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Abstract

Population reduction is often used as a control strategy when managing infectious

diseases in wildlife populations, however it disrupts existing social structures and increases

movement of infectives due to the vacuum effect, which may lead to enhanced disease

transmission. Using a generic non-spatial model, key characteristics of disease systems

are identified for which such effects reduce or even reverse the disease control benefits of

population reduction. If population reduction is not sufficiently severe, then enhanced

transmission can lead to the perturbation effect, whereby disease levels increase or disease

can be stabilised where it would otherwise be unstable. Perturbation effects are enhanced

for systems with low levels of disease, e.g. low levels of endemicity or emerging disease.

Mechanisms observed in real systems are examined for their role in the perturbation

effect. If population reduction is non-random and fails to target infected individuals, then

vertical transmission (an important mechanism in many diseases including tuberculosis

and paratuberculosis) can lead to the perturbation effect if horizontal transmission is low.

The perturbation effect can also arise when population reduction preferentially targets

resistant individuals, or mature individuals with low susceptibility, a factor implicated in

wild boar and classical swine fever.

In a stochastic spatial model of demography and disease dynamics with density depen-

dent dispersal (implicated in the spread of rabies in foxes, and tuberculosis in badgers and

wild boar due to the vacuum effect), enhanced transmission is found to arise implicitly as

an emergent property of the disease-system, even when population reduction is entirely

random. Culling strategies are examined, and the spatial heterogeneity of distribution of

culling resources and timing of culling intervals are shown to influence the perturbation

effect. Whilst the perturbation effect may not always be apparent, the various effects

modelled are likely present in many disease systems, mitigating the results of population

reduction.
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Chapter 1

Introduction

1.1 Animal health and wildlife disease

Maintaining animal health is essential to farming, and this includes treatment and pre-

vention of infectious diseases. One source of infection is from sympatric wildlife, which

can act as a reservoir for livestock diseases: this means that, even though an infection

may be successfully removed from livestock, it can persist in the wildlife population, to

be later reintroduced to the livestock. This is a consequence of the existence of multihost

pathogens (e.g. bovine tuberculosis or rabies), which are capable of infecting a variety of

species.

Around 61% of human infectious diseases are zoonotic, such as rabies, bovine tuber-

culosis, malaria, H1N1 influenza, cholera, and many others, and around 75% of zoonotic

diseases have a wildlife origin (Cleaveland et al., 2001; Taylor et al., 2001; Jones et al.,

2008). Wildlife diseases are therefore an important problem for livestock production and

welfare, and disease control must consider the threat of wildlife reservoirs, and make use

of appropriate techniques to prevent reinfection.

1.2 Wildlife disease control

There are three basic approaches to disease control (Wobeser, 1994; Carter et al., 2009):

(i) reduce reproduction of the pathogen (e.g. via vaccination of susceptible hosts, or treat-

ment of infected hosts), (ii) reduce host density (e.g. via dispersing, culling, or controlling

reproduction), or (iii) reduce contact between susceptible and infected animals (e.g. via

controlling the environment and restricting movement). Reducing host density is the most

common approach to managing disease in wildlife, and essentially involves some form of
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population reduction.

1.2.1 Population reduction

Population reduction has traditionally been used in disease control of wildlife populations

(Wobeser, 1994), particularly when the wildlife species acts as a reservoir for livestock

diseases (Artois et al., 2001). Its use is inspired by traditional epidemic models, such as

those by Anderson & May (1979), and the aim is twofold: to reduce the absolute number of

infected animals, and to reduce contact between healthy and infected animals — and thus

disease transmission rate — leading to a reduction in disease prevalence. An important

consideration is the balance between animal health and conservation of the wildlife species,

and it is usually not desired to eliminate the entire wildlife species, but merely to reduce

numbers to the level where the disease can no longer persist. This is made possible due

to the existence of a threshold susceptible population size NT (Kermack & McKendrick,

1927), below which the disease is not spread fast enough to be maintained. This threshold

is affected by specific host-pathogen combinations.

A useful way of comparing the various host-pathogen combinations is the basic re-

production ratio, R0, which is the expected number of secondary infections produced in a

completely susceptible population, when a single typical infective is introduced. If R0 > 1,

then a disease may invade a population and is expected to persist, otherwise it is expected

to die out. When the disease is endemic, then another measure of R0 is the ratio of the

population size to the number of non-infectives (which therefore must be ≥ 1). Much work

has been done to obtain R0 for different diseases and disease systems (Diekmann et al.,

1991). When the rate of disease transmission depends on the number of infectives in the

population (e.g. many airborne or waterborne diseases), then transmission is referred to

as “density dependent”, and one of the results of calculating R0 leads to the concept of

the threshold host density. Note that some diseases (e.g. sexually transmitted diseases) do

not depend on number of infectives present, but rather the proportion of infectives (the

prevalence), in which case they are referred to as “frequency dependent”; in these cases

there is no threshold population size to aim for when culling (McCallum et al., 2001), and

frequency dependent transmission with high disease induced mortality may be associated

with extinction in small populations (Beeton & McCallum, 2011). However, both R0 and

thresholds may be difficult to measure, be affected by features of demography such as

seasonality, and be blurred by stochasticity such that a disease may still fail to invade

even if R0 > 1 (Diekmann & Heesterbeek, 2000; Lloyd-Smith et al., 2005b).
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Disease control methods to reduce R0 to below 1 may take several forms, including

vaccinating individuals (reducing the number of susceptibles), fertility control, and parti-

tioning of groups into smaller sub-populations to prevent contact. It has, however, been

observed that control measures featuring population reduction rarely include evaluation of

the desired level of population decrease, and attempts are often offset by the compensatory

effects of immigration and compensatory reproduction (Artois et al., 2001).

1.2.2 Examples of population reduction: success and failure

Population reduction has had mixed success in controlling a variety of wildlife diseases.

Complete host eradication from an area may be an option, however conservation is fre-

quently an important issue, whence the goal is to reduce host density. The four main

methods are hunting, trapping, gassing and poisoning (Carter et al., 2009).

Gassing, which involves flooding host habitats with poisonous gas, has been used to

successfully reduce numbers of red foxes (Vulpes vulpes) (Müller, 1971), striped skunks

(Mephitis mephitis) (Gunson et al., 1978), and vampire bats (Desmodus rotundus) (Fornes

et al., 1974) for rabies control (Carter et al., 2009). However, gassing may be non target-

specific, and difficult to deliver to extremities of complex burrow systems.

Poison, with toxic baits, can be an effective culling method for wild animals over

large areas (Carter et al., 2009). However, poison often has very low specificity, leading

to high mortality rates in species other than the target, e.g. use of strychnine in rabies

control to remove foxes in Alberta, Canada, also resulted heavy removal of coyotes (Canis

latrans), wolves (Canis lupus), lynx (Lynx spp.), and bears (Ursus spp.) (Ballantyne &

O’Donoghue, 1954). Also, prolonged exposure to poison may lead to either resistance or

aversion to poison baits via selection for neophobia traits (e.g. trap shyness), reducing its

effectiveness (Bomford & O’Brien, 1995; Leung & Clark, 2005).

Hunting (either by shooting or using trained dogs) is highly species-specific, and can

be implemented selectively, targeting by age or gender classes, and even sometimes by

infectious status (Carter et al., 2009). It has been used to successfully remove brush-

tail possums (Trichosurus vulpecular), which severely damage native ecosystems (Payton,

2000) and are the primary wildlife reservoir of bTB in New Zealand. Use of hunting may

be problematic when some hosts are not accessible to the hunters, but this can often be

supported by use of dogs, which were used to successfully remove brushtail possums from

many offshore islands, during the final stages of possum eradication when host density

was low (Brown & Sherley, 2002). However, recreational or sports hunters may not wish
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to significantly suppress a population size because they hope to maintain a viable popu-

lation for future harvesting. Also, hunting with dogs has been associated with increased

ranging behaviour (Maillard & Fournier, 1995; Artois et al., 2001), which can promote the

geographical spread of disease.

Trapping, with devices to either capture or kill the target, is one of the most important

methods of disease management in wild carnivores (Carter et al., 2009). When combined

with lethal dispatch, it is very labour intensive, but also extremely target specific. The

effectiveness of trapping may, however, be reduced by selection for trap-shy individuals,

and trappability may vary greatly between different species, and age groups within species

(Tuyttens et al., 1999), which could lead to unintentionally selective culling.

Even when there are no such issues carrying out culling, it is not always successful.

Tasmanian devils (Sarcophilus harrisii) are threatened with extinction by devil facial tu-

mour disease (DFTD), an infectious cancer with a very high mortality rate. Despite being

easily trappable, and infectives easily identifiable, culling has so far failed to remove the

disease, mostly because of a lengthy latent period and frequency dependent transmission

(as DFTD is spread by biting during mating). Disease models by Beeton & McCallum

(2011) suggest that culling alone is unlikely to prevent extinction of the species.

Control of Classical Swine Fever (CSF) in wild boar (Sus scrofa) by shooting was

attempted in Europe in the 1990s, but poorly documented, and no methods were used to

assess the culled fraction of the population. Compensatory reproduction quickly allowed

population levels to recover, and persistence of the disease was commonly observed (Artois

et al., 2001). Even when eradication was claimed, persistence of antibodies in juveniles

suggested otherwise. Since recovery from CSF can lead to immunity, high numbers of

recovered can deplete the susceptible population to below the threshold density required for

disease persistence. Hunting of adults was more likely to remove such immune individuals,

to be replaced with susceptible young due to compensatory reproduction, whereas without

hunting, the disease was expected to die out within a year or two. Studies showed that the

level of culling necessary to control disease was both greater than the level provided by

existing hunting (Artois et al., 2001), and should be targeted at the juveniles (aged 6–18

months). Following modelling of the infection by Guberti et al. (1998), control measures

recommended that hunting should stop as soon as CSF is detected, in order to prevent

dispersal from infectious herds, and limit the risk of transmission to neighbouring groups

(Laddomada, 2000).

Following the identification of badgers (Meles meles) as a key wildlife host for bTB in
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the 1970s, population reduction has been at the centre of bTB control to protect sympatric

cattle populations. Since 1973, DEFRA (previously MAFF) have employed a number of

population reduction strategies to reduce transmission of bTB from badgers to cattle.

From 1975 to 1982, following detection of bTB in cattle attributed to badgers, badger

populations up to 1 km from the farm boundary were sampled, and infected setts were

gassed with hydrogen cyanide, with sites revisited for two years to prevent reintroduction

from immigrant badgers; however, despite being one of the most effective methods of dis-

ease control (Smith et al., 2001a) gassing ceased on welfare grounds, as low concentrations

in sett extremities led to serious suffering in some animals (Dunnet et al., 1986). From

1982 gassing was replaced by cage trapping due to these welfare concerns, and badger

social groups surrounding infected farms were removed in increasing rings, until a ring of

uninfected groups had been removed (the average size of the control areas was 7 km2);

from 1986 to 1993 an interim strategy was introduced, where badger removal was confined

to land used by reactor cattle, or the whole farm if the origin of the infection could not be

determined. During this time, there was no significant decline in the number of infected

herds (MAFF, 1993).

In 1998 The Randomised Badger Culling Trial (RBCT) was launched, to investigate

the effects of reactive and proactive population reduction on cattle herd breakdowns. They

concluded that population reduction did not reduce disease incidence — in fact it led to

its increase.

1.3 The perturbation effect

The RBCT was a huge ecological experiment; it focused on 30 areas, each measuring

100 km2 and located in regions of high bTB risk to cattle. These areas were grouped

into 10 triplets, and the areas within each triplet were randomly assigned to three dif-

ferent treatments: widespread proactive culling, aiming to maintain low badger densities;

localised reactive culling; and an ‘experimental control’ with no culling (Woodroffe et al.,

2008)

Localised reactive removal of badgers in response to a bTB outbreak in cattle was found

to be ineffective for control of bTB in cattle and indeed resulted in an increase in incidence

(Donnelly et al., 2003). In contrast, proactive badger population reduction reduced the

incidence of bTB in cattle in the removal area; however, incidence increased in adjacent

areas (Donnelly et al., 2006), with an overall net increase in bTB incidence. As a result
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it was concluded that badger population reduction could not contribute meaningfully to

the control of cattle bTB in Britain (Independent Scientific Group, 2007; Woodroffe et al.,

2008).

Since this effect was considered a consequence of social perturbation, the increase in

disease incidence following population reduction is known as the “perturbation effect”

(Tuyttens et al., 2000a; Macdonald et al., 2006; Carter et al., 2007; Vicente et al., 2007).

This is a convenient term to describe the enhanced disease transmission, and is used

throughout this thesis.

1.3.1 Suggested mechanisms for the perturbation effect

Carter et al. (2007) reviewed several mechanisms believed to be responsible for the per-

turbation effect in badgers. Population reduction disrupts the population, leading to:

• The “vacuum effect”. This is a tendency for neighbouring individuals to disperse

into a culled area to seek new territory (Macdonald, 1995), which has been observed

or suspected in many species including foxes (Macdonald, 1995), badgers (Tuyt-

tens et al., 2000a; Carter et al., 2007; Woodroffe et al., 2008), wild boar (Artois

et al., 2001), possums (Barlow, 1994), grizzly bears (Ursus arctos horribilis) (Mace

& Waller, 1998), and lions (Panthera leo) (Woodroffe & Frank, 2005; Davidson et al.,

2011).

• Territorial disruption. This is the tendency for animals to ignore previously estab-

lished territorial boundaries, and increase contact with neighbouring social groups.

• Increased ranging behaviour. This can lead to a greater chance of contact with

neighbouring social groups and sympatric livestock populations.

Davidson et al. (2008) show that social structures may have a strong influence on disease

persistence and prevalence. These behaviour changes may lead to increased contact be-

tween animals, and therefore higher than expected disease transmission rates, contrary to

those predicted by traditional disease models.

This suggests that considering the ecology of a host-pathogen disease system, in partic-

ular behaviour that determines population mixing and structure, is a good starting point

when trying to explain the perturbation effect. However, while these mechanisms have

been implicated in the perturbation effect, little work has been done to properly under-

stand it. In order to understand the perturbation effect, it is important to understand how
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wildlife ecology is affected by population reduction, specifically demography and disease

dynamics.

1.4 Wildlife population ecology

Population demography is the set of behaviours and rates that define the population dy-

namics, i.e. how a population changes through fertility, mortality, and movement. These

processes are often highly dependent on the environment and the present state of the pop-

ulation, and play a considerable role in disease transmission thus making them important

mechanisms to include when studying disease spread.

1.4.1 Reproduction and mortality

Population numbers change as individuals are born and die, and the patterns of birth

and death can vary strongly between species. Reproduction generally takes place in the

adult phase of an animal’s lifecycle. In some species it occurs seasonally, while in others

it may occur at any time. Fecundity may vary: some species give birth to large litters,

while others only give birth to one offspring at a time. Reproduction is often limited by

resources, and not all animals within a given population get the opportunity to reproduce,

which can lead to density dependent growth, and population equilibria. Mortality can

happen at any time due to senescence, predation, disease, accident or lack of resources.

Mortality can remove infected animals from a population, reducing disease transmission

rates.

Interaction of different reproduction / mortality combinations can lead to different

growth patterns, with the extremes characterised by so called r and K species (MacArthur

& Wilson, 1967). r species (e.g. bacteria, weeds and rodents) have fast reproduction rates,

and tend to rapidly fill ecological niches, but just as rapidly can exhaust resources or face

a hostile change in environment and decrease in numbers. This leads to boom and bust

style population dynamics.

K species (e.g. elephants, trees, humans) on the other hand (so called because their

numbers tend to remain close to the population equilibrium, K) tend to have low growth

rates, and longer lives. K species may be better at sustaining a disease, provided the

disease induced mortality rates are not too high. In most cases, species exist in a contin-

uous spectrum between these two extremes, however it is useful to consider how different

places in the spectrum react to population reduction, and how that in turn affects disease
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transmission.

1.4.2 Social organisation and structure

While it is often convenient when modelling to assume that the host population is homo-

geneously mixed (Anderson & May, 1992), populations do not normally exist as a homo-

geneous group of identical individuals (Carter et al., 2009). Individuals may be divided

up socially in many different ways, such as by sex, age, dominance, or core risk groups

(Cross et al., 2009), and a mixing matrix can be used to incorporate data on contact rates

within and between classes (Blower & McLean, 1991).

Populations may also be divided spatially, when individuals within groups aggregate to

form smaller sub-groups; this can add considerable heterogeneity to a system, which can

lead to processes (particularly density dependent processes) occurring at different rates

within different sub-populations.

The infective population itself may not be homogeneous, as it is suggested that typically

20% of infectives may be responsible for 80% of transmission potential (Woolhouse et al.,

1997), which is sometimes referred to as the “20/80 rule”. For example, when modelling

badgers and bTB, infectives have been divided into excretors (of the bacterium) and super-

excretors (Smith et al., 1995b, 2001b), and the latter may also be subject to increased

mortality rates (Wilkinson et al., 2000).

1.4.3 Dispersal

While animals may aggregate to form social groups, they may also move between social

groups via dispersal; this process is important for finding resources (e.g. food and mating

opportunities), and for preventing inbreeding. When more food resources are desired,

per capita dispersal rate may be greater into social groups with fewer members; prior

to dispersal, individuals may sometimes “test the water” by examining nearby sites in

order to check suitability (Cheeseman et al., 1998; Rogers et al., 1998; Bodin et al., 2006).

These processes can lead to density dependent dispersal (Johst & Brandl, 1997; Bowler

& Benton, 2005), which can help to reduce heterogeneity in population densities, and is

a potential driver of the vacuum effect. In addition, dispersal may be a stressful event,

leading to increased susceptibility following movement (Carter et al., 2009).

Hess (1996) discusses how increased movement in metapopulations (a set of popula-

tions connected by dispersal) can reduce the probability of metapopulation extinction, but
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also increase the prevalence, incidence, and geographical spread of disease in the overall

population.

1.4.4 Population reduction and wildlife ecology

Here lies the gap in our current knowledge leading to several questions, including:

• What is the effect of population reduction on wildlife disease dynamics?

• Can a behaviour change that is a natural formulation of demography and disease

transmission lead to a perturbation effect? (i.e. can a perturbation effect occur with-

out adding explicit mechanics not representative of any specific biological processes)?

• How can a behaviour change arise implicitly in epidemic models?

• How does population reduction interact with behaviour change mechanisms, and

how can it contribute to the perturbation effect?

• How best to implement population reduction in order to avoid the perturbation

effect?

1.5 Modelling wildlife ecology and disease dynamics

Disease transmission can occur when a susceptible individual comes into contact with

infectious material, either directly from an infected animal (e.g. via a bite, or respiratory

transmission), or indirectly via a vector or infected food and water etc. Transmission

therefore depends on both contact rates and susceptibility, and both of these depend

on the behaviour of the individuals; for example, avoidance behaviour may offer some

protection, while close proximity may increase transmission.

