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Abstract

In this thesis, an approximative analysis of nonlinear dynamical systems utilising the direct normal forms

method (DNF) is addressed. For certain engineering applications, this approach is used to analyse nonlinear

equations of motion. Nonetheless, while dealing with its specifics, the DNF approach has several undesir-

able restrictions, particularly in regards to the enormous algebraic terms and solutions; thus, it is crucial to

use computer-based procedures. In this thesis, Maple, a symbolic computing program, plays a crucial role

in obtaining step-by-step solutions for difficult nonlinear dynamical engineering problems based on the DNF

approach. In this thesis, it is shown that the implementation of such software permits the analysis of more

complicated systems, particularly those with higher-order geometric nonlinear stiffness terms, combinations of

nonlinear stiffness and viscous damping, and systems with fractional order damping terms.

The analysis in this thesis starts with a comprehensive investigation of single-degree-of-freedom (SDOF)

nonlinear systems, beginning with conservative systems and progressing through viscously damped and forced

systems with various forms of geometric nonlinearities. Higher order accuracies of the DNF method are then

explored in detail; beginning with a reintroduction of the study of ε2 accuracy using symbolic computations. A

unique refinement of the DNF methodology in terms of higher order accuracies is then presented. With the use

of symbolic computations tools, the precision of the DNF approach has been increased to any desired level of

precision, εn, which has been shown with a number of applications. In addition, for viscously damped SDOF

systems, a novel approach based on a variation of Burton’s method along with a normal form technique to

obtain the damped backbone curves is thoroughly discussed with examples.



viii

Furthermore, the analysis is extended to multi-degree-of-freedom (MDOF) nonlinear systems; starting

with two verification problems that show the capability of the proposed symbolic DNF technique with Maple

software. Then, a more advanced system of 2-DOF cubic-quintic oscillator is briefly discussed, in which ana-

lytical expressions of single-mode and double-mode backbone curves are generated.

In conclusion, the overall study findings provide unique enhancements to the technique of DNF for in-

vestigating nonlinear SDOF and MDOF systems analytically; this includes creating a tool for the researcher

to apply the method of DNF symbolically for systems with high orders of polynomial stiffness nonlinearities,

systems with combinations of stiffness and damping nonlinearities, and systems with viscous damping with

fractional orders. Moreover, the accuracy of the DNF method is discussed in detail and a general form for

any ε order is obtained. In conclusion, the implementation of symbolic computations of DNF method for such

systems is shown to be effective and trustworthy.
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Chapter 1

Introduction

The broad context of linear and nonlinear dynamical systems is explored in this Chapter, focusing on nonlinear

systems and their general characteristics. The research motivations are then described in depth to demonstrate

the necessity to improve the DNF technique, taking into considerations the projected advantages and drawbacks

of such modifications. Finally, in Section 1.3 the outline of the thesis is discussed in detail.

1.1 Background and Motivations

For a given linear mechanical system, the equations of motion are generated according to the fact that

the acceleration, velocity, and displacement are proportional to the inertial force, damping force, and elastic

restoring force, respectively. Based on these assumptions, linear models can be perfect in many applications,

nevertheless, in other situations, the presence of excessive deformations and other sources of nonlinearities

limit the accuracy of these models; leading to inaccurate or even incorrect results. Accordingly, for these spe-

cific applications, nonlinear system analysis need to be performed.

In the literature, linear vibration theories have been matured significantly, for the purpose of tackling linear

vibration problems; well-developed methods and analytical tools such as modal superposition, time domain,

and frequency domain analysis are available for linear system analysis. In machine dynamics, for example,

linear vibration analysis is often suitable for machines that run at low speeds and with relatively small com-



CHAPTER 1. INTRODUCTION 2

ponent deformations. However, in modern machine industry, two opposing tendencies are being chased at the

same time: faster speeds and lighter weights, [1]. These tendencies cause significant greater deformations of

machine components, requiring dynamic analysis based on nonlinear vibration theory to be adopted, in order

to attain improved accuracy and more satisfying findings.

System modelling approach allows for a simple categorisation of vibrations into two broad classes: linear

vibrations and nonlinear vibrations, regardless of the underlying causes. First, it’s important to exercise caution

when using the terms linear and nonlinear to classify systems in general; linear systems are those whose out-

puts are directly proportional to their inputs, allowing researchers to accurately forecast the system’s behaviour

when they know the input. Importantly, the linear system being studied is amenable to direct application of

any number of linear theories, including the concepts of superposition and homogeneity. Moreover, advanced

tools like Laplace transformations and Laplace inverse procedures are highly efficient for solving the equations

of motion (EOM) of linear systems. Nevertheless, in mathematics, nonlinear functions can be studied using

Laplace, but the results are more complicated and difficult to be adopted; they will not provide the same bene-

fits as direct integration techniques, thus, numerous method of analysing nonlinear dynamical systems can be

found in the literature.

In addition, features such as equilibrium and stability points, finite resonances, and clearly anticipated

steady-state performance, are readily apparent for linear vibrational systems. While linear models are perfectly

valid models and provide very accurate results in many cases, it is when they are improperly used beyond their

limits that they are inaccurate and lead to incorrect results. Due to the fact that many engineering, physical, and

mathematical applications are inherently nonlinear, applying linear approaches to explore these applications

can be ineffective, in these specific cases, nonlinear models gain increasing importance for researchers and

need to be feasibly practised.

In principle, when the displacement x or its derivatives, i.e. velocity, ẋ and acceleration, ẍ, appear in

the equation of motion with degrees other than the first, the inertial force, damping force, and elastic restoring

force are no longer proportional to the acceleration, velocity, and displacement, respectively. In that case, the
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corresponding problems or systems are classified as nonlinear. Nonetheless, in numerous engineering applica-

tions other configurations of nonlinearities are observed, for which this definition is unsatisfied, for instance;

the case of Coulomb friction, [8,12]. In this case, and others similar, it is more realistic to rely on the principle

of superposition and homogeneity to define nonlinear systems, see [10] for broader discussions regarding non-

linearities in engineering applications.

In terms of the steady-state performance and stability of a system, a nonlinear problem often displays

characteristics that are not anticipated by or even hinted at in a linear problem. For instance, if a sinusoidal

forcing scheme was used to drive a linear vibrational system, the system response would likewise be sinusoidal,

but maybe with a variable amplitude, frequency, or phase shift. However, the system output cannot be antic-

ipated if the same sinusoidal force is employed to drive a nonlinear system. The following are distinguishing

features of nonlinear systems in comparison to linear ones, [11]:

• Nonlinear systems do not follow the principle of superposition (in terms of linearity and homogeneity).

• They may have multiple isolated equilibrium points, while linear systems can have only one.

• They may create additional subharmonic vibrations with constant frequency.

• They may have several steady-state amplitudes, additionally, they might exhibit properties such as limit-

cycle, bifurcation and chaos.

Most practical engineering applications are themselves inherently nonlinear, with nonlinearities stemming

from a wide variety of sources such as geometry, material, and contact or boundary conditions. The problem

with these nonlinearities is the undesirable, unpredictable, and sometimes catastrophic vibrational motions

which can be resulted. For instance, one of the devastating incidents is the collapse of the first Tacoma Narrows

Bridge (1940), Fig. 1.1, where the catastrophic sudden collapse is mainly caused due to two nonlinear phenom-

ena; namely the flatter phenomenon, and nonlinear interactions between the moving air and bridge components.

Since most engineering structures must function in a linear fashion, nonlinear interactions and behaviours are

often not taken into account throughout the design process. In reality, linearity may be seen as an idealisation

or perfection, but dealing with nonlinear situations is needed in many current applications. For instance; in the

field of mechanical vibrations, excessive deflections of beams, plates and wind turbines blades are well-known
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examples of nonlinear dynamical systems, [8]. Moreover, in control systems, flight control of a fly-by-wire

high performance jet is an important engineering application of nonlinear dynamical systems, [13].

Figure 1.1: Collapse of Tacoma Narrows Bridge (1940)
(Source: https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940))

The exact analytical technique is one of the many proposed approaches for solving nonlinear equations

of motion, however it is often reserved for the simplest problems, refer to Section 2.1 for more details re-

garding the exact solutions of nonlinear systems. Therefore, the researchers had to implement approximation

techniques which should be precise enough to capture the system’s dynamic behaviours while also accounting

for the nonlinear phenomena connected with it. The literature has many different analytical approximation

approaches; some examples are the fundamental perturbation method, the harmonic balancing method, the

averaging method, the multiple scales method, and the normal forms method. There are advantages and dis-

advantages to each of these approaches, and in certain circumstances one may be more desirable than the others.

Nonlinear vibration system’s frequency-amplitude relationships are of great interest, because they indicate

how the periodic responses of a nonlinear system change as the input frequency is varied, for linear systems this

is captured by the frequency response function, which relates the magnitude and phase of the input to that of the

output. In comparison to linear systems, the frequency-amplitude relationship of nonlinear systems are curved

lines (hence called “backbone curves”), [33]. These relationships can be generated either analytically through

https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
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approximate analytical techniques or numerically with some numerical techniques (mainly continuation) such

as COCO and MatCont continuation tool boxes in MATLAB [34, 116], which will be primarily used in this

thesis to investigate backbone curves relations numerically and compare them to analytical solutions based on

the DNF method.

There are a number of challenges that researchers face when trying to achieve a high level of accuracy

in their proposed findings while using approximate analytical approaches for tackling complicated engineering

problems. Thus, there is a growing need for software packages that may truncate solution terms with enhanced

techniques that imply less computational time and efforts, but at the expense of precision. This thesis primarily

uses Maple, a symbolic computations software, to solve difficult nonlinear equations of motion for various

vibratory dynamical systems through the DNF approach.

In the literature, the method of DNF has been implemented to investigate the dynamics of numerous

engineering applications for both forced-damped SDOF and MDOF systems, for which the damping is mod-

elled in terms of viscous damping. However, when applied symbolically, the method has the potential to be

further improved to study systems with non-conventional damping models. In this thesis, as a novel imple-

mentation of the method, DNF is used to symbolically investigate the dynamics of SDOF systems involving

viscous damping with fractional order derivatives.

To conclude, the method of direct normal forms (DNF) is considered as a highly sophisticated method

that involves many mathematically intense algebraic steps, moreover, it is a powerful technique for investigat-

ing nonlinear dynamical systems for both SDOF and MDOF applications. Nevertheless, when implemented

symbolically, many accompanied mathematical steps can be performed with much less efforts. Practically,

the symbolic implementation of the DNF method is to be discussed in detail through out this thesis. In the

following subsection the research aims and objectives are accordingly clarified.
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1.2 Research Objectives

This thesis studies the symbolic implementation of direct normal forms method (DNF), this is accomplished

by developing novel usage of DNF for practical engineering applications. The DNF method, in its traditional

implementation, requires mathematically intense hand calculations for the purpose of investigating the dynam-

ics of nonlinear systems. The main purpose of this thesis is to introduce a novel symbolic implementation of

the DNF method to create an efficient tool for researcher to use when adopting this method. In particular, the

key objectives of this research are:

1. To study the method of DNF in detail and how it can be symbolically implemented for solving complex

engineering applications.

2. To develop novel symbolic implementations of the DNF technique using Maple software, which can enable

researchers to solve nonlinear equation of motions with enhanced accuracy and generate backbone curves for

the corresponding vibratory systems.

3. To adopt the proposed symbolic computations approach to investigate the accuracy of DNF technique, and

obtain closed-form solutions truncated to any desired accuracy, εn. For different nonlinear applications, the

outcomes of these accuracies are to be investigated and compared.

4. To develop a novel normal forms technique to investigate the dynamics of viscously damped SDOF oscilla-

tors. This technique is used to obtain the damped backbone curves of the nonlinear systems.

5. To apply the proposed Maple symbolic algorithms for chosen practical SDOF and MDOF engineering prob-

lems, including: nonlinear oscillators, beams, and any relative engineering applications.

6. To develop a novel implementation of the DNF method to study SDOF systems with viscous damping of var-

ious fractional orders, and compare the findings with both numerical results and some other techniques found

in the literature.

7. To compare analytical DNF results with simulation results (obtained using numerical continuation packages,

i.e. COCO and Matcont).
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1.3 Thesis Outline

The discussion in Chapter 1, as previously described, shows the introduction of the research topic. It contains

background and motivations of the author on pursuing these research activities. A brief introduction of non-

linear dynamical systems and their solutions is presented. Moreover, the research objectives are described in

detail, and finally the thesis outline is briefly discussed.

In Chapter 2, a brief literature review related to previous works is shown. Firstly, discussions regarding

the nonlinear dynamical systems in the field of mechanical engineering are performed. Then, the methods for

investigating nonlinear dynamical systems are briefly presented starting with approximate analytical methods,

followed by specific discussion regarding the method of DNF and its applications. Moreover, the numerical

techniques for analysing nonlinear dynamical systems are discussed to indicate the verification techniques used

in this thesis. The modal analysis of linear systems is then shown with brief discussions of the nonlinear normal

modes (NNMs) theory and applications. Furthermore, the concept of damped backbone curves of nonlinear

systems is introduced, this is followed by reviewing the literature of oscillators with combinations of stiffness

and damping nonlinear terms, and finally oscillators with fractional order damping are investigated.

In Chapter 3, an extended formulation for the method of DNF to solve nonlinear dynamical systems

is shown. The analysis starts with the DNF procedure of conservative systems where no forcing or damping

occurs, and then it is extended to systems with viscous damping and forcing. This is followed by a discussion

of the stability conditions of DNF method. Moreover, two examples of using DNF method are shown in detail;

the first example is a single-degree-of-freedom conservative oscillator with two types of geometric polynomial

nonlinearities, while the second example describes a system of viscously damped Duffing oscillator that is

driven by a forcing away from resonance.

In Chapter 4, the analysis is extended to include higher order accuracies of DNF starting with DNF anal-

ysis of ε2 accuracy, which has been previously discussed in the literature in many conducted researches, for

instance, refer to Wagg and Neild [8]. Then, a novel general DNF analysis for any required accuracy, εn,

is discussed. This is followed by two examples that compare the DNF results for ε1, ε2 and ε3 accuracies.
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Moreover, the analysis of damped backbone curves is discussed for which a novel new procedure of calculat-

ing such type of backbone curves for systems with viscous damping is introduced with some detailed examples.

In Chapter 5, further applications of DNF methods to investigate the dynamics of nonlinear SDOF systems

are discussed in detail. The discussion starts with the analysis of SDOF cubic-quintic oscillator, then, analysis

of SDOF oscillators with any type of odd polynomial nonlinearities is presented. In the following subsection,

DNF analysis of Van-der-Pol, Rayleigh, and oscillators with combinations of nonlinear stiffness and viscous

damping is revealed.

In Chapter 6, a novel implementation of DNF technique is presented to investigate the dynamics of vis-

cously damped nonlinear SDOF systems with fractional (or non-integer) order derivative (denoted as fraction-

ally damped systems, [122]). In this Chapter, the method of DNF is modified to study systems with fractional

order damping. Starting by DNF analysis of Duffing oscillator with fractional damping, analytical expressions

of the frequency-amplitude relationships are obtained and compared to both numerical results and results of

other methods found in the literature. At the final section of this Chapter, DNF analysis of the fractional Van-

der-Pol oscillator is revealed.

In Chapter 7, applications of DNF methods to investigate the dynamics of nonlinear MDOF systems

are discussed. Two verification problems are investigated to show the validity of symbolically applied DNF

technique to explore MDOF systems. The first verification problem illustrates a nonlinearly coupled 2-DOF

vertical-horizontal-spring-mass oscillator (or as called Touzé system, [46]). Initially, a new derivation for the

equations of motion is introduced, then the method of DNF is applied in order to get the backbone curves

of this system, these results are then compared to the literature to verify the outcomes obtained. Moreover,

the second verification problem represents an investigation of 3-DOF system with cubic nonlinear coupling

stiffness terms, results are verified by comparisons with relative works from the literature. Finally, using the

symbolically applied DNF method, a more complicated system of cubic-quintic 2-DOF system is studied, in

which single-mode and double-mode backbone curves are obtained. Finally, in Chapter 8, the conclusions and

possible future works are briefly discussed.
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Chapter 2

Literature Review

An overview of the literature is provided in this Chapter in relation to nonlinear dynamic properties and meth-

ods for analysing nonlinear systems. As such, it is crucial to comprehend the consequences of nonlinearity in

structural dynamics for the purposes of either avoiding or capitalising on nonlinearities. Recent techniques for

investigating nonlinear dynamics cover a lot of areas, but they can be classified into three major categories: nu-

merical, analytical, and experimental. In this Chapter, a brief summary of some of these methods is discussed.

This is followed by a brief discussion of the modal analysis approaches for nonlinear systems. Then, oscilla-

tors with combinations of stiffness and damping nonlinear terms are visited. Finally, nonlinear oscillators with

fractional order damping term are discussed in details.

2.1 Nonlinear dynamical systems

Although the nonlinear vibration systems are mathematically well known for several centuries, the actual and

real interests in this field started efficiently in the 19th century; this can be related to the mathematical tools

developments, and one of the earliest work in this field was undertaken by J. H. Poincaré, a well-known French

mathematician [39]. His contributions to pure and applied mathematics were of outstanding novelty in that

era, he classified the singular points of nonlinear autonomous systems of nonlinear vibrations, and one of the

modified perturbation methods was partially named after him; Lindstedt-Poincaré method [18].
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For decades, the dynamics behind the nonlinear vibratory systems are discussed thoroughly in many

books, [2–8, 18], and many unique features of nonlinear systems dynamical behaviours are found when com-

paring with linear systems, such as initial condition sensitivity and output to input varieties. These unique

characteristics, contrary to linear systems, may yield to various nonlinear dynamic phenomena including mul-

tiple solutions, jump phenomena, harmonics, resonance distortion, quasi-periodic motions, etc.

In the literature, only limited number of nonlinear vibration systems have exact solutions, for instance,

Kovacic and Brennan developed an exact solution of the Duffing oscillator based on the Jacobi elliptic func-

tions approach, [87]. Nevertheless, a wide variety of other systems do not have these exact solutions, hence,

approximate methods are presented. In the literature, perturbation methods are mainly used to investigate the

dynamics of nonlinear systems, which depend on Taylor-series expansion [33]. These perturbation techniques

enabled the engineering analyst to get some good analytical approximations for nonlinear systems, but it in-

volves some undesired outcomes that cause solution divergence in some cases, mainly due to the appearance of

secular terms, [36]. Many developed methods are found to overcome this problem, all of which contain math-

ematical complexities and high dimensionality of solutions, which increase the manipulation and simulation

time. In the following subsection a brief review of the methods used for investigating the dynamics of nonlinear

systems is given.

2.2 Methods of investigating nonlinear dynamical systems

The main concern in this Section is to focus on mathematically based techniques, including numerical and

analytical methods, since they are most relevant to the thesis’s central topic. In Subsection 2.2.1 the approxi-

mate analytical techniques for analysing nonlinear dynamical systems are briefly discussed, while in Subsec-

tion 2.2.2 the method of DNF is revisited in more depth. Finally, in Subsection 2.2.3 the numerical techniques

of nonlinear dynamical systems are discussed.

2.2.1 Approximate analytical methods of nonlinear dynamical systems

Herein, a short summary of the main methods used in analysing the dynamics of nonlinear systems is pre-

sented, including harmonic balance technique, in addition to some perturbation techniques; namely, averaging,

multiple scales, normal forms and finally direct normal forms techniques.
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Starting with the harmonic balance method, [33], which is a frequency domain method for calculating

the steady-state solution of the nonlinear systems. It was originally implemented by Baily [19] and Linden-

laub [20], where the solution is assumed to be summation of consecutive harmonics differing in amplitudes and

frequencies. It is considered one of the simplest methods, but it has some problems of accuracy, and sometimes

harmonics cannot be effectively balanced causing researcher to execute an endless loop of calculations, [8].

Comparisons of the harmonic balance technique and some perturbation techniques in determining the combi-

nation resonance for parametric dynamical systems can be found in [9].

The averaging method is based on the concept of substituting the actual differential EOM with its av-

eraged form. Thus, the basic (or smaller) response is kept while solving the response, however, the rapid

dynamics, i.e. the harmonics, are eliminated. More information regarding the averaging method used in non-

linear dynamic systems may be found in Sanders’s textbook, [21]. Moreover, according to Verhulst, [22], the

approach of averaging may be used to determine the steady-state response of a system, as well as its transient

behaviour. Nevertheless, unlike the harmonic balance, the approach of averaging is only applicable to weakly-

nonlinear systems in which the nonlinear terms are substantially less than the linear ones.

Another well-known method, especially for SDOF systems, is the multiple scales method [8]; a highly

intense algebraic method in which two, or even more, time scales are used in the solution, this technique is

outstanding in some SDOF cases, while it could be very difficult and time consuming in MDOF cases, and the

technique becomes extremely complex for large systems. The difference between multiple scales and averaging

method is that, in multiple scales, instead of removing the fast components by averaging, terms of equivalent

order are collected together under the assumption that the terms of the same scale balance each other, this is

accomplished by applying different time scales to the equation of motion.

Nonlinear DNF method, the method used in this work, is a well-structured technique of solving non-

linear EOMs with various types of nonlinearities, it can be used for either SDOF or MDOF problems, it is

possible for the analyst to select a certain resonant (or non-resonant) case to study, and a part of mathematical
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intensity could be avoided by making several nonlinear transformations for the EOM, these transformations in-

clude near-identity transforms and forcing transforms (for forced systems), [8], and matrix algebra techniques

are adopted to solve matrices with multi-step approach, yielding to detection of the desired resonances and

solving the SDOF or MDOF system.

While the DNF method looks fascinating for a wide range of applications, it contains many critical details;

as mentioned, using several nonlinear transformations can reduce the mathematically intense steps, neverthe-

less, when used for complicated nonlinear systems, specifically those modelled by high orders of geometric

polynomial nonlinear terms or combinations of nonlinear stiffness geometric and viscous damping terms, the

method would still generate huge and complicated terms due to the system complicity, and when trying to use

computer algorithms in the solution, researchers suffer intense symbolic computations and intermediate steps,

thus, it could be very difficult to use numerical based packages, mainly MATLAB. Accordingly, as presented in

this thesis, it could be helpful to use symbolic packages, i.e. Maple, which enhances the accuracy by increasing

the number of terms truncated for the solution. Additionally, researchers who use the DNF method tend to

make some system simplifications, mainly system reduction, in order to decrease the matrix sizes involved,

this crucial step must be practised with much conscious and carefulness; because it can affect the results, while

when using Maple software, it is possible to build a highly structured pattern that can be used for any degree-

of-freedom and massive number of terms, hence, some analyst described this technique to lend itself to be used

in symbolic programming packages [8]. More in-depth discussions of the DNF technique and its applications

is revealed in the following subsection.

2.2.2 The method of direct normal forms

In the literature, starting by early Poincare’s work, the application of normal forms for SDOF and MDOF is

discussed; initially, Hamiltonian normal form (or Birkhoff normal form) technique was introduced in [24],

where undamped unforced problem is considered, this work was followed by the first-order normal form tech-

nique [23], implemented firstly for nonlinear dynamic systems in [24], in this technique forced and damped

systems are considered.
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Because the majority of mechanical vibration applications are readily characterised by the second-order

form, Neild and Wagg initially developed variant normal forms for second order dynamical problems in [8];

this method will be followed throughout the discussion and formulation of this work. Compared to previous

techniques covered so far, the fundamental benefit of the DNF approach is that it can calculate harmonics with-

out supposing particular harmonic components in trial solutions. This implies that no previous knowledge of

the harmonic components of the system’s response is necessary, nor is any extra complexity required when

considering harmonics. In addition, the process of normal forms may be expressed in a matrix-based form,

making its application to computer automation more suitable.

Several research projects addressing the nonlinear dynamics of mechanical systems use the direct normal

forms approach. For example, Xin et al. [27] considered the SDOF nonlinear oscillators of polynomial-type

nonlinearities using DNF technique. Their work involved investigation of velocities and displacements, while

illustrating the contributions of the various polynomial nonlinearities in different forms to the system response

by means of the resulting resonance response functions (denoted as RRFs). In addition, Shaw et al. examined

the performance of the nonlinear vibration isolator using the DNF approach in [28]. The system was modelled

as a SDOF oscillator with high orders of polynomial nonlinear components, and the authors generated a set of

backbone curves for the nonlinear vibration isolator by taking into account the comparable conservative system.

Furthermore, Cammarano et al. [29] examined the optimal load for the nonlinear energy harvester in the case

of purely resistive loads. Their work was conducted both analytically and numerically, and they discovered

that analytical results approximated using the DNF technique were very close to numerical results within the

selected range of frequency.

The DNF method was also used to investigate the nonlinear dynamics of MDOF systems. In [30], the

bifurcations of the backbone curves caused by the modal interaction are investigated by considering a 2-DOF

oscillator with cubic nonlinearities. In addition, Hill et al. analysed the same system to introduce the out-of-

unison resonance behaviour found in actual systems such as the taut cable. Then, in [32], the same authors

highlighted how backbone curves derived using the normal form approach may assist the design and optimisa-

tion of weakly nonlinear systems with numerous degrees of freedom. The DNF approach has been used as the
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primary method of analysis for estimating the dynamic response of the nonlinear systems investigated in this

research.

Due to the fundamental nature of nonlinearities, the DNF approach is not restricted to nonlinear oscil-

lators; many engineering applications in the real-life display sources of geometric, or even damping nonlinear-

ities. Consequently, the direct normal form approach is used to examine nonlinear beams, cables, shells, plates,

and multi-story structures; for a thorough discussion of several of these applications, refer to [8].

Another important application of nonlinearly coupled multi-degree-of-freedom system is the Touzé two-

degree-of-freedom oscillator; a system of vertical-horizontal oscillator moves under the influence a harmonic

forcing conditions. This system is early studied in detail by [45,46], and [47] introduced some advances for the

effect of higher order terms on the dynamic behaviour of the system. In the present research, for verification

purposes, the Touzé’s system is studied in detail using DNF method, with the aid of Maple symbolic computa-

tion software, the results are then compared to corresponding results from the literature.

Due to the advances made in the field of computer packages software, accompanied with the more com-

plex nature of arising nonlinear dynamical problems, many symbolic software started to appear, for instance,

Mathematica, is one of these packages which was used in some applications in physics and engineering, like

those mentioned in [25]. Maple software, which will be used for programming in this work, is a software

package used mainly for symbolic computations, with many other applications. Maple was firstly introduced

in 1982 by the University of Waterloo, in a funded project to build a powerful software for computational

analysis, but it was not until 2005 that Maple became well-known for scientists all over the world, due to new

graphical user interface and modified wizards.

To some extent, the implementation of Maple symbolic packages for solving nonlinear mathematical and

physical problems can be found in the literature, and some textbooks were published considering this modern

thinking, both for mathematical [37] and physical [38] applications. In addition, some works were specifically

introduced to implement Maple analysis for nonlinear oscillations; in 1992 Wang and Huseyin [26] introduced
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one of the earliest works in this field, where they produced two Maple programs for the application of the in-

trinsic harmonic balance method, one for autonomous and the other for nonautonomuos systems. Seven years

later, X. Liu [40], in his PhD thesis, used Maple as the main program for introducing a complete analysis

of nonlinear dynamical problems, where he illustrated methods of implementing symbolic computations for

mathematical approximations of some nonlinear dynamical problems.

In the present study, a novel method of solving SDOF and MDOF nonlinear oscillators is introduced,

using the nonlinear DNF method, with the aid of Maple symbolic software. Approximate analytical solutions

for SDOF and MDOF with various types of nonlinearities is presented, furthermore, the implementation of this

method for fractionally damped systems is discussed with some engineering applications; namely, the fraction-

ally damped Duffing oscillator and the fractional Van-der-Pol oscillator.

When practising the method of DNF for SDOF and MDOF nonlinear oscillators with viscous damping and

external forcing (usually harmonic, otherwise some special conversions to harmonic forcing are adopted, [89]),

the analysis starts by applying the method for the undamped-unforced (or the conservative) case. Then, the

forced system is considered, and compared to the conservative case. In fact, the solution of forced nonlinear

systems using DNF method has some additional details regarding the nature of the forcing terms. Normally,

it is desired to study the system under harmonic forcing, with forcing frequency to be either near resonance

or away from resonance, step-by-step solution of the case of forced vibration can be seen in [8]. Specifically,

one of the advantages of DNF is the flexibility of studying systems under variety of forcing and resonance

conditions.

2.2.3 Numerical techniques

Given a mathematical dynamic model of a certain deterministic nonlinear system, numerical approaches may

be direct techniques for determining its solutions. Since mathematical models for physical systems might be

represented in a variety of ways, this thesis offers an overview of the techniques for solving nonlinear ordinary

differential equations (ODEs), as this is the major approach used. Additionally, in Chapter 6 of this work,

as a novel application to the method of DNF, it is used for investigating the dynamics of fractionally damped
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nonlinear oscillators. In all of these aforementioned applications, it is vital to apply verifications of the resulted

outcomes using numerical techniques, those are to be discussed in detail in this subsection.

Direct time-integration of the EOMs is one of the numerical methods for finding dynamic solutions. The

fundamental benefit of this approach is its ease of use and availability; for instance, the ODE solvers included

into MATLAB are useful tools, including solvers of explicit and implicit systems, refer to [51] for more in

depth discussions regarding MATLAB solvers for numerous applications. Direct time-integration method may

be used for both smooth and non-smooth systems1, and it is not limited to any particular type of mathematical

models. In addition, the time-integration technique may be used for modelling the transient dynamic responses

of a system; these responses can then be processed to get solutions such as the steady-state response or fre-

quency response functions (FRFs). As an example of this approach, Neild and Wagg used this method to verify

their approximation findings of resonance curves in [53], where they determined the steady-state of a single-

degree-of-freedom (DOF) Duffing oscillator. The apparent limitations of this approach, however, are also not

to be overlooked. To provide just one example, in comparison to approximate analytical and numerical contin-

uation techniques, applying direct time-integration techniques to the challenges of large-scale systems is very

inefficient and time-consuming, [17]. Furthermore, for systems with mild damping, it may take a long time for

such approaches to locate the steady-state or near steady-state solutions of the system. Moreover, using direct

time-integration to the EOMs, and due to transient or numerical effects, it may be impossible to integrate the

unstable steady-state solutions or even stable solutions but with weak attractions.

In the literature, the subject of uncertain nonlinear systems has been extensively investigated using a

number of techniques, for instance, in [14], Manson and Worden proposed alternative techniques to the well-

known Monte-Carlo approach for assessing parametric uncertainties effects to higher-order frequency response

functions of SDOF systems. Furthermore, using Volterra series analytical approach, the same authors studied

random vibrations of a Duffing oscillator in [15], and then obtained approximations to the coherence of this

Duffing oscillator in [16]. When dealing with their details, and similar to other approximate analytical tech-

niques, the aforementioned approaches are mathematically intense and time consuming.

1Generally speaking, if the system’s equation of motion includes continuous nonlinear terms with no sudden changes
in the type or magnitude of nonlinearity, then the system can be describes as smooth. On the other hand, non-smooth
systems are resulted from severe nonlinearity sources, such as impacts, [52]. It is worth mentioning that some continuous
nonlinearities can be non-smooth, this can be related to the presence of sharp edges in the graphical representation of the
corresponding nonlinear term(s).
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Numerical continuation is the alternative method, and it is tailored more for smooth nonlinear dynamic

systems. Numerical continuation, also known as parameter continuation, is a conceptual modelling method

of computing approximate numerical solutions of a system of parameterized nonlinear equations of motion,

based on the fact that the manifold of points that assemble lines (in one-dimensional space), or planes (in two-

dimensional space) represents the approximate solution to the nonlinear system, [17]. This indicates that the

under-determined system’s solution will undergo a similar, incremental shift if a single parameter of the EOMs

is altered. Accordingly, when an initial solution point is provided in the parameter space, the solution corre-

sponding to a little change in a studied parameter may be located in its near vicinity; this newly found solution

can then be utilised to seek the next solution with still another small parameter change; etc. When trying to

identify steady-state solutions, numerical continuation is more effective than direct time-integration methods.

As an added bonus, this method may be used to track down unstable solutions.

Many programs now provide support for the theory of numerical continuation. Examples include AUTO-

07p, which was first proposed by Doedel in [54] and can be accessed from [55]. MatCont is another example of

numerical continuation packages, which was created by Dhooge et al. [56, 57] and is accessible in [58]. More-

over, COCO continuation package was introduced in [34] and can be accessed from [35]. Another well-known

package is NNMcont, which was discussed in [59] by Peeters et al. and is accessible from [60].

Numerous continuation programs, like AUTO-07p, MatCont, and COCO, had their origins as tools for

mathematicians. Their adaptability and scalability make them useful for modelling and analysing a wide va-

riety of mechanical dynamic behaviours. In [64], for instance, AUTO-07p was used to perform an airplane’s

bifurcation analysis, an ostensibly useful task for designing airplanes. Furthermore, in [63], COCO was care-

fully modified to follow the location of the resonant response of an actual nonlinear oscillator setup, providing

yet another example of the coordinated use of numerical continuation and other approaches for experimental

testing.

Unlike other similar programs, NNMcont is tailored to calculating the reaction of nonlinear mechani-

cal systems. In particular, this technique makes it possible to discover the periodic solution of analogous
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conservative structures based on the nonlinear normal modes (NNMs) theory, [41], as opposed to calculating

the forced and damped, i.e. non-conservative, response of the nonlinear mechanical systems. NNMcont is used

in a wide variety of mechanical contexts. For instance, Kerschen et al. [42] used it to determine the NNMs of

an airplane’s airframe, while Renson et al. [61] used it to determine the NNMs of a satellite’s structure, both in

the aerospace industry.

Since the other three example numerical continuation algorithms are built in MATLAB, structural dy-

namists may be less acquainted with AUTO-07p and it may not be compatible with as many current software

packages as the other two. In addition, both MatCont and NNMcont rely on a graphical user interface, which

facilitates implementation but reduces customisation options for researchers. This thesis relies on the work of

COCO, which has been used for comparison and verification purposes in this thesis. Nevertheless, MatCont is

used for the numerical investigation of the frequency responses for oscillators that include both stiffness and

damping nonlinear terms as will be discussed in Section 5.4. More in depth discussions regarding numerical

continuation tools in MATLAB, specifically COCO in comparison to other tools can be found in [62].

2.3 Modal analysis

The idea behind modal analysis is that the system’s output may be represented by a set of vibrational modes.

Over the last decades, linear modal analysis has evolved and found widespread use in a variety of applications,

including sub-structuring approaches [48] and structural health monitoring [49]. The overall response of a

linear system may be written as the sum of the responses of its individual vibration modes since these modes are

isolated from one another. Moreover, proportional damping is presumed between the masses in order to obtain

meaningful response predictions. In fact, in modal analysis theory, the relevance of proportional damping

will become apparent when recognised that a system with proportional damping will have exactly the same

mode shapes to its counterparts that are undamped, [50]. Accordingly, vibration modes are governed solely

by the system’s mass, damping, and stiffness, as well as its structural features, such as boundary conditions.

The system’s degrees-of-freedom are equal to the number of its modes, for which the modal damping, natural

frequency, and mode shape are all associated with each mode.
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Figure 2.1: Schematic diagram of 2-DOF oscillator with lumped masses, m, linear stiffnesses k, linear damping
c and nonlinear stiffness κ .

For instance, the linearised form of the 2-DOF oscillator system presented in Fig. 2.1 is described by the

following equations of motion,

mẍ1 + c(2ẋ1− ẋ2)+ k (2x1− x2) = f1 (2.1a)

mẍ2 + c(2ẋ2− ẋ1)+ k (2x2− x1) = f2 (2.1b)

in this system, two modes of vibrations can be depicted, in which the two lumped masses will oscillate in-phase

and out-of-phase. Thus, the mode shapes of this system are;

φ
ᵀ
1 = [1 1] (2.2a)

φ
ᵀ
2 = [1 −1] (2.2b)

where φ1 and φ2 are the first and second mode shapes, respectively, and the superscript ᵀ denotes the matrix

transpose. Now, using the modal transformation of x→ q, the equations of motion can be rearranged in terms

of the natural frequencies, ωn1 and ωn2, damping modal ratios, ζ1 and ζ2 and the modal forces fq1 and fq2

leading to the following perfectly decoupled EOMs,

q̈1 +2ζ1ωn1q̇1 +ω
2
n1q1 = fq1 (2.3a)

q̈2 +2ζ2ωn2q̇2 +ω
2
n2q2 = fq2 (2.3b)
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where

ωn1 =
k
m

ζ1 =
c

2
√

mk
fq1 =

f1 + f2

2m
(2.4a)

ωn2 =
3k
m

ζ2 =

√
3c

2
√

mk
fq2 =

f1− f2

2m
(2.4b)

accordingly, two modes can be separately considered, this yields to the fact that the superposition principle

can be applicable for the computations of the responses of the two lumped masses, which have the form;

x1 = q1 +q2 (2.5a)

x2 = q1−q2 (2.5b)

Nonlinear normal modes (NNMs) theory is a viable option for analysing the modal behaviour of nonlinear

structures. Firstly introduced by Rosenberg [84], NNMs were used in investigating the nonlinear dynamical

systems and phenomena in several conducted researches, for instance in [66], Rand applied the concept of

NNMs to obtain explicit approximate expressions for normal modal curves in nonlinear two DOF systems.

Moreover, in [65] Manevich and Mikhlin used the idea of NNMs in the investigation of periodic solutions of

nonlinear systems in a similar manner to normal vibrations with rectilinear trajectories. Additionally, in his

PhD thesis, Vakakis performed a methodical overview at NNMs that were specified using conservative dynam-

ical systems, refer to [67] for more details, this work was then expanded by Shaw and Pierre [68] to include

non-conservative systems. Recently, one of the most current definitions of NNMs was provided in [41] by

Kerschen et al.

