
of the spatial Dirac equation with mass −M can be obtained from the solutions with
mass M , we restricted our analysis to M ≥ 0.

For M ≥ 1/2 the self–adjoint extension of the operator D is unique and determined
to correspond to the Dirichlet type I boundary condition for the spatial component
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of the spinor solutions at the endpoints ρ = ±π/2. For 0 ≤ M < 1/2 the self-adjoint
extensions of D are labelled by a 2 × 2 unitary matrix U , which parametrises the
boundary conditions.

Next, we determined the self–adjoint boundary conditions which are invariant under the
action of the group S̃L(2,R). For 0 < M < 1/2, we found that the only unitary matrices
U parametrising the boundary conditions which result in invariant mode solutions are
given by U = diag(∓1,±1) and U = ±I. These matrices correspond to the Dirichlet
boundary conditions of type I, II, III and IV, respectively, defined in Eqs. (8.72)–(8.75).
For the massless case M = 0, we found that any diagonal unitary matrix U gives a set
of boundary conditions that result in invariant mode solutions. We also noted that the
Dirichlet type I–IV boundary conditions for all 0 ≤M < 1/2 and the Dirichlet type I
boundary condition for all M ≥ 0 are invariant under charge conjugation.

The set of solutions to the Dirac equation satisfying an invariant boundary condition
forms a unitary representation of the group S̃L(2,R), but this representation may not
split into invariant positive– and negative–frequency subspaces, which is necessary
for the vacuum state of the quantised theory to be isometry–invariant. We found
that the positive–frequency solutions span invariant subspaces for the Dirichlet type I
boundary condition for all M ≥ 0. For 0 ≤ M < 1/2 there is an additional invariant
boundary condition that leads to an invariant positive–frequency subspace, which is
the Dirichlet type II boundary condition. The mode functions resulting from these
boundary conditions were identified with the sum of discrete series representations,
D+

1/2+M⊕D−1/2+M for the Dirichlet type I modes and D+
1/2−M⊕D−1/2−M for the Dirichlet

type II modes. Both Dirichlet types III and IV mode functions are identified with the
complementary series representations C 0

1/2+M which are already irreducible and do not
split into invariant positive– and negative–frequency subspaces. For the massless case
we found that the only diagonal unitary matrices corresponding to boundary conditions
that result in invariant positive– and negative–frequency subspaces are of the form
U = diag(e2iβ+ ,−e−2iβ+), with β+ ∈ [0, π). The particular cases for β+ = π/2 and
β+ = 0 correspond to the massless Dirichlet conditions of type I and II, respectively. We
noted that all the other massless mode solutions that form invariant positive–frequency
subspaces are in fact related to the Dirichlet type I and II mode solutions by a chiral
transformation realised as the action of the rotation by the angle π/2−β+ on the spatial
components of these modes. Since the massless Dirac equation is invariant under chiral
transformations, the solutions parametrised by β+ are taken to be equivalent, and thus,
can be identified with the Dirichlet type I (or type II) mode solutions. These mode
solutions, up to a chiral transformation, are identified with the sum of mock–discrete
series representations D+

1/2 ⊕ D−1/2. For all other diagonal matrices, the associated
self–adjoint boundary condition results in mode functions forming the principal series
representation Pµ

0 , where µ depends on the parameters β± via Eq. (8.94). It is worth
pointing out that, besides the massless mode solutions forming the principal series
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Pµ
0 , all other mode solutions that we obtained from the S̃L(2,R)–invariant self–adjoint

extensions of the operator D, i.e., the Dirichlet type I modes for all M ≥ 0, the Dirichlet
types I–IV for 0 < M < 1/2, and the massless modes parametrised by β+, up to a chiral
equivalence, also correspond to the modes found by Sakai and Tanii [14].

Finally, we examined the cases for which the self–adjoint boundary conditions are
S̃L(2,R)–invariant but the solution spaces do not split into invariant positive– and
negative–frequency subspaces, i.e., the massless solution spaces satisfying the boundary
conditions with β+ + β− 6= π/2, 3π/2, and the massive solution spaces satisfying the
Dirichlet type III and IV boundary conditions. Due to the lack of an invariant positive–
frequency subspace, the vacuum state associated to these theories is not invariant, but
instead belongs to a UIR of S̃L(2,R). For the massless theories, we found that the
vacuum state belongs to the discrete series representation D+

κ , with κ = (µ− 1/2)2/2,
and µ given by Eq. (8.94). The massless theory with µ = 0, and the massive theories
corresponding to the Dirichlet type III and type IV mode solutions resulted in a doubly
degenerate vacuum sector. The UIR to which the vacuum state |0;α〉, for α ∈ C belongs
is isomorphic to the discrete series D+

(1/4−M2)/2.

As pointed out above, the sets of mode solutions that we obtained from the invariant
self–adjoint boundary conditions for the scalar and spinor fields in AdS2 correspond to
the mode solutions obtained by Sakai and Tanii by a different argument. The latter were
obtained by requiring the energy flux of the fields to vanish separately at each endpoint of
the boundary. Thus, it will be interesting to investigate deeper connections, if any, between
these two requirements.

From the analysis of a scalar field in AdSN for N ≥ 3 we concluded that only the
generalised Dirichlet and Neumann boundary conditions result in S̃O(2, N − 1)–invariant
sets of mode solutions. We examined the action of the Killing vector K3 on the lowest
positive–frequency modes of each of these sets and found that these are mapped to
positive–frequency modes solutions, implying that these solution spaces admit invariant
positive–frequency subspaces and, thus, form a unitary representation of S̃O(2, N − 1)
resulting in a stationary vacuum sate. Thus, contrary to the N = 2 case, there are no
invariant theories with a non-invariant vacuum state for the higher–dimensional case. It
will be interesting to explore if an analogous situation is also present for spinor field theories
in AdSN with N ≥ 3.

