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Abstract

Automatic recognition of events in video is an immensly challenging problem. If

solved, the number of potential domains in which such a system could be deployed is

vast and growing; including traffic monitoring , surveillance, security, elderly care and

semantic video search to name but a few. Much prior research in the area has focused on

producing a solution that is tailored towards one of these applications, applying methods

which are most appropriate given the constraints of the target domain. For the moment,

this remains to some extent the only practical way to approach the problem. The aim in

this thesis is to build a high-level framework for event recognition which is in the main

generic and widely transferrable, yet allows domain-appropriate elements to be incorpo-

rated.

A detector is constructed for low-level events which is based on dense extraction of

Histograms of Optical Flow. This descriptor has only recently been adopted by the event

detection community, and as such there are aspects of the features which have not been

optimized. This thesis performs extensive experimentation on normalization scheme and

finds that the strategy most widely in use is suboptimal compared to one of the alternatives

proposed. The detector is then trained on a challenging realworld domain to run in a

sliding window fashion on continuous video input.

A high level model which exploits temporal relations between different event types

is constructed. The model is designed with transferrability and computational tractabil-

ity in mind. Several methods are benchmarked for learning the distributions over time

differences between pairs of events. Three different connection strategies are proposed

and evaluated for creating a tree structured prior that permits fast, exact inference. An

efficient iterative optimization scheme is presented for handling scenarios which contain

unknown numbers of event instances. Finally, the model is extended in a Conditional

Random Field framework that allows weights to be learned to balance the response from

independent detectors with the pairwise temporal relationships.
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Chapter 1

Introduction

Automatic recognition of events in video is an immensly challenging problem. If solved,

the number of potential domains in which such a system could be deployed is vast and

growing; including traffic monitoring , surveillance, security, elderly care and semantic

video search to name but a few. Much prior research in the area has focused on producing

a solution that is tailored towards one of these applications, applying methods which are

most appropriate given the constraints of the target domain. For the moment, this remains

to some extent the only practical way to approach the problem. The aim in this thesis is

to build a high-level framework for event recognition which is in the main generic and

widely transferrable, yet allows domain-appropriate elements to be incorporated.

The focus throughout this thesis is the recognition of events within a scenario, where

a scenario is a grouping of related simpler events into a more complex pattern of activity.

In many event recognition domains this notion is quite natural. Television programs are

divided into episodes, sports footage is separated into games. Even in domains where the

video input is continuous such as traffic monitoring, there may be natural ways to divide

the footage up; such as the morning commuter rush, midday lull, evening rush etc. The

high level temporal structure model described in this thesis is applicable in any domain

where such a notion of a scenario is natural, and there exists some repeated temporal

1



Chapter 1 2 Introduction

structure.

The dataset which is the primary focus for the latter part of this thesis is the Co-Friend

dataset. This dataset was created as part of the Co-Friend EU Framework 7 project.1

The end goal of Co-Friend was to create a system which could reliably recognise all the

various aircraft servicing events which take place on the airport apron, to assist airlines

who would like to record timings in order to optimise turnaround procedures.

The initial phase of the research for this thesis involved researching ways of recog-

nising events from the output of a multi-camera tracking system which was the research

focus of another of the academic partners on the project. Many of the methods touched

upon in the review of high level methods were applied to this data. Each method seemed

to hit problems due to some element of noise arising from the tracker (which was itself an

active research project). Clustering or reasoning with complete trajectories was very diffi-

cult due to the inability of the tracker to maintain consistent IDs and detect subtle motion

in the challenging conditions inherent to the domain. It became clear that the available

tracking information was not a sufficiently solid foundation on which to build a higher

level system. Other recent research in the area, summarized in Chapter 2, led to the idea

of working directly with the video and image-based features instead.

A further observation whilst performing the literature review for this work was that a

great deal of research within the machine learning community has recently been directed

at designing efficient probabilistic classifiers. At the time of writing, Support Vector

Machines [16], Random Forests [13] and Gaussian Processes [65] are some of the most

prevalant methods in the field. Additionally, there is almost as much research on the

subject of squeezing as much performance as possible out of any given classifier with

techniques such as bootstrapping [53] , boosting [67] and cascades [80]. Therefore it is

very desirable to be able to leverage this body of work when building an event detection

system. The obvious way to do this is to train a classifier for each event type and to detect

1The project was a collaborative effort between Universities of Leeds, Reading, Hamburg, INRIA and
the private company AKKA.
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Figure 1.1: Flow diagrams describing the proposed pipeline for event detection within
scenarios with temporal structure.

instances of each event type independently with a sliding window detector that works by

extracting features over each possible interval and passing those features to a classifier.

Detections are then obtained then by simply taking thresholded local maxima. The prob-

lem with this method when applied to event detection in structured environments is that it

ignores the useful temporal dependencies between events. The principle contribution of

this thesis is to propose a framework for combining the response from independent proba-

bilistic classifiers with probabilistic distributions over time differences observed between

instances of events.

A significant degree of effort was put into testing and building the feature extraction
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component of the proposed pipeline. Chapter 3 details the implementation of an event de-

tector which extracts local features and uses a bag of word representation with a nonlinear

classifier to give a probabilistic output for all candidate intervals in a video sequence. As

this detector builds on recent research, several design choices are encountered for which

there is no extensive evaluation available in the literature. One of the contributions of this

thesis is a set of experiments which goes further than any previous work in evaluating

several aspects of the popular ‘Histograms of Optical Flow’ descriptor.

In Chapter 4 a model is defined for efficiently combining the response from indepen-

dent event detectors with a prior over the structure of inter-event timings. The model

is designed to cope in situations where events of different types can potentially overlap

and are not strictly ordered. These are precisely the conditions which cause problems for

state-based models such as HMMs that attempt to encode the state of the world at each

time step with a latent variable. In the optimization defined here, the temporal midpoints

and durations of event instances in a previously unseen sequence are the latent variables

to be optimized. The method only requires that the timings of at least some of the ob-

served events are loosely correlated. The greater the degree of correlation, the greater the

benefit will be; whilst the absence of parameters in the model makes it generic and easily

applicable to other domains. The method is evaluated on the large real world Co-Friend

dataset.

In Chapter 5, the model defined in the previous chapter is extended by reformalizing

the problem as a Conditional Random Field. This allows the introduction of additional

weighting parameters into the model and provides a well-founded methodology for train-

ing these parameters. Evaluation is provided which shows this relatively straightforward

CRF reformulation to perform marginally better than the simpler model. Several sug-

gestions are also proposed for future work in the area involving more densely connected

models which would require further research into efficient approximate inference algo-

rithms outside the scope of this thesis.
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In Chapter 6, the findings of the thesis are summarized.



Chapter 2

Related Work

Previous works on human action recognition can be divided into two broad categories:

the low-level, which focus on the recognition of short basic actions involving a single

participant and the high-level, which focuses on recognising more semantically complex

events, possibly involving multiple participants and temporally dependent sets of actions.

The former has received much attention from the vision community in recent times and

there has been intense competition across several datasets. Research into high-level event

recognition has been comparatively sparse, and no dataset seems yet to have captured

the support of the community, with individual studies typically reporting performance

only on their own dataset. This thesis describes a methodology for tackling the high-level

problem, through exploitation of methods which have proved successful at the lower level.

Thus a review of both areas is considered to be useful.

6



Chapter 2 7 Related Work

Figure 2.1: Samples from some of the most frequently used datasets. Columns from left
to right are Weizmann Actions, KTH Actions and Hollywood2

2.1 Low Level Action Recognition

A significant portion of the discussion in this section is devoted to the feature extraction

problem as this is the area where much of the innovation has come. Once appropriate

features have been engineered and extracted, the classification part of the task is often

solved through a relatively straightforward application of a standard machine learning

method.

2.1.1 Common Datasets

The most popular datasets in this area have so far consisted of many short clips of ac-

tions from different classes: thus mapping the task to a classification problem. A brief

description of some of the most popular datasets follows. The Weizmann Actions dataset

consists of 90 video clips; 9 different people performing 10 different actions. The video

is low resolution (180x144) and each clip consists of a single actor performing a single
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Figure 2.2: Illustration of MEI (centre) and MHI (right) for an aircraft arrival event taken
from the cofriend dataset.

action. There is no occlusion and very little variation in scale. The KTH Actions dataset

is larger; consisting of 2391 sequences also at low-resolution (160x120). There are 6

classes of action performed by 25 different actors under varying conditions - indoors, out-

doors, with different clothes and at slightly different scales. This dataset was introduced

by Schuldt et al. in [68] and was probably the most widely used benchmarking dataset

between 2004-2010. Interest in the dataset is now fading as several authors have recorded

near-perfect results and more challenging datasets are sought. Hollywood 2 is one such

dataset, consisting of around 1600 clips sampled from Hollywood movies with actions

of 12 different classes. Stanford Olympic Sports [57] is another similarly challenging

dataset. Common to both the newer datasets is that the camera angle is highly variable

and there is much greater occlusion. Essentially the move is towards footage which is

much more natural and unconstrained than in the previous generation of datasets.

2.1.2 Methods Based on Global Features

An interesting early contribution in this area is that of Davis and Bobick [19]. The au-

thors first use a crude global descriptor to coarsely categorize human action in video and

thereafter outline a pipeline which involves segmenting an image into salient patches.

The video sequence is then described by the transformations that describe the motion of

these patches. The implementation of that stage in the pipeline is listed as future work
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and requires manual intervention to assist with the intialization and registration of the

patches. One significant innovation in this paper is the introduction of Motion-Energy

Images (MEI) as a simple global descriptor. Later work [10], refines the definition of the

MEI to the following:

Eτ(x,y, t) =

τ−1⋃
i=0

D(x,y, t− i) (2.1)

where D(x,y, t) is a binary image sequence indicating the regions of motion and τ is an

integer representing the size of the temporal window. Thus the MEI at time t simply

indicates whether any motion has been observed at each pixel in the last τ frames. In

[10], the MEI is once again used as a crude global descriptor, however the earlier patch-

based approach at the finer grained level is abandoned; the reasons cited for this are the

difficulties inherent in the automation of the patch identification, tracking and registration

procedure. This is an observation that will arise several times within the context of this

thesis: higher level systems which are highly dependent on unstable or imperfect tracking

are likely to be less reliable than those which can work directly with simpler features.

On this basis, David and Bobick introduce another simple global descriptor: the Motion-

History Image (MHI):

Hτ(x,y, t) =


τ if D(x,y, t) = 1

max(0,Hτ(x,y, t−1)−1) otherwise
(2.2)

where D, τ are defined as before. Essentially, the MHI encodes the time of the most

recent motion at each pixel. Figure 2.2 shows an example of an MHI and MEI on the

same sequence. It is clear that the MHI is a much richer representation than the MEI; but

the authors insist that the MEI is still useful (though this assertion is refuted in [86]). Hu

moments are taken of both the MEI and MHI in order to abstract to features which have a

degree of scale, rotation and translation invariance. The key problem with these features is

that they assume all motion in the image should be incorporated into the templates. With
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more than one person in the field of view this would clearly be inappropriate. Though

it might be possible to use tracking and extract features from within bounding boxes;

significant problems will still be caused by occlusion since the moments of the MEI/MHI

for a partially occluded action won’t necessarily bear much similarity to those of the

unrestricted view.

The work of Davis and Bobick is extended in [86] to be ’view invariant’. This is

done using a multicamera system which captures motion in 3D that can then be used

to create voxel-based Motion History Volumes. View invariance is gained by aligning

volumes using Fourier transforms. The major limitation with this method is that it requires

multiple calibrated cameras overlooking the same scene and a reliable 3D reconstruction

algorithm, which is an unsolved problem for complex real-world domains.

Ragheb et al. [63] also use segmented binary silhouettes as input for human action

recognition. An activity volume is created by aligning and scaling images from a se-

quence around the centre of mass of the human silhouette. The volume is then divided

spatially into a number of different windows and power spectrum features computed for

each window. A nearest-neighbour scheme based on a weighted euclidean distance mea-

sure is then used to classify actions. Strong results are published on the Weizmann actions

dataset.

Similar work that focuses on recognising action in much lower quality video such as

(pre-HDTV) broadcast sports footage is that of Efros et al. [22]. Here, video is tracked

to get person-centered regions of a fixed scale. The optical flow is then smoothed with

a Gaussian kernel and split into four non-negative channels. Rather than abstracting to

a compact descriptor, the authors define a similarity kernel with which to compare flow

fields after which action recognition is performed using Nearest Neighbour classification.

The form of the kernel

S (i, j) =
∑
t∈T

4∑
c=1

∑
x,y∈I

ai+t
c (x,y)b j+t

c (x,y) (2.3)
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suggests that the method’s robustness to occlusion could be superior to the Hu Moments

used in [10], since in comparing an occluded to a non-occluded prototype of the same

action, there would still be some regions of correlation. However, the lack of evaluation

on a common dataset means this cannot be easily verified.

A more recent work which shares many similarities with the works of [10, 22] is that

of Ali and Shah [1]. Here, several global features have again been carefully chosen to

compactly describe each video frame. In this case they are calculated from the dense

optical flow field in each video frame and are termed kinematic features; defined as fol-

lows: Divergence is a scalar quantity borrowed from fluid dynamics and represents the

amount of local expansion taking place. Vorticity is a scalar measure of local spin around

the axis perpendicular to the plane of the flow field. Symmetric and Assymetric Fields

are calculated by the sum and the difference between the flow field and its transpose re-

spectively and emphasise the symmetry or assymmetry in the observed action. Several

rotation-invariant features are also derived from the Gradient Tensor:

∇U(x, ti) =


∂u(x,ti)
∂x

∂u(x,ti)
∂y

∂v(x,ti)
∂x

∂v(x,ti)
∂y

 . (2.4)

where u,v are the horizontal and vertical components of the optical flow field. Analysis

is performed on a standard dataset which verifies that none of the features defined are

redundant. Snapshot Principal Components Analysis (PCA) is used on these features

to obtain Kinematic Modes. An action classifier is then learned using multiple instance

learning with each video represented as a bag of kinematic modes. Results reported on

the KTH dataset are competitive with the state of the art but cannot really be directly

compared as the authors admit to a greater degree of temporal annotation (breaking videos

down to single cycles of repetitive action) than normally used with the dataset. As in the

methods which have so far been investigated in this section, it is necessary to perform

person localization and then rescaling of the image to a fixed scale before this method can
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be applied and it is difficult to get a sense of how robust the features will be to occlusion.

This is the primary reason that global-feature based methods don’t currently seem

competitive on more complex recent datasets such as Hollywood 2 and UCF Sports and

in general, this is why Bag of Words (BOW) methods based on local descriptors have

been so dominant in the literature over recent years. Given that the primary dataset of

interest in this thesis contains actions involving multiple agents operating at times under

heavy occlusion, the focus of the review is now switched to action recognition systems

based on local features. Global representations should not be overlooked completely,

however. For example, the MHI as a descriptor has several attractive properties: They are

cheap to compute (only requiring a basic motion detector to be applied), can be intuitively

visualized, and encode enough information to be discriminative. In early experimentation

for Chapter 3, the MHI’s viability as a local descriptor was tested on the Hollywood

dataset; yet results were significantly poorer than features extracted based on optical flow,

so experimentation was discontinued.

This discussion is concluded with a method which incorporates some local weighting

into a global feature representation. In [8, 30], actions are regarded as space-time shapes

created from segmented silhouettes. Each space-time point within a shape is assigned

the mean time required for a particle undergoing a random-walk, starting from the point,

to hit the boundaries. From this representation, several local features are defined based

on gradients and orientations. Video clips are segmented into space-time cubes of fixed

duration and scale and global descriptors are created for each cube by taking weighted

moments of the local features. A simple Nearest-Neighbour classification scheme is then

used for evaluation. The features are shown to outperform standard space-time shape mo-

ments and demonstrate some robustness to partial occlusion and other anomalous factors.

However, the set of ’difficult’ sequences they have constructed is quite limited and slightly

contrived. There is some small amount of occlusion in some of the clips (a wall of boxes

reaching barely above ankle-height) and other complicating noise such as walking a dog
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Figure 2.3: Illustration of the local space-time saliency features used in [8]

or walking in an unusual way but the manufactured difficulties really aren’t representative

of those that are likely to be encountered in the kind of real-world footage that will be the

focus of this thesis. Hence the review proceeds to local features.

2.1.3 Methods Based on Local Features

This discussion is separated into three sections to reflect the elements in an pipeline which

is common amongst almost all work that involves local features. First there is feature

detection, which determines where the pertinent features in the video are located. Next

there is feature extraction, which involves choosing an appropriate feature representation

for the volumes which have been identified by the feature detector. Finally there is event

classification or detection, which involves predicting which event(s) is contained within a

given video volume.

2.1.3.1 Local Feature Detectors

Many of the most successful approaches employing local features for action recognition

have employed feature detectors to determine where (in the video volume) they should be

extracting features. The criteria one would hope a strong feature detector would fulfil are

as follows:

• Features detected should capture as much relevant motion as possible,
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• Features should be repeatable, meaning the same things captured at different scales,

• Features need to be significantly sparser to speed video processing or else show

improved performance over dense sampling.

With these things in mind, one of the most popular methods used in the literature is

summarized.

The first major study to motivate the use of local features in video analysis is the work

of Laptev [44], which highlights the benefits of an action recognition system that can

function without the need for segmentation, tracking or object flow computation. Laptev

extends the Harris [31] corner detector to three dimensions to detect space-time interest

points in video. This detector uses spatio-temporal image gradients within a Gaussian

neighborhood of each point to find corners. Firstly the image sequence, f , is translated

into its scale space representation by convolution with a separable Gaussian kernel. The

parameters of this kernel define the local scale for smoothing prior to the computation of

image derivatives.

L(·;σ2
l , τ

2
l ) =N(·;σ2

l , τ
2
l )∗ f (·) (2.5)

Next, the second moment matrix is computed as follows

µ(·;Σ) =N(·;σi, τi)∗ (∇L(∇L)T ) (2.6)

Where the parameters of this Gaussian are known as the integration scale for accumulat-

ing the non-linear operations on derivative operators into an integrated image descriptor.