A variety of NNMs definitions may be found in the literature. For instance, according to Rosenberg’s

definition, [84], a NNM occurs when all points in the system simultaneously experience their maximum and

minimum values and go through zero. So, the displacement of one point may be utilised as a reference, and

that point’s displacement can characterise the displacements of the other locations. For instance, the EOMs of
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the nonlinear two degree-of-freedom system seen in Fig. 2.1 may be represented as

mẍ1 + k (2x1− x2)+κx3
1 +κ (x1− x2)

3 = 0 (2.6a)

mẍ2 + k (2x2− x1)+κx3
2 +κ (x2− x1)

3 = 0 (2.6b)

Assuming the reference coordinate to be x1, then x2 can be written as

x2 = x̂2 (x1) (2.7)

where x̂2 denotes the modal curve of x2, to proceed, it is convenient to differentiate Eq. 2.7 twice with respect

to time, which gives

ẍ2 = x̂′′2 ẋ2
1 + x̂′2ẍ2

1 (2.8)

where differentiation with respect to x1 is denoted by primes. It is possible to get x̂2 by replacing Eq. 2.7 and

Eq. 2.8 by Eq. 2.6, and then removing time dependency, i.e. ẍ1 and ẋ1. For more in-depth analysis, Kerschen

et al. in [41] provides a comprehensive overview of the methods used to calculate NNMs. In contrast to other

methods, the use of NNMs is not restricted to weakly nonlinear systems, which is perhaps its greatest benefit.

Modal analysis of nonlinear systems may also adopt the modal decomposition strategy. The nonlinear

EOMs are broken down into a collection of linearly uncoupled but possibly nonlinearly coupled modes by

using the linear mode shapes generated from the underlying linear structure of nonlinear systems. Using the

linear mode shapes from Eq. 2.2, the nonlinear modal EOMs for the example system presented in Eq. 2.6 are

q̈1 +ω
2
n1

q1 +
κ

m

(
q3

1 +3q1q2
2
)
= 0 (2.9a)

q̈2 +ω
2
n2

q2 +
κ

m

(
3q2

1q2 +9q3
2
)
= 0 (2.9b)

With the inclusion of the linked nonlinear elements in Eq. 2.9, the modes may interact and are no longer

completely independent of one another. That’s why nonlinear systems can’t benefit from the concept of super-

position. Approximate solutions to Eq. 2.7 may be calculated using the normal form approach by applying a



CHAPTER 2. LITERATURE REVIEW 22

sequence of transformations, [8] and the full derivation will be shown in Chapter 3. It is easier to handle modal

interaction and modal superposition using the normal form approaches based on the modal decomposition

approach than with NNMs, particularly for weakly nonlinear systems.

2.4 Damped backbone curves

A new novel approximative analytical method for estimating the damped backbone curves resulting from the

introduction of viscous damping into the equation of motion is discussed in Chapter 4 of this thesis. Analysis of

nonlinear systems has traditionally included studying the connection between the nonlinear frequency and the

consequent vibration amplitudes. This may be achieved by estimating the system’s conservative (undamped-

unforced) backbone curves and comparing them to numerically calculated forced damped frequency responses.

Although this method is very accurate for undamped and very mildly damped systems, increasing the damp-

ing decreases the correspondence between the conservative backbone curves and the forced damped frequency

response curves. As a consequence, the precision of estimating the system’s important properties, such as its

bifurcation points, is diminished. In principle, this technique applies to both SDOF and MDOF systems and is

based on a variation of Burton’s method and normal forms technique.

Nonlinear oscillators are commonly used to represent SDOF and MDOF systems, among other real-world

engineering applications. Typical examples of SDOF systems include single-mode approximations of struc-

tural components such as cables and beams, while MDOF systems have many applications depending on the

type and complexity of the system under consideration. The presence of viscous damping and its effect on

the dynamic behaviour of such nonlinear systems is a crucial aspect of these systems. In Section 4.4 of this

thesis, a new approximative analytical method for estimating the damped backbone curves arising from the

incorporation of viscous damping is presented.

Following the first study of Krack, [89], numerous works are published in the literature to calculate the

damped backbone curves, often by adding a fictitious force to the equation of motion to produce an analogous

system by discarding the term that involves viscous damping. In Section 4.4 of this thesis, the method pre-

sented can be applied directly in a similar way to the case of linear viscous damping, this leads to approximate
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damped backbone curves expressions for nonlinear oscillators. The method is based on a variation of Wentzel,

Kramers and Brilloun (WKB) method and Burton method [91], and can be directly applied to both SDOF

and MDOF systems. In addition, the approach is extended to incorporate any order of polynomial nonlinear

terms by using a normal form technique implemented symbolically through Maple software. Finally, some

selected examples are provided to examine the dynamics of nonlinear SDOF and MDOF systems by analysing

the resultant damped backbone curves.

2.5 Oscillators with combinations of stiffness and damping nonlinear

terms

A wide class of oscillators can be modelled by a combination of stiffness and damping terms according to the

following definition

ẍ(t)+ f (x(t), ẋ(t))+g(x) = 0, (2.10)

where the function f (x(t), ẋ(t)) represents any combination of x(t) and ẋ(t); for instance, Van-der-Pol and

Rayleigh oscillators are well known examples of such oscillators. Van-der-Pol oscillator represents the case

when f (x(t), ẋ(t))= µ
(
x2(t)−1

)
ẋ(t), and Rayleigh oscillator is obtained when f (x(t), ẋ(t))= µ

(
ẋ2(t)−1

)
ẋ(t),

moreover, some researchers studied the Van-der-Pol-Duffing oscillator in which a cubic stiffness term is added

to the EOM; for instance, in [164] the authors investigate the steady-state response of the Van-der-Pol-Duffing

oscillator used for weak signal detection applications. More complex systems involves the inclusion of higher

order stiffness terms to the EOM, the cubic–quintic Duffing–van der Pol oscillator is one of these systems, it

is studied in detail in [106] in which Homotopy, harmonic balance and multiple scales techniques are used to

obtain analytical approximate and numerical solutions of the cubic–quintic Duffing–van der Pol equation with

two-external periodic forcing terms.

In the case of Rayleigh oscillators more complex systems are also found in the literature; for instance,

a cubic stiffness term is added to the equation of motion to model Rayleigh-Duffing oscillator, refer to [108–

111, 114] for some of these researches. Nevertheless, the Rayleigh-Duffing oscillator can be considered as

a special case of a system involving higher order stiffness terms, in specific the cubic and quintic powers of
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x(t), this system is studied in [112, 113]. In this thesis, this system is denoted as the “cubic-quintic Rayleigh

oscillator” and it will be revisited in detail Subsection 5.4.5 in this work.

Direct normal forms method has been usually applied to systems with polynomial stiffness nonlinear

terms such as the quadratic and cubic terms, and viscous damping is occasionally added to the system to model

the damping effects. Nevertheless, according to the researcher best knowledge, the implementation of DNF

for studying systems with combinations of stiffness and damping nonlinearities is limited to simple cases; for

instance, in [8] DNF has been used to investigate the steady-state response of Van-der-Pol oscillator where

frequency-amplitude and frequency-phase relations are obtained. In this work, DNF is used to explore the

dynamics of Van-der-Pol, Rayleigh, and more complex systems involving high orders of nonlinear stiffness

terms.

2.6 Oscillators with fractional order damping

In recent years, the development of fractional calculus in research has gained extensive attractions, and many

publications have been proposed in this field; for instance, the interested reader is advised to visit [123, 124,

139–142]. In the field of engineering, fractional calculus has been strongly exercised for the modelling of many

practical engineering applications, in which damping history is of interest for this thesis.

In the context of dynamics, fractional models enable researchers to easily represent the vibratory be-

haviour of elements that would require complex formulations, such as multi-element or hereditary models, this

is related to the fact that fractional models can accurately reproduce the damping mechanisms using a small

number of variables compared to other damping models found in the literature, [124–126].

From physical point of view, fractional damping models are specifically useful for modelling polymeric

materials that exhibit some frequency dependence and arise naturally, for example, from specified Newtonian

fluid movements, [127], or molecular theories that predict the behaviour of certain types of polymeric mate-

rials [128]. Indeed, fractional models are used to easily capture the viscoelastic nature of materials such as

rubber or concrete [129], whose behaviour was previously modelled with a power law [130, 131], and it was
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found that fractional operators can appear in the non-linear stress-strain relation of metals [132]. Moreover,

viscoelastic constitutive models based on fractional derivatives have been proposed to reproduce the time de-

pendent behaviour of real materials [133–138].

Considering the Duffing oscillator with fractional damping, driven by harmonic force of non-resonant

type. In Chapter 6 of this thesis, it is required to get direct normal form frequency response for the system.

ẍ(t)+2εζ ωnDβ x(t)+ω
2
n x(t)+ εαx3(t) = εRcos(Ωt) (2.11)

where x(t) denotes the displacement of the oscillator, ωn is the natural frequency of the system and ζ is the

viscous damping ratio. Moreover, Dβ x(t) denotes the fractional damping of the system with β being the order

of the fractional order of the system, where (0 < β < 1), and when β = 1 then the system is viscously damped.

Additionally, R and Ω appears in the right-hand-side of the equation represent the forcing amplitude and forc-

ing frequency, respectively. Finally, ε is a bookkeeping parameter which is assumed to be unity through out

this work.

In order to verify the precision of the approximate analytical frequency response computed, it is important

to generate numerical solutions of the oscillator EOM, Eq. 2.11. In the literature, some numerical methods to

solve fractional order differential equations can be found. For instance, Roberto Garrappa et al. have produced

a series of publications dealing with the numerical approximations of fractional differential equations by means

of predictor–corrector algorithms and trapezoidal rules, [146–149], and they have generated several MATLAB

codes for various cases according to the system being considered; this includes, for instance, FDE routines

which are, in principle, similar to the well-known ODE routines available in MATLAB, refer to [150, 151]

for more details regarding FDE routines and their use. Nevertheless, the predictor-corrector algorithms were

primarily used by Diethelm et al. in [152, 153], in which they presented multiple numerical algorithms for the

numeration of fractional-order calculus, their work included computations of Caputo and Riemann–Liouville

definitions as well.
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Another well-known numerical technique used for fractional-order differential equations is the Grünwald-

Letnikov’s definition, [124,154,155], based on the backward difference generalisation of the fractional deriva-

tive. This definition was applied in [156] for developing discrete-time state-space equivalent model of a contin-

uous linear time invariant (LTI) System, in addition, a MATLAB toolbox has been generated for simulating and

analysing these LTI systems, refer to [157,158]. Moreover, Grünwald-Letnikov’s definition was used to obtain

numerical solutions to the fractionally damped Duffing oscillator, and the fractional-order Van-der-Pol Duffing

oscillator in [160, 161], respectively. In this work, Grünwald-Letnikov’s definition is used for the numerical

solutions for fractional Duffing oscillator in Eq. 2.11.

Moreover, in Chapter 6, it is required to get DNF solution of the Van-der-Pol oscillator with fractional

order damping, driven by harmonic force of non-resonant type. As discussed in Section 2.5, Van-der-Pol os-

cillator is well-known example of non-conservative oscillators with nonlinear damping, and the nonlinearity

evolves with time as briefly discussed in [163]. Additionally, Van-der-Pol oscillators have many real-life ap-

plications in the fields of physics, electronics, biology, neurology, sociology and economics, some of these

applications can be found in [164].

Herein, the fractionally damped Van-der-Pol oscillator is specifically addressed, to some extent, this type

of oscillators is studied in the literature both numerically and analytically using different techniques. For in-

stance, as one of the earliest works for such types of oscillators, Barbosa et al. investigated the dynamics

of the unforced fractional order Van-der-Pol oscillator using various numerical techniques in [165], after few

years the same authors introduced a modified version of that work using the same techniques for which the

fractional-order time derivatives were involved in the state-space model, [166].

Approximate analytical techniques were also implemented to investigate fractional-order Van-der-Pol os-

cillators; for instance, higher order angular frequency and the period approximations of the fractionally damped

Van-der-Pol oscillator are introduced using the residue harmonic balance in [169]. In a more recent work, Chen

et al. investigated the primary resonance amplitude-frequency response equation for this oscillator using the

method of harmonic balance, and based on Lyapunov theory, [123, 124, 139], they have been able to apply
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stability condition for the steady-state solutions obtained, refer to [168] for more details regarding this work.

Finally, homotopy perturbation methods are also used by some researchers to investigate this type of oscil-

lators; a general heuristic review of the homotopy perturbation methods for non-conservative oscillators is

recently introduced by Chun-Hui He and El-Dib, [170]. More specifically, the homotopy perturbation method

has been used to explore the approximate solution of the fractionally damped Van-der-Pol oscillator for which

the fractional derivative is described using Caputo’s definition, [167].

Based on the aforementioned, and according to the authors best knowledge, the DNF method has never

been used to study non-conservative fractionally damped nonlinear oscillators, thus, in Chapter 6, a novel im-

plementation of the DNF method to explore the dynamics of Van-der-Pol oscillators with fractional damping

term is introduced, amplitude-frequency and phase-frequency relationships are to be generated. Where rele-

vant, for verification purposes, the results are to be compared to both numerical solutions and previous works

found in the literature.

2.7 Summary

To comprehend nonlinearity in mechanical systems, it is necessary to determine the response solutions of non-

linear systems. Therefore, in Section 2.2, numerical and analytical techniques for finding the solutions of

mathematical models of nonlinear systems were explored. The primary advantage of the numerical approach

is that it is not limited by the complexity of nonlinear systems; however, one of its disadvantages is that the

numerical results alone can only provide limited insight into the explicit relationships between the physical

properties and dynamic behaviour of systems. This numerical disadvantage may be remedied using analytical

approaches. However, the top limit of the use of analytical methods is not known beforehand, which may

be overcame by confirming the analytical findings with numerical ones. The direct normal form method is

selected to research nonlinear behaviour in this thesis due to the capability of being used in symbolic program-

ming algorithms in which Maple symbolic software is used for modifying the method to be applicable in more

complicated engineering applications.
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According to the discussions in this Chapter, the following main findings are seen;

• For SDOF systems, the method of DNF is normally used in the literature to systems with low orders

of polynomial nonlinearities, regularly quadratic and cubic, in Section 5.1-Section 5.3 of the thesis, the

applicability of this method is generalised to study any order of polynomial nonlinear terms.

• For oscillators with combinations of stiffness nonlinear and damping terms, such as Van-der-Pol, Rayleigh,

etc., DNF method has not been used to in the literature for system analysis (except for Van-der-Pol os-

cillator in [8]), thus, in Section 5.4 of this thesis the analysis is extended to include these systems.

• According to the researcher best knowledge, the accuracy of the DNF technique in the literature is limited

to ε1 and ε2 expansions, in Section 4.2-Section 4.3 a novel improvement is introduced by raising the

accuracy of the DNF method to any desired expansion, εn.

• For viscously damped nonlinear SDOF oscillators, the usual in literature analysis is normally based on

generating analytical expressions of the backbone curves, those can be compared to the numerically

computed frequency response function, in Section 4.4 of this thesis a novel proposed technique describes

the inclusion of the damping term to the backbone curves, which results in the damped backbone curves.

• For fractionally damped SDOF nonlinear oscillators, which have never been analysed using the method

of DNF, Chapter 6 introduces a modified technique that enables the researcher effectively study these

types of oscillators, comparisons with numerical solutions and other methods found in the literature are

then introduced.

• For MDOF systems, DNF method has been used to some extent in the literature, in Section 7.3 of

this thesis a 2-DOF oscillator with cubic and quintic nonlinearities is investigated, and according to the

author’s best knowledge, this system has never been analysed using the method of DNF.
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Chapter 3

Nonlinear systems analysis using direct

normal form method

In this Chapter, a brief step-by-step problem solving using DNF method is discussed, the first part of this Chap-

ter shows the direct normal forms technique detailed procedure, further analysis for using this technique with

more examples of SDOF and MDOF is found in [8]. In this work, the main purpose is to extend the analy-

sis to more complex systems. Next part is the problem of a SDOF unforced, undamped nonlinear oscillator,

with two different powers of geometric type nonlinearities, these powers can be changed to make quadratic-

cubic, quadratic-quintic (to the power of 5), quadratic-septuple (to the power of 7), cubic-quintic, or any other

configuration provided that at least one of the two powers is odd according to the energy analysis of system

stability [8].

3.1 DNF procedure for conservative systems

Considering a general unforced, nonlinear, N-degree-of-freedom mechanical system, a general form of the

equation of motion can be written as

Mẍ+Kx+ εNx(x) = 0, (3.1)
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where x is an {N×1} vector of physical displacements, M and K are {N×N} matrices of mass and linear

stiffness respectively, Nx(x) is an {N×1} vector of stiffness related nonlinear terms and ε is used to denote

smallness of the nonlinear terms. It is worth mentioning that, for the DNF technique to be properly applied,

an assumption that the nonlinear terms are able to be expressed in polynomial forms in terms of x is adopted.

This assumption could be trivial for polynomial stiffness nonlinear terms, i.e. quadratic, cubic, etc., but for

different types of nonlinearities the fulfilment of this assumption can be more difficult, for instance, refer to the

DNF analysis of fractionally damped nonlinear oscillator, Chapter 6, specifically Eq. 6.19 and the discussions

therein.

In order to decouple the linearly coupled terms, the initial step of the direct normal form procedure is the

linear modal transform, which is expressed as

x = Φq, (3.2)

and the resulting equation of motion in modal coordinates is

q̈+Λq+ εNq(q) = 0, (3.3)

where q is {N×1} vector of linear modal displacement and Φ is an {N×N} matrix of linear mode shape

matrix, and Λ is an {N×N} diagonal matrix of the square of natural frequencies, which can be found from

the eigenvalues problem ΦΛ = M−1KΦ provided that Φ is mass normalised. Then, the nonlinear terms vector

becomes

εNq(q) = εΦ
−1M−1Nx(Φq), (3.4)

The following step of the direct normal form technique is the nonlinear near-identity transformation, i.e.

q = u+ εH(u), (3.5)

which results in a resonant equation of motion, written as

ü+Λu+ εNu(u) = 0, (3.6)
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where u and H(u) are the fundamental and harmonic components of q respectively, and Nu(u) is an {N×1}

vector of resonant nonlinear terms.

To determine the resonant nonlinear terms, the vectors Nu(u) and H(u) are expressed in a series form as,

εNu(u) = εn1(u)+ ε
2n2(u)+ ... (3.7a)

εH(u) = εh1(u)+ ε
2h2(u)+ ..., (3.7b)

where n1(u) and n2(u) are given in Eq. 3.12, and Nq(q) is expanded in a Taylor series about the equilibrium

q = u, which can be written as

εNq(q) = εNq(u)+ ε
2 ∂

∂u
Nq(u)H(u)+ ..., (3.8)

Additionally, a frequency detuning expression is introduced, based on the fact that the response frequencies of

nonlinear systems are often distinct from their natural frequencies, [8, 99], written as,

Λ = Γ+ ε∆, (3.9)

where Γ is an {N×N} diagonal matrix of square of resonant frequencies, and ∆ = Λ−Γ. Now, substituting

Eq. 3.7-Eq. 3.9 into Eq. 3.3 to compare with Eq. 3.6 gives,

ε
d2

dt2 h(1) (u)+ ε2 d2

dt2 h(2) (u)+ εΓh(1) (u)+ ε2∆h(1) (u)+ ε2Λh(2) (u)+

ε2 ∂

∂u
Nq (u)h(1) (u)+ ...= εNu(1) (u)+ ε2Nu(2) (u)

(3.10)

this leads to expressions that must be balanced in the following order

ε1 :
d2

dt2 h1u+Γh1u+n1u = nu(1)(u) (3.11a)

ε2 :
d2

dt2 h2u+Γh2u+n2u = nu(2)(u) (3.11b)
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where,

n1(u) = Nq(u) (3.12a)

n2(u) = (Λ−Γ)h1(u)+
∂

∂u
Nq(u)h1(u) (3.12b)

Here, an assumed solution of the form

un = upn +umn =

(
Un

2
e− iφn

)
e iωrnt +

(
Un

2
e iφn

)
e− iωrnt , (3.13)

is adopted, where n= 1, ...,N, moreover, Un, φn and ωn are the displacement amplitude, phase lag, and response

frequency of the nth mode, respectively. Substituting Eq. 3.13, the vectors n( j), n( j) and nu( j) may all be

expressed in terms of a {I j× 1} vector of nonlinear terms in the original problem, i.e., in n( j). For example,

if n( j) =
[
n( j)
]

u∗( j) is defined, then by mirroring this structure, h( j) =
[
h( j)
]

u∗( j) and nu( j) =
[
nu( j)

]
u∗( j) are

obtained, where [ ] denotes a {N×I j} coefficient matrix. For the case of polynomial nonlinear terms under

consideration, then the elements in u∗( j) may be written as

u∗( j)` =
N

∏
n=1

u
sp j,`,n
pn u

sm j,`,n
mn (3.14)

where sp j,`,n and sm j,`,n are exponents of upn and umn in any element of u∗( j) respectively. In order to identify

the resonant nonlinear terms retained in nu( j)from n( j), β( j), is introduced, i.e.

β( j)n,` =

[
N

∑
n=1

(
sp j,`,n− sm j,`,n

)
ωrn

]2

−ω
2
rn (3.15)

accompanied with the corresponding criteria that

Non-resonant: β( j)n,` 6= 0,
[
nu( j)

]
n,` = 0,

[
h( j)
]

n,` =

[
n( j)
]

n,`

β( j)n,`
, (3.16a)

Resonant: β( j)n,` = 0,
[
nu( j)

]
n,` =

[
n( j)
]

n,`,
[
h( j)
]

n,` = 0 (3.16b)



CHAPTER 3. NONLINEAR SYSTEMS ANALYSIS USING DIRECT NORMAL FORM METHOD 33

Once the resonant nonlinear terms are determined to a specific accuracy level, i.e., ε j, with the substitutions

of Eq. 3.13, Eq. 3.6 can be written in the form,

χne iωrnt + χ̃ne− iωrnt = 0, (3.17)

where χn and χ̃n are time-independent complex conjugates and, finally setting χn = 0 leads to the backbone

curve expressions. Practically, it can be feasible to employ normal form analysis to build codes for SDOF and

MDOF oscillators using Maple software, which enables symbolic calculations to be carried out with greater

precision and involving more complicated system analysis.

3.2 DNF procedure for forced damped systems

In this section, the analysis is extended to systems under the excitation of harmonic forcing and viscous damp-

ing. For convenience, only the main steps are to be discussed in this work, however, the complete detailed

analysis of these types of systems using direct normal forms is briefly mentioned in [8]. Considering a gen-

eral harmonically forced, viscously damped, nonlinear and N-degree-of-freedom mechanical system, whose

equation of motion may be written as

Mẍ+Cẋ+Kx+ϒ(x, ẋ,r) = Pxr, (3.18)

where the amplitude of the forcing term is denoted by Px, and r is the vector of forcing term which can be

written as r = {rp,rm}ᵀ = {e iΩt ,e− iΩt}ᵀ where the forcing frequency is denoted as Ω. From Eq. 3.18 it can be

seen that all nonlinear terms are gathered in one term, ϒ(x, ẋ,r). Here it should be noticed that both damping

term and nonlinear term are assumed to be small compared to the linear stiffness, hence, more conveniently

Eq. 3.18 can be rewritten as

Mẍ+Kx+ϒ(x, ẋ,r) = Pxr, (3.19)

where ϒ(x, ẋ,r) = ϒ(x, ẋ,r)+Cẋ(t). Now, the application of direct normal forms begins, similar to the case of

unforced equation, by writing Eq. 3.19 in its linear modal normal form, using the transformation x→ q, simply



CHAPTER 3. NONLINEAR SYSTEMS ANALYSIS USING DIRECT NORMAL FORM METHOD 34

by applying x = Φq, with some matrix manipulation Eq. 3.19 becomes

q̈+Λq+Nq (q, q̇,r) = Pqr, (3.20)

where Nq (x, ẋ,r) = (ΦᵀMΦ)−1
Φᵀϒ(Φq,Φq̇,r) and Pq = (ΦᵀMΦ)−1

ΦᵀPx.

Next step is to apply the forcing transformation in order to remove the non-resonant forcing terms, and this can

be achieved using an additional transformation, q→ v; where for the system with N degrees-of-freedom, it is

possible to introduce e of {N×2} and the transformation becomes q = v+ er. Now, substituting in Eq. 3.20,

and rearranging the dynamic equation, one shall find

v̈+Λv+Nv (v, v̇,r) = Pvr, (3.21)

where the nonlinear forcing vector is transformed using

Nv (v, v̇,r) = Nq (v+ er, v̇+ eWr,r) (3.22)

where W =

 iΩ 0

0 −iΩ

.

The transformed matrix e is found element by element, depending on the type of forcing frequency Ω, according

to the following criteria

• For near-resonant forcing (Ω≈ ωnk), then

ek,1 =
Pq,k,1

ω2
nk−Ω2 , ek,2 =

Pq,k,2

ω2
nk−Ω2 , Pv,k,1 = 0, Pv,k,2 = 0, (3.23)

• For non-resonant forcing (Ω 6= ωnk), then

ek,1 = 0, ek,2 = 0, Pv,k,1 = Pq,k,1, Pv,k,2 = Pq,k,2, (3.24)

To proceed with the analysis, it is convenient to recall the analysis of unforced case; where similar solution is

to be followed, i.e. Eq. 3.6 to Eq. 3.13, except for adding the extra transformation v→ u. Additionally, u∗
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matrix is found element by element using the relation

u∗` = r
mp`
p rmm`

m

N

∏
k=1

u
spk,`
pk u

smk,`
mk (3.25)

where mp` and mm` are power indices of rp and rm, respectively.

Furthermore, in order to find βββ
∗ matrix, Eq. 3.15 in the unforced case shall be modified, and it can be found

for the forced vibration element by element using the relation

βk,` =

[(
mp`−mm`

)
Ω+

N

∑
n=1

[(
sp j,`,n− sm j,`,n

)
ωrn
]]2

−ω
2
rk (3.26)

Finally, same procedure as the case of unforced vibration is followed to get the solutions of the forced vibration

equations. The following algorithm demonstrates the full symbolic implementation of the DNF technique.

Moreover, the symbolic implementation of the DNF method is described in detail in Fig. 3.1.
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Algorithm: ε1-order DNF technique using symbolic computations

Inputs: Mass matrix M, Linear stiffness matrix K, nonlinear and linear damping vector Nx, forcing amplitude

matrix Px and forcing frequency Ω.

Outputs: Displacement response x, backbone curves.

Procedure:

• Linear modal transformation

1. Calculate linear natural frequencies, Γ, and mode shapes Φ.

2. Calculate nonlinear and linear damping terms vector Nx and forcing amplitudes Pq.

• Forcing transformation

3. Determine resonant forcing amplitudes Pv.

4. Calculate the forcing transform matrix e (if exists).

5. Calculate nonlinear and linear damping terms after forcing transformation Nv.

• Nonlinear near identity transformation (symbolically)

6. Loop #1: perform a loop over DOF, substitute x′s and their derivatives by corresponding up and um

components (using several if clauses inside the loop).

7. For each equation in Nv, calculate the number of terms (as vector) then convert to set, and then find the

total number of terms for the whole system (unite all terms for all equations and convert to vector again.

8. Loop #2 (nested): the outer loop over the DOF, and the inner loop over terms number in each equa-

tion, determine the nonlinear and linear damping coefficients, and corresponding unique combination of

variables u∗ (using if clauses and coefficients commands).

9. Loop #3 (nested): calculating n∗ matrix for the whole system.

10. Loop #4 (nested): calculating power indexes sp and sm for u∗ (whole system) and placing them in

Table (or matrix) form.

11. Check: multiply n∗ by u∗ and subtract initial equations, zeros must be obtained.

12. Loop #5 (nested): Forming β matrix, for to DOF and then to the total number of terms, use corre-

sponding β equation.

13. Loop #6 (nested): Calculate coefficients of resonant terms n∗u, and of harmonic terms h∗.

14. Calculate the resonant nonlinear and linear damping terms by multiplying n∗u by u∗.

• Finding backbone curves and inverse transformation to find x.
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Figure 3.1: Flow chart for the symbolic implementation of the DNF method, truncated to ε1 accuracy, same
procedure with more algebraically intense mathematical steps can be followed to apply the method for higher
ε accuracies, refer to Section 4.1 and Section 4.2.

3.3 Stability of the steady-state solution

In this subsection, the stability of the assumed direct normal form steady-state solution is discussed using a

method that was firstly used in [27] and then it was rederived in [82]. The stability analysis to be followed

is based on considering a perturbation technique about the steady-state solution, and then the stability of the

solution is determined by examining the stability of the perturbation. Considering the ith mode of deviation
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about the steady-state solution, and denoting the nonlinear amplitude and the phase difference to be Ui and φi,

respectively, then, the assumed solution can be written as

ui =Upi(εt)e iωrit +Umi(εt)e− iωrit =

[
Ui(εt)

2
e− iφi(εt)

]
e iωrit +

[
Ui(εt)

2
e iφi(εt)

]
e− iωrit (3.27)

herein, both the amplitude and the phase difference Ui and φi are varying with time but with small values, that

is why ε is used to denote the smallness of these variations. Accordingly, neglecting higher order accuracies,

the time-derivatives of the assumed solution is given by

u̇i(t) = iωri

(
Upie iωrit −Umie− iωrit

)
(3.28a)

üi(t) =−ω
2
riui +2 iεωri

(
U ′pie

iωrit −U ′mie
− iωrit

)
(3.28b)

where the prime denotes the derivative with respect to (εt), thus

U ′pi =
dUpi

d(εt)
(3.29a)

U ′mi =
dUmi

d(εt)
(3.29b)

In Eq. 3.28, the term u̇i is truncated to ε1 order since the the terms related to velocity (or first derivative) are

only appearing in nonlinear and damping terms which are all of ε1 accuracy. However, the terms representing

the acceleration, or the second derivative, are considered to be of ε0 order, hence üi is to be truncated to

ε2. Accordingly, the complete expressions with their substitutions are truncated to ε2 accuracy. Substituting

Eq. 3.27 and Eq. 3.29 into the ith resonant equation, the equation of motion, in its general form becomes

[
2 iωriU ′pi +

(
ω

2
ni−ω

2
ri
)

Upi +N+
ui −Pui

]
e iωrit+

[
−2 iωriU ′mi +

(
ω

2
ni−ω

2
ri
)

Umi +N−ui −Pui
]

e− iωrit = 0,

(3.30)
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where the complex conjugate N+
ui and N−ui are those obtained from Nui in the same manner as those from

Eq. 3.7a. To satisfy Eq. 3.30, the contents of the square brackets must be equated to zeros, such that

U ′pi =
+ i
2ωri

[(
ω

2
ni−ω

2
ri
)

Upi +N+
ui −Pui

]
, (3.31a)

U ′mi =
− i
2ωri

[(
ω

2
ni−ω

2
ri
)

Umi +N+
ui −Pui

]
(3.31b)

Now, introducing a vector of amplitude and phase components, written as U, such that

U =
{

Up1 Um1 Up2 Um2 ... UpN UmN
}ᵀ (3.32)

thus

U′ =
{

U ′p1 U ′m1 U ′p2 U ′m2 ... U ′pN U ′mN
}ᵀ

= f(U) (3.33)

Accordingly, the initial definition of the solution will slightly deviate from the steady-state solution, and thus it

can be written as

U = Uss + εUpb (3.34)

where Uss is the steady-state solution and εUpb is the small perturbation around the steady-state conditions.

Combining Eq. 3.33 with Eq. 3.34, and applying ε1 Taylor series expansion yields to

U = U′ss + εU′pb = f(Uss + εUpb) = f(Uss)+ εfU(Uss)Ubp +O(ε2) (3.35)

where the term fU denotes the Jacobian matrix of f with respect to U defined as

fU =



∂ f1

∂Up1

∂ f1

∂Um1
. . .

∂ f1

∂Upi

∂ f1

∂Umi
. . .

∂ f1

∂UpN

∂ f1

∂UmN

∂ f2

∂Up1

∂ f2

∂Um1
. . .

∂ f2

∂Upi

∂ f2

∂Umi
. . .

∂ f2

∂UpN

∂ f2

∂UmN
...

...
. . .

...
...

. . .
...

...

∂ f2N−1

∂Up1

∂ f2N−1

∂Um1
. . .

∂ f2N−1

∂Upi

∂ f2N−1

∂Umi
. . .

∂ f2N−1

∂UpN

∂ f2N−1

∂UmN

∂ f2N

∂Up1

∂ f2N

∂Um1
. . .

∂ f2N

∂Upi

∂ f2N

∂Umi
. . .

∂ f2N

∂UpN

∂ f2N

∂UmN


(3.36)
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and if U′ss = f(Uss), then Eq. 3.35 can be rewritten as

U′pb = fU(Uss)Upb (3.37)

It can be shown from Eq. 3.34 that if the solution of the perturbation is stable at zero, then the steady-state

solution is also stable. To evaluate the stability of the steady-state solution, one may look at the eigenvalues

of fU, and the stability analysis may become an eigenvalue problem as a result. According to the stability

theorem, if an eigenvalue moves over the imaginary axis in the complex plane, the solution is no longer stable.

The conditions for establishing stability are, hence,

i. The steady-state solution is considered to be stable if and only if all of the eigenvalues have real components

that are negative.

ii. The steady-state solution is neutral if and only if one of the eigenvalues has a real component of zero and all

the rest have real components of negative.

iii. Finally, the steady-state solution is unstable if and only if any eigenvalue has a positive real component.

3.4 Examples

In this section, two examples of nonlinear equations will be shown. The first example depicts a SDOF conser-

vative oscillator with two nonlinear geometric stiffness terms, whereas the second example discusses a SDOF

oscillator with viscous damping and harmonic forcing away from resonance. It is essential to note that all of the

manipulations and solutions to be presented are derived using Maple symbolic computation packages, while

COCO numerical continuation toolbox in MATLAB is employed for numerical comparisons and verifications.

3.4.1 SDOF conservative oscillator with two nonlinear geometric stiffness terms

Considering the following general formula for unforced, undamped SDOF oscillator,

ẍ(t)+ω
2
n x(t)+α1xµ(t)+α2xν(t) = 0, (3.38)
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where ωn is the natural frequency of the system, α1 and α2 are arbitrary small coefficients for the nonlinear

terms, µ and ν are two integers denoting the lower and higher orders of the nonlinear terms, respectively.

Furthermore, due to the stability conditions of nonlinear systems, at least one of the nonlinear integer orders

(i.e. µ or ν) should be an odd number, for detailed discussion of the potential functions and how they are used

to study the stability of the system refer to [8].

Using the DNF method, it is feasible to compare the oscillator’s dynamics for various µ and ν config-

urations. Theoretically, such systems with distinct parameters and orders of nonlinearities may be utilised to

represent certain engineering applications. In theory, the symbolic computations approach proposed in this

work may be extended to broader SDOF systems with any number of nonlinear variables; this will be briefly

explored in Chapter 4. By starting with two nonlinear terms defined by Eq. 3.38 and increasing the order for

evaluating this approach, it is feasible to grasp its capabilities and limitations.

The following procedure illustrates the use of symbolic computations of a normal form method in order

to solve Eq. 3.38 for µ = 2 and ν = 7, nevertheless, following the same procedure, it is possible to solve

the equation for any other values, as long as at least one exponent is odd. Practically, DNF analysis of such

systems undergoes a series of transformations that involve complex mathematical manipulations, in this work

the most important results are shown, focusing on the utilisation of symbolic computation software, i.e. Maple.

Rewriting Eq. 3.38 with µ = 2 and ν = 7, leads to

ẍ(t)+ω
2
n x(t)+α1x2(t)+α2x7(t) = 0, (3.39)

The first step is using Eq. 3.3 in view of Eq. 3.2 to make the linear modal transformation, in this step it should

be noticed that for SDOF systems the transform is unity and x = q, then

q̈+Γq+Nq(q) = 0, (3.40)

where Γ = ω2
n and Nq(q) = α1q2 +α2q7. The second step is the near-identity transformation, and for ε = 1,

rewriting the nonlinear terms using u, one should obtain Nq(u) = α1u2
1 +α2u7

1 and u1 = up1 +um1, thus

nnn(1)(((uuu))) = n∗u∗ (up +um) = α1(up +um)
2 +α2(up +um)

7, (3.41)
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By expanding Eq. 3.41, n(1)(u) will contain many terms (11 terms in this case), these terms have to be primarily

decomposed into coefficients and nonlinear functions vectors n∗ and u∗, respectively.

n∗ =
[

α1 α1 α2 α2 2α1 7α2 21α2 35α2 35α2 21α2 7α2

]
(3.42)

u∗ =
[

u2
m1 u2

p1 u7
m1 u7

p1 up1um1 up1u6
m1 u2

p1u5
m1 u3

p1 u4
m1 u4

p1u3
m1 u5

p1u2
m1 u6

p1um1

]ᵀ
(3.43)

As the number of nonlinear terms and their associated orders rise, or when higher order accuracy (i.e. ε2,

ε3, etc.) is considered, it becomes more difficult to alter this first step using conventional hand calculations.

Symbolically, the suggested technique may be performed quickly to accomplish this step and generate n∗ and

u∗ matrices.

Using the suggested symbolic technique, the author has been able to investigate several SDOF oscillators

with two weak nonlinearities of varying orders. The amount of terms included in the matrix is crucial when

implementing the DNF approach, particularly for SDOF problems. Table 3.1 displays the number of terms

for conservative nonlinear oscillators of different orders of nonlinearities, i.e. for different µ and ν configu-

rations. The values in the highlighted cells show the scenario when the EOM has just one nonlinear component.

The increasing number of terms appearing in Table 3.1 leads to additional difficulties for hand calcu-

lations to be performed. Importantly, more complex systems will lead to a higher number of terms; some

examples of more complex cases include:

• the EOM involves viscous damping (in this case two additional terms are to be added to those in Ta-

ble 3.1),

• the system contains more than two types of polynomial nonlinearities,

• solving the EOM for a higher order accuracy (i.e. ε2)

• and when using the direct normal forms technique for MDOF systems,

all of the aforementioned cases can yield to a dramatic increase in the matrix size, thus, the mathematical com-

plexity is also increased, and this can justify turning to symbolic computation method.
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Table 3.1: Number of terms involved in matrices for selected values of ν and µ .