Our results also show that there is a fundamental difference between the scalar field
theories in AdS2 and the scalar field theories in AdSN for N ≥ 3. For both of these cases
the self–adjoint extensions are parametrised by non–trivial unitary maps only when the
mass of the field lies within a particular range of low values, and if the mass is sufficiently
large, then only one self–adjoint boundary condition exists. However, for the low mass
range, the unitary map parametrising the self–adjoint boundary conditions is a 2 × 2
matrix for AdS2, while for AdSN the unitary map is given by a phase, eiu. As previously
discussed, this is due to the fact that spatial infinity consists of the endpoints {−π/2, π/2}



Chapter 9. Conclusions 159

for AdS2 and of the single point {π/2} for AdSN with N ≥ 3. Since the spinor field in
AdS2 also admits a family of boundary conditions parametrised by a 2× 2 unitary matrix
for the low–mass range, it will be interesting to confirm if the boundary condition for
self–adjointness is parametrised by eiu for the low–mass range in the higher–dimensional
case.

We have analysed the dynamics of free scalar and spinor fields in AdSN and AdS2,
respectively. Our results provide certain choices for sensible dynamics in each case and
thus allow to construct the associated free quantum field theories. This in turn opens
the possibility for the analysis of interacting field theories, the first step to achieve this
being constructing the associated propagators for these cases. An interesting question
from this perspective is the compatibility between the isometry invariance condition which
we have focused on and the Hadamard condition on the two–point functions associated
to the theories. A similar analysis has been done in the case of automorphic fields in
two–dimensional de Sitter space [88], where invariant Hadamard and non–Hadamard states
have been found. It would be interesting to see if any similar conclusions can be found for
the anti–de Sitter case.



A

Some properties of Self–adjoint operators

In this chapter we present relevant concepts and standard results related to self–adjoint
operators on a separable Hilbert space H . All of the statements and proofs are quite
standard and can be found thoguhout the literature, for example in [35, 36, 37, 43].

We will denote elements of H by f, g, h, . . . etc. The inner product between two
elements f, g ∈H is denoted by 〈f, g〉, and the norm of f is defined by ||f || := (〈f, f〉)1/2.
An operator T is a linear map Dom(T )→H , where Dom(T ) ⊆H denotes the domain
of T .

Definition A.0.1 An operator T : H →H is said to be bounded if the operator norm
of T , given by

||T ||OP := sup
||f ||=1

||Tf || , (A.1)

is finite. An unbounded operator T is a linear map from a dense subspace Dom(T ) ⊆H

into H .

It is worth pointing out that from this definition an unbounded operator is not necessarily
bounded.

Definition A.0.2 Let T be an unbounded operator on H . A number ω ∈ C belongs to
the resolvent set of T if there exists a bounded operator B such that:

1. For all f ∈H , Bf belongs to Dom(T ), and (T − ωI)Bf = f .

2. For all f ∈ Dom(T ) we have B(T − ωI)f = f .

If no such bounded operator B exists, then ω belongs to the spectrum σ(T ).

Theorem A.0.3 Let T be a self–adjoint operator on an infinite–dimensional Hilbert space
H . Then, the following are equivalent:

1. There exists a real sequence (ωn)n∈N and an orthonormal basis {fn}n∈N on H such
that |ωn| → ∞ as n→∞, and Tfn = ωnfn for all n ∈ N.

2. T has a purely discrete spectrum.
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Remark A.0.4 An operator T has a purely discrete spectrum if σ(T ) consists only
of eigenvalues of finite multiplicities which have no finite accumulation point.

Proof: See Ref. [43, Proposition 5.12].

Definition A.0.5 A spectral measure on the σ–algebra B(Ω) of subsets of a set Ω is a
mapping µ of B(Ω) into the orthogonal projections on a Hilbert space H such that:

1. µ(∅) = 0.

2. µ(Ω) = I.

3. µ(Ω1 ∩ Ω2) = µ(Ω1)µ(Ω2).

4. µ (⋃n∈NMn) = ∑
n∈N µ(Mn) for any sequence (Mn)n∈N of pairwise disjoint sets from

B(Ω) whose union is also in B(Ω).

Theorem A.0.6 (Spectral theorem for self–adjoint operators) Let T be a possibly
unbounded self–adjoint operator on H . Then, there exists a unique spectral measure µT
on the Borel σ–algebra B(R) such that

T =
∫
R
ω dµT (ω) . (A.2)

Proof: See Ref. [43, Theorem 5.7].

Definition A.0.7 Let T be a self–adjoint operator with spectral measure µT . For any
measurable function f on B(T ), define the possibly unbounded operator f(T ) by

f(T ) :=
∫
R
f(ω)dµT (ω) , (A.3)

defined on the domain

Dom(f(T )) :=
{
g ∈H

∣∣∣∣∫
R
|f(ω)|2d 〈µT (ω)g, g〉 <∞

}
. (A.4)

An operator f(T ) defined by Eq. (A.3) is said to be obtained though the functional
calculus of T .

Definition A.0.8 A one–parameter unitary group on H is a family u(t), t ∈ R,
of unitary operators such that U(0) = I, and u(t + s) = u(t)u(s) for all t, s ∈ R. A
one–parameter unitary group is said to be strongly continuous if

lim
s→t
||u(t)f − u(s)f || = 0 , (A.5)

for all f ∈H and all t ∈ R.
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Proposition A.0.9 Suppose T is a self–adjoint operator on H and for t ∈ R, let u(t) be
defined by

u(t) = exp (itT ) , (A.6)

where the operator on the right–hand side is defined through the functional calculus of T as
in Definition A.0.7. Then, the following hold:

1. u is a strongly continuous one–parameter unitary group.

2. For all f ∈ Dom(T ), we have

Tf = lim
t→0

1
i

u(t)f − f
t

, (A.7)

where the limit is in the norm topology of H .

3. For all f ∈H , if the limit

lim
t→0

1
i

u(t)f − f
t

, (A.8)

exists, then f ∈ Dom(T ) and the limit is equal to Tf .

Proof: See Ref. [37, Proposition 10.14].