The assertion made in [31] is that for perfectly uniform regions, this second moment ma-

trix will have zero-valued eigenvalues, a strong edge would have one large eigenvalue

and one near zero whilst a corner would have two eigenvalues of reasonable size. Since

the aim is to detect corners, one then seeks to find the coordinates where there are two

large eigenvalues. However since calculating the eigenvalues is relatively expensive, the
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following response function is used as an approximation.

H = det(µ)− κtrace3(µ) (2.7)

Space-time corners are then identified by taking the positive maxima of this function.

The value of κ is determined empirically and Laptev suggests a value of κ = 0.005 is

appropriate in many cases. Also defined in this paper is a scale-adaptive algorithm, which

initially searches over a sparsely defined range of scales to find a set of interest points at

various scales before iterating over the interest points and optimizing the response of each

one with respect to its scale and location.

An alternative interest point detector is described in the 2005 paper by Dollar et

al. [20]. This paper claims that the space time corners just described are well suited

to recognizing actions that are characterized by the reversal in direction of arms and legs

(referring here to KTH), yet are too seldom found in activities characterized by more

subtle motions. The question is raised as to whether space-time corners are indeed suit-

able features for general behaviour recognition: the features one needs are those which

maximize discrimination between behaviours. Neither a spinning wheel nor the jaw of a

chewing horse give rise to any space-time corners, as their motion appears gradual. Yet

these motions could be relevant features for behaviour recognition, clearly indicating that

a vehicle may be moving or a horse is eating. The proposed alternative to the corner

detector is a response function calculated by application of separable linear filters.

R = (I ∗N ∗hev)2 + (I ∗N ∗hod)2 (2.8)

where N(x,y;σ) is the 2D Gaussian smoothing kernel applied to spatial dimensions and

hev and hod are a quadrature pair of 1D Gabor filters applied temporally. The strongest

response under this detector will be caused by periodic motion such as a bird flapping its

wings, yet it is claimed any region with spatially distinguishing characteristics undergoing
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a complex motion will induce a strong response. There is some limited evaluation done to

demonstrate the effectiveness of this detector versus the Harris 3D detector on two small

datasets: The first of these involves human actors expressing different emotions through

exaggerated facial expressions in a series of short clips. The second is of the behaviour of

a single mouse in a cage. Whilst the datasets are too limited to be of wider interest, they

do help further the argument against space-time corners; though it is not clear whether

any effort has been made to tune the κ parameter used to control the sensitivity of the

corner detector and there is no comparison against dense sampling.

Willems et al. see problems with both representations and propose a further detector

in [87]. Dollar’s detector is criticised due to the lack of scale invariance in the cuboid

detector. Laptev and Lindeberg’s corner detector is criticised due to the computational

cost of the iterative procedure that is used to optimise the scale of features restricting

the density of features that it is feasible to extract. The method of Willems is in spirit

similar to the Harris 3D detector but it instead uses the scale-normalized determinant of

the Hessian matrix

H(·,σ,τ) =


Lxx Lxy Lxt

Lyx Lyy Lyt

Lxx Lty Ltt

 (2.9)

as its response function. Due to some convenient properties of the Hessian, it is possi-

ble to perform detection over multiple scales by simply taking local maxima over the 5D

space defined by (x,y, t,σ,τ) meaning it is very easy to vary the sparsity of the features ex-

tracted without significantly increasing computation. The evaluation section in this paper

introduces some nice ideas. The criterion on which the three different feature detectors

are evaluated is repeatability, that is how often the same spatio-temporal features are ex-

tracted in spite of various geometric and photometric transformations. They take a set of

video sequences then apply various artificial transformations to see how the repeatability
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Figure 2.4: Comparison of Bregonzio’s interest points (shown in green) versus the cuboid
detector (shown in red), taken from [12]. On this evidence, the cuboid detector picks
out lots of irrelevant regions whilst missing salient motion. The apparent effectiveness of
Bregonzio’s method is largely down to a frame differencing step which works well for the
static backgrounds and slow camera motion of the KTH dataset.

of the three detectors varies with scale change, in-plane rotation, camera motion and video

compression. The evaluation shows the Hessian method to be consistently strong under

all complicating factors, whilst the Harris 3D detector struggled with scale change and

compression and the cuboid detector struggled with camera motion. A limitation with the

reported evaluation is that although they say they experimented on several sequences, the

results they show are taken from just one of those.

A later paper by Bregonzio et al. [12] highlights problems with the cuboid detector,

namely that it ignores pure translational motion, is particularly prone to false detection due

to video noise and noise in areas of high texture. Therefore a new detector is proposed

which first contains a frame differencing step ‘for focus of attention and region of interest

detection’, then does filtering in the spatial domain with a combination of 2D Gabor filters
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at 5 different orientations and a 2D Gaussian envelope. Figure 2.4 shows examples where

Bregonzio’s detector appears to be highlighting more relevant features than the cuboid

detector. Unfortunately, quantative evaluation of this detector is not provided. The frame

differencing step which appears to work well on the KTH dataset would most likely be

much less helpful on more challenging datasets.

Finally, a recent review paper [82] which describes extensive evaluation over the KTH,

UCF sports and Hollywood2 datasets appears to suggest that in fact, there is no clear win-

ner amongst the detectors thus far discussed. There is no evaluation of the feature detec-

tors in isolation in this study but rather evaluation of combinations of feature detectors and

descriptors applied within a fixed pipeline to the task of classification. The performance

statistics suggest that the nature of the feature detector used is actually less important than

the descriptor used; and that in the case of the more complex datasets dense sampling may

in fact be preferable (if the computational expense can be borne). This intuition is applied

in Chapter 3, with the implementation of a low-level event detector that uses dense sam-

pling.

2.1.3.2 Local Feature Representations

In Laptev and Lindeberg’s early work on local features [46], ‘spatio temporal jets’ are

introduced as features to be used in recognition. These are vectors of third order partial

normalized derivatives. These features have also been used to achieve respectable results

on the KTH dataset [68]. This work is expanded in a later work by Laptev [45], which

introduces some invariance to camera movement by using a response function which is

made invariant to Gallilean transformations.

In the work of Dollar et al. [20], a cuboid is extracted at each interest point which

contains pixel values. The size of the cuboid is set to contain most of the volume of data

that contributed to the response function at the interest point, meaning six times the scale
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at which they were detected. Pixel values are then transformed into either (1) normalized

pixel values, (2) brightness gradient (on three channels Gx,Gy,Gt) or (3) optical flow (on

two channels Vx,Vy). The cuboid is then flattened into a feature vector, the dimensionality

of which is reduced by Pricipal Components Analysis. Gradient proved most effective

experimentally and was preferred in later experiments. Experiments were also performed

to check whether representing the cuboids as histograms over smaller features improved

performance, but the results suggested otherwise.

In a later paper [47], the 3D Harris detector is paired with features from space-time

cuboids around interest points. The volume is subdivided into a grid of smaller cuboids

and 3D Histogram of Oriented Gradient (HOG3D) and Histogram of Optical Flow (HOF)

features are calculated for each cuboid. Normalized histograms are concatenated into

HOG3D or HOF vectors. An in depth explanation of these features follows in Chapter 3.

The features so far described have been hand-crafted to encode sufficient informa-

tion to be discriminative whilst retaining various properties of invariance to increase their

robustness. However, several works have attempted to learn the descriptors themselves

by reference to the task to which they will be applied. One such example is the work

of Fathi and Mori [25], which concentrates on working with five frame blocks of figure-

centric images of fixed size. They calculate optical flow over the image sequence then

blur, normalize and split the image into five non-negative channels corresponding to up,

down, left, right motion plus another channel corresponding to the l2 norm over the other

four channels. Each voxel within the block is then considered to be a ‘low-level feature’

which can be used to discriminate between action classes by means of a simple thresh-

old. The threshold is optimised for each feature independently to give a large number of

(exceedingly weak) classifiers. Next, ‘mid-level’ features are defined as a weighted sum

of all low-level classifiers within a cuboid of fixed size. The weightings are learned using

Adaboost. Classification is ultimately performed with a weighted sum over the mid-level

features, with weights again trained with Adaboost. Evaluation is performed on KTH,
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Figure 2.5: Depiction of features used by Ke et al. Figure taken from [40] The top row
illustrates the 3D volumetric features used in their classifiers. The first feature calcu-
lates the volume. The other three features calculate volumetric differences in X, Y, and
time. The bottom row shows multiple features learned by the classifier to recognize the
handwave action in a detection volume.

displaying results close to state-of-the-art. Performance is also improved over [22] on the

soccer dataset introduced by Efros et al.

An earlier example of this kind of approach is the work of Ke et al. [40]; where

again person-centric volumes of fixed size are extracted from training videos. Millions

of potential features are considered, composed from four basic types of cuboid at various

scales and positions within the larger volume. The learning process involves the training

of a cascade of single-feature classifiers which thus selects a subset of these features

in order to achieve a target level of performance. This approach is heavily inspired by

the work of Viola and Jones [81], which has proved immensely successful in the field
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of object detection. The results published for the KTH dataset however are relatively

unimpressive, suggesting that the approach needs more refinement to work as well in

the activity recognition domain. One issue is that Viola-Jones inspired face detectors

are typically trained on thousands of images to achieve a good level of performance. The

KTH dataset in contrast comprises only hundreds of examples per class and the video clips

are of higher dimensionality than the relatively tiny images used to train face detectors.

Treating the temporal information as just another dimension means the data is much more

sparse.

The evaluation for these two methods however don’t evaluate the quality of the fea-

tures learned but rather the overall recognition performance of the system. It isn’t clear

how one might make the features independent of the classification strategy in order to

evaluate them in isolation. These are interesting contributions but they are highly depen-

dent on accurate pedestrian tracking in order to obtain training data, making them sus-

ceptible to most of the criticisms levelled at the global feature representations discussed

earlier.

Returning to the review paper of Wang et al., their evaluation shows that HOF features

used in conjuction with the Harris3D corner detector are proven to be the most effective

when deployed on the KTH dataset. Bregonzio et al. made one of the most recent and

successful attempts to tackle the KTH dataset [12]. They first deploy their feature detector,

which was described earlier, in order to get a response over a frame, before an edge

detector is employed to segment regions of high response (object of interest) from the

foreground. Once the object is segmented, two features are computed, measuring the

height/width ratio of the object and the speed of the object. Further features are extracted

from interest point ‘clouds’ of different scales from within the object. Features extracted

include height/width ratio of cloud, density of feature points within it and the absolute

speed. Whilst the paper is well cited, there is no record in later work of the features

being applied to more recent or difficult datasets. This fact, combined with the method’s
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reliance on frame differencing and object segmentation raises the question as to whether

it is generally applicable.

2.1.4 Action Classification Methodologies

For datasets such as KTH, Hollywood and Wiezmann the action recognition task is mapped

to a classification problem. Therefore, the majority of papers which evaluate on these

datasets use classifiers. N-Nearest Neighbour has been used in several works [8, 22, 68]

and in the work of Schuldt et al. [68] was compared to a Support Vector Machine (SVM).

In this, the SVM was found to marginally outperform the N-Nearest Neighbour method so

was preferred in the final system. This agrees with trends in the wider machine learning

community where SVMs have been quite dominant in classification tasks [79]. Several

recent works have thus used the SVM to good effect [20, 47, 68].

Schuldt et al. [68] evaluate two different methods of exploiting features. The first

representation considers each sequence as a bag of features and the kernel between two

clips as

K̂(Lh,Lk) =
1
nh

nh∑
jh=1

max
jk=1,...,nk

{
Kl(l jh, l jk)

}
(2.10)

where Lh = {l jh} and l jh is a descriptor of an interest point j in sequence h and likewise

for Lk.

Kl(x,y) = exp
{
−ρ

(
1−

〈x−µx,y−µy〉

||x−µx|| · ||y−µy||

)}
(2.11)

Intuitively, this is comparing each feature in bag h to each feature in bag k and matching

to the most similar feature. The total similarity between the two bags is then the sum of

these scores.

The second method first applies k-means clustering to build a codebook of features

then each video sequence is modelled as a histogram over these features, with the kernel

between clips in the histogram representation simply being: K(x,y) = exp{−γχ2(x,y)}.

Experimental results show that the bag of local features does marginally better than the
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histogram, though in later works by the authors the histogram approach is favoured. This

is most likely due to the cost of evaluating the kernel between two clips, h and k, 2.10

being proportional to D∗Nh ∗Nk, where D is the dimensionality of the feature, Nh, Nk are

the number of features in each clip.

In the work of Dollar [20], a dictionary of cuboid prototypes is also built by k-means

clustering of training data. Video clips are represented as histograms over cuboids and

classified by SVM. Laptev’s more recent work [47], also follows the exact same pipeline,

albeit with a multi-channel kernel used to combine features of varying shapes and scales.

There are several strengths to this pipeline: firstly the bag of words representation ensures

clips of arbitrary length can be represented with a fixed length vector, meaning clips of

different lengths can be easily compared. Secondly, because of the popularity of the SVM

across the machine learning community in recent times, there are several mature and

efficient implementations which can be easily deployed. In the experiments in Chapter 3,

LibSVM [15] was deployed.

2.2 High Level Scenario Recognition

2.2.1 State-Based Methods

One popular approach to high-level scenario recognition is to have latent variable(s) stor-

ing the state of the world at each timestep, and to model the probability distribution over

transitions between states.

The work of Hongeng and Nevatia [32,33] is a representative example of a type of ap-

proach used often in surveillance type applications. Agents are tracked, and these tracks

then trigger atomic events based on their relative (agent A approaches agent B) or ab-

solute movement (agent A stops). More complex activities are defined by single and

multi-thread Finite State Machines. Simliar in spirit is the work of Makris et al. [49],

whereby motion tracking across multiple overlapping cameras is used to abstract away
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from image sequences to moving blobs in 3D space. The tracking information is used to

build semantic models of the scene, typical routes through it. Suspiscious behaviour is

then detected by learning a Hidden Markov Model over routes through the scene. HMMs

are often deployed in this kind of context, where there is a single agent (or multiple agents

whose activity is assumed independent) and a single state variable due to their computa-

tional convenience [14, 58, 73, 77, 89]. One of the main limitations of HMMs however is

that the number of parameters in the model is proportional to the square of the number

of hidden states. In scenarios where there are multiple overlapping processes, the state

space of the hidden variable grows exponentially with the number of processes. This

in turn increases the required amount of training data exponentially, which is a major

problem in many domains. Extensions have been studied which mitigate the problem in

certain special cases [11,60], but cannot be applied in general to cases with large numbers

of overlapping events.

Conditional Random Fields (CRFs) can also be created with a structure that mimicks

HMMs and in such cases [43], have been shown to outperform HMMs. One example of

such a comparison in the event recognition domain is the work of Vail et al. [78], which

applies HMMs and linear chain CRFs to the toy problem of identifying which of three

robots involved in a game of ’robotic tag’ is doing the chasing based on the position and

motion of the three robots. Here CRFs are shown to outperform HMMs but the problem is

simplistic (there is one state variable which can take one of three discrete values). Smin-

chisescu et al. [71] exploit more of the power of the CRF versus the HMM by exploring

longer-range dependencies between state variables and observations but again, the dataset

is small and simple. The problems described in the previous paragraph with respect to im-

plementing such state-based methods in a complex domain are not solved or mitigated in

any significant way by the switch to linear chain CRFs.



Chapter 2 25 Related Work

2.2.2 Grammars and Logic

Many existing approaches to high-level event recognition break complex activities down

into a sequence of simpler atomic activities then exploit the temporal structure between

these activities. In the work of Ivanov and Bobick [35], this structure takes the form

of a Stochastic Context Free Grammar (SCFG). They describe the application of their

system in two domains, the first of which focuses on recognition of complex gestures,

with a SCFG used to associate probabilistic detections of simple gestures generated by

independent HMMs. The second domain is more relevant to this work, focusing on multi-

agent event recognition in CCTV footage over a carpark. In this case, a motion tracker

is first applied to the video sequence before a hand-crafted ’trajectory event generator’

creates detections with probabilities attached. These trajectory events consist of events

such as ‘car-enter’ or ‘person-leave’ to represent people or cars entering or leaving the

scene at commonly-used entry and exit points. If the tracker loses people or cars elsewhere

in the scene, ‘car-lost’ or ‘person-lost’ events are fired. Probabilities may be attached to

these events; for example the tracker may have difficulty classifying an object so might

fire ‘person-enter’ and ‘car-enter’ with equal probability. In SCFG, the atoms which are

observable and cannot be reduced into simpler components are referred to as terminals.

A section of the SCFG used for interpretation on top of these terminals is shown here

in Figure 2.6. It can be seen that the event vocabulary is relatively small and simple,

essentially just distinguishing between cars dropping people off, picking people up or

just driving through the scene yet the grammar is quite verbose as intermediate states are

required to cope with noise. This highlights one of the main problems with this approach:

the SCFG, including the associated rule weights must be created manually, meaning a lot

of work is required to tailor the method to each domain. Additionally, there is no easy

way to exploit expectations over time differences between events.

Damen and Hogg [18] tackle a problem of similar complexity. The domain of interest

in this work is CCTV footage of bicycle racks, where the goal is to match instances
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Figure 2.6: Part of the Stochastic Context Free Grammar used in [35]

of people dropping off cycles to instances of people collecting cycles. A Hiearchical

Bayesian network is instantiated whose size is dependent on the output of a motion tracker

for a sequence. Each one of n trajectories is assigned a node. A further m nodes are created

to represent changes in bicycle clusters in the scene. n×m mid-level nodes are created to

represent all the potential pairings of person trajectories with cycle cluster events. A third

level in the vocabulary has variables to link all pairs of mid-level events into compound

’drop-pick’ events, meaning a further
(
n×m

2

)
nodes. The topology of the DBN makes

exact inference intractable therefore MCMC is used to find the optimal labelling of latent

variables. Promising performance is shown, and the amount of domain-tailoring for this

kind of strategy seems to be slightly less than in the SCFG case. However, the size of

the search space and intractability of the inference could make the methodology costly to

apply in complex domains.
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Inductive Logic Programming (ILP) is another technique that has been applied to the

event recognition problem. In ILP, the logical rules that best explain a set of training

data are learnt from background knowledge and labelled examples. Needham et al. [55]

demonstrate a system that is capable of learning the rules to several simple card games by

observing short passages of play. In these games however, there are no complex tempo-

ral relations between events. The system’s only awareness of time is through a predicate

named ’successor’ which indicates when one event follows another, meaning that exten-

sions would be required for application in more complex domains. Dubba et al. [21]

apply ILP to the task of event learning in the aircraft servicing domain. In that work,

relational data is created from motion tracking by abstraction to spatial relations between

pairs of objects, with temporal relations between interactions modelled through Allen’s

interval calculus [2]. Positive training examples are specified through ‘Diectic Super-

vision’ , which involves supplying the spatial and temporal extent of events within the

video volume. ILP is then used to find the ruleset that best explains most of the positive

examples whilst minimizing the number of false positives induced by the rule. Sridhar et

al. [72] similarly abstract from tracking to relational data, but in this approach the learning

is almost entirely unsupervised. A video sequence is represented as a graph which links

tracks to episodes and links episodes with temporal relations. An episode is defined as an

interval of time over which a spatial relation between two objects holds. The primitive

relations are linked through a graph structure.

