
Hypergraph product codes:
a bridge to scalable quantum computers

Armanda O. Quintavalle

Submitted for the degree of Doctor of Philosophy
October 2022

Department of Physics and Astronomy
The University of Sheffield





How to build a bridge

A bridge needs good foundations. Mine had Earl Campbell. Earl taught me
how to do science. Blame me for whatever is not science in this thesis.
Not him. Thank you for all the afternoons at the whiteboard and the
occasional tequila.

This bridge also had Pieter Kok. A pro-bono mentor and on-paper
supervisor. His optimism has helped both physics and life.

Joshka Roffe has been 24/7 emergency rescue for any build-related
issues. While I learnt a good chunk of quantum information stuff from
him, he has hopefully learnt to tolerate a pedantic mathematician.

Elena Callus has been on call too. She is a brilliant physicist who
taught me that my favourite qubit is the logical qubit, and hence
forever saved me from physics.

A good bit of this work has been done thanks to the fine architect
advice of Mike Vasmer - we had fun doing that.

A bridge does not only have towers but arches too. They are strong and
help control the load. Yingkai Ouyang, Paul Webster, Zixin Huang, and,
of course, the rest of the Sidney crew - Felix Thomsen and Mark
Webster. Arthur Pesah, aka the 3D guy, a great QEC person and mindful
promoter of this bridge. The unlucky experimentalist and inhabitants of
E13a who bared with many disparate and desperate questions.

17 November 2022
Thank you to Dan Browne and David Whittaker, who took the time to
discuss this work with me. Thank you to Dan Browne and David Whittaker,
who took the time to discuss this work with me. I gained a lot of
insights from our conversation.

i



ii



Abstract

A physical machine for storage and manipulation of information, being physical, will always be subject
to noise and failure. For this reason, the design of fault-tolerant architectures is of prime importance
for building a working quantum computer. Quantum error correction codes offer a possible elegant
framework for fault-tolerance when provided with methods to operate qubits without corrupting the
information stored therein. This work specialises in hypergraph product (HGP) codes and seeks to lay
the groundwork for a quantum computer architecture based on them.

The leading approach to fault-tolerant quantum computation is, today, based on the planar code.
A planar-code-based quantum computer, however, would require dramatic qubit overhead and we
believe that good low-density parity-check (LDPC) codes are necessary to attain the full potential
of quantum computing. The HGP codes, of which the planar code is an instance, are not, strictly
speaking, good LDPC codes. Still, they are an efficient alternative. On the one hand, the best HGP
codes improve upon the planar code as they can store multiple logical qubits. On the other, they are
not considered good because their noise robustness is sub-optimal. Nonetheless, we see the design of
a HGP-based quantum computer as a bridge between the currently-favoured planar code design and
the gold standard of good LDPC codes. A HGP-based architecture would inform our knowledge on
how to design fault-tolerant protocols when a code stores multiple logical qubits, which is, to a large
extent, still an open question.

Our first original contribution is a decoding algorithm for all families of two-fold HGP codes. Sec-
ond, we exhibit a constructive method to implement some logical encoded operations, given HGP codes
with particular symmetries. Last, we propose the concept of confinement as an essential characteristic
for a code family to be robust against syndrome measurement errors. Importantly, we show that both
expander and three-dimensional HGP codes have the desired confinement property.

iii



iv



Contents

Acronyms vii

1 Context and notation - Introduction 1
1.1 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Classical linear codes and their quantum counterpart: stabiliser and CSS codes . . . . . . . 8
1.4 The planar code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 On logical operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 On syndrome measurement errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 The need for good codes - Overview 25

3 Code construction and decoding - ReShape 31

4 Logical gates - Qubit partitions 49

5 Single-shot error correction - Confinement 71

6 Outlook and Open problems 109

v



vi



Acronyms

CSS code Calderbank-Shor-Steane code 12
LDPC low-density parity-check 8
ML decoder maximum-likelihood decoder 9
qLDPC quantum low-density parity-check 10
qML decoder quantum maximum-likelihood decoder 11
qMW decoder quantum minimum-weight decoder 11

vii



viii



Chapter 1

Context and notation - Introduction

Reliable exchange of information needs redundancy. Natural language is redundant and in fact, we
could write a sentence, remove all the vowels –‘th dg s n th grdn’ – or make a few typos – ‘teh dog is in
the graden’ – but still have a good chance that our message goes through. These are just two sides of the
same coin: we can encode information to compress it (source coding) or we can encode information to
protect it from errors (channel coding). Here we deal with the latter when the information is processed
by a quantum computer. Before turning to the quantum side, we briefly go over the key features of
channel coding for classical information processing in Section 1.1. We introduce the corresponding
concepts for quantum information processing in the remaining Sections 1.2 to 1.6.

1.1 Bits

The basic unit of information is the bit, a two-state system, F2, whose possible values are {0, 1} [1, 2].
If a bit b has an equal probability of being in each state, the amount of information content in b is 1

shannon. Given a bit b in an unknown state, we can flip its value:

flip(b) =

0 if b = 1

1 if b = 0
,

= b+ 1 in F2.

The flip operation maps valid states of b into valid ones: it is a logical operation on the bit state. In
contrast, the operation vespa(b) =🛵 is not a logical operation since the symbol 🛵 does not belong
to F2 and it is therefore not a valid state for the bit b.

Because a bit only has two possible valid states, the flip is the only reversible error a bit is subject
to. Nonetheless, if b undergoes a flip error with some probability p ∈ (0, 1), there is no way to infer
whether b has been erroneously flipped or not. Being a logical operation, the flip preserves valid states
and thus cannot be detected. With only one bit at our disposal, the knowledge that an error has
occurred with probability p is not enough: we need to add redundancy.

One way of adding redundancy is to use the classical repetition code. It encodes the logical bit b
into a register of n > 1 physical bits. For n = 3, the bit b is mapped into c = (c1 c2 c3) ∈ F3

2 via the

1



linear map:

G : F2 =⇒ F3
2

b 7−→


1

1

1

 · b. (1.1)

The valid states for the register c are the ones in the image1 of G. The image of G is

im(G) = {(0 0 0), (1 1 1)}.

We call the vector space im(G) the codespace. The elements of the codespace are the codewords. The
logical flip operation on the codespace requires three single bit-flips:

flip(c) =


flip(c1)
flip(c2)
flip(c3)

 = c+


1

1

1

 ∈ F3
2.

One flip was previously enough to corrupt the information stored in b, but as many as three physical
flips are now necessary to corrupt an encoded state in im(G) and for the event to go undetected. If
the register c is found in a state with ci 6= cj for some i 6= j then at least an error has occurred: we
have detected that c belongs to the complement2 F3

2 \ im(G) of the codespace. Crucially, the codespace
im(G) is isomorphic to F2, the vector space describing the state space of a single bit. Despite that, the
logical flip in the codespace ‘costs’ three times the cost of a single bit-flip. We have added redundancy
and lowered the probability of undetectable errors – from p to p3 in this example.

The repetition code offers a working, albeit simple, example of classical code. However, its construc-
tion does not carry over to qubits as we illustrate in the following Sections. In Section 1.2, we review
some basic features of qubit systems. Our presentation, far from exhaustive, aims to highlight the
primary issues at the core of robust quantum information processing. The quantum repetition code is
presented in Section 1.2.1, and its shortcomings are pointed out. In Section 1.3 we briefly run through
classical linear codes as it is needed to understand their quantum counterpart, the stabiliser codes. We
outline the construction of the planar code – the quantum working equivalent of the repetition code –
in Section 1.4. We conclude this Chapter with Sections 1.5 and 1.6, where we discuss two concurrent
issues to quantum code construction for the design of a fault-tolerant computer architecture: logical
operations and noisy measurements.

1.2 Qubits

A qubit is a two-dimensional Hilbert space, C2, whose state is described by a unit vector [3, 4]. We
write |0〉 and |1〉 to indicate the standard basis of C2, so that the state of a qubit q is written as
|φ〉 = α |0〉+ β |1〉, where the vector of coefficients (α, β)T ∈ C2 has unit norm, |α|2 + |β|2 = 1.

1The image of a function f : A −→ B, denoted im(f), is the set of all elements f(a) ∈ B, as a varies in the domain
A of f .

2Given two sets A and B, the complement of B in A is the set of all elements of A that do not belong to B. The
complement is written A \B.

2



The possible reversible operations on a qubit are unitary maps: U ∈ C2×2 such that UU † = 1. An
extensively used basis for the linear operators in C2×2 is the Pauli basis:

1 =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

The Pauli operators X,Y, Z, together with ±i1, generate a multiplicative group which obeys the
product and commutativity relations:

X2 = Y 2 = Z2 = 1, XY = iZ, Y Z = iX, ZX = iY,

and

XY = −Y X, Y Z = −Y Z, ZX = −XZ.

An n-qubit register has states that are vectors in (C2)⊗n with standard basis {|v〉 s.t v ∈ Fn
2}.

The Pauli group on n qubits, Pn, is the group generated by n-fold tensor products of Pauli operators.
Given a Pauli operator P ∈ P1 ⊆ C2×2, we write Pi for the operator in Pn ⊆ C2n×2n which is the
tensor product of P at position i and the identity elsewhere. We define the support of a Pauli operator
Pn as the set:

supp(P ) = {i such that P = P1 ⊗ . . .⊗ Pn and Pi 6= 1},

and its weight |P | as |P | = |supp(P )|. On (C2)⊗n, the Pauli basis is the set:

{1n, Xi, Zi, Yi s.t. 1 ≤ i ≤ n},

where 1n ∈ (C)2
n×2n is the identity matrix of size 2n × 2n. Similarly to the one-qubit Pauli basis

operators in P1, Pauli basis operators in Pn square to the identity and any two of them either commute
or anti-commute.

Information on the qubits’ state is acquired via the measurement of observables, which are Her-
mitian operators A = A† ∈ C2n×2n . Measuring an observable collapses the state of the qubits onto
one of the eigenspaces of the measured observable. The possible outcomes are the eigenvalues of the
observable, observed with probability equal to the squared norm of the inner product3 between the
pre-measurement state of the qubits and the corresponding eigenvector. Note that outcomes and post-
measurement states for an observable are well defined. By the Spectral Theorem, every Hermitian
operator has an orthonormal basis of eigenvectors [5]. Furthermore, if A and B are both Hermitian
and commute, they have a common basis of eigenvectors and hence the measurement of one does not
alter the probability distribution of the outcome of the other. Commuting observables are compatible.

Importantly, if we knew that a qubit register is in one of two orthogonal states, we could measure
the corresponding observable – any Hermitian operator whose eigenvectors are the two orthogonal
states – and distinguish between the two orthogonal options with certainty. However, if we do not
have such a priori knowledge, measuring a qubit register would collapse its wave function and corrupt
the information stored therein. A possible solution to gather information on the state of a register
whilst preserving it is to ‘write’ that information on an auxiliary register of qubits, as we will now

3The complex inner product is a map ⟨·, ·⟩ : C⊗n × C⊗n −→ C defined as ⟨v, w⟩ := v†w, where v† is the conjugate
transpose of v.

3



explain. We refer to the qubit register we want to gather information about as the data register, and
to the auxiliary register as auxilia register4. Information on the data qubits can be transferred to the
auxilia register via the application of some entangling unitary operators on the composite data-auxilia
system. Via the appropriate choice of the entangling operation, we can assume that the desired infor-
mation can be acquired from the destructive measurement results of the auxilia qubits. In the following
presentation, we will shortly refer to measurement outcomes of data qubits. By this, we always imply,
if not otherwise specified, that suitable auxilia qubits are freshly prepared for the task, appropriate
entangling operations between data and auxilia qubits are performed, the auxilia qubits are measured
and then reinitialized in a standard state, ready to be used again.

To model the manipulation of information stored in qubit registers, we use the quantum circuit model
of computation [3]. The quantum circuit model is based on the assumption that computation on a
qubit register can be reduced to:

(i) Register preparation in a initial state, conventionally |0〉⊗n.

(ii) Active computation via the application of unitary operators on the register for a finite amount
of time.

(iii) Results acquisition via the measurement of qubits in the Pauli Z basis.

Some observations are immediate. First, any realization of a quantum computer, a physical machine
that runs quantum circuits, will be able to perform only a finite set of operations in a finite number of
time steps. Second, if any unitary is a possible operation, then it is also a possible error on the qubit
register. Third, every component – state preparation, gates, measurements – is subject to noise.

The Solovay-Kitaev theorem [7, 3] resolves the first obstacle: even if unitaries on (C2)⊗n are a continu-
ous set, a finite number of gates is sufficient to efficiently implement any unitary to arbitrary precision.
More precisely Solovay-Kitaev states the following.

Consider a norm ‖·‖ over the unitaries on C2. Let G be a finite set of unitaries, closed under
multiplicative inverse. Further assume that the multiplicative group 〈G〉 generated by G is
dense in the unitaries, so that for every unitary U and ε > 0 in R, there exists G ∈ 〈G〉 such
that ‖U −G‖ < ε. Fix a precision ε > 0. Then every unitary can be approximated within
distance ε via a sequence of at most nϵ gates in G, where nε ∝ logc( 1ε ) and 1 < c < 4.

We remark the importance of the poly-logarithmic scaling in the inverse-precision 1
ε in Solovay-Kitaev’s

result. In fact, assume we want to implement m arbitrary unitaries, in m separate timesteps, on a
qubit and we only have access to the gates in G. We aim at precision ε > 0. Roughly, we will have

4The most common term in the literature for auxilia qubits is ancilla qubits. However, the Latin term ancilla means
maidservant and is therefore intrinsically misogynist. For this reason, the community started using alternative terms
such as measurement or syndrome qubits. I believe that the term ‘measurement qubits’ is biased towards the circuit
model of computation as opposed to the measurement-based model [6]; whilst the term ‘syndrome qubits’ fails to cover
the different usages of ancilla qubits, which go beyond the syndrome extraction function. As such, I have looked for a
gender-neutral term. Auxilium in Latin means help, aid. I warmly invite the reader to adopt the phrasing auxilia qubits,
as I firmly believe that changing the words we use is the first step towards shaping our thought, raising awareness and
overcoming (more or less) implicit biases.

4



to implement each of the m unitaries to precision m/ε. By the Solovay-Kitaev’s theorem, the total
time cost scales as m · logc(mε ), with a total scale factor only poly-logarithmic. Keeping time overhead
under control is paramount for the realizations of faithful quantum computations and Solovay-Kitav’s
theorem ensures that this is possible for single-qubit unitary operations. Conveniently, it can be shown
that single-qubit unitaries and controlled-NOT, CNOT, gates

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

between arbitrary pairs of qubits are universal – meaning that an arbitrary unitary on (C2)⊗n can
be written as a product of CNOTs and single-qubit unitaries [3]. From Solovay-Kitaev it follows that
there exists finite sets that can efficiently approximate any unitary operation up to arbitrary precision.
We call any such finite set universal. Infinitely many universal gate sets exist, our preferred one is the
Clifford+T set. The Clifford group Cn on (C2)⊗n is generated by the tensor products of Hadamard,
H, phase gate, S, and CNOT:

H =
1√
2

(
1 1

1 −1

)
, S =

(
1 0

0 i

)
, CNOT.

The T gate is the square root of the phase gate, T =
√
S 6∈ Cn, explicitly:

T =

(
1 0

0 ei
π
4

)
.

The T gate grants universality to the set Clifford+T and therefore we have solved the first issue: a
quantum computer that implements Clifford+T gates is computationally universal.

Before turning to the second issue, namely that possible errors are a continuum, we remark some key
feature of the Clifford group. The Clifford group is not universal because the set generated by {S,H}
is not dense in the set of single-qubit unitaries – whilst {T,H} generates a dense set. Furthermore,
as per the Gottesman-Knill theorem, a circuit made of state preparation, Clifford operations only
and measurements, can be simulated in polynomial time on a probabilistic classical computer [8].
Conjugation via Clifford permutes the Pauli and, in fact, the Clifford group can be alternatively
defined as:

Cn = {U unitary s.t. UPU † ∈ Pn for all P ∈ Pn}.

Every unitary operator can be written as a linear combination of the Pauli and therefore any operator
can be characterized, up to global phase, by tracking its action on the Pauli. Hoping that the quantum
circuit model strictly contains the classical circuit model, Clifford and Pauli are not sufficient to fully
express the quantum circuit model of computation – still, we can use them to define a self-contained
theory of error correction, as the discussion below and Section 1.3 explain.

Since any unitary is a possible operation, it also constitutes a possible error. Conveniently though
we can write a generic unitary U on C2 as:

U = a11 + axX + azZ + ayY,

5



for some complex coefficients a1, ax, ay, az. Consider a n qubit register, |φ, α〉 where |φ〉 ∈ C2 represent
the state of the data qubit and |α〉 ∈ (C2)⊗n−1 represent the state of a n − 1 auxilia register. Let
P = 1, X1, Z1, Y1 be a Pauli operator with support on the data qubit and suppose there exists a unitary
operator O on (C2)⊗n such that, for some initial state |α0〉 of the auxilia register,

O (P |φ, α0〉) = |Pφ, αP 〉 , (1.2)

where |αP 〉 = |α1〉, |αX1〉, |αZ1〉, |αY1〉 are orthogonal in (C2)⊗n−1. Since orthogonal states can be
distinguished via appropriate measurements, we can identify in which of the product states on the
right-hand side of Eq. (1.2) the data-auxilia qubit register is in. By linearity, if U acts on the data
qubit, Eq. (1.2) yields:

O(U |φ, α0〉) = a1 |φ, α1〉+ ax |X1φ, αX1〉+ az |Z1φ, αZ1〉+ ay |Y1φ, αY1〉 .

Provided that such a unitary operator O does exist, and upon appropriate measurement of the auxilia
qubits, the post-measurement state of the n-qubit register is |Pφ, αP 〉 with probability |ap|2. The
original state of the data qubit |φ〉 can thus be restored by applying the correction operator P to the
register. Ergo, if we were able to detect and correct for Z and X errors we could correct for all errors
– Y errors corresponding to the concurrent event of an X and a Z error. We refer to this phenomenon
as error discretization [3].

To showcase error discretization, we have made a very special assumption: namely that, given a
n qubit register, errors could occur only on the first qubit of the register. Nonetheless, our analysis
serves well to demonstrate:

(i) Even if measurements destroy superposition, not every superposition stores quantum information:
the state of the data qubit |φ〉 is preserved when measuring the auxilia register |αP 〉.

(ii) Even if the amount of information gained in a measurement is finite, measurements can be used
to correct a continuous set of possible errors.

Error discretization is a key idea in quantum error correction and it remains a faithful assumption
when errors are local and occur independently on each qubit of a register i.e. local stochastic noise
model, see Eq. (1.8) in Section 1.3. Under such a premise, we can model errors occurring at any stage
of the circuit model of computation and therefore also solve the third of our issues. Specifically, each
gate of a circuit could fail and propagate errors (circuit level noise) and measurements result could be
faulty too (measurement errors). We refer the reader to Sections 1.5 to 1.6 and [3] for a more detailed
discussion on these matters and conclude this Section by exhibiting a toy example of quantum code.

1.2.1 The quantum repetition code

Mirroring the classical repetition code, we encode the logical qubit q in a 3-qubit register qr via the
unitary maps that on the standard basis act as:

Gr : C2 −→ (C2)⊗3

|0〉 7−→ |000〉 , (1.3)

|1〉 7−→ |111〉 .

6



With such encoding, the generic state in the quantum repetition codespace im(Gr) ' C2 spanned by
{|000〉 , |111〉} is:

|ψ〉r = α |000〉+ β |111〉 . (1.4)

A valid choice5 for the Pauli operators on the codespace is described by the group homomorphism γ

induced by:

Nr
γ−→ P1 (1.5)

Z1Z2 7−→ 1,

Z2Z3 7−→ 1,

X1X2X3 7−→ X,

Z1 7−→ Z.

where Nr is the group generated by:

{i1, Z1Z2, Z2Z3, X1X2X3, Z1}.

The homomorphism γ is well-defined: its kernel6,

Sr := ker(γ) = 〈Z1Z2, Z2Z3 〉,

is a normal subgroup of Nr and the pre-images7 of X and Z anti-commute.
We have added degeneracy: all the elements in Sr act as the identity on the generic encoded

state |ψ〉r ∈ (C2)⊗3 e.g. Z1Z2 |ψ〉r = |ψ〉r. Accordingly, every Pauli in the pre-image γ−1(X) of X
has the same action on the encoded state |ψ〉r as the Pauli X has on the generic one-qubit state
|φ〉 = α |0〉 + β |1〉. Similarly for γ−1(Z). For example, the logical Pauli Z on |ψ〉r can equivalently
be implemented as Z1 |ψ〉r or Z3 |ψ〉r. So, if for some reason we do not have access to the first qubit
of the register qr, we could still perform a Z operation on the logical qubit of the quantum repetition
code applying Z3. Yet, degeneracy is not the same as redundancy. On the one hand, the Pauli X on
q is mapped to a weight three Pauli operator on qr. On the other, the minimum weight of an encoded
Z is not increased. Because of this imbalance, the quantum repetition code is resilient to X errors but
sensitive to Z errors, as we now explain.

The operators in Sr have trivial action on the codespace and any error-free state |ψ〉r is their com-
mon +1 eigenstate. If the data register q3 yields the result −1 upon measurement of Z1Z2 or Z2Z3,
then at least one error has occurred and the register q3 is in a state in C2 \ im(Gr). However, measur-
ing Z1Z2 and Z2Z3 detects Pauli X errors of weight at most two, but cannot discern any difference
between Z errors and valid states in the codespace. Because of degeneracy, all Pauli Z operators in
P3 of weight one or three act as the logical Z operator on the encoded state |ψ〉r and all the weight
two have trivial action. In other words, the action of Z operators is either a valid logical operation or
trivial and therefore undetectable. If errors on each qubit are independent and one error occurs with

5The more expert reader will recognise Z1Z2, Z2Z3 and X1X2X3, Z1 as the stabilisers and the logical Pauli operators
of the quantum repetition code. We decided to postpone the introduction of such terminology to Section 1.3 to illustrate
to the less expert reader the group-theoretic essence of code construction.

6The kernel of a map f : A −→ B, denoted ker(f), is the set of all elements a ∈ A such that f(a) = 0 ∈ B.
7The pre-image of a map f : A → B, denoted f−1(b) for b ∈ B, is the set of all elements a ∈ A such that f(a) = b.

7



probability p, encoding via the quantum repetition code decreases the probability of undetectable X
errors from p to p3, but increases the probability of undetectable Z error from p to 3p(1− p)2 + p3 –
so we have worsened it by a leading factor of three in p.

Universal computation and discretization of errors are expressions of the dual nature of the Pauli
operators since, being both unitary and Hermitian, they serve as operations as well as observables to
be measured. In addition to this, Pauli operators can define a self-contained theory of error correction.
The need to protect from both X- and Z-type errors, and to aggregate equivalent (i.e. degenerate)
ones, shows that a simple translation of what has been done for bits is not enough to protect a logical
qubit from noise. Yet, degeneracy and redundancy are fundamental attributes of robust qubit encoding
– as Section 1.3 and Section 1.4 specify.

1.3 Classical linear codes and their quantum counterpart: stabiliser
and CSS codes

A classical linear code is a vector subspace of Fn
2 defined as the kernel of a linear map σ : Fn

2 −→ Fm
2 .

We call the subspace codespace and its elements codewords. With this terminology, the defining
features of the syndrome map is that it yields the all-zeroes vector only when it acts on a codeword.
Given a matrix representation H ∈ Fm×n

2 of σ, we say that the associated code has length n, dimension
k and distance d if:

k = dim(kerH) = n− rank(H) and min
v∈ker H,

v ̸=0

|v| = d,

where |v| is the Hamming weight of the binary vector v:

|v| = |{vi 6= 0, where v = (v1, . . . , vn) ∈ Fn
2}|.

We say that H is a parity-check matrix for the code and call its rows checks. A code is a (r, c)

low-density parity-check (LDPC) code if the rows and columns of H have weight at most r and c

respectively. We will shortly say that the code is (r, c)-LDPC and has parameters [n, k, d].
For instance, a parity check matrix for the classical repetition code in Section 1.1 is:

H3 =

(
1 1 0

0 1 1

)
.

The parity-check matrix H3 defines a (2, 2)-LDPC code of parameters [3, 1, 3]. See Fig. 1.

Figure 1: The classical repetition code of parameters [7, 1, 7]. Bits are placed on edges and checks are
on circles. Each circle/check evaluates that the two edges incident to it have the same parity. Wiggly
lines represent flip errors and red circles highlight the checks whose incident edges have different parity
i.e. red circles represent the support of the syndrome. We note how flip errors on consecutive edges
yield a weight two syndrome, with checks located at the boundaries of the error.

8



Given a parity check matrix H ∈ Fm×n
2 of a [n, k, d] code, any error e ∈ Fn

2 of weight strictly less
than d can be detected. Namely, by construction, H(c+ e) 6= 0 ∈ Fm

2 for any codeword c ∈ kerH. In
particular, the value of the syndrome map is determined by the error vector e and it is independent
of the codeword c. The optimal decoder for a code of distance d corrects all errors of weight at most
t = bd−1

2 c because for every c ∈ kerH the ball of radius t centred in it does not contain any other
vectors in kerH.

In the following, we consider a local stochastic noise model of parameter p ∈ (0, 1), where the
probability of an error e to occur is:

P(e) = p|e|(1− p)n−|e|. (1.6)

Eq. (1.6) signifies that single bit-flips are independent and the probability of an error occurring depends
only on its weight. Since P(e) is monotonically decreasing for noise rates p < 1

2 , minimum weight errors
are the most likely in this regime. The maximum-likelihood decoder (ML decoder ) for p < 1/2 and
P(e) as in Eq. (1.6) is D:

D : im(σ) −→ Fn
2 ,

s 7−→ arg max
e

P (e |σ(e) = s) . (1.7)

The decoder D outputs the most likely error so that, for a bit register in the state m ∈ Fn
2 , the re-

covered state is m+D(σ(m)). For example, the maximum likelihood error recovering scheme for the
repetition code under local stochastic noise is based on a majority vote strategy: if for some m ∈ F3

2

(or Fn
2 in the general case) a non-zero syndrome is detected, flipping the minority bit (or bits) restores

the parity of the register. In general, assuming local stochastic noise, the ML decoder is optimal.

The quantum counterpart of linear codes are stabiliser codes, first introduced in [9]. A stabiliser
code is a subspace of (C2)⊗n defined as the +1 common eigenspace of the stabiliser group, an Abelian
subgroup S of the Pauli operators in Pn such that −1 6∈ S. As for classical codes, we call this subspace
codespace and its elements the codewords. We denote by C(S) the codespace defined by the stabiliser
group S,

C(S) = {|ψ〉 s.t. S |ψ〉 = |ψ〉 ∀S ∈ S}.

Concretely, the group Sr introduced in Section 1.2.1 is a stabiliser group and C(Sr) is the subspace
generated by |000〉 and |111〉 in (C2)⊗3. Because Tr(X) = Tr(Y ) = Tr(Z) = 0, for P = P1 ⊗ . . . Pn ∈
Pn, it holds:

Tr(P ) =
∏
i

Tr(Pi) = 0.

Combining P 2 = 1, Tr(P ) = 0 and the Spectral Theorem, we find that each Pauli P ∈ Pn has exactly
2n−1 independent +1 eigenvectors, 2n−1 independent −1 eigenvectors, and that the dimension of the
common +1 eigenspace of m independent Pauli operators in Pn is k = n − m. For the quantum
repetition code, {Z1Z2, Z2Z3} is a minimal set of generators for the stabiliser group and k = 1.

Given a set S1, . . . , Sm ∈ S of generators for the stabiliser group, they uniquely define a syndrome
map:

σ : Pn −→ Fm
2

E 7−→ (s1, . . . , sm),

9



where si = 0 if and only if ESi = SiE. The kernel of the syndrome map is the normaliser of S in Pn,
denoted N (S). The normaliser is the set of Pauli operators that commutes with all the stabilisers.
Because S is normal in N (S), the quotient8:

L := N (S)/S,

is well-defined. The Pauli subgroup L is referred to as the logical Pauli group. If the stabiliser group
has m generators, L is isomorphic to Pk, where k = n −m and the codespace C(S) is isomorphic to
(C2)⊗k. The normaliser for the quantum repetition code is the group Nr introduced in Eq. (1.5) and
generated by {1, Z1Z2, Z2Z3, X1X2X3, Z1}. With a little abuse of notation, we write L ∈ L to indicate
any representative L in its equivalence class [L]. Explicitly:

L ∈ [L] = {LS such that S ∈ S}.

For each [L] 6= [1] in L, there exists by construction at least one state |ψ〉 ∈ C(S) such that L |ψ〉 6= |ψ〉.
Most importantly, elements in the same equivalence class in the logical Pauli group yield the same
action on the codespace:

L |ψ〉 = L′ |ψ〉 , for each L,L′ ∈ [L] and |ψ〉 ∈ C(S).

The logical Pauli group of the classical repetition code is generated by {Z1, X1X2X3}.
The distance d of C(S) is the minimum weight of any non-trivial logical operator in L. Briefly we

say that the code C(S) is [[n, k, d]]. If the stabiliser generators have all weight at most r and every qubit
in (C2)⊗n is involved in at most c stabiliser measurements we say that the code is a (r, c) quantum
LDPC code (qLDPC). The quantum repetition code is (2, 2)-qLDPC code of parameters [[3, 1, 1]].

The measurement of the stabiliser operators detects all errors in Pn \N (S). In particular all errors
of weight less than d but the one that have trivial action on the codespace, namely Pauli operators in
the stabiliser group. The optimal decoder for a distance d code can correct non-trivial Pauli errors up
to weight t = bd−1

2 c.
The definition of a quantum analogue of a maximum-likelihood decoder is subtle, because of the

degeneracy of the syndrome map. Let |ψ〉S ∈ C(S) be an encoded state for some non-trivial stabiliser
code with stabiliser group S and let E ∈ Pn \ N (S) be a correctable error. Suppose that the encoded
state |ψ〉S undergoes the error E. Consider a decoder that, on input σ(E), outputs F with σ(F ) =

σ(E). Upon recovery, the state FE |ψ〉S ∈ C(S) is restored. The following holds:

ker(σ) = N (S) =⇒ F = EL, for some L ∈ N (S).

If L ∈ S, then L is the identity on the codespace and the restored state is equivalent to the original
one. If instead L ∈ N (S) \ S, then L is a non-trivial Pauli operator on the encoded state |ψ〉S and in
particular |ψ〉S 6= L |ψ〉S in C(S). Ultimately, the original state is restored if the decoder outputs any
of the Pauli operators equivalent to the original error E, namely operators in the set ΣE :

ΣE = {SE such that S ∈ S}.

8A quotient group A/B is well defined if B ⊆ A is normal in A, meaning that aba−1 ∈ B for every a in A and b in
B. Given a quotient group (A/B, ·), we indicate by [a] its elements. The elements of a quotient group are equivalence
classes: [a] = {ab such that b ∈ B}.

10



Shortly:

σ(F ) = σ(EL) = σ(E)

but

[L] 6= [1] in N (S)/S

and the decoder fails. Under local stochastic noise, when the Pauli error E is sampled with probability:

P(E) = p|E|(1− p)n−|E| (1.8)

the quantum maximum-likelihood decoder (qML decoder) is:

Dq : im(σ) −→ Pn

s 7−→ arg max
E

P(ΣE |σ(E) = s),

where:

P(ΣE) =
∑

E′∈ΣE

P(E′). (1.9)

In other words, when Pauli errors on each qubit are independent and identically distributed so that
low-weight errors are more likely, the code’s degeneracy gives rise to a tension between the most
probable error – namely the minimum weight one that agrees with the syndrome – and the number of
different error configurations equivalent to it. An equivalence class that happens to contain multiple
low-weight errors could end up having a greater overall probability than the equivalence class of the
minimum weight error.

The qML decoder is optimal but the summation in Eq. (1.9) contains exponentially many terms:
2n−k for a [[n, k, d]] code. A computationally easier algorithm is the quantum minimum-weight decoder
(qMW decoder):

DMW : im(σ) −→ Pn

s 7−→ arg max
E

P(E |σ(E) = s).

In general, qML and qMW decoders could yield different answers but for sufficiently low physical error
probability p, it can be shown that they are equivalent [10]. The classical ML decoder instead is a
minimum-weight decoder: degeneracy is exquisitely quantum.

Stabiliser codes can be readily understood in terms of binary arithmetic. Since ZX = iY , up to
a phase, any Pauli P ∈ Pn, can be written as

P ∝ X(v) · Z(w),

where

X(v) · Z(w) := Xv1 ⊗ . . . Xvn · Zw1 ⊗ . . . Zwn , v, w ∈ Fn
2 . (1.10)

More formally, up to phases, the n-qubit Pauli group with multiplication is isomorphic to the additive
group of the vector space F2n

2 :

Pn/⟨i1⟩ −→ F2n
2 (1.11)

X(v)Z(w) ·X(v′)Z(w′) 7−→ (v + v′, w + w′). (1.12)

11



Two operators X(v)Z(w) and X(v′)Z(w′) commute if and only if

〈v, w′〉+ 〈v′, w〉 = 0 ∈ F2,

where

〈·, ·〉 : Fn
2 × Fn

2 −→ F2

v, w 7−→ vTw.

Any Pauli operator P in Pn can be faithfully and completely described, up to a phase, by its symplectic
representation (v, w) ∈ F2n

2 as in Eq. (1.10). Via the symplectic representation a stabiliser code can
be described via its syndrome map represented by a parity check matrix H = (A|B) such that for any
P ∈ Pn,

σ(P ) =
(
A B

)( 0n 1n

1n 0n

)(
v

w

)
= Aw +Bv ∈ Fm

2 ,

where A,B ∈ Fm×n
2 , and 0n and 1n are the zero and identity matrix on Fn×n

2 .

A stabiliser code is a Calderbank-Shor-Steane code (CSS code) whenever the stabiliser group has
a set of generators that can be partitioned in a set Sx of X operators and a set Sz of Z operators [11,
12]. In the following we describe CSS codes borrowing from the language of algebraic topology and
using chain complexes, see [13]. We believe that the chain complex perspective can not only enlighten
our understanding of CSS codes, but also inspires new code constructions, as it has been demonstrated
several times already [14].

We can associate a length-2 chain complex over F2 to any CSS code and, vice-versa, to any chain
complex of length at least two we can associate a CSS code. A length-ℓ chain complex is an object
described by a sequence of ℓ+1 vector spaces {Ci}i over F2 and ℓ linear operators δi : Ci → Ci+1 such
that, for each i, δi+1δi = 0. Given a chain complex:

C0
δ0−→ C1

δ1−→ C2

where Ci has dimension ni, we can define a CSS code as explained below.
With slight abuse of notation, let δ0, δ1 indicate the matrix representations of the corresponding

binary maps for some preferred bases of the spaces C0, C1 and C2. The X stabiliser group Sx is
generated by the set of the X(v), as v varies among the rows of δT0 . The Z stabiliser group Sz is
generated by Z(w), as w varies among the rows of δ1. Because δ1δ0 = 0, the group Sx∪z = 〈Sx ∪ Sz〉
generated by Sx ∪ Sz is Abelian and therefore defines a stabiliser code. The dimension of the code so
defined is:

k = dim(ker δ1)− dim(im δ0) = dim(ker δT0 )− dim(im δT1 ),

and equates the dimension of the first homology group, (ker δ1/im δ0,+), of the chain complex, or equiv-
alently the dimension of the zeroth cohomology group,

(
ker δT0/im δT1 ,+

)
. We call elements in the first

homology group and the zeroth cohomology group cycles and co-cycles respectively. The homology and
cohomology groups are additive quotient groups and therefore their elements are equivalence classes.

12



Explicitly, [v] ∈ ker δ1/im δ0 and [w] ∈ ker δT0/im δT1 are defined as:

[v] = {v + a0 such that a0 ∈ im δ0}, for v ∈ ker δ1,

[w] = {w + a′1 such that a′1 ∈ im δ0}, for w ∈ ker δT0 .

For a CSS code, we define the logical Pauli X group, Lx, and the logical Pauli Z group, Lz:

Lx = {X(v) s.t v ∈ [v] ∈ ker δ1/im δ0} ,

Lz =
{
Z(w) s.t w ∈ [w] ∈ ker δT0/im δT1

}
.

The Pauli operators in Lx and Lz are the operators whose symplectic representation are cycles and
co-cycles. The logical Pauli group of the code Lx∪z = 〈Lx ∪ Lz〉 is the group generated by Lx ∪ Lz.
Since CSS codes are stabiliser codes, what has been said for the logical Pauli group of stabiliser codes
still holds:

Lx∪z = N (Sx∪z)/Sx∪z.

In particular, the equivalence classes of cycles and co-cycles respect the equivalence classes of logical
operators on the codespace and two logical Pauli operators have the same actions on the codespace if
and only if their symplectic representations define the same homology and cohomology class:

X(v)Z(w) = X(v′)Z(w′) in Lx∪z,

if and only if

[v] = [v′] in ker δ1/im δ0 and [w] = [w′] in ker δT0/im δT1 .

For CSS codes, we define the X and Z distances, dx and dz, as the minimum weight of a representative
of a non-trivial cycle and co-cycle. The distance of the code is the minimum between the two. For
instance, the quantum repetition code is a CSS codes with dx = 3 and dz = 1 and hence it has distance
1. We show in Section 1.4 how to build a CSS code with both dx > 1 and dz > 1.

1.4 The planar code

In Section 1.3 we introduced the quantum repetition code and pointed out how it fails to protect
the encoded logical qubit from arbitrary errors. In this Section, we briefly review the planar code,
a quantum code which represents the proper quantum version of the classical repetition code. The
planar code was first introduced in [15, 16] as an adaption to the two-dimensional planar geometry
of Kitaev’s seminal work on the toric code [7, 17]. Not only is the planar code the currently leading
candidate in quantum error correction [18] but it is also an hypergraph product code – the main object
of our studies in Chapters 3 to 5.

We imagine qubits placed on the edges of a ℓ × (ℓ − 1) square lattice L and refer to this n-qubit
register, where n = ℓ2+(ℓ− 1)2 = 2ℓ2− 2ℓ+1, as qℓ. On qℓ, we define the operator Zvert as any of the
Z Pauli operators whose support spans an entire column of vertical edges. Similarly, the operator Xhor

is defined as any X Pauli operator whose support spans an entire row of vertical edges. See Fig. 2a.
The operators Zvert and Xhor have both weight ℓ and they always anti-commute since their supports

13



(a) (b)

Figure 2: Planar code of distance d = 10. Qubits are placed on the edges. Pauli Z operators have
support on orange edges, while Pauli X operators have support on blue edges. In (2a), we can see
one face operator, the orange square, and one vertex operator, the blue cross. The horizontal blue
line represents the support of Xhor and the vertical orange one represents the support of Zvert. As
expected, Xhor and Zvert have odd overlap – namely the overlap on the one qubit located on the
bottom-right-corner edge. In (2b) colored edges represent the support of Pauli errors: blue for X
errors and orange for Z errors. Orange squares and blue circles correspond to the locations of the
stabilisers which yield non-trivial syndrome. Orange squares at the boundary of blue errors are face
stabilisers that anti-commute with the blue errors while blue circles are vertex stabilisers that anti-
commute with the orange errors. The error locations and shapes have been chosen to highlight the
similarity between the classical repetition code and the planar code, see also Fig. 1.

overlap on exactly one physical qubit. Since they respect the commutation relations of Pauli X and
Pauli Z in P1, they suitably define logical Pauli X and Z operators on a one-dimensional subspace of
(C2)⊗n. For every square face □f and every vertex +v of the lattice L, we define the operators:

□f =
∏
i∼f

Zi,

+v =
∏
i∼v

Xi,

where i represents a qubit location. We write i ∼ f if the edge i belongs to the face f , and i ∼ v if the
edge i is incident to the vertex v. We define the groups S□ and S+ as the subgroups of Pn generated
by the faces and vertices operators respectively:

S□ = 〈□f s.t. f is a face of L 〉,

S+ = 〈+v s.t. v is a vertex of L 〉.

The group S = 〈S□, S+〉 is Abelian: on a square lattice, neighbouring faces and vertices shares two
edges, so the Z operator □f and the X operator +v, either have disjoint support or they overlap on

14



exactly two edges. Hence,

Nℓ
γℓ−→ P1

S → 1,

Zvert 7−→ Z,

Xhor 7−→ X,

where

Nℓ = 〈 i1, S, Zvert, Xhor 〉

is a well-defined group homomorphism that fully characterizes the codespace Cℓ ' C2 of the planar
code:

Cℓ = {|ψ〉ℓ ∈ (C2)⊗n s.t. S |ψ〉ℓ = |ψ〉ℓ for all S ∈ S}.

The chain complex associated with the planar code is:

Fn−1
2

σT
+−−→ Fn

2

σ□−−→ Fn−1
2 ,

where σ+ and σ□ are the two syndrome maps that measure every vertex and face operator respec-
tively. Namely, for |ψ〉 ∈ (C2)⊗n, the vth coordinate of σ+(|ψ〉) ∈ Fn−1

2 is 1 if and only if the
measurement of the observable +v on the state |ψ〉 ∈ (C2)⊗n yields outcome −1, and likewise for
σ□(·). By construction, σ+(P ) = σ□(P ) = 0, for every P ∈ Nℓ. Shortly, the planar code has parame-
ters n = ℓ2 + (ℓ− 1)2, k = 1, dx = dz = ℓ.

The planar code is the quantum twin of the classical repetition code, as we now outline. Suppose
that a Z error Zi occurs on a qubit placed on the vertical edge i. Upon measurement of face operators,
the state Zi |ψ〉ℓ yield outcomes +1 because □f and Zi commute for every face f ∈ L. The situation is
different when we measure vertex X-operators. Operators +v defined by vertices v that are not on the
same column as the edge i, commute with Zi. However, if we restrict to vertices on the same column
as i, we find an instance of the repetition code of length ℓ: only the vertices at the north and the south
of the edge i anti-commute with Zi. Furthermore, if we expand the error pattern Zi and consider a Z
error Z(w) with support on w < ℓ consecutive vertical edges, then, again as for the repetition code, the
only vertex operators that possibly anti-commute with it are the ones that reside at its north and south
boundary. A similar argument works for horizontal edges, east and west boundaries and X errors,
Fig. 2b. The observation that the encoding induced on columns by vertex operators is a repetition
code is key in understanding that operators of the type Zvert are the minimum weight Z-operators that
can not be detected – and similarly for Xhor type operators. As in the classical repetition code, where
the parallel flip operation on all the bits of the register was a valid logical operation on the encoded
bit, here Zvert and Xhor are non-trivial logical operations on the codespace, therefore undetectable.
Hence, for ℓ ≥ 2, all single-qubit errors can be detected and, using n = 2ℓ2 − 2ℓ+ 1 physical qubits to
protect one logical qubit, we can decrease the probability of undetectable Pauli errors from p to pℓ.

The planar code is a ‘working’ quantum error correcting code, not only it is resilient to both X

and Z errors (and therefore all errors) but, at the cost of considering codes of increasing size, it can

15



grant protection against an arbitrary number of errors. Most importantly for our scope, it is a hyper-
graph product code, see Chapter 3.

In Sections 1.5 and 1.6, we formulate two central problems in the theory of quantum information
processing, namely logical operations and syndrome errors. Our brief overview aims to familiarise the
reader to our works in Chapters 4 and 5.

1.5 On logical operations

A code, per se, is a static object. Nonetheless, we want to process and manipulate the information
stored and protected in its codespace. To this end it is necessary to develop a theory of fault-tolerant
computation and seek ways to implement logical operations on the protected logical qubits. Suppose
that C(S) is a [[n, k, d]] code, with encoding map Ĝ : (C2)⊗k −→ (C2)⊗n. The obvious strategy is:

(i) Un-encode the logical qubit state |ψ〉log ∈ C(S) ⊆ (C2)⊗n. Namely apply a left-inverse of G̃ to
the n-qubit register |ψ〉log, and obtain |ψ̃〉phy ∈ (C2)⊗k.

(ii) Perform the desired quantum gate on the physical qubit register (C2)⊗k in the state |ψ̃〉phy, and
obtain |ψ̃′〉phy ∈ (C2)⊗k.

(iii) Encode the state |ψ̃′〉phy via the application of the encoding map Ĝ, and obtain the state |ψ′〉log ∈
(C2)⊗n.

Clearly though, during step (ii) the physical qubits are not protected from noise.
A possible solution is to avoid the un-encode step and perform the operation directly on the

codespace via transversal operators. A unitary operator U on a n-qubit register is said to be transversal
if it can be written as the tensor product of single-qubit unitaries:

U =

n⊗
i=1

Ui,

where Ui is unitary operator on C2. A transversal operator is naturally fault-tolerant. A Pauli error
on one of the qubits on the register is only propagated to one single qubit, and failure of one of its
product components similarly only affects one qubit. Unfortunately, by the Eastin-Knill theorem, no
code allows a universal set of transversal gates [19, 20]. The Eastin–Knill theorem, however, does
not rule out the existence of other fault-tolerant protocols for universal quantum computation and
in fact, there exist several proposals for universal fault-tolerant computation such as the addition of
measurements and classical feed-forward [21], magic state distillation [22], code concatenation [23] and
pieceable fault tolerance [24].

1.6 On syndrome measurement errors

We have so far illustrated a framework where information is protected by a code, errors are detected
via perfect syndrome measurements and the appropriate correction is found by a decoder. However,
the syndrome can be noisy too and conventionally syndrome errors are dealt with by repeating multiple
rounds of measurements to increase the confidence in the result. In this Section instead we discuss the
single-shot scenario, where only one round of syndrome measurements is performed.

16



Our presentation starts with the construction of a two-dimensional classical repetition code. Not
only does the two-dimensional repetition code protect one single bit from flip errors in single-shot mode
but, more importantly, it constitutes a simple but sound illustration of the confinement property and
related single-shot error correction features [25, 26] that are the main object of Chapter 5. Single-shot
error correction has historically been understood as a by-product of self-correction phenomena [27,
28], and in this same spirit we then introduce the two-dimensional Ising model as a self-correcting
classical memory. Macroscopic confinement for the two-dimensional repetition code corresponds to
the existence of a macroscopic energy barrier in the two-dimensional Ising model, which ensures its
self-correcting properties as a classical memory. We review these concepts and their relations in Sec-
tion 1.6.1.

Given a syndrome map σ : Fn
2 −→ Fm

2 , we assume that the observed syndrome s̃ is noisy:

s̃ = σ(e) + η ∈ Fm
2 ,

where e ∈ Fn
2 is the bit error vector and η ∈ Fm

2 is the syndrome measurement error. Loosely, given a
[n, k, d] code with syndrome map σ, we say that a pair syndrome map-decoder (σ, Dss) is single-shot if

The decoder Dss, on input a noisy syndrome σ(e) + η, for |e| < t and |η| < dss for some
integer dss > 1 outputs a recovery operator er such that, the residual error on the system
after correction is correctable:

|e+ er| < t,

where t = bd−1/2c and d is the distance of the code defined by the syndrome map σ.

In what follows, we refer to the classical repetition code as defined in Section 1.3 as the one-dimensional
repetition code. We claim that the one-dimensional repetition code and a ML decoder are not single-
shot. We illustrate our claim with an example. Consider the [7, 1, 7] repetition code with syndrome
map H ∈ F6×7

2 such that Hi,i = 1, Hi,i+1 = 1, for i = 1, . . . , 6 and Hi,j = 0 elsewhere, see Fig. 1. Let
e be the bit error and η the syndrome error defined as:

e =
(
0 0 1 1 0 0 0

)T
, η =

(
0 1 0 0 0 0

)T
.

