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Abstract

In emulsions, immiscible oil and water phases are commonly separ-

ated by an interface hosting a layer of surfactant molecules, which

decreases surface tension and stabilizes the system. Alternatively,

in solid-stabilized or Pickering emulsions, nano- or microparticles

are embedded in the interface, decreasing interfacial area. Solid-

stabilized emulsions are extremely stable and allow for complex non-

spherical droplet shapes.

Spherical particles embedded in an interface constitute a two-di-

mensional monolayer in which locally hexagonal packings can be ex-

pected. This hexatic arrangement is one type of orientational order,

another is nematic order in the alignment of a layer of rod-like in-

terfacial particles. Orientational order interacts with surface shape;

hexatic or nematic packing is disrupted by Gaussian curvature. Con-

versely, droplet shape may adapt to accommodate orientational or-

der. For surfactant-stabilized emulsion systems, the effects of hex-

atic order on droplet shape have been experimentally and theoretic-

ally investigated. I here extend the investigation to solid-stabilized

emulsions.

On the example of a modulated cylindrical surface shape, I exam-

ine the theory of orientational order analytically and using a lattice-

based stochastic simulation. With a generic Landau-Ginzburg model,

I find that modulations in the amount of order co-occur with well-

known defect phenomena. I distinguish type I and type II systems,

with zero or up to 4n defects respectively. I deduce that there is a

discrete spectrum of modulated tubule shapes.

Experiments motivate the adaptation of the generic model to the

specific interfacial material of rod-like colloidal nanoparticles. I ap-

ply and adapt results from the density functional theory literature to

obtain material parameters of a two-dimensional hard-rod gas. The

material-specific model reveals that, in the case studied, interfacial

mechanics are dominated by surface tension and orientational order

conforms to the resulting surface curvature via the defect state.
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Chapter 1

Introduction

Abstract

An overview of the solid-stabilized emulsion and related compounds is presen-

ted. Motivating observations are introduced: Hexatic order occurs in particle

monolayers. However, surface curvature and topology can introduce defects

or destroy order. Where interfaces are sufficiently soft, there can be complex

shape-order interactions. The overarching question is to adapt the continuum

description of order on soft interfaces from molecule-stabilized interfaces to

solid-stabilized emulsions. Several peculiarities of solid-stabilized emulsion ma-

terials must be taken into account: non-spherical shapes, possibly differentiated

phase and domain behavior, and constraints other than surface tension. The

underlying approach used in this thesis - focus on a particular mesoscale and

equilibrium statistical physics - is discussed with respect to the appropriateness

for solid-stabilized interfaces. Finally the development of the model in this thesis

is summarized.
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1.1 Systems and applications

1.1 Systems and applications

1.1.1 Solid-stabilized emulsions

An emulsion is a suspension of microscopic oil droplets in water (or vice versa).

Everyday experience indicates that this is not an equilibrium configuration of

the system, as a mixture of oil and water soon phase separates into distinct

oil and water phases. This is due to the energetic cost of maintaining large

amount of interfacial area, where water and oil are in contact at the surface of

each droplet. Emulsion-based products are usually made stable on the scale of

months or years by adding a surfactant. In the case of molecular surfactants, the

surfactant molecules position themselves at the interfaces and decrease surface

tension.

In contrast, in a Pickering emulsion, or solid-stabilized emulsion, the sur-

factants are nano- or microparticles (Figure 1.1.a). Because the insertion of

particles reduces the area in which oil and water are in contact, this is a very

effective way to stabilize an emulsion. Pickering emulsions are of interest to

numerous industries, such as food, cosmetics, paint and coatings. Because

particle-stabilized emulsions depend on the mechanical action of the particles,

a wide range of materials can be chosen. Formulations can be created using

common, low-cost, or biocompatible materials such as clay, silica, or starch in

place of specialized chemical surfactants [1, 2].

Surface tension is an energy cost per unit area of interface. In conventional

(surfactant-stabilized emulsions), surface tension is lowered by a layer of sur-

factant molecules. The basic mechanism behind the stability of solid-stabilized

emulsions is that a particle of radius r embedded in the interface (Figure 1.2)

occupies an area of A = π(r(1− cos θ))2 [3, 4]. Instead of oil-water interface,

there is instead particle-oil and particle-water interface. The energy is lowered

by ∆E = γπ(r(1 ± cos θ))2 relative to the particle being suspended in the oil

(+) or water (−) phases. The same energy is required to detach the particle.

For microscale particles, the energy difference is of order 107kBT [5]; for a 50nm

nanoparticle it is of order 104kBT . Especially in the case of nanoparticles, this

is clearly larger than the mean energy of a thermal fluctuation, which at room

temperature have energy on the order of kbT . Because of the vanishing prob-

2



1.1 Systems and applications

(a) Pickering emulsion (b) bijel.

Figure 1.1: Sketch of particle-stabilized (Pickering) emulsion and a bijel. In

both cases the oil and water (red and black) are phase-separated and the mi-

croparticles (green) are embedded in the interfaces. The emulsion has spherical

oil-water interfaces, while the bijel has a complex curved interface.

ability of being dislodged by a thermal fluctuation, the particle is, in contrast

to surfactant molecules, said to be irreversibly absorbed.

The interface as a whole retains some surface tension due to ‘bare’ interfa-

cial area between the absorbed particles. Even with the addition of surfactants,

the interface has small but nonzero surface tension. Freely suspended emulsion

droplets are usually spherical, as spheres are the equilibrium shape of a fluid

droplet with positive surface tension. However, their morphology also depends

on formation history. Due to the fixed number of adsorbed particles and jam-

ming within the particle layer, non-spherical droplet shapes can result. Fluid

dynamic effects such as viscosity in the surrounding fluids can further inhibit

global rearragements and add subtleties to the sequence of formation dynamics.

With specialized mixing protocols, it is possible to manufacture emulsions with

long-lived elongated, irregular, or even branched and interconnected droplets

[6, 7]. Non-spherical shapes, including tori, have also been created in individual

macroscopic fluid droplets [8].

In general, there are a range of morphologies and stabilization mechanism

in solid-stabilized emulsions. Particles may form monolayers, multiple layers,

sparse aggragegates, or even a stabilizing gel-like network in the fluid matrix

3



1.1 Systems and applications

r

A θ

Figure 1.2: An individual particle in an interface.

[4]. However, I will focus exclusively on the idealized special case of droplets

covered by dense particle monolayers. This type of solid-stabilized emulsion

occurs, for example, in our simple experimental model Pickering emulsion in

Chapter 5.

In an interfacial monolayer, there is a complex array of interactions between

particles, depending on the particle material, roughness, chemical functionaliz-

ation; interparticle interactions are potentially mediated by interfacial geometry

as well as by both fluid phases. For example, electrostatic repulsion mediated by

the oil phase causes widely spaced arrays of particles, while short-range attrac-

tion causes aggregated networks [9]. We here focus on hard-sphere or hard-rod

particles, which form closely packed monolayers.

1.1.2 Bijel

Oil and water can form an oil-in-water (o/w) emulsion or a water-in-oil (w/o)

‘inverse’ emulsion. Which type of emulsion is formed depends on factors such

as fluid volume fractions, surfactant molecule hydrophobic-lipophilic balance or

surfactant particle wetting properties, and dynamical factors of the mixing pro-

cess such as fluid viscosities and shear rates. In addition, there exists a third

option, where both fluids constitute the ‘outside’, continuous phase. When

stabilized by particles, such a material is called a bijel, or bicontinuous inter-

facially jammed emulsion gel. Solid-stabilized emulsion and bijel compositions

4



1.2 Ordered soft interfaces

are shown schematically in Figure 1.1-b.

The possibility of a particle-stabilized bijel was first discovered computa-

tionally in 2005 by Stratford et al. [10]. Perfectly bicontinuous bijels can be

created experimentally when two fluids demix, as temperature is lowered, via

the spinodal decomposition. The bicontinuous spinodal structure is ‘frozen in’

as a jammed layer of nanoparticles occupies the interfaces and prevents further

coarsening.This experimental procedure was established in 2008 by Herzig et

al. [11]. Emerging applications of bijels take advantage of the large amount of

interfacial area accessible to a fluid or gas, for example in desalination across

the interface [12] or in hydrogen gas storage in a derived porous solid[13].

Like the emulsion, the bijel is a metastable state of the fluid-fluid-particle

system. Its existence and morphology are history-dependent, encoding the kin-

etics during the formation process [10], while the lowest energy state is two

macroscopically phase separated fluids phases. The bijel is in some sense doubly

metastable: the bijel will decay into an emulsion and finally to phase-separated

fluids. Stability against the first stage of bijel decomposition is investigated

here.

In bijels as well as in elongated emulsions droplets, necks connect different

droplets or regions of fluid. The long-term stability of these structures against

pinching off to droplets determines permanence of the material against aging

and is one proposed indicator of bijel stability [10]. To model such a neck, we will

examine an axisymmetric sinusoidally perturbed cylinder shape. The breakup

of cylinders of complex fluids into droplets is also relevant to the emulsion

formation process as well as, more generally, being of interest in a range of

technological contexts such as inkjet printing [14].

1.2 Ordered soft interfaces

1.2.1 Orientational order

In three dimensions, a hard-sphere fluid crystallizes at low tempertures to a

solid phase with long-range translational order [15]. In contrast, in two dimen-

sions, true long-range order is not possible (Mermin-Wager theorem) [16]. In

addition, KTHNY (Kosterlitz, Thouless, Halperin, Nelson, and Young) theory

5



1.2 Ordered soft interfaces

posits a two-step melting process between two-dimensional crystalline and iso-

tropic phases; there is an intermediate, orientationally ordered phase known

as the hexatic phase [17]. Despite dislocations, which disrupt translational or-

der in particle positions, the orientation of the pattern remains correlated at

quasi-long-range (algebraic decay) [16].

Microscale spherical colloidal particles have a long history as ‘model atoms’,

for example to experimentally verify hard-sphere crystallization in three dimen-

sions [18]. Similarly, in two dimensions, a carefully controlled monolayer of

colloidal spheres can reproduce the predicted hexatic phase [19–21]. While less

ideal, the same phenomenon of hexatic orientational order is observed in mono-

layers of colloidal particles at liquid-liquid interfaces [22]. Apparent local hexatic

order of particles on spherical emulsion droplets is frequently seen in images in

the course of other experiments [23–26]

Hexatic order, with locally hexagonal (n = 6) discrete rotational symmetry,

is just one example of orientational or ‘n-atic’ order. Other possible orientation-

ally ordered phases (Figure 1.3) are the rare square-tiled tetratic phase (n = 4)

[28] as well as the nematic phase (n = 2) common in liquid crystals and other

rod-like particles with two indistinguishable ends. Polar or otherwise directed

elongated particles form vector or 1-atic order. Lastly, while locally triangular

tilings (n = 3) are also possible, they are dual to and synonymous with locally

hexagonal tilings [27].

1.2.2 Order on curved surfaces

In two dimensions, patterns with the discrete rotational symmetry groups listed

above tile a Euclidean plane. On the other hand, on surfaces with nonzero

Gaussian curvature, it is easy to imagine that the same regular patterns become

locally distorted. In addition to local curvature, the global topology of a surface

sets contraints on the extent to which orientational order is possible. It is not

possible, for example, to cover the entire surface of a sphere with a defect-free

vector field or with a perfect square or hexagonal tiling. This principle is formally

encoded in the Poincare-Hopf theorem. There must be at least nχ defects [29]

in an n-atic field on a surface of topological genus g and Euler characteristic

χ = 2 − 2g. For example, there are 12 defects (sites with five rather than six

6



1.2 Ordered soft interfaces

(a) Vector order (n = 1). (b) Nematic order (n = 2).

(c) Tetratic order (n = 4). (d) Hexatic order (n = 6).

Figure 1.3: Examples of different types of orientational order. (a) Vector (n = 1)

order could exist in a tilted layer of surfactant molecules or in oriented polar

molecules or particles. (b) Nematic (n = 2) order exists in the orientations of

elongated molecules or particles. (c) The rare tetratic (n = 4) phase can exist in

the orientations of square particles or in the positions with particles arranged in

a square lattice, for example due to quadrupole interaction. (d) Hexatic (n = 6)

order most commonly exists in the positions of sphere or point particles.
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1.2 Ordered soft interfaces

neighbors) in hexatic order on a sphere; two defects (source or sinks) in a vector

field on a sphere (genus g = 0); and four defects in a nematic material on a

sphere. The relation between Gausssian curvature and n-atic tilings has been

studied extensively with the point of view of discrete particles and/or discrete

defects.

Locally, we can picture that a vector field or hexagonal tiling is distorted away

from a perfectly parallel configuration by surface curvature. Gaussian curvature,

an intrinsic quality of the surface, induces distortions in a vector or other n-atic

field. On the other hand mean curvature, related to the embedding of a two-

dimensional surface in three-dimensional space, has no effect on orientational

order. For example, orientational order is equally compatible with a cylinder

and a plane.

1.2.3 Effect of order on interface shape

Where orientational order, as the flat-space equilibrium phase of the interfacial

material, and Gaussian curvature of the otherwise preferred droplet shape are

incompatible, several outcomes may result. The interfacial material may remain

ordered, but adapt to surface shape and topology via small distortions and

isolated defect cores. Alternatively, if distortions and defects are energetically

too costly, orientational order may be destroyed everywhere, with the material

adopting an isotropic phase. Lastly and most significantly, the shape of soft

interfaces may deform to minimize curvature-induced distortion to the interfacial

material. Thus spherical droplets may adopt polyhedral shapes, offering flat

facets compatible with orientational order and concentrating the topological

unavoidable net Gaussian curvature at vertices [27, 30–33]. One can speculate

that interfaces may be driven to change topological genus and adopt alternative

phases, for example a lamellar phase consisting of flat planar interfaces. The

possibility of order-induced shape and phase changes in emulsion droplets has

obvious significance for emulsion formulation and stability. Furthermore, the

possibliity of engineering nano- or microscale droplets with predictble polyhedral

or defect-bearing shapes opens up avenues for novel nanomaterials [33].

The facetting of topological spherical droplets into icosahedra due to hexatic

order has been experimentally observed in certain designed surfactant-stabilized

8



1.3 Methods and model

emulsion systems, see review by Marin et al. [33] for example. In solid-stabilized

emulsions with relatively large particles, apparent facetting seen in other ex-

periments with relatively large particles [8] hints that similar phenomena are

possible.

1.3 Methods and model

1.3.1 Equilibrium energy

Throughout this thesis I take an equilibrium statistical physics approach, examin-

ing the energy of various configurations of the system to predict the energy-

minimizing state that will be realized at low temperatures. The statistical

approach has a history of application to interfaces and membranes, see, for

example, [34–36]. Similar energetic considerations have been applied to solid-

stabilized emulsion droplets by [37–39].

Huse and Leibler [36] divide the system’s complete Hamiltonian into ‘ex-

ternal’ (E) and ‘internal’ (I) parts; the same terminology will be used here:

H = HE + HI . (1.1)

The external Hamiltonian contains terms unrelated to internal degrees of

freedom in the arrangement of particles or molecules in the interface. As ex-

ternal Hamiltonian, I use the Helfrich Hamiltonian, a widely used theory of lipid

bilayers.

The internal Hamiltonian collects terms relating to the configuration of ori-

entational order on the surface. This includes terms in which the order parameter

field interacts with surface shape and curvature. A general Landau-Ginzburg

energy of orientational order is substituted for HI in Chapters 2 to 4, while a

distortion free energy of a nematic hard rod material is substituted in Chapter

6.

To complement the analytic approach, I formulate a Markov Chain Monte

Carlo simulation to sample configurations of the orientationally ordered material

on a curved surface.
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1.3.2 Continuum field theory

In solid-stabilized emulsions, the interfacial material consists of individual nano-

or microparticles. While in limiting cases the relative size of interfacial particles

and number of interfacial particles on a droplet is such that a theory of the

packing of discrete spherical particles would be more appropriate, a continuum

field theoretical approach is used here, in line with the literature on molecular

surfactant monolayers. The arrangement of the point particles is abstracted into

an order parameter field, which quantifies order at each point on the manifold. A

Hamiltonian derived from this order parameter field is added to the composite

system’s energy. By minimizing the full system’s energy, the equilibrium or

ensemble configuration of the order parameter field can then be predicted, either

by varying the order parameter field on a fixed surface shape or by minimizing

for order parameter field and the surface shape simultaneously.

1.3.3 Model surface

Throughout this thesis I examine a specific model surface, a sinusoidally mod-

ulated cylinder.

The theory of hexatic order was first explored on spheres [30, 31] and tori

[40, 41]. Other model surfaces that have been studied include a catenoid surface

[42], and the paraboloid of revolution [43] as well as variations on locally near-

planar surfaces.

In view of modelling the morphology of a bijel, other potentially useful model

surfaces are the triply periodic bicontinuous phases, including cubic and gyroid

[44] variants. These structures are more regular variants of the amorphous

bicontinuous morphology of a bijel. Study of these objects highlights the effect

of regions with negative Gaussian curvature.

1.4 Research questions

The morphology of solid-stabilized emulsion droplets and of interesting related

structures is not necessarily dominated by surface tension. As such, the morpho-

logy is not necessarily sphere-like. Solid-stabilized particle layers present new
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opportunities, over surfactant-stabilized systems, in terms of exotic emulsion

morphology and precisely engineered emulsion droplets, but present us with a

modeling challenge. To investigate possible effects of interfacial orientational

order on morphology, we need to adapt previous models of hexatic order in

molecular monolayers.

The goals of this thesis include answering the following questions: What

insights can be gained from applying the continuum theory of orientationally

ordered soft interfacial materials to solid stabilized emulsions? What can we

substitute or add to the model to account for differences? What is the effect on

the system when orientational order and shape are in some way incompatible?

What effect does orientational order in monolayers of larger spherical or rod-

like nanoparticles have on the morphology and stability of emulsion droplets, in

particular elongated droplets and channels?

1.5 Outline

In Chapters 2-4, I explore existing models for interfaces with molecule-scale

surfactants in the setting of modulated axisymmetric vesicles. In Chapter 2,

known formulae for the stability of axisymmetric membranes with global mech-

anical properties are re-derived and examined closely in light of the ergodic

approach which will be used later. In Chapter 3, a continuum orientational

order parameter field is added, following methods established for mono- and

bilayers of molecule-scale surfactants, and consequences are predicted analytic-

ally. In Chapter 4, the Monte Carlo simulation method is established; results

for the system described in Chapter 3 are confirmed and refined. In Chapter 5,

we revisit solid-stabilized experimental systems. Experimental observations on

colloidal monolayers and particle-stabilized emulsions are discussed, based on

the literature and on two experiments. Finally in Chapter 6, the adaptation of

the model and methods to represent interfacial layers of larger rodlike colloidal

particles is completed with a new model of density and orientational order in the

interfacial layer, whose parameters are derived from a density functional theory.

Consequences of applying a hard rod fluid model as the interfacial particle layer

are examined. Chapter 7 summarizes and concludes the thesis, contextualizes
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Chapter 2

Mechanics of modulated cylindrical

interfaces

Abstract

In this chapter I introduce the geometry of the model surface used throughout

this thesis, a sinusoidally modulated cylinder. The stability of an axisymmetric

interface or membrane subject to surface tension and bending rigidity effects

is examined, retrieving length criteria for the stability of membrane tubules. I

compare linear stability analysis with results from the energetics of more strongly

modulated channel shapes, finding nucleation phenomena and metastable states

overlooked in the linear analysis. The energy functions describing membrane

mechanics will be additively built on throughout the rest of this thesis.
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Table 2.1: Table of symbols, Chapter 2

symbol meaning

êρ, êθ, êz basis of a cylindrical coordinate system in R3

t̂θ, t̂z basis of a coordinate system on the tangent plane of the surface

r0 the radius of the unmodulated cylinder

r(a) mean radius of the modulated cylinder with conserved volume

r(a, z) local radius of the modulated cylinder

a amplitude of the shape modulation

λ wavelength of the shape modulated

k wavenumber 2π/λ of the shape modulation

kc critical wavenumber for stability

A surface area

A0 surface area of the unmodulated cylinder

HE external Hamiltonian; energy from interfacial mechanics

H
surf
E surface-tension-related part of the energy

Hcurv
E curvature-related part of the energy

γ0 microscopic surface tension

γ effective surface tension

κ bending rigidity with respect to mean curvature

κ̄ bending rigidity with respect to Gaussian curvature

C0 spontaneous total curvature

H mean curvature

K Gaussian curvature

Ki
j curvature tensor

gij metric on the tangent plane

ηij metric of the cylindrical polar coordinate system
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2.1 Geometry

Figure 2.1: An illustration of the undulating cylinder surface. A section of

the surface of length λ = 2π/k is highlighted; the model surface is an infinite

periodic repetition of this section. In this illustration the amplitude a of the

sinusoidal modulation is 0.5 (in units of r0). The surface has both positive and

negative principal curvatures.

2.1 Geometry

Throughout this thesis, I examine a model surface consisting of a cylinder with

a sinusoidal modulation in radius (Figure 2.1). This model surface is interest-

ing because it features spatially varying curvature, including both positive and

negative principal curvatures. With small perturbations, the surface is standard

for the study of instability of liquid threads, jets, or bridges, [1–3] as occur

in emulsion formation or in complex emulsions. Structures with larger shape

modulations also occur. While these are possibly unduloid, a minimal surface,

the sinusoid is a close model. More loosely, the sinusoidally modulated cylinder

represents more irregularly modulated elongated emulsion droplets and bridges
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2.1 Geometry

in solid-stabilized emulsion-like materials. Stability of particle-coated channels

is one of two indicators of bijel stability [4].

The surface is defined by a parametric equation in a cylindrical polar co-

ordinate basis (êρ, êθ, êz):

x(θ, z) = r(a)(1 + a sin(kz))êρ + zêz (2.1)

The system is constrained to a constant volume such that V (a) = V0 =

(2π)2r2
0/k. On introduction of a sinusoidal perturbation with amplitude a 6= 0,

the mean radius r(a) must scale as

r(a) =
r0√

1 + a2/2
. (2.2)

The system is characterized by radius r0, wavenumber k, and shape amp-

litude a. Although the system is periodic, I consider a section of cylinder of

length λ = 2π
k . Without loss of generality I define the length unit of the system

by setting r0 = 1. The amplitude a of the deformation is then a dimensionless

parameter in the range −1 < a < 1.

We can also construct a two-dimensional coordinate system intrinsic to the

surface. The basis vectors of this coordinate system are two orthonormal tangent

vectors (Figure 2.2) defined as:

t̂i =
∂ix

|∂ix|
. (2.3)

Here
t̂θ = êθ

t̂z =
r(a)ak cos(kz)êρ + êz√

gzz
,

(2.4)

with gzz defined below. The azimuthal tangent vector t̂θ is identical to the

extrinsic basis vector êθ. In contrast, axial tangent vector t̂z is in general not

parallel to êz. Instead, it has a component in the radial direction.

The unit normal vector is defined as

n̂ =
t̂θ × t̂z
|t̂θ × t̂z|

. (2.5)

Via the usual chirality of the cylindrical coordinate system and via the order of

terms in this cross product, the normal vector is defined as pointing outwards.
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2.1 Geometry

Figure 2.2: The extrinsic coordinate basis consists of the basis vectors (êρ, êθ,

êz) of the cylindrical polar coordinate system. Two examples of intrinsic basis

vectors (t̂θ, t̂z), spanning local tangent planes a and b on the modulated cylinder,

are illustrated. In all locations on the surface, t̂θ = êθ. In general t̂z is not equal

to êz, as seen in tangent plane a. Only in specific cases z = π/(2k), 3π/(2k), ...,

represented by b, does t̂z coincide with êz.

The metric tensor gij is defined in the extrinsic (eθ, ez) basis as

gij = ∂ix · ∂jx; (2.6)

here it is
gθθ = r(a, z)2,

gzz = 1 + a2r(a)2k2 cos2(kz),

gθz = gzθ = 0.

(2.7)

The square root of the metric determinant, here
√
g =

√
gθθgzz, can be

seen as describing the relative size of an infinitesimal area element and is used

as the measure of integrals over the surface:

√
g = r(z)

√
gzz = r(a)(1 + a sin(kz))

√
r(a)2a2k2 cos2(kz) + 1. (2.8)

The factors
√
gii can be seen as giving the length of infinitesimal line elements

in azimuthal and axial directions on the surface.

The metric inverse gij = g−1
ij is
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2.1 Geometry

gθθ = 1/gθθ,

gzz = 1/gzz

.

(2.9)

The curvature tensor Ki
j can be derived as Kij = ∂i∂jx, Ki

j = Kkjg
ki (1).

Here its elements are

Kθ
θ =

−1√
gzzr(a, z)

,

Kz
z =
−r(a)ak2 sin(kz)

(gzz)3/2
.

(2.10)

In the (eθ, ez) basis, the shape operator of the surface of revolution is diagonal.

When diagonal, its elements correspond to the two principal curvatures (inverse

of two principal radii of curvature) at each point. Mean curvature H and

Gaussian curvature K are given by trace and determinant of the diagonal shape

operator respectively, 2H = Kθ
θ +Kz

z and K = Kθ
θK

z
z .

I will also use the spin connection Ai. The spin connection corrects for

changes in vector quantities induced by parallel transport on curved surfaces,

allowing comparison of a vector field at two distant points. One way to derive

the spin connection is Ai = tθ · ∂it̂z = −tz · ∂itθ.(2) The spin connection for

the given surface is

Az = 0

Aθ =
r(a)ak cos(kz)√

gzz
.

(2.11)

The spin connection is related to Gaussian curvature via the Mermin-Ho

relation [5, 6]

K = n̂ · [∇× Ω] =
1

2
εαβγn

γεijkn
k∂in

α∂jn
β, (2.12)

(1)The object generically called ‘the curvature tensor’ here is equivalent to the shape operator,

Weingarten map, or coefficients of the second fundamental form.
(2)Equivalent to Christoffel symbols (first kind: 3 lower indices) in the Levi-Civita connection,

Ai = Γθiz = −Γziθ. All other Γijk (i, j, k = z, θ) are zero. Like the Levi-Civita connection, in

general the spin connection does not transform like a tensor. However, in the form defined here

indexes can be raised and lowered the usual way, with metric ηij of the cylindrical coordinate

basis, in parallel to those of the derivative operator.
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2.1 Geometry

(a) The value of
√
g, corresponding to the relative size of

area elements, is indicated by shading on the surface.

(b) Spin connection component Aθ takes negative (blue) and

positive (red) values.

Figure 2.3: Square root of metric determinant
√
g and spin connection com-

ponent Aθ as shading on the surface shape on the example of a surface with

k = 1, a = 0.5.

where Ω is a variant spin connection(3). While values of the spin connection

components depend on choice of coordinate system, the vector [∇ × Ω] and

Gaussian curvature do not.

(3)Just as there are two different conventions for the Christoffel symbols, using either ∂i or∇i,

are in use [7], note that some references [6] work instead with spin connection Ωi := tθ ·∇it̂z.

In cylindrical coordinate systems, the value of the spin connection component Ωθ differs from

ours by a factor of 1/
√
gθθ = 1/r(a, z).
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2.2 Instability induced by surface tension

2.2 Instability induced by surface tension

A long-standing question of interest is whether a fluid cylinder or jet is stable

with respect to small sinusoidal perturbations. Fluctuations, which can be gen-

erically decomposed into sinusoids, naturally occur in noisy or thermal envir-

onments. If any such initial perturbations grow, the system is unstable; it is

commonly extrapolated that the cylinder will break up into spherical droplets.

Conversely if all sinusoidal perturbations decay the system is linearly stable. The

longest wavelength perturbation a fluid cylinder can support is determined by

its length. The question of whether perturbations of a certain wavelength or

wavenumber are unstable is equivalent to the question of which finite-length

cylindrical objects are stable.

In early experiments by Plateau, it was observed that fluid cylinders longer

than a certain length-diameter ratio λ0/2r ≈ π are unstable to breakup [8].

Rayleigh theoretically explained the stability citerion as well as further results

via both enegetic and hydrodynamic routes [1]. In this thesis I focus on deriving

stability criteria via perturbative energy analysis. For systems dominated by

surface tension, energy is given by

H
surf
E = γ0

∫
S
dS

= γ0

∫ λ

0

∫ 2π

0

√
gdθdz

(2.13)

with
√
g as in Equations 2.8. For a small shape perturbation with shape amp-

litude |a| � 1, I insert the series expansion

√
g = 1 + sin(kz)a+

(
k2 cos2(kz)

2
− 1

4

)
a2 +O(a3); (2.14)

note that this includes the series expansion of the factor r(a) = 1√
1+a2/2

r0.

Carrying out the integral 2.13, the next-to-leading-order term in energy is

then

∆H
surf
0

A0a2
=
γ0

4

(
r2

0k
2 − 1

)
, (2.15)

denoting the surface area of a section of unperturbed cylinder of length λ as

A0 = 2πλ . Roots of Equation 2.15 give the well-known Plateau-Rayleigh
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2.2 Instability induced by surface tension

instability criterion: the energy difference on introduction of a small perturbation

of amplitude a is negative and the perturbation grows for wavenumbers k <

kc = 1 (in units where r0 = 1).

The total surface area of a cylinder grows when the sinusoidal perturbation

is introduced due to an increased axial path length along the sinusoid. However,

due to conserved volume, the mean radius r(a) also decreases globally when a

perturbation is introduced, resulting in an overall narrower modulated cylinder

and a corresponding decrease in surface area corresponding to the second term

in Equation 2.15. Which of these effects dominates depends on the wavelength

of the perturbation, with longer-wavelength perturbations tending to decrease

the overall surface area and destabilize the system.

Equivalent hydrodynamic instability

Throughout this thesis I build on the equilibrium energetic approach as outlined

above for the simplest case. On the other hand, the more common derivation

of the PR instability is given by the hydrodynamic approach, incorporating local

forces and the dynamics of the surrounding fluids. The hydrodynamic approach

is discussed in this section to show that the two approaches, despite the ap-

parent differences, are mathematically equivalent as far as obtaining the linear

stability criterion. The hydrodynamic approach has the advantages of retrieving

further information such as dispersion relation (growth rate as a function of

wavenumber, allowing the identification of the fastest-growing modes and thus

predicting the size of the resulting droplets) and timescale, but is only applicable

in the perturbative regime. It allows the incorporation of other fluid-dynamic

factors, such as fluid viscosities.