B

Relation between the two descriptions of self–adjoint extensions

In this chapter we find a one–to–one map between the unitary matrix UM characterising
the map U : K+ → K− defined in Eq. (5.20) and the boundary conditions obtained by
imposing the restriction given by Eq. (5.23). The calculations presented below are given in
terms of the operator A defined in Eq. (6.6). Hence, we show the correspondence between
the unitary matrix UM in Eq. (6.31) and the unitary matrix U defined by Eq. (6.40). These
two matrices characterise the self–adjoint extensions of the operator A in two different
ways. However, the following procedure also applies to the Schrödinger operator T of
Chapter 5 given by Eq. (5.25). For this operator the calculations in this chapter show that
Eqs. (5.29) and (5.30) which describe Dom(TU ) are equivalent to the boundary condition
given by Eq. (5.31), and the matrix UM is in one–to–one correspondence to the matrix U .

We write the matrix UM as U in this appendix for simplicity.
Let Φ ∈ Dom(AU ), where AU is a self–adjoint extension of A, and let f ∈ S ⊂ K+⊕K−.

(Recall that Dom(AU ) = Dom(Ā) ⊕ S .) Let {g1, g2} be an orthonormal basis of K+.
Hence, {g1, g2} is an orthonormal basis of K−. Then, from Eqs. (6.31) and (6.33), the
element f ∈ S is written as

f = c1
1
2(g1 + u11g1 + u21g2) + c2

1
2(g2 + u12g1 + u22g2) , (B.1)

for some c1, c2 ∈ C. The elements defined by

Gj = 1
2 (gj + uj1g1 + uj2g2) , j = 1, 2 . (B.2)

define an orthonormal basis of S with respect to the inner product 〈·, ·〉A (see the
construction in Section 5.1). Since the operator AU is symmetric, it follows that

0 = 〈Φ, AUf〉KG − 〈AUΦ, f〉
KG

,

= 〈Φ, AU (c1G1 + c2G2)〉
KG
− 〈AUΦ, c1G1 + c2G2〉KG . (B.3)

Let us consider the two cases: c1 6= 0, c2 = 0 and c1 = 0, c2 6= 0. By integration by parts,
the resulting equations can be written in terms of the boundary values as

Φ (ρ)G′j (ρ)
∣∣∣
π/2
− Φ′ (ρ)Gj (ρ)

∣∣∣
π/2
− Φ (ρ)G′j (ρ)

∣∣∣
−π/2

+ Φ′ (ρ)Gj (ρ)
∣∣∣
−π/2

= 0 . (B.4)
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From Eq. (6.29) we know that the solutions in the deficiency spaces K+ ⊕K− behave
at the boundaries in a way similar to the solutions of the original eigenvalue problem.
Thus, we can write Eq. (B.4) as follows:

Φ̃(λ) (π/2)DG̃(λ)
j (π/2)−DΦ̃(λ) (π/2) G̃(λ)

j (π/2)

− Φ̃(λ) (−π/2)DG̃(λ)
j (−π/2) +DΦ̃(λ) (−π/2) G̃(λ)

j (−π/2) = 0 , (B.5)

where G̃(λ)
j (ρ) and DG̃(λ)

j (ρ) are defined similarly to Φ̃(λ)(ρ) and DΦ̃(λ)(ρ) in Eqs. (6.35)
and (6.36). Next, we define

A :=
(
Dg̃1

(λ)(π/2) 0
0 Dg̃2

(λ)(π/2)

)
=
(
−Dg̃1

(λ)(−π/2) 0
0 Dg̃2

(λ)(−π/2)

)
, (B.6a)

B :=
(
g̃1

(λ)(π/2) 0
0 g̃2

(λ)(π/2)

)
=
(
g̃1

(λ)(−π/2) 0
0 −g̃2

(λ)(−π/2)

)
, (B.6b)

where g̃j(λ) and Dg̃j(λ) are defined from gj , j = 1, 2, in the same way as Φ̃(λ) and DΦ̃(λ)

are defined from Φ. The second equalities in Eqs. (B.6a) and (B.6b) follow from the fact
that g1 and g2 are even and odd, respectively. Then, Eq. (B.5) can be written in a matrix
form as (

A+ UA
)−→Φ =

(
B + UB

)−−→
DΦ , (B.7)

where

−→Φ :=

Φ̃(λ) (π/2) + Φ̃(λ) (−π/2)

Φ̃(λ) (π/2)− Φ̃(λ) (−π/2)

 ,
−−→
DΦ :=

DΦ̃(λ) (π/2)−DΦ̃(λ) (−π/2)

DΦ̃(λ) (π/2) +DΦ̃(λ) (−π/2)

 . (B.8)

It is useful to note that, by expressing the relation

〈gj , AUgj〉KG − 〈AUgj , gj〉KG = 4i (B.9)

with j = 1, 2, in terms of the boundary values g̃j(λ)(±π/2) and Dg̃j(λ)(±π/2), one finds

BA−AB = 2iI . (B.10)

We rearrange Eq. (B.7) as[
B − iA+ U(B − iA)

] (−−→
DΦ− i−→Φ

)
= −

[
B + iA+ U(B + iA)

] (−−→
DΦ + i

−→Φ
)
. (B.11)

The matrices B ± iA+ U(B ± iA) are invertible because the relation (B.10) implies that
there are no non.-trivial solutions ~a to either of the equations ‖(B± iA)~a‖2 = ‖(B± iA)~a‖2.
Then, the matrix Ũ defined by

Ũ := −
[
B − iA+ U(B − iA)

]−1 [
B + iA+ U(B + iA)

]
, (B.12)
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is unitary and the map U 7→ Ũ is a bijection as we show below. Thus, the self–adjoint
extensions characterised by the unitary matrix U is indeed equivalently characterised by
another unitary matrix Ũ which specifies the boundary conditions.

The unitarity of Ũ follows from

V1V
†

1 − V2V
†

2 = 4(I− U U †) , (B.13)

where

V1 := B − iA+ U(B − iA) , (B.14a)

V2 := B + iA+ U(B + iA) , (B.14b)

since Ũ = −V −1
1 V2 and U U

† = I. Equation (B.13) results from Eq. (B.10). Next, we
show that the map U 7→ Ũ is a bijection by demonstrating that the matrix U satisfying
V1Ũ = −V2 for a given unitary matrix Ũ exists and is unique. This equation is solved
uniquely for U if and only if the homogeneous equation

U(B − iA)Ũ = −U(B + iA) , (B.15)

admits only the trivial solution U = 0. Indeed, if Eq. (B.15) is satisfied, then

U(B − iA)(B + iA)U † = U(B + iA)(B − iA)U † . (B.16)

Then, by Eq. (B.10) we find U U † = 0, which implies U = 0.
Thus, we can write Eq. (B.11) as

(I− Ũ)−−→DΦ = i(I + Ũ)−→Φ , (B.17)

where Ũ is unitary. Then, by defining

U := 1
2

(
1 1
−1 1

)
Ũ
(

1 −1
1 1

)
, (B.18)

we arrive at Eq. (6.40). It is clear that the map U 7→ U is a bijection because the map
U 7→ Ũ is.