1.5.1 Compartmental models and complexity

A powerful tool in epidemiology is the compartmental model, which has been frequently

used to study disease dynamics (Kermack & McKendrick, 1927; Anderson & May, 1992).

Compartmental models reduce population diversity to a few important categories, pri-

marily disease status (e.g. susceptible, infected, vaccinated etc.), and then consider how

different mechanisms affect the rate of change of those categories.

Some of the most common epidemiological models include SI, SIR, SIS, and SEIR,

where S represents susceptible, E exposed, I infected, and R resistant or recovered. While
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simple, these capture the fundamental features of many infection dynamics, and can be

used to represent a wide range of different host-pathogen systems such as bTB, measles,

rabies, and the common cold.

Most early models, e.g. Kermack & McKendrick (1927); Anderson & May (1978),

measured variables at the population level, e.g. where I(t) reflects the total number of

infectives in the population at time t; these models are some of the simplest, and hence

easiest to analyse algebraically, and solve numerically (Keeling & Danon, 2009). However,

population structure often plays a significant role in disease dynamics (Davidson et al.,

2008), as populations may segregate into similar groups. Recent empirical studies have

highlighted the role of this structure in disease transmission, e.g. in badgers (Shirley et al.,

2003; Vicente et al., 2007), birds (Kulkarni & Heeb, 2007), and red deer (Cervus elaphus)

(Blanchong et al., 2007). By subdividing the population and considering each group as

a separate variable (e.g. where If,1(t) and Im,3(t) might reflect the number of female

infectives of age 1–2, and the number of male infectives of age 3–4 respectively) the model

can accommodate more complicated behaviour, and have better predictive power (e.g.

testing the effects of vaccination on different age groups). In a similar manner, spatial

structure is often added by dividing the population into discrete patches, and considering

dispersal and inter-group infection between patches, e.g. White & Harris (1995a). By

moving from modelling at the population level to the individual level, an even wider range

of biological problems and realistic assumptions may be included (Keeling & Danon, 2009).

However, there are several drawbacks to increasing model complexity (Keeling &

Danon, 2009): including multiple categories can lead to many category interactions (e.g.

male-juvenile-susceptible etc.) which can result in considerable complexity, and it can be

expensive and difficult to obtain the data required to parametrise such models, even in well

studied species, and especially in wildlife populations (Artois et al., 2001). Consequently,

there is a trade off between better approximation of reality, and confidence in parameters.

Next, algebraic complexity increases, and becomes less useful; numerical solutions become

more important. Finally, where numeric solutions are required, computation time becomes

an issue, although computational power is continually increasing, providing greater scope

for model complexity.

Where data are insufficient, complex models with large numbers of parameters can

be “tuned” to better account for observed behaviour; however a parsimonious approach

may provide much of the required behaviour, with little loss in predictive power. Also,

it is often easier in a simpler model to understand which mechanisms account for a given
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pattern of behaviour, and thus improve biological understanding of the problem. For these

reasons, and in an attempt to gain a thorough understanding of generic disease dynamics,

the models used in this thesis start from the simplest possible, building up to include extra

complexity only where necessary.

1.5.2 Mass action models and stochasticity

The law of mass action in Chemistry states that the rate of a chemical reaction containing

only a single mechanical step is proportional to the product of the concentrations of the

molecular species involved. When applied to disease transmission, densities of susceptible

and infective animals are considerably smaller, and heterogeneity and stochasticity play a

considerable role (Keeling, 1999; Marion et al., 2002).

Disease models often assume that disease transmission occurs via mass action, i.e. if

the density of susceptibles and infectives are S and I respectively, then the number of

new infectives per unit area, per unit time is βSI, where β is the transmission coefficient

(McCallum et al., 2001), and this is referred to as “density dependent transmission”; how-

ever, this assumes that susceptibles and infectives are well mixed, and all such individuals

are equally likely to contact one another. In the case of large populations (e.g. 10,000

individuals), or in small populations where the disease spread is severely limited (e.g. sex-

ually transmitted) it is unlikely that all individuals are able to make contact, in which

case only the proportion of infectives (the prevalence) is relevant. Here, the number of

new infectives per unit area, per unit of time is βSI/N , where N is the population size,

and this is referred to as “frequency dependent transmission”. It should be noted that

in a spatial model with a large population divided into multiple small sub-populations,

each sub-group may be small enough to consider density dependent transmission, while

transmission between neighbouring groups either via dispersal of infectives, or between

group transmission, is intrinsically frequency dependent.

When modelling disease systems, the starting place is often a deterministic model,

however these tend to overestimate transmission rates for low population densities, and

it is therefore useful to consider stochastic models. Deterministic models assume com-

pletely mixed populations (or sub-populations), however this is frequently not the case,

as infected animals tend to be highly aggregated, and do not provide the level of infection

predicted by the mean field approximations given by the deterministic models (Marion

et al., 1998). Another advantage of stochasticity is that each realisation of a stochastic

process is different, therefore taking the average of a large number of runs can capture the
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variability of the epidemic profile (Keeling & Danon, 2009).

1.5.3 Comparison of deterministic and stochastic models

Both deterministic and stochastic models can be used to describe the dynamics of a host-

disease system, and will give similar results, albeit with important differences. These are

now compared and contrasted using a basic SI model as an example.

Both models share the same processes, with two time dependent parameters S(t)

and I(t), which represent the number of susceptibles and infectives at time t. Density

dependent birth occurs at intrinsic rate r and is limited by carrying capacity c, natural

mortality occurs at per capita rate d, and infection is density dependent, and the coefficient

of transmission is β. The deterministic model that describes these processes is

Ṡ = rN(1−N/c)− dS − βSI

İ = βSI − dI

where N = S + I, while the probabilities of each event over a small time interval δt,

and the associated change in state space, are given for the stochastic model in Table 1.1.

The stochastic model may be simulated using the Gillespie algorithm (Keeling & Rohani,

Event Rate δS δI

Birth of S rN(1−N/c)δt +1 0

Death of S dSδt −1 0

Death of I dIδt 0 −1

Infection of S βSIδt −1 +1

Table 1.1: Event rates for the deterministic and stochastic SI model, and corresponding

effects in the stochastic model.

2007), however this process is used throughout the thesis, and so is described in more

detail here. The times between events are exponentially distributed according to the total

event rate, which is the sum of the rates of each individual event in Table 1.1

Rtot = rN(1−N/c) + dS + dI + βSI

The time until the next event is obtained by first choosing y ∼ exp (Rtot), and letting

δt = min (y, δtmin)
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(where δtmin may be convenient to ensure that time steps are not too great, e.g. when

recording population values, or disrupting the population at specific times). The next

event is then randomly chosen by generating z ∼ U(0, Rtot/δt), and letting the next event

be

birth of S if z < rN(1−N/c)

death of S if z < rN(1−N/c) + dS

death of I if z < rN(1−N/c) + dS + dI

infection of S if z < rN(1−N/c) + dS + dI + βSI

no event otherwise

This process is then repeated as necessary to obtain a realisation of the stochastic process

given any set of initial conditions.

There are three equilibria, which can be found for the deterministic model by solving

Ṡ = 0, İ = 0 for S∗ and I∗

1. Population extinction {S∗0 , I∗0} = {0, 0}

2. The disease free equilibrium {S∗DF, I∗DF} = {c(r − d)/r, 0}, and

3. The endemic equilibrium {S∗, I∗} = {d/β, c(r − d)/r − d/β}

Fig. 1.1 shows the results of solving the deterministic model numerically for t ∈ [0, 50]

years, and taking the mean and 95% confidence interval of 100 realisations of the stochas-

tic model, using the parameters r = 1, c = 20, d = 0.2, and β = 0.05, starting from

initial conditions {S(0), I(0)} = {15, 1}, which is near the disease free equilibrium. Phase

portraits for both models are shown, overlaying a vector field for the deterministic model.

The main observation is that, while the general behaviour of both are similar, the

endemic equilibrium of the stochastic model appears to contain fewer infectives than in

the deterministic endemic equilibrium. In fact, in 22 out of the 100 realisations, the disease

died out within the first 10 years. If these are removed, then the mean of the remaining

realisations (see Fig. 1.2) is much closer to the deterministic model, however the phase

portrait reveals that it is not identical, and still contains fewer infectives.

It is interesting to note that calculating R0 = S∗DFβ/d = 4, and using the probability

of stochastic fadeout of the disease (Lloyd-Smith et al., 2005b) as (1/R0)I0 = 0.25, agrees

with the number of realisations where the disease failed to invade.

The deterministic and stochastic models do give qualitatively similar results, although

the deterministic model fails to account for the possibility of disease fadeout, and when this
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Figure 1.1: Time trajectories and phase portraits of the deterministic and stochastic models

(with 95% confidence intervals). The deterministic endemic and disease free equilibria are

marked with green and blue circles.
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Figure 1.2: Time trajectories and phase portraits of the stochastic model with disease

extinctions removed.
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is corrected for by removing failed invasions, it still overestimates the number of infectives.

In addition, the stochastic equilibrium does not remain fixed, but fluctuates continually,

and the eventual fate of all stochastic realisations is for the disease — and indeed the

entire population — to die out, although this may take a very long time if the population

is large. In a spatial model, adjacent sub-populations may fluctuate differently, opening

up population gradients that do not exist in the deterministic model, which may better

account for the heterogeneities observed in wildlife populations.

This does not mean that the deterministic model should be rejected however, as it

still predicted some of the dynamics correctly, and allowed for calculation of a point value

of the endemic equilibrium to a reasonable degree, which would be considerably more

difficult with the stochastic equations without solving the equations numerically (note

that the endemic equilibrium is a probability distribution, not a point value). Techniques

such as moment closure analysis can help to correct for the differences due to non-linearity

between the deterministic and stochastic equations (Whittle, 1957; Krishnarajah et al.,

2005).

1.6 The thesis

1.6.1 Aims

The overall aim of this thesis is to increase our understanding of the perturbation effect,

both generically and in specific host-disease systems, and to show how demographic fac-

tors may contribute to the perturbation effect. My aims are therefore to: (i) characterise

and determine the dynamics of the perturbation effect; (ii) examine the role of popu-

lation reduction, to find out what maximises or minimises the perturbation effect; and

(iii) examine how demographic factors may contribute to the perturbation effect.

1.6.2 Thesis structure

Chapter 2 examines various properties of the perturbation effect. Using a generic non-

spatial SI model, the effects of enhanced disease transmission subsequent to popula-

tion reduction are investigated and characterised. Using a spatial stochastic model,

density dependent dispersal is demonstrated to be a process that can account for

the perturbation effect. The two models are compared and contrasted, and shown

to be qualitatively similar.
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Chapter 3 investigates how culling strategies may influence the perturbation effect. In

particular, how different strategies, both spatially and temporally, using the same

effort might give different results.

Chapter 4 investigates further mechanisms in a non-spatial context that may lead to

the perturbation effect, especially when a population is subject to non-random pop-

ulation reduction. An SI model with vertical transmission, an SIR model, and

an SI model with age structure are examined and found to be susceptible to the

perturbation effect.

Chapter 5 provides a general discussion that places the research of each chapter and the

thesis as a whole into context.
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Chapter 2

Host behavioural responses reduce

the efficacy of population

reduction approaches to disease

control
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2.1 Background

The relevance of ecology to understanding the dynamics and persistence of infectious

disease has long been recognised (Anderson, 1991), and ecological factors are critical to

wildlife disease systems. Control of disease in wildlife is of considerable importance for

managing risks to humans (Jones et al., 2008; Daszak et al., 2000) and livestock (Frölich

et al., 2002; Gortázar et al., 2007), as well as for the conservation of wildlife species

themselves (Cunningham, 1996; Daszak et al., 2000, 2001; Evensen, 2008). Population

reduction is a commonly employed strategy used to control disease in wildlife (Wobeser,

1994; Artois et al., 2001) with the aim of reducing the number of infected animals and

the overall size of key populations, leading to a reduction in rates of transmission, disease

prevalence and risks to other populations. Application of this strategy is supported by

theoretical evidence of a threshold for disease persistence below which disease becomes

unstable and eventually dies out (Anderson & May, 1979; Wobeser, 1994; Carter et al.,

2009). However, there is growing evidence that population reduction may be less effective

than standard analyses predict, and in some cases be counter-productive (see below).

Such unexpected increases in disease prevalence following population reduction are often

termed the “perturbation effect” (Carter et al., 2007). Lloyd-Smith et al. (2005b) review

the theoretical basis and empirical evidence for disease thresholds in wildlife concluding

that important elements of wildlife ecology are neglected by current theories.

It is known that the social and spatial structure of host populations has significant

implications for disease persistence and prevalence (Keeling, 1999; Davidson et al., 2008).

Population reduction disrupts existing social structures and this may lead to increased

numbers of contacts (Tuyttens et al., 2000a) and/or a greater proportion of agonistic

encounters within or between groups (Swinton et al., 1997; Tuyttens & Macdonald, 2000).

Similarly, a change in susceptibility of individual hosts may also occur as a consequence of

population reduction due to stress (Gallagher & Clifton-Hadley, 2000). Both effects will

enhance disease transmission and are likely to be widespread and reduce or even reverse

the efficacy of population reduction measures.

For example, management of rabies in foxes (Vulpes vulpes) has shown that vaccina-

tion is more suitable than culling, as the latter can destabilise social structure and lead

to enhanced transmission rates (Macdonald, 1995; Artois et al., 2001). Studies of the

management of classical swine fever (CSF) in wild boar (Sus scrofa) recommend that

hunting should cease following detection of the disease (Guberti et al., 1998), in order
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to discourage dispersal of infected individuals, and reduce risks to neighbouring groups

(Artois et al., 2001). The U.K. Randomised Badger Control Trial (RBCT) (Independent

Scientific Group, 2007) showed that reactive culling of badgers (Meles meles) in response

to a confirmed bovine tuberculosis (Mycobacterium bovis, bTB) herd breakdown in cattle,

was associated with a 27% increase in the incidence of confirmed breakdowns, relative to

survey-only trials (Donnelly et al., 2003). Repeated reactive culling was also associated

with increased bTB prevalence in badgers (Vial & Donnelly, 2012).

In this chapter, the potential for behavioural and demographic aspects of the ecology

of wildlife species to reduce or reverse the efficacy of population reduction as a means of

disease control is studied. The results are based on the analytical and numerical treat-

ment of generic models of demography and disease dynamics in wildlife populations. In

a non-spatial context, the potential that individual and collective behavioural responses

to population reduction have on disease control is analysed. This framework is used to

explore the demographic and epidemiological characteristics of wildlife disease systems

that make them susceptible to such effects. It is then demonstrated that such impacts

arise as an emergent property of spatial models of wildlife disease systems with density

dependent dispersal. Finally, the significance of these results for disease control in wildlife

is discussed.

2.2 Methods

2.2.1 A non-spatial model of demography and disease dynamics

Consider a generic single pathogen wildlife disease system with a fluctuating host popula-

tion. The number of susceptible and infected individuals in the population at time t are

S(t) and I(t) respectively, and the total population size is given by N(t) = S(t) + I(t).

Growth is assumed to be density dependent (logistic), with intrinsic reproduction rate r

(the maximum rate that individuals can reproduce in optimal circumstances), limited by a

carrying capacity c (the maximum number of individuals that the location being modelled

can support). Natural mortality (from causes unrelated to disease or explicit population

reduction measures) occurs at constant per-capita rate d, while disease induced mortality

occurs at constant per-capita rate e. The rate of infection is a combination of susceptibility

and contact rates between susceptible and infective individuals and here density depen-

dent infection is considered (i.e. disease transmission depends on the density of infectives,

I) with horizontal transmission rate β.

30



Population reduction is modelled as a constant per-capita death rate p which applies to

all individuals regardless of disease status. As noted earlier such measures can alter host

behaviour and hence contact rates. Therefore the horizontal disease transmission rate is

modelled as β + kp. Here k > 0 represents any mechanism or combination of mechanisms

that lead to increased contact rates or susceptibility in a host population subjected to

population reduction at rate p. Note that this formulation represents a simplification in

that the effect is linear in p, there is no lag as p changes and the effect is constant for the

duration of the population reduction event.

In Appendix 2.A, it is shown how to formulate a simple non-spatial deterministic model

that encapsulates the above assumptions. Also, this representation is simplified, removing

the variables c and r by respectively scaling the variables S, I and N by 1/c to obtain

values between 0 (empty) and 1 (at carrying capacity) and rescaling time by r. Analysis

can then focus on the effects of population characteristics (parameters d and e), disease

dynamics (β), population reduction (p), enhanced transmission (k) and the interactions

between them. However, results for specific values of c and r can still be obtained by ap-

propriate back scaling. The rescaled deterministic ordinary differential equations (ODEs)

that combine the demography and disease dynamics described above with population re-

duction and a corresponding enhanced transmission resulting from explicit behavioural

and implicit ecological (system) responses are given by:

Ṡ = N(1−N)− (d + p)S − (β + kp)SI (2.1)

İ = −(d + e + p)I + (β + kp)SI

Three fixed points of this system of equations are derived in Appendix 2.A: population

extinction, where {S, I} = {0, 0}; the disease free equilibrium, where {S, I} = {1−d−p, 0};

and the endemic equilibrium {S, I} = {S∗(p), I∗(p)}, where both the population and the

disease persist. The stability properties of these equilibria are discussed in the Appendix.

Note that the endemic equilibrium is written as a function of the reduction rate p, even

though it also depends on other parameters, as this highlights the effect of population

reduction.

2.2.2 A stochastic spatial model of demography and disease dynamics

In the stochastic spatial model, consider a set of sites on a lattice, where, at time t,

the integer number of susceptibles and infectives in site i are Si(t) and Ii(t) respectively.

Since the stochastic model deals with numbers of individuals, these are not rescaled as
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above. The demography and disease dynamics of each sub-population are governed by the

same processes as for the non-spatial model, with the addition of dispersal and disease

transmission within and between groups.

Dispersal is the movement of individuals between social groups, for the purposes of

obtaining more resources such as food or reproductive opportunities (including inbreeding

avoidance). In the model dispersal from any given site on the lattice occurs at constant

per-capita rate m, into any of its nearest neighbouring sites. However, since this process

may be mediated by the population levels in the destination site (Johst & Brandl, 1997;

Bodin et al., 2006) this is modified by a function f(Nj), where Nj is the population at

neighbouring site j. Consider a step function

f(Nj) =


1 if Nj < αN∗

DF

0 if Nj ≥ αN∗
DF

(2.2)

where N∗
DF = c(r − d)/r is the population size in the disease free equilibrium, and α

is the fraction of the disease free equilibrium at which the neighbouring site becomes

accessible. Dispersal rates may also be affected by conditions in the source area, e.g. due

to overpopulation, social exclusion, or lack of resources, lack of mating opportunities in

small populations; however, these effects are not considered here.