The observed syndrome s̃ is:

s̃ =
(
0 0 0 1 0 0

)T
.

On input s̃, the ML decoder D defined in Eq. (1.7), outputs the recovery operator er:

er =
(
0 0 0 0 1 1 1

)T
yielding the non-correctable weight-5 residual error e+ er:

e+ er =
(
0 0 1 1 1 1 1

)T
.

Although an example does not constitute a proof, it is enough to reveal why the one-dimensional
repetition code does not have single-shot properties. The reason is that the one-dimensional repetition
code does not have confinement. We can think of the syndrome weight as a cost function. In the

17



(a) (b) (c)

Figure 3: Two-dimensional [90, 1, 90] repetition code. Bits are placed on faces and checks on edges.
Grey faces represent the support of flip errors on bits. The red edges represent the support of the
corresponding syndrome. In (3a) the support of the error e is highlighted in grey. The syndrome σ(e)
has support on the red edges which form the perimeter of the error area. In (3b) the error e and
the observed syndrome σ(e) + η. The support of the syndrome error η is represented by the shaded
red edges. The observed syndrome σ(e) + η has support on the red edges. In (3c) the support of
the residual error e + er is highlighted in grey. Its syndrome σ(e + er) has support on the red edges
at its boundary. The residual error is produced after the recovery er is found by a ML decoder that
minimises the weight of the residual syndrome σ(e+ er).

one-dimensional repetition code, errors on adjacent edges always trigger at most two checks, the ones
at the boundaries of the error chain. Hence, starting from an error configuration where only one edge
is flipped, we could lengthen the error chain at one of the boundaries without increasing the weight of
its syndrome. Crucially, we could do so till we have flipped more than half of the edges, and the error
chain is not correctable anymore. The key point is that the syndrome weight is not always proportional
to the error weight and therefore small syndrome errors could produce high-weight residual errors: the
syndrome map is not confined.

Alternatively, we can build a two-dimensional repetition code and ensure that the syndrome’s
weight grows with the weight of the error. In the two-dimensional repetition code we consider a square
lattice where bits are placed on faces and checks on edges. Each edge assesses the parity of the faces
it belongs to: the faces at its north and south for horizontal edges, the faces at its east and west for
vertical edges. In particular the syndrome is local with respect to the error support. Moreover, the
syndrome weight cost function grows as the perimeter of the error area: the syndrome is confined.
Because the syndrome weight is proportional to the error weight, small syndrome errors will produce
small residual error, see Fig. 3. This intuition is justified when the syndrome weight is mapped into
an energy cost of a suitably defined statistical mechanical model. As we explain in Section 1.6.1, for
our purposes the repetition code corresponds to the Ising model.

1.6.1 Statistical mechanics models for error correction

The bit (and qubit) encoding proposed rely on a common strategy that we can summarise as follows.

(i) Find an abstraction of the elementary system considered, the vector space F2.

18



(ii) Identify its basic dynamics, the flip operator.

(iii) Find a description for composite systems, the direct sum of vector spaces over F2.

(iv) Find an embedding of the elementary system into a composite one such that the elementary
system is there described by global features, the syndrome map.

(v) Determine a suitable description of the dynamics of the embedded elementary system, logical
flip.

(vi) Verify that the chosen embedding mitigates the impact of errors, lower probability of undetected
errors.

Essential to successful error protection in this paradigm is the embedding of the dynamics of the
elementary system, the bit, into macroscopic properties of a large system of interacting elementary
units, a multi-bit register. The prototypical example of such embedding in statistical mechanics is
the Ising model of ferromagnetism and its physical realization is the basis of magnetic classical data
storage [29]. The fact that the two-dimensional (2D) Ising model has a phase transition ensures the
existence of a self-correcting bit memory – a macroscopic physical system that enables robust storage
and manipulation of classical information without the need for active error correction [27, 30].

In this Section, we think of a bit as a spin- 12 particle whose possible states are the ↑ and the ↓
state, corresponding to 0 and 1 respectively. In the D-dimensional Ising model, a spin- 12 is placed at
each site of a D-dimensional lattice and each spin is coupled to its neighbouring spins [29]. We here
consider only square lattices and indicate by Ω the configuration space for n spins on a D-dimensional
square lattice, |Ω| = 2n. For ω ∈ Ω with the assignment ↑ to +1 and ↓ to −1, the total energy of the
system reads:

H(ω) = −J
∑
i∼j

ωiωj , (1.13)

where i ∼ j if the lattice site i and j are neighbours. On a square lattice in D-dimension each spin has
2D neighbours e.g. in 1 dimension each spin in the bulk is coupled to its left and right neighbours and
in 2 dimensions it is coupled to its north, east, west and south ones. We consider the ferromagnetic
Ising model, obtained for J > 0 in Eq. (1.13). A ferromagnetic system has two degenerate ground
states: the one with all spins aligned in the ↑ state, ω↑, and the one with all spins aligned in the ↓
state, ω↓. We define the magnetization of a configuration ω ∈ Ω as:

m(ω) =
1

n

∑
ωi∈ω

ωi.

The magnetization m(ω) is a real value in [−1, 1]. If we consider the interaction of the spin system with
the environment, its statistical behaviour is described by the Boltzmann distribution. The probability
of the system of being in the configuration ω is

P(ω) =
e−βH(ω)

Zβ
, ω ∈ Ω,

where β = 1/T is the inverse temperature (with appropriate choice of scale i.e. T is the inverse thermal
energy T = kT ′ where T ′ is the temperature in absolute degrees and k is the Boltzmann’s constant)

19



and Zβ is the partition function:

Zβ =
∑
ω∈Ω

e−βH(ω).

The average magnetization of the system is defined as:

〈m〉 =
∑
ω∈Ω

m(ω)P(ω). (1.14)

For all finite positive temperatures, the average magnetization of the system is 0. In fact, if −ω
denotes the configuration where all spins are flipped with respect to ω, we have H(ω) = H(−ω) and
hence P(ω) = P(−ω). Because m(ω) = −m(−ω), the non-zero terms in Eq. (1.14) cancel pairwise
and 〈m〉 = 0. The system however has a temperature dependency. In the limit β → 0 the Boltzmann
distribution on Ω converges to the uniform distribution: for each ω ∈ Ω,

lim
β→0

P(ω) =
1

|Ω|
.

For β → ∞ instead the Boltzmann distribution concentrates on the configuration ω↑ and ω↓ that
minimise the energy in Eq. (1.13), the ground states. Therefore, for T → 0 and β → ∞:

lim
β→∞

P(ω) =


1
2 , for ω = ω↑, ω↓,

0, otherwise.
(1.15)

Equation (1.15) says that, in the limit of small temperatures, a system initialised in one of the two
ground states is stable under sufficiently small thermal fluctuations. The two limit cases of infinite
and zero temperature reveal the existence of very different possible scenarios. At high temperatures,
we expect the typical configuration to have an equal proportion of spins in the ↑ and ↓ states. At zero
temperature, we expect most of the spins to be in the same state. Nonetheless, these two limit cases do
not inform us on the typical behaviour of the system for intermediate values of the inverse temperature
0 < β < ∞. For our purposes, we want to determine if it is possible to preserve the system in one of
the two ground states at finite values of β <∞, at the price of considering systems of growing size. In
other words, if above we have fixed the size n of the configuration space and studied the behaviour as
β → ∞, now we want to study the behaviour of the system when β is fixed and n→ ∞.

The problem is to assess whether or not there exist arbitrarily low but positive values of the tem-
perature for which the magnetization of the system is observed as a global order parameter. More
precisely, we want to understand whether D-dimensional lattice spin systems of increasingly large size
n exhibits global magnetization, for some arbitrary β < ∞. A counting argument shows that the
probability for the system to be in one of the two ground states decreases, even at low temperatures,
as the number of spins increases. In fact, the number of excited states that differs from one of the two
ground states on w sites is proportional to

(
n
w

)
∼ nw

w! . Hence, even if the ground states have larger
individual probability at low temperatures, the number of different possible configurations of excited
states grows with the size of the system n. The tension between these two phenomena, the energy and
the entropy cost of excitations, determines the existence of a phase transition, a discontinuous change
in the global magnetization of the system.

In the Ising model, the existence of a phase transition is dimensionally-dependent: the 1D Ising

20



model has no phase transition whilst the 2D Ising model, or actually the Ising model in any dimension
D≥ 2, does have a phase transition. To understand how this is the case we consider the energy cost, or
energy barrier, of a spin flip. Let us consider a 1D and a 2D lattice where most of the spins are aligned
in the ↑ state but there are some ‘droplets’ of flipped neighbouring spins in the ↓ state. Eq. (1.13)
imposes an energy cost of 2J for each pair of anti-aligned neighbouring spins, so that the energy cost
for flipping a droplet of spins is proportional to its boundary. Because in 1D boundaries of consecutive
segments of spins are zero-dimensional, flipping one spin has an energy penalty of 4J , but flipping any
of its neighbours has no additional energy cost. Thus, starting from the ground state configuration
ω↑, we could reverse the magnetization of the system at constant energy cost – 4J . In 2D instead,
the boundary of a droplet grows proportionally to its area and therefore the energy cost for reversing
the magnetization of the system is proportional to the system size. As such, we expect systems of
increasing size to be increasingly more robust to thermal fluctuations. Peierls argument [31] that the
2D Ising model has a phase transition at some critical temperature Tc > 0 is based on this same intu-
ition and in particular entails that the macroscopic behaviour of the 2D Ising model depends on the
temperature. At high temperature the typical configuration has magnetization close to 0, whilst be-
low Tc the absolute value of the magnetization gets closer to 1 as the temperature decreases, see Fig. 4.

Figure 4: Figure from [29]. Monte Carlo simulations of the 2D Ising model for n = 100 as p =

1− e−2β ∈ [0, 1) varies. White dots represent ↑ spins and black dots represent ↓ spins, pc = 1− e−2 1
Tc

corresponds to the value at the critical temperature Tc. For high temperatures, p is close to 0 and the
↑ and ↓ states roughly appear in the same proportions. At low temperatures and above pc, a typical
configuration is a ground state with a small number of excitations and hence would give magnetization
close to either +1 or −1.

The correspondence of the Ising model to a self-correcting memory is understood via the identifi-
cation of thermal fluctuations with random flip errors . The states ω↑ and ω↓ can be naturally thought
of as the length n repetition code encoding of a bit or a qubit, as in Eq. (1.1) and Eq. (1.3). The
magnetization is a global property of the system and it is also a measure of the information there
stored: m(ω↑) = 1, m(ω↓) = −1 and m(ω) 6= ±1 otherwise. If we find m > 0, a majority of the spins
is in the ↑ state and a ML decoder would interpret the encoded bit as being in the 0 state; vice-versa,
m < 0 indicates the 1 state. The existence of a phase transition therefore determines the ability of the

21



spin system to robustly encode a bit: if the magnetization of the system is preserved at some non-zero
temperature, the logical bit can undergo thermal excitations but still preserve its information content.
In conclusion, a bit encoded in the magnetization of the 2D Ising model where flip errors correspond
to thermal fluctuations exhibits self-correction below a critical temperature Tc. Below Tc, the thermal
fluctuations will correct errors at a higher pace than they are introduced, by favouring lower energy
configurations in which the error droplets narrow.

Self-correction and single-shot error correction are complementary problems [25]. In both settings,
the goal is not to remove all entropy – all errors – in the system but only to keep it under control.
By ensuring that the residual error left on the system is small enough, we can be confident that the
information there stored is not irreversibly damaged. Self-correction is intrinsically syndrome-agnostic
and therefore could explain single-shot error correction, where syndrome information has to be treated
as maybe inaccurate. We refer to Chapter 5 for an in-depth analysis of single-shot error correction.

References

[1] Jacobus Hendricus Van Lint. Introduction to coding theory. Vol. 86. Springer Science & Business
Media, 2012.

[2] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge university press, 2008.

[3] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information. 2002.

[4] Daniel A Lidar and Todd A Brun. Quantum error correction. Cambridge university press, 2013.

[5] Lang Serge. Linear Algebra. Springer New York, NY, 1987.

[6] Robert Raussendorf and Hans J Briegel. “A one-way quantum computer”. In: Physical review
letters 86.22 (2001), p. 5188.

[7] A Yu Kitaev. “Quantum computations: algorithms and error correction”. In: Russian Mathemat-
ical Surveys 52.6 (1997), p. 1191.

[8] Daniel Gottesman. “Fault-tolerant quantum computation with constant overhead”. In: arXiv
preprint arXiv:1310.2984 (2013).

[9] Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute of Tech-
nology, 1997.

[10] Pavithran Iyer and David Poulin. “Hardness of decoding quantum stabilizer codes”. In: IEEE
Transactions on Information Theory 61.9 (2015), pp. 5209–5223.

[11] A Robert Calderbank and Peter W Shor. “Good quantum error-correcting codes exist”. In: Phys-
ical Review A 54.2 (1996), p. 1098.

[12] Andrew Steane. “Multiple-particle interference and quantum error correction”. In: Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
452.1954 (1996), pp. 2551–2577.

[13] Allen Hatcher. “Algebraic topology”. In: (2001).

[14] Nikolas P Breuckmann and Jens Niklas Eberhardt. “Quantum low-density parity-check codes”.
In: PRX Quantum 2.4 (2021), p. 040101.

22



[15] Sergey B Bravyi and A Yu Kitaev. “Quantum codes on a lattice with boundary”. In: arXiv
preprint quant-ph/9811052 (1998).

[16] Michael H Freedman and David A Meyer. “Projective plane and planar quantum codes”. In:
Foundations of Computational Mathematics 1.3 (2001), pp. 325–332.

[17] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. In: Annals of Physics 303.1
(2003), pp. 2–30.

[18] Austin G Fowler et al. “Surface codes: Towards practical large-scale quantum computation”. In:
Physical Review A 86.3 (2012), p. 032324.

[19] Xie Chen et al. “Subsystem stabilizer codes cannot have a universal set of transversal gates for
even one encoded qudit”. In: Physical Review A 78.1 (2008), p. 012353.

[20] Bryan Eastin and Emanuel Knill. “Restrictions on transversal encoded quantum gate sets”. In:
Physical review letters 102.11 (2009), p. 110502.

[21] Xinlan Zhou, Debbie W Leung, and Isaac L Chuang. “Methodology for quantum logic gate
construction”. In: Physical Review A 62.5 (2000), p. 052316.

[22] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with ideal Clifford gates and
noisy ancillas”. In: Physical Review A 71.2 (2005), p. 022316.

[23] Tomas Jochym-O’Connor and Raymond Laflamme. “Using concatenated quantum codes for uni-
versal fault-tolerant quantum gates”. In: Physical review letters 112.1 (2014), p. 010505.

[24] Theodore J Yoder, Ryuji Takagi, and Isaac L Chuang. “Universal fault-tolerant gates on con-
catenated stabilizer codes”. In: Physical Review X 6.3 (2016), p. 031039.

[25] Hector Bombin. “Single-shot fault-tolerant quantum error correction”. In: Physical Review X 5.3
(2015), p. 031043.

[26] Earl T Campbell. “A theory of single-shot error correction for adversarial noise”. In: Quantum
Science and Technology 4.2 (2019), p. 025006.

[27] Barbara M Terhal. “The fragility of quantum information?” In: International Conference on
Theory and Practice of Natural Computing. Springer. 2012, pp. 47–56.

[28] Benjamin J Brown et al. “Quantum memories at finite temperature”. In: Reviews of Modern
Physics 88.4 (2016), p. 045005.

[29] Sacha Friedli and Yvan Velenik. Statistical mechanics of lattice systems: a concrete mathematical
introduction. Cambridge University Press, 2017.

[30] Francesca Valery Day and Sean Barrett. “The Ising ferromagnet as a self-correcting physical
memory: a Monte-Carlo study”. In: arXiv preprint arXiv:1201.0390 (2012).

[31] Rudolf Peierls. “On Ising’s model of ferromagnetism”. In: Mathematical Proceedings of the Cam-
bridge Philosophical Society. Vol. 32. 3. Cambridge University Press. 1936, pp. 477–481.

23



24



Chapter 2

The need for good codes - Overview

The two main challenges to overcome in order to build a usable and useful quantum computer are
noise and scalability. Careful quantum code design could provide the solution to both. The planar
code is today the leading approach for fault-tolerant quantum computing. Crucially, it is an LDPC
code for which the syndrome extraction circuit is not only low-depth but also local1. Locality is what
makes planar code experimental realizations practical [1, 2, 3, 4]. However, the planar code family
parameters are not good.

The term good is borrowed from classical coding theory: a [n, k, d] code is said good if both k and d
scale linearly with n – the same definition applies to a [[n, k, d]] quantum code. A code family has rate
r ∈ R if the ratio k/n tend to r, as we consider codes of increasing size n. In particular, codes with
dimension linear in their length will have positive rate r > 0. A family of codes has a threshold pth > 0

if, for error rates below pth in the examined noise model, there exists a decoder whose probability of
failure decays exponentially in the system size [5]. Loosely, having a threshold means that the code is
robust to typical errors and hence, by considering codes of increasing size and distance, we can increase
the system’s resilience to faults.

The planar code has distance scaling as
√
n and zero rate. Even if the distance scaling is sub-

linear, the planar code family has a threshold [6, 7]. Having a threshold, the planar code solves the
problem of noise but fails in addressing scalability. Thirteen physical qubits2 are needed to protect
one logical qubit from one error, and a reasonably protected logical qubit would need between 103

and 104 physical qubits, depending on the application and the noise in the device [9, 10, 11, 12]. This
contrasts with the best achievable parameters for classical LDPC codes: as first shown by Gallager in
1963 [13], good classical LDPC codes do exist. Furthermore, these codes can be efficiently decoded
[14, 15]. In classical coding theory the LDPC property is necessary for the existence of efficient
decoders, but, for quantum codes, it is even more relevant. At a high level, a scalable fault-tolerant
quantum computation needs, of course, codes with a good rate, good distance and an efficient decoding
algorithm. At a lower level, it needs to be resilient to errors occurring at any step in the circuit model.
We need fault-tolerant state preparation, fault-tolerant measurements for syndrome extraction and
fault-tolerant gate constructions. The LDPC assumption is here essential in the design of quantum

1As seen in Section 1.4, the planar code is a (4, 4)-qLDPC code i.e. each stabiliser only involves at most 4 qubits,
and at most 4 stabilisers act on each qubit.

2More precisely: 13 data qubits and 12 auxilia qubits, for a total of 25 physical qubits. This figure is reduced to 17
physical qubits – 9 data and 8 auxilia qubits – for the rotated version of the planar code, see [8].

25



codes because the number of gates, and hence potentially faulty locations, required to perform error
correction scales with the stabilizer weight [16, 17, 18].

Gallager’s construction is random: with high probability, a random low-density parity check matrix
will define a classical code with constant rate and linear distance. However, to build a quantum LDPC
code, some structure is needed. On the one hand, a [[n, k, d]] stabilizer code can be mapped onto a
[[4n, 2k, 2d]] CSS code, so that parameters are the same up to constant factors [19]. On the other, we
cannot employ random binary code constructions to define CSS codes via their symplectic represen-
tation. A random matrix for the X stabilizers would define a high-distance classical code, as such the
resulting Z stabilizer matrix will not be sparse. In the literature, structure to ensure the commutativ-
ity constraints whilst preserving the sparsity of the check matrices has either been given by geometry
or via randomness aided by product constructions. The earliest examples of the former, obtained via
hyperbolic surfaces, can be found in [20, 21, 22] or the review [23]. Our work focuses on the first
product construction, the hypergraph product, originally proposed by Tillich and Zémor in [24]. The
planar code is a special instance of hypergraph product codes which, in general, use classical random
matrices as seeds [24, 25, 26, 27]. When good LDPC code families are used as seeds, the corresponding
hypergraph product codes have constant rate and distance scaling as

√
n. Even if hypergraph product

codes do not have great distance scaling, as happens for the planar code, they tolerate typical errors
[5]. Furthermore, they can be efficiently decoded [28, 29, 30, 31, 32, 33, 34, 35] and some work has also
been done in terms of fault-tolerant computation [36, 37, 38], and syndrome extraction circuits [39, 40].

When we started working on hypergraph product codes they were the best LDPC code family known,
with k ∼ n and d ∼

√
n. This is no longer the case and good qLDPC codes are now known to exist.

We here report a brief history of the good qLDPC discovery and refer the reader to [23] for a –already
outdated– review. In 1997 Kitaev introduces the toric code – a hypergraph product code with param-
eters [[2n2, 2, n]]. In 2002, Freedman, Meyer and Luo used hyperbolic geometry to build a family of
codes with distance scaling as

√
n 4
√

logn but again with zero rate [20]. No progress was made until
2020, when the first code constructions with d ∼

√
n polylogn were proposed [41, 42] and then finally

d >
√
n polylogn [43, 44, 45]. Some of these constructions yield a constant rate in the asymptotic

limit but still do not obey the definition of good codes. Panteleev and Kalachev eventually exhibited
the first construction of asymptotically good quantum LDPC codes in 2021 [46], closely followed by
Leverrier and Zémor [47], Dinur et al. [48], Lin and Hsieh [49]. The existence of (asymptotically) good
quantum LDPC codes is definitely a breakthrough for our field but it is far from being the end of the
story.

Good LDPC codes could solve scalability in theory, but much more goes into the architecture of
a fault-tolerant quantum computer – at a minimum: experimentally feasible circuit design, practical
efficient decoders and fault-tolerant encoded operations are needed. These issues have been studied
at depth for the surface code (see, for instance, the review [9]) and less so for codes with k > 1 [23].
Gottesman’s foundational Threshold Theorem [50] ensures that fault-tolerant quantum computation
is possible with constant overhead if positive rate codes are available. The overhead is there defined
as the ratio of physical qubits over logical qubits used in a fault-tolerant algorithm, and Gottesman
shows that it scales as the inverse rate of the code family, in the limit of very large computations.
Nonetheless, the Threshold Theorem establishes that fault-tolerant quantum computing architectures
are viable as long as we use positive rate codes.

26



Hypergraph product codes satisfy all necessary conditions of Gottesman’s result – roughly, they
are LDPC, have constant rate, efficient decoding algorithms and a threshold [5, 29, 30]. Hypergraph
product codes could thus serve as a bridge between a surface-code architecture and a constant-overhead
one. Their study could inform the exploration and design of new techniques for syndrome extraction,
decoding and fault-tolerant gates implementation that could be later generalised to other code con-
structions. As per the Threshold Theorem, they could also serve as the cardinal building block of a
scalable quantum computer.

The three pieces of original work we present in Chapter 3, Chapter 4 and Chapter 5 aim to aid
and foster the design of a full fault-tolerant architecture with hypergraph product codes. In the effort
of giving practical answers to the Threshold Theorem requirements, we address the issues of decoding,
fault-tolerant gates and measurement errors during syndrome extraction. In Chapter 3 we detail the
code construction and present a novel qMW decoder for hypergraph product codes. We propose a
fault-tolerant method to implement logical gates in Chapter 4. In Chapter 5 we exhibit a foundational
result on code design for faulty syndromes. We conclude in Chapter 6, discussing some open questions.

References

[1] James R Wootton et al. “Proposal for a minimal surface code experiment”. In: Physical Review
A 96.3 (2017), p. 032338.

[2] Sergey Bravyi et al. “Correcting coherent errors with surface codes”. In: npj Quantum Information
4.1 (2018), pp. 1–6.

[3] Sebastian Krinner et al. “Realizing repeated quantum error correction in a distance-three surface
code”. In: Nature 605.7911 (2022), pp. 669–674.

[4] Rajeev Acharya et al. “Suppressing quantum errors by scaling a surface code logical qubit”. In:
arXiv preprint arXiv:2207.06431 (2022).

[5] Alexey A Kovalev and Leonid P Pryadko. “Fault-Tolerance of” Bad” Quantum Low-Density
Parity Check Codes”. In: arXiv preprint arXiv:1208.2317 (2012).

[6] Eric Dennis et al. “Topological quantum memory”. In: Journal of Mathematical Physics 43.9
(2002), pp. 4452–4505.

[7] Chenyang Wang, Jim Harrington, and John Preskill. “Confinement-Higgs transition in a disor-
dered gauge theory and the accuracy threshold for quantum memory”. In: Annals of Physics
303.1 (2003), pp. 31–58.

[8] Alexey A Kovalev and Leonid P Pryadko. “Improved quantum hypergraph-product LDPC codes”.
In: 2012 IEEE International Symposium on Information Theory Proceedings. IEEE. 2012, pp. 348–
352.

[9] Austin G Fowler et al. “Surface codes: Towards practical large-scale quantum computation”. In:
Physical Review A 86.3 (2012), p. 032324.

[10] Earl Campbell, Ankur Khurana, and Ashley Montanaro. “Applying quantum algorithms to con-
straint satisfaction problems”. In: Quantum 3 (2019), p. 167.

27



[11] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits”. In: Quantum 5 (2021), p. 433.

[12] Isaac H Kim et al. “Fault-tolerant resource estimate for quantum chemical simulations: Case
study on Li-ion battery electrolyte molecules”. In: Physical Review Research 4.2 (2022), p. 023019.

[13] Robert Gallager. “Low-density parity-check codes”. In: IRE Transactions on information theory
8.1 (1962), pp. 21–28.

[14] Michael Sipser and Daniel A Spielman. “Expander codes”. In: IEEE transactions on Information
Theory 42.6 (1996), pp. 1710–1722.

[15] David JC MacKay and Radford M Neal. “Near Shannon limit performance of low density parity
check codes”. In: Electronics letters 33.6 (1997), pp. 457–458.

[16] Peter W Shor. “Fault-tolerant quantum computation”. In: Proceedings of 37th conference on
foundations of computer science. IEEE. 1996, pp. 56–65.

[17] Rui Chao and Ben W Reichardt. “Quantum error correction with only two extra qubits”. In:
Physical review letters 121.5 (2018), p. 050502.

[18] Rui Chao and Ben W Reichardt. “Flag fault-tolerant error correction for any stabilizer code”.
In: PRX Quantum 1.1 (2020), p. 010302.

[19] Sergey Bravyi, Barbara M Terhal, and Bernhard Leemhuis. “Majorana fermion codes”. In: New
Journal of Physics 12.8 (2010), p. 083039.

[20] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum codes”.
In: Mathematics of quantum computation. Chapman and Hall/CRC, 2002, pp. 303–338.

[21] Larry Guth and Alexander Lubotzky. “Quantum error correcting codes and 4-dimensional arith-
metic hyperbolic manifolds”. In: Journal of Mathematical Physics 55.8 (2014), p. 082202.

[22] Michael H Freedman and Matthew B Hastings. “Quantum systems on non-k-hyperfinite com-
plexes: A generalization of classical statistical mechanics on expander graphs”. In: arXiv preprint
arXiv:1301.1363 (2013).

[23] Nikolas P Breuckmann and Jens Niklas Eberhardt. “Quantum low-density parity-check codes”.
In: PRX Quantum 2.4 (2021), p. 040101.

[24] Jean-Pierre Tillich and Gilles Zémor. “Quantum LDPC codes with positive rate and minimum
distance proportional to the square root of the blocklength”. In: IEEE Transactions on Informa-
tion Theory 60.2 (2013), pp. 1193–1202.

[25] Sergey Bravyi and Matthew B Hastings. “Homological product codes”. In: Proceedings of the
forty-sixth annual ACM symposium on Theory of computing. 2014, pp. 273–282.

[26] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. “Quantum expander codes”. In: 2015
IEEE 56th Annual Symposium on Foundations of Computer Science. IEEE. 2015, pp. 810–824.

[27] Weilei Zeng and Leonid P Pryadko. “Higher-dimensional quantum hypergraph-product codes
with finite rates”. In: Physical review letters 122.23 (2019), p. 230501.

[28] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. “Efficient decoding of random errors
for quantum expander codes”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing. 2018, pp. 521–534.

28



[29] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. “Constant overhead quantum fault-
tolerance with quantum expander codes”. In: 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE. 2018, pp. 743–754.

[30] Alexey A Kovalev et al. “Numerical and analytical bounds on threshold error rates for hypergraph-
product codes”. In: Physical Review A 97.6 (2018), p. 062320.

[31] Antoine Grospellier and Anirudh Krishna. “Numerical study of hypergraph product codes”. In:
arXiv preprint arXiv:1810.03681 (2018).

[32] Pavel Panteleev and Gleb Kalachev. “Degenerate quantum LDPC codes with good finite length
performance”. In: Quantum 5 (2021), p. 585.

[33] Antoine Grospellier et al. “Combining hard and soft decoders for hypergraph product codes”. In:
Quantum 5 (2021), p. 432.

[34] Joschka Roffe et al. “Decoding across the quantum low-density parity-check code landscape”. In:
Physical Review Research 2.4 (2020), p. 043423.

[35] Omar Fawzi, Lucien Grouès, and Anthony Leverrier. “Linear programming decoder for hyper-
graph product quantum codes”. In: 2020 IEEE Information Theory Workshop (ITW). IEEE.
2021, pp. 1–5.

[36] Tomas Jochym-O’Connor. “Fault-tolerant gates via homological product codes”. In: Quantum 3
(2019), p. 120.

[37] Anirudh Krishna and David Poulin. “Fault-tolerant gates on hypergraph product codes”. In:
Physical Review X 11.1 (2021), p. 011023.

[38] Lawrence Z Cohen et al. “Low-overhead fault-tolerant quantum computing using long-range
connectivity”. In: Science Advances 8.20 (2022).

[39] Nicolas Guillaume Delfosse, Maxime Tremblay, and Michael Edward Beverland. Short-depth syn-
drome extraction circuits in 2d quantum architectures for hypergraph product codes. US Patent
App. 17/219,331. 2022.

[40] Maxime A Tremblay, Nicolas Delfosse, and Michael E Beverland. “Constant-overhead quan-
tum error correction with thin planar connectivity”. In: Physical Review Letters 129.5 (2022),
p. 050504.

[41] Shai Evra, Tali Kaufman, and Gilles Zémor. “Decodable quantum LDPC codes beyond the square
root distance barrier using high dimensional expanders”. In: 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS). IEEE. 2020, pp. 218–227.

[42] Tali Kaufman and Ran J Tessler. “New cosystolic expanders from tensors imply explicit Quantum
LDPC codes with Ω

√
n logk n) distance”. In: Proceedings of the 53rd Annual ACM SIGACT

Symposium on Theory of Computing. 2021, pp. 1317–1329.

[43] Matthew B Hastings, Jeongwan Haah, and Ryan O’Donnell. “Fiber bundle codes: breaking the
n 1/2 polylog (n) barrier for quantum ldpc codes”. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing. 2021, pp. 1276–1288.

[44] Pavel Panteleev and Gleb Kalachev. “Quantum LDPC codes with almost linear minimum dis-
tance”. In: IEEE Transactions on Information Theory 68.1 (2021), pp. 213–229.

29



[45] Nikolas P Breuckmann and Jens N Eberhardt. “Balanced product quantum codes”. In: IEEE
Transactions on Information Theory 67.10 (2021), pp. 6653–6674.

[46] Pavel Panteleev and Gleb Kalachev. “Asymptotically good quantum and locally testable classical
LDPC codes”. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing. 2022, pp. 375–388.

[47] Anthony Leverrier and Gilles Zémor. “Quantum tanner codes”. In: arXiv preprint
arXiv:2202.13641 (2022).

[48] Irit Dinur et al. “Good Quantum LDPC Codes with Linear Time Decoders”. In: arXiv preprint
arXiv:2206.07750 (2022).

[49] Ting-Chun Lin and Min-Hsiu Hsieh. “Good quantum LDPC codes with linear time decoder from
lossless expanders”. In: arXiv preprint arXiv:2203.03581 (2022).

[50] Daniel Gottesman. “Fault-tolerant quantum computation with constant overhead”. In: arXiv
preprint arXiv:1310.2984 (2013).

30



Chapter 3

Code construction and decoding -
ReShape

Context and Results

In [1] we propose the ReShape decoder for hypergraph product codes: we show how to lift a classical
maximum-likelihood decoder (ML decoder, see page 9) to a quantum minimum-weight decoder (qMW
decoder, see page 11). The adaptation of classical decoders to the quantum setting is, in general, not
a trivial task. For instance, belief-propagation [2] can efficiently decode all classical LDPC codes but,
because of the degeneracy of quantum codes, it cannot be used out-of-the-box on stabilizer codes.
Similarly, the bit-flip decoding algorithm for classical expander codes fails in the quantum setting [3,
4]. Both these algorithms however can be modified to work on quantum codes [5, 6, 7, 8, 9, 10, 11].
Differently, our ReShape decoder uses the classical decoding algorithm as a black box. In a nutshell,
hypergraph product codes are built via the tensor product of two classical linear codes; we ‘invert’ the
product structure to reduce the quantum decoding problem to a classical one. This action, an ad hoc
version of the Cleaning Lemma [12], informs us of some invariant properties of hypergraph product
codes which further clarify the composition of their logical Pauli group.

Limitations

The ReShape decoder is not suitable for use in realistic noise settings as it only works for adversarial
noise. An adversarial error model is such that an adversary chooses error locations to damage the
encoded information. Under this noise model, and by definition of [[n, k, d]] code, an adversary is
always able to find t = bd−1

2 c locations for which any decoder would fail. On the contrary, under
local stochastic noise of parameter p, we expect to have about pn errors on n physical qubits, but we
also expect the probability of t malicious locations to undergo errors to be low. Kovalev and Pryadko
showed that typical errors can be corrected by any qLDPC code provided that p is below a certain
threshold pth [13]. At low p, typical errors form isolated clusters in a low-degree graph associated
with the code. As such, a decoder able to correct isolated and not malicious clusters separately would
succeed with high probability. ReShape however is intrinsically non-local on the relevant graph and
hence it fails to satisfy Kovalev and Pryadko’s assumptions.

31



Authorship declaration

AOQ derived the proofs, the numerical simulations and wrote the manuscript.

References

[1] Armanda O Quintavalle and Earl T Campbell. “ReShape: a decoder for hypergraph product
codes”. In: IEEE Transactions on Information Theory (2022).

[2] David JC MacKay and Radford M Neal. “Near Shannon limit performance of low density parity
check codes”. In: Electronics letters 33.6 (1997), pp. 457–458.

[3] Daniel A Spielman. “Linear-time encodable and decodable error-correcting codes”. In: IEEE
Transactions on Information Theory 42.6 (1996), pp. 1723–1731.

[4] Michael Sipser and Daniel A Spielman. “Expander codes”. In: IEEE transactions on Information
Theory 42.6 (1996), pp. 1710–1722.

[5] David JC MacKay, Graeme Mitchison, and Paul L McFadden. “Sparse-graph codes for quantum
error correction”. In: IEEE Transactions on Information Theory 50.10 (2004), pp. 2315–2330.

[6] David Poulin and Yeojin Chung. “On the iterative decoding of sparse quantum codes”. In: arXiv
preprint arXiv:0801.1241 (2008).

[7] Pavel Panteleev and Gleb Kalachev. “Degenerate quantum LDPC codes with good finite length
performance”. In: Quantum 5 (2021), p. 585.

[8] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. “Constant overhead quantum fault-
tolerance with quantum expander codes”. In: 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE. 2018, pp. 743–754.

[9] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. “Efficient decoding of random errors
for quantum expander codes”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing. 2018, pp. 521–534.

[10] Kao-Yueh Kuo and Ching-Yi Lai. “Refined belief propagation decoding of sparse-graph quantum
codes”. In: IEEE Journal on Selected Areas in Information Theory 1.2 (2020), pp. 487–498.

[11] Kao-Yueh Kuo and Ching-Yi Lai. “Exploiting degeneracy in belief propagation decoding of quan-
tum codes”. In: npj Quantum Information 8.1 (2022), pp. 1–9.

[12] Sergey Bravyi and Barbara Terhal. “A no-go theorem for a two-dimensional self-correcting quan-
tum memory based on stabilizer codes”. In: New Journal of Physics 11.4 (2009), p. 043029.

[13] Alexey A Kovalev and Leonid P Pryadko. “Fault-Tolerance of” Bad” Quantum Low-Density
Parity Check Codes”. In: arXiv preprint arXiv:1208.2317 (2012).

32



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022 6569

ReShape: A Decoder for Hypergraph Product Codes
Armanda O. Quintavalle and Earl T. Campbell

Abstract— The design of decoding algorithms is a significant
technological component in the development of fault-tolerant
quantum computers. Often design of quantum decoders is
inspired by classical decoding algorithms, but there are no
general principles for building quantum decoders from classical
decoders. Given any pair of classical codes, we can build
a quantum code using the hypergraph product, yielding a
hypergraph product code. Here we show we can also lift the
decoders for these classical codes. That is, given oracle access
to a minimum weight decoder for the relevant classical codes,
the corresponding [[n, k, d]] quantum code can be efficiently
decoded for any error of weight smaller than (d − 1)/2.
The quantum decoder requires only O(k) oracle calls to the
classical decoder and O(n2) classical resources. The lift and the
correctness proof of the decoder have a purely algebraic nature
that draws on the discovery of some novel homological invariants
of the hypergraph product codespace. While the decoder works
perfectly for adversarial errors, that is errors of weight up to half
the code distance, it is not suitable for more realistic stochastic
noise models and therefore can not be used to establish an error
correcting threshold.

Index Terms— Quantum error correction, product codes,
decoding.

I. INTRODUCTION

The construction of quantum codes often takes classical
codes as a starting point. The CSS construction is one method
for combining a pair of classical codes into a quantum code.
However, the CSS recipe only works when the pair of classical
codes are dual to each other. Unfortunately, some of the
best known classical code families, such as those based on
expander graphs, do not come in convenient dual pairs. The
hypergraph product is a different recipe that allows a pair
of arbitrary classical codes to form the basis of a quantum
code [1]. Crucially, when the hypergraph product uses families
of classical low-density parity check (LDPC) codes, it leads
to families of quantum-LDPC codes. The quantum-LDPC
property eases the experimental difficulty of implementation
and, combined with suitably growing distance, ensures the
existence of an error correction threshold [2].

Manuscript received 10 August 2021; revised 29 March 2022; accepted
6 June 2022. Date of publication 17 June 2022; date of current version
15 September 2022. This work was supported by the Engineering and
Physical Sciences Research Council under Grant EP/M024261/1 (E.T.C).
(Corresponding author: Armanda O. Quintavalle.)

Armanda O. Quintavalle is with the Department of Physics and
Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K. (e-mail:
armandaoq@gmail.com).

Earl T. Campbell is with the Department of Physics and
Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K., and
also with Riverlane, Cambridge CB2 3BZ, U.K.

Communicated by P. Kiran Sarvepalli, Associate Editor for Quantum
Information Theory.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2022.3184108.

Digital Object Identifier 10.1109/TIT.2022.3184108

Two of the most widely known quantum codes, the toric
and planar surface codes, are hypergraph product codes that
use the classical repetition code as their seed classical code.
The decoding problem for the surface code can be recast
as a minimum-weight perfect-matching problem, which is
efficiently solved by the blossom algorithm [3], [4] and the
union-find algorithm [5]. Another interesting class of hyper-
graph product codes uses classical expander codes as their
seed, with the resulting offspring called quantum expander
codes [6], which are quantum-LDPC codes achieving both
constant rate and Ω(

√
n) distance. The classical expander

codes can be decoded by a very simple bit-flip algorithm dis-
covered by Spiser and Spielman [7]. This inspired the small-set
flip decoder for quantum expander codes, which follows a sim-
ilar idea but is slightly modified, and has been shown to correct
adversarial errors [6], stochastic errors [8] and also to operate
as a single-shot decoder [9]. However, any binary linear code
can be used as a seed to build hypergraph product codes. Using
classical codes other than repetition and expander codes, for
instance the semi-topological codes proposed in [10], yield
a broad range of hypergraph product codes for which there
is no general propose decoder that is proven to work across
the whole code family. For classical LDPC codes, using a
belief propagation decoder (BP) works well in practice but it
cannot be used out of the box on quantum-LDPC codes. In fact
whenever a decoding instance has more than one minimum
weight solution, it is degenerate, BP does not converge and
yields a decoding failure. Degeneracy is the quintessential
feature of quantum codes and therefore some workarounds
are needed to use BP on quantum-LDPC codes [11], [12].
The literature offers many examples of BP inspired decoders
for quantum-LDPC codes which show an error correcting
threshold [10], [13]–[17], however none of them come with
a correctness proof. Recently, a union-find like decoder has
been proposed to decode quantum-LDPC codes [18]. The
authors in [18] prove that their union-find decoder corrects
for all errors of weight up to a polynomial in the distance
for three classes of quantum-LDPC codes: codes with linear
confinement (see [19], [20]), D-dimensional hyperbolic codes
and D-dimensional toric codes for D ≥ 3. The decoder
in [18] is therefore provably correct for adversarial noise,
nonetheless a comprehensive investigation of its performance
under stochastic noise is still missing.

Here we introduce the ReShape decoder for generic hyper-
graph product codes. Given a [[n, k, d]] hypergraph product
code built using classical codes with parity matrices δA

and δB , we assume access to a minimum weight decoder for
parity matrices δA, δB , δT

A and δT
B . The ReShape decoder

calls these classical decoders as blackbox oracles without
any modification or knowledge of their internal working,

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6570 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

and furthermore only requires O(k) oracle calls, and only
a polynomial amount of additional classical computation.
Under these conditions we prove that ReShape works in
the adversarial setting, correcting errors (up to stabilisers) of
weight less than half the code distance. Therefore, ReShape
lifts the classical decoders to the status of a quantum decoder,
providing the first general purpose hypergraph product codes
decoder proven to correct adversarial errors. Formally we
prove:

Theorem 1: Any [[n, k, d]] hypergraph product code con-
structed from the classical parity check matrices δA and δB

can be successfully decoded from error of weight up to
(d − 1)/2 using O(k) oracle calls to classical decoders for
the seed matrices and their transpose plus O(n2) classical
operations.

Theorem 1 though, does not state anything about stochas-
tic noise or error correcting thresholds. Families of n-qubit
hypergraph product codes have distance of at most O(

√
n)

and so they are bad codes in the sense that the distance is
sub-linear. However, given a stochastic noise model with each
qubit affected independently with probability p, the typical
error size will be pn. Thus, for n > (d/2p), the most
likely errors will not necessarily be corrected by ReShape
and there is no guarantee that a threshold will be observed.
Indeed, we implemented ReShape for several code families
and found evidence that ReShape fails to provide a threshold
(see Figure 4). A clear open problem is whether there exists a
similar general lifting procedure, or modification of ReShape,
for which one can prove good performance in the stochastic
settings. Hence, if on one hand Theorem 1 provides a solution
to the adversarial decoding problem for hypergraph product
codes, on the other, a stronger, difficult and much longed-for
result is desirable. Namely, the solution of the stochastic
decoding problem for hypergraph product codes both on a
theoretical level (proof of a threshold) and on a practical one
(numerical observation of a high correcting threshold). Even
so, ReShape still provides some improvement over state-of the-
art BP and union-find like decoders for stochastic noise. First,
ReShape comes with a proof of correctness, that BP lacks;
second, the proof works for all errors up to the optimal value
of (d − 1)/2, whilst the modification of union-find proposed
in [18] is provably correct only for errors of weight up to Adα,
for some A, α > 0 and α < 1.

II. PRELIMINARIES AND NOTATION

A classical [n, k, d] linear code is compactly described by
its parity check matrix H . The matrix H is a binary matrix of
size m× n such that the codespace C(H) ⊆ �n

2 is described
by:

C(H) = {v ∈ �n
2 : Hv = 0}. (1)

The codespace C(H) has dimension k = n − rank(H) and
distance d defined as:

d = min{|v| : v ∈ C(H), v �= 0},
where |v| is the Hamming weight of the binary vector v.
Whenever the parity check matrix has columns and rows

of small weight we say that it is a low density parity
check (LDPC) matrix; when H has constant column and row
weight wc, wr we shortly say that it is a (wc, wr)-matrix.

The classical decoding problem can be stated as: given a
syndrome vector s ∈ �m

2 , find the minimum weight solution
e ∈ �n

2 to the equation

He = s. (2)

It is easy to show that the optimal decoder for any classical
linear code can correct errors of weight up to half the code
distance (see, for instance, [21]).

A quantum [[n, k, d]] stabiliser code [22] is a subspace of
dimension 2k of the Hilbert space (�2)⊗n. It is described
as the common +1 eigenspace of its stabiliser group S,
an Abelian subgroup of the Pauli group Pn such that −� �∈ S.
The Pauli group on n qubits is the group generated by the
n-fold tensor product of single qubit Pauli operators. The
weight |P | of a Pauli operator P ∈ Pn is the number of
its non-identity factors. We indicate by N (S) the normaliser
of S i.e. the group of Paulis which commute with the stabiliser
group S. Because S ⊆ N (S), the quotient group

L = N (S)/S

is well defined and referred to as homology group, see
Appendix B. Elements [P ] of L are homology classes: equiv-
alence classes with respect to the congruence modulo multi-
plication by stabiliser operators. Explicitly:

[P ] = {PS : S ∈ S}, (3)

and for any Pauli P , its homology class [P ] is uniquely defined
via Eq. (3). Importantly, each Pauli P such that [P ] �= [�]
in L is an operator that preserves the codespace and has
non-trivial action on it. We refer to such code operators
modulo S as logical Pauli operators; with slight abuse of
notation we write P ∈ L, meaning [P ] ∈ L. Two logical
operators P, Q are said to be homologically equivalent, or just
equivalent, if and only if they belong to the same homology
class i.e. by Eq. (3), if and only if [P ] = [Q]. Importantly,
for a code of dimension k, L � Pk. The distance d of the
code is the minimum weight of any non-trivial logical operator
in L. Any generating set of the stabiliser group S induces a
syndrome map σ. Namely, if S = �S1, . . . , Sm	, the associated
syndrome function σ maps any Pauli P ∈ Pn in a binary
vector s = (s1, . . . , sm)T ∈ �m

2 such that si = 0 if and
only if P commutes with Si and 1 otherwise. We refer to the
vector s as the syndrome. Conventionally, when considering
a stabiliser code, it is always intended that a generating set
{S1, . . . , Sm} for the stabiliser group is chosen and with it a
syndrome map. We say that a stabiliser code is LDPC if each
Si has low weight and each qubit is in the support of only a
few generators.

The decoding problem for stabiliser codes can be stated
as: given a syndrome vector s ∈ �m

2 , find an operator
Er ∈ Pn such that (i) σ(Er) = s and (ii) [Er] = [Emin],
where Emin is a minimum weight operator with syndrome s.
We call any operator that satisfies (i) a valid solution of the
syndrome equation and operators for which both (i) and (ii)
are true, correct solutions.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



QUINTAVALLE AND CAMPBELL: ReSHAPE: A DECODER FOR HYPERGRAPH PRODUCT CODES 6571

Pauli operators can be put into a one-to-one correspondence
with binary vectors, if we discard the phase factor ±i. In fact,
any Pauli P can be written as:

P ∝ X [v] · Z[w],
= Xv1 ⊗ . . .⊗Xvn · Zw1 ⊗ . . .⊗ Zwn , v, w ∈ �n

2

from which it follows:

(X [v]Z[w])(X [v′]Z[w′]) = ±X [v + v′]Z[w + w′], (4)

and two operators commute if and only if

�v, w′	+ �v′, w	 = 0 mod 2 (5)

and anti-commute otherwise. This correspondence between
binary vectors and Pauli operators is particularly handy when
dealing with CSS codes [23], [24]. CSS codes are stabiliser
codes for which the stabiliser group can be generated by two
disjoint sets Sx and Sz of X and Z type operators respectively.
If Sx = {X [v1], . . . X [vmx ]}, Sz = {Z[w1], . . . , Z[wmz ]} and
we define HX and HZ as the matrices whose rows are the vis
and the wis respectively, then the commutation relation on
the stabilisers generators translate in to the binary constraint
HXHT

Z = 0. Using Eq. (5), it is easy to show that the
syndrome for a Pauli error E = X [ex]Z[ez] is described by
the two binary vectors sz = HZex and sx = HXez . Since
these two linear equations are independent, we can treat the
X-part and Z-part of the error separately. For CSS codes,
we define the X-distance dx as the minimum weight of an
operator X [v] which commutes with all the stabilisers in Sz

but does not belong to the group generated by Sx. Note that
the weight of an operator X [v] equates the Hamming weight
|v| of the vector v. Therefore, combining Eq. (4), Eq. (5) and
the definition of dx, we shortly say that dx is the minimum
weight of a vector v in kerHZ which does not belong to the
row span of HX , i.e.

dx := min{|v| : HZv = 0, v �∈ Im HT
X} (6)

Similarly, dz is the minimum weight of a vector in kerHX

not in Im HT
Z .