@
@
@
@
@

µ

ν

3 5 7 9 11 13

2 7 9 11 13 15 17

3 4 10 12 14 16 18

4 9 11 13 15 17 19

5 10 6 14 16 18 20

6 11 13 15 17 19 21

7 12 14 8 18 20 22

8 13 15 17 19 21 23

9 14 16 18 10 22 24

10 15 17 19 21 23 25

11 16 18 20 22 12 26

12 17 19 21 23 25 27

13 18 20 22 24 26 14

In order to complete the analysis, by applying Eq. 3.15, βββ
∗ can be written as

βββ
∗ = ω

2
r

[
3 48 3 48 −1 24 8 0 0 8 24

]
(3.44)

It should be emphasised that, according to direct normal forms analysis, any zero value in βββ
∗ matrix indicates

the presence of a resonant term; while any non-zero value indicates a non-resonant or harmonic term.

The next step, illustrates the resulting coefficients of resonant terms n∗u and h∗ of harmonic terms for both

resonant and non-resonant cases (refer to [8] for detailed analysis). In symbolic programming, this step is

based on conditional loop manipulation for each element in βββ
∗ with respect to n∗. The results are

n∗u = α2

[
0 0 0 0 0 0 0 35 35 0 0

]
(3.45)

h∗ =
1

ω2
r

[
α1

3
α1

48
α2

3
α2

48
−2α1

7α2

24
21α2

8
0 0

21α2

8
7α2

24

]
(3.46)
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If the analysis is only truncated to ε1 accuracy, which regularly leads to acceptable inspection of the nonlinear

effects for systems with weak nonlinearities, the final step is rewriting the transformed equation of motion. For

the non-resonant case, Eq. 3.40 in u-transformed coordinate system becomes

ü+Λu+n∗uu∗ = 0 ; ü+ω
2
n u+35

(
u3

p1u4
m1 +u4

p1u3
m1
)
= 0 (3.47)

and the near identity transform is written as

q = u+h∗u∗, (3.48)

which leads to

q = u+
1

3ω2
r

(
α1u2

m1 +
α1u2

p1

16
+α2u7

m1−6α1up1um1 +
7α2up1u6

m1
8

+
63α2u2

p1u5
m1

8
+

63α2u5
p1u2

m1

8
+

7α2u6
p1um1

8

) (3.49)

Substituting the assumed solution, Eq. 3.27, into Eq. 3.47, and solving the positive (or negative) complex

exponential terms by exact balancing, one can get the equation of the backbone curve for this system, truncated

to ε1 accuracy, which is

ω
2
r = ω

2
n +

35
64

α2U6 (3.50)

Following the same aforementioned procedure, one should be able to find the backbone curve for any values

of ν and µ in Eq. 3.38. One advantage of having a computer pattern in such case is the ability of doing several

runs with different conditions. Table 3.2 shows the backbone curve obtained for the first four values of ν when

µ = 2 for the ε1 expansion. It is clear that a general pattern is repeated for the backbone equation found, so if

µ = 2 it could be generalized for any value of ν that

ω
2
r = ω

2
n +ηiα2Uν−1 (3.51)

where ηi denotes a constant that directly depends on the order of the nonlinear term, refer to Table 3.4 for some

values of ηi for numerous orders of polynomial nonlinear terms.
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Table 3.2: Backbone curve equation of ε1 accuracy for different values of ν while µ = 2.

Value of ν Equation of motion Backbone curve equation

3 ẍ(t)+ω2
n x(t)+α1x2(t)+α2x3(t) = 0 ω2

r = ω2
n +

3
4

α2U2

5 ẍ(t)+ω2
n x(t)+α1x2(t)+α2x5(t) = 0 ω2

r = ω2
n +

5
8

α2U4

7 ẍ(t)+ω2
n x(t)+α1x2(t)+α2x7(t) = 0 ω2

r = ω2
n +

35
64

α2U6

9 ẍ(t)+ω2
n x(t)+α1x2(t)+α2x9(t) = 0 ω2

r = ω2
n +

63
128

α2U8

Practically, for the weak nonlinear case, the values of α1 and α2 should be small, typically less than unity,

Fig. 3.2 shows the backbone curves for the conservative oscillators appearing in Table 3.2, using the following

numerical values; α1 = 0.2, α2 = 0.1 and ωn = π rad/s.

Figure 3.2: Conservative backbone curves for different values of ν while µ1 = 2. All results are obtained
analytically using the findings in Eq. 3.51 or equivalently Table 3.2, and the natural frequency is ωn = π rad/s.

Furthermore, it is possible to obtain the backbone curve relation, truncated to ε1 accuracy, for any values of ν

and µ in Eq. 3.38. Table 3.3 shows some examples of these results.

The following findings are noted:

• For SDOF systems, any even nonlinearity found in the EOM is removed by the normal form transforma-

tion and does not appear in the backbone curve. This phenomenon is found in the literature in terms of



CHAPTER 3. NONLINEAR SYSTEMS ANALYSIS USING DIRECT NORMAL FORM METHOD 46

Table 3.3: Backbone curve equation of ε1 accuracy for different values of ν and µ .

Value of ν Value of µ Equation of motion Backbone curve equation

3 5 ẍ(t)+ω2
n x(t)+α1x3(t)+α2x5(t) = 0 ω2

r = ω2
n +

3
4

α1U2 +
5
8

α2U4

4 7 ẍ(t)+ω2
n x(t)+α1x4(t)+α2x7(t) = 0 ω2

r = ω2
n +

35
64

α2U6

5 9 ẍ(t)+ω2
n x(t)+α1x5(t)+α2x9(t) = 0 ω2

r = ω2
n +

5
8

α1U4 +
63

128
α2U8

6 9 ẍ(t)+ω2
n x(t)+α1x6(t)+α2x9(t) = 0 ω2

r = ω2
n +

63
128

α2U8

7 11 ẍ(t)+ω2
n x(t)+α1x7(t)+α11x9(t) = 0 ω2

r = ω2
n +

35
64

α2U6 +
231
512

α2U10

quadratic nonlinearity appearing in SDOF nonlinear oscillator, [8], based upon the analysis introduced,

this finding is generalised for any even nonlinearity that appears in SDOF systems.

• Referring to Table 3.3 and Table 3.2, it is clear that the nonlinear frequency resulting by ε1 DNF accuracy

consists of the linear natural frequency of the system, in addition to the nonlinear frequency shift which

depends on the nonlinear terms appearing in the original equation of motion.

• Some of these results are numerically verified using COCO numerical continuation toolbox in MAT-

LAB (see Fig. 3.3 & Fig. 3.4 in the following subsection), and acceptable agreement between analytical

backbone curves and numerical results can be observed.

In conclusion, in order to generalise the ε1 backbone curve relation for any SDOF nonlinear oscillator with

two types of nonlinearities, Eq. 3.38, in view of Table 3.1 & Table 3.2, provided that ν and µ are both odd, the

following relation can be obtained

ω
2
r = ω

2
n +ηi,1α1Uν−1 +ηi,2α2U µ−1 (3.52)

where ηi,1 and ηi,2 are constants directly related to the order of the nonlinearity, Table 3.4 shows the values of

these constants for several orders of the nonlinear terms. Finally, as mentioned earlier, any even nonlinearity in

the EOM will be removed by the normal form and will not appear in Eq. 3.52.
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Table 3.4: Values of the constants ηi appearing in the backbone curve relation, Eq. 3.52

Order of nonlinearity 3 5 7 9 11 13 15 17

ηi
3
4

5
8

35
64

63
128

231
512

429
1024

6435
16384

12155
32768

Using Eq. 3.52 and Table 3.4 it is possible to get the conservative backbone curve relation for any nonlinear

oscillator with two different types of polynomial nonlinearities. As an example, if the EOM contains both cubic

and quintic nonlinearities, i.e.

ẍ(t)+ω
2
n x(t)+α1x3(t)+α2x5(t) = 0, (3.53)

then, the conservative backbone curve of ε1 accuracy will be

ω
2
r = ω

2
n +

3
4

α1U2 +
5
8

α2U4, (3.54)

In the following subsection, in order to investigate the accuracy of the symbolically applied DNF technique, as

a verification problem, the system of a Duffing oscillator with cubic nonlinearity, viscous damping and forcing

away from resonance is considered, this example system is priorly studied using traditional DNF method by

Wagg and Neild in [8].

3.4.2 Verification problem: Non-resonant Duffing oscillator with cubic nonlinearity

The equation of motion of Duffing oscillator with cubic nonlinearity, viscous damping and forcing away from

resonance where the ratio between the driving frequency and the natural frequency is 1/3 (i.e. a =
1
3

) is given

by

ẍ(t)+2ζ ωnẋ(t)+ω
2
n x(t)+αx3(t) = Rcos(Ωt) , (3.55)

Using the proposed DNF technique applied symbolically, it is required to analytically generate conservative

backbone curve equations for ε1 accuracy, and compare with forced (and lightly damped) response curves. The

step-by-step procedure involves large matrices and algebraic terms, hence, only the key results are to be shown,

while further results for matrix algebra manipulations can be found in [8]. Upon analysing the system using
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DNF, one can get

1
4
[
3αU3 +

(
24αe2 +4

(
ω

2
n −ω

2
r
))]

cos(ωrt−φ)+2αe3 cos(ωrt)

−2ζ ωnωrU sin(ωrt−φ) = 0,

(3.56)

where e =
R

2(ω2
n −Ω2)

.

Applying the suitable trigonometric identities, and then balancing the sines and cosines terms in Eq. 3.56,

yields to

ζ ωnωrU =−αe3 sin(φ) (3.57)

3αe2 +
3
8

αU3 +
1
2
(
ω

2
n −ω

2
r
)
=−αe3 cos(φ) (3.58)

Hence, it is possible to use Eq. 3.57 & Eq. 3.58 to get an expression for U as a function of ωr, therefore, com-

puting the forced response curve analytically, this has been previously done in [8] by applying traditional hand

calculations. In order to compare with our proposed symbolic computation method, the same problem has been

solved in conservative case (unforced-undamped case), and the conservative backbone curve is computed using

Eq. 3.52 and Table 3.4 and plotted in Fig. 3.3, along with the numerically computed forced-damped frequency

response curves for several values of R. The numerical values chosen for this figure are ωn = 2 rad/s, ζ = 0.01

and α = 0.2.

Fig. 3.3 represents a typical backbone curve and frequency response curves for any forced damped nonlin-

ear system in hardening case. From this figure, several important observations can be noticed; first of all, as the

value of α is positive, the hardening behaviour is clearly seen, in contrast, as will be shown later on in Fig. 3.4,

if α is negative softening behaviour will be noticed. Furthermore, as the figure shows the relation between nat-

ural frequency and amplitude, the conservative backbone curves do not perfectly coincide with the manifolds’

peaks, and this is due to the presence of damping, however, in order to overcome this issue, the following Chap-

ter introduces a novel method of obtaining the damped backbone curves for such viscously damped systems.

Moreover, as the forcing amplitude R becomes higher, more matching between the conservative backbone

curves and their corresponding manifolds occurs.
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Figure 3.3: Conservative backbone curve and the forced-damped frequency responses for the Duffing oscillator
with cubic nonlinearity. The solid black line represents the conservative backbone curve obtained analytically
using Eq. 3.52 and Table 3.4, while the coloured dashed lines are the forced-damped frequency responses
computed numerically using COCO toolbox in MATLAB for different values of R. The numerical values are:
ωn = 2 rad/s, ζ = 0.01 and α = 0.2.

Finally, in order to compare the frequency response of several nonlinear terms in combination, recall Eq. 3.38

in its forced damped case, that is

ẍ(t)+2ζ ωnẋ(t)+ω
2
n x(t)+α1xν(t)+α2xµ(t) = Rcos(Ωt) , (3.59)

Various values of ν and µ can be considered, the corresponding EOM can be studied using the method of

DNF and analytical backbone curve relations are then obtained. Three cases are studied, linear oscillator and

cubic-quintic oscillator in both hardening and softening cases (3-5 Hardening, 3-5 Softening). Fig. 3.4 repre-

sents backbone equation for all previous cases along with their forcing manifolds obtained numerically using

COCO, this figure is generated using the numerical data: general parameters for all cases ωn = 2 rad/s, ζ = 0.05

and R = 1. In the case of hardening cubic-quintic oscillator α1 = 0.2 and α2 = 0.3. And finally, for softening

cubic-quintic oscillator α1 =−0.2 and α2 =−0.3.

Fig. 3.4 illustrates the effect of both hardening and softening nonlinear terms on the frequency response of

the system. Using this figure, the following can be noticed; firstly, compared to the linear case, hardening
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polynomial nonlinearities shift the peak to the right whilst minimising the maximum vibration amplitude of the

system. On the other hand, softening nonlinear terms cause shifting to the left and maximising the vibration

amplitude. However, using Eq. 3.52 along with Table 3.4 it is possible to obtain the conservative backbone

curves for SDOF oscillator with two nonlinear terms, and compare with the forced-damped frequency response

computed numerically using COCO toolbox in MATLAB.

Figure 3.4: Frequency responses and conservative backbone curves for the cubic-quintic oscillator for various
types of nonlinearities. The red and blue solid lines illustrate the conservative backbone curves computed
analytically using the DNF results for the hardening and softening cases, respectively. Moreover, the black
solid line, dashed-dotted red line and dashed blue line represent the numerically computed frequency responses
for the linear, hardening and softening cases, respectively, all generated using COCO toolbox in MATLAB.
Common parameters for all cases are ωn = 2 rad/s, ζ = 0.05 and R = 1. Moreover, for hardening cases,
α1 = 0.2 and α2 = 0.3, and finally for softening cases, α1 =−0.2 and α2 =−0.3.

3.5 Summary

In this Chapter, the theoretical procedure of the DNF analysis is shown in detail. Firstly, the DNF procedure for

conservative (or unforced, undamped) systems is presented. Then, the procedure for forced damped systems

is substantially revealed. The vital difficulties using this technique are mainly related to the complexity of the

matrix manipulations, specifically for systems with numerous number of polynomial nonlinear terms and/or

the high orders of the nonlinearities involved in the EOM. Despite the fact that building symbolic algorithms

to deal with such type of method has consumed considerable time and effort, these algorithms greatly helped

the researcher investigate complex systems such that the SDOF system studied in Subsection 3.4.1 rapidly and

efficiently.
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Based upon the analysis performed in this Chapter, the following can be observed;

• The DNF procedures presented are considered to be greatly complicated and sophisticated if handled by

traditional hand calculations, specifically when the size of the matrices involved become considerably

large, thus the utilisation of symbolic computations can be efficiently helpful.

• The general formula for the backbone curve in Eq. 3.51 is for the special case when ε1 accuracy is

considered and one single odd and one single even nonlinear terms appearing in the original EOM,

which indicates that ε1 accuracy is unable to capture the effect of even nonlinear terms to the frequency

response (or backbone) curves. Nevertheless, this restriction will be resolved when studying higher order

accuracies in Section 4.1-Section 4.3.

• In Subsection 3.4.2, the Duffing oscillator is investigated under non-resonant conditions, for which the

driving frequency is away from the natural frequency of the system, i.e. Ω 6=ωn, however, more examples

of the resonant cases can be found in [8].

• The backbone curves generated in this Chapter are restricted to the conservative systems, however, in the

following Chapter, a novel approximate method of obtaining the damped backbone curve is shown.

• In Chapter 5, more comprehensive examples for SDOF systems using DNF method are discussed in

detail.
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Chapter 4

Higher order accuracies and applications

to damped systems

In this Chapter, DNF analysis is extend to include higher order accuracies (i.e. ε2,ε3, ...), and the resulting

backbone curves are then compared to show the benefits of extending the analysis to these higher orders of

accuracies. Firstly, the DNF analysis truncated to ε2 is presented, the procedure shown in this section can be

found in the literature in [8, 47]. In the following subsections, a novel implementation of the DNF method

is derived to generalise the analysis; closed-form mathematical expressions for any desired DNF accuracy is

obtained, and, in principle, these expressions can be applied with the aid of symbolic computations software

to get approximate analytical results for the systems to any desired accuracy. Finally, a general closed-form

expression that enables the researcher to investigate the results for any desired nth accuracy is produced. Two

examples are then studied, the first example illustrates the analysis of conservative Duffing oscillator while the

second example shows the conservative quadratic-cubic oscillator, in both examples DNF analysis is held to

ε1, ε2 and ε3 accuracies, and the resulting backbone curves are compared.

4.1 DNF procedure for ε2 accuracy

While in many cases the first order of truncated solution, (i.e. ε1 accuracy), yields to acceptable results (com-

pared to numerical solutions), sometimes it can be beneficial (or even required) to extend the analysis to a
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higher order accuracies. In this section, a brief formulation to ε2 accuracy is discussed, more details regarding

the derivation of this high order of accuracy can be found in [8].

To start the derivation of ε2 accuracy, one may refer to Eq. 3.10, for which it is possible to obtain h2(u) and

nu2(u) vectors. In analogy to Eq. 3.12 it is possible to write

ñ2(u)+Γh2(u)+
d2

dt2 h2(u) = nu2(u) (4.1)

where ñ2(u) = n2(u)+(Λ−Γ)h1(u)+
d

du
{n1(u)}h1(u)

Herein, more complexity can be clearly noticed regarding the nonlinear term, so it is more difficult to obtain

the solution to ε2 accuracy. However, according to the system being approximated, it will be shown that rather

than being considered as a compromising procedure to improve the accuracy, the need of extending the analysis

to ε2 highly depends on the orders of the nonlinear terms. In matrix form, and similar to the analysis of ε1, the

following terms can be introduced,

ñ2(u) = n(2)u(2)(up,um), h2(u) = h(2)u(2)(up,um), nu2(u) = n(2)
u u(2)(up,um) (4.2)

where, for SDOF systems, n(2), h(2), n(2)
u are row vectors, and u(2)(up,um) is a column vector, hence, the

resulting products will be scalars. The step-by-step analysis is performed exactly as the case of ε1, and βββ
(2) is

computed accordingly, [8]. Finally, the near-identity transformation, to ε2 order is written as

q = u+h(1)u(1)+h(2)u(2), (4.3)

and the resulting EOM is found to be,

ü+Λu+n(1)u(1)+n(2)
u u(2) = 0 (4.4)

The same procedure with some additional steps can be followed for forced-damped systems, and for systems

studied in the resonant case, refer to [8] for detailed analysis of such systems.
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4.2 DNF analysis for εn accuracy

In this part, thanks to the symbolic computations algorithms generated, a novel improvement of the DNF

method is introduced in order to find any accuracy of the DNF solution εn. The analysis to be performed in

this Section builds of the ε1 analysis shown in Chapter 3; by referring to Eq. 3.10, it is possible to obtain the ε2

accuracy solution by finding the h2(u) and nu2(u) vectors, in analogy to Eq. 3.10 it is possible to write

ñ2(u)+Γh2(u)+
d2

dt2 h2(u) = nu2(u), (4.5)

where ñ2(u) = n2(u)+(Λ−Γ)h1(u)+
d

du
{n1(u)}h1(u).

As discussed earlier, the need of extending the analysis to ε2 highly depends on the orders of the nonlinear

terms, however, in some cases it can be necessary to find ε2 solution, for instance, refer to [47]. In matrix form,

and similar to the analysis of ε1, the following terms can be introduced,

ñ2(u) = n(2)u(2)(up,um)

h2(u) = h(2)u(2)(up,um)

nu2(u) = n(2)
u u(2)(up,um)

(4.6)

where, for SDOF systems, n(2), h(2), n(2)
u are row vectors, and u(2)(up,um) is a column vector, hence, the

resulting products will be scalars. The step-by-step analysis is performed exactly as the case of ε1, and βββ
(2) is

computed accordingly, [8]. Finally, the near-identity transformation, to ε2 order, along with the resulted EOM

are found to be,

q = u+h(1)u(1)+h(2)u(2) ; ü+Λu+n(1)u(1)+n(2)
u u(2) = 0 (4.7)

The same procedure with some additional steps can be followed for forced-damped systems, and for systems

studied in the resonant case. In the literature, most of the DNF analysis is restricted to ε1 accuracy, for which

acceptable levels of agreements with the numerical results are obtained. Moreover, some researchers extended

the analysis to ε2 accuracy, and normally this yields to desirable improvements of the findings, the interested

reader is advised to visit [8] for detailed analysis of some examples. However, according to author’s best

knowledge, DNF method has never been used with accuracies higher than ε2 to investigate the dynamics of
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nonlinear systems, this is mainly related to the increasing mathematical complexities, and since the results of

lower orders accuracies could normally yield to sufficient levels of accuracy. However, in this work, it is desired

to extend the analysis to include any order of DNF accuracy, and by using symbolic computations it is possible

to overcome the complicated mathematical manipulations usually accompanied to such analysis.

Now, in order to obtain ε3 solution, or any higher order accuracy, the following relation is considered;

q = u+h(u) (4.8)

where the harmonic solution can be perturbed in the following form

h(u) = εh1 (u)+ ε
2h2 (u)+ ε

3h3 (u)+ ε
4h4 (u)+ ε

5h5 (u)+ ... (4.9)

The conservative EOM, in terms of u, is written as

ü+Λu+Nu (u) = 0 (4.10)

Where the nonlinear vector (or matrix), Nu(u), is approximated in the following form

Nu(u) = εNu (u)+ ε
2Nu (u)+ ε

3Nu (u)+ ε
4Nu (u)+ ε

5Nu (u)+ ..., (4.11)

Substituting in the EOM, while considering ε5 as the highest accuracy to be considered, it is possible to write;

ü+ ε
d

dt2 h1(u)+ ε
2 d

dt2 h2(u)+ ε
3 d

dt2 h3(u)+ ε
4 d

dt2 h4(u)+ ε
5 d

dt2 h5(u)+

Λ

(
u+ εh1(u)+ ε

2h2(u)+ ε
3h3(u)+ ε

4h4(u)+ ε
5h5(u)+ ...

)
+

εn1
(
u+ εh1(u)+ ε

2h2(u)+ ε
3h3(u)+ ε

4h4(u)+ ...
)
+

ε
2n2
(
u+ εh1(u)+ ε

2h2(u)+ ε
3h3(u)+ ...

)
+ ε

3n3
(
u+ εh1(u)+ ε

2h2(u)+ ...
)
+

ε
4n4 (u+ εh1(u)+ ...)+ ε

5n5 (u+ ...) = 0

(4.12)
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Using Taylor series expansion given in the following form

ni

(
u+ εh1(u)+ ε

2h2(u)+ ε
3h3(u)+ ε

4h4(u)+ ε
5h5(u)+ ...

)
= ni(u)+

εh1(u)
d
du
{ni}+ ε

2h2(u)
d2

du2 {ni}+ ε
3h3(u)

d3

du3 {ni}+ ε
4h4(u)

d4

du4 {ni}+ ...,

(4.13)

hence, Eq. 4.9 becomes

ε
d2

dt2 {h1(u)}+ ε
2 d2

dt2 {h2(u)}+ ε
3 d2

dt2 {h3(u)}+ ε
4 d2

dt2 {h4(u)}+ ε
5 d2

dt2 {h5(u)}+

Λ

(
εh1(u)+ ε

2h2(u)+ ε
3h3(u)+ ε

4h4(u)+ ε
5h5(u)+ ...

)
+ εn1(u)+ ε

2h1(u)
d

du
{n1}+

ε
3h2(u)

d2

du2 {n1}+ ε
4h3(u)

d3

du3 {n1}+ ε
5h4(u)

d4

du4 {n1}+ ε
2n2(u)+ ε

3h1(u)
d

du
{n2}+

ε
4h2(u)

d2

du2 {n2}+ ε
5h3(u)

d3

du3 {n2}+ ε
3n3(u)+ ε

4h1(u)
d

du
{n3}+ ε

5h2(u)
d2

du2 {n3}+

ε
4n4(u)+ ε

4h1(u)
d
du
{n4}+ ε

5n5(u) = εnu1(u)+ ε
2nu2(u)+ ε

3nu3(u)+ ε
4nu4(u)+ ε

5nu5(u)

(4.14)

Now, the detuning step of Λ = Γ+ ε∆ is adopted, where ∆ = ω2
nk−ω2

rk and for small nonlinearity ωnk ≈ ωrk,

this step is performed in [8] in order to obtain ε2 accuracy, however, in this step the analysis is generalised to

include any higher order of ε . Accordantly, Eq. 4.14 can be rewritten as

ε
d2

dt2 {h1(u)}+ ε
2 d2

dt2 {h2(u)}+ ε
3 d2

dt2 {h3(u)}+ ε
4 d2

dt2 {h4(u)}+ ε
5 d2

dt2 {h5(u)}+

Γ

(
εh1(u)+ ε

2h2(u)+ ε
3h3(u)+ ε

4h4(u)+ ε
5h5(u)+ ...

)
+ ε

2
∆h1(u)+ ε

3
∆h2(u)+

ε
4
∆h3(u)+ ε

5
∆h4(u)+ εn1(u)+ ε

2h1(u)
d
du
{n1}+ ε

3h2(u)
d2

du2 {n1}+ ε
4h3(u)

d3

du3 {n1}+

ε
5h4(u)

d4

du4 {n1}+ ε
2n2(u)+ ε

3h1(u)
d
du
{n2}+ ε

4h2(u)
d2

du2 {n2}+ ε
5h3(u)

d3

du3 {n2}+

ε
3n3(u)+ ε

4h1(u)
d
du
{n3}+ ε

5h2(u)
d2

du2 {n3}+ ε
4n4(u)+ ε

5h1(u)
d

du
{n4}+ ε

5n5(u) =

εnu1(u)+ ε
2nu2(u)+ ε

3nu3(u)+ ε
4nu4(u)+ ε

5nu5(u)

(4.15)
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by equating the similar powers of ε it is found that

ε1 : ñ1(u) = n1(u)

ε2 : ñ2(u) = n2(u)+∆h1(u)+h1(u)
d
du
{n1(u)}

ε3 : ñ3(u) = n3(u)+∆h2(u)+h1(u)
d
du
{n2(u)+h2(u)

d2

du2 {n1(u)}

ε4 : ñ4(u) = n4(u)+∆h3(u)+h1(u)
d
du
{n3(u)+h2(u)

d2

du2 {n2(u)}+h3(u)
d3

du3 {n1(u)}

ε5 : ñ5(u) = n5(u)+∆h4(u)+h1(u)
d

du
{n4(u)+h2(u)

d2

du2 {n3(u)}+h3(u)
d3

du3 {n2(u)}+h4(u)
d4

du4 {n1(u)}

.

.

εn : ñn(u) = nn(u)+∆hn−1(u)+h1(u)
d

du
{nn−1(u)+h2(u)

d2

du2 {nn−2(u)}+

h3(u)
d3

du3 {nn−3(u)}+ ...+hn−1(u)
dn−1

dun−1 {n1(u)}= nn(u)+∆hn−1(u)+
n−1

∑
j=1

hj(u)
d j

du j {nn−j(u)}

(4.16)

Using Eq. 4.16, it is possible to investigate the accuracy of the solutions to any order of ε . As mentioned earlier,

in the literature, the highest DNF accuracy computed is ε2, however, in the following section two examples are

selected to study the effect of raising the accuracy to ε3; the conservative Duffing oscillator and the conservative

quadratic-cubic oscillator. This effect is explored by means of computing the conservative backbone curves of

the oscillators and comparing to those backbone curves computed for lower accuracies.

4.3 Examples

In this section, the conservative Duffing and the conservative quadratic-cubic oscillators are explored using the

first three DNF accuracies, and the resulting backbone curves are obtained and compared.

4.3.1 Duffing oscillator

Considering the conservative Duffing oscillator governed by the EOM

ẍ(t)+ω
2
n x(t)+αx3(t) = 0, (4.17)
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herein, the nonlinear term can be expressed as Nu = αx3(t), so the DNF method can be symbolically applied

to obtain analytical expressions of the conservative backbone curves for this oscillator as going to be shown.

Final DNF analysis results are written in this section, for detailed analysis refer to discussion in Chapter 3.

Summary of ε1 results

In this subsection, the first order term expansion; ε1, is to discussed for the Duffing oscillator in order to com-

pute the resulting conservative backbone curve equation. The matrices used for starting DNF analysis for the

Duffing oscillator are as follows,

u(1) =



u3
m

u3
p

upu2
m

u2
pum


; n(1) = α



1

1

3

3



ᵀ

; βββ
(1) = ω

2
r



8

8

0

0



ᵀ

;

h(1) =
α

8ω2
r



1

1

0

0



ᵀ

; n(1)
u = 3α



0

0

1

1



ᵀ (4.18)

thus, ε1 solution of Eq. 4.17 is given by

q = u+h(1)u(1) = (up +um)+
α

8ω2
r

(
u3

p +u3
m
)
, (4.19)

Now, the assumed solution has the form

u = up +um =
U
2

ei(ωrt−φ)+
U
2

e−i(ωrt−φ), (4.20)
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Finally, the resulting backbone curve, computed to ε1 accuracy, is found to be

ω
2
r = ω

2
n +

3
4

αU2, (4.21)

The result in Eq. 4.21 is well-known for the case of cubic nonlinearity and can be obtained using any approx-

imate analytical technique. However, in the following subsection, the DNF analysis is extended to ε2 in order

to explore the resulting backbone curve.

Summary of ε2 results

In this section, the first higher order term expansion; ε2, is to be discussed for the Duffing oscillator in order to

illustrate the difference of the resulting backbone curve equation compared to ε1.

Based on ε1 analysis, it is convenient to start by defining the following matrices

uu1 (up,um) = n(1)
u u(1) = 3α

[
0 0 1 1

]


u3
m

u3
p

upu2
m

u2
pum


= 3α

(
upu2

m +u2
pum
)
, (4.22)

h1 (up,um) = h(1)u(1) =
α

8ω2
r

[
1 1 0 0

]


u3
m

u3
p

upu2
m

u2
pum


=

α

8ω2
r

(
u3

p +u3
m
)
, (4.23)

Recalling that the nonlinear term is n1(u) = αu3 and its Jacobian is
d
du

{
n1(u)

}
= 3αu2, which gives

ñ2(u) = n(2)u(2) = ∆h1 (up,um)+
d

du

{
n1(u)

}
h1 (up,um)

=
α

8ω2
r

(
u3

p +u3
m
)(

δ +3α
(
u2

p +u2
m
)) (4.24)
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where ∆ = δ = ω2
n −ω2

r , by expanding and decomposing n(2) and u(2), then the symbolic computation algo-

rithm generated leads to the following matrices

u(2) =



u3
m

u5
m

u3
p

u5
p

u3
pu2

m

upu4
m

u2
pu3

m

u4
pum



; n(2) =
3α

8ω2
r



δ

δ

3α

3α

6α

6α

3α

3α



ᵀ

; βββ
(2) = 8ω2

r



1

3

1

3

0

1

0

1



ᵀ

;

n(2)
u =

3α2

8ω2
r



0

0

0

0

1

0

1

1



ᵀ

; h(2) =
α

64ω4
r



δ

α

δ

α

0

6α

0

6α



ᵀ (4.25)

thus, ε2 equation of motion for the near identity transformation becomes

ü+ω
2
n u+n(1)

u u(1)+n(2)
u u(2) = 0, (4.26)

Finally, by substituting the assumed solution and decomposing into real and imaginary parts, one could find
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the resulting backbone curve, truncated to ε2 accuracy, which is found to be

ω
2
r = ω

2
n +

3
4

αU2 +
3

128ω2
r

α
2U4 (4.27)

Compared to the backbone curve computed for ε1 accuracy, Eq. 4.21, an additional term is appearing in Eq. 4.27

which can be considered as a correction for the resulting backbone curve. Nevertheless, in the following sub-

section, the analysis is extended to find results of ε3 DNF expansion for the Duffing oscillator.

Summary of ε3 results

In this subsection, the next higher order term expansion; ε3, is to be discussed for the Duffing oscillator in order

to illustrate the difference of the resulting backbone curve equation compared to both ε1 and ε2.

Based on ε2 analysis, start by defining the following

uu2 (up,um) = n(2)
u u(2) =

3α2

8ω2
r

(
u3

pu2
m +u2

pu3
m
)

(4.28)

h2 (up,um) = h(2)u(2) =
α

64ω4
r

(
δu3

m +αu5
m +δu3

p +αu5
p +6αupu4

m +6αu4
pum

)
(4.29)

Referring to the derivation of ε3 in Eq. 4.16, one may find that

ñ3(u) = ∆h2 (up,um)+h2 (up,um)
d2

du2

{
n1(u)

}
+h1 (up,um)

d
du

{
n2(u)

}
+n3 (up,um) (4.30)

Recalling that the nonlinear term is n1(u) = αu3 and it Jacobians are
d

du

{
n1(u)

}
= 3αu2 and

d2

du2

{
n1(u)

}
=

6αu. Additionally, in Eq. 4.30, n2(u) = n3(u) = 0 since no ε2 or ε3 terms appear in the original equation of

motion, Eq. 4.17. Thus,

ñ3(u) = n(3)u(3) = h2(u)
(

δ +
d2

du2

{
n1(u)

})
=

α

64ω4
r

(
δu3

m +αu5
m +δu3

p +αu5
p +6αupu4

m +6αu4
pum

)
(δ +6α (up +um))

(4.31)

where ∆ = δ = ω2
n −ω2

r , by expanding and decomposing n(3) and u(3), and then the symbolic computation

algorithm generated leads to the following matrices
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u(3) =



u3
m

u4
m

u5
m

u6
m

u3
p

u4
p

u5
p

u6
p

u3
pum

upu3
m

upu4
m

upu5
m

u2
pu4

m

u4
pum

u4
pu2

m

u5
pum



; n(3) =
α

64ω6
r



δ 2

6αδ

αδ

6α2

6αδ

6α2

6αδ

6αδ

6αδ

42α2

36α2

6αδ

36α2

42α2



ᵀ

; βββ
(3) = ω2

r
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thus, ε3 equation of motion for the near identity transformation becomes

ü+ω
2
n u+n(1)

u u(1)+n(2)
u u(2)+n(3)

u u(3) = 0, (4.33)

since all the elements in n(3)
u are zeros, then the term n(3)

u u(3) = 0 and so it can be seen that for the Duffing oscil-

lator, ε3 accuracy is exactly equal to ε2, and using the generated symbolic computations algorithm this finding

can be generalised for any oscillator with odd nonlinearity (or combinations of odd stiffness nonlinearities)

such as the cubic-quintic oscillator.

4.3.2 Conservative quadratic-cubic oscillator

Considering the conservative quadratic-cubic oscillator governed by the following EOM;

ẍ(t)+ω
2
n x(t)+α1x2(t)+α2x3(t) = 0, (4.34)

By repeating the same previous procedure the backbone curves, truncated to ε1, ε2, and ε3 can be found to be

ε1 : ω
2
r = ω

2
n +

3
4

α2U2

ε2 : ω
2
r = ω

2
n +

3
4

α2U2 +
3

128ω2
r
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α
2
1U2
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2
r = ω

2
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6ω4
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α1α2U2
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+

3
4
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128ω2
r
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2U4 +
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32ω4

r
α

2
2 α1U4−

5
6ω2

r
α

2
1U2− 19

6ω2
r

α1α2U2

(4.35)

In Fig. 4.1, the analytical conservative backbone curves for quadratic-cubic oscillator in Eq. 4.34 are plotted,

using ε1, ε2 and ε3 DNF analysis results in Eq. 4.35, additionally, the COCO numerically computed backbone

curve is also generated and plotted in this figure. The numerical values are: ωn = 1 rad/s, α1 = 0.1, α2 = 0.1

and for COCO backbone curve very small damping ratio of ζ = 0.001 is used. It is worth mentioning that the

nonlinear coefficients, α1 and α2, are selected to be small in order to indicate weak nonlinearities. The results

in Fig. 4.1 reveal that ε3 accuracy backbone curve represents an intermediate solution compared to both ε1 and

ε2, and due to the small effects of the nonlinear terms the difference between the solutions is small. Moreover,

perfect matching between the analytically computed ε3 backbone curve and numerically generated backbone
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curve (using COCO), which indicate that the DNF technique truncated to ε3 gives high accuracy in comparison

to the numerical results.

An important point to mention, according to the researcher best knowledge, in order to find the numerically

computed backbone curve in COCO, a certain damping ratio should be assigned, thus the value of ζ = 0.001 is

adopted which best fits with the conservative backbone curves computed using the proposed results in Eq. 4.35.

Nevertheless, having a precise vision of the simulation results, it is possible to find very minor differences

between the DNF conservative backbone curve of ε3 and COCO backbone curve; for instance, due to the

natural frequency selected, the conservative DNF backbone curves are initiated at the exact value of ωn = 1.0,

while the generated COCO backbone curve is initiated at ωd =
√

1.0− (0.001)2 = 0.9999995, accordingly,

the differences between the two curves are negligible, and the matching is described to be perfect.
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Figure 4.1: Comparing ε1 (solid blue line), ε2 (solid red line) and ε3 (solid black line) DNF conservative back-
bone curves with the numerically computed backbone curve (dashed line) using COCO toolbox in MATLAB
for the conservative quadratic-cubic oscillator in Eq. 4.34. Parameter values are: ωn = 1 rad/s, α1 = 0.1 and
α2 = 0.1.

Similarly, if the effect of the nonlinear terms is significantly raised, greater differences between ε1, ε2

and ε3 results are noticed for this quadratic-cubic oscillator. In Fig. 4.2 the nonlinear coefficients, α1 and α2,

are selected to have higher values so that the differences are clearly visible. Nonetheless, compared to the

numerically generated COCO backbone curve (plotted with small damping of ζ = 0.001), the DNF backbone

curve truncated to ε3 still shows perfect matching.
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Figure 4.2: Comparing ε1 (solid blue line), ε2 (solid red line) and ε3 (solid black line) DNF conservative back-
bone curves with the numerically computed backbone curve (dashed line) using COCO toolbox in MATLAB
for the conservative quadratic-cubic oscillator in Eq. 4.34. Parameter values are: ωn = 1 rad/s, α1 = 0.6 and
α2 = 0.6.