C

The operator A with M 2 < −1/4

In this appendix we demonstrate that the operator A with M2 < −1/4 is unbounded from
below. In this case we have

A = − d2

dρ2 −
1/4 + a

cos2 ρ
, (C.1)

with a > 0. We first observe∫ η

−η
(cos ρ)1/2A(cos ρ)1/2dρ = −2a ln(sec η + tan η) + 1

2 sin η , (C.2)

for 0 < η < π/2. Notice that this integral diverges to −∞ as η → π/2. Let π/6 < η < π/2
and ε = (π/2− η)/2. Then 0 < η − ε < η + ε < π/2.

Let f ∈ Dom(A) be defined by

f(ρ) :=

(cos ρ)1/2 if |ρ| ≤ η − ε ,

(cos ρ)1/2χ((|ρ| − η)/ε) if |ρ| ≥ η − ε ,
(C.3)

where χ is a smooth monotonically–decreasing function satisfying the condition that
χ(x) = 1 if x ≤ −1 and χ(x) = 0 if x ≥ 1. We have f ∈ Dom (A) because f(ρ) = 0 if
η + ε ≤ |ρ| < π/2. We have ∫ π/2

−π/2
|f(ρ)|2dρ ≤ 2 . (C.4)

and ∫ π/2

−π/2
f(ρ)Af(ρ)dρ =

∫ η−ε

−η+ε
f(ρ)Af(ρ)dρ+ 2

∫ η+ε

η−ε
f(ρ)Af(ρ)dρ . (C.5)

Since the first integral diverges to −∞ as η − ε→ π/2 by Eq. (C.2), if the second integral
is bounded in this limit, then the operator A is unbounded from below.

For η − ε < ρ < η + ε we find

f(ρ)Af(ρ) = χ((ρ− η)/ε)
[
− 1
ε2

cos ρχ′′((ρ− η)/ε) + 1
ε

sin ρχ′((ρ− η)/ε)

+
(
− a

cos ρ + 1
4 cos ρ

)
χ((ρ− η)/ε)

]
. (C.6)
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Let |χ′′(x)| ≤ C2, |χ′(x)| ≤ C1 and recall |χ(x)| ≤ 1. Then,

|f(ρ)Af(ρ)| ≤ C2
ε2

sin 3ε+ C1
ε

+ a

sin ε + 1
4 . (C.7)

Then, ∣∣∣∣∫ η+ε

η−ε
f(ρ)Af(ρ)dρ

∣∣∣∣ ≤ ∫ η+ε

η−ε
|f(ρ)Af(ρ)|dρ

≤ 2C2
ε

sin 3ε+ 2C1 + 2aε
sin ε + ε

2
→ 6C2 + 2C1 + 2a , (C.8)

as ε = (π/2 − η)/2 → 0. Hence, the second term in Eq. (C.5) is indeed bounded for η
and ε in the range considered. Therefore, we can take η − ε→ π/2, and the operator A is
unbounded from below.



D

The closure of the operator A

In this appendix we demonstrate that, if Φ ∈ Dom(Ā), then

Φ̃(λ)(±π/2) = DΦ̃(λ)(±π/2) = 0 , (D.1)

where Ā denotes the closure of the operator A in Eq. (6.6) and where Φ̃(λ) and DΦ̃(λ) are
defined by Eqs. (6.35) and (6.36). First we examine the case with 1/2 < λ < 3/2. Let
f1(ρ) and f2(ρ) be smooth functions whose support is in [0, π/2] and which take the values
(cos ρ)λ and (cos ρ)1−λ, respectively, for ρ ∈ [π/4, π/2). Then since λ and 1− λ are both
larger than −1/2 so that f1, f2 ∈ L2[−π/2, π/2] and since, for ρ ∈ [π/4, π/2),(

− d2

dρ2 + λ(λ− 1)
cos2 ρ

)
f1(ρ) = λ2(cos ρ)λ, (D.2a)(

− d2

dρ2 + λ(λ− 1)
cos2 ρ

)
f2(ρ) = (1− λ)2(cos ρ)1−λ , (D.2b)

we have A†f1, A
†f2 ∈ L2[−π/2, π/2] and therefore f1, f2 ∈ Dom(A†).

Now, suppose Φ ∈ Dom
(
Ā
)
. Since Ā = (A†)† (see Reference [35]), we have by

definition

〈c1f1 + c2f2, ĀΦ〉 − 〈c1A
†f1 + c2A

†f2,Φ〉 = 0 , (D.3)

where c1, c2 ∈ C. This can be written as

lim
a→π/2

∫ a

0

{
d2

dρ2 [c1f1(ρ) + c2f2(ρ)] Φ(ρ)− [c1f1(ρ) + c2f2(ρ)] d2

dρ2 Φ(ρ)
}

dρ = 0. (D.4)

Then, by integration by parts we have

lim
ρ→π/2

{
(1− 2λ)c1(cos ρ)λ−1 sin ρΦ(ρ)

−
[
c1(cos ρ)2λ−1 + c2

]
(cos ρ)2−2λ d

dρ
[
(cos ρ)λ−1Φ(ρ)

]}
= 0. (D.5)

Let c1 = 0 and c2 = 1. Then,

lim
ρ→π/2

(cos ρ)2−2λ d
dρ
[
(cos ρ)λ−1Φ(ρ)

]
= 0. (D.6)
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That is, DΦ̃(λ)(π/2) = 0. Next, let c1 = 1 and c2 = 0. Then since (cos ρ)2λ−1 → 0 and
sin ρ→ 1 as ρ→ π/2, we find

lim
ρ→π/2

(cos ρ)λ−1Φ(ρ) = 0. (D.7)

That is, Φ̃(λ)(π/2) = 0. We can construct a similar argument to show that we also have
DΦ̃(λ)(−π/2) = Φ̃(λ)(−π/2) = 0.