The Z-error decoding problem for CSS code can be stated
as: given a syndrome vector s ∈ �mx

2 , find a valid and correct
solution e ∈ �n

2 to the equation:

HXe = s, (7)

where er is valid if and only if HXer = s and it is correct if
and only if it belongs to the homology class of the minimum
weight operator with syndrome s. Because for an operator
Z[e] its weight equates the Hamming weight of the vector e,
the Z-decoding problem for CSS codes can be reformulated
exactly as done for the classical decoding problem in Eq. (2).
Explicitly, given s, find the minimum weight solution to the
linear equation HXe = s. The X-decoding problem is derived
from Eq. (7) by duality, exchanging the role of X and Z .

It goes without saying that, if any CSS code defines two
classical parity check matrices, the converse is also true.
Namely, starting from any two binary matrices H1, H2 such
that H1H

T
2 = 0, this defines a CSS code with HX = H1,

HZ = H2. If the classical linear code with parity check Hi

has parameters [n, ki, di], the associated quantum code has
parameters [[n, k1 + k2 − n, dx, dz ]] where dx ≥ d2 and
dz ≥ d1. A review on quantum codes can be found, for
instance, in [25], [26].

In this article we focus on a sub-class of CSS codes,
the hypergraph product codes [27]–[30]. We give a mini-
mal description of these codes in Section III and we refer
the reader to Appendix B for a more detailed presentation.
We study some homology invariants for the logical operators
of the hypergraph product codes in Section IV-A. These
invariants are the algebraic core upon which we design a
decoder for these codes, the ReShape decoder. We prove that
ReShape is an efficient and correct decoder for adversarial
noise in Section IV-B. We conclude with some considera-
tion on the performance of ReShape under stochastic noise
in Section IV-C.

III. HYPERGRAPH PRODUCT CODES

We here present a bottom-up overview on hypergraph prod-
uct codes. The purpose of this Section is dual: we both want to
describe the hypergraph product codes with the least possible
technical overhead and introduce the notation necessary to
motivate and give an intuition for the results presented in
Section IV. We refer the reader interested in the homology
theory approach to Appendix B.

The most well-known example of hypergraph product code
is the toric code and its variations [31], [32]. The toric code is
conventionally represented by a square lattice where qubits
sit on edges, X-stabilisers are identified with vertices and
Z-stabilisers with faces. Since a square lattice has two kind of
edges, vertical and horizontal edges, the first evident feature
of this identification is that, accordingly, there are two type of
qubits. The second is that each vertex/X-stabiliser uniquely
identifies a row of horizontal edges and a column of vertical
one, starting from the four ones that are incident to it. The
third is that faces/Z-stabilisers, similarly to vertices, uniquely
identify a column of horizontal edges and a row of vertical
ones, starting from the four which lie on its boundary. Very
similar attributes can be found in all the hypergraph product
codes, as we now explain.

Consider two classical parity check matrices δA, δB of size
ma × na and mb × nb; we indicate with C(δA, δB) their
hypergraph product code and refer to the matrices δA and
δB as seed matrices. The qubits of the code C(δA, δB) can
be labelled as left and right qubits. Left qubits can be placed
in a na × nb grid and right qubits in a ma × mb grid, see
Figure 1. Under this labelling, left and right qubits are uniquely
identified by pair of indices (ja, jb) and (ia, ib) respectively,
where ja, jb vary among the column indices of δA, δB while
ia, ib vary among their row indices. Given a pair (L, R) of
binary matrices, of size na × nb and ma × mb respectively,
we define the Z-operator:

Z(L, R) =

⎛
⎝⊗

ja,jb

ZLja,jb

⎞
⎠⊗

⎛
⎝⊗

ia,ib

ZRia,ib

⎞
⎠ , (8)

and similarly for X-operators. We refer to L as the left part
of the operator and to R as its right part.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6572 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

Fig. 1. A graphical representation of the qubit space of the homological product code C(δA, δB) where δA = δB = δ and δ is a degenerate parity check
matrix for the [7, 4, 3] Hamming code reported in (1a). In (1b), . . . ,(1g), the two grids represent the left and right qubits respectively. One circle is drawn for
every physical qubits of C(δA, δB). There are 7 × 7 left qubits and 4 × 4 right qubits. The support of an operator (L, R) on C(δA, δB) is represented by
filling the corresponding circle: left qubit at position (ja, jb) is filled if and only if Lja,jb

= 1; similarly the right qubit at position (ia, ib) is filled if and
only if Ria,ib

= 1. The code C(δA, δB) pictured has parameters [[65, 17, 3, 3]]. It has 16 independent logical left operators and 1 logical right operators:

|Lleft
x | = |Lleft

z | = 16 and |Lright
x | = |Lright

z | = 1.

The code C(δA, δB) has ma × nb X-stabiliser generators
which can be indexed by (ia, jb). The X-stabiliser Sx(ia, jb)
has support contained in the union of the jbth column of left
qubits and the iath row of right qubits. More precisely,1 it
acts as X [(δA)ia ] on the left qubits located at column jb

and as X [(δB)jb ] on the right qubits located on row ia,
see Figure 1b. Using the X-version of Eq. (8), Sx(ia, jb) is
uniquely represented by the pair of matrices, L = δT

AEiajb

and R = Eiajb
δT
B , so that

Sx(ia, jb) := X(δT
AEiajb

, Eiajb
δT
B),

where Eia,jb
is the all-zero ma×nb matrix but for the (ia, jb)th

entry which is 1. From the characteristic ‘cross’ shape of the
stabilisers generators Sx(ia, jb), it follows that if (GL, GR)
is an X-stabiliser for C(δA, δB), then (i) each column of GL,
as a vector in �na

2 , belongs to Im δT
A and (ii) each row of GR,

as a vector in �
mb
2 , belongs to Im δB .

Similarly, Z-stabiliser generators are indexed by (ja, ib) for
1 ≤ ja ≤ na and 1 ≤ ib ≤ mb and Sz(ja, ib) is uniquely

1Here and in the following, for a m × n matrix δ we indicate by δi ∈ �
n
2

the transpose of its ith row, and by δj ∈ �
m
2 its jth column.

represented by the pair of matrices:

(L, R) = (Ejaib
δB, δAEjaib

),

for Ejaib
of size na×mb, with all entries 0 but for the (ja, ib)th

entry which is 1.
The syndrome equation for hypergraph product codes can be

derived combining Eq. (7) and the expression for the stabiliser
generators. By Eq. (7), the ith bit of the syndrome vector
s ∈ �

mx
2 equates the inner product between the ith

X-stabiliser generator, which corresponds to the ith row of the
matrix HX , and the error vector. In the same way, by reshaping
vectors into matrices (see Appendix B-A), the (ia, jb)th bit
of the syndrome matrix S ∈ �

ma×nb
2 equates the inner

product of the (ia, jb)th X-stabiliser generator and the error
matrices (L, R):

(δA)iaL + R(δB)jb = Sia,jb
,

and by linearity:

σ(L, R) := δAL + RδB. (SE)

It is easy to show that any Z-stabiliser has trivial X-syndrome,
which is equivalent to X-stabilisers and Z-stabilisers commut-
ing. As a consequence, C(δA, δB) is a well-defined CSS code.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



QUINTAVALLE AND CAMPBELL: ReSHAPE: A DECODER FOR HYPERGRAPH PRODUCT CODES 6573

A minimal generating set of logical Z-operators for
C(δA, δB) is given by:

Lz := Lleft
z ∪ Lright

z (9)

where:

Lleft
z :=

{
(L, 0) : L = ka · eT

jb
,

ka varies among a basis of ker δA,

ejb
varies among a basis of (Im δT

B)•,
|ejb
| = 1

}
,

and

Lright
z :=

{
(0, R) : R = eia · k̄T

b ,

k̄b varies among a basis of ker δT
B,

eia varies among a basis of (Im δA)•,
|eia | = 1

}
.

Here, given a vector space V ⊆ �n
2 , V • denotes any space

such that V ⊕ V • � �
n
2 . In particular, the space V • is in

general different from the orthogonal complement V ⊥ of the
space V , see Appendix A for details. Similarly, a minimal
generating set of logical X-operators is:

Lx := Lleft
x ∪ Lright

x (10)

where:

Lleft
x :=

{
(L, 0) : L = eja · kT

b ,

kb varies among a basis of ker δB,

eja varies among a basis of (Im δT
A)•,

|eja | = 1
}
,

and

Lright
x :=

{
(0, R) : R = k̄a · eT

ib
,

k̄a varies among a basis of ker δT
A,

eib
varies among a basis of (Im δB)•,

|eib
| = 1

}
.

To sum up, the code C(δA, δB) is a CSS code with parameters
[[n, k, dx, dz]], where:

n = nanb + mamb

k = (na − rka)(nb − rkb) + (ma − rka)(mb − rkb)

dx = min{dT
a , db}

dz = min{da, d
T
b }

for rk� = rank(δ�) and d� (resp. dT
� ) distance of the classical

code with parity check matrix δ� (resp. δT
� ), � = A, B.

By convention, we define the distance of the trivial code {0}
to be ∞. In particular, whenever one or both seed matrices
(or transpose) are full rank, one of the summands in the
expression for k cancel out e.g. if δA or δB have full rank,
then k = (na − rka)(nb − rkb), dx = db and dz = da.

The similarities in structure between general hypergraph
product codes C(δA, δB) and the toric codes (with and without
boundaries) should now be clear: the toric code with bound-
aries (resp. without) of lattice size L is just the hypergraph

product code C(δL, δL) where δL is the full-rank L − 1 × L
(resp. non-full-rank L×L) parity check matrix of the classical
[L, 1, L] repetition code, e.g. for L = 3:

(
1 1 0
0 1 1

)
, resp.

⎛
⎝1 1 0

0 1 1
1 0 1

⎞
⎠ . (11)

Left and right qubits correspond to vertical and horizontal
edges; vertices and faces on the square lattice can be indexed
in the natural way yielding the same stabiliser indexing of
the general hypergraph product codes; string like (resp. loop
like) logical operators correspond precisely to the left and
right logical operators described above which have single
column/single row support.

In what follows, we focus on Z-errors and their correction.
With slight abuse of notation, we will refer to pair of matrices
(L, R) as operators (and vice versa sometimes) where the
identification is clear via Eq. (8). The corresponding results
for X-errors are easily obtained by duality as per any CSS
code. More precisely, by swapping the role of X and Z but
also the role of rows and columns; alternatively, considering
the code C(δT

A, δT
B), see Appendix B.

IV. RESULTS

Here we present the ReShape decoder. The intuition behind
ReShape is that we can look at hypergaph product codes as
codes built combining (product) multiple copies of the same
classical codes. As such, with due care, we can ‘decouple’
these copies and retrieve the original classical seed codes.

On a [[n, k, d]] hypergraph product code C(δA, δB),
ReShape works by splitting the decoding problem into
k smaller classical decoding problems which can be solved
using classical decoding algorithms for the seed matrices.
In order to identify the k classical decoding problems,
it applies a linear transformation, a change of basis, on the
n dimensional codespace of C(δA, δB), yielding a canonical
form for error operators. This canonical form exposes two
important features of the codespace: the first one is that logical
operators of C(δA, δB) are naturally partitioned into two sets,
of left and right operators; the second is that the weight of
each logical operator directly depends on the weight of the
classical codewords of the seed codes. By writing an operator
in its canonical form, we can immediately assess to which of
the two classes it belongs and, via classical decoding, to which
logical operator it is closest. Hence, we successfully detect and
correct errors.

In this Section, we first proceed to study the algebraic
invariants of the logical operators upon which the canonical
form is defined. The correctness of ReShape, and so the
proof of Theorem 1, strongly relies on the existence of these
invariants. We detail the Reshape algorithm in Section IV-B
and discuss its limitations in Section IV-C. All the proof of
this Section are deferred to Appendix C.

A. Invariants

The characteristic shape of operators on the codespace of
C(δA, δB) and the structure of its stabilisers and logical oper-
ators, induces a canonical form for Z-operators in C(δA, δB).

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6574 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

More precisely, by combining the construction outlined in
Section III and the definition of complement of a vector
subspace (see Appendix A) we have proven the following:

Proposition 1 (Canonical Form): Let (L, R) be a
Z-operator on the codespace of C(δA, δB). For a vector space
V ⊆ �n

2 , we denote by V • any space such that V ⊕V • � �n
2 ,

(see Appendix A). Then, for the operator (L, R), the left part L
can be expressed as a sum of a free part ML and a logical
part OL such that every row of ML belongs to Im δT

B and
every row of OL belongs to (Im δT

B)•. Similarly, the right
part R can be expressed as a sum of a free part MR and a
logical part OR such that every column of MR belongs to
Im δA and every column of OR belongs to (Im δA)•. Hence,
for (L, R) holds:

(L, R) = (ML + OL, MR + OR). (CF)

We refer to the writing given by Eq. (CF) as canonical form
of the operator (L, R).

Crucially, as we detail in Appendix C, it is always possible
to ‘move’ the support of the free part of an operator from
the left qubits to the right qubits and vice versa, by adding
stabilisers. Opposite is the situation for the logical part: the
support of the logical part of an operator cannot be moved
from the left to the right qubits without changing its homology
class. These two observations justify the name free and logical
part in the canonical form of a Z-operator on C(δA, δB).
We refer to Figure 1 and 2 for a visual representation of the
canonical form of a Z-operator on C(δA, δB). In Figures 1b
and 1e we see stabiliser operators in their canonical form:
their free part has support pictured, their logical part is 0.
In Figures 1c, 1d, 1f, 1g we see logical operators in their
canonical form: their free part is 0, whilst their logical part,
pictured, has support contained in either a line or a column of
one of the two grids of qubits. In Figure 2 we see a Z-operator
whose free and logical part are both non trivial.

Given a Z-operator (L, R) we define its row-column weight
as

Definition 1: Let (L, R) be any Z-operator on the physical
qubits of the code C(δA, δB). Its row-column weight is the
integer pair:

wtrc(L, R) := (#row(L), #col(R))

where

row(L) := {Li row of L : Li �= 0},
col(R) := {Rj column of R : Rj �= 0},

and the hash symbol # denotes the cardinality of a set.
The primary significance of this novel notion of weight is

explained by Proposition 2, which also represents a key result
towards the construction of the ReShape decoder.

Proposition 2: If (L, R) is a non-trivial logical Z-operator
of C(δA, δB) then either #row(L) ≥ da or #col(R) ≥ dT

b

(or both).
Corollary 1 below further specifies the structure of logi-

cal Z-operators and it is easily derived from the proof of
Proposition 2, which is deferred to Appendix C.

Fig. 2. A graphical representation of a Z operator on the physical qubits
of the code C(δA, δB) also represented in Figure 1. The filled circles in (2a)
represent the support of the operator: its Hamming weight is 23 while its
row-column weight is (4, 4), see Definition 1. The operator in (2a) can be
written as a sum of its free and its logical parts represented in (2b) and (2c),
see Proposition (1). As per Definition 2 and figure (2c), the logical row-column
weight of the operator in (2a) is (1, 0).

Corollary 1: If (L, R) is a non-trivial logical Z-operator on
C(δA, δB), at least one of the following hold:

(i) L has at least da rows which are not in Im δT
B when seen

as vectors in �
nb
2 .

(ii) R has at least dT
b columns which are not in Im δA when

seen as vectors of �ma
2 .

Proposition 2 and Corollary 1 naturally yield
Definition 2: Let (L, R) be a Z-operator on C(δA, δB).

Its logical row-column weight is the integer pair

wtlogrc (L, R) := (#rowlog(L), #collog(R))

where

rowlog(L) := {Li row of L : Li �∈ Im δT
B},

collog(R) := {Rj column of R : Rj �∈ Im δA}.
Equivalently, if (L, R) has canonical form given by

(L, R) = (OL + ML, OR + MR),

for its logical row-column weight holds:

wtlogrc (L, R) = wtrc(OL, OR).

The pivotal property of the logical row-column weight is
expressed by Proposition 3.

Proposition 3: The logical row-column weight of a
Z-operator on C(δA, δB) is an invariant of its homology class.

Proposition 3 not only justifies the introduction of the notion
of logical row-column weight but also constitutes the core
resource upon which we prove the correctness of the ReShape
decoder, which we now introduce.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



QUINTAVALLE AND CAMPBELL: ReSHAPE: A DECODER FOR HYPERGRAPH PRODUCT CODES 6575

B. The ReShape Decoder

An hypergraph product code C(δA, δB) is a CSS code and as
such the decoding for X and Z error can be treated separately
but in a symmetric way. Here we focus on Z-errors and
therefore we measure a generating set of X-stabilisers. The
Z-error decoding problem for C(δA, δB) can be stated as:
given a ma × nb syndrome matrix S, find a valid and correct
solution (L̃, R̃) to the equation:

S = σ(L, R) := δAL + RδB, (SE)

where (L̃, R̃) is valid if σ(L̃, R̃) = S and it is correct if it
belongs to the homology class of the minimum weight operator
with syndrome S. Crucially, finding a valid solution (L, R)
to Eq. (SE) is always possible by solving the linear system of
equation where the parity check matrix of X stabilisers is the
matrix of coefficients and the syndrome S is the constant term.
The difficulties arise if we are interest in finding a correct
solution to Eq. (SE).

The ReShape decoder for Z-errors is build upon two clas-
sical minimum weight decoding algorithms: DδA and DδT

B
.

By this we mean that (i) the algorithms DδA and DδT
B

are
optimal decoders for the classical linear code with parity
check matrix δA and δT

B respectively, and (ii) they solve the
classical decoding problem of Eq. (2) for errors of weight up to
(da−1)/2 and (dT

b −1)/2 respectively. Reshape takes as input
DδA , DδT

B
, a syndrome matrix S and a valid solution (L, R)

of the Syndrome Equation (SE): σ(L, R) = S. Recall that a
valid solution (L, R) can always be efficiently found either
solving the associated linear system or querying a lookup
table. It outputs a correct solution of (SE): an operator (L̃, R̃)
homologically equivalent to the minimum weight operator
(Lmin, Rmin) with syndrome S.

ReShape (Algorithm 1) works separately on the left part L
and on the right part R of the operator (L, R) and in fact
it could be run in parallel (lines 1-10 and lines 11-20).
Starting from a valid solution (L, R), it minimises its logical
row-column weight by minimizing #rowlog(L) (lines 1-10)
first and #collog(R) after (lines 11-20). Because the logical
row-column weight is an homology invariant for Z-operators
(Proposition 3) and ReShape minimises it, this suffices to
assure that ReShape is correct, as stated in Proposition 4.
ReShape works on the left part L of the inputted valid solution
(L, R) (lines 1-10) into two steps: Decode and Split. Each
of these two steps exploits a characteristic feature of the
Z-operators on the codespace of C(δA, δB):

(i) Split step: a Z-stabilizer (GL, GR) has left part GL such
that every row is in the image of δT

B;
(ii) Decode step: a logical Z-operator which acts non-trivially

on the left qubits has a representative (Lz, Rz) such that
at least one column of Lz is in ker δA \ {0}.

The Split and Decode steps are similarly performed on the
right part R, as specified in lines 11 - 20 of the pseudocode
in Algorithm 1. Again with reference to the left part as guide
case, we now describe the Split and Decode steps in details and
specify their computational cost. By extending this analysis
to the right part, and thanks to Proposition 4, Theorem 1 is
proved.

Algorithm 1 ReShape Decoder for Z-Errors
Input: Classical decoder DδA and DδT

B
. Syndrome matrix S

and operator (L, R) on C(δA, δB) s.t. σ(L, R) = S.

Output: Operator (L̃, R̃) on C(δA, δB) s.t. σ(L̃, R̃) = S and
[L̃, R̃] = [Lmin, Rmin], where (Lmin, Rmin) is a minimum
weight operator with syndrome S.

1: for all Li rows of L do
2: Split: Li = mi + μi ∈ Im δT

B ⊕ (Im δT
B)•, as in (16)

3: end for
4: ML ← matrix whose rows are mi

5: OL ← matrix whose rows are μi

6: for all Oj
L columns of OL do

7: Decode: ρj = DδA(Oj
L)

8: end for
9: L̃← matrix whose columns are ρj

10: L̃← L̃ + OL + ML

11: for all Rj columns of R do
12: Split: Rj = mj + μj ∈ Im δA ⊕ (Im δA)•, as in (16)
13: end for
14: MR ← matrix whose columns are mj

15: OR ← matrix whose columns are μj

16: for all (OR)i rows of OR do
17: Decode: ρi = DδT

B
((OR)i)

18: end for
19: R̃← matrix whose rows are ρi

20: R̃← R̃ + RL + MR

21: return (L̃, R̃)

Let (L, R) be any valid solution of (SE) given in input to
ReShape.

(i) Split. First, in lines 1-3, L is written in its canonical
form with respect to the basis described by Eq. (16):

L = ML + OL.

This operation has the cost of a change of basis over the
vector space �nb

2 , namely from the canonical basis to the basis
described by Eq. (16). A change of basis over a vector space
is a linear operation that correspond to a multiplication by
an invertible square matrix. Since we are interested in com-
puting the image of this linear transformation for each of the
na column vectors of L, this amount to the multiplication of
an na × nb and a nb × nb matrix. To sum up, the Split step
of ReShape has cost O(nan2

b).
(ii) Decode. The second step performed by ReShape

(lines 6-10) aims to minimise the logical row-column
weight of (L, R) by looking at non-homologically equivalent
operators:

(L, R) + (Lz, 0),

as Lz varies in Lleft
z . More precisely, ReShape exploits the

canonical form of L computed at the previous step and scans
through all the columns of its logical part OL. By construction,
any row (OL)i of OL belongs to the complement of Im δT

B .
For this reason, (OL)i can be written as the linear combination

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6576 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

of kb = nb − rank(δB) unit vectors in �
nb
2 which does not

belong to Im δT
B i.e. kb unit vectors which span (Im δT

B)•, see
Appendix A. Importantly, when we stack these row vectors
(OL)i all together and consider the columns of the matrix OL,
we observe that OL cannot have more than kb non-zero
columns. Each non-zero column of OL is then treated as if it
corresponded to a code-word of the classical code with parity
check matrix δA (plus eventually a noise vector) and decoded
individually using the classical minimum weight decoder DδA

(line 7):

DδA(Oj
L) = ρj ⇐⇒ ρj ∈ arg min

k∈ker δA

(|k + Oj
L|). (12)

If the computational cost of the classical decoder DδA is
O(ca), the computational cost of the second step of ReShape
is O(kbca).

The Split and Decode steps described for the left part are
replicated, with opportune modifications, for the right part.
To be exact, if one or both δA and δB are full rank, then the
right part does not encode any logical operator so the algorithm
terminates.2

Proposition 4 below ensures that the recovery operator
(L̃, R̃) found by ReShape is a correct solution of (SE), as long
as the classical decoders DδA and DδT

B
succeed.

Proposition 4: Let S be an X-syndrome matrix for
C(δA, δB) and (L, R) any valid solution to the Syndrome
Equation:

σ(L, R) = S. (SE)

Suppose that the minimum weight operator (Lmin, Rmin) with
syndrome S has (da/2, dT

b /2)-bounded logical row-column
weight i.e.

wtlogrc (Lmin, Rmin) = (#rowlog(Lmin), #collog(Rmin)),

is such that

#rowlog(Lmin) <
da

2
and #collog(Rmin) <

dT
b

2
. (13)

Then, on input DδA , DδT
B

, S and (L, R), ReShape outputs a

correct solution (L̃, R̃) of (SE), provided that the classical
decoders DδA , DδT

B
succeed. In other words, the solution

(L̃, R̃) found by ReShape is in the same homology class as
the minimum weight operator with syndrome S:

[Lmin, Rmin] = [L̃, R̃].

It is important to note that the condition (13) on the weight
of the original error is on its row-column weight, while usually
decoding success is assessed depending on the weight of
an operator, meaning the number of its non-identity factors.
Obviously, for any operator (L, R) it holds:

#row(L) ≤ |L| and #col(R) ≤ |R|.
As a consequence, Proposition 4 entails that ReShape succeeds
in correcting any Z-error of weight up to half the code distance
dz = min{dA, dT

B}. Combining this with the cost analysis of

2In fact, as per Eq. (9) and Eq. (10), if rank(δA) = ma or rank(δB) =
mb, then ker δT

A = (Im δA)• = {0} or ker δT
B = (Im δB)• = {0} and so

Lright
x = Lright

z .

the Split and Decode steps detailed above, gives a proof of
Theorem 1.

It is worth to observe that actually ReShape can correct
errors of weight strictly bigger than half the code distance,
as long as they are not too ‘spread’. In fact, whenever an error
is homologically equivalent to an operator (L, R) such that
L has ‘few’ non-zero rows and R has ‘few’ non-zero columns,
ReShape succeeds. Formally, because by definition:

#row(L) ≥ #rowlog(L) and #col(R) ≥ #collog(R).

Proposition 4 yields
Corollary 2: Provided that the classical decoders suc-

ceed, ReShape successfully corrects any Z-error (L, R) with
bounded row-column weight:

#row(L) <
da

2
and #col(R) <

dT
b

2
.

To sum up, ReShape successfully solves the decoding prob-
lem for any hypergraph product code requiring only k oracle
calls to a classical decoder for the seed matrices, where k is the
logical dimension of the code. Furthermore, it is able to correct
for a vast class of errors of weight strictly bigger than half the
code distance, provided that they have a ‘good’ shape. Here
by ‘good’ we mean errors of low logical column-row weight
but arbitrary Hamming weight as for instance the Z-operator
pictured in Figure 2, that has Hamming weight 23 but logical
row-column weight (1, 0) and would therefore be successfully
corrected by the ReShape decoder.

The next Section focuses on what happens when we cannot
control the shape of the errors but we assume that the
probability of a given error to occur decays exponentially in
its weight.

C. ReShape for Stochastic Noise

Up till now, we have focused on the adversarial noise
model: errors on qubits are always correctable because we
assume they have weight less than half the code distance.
In real systems though, this is rarely the case and it is
more faithful to assume that errors are sampled accordingly
to a local stochastic noise model, where qubits errors have
arbitrary location but the probability of a given error decays
exponentially in its weight [3]. More precisely the probability
of a Pauli error E ∈ Pn to occur is given by:

�(E) = p|E|(1 − p)n−|E|, (14)

meaning that Pauli errors on each of the n qubits are
independent and identically distributed. Under the binomial
distribution associated to Eq. (14), the expected error weight
on the encoded state is pn. Because the best possible distance
scaling for the hypergraph product codes is ∼ √n (when
the classical seed codes have linear distance), as n increases,
we eventually find pn >

√
n/2 ∼ d/2. Nonetheless, it is

well known that LDPC hypergraph product codes do have
a positive error correcting threshold [2]. A family of codes
has threshold pth > 0 if, for noise rate below pth, non-
correctable errors that destroy the logical information occur

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



QUINTAVALLE AND CAMPBELL: ReSHAPE: A DECODER FOR HYPERGRAPH PRODUCT CODES 6577

Fig. 3. Graphical representation of one instance of ReShape for Z-errors. The code considered is the planar code of distance 3 (toric code with boundaries)
or, equivalently, the [[13, 1, 3]] hypergraph product code C(δ, δ) for δ full-rank parity check matrix of the distance-3 repetition code i.e. leftmost matrix in (11).
We use the same graphical representation used in Figure 1. A minimum weight logical Z operator for C(δ, δ) can be chosen to have support on all the
qubits of a column of left qubits (Decode, bottom grid of qubits, support in red). The row span of δ consists of all vectors in �3

2 of even weight, hence for
a generic Z-operator on C(δ, δ), all the rows of left qubits that have an even number of filled qubits belongs to its free part and do not contribute to its
logical row-column weight. Since δ is full-rank, its column span is the whole space �2

2, and therefore a column displaying any choice of filled qubits is in
the image of δT . As such, there is no contribution to the logical-row column weight from the right part of the operator. In particular, there is no need to run
the ReShape decoder on the right part: Algorithm 1 will not execute lines 11 - 20.
The figure is divided into to four sectors, one for each stage of the decoding cycle: Input, Split, Decode and Output.
Input: the valid solution in input (L, R) has support represented by the black qubits. The operator (L, R) has Hamming weight 8.
Split - Algorithm 1, lines 1 - 3: (L, R) is written as sum of its free part (ML, MR) (top); and its logical part (OL, OR) (bottom). For what said on the
image of δ, the free part ML of L is a matrix whose rows have all even Hamming weight. Since OL has 2 non-zero rows, (L, R) has logical row-column
weight wtlogrc (L, R) = 2.
Decode - Algorithm 1, lines 1 - 9: the non-zero column (0, 1, 1)T of the logical part OL of L is given in input to a decoder Dδ for the classical distance-3
repetition code. The solution found is (1, 1, 1)T , represented by the single column of black bits on the top. This solution is plugged in the hypergraph product
code and yields a logical operator correction represented by the operator at the bottom with support on the red qubits.
Output - Algorithm 1, line 10: the output solution (L̃, R̃) is obtained by adding the input operator (L, R) and the operator found in the Decode step with
support on the red qubits. The support of (L̃, R̃) is represented by the yellow qubits.
We note that the solution found (L̃, R̃) has Hamming weight 7 and, by observing that only the first rows has odd weight, we deduce that its logical row-column

weight is 1. It is easy to verify that (L̃, R̃) is indeed homologically equivalent to the minimum weight solution (L̂1,3, 0) where L̂1,3 ∈ �
3×3
2 is the matrix

with all zeros but for the (1, 3)-th entry which is 1. In fact, (L̃, R̃) = (L̂1,3, 0) + Sz(1, 1) + Sz(2, 1) + Sz(3, 1) thus, by (3), [L̃, R̃] = [L̂1,3, 0].

with probability pnon−correctable which decays exponentially
in the system size [2], [8], [33]:

pnon−correctable ∝
(

p

pth

)αdβ

(15)

for some α, β > 0. It is important to stress that Eq. (15)
does not contrast with the fact that the typical error under the
stochastic noise model will have weight pn. Instead, Eq. (15)
entails that, among all the errors sampled, the non-correctable
ones are only a small fraction. Beyond the theoretical threshold
that Kovalev and Pryadko proved in [2], the literature offers
several numerical evidence of decoders for hypergraph prod-
uct or related families of codes which exhibit a threshold.
Nonetheless these decoders either lack a correctness proof,
e.g. BP in [10], [15], or need some additional constraints
on the seed matrices, e.g. expander codes with small-set flip
decoder [8], or augmented surface codes with the union-find
decoder in [34].

On the contrary, for any choice of the seed matrices in
the hypergraph product, ReShape is provably correct for
adversarial errors. Not surprisingly though, ReShape does not
show a threshold and a possible intuition for its anti-threshold
behaviour is the following.

If we contrast Reshape with pairs of LDPC codes families
and decoders which exhibit a threshold, such as expander
codes with the small-set flip decoder [8] or hypergraph product
codes with BP [10], [15], a feature of difference is the
‘locality’ of the decoding algorithms. Loosely, we say that a
decoding algorithm is local if errors affecting distant regions
on the qubit graph are dealt with separately and independently.
We stress that a decoder’s locality is a feature of the algorithm
and it is not related to the locality of the code’s stabiliser
generators. A code can have local stabilisers, meaning that
for a given layout of qubits in the space, stabiliser generators
only involve qubits in a limited area, and yet be equipped with
a non-local decoding algorithm. Indeed, ReShape is such a
decoder. It is a non-local decoder that can be used on the very
much local planar code. Locality of the decoding algorithm
is relevant because local stochastic errors tend to form small
disjoint clusters on the qubit graph which do not destroy
the logical information as long as they are (1) small enough
(2) sufficiently far apart. Therefore, if a decoder manages
to mimic the error cluster distribution on the qubit graph
and finds recovery operators accordingly, then it is likely
to preserve the logical information and show a threshold.
ReShape, on the other hand, has a deeply global nature.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6578 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

Fig. 4. Anti-threshold behaviour of ReShape on two families of hypergraph product codes. For both families, we plot the failure probability pfail as a
function of the phase-flip noise rate p for codes with Z-distance d. All data points are generated with at least 104 Monte Carlo trials. (a) and (c): The toric
code without boundaries. (b) and (d): A family of hypergraph product codes C(δ, δT ) where δ is a full-rank (3, 4)-matrix randomly generated, see [10].

The Split step groups all the clusters of flipped qubits
scattered across the qubit graph in a small pre-assigned
region; a recovery is then chosen (Decode step) based on
the syndrome information in this pre-assigned region. If we
take the planar code as an example (see Figure 3), the
Split step groups the error (and the syndrome) weight on
one column of the left qubits. The subsequent Decode step
decodes that column and finds a recovery operator with
supported on the column. Because for the planar code a logical
Z-operator can be chosen to have support on only one column
of the left qubits, this procedure can easily destroy the logical
information.

Our intuition on the performance of ReShape under stochas-
tic noise finds confirmation in the plots reported in Figure 4.
Even if at first sight the plots in Figure 4a and 4b could
indicate the presence of a very low threshold (below 1%),
a closer analysis suggests that this is not the case. In fact,
as d increases, the crossing point between the dashed curve
labelled d = 0 and the d-curves slips leftwards. Since
the dashed curve is the locus of points where the failure

probability pfail equates the noise rate p, it corresponds to
the case of no encoding i.e. d = 0. The common crossing
point, in other words, represents the pseudo-threshold of the
code [35]. Importantly, if a code family has a threshold pth

in the sense of Eq. (15), then all the codes of the family
crosses the curve d = 0 at the same point of coordinates
(pth, pth). Figure 4c clearly illustrates this left slipping phe-
nomenon for the toric codes without boundaries. For close
distances d = 6, 8, 10, there it seems to be a common crossing
point with the d = 0 curve. However, the crossing point
lowers if we increase d more substantially, e.g. d = 20.
The situation appears less clear in Figure 4d because the
pseudo-threshold seems to increase with the distance of
the code. Still though, there is no common crossing point of the
three curves; besides, we would expect the same trend as
the one observed for the toric codes if codes of bigger distance
were considered.

In conclusion, ReShape is not suited to tackle stochastic
errors on [[n, k, d]] code in the regime where typical errors
have weight exceeding d/2.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



QUINTAVALLE AND CAMPBELL: ReSHAPE: A DECODER FOR HYPERGRAPH PRODUCT CODES 6579

V. CONCLUSION AND OUTLOOK

In this paper we determined some important homology
invariants of hypergraph product codes. Exploiting these
invariants, we designed the ReShape decoder. ReShape is the
first decoder to efficiently decode for all errors up to half
the code distance, across the whole spectrum of hypergraph
product codes.

We foresee two natural extensions of this work. The first is
to adapt ReShape for it to work in the stochastic noise model
settings. Because ReShape actually succeeds in correcting
errors of weight substantially bigger than (d − 1)/2 (namely
it corrects error of weight as big as ∼ d2, when they have the
right shape!), this gives us some hope that ReShape would
work under stochastic noise if paired with the right clustering
technique. For instance, something on the line of the clustering
methods used in the renormalisation group or the union-find
decoders [5], [18], [36], [37].

The second is to find the corresponding invariants for
other families of homological product codes. Specifically, for
the codes in [38], which have ‘rectangular’ shaped logical
operators instead of ‘string’ like as the standard hypergraph
product codes here studied; or the balanced product codes
proposed in [39]. Once found, the right invariants could be
plugged-in an appropriately modified version of ReShape and
yield a provable correct decoder for these class of codes too.

APPENDIX A
LINEAR ALGEBRA: SPACE COMPLEMENT

In this Appendix we review some known linear algebra facts
that we use in our proofs. We refer the reader for instance
to [40], [41] for a detailed presentation on the topic.

Consider a m × n binary matrix δ. If rank(δ) = rk then
we can choose binary vectors v1, . . . , vrk in �m

2 whose span
is Im δ:

Im δ = �v1, . . . , vrk	.
Let � be the m × m identity matrix. Perform Gaussian
reduction on the (rk + m)-row matrix M :

M =

⎛
⎜⎜⎜⎝

v1

...
vrk

�

⎞
⎟⎟⎟⎠ .

By selecting the pivot rows, we obtain a basis of �m
2 of the

form:

{v1, . . . , vrk, frk+1, . . . , fm}, (16)

where the fi are unit vectors. Letting:

(Im δ)• := �frk+1, . . . , fm	,
we have:

�
m = (Im δ)⊕ (Im δ)•. (17)

We refer to the space (Im δ)• as complement of the
space Im δ. We remark that the complement V • is not equal to

the orthogonal complement V ⊥. To see how this is the case,
consider

V = �
⎛
⎝1

1
1

⎞
⎠ ,

⎛
⎝0

1
0

⎞
⎠	.

Then the spaces V • and V ⊥ can be chosen as

V • = �
⎛
⎝0

0
1

⎞
⎠	, V ⊥ = �

⎛
⎝1

0
1

⎞
⎠	.

In particular, V ⊥ ⊆ V while V • ∩ V = {0}.

APPENDIX B
HYPERGRAPH PRODUCT CODES

CSS codes can be easily described in terms of homology
theory [31], [42], [43] via the identification of the objects
of the code with a chain complex [44]. For our purposes,
a length � chain complex is an object described by a sequence
of � + 1 vector spaces {Ci}i over �2 and � binary matrices
{∂i : Ci −→ Ci+1}i such that, for each i, ∂i∂i−1 = 0. In the
following, we use the symbol ∂ to indicate the maps of a chain
complex of length � > 1 and the symbol δ to indicate the map
of a chain complex of length 1. Given a chain complex C:

C−1
∂−1−−→ C0 ∂0−→ C1, (C)

we can define a CSS code C by equating:

HZ = ∂T
−1, HX = ∂0.

Since ∂0∂−1 = 0 by construction, X-type and Z-type opera-
tors do commute i.e. HX ·HT

Z = 0 and the code C associated
to the chain complex (C) is well defined. The code C has
length n = dim(C0) and its dimension k equates to the dimen-
sion of the 0th homology group H0 = ker ∂0/ Im ∂−1 or,
equivalently, to the dimension of the 0th co-homology group
H∗

0 = ker∂−1/ Im∂0. Its Z-distance and X-distance are given
by the minimum Hamming weight of any representative of a
non-zero element in H0 and H∗

0 respectively:

dz = min
v∈�n

2

{|v| : [v] ∈ H0, [v] �= 0},
dx = min

v∈�n
2

{|v| : [v] ∈ H∗
0, [v] �= 0}.

An hypergraph product code C(δA, δB), which is a CSS code,
can be easily defined in terms of product of chain complexes.
Consider the two length-1 chain complexes defined by the seed
matrices δA and δB:

C0
A

δA−−→ C1
A,

C0
B

δB−−→ C1
B .

We define their homological product as follows. Take the
tensor product spaces C−1 = C0

A ⊗ C1
B and C1 = C1

A ⊗ C0
B

and the direct sum space C0 = C0
A ⊗ C0

B ⊕ C1
A ⊗ C1

B .

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6580 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

The chain complex CA,B:

∂−1 =
(
�⊗ δB, δT

A ⊗ �
)T

, ∂0 =
(
δA ⊗ �, �⊗ δT

B

)
is well defined. In fact:

∂−1∂0 = δA ⊗ δT
B + δA ⊗ δT

B = 0.

Therefore, the complex CA,B defines a valid CSS code, which
we denote by C(δA, δB) and refer to as the hypergraph product
code of the seed matrices δA and δB . If the classical code with
parity check δ�, δ

T
� has parameters [n�, k�, d�] and [nT

� , kT
� , dT

� ]
respectively (� = A, B) then the hypergraph product code
C(δA, δB) has parameters:

[[nanb + nT
a nT

b , kakb + kT
a kT

b , dx, dz]],

where dx = min{dT
a , db} and dz = min{da, dT

b }, see [43].

A. Reshaping of Vectors

One tool we make extensive use of, and from which
our decoder takes its name, is the reshaping of vectors
of a two-fold tensor product space into matrices (see, for
instance, [43], [45]). Consider a basis B of the vector space
�

n1
2 ⊗ �n2

2 :

B = {ai ⊗ bj | i = 1, . . . , n1 and j = 1, . . . , n2}.
Then any v ∈ �n1

2 ⊗ �n2
2 can be written as:

v =
∑

ai⊗bj∈B
vij(ai ⊗ bj),

for some vij ∈ �2. We call the n1×n2 matrix V with entries
vij the reshaping of the vector v. By this identification, if ϕ,
θ are respectively m1 × n1 and m2 × n2 matrices, then (ϕ⊗
θ)(V ) = ϕV θT . The inner product between u ⊗ w and v in
�

n1
2 ⊗ �n2

2 can be computed as

�u ⊗ w, v	 = uT V w. (18)

As we here detail, the identification of operators on the code
space C(δA, δB) with pairs of binary matrices that we used in
the main text is rigorously justified by the reshaping of vectors
into matrices. With slight abuse of notation, we refer to binary
vectors and binary matrices as operators and vice versa, where
the identification is clear via Eq. (8).

B. Graphical Representation

Physical qubits of the code C(δA, δB) are in one-to-
one correspondence with basis elements of the space C0.
If {eja}ja , {ejb

}jb
, {eia}ia , {eib

}ib
are bases of the spaces

C0
A, C0

B , C1
A, C1

B of dimension na, nb, ma, mb respectively,
then the union of the two sets

BL := {(eja ⊗ ejb
, 0)}

BR := {(0, eia ⊗ eib
)}

is a basis of C0. We refer to qubits associated to elements
in BL, or its span, as left qubits and to those associated
to BR, or its span, as right qubits. Since qubit operators are
vectors in C0, by reshaping, they can be identified with pairs
of matrices (L, R) where L has size na × nb and R has size
ma×mb; in particular, L acts on the left qubits while R acts
on the right qubits.

A Z-stabilizer for the code associated to the complex CA,B

is any vector in Im ∂−1. A generating set for Z-stabilizers is:

Sz := {∂−1(eja ⊗ eib
)}ja,ib

where eja and eib
are unit vectors of C0

A and C1
B respectively,

i.e. they are a basis of the two spaces. Let Ejaib
∈ C0

A⊗C1
B be

the reshaping of (eja ⊗ eib
), i.e. it is the matrix with all zeros

entries but for the (ja, ib)-th entry which is 1. The reshape of
∂−1(eja ⊗ eib

) is then given by the pair of matrices:

(L, R) = (Ejaib
δB, δAEjaib

).

Logical Z-operators are vectors in ker∂0 which are not
in Im ∂−1. Specifically, a minimal generating set of logical
Z-operators is given by [30]:

L̂z := L̂left
z ∪ L̂right

z (19)

where

L̂left
z :=

{
(ka ⊗ ejb

, 0) : ka varies among a basis of ker δA,

|ejb
| = 1 and it varies

among a basis of Im(δT
B)•

}
,

and

L̂right
z :=

{
(0, eia ⊗ k̄b) : |eia | = 1 and it varies

among a basis of Im(δA)•,

k̄b varies among a basis of ker δT
B

}
.

The reshaping of vectors in L̂z gives the set Lz of
Eq. (9) in the main text. The vector version of logical
X-operators is likewise obtained from the set of matrices Lx

of Eq. (10).

APPENDIX C
PROOFS

This Section contains all the proofs of the statements made
in the main text.

Broadly speaking, in this work we wanted to characterize
Z-errors operators on the codespace of C(δA, δB) associated
to the chain complex CA,B. In order to do so, we first
studied the logical Z-operators of C(δA, δB) and introduced
a canonical form for them. From homology theory, we know
that non-trivial logical Z-operators are associated to vectors
in ker ∂0 which do not belong to Im ∂−1. Lemma 1 below
describes all the vectors in ker∂0.

Lemma 1: Let (L, R) ∈ C0 be in ker ∂0, then:

L ∈ ker δA ⊗ C0
B + C0

A ⊗ Im δT
B,

R ∈ C1
A ⊗ ker δT

B + Im δA ⊗ C1
B.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



QUINTAVALLE AND CAMPBELL: ReSHAPE: A DECODER FOR HYPERGRAPH PRODUCT CODES 6581

Proof: Let (L, R) ∈ ker ∂0. Then:

∂0(L, R) = 0⇐⇒ (δA ⊗ �)L + (�⊗ δT
B)R = 0,

⇐⇒ δAL + RδB = 0. (20)

Eq. (20) yields:

δAL = RδB = V, (21)

for some V ∈ C1
A ⊗ C0

B . Eq. (21) entails that all columns
of V belong to Im δA while its rows belong to Im δT

B . As a
consequence, it must exists U ∈ C0

A ⊗ C1
B such that:

V = δAUδB.

Therefore Eq. (21) can be re-written as:

δAL = δAUδB

which yields:

(δA ⊗ �)(L + UδB) = δAL + δAUδB

= V + V

= 0 (22)

Equivalently, Eq. (22) states that L + UδB has columns in
ker δA:

L + UδB ∈ ker δA ⊗ C0
B

and therefore:

L ∈ ker δA ⊗ C0
B + C0

A ⊗ Im δT
B,

as in the thesis. Similarly, we find

R ∈ C1
A ⊗ ker δT

B + Im δA ⊗ C1
B .

A proof of Proposition 1, reported below for clarity, follows
directly combining what said in Appendix B-A and Lemma 1.

Proposition 1 (Canonical Form): Let (L, R) be a
Z-operator on the codespace of C(δA, δB). For a vector space
V ⊆ �n

2 , we denote by V • any space such that V ⊕V • � �n
2 ,

(see Appendix A). Then, for the operator (L, R), the left part L
can be expressed as a sum of a free part ML and a logical
part OL such that every row of ML belongs to Im δT

B and
every row of OL belongs to (Im δT

B)•. Similarly, the right
part R can be expressed as a sum of a free part MR and a
logical part OR such that every column of MR belongs to
Im δA and every column of OR belongs to (Im δA)•. Hence,
for (L, R) holds:

(L, R) = (ML + OL, MR + OR). (CF)

We refer to the writing given by Eq. (CF) as canonical form
of the operator (L, R).

In the main text, we have introduced the notions of
row-column weight and logical row-column weight for a
Z-operator on C(δA, δB). The definition of these two quanti-
ties finds its explanation in Proposition 2, whose proof builds
on the results of Lemma 1.

Proposition 2: If (L, R) is a non-trivial logical Z-operator
of C(δA, δB) then either #row(L) ≥ da or #col(R) ≥ dT

b

(or both).