4.4 Damped backbone curves

In this subsection, a method is presented that can be applied directly for the case of linear viscous damping,

and leads to approximate damped backbone curves expressions for nonlinear oscillators. To start, consider the

example of a damped nonlinear oscillator of the form

ẍ+2ζ ωnẋ+ω
2
n x+ ε f (x) = 0, (4.36)

where ωn =
√

k/m is the linear natural frequency, ζ = c/2mωn is the damping ratio, ε is a small parameter

and f (x) is a nonlinear function of x. Here m is the mass in kg, k is linear stiffness in N/m and c is viscous

damping coefficient in kg/s. For linear differential equations with viscous damping, using the Wentzel, Kramers

& Brilloun (WKB) transformation, [93–95], one can remove the damping term as will be discussed later on.

This method of transformation is also called the “method of reduction of order” [92] or the “normal form” [96].

The method in the form presented here is a variation on the WKB method, where an assumed solution is

selected such that when substituted into Eq. 4.36 the transformed equation of motion does

x = q(t)e−ζ ωnt . (4.37)
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Then for the linear case, when ε = 0, substituting Eq. 4.37 into Eq. 4.36 gives

q̈+ω
2
d q = 0, (4.38)

where ωd = ωn
√

1−ζ 2 is the damped natural frequency. Eq. 4.38 is a linearised version of Eq. 4.36 that

has been transformed into what appears to be an undamped (conservative) oscillator with a damped natural

frequency, ωd . Eq. 4.38 has solutions which are an infinite family of periodic solutions that depend on the

initial conditions, q(0) and q̇(0). For the nonlinear case, when ε 6= 0, this family of periodic solutions will

correspond to the the damped nonlinear normal mode(s) with associated damped backbone curve(s). In the

next section, using the case of cubic nonlinearity, it is shown how the WKB approach is directly applied to

nonlinear systems in order to compute approximations for damped backbone curves.

4.4.1 The cubic nonlinearity case

Considering the case when ε 6= 0, and f (x) = αx3 (i.e. the Duffing oscillator), then substituting Eq. 4.37 into

Eq. 4.36 leads to

q̈+ω
2
d q+ εe−3ζ ωnt

αq3 = 0, (4.39)

so that a time dependent exponential function appears as part of the nonlinear term. Dealing with this type of

equation presents obvious difficulties, those to be discussed in detail later. But first a method is designed to

overcome the difficulties for a more general class of nonlinear oscillators.

4.4.2 Burton’s method

In the work of Burton, [90], the approximation ω2(t)x = ω2
n x+ ε f (x) is made, so that the general expression

for the nonlinear oscillator, Eq. 4.36, becomes

ẍ+2ζ ωnẋ+ω
2(t)x = 0, (4.40)
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where ω(t) is a time varying “frequency” function. Using the transformation where x(t) = q(t)e−ζ ωnt substi-

tuted into Eq. 4.40 the following can be obtain

q̈+ ω̂d(t)2q = 0, (4.41)

where ω̂d(t)2 = ω2− ζ 2ω2
n is a time varying approximation to the damped natural frequency of the system

(similar results where obtained by [98]). Note also that in the case ω(t) is periodic, then Eq. 4.41 is a form of

the widely studied Hill equation, [97].

4.4.3 Finding approximate solutions to Eq. 4.41

Using a similar approach to [90, 98], a trial solution of q = up +um is now assumed, where

up =
U(t)

2
eiψ(t) and um =

U(t)
2

e−iψ(t), (4.42)

where U(t) is a time dependent amplitude, and ψ(t) is a time dependent phase. The following relationships are

assumed to hold for ψ(t)

d
dt

ψ(t) = ωr(t) and ψ(0) = ψ0 (4.43)

where ωr(t) is the time dependent response frequency and ψ0 is the phase lag (assumed to be independent of

time). Using those definitions, it is possible to get

q(t) =U(t)

(
eiψ(t)+ e−iψ(t)

2

)
=U(t)cos(ψ(t)) (4.44)

Substituting into Eq. 4.41 and equating the coefficients of the exponential terms gives

Ü + iω̇rU +2iωrU̇ +(ωd(t)2−ω2
r )U = 0,

Ü− iω̇rU−2iωrU̇ +(ωd(t)2−ω2
r )U = 0.

(4.45)
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which are complex conjugate expressions. Now, it is possible to compare the coefficients of the real and

imaginary parts of either equations in Eq. 4.45 to get

Re: Ü +(ω̂2
d −ω2

r )U = 0,

Im:
ω̇r

2ωr
+

U̇
U

= 0.

(4.46)

The second equation in Eq. 4.46 can be solved in the following way

∫ t

0
− ω̇r(τ)

2ωr(τ)
dτ =

∫ t

0

U̇(τ)

U(τ)
dτ ; − 1

2
ln(ωr (τ))

∣∣∣t
0
= ln(U (τ))

∣∣∣t
0

; ln
(

ωr(t)
ωr(0)

)−1
2 = ln

(
U(t)
U(0)

)

;

(
ωr(0)
ωr(t)

)1
2 =

U(t)
U(0)

; U(t) =U(0)
(

ωr(0)
ωr(t)

)1
2

(4.47)

where τ is a dummy variable. Then, the final result in Eq. 4.47 gives the relationship between the time-

dependent amplitude and the time-dependent frequency. As a result, based on the finding in Eq. 4.44 and the

transformation of x(t) = q(t)e−ζ ωnt , Eq. 4.40, the complete solution can be written as

x(t)eζ ωnt

cosψ(t)
=U(0)

(
ωr(0)
ωr(t)

)1
2

; x(t) = e−ζ ωntX(0)
(

ωr(0)
ωr(t)

)1
2 cosψ(t) (4.48)

where X(0) = Q(0) = U(0) is the initial amplitude of displacement at time t = 0 (assuming for now that

ψ0 = 0). From Eq. 4.48 the amplitude decay of the solution can be defined as

x(t)
X(0)

= e−ζ ωnt
(

ωr(0)
ωr(t)

)1
2

; t =
1

ζ ωn
ln

X(0)
x(t)

(
ωr(0)
ωr(t)

)1
2

 (4.49)

which can be used to get an expression for the time dependent amplitude decay of the oscillator. As noted, the

first equation of Eq. 4.46 is a conservative oscillator equation with frequency
√

ω̂2
d −ω2

r . To find a solution

for this and Eq. 4.49, more specific details are needed for the exact form of ω(t). Generally this type of

Hill equation is approximated using a Fourier type expansion, but it depends on the specific properties of the

frequency function. To proceed, it is convenient to discuss Burton’s method for the solutions of the Duffing

oscillator [90].
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4.4.4 Burton’s solution for the Duffing oscillator

To continue, Burton’s method then computes the response frequency by studying the original problem Eq. 4.36

but without damping (ζ = 0) and with f (x) defined. Using harmonic balance, or a normal from method (see

for example [99]) applied to the Duffing oscillator (i.e. f (x) = αx3), the following backbone curve relationship

is obtained up to ε1 accuracy

ωr(t) =

√
ω2

n + ε
3α

4
U(t)2 and ωr(0) =

√
ω2

n + ε
3α

4
U(0)2. (4.50)

These expressions give frequency approximations, and can be used in Eq. 4.49 to give amplitude approxima-

tions.

4.4.5 An approximation for small damping

If the viscous damping is sufficiently small, then an assumption that 2ζ ωn = ε̂ can be assumed, where ε̂ � 1

and the nonlinear parameter α can be rescaled such that ε̂ α̂ = εα . Then it is possible to rewrite the oscillator

equation of motion as

ẍ+ ε̂ ẋ+ω
2
n x+ ε̂ f (x) = 0, (4.51)

or for the example of the Duffing oscillator

ẍ+ ε̂ ẋ+ω
2
n x+ ε̂ α̂x3 = 0, (4.52)

then, by applying the WKB approach using x = q(t)e−
ε̂
2 t , which gives

q̈+ω
2
d q+ ε̂e−ε̂t

α̂q3 = 0. (4.53)

Now, by applying an approximation of the exponential function e−ε̂t = 1− ε̂t + ...O(ε̂2t2) one should obtain

q̈+ω
2
d q+ ε̂(1− ε̂t)α̂q3 = 0 ; q̈+ω

2
d q+ ε̂ α̂q3 + ...O(ε̂2) = 0. (4.54)
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Figure 4.3: Conservative (undamped) and damped backbone curves when εα = 0.4, ωn = 2 rad/s and ζ = 0.1.
The damped backbone curve can be compared to the forced-damped frequency response curves (denoted
‘Forced-damped (COCO)’ in the legend) computed using COCO, this forced-damped frequency response
shows both stable and unstable parts as a single solid line.

Finally, by applying a normal form transformation (or harmonic balance method) to Eq. 4.54, an approximate

frequency-amplitude relationship is obtained, or the damped backbone curve of this oscillator, [8].

ωr ≈
√

ω2
d + ε

3α

4
U2 (4.55)

where the rescaling has been removed, and since a steady-state solution is desired, ωr and U are both assumed

to be time independent. A numerical example is shown in Fig. 4.3, where the damped backbone curves (given

by Eq. 4.55) are plotted along with the undamped (conservative) backbone curves, which is governed by the

same expression as Eq. 4.55 but with ωd replaced by ωn on the right-hand side.

In order to study the effect of changing the nonlinear coefficient, α , for the Duffing oscillator, in both

hardening and softening cases, Fig. 4.4 has been generated for the case when ωn = 1 rad/s and ζ = 0.1 and a

range of both negative and positive α values. The damped backbone curves are computed using the proposed

approximate technique while the forced-damped frequency response curves are found using numerical contin-

uation (COCO toolbox in MATLAB). From Fig. 4.4 it is clear that, for each value of the nonlinear coefficient,

the damped backbone curves follow the curvature of the resonant peak defined by the forced-damped frequency

response curves, and the two lines cross close to the peak of each forced-damped frequency response curve.
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Figure 4.4: Damped backbone curves (denoted DBBC in the legend) for different values of α , when ε = 1,
ωn = 1 rad/s and ζ = 0.1 compared to the forced-damped frequency response curves (denoted COCO in the
legend). The linear forced-damped frequency response curve (denoted ‘Linear COCO’ in the legend) is plotted
for comparison. Note that because ζ and ωn are constants the damped backbone curves all start from the same
point on the Frequency axis.

This level of matching occurs, despite the truncation at order ε2, and demonstrates the potential usefulness of

this simple and direct method in order to obtain an approximation to the damped backbone curve.

In order to investigate the effect of varying the damping ratio on the overall results of this method, Fig. 4.5

shows the frequency-amplitude response for the damped Duffing oscillator when ζ is varied. The numerical

values chosen for this graph are εα = 0.4, ωn = 1 rad/s. From this figure, it is noticed that the damped back-

bone curves start from the damped natural frequency, ωd on the horizontal axis, and for each value of ζ the

damped backbone curves and the forced-damped frequency response curves intersect at a similar position to

the results shown in the previous two figures.

4.5 Analysis of SDOF systems with polynomial type nonlinearities

Considering a SDOF nonlinear oscillator with polynomial nonlinear stiffness term and small viscous damping,

then the EOM can be studied using the method of direct normal form, Section 3.1. The general form for this

SDOF oscillator is

ẍ+ ε ẋ+ω
2
n x+ ε f (x) = 0, (4.56)
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Figure 4.5: Damped backbone curves (denoted DBBC in the legend) for different values of ζ , when εα = 0.4
and ωn = 1 rad/s, compared to the forced-damped frequency response curves (denoted COCO in the legend).
The conservative backbone curve with ζ = 0 (denoted ‘conservative BBC’ in the legend) is shown for compar-
ison. The forced-damped frequency response curves represent both stable and unstable parts of the solution.

where the nonlinear vector f (x) contains all the polynomial nonlinear stiffness terms. Using a normal form

method (or any other appropriate method such as harmonic balance), it is possible to find the conservative

backbone curve, computed in this case to ε1 accuracy (and in principle, for any degree of the polynomial non-

linearity). As shown above, the approximate expressions for the damped backbone obtained in this way replace

the natural frequency, ωn, with the damped natural frequency, ωd . This approximation of the damped back-

bone curve is restricted to weak nonlinearities and small damping, however, compared to other techniques, the

simplicity of this technique has the potential to be useful for some non-conservative systems. It is noteworthy

that ε1 normal form analysis in this work is able to precisely detect the effect of odd nonlinear terms appearing

in the equations of motion, while for even nonlinearities the analysis needs to extended to include ε2.

4.5.1 Example: Cubic-quintic oscillator with viscous damping

The problem of a cubic-quintic viscously damped SDOF oscillator will be briefly discussed using the method

of DNF in Section 5.1, however, based on the aforementioned discussions in this Chapter, it will be shown how

the damped backbone curves can be directly obtained from the conservative backbone curves for this kind of

oscillators. In the literature, the conservative case of this oscillator has been studied by a number of authors,

e.g. [18, 102, 103]. The equation of motion for the damped-unforced cubic-quintic nonlinear oscillator can be
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Figure 4.6: Phase portrait for the damped cubic-quintic when εα = 0.1, ωn = 2 rad/s and different values of ζ .

written as

ẍ+ ε ẋ+ω
2
n x+ εα1x3 + εα2x5 = 0, (4.57)

where ε ≈ 2ζ ωn and the the coefficients of the nonlinear terms are assumed to be relatively small. In order

to visually illustrate the damping effect for this system, Eq. 4.48 can be used to generate the phase portrait

for this oscillator for the any given initial condition. For example, Fig. 4.6 shows the phase portrait for the

cubic-quintic oscillator for various values of ζ at the following initial conditions x(0) = 0.2 m and ẋ(0) = 0.0

m/s.

Now, ε1 normal form analysis can be applied to Eq. 4.57 in order to find the damped backbone curve of this

oscillator, [104], which gives

ωr =

√
ω2

d + ε
3α1

4
U2 + ε

5α2

8
U4 (4.58)

Accordingly, Eq. 4.58 can be directly used to obtain the damped backbone curves for this oscillator for small

damping.

4.6 Summary

In this Chapter, two main topics are briefly discussed; the higher order accuracies of the DNF method, and the

damped backbone curves. For the higher order accuracies, after discussing ε2 case of accuracy, this is followed,
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thanks to the powerful mathematical tools of the symbolic computations approach, by a novel improvement to

the method of DNF to be investigated to any order of accuracy, i.e. εn.

Regarding higher order accuracies, the discussions practised in this Chapter yield to the following obser-

vations;

• In Section 4.1, ε2 accuracy is investigated symbolically to give the same results found in literature by the

traditionally applied DNF, refer to [8].

• The analysis performed in Section 4.2 represents the capability of applying the method of DNF to any

accuracy εn, and this is applied to the example of a conservative Duffing oscillator and conservative

quadratic-cubic oscillator in Section 4.3.

• For the example system of Duffing oscillator, it is observed that the results of ε3 is exactly equivalent to

those of ε2, thus for the Duffing oscillator, and any oscillator with only odd nonlinear term (or terms),

the DNF technique should be only applied to ε2 accuracy.

• For the example system of quadratic-cubic oscillator, ε3 accuracy lead to modified results compared to

lower order accuracies, which implies the need of extending the analysis to higher order accuracies, as

discussed in Section 4.2.

• The aforementioned analysis can lead to broader discussions regarding the nature of the DNF method in

comparison with other normal forms technique; as a primary finding, it is possible to classify the method

of DNF as minimal normal form technique, refer to [69] for broader discussions regarding this type of

normal forms.

In connection to the subject of damped backbone curves, the following observations are seen;

• The method described in Section 4.4 represents a novel approximate technique of calculating the damped

backbone curves of viscously damped systems.

• Although it needs more in-depth improvements, this method is considered sufficiently accurate for sys-

tems with light damping, so it can be practically used to many engineering applications.

• Compared to conservative backbone curves, the damped backbone curves yield to better matching be-

tween the backbone curves and the forcing frequency manifolds, refer to Fig. 4.3 and the discussions
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beneath it.

• As a potential future frame work, this direct technique can be applied to MDOF systems considering the

fact that, when generating the frequency-amplitude relationship for weakly nonlinear MDOF systems

with small damping, the natural frequencies can be directly replaced with the damped natural frequencies

and then the backbone curves can be compared to the forced frequency response curves.
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Chapter 5

Applications to SDOF systems

In this Chapter, the DNF method is applied to several engineering applications of SDOF cases. Initially, an

analytical study of nonlinear oscillators with different combinations of geometric polynomial stiffness nonlin-

earities is presented. To do this, the method of direct normal forms (DNF) is applied symbolically using Maple

software. Accordingly, closed form (approximate) expressions of the corresponding frequency-amplitude re-

lationships (or backbone curves) are obtained for both ε1 and ε2 expansions, and a general pattern for ε1

truncation is presented in the case of odd nonlinear terms.

Furthermore, direct normal form analysis (DNF) is used to analytically explore the steady-state frequency

response of Van der Pol, Rayleigh oscillators, in addition to some other oscillators with combinations of stiff-

ness and damping nonlinearities, including Van-der-Pol-Duffing, Rayleigh-Duffing, Van-der-Pol cubic-quintic

and Rayleigh cubic-quintic oscillators. In all cases under consideration, the oscillators are driven by a harmonic

excitation near the resonance. The approximate analytical results are truncated to ε1 accuracy and, for verifi-

cation purposes, they are compared to numerical results obtained by MatCont numerical continuation toolbox

in MATLAB.

5.1 Analysis of cubic-quintic SDOF oscillator

In this section, the analysis of different types of nonlinear oscillator is briefly discussed. The first example il-

lustrates the conservative (undamped and unforced) cubic-quintic oscillator, which has been previously studied
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by a range of other researchers and so the results of DNF can be compared to their work. For instance, in [83],

Lai et al. have implemented a Newton-harmonic balancing approach to obtain first, second, and third-order ap-

proximations to the frequency-amplitude relationship for this type of SDOF oscillators. The interested reader

can also find some other related works that study this system, see for example [33, 102, 103].

Figure 5.1: Schematic diagram of the cubic-quintic oscillator shown in Eq. 5.1.

The conservative cubic-quintic oscillator, as shown schematically in Fig. 5.1, is governed by the following

equation of motion.

mẍ(t)+ kx(t)+κ3x3(t)+κ5x5(t) = 0 =⇒ ẍ(t)+ω
2
n x(t)+α1x3(t)+α2x5(t) = 0, (5.1)

where over dots represent the derivative with respect to time, x represents the physical displacement, m is the

mass of the oscillator, and the linear, cubic and quintic stiffnesses are k, κ3 and κ5, respectively. The subscripts

are chosen to reflect the order of the nonlinearity (this can be helpful when studying multi-degree-of-freedom

systems, as will be discussed in Chapter 7). Moreover, ωn is the natural frequency of the system, α1 and α2 are

(assumed to be small) coefficients for the cubic and quintic nonlinear terms, respectively. Firstly, by applying

the linear modal transformation, the transformation is unity so x = q, and this is applicable for any SDOF

system, then

q̈+Λq+Nq(q) = 0, (5.2)

where Λ = ω2
n and Nq(q) = α1q3 +α2q5. The second step is the near-identity transformation, and for ε1

accuracy, rewriting the nonlinear terms using u, in view of Eq. 3.1, one should obtain Nq(u) = α1u3
1 +α2u5

1,

thus

n(1)(u) = n∗u∗ (up,mm) = α1(up +um)
3 +α2(up +um)

5, (5.3)
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By expanding Eq. 5.3, n(1)(u) will contain many terms (ten terms in this case), these terms have to be primarily

decomposed into coefficients and nonlinear functions vectors n∗ and u∗, respectively. For this example

n∗ =

[
α1 α2 α1 α2 3α1 5α2 3α1 10α2 10α2 5α2

]
(5.4)

u∗ =

[
u3

m u5
m u3

p u5
p upu2

m upu4
m u2

pum u2
pu3

m u3
pu2

m u4
pum

]
(5.5)

The crucial step in this solution is solving the homological equation by finding the βββ
∗ matrix (refer to Eq. 3.14

and Eq. 3.15). To proceed, the polynomial term indices (defined by sp and sm) in the vector u∗ need to be

found.

In the present study, the above analysis has been implemented symbolically, and in principle this approach can

be extended to any finite number of terms in Eq. 5.4. The next step defines the transformed nonlinear terms

(n∗u,l) and harmonics (h∗l ) matrices, (refer to Eq. 3.16). Practically, in Maple, this is performed by applying

several iterative loops for each element in βββ
∗.

For this example system, Table 5.1 shows all the terms in Eq. 5.3 and the corresponding sp, sm and

βββ
∗. It is noteworthy to mention that traditional hand calculations are performed by generating matrices (or

tables) similar to Table 3.1, which quickly becomes impractical for more complex systems. On the other hand,

the proposed symbolic computation method automatically generates all of these matrices, thus eliminates the

chance of any mathematical errors, reduces the time and effort of computation and enables the study of more

complex systems (within the constraint of the available computing power). If the truncated solution is limited

to ε1 order, the final step is rewriting the transformed equation of motion. For the non-resonant terms to ε1

accuracy, the equation of motion in the u-transformed coordinate system becomes

ü+Λu+N∗uu∗ = 0, (5.6)

which can be written as

ü+ω
2
n u+3α1(upu2

m +u2
pum)+10α2(u2

pu3
m +u3

pu2
m) = 0, (5.7)
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and the near identity transformation is written as

q = u+h∗u∗, (5.8)

which leads to

q = u+
1

8ω2
r

(
α1(u3

p +u3
m)+

α2

3
(u5

p +u5
m)+5α2(u4

pum +upu4
m)
)

(5.9)

In order to generate a time domain solution of the system, one can easily substitute the assumed solution,

Eq. 3.27 into Eq. 5.9. Nevertheless, the focus in this work is to study the frequency amplitude relationship for

the conservative (i.e., undamped) system, or the so-called conservative backbone curve. This can be also ob-

tained by substituting in the assumed solution and solving the positive (or negative) complex exponential terms

using exact harmonic balancing. Finally, using this approach the backbone curve, truncated to ε1 accuracy, is

expressed as

ω
2
r = ω

2
n +

3
4

α1U2 +
5
8

α2U4 (5.10)

This form of ε1 order backbone curve will be adopted for analysing the nonlinear frequency of the cubic-quintic

oscillator, however, the results of Eq. 5.10 will also be compared to ε2 solution, as will be discussed in the next

Section.

Table 5.1: DNF matrix results for the cubic-quintic oscillator computed to ε1 accuracy, if β ∗=0, a resonance is
indicated, otherwise the term is considered to be a non-resonant term

u∗ sp sm β ∗ n∗u,l h∗l

u3
m 0 3 8ω2

r 0
α1

8ω2
r

3u5
m 0 5 24ω2

r 0
α1

24ω2
r

u3
p 3 0 8ω2

r 0
α1

8ω2
r

u5
p 5 0 24ω2

r 0
α1

24ω2
r

upu2
m 1 2 0 3α1 0

upu4
m 1 4 8ω2

r 0
5α2

8ω2
r

u2
pum 2 1 0 3α1 0

u2
pu3

m 2 3 0 10α2 0

u3
pu2

m 3 2 0 10α2 0

u4
pum 4 1 8ω2

r 0
5α2

8ω2
r
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5.1.1 Higher order accuracy

A direct normal form analysis of ε2 expansion for the same cubic-quintic oscillator is to be discussed in this

subsection. The solution is based on the results of ε1 accuracy, hence, it is possible to write

uu = n∗uu∗ = 3α1(upu2
m +u2

pum)+10α2(u2
pu3

m +u3
pu2

m) (5.11)

n∗uu∗ =
1

8ω2
r

(
α1(u3

p +u3
m)+

α2

3
(u5

p +u5
m)+5α2(u4

pum +upu4
m)
)

(5.12)

moreover, n1(u) = α1u3 +α2u5 and its Jacobian is
d
du

(n1(u)) = 3α1u2 + 5α2u4. Now, the pre-transformed

nonlinear term, ñ2, is given by

ñ2 =
1

4ω2
r

(
α1

4
+

α2

12
+

5α2

4

)(
(ω2

n −ω
2
r )+(3α1u2 +5α2u4)

)
(5.13)

Herein, it is important to notice that no ε2 related terms appear in the original EOM, and so n2 = 0. To complete

the analysis, Eq. 5.13 needs to be expanded and the same previous procedure is repeated, with more terms

appearing in the expansion compared to ε1 accuracy (26 terms compared to 10 terms), due to the large number

of terms, only the key results are to be shown here, detailed results are shown in Table A.1 (in Appendix A).

The equation of motion in the u-transformed coordinate system becomes

ü+Λu+n∗uu∗+n+
u u+ = 0,

ü+ω
2
n u+3α1

(
upu3

m +u2
pum
)
+10α2

(
u2

pu3
m +u3

pu2
m
)
= 0,

(5.14)

and the near identity transformation is written as

q = u+h∗u∗+h+u+ (5.15)

which leads to

q = u+
1

8ω2
r

(
α1
(
u3

p +u3
m
)
+

α2

3

(
u5

p +u5
m

)
+5α2

(
u4

pum +upu4
m
))

(5.16)
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(a) (b)

Figure 5.2: DNF results compared to numerical results: (a) Steady-state response, (b) Phase portrait. The
dashed blue curve and dash-dotted lines are computed from the analytical DNF solution for both ε1 and ε2,
respectively, while the solid black curves are the numerical solutions computed using 4th order Runge-Kutta
computation in MATLAB. Parameter values are: ωn = 1 rad/s, α1 = α2 = 0.1.

The conservative backbone curve, truncated to ε2, can be obtained by substituting in the assumed solution

Eq. 5.16, and solving the positive (or negative) complex exponential terms using exact balancing, primarily, the

following form shall be obtained;

ω
2
r = ω

2
n +

3
4

α1U2 +
5
8

α2U4 +
3

128ω2
r

α
2
1U4 +

5
64ω2

r
α1α2U6 +

95
1536ω2

r
α

2
2U8 (5.17)

In Eq. 5.17, the effect of ε2 can be interpreted as a type of frequency correction parameter. While most of

the researchers using DNF technique are only considering ε1 accuracy in the solution, it has previously been

noticed that in some cases extending the analyses to include ε2 accuracy can effectively enhance the results

- refer to [47] as an example. In order to verify the accuracy of the solution, both ε1 and ε2 solutions will

be compared to the numerical solution obtained using a 4th order Runge-Kutta computation in MATLAB, and

sample results are shown in Fig. 5.2. In Fig. 5.2a and Fig. 5.2b, both steady-state response of the oscillator and

phase portrait plots are clarified for ε1 and ε2 along with the numerical solution. Overall, results in Fig. 5.2

show excellent agreement between the approximate DNF solutions and the numerical solution.
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5.1.2 Comparisons with other methods

In order to verify the results of both ε1 and ε2 accuracies, it is possible to compare with some previous results

in the literature. For ε1 accuracy, Nayfeh’s approximation for small amplitudes [33] has the following form

ωr = 1+
(

3
8

α1 +
5

16
α2U2

)
U2 (5.18)

Hence, ε1 DNF solution given by Eq. 5.10 can be compared to Eq. 5.18 for primary verification of the validity

of the DNF solution; thus Fig. 5.3a shows a comparison between both solutions for the following numerical

values: α1 = 0.2, α2 = 0.1. This figure shows good agreement between the two approximations, specifically

when the forcing frequency is close to the linear frequency, while at higher frequencies the two methods diverge.

Furthermore, in the literature, some researchers studied the cubic quintic oscillator to ε2 accuracy. For instance,

Sulemen and Wu [102] used a modified homotopy method (modified HPM) to derive the backbone curve of

this oscillator in the form

ωr =

√√√√√1
2

1+
3
4

α1U2 +

√√√√((1+
3
4

α1U2

)2

+
15
4

α2
1U4 +

35
144

α2
2U4

) (5.19)

For verification purposes, the results of DNF for ε2 accuracy, Eq. 5.17, can be compared to Eq. 5.19, in addition

to the numerical solution of the cubic-quintic oscillator, as will be shown in Table 5.2-Table 5.4. However, as

a primary comparison, Fig. 5.3b shows a comparison between the approximated backbone curves from both

techniques. The two curves in Fig. 5.3b show identical behaviour at low amplitude, but the curves diverge as

amplitudes of vibration increase, particularly for amplitude values above one. Further details regarding the

accuracy of the two solutions will be shown in the next Sections.

5.1.3 Numerical investigation of the frequency-amplitude relationship

In order to verify the results of the analytical approximate methods previously described, some numerical tech-

niques can be used. Specifically, numerical continuation technique using COCO toolbox in MATLAB can be

used to find the steady-state frequency response of Eq. 5.1 for any given parameter values. And when compar-

ing these numerical results to the results of RN, HPM and DNF (ε1 and ε2), it can be possible to investigate the
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(a) (b)

Figure 5.3: Comparison between DNF results and other methods for the cubic-quintic oscillator: (a) ε1-order
DNF and the method of Renormalisation (RN method), (b) ε2-order DNF and the modified homotopy method
(Modified HPM). Parameter values are: ωn = 1 rad/s, α1 = 0.2, α2 = 0.1.

accuracy of these approximate analytical methods. For numerical verification purposes, the numerical contin-

uation solution is generated using COCO in MATLAB with a very small damping value of ζ = 0.001; in this

sense, it can be possible to compare the numerical results to the analytical results of this conservative oscillator.

Additionally, the following discussions reveal how numerical continuation results can be compared to the exact

solution of Duffing oscillator which already exists in the literature.

Based on the Jacobi elliptic functions, the elliptical function solution (EPS) of Duffing oscillator has

been studied by several authors, and the results are summarized by Kovacic and Brennan [87]. This work is to

be adopted for validating the numerical solution. Accordingly, by setting α2 = 0 in Eq. 5.1, the equation of the

conservative Duffing oscillator is obtained, which is

ẍ(t)+ω
2
n x(t)+α1x3(t) = 0, (5.20)

According to Kovacic and Brennan [87], the nonlinear frequency of this oscillator is

ω
2
r =

(
ω

2
n +α1U2)(1− α1U2

4ω2
n

(
1− α1U2

4

))
+ ... (5.21)
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For verification purposes, the numerical solution used in this work is applied to the Duffing oscillator, Eq. 5.20

and the numerical results of the nonlinear frequency are compared to the results of Kovacic and Brennan [87].

Sample results of this comparison can be found in Fig. 5.4, in which both the EPS and the numerically obtained

backbone curves are plotted for α1 = 0.1. From this figure, it can be seen that numerical solutions have

acceptable levels of accuracy at frequencies that are close to the natural frequency of the system while the

accuracy decreases at higher values of the dimensionless nonlinear frequency.

Figure 5.4: Comparison between elliptical functions (EPS) and numerical backbone curves for the Duffing
oscillator. Parameter values are: ωn = 1 rad/s and α1 = 0.2.

5.1.4 Comparing analytical results with numerical results for the cubic-quintic oscil-

lator

Table 5.2 & Table 5.3 show comparisons between Nayfeh’s results (denoted by RN method), Sulemen and Wu

results (denoted by Modified HPM) and the proposed method using DNF for both ε1 and ε2, all compared to

the numerical continuation results (as a reference for comparison). The comparison is carried out for differ-

ent selected amplitude values in order to evaluate the nonlinear amplitude-frequency response of the system

while the linear natural frequency is assumed to be unity in all cases. Absolute error relative to the numerical

continuation solution is also shown as a percentage underneath each of the relevant entries in the Tables. In

Table 5.2, the values selected for comparison are α1 = 0.2 and α2 = 0.1 in order to represent weak nonlinear

terms in comparison to the linear term. While in Table 5.3, the effect of larger nonlinear terms is shown using

the numerical values of α1 = 1 and α2 = 1.
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Table 5.2: DNF method results compared with other methods for α1= 0.2, α2= 0.1

Amplitude U Numerical RN method Modified HPM ε1 DNF ε2 DNF
0.05 1.000186 1.000302

0.0116 %

1.000188

0.0002 %

1.000187

0.0001 %

1.000187

0.0001 %
0.2 1.003061 1.004833

0.1767 %

1.003026

0.0035 %

1.003045

0.0016 %

1.003045

0.0016 %
0.5 1.020497 1.030208

0.0016 %

1.019777

0.0706 %

1.020493

0.0004 %

1.020543

0.0045 %
1.0 1.103012 1.120833

1.6157 %

1.090601

1.1252 %

1.101136

0.1701 %

1.101986

0.0930 %
2.0 1.620928 1.483333

8.4888 %

1.509942

6.8471 %

1.612451

0.5230 %

1.633491

0.7750 %
5.0 6.753684 4.020833

40.465 %

5.916005

12.403 %

6.619101

1.9927 %

6.979045

3.3369 %

Table 5.3: DNF method results compared with other methods for α1= 1, α2= 1

Amplitude U Numerical RN method Modified HPM ε1 DNF ε2 DNF
0.05 1.001979 1.001979

0.0950 %

1.000938

0.0090 %

1.000939

0.0089 %

1.000939

0.0089 %
0.2 1.031667 1.031667

1.597 %

1.015216

0.0231 %

1.015382

0.0068 %

1.015414

0.0036 %
0.5 1.197917 1.197917

8.092 %

1.101490

0.6095 %

1.107503

0.0670 %

1.108546

0.0272 %
1.0 1.791668 1.791667

16.915 %

1.473823

3.8262 %

1.554790

1.4573 %

1.541104

0.5642 %
2.0 4.166667 4.166667

9.5086 %

3.379416

11.182 %

3.741657

1.6615 %

3.882786

2.0477 %
5.0 25.79167 20.79167

22.970 %

18.07842

13.805 %

20.25772

3.4148 %

21.49016

2.4612 %

The results in Table 5.2 & Table 5.3 show the accuracy of DNF method compared to some other well

established approximate methods that already exist in the literature. It is clear that, in terms of accuracy, the

DNF method gives acceptable approximation of the frequency shift due to the presence of nonlinear terms in

the equations of motion. The DNF method has been classified into two approaches ε1 and ε2, and in terms
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of the series expansion, and this should correlate to lower and higher accuracies, respectively. However, the

higher order accuracy does not always show a reduction in error compared to ε1. A potential reason for this is

due to the fact that only odd nonlinear terms are present, further explanation of this point is given in Section 5.2.

From another point of view, in order to explore the effect of changing the nonlinear coefficients, α1

and α2, on the nonlinear frequency of the system, ωr, it is possible to make a parametric study of the result-

ing backbone curve equations. For instance, in Fig. 5.5, 3-dimensional representations of the variations of the

nonlinear frequency, ωr, when the nonlinear coefficients, α1 and α2 are varied steadily from −1 to 1, this is

plotted for different values of the amplitude U while the natural frequency is ωn = 1.0 rad/s for all cases. This

figure reveals that, when U < 1, the nonlinear frequency of the system increases steadily whenever α1 and α2

increase, however, this behaviour changes for higher values of U . It is also noted that the method of DNF is

able to detect the nonlinear frequency of the system efficiently for lower values of U compared to higher values,

i.e. U > 2, which present some limitations to the technique when used for excessive amplitudes of deflections

provided that the natural frequency is relatively low. Nevertheless, for this conservative cubic-quintic oscilla-

tor further parametric studies can be held using the aforementioned analysis. Tabulated results for the sample

amplitude value of U = 0.2m can be found in Table 5.4, for which the nonlinear frequency of the system is com-

puted to ε1 accuracy, while the nonlinear coefficients are changing steadily from−1.0 to 1.0 and ωn = 1.0 rad/s.

To conclude, the results of cubic-quintic nonlinear oscillator with different values of the nonlinear co-

efficients can be implemented to study various cases of oscillators in both hardening and softening cases. And

the approximate analytical results of DNF can be verified using numerical continuation techniques such as the

COCO toolbox in MATLAB [34,35]. COCO is used to numerically compute the frequency response functions

representing the locus of points joining the maximum amplitude per period of the forced damped systems by

adding viscous damping and periodic forcing terms to the cubic-quintic oscillator described in Eq. 5.1. Accord-

ingly, using small damping value, ζ = 0.01, Fig. 5.6 is generated for combinations of the nonlinear coefficients

in the original equations of motion, the numerical values for this figure are: the natural frequency ωn = 2

rad/s, the forcing amplitude R = 1 (for the forced frequency manifolds), α1 = α2 = 0.1 for the hardening cases,

and α1 = α2 = −0.1 for the softening casee. In this figure, results for the linear oscillator, Duffing oscillator
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in both hardening and softening cases and the cubic-quintic oscillator in both hardening and softening cases

are shown. The forced frequency response functions (dashed coloured lines) are numerically computed using

COCO, while the conservative backbone curves (solid-coloured lines) are computed using ε1 DNF results,

Eq. 5.9. In Fig. 5.6, the idea is that the backbone curve should align along the centre of the resonance curve

(e.g. the COCO curve). The only point that the COCO and backbone should cross is near the peak of the

resonance (COCO) curve. In Fig. 5.6, it can be seen that this is true, for all the cases considered. So, in this

sense, the matching is good.