In general, prior to imposing a volume constraint, the energy of a system

such as a droplet is [9]

E = γ

∫
S
dS + p

∫
V
dV. (2.16)

In the hydrodynamic route, the pressure-volume contribution to energy is

retained and no volume constraint is explicitly imposed. Locally

γ

∫ √
hdθdz = γ

∫
(1 + 2Hδr + ...)

√
h0dθdz, (2.17)
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2.2 Instability induced by surface tension

where metric hij is the metric tensor of the non-volume-conserving modulated

cylinder

~y = r0(1 + a sin kz)êρ + zêz (2.18)

and
√
h0 =

√
g0 = r0 denotes its value on the unperturbed cylinder. Thus

√
h = r0(1 + a sin kz)

√
1 + a2k2r2

0 cos2 kz, (2.19)

while
√
h0 is the metric of the unperturbed cylindrical surface√

h0 = r0. (2.20)

The total curvature 2H is, to first order, the variational derivative of surface

area as a surface element is displaced radially to a parallel position, per unit

area of the initial surface shape. It is obtained by dividing the first variation in√
h by

√
hθθ, the measure of the integral in the cylindrical coordinate system

[10].

The pressure-volume term in Equation 2.16 is given to linear order by [9]

pV = p

∫
(r + δr + ...)

√
h0dρdθdz, (2.21)

Equating integrands, we obtain the Laplace pressure

− p = 2γH. (2.22)

In the specific case of a cylinder with a small sinusoidal perturbation, at

zeroth order the equilibrium Laplace pressure is

− p0 =
γ

r0
, (2.23)

while at first order a pressure perturbation

− δp(z) =
γ

r0
(1− r2

0k
2)a sin kz (2.24)

is induced by the shape perturbation. To fully treat the Plateau-Rayleigh in-

stability, the time-dependent sinusoidal perturbation

r = r0(1 + a sin kzeωt) (2.25)
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2.2 Instability induced by surface tension

in interface position induces analogous perturbations in Laplace pressure and

in the radial component of the surrounding fluids’ velocity fields [1]. Solutions

to the inviscid linearized Navier-Stokes equations in a cylindrical system, with

vanishing velocity fields at central and far-field locations, are the Bessel functions

of the first kind, I0(kr0) and I0(kr0). The Laplace pressure difference across

the interface supplies another boundary condition joining the inner and outer

radial velocity fields. The result is the dispersion relation

ω2(k) =
γ0kI1(kr0)(1− k2r2

0)

ρr2
0I1(kr0)

. (2.26)

Among other things the same Plateau-Rayleigh instability criterion is implied:

solutions with real positive growth rates ω exist for wavenumbers kc ≤ 1.

Fundamentally the stability criterion is whether the Laplace pressure per-

turbation, proportional to differences in total curvature, is positive (aligned) or

negative (antialigned) with a fluctuation in the radial fluid velocity field. For

the specific case of axisymmetric surfaces in a cylindrical polar basis, the ques-

tion of stability is exactly equivalent to the question of balancing one principal

curvature against the other for an overall positive or negative first order change

in total curvature.

For the special case of modulations of a cylinder in the cylindrical basis,

two conceptually different changes in local surface area element are encoded in
√
hθθ and

√
hzz, and in the two principal curvatures Kθ

θ and Kz
z , respectively.

In this case a balance between changes to local azimuthal and axial curvatures

components is the stability criterion.

On the other hand, to derive the global static energy balance route on a

volume-conserving cylinder, used in this thesis, from Equation 2.1, pressure

can be seen as a Lagrange multiplier constraining the inner volume to a value∫
V dV = V0 or ∫

rdrθdz =

∫
r(a) (1 + a sin kz) drdθdz

r(a) = r0(1− a2/2

∫
sin2 kzdz).

(2.27)

Minimizing the energy subject to the constraint results in a system of equations

whose solution is formally the volume-conserving radius given in Equations 2.2

and the roots of Equation 2.15.
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2.3 Systems with surface tension and bending rigidity

Inserting r(a) into the surface area term, the energy to minimize is, to first

order

H = γA =

∫
(1+

1

2
a2k2r2

0 cos2 kz)r0(1−a2/2

∫
sin2 kzdz)(1+a sin kz)dzdθ;

(2.28)

the first order difference is Equation 2.15, an O(a2) energy difference balancing

a term ∝ 1 and a term ∝ k2. The ∝ k2 effect is derived from the increased

axial pathlength; it is clearly related to the axial principal curvature term in the

hydrodynamic derivation. On the other hand, the second effect, from the global

radius adjustment, is harder to identify with the azimuthal principal curvature

term in Equation 2.24. It is in fact analogous to dividing by
√
hθθ in Equation

2.17.

Despite the apparent differences that second order terms ∝ a2 are the lead-

ing order energy difference; that a volume-conserving mean radius has been

additionally imposed; and that global rather than local energy balance is con-

sidered, the resulting instability criterion is the same. The agreement between

local and global stability criteria is general to any droplet shape and coordinate

basis, but the neat relationship between two opposing forces and two principal

curvatures is specific to axisymmetric variations in a cylindrical coordinate basis.

The apparently conceptually distinct procedures of 1) balancing local prin-

cipal curvatures to obtain local Laplace pressure and 2) adjusting radius to

constrain the system yield equivalent results to first order. It is therefore ap-

propriate that Lenz and Nelson [11] take a mixed approach when examining

the linear instability criterion of a cylindrical system with hexatic order. They

calculate the global energy difference, with volume constraint, of a surface with

a hexatic field, but add to this the usual hydrodynamic instability criterion of a

surface derived via the hydrodynamic route.

2.3 Systems with surface tension and bending rigidity

Table 2.3 lists a range of experimental systems with typical values for surface

tension and bending rigidity.
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2.3 Systems with surface tension and bending rigidity

Table 2.2: Surface tension and bending rigidity of various systems

Surface tension bending rigidity

in erg/cm2 (4) in 10−13 ergs (5)

Air-water interface

at 25◦C [12] 72 -

MD simulation [13] 60 .001

Oil-air interface

vegetable oils, 23◦C [14] 30− 32 -

Oil-water interface

vegetable triglycerides [15] 23− 26 -

purified n-decane [16] 53 -

mineral oil [17] 49 -

benzene [17] 33 -

isopropyl myristate [17] 24 -

n-butyl acetate [17] 13 -

benzyl alcohol [17] 3 -

heptane [18] 51

lutidine (near-critical) [19] 36 -

Soap film [20] 25 -

Oil-water-surfactant

AOT, alkane, salt water [21] 1 0.42

AOT, heptane, salt water [18] 10−4 − 10 -

CTAB, oil, water [22] - 40− 4000

Cell membrane/lipid bilayer

cholesterol bilayer, closed [23] 0 1

phospholipid bilayer [24] - 10− 20

various cells [25] .1− .001 -

HeLa cells, various life stages [26] 0.2− 1.6 -

bilayer vesicle, pressure applied [27] 10− 10−4 10

bilayer with cholesterol [28] - 42

(4)erg/cm2 = dyn/cm = mN/m
(5)erg = 10−7J = 10−7Nm ≈ 2.4× 1013kBT at 300K
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2.3 Systems with surface tension and bending rigidity

In general, I label any Lagrange multiplier of a linear surface area term ‘sur-

face tension’ or ‘membrane tension’ γ. The surface tension concept used here

is agnostic regarding the mechanism causing a resistance to an increase in sur-

face area. Such a surface tension emerges in a wide range of systems through

various mechanisms. In the context of emulsions, interfaces between two im-

miscible fluids have a surface tension due to the energetic cost of intermediate

volume fractions. With an interfacial monolayer of surfactant molecules, the

surface tension is decreased. In the context of lipid bilayers and cell mem-

branes between two aqueous phases, there is no intrinsic surface tension in

equilibrium, but attempts to increase surface area by extending the fluctuat-

ing membrane are resisted due to configurational entropy; the system has an

emergent surface tension [23].

Additional phenomena acting as an effective surface tension in systems of

interest include a dynamic effects of pulling and effects of order. A temporary

surface tension can also be dynamically induced in materials lacking an appre-

ciable equilibrium surface tension. For instance, in cylindrical tubes of lipid

bilayer, Bar-Ziv and Moses [29] have established an experimental system where

a cylindrical lipid vesicle is pulled by optical tweezers, inducing a surface tension.

A body of theoretical literature exists on this experimental system. Because the

surface tension varies over time and material is displaced, a realistic analysis is

necessarily dynamic, finding dynamic effects such as the characteristic velocity

of front propagation [30].

Another relevant experimental system is that of cooled emulsion droplets sta-

bilized by a CTAB monolayer [31]. The material has a temperature-dependent

energy density of the form ∆F = ∆E − T∆S, where differences are relative

to the surfactant dissolved in the bulk fluid [22]. In general, the interfacial and

bulk material achieve chemical equilibrium and the relative surface tension is

zero. However, as the temperature is dynamically adjusted, the effective sur-

face tension is transiently nonzero. For a newly ordered interfacial material, it

can be transiently negative [22].

These cells and lipid bilayer vesicles have a small bending rigidity coefficient

on the order of 10kBT or 10−12ergs . However, the relevance of the bending

rigidity term also depends on the radius of curvature, so that small lipid mono-
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2.4 Linear stability analysis

layer nanotubes [32], for example, are bending-rigidity-dominated and stable.

The Föppl-von Kármán number [33]

Γ =
γr2

κ
(2.29)

encapsulates this relationship; it is of order 1 − 10 for nanoscale lipid bilayer

tubes [33], indicating competition between the two effects.

The model in Equation 2.30 includes a value C0 for spontaneous curvature,

the total curvature which the interfacial material tends to adopt due to various

chemical or mechanical effects. A value of zero indicates that a planar configur-

ation minimizes the energy of the interface, while the material resists bending in

the sense of mean curvature, for example into a cylinder. A nonzero spontaneous

curvature value may be present due to various mechanisms. In solid-stabilized

emulsions, wetting properties of the micro- or nano-particle surface are a cru-

cial determinant of emulsion morphology [34]. Non-neutrally-wetting spherical

particles lie in the interface asymetrically (Figure 1.2), producing a curved in-

terface on close packing. Similarly, lipid or surfactant molecules are thought to

sterically induce a preferred curvature in an interface, which in turn determines

the type of emulsion that is formed (Bancroft rule). Cell membranes and lipid

bilayers may also have a spontaneous curvature due to assymetry of lipid bilayer

sheafs, or by introducing ions, solvents, or variant lipid molecules into one side

of the lipid bilayer to increase its area [35, 36]. The membrane eventually re-

gains symmetry due to exchange of material between the two layers, but the

difference is long-lived on experimentally relevant timescales. Lastly specialized

proteins, such as BAR-domain proteins, can induce an anisotropic spontaneous

curvature in cell membranes via their arc-like shape [37, 38].

2.4 Linear stability analysis

To analyze systems with both surface tension and bending rigidity effects, I

adopt the Helfrich [39] Hamiltonian

HE = γ0

∫
S
dS +

κ

2

∫
S

(2H − C0)2dS +
κ̄

2

∫
S
KdS

= H
surf
E + Hcurv

E

(2.30)
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2.4 Linear stability analysis

with γ0 membrane or surface tension, H mean curvature (and 2H total

curvature), C0 a preferred or spontaneous total curvature value, K Gaussian

curvature, and κ and κ̄ two bending rigidities. As usual the integral stands

for
∫
S dS =

∫ λ
0

∫ 2π
0

√
gdθdz, integrating over one period of the surface with

the appropriate metric. I label surface area and curvature parts of the external

Hamiltonian H
surf
E and Hcurv

E . The Helfrich Hamiltonian was first proposed as

a model for cell membranes [40] and has been widely used since.

The surface is a periodic tube; I take this model literally and assume it is a

closed surface of topological genus g = 1. On a closed surface of constant to-

pological genus, the total surface integral over Gaussian curvature is a constant

2πχ, determined completely by the surface’s Euler characteristic χ = 2 − 2g

(Gauss-Bonnet theorem). Hence, the third term in Equation 2.30, relating to

total Gaussian curvature, is a constant and will be dropped. Expanding the

second term in Equation 2.30, a cross-term −2κKθ
θK

z
z is also proportional

to the Gaussian curvature, thus its integral is also a constant. The external

Hamiltonian is reduced to

HE = H
surf
E + Hcurv

E

H
surf
E = γ0

∫
S
dS

Hcurv
E =

κ

2

∫
S
dS((Kθ

θ )2 + (Kz
z )2 − 2Kθ

θC0 − 2Kz
zC0 + C2

0 )

(2.31)

Inserting expressions from Equations 2.10 and 6.8, I expand all analytic

functions in Equation 2.31 as series in small a and integrate over one period.

Examining the next-to-leading order term, I retrieve the energy difference in-

duced by a small sinusoidal perturbation of amplitude a and wavenumber k:

∆HE

A0a2
=
γ

4

(
k2 − 1

)
+
κ

8

(
2k4 + (4C0 − 1)k2 + 3

)
, (2.32)

where A0 = 4π2/k is the surface area of a section of length λ = 2π/k of

the unperturbed cylindrical surface. The last term in Equation 2.31 has been

absorbed into the effective surface tension γ := γ0− 1
2C

2
0 and all energy densities

are given in units of κ.

Roots of Equation 2.32 are the critical wavenumbers
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2.4 Linear stability analysis

kc(γ0, C0) =
1

2

(
1− 2γ − 4C0 ±

√
8(2γ − 3) + (−1 + 4C0 + 2γ)2

)1/2
.

(2.33)

Smaller wavenumbers (larger wavelengths) than the critical value are un-

stable, while systems shorter than the critical value are stable.

For the system of tweezed lipid tubules exhibiting the pearling phenomenon,

the same limit of stability has been derived in various forms and limits; an over-

view of the equivalance of various author’s results with special cases of Equation

2.33 is given in refernce [41]. The same limit results from the hydrodynamic

route or the energy balance route. For example, Granek and Olami [42] follow

equivalent steps (i.e. first order energy balance with explicit volume constraint)

with the same Helfrich Hamiltonian, although with no spontaneous curvature

term, to obtain Equation 2.33 via Equation 2.32 (Eq 16 in their paper), in

addition to considering hydrodynamics. In the following sections I review the

commonly predicted stability limits in the special cases C0 = 0 (spontaneous

curvature omitted), γ0 = 0 (vanishing surface tension), and including both

effects, before moving on to non-linear analysis.

2.4.1 Neutral spontaneous curvature

First, I set spontaneous curvature to C0 = 0 to represent an interfacial material

preferring a neutral (planar) curvature. Equation 2.33 becomes

kc(γ0) =
1

2

(
1− 2γ0 ±

√
8(2γ0 − 3) + (−1 + 2γ0)2

)1/2
. (2.34)

The limiting wavenumbers in the case C0 = 0 are shown in Figure 2.4, plotted

against γ0 and 1/γ0.

Larger bending-rigidity–surface-tension ratios have a stabilizing effect, ren-

dering increasingly long cylinders stable. For bending-rigidity–surface-tension

ratios above a limiting value κ/γ0 = 2/3, cylinders are stable against fluctu-

ations of all wavelengths [41, 43]. h

2.4.2 Vanishing surface tension

Setting intrinsic surface tension to γ0 = 0, as is the case in many systems such

as closed lipid vesicles and cell membranes or emulsion droplets in chemical
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Figure 2.4: Critical wavenumber kc as a function of surface tension γ0 (in units

where bending rigidity κ = 1) and as a function of 1/γ0, i.e. bending rigidity-

surface tension ratio. The critical wavenumber (inverse to a critical wavelength)

delineates systems which are linearly stable from those which are unstable by

cylinder length and bending rigidity.
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Figure 2.5: Critical wavenumber kc as a function of spontaneous curvature

C0 in the case of vanishing intrinsic surface tension γ0 = 0. While Equation

2.35 has two solutions between C0 = −
√

3 and −1, only the greater value is

meaningful. The equation has no solutions (systems of all lengths are stable)

between C0 = −1 and
√

3 and the critical wavenumber reaches a maximum of

kc =
√

3 at spontaneous curvature C0 = −3.

equilibrium with the bulk, Equation 2.33 becomes

kc(C0) =
1

2

(
1− 2γ − 4C0 ±

√
8(2γ − 3) + (−1 + 4C0 + 2γ)2

)1/2
, (2.35)

with effective surface tension γ = 1/2C2
0 .

The critical wavenumber at γ0 = 0 is plotted in detail in Figure 2.5. While

there are two real solutions kc(C0) to Equation 2.32 for intrinsic curvatures

between C0 = −
√

3 to C0 = −1, all systems with wavelengths longer than

that indicated by the larger critical wavenumber should be counted as unstable

because these long-wavelength systems experience shape perturbations of all

smaller wavelengths. Note that even in the absence of an intrinsic interfacial

tension, a function of spontaneous curvature, γ :=
C2

0
2 , acts as an effective

surface tension [35]. At extreme spontaneous curvature of either sign, this term

dominates and the system approaches the original Plateau-Rayleigh stability

criterion, kc = 1.
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Figure 2.6: kc(C0) at a range of γ0

As is conventional [6], orientation of the surface was defined so that the

original cylinder has the negative total curvature 2H = − 1
r0

= −1. Surprisingly,

a preferred curvature with the same sign as that of the initial cylinder has a more

prominent destabilizing effect than a preferred curvature opposite to that of the

initial cylinder. The maximum critical wavenumber kc =
√

3 occurs at C0 = −3.

At this spontaneous curvature, the sphere-like sections of a heavily modulated

cylinder most closely approximate the material’s preferred curvature value.

2.4.3 Competing surface tension and spontaneous curvature

In systems with competing intrinsic surface tension and bending rigidity effects,

the full Equation 2.33 is relevant. The limiting wavenumbers are plotted as

a function of spontaneous curvature for a range of intrinsic surface tension in

Figure 2.6. As identified in Section 2.4.1, a surface tension of γ0 = 1.5 (in

units of κ) delineates systems where bending rigidity effects create a region of

absolute stability. In the limit of large surface tensions dominating over any

spontaneous curvature effects, the critical wavenumber approaches kc = 1 at

all spontaneous curvature values.
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2.5 Numerical stability analysis

2.5 Numerical stability analysis

I also semi-numerically integrate equation 2.30, which is explicitly written as

HE = H
surf
E + Hcurv

E

H
surf
E = 2πγ

∫ 2π/k

0
dz

r0√
1− a2

2

(1 + a sin(kz))
√

1 + a2k2r(a)2 cos2 kz

Hcurv
E = 2π

κ

2

∫ 2π/k

0
dz

√
1 + a2

2

r0(1 + a sin(kz))
√

1 + a2k2r2
0 cos(kz))

+ 2π
κ

2

∫ 2π/k

0
dz

(r0ak
2 sin(kz))2r0(1 + a sin(kz))(

1 +
a2

2

)3/2

(1 + a2k2 cos2(kz))5/2

+ 2π
κ

2
4C0

∫ 2π/k

0
dz

+ 2π
κ

2
4C0

∫ 2π/k

0
dz

ak2r2
0 sin(kz)(1 + a sin(kz))

(1 + a2

2 )(1 + r2
0a

2k2 cos2(kz)))
.

(2.36)

The values of complete elliptic integrals of the second kind, E(m) :=∫
dz
√

1 +m2, are used where applicable and the remaining intractable terms

are integrated numerically. By repeating the integration for a range of values

0 < |a| < 1, I numerically identify minima of the potential HE(a). For a grid

of values of (k, γ0) and (k,C0) respectively, the minimizing shape amplitude

|a| is shown as the background shading in Figure 2.7 and 2.8. The analysis

goes beyond first order energy differences around a ≈ 0, and so is applicable to

systems with greater shape amplitudes.

2.5.1 Metastability

In general the numerical results replicate the perturbatively predicted stability

criterion well. However, there is a discrepancy in perturbative and numerical pre-

dictions around κ = 0, k = 1: around the classical Plateau-Rayleigh instability

for surface-tension dominated systems.

To interpret the discrepancy, I examine the one-dimensional energy land-

scape H
surf
E (a) at values around k = kc = 1 (Figure 2.9). In these cases, linear
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2.5 Numerical stability analysis

Figure 2.7: Linear and numerical stability at neutral spontaneous total curvature

C0 = 0. The red line shows the result of linear stability analysis, delineating

linearly stable from unstable regions as in Figure 2.4. The background shading

gives the energy-minimizing shape amplitude |a| according to numerical analysis.

There is a region of metastability, where the system is modulated according to

numerical analysis but stable according to linear analysis, around 1/γ0, k & 1.
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2.5 Numerical stability analysis

Figure 2.8: Linear and numerical stability for varying C0 at three fixed γ0.

Colored lines taken from linear stability analysis, Figure 2.6. The background

shading gives the energy-minimizing shape amplitude |a| according to numerical

analysis for a given set of values (k,C0). There are a metastability regions

especially at negative spontaneous curvature values, where numerical analysis

indicates |a| � 0 above the linear stability line.
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2.5 Numerical stability analysis

stability analysis correctly identified |a| = 0 as a local minimum. However,

there are more significant global minima at |a| = 1. These are detected by the

numerical minimization analysis. The system is metastable: the flat cylinder is

stable against small fluctuations, but larger fluctuations will induce a transition

to the global minimum at |a| = 1, interpreted as breakup into droplets. The

phenomenon has already been noted by Carter and Glaeser [44] in the context of

instability of wires and cylindrical metal inclusions; they point out the amplitude-

dependent (‘nucleation barrier’) stability criterion is kc(a) =
√

1 + a2

2 (in units

of 1/r0) . In general, predictions from linear stability analysis are similar to

those from numeric minimization.

In Figure 2.8, we see that the metastability effect is greater at negative

spontaneous curvatures, whose linearly destabilizing effect is also greater than

that of positive spontaneous curvatures, as has been discussed previously. At

negative spontaneous curvature, a highly modulated shape, that is approaching

spheres with the preferred curvature everywhere, is the energetic minimum of

the system. The strong metastability reflects in a region around C0 ≈ −3

reflects this nearby strong energetic minimum.

2.5.2 Stability of modulated tubules

The numerically retrieved energy-minimizing values |a| in Figures 2.7 and 2.8

can take on intermediate values 0 < |a| < 1. That is, for wavenumber and

surface tension combinations where the cylinder is unstable (minimizing shape

amplitude amin is not zero), the minimizing shape amplitude is not always

|amin| = 1. A stable modulated morphology is predicted. I here examine

whether this prediction can be taken literally, despite the system being artificially

restricted to the family of sinusoidally perturbed shapes.

One major approximation in the analysis is that only a single sinusoidal

modulation of wavenumber k, which may be seen as the longest wavelength a

system can support, is considered. This is in contrast to solving the full axisym-

metric shape equations, i.e. solving for the functional r(z) minimizing system

energy HE [r(z)]. The simplification has allowed me to reduce the problem to a

simple single-parameter minimization. Equivalently, the exact shape r(z) of the

system can be fully decomposed into sinusoids, of which we have examined only

38



2.5 Numerical stability analysis

−1.0 −0.5 0.0 0.5 1.0
Shape amplitude a

36.5

37.0

37.5

38.0

38.5

39.0

39.5

40.0

S
ur

fa
ce

ar
ea
A

k = 1.205

k = 1.105

k = 1.005

k = 0.905

Figure 2.9: Surface area of modulated cylinders with a range of wavenumbers

k around k = 1. The illustration shows how the numerically detected global

minima and a stability analysis around a = 0 can give apparently contradictory

outcomes. Maxima are marked to show that, just above k = 1, the local

minimum at a = 0 is separated from the collapsed state by very low energy

barriers and thus for practical purposes the shape is unstable at some k > 1 at

nonzero temperatures.
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0

rsub

d

Figure 2.10: Approximating the neck as a cylinder.

the longest-wavelength one, thought to be the primary indicator of stability. In

reality, fluctuations of all wavelengths smaller and up to the length of the sys-

tem exist simultaneously. Instability against fluctuations of any such wavelength

indicates overall instability of the system. I here refine the initial estimate by

considering the addition of smaller-wavelength fluctuations on crucial sections

of the system.

I here estimate whether the predicted modulated morphology is stable against

smaller-wavelength perturbations on the resulting narrow neck by considering

the narrow neck as a subsystem which can be subjected to the same analysis as

the parent system. A subsystem centered on the narrowest point is approxim-

ated as an initially straight cylinder of length 2d, where d may range from 0 to

π/2 (Figure 2.10), and with its radius approximated by its mean radius

rsub = 〈r〉 =
2
∫ d

0 r(a) (1− a cos(kz)) dz

2d

= r(a)(1− a/d sin(kz)).

(2.37)

In this approximation, initial curvature of the subsystem is also neglected.

The pre-existing slight axial curvature would stabilize the subsystem relative to

my estimate. Finally the narrow neck is assumed to obey the same analysis as

the larger system, with a volume constraint on subsystem volume.

I find the subsystem’s critical wavenumber, ksubc (d), by applying Equation

2.33 to the subsystem. By absorbing factors of rsub into κ, the subsystem can be

seen as a similar system with larger effective bending rigidity κ′ = κ/(rsub(a))2,

and smaller relative surface tension γsub = γ(rsub(a))2. Effective spontaneous

curvature is, in units of the subsystem radius, scaled to C ′0 = C0r
sub.
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Starting from a system with k, C0, and the shape amplitude a indicated

by the numerical analysis in section 2.5, I check numerically whether, for any

d ∈ (0, π/2), there exists a subsystem of length 2d whose aspect ratio is smaller

than its critical aspect ratio ksubc (d)/r0.

Where such a linearly unstable subsystem exists, this does not necessarily

indicate the modulated cylinder will breakup: the linearly unstable narrow neck

may develop a large-amplitude fluctuation which leads to pinch-off or the sub-

system may itself develop to only a mildly modulated shape, which is not itself

linearly unstable to any smaller wavelengths. On the other hand, where no linear

instability of the narrow neck is found (cases indicated by the hatched area on

Figure 2.11), the mildly modulated channel shape indicated by the numerical

analysis is indeed a stable equilibrium. The first iteration of the recursive stabil-

ity analysis scheme indicates that at least some such stable modulated channels

exist. The exact extent of the phenomenon is likely underestimated by only

including absolutely stable cases, and the scheme is a rough estimate where

approximations, for example the choice to take mean radius as the effective

radius, were made. Like the identification of a metastability phenomenon, the

novel analysis highlights another limitation of the linear stability prediction.

2.6 Discussion and Conclusions

I review the static energy balance approach to the instability of fluid columns

with surface tension (the Plateau-Rayleigh instability) as well as those with

some combination of surface tension, bending rigidity, and nonzero spontaneous

curvature. Various combinations of surface tension, bending rigidity, and spon-

taneous curvature are examined analytically using perturbative stability analysis.

By numerical analysis beyond small shape amplitudes, I find a metastability phe-

nomenon, where some linearly stable cases are in fact unstable against larger

fluctuations. I also find that some apparently unstable systems may in fact

reach equilibrium in a stable, mildly modulated channel shape. Expressions for

linear limits of stability of such systems are well known in the literature; they are

re-derived here as a basis and comparison. I add the suggestion that the energy

landscape beyond the linear regime, which I explore numerically, gives rise to
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Figure 2.11: Where an intermediate value 0 < |a| < 1 is indicated as the equi-

librium shape amplitude, the stability of the modulated channel shape against

smaller-wavelength fluctuations was numerically investigated. The hatched area

indicates systems where the resulting modulated morphology is linearly stable

against all smaller-wavelength fluctuations. Contrary to the linear prediction,

such systems can be considered stable.
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2.6 Discussion and Conclusions

physically relevant effects in the case of solid-stabilized interfaces. The chapter

sets up the approach - comparing the energetics of equilibrium configurations;

linear perturbative and numerical nonperturbative analysis - which I will build

on throughout the thesis.

As can be seen in the body of experimental and theoretical literature on

tweezed lipid membrane tubes [29, 30, 41, 45], it is possible to induce the

relevant surface tension scales in lipid membranes with bending rigidity dynam-

ically. Highly modulated channel shapes which nevertheless do not separate

into droplets are observed, but this is not necessarily the effect predicted in

Section 2.5.2. Granek and Olami [42] suggest that the modulated shape is

not accounted for in the simple model with uniform material properties, but

is some additional effect such as dynamic fractionation of lipid molecules by

spontaneous curvature, where a mixture of two or more lipid species varies in

compositions according to emerging surface curvatures.

An arbitrary choice was made to retain an energy density from spontaneous

curvature, as an effective surface tension in γ = γ0 +
C2

0
2 as well as to reserve a

symbol γ0 for miscellaneous ‘other’ energy densities of the interfacial material.

These energy densities are relative to a reference system, in particular to mo-

lecules in the bulk. The reservoir is arbitrarily assumed to have been in equilib-

rium with a version of the system with neutral spontaneous curvature. In reality

the appropriate chemical potential or energy density of the interfacial material

depends on circumstances of the experiment. Granek, Nelson et al. [35, 45] find

a destabilizing effective surface tension from spontaneous curvature appropriate

for an experiment where a spontaneous curvature is introduced in a lipid tubule

by the addition of solutes to the outer liquid.

In my bending rigidity term, potential anisotropic properties of the interfacial

material have been omitted. They may play a role in technical and biological

lipid membrane system, for example when a spontaneous mean curvature is

induced by arc-shaped proteins [46]. A spontaneous mean curvature term could

be added to the model to study additional effects.

Only sinusoidal axisymmetric shape deformations of a cylinder are examined,

omitting the possibility of azimuthal modes as well as other shapes. Neverthe-

less, the system approximates possibly irregular channels in emulsions, as general
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principles are similar. The shape of a pearled membrane tube is likely a undu-

loid, an axisymmetric minimal surface. However, it closely resembles a sinusoid.

More angular and faceted shapes become a likely outcome in later chapters, but

will not be accurately represented by the shape deformations examined here.

The system is said to be a closed infinite or periodic tube (a ‘straight torus’),

a clearly unphysical object. The enclosed fluid volume (per periodic section) is

assumed to be constant on this basis. The real object of interest, a channel

or tubule attached to constant-pressure droplet reservoirs or a larger structure,

is subject to equivalent effects. The topological genus (and thus integral over

Gaussian curvature) is said to be constant if the tubule is periodic. Shape

changes in which topological genus is changed, such as breakup into spheres,

are also excluded from the model except as the implied consequence of high-

amplitude deformations.