For λ = 1/2 we can let f1(ρ) = (cos ρ)1/2 and f2(ρ) = (cos ρ)1/2[ln(cos2 ρ) − 1] for
ρ ∈ [π/4, π/2) and let them vanish for ρ ∈ [−π/2, 0]. We find that f2 is also in Dom(A†)
because(

− d2

dρ2 −
1

4 cos2 ρ

)
(cos ρ)1/2

[
ln(cos2 ρ)− 1

]
=1

4(cos ρ)1/2
[
ln(cos2 ρ)− 1

]
+ 2(cos ρ)1/2. (D.8)

Proceeding in the same way as before, if Φ ∈ Dom(Ā), then we find, instead of Eq. (D.5),

lim
ρ→π/2

{ 2c1 sin ρ
(cos ρ)1/2 [ln(cos2 ρ)− 1]

Φ(ρ)

−
[

c1
[ln(cos2 ρ)− 1] + c2

]
(cos ρ)

[
ln(cos2 ρ)− 1

]2 d
dρ

( Φ(ρ)
(cos ρ)1/2 [ln(cos2 ρ)− 1]

)}
= 0. (D.9)

By choosing c1 = 0 and c2 = 1, we find

lim
ρ→π/2

(cos ρ)
[
ln(cos2 ρ)− 1

]2 d
dρ

( Φ(ρ)
(cos ρ)1/2 [ln(cos2 ρ)− 1]

)
= 0. (D.10)

That is, DΦ̃(1/2)(π/2) = 0. Next we choose c1 = 1 and c2 = 0 and we find, since sin ρ→ 1
and ln(cos2 ρ)→ −∞ as ρ→ π/2,

lim
ρ→π/2

Φ(ρ)
(cos ρ)1/2 [ln(cos2 ρ)− 1]

= 0. (D.11)

That is, Φ̃(1/2)(π/2) = 0. We can argue in a similar manner to conclude DΦ̃(1/2)(−π/2) =
Φ̃(1/2)(−π/2) = 0. In fact, it is possible to show that if Φ ∈ Dom(Ā), then

lim
ρ→±π/2

(cos ρ)−3/2Φ(ρ) = 0 , (D.12)

if 1/2 ≤ λ < 3/2, which is stronger than one of the results, Φ̃(λ)(±π/2) = 0.



E

Boundary conditions with negative eigenvalues of AU

In this example we let λ = 1 so that the eigenvalue problem is given by

− d2

dρ2 Φ(ρ) = ω2Φ(ρ) . (E.1)

Choosing the unitary matrix in Eq. (6.40) to be diagonal, we find that the following
boundary conditions are possible:

Φ (±π/2) = ±αΦ′ (±π/2) , (E.2)

where we choose α > 0. Two independent solutions to Eq. (E.1) with ω2 = −ν2 < 0 are

Φ(1)
ν (ρ) = cosh(νρ) , (E.3a)

Φ(2)
ν (ρ) = sinh(νρ) . (E.3b)

The functions Φ(1)
ν and Φ(2)

ν satisfy the boundary conditions (E.2) if

coth
(
νπ
2
)

= αν , (E.4a)

tanh
(
νπ
2
)

= αν , (E.4b)

respectively. Equation (E.4a) has a solution for all α > 0 whereas Eq. (E.4b) has a solution
if 0 < α < π/2. It is interesting that in the limit α → 0 (the Dirichlet limit) we have
ν →∞ and hence ω2 → −∞.
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The closure of the operator ARad

In this appendix we show that any element r in Dom(ARad) where ARad is the radial operator
defined in Eq. (7.21), with the mass parameter satisfying ν ≥ 1, satisfies the boundary
condition [

(cos ρ)ν−
1
2 r(ρ)

]∣∣∣
ρ=π/2

= 0 . (F.1)

The proof follows a similar argument to the one used in Appendix D.
Let s be a smooth function with support in [0, π/2]. Assume that the function s is

supported away from ρ = 0, and that, for ρ ∈ [π/4, π/2), the function s takes the values
(sin ρ)σ+1/2(cos ρ)ν+1/2, with σ = 0, 1/2, 1, . . . , and ν ≥ 1. This implies that, s ∈ L2[0, π/2].
Since, for ρ ∈ [π/4, π/2) the function s satisfies(

− d2

dρ2 + ν2 − 1/4
cos2 ρ

+ σ2 − 1/4
sin2 ρ

)
s(ρ) = (σ + ν + 1)2s(ρ) , (F.2)

we have A†Rads ∈ L2[0, π/2]. Hence, s ∈ Dom(A†Rad).
Let r ∈ Dom(ARad). Now, the operator ARad is densely defined and symmetric with

respect to the inner product in Eq. (7.25), which implies that ARad = (A†Rad)†. Then, we
must have

0 =
〈
A†Rads, r

〉
Rad
−
〈
s,ARadr

〉
Rad

. (F.3)

Using Eqs. (7.21) and (7.25) we can write Eq. (F.3) as

0 = lim
a→π/2

∫ a

0

[
d2s(ρ)

dρ2 r(ρ)− s(ρ)d2r(ρ)
dρ2

]
dρ , (F.4)

and, after integrating by parts we obtain

0 = lim
ρ→π/2

[
ds(ρ)

dρ r(ρ)− s(ρ)dr(ρ)
dρ

]
,

= lim
ρ→π/2

{[(
σ + 1

2

)
(sin ρ)σ−

1
2 (cos ρ)ν+ 3

2 −
(
ν + 1

2

)
(sin ρ)σ+ 3

2 (cos ρ)ν−
1
2

]
r(ρ)

−(sin ρ)σ+ 1
2 (cos ρ)ν+ 1

2
dr(ρ)

dρ

}
. (F.5)
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We note that

(sin ρ)σ+ 1
2 (cos ρ)ν+ 1

2
d
dρr(ρ) =(sin ρ)σ+ 1

2 cos ρ d
dρ
[
(cos ρ)ν−

1
2 r(ρ)