Note that the research of Dubba et al. was also carried out on the Co-Friend dataset,

which is the dataset of primary focus in this thesis and it is therefore a relevant benchmark.

2.2.3 Motion Patterns and Topic Models

A sub-branch of activity recognition is work on learning of Motion Patterns. Motion

Patterns are typically described as spatial segments of the image that have a high degree of

local similarity of speed and flow direction within the segment and otherwise outside [66].
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Figure 2.7: Spatial and temporal relations used in Dubba et al. [21].

Some of they key motivations behind trajectory-based event recognition is provided

by Johnson and Hogg [36]. In this early work, trajectories obtained from a tracker are

broken into sequences of motion vectors, which are quantised so that they might be used

as a means to detect typical and abnormal trajectories or events. This work is extended

by Stauffer and Grimson [74], who similarly cluster motion vectors then represent video

sequences as multisets over these words. They then perform hierarchical clustering using

co-occurrence statistics. The clusters produced are shown to correspond to meaningful
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categories such as morning/evening rush hour, pedestrian traffic etc.

The later work of Hu et al. [34] follows a similar methodology, only the motion pat-

terns are represented by chains of Gaussian distributions, which they argue is a more in-

tuitive statistical formulation that thus allows anomoly detection through the application

of probabilistic inference.

The limitations of trajectory-based approaches however are summarised in [88]. The

chief questions when considering the suitability of a trajectory-based approach to event

detection for a particular domain are whether sufficiently reliable tracking is feasible and

whether sufficient information about the events of interest is encoded in the trajectories

alone. For many domains, including the specific case of detecting servicing events on an

airport apron, neither of these criteria can be said to be met by the current state of the art.

This comment is further justified in Chapter 3.

The methodologies so far discussed in this section employ motion trackers to obtain

trajectories, however this is not the case for all research in the area. Recently Saleemi et

al. [66] described a method which uses dense optical flow as input to their learning. They

first chunk a video into one second-long clips, extract features X = (x,y,ρ,θ), where (x,y)

is position, ρ is magnitude and θ is direction of flow. They ‘marginalize’ time in each clip

then perform k-means clustering on the 4D data collected from many clips and use the

resulting labelled data to train a Gaussian mixture model. A clip is then represented as

N Gaussian mixture components. A longer video is treated as an undirected graph with

the nodes being mixture components. Nodes are connected if they belong to proximal

clips and one component is ‘reachable’ from another if the parameters of the second

Gaussian are close to what can be predicted based on a linear prediction from the position

and motion of the first component. Connected components of the graph represent distinct

motion pattern instances that occurred through the video. KL divergence is then computed

for all GMMs by Monte Carlo sampling and GMMs are thus grouped. The approach is

tested on three datasets; one is 15 minute-long traffic scene, the second is the MIT traffic
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dataset used in [83] which consists of 90 minutes of traffic data, and a final short video

sequence consisting of just 250 frames of a scene containing dense pedestrian movement.

The results are not quantified in the paper, but the conjecture is that they do correspond to

patterns that would be meaningful to a human observer.

The methodology of Stauffer and Grimson discussed earlier closely resembles Topic

Models, which have been used extensively in the information retrieval literature [9]. Sev-

eral recent works have used them explicitly for human action recognition.

Niebles, Wang and Fei Fei [56] is one notable example. They use Dollar’s feature

detector and gradient descriptors calculated from a cuboid exactly as in [20] and k-means

is once again applied to get a finite vocabulary. They then apply two different latent topic

models borrowed from document analysis- probabilstic Latent Semantic Analysis (pLSA)

and Latent Dirichlet Allocation (LDA) to learn action categories in an unsupervised fash-

ion. These two models are presented diagramatically in Figure 2.8. One advantage of

these methods is that localization is easier with this kind of model than SVM as it is easy

to identify the spatio-temporal words which are most strongly correlated with a particular

action category. A weakness of the method is the strong assumption that all words are

independent of one another given the topic and similarly that all topics are independent

given the document. They show close to state of the art results on the KTH dataset; though

unfortunately for admirers of Bayesian methods they find the simpler pLSA method to

do better empirically. They go on to evaluate performance when localizing multiple ac-

tions in a single clip, which is simply done by taking all action categories ‘significantly

induced’ (thresholded under certain restriction) by P(z|w,d) - the probability of topic,z,

given words, w, and document, d. k-means then performed (with k = number of topics

discovered) to cluster interest points based on position before the clusters are assigned to

actions based on voting from features within. Another task they tackle, not covered by

any of the aforementioned papers, is that of finding several actions performed by the same

actor within one video clip, with what is essentially a sliding window detector.
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Figure 2.8: Top: Graphical representation of probabilistic Latent Semantic Analysis
model. d represents a document, z is a (latent) topic and w is a word.M is the total number
of documents and Nd is the number of topics in a given document. Bottom: Latent Dirich-
let Allocation model. All common variable names take the same meaning, but note that
in LDA, d is not observed, rather a Dirichlet prior is placed on it, with hyperparameter α.
An additional multinomial prior β is placed on w.
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Wang et al. [83] also implement a variant of LDA, before performing further experi-

mentation with Hierarchical Dirichlet Processes (HDPs). The HDP model is completely

parameter free since the Dirichlet Process prior does not even require that the number of

topics is specified. This is particularly important when applying the method in an unsu-

pervised fashion. An extra layer to the model also exists when compared to the work of

Niebles et al., meaning that rather than just latent topics, there are latent atomic activities

and interactions (which are a level higher up the hierarchy). The validity of the method

is shown by experimentation on a synthetic dataset. A topic model is specified and used

to generate a bag of images. HDP then successfully recovers the parameters of the model

from the data without any supervision. There are a series of experiments then done on a

traffic dataset, with lots of effort made to prove that the topics extracted by the LDA and

HDP are semantically meaningful.

As demonstrated, the works in this area are generally focused on the task of unsu-

pervised learning of patterns which doesn’t quite fit the context of this thesis where one

wishes to detect a set of events from a fixed vocabulary within structured sequences.

However, some of the events in the cofriend dataset are so semantically simple that they

can essentially be considered to be a particular vehicle moving along a particular trajec-

tory, where absolute position is important. For these kinds of events, approaches based

on patterns of motion might be easily applicable and more appropriate than the action

recognition methods; which are geared more towards recognizing the articulated motion

of humans.

2.2.4 Part-based models

The primary focus of this thesis is the recognition of events in structured scenarios. In this

setting, an event can actually be considered to be a constituent part of a larger scenario.

As mentioned earlier, the local-feature based approach to action recognition drew inspi-

ration from the object detection literature which had already shown similar methods to be
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effective in that domain. One of the most active areas of research in object detection is that

of part-based models. The Pictorial Structure Model (PSM) was introduced by Fischler

and Elschlager in 1973 [29]. Their idea is that an object can be represented as a set of

rigid components held together by ‘springs’. The springs joining components constrain

the relative movement by incurring a cost depending on how much they ‘stretched’. They

formulate the following objective function for object localization:

G(X) =

p∑
i=1

p∑
j=1

gi j(xi, x j) (2.12)

Where p is the number of parts in the model, X = x1, .., xp is a vector giving the position

of each part within the image. When i , j, gi j(xi, x j) represents the spring loss incurred

under the colocation of parts i and j. In cases where this relationship is uninformative,

this would simply be zero. When i = j, gi j(xi, x j) is defined to be a local appearance term

which measures how well a particular part matches the image at a given location. They

define a dynamic programming procedure for finding an approximate solution to the lo-

calization problem. Many later studies built on this work, most notably Felzenszwalb and

Huttenlocher in [27], which introduces a probabilistic formulation for the PSM and thus

suggests some Bayesian methods for efficient training and inference. This formulation

will be studied in more detail in Chapter 4 where I draw parallels with my model for

scenario recognition.

Kumar et al. extend the Pictoral Structure Model in [42]. Their approach involves us-

ing an appearance model for each part which consists of two elements; shape and texture.

The training involves building a set of exemplars for shape and a set of two-component

GMMs for texture (which makes sense given the target domain is cows). The likelihood of

a given part being in a particular patch is taken to be Gaussian over the minimum truncated

chamfer distance between the edge outline and all the exemplars for that part, multiplied

by the texture likelihood obtained by reference to the learnt GMMs. For implementation
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efficiency, the texture is only referenced at candidate locations deemed sufficiently likely

with respect to the outline.

Unlike in Felzenszwalb’s formalism, the structural prior is a fully connected graph

structure. Their experiments show that this improves performance versus a tree struc-

tured prior. Another key change they make to the PSM which is not emphasized in the

paper is that the pairwise likelihood function is just a ‘top-hat’ function, meaning zero in

valid configurations and a constant value otherwise. Experimetation with fully connected

models was carried out in this thesis and Chapter 5 gives an idea of why this change was

most likely made. The experiments highlight that if a PSM is treated as being pairwise

fully connected, as the number of pairwise relations grows quadratically with the number

of parts, then these terms tend to dominate the observation likelihood, since many of the

pairwise terms are heavily dependent on one another yet by multiplying them together

independence is being assumed.

CRFs are another powerful method which have been used to implement part-based

models. Detail on the theory and implementation of CRFs is included in Chapter 5 but for

now the focus is on the application. Quattoni et al. [62] extract m patches, x = 〈x1, ...xm〉,

from an image with a SIFT detector. They connect these patches with a minimum span-

ning tree (with distance function between patches just being the Euclidean distance),

stored as the edge set E . Each patch has a latent (training data is not labelled at the

part level) variable which gives its assignment to an object part, h = 〈h1, ..,hm〉. They then

define the following conditional model:

P(y,h|x, θ) =
eΨ(y,h,x,θ)∑

y′,h eΨ(y′,h,x,θ) . (2.13)

Where

Ψ(y,h,x, θ) =
∑

j

φ(x j) · θ(h j) +
∑

j

θ(y,h j) +
∑

( j,k)∈E

θ(y,h j,hk) (2.14)

Where φ(x j) is a feature vector consisting of SIFT and relative location and scale features.
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The inner product φ(x j) · θ(h j) can be interpreted as a measure of compatibility between

patch x j and part label h j. Each parameter θ(y,k) can be thought of as a measure of

compatibility between a part of type k and label y. Each parameter θ(y,k, l) measures the

compatibility between an edge with labels k, l and overall label y. Inference in the model

is performed via Belief Propagation. Experiments focus primarily on the task of detecting

various types of vehicle in a standard dataset. Results shown are impressive and there is

some indication that the parts learned in the model correspond to meaningful entities

such as the wheels of the car. Wang and Mori [84, 85] have applied similar methodology

to action recognition, working with the 4-channel person-centric flow fields proposed by

Efros et al. rather than images.

Another novel part-based approach to action recognition is proposed by Ke, Suk-

thankar and Herbert [39]. In this, videos are treated as 3D space time volumes. An action

is simply represented as a shape within this volume. Recognition of an action is per-

formed by first segmenting a video into super voxels then sliding the template for the

action throughout the video volume and finding the local maxima of a normalized re-

sponse function. The response function is calculated as the intersection distance between

the template and the optimal subset of supervoxels that are entirely or partially contained

within the template. The template for an action is generated from a single example. The

template is manually segmented into parts and the model allows the parts to move inde-

pendently to improve the generalization power of the template. The response function for

a model of multiple parts is then a combination of the response of each individual part

and the geometric matching score between the parts.

A significantly different part based approach is outlined by Niebles et al. [57] in which

temporal structure is combined with local features to recognise more complicated events.

Here, a single event model consists of bag of word classifiers at different temporal scales,

with some additional temporal context for each classifier. The model is learnt with a

Latent SVM formulation and an iterative learning algorithm which alternates between
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Figure 2.9: Visualization of one of the learnt models from Niebles et al. [57]. In this
illustration, the horizontal axis represents time. Each row corresponds to a motion seg-
ment classifier learned by the model, whose temporal extent is indicated by its vertical
location. The appearance of the motion segment is illustrated by a few example frames.
The associated dot indicates the anchor position of the motion segment relative to the full
sequence. The parameters of the temporal misplacement penalty are represented by the
parabola centered at the anchor point.

optimising model parameters and estimating the hidden variables (positions of the motion

segment classifiers). Their model is easily understood visually in Figure 2.9.

An alternative approach is presented in [50], where pairwise temporal relationships

are appended to local features prior to quantization with the goal of retaining some of the

temporal information (intraevent) that would otherwise be lost in a local feature represen-

tation.
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2.3 Discussion

I have surveyed a broad range of techniques for activity recognition in video. Whilst

there exist many powerful methods that have achieved impressive results across various

datasets, it is clear that the problem of human action recognition in general unconstrained

scenarios is still very much unsolved. No one method exists that beats all others across all

datasets; it seems rather that the various methods have differing degrees of robustness to

the many different factors that make the problem of activity recognition so challenging:

• occlusion,

• subtlety and variability of motion,

• scale variation,

• viewing angle variation,

• camera motion.

Therefore the ‘best’ activity recognition system for a given scenario is the one which

copes best with those difficulties which are most inherent to that domain. The thrust of

this thesis is to create a model for high level scenario recognition which is independent of

the workings of the lower level detectors, to allow appropriate ones to be selected for the

task in hand: perhaps combining heterogeneous detectors to recognize different events

within the same domain. Particularly important in this work is the idea of efficiently

exploiting temporal relations between events. None of the previous works in the area are

quite satisfactory on this count, either treating the temporal domain in the same way as

the spatial domain, or else focusing purely on the ordering rather than expectations over

relative timings of events.



Chapter 3

Implementing Low-Level Event

Detectors

The primary dataset of concern in this thesis is the Co-Friend dataset. Two important

characteristics of this dataset in vision terms are that the camera position is fixed and the

position at which events can occur within the scene is very constrained, meaning there is

little variation in the scale at which events are observed, and there are no complications

caused by camera motion. Occlusion is on the other hand a major issue, since several

events are often occurring simultaneously in close proximity, involving multiple protago-

nists. Some events take place a long way from the camera, meaning the people involved

may only be 20 pixels high. These factors render the task of tracking exceedingly dif-

ficult. A state-of-the-art tracker [76] was applied to the dataset in early experiments but

numerous issues were observed. The most critical of these issues was the inability to

maintain object IDs in cluttered scenes. The research of Dubba et al. [21], was carried out

on this tracking data, however they were only able to report results on a small subset of the

38
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Figure 3.1: Flow diagrams describing the action recognition pipeline implemented in this
chapter.

event vocabulary. If a high level event recognition system is to depend on tracking alone,

the tracking needs to be stable and capture most or ideally all relevant activity. Whilst

noise and missing data can be mitigated to some extent with filters or smoothing, these

are things that are would more naturally sit within the tracker, where visual information

is still available. As tracking was not the focus of this thesis and existing trackers did

not give satisfactory performance on the target domain, alternative methods which did not

rely on tracking were preferred for event detection. In the previous chapter, a strong focus

was placed on methods using classifiers with local features as detectors. This is the type

of method chosen to suit the Co-Friend project.
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3.1 Training Event Detectors Based on Histograms of Op-

tical Flow

This chapter describes the implementation of a detection framework based closely on the

work of Laptev et al. [47]. The detector was implemented from scratch to ensure that all

the design choices that would go into the framework were understood. The process did

indeed prove to be informative, and whilst Laptev’s method is clearly described and thor-

oughly evaluated, there were some important aspects of the HOF features which could

perhaps be enhanced with some further tuning. This chapter begins with a brief descrip-

tion of the method and ends with a thorough evaluation of several HOF parameters which

have previously not been tested. Most of these things relate to the normalization scheme

for HOF features, which was highlighted by Dalal et al. [17] to be an important aspect of

the HOG feature. At the time of writing there are no published works which perform this

evaluation for the HOF feature.

The detection framework is implemented in Python since the high level functional-

ity and wide range of interfaces to standard libraries allow rapid development. For effi-

ciency, as far as is possible the implementation leverages methods of OpenCV, which has

been highly optimized in C++ and ‘numpy’ [59], which is essentially an interface to the

BLAS [7] and LAPACK [3] libraries. BLAS and LAPACK are highly tuned libraries for

performing array, vector and linear algebra operations.1

3.1.1 HOF Feature Considerations

The first stage in dense HOF/HOG feature extraction for video analysis is to transform

the image sequence into a series of 2-channel optical flow or gradient images. This is the

only inherent difference between HOG [17] and HOF features, though as already men-

tioned there are small differences in the typical implementation of the two. In the case

1The framework will be made available open-source alongside this thesis.
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of HOF, dense optical flow is computed, giving a 2-channel image where one channel is

the horizontal motion and the second channel is vertical motion. This 2 channel image

is then converted to a D channel image, where D is the number of directions into which

motion is to be quantized. In Laptev’s original implementation, an additional bin is des-

ignated for static pixels and the binning is done in a coarse way where each pixel places

a single vote of unit weight into the bin whose direction is closest to the direction of the

vector described by the optical flow at that point, with motion below a certain threshold

resulting in a vote for the non-motion bin. The argument for this methodology is that the

direction of motion alone should provide enough information for action recognition and

that optical flow algorithms can be noisy. It is feasible that a coarse method may be more

robust to noise but the additional bin required for this approach does seem inelegant and

there is no precedent for such a construction in the more mature HOG literature. In this

chapter, this coarse binning approach is compared with a bilinear filtering approach which

is described as follows. First convert the flow from dx, dy representation to magnitude,

m and orientation, θ. Each of the D directional bins is defined by an orientation value φi.