Disease transmission rates within and between groups are denoted βw and βb respec-

tively. The horizontal disease transmission rate in site j is therefore given by

Hi = βwSiIi + βbSi

∑
j

Ij

where the sum is over neighbouring sites of i. The total infection rate is given by H =∑
i Hi and the effective disease transmission rate is defined as

βeff =
H

(
∑

i Si)(
∑

i Ii)

The spatial model is implemented as a discrete state-space Markov process, to account

for demographic stochasticity, with events and associated rates shown in Table 2.1, and

simulated using the Gillespie algorithm (Keeling & Rohani, 2007). In the spatial model

population reduction is parametrised by the probability that a site is targeted p1 and the

rate of removal of individuals within targeted sites p2.

See Table 2.2 for a summary of parameters, symbols, and used in both the non-spatial

and spatial models.
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Event Rate δSi δIi δSj δIj

Birth of Si rNi(1−Ni/c)δt +1 0 0 0

Death of Si dSiδt −1 0 0 0

Death of Ii (d + e)Iiδt 0 −1 0 0

Infection of Si Hiδt −1 +1 0 0

Dispersal of Si to site j mzSif(Nj)δt −1 0 +1 0

Dispersal of Ii to site j mzIif(Nj)δt 0 −1 0 +1

Table 2.1: Event rates and corresponding effects in the spatial stochastic model.

Parameter Symbol Non-spatial Spatial Units

Intrinsic reproduction rate r 1 1 year−1

Carrying capacity c 1 20 —

Natural mortality rate d 0.2 0.01 year−1

Disease induced mortality rate e 0.1 0.1 year−1

Horizontal transmission rate β 0.4 — year−1

background βe — 0 year−1

within group βw — 0.5 year−1

between groups βb — 0 year−1

Dispersal rate m — 0.1 year−1

threshold value α — 0.7 —

Population reduction rate p 0.1 — year−1

coverage p1 — 0.2 —

removal within sites p2 — 0.5 year−1

Disease enhancement k 5 — —

Table 2.2: A summary of the parameters and their symbols used in the non-spatial and

spatial models are described here. Values shown indicate both the parameters and their

default values used in the spatial and non-spatial models.
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2.2.3 Measuring the perturbation effect

The magnitude of the perturbation effect at time t after the application of population

reduction at rate p is defined as

Π(t; p) = I(t; p)− I(t; 0) (2.3)

A population that is in equilibrium I∗(0) prior to the application of population reduc-

tion at rate p, will reach a new equilibrium I∗(p). The persistent perturbation effect is

defined as

Πeqm = max {I∗(p), 0} −max {I∗(0), 0} (2.4)

Note that while I∗ may be negative, in this case the disease becomes unstable, and

I(t) → 0, hence the restrictions (see Appendix 2.A.3 for more details). In the results, both

the persistent Πeqm and transient Π(t; p) perturbation effects are studied. In the spatial

case the proportion of sites containing infectives, PI(t; p), are also examined as the basis

for measuring the perturbation effect

Πsites(t; p) = PI(t; p)− PI(t; 0) (2.5)

2.3 Results

2.3.1 Explicit enhancement of disease transmission induced by popula-

tion reduction

The perturbation effect in the deterministic non-spatial model is considered first. Several

features of the perturbation effect caused by increased horizontal disease transmission

in response to population reduction are demonstrated in Fig. 2.1. For different levels

of transmission enhancement k, a range of outcomes are possible when a population in

the endemic equilibrium I∗(0) (disease endemic before intervention starts), is subjected

to sustained population reduction at rate p (see Fig. 2.1a). The long term equilibrium

I∗(p) increases with k (i.e. the effectiveness of population reduction reduces) and when

k is greater than some critical value kp, Πeqm > 0. However, another behaviour is also

apparent: when k approaches a lower threshold kt, there is a temporary increase in I(t),

which results in Π(t; p) > 0 for a short period, despite no perturbation effect in the

long term (Πeqm < 0). These two increases are called the persistent and the transient

perturbation effect, and their properties are examined in the following sections. Both
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(b) I(t) for different values of disease en-

hancement k, starting near the disease

free equilibrium

b = 0.2
b = 0.3
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b = 0.8
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(c) I∗ vs population reduction rate p for dif-

ferent values of disease transmission rate

β

Figure 2.1: Deterministic simulation of I(t), and algebraic solution of I∗(p) for different

β, with parameters given in Table 2.2, except p = 0.2. Results are shown for population

reduction ongoing, and also for between time t ∈ (0, 50) in the endemic case. In Fig. 2.1c,

βu marks the upper bound for β that permits the perturbation effect, and crosses each line

at the point where the increase no longer occurs for that value of β.
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persistent and transient perturbation effects are also possible in the case of emerging

disease (when starting from close to the disease free equilibrium) (see Fig. 2.1b).

Behaviour in the long-term equilibrium can be seen by plotting the endemic equilibrium

I∗(p) versus population reduction rate p, for several values of the horizontal transmission

rate β, and three important points are evident (see Fig. 2.1c). First, persistent popu-

lation reduction at a sufficiently intense rate does reduce the level of disease, leading to

I∗(p) < I∗(0). Second, the maximum size of the persistent perturbation effect reduces

as the horizontal transmission rate increases, with no perturbation effect present in the

deterministic model for β sufficiently high. Finally, increased horizontal transmission in-

duced by population reduction can stabilise the disease when disease is unstable in the

absence of culling.

Persistent perturbation effect with no disease induced mortality

The properties of the persistent perturbation effect Πeqm are now explored in more detail.

For clarity focus is on the algebraically simpler case where there is no disease induced

mortality, e = 0, and technical details of the analysis are given in Appendix 2.A.4. Sub-

sequently numerical analysis is applied in Eqn. 2.1 with disease induced mortality e > 0.

Case 1: Disease stable without population reduction, I∗(0) > 0

In this case there is a perturbation effect if

Π1 = Πeqm = −p− d + p

β + kp
+

d

β
> 0

Minimum disease enhancement required to produce perturbation effect

Note that when k = 0, one obtains Π1 = −p(1 + 1/β), which is always negative, showing

that culling reduces disease when there is no mechanism enhancing disease transmission.

Rearranging gives a threshold value of k, above which a perturbation effect is possible

k > k1 =
β(1 + β)
d− pβ

There is a lower bound on this threshold, such that k1 > β(1 + β)/d > (1 + β) > 1 (since

the disease is stable, which requires that β > d/(1− d) > d, hence β/d > 1).

High disease prevalence precludes a perturbation effect
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As β →∞, Π1 → −p, showing that for sufficiently high β, the perturbation effect cannot

occur in the deterministic model. In fact in this case there is an upper bound, βu, on the

value of β for which Π1 > 0,

β < βu =
1
2

√
(1 + pk)2 + 4dk − 1

2
(1 + pk)

and Π1 > 0 only when β < βu (see Fig. 2.2a for high β). Similarly, as d → 0, Π1 →

−p(1 + 1/(β + kp)) < 0, showing that the perturbation effect is possible only for higher

mortality rates. There is a corresponding lower bound on d for which Π1 > 0, at

d > dl = β(1 + β + kp)/k

(see Fig. 2.2b, for low d). For low d < dl, infectives are removed from the population

slowly, and for high β > βu, the disease spreads quickly; either situation leads to disease

saturation, with insufficient susceptibles to allow for a perturbation effect.

High rates of population reduction will reduce disease levels

A simple observation is that a persistent perturbation effect is possible (for any model)

only if the population size under persistent culling is greater than the equilibrium number

of infected individuals without population reduction i.e. N∗(p) > I∗(0) which implies that

there is an upper bound on the culling rate, p = d/β, above which population reduction

will reduce disease (see Appendix 2.A.4). This is also evident in k1 (the lower bound for k)

which diverges as p → d/β from below implying that, in order to see a perturbation effect,

population reduction must produce ever greater enhanced transmission k as p approaches

this critical level. Furthermore (see Appendix 2.A.4), it is shown that the range of p that

permits the perturbation effect also depends on k and is given by

0 < p <
d

β
− 1 + β

k

which is illustrated in Fig. 2.1c.

Case 2: Disease unstable without population reduction, I∗(0) < 0

Population reduction can stabilise otherwise unstable disease

In this case there is a persistent perturbation effect if the disease is stable under persistent

population reduction for a given p and k, i.e. when

Π2 = Πeqm = 1− d− p− d + p

β + kp
> 0
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The conditions under which the disease is stable under population reduction are detailed

in Appendix 2.A.3. The minimum k in order to stabilise disease following population

reduction is

k > k2 =
d + p− β(1− d− p)

p(1− d− p)

and therefore sufficiently large k can lead to a perturbation effect under these conditions.

For example, given d = 0.2, p = 0, I∗(0) < 0 for β < 0.25; however, given d = 0.2, β = 0.2,

(thus unstable disease for p = 0), when population reduction is applied at rate p = 0.1,

then the I∗(p = 0.1) > 0 for k > k2 = 2.286, therefore the disease can persist as long

as population reduction is sustained, leading to a perturbation effect (see Fig. 2.1c, for

β = 0.2).

Persistent perturbation effect with disease induced mortality

Now the persistent perturbation effect is investigated in the more complex situation with

disease induced mortality e > 0 by solving Eqn. 2.1 numerically to show how Πeqm varies

with e itself, and also with horizontal disease transmission β, background mortality d, and

enhanced transmission k resulting from population reduction.

Numerical analysis of the role of transmission rate β is consistent with the analysis

of the previous section (see Fig. 2.2a). Under case 1 (where I∗(0) ≥ 0 and Π = Π1),

Π decreases with β and no perturbation is possible for β > βu because the disease has

saturated the population, whereas in case 2 (where I∗(0) < 0 and Π = Π2), Π increases

with β, and there is a lower limit below which the disease becomes extinct despite enhanced

disease transmission. This is in accordance with analysis of Π1 and Π2 (see Appendix 2.A.4,

and above).

The role of natural mortality d is also consistent with the previous analysis (see

Fig. 2.2b). In the region of case 1, there is a lower bound dl, below which the pertur-

bation effect is not possible due to disease saturation, and above which Π increases with d.

In the region of case 2, Π decreases with d, and there is an upper limit on d above which

the disease becomes unstable despite enhanced transmission. The role of disease induced

mortality e, is broadly similar to that of d (see Fig. 2.2c).

The impact of the behaviour change parameter k on the perturbation effect is illus-

trated for case 1 in Fig. 2.2d. Π increases with k, tending to an asymptote as k → ∞,

while there is no perturbation effect below the threshold k1. The behaviour under case 2

(not shown) is broadly similar with a different lower bound k2 and lower asymptote.
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Maximising the persistent perturbation effect

An important addendum to these results is related to the conditions that maximise the

perturbation effect. For low mortality rates d or e, or high transmission rate β, the disease

is stable before and during population reduction, the prevalence is very high and there is

little room for further increase. As mortality increases or transmission decreases, the size

of the perturbation effect Πeqm increases until β = (d + e)/(1 − d), where the stability

changes, and the disease becomes unstable for p = 0 (as in case 2). After this point,

as mortality increases, or transmission decreases, Πeqm decreases, until mortality is too

high, or transmission is too low to maintain the disease either before or during population

reduction. This implies that the maximum perturbation effect occurs when I∗(0) ≈ 0

and I∗(p) > 0. Therefore in practice, the persistent perturbation effect is most likely in a

disease with very low prevalence. These results can be seen graphically in Fig. 2.2.

Transient perturbation effect

The transient perturbation effect can be assessed by linearising the system and examin-

ing the rate of change of Π(t; p) with respect to time, at time t = 0, which is positive

(i.e. the disease increases faster under population reduction) only if I ∈ (0, N − 1/k) (see

Appendix 2.B.1). To obtain an initial increase in disease levels there must be some infec-

tives, but similar to the results in the persistent case, too many infectives will prevent a

transient perturbation effect; as k increases a transient perturbation effect is possible for

ever larger numbers of infectives. The lower bound here is equivalent to k > kt = 1/S and

since S ∈ (0, 1), this requires that kt > 1; therefore, the transient perturbation effect does

not occur in the absence of a change in behaviour. It is also possible to show that the

transient perturbation effect increases fastest when S = N/2 + 1/2k and I = N/2− 1/2k

(i.e. roughly equal numbers of susceptibles and infectives) and that Π̇(0; p) increases with

both p and k (see Appendix 2.B for details). Also, a temporary peak, where I(t) > I∗(p)

may occur, if the disease increases quickly before culling completely reduces the population

size N ; this can be observed in both endemic and emerging disease cases (see Fig. 2.1).

Starting from the endemic equilibrium

Consider the case where the disease is in the endemic equilibrium {S∗, I∗} prior to disease

intervention (as shown in Fig. 2.1a). In Appendix 2.B it is shown that kt = β/(d + e)

so that the minimum disease enhancement required for a transient perturbation effect is

reduced when the infection rate β is small and mortality rates d and e are large. In addition
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kt < kp (where kp is the relevant k1 or k2) and the transient perturbation effect occurs

for smaller k than the persistent perturbation effect. Consequently, for small k < kt,

there is no perturbation effect. For larger k ∈ (kt, kp), I(t; p) > I(t; 0) for small t, i.e. the

number of infectives is initially larger following disease intervention, however eventually

I(t) → I∗(p) which is less than the initial level I∗(0), and in this case the increase is

temporary. However, for k > kp, the number of infectives increases and remains higher

than the control.

Starting from near the disease free equilibrium

The situation is somewhat different in the case of an emerging outbreak where I(0) = ε

where ε > 0 is small, and S(0) = S∗DF − ε, as shown in Fig. 2.1b. Here, kt = 1/(1− d− ε)

(see Appendix 2.B.2), and so the minimum behaviour change required for a transient

perturbation effect is reduced when the initial prevalence is low (although contrary to

the persistent perturbation effect, when mortality rates are also low). Fig. 2.2 shows

the impact of varying d, e, β and k on the transient perturbation effect for the case

of an emerging outbreak where I(0) = ε where ε > 0 is small, and S(0) = S∗DF − ε.

These numerical results show that the transient perturbation monotonically decreases

with both natural and disease induced mortality, whilst it monotonically increases with

enhanced transmission k. The disease transmission rate β affects the time disease takes

to reach equilibrium, and therefore small β can result in a slow initial increase (and small

transient perturbation effect), while very large β can saturate the population and prevent

the transient perturbation effect from occurring at the time considered; the largest increase

therefore occurs with an intermediate value of β, although this will vary depending on the

time at which the transient perturbation effect is assessed.

These results contrast with those for the persistent perturbation effect (also shown in

Fig. 2.2), demonstrating that conditions required for the transient and persistent pertur-

bation effect are not necessarily the same for both emerging and endemic disease.

2.3.2 Implicit enhancement of disease transmission induced by popula-

tion reduction

Now it is shown how the intrinsic dynamics of a natural spatial formulation of disease

transmission and demography may give rise to an increased effective horizontal transmis-

sion when population reduction is applied, leading to an implicit perturbation effect. The

non-spatial results of the previous section suggest that perturbation is strongest when
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(d) Disease enhancement k (with log scale)

Figure 2.2: The size of the perturbation effect Π(t), near the start of culling (at t = 5), and

at equilibrium (here t = 1,000). Default parameters are given in Table 2.2, one parameter

is varied at a time; initial conditions are {S0, I0} = {0.75, 0.05}. The stability of I∗ changes

at certain parameter values: cases 1 and 2 are bounded when the stability changes for p = 0,

and case 1 and disease extinction are bounded when the stability changes for p = 0.1; the

persistent perturbation effect is maximised near the point where I∗ crosses 0 for p = 0.

See also Fig. 2.4 for analogous results in the spatial case. Regions are indicated for case 1

(I∗(0) ≥ 0) and case 2 (I∗(0) < 0).
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disease prevalence is relatively low and where population reduction is intermediate, and

gives rise to a sufficiently large increase in the horizontal transmission rate. Analysis of

the horizontal infection rate in a simple two-site model (see Appendix 2.C.1) suggests that

in the spatial model such an enhancement of the transmission rate will be strongest in

situations where infection levels are most heterogeneous between groups.

Therefore, in studying the spatial model focus is on cases where disease is hetero-

geneously distributed between groups and overall prevalence is low. This is most easily

achieved when the system is close to the disease free equilibrium with: (i) disease sta-

bilised in each site by high within-site transmission rate βw and low mortality; (ii) low

levels of disease transmission between sites; and (iii) relatively large and stable popula-

tions at each site leading to low levels of dispersal between sites. Under this scenario,

even in the absence of population reduction, the number of sites infected, and thus overall

prevalence, tends to slowly increase (from close to the disease free equilibrium) as rare

dispersal or transmission events spread disease. Fig. 2.3 (discussed in detail below) shows

how transient perturbation effects occur in such a system. In contrast, it is shown in

Appendix 2.C.3 that by making both disease and population less stable within sites it is

possible to achieve a dynamic quasi-equilibrium (quasi- because the ultimate fate of all

simulations of this model is total extinction) where the spread of disease to uninfected sites

is balanced by spontaneous recovery of infected sites, e.g. through death of infectives and

birth of susceptible individuals. When the system is in such an endemic state population

reduction leads to a persistent perturbation effect, as seen in the non-spatial model. How-

ever, this endemic state is very sensitive to the balance between site-level establishment

and recovery of disease which makes it difficult to explore variation in the perturbation

effect with respect to the value of key parameters. Attention is therefore focussed on the

transient perturbation effect when starting close to the disease free state in the spatial

model.

2.3.3 Transient perturbation effect in the spatial model

The behaviour during population reduction in the spatial model is shown for the population

values S(t), I(t), and N(t) (see Fig. 2.3a), and the proportion of infected sites PI(t),

dispersal rates and effective transmission rate βeff (see Fig. 2.3b). The distribution of

infectives between sites is shown in Fig. 2.3c before, during, and after population reduction.

Prior to population reduction, sites can be classified as disease-free or infected. During

population reduction, the typical level of disease within sites decreases, but the number of
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(d) Effective transmission rate β for dis-

ease transmission vs population reduc-

tion coverage p1

Figure 2.3: Stochastic simulation of the spatial SI model. Parameters are given in Table 2.2,

and initial conditions are at the disease free equilibrium {S, I} = {20, 0}, while in 20%

of sites randomly chosen, a single individual is infected, resulting in {S, I} = {19, 1}.