Proof: If (L, R) is a non-trivial logical Z-operator, it must
anti-commute with at least one logical X-operator (Lx, Rx).
Because a Z-operator and a X-operator anti-commute if and
only if their supports overlap on an odd number of positions,
either L and Lx or R and Rx have odd overlap. Without loss
of generality, we can assume that the former is verified and
we can choose (Lx, Rx) as a left operator of the form

(Lx, Rx) = (f ⊗ k, 0),

where f is a unit vector in (Im δT
A)• and k ∈ ker δB . In other

words, we choose logical X-operator (f ⊗ k, 0) from the set
of generators of X-logical operators L̂left

x , as in the X-version
of Eq. (19). The inner product equation for reshaped vectors
Eq. (18) then yields:

1 =
〈
(Lx, 0), (L, R)

〉
= �Lx, L	+ �0, R	
= fT Lk. (23)

Now, observe that (L, R) ∈ C0 is a non-trivial logical
Z-operator of C(δA, δB) if and only if [L, R] ∈ H0 =
ker ∂0/ Im∂−1 and [L, R] �= 0 or, equivalently, if and only
if:

(L, R) ∈ ker ∂0 \ Im ∂−1.

In particular, (L, R) belongs to ker ∂0 and thanks to Lemma 1,
we can re-write it as:

(L, R) = (KA + ULδB, K̄B + δAUR),

where columns of KA belong to ker δA and rows of K̄B

belong to ker δT
B . Using Lemma 1’s decomposition for

(L, R) ∈ ker ∂0, we can expand the matrix-vector product Lk
as:

Lk = (KA + ULδB)k
= KAk + ULδBk

= KAk since k ∈ ker δB. (24)

Eq. (24) entails Lk = KAk and therefore that Lk, being a
linear combination of column-vectors in ker δA, belongs to
ker δA itself. Furthermore, by Eq. (23), Lk �= 0. To sum up,
Lk is a non-zero vector in ker δA and therefore it must have
Hamming weight at least da. As a consequence, L is a matrix
with at least da rows:

#row(L) ≥ da.

Similarly, we would have found:

#col(R) ≥ dT
b ,

if we had assumed that (L, R) anti-commuted with a logical
X-operator (0, Rx) in L̂right

x .
Corollary 1 follows easily.
Corollary 1: If (L, R) is a non-trivial logical Z-operator on
C(δA, δB), at least one of the following hold:

(i) L has at least da rows which are not in Im δT
B when seen

as vectors in C0
B .

(ii) R has at least dT
b columns which are not in Im δA when

seen as vectors of C1
A.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6582 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

Proof: Write (L, R) in its canonical form:

(L, R) = (ML + OL, MR + OR),

and let

ML = NLδB,

MR = δANR,

for some binary matrices NL, NR of size na ×mb. As done
in the proof of Proposition 2, consider a logical X-operator
(f ⊗ k, 0) such that it anti-commutes with (L, R). Combining
the canonical form of L and Eq. (24), yields:

Lk = (OL + NLδB)k
= OLk since k ∈ ker δB

= KAk by Eq. (24)

for some na × nb matrix KA with columns in ker δA. By the
same argument used in the proof of Proposition 2, we find:

|KAk| ≥ dA ⇒ |OLk| ≥ dA,

and in particular that OL has at least da non-zero rows. Since
by definition of canonical form the non-zero rows of OL are
precisely those rows of L which do not belong to Im δT

B ,
we have proven point (i). Point (ii) follows similarly in the case
(L, R) anti-commutes with at least one logical X-operator of
the form (0, Rx).

Corollary 1, together with Proposition 3 below, justifies the
definition of the logical row-column weight for Z-operators
on C(δA, δB) (Definition 2). The logical row-column weight
of (L, R) is denoted by the symbol wtlogrc (L, R) and stands for
the integer pair (#rowlog(L), #collog(R)) where #rowlog(L)
is the number of rows of L that are not in Im δT

B and
#collog(R) is the number of columns of R which are not
in Im δA. Proposition 3, that we now prove, states that the
logical row-column weight of a Z-operator on C(δA, δB) is an
homology invariant of the chain complex CA,B and therefore
it legitimates the name choice for this quantity.

Proposition 3: The logical row-column weight of a
Z-operator on C(δA, δB) is an invariant of its homology class.

Proof: Let [L, R] be the homology class of (L, R):

[L, R] =
{
(L + GL, R + GR) : (GL, GR)

is a Z-stabiliser
}
.

The operator (GL, GR) ∈ C0 is a Z-stabilizer for C(δA, δB)
if and only if

(GL, GR) = ∂−1(U)
= (UδB, δAU) (25)

For some na ×mb binary matrix U . Eq. (25) entails that any
row of GL belongs to Im δT

B and any column of GR belongs
to Im δA. Therefore, if we write (L, R) in its canonical form:

(L, R) = (ML + OL, MR + OR),

we see that we can ‘delete’ all the rows of ML by adding a
stabiliser and hence ‘move’ part of the support of the operator
(L, R) from the left qubits to the right qubits. Specifically,

if ML = NLδB for some na × mb binary matrix NL,
we consider the stabiliser G = (NLδB, δANL) and we obtain:

(L, R) + G = (OL, MR + OR + δANL).

Similarly, we could move the MR part of the operator (L, R)
from the right qubits to the left qubits, by adding the stabilizer
G′ = (NRδB, δANR), for a na × mb matrix NR such that
MR = δANR.

On the other hand though, it is not possible to delete
non-zero rows of OL via stabiliser addition. In other words,
it is not possible to remove, via stabiliser addition, any of
the rows of L that are not in Im δT

B . Hence, the number
#rowlog(L) of non-zero rows of OL is an homology invariant.
Likewise, we find that it is not possible to delete any column in
OR by adding stabilisers and therefore #collog(R) is a logical
invariant too.

The proof of Proposition 3 actually entails a stronger result
than the invariance of the row-column weight of Z-operators
on C(δA, δB). Namely, we have proven that the indices of the
rows and the columns in the sets rowlog and collog respectively,
are homology invariants of the reshaped Z-operators (L, R)
on C(δA, δB). However, because to prove the correctness of
ReShape it is sufficient to look at the cardinality of the two
sets rowlog and collog, we decided to state Proposition 3 in
this more compact and elegant form.

We can now prove Proposition 4.
Proposition 4: Let S be a X-syndrome matrix for C(δA, δB)

and (L, R) any valid solution to the Syndrome Equation

σ(L, R) = S. (SE)

Suppose that the minimum weight operator (Lmin, Rmin) with
syndrome S has (da/2, dT

b /2)-bounded logical row-column
weight i.e.

wtlogrc (Lmin, Rmin) = (#rowlog(Lmin), #collog(Rmin)),

is such that

#rowlog(Lmin) <
da

2
and #collog(Rmin) <

dT
b

2
. (13)

Then, on input DδA , DδT
B

, S and (L, R), ReShape outputs a
correct solution (L̃, R̃) of (SE), provided that the classical
decoders DδA , DδT

B
succeed. In other words, the solution

(L̃, R̃) found by ReShape is in the same homology class as
the minimum weight operator with syndrome S:

[Lmin, Rmin] = [L̃, R̃].

Proof: This is a proof by contradiction: we suppose that
the minimum weight solution and the solution found by
ReShape (Algorithm 1) are not homologically equivalent and
we find as a consequence that the minimum weight solution
need to have high logical row-column weight.

Let (L, R) be the valid solution of (SE) in input to ReShape
and (L̃, R̃) be the recovery operator found.

First note that σ(L̃, R̃) = σ(L, R). In fact, the Split step
only finds the canonical form of (L, R) and therefore changes
neither the operator (L, R) nor its syndrome. The Decode step,
possibly adds to (L, R) logical Z-operators (Lz, Rz) such

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



QUINTAVALLE AND CAMPBELL: ReSHAPE: A DECODER FOR HYPERGRAPH PRODUCT CODES 6583

that σ(Lz, Rz) = 0 and therefore, even when it changes the
operator, it preserves its syndrome.

Suppose now that the solution found by ReShape and the
minimum weight solution (Lmin, Rmin) of (SE) belong to two
different homology classes:

[L̃, R̃] �= [Lmin, Rmin],

where:

#rowlog(L) <
da

2
and #collog(R) <

dT
b

2
.

Since both (Lmin, Rmin) and (L̃, R̃) are valid solution of
(SE), they must differ for an operator with zero X-syndrome.
Because (Lmin, Rmin) and (L̃, R̃) are not homologically
equivalent, they must differ for a non-trivial Z-operator in the
normaliser N (S) of the stabiliser group. As such, they must
differ for an operator which is the sum of a Z-stabiliser and
a non-trivial logical operator:

(Lmin, Rmin) = (L̃, R̃) + (GL, GR) + (Lz, Rz), (26)

where (GL, GR) is a Z-stabiliser and (Lz, Rz) is a non-trivial
logical Z-operator.

Without loss of generality we assume that (Lz, Rz) is
non-trivial on the left qubits, meaning that Lz has at least
one non-zero column in ker δA. The proof is substantially the
same in case it is non-trivial on the right qubits.

First, write the left operators Lmin and L̃ in their canonical
form with respect to the same unit-vector basis used to write
the logical operators in Lz (see Eq. (16)):

Lmin = Mmin + Omin,

L̃ = M̃ + Õ.

Note that, by construction, the left operator Lz+GL is already
in its canonical form, where Lz is its logical part and GL is
its free part. By Eq. (17), the sum is direct and therefore the
equality given by Eq. (26) must hold component-wise for the
free part and the logical part:

Mmin = M̃ + GL

Omin = Õ + Lz. (27)

Let now focus on the logical part equality expressed by
Eq. (27) and let Lj

z be a non-zero column of Lz in ker δA.
Then:

Oj
min = Õj + Lj

z, Lj
z ∈ ker δA. (28)

Eq. (12) for the classical decoder DδA , entails:

|Õj | = min
k∈ker δA

|v + k|

for some input vector v defined by L. In particular, no vector
k′ ∈ ker δA can overlap with Õj in more than dA/2 positions,
otherwise we would have |v + k′| < |Õj |, against the
assumption that |Õj | is minimum. Thanks to this observation
and considering the Hamming weight of the terms in Eq. (28),

we obtain:

|Oj
min| = |Õj + Lj

z|
= |Õj |+ |Lj

z| − 2|Õj ∧ Lj
z|

≥ |Lj
z| − |Õj ∧ Lj

z|
≥ da − da

2
=

da

2
, by Eq. (28).

Because the weight of any of the columns of a matrix is a
lower bound on the number of its non-zero rows, we have:

#row(Omin) ≥ da

2
.

By definition of canonical form, this is equivalent to:

#rowlog(Lmin) ≥ da

2
,

against the assumption.
We stress that the number #row(Omin) of rows of Lmin

which do not belong to Im δT
B , does not depend on the

particular splitting chosen for the canonical form. In fact,
as stated in Proposition 3, the logical row weight of the left
part of a Z-operator is an homology invariant. An argument
similar to the one just outlined for the left part of (Lmin, Rmin)
holds for its right part and yields:

#collog(Rmin) ≥ dT
b /2,

again contradicting the assumption. In conclusion, we have
reached a contradiction and therefore it must be:

[Lmin, Rmin] = [L̃, R̃].

ACKNOWLEDGMENT

The authors would like to thank Christophe Vuillot for
helpful discussions and for carefully reading a draft of this
work. Armanda O. Quintavalle would like to thank Joschka
Roffe for providing the matrices used in the simulations.
ETC’s contributions were made while he was at The University
of Sheffield.

REFERENCES

[1] J.-P. Tillich and G. Zemor, “Quantum LDPC codes with positive rate and
minimum distance proportional to the square root of the blocklength,”
IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 1193–1202, Feb. 2014.

[2] A. A. Kovalev and L. P. Pryadko, “Fault tolerance of quantum low-
density parity check codes with sublinear distance scaling,” Phys. Rev. A,
Gen. Phys., vol. 87, Feb. 2013, Art. no. 020304.

[3] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum
memory,” J. Math. Phys., vol. 43, no. 9, pp. 4452–4505, 2002.

[4] A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold
universal quantum computation on the surface code,” Phys. Rev. A, Gen.
Phys., vol. 80, Nov. 2009, Art. no. 052312.

[5] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algo-
rithm for topological codes,” 2017, arXiv:1709.06218.

[6] A. Leverrier, J.-P. Tillich, and G. Zémor, “Quantum expander codes,”
in Proc. IEEE 56th Annu. Symp. Found. Comput. Sci., Oct. 2015,
pp. 810–824.

[7] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[8] O. Fawzi, A. Grospellier, and A. Leverrier, “Efficient decoding of
random errors for quantum expander codes,” in Proc. 50th Annual ACM
SIGACT Symp. Theory Comput., 2018, pp. 521–534.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



6584 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

[9] O. Fawzi, A. Grospellier, and A. Leverrier, “Constant overhead quantum
fault-tolerance with quantum expander codes,” in Proc. IEEE 59th Annu.
Symp. Found. Comput. Sci. (FOCS), Oct. 2018, pp. 743–754.

[10] J. Roffe, D. R. White, S. Burton, and E. Campbell, “Decoding across
the quantum low-density parity-check code landscape,” Phys. Rev. Res.,
vol. 2, no. 4, Dec. 2020, Art. no. 043423.

[11] D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum
codes,” Quantum Inf. Comput., vol. 8, no. 10, pp. 987–1000, Nov. 2008.

[12] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Fifteen years
of quantum LDPC coding and improved decoding strategies,” IEEE
Access, vol. 3, pp. 2492–2519, 2015.

[13] Y.-H. Liu and D. Poulin, “Neural belief-propagation decoders for quan-
tum error-correcting codes,” Phys. Rev. Lett., vol. 122, no. 20, May 2019,
Art. no. 200501.

[14] A. Rigby, J. C. Olivier, and P. Jarvis, “Modified belief propagation
decoders for quantum low-density parity-check codes,” Phys. Rev. A,
Gen. Phys., vol. 100, Jul. 2019, Art. no. 012330.

[15] P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes with
good finite length performance,” 2019, arXiv:1904.02703.

[16] M. Li and T. J. Yoder, “A numerical study of bravyi-bacon-shor and
subsystem hypergraph product codes,” in Proc. IEEE Int. Conf. Quantum
Comput. Eng. (QCE), Oct. 2020, pp. 109–119.

[17] A. Grospellier, L. Grouès, A. Krishna, and A. Leverrier, “Combin-
ing hard and soft decoders for hypergraph product codes,” 2020,
arXiv:2004.11199.

[18] N. Delfosse, V. Londe, and M. Beverland, “Toward a union-find decoder
for quantum LDPC codes,” 2021, arXiv:2103.08049.

[19] H. Bombín, “Single-shot fault-tolerant quantum error correction,” Phys.
Rev. X, vol. 5, no. 3, 2015, Art. no. 031043.

[20] A. O. Quintavalle, M. Vasmer, J. Roffe, and E. T. Campbell, “Single-
shot error correction of three-dimensional homological product codes,”
2020, arXiv:2009.11790.

[21] W. C. Huffman and V. Pless, Fundamentals Error-Correcting Codes.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

[22] D. Gottesman, “Stabilizer codes and quantum error correction,” 1997,
arXivph/9705052.

[23] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Phys. Rev. A, Gen. Phys., vol. 54, no. 2, p. 1098, 1996.

[24] A. Steane, “Multiple-particle interference and quantum error correction,”
Proc. R. Soc. Lond. A, Math., Phys. Eng. Sci., vol. 452, pp. 2551–2577,
Nov. 1996.

[25] J. Roffe, “Quantum error correction: An introductory guide,” Contemp.
Phys., vol. 60, no. 3, pp. 226–245, Jul. 2019.

[26] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[27] J.-P. Tillich and G. Zémor, “Quantum LDPC codes with positive
rate and minimum distance proportional to the square root of the
blocklength,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 1193–1202,
Feb. 2014.

[28] S. Bravyi and M. B. Hastings, “Homological product codes,” in Proc.
46th Annu. ACM Symp. Theory Comput., May 2014, pp. 273–282.

[29] B. Audoux and A. Couvreur, “On tensor products of CSS codes,” 2015,
arXiv:1512.07081.

[30] W. Zeng and L. P. Pryadko, “Higher-dimensional quantum hypergraph-
product codes with finite rates,” Phys. Rev. Lett., vol. 122, no. 23,
Jun. 2019, Art. no. 230501.

[31] A. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann. Phys.,
vol. 303, no. 1, pp. 2–30, 2003.

[32] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with
boundary,” 1998, arXivph/9811052.

[33] E. Dennis, “Toward fault-tolerant quantum computation without con-
catenation,” Phys. Rev. A, Gen. Phys., vol. 63, no. 5, Apr. 2001,
Art. no. 052314.

[34] N. Delfosse and M. B. Hastings, “Union-find decoders for homological
product codes,” 2020, arXiv:2009.14226.

[35] K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho, “A flow-
map model for analyzing pseudothresholds in fault-tolerant quantum
computing,” 2005, arXivph/0508176.

[36] S. Bravyi and J. Haah, “Analytic and numerical demonstration of
quantum self-correction in the 3D cubic code,” 2011, arXiv:1112.3252.

[37] S. Bravyi and J. Haah, “Quantum self-correction in the 3D cubic code
model,” Phys. Rev. Lett., vol. 111, Nov. 2013, Art. no. 200501.

[38] S. Evra, T. Kaufman, and G. Zémor, “Decodable quantum LDPC codes
beyond the

√
n distance barrier using high dimensional expanders,”

2020, arXiv:2004.07935.
[39] N. P. Breuckmann and J. N. Eberhardt, “Balanced product quantum

codes,” 2020, arXiv:2012.09271.
[40] S. Lang, Undergraduate Algebra. Cham, Switzerland: Springer, 2005.
[41] I. N. Herstein, Abstract Algebra. Upper Saddle River, NJ, USA:

Prentice-Hall, 1996.
[42] H. Bombin and M. A. Martin-Delgado, “Homological error correction:

Classical and quantum codes,” J. Math. Phys., vol. 48, no. 5, 2007,
Art. no. 052105.

[43] S. Bravyi and M. B. Hastings, “Homological product codes,” in Proc.
46th Annu. ACM Symp. Theory Comput., May 2014, pp. 273–282.

[44] A. Hatcher, Algebraic Topology, vol. 606, no. 9. Cambridge, U.K.:
Cambridge Univ. Press, 2002.

[45] E. Campbell, “A theory of single-shot error correction for adversarial
noise,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. 025006.

Armanda O. Quintavalle received the B.Sc. degree in mathematics from the
University of Pisa, Pisa, Italy, in 2015, and the M.Sc. degree in mathematics
from the University of Trento, Trento, Italy, in 2018. She is currently pursuing
the degree with The University of Sheffield. Her research interests include
quantum error correction and quantum computation.

Earl T. Campbell received the Ph.D. degree in quantum computing
from the University of Oxford in 2008. He was a Royal Commission
of 1861 Fellowship at University College London from 2008 to 2010 and
a Post-Doctoral Research at the University of Potsdam and Free Universität
Berlin from 2010 to 2014. He was a Senior Research Scientist at AWS
from 2020 to 2021. He is currently the Head of Architecture at Riverlane
and a Senior Lecturer at The University of Sheffield. His research interests
include quantum computing, quantum error correction, quantum algorithms,
and resource theories.

Authorized licensed use limited to: Sheffield University. Downloaded on September 21,2022 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



Chapter 4

Logical gates - Qubit partitions

Context and Results

In [1] we propose a method to implement logical encoded gates on hypergraph product codes via a
generalization of the concept of transversal gates [2] that relies on partitions of the code’s data qubits.
By the Eastin-Knill Theorem, no stabilizer code has a universal set of purely transversal gates [3] and
therefore a fault-tolerant universal set will necessarily come with some, maybe substantial, overhead
[4, 5, 6]. Bravyi and Konig showed that locality constraints in two dimensions limit the set of fault-
tolerant gates of a code to the Clifford group [7]. The planar code obeys Bravyi-Konig constraints and,
even if more general hypergraph product codes do not, it has been shown [8, 9, 10] that they still suffer
from the same limitations. Krishna and Poulin illustrated how, in principle, the idea of braiding on
the planar code can be generalized to hypergraph product codes but their result is not constructive.

We take a generalization approach too and adapt Moussa’s folding [11, 12, 13] of the planar code to
other hypergraph product code families. Firstly, we show that a clever choice of the qubits partition
naturally yield fault-tolerant operations. Secondly, we exhibit a few practical fault-tolerant exam-
ples to implement Clifford gates on families of hypergraph product codes that obey some symmetry
constraints. Key in our construction is the discovery of a standard basis for the logical space of all
hypergraph product codes that we believe is of independent interest. Crucially, transversal gates and
the generalization we consider, do not require any qubit overhead. Albeit limited, our work gives a
constructive approach to building logical gates on hypergraph product codes.

Limitations

The qubits partition method we proposed falls short in two ways. First, it does not yield the full
Clifford group at zero overhead. State injection [4] and pieceable fault tolerance [14] can promote our
set to computationally universal, however at the price of substantial physical qubit and time cost. As
in [13], we could explore what happens if we relegate some of the logical qubits to the role of gauge
qubits. Second, we conjecture that our partition strategy could produce non-Clifford gates on higher
dimensional hypergraph product codes [15, 16], but we have not found the right partition – yet.

49



Authorship declaration

AOQ derived the proofs and wrote the majority of the manuscript.

References

[1] Armanda O Quintavalle, Paul Webster, and Michael Vasmer. “Partitioning qubits in hypergraph
product codes to implement logical gates”. In: arXiv preprint arXiv:2204.10812 (2022).

[2] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information. 2002.

[3] Bryan Eastin and Emanuel Knill. “Restrictions on transversal encoded quantum gate sets”. In:
Physical review letters 102.11 (2009), p. 110502.

[4] Daniel Gottesman. “Fault-tolerant quantum computation with constant overhead”. In: arXiv
preprint arXiv:1310.2984 (2013).

[5] Tomas Jochym-O’Connor. “Fault-tolerant gates via homological product codes”. In: Quantum 3
(2019), p. 120.

[6] Lawrence Z Cohen et al. “Low-overhead fault-tolerant quantum computing using long-range
connectivity”. In: Science Advances 8.20 (2022).

[7] Sergey Bravyi and Robert König. “Classification of topologically protected gates for local stabi-
lizer codes”. In: Physical review letters 110.17 (2013), p. 170503.

[8] Tomas Jochym-O’Connor, Aleksander Kubica, and Theodore J Yoder. “Disjointness of stabilizer
codes and limitations on fault-tolerant logical gates”. In: Physical Review X 8.2 (2018), p. 021047.

[9] Simon Burton and Dan Browne. “Limitations on transversal gates for hypergraph product codes”.
In: IEEE Transactions on Information Theory 68.3 (2021), pp. 1772–1781.

[10] Nouédyn Baspin and Anirudh Krishna. “Connectivity constrains quantum codes”. In: Quantum
6 (2022), p. 711.

[11] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. “Unfolding the color code”. In: New
Journal of Physics 17.8 (2015), p. 083026.

[12] Jonathan E Moussa. “Transversal Clifford gates on folded surface codes”. In: Physical Review A
94.4 (2016), p. 042316.

[13] Nikolas P Breuckmann and Simon Burton. “Fold-Transversal Clifford Gates for Quantum Codes”.
In: arXiv preprint arXiv:2202.06647 (2022).

[14] Theodore J Yoder, Ryuji Takagi, and Isaac L Chuang. “Universal fault-tolerant gates on con-
catenated stabilizer codes”. In: Physical Review X 6.3 (2016), p. 031039.

[15] Michael Vasmer and Dan E Browne. “Three-dimensional surface codes: Transversal gates and
fault-tolerant architectures”. In: Physical Review A 100.1 (2019), p. 012312.

[16] Tomas Jochym-O’Connor and Theodore J Yoder. “Four-dimensional toric code with non-Clifford
transversal gates”. In: Physical Review Research 3.1 (2021), p. 013118.

50



Partitioning qubits in hypergraph product codes to
implement logical gates
Armanda O. Quintavalle1, Paul Webster2, and Michael Vasmer3,4,

1Department of Physics & Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom
2Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
3Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
4Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada

The promise of high-rate low-density parity check (LDPC) codes to substantially
reduce the overhead of fault-tolerant quantum computation depends on constructing
efficient, fault-tolerant implementations of logical gates on such codes. Transversal
gates are the simplest type of fault-tolerant gate, but the potential of transversal gates
on LDPC codes has hitherto been largely neglected. We investigate the transversal
gates that can be implemented in hypergraph product codes, a class of LDPC codes.
Our analysis is aided by the construction of a symplectic canonical basis for the logical
operators of hypergraph product codes, a result that may be of independent interest.
We show that in these codes transversal gates can implement Hadamard (up to logical
SWAP gates) and control-Z on all logical qubits. Moreover, we show that sequences
of transversal operations, interleaved with error-correction, allow implementation of
entangling gates between arbitrary pairs of logical qubits in the same code block. We
thereby demonstrate that transversal gates can be used as the basis for universal quan-
tum computing on LDPC codes, when supplemented with state injection.

1 Introduction
In recent years, quantum computing has transitioned from a theoretical idea to a real technol-
ogy that is competitive with state-of-the-art classical computing on carefully selected tasks [1].
However, realising its potential to solve intractable problems of practical importance requires the
development of a fault-tolerant quantum computer—a device that can perform long quantum com-
putations to a very high degree of accuracy even in the presence of noise [2]. Fault-tolerant quantum
computing can be achieved by encoding quantum information into quantum error-correcting codes,
but only at the cost of substantial overhead. For standard fault-tolerant quantum architectures
based on the surface code this overhead is prohibitively large for the foreseeable future, with
approximately 106 to 108 qubits being required to realise useful applications [3, 4].

High-rate quantum LDPC codes offer a promising avenue to significantly reducing this over-
head [5]. These codes move beyond topological codes such as the surface code [6] by substituting
the requirement that stabiliser check operators are geometrically local with a weaker condition
that they must be sparse. They thereby preserve the essential benefits of the surface code for
error-correction, while allowing much smaller qubit overheads [5, 7].

In this work, we focus on hypergraph product codes—a class of high-rate LDPC codes derived
from the tensor product of classical LDPC codes. Even when restricted to this highly-structured
class of codes, it is not yet clear what is the best strategy to reliably perform logic. The earliest
proposal for fault-tolerant logic on LDPC codes relies on state injection protocols that, while
achieving a constant overhead per logical qubit in the asymptotic regime, would have substantial
finite-size overheads [8]. In [9, 10], code deformation on hypergraph product codes is used to
perform Clifford gates. The protocol proposed preserves the LDPC property of the code throughout
the entire computation; however, even if in principle the whole Clifford group is implementable
via this framework, there is no promise that this is the case for an arbitrary hypergraph product

1

ar
X

iv
:2

20
4.

10
81

2v
2 

 [
qu

an
t-

ph
] 

 2
8 

Se
p 

20
22



code nor is there a promise on the time cost of each gate implementation. Another variation of
code deformation, via non-destructive measurement of high-weight logical operators, is proposed
in [11]; the method there proposed enables the implementation of the full Clifford group on all
hypergraph product codes. Nevertheless, this method requires many ancilla qubits if we want to
operate in parallel on all of the encoded qubits.

We take a different approach to fault-tolerance and explore transversal gates [12, 13, 14, 15,
16, 17]. Transversal gates on homological codes [18], close cousins of the hypergraph product
codes, were studied in [19]. Universality is there obtained by combining two quantum codes with
complementary transversal gates. Hence in [19] the problem of universality is deferred to the one of
finding complementary classes of good quantum codes that are then combined via the homological
product; the information is always protected by at least one code whilst leveraging the transversal
gates of the other. We relax the constraints on the underlying (classical) codes used as seed codes
in the hypergraph product and investigate how the core symmetries that arise from the product
structure itself enable transversal gates.

The transversal gates we find are only a small subset of the Clifford group. Nonetheless, we
further the knowledge on hypergraph product codes by proving that it is possible to efficiently
construct a canonical basis for their logical space. The existence of such a canonical basis is non-
trivial and may be of independent interest in the development of other computational frameworks
on hypergraph product codes or related families of codes (e.g. higher dimensional homological
product codes [18, 20, 21], or the codes introduced in [22]). Furthermore, we illustrate how pieceably
fault-tolerant circuits [23] and state injection can be used on symmetric hypergraph product codes
in conjunction with the transversal gates proposed to give a universal gate set. Importantly, our
scheme is relevant to small, low-overhead quantum error-correcting codes with practical near-term
potential.

After a short introduction to hypergraph product codes in Section 2, we detail the existence of
the canonical basis for their logical space in Section 2.1. In Section 3, we illustrate how the idea
of unfolding the color code into surface codes relies on more general symmetries of the product
structure, symmetries that are inherited by square and symmetric codes. Thanks to this obser-
vation and the use of our canonical basis, we showcase the transversal implementation of some
Clifford gates on hypergraph product codes. We comment on how pieceable fault tolerance and
state injection, in combination with the transversal gates introduced, could be used on ‘small’
codes to perform arbitrary computations in Section 4.

2 Hypergraph Product Codes
Any binary matrix H in Fm×n2 defines a classical code whose codewords are vectors in the kernel
of H, kerH. The classical code so defined uses n bits to protect from errors k = n− rank(H) bits
and detects all errors of Hamming weight less than d, the minimum weight of a codeword. Briefly,
we say that H defines an [n, k, d] code [24]. Similarly, any pair of binary matrices Hx in Fmx×n

2
and Hz in Fmz×n

2 such that Hx · HT
z = 0 mod 2 defines a stabiliser CSS code [25, 26, 27]. The

stabiliser group is S = 〈Sx ∪ Sz〉, where Sx is the set of X operators whose support vector1 is
equal to a row of Hx, and Sz is the set of Z operators whose support vector is equal to a row of
Hz. Since an X and a Z operator commute if and only if their supports have even overlap, the
orthogonality of Hx and Hz in F2 ensures that the stabiliser group S is well defined. The quantum
code with stabiliser group S uses n physical qubits to encode k = n− rank(Hx)− rank(Hz) logical
qubits and detects all errors of weight less than d = min(dx, dz), where dx is the minimum weight
of a vector in kerHz that is not in the image of HT

x , ImHT
x , and dz is the minimum weight of a

vector in kerHx that is not in ImHT
z . Briefly, we say that the quantum code is [[n, k, d]].

A hypergraph product code [28, 18, 29] is a CSS code produced from the hypergraph product
of two linear codes. Given Ha in Fma×na

2 and Hb in Fmb×nb
2 we define:

Hx =
(
Ha ⊗ Inb

Ima
⊗HT

b

)
, (1)

Hz =
(
Ina ⊗Hb HT

a ⊗ Imb

)
, (2)

1Given a Pauli operator on n qubits P = P1⊗P2⊗· · ·⊗Pn ∈ Pn, its support vector is the unique vector v ∈ Fn
2

with ith coordinate v[i] = 1 if and only if Pi 6= I.

2



where ⊗ is the tensor product. Since Hx ·HT
z = 2Ha⊗HT

b = 0 mod 2, this choice is valid and we
indicate by HGP(Ha, Hb) this CSS code. If Hη (resp. HT

η ) define a [nη, kη, dη] (resp. [mη, k
T
η , d

T
η ])

classical code, then HGP(Ha, Hb) has parameters

[[nanb +mamb, kakb + kTb k
T
a , d]], (3)

where d = min(da, dTa , db, dTb ).
The physical qubits of HGP(Ha, Hb) can be arranged in two rectangular grids of sizes na × nb

and ma ×mb, see fig. 2 and [30]. As such, we enumerate the physical qubits of HGP(Ha, Hb) by
the triplet (i, h, L) and (j, `, R), where 1 ≤ i ≤ na, 1 ≤ h ≤ nb, 1 ≤ j ≤ ma, 1 ≤ ` ≤ mb. The first
two coordinates of each triplet refer to the row and column positions of the physical qubit in the
grid. The third coordinate L or R, short for left and right respectively, distinguishes the two grids
and is referred to as sector of the physical qubit. Via this spacial mapping of physical qubits, each
stabiliser generator will have support contained in a row of one sector and a column of the other.
Specifically, elements of Sx can be indexed by a pair j, h, such that Sx(j, h) has support on qubits
on row j of the right sector and column h of the left sector. Elements of Sz, indexed by a pair i, `
are similar, but have support on rows of qubits in the left sector and columns in the right sector.

We say that a hypergraph product code is a square code if it is derived from one classical matrix
only. Square codes HGP(H,H) take their name from the shape of the two grids of physical qubits:
if H ∈ Fm×n2 , the left and right sectors are square grids of sizes n× n and m×m respectively. A
square code HGP(H,H) such that H = HT or, more loosely, such that H ∈ Fn×n2 is square and
Im(H) = Im(HT ), is said symmetric and denoted as HGPsy(H).

2.1 Logical Pauli Operators
Logical X and Z operators of HGP(Ha, Hb) can be chosen to have support on a ‘line’ of qubits,
meaning that each operator acts non-trivially either on the left or right sector, and either on a
column or on a row of physical qubits [18, 30]. We build on this and show that such a ‘line basis’
can, in addition, be chosen to be symplectic. The existence of such canonical basis is the key
ingredient in the identification of transversal gates on hypergraph product codes. Formally:

Theorem 1. For any hypergraph product code there exist bases Bxline and Bzline of logical X and Z
operators respectively such that:

1. Any operator in Bxline or Bzline has support on a ‘line’ of qubits; by line here we intend that
the support of the operator is contained in either a column or a row of left or right sector
qubits, when qubits are arranged on two grids as explained above.

2. For any operator in Bxline there exists one and only one operator in Bzline that anticommutes
with it. More precisely for every pairs of operators, one in Bxline and one in Bzline, either their
support overlaps on exactly one qubit or does not overlap at all.

We refer to any such pair of bases as canonical basis for HGP(Ha, Hb).

The proof of Theorem 1 is constructive and relies on a modified version of the Gaussian elimi-
nation algorithm over F2 (Algorithm 1), which yields a special kind of triangular matrices that we
call strongly lower triangular matrices.

Definition 1. An m× n matrix A is said to be strongly lower triangular if:

1. Any column j has a pivot p such that all the elements below the pivot are zero.

2. All the pivots are distinct.

3. Reordering if necessary, for any pivot Ap,j = 1, the coefficients to its right are zero i.e.
Ap,j+1 = Ap,j+2 = . . . Ap,m = 0.

We indicate by π(A) the set of row pivots of A:

π(A) = {p s.t. Ap,j is a pivot for some column index j of A}

Given a vector space, we say that a set of vectors is strongly lower triangular if its matrix repre-
sentation is.

3



An example of a strongly lower triangular matrix is:

A =



1 1 0 1
1 1 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


(4)

where π(A) = {3, 5, 6, 7}. Observe in particular the pivot A3,1: all the coefficients to its right are
zero even if the submatrix on its right is not zero.

As Lemma 1 below shows, strongly lower triangular bases for the classical codes and their
transposes used as seed codes in the hypergraph product naturally give a canonical basis for the
associated hypergraph product code.

Lemma 1. Given strongly lower triangular bases for kerHa, kerHT
a , kerHb and kerHT

b , is it
possible to construct a canonical basis for the associate hypergraph product code HGP(Ha, Hb).

Proof. We begin with some notation. Given a vector space V ⊆ Fn2 its complement, V • ⊆ Fn2 ,
is the vector space such that V ⊕ V • = Fn2 . Crucially, V • has same dimension as the orthogonal
complement V ⊥ of V :

V ⊥ = {w ∈ Fn2 s.t. 〈v, w〉 = 0 for all v ∈ V },

but they are, in general, different spaces. For example, if V = Span
(
(1, 1, 1)T , (0, 1, 0)T

)
then

V ⊥ = Span
(
(1, 0, 1)T

)
and V • = Span

(
(0, 0, 1)T

)
.

Before detailing the proof of Lemma 1, we remind the reader that the logical Z operators of
HGP(Ha, Hb) are spanned by:{

(k ⊗ f̄ , 0) for k ∈ kerHa, f̄ ∈ (ImHT
b )•
}
∪
{

(0, g ⊗ h̄) for h̄ ∈ kerHT
b , g ∈ (ImHa)•

}
,

and the logical X operators are spanned by:{
(f̄ ′ ⊗ k′, 0) for k′ ∈ kerHb, f̄

′ ∈ (ImHT
a )•
}
∪
{

(0, h̄′ ⊗ g′) for h̄′ ∈ kerHT
a , g

′ ∈ (ImHb)•
}
.

See, for instance, [18, 30]. Thus, the problem of finding a canonical basis for HGP(Ha, Hb) can
be reduced to the problem of finding suitable bases for the kernels and the complement spaces
defined by the classical seed matrices. In the proof below we follow this approach and show that
strongly lower triangular bases for the classical seed matrices indeed induce a canonical basis for
HGP(Ha, Hb).

Let A = {ai} ∈ Fna
2 , Ā = {αj} ∈ Fma

2 , B = {bh} ∈ Fnb
2 and B̄ = {β`} ∈ Fma

2 be strongly lower
triangular bases for kerHa, kerHT

a , kerHb and kerHT
b respectively. The indices are the pivots: ai

has ith coordinate ai[i] = 1 and for any i′ > i, its i′th coordinate ai[i′] = 0.
We claim that if fi ∈ Fna

2 is the ith unit vector, then the set Ap = {fi}i∈π(A) is a basis of
the complement (ImHT

a )• of ImHT
a . Since the size na − rank(Ha) of Ap equals the dimension of

(ImHT
a )• and the vectors in Ap are clearly linearly independent, we only need to prove that they

generate a space that has trivial intersection with ImHa i.e. Span (Ap) ∩ ImHa = {0}. To see
this, suppose by contradiction that fi ∈ ImHT

a for some fi ∈ Ap. Then, fi can be written as a
linear combination of a set ρ of rows of Ha:∑

vT∈ρ

v = fi. (5)

By construction, for any i, i′ ∈ π(A), 〈fi, ai′〉 = 1 if and only if i′ = i and 0 otherwise. Combining

4



this with eq. (5), yields:

1 = 〈fi, ai, 〉

=
〈∑
vT∈ρ

v, ai

〉
by hypothesis,

=
∑
vT∈ρ

〈v, ai〉 by linearity,

= 0 ai ∈ kerHa,

which is a contradiction. Hence, Ap ∩ ImHT
a = ∅ and therefore Ap ⊆ (ImHT

a )•. Using this same
argument and the linearity of the inner product, we have that no linear combination of vectors in
Ap belongs to ImHT

a . Hence, only the zero vector belongs to both the span of Ap and ImHa. This
completes the proof that Ap is a basis of (ImHT

a )•.
Similarly, we can prove that Āp, Bp and B̄p are well defined bases of the corresponding com-

plement spaces.
Because the tensor product of bases is a basis of the tensor product space, the sets:

Bxline = {(fi ⊗ bh, 0), (0, αj ⊗ f`)}, (6)
Bzline = {(ai ⊗ fh, 0), (0, fj ⊗ β`)}, (7)

for i ∈ π(A), h ∈ π(B), j ∈ π(Ā), and ` ∈ π(B̄), are sets of linearly independent logical operators.
Moreover, it is straightforward to see that operators in Bxline and Bzline have support on a line of
qubits. Thus, in order to verify that Bline = Bxline ∪ Bzline is a canonical basis for HGP(Ha, Hb), we
only need to show that it is symplectic.

Clearly, left and right operators do not overlap. If instead we take a left Z operator and a left
X operator we find:

〈(ai ⊗ fh, 0), (fi′ ⊗ bh′ , 0)〉 = ai[i′] · bh′ [h], (8)

and by strong lower triangularity:

ai[i′] · bh′ [h] =
{

1, if i = i′ and h = h′,

0, otherwise .

Since an equivalent relation holds for pairs of right operators, we have shown that for every operator
in Bxline there exists a unique operator in Bzline that is not orthogonal to it. Furthermore, two
overlapping operators of different type overlap on exactly one physical qubit e.g. for the two left
operators in eq. (8), it is the physical qubit at position (i, h, L) when i = i′ and h = h′.

In conclusion, Bline = Bxline ∪ Bzline is a canonical basis for HGP(Ha, Hb) as per Theorem 1.

Theorem 1 is a corollary of Lemma 1, provided that strongly lower triangular bases exist and
can be found. We show how this is in fact the case in Appendix A, where we present a modification
of the Gaussian reduction algorithm, Algorithm 1, which finds a strongly triangular basis for any
n× n binary matrix in time O(n3).

Practically, if an arbitrary code has a canonical basis as per Theorem 1, any indexing of the
physical qubits of the code naturally yields an indexing of the logical qubits. Namely, if the unique
physical qubit in the overlap of a basis logical X operator and a basis logical Z operator has index
ι, then the index of the corresponding logical qubit is ι too, and we indicate it as qι. We call the
physical qubit ι the physical pivot of the logical qubit qι.

For a hypergraph product code HGP(Ha, Hb), if we display qubits on a grid as explained above
and we fix a canonical basis as per Theorem 1, we can uniquely index logical qubits as qLi,h and
qRj,` corresponding to the pivots (i, h, L) and (j, `, R). By construction, the sector L or R indicates
whether the logical qubit has canonical operators supported on the left or right sector qubits and
the first two coordinates specify where the two canonical operators cross. We refer to physical
qubits (i, i, σ), σ = L,R, as diagonal qubits and to the others as mirror qubits. The logical qubits
inherit the same attribute of their pivots. To sum up, we have found a classification of the logical
qubits of HGP(Ha, Hb) that depends on the physical position of the crossing of the logical X and
Z operators, X̄ and Z̄, see table 1.

5



symbol Z̄ X̄ pivot qubit
qLi,h (ai ⊗ fh, 0) (fi ⊗ bh, 0) (i, h, L)
qRj,` (0, fj ⊗ β`) (0, αj ⊗ f`) (j, `, R)

Table 1: Classification and indexing of the logical qubits of a hypergraph product code HGP(Ha, Hb) where
{ai}, {bh}, {αj}, {β`} are strongly lower triangular bases of kerHa, kerHb, kerHT

a , kerHT
b indexed over the

basis’ pivots. We refer to logical qubits whose pivot lies on the diagonal e.g. qL
i,i or qR

j,j as diagonal logical
qubits, and to the others as mirror logical qubits.

3 Transversal Clifford gates
Transversal logical operators offer the most straightforward approach to realising fault-tolerant
quantum computation since they naturally limit the spread of errors. A unitary operator U is
transversal with respect to a partition2 {Qi} of the physical qubits of an [[n, k, d]] code if it can be
expressed as U =

⊗
i Ui, where each Ui acts non-trivially only on qubits inQi [16]. The usual notion

of transversal gates [13] is found choosing the singleton partition {{i}}. By construction transversal
gates do not spread errors between qubits in different subsets and are therefore inherently fault-
tolerant, provided that all the subsets in the partition are correctable3. We say that a partition
{Qi} is m-local if all its subsets have size at most m: |Qi| ≤ m. The partition-distance δ{Qi} is the
minimum number of subsets in the partition that supports a logical operator. Equivalently, the
code can detect all errors that are supported on at most δ{Qi} − 1 subsets. The partition-distance
is a measure of how many faulty factors Ui the code can tolerate without corrupting the logical
information. In the same way, we can think of the distance of a code as a measure of how many
faulty ‘identity factors’ a code can deal with. As an example, for any [[n, k, d]] stabiliser code, the
singleton partition {{i}} is 1-local, has partition distance δ{{i}} = d and the logical Pauli operators
are transversal with respect to it.

In this Section we propose a partition for square codes of partition-distance bd/2c and one for
symmetric codes of partition-distance d; for both partitions, we report some examples of transversal
operators. Importantly, as suggested in [16, 31], we expect transversal operators on (2-dimensional)
hypergraph product codes to be restricted to be either Pauli or Clifford operators, hence we here
focus on Clifford operators.

Clifford operators permute the Pauli operators by mapping the Pauli group on n qubits Pn into
itself. The set of Clifford gates on n qubits, Cn, is a group, that can be generated by:

(i) The Hadamard gate H, that maps X operators into Z operators and vice-versa, X ↔ Z.

(ii) The phase gate S, that maps X operators into Y operators and fixes Z operators, X → Y .

(iii) The CZ gate, a two qubit gate that maps X ⊗ I → X ⊗Z, I ⊗X → Z ⊗X and acts trivially
on Z operators.

3.1 Gates on square codes
The first partition we propose builds on the unfolding technique for the color code proposed in [32]
and further studied in [33, 34, 35]. In [32, 33], the equivalence between color codes and folded
planar codes is leveraged to construct transversal Clifford gates on the planar code. Here we build
on that same idea to investigate Clifford gates on square hypergraph product codes.

Hypergraph product codes can be seen as a generalisation of the planar code, which indeed is
the hypergraph product code HGP(Hrep, Hrep), where Hrep is the full-rank parity check matrix of
the repetition code, e.g.

Hrep =
(

1 1 0
0 1 1

)
, (9)

2A partition of a set is a collection of non-empty and disjoint subsets of the set, whose union is the whole set.
3A set of qubits is said to be correctable if it cannot contain the support of a non-trivial logical operator.

6



Figure 1: Graphical representation of the diagonal-twin partition for squares hypergraph product codes derived
from the color code unfolding into the planar code [32, 33]. The two grids of physical qubits are folded separately
along the principal diagonal and qubits that share the same sites upon folding are paired together. The grey
circles represent physical diagonal qubits while all the other circles represent mirror qubits. The yellow circles
(two on the left, and two on the right) are twin qubits.

for parameters [3, 1, 3]. By exploiting the symmetries of the canonical basis of hypergraph product
codes (Theorem 1), we are able to generalise the folding of [32] to all square hypergraph product
codes HGP(H,H). We can fold the left and right grid of qubits along the principal diagonal and
pair the physical qubits whose sites overlap upon folding, see fig. 1. Upon folding, mirror physical
qubits are twinned: (i, h, L) twins with (h, i, L) and (j, `, R) with (`, j, R). We call the partition
given by singletons of diagonal qubits and two-qubit sets of twin qubits, diagonal-twin partition.
More precisely, if H ∈ Fm×n2 and HGP(H,H) is a [[n, k, d]] code, the diagonal-twin partition of its
physical qubits is given by {

{(i, i, L)}, {(j, j, R)}
}

∪ (10){
{(i, h, L), (h, i, L)}, {(j, `, R), (`, j, R)}

}
where 1 ≤ i, h ≤ n and i 6= h; 1 ≤ j, ` ≤ m and j 6= `.

The diagonal-twin partition is 2-local and has partition-distance δdt = bd/2c. In fact, as proven
in [30], a non-trivial logical operator for an [[n, k, d]] hypergraph product code has support on at
least d rows or columns of qubits in the same sector. Because the diagonal-twin partition is 2-local,
the union of any choice of µ subsets from it has size at most 2µ. Thus, in order to fill at least d
rows or d columns of physical qubits, we need to pick at least µ ≥ d/2 subsets in the diagonal-twin
partition.

The nomenclature of physical qubits as diagonal and twins is naturally inherited by the logical
qubits via the correspondence of logical qubits and their physical pivots, see table 1. This labelling
is key in understanding the logical actions of transversal operations for the diagonal-twin partition
and therefore we summarize it here: diagonal logical qubits are indexed as qLi,i and qRj,j ; twin logical
qubits as (qLi,h, qLh,i) and (qRj,`, qR`,j) for i 6= h and j 6= `, see fig. 2.

Similarly to the planar code case, both the Hadamard-SWAP and the CZ-S gates detailed below
are valid logical operators on HGP(H,H). Whilst it is immediate to verify that the stabilisers group
is preserved by these two operators, less immediate is the identification of the logical operation
performed. Crucially, this task becomes trivial when we look at the action induced on a canonical
basis derived by strongly lower triangular reduction as per Lemma 1.