In general, the orientation of any flow vector will fall φi < θ ≤ φ j. The magnitude of this

vector is then shared between bins i and j such that mi =
m(θ−φi)
φ j−φi

and m j =
m(φ j−θ)
φ j−φi

. Note

that in practice this can be computed efficiently by reference to look-up tables. Once a

number of frames have been converted into D channel images, dense HOF features are

extracted from this volume. See Figure 3.2 for a diagram of a HOG/HOF feature which

clarifies several elements of the terminology that will be used. A HOG/HOF feature

corresponds to a cuboid which is termed a block. A block is itself composed of poten-

tially overlapping smaller cuboids referred to as cells. These cells define the regions over

which gradient/flow vectors are to be accumulated into histograms over direction. The

histograms from all cells within a block are concatenated to produce one feature vector.

This vector is of dimensionality xb × yb × tb × θ . The parameters relating to the features

are:
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• xb,yb, tb are the dimensions of the block (in cells);

• θ is the angular granularity i.e. the number of bins that direction is discretized into;

• Oc is the degree of overlap between cells;

• Z is the normalization scheme (l1, l2, etc..) .

Figure 3.2: Diagram of a HOF feature with a block size of 3× 3× 2, with an angular
granularity of 4 (i.e. 4 different bins for direction of motion)

Clearly a grid search over this number of parameters would be costly on any non-

trivial dataset. Laptev et al. [47] perform an evaluation over various settings for most of

these parameters on the Hollywood dataset, referring to each of the 24 different settings

tried as a channel and displaying the most effective channels and combinations of chan-

nels. There is no one channel which emerges as clear winner, with different channels

proving slightly more effective for different event types. However, in the later experi-

mental paper of Wang et al. [82], which compares the effectiveness of various feature

point detectors (Harris 3D vs Hessian vs cuboid vs dense sampling) and feature types

(HOF vs HOG vs cuboid), the block dimensions are held fixed at 3× 3× 2, without any

cell overlap, and angular granularity of 4, suggesting that this has been selected as a good

general-purpose choice. Note that the cell dimensions xc,yc, tc which were mentioned ear-

lier were omitted from the list of parameters. This is because they are considered to define
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the scale of a feature. Since feature point detectors generally have a method for approxi-

mating scale and dense sampling is performed over multiple scales, it is not necessary to

optimize these parameters prior to deployment of the system.

To enable easy comparison with previous work, and keep the number of different per-

mutations down to a manageable level, all experiments in this chapter are performed with

block dimensions fixed at 3× 3× 2. The focus in this chapter is to compare normaliza-

tion strategies. In Laptev’s implementation features are l1 normalized, which due to the

unit voting scheme used is equivalent to simply dividing through by the number of pix-

els in a block. Adopting a bilnear filtering approach for the binning of motion however

opens more possibilities for the normalization of the HOF feature vectors. Three nor-

malization schemes are compared: the well known l1 and l2 and then a novel scheme we

term scale-normalization which is described in Figure 3.3. The normalization constant in

scale-normalization is purely dependent on the scale of the feature, preserving rich mag-

nitude information whilst remaining invariant to scale changes. This could potentially

prove very useful in distinguishing between events that involve for example, a vehicle

stopping suddenly as opposed to a vehicle stopping gradually.

3.1.2 Evaluation of normalization and motion-thresholding

All normalization methods with bilinear versus coarse binning for 3 different angular

granularities on the challenging Hollywood 2 dataset are evaluated, using the train/ test

divisions provided by the authors. The one stochastic element in the training algorithm

is the random initialization of the k-means algorithm used to build the codebook. This

problem is mitigated by reinitializing 20 times and taking the best scoring codebook (in

terms of information loss over the data used for generation) and thus observe a standard

deviation in performance figures < 0.5% due to codebook initialization.

The results of these experiments are listed in Table 3.2. It seems clear from these

results that an angular granularity of 4 is optimal for this dataset; presumably because use



Chapter 3 44 Implementing Low-Level Event Detectors

Figure 3.3: Demonstration of feature normalization based only on feature scale. Both
rows above show a metre-high, metre-wide bever undergoing a pure translational motion
of 2 metres between frames. The top row shows the case where the beaver is captured only
by a single pixel. Its translational movement of 2m thus registers an optical flow value of
2 along the x-axis. The bottom row shows the beaver at 3× scale. Now, the beaver is still
contained within a single cell but there are 32 = 9 pixels within that cell. Additionally, the
optical flow magnitude for each pixel within the cell has increased in proportion to the
scale change. It is therefore that to keep scale independance without block normalization,
it is necessary to first divide the flow vectors by the scale factor before dividing by the
number of pixels in the cell (in this case 32).

of only 2 directional bins results in features which are not discriminative enough whilst

6 bins makes features less robust to variations in viewing example for example. Also

evident is that bilinear binning of flow magnitudes outperforms coarse binning in almost

all cases. l2 normalization appears to be the most successful normalization strategy, whilst

the scale normalization strategy is the biggest disappointment; yielding the worst results
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of all.

There are several reasons which could potentially contribute to this result. Firstly, mo-

tion magnitude isn’t very helpful in distinguishing between the action types covered by the

Hollywood dataset. Secondly, not normalizing causes points to be more sparsely spread

in the original feature space, causing problems for the k-means codebook generation and

making the features less repeatable. Finally, the optical flow algorithm deployed uses a

Gaussian weighting term in the region-segmentation procedure used to smooth flow. The

scale of the Gaussian can be specified but since dense optical flow calculations are ex-

pensive it is only feasible to run this once per image, subsequently extracting at multiple

scales from the same flow image. Because of this it could be that without normalization

of flow magnitude, the repeatability at different scales might be reduced. This issue was

investigated by extracting HOF features with scale normalization over one of the longer

clips (2265 frames) from the Hollywood 2 dataset, then upscaling the video to 2× scale

and running the feature extractor again with features at 2× scale, using the same code-

book. The raw flow obtained for various frames in this clip at these two scales is shown

in Figure 3.4. This anecdotal evidence appears to show that significant salient motion is

almost identically captured at both scales, though there is difference in the patchier back-

ground noise. As a small quantitive verification of this intuition, the features extracted

at these two different scales are examined to check how many are identically quantized

across different normalization schemes. The figures, given in Table 3.1 appear to validate

the concern that the scale-normalized features are less repeatable over different scales

than the normalized varieties.

3.1.3 Statistical Significance of Hollywood Performance Figures

The performance figures quoted for these detectors come from a test set comprising 884

samples. The best performing parameter combination (using bilinear binning and l2 norm)

classifies 414 cases correctly (46.8%), whilst the next best combination (coarse binning



Chapter 3 46 Implementing Low-Level Event Detectors

Norm Nwords different Percentage different
l2 8080 32

S cale 8635 35
Coarse 7990 31

Table 3.1: Repeatability of HOF features at 2 different scales in a single clip from the
Hollywood 2 dataset. The second scale is obtained by upscaling the original image se-
quence to double the original size using bilinear interpolation, then re-running optical
flow calculations with identical parameters and extracting features at double the spatial
scale.

Normalization Angular Granularity Binning Mean Average Precision (%)
l1 2 bilinear 43.1
l1 4 bilinear 46.0
l1 6 bilinear 43.8
l1 2 coarse 41.5
l1 4 coarse 45.9
l1 6 coarse 42.9
l2 2 bilinear 43.8
l2 4 bilinear 46.8
l2 6 bilinear 44.8
l2 2 coarse 42.5
l2 4 coarse 45.2
l2 6 coarse 44.8

scale 2 bilinear 41.0
scale 4 bilinear 40.8
scale 6 bilinear 39.9

Table 3.2: Performance figures for parameter combinations on Hollywood2 dataset. The
Mean Average Precision is obtained by taking the mean AP across event classes
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NOccurs l2 bilinear l1 coarse
pole vault 40 62.1 60.2

vault 56 60.0 60.4
clean and jerk 66 76.4 75.3

shot put 63 25.2 27.1
diving springboard 3m 46 92.9 84.3

long jump 46 77.4 77.1
snatch 49 44.2 44.2

basketball layup 50 63.2 60.8
high jump 67 57.1 54.0

javelin throw 25 78.0 77.4
bowling 49 36.2 37.8

diving platform 10m 57 95.1 88.8
discus throw 63 39.9 39.5

hammer throw 46 40.7 39.6
triple jump 21 17.0 20.1
tennis serve 39 37.2 37.0

Overall 783 57.2 55.8

Table 3.3: Performance figures for parameter combinations on the Stanford Olypic Sports
dataset. The Mean Average Precision (%) is obtained by taking the Mean Average Preci-
sion across event classes
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Figure 3.4: Side by side comparison of thresholded dense optical flow extracted with the
Farneback OpenCV implementation with identical parameters at original (left) and 2×
scale (right). Arrows are plotted proportional in length to the magnitude of flow every 8
pixels in x and y directions at original scale and every 16 pixels at the double scale. Only
flow with a euclidean magnitude greater than 2.5 (original scale) and 5 (double scale) is
displayed.

with l1 norm) classifies 406 cases correctly (45.9%). It is not obvious however, whether

this 0.9% improvement is conclusive evidence that bilinear binning with l2 norm is better

in general given the size of the test set? One way to model the significance of these figures

is with the binomial theorem. The true performance values p1, p2 of the two detectors are

unknown. This gives a distribution over pi in the form:

p(pi) =
B(pi,n,ki)∫ 1

0 B(p j,n,ki)dp j

(3.1)
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Where B is the binomial distribution

B(p,n,k) =

(
n
k

)
pk(1− p)n−k (3.2)

Where ki is the number of samples correctly classified by classifier i and n is the total

number of samples. Therefore the likelihood that the true performance p1 > p2 is

"
D

p(p1)p(p2)dp1dp2 D = {(p1, p2) ∈ R2;0 ≥ p1 ≥ 1; p1 ≥ p2 ≥ 1}, (3.3)

which is the region below the line in the graph shown in Figure 3.5. In this case, the

probability mass in that region is 0.65 meaning that it is with only 65% certainty that

classifier p1 is better than p2. Therefore it is not possible to make the statement that bi-

linear filtering is superior with confidence. Hence corroboration is needed from a further

dataset. The best scoring two normalization schemes on the Hollywood dataset are taken

forward for further experimentation on the Stanford Olympic Sports dataset [57]. In the

publication which introduces the dataset, it is stated that there are 50 examples for each

of the 16 classes of action and that training is performed on 40 samples, testing on 10. A

train/test split is supplied with the dataset but within this file, it was found that there were

in many cases with fewer samples than expected. For one of the classes there were as

few as 4 samples in the test set, meaning any figures produced would be of questionable

importance. Therefore the fixed test/train division supplied by Niebles et al. was aban-

doned and a 5-fold cross validation procedure adopted, which explains the difference in

performance in the results displayed in Table 3.3 relative to the baseline given in [57].

The bilinear binning with l2 norm once again performs best overall, classifying 448 cases

correctly (47.2%), whilst the coarse binning with l1 norm classifies 437 cases correctly

(55.8%). When combined with the numbers from the Hollywood Dataset, this gives 862

for bilinear l2 against 843 for coarse l1 from 1667. Evaluating the integral in Equation 3.3

using these numbers now gives 0.75, meaning it is possible to say with 75% certainty that
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bilinear filtering with l2 norm is more effective than coarse binning. Further experiments

would be required to increase the significance further but time constraints and lack of

further easily accessible datasets prohibited further work.

Figure 3.5: Contour plot of the joint probability distribution over the true performance
level of two classifiers based on their success on the Hollywood dataset.

3.2 The Co-Friend Dataset

The dataset consists of a collection of 37 recordings of aircraft servicing turnarounds on

one apron at Toulouse airport. There is video from between 3 and 5 static cameras for

each sequence. Some of the camera angles suffer heavy occlusion once the aircraft is in

position. Most servicing activities occur on one side of the aircraft hence the cameras on
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the other side are redundant in recognition of these activities. There is one camera position

just to the left of the nose of the aircraft which has an excellent vantage point and which

recorded all 37 sequences. For this reason, all experiments use this fixed viewpoint. Each

sequence is roughly an hour long, recorded at 10 frames per second, starts a few minutes

before an aircraft arrives and ends a few minutes after the aircraft departs. As such, each

sequence wholly contains a complete aircraft servicing operation.

Figure 3.6: Layout of cameras on apron in Toulouse. Static cameras are marked with blue
rectangles. Pan Tilt Zoom (PTZ) cameras are marked with red dots. Due to hardware
limitations, all cameras were not processed simultaneously.

The event vocabulary comprises 12 servicing event classes which can take place on the

apron. Snapshots from the events can be seen in Figures 3.7 and 3.8. A brief description

of each event class follows:

• Aircraft Arrival: Starts when an aircraft turns off the road which connects the apron
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Figure 3.7: Images demonstrating the events in the Co-Friend dataset. The images are
cropped to the zones of interest related to each event. From top to bottom, the events
are as follows: Front Belt Loader Loading, Rear Container Loading, GPU Positioning,
Handler Deposits Chocks.
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Figure 3.8: Images demonstrating the events in the Co-Friend dataset. The images are
cropped to the zones of interest related to each event. From top to bottom, the events are
as follows: Rear Belt Loader Unloading, Aircraft Arrival / Departure, Container Front
Loading, Passenger Boarding Bridge Positioning.
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areas to the runway and ends when it comes to a complete stop in position on the

apron.

• Aircraft Departure: Starts when the Aircraft is moved from its mark by the Push

Back and ends when the Aircraft has been pushed completely off the apron.

• GPU Positioning: Starts when the Ground Power Unit becomes visible on the apron

and ends when it is completely stopped in position.

• Handler Deposits Chocks: Starts when the Handler takes the Chocks from where

they are kept in the rear of the GPU and ends once he has placed them in position.

• PBB Positioning: Starts when the Passenger Boarding Bridge starts moving from

its default position and ends once the PBB has completely connected to the aircraft.

• PBB Removing: Starts when PBB disconnects from aircraft and ends when PBB is

completely at rest in its default position.

• Belt Loader Unloading: The Belt Loader will normally move into position by the

Aircraft’s rear luggage hatch very soon after the Aircraft Arrival. The hatch will

normally open around this time too. These are necessary prerequisites for the event

to start but are not considered to be part of the Belt Loader Loading event. The

event starts when a train of empty trolleys halts at the foot of the Belt Loader.

Normally at this stage one or two handlers will walk up the belt and disappear

into the hatch where they will transfer bags from the hold to the belt (on some

occasions these handlers may already be in position). The belt will start moving

and a number (between 1 and 4) of luggage handlers will then transfer the luggage

that is appearing on the belt and travelling downwards one piece at a time from the

belt to the trolleys. The event ends when the stream of luggage stops and the train

of trolleys moves away (either because it is full or there are no further bags in the

hold).
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• Belt Loader Loading: This event almost always occurs after Belt Loader Unloading,

so again the Belt Loader is assumed to be in position with the luggage hatch open.

The event starts when a train of trolleys laden with luggage halts at the foot of the

already-positioned Belt Loader. Normally at this stage one or two handlers will

walk up the belt and disappear into the hatch where they will stack the luggage that

comes up the belt (on some occasions these handlers may already be in position).

A number (between 1 and 4) of luggage handlers will then move the luggage one

piece at a time from the trolleys to the belt. The luggage then travels up the belt

and disappears into the hatch (where further handlers are waiting) . The event ends

when the train of trolleys has been cleared of luggage and is moved away from the

foot of the loader

• Container Front Unloading: Starts when the ramp on the loader rises up to the cargo

door. One or two large containers will then be pushed out onto the ramp, before the

ramp is lowered. The containers will then be pushed off the ramp onto trolleys. The

event ends when the trolleys are pulled away from the foot of the loader.

• Container Front Loading: Starts when a train of trolleys laden with containers ar-

rives at the foot of the loader. One or two containers will be pushed onto the ramp.

The ramp will be raised and the containers pushed through the cargo door. The

event ends when the ramp has returned to its lowest point.

• Container Rear (Un)Loading: These events are identical to the Front Unloading/Loading

events, but they take place at the rear cargo door.

Some of the events on the apron are very simple. Events falling into this category

would be the Aircraft Arrival/Departure, the Passenger Bridge Positioning and the Ground

Power Unit Positioning, which all involve a single agent and a distinctive pattern of mo-

tion. In contrast are events such as Belt Loader Loading, which involve a variable number

of participants and have greatly increased variability in duration and associated motion.
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An additional challenge in the dataset is the variable weather conditions: several

turnarounds include rain and one takes place in snow. Lighting conditions also vary,

with two turnarounds in the glare of the early morning sun, three taking place at sunset

and one taking place after dark. There are a few attributes of the dataset however which

make things easier. Firstly, as the airport apron is a highly regulated environment, there

isn’t too much incidental activity. If the Aircraft Arrival is delayed, the ground staff might

be observed milling around trying to entertain themselves whilst they wait and sometimes

equipment not directly relevant to an ongoing turnaround may be parked in designated

waiting areas around the edges of the apron but in the main most of the activity that

occurs on the apron is relevant to the turnaround.

Several of these events involve very slow and gradual movements, whilst in others

objects accelerate rapidly, which could pose difficulties in selecting appropriate interest

point detection for feature extraction. To handle the variation, it might be possible to tune

interest point detectors for each event but here dense sampling is simply used in all cases,

leaving the non-linear classifier to distinguish the features which are relevant.

The ground truth for the dataset consists simply of start and end times for all event

instances across the 37 sequences. Initially, 7 sequences were annotated by a member

of operational staff from the airport. The remaining 30 sequences were annotated by

researchers on the project adhering to the same event specifications as summarized previ-

ously in this chapter. The airport apron is divided into a number of technical areas, which

align with certain parts of the aircraft. These technical areas are static (and are actually

in some cases painted on the ground) rather than relative to the position of the aircraft.