Population reduction occurs annually from years 50–69, and in p1 = 20% of sites (chosen

randomly each year) the removal rate is set to p2 = 1.0, without regard to disease status

(equivalent to an overall culling rate of p = 0.2). An initial reduction in I is rapidly

replaced by an increase, which is due to the increased chance of invasion of näıve groups

by infectives due to the density dependent dispersal. The CI for the effective transmission

rate increases for large p1 due to the increasing number of simulations where the disease

becomes extinct.
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infected sites increases. When population reduction ceases, typical prevalence in infected

sites returns to previous levels which, given that there are now more of them, leads to a

rapid increase in global prevalence. Some light may be shed on the mechanisms behind

such changes, as population reduction leads to a large increase in dispersal, followed by

increasing rates of horizontal disease transmission, H (see Fig. 2.3b). Population reduction

disrupts the stable demographic structure (shown in Fig. 2.3c) leading to an increase

in the dispersal rate and movement of infectives to previously disease free sites. This

vacuum effect (Macdonald, 1995; Carter et al., 2007) emerges from the spatial model’s

density dependent dispersal and leads to increased transmission. The effective horizontal

transmission rate parameter varies with population reduction effort p1: for small p1, there

is an almost linear increase in βeff (see Fig. 2.3d), which agrees well with the explicit

increase assumed to be βeff = β+kp in the non-spatial model. However, one key difference

(as shown in Fig. 2.3b), is that the increase is not immediate, but grows linearly with time

— an effect not accounted for by earlier analysis.

Now the sensitivity of this perturbation effect is explored with respect to key aspects of

demography and disease dynamics. The results are broadly consistent with those obtained

when starting close to the disease free equilibrium in the non-spatial model. Fig. 2.4 shows

results for parameters analogous to those in Fig. 2.2, and that Π decreases with mortality

rates d and e and increases with dispersal rate m (similar to k in the non-spatial case).

The role of disease transmission is more complex. The perturbation effect decreases with

between-group infection rate βb which reduces the number of disease free sites and increases

with βw which increases within-site stability of disease. Thus for small βb and sufficient βw,

population reduction is able to spread disease to uninfected sites where it is able to persist.

The impact is also explored of varying the threshold parameter α, which determines how

sensitive the rate of dispersal is to local reductions in the size of the population in the

destination site (see Appendix 2.C). Results show that a perturbation effect occurs for a

wide range of values, although the largest effects are seen for α around 0.9 (it is suspected

that the largest increase would be observed for α near 1− p2). Perturbation effects were

also found for alternative forms of the density dependent dispersal function f(Nk) (results

not shown).
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Figure 2.4: The size of the perturbation effect, Πsites, at time t = 20 starting near the disease

free equilibrium. Default parameters are given in Table 2.2, and one parameter is varied

at a time. This is analogous to Fig. 2.2 for the non-spatial case. Initial conditions are

such that 20% of sites are randomly chosen to start near the endemic equilibrium (with a

minimum of 1 infective), while the remainder begin at the disease free equilibrium.
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2.4 Discussion

In this chapter, the impact on disease control of enhanced transmission resulting from

individual or demographic responses to population reduction was explored. Using a generic

non-spatial and deterministic model of demography and disease dynamics the potential for

such effects to reduce and reverse the disease control benefits of population reduction was

explored. It was found that there was a threshold of enhanced transmission above which a

perturbation effect occurred, whereby the number of infected individuals increases during

the period when population reduction is applied. However, sufficient population reduction

(the level rising with mortality rates d and e and behaviour change k, but decreasing

with infection rate β) will always reduce numbers of infectives in the area it is applied.

Disease systems with low levels of disease are more sensitive to the impacts of enhanced

transmission. For systems with endemic disease, the perturbation effect increases with

natural and disease induced mortality rates (due to reduced levels of endemic disease),

with the opposite trend where disease is emerging, as higher mortality removes cases

caused by enhanced transmission. Increasing horizontal transmission rate reduces the

perturbation effect in the endemic case since it reduces the number of susceptibles, whereas

for emerging disease the largest transient increase (at a particular point in time) occurs for

intermediate β. With low β there is a large perturbation effect, but it takes much longer

to occur, whereas with high β the disease quickly reaches equilibrium, so the perturbation

occurs earlier, and is small (as in the persistent case). Enhanced transmission effects

can also lead to disease being stabilised by population reduction in systems where it is

otherwise unstable.

A spatially explicit model representing demographic fluctuations and disease transmis-

sion within locally well mixed populations, and dispersal and disease transmission between

such groups was also considered. In this context it was found that enhanced transmission

emerged implicitly as a demographic response to population reduction when dispersal was

density dependent. This enhancement would be increased if individuals explicitly changed

their behaviour, e.g. by dispersing more or by increasing agonistic interactions and there-

fore disease contacts between groups. However, the implicit dispersal mechanism alone

was sufficient to give rise to a perturbation effect. It was found that the system was

susceptible to enhanced transmission in both the case of endemic and emerging diseases

when infection was heterogeneously distributed among groups and when overall levels of

disease were low. For emerging disease it was shown that the impact of mortality rates was
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qualitatively similar to the predictions of the non-spatial analysis. In the spatial model,

dispersal rate played a similar role to the non-spatial enhancement parameter k, whereas

the role of horizontal disease transmission is not directly comparable between the two

cases. In the spatial context, higher within-group transmission increased the size of the

perturbation effect, but even a small rate of between-group transmission reduced it. Anal-

ysis of the effective contact rate in the spatial model reveals that enhanced transmission

varied in time and this could be incorporated in future analysis of the non-spatial system.

Many authors have noted problems related to disease control via population reduction

in wildlife (Macdonald, 1995; Guberti et al., 1998; Artois et al., 2001; Donnelly et al., 2003;

Woodroffe et al., 2006a), including situations were disease risks are increased rather than

reduced (Carter et al., 2007; Vial & Donnelly, 2012). Individual behavioural (Swinton

et al., 1997; Gallagher & Clifton-Hadley, 2000; Tuyttens & Macdonald, 2000) and demo-

graphic (Smith et al., 2001b) responses to population reduction are thought to enhance

disease transmission in wildlife. The results of this chapter suggest that a wide range of

wildlife disease systems are sensitive to such effects. This is consistent with the marked

inefficiencies of population reduction as a disease control strategy observed to date. How-

ever, the effects studied here are likely to be even more widespread than current empirical

studies suggest as they undermine the efficacy of population reduction measures even in

situations where they do not lead to a complete reversal of its effectiveness.
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2.A Derivation and analysis of the deterministic non-spatial

model

2.A.1 Formulation of non-spatial deterministic model

A deterministic ordinary differential equation (ODE) that includes only the demographic

aspects and disease dynamics described for the non-spatial model in the text (see Methods)

is given by:

dS

dt
= rN(1−N/c)− dS − βSI

dI

dt
= −(d + e)I − βSI

The first equation represents the rate of change of the susceptible population in terms

of three processes: birth of susceptibles at rate rN(1 − N/c) (note all individuals are

assumed susceptible at birth since vertical and pseudo-vertical transmission are ignored);

death of susceptibles at rate dS and infection of susceptibles at rate βSI. Similarly, the

second equation represents the dynamics of the infected population which increases as

susceptibles become infected at rate βSI, and decreases as infectives die due to the effects

of the disease at rate eI and due to other causes at rate dI.

As described in the main text the effect of simple population reduction is modelled

by introducing an additional death rate p. Thus the death rates become (d + p)S and

(d + e + p)I for susceptibles and infectives respectively. To account for the impact of

changes in host susceptibility and behaviour induced by population reduction kp is added

to the horizontal disease transmission rate which therefore becomes (β + kp)SI. The

resulting equations,

dS

dt
= rN(1−N/c)− (d + p)S − (β + kp)SI

dI

dt
= −(d + e + p)I − (β + kp)SI

can be simplified by rescaling, leading to Eqn. 2.1 in the main text.

2.A.2 Disease free and endemic equilibria

Solving Eqn. 2.1 for biologically realistic steady states, where Ṡ = İ = 0, and S, I ≥ 0,

gives:

1. Population extinction, at S∗0 = 0, I∗0 = 0.
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2. The disease free equilibrium, at S∗DF = 1 − d − p, I∗DF = 0. S∗DF is often referred to

as K.

3. The endemic equilibrium, at

S∗ =
d + e + p

β + kp
,

I∗ =
1
2
(1− d− e− p)− d + e + p

β + kp
+

1
2

√
(1− d− e− p)2 + 4

d + e + p

β + kp
e

When e = 0, provided that d + p < 1 (i.e. where the population persists because the

birth rate, rescaled to 1, exceeds the combined mortality and removal rate), the endemic

equilibrium becomes

S∗ =
d + p

β + kp
, I∗ = 1− d− p− d + p

β + kp

When p = 0, the endemic equilibrium simplifies further to

S∗ = d/β, I∗ = 1− d− d/β

2.A.3 Disease stability

Equilibria are stable when the eigenvalues are all negative, unstable when they are all

positive, or a saddle node when some are positive and the rest are negative. The eigenvalues

of Eqn. 2.1 with e = 0 are examined for tractability. These are:

λ1 = 1− d− p− 2N, λ2 = (β + kp)(S − I)− d− p

Evaluating the eigenvalues for the endemic equilibrium gives:

λ1 = d + p− 1, λ2 = −(β + kp)(1− d− p) + d + p

Evaluating the eigenvalues for the disease free equilibrium gives:

λ1 = d + p− 1, λ2 = (β + kp)(1− d− p)− d− p

λ1 < 0 if d + p < 1 (required for non-extinction), therefore the endemic equilibrium is

stable, and the disease free equilibrium is a saddle node if λ2 < 0, which occurs when:

β >
d + p

1− d− p
− kp

otherwise the stabilities are reversed. For p = 0, this becomes β > d/(1− d).
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Assuming the disease is stable, it can only persist if I∗ > 0. If e ≥ 0, this is equivalent

to S∗ < S∗DF, which is an easier calculation. Therefore I∗ > 0 if

d + e + p

β + kp
< 1− d− p

Bounds under which the disease is stable can be obtained for each of the parameters

by rearranging the above inequality as follows:

d <
(1− p)(β + kp)− e− p

1 + β + kp
(2.6)

e < (β + kp)(1− d− p)− d− p

β >
d + e + p

1− d− p
− kp

k >
d + e + p

p(1− d− p)
− β

p

p <
1
2

(
1− d− 1 + β

k

)
+

1
2

√(
1− d− 1 + β

k

)2

− 4
d + e− (1− d)β

k

In the absence of population reduction, when p = 0 these become:

d <
β − e

1 + β

e < β − d− dβ

β >
d + e

1− d

2.A.4 Conditions for the deterministic perturbation effect Πeqm > 0

The size of the persistent PE is given by:

Πeqm(p) = max {I∗(p), 0} −max {I∗(0), 0}

Focussing on the algebraically tractable case without disease induced mortality, e = 0, and

on situations where disease is still present with culling, I∗(p) > 0, two cases are examined:

Case 1: I∗(0) ≥ 0, whence

Πeqm = Π1 = −p− d + p

β + kp
+

d

β

Case 2: I∗(0) ≤ 0, whence

Πeqm = Π2 = 1− d− p− d + p

β + kp
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Note that Π2 = S∗DF−S∗, and so for case 2, the values are exactly the same as for Eqns. 2.6

in Section 2.A.3. Also note that Π1 = Π2 when the stability changes, i.e. when I∗(0) = 0.

Next, look for conditions on the perturbation effect under Case 1, by solving Π1 > 0

for different parameters (conditions for Case 2 correspond to the bounds for stability given

by Eqns. 2.6).

• Natural mortality rate d. Rearranging Π1 > 0 for d obtains:

d > β(1 + β + kp)/k

• Infection rate β. Similarly:

β < −1
2
(1 + kp) +

1
2

√
(1 + kp)2 + 4dk

• Population reduction rate p. First, observe that if the number of infectives prior to

culling is greater than the total population size under persistent culling, then there

is no room for I to increase. Therefore

I∗(0) < N∗(p) (2.7)

⇒ p < d/β

However, rearranging Π1 > 0 gives:

0 < p <
d

β
− 1 + β

k
(2.8)

For which Eqn. 2.7 is the limit as k →∞.

• Behaviour change k. Look for conditions on the perturbation effect under both cases:

Case 1:

k > k1 =
β(1− β)
d− βp

Case 2:

k > k2 =
d + p− β(1− d− p)

p(1− d− p)

Note that k2 is the minimum k for which the disease is stable (i.e. population reduc-

tion stabilises the disease when k > k2). Also note that k1 = k2 when I∗(0) = 0.

This demonstrates that β is bounded below in order for the disease to persist, 0 <

I∗(p), however it also bounded above in order for the disease to increase with population

reduction, I∗(0) < I∗(p). If both of these bounds are satisfied, then 0 < I∗(0) < I∗(p)

(which gives Case 1). Note that this interval increases with k.
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2.B Transient perturbation effect

2.B.1 Analysis

While intermediate behaviour of I(t) prior to the disease reaching a new equilibrium can

only be solved numerically, both the long term and initial behaviour can be analysed

algebraically. Here the initial behaviour of Π(t; p) is examined by linearising the system,

and measuring the difference between İ(t; p) and İ(t; 0) at time t = 0. Substituting I(t)

from Eqn. 2.1 into Eqn. 2.3, and differentiating with respect to time gives

Π̇ = İ(p)− İ(0) = pI(kS − 1)

hence Π̇ > 0 if

k > kt = 1/S

Note that since S ∈ (0, 1), this requires that kt > 1, therefore the transient perturbation

effect does not occur in the absence of a change in behaviour.

It is immediately clear that the transient perturbation effect depends directly on, and

increases with, p and k, however it also depends on initial conditions S(0) and I(0), which

in turn depend on the remaining parameters. Intermediate behaviour must be found

numerically, but some further insight can be obtained by observing how Π̇(t) depends on

S(t) and I(t).

Substituting S = N−I into Π̇ gives a quadratic in I, which can be solved to show that

Π̇0 > 0 when I ∈ (0, N−1/k), and is maximised when S = N/2+1/2k and I = N/2−1/2k.

Therefore the transient perturbation effect increases fastest when S and I are near these

values (i.e. roughly equal), and larger k permits a greater range of I for which the transient

perturbation effect is possible.

2.B.2 Initial conditions

Endemic disease

First the case is examined where the disease is in the endemic equilibrium, {S∗, I∗} prior

to disease intervention. Substitute S(0) = S∗ into kt, to obtain kt = β/(d + e), therefore

the minimum behaviour change required for the perturbation effect is reduced when the

infection rate β is small and mortality rates d and e are large. Note that

kp =
β(1 + β)
d− pβ

>
β(1 + β)

d + e
>

β

d + e
= kt

which leaves kt < kp, so the transient perturbation effect occurs for smaller k than the

persistent perturbation effect.
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Emergent disease

If the disease is not in equilibrium prior to disease intervention, then another sensible

initial condition to examine is when the disease has been newly introduced, in which case

I(0) = ε where ε > 0 is small, and S(0) = 1−d− ε, in this case the transient perturbation

effect occurs if k > kt = 1/(1− d− ε), and so the minimum behaviour change required is

when I(0) is smallest, which agrees with the concept that the perturbation effect occurs

most readily in diseases with low prevalence (as it does in the persistent case).

2.B.3 Intermediate behaviour

Some insight into the intermediate behaviour can be obtained by noting that Π̇ is a

quadratic in I, maximal at I = N/2 − 1/2k, and negative for I > N − 1/k. This means

that the perturbation effect will begin slowly when I(0) is small, and then increase in rate

as I(t) passes through N(t)/2 − 1/2k. If I > N − 1/k, then Π̇ becomes negative, and Π

will decrease.

However, N∗(p) < N∗(0) (since population reduction reduces the population size N),

so the boundary N − 1/k will decrease with time. This means that Π(t) may increase for

larger I near the start of the cull when N is larger than it can later on when N is smaller.

If the boundary decreases below I, then Π̇ becomes negative, forcing Π to decrease until

it reaches the equilibrium value. Consequently it is possible for the disease to temporarily

increase above I∗(p), provided it happens early when the population has not yet been fully

reduced in size (this explains the temporary peak seen near the start of the perturbation

effect in Figs. 2.1b and 2.1a).

2.C Analysis and simulation of the perturbation effect in

the stochastic spatial model

2.C.1 Heterogeneity and the perturbation effect in the spatial model

First the importance of heterogeneity in the model is demonstrated. Consider a simple

two-site model, with density dependent dispersal between the two groups A and B. The

global infection rate, H, is

H = HA + HB = βw(SAIA + SBIB) + βb(SAIB + SBIA)
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Assuming disease induced mortality rate e = 0, then NA = NB = N , and the number of

infectives is IA + IB = I, this can be simplified to

H = constant + 2(βw − βb)(I − IA)IA

so when between-group infection rate βb is small, and βw > βb, H is maximised when the

infection is distributed evenly between sub-populations, and IA = IB. Conversely, H is

minimised when IA = 0 or IA = I (i.e. all infectives are restricted to one of the groups).

Considering fluctuating I, and differentiating global infection rate H with respect to

time obtains

Ḣ =βe(ṠA + ṠB) + βw(ṠAIA + SAİA + ṠBIB + SB İB)

+ βb(ṠAIB + SAİB + ṠBIA + SB İA)

While Ḣ is affected by all processes, including birth, death, infection and dispersal, if only

the effect of dispersal on Ḣ is examined by substituting only the relevant components

(ṠA = . . . + mSBf(N)−mSAf(N) etc.) then one obtains

Ḣdispersal = 2m(βw − βb)(IA − IB)2f(N)

Consequently, if βw > βb and IA 6= IB, then the effect of dispersal is to increase Ḣ, i.e.

horizontal disease transmission decreases due to heterogeneity, but increases as dispersal

equalises the population densities. This effect increases with m, but then the presence of

the density dependence function f(N) shows that it is greater for smaller N (e.g. as a

consequence of population reduction).

This demonstrates the importance of heterogeneity, and also of the density dependence

function f(Nj). Note that a large βb will lead to rapid spread between sites, quickly

spreading to all sub-populations, and reducing the heterogeneity in Ii.

2.C.2 Robustness of transient perturbation effect in the spatial model

The impact of varying certain mechanisms on the transient perturbation effect is examined;

in particular, the density dependent dispersal. In the main body the case was considered

where f(Nj) = 1 when Nj < αN∗
DF (where N∗

DF is the disease free equilibrium), and 0

otherwise.

The threshold parameter α = 0.7 was arbitrarily chosen, however Fig. 2.5 shows that

the transient perturbation effect occurs for a range of α that determines how sensitive the

rate of dispersal is to local reductions in the size of the population in the destination site.
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Figure 2.5: The difference in proportion of sub-populations containing infectives, Πsites, at

t = 20 starting near the disease free equilibrium. This is similar to Fig. 2.4, but for the

parameter α.