Furthermore the mechanical model described by the Helfrich Hamiltonian is

a simplified one, assuming spatially homogeneous properties of the interfacial

material. In-plane stresses and flows are omitted. While in some systems the

interfacial layer may be relatively homogeneous, in others, effects such as the

fractionation of lipid species by curvature occur. As a consequence, there is

spatial variation in the material properties of the interface. One example of a

spatially varying property of the interfacial material, orientational order, is the

subject of the rest of this thesis. The formulation will be additive, retaining

the material properties described in this chapter as a background of spatially

uniform ‘external’ terms in the energy while adding complex additional effects.
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enius, Sci Rep 4, 1 (2014).

[27] M. Bloom, E. Evans, and O. G. Mouritsen, Q Rev Biophys 24, 293 (1991).

[28] H. Duwe, J. Kaes, and E. Sackmann, J Phys (Paris) 51, 945 (1990).

[29] R. Bar-Ziv and E. Moses, Phys Rev Lett 73, 1392 (1994).

[30] P. D. Olmsted and F. C. Macintosh, J Phys (Paris) 7, 139 (1997).

[31] O. Marin, M. Tkachev, E. Sloutskin, and M. Deutsch, Curr Opin Colloid

Interface Sci (2020).

[32] D. A. Woods, C. D. Mellor, J. M. Taylor, C. D. Bain, and A. D. Ward,

Soft Matter 7, 2517 (2011).

[33] A. Sahu, A. Glisman, J. Tchoufag, and K. K. Mandadapu, Phys Rev E

101, 052401 (2020).

[34] K. White, A. B. Schofield, B. Binks, and P. Clegg, J Phys Condens Matter

20, 494223 (2008).

[35] R. Granek, Langmuir 12, 5022 (1996).
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Chapter 3

Landau-Ginzburg model of orientational

order

Abstract

I introduce the Landau-Ginzburg theory of a curvature-coupled orientational

order parameter field and derive analytic outcomes on the modulated channel

shape in a range of cases. I first examine the corresponding Fourier-space theory

of the quadratic operator Γ. For small shape perturbations, the interfacial

material remains ordered; orientational order resists splay-inducing curvatures

and the effect on a cylindrical system is stabilizing. On more strongly modulated

channel shapes, I predict two distinct types of response of the orientational order.

I distinguish type I systems, where only the magnitude of order varies in response

to curvature, and a type II vortex state, where the orientation of order rotates

around up to 4n defect cores.

48



Table 3.1: Table of symbols, Chapter 3

symbol meaning

φ angle of individual particles or bonds

a shape amplitude of sinusoidally modulated surface

r0 the radius of the unperturbed cylinder

γ surface tension

κ bending rigidity

r(a) mean radius of the perturbed cylinder with conserved volume

r = r(z, a) radius of the perturbed cylinder

Ai spin connection, a local geometric quantity of the surface

n order of rotational symmetry

α, c, u phenomenological parameter in the LG theory

∂i partial derivative operator

Di covariant partial derivative operator

Ψ, Ψ(x) order parameter field, a complex-valued field over the surface space

ψ(z) a simplified, real and one dimensional, representation of the field

Ψq (component of the) Fourier space representation of the field

ψj Fourier space representation real and one-dimensional field

Γqq′ Fourier-space operator of the quadratic part of the Hamiltonian,

a Hermitian matrix

Dqpq′p′ Fourier-space operator of the quartic part of the Hamiltonian,

a high-dimensional matrix

q = (j, β) wavevector; axial and azimuthal direction wavenumbers

gi Fourier basis

fi basis of eigenfunctions on the modulated cylinder

m local azimuthal rotation number

M number of defects
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3.1 Introduction

Figure 3.1: Definition of the angle φ in hexatic order: a ‘bond’ is drawn between

a molecule or particle position and one of its neighbours. The angle φ is the angle

between the intrinsic basis vector t̂1 and the bond. Any of the six neighbours

can be chosen.

3.1 Introduction

In this chapter I examine an orientationally ordered fluid, such as a fluid of

molecules or particles on the interfaces in emulsions, and its interactions with a

curved surface. I examine how surface shape affects order in the material and

how order affects shape and stability of a modulated channel.

As motivated in Section 1.2, monolayers of monodisperse spherical particles

form a low-temperature hexatic phase, where particles are locally arranged in

hexagonal configurations. The orientation of the hexagonal pattern persists

over long distances. Another example of orientational order is order in the

orientations of elongated molecules or particles in a nematic material. Various

types of orientational order can be represented as the complex-valued order

parameter field Ψ(x), enabling a unified theoretical treatment.

The order parameter field is here constructed as

Ψ(x) = 〈einφ(x)〉. (3.1)

The brackets 〈〉 denote a local spatial averaging over a certain lengthscale

Λ, which should be chosen to encompass a few molecular/particle bonds while

not being so big that the spatial average approaches zero. For each bond, the

angle φ is defined as the angle between one of the basis vectors t̂i of the local

50



3.1 Introduction

coordinate system (Equation 2.3) and the ‘bond’ connecting a particle and its

neighbour (Figure 3.1). This angle in the t̂1, t̂2 tangent plane is then mapped

onto the phase of a complex number. The factor n for the multiplicity of the

n-atic order, for example n=1,2,3,4,or 6, is introduced. For hexatic symmetry,

n = 6. This factor ensures that Ψ has the same phase if any of the six ‘bonds’

are chosen as a reference by which φ is measured.

The internal Hamiltonian is the part of the Hamiltonian collecting terms

relating to the energy associated with the arrangement of molecules or particles

within the surface. This part of the Hamiltonian is a functional of the order para-

meter field Ψ(x). An expression HI(|Ψ|2, |DiΨ|2, |Ψ|4, ...) is chosen according

to Landau-Ginzburg theory. As usual, this derives from minimal assumptions

of analyticity and symmetry of the energy functional [1]. In particular, sym-

metry under Ψ→ −Ψ means that only even powers of Ψ and its derivatives are

included. I here use

HI =

∫
S
dS
(
α|Ψ|2 + c|DiΨ|2 +

u

2
|Ψ|4

)
(3.2)

with dS =
√
gdzdθ.

The notation | · |2 applied to a complex scalar indicates the usual square

modulus, |x|2 = xx∗. The same square modulus notation applied to a complex

tensor indicates a tensor inner product as well as the complex absolute square,

|xi|2 := xix
i∗ = xix

∗
jη
ij , here using the metric ηij of the cylindrical coordinate

system.

The coefficients c and u are positive real numbers, and α is a real coeffi-

cient that may be positive of negative. The coefficients are in general functions

of temperature and other variables, but the value of the first coefficient as a

function of temperature is most critical to the phase behaviour of the order

parameter field. The simplest expression near the critical point is a linear func-

tion

α(T ) = α0
T − Tc
Tc

, (3.3)

where Tc is the usual critical temperature of the material on a flat space.

The second coefficient, c, is a bending rigidity of the order parameter field.

It is related to the Frank constant, which describes the bending rigidity of

liquid crystals, in the one-Frank-constant approximation. The Frank constant
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3.1 Introduction

K is the coefficient to a gradient term 1/2((∇ · n̂)2 + |∇ × n̂|2), where order

is described as a vector field n̂. According to the KTHNY theory of hexatic

phases [2], the theoretical value of the Frank constant is K = 72/π (in energy

units kBT ) near the isotropic-hexatic transition, while in the low-temperature

limit of the hexatic phase it diverges towards a hexatic-crystalline transition.

For hexatic phases in monolayers of spherical colloidal particles, this constant

has been experimentally measured and was found to be in good agreement with

the theoretical prediction [3, 4]. Note that the value Ka = 72/π is given in

the framework of a different notational convention for orientational order in the

hexatic material, where average bond orientation is included as a vector field

rather then being mapped onto a ‘spin n’ complex field. A value of K = 72/π =

2n2/π in the literature corresponds to a value of c = 1/π in my model, where

an equivalent factor of n2 is instead included in |DiΨ|.
The derivative term c|DiΨ|2 can be interpreted as the energy cost of dis-

torting the field Ψ(x). The operator Di is the covariant derivative operator,

defined as

Di = ∂i − inAi, (3.4)

where Ai is the spin connection (Equation 2.11), a quantity relating to surface

shape at each point. The use of the spin connection to construct the covariant

derivative accounts for the difference between a parallel vector field as defined

naively by the derivative and as produced by transport along a curved surface. It

is via this term that the interaction of surface curvature with the order parameter

field is taken into account. In the limit of a flat surface, Ai = 0 and the operator

reduces to the conventional gradient of the order parameter field.

The Landau-Ginzburg model for n-atic order of membranes on curved inter-

faces has been introduced for spheres by Park et al. [5] and studied on spheres

and tori by Evans [6, 7]. For a summary of further developments in the study of

Landau-Ginzburg n-atic order and of other representations of order on a variety

of surface shapes, see review by Bowick and Giomi [8].

On a flat space and in the absence of thermal fluctuations, well-known

solutions minimizing the Landau theory, i.e. Equation 3.2 without the gradient
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3.1 Introduction

term, are obtained by solving

∂HI

∂Ψ∗
= Ψ0(α+ u|Ψ0|2) = 0; (3.5)

solutions are complex values Ψ0 with arbitrary phase and with magnitude

|Ψ0| =


√
−α
u , α ≤ 0,

0, α > 0.
(3.6)

Note that in this state the material has an energy density per unit area of

v0 =

−
α2

2u , α ≤ 0,

0, α > 0.
(3.7)

The negative free energy density of the ordered interface (relative to surfact-

ants in the bulk) at low temperatures can act as an effective negative surface

tension. A temporarily negative effective surface tension in combination with

hexatic ordering of molecules on macroscopic droplets can have dramatic ex-

perimentally observed effect on spherical droplets, [9–11].

The material has a persistence length [1] of

ξ =


√

c
2|α| , α ≤ 0,√
c
α , α > 0.

(3.8)

It is common to use the London approximation in place of Equation 3.2,

assuming that a constant-magnitude field |Ψ| = |Ψ0| = 1 exists almost every-

where on the surface. Topological point defects are treated as discrete defect

charges, but the local decrease in field magnitude at the defect core is neglected.

The treatment allows elegant differential geometry solutions, for example by

Alageshan et al. [12] on general shapes. In this view coupled with dynamic

Plateau-Rayleigh instability, Lenz and Nelson [13] have treated instabilities of a

cylindrical system with bending rigidity and n-atic order. The London approxim-

ation is appropriate for the low temperature (α < 0) regime [14]. I here choose

to retain the general theory, allowing the magnitude of Ψ(x) to vary, with the

quadratic-quartic potential loosely confining the field close to magnitude given

in Equation 3.6. This additional information comes at the cost of analytic tract-

ability but enables us to discover a high-temperature-like effect of curvature in

simulation.
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3.2 Fourier space field theory

In general we seek solutions Ψ(x) to Equation 3.2 with expressions Di,
√
g

specific to the surface shape.

3.2 Fourier space field theory

The standard approach to wave equations in general is to examine the theory

in Fourier space, as Fourier modes are eigenmodes of the Laplacian operator

and the problem usually becomes linearly separable. I find that this does not

apply on the modulated surface shape and the use of Fourier analysis is limited.

Other insights are gained from the Fourier-space examination.

The field is decomposed as Fourier series

Ψ(x) =
∑

Ψqe
iq·x′ =

∑
Ψqe

iθβ
r0 eikzj (3.9)

with scaled position vector x′ = (θ/r0, zk) and with wavevector q = (β, j)

ranging over both positive and negative integer values of β and j. The field Ψ(x)

is defined with respect to the external, cylindrical coordinate basis (θ, z); the

decomposition is general to a field on any deformation of a cylindrical surface.

The space is periodic, therefore the continuous field Ψ(x) transforms into a

discrete set of coefficients Ψq for qz, qθ = 0,±1,±2, ..., up to some cutoff

wavenumber |q| = Q.

Coefficients Ψq are formally given by the inverse Fourier transform

Ψq =
1

A0

∫ 2π

0

∫ 2π/k

0
dθdzΨ(x)e−iβθe−ijkz. (3.10)

The Fourier transform convention is such that the real-space domain (the surface

of a cylinder) has dimensions 2πr0 × 2π/k and area A0 = (2π)2r0/k.

To obtain low-temperature solutions I will be solving for the set of complex

values {Ψq} minimizing HI . Inserting Equation 3.9 into Equation 3.2, the

Hamiltonian can be expressed, in discrete Fourier space, as the sum

HI =
∑
qq′

ΨqΨ†q′

∫
S
dS
(
αei(q−q

′)·x′ + c(Die
iqx′)(Dieiq

′x′)∗
)

+
∑

qpq′p

u

2
ΨqΨpΨ†q′Ψ

†
p′

∫
S
dSei(q+p−q′−p′)·x,

(3.11)

or
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3.2 Fourier space field theory

HI =
∑
qq′

ΨqΨ†q′Γqq′ +
∑

qpq′p

ΨqΨpΨ†q′Ψ
†
p′Dqpq′p′ , (3.12)

with matrices Γ, D holding values of the integrals in Equation 3.11, evaluated

over whole periods of a given surface shape. The matrix Γ = G−1 of the

quadratic part of the series can be identified as a propagator or inverse Green’s

function. For an unperturbed quadratic theory the propagator is Γ0 = diag(α+

c/r2|q|2). For flat space the operator/matrix Γ0 is diagonal and the matrix D0

is ‘diagonal’ in the sense that Dqpq′p′ ∼ δ(q+p)(q′+p′).

The standard procedure for a quadratic-quartic field theory is that the quad-

ratic operator is diagonal; the partition function related to the harmonic operator

is trivial. The quartic part of the theory can then be added as a perturbation.

However, on the curved surface the quadratic operator itself is not trivial. I

therefore devote time to examining the quadratic operator. In the case of small

surface shape modulations |a| � 1, effects of curvature on the quadratic part

of the theory can be introduced perturbatively.

3.2.1 Quadratic operator

Let’s find expressions for the off-diagonal values and the resulting low-temperature

field on the slightly perturbed surface. Proceeding first with the harmonic part

of the theory,

HI =
∑
qq′

ψ†q′Γqq′ψq. (3.13)

The operator Γqq′ is a Hermitian matrix, albeit an infinitely large one with

indices running to ±∞ in both directions. The basis is the Hilbert space of

Fourier modes gq = eiq·x . The wavevector indices q = (j, β) and q′ =

(j′, β′) stand for two wavenumber indices each; the matrix Γqq′ can alternatively

be thought of as the four-dimensional object Γjβj′β′ . However, even on the

modulated shape Γjβj′β′ ∼ δββ′ . The operator is ‘diagonal’ in β indices; modes

with different θ-direction momenta do not interact with each other. For each

value β, there is a set of solutions Ψjβ,Ψ
†
j′,β which are uncoupled from and

analogous to the set of solutions for any other value of β. It is sufficient to

fix β = β′ to an arbitrary value, for example β = 0, and examine one such

set of solutions. Without loss of generality I therefore drop the notation of β
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3.2 Fourier space field theory

indices and print a two-dimensional ‘slice’ Γjj′ := Γjβj′β of the four-dimensional

operator. On a flat cylinder the operator is also diagonal in j-indices,

Γ
(0)
jj′ = A0



. . .

α+ 4cn2 0 0 0 0

0 α+ cn2 0 0 0

0 0 α 0 0

0 0 0 α+ cn2 0

0 0 0 0 α+ 4cn2

. . .


, (3.14)

where the central row and column correspond to indices j = 0, j′ = 0.

To obtain Γ on modulated surfaces, I evaluate the defining integrals

Γqq′ =

∫ ∫
dzdθ

√
g
(
αei(q−q

′)·x + c(Die
iqx)(Dieiq

′x)∗
)

(3.15)

I label four terms in this integral

Γα = α

∫ ∫
dθdz

√
gei(β−β

′)θei(j−j
′)kz,

Γc1 = c

∫ ∫
dθdz

√
g

gθθ
(jj′ + ββ′)ei(β−β

′)θei(j−j
′)kz,

Γc2 = cn

∫ ∫ 2π

0
dzdθ

√
g

gθθ
(β − β′)Aθei(β+β′)θei(j−j

′)kz,

Γc3 = cn2

∫ ∫
dzdθ

√
g

gθθ
A2
θe
i(β−β′)θei(j−j

′)kz.

(3.16)

The matrix Γjj′ has the following characteristics: In total, the matrix

Γ = Γα + Γc1 + Γc2 + Γc3 is Hermitian. While Γ(0) is diagonal, for small shape

modulations, the perturbed matrix Γ is weakly non-diagonal. Off-diagonal ele-

ments are of order a|j−j
′|, that is increasingly small for increasingly off-diagonal

index pairs.

In the perturbative case for weakly modulated surfaces, I insert series ex-

pansions for the quantities
√
g, 1/gθθ = 1/r(a), and Aθ in small a and evaluate

the integrals up to order a2. The analytic expressions for values of Equations

3.16 in the perturbative case are:
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3.2 Fourier space field theory

Γα = Γ(0)
α +A0α

. . .

k2a2/4 ia/2 −k2a2/8

−ia/2 k2a2/4 ia/2 −k2a2/8

−k2a2/8 −ia/2 k2a2/4 ia2/2 −k2a2/8

−k2a2/8 −ia/2 k2a2/4 ia/2

−2k2a2/8 −ia/2 2k2a2/4
. . .


,

(3.17)

Γc1 = Γ
(0)
c1 +A0c



. . .

k2a2 ia 0

−ia k2a2/4 0 +k2a2/8

0 0 0 0 0

k2a2/8 0 k2a2/4 ia

0 −ia k2a2

. . .


, (3.18)

Γc2 = cn2π2(β + β′)



. . .

0 2a −ia2 0 0

2a 0 2a −ia2 0

ia2 2a 0 2a −ia2

0 ia2 2a 0 2a

0 0 ia2 2a 0
. . .


, (3.19)
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Γc3 = ckn2π2

. . .

ia3/2 2a2 −ia3/2 a2 −ia3/2 0 0

a2 ia3/2 2a2 −ia3/2 a2 −ia3/2 0

ia3/2 a2 ia3/2 2a2 −ia3/2 a2 −ia3/2
0 ia3/2 a2 ia3/2 2a2 −ia3/2 a2

0 0 ia3/2 a2 ia3/2 2a2 −ia3/2
. . .


,

(3.20)

with Equation 3.14 represented as Γ
(0)
α = diag(αA0) and [Γ

(0)
c1 ]jj′ = diag(A0j

2cn2).

In the above matrices 0 indicates a value of exactly zero, while a blank entry

indicates a negligible value o(a3). For the concrete example of the perturbative

analytic expression, I describe and interpret the four terms in Equation 3.16:

Γα relates purely to surface area. Because of variations in the area element

(
√
g 6= 1), from this effect neighboring axial modes become coupled to each

other ∼ a|j−j′|. The slice is identical for any two values β = β′, otherwise zero.

Unlike axial modes, neighboring azimuthal modes are not coupled to each other

by the perturbation in surface area.

The matrix Γα also gives elements of the matrix Djlj′l′ pertaining to the

quartic term, for which I introduce a shorthand notation Dii′ with two indices:

D(j+l)(j′+l′) := Djlj′l′ =
2

αu
(Γα)(j+l)(j′+l′). (3.21)

The gradient term Γc1 related to the part of momentum terms that is equi-

valent to flat space. It is affected by the shape perturbation in a way analogous

to mass terms Γα, but includes factors of wavenumber q · q′ in each element.

In the β directions, slices are replicated times another factor of ββ′.

Matrix Γc3 ∼ |Aθ|2 is an additional energy density, starting at O(a2), from

surface-induced splaying of the order parameter field. It is nonzero where β −
β′ = 0 and j − j′ = 0 or j − j′ = ±2. As with Γα, the displayed slice is

replicated identically for all β − β′ = 0.

58



3.2 Fourier space field theory

-4 -2 0 2 4 6
j

-4

-2

0

2

4

6

j′

Re(Γjj′)

-4 -2 0 2 4 6
j

-4

-2

0

2

4

6
j′

Im(Γjj′)

−40

−20

0

20

40

Figure 3.2: Total matrix Γjj′ at shape amplitude a = 0.5. Note that the

colorscale has been capped at ±50.

Finally let’s examine Γc2: Here, factors of
√
gzz, r(a) cancel so that

(Γc2)jβj′β′ = cnak(β + β′)

∫ ∫
dzdθ cos kzei(β+β′)θei(j−j

′)kz
= ±i(β + β′)cn2π2a2 if |j − j′| = 2 and |β − β′| = 0

= 2(β + β′)cn2π2a if |j − j′| = 1 and |β − β′| = 0

= 0 otherwise.

(3.22)

In the displayed slice at β = β′ = 0, the matrix is trivially zero due to factor

(β + β′). In general, this term has an interesting effect on higher azimuthal

modes. Here it introduces a coupling between neighboring axial modes with the

same small nonzero azimuthal wavenumber. It hints at the vortex configuration

which we will see later.

The total quadratic operator Γjj′ is displayed in Figure 3.2. In general, in a

statistical field theory of the form

Z = e−βH

H = x†Ax =
∑

x∗jAijxi,
(3.23)

with (possibly complex) vectors x and matrix A, correlations are given by the

inverse of the matrix operator,

β〈x†jxi〉 = [A−1]ij , (3.24)

59



3.2 Fourier space field theory

-4 -2 0 2 4 6
j

-4

-2

0

2

4

6

j′

Re(Γ−1
jj′)

-4 -2 0 2 4 6
j

-4

-2

0

2

4

6
j′

Im(Γ−1
jj′)

−0.04

−0.02

0.00

0.02

0.04

Figure 3.3: Inverse operator Gjj′ = [Γjj′ ]
−1, indicating correlations between

Fourier modes, at a = 0.5. While elements are displayed up to j, j′ = ±6,

matrices were numerically inverted using elements up to j, j′ = ±20.

sometimes called the Green’s function G = A−1 [15]. On the diagonal of the

inverted matrix G = A−1, values 〈x†ixi〉 = Gii indicate the mean magnitude of

xi. For correlators 〈x†jxi〉 = Gji, a positive value indicates statistical correlation

between values of xi and x†j , while a negative value indicates anticorrelation. In

systems with complex values, imaginary components of 〈x†jxi〉 indicate (anti-

)correlation between real parts of xi and imaginary parts of xj and vice versa.

If the phase of the complex values represents a spatial orientation, this would

indicate that certain modes tend to be excited at right angles to each other.

Here, considering a system of quadratic form when u0 � |α|, the quadratic

operator Γ can be inverted to give the Green’s functions G = Γ−1, elements of

which have the direct interpretation as two-point correlation functions between

two Fourier modes Ψq and Ψ∗q′ : 〈ΨqΨ∗q′〉 = Gqq′ . Examples of values of Gjj′

are displayed in Figure 3.3. The values are complex. In the real part, the central

negative value is unusual - the theory has negative ‘mass’ α and must include

the quartic part to give meaningful results from this potential. Otherwise, the

real part of the Green’s function indicates (on the diagonal) decreasing expected

amplitudes of Fourier modes with higher frequencies and (off-diagonal) positive

correlations between modes j and j ± 2. More interestingly, the imaginary part

shows that imaginary modes j ± 1 are correlated with modes j and therefore
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3.2 Fourier space field theory

tend to be antialigned with the corresponding mode −j. The symmetric pairs

of Fourier modes with (on average) antialigned phases add up to a real mode

of constant phase and spatially modulated magnitude, anticipating a sinusoidal

pattern of increased and decreased magnitude of order on the surface.

3.2.2 Eigenfunctions

The sinusoidal modes eiq·x are eigenfunctions of the Laplace operator on a

periodic plane, or, equivalently, on the surface of the unperturbed cylinder.

However, on modulated cylinders, Fourier modes are not eigenmodes of the co-

variant Laplacian. Having obtained expressions for the operator Γ, I numerically

examine approximations of its eigenfunctions.

The operators Γ are expressed as Hermitian matrices on the Hilbert basis of

the set of fourier functions gi = eiq·x. The basis and operator extends infinitely

in all directions. It is no obstacle that in the most general case they are indexed

by two vectors q = (β, j),q′ = (β′, j′) and appear four-dimensional; we can

alternatively view this as a two-dimensional matrix by listing vector indices in

arbitrary order.

In general a Hermitian matrix operator can be diagonalized; the property

extends to infinite-dimensional cases on a Hilbert basis (spectral theorem) such

as Γ. In

Γ = UΛUH ; (3.25)

the diagonal matrix Λ gives the real eigenvalues λi, while columns of the Her-

mitian matrix U are eigenvectors of the operator Γ. The eigenvectors are a map

from the space of Fourier modes to eigenfunctions of the covariant Laplacian

on the given shape. Assuming eigenfunctions fi of the operator Γ exist such

that

Γfi = λifi, (3.26)

eigenfunctions can be constructed from columns of U and the Fourier basis gi

as

fj = uijgi. (3.27)

There is no simple analytic expression for eigenfunctions on a sinusoidal

cylinder. In the perturbative regime of shape modulations, I posit that eigen-
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3.2 Fourier space field theory

functions are only slight modifications to Fourier modes, fi = gi+O(a2), based

on the example in the next section.

To numerically work with these matrices, I truncate the Fourier series at

twenty terms in each direction. I obtain numerical values of Γjj′ and its eigen-

values and eigenfunctions for a specific example α, c, a, k. Entries of Γjj′ are

obtained by numerically integrating Equation 3.16.

These numerical results can show us the shape of eigenfunctions. Coef-

ficients uij , which can be used to construct eigenfunctions from Fourier basis

functions as in Equation 3.27, are shown in Figure 3.4; examples of the resulting

numerically constructed eigenfunctions are shown in Figure 3.5.

Examples

For the lowest eigenfunction, f0, on the surface a = 0.9, we read off the

top row of Figure 3.4-d. As indicated by the nonzero coefficients in this

row, components of the eigenfunction f0 are predominantly the Fourier

basis functions g−1 = e−iz and g1 = eiz, with lesser contributions from

g±2 = e±2iz. In Figure 3.5-d, the lowest eigenfunction f0(z) is shown

as the black line. The function has been constructed predominantly from

Fourier components g±1 and g±1, weighted by the numerical coefficients in

the first row of 3.4-d.

As another example, in 3.5-b, the second eigenfunction f1 (green) on a

lightly modulated shape a = 0.1 visually resembles a sinusoid with frequency

1. As can be read from the second row of in 3.4-b, it is nearly identical to (an

arbitrary combination of the real parts of) Fourier components g−1 = e−iz

and g1 = eiz.

The lowest-energy eigenfunction only will be excited at 0K and, approxim-

ately, dominate in the low temperature limit (lowest Landau level approxima-

tion). At higher temperatures additional eigenmodes are independently excited.

For small shape perturbations, the lowest energy level is almost identical

to the first Fourier mode. Higher eigenfunctions differ more prominently from

higher Fourier modes.

62



3.2 Fourier space field theory

-20 -15 -10 -5 0 5 10 15 20
Fourier components

0
5

10
15
20
25
30
35
40E

ig
en

fu
nc

ti
on

in
de

x

0.00

0.25

0.50

0.75

1.00

(a) a = 0

-20 -15 -10 -5 0 5 10 15 20
Fourier components

0
5

10
15
20
25
30
35
40E

ig
en

fu
nc

ti
on

in
de

x

0.00

0.25

0.50

0.75

(b) a = 0.1

-20 -15 -10 -5 0 5 10 15 20
Fourier components

0
5

10
15
20
25
30
35
40E

ig
en

fu
nc

ti
on

in
de

x

0.00

0.25

0.50

0.75

(c) a = 0.5
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Figure 3.4: Visualization of the matrix U of eigenvectors, which gives a mapping

from the basis of Fourier functions to the eigenfunctions fi, labeled in order of

increasing eigenvalue / decreasing statistical mean amplitude. (a) On the unper-

turbed shape, the set of eigenfunctions is identical to the set of Fourier modes,

merely labels are changed from labeling by wavenumber to indexing by mag-

nitude of eigenvalue. Fourier- and eigenmodes come in degenerate pairs. (b)

Small perturbation to eigenfunctions: Eigenfunctions take on small components

of neighboring Fourier modes and there is arbitrary mixing among degenerate ei-

genfunction pairs fi, fi+1. (c, d) For large shape modulations, the eigenvectors

take on an alternating structure. Top eigenfunctions change place; the most

significant eigenfunction f0 is no longer one based on Fourier mode g0.
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Figure 3.5: Examples of eigenfunctions. In (b-d) the arbitrary overall phase

of the set of eigenfunctions has been rotated so eigenfunctions come in purely

real and purely imaginary pairs. Eigenfunctions are weighted by their mean

amplitude 1/λi, normalized so that the first eigenfunction has mean amplitude

1. In the low temperature limit only the lowest eigenfunction (black) occurs.

(a) Unperturbed eigenfunctions, identical to the Fourier modes. Here phase is

arbitrary and only the real part is displayed. (b) In the mildly perturbed case fi

correspond to the first five sinusoidal modes gi, albeit slightly altered. (c) On the

highly modulated shape, an eigenfunction based on f1 overtakes one based on f0

as the first eigenmode. (d) On extremely modulated shapes, eigenfunctions are

prominently asymmetrical, here indicating an overall decreased field amplitude

on the narrow neck.
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On more heavily modulated shapes, eigenfunctions have no obvious cor-

respondence to Fourier modes. Field magnitude is decreased in two locations

corresponding to the widest and narrowest parts of the cylinder. This anticipates

the defect configuration predicted in Section 3.4. However, the eigenfunctions

give an averaged picture of the ground state and cannot represent the breaking

of continuous symmetries revealed by later analysis.

3.2.3 Perturbative effect of shape modulation on a uniform field

In the perturbative case, I now add the quartic term to the analysis. I examine

the excitation, via coupling in the quadratic and quartic operators, of adjacent

modes due to the onset of a small shape modulation on an initially uniform field.

The nascent excitation of other modes is negligible (in other words, when the

shape perturbation is small the 0th eigenmode of the true shape is sufficiently

similar to the 0th Fourier mode), so that the common assumption of a uniform

field in linear stability analysis (for example, by Lenz and Nelson [13]) is justified.

On an axisymmetric surface shape, modes with different azimuthal wavenum-

bers qθ are decoupled from each other. If initially only the zeroth mode, Ψ0,

has a nonzero amplitude, azimuthally varying modes with β 6= 0, are not ex-

cited by curvature-induced coupling to this mode. I will therefore ignore the

existence of azimuthally varying modes. The problem at 0K is reduced to the

quasi-one-dimensional problem, with the one-dimensional field ψ(z) denoted by

lowercase ψ. Its Fourier transform is ψj = ψq=(j,0).