The zones are aligned with parts of the plane simply because each apron is designed to

take a fixed set of different aircraft types and the aircraft is parked in precisely the same

location after every landing. Due to the highly-regulated nature of the environment, all

events in the vocabulary can be associated with one of these zones. This association was

given in documentation made available by the airline involved in the project. These zones
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Figure 3.9: Zones of interest within which dense local features are extracted for event
detection.

are exploited as follows in this project: The zone boundaries in world co-ordinates are

back-projected to the image plane using camera calibration information. The minimum

enclosing axis-aligned bounding box that contains this back projection is then taken to

represent each zone in the image plane. Detectors for each event type then use densely

extracted local features within the relevant zone. This was a simple and obvious way to

eliminate a fair amount of noise in the detectors for free, however they are not critical to

method. Experiments were performed initially without zones of interest and results were

just a couple of percentage points worse in terms of Mean Average Precision for most

events. The zones used are depicted in Figure 3.9. Note that the zones are overlapping

and that the correspondence between zone and event is not 1-1 since several events share
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the same zone. One zone corresponds to the resting place of the aircraft on the apron. This

zone is associated with aircraft arrival and departure. There are zones corresponding to

the front and rear hatches of the aircraft which are associated with the loading/unloading

events. Another zone represents the technical area around the nose of the plane and is

associated with the GPU Positioning and Handler Deposits Chocks events. The final zone

covers the area around the aircraft’s front door and is associated with the PBB Positioning/

Removing events.

3.2.1 Extracting and storing features

Based on the experiments earlier in this chapter HOF features were selected with block

dimensions 3× 3× 2 and an angular granularity of 4 using l2 normalization and bilinear

binning. Since the scale of the dataset is fixed (with fixed camera and events happening in

roughly the same positions) for efficiency, features are extracted at a single scale, with cell

dimensions 18× 18× 10, sampling densely with an overlap of 50%. The cell size of 18

pixels means that the height and width of a block is around the same size as a pedestrian

standing near the nose of the plane. A codebook of 4000 words is used, which was

trained on the Hollywood dataset. Since the feature extractor runs at between 3-5 frames

per second (depending on the size of the zones of interest) and the dataset consists of

1.7 million frames, for convenience in these experiments a high performance computing

facility is used to do the feature extraction, saving the features to file to be used in later

experiments. For each zone, within each sequence feature extraction yields a matrix of

dimension 4000×T , where T is the sequence length divided by the sampling rate (in this

case every 10 frames). By summing through time, a cumulative histogram is generated,

which allows the histogram for any sub-sequence to be calculated with just one column

subtraction.
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3.2.2 Training the classifier for detection

The challenge presented by the Co-Friend dataset is slightly different to that of the action

classification datasets such as Hollywood and KTH. Those datasets are entirely composed

of clips which fall into one of N classes between which it is necessary to differentiate and

the numbers of instances in each class is relatively balanced. Therefore since the size of

the datasets is manageable, once the division is made between test and training sets the en-

tire set of data can be used for training the classifier. In Co-Friend , there are 37 extended

sequences which in total contain between 10 and 40 instances of each event type which

have been annotated. These define the positive examples. It is then necessary to collect

negative examples from elsewhere within the 37 hours worth of footage in the dataset.

Since the events have variable duration, it is necessary to detect over multiple possible

durations as well as midpoint therefore the negative samples should have durations across

the ranges to be tested. At detection time, it is deemed sufficient to search ±2 standard

deviations from the mean duration for each event type, which thus leads to the sampling

of negative intervals by sampling midpoint uniformly over entire sequence length and

sampling duration ∼ N(µm,σm), where µm and σm are mean and standard deviation over

duration for event type m.

It is possible to access a vast number of negative samples if it is permitted to extract

them from overlapping intervals, as shown in Figure 3.10. To obtain a balanced classifier,

positive and negative examples are weighted proportional to the numbers in each category

so that if there are 40 positive examples and 9960 negative samples each positive example

is worth 9960/40 whilst each negative sample is worth one. The larger the number of

samples used however, the more time that will be required for training and potentially for

prediction (depending on how many support vectors are retained) so it is not desirable

to use more data than is required. The number of samples to use is decided empirically

by the following method. First 10,000 random samples are drawn from across all 37 se-

quences to act as the test set, keeping the data from each sequence separate. To evaluate
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the performance with N training samples, N random samples are drawn from the 37 se-

quences and 5-fold cross validation performed on the test set, applying weighted scoring

as described above; the folding ensures that there is no overlap between train and test

data by separating based on sequence. This procedure is repeated 5 times for several N

across 4 different event types. The results of these experiments are presented in Figure

3.11. From these plots, it is clear that performance improves rapidly up to around 1000

samples, then continues to improve slowly up to around 10,000 samples where it appears

to saturate. Note this effect is less pronounced on the graph for the Aircraft Arrival event

since the event is so easily detected that with only 100 samples, the event is classified with

99.96% accuracy. This means there are just a handful of difficult examples in the test set

which makes the performance increase in relation to the number of samples used appear

much less smooth.

Figure 3.10: Drawing samples from video sequence to build classification training data.
Green samples represent positives, red samples negatives

3.2.3 Detection performance

Having trained the classifiers, their detection performance is evaluated. For each event

in each sequence, histograms corresponding to every possible midpoint (t ∈ T ) and all

durations d ∈ {µm − 2σm, ..,µm + 2σm} are passed to the corresponding classifier. Note

that midpoint and duration are used rather than start and end time as this representation

makes inference simpler when the temporal structure model is applied in the following

chapter. The probabilities returned from the classifier are stored in a matrix of dimension

T × 4σm. To give an idea of how the detectors for the various events perform, some of

these matrices are plotted as heat maps in Figures 3.12 and 3.13. Ground truth instances
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Figure 3.11: Event-wise classification performance versus number of samples used for
SVM training. The error bars show standard deviation across 5 runs.

are marked white triangles.

It’s clear from these plots that some events are much easier to detect than others. As

one might expect, Aircraft Arrival and Aircraft Departure are detected almost perfectly,

with spikes of very strong response coinciding with ground truth instances and very low

response outside of these intervals. Note that these spikes appear as vertical bands mean-

ing that the detector is less good at determining the true duration of the event; all intervals

with a high relative overlap with the ground truth induce some response. This effect is

evident across all event types to varying degrees. It is worth noting that the scale of the

duration axis is different for each event to reflect the differing variance in event duration.
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Aircraft Arrival for example is a fairly short event with a fairly consistent duration there-

fore we only have to search over a handful of durations compared to the much longer and

more variable duration for VRAC Back Loading. The problems exhibited by the Han-

dler Deposits Chocks and GPU Postioning events are quite similar; there are quite sharp

distinct peaks, but many of them are false positives due to the fact that there is lots of un-

related noisy motion on the apron which resembles these two events. GPUs drive through

the scene heading towards other aprons and may follow a similar pattern of motion to

those parking in the scene. Ground staff often loiter around the nose of the plane and it

is understandable how this could induce similar HOF features to the handler placing the

chocks.

The performance of the thresholded independent detectors is reported in Table 3.4. In

all experiments, the leave-one-out protocol was followed, training on 36 recordings and

testing on the remaining one. The experiment is repeated with each sequence as the test

sequence. For a detection to be considered a hit, detections are required to have a relative

overlap (RO) > 30% with ground truth. Where RO between two intervals A,B is defined

as

RO(A,B) =
|A∩B|
|A∪B|

. (3.4)

Increasing the overlap level required had little effect on most events up to around the

60% mark, after which it degraded rapidly. This is likely due to the independent detec-

tors distinguishing only the main significant motion associated with each event, and not

necessarily the less distinctive but semantically important start and end points. Two fig-

ures are presented for each event; the Average Precision (AP) and the Equal Error Rate

(EER). The AP is calculated according to the methodology preferred in the Pascal VOC

Challenge 2011 [24]. This involves computing a precision-recall curve with precision

monotonically decreasing, by setting precision for recall r to the maximum precision ob-
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tained for any recall r′ ≥ r, and sampling the curve at all unique recall values. AP is

calculated by numerical integration of this curve. No approximation is needed since the

curve is piecewise constant. The Equal Error Rate is calculated by taking the point on the

curve at which precision and recall are equal.

Both of these figures are of interest since AP gives a strong measure of the detector’s

performance across the whole range of recall levels. This is the standard measure used in

object detection literature and also in some works relating to low level action recognition.

AP isn’t seen in use so much in high level activity recognition. This is partly because

works in this area haven’t been as intensely results-oriented and also because in many

high level systems, it is not the case that a single threshold can be varied which will

influence precision and recall across the board. In the following chapters, an effort is

made to extract AP on an event-by-event basis, yet given the interdependence of events

in the scenario recognition context, these numbers seem slightly artificial. Many of the

decisions which must be made in building a scenario recognition system would be very

different dependant on whether the goal was to squeeze an extra bit of precision at 100%

recall or else to maximize the recall at 100% precision. Since the stated goal of the Co-

Friend project was to build a system which would be helpful to airlines for part automating

record-keeping on aircraft servicing operations, there was no cost function supplied to

weight false positives versus false negatives. The Equal Error Rate was therefore selected

as a reasonable point on the precision-recall curve to attempt to maximise.
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Event Occurs AP (%) EER (%)
Aircraft Arrival 37 98 95
Aircraft Departure 37 100 100
Passenger Bridge Positioning 37 70 63
Passenger Bridge Parking 37 91 79
Ground Power Unit Positioning 37 87 82
Handler Deposits Chocks 40 36 33
Container Front Door Loading 13 79 65
Container Front Door Unloading 14 72 67
Container Rear Door Loading 27 51 55
Container Rear Door Unloading 25 75 60
Belt Loader Loading 36 46 48
Belt Loader Unloading 25 80 83

Table 3.4: Co-Friend performance figures in terms of Average Precision and Equal Error
Rate.
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Figure 3.12: Heat map showing probabilities output from independent event classifiers
at all candidate intervals for various events and sequences, with probability going from
blue (lowest) to red (highest). Ground truth is marked by tiny triangles. The vertical axis
is duration (which is scaled relative to the standard deviation of duration of each event
type). The title for each the graph contains the name of the event and the identifier of the
sequence from which it was taken. Note that the samples shown have been chosen from
different sequences as no single sequence contains instances of every event type.
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Figure 3.13: Additional heat maps of probabilities output from independent event classi-
fiers at all candidate intervals for various events. A trapezoid shape is noticable in events
with long durations as only intervals which are wholly contained within the sequence are
evaluated.
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3.3 Summary

In this chapter the implementation of a state of the art detector for human action recogni-

tion has been described. By experimentation on standard datasets it has been verified that

that a bilinear binning strategy for HOF features outperforms the coarse binning strategy

used by all previous works. Experiments were also performed in retaining flow magnitude

information, but it was found that performance was reduced versus l1 and l2 block normal-

ization. The application of the detectors to the aircraft servicing domain was described

and the effect of increasing the number of samples drawn from the video dataset for train-

ing the classifiers was evaluated. Performance appeared to saturate with ten thousand

negative samples. The detector performance was near perfect for some of the simplest

and visually distinctive events in the Co-Friend domain such as aircraft arrival, but was

much less reliable for other events. In the folowing chapters, these detectors can serve as

both a baseline and low-level input to a high level scenario model which exploits temporal

relationships between events for the purpose of boosting performance.



Chapter 4

Tree-Structured Temporal Structure

Models

In the previous chapter it was demonstrated that a state of the art event detector based on

low level features performs strongly on detecting several types of event and less strongly

on others. Whilst it might be possible to overcome this problem by tailoring a method

to fit each individual event in the target domain, this would make the method problem

specific. The focus of this chapter is to find a method for boosting performance in a more

transferrable manner through exploitation of the temporal structure that exists between

events in many domains. In the previous chapter, the Co-Friend dataset was introduced

and it is this dataset which is used for experimentation henceforth. The model would

generalize well, particularly to industrial process environments such as production lines

or warehouses, where activity is structured and periodic. In the following few pages, the

aircraft servicing scenario and the Co-Friend dataset are analyzed, but many of the char-

acteristics and limitations of the Co-Friend dataset would likely apply to many real-world

datasets, where training data is often difficult and expensive to obtain. Whilst in video

processing and data terms the Co-Friend dataset is quite large (with > 40 hours footage),

at a scenario level it is smaller than one would like, containing only 37 turnarounds. It

68
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would have been desirable to obtain more to increase the significance of the results and

the robustness of the learnt temporal models but doing so was impossible as it required

further cooperation from the airport, whose resource allocation on the project was lim-

ited. On the other hand, this limitation can also be seen in a positive light. If it is possible

to construct a temporal model which is proven to be effective even in complex scenarios

with relatively small amounts of training data, then this would make it all the more useful.

The matrix in Figure 4.1 gives co-occurrence counts on event types in the Co-Friend

dataset on a pairwise basis across the 37 sequences. Observe that all pairs of differ-

ent event types co-occur in at least one sequence, but for some pairs the number of co-

occurrences is as low as 1. Additionally, there is a strict ordering on only a small subset of

these events (most events occur before Aircraft Departure) but in the main there is no par-

ticular sequence to the events. The timings of the different events appear to be correlated

rather than directly causal. Figure 4.2 shows the strict ordering constraints, where they

exist. Finally, it is quite common for events to overlap in time. This factor in particular

causes problems for state-based representations such as an HMM for which that means

an explosion in the state-space.

In this chapter a model that is more closely related to Pictoral Structure Models

(PSMs) is constructed. PSMs were introduced by Fischler and Elschlager [29] in 1973.

More recently, Felzenszwalb and Huttenlocher [27] showed that the original formalization

of PSMs as an energy minimization problem could be derived elegantly through Bayesian

probability theory and it is their notation that is followed in this chapter. The PSM for

an object can be described most simply as a collection of parts with connections between

certain parts. The structure of the PSM is thus stored naturally as an undirected graph,

where the vertices correspond to the parts and there is an edge for each pair of connected

parts. In structured environments, it is possible to consider a scenario to be a collection

of events, some of which are (temporally) related.

In applications of PSMs, the connections are almost always considered on a pairwise
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Figure 4.1: Matrix showing number of sequences in which events of a particular type
co-occur in the Co-Friend dataset. It is clear that even when looking for co-occurrence
only on a pairwise basis, the dataset appears quite sparse. Note that the lead diagonal
gives the number of turnarounds in which more than one instance of that event type can
be observed.

basis, though this simplification isn’t intrinsic to their definition. In the scenario recogni-

tion case, this assumption could be particularly beneficial as it could reduce the demands

on the amount of data required to train the model. This is based on the assumption that

the training data consists of a number of sequences, each of which contains a subset of

the events from an event vocabulary. Therefore the higher-order the relationship one is
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Figure 4.2: Matrix indicating where event pairs are strictly ordered. An entry is coloured
red if instances of the event type given by that row always precedes instances of events of
type given by column.

attempting to model, the fewer the instances of co-occurrence one will have to learn from

in the dataset and the higher the dimension of the distribution to be modelled. PSMs are

normally used as object detectors so that for an image, candidate regions are proposed by

a simple sliding window or perhaps a simple coarse classifier. The most likely configura-

tion of parts within each window is found through optimization of the posterior likelihood

composed of the product between part appearance likelihood terms and part configuration

priors. The posterior likelihood in this optimal configuration then gives the probability
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that the candidate window contains the object. In the object detection problem for which

PSMs are most commonly applied, the most important output is simply this probability,

rather than the configuration of the parts; the parts are just a means to an end. PSMs

have also been used successfully for human pose estimation, which more closely mirrors

the focus in the scenario recognition situation, where the parts of the model, namely the

events, are of more concern than the scenario which is already determined by the domain.

The scenario recognition task however, does have an extra degree of difficulty in that it is

not known apriori how many occurrences of each event to expect within a video sequence.

This issue exists to some extent in object detection since parts may be occluded. In [26]

, the problem isn’t tackled directly though by learning multiple models per object class,

the self-occluding parts issue is mitigated by having different part sets and configurations

for diffferent viewpoints. In pose estimation, the task is normally defined as producing

the best possible estimate for a fixed number of joint locations, whether or not they are

visible. Annotators of datasets are typically asked to mark locations of occluded joints

with their ‘best guess’, though this precedent is questioned in [37] , where a large dataset

is assembled using Amazon Mechanical Turk and annotators are instructed to only anno-

tate visible joints. Johnson and Everingham’s training procedure is thus designed to cope

with joint locations that are missing due to occlusion, which ensures their spatial prior is

not muddied by inaccurate and inconsistent guessed joint locations. At runtime however,

estimates for all joint locations are produced and no effort is made to distinguish between

visible and occluded parts. There have been some works however, whose primary focus

is occlusion. The problem of primary concern in Sigal and Black [70] is that PSMs for

human pose recognition are seriously affected by self-occlusion and the similarity in ap-

pearance of limbs. In their terminology, the spatial prior is ‘fighting’ the observation like-

lihood, which they acknowledge is necessarily independent across parts. In cases where

one leg is occluded, the likelihood will strongly encourage both legs to be localized to

the same image region. Their mechanism for dealing with this is through two additional
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binary hidden variables for each part at each pixel, to indicate whether a part is occluded

by or occludes others at this pixel. There is a depth ordering over the limbs which is fixed

for a given viewpoint, which allows these additional variables to be incorporated into the

message passing optimization without too much increase of computational complexity.

This strategy seems effective, yet quite specifically targets the problem of self-occlusion

and it is difficult to see a natural extension to the scenario recognition domain; where an

event being present or not within a sequence is not as a result of being occluded by an-

other event. Eichner and Ferrari [23] tackle the problem differently, introducing an extra

’occlusion’ state for each body part, to enable the optimization to proceed in an otherwise

familiar fashion. The main novelty in this work is in the way the energy for the occluded

state is calculated through an occlusion prediction system which combines the simple

likelihood of any given part being occluded by frequency of occlusion in the training set,

with more complicated terms dependent on the colocation of other people and limbs. The

problem with this work is that the additional complexity makes the optimization much

more difficult and a series of domain- specific constraints, such as the requirement that

heads should always be visible, must be introduced in order to regain tractibility. In this

chapter, a new approach to dealing with the problem of having an unknown number of

instances of each event is introduced, which is efficient and avoids any domain-specific

constraints.