Table 5.4: DNF method results for various values of the nonlinear coefficients

Nonlinear

coefficients

Frequency ωr (computed to ε1 accuracy)

@
@
@
@
@

α2

α1
-1.0 -0.5 0.0 0.5 1.0

-1.0 0.984378 0.984653 0.984886 0.985140 0.985393

-0.5 0.991968 0.992225 0.992472 0.992724 0.992975

0.0 0.999500 0.999750 1.000000 1.000250 1.000500

0.5 1.006976 1.007224 1.007472 1.007720 1.007968

1.0 1.014412 1.014643 1.014889 1.015135 1.015402

5.2 Analysis of generic cubic-quintic SDOF oscillator

In the previous Section, the results of ε1 DNF were shown to be accurate enough for the analyst to adopt,

without the need to consider higher order accuracies, this is due the presence of (only) odd nonlinear terms

in the original EOM. On the other hand, the presence of even nonlinear terms can raise the difficulty of the

analysis. In this section, the system considered represents a more complicated case in which the oscillator has

four different orders of polynomial nonlinear terms, in this example the effect of higher order accuracy, ε2, can

be explored. Finally, a general closed form relation of the backbone curve, truncated to ε1 accuracy is obtained
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(a) U = 0.00 (b) U = 0.05

(c) U = 0.20 (d) U = 0.50

(e) U = 1.00 (f) U = 2.00

Figure 5.5: DNF results for the Cubic-quintic oscillator, truncated to ε1 accuracy provided by Eq. 5.10. The
results represent the variations of the nonlinear frequency ωr for various values of the nonlinear coefficients,
α1 and α2. The natural frequency for all cases is ωn = 1.0 rad/s while various values of the amplitude U is
considered (in metres); (a) U = 0.00, (b) U = 0.05, (c) U = 0.20, (d) U = 0.50, (e) U = 1.00 and (f) U = 2.00.



CHAPTER 5. APPLICATIONS TO SDOF SYSTEMS 90

Figure 5.6: Conservative backbone curves and the forced-damped frequency response functions for different
values of the nonlinear coefficients; solid lines represent the conservative backbone curves obtained analytically
using DNF method, and dashed lines show the locus of the maximum displacement amplitude of the equivalent
period orbit with forcing and damping added, those are obtained numerically using COCO. Parameter values
are: natural frequency ωn = 2 rad/s, forcing amplitude R = 1, α1 = α2 = 0.1 for the hardening cases, and
α1 = α2 =−0.1 for the softening cases.

for any oscillator with N number of stiffness polynomial nonlinear terms. In principle, Wagg and Neild [8]

showed that, for the quadratic nonlinear oscillator, ε1 DNF will not be able to capture the nonlinear frequency-

amplitude curve of the system, while extending the analysis to ε2 leads to a satisfactory approximation. In this

section, using a SDOF oscillator with both odd and even nonlinear terms it is shown that the presence of even

nonlinearities makes it necessary to compute ε2.

Considering a SDOF nonlinear oscillator with four different orders of polynomial geometric nonlinear

terms (with orders two to five, respectively), in its conservative form. The equations of motion of this oscillator

can be written as

ẍ(t)+ω
2
n x(t)+α1x2(t)+α2x3(t)+α3x4(t)+α4x5(t) = 0, (5.22)

where the nonlinear coefficients are all assumed to be relatively small when compared to the linear term. Using

the DNF, it is required to find the backbone curves of this system. In such unforced systems, the analysis will

be similar to that in the previous cubic-quintic system, with more terms to be computed (or correspondingly

larger matrix sizes). For a DNF computed to ε1 accuracy, to find the number of terms, the following can be

considered;
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• any nonlinear power γ will contribute by γ +1 terms, and this is accumulative according to the number

of nonlinear terms in the EOM. Hence, the analysis of the oscillator in Eq. 5.22 involves 18 terms to be

computed in the ε1 order solution.

• a viscous damping term, if appears in the equation of motion, will result in two additional terms, hence,

the damped cubic-quintic oscillator involves 12 terms in that case.

• for the case of forced systems, more terms are to be included in the analysis according to the forcing

type; either resonant or non-resonant. However, the analysis of this work is restricted to unforced, and

non-resonant cases only.

Accordingly, the ε1 solution of the conservative oscillator in Eq. 5.22 results in 18 terms in the matrices, this

number of terms is difficult to be manipulated by hand calculations, and this can justify turning to symbolic

computations. Moreover, the number of terms will also increase dramatically if considering ε2 solution, in fact

the number of terms involved in ε2 analysis of Eq. 5.22 will be 52 terms. Practically, DNF analysis of Eq. 5.22

will be similar to the cubic-quintic oscillator, with more terms to be included in the solution. Accordingly, only

final results are shown in this section. The backbone curve, truncated to ε1 is found to be

ω
2
r = ω

2
n +

3
4

α1U2 +
5
8

α2U4 (5.23)

which is identical to the equation obtained for the cubic-quintic oscillator, thus, it is clear that the effect of the

even nonlinear terms in the original EOM is not appearing in the ε1 order results. Nevertheless, if the analysis

is extended to ε2, the resulting backbone curve will be

ω
2
r = ω

2
n +

3
4

α1U2 +
5
8

α2U4+

1
ω2

r

(
3

128
α

2
2U4 +

5
64

α2α4U6 +
95

1536
α

2
4U8− 5

6
α

2
1U2− 7

4
α1α3U4− 63

80
α

2
3U6

) (5.24)

Table 5.5 shows a comparison between ε1 and ε2 frequency results of this oscillator and the numerical re-

sults obtained using COCO numerical continuation toolbox in MATLAB. For non-dimensionalisation pur-

poses, similar to the cubic-quintic oscillator, the nondimensional numerical data chosen for Table 5.5 are

α1 = α2 = α3 = α4 = 0.1. The results in Table 5.5 clearly show that the solutions truncated to ε2 are more ac-
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curate than those truncated a ε1, which is a consequence of the presence of even nonlinear terms in the original

equations of motion. For this particular system, the accuracy of the approximate analytical results is slightly

modified due to calculating the higher order expansion. Nevertheless, in some other cases it can be necessary to

find ε2 solution; for example, if only even nonlinear terms appear in the equation of motion. It has been shown

that the analysis of a nonlinear oscillator with a single quadratic nonlinearity (the escape equation) using DNF

truncated to ε1 accuracy (refer to [8] for more details) is not sufficient to compute the backbone curve relation,

in fact the ε2 order analysis is required.

In this work, it is shown that this result is true for higher order even nonlinear terms, and Table B.1 (in Ap-

pendix B) summarizes the results of the backbone curves for both lower and higher accuracies computed up to

the 15th polynomial order of the nonlinear terms. For verification purposes of the approximate analytical results

of DNF, it is possible to compare with numerical continuation (COCO). Hence, Fig. 5.7 shows a comparison

between DNF truncated to both ε1 and ε2, along with the numerical solution of the related forced damped

system. The numerical data are α1 = α2 = α3 = α4 = 0.1.

Using Fig. 5.7, good matching between DNF results and the numerical results can be observed, in terms of

the backbone curve curvature being very close to the centre line of the COCO computed curve, refer to Fig. 5.6

in Section 5.1 and the discussions therein. However, in Fig. 5.7, the backbone curves are not intersecting ex-

actly at the peak of the COCO curve. One reason for this is related to the damping used for computing the

numerical results; COCO simulations include a viscous damping term, which was chosen to be ζ = 0.01 in

this case, while the backbone curves are computed for conservative systems. If damped backbone curves were

computed, better matching between the backbones and COCO curves would be expected, refer to Section 4.4.

Another possible approach to refine the resulting analytical backbone curve in this figure so that it can be closer

to the centre line of COCO numerical results, is to compute the ε3 backbone curve for this system, similar to

the discussions in Section 4.3, however, this practise will be highly complicated for such system and thus it can

be performed in future works.
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Figure 5.7: Comparison of DNF results and COCO results for the nonlinear oscillator in Eq. 5.22, the solid
blue and red curves denote the analytical DNF results for ε1 and ε2 accuracies, respectively. Moreover, the
black line denotes the frequency-response curve computed using COCO; the solid black line shows the stable
region of the response while the dashed black line represents the unstable region. Parameter values are: ωn = 1
rad/s, and α1 = α2 = α3 = α4 = 0.1.

Table 5.5: DNF results for various values of the nonlinear coefficients

U Numerical ε1 ε2

0.05 1.00018 1.00009

0.008 %

1.00014

0.005 %
0.1 1.00043 1.00033

0.010 %

1.00035

0.008 %
0.2 1.00147 1.00155

0.007 %

1.00137

0.011 %
0.5 1.01017 1.01126

0.108 %

1.00967

0.049 %
1 1.06428 1.06653

1.21 %

1.05288

0.869 %
2 1.45567 1.51657

1.52 %

1.47312

1.25 %
3 2.75600 2.59567

2.51 %

2.61570

1.86 %
4 3.83312 4.86614

3.21 %

4.30962

2.10 %
5 6.5698 6.27592

4.47 %

6.65439

2.45 %
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5.3 Analysis of SDOF oscillators with any type of odd polynomial non-

linearities

The equation of motion for a general SDOF conservative oscillator, with multiple geometric (polynomial) odd

nonlinearities can be written as

ẍ(t)+ω
2
n x(t)+Nx = 0, (5.25)

where ωn is the natural frequency and the nonlinear terms vector Nx, in its general form, is written as

Nx =
R

∑
i=1

αixi(t) (5.26)

Herein, αi, the coefficient of the ith nonlinear stiffness term is considered to be relatively small, and R denotes

the number of odd nonlinear terms. Using the method of DNF (implemented symbolically), the corresponding

backbone curves of Eq. 5.22 have been generated. It was found that, for ε1 order only, the effect of any

odd nonlinearity appearing in the equation of motion is additive in the resulting expression for the backbone

curve. For instance, the ε1 order solution of the cubic-quintic oscillator will contain the terms of the cubic

oscillator plus a term from the quintic oscillator. As a result, the corresponding expression for the backbone

curve truncated to ε1 order can be written as

ω
2
r = ω

2
n +

R

∑
j=1

ξ jα jU2 j+1 (5.27)

where ξ j are constant coefficients appearing in the backbone curve equation, (these coefficients are indepen-

dent of the nonlinear coefficients, or α values appearing in the original equation of motion). Table 5.6 shows

the leading values of these constant coefficients for the first four orders of odd nonlinearities.

Table 5.6: Values of the constants ξ j for ε1 order DNF

Order of nonlinearity 3 5 7 9

ξ j
3
4

5
8

35
64

63
128
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Thus, using Eq. 5.27 and the values from Table 5.6, DNF results truncated to ε1 accuracy, for the conservative

backbone curve can be obtained. However, by using the binomial coefficients, it can be shown that for any odd

order j, the coefficients ξ j are given by the general expression

ξ j =
1

2 j−1

( j
j+1

2

)
, j = 1,3,5, ... (5.28)

Hence, the backbone curve equation, truncated to ε1 order, for a SDOF oscillator with odd polynomial nonlinear

stiffness terms, can be written as

ω
2
r = ω

2
n +

R

∑
j=1

1
22 j

(
2 j+1
j+1

)
α jU2 j+1 (5.29)

For ε2 accuracy, due to the appearance of some cross coupling terms, for instance, the term including α1α3 in

Eq. 5.24, it is much more difficult to find a closed form solution similar to that in Eq. 5.29. However, using

the proposed symbolic computation approach, ε2 DNF analysis is applied for some selected SDOF oscilla-

tors, and the corresponding expressions for the conservative backbone curves are resulted, refer to Table B.2,

Appendix B.

5.4 DNF analysis of Van-der-Pol, Rayleigh and oscillators with combi-

nations of nonlinear stiffness and viscous damping terms

In this part, the method of DNF is used to analytically explore the steady-state frequency response of Van-der-

Pol, Rayleigh oscillators, in addition to some other oscillators with combinations of stiffness and damping non-

linearities, including Van-der-Pol-Duffing, Rayleigh-Duffing, Van-der-Pol cubic-quintic and Rayleigh cubic-

quintic oscillators. In all cases under consideration, the oscillators are driven by a harmonic excitation near the

resonance. The approximate analytical results are truncated to ε1 accuracy and, for verification purposes, they

are compared to numerical results obtained by MatCont numerical continuation toolbox in MATLAB.
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5.4.1 DNF analysis of Van-der-Pol oscillator

Starting with Van-der-Pol oscillator, it is desired to apply DNF to calculate the steady-state response of the

oscillator close to resonance. The equation of motion of Van-der-Pol oscillator subjected to harmonic excitation

is given by

ẍ(t)+µ
(
x2(t)−1

)
ẋ(t)+ω

2
n x(t) = Rcos(Ωt) (5.30)

herein, ωn is the oscillator’s natural frequency, µ is a scalar constant, R is the forcing amplitude and Ω is the

forcing frequency. It is important to consider that the nonlinearity is illustrated by the damping term, ẋ(t),

which is considered to be relatively small. To apply DNF analysis of this oscillator, it is convenient to use the

following

Px =

{
R
2
,

R
2

}
r = {rp,rm}ᵀ = {e iΩt ,e− iΩt}ᵀ

Ñ(q, q̇,r) = µ
(
q2(t)−1

)
q̇(t)

(5.31)

and thus the equation of motion becomes

ẍ(t)+ω
2
n x(t)+ Ñ(q, q̇,r) = Pxr (5.32)

The linear modal transformation is q = x = x since SDOF is considered, thus

q̈+Λq+Nq (q, q̇,r) = Pqr (5.33)

where Λ = ω2
n , Nq (q, q̇,r) = µ

(
q2−1

)
q̇ and Pq = Px.

Now, the forcing transformation is considered to be q = v+ er, this transformation is used to eliminate the

non-resonant forcing terms. Due to the fact that the analysis is close to resonant, Ω = ωr and [e] = 0, this

results in

v̈+Λv+Nv (v, v̇,r) = Pvr (5.34)

with Nv (v, v̇,r) = µ
(
v2−1

)
v̇ and Pv = Pq.
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The near-identity transformation is computed to ε1 accuracy, by rewriting the nonlinear terms using u, one

should obtain n1 (u, u̇,r) = µ
(
u2−1

)
u̇ for which u = up +um, thus

u∗ =



u3
m

u3
p

upu2
m

u2
pum

um

up



; n∗ = iµωr



−1

1

−1

1

1

−1



ᵀ

; βββ
∗ = ω2

r



8

8

0

0

0

0



ᵀ

;

h∗ =
iµ

8ωr



−1

1

0

0

0

0



ᵀ

; n∗u = iµωr



0

0

−1

1

1

−1



ᵀ (5.35)

For ε1 accuracy, the equation of motion can then be written in the u-transformed coordinates as

ü+µ

(
U2

4
−1
)

u̇+ω
2
n u = Rcos(ωrt) (5.36)

and by substituting the assumed solution it is possible to get

(
ω2

n −ω2
r
)U

2

(
e i(ωrt−φ)+ e− i(ωrt−φ)

)
+ iµ

(
U2

4
−1
)

ωr
U
2

(
e i(ωrt−φ)− e− i(ωrt−φ)

)
=

R
2
(
e iωrt + e− iωrt

) (5.37)

Now, the real and imaginary parts of Eq. 5.37 can be balanced to get the following

Re:
(
ω2

n −ω2
r
)

U = Rcos(φ)

Im: µ

(
U2

4
−1
)

ωrU = Rsin(φ)

(5.38)
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and finally, by squaring and adding the real and imaginary solutions, it is possible to write expressions for the

amplitude relationship, furthermore, by dividing them the phase relationship for the Van-der-Pol oscillator are

obtained, such that

Amplitude: U2 =
R2

(ω2
n −ω2

r )
2 +µ2ω2

r

(
U2

4
−1
)2

Phase: φ = tan−1

µωr

(
U2

4
−1
)

(ω2
n −ω2

r )


(5.39)

In the literature, the same results appears in Eq. 5.39 for Van-der-Pol-oscillator can be found in [8] using

DNF applied traditionally with hand calculations, in this work moving to symbolic computations enables the

researcher to extend the analysis in order to investigate more complex systems as will be discussed in the fol-

lowing sections. Moreover, in order to investigate the accuracy of the results in Eq. 5.39, MatCont numerical

continuation toolbox in MATLAB is used; MatCont is an interactive numerical tool used to investigate dy-

namical systems, it is based on numerical continuation and could be to calculate equilibria curves and limiting

points, as well as Hopf points, limit cycles fold bifurcation points, and other important dynamical characteris-

tics of the system, refer to [116,117] for further discussions regarding MatCont and its applications. In Fig. 5.8

MatCont is used to investigate the steady-state frequency response of Van-der-Pol oscillator in Eq. 5.30 for

various excitation frequencies R = 0.5,1,1.5,2,2.5,3 and 3.5.

Moreover, using the amplitude frequency relationship in Eq. 5.39, as Fig. 5.8 reveals, it is possible to ana-

lytically calculate ε1 DNF frequency response manifolds for the same parameters in Fig. 5.8, by comparing the

two figures similar behaviour of the two responses are found, however, some differences can be noticed; espe-

cially for lower excitation frequencies. In more details, the numerical continuation solution using MatCont can

detect the subharmonic resonances that might occur (1 : 3 subharmonic resonances occur in this case), while the

DNF method, in the current form applied, is unable to detect these subharmonic (or even super-harmonic) res-

onances that can happen. Furthermore discussions regarding the subharmonic and super-harmonic resonances

for the case of Duffing oscillators can be found in [118] and references therein.
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Figure 5.8: Steady-state frequency response manifolds for Van-der-Pol oscillator, the manifolds are computed
numerically using MatCont toolbox. Parameter values are: ωn = 1 rad/s and µ = 0.2. Curves from left to right
represent the excitation amplitudes of R = 0.5,1,1.5,2,2.5,3 and 3.5, respectively.

The amplitude-frequency variations with the excitation amplitude, R, are shown in Fig. 5.9. This figure is

analytically generated using ε1 DNF results in Eq. 5.39 for the excitation amplitudes of R = 0.5−4, while the

natural frequency is ωn = 1 rad/s and µ = 0.2. As clearly seen in Fig. 5.9, increasing the excitation amplitude

results in higher peak frequency of the system around the natural frequency.

Figure 5.9: Steady-state frequency response manifolds for Van-der-Pol oscillator, the manifolds are computed
analytically using ε1 results appearing in Eq. 5.39. Parameter values are: ωn = 1 rad/s and µ = 0.2.
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In order to investigate the differences between the analytical and numerical solutions, Fig. 5.10 is gen-

erated with R values of 1,2 and 3, the figure shows good agreement between the analytical and numerical

solutions for lower values of R, while increasing R leads to less matching, this can be related to the accuracy of

both DNF and MatCont.

Figure 5.10: Steady-state frequency response comparison of the Van-der-Pol oscillator for both analytical DNF
and numerical MatCont solutions for R = 1,2 and 3. Parameter values are: ωn = 1 rad/s and µ = 0.2. Solid
lines show numerical results from MatCont while dashed lines show analytical results from Eq. 5.39.

In order to investigate the effect of µ to the frequency response of the system, it is possible to choose a

certain excitation amplitude, R, and varying µ which results in the steady-state frequency response manifolds

for the selected µ and R values. Thus, Fig. 5.11 shows the MatCont numerically computed steady-state fre-

quency responses while in Fig. 5.12 the analytically computed ε1 DNF manifolds are noted. As seen in both

figures, increasing the value of µ leads to decreasing the frequency responses, this decreasing process starts

with high rates at small µ values but is rapidly becomes slower at higher µ values for which flatter response

curves are noticed.

In the following subsection, in order to study their effects to the frequency responses, high orders of

nonlinear stiffness terms (i.e. cubic and quintic) are added to the Van-der-Pol’s EOM, and the dynamics of

these systems are investigated using DNF method, the effects of adding these terms are discussed by means of

steady-state amplitude comparisons.
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Figure 5.11: Steady-state frequency response variations with µ of Van-der-Pol oscillator. The excitation am-
plitude of R = 3 is chosen, and the responses are numerically computed with MatCont, the natural frequency
considered is ωn = 1 rad/s. Curves from left to right represent the excitation amplitudes of µ = 0.2,0.4,0.6,0.8
and 1.0, respectively.

Figure 5.12: Steady-state frequency response variations with µ of Van-der-Pol oscillator. The excitation am-
plitude of R = 3 is chosen, the responses are analytically computed using the result in Eq. 5.39, the natural
frequency considered is ωn = 1 rad/s.
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5.4.2 DNF analysis of Van-der-Pol-Duffing and Van-der-Pol cubic-quintic oscillators

In this subsection, using DNF, an investigation of the steady-state frequency response of Van-der-Pol-Duffing

oscillator is firstly performed, this is followed by the Van-der-Pol cubic-quintic system for which higher order

stiffness term is involved.

Van-der-Pol-Duffing oscillator can be modelled using the following equation of motion [164],

ẍ(t)+µ
(
x2(t)−1

)
ẋ(t)+ω

2
n x(t)+ εαx3(t) = Rcos(Ωt) (5.40)

with all parameters having the same definition as in Eq. 5.30, and ε is a bookkeeping parameter which is

assumed to be unity. Moreover, α is a constant denoting the coefficient of the nonlinear term. Now, in order to

apply DNF, the following preliminary steps are generated

Px =

{
R
2
,

R
2

}
r = {rp,rm}ᵀ = {e iΩt ,e− iΩt}ᵀ

Ñ(q, q̇,r) = µ
(
x2(t)−1

)
ẋ(t)

(5.41)

and the equation of motion becomes

ẍ(t)+ω
2
n x(t)+ Ñ(q, q̇,r) = Pxr (5.42)

The linear modal transformation is q = x = x since SDOF is considered, thus the EOM becomes

q̈+Λq+Nq (q, q̇,r) = Pqr (5.43)

where Λ = ω2
n , Nq (q, q̇,r) = µ

(
q2−1

)
q̇+αq3 and Pq = Px.

In order to eliminate the non-resonant forcing terms, the transformation q = v+ er is considered, moreover,

Ω = ωr and [e] = 0, this results in

v̈+Λv+Nv (v, v̇,r) = Pvr (5.44)

with Nv (v, v̇,r) = µ
(
v2−1

)
v̇+αv3 and Pv = Pq.
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The near-identity transformation is computed to ε1 accuracy, by rewriting the nonlinear terms using u, and then

one can find that n1 (u, u̇,r) = µ
(
u2−1

)
u̇+αu3 for which u = up +um, all of these algebraic steps are sym-

bolically produced using the proposed algorithm, hence, the analysis presented here is restricted to the main

findings.

For ε1 accuracy, the equation of motion can be written in the transformed coordinates, and by substituting

the assumed solution the following will be obtained

(
ω2

n −ω2
r
)U

2

(
e i(ωrt−φ)+ e− i(ωrt−φ)

)
+(

iµU2

4
− iµ +

3
4

U2α

)
ωr

U
2

(
e i(ωrt−φ)− e− i(ωrt−φ)

)
=

R
2
(
e iωrt + e− iωrt

) (5.45)

Now, it is possible to balance real and imaginary parts of Eq. 5.45, to get the following

Re:
(
ω2

n −ω2
r
)

U +
3
4

U3α = Rcos(φ)

Im: µ

(
U2

4
−1
)

ωrU = Rsin(φ)

(5.46)

Finally, similar to the Van-der-Pol oscillator in the previous subsection, it is possible to find the amplitude and

phase relationships for the Van-der-Pol Duffing oscillator as

Amplitude: U2 =
R2(

(ω2
n −ω2

r )+
3
4

U2α

)2

+µ2ω2
r

(
U2

4
−1
)2

Phase: φ = tan−1

 µωr

(
U2

4
−1
)

(ω2
n −ω2

r )+
3
4

U2α


(5.47)

In order to investigate the differences between the analytical and numerical solutions, Fig. 5.13 is generated

with R values of 1,2 and 3, the figure shows good agreement between the analytical and numerical solutions

specifically for low values of R.
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Figure 5.13: Van-der-Pol-Duffing steady-state frequency response comparison for both analytical DNF and nu-
merical MatCont solutions for R = 1,2 and 3, solid lines denote the numerical results obtained using MatCont,
while the dashed lines represent ε1 DNF solutions obtained using Eq. 5.47a). Parameter values are: ωn = 1
rad/s and µ = 0.2 and α = 0.005.

Similarly, it is possible to study the case of Van de Pol cubic-quintic oscillator governed by the following EOM,

ẍ(t)+µ
(
x2(t)−1

)
ẋ(t)+ω

2
n x(t)+ εα1x3(t)+ εα2x5(t) = Rcos(Ωt) (5.48)

and by repeating the previous procedure, the equation of motion in the transformed coordinates is eventually

obtained. Then, by substituting the assumed solution, it is possible to write

(
ω2

n −ω2
r
)U

2

(
e i(ωrt−φ)+ e− i(ωrt−φ)

)
+(

iµU2

4
− iµ +

3
4

U2α1 +
5
8

U4α2

)
ωr

U
2

(
e i(ωrt−φ)− e− i(ωrt−φ)

)
=

R
2
(
e iωrt + e− iωrt

) (5.49)

Now, it is possible to balance real and imaginary parts of Eq. 5.49 to get

Re:
(
ω2

n −ω2
r
)

U +
3
4

U3α1 +
5
8

U4α5 = Rcos(φ)

Im: µ

(
U2

4
−1
)

ωrU = Rsin(φ)

(5.50)
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Finally, it is possible to find the amplitude and phase relationships for Van-der-Pol cubic-quintic oscillator

as

Amplitude: U2 =
R2(

(ω2
n −ω2

r )+
3
4

U2α1 +
5
8

U4α2

)2

+µ2ω2
r

(
U2

4
−1
)2

Phase: φ = tan−1

 µωr

(
U2

4
−1
)

(ω2
n −ω2

r )+
3
4

U2α1 +
5
8

U4α2


(5.51)

By comparing the results of the Van-der-Pol cubic-quintic oscillator, Eq. 5.51, with the results of Van-der-Pol

Duffing, Eq. 5.47 and those for the Van-der-Pol oscillator, Eq. 5.39, a certain pattern can be noticed; each

nonlinear stiffness term leads to a new term appearing in the frequency response curve, and this is found to

be applicable to any odd nonlinear term (i.e. cubic, quintic, ...). Accordingly, in the following subsection,

a generalisation of the frequency-amplitude and phase-amplitude relationships for the Van-der-Pol oscillator

with any type of odd polynomial nonlinearities is drawn.

5.4.3 Analysis of Van-der-Pol oscillators with any type of odd polynomial nonlineari-

ties

In order to generalise the aforementioned results, it is possible to consider the equation of motion for a general

Van-der-Pol oscillator, with multiple geometric (polynomial) odd nonlinearities, which can be written as

ẍ(t)+ω
2
n x(t)+Nx = Rcos(Ωt), (5.52)

where ωn is the natural frequency and the nonlinear terms vector Nx, in its general form, is written as

Nx = µ
(
x2(t)−1

)
ẋ(t)+

M

∑
i=1

αixi(t) (5.53)

Herein, αi, the coefficient of the ith nonlinear stiffness term is considered to be relatively small, and M denotes

the number of odd nonlinear terms. Using the method of DNF (implemented symbolically), the corresponding

amplitude and phase relationships are obtained to ε1 accuracy and this can be written in a general form to

include any odd nonlinear stiffness terms, in addition to any combination of odd nonlinear stiffness terms. If

considering the amplitude and phase relationships for Van-der-Pol, Duffing Van-der-Pol and cubic-quintic Van-
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der-Pol oscillators, Eq. 5.39, Eq. 5.47 and Eq. 5.51, respectively, a pattern is clearly noticed for both U2 and φ ,

which is

Amplitude: U2 =
R2(

(ω2
n −ω2

r )+
M

∑
j=1

(
1

22 j

(
2 j+1
j+1

)
α jU2 j+1

))2

+µ2ω2
r

(
U2

4
−1
)2

Phase: φ = tan−1


µωr

(
U2

4
−1
)

(ω2
n −ω2

r )+
M

∑
j=1

(
1

22 j

(
2 j+1
j+1

)
α jU2 j+1

)


(5.54)

where j in the summation represents the order of the odd nonlinear term appearing in the EOM, starting from

j = 1 for cubic nonlinearity, j = 2 for quintic nonlinearity and so on, moreover, α j denotes the coefficient of

the corresponding nonlinear term.

In the following section, the Rayleigh oscillator is investigated using DNF in order to compare the steady-

state amplitudes for Van-der-Pol and Rayleigh oscillators.

5.4.4 DNF analysis of Rayleigh oscillator

In this section, an investigation of the steady-state frequency response of Rayleigh oscillator is performed using

DNF, similar to the Van-der-Pol oscillator, the Rayleigh oscillator is assumed to be forced with a harmonic force

near the resonance. In analogy to Van-der-Pol oscillator in Eq. 5.30, Rayleigh oscillator can be modelled using

the following equation of motion [110],

ẍ(t)+µ
(
ẋ2(t)−1

)
ẋ(t)+ω

2
n x(t) = Rcos(Ωt) (5.55)

where all parameters have the same definition as in Eq. 5.30, the only difference here is the term ẋ3(t) appearing

in the EOM rather than the term x2(t)ẋ(t) for Van-der-Pol case, and due to the fact that the assumed solution

has an exponential form, then DNF method is applicable.
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In order to apply DNF, the following preliminary steps are practised

Px =

{
R
2
,

R
2

}
r = {rp,rm}ᵀ = {e iΩt ,e− iΩt}ᵀ

Ñ(q, q̇,r) = µ
(
ẋ2(t)−1

)
ẋ(t)

(5.56)

and thus the equation of motion becomes

ẍ(t)+ω
2
n x(t)+ Ñ(q, q̇,r) = Pxr (5.57)

The linear modal transformation is q = x = x since SDOF is considered, thus

q̈+Λq+Nq (q, q̇,r) = Pqr (5.58)

where Λ = ω2
n , Nq (q, q̇,r) = µ

(
q̇2−1

)
q̇ and Pq = Px.

In order to eliminate the non-resonant forcing terms, the transformation of q→ v to be q = v+ er is con-

sidered, moreover, Ω = ωr and [e] = 0, this results in

v̈+Λv+Nv (v, v̇,r) = Pvr (5.59)

with Nv (v, v̇,r) = µ
(
v̇2−1

)
v̇ and Pv = Pq.

The near-identity transformation is computed to ε1 accuracy, by rewriting the nonlinear terms using u, one

can find that n1 (u, u̇,r) = µ
(
u̇2−1

)
u̇ for which u = up +um, thus
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u∗ =



u3
m

u3
p

upu2
m

u2
pum

um

up


; n∗ = iµωr



ω2
r

−ω2
r

−3ω2
r

3ω2
r

1

−1



ᵀ

; βββ
∗ = ω2

r



8

8

0

0

0

0



ᵀ

;

h∗ =
iµωr

8



1

−1

0

0

0

0



ᵀ

; n∗u = iµωr



0

0

−3ω2
r

3ω2
r

1

−1



ᵀ (5.60)

Compared to the matrix manipulation of Van-der-Pol oscillator in Eq. 5.35, same matrix dimensions and simi-

lar terms appearing in Eq. 5.60 except for some higher orders of ωr, and this is expected due to the oscillators’

equation of motions being similar to each other with minor differences as previously shown.

For ε1 accuracy, the equation of motion can then be written in the transformed coordinates, and upon sub-

stituting the assumed solution, the following can be found

(
ω2

n −ω2
r
)U

2

(
e i(ωrt−φ)+ e− i(ωrt−φ)

)
+ iµ

(
3U2ω2

r

4
−1
)

ωr
U
2

(
e i(ωrt−φ)− e− i(ωrt−φ)

)
=

R
2
(
e iωrt + e− iωrt

) (5.61)

Now, it is possible to balance real and imaginary parts of Eq. 5.61, which gives

Re:
(
ω2

n −ω2
r
)

U = Rcos(φ)

Im: µ

(
3U2ω2

r

4
−1
)

ωrU = Rsin(φ)

(5.62)
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Finally, it is possible to find the amplitude and phase relationships for the Rayleigh oscillator as

Amplitude: U2 =
R2

(ω2
n −ω2

r )
2 +µ2ω2

r

(
3U2ω2

r

4
−1
)2

Phase: φ = tan−1

µωr

(
3U2ω2

r

4
−1
)

(ω2
n −ω2

r )


(5.63)

In order to investigate the accuracy of the results in Eq. 5.63, similar to the analysis held for Van-der-Pol

oscillator, MatCont toolbox is used to investigate the steady-state frequency response of Rayleigh oscillator in

Fig. 5.14 for various excitation frequencies of R = 0.5,1,1.5,2,2.5,3,3.5 and 4, moreover, the same results

can be seen in Fig. 5.15 using the analytical results in Eq. 5.63. Furthermore, similar to the generated plots of

Van-der-Pol oscillator, the amplitude-frequency variations with the excitation amplitude for Rayleigh oscillator

are shown in Fig. 5.14. This figure is analytically generated using ε1 DNF results in Eq. 5.63 for the excitation

amplitudes of R = 0.5−4, while the natural frequency is ωn = 1 rad/s and µ = 0.2. From Fig. 5.14, it is noticed

that, similar to Van-der-Pol case, increasing the excitation amplitude results in higher peak frequency of the

system around the selected natural frequency.

Figure 5.14: Steady-state frequency response manifolds for Rayleigh oscillator, the manifolds are computed
numerically using MatCont toolbox. Parameter values are: ωn = 1 rad/s and µ = 0.2. Curves from left to right
represent the excitation amplitude of R = 0.5,1,1.5,2,2.5,3,3.5 and 4, respectively.
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Figure 5.15: Steady-state frequency response manifolds for Rayleigh oscillator, the manifolds are computed
analytically using ε1 DNF results obtained from Eq. 5.63. Parameter values are: ωn = 1 rad/s and µ = 0.2.

To In order to investigate the differences between the analytical and numerical solutions, Fig. 5.16 is generated,

in which a comparison of the steady-state amplitude for R values of 1,2 and 3 is performed, the figure shows

good agreement between the analytical and numerical solutions for lower values of R, while increasing R leads

to less matching, this can be related to the accuracy of both DNF and MatCont.

The comparison in Fig. 5.16 shows that, as in the case of Van-der-Pol oscillator, MatCont continuation tech-

nique is able to capture the subharmonic resonances while ε1 DNF method is unable to detect such types of

behaviour. Moreover, both numerical and analytical results show the same trend with slight differences espe-

cially at lower values of R, nevertheless, the differences tend to grow with increasing R values.

In the literature, more complex systems involving stiffness and damping combinations can be found; this

includes, as previously discussed, the Rayleigh-Duffing oscillator and cubic-quintic Rayleigh oscillator, and

even the hybrid Rayleigh-Van der pol-Duffing oscillator recently introduced in [115], exploring such systems

using traditional DNF method can be challenging due to the increasing number of terms involved. In addition,

the effect of some higher orders polynomial stiffness terms cannot be captured with ε1 DNF, this practically oc-

curs for even nonlinear terms, refer to the discussions in Section 5.2 and the analysis in [8] for some examples,

thus, higher order accuracies need to be considered which enormously increase the computations difficulty.
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Figure 5.16: Rayleigh oscillator steady-state frequency response comparison for both analytical DNF and
numerical MatCont solutions for excitation magnitudes of R = 1,2 and 3, solid lines show numerical results
obtained using MatCont while dashed lines represent the analytical results obtained using Eq. 5.62. Parameter
values are: ωn = 1 rad/s and µ = 0.2.

In the following subsection, ε1 DNF is used for exploring the Rayleigh-Duffing oscillator and cubic-quintic

Rayleigh oscillator for which symbolic computations show reliable tool to make the mathematical manipula-

tions needed for the analysis.

5.4.5 DNF analysis of Rayleigh-Duffing and Rayleigh cubic-quintic oscillators

In this subsection, an investigation of the steady-state frequency response of Rayleigh-Duffing oscillator is

performed using DNF, in addition to the appearance of ẋ3 as in Rayleigh oscillator, this system involves a higher

order stiffness term. i.e. x3. Accordingly, Rayleigh-Duffing oscillator can be modelled using the following

equation of motion [110],

ẍ(t)+µ
(
ẋ2(t)−1

)
ẋ(t)+ω

2
n x(t)+ εαx3(t) = Rcos(Ωt) (5.64)

where α is a constant denoting the coefficient of the cubic nonlinear stiffness term, ε is a bookkeeping param-

eter which is assumed to be unity, and all other parameters have the same definition as in Eq. 5.55.
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In order to apply DNF, the following preliminary steps are practised

Px =

{
R
2
,

R
2

}
r = {rp,rm}ᵀ = {e iΩt ,e− iΩt}ᵀ

Ñ(q, q̇,r) = µ
(
ẋ2(t)−1

)
ẋ(t)+ εαx3(t)

(5.65)

and thus the equation of motion becomes

ẍ(t)+ω
2
n x(t)+ Ñ(q, q̇,r) = Pxr (5.66)

The linear modal transformation is q = x = x since SDOF is considered, thus

q̈+Λq+Nq (q, q̇,r) = Pqr (5.67)

where Λ = ω2
n , Nq (q, q̇,r) = µ

(
q̇2−1

)
q̇+αq3 and Pq = Px.

In order to eliminate the non-resonant forcing terms, the transformation of q→ v to be q = v+er is considered,

moreover, Ω = ωr and [e] = 0, this results in

v̈+Λv+Nv (v, v̇,r) = Pvr (5.68)

with Nv (v, v̇,r) = µ
(
v̇2−1

)
v̇+αv3 and Pv = Pq.

The near-identity transformation is computed to ε1 accuracy, by rewriting the nonlinear terms using u, it is

possible to find that n1 (u, u̇,r) = µ
(
u̇2−1

)
u̇+αu3 for which u = up +um, all of these algebraic steps are

symbolically produced using the proposed algorithm and here the analysis is limited to the main findings.

For ε1 accuracy, the equation of motion can then be written in the transformed coordinates, and by substituting

the assumed solution, it is possible to write

(
ω2

n −ω2
r
)U

2

(
e i(ωrt−φ)+ e− i(ωrt−φ)

)
+(

3 iµU2ω2
r

4
− iµ +

3
4

U2α

)
ωr

U
2

(
e i(ωrt−φ)− e− i(ωrt−φ)

)
=

R
2
(
e iωrt + e− iωrt

) (5.69)
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Now, it is possible to balance real and imaginary parts of Eq. 5.69 to get the following

Re:
(
ω2

n −ω2
r
)

U +
3
4

U3α = Rcos(φ)

Im: µ

(
3U2ω2

r

4
−1
)

ωrU = Rsin(φ)

(5.70)

Finally, it is possible to find the amplitude and phase relationships for the Rayleigh-Duffing oscillator as

Amplitude: U2 =
R2(

(ω2
n −ω2

r )+
3
4

U2α

)2

+µ2ω2
r

(
3U2ω2

r

4
−1
)2

Phase: φ = tan−1

µωr

(
3U2ω2

r

4
−1
)

(ω2
n −ω2

r )+
3
4

U2α


(5.71)

As for the case of Rayleigh oscillator, Fig. 5.17 shows a comparison of the steady-state frequency response

for both MatCont numerical results and DNF analytical results using Eq. 5.71. By comparing the peaks in

Fig. 5.17 to the corresponding peaks in Fig. 5.17, the effects of adding the ẋ3 term (i. e. Rayleigh-Duffing case)

are clearly observed, for which significant reduction of the peak amplitude responses is found.