Another, more linear, density dependent dispersal function, f(Nj) = 1 − Nj/c, was

also explored. For this function, dispersal rates prior to population reduction tended to

be much greater, and consequently the perturbation effect was much weaker (although

still present); the strongest perturbation effect tended to occur when the disease free

equilibrium, N∗
DF, was close to the carrying capacity c (i.e. when d is small), giving the

greatest potential for increase in dispersal rates. Results (not shown), while weaker, were

broadly similar to those found with the step function for density dependence function.

2.C.3 Persistent perturbation effect in the spatial model

It is important to demonstrate that the persistent perturbation effect still occurs in the

spatial model, however this requires that the equilibrium value P ∗
I remains between 0 and

1 (ideally near 0.5). In addition, PI(t) should be allowed to fluctuate freely, with an non-

negligible chance of the disease becoming extinct within any individual sub-population,

and of the disease transferring to neighbouring disease free groups; thus, from any set of

initial conditions, the system should reach equilibrium within a reasonable time period.

Only a very narrow parameter range allows for this situation, while still allowing the

perturbation effect to occur.

A set of parameters that allowed the perturbation effect to occur, while still allowing

PI(t) to fluctuate freely and that PI(t) → P ∗
I ∈ (0, 1) in a reasonable time period are:

c = 20, r = 1, d = 0.08, e = 0.46, m = 0.1, α = 0.7, βw = 0.8, βb = 0. See Fig. 2.6 for

results.
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(c) Distribution of I across sites at 3 differ-

ent times
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(d) Effective rates for disease transmission

vs population reduction coverage p1

Figure 2.6: The persistent case in the spatial model. Parameters are: c = 20, r = 1, d = 0.08,

e = 0.46, m = 0.1, α = 0.7, βw = 0.8, βb = 0, p1 = 0.2, p2 = 1.0. These parameters were

chosen to provide a stable equilibrium, where PI(t) fluctuates, but remains between 0 and

1, and the perturbation effect still occurs. The system is given 2000 years to stabilise, then

population reduction is applied for 2000 years, during which a new equilibrium appears to

be reached. Afterwards, the system eventually returns to the original equilibrium.
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Chapter 3

Accounting for behavioural

responses to population reduction

when planning disease control

strategies
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3.1 Background

Population reduction is often used to control disease in wildlife populations, especially

when those populations act as a reservoir for livestock disease (Wobeser, 1994). How-

ever, in some disease systems, such as rabies and foxes (Vulpes vulpes), classical swine

fever (CSF) and wild boar (Sus scrofa), or bovine tuberculosis (bTB) and badgers (Meles

meles), it can be ineffective, or even detrimental to disease control (Blancou et al., 1991;

Guberti et al., 1998; Artois et al., 2001). Increases in disease levels following population

reduction are often referred to as the “perturbation effect”, since they are often a result

of social perturbation (Carter et al., 2007).

The perturbation effect occurs when increases in disease transmission are greater than

the decrease expected due to a reduced number of susceptible or infective hosts. This

may be due to changes in behaviour that increase contact rates or susceptibility levels, or

because the population structure changes in such a way that disease transmission occurs

more readily (e.g. due to increased movement in structured populations).

The most well documented case of the perturbation effect is the Randomised Badger

Culling Trail (RBCT), which investigated the effects of culling on badgers to reduce bTB

(Independent Scientific Group, 2007). In the RBCT, two different population reduction

strategies — proactive and reactive culling — were implemented and compared to a survey-

only experimental control. It was found that reactive culling increased disease incidence

in cattle populations (Donnelly et al., 2003) and increased disease prevalence in badgers

Woodroffe et al. (2006b) in the target area, while proactive culling decreased disease in

the target area, but increased disease in surrounding areas (Donnelly et al., 2006). These

influences of population reduction extended beyond the culling period, with increased

disease prevalence in the following year (Donnelly et al., 2007).

An important mechanism in disease transmission is dispersal, as it is at least partially

responsible for geographic spread of disease. Dispersal is the movement of individuals

between social groups, in search of new resources and mating opportunities. The rate of

dispersal may typically depend on the density of the target population (Johst & Brandl,

1997; Bowler & Benton, 2005), in which case culling can lead to an increase in dispersal

into targeted sites from neighbouring areas, a phenomenon called the “vacuum effect”

(Carter et al., 2007). The vacuum effect has been implicated in several disease systems

where culling failed to control the disease, including the RBCT (Carter et al., 2007), due

to increased disease transmission as a result of movement of infectives.
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In Chapter 2, it was demonstrated that dispersal can lead to a perturbation effect if

disease prevalence is spatially heterogeneous, disease spread between groups is mainly by

dispersal of infectives, and if dispersal is considerably limited by density dependence when

the population is near equilibrium density. Under non-selective culling regimes, low levels

of culling, sufficient to increase dispersal rates but not remove disease from targeted sites,

led to increased disease prevalence as dispersal introduced the disease into previously näıve

groups. More severe culling was necessary to reduce overall disease levels.

It is therefore important to consider the culling strategy used, in order to maximise

disease control, and limit disease spread. Culling can be varied spatially, by choosing

the number and location of sites to target and by choosing the intensity of culling within

targeted sites. It can also be varied temporally, by choosing the duration of the culling

period, and time between culling events, and the scheduling of which sites are targeted

within a spatial design.

In this chapter, a spatial stochastic susceptible-infective SI model of demography and

disease dynamics is used to explore various population reduction strategies, when the

host-disease system is susceptible to the perturbation effect. Heterogeneity and intensity

of culling are examined to show the influence of spatial design. The influence of culling

outside the targeted areas is examined to explore results observed in the RBCT. Finally,

scheduling and duration of culling is examined, to show the influence of temporal design.

3.2 Methods

3.2.1 Demography and epidemiology

Consider a disease system within an SI framework, prone to the perturbation effect as a

result of density dependent dispersal (see Chapter 2). Hosts are either susceptible to the

disease (S), or infected (I), without the possibility of recovery.

The population is divided into multiple sub-populations, each subject to logistic growth

as a consequence of density dependent birth at intrinsic rate r, with carrying capacity c,

and natural mortality at rate d (i.e mortality for any reason other than disease or as

a consequence of population reduction). The total population size within each group

is N = S + I, and the competing effects of birth and death give rise to an equilibrium

population size in the non-spatial deterministic system of NDF.

Each sub-population is connected with neighbouring groups via dispersal (e.g. for bet-

ter resource or mating opportunities, or for inbreeding avoidance) at intrinsic rate m. The
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population is assumed to be bordered in such a way that dispersal does not extend be-

yond the edges of the population, and all attempts automatically fail (hence movement is

proportionately less at the boundaries, although this is not expected to significantly affect

results).

Dispersal is dependent on the density of the target group, and entry is only possible

into a group that is below a certain threshold proportion α of the disease free equilibrium

size. The density dependence function that gives this behaviour is

f(Nj) =


1 if Nj < αN∗

DF

0 if Nj ≥ αN∗
DF

where Nj is the size of the neighbouring group, and N∗
DF is the disease free equilibrium.

If α is large (roughly α ≥ 1), then movement is effectively unlimited, and dispersal is

not-density dependent, and so there is no mechanism leading to the perturbation effect as

shown in Chapter 2. The results of density and non-density dependent dispersal will be

compared by examining both, but adjusting the intrinsic dispersal rate m so that effective

dispersal rates are similar in both cases.

Disease transmission is density dependent within groups, and occurs at rate H = βSI,

where β is the horizontal transmission coefficient. The possibility of direct transmission

between groups is ignored, as that is largely a barrier to the perturbation effect via dispersal

(see Chapter 2). In Chapter 2 it was shown that the impact of disease induced mortality

did not qualitatively change the properties of the perturbation effect, therefore it is not

considered here, although it is acknowledged that it may be useful to consider it due to

its influence on population size.

In Chapter 2, it was shown that the perturbation effect is more likely in an emerging

disease when infection is spatially heterogeneous, with little to no direct between-group

disease transmission, but high within-group transmission, low mortality rates, and high

intrinsic dispersal severely limited by density dependence. This chapter examines design

of population reduction strategies in a system that has such characteristics and is thus

prone to the perturbation effect when subjected to culling.

Throughout this chapter, a set of parameters (see Table 3.2) are used such that the

perturbation effect is likely to occur.
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Event Rate δSi δIi δSj δIj

Birth of Si rNi(1−Ni/c)δt +1 0 0 0

Death of Si (d + p2)Siδt −1 0 0 0

Death of Ii (d + e + p2)Iiδt 0 −1 0 0

Infection of Si Hiδt −1 +1 0 0

Dispersal of Si to site j mzSif(Nj)δt −1 0 +1 0

Dispersal of Ii to site j mzIif(Nj)δt 0 −1 0 +1

Table 3.1: Event rates during time interval (t, δt) and corresponding effects in the spatial

stochastic SI model. Sites are indexed by i, and neighbouring sites are indexed by j. z is

the reciprocal of the number of neighbouring sites, and is used to normalise dispersal rates

at boundaries.

3.2.2 Structure of the spatial stochastic model

The model is implemented within a spatial SI framework. Spatial structure is represented

by a 20 × 20 lattice of sites, each indexed by i and containing time dependent integer

variables Si(t) and Ii(t), representing the number of susceptibles and infectives in each

group. Each group is subject to demography and epidemiology described above.

Stochasticity can have important effects on disease spread, especially in small popu-

lations; it introduces heterogeneities, which can be significant when disease transmission

is non-linear, and it increases the chance of disease extinction due to stochastic fade-out.

A discrete Markov process with exponentially distributed waiting time between events

is used to reflect stochasticity in the model, and is simulated using Gillespie’s algorithm

(Keeling & Rohani, 2007). Events and their corresponding rates are shown in Table 3.1.

3.2.3 Measuring the perturbation effect

The size of the perturbation effect is defined as

Π(t; p) = I(t; p)− I(t; 0) (3.1)

where p is the rate of population reduction, and t is the time. A similar measure, based

on the proportion of sites containing infectives PI(t), is

Πsites(t; p) = PI(t; p)− PI(t; 0) (3.2)
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Parameter Symbol Value Units

Intrinsic reproduction rate r 1 year−1

Carrying capacity c 20 —

Natural mortality rate d 0.01 year−1

Horizontal transmission rate

environmental βe 0 year−1

within groups βw 0.5 year−1

between groups βb 0 year−1

Intrinsic dispersal rate m 0.1 year−1

threshold value α 0.7 —

Population reduction rate p 0.1 year−1

coverage p1 0.2 —

within-site removal rate p2 1.0 year−1

within-site removal probability p2 0.5 —

Table 3.2: Summary of parameters, symbols, and default values used.

Πsites is useful because it reflects the geographical spread of disease, which fluctuates less

rapidly than the number of individuals within sites during culling, especially following ces-

sation of intervention: an increase in PI is typically a precursor to an increase in the global

number of infectives when the sub-populations return to equilibrium (see Chapter 2).

Analysis here focuses only on the transient perturbation effect, not the persistent case,

as the long term equilibrium is PI = 1 unless culling is sufficiently severe to remove the

disease, and therefore the increase in disease associated with population reduction is only

temporary. Culling begins 5 years after the model is started, giving sufficient time for

sub-populations to stabilise, and the population is measured at time t = 20 following the

start of culling.

Two other measurements that are useful are the effective dispersal and transmission

rates, as these provide insight into the mechanisms leading to the perturbation effect (see

Chapter 2). The effective dispersal rate is the average per-capita dispersal rate across all

sites, and is indicative of the total level of dispersal occurring within the population. The

effective transmission rate is given by

βeff =
∑

i Hi∑
i Si

∑
j Ij

which indicates the force of infection within the total population, or the average risk of
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infection to each susceptible. It is also the effective contact rate if the disease dynamics

were modelled assuming complete mixing. In Chapter 2, it was shown that while βeff is

expected to increase with PI (since more susceptibles are exposed to infection), it was

also elevated during population reduction and returned to expected values after culling

stopped. A high βeff during population reduction demonstrates higher than expected

disease transmission, and is therefore indicative of the perturbation effect, which may not

be obvious if Π < 0 or Πsites < 0.

3.2.4 Implementation of population reduction strategies

There is considerable flexibility in the design of population reduction schemes within the

spatially explicit model described above.

Spatial design

Since the population is arranged into a lattice of sub-populations, culling may be applied

to any subset of the lattice, and at any level of intensity within those groups. Two main

parameters describe population reduction:

1. Coverage p1 ∈ [0, 1], which is the proportion of groups in which culling takes place.

2. Within-site removal intensity p2, which determines the rate or probability that in-

dividuals are removed from a group.

In the first designs explored here, the coverage is obtained by randomly selecting groups

to target until the desired proportion is achieved. The within-site removal is the same

throughout the targeted groups, and so the overall culling rate is p = p1×p2. Within such

a design it is possible to obtain the same overall culling rate for different combinations of

p1 and p2 by keeping p fixed and choosing p1 = p/p2 (e.g. culling is homogeneous when

p1 = 1.0, p2 = 0.2, or more heterogeneous when p1 = 0.2, p2 = 1.0, but both strategies

have the same overall rate of p = 0.2). Therefore, assuming the effort and cost required

depends only on p, it is possible to evaluate the results of different strategies for any given

level of resources (overall culling rate).

Temporal design

First it is assumed that individuals are removed continuously by increasing the natural

mortality rate in targeted sites from d → d + p2. When the coverage is incomplete (i.e.

p1 < 1), and not a fixed area, then the targeted sites must be randomly chosen. After a
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period of time, a switch event is triggered, the mortality rates in targeted sites are returned

to normal, and a new set of sites are targeted. The time between such events is referred

to here as the “switch time”. By default the switch time is one year, but the effect of

changing the switch time is also examined.

Instead of such continuous culling, it is possible that culling is a single discrete event,

in which individuals are randomly removed with probability p2 — thus the total number

removed from site i is binomially distributed (with parameters Ni and p2). For discrete

culling, the switch time is the time between culling events, during which mortality rates

remain at the normal level d.

It is important to note that rates and probabilities do not directly correspond, since

a removal rate is p2 ∈ [0,∞), while a removal probability is p2 ∈ [0, 1]. In some cir-

cumstances it is possible to translate directly between probabilities P and rates R using

R = − ln (1− P )/t and P = 1 − exp (−Rt). For example, an individual exposed to a

removal rate of p2 = 1.0/yr for one year would correspond to removal probability of

p2 = 0.63. Similarly, a removal probability of p2 = 1 corresponds to instantaneous re-

moval of all individuals, i.e. an infinite instantaneous rate of p2.

Non-selective culling

When disease status can be readily identified, it may be preferable to remove only diseased

individuals, while leaving susceptible or resistant ones, however this is often difficult to

achieve, and is not considered here. In this chapter, it is assumed that all culling is non-

selective (i.e. each individual in a targeted site has the same increased mortality rate or

chance of immediate removal, regardless of disease status), however the case of selective

culling is discussed in more detail in Chapter 4.

3.3 Results

3.3.1 Coverage and within sites removal

The effects of varying coverage p1 and within-site removal rate p2 are shown in Figure 3.1.

The proportion of infective sites, Πsites, is maximised (reflecting the worst outcome from

culling) for intermediate values of p1 and p2, and appears to roughly follow the contour

p = p1 × p2 such that p is constant (see Fig. 3.1a, and also below). Culling rates need to

be quite high (around p > 0.6, and both p1 and p2 large) before Πsites is reduced below

zero, so intensive culling is necessary to reduce disease levels in the system studied here.
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Figure 3.1: Effect of coverage p1 and within-site removal rate p2, at time t = 20, starting

near the disease free equilibrium. Fig. 3.1a shows Πsites, Fig. 3.1b shows Π, Fig. 3.1c shows

effective dispersal, and Fig. 3.1c shows effective horizontal transmission βeff. All other

parameters are as given in Table 3.2. The maximum increase in disease spread is strongly

dependent on p2, but tends to occur for intermediate values of p1 × p2.
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The change in the global number of infectives, Π, also appears to reflect the contour

of constant p, however it becomes negative for smaller p than Πsites (see Fig. 3.1b). This

is potentially misleading, because this is a snapshot of one particular point in time during

the cull, and the number of infectives is likely to increase when culling stops, reflecting the

increase in PI . Of note is that the effective horizontal transmission rate βeff is maximised

for high within-sites removal p2, but intermediate coverage p1, suggesting that the force

of infection may be less affected than the other quantities, but more strongly affected by

the culling heterogeneity.

3.3.2 Culling heterogeneity

In Fig. 3.1a, the increase in geographical spread of the disease Πsites appears to follow the

contour for constant p1 × p2, suggesting that the overall culling rate p is more important

than the culling heterogeneity, however this is examined in more detail now. In Fig. 3.2,

Πsites is shown for a range of overall efforts p = 0.1 to p = 0.5, while coverage p1 and

within-sites removal p2 are varied simultaneously such that p1 × p2 = p. Homogeneous

culling is given by p1 = 1, p2 = p, while highly heterogeneous culling is given by p1 = p/5,

p2 = 5.

For small p, the perturbation effect is minimised when culling is homogeneous, but is

maximised by a small level of heterogeneity (e.g. for p = 0.2, the perturbation effect is

maximised when p1 = 0.2, p2 = 1). This intermediate maximum occurs because of the

trade off induced by increasing p2, which reduces the sub-population sizes, and increasing

dispersal due to density dependence (increasing the perturbation effect around those sites),

and the lower p1, which results in fewer sites contributing to the perturbation effect.

Fig. 3.3 illustrates in more detail how the perturbation effect is influenced by hetero-

geneity in the culling regime. Four subfigures show the temporal evolution of quantities

describing key processes involved in the perturbation effect. Effective dispersal rates in-

crease soon after culling begins, leading to increased βeff as the disease is introduced into

new sites. Both fall rapidly after culling ceases, although effective β remains slightly el-

evated due to the greater number of sites containing infectives. For low heterogeneity

(p1 = 0.5, p2 = 0.4) the dispersal rates are maximised, leading to the greatest disease

spread. For high heterogeneity, dispersal rates remain low, as although targeted sites are

more likely to allow movement, there are fewer of them, and so disease spreads much

more slowly between groups. Note that following movement, there is an initial increase

in disease transmission, as culling ceases suppressing disease transmission within groups,
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(c) Effective dispersal
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(d) Effective horizontal transmission, βeff

Figure 3.2: Varying heterogeneity by varying within-site culling rate p2, while simultaneously

varying p1 such that the total culling rate p = p1 × p2 is constant. All other parameters

are as given in Table 3.2. See Fig. 3.3 for further details for p = 0.2
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leading to a rapid increase in the number of infectives in infected sites.
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(a) Homogeneous culling: p1 = 1, p2 = 0.2
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(b) Low levels of heterogeneity: p1 = 0.5,

p2 = 0.4
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(c) Intermediate heterogeneity: p1 = 0.2,

p2 = 1.0

�

���

���

���

���

���

���

���

��	

��


�� � � �� �� �� �� �� ��

����

����

(d) Highly heterogeneous culling: p1 = 0.02,

p2 = 5.0

Figure 3.3: Time trajectories, showing how increasing levels of heterogeneity in culling (keep-

ing p1×p2 fixed at p = 0.2) affects key processes that determine or govern the perturbation

effect. Effective dispersal rate (cyan, scaled by 0.2), effective disease transmission rate βeff

(red), and proportion of infected sites PI (green) are shown versus time for particular levels

of heterogeneity. All other parameters are as given in Table 3.2.