On the physical level, Hadamard-SWAP consist of (i) Hadamard on every physical qubit; (ii)
physical SWAP between twin qubits. Hadamard-SWAP is a valid logical operator as it preserves
the stabiliser group mapping Sx(j, h) ↔ Sz(h, j) and (i) swaps the logical X and the logical Z
operators of twin qubits: on the left qLi,h and qLh,i, on the right qRj,` and qR`,j ; (ii) acts as logical
Hadamard on the diagonal qubits.

The operator CZ-S is defined on the physical level as: (i) S gate on left diagonal qubits; (ii)
S† on right diagonal qubits; (iii) CZ between twin qubits. CZ-S preserves the Z stabilisers and
maps the X stabiliser Sx(j, h) into Sx(j, h)Sz(h, j). Importantly, the phase factor in the product
Sx(j, h)Sz(h, j) is correctly preserved since, by construction, an X-stabiliser Sx(j, h) has a diagonal
left qubit (h, h) in its support if and only if Ha[j, h] = 1, if an only if it has a diagonal right qubit

7



Figure 2: Graphical representation of the physical qubits of the square code HGP(H̃, H̃), where H̃ is as in
eq. (11). The physical qubits (white circles) are arranged on a left and right grid. The black circles highlight
the position of the physical pivots associated to the logical qubits, see table 1. The canonical basis pictured is
derived as explained in Lemma 1 from the matrix A of eq. (4), whose columns are a strongly lower triangular
basis of ker H̃.

(j, j) in its support too. As such, if an S gate is applied, an S† gate is applied too and the global
phase cancels out. Again by looking at the action of the operator CZ-S on a canonical basis, since
twin logical operators have support on mirror qubits only and each diagonal logical operator has
support on exactly one diagonal qubit, we find that the logical action of the operator CZ-S is (i) S
on left diagonal qubits; (ii) S† on right diagonal qubits; (iii) CZ between twin qubits.

3.1.1 An example of a square code

As a guiding example, we consider the square code HGP(H̃, H̃), where H̃ a is non-full-rank parity
check matrix of the classical [7, 4, 3] Hamming code:

H̃ =


1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1
1 0 1 0 1 0 1

 . (11)

The matrix H̃ defines an equivalent [7, 4, 3] classical code and H̃T defines a [4, 1, 3] code. By eq. (3),
HGP(H̃, H̃) is a [[65, 17, 3]] CSS code. The columns of A in eq. (4) are a strongly triangular basis
of ker H̃ and ṽ =

(
1 0 1 1

)T generates ker H̃T . Trivially, {ṽ} is a strongly lower triangular
basis of ker H̃T , with pivot π(ṽ) = 4. In fig. 2 qubits are represented as circles. We note how
these are divided into a 7× 7 grid of left physical qubits and a 4× 4 grid of right physical qubits.
The characteristic square shape of these two grids makes HGP(H̃, H̃) a square code. The physical
diagonal qubits are the ones that lie across the principal diagonals of the squares (the two black
lines in fig. 2). The black circles correspond to physical pivots, one for each logical qubit of the
code. As for any other square hypergraph product code derived from a classical [n, k, d] code whose
transpose is a [m, kT , dT ] code, there are k2 = 16 left logical qubits, k = 4 of which diagonal, and
(kT )2 = 1 right logical qubits, kT = 1 of which diagonal.

3.2 Gates on symmetric codes
The second partition we propose improves on the diagonal-twin partition, having partition-distance
d against bd/2c for a [[n, k, d]] code. The price paid is the validity of this partition only on a small
class of square codes, the symmetric codes: HGPsy(H) = HGP(H,H) for some H such that
ImH = ImHT .

Notably, the toric code is a symmetric hypergraph product code HGPsy(Htoric) where e.g. for
d = 3,

Htoric =

1 1 0
0 1 1
1 0 1

 .

For our purposes, the key feature of symmetric hypergraph product codes is that their physical
qubits can be arranged in two square grids of the same size. This fact suggests that we can pair
physical qubits by superimposing the left grid of physical qubits on the right one, and pairing

8



qubits that sit at the same coordinate. In this way, every physical qubit (i, h, L) is paired with its
sibling qubit (i, h,R). Explicitly, given a symmetric code HGPsy(H), with H ∈ Fn×n2 , we define
its sibling partition as: {

{(i, h, L), (i, h,R)}
}
. (12)

where 1 ≤ i, h,≤ n. See fig. 3 for a graphical representation of the sibling partition. The sibling
partition has partition-distance δs = d. In fact, as said above and proven in [30], every non-trivial
logical operator of a hypergraph product has support on at least d rows or columns in the same
sector. As such, even if the sibling partition is 2-local, every subsets in it can give a contribution
of at most 1 towards the covering of an arbitrary logical operator. This observation is more
general: any partition whose subsets Qi contain at most one qubit in each sector has maximum
partition-distance d. We call any such partition sector-transversal.

The Hadamard-SWAP operation defined above for the square codes on the diagonal-twin partition
is similarly defined on the sibling partition too: physical Hadamard on all qubits and SWAP
between siblings qubits yields Hadamard on all the logical qubits composed with logical SWAPs
between sibling logical qubits.

Via the sibling partition is naturally defined a transversal CZ operator. In fact, applying physical
CZ gates on all pairs of sibling qubits preserves the Z stabilisers and maps the X stabilisers Sx(j, h)
into Sx(j, h)Sz(h, j). On the logical level, the CZ operator yields a CZ between pairs of sibling logical
qubits qLi,h and qRi,h.

3.2.1 An example of a symmetric code

Building on our guide example in Section 3.1.1, we illustrate a symmetric hypergraph product code
derived from the [7, 4, 3] Hamming code with full-rank parity check matrix H,

H =

1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 . (13)

We define the symmetric Hamming code as the symmetric hypergraph product code HGPsy(HTH),
where4

HTH =



0 1 0 1 1 1 0
1 0 0 1 1 0 1
0 0 1 0 1 1 1
1 1 0 0 0 1 1
1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


.

The symmetric Hamming code HGPsy(HTH) has parameters [[98, 32, 3]] and stabiliser generators
of weight 8. It has a rate of k/n = 32/98 ≈ 0.33 which substantially outperforms5 the surface
and toric code rates and indeed the optimal rate of k/n = 0.2 for codes with k = 1 and d ≥ 3.
For this reason, we believe that similarly constructed symmetric codes could be promising for
low-overhead, near-term quantum computing. In Appendix B we present several more examples of
small (n < 1000) symmetric hypergraph product codes with stabiliser generators of weight w ≤ 16
on which all the gates we describe could be implemented.

4 Completing a universal gate set
Transversal gates enable us to implement a subset of logical Clifford gates on hypergraph product
codes, but this is not sufficient for performing universal fault-tolerant quantum computation. In

4Note that, for any matrix A, AT A is symmetric.
5For d = 3, the surface and the toric code have rate 1/13 ≈ 0.08 and 1/18 ≈ 0.06 respectively. The optimal rate

for codes with k = 1 is achieved by the five qubit code [36].

9



(a) (b)

Figure 3: Graphical representation of the symmetric hamming code HGPsy(HTH). In both figures, the left
sector qubits sit at the front while the right sector qubits sit at the back. Sibling pair of qubits are superimposed.
In fig. 3a the orange filled circles represent the support of the X stabiliser Sx(2, 3). In fig. 3b the blue filled
circles represent the support of the Z stabiliser Sz(4, 6).

particular, the Clifford gates detailed in Section 3 act equivalently on logical qubits of the same type
(diagonal, twin or sibling) and so cannot be used to e.g. entangle arbitrary pairs of logical qubits.
In this Section, we focus on symmetric hypergraph product codes and show how to implement a
universal gate set using circuits that consist of sequences of sector-transversal gates6. Such circuits
are pieceably fault-tolerant, meaning that each gate in the sequence is fault-tolerant, and therefore
the overall circuit is fault-tolerant when supplemented with intermediate error correction [23].
In Section 4.1, we show how to implement entangling gates between arbitrary logical qubits by
combining pieceably fault-tolerant gates. Then, in Section 4.2, we show how to complete a universal
gate via state injection. Lastly, in Section 4.3, we discuss the limitations of our approach.

4.1 Pieceably fault-tolerant two-qubit entangling gates
We begin by constructing a pieceably fault-tolerant circuit for implementing a logical CZ gate
between logical qubits in different sectors, via the round-robin method presented in [23].

By Claim 2 of [37], we can implement a logical CZ between two logical qubits by performing
a CZ between each pair of physical qubits in the support of the logical Z operators of the qubits
considered. For a symmetric code (using the notation of table 1) we can therefore implement a
logical CZ between arbitrary qubits in different sectors, qLi,h and qRj,`, by performing a CZ between
each pair of physical qubits in the support of Z̄Li,h = (ai ⊗ fh, 0) and Z̄Rj,` = (0, fj ⊗ β`). For
v ∈ Fn2 we indicate by supp(v) the ordered set of qubits/indices in the support of the vector v i.e.
supp(v) = {i s.t. 1 ≤ i ≤ n and v[i] = 1}. Claim 2 of [37] states that∏

(η,γ)∈supp(ai)×supp(β`)

CZ (η, h, L), (j, γ,R) (14)

implements the logical operator

CZ qLi,h, q
R
j,`.

In order to use the round-robin method to make the operation described by (14) fault-tolerant,
we want to group the physical CZ operations in separate fault-tolerant time steps and perform
intermediate error correction between them. For symmetric codes, we can achieve this if we
perform physical CZ’s in tranches so that each tranche only contains CZ’s between left and right
sector qubits—as opposed to CZ’s between two qubits from the same sector. To this end, we let
∆ = max(| supp(ai)|, | supp(β`|) and, for η ∈ supp(ai), we denote by η# its index in supp(ai),
meaning η# = ν if η is the νth element in the ordered set supp(ai); with a slight abuse of notation,
we can write η ⊕∆ t to indicate the µth element in supp(β`), where µ = η# + t mod ∆, for any
integer t. Combining this notation with eq. (14), yields

∆−1∏
t=0

 ∏
η∈supp(ai)

η⊕∆t≤| supp(β`)|

CZ(η, h, L), (j, η ⊕∆ t, R)

 . (15)

6Transversal gates over a sector-transversal partition.

10



(a) Logical Z (b) t = 0. (c) t = 1. (d) t = 2. (e) t = 3.

Figure 4: Round robin implementation of CZ qL
3,3q

R
6,5 by the circuit of eq. (15) on the symmetric Hamming

code. (a) shows the supports of the logical Z operators. (b)-(e) illustrate the physical CZ gates acting at each
time step t, where qubits highlighted with the same colour have a CZ gate applied to them.

Treating each value of t in eq. (15) as a time step, the inner summations,

Ωt =
∏

η∈supp(ai)
η⊕∆t≤| supp(β`)|

CZ(η, h, L), (j, η ⊕∆ t, R), (16)

are sequences of non-overlapping sector-transversal operators, as desired. For each time step 0 ≤
t ≤ ∆, first we apply the gates of eq. (16) and then perform one round of error correction using
the ReShape decoder [30]. The use of ReShape at this stage is fundamental because it corrects
errors on different sectors independently. Hence, using ReShape to correct errors between time
steps, the protocol preserve the partition-distance d of the operator Ωt in eq. (16) and can correct
up to bd/2c faulty CZ gates.

In conclusion, CZ between arbitrary left and right logical qubits can be implemented in ∼ d↑z
time steps, where d↑z is the maximum weight of a canonical Z operator. An example on the
symmetric Hamming code is depicted in fig. 4.

We can also construct a pieceably fault-tolerant circuit for the gate

XCX := H⊗2 · CZ ·H⊗2 (17)

Indeed, combining again Claim 2 of [37] and eq. (15), we find that

∆−1∏
t=0

 ∏
η∈supp(bh)

η⊕∆t≤| supp(αj)|

XCX(i, η, L), (η ⊕∆ t, `, R)

 (18)

implements the logical operator

XCX qLi,h, q
R
j,`.

where X̄L
i,h = (fi ⊗ bh, 0) and X̄R

j,` = (0, αj ⊗ f`) and ∆ = max(| supp(bh)|, | supp(αj)|). As in the
CZ case, we can use the round-robin method in [23] and perform error correction between each
sector-transversal time step to obtain a fault-tolerant implementation of XCX.

Given our ability to perform CZ and XCX gates between arbitrary pairs of qubits in different
sectors, we can use the circuit identity shown in fig. 5 to implement CNOT gates between arbitrary
pairs of qubits in the same sector. To summarize, we can implement entangling gates between
arbitrary logical qubits using circuits composed of at most four pieceably fault-tolerant circuits.

4.2 Single-qubit gates via state injection
To complete a universal gate set, it is sufficient to implement the H, S and T gates. The gates
S and T can be implemented via state injection [38, 39, 40]. We can use a CSS code as a state
factory and then use a pieceably fault-tolerant CZ gate to implement the state injection circuits
shown in fig. 6. State injections can be performed from an auxiliary [[n′, 1, d′]] CSS code C that acts
as a state factory by leveraging pieceably fault-tolerant gates to implement the circuits in fig. 6 at
a logical level. More precisely, let ζ ∈ Fn′

2 describe the support of the logical Z operator for the

11



• • •
= • •

Figure 5: Circuit identity showing how to construct CNOT from CZ and XCX gates, where XCX gates are
depicted with targets on both qubits.

|ψ〉 • Z S|ψ〉

|+〉 S H • H

|ψ〉 • S T |ψ〉

|+〉 T H • H

Figure 6: State injection gadgets for implementing S and T gates. The top wire in each circuit represents a
logical qubit of a a symmetric hypergraph product code and the bottom wire represents a logical qubit of an
ancillary CSS code. To implement the CZ gates we use the pieceably fault-tolerant circuit in eq. (15). Note
that for CSS codes the X basis measurements, represented as the gate H followed by Z basis measurements,
can be done transversally.

logical qubit qC of C and suppose that we number the physical qubits of C as (ι)C . Then, via Claim
2 of [37] and eq. (15), we obtain that

∆−1∏
t=0

 ∏
η∈supp(ai)
η⊕∆t≤|ζ|

CZ (η, h, L), (η ⊕∆ t)C

 (19)

where ∆ = max (| supp(ai)|, | supp(ζ)|), implements

CZ qLi,h, qC .

And similarly for a right qubit qRj,`. The operator of eq. (19) consists of CZ operators between
different codes so is transversal at each time step and is therefore pieceably fault-tolerant. As C is
a CSS code, we can measure the logical X operator destructively by measuring all of the physical
qubits in the X basis and performing classical error correction on the measurement outcomes.
Therefore, to implement S, and T we only need to fault-tolerantly prepare the states HS |+〉 and
HT |+〉. For a d = 3 symmetric hypergraph product code, one option would be to produce these
states using the [[15, 1, 3]] Reed-Muller code [41, 42, 43]. For higher distance symmetric hypergraph
product codes, preparing magic states could be accomplished using standard magic state distillation
techniques [40, 44, 45, 46]. In addition, multiple magic states could also be injected from a CSS
code with multiple encoded qubits, using parallel CZ gates (see section 4.3).

For the implementation of the logical H gate on single qubits we propose the use of the
Hadamard-Swap operation detailed in Section 3.2 together with three logical S gates. Without
loss of generality we here illustrate how to implement the gate H on the left logical qubit qLi,h with
sibling qubit qRi,h. The construction for right logical qubits follows easily by switching the roles of
siblings. We indicate by U(q) the logical gate U on the logical qubit q, i.e. S(qLi,h) indicates the
logical S gate on the logical qubit qLi,h. The composition of gates:

S(qLi,h)
(

Hadamard-SWAP S(qRi,h) Hadamard-SWAP
)
S(qLi,h) (20)

equates:

H S H S H
(
qLi,h
)
.

12



Since

H (S H S) H = eiπ/4 H (21)

the composition of gates in eq. (20) implements the logical H gate on qubit qLi,h, up to a global
phase factor. Hence, the logical H gate on arbitrary qubits can be implemented at the cost of three
S gates and two sector-transversal operations.

4.3 Limitations of pieceable fault-tolerance
We conclude this Section by highlighting two important limitations of pieceable fault tolerant
techniques: intermediate correction and time cost. To guide our analysis, let us consider the
pieceably fault-tolerant CZ gate of Section 4.1.

Since CZ is diagonal in the Z basis, Z stabilisers are left unchanged during the protocol and
hence correction for X errors can be done, at each time step, via standard measurement of Z
stabilisers. However, the original X stabilizer generators are transformed at each intermediate
time step, with no guarantee on their weight—which could scale with the code distance. To avoid
measuring high-weight generators, we can neglect to do error correction for Z errors at intermediate
time steps, at the cost of allowing Z errors to build up for a constant number of rounds (for codes
of a fixed distance). This strategy will only be fault-tolerant for codes of a fixed distance and
therefore will not give a threshold without modification7. Nevertheless, the asymptotic behaviour
encapsulated by a threshold is less important in the short- to medium-term regime where space
overhead will likely be the most important constraint.

As regards to time cost, pieceably fault-tolerant circuits necessarily have a time overhead higher
than transversal gates because of intermediate error-correction. If the time cost of one cycle of
error-correction followed by the application of a transversal gate is τ , then each sector-transversal
gate has time cost τ . By contrast, the pieceably fault-tolerant CZ of eq. (15), has cost at least τd
for a distance d code. For instance, in the symmetric Hamming code example given in section 3.2.1,
CZ or XCX have cost τ4 because 4 is the maximum weight of a canonical logical operator.

In general, composing m pieceable fault tolerant gates takes time τd↑m, where d↑ is the max-
imum weight of a canonical logical operator. However, this overhead can be reduced via paral-
lelization. For instance,

CZ qLi,h, q
R
j,` and CZ qLi′,h′ , qRj′,`′

can be performed in parallel via eq. (15), provided that the logical Z operators of the qubits
considered have all disjoint support e.g. whenever h 6= h′ and j 6= j′; see fig. 7 for an example.
Therefore, if we want to implement m pieceable fault-tolerant gates, we can divide them into
subsets of parallelizable gates and, if np is the minimum number of gates in any of these subsets,
we can implement all the gates in time τd↑m/np, reducing the average time overhead per gate.
Importantly, performing gates in parallel has no additional space overhead, in contrast to the
measurement-based scheme of [11].

5 Conclusion
We have investigated the structure of hypergraph product codes to characterize transveral Clifford
gates on them. In fact, we proved that every hypergraph product code has a canonical basis for
its logical space whose features suggest qualitative differences between logical qubits (diagonal,
twin and sibling). We showcased how to leverage such differences to implement some transversal
Clifford gates on square and symmetric hypergraph product codes. The logical transversal gates
we have found are limited but we comment on how these could be augmented via pieceable fault
tolerance and state injection to achieve universality.

While we have focused on symmetric hypergraph product codes, we believe that the choice of
structured seed classical codes in the hypergraph product could be exploited to construct other

7Another possible solution is to perform weight reduction [11, 47, 48] on the X stabiliser generators at each time
step, likely at the cost of a high space overhead.

13



Figure 7: Graphical representation of the parallel implementation of pieceably fault tolerant gates. Columns of
left (front) qubits and rows of right qubits (back) filled in the same color represent pairs of logical operators
whose supports do not overlap. In the image, magenta: qL

3,3, q
R
6,5, green qL

7,5, q
R
7,5, yellow: qL

6,6, q
R
3,7, blue:

qL
5,3q

R
5,7. Pieceably fault tolerant gates that act on the support of these logical operators (e.g. CZ) can be

implemented in parallel. We note that, for any symmetric hypergraph product code of dimension k2, we can
always find k pairs of logical qubits whose logical operators do not overlap as shown here (one for each left line
pivot and one for each right line pivot).

transversal gates. We also conjecture that a partitioning strategy similar to the ones here pre-
sented could be used to implement transversal non-Clifford gates on higher dimensional homologi-
cal codes [34, 21]. More generally, it would be interesting to extend the construction of a canonical
basis to the more efficient product codes construction such as the ones in [49, 50, 51, 52].

14



Acknowledgements
This work is supported by the Australian Research Council via the Centre of Excellence in Engi-
neered Quantum Systems (EQUS) project number CE170100009. Research at Perimeter Institute
is supported in part by the Government of Canada through the Department of Innovation, Sci-
ence and Economic Development Canada and by the Province of Ontario through the Ministry of
Colleges and Universities. The authors would like to thank Stephen Bartlett, Earl Campbell and
Lawrence Cohen for helpful discussions.

References
[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Ru-

pak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. “Quantum supremacy
using a programmable superconducting processor”. Nature 574, 505–510 (2019).

[2] Peter W. Shor. “Fault-tolerant quantum computation”. In Proceedings of 37th Conference on
Foundations of Computer Science. Pages 56–65. (1996).

[3] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits”. Quantum 5, 433 (2021).

[4] Isaac H Kim, Eunseok Lee, Ye-Hua Liu, Sam Pallister, William Pol, and Sam Roberts. “Fault-
tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery
electrolyte molecules”. Physical Review Research 4, 023019 (2022).

[5] Nikolas P Breuckmann and Jens Niklas Eberhardt. “Quantum low-density parity-check codes”.
PRX Quantum 2, 040101 (2021).

[6] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. Annals of Physics 303,
2–30 (2003).

[7] Pavel Panteleev and Gleb Kalachev. “Asymptotically good quantum and locally testable
classical LDPC codes” (2021). arXiv:2111.03654.

[8] Daniel Gottesman. “Fault-tolerant quantum computation with constant overhead”. Quantum
Information & Computation 14, 1338–1372 (2014).

[9] Anirudh Krishna and David Poulin. “Fault-tolerant gates on hypergraph product codes”.
Physical Review X 11, 011023 (2021).

[10] Anirudh Krishna and David Poulin. “Topological wormholes: Nonlocal defects on the toric
code”. Physical Review Research 2, 023116 (2020).

[11] Lawrence Z Cohen, Isaac H Kim, Stephen D Bartlett, and Benjamin J Brown. “Low-overhead
fault-tolerant quantum computing using long-range connectivity” (2021). arXiv:2110.10794.

[12] Bei Zeng, Andrew Cross, and Isaac L. Chuang. “Transversality versus universality for additive
quantum codes”. IEEE Transactions on Information Theory 57, 6272–6284 (2011).

[13] Bryan Eastin and Emanuel Knill. “Restrictions on transversal encoded quantum gate sets”.
Physical Review Letters 102, 110502 (2009).

[14] Sergey Bravyi and Robert König. “Classification of topologically protected gates for local
stabilizer codes”. Phys. Rev. Lett. 110, 170503 (2013).

[15] Fernando Pastawski and Beni Yoshida. “Fault-tolerant logical gates in quantum error-
correcting codes”. Phys. Rev. A 91, 012305 (2015).

[16] Tomas Jochym-O’Connor, Aleksander Kubica, and Theodore J Yoder. “Disjointness of stabi-
lizer codes and limitations on fault-tolerant logical gates”. Physical Review X 8, 021047 (2018).

[17] Paul Webster, Michael Vasmer, Thomas R Scruby, and Stephen D Bartlett. “Univer-
sal fault-tolerant quantum computing with stabilizer codes”. Physical Review Research 4,
013092 (2022).

[18] Sergey Bravyi and Matthew B Hastings. “Homological product codes”. In Proceedings of the
46th Annual ACM Symposium on Theory of Computing. Pages 273–282. ACM (2014).

15



[19] Tomas Jochym-O’Connor. “Fault-tolerant gates via homological product codes”. Quantum 3,
120 (2019).

[20] Armanda O Quintavalle, Michael Vasmer, Joschka Roffe, and Earl T Campbell. “Single-
shot error correction of three-dimensional homological product codes”. PRX Quantum 2,
020340 (2021).

[21] Tomas Jochym-O’Connor and Theodore J Yoder. “Four-dimensional toric code with non-
Clifford transversal gates”. Physical Review Research 3, 013118 (2021).

[22] Shai Evra, Tali Kaufman, and Gilles Zémor. “Decodable quantum LDPC codes beyond the√
n distance barrier using high dimensional expanders” (2020). arXiv:2004.07935.

[23] Theodore J Yoder, Ryuji Takagi, and Isaac L Chuang. “Universal fault-tolerant gates on
concatenated stabilizer codes”. Physical Review X 6, 031039 (2016).

[24] David JC MacKay. “Information theory, inference and learning algorithms”. Cambridge Uni-
versity Press. (2003).

[25] A Robert Calderbank and Peter W Shor. “Good quantum error-correcting codes exist”. Phys-
ical Review A 54, 1098 (1996).

[26] Andrew Steane. “Multiple-particle interference and quantum error correction”. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
452, 2551–2577 (1996).

[27] Michael A Nielsen and Isaac Chuang. “Quantum computation and quantum information”.
Cambridge University Press. (2002).

[28] Jean-Pierre Tillich and Gilles Zémor. “Quantum LDPC codes with positive rate and minimum
distance proportional to the square root of the blocklength”. IEEE Transactions on Information
Theory 60, 1193–1202 (2014).

[29] Benjamin Audoux and Alain Couvreur. “On tensor products of CSS codes” (2015).
arXiv:1512.07081.

[30] Armanda O Quintavalle and Earl T Campbell. “Lifting decoders for classical codes to decoders
for quantum codes” (2021). arXiv:2105.02370.

[31] Simon Burton and Dan Browne. “Limitations on transversal gates for hypergraph product
codes”. IEEE Transactions on Information Theory 68, 1772–1781 (2022).

[32] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. “Unfolding the color code”. New
Journal of Physics 17, 083026 (2015).

[33] Jonathan E Moussa. “Transversal Clifford gates on folded surface codes”. Physical Review A
94, 042316 (2016).

[34] Michael Vasmer and Dan E Browne. “Three-dimensional surface codes: Transversal gates and
fault-tolerant architectures”. Physical Review A 100, 012312 (2019).

[35] Nikolas P Breuckmann and Simon Burton. “Fold-transversal Clifford gates for quantum
codes” (2022). arXiv:2202.06647.

[36] Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. “Perfect
quantum error correcting code”. Physical Review Letters 77, 198 (1996).

[37] Rui Chao and Ben W Reichardt. “Fault-tolerant quantum computation with few qubits”. npj
Quantum Information 4, 1–8 (2018).

[38] Daniel Gottesman and Isaac L. Chuang. “Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations”. Nature 402, 390–393 (1999).

[39] Xinlan Zhou, Debbie W. Leung, and Isaac L. Chuang. “Methodology for quantum logic gate
construction”. Physical Review A 62, 052316 (2000).

[40] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with ideal Clifford gates
and noisy ancillas”. Physical Review A 71, 022316 (2005).

[41] Emanuel Knill, Raymond Laflamme, and Wojciech Zurek. “Resilient quantum computation”.
Science 279, 342–345 (1996).

16



[42] A.M. Steane. “Quantum Reed-Muller codes”. IEEE Transactions on Information Theory 45,
1701–1703 (1999).

[43] Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin. “Fault-tolerant conver-
sion between the Steane and Reed-Muller quantum codes”. Physical Review Letters 113,
080501 (2014).

[44] Sergey Bravyi and Jeongwan Haah. “Magic-state distillation with low overhead”. Physical
Review A 86, 052329 (2012).

[45] Daniel Litinski. “Magic state distillation: Not as costly as you think”. Quantum 3, 205 (2019).

[46] Christopher Chamberland and Kyungjoo Noh. “Very low overhead fault-tolerant magic state
preparation using redundant ancilla encoding and flag qubits”. npj Quantum Information 6,
1–12 (2020).

[47] Matthew B Hastings. “Weight reduction for quantum codes”. Quantum Information & Com-
putation 17, 1307–1334 (2016).

[48] MB Hastings. “On quantum weight reduction” (2021). arXiv:2102.10030.

[49] Pavel Panteleev and Gleb Kalachev. “Degenerate quantum LDPC codes with good finite
length performance”. Quantum 5, 585 (2021).

[50] Matthew B Hastings, Jeongwan Haah, and Ryan O’Donnell. “Fiber bundle codes: breaking
the N1/2polylog(N) barrier for quantum LDPC codes”. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing. Pages 1276–1288. (2021).

[51] Nikolas P Breuckmann and Jens N Eberhardt. “Balanced product quantum codes”. IEEE
Transactions on Information Theory 67, 6653–6674 (2021).

[52] Anthony Leverrier and Gilles Zémor. “Quantum tanner codes” (2022). arXiv:2202.13641.

[53] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra system I: The user
language”. Journal of Symbolic Computation 24, 235–265 (1997).

[54] Markus Grassl. “Bounds on the minimum distance of linear codes” (2008). http://www.
codetables.de.

A Proofs
In this Section we introduce the strongly lower triangular Gaussian reduction for binary matrices
(Algorithm 1) and prove its correctness.

Algorithm 1 takes in input a binary matrix H and outputs a strongly lower triangular basis
for its kernel, as per Definition 1, and a unit vector basis for its complement 8. It iterates over
the columns of H (line 4) and iteratively removes from the set of columns indices (line 8) the
independent columns; the matrix of interest, K, which will contain the column vectors forming
a basis of the kernel of H is iteratively reduced in triangular form (line 10). We prove that
Algorithm 1 is correct in Lemma 2 below.

8We remind the reader that, given a vector space V ⊆ Fn
2 , its complement V • is any vector space such that

V ⊕ V • = Fn
2 , see the proof of Lemma 1.

17



Algorithm 1 Strong lower triangular Gaussian reduction.
Input: An m× n binary matrix H.

Output: A strongly triangular basis of its kernel K and a unit vector basis F of (ImHT )•, where
Fn2 = ImHT ⊕ (ImHT )•.

1: Ĥ ← H
2: K ← In
3: π(K) = {1, . . . , n}
4: for j ← 1 to n do
5: while Ĥ[i][j] 6= 1 and 1 ≤ i ≤ m do
6: i← i+ 1
7: end while
8: if Ĥ[i][j] = 1 then:
9: π(K)← π(K) \ {j}
10: for `← j + 1 to n do
11: if Ĥ[i][`] = 1 then
12: Ĥ` ← Ĥj + Ĥ`

13: K` ← Kj +K`

14: end if
15: end for
16: end if
17: end for
18: K ← {Kj : j ∈ π(K)}
19: F ← {Ijn : j ∈ π(K)}
20: return K, F

Lemma 2. Algorithm 1 terminates and is correct. More precisely:

1) The set H = {Hj : 1 ≤ j ≤ n, j 6∈ π(K)} is a basis of the column span of H.

2) The set K is a basis of the kernel of H.

3) The set F is a unit-vector basis of (ImHT )•.

Proof. Let v be any vector in the column span of H:

v =
∑
j∈V

Hj .

If V ∩ π(K) = ∅ then there is nothing to prove. Conversely, suppose that there exists j ∈ V such
that j ∈ π(K). Then it must be Ĥj = 0 (see line 8). In other words, the jth column can be written
as a linear combination of other columns of H, and by substitution if necessary, point 1) is proved.

To prove point 2), observe that for what said on the zero columns of Ĥ, all the vectors in K are
in the kernel of H. Moreover, they are linearly independent and lower triangular by construction.

Now suppose that the matrix is not strongly lower triangular (e.g.
(

1 1
0 1

)
) so that there exists a

row index i such that Ki,α = Ki,α+τ = 1 for some τ > 0. This means that the αth column Kα

has been added to the (α + τ)th column Kα+τ at step α. However, if α ∈ π(K) is a pivot index,
Ĥα is zero at steps α− 1, . . . , n and therefore the if condition at line 11 is not met.

Point 3) follows observing that the vectors in F are linearly independent by construction (they
are unit vectors with different pivots) and none of them belongs to the row span of H. In fact by
definition, any vector in the kernel of H is orthogonal to vectors in the row span of H, and by
strong lower triangularity, 〈k, f〉 = 1 for any k ∈ K and f ∈ F .

18



B Symmetric hypergraph product codes - Examples
We here provide table 2 with some examples of classical seed matrices to construct symmetric
hypergraph product codes with n < 1000 and maximum stabiliser weight w ≤ 16. The classical
parity check matrices used in the product were found with assistance from the “Best Known Linear
Code” database of MAGMA [53] and guidance from the bounds in [54]. For each parity check
matrix H in the first column, we have computed the [[n, k, d]] parameters the symmetric hypergraph
product code HGPsy(HTH).

Classical Code Parity Check n k k/n d w

1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

98 32 0.33 3 8

0 0 0 1 1 1 0 1 0 0 0
0 1 1 1 1 0 1 0 1 0 0
1 0 1 1 0 1 1 0 0 1 0
1 1 0 0 1 1 1 0 0 0 1

242 98 0.41 3 12

0 0 0 1 1 1 1 1 1 1 0 1 0 0 0
0 1 1 0 0 1 1 1 1 0 1 0 1 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 1 0
1 1 0 1 0 0 1 0 1 1 1 0 0 0 1

450 242 0.54 3 16

1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

98 18 0.18 4 8

1 1 1 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0 0 0 1 0
0 1 1 0 1 1 1 0 0 0 0 1

288 98 0.34 4 12

1 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1

200 18 0.09 5 8

0 1 1 0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 1

242 32 0.13 5 16

1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 0 0 1

392 32 0.08 7 16

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

722 32 0.04 9 16

Table 2: Examples of symmetric hypergraph product codes HGPsy(HTH), where H is the binary matrix in the
first column. The length n, the dimension k, the rate k/n, the distance d and the maximum stabiliser weight
w are reported in the others columns.

19



70



Chapter 5

Single-shot error correction -
Confinement

Context and Results

In [1] we investigate the theoretical requirements a code must have to be robust against syndrome
measurement errors. In the literature there are two proposed strategies to address noisy measurements:
repeated measurement over time [2, 3] and using a single-shot code and decoder [4, 5]. By repeating
the same stabilizer measurements multiple times we can infer the most likely measurement result via a
majority-vote strategy. In the single-shot setting instead, measurements are performed only once but
we allow for some residual error to be present on the code’s data qubits after one round of correction.
A decoder succeeds if the residual error on the data qubits is kept under control after repeated rounds
of single-shot error correction, opposite to the standard scenario where a decoder succeeds if no error
is left on the register after correction.

We propose the property of confinement of the syndrome function as essential for single-shot error
correction. Loosely, a code has confinement if, for small enough error, the syndrome weight grows with
the error weight. Our main result is proving that confinement is indeed sufficient for codes to exhibit
some form of single-shot behaviour. Further, we illustrate how the original hypergraph product code
construction [6] can be iterated, and made ‘three-dimensional’ to ensure that the associated quantum
code has confinement, independently of the classical codes chosen as seeds in the product.

Limitations

To date, no code family is known to be single-shot without also having the confinement property
as defined in [1]. Indeed we shown that confinement is a sufficient condition for single-shot error
correction. Nonetheless, we were after a necessary condition for it and we conjecture that in fact
confinement and single-shot properties are equivalent.

Another, minor, limitation of this work is found in the numerical results obtained. We have
simulated single-shot decoding on three-dimensional hypergraph product codes using what we call a
two-stage decoder. This choice is justified by the proof structure of our theoretical result. However,
better numerical performances are possible when the first stage of our decoder is dropped [7].

71



Authorship declaration

AOQ derived the proofs and wrote the corresponding sections of the manuscript: Sections III and IV;
Appendices A, B, C and D. All the authors contributed to Sections I, II and VI.

References

[1] Armanda O Quintavalle et al. “Single-shot error correction of three-dimensional homological
product codes”. In: PRX Quantum 2.2 (2021), p. 020340.

[2] Eric Dennis et al. “Topological quantum memory”. In: Journal of Mathematical Physics 43.9
(2002), pp. 4452–4505.

[3] Austin G Fowler, Ashley M Stephens, and Peter Groszkowski. “High-threshold universal quantum
computation on the surface code”. In: Physical Review A 80.5 (2009), p. 052312.

[4] Hector Bombin. “Single-shot fault-tolerant quantum error correction”. In: Physical Review X 5.3
(2015), p. 031043.

[5] Earl T Campbell. “A theory of single-shot error correction for adversarial noise”. In: Quantum
Science and Technology 4.2 (2019), p. 025006.

[6] Jean-Pierre Tillich and Gilles Zémor. “Quantum LDPC codes with positive rate and minimum
distance proportional to the square root of the blocklength”. In: IEEE Transactions on Informa-
tion Theory 60.2 (2013), pp. 1193–1202.

[7] Oscar Higgott and Nikolas Breuckmann. “Improved single-shot decoding of higher dimensional
homological product codes”. In: Bulletin of the American Physical Society (2022).

72



PRX QUANTUM 2, 020340 (2021)
Editors’ Suggestion

Single-Shot Error Correction of Three-Dimensional Homological Product Codes

Armanda O. Quintavalle ,1,* Michael Vasmer ,2,3,† Joschka Roffe ,1,4,‡ and Earl T. Campbell1,5,§

1
Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

2
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

3
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

4
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

5
AWS Center for Quantum Computing, Cambridge, CB1 2GA, United Kingdom

 (Received 17 December 2020; accepted 20 April 2021; published 14 June 2021)

Single-shot error correction corrects data noise using only a single round of noisy measurements on
the data qubits, removing the need for intensive measurement repetition. We introduce a general concept
of confinement for quantum codes, which roughly stipulates qubit errors cannot grow without triggering
more measurement syndromes. We prove confinement is sufficient for single-shot decoding of adversar-
ial errors and linear confinement is sufficient for single-shot decoding of local stochastic errors. Further
to this, we prove that all three-dimensional homological product codes exhibit confinement in their X
components and are therefore single shot for adversarial phase-flip noise. For local stochastic phase-flip
noise, we numerically explore these codes and again find evidence of single-shot protection. Our Monte
Carlo simulations indicate sustainable thresholds of 3.08(4)% and 2.90(2)% for three-dimensional (3D)
surface and toric codes, respectively, the highest observed single-shot thresholds to date. To demonstrate
single-shot error correction beyond the class of topological codes, we also run simulations on a randomly
constructed family of 3D homological product codes.

DOI: 10.1103/PRXQuantum.2.020340

I. INTRODUCTION

Quantum error correction encodes logical quantum
information into a codespace [1]. Given perfect measure-
ment of the codespace stabilizers we obtain the syndrome
of any error present. A suitable decoding algorithm can
determine a recovery operation that returns the system to
the codespace. Either this recovery is a perfect success, or a
failure resulting in a high weight logical error. However, in
real quantum systems the measurements are not perfect and
this simple story becomes more involved. The three main
strategies for tackling noisy measurements are as follows:
repeated measurements on the code [2,3]; performing mea-
surement driven error correction on a cluster state [4–9]; or
using a single-shot code and decoder [10]. Focusing on the
last strategy, the single-shot approach has the advantage of

*armandaoq@gmail.com
†mvasmer@perimeterinstitute.ca
‡joschka@roffe.eu
§earltcampbell@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

no additional time cost or cluster-state generation cost and
provides a resilience against time-correlated noise [11]. In
single-shot error correction, some residual error persists
after each round of error correction, but this residual error
is kept small and does not rapidly accumulate. However,
only a special class of codes support single-shot error cor-
rection, but exactly which codes and why is not yet fully
understood.

Bombín coined the phrase single-shot error correction
and remarked that it “is related to self-correction and
confinement phenomena in the corresponding quantum
Hamiltonian model.” [10]. He defined confinement for
subsystem codes, and showed that it is sufficient for single-
shot error correction with a limited class of subsystem
codes. In particular, he proved that the three-dimensional
(3D) gauge color code supports single-shot error cor-
rection, though it is unknown whether the correspond-
ing Hamiltonian exhibits self-correction. Later single-shot
error correction was numerically observed in a variety of
higher-dimensional topological codes, including the fol-
lowing: the 3D gauge color code [12], four-dimensional
(4D) surface codes [13] and their hyperbolic cousins [14],
and 3D surface codes with phase noise [15–17]. Campbell
established a general set of sufficient conditions, encap-
sulated by a code property called good soundness, that
ensured adversarial noise could be suppressed using a

2691-3399/21/2(2)/020340(35) 020340-1 Published by the American Physical Society



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

single-shot decoder [18]. While Campbell’s sufficiency
conditions explained single-shot error correction in a wide
range of codes, around the same time it was shown that
quantum expander codes [19–21] supported single-shot
error correction [22]. However, quantum expander codes
lack the soundness property so neither Bombín’s notion
of confinement or Campbell’s notion of soundness is suf-
ficient to encompass all known examples of single-shot
error correction. Our work provides the first framework
that captures all known forms of single-shot error cor-
rection, encompassing both previous approaches within a
single theory.

We can use different classical algorithms to decode a
given quantum code, and this choice will affect the utility
of the code. Different decoders have various time com-
plexities and error tolerances, which affects the resources
required by a quantum computer based on the code
[23–25]. Thus far, single-shot decoders come in two fla-
vors. The first are two-stage decoders [12,13], where stage
1 decoding repairs the noisy syndrome using redundancy
in the parity check measurements and stage 2 decoding
solves the corrected syndrome problem. The second fla-
vor of decoders computes a correction from the noisy
syndrome without attempting to repair it. Most exam-
ples of such decoders are local decoders, meaning that
the whole correction is made up of corrections computed
in small local regions of the code using syndrome infor-
mation in the immediate neighborhood [14–17,21,26,27].
However, there are some examples of nonlocal decoders
such as belief propagation (BP) being used for single-shot
error correction without syndrome repair [14,27]. A natural
question to ask is the following: what is the optimal decod-
ing strategy for single-shot codes? Even in the simple case
of the 3D toric code this is not well understood.

The remainder of this paper is structured as follows.
In Sec. II, we give a summary of our results. In Sec. III,
we formally state our results on confinement and single-
shot decoding. In Sec. IV, we detail the construction of 3D
product codes. In Sec. V, we present our numerical sim-
ulations and analyse their results. Finally, in Sec. VI, we
discuss future research directions that flow from this work.

II. SUMMARY OF RESULTS

This paper is in two parts: on the one hand, we propose
the concept of confinement as an essential characteris-
tic for a code family to display single-shot properties; on
the other, we investigate the single-shot performances of
the class of 3D homological product codes [19,28,29],
which we call 3D product codes. First, we introduce con-
finement in Sec. III. Loosely, confinement stipulates that
syndrome weight must increase with qubit weight, under
some caveats. We formalize the notion of a code family
having good confinement, which we prove is a sufficient
condition for single-shot decoding in the adversarial noise

setting. In addition to that, we prove that good linear con-
finement is a sufficient condition for a family of codes
to exhibit a sustainable single-shot threshold for local
stochastic noise (Appendix A). Second, we review the con-
struction of the 3D product codes in Sec. IV, and show that
the 3D surface and toric codes are particular instances of
this more general class of codes in Appendix B. We prove
that all 3D product codes have (cubic) confinement for
phase-flip errors (Appendix C), and therefore have single-
shot error correction for adversarial phase-flip noise. We
expect these codes to have single-shot error correction
for local stochastic phase-flip noise as well. In fact, our
definition of confinement generalizes the definition pro-
posed by Bombín [10] for the gauge color code and the
notion of robustness for expander codes [20]; since both
class of codes are proven to have a single-shot thresh-
old for local stochastic noise [10,22] we conjecture that
low-density parity-check (LDPC) codes with good (super-
linear) confinement have a threshold too. We investigate
this case numerically.

In the single-shot setting, the code always has some
residual error present and the error-correction procedure
introduces noise correlations in subsequent rounds of
single-shot error correction. How then do we assess suc-
cess or failure of a decoding algorithm? The concept of
sustainable threshold was proposed by Brown et al. [12]
as a metric for single-shot codes and decoders. We use
pth(N ) to denote the threshold of a code-decoder family
given N cycles of qubit noise, noisy syndrome extraction,
and single-shot decoding, with the N th cycle followed by a
single round of noiseless syndrome extraction and decod-
ing. The final round ensures that we return the system
to the codespace and assess success by the absence of a
logical error. We define the sustainable threshold of the
code-decoder family to be

psus = lim
N→∞

pth(N ). (1)

Numerically, this is estimated by plotting pth(N ) against N
and fitting to the following ansatz,

pth(N ) = psus{1− [1− pth(0)/psus]e−γ N }. (2)

We numerically estimate the sustainable error thresholds
of 3D toric and surface codes for two different two-stage
decoders. We surpass all previous single-shot error thresh-
olds for these code families, and we also obtain the highest
phase-flip noise threshold; see Table I. For our single-
shot simulations, we use an independent and identically
distributed noise model where each qubit experiences a
phase-flip error with probability p , and each stabilizer
measurement outcome is flipped with probability q = p .
We investigate two decoding strategies: one where we use
minimum-weight perfect matching (MWPM) for stage-1
decoding and belief propagation with ordered statistics

020340-2



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

TABLE I. Comparison of the error thresholds of toric code
decoders (results from this work are highlighted in bold).
For phase-flip noise, BP+OSD outperforms all prior art, and
approaches the theoretical upper bound given by mapping to a
statistical mechanical model. In the single-shot regime, MWPM
and BP+OSD outperforms the Sweep decoder (the theoretical
maximum is unknown in this case).

Toric code decoder Phase-flip threshold

Erasure mapping [30] 12.2%
Toom’s rule [15] 14.5%
Sweep [17] 15.5%
Renormalization group [13] 17.2%
Neural network [31] 17.5%
BP+OSD 21.55(1)%
Statistical phase transition [32–36] 23.180(4)%

Single-shot threshold

Sweep 1.7%
MWPM and BP+OSD 2.90(2)%

decoding (BP+OSD) for stage-2 decoding and another
where we use BP+OSD for both decoding stages. Figure 1
shows the 3D surface code sustainable threshold fit, using
the MWPM and BP+OSD decoding strategy. We find a
comparable sustainable threshold for the 3D surface code
using BP+OSD for both decoding stages, as shown in
Table II.

0 5 10 15

5 × 10−2

0.10

0.15

0.20

N

p
th

( N
)

data
Eq. (2) fit

1.0 1.5 2.0 2.5 3.0 3.5

×10−2

10−5

10−4

10−3

10−2

10−1

p

p
fa

il

L = 5
L = 7
L = 9
L = 11

FIG. 1. Numerical estimate of the sustainable threshold of the
3D surface code for a two-stage decoder where we repair the syn-
drome using MWPM, and solve the corrected syndrome problem
using BP+OSD. We plot the errors threshold pth(N ) for different
numbers of cycles, N . Using the ansatz in Eq. (2), we estimate
the sustainable threshold to be psus = 0.0308(4) with γ = 3.23.
The inset shows a plot of the logical error rate, pfail, against the
phase-flip and measurement error rate, p , for N = 8. The error
threshold pth(8) is the point at which the curves intersect (L is
the code distance).

TABLE II. Sustainable thresholds for 3D toric and surface
codes for different single-shot decoding strategies. For each entry
in the table, we did an analogous simulation to that described in
Fig. 1. The numbers in brackets are the standard errors.

Code MWPM and BP+OSD BP+OSD ×2

Surface 3.08(4)% 2.90(1)%
Toric 2.90(2)% 2.78(2)%

There is an important difference in single-shot decoding
for the 3D toric code when compared with the 3D surface
code. Specifically, in the 3D toric code, the syndrome-
repair stage of single-shot decoding can fail, producing a
“syndrome” for which there is no corresponding error. We
find that this failure mode substantially increases the logi-
cal error rate of the 3D toric code when compared with the
3D surface code (although the thresholds are very similar).
We provide a novel decoding subroutine for dealing with
these errors, which dramatically improves the performance
of the 3D toric code. Furthermore, our subroutine is appli-
cable to any single-shot LDPC code whose parity-check
matrix is not full rank.