]
+
(
ν − 1

2

)
(sin ρ)σ+ 3

2
[
(cos ρ)ν−

1
2 r(ρ)

]
, (F.6)

We substitute Eq. (F.6) into Eq. (F.5) to obtain

0 = lim
ρ→π/2

{(
σ + 1

2

)
(sin ρ)σ−

1
2 cos2 ρ

[
(cos ρ)ν−

1
2 r(ρ)

]
− 2ν(sin ρ)σ+ 3

2
[
(cos ρ)ν−

1
2 r(ρ)

]
− (sin ρ)σ+ 3

2 (cos ρ)2ν(cos ρ)1−2ν d
dρ
[
(cos ρ)ν−

1
2 r(ρ)

]}
. (F.7)

Since sin ρ→ 1 as ρ→ π/2, we have

0 = lim
ρ→π/2

{
−2ν

[
(cos ρ)ν−

1
2 r(ρ)

]
− (cos ρ)2ν(cos ρ)1−2ν d

dρ
[
(cos ρ)ν−

1
2 r(ρ)

]}
. (F.8)

Finally, we note that (cos ρ)2ν → 0 as ρ→ π/2. Thus, for r to be in Dom(ARad), we must
have

−2ν
[
(cos ρ)ν−

1
2 r(ρ)

]∣∣∣
ρ→π/2

= 0 , (F.9)

and the factor (cos ρ)1−2ν d
dρ [(cos ρ)ν−1/2r(ρ)] must remain finite as ρ → π/2. A simple

power–counting argument shows that if Eq. (F.9) is satisfied, then this factor is indeed
regular at ρ = π/2 and, thus, the requirement reduces to Eq. (F.1).



G

Infinitesimal transformations of the functions rω,l1

In this appendix we verify that the expression in Eq. (7.92) holds for the solutions rω,l1 of
Eq. (7.31).

Let us consider the general solution, rω,l1 , given by Eq. (7.36). For notational simplicity,
we write this function as

rω,l1(ρ) = Nω,l1(sin ρ)σ+ 1
2 (cos ρ)ν+ 1

2Fων,σ(ρ) , (G.1)

where we have defined

Fων,σ(ρ) := F
(
ζων,σ, ζ

−ω
ν,σ ; 1 + σ; sin2 ρ

)
. (G.2)

We note that, from the definitions of the quantities ζων,σ in Eq. (7.33), it follows that

ζων,σ + 1 = ζω+1
ν,σ+1 , ζ−ων,σ + 1 = ζ−ων+1,σ+1 = ζ

−(ω−1)
ν,σ+1 . (G.3)

Considering these definitions, we will now apply the operators L±±, L±∓ defined
through Eq. (7.91) to the function in Eq. (G.1). We begin by calculating L+−rω,l1 . Since
the derivative of the hypergeometric functions is given by Eq. (7.105), we have, by means
of definition (G.2),

d
dρF

ω
ν,σ(ρ) = 2

ζων,σζ
−ω
ν,σ

1 + σ
Fων+1,σ+1(ρ) . (G.4)

Thus, using this identity we obtain

cos ρ d
dρrω,l1(ρ) =(sin ρ)σ+ 1

2 (cos ρ)ν+ 1
2

[
2ζων,σζ−ων,σ

1 + σ
sin ρ cos2 ρFων+1,σ+1(ρ)

+
(
σ + 1

2
sin ρ cos2 ρ−

(
ν + 1

2

)
sin ρ

)
Fων,σ

]
. (G.5)

We substitute Eq. (G.5) into Eq. (7.91a) to obtain

[L+−rω,l1 ](ρ) =2(sin ρ)σ+ 3
2 (cos ρ)ν+ 1

2

[
ζων,σζ

−ω
ν,σ

1 + σ
(1− sin2 ρ)Fων+1,σ+1(ρ)

−ζ−ων,σFων,σ(ρ)
]
. (G.6)
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Now, using the identity for the hypergeometric functions [23, Eq. 15.5.13], given by

ab

c
(1− z)F (a+ 1, b+ 1; c+ 1; z) = b(a− c)

c
F (a, b+ 1; c+ 1; z) + bF (a, b; c; z) , (G.7)

we obtain, by means of Eq. (G.3), the identity

ζων,σζ
−ω
ν,σ

1 + σ
(1− sin2 ρ)Fων+1,σ+1(ρ) =

ζ−ων,σ (ζων,σ − 1− σ)
1 + σ

Fω−1
ν,σ+1(ρ) + ζ−ων,σF

ω
ν,σ(ρ) . (G.8)

Hence, after substituting Eq. (G.8) into Eq. (G.6), we obtain

[L+−rω,l1 ](ρ) = 2
ζ−ων,σ (ζων,σ − σ − 1)

1 + σ
(sin ρ)σ+ 3

2 (cos ρ)ν+ 1
2Fω−1

ν,σ+1(ρ) ,

= 2
ζ−ων,σ (ζων,σ − σ − 1)

1 + σ
rω−1,l1+1(ρ) , (G.9)

where in the last line we have used Eq. (G.1) and the fact that σ 7→ σ ± 1 corresponds to
l1 7→ l1 ± 1 by means of Eq. (7.22).

Next, we substitute Eq. (G.5) into Eq. (7.91b) to obtain

[L−−rω,l1 ](ρ) =2(sin ρ)σ−
1
2 (cos ρ)ν+ 1

2

[
ζων,σζ

−ω
ν,σ

1 + σ
sin2 ρ(1− sin2 ρ)Fων+1,σ+1(ρ)

+
(
σ − ζ−ων,σ sin2 ρ

)
Fων,σ(ρ)

]
. (G.10)

Now we use the identities [23, Eqs. 15.5.19, 15.5.12]

ab

c
z(1− z)F (a+ 1, b+ 1; c+ 1; z) = (c− a)F (a− 1, b; c; z)

− (c− a− bz)F (a, b; c; z) , (G.11a)