The one-dimensional field is subject to Hamiltonian

HI =
∑
jj′

ψ†j′Γjj′ψj +
∑
jlj′l′

ψ†j′ψ
†
l′Dj′l′jlψjψl. (3.28)

By perturbing around the flat-space solutions |ψ(0)
0 | =

√
−α
u , and other

ψ
(0)
±i = 0, we have

ψ0 = ψ
(0)
0 + ψ

(1)
0 + ψ

(2)
0 + o(a3)

ψ±1 = 0 + ψ
(1)
±1 + ψ

(2)
±1 + o(a3)

ψ±2 = 0 + ψ
(1)
±2 + ψ

(2)
±2 + o(a3)

...

(3.29)
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with ψ
(1)
i representing an order a term, ψ

(2)
i an order a2 term.

Keeping in mind that matrix elements Γjj′ are of order a|j−j
′| and Djlj′l′

are of order a|j+l−j
′−l′|, we retain only elements of Equation 3.28 up to order

a2:

HI = ψ0ψ
∗
0Γ00

+ ψ1ψ
∗
0Γ10 + ψ−1ψ

∗
0Γ−10

+ ψ0ψ
∗
1Γ01 + ψ0ψ

∗
−1Γ0−1

+
∑
j≥1

(
ψjψ

∗
jΓjj + ψ−jψ

∗
−jΓ−j−j

)
+ ψ0ψ0ψ

∗
0ψ
∗
0D00

+ 2ψ1ψ0ψ
∗
0ψ
∗
0D10 + 2ψ−1ψ0ψ

∗
0ψ
∗
0D−10

+ 2ψ0ψ0ψ
∗
1ψ
∗
0D01 + 2ψ0ψ0ψ

∗
−1ψ

∗
0D0−1

+
∑
j≥1

(
4ψ0ψjψ

∗
0ψ
∗
j + 4ψ0ψ−jψ

∗
0ψ
∗
−j + 2ψjψ−jψ

∗
0ψ
∗
0 + 2ψ0ψ0ψ

∗
jψ
∗
−j
)
D00,

(3.30)

In the last line we have used the fact that all values on the diagonal of D

in its reduced notation are equal (Equations 3.21 and 3.17) to replace Djj and

D−j−j with D00.

Let k stand for an index |k| ≥ 2. To find ψk, we solve ∂H
∂ψ∗k

= 0:

∂H

∂ψ∗k
= ψkΓkk + (4ψ0ψkψ

∗
0 + 2ψ0ψ0ψ

∗
−k)D00 = 0 (3.31)

at leading order, a,

∂H

∂ψ∗k
= ψ

(1)
k Γ

(0)
kk + (4ψ

(0)
0 ψ

(1)
k ψ

∗(0)
0 + 2ψ

(0)
0 ψ

(0)
0 ψ

∗(1)
−k )D

(0)
00 = 0

(Γ
(0)
kk + 4|ψ(0)

0 |2D
(0)
00 )ψ

(1)
k + |ψ(0)

0 |2D
(0)
00 ψ

∗(1)
−k = 0

(3.32)

All matrix elements are on the diagonal of the Hermitian matrices Γ and Dij ∼
Γαij and therefore real. (ψ

(0)
0 )2 = |ψ(0)

0 |2 is real because we have chosen earlier

without loss of generality to fix the phase of ψ
(0)
0 to the real direction. At first

order equation 3.32 we have

ψ
(1)
k = − |ψ(0)

0 |2D
(0)
00

Γ
(0)
kk + 4|ψ(0)

0 |2D
(0)
00

ψ
∗(1)
−k . (3.33)
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However, by starting with another other choice of minimization, ∂H
∂ψ∗−k

= 0,

the outcome is

ψ
(1)
−k = − |ψ(0)

0 |2D
(0)
00

Γ
(0)
−k−k + 4|ψ(0)

0 |2D
(0)
00

ψ
∗(1)
k , (3.34)

Equations 3.33 and 3.34 are in general contradictory statements about the

magnitudes of ψ
(1)
k and ψ

(1)
−k. They imply that the only general solution is

ψ
(1)
k = 0, ψ

(1)
−k = 0 for all |k| ≥ 2. The magnitude of the modes ψ±k, k ≥ 2 is

then at leading order proportional to (a2) or smaller; their contribution to the

energy HI is at least O(a4).

For indices j = ±1, solving ∂H
∂ψ∗1

= 0, we have

∂H

∂ψ∗1
= ψ0Γ01 + ψ1Γ11 + 2ψ0ψ0ψ

∗
−1D01 + (4ψ0ψ1ψ

∗
0 + 2ψ0ψ0ψ

∗
−1)D00 = 0

(3.35)

at leading order

∂H

∂ψ∗1
= ψ

(0)
0 Γ

(0)
01 + ψ

(1)
k Γ

(0)
11 + (4ψ

(0)
0 ψ

(1)
k ψ

∗(0)
0 + 2ψ

(0)
0 ψ

(0)
0 ψ

∗(1)
−k )D

(0)
00 = 0

(Γ
(0)
kk + 4|ψ(0)

0 |2D
(0)
00 )ψ

(1)
k + |ψ(0)

0 |2D
(0)
00 ψ

∗(1)
−k = −ψ(0)

0 Γ
(0)
01

(3.36)

The value Γ
(0)
01 is order a, complex conjugate to Γ

(0)
10 and Γ

(0)
0−1, and equal

to Γ
(0)
−10. Bringing together all four equations ∂H

∂ψ∗1
= 0, ∂H

∂ψ1
= 0, ∂H

∂ψ∗−1
= 0,

∂H
∂ψ−1

= 0, we again arrive at a contradiction unless ψ
(1)
1 = ψ

(1)
−1 = 0.

Lastly we examine next order terms of ψ0 in Equation 3.30. For symmetry

reasons, ψ
(1)
0 ∼ a must vanish: whether the overall magnitude of the field on

the surface increases or decreases on shape perturbation cannot depend on the

sign of the sinusoidal perturbation. For ψ
(2)
0 , we solve

∂H

∂ψ∗0
= ψ0Γ00 + 2ψ0ψ0ψ

∗
0D0000

+
∑
j≥1

(
4ψ0ψjψ

∗
j + 4ψ0ψ−jψ

∗
−j + 4ψjψ−jψ

∗
0

)
Γ00 = 0.

(3.37)

At order a2 we must solve

ψ
(2)
0 Γ

(0)
00 + ψ

(0)
0 Γ

(2)
00 + 2(ψ

(0)
0 )3D

(2)
0000 + 6ψ

(2)
0 (ψ

(0)
0 )2D

(0)
0000 = 0 (3.38)
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ψ
(2)
0 = −ψ

(0)
0 Γ

(2)
00 + 2(ψ

(0)
0 )3D

(2)
00

(1− 6(ψ
(0)
0 )2)Γ

(0)
00

(3.39)

By definition of ψ
(0)
0 as solutions to Equation 3.5, ψ

(2)
0 = 0.

Plugging the remaining potential perturbations starting at o(a2) into Equa-

tion 3.28, the resulting effects on system energy will be o(a4). The field can be

regarded as constant as far as is relevant to the linear stability analysis.

3.3 Linear stability analysis

I now consider the effect of the interfacial order on the shape modulations. First,

in line with the previous linear stability analysis of a cylindrical interface with

spontaneous curvature, I examine the linear effect of n-atic order. Assuming the

field is initially ordered (Ψ(x) = Ψ0) on the unperturbed cylinder, at small shape

perturbations with amplitude a � 1, according to the previous analysis the

induced changes in field configuration are negligible in terms of their energetic

contribution. In general, the energy a perfectly ordered field |Ψ|(x) = |Ψ0| =√
−α/u would have on the modulated surface, including its contribution via γ,

is

HI [Ψ(z) = Ψ0] = 2χ

∫
S
dS|Aθ|2 −

α2

2u

∫
S
dS. (3.40)

Inserting a perturbative expansion, to leading order the difference in internal

energy is the gradient energy difference plus a term proportional to surface area

change
∆H

A0a2
= χk2 − α2

2u
∆A, (3.41)

collecting field characteristics as χ = |α|cn2/(2u). The second term, an energy

difference proportional to change in surface area ∆A, will be absorbed into

surface tension. Lenz and Nelson [13], treating a hexatic field with constant

magnitude equivalent to |α|/u = 1, obtain a linear energy difference equivalent

to the first term. Adding the effect of n-atic order to the energy difference

Equation 2.32 and again finding roots, the limit of stability is

kc(C0, χ) =
1

2

(
1− 2γ − 4C0 − 8χ

±
√

8(2γ − 3) + (−1 + 4C0 + 2γ + 8χ)2
)1/2

.

(3.42)
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3.4 Type II: The vortex state

with energy densities again in units where κ = 1, r0 = 1 and with γ here repres-

enting both the surface energy density v0 = −α2/(2u) and an effective surface

tension from spontaneous curvature: γ = γ0 − α2/(2u) + C2
0/2. According

to the linear analysis, a preferentially ordered field (α < 0) has a stabilizing

effect on the system via the first term of equation 3.41. While the second

term, a negative effective surface tension from the ordered material, can theor-

etically induce an inverse Plateau-Rayleigh instability, where short-wavelength

fluctuations grow to increase surface area, in the regime |α| ≈ c studied here

the stabilizing effect is dominant. Examples of the effect of order on critical

wavenumber are shown in Figures 3.6 and 3.7. Increasing field alignment |α|
results in a lower critical wavenumber (increasingly longer systems are stabil-

izes), including a lower critical bending rigidity κc, above which systems of all

all lengths are stable. On the other hand increasing field bending rigidity and

curvature coupling cn2 results in a lower critical wavenumber function, while

critical bending rigidity (x-intercept) and critical wavenumber in the absence of

bending rigidity (y-intercept, kc = 1) remain fixed.

3.4 Type II: The vortex state

Regarding energy-minimizing configurations of the order parameter field on more

modulated shapes, Equation 3.2 allows some predictions.

In the azimuthal gradient term of Equation 3.2,

|DθΨ|2 = |∂θΨ|2 +
2nAθ
r2(a)

Im((∂θΨ)Ψ∗) + n2|Aθ|2|Ψ|2, (3.43)

I note that the cross-term can take negative values, suggesting that gradient

energy can be decreased by orientational order whose direction rotates as it

winds around the cylinder in the azimuthal direction. The factor gθθ = 1/gθθ =

1/r2, explicitly written in the middle term, is also implicitly present in tensor

inner products |Xθ|2 in the other two terms.

The equation implies that, to minimize gradient energy, the order parameter

field rotates azimuthally clockwise (counter-clockwise) in locations with posit-

ive (negative) values of the spin connection component Aθ, giving a maximally

negative value of AθIm((∂θΨ)Ψ∗). At a given axial location, the field orient-

ation by an integer number m turns as it winds around the cylinder. Because
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Figure 3.6: (a) Tuning field alignment α in Equation 3.42 has the effects of

both lowering effective surface tension (moving critical surface-tension–bending

rigidity from γ0 = 1.5 to a higher intrinsic surface tension) and suppressing

the onset of instability vie the χ term in Equation 3.42. Here cn2/u = 1. (b)

Tuning parameter χ ∼ cn2 while leaving v0 = −1/2 fixed has the effect of

suppressing the critical wavenumber to lower values while leaving the critical

bending rigidity (x-intercept), the bending rigidity-surface tension ration above

which systems of all lengths are stable, fixed.
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Figure 3.7: (a) Tuning field alignment α actually destabilized the cylinder around

C0 = −3, where the instability is induced by spontaneous curvature effects,

while at higher |α| the onset of instability is suppressed via the χ term. Here

cn2/u = 1. (b) Parameter χ ∼ cn2 is varied.
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3.4 Type II: The vortex state

Figure 3.8: Simplest example of the predicted vortex state in a vector (n = 1)

field: Here a +1 defect is visible on the widest location and a −1 defect on

the narrow neck. Two further defects are located on the back. Here the local

rotation number is m = ±1 in axial regions between the defects and M =

|∆m| = 2 defects occur where where the bands with different rotation number

meet.

positive and negative values of the Aθ alternate on the modulated cylinder,

there will be locations where counter-rotating bands of the order parameter

field meet. In these locations, there will be at least |∆m| =2m topological

defects. The simplest example of the predicted pattern, 4 defects in a vector

field, is illustrated in Figure 3.8.

The vortex state is analogous to the Abrikosov [16] lattice phase of type

II superconductors. In analogy with superconductors, I distinguish type I and

type II systems. In type I superconductors, the material transitions directly from

the superconducting state which expels an applied magnetic field (n-atic order

which expels Gaussian curvature) to a non-superconducting state penetrated by

a magnetic field (no order on a modulated surface). In type II superconductors,

on the other hand, there is an intermediate vortex state, where the material

is in the superconducting state almost everywhere but its phase (orientation

of order) rotates around point defects, at which the magnetic field (Gaussian

curvature) is concentrated. It is not surprising that behavior analogous to su-

perconductors emerges, as the description of n-atic order coupled to surface
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3.4 Type II: The vortex state

curvature is adapted from the Landau-Ginzburg equations for superconductors.

Counterintuitively, equation 3.43 implies that a certain chirality of the vor-

tex state is always selected for: here system energy is minimized only by azi-

muthal modes winding around the cylinder clockwise on sections with positive

spin connection and counterclockwise on sections with negative spin connec-

tion. However, this apparent symmetry breaking is a consequence of our choice

to represent n-atic rotational order by Equation 3.1 rather than its complex

conjugate field, or equivalently, to associate the order of rotational symmetry

with the charge n rather than −n. In reality states that are solutions to either

set of equations occur; the chiral symmetry is spontaneously broken when a

vortex state develops. In contrast, where equations with the same form of

minimal coupling are applied to electromagnetic phenomena (e.g. Dirac equa-

tion, Landau-Ginzburg equation for superconductors), with Ai representing the

electromagnetic vector potential, there is only one correct set of equations de-

scribing the present universe: the equivalent chirality of electromagnetism is

fixed.

3.4.1 Local onset of the vortex state

On the given closed surface, the n-atic field can undergo m/n rotations as it

winds around the cylinder once, with integer m. Such a field is represented by

the mode Ψ = |Ψ0|eimθ/n. Plugging this trial mode into Equation 3.43, the

local azimuthal gradient term is proportional to

|DθΨ|2 = (m+ nAθ)
2 |Ψ|2
r(a)

(3.44)

The first transition, when the energy can be minimized by selecting m = 1 rather

than m = 0 rotations, occurs at the axial location kz = π/2 +mπ, where the

spin connection attains its maximal value of |Aθ| = 1, at wavenumber

k(a) =

√
2 + a2

a
√
−2 + 8n2

; (3.45)

In the case of n = 6 the lower bound wavenumber for onset of type II behavior is√
3/286 ≈ 0.102, whereas in the case of n = 1 it is 1/

√
2 ≈ 0.707. Analogous

calculations for the transition from other values of m to m + 1 states suggest
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3.4 Type II: The vortex state

that for 1- atic fields, modes with more than m = 1 azimuthal rotations are

never energetically advantageous, while for hexatic fields the spectrum extends

to m = 6. Locally, on cone-like sections of the object, the phenomenon is

similar to one recently described on cones by Zhang and Nelson [17]. However,

rather than being concentrated at the apex of a cone, M = ∆m defects here

occur at the transitions between differently-sloped local areas. On one period

of the surface vector order has either 0 or 4 defects, while for hexatic order

there is a spectrum of states with M = 4i defects extending up to 4n = 24

defects. The wavenumber of onset predicted here is a lower bound based on

local energy balance at locations kz = π/2 +mπ. It depends on n but not on

values of field parameters α < 0, c. The true wavenumber of onset for the whole

system will be increased by the interplay of several additional factors, including

the energetic cost of defect cores, axial gradients, and the fact that the spin

connection is less extreme at other locations; it does depend on coefficients c

and α.

The prediction of up to 4n defects (per period of the modulation) in a

system with n-atic order is an upper bound; it is the number of defects that can

be attained at maximum curvature, limited to |Aθ| = 1 in sinusoidal systems,

and disregarding nonlocal consequences of field stiffness, which tend to decrease

the number of defects actually realized.

3.4.2 Defects and defect charge

According to the above upper-bound calculation which considers only axially

localized effects, defects of charge ±1/n emerge preferentially at certain loc-

ations on the cylinder, namely on the widest and narrowest part. The defect

charge is analogous to an electrostatic charge; like defects are repelled from each

other. A line of ∆m like charges on the wide/narrow neck will be maximally

spaced from one another.

In the effective charge cancellation principle [18], Gaussian curvature acts

as a diffuse background charge which interacts with defect charge. The sum of

defect charge and Gaussian curvature charge in a small region s approximates
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3.4 Type II: The vortex state

a locally neutral total charge:

qM +
1

2π

∫
s
dSK ≈ 0, (3.46)

where M is the number of defects in a region s and q = ±1/n their charge.

Whether a defect around which the field winds clockwise or counterclockwise

is assigned positive or negative defect charge varies between instances of the

same system; it depends on the spontaneously broken chiral symmetry of order-

curvature coupling.

Equation 3.46 can be derived in the special case of our cylinder-like system

as follows: As reasoned above, at each axial location, in an idealized system

the local number of azimuthal rotations m takes the integer value most closely

minimizing local gradient energy (Equation 3.44), that is

m+ nAθ ≈ 0. (3.47)

On the cylinder-like shape, the total number and sign of defects in a region

between two axial locations z1 and z2 is the sum of differences in local rotation

numbers, ±M =
∫ z2
z1
dz
√
gzz∆zm. We similarly take an axial derivative and

integrate axially over the second term of Equation 3.47 to obtain

±M
n

+

∫ z2

z1

dz
√
gzz∂zAθ ≈ 0. (3.48)

By relating spin connection to Gaussian curvature via the Mermin-Ho theorem

(Equation 2.12), in this case simply as ∂zAθ =
√
gθθK, and by labeling charge

q = ±1/n, we recognize Equation 3.46. The factor of 2π is equivalent to

additionally carrying out an azimuthal integration over the latter term.

Like Equation 3.45, the number of defects predicted by topological charge

cancellation is an upper bound; for materials with large persistence length fewer

defects may be realized.

Although curvature-induced, the defects are not topologically mandatory, as

the topological genus of the periodic cylinder is compatible with zero defects.

They occur in charge-neutral pairs of defects with defect charge +1/n and

−1/n. The defects are analogous to excess defect pairs that could appear on a

sphere in addition to the topologically mandated 2n defects.
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3.5 Type I: One-dimensional modulation

In the type I regime the field remains axially symmetric and constant in phase.

The equations can therefore be simplified to a real field in a one-dimensional

potential:

Hm=0
I =

∫
dS

[
α′(z)ψ2 +

c

r2(a, z)
(∂zψ)2 +

u

2
ψ4

]
, (3.49)

with spatially varying coefficient

α′(a, z) := α+
c

r2(a, z)
n2(Aθ(a, z))

2 (3.50)

where m = 0 denotes the vortex-free type I state and lowercase ψ(z) stands for

a one-dimensional real field, as orientation of order is uniform in an arbitrarily

chosen direction.

I further integrate azimuthally to obtain

Hm=0
I = 2πr(a)

∫
dz
√
gzz

[
α′(a, z)ψ2 +

c

r2(a, z)
(∂zψ)2 +

u

2
ψ4

]
. (3.51)

Examples of the spatially varying coefficient α′(a, z), are shown in Figures

3.11 to 3.12. The curvature-induced addition A2
θ to α′ is zero on both the

narrow neck and the broadest part of the cylinder, where the surface is flat in

the sense of the splay-inducing connection. The splay-inducing effect is largest

on the curved, but narrow regions of the cylinder. This factor indicates that the

cylinder is more tightly curved and the splay-inducing effect is amplified where

its radius is small.

I numerically minimize the function ψ(z). Alongside the potentials, I show

the energy-minimizing field profile in a range of cases in Figures 3.11 to 3.12. I

examine high and low bending rigidity c and the cases n = 1 and n = 6. While

field bending rigidity c affects both the gradient and the coupling to surface

curvature, the factor n affects only the field’s sensitivity to surface curvature.

Hexatic (n=6) layers are more resistant to surface-induced splay. With n2 = 36,

the effect can be large and the curvature-induced gradient dominates over the

other gradient term. The two effects are to some extent separately tunable via

the parameter n in the equations, although in practice it is a material parameter

occurring only as the values n = 1, 2, 4, 6.
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Figure 3.9: (top) The solution ψ(z) minimizing Equation 3.51 in the case c =

0.1, n = 1, for a range of surface shape amplitudes a. (bottom) The spatially

varying coefficient α′(z) = α0+c0n
2|Aθ(z)|2 characterizing the spatially varying

effective potential in Equation 3.51.
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Figure 3.10: (top) The solution ψ(z) minimizing Equation 3.51 in the hexatic

case c = 1, n = 1, for a range of surface shape amplitudes a. (bottom) The

spatially varying coefficient α′(z). Note different y-axis scale than in Figure

3.11. With higher curvature coupling, the effect of curvature is greater but

solutions are less localized.
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Figure 3.11: (top) The solution ψ(z) minimizing Equation 3.51 in the hexatic

case c = 0.1, n = 6, for a range of surface shape amplitudes a. (bottom) The

spatially varying coefficient α′(z). In the hexatic case the effect of curvature on

α′(z) is stronger and solutions are more effectively dampened.
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Figure 3.12: (top) The solution ψ(z) minimizing Equation 3.51 in the hexatic

case c = 1, n = 6, for a range of surface shape amplitudes a. (bottom) The

spatially varying coefficient α′(z). For both hexatic order and high curvature

coupling, the solution can be an everywhere isotropic field ψ(z) = 0.
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3.6 Discussion and Conclusions

In this chapter I set up the Landau-Ginzburg theory of an n-atic order parameter

field on the modulated channel shape and derive analytic outcomes in a range of

cases. Together, the predictions form a comprehensive picture of field behavior

in the low temperature limit.

Fourier-space analysis of the quadratic operator shows various ways in which

the curvature-coupled field is affected by the geometric setting. Field configur-

ations on the curved shapes can be predicted on a statistical level by numerical

analysis in Fourier space. For perturbative small shape fluctuations, the Fourier

space analysis further reveals that the field configuration does not change to

relevant orders, justifying the linear treatment with an unchanged field.

In real space and beyond the perturbative regime of shapes, I predict a

delineation into type I and type II behaviors. The predicted type II vortex phase

is analogous to the Abrikosov vortex lattice phase of superconductors. There are

multiple broken symmetries. In the defect-free type I case, the Hamiltonian can

be cast in a simpler one-dimensional form with locally varying effective mass. An

estimation of when the simpler treatment is applicable and when more complex,

probably numeric treatment is necessary is therefore useful.

Fourier space and real space analysis provide simplifying assumptions and

allow a wide range of special cases to be accessed analytically.

One simplifying assumption I did not directly use is an abstraction into dis-

crete defects in an otherwise uniform field. The theory on the level of defects is

standard and has been extensively covered elsewhere in the literature. Full rep-

resentation of the order parameter field, including the possibility of varying mag-

nitude, is here crucial to revealing a high-temperature-like effect of curvature,

resulting in a banded profile of alternating ordered and isotropic material.

As in Chapter 2, the surface shape remains confined to axisymmetric sinus-

oidal variations on a cylinder. Given the analogy to the Abrikosov vortex state,

where magnetic field lines are concentrated at vortex centers, and experimental

observations of facetted droplets as a result of hexatic order [10], it is reasonable

to expect faceting of the cylinder-like shape. Defects are expected to coincide

with angular protrusions or vertices in the surface shape, at which Gaussian

curvature is concentrated. Such shape variations are beyond the scope of this
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study and would be an interesting avenue for further research.

Similarly, fluctuations of the surface shape are neglected. At higher temper-

atures, thermal surface fluctuations would occur and have an effect on the field

theory. A phenomenon analogous to the superheating transition of supercon-

ductors, where the field theory is renormalized by magnetic field fluctuations to

include a cubic term [19, 20], might even be expected at higher temperatures. In

addition, hexatic order in thermally fluctuating membranes modifies properties

such as bending rigidity of the membrane [19].

For reasons explained in Chapter 4, fluctuations are in general not explored,

as neither the Fourier space nor the numerical real space analysis used here

consistently represents fluctuations. The results are accurate in the low temper-

ature limit. I find the energy-minimizing field configuration, but do not explore

properties of the high-temperature statistical ensemble of configurations.
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Chapter 4

Simulation

Abstract

A lattice Markov chain Monte Carlo simulation reveals field configurations on

modulated cylindrical surface shapes. Simulations confirm the predicted delin-

eation into type I and type II systems, with uniform orientation or up to 4n

defects respectively. Combining the results from simulation with numerical data

from Chapter 2, I estimate the combined effect of both membrane mechanics

and orientational order on surface shape and stability. The effect of order is

generally stabilizing, but the occurrence of the vortex state in type II systems

amplifies the previously seen metastability phenomenon, where, despite local

stability of the flat cylinder, a modulated shape is the global energy minimum.

As the shape modulation increases, the system goes through a spectrum of dis-

crete defect states, implying that there is a polymorphic spectrum of possible

channel shapes. The accuracy of the lattice-based method applied to the curved

surface is evaluated.
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Table 4.1: Table of symbols, Chapter 4

symbol meaning

φ angle of individual particles or bonds

Ψij order parameter as a lattice

`z, `θ dimensions of lattice cells

N size of lattice

σ sampling width in the McMC simulation protocol

E field energy in simulation

n order of discrete rotational symmetry or orientational order

α, c, u coefficients of the field theory,

material properties of the ordered interfacial layer

γ0, κ, C0 mechanical properties of the interface

k, a parameters describing surface shape

m local azimuthal rotation number

M total number of defects
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4.1 Simulation method

I turn to stochastic simulation to find field configurations minimizing Equation

3.2 on modulated surface shapes, and ultimately to estimate the configurations

[a,Ψ(x)] jointly minimizing total energy of the system modulated with a fixed

wavenumber k. The simulation is a sequential Markov chain Monte Carlo sim-

ulation. Despite the curved surface shape, I represent the field as a square

lattice.

The n-atic order parameter field is represented as a two-dimensional lattice

of N = (b50/kc×50) complex values Ψ(zi, θj). Each lattice point represents an

area with dimensions `0z = 2π/b50/kc, l0θ = 2π/50 on the unperturbed cylinder;

on modulated cylinders cell areas are modified to `z = `0z
√
gzz, `θ = `0θ

√
gθθ.

Each lattice cell is associated with a values gzz and gθθ of the metric as well

as a value of the spin connection Aθ. The values are retrieved according to

Equations 6.8 and 2.11 based on the axial location z of the cell and amplitude

a of the surface.

As the basic step of the simulation, a single lattice cell is selected and

its value Ψ(zi, θj) is updated to a value drawn from a complex Gaussian dis-

tribution. The new value is accepted or rejected with acceptance probability

A = min(1, e−
∆E
T ). This is the standard Metropolis-Hastings algorithm [1] for

any symmetric proposal distribution; it fulfills detailed balance and converges on

a stationary distribution proportional to states’ Boltzmann probabilities. Here,

the proposal distribution is a Gaussian around the current value.

In one Monte Carlo step , N randomly chosen cells are updated. Data is

recorded at each measuring step consisting of 100 Monte Carlo steps. Simu-

lations were usually run for 50000 measuring steps. Wavenumbers k ≤ 0.8 in

Figure 4.8 were run for 200000 steps and the additional data in the same figure,

covering wavenumbers k = 0.15 to 0.3, the simulation was run for 100000 steps,

as the longer lattices take longer to reach equilibrium. Throughout this study,

the sampling temperature is T = 0.001.

An adaptive sampling protocol was used. Proposed values are drawn from

a complex Gaussian distribution centered on the old value and with sampling

width σΨ. The base sampling width σΨ is evolved according to the adaptive

algorithm recomended by Garthwaite et al. [2]. The target acceptance rate was

86



4.1 Simulation method

set to 0.5. A single lattice sampling width σΨ is used for each cell.

The Metropolis algorithm produces sampled data strictly proportional (in

the limit of infinite sampling time) to the system’s Boltzmann distribution for

any constant and symmetric sampling distribution [3]. Here steps are sampled

from Gaussian a distributions with an adaptive width σ; the distribution is

symmetric but not constant over simulation time. A Metroplis algorithm with

an adaptive sampling width is in general at risk of biased sampling, as certain

regions of parameter space may be systematically sampled using a different

distribution than others. However, the adaptive algorithm used here converges

on a fixed sampling width after the first few hundred steps. Thus, later data,

with a near-fixed sampling width, produces strictly valid sampling under the

Metropolis algorithm [4, 5].

The energy difference on changing the value at a single lattice cell is calcu-

lated as
∆Ei,j
`z`θ

= Emag(Ψf
i,j)− Emag(Ψi

i,j)

+ Ezgrad(Ψf
i,j ,Ψ

i
i−1,j)− Ezgrad(Ψi

i,j ,Ψ
i
i−1,j)

+ Ezgrad(Ψi
i+1,j ,Ψ

f
i,j)− Ezgrad(Ψi

i+1,j ,Ψ
i
i,j)

+ Eθgrad(Ψf
i,j−1,Ψ

i
i,j)− Eθgrad(Ψi

i,j−1,Ψ
i
i,j)

+ Eθgrad(Ψi
i,j+1,Ψ

f
i,j)− Eθgrad(Ψi

i,j ,Ψ
i
i,j+1).

(4.1)

The magnitude-associated part of the energy is

Emag(Ψi,j) = (α+ cn2|Aθ|2)|Ψi,j |2 +
u

2
|Ψi,j |4. (4.2)

Gradient energy ascribed to a site (zi, θj) is the sum of

Ezgrad(Ψi,j ,Ψi−1,j) = cn

∣∣∣∣Ψi,j −Ψi−1,j

`z

∣∣∣∣2 (4.3)

and

Eθgrad(Ψi,j ,Ψi,j−1) =
cn

r(a, z)

∣∣∣∣Ψi,j −Ψi,j−1

`θ

∣∣∣∣2
+ 2cnIm

[
(AθΨi,j)

∗
(

Ψi,j −Ψi,j−1

`θ

)]
.