Figure 5.17: Steady-state frequency response comparison of the Rayleigh-Duffing oscillator for both analytical
DNF and numerical MatCont solutions for R = 1,2 and 3. Solid lines show numerical results from MatCont
while dashed lines show analytical results from Eq. 5.71. Parameter values are: ωn = 1 rad/s and µ = 0.2.
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Similarly, one could study the case of Rayleigh cubic-quintic oscillator governed by the following EOM,

ẍ(t)+µ
(
ẋ2(t)−1

)
ẋ(t)+ω

2
n x(t)+ εα1x3(t)+ εα2x5(t) = Rcos(Ωt) (5.72)

and by repeating the previous procedure, the equation of motion in the transformed coordinates is finally ob-

tained, and by substituting the assumed solution. Then, it is possible to get

(
ω2

n −ω2
r
)U

2

(
e i(ωrt−φ)+ e− i(ωrt−φ)

)
+(

3 iµU2ω2
r

4
− iµ +

3
4

U2α1 +
5
8

U4α2

)
ωr

U
2

(
e i(ωrt−φ)− e− i(ωrt−φ)

)
=

R
2
(
e iωrt + e− iωrt

) (5.73)

Now, ot is possible to balance the real and imaginary parts of Eq. 5.73, which gives

Re:
(
ω2

n −ω2
r
)

U +
3
4

U3α1 +
5
8

U4α5 = Rcos(φ)

Im: µ

(
3U2ω2

r

4
−1
)

ωrU = Rsin(φ)

(5.74)

Finally, it is possible to find the amplitude and phase relationships for the Rayleigh cubic-quintic oscillator as

Amplitude: U2 =
R2(

(ω2
n −ω2

r )+
3
4

U2α1 +
5
8

U4α2

)2

+µ2ω2
r

(
3U2ω2

r

4
−1
)2

Phase: φ = tan−1

 µωr

(
3U2ω2

r

4
−1
)

(ω2
n −ω2

r )+
3
4

U2α1 +
5
8

U4α2


(5.75)
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Figure 5.18: Steady-state frequency response comparison of the Rayleigh-cubic-quintic oscillator for both
analytical DNF and numerical MatCont solutions for R = 1,2 and 3. Solid lines show numerical results from
MatCont while dashed lines show analytical results from Eq. 5.75. Parameter values are: ωn = 1 rad/s and
µ = 0.2.

5.4.6 Analysis of Rayleigh oscillators with any type of odd polynomial nonlinearities

In order to generalise the aforementioned results, it is possible to consider the equation of motion for a general

Rayleigh oscillator, with multiple geometric (polynomial) odd nonlinearities, which can be written as

ẍ(t)+ω
2
n x(t)+Nx = Rcos(Ωt), (5.76)

where ωn is the natural frequency and the nonlinear terms vector Nx, in its general form, is written as

Nx = µ
(
ẋ2(t)−1

)
ẋ(t)+

M

∑
i=1

αixi(t) (5.77)

Herein, αi, the coefficient of the ith nonlinear stiffness term is considered to be relatively small, and M denotes

the number of odd nonlinear terms. Using the method of DNF (implemented symbolically), the corresponding

amplitude and phase relationships are obtained to ε1 accuracy and this can be written in a general form to

include any odd nonlinear stiffness terms, in addition to any combination of odd nonlinear stiffness terms.

When considering the amplitude and phase relationships for Rayleigh, Duffing Rayleigh and cubic-quintic

Rayleigh oscillators in Eq. 5.63, Eq. 5.71 and Eq. 5.75, respectively, a pattern is clearly noticed for both U2
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and φ , which is

Amplitude: U2 =
R2(
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n −ω2
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M

∑
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r
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Phase: φ = tan−1


µωr

(
3U2ω2

r

4
−1
)

(ω2
n −ω2

r )+
M

∑
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(
1

22 j

(
2 j+1
j+1

)
α jU2 j+1

)


(5.78)

where j in the summation represents the order of the odd nonlinear term appearing in the EOM, starting from

j = 1 for cubic nonlinearity, j = 2 for quintic nonlinearity and so on, moreover, α j denotes the coefficient of

the corresponding nonlinear term.

5.4.7 Numerical comparison of the six types of oscillators

For comparison purposes, it is possible to plot the frequency-response manifolds for each oscillator in 3-

dimensional coordinates, with x, y and z axes denoting the frequency, amplitude, and excitation amplitude,

respectively. Fig. 5.19 shows this comparison for the numerical values of ωn = 1 rad/s, µ = 0.2, α1 = 0.02

and α2 = 0.05. In this figure, the U-axis limits are chosen to be similar for comparison purposes. Moreover, to

investigate the effect of µ value to the steady-state frequency response of the six oscillators considered in this

work, Fig. 5.20 is generated for the numerical values of ωn = 1 rad/s, R = 5, α1 = 0.03 and α2 = 0.01. In this

figure, since the amplitudes of U are different between Van-der-Pol and Rayleigh oscillators, U-axis limits are

kept similar for plots of the same types (i.e. Van-der-Pol and Rayleigh). According to the aforementioned dis-

cussions, one can study the difference between Van-der-Pol and Rayleigh oscillators, and the effect of adding

geometric stiffness terms to each type of those oscillators. For instance, using the manifolds in Fig. 5.19, Ta-

ble 5.7 is generated for the numerical values of the maximum amplitudes U and the frequencies they occur at,

for each oscillator type. From Fig. 5.19 & Fig. 5.20, and Table 5.7, for the selected (specific) parameters, the

following outcomes can be observed;

• The maximum amplitude resulting of Van-der-Pol is greater than that of Rayleigh, this due to the effect

of the term ẋ(t) in Rayleigh oscillators, refer to Eq. 5.55.
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• Adding geometric stiffness terms to the EOM of both oscillators yields to reduction of the peak ampli-

tudes while shifting the peaks to higher values.

• In some cases, adding higher orders of the geometric stiffness terms results in certain discontinuities in

the frequency manifolds, this can be related to the overall effects of these stiffness terms to the oscillations

(i.e. making the system highly stiff), this observation needs more extended research related to these

oscillators which is out of the scope of this thesis.

Table 5.7: Numerical comparison of maximum amplitudes U for each type of oscillators plotted in Fig. 5.19

Oscillator type Corresponding ε1

DNF results

Maximum amplitude

Umin

ωr at maximum

amplitude

Van-der-Pol Eq. 5.39 4.345 0.829

Van-der-Pol-Duffing Eq. 5.47 4.104 1.088

Van-der-Pol cubic-quintic Eq. 5.51 3.739 1.577

Rayleigh Eq. 5.63 3.987 0.568

Rayleigh-Duffing Eq. 5.71 3.372 0.694

Rayleigh cubic-quintic Eq. 5.75 2.849 0.856
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(a) Van-der-Pol (b) Rayleigh

(c) Van-der-Pol-Duffing (d) Rayleigh-Duffing

(e) Van-der-Pol-cubic quintic (f) Rayleigh-cubic quintic

Figure 5.19: Frequency response variations with forcing frequency for the six oscillators considered, all mani-
folds are computed using the analytical results discussed earlier. Parameter values are: ωn = 1 rad/s, µ = 0.2,
α1 = 0.02 and α2 = 0.05.
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(a) Van-der-Pol (b) Rayleigh

(c) Van-der-Pol-Duffing (d) Rayleigh-Duffing

(e) Van-der-Pol-cubic quintic (f) Rayleigh-cubic quintic

Figure 5.20: Frequency response variations with µ for the six oscillators considered, all manifolds are computed
using the analytical results discussed earlier. Parameter values are: ωn = 2 rad/s, R = 5, α1 = 0.03 and α2 =
0.01.
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5.5 Summary

In this Chapter, applications of the symbolically applied DNF method for various types of SDOF systems are

shown, two main topics are studied; the analysis of cubic-quintic oscillators (which eventually led to generic

SDOF oscillators), and the analysis of oscillators with combinations of nonlinear stiffness and damping terms.

Starting by the conservative cubic-quintic oscillator, analytical expressions of the backbone curves for both ε1

and ε2 are obtained, and a general formula to obtain the backbone curves for oscillators with odd polynomial

stiffness (geometric) nonlinear terms is then concluded. Based on the analysis of these types of oscillators the

following findings are observed;

• When compared to the numerical solutions (as a benchmark), if only odd nonlinear terms (such as the

cubic-quintic) are found in the EOM, the outcomes of ε2 order solutions were not always more accurate

than the ε1 order solutions.

• When even nonlinear terms were added, as with the generic cubic-quintic oscillator this observation is

changed, and here, as would be expected, ε2 order solutions were always more accurate than the ε1 order

solutions.

• Finally, it was shown that, for the SDOF oscillators considered with only odd nonlinear terms, the ex-

pression for the backbone curve of the system up to ε1 order could be generalized. However, this was

not the case when even nonlinearities were present and ε2 accuracy was needed.

On the other hand, the second topic discussed in this Chapter is oscillators with combinations of non-

linear stiffness and damping terms, including Van-der-Pol, Rayleigh, Van-der-Pol Duffing, Rayleigh Duffing,

cubic-quintic Van-der-Pol and finally the cubic-quintic Rayleigh oscillator. Referring to the aforementioned

discussions for this topic, the following outcomes are seen;

• In the literature, upon these types of oscillators, only the Van-der-Pol oscillator was priorly discussed

using DNF method, thus, using the symbolic computations the author has been able to extend the capa-

bilities of DNF to analyse more complicated systems of that kind.

• For all of these oscillators, analytical frequency-response and phase relationships are obtained, and for

verification purposes, those are compared to the numerical results obtained using MatCont continuation
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package in MATLAB.

• Comparing the frequency-amplitude relationship of Van-der-Pol and Rayleigh oscillators, a similar trend

can be observed, refer to Eq. 5.39 and Eq. 5.63, thus, for some specific applications, comparisons between

these two types of oscillators are performed, refer to [121] for an example.

• For ε1 DNF accuracy, the effect of adding odd nonlinear stiffness terms to Van-der-Pol or Rayleigh

EOM’s appears in the frequency response relationships in the form of additional stiffness terms, those

terms are identical to those computed in Section 5.2, i.e. refer to the summation terms appearing in

Eq. 5.29, Eq. 5.54, and Eq. 5.78.

• To conclude, it is important to mention that the analysis practised in this Section is based on ε1 DNF

accuracy, however, for future potential work, if odd nonlinear terms included into the EOMs, the effect

of raising the accuracy to ε2 can be investigated, while if even nonlinear terms are included, it can be

also beneficial to study ε3 accuracy, recall the discussions regarding higher order accuracies and their

effect to the frequency-responses of the systems, Section 4.6.
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Chapter 6

Exploring fractional nonlinear systems

using modified DNF technique

Direct normal form (DNF) analysis of nonlinear oscillators with fractional damping of order β is shown in this

Chapter, where (0 < β < 1). Traditionally, the method of DNF is used to investigate the dynamics of nonlinear

oscillators, for which the nonlinearity has been resulted from the inclusion of polynomial stiffness terms with

low orders such as quadratic or cubic. In the previous Chapters, the DNF method is applied to oscillators with

higher orders of polynomial stiffness terms, in addition to oscillators with combinations of viscous damping

and polynomial nonlinear stiffness terms. In this Chapter, a novel implementation of the DNF method for

the case of fractionally damped oscillators is to be investigated. Two main examples are to be discussed, the

Duffing oscillator with fractional damping and the fractionally damped Van-der-Pol oscillator. Where relevant,

the proposed results are to be compared to numerical results and to other analytical results in the literature.

6.1 Introduction to fractional calculus

Fractional calculus is a branch of mathematical analysis that studies the possibility of taking real number

powers or complex number powers of the differentiation operator and the integration operator. An important

point is that the fractional derivative at a point x is a local property only when a is an integer; on the other

hand, in non-integer cases we cannot say that the fractional derivative at x of a function f depends only on
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values of f very near x, in the way that integer-power derivatives certainly do. Therefore it is expected that the

theory involves some sort of boundary conditions, involving information on the function further out. To use a

metaphor, the fractional derivative requires some peripheral vision.

As far as the existence of such a theory is concerned, the foundations of the subject were laid by Liouville

in a paper from 1832. The fractional derivative of a function to the order a is often defined by means of the

Fourier or Mellin integral transforms. In the following subsection, the fractional derivative of a a basic power

function, f (x) = xk, is demonstrated. Accordingly, the most important fractional derivative definitions; the

Riemann-Liouville and Caputo fractional derivatives are shown.

6.1.1 Fractional derivative of a basic power function

Let us assume that f (x) is a monomial of the form

f (x) = xk (6.1)

where k is a real number, then the first derivative is as usual

f ′(x) = kxk−1 (6.2)

In general, the ath derivative of the function f (x) in Eq. 6.1 is written as

da

dxa

(
xk
)
=

k!
(k−a)!

xk−a (6.3)

In mathematics, the Gamma function (represented by the capital Greek letter Γ) is an extension of the

factorial function, with its argument shifted down by 1, to real and complex numbers. That is, if n is a positive

integer then

Γ = (n−1)! (6.4)

in addition, when solving the fractional differential equation, another form of Γ function is obtained, which

includes two operators. In mathematics, this form is called the incomplete Γ function, Γ(a,z), and it is defined

for all complex numbers except the non-positive integers, in case the real value of a is positive, ℜ{a}> 0, the
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incomplete Γ function is defined via a convergent to the improper integral

Γ(z) =
∫

∞

0
e−xxt−1 dx (6.5)

Now, using the Gamma definition defined in Eq. 6.5, the ath derivative of the function f (x) in Eq. 6.3 can be

rewritten as

da

dxa

(
xk
)
=

Γ(k+1)
Γ(k−a+1)

xk−a , k ≥ 0 (6.6)

In order to apply the fractional derivative appearing in Eq. 6.6, it is possible to consider the simple case of k = 1

and a = 0.5, which represents the half-derivative of the function f (x) = x. Thus,

d0.5

dx0.5 (x) =
Γ(2)

Γ(1.5)
x0.5 =

1(√
π

2

)√x (6.7)

For any negative integer power k, the gamma function is undefined, alternatively the following relation is

adopted;

da

dxa

(
x−k
)
= (−1)a Γ(k+a)

Γ(k)
x−(k+a) , k ≥ 0 (6.8)

In general, the fractional derivative of function f (x) and 0 < α < 1 can be written as

Dα ( f (x)) =
1

Γ(1−α)

d
dx

(∫ x

0

f (t)
(x− t)α dt

)
(6.9)

The previous definition of the fractional derivative was firstly introduced by Riemann and Liouville, whereas

another well-known definition is introduced by Caputo and it is defined as, [124]

Dα ( f (x)) =
1

Γ(k−α)

(∫ x

0

f (t)

(x− t)α+1−k
dk

dxk dt

)
(6.10)

Considering the theory of fractional calculus, and according to different backgrounds, there are several

definitions of the fractional-order derivatives [123, 124], however, under some special conditions, they are

equivalent. For instance, Caputo and Riemann-Liouville fractional derivatives in Eq. 6.9 and Eq. 6.10 are two

of the most well-known definitions of the fractional derivatives. Nevertheless, many other definitions have
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been introduced in the literature for both fractional derivatives and fractional integrals, refer to [143] for some

of these definitions. In this Chapter, another definition of the fractional is to be used; namely, Davison-Essex

(D-E) definition, justifications of selecting this definition is provided in Section 6.2. In the following Section,

more details of Davison-Essex are presented.

6.1.2 Davison-Essex (DE) fractional derivative

In 1998, Davison and Essex [144], published a paper which provides a variation to the Riemann-Liouville

definition suitable for conventional initial value problems within the realm of fractional calculus. The definition

presented in their work is;

D0
α ( f (x)) =

dn+1−k

dxn+1−k

(∫ x

0

(x− t)−α

Γ(1−α)

dk f (t)
dtk dt

)
(6.11)

The DE definition given in Eq. 6.11 is shown to be valid for only limited values of t, thus, to develop the defi-

nition, Cavanati introduced an algorithm that is a particular case obtained with k = N−1, [145]. Accordingly,

the definition in Eq. 6.11 becomes

Dβ u(t) =
1

Γ(n−β )

∫ t

0
(t− s)n−β−1

(
dn

dtn u(s)
)

ds (6.12)

in order to apply this definition, the primary and crucial step is to find the value of n, defined as n = ceil(β )

where in our case the fractional derivative is 0 < β < 1 and thus n = 1. Accordingly, Davison-Essex definition

in Eq. 6.12 can be rewritten as

Dβ u(t) =
1

Γ(1−β )

∫ t

0
(t− s)−β

(
d
dt

u(s)
)

ds (6.13)

where the Gamma function, Γ( ), is defined in Eq. 6.4. In this thesis, this form of the DE fractional derivative

is used to investigate the dynamics of fractionally damped nonlinear oscillators using the method of DNF.
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6.2 Duffing oscillator with fractional order damping

Considering the Duffing oscillator with fractional damping, driven by harmonic force of non-resonant type. It

is required to use DNF technique to investigate the frequency response for this system.

ẍ(t)+2εζ ωnDβ x(t)+ω
2
n x(t)+ εαx3(t) = εRcos(Ωt) (6.14)

where x(t) denotes the displacement of the oscillator, ωn is the natural frequency of the system and ζ is the

viscous damping ratio. Moreover, Dβ x(t) denotes the fractional damping of the system with β being the

order of the fractional order of the system, where (0 < β < 1), and when β = 1 then the system is viscously

damped. Additionally, R and Ω appearing in the right-hand-side of the equation represent the forcing amplitude

and forcing frequency, respectively. Finally, ε is a bookkeeping parameter which is assumed to be unity in

this section, but it will be used for comparisons to other methods of analysis in Section 6.3. Finally, α is a

constant denoting the smallness of the weak nonlinearity. Discussions regarding the fractional damping model,

its importance, and how it complements with the existing damping models in the literature is provided in

Section 2.6.

By applying the method of DNF, and since the system in Eq. 6.14 is SDOF, then q = x1 = x with q1 is the only

element in q, by applying the near-identity transform one can get

q̈+Λq+Nq

(
q,Dβ{q}

)
= 0, (6.15)

where Λ = ω2
n and Nq

(
q,Dβ{q}

)
= 2ζ ωnDβ q+αq3.

For systems with integer order viscous damping, i.e. β = 1, when applying the DNF method, the assumed

solution has the form

u = up +um =

(
U
2

e− iφ
)

e iωrt +

(
U
2

e iφ
)

e− iωrt , (6.16)

however, for systems with fractional order damping, i.e. 0 < β < 1, the fractional derivative of the assumed

solution can be expressed as

Dβ u = Dβ (up +um) , (6.17)
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Now, the near identity transformation is applied to Eq. 6.15 using ε1 order, yielding to

Nu = 2ζ ωnDβ [u]+αu3 = 2ζ ωnDβ [up +um]+α (up +um)
3

= 2ζ ωnDβ up +2ζ ωnDβ um +αu3
p +3αu2

pum +3αupu2
m +αu3

m

(6.18)

To emphasise, for systems with integer order derivative, i.e. β = 1, the assumed solution, Eq. 6.16, has some

desirable characteristics that make the application of the DNF technique easily reachable, these characteristics

are mainly related to the exponential terms appearing in the solution. The derivatives of the exponents in

Eq. 6.16 can be imagined as multiples of the assumed solution, thus, for any integer value of n, it is possible to

write

Dn

dtn (up) = (iωr)
n up (6.19a)

Dn

dtn (um) = (−iωr)
n um (6.19b)

As discussed in Subsection 6.1.2, the implementation of DNF for fractionally damped systems is based on

the type of fractional derivative; when using DNF method for fractionally damped equations of motion it is

difficult to rely on the characteristics in Eq. 6.19, since the application of the fractional derivatives (such as

Caputo’s derivative) regularly yields to completely different forms. In this work, the author is trying to find

some acceptable approximations of the fractional derivatives that makes the DNF technique applicable. To

accomplish that, it is convenient to refer to the Davison-Essex (D-E) definition of the fractional derivatives,

Eq. 6.13; by performing Davison-Essex definition, it is possible to find the fractional damping of the system

by evaluating the integral in Eq. 6.13 according to the order of the fractional derivative β . Our purpose in this

work is to use Davison-Essex fractional derivative definition in Eq. 6.13, to evaluate the fractional derivatives

of the assumed solution in Eq. 6.16, in a form that is similar to that seen in Eq. 6.19, and then it is possible

proceed with the application of the DNF method.
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By applying D-E definition of fractional derivative in Eq. 6.13 to the assumed solution, it is found that

Dβ (up) =
1

Γ(1−β )

(
U
2

e iωrt (iωr)
β

)
(Γ(1−β )−Γ((1−β ) , iωrt)) (6.20a)

Dβ (um) =
1

Γ(1−β )

(
U
2

e− iωrt (−iωr)
β

)
(Γ(1−β )−Γ((1−β ) ,−iωrt)) (6.20b)

which are equivalent to

Dβ (up) =

[
1

Γ(1−β )

(
(iωr)

β
)
(Γ(1−β )−Γ((1−β ) , iωrt))

]
up (6.21a)

Dβ (um) =

[
1

Γ(1−β )

(
(−iωr)

β
)
(Γ(1−β )−Γ((1−β ) ,−iωrt))

]
um (6.21b)

where the terms Γ(1−β ), (iωr)
β and (−iωr)

β are constants for a given value of β , whereas the terms

Γ((1−β ) , iωrt) and Γ((1−β ) ,−iωrt) are time dependent terms which represent the decaying terms of the

solution caused by the fractional damping. In view of Eq. 6.20 and Eq. 6.21, the assumed solution in Eq. 6.16

can be rewritten as

Nu = αu3
p +3αu2

pum +3αupu2
m +αu3

m +2ζ ωnη1(β , t)up +2ζ ωnη2(β , t)um (6.22)

where

η1(β , t) =
[

1
Γ(1−β )

(
(iωr)

β
)
(Γ(1−β )−Γ((1−β ) , iωrt))

]
(6.23a)

η2(β , t) =
[

1
Γ(1−β )

(
(−iωr)

β
)
(Γ(1−β )−Γ((1−β ) ,−iωrt))

]
(6.23b)

Now, it is possible to proceed with the DNF analysis; n∗, u∗ and βββ
∗ matrices are obtained as

u∗ =

[
u3

p u2
pum upu2

m u3
m up um

]ᵀ

n∗ =

[
α 3α 3α α 2ζ ωnη1 2ζ ωnη2

]

βββ
∗ = ω

2
r

[
8 0 0 8 0 0

] (6.24)
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As usual, according to the values of the elements in βββ
∗, it is possible to classify the type of expected resonances

as follows:

• If the value of β ∗j = 0, then there exists an unconditional resonant term at this element.

• If the value of β ∗j 6= 0, then there exists a conditional resonant term at this element.

Now, the matrix βββ
∗ can be used to find the near-identity transform and the resonant nonlinear terms that remain

in the dynamic equation for u giving

n∗u =

[
0 3α 3α 0 2ζ ωnη1 2ζ ωnη2

]

h∗ =
α

ω2
r

[
1
8

0 0
1
8

0 0

] (6.25)

The equation of motion in the transformed coordinate system and the near-identity transform may now be

written as

ü+2ζ ωnDβ u+ω
2
n u+3α

(
u2

pum +upu2
m
)
= 0, (6.26)

considering that this is a SDOF system which gives that x = q = v and to ε1 order of accuracy, it is possible to

write

v = u+n∗u∗ = u+
α

8ω2
n

(
u3

p +u3
m
)

(6.27)

Using the trial solution in Eq. 6.16, for ωr = Ω and Pur = Pxr = Rcos(Ω) it is possible write

(
ω

2
n −Ω

2)U
2

(
ei(Ωt−φ)+ e−i(Ωt−φ)

)
+2ζ ωn

(
η1ei(Ωt−φ)+η2e−i(Ωt−φ)

)
+

3αU3

8

(
η1ei(Ωt−φ)+η2e−i(Ωt−φ)

)
=

R
2

(
eiΩt + e−iΩt

) (6.28)

By balancing the exponential terms

ei(Ωt−φ) :
(
ω

2
n −Ω

2)U +4ζ ωnη1 +
3
4

η1αU3 = Re iφ (6.29a)

e−i(Ωt−φ) :
(
ω

2
n −Ω

2)U +4ζ ωnη2 +
3
4

η2αU3 = Re− iφ (6.29b)

it is important to consider that, compared to the case of viscous damping (i.e. β = 1), the fractional order

system involves higher mathematical complexities when trying to find the real and imaginary parts of the
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solution; the Gamma functions in Eq. 6.20 illustrate combinations of real and imaginary sets of solutions

depending on the values of ωn and t. However, it is convenient to proceed with the DNF analysis keeping

in mind that η1 and η2 are complex numbers and they are not complex conjugates, thus by balancing the

exponential terms, the real and imaginary parts in Eq. 6.29a become:

Re:
(
ω

2
n −Ω

2)U +4ζ ωnℜ{η1}+
3
4

ℜ{η1}αU3 = Rcosφ (6.30a)

Im: 4ζ ωnℑ{η1}= Rsinφ (6.30b)

where ℜ{η1} and ℑ{η1} are the real and imaginary parts of η1, respectively. Now, by squaring and adding

these two equations together it is possible obtain an expression for the backbone curve of this system,

[(
ω

2
n −Ω

2)U +4ζ ωnℜ{η1}+
3
4

ℜ{η1}αU3
]2

+[4ζ ωnℑ{η1}]2 = R2 (6.31)

Additionally, it is possible to obtain an expression for the phase relationship φ as

φ = tan−1

 4ζ ωnℑ{η1}

(ω2
n −Ω2)U +4ζ ωnℜ{η1}+

3
4

ℜ{η1}αU3

 (6.32)

Using Eq. 6.31 it is possible to find the frequency response of the system analytically, and hence it is possible to

calculate the fractionally damped backbone curves of the system. In the following section, a method to obtain

the numerical frequency response of the fractionally damped Duffing is discussed, which then can be used to

verify the analytical results obtained by the DNF technique.

6.3 Comparison with numerical results

As described in [139], the relationship between the explicit numerical approximation and the power series

method is described numerically by Grünwald-Letnikov’s definition as

Dβ

tn (y(tn))≈
1

hβ

n

∑
j=0

Cβ

j y(tn− j) (6.33)

where tn, h and Cβ

j are the sample points, sample step size and the fractional binomial coefficient, respectively.
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Moreover, the sample points can be written as tn = nh and considering that Cβ

0 = 1, the fractional binomial

coefficient is iteratively written as

Cβ

j =

(
1− 1+β

j

)
Cβ

j−1 (6.34)

thus, Eq. 6.33 is rewritten as

Dβ

tn (y(tn))≈
1

hβ

n

∑
j=0

(
1− 1+β

j

)
Cβ

j−1y(tn− j), Cβ

0 = 1 (6.35)

Now, in order to investigate the accuracy of the amplitude-frequency relationship of the fractional Duffing

oscillator in Eq. 6.31, the frequency response functions for Duffing oscillator with fractional damping are ana-

lytically computed from Eq. 6.31, and then the results are verified numerically using fractional order derivative

of β = 0.75, forcing excitation amplitude of R = 1 and natural frequency of ωn = 2 rad/s. The Grünwald-

Letnikov’s definition in Eq. 6.35 is substituted in the EOM of Duffing oscillator, Eq. 6.14, and then the result-

ing equation is solved with sample step of h = 0.005 for a total computation time of 400 s. The temporary

response in the first 200 s is skipped in order to get the steady-state response, and the peak values of the pos-

terior response is considered to be the required numerically computed steady-state amplitudes, this process is

repeated for various excitation frequencies. Fig. 6.1 shows a comparison between the analytical and numerical

frequency response of the fractional Duffing oscillator.

The effect of varying the fractional order β to the oscillations amplitude is given by Fig. 6.2. Starting from

β = 1, which represent the Duffing case oscillator with viscous damping term, when the order of the fractional

derivative decreases, the amplitude of the oscillations rapidly increases and the peak nonlinear frequency is

shifted to the right (i.e. to a higher magnitude), this can be related to the fact that the decreasing fractional

order of the derivative leads to smaller damping effects, [161]. Moreover, it is possible to notice some slight

imperfections to the curves when the stable and unstable solutions coincide, this could be related to the fact that

the analytical solutions roots are changing at these turning points. Finally, contrary to continuation packages

such as MatCont, it can be seen that the DNF technique, in its current form, is unable to detect the subharmonic

resonances for this system. However, for potential future work, DNF can be modified to include subharmonic

resonances.
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Figure 6.1: Frequency response relationship for Duffing oscillator with fractional damping term, the solid line
represents the stable solution while the dashed line represents the unstable solution, both computed analytically
using Eq. 6.31, while the circles represent the numerical solution computed using Eq. 6.35. Parameter values
are: ωn = 2 rad/s, α = 0.2, R = 1 and fractional order of β = 0.75.
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Figure 6.2: Frequency response relationship variations for Duffing oscillator with various fractional damping
orders, the solid lines represent the stable solution while the dashed lines represent the unstable solution, all
computed analytically using Eq. 6.31. Other parameter values are: ωn = 2 rad/s, α = 1.0 and R = 1.

The effect of the excitation amplitude variations R to the oscillation amplitudes of the oscillator at frac-

tional order derivative of β = 0.75 is shown in Fig. 6.3. In principle, when increasing the value of R, the same

trend seen in Fig. 6.2 is repeated. Nevertheless, some differences are clearly noticed to the frequency responses

away from the natural frequency of the system; increasing the values of R results in shifting the frequency
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responses significantly; while this is not seen when decreasing the fractional order β . Overall, for a constant

fractional order β , increasing the excitation amplitude will always yield to increased amplitude of the oscillator.
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Figure 6.3: Frequency response relationship variations for Duffing oscillator with amplitudes of harmonic
excitation, the solid lines represent the stable solution while the dashed lines represent the unstable solution,
all computed analytically using Eq. 6.31. Other parameter values are: ωn = 2 rad/s, α = 1.0 and β = 0.75

Finally, the effect of changing the nonlinear stiffness term coefficient α to the frequency responses of

the oscillator is found in Fig. 6.4, the fractional order of the system is β = 0.75 and the excitation amplitude

is R = 1. As expected, increasing α values will always lead to greater bending of the frequency-amplitude

curves, this results in reducing the amplitudes while increasing the peak frequency of the system. This can also

be noted for Duffing oscillators with viscous damping.

6.4 Comparisons to other methods

In this section, the results obtained using DNF method are to be compared to some results found in the literature

using other methods. The Duffing oscillator with fractional damping has been studied in the literature using

some traditional approximate techniques such as harmonic balance, averaging and multiple scales, some of

these works can be found in [161] and references therein. The analysis presented in this section is based on the

method of averaging shown in detail in [161] for a system with a viscous damping and a fractional damping

terms. However, in this section, the analysis is reproduced for the system presented in Eq. 6.14, accordingly, it

is possible to compare the results of both the DNF and averaging methods as will be briefly discussed. If the
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Figure 6.4: Frequency response relationship variations for Duffing oscillator with coefficient of the nonlinear
cubic term, the solid lines represent the stable solution while the dashed lines represent the unstable solution,
all solutions are computed analytically using Eq. 6.31. Other parameter values are: ωn = 2 rad/s, R = 1.0 and
β = 0.75.

primary resonance is investigated for the Duffing oscillator in Eq. 6.14, the excitation frequency is considered

to be close to the natural frequency, i.e. Ω≈ωn, and then, considering σ to be the detuning factor, the detuning

frequency can be written as

Ω
2 = ω

2
n + εσ (6.36)

Accordingly, Eq. 6.14 can be rearranged to be

ẍ(t)+2εζ ωnDβ x(t)+
(
Ω

2− εσ
)

x(t)+ εαx3(t) = εRcos(Ωt) (6.37)

which can be written as

ẍ(t)+Ω
2x(t) = ε

(
Rcos(Ωt)−2ζ ωnDβ x(t)+σx(t)−αx3(t)

)
(6.38)

Referring to Eq. 6.16, the assumed solution, in terms of x(t) would be written as

x(t) =
(

X(t)
2

e− iφ(t)
)

e iωrt +

(
X(t)

2
e iφ(t)

)
e− iωrt = X(t)cos(Ωt−φ (t)) , (6.39)
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it is important to mention that both the displacement X and the phase φ are assumed to be functions of time

to work in the generalised case, and this will enable the investigation of the steady-state solutions, as will be

described in the following analysis. By differentiating Eq. 6.39 with respect to time, the following result is

found

ẋ(t) = Ẋ(t)cos(Ωt−φ (t))−X(t)
(
Ω− φ̇(t)

)
sin(Ωt−φ (t)) , (6.40)

nevertheless, if investigating the steady-state frequency-amplitude relationship near the resonance, both the

amplitude X and the phase φ can considered to be slowly varying with time (or almost constant with time), this

assumption is made in [160, 161] for which acceptable results are found. Thus, using Eq. 6.39, it is possible to

write

ẋ(t) =−ΩX(t)sin(Ωt−φ (t)) , (6.41)

and when equating the results in Eq. 6.41 to that in Eq. 6.40, it is possible to write

Ẋ(t)cos(Ωt−φ (t))−X(t)φ̇(t)sin(Ωt−φ (t)) = 0, (6.42)

now, by differentiating Eq. 6.41 with respect to time, the following is obtained

ẍ(t) =−ΩẊ(t)sin(Ωt−φ (t))−XΩ
(
Ω+ φ̇

)
cos(Ωt−φ (t)) , (6.43)

Now, it is possible to substitute the value of ẍ(t) from Eq. 6.43 into Eq. 6.38 yielding to

−ΩẊ sin(Ωt−φ)−XΩ
(
Ω+ φ̇

)
cos(Ωt−φ)+Ω

2x = ε

(
Rcos(Ωt)−2ζ ωnDβ x+σx−αx3

)
, (6.44)

which can be rearranged as

Ẋ sin(Ωt−φ)+X φ̇ cos(Ωt−φ) =
−ε

Ω
(ψ1 (U,φ)+ψ2 (U,φ)) , (6.45)
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where,

ψ1(U,φ) = Rcos(Ωt)+σx+XΩ
2 cos(Ωt−φ)−Ω

2x−αx3; (6.46a)

ψ2(U,φ) =−2ζ ωnDβ x (6.46b)

now, it is possible to solve Eq. 6.42 and Eq. 6.45 simultaneously for U̇ and φ̇ , which gives

U̇ =
−sin(Ωt)

Ω
(ψ1 (U,φ)+ψ2 (U,φ)) , (6.47a)

φ̇ =
−cos(Ωt)

UΩ
(ψ1 (U,φ)+ψ2 (U,φ)) (6.47b)

Considering the time interval [0 T ], it is possible to apply the standard averaging method to Eq. 6.47, the

averaging method is discussed in detail in [18, 21, 162] and it implies that if the formerly defined functions,

Eq. 6.46 are periodic it is possible to select the period as T = 2π , and this is perfectly applicable to ψ1. On

the other hand, when the functions in Eq. 6.46 are aperiodic, the period should be defined as T = ∞, and

this is applicable to ψ2. Furthermore, in order to evaluate the integrals resulting by the averaging method,

ϕ(t) = ϕ = Ωt +φ is defined, which is sometimes called the generalised phase [160, 161]. Thus,

U̇ =
−1
T Ω

∫ T

0
[ψ1 +ψ2]cos(ϕ)dϕ =

−1
2πΩ

∫ 2π

0
ψ1 sin(ϕ)dϕ + lim

T→∞

−1
T Ω

∫ T

0
ψ2 sin(ϕ)dϕ, (6.48a)

φ̇ =
−1

TUΩ

∫ T

0
[ψ1 +ψ2]cos(ϕ)dϕ =

−1
2πUΩ

∫ 2π

0
ψ1 cos(ϕ)dϕ + lim

T→∞

−1
TUΩ

∫ T

0
ψ2 cos(ϕ)dϕ (6.48b)

In both integrals in Eq. 6.48, the first term, ψ1, is directly integrated over the period of 2π with the aid of

Eq. 6.46 and basic trigonometric integration rules, however, the second term, ψ2, needs further investigation to

be integrated. Consequently, if defining U̇ = U̇1 +U̇2, and φ̇ = φ̇1 + φ̇2 which represent the integration of ψ1

and ψ2, respectively, one can initially get

U̇1 =
−1

2πΩ

∫ 2π

0
ψ1 sin(ϕ)dϕ) =− εR

2Ω
(6.49a)

φ̇1 =
−1

2πUΩ

∫ 2π

0
ψ1 cos(ϕ)dϕ =− ε

2ΩU

(
Rcos(φ)+σU− 3

4
αU3

)
(6.49b)
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to find the second part of each integration in Eq. 6.48 it is possible to write

U̇2 = lim
T→∞

−1
T Ω

∫ T

0
ψ2 sin(ϕ)dϕ = lim

T→∞

−1
T Ω

∫ T

0
−2ζ ωnDβ [X cos(ϕ)]sin(ϕ)dϕ, (6.50a)

φ̇2 = lim
T→∞

−1
TUΩ

∫ T

0
ψ2 cos(ϕ)dϕ = lim

T→∞

−1
TUΩ

∫ T

0
−2ζ ωnDβ [X cos(ϕ)]cos(ϕ)dϕ (6.50b)

now, in order to solve the two integrations in Eq. 6.50, one could refer to the two following formulas, which

are normally used when dealing with dynamical systems with fractional order equations of motion,

ξ1 = lim
T→∞

∫ T

0

sin(Ωt)
tβ

dt, (6.51a)

ξ2 = lim
T→∞

∫ T

0

cos(Ωt)
tβ

dt (6.51b)

which can be transformed using t = s1/(1−β ) into

ξ1 =
1

1−β
lim

T→∞

∫ T 1−β

0
sin

Ωs

1
1−β

 ds, (6.52a)

ξ2 =
1

1−β
lim

T→∞

∫ T 1−β

0
cos

Ωs

1
1−β

 ds (6.52b)

Now, it is possible to apply the residual theorem and contour integration, as discussed in [124], which gives

ξ1 =
Ωβ−1Γ(2−β )

1−β
cos
(

βπ

2

)
= Ω

β−1
Γ(1−β )cos

(
βπ

2

)
(6.53a)

ξ2 =
Ωβ−1Γ(2−β )

1−β
sin
(

βπ

2

)
= Ω

β−1
Γ(1−β )sin

(
βπ

2

)
(6.53b)

Using the results in Eq. 6.53, it is now possible to evaluate the two integrals appearing in Eq. 6.50, as mentioned

earlier, this derivation is done in detail in [161] for a system with a viscous damping term and a fractional

damping term. Nevertheless, the detailed derivation to obtain Eq. 6.54 below is listed in Appendix F.