(c− 1)F (a− 1, b; c− 1; z) = (c− a)F (a− 1, b; c; z) + (a− 1)F (a, b; c; z) , (G.11b)

to obtain

ζων,σζ
−ω
ν,σ

1 + σ
sin2 ρ(1− sin2 ρ)Fων+1,σ+1(ρ) =σFω−1

ν,σ−1(ρ)− (σ − ζ−ων,σ sin2 ρ)Fων,σ(ρ) , (G.12)

where we have used Eq. (G.3) to infer that ζων,σ − 1 = ζω−1
ν,σ−1 and ζ−ων,σ = ζ−ω+1

ν,σ−1 . We
substitute Eq. (G.12) into Eq. (G.10) to obtain

[L−−rω,l1 ](ρ) =2σ(sin ρ)σ−
1
2 (cos ρ)ν+ 1

2Fω−1
ν,σ−1(ρ) ,

=2σrω−1,l1−1(ρ) . (G.13)

Next we substitute Eq. (G.5) into Eq. (7.91a), so that we have

[L++rω,l1 ](ρ) =2(sin ρ)σ+ 3
2 (cos ρ)ν+ 1

2

[
ζων,σζ

−ω
ν,σ

1 + σ
(1− sin2 ρ)Fων+1,σ+1(ρ)

−ζων,σFων,σ(ρ)
]
. (G.14)
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We consider the identity in Eq. (G.7) with b↔ a, that is

ab

c
(1− z)F (a+ 1, b+ 1; c+ 1; z) =a(b− c)

c
F (a, b+ 1; c+ 1; z)

+ aF (a, b; c; z) . (G.15)

This implies that we have

ζων,σζ
−ω
ν,σ

1 + σ
(1− sin2 ρ)Fων+1,σ+1(ρ) =

ζων,σ(ζ−ων,σ − 1− σ)
1 + σ

Fω+1
ν,σ+1(ρ) + ζων,σF

ω
ν,σ(ρ) . (G.16)

Hence, substituting this identity into Eq. (G.14) we obtain

[L++rω,l1 ](ρ) = 2
ζων,σ(ζ−ων,σ − σ − 1)

1 + σ
(sin ρ)σ+ 3

2 (cos ρ)ν+ 1
2Fω+1

ν,σ+1(ρ) ,

= 2
ζων,σ(ζ−ων,σ − σ − 1)

1 + σ
rω+1,l1+1(ρ) . (G.17)

Finally, we substitute Eq. (G.5) into Eq. (7.91). This results in

[L−+rω,l1 ](ρ) =2(sin ρ)σ−
1
2 (cos ρ)ν+ 1

2

[
ζων,σζ

−ω
ν,σ

1 + σ
sin2 ρ(1− sin2 ρ)Fων+1,σ+1(ρ)

+
(
σ − ζων,σ sin2 ρ

)
Fων,σ(ρ)

]
. (G.18)

Now, we consider the identities in Eq.(G.11) with b↔ a, that is,

ab

c
z(1− z)F (a+ 1, b+ 1; c+ 1; z) = (c− b)F (a, b− 1; c; z)

− (c− b− az)F (a, b; c; z) , (G.19a)

(c− 1)F (a, b− 1; c− 1; z) = (c− b)F (a, b− 1; c; z) + (b− 1)F (a, b; c; z) . (G.19b)

Thus, we have

ζων,σζ
−ω
ν,σ

1 + σ
sin2 ρ(1− sin2 ρ)Fων+1,σ+1(ρ) = σFω+1

ν,σ−1(ρ)− (σ − ζρν,σ sin2 ρ)Fων,σ(ρ) . (G.20)

After substituting this expression into Eq. (G.18), we obtain

[L−+rω,l1 ](ρ) = 2σ(sin ρ)σ−
1
2 (cos ρ)ν+ 1

2Fω+1
ν,σ−1(ρ) ,

= 2σrω+1,l1−1(ρ) . (G.21)

Hence, if we substitute Eqs. (G.9), (G.13), (G.17) and (G.21) into Eq. (7.90), we obtain
Eq. (7.92).



H

Asymptotic behaviour of Ferrers functions

In this section we show that the asymptotic behaviour at the spatial boundary of the
component functions in Eq. (8.24) corresponding to Dirac spinors of mass M = k + 1/2
(k ∈ N0), is given by Eqs. (8.39) and (8.40) if k > 0, and we show Eqs. (8.42) for the case
k = 0.

We begin by analysing the case k > 0. The behaviour of the Ferrers functions P−kω (x)
and Q−kω , for ω ∈ C with ω 6= 0, at the singular point x = 1 is given by [23, Eqs. 14.8.1,
14.8.4]

P−kω (x) ≈ 1
Γ(1 + k)

(1− x
2

) k
2
, (H.1a)

Q−kω (x) ≈ Γ(k)Γ(ω − k + 1)
2Γ(ω + k + 1)

( 2
1− x

) k
2
, (H.1b)

where f(x) ≈ g(x) if and only if f(x)/g(x)→ 1 as x→ c. For sufficiently small ε > 0, we
have that if ρ = π/2− ε, then sin ρ = cos ε, thus, Eq. (H.1) with x = cos ε implies that

P−kω (cos ε)± P−kω−1(cos ε) ≈ 0 , (H.2a)

Q−kω (cos ε) + Q−kω−1(cos ε) ≈ 2kωΓ(ω − k)Γ(k)
Γ(ω + k + 1) ε−k , (H.2b)

Q−kω (cos ε)− Q−kω−1(cos ε) ≈ 2kkΓ(ω − k)Γ(k)
Γ(ω + k + 1) ε−k , (H.2c)

where we have used the estimate cos ε ∼ 1− ε2/2 so that (1− cos ε)−k/2 ∼ ε−k. We note
that for the same value of ρ, we have(1− sin ρ

1 + sin ρ

) 1
4
∼ ε

1
2 . (H.3)

Then, it follows that the component functions in Eq. (8.24) evaluated at ρ = π/2 − ε
behave as

Ψ(1)
ω

(
π

2 − ε
)
∼ C2

2kωΓ(ω − k)Γ(k)
Γ(ω + k + 1) ε−k+ 1

2 , (H.4a)

Ψ(2)
ω

(
π

2 − ε
)
∼ C2

2kkΓ(ω − k)Γ(k)
Γ(ω + k + 1) ε−k−

1
2 , (H.4b)