(4.4)

As the numerical implementation of the derivative operator, a simple back-
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wards derivative is chosen:

∂zΨi,j ≈
Ψ(zi, θj)−Ψ(zi−1, θj)

`z

∂θΨi,j ≈
Ψ(zi, θj)−Ψ(zi, θj−1)

`θ

(4.5)

The chosen derivative implementation is asymmetric. Alternative implementa-

tions, for example the more symmetric three-point stencil, exist. However, the

symmetric stencil suffers a checkerboard artifact, where diagonal sub-lattices

become decoupled. I used the simplest and asymmetric choice, with which no

apparent artifacts were observed. Formally, the error of the backwards numer-

ical derivative compared to the true value of the first derivative of a function at

(θ,zj) is O(`). However, the main contribution to the error is that the numer-

ical derivative more closely describes the derivative at an intermediate location.

If the numerical derivative is instead interpreted as a central difference around

locations θi−1/2 and zj−1/2, the error relative to the true value of derivatives at

the interstitial locations is O(`2). To calculate the total system energy, where

squared directional derivatives are summed over the lattice, it is equally valid to

sample numerical derivatives at interstitial locations. At the base lattice spacing

`0 ≈ 2π/50 ≈ 0.13 used here, in the worst cases with the largest local lattice

spacing (unperturbed cylinders and on the widest locations), error on numerical

derivatives is therefore of order 0.01. Decreasing the base lattice spacing `0z and

`0θ would increase numerical accuracy of gradient energy terms, but was judged

unnecessary as results were qualitatively similar in exploratory simulations.

The value of the gradient ascribed to a lattice site i more accurately applies

to the interstitial location i− 1/2. While arbitrary labeling of gradient terms in

their respective arrays usually has no effect on gradient energies, we here have

field-gradient cross-terms such as Ψ∗(∂iΨ). The numerically calculated values of

Ψ and ∂iΨ describe the field at slightly different locations. In parallel with values

of derivatives, values of Aθ are also retrieved at interstitial axial locations. There

were apparently no symmetry-breaking artifacts from the location-discordant

cross-terms.

A change to the value at lattice site (zi, θj) also affects the gradient energy

ascribed to neighbouring lattice sites (zi+1, θj) and (z,θj+1). For this reason

change in gradient energy both at the site itself and at two adjacent site appears
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in Equation 4.1.

After each sweep, the total field energy E, a numerical representation of the

internal energy HI of the corresponding configurations of continuous fields, is

evaluated and recorded as the sum

E(t) =
∑
ij

[
Emag(Ψi,j) + Ezgrad(Ψi,j ,Ψi−1,j) + Eθgrad(Ψi,j ,Ψi,j−1)

]
(4.6)

over each lattice cell.

In addition to total field energy E, after each sweep an azimuthally averaged

magnitude 〈|Ψ|〉θ is recorded for every 10th axial location zi. The system

has several continuous symmetries; the global phase of the field and azimuthal

placement of defects may vary slowly over simulation time without indicating a

departure from equilibrium. On the other hand the quantity 〈|Ψ|〉θ is a suitable

observable for detecting equilibration. The optimal production dataset was

detected by the method of minimizing statistical inefficiency [6], as implemented

in the pymbar timeseries module [7, 8]. Autocorrelation in the timeseries of

each observable was analysed independently and the maximum cutoff time from

among these was used as a global cutoff for the simulation. By inspection

of time series (Figure 4.1), it corresponds well to equilibration. For n = 6

simulations, cutoff times (in measuring steps of 100 Monte Carlo steps) were

on average τ̄0 = 11140 for the set of simulations of length 50000, τ̄0 = 79160

for simulations of length 200000, and τ̄0 = 16804 for simulations of length

100000. For the n = 1 simulations, which all remained in the relatively trivial

defect-free states, simulation length was always 50000, and the average cutoff

time was τ̄0 = 10203. Mean quantities such as 〈E〉t refer to averages over the

production region of the simulation, from cutoff τ0 to the end.

The simulation was implemented in Python 3.8. The simulation was run on

ARC3, part of the High Performance Computing facilities at the University of

Leeds, UK. Arrays of simulations in two parameters, such as (α, c) or (a, k), of

the single-threaded Python simulation were run in parallel using the scheduler’s

taskarray facility.
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4.1 Simulation method

(a) Simulation n = 6, α = −4, c = 1, k = 0.6, a = 0.9. A well-

equilibrated but non-trivial type II example with cutoff point τ0 =

55080.

(b) Simulation n = 6, α = −4, c = 1, k = 0.4, a = 0.8. An example

with a late cutoff point τ0 = 187440.

Figure 4.1: Time series in total field energy E (solid black line) and additional

observables 〈|Ψ(zi)|〉θ (solid blue to green lines), recorded at every 10th axial

location zi, over simulation time. Cutoff time τ0 is shown as the dotted black

line. Early trends in these values correspond to the emergence and axial migra-

tion of defects.
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4.1.1 Scale-dependence of the high temperature theory

In the Ginzburg-Landau field theory 3.2, the coefficients α(T ), c, and u are scale-

dependent phenomenological quantities. They encapsulate all effects, including

entropic and interparticle interactions, below the scale on which the field theory

is defined.

On the other hand, in the lattice simulation, the value Ψij assigned to a

lattice cell represents the mean over that cell of area `z × `θ. Unusually, cell

dimensions vary spatially within the same simulation. Where the surface shape

changes over simulation time, cell dimensions also vary over time within the

same simulation. As an example, on a highly modulated surface |a| = 0.9,

k = 1, the largest cells have dimensions `0z×1.6`0θ, while the smallest cells have

dimensions `0z × .08`0θ. In this case, areas of cells within the same simulation

differ by a factor of 20. In addition, the smallest cells are highly anisotropic.

To more accurately represent statistical sampling of the same interfacial

material on the different areas in the same simulation or set of simulations,

scale-dependent phenomenological coefficients should be substituted.

In general the appropriate phenomenological coefficients are difficult to ob-

tain, in certain limits, i.e. the near-Gaussian case u0 � |α|, these can be

obtained perturbatively. The well-known perturbative momentum-shell renor-

malization of a quartic-quadratic field theory in two dimensions reads [9]

α′ = `z`θ(α0 + 8
u0

2

∫ Qmax

Q
G0(q)dq + o(u2

0))

c′ = c0

u′ = `z`θ(u0 + o(u2
0))

(4.7)

with G0 = Γ−1
0 = diag( 1

α0+c0q2 ). The momentum-space integration carried

out from the smallest cell dimension (largest wavenumber Qmax) in the simu-

lation, in reference to which the unscaled coefficients α0, u0 are defined, to the

wavenumber corresponding to the length of the cell in question. The factor 8

is appropriate for a complex field, equivalent in the Gaussian limit to two un-

coupled scalar fields. For x = 2 fields (indexed i, j = 1, 2) there are 2(2+x) = 8

combinatoric possibilities of connecting two legs in diagrams
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i

i

j

j

to form diagrams of the type

i

i

with two similarly-labeled external legs and one internal 4-way vertex corres-

ponding to a factor of u0/2.

The naive simulation, where energy is simply proportional to cell area, is

equivalent to the correct rescaling of coefficients at zeroeth order in Equation

4.7.

For more accurate high-temperature simulations, coefficients in Equation

3.2 could be renormalized to better represent the behavior of the same field

at the different lengthscales present in the same simulation. However, the

utility of the perturbative equations is limited to certain regimes u0 � |α0| and

|c0Q
2| > |α0|.

The effective coefficients become constants in the limiting cases of low

temperature, where there are no rescaling thermal fluctuations. The rescaling

is also less dramatic (logarithmic) when the scale of molecules or particles is a

lot smaller than the scale of observation.

The Fourier-space analysis in Chapter 3 has the same problem as the real-

space lattice simulation. Modes up to some cutoff wavenumber Q are con-

sidered. The coefficients are assumed to be defined at scales smaller than the

smallest wavelength thus explicitly represented. For azimuthal modes, the cutoff

is an angular wavenumber. However, the distance corresponding to the same

angular wavenumber varies with local circumference of the modulated cylinder.

Thus the Fourier space field theory is inconsistently defined, including modes

up to a small cutoff wavelength on locations with a smaller radius and up to
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4.2 Simulation results

a larger cutoff wavelength on wider sections of the object. Information about

coupling between Fourier modes and the resulting eigenfunctions in Chapter 3 is

thus only accurate in the low-temperature limit. While the analysis in Chapter

3 seems to give information about the statistical ensemble of Fourier modes

and consequently of eigenfunctions, including statistical mean amplitude and

correlations of higher modes, any results beyond the low-temperature ensemble,

trivially comprising only the lowest eigenfunction, may be subject to some in-

accuracy. The effect is less pronounced in the perturbative case of slightly

modulated cylinders.

Without higher-order corrections to coefficients, the simulation protocol be-

comes exact only in the low-temperature limit. On the other hand, the uncor-

rected implementation used here has the advantage of conceptual and compu-

tational simplicity. While a balance must be struck between avoiding higher

sampling temperatures and achieving adequate Monte Carlo sampling, the sim-

ulation protocol performs well in low-temperature simulations and is suitable to

give qualitative results.

4.2 Simulation results

4.2.1 Configurations of orientational order

The lattice Markov chain Monte Carlo simulation was performed to obtain a

qualitative picture of field configurations on a range of fixed surface shapes

(k, a) in the low temperature limit. For hexatic order, a stepped dependence of

internal energy on shape is apparent (Figure 4.2), with contours following lines

of constant ka. The first discontinuity in energy corresponds to the onset of

type II behavior in the form of the first defect state with m = 1, while each

additional discontinuity corresponding to a transition to the next vortex state.

The wavenumber of onset is about k = 0.2 in the hexatic cases. In an analogous

set of simulations with n = 1 the onset of type II behavior is not seen for any

k up to k = 2.0. While a transition to type II behavior is theoretically possible

at some k ≥ 0.707, as predicted in 3.4.2, for vector order it apparently occurs

at larger wavenumber, smaller field stiffness c, or larger order |α| than those

studied here.
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Figure 4.2: Total field energy 〈E〉 obtained on a range of surface shapes (k, a)

with c = 1. While in the n = 1 case field energy increases monotonically in a

for all k, for n = 6 there are multiple steps in the energy landscape, as the field

transitions from the defect-free state to a spectrum of states m = 0, ..., n with

4m defects.
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a)

b)

−1 1

i

−i

Figure 4.3: Examples of type I behaviour. Here the field configuration remains

defect-free on a series of shape amplitudes from a = 0 to a = 0.9. The

averaged field magnitude profile 〈|Ψ|〉θ,t as a function of z is shown as a graph,

with a horizontal axis where |Ψ| = 0 and |Ψ| = 2 at a = 0. (a) Magnitude

profiles from series of simulations with n = 6, α = −4, c = 6.5, k = 0.9. As

shape amplitude increases, the field transitions from ordered field to locally

depressed, then to everywhere isotropic. The characteristic magnitude profile

is most depressed at two locations on either side of the narrow neck. Two

simulation snapshots, a banded configuration and the uniform isotropic state, are

rendered on the surface shape. (b) Series of magnitude profiles from simulations

n = 1, α = −4, c = 4.5, k = 0.9. The 1-atic field is more weakly affected by

shape modulations. Inset: Colormap allowing visualization of complex values.

Saturation, ranging from 0 to |Ψ| = 2, indicates field magnitude or amount of

n-atic order, while hue indicates the phase of the complex field or the direction,

up to a factor of n, of orientational order. Black corresponds to a value of

|Ψ| = 0, the isotropic phase.

95



4.2 Simulation results

Two examples from simulation are shown in Figure 4.3, which shows, as

profile plots |Ψ|(z) and as rendered on the surface shape, two series of field

configurations from simulation where the orientation of the field remained spa-

tially uniform. The magnitude of order is modulated in characteristic profiles

minimizing the one-dimensional Equation 3.51, while the uniform orientation

is randomly selected. At sufficiently high curvatures, field bending rigidity and

curvature coupling, the solution is everywhere isotropic, |Ψ(z)| = 0.

On the other hand, type II behavior is shown in Figure 4.4. As in the type I

cases, order is locally decreased relative to the flat-space solution Ψ0, especially

on either side of the narrow neck. Additionally orientational order rotates azi-

muthally m times around the cylinder, and m times in the opposite direction on

the other half. There must be M = 2m defects with the total charge ±2m/n

where the counter-rotating bands meet at the narrowest and widest regions, for

a total of 4m defects on the surface and a vanishing total defect charge. The

defects on the narrow neck are topologically present but are often obscured by

an isotropic band. At more extreme curvatures, the defects lie on a line at

the narrowest and widest locations, whereas placement is more distributed in

cases of less extreme curvature. The lattice simulation seems to qualitatively

reproduce the well-known phenomenon that defect density is proportional to

local Gaussian curvature, and indeed the number of defects appearing on the

wider half of the cylinder in simulations roughly agrees with that predicted via

the effective topological charge cancellation mechanism (Section 3.4.2).

I compare the energy obtained in low-temperature Monte Carlo simulation

to the energies of these reference states. In Figure 4.5, we see that energy of

the simulated field, which is allowed to adopt spatially varying configurations, is

lower than that of either of the two uniform reference states. Type II behavior

is again evident in the form of stepped energy functionals in the n = 6 case,

Figure 4.5-b. The stepped energy function implies that certain surface shapes

(k, a) are more compatible with the ordered interfacial layer than others, so that

morphologies will be biased towards a discrete set of shapes.
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b) a)

Figure 4.4: Examples of type II behavior in hexatic fields. The final field config-

uration snapshot is shown on the (z, θ) plane using the complex colormap (Fig-

ure 4.3, inset) to represent complex values. (a) Series in a with n = 6, α = −4,

c = 1.5, k = 0.9. As shape amplitude increases, the field here transitions from

adapting to curvature via defect-free magnitude modulations to a state with

m = ±2 discrete azimuthal rotations and finally one with m = ±3 rotations.

There are ∆m = 2|m| visible defects on the widest part of the cylinder, while

their counterparts on the narrow neck are often merged to an isotropic band. (b)

An example of a more complex banding pattern on a longer cylinder, simulation

n = 6, α = −4, c = 2.5, k = 0.6, a = 0.5.
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Figure 4.5: Solid coloured lines show mean field energy HI(a) (per unit length)

retrieved from simulations on fixed surfaces. As reference, I show the energy a

uniformly ordered field Ψ0 would have on the curved surface shape (coloured

dotted lines), obtained by semi-numerically integrating Equation 3.40, and the

energy of a uniformly isotropic field (black dashed line, zero). (a) For n = 1, the

field is ordered at low a and at higher a adjusts by locally adapting magnitude,

lowering energy slightly below that of the perfectly uniform field on the same

surface. (b) For n = 6 the field with high bending rigidity c transition to the

uniformly isotropic state on curved surfaces. For lower c the hexatic field, in

addition to locally adapting its magnitude, is able to decrease its energy by

adopting rotational states with defects, resulting in stepped energy curves.
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4.2.2 Effects on stability

Having obtained energy functions HI(k, a) for an array of values (k, a) from sim-

ulation, I combine these with semi-numerically integrated values HE(k, γ0, C0)

from Section 2.5. For each point (k, γ0) in parameter space, I search numerically

for shape amplitude a minimizing H(a) = HI(a) + HE(a).

The effect of a preferentially ordered field on cylinders with a range of

spontaneous curvatures is shown in Figures 4.6, 4.7, and 4.8 as the shaded

background, in comparison to the linear limit of stability.

For vector order n = 1, the vortex state does not emerge. The result seen in

simulations aligns with the limit of stability predicted by linear analysis (Figure

4.6). The onset of shape instability is suppressed compared to the order-less

scenario. The transition is continuous; at wavenumbers just below the critical

wavenumber there are mildly modulated shapes which may actually be stable

according to the analysis in Section 2.5.2.

For hexatic order, shape instability is more strongly suppressed. Below a

certain wavenumber k ≈ 0.2, where the behavior is of type I, the linear limit

of stability is a good description and the shape transition is continuous. On

the other hand at larger k, in the regime of type II behavior, the transition

from flat to modulated cylinders induced by increasing γ0 is discontinuous.

The deviations from the linear prediction at larger wavenumbers is a result

of the vortex state. It coincides with the previously observed metastability

(Section 2.5.1). The effect of hexatic order on the phase diagram in C0 (figure

4.8) is similar. Apparent critical endpoints, delineating type I from type II

states and continuous from discontinuous transitions, are marked with orange

crossed in Figures 4.7 and 4.8. The critical endpoint delineates second order

transitions from unmodulated to modulated defect-free cylinders from a second

order transition from unmodulated to modulated cylinders which may or may

not have defects. Initially, close to the critical endpoint, the appearance of a

first order phase transition is due to emerging secondary minima in the shape

energy HE only, as seen in Chapter 2 2 and exemplified by the energy landscape

in Figure 2.9. Further into the metastability region above the critical endpoints,

the vortex state appears and adds to the depth of the global secondary minima,

extending the stability of the modulated and defect-bearing state.
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b

a

Figure 4.6: Shape amplitude predicted by simulation compared to linearly pre-

dicted critical wavenumber as a function of κ/γ0 ratio and its inverse, (right)

as a function of surface tension (in units of bending rigidity); (left) the same

data as a function of inverse surface tension (in units of bending rigidity) , i.e.

bending rigidity to surface tension ratio . The linear limit of stability (solid red

line) is suppressed compared to the case with no order (dotted red line). For the

n = 1 case simulation results corresponds closely to the linear prediction. There

is a continuous transition between modulated (a) and flat (b) morphologies.

100



4.2 Simulation results
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Figure 4.7: Shape amplitude predicted by simulation compared to linearly pre-

dicted critical wavenumber, (left) as a function of inverse surface tension; (right)

as a function of surface tension. Bottom panels show the interesting region

around k = 0.2 more closely at a finer grid spacing in k. There is a qualitative

transition from type I field behavior at low wavenumber kc . 0.2, inducing a

continuous shape transition adhering to the linear prediction, to type II behavior

at higher wavenumbers. In the latter case the transition is discontinuous and

the linear limit of stability gives an incomplete description of the system. Above

the linear limit of stability, there is a region of metastability (c), where a vortex

state on a modulated surface (|a| > 0) is the global energetic minimum of a

system with order and spontaneous curvature.

101



4.2 Simulation results

x

stable

unstable

meta-
stable

CEP
x

Type I 

Type II 

(4 defects)

4 defects

Uniform

Figure 4.8: The effect of hexatic order with c = 1 and α = −1 on critical

wavenumber as a function of spontaneous curvature. The previously observed

metastability in shape coincides with the vortex state, which amplifies the phe-

nomenon. As before, the metastability region, where the vortex state on

modulated cylinders dominates, is largest where the modulation is induced by

negative spontaneous curvatures.
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The energy recorded in simulation includes a contribution from thermal fluc-

tuations. By the equipartition theorem, which would apply exactly if each com-

plex value were subject to an independent harmonic potential only, the thermal

energy may be estimated as kbT per lattice cell. At the given simulation tem-

perature and lattice spacing, the value according to the equipartition estimate

is a negligible ET = 0.4 simulation energy units per unit length of cylinder.

The value is visible as a small increase of simulation energies above reference

energies in Figure 4.5. The value is an artifact of the lattice representation; it is

not proportional to surface area but to number of lattice cells. This background

thermal energy has no effect on field configurations sampled within a simulation

or on comparative energetics of a set of simulations with the same wavenumber

k.

4.3 Discussion and Conclusions

The numerical simulation presented here confirms theoretical predictions in

Chapter 3 on configurations of order and allows these to be combined with

interfacial mechanics from 2 for a comprehensive picture of the combined sys-

tem. The prediction of a discrete spectrum of states, cylinders with certain

shape modulations compatible with exactly 4m defects, is novel, as is the dis-

tinction between first and second order transition from modulated to unmodu-

lated shapes. It may be particularly prominent in the regime c ≈ |α| generically

examined here.

Constructing simulations representing a soft ordered interface, with both

flexible surface shape and particle orientational order, is an ongoing challenge.

Here, a continuum field theory was represented in a lattice-based Monte Carlo

simulation on the curved surface. A simple implementation of representing sur-

face curvature on a non-adaptive square lattice was implemented and examined

for correctness; the discussion may be of interest to others in choosing a method

for adapting the simulation of statistical field theories to curved surfaces.

Alternative simulation designs include representing discrete particles, for ex-

ample as by Smallenburg et al. [10]. Three-dimensional particle-based repres-

entations capture additional phenomena which are omitted in the two-dimensional
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surface simulation, such as particle interactions through the bulk, giving the

ordered material sensitivity to mean as well as Gaussian curvature. In addition

to the emergence of orientationally ordered particle packings, simulations with

explicit particles also allow for the emergence of different density regimes. In

studies on positioning and and order of spherical particles on curved surfaces

Law et al. [11], while only one ‘fluid’ is explicitly present, and is modelled as

relatively large individual particles, phase separation into distinct gas, liquid, or

crystalline regions results. The positioning of the phase boundary line on the

curved surface is an additional factor determining the final configuration of the

spheres on the surface. The authors study the thermodynamics of this system

on a sphere and further curved surfaces, developing a corresponding theory for

the size of critical liquid nucleus on a sphere [12].

Though conceptually distinct, the modulations in magnitude of order para-

meter observed here belong to the same Z2 symmetry group as density vari-

ations, as does the fractionation of lipids on curved surfaces. Multiple numerical

studies explore the relative concentration of two fluids as they phase separate,

represented using either an order parameter field or discrete particles. Phase

separation simulations to match their interesting experimental study on the de-

mixing of lipid on fixed spherical and ‘snowman’ surfaces was performed by

Fonda at al. [13]. Here a lattice-gas model was used to simulate the two fluids

[14]. As in the corresponding experiments, phase separation is either inhibited

or the emerging phases and the contact line show a preference for certain loca-

tions on the surface. Paillusson et al. [15] similarly investigate phase separation

on triply periodic surfaces. As with orientationally ordered phases, there are

strong effects of the interaction between geometry and the tension of the phase

boundary.

Despite the distorted square lattice representation necessitating an applic-

ation of the simulation protocol at low sampling temperatures only, the low-

temperature simulation converges rapidly on energy-minimizing configurations

and gives useful results which supplement theoretical predictions. Like the sim-

ilar numerical minimization of Equation 3.51, the simulation allows the full

Equation 3.2, without the assumption of uniform field magnitude, to be ex-

plored. In the type II as in the type I case, a banded pattern of locally decreased
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order merges. The effect is reminiscent of the experimentally and theoretically

observed behavior of other fields with Z2 symmetry, such as lipid mixtures, on

modulated surfaces.

The representation of the surface of revolution as a modified square lattice

on a double periodic plane takes advantage of the particular topological genus.

It is extendable to doubly periodic plain-, cylinder-, and torus-like systems, but

not to spheres or to objects with evolving topological genus. While the lattice-

based simulation accurately takes effects on curvature on order into account,

the specific representation of the surface shape does not accurately reflect phe-

nomena related to fluctuations at high temperatures. Simulation methods on

which a mesh is adapted to the evolving surface shapes are more generalizable,

for example as used by Ramakrishnan et al. [16, 17] and, in the context of

active nematics, by Hoffmann et al. [18], to sample ordered materials on freely

evolving surface shapes. On the other hand, there is additional computational

cost and some inaccuracy associated with extracting geometric quantities, such

as the local metric and curvatures, on an evolving and discretized triangulated

surface.

In the implementation constructed here, theoretically, the shape amplitude

a can be simultaneously sampled, so that the simulation converges on the joint

configuration [a,Ψ(x)] of surface shape and orientational order minimizing the

system energy. To this end single steps of shape amplitude was alternated with

sweeps of the field configuration. Sampling width σa of the shape amplitude

was adapted in the same way. I found that achieving adequate sampling in

a reasonable time was difficult. The field configuration adapted quickly to a

shape a, then, given the optimized field configuration, the shape did not evolve

due to hysteresis in the more complex energy landscape E(a,Ψij). In addition,

the shape amplitude sampling step is computationally costly, (re-)calculating

external energy 2.30 by numerical integration over the sinusoidal shape as well

as recalculating and summing the energy value of each lattice cell in Equation

4.6. While sampling problems might be improved by manual fine-tuning of the

sequence and relative frequency of shape and field sampling steps and while

theoretically, in the limit of infinite simulation time, even a poorly mixing simu-

lation will yield correct statistics, in practice I found that the parameter space is
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more efficiently covered by collecting a database of field energy on an array of

fixed surface shapes (k, a). Thanks to the additive formulation H = HE +HI ,

simulation data is then combined with the external energy HE , which can be

quickly calculated, post hoc. Due to the low temperature, differences in config-

urational entropy across field configurations on different shape amplitudes are

neglected and energy measured in simulation is taken as synonymous with free

energy when constructing energy landscapes H(a).

A Fourier-space simulation, sampling the field as represented by coefficients

[Ψq] and subject to Equation 3.12, was also considered and implemented. Integ-

rating over the surface shape for matrix elements in 3.12 as well as recalculating

the energetic effect via many quadratic and quartic terms of changing a single

mode Ψq was found to be computationally inefficient. Only a truncation to the

first few Fourier modes could be sampled in reasonable simulation time, which

did not allow the visualization of axial modulations and vortex modes.

The interface as described by Equations 2.30 and 3.2 has additive effective

surface tensions (energy per unit area) of C2
0/2 as well as −α2/(2u). Such

effective surface tensions are to be interpreted relative to a reference system,

such as similar molecules dissolved in the bulk phase. In the simulation protocol

used here, the surface-tension-like effects can be easily subtracted or added post

hoc as appropriate for the specific experimental system. I here chose to leave

the negative effective surface tension contribution from the ordered material,

as interesting experimental results [19] are seen in the regime where a hexatic

interfacial material has a (transiently) near-zero or negative surface tension.

Unlike spherical droplets, the periodic cylinder model surface has no topo-

logically mandated defects. All defects are excess defect pairs. The system

could be used to study more exotic modes of deformation of facetted emul-

sion droplets, with additional defect pairs and stellated polyhedral morpholgies

[19], in isolation. Due to the constrained set of axisymmetric surface shapes,

facetting is not seen. In general, in analogy to superconductors and in line

with experimental observation on emulsion droplets, I expect defects to coin-

cide with vertices in droplet shape, at which Gaussian curvature is concentrated.

Simulations with extended shape flexibility would be an interesting extension.

While onset and number of vortices is predicted in the idealized case, subject
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to local effects only, by Equation 3.46, with the additional effects of a larger

field stiffness the problem becomes complex and simulation was needed to dis-

cover presence, number, and location of defects. Observations from simulations

confirm and extend predictions made in Chapter 3, including the conditional

accuracy of linear stability analysis and the existence of a vortex state.
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Chapter 5

Solid-stabilized emulsions: Experimental

systems

Abstract

Two experiments on solid-stabilized emulsions were carried out early in the

project. Imaging of a microparticle-stabilized emulsion confirms the occurrence

of hexatic order in this system. Experiments in forming more complex emulsion-

like materials through specialized mixing protocols highlight the importance

of wetting properties and formation dynamics. Along with the literature, the

experiments contribute to understanding the system and motivate the choices

made in the specific model examined in the Chapter 6.
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5.1 Experiment: Model emulsion with close-packed particles

5.1 Experiment: Model emulsion with close-packed

particles

Several experiments have been performed on the geometric arrangement of col-

loidal particles on a sphere or other curved interfaces. As motivated in Chapter

1, while locally particles tend to form hexatic arrangements, a globally defect-

free hexatic order is incompatible with a spherical topology. For hexatic order,

twelve topologically mandated defect sites, particles with only five neighbors,

must exist on a sphere. Theory and experiments further indicate that the

twelve topological defect sites will be spaced at maximal distances in a ico-

sahedral arrangement and that additional defects, in oppositely-charged pairs,

occur. Usually, particles with long-range repulsive electrostatic interactions are

used in experiments at interfaces, resulting in a widely-spaced lattice of isolated

particles. Using this system, the ordering of particles on a spherical droplet was

first examined by Bausch et al. [1] and the resulting arrangement was found

to be largely a hexagonal crystal, with regularly placed ‘grain-boundary scar’

lines of defects. Irvine et al. used this system to study defects on spherical and

catenoid surfaces [2, 3]. Corresponding simulations were carried out by Bendito

et al [4], among others.

In previous experiments, the particles interactions are dominated by long-

range electrostatic repulsion (presumably mediated through the oil phase [5]),

resulting in a widely-spaced array of particles. The systems are clearly not

jammed; a certain pattern of hexatic order arises in freely rearranging particles.

However, it is doubtful whether the same widely-spaced array of electrostatically

repulsive particles can stabilize an emulsion.

I here investigated whether more densely packed microparticles, which sta-

bilize emulsion droplets, form similar hexatic order. My experimental model

system is a simple Pickering emulsion consisting of decalin (decahydronaph-

thalene), index-matched water, and PMMA-PHSA microparticles. The chosen

particles consist of a PMMA ((poly(methyl methacrylate)) polymer core, sta-

bilized with a PHSA (poly(12-hydroxystearic acid)) polymer brush with the

intention of replicating hard-sphere interactions. Einert et al [6] have similarly

investigated grain boundary scars in a model Pickering emulsion, imaging ac-
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5.1 Experiment: Model emulsion with close-packed particles

cessible top and bottom sections of a spherical droplet. I here apply recent

image analysis methods to extend analysis to the complete spherical surface.

5.1.1 Materials and methods

Flourescently labelled PMMA-PHSA microspheres were manufactured in-house

by Andrew Schofield. For these micron-scale spherical particles, the core is the

polymer polymethylmethacrylate (PMMA), while the surface is functionalized

with a PHSA polymer brush, creating a short-distance barrier that prevents two

particles from aggregating. The extent to which these particles approximate

ideal hard spheres, or not, is discussed in [7] and, for particles in a liquid-liquid

interface, in [8]. The particles are monodisperse with mean diameter 1.2µm.

The PMMA microparticles were received in decalin, in which they form a

sediment. Decalin was also chosen as the oil phase of the emulsion because its

refractive index, 1.48, roughly matches that of PMMA (1.49).

To create the oil phase of the emulsions, 3g of decalin is first added to a

vial. Then 0.2g of the PMMA microparticles, taken from the sedimented part

of the microparticle-in-decalin stock, is transferred into the vial. The resulting

suspension of microparticles in decalin mixture is sonicated using an ultrasound

probe for one minute with the intention of removing any particle aggregation.

In another vial, sodium iodide (.625g) and water (.375g) are mixed. At this

concentration, a solution of sodium iodide in water is just below saturation and

has a refractive index of about 1.49 [9], close to that of decalin and PMMA.