4.1 Notation and problem description

Given a previously unseen video sequence of length T , the task is to determine the tem-

poral midpoint, t ∈ T = {1, ..,T }, duration, d ∈D = {µc−2σc, ..,µc +2σc}, and event class,

c ∈ {1, ...,M}, of an unknown number, N, of event instances, from a fixed vocabulary of M

event classes, where µc,σc are mean and standard deviation of duration of events of type

c. This is depicted in Figure 4.3 (right). The scenario recognition problem over a sequence
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Figure 4.3: Left: Example response from 3 independent probabilistic event detectors.
The detectors give a response for each possible interval in a sequence, with colour in-
dicating the probability (red being high). Four event instances are shown localized on
these likelihood streams. Right: Illustration of corresponding sequence scenario. The
scenario is fully specified by event class vector C = (c1, ...,c4) and temporal information
Y = ((t1,d1), ..., (t4,d4)).

is challenging since it entails determining the correct number of event instances, N, then

optimizing over these 3N random variables. There are several possible approaches to

dealing with the problem of unknown N and these are addressed later. For now the prob-

lem is mitigated by introducing a‘Null’ state for each (t,d) so that (t,d) ∈ (T ×D)∪Null as

a mechanism for ‘switching off’ detections without having to dispose of the correspond-

ing random variables entirely. To simplify matters, for the moment the assumption is that

there is at most one event of each type in each sequence. Again, the problem of multiple

instances of one event type within a sequence is addressed later. Under these assump-

tions, it is now possible to fix the number of event instances in the scenario optimization

to be M; fixing C = (c1,c2, ...,cM) = (1,2, ...,M) and leaving Y = ((t1,d1), ..., (tM,dM)) to

be optimised conditioned on C and the video sequence, X.

A probabilistic event detector for each event class has already been trained, and it is

assumed that these detectors will be run in parallel to evaluate every possible midpoint

and duration over the discrete temporal domain at detection time. Adopting a Bayesian

perspective, the output of the independent event detectors can be treated as the likelihood

of the relevant chunk of the observed video sequence, X, arising as a result of the given
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event scenario, which is termed p(X|C,Y, θ) , where θ is the set of parameters that define

the model. Therefore p(X|ci, (ti,di), θ) is known for all possible (ti,di) ∈ T 2. The probabil-

ity of the event being Null is defined as proportional to the complement of the maximum

of the probability of it having occurred at any particular timestep. This enforces a suitable

penalty for writing off the output of an event detector as noise and allows for the insertion

of a parameter, αci , into the model for each event class in order to vary the sensitivity of

the detector.

p(X|(ti,di) = Null,ci) = αci(1−max
ti,di

(p(X|(ti,di) ∈ T 2,ci))) (4.1)

It is then possible to concentrate on optimizing the posterior

p(Y |X,C, θ) ∝ p(X|C,Y, θ)p(Y |C, θ). (4.2)

The distribution p(Y |C, θ) denotes the prior probability of a scenario given its event set

and the model. By analogy to Pictoral Structure Models [27], this prior is defined to be a

tree-structured Markov Random Field (MRF). The general form for the joint distribution

of such a prior can be written

p(Y |C, θ) =

∏
(i, j)∈E p((ti,di), (t j,d j)|ci,c j, θ)∏

i∈V p((ti,di)|ci, θ)
(4.3)

where E is the edge set and V the vertices of the MRF. The absolute timing of any event

in isolation is presumed to be unhelpful, so therefore p((ti,di)|ci, θ) is set to be uniform,

so that Equation 4.3 simplifies to.

p(Y |C, θ) ∝
∏

(i, j)∈E

p((ti,di), (t j,d j)|ci,c j, θ) (4.4)

This prior has the following desirable characteristics. Firstly the tree structure ensures
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that the configuration is to some extent globally consistent since all random variables are

(indirectly) connected. Secondly there is the dependence only on pairwise co-occurrences

to help cope with sparse training data. Finally, the tree-structure allows exact inference

on the prior, meaning globally optimal solutions may be quickly obtained.

4.2 Training a Temporal Structure Model

Let the dataset consist of m video sequences {X1,X2, ...,Xm} with corresponding temporal

annotations {Y1,Y2, ...,Ym} and event sets {C1,C2, ...,Cm}. The training examples are to

be used to obtain estimates for the model parameters θ, which for the first time are made

more explicit; θ = (A,E,T ). A is termed the appearance parameters, which comprise all

the parameters relating to the classifiers trained in the previous chapter. E is the set of

connections referenced in Equation 4.3 and T is a set of probability distributions over all

possible pairs of event types.

4.2.1 Learning Inter-Event Priors

The first component of the prior that is learnt is the set of M(M+1)
2 pairwise probability dis-

tributions, φci,c j(ti, t j), which are defined to be probability distributions on the time differ-

ences between midpoints of instances of each possible pair of event classes (including the

cases where ci = c j) appearing in the same sequence. These distributions will be combined

with another term relating to co-ocurrence statistics to obtain p((ti,di), (t j,d j)|ci,c j, θ).

Note that temporal midpoints are assumed independent of durations for simplicity. In

domains where the duration of events is small relative to the time between them, the in-

formation loss through this assumption will be small. The other assumption made is that

the absolute timings of the events are not useful; so rather than learn a 2 dimensional

distribution over all possible pairs of midpoints, a univariate distribution over time differ-

ences is learnt, then reference at test time to get φci,c j(ti, t j) for all ti, t j ∈ T . This procedure
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is illustrated in Figure 4.4.

8000 16000 24000 32000 40000 48000 56000 64000
t2

64000

56000

48000

40000

32000

24000

16000

8000

t1

P(t1,t2 |c1=VRAC Back Loading,c2=Aircraft Departure)

Figure 4.4: left :A learnt distribution over time difference (in frames) between two events
evaluated over the range {-90000,...,90000}. right: Joint prior over two temporal mid-
points generated by referencing the univariate distribution on the left, then renormalizing.

Initial experiments involved fitting a single Gaussian to the training data. The proba-

bility density function of a univariate gaussian distribution is given by

p(x) =N(x|µ,σ) = (2πσ)−1/2 exp(−
1
2

(x−µ)2σ−1), (4.5)

where the parameter µ is the mean and σ is the variance.

However, it was observed that the single Gaussian is not a good approximator for

many of the distributions in the test domain. In some cases, a distribution is observed that

is very skewed, perhaps indicating that one event is supposed to occur soon after another;

it can never happen before, yet sometimes it does happen much later. In other cases, there

may be two or more distinct modes.

4.2.1.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) with a sufficient number of components can model

both skewed and multimodal distributions. A GMM is a weighted linear superposition of
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Gaussians of the form

p(x) =

K∑
k=1

πkN(x|µk,Σk) (4.6)

GMMs are typically trained using the Expectation Maximization (EM) algorithm [5].

This involves the introduction of a set of k-dimensional binary latent variables z. For

each data point, xn there is then an indicator variable zn, which will be zero across all but

one of the k dimensions indicating which component from the model was responsible for

generating the point xn. Optimization then proceeds by taking an initial guess at parameter

values µ, Σ, π then iterating between the expectation step where z is updated according to

z∗= p(z|X,µ,Σ,π) and the maximization step where the log-likelihood log(p(X|z,µ,Σ,π))

is maximized with respect to each of the parameters. The algorithm guarantees conver-

gence to a local optimum and generally performs quite satisfactorally on large datasets.

One of the main problems with this training procedure is that the problem is ill-posed in

that the log-likelihood function can go to infinity if a Gaussian component becomes cen-

tred on a single point and its covariance is allowed to shrink to zero. This problem, and

that of local maxima can be mitigated by running the algorithm multiple times with ran-

dom initializations. Another issue however is that there is no automatic determination of

the appropriate number of components, K, in this procedure; it must be prescribed. This

could be selected based on domain knowledge, by trial and error, or by first running some

kind of clustering procedure. Since it is desirable to avoid the requirement of any domain

knowledge, it is convenient to simply try several different values of K. A concern is that

frequentist (Maximum Likelihood) training methods are liable to overfit in the presence

of limited training data. For this reason, Bayesian approaches to GMM training were

also applied, which it is hoped might be more resistant to this effect without requiring the

addition of arbitrary regularization terms.
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µx σx 1

λ r w β α

µk K sk πk

zi

N

xi

Figure 4.5: Graphical representation of Gaussian Mixture Model with Dirichlet Process
priors. µk, sk, πk represent the mean, precision (inverse variance) and weight of the Gaus-
sian components, of which there are K. For each of the N observations, xi there is an
indicator variable zi, that indicates which component was responsible for generating xi.
The latent variables on the upper level are termed the hyperparameters, α is the concen-
tration parameter of a symmetric dirichlet process prior on πk. λ and r are the parameters
of a Gaussian prior on mk. w and β are the parameters of an Inverse Gamma prior on sk.
Note that distributions are also placed on the hyperparameters, though the parameters of
this level are constants. µx and σx are the mean and variance of the whole dataset. See
Section 4.2.1.2 for a full explanation.
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4.2.1.2 Bayesian Training of Gaussian Mixture Models

The method of Rasmussen [64], which gives a thorough Bayesian treatment to the training

of GMMs, was implemented. This approach places a symmetric Dirichlet Process prior

over the mixture weights of the model, as well as ‘non-informative’ conjugate priors over

the mean and variance parameters. Direct optimization with respect to the parameters is

not possible, but conditional distributions for all the parameters are derived to facilitate

Gibbs sampling. Gibbs sampling is a frequently used method for approximating a com-

plex joint distribution by repeatedly resampling subsets of the variables based on their

conditional distributions [48]. The model is depicted in Figure 4.5. The symbols used

in the diagram are consistent with those used in the original publication, [64], to which

the reader should refer for a full description of the model. The discussion of the model

here is restricted to some key observations. Note that the component means, µk are given

Gaussian priors:

p(µ j|λ,r) ∼ N(λ,r−1) (4.7)

whose mean λ and precision r, are hyperparameters common to all components. The

hyperparameters themselves are given ‘vague’ normal and gamma priors:

p(λ) ∼ N(µx,σ
2
x), p(r) ∼ G(1,σ2

x) ∝ r−1/2 exp(−rσ2
x/2) (4.8)

where µy andσ2
y are the overall mean and variance of the training set. Having priors which

are dependant on the data is not normal practice in Bayesian statistics, but Rasmussen

[64] argues that it is reasonable in this context since it is equivalent to recentering and

normalizing all the data and setting zero mean, unit variance priors. Experiments are

included later using both this data-driven prior, and a broader prior reflecting a prior

assumption that the timings of two events are independent unless enough evidence is

observed to suggest otherwise.

In Figure 4.5, and throughout Rasmussen’s derivation of the conditional probabilities
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the number of components, K, is considered to be a fixed finite quantity. For all model

variables except the indicators, the conditional posteriors in the infinite limit are simply

obtained by substituting K for the number of classes that have data associated with them.

Derivation of the conditional posterior of the indicators, zi, in the infinite limit is slightly

more involved but ultimately the dependence on K indicator variables in the prior is re-

moved by application of the Dirichlet integral. This way, the number of components is

simultaneously optimized with the other parameters in the model through Gibbs sam-

pling. Allowing 50 iterations for burn-in, 20 samples are drawn evenly spread over 1000

iterations. Spreading the draw of the samples is to ensure that they can be considered to

be independent draws from the posterior. These samples are then combined with equal

weighting. The result of this procedure is a GMM with a large number of components

which are highly-overlapped. The overhead of evaluating these PDFs can be eliminated

at execution time by the use of look-up tables if required.

The model was coded in Python in this work, due to personal preference, but it became

apparent during implementation that this would be a poor choice of language if speed were

required. In many applications, it is possible to get performance in Python comparable

to C through extensive use of matrix and vector operations with numeric libraries. How-

ever, it is difficult to vectorise operations in a Gibbs sampler since the procedure is by its

nature iterative. As the method was only in this case used to do offline training of uni-

variate distributions with small amounts of data, the performance isn’t a problem. With a

large multidimensional dataset however, this would not be the case. Even with a heavily

optimized implementation, the method is much slower than the EM training procedure.

4.2.1.3 Simple Histogram Approximation

Given all the complexity of the Bayesian GMM training procedure, its worth should

be justified against simpler procedures. The GMM trained with EM provides one such

benchmark. Here one more method is proposed which is even simpler. Here, a histogram
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of time differences is taken, with a bin size equal to the resolution at which optimization

will be performed (for most of these experiments 40 frames, which at 10 fps gives an

accuracy of ±2 seconds). This distribution is then convolved with a Gaussian filter to

smooth the effects of overfitting from limited data. There is just one parameter in this

strategy, σ, which is the variance of the Gaussian filter. Experiments were performed

with three different values of σ, σ ∈ {10,50,200} to give a reasonable range on the level

of blur applied. The notable difference with this versus the methods previously discussed

in this section is that the distribution learned is non-parametric. For some message pass-

ing algorithms, this would be unacceptable since it is required that local probabilities are

of a standard parametric form in order to facilitate fast inference. However all the ex-

periments in this thesis involve Belief Propagation over a discrete domain, therefore the

pairwise distributions can be arbitrary with no loss of performance.

4.2.1.4 Evaluation of Methods for Learning Temporal Distributions

To evaluate the various forms of distribution, leave-one-out training and testing is per-

formed over the 37 turnarounds. Various measures of success are studied for a number

of event pairs which form a representative subset of the M(M + 1)/2 event pairs in the

dataset. The first measure of interest is the overall likelihood of the training data with

respect to the model, p(X|θ) =
∏N

i p(xi|θ−i), where X = {x1, .., xN} is the set of all time

differences observed between two particular event types in the dataset and θ−i represents

the distribution trained on X−i, which omits point xi. By itself, however this measure

may be problematic since it can be dominated by one or two anomalous points. A more

useful measure could be the median value of p(xi|θ−i). These two statistics are extracted

for several different distributions across several event pairs and the results are presented

in Table 4.1. Note that the median and the overall likelihood do not necessarily agree.
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In fact, there is not a single simple best measure of the suitability of a distribution

for these purposes, rather it is strongly dependant on the nature of the output from the

independent event detectors for the event types involved. For example, if two independant

event detectors were to work with 90% precision and recall, a temporal model with a

very high median likelihood wouldn’t necessarily be expected to boost performance if for

10% of examples its predictions were very bad. Conversely, if the performance of the

detectors was much lower, then a model with high overall likelihood, but a low median

(corresponding to a vague, high-entropy distribution) would be likely to only give modest

improvement, whilst one with a high median but low overall likelihood could be more

informative. The following test was thus devised. When evaluating the distribution θ,

between events of type A and B, the focus is instead on how θmight boost the performance

of detection of event A given the correct localization of event B. This is achieved by

iterating over the instances of event A in the dataset, so for i ∈ 1, ..,NA the observation

likelihood p(X|(ti,di),ci = A), for event A at all possible ti,di ∈ T is maximized with

respect to di, resulting in a 1D distribution over possible midpoints. φci,c j(ti, t j = GT )

(trained on all datapoints except those from turnaround containing i) is treated as the prior

and multiplied with the likelihood function over all ti ∈ T . The resulting posterior is then

thresholded in the same manner as the likelihood function and the results compared based

on results obtained at the target recall level for each event as defined in Section 3.2.3. The

difference in precision of the likelihood and posterior at the target recall rate is termed as

the Potential Performance Improvement (PPI) associated with that temporal relationship.

The precision-recall curves for a number of events, along with plots of the distributions

are presented in Figures 4.6, 4.7, 4.8. The EER figures are presented for these events in

Figure 4.9 as this marks the target recall selected for the Co-Friend project. The AP is

also included for comparison. With the smoothed histogram distributions, the distribution

with the greatest degree of smoothing proves to be the most effective in the first case,

meaning the cases with a smaller degree of smoothing are overfitted. In the second case,
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the order is reversed, with the broad smoothing not making the most of the low entropy

distribution. This trend is mirrored in the Bayesian GMMs trained with Rasmussen’s

method. The data prior permits a slight overfit in the first case but is better calibrated

to capture the lower entropy distributions in the second and third cases. The maximum

likelihood trained GMMs perform well in the first two cases but seem to overfit in the final

case. The single Gaussian performs reasonably well in all cases, though it is never the best

performing distribution. On the basis of these results, it is clear that no one method for

estimating the distribution is best in all cases. Even giving a thorough Bayesian treatment

to training of the GMM doesn’t entirely remove the dependence on an appropriate prior

when data is scarce. Therefore the proposed solution is to use leave-one-out training and

evaluation of several possible distribution types as above, selecting the best one in terms

of Potential Performance Improvement for use in the final model.
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Figure 4.6: Top: Distributions learnt over time difference from Aircraft Arrival to Handler
Deposits Chocks. Note that the histogram with minimal smoothing in the top left gives
the clearest indication of the actual distribution of the training data. Bottom: Correspond-
ing precision-recall curves when the posterior probability of Handler Deposits Chocks
given correct localization of Aircraft Arrival, with different distributions as the prior. The
solid blue line is the posterior and the dotted green line is the likelihood. This detector is
the weakest in the Co-Friend dataset and therefore stands to gain most from a temporal
relationship, with all pairwise distributions offering significant improvements. The only
exception is the drop-off of performance at 100% recall for all the temporal models apart
from the single Gaussian due to a single anomalous instance at a time difference of 3200.
The posterior performs better than the likelihood across all distributions in terms of Aver-
age Precision (area under curve) and Equal Error Rate (point of intersection with dotted
red line).
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Figure 4.7: Top: Distributions learnt over time difference from GPU Positioning to VRAC
Back Unloading. Bottom: Corresponding precision-recall graphs.
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Figure 4.8: Top: Distributions learnt over time difference from Aircraft Departure to
Passenger Boarding Bridge Parking. These two events are clearly strongly correlated,
resulting in tightly-fitted distributions. Bottom: Corresponding precision-recall curves
for posterior probabilities on PBB Parking given Aircraft Departure. Large gains in both
AP and EER are evident among the tighter distributions.
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Figure 4.9: AP and EER figures for the distribution over time differences for several event
pairs.
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4.2.1.5 Joint Probability For Null States

Note that thus far, φci,c j(ti, t j) has only been defined for cases where ti, t j ∈ T . In the

previous section Null states were introduced for the (t,d) variables. The cases where

ti = Null and t j ∈ T (or vice versa), or both ti, t j = Null must also be considered. If either

or both events are Null, clearly it is not possible to show any preference based on time

differences. Therefore these cases should be of uniform probability. That uniform value

is chosen to be T−2, which is 1 over the size of the state space over which φci,c j(ti, t j) for

cases where ti, t j ∈ T was normalized. This ensures preference isn’t shown to the Null

states just because the number of states in which they feature is smaller than T 2

4.2.1.6 Incorporating Co-occurrence Statistics

In a turnaround containing N events of various types, the number of instances of a given

event type, i, is denoted by Ni = {Ni,0, ..,Ni,k, which takes a 1-of-(Kci + 1) representation

as a binary Kci + 1 dimensional vector. i.e.