176
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which are precisely the expressions in Eq. (8.39).
To analyse the behaviour of the component functions Ψ(1)

ω and Ψ(2)
ω at the other

endpoint ρ = −π/2, we use the connection formulas for the Ferrers functions, [23, Eqs.
14.9.10, 14.9.8] namely

P−kω (−x) = cosπ(ω − k)P−kω (x)− 2
π

sin π(ω − k)Q−kω (x) ,

Q−kω (−x) = − cosπ(ω − k)Q−kω (x)− π

2 sin π(ω − k)P−kω (x) , (H.5)

from which it follows that

P−kω (−x)± P−kω−1(−x) = cosπ(ω − k)
(
P−kω (x)∓ P−kω−1(x)

)
− 2
π

sin π(ω − k)
(
Q−kω (x)∓ Q−kω−1(x)

)
, (H.6a)

Q−kω (−x)± Q−kω−1(−x) =− cosπ(ω − k)
(
Q−kω (x)∓ Q−kω−1(x)

)
− π

2 sin π(ω − k)
(
P−kω (x)∓ P−kω−1(x)

)
. (H.6b)

Taking the plus sign above and setting ρ = ε − π/2, so that −x = sin ρ = − cos ε, and
substituting Eqs. (H.2a) and (H.2c) we obtain

P−kω (− cos ε) + P−kω−1(− cos ε) ≈ sin π(ω − k)2k+1kΓ(ω − k)Γ(k)
πΓ(ω + k + 1) ε−k , (H.7a)

Q−kω (− cos ε) + Q−kω−1(− cos ε) ≈ cosπ(ω − k)2kkΓ(ω − k)Γ(k)
Γ(ω + k + 1) ε−k , (H.7b)

therefore, using the analogous estimate appearing in Eq. (H.3) this time with ρ→ −ρ, it
follows that the behavior of the component function Ψ(1)

ω is found to be

Ψ(1)
ω

(
ε− π

2

)
≈2kkΓ(ω − k)Γ(k)

Γ(ω + k + 1)

[
C1

2
π

sin π(ω − k) + C2 cosπ(ω − k)
]
ε−k−

1
2 . (H.8)

Similarly, taking the minus sign in Eq. (H.7) and ρ = ε− π/2 we obtain

P−kω (− cos ε)− P−kω−1(− cos ε) ≈ sin π(ω − k)2k+1ωΓ(ω − k)Γ(k)
πΓ(ω + k + 1) ε−k , (H.9a)

Q−kω (− cos ε)− Q−kω−1(− cos ε) ≈ cosπ(ω − k)2kωΓ(ω − k)Γ(k)
Γ(ω + k + 1) ε−k , (H.9b)

and thus, the second component Ψ(2)
ω satisfies

Ψ(2)
ω

(
ε− π

2

)
≈2kωΓ(ω − k)Γ(k)

Γ(ω + k + 1)

[ 2
π
C1 sin π(ω − k) + C2 cosπ(ω − k)

]
ε−k+ 1

2 . (H.10)

Equations (H.8) and (H.10) are Eq. (8.40).
For the case when k = 0, the Ferrers functions in the component functions of Eq. (8.24)

reduce to Legendre functions of the form Pω(x) and Qω(x). At x = 1 we have Pω(1) = 1
for the functions of the first kind, and for the functions of the second kind we have, as
x→ 1,

Qω(x) ≈ Pω(x)
[1

2 ln
(1 + x

1− x

)
− γ − ψ(ω + 1)

]
, (H.11)
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where ψ denotes the digamma function, and γ the Euler constant ψ(1). Letting ρ = π/2−ε,
for sufficiently small values of ε > 0 we use Eq. (H.11) with x = cos ε to obtain

Qω(cos ε) + Qω−1(cos ε) ≈ ln 2− 2 ln ε− 2γ − 2ψ(ω)− 1
ω
, (H.12a)

Qω(cos ε)− Qω−1(cos ε) ≈ − 1
ω
, (H.12b)

where we have used the estimate 1− cos ε ∼ ε2/2 and the identity ψ(ω + 1) = ψ(ω) + 1/ω.
Using Eq. (H.3) we take into account the prefactors of the component functions in Eq. (8.24),
and thus we have

Ψ(1)
ω

(
π

2 − ε
)
≈ −2C2 ε

1
2 ln ε , (H.13a)

Ψ(2)
ω

(
π

2 − ε
)
≈ 1
ω
C2ε

− 1
2 , (H.13b)

hence, considering that ε1/2 ln ε → 0 as ε → 0, it is clear that Eq. (8.42a) immediately
follows.

To evaluate at the other endpoint of the spatial boundary, we use the connection
formulas for the Legendre functions which are obtained by setting k = 0 in Eq. (H.5). It
then follows that the identities in Eq. (H.6) with k = 0 are valid for the Legendre functions.
By setting −x = sin ρ with ρ = ε− π/2, and using Eq. (H.12) we have that

Pω(− cos ε) + Pω−1(− cos ε) ≈ 2
πω

sin πω , (H.14a)

Qω(− cos ε) + Qω−1(− cos ε) ≈ 1
ω

cosπω , (H.14b)

for the plus sign, and

Pω(− cos ε)− Pω−1(− cos ε) ≈− 2
π

sin πω
(

2 ln ε− ln 2− 2γ − 2ψ(ω)− 1
ω

)
+ 2 cosπω , (H.15a)

Qω(− cos ε)− Qω−1(− cos ε) ≈− cosπω
(

2 ln ε− ln 2− 2γ − 2ψ(ω)− 1
ω

)
− π

2 sin πω , (H.15b)

for the minus sign. Once again, using Eq. (H.3) the expressions above imply that

Ψ(1)
ω

(
ε− π

2

)
≈
[
C1

2
πω

sin πω + C2
1
ω

cosπω
]
ε−

1
2 , (H.16a)

Ψ(2)
ω

(
ε− π

2

)
≈ −

[
C1

2
π

sin πω + cosπω
]
ε

1
2 ln ε . (H.16b)

Using these approximations and the fact that ε1/2 ln ε→ 0 as ε→ 0, we have the asymptotic
expansion given in Eq. (8.42b) immediately.
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