The advantage of using BP+OSD for stage-1 decoding
is that, unlike MWPM, this decoder does not rely on the
special structure of the looplike syndrome present in 3D
toric and surface codes. We use BP+OSD for single-shot
decoding of a family of nontopological 3D product codes,
achieving sustainable thresholds that are comparable to
those of the 3D surface code. This is the second example
of single-shot decoding of nontopological codes, the first
being the quantum expander codes considered in Ref. [27].
Whilst our single-shot threshold (2.7%) is slightly below
the corresponding value observed in quantum expander
codes (3%), our code family has other advantages over
expander codes. Most importantly, the expansion prop-
erties of our code family are less severe, which implies
that our code family would be easier to implement in
architectures with geometrically constrained connectivity.

III. DEFINITIONS AND THEOREMS

In this section, we introduce the definition of confine-
ment for a stabilizer code and exhibit a theoretical two-
stage decoder, the shadow decoder, which we prove is
single shot on confined codes against adversarial noise. We
refer the reader to Appendix A to see how a variant of the
shadow decoder can be used to prove that good families of
codes with linear confinement have a single-shot threshold
for local stochastic noise.

A stabilizer code encoding k logical qubits into n physi-
cal qubits can be described by its stabilizer group S and a
syndrome map σ(·). The stabilizer group S is an Abelian
subgroup of the Pauli group Pn on n qubits, which does not
contain −1 and has dimension n− k. The syndrome map
is not unique: any generating set of the group S defines a

020340-3



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

valid syndrome map for the code. If {s1, . . . , sm} is one such
generating set, the associated function σ(·) maps a qubit
operator p ∈ Pn into the binary vector (s̄1, . . . , s̄m)T ∈ F

m
2 ,

where s̄i = 1 if si anticommutes with p and 0 other-
wise. Importantly, σ(·) is linear, meaning that σ(p · q) =
σ(p)+ σ(q) over F

m
2 . Because any Pauli operator p ∈ Pn

can be factorized as the product of an X and a Z oper-
ator pX and pZ , we can identify it with a binary vector
p̄ = (p̄X , p̄Z)T ∈ F

2n
2 , where the ith entry of p̄X /p̄Z is 1 if

and only if pX /pZ acts nontrivially on the ith qubit. Given
a Pauli operator p , its weight |p| is the number of qubits
on which its action is not the identity. Consider a stabilizer
code with syndrome function σ(·), then the reduced weight
of a Pauli operator p ∈ Pn on the physical qubits is

|p|red := min{|q| : σ(q) = σ(p), q ∈ Pn}.

A stabilizer code is said to be distance d if d is the min-
imum weight of a Pauli operator not in S that has trivial
syndrome. We refer to a code of length n, dimension k,
and distance d as a [[n, k, d]] code.

For a stabilizer code, we then have the following.

Definition 1 (Confinement). Let t be an integer and f :
Z→ R some increasing function with f (0) = 0. We say
that a stabilizer code has (t, f ) confinement if, for all errors
e with |e|red ≤ t, it holds

f (|σ(e)|) ≥ |e|red.

The reduced weight of operators is crucial in this
definition to avoid making confinement fail by adding sta-
bilizer operators to arbitrarily increase the weight of an
otherwise low weight error.

Let us contrast this with Bombín’s notion of confine-
ment (Definition 16 of Ref. [10]) that has some simi-
larities but allows only for linear functions of the form
f (x) = κx for some constant κ . Many codes, including
3D product codes, have superlinear confinement functions,
as such Bombín’s definition does not encompass them.
Moreover, the concept of confinement is closely related
to soundness [18] but it is weaker and so able to encom-
pass more families of codes, such as the expander codes
[19–21], which are confined but not sound. Roughly speak-
ing, a code has good confinement if small qubit errors
produce small measurement syndromes; this differs from
good soundness, which entails that small syndromes can
be produced by small errors.

Formally, we define the following notion of good con-
finement for a family of stabilizer codes.

Definition 2 (Good confinement). Consider an infinite
family of stabilizer codes. We say that the family has good
confinement if each code in it has (t, f ) confinement, where
the following holds:

1. t grows with the length n of the code: t ∈ �(nb) with
b > 0;

2. and f (·) is monotonically increasing and indepen-
dent of n.

We say the code family has good X confinement if the
above holds only for Pauli-Z errors.

Our main analytic result is that codes with good confine-
ment are single shot.

Theorem 1. Consider a family of [[n, k, d]] quantum-
LDPC codes with good confinement and growing distance
d ≥ anb with a > 0 and b > 0. This code family is single
shot for the adversarial noise model. If the code family only
has good X confinement then it is single shot with respect
to Pauli-Z noise.

We conjecture that the result of Theorem 1 can be
extended to deal with local stochastic noise and used to
show that LDPC codes with good confinement have a
single-shot threshold. In this direction, we are able to prove
that linear confinement is sufficient for codes to exhibit a
single-shot threshold in the local stochastic noise setting.

Theorem 2. Consider a family of [[n, k, d]] quantum-
LDPC codes with qubit degree at most ω − 1 and good
linear confinement such that d ≥ anb with a > 0 and b >

0. This code family has a sustainable single-shot thresh-
old for any local stochastic noise model. If the code family
only has good X confinement then it has a sustainable
single-shot threshold with respect to Pauli-Z noise.

We further prove that 3D product codes have X confine-
ment.

Theorem 3. All 3D product codes have (t, f ) X confine-
ment, where t is equal to the Z distance of the code and
f (x) = x3/4 or better.

Theorems 1 and 3 together motivate our numerical
experiments reported in Sec. V.

We now proceed to prove Theorem 1. To this end, we
use the shadow decoder that we introduce in Definition 3.
The shadow decoder differs from previous single-shot two
stage decoders (e.g., the MW single-shot decoder intro-
duced in Definition 6 of [18]) in that it does not rely on
metachecks on syndromes. If syndromes are protected by
a classical code, as is the case for X syndromes of 3D
product codes introduced in Sec. IV, then a single-shot
decoding strategy could work as follows: (1) correct the
measured syndrome whenever it does not satisfy all the
constraints defined by the metacode; (2) find a recovery
operator on qubits that has syndrome equal to the one
found at point (1). The shadow decoder, instead, corrects

020340-4



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

the syndrome both anytime it fails to satisfy all the con-
straints of the metacode and when it is generated by high
weight errors. We do not describe how to implement it or
make statements concerning the complexity of decoding.
Our proof makes similar assumptions as the Kovalev-
Pryadko quantum-LDPC threshold theorem [37] where
they assumed a minimum-weight decoder without address-
ing implementation issues. Indeed, decoding for arbitrary
LDPC codes is an nondeterministic polynomial-time com-
plete (NP complete) problem that we do not expect to be
efficiently solvable in full generality.

The building blocks of the shadow decoder are the
t shadows of the code. A t shadow is a set in the syndrome
space, which contains all the images of Pauli errors e on the
physical qubits that have weight at most t. In other words,
if we identify Pauli errors e on n qubits with 2n-bit strings
and we consider the metric space M = F

2n
2 endowed with

the Hamming distance [i.e., the distance d(ē1, ē2) between
the vectors ē1 and ē2 corresponding to the Pauli errors
e1 and e2, respectively, is defined as d(ē1, ē2) = |e1 + e2|]
then the t shadow of the code is the image, via the syn-
drome function σ(·), of the ball of radius t centered at 0
in M. Note that, because balls on M are not vector spaces,
the shadows are not vector spaces either.

We are now ready to introduce the shadow decoder.

Definition 3 (Shadow decoder). The shadow decoder has
variable parameter t > 0. Given an observed syndrome
s̄ = σ(e)+ s̄e where s̄e ∈ F

m
2 is the syndrome error, the

shadow decoder of parameter t performs the following two
steps:

1. Syndrome repair: find a binary vector s̄r of minimum
weight |s̄r| such that s̄+ s̄r belongs to the t shadow
of the code, where

t shadow = {σ(e) : |e| ≤ t}.
2. Qubit decode: find er of minimum weight |er| such

that σ(er) = s̄+ s̄r.

We call r = er · e the residual error.

A key result in proving Theorem 1 is the following
promise on the performance of the shadow decoder: when
a code has confinement, the weight of the residual error
after one decoding cycle is bounded by a function of the
weight of the syndrome error.

Lemma 1. Consider a stabilizer code that has (t, f ) con-
finement. Provided that the original error pattern e has
|e|red ≤ t/2, on input of the observed syndrome s̄ = σ(e)+
s̄e, the residual error r left by the shadow decoder of
parameter t/2 satisfies

|r|red ≤ f (2|s̄e|). (3)

Assume |e|red ≤ t/2. By construction, er has minimum
weight among all errors with syndrome σ(e)+ s̄e+ s̄r ∈ t/2
shadow of the code. In particular, |er| ≤ t/2. By the trian-
gular inequality for the weight function,

|er · e|red ≤ |er|red + |e|red ≤ t. (4)

Therefore, we can apply the confinement property on the
residual error r = er · e:

f
(|σ(er · e)|

) ≥ |er · e|red. (5)

By linearity of the syndrome function σ(·):
σ(er · e) = σ(er)+ σ(e) = s̄e + s̄r. (6)

Note that the syndrome error s̄e is a possible solution of
the syndrome repair step of the shadow decoder, because
by assumption |e|red ≤ t/2. Thus, |s̄r| ≤ |s̄e| and

|s̄e + s̄r| ≤ |s̄e| + |s̄r| ≤ 2|s̄e|. (7)

Combining these and the monotonicity of f leads to the
required bound on the residual error r = er · e:

|er · e|red ≤ f
(
2|s̄e|

)
. (8)

Theorem 1 follows directly from Lemma 1. In particu-
lar, Lemma 1 entails that a code with (t, f ) confinement
is robust against N cycles of qubit noise, noisy syndrome
extraction, and single-shot decoding, as explained below.

At each cycle τ , we assume that a new error eτ is intro-
duced in the system and it is added to the residual error
rτ−1. We assume that for the new physical error eτ and the
syndrome measurement error s̄τ

e the following hold:

|eτ |red ≤ t/4 and f (2|s̄τ
e |) ≤ t/4. (9)

We perform syndrome extraction on the state êτ = eτ ·
rτ−1. The noisy syndrome s̄τ = σ(êτ )+ s̄τ

e is used as input
for the shadow decoder of parameter t/2. The recovery
operator eτ

r found by the shadow decoder is then applied to
the state and finally a new cycle starts where rτ = eτ

r · êτ .
Let r0 = 1, so that the initial state of the system is given
by ê1 = e1, s̄1 = σ(ê1)+ s̄1

e . Note that if

|eτ |red, |rτ−1|red ≤ t/4 (10)

then |êτ |red = |eτ · rτ−1|red ≤ t/2 and the hypotheses of
Lemma 1. Combining this with the bound on the syndrome
error, Eq. (9), we obtain

|rτ |red ≤ f (2|s̄τ
e |) ≤

t
4

.

In conclusion, provided that the conditions on the physical
and the measurement errors, Eq. (9), are satisfied for each

020340-5



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

iteration up to τ − 1, the residual error after the τ th cycle
is kept under control too.

Theorem 2 is proven in Appendix A. There, we intro-
duce a novel notion of weight to describe local stochastic
errors: the closeness weight. We then present the stochas-
tic shadow decoder, a variant of the (adversarial) shadow
decoder of Definition 3. Importantly, on confined codes, it
keeps the closeness weight of the residual error under con-
trol over repeated correction cycles. Finally, the proof of
Theorem 2 follows by combining these results with some
classic percolation theory bounds.

The proof of Theorem 3 is very technical and is deferred
to Appendix C. It is an adaption of the one of soundness
for 4D codes given in Ref. [18], and it is reported in this
paper for completeness. We remind the reader that, for our
numerical studies on 3D product codes, we do not use the
shadow decoder, but rather heuristics that perform well
in practice. In particular, we use a two-stage decoder that
exploits a metacheck structure on syndromes and attempts
to repair the syndrome if and only if it does not pass all
metachecks (see Sec. V C).

Our main motivation to introduce the concept of con-
finement and the shadow decoder was to find a feature of
codes able to encompass all known examples of single-
shot codes. Campbell [18] introduced the notion of sound-
ness and showed that this property is a sufficient condition
for codes to show single-shot properties in the adversar-
ial setting. Nonetheless, Fawzi et al. [22] showed that
expander codes have a single-shot threshold for local
stochastic noise, even though they do not have the sound-
ness property. As already said though, expander codes do
have confinement. In Corollary 9 of Ref. [20] the authors
prove that their confinement function is linear and call
this property robustness. Confinement, in other words, fills
the gap leaved by the concept of soundness. Furthermore,
as Lemma 2 states, it is a requirement strictly weaker
than soundness: any LDPC family of codes with good
soundness has good confinement.

Definition 4 (Soundness [18]). Let t be an integer and
f : Z→ R be a function with f (0) = 0. Given a stabi-
lizer code with syndrome map σ(·) we say it is (t, f )

sound if for all error sets e with |σ(e)| ≤ t it follows that
f (|σ(e)|) ≥ |e|red.

Definition 5 (Good soundness [18]). Consider an infinite
family of codes with syndrome maps σn(·). We say that the
family has good soundness if each code in it is (t, f ) sound
where the following holds:

1. t grows with n such that t ∈ �(nb) with b > 0;
2. and f (·) is monotonically increasing and indepen-

dent of n.

It follows easily from Campbell’s definition of sound-
ness and our definition of confinement that the former
entails the latter.

Lemma 2. Consider a LDPC code that is (t, f ) sound with
f increasing. If its qubit degree is at most ω, then it has
((t/ω), f ) confinement.

If e is an error set with |e|red ≤ t/ω, for its syndrome the
following holds:

|σ(e)| ≤ t
ω
× ω = t. (11)

By soundness of the code,

f (|σ(e)|) ≥ |e|red. (12)

In conclusion, confinement successfully describes gen-
eral and inclusive properties related to single-shot error
correction. More than that, good confinement is a require-
ment strictly weaker than good soundness as the following
example illustrates. We consider the quantum expander
code family of Ref. [20], which has the following four
properties: (i) they have full-rank parity-check matrices;
(ii) they have (t, 3x) confinement, with t ∈ �(d); (iii) for
every small error e with |e| ≤ 3, we have |σ(e)| > 1 (see
Appendix D for details).

By property (i), every syndrome is a valid syndrome and
we can consider some weight-1 syndrome s. Assume to the
contrary that there exists an |e| ≤ t giving the syndrome
s = σ(e), then by (t, 3x) confinement

3|σ(e)| ≥ |e|red,

and plugging in |σ(e)| = 1 gives

3 ≥ |e|red.

We know by property (iii) that this would entail |σ(e)| > 1,
which leads to a contraction. Therefore, the assumption
|e| ≤ t must be false and so |e| > t.

Therefore, if the code family had (τ , ϕ) soundness, then

ϕ(1) > t. (13)

Because ϕ is the same across the whole family, and t ∈
�(d) increases proportionally to the code distance, by
considering bigger codes if necessary, this leads to a con-
tradiction. In other words, we show that this family of
expander codes with good linear confinement cannot have
good soundness.

The remainder of this paper is devoted to the study of the
3D product codes. We recall their construction in Sec. IV
and we numerically assess their single-shot performance
under local stochastic noise in Sec. V.

020340-6



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

IV. CODE CONSTRUCTION

The identification of Pauli operators p ∈ Pn with binary
vectors p̄ = (p̄X , p̄Z) ∈ F

2n
2 is a group homomorphism

(i.e., multiplication of Pauli operators corresponds to the
sum of their vector representation in F

2n
2 ) and because σ(·)

is linear, syndrome measurement can be simulated via a
matrix-vector product:

σ : F
2n
2 −→ F

m
2

(
p̄X
p̄Z

)
�→ H

(
p̄X
p̄Z

)
,

where the vector (p̄X , p̄Z)T ∈ F
2n
2 represents a Pauli error

on the physical qubits. Following the nomenclature from
classical coding theory, we refer to the syndrome matrix
H as parity-check matrix and we say that a code is LDPC
when its parity check is low density.

A stabilizer code is a Calderbank-Shor Steane (CSS)
code if its stabilizer group can be generated by the disjoint
union of a set of X operators and a set of Z operators. In
this case, its parity check is a block matrix:

H =
(

0 HX
HZ 0

)
, (14)

where HX has size mx × n and HZ has size mz × n if the
generating set of X stabilizers and Z stabilizers has cardi-
nality mx/mz. Equation (14) entails that syndrome extrac-
tion can be performed separately for the X component and
for the Z component. In fact, if a Pauli operator has vector
representation (p̄X , p̄Z)T = (p̄X , 0)T + (0, p̄Z)T ∈ F

2n
2 , then

for its syndrome the following holds:

H
(

p̄X
p̄Z

)
= H

(
p̄X
0

)
+ H

(
0
p̄Z

)

=
(

0
HZp̄X

)
+
(

HX p̄Z
0

)

=
(

0
s̄Z

)
+
(

s̄X
0

)
,

where s̄Z ∈ F
mz
2 and s̄X ∈ F

mx
2 . In other words, it is possible

to truncate these vectors without losing information and
deal with X and Z operators separately. For this reason, we
say that a CSS code is provided with two syndrome maps,
which correspond to the two blocks or matrices HX and
HZ , respectively. Accordingly, a CSS code will have a X
distance and a Z distance and can be compactly refereed to
as a [[n, k, dx, dz]] code.

For our purposes, it is useful to describe CSS codes in
terms of chain complexes. We first explain how a CSS code
yields a chain complex and then how to define valid CSS
codes starting from chain complexes. This last step ulti-
mately allows us to use a standard method to iteratively

build chain complexes, namely the product of complexes,
to build interesting CSS codes (see, for instance, Ref. [38]
for a comprehensive discussion on the subject).

Consider a CSS code C defined by the syndrome maps
HX and HZ of size mx × n and mz × n respectively. The
sequence of maps and vector spaces,

F
mz
2

HT
Z−→ F

n
2

HX−→ F
mx
2 , (15)

contains all the information needed to define C. In fact,
the dimension of the vector space in the middle, n, is the
length of the code, and the dimensions mx and mz of the
external spaces are, respectively, the number of X and Z
stabilizer generators. The logical dimension k of the code
C equates to

k = dim(ker HX )− dim(Im H T
Z )

= dim(ker HZ)− dim(Im H T
X ).

We use ker H for the kernel of H , which is the set of all v

such that Hv = 0. We use Im H for the image of H , which
is the set of all vectors w that can be written as w = Hv for
some v. The distances dx and dz are given by

dx = min{|v| such that v ∈ ker HZ , v �∈ Im(H T
X )},

dz = min{|v| such that v ∈ ker HX , v �∈ Im(H T
Z )}.

Lastly, because rows of HX and HZ represent the support
of X and Z stabilizer generators, respectively, we can also
verify that X and Z stabilizers commute by assuring that
the scalar product of each row of HX and any row of HZ
(or equivalently each row of HZ and any row of HX ) is 0
in F2. In fact, this is equivalent to verifying that the sup-
ports of any two X and Z stabilizer generators have even
overlap and therefore that they represent commuting Pauli
operators. In other words, for HX and HZ it holds that

HX H T
Z = 0 ∈ F

mx×mz
2 . (16)

To sum up, we completely define the CSS code C in terms
of the sequence described by Eq. (15), which in homology
theory is referred to as a length-2 chain complex. As we
now detail the converse is also true, and any chain complex
of length 2 or greater determines a CSS code.

A length 	 chain complex C is a collection of vector
spaces C0, . . . , C	 and linear maps δi : Ci → Ci+1:

C0 δ0−→ C1 −→ · · · −→ Ci δi−→ Ci+1 −→ · · · −→ C	, (C)

with the only constraint

δiδi−1 = 0, (17)

for i = 1, . . . , 	− 1. Whenever the spaces Ci are vector
spaces on the binary field F2 and 	 ≥ 2, we can define a

020340-7



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

CSS code on C. To see how this is the case, let 0 < i ≤
	− 1. We define a CSS code C(Ci) on the chain complex
C by equating

HZ = δT
i−1, HX = δi. (18)

Notice that the defining property of chain complexes,
Eq. (17), entails that our choice, Eq. (18), for HX and HZ
is valid: the stabilizer group generated by the X and Z
operators supported on rows of HX and HZ respectively, is
Abelian. Therefore, the unique CSS code C(Ci) associated
to the syndrome maps given in Eq. (18) is well defined.
Importantly, the parameters [[n, k, dx, dz]] of C(Ci) all have
a translation in the chain-complex language. Using such
terminology, we say that the code has length n = dim(Ci).
It is known that the number of logical qubits k is equal to
the dimension of the ith homology group Hi or, equiva-
lently, the dimension of the (i− 1)th cohomology group
H∗i+1, defined, respectively, as the quotient groups:

Hi = ker δi/Im δi−1,

H∗i+1 = ker δT
i−1/Im δT

i .

The X distance equates the minimum weight of any
nonzero vector in H∗i−1, while the Z distance is the min-
imum weight of any nonzero vector in Hi. It is easy to
verify that these definitions in terms of homology and
cohomology are actually equivalent to the ones given
above for the CSS code described by Eq. (15); we refer the
interested reader to Ref. [39] for a detailed presentation of
homology theory.

We introduce the homology language because it allows
us to succinctly describe the class of 3D product codes
studied here. By 3D product codes we refer to the CSS
codes derived by the homological product of three length-
1 chain complexes, as described in Ref. [40]. Given three
classical linear codes with parity-check matrices δA, δB,
and δC they define three length-1 chain complexes:

δA : C0
A −→ C1

A,

δB : C0
B −→ C1

B,

δC : C0
C −→ C1

C,

where C0
	 = F

n	
2 and C1

	 = F
m	
2 if δ	 has size m	 × n	 for

	 = A, B, C. By using tensor product and direct sum of vec-
tor spaces and maps, we can combine these three chain
complexes to build a bigger length-3 chain complex.

The tensor product is denoted by the symbol ⊗. Given
two vector spaces A and B over a field F, their tensor prod-
uct is the vector space A⊗B generated by the formal sums∑

a⊗b where a ∈ A and b ∈ B and the operator⊗ is bilin-
ear, i.e., for any a1, a2, b1, b2 in A and B, respectively, it

holds that

(a1 + a2)⊗b1 = a1⊗b1 + a2⊗b1,

a1⊗(b1 + b2) = a1⊗b1 + a1⊗b2.

If α : A→ A′ and β : B→ B′ are linear maps, their tensor
product is defined as the linear map:

α⊗β : A⊗B −→ A′⊗B′ :

a⊗b �−→ α(a)⊗β(b).

It is of course possible to iterate this construction and
define the tensor product of three (or more) spaces and
maps, as we do now in order to obtain a length-3 chain
complex C′′′ from the seed matrices δA, δB, δC. The chain
complex C′′′ is compactly described by the sequence of
spaces and maps:

C0
δ0−→ C1

δ1−→ C2
δ2−→ C3,

which correspond to the tensor-product structure:

C1
A ⊗ C1

B ⊗ C1
C

C1
A ⊗ C1

B ⊗ C0
C C1

A ⊗ C0
B ⊗ C1

C C0
A ⊗ C1

B ⊗ C1
C

C1
A ⊗ C0

B ⊗ C0
C C0

A ⊗ C1
B ⊗ C0

C C0
A ⊗ C0

B ⊗ C1
C

C0
A ⊗ C0

B ⊗ C0
C

C3

C2

C1

C0

δ2

δ1

δ0

where

C0 = C0
A⊗C0

B⊗C0
C,

C1 = C1
A⊗C0

B⊗C0
C ⊕ C0

A⊗C1
B⊗C0

C ⊕ C0
A⊗C0

B⊗C1
C,

C2 = C1
A⊗C1

B⊗C0
C ⊕ C1

A⊗C0
B⊗C1

C ⊕ C0
A⊗C1

B⊗C1
C,

C3 = C1
A⊗C1

B⊗C1
C,

and

δ0 =

⎛

⎜
⎝

δA⊗1⊗1
1⊗δB⊗1
1⊗1⊗δC

⎞

⎟
⎠ ,

020340-8



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

δ1 =

⎛

⎜⎜
⎜
⎝

1⊗δB⊗1 δA⊗1⊗1 0

1⊗1⊗δC 0 δA⊗1⊗1

0 1⊗1⊗δC 1⊗δB⊗1

⎞

⎟⎟
⎟
⎠

,

δ2 =
(
1⊗1⊗δC 1⊗δB⊗1 δA⊗1⊗1

)
.

It is easy to verify that the chain complex (C′′′) satis-
fies condition (17) for i = 1, . . . , 2 and it is therefore well
defined. As done above, we define a CSS code C(δA, δB, δC)

on (C′′′) by equating

HZ = δT
0 , HX = δ1.

We refer to the matrix M = δ2 as the metacheck matrix for
the X stabilizers. Condition (18) entails MHX = 0 and as
a consequence we can think of the matrix M as a parity-
check matrix on the X syndromes: any valid X syndrome
satisfies the constraints defined by M .

Remarkably, the parameters of the code C(δA, δB, δC) can
be derived in terms of the properties of the seed matri-
ces δA, δB, δC. In fact, let [n	, k	, δ	]/[nT

	 , kT
	 , dT

	 ] be the
parameters of the classical linear code with parity-check
matrix δ	/δ

T
	 , 	 = A, B, C. As shown in Ref. [40], the chain

complex (C′′′) yields an [[n, k, dx, dz]] code such that, if
k �= 0,

n = nT
anbnc + nanT

bnc + nanbnT
c ,

k = kT
a kbkc + kakT

b kc + kakbkT
c ,

dx = min{dT
a , dT

b , dT
c },

dz = min{dbdc, dadc, dadb}.

By convention, the distance of a code with dimension 0 is
∞. We define the single-shot distance dSS [18] of the chain
complex (C′′′) as the minimum weight of a vector in C2
that satisfies all the constraints given by δ2 (i.e., it belongs
to the kernel of δ2) but is not a valid X syndrome (i.e., it
does not belong to the image of δ1). In other words, dSS is
the minimum weight of a vector in the second homology
group H2 = ker δ2/ Im δ1 of the chain complex C. Follow-
ing Ref. [40] it is easy to verify that dSS = min{da, db, dc}
if H2 �= 0 and∞ otherwise.

It is important to note that, if the matrices δ	 are LDPC,
then their 3D product code is quantum LDPC. In fact, if δ	

has column (row) of weight bounded by c	 (r	), then δi has
column and row weight bounded by ci and ri, respectively,
where

i. c0 ≤ ca + cb + cc and r0 ≤ max{ra, rb, rc};
ii. c1 ≤ max{ca + cb, ca + cc, cb + cc}

and
r1 ≤ max{ra + rb, ra + rc, rb + rc};

iii. c2 ≤ max{ca, cb, cc} and r2 ≤ ra + rb + rc.

A. On geometric locality

In addition to preserving the LDPC properties of the
seed matrices, the 3D product yields local codes when
qubits are placed on edges of a 3D cubic lattice. We defer
the reader to Appendix B for a thorough discussion on the
embedding of 3D product codes on a cubic lattice and we
here present a loose summary.

Qubits of a 3D product code associated to the chain com-
plex (C′′′) are in bijection with basis elements of the space
C1; since C1 is the direct sum of the three vector spaces
C1

A⊗C0
B⊗C0

C, C0
A⊗C1

B⊗C0
C and C0

A⊗C0
B⊗C1

C we introduce
three different types of qubits: transverse, vertical, and
horizontal. Qubit types naturally correspond to the three
different orientations of edges on a cubic lattice, namely
edges parallel to each of the three crystal planes. Refer-
ring to this particular display of qubits, the stabilizers of
the code defined by Eq. (C′′′) have support as follows:

1. X stabilizers have support on a two-dimensional
(2D) cross of qubits of two types out of three, con-
tained in one of the three crystal planes; the crossing
is defined by a square face of a cube (see Fig. 7);

2. Z stabilizers have support on a 3D cross of qubits,
with crossing defined by a vertex of a cube (see
Fig. 8).

The cubic lattice considered can present some irregu-
larities: in general it is a cubic lattice with some missing
edges. Nonetheless, square faces and vertices are uniquely
defined and they correspond to a stabilizer every time they
contain at least one edge. More specifically, a square face
identifies two perpendicular lines of edges i.e., qubits on
a plane, which are the edges parallel to the boundary of
the square face itself. The corresponding X stabilizer has
support contained on those lines of edges i.e., qubits. Sim-
ilarly, a vertex identifies three perpendicular lines of qubits
and the corresponding Z stabilizer has support there con-
tained. When combined with some locality properties of
the seed matrices, this characteristic “cross shape” of the
stabilizers support entails that 3D product codes are local
on a cubic lattice (Proposition 1 in Appendix B). Here,
by locality, we mean that for some positive integer ρ, the
following hold:

1. any X -stabilizer generator has weight at most 2ρ

with support contained in a 2D box of size ρ × ρ;
2. any Z-stabilizer generator has weight at most 3ρ

with support contained in a 3D box of size ρ × ρ ×
ρ.

Interestingly, it follows easily as a corollary of our locality
proof that the 3D toric and surface codes are in fact 3D
product codes. We now detail an explicit construction of
the 3D toric and surface codes as 3D product codes and we
refer the reader to Appendix B for further details.

020340-9



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

The 3D toric code is the 3D product code obtained by
choosing δA = δB = δC = δ as seed matrices, where δ is
the parity-check matrix of the repetition code. For instance,
the 3D toric code with linear lattice size L = 3 is given by

δ =
⎛

⎝
1 1 0
0 1 1
1 0 1

⎞

⎠ .

In general, the 3D toric code of lattice size L, has
parameters

[[3L3, 3, L, L2]]

and single-shot distance dSS = L.
The 3D surface code is obtained from this construction

by choosing, for linear lattice size L = 3,

δA = δB =
(

1 1 0
0 1 1

)

and

δC =
(

1 1 0
0 1 1

)T

.

Therefore, for lattice size L, it has parameters

[[2L(L− 1)2 + L3, 1, L, L2]]

and single-shot distance dSS = ∞. Further details can be
found in Appendix B.

It should be noted that the surface and toric codes are
special instances of 3D product codes that have geometri-
cally local stabilizers. This is beneficial, as it means they
could be implemented on a quantum computer using only
nearest-neighbor (in 3D) interactions between qubits. The
disadvantage of the 3D surface and toric codes is that
they have fixed dimension, encoding only one and three
qubits, respectively. The 3D product construction can be
used to obtain codes that are not geometrically local, but
have improved encoding rates over the surface and toric
codes. We refer to these codes as “nontopological” codes
and investigate their decoding in Sec. V E.

V. NUMERICS

To assess the single-shot performance of the 3D product
codes, we simulate the decoding of phase-flip (Z) errors.
As 3D product codes are CSS codes, the relevant sta-
bilizers are the X stabilizers. Let ēZ ∈ F

n
2 describe the

support of a phase-flip error, i.e., (ēZ)i = 1 if qubit i has
a phase-flip error. The syndrome, s̄X , of this error is then

s̄X = HX ēZ , (19)

where HX ∈ F
m×n
2 is the parity-check matrix of the X

stabilizers of the code [see Eq. (14)].

Owing to the chain-complex structure of 3D product
codes (outlined in Sec. IV) the syndromes s̄X are them-
selves the codewords of a classical linear code with parity-
check matrix M such that Ms̄X = 0 for all s̄X ∈ Im(HX ).
We refer to such a code on the syndromes as a metacode.
The metacheck matrix can be used to detect and correct
syndrome noise.

In a two-stage single-shot decoder, stage-1 decoding
corrects the syndrome noise using M before stage-2 decod-
ing corrects the data qubits. In general, decoding is an
NP-complete problem that cannot be solved exactly in
polynomial time. However, good heuristic techniques exist
that allow approximate solutions to be efficiently com-
puted. In this work, we use two such decoding methods:
minimum-weight perfect matching and belief propaga-
tion plus ordered statistics decoding. Both MWPM and
BP+OSD are algorithms that run over graphical models
that encapsulate the structure of the code. We now briefly
describe each decoder.

A. Minimum-weight perfect matching

The minimum-weight perfect-matching decoder is use-
ful for codes in which chains of errors produce weight-2
syndromes. The method works by mapping the decoding
problem to a graph where nodes represent the code’s stabi-
lizer generators and weighted edges represent error chains
of different lengths. For a given pair of unsatisfied stabi-
lizers, MWPM deduces the shortest error chain that could
have caused it [41].

MWPM finds use for a variety of topological codes,
most famously for the 2D surface and toric codes [2,42–
45]. For 3D codes, MWPM is a suitable candidate for
the syndrome-repair step referred to as stage-1 decoding.
Specifically, the syndrome of a phase-flip error can be
viewed as a collection of closed loops of edges in a sim-
ple cubic lattice [46] (with boundary conditions depending
on the code). Measurement errors cause loops of syn-
drome to be broken, and the job of stage-1 decoding is to
repair these broken syndromes. To obtain the correspond-
ing matching problem, we create a complete graph whose
vertices correspond to the break-points of the broken syn-
drome loops, with edge weights that are equal to the path
lengths between the break points. We use the Blossom V
[47] implementation of Edmonds’s algorithm to solve this
matching problem. The edges in the matching correspond
to the syndrome-recovery operators.

B. Belief propagation + ordered statistics decoding

Belief propagation is an algorithm for performing infer-
ence on sparse graphs that finds widespread use in high-
performance classical coding. Classical LDPC codes, for
example, achieve performance close to the Shannon limit
when decoded with BP [48]. In the context of quantum

020340-10



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

coding, BP is useful for codes that do not produce pairs of
syndromes and therefore cannot be decoded with MWPM.

The BP algorithm maps the decoding problem to a
bipartite factor graph where the two node species repre-
sent data qubits and syndromes, respectively. Graph edges
are drawn between the data and syndrome nodes accord-
ing to the code’s parity-check matrix. The factor graph is
designed to provide a factorization of the probability distri-
bution that describes the relationship between syndromes
and errors. The BP algorithm proceeds by iteratively pass-
ing “beliefs” between data and syndrome nodes, at each
step updating the probability that a data node is errored.
The algorithm terminates once the probability distribution
implies an error pattern that satisfies the inputted syn-
drome. For a full description of the BP algorithm we direct
the reader to Ref. [49].

For quantum codes, the standard BP algorithm alone
does not achieve good decoding performance due to the
presence of degenerate errors. These cause “split beliefs”
and prevent the algorithm from terminating. Various meth-
ods have been proposed for adapting BP decoding to
quantum codes [27,50–54]. A particularly effective recent
proposal involves combining BP with a postprocessing
technique known as ordered statistics decoding [55]. The
OSD step uses the probability distribution outputted by BP
to select a low-weight recovery operator that satisfies the
syndrome equation.

The BP+OSD algorithm was first applied to quantum
expander codes by Panteleev and Kalachev [55]. Follow-
ing this, Roffe et al. [56] demonstrated that the BP+OSD
decoder applies more widely across a broad range of
quantum-LDPC codes, including the 2D surface and toric
codes. For this work, we use the software implementa-
tion of BP+OSD from Ref. [56], which can be downloaded
from Ref. [57].

C. The two-stage single-shot decoding algorithm

Our simulations of the two-stage single-shot decoder
employ two strategies. (1) MWPM and BP+OSD: stage-1
decoding is performed using MWPM and stage-2 decod-
ing uses BP+OSD. (2) BP+OSD× 2: both stages are
BP+OSD.

Algorithm 1 describes our methodology for the simula-
tions of the two-stage single-shot decoder.

The 3D toric code has a failure mode that is not present
in the 3D surface code. In such codes, syndromes s̄X exist
that satisfy all of the metachecks, Ms̄X = 0, but are invalid
syndromes, meaning that s̄X does not belong to the image
of HX . In other words, s̄X is invalid if there is no error
vector ēZ ∈ C1 with syndrome s̄X but s̄X is a codeword of
the metacode.

More generally, referring to the chain complex (C′′′):

C0
δ0−→
HT

Z

C1
δ1−→

HX
C2

δ2−→
M

C3

we see that nonvalid syndromes do exist whenever Im δ1 �

ker δ2. In the homology language, we say that invalid syn-
dromes are nontrivial elements of the second homology
group:

H2 = ker δ2/ Im δ1 = ker M/ Im HX .

If km is the dimension of H2, the set of invalid syndromes
is a vector subspace of C2 of dimension km whose vectors
can be written as ū+ HX ēZ where ū is a representative of
the equivalence class [ū] ∈ H2 and ēZ ∈ C1. Thus, if FM is
a matrix whose columns are km vectors in C2 that generate
H2 (meaning that they belong to km different equivalence
classes in H2), we can write any invalid syndrome s̄X as

s̄X = FM v̄ + HX ēZ , (20)

020340-11



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

where v̄ ∈ F
km
2 is nonzero if and only if s̄X is invalid and

ēZ is any error vector in C1.
By duality on (C′′′), the second cohomolgy group:

H∗2 = ker δT
1 / Im δT

2 = ker H T
X / Im M T,

has order km too. If LM is a matrix whose km rows generates
H∗2, then the product � = LM FM has full rank km because
both LM and FM have full rank. Moreover, since the rows
of LM in particular belongs to ker H T

X , it holds LM HX = 0.
Combining these two observations with Eq. (20) yields

LM s̄X = LM FM v̄ + LM HX ēZ

= �v̄,

where �v̄ = 0 if and only if v̄ = 0 because � is full rank.
In conclusion, we find that

LM s̄X �= 0

if and only if s̄X is an invalid syndrome. As a consequence,
we can assess whether a syndrome is invalid or not by cal-
culating this product. The meaning of matrices LM and FM
can be understood by looking at elements in H2 and H∗2
as logical operators of a CSS code defined on (C′′′) with
qubits in C2 (see Sec. IV). In this setting, the full-rank con-
dition rank(LM FM ) = km translates in the anticommuting
relation between logical X and logical Z operators of the
code.

In the 3D toric code, these invalid syndromes are loops
of edges around one of the handles of the torus, and are
equivalent to the logical operators of the metacode. It
is therefore possible to check whether stage-1 decoding
results in such a failure by checking whether the repaired
syndrome anticommutes with a matrix LM whose rows
generate the relevant group of the logical operators of
the metacode. When a metacode failure is encountered,
a failure-mode subroutine (line 13 of Algorithm 1) is
called that forces the repaired syndrome into the correct
form. This subroutine involves using BP+OSD to decode
a modified version of the metacheck matrix M ′ defined as
follows:

M ′ =
(

M
LM

)
. (21)

The additional constraints in the modified metacheck
matrix ensure that the repaired syndrome is never an
invalid syndrome. We use this subroutine only when we
have an invalid syndrome (rather than all the time) as the
LM component causes M ′ to have higher maximum row
and column weights than M , resulting in a reduction in BP
decoding performance. Indeed, the rows of LM must have
weight lower bounded by the transpose distances of the
seed codes [58]. Since the transpose distances of the seed

0.0 0.5 1.0 1.5 2.0 2.5 3.0

×10−2

10−4

10−3

10−2

10−1

100

q

p
fa

il

Metacode failure-mode error rate
Single-shot decoding (no subroutine)
Single-shot decoding (with subroutine)

FIG. 2. Single-shot decoding of the 3D toric code with L = 5,
with and without the metacode failure-mode subroutine. The fail-
ure rate pfail is plotted against increasing values of the syndrome
error rate q, whilst the phase-flip error rate is set to p = 0.1. With-
out the subroutine, the single-shot decoder rapidly converges to
the failure-mode error rate (dotted line). For large values of q the
subroutine improves the logical failure rate by over an order of
magnitude. In this simulation, BP+OSD is used for both stage-1
and stage-2 decoding.

codes also determine the Z distance of the quantum code
(Sec. IV), we want these quantities to be growing with the
length n of the code and therefore the matrix LM is not, in
general, LDPC.

We find that whilst the failure-mode subroutine does not
change the error threshold of the decoder, it does consider-
ably reduce the logical error rate for all values of the lattice
parameter L. This is illustrated for L = 5 in Fig. 2, which
shows the single-shot logical error rate with and with-
out the failure-mode subroutine. For large syndrome error
rates, Fig. 2 shows the failure-mode subroutine improves
decoding performance by over an order of magnitude.

D. 3D toric and surface codes

We estimate the sustainable threshold of the 3D toric and
surface codes using our two decoding strategies. For code-
capacity noise (i.e., perfect syndrome measurements), the
syndrome-repair step is not required, so both decoding
strategies are the same. For each code family, we observe
a code capacity threshold of pth ≈ 21.6%, as illustrated in
Fig. 3. To obtain our threshold estimates, we use the stan-
dard critical exponent method [59] (see Appendix E for
details). In the single-shot setting, we find similar perfor-
mance for both our decoding strategies, as summarized in
Table II. Our results compare favorably with the perfor-
mance of other decoders, which we list in Table I. We

020340-12



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

10−5

10−4

10−3

10−2

10−1

100

p

p
fa

il

L = 5
L = 7
L = 9
L = 11

0.21 0.215 0.22
0.4

0.5

0.6

FIG. 3. Code-capacity threshold of the 3D toric code. We plot
the logical error rate pfail as a function of the phase-flip error
rate p for codes with linear lattice size L. The inset shows an
enlargement of the threshold region, where the lines show the
threshold fit described in Appendix E. All data points have at
least 25 failure events. The error bars show the 95% confidence
intervals pfail = p̂fail ± 1.96

√
pfail(1− pfail)/η, where η ≥ 104 is

the number of Monte Carlo trials.

obtain the highest reported code-capacity threshold and the
highest reported single-shot threshold.

We remark that the sustainable threshold that we observe
for the 3D toric code is very close to the threshold of
MWPM for stringlike errors in the 3D toric code [60]. This
implies that the performance of decoder 1 (the syndrome-
repair step) is limiting the performance of the entire decod-
ing procedure, as was suggested in Ref. [13]. Although the
sustainable thresholds we observe for 3D surface codes
are slightly higher than for 3D toric codes, the codes we
consider are relatively small, which means that bound-
ary effects may be having an impact on our sustainable
threshold estimates.

We also investigate the suppression of the logical error
rate below threshold in the 3D toric code, using MWPM
and BP+OSD. We use the following ansatz for the logical
error rate for values of p < pth,

pfail(L) ∝ (p/pth)
αLβ

, (22)

where α and β are parameters to be determined. The code
distance of the 3D toric code for Z errors is L2, so if
the decoder is correcting errors up to this size, we would
expect β ≈ 2. Using the fitting procedure described in
Appendix E, we estimate β = 1.91(3) for N = 0 (code
capacity) and β = 1.15(3) for N = 8 (eight rounds of
single-shot error correction). Therefore, for the (relatively
small) codes that we consider, we find evidence that
BP+OSD is correcting errors of weight up to the code

distance. Viewed as an error-correction problem, the dis-
tance of the syndrome-repair step of decoding (i.e., the
single-shot distance dSS) is L, which is consistent with our
observed value of β in the single-shot case. This provides
further evidence that the bottleneck of our single-shot
decoding procedure is the syndrome-repair step.

E. Nontopological codes

Up to this point, we explore the single-shot decod-
ing performance of the 3D surface and toric codes. As
explained in Sec. IV A, the 3D surface and toric codes
are topological codes obtained by taking the 3D product
of classical repetition codes. In this section, we extend our
numerical analysis to nontopological codes constructed via
the 3D product of random classical codes. Our motivation
for investigating nontopological codes is twofold. First, by
demonstrating that a random 3D product code has a sus-
tainable threshold, we provide evidence for our conjecture
that the results of Theorems 1 and 3 extend to the stochastic
noise setting. Second, we provide evidence that BP+OSD
is a general decoding method that applies beyond the class
of well-studied topological 3D product codes.

Table III shows a family of nontopological codes
C(δA, δB, δC) obtained by taking the 3D product of a ran-
dom code, δA, with two codes obtained from full-rank
repetition codes, δB and δC. For this example, we choose
δA to be a classical LDPC code constructed by ran-
domly generating parity checks under the constraint that
the parity-check matrix δA has column and row weights
upper bounded by three and four, respectively. The specific
advantage of nontopological codes is that they can have
nonfixed dimension. For example, the d = 6 instance of
C(δA, δB, δC) encodes four logical qubits, whilst the d = 10
instance encodes ten logical qubits. In contrast, the dimen-
sion of the surface and toric codes are fixed at one and three
for all code distances. The trade-off is that nontopologi-
cal codes have nonlocal stabilizer checks, meaning they
would have to be implemented on hardware with the ability
to perform beyond-nearest-neighbor interactions between

TABLE III. A family of 3D product codes. The seed codes
{δA, δB, δC} are set as follows: δA is a parity-check matrix of an
[n, k, d] LDPC code constructed under the constraint that the
column and row weights of its parity-check matrix are upper
bounded by three and four, respectively; δB is a [L, 1, L] full-rank
repetition code; δC is the transpose of a [L, 1, L] full-rank repeti-
tion code. We denote by C(δA, δB, δC) the 3D product code with
seed matrices δA, δB, δC. The code distance is set to∞ for codes
of dimension 0.

δA δB δC C(δA, δB, δC)

[16, 4, 6] [6, 1, 6] [6, 0,∞] [[1336, 4, 6]]
[20, 5, 8] [8, 1, 8] [8, 0,∞] [[3100, 5, 8]]
[24, 6, 10] [10, 1, 10] [10, 0,∞] [[5964, 6, 10]]

020340-13



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

1.5 2.0 2.5 3.0

×10−2

10−2

10−1

100

p

p
fa

il

L = 6
L = 8
L = 10

0.026 0.027
0.5

0.6

0.7

FIG. 4. Threshold plot for the family of nontopological 3D
product codes listed in Table III after 16 rounds of single-shot
error correction using the BP+OSD× 2 decoder. The simulation
results suggest a threshold at 2.7%. The error bars show the 95%
confidence intervals pfail = p̂fail ± 1.96

√
pfail(1− pfail)/η, where

η is the number of Monte Carlo trials.

qubits. An interesting feature of product-code construc-
tions is that they can be used to interpolate between
completely local topological codes and random quantum
LDPC codes, as explored for the 2D setting in Ref. [56].

To numerically benchmark the single-shot performance
of the nontopological code family listed in Table III, we
simulate error correction under the two-stage decoder. The
strategy we employ is BP+OSD× 2, for which both stage-
1 and stage-2 decoding use the BP+OSD decoder. The
MWPM and BP+OSD strategy used for the surface and
toric codes would not work in this setting, as nontopolog-
ical codes do not have the looplike metacheck syndromes
required for MWPM decoding. The simulation results are
summarized by Fig. 4, which shows a sustained threshold
for the C(δA, δB, δC) family of nontopological codes in the
region of 2.7%. This result demonstrates that the BP+OSD
decoding strategy can be used to decode new 3D product
codes and achieve performance close to that of established
codes such as the 3D surface and toric codes.

VI. CONCLUSION

In this paper, we investigate single-shot decoding of 3D
product codes. We gave a formal definition of confine-
ment in quantum codes and proved that all 3D product
codes have confinement for Z errors. We also prove that
confinement is sufficient for single-shot error correction
against adversarial noise. This is a strengthening of the
result of Campbell [18], who showed that a property called
soundness is sufficient for single-shot error correction, in
that soundness implies confinement but the converse is

not true. Remarkably, there are important classes of codes,
such as quantum expander codes, which have confine-
ment but not soundness. Further to that, we prove that
codes with linear confinement, and so expander codes, do
have a single-shot threshold for local stochastic noise. The
obvious open problem arising from our work is how to
extend our findings for linear confinement to the superlin-
ear case. Is confinement, in general, a sufficient condition
for quantum-LDPC codes to exhibit a single-shot thresh-
old? If not, what other requirements should a code satisfy
to ensure the existence of a single-shot threshold?