Finally the decalin-particle mixture and the index-matched water are brought

together to produce a water-in-oil emulsion. 1.5g of the decalin-particle mixture

is placed in a vial, then 0.5g of the water-sodium iodide solution is added. The

mixture is then sonicated for three to five 5-second pulses. Emulsion formation

is visible as the precipitation of a floccular, yellow sediment of particle-coated

water droplets. A drop of the resulting emulsion is transferred into a small vial

of decalin, diluting the emulsion.

This final product, a diluted water-in-oil emulsion, can be stored under slow

mixing on a roller bank for hours or days. In fact, this aging process may help

reduce particle bridges [10]. The oldest sample imaged here was stored for two

weeks, with no apparent detrimental changes.
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5.1 Experiment: Model emulsion with close-packed particles

As no surfactant was added, the model solid-stabilized emulsion is stable

under the action of microparticles only.

Spherical droplets of varying sizes, from microparticle clusters of around

1µm to large droplets of about 300µm, were observed. I scanned the smallest

spherical droplets only due to time and space limitations of the confocal mi-

croscopy scan; the set of imaged droplets is not representative of the true size

distribution in the emulsion.

5.1.2 Microscopy and image analysis

The sample is imaged with a laser scanning confocal fluorescence microscope

(Zeiss LSM 700). A drop of the sample is placed on a glass cover slip. As the

sample is not density-matched, particle-coated water droplets sit just above the

glass surface. After about five minutes, deformation of the droplets becomes

apparent, partially due to gravity but mostly due to diffusion and evaporation

of the water phase into the air. Therefore a new drop of the sample must be

used after a few minutes.

The emulsion contains droplets of varying sizes, dominated by large droplets,

and a few coalescing, collapsed, or elliptical droplets. I here scanned only

droplets that are small (R = 1 − 15µm), spherical, and not deformed by at-

tachment to the glass surface or to other droplets. When a suitable droplet is

found, a three-dimensional scan is taken using a 63x oil immersion objective.

Images are three dimensional image stacks with a voxel size of about 0.0625µm×
0.0625µm× 0.25µm. The z-direction resolution is poor.

Images are analysed using PERI, an image reconstruction software based on

Bayesian likelyhood estimation [11]. The software extracts the positions and

radii of fluorescent spherical particles in the three-dimensional image by con-

structing an internal model - a list of particle positions and radii - that best

explains the appearance of the image. The model is iteratively refined by com-

paring the image calculated from the optical effects of the model to the actual

image. In a demonstrative experiment, the authors of [11] achieve nanometer-

precision in the locations of colloidal microparticles, a substantial improvement

over previous particle-tracking algorithms [12]. While the paradigm followed by

the software is general, the existing implementation is conveniently optimized
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5.1 Experiment: Model emulsion with close-packed particles

for three-dimensional confocal micrographs of spherical colloidal particles.

When applied to solid-stabilized emulsion droplets, a major limitation is im-

perfect index matching. Lensing at oil-water, oil-PMMA, and water-PMMA in-

terfaces distorts the image, although the problem has been significantly reduced

by approximate index-matching. Therefore the ultra-high-precision particle loc-

ations obtained in the authors’ demonstration are not achieved. While the

software could theoretically be modified to take refraction at particle droplets

and interfaces into account, I find that, after approximate index matching, all

microparticles on the droplet surface are nevertheless identified and located with

adequate precision.

After extracting all particle positions in a three-dimensional image, the list

of particle coordinates is further filtered and modified: a spherical shell is fitted

such that the area of sphere-microparticle intersections is maximized. This

sphere is taken to represent the oil-water interface. The coordinates of particles

not intersecting this sphere (i.e. freely suspended in the oil phase) are discarded.

For particles intersecting the interface, the true position of the particle center,

which may be slightly above or below the spherical shell, is adjusted by projecting

radially onto the spherical surface. The projected particle positions all lie on

the spherical shell of radius R (Figure 5.3). They can now also be represented

as spherical polar coordinates (θ, φ, ρ = R).

5.1.3 Quantifying order

From this list of particle coordinates on a sphere, I extracted two measures of

the ‘orderedness’ of the particle arrangement: correlations in particle positions

via the radial distribution function and defects identified via Voronoi tessellation.

Radial distribution function

The radial distribution function gives the average density of a substance as a

function of distance from a point. Crystalline states can be distinguished from

liquid phases by the strength and number of peaks in the radial distribution

function, which indicate correlations in particle position.

My procedure for extracting the radial distribution function for points on a

sphere is as follows:
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5.1 Experiment: Model emulsion with close-packed particles

Figure 5.1: Height and surface area of an annulus on a spherical surface. The

ith segment can be labelled by the z-direction distance hi from the top of the

sphere, but the distance from a reference particle at the top of the sphere to

particles on each spherical segment is more appropriately given by the geodesic

distance di.

A particle is selected as the reference particle. The system is rotated so that

the chosen particle lies at the top of the sphere.

Conveniently, the surface area of a spherical segment (Figure 5.1) is propor-

tional to the height ∆h of the segment:

A = aπR∆h (5.1)

Thus particles can simply be binned according to the value of their z-coordinate

in the rotated system to form equal-area bins.

In addition to the height hi of its center, each sphere segment is assigned

a distance di, which measures the geodesic distance (along the surface) from

the chosen particle to the bin center. Thus a list of particle counts at discrete

distances di from the reference particle is generated.

Each particle is in turn chosen as the reference particle. For each particle,

the system is rotated and the number of particles in each height interval ∆h,

located at height hi, is counted.
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5.1 Experiment: Model emulsion with close-packed particles

Finally the counts obtained from different reference particles are averaged.

They are also normalized according to the surface area of the chosen sphere

segments and the average particle density on the droplet.

When the results are plotted (Figure 5.2), we see to what extent particle

positions are correlated at larger particle separations.
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5.1 Experiment: Model emulsion with close-packed particles
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5.1 Experiment: Model emulsion with close-packed particles

The scanned droplets seem to fall into one of the two distinct types: large

droplets (R & 4.5µm) with liquid-like pair correlation functions, and small

droplets with peaks in the radial distribution function persisting until the end

of the surface. However, only 14 droplet were analyzed in this exploratory ex-

periment. For reference, the radial distribution of similar particles at a planar

interface [8] is intermediate between the two types seen here. On large spherical

droplets liquid-like positional order seems disrupted in comparison to order on

a plane, while particles on small droplets seem counterintuitively more ordered.

A small number of spherical particles (N ≤ 80) seem to arrange into a spher-

ical shell in a symmetric and structured way, with a clear cutoff between the

two cases at a droplet radius of about 4.5µm. The distinction has not been

previously reported in the literature, as relatively larger droplets with a larger

number of interfacial particles are usually studied. The apparently discontinuous

transition from the regime of sphere packing in a small cluster or surface to the

arrangement of a large number spheres on a spherical surface is an interesting

topic for further study.

Voronoi tessellation

Voronoi tessellation divides an area into cells such that each point is categorized

by its closest particle center. The Voronoi tessellation is here used to measure

how many neighbours each particle has.

Voronoi tessalation was originally defined for distances on a plane. How-

ever, on a spherical surface, it has been shown that an equivalent tessalation

is achieved by projecting patches of the surface onto a plane, then using the

standard algorithms for Voronoi tessalation on a plane. I here used the scipy

implementation of Voronoi tessalation on a sphere, based on an algorithm by

Caroli et al. [13].

Examining the particles as categorized as hexagons or defects by Voronoi

tessalation (Figure 5.4), I found that 5- and 7-fold defects are arranged in

lines called grain-boundary scars, as is known in the experimental literature.

While a variety of defect motifs are possible and emerge according to size and

curvature of the system, including isolated defects (disclinations), defect pairs

(dislocations), lines, and rosettes [14, 15], here, irregular lines of defects are
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5.1 Experiment: Model emulsion with close-packed particles

Figure 5.3: The process of image analysis, from confocal micrograph to Voronoi

tessellation. (a) Example slice from the three-dimensional stack of confocal

scans. (b) Particle positions, extracted from the confocal data using PERI and

filtered for particles lying on a sphere (c) Voronoi tessellation of particle positions

on a sphere, distinguishing particles with six, five, or seven neighbors.

predominantly seen. The defect lines are also not arranged on the sphere with

perfect icosahedral symmetry, also indicating some degree of incomplete global

minimization. The same phenomenon of slightly irregular defect scar lines,

deviating from the result of a theoretical zero-temperature minimization of the

same system, is seen elsewhere in the experimental literature [6]. The result

indicates that a qualitatively similar hexatic packing occurs in the model solid-

stabilized emulsion as in experiments with electrostatically repulsive particles,

despite the denser packing of the microparticles. The microparticles in my model

Pickering emulsion are not jammed locally, as evidenced by their arrangement

into a locally hexatic rather than glass-like monolayer. At the same time, the

microparticle monolayer effectively stabilizes the emulsion.
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5.1 Experiment: Model emulsion with close-packed particles

Figure 5.4: Voronoi tessellation of particles on the largest droplet, on a sphere

and projected onto a plane. Hexagonal tiling (green) predominates. The ar-

rangement of particles with five (blue) and seven (yellow) neighbors into defect

lines replicates the existing literature.

5.1.4 Discussion

The model emulsion is designed to show that, at least in some cases, a stable

emulsion with hexatic orientational ordering exists, albeit with the expected

packing defects. On the other hand in other solid-stabilized emulsions, with

rough, polydisperse, or interacting particles, jamming is a prominent effect and

the arrangement of particles will be more irregular and glass-like. Pickering

emulsions are commonly stabilized by force chains in a layer of jammed particles,

among other mechanisms. The material is solid-like, with a surface stress in

response to compression of the interface via an applied inner under-pressure

in the droplet [16]. Furthermore, the interfacial material is hysteretic, with

varying material properties after a history of compression and decompression

[16]. Similarly, we can assume that in such cases the interfacial particle con-

figuration is dependent on formation history. Jammed configurations and other

nonequilibrium phenomena are not treated further in this thesis.

In this thesis I generally analyze order as a continuum field theory, rather

than studying the packing of a small number of discrete spheres or circles on

a curved space. In contrast, the experiment examined the positions of relat-

ively few individual particles. As such, the results on larger droplets, bearing

up to N = 824 microparticles, are more indicative of the behavior of interest.

The somewhat large microscale particles were chosen due to their accessibility
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5.2 Experiment: Bijels by mixing

to optical microscopy methods. We can assume that similar systems stabil-

ized by smaller nanoparticles behave similarly, displaying predominantly hexatic

arrangements with occasional grain boundaries scars.

5.2 Experiment: Bijels by mixing

Secondly, I performed an experiment on creating metastable complex bijel-like

droplet shapes in nanoparticle-stabilized emulsion.

The bijel is a complex emulsion-like material with an amorphous bicontinu-

ous morphology. It is of interest here because the particle-coated interface

separating the oil and water phases has a complex shape with high topological

genus and varying curvature. Bijels can be reliably produced by the symmetric

demixing of two immiscible liquids under the addition of nano- or microparticles.

As the liquids undergo spinodal decomposition, the particles are absorbed into

the emergent interface and stabilize it, preventing further demixing. Thus the

mutually interpenetrating structure of the two liquids which is usually transi-

ently observed during spinodal decomposition is ‘frozen in’, held in place by the

jammed layer of particles at the interface. These bijels can be stable in this

nonequilibrium state for months.

Here I aimed to produce a similar result, a complex tortuous strucutre of

mutually interpenetrating liquids, by simply mixing viscous liquids at room tem-

perature, a procedure which would be more scalable and generalizable than the

original method. Protocols for producing bijels in this way were first discovered

simultaneously by Cai et al. [18] and Huang et al. [19]. I attempted to replicate

the experiment by Cai et al.

The model bijel-like emulsion consists of silica particles; the water-like but

more viscous glycerol as the aqueous phase; silicone oils of varying viscosity

as the oil phase; and the additional surfactant CTAB, which modifies the wet-

ting properties of the particles. The monodisperse spherical nanoparticles were

manufactured via the Stöber process [20]. To enable confocal microscopy, the

glycerol phase is labelled with Nile Red and the nanoparticles incorporate FITC

(fluorescein isothiocyanate).

The protocol recommended by Cai et al. features a certain sequence and
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5.2 Experiment: Bijels by mixing

Figure 5.5: Partially inverted emulsion samples, method as in [17]. Glycerol is

dyed red, oil is left dark, and silica nanoparticles are green. Elongated, branched,

and interconnected droplets structures occur.
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5.2 Experiment: Bijels by mixing

timing of mixing steps with a magnetic stirrer and pauses. Despite using the

same equipment and material as the original authors, the experiment could not

be replicated. I concluded that this is due to the degraded wetting properties

of the silica nanoparticles used: wetting propoerties are crucial to determining

whether an emulsion, bijel, or inverse emulsion is formed [20]. However, a

variant protocol by Li at al. [17] (1), which takes advantage of off-neutral

hydrophilic nanoparticles, could be replicated. I produced samples of elongated,

branched, or interconnected emulsion droplets with this method (Figure 5.5).

The hypothesized mechanism is a conflict between the emulsion type favored

by the relative fluid viscosities during formation, a water-in-oil emulsion, and

the wetting angle of the nanoparticles, which favor an oil-in-water emulsion. In

the proposed mechanism, the emulsion begins to invert during formation, but

the partially inverted morphology is ‘frozen in’ by jamming of the interfacial

nanoparticle layer and potentially by the high viscosity of the fluids [17].

5.2.1 Discussion

The sensitivity of different bijel formation methods, whether by spinodal decom-

position or by mixing, to nanoparticle wetting angle [20] implies that interfacial

spontaneous curvature effects are important. Additionally, the dynamics and

relative timings during the formation process are crucial [21], as are rheological

properties of the interfacial material thus formed [22]. For the several formation

methods, several mechanism are proposed but not all are conclusively known.

The interplay of dynamic qualities such as viscosity is beyond the scope of this

thesis.

In classic bijels, most channel breakage and bijel failures seem to happen

during the formation process. Once successfully formed, bijels are extremely

stable. Based on macroscopic rheological measuements, particles in aged bijels

appear to rearrange into a more compact [23] (and potentially more hexatic)

configuration and develop interfacial attractions.

A fundamental limitation is that bijels produced with either method are

not easily extended to larger particles such a microparticles. In addition to

(1)While I am an author on this publication, my contribution consists of the image analysis

algorithm and does not overlap with material presented in this thesis.
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5.3 Nanorod-stabilized emulsions and bijels

dynamic formation effects [21], there is fundamentally an upper limit due to

area-volume scaling of the particles. To cover the same amount of interfacial

area with their cross sections, larger microparticles would need to be dissolved

in the initial oil phase at a extremely high volume fraction, making the initial

dispersion of particles in oil impossible or difficult to process. This presents us

with an experimental problem in imaging interfacial order in bijels or at tube-like

interfaces. Only nanoparticles stabilize bijels formed by mixing, while micron-

scale particles are required to resolve individual particle locations by fluorescence

confocal or other optical microscopy methods. A promising future experiment

would be to examine the arrangement of small nanoparticles on the surfaces

of a bijel formed by spinodal decomposition with cryo-SEM or other nanoscale

imaging methods.

5.3 Nanorod-stabilized emulsions and bijels

Beyond spherical interfacial particles, emulsions can be stabilized by a range

of other particle shapes. Indeed, in industrial contexts stabilizing particles are

rarely monodisperse or perfectly spherical. Variants include irregular particles as

well as the plate-like particles in clays. Returning to lab-based model emulsions,

nanorods can be used to stabilize emulsions [24, 25]. While difficult, bijels have

also been formed using rod-like nanoparticles [26]. Practical challenges in bijels

include the difficulty in tuning wetting properties of the rod-shaped nanoparticles

and challenges in imaging samples with iron-oxide-based nanorods. Formation

dynamics may proceed according to the particles’ longer dimension, as if the

particles are larger. Surface curvature on a scale comparable to individual rod

length may facilitate particle detachment. Lastly rods may be less conducive to

jamming and force chains. Ellipsoidal particles are prone to arrange in triangle-

like clusters due to capillary interactions.

Nevertheless, rod-like nanoparticles are an attractive object of study in the

context of this thesis. Experiments on planar as well as spherical interfaces,

show distinct isotropic and orientationally ordered (nematic) phases. Li et al.

[27] studied interfacial monolayers of spherocylinders under compression in a

Langmuir trough experimentally and computationally. In both cases the ordered
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phase consists of several small ordered domains or rafts, each consisting of a

small number of particles. The authors note single vertical ‘flipper’ particles

as pressure is increased. However, rather than representing a dinstinct phase

of the material, the phenomenon seems confined to individual particles located

between nematic grains. Although observations on a planar interface may not

be indicative of behavior in emulsions [28], the possibility of a ‘flipper’ phase

of predominantly vertical particles will be neglected. Additionally, Li et al.

note that double-layers occur under higher compression. This limit will not be

considered. Lastly when the scale of individual rods becomes comparable to

curvature, attachment energy is modified; rod orientation and mean curvature

plays a role; and interparticle capillary forces may be modified. In this thesis I will

model an idealized interfacial monolayer layer of nanorods as a two-dimensional

material, assuming particles are small relative to surface curvature and lie parallel

to the surface.

5.4 Conclusions

By analyzing microparticle-stabilized emulsion droplets, I investigated whether

well-known experimental phenomena of hexatic packing and defect scars on

spheres also occur in the more densely packed particle layers required to ef-

fectively stabilize an emulsion. I find that the phenomenon occurs in my model

solid-stabilized emulsion, confirming findings by Einert et al. [6]. Previous stud-

ies capture sections of spherical droplets, inferring the full conformation via stat-

istical analysis [6]. Using confocal microscopy and recent computational image

analysis methods, I was able to directly determine the positions of all particles

over the three-dimensional spherical surface of small droplets. An extension to

larger three-dimensional objects is constrained by space and time constraints

of scanning confocal microscopy on solid-stabilized emulsion droplets. Larger

spherical systems subject to the same principles have been analyzed in other

studies [29]. The emulsion can be expected to behave like these other systems

at larger droplets sizes, that is developing ‘seas’ of hexatic order separated by

defect scars, arranged in an icosahedral pattern.

The observation of local hexatic order implies that in this model emulsion,
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the closely-packed particles are not jammed but free to rearrange locally. The

observed long-term stability of emulsion droplets in a vial of decalin, opposed to

the rapid collapse of droplets on a microscope slide, implies that these droplets

are nevertheless stable against the Laplace pressures differences involved in usual

Ostwald ripening between droplets, but not against the evaporation of water to

the surrounding air.

Experiments on the dynamic formation of complex bijel-like emulsion droplets

highlighted the importance of particle wetting angle or interfacial spontaneous

curvature. The experiments, which rely on fluid viscosities and the timings of

various effects during the formation process, also highlight the importance of

dynamic phenomena and hysteresis in determining emulsion morphology. Dy-

namics and the mixing process are beyond the scope of this thesis; instead a

certain metastable emulsion morphology is presupposed in the analysis of the

shape and stability of individual channels.

The two experiments presented here and others in the literature give dir-

ection on how to modify the previous, generic model to best represent solid-

stabilized emulsions:

Spontaneous curvature, based on wetting properties of the particles, is in-

deed a crucial effect and will be retained. While a surface tension based on

the free interfacial area between particles is present, surface tension alone is an

inadequate description of the system.

The constraints on particle number and surface area in solid-stabilized emul-

sion differ qualitatively from the molecular mono- and bilayers of molecules at

interfaces discussed in previous chapters. An interfacial material of molecular

surfactant is in chemical equilibrium with a reservoir of the same molecule dis-

solved in the bulk. While the total number of molecules on the interface is

approximately constant, individual molecules are constantly exchanged between

interface and solvent. On the other hand, larger nano- or microscale particles

can be assumed to be to be irreversible adsorbed to the interface. After form-

ation of a droplet, the total number of particles on the interfaces is constant.

The particle-stabilized interface is subject to a surface tension from the bare in-

terface between particles. Surface area decreases and particles are brought into

closer contact until the particle density becomes sufficiently high. Then the op-
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posite effect, a pressure of the particle layer which prevents further compression,

comes into effect.

In the next chapter, the need to conserve total particle number motivates the

adoption of a model which describes both local number density and orientational

order. Focusing on a model interfacial material of two-dimensional nanorods,

in the next chapter I derive the material properties of a nanorod monolayer to

replace the previously generic description of the order parameter field.
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Chapter 6

Hard-rod fluid on a modulated cylindrical

interface

Abstract

In this chapter I adapt the previously generic model to a specific interfacial

material, a two-dimensional hard rod fluid. Analytic results from Fundamental

mixed measure theory, a density functional theory, are taken from the literature

or derived where applicable to form a local description of the material. To this

end I obtain Frank constants Kε as well as the additional coefficients Jε, moduli

of density variation. In the proposed gas-like model material, curvature-coupled

gradient energies are small; the dominant effect is homogeneity of the fluid due

to entropic effects. Tubule shape and stability is primarily determined by sur-

face tension-bending rigidity effects; orientational order adapts to the resulting

surface shape. Finally the simulation is adapted to confirm configurations of

the order parameter field on the curved surface.
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Table 6.1: Table of symbols, Chapter 6

symbol meaning

D width (diameter) of particles

L length of particles

l aspect ratio of particles

A particle area

n = (nx, nz) unit normal vector to particle boundary

ρ particle number density

η area fraction covered by particles

R total number of particles in the system

n̂ unit director

m̂ complex director

ϑ angle of complex director

φ orientation of an individual particle

g(α2, φ) distribution of particle orientations φ around n̂

α2 sharpness of angle distribution, an indicator of order

S a derived scalar order parameter

r = (x, z) position in general (flat space) theory

x = (z, θ) position on the cylinder-like interface

nν , N weighted density functions

ω(ν),Ω(µν) weight functions

ω̄ certain single-body integrals over weight functions

Kε Frank constants, elasticity w.r.t. gradients in director

Jε elasticity w.r.t gradients in density
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6.1 Orientational order in a hard-rod fluid

6.1 Orientational order in a hard-rod fluid

6.1.1 Density functional theory

With density functional theory (DFT), otherwise intractable properties of N-

body fluids can be calculated computationally. Fundamental measure theory

(FMT), first developed by Rosenfeld [1, 2], extend DFT to interactions between

multiple species of hard spheres via a geometrical interpretation of the Mayer f -

function. Further extentions of FMT include Fundamental mixed measure theory

(FMMT) [3], which handles convex hard bodies of arbitrary shape. Among other

applications, Wittmann et al.[4] have used fundamental mixed measure theory

to reveal density distributions and phase behaviour in a two-dimensional fluid

of hard discorectangles. While the framework primarily provides computational

results, in certain special cases analytic solutions are possible. In this chapter I

will make extensive use of analytical formulae relating order parameter, number

density, and energy retrieved by Wittmann et al. [4] in the special case of iso-

tropic and nematic phases of a the two-dimensional hard rod fluid. Additionally,

I re-work Wittmann and colleagues’ work on the elasticity of nematics in three

dimensions [5] for the two-dimensional case and calculate an additional elasticity

coefficient to retrieve bending rigidities of the two-dimensional nematic mater-

ial. The results from FMMT at the microscopic scale will be taken as material

properties of the interfacial material and incorporated into the investigation of

order on a curved surface.

As in [4], I examine use a fluid of hard discorectangles (Figure 6.1), the two-

dimensional version of a spherocylinder. The discorectangle is characterized by

diameter D and length L. In units of the radius r0 of the larger cylindrical

surface on which the particles are embedded, these lengths will be small. The

particle has unitless aspect ratio l = L/D and area A = LD + πD2/4.

As is conventional in DFT, energy of the material has ideal gas (‘id’) and

excess (‘ex’) contributions.

The total energy is

F =

∫
d~r (fid + fex + fgrad) ; (6.1)

The excess energy density fex(x) gives the energy of a configuration due to

two-body interactions, in this case excluded volume interactions.
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6.1 Orientational order in a hard-rod fluid

D

L

Figure 6.1: The two-dimensional discorectangle particle shape, a rectangle with

half-disc end caps, and its dimensions L, D.

The excess free energy is approximated by

fex(ρ(r)) = −n0 ln(1− n2) +
N

2(1− n2)
, (6.2)

an extension of Onsager theory to higher area fraction [4], derived by dimen-

saional analysis and by matching to thermodynamic equations of state [2].

The energy density is a function of weighted densities

nν(r) =

∫
dr′dφρ(r′, φ)ων(r− r′, φ), (6.3)

in turn based on the weight functions ω(ν):

ω(2)(r, φ) = Θ(|R(r̂, φ)| − |r|)

ω(1)(r, φ) =
δ(|R(r̂, φ)| − |r|)

n(r̂, φ) · r̂

ω(0)(r, φ) =
K(r̂, φ)

2π
ω(1)(r, φ)

(6.4)

where φ is the orientation of the particle; r̂ is the unit direction vector of r;

R(r̂, φ) is the vector from the origin to the particle boundary in a given direction

r̂; and n(r̂) is the (outwards-pointing) unit normal vector to the particle bound-

ary at the location indicated by R(r̂, φ). The weight functions are kernels of

integration related to particle area, particle perimeter, and total curvature along

the particle boundary respectively. The integral is over all possible orientations

φ of the central particle as well as over space r.

Furthermore there are vector and tensor versions of ω(ν) and of derived num-

ber densities nν , formed by including factors of the unit normal n̂ in Equations

6.4 6.3. I will use vector ω(1) = nω(1) and tensor ω(1) = nnTω(1), objects with

two and 2× 2 components respectively.
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6.1 Orientational order in a hard-rod fluid

Additionally N is the two-body weighted density

N(r) =

∫ ∫
dr1dφdr2dφ2ρ(r1, φ)ρ(r2, φ2)Ω(11)(r− r1, φ2, r− r2, φ2) (6.5)

related to the two-body weight functions

Ω(11)(r) =
arccos(n1 · n2)

2π
|n1 × n2|ω(1)(r1, φ)ω(1)(r2, φ2) (6.6)

with ni the normal vector n(r̂i, φi) at each particle’s boundary. By expanding

arccos(n1 · n2)|n1 × n2|, N is approximated as a series expansion [4]

N =
2 + b

6π
n1n1 +

b− 4

6π
n1 · n1 +

2− 2b

6π
Tr[n

1
n

1
] + ... (6.7)

The series does not formally converge in even numbers of dimensions [4, 6]; here

the series is truncated at rank-2 tensors, rendering it inaccurate. Therefore, the

algebraic values of the coefficients in the series expansion are replaced with the

above heuristic values including free parameter b [7]. The relationship between

coefficients comes from the virial coefficients, reducing 3 coefficients to one free

parameter. The remaining free parameter b is chosen reproduce some criterion.

For example, Roth et al.[7] find that a value of b = 11/4 yields the best fit to

the Mayer function of hard discs, while b = 3 best reproduces the bulk pressure

of the hard-disc crystal. Wittman et al. [4] find b = 3 also reproduces excluded

area well, while b = 4 is a good choice in the high aspect ratio limit. Wittmann

et al., and this work, will proceed with the choice b = 3.

While the task is in general to find the distribution ρ(r, φ) in both location

and orientation minimizing Equation 6.1, the form of the distribution of particles’

orientations is posited throughout to be

g(φ) =
1

I0(α2)
eα

2(2 cos2 φ−1), (6.8)

a double-headed distribution with free parameter α2 indicating sharpness of the

distribution (Figure 6.2). The factor I0(α2), a modified Bessel function of the

first kind, normalized the distribution to
∫ 2π

0 dφg(φ) = 2π. This form of the

orientation distribution has been found to minimize the potential[8].

While α2 indicates sharpness of the distribution or amount of order, the

amount of order is more conventionally reported as the order parameter S ∈
[0, 1], derived from α2 as
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6.1 Orientational order in a hard-rod fluid

S(α2) =
1

2π

∫ 2π

0
dφ(2 cos2 φ− 1)g(φ)

=
I1(α2)

I0(α2)
.

(6.9)

With the energy formula in Equation 6.1 and the assumption in Equation 6.8

in hand, FMMT enables Wittmann et al. to computationally retrieve a spatially

varying density distribution ρ(r, φ) minimizing potential Ω = F−µN . At a given

area fraction and aspect ratio, isotropic, nematic, smectic, or crystalline density

and order parameter distributions result. In two dimensions the authors report

a phase diagram in aspect ratio l = L/D and area fraction η encompassing

isotropic, nematic, smectic, and crystalline phases. In the latter two phases,

the particles have translational order, as evidenced by periodic variation in ρ(r),

while the former two phases are isotropic with respect to the positions of particle

centers.

In the cases of the microscopically uniform-density phases, the isotropic and

nematic phases, Equations 6.3 and 6.1 are particularly simple. Wittmann et

al. additionally obtain analytical formulae for (a) orientational order and (b)

energy density as a function of area fraction in the special cases of the isotropic

and nematic phases. I here additionally derive expressions for (c) elasticity as a

function of area fraction in two dimensions.

After positing a density distribution ρ(r, φ) = ρ0g(cosφ) characterized by

spatially uniform number density and spatially varying orientation, Equations

6.3 integrate to [4]

n0 = ρ0,

n1 = ρ0(2L+ πD),

n2 = ρ0(LD +
π

4
D2) = ρ0A = η,

n1 = 0,

n = ρ0

(
L(1 + S) + π

2D 0

0 L(1− S) + π
2D

)
.

(6.10)

The scalar number densities are proportional to total boundary curvature, peri-

meter, and area of a discorectangular particle respectively. The tensor compon-

ents are additionally related to order parameter S.
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6.1 Orientational order in a hard-rod fluid

Furthermore, by equating α2 as defined as a derivative of the excess free

energy density,

α2 := −∂fex(η, S, l)

ρ∂S
. (6.11)

with α2 as defined by Equation 6.9,

S(α) =
I1(α2)

I0(α2)
≈ 1

2
α2 − 1

16
α6. (6.12)

Wittmann et al. [4] obtain a relationship between order and area fraction η:

η(α2) =

(
1 +

8l2(b− 1)S(α2)

3π(4l + π)α2

)−1

. (6.13)

The formula directly indicates the isotropic-nematic phase transition, the

area fraction ηIN (l) at which the order parameter S vanishes,

ηIN = lim
α→0

η(α2) =

(
1 +

4l2(b− 1)

3π(4l + π)

)−1

, (6.14)

with b again a parameter which I set to b = 3. They find that (unlike in three

dimensions) the transition is second order and there is no nematic-isotropic

coexistence region.

Note that the series expansion in Equation 6.12, which is not accurate

beyond α2 ≈ 1 (Figure 6.4), has been used to derive these relations.