U̇2 =−εζ ωnUΩ
β−1 sin

(
βπ

2

)
(6.54a)

φ̇2 = εζ ωnΩ
β−1 cos

(
βπ

2

)
(6.54b)



CHAPTER 6. EXPLORING FRACTIONAL NONLINEAR SYSTEMS USING MODIFIED DNF
TECHNIQUE 139

Combining Eq. 6.49 and Eq. 6.54, it is possible to write the following

U̇ =− εR
2Ω
− εζ ωnUΩ

β−1 sin
(

βπ

2

)
(6.55a)

φ̇ =− ε

2ΩU

(
Rcos(φ)+σU− 3

4
αU3

)
+ εζ ωnΩ

β−1 cos
(

βπ

2

)
(6.55b)

Having found U̇ and φ̇ , the steady-state solutions are desired, which can be found by setting both U̇ and φ̇ to

be zeros, then by rearranging the equations it is possible to write

R =−2Uζ ωnΩ
β sin

(
βπ

2

)
(6.56a)

Rcos(φ)+σU− 3
4

αU3 = 2Uζ ωnΩ
β cos

(
βπ

2

)
(6.56b)

by squaring and adding the above two equations, the following is obtained

R2 +

(
Rcos(φ)+σU− 3

4
αU3

)2

=
(

2Uζ ωnΩ
β

)2
(6.57)

by substituting the value of R from Eq. 6.56 and recalling that σ = Ω2−ω2
n , it is possible to find

((
ω

2
n −Ω

2)U +2Uζ ωnΩ
β sin

(
βπ

2

)
cos(φ)+

3
4

αU3
)2

+
(

2Uζ ωnΩ
β

)2
= R2 (6.58)

The frequency-amplitude relationship in Eq. 6.58 can be used to plot the steady-state frequency amplitude

manifolds and those can be compared to the results of DNF appearing in Eq. 6.31. In the following figure, the

results obtained from the two methods are compared using the numerical values of ωn = 2 rad/s, α = 0.2, R = 1

and fractional order of β = 0.75. As clearly seen, perfect matching between the two responses which indicates

that accurate results are obtained using DNF compared to other results in the literature.
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Figure 6.5: Comparing the DNF and averaging method steady-state frequency response for Duffing oscillator
with fractional damping, the solid black line represents the DNF results, Eq. 6.31, while the dashed navy blue
line shows results of the averaging method, Eq. 6.58. Parameter values are: ωn = 2 rad/s, α = 0.2, R = 1 and
fractional order of β = 0.75.

6.5 DNF analysis of fractional Van-der-Pol oscillator

The equation of motion of the fractionally damped Van-der-Pol oscillator is given by, [167]

ẍ(t)+µ
(
x2(t)−1

)
Dβ x(t)+ω

2
n x(t) = Rcos(Ωt) (6.59)

where, as discussed before, µ is a constant, x(t) denotes the displacement of the oscillator, Dβ x(t) denotes

the fractional damping of the system with β being the order of the fractional order of the system 0 < β < 1

and when β = 1 then the system is viscously damped. Additionally, R and Ω appears in the right-hand-

side of the equation represent the forcing amplitude and frequency, respectively. Finally, ε is a bookkeeping

parameter and α is a constant denoting the smallness of the weak nonlinearity. To apply DNF analysis for the

fractionally damped Van-der-Pol oscillator, some elementary steps are similar to the viscously damped Van-

der-Pol, Subsection 5.4.1, except for replacing the first derivative with the fractional derivative, however, at a

certain stage the author needed to refer to the Davison-Essex fractional derivative used in the case of fractionally

damped Duffing oscillator. For convenience, all solution steps are to be mentioned here, these steps can then

be followed to repeat the analysis for any type of non-conservative oscillators. To start, it is convenient to
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introduce the following,

Px =

{
R
2
,

R
2

}
r = {rp,rm}ᵀ = {e iΩt ,e− iΩt}ᵀ

Ñ
(
q,Dβ{q},r

)
= µ

(
q2(t)−1

)
Dβ q(t)

(6.60)

and thus the equation of motion becomes

ẍ(t)+ω
2
n x(t)+ Ñ

(
q,Dβ{q},r

)
= Pxr (6.61)

The linear modal transformation is q = x = x since SDOF is considered, thus

q̈+Λq+Nq

(
q,Dβ{q},r

)
= Pqr (6.62)

where Λ = ω2
n , Nq

(
q,Dβ{q},r

)
= µ

(
q2−1

)
Dβ q and Pq = Px. Now, the forcing transformation is considered

to be q = v+ er, this transformation is used to eliminate the non-resonant forcing terms. Due to the fact that

the analysis is close to resonant, Ω = ωr and [e] = 0, this results in

v̈+Λv+Nv

(
v,Dβ{v},r

)
= Pvr (6.63)

with Nv
(
v,Dβ{v},r

)
= µ

(
v2−1

)
Dβ v and Pv = Pq. The near-identity transformation is computed to ε1 accu-

racy, by rewriting the nonlinear terms using u, one should obtain n1
(
u,Dβ{u},r

)
= µ

(
u2−1

)
Dβ u for which

u = up + um. At this stage some differences occur compared to the case of viscously damped Van-der-Pol

oscillator; the fractional derivative appearing in the previous analysis needs to be treated in a similar way to the

case of fractional Duffing; that is

Dβ u = η1up +η2um (6.64)
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accordingly, the matrix manipulations for the fractionally damped Van-der-Pol become

u∗ =



u3
m

u3
p

upu2
m

u2
pum

um

up



; n∗ = µ



η2

η1

η1 +2η2

2η1 +η2

−η2

−η1



ᵀ

; βββ
∗ = ω2

r



8

8

0

0

0

0



ᵀ

;

h∗ =
µ

8ω2
r



η2

η1

0

0

0

0



ᵀ

; n∗u = µ



0

0

η1 +2η2

2η1 +η2

−η2

−η1



ᵀ (6.65)

For ε1 accuracy, the equation of motion can then be written in the u-transformed coordinates as

ü+ω
2
n u+µ (η1 +2η2)upu2

m +µ (2η1 +η2)u2
pum−µ (η1up +η2um) = Rcos(ωrt) (6.66)

and by substituting the assumed solution, it is possible to write

U
8

µ
((

3U2−4
)
(η1 +η2)+ω2

n −ω2
r
)(e i(ωrt−φ)

2
+

e− i(ωrt−φ)

2

)

− µ

16
(η1−η2)

(
U2−4

)(e i(ωrt−φ)

2
− e− i(ωrt−φ)

2

)
= Rcos(ωrt)

(6.67)
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the term Rcos(ωrt) can be converted into its equivalent exponential form using Euler’s identity, and then one

of the exponential terms of Eq. 6.67 can be balanced, performing that to e i(ωrt−φ) gives

U
8

µ
((

3U2−4
)
(η1 +η2)+ω2

n −ω2
r
)
− µ

16
(η1−η2)

(
U2−4

)
= Re iφ (6.68)

considering that the functions η1 and η2 have both real and imaginary components, it is necessary to balance

the real and imaginary terms of Eq. 6.68, yielding to

Re:
U
8

µ
((

3U2−4
)
(ℜ{η1}+ℜ{η2})+ω

2
n −ω

2
r
)
−

µ

16
(ℜ{η1}−ℜ{η2})

(
U2−4

)
= Rcos(φ) (6.69a)

Im:
U
8

µ
((

3U2−4
)
(ℑ{η1}+ℑ{η2})

)
−

µ

16
(ℑ{η1}−ℑ{η2})

(
U2−4

)
= Rsin(φ) (6.69b)

Finally, by squaring and adding the real and imaginary components, the amplitude-frequency relationship are

found, and if upon dividing them the phase relationship for the fractionally damped Van-der-Pol oscillator is

also obtained. Further mathematical investigation of the relationship of η1 and η2, their real and imaginary

components, and how the results in Eq. 6.69 can be refined to simpler forms are all needed for future works.

However, having reached this form of solution it can be sufficient to study the amplitude-frequency behaviour

of this oscillator for various orders of the fractional derivatives.

6.6 Summary

In this Chapter, a novel implementation of the DNF method for fractionally damped oscillators is shown. This

application is based on using fractional calculus approach, in which the Davison-Essex (D-E) definition of

fractional derivatives is adopted. Two examples are discussed, the Duffing oscillator with fractional damping

and the fractionally damped Van-der-Pol oscillator. For verification purposes, comparisons with numerical

results and other methods are practised. Based on this Chapter analysis, the followings are observed;

• Compared to both numerical and other methods found in the literature, the proposed ε1 DNF technique

show acceptable levels of accuracy, nevertheless, further analysis regrading the effects of higher order
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accuracies could be an interesting future research.

• For the example of fractionally damped Duffing oscillator, the presence of the fractional damping term

led to significant changes to the frequency response curves, refer to Fig. 6.2-Fig. 6.4 and the correspond-

ing discussions.

• For the both fractionally damped Duffing and fractionally damped Van-der-Pol oscillators, analytical

expressions of the backbone curves are obtained using the method of DNF computed to ε1 accuracy.

Nevertheless, these expressions need more investigations to be refined to simpler forms, specifically the

terms ℜ{ηi} and ℑ{ηi} appearing in the response relationships.
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Chapter 7

Applications to MDOF systems

In this Chapter, the DNF analysis is extended to systems of MDOF. Firstly, in order to show the validity of

the proposed symbolic DNF technique for MDOF systems, two verification problems are to be presented; the

Vertical-horizontal-spring-mass oscillator (or as called Touzé 2-DOF system), and 3-DOF system with cubic

nonlinear stiffness coupling terms, the dynamics of these two systems are investigated in the literature as will

be demonstrated.

Having proved the effectiveness of the proposed DNF technique for MDOF systems, a detailed analysis of

the non-resonant 2-DOF cubic-quintic oscillator is introduced. Initially, the investigation presented is shown to

demonstrate how the single-mode backbone curves of the two degree-of-freedom system can be computed in an

analogous manner to the approach used for the cubic-quintic SDOF oscillator, Section 5.1. Then, the analysis

is extended to study the double-mode interactions in order to investigate the resulting backbone curves.

7.1 Verification problem 1: Vertical-horizontal-spring-mass oscillator

In this subsection, a verification problem of an oscillator system consisting of a mass supported by vertical and

horizontal springs is considered, for which two springs are attached to solid supports — as shown schematically

in Fig. 7.1 (a).
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Figure 7.1: The vertical-horizontal-spring-mass oscillator considered in Section 7.1.

This system has been studied in-depth by several previous authors [45, 46, 70]. However, only a non-physical

derivation of the EOMs of the system is presented in these studies. Primarily, an alternate model based on a

strong-form, physics based set of equations of motion is derived, this step-by-step derivation of the EOMs is

presented in Appendix C. Initially the case of conservative system is considered (i.e when there is no damping

or external forcing). As a result the only forces in the system are the inertial force related to the mass, m

and the restoring forces relating to the linear springs, k1 and k2. The geometry of the system at an arbitrary

displacement is shown in Fig. 7.1 (b).

7.1.1 Direct normal forms solutions for the conservative system

In this section, the application of DNF method previously described is shown, in order to obtain the backbone

curves of the undamped unforced system, i.e. Eq. C.11. Maple code was written that enables the author to

perform all of these complicated calculations, since Maple is a powerful symbolic computation tool, it can be

implemented for symbolic programming of DNF method introduced by [8]. It is important to mention that,

according to many researches, the Touzé two-degree-of-freedom system has many interesting aspects that can

make it unique; the modal coupling between the two modes can cause rotary motion under the influence of

excitation in one direction. Another interesting finding is that ε2 solution gives completely different behaviour

compared to ε1 results, although this behaviour needs more extended studies, it can yield to completely new

understanding of the expansions and their contribution to total solution. Furthermore, mathematically speaking,

the mixed nonlinearity of X1 and X2 can be studied, this type of nonlinearities can usually be seen in MDOF
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systems, and as discussed earlier using Maple software, corresponding computation can be easily performed.

Reconsidering the undamped, unforced two-degree-of-freedom Touzé system, and by expanding Eq. C.11,

Appendix C, it is possible to get

Ẍ1 +ω2
1 X1 +

3ω2
1

2
X2

1 +
ω2

1
2

X2
2 +ω2

2 X1X2 +
ω2

1 +ω2
2

2
X1X2

2 +
ω2

1 +ω2
2

2
X3

1 = 0,

Ẍ1 +ω2
2 X2 +

3ω2
2

2
X2

2 +
ω2

2
2

X2
1 +ω2

1 X2X1 +
ω2

2 +ω2
1

2
X2X2

1 +
ω2

2 +ω2
1

2
X3

2 = 0.

(7.1)

Since this is a two-degree-of-freedom-system, the application of DNF method differs from SDOF systems, and

the complexity of this method is directly related to degree-of-freedom of the system, hence, our method using

Maple software can greatly help in the analysis. The first step is writing the system of equations in standard

matrix form, that is

q̈+ΛΛΛ q+Nq(q) = 0, (7.2)

where Λ =

ω2
1 0

0 ω2
2

 and

Nq(q) =


3ω2

1
2

q2
1 +

ω2
1

2
q2

2 +ω2
2 q1q2 +

(
ω2

1 +ω2
2

2

)
q1q2

2 +

(
ω2

1 +ω2
2

2

)
q3

1

3ω2
2

2
q2

2 +
ω2

2
2

q2
1 +ω2

1 q1q2 +

(
ω2

2 +ω2
1

2

)
q2q2

1 +

(
ω2

2 +ω2
1

2

)
q3

2

 (7.3)

where ω1 and ω2 are the first and second natural frequencies of this system, respectively. Now, applying near

identity transform from q to u, and considering all nonlinear terms to be of ε1 order, the power series of the

solution is truncated to Nq = εn1. And then the usual substitution of u j = upj + umj is performed and n1,

in matrix notation can be expressed as n1(u) = n∗u∗(up, um). Accordingly, the polynomial terms vector u∗

and the coefficient matrix n∗ are now constructed which have 30 elements. Furthermore, using Eq. 3.15 and

Eq. 3.16, βββ
∗ matrix is constructed and it is used to find coefficient matrices of resonant and nonlinear harmonic

terms h1 and nu1. Denoting h as the relation between the two forcing frequencies, i.e. h =
ωr2

ωr1
. Then, the

detailed matrices for the solution are briefly shown in Appendix D.

It is important to mention that all terms of the solution are included in ε1; since it is the basic solution, and

all the following solutions will depend on ε1. However, if the analysis is extended to higher order accuracies,
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such as ε2, the number of terms included in the analysis will significantly increase, which traditionally implies

some reduction techniques for which certain terms are included in the analysis, and so the order of the matrices

are reduced to make it possible to construct the solution, refer to [47]. However, when using Maple software

for the analysis, where it can be possible to deal with massive algebraic terms, the researcher has enhanced

flexibility to investigate the effect of all terms included.

To continue with the analysis, it is possible to write nu(1) in terms of u as follows

nu(1) =


3ω2

1
2

U2
1 +

ω2
1

2
U2

2 +ω2
2U1U2 +

(
ω2

1 +ω2
2

2

)
U1U2

2 +

(
ω2

1 +ω2
2

2

)
U3

1

3ω2
2

2
U2

2 +
ω2

2
2

U2
1 +ω2

1U1U2 +

(
ω2

2 +ω2
1

2

)
U2U2

1 +

(
ω2

2 +ω2
1

2

)
U3

2

 (7.4)

Now, to find the resonant nonlinear terms for ε2 order, one needs to find
∂

∂u
nq(u), and it is convenient to write

nq(u) = ñq(u)+O(u3), for which ñ includes the quadratic terms only, so it is possible to write

ñq(u) =


3ω2

1
2

U2
1 +

ω2
1

2
U2

2 +ω2
2U1U2

3ω2
2

2
U2

2 +
ω2

2
2

U2
1 +ω2

1U1U2

 (7.5)

This system is studied in detail by Liu and Wagg, [47], and they obtained the same results for ε1, furthermore,

they used the assumption of selecting quadratic terms only to construct ε2 solution. In this work, the analysis

is performed using the same assumption of adopting quadratic terms only, and this will generate 30 terms in

n(2), while if using both quadratic and cubic terms, n(2) will be very massive (it will contain 168 elements).

When using ε2, the physical behaviour of the system changes from hardening to softening, this very interesting

finding was also obtained by Liu and Wagg, [47]; and this unexpected behaviour of the second truncated term

in the solution of ε2 can be related to the magnitude of nonlinear terms; where usually these nonlinear terms

are very small compared to linear terms but in Touzé system these nonlinear terms are not assumed to be small.

Due to the massive size of n(2), only nu(2) is written in this thesis, and it can be found in Appendix D.
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Now, the resulting equations for the non-resonant case can be written as

ü1 +ω2
1U1 +η1(ωr1,ωr2)

(
u2

p1um1 +up1u2
m1

)
+η2(ωr1,ωr2)(up1up2um2 +um1um2up2) = 0,

ü2 +ω2
2U2 +η3(ωr1,ωr2)

(
u2

p2um2 +up2u2
m2

)
+η4(ωr1,ωr2)(up1up2um1 +um1um2up1) = 0.

(7.6)

where

η1(ωr1,ωr2) =
3
2
(
ω2

1 +ω2
2
)
− 90

12ω2
r1

ω4
1 +

3ω2
r2−8ω2

r1

2ω2
r2

(
4ω2

r1−ω2
r2

)ω4
2 ,

η2(ωr1,ωr2) =
(
ω2

1 +ω2
2
)
+

2
ω3

r2−4ω2
r1

ω4
2 −

3
ω2

r1
ω4

1 +
2

ω2
r1−4ω2

r2
ω4

1 −
3

ω2
r2

ω4
2 ,

η3(ωr1,ωr2) =
3
2
(
ω2

1 +ω2
2
)
− 90

12ω2
r2

ω4
2 +

3ω2
r1−8ω2

r2

2ω2
r1

(
4ω2

r2−ω2
r1

)ω4
1 ,

η4(ωr1,ωr2) =
(
ω2

1 +ω2
2
)
+

2
ω3

r1−4ω2
r2

ω4
1 −

3
ω2

r2
ω4

2 +
2

ω2
r2−4ω2

r1
ω4

2 −
3

ω2
r1

ω4
1 .

(7.7)

It worth mentioning that, for this particular system, it is difficult to write the previous expressions explicitly

for ωr1 and ωr2, however, to proceed with the analysis, those functions are adopted to construct the backbone

curves. Finally, the system of time-independent frequency equations are written as

U1

[(
ω2

1 −ω2
r1
)
+

1
4

η1(ωr1,ωr2)U2
1 +

1
4

η2(ωr1,ωr2)U2
2

]
= 0

U2

[(
ω2

2 −ω2
r2
)
+

1
4

η3(ωr1,ωr2)U2
2 +

1
4

η4(ωr1,ωr2)U2
1

]
= 0

(7.8)

Solving the system of equations it is possible to find the single-mode backbone curves for this system

S1 : ω2
r1 = ω2

1 +
1
4

η1(ωr1,ωr2)U2
1

S2 : ω2
r2 = ω2

2 +
1
4

η3(ωr1,ωr2)U2
2

(7.9)

In order to verify these results, numerical results for the undamped unforced case are used, where the two

natural frequencies are ω1 = 2 rad/s and ω2 = 4.5 rad/s, Fig. 7.2 shows the two backbone curves of this system

versus the first amplitude of vibration U1. It is worth mentioning that further more discussions regarding

this system can be held, including modal interactions, bifurcations and stability of this system, further details

regarding the dynamics of such system can be found in [45–47].

From Fig. 7.2 several findings can be noticed;
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Figure 7.2: Backbone curves for the first and second natural frequencies versus the first amplitude of vibration
U1. Parameter values are: ω1 = 2 rad/s and ω2 = 4.5 rad/s.

• This figure shows the effect of the two nonlinear frequencies, ωr1 and ωr2, to the first amplitude of

vibration U1, similarly, another figure of the effect of these two frequencies to the second amplitude of

vibration U2 can be plotted.

• In this figure, the dominant forcing frequency is ωr1, while ωr2 will be dominant if U2 is plotted. How-

ever, in both cases, the effect of the other forcing frequency is minor, but normally effective, hence, the

visualisation of both forcing frequencies in a single plot can help understanding their effect.

• For systems of higher degrees-of-freedom (i.e. 3 or more), the effect of the additional forcing frequencies

can be also plotted.

• This representation, with the aid of COCO forced frequency manifolds, can yield to a skeleton diagram

that shows the effect of all forcing frequencies on any chosen system response (i.e. U1, U2, . . . ).

• Finally, much more in-depth analysis can be practised for this system as performed in [45–47], where

many interesting aspects regarding the dynamics of such system are revealed. In this thesis, the system

has been studied using the symbolic DNF approach which enabled the researcher to overcome complex

mathematical manipulations involved.
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Even though it mostly appears to be a theoretical (or mathematical) system, practical applications of

Touzé two-degree-of-freedom can be found in the literature; one of these applications is illustrated in the sta-

bility analysis and vibration isolation in manufacturing equipment, [71], in which the mechanism investigated

perfectly shows the nonlinear mode coupling of two perpendicular degrees-of-freedom problem. Under linear

assumptions and simplifications, the model proposed by [71] has been investigated and results are accordingly

generated, but in some cases where the force amplitudes are considerable then linear assumptions may not be

valid and nonlinear analysis is necessary.

7.2 Verification problem 2: DNF analysis of 3-DOF system

In this section, the dynamics of 3-DOF system presented in Fig. 7.3 are explored, the system has a bilaterally

symmetric structure which consists of three lumped masses, all have the mass m, attached to three identical

linear springs of k stiffness, and three identical viscous dampers c. Moreover, the middle mass is connected

to two nonlinear springs with linear and nonlinear cubic stiffnesses of k̄, and κ , respectively, and two viscous

dampers c̄. Thus, the nonlinear springs have elastic forces of F = k̄(∆x)+κ(∆x)3. Additionally, the masses are

excited with sinusoidally driving forces of the form Pi cos(Ωt), in which Ω denotes the driving frequency and

Pi is the amplitude of each force, and xi is the displacement response of each mass given that i = 1,2,3. This

system has been extensively studied by Liu in his PhD thesis, [72], using traditional DNF method applied with

hand calculations, however, in this Section, the analysis done by Liu is reproduced using DNF method applied

symbolically and truncated to ε1 accuracy.

Figure 7.3: Schematic diagram of the bilaterally symmetric 3-DOF system with cubic nonlinear springs.
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In reference to Eq. 3.3, the EOM of this system, in terms of the coordinates of physical displacement response

x = [x1 x2 x3]
ᵀ can be written as


m 0 0

0 m 0

0 0 m

 ẍ(t)+


c+ c̄ −c̄ 0

−c̄ c+2c̄ −c̄

0 −c̄ c+ c̄

 ẋ(t)+


k+ k̄ −k̄ 0

−k̄ k+2k̄ −k̄

0 −k̄ k+ k̄

x(t)+

κ


(x1− x2)

3

(x2− x1)
3 +(x2− x3)

3

(x3− x2)
3


=

1
2


P1 P1

P2 P2

P3 P3



(7.10)

Thus, the nonlinear stiffness matrix, which will be used to start the DNF solution is as follows

Nx =


c+ c̄ −c̄ 0

−c̄ c+2c̄ −c̄

0 −c̄ c+ c̄

 ẋ(t)+κ


(x1− x2)

3

(x2− x1)
3 +(x2− x3)

3

(x3− x2)
3


(7.11)

Now, it is required to apply linear modal transform, which is applied to decouple the linear stiffness terms,

which yields to the EOM in the modal displacement responses q, as mentioned in Eq. 3.8. Then, the matrices

of modal natural frequencies, and linear mode shapes, ΛΛΛ and ΦΦΦ, are obtained upon solving the eigenvalue

problem in Eq. 3.5, which gives, [72]

ΛΛΛ =



ω2
n1 0 0

0 ω2
n2 0

0 0 ω2
n3


=

1
m



k 0 0

0 k+ k̄ 0

0 0 k+3k̄


, (7.12a)

ΦΦΦ =



1 1 1

1 0 −2

1 −1 1


(7.12b)
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The vector of nonlinear stiffness and damping terms is obtained using Eq. 3.16, that is

Nq =



cq̇1

2cmq̇2 +κq2
(
q2

2 +27q2
3
)

m
(c+3c̄)mq̇3 +9κq3

(
q2

2 +3q2
3
)

m


(7.13)

Moreover, the force amplitudes transformed vector is written as, [72]

Pq =
1
2



Pm1 Pm1

Pm2 Pm2

Pm3 Pm3


=

1
12m



2P1 +2P2 +2P3 2P1 +2P2 +2P3

3P1−3P3 3P1−3P3

P1−2P2 +P3 P1−2P2 +P3


(7.14)

The forcing transform is then applied, the forcing frequency Ω is assumed to be close to the natural frequencies

of the system, i.e. Ω ≈ ωni where i = 1,2,3. This assumption is reasonable if the coupling springs linear

stiffnesses are sufficiently small compared to the grounding springs stiffnesses, i.e. k̄� k, [72]. Then, it is

possible to apply the transform v = q considering that e = [0]{3×2}, and referring to Eq. 3.11 and Eq. 3.21, in

view of Eq. 3.14, it is possible write

Nv (v, v̇) = Nq (v, v̇) , (7.15a)

Pv = Pq (7.15b)

Finally, the nonlinear near-identity transform leads to the resonant EOM in terms of u coordinates, as seen

in Eq. 3.26. For this system, ε1 accuracy is adopted, the results of this accuracy level compared to numerical

results is investigated in detail in [72] in which good agreement can be observed. By substituting the assumed

solution, Eq. 3.27 into Eq. 7.15a, one can find the the polynomial terms vector, u∗(1), and the corresponding

coefficient matrix, [nv(1)], then the matrix βββ is computed using Eq. 3.26. Thus, in Appendix E the matrix

manipulations for this system are presented assuming that Ω = ωr2 = ωr3 corresponding to the condition that

Ω≈ ωn2 ≈ ωn3 as in [72].
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Now, it is possible to apply the conditions in Eq. 3.16 to find the vector of nonlinear and damping terms, thus

Nu =



icωr1 [up1−um1]

i(c+ c̄)ωr2 [up2−um2]+u2 [3up2um2 +54up3um3]+27
[
um2u2

p2 +up2u2
m3

]
i(c+3c̄)ωr3 [up3−um3]+u3 [18up2um2 +81up3um3]+9

[
um3u2

p2 +up3u2
m2

]


(7.16)

Accordingly, for ωr2 = ωr3 and φ2− φ3 being the phase difference between the second and third modes, re-

spectively, the time-invariant complex coefficients, in terms of eiωrit , for each row in Eq. 6.25 can be found as

N+
u1 = icωr1e−iφ1 , (7.17a)

N+
u2 = i(c+ c̄)ωr2e−iφ2 +

3κ

8m
e−iφ2U2

[
U2

2 +18U2
3 +9e2i(φ2−φ3)U2

3

]
, (7.17b)

N+
u3 = i(c+3c̄)ωr3e−iφ3 +

9κ

8m
e−iφ3U3

[
2U2

2 +9U2
3 + e−2i(φ2−φ3)U2

2

]
(7.17c)

Moreover, it is possible to eliminate the terms φi in Eq. 7.17 to get the analytical expressions for the time-

invariant equations for this system, which are

{[
ω

2
n1−ω

2
r1
]2
+(cωr1)

2
}

U2
1 = P2

m1, (7.18a){[
ω

2
n2−ω

2
r2 +

3κ

4m

[
U2

2 +
(

18+9e2i(φ2−φ3)U2
3

)]]2

+((c+ c̄)ωr2)
2

}
U2

2 = P2
m2, (7.18b){[

ω
2
n3−ω

2
r3 +

3κ

4m

[
27U2

3 +
(

6+3e−2i(φ2−φ3)U2
2

)]]2

+((c+3c̄)ωr3)
2

}
U2

3 = P2
m3 (7.18c)

Finally, the previous expressions, with some different notations, were obtained by Liu in [72] using the tra-

ditional hand-calculated DNF technique, in this work, using our proposed symbolic DNF technique applied

with Maple software, the author has been able to obtain the same results with much less efforts. In the next

subsection, the analysis is extended to compute the corresponding backbone curves of this system.
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7.2.1 Computations of conservative backbone curves

In order to find the conservative backbone curves of the 3-DOF system in Eq. 7.11, it is possible to set all

damping and forcing terms in Eq. 7.18 to be zeros, which gives;

[
ω

2
n1−ω

2
r1
]
U1 = 0, (7.19a)[

ω
2
n2−ω

2
r2 +

3κ

4m

[
U2

2 +
(

18+9e2i(φ2−φ3)U2
3

)]]
U2 = 0, (7.19b)[

ω
2
n3−ω

2
r3 +

3κ

4m

[
27U2

3 +
(

6+3e−2i(φ2−φ3)U2
2

)]]
U3 = 0 (7.19c)

In Eq. 7.19 when U1 =U2 =U3 = 0 no motion is occurring and thus the trivial solution of the system is con-

sidered. Moreover, if each mode is independently behaving, three more sets of solutions can also be observed

for which the phenomena of single-mode backbone curves is obtained. Setting U2 = U3 = 0, U1 = U3 = 0

and U1 = U2 = 0 in Eq. 7.19a, Eq. 7.19b, Eq. 7.19c, respectively, leads to the analytical expressions of ε1

conservative single-mode backbone curves, labelled as S1, S2 and S3, such that;

S1 : U1 6= 0,U2 = 0,U3 = 0, ω
2
r1 = ω

2
n1, (7.20a)

S2 : U1 = 0,U2 6= 0,U3 = 0, ω
2
r2 = ω

2
n2 +

3κ

4m
U2

2 , (7.20b)

S3 : U1 = 0,U2 = 0,U3 6= 0, ω
2
r3 = ω

2
n3 +

81κ

4m
U2

3 , (7.20c)

The previous expressions of the single-mode backbone curves are also obtained by Lui, [72], and then he

extended the analysis to include double-mode backbone curves for both hardening and softening cases, further-

more, he used the stability of the steady-state solution, given in Section 3.3, to investigate the stability of the

backbone curves introduced. Nevertheless, having reached the single-mode backbone curves in Eq. 7.20, it is

possible conclude that our proposed implementation of symbolically practised DNF works well compared to

traditional DNF technique. Thus, in this thesis, the discussions for this 3-DOF system are limited to this point,

and the interested reader can refer to [72] for more in-depth investigations of this system in addition to more

complicated 3-DOF systems.
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7.3 Analysis of 2-DOF oscillator with cubic and quintic nonlinearities

In this section, the two degree-of-freedom oscillator shown in Fig. 7.4 is considered, for which the spring forces

are governed by both linear and nonlinear terms, and the nonlinear term contains cubic and quintic orders of

polynomial nonlinearities. The main purpose of this Section is to show how the type of analysis carried out

for SDOF systems can be applied to oscillators of more than one degree-of-freedom. As a result, the system

is assumed to be conservative (undamped and unforced), and the corresponding single-mode backbone curves

are computed (e.g., neglecting the resonant cases).

Figure 7.4: Schematic diagram of the 2-DOF cubic-quintic oscillator in Section 7.3.

In matrix form, the system equations of motion can be written as

m 0

0 m

 ẍ+

k1 + k2 −k2

−k2 k1 + k2

x+

κ3,1x3
1−κ3,2 (x2− x1)

3 +κ5,1x5
1−κ5,2 (x2− x1)

5

κ3,1x3
2 +κ3,2 (x2− x1)

3 +κ5,1x5
2 +κ5,2 (x2− x1)

5

=

0

0

 (7.21)

where xxx = {x1,x2}ᵀ and the two masses are of identical mass m, and the linear stiffness coefficients are k1 and

k2. The nonlinear stiffnesses are denoted by κ with subscripts that reflect both the order of the nonlinearity and

the spring number, thus, the cubic stiffness coefficients are κ3,1 and κ3,2 and the quintic stiffness coefficients

are κ5,1 and κ5,2, respectively. This form of the subscript is chosen to help generalisation of this problem to

include higher orders of odd nonlinearities. The analysis of such a system starts by obtaining the linear version

of Eq. 7.21, by setting all the nonlinear stiffnesses to be zeros. Following that, the linear modal analysis leads

to a modal transformation of

xxx = ΦΦΦqqq where ΦΦΦ =

 1 1

1 −1

 (7.22)

herein, ω2
n1 =

k
m

, ω2
n2 =

k1 +2k2

m
are the natural frequencies.
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Now, following the steps of the DNF procedure for MDOF systems as previously described (see [8, 30]

for more details), one can compute approximate analytical expressions for backbone curves. For this sys-

tem of coupled cubic-quintic oscillators, considering the non-resonant case, where ωr2 6= ωr1, the following

expressions of the backbone curves are found

U1

{
ω

2
n1−ω

2
r1 +

3κ3,1

4m

[
U2

1 +2U2
2 (2+ p)

]
+

5κ5,1

8m

[
U4

1 +2U4
2 (2+ p)

]}
= 0, (7.23a)

U2

{
ω

2
n2−ω

2
r2 +

3κ3,1

4m

[
γ1U2

2 +2U2
1 (2+ p)

]
+

5κ5,1

8m

[
γ2U4

2 +2U4
1 (2+ p)

]}
= 0 (7.23b)

where γ1 = 1+
8κ3,2

κ3,1
and γ2 = 1+

32κ5,2

κ5,1
, and p denotes two main cases corresponding to the in-unison and

out-of-unison cases as follows:

• p =+1 stands for the in-unison case, where the phase difference |φ1−φ2|= 0 for the in-phase case and

|φ1−φ2|=±nπ for n = 1,2,3... which represents the out-of-phase case.

• p =−1 stands for the out-of-unison case where the phase difference |φ1−φ2|=±
nπ

2
for n = 1,2,3...

which represents the out-of-unison case.

Accordingly, it is possible to consider two cases of the backbone curves; namely, single-mode and double-mode

backbone curves, [8, 119].

7.3.1 Single-mode backbone curves

The single-mode backbone curve, usually denoted by S, can be generated for this system by setting U2 = 0 in

Eq. 7.23a, or U1 = 0 in Eq. 7.23b. Therefore, the single-mode backbone curves for this system are obtained

in [101] and can be written as,

S1 ; U2 = 0 ; ω2
r1 = ω2

n1 +
3κ3,1

4m
U2

1 +
5κ5,1

8m
U4

1

S2 ; U1 = 0 ; ω2
r2 = ω2

n2 +
3κ3,1

4m
γ1U2

2 +
5κ5,1

8m
γ2U4

2

(7.24)

In these single-mode backbone curves, no phase coupling occurs between the two modal coordinates, u1 and u2.

In order to explore the case of phase coupling between the two modal coordinates, it is possible to consider the

in-unison case when p =+1. In the literature, some research has been conducted to study the double-mode (or
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two mode) modal interactions, see [8] as an example. In Fig. 7.5 sample results of the single-mode backbone

curves for this oscillator are shown. However, the case of double-mode modal interactions are shown in the

following subsection.

(a) (b)

Figure 7.5: Single-mode backbone curves of the 2-DOF oscillator studied in Section 7.3: (a) S1 backbone curve
which represents the projection of U1 against ωr1, (b) S2 backbone curve which represents the projection of U2
against ωr2. Parameter values are: ωn1 = 1 rad/s, ωn2 = 1.2 rad/s and κ3,1 = κ3,2 = κ5,1 = κ5,2 = 0.1.

The key point is to notice the similarity between the single-mode backbone curves for the 2-DOF system,

Eq. 7.4, and the corresponding results of the SDOF cubic-quintic oscillator, Eq. 5.10. Hence, the single-mode

backbone curves, truncated to ε1 accuracy, for a 2-DOF nonlinearly couple oscillators with odd polynomial

nonlinear stiffness terms, can be written as

S1 ; ω2
r1 = ω2

n1 +∑
R
j=1

1
22 j

(2 j+1
j+1

)
κ2 j+1,1U2 j+1

S2 ; ω2
r2 = ω2

n2 +∑
R
j=1

1
22 j

(2 j+1
j+1

)
κ2 j+1,1γ jU2 j+1

(7.25)

where γ j = 1+(2)(2 j+1)
(

κ2 j+1,2

κ2 j+1,1

)
. Using Eq. 7.24, the single-mode backbone curves of the 2-DOF oscillator

with odd polynomial nonlinearities is computed. This example shows how (at least for the relatively simple

case of single-mode backbone curves) the analysis for cubic-quintic SDOF oscillators relates to the 2-DOF

case.
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7.3.2 Double-mode backbone curves

In order to consider the resonant case, it is convenient to introduce Ω as a general frequency response parameter

and then rewrite Eq. 7.23 considering responses of both equations at a certain Ω value, thus it is convenient to

write

Ω2 = ω2
n1 +

3κ3,1

4m

[
U2

1 +U2
2 (2+ p)

]
+

5κ5,1

8m

[
U4

1 +2U4
2 (2+ p)

]
= ω2

n2 +
3κ3,1

4m

[
γ1U2

2 +U2
1 (2+ p)

]
+

5κ5,1

8m

[
γ2U4

2 +2U4
1 (2+ p)

] (7.26)

where p = e2 i(φ1−φ2). In order to maintain real solutions, p =±1 is required, such that

• when p =+1 the in-unison case is considered denoting that either in-phase (0) or out-of-phase (±nπ)

occurs, corresponding to |φ1−φ2|= 0,±nπ , for n = 1,2,3...,

• when p = −1 the out-of-unison case is considered denoting that phase differences in the response be-

haviour are (±nπ/2), corresponding to |φ1−φ2|=±nπ/2, for n = 1,2,3....