When dispersal is not density dependent, then Πsites < 0 for all values of p > 0,

although its level is still dependent on the heterogeneity (see Appendix), suggesting that

heterogeneity may still be an important factor in disease control even in the absence of

the perturbation effect.

3.3.3 Switch time

Fig. 3.4 shows the effects of varying the time that a selected subset of groups are subjected

to culling before a new subset are chosen. Figs. 3.4a and 3.4b show the results of continuous

and discrete culling respectively. For discrete culling, the culling probability p2 is varied
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such that it is proportional to the switch interval (i.e. if the time between switches is

halved, so is the culling intensity, so the average culling rate is effectively constant). Note

that discrete culling is bounded by p2 ≤ 1, limiting the switch time possible. However,

continuous culling is not bounded, and so higher switch times are shown.
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(b) Discrete culling

Figure 3.4: The size of the perturbation effect, Πsites, at t = 20, for varying switch interval. In

Fig. 3.4a, culling occurs continuously with within-site culling rate p2 = 1.0. In Fig. 3.4b,

culling occurs discretely with within-site culling probability p2 = 0.5× switch interval.

Coverage p1 = 0.2 in both cases. All other parameters are as given in Table 3.2.

The maximum perturbation effect occurs when the interval is approximately 1 year in

duration (0.6 for continuous, 1.3 for discrete culling), indicating that an annual cull may

be the worst strategy for this parameter set. For shorter intervals, the perturbation effect

reduces (more sharply for continuous culling) as sub-population sizes are not sufficiently

reduced to permit increased dispersal; for longer intervals, after the peak increase the

perturbation effect reduces more slowly as there are fewer sites available to encourage

dispersal, despite targeted sites having smaller sub-population sizes. Of particular interest

is that the minimum perturbation effect for continuous culling occurs when the switch time

is high, but for discrete culling when the switch time is low.

3.3.4 The boundary of the cull

In the RBCT, proactive culling reduced bTB incidence within the target area, but this

was more than matched by increased incidence in the surrounding areas (Donnelly et al.,

2007). To examine this effect, severe culling (matching proactive culling) is applied to a

core area, and disease levels are examined in the core and surrounding areas.

In a 20× 20 lattice, the middle 10× 10 core was subjected to intensive culling (p1 = 1,

p2 = 0.8). Fig. 3.5 shows the proportion of sites containing infectives PI , in four areas:
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the core, the boundary areas immediately surrounding the core, and the peripheral areas

(see Fig. 3.5a).
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(b) I(t), m = 0.1
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(c) I(t), m = 0.5
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(d) I(t), m = 1.0

Figure 3.5: Culling performed on a 10×10 core within the 20×20 lattice, and PI is shown for

sites in the core, sites in the boundaries surrounding the core, and the remaining peripheral

sites. Culling is p1 = 1, p2 = 0.8 within core, whereas p1 = p2 = 0 outside. All other

parameters are as given in Table 3.2.

For low intrinsic dispersal rate m = 0.1 (see Fig. 3.5b), there is very little movement

across the border, as local compensatory population growth is a greater contributing factor

in replacing individuals that dispersed into the low population density core. For larger

m = 0.5 (see Fig. 3.5c), the dispersal rate is sufficiently high that it significantly surpasses

rates of compensatory growth, allowing dispersal in from the outer sites; this increases the

chance of introducing infectives into disease free boundary groups. However, there is still

little movement across the outer boundary. When culling ceases in the core, the disease

levels quickly increase due to the flow of infectives from the boundary. This flow continues

for a few years until the population levels recover sufficiently to prevent further dispersal.

For m = 1, dispersal leads to movement across both inner and outer boundaries, leading
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to an increase in disease in both areas.
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Figure 3.6: The size of the perturbation effect, Πsites, at t = 20 in the core and surrounding

regions, for varying intrinsic dispersal rate m. As m increases, regions further from the

culled area become increasingly susceptible to the perturbation effect. Culling is p1 = 1,

p2 = 0.8 within core, whereas p1 = p2 = 0 outside. All other parameters are as given in

Table 3.2.

3.4 Discussion

3.4.1 Culling heterogeneity

It has been demonstrated that the perturbation effect can vary with the heterogeneity

of the culling regime, and it is clear that such heterogeneity can have an impact on the

perturbation effect whenever density dependent dispersal is a causative mechanism. Even

in disease systems where the perturbation effect only partially interferes with population

reduction (reducing culling efficacy but not leading to an increase in disease), culling

strategies could usefully take the results into account. It is also important that any culling

strategies are well coordinated across an entire area, and not left to individuals in charge

of small areas to devise independently.
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In comparing the results with density dependent dispersal (see Fig. 3.1) and without

(see Fig. 3.7 in Appendix 3.A), it is interesting to note that homogeneous culling seems

most effective at removing disease when there is a perturbation effect, but heterogeneous

culling when there is not. This may be because heterogeneous culling reduces the total

population size by a greater amount, as individual sub-populations may be completely

removed and take time to recolonise and return to equilibrium, which is less likely with

homogeneous culling. The reduced population size is expected to have greater impact on

disease control when demographic responses do not lead to enhanced transmission.

When comparing the effect of varying the interval between selecting a new subset of

groups in which to apply culling, the perturbation effect was maximised for a switch time

of about 1 year when culling was applied continuously, and about 1.5 years when culling

was applied discretely (see Fig. 3.4). With a longer switch time targeted sites are culled

more intensively (increasing the chance of allowing immigration), but fewer sites receive

treatment (thus fewer opportunities for the disease to spread to new sites). Also, the

disease is less likely to persist in heavily culled sites. Hence, there is a trade-off, leading

to a maximum perturbation effect. In contrast, the perturbation effect was minimised for

continuous culling when the switch time was high, but for discrete culling when the switch

time was low.

3.4.2 Effects in the boundary

Previous results assumed that culling took place across the entire population, and had

no influence beyond the population boundaries. Limiting the cull to a core area entirely

contained within the population allowed examination of the dynamics outside the culled

area.

One of the results observed in the RBCT was increased badger ranging behaviour

observed up to 2 km beyond the boundary of the target area in proactive culling (Donnelly

et al., 2006). Similar results are observed here: if the increase in movement is sufficiently

high, then the perturbation effect occurs in the areas bordering the culled inner core (see

Fig. 3.5). As the dispersal rate increases, so does the distance from the inner core where

the perturbation effect occurs (see Fig. 3.6). Depending on how far the perturbation

effect extends from the boundaries of the core, a very large area of proactive culling may

be required in order to cause an overall reduction in disease, and it may not be desirable

to conduct proactive culling in small areas.
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The proportion of badgers captured close to the culling boundary increased on succes-

sive culls due to immigration from surrounding areas (Woodroffe et al., 2008). When the

dispersal rate was sufficiently high, disease levels within the core area increased, indicat-

ing immigration from outside the boundary since these levels were sufficiently severe to

remove the disease if movement beyond the boundary was not possible (as in Fig. 3.1a).

The entry of infectives from the border is sufficient not only to maintain the disease, but

also to ensure that it spreads to more sites within the core.

This infers that without barriers preventing dispersal into an area, culling may be un-

able to remove the disease without removing the population entirely, which would be an

obstruction to disease control if conservation of the host species is an important consider-

ation.

In conclusion, this work demonstrates the importance of the role of heterogeneity in

culling strategies, both spatially and temporally, which must be considered when density

dependent processes lead to enhanced disease transmission. Effort may be better spent by

re-examining the culling strategies. Also, it is important to remain aware that the effects

of population reduction may extend beyond the culling area, causing undesired effects in

neighbouring areas.
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3.A Non-density dependent dispersal

No increase in disease was found for any set of parameters when dispersal did not include

density dependence, however the perturbation effect is not limited to increases in disease,

but also includes failure to achieve expected levels of decrease. Since density dependence

considerably reduces realised dispersal rates, intrinsic dispersal rate m is set much lower

for non-density dependent dispersal, in order to compare similar average realised dispersal

rates.

Fig. 3.7 shows movement in the core, analogous to Fig. 3.1. The maximum values of

Πsites, Π, and effective dispersal rates occur when no culling takes place, indicating that

culling does decrease disease. However, the effective horizontal transmission is maximised

for intermediate coverage and high within-sites removal, as it is for density dependent

dispersal.

Fig. 3.8 shows movement in the core, analogous to Fig. 3.6. The increase in dispersal

has very little effect outside the core, as movement rates are not affected by the change in

sub-population sizes.

Fig. 3.9 is analogous to Fig. 3.4. In both cases, the disease is most strongly reduced

by a long switch time, but more so with discrete culling.

3.B Maintaining consistency between rates and probabili-

ties

When single events remove multiple individuals, each individual is removed with a prob-

ability p2 ∈ [0, 1]. However, when population reduction is implemented continuously,

individuals are now removed at a rate p2 ∈ [0,∞), and so the probability does not map

simply into the rate. Discrete probabilities P over a time interval t can be converted into

continuous rates R via

R = − ln(1− P )/t

however with logistic growth this is more complex, and may require manual tuning.

Removal rates can be compared when the population reaches equilibrium during sus-

tained culling, i.e. N(t) → N∗(p). Unfortunately, N∗(p) is a static value for continuous

culling, but a periodic value for discrete culling. A static value can be approximated by

sampling the population at multiple times throughout the year, and using the mean, i.e.

N∗(p) ≈ 1
T

∫ T

0
N(t; p)dt
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Figure 3.7: Coverage p1 versus within-site removal rate p2, at time t = 20, starting near the

disease free equilibrium. All other parameters are as given in Table 3.2. Culling does not

increase disease, however there is an increase in effective transmission rate for p1 ≈ 0.5 and

large p2.
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Figure 3.8: The size of the perturbation effect, Πsites, at t = 20 in the core and surrounding

regions, for varying intrinsic dispersal rate m. As m increases, regions further from the

culled area become increasingly susceptible to the perturbation effect. Culling within core

is: p1 = 1, p2 = 0.8, and outside: p1 = p2 = 0, all other parameters are as given in

Table 3.2.
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(b) Discrete culling

Figure 3.9: The size of the perturbation effect, Πsites, at t = 20, for varying switch inter-

val, with non-density dependent dispersal. In Fig. 3.4a, culling occurs continuously with

within-site culling rate p2 = 1.0. In Fig. 3.4b, culling occurs discretely with within-site

culling probability p2 = 0.5× switch interval. Coverage p1 = 0.2 in both cases. All other

parameters are as given in Table 3.2.

76



With coverage p1 = 0.5, removal probability of p2 = 0.5 was most closely approximated

by a removal rate p2 = 0.75 for r = 1, and p2 = 1.0 for r = 5. Table 3.3 provides a complete

list of rates for both r = 1 and r = 5.

Discrete Predicted Continuous r = 1 Continuous r = 5

0.0 0.00 0.00 0.00

0.1 0.11 0.11 0.12

0.2 0.22 0.23 0.27

0.3 0.36 0.37 0.43

0.4 0.51 0.53 0.61

0.5 0.69 0.71 0.82

0.6 0.92 0.94 1.07

0.7 1.20 1.22 1.39

0.8 1.61 1.60 1.90

0.9 2.30 2.00 2.85

1.0 ∞ 5.00 5.30

Table 3.3: Conversion between discrete culling probability and continuous culling annual

rate p2. Given probability P , the predicted rate R is R = − ln(1− P ), which is very close

for r = 1, but less so for r = 5.
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Chapter 4

Non-spatial processes and the

impact of unintentional selective

population reduction
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4.1 Background

4.1.1 Selective population reduction

Population reduction (e.g. culling) is often used as a disease control method, when dealing

with wildlife diseases affecting livestock, however the aim is usually not eradication, but to

maintain population numbers below a certain threshold where the disease can no longer

spread fast enough to persist (Kermack & McKendrick, 1927; Wobeser, 1994). Where

conservation of the host species is important, there is a clear benefit to being able to

remove only individuals infected with the disease, and retain those that are susceptible

or resistant (Carter et al., 2009). This may be particularly useful when a small part of

the population contributes disproportionately to disease transmission (Woolhouse et al.,

1997; Lloyd-Smith et al., 2005a).

Selective culling methods (e.g. test and slaughter) have achieved some success in the

control of chronic infections that spread slowly through populations such as bovine tuber-

culosis (bTB) and brucellosis, especially in ungulates that tend to form large aggregations

(Tweddle & Livingstone, 1994; Cross, 2005; Carter et al., 2009). A test and slaughter

strategy was used to significantly reduce the prevalence of bTB in buffalo herds in Hluh-

luwe Umfolozi National Park, South Africa (Michel et al., 2006), and has been used in the

control of Foot and Mouth disease in cattle in the UK.

However, test and slaughter may be complicated by difficulty detecting infectives, e.g.

the ELISA test for Bovine TB in cattle only has 41% sensitivity (Smith et al., 2001b),

which means a high chance of giving a false negative, and so repeated testing is necessary

to ensure disease free status. Even in cases where the infectives can be readily identified

however, population reduction does not guarantee successful removal of the disease, e.g.

the Tasmanian Devil (Sarcophilus harrisii) and Tasmanian Devil facial tumour disease.

Models suggest that despite being very trappable and infectives easily identified, culling

alone is insufficient to prevent extinction of the species (Beeton & McCallum, 2011), as

the lengthy latent period means that the disease may not have been removed from the

population even if all individuals expressing symptoms are culled, and frequency dependent

transmission prevents a population threshold for which the disease will not be able to

spread fast enough to persist (McCallum et al., 2001).

In some cases, it is possible that population reduction could fail to target certain groups

(Clutton-Brock & Lonergan, 1994; Smith, 1995a). For example, trappability may vary

between different age groups (Tuyttens et al., 1999), infective individuals might display
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non-standard behaviour, and thus avoid capture (Coltherd et al., 2010), or poisoning may

select for the stronger susceptible individuals who are able to control access to the food

stores (Hammond & Anthony, 2006). Hunting may also preferentially target the larger,

older animals, who are most resistant to a particular disease (Guberti et al., 1998; Rossi

et al., 2005b; Choisy & Rohani, 2006). In these circumstances, population reduction that

is unintentionally selective may produce unexpected and unwanted results, i.e. an increase

in disease.

In a host-disease system, there are three ways that the number of infectives can in-

crease:

1. An infective from a neighbouring sub-population enters a group via dispersal.

2. A susceptible individual is infected via horizontal transmission (either from another

infective, possibly of a different species, or via some intermediate vector).

3. An infective individual gives birth to infective offspring via vertical transmission, or

transmits the disease soon after birth (pseudo-vertical transmission).

The first case (discussed in detail in Chapter 2), results in a local increase in disease,

with a corresponding decrease elsewhere. However, the rearrangement of infection can

lead to an increase in the horizontal disease transmission rate due to increased contact

rates between susceptibles and infectives (e.g. by introducing an infective into a group of

susceptibles). Increasing the rate of dispersal (e.g. due to the vacuum effect) may be an

important mechanic responsible for the perturbation effect.

In this chapter, the consequences are considered of unintentionally applying selective

population reduction, and its interaction with other processes, in order to show how other

mechanisms may cause the perturbation effect. In particular, the roles of compensatory

reproduction, vertical or pseudo-vertical transmission, and disease resistance are examined.

4.1.2 Vertical or pseudo-vertical transmission

In some host-disease systems, the disease is able to transmit to offspring before or around

birth, which can have a significant effect on the stability of a disease (Judge et al., 2007).

Vertical or pseudo-vertical transmission is a common feature of many wildlife diseases,

including badgers (Meles meles) and bTB (Anderson et al., 1981; Bentil & Murray, 1993),

wild boar (Sus scrofa) and CSF (Artois et al., 2002), and foxes (Vulpes vulpes) and rabies

(Bacon, 1985).
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In disease systems driven mostly by vertical transmission, this tends to result in rela-

tively low virulence compared to diseases that are driven mostly by horizontal transmis-

sion, as host fitness and fecundity must be maintained in order to ensure transmission to

the next generation (Stewart et al., 2005). Consequently, if fecundity in infectives is not

reduced, compensatory reproduction could lead to an increase in the infective birth rate,

potentially leading to an overall increase in disease levels.

4.1.3 Disease resistance

Thus far, two categories of individual have been considered: susceptible and infective.

However, in many disease systems individuals may recover and gain immunity to the dis-

ease; in this case a third category may also be considered: resistant. A large resistant

population depletes the number of susceptible individuals without disrupting the social

hierarchy, and reduces the horizontal transmission rate, thus reducing the infective popu-

lation.

Vaccination is a frequently used technique to increase the number of resistant individ-

uals, and apart from preventing new infections, sufficient coverage may help to provide

herd immunity to the population (Fine, 1993). Given the basic reproduction ratio R0, it

can be shown that if a proportion 1− 1/R0 of the population is resistant, then the disease

should not be able to invade (Kermack & McKendrick, 1927).

However, if these resistant individuals are disproportionately removed by population

reduction, then compensatory reproduction should increase the population size by re-

cruiting new susceptible individuals, which can increase R0, and allow disease levels to

increase.

4.1.4 Age structure

Horizontal disease transmission depends on both contact rates and host susceptibility,

and these may not be homogeneous throughout the population. A change in population

structure may lead to an increase in the horizontal transmission rate. For example, if

adults are less susceptible to a disease than juveniles (Cattadori et al., 2005), or contain

a higher prevalence of resistant individuals, then removing the adults will reduce the herd

immunity and increase the average population susceptibility. Strong density dependence

may further increase this problem, as the number of juveniles may temporarily increase

as the population recovers.
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4.2 Methods

Several different models containing key mechanisms observed in wildlife hosts are investi-

gated. No process as described in Chapter 2 directly enhances disease transmission, so any

perturbation effect is an emergent property of the underlying model. The disease systems

are all described by non-spatial ordinary deterministic equations (ODEs), which describe

the rates of change of the different categories of individual in the model.

See Table 4.1 for a list of parameters and default values used in each of the models.