The ideal energy contribution reads

fid(x) =
1

2π

∫ 2π

0
dφρ(r, φ)(ln(ρ(r, φ)Λ2)− 1), (6.15)

with Λ the thermal wavelength of the particles, the value of which is however

irrelevant. Since the number of particles in the system will be fixed, chemical-

potential-like terms linear in ρ0 can be ignored as they have no effect on system

behavior. Substituting ρ = ρ0g(cosφ) in the isotropic and nematic phases, the

relevant parts of the ideal contribution are

fid(x) =
1

2π

∫ 2π

0
dφρ(r, φ)(ln(ρ0) + α2(2 cos2 φ− 1)− ln(I0(α2)))

= ρ0(ln(ρ0) + α2S + ln(I0(α2))).

(6.16)

Local energy density floc = fex+fid is a convex function of number density

or area fraction (Figure 6.6). At constant system volume and area fraction,
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6.1 Orientational order in a hard-rod fluid

Figure 6.2: Angle distribution g(α2, φ). The distribution in Equation 6.8 is a

double-headed distribution over possible particle orientations φ ∈ [0, 2π), with

‘sharpness’ determined by parameter α2
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α2
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0.4

0.6

0.8

S
,P̄
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S(α2)

P̄4(α
2)

(a) Functions S, P̄4 (see box 6.2.3).
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α2

0.0

0.2

0.4

0.6

0.8

1.0

S

S = I1(α
2)/I0(α

2)

S = α2/2− α6/16

S = α2/2− α6/16 + α10/96

(b) Series approximations of S.

Figure 6.3: The order parameter S(α2), a ratio of two Bessel functions

S = I1(α2)/I0(α2), compared to the similar function P̄4 = I2(α2)/I0(α2)

and compared to polynomial approximations.
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6.1 Orientational order in a hard-rod fluid
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Figure 6.4: Relationship between particle area fraction η and two indicators

of orientational order, ‘sharpness’ α2 and order parameter S, shown for four

particle aspect ratios l. The order parameters become nonzero at the critical area

fraction ηIN (l), where the isotropic-nematic transition takes place; subsequently

orientational order increases with area fraction. Derived order parameter S is

often a more useful quantity in calculations, as it is finite and bounded to S = 1

at high orientational order.

Figure 6.5: Critical area fraction of isotropic-nematic phase transition ηIN (l) as

a function of particle aspect ratio (Equation 6.14). For a given particle aspect

ratio, nematic order parameters α2 and S become nonzero at this area fraction

or number density.
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Figure 6.6: Local energy density terms as a function of area fraction η. A

linear function is plotted for comparison. Note factor of D2: where particle

lengthscale D is small energy densities can be high.

the local energy density of a hard rod fluid depends on the relative size of the

particles, with smaller particles having a greater number density and greater en-

tropic energy contribution. For reasonably microscopic particles, number dens-

ity, and therefore entropic energy density, can be high.

In this work I will neglect the possibility of smectic and crystalline phases and

use the analytic formulae describing isotropic and nematic phases extensively

to build the final model and simulation. The translationally ordered smectic

and crystalline phases have been found computationally to occur at high area

fractions η & .75 for a wide range of relevant aspect ratios, for more details see

results in [4].

The density functional theory is used to uncover microscopic density distri-

butions, where density modulations on the scale of individual particles indicate

translationally ordered phases. Taking the results as equations of state, I apply

the formulae on a larger scale. Long-range variations in density, which may be

induced by an external potential such as curvature or simply by thermal fluctu-

ations in director, are treated by elasticity theory below. I assume Wittmann’s

formulae relating density, order, energy, and elasticity describe the material loc-

ally and use the analytic formulae 6.2, 6.13, and 6.16 extensively to build a

simulation of a nematic or isotropic hard rod material on our curved surface.

The model used here, where the energy functions apply locally and there are

gradient terms in a continuum field theory, assumes that the individual particles
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6.2 Elasticity of a hard rod fluid

are microscopic relative to the scale considered.

6.2 Elasticity of a hard rod fluid

In the continuum model outlined above, the other energy contribution is a

nonlocal contribution from gradient terms. Following Wittmann et al. [5], where

the authors derive Frank constants Kε (coefficients of gradients in director) for

a three-dimensional material of hard spherocylinders, I here analogously derive

Frank constants of a two-dimensional material of hard discorectangles. I also

derive additional coefficents Jε, relating to gradients in area fraction.

For three-dimensional liquid crystalline materials with a vector order para-

meter, elasticity is commonly described by the Frank free energy density, in

three dimensions

F 3D
grad =

1

2

[
K1(∇ · n̂)2 +K2(n̂ · ∇ × n̂)2 +K3(n̂×∇× n̂)2

+ K24∇ · ((∇ · n̂)n̂− n̂(∇ · n̂))] ,

(6.17)

with K1, K2, K3, K24 constants giving resistance to splay, bend, and twist

respectively. The last (K24) term is a saddle-splay or surface term often omitted

as negligible or not relevant. In two dimensions there is no twist term K2. In

two dimensions with no boundary term we have

F 2D
grad =

1

2

[
K1(∇ · n̂)2 +K3(n̂×∇× n̂)2

]
, (6.18)

or, in the one-Frank-constant approximtion, simply

Fgrad =
1

2
K(∂in̂j)

2. (6.19)

In the one-Frank-constant approximation, it is relatively simple to replace

the two-headed vector director n̂ with an equivalent unit complex 2-atic order

parameter and the derivative operator with the covariant derivative operator

Di, coupling orientational order to curvature in the usual way.

6.2.1 Taylor expansion and Poniewierski-Stecki formula

Gradient terms are derived via the principle of Taylor expansion, as carried out

by Poniewierski and Stecki [9] in a general formulation, which finds that Frank
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6.2 Elasticity of a hard rod fluid

constants may be obtained as integrals over the material’s two-point correlation

function. From their DFT theory, which entails a specific expression for the

correlation function, Wittmann et al. are then able to carry out the integrals.

Following Poniewierski and Stecki, we start with an arbitrary local energy

function, move to Fourier space, express energy density as a series expansion in

functional derivatives around the local value, and integrate by parts to obtain

the gradient energy contribution∫
V
drfgrad =

∫
V

∫ 2π

0
drdφai

∂ρ(r, φ)

∂ri

+
1

2

∫
V

∫ 2π

0

∫ 2π

0
drdφdφ′(mij + hij)

∂ρ(r, φ)

∂ri

∂ρ(r, φ′)

∂rj

+
1

2

∫
∂S

∫ 2π

0
dljdφbij

∂ρ(r, φ)

∂ri

(6.20)

in an area or volume V with boundary ∂S.

The coefficient of square derivative terms is divided into the symmetric

tensor mij and the antisymmetric tensor hij . Terms ai and hij will vanish for

symmetry reason - ai relates to first derivatives while hij is an antisymmetric

tensor - and the bij term is a surface term, leaving an elasticity energy density

fgrad =
1

2

∫ 2π

0

∫ 2π

0
dφdφ′mij

∂ρ(r, φ)

∂ri

∂ρ(r, φ′)

∂rj
(6.21)

Ponierwiesrki and Stecki find that the remaining coefficients mij are related to

the direct two-body correlations functions c(2)(r, φ, φ′) as

mij(φ, φ
′) =

1

2

∫ ∞
0
drrirjc

(2)(r, φ, φ′), (6.22)

with the spatial integral now centered on a particle and extending over all

of space. To derive the Frank constants of the nematic phase, Poniewierski and

Stecki as well as Wittmann et al. proceed by setting ρ(r, φ) = ρ0g(φ), a fixed

number density ρ0 and a pre-determined orientational distribution g(α2, cosφ)

around director n̂. Only the mean direction of orientational order, n̂, on which

the distribution g is centered, is allowed to vary spatially. Then the derivative

term reads

∂ρ(r, φ)

∂ri
= ρ0

∂n̂

∂ri

∂g

∂n̂
. (6.23)
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6.2 Elasticity of a hard rod fluid

Factor of ρ0
∂g
∂ni

= η
A

∂g
∂ cosφ φ̂j resulting from the above chain rule are incor-

porated into the integral mij and integrated over all possible particle orientations

φ to form the coeffients

Mnn
iijj =

η2

2A2

∫
dφdφ′drriric

(2)(r, φ, φ′)
∂g(φ)

∂ cosφ

∂g(φ′)

∂ cosφ′
φjφ

′
j (6.24)

of spatial variations in the unit director, ∂ni
∂rj

∂ni
∂rj

. Comparing with equation

6.19, the coefficients of squared derivatives of the unit director can be directly

identified with the Frank constants, Kε = Mnn
εε11

Letting both local number density ρ0 and local director n̂ vary spatially, the

density distribution takes the form

ρ(r, φ) =
η

A
(r)g(α2(η(r)), cosφ) (6.25)

With this more general form, the spatial derivative term ∂ρ
∂ri

can be decom-

posed to

∂ρ

∂ri
=
∂ρ0

∂r
· g(r0) + ρ0(r0) ·

(
∂n̂

∂ri

∂g

∂n̂
+

∂g

∂α2

∂α2

∂ri

)
=

(
g + ρ0

∂α2

∂ρ0

∂g

∂α2

)
∂ρ0

∂r
+ ρ0

∂g

∂n

∂n

∂r
.

. (6.26)

We recognize the previous gradient term in n̂i as well as the additional factor

g + ρ0
∂α2

∂ρ0

∂g

∂α2
(6.27)

of gradients in η. The factor is absorbed into a cofficient Mηη
ii

Mηη
ii =

1

2A2

∫
dφdφ′drriric

(2)(r, φ, φ′)

(
g(φ) + η

∂α2

∂η

∂g(φ)

∂α2

)
(
g(φ′) + η

∂α2

∂η

∂g(φ′)

∂α2

)
.

(6.28)

In analogy to Frank elasticity constants, I additionally label gradient elasti-

city coefficients

J1 := Mηη
11

J3 := Mηη
33 .

(6.29)
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6.2 Elasticity of a hard rod fluid

6.2.2 Elasticity coefficients

Following Wittmann et al. I integrate the Poniewierski-Stecki formula

βKε =
η2

2a2

∫
drdφdφ′r2

ε c
(2)(~r, φ, φ′)

∂ρ(α2, cosφ)

∂ cosφ

∂ρ(α2, cosφ)

∂ cosφ
φ̂xφ̂

′
x (6.30)

as well as, additionally, the formula for βJε

βJε =
1

2a2

∫
drdφdφ′r2

ε c
(2)(~r, φ, φ′)

(
g(φ) + η

∂α2

∂η

∂g(φ)

∂α2

)
(
g(φ) + η

∂α2

∂η

∂g(φ)

∂α2

)
.

(6.31)

An analytic evaluation of the integrals in Equations 6.30 and 6.35 is possible

because FMMT supplies an analytic expression for fex and thus for the two-

point correlation function c(2)(r, φ, φ′). The derivation presented here follows

Wittmann and colleagues’ work in deriving the Frank elasticity coefficients Kε

for a three-dimensional fluid of hard spherocylinders [5, 10], reworked for the

two-dimensional case.

In Equation 6.31, after evaluating the derivative,

g(φ) + η
∂α2

∂η

∂g(φ)

∂α2
=

(
1− η∂α

2

∂η
S

)
g + η

∂α2

∂η

(
2 cos2 φ− 1

)
g, (6.32)

the integral over two factors in Equation 6.31 will later be deconvolved so that

they can be evaluated as a combination of separate one-body integrals. There

will be two terms in each of the one-body integrals: angular integrals over g(φ)

and those over (2 cos2 φ − 1)g(φ). The latter set of integrals is significantly

more complicated. I therefore make an substitution

(2 cos2 φ− 1)g → Sg (6.33)

so that (
1− ρ0

∂α2

∂ρ0
S

)
g + ρ0

∂α2

∂ρ0
(2 cos2 φ− 1)g → g. (6.34)

The substitution in the integrand is motivated because lower order one-body in-

tegrals
∫
dφ(2 cos2 φ−1)g(φ) yield 2πS, identical to integrals

∫
dφSg(φ). How-

ever, it is not accurate for higher-order integrals
∫
dφ(2 cos2 φ−1) sinn φ cosm φg(φ);

here the inclusion of a factor of (2 cos2 φ− 1) is not equivalent to an additional

factor of S in the result. For example, integrals which yield a factor of 1 + S
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6.2 Elasticity of a hard rod fluid

are replaced by a factor of S + (1 − P̄4)/2 when cos(2φ)g is included in the

integrand; instead I replace 1 + S → (1 + S)S. The error introduced by the

substitution is not negligible, as it is multiplied by the factor η ∂α
2

∂η , which can

take values around 200 around the isotropic-nematic transition and not less than

15 in the isotropic phase. The error introduced by the substitution exists only in

the ordered phase and especially around the phase transition. The approximated

part is the indirect effect of gradients in angle distribution sharpness that follow

from gradients in area fraction. Thus our final result Jε will be an approximation

outside of the isotropic regime, which nevertheless represents the main features

of the coefficient.

The formula for βJε is then replaced with the simpler approximate formula

βJε ≈
1

2A2

∫
drdφdφ′r2

ε c
(2)(~r, φ, φ′)g(φ)g(φ) (6.35)

To evaluate Equations 6.30 and 6.35, from an expression for free energy

density, the direct two-body correlation function can be retrieved as

c(2) = −δ
2βF

δρδρ
. (6.36)

By chain rule the functional derivative consists of trivial derivatives of free

energy density with respect to ni, N and derivatives of ni, N with respect to

ρ. In the latter case the functional derivative by ρ simply drops factors of ρ in

the integrands and the derivatives are the (convolutions of) weight functions ω.

From the formula 6.2, the direct correlation function is

−c(2) =
∂2fex
∂n1∂n2

(ω(0) ⊗ ω(2) + ω(2) ⊗ ω(0))

+
∂2fex
∂n2∂N

(
ω(2) ⊗ δN

δρ
+
δN

δρ
⊗ ω(2)

)
+ 2

∂fex
∂N

(Ω1⊗1).

(6.37)
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6.2 Elasticity of a hard rod fluid

with weight functions defined in equations 6.4 and the convolution (1)

∂2N

∂ρ2
= Ω1⊗1 =

∫ ∫
dR1dR2Ω(11)(r −R1, r −R2)

=
5

6π
ω(1) ⊗ ω(1)

− 1

6π
(ω

(1)
1 ⊗ ω

(1)
1 + ω

(1)
3 ⊗ ω

(1)
3 )

− 4

6π
(ω(1)

11
⊗ ω(1)

11
+ 2ω(1)

13
⊗ ω(1)

31
+ ω(1)

33
⊗ ω(1)

33
)

+ ...

(6.38)

written as a series expansion analogous to equation 6.7.

After inserting Equation 6.37 into 6.30 and 6.35, we will have several terms

of the form

Tn[ωµ ⊗ ων ] :=

∫ ∫ ∫
dφdφ′drr2

ε (ω
µ ⊗ ων)

∂g

∂ cosφ

∂g

∂ cosφ
φ̂xφ̂x (6.39)

Tη[ωµ ⊗ ων ] :=

∫ ∫ ∫
dφdφ′drr2

ε (ω
µ ⊗ ων)gg. (6.40)

The two-body integrals can be deconvolved to products

Txε [ω(ν) ⊗ ω(µ)] = ω̄
x(ν)
ε0 ω̄

x(µ)
ε2 − 2ω̄

x(ν)
ε1 ω̄

x(µ)
ε1 + ω̄

x(ν)
ε2 ω̄

x(µ)
ε0 (6.41)

of the single-body integrals

ω̄(ν)n
ε,q :=

η

A

∫
drdφrqεω

(ν)(r, φ)
∂g

∂ cosφ
φ̂x (6.42)

ω̄(ν)η
ε,q :=

1

A

∫
drdφrqεω

(ν)(r, φ)g(α, cosφ). (6.43)

All necessary integrals ω̄
(ν)η
ε,q are evaluated in Section 6.2.3, below.

For the Frank constants Kε, nonvanishing terms in Equation 6.30 are

βKε =
η2

A2

∂fex
∂N

(
− 1

3π
(T[(ω̄)1 ⊗ (ω̄)1] + T[(ω̄)3 ⊗ (ω̄)3])− 8

3π
T[(ω̄)13 ⊗ (ω̄)13]

)
.

(6.44)

After inserting values of ω̄n, the Frank constants are

(1)Convolution and the ⊗ symbol are defined by: f ⊗ g =
∫
drf(r− r1)g(r− r2)
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6.2 Elasticity of a hard rod fluid

βK1 =
2π2η2D4

9(1− η)A2

(
l
(
8l4 − 40l2 − 3lπ

)
P̄4S + l2

(
20 + 8l2

)
S2
)

(6.45)

and

βK3 =
2π2η2D4

9(1− η)A2

(
−l
(
8l4 − 40l2 − 3lπ

)
P̄4S + l2

(
20 + 8l2

)
S2
)
.

(6.46)

with P̄4 the next-higher moment of the angle distribution, see Box 6.2.3. In

two dimensions, the coefficients Kε are unitless: their value does not depend

on relative lengthscale of the particles. The coefficients (Figure 6.7) become

nonzero at the isotropic-nematic transition, where S becomes nonzero. They

then increase quadratically in area fraction, as density, and thereby order, in-

creases. The coefficients are undefined for aspect ratios less than
√

2. Compar-

ing K1 and K3, only the sign of the term linear in S differs. The K3 (bend)

coefficient is larger than K1 (splay). In the one-Frank-constant approximation,

I take the mean

βK =
2η2π2l2D4S2

9(1− η)A2
(20 + 8l2) (6.47)

as the value of both Frank constants.

Inserting 6.40 and 6.37 into the approximation 6.35 and retaining nonvan-

ishing terms, I derive the density coefficients Jε:

βJε =
∂2fex
∂n0∂n2

(
T[ω(0) ⊗ ω(2)]

)
∂2fex
∂n2∂N

(
∂N

∂n1
T[ω(1) ⊗ ω(2)] +

∂N

∂n1

· T[ω(1) ⊗ ω(2)] +
∂N

∂n
1

· T[ω(1) ⊗ ω(2)]

)
∂fex
∂N

(
∂2N

∂n1n1
T[ω(1) ⊗ ω(1)] +

∂2N

∂n1n1

T[ω(1) ⊗ ω(1)] +
∂2N

∂n
1
n

1

T[ω(1) ⊗ ω(1)]

)
.

(6.48)

Coefficients are of the form

βJ1 = J (0) − J (1)S − J (2)′S2 + J (2)S2

βJ3 = J (0) + J (1)S + J (2)′S2 + J (2)S2

βJ = J (0) + J (2)S2.

(6.49)
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0.0 0.2 0.4 0.6 0.8 1.0
area fraction η

0

50

100

150

200

β
K

1,
β
K

3

l = 2

l = 5

l = 10

l = 20

K1

K3

K

Figure 6.7: Frank constants K1, K3, and K as functions of area fraction η, as

found in Equations 6.45, 6.46, and 6.47, for four example particle aspect ratios.

All Frank constants become nonzero at the critical area fraction ηIN (l) for each

aspect ratio, and increase rapidly for higher particle densities. In two dimensions,

Frank constants are scale-independent; βKε is unitless. ‘Bend’ coefficient K3

is larger than ‘splay’ coefficient K1. The mean K, substituted for both in the

one-Frank-constant approximation, is shown as the central dotted line. I here

use aspect ratio l = 5 (red).
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6.2 Elasticity of a hard rod fluid

Figure 6.8: Additional elasticity coefficients Jε, which indicate resistance to spa-

tial variation in particle area fraction. Only the mean J is shown, as I continue

with the one-Frank-constant approximation and an analogous isotropic approx-

imation for J . Unlike the Frank constants Kepsilon, this quantity is nonzero

in the isotropic phase (solid lines). There is a discontinuity as the material

transitions from the isotropic to the nematic phase (dashed line). However, the

decrease around the isotropic-nematic transitions at high aspect ratios retrieved

here is a consequence of the non-negligible omission described in Equation 6.34.

For the aspect ratio l = 5 used here, the problem is less severe. Like βK, βJ

is unitless and does not depend on the relative scale of the particles.
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6.2 Elasticity of a hard rod fluid

In line with the one-Frank-constant approximation, in the isotropic-coefficient

approximation J1 = J3 = J , we require

J (0) =
πD4

(1− η)A2

(
17lπ

2
+

19l3π

9
+

4π2

3
+

14l2

3
+ l2π2 − l4

9

)
+

πη(2l + π)D4

36(1− η)2(4l + π)A2

(
40l4 + 330lπ + 166l3π + 45π2 + 3l2(232 + 15π2)

)
− πD4

36(1− η)A2

(
12l4 + 72lπ + 24l3π + 9π2 + 9l2(12 + π2)

)
P̄4

(6.50)

and

J (2) =
8l2πD4

3(1 + η)A2
S2. (6.51)

For example, at aspect ratio l = 5, the isotropic elasticity coefficient J is

βJ(l = 5) =
140.288− 60.137P̄4

1− η +
184.066η

(1− η)2
+

6.257

1− ηS
2. (6.52)

Like K, J is unitless. Unlike K, J is nonzero in the isotropic phase. The

value depicted in Figure 6.8 is accurate in the isotropic phase. In the nematic

phase, the value is approximate. In particular, a positive contribution at the

onset of the nematic phase is missing due to approximation 6.35, falsely leading

to the initially decreased value in the nematic phase. However, at the aspect

ratio used here, l = 5, the inaccuracy is small. Another inconsistency is that

the value does not go to zero in the dilute limit. Possibly, this is because

the theory, incorporating some free parameters which are chosen heuristically,

was not optimized to accurately reproduce density gradients in the choice of

parameter b.

The Taylor expansion approach presented here results in two independent

terms pertaining to gradients in direction n and in area fraction η respectively.

It is strictly accurate within the Taylor expansion formalism of Equation 6.26.

To account for correlation functions between particles with varying order para-

meter at the particle level, another route is presented in [10], which generalizes

the integration over particle pairs to spatially varying distribution functions,

necessitating more complicated integrals over angled particle.
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6.2 Elasticity of a hard rod fluid

x

z
ϕ

x

z

Figure 6.9: Space-centered frame (x, z) and body-centered frame (x̄, z̄)

6.2.3 Evaluation of single-body integrals ω̄

Evaluation of the integrals ω̄
x(ν)
εr , as defined in Equations 6.42 and 6.43 and used

in Equations 6.44 and 6.48 via Equation 6.41, is presented in this section. Indices

x = n, η label two different forms of integral used in K and J respectively; ν

labels which weight functions, including vector and tensor forms, appears in the

integrand; ε = x, z distinguishes the two spatial directions and q = 0, 1, 2 is the

exponent of rε.

In the weight function (Equation 6.4) term of the integrands, the Heaviside

Θ function in ω(2) is interpreted to restricting the domain of integration to the

area of a particle, while the Dirac delta in ω(1) and ω(0) indicates integration

along the particle boundary. The factor 1
n(r̂,φ)·̂r simply gives the correct measure

for the line integral along the particle boundary. It is easier to evaluate the

spatial integrals over the weight functions in Equations 6.42 and 6.43 in the

particle-centered frame (x̄, z̄) (Figure 6.9).

The quantities rε, and φ̂x in the integrands of Equations 6.42 and 6.43

can also be expressed as functions of (x̄, z̄) coordinates and of φ. The space

centered position vector r is expressed in the body-centered frame as

r(φ, r̄) =

(
cosφx̄+ sinφz̄

− sinφx̄+ cosφz̄

)
. (6.53)

On the other hand indices ε = 1, 3 continue to refer to decomposition on the-

space centered (x, z) basis. The unit director φ̂ off a particle is decomposed in

the (x, z) basis so that φ̂x = sinφ.
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6.2 Elasticity of a hard rod fluid

Similarly, vector and tensor indices on ω(1) and ω(1) refer to a decomposition

in terms of directions (x, z) of the space-centered frame. By applying the

rotation matrix

R(φ) =

(
cosφ sinφ

− sinφ cosφ

)
(6.54)

to all normal vectors n̂(r̄) occurring in ω(1) and ω(1), expressions for the

components in the space-centered basis are

n̂(x̄, z̄, φ) =

(
cosφnx̄ + sinφnz̄

− sinφnx̄ + cosφnz̄

)
. (6.55)

Additionally the 2×2 outer product of two normal vectors (nx̄, nz̄), occurring

in tensorquatitites ω(ν), is

n̂n̂T =

n2
x̄ cos2 φ+ n2

z̄ sin2 φ (−n2
x̄ + n2

z̄) cosφ sinφ

+2nx̄nz̄ cosφ sinφ +nx̄nz̄(cos2 φ− sin2 φ)

(−n2
x̄ + n2

z̄) cosφ sinφ n2
x̄ sinφ+ n2

z̄ cos2 φ

+nx̄nz̄(cos2 φ− sin2 φ) −2nx̄nz̄ cosφ sinφ


(6.56)

in the space-centered basis.

Vector and tensor weight functions ω, ω thus contain information on the ori-

entation φ of a particle relative to the space-centered frame and will contribute

dependence of elasticity coefficients Kε and Jε on order parameter S.

After substituting expressions in the space-centered frame, integrals 6.42

and 6.43 are sums of terms of the form

4α2

I0(α2)

∫
dφg(α2, cosφ) cosφ sinφ cosn φ sinm φ ·

∫
dr̄x̄az̄bn̂cxn̂

d
z (6.57)

and

1

I0(α2)

∫
dφg(α2, cosφ) cosn φ sinm φ ·

∫
dr̄x̄az̄bn̂cxn̂

d
z (6.58)

respectively.

The integrals ω̄
(ν)x
εq are evaluated in the tables 6.2, 6.3, 6.4, 6.5, and Equa-

tions 6.59. Not listed in Equations 6.59 are integrals C,F,R, S,T,U, which
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6.2 Elasticity of a hard rod fluid

vanish due to spatial antisymmetry of the integrands x̄z̄, nxnz, n2
xx̄z̄, nzx̄z̄,

nx̄nz̄x̄
2, and nx̄nz̄ z̄

2 respectively.
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6.2 Elasticity of a hard rod fluid

Table 6.2: Integrals ω̄
(ν)n
1q for K1. See Equation 6.59 for values of the spatial

integrals denoted by calligraphic capital letters. Values which are irrelevant due

to multiplication with a vanishing term are omitted with - .

ε = 1

q = 0 1 2

ω(ν) 0 0 -

(ω(1))1 0 2π(I + L)S 0

(ω(1))3 0 2π(H − G)S 0

(ω(1))11 F2πS 0 -

(ω(1))13 (−D + E)2πS 0 π((O− P−M + N)S

+(O−M + P−N + 2Q)P̄4))

(ω(1))33 −F2πS 0 -

Table 6.3: Integrals ω̄
(ν)n
3q for K3.

ε = 3

q = 0 1 2

ω(ν) 0 0 -

(ω(1))1 0 2πS(I + L) 0

(ω(1))3 0 2πS(G−H) 0

(ω(1))11 F2πS 0 -

(ω(1))13 (−D + E)2πS 0 π((O− P−M + N)S

−(O−M + P−N + 2Q)P̄4))

(ω(1))33 −F2πS 0 -
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Table 6.4: Integrals ω̄
(ν)η
1q for J1.

ε = 1

q = 0 1 2

ω(ν) 2πXν 0 π(Aν(1 + S) + Bν(1− S))

(ω(1))1 0 π((1 + S)G + (1− S)H) 0

(ω(1))3 0 π((1 + S)I + (−1 + S)L) 0

(ω(1))11 π(D(1 + S) 0 π((M + N)P̄4 + (M−N)S

+E(1− S)) +(1− P̄4)/4(2Q + O + P))

(ω(1))13 πSF 0 -

(ω(1))33 π(D(1− S) 0 π((O + P)P̄4 + (O− P)S

+E(1 + S)) +(1− P̄4)/4(−2Q + M + N))

Table 6.5: Integrals ω̄
(ν)η
3q for J3.

ε = 3

q = 0 1 2

ω(ν) 2πXν 0 π(Aν(1− S) + Bν(1 + S))

(ω(1))1 0 π((1 + S)L + (−1 + S)I) 0

(ω(1))3 0 π((1 + S)H + (1− S)G) 0

(ω(1))11 π(D(1 + S) 0 π((O + P)P̄4 + (−O + P)S

+E(1− S)) +(1− P̄4)/4(−2Q+O + P ))

(ω(1))13 πSF 0 -

(ω(1))33 π(D(1− S) 0 π((M + N)P̄4 + (−M + N)S

+E(1 + S)) +(1− P̄4)/4(2Q + O + P))
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Xν :=

∫
dr̄ω(ν) = nν/ρ0

Aν :=

∫
dr̄x̄2ω(ν)

A0 :=

∫
∂A
dr̄x̄2K/(2π) = DL/π +D2/8 + L2/4

A1 :=

∫
∂A
dr̄x̄2 = D2L+D3π/8 +DL2π/4

A2 :=

∫
A
dr̄x̄2 = DL3/12 +

D2π

32
(D2 + 2L2)

Bν :=

∫
dr̄z̄2ω(ν)

B0 :=

∫
∂A
dr̄z̄2K/(2π) = D2/8

B1 :=

∫
∂A
dr̄z̄2 = D3π/8 + LD2/2

B2 :=

∫
A
dr̄z̄2 = D3L/12 +D4π/32

D :=

∫
∂A
dr̄n2

x̄ =
Dπ

2

E :=

∫
∂A
dr̄n2

z̄ = 2L+Dπ/2

G :=

∫
∂A
dr̄x̄nx̄ =

D2π

4

H :=

∫
∂A
dr̄z̄nz̄ = DL+

D2π

4

I :=

∫
∂A
dr̄x̄nz̄ = DL

L :=

∫
∂A
dr̄z̄nx̄ = 0

M :=

∫
∂A
dr̄x̄2n2

x̄ =
D

96

(
64DL+ 9D2π + 12L2π

)
N :=

∫
∂A
dr̄z̄2n2

z̄ =
D2L

2
+

3πD3

32

O :=

∫
∂A
dr̄x̄2n2

z̄ =
D

96

(
32DL+ 3D2π + 12L2π

)
+
L3

6

P :=

∫
∂A
dr̄z̄2n2

x̄ =
πD3

32

Q := 2

∫
∂A
dr̄x̄z̄nx̄nz̄ =

πD3

16
.