Herein, only the case of p =+1 is shown, nevertheless, further details of the out-of-unison case can be found

in [31], for instance. Setting p =+1 and n = 1 yields to two backbone curves, labelled D12+i and D12−i , with

the phase differences

D12+i : |φ1−φ2|= 0 , D12−i : |φ1−φ2|= π . (7.27)

It is noteworthy that, for double (or two) mode interaction, the notation D is followed by the two interacting

modes while the subscript i means in-unison, furthermore, the plus and minus signs refer to the in-phase and

out-of-phase cases, respectively. Substituting p =+1 in Eq. 6.35 leads to the following expressions for D12±i ;

U2
1 =

√
150U4

2 (γ2 +5)κ2
5,1 +40

((
ω2

n1−ω2
n2

)
m+ 9

4U2
2 κ3,1

)
(γ2 +5)κ5,1 +9κ2

3,1 (γ1 +2)2 +(−3γ1−6)κ3,1

5κ5,1 (γ2 +5)

(7.28)
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and,

Ω
2 =
−3κ3,1 (γ1− γ2−3)

√
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(7.29)

From the expression in Eq. 7.28 the following conditions need to be imposed so that real solutions are ensured;

U2
2 >
−9κ3,1 +

√
240mκ5,1

(
ω2

n2−ω2
n1

)
+81κ2

3,1

30κ5,1
, and 240mκ5,1

(
ω

2
n2−ω

2
n1
)
+81κ

2
3,1 > 0. (7.30)

Numerically computed results are shown in Fig. 7.6 (a) and (b). If the middle spring linking the two masses is

much less stiff than the springs connecting the masses to the hard walls at either end, e.g. k2� k1, κ3,2� κ3,1

and κ5,2 � κ5,1, then the numerical findings in Fig. 7.6 will hold. In the literature, this type of system is

normally called weakly coupled, in which, for very small amplitudes, both masses on S1 and S2 curves will

oscillate at a frequency very close to one. Thus, as Ui amplitudes increase, it can be seen that the S2 backbone

curve has a bifurcation at which point the stable D12±i curves coincide with S2. More discussions regarding

the bifurcation points for a system of 2-DOF with cubic nonlinear coupling term can be found in [104, 119].

7.4 Summary

In this Chapter, analysis of MDOF systems using the proposed symbolic DNF is shown, two verification

problems are considered; the vertical-horizontal-spring-mass oscillator (or Touzé 2-DOF system), and 3-DOF

system with cubic nonlinear stiffness coupling terms. Then, a system of 2-DOF cubic-quintic oscillator is

discussed. Based on the discussions in this Chapter, the followings are observed;

• For the Touzé 2-DOF system, a new derivation of the EOM is introduced, contrary to the derivations

found in the literature, this proposed derivation is based on a physically strong-form set of equations of

motion as seen in Appendix C.
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Figure 7.6: The two-degree-of-freedom cubic-quintic oscillator, (a) Single-mode backbone curves; the back-
bone curves in the projection of U1 against Ω. (b) Projection of U2 against Ω, where the dashed black line
represents the unstable part of the backbone curve. Parameter values are m = 1 kg, k1 = 0.98 N/m, k2 = 0.0202
N/m, κ3,1 = 0.2 N/m3, κ3,2 = 0.02 N/m3, κ5,1 = 0.1 N/m5 and κ5,2 = 0.01 N/m5.

• The two verification problems illustrate the possibility of using the method of DNF applied symbolically

for the investigation of MDOF systems, however, more in-depth future works are needed to expand the

implementation of symbolic DNF technique for systems with higher degrees of freedom.

• For the 2-DOF cubic-quintic system studied in Section 7.3, the single-mode and double-mode backbone

curves are generated, however, those are computed to ε1 accuracy. Thus, future works can involve

expanding the analysis to ε2 accuracy to compare both results.

• In addition to being applied for the DNF analysis, and due to the complexity of the calculations in-

volved in the analysis of the 2-DOF cubic-quintic system, Maple software was used for the mathematical

manipulations for this system.
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• Starting by the analysis performed in this Chapter, further future works can be conducted regarding

MDOF system, this can include, as priorly mentioned, higher degrees of freedom systems. Moreover,

based on the analysis in Section 4.4, computing damped backbone curves for MDOF systems can also

be an interesting topic for future studies.
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Chapter 8

Conclusions and future work

In this final Chapter of the thesis, upon reviewing the overall investigations held, discussions regarding the

overall novelties and contributions of this research are performed, this is followed by more specific discussions

of the key conclusions. Finally, discussions of potential future works are also presented.

8.1 Discussions of the overall novelties and contributions of this re-

search

In this research, the method of DNF has been explored symbolically with Maple software, which lead to signif-

icant improvements to the method and its applications in the field of nonlinear mechanical vibrations. Firstly,

the method of DNF, when used effectively, is a powerful tool for researchers to adopt. DNF method enables

the investigations of the dynamics of nonlinear EOMs for both SDOF and MDOF systems, under numerous

resonant and non-resonant cases, besides, compared to other methods such as harmonic balance, it can effec-

tively deal with imperfections appearing in the system such as discontinuities in the nonlinear terms, which, for

instance, makes it a good choice for analysts to study non-smooth nonlinearities.

In terms of the DNF method accuracy, thanks to the symbolic computations approach, a novel contribution

of this research is introducing a generalised analytical closed form solution that can be used, in principle, to

truncate the results of the method to any ε accuracy, Section 4.2, and this has been discussed with some exam-
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ples in Section 4.3 in this thesis. On the other hand, the topic of damped backbone curves has been discussed

in detail, and novel procedure of the analytical computations of obtaining these curves is shown in Section 4.4.

Moreover, the symbolic implementation of the DNF method, as this thesis reveals, resulted in enhanced

tools for researchers to explore nonlinear SDOF systems with high orders of polynomial geometric nonlinear-

ities, Section 5.3, SDOF systems with combinations of polynomial nonlinear stiffness and viscous damping

terms, Section 5.4, SDOF systems with fractional order damping, Section 6.2 and Section 6.5, and finally

MDOF systems with high orders of polynomial nonlinear stiffness terms, Section 7.3. All of these novel con-

tributions indicate that the symbolic implementation approach of the method leads to desirable outcomes that

add to the value of the proposed work. In the following subsections, more specific details of the main findings

and conclusions that can be drawn from the proposed work are discussed.

8.1.1 Higher order accuracies and Damped backbone curves

In Section 4.1 of this thesis, a novel improvement to the accuracy of DNF technique has been shown, which

was demonstrated by raising the accuracy of the DNF method to any desired ε order. By proposing a gen-

eral closed-form pattern of εn accuracy, the author has been able to study some nonlinear SDOF examples to

conclude that raising the accuracy of the DNF method can lead to some improved findings of the resulting

backbone curves.

Furthermore, in Section 4.4, the problem of viscously damped nonlinear oscillators with geometric poly-

nomial stiffness nonlinearities is discussed in detail. The proposed technique is based on a combination of

Burton’s work and the normal form method. Damped backbone curves (DBBC) are analytically truncated and

compared to the numerically computed forced-damped manifolds, and the overall results show good matching

between the analytical and numerical results. Furthermore, when the damping is relatively small, the proposed

technique is directly used to analyse higher orders of polynomial nonlinearities, and straightforward approxi-

mations to the DBBC’s are obtained in the form of explicit expressions truncated to ε1 order.
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While the proposed technique can be directly implemented for many engineering applications, some re-

strictions need to realised; the technique can be used for small damping cases, and for ε1 accuracy. More-

over, the technique needs to be improved to study MDOF systems, and, in principle, nonlinear normal modes

(NNMs) can typically be practical engineering applications to clarify the advantages of this technique.

8.1.2 Oscillators with geometric nonlinear stiffness terms

In Chapter 5 of this thesis, the DNF method has been used to study nonlinear oscillators with higher order

polynomial stiffness nonlinear terms. For the SDOF case, the analysis has been performed for two orders of

series expansion, ε1 and ε2, and the related backbone curves were derived for both of cases. The results were

compared with a selection of other methods already available in the published literature. One point of interest

was that in the case of only odd nonlinear terms (like the cubic-quintic) the ε2 order solutions were not always

more accurate than the ε1 order solutions (when compared to the benchmark case). When even nonlinear terms

were added, as with the generic cubic-quintic SDOF oscillator this changed, and here the ε2 order solutions

were always more accurate than the ε1 order solutions – as would be expected.

In addition, it was shown that, for the SDOF oscillators considered with only odd nonlinear terms, the

expression for the backbone curve of the system to ε1 order could be generalized. This was not the case when

even nonlinearities were present and in this case, ε2 accuracy was needed.

In terms of methodology, the use of symbolic computations helped deal with algebraic complexity, for

the higher orders nonlinearities and/or degrees-of-freedom. As a more complex example, a two degree-of-

freedom cubic-quintic oscillator was considered. Here it was shown that, for single-mode backbone curves

(ignoring potential resonances and out-of-unison responses) there was a similar structure in the approximate

expressions for the backbone curves when compared to the equivalent SDOF cubic-quintic cases. This demon-

strates that a possible general relationship exists for SDOF and MDOF oscillators of this type, at least in the

simplest cases. This may be a worthwhile topic for future research.
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Moreover, the method of DNF is used to study the dynamical behaviour of Van-der-Pol and Rayleigh

oscillators driven by a single harmonic force near resonance, the purpose of the applying DNF is to analytically

investigate the steady-state frequency responses of these oscillators. Several oscillator cases are studied, the

Van-der-Pol oscillator, Duffing Van-der-Pol, cubic-quintic Van-der-Pol, Rayleigh oscillator, Rayleigh-Duffing

and finally cubic-quintic Rayleigh oscillator. In order to make all required calculations Symbolic computations

using Maple were implemented, and this enabled the author to manipulate massive algebraic mathematical

expressions.

8.1.3 Applications to SDOF and MDOF systems

In Chapter 4 and Chapter 5 of this thesis, numerous DNF applications are discussed in detail, most of the

analysis performed in that area are performed symbolically using Maple software. Based on the overall inves-

tigations held, it can be concluded that, for geometrically nonlinear stiffness terms, some frequency-amplitude

(or backbone) curves patterns are observed in the order of the nonlinearity and, specifically, the order of the ε1

terms.

Moreover, it can be concluded that higher order nonlinearities can be tackled succinctly using the pro-

posed symbolic DNF technique. This leads to the fact that this symbolic approach can be applied to a variety of

classical oscillator problems with acceptable levels of accuracy compared to numerical techniques. Therefore,

a key contribution to knowledge of this thesis is the demonstration that symbolic computation approaches have

indeed shed new light on the intricate nonlinear dynamics of oscillatory mechanical systems.

8.1.4 Fractionally damped oscillators

In Chapter 6 of this work, DNF approximate analytical technique is modified to investigate the dynamics of

fractionally damped Duffing oscillator, for which the fractional damping order of the oscillator is β , where

0 < β < 1 and if β = 1 then the viscously damped Duffing oscillator is resulted. According to the author

best knowledge, the DNF technique has never been used to study such a type of fractionally damped systems;

thus, this work shows a novel implementation of the DNF to investigate Duffing oscillators with any order of

fractional derivative β where 0 < β < 1. Practically, Davison-Essex’s definition of the fractional derivative is
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used to write the fractional derivatives in a form that enhances applicability of DNF technique; accordingly,

the author has been able to perform the analysis to the oscillator with different orders of the fractional deriva-

tive, and approximate analytical expressions for the frequency-amplitude and frequency-phase relationships are

generated.

In order to explore the accuracy of the proposed results, numerical solutions of the oscillator are ob-

tained using Grünwald-Letnikov’s numerical technique, and those are compared to the corresponding DNF

results, the comparison shows acceptable levels of accuracy of the DNF in reference to the numerically com-

puted frequency-amplitude figure. Additionally, in order to compare the proposed DNF results to other results

found in the literature, the averaging method is used to investigate the frequency-amplitude relationship of

the fractionally damped Duffing oscillator. As a result, when compared to the averaging technique, the DNF

outcomes perfectly fit the corresponding results of the averaging technique which denotes the accuracy of the

proposed work.

8.1.5 Value of this research in the wider engineering context

The overall discussions held in this thesis are inherently connected to the wider context of engineering ap-

plications; the main concern of this research is to improve the capabilities of the DNF method so that it can

be efficiently adopted for more complex physical engineering applications, specifically those mathematically

modelled by nonlinear EOMs. The traditional applications of the DNF techniques are restricted to nonlinear

systems those modelled by low orders of polynomial nonlinear stiffness terms, nevertheless, many modern

engineering applications require more complicated models, including; higher orders of polynomial geometric

stiffness terms, combinations of geometric nonlinear stiffness and viscous damping terms, in addition to sys-

tems with fractional orders of damping that can be found, for instance, in designs adopting polymeric materials.

All of these applications are discussed in this research where the dynamics of such models are discussed in de-

tail using the symbolic approach of the DNF technique.
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Moreover, some real-life engineering applications are discussed in this research; for example, as shown in

Section 7.1, engineering practical applications of Touzé system should not be overlooked, for instance; the sta-

bility analysis and vibration isolation in manufacturing equipment is one important application of this system,

the need of finding a sustainable design of these equipments could impose improving the design of the equip-

ments by adopting nonlinear modelling methods such as the proposed DNF symbolic technique. In addition,

the increased use of polymeric materials in engineering applications requires finding a suitable approach for

the design and analysis, for which the fractional damping technique proposed in Chapter 6 can be adopted.

8.2 Future work

In this Section, based on the overall findings and conclusions, discussions regarding some relevant future

works of the proposed research are held.

In Section 4.2, the proposed novel generalisation of the DNF method to any desired ε accuracy has been

discussed with some selected examples, nevertheless, more in-depth future work need to be performed to ex-

plore the effects of higher order accuracies, specifically for systems with even polynomial nonlinear terms and

systems with combinations of polynomial stiffness nonlinear and damping terms.

Additionally, according to the discussions in Section 4.4, as a potential future work, the proposed direct

technique of obtaining the damped backbone curves needs to be further improved to include more complicated

SDOF and MDOF systems. For SDOF systems, the technique still needs more specific research to be applied

for systems with combinations of polynomial stiffness and damping nonlinearities, and it could be beneficial

to investigate the technique for higher orders accuracies. For MDOF systems, more in-depth research can be

performed, considering the fact, when generating the frequency-amplitude relationship for weakly nonlinear

MDOF systems with light damping, the undamped natural frequencies can be directly replaced with the damped

natural frequencies and then the backbone curves can be compared to the forced frequency response curves.

For the analysis performed in Section 5.4, some findings can be adopted for future research; for instance,

the effects of sub-harmonics to the frequency responses of the systems under study can be clearly noticed in
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the numerical continuation results, see for example Fig. 5.8, Fig. 5.10, Fig. 5.11, Fig. 5.13, etc, these effects are

not captured by the DNF method, which imply the need of improving the method to achieve results that have

better matching to those captured numerically. One possible improvement to the DNF method is to modify the

assumed solutions by adding more terms that reflect the effects of these sub and super harmonics. Furthermore,

in Rayleigh oscillators, and due to the considerable differences between the analytical and numerical frequency

responses, Fig. 5.16-Fig. 5.18, more specific research can be held to investigate the effects of including higher

orders of the damping terms, i.e. ẋ3, for these oscillators, the application of DNF technique needs to be im-

proved.

For the DNF applications of MDOF systems, Chapter 7, many future works can be performed; the ap-

plication of DNF for systems with 3-DOF or even more need to explored, specifically when high orders of

polynomial stiffness nonlinear coupling terms are located in the EOMs, this can be studied for variuos con-

ditions including resonant or non-resonant terms, where the DNF method has the potential to be applied for

all of these conditions, and with the aid of symbolic computations approach, the computations could be per-

formed with less time and efforts. Additionally, as discussed in damped backbone topic, this technique can be

applied to MDOF systems to refine the DNF results so that less differences compared to the numerical results

are achieved.

Finally, in regards of the discussions in Chapter 6, the application of DNF technique for investigating

fractionally damped systems needs to be significantly improved, this improvement can include studying more

complicated systems such as SDOF systems with higher orders of geometric stiffness terms, systems with com-

binations of stiffness and fractional damping terms (such as the fractional Van-der-Pol Duffing oscillator), and

MDOF systems with fractional damping terms.
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A Matrix manipulation for the cubic-quintic nonlinear oscillator

Table A.1: ε2 DNF matrix results for the cubic-quintic oscillators

u∗l β ∗l n∗u,l h∗l u∗l β ∗l n∗u,l h∗l

u3
m 8ω2

r 0
α1
(
ω2

n −ω2
r
)

64ω4
r

u2
pu7

m 24ω2
r 0

55α2
2

96ω4
r

u5
m 24ω2

r 0
9α2

1 +α2
(
ω2

n −ω2
r
)

576ω4
r

u3
pu2

m 0
3α2

1
8ω2

r
0

u7
m 48ω2

r 0
α1α2

64ω4
r

u3
pu4

m 0
5α1α2

ω2
r

0

u9
m 80ω2

r 0
α2

2
384ω4

r
u3

pu6
m 8ω2

r 0
235α2

2
96ω4

r

u3
p 8ω2

r 0
α1
(
ω2

n −ω2
r
)

64ω4
r

u4
pum 8ω2

r 0
6α2

1+5α2
(
ω2

n −ω2
r
)

64ω4
r

u5
p 24ω2

r 0
9α2

1 +α2
(
ω2

n −ω2
r
)

576ω4
r

u4
pu3

m 0
5α1α2

ω2
r

0

u7
p 48ω2

r 0
α1α2

64ω4
r

u4
pu5

m 0
95α2

2
6ω2

r
0

u9
p 80ω2

r 0
α2

2
384ω4

r
u5

pu2
m 8ω2

r 0
61α1α2

64ω4
r

upu4
m 8ω2

r 0
6α2

1+5α2
(
ω2

n −ω2
r
)

64ω4
r

u5
pu4

m 0
95α2

2
6ω2

r
0

upu6
m 24ω2

r 0
37α1α2

192ω4
r

u6
pum 24ω2

r 0
37α1α2

192ω4
r

upu8
m 48ω2

r 0
95α2

2
1152ω4

r
u6

pu3
m 8ω2

r 0
235α2

2
96ω4

r

u2
pu3

m 0
3α2

1
8ω2

r
0 u7

pu2
m 24ω2

r 0
55α2

2
96ω4

r

u2
pu5

m 8ω2
r 0

61α1α2

64ω4
r

u8
pu1

m 48ω2
r 0

95α2
2

1152ω4
r
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B Some results obtained for different types of oscillators

Table B.1: Backbone curves of SDOF oscillators with polynomial nonlinear term truncated to ε1 and ε2 accu-
racies

Nonlinear

vector

ε1 Backbone curve ε2 Backbone curve

αx2(t) ω2
n ω2

n −
5

6ω2
r

α2U2

αx3(t) ω2
n +

3
4

αU2 ω2
n +

3
4

αU2 +
3

128ω2
r

α2U4

αx4(t) ω2
n ω2

n −
63

80ω2
r

α2U6

αx5(t) ω2
n +

5
8

αU4 ω2
n +

5
8

αU4 +
95

1536ω2
r

α2U8

αx6(t) ω2
n ω2

n −
1287

1792ω2
r

α2U10

αx7(t) ω2
n +

35
64

αU6 ω2
n +

35
64

αU6 +
6405

65536ω2
r

α2U12

αx8(t) ω2
n ω2

n −
12155

18432ω2
r

α2U14

αx9(t) ω2
n +

36
128

αU8 ω2
n +

63
128

αU8 +
84393

655360ω2
r

α2U16

αx10(t) ω2
n ω2

n −
440895

720896ω2
r

α2U18

αx11(t) ω2
n +

231
512

αU10 ω2
n +

231
512

αU10 +
1955107

12582912ω2
r

α2U20

αx12(t) ω2
n ω2

n −
3900225

6815744ω2
r

α2U22

αx13(t) ω2
n +

429
1024

αU12 ω2
n +

429
1024

αU12 +
20941713

117440512ω2
r

α2U24

αx14(t) ω2
n ω2

n −
4524261

8388608ω2
r

α2U26

αx15(t) ω2
n +

6435
16384

αU14 ω2
n +

6435
16384

αU14+
1703280825

8589934592ω2
r

α2U28
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Table B.2: Backbone curves of ε2 accuracy for SDOF oscillators with combined polynomial nonlinear term
truncated

Nonlinear vector ε2 Backbone curve

α1x2(t)+α2x3(t) ω2
n +

3
128ω2

r
α2

2U4 +
3
4

α2U2− 5
6ω2

r
α2U2

α1x2(t)+α2x4(t) ω2
n −

63
80ω2

r
α2

2U6− 7
4ω2

r
α1α2U4− 5

6ω2
r

α2
1U2

α1x2(t)+α2x5(t) ω2
n +

95
1536ω2

r
α2

2U8 +
5
8

α2U4− 5
6ω2

r
α2U2

α1x2(t)+α2x6(t) ω2
n −

1287
1792ω2

r
α2

2U10− 15
8ω2

r
α1α2U6− 5

6ω2
r

α2
1U2

α1x2(t)+α2x7(t) ω2
n +

6405
65536ω2

r
α2

2U12 +
35
64

α2U6− 5
6ω2

r
α2U2

α1x2(t)+α2x8(t) ω2
n −

12155
18432ω2

r
α2

2U14− 385
192ω2

r
α1α2U8− 5

6ω2
r

α2
1U2

α1x2(t)+α2x9(t) ω2
n +

84393
655360ω2

r
α2

2U16 +
63

128
α2U8− 5

6ω2
r

α2U2

α1x3(t)+α2x4(t) ω2
n −

63
80ω2

r
α2

2U6 +
3

128ω2
r

α2
1U4 +

3
4

α1U2

α1x3(t)+α2x5(t) ω2
n +

3
4

α1U2 +
5
8

α2U4 +
3

128ω2
r

α2
1U4 +

5
64ω2

r
α1α2U6 +

95
1536ω2

r
α2

2U8

α1x2(t)+α2x3(t)+α3x5(t) ω2
n +

3
4

α1U2 +
5
8

α2U4 +
3

128ω2
r

α2
1U4 +

5
64ω2

r
α1α2U6 +

95
1536ω2

r
α2

2U8− 5
6ω2

r
α2

1U2

α1x2(t)+α2x3(t)+

α3x4(t)+α4x5(t)+α5x6(t)

ω2
n +

3
4

α1U2 +
5
8

α2U4 +
3

128ω2
r

α2
1U4 +

5
64ω2

r
α1α2U6 +

95
1536ω2

r
α2

2U8− 5
6ω2

r
α2

1U2−

1287
1792ω2

r
α2

5U10− 99
64ω2

r
α5α3U8− 15

8ω2
r

α5α1U6−

63
80ω2

r
α2

3U6− 7
4ω2

r
α3α1U4
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C Derivation of the vertical-horizontal-spring-mass oscillator EOMs

Using the geometric definitions shown in Fig. 7.1, the following equations of motion are resulted

mẍ1 + k1(a−L)cos(α)+ k2(b−L)sin(θ) = 0,

mẍ2 + k1(a−L)sin(α)+ k2(b−L)cos(θ) = 0.

(C.1)

Now, elimination of a, b, α and θ is to be considered, so that the restoring forces are expressed in terms of x1

and x2. From Fig. 7.1(b) it is possible to find that

a =
x2

sin(α)
=

x1 +L
cos(α)

, b =
x1

sin(θ)
=

x2 +L
cos(θ)

,

a =
√

x2
2 +(L+ x1)2 and b =

√
x2

1 +(L+ x2)2.

(C.2)

which can be used to eliminate the trigonometric functions from Eq. C.1 giving

mẍ1 + k1
(a−L)

a
(L+ x1)+ k2

(b−L)
b

x1 = 0,

mẍ2 + k1
(a−L)

a
x2 + k2

(b−L)
b

(L+ x2) = 0.

(C.3)

Now, it is possible to write

(a−L)
a

≡ 1− L
a

and a = L

√
1+

(x2
2 +2Lx1 + x2

1)

L2 . (C.4)

Then using the binomial expansion

(1+ z)n = 1+(n)(z)+
n(n−1)

2!
(z)2 + ..., (C.5)

it can be shown that

1
a
≈ 1

L

(
1− (x2

2 +2Lx1 + x2
1)

2L2

)
+ ..., (C.6)

such that

(a−L)
a

≡ 1− L
a
= 1− L

L

(
1− (x2

2 +2Lx1 + x2
1)

2L2

)
=

(x2
2 +2Lx1 + x2

1)

2L2 . (C.7)



193

Similarly

(b−L)
b

≡ 1− L
b
= 1− L

L

(
1− (x2

1 +2Lx2 + x2
2)

2L2

)
=

(x2
1 +2Lx2 + x2

2)

2L2 . (C.8)

Then it is possible to write

k1
(a−L)

a
(L+ x1) = k1

(
x1 +

3x2
1

2L
+

x2
2

2L
+

x1x2
2

2L2 +
3x3

1
2L2

)
,

k1
(a−L)

a
x1 = k1

(
x2

1
L
+

x2
2x1

2L2 +
x3

1
2L2

)
,

k2
(b−L)

b
(L+ x2) = k2

(
x2 +

3x2
2

2L
+

x2
1

2L
+

x2x2
1

2L2 +
3x3

2
2L2

)
,

k2
(b−L)

b
x2 = k2

(
x2

2
L
+

x2
1x2

2L2 +
x3

2
2L2

)
.

(C.9)

Now, by eliminating a and b in Eq. C.3 it is possible to write

mẍ1 + k1x1 +
3k1

2L
x2

1 +
k1

2L
x2

2 +
k2

L
x1x2 +

k1 + k2

2L2 x1x2
2 +

k1 + k2

2L2 x3
1 = 0,

mẍ2 + k2x2 +
3k2

2L
x2

2 +
k2

2L
x2

1 +
k1

L
x1x2

1 +
k2 + k1

2L2 x1x2 +
k2 + k1

2L2 x3
2 = 0.

(C.10)

These equations can be divided by m to give

ẍ1 +ω2
1 x1 +

3ω2
1

2L
x2

1 +
ω2

1
2L

x2
2 +

ω2
2

L
x1x2 +

ω2
1 +ω2

2
2L2 x1x2

2 +
ω2

1 +ω2
2

2L2 x3
1 = 0,

ẍ2 +ω2
2 x2 +

3ω2
2

2L
x2

2 +
ω2

2
2L

x2
1 +

ω2
1

L
x1x2

1 +
ω2

2 +ω2
1

2L2 x1x2 +
ω2

2 +ω2
1

2L2 x3
2 = 0.

(C.11)

hence, Eq. C.11 are now in exactly the same form to those derived by [45] with L= 1. As can be noted, dividing

by L again and defining X1 =
x1

L
and X2 =

x2

L
gives

Ẍ1 +ω2
1 X1 +

ω2
1

2
(
3X2

1 +X2
2
)
+ω2

2 X1X2 +
ω2

1 +ω2
2

2
X1
(
X2

2 +X2
1
)
= 0,

Ẍ1 +ω2
2 X2 +

ω2
2

2
(
3X2

2 +X2
1
)
+ω2

1 X2X1 +
ω2

2 +ω2
1

2
X2
(
X2

1 +X2
2
)
= 0.

(C.12)

Which are the same as the equations considered in [45, 46, 70]. In this case the system is partially non-

dimensionalised.
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D Matrix manipulations for Touzé two-degree-of-freedom system, Sub-

section 7.1.1

u∗=



u2
p1

u2
m1

up1um1

up1up2

um1um2

up1um2

um1up2

u2
p2

u2
m2

up2um2

u3
p1

u3
m1

u2
p1um1

up1u2
m1

up1u2
p2

um1u2
m2

up1u2
m2

um1u2
p2

up1up2um2

um1up2um2

u2
p1up2

u2
m1um2

u2
p1um2

u2
m1up2

up1um1up2

up1um1um2

u3
p2

u3
m2

u2
p2um2

up2u2
m2



→ β
∗ᵀ=ω

2
r1



3 4−h2

3 4−h2

−1 −h2

h2 +2h 1+2h

h2 +2h 1+2h

h2−2h 1−2h

h2−2h 1−2h

4h2−1 3h2

4h2−1 3h2

−1 −h2

8 9−h2

8 9−h2

0 1−h2

0 1−h2

4h2 +4h 3h2 +4h+1

4h2 +4h 3h2 +4h+1

4h2−4h 3h2−4h+1

4h2−4h 3h2−4h+1

0 1−h2

0 1−h2

4h2 +4h+3 4+4h

4h2 +4h+3 4+4h

4h2−4h+3 4−4h

4h2−4h+3 4−4h

h2−1 0

h2−1 0

9h2−1 8h2

9h2−1 8h2

h2−1 0

h2−1 0



→n(1)
ᵀ=



1.5ω2
1 0.5ω2

2

1.5ω2
1 0.5ω2

2

3ω2
1 ω2

2

ω2
2 ω2

1

ω2
2 ω2

1

ω2
2 ω2

1

ω2
2 ω2

1

0.5ω2
1 1.5ω2

2

0.5ω2
1 1.5ω2

2

ω2
1 3ω2

2

0.5
(
ω2

1 +ω2
2
)

0

0.5
(
ω2

1 +ω2
2
)

0

1.5
(
ω2

1 +ω2
2
)

0

1.5
(
ω2

1 +ω2
2
)

0

0.5
(
ω2

1 +ω2
2
)

0

0.5
(
ω2

1 +ω2
2
)

0

0.5
(
ω2

1 +ω2
2
)

0

0.5
(
ω2

1 +ω2
2
)

0

1.5
(
ω2

1 +ω2
2
)

0

1.5
(
ω2

1 +ω2
2
)

0

0 0.5
(
ω2

1 +ω2
2
)

0 0.5
(
ω2

1 +ω2
2
)

0 0.5
(
ω2

1 +ω2
2
)

0 0.5
(
ω2

1 +ω2
2
)

0
(
ω2

1 +ω2
2
)

0
(
ω2

1 +ω2
2
)

0 0.5
(
ω2

1 +ω2
2
)

0 0.5
(
ω2

1 +ω2
2
)

0 1.5
(
ω2

1 +ω2
2
)

0 1.5
(
ω2

1 +ω2
2
)
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nu(1)
ᵀ =



0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1.5
(
ω2

1 +ω2
2
)

0

1.5
(
ω2

1 +ω2
2
)

0

0 0

0 0

0 0

0 0(
ω2

1 +ω2
2
)

0(
ω2

1 +ω2
2
)

0

0 0

0 0

0 0

0 0

0
(
ω2

1 +ω2
2
)

0
(
ω2

1 +ω2
2
)

0 0

0 0

0 1.5
(
ω2

1 +ω2
2
)

0 1.5
(
ω2

1 +ω2
2
)



→ h(1)
ᵀ =

1
ω2

r1



0.5ω2
1

ω2
2

8−2h2

0.5ω2
1

ω2
2

8−2h2

−3ω2
1

−2ω2
2

h2

ω2
2

h2 +2h
ω2

1
1+2h

ω2
2

h2 +2h
ω2

1
1+2h

ω2
2

h2−2h
ω2

1
1−2h

ω2
2

h2−2h
ω2

1
1−2h

0.5ω2
1

4h2−1
ω2

2
2h2

0.5ω2
1

4h2−1
ω2

2
2h2

−ω2
1

−3ω2
2

h2(
ω2

1 +ω2
2
)

16
0(

ω2
1 +ω2

2
)

16
0

0 0

0 0(
ω2

1 +ω2
2
)

8h2 +8h
0(

ω2
1 +ω2

2
)

8h2 +8h
0(

ω2
1 +ω2

2
)

8h2 +8h
0(

ω2
1 +ω2

2
)

8h2 +8h
0

0 0

0 0

0

(
ω2

1 +ω2
2
)

8+8h

0

(
ω2

1 +ω2
2
)

8+8h

0

(
ω2

1 +ω2
2
)

8+8h

0

(
ω2

1 +ω2
2
)

8+8h
0 0

0 0

0

(
ω2

1 +ω2
2
)

16h2

0

(
ω2

1 +ω2
2
)

16h2

0 0

0 0
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nu(2)
ᵀ =

1
ω2

r1



0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
−90
12

ω4
1 +

9h2−24
2h2(4−h2)

ω2
1 ω2

2 0

−90
12

ω4
1 +

9h2−24
2h2(4−h2)

ω2
1 ω2

2 0

0 0

0 0

0 0

0 0
2

(h2−4)
ω4

2 −3ω4
1 +

2
(1−4h2)

ω4
1 −

1
3 h2 ω4

2 0

2
(h2−4)

ω4
2 −3ω4

1 +
2

(1−4h2)
ω4

1 −
1

3 h2 ω4
2 0

0 0

0 0

0 0

0 0

0 −3ω4
1 +

2
h2−4

ω4
2 −

2
h2 ω2

1 ω2
2 +

2
1−4h2 ω4

1

0 −3ω4
1 +

2
h2−4

ω4
2 −

2
h2 ω2

1 ω2
2 +

2
1−4h2 ω4

1

0 0

0 0

0
3−8h2

8h2−2
ω4

1 −
90

12h2 ω4
2

0
3−8h2

8h2−2
ω4

1 −
90

12h2 ω4
2
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E Matrix manipulations for the 3-DOF system, Section 7.2

u∗(1) =



u3
p2

u3
m2

u2
p2um2

up2u2
m2

up2u2
p3

um2u2
m3

up2up3um3

um2up3um3

up2u2
m3

um2u2
p3

u2
p2up3

u2
m2um3

up2um2up3

up2um2um3

u2
p2up3

u2
p2um3

u3
p3

u3
m3

u2
p3um3

up3u2
m3

up1

um1

up2

um2

up3

um3



→ [nv(1)]
ᵀ =

κ

m



0 1 0

0 1 0

0 3 0

0 3 0

0 27 0

0 27 0

0 54 0

0 54 0

0 27 0

0 27 0

0 0 9

0 0 9

0 0 18

0 0 18

0 0 9

0 0 9

0 0 27

0 0 27

0 0 81

0 0 81

ωr1mc
κ

0 0

−ωr1mc
κ

0 0

0 ωr2m(c+c̄)
κ

0

0 −ωr2m(c+c̄)
κ

0

0 0 ωr3m(c+3c̄)
κ

0 0 −ωr3m(c+3c̄)
κ



→ βββ
ᵀ
(1) = ω

2
r2



8

8

0

0

8

8

0

0

0

0

8

8

0

0

0

0

8

8

0

0

0

0

0

0

0

0
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F Detailed derivation of Eq. 6.54

In this appendix the derivation of Eq. 6.54a is introduced, while the same procedure can be followed for

Eq. 6.54b. Starting with the following

U̇2 = lim
T→∞

2εζ ωn

T Ω

∫ T

0
{Dβ [U cos(Ωt +φ)]sin(Ωt +φ)}dt

=−ε
2Uζ ωn

Γ(1−β )
lim

T→∞

1
T

∫ T

0

(∫ t

0

[
sin(Ωu+φ)

(t−u)β
du
]

sin(Ωt +φ)

)
dt

(F.1)

Using the transformation s = t−u which gives ds =−du, it is possible to write

U̇2 =
−2εζ ωnU
Γ(1−β )

lim
T→∞

1
T

∫ T

0

[∫ t

0

sin(Ωt +φ −Ωs)
sβ

ds
]

sin(Ωt +φ)dt

=
−2εζ ωnU
Γ(1−β )

lim
T→∞

1
T

∫ T

0

[∫ t

0

cos(Ωs)
sβ

ds
]

sin2(Ωt +φ)dt

+
2εζ ωnU
Γ(1−β )

lim
T→∞

1
T

∫ T

0

[∫ t

0

sin(Ωs)
sβ

ds
]

sin(Ωt +φ)cos(Ωt +φ)dt

(F.2)

It is now possible to integrate the two components of the previous equation separately, using integration by

parts for each component; if assumed that U̇2 = ϒ1 +ϒ2, then the first component ϒ1 is expressed as

ϒ1 =
−εζ ωnU

2ΩΓ(1−β )
lim

T→∞

{
2Ωt− sin(2Ωt +2φ)

T

[∫ t

0

cos(Ωs)
sβ

dt
]}∣∣∣∣∣

ᵀ

0

+
εζ ωnU

2ΩΓ(1−β )
lim

T→∞

{
1
T

∫ t

0

[
cos(Ωt)[2Ωt− sin(2Ωt +2φ)]

tβ
dt
]} (F.3)

by using Eq. 6.51 to Eq. 6.53, and simplifying the results, one can get

ϒ1 =−εζ ωnUΩ
β−1 sin

(
βπ

2

)
(F.4)

similarly, if the same procedure is repeated one may find that ϒ2 = 0 when T → ∞. Finally, it is possible to

write

U̇2 =−εζ ωnUΩ
β−1 sin

(
βπ

2

)
(F.5)

In order to find the second part of Eq. 6.54, φ̇ , the same procedure is followed which finally yields to

φ̇2 = εζ ωnΩ
β−1 cos

(
βπ

2

)
(F.6)
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