We simulate single-shot error correction for a variety
of 3D product codes, concentrating on 3D toric and sur-
face codes. Using MWPM and BP+OSD, we achieve the
best known code-capacity error threshold and sustainable
single-shot error threshold for this code family (for phase-
flip noise). Our results strongly suggest that the bottleneck
of two-stage decoders is the first stage where the noisy
syndrome is repaired. For the 3D toric code, the opti-
mal threshold of the syndrome-repair step is 3.3% [33],
whereas the optimal threshold of the entire decoding prob-
lem is 11.0% [35]. This implies that two-stage decoders
can never achieve optimal performance in these codes, so
perhaps other single-shot decoding methods ought to be
investigated in future.

We also simulate single-shot error correction for a fam-
ily of nontopological 3D product codes, using BP+OSD for
both decoding steps. We achieve performance very close to
that of the 3D toric and surface codes, which indicates that
BP+OSD is a high-performance single-shot decoder. Fur-
thermore, the versatility of BP+OSD means that we expect
it to work as a single-shot decoder for general LDPC 3D
product codes. We leave confirmation of this to future
work, and we conjecture that BP+OSD will achieve good
performance for other classes of quantum-LDPC codes
such as topological fracton codes [61,62].

ACKNOWLEDGMENTS

This work is supported by the Engineering and Physi-
cal Sciences Research Council [Grants No. EP/P510270/1
(J.R.S.) and No. EP/M024261/1 (E.T.C. and J.R.)].
J.R. and E.T.C. were supported by the QCDA project
(EP/R043825/1) which has received funding from the
QuantERA ERA-NET Cofund in Quantum Technologies
implemented within the European Union’s Horizon 2020
Programme. J.R. also acknowledges funding from BMBF
(RealistiQ) and the DFG (CRC 183). M.V. thanks Alek-
sander Kubica and Nikolas Breuckmann for illuminating
discussions. We thank Rui Chao for comments on an early
version of the paper. Research at Perimeter Institute is sup-
ported in part by the Government of Canada through the
Department of Innovation, Science and Economic Devel-
opment Canada and by the Province of Ontario through the
Ministry of Colleges and Universities. This research was

020340-14



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

enabled in part by support provided by Compute Ontario
[63] and Compute Canada [64]. This work was completed
while E.T.C. was at the University of Sheffield.

APPENDIX A: LINEAR CONFINEMENT AND
SINGLE-SHOT THRESHOLD

We present the stochastic shadow decoder, a variant of
the (adversarial) shadow decoder described in Definition
3, and prove that it succeeds in correcting errors that
have connected components that are sufficiently sparse and
of bounded size, both on the syndrome and the qubits
(Lemma 6). Theorem 2 will then follow from Lemma 6 on
the performance of the stochastic shadow decoder: a fam-
ily of codes with good linear confinement has a single-shot
threshold under the local stochastic noise model.

This appendix is organized as follows. After fixing
some graph-theory notation in Appendix A 1, we intro-
duce a novel weight function for node sets in a graph,
the closeness function, Appendix A 2. We prove that
the closeness weight function preserves confinement and
that the stochastic shadow decoder can be used on con-
fined codes to keep the closeness of error under control
(Appendix A 3). Crucially, the closeness weight function
characterizes the structure of local stochastic errors better
that the Hamming weight does, as some classic results in
percolation theory show. We conclude, in Appendix A 4,
by showing that a family of codes with good linear con-
finement has a sustainable single-shot threshold (Theorem
1). Our proof is built on the results in Refs. [22,65], where
the authors prove that expander codes (which have linear
confinement) have a single-shot threshold when decoded
via the small-set flip decoder.

1. Notation and preliminaries

Given a stabilizer code on n qubits with stabilizer group
S ⊆ Pn, we associate to it two graphs: (Gq,∼q), the qubit
graph, and (Gs,∼s), the syndrome graph. The set of nodes
are Gq, the n qubits, and Gs, a generating set of the stabi-
lizer group S [66]. The adjacency relations ∼q and ∼s are
defined as

q1 ∼q q2 ⇔ ∃s ∈ Gs such that {q1, q2} ⊆ supp(s),

s1 ∼s s2 ⇔ ∃q ∈ Gq such that q ∈ supp(s1) ∩ supp(s2);

where the support supp(s) of a Pauli operator s in Pn is the
set of all the qubits on which its action is nontrivial. We
use lowercase symbols for Pauli operators in Pn and the
corresponding uppercase symbol to indicate its support,
e.g., E := supp(e). We use the term error to refer inter-
changeably to a Pauli operator or its support, in particular
given two Pauli operators e1 and e2 we use the symbol +
to indicate the support of the product operator e1 · e2 [67],

so that
E1 + E2 = supp(e1 · e2).

In this picture, the syndrome σ(·) maps the set of Pauli
operators on n qubits Pn into the power set of Gs,

σ : Pn −→P(Gs)

e −→ {s ∈ Gs : se = −es}.
We define the neighbor map � as

� : Pn −→P(Gs)

e −→ {s ∈ Gs : supp(s) ∩ E �= ∅}.
With slight abuse of terminology, we call syndrome any
element of P(Gs), even when such a set does not belong
to the image of σ . When referring to an error as a set E,
it is always to be intended as corresponding to a fixed
Pauli operator e ∈ Pn such that E := supp(e). We write
interchangeably σ(e)/σ (E) and �(e)/�(E) to indicate
the image, via the syndrome map and the neighbor map,
respectively, of the Pauli error e.

Given two syndromes sets in Gs we use the symbol + to
indicate their symmetric difference. It is easy to verify that
the map σ(·) preserves the + operation (i.e., it is linear):

σ(e1 · e2) = σ(E1 + E2) = σ(E1)+ σ(E2).

Moreover, the image via σ of disjoint nonconnected sets
is disjoint. In fact, if E1, E2 are two disjoint nonconnected
sets in Gq and we suppose that their syndrome sets are not
disjoint we find a contradiction. Let ŝ be a stabilizer in
σ(E1) ∩ σ(E2). By definition of σ , this entails that e1 and
e2 both anticommute with ŝ, which is equivalent to say-
ing that their supports have odd overlap with supp(ŝ). In
particular, there exists qi ∈ Ei such that qi ∈ supp(ŝ) and,
by the definition of the adjacency relation ∼q, q1 ∈ E1 and
q2 ∈ E2 would be connected via ŝ, against the assumption.
Note that, in general the image via the syndrome map σ(·)
of a connected set needs not to be connected. However, the
neighbor function �(·) maps connected sets into connected
sets. We make use of these properties in Appendix A 3.

2. The closeness weight function

When errors are local stochastic it can be handy to use
definitions of weight other than the cardinality and Ham-
ming weight. For instance, the authors in Ref. [22] define
the quantities of Definition 6 and study a related notion of
percolation to understand the tolerance to errors of a given
connected graph.

Definition 6 (α subsets, MaxConnα(E) [22]). An α subset
of a set E ⊆ Gq is a set K such that |K ∩ E| ≥ α|K |. The
maximum size of a connected α subset of E is denoted by
MaxConnα(E).

020340-15



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

We here introduce a conceptual cousin to MaxConnα(E),
the β closeness of an error set E, and prove that it is a well-
defined weight function (see Lemma 3). We do not explic-
itly detail the relations between α subsets and closeness
here. However, we implicitly use them, as our percolation
results and ultimately the proof of Theorem 1 heavily rely
on those relations and the proofs in Refs. [22,65].

Definition 7 (β closeness). Let G be a connected graph,
i.e., a graph in which there exist a path between any two of
its nodes. Given a subset E of nodes and a positive integer
β, we define its β closeness as the quantity:

‖E‖β := max{|K ∩ E| : K is connected, |K | = β}.

We call any connected subset of β nodes a β patch and any
β patch K such that |K ∩ E| = ‖E‖β maximal patch for E.

Since we are interested in the β closeness of error sets
on a qubit graph Gq, it is natural to introduce the notion of
reduced β closeness.

Definition 8. Given a qubit error set E ⊆ Gq, its reduced
β closeness ‖E‖red

β is defined as

‖E‖red
β := min{‖E + T‖β : σ(E + T) = σ(E),

T = supp(t) for some t ∈ Pn}.

Crucially, we see in Lemma 5 that the closeness function
preserves confinement. As a consequence, we can build a
variant of the shadow decoder (Definition 9) that succeeds
in correcting errors of small reduced closeness.

We now prove some basic properties of the β-closeness
weight function ‖ · ‖β on a connected graph G.

Lemma 3. Let G be a connected graph and denote by |G|
the number of its nodes. For any positive integer β < |G|,
the following hold:

(i) ‖ · ‖β ≤ | · |;
(ii) ‖ · ‖β ≤ β; the equality holds if and only if the con-

sidered set of nodes has a connected component of
size at least β; conversely, if ‖ · ‖β < β then the
connected components of the set all have size less
than β;

(iii) it is positive:‖E‖β ≥ 0 and equality holds if and
only if E = ∅;

(iv) it satisfies the triangle inequality: for any E1, E2,
‖E1 ∪ E2‖β ≤ ‖E1‖β + ‖E2‖β .

(v) it is monotonic: if E1 ⊆ E2 then ‖E1‖β ≤ ‖E2‖β;

In the following, let K ⊆ G be a maximal β patch for E,
i.e., ‖E‖β = |K ∩ E|.

(i) ‖E‖β = |K ∩ E| ≤ |E|.

(ii) |K ∩ E| ≤ |K | = β. Equality holds if and only if
K ∩ E = K ⊆ E, which entails that E has a con-
nected component of size at least β, since K is
connected.

(iii) If E is nonempty then there exists at least one node
g ∈ E. Since G is connected, for any integer 1 ≤
β ≤ |G| there exists a β patch that contains g so that
‖E‖β ≥ 1.

(iv) Let J be any β patch in G. The following hold:

|J ∩ (E1 ∪ E2)| = |(J ∩ E1)| + |(J ∩ E2)| +
− |J ∩ (E1 ∩ E2)|
≤ |J ∩ E1| + |J ∩ E2|
≤ ‖E1‖β + ‖E2‖β .

Since this holds for any β patch, we obtain

‖E1 ∪ E2‖β ≤ ‖E1‖β + ‖E2‖β .

(v) Let K1, K2 be maximal β patches for E1 and E2,
respectively. Then

|K1 ∩ E1| ≤ |K1 ∩ E2| because E1 ⊆ E2,

≤ |K2 ∩ E2| by maximality of K2,

which yields ‖E1‖β ≤ ‖E2‖β .

Lemma 2 below states that there exists a canonical form
for maximal β patches of an error set E. Roughly speak-
ing, a canonical β patch K will be made up of some entire
connected components of E, plus at most one connected
proper subset of a connected component of E, and some
other nodes not in E (see Fig. 5). The existence of a canon-
ical β patch is key in proving that the closeness function
preserves confinement in the sense explained by Lemma 5.

Lemma 4 (Canonical β patch). For any error E on a qubit
graph G there exists a maximal β patch T such that, for all
but one connected component Ei of E, the following holds:

either Ei ⊆ T or Ei ∩ T = ∅.
In other words, if E1, . . . , Em are the connected compo-
nents of E, reordering if necessary, there exists an index
ν such that

|T ∩ Ei| = |Ei| if i < ν,

|T ∩ Ei| ≤ |Ei| if i = ν,

|T ∩ Ei| = 0 if i > ν. (A1)

We call any such T a canonical β patch for the set E.

Let J be any maximal β patch for E, i.e., J is connected,
has size β and |J ∩ E| = ‖E‖β . Starting from J we build a

020340-16



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

(a) (b)

FIG. 5. Graphical representation of patches on a graph. To help the visualization we imagine the qubit graph and the syndrome graph
to be superimposed. Black rectangles: connected components of the error E1, . . . , E5. Dashed grey lines: neighbour sets �(Ei) of the
underlying rectangle and error component. Orange crosses: syndrome nodes in σ(Ei). Dotted blue curve: t patches on the qubit graph.
Green curve: ωt patches on the syndrome graph. In (a) the patches are generic while in (b) the dotted and error patch is a canonical
patch for the error. The importance of the canonical form for a patch is highlighted in the differences between the patches in (a),(b).
We observe how the crosses and syndrome nodes σ(Ei) are scattered inside the dashed curve and neighbor set �(Ei). For this reason,
in order to group enough syndrome nodes inside a patch of bounded size, we need some care in the choice of the error nodes. When
we include entire connected components of the error in a patch in Gq, we are able to build a patch in Gs, which includes entire neighbor
sets and, as a consequence, all the corresponding syndrome nodes. In fact, even if we assume that the dotted blue and error patches
in (a),(b) have the same size, when we enlarge them by a factor of ω to build the green and syndrome patch, we obtain dramatically
different results. In (a) since the dotted and error patch contains several incomplete components, the corresponding green and syndrome
patch contains incomplete portions of the dashed and neighbor sets �(Ei). Hence, we have no guarantee on the number of crosses and
syndrome nodes included in the patch. In (b) the dotted blue patch is a canonical patch for the error. We can see how the green and
syndrome patch entirely contains the dashed and neighbor sets of all but one component of the error contained in the dotted blue and
qubit patch. In this way we have the certainty to include in the green and syndrome patch a sufficient number of crosses and syndrome
nodes to ensure confinement.

set T with the desired form. Write J ∩ E as disjoint union
of connected sets:

J ∩ E = J1 � · · · � Jν .

We call these Ji’s patch-error components. Let E1 . . . Eμ be
the connected components of the error E. We recall that a
connected component Ei of E is a connected set, which is
connected to no additional nodes in E \ Ei. We say that Ei
is incomplete with respect to J if it has nontrivial overlap
with J but it is not entirely contained in J , i.e.,

J ∩ Ei �= ∅ & Ei �⊆ J ⇒ |J ∩ Ei| < |Ei|.

Note that it can be the case for two disjoint (but internally
connected) error-patch components Ji1 and Ji2 to overlap
with the same incomplete error component Ei′ .

We consider a metagraph G whose metanodes are con-
nected sets in G and metaedges are paths in G. Because
the error-patch components are both internally and recip-
rocally connected in J , there exists a meta spanning tree
T ⊆ G whose ν nodes Ji are the error-patch components
Ji and whose metaedges εij are formed by minimum length
paths in G between the Ji’s with nodes in J \ E. In the
following we indicate with T ,Ji and εij the metatree, its
metanodes, and its metaedges and with T, Ji, and ei,j the

corresponding sets of nodes in G. Note that, by this identifi-
cation, T has at most β nodes. We now show how to modify
the metatree T so that the corresponding set of nodes T in
G is canonical for E. We do this in two steps: the balancing
and the enlargement step.

a. BALANCING

We show by induction on the number ν of the metanodes
Ji’s that it is possible to modify T so that the correspond-
ing set of nodes T ⊆ G satisfies conditions (A1) on its
overlap with the connected components of E.

ν = 1 : the thesis is trivially verified.
ν > 1 : if J is not canonical for E then E must have at

least two incomplete components with respect to the patch
J . Let J	 be a metaleaf of T and J	 its corresponding sub-
set of nodes in G. We iteratively remove from T the nodes
of J	, both preserving connectivity of T and the size of
T ∩ E.

For any node qλ in J	, we choose a node qχ such that
the following holds:

i. qχ belongs to some incomplete component of the error
disjoint from J	: qχ ∈ Eχ and Eχ ∩ J	 = ∅;

020340-17



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

ii. qχ is a new node, i.e., it does not belong to J : qχ ∈
G \ J ;

iii. qχ is connected to at least one node in some error-
patch component other from J	: qχ ∼q qχ ′ , qχ ′ ∈ Jχ

for some χ �= 	.

We remove qλ from J and add qχ to J , and thereby
update T accordingly. This process terminates when either
(a) we are not able to find such a new node qχ or (b) there
are no more nodes qλ in J	.

Case (a) entails that E has at most one incomplete com-
ponent with respect to T. In fact, if E had an incomplete
component Eχ disjoint from J	 such a node qχ always
exists. As a consequence, if we are not able to find a new
error node to enlarge one of the error-patch components
Jχ �= J	 the only incomplete component of E must be the
one relative to J	. The updated node set T has the desired
property, provided that we had removed nodes qλ from J	

preserving connectivity (for instance, considering a span-
ning tree for nodes in J	 and iteratively removing leaves).
If case (b) is verified, we remove from T all the metaedges
that are incident to J	. The updated metatree T derived
from the updated set T has ν − 1 metanodes. By the induc-
tion hypothesis, it can be modified to obtain the desired
form.

In other words, we pick a metaleaf of T and we either
remove part of its nodes [case (a)] or all of them [case
(b)]. We preserve the quantity |T ∩ E| by adding new error
nodes to some different error-patch component that over-
laps with an incomplete component of the error E. By
choosing a leaf, we are able to preserve the connectivity
of T and thus the connectivity of the corresponding node
sets T.

We iterate this procedure over metaleaves of T until the
overlap of the corresponding set T in G and the error set E
has the desired form.

b. ENLARGEMENT

By contradiction, we prove that it is possible to add
nodes to the set T corresponding to the balanced metatree
T so that it is connected, it has size exactly β and |T ∩
E| = ‖E‖β . First note that during the balancing procedure,
the number |T ∩ E| remains constant and the following
holds:

|T ∩ E| =
ν∑

i=1

|Ji| = |J ∩ E| = ‖E‖β .

Moreover, the initial tree is connected and the balancing
procedure preserves connectivity. However, we only have
an upper bound on the size of T. In fact, if T is the ini-
tial metatree and T is its corresponding subgraph in G, it
holds T ⊆ J and therefore |T| ≤ β. During the balancing

step the size of T could decrease when we remove nodes
of eij , belonging to a metaedge εij . Thus, in general, after
the balancing step for the weight of T holds:

|T| ≤ β.

If |T| = β, then T is a β patch with maximum overlap
with E and, by balancing, it is canonical. If |T| < β, then
there must exist at least β − ‖E‖β nodes in G \ (E ∪ T)

that are connected to T. In fact, a connected proper sub-
set can always be enlarged in a connected graph. If the
only way to enlarge T to a β patch were by adding nodes
in E, then we would have found a β patch whose overlap
with E has size greater than its β closeness, which con-
tradicts the definition of ‖E‖β . In conclusion, any of such
enlargements of the tree T is a canonical β patch for E.

3. Confinement and stochastic shadow decoder

Here, we first prove that the closeness function pre-
serves confinement, as Lemma 5 states. Then, we present
the stochastic shadow decoder (Definition 9) and prove,
in Lemma 6, that it succeeds in correcting errors of small
enough closeness. These findings, together with the perco-
lation results of Appendix A 4, will yield the proof of the
existence of a single-shot threshold for codes with linear
confinement.

Lemma 5 (Closeness preserves confinement). Consider a
code with qubit degree at most ω̃ and (t, f ) confinement,
where f is convex. Then, for any error E with ‖E‖red

t ≤
(t/2), the following holds:

f (‖σ(E)‖ωt) ≥ ‖E‖red
t ,

where ω = ω̃ + 1.

To ease the notation, let F be an error set such that
σ(E) = σ(F), ‖F‖t = ‖E‖red

t . If F1, . . . , Fμ are the con-
nected components of F , by Lemma 4 there exists a
canonical patch K for F such that

|K ∩ Fi| = |Fi| if i < ν,

|K ∩ Fi| ≤ |Fi| if i = ν,

|K ∩ Fi| = 0 if i > ν.

for some ν ≤ μ+ 1.
First, we prove that there exists a ωt patch J in the

syndrome graph Gs such that it contains the syndrome of
the connected components F1, . . . , Fν of the error, which
intersect the canonical patch K :

ν⊔

i=1

[σ(Fi)] ⊆ J .

Then, we prove that such a patch J has overlap with σ(F)

of Hamming weight large enough to ensure confinement

020340-18



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

with respect to the closeness function:

f (‖σ(F)‖ωt) ≥ ‖F‖t.

We then find the desired bound on E using the initial
assumptions σ(F) = σ(E) and ‖F‖t = ‖E‖red

t .

a. EXISTENCE OF J

We build a ωt patch J on Gs as follows. We define J as
the disjoint union of the (at most) ω̃|Fi| connected nodes
�(Fi):

J =
ν⊔

i=1

�(Fi).

Let π be the set of edges of a minimum length path in K
that connects all its ν disjoint error components Fi. These
edges correspond naturally to a set πs ⊆ Gs if we asso-
ciate to the edge (q1, q2), the corresponding stabilizer in
Gs, remembering that

q1 ∼q q2 ⇔ {q1, q2} ⊆ supp(s), s ∈ Gs.

Under this identification, importantly, adjacent edges are
mapped into neighboring syndrome nodes. We add the set
πs to J . As a result, J is now connected. For the size of J ,
the following holds:

|J | ≤ ω̃

ν∑

i=1

|Fi| + |πs|.

By hypothesis, t/2 ≥ ‖F‖t = |K ∩ F| and because K is
canonical for F , i.e., |K ∩ F| ≤∑ν

i=1 |Fi|, we have

ν−1∑

i=1

|Fi| ≤ t
2

.

Combining property (ii) of the closeness weight function
and the assumption ‖F‖t ≤ (t/2), yields, for any i, and ν

in particular,

|Fi| ≤ t
2

. (A2)

Since π has edges in K , πs has size at most |K |, i.e.,

|πs| ≤ t.

Adding up, we obtain

|J | ≤ ωt,

where ω = ω̃ + 1. By enlarging J if necessary to include
exactly ωt nodes, and remembering that by construction it
is connected, we find that J is a ωt patch in Gs, as desired.

b. OVERLAP OF J WITH THE ERROR SYNDROME

Equation (A2) entails in particular that any connected
error component F1, . . . , Fν that has nontrivial overlap
with the patch K , has size smaller than t and therefore it
has confinement:

f (|σ(Fi)|) ≥ |Fi|. (A3)

Because σ maps disjoint sets of Gq in disjoint sets of Gs,

σ

(
ν⊔

i=1

Fi

)

=
ν⊔

i=1

σ(Fi)

⇒
∣
∣∣σ

(
ν⊔

i=1

Fi

) ∣
∣∣ =

ν∑

i=1

|σ(Fi)|. (A4)

Thus, applying f to each term of the summation of
Eq. (A4) we have

ν∑

i=1

f (|σ(Fi)|) ≥
ν∑

i=1

|Fi|. (A5)

For the left-hand side of Eq. (A5), using convexity of f we
obtain

f

(
ν∑

i=1

|σ(Fi)|
)

≥
ν∑

i=1

f (|σ(Fi)|),

for the right-hand side of Eq. (A5) instead, since K is
canonical for F , it holds that

ν∑

i=1

|Fi| ≥ |K ∩ F|,

Combining these two bounds for Eq. (A5) yields

f

(
ν∑

i=1

|σ(Fi)|
)

≥ ‖F‖t. (A6)

To obtain the thesis from Eq. (A6), we just need to sub-
stitute the Hamming weight on the left-hand side with the
closeness weight ‖ · ‖ωt. By construction, for J it holds that

|J ∩ σ(F)| ≥
ν∑

i=1

|σ(Fi)|. (A7)

Moreover, since J is a ωt patch:

‖σ(F)‖ωt ≥ |J ∩ σ(F)|. (A8)

Using the monotonicity of f and combining Eqs. (A7),
(A8), and (A6) yields

f (‖σ(F)‖ωt) ≥ ‖F‖t.

020340-19



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

c. CONCLUSION

Because F is an error set equivalent to E, i.e., σ(F) =
σ(E), such that ‖F‖t = ‖E‖red

t , we conclude

f (‖σ(E)‖ωt) ≥ ‖E‖red
t

for ω = ω̃ + 1.
Lemma 5 in particular entails that the closeness weight

is in fact a sensible quantity to look at when dealing with
errors on confined codes.

We now introduce the stochastic shadow decoder. The
difference between this variant and the one previously
presented (Definition 3) is on the weight functions used.
While the standard and adversarial shadow decoder tries
to minimize the Hamming weight of the residual error, the
stochastic shadow decoder attempts to keep under control
its closeness.

Definition 9 (Stochastic shadow decoder). The stochastic
shadow decoder has variable parameters 0 < α ≤ 1, and
0 < β, γ ∈ Z. Given an observed syndrome S = σ(E)+
Se where Se ⊆ Gs is the syndrome error, the stochas-
tic shadow decoder of parameters (α, β, γ ) performs the
following two steps:

1. Syndrome repair: find Sr of minimum γ closeness
‖Sr‖γ such that S + Sr belongs to the (α, β) shadow
of the code, where

(α, β) shadow = {σ(E) such that ‖E‖β ≤ αβ}.

2. Qubit decode: find Er of minimum β closeness
‖Er‖β such that σ(Er) = S + Sr.

We call R = E + Er the residual error.

We have the following promise on the stochastic shadow
decoder, which mirrors the results of Lemma 1 for the
adversarial shadow decoder.

Lemma 6. Consider a stabilizer code that has (t, f ) con-
finement and qubit degree ≤ ω − 1. Provided that the
original error pattern E has ‖E‖red

t ≤ t/2, on input of
the observed syndrome S = σ(E)+ Se, the residual error
R left by the stochastic shadow decoder of parameter
[(1/2), t, ωt] satisfies

‖R‖red
t ≤ f (2‖Se‖ωt). (A9)

Thanks to Lemma 5, we know that the closeness func-
tion preserves confinement. The proof is then a straight-
forward adaption of the proof of Lemma 1, where the
Hamming weight has to be substituted with ‖ · ‖t on error
sets and ‖ · ‖ωt on syndrome sets, respectively. We here
briefly report the proof for completeness.

Assume ‖E‖red
t ≤ t/2, and let Er be the output of the

qubit decode step. By construction, it has minimum t
closeness among the errors with syndrome S + Sr, which
belongs to the [(1/2), t] shadow of the code. In particular,
‖Er‖t ≤ (t/2). We recall that the + operation between two
error sets in Gq denotes the support of the product of the
two corresponding Pauli operators and, as such, it holds
that (see Appendix A 1)

E + Er ⊆ E ∪ Er.

By the property of the closeness weight function, this
entails

‖E + Er‖t ≤ ‖E ∪ Er‖t ≤ ‖E‖ + ‖Er‖t.

The linearity of the syndrome function σ(·) yields

σ(E + Er) = σ(E)+ σ(Er) = Se + Sr.

Since Se is a possible solution of the syndrome-repair step
‖Sr‖ωt ≤ ‖Se‖ωt and so,

‖Se + Sr‖ωt ≤ ‖Se‖ωt + ‖Sr‖ωt

≤ 2‖Se‖ωt.

Combining this and the monotonicity of f gives

‖E + Er‖red
t ≤ f (2‖Se‖ωt).

Lemma 5 tells us that the stochastic shadow decoder suc-
ceeds whenever the t closeness of the error is small enough.
Importantly then, if we are able to bound the probability
of the complement of this event, we could infer an upper
bound on the failure probability of our decoder. This is the
subject of the next section.

4. Percolation results and proof of Theorem 2

We consider error sets E on the qubit graph Gq and error
sets Se on the syndrome graph Gs and we assume that
the probability of observing a particular error is at most
exponential in its size. Formally, we use this error model.

Definition 10 (Local stochastic error). An error set E on a
graph G is local stochastic of parameter p if, for all set of
nodes G ⊆ G, the following holds:

P(G ⊆ E) ≤ p |G|.

We then use some results in percolation theory, Lemmas
7 and 8 below, to understand the probability that errors of
closeness linear in the patch size (i.e., ‖E‖β = αβ for some
0 < α ≤ 1) occur when the noise is local stochastic.

020340-20



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

Lemma 7 (Corollary 28 of Ref. [22]). Let G be a graph
with vertex degree upper bounded by z. Then the number
Nβ of connected components of size β (β patches) satisfies

Nβ ≤ |G|�β ,

where � = (z − 1)
(
1+ 1

z−2

)z−2
.

Lemma 8. Let G be a graph with vertex degree upper
bounded by z. Let t be a positive integer and 0 < α ≤ 1.
Then there exists pth > 0 such that, for local stochastic
errors E of parameter p < pth, we have

P(‖E‖t ≥ αt) ≤ |G|
1− 2h(α)/αp

(
p

pth

)αt

, (A10)

where h(α) = α log2(1/α)+ (1− α) log2(1/1− α) is the
binary entropy function.

The proof is a straightforward adaption of the proof of
Theorem 17 in Ref. [22]. By expanding the left-hand side
of Eq. (A10), we find

P(‖E‖t ≥ αt) = P(∃K t patch : |K ∩ E| ≥ αt)

≤
∑

K is a t patch

P(|K ∩ E| ≥ αt).

Observe that, for a t patch K ,

P(|K ∩ E| ≥ αt) ≤
∑

m≥αt

∑

K ′⊆K
|K ′|=m

P
(
K ∩ E = K ′

)

≤
∑

m≥αt

∑

K ′⊆K
|K ′|=m

P
(
K ′ ⊆ E

)

≤
∑

m≥αt

∑

K ′⊆K
|K ′|=m

pm

≤
∑

m≥αt

(
t
m

)
pm. (A11)

By Stirling’s approximation [68],

P (|K ∩ E| ≥ αt) ≤ (2h(α)/αp)αt

1− 2h(α)/αp
. (A12)

Combining Eqs. (A11), (A12), and Lemma 7 yields

P (‖E‖t ≥ αt) ≤ Nt
(2h(α)/αp)αt

1− 2h(α)/αp

≤ |G|
1− 2h(α)/αp

· (�2h(α)pα
)t

By imposing the right-hand side to decrease with t, we find

p ≤
(

1
�2h(α)

) 1
α

:= pth.

And in conclusion,

P(‖E‖t ≥ αt) ≤ |G|
1− 2h(α)/αp

(
p

pth

)αt

.

Finally, we are able to prove that there exists a thresh-
old under which the probability of local stochastic errors
to be noncorrectable via the stochastic shadow decoder
becomes exponentially small in the system size, provided
that the graphs Gs and Gq have bounded degree and linear
confinement.

By Lemma 6, the residual error left by the stochastic
shadow decoder on a (t, f )-confined code is kept under
control provided that

‖E‖t ≤ t
4

and f (2‖Se‖ωt) ≤ t
4

. (A13)

If the function f is linear, i.e., f (x) = κx for some κ >

0 ∈ Z, then conditions (A13) can be written as

‖E‖t ≤ t
4

and ‖Se‖ωt ≤ t
8κ

. (A14)

If the qubit error E is local stochastic of parameter p and
the syndrome error Se is local stochastic of parameter q,
thanks to Lemma 8, we obtain

P(‖E‖t ≥ t/4) ≤ |Gq|
1− 24h( 1

4 )p

(
p

pth

) t
4

:= Cq|Gq|
(

p
pth

) t
4

and

P

(
‖Se‖ωt ≥ t

8κ

)
≤ |Gs|

1− 28ωκh( 1
8ωκ

)q

(
q

qth

) t
8ωκ

:= Cs|Gs|
(

q
qth

) t
8ωκ

,

where

pth :=
(

1

�q2h( 1
4 )

)4

and qth :=
(

1

�s2h( 1
8ωκ

)

)8ωκ

.

As a result, by Lemma 6, the residual error is correctable
except with probability at most

max

{

Cq|Gq|
(

p
pth

) t
4

, Cs|Gs|
(

q
qth

) t
8ωκ

}

.

020340-21



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

In other words, for local stochastic noise of intensity
p ≤ pth on the qubits and q ≤ qth on the syndrome, the
stochastic shadow decoder has a sustainable single-shot
threshold.

We conclude by noting that the assumption of linear
confinement is key in the proof of Theorem 2. However,
we speculate that the limitations of Theorem 2 are an arte-
fact of our proof and superlinear confinement is a sufficient
condition for a family of codes to exhibit a single-shot
threshold. In fact, the existence of a threshold pth and qth
relies on the bounds given in Lemma 8. There, it is fun-
damental that the relation between the chosen size of the
patch and the size of the overlap with the error is lin-
ear [see Eqs. (A11) and (A12)]. In other words, Lemma
8 states that, if we take β patches on the error graph and γ

patches on the syndrome graph, we are able to estimate the
probability that errors have closeness less than αβ and α̃γ ,
respectively. By Eq. (A13), in order to bound the closeness
of the residual error left by the stochastic shadow decoder,
we need

‖Se‖γ ≤ 1
2

f −1(αβ).

As a consequence, combining this with the requirements
of Lemma 8, entails

γ = κ

(
1
2

f −1(αβ)

)
,

for some positive constant κ . In conclusion, building up
on the results of Lemma 8, we either need to prove that
confinement is preserved if we take on the syndrome graph
patches of size linear in f −1(αβ) or, using our Lemma 5
without modification, that the function is itself linear.

APPENDIX B: QUBIT PLACEMENT ON A 3D
LATTICE

Here we detail how to embed a 3D product code on a
cubic lattice, where qubits sit on edges, Z stabilizers on
vertices, X stabilizers on faces and metachecks on cells.

Let C0 and C1 be two vector spaces over F with
basis B0 = {e0

1, . . . , e0
n} and B1 = {e1

1, . . . , e1
m}, respec-

tively. Given a linear map from C0 into C1, it can be
represented as a m× n matrix δ over F such that its action
on the elements of the basis B0 is given by

δ : C0 −→ C1

e0
i �−→ δe0

i =
m∑

α=1

δα,ie1
α . (B1)

Expression (B1) allows us to write the support of vectors
in δ(B0) = {δe0

i

}
i in a compact form. In fact, the support

of δe0
i is the subset of B1:

supp(δe0
i ) =

{
e1
α : δα,i �= 0

}
α

.

Since basis vectors are uniquely identified by their index,
we can compactly write Eq. (B1) as a relation ∗ on the set
of indices of the basis B0 and B1:

{1, . . . , n} −→ {1, . . . , m}
κ −→ κ∗, (B2)

where
κ∗ = {η : δη,κ �= 0}η.

Similarly, the transpose δT of the matrix δ induces a map
from C1 to C0, which is defined on B1 as

δT : C1 −→ C0

e1
α �−→ δTe1

α =
n∑

i=1

δα,ie0
i ,

yields the relation on indices

{1, . . . , m} −→ {1, . . . , n}
η −→ η∗, (B2 T)

where
η∗ = {κ : δη,κ �= 0}κ .

Referring to the chain complex (C′′′) described in Sec. IV,
we choose bases Bτ

	 =
{
e	τ
ι

}
ι

of Cτ
	 for τ = 0, 1 and 	 =

A, B, C. We accordingly fix matrix representations of the
maps δA, δB, and δC; with slight abuse of notation, we
indicate with the same symbol the m	 × n	 matrix repre-
sentation of a map and the map itself. We indicate with
i, j , k indices of B0

A,B0
B, and B0

C, respectively, and with
α, β, γ indices of B1

A,B1
A,B1

C. Since we deal with three-
fold tensor product spaces (e.g., C0

A⊗C0
B⊗C0

C) we consider
triplets (i, j , k) of valid indices; we indicate with (i∗, j , k)
the set of indices {(η, j , k) : η ∈ i∗}, and similarly for any
possible triplet combination of starred (ι∗) and nonstarred
(ι) indices.

As illustrated in Sec. IV, when defining a CSS code on
the chain complex (C′′′), the following relations hold:

1. basis elements of C0 are in one-to-one correspon-
dence with a generating set of Z stabilizers;

2. basis elements of the vector space C1 are in one-to-
one correspondence with the qubits;

3. basis elements of the vector space C2 are in one-
to-one correspondence with a generating set of X
stabilizers;

4. basis elements of C3 are in one-to-one correspon-
dence with a generating set of metachecks.

020340-22



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

TABLE IV. Notation and correspondences between objects of
the chain complex (C′′′).

Object Indexing Basis vector

Qubits

(α, j , k)

(i, β, k)

(i, j , γ )

(
eA1
α ⊗eB0

j ⊗eC0
k , 0, 0

)

(
0, eA0

i ⊗eB1
β ⊗eC0

k , 0
)

(
0, 0, eA0

i ⊗eB0
j ⊗eC1

γ

)

X stabilizers

(α, β, k)

(α, j , γ )

(i, β, γ )

δT
2

(
eA1
α ⊗eB1

β ⊗eC0
k , 0, 0

)

δT
2

(
0, eA1

α ⊗eB0
j ⊗eC1

γ , 0
)

δT
2

(
0, 0, eA0

i ⊗eB1
β ⊗eC1

γ

)

Z stabilizers (i, j , k) δ1(e
A0
i ⊗eB0

j ⊗eC0
k )

Metacheck (α, β, γ ) δT
3 (eA1

α ⊗eB1
β ⊗eC1

γ )

Combining these with Eqs. (B2) and (B2 T), we obtain
the relations reported in Table IV. More precisely, we
choose as bases for the spaces C3, C2, C1, and C0 the product
bases obtained by combining B0

	=A,B,C and B1
	=A,B,C and we

index qubits, stabilizers, and metachecks on C(δA, δB, δC)

accordingly. Equivalently, basis vectors are labeled with
consecutive integers so as to preserve the ordering induced
by the bases.

We use the relations of Table IV to visualize the chain
complex (C′′′) on a 3D cubic lattice. In order to do so, we
first fix a coordinate system

O x

y

z

where O is the origin. Since basis vectors are labeled with
integers (the ith basis vector corresponds to the integer i,
and vice versa) we can build a 3D grid of points where
any point corresponds to a basis vector of C0, C1, C2, or C3.
More precisely we fix a set of valid coordinates for points
in the grid:

1. integer coordinates (z, y, x) = (i, j , k) for i = 1, . . . ,
na, j = 1, . . . , nb, and k = 1, . . . , nc;

2. half-integers coordinates (z, y, x) = (α + 0.5, β +
0.5, γ + 0.5) for α = 1, . . . , ma, β = 1, . . . , mb, and
γ = 1, . . . , mc;

3. the origin has coordinates O = (1, 1, 1).

In this way, any point with valid coordinates uniquely
identifies a basis vector (and therefore an object in the
chain complex, see Table IV). For example,

TABLE V. Correspondence between qubits in C1 and edges of
the lattice.

Qubit Edge

Transverse qubits Edges parallel to the z axis
(α, j , k) Middle point: (α + 0.5, j , k )
Vertical qubits Edges parallel to the y axis
(i, β, k) Middle point: (i, β + 0.5, k)
Horizontal qubits Edges parallel to the x axis
(i, j , γ ) Middle point: (i, j , γ + 0.5)

1. the point (1, 4, 2) corresponds to the basis vector
(eA0

1 ⊗eB0
4 ⊗eC0

2 ) ∈ C0 (Z stabilizers);
2. the point (1.5, 4, 2) corresponds to the basis vector

(eA1
1 ⊗eB0

4 ⊗eC0
2 , 0, 0) ∈ C1 (qubits);

3. the point (1.5, 4, 2.5) corresponds to the basis vector
(0, eA1

1 ⊗eB0
4 ⊗eC1

2 , 0) ∈ C2 (X stabilizers);
4. the point (1.5, 4.5, 2.5) corresponds to the basis

vector (eA1
1 ⊗eB1

4 ⊗eC1
2 ) ∈ C3 (metachecks).

We draw an edge for any qubit of the code defined on
(C′′′). Qubits are in one-to-one correspondence with basis
element of C1 and therefore are of three different types:
(v, 0, 0), (0, v, 0), and (0, 0, v). Accordingly, we draw
edges of three different types as detailed in Table V (see
also Fig. 6). In other words, any point with two integer
entries and one half-integer entry is the middle point of an
edge of unit length, which corresponds to a qubit. In this
way we obtain a cubic lattice with (possibly) some missing
edges.

Points with two half-integer and one integer entries
do not intersect any edge and sit in the center of a

(a) (b) (c)

(d)

FIG. 6. Graphical representation of the cubic lattice associated
to a 3D product code where the seed matrices δA, δB, δC have size
2× 3, 4× 6, and 6× 7, respectively. In (a), (b), and (c) only
transversal, vertical, and horizontal edges are depicted. In (d) we
can see the complete lattice obtained by matching the origin O =
(1, 1, 1) of the three lattices of edges.

020340-23



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

(a) (b) (c)

FIG. 7. X stabilizers on the lattice described in Fig. 6. (a)
X stabilizer corresponding to the transversal-vertical square
indexed by (α, β, k) = (1, 2, 3); its support is contained in the
cross of transversal and vertical qubits (red edges) in the
y-z plane {x = 3}. The crossing has coordinates (z, y, x) =
(1.5, 2.5, 3) and sits in the center of the red square. (b) X stabi-
lizer corresponding to the transversal-horizontal square indexed
by (α, j , γ ) = (1, 6, 5); its support is contained in the cross of
transversal and vertical qubits (red edges) in the x-z plane {y =
6}. The crossing has coordinates (z, y, x) = (1.5, 6, 5.5) and sits
in the center of the red square. (c) X stabilizer corresponding to
the vertical-horizontal square indexed by (i, β, γ ) = (1, 4, 2); its
support is contained in the cross of transversal and vertical qubits
(red edges) in the x-y plane {z = 1}. The crossing has coordinates
(z, y, x) = (1, 2.5, 4.5) and sits in the center of the red square.

(possibly incomplete) square face. These points corre-
spond to X stabilizers, which we therefore identify with
faces. Given a triplet corresponding to one of such a
point, the associated X stabilizer has support contained
in the set of edges, which are parallel to the edges of
the square, forming a cross in a plane. X stabilizers,
like qubits, are of three different types, being in one-to-
one correspondence with basis elements of C2. Namely,
each X stabilizer in C2 has support in two out of three
types of qubits: transverse-vertical, transverse-horizontal,
or vertical-horizontal (see Table VI and Fig. 7).

Points with integer coordinates are associated to Z stabi-
lizers; these are points where endpoints of edges intersect.

FIG. 8. Z stabilizers on the lattice described in Fig. 6. (a) Z sta-
bilizer corresponding to the vertex indexed by (i, j , k) = (2, 4, 2);
its support is contained in the cross of qubits highlighted as red
edges in the picture. The crossing has coordinates (z, y, x) =
(2, 4, 2) (red circle). (b) Z stabilizer corresponding to the ver-
tex indexed by (i, j , k) = (3, 6, 2); its support is contained in
the cross of qubits highlighted as red edges in the picture. The
crossing has coordinates (z, y, x) = (3, 6, 2) (red circle).

The Z stabilizer corresponding to (i, j , k) has support on a
3D cross of edges and qubits centered in (z, y, x) = (i, j , k)
(see Table VI and Fig. 8).

Points with half-integer coordinates sit in the center of
a cube. To any such cube is associated a metacheck in C3.
Metachecks have support on a 3D cross of faces and X sta-
bilizers parallel to the faces of the cube they are associated
to (see Table VI).

1. On geometric locality

One interesting feature of the embedding of 3D product
codes on a cubic lattice is that it preserves some locality
properties of the seed matrices δA, δB, and δC. Thus, if we
were able to place qubits on a 3D cubic lattice we could
use the 3D homological product to build LDPC codes with
nearest-neighbor interactions.

Let δ be an m× n matrix with row and column indices
α ∈ {1, . . . , m} and i ∈ {1, . . . , n}, respectively, and let ν =
max{m, n}. We say that δ is geometrically ρ local on a

TABLE VI. Correspondence between operators of the chain complex (C′′′), their type as geometric objects on the lattice, and their
support. Note that the support of X and Z stabilizers is a set of qubits and edges while the support of metachecks is a set of X stabilizers
and faces.

Operator Type Support

X stabilizers Transverse-vertical square Transverse qubits: (α, β∗, k)
(α, β, k) Vertical qubits: (α∗, β, k)

Transverse-horizontal square Transverse qubits: (α, j , γ ∗)
(α, j , γ ) Horizontal qubits: (α∗, j , γ )

Vertical-horizontal square Vertical qubits: (i, β, γ ∗)
(i, β, γ ) Horizontal qubits: (i, β∗, γ )

Z stabilizers (i, j , k) Transverse qubits: (i∗, j , k)
Vertical qubits: (i, j ∗, k)

Horizontal qubits: (i, j , k∗)

Metachecks (α, β, γ ) Transverse-vertical faces: (α, β, γ ∗)
Transverse-horizontal faces: (α, β∗, γ )

Vertical-horizontal faces: (α∗, β, γ )

020340-24



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

torus if for any row and any column index

α∗ ⊆ Uρ, ν(α) and i∗ ⊆ Uρ, ν(i), (B3)

where Uρ, ν(ζ ) is any set of ρ consecutive integers mod-
ulo ν, which contains ζ . In particular, we require the αth
rows to have support on columns with index that is close to
the integer α, and similar for columns. The reason for this
choice will be clear when we prove Proposition 1. Briefly,
conditions (B3) say that δ is geometrically ρ local on a
torus if the following hold: (1) any of its rows has support
on a bounded box of ρ columns, and the box for row α + 1
is a right shift of the box for row α; (2) any of its columns
has support on a bounded box of ρ rows, and the box for
column i+ 1 is a downward shift of the box for column i.
In particular, if we associate row and column indices with
integer points on a circle of ν points:

1

2

3ν − 1

ν

locality means that any set α∗/i∗ is contained in a closed
interval on the circle such that (i) it has length at most ρ and
(ii) it contains the point α/i. For instance, the degenerate
parity-check matrix of the repetition code:

⎛

⎜⎜⎜
⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

⎞

⎟⎟⎟
⎠

is ρ local for ρ = 2.
A closely related notion of locality on a torus is geo-

metric locality in Euclidean space. We say that an m× n
matrix is geometrically ρ local in Euclidean space if for
any row and column index

α∗ ⊆ Uρ(α) and i∗ ⊆ Uρ(i), (B4)

where Uρ(ζ ) is any set of ρ consecutive integer in
[1, . . . , ν], ν = max{m, n}, which contains ζ . In this case
we can graphically picture locality by associating row and
column indices with integer points on a line of ν points:

1 2 3 ν − 1 ν

A matrix is local if any set α∗/i∗ is contained in a closed
interval on the line such that (i) it has length at most ρ

and (ii) it contains the point α/i. For example, the full-rank
parity-check matrix of the repetition code:

⎛

⎝
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0

⎞

⎠

is 2 local.
Geometric locality also applies to codes other than the

repetition code. For instance, the matrix

H =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1
1 0 1 0 1 0 0 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

obtained via the edge augmentation procedure presented
in Ref. [56] is 7 local on a torus. We remark that geo-
metric locality is a property of matrices. For example,
the matrix with the same row as H but different ordering
{1, 2, 3, 4, 7, 5, 6}, is geometrically 5 local on a torus.

In general, geometric locality is a relaxation of the local-
ity property of the repetition code, which only allows for
interactions between pairs of nearest bits. Importantly, as
Proposition 1 states, it is preserved by the 3D product
construction. For this reason, geometrically local classical
codes, combined with the 3D product construction, could
be good candidates in the quest to quantum local codes
beyond the toric and the surface codes.

The remainder of this appendix is organized as fol-
lows. We first state Proposition 1 and prove that geometric
locality is preserved by the 3D product construction. We
conclude by observing how this proof provides an explicit
identification of the 3D toric and surface codes as 3D
product codes.

To ease the notation, in the following we shortly refer
to codes as geometrically local, dropping the specification
on a torus or in Euclidean space. When considering qubits
on a cubic lattice, the lattice would be on a torus or in
Euclidean space depending on the definition of locality that
applies to the seed matrices.

Proposition 1. Consider the 3D product code obtained
from three seed matrices geometrically ρ local. If its qubits
are displayed on the edges of a cubic lattice as detailed
in Appendix B, then it is geometrically ρ local in the
following sense:

1. any X -stabilizer generator has weight at most 2ρ

with support contained in a 2D box of size ρ × ρ;
2. any Z-stabilizer generator has weight at most

3ρ with support contained in a 3D box of size
ρ × ρ × ρ.