Ni,k =


1 for k = n̄i,

0 for k , n̄i

; n̄i =

N∑
n=1

1cn=i (4.9)

where 1 is the indicator function. If the joint distribution p(Ni,Nj) could be learnt for

all event type pairs (i, j) ∈ {1, ..,M}2, then this could be referenced and combined with

φci,c j(ti, t j) to give p(ti, t j|ci,c j) as follows:

p(ti, t j|ci,c j) =



φci,c j(ti, t j)
∑K

k=1
∑K

l=1 p(Ni,k = 1,N j,l = 1) ti, t j ∈ T

φci,c j(ti, t j)p(Ni,0 = 1,N j,0 = 1) ti = Null, t j = Null

φci,c j(ti, t j)
∑K

k=1 p(Ni,0 = 1,N j,k = 1) ti = Null, t j ∈ T

φci,c j(ti, t j)
∑K

k=1 p(Ni,k = 1,N j,0 = 1) t j = Null, ti ∈ T

(4.10)
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To estimate this probability from the training set, a number of options could be consid-

ered. Firstly, one might consider assuming independence of Ni and Nj, so that

p(Ni,Nj) = p(Ni)p(Nj). Learning two univariate distributions requires less data then learn-

ing a bivariate distribution (since state space is 2(K +1) as opposed to (K +1)2. However,

this assumption would almost certainly result in loss of useful information. For the tem-

poral prior to be useful, the timings of events need to be correlated to some degree. It

is difficult to think of many scenarios where timings of two events are correlated yet the

presence of one event doest not influence the probability of the other occurring. In the Co-

Friend dataset, the maximum number of occurrences of any event is 4 and many events

only occur once per turnaround. This means that it is therefore feasible to learn a cate-

goric distribution over the joint state space for p(Ni,Nj). Maximum Likelihood training

of a categoric distribution is done by simply counting the number of occurrences in each

possible state; then dividing by the number of samples to give a normalized distribution.

In domains where the number of instances in each sequence is less constrained, it might

be necessary to impose approprite Dirichlet priors (though this would require a number of

hyper parameters since it is not likely that a symmetric Dirichlet prior would be suitable)

to reduce the danger of overfit. Another alternative would be to switch from learning a

categoric distribution to learning parameters for a Poisson distribution. The Poisson distri-

bution expresses the probability of a given number of events occurring in a fixed interval

of time if these events occur with a known average rate and independently of the time

since the last event. There are numerous examples of multivariate Possion distributions

being applied in the literature (see for example [38]) and whilst exact parameterizations

differ, the central idea is the same; there exists a covariance term as well as independent

occurrence rates which captures the dependence between the dimensions.
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4.2.2 Determining The Structure Of The MRF Prior

The second component of the temporal prior which must be learnt is the edge set, E, of

the MRF. The procedure used is similar to that in Pictoral Structure Models [27]. An

N ×N matrix, I, is constructed where I(i, j) contains a measure inversely related to the

usefulness of the link between i and j. Kruskal’s algorithm [41] is then applied to I to

obtain the desired minimum spanning tree. The potential weakness in this method is

that the ‘quality’ of each relationship is measured by a value equivalent to the ’Sum’

term that was studied in 4.1 and proven on a pairwise basis to be an unreliable indicator

of the most useful distribution in terms of improving final performance of the system.

Two alternatives are suggested here. The first, simplest method is to use the potential

performance improvement at a particular sensitivity (for example the Equal Error Rate)

in the manner used to produce the numbers in Figure 4.9.

The second option is to make the structure assignment dynamic (i.e. decided at recog-

nition time), permitting the formulation of a data-dependent measure with which to rank

potential edges in the MRF. As the prior is required to be a tree-structured MRF, and

the variables within Y are discrete, the MAP solution to Equation 4.2 may be obtained

directly through the max-sum Belief Propagation (BP) algorithm [6]. Simplifying the

prior to a tree structure will result in the loss of some information so it is important that

the edges retained are the most informative. BP is a message passing algorithm and in

this context, it is reasonable to assume the most useful messages will be those of lowest

entropy. Therefore, to determine the structure of the tree, the informativeness of each

pairwise connection is assessed with the following equation.

I(i, j) = H[p(X|(ti,di),ci, θ)
∑

t j

p(ti, t j|ci,c j, θ)] (4.11)

which is equivalent to the entropy of the initial message that would be passed from ti to

t j (shown in figure 4.10). Note that this measure factors in the entropy of the detectors’
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responses over the sequence, meaning event instances with noisy observation likelihoods

over a particular sequence are less likely to be connected to one another. Calculating I for

each pair of event instances gives an N ×N matrix, which is made symmetric by setting

I(i, j)→max(I(i, j), I( j, i)).

All three connection strategies described here are evaluated against one another in

Section 4.4

Figure 4.10: Depiction of the message passing scenario between two temporal midpoint
random variables. The usefulness of the link between i and j is defined to be inversely
proportional to the lower of the two entropies H[m j3],H[mi3].

4.2.3 Scenario Recognition with Multiple Instances

In Section 4.1 the idea of a Null state was introduced as a convenient way of dealing with

the prior uncertainty over whether a particular event occurs within a sequence. Here a

method is described for coping with the scenario recognition problem in its full generality:

where multiple instances of the same event class may occur.

One obvious solution might be to set a hard upper limit on the number of instances of

each particular class which could occur within a scenario, then to initialize the appropriate

random variables before simply finding the MAP solution as in the single instance case.

There is a problem with this approach since the observation likelihood for repeat instances

of the same event class is taken from the same detector. For this reason, it is required that

instances of the same event class be non-overlapping so that multiple instances don’t
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point to the same activity. However, this is an impossible constraint to impose with a tree

structured prior (as demonstrated in Figure 4.11).

Another option would be to treat the number of instances of each event type, Ni, as ran-

dom variables and formulate appropriate priors and likelihood functions for them. There

is no way this could be achieved whilst retaining the tree structure of the model since the

likelihood function for Ni would have to depend on all instances where c j = i. Losing the

tree structure would mean loss of speed and guarantees of globally optimal solutions. A

sampling approach would most probably be required which would be prohibitively expen-

sive given that the observation likelihood probabilities taken from the independent event

detectors are not of any convenient parameteric form.

mi m j mk

Figure 4.11: Three instances of event m. Clearly with more than 2 instances of m it
is impossible for them to be fully connected in a tree structure. Here the instances are
shown connected in a chain, which is insufficient since i and k are independent of one
another given j, meaning the prior will not prevent them taking the same value.

To solve the problem, a greedy procedure was formulated which is fast and allows the

independence constraints to be circumvented. First exact optimization of Equation 4.2

is performed, allowing exactly one instance of each event class. For events which had

instances localized successfully ((ti,di) , Null), additional instances are created for the

next stage of optimization. To prevent overlap, the previously localized events are fixed

by transforming their observation likelihood function to a Dirac delta function at the point

at which they were localized in the previous stage of optimization and set the observation

likelihood of the new instance to zero at all (ti,di) which would overlap the previously

localized instance. The tree-shaped prior is then restructured to include the new nodes,

and optimization is performed again. The process is repeated until there is a Null instance

for each event class.
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Recall that in Equation 4.10, the joint distribution over the number of instances p(Nci ,Nc j)

was referenced in order to weight the probability of either ti, t j being ‘Null’. The assump-

tion in that equation was that instances i, j were the only potential instances of ci,c j in the

turnaround. Clearly in the general case, this would not be the case and since all instances

of each event type are not connected in the tree structured prior, it seems that the necessary

information is not available to appropriately reference p(Nci ,Nc j) . In fact, the iterative

optimization procedure opens the possibility here to further work around the indepen-

dence assumptions. An additional variable oi, is defined for each instance which denotes

the ‘order’ of the ith instance. oi = 2 would indicate that instance i is the 2nd occurrence of

class ci. Because of the nature of the iterative optimization, it is reasonable to assume that

if an instance has an order n then n−1 instances have already been successfully localized.

Therefore Equation 4.10 can be modified to

p(ti, t j|ci,c j,oi,o j) =



φci,c j(ti, t j)
∑K

k=oi

∑K
l=o j

p(Ni,k = 1,N j,l = 1) ti, t j ∈ T

φci,c j(ti, t j)p(Ni,0 = 1,N j,0 = 1) ti = Null, t j = Null

φci,c j(ti, t j)
∑K

k=o j
p(Ni,0 = 1,N j,k = 1) ti = Null, t j ∈ T

φci,c j(ti, t j)
∑K

k=oi
p(Ni,k = 1,N j,0 = 1) t j = Null, ti ∈ T

(4.12)

It is acknowledged that there are limitations to this procedure. For example, if it

was observed that there were always either zero or exactly n instances of a particular

event type, this subtlety would be ignored since under this scheme, it is assumed that

observing n−1 instances (n > 1) is at least as likely under the prior as observing n due to

the sum from oi to K. This deficiency is not considered to be too problematic since such

relationships are likely to be relatively rare and in any case, the prior would not reduce

the chance of detecting the nth sample.
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4.3 Summary of Method

This chapter has stepped through, in detail, several disparate elements. The entire pipeline

is summarized here to give a clear picture of how it is applied.

• Learning

1. Train independent event detectors for all events,

2. Learn pairwise distributions over time differences using several different mod-

els,

3. Decide on a target recall rate for detectors,

4. Select most useful models based on potential performance improvement at

chosen recall rate.

• Recognition

1. Initialize scenario with single instance of each event type,

2. Determine optimal tree structure,

3. Maximize with respect to instance timings,

4. Create additional instances for events that do not yet have a Null instance,

5. Repeat steps 2-4 until there exists a Null instance for each event type.

4.4 Evaluation

The comparison of the independent detector with three variants of the temporal model can

be found in Table 4.2.

There are three different sets of results in Table 4.2 to represent the three connection

strategies covered in Section 4.2.2. ‘Dynamic’ represents the dynamic, entropy-based

structure selection. ‘PPI’ uses the Potential Performance Improvement as the measure,
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whilst ‘PSM’ is the quality measure used for Pictoral Structure Models in [27]. Compar-

ing the three methods is not straightforward since a cost function was not provided for

the Co-Friend dataset. An attempt was made to calibrate sensitivity to around the Equal

Error Rate through a limited line search over the αci variables from Equation 4.1 for each

model. It was not possible however to get an exact match in all cases given the dataset

size and interdependence of the αci values. Therefore it is a case of trying to compare

points in the 2D precision-recall space. Since precision-recall curves had been generated

for the independent event detectors, it was decided that these should be used as bench-

marks for performance. Given a precision, recall score for a given connection strategy,

the performance improvement is calculated by taking the precision of the independent de-

tector at the same level of recall. The models can be compared based on the performance

improvement numbers, or by reference to Figure 4.12. Its clear that for almost all events,

all variants of the temporal model perform significantly better than the independent de-

tectors. Note that the events which cause most problems to all variants of the temporal

model are the Container Rear Door Loading/Unloading events. There are a number of

reasons for this. Firstly, these are the events for which there are fewest occurrences in the

data, meaning the temporal relations learned are most likely to be overfitted. Secondly, it

is unfortunate that the false positives for this event tend to be induced by activity which

actually belongs to a Belt Loader Unloading event; and the two events tend to occur at

similar times within the turnaround. Therefore most of the noise from the detector also

satisfies the temporal model.

It’s not possible to say conclusively that any of the connection strategies is best. The

PPI-based connection strategy achieves the best results overall, but only just, and there

are individual events on which it is beaten. This is likely to largely be an effect of a

small dataset size. What is more informative than the numbers is actually an examination

of the connection structures which arise from the different methods and the issues and

advantages of each.
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The most significant issue that the PPI and PSM models are both theoretically sus-

ceptible to is that an event instance may be highly connected (i.e. act as a hub linking

several other nodes), despite its detector registering very little response for a sequence.

This results in very uninformative messages being passed through this node, meaning the

neighbours for whom that node is the sole neighbour are effectively disconnected. See

Figure 4.13 for an example of this effect. The dynamic structure selection procedure

protects against this, since the high entropy of the intial messages passed out of such a

node would result in low scores; meaning the node is very unlikely to be selected for

multiple connections. In the sequences on which PPI performs badly, this effect is often

observed. Though there is nothing in the PSM connection strategy to prevent this effect,

it can seldom be observed in the Co-Friend dataset. This is because the events which are

least likely to occur in any given sequence are those with the fewest occurrences across

the dataset and hence those for which the temporal relations are most often overfitted,

giving them a low score under the PSM connection strategy. In a larger dataset, this syn-

ergy would not exist, making PSMs just as susceptible to the issue as PPI. A weakness of

the dynamic structure selection procedure is that since it prefers low entropy messages,

it is more likely to select the overfitted distributions (which tend to be strongly peaked).

Similarly, the PPI measure is also more prone to overfit since it involves estimating the

usefulness of links with an N-fold cross validation procedure which further reduces the

amount of available data for training. From these observations, it would seem that PSM

connection strategy is particularly useful in situations when there is a shortage of data,

wheras the PPI and dynamic models are likely to be more powerful in larger datasets.
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Dynamic PPI PSM
Event Class N rec pre imp rec pre imp rec pre imp

(%) (%) (%) (%) (%) (%) (%) (%) (%)
Aircraft Arrival 37 100 100 51 100 100 51 100 100 51
Aircraft Departure 37 100 100 0 100 100 0 100 100 0
Passenger Bridge Positioning 37 95 95 56 100 100 66 100 100 66
Passenger Bridge Parking 37 100 100 53 97 97 38 97 97 38
Ground Power Unit Positioning 37 86 86 4 86 86 4 86 86 4
Handler Deposits Chocks 40 55 59 34 52 57 31 55 59 34
Container Rear Door Loading 13 67 18 -20 56 54 -2 70 18 -17
Container Rear Door Unloading 14 80 22 -29 20 31 -69 68 16 -44
Container Front Door Loading 27 54 47 -31 77 77 14 92 57 0
Container Front Door Unloading 25 79 69 12 43 100 31 71 62 0
Belt Loader Loading 36 74 52 18 60 60 14 60 70 24
Belt Loader Unloading 25 80 65 -19 84 75 5 72 86 2
Mean Improvement 18 22 20

Table 4.2: Numbers of occurrences of each event class in dataset and performance of
detection techniques.
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Figure 4.12: Performance of Temporal Structure Models across event types. The preci-
sion recall curves plotted are the performance of the independant detector for each event.
The performance of 3 different variants of the temporal structure model based on 3 dif-
ferent connection strategies are plotted as single points. The square represents Pictoral
Structure Model style connection, the triangle represents connection based on Potential
Performance Improvement and the cross represents dynamic connection. Note that inter-
dependence between events makes it impossible to generate precision-recall curves using
Temporal Structure Models.
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In this chapter, a novel method for exploiting temporal structure in scenarios to signif-

icantly improve over the performance of independent event detectors was introduced. The

method is flexible; allowing event detectors to be trained independently and new/different

detectors to be ‘plugged in’ as the observation likelihood term. Several methods for learn-

ing pairwise temporal relations between different event types were suggested and a new

metric introduced for evaluating distributions learned to represent these relationships,

which reflects the context in which they are to be deployed. An efficient algorithm for

recognition was presented which can incorporate a novel, dynamic method of structure

learning.
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Figure 4.16: Gantt charts showing detection results against Ground Truth for a number of
turnarounds.



Chapter 4 106 Temporal Structure Models

Figure 4.17: Gantt charts showing detection results against Ground Truth for a number of
turnarounds.



Chapter 5

Imposing Temporal Constraints With

Conditional Random Fields

In the previous chapter, the output of independently trained event detectors was given a

direct probabilistic interpretation by treating them as p(X|C,Y, θ). A potential problem

with this approach is that in treating the outputs of these heterogeneous detectors as gen-

uine probabilities, all are consequently weighted equally in the global reasoning over the

scenario. It is desired that no assumptions should be made over the type of classifier to

be used in the framework. In this thesis, the SVM has been favoured, the output of which

is not directly probabilistic, rather the distance from the decision plane is returned. The

method of Platt [61] is used to map to a probability by means of a sigmoid function; the

parameters of which are also determined by the data. For the model in the previous chapter

to function well, with detections for all events around the Equal Error Rate, the probabil-

ities from the independent event detectors must be well-calibrated. In the probabilistic

formulation there is no facility to weight the influence of the temporal prior relative to the

observations, which might be disadvantageous. By treating the individual classifier prob-

abilities and learnt temporal relations as feature functions within a Conditional Random

Field, this limitation can be addressed. This chapter describes how the model described

107
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in the previous chapter may be reformulated as a CRF.

5.1 General Conditional Random Field Formulation

The majority of the literature on CRFs focuses on the special case of linear chain CRFs

[43]. This is due in part to the model’s strong simliarity to the HMM and its easy ap-

plicability to sequential data. Of interest here however, are those of a more general tree

structure as deployed in the MRF prior in the previous chapter. The notation used in this

chapter mirrors that used in Sutton and McCallum’s [75] CRF tutorial.

A Conditional Random Field is the name for a very broad class of discriminative

model, typically parameterized as

p(y|x) =
1

Z(x)

∏
ψA∈G

exp

K(A)∑
k=1

λAk fAk(yA,xA)

 , (5.1)

where G is a factor graph over Y , and p(y|x) factorizes according to G. F = {ψA} is the

set of factors in G, and each factor takes the exponential family form. The motivation

for using this log-linear functional form has origins in information theory, as explained

eloquently in [4]. In brief, the idea is that given some statistics about a set of data, the

best model to fit that data is the one which fits these statistics with maximum entropy.

This form allows multiple feature functions and multiple weighting parameters for every

clique within G. In practical applications, one often sees extensive parameter tying. For

example, the weights used for factors ψt(yt,yt−1,x) are the same for each timestep in a

linear chain CRF. In more general cases, parameter tying can be formalized through clique

templates. Each clique template Cp ∈ C is a set of factors which has a corresponding set of

sufficient statistics { fpk(xp,yp)} and parameters θp ∈ R
K(A). Thus the CRF can be written

p(y|x) =
1

Z(x)

∏
Cp∈C

∏
ψc∈Cp

ψc(x,y;θp), (5.2)
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where each factor is parameterized as

ψc(xc,yc;θp) = exp


K(p)∑
k=1

λpk fpk(xc,yc)

, (5.3)

and the normalization function is

Z(x) =
∑

y

∏
Cp∈C

∏
ψc∈Cp

ψc(xc,yc;θp). (5.4)

Note that the normalization function, Z, requires summing over the entire state space of

t, a space of size (T + 1)N , i.e. exponential in the number of event instances. This makes

CRFs intractible for general graphs and restricts their usage to small problems or restricted

structural forms which allow calculation of Z in a more efficient manner. For this reason

in the following section, a tree structure is once again used in the CRF formulation.