Parameter Symbol VT SIR Age Units

Intrinsic reproduction rate r 1 1 1 year−1

Carrying capacity c 20 20 20 —

Natural mortality rate d 0.2 0.2 0.2 year−1

Disease induced mortality rate e 0 0 0 year−1

Maturation (ageing) rate α — — 1 year−1

Horizontal transmission rate β 0.2 0.4 — year−1

in juveniles βj — — 2 year−1

in adults βa — — 0 year−1

Recovery rate γ – 1 — year−1

Vertical transmission probability pv 0.5 — — —

Population reduction rate for class X pX 0.2 0.2 0.2 year−1

Table 4.1: A summary of the parameters and their symbols used in the models are described

here. Class X represents any category of individual, e.g. culling rates for susceptibles S,

or infective adults Ia are pS and pIa respectively. With selective culling, pX = 0 for non-

targeted individuals. Parameter values are the default for each type of model considered.

4.2.1 Key mechanisms

Population growth

The longer the time interval over which the disease is studied, the more important the

role of demography, as fluctuations in population size can significantly affect the disease

dynamics, but for sufficiently short time scales, the population size can be considered to

be fixed. Changes in population size occur when new individuals are born (or recruited)

into the population, and are removed via mortality (whether due to disease or population
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reduction, or causes unrelated to either). It is assumed that mortality occurs at constant

per-capita rate d, and various forms of reproduction are considered.

The simplest form of growth can be considered by introducing new individuals at a

constant rate. Here birth occurs at constant rate r, which gives

Ṅ = r − dN (4.1)

resulting in a disease free equilibrium K = r/d. However, since the birth rate is indepen-

dent of the population size, this does not reflect compensatory reproduction, which may

be a key mechanism related to the perturbation effect.

A common form of compensatory reproduction is logistic growth, where per capita

birth is limited by a maximum population size (or carrying capacity) Nmax = c. Here

birth occurs at rate rN(1−N/c), which gives

Ṅ = rN(1−N/c)− dN (4.2)

resulting in a disease free equilibrium K = c(r − d)/r, and an extinction equilibrium

N = 0.

Unfortunately, while population growth in the form of Eqn. 4.2 may be the most

biologically “realistic”, the non-linearity in the N2 term can complicate algebraic analysis,

although solutions can still be found numerically.

For this reason, it may be helpful to consider a simpler form of compensatory repro-

duction, birth at rate r(1−N/c), which gives

Ṅ = r(1−N/c)− dN (4.3)

resulting in disease free equilibrium K = cr/(r + dc), while there is no extinction equilib-

rium.

Note that Eqn. 4.3 is similar (and identical when c = 1) to the result of expanding

Eqn. 4.2 around N = 1+ ε, and allowing higher order terms ε2 → 0. This provides a good

approximation to behaviour near the disease free equilibrium, but may overestimate pop-

ulation growth for small N , and ignores the possibility of population extinction (however

it may reflect density dependent dispersal into the population from a similar neighbouring

population). For very small population size, Eqn. 4.2 can be expanded around N = 0 + ε,

obtaining birth at rate rN .

For this reason is is helpful to consider populations of the form Eqn. 4.3 during analysis

where necessary; results should be broadly similar provided N is sufficiently close to the

disease free equilibrium and not too small.
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Disease dynamics

Horizontal disease transmission occurs at per capita rate H; transmission is normally

assumed to be density dependent, in which case H = βSI, however sometimes diseases

are frequency dependent, in which case H = βSI/N .

Since individuals are only exposed to vertical transmission once (at the time of intro-

duction), vertical and pseudo-vertical transmission take place with probability pv, which

applies to the growth rate, e.g. for logistic growth, the birth rate is

Ṡ = r(N − pvI)(1−N/c) + . . .

İ = rpvI(1−N/c) + . . .

Disease induced mortality removes infectives at per-capita rate e. However, it is of-

ten algebraically simpler to solve equations where e = 0, and therefore this is generally

assumed to be the case, although the effect of disease induced mortality is considered in

the sensitivity analysis where results are solved numerically.

Population reduction

Population reduction is performed by culling individuals from the population. The per-

capita culling rate is represented by pX , where X is the class of individual to which it is

applied, non-selective culling is therefore the special case where pX = p for all classes.

Measuring the perturbation effect

The size of the perturbation effect, Π(t; p), is measured by

Π(t; p) = I(t; p)− I(t; 0) (4.4)

where I(t; p) is the number of infectives at time t, where the population is subject to

reduction at rate p (with applicable p for each group).

A useful special case to study, is when the disease is subject to persistent culling,

and sufficient time passes for the system to reach equilibrium. This gives the persistent

perturbation effect. It is important to note that I∗ could be negative (and hence the disease

would be unstable), and therefore these situations must be discounted. The persistent

perturbation effect is given by

Πeqm = max {I∗(p), 0} −max {I∗(0), 0}; (4.5)
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Another useful measure is the instantaneous change in the perturbation effect, Π̇, given

by

Π̇(t; p) =
d

dt
I(t; p)− d

dt
I(t; 0) (4.6)

Rescaling

By scaling the population by the reciprocal of the carrying capacity, it is possible to remove

the parameter c from models e.g.

Ṅ = N(1−N)− dN

which simplifies analysis (see Chapter 2). The population variables now represent fractions

of the carrying capacity. Remaining equations have been rescaled to remove c as described,

however r is retained in this chapter, as its role may be important to disease dynamics.

4.2.2 Disease models

Three different models are considered here.

First an SI disease model featuring vertical transmission with probability pv is con-

sidered:

Ṡ = +r(N − pvI)(1−N)− (d + pS)S − βSI (4.7)

İ = +rpvI(1−N) + βSI − (d + e + pI)I

Second, a classic disease system featuring susceptible, infective, and resistant individ-

uals (S, I, and R respectively) is examined:

Ṡ = +rN(1−N)− (d + pS)− βSI (4.8)

İ = +βSI − (d + e + γ + pI)I

Ṙ = +γI − (d + pR)R

where γ is the recovery rate.

Finally, an SI disease system with age structure is examined. Rather than having a

separate resistant class, it is assumed that adults are less susceptible to the disease than

juveniles. The relevant model is

Ṡj = +rN(1−N)− (d + α + pSj)Sj − βjSj(Ij + Ia) (4.9)

Ṡa = +αSj − (d + pSa)Sa − βaSa(Ij + Ia)

İj = +βaSa(Ij + Ia)− (d + α + pIj )Ij

İa = +αIj + βaSa(Ij + Ia)− (d + pIa)Ia
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where α is the maturity rate (i.e. 1/α is the average time to adulthood), βj is the infection

rate for juveniles, βa is the infection rate for adults, and N = Sj + Sa + Ij + Ia. Juveniles

are considered to contribute towards density dependence for the purposes of reproduction,

although this may differ from species to species.

4.3 Results

4.3.1 Vertical Transmission

An example of the perturbation effect for Eqn. 4.7 is shown in Fig. 4.1
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(b) Π(t)

Figure 4.1: Numerical solution of the SI model with vertical transmission, starting from

the endemic equilibrium. Selective culling is applied to susceptibles only for t ∈ [50, 150]

(marked by the dashed lines) during which time the number of infectives I(t) increases.

Population values are shown in Fig. 4.1a, while Π(t; p) is shown in Fig. 4.1b. Other pa-

rameters are as given in Table 4.1.

Equilibrium analysis

First the case pS = pI = p is examined, and e = 0 is also assumed for algebraic simplicity.

Solving for biologically realistic equilibria finds the endemic equilibrium

S∗ =
(d + p)(1− pv)

β

I∗ = 1− (d + p)(r + β − rpv)
rβ

thus p > 0 serves only to reduce I∗, therefore non-selective culling does not produce a

persistent perturbation effect, and some bias in culling is necessary in order to generate a

perturbation effect in a system with only vertical transmission, compensatory reproduc-

tion, and density dependent horizontal disease transmission.
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Next, the case pS 6= pI is examined. The endemic equilibrium is algebraically complex,

but some progress can be made by focusing on key values of pv, in particular pv = 0, pv = 1,

and pv = β/r.

If pv = 0 (reducing to the simple case of an SI model without vertical transmission),

then the endemic equilibrium is

S∗ =
d + pI

β

I∗ =
1
2

(
1− d + pI

r

)
− d + pI

β
+

1
2

√(
1− d− pI

r

)2

+ 4(pI − pS)
d + pI

rβ

Here the only effect of pS > 0 is to reduce I∗, hence the removal of susceptibles only leads

to reduced I∗, and so there is no persistent perturbation effect. The effect of pI > 0 is not

so clear, but numerical solutions (see Fig. 4.4b) suggest that the only effect is to reduce

I∗, again resulting in no persistent perturbation effect.

If pv = 1, then the endemic equilibrium is {S∗, I∗} = {0, 1 − (d + pI)/r}, which does

not depend on pS , but is reduced by pI , and so there is no persistent perturbation effect.

If pv = β/r, then İ does not depend on S, and the endemic equilibrium is {S∗, I∗} =

{. . . , 1− (d + pI)/β}, where I∗ does not depend on pS , but is reduced by pI , and so there

is no persistent perturbation effect.

The four special cases (non-selective culling, and selective culling with pv = 0, 1, β/r)

do not give rise to the persistent perturbation effect, while the general case does not provide

a solution that is easy to solve algebraically. However, progress can be made by noting

that horizontal transmission H = βSI increases with S, while vertical transmission V =

pvI(1 −N) decreases with S. Since pS > 0 leads to decreased S, it is therefore expected

to lead to increased V and decreased H. In the special case rpv = β, the equilibrium no

long depends on S and so culling of susceptibles does not affect I∗, since the reduction in

H is exactly compensated for by the increase in V . Note also that the special case pv = 1

does not depend on pS either, since there are no susceptibles in the endemic equilibrium

(or if β = 0 there may be disease present); as the disease is saturated, no increase in I∗

due to compensatory reproduction is possible.

The bounds for pv for which the persistent perturbation effect is possible are therefore

β/r < pv < 1. For rpv < β, it is expected that Πeqm ≤ 0, although it also expected that

Πeqm = 0 if β and pv are insufficient to maintain disease stability prior to culling.
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(a) Vertical transmission, pv
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(b) Horizontal transmission, β
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(c) Natural mortality rate, d
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(d) Disease induced mortality rate, e
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(e) Intrinsic reproduction rate, r

Figure 4.2: VT model: sensitivity analysis of Π(t), near the start of culling (at t = 5,

in green), and at equilibrium (at t = 1000, in blue). Other parameters are as given in

Table 4.1, one parameter is varied at a time; initial conditions are {S0, I0} = {S∗
DF −

0.05, 0.05}.
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Sensitivity analysis

The results are obtained by numerical analysis of pv (see Fig. 4.2a), which shows a max-

imum persistent perturbation effect for intermediate pv between β and 1. Differentiating

İ in Eqn. 4.7 with respect to S, obtains ∂S İ = (β − pv)I, which is positive if pv > β,

suggesting that a transient perturbation effect is possible even for very high pv, which is

confirmed in Fig. 4.2a, where both Πeqm and Π(5) become negative for β > pv. The tran-

sient perturbation effect occurs for pv > β and increases with pv, reaching its maximum

at pv = 1.

Numerical analysis of β (see Fig. 4.2b) shows a maximum persistent perturbation

effect for intermediate β, where the disease changes stability, and no perturbation effect

if β > pv. Further examination of the interaction of pv and β (see Fig. 4.3) confirms

that Πeqm > 0 for pv > β, except for very small pv and β due to disease instability. The

perturbation effect is largest for small β, and pv ≈ (1 + β)/2 (see Fig. 4.3a).

�����

����

�����

�

����

���

� ��� ��� ��� ��� �

Vertical transmission probability,

	
����
	
����
	
����
	
����
	
����

(a) Πeqm vs pv, for varying β
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(b) Contour of Πeqm vs pv, β

Figure 4.3: VT model: sensitivity analysis of Πeqm, varying pv and β. Other parameters

are as given in Table 4.1. Note the zero contour along roughly pv = β (as predicted when

r = 1).

Numerical analysis of mortality rates d and e (see Figs. 4.2c and 4.2d) shows a max-

imum persistent perturbation effect for intermediate values, similar to the maximum oc-

curring when I∗(0) changed stability in Chapter 2, and no perturbation effect for d = 0

(where the disease becomes saturated) or for large d and e (where the disease is not main-

tained within the population). Similarly, transient perturbation effects are greatest for

low mortality rates, although e has very little influence. These results mirror the transient

case described in Chapter 2.

Numerical analysis of the intrinsic reproduction rate r (see Fig. 4.2e) shows that both
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persistent and transient perturbation effects increase with r, but do not occur if r is too

low, since one of the requirements for the perturbation effect is that rpv > β. High com-

pensatory reproduction can therefore reduce the degree of vertical transmission required

for the perturbation effect to occur.

Numerical analysis of the culling rates (see Fig. 4.4) shows that both persistent and

transient perturbation effects rise with the culling rate for susceptibles pS , and decrease

with with the culling rate for infectives pI . Fig. 4.4c shows the effects of assuming that

culling is non-selective, and introducing a bias towards S; this indicates that a perturbation

effect is possible given sufficient bias towards S, but still with pI > 0.
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(a) Culling rate for susceptibles pS (pI = 0)
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(b) Culling rate for infectives pI (pS = 0.2)
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(c) Culling bias

Figure 4.4: VT model: sensitivity analysis of Π(t), near the start of culling (at t = 5,

in green), and at equilibrium (at t = 1000, in blue). In Fig. 4.4a, the culling rate for

susceptibles pS is varied, while the culling rate for infectives pI = 0. In Fig. 4.4b, pI

is varied, while pS = 0.2. In Fig. 4.4c, the culling rate is pS = 0.1 + b, pI = 0.1 − b,

where b is the bias, so b = 0 represents non-selective culling, while b = 0.1 selects only S.

One parameter is varied at a time, as shown for each graph above; initial conditions are

{S0, I0} = {S∗
DF − 0.05, 0.05}. Other parameters are as given in Table 4.1.
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4.3.2 SIR model

An example of the perturbation effect is shown in Fig. 4.5 for non-selective culling, and

in Fig. 4.6 for selective culling.
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(b) Π(t)

Figure 4.5: Numerical solution of the SIR model with non-selective culling. Culling is

applied equally to all classes of individual for t ∈ [50, 150] (marked by the dashed lines)

during which time the number of infectives I(t) increases. Π(t; p) is shown in Fig. 4.5b.

Other parameters are as given in Table 4.1.
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(a) S(t), I(t), R(t), and N(t)
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(b) Π(t)

Figure 4.6: Numerical solution of the SIR model with selective culling. Culling is applied

only to resistant individuals for t ∈ [50, 150] (marked by the dashed lines) during which

time the number of infectives I(t) increases. Π(t; p) is shown in Fig. 4.6b. Other parameters

are as given in Table 4.1.
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Equilibrium analysis

First the case pS = pI = pR = p is examined. Solving Eqn. 4.8 for biologically realistic

equilibria finds an endemic equilibrium

I∗ =
(d + p)(1− (d + p)/r)

d + γ + p
− d + p

β

and so

Πeqm =
(d + p)(1− (d + p)/r)

d + γ + p
− p

β
− d(1− d/r)

d + γ

which can be solved for boundaries for each parameter (results not shown).

Sensitivity analysis

Numerical analysis of horizontal transmission rate β (see Figs. 4.8a and 4.9a) shows that

the perturbation effect increases with β, however non-selective culling can reduce infection

when β is small.

Numerical analysis of recovery rate γ (see Figs. 4.8b and 4.9b) shows that the pertur-

bation effect is maximised for small γ; non-selective culling can reduce infection when γ

is small, but selective culling always results in the perturbation effect if γ > 0.
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(a) Non-selective culling
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(b) Selective culling

Figure 4.7: SIR model: sensitivity analysis of Πeqm, varying infection rate β and recovery

rate γ. Non-selective is pS = pI = pR = 0.2, selective culling is pS = pI = 0, pR = 0.2 and

other parameters are as given in Table 4.1.

Simultaneous numerical analysis of both β and γ (see Fig. 4.7) shows that selective

and non-selective culling are generally similar, except that selective culling gives a stronger

perturbation effect, and prevents any reduction in infection.

Numerical analysis of mortality rates d and e (see Figs. 4.8c, 4.8d, 4.9c and 4.9d) shows

that the perturbation effect occurs for smaller d and e, although high mortality reduces

the perturbation effect more when culling is non-selective.
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Numerical analysis of reproduction rate r (see Figs. 4.8e and 4.9e) shows that the

perturbation effect increases with r, but does not occur for low r.
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(a) Horizontal transmission, β
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(b) Horizontal transmission, γ
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(c) Natural mortality rate, d
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(d) Disease induced mortality rate, e
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(e) Intrinsic reproduction rate, r

Figure 4.8: SIR model: sensitivity analysis of Π(t), near the start of culling (at t = 5, in

green), and at equilibrium (at t = 1000, in blue). Culling is non-selective: pS = pI = pR =

0.2, and other parameters are as given in Table 4.1. One parameter is varied at a time;

initial conditions are {S0, I0, R0} = {S∗
DF − 0.05, 0.05, 0}.

94



�

����

����

����

����

����

����

����

���	

���


� � �� �� ��

����������	����
��

����

(a) Horizontal transmission, β
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(b) Horizontal transmission, γ
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(c) Natural mortality rate, d
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(d) Disease induced mortality rate, e
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(e) Intrinsic reproduction rate, r

Figure 4.9: SIR model: sensitivity analysis of Π(t), near the start of culling (at t = 5,

in green), and at equilibrium (at t = 1000, in blue). Culling is selective: pS = pI = 0,

pR = 0.2, and other parameters are as given in Table 4.1. One parameter is varied at a

time; initial conditions are {S0, I0, R0} = {S∗
DF − 0.05, 0.05, 0}.
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4.3.3 Age structure

An example of the perturbation effect in the age model is shown in Fig. 4.10.
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(b) Sj(t), Sa(t), Ij(t), and Ia(t)
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Figure 4.10: Numerical solution of the age structured SI model with selective culling.

Culling is applied only to susceptible adults for t ∈ [50, 150] (marked by the dashed lines)

during which time the total number of infectives I(t) = Ij(t) + Ia(t) increases. The total

density of susceptibles and infectives are shown in Fig. 4.10a, while the individual densities

for adults and susceptibles are shown in Fig. 4.10b. Π(t; p) is shown in Fig. 4.10c. Other

parameters are as given in Table 4.1.

Even with simplifications, an algebraic solution for the endemic equilibrium in Eqn. 4.9

is too complex to examine directly, so instead equilibria are solved for numerically.

Sensitivity analysis

With four different categories of individual, there are many possible culling combinations.

Analysis begins by showing the effects of culling each category individually (see Fig. 4.11).