(6.59)
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Higher moments of angle distributions

The angular integrals are useful in deriving Table 6.2 and Table 6.3:

4α2

I0(α2)

∫ 2π

0
dφ cos2 φ sin2 φg(cosφ, α2) = 2πS, (6.60)

4α2

I0(α2)

∫ 2π

0
dφ cos4 φ sin2 φg(cosφ, α2) = π(S + P̄4), (6.61)

and

4α2

I0(α2)

∫ 2π

0
dφ cos2 φ sin4 φg(cosφ, α2) = π(S − P̄4). (6.62)

Just as the base order parameter S is given by integrating over the

polynomial cos(2φ) = (2 cos2 φ − 1) with the orientation distribution

g(cosφ, α2),

S :=
1

I0(α2)

∫ 2π

0
dφ(2 cos2 φ− 1)g(cosφ, α2), (6.63)

further moments of the angle distributions are generated from the next

polynomials series.

Analogous to S, we can define

P̄m = dφ

∫ 2π

0
cos(mφ)g(cosφ, α2), (6.64)

related to the Bessel functions In(α2) as

S = P̄2 =
I1(α2)

I0(α2)

P̄3 = 0

P̄4 =
I2(α2)

I0(α2)
.

(6.65)

A recurrence relation for modified Bessel functions of the first kind is

In−1(x)− In+1(x) =
2n

x
In(x); (6.66)

it follows that

P̄4 = 1− 2

α2
S. (6.67)
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6.3 Effect on channel shape

6.3 Effect on channel shape

Returning to the question of the stability and shape of an cylindrical channel

hosting an orientationally ordered material, with the description of the interfacial

material used above, we now have an internal Hamiltonian of the form

HI =

∫
S
dS[floc(η) + fgrad(η, n̂)]

floc(η) = fid(η) + fex(η)

fgrad(η, n̂) = K(η)/2(D̃in̂j)
2 + J(η)/2(∂iη)2

(6.68)

describing a two-dimensional hard-rod fluid; replacing the generic Landau-Ginzburg

theory (Equation 3.2) of orientational order used in Chapters 2 to 4. Here D̃

is symbolic of a covariant derivative operator, which however cannot be im-

plemented with the same formulation (Equation 3.4) used earlier, as n̂ is a

double-headed vector rather than a 2-atic complex order parameter.

The new theory, taking into account local number density or area fraction,

allows me to add the additional constraint

R =

∫
S
ρdS = const, (6.69)

representing a fixed number of adsorbed nanoparticles, to the model. The con-

straint plays an equivalent role to a chemical potential, but fixes particle num-

ber more strictly and is straightforward to enforce in simulation with material-

exchanging sampling steps. Unlike in a computational DFT minimization for

determining phase based on a smaller volume in an homogeneous and open sys-

tem, a canonical ensemble rather than a grand canonical ensemble is sampled

here. In this more coarse-grained simulation, the whole system is simulated

and a goal of the simulation is to represent the fact that a constant number of

particles remain irreversibly adsorbed.

The gradient term differs in form from that in our previous model Landau-

Ginzburg theory, Equation 3.2. Dependence of magnitude of gradient energy on

amount of order is shifted from the oriented field Ψ or n̂ to the Frank constants

as

c|DiΨ|2 → K(η)/2(D̃in̂)2 + J(η)/2(∂iη)2 (6.70)
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The consequence that materials with more order have higher gradient energy

contributions remains qualitatively the same.

While gradient energy is scale-invariant, local energy density is not. The

function floc(η) is convex, meaning that total system energy is minimized by

a spatially homogeneous density distribution. At any reasonable particle scale,

the homogenizing effect is overwhelming compared to the curvature-coupled

gradient energy term, which was initially hypothesized to induce density mod-

ulations. The commonly used assumption of spatially homogeneous particle

density as well as homogeneous order parameter is accurate.

As an example, assume the channel lengthscale r0 = 1 is a micron while

particle diameter, D = 0.001 in units of r0, is a nanometer. Then gradient

energy densities are of order 10kBT/(µm)2, while differences in local entropic

energy densities floc are of order 105 kBT/(µm)2. Surface tension (of the bare

interface between particles), at 107 or 108 kBT/(µm)2 (Table 2.3), is bigger

than all of these effects, holding the interface together despite the entropic

pressure of the embedded particles. The relative size of particles and channel

is limited to the values assumed above by the choice of model, the continuum

description being accurate only for sufficiently small and numerous particles.

On the other hand the relationship between channel and particle size and units,

and thereby the relationship between ‘internal’ effects and surface tension, is

informed by realistic experimental parameters.

Due to vastly differing orders of magnitude in the relevant energy densities,

there is a distinct hierarchy of effects:

• Channel shape and stability is completely determined by surface area and

bending rigidity effects, as explored in Chapter 2.

• An interfacial fluid of hard rods is homogeneous with respect to num-

ber density. The order parameter is also spatially homogeneous, either

everywhere ordered for η > ηNI or everywhere isotropic.

• Lastly, where applicable, the director of the nematic phase is free to vary

on the curved surface and will adapt to curvature via a vortex pattern.

The interaction between the nematic, constant-magnitude order parameter

field and surface shape follows the same principles as the previous generic rep-
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resentation. As in Section 3.4 and onwards, the pattern of vortices or defects

is induced in an orientational order parameter field by the surface’s Gaussian

curvature. A rotation in the orientation of the order parameter minimizes energy

in the presence of a nonzero spin connection, resulting in point defects in the

global configuration of the field on the surface.

The vastly smaller energy scale of bending elasticity and the determination

of shape and stability by interfacial mechanics only is specific to the material

examined here, a hard-rod gas in which the only interactions are weak entropic

effects.

6.4 Simulation method

With the analytic relationships from FMMT in hand, I adapt the previous lattice

simulation to represent the specific material properties of an interfacial hard rod

gas and with the additional constraint of conserving total particle. Since shape

is fully determined by the ‘external’ mechanics described in Chapter 2, it is

sufficient to explore field configurations on fixed surface shapes.

As before (Chapter 4), the surface of a modulated cylinder is representing

by a periodic two-dimensional surface of dimensions 2π/k × 2π, divided into

N = b50/kc × 50 lattice cells of dimensions `z × `θ.

Quantities sampled are a lattice of values η(x) ∈ (0, 1) representing area

fraction, and a lattice of values ϑ(~x) ∈ [0, 2π) representing orientation of the

vector (2-atic) unit director. While it will emerge in simulation that η(x) takes

near-uniform values, the implementation is general and allows for the initially

hypothesized density variations. The angle ϑ is the angle of a unit complex

order parameter m̂ = eiϑx = 〈ei2φ(x)〉. It relates to the double-headed vector in

the tangent plane, n̂ = 〈eiφ(x)〉, in that a change of angle ∆$ in n̂ corresponds

to a change of ∆ϑ = 2∆$ (mod 2π) in m̂. The complex 2-atic director

m̂ is compatible with the previously used expression for curvature coupling,

Equation 3.4. Coefficients Kε/2 are the coefficients of squared gradients in

n̂; appropriate coefficients for squared gradients in m̂, which reports twice the

angular difference, are then Kε/(2× 22).

The calculation of gradients takes a simple form analogous to that used in
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previous sections only in the one-Frank-constant approximation. I employ the

one-Frank-constant approximation and the analogous approximation for density

gradients because the full isotropic form of Equation 6.18, when implemented,

was found to be conceptually and computationally complex. Artifact-free cal-

culation of isotropic gradient terms on a numerical grid required a symmetric

eight-point stencil; furthermore on the curved surface curl must be calculated

on a skew coordinate basis. Although initially implemented, the computational

cost of an exact anisotropic representation was judged excessive given the overall

small impact of elasticity on the system.

On initializing, the arrays are filled with uniform values of η(zi, θj) and

random values ϑ(zi, θj). Arrays of fid, fex, K(η), and J(η) are calculated

based on the initial values.

Steps in area fraction η and director θ are alternated sequentially. A meas-

uring step now consists of 100 Monte Carlo steps of N = b50/kc × 50 random

updates to director angle followed by 100 Monte Carlo steps in area fraction.

For a proposed change in a cell’s director angle, a location is selected ran-

domly and the value ϑij = ϑ(zi, θj) is updated by a step drawn from a Gaussian

distribution with width σϑ. The new value may be outside of the range [0, 2π),

as components m̂z and m̂θ of the director are retrieved by taking real and

imaginary parts of m̂ = eiϑ. The new gradient energy is calculated according

to

∆Eη = Emgrad(ηi, m̂p
i,j , m̂

i
i−1,j , m̂

i
i,j−1)

− Emgrad(ηi, m̂i
i,j , m̂

i
i−1,j , m̂

i
i,j−1)

+ Emgrad(ηii+1,j , m̂
i
i+1,j , m̂

p
i,j , m̂

i
i+1,j−1)

− Emgrad(ηii+1,j , m̂
i
i+1,j , m̂

i
i,j , m̂

i
i+1,j−1)

+ Emgrad(ηii,j+1, m̂
i
i,j+1, m̂

i
i−1,j+1, m̂

p
i,j)

− Emgrad(ηii,j+1, m̂
i
i,j+1, m̂

i
i−1,j+1, m̂

i
i,j)

(6.71)

with
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Emgrad

`z`θ
=
K(η)

8

∣∣∣∣m̂i,j − m̂i−1,j

`z

∣∣∣∣2 +
K(η)

8r(a, z)

(∣∣∣∣m̂i,j − m̂i,j−1

`θ

∣∣∣∣2
+ 2nIm

[
Aθm̂

∗
(
m̂i,j − m̂i,j−1

`θ

)]
+ n2A2

θ

)
.

(6.72)

as in Chapter 4, but drawing on local density-dependent Frank constants K(η).

As before, numerical first derivatives are implemented using the simple two-

point backwards difference, with first-order error compared to the true gradient

at Ψij but second-order error if interpreted as a representation of the gradient

at interstitial locations. Because gradient is numerically implemented by taking

the difference between the value and the value at a neighboring locations, the

gradient energy at two neighboring sites is also affected by the proposed change

and is included in equation 6.71. If the change is accepted, the new unit director

angle is recorded modulo 2π. Director gradient at the three relevant locations

is also updated in memory.

For a step in area fraction, two locations (zi1 , θj1) and (zi2 , θj2) are ran-

domly selected. A change in number density at the first location is proposed

based on a Gaussian distribution centered on ηi1,j1 and with width ση. A cor-

responding change in area fraction ∆η2 = −
√
g

1√
g

2
∆η1 at the second location is

also considered for a conserved total particle number. At each location, the

energy difference resulting from a proposed density step is

∆Eη = Eloc(ηp)− Eloc(ηi)
+ Emgrad(ηp, m̂i

i,j , m̂
i
i−1,j , m̂

i
i,j−1)− Emgrad(ηi, m̂i

i,j , m̂
i
i−1,j , m̂

i
i,j−1)

+ Eηgrad(ηpi,j , η
i
i−1,j , η

i
i,j−1)− Eηgrad(ηii,j , ηii−1,j , η

i
i,j−1)

+ Eηgrad(ηii+1,j , η
p
i,j , η

i
i+1,j−1)− Eηgrad(ηii+1,j , η

i
i,j , η

i
i+1,j−1)

+ Eηgrad(ηii,j+1, η
i
i−1,j+1, η

p
i,j)− Eηgrad(ηii,j+1, η

i
i−1,j+1, η

i
i,j)

(6.73)

with energy terms

Eloc

`z`θ
= fid(η) + fex(η) (6.74)
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as in Equations 6.2 and 6.16 and density gradient energy

Eηgrad

`z`θ
=
J(η)

2

(∣∣∣∣ηi,j − ηi−1,j

`z

∣∣∣∣2 +

∣∣∣∣ηi,j − ηi,j−1

`θ

∣∣∣∣2
)
. (6.75)

If the step is accepted, stored values of η, K, J at the two target locations as

well as of Eηgrad at all six affected sites are updated.

Equation 6.13 gives an analytic function η(α2); however it cannot be easily

inverted to provide a similarly analytic map α2(η). For a given value of η in

simulation, where needed for fid, fex, K, and J , the corresponding value α2

is therefore retrieved from a lookup table which has been previously filled with

pairs (α2, η(α2)) in increments of 0.001.

Again due to a simple scaling of energy by area, which does not consider

rescaling of a field theory under the effect of thermal fluctuations, the simulation

is strictly accurate only at T → 0. In this theory the relationship S(η) should

differ from the function used when larger areas of the thermally fluctuating

director are averaged over.

6.5 Configurations in simulation

For realistically small particle lengthscales, I observe nearly homogeneous density

distributions in simulation. An exception is slightly lowered density at defect

cores. Concurrently the 2-atic director field adapts to curvature via a pattern

of rotations and defects. The principle is the same as that behind the patterns

observed in Chapter 4. An example of the nematic field, represented by director

angle ϑ, and number density field η on curved surfaces is shown in Figures 6.10

and 6.11. Areas where the field configurations conforms to expectations as seen

in Chapter 4 are seen, i.e. ordered on flatter regions and with its phase rotating

azimuthally, as well as excess defect pairs and defect lines which are a result of

poor equilibration of this simulation.

The hard-rod material is 2-atic, so less strongly curvature-coupled than the

hexatic. At most eight curvature-induced defects, four on the widest part of the

cylinder and four on the narrow neck, are expected.

Without freedom in the magnitude of the order parameter, simulations do

not converge on an equilibrium state well: there are many excess defect pairs in
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addition to any curvature-induced defects. An annealing protocol (incrementally

lowering simulation temperature) as well as sequences of director and density

simulation did not improve the apparent lack of equilibration. The energy land-

scape of configurations in the simulation is apparently glassy. The result is

that point defects, grain boundary lines, and coordinated defect-low density re-

gions which formed by chance early in the simulation are not resolved to the

expected more uniform field configuration. While observations from the Monte

Carlo simulation do not formally correspond to non-equilibrium kinetics of the

system, we can speculate that the experimental system is similarly susceptible

to jamming in metastable non-equilibrium states characterized by excess defect

pairs, boundary lines, and non-optimally-placed defects.

6.5.1 Larger particles

Choosing unrealistically large particle scale D = 0.1, particles comparable in

length to the radius of the cylindrical channel, entropic effects are artificially

tuned down. Such large particles are not compatible with basic assumptions of

the model or with experimental observations. I nevertheless examine the larger

particle size to artificially reduce the magnitude of entropy-related local energy

terms. With the strong homogenizing effect lifted, we see curvature-induced

density modulations (Figure 6.12). A high number density of particles is located

on the widest part of the cylinder, which is in a relevant sense less curved. On the

highly curved narrow neck, the material adopts the low-density isotropic phase,

avoiding distortion of nematic order in this region. The high-density ordered

regions show curvature-induced azimuthal rotation and additionally form several

high-density grains of nematic order, with lower-density grain boundaries. The

hypothesized system morphology of axial modulations in number density and

order occurs in this hypothetical regime, but is overshadowed by other effects

in more realistic description of a hard-rod fluid.

6.6 Discussion and conclusions

Inserting a description of an interfacial hard-rod fluid, I found that there are

few spatial variations in density and order due to the high entropic cost of high-
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Figure 6.10: Configurations in simulation, with average area fraction fixed to

η = 0.53, just above the isotropic-nematic transition at ηIN = 0.525. Director

angle field ϑ (left) and area fraction field η (right), which are sampled simul-

taneously in simulation, are shown. The area fraction field is relatively uniform.

A low number of rotations and defects is induced in the n = 2 order, in line

with observations in Chapter 4. However, an excess defect pair and a displaced

defect occur; the simulation has not reached equilibrium.
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6.6 Discussion and conclusions

Figure 6.11: Configurations in simulation, average area fraction fixed to η = 0.6.

Local area fraction field is strongly uniform (right). The angle of the director

field (left) is characterized by many unresolved grain boundaries and defects.
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6.6 Discussion and conclusions

Figure 6.12: Configurations in simulation with the hypothetical large particle

scale D = 0.1, incompatible with basic assumptions of the model, and average

area fraction η = 0.55. In the regime of relatively low entropic energies, the

initially hypothesized modulations in orientation (left) and area fraction (right)

do occur. The region around the narrow neck is in the isotropic phase according

to the low area fraction, so the director angle is meaningless and appears as

random values. Order occurs on the widest part of the cylinder in high-density

grains separated by low-density grain boundaries.
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density regions. The curvature-induced splay in the nematic material has only

negligible effects on system energy; there is no influence of order on either dens-

ity distribution of surface shape. The relationship is one-sided: The direction

of and patterns in orientational order adapt to surface shape.

The one-Frank-constant approximation and a parallel isotropic approxim-

ation of moduli J was made to significantly simplify numerical evaluation of

spatial derivatives. The approximation retains the correct order of magnitude

estimate for distortion free energies, which turns out to be small. However, it

would be interesting to examine the effect of anisotropic Frank constants on the

curved surface. Since K3 < K1, fundamentally the ‘splay’ type of curvature-

induced distortions is preferred over bend and the particles should be biased

towards axial alignment along the cylinder. A simulation of the anisotropic

material could further reveal to what extent the field configuration around a

defects breaks rotational symmetry, with an intermediate state between a sym-

metric vortex and completely parallel particle alignment expected.

The material parameters derived here are specific to discorectangles; they

do not describe hexatically ordered hard-rod materials. The bending rigidity

of a two-dimensioanl hexatic is equal to 72/πkBT in theory and experiment

[11], similarly negligible compared to homogenizing entropic contributions in a

hard-disc fluid. As we have seen in Chapter 4, the stronger curvature-coupling

of a hexatic material makes curvature-induced defects more likely.

In the model used here, the order parameter was assumed to strictly follow

from area fraction according to Equation 6.13. The simulation could have

been given an additional degree of freedom at this point, as deviations of order

parameter S from that ideal value are probably less energetically prohibitive

than the predicted density modulations.

The model is a hard-rod fluid with only excluded volume interactions: all

effects, including derived quantities such as Frank constants, are purely entropy-

based. Therefore, effects related to the entropy-based emergent bending rigidity

are very weak in this hypothetical system. In contrast, in a realistic interfacial

material, even using polymer-stabilized colloidal particles, there are a range of

repulsive and attractive interactions at every scale, from capillary interaction to

electrostatic repulsion. These interactions may increase the magnitude of Frank
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constants significantly over that in the model used here and place distortion

energies in the same order of magnitude as surface tension for some systems and

interfacial materials. While not seen in the case represented here, orientational

order in more strongly interacting nano- to microscale particles may still have

an effect on emulsion morphology.

The model assumes relatively microscopic local particle size: if particle scale

is similar to system scale and to variations in curvature (an external potential),

a full computational minimization of the density functional theory on the object

would be a more appropriate treatment. As in [12], it would reveal a pattern in

individual rod locations on a confined and curved object.

Furthermore, an idealized two-dimensional material in a two-dimensional in-

terface is assumed. Rod-like particles are assumed to have a discorectangular

cross section embedded in the interface, excluding vertical or angled alignments.

In experiments on rod-like particles as interfaces, horizontally oriented ‘flippers’

are routinely observed. Whether rare individual particles or larger domains are

flipped depends on particle shape and interface type [13, 14] in unknown ways.

Furthermore, such effects are sensitive to the exact particle shape - spherocyl-

inder or ellipsoid [13] - possibly due to effects such as capillary attraction.

Larger particles, whose length is similar to the scale of surface curvature,

in addition to being beyond the scope of the theoretical approach, can only

partially be embedded in the surface due to its curvature. Explicit particle-

based simulation of three-dimensional spherocylinders interacting with a curved

model surface is a more appropriate approach for the study of larger particles,

as carried out in several studies [15].

As with the previous model, orientational order is coupled to Gaussian

curvature only. Additional mean curvature coupling, whether as a premise of a

continuum field theory or emerging in a particle-based three-dimensional sim-

ulation, could be studied in interaction with the existing Gaussian curvature

effects.
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[12] R. Wittmann, L. B. Cortes, H. Löwen, and D. G. Aarts, Nat Commun 12,

1 (2021).

[13] T. Li, G. Brandani, D. Marenduzzo, and P. Clegg, Phys Rev Lett 119,

018001 (2017).

[14] K. A. Macmillan and P. S. Clegg, J Phys Chem Lett 12, 5241 (2021).
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Chapter 7

Conclusions

Abstract

I review findings, methods, and limitations of the work presented in this thesis.

In this thesis I utilized a range of analytical and computational methods for

assessing the affect of orientational order on modulated cylindrical channels and

retrieve general principles. I found a need to modify the existing theoretical

model to describe particle-stabilized interfaces. The core research question of

whether orientational order affects emulsion morphology in solid-stabilized emul-

sions is answered in the negative for the specific interfacial material modeled in

Chapter 6. I speculate on future experimental and further theoretical explora-

tions or orientational order in solid-stabilized emulsions.
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7.1 Results

This thesis explores orientational order in interfacial monolayers of nano- or

microparticles in solid-stabilized emulsions, in particular in view of shape and

stability of non-spherical droplets and connections in emulsions. To this end,

core research questions include: How does interface shape affect orientational

order? How does orientational order affect shape and stability of elongated

emulsion droplets and related fluid-fluid structures? Can principles from con-

tinuum field theory and from models of molecular surfactant phases be applied

to solid-stabilized emulsions? Which outcomes and principles are general across

systems?

To this end, a variety of approaches are developed. The common Landau-

Ginzburg theory of orientational order [1] is first adapted to cylinder-like surface

geometry in Chapters 2 to 4. In Chapters 2 and 3 I apply and examine a wide

range of analytic methods to probe aspects of system behavior on the novel

surface shape, including linear stability analysis, numerics, Fourier space field

theory, and local solutions. In Chapter 4 I develop and examine a stochastic sim-

ulation protocol which, while incomplete regarding a full representation of high-

temperature fluctuations, gives good qualitative results at low computational

cost. Methods developed in Chapters 2 to 4 were largely found to be transfer-

able to the altered description of orientational order adopted in Chapter 6. In

Chapter 5 I replicate and extend two experiments [2, 3] and discuss the experi-

mental literature in order to identify crucial aspects and omissions in the model

as applied to solid-stabilized systems. Finally, the generic Landau-Ginzburg

model and the surface tension model appropriate to conventional emulsions is

replaced with a more specific model of a hard-rod interfacial material, which was

developed further from the theoretical literature [4] for this purpose, in Chapter

6.

On the modulated cylindrical surface shape, I find patterns of emergent de-

fects, whose number and placement follows known principles from theoretical

laws at the defect level. While the periodic cylindrical surface is topologic-

ally compatible with a defect-free configuration of orientational order, I observe

that increasingly curved surface shapes are associated with a discrete spectrum

of m = 0, 1, 2, ...n order parameter configurations bearing 4m excess defects
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in charge-neutral pairs. I suggest that an analogous discrete spectrum of ad-

ditional exotic droplet shapes with additional defect pairs occurs in spherical

systems. For the initially suggested regime of parameters, c ≈ |α|, I also ob-

serve a curvature-induced modulation in the magnitude of order, with a banded

pattern of alternatingly isotropic and orientationally ordered regions on the mod-

ulated cylindrical shape. The phenomenon is reminiscent of curvature-induced

phase separation in other materials. However, the later model suggests that the

phenomenon, while theoretically present, will be negligible in the regime of the

weaker order-curvature coupling.

In Chapter 6, generality of the initial findings is tested by applying the

framework to a different system, that of a hard-rod fluid. The specific mater-

ial model replacing the generic theory provided estimates of the relative order

of magnitude of unknown parameters in the theory, revealing certain effects

as dominant, but did not reveal fundamentally different phenomena. Unsur-

prisingly, topological and geometrical principles provide robust predictions on

outcomes across a range of physically distinct systems. Additional phenomena

are predicted due to the anisotropic material properties of the hard rod gas,

but could not be fully explored in simulation. By contrast with Chapter 6, the

theory explored in Chapters 3-4 also turned out to be particularly conducive to

stochastic simulation. However, the difficulty reaching equilibrium in the latter

Monte Carlo simulation hints at similar phenomena in jammed experimental

systems.

The final theoretical result is that while orientational order exists in interfa-

cial monolayers of nano- or microparticles in solid-stabilized emulsion systems

and while it does interact with surface curvature by adopting defect-bearing

configurations, the effect of orienational order on droplet shape and stability

is negligible in the hard-rod model considered here. Other effects, such as

surface tension, spontaneous curvature, and particle jamming are the main de-

terminants of emulsion morphology and stability in the solid-stabilized systems

observed here. The potentially complex two-way relationship between order and

curvature is resolved into a one-way relationship when transferring the model

to the larger-scale systems that are the subject of this thesis.
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7.2 Relevance to the Broader Literature

Building on literature related to Plateau-Rayleigh instabilities and pearled lipid

vesicles, I first explore the limitations of perturbative stability analysis and sug-

gest how analysis of orientational order can be incorporated into an energetic

stability analysis.

Compared to other theoretical work on orientational order on curved or

even cylindrical interfaces [5], I take advantage of computational methods to

lift common simplifying assumptions, namely the restriction of the orientational

order parameter to a constant magnitude, and investigate the models in a more

general regime. The additional degrees of freedom were indeed found to have

negligible effects; this work provides evidence that the ubiquitous simplifying

assumptions are justified. In this work I demonstrate several complementary

analytic methods and suggest a low-cost simulation scheme on curved surfaces

as a useful and accessible complement to theoretical investigations into orient-

ational order as a field theory.

A question arising from the approaches used over the course of this study is

whether a statistical physics approaches is appropriate for bijels, which are said

to be jammed. During the formation of bijels the particles jam; this is believed

to be the main effect arresting coarsening [6, 7]. In particular, successful bijel

formation depends on the timescale of forming densely occupied interfaces being

shorter than the timescale of fluid-dynamic evolution to the true equilibrium,

which would be a droplet phase [6]. However, Bai et al. have found that rheolo-

gical evidence suggests that particles rearrange within the interface over longer

timescales [7], apparently towards a less compressible (likely denser) packing.

The first stage, bijel or emulsion formation, where complex (hydro-)dynamic

instabilities are crucial, is beyond the scope of this project. The statistical phys-

ics of particles on a constrained set of interface shapes is suited to describe the

later evolution of the substance, during aging. In general, jammed states are not

amenable to statistical physics treatment. While technically evolving ergodically

in the limit of infinite time, a statistical sampling is not seen on experimental

timescales. However, in bijels, we can separate the behavior on different time-

and length scales. Certain aspects of the system - the structure of fluids and

interfaces - are jammed, while within the particle layer, Bai et al. suggest local
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rearrangements take place. The system is approximated by fields - representing

the particle layer - sampled statistically at equilibrium, while the overall surface

shape is heuristically constrained to a shape or small family of shapes.

While experimentatal literature on rod-stabilized emulsions [8] and bijels [9]

motivated the examination of a hard-rod material in Chapter 6, a model is drawn

from the theoretical literature [4, 10, 11]. Building on the literature, I derive

additional material parameters in the FMMT model of hard discorectangular

fluids in two dimensions for cases not yet explicitly covered in the literature and

incorporate the results into my existing model of the cylindrical interface system.

The additional material parameters derived for hard rods in two dimensions

may be of interest in modeling nematic colloidal materials in a variety of other

contexts.

7.3 Outlook

As with most soft matter problems, in emulsions and bijels there is a hierarchy of

structures across multiple length- and time scales, from the interactions between

individual interfacial particles or molecules to the arrangement of droplets and

channels. I here focus on the mesoscale phenomenon of the stability and mor-

phology of individual droplets or channels. Interactions between molecules or

particles at smaller scales are included as interfacial mechanical properties and

as a continuum field theory properties, a relatively familiar procedure in physics.

On the other hand many assumptions about the larger structure, the existence

of a channel, is assumed to be fixed as metastable or evolving on a slower

timescale. While it is suggested that the stability of channels is a key indicator

of bijel stability [6], future experimental and theoretical studies could explore

to what extent different local structures in a complex emulsion can in fact be

viewed as isolated systems. For example, by fluorescently labelling nanoparticles,

exchange of material between different droplet regions over time could be quan-

tified, as in [12]. The theoretical framework suggests that defects in idealized

materials remain localized to the associated Gaussian curvature, however more

consideration is required in potentially jammed systems.

For the specific interfacial material modelled here in Chapter 6, the ques-
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tion of whether surface shape adapts to accommodate orientational order or vice

versa was unambiguously resolved, with orientational order adapting to droplet

shape. In this system the effects of curvature-coupled orientational order were

too weak to have any impact on droplet shape. On the other hand, in the case

of surfactant-stabilized systems, order-driven droplet shapes have been experi-

mentally observed [13]. It would be interesting to develop a model experimental

system where order in a solid-stabilized emulsion impacts droplet shape, in con-

trast to the prediction in Chapter 6. While the theory derived from first principles

was limited to a gas-like system, colloidal particles with strong attractive inter-

actions can be investigated in experiments. Such an interfacial material may

have bending moduli exceeding the 72/πkBT range in a hard-sphere fluid by

several orders of magnitude. However, aggregation between strongly attractive

colloids is a challenge, preventing the formation of ordered interfacial mono-

layers. Tunable systems, where interparticle attractions are changed by factors

such as temperature, pH, or magnetic fields, may be an avenue to observing an

ordered interfacial layer with significant effects on emulsion morphology.

Due to difficulties with both Fourier transform and lattice representations of

the curved surface, statistical analysis is limited to retrieving the low-temperature

ground state of the system. With a different simulation scheme, information on

the full statistical ensemble of the system, for example relative probabilities of

vortex states with defects, could be retrieved in simulations.

An initial motivation for research into particle behavior in solid-stabilized

emulsions was that an understanding of the effects of particle properties (shape,

size, wetting properties) on emulsion stability can inform the formulation of

emulsion products. Furthermore, the ability of solid-stabilized emulsions to at-

tain morphologies with non-spherical droplets opens up avenues in engineering

unique functional soft materials, for example taking advantage of polyhedral

droplet shapes or of regularly placed defects. In surfactant-stabilized emulsion

systems facetted droplets that could be the basis of nanoengineered materials

have already been experimentally tested [13]. An understanding of the same

phenomenon in solid-stabilized systems may similarly open up opportunities in

novel material design. As evidenced by the existence of the bijels, jammed

interfacial nanoparticle layers make additional macroscopically complex shapes
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possible. However, it is not straightforward to transfer existing theoretical meth-

ods from surfactant-stabilized to particle-stabilized emulsions, precisely because

of the unique additional properties of irreversible adsorption and jamming. This

thesis represents a start into exploring the role of orientational order, in con-

junction with other effects, in the rich but complex theory of solid-stabilized

emulsion system. Its methods and outcomes enable estimates about which

effects are dominant on a case-by-case basis.
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