5.2 Tree-Structured Conditional Random Field Formu-

lation

To formulate a CRF which is analagous to the model described in Chapter 4, clique tem-

plates are defined for each individual event type, consisting of a single function, g, (the

output of the independent event detector) and a corresponding weighting parameter, λ. ti

represents all the t variables within clique i.

ψi = exp {λigi(ti,X)}; i ∈ {1, ..,M} (5.5)

Next a clique template is defined for each event pair consisting of a single function
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(the pairwise probability from the previous chapter) and corresponding weight

ψi = exp {λi fi(ti,X)}; i ∈ {M + 1, ..,M + |E|} (5.6)

where E is the set of all event pairs for which a connection exists in the training set. This

reveals a limitation in the CRF formulation compared to the simpler model. In the previ-

ous chapter, the graph structure in each sequence was decided at optimisation time based

on a usefulness measure of the pairwise relationships. This measure was permitted to be

dynamic (as in the suggested entropy-based measure). Therefore, when approaching an

unseen sequence, the structure of the graph would not be known until the detector output

was observed. In most sequences Event A might be connected to Event B, yet in another

sequence Event A might be connected to Event C since both Event A and Event B had

very high entropy observation likelihood. This would not cause a problem, since training

of pairwise relations was done entirely independently, so the relationship between A and

C would have been trained even if it would not have been used in scenario-level opti-

mization over the training set. In the CRF case, whilst the independently trained pairwise

relations will be retained as functions, the weights relating to each pairwise function must

be optimised at a scenario level. The structure of the training scenarios is therefore cru-

cial to the CRF training. If one desired to use the dynamic structure assignment, a very

large dataset would be required in order to guarantee that all pairwise relations would be

observed in the training data.

5.2.1 CRF Training

Since it is assumed the clique functions have all been trained as described in Section

4.2.1, all that remains in training is to optimize the M + |E| weights. The CRF is assem-

bled for training by iterating over all the sequences in the training set. For each event

type, m ∈ {1, ..,M} in each each sequence s ∈ {1, ..,S }, Nm,s + 1 random variables, ti, with
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corresponding event-class indicators, ci are created, where Nm,s is the number of occur-

rences of event m in sequence s. Note that the extra instance corresponds to the ‘switched

off’ instance of each type which would result from a successful optimization using the

method described in Section 4.2.3. Each ti has a factor relating to its corresponding ob-

servation likelihood- all instances of the same type across all sequences share the same

weighting parameter. The static PPI measure defined in Chapter 4 is used as before in

order to determine the structure for each sequence. The sequences can be looked at as

disjoint components within one large graph, G. The structure of G then determines how

the pairwise clique templates are applied. All pairs connected in the minimum spanning

tree have a factor linking them. Again, pairs of the same type have the same clique tem-

plate and hence the same weight associated with their factor. This results in the following

objective function.

p(t|X) =
1
Z

N∏
i=1

exp
(
λcigci(ti,X)

) ∏
( j,k)∈G

exp
(
µc j,ck fc j,ck(t j, tk)

)
(5.7)

where the double-subscripted parameter µ has been introduced to simplify notation. It

may still be convenient to refer to the set of parameters as λ, which is possible if it is

explained that there is a one to one mapping between µc j,ck ; (c j,ck) ∈ E and λi; i ∈ {M +

1, ..,M + |E|}. Due to numerical precision issues, it is more convenient to work with the

log-likelihood

L(λ) =

N∑
i=1

λcigci(ti,X)
∑

( j,k)∈G

µc j,ck fc j,ck(t j, tk)− logZ (5.8)
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and its derivatives

∂L

∂λa
=

N∑
i=1

1ci=aλcigci(ti,X)−
N∑

i=1

∑
t′i

1ci=iλcigci(t
′
i ,X)p(t′i |X); a ∈ {1, ..,M}

(5.9)

∂L

∂λa
=

∑
( j,k)∈G

µc j,ck fc j,ck(t j, tk)−
∑

( j,k)∈G

∑
t′j,t
′
k

µc j,ck fc j,ck(t′j, t
′
k)p(t′j, t

′
k|X) a ∈ {M + 1, ..,M + |E|}

(5.10)

Note that the normalizing constant Z requires summing over all possible settings of

the t variables. Since G is tree-structured, this computation can be done in linear rather

than exponential time through the sum-product Belief Propagation algorithm. BP can also

be used for efficient computation of the conditional probabilities used in the calculating

the partial derivatives as described in Figure 5.1.

Since the log-likelihood function is concave with respect to the λ and it is possible

to calculate the derviative of the log-likelihood function with respect to λ, it can be op-

timised with any gradient-based method. In [28], several flavours of Conjugate Gradient

algorithm are compared with L-BFGS and Generalized Iterative Scaling. L-BFGS and

preconditioned Conjugate Gradient algorithms come out on top of this comparison. Since

an L-BFGS implementation is readily available in Scipy, this is the method deployed in

this work.

As in all previous experiments with the Co-Friend dataset, a leave-one-out training

procedure is followed. In an initial run, optimization failed to converge in most cases

after the permitted 100 iterations (which took roughly 10 hours). Also the weights arising

from across the leave-one-out procedure were quite variable, with lots of extreme values.

This was a clear indication of overfitting, meaning regularization would be necessary.

Regularization is often used in CRF training, to prevent overfit and encourage sparse-

ness in features. The most common heuristic is to introduce the following penalty to the
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Figure 5.1: Illustration of the message-passing scenario for tree-structured CRF optimiza-
tion. Top: For computation of the normalizing coefficient Z, messages are passed inwards
from leaves into the root (in this case t2). logZ is calculated at the root by summing all
incoming messages then taking log sum of the exponential of that resultant vector (i.e.
summing over t2). For computation of conditional probabilities over other nodes, it is
necessary for the root to transmit messages back out to the leaves. These messages can
then be retained in memory and referenced when required. The conditional probability
over any single t variable given all others is obtained by simply summing all the messages
coming into that node. The joint conditional p(t j, tk|t¬ j,k,X,λ) over any pair of t variables
is obtained by projecting the messages from t j, tk onto their adjoining factor.

log-likelihood function

−

M+|E|∑
i=1

λ2
k

2σ2 (5.11)

which corresponds to placing a Gaussian prior on the weight vector λ with zero mean and

covariance σ2I. When ∂L
∂λ is calculated for the updated Log likelihood function, the result

is as before but with the additional penalty term −λk
σ2 . Optimization takes around 8 hours

to complete, requiring on average 75 Iterations to converge. Most of this computation

time can be attributed to the aproximately 1500 function evaluations and 700 gradient

evaluations required. Several values of sigma were tried, with a value of 0.5 yielding the

best results.



Chapter 5 114 Temporal Constraints with CRFs

The weights assigned to observations from the various event detectors are displayed

in Figure 5.2. The weights are generally larger on the detectors which peform bettter,

with the exception of the Handler Deposits Chocks event, which recieves the highest

weighting despite being one of the least reliable detectors. This is most likely because

whilst the detector does fire the occasional false positive, these false positives are very

sharply peaked and the detector is otherwise very well behaved. In several of the more

effective detectors such as the Passenger Bridge Positioning, the event takes place over a

much longer time period and any intervals which overlap the ground truth to a reasonable

degree display some level response in the detector. Whilst this noise isn’t problematic at

detection time where one can apply local maxima constraints, it causes the detector to be

downweighted in the CRF training, since training penalizes any response over negative

intervals.

Airc
raft A

rriv
al

Airc
raft D

epartu
re

Container R
ear D

oor L
oading

Container R
ear D

oor U
nloading

Container F
ront D

oor L
oading

Container F
ront D

oor U
nloading

Ground Power U
nit P

osit
ioning

Handler D
eposit

s C
hocks

Passe
nger B

rid
ge Posit

ioning

Passe
nger B

rid
ge Parking

Belt L
oader L

oading

Belt L
oader U

nloading
0

2

4

6

8

10

w
e
ig

h
t

CRF weighting of event observations

Figure 5.2: Weights obtained from CRF training. Error bars are generated by leave-
one out training over 37 sequences. The small error bars indicate the stability of the
parameters after the introduction of the regularization term.
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TSM CRF
Event Class N rec pre imp rec pre imp

(%) (%) (%) (%) (%) (%)
Aircraft Arrival 37 100 100 51 100 100 51
Aircraft Departure 37 100 100 0 100 100 0
Passenger Bridge Positioning 37 100 100 66 100 100 66
Passenger Bridge Parking 37 97 97 38 97 97 38
Ground Power Unit Positioning 37 86 86 4 86 85 3
Handler Deposits Chocks 40 52 57 31 57 63 38
Container Rear Door Loading 13 56 54 -2 56 59 3
Container Rear Door Unloading 14 20 31 -69 32 52 -5
Container Front Door Loading 27 77 77 14 69 73 8
Container Front Door Unloading 25 43 100 31 45 74 5
Belt Loader Loading 36 60 60 14 60 60 14
Belt Loader Unloading 25 84 75 5 84 73 3
Mean Improvement 22 23

Table 5.1: Numbers of occurrences of each event class in dataset and performance of
detection techniques.

5.3 Evaluation

Sequence-level optimization for the CRF is carried out in exactly the same way as in

the previous Chapter. The only change is that instead of the Belief Propagation stage

involving the summation of the log of the pairwise and observation likelihoods, it now

involves summation of the weighted functions.

Table 5.1 compares results obtained with the CRF model versus the best Temporal

Structure Model variant (with connections based on PPI) from the previous chapter. It ap-

pears that the CRF marginally outperforms the simpler model, with a mean improvement

of 23

5.4 Future Directions

Conditional Random Fields are a powerful and very flexible class of model. The most nat-

ural way to apply them in this thesis seemed to be to use them to extend the tree structured
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models which were already proving to be effective. However, it would be interesting to

experiment with different levels of connectivity. Once obvious thing to try would be to set

up the graph as pairwise fully connected as in [42]. Note that there is a big problem with

this pairwise fully connected architecture on a theoretical level. In the tree structured case,

the assumption is being made that a node is temporally dependant only on its neighbours.

This inevitably results in the loss of some information, which is not ideal, but at least by

retaining the most informative relations this loss can be minimised. In a pairwise fully

connected architecture, where the pairwise relations were trained exactly as before, the

problem would not just be loss of information, but also huge amounts of redundancy of

information. If event A and event B always happen very close to one another, with event

C coming some time after that; and if A and B were observed, there would then be two

very similar messages about C coming from A and B being treated as independent pieces

of information. The effect of this in a probabilistic framework would be that the temporal

relations in larger graphs would dominate the observation likelihoods. It is likely for that

reason that in [42], ‘top-hat’ functions are used rather than a peaked distribution like a

Gaussian. The pairwise relations then just essentially define an allowable configuration

space rather than attempting to convey richer information. By treating the pairwise func-

tions as features in a CRF however, redundancy should not be a problem. In part of speech

tagging for example, [69] millions of features are created- many of which are redundant,

and the redundant information is downweighted by CRF optimization. The reason why

this experiment was not straightforward to try was that a fully-connected structure would

mean that Belief Propagation could no longer be relied on to provide exact inference or

computation of the normalization constant. Loopy BP [54] could potentially be an option;

though it is a computationally expensive procedure and given that training times for the

CRF were already in the order of hours may not be practical. Another interesting option

would be to try and apply Expectation Propagation (EP) [52] to the task. EP has recently

gained much attention in the literature, especially since its deployment in Microsoft’s In-
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fer.NET [51]. EP is extremely fast since the inference is done analytically with conjugate

exponential family distributions. The difficulty with application of EP to this problem

would be that EP requires a step where the posterior probability over observation density

multiplied by a prior must be approximated with a distribution of the same form as the

prior. Minka has derived this projection for some well known distributions [52], but it is

not clear how it would be done in general, and represents a significant research challenge

in itself.



Chapter 6

Conclusion

The purpose of this thesis was to explore the state of the art in action recognition systems

and to propose a generic architecture applicable in scenarios where temporal relations

between events could provide additional information. This chapter summarizes how these

goals were achieved and highlights the contributions of this thesis in three significant areas

before ending with some general remarks and suggestions for future directions in the field.

6.1 Improving the Histogram of Optical Flow feature

Though widely cited in recent literature, the HOF feature is still a relatively new develop-

ment and as such there are very few implementations in existence, with most researchers

using the binaries made available by their creator, Laptev [47]. As such, not every aspect

of the features has been extensively evaluated. The aspect focused on in this thesis is

the means by which the features are normalized. Laptev uses a coarse binning strategy

where he creates an additional bin for non-motion, then thresholds motion before placing

a vote of a single unit magnitude into the relevant bin at each pixel. It was shown with

thorough evaluation on two well-known datasets that this strategy can be outperformed

by one which retains richer motion information by the abolition of the non-motion bin

and retention of magnitudes using bilinear filtering and l2-normalization.
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6.2 A novel formulation for the event detection task

Taking inspiration from the success of Pictoral Structure Models in the field of object

detection, a similar framework was suggested that could be employed to the task of event

detection within structured scenarios, casting the midpoints of different events as the ran-

dom variables to be optimized. Several differences were highlighted between the object

detection and event detection tasks, which required extensions to the core PSM model.

A number of methods for training the distributions over the pairwise temporal relations

used in the model were considered, ranging from simple smoothed histograms to Gaussian

Mixture Models trained with a complex Bayesian procedure. Two new metrics were intro-

duced for learning structure in the MRF prior of the model, and evaluated versus the one

used in PSMs. The first metric was given the name Potential Performance Improvement,

as it was not a goodness-of-fit measure but instead a measure directly focused on its use-

fulness for detection at a target level of recall. The second measure was based on entropy

of the pairwise distributions combined with the detector response at run time, made pos-

sible by doing the structure learning dynamically. Though the difference in performance

between these metrics was not significant on the target dataset, some intuition was gained

from the results about which may be most appropriate in different scenarios. Experimen-

tation showed that each connection strategy had slightly different strengths, meaning that

one can imagine circumstances under which any one of them could be preferable. In fu-

ture work further experiments on other datasets would be desirable to fully determine the

impact of dynamic structure learning. Finally, an efficient iterative algorithm was intro-

duced to optimize for turnarounds with unkown numbers of event instances, the design

of which allowed rich information to be incorporated without invalidating the indepen-

dence assumptions required to keep the computation tractable. Results were achieved

well above the strong baseline provided by the independent event detectors.
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6.3 An extension to the Temporal Structure Model using

Conditional Random Fields

In the final chapter, it was demonstrated how the Temporal Structure Model defined in the

previous chapter could be extended within a Conditional Random Field formulation. The

practical implications of training a CRF model for such an application were discussed

and some results presented which demonstrated a modest improvement over the simpler

model. A number of potential extensions to the model were suggested as avenues for

future work.

6.4 Final Remarks

The review of existing high level action recognition methodologies revealed a literature

that is relatively disconnected. Many interesting methods have been presented yet very

few are directly comparable. In contrast, research in the related field of object detection

has been driven forward in recent times by intense competition on large freely-available

datasets. Competetive results on such a dataset are expected for new publications in that

area. This makes it quite obvious which methods are currently at the forefront, at the cost

of creating an environment that some might argue makes innovation more difficult as it is

easier to squeeze additional performance through the incremental improvement of exist-

ing methods. A similar kind of community is developing in the area of low-level action

recognition, around datasets such as KTH Actions and Hollywood2. Unfortunately, noth-

ing similar is yet on the horizon for high-level action recognition. The result is a literature

which seems a little more ‘horses for courses’. Datasets for the high-level problem are

expensive to gather, to annotate, distribute and process. Consisting of approximately forty

hours of video, the Co-Friend dataset used in this thesis is larger than most and required

thousands of hours of CPU time for training and experimentation. Yet on the other hand,
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if it is viewed on a scenario level, the dataset is relatively small, something that became

particularly apparent when trying to attach any significance to the results achieved in the

CRF experiments. Could it really be argued that a dataset is large when it contains fewer

than forty instances of a complex multi-agent scenario where the number of occurrences,

the ordering and the timing of the constituent events are all variable? Unfortunately it

seems unavoidable that practical concerns will continue to limit the size of datasets in

this area in the immediate future, yet benchmarks are nevertheless important. In partic-

ular it is important for researchers to modularize the evaluation of high-level methods as

much as possible in order to allow others to see to what degree the various components

of a high level system are responsible for the overall performance. This was done to as

great an extent as possible within this thesis by starting with low-level detectors whose

performance is well understood, then using this as a benchmark and reference point from

which to compare several varieties of model. Something which also needs to come with

any future datasets is a common evaluation metric. In the literature surrounding the de-

tection of simple events, it is customary to give performance figures in terms of Average

Precision on a per-event basis and to plot precision-recall or ROC curves. It became clear

in this work that generating these figures would simply not be possible for many higher-

level systems due to interdependencies between the sensitivities of detectors relating to

the different events. The solution to this problem, employed in this work, was to gauge

performance in terms of precision-recall relative to a precision-recall curve generated by

a lower level method. This seemed an appropriately flexible metric given the relatively

loose definition of good performance inherent in the task. However, if one desired to

produce a canonical dataset for activity recognition, it would be preferable to define with

the dataset a cost function (perhaps at the event level) giving weight to false positives and

false negatives, encapsulating performance in terms of a single figure. When a dataset in

the area does gain the support of the community, it will be interesting to see how this in-

fluences the direction of research. It is likely that in the short term at least, whilst motion
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tracking techniques remain imperfect, works that leverage dectors based on local features

paired with interest point detectors or dense extraction will outperform methods that use

tracking to abstract away from the video. If that prediction proves correct, the main chal-

lenges in this work of how to incorporate response from different detectors, how to make

the independence assumptions required for tractability whilst retaining maximum useful

information and how to evaluate each element of a complex system, will be encountered

by many. Hopefully then, this thesis is well timed to be of use to other researchers in the

area.
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