Culling of any group other than susceptible adults Sa reduces disease levels, showing that

Sa is the most important group for the perturbation effect. Next, culling that targets all
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susceptibles (i.e. pSj = pSa = pS , and pIj = pIa = 0) shows that the perturbation effect

may occur for small pS , while culling that targets all adults does not give a perturbation

effect. Some unusual behaviour is observed near pS ≈ 0.375, which may be a precision

error, although the exact reason is unknown. Further sensitivity analysis assumes that

culling selects only for susceptible adults.

Analysis of the natural mortality rate d (see Fig. 4.12c) shows that the perturbation

effect is greatest for small d near 0, since this is associated with the greatest number of

susceptible adults before culling. For the disease induced mortality rate e (see Fig. 4.12d),

there is a maximum that occurs for small e > 0, near where the stability changes for Ia.

Analysis of the reproduction rate r (see Fig. 4.12e) shows that the perturbation effect is

greatest for small d near 0, since this is associated with the greatest number of susceptible

adults before culling. For the disease induced mortality rate e (see Fig. 4.12d), there is a

maximum that occurs for small e > 0, near where the stability changes for Ia.

Analysis of the juvenile horizontal transmission rate βj (see Fig. 4.12a) shows that the

perturbation effect is maximised for small βj > 0, around the point of stability change for

the disease in adults, and then slowly decreases as the number of infective adults prior to

culling increases. The transient perturbation effect increases with βj , as this leads to the

biggest increase in Ij .

Analysis of the adult horizontal transmission rate βa (see Fig. 4.12b) shows that the

perturbation effect only occurs for very small βa. As βa increases, the population of

susceptible adults rapidly decreases, depleting the number of adult susceptibles, which are

needed for the perturbation effect to occur.

Analysis of the maturity rate α (see Fig. 4.12f) shows that with low α (i.e. maturity

takes a long time and the proportion of adults is low), there is no perturbation effect.

However, Πeqm > 0 for intermediate α. For large α, the disease dies out as there are not

enough juveniles for the disease to persist. The transient perturbation effect is maximised

by a low α > 0, as this provides the most juveniles for the disease to spread to.

4.4 Discussion

This chapter explored the impact on disease control of unintentional selective culling, and

how it interacts with compensatory reproduction, alternative disease transmission routes,

disease resistance, and age structure.

In an SI model with vertical transmission, the perturbation effect can occur when the
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(a) Susceptible juveniles, pSj
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(b) Susceptible adults, pSa
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(c) Infective juveniles, pIj
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(d) Infective adults, pIa
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(e) Susceptibles, pSj = pSa = pS

�����

����

�����

����

�����

����

�����

����

�����

�

� ��� � ��� �

����������	
��������	��

(f) Adults, pSa = pIa = pa

Figure 4.11: Age model: sensitivity analysis of Π(t), targeting each group individually, near

the start of culling (at t = 5, in green), and at equilibrium (at t = 1000, in blue). Other

parameters are as given in Table 4.1, one parameter is varied at a time; initial conditions

are {S0, I0} = {S∗
DF − 0.05, 0.05} for both adults and juveniles.
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(a) Juvenile horizontal transmission, βj
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(b) Adult horizontal transmission, βa
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(c) Natural mortality rate, d
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(d) Disease induced mortality rate, e
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(e) Reproduction rate, r
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(f) Maturity rate, α

Figure 4.12: Age model: sensitivity analysis of Π(t), near the start of culling (at t = 5,

in green), and at equilibrium (at t = 1000, in blue). Other parameters are as given in

Table 4.1, one parameter is varied at a time; initial conditions are {S0, I0} = {S∗
DF −

0.05, 0.05}.
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rate of introduction of infectives due to vertical transmission is greater than the rate of

introduction of infectives due to horizontal transmission, and population reduction fails to

select for infectives. The increase in disease is a consequence of compensatory reproduction

increasing the number of infectives recruited via vertical transmission.

In an SIR model, the perturbation effect can occur with non-selective population

reduction, although this can be greatly strengthened by selecting only for resistant indi-

viduals. The increase in disease is a consequence of compensatory reproduction due to

the loss of resistant individuals R, increasing the number of susceptibles S, resulting in an

effective loss of herd immunity. With selective culling, this leads to an increase in S with

no decrease in infectives I, which increases the horizontal transmission rate; with non-

selective culling, there is a decrease in I, but that is offset by the increase in S, provided

the recovery rate is sufficient to prevent a high prevalence.

In an SI model with age structure, where the adults are effectively resistant to the

disease due to low susceptibility, the perturbation effect can occur when population re-

duction selects for susceptibles, although this can be increased when population reduction

targets only susceptible adults. The increase in disease is a consequence of compensatory

reproduction increasing the average susceptibility of the population, due to the higher

susceptibility of juveniles.

As in Chapters 2 and 3, the maximum perturbation effect often occurs when the

disease is near the point of stability change due to insufficient horizontal transmission for

the disease to persist, or high mortality rates removing the disease from the population. In

some cases, a process can work to both increase and reduce the rate of disease transmission,

causing a maximum value of the relevant parameter. This is particularly true of the

maturity rate α in Eqn. 4.9, which is necessary to provide resistant adults and allow for

a reduction in the population during culling, when α is high however, individuals spend

less time in the juvenile state, reducing the opportunity for infection.

One consistent factor in all the models was the reliance on the intrinsic reproduction

rate r for disease increase. With high r, new susceptibles were quickly recruited to replace

those culled, allowing the disease to persist and leading to a high infective population.

Density dependence clearly plays an important role in the perturbation effect, as culling

reduces the population size, increasing the rate of density dependent processes. Horizontal

transmission itself may be a density dependent process, although one normally reduced by

population reduction, and so the perturbation effect requires other processes to increase

that compensate. In the SI model with vertical transmission, new infectives are recruited
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directly, bypassing the requirement for horizontal transmission.

Compensatory reproduction is an important process that can complicate population

reduction (Carter et al., 2009), and interact with unintentional selective culling to further

reduce the efficacy, even leading to increases in disease. As with the control of bTB in

Britain, population reduction has been used to control CSF in wild boar (Artois et al.,

2001). However, the disease was shown to persist in the population, especially in young

animals. The Perturbation effect in CSF and wild boar is due in part to an increase in the

dispersal behaviour and thus levels of population mixing of herds following the population

reduction event increasing the risk of transmission. The perturbation effect in wild boar

and CSF is discussed by Bolzoni et al. (2007), who outline the role of heterogeneities in

infection rates (due to different susceptibilities of different age groups) in disease increase,

although using density dependent in mortality rather than birth. Strong seasonality and

delay differential equations may interact with compensatory reproduction to also explain

the perturbation effect (Choisy & Rohani, 2006; Keeling & Rohani, 2007). Disease control

strategies for CSF now include removal only of the young more susceptible boar as the

main virus target (Laddomada, 2000). Prior to the recommendation of targeted culling,

control measures were much less effective, or even counterproductive (Guberti et al., 1998;

Ferrari et al., 1998).

Stochasticity was not included in the models in this chapter, however the perturbation

effect was observed in an extension to include vertical transmission in the model used in

Chapters 2 and 3 (results not shown). One technique that may be used to account for

the effects of stochasticity is moment closure analysis (Whittle, 1957; Krishnarajah et al.,

2005; Marion et al., 2005), which provide analytic approximations to non-linear stochastic

models. These techniques, combined with numerical sensitivity analysis, may be useful

for improving prediction of the perturbation effect in real wildlife host species.

It is acknowledged that the outcome of the sensitivity analysis of other parameters

varied significantly with different values of βj in the SI model with age structure. Use

of one-at-a-time sensitivity analysis may therefore give an incomplete picture of how the

disease behaves; two parameter sensitivity analysis was performed for the SIR model and

the SI model with vertical transmission, however the increasing parameter space can make

analysis difficult and computationally expensive. While not used here, other techniques,

such as Latin Hypercube sampling (LHS) (McKay et al., 1979) can be used for models

with a large parameter space.

While selective culling can be an effective tool in disease control, the possibility remains
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of unintentionally selecting for individuals who provide herd immunity or whose presence

reduces density dependent processes from increasing disease spread. It is important that

population reduction strategies should consider this, and aim to select for the class of

individuals most likely to reduce disease spread.
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Chapter 5

General Discussion

5.1 Summary of thesis aims

The overall aims of this thesis were to: (i) characterise and determine the dynamics of

the perturbation effect, examine the role of population reduction, (ii) to find out what

maximises or minimises the perturbation effect, and (iii) examine how demographic factors

may contribute to the perturbation effect.

The first aim was addressed in Chapter 2 by creating representative susceptible-

infective SI disease models, and using algebraic analysis to understand the critical points

of the system, and numeric analysis to investigate transient behaviour. The second aim

was addressed by sensitivity analysis of the models throughout the thesis. The third aim

was addressed by adding various extra demographic factors, and demonstrating how their

presence was sufficient to allow the perturbation effect.

These results are now discussed in more detail.

5.1.1 Chapter 2

A generic non-spatial deterministic SI model was used to examine the effects of adding

enhanced disease transmission consequent to population reduction, which identified both

persistent and transient perturbation effects. Analysing their sensitivity to various demo-

graphic factors showed that the perturbation effect is more likely to occur in a disease

system that has a very low prevalence prior to culling. When the disease is initially en-

demic, the perturbation effect is maximised when infection and mortality rates are near

the values that cause the disease to change stability. When the disease has been newly

introduced, then the perturbation effect is instead increased when the disease spreads
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quickly (low mortality rates and high infection rate), although the duration of the pertur-

bation effect is limited by high infection rates, and so maximised by intermediate infection

rates. An important corollary is that population reduction can stabilise disease that would

otherwise fade out naturally.

Next, a generic spatial stochastic SI model was used to show how density dependent

dispersal can lead to a perturbation effect, which was shown to be qualitatively similar

to the perturbation effect in the non-spatial model. This demonstrated the possibility

of a perturbation effect despite no explicit disease enhancement mechanism. While both

transient and persistent perturbation effects were identified, sensitivity to demographic

factors meant that only the transient perturbation effect was examined in detail. The

perturbation effect is found to be more likely in disease systems with low prevalence, het-

erogeneously distributed groups of sites containing infectives. As in the non-spatial model

with emergent disease, the perturbation effect was increased by low natural and disease

induced mortality rates, and high within-groups infection, but was extremely susceptible

to between-groups infection, as the disease rapidly spread to all groups, eliminating the

heterogeneity required for a perturbation effect.

Density dependent dispersal was shown to be a necessary process for the perturbation

effect to occur in the absence of any behaviour change. A change in behaviour that directly

enhanced disease transmission could also account for the perturbation effect, however

significantly more so if the enhanced transmission is between groups, as even a small

increase in between-group transmission (e.g. due to increased ranging behaviour) could

rapidly account for an increase in geographical disease spread.

5.1.2 Chapter 3

A spatial stochastic SI model was used to examine various population reduction strategies,

and to show how varying the approach can have varying influence on the perturbation

effect, for any given level of effort. The effects of varying spatial coverage and culling

intensity within sites, the effects on culling for brief periods of time at increased effort,

and the effects of leaving gaps in culling regimes are shown to influence the response of the

perturbation effect. In addition, the range of the perturbation effect outside areas subject

to intensive culling are investigated for various dispersal rates. The perturbation effect is

found to be influenced by how culling effort is spread between sub-populations, and by

whether or not culling is sustained or applied intermittently.
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Comparison between density and non-density dependent dispersal showed very dif-

ferent results when subject to culling, and therefore it is important to characterise host

dispersal behaviour before planning culling strategies.

5.1.3 Chapter 4

Chapter 4 showed how other standard demographic factors and disease mechanisms can

lead to the perturbation effect. Non-spatial mechanics associated with countering the

effects of culling were investigated using a number of generic non-spatial models, including

several different mechanics associated with the perturbation effect in particular disease

systems, and also the role of selective culling.

Vertical transmission was examined in an SI model, and the perturbation effect is

shown to occur if culling is targeted towards susceptibles. In an SIR model, non-selective

culling is shown to result in a small perturbation effect given a large recovery rate, and

the perturbation effect is increased if selective culling ignores infectives, or targets only

resistant individuals. In an SI model with age structure, compensatory reproduction can

lead to the perturbation effect if adults have a lower susceptibility to the disease than

juveniles, and if culling avoids the juveniles.

5.2 Important processes in the perturbation effect

The perturbation effect is closely associated with interaction of population reduction and

density dependent processes. Traditional models, such as those by Anderson & May

(1979), suggest that when disease transmission is a density dependent process, then a

reduction in host density should reduce disease transmission, potentially reducing the basic

reproduction ratio R0 to the point where the disease can no longer persist. However, when

other density dependent processes counteract that reduction either directly or indirectly,

then the predicted reduction in disease may be neutralised, or even reversed.

Horizontal disease transmission increases with the number of susceptibles, the num-

ber of infectives (with density dependent transmission) or the disease prevalence (with

frequency dependent transmission), the average population susceptibility, and the con-

tact rates between susceptibles and infectives. While population reduction may decrease

disease transmission by reducing either the number of susceptibles or infectives, or the

contact rates between them, it can simultaneously affect the rate of other processes, which

might indirectly contribute to components necessary for new infections.
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Density dependent processes can increase disease transmission indirectly: by rearrang-

ing host population structure, e.g. density dependent dispersal leads to increased mixing

between neighbouring groups, or increases contact between susceptibles and infectives; or

by density dependent growth that recruits susceptibles to replace disease resistant indi-

viduals, reducing herd immunity and increasing R0. Alternatively, they can also increase

disease transmission directly, e.g. compensatory reproduction can increase the recruitment

of infectives via vertical transmission. When frequency dependent transmission occurs be-

tween two separate groups or species, then selectively targeting the susceptibles in one

group can increase the prevalence and directly increase the disease transmission in the

other.

Population structure can add new routes for the perturbation effect to occur. When

individuals aggregate into separate groups with limited interaction between them (whether

spatially, or by age or sex), disease transmission may be decreased due to the reduced con-

tact between individuals (which is partly the basis of frequency dependent transmission).

Heterogeneities due to stochasticity may lead to disease fade out in certain groups, in

which case the average disease level may well be lower than that of a well mixed popula-

tion. Heterogeneities in susceptibility between different classes of individual may lead to

an increase in average susceptibility when proportions of those classes change.

Processes that are not density dependent, but instead occur in response to disruption

of social structure, may also lead to enhanced disease transmission. This response may

be temporary, until a new structure is established, but during that time changes in host

behaviour may lead to increased contact rates and susceptibility (Carter et al., 2009),

which in turn may result in significant increases in disease transmission. In Chapter 2,

the case of enhanced between-group transmission (without increased dispersal) was not

examined, but the system was so sensitive to this mode of transmission that it seems clear

that even a small increase would result in a significant perturbation effect.

5.3 Risk factors and species susceptible to the perturbation

effect

In Chapters 2 and 4, it was shown that risk factors varied depending on whether the disease

was endemic or emergent. In the case of endemic disease, the perturbation effect was most

likely in a host-disease system with a low prevalence due to low disease transmission, or

high mortality rates, as this tends to maximise the number of susceptibles for the disease
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to spread to; in the case of emerging disease, this situation was often reversed. In all cases,

strong compensatory reproduction was an important factor.

Highly structured populations can lead to heterogeneities, which reduce contact rates

and disease transmission. Processes such as dispersal that counter this and break down

the structure can increase contact rates and lead to the perturbation effect. It is important

in structured populations to consider whether culling could be unintentionally targeting

groups whose presence may be helping to reduce the increase in disease transmission.

Where frequency dependent transmission is present, such as may be the case for transmis-

sion from badgers to cattle (Donnelly & Hone, 2010), failure to target infectives could lead

to an increase in badger bTB prevalence, which would lead to an increase in transmission

to cattle without further processes to enhance disease transmission necessary.

The perturbation effect in badgers should come as no surprise. As a host-pathogen

system, it is prone to many of the risk factors previously discussed. Geographical bTB

prevalence in badgers is low, but is slowly spreading in the southeast of England, and is

clustered (Krebs et al., 1997), which mirrors the spatially heterogeneous emergent case

discussed in Chapter 2. Culled badger populations experience extensive social perturba-

tion, and enhanced movement (Cheeseman et al., 1993; Tuyttens et al., 2000a), both from

the vacuum effect and increased ranging behaviour.

There have, however, been conflicting results from the RBCT (Clifton-Hadley et al.,

1995b; Eves, 1999; Griffin et al., 2005). In the Irish studies, no perturbation effects were

observed, and proactive culling was shown to be more effective than reactive culling. The

Irish trial attributed this to the presence of natural boundaries, limiting immigration from

neighbouring areas (Fenwick, 2012). While this was also an important consideration in the

RBCT (Donnelly et al., 2006), and areas were chosen such that geographical boundaries

formed the perimeter of a proportion of areas chosen, areas were generally considered

permeable to badger movements.

While the results are not included here, some work was done to parametrise the spatial

SI model from Chapter 2 using parameters converted from Smith et al. (2001a). While

not occurring for the parameters as given, a 50% increase in the carrying capacity c from

12 to 18 was sufficient to demonstrate the perturbation effect.

Wild boar are another species at risk from the perturbation effect with CSF, and

have many of the risk factors discussed in this thesis. They aggregate into stable herds,

which are prone to increased dispersal following hunting (Laddomada, 2000); they show

heterogeneous susceptibility among age groups (Bolzoni et al., 2007); they have strong
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compensatory reproduction (Bieber & Ruf, 2005); and sports hunting was known to target

the less susceptible adults (Artois et al., 2001). In addition, CSF is prone to vertical

transmission, which plays an important role in CSF epidemiology, as piglets born infective

remain immunotolerant and may survive for a long time, persistently shedding the disease

(Ribbens et al., 2004).

Foxes and rabies may also be prone to the perturbation effect as a consequence of the

vacuum effect (Bacon, 1985). The rate of spread of rabies is limited by dispersal (Saunders

et al., 1997), and fox dispersal ranges are much higher in low density populations (Holmala

& Kauhala, 2006). The disease is also more prevalent among juveniles, which may indicate

heterogeneous susceptibility (Holmala & Kauhala, 2006). Despite frequent use, population

reduction has had little success in control of rabies (Smith & Harris, 1989; Blancou et al.,

1991), and vaccination is seen as a much better technique.

In conclusion, there may be many wildlife species that are in some way affected by the

perturbation effect. It is important that, when planning culling strategies, the mitigating

effects of density dependent processes and enhanced transmission due to social disruption

are considered. A number of mechanics in basic models are shown to lead to the per-

turbation effect. The scope for the perturbation effect increases with the complexity of

the model, and there may be many other biological processes and demographic factors

that reduce or reverse the effectiveness of population reduction when dealing with wildlife

hosts.
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