020340-25



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

We prove the condition on the Z stabilizers, the proof
for the X stabilizer being similar.

Let Sz be a Z-stabilizer generator. As reported in
Tables IV and VI, it is the image of a basis vector
(eA0

i ⊗eB0
j ⊗eC0

k ) ∈ C0 via the map δ1 and it corresponds to
the point on the lattice of integers coordinates (i, j , k). By
exploiting the choice of the basis for the spaces C0 and C1
and some linear algebra:

δ1(e
A0
i ⊗eB0

j ⊗eC0
k ) =

∑

α∈i∗
(eA1

α ⊗eB0
j ⊗eC0

k , 0, 0)

+
∑

β∈j ∗
(0, eA0

i ⊗eB1
β ⊗eC0

k , 0)

+
∑

γ∈k∗
(0, 0, eA0

i ⊗eB0
j ⊗eC1

γ ).

Again using Table IV, the set of indices, which corre-
sponds to this sum of basis vectors of C1, can be written as

indices(Sz) = {(α, j , k) : α ∈ i∗}
∪ {(i, β, k) : β ∈ j ∗}
∪ {(i, j , γ ) : γ ∈ k∗}.

Following the nomenclature of qubits as traversal, verti-
cal, and horizontal, we see that the three components of
the support of Sz given above respect this division and
therefore we can write

indices(Sz) = indices(Sz)t ∪ indices(Sz)v ∪ indices(Sz)h.

Using (B4) [or (B3)], we see that the sets indices(Sz)t,
indices(Sz)v , and indices(Sz)h correspond, respectively, to
the three sets of consecutive coordinates on the lattice:

�t = {(ī, j , k) : ī ∈ Uρ(i)},
�v = {(i, j̄ , k) : j̄ ∈ Uρ(j )},
�h = {(i, j , k̄) : k̄ ∈ Uρ(k)}.

Since we require ζ ∈ Uρ(ζ ) [or ζ ∈ Uρ,ν(ζ )], the three
sets of coordinates intersect on the point (z, y, x) = (i, j , k).
Moreover, all three intervals �t, �v , �h have length at
most ρ. Combining these, we find that the support of Sz
indexed by (i, j , k) is contained in in a ρ × ρ × ρ neigh-
borhood of the point (z, y, x) = (i, j , k) and has cardinality
at most 3ρ. In other words, we show that the support of Sz
is contained on a 3D cross of qubits with arms of length at
most ρ.

As previously said, the 3D toric and planar codes are
particular instances of the 3D product construction. Fur-
thermore, it is well known that they are local on a torus
and in the Euclidean space, respectively. To see how this
is the case, we remind the reader that the 3D toric code

is obtained by choosing as seed matrices the degenerate
parity-check matrix of the repetition code in the standard
basis. For matrix size L× L, it holds that

{1, . . . , L} ←→ {1, . . . , L}
i −→ {i, i+ 1 mod L}

{α, α + 1 mod L} ←− α.

Therefore, stabilizers have support on pairs of consecutive
edges, and it is straightforward to see that they have the
usual shape:

1. Z stabilizers have support on edges incident to a
vertex;

2. X stabilizers have support on edges on the boundary
of a square face;

3. metachecks have support on the faces of a cube.

A similar argument holds for the 3D surface code, which
is local in Euclidean space.

APPENDIX C: ALL 3D PRODUCT CODES HAVE
X-CONFINEMENT

In this section we prove Theorem 1, which states that all
3D product codes have X confinement. Our proof follows
the proof of soundness for 4D codes given in Ref. [18]
with some minor adaptions and it is here reported for
completeness.

First, we show that an opportunely chosen length-2
chain complex has confined maps. Secondly, we explain
how to use this chain complex as a building block of the
length-3 chain complex (C′′′) described in Sec. IV. Lastly,
we prove that the confinement property is preserved and
thus 3D codes defined on (C′′′) as explained in Sec. IV have
X confinement.

Let δA : C0
A → C1

A and δB : C0
B → C1

B be two length-
1 chain complexes. We consider the length-2 product
complex C̃ defined as

C1
A ⊗ C1

B

C1
A ⊗ C0

B C0
A ⊗ C1

B

C0
A ⊗ C0

B

C̃2

C̃1

C̃0

δ̃1

δ̃0

where

δ̃0 =
(
δA⊗1 1⊗δB

)
,

δ̃1 =
(
1⊗δB
δA⊗1

)
.

We first show that the map δ̃0 has confinement.

020340-26



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

Lemma 9. δ̃0 has (t, f ) confinement where t = min{dA, dB}
and f (x) = x2/4.

In order to prove Lemma 9 we first introduce some
useful notation. When considering vectors v in a twofold
tensor product space F

n1⊗F
n2 it can be handy to consider

their reshaping, which is a n1 × n2 matrix on F. Namely,
fixed bases B1 = {a1, . . . , an1} and B2 = {b1, . . . , bn2} of
F

n1 and F
n2 , respectively, their product

B = {ai⊗bj } i=1,...,n1
j=1,...,n2

is a basis of F
n1⊗F

n2 . Therefore, we can write

v =
∑

ai⊗bj ∈B
vij ai⊗bj (C1)

for some vij ∈ F. We call the matrix V whose entries are
the coefficient vij the reshaping of v. Given matrices M
and N of size n1 × m1 and n2 × m2 associated to linear
maps from F

n1 and F
n2 , respectively, the map M⊗N from

F
n1⊗F

n2 to F
m1⊗F

m2 acts on the reshaping of v as

(M⊗N )V �−→ MVN T. (C2)

In the following we always indicate with lowercase sym-
bol vectors and with the corresponding uppercase symbols
their reshaping. We can now use this notation to prove
Lemma 9. Let v ∈ CA

0⊗CB
0 and let s = δ̃0(v). By reshaping,

S =
(

δAV
VδT

B

)
.

If we assume |v| = |v|red ≤ t = min{dA, dB} then V has no
column in ker δA and no row in ker δT

B so that

col(δAV) = col(V) and row(VδT
B) = row(V),

where col(V)/row(V) is the number of nonzero columns
and rows of the matrix V. Therefore, for the weight of S, it
holds that

|S| = |δAV| + |VδT
B| ≥ col(δAV)+ row(VδT

B)

= col(V)+ row(V).

Combining this with (a+ b)2/4 ≥ ab for integers a, b
yields

|S|2/4 ≥ col(V) · row(V) ≥ |V|.
Corollary 1 below follows easily from Lemma 9.

Corollary 1. If δA or δB have (g, t) confinement with g
increasing and subadditive [69] then δ̃0 has (g, t) confine-
ment too.

Without loss of generality, we assume that δA has (t, g)

confinement (the proof for δB being symmetrical).
Consider the syndrome matrix

S =
(

δAV
VδT

B

)
=
(

S1
S2

)
,

where V is the reshaping of a vector v of reduced weight
less than t, i.e., |v| = |v|red ≤ t. Because δA has confine-
ment, for the column of V it holds that

|Sj
1| ≥ g(|Vj |).

Thus, we can use confinement columnwise and obtain

|S1| =
∑

j

|Sj
1| by definition of | · |

≥
∑

j

g(|Vj |) by confinement of δA

≥ g
(∑

j

|Vj |
)

by subadditivity of g

≥ g(|V|) by definition of | · |.

Combining this and

|S| = |S1| + |S2| ≥ |S1|

yields |S| ≥ g(|V|).
Loosely, Corollary 1 states that the result of Lemma 9

can be improved whenever at least one of the seed matri-
ces δA and δB used to build the length-2 product complex
(C̃) shows linear confinement. However, this is not suf-
ficient to prove that the quantum code C(C1) associated
to (C̃) by equating HX = δ̃1, HZ = δ̃T

0 has confinement. In
fact, here we prove that the matrix H T

Z has confinement
and not that one of the syndrome matrices HZ or HX have
it. In other words, Corollary 1 it is not sufficient to infer
the construction of expander codes outlined in Ref. [20];
here confinement goes in the “wrong” direction, namely as
the transpose of the syndrome map. Even if not interest-
ingly on its own, Corollary 1 can be used to improve the
confinement function of the X -syndrome map of the code
C(δA, δB, δC).

More generally, we want to use Lemma 9 to infer that the
code C(δA, δB, δC) defined on the chain complex (C′′′) has
X confinement. To see how this is the case, we consider
an “asymmetrical” version of (C′′′) as the product of the
length-2 chain complex (C̃) and the length-1 chain com-
plex δC : CC

0 → CC
1 . The asymmetric product complex C̆ is

then

020340-27



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

C̃2 ⊗ C1
C

C̃1 ⊗ C1
C C̃2 ⊗ CC

0

C̃0 ⊗ C1
C C̃1 ⊗ CC

0

C̃0 ⊗ C0
C

C̆3

C̆2

C̆1

C̆0

δ̆2

δ̆1

δ̆0

where

δ̆0 =
(
1⊗δC

δ̃0⊗1
)

,

δ̆1 =
(

δ̃0⊗1 1⊗δC

0 δ̃1⊗1
)

,

δ̆2 =
(
δ̃1⊗1 1⊗δC

)
.

Claim 1. Let (v, w) ∈ C̆1 have weight less than t and s =
δ̆1(v, w) be its syndrome. If (V, W) is the reshaping of the
vector (v, w) then the following syndrome equation holds:

S =
(

S1
S2

)
=
(

δ̃0V+WδT
C

δ̃1W

)
, (SE)

where S is the reshaping of s.
Note that a stabilizer for the chain complex C̆0 → C̆1 →

C̆2 → C̆3 and the syndrome map δ̆1(·) has the form δ̆0(m)

for some m ∈ C̆0. By construction, we can add any stabi-
lizer to (v, w) without violating the syndrome Eq. (SE). In
particular,

1. |(v, w)| < t entails that its reshaping satisfies the
following properties:

(a) Both V and W have at most t nonzero rows. Thus
all their columns have weight at most t.

(b) Both V and W has at most t nonzero columns.
Thus all their rows have weight at most t.

2. Fix a row index i and a column index j . Let M be a
matrix in C̆0 with columns

M h =
{

Vj for hin supp(WδT
C)i = supp(Wiδ

T
C),

0 elsewhere.

Its image (MδT
C, δ̃0M ) through δ̆0 is a stabilizer.

Define V∗ and W∗ as

V∗ = V+MδT
C and W∗ = W+ δ̃0M .

Observe that

(a) M is a matrix whose nonzero columns are equal
to a column of V. Therefore, M has row support
contained in the row support of V:

row(V∗) ⊆ row(V).

(b) M is a matrix whose column support is
supp(Wiδ

T
C) for some row Wi of W. Therefore,

M has column support contained in the column
support of W:

col(W∗) ⊆ col(W).

Lemma 10 (Inheritance of confinement). δ̆1 has (t, f )

confinement, where t = min{dA, dB, dC} and f (x) = x3/4.

Let (v, w) ∈ C̆1 be such that |(v, w)| = |(v, w)|red ≤ t
and s = δ̆1(v, w) be its syndrome. Reshaping vectors into
matrices [see Eqs. (C1) and (C2)] yields the following
syndrome equation:

S =
(

S1
S2

)
=
(

δ̃0V+WδT
C

δ̃1W.

)
(SE)

We transform the vector (V, W) by adding stabilizers to it
in order to change its column and row support. We do this
by iterating the following two steps.

Step 1: Let i, j be row and column indices such that

(a) (WδT
C)i �= 0 and (S1)i = 0;

(b) (δ̃0V)ij �= 0 and (WδT
C)ij = 1.

Build a matrix M as in Claim 1.
Transform V and W accordingly:

V �−→ V+MδT
C,

W �−→ W+ δ̃0M .

Note that in this way we are able to delete row i of WδT
C.

Iterate this step until we obtain

row(WδT
C) ⊆ row(S1). (C3)

Step 2: Let i, j be row and column indices such that

(a) (WδT
C)j �= 0 and (S1)

j = 0; this entails (δ̃0V)j =
(WδT

C)j ;
(b) (δ̃0V)ij = (WδT

C)ij = 1.

Build a matrix M as in Claim 1.
Transform V and W accordingly:

V �−→ V+MδT
C,

W �−→ W+ δ̃0M .

Note that in this way we are able to delete row i of WδT
C

and by repeatedly doing so we can delete any column j

020340-28



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

of W(δT
C), which does not belong to the column support of

S1.Iterate this step until we obtain

col(WδT
C) ⊆ col(S1). (C4)

Let M be the matrix formed by summing over all the matri-
ces M found during these two steps. Define V∗ and W∗
as

V∗ = V+MδT
C and W∗ = W+ δ̃0M.

We now proceed to prove an upper bound for the weight of
W∗ first and then one for the weight of V∗. By combining
these two bounds we obtain the desired confinement rela-
tion between the weight of the syndrome and the weight of
the error.

BOUND ON THE WEIGHT OF W∗

1. By Claim 1, no row of W∗ has weight more than
t and therefore none of them belongs to ker δT

C so
that row(W∗δT

C) = row(W∗). Combining this with
Eq. (C3) yields

row(W∗) ⊆ row(S1). (C5)

2. By Claim 1, the column support of W∗ is contained
in the column support of W, which is equal to the
column support of S2, by assumption on its weight.
Summing these up,

col(W∗) ⊆ col(S2). (C6)

3. Combining Eqs. (C5) and (C6) yields

|S1||S2| ≥ |W∗|.

BOUND ON THE WEIGHT OF V∗.

1. By rearranging the syndrome Eq. (SE), we can
write δ̃0V∗ = S1 +W∗δT

C. Equations (C3) and (C4)
therefore entail

row(δ̃0V∗) ⊆ row(S1), (C7)

and

col(δ̃0V∗) ⊆ col(S1). (C8)

2. By Claim 1, the row support of V∗ is contained in the
row support of V, which has cardinality at most t. In
particular, all the columns of V∗ have weight at most
t and therefore we can use the confinement property
of the map δ̃0 columnwise (see Lemma 9). In other

words, for each column j of V∗, the following holds:

|(δ̃0V∗)j |
4

2

≥ |(V∗)j |.

Combining this with Eq. (C7) yields

|row(S1)|
4

2

≥ |(V∗)j |. (C9)

3. By Claim 1, no column of V∗ has weight more than t
and therefore none of them belongs to ker δ̃0 so that
col(V∗) = col(δ̃0V∗). By Eq. (C9) this entails

col(V∗) ⊆ col(S1).

In other words, V∗ has at most |col(S1)| nonzero
columns and combining this with Eq. (SE) yields

|row(S1)|
4

2

|col(S1)| ≥ |V∗|, (C10)

which entails
1
4
|S1|3 ≥ |V∗|.

Since |S| = |S1| + |S2| and |(V, W)| = |V| + |W|, we can
add the bounds found for V∗ and W∗. Observing that
(a+ b)3 ≥ (a3 + a2b+ ab) for integer a, b, we obtain that
(v∗, w∗) is a vector equivalent to (v, w) [i.e., it satisfies the
syndrome Eq. (SE)] for which it holds

1
4
|s|3 ≥ |(v∗, w∗)|. (C11)

In conclusion, since |(v∗, w∗)| ≥ |(v, w)| = |(v, w)|red, we
prove that δ̆1 has confinement with respect to the function
f (x) = x3/4.

It is sometimes possible to find a better confinement
function f for the map δ̆1 when δ̃0 has (t, g) confinement,
for instance, as per Corollary 1. In fact, in such a case,
Eq. (C9) becomes

g(|δ̃0V∗j |) ≥ |(V∗)j |,

and combining this with Eq. (C7) yields

g(row(S1)) ≥ |(V∗)j |.

Thanks to Eq. (C10) we obtain

g(row(S1))|col(S1)| ≥ |V∗|,

which, for g increasing, entails

g(|S1|)|S1| ≥ |V∗|.

020340-29



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

Summing up,

|S1||S2| + g(|S1|)|S1| ≥ |V∗| + |W∗|. (C12)

In other words, depending on the confinement function g
for δ̃0, Eq. (C12) can be used to find better confinement
function f for δ̆1. For instance, if g(x) = αx is linear then
f (x) = α̂x2, for α̂ = max{α, 1} is a confinement function
for δ̆1. To sum up, whenever at least one of the seed matri-
ces δA, δB, δC has linear confinement, the associated 3D
product code has quadratic confinement.

We do not rule out the existence of a direct relationship
between the confinement function for the seed matrices
δA, δB, and δC and the confinement function for the cor-
responding δ̆1 map of their 3D product code. In fact, we do
believe that the cubic factor of Lemma 10 is an artefact of
our proof and not a tight bound. For instance, when con-
sidering the 3D toric or surface code we find a quadratic
relationship between the error size and syndrome size that
follows a surface area-perimeter law.

APPENDIX D: ON SOME PROPERTIES OF
EXAPANDER CODES

Here we prove that the family of expander codes consid-
ered in Ref. [20] has the three properties stated in the main
text, namely,

(i) they have full-rank parity-check matrices;
(ii) they have (t, 3x) confinement with t ∈ �(d);

(iii) for every small error |e| ≤ 3, σ(e) > 1.

Property (i) is true by assumption made by the authors in
Ref. [20]. In order to prove property (ii) we use Corollary 9
of Ref. [20], which states that the code family considered
has robustness. Robustness for a code is very similar to
confinement but uses a slightly different notion of reduced
weight, which, for an operator e, is defined as

|e|red
S := min{|e+ s| : s is a stabilizer}.

Our definition of reduced weight instead minimizes over
all Pauli operators with the same syndrome and therefore
it considers both stabilizers and logical operators. Because
for the reduced weight we minimize over a bigger set, the
following holds:

|e|red
S ≥ |e|red. (D1)

Confinement follows combining the statement of Corollary
9 in Ref. [20] for errors such that |e|red

S < d and Eq. (D1):

3|σ(e)| ≥ |e|red.

In order to prove property (iii) we need to make use of
the hypergraph product structure of the expander codes

in Ref. [20]. Briefly, the code family is defined by taking
the two-product of the length-1 chain complex δ : C0 −→
C1 with itself, where δ is an expander matrix (see also
Ref. [70]). More precisely, the expander codes in Ref. [20]
are CSS codes defined on the chain complex:

C0 ⊗ C1

C0 ⊗ C0 C1 ⊗ C1

C1 ⊗ C0

E2

E1

E0

HX

HZ

where

HZ =
(
δ⊗1 1⊗δT

)
,

HX =
(
1⊗δ δT⊗1) .

The matrix δ is chosen in a family of LDPC expander
matrices with full rank and constant column and row
weight wc and wr bigger than two.

We prove property (iii) for X errors e and the syndrome
map σ(e) = HZē, where ē is the binary vector represen-
tation of the Pauli operator e; the proof for Z errors and
syndrome map HX follows by duality with minor changes.

Let e be a weight-1 X operator and ē its representa-
tion as a unit vector. Then σ(e) = HZē is a column of the
matrix HZ , namely column j if ē has j th coordinate equal
to 1. Since the seed matrix δ has constant column and row
degree bigger than 2, so has the matrix HZ and therefore
|σ(e)| ≥ 2.

Consider now a weight-2 error operator e. By reshaping
of vectors into matrices we can write e as

(L, R)

for some binary matrices L of size n× n, R of size m×
m, and such that |L| + |R| = 2, where δ has size m× n.
Following this notation, the syndrome S of E can be
written as

S = δL+ Rδ.

We have three cases to be distinguished.

(a) |L| = 2. If the support of L is not contained in one
column, i.e., Li1,j1 = Li2,j2 = 1 and j1 �= j2, then for
the syndrome S = δL the following holds:

Sj1 = δi1 and Sj2 = δi2 ,

i.e., the syndrome matrix S has at least two nonzero
columns and therefore weight at least 2. If instead
the support of L is contained in one column, Li1,j =

020340-30



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

Li2,j �= 0 then the syndrome S is zero but for the j th
column:

Sj = δi1 + δi2 .

In this case, whenever δ has distance at least 3,
because it has constant column weight wc, the
following holds:

|δi1 + δi2 | = |δi1 | + |δi2 | − 2|δi1 ∧ δi2 |
≥ 2wc − 2(wc − 1)

≥ 2.

Where the second to last inequality holds because
if δ defines code of distance bigger than 3, then it
must have all distinct columns and different vec-
tors of constant weight wc overlap in at most wc − 1
positions.

(b) |L| = |R| = 1. Suppose Li1,j1 = Ri2,j2 = 1. The syn-
drome S has support contained in one column and

one row, in the shape of a cross as follows:

Sk,j1 = δk,i1, k �= i2
Si2,k = δj2,k, k �= j1
Si2,j1 = δi2,i1 + δj2,j1 ,

Sij = 0, otherwise.

It then follows for the weight of the syndrome S that

|S| ≥ wc + wr − 1,

which is bigger that 1 by assumption on the column
and row weight of δ.

(c) The case |R| = 2 can be proven as done in (a) for
|L| = 2 by exchanging the role of columns and rows.

To sum up, whenever |e| = 2, |σ(e)| > 2.
Last, consider a weight-3 error e. As done for weight-2

errors, we can write e as (L, R) for some binary matrices
L and R. Again, we need to distinguish between the possi-
ble weight combinations of |L| + |R| = 3. We now prove

0.21 0.21 0.21 0.22 0.22 0.22
0.40

0.45

0.50

0.55

0.60

0.65

p

p
fa

il

L = 5
L = 7
L = 9
L = 11

(a)

2.5 2.7 2.9 3.1 3.3
0.0

0.1

0.2

0.3

p

p
fa

il

L = 5
L = 7
L = 9
L = 11

(b)

2.5 2.7 2.9 3.1 3.3

×10−2×10−2

×10−2 ×10−2 ×10−2

0.4

0.6

0.8

1.0

p

p
fa

il

L = 5
L = 7
L = 9
L = 11

(c)

(d) (e) (f)

−6 −4 −2 0 2 4
0.40

0.45

0.50

0.55

0.60

0.65

(p − pth)L1/μ

p
fa

il

L = 5
L = 7
L = 9
L = 11

−4 −2 0 2 4
0.0

0.1

0.2

0.3

(p − pth)L1/μ

p
fa

il

L = 5
L = 7
L = 9
L = 11

−4 −2 0 2 4

0.4

0.6

0.8

1.0

(p − pth)L1/μ

p
fa

il

L = 5
L = 7
L = 9
L = 11

FIG. 9. Threshold fits for the 3D toric code using MWPM and BP+OSD to decode. In (a), we plot the logical error rate pfail as a
function of the phase-flip error rate p , for values of p close to the threshold. The colored lines show the fit given by Eq. (E1), with
parameters a0 = 0.547, a1 = 1.92, a2 = −4.04, μ = 1.04, and pth = 0.216 (dashed gray line). In (d), we show the same data using the
rescaled variable x = (p − pth)L1/μ. Subfigures (b) and (e) show equivalent data for one round of single-shot error correction, with fit
parameters a0 = 0.119, a1 = 3.04, a2 = 22.9, μ = 1.01, and pth = 0.0289. Subfigures (c) and (f) show equivalent data for 16 rounds
of single-shot error correction, with fit parameters a0 = 0.873, a1 = 7.99, a2 = −130, μ = 1.10, and pth = 0.0291. The error bars
show the 95% confidence intervals pfail = p̂fail ± 1.96

√
pfail(1− pfail)/η, where η ≥ 104 is the number of Monte Carlo trials.

020340-31



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

the case for |L| = 3 and support of L contained in one col-
umn. The other cases are either a dual argument of this one
(i.e., for |R| = 3 supported on one row) or follows easily
adapting the proof for |e| = 2.

Let e be a weight-3 error operator with reshaping (L, R)

such that |L| = 3 and Li1,j = Li2,j = Li3,j = 1, for some
column index j . In this case, the syndrome matrix S has
support contained in its j th column:

Sj = δi1 + δi2 + δi3 ,

and therefore,

|σ(e)| = |S| = |Sj | = |δi1 + δi2 + δi3 |.
In order to prove |σ(e)| = |Sj | > 2, we need to use the
expansion properties of δ and more specifically Lemma 3
of Ref. [20], (see also Ref. [70]). We first introduce some
notation. We refer to the rows of δ as checks and to
its columns as bits; we say that a bit j is in the sup-
port of the check i if and only if δij = 1. Given a set of
bits B ⊆ {1, . . . , n} we say that the check i ∈ {1, . . . , m}

−0.60−0.55 −0.50−0.45 −0.40 −0.35 −0.03
−14

−12

−10

−8

−6

−4

−2

log(p/pth)

lo
g

p
fa

il

L = 3
L = 4
L = 5
L = 6
L = 7
L = 8
L = 9
L = 10

(a)

−1.0 −0.8 −0.6 −0.4

−10

−8

−6

−4

−2

0

log(p/pth)

lo
g

p
fa

il

L = 3
L = 5
L = 7
L = 9
L = 11

(b)

(c) (d)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

2

3

4

log L

lo
g

g

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.5

1.0

1.5

2.0

log L

lo
g

g

FIG. 10. Illustration of the fitting procedure for finding the coefficients describing the suppression of the logical error rate for phase-
flip error rates substantially below threshold. (a),(c) Data for code-capacity noise (no measurement errors), and (b),(d) show data for
eight rounds of single-shot error correction. In both cases, we first plot log pfail as a function of log(p/pth) for differing values of L,
observing trends that agree with the straight line prediction of Eq. (E3) [(a),(b)]. We note that for the single-shot case there is an
odd-even effect so we include only the data for odd L. We extract the gradients g(L) from the corresponding straight line fits in (a),(b)
(gray lines), and plot the logarithms of these values against log L [(c),(d)]. The data fit well to the linear ansatz given in Eq. (E5), which
allows us to estimate the parameters α and β, which control the suppression of the logical error rate as per Eq. (E2). For code-capacity
noise, we estimate α = 0.546(33) and β = 1.91(3), and for eight rounds of single-shot error correction, we estimate α = 0.610(37) and
β = 1.15(3). The error bars in (a),(b) show the 95% confidence intervals log pfail = log p̂fail ± 1.96

pfail

√
pfail(1− pfail)/η, where η ≥ 104

is the number of Monte Carlo trials. We include data points with at least 25 failures. The error bars in (c),(d) show the 95% confidence
intervals given by the LINEARMODELFIT function of Mathematica.

020340-32



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

is a unique neighbor of B if and only if one and only
one bit in B belongs to the support of the check i. We
indicate with �u(B) the set of unique neighbors of B.
Lemma 3 in Ref. [20] states that, for the considered class
of matrices δ:

|�u(B)| ≥ 2
3

wc|B|.
Combining this with the observation that |�u({i1, i2, i3})| is
a lower bound on |Sj | and plugging in |B| = 3, we find

|Sj | ≥ |�u({i1, i2, i3})| ≥ 2wc.

To sum up, whenever an error (L, R) of weight 3 has
support on either one column of L or one row of R, by
expansion its syndrome has weight strictly bigger than 1.
When instead a weight-3 error has support spread among
more than one column and row it is enough to use the
hypergraph product structure of the code family, as done
for weight-2 errors, to find that its syndrome need to have
weight at least 2.

APPENDIX E: FITTING DETAILS

To obtain our threshold estimates, we use the standard
critical exponent method [59]. Specifically, in the vicinity
of the threshold, we fit our data to the following ansatz:

a0 + a1x + a2x2, (E1)

where the rescaled variable x = (p − pth)L1/μ. Examples
of this fit are shown in Fig. 9.

We use the fitting method described in Ref. [12] to
understand the behavior of the 3D toric code logical error
rate for error rates p significantly below threshold. Recall
from Sec. V that we use the following ansatz:

pfail(L) ∝ (p/pth)
αLβ

, (E2)

we take the logarithm of both sides to obtain

log pfail = log f (L)+ αLβ log(p/pth). (E3)

For different values of L, we plot log pfail as a function of
log(p/pth) and fit to a straight line to obtain gradients

g(L) = ∂ log pfail

∂u
= αLβ , (E4)

where u = log(p/pth). Finally, take the logarithm of both
sides of the above to give

log g = log α + β log L. (E5)

We then plot log g as a function of log L and fit to a straight
line to get α and β. Figure 10 illustrates the above fitting

procedure for code-capacity noise (no measurement errors)
and for eight rounds of single-shot error correction.

[1] Joschka Roffe, Quantum error correction: An introductory
guide, Contemporary Phys. 60, 226 (2019).

[2] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John
Preskill, Topological quantum memory, J. Math. Phys. 43,
4452 (2002).

[3] Austin G. Fowler, Ashley M. Stephens, and Peter
Groszkowski, High-threshold universal quantum computa-
tion on the surface code, Phys. Rev. A 80, 052312 (2009).

[4] R. Raussendorf, J. Harrington, and K. Goyal, Topological
fault-tolerance in cluster state quantum computation, New
J. Phys. 9, 199 (2007).

[5] A. Bolt, G. Duclos-Cianci, D. Poulin, and T. M. Stace,
Foliated Quantum Error-Correcting Codes, Phys. Rev. Lett.
117, 070501 (2016).

[6] Naomi Nickerson and Héctor Bombín, Measurement based
fault tolerance beyond foliation, arXiv:1810.09621 (2018).

[7] Hector Bombin, 2D quantum computation with 3D topo-
logical codes, arXiv:1810.09571 (2018).

[8] Benjamin J. Brown, A fault-tolerant non-Clifford gate for
the surface code in two dimensions, arXiv:1903.11634
(2019).

[9] Michael Newman, Leonardo Andreta de Castro, and Ken-
neth R. Brown, Generating fault-tolerant cluster states from
crystal structures, arXiv:1909.11817 (2019).

[10] Héctor Bombín, Single-Shot Fault-Tolerant Quantum Error
Correction, Phys. Rev. X 5, 031043 (2015).

[11] Héctor Bombín, Resilience to Time-Correlated Noise in
Quantum Computation, Phys. Rev. X 6, 041034 (2016).

[12] Benjamin J. Brown, Naomi H. Nickerson, and Dan E.
Browne, Fault-tolerant error correction with the gauge color
code, Nat. Commun. 7, 1 (2016).

[13] Kasper Duivenvoorden, Nikolas P. Breuckmann, and Bar-
bara M. Terhal, Renormalization group decoder for a four-
dimensional toric code, IEEE Trans. Inf. Theory 65, 2545
(2018).

[14] Nikolas P. Breuckmann and Vivien Londe, Single-shot
decoding of linear rate LDPC quantum codes with high
performance, arXiv:2001.03568 (2020).

[15] Aleksander Kubica, Ph.D. thesis, Caltech, 2018.
[16] Aleksander Kubica and John Preskill, Cellular-Automaton

Decoders with Provable Thresholds for Topological Codes,
Phys. Rev. Lett. 123, 020501 (2019).

[17] Michael Vasmer, Dan E. Browne, and Aleksander Kubica,
Cellular automaton decoders for topological quantum codes
with noisy measurements and beyond, arXiv:2004.07247
(2020).

[18] Earl T. Campbell, A theory of single-shot error correction
for adversarial noise, Quantum Sci. Technol. 4, 025006
(2019).

[19] Jean-Pierre Tillich and Gilles Zémor, Quantum LDPC
codes with positive rate and minimum distance propor-
tional to the square root of the blocklength, IEEE Trans.
Inf. Theory 60, 1193 (2014).

[20] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor,
in Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on (IEEE, 2015), p. 810.

020340-33



QUINTAVALLE, VASMER, ROFFE, and CAMPBELL PRX QUANTUM 2, 020340 (2021)

[21] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier,
in Proc. STOC (ACM, 2018), p. 521.

[22] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier,
Constant overhead quantum fault tolerance with quantum
expander codes. to appear in FOCS 2018, (2018).

[23] Austin G. Fowler, Time-optimal quantum computation,
arXiv:1210.4626 (2012).

[24] Barbara M. Terhal, Quantum error correction for quantum
memories, Rev. Mod. Phys. 87, 307 (2015).

[25] Poulami Das, Christopher A. Pattison, Srilatha Manne,
Douglas Carmean, Krysta Svore, Moinuddin Qureshi, and
Nicolas Delfosse, A Scalable Decoder Micro-architecture
for Fault-Tolerant Quantum Computing, arXiv:2001.06598
(2020), p. 1.

[26] Antoine Grospellier and Anirudh Krishna, Numerical study
of hypergraph product codes, arXiv:1810.03681 (2018).

[27] Antoine Grospellier, Lucien Grouès, Anirudh Krishna, and
Anthony Leverrier, Combining hard and soft decoders for
hypergraph product codes, arXiv:2004.11199 (2020).

[28] Sergey Bravyi and Matthew B. Hastings, in Proceedings of
the 46th Annual ACM Symposium on Theory of Computing
(ACM, 2014), p. 273.

[29] Benjamin Audoux and Alain Couvreur, On tensor products
of CSS codes, arXiv:1512.07081 (2015).

[30] Arun B. Aloshious and Pradeep Kiran Sarvepalli, Decod-
ing toric codes on three dimensional simplical complexes,
arXiv:1911.06056 (2019).

[31] Nikolas P. Breuckmann and Xiaotong Ni, Scalable neural
network decoders for higher dimensional quantum codes,
Quantum 2, 68 (2018).

[32] Yukiyasu Ozeki and Nobuyasu Ito, Multicritical dynamics
for the ±J Ising model, J. Phys. A: Math. General 31, 5451
(1998).

[33] Takuya Ohno, Gaku Arakawa, Ikuo Ichinose, and Tetsuo
Matsui, Phase structure of the random-plaquette Z2 gauge
model: Accuracy threshold for a toric quantum memory,
Nucl. Phys. B 697, 462 (2004).

[34] Martin Hasenbusch, Francesco Parisen Toldin, Andrea
Pelissetto, and Ettore Vicari, Magnetic-glassy multicritical
behavior of the three-dimensional ±J Ising model, Phys.
Rev. B - Condens. Matter Mater. Phys. 76, 184202 (2007).

[35] Koujin Takeda and Hidetoshi Nishimori, Self-dual random-
plaquette gauge model and the quantum toric code, Nucl.
Phys. B 686, 377 (2004).

[36] Aleksander Kubica, Michael E. Beverland, Fernando
Brandão, John Preskill, and Krysta M. Svore, Three-
Dimensional Color Code Thresholds via Statistical-
Mechanical Mapping, Phys. Rev. Lett. 120, 180501 (2018).

[37] Alexey A. Kovalev and Leonid P. Pryadko, Fault tolerance
of quantum low-density parity check codes with sublinear
distance scaling, Phys. Rev. A 87, 020304 (2013).

[38] Sergey Bravyi and Matthew B. Hastings, in Proceedings
of the forty-sixth annual ACM symposium on Theory of
computing (ACM, 2014), p. 273.

[39] Allen Hatcher, Algebraic Topology. 2002 (Cambridge UP,
Cambridge, 2002), p. 606.

[40] Weilei Zeng and Leonid P. Pryadko, Higher-Dimensional
Quantum Hypergraph-Product Codes with Finite Rates,
Phys. Rev. Lett. 122, 230501 (2019).

[41] Jack Edmonds, Paths, trees, and flowers, Canadian J. Math.
17, 449 (1965).

[42] Austin G. Fowler, Matteo Mariantoni, John M. Martinis,
and Andrew N. Cleland, Surface codes: Towards practical
large-scale quantum computation, Phys. Rev. A 86, 032324
(2012).

[43] Nikolas P. Breuckmann and Barbara M. Terhal, Construc-
tions and noise threshold of hyperbolic surface codes, IEEE
Trans. Inf. Theory 62, 3731 (2016).

[44] Benjamin J. Brown and Dominic J. Williamson, Paral-
lelized quantum error correction with fracton topological
codes, Phys. Rev. Res. 2, 013303 (2020).

[45] Aleksander Kubica and Nicolas Delfosse, Efficient color
code decoders in d ≥ 2 dimensions from toric code
decoders, arXiv:1905.07393 (2019).

[46] Namely, the dual lattice of the one described in Appendix B.
[47] Vladimir Kolmogorov, Blossom V: A new implementa-

tion of a minimum cost perfect matching algorithm, Math.
Program. Comput. 1, 43 (2009).

[48] David J. C. MacKay and Radford M. Neal, Near shan-
non limit performance of low density parity check codes,
Electron. Lett. 33, 457 (1997).

[49] F. R. Kschischang, B. J. Frey, and H. Loeliger, Factor
graphs and the sum-product algorithm, IEEE Trans. Inf.
Theory 47, 498 (2001).

[50] David Poulin and Yeojin Chung, On the iterative decoding
of sparse quantum codes, Quantum Info. Comput. 8, 987
(November 2008).

[51] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo,
Fifteen years of quantum ldpc coding and improved decod-
ing strategies, IEEE Access 3, 2492 (2015).

[52] Ye-Hua Liu and David Poulin, Neural Belief-Propagation
Decoders for Quantum Error-Correcting Codes, Phys. Rev.
Lett. 122, 200501 (2019).

[53] Alex Rigby, J. C. Olivier, and Peter Jarvis, Modified belief
propagation decoders for quantum low-density parity-
check codes, Phys. Rev. A 100, 012330 (Jul 2019).

[54] M. Li and T. J. Yoder, in 2020 IEEE International Con-
ference on Quantum Computing and Engineering (QCE)
(2020), p. 109.

[55] Pavel Panteleev and Gleb Kalachev, Degenerate quan-
tum LDPC codes with good finite length performance,
arXiv:1904.02703 (2019).

[56] Joschka Roffe, David R. White, Simon Burton, and
Earl Campbell, Decoding across the quantum low-density
parity-check code landscape, Phys. Rev. Res. 2, 043423
(Dec 2020).

[57] Joschka Roffe, BP+OSD - a decoder for sparse quantum
codes. github.com.

[58] More precisely, rows of LM are vectors in C2 that cor-
respond to elements of the second cohomology group
H∗2; hence their weight is lower bounded by d∗2 =
min{dT

a dT
b , dT

a dT
c , dT

b dT
c }, see Ref. [40].

[59] J. Harrington, Ph.D. thesis, Caltech, 2004.
[60] Chenyang Wang, Jim Harrington, and John Preskill,

Confinement-higgs transition in a disordered gauge the-
ory and the accuracy threshold for quantum memory, Ann.
Phys. 303, 31 (2003).

[61] Sagar Vijay, Jeongwan Haah, and Liang Fu, Fracton topo-
logical order, generalized lattice gauge theory, and duality,
Phys. Rev. B 94, 235157 (2016).

[62] Arpit Dua, Isaac H. Kim, Meng Cheng, and Dominic
J. Williamson, Sorting topological stabilizer models

020340-34



SINGLE-SHOT ERROR CORRECTION OF THREE-DIMENSIONAL. . . PRX QUANTUM 2, 020340 (2021)

in three dimensions, Phys. Rev. B 100, 155137
(2019).

[63] www.computeontario.ca.
[64] www.computecanada.ca.
[65] Antoine Grospellier, Ph.D. thesis, Sorbonne universités,

2019.
[66] When the code is a CSS code we consider the group gener-

ated by the X stabilizers and the Z stabilizers separately. S
will thus refer either to SX or SZ .

[67] For example, if e1 and e2 are both X operators,
E1 + E2 is the symmetric difference of the sets E1
and E2.

[68]
(n

k

) � 2nh(k/n), where h(x) = x log2(1/x)+ (1− x) log2
[1/(1− x)] is the binary entropy function.

[69] A real function is said subadditive if for any x, y ∈ R,
g(x)+ g(y) ≥ g(x + y).

[70] Michael Sipser and Daniel A. Spielman, Expander codes,
IEEE Trans. Inf. Theory 42, 1710 (1996).

020340-35



108



Chapter 6

Outlook and Open problems

In this work, we have addressed some of the most fundamental issues in the design of a full-stack
hypergraph-product-codes quantum computer. We believe that the study of hypergraph product codes
could provide promising new approaches to the quantum error correction paradigm, particularly in-
forming novel techniques that use to good advantage constant rate codes. We discussed the limitations
– and henceforth possible directions – of our work in the relevant Sections but beyond those, there are
a few open problems that are of particular interest to us.

First and foremost, we lack a comprehensive framework for encoded operations that fully exploits
the logical dimension of the code. Current proposals [1, 2] rely on auxiliary patches of planar code and
we believe this is sub-optimal. Transversal gates seem to lose much of their appeal when the underlying
code has more than one logical qubit. In fact, they naturally tend to act on the entire logical group of
the code and it is still unknown how to address single logical qubits without supplementary gadgets.
Possibly completely new paradigms are needed.

A related, unexplored, problem is logical circuit compilation. The logical action of fault-tolerant
gates on the encoded space will likely be tied to a generating set for the logical Pauli group. Once
a logical basis is chosen, we expect different logical qubits to have inherently different properties in
respect of minimum weight but also ease of implementation of some logical operations over others.
Presumably, some but not all logical operations could be implemented in parallel. For all these rea-
sons, ad hoc logical circuit compilation could be needed to make the most of the specific structure of
the encoded space and the chosen universal set of fault-tolerant operations.

Decoding: decoding is not a solved problem. Efficient decoding algorithms with linear running time are
known in theory, but the hidden constants are often too big in practice. Bringing the computational
cost of decoding down could be the turning point for usable quantum computers [3, 4, 5, 6]. The
current approach is to use a cheap ‘pre-decoder’ to correct the most common and trivial errors before
the syndrome information is sent to a general-purpose decoder. Such kind of approach has not been
studied for codes with k > 1 and hypergraph product codes more specifically.

Strictly related to the decoding problem is the design of fault-tolerant syndrome extraction circuits
that are compatible with the current hardware [7, 8]. This will not only affect the overall performance
of the computation but also shape and constrain the decoding problem that needs to be solved.

109



On a more speculative level, we would like to further investigate the relationship between confine-
ment, as defined in Chapter 5, and energy barrier. Stabilizer codes can be mapped into the degenerate
ground state of a Hamiltonian where Pauli errors correspond to excited states. The energy barrier of
a code is then the minimum energy cost to implement a non-trivial logical operator, namely moving
from one ground state to an orthogonal one, via a sequence of single-qubit Pauli errors [9, 10, 11].
Since confinement is a relation between the syndrome weight – roughly the energy cost – and the error
weight, the two concepts are coupled. We know that a code with (macroscopic) confinement has a
macroscopic energy barrier and we conjecture that the converse is also true. Our community agrees
on the close link between confinement, energy barrier, single-shot error correction and self-correction.
The exact nature of this link is still not fully understood.

Can we build this bridge?

A scalable quantum computer is one whose computational power can be increased on demand, but at
the same time the resources used – manufacturing cost, physical space and energy usage – do not grow
exponentially. To actually increase the computational power of a machine, qubits’ quality and the
ability to perform gates between them have to be preserved when increasing the number of available
qubits [12, 13, 14, 15]. A figure of merit for the quality of the qubits is their relaxation times expressed
as exponential decay constants. The longitudinal relaxation time measures the exponential decay of the
probability that a qubit initialised in the |1〉 state is found in the |0〉 state. The transverse relaxation
time measures the decay of a qubit state in some superposition α |0〉+β |1〉. Equally important are the
gate and measurement times, both in absolute terms and relative to the qubits’ relaxation time. Long
qubit relaxation times as well as fast gates and measurements naturally allow for longer computations.
In addition, we need gates and measurement error rates to be as low as possible. Last, as the number of
qubits grows, the number of possible multiple-qubit entangling gates – e.g. CNOTs – between different
qubits has to substantially grow too. In other words, we say that the number of connected qubits has
to grow.

A key issues in code design is indeed that the physical arrangement of qubits and consequent ability
to perform gates has to be compatible with the chosen code family and unfortunately good qLDPC
codes are not local in two-dimensions [9, 16]. Here by D-dimensional local quantum codes we mean a
code family in which data qubits and auxilia qubits for stabilizer measurements have a layout in the
D-dimensional real space such that each stabiliser’s support only contains neighbouring qubits in the
layout. Bravyi, Poulin and Terhal [16] proved that a [[n, k, d]] code in D dimensions obeys kd 2

D−1 ∼ n

and Baspin and Krishna [17] further proved that long-range connectivity is indeed essential to surpass
this trade-off between parameters. Delfosse, Beverland and Tremblay [18] have shown that, when we
are limited to local circuits for syndrome measurement, the number of auxilia needed grows with the
number of physical qubits – as n or n2, depending on the depth of the circuits. In particular in 2-
dimensions, when d ∼

√
n, the number of encoded logical qubits has to be constant – as for the planar

code [16]. Hypergraph product codes circumnavigate the no-go result of Ref. [16] by dropping locality
constraints; as per Refs. [18, 19], a scalable implementation on hardware would require going past a
two-dimensional physical layout of qubits with nearest-neighbour interactions.

To summarise, good codes need long-range connectivity but many current hardware implemen-

110



tations – e.g. superconducting qubits – do not accommodate for this. Superconducting qubits are
constrained in terms of connectivity and do not have long relaxation times, in the order of microsec-
onds, but have fast gates, in the order of nanoseconds [13]. On the other hand, trapped ion and neutral
atom qubits, for example, are quite versatile in terms of their connectivity, and have longer relaxation
times, in the seconds range, but slow gates, in the order of microseconds [14, 15]. The interplay
between the different requirements for the construction of a useful quantum computer is a complex
technological challenge. As of today, we do not know which qubit architecture will be favoured but
we are optimistic it will overcome the constraints of a planar qubit layout to allow diverse quantum
codes – hypergraph product codes and beyond.

References

[1] Lawrence Z Cohen et al. “Low-overhead fault-tolerant quantum computing using long-range
connectivity”. In: Science Advances 8.20 (2022).

[2] Anirudh Krishna and David Poulin. “Fault-tolerant gates on hypergraph product codes”. In:
Physical Review X 11.1 (2021), p. 011023.

[3] Nicolas Delfosse. “Hierarchical decoding to reduce hardware requirements for quantum comput-
ing”. In: arXiv preprint arXiv:2001.11427 (2020).

[4] Samuel C Smith, Benjamin J Brown, and Stephen D Bartlett. “A local pre-decoder to reduce
the bandwidth and latency of quantum error correction”. In: arXiv preprint arXiv:2208.04660
(2022).

[5] Gokul Subramanian Ravi et al. “Have your QEC and Bandwidth too!: A lightweight cryogenic
decoder for common/trivial errors, and efficient bandwidth+ execution management otherwise”.
In: arXiv preprint arXiv:2208.08547 (2022).

[6] Luka Skoric et al. “Parallel window decoding enables scalable fault tolerant quantum computa-
tion”. In: arXiv preprint arXiv:2209.08552 (2022).

[7] Nicolas Guillaume Delfosse, Maxime Tremblay, and Michael Edward Beverland. Short-depth syn-
drome extraction circuits in 2d quantum architectures for hypergraph product codes. US Patent
App. 17/219,331. 2022.

[8] Maxime A Tremblay, Nicolas Delfosse, and Michael E Beverland. “Constant-overhead quan-
tum error correction with thin planar connectivity”. In: Physical Review Letters 129.5 (2022),
p. 050504.

[9] Sergey Bravyi and Barbara Terhal. “A no-go theorem for a two-dimensional self-correcting quan-
tum memory based on stabilizer codes”. In: New Journal of Physics 11.4 (2009), p. 043029.

[10] Barbara M Terhal. “Quantum error correction for quantum memories”. In: Reviews of Modern
Physics 87.2 (2015), p. 307.

[11] Benjamin J Brown et al. “Quantum memories at finite temperature”. In: Reviews of Modern
Physics 88.4 (2016), p. 045005.

[12] Thaddeus D Ladd et al. “Quantum computers”. In: nature 464.7285 (2010), pp. 45–53.

111



[13] Morten Kjaergaard et al. “Superconducting qubits: Current state of play”. In: Annual Review of
Condensed Matter Physics 11 (2020), pp. 369–395.

[14] Colin D Bruzewicz et al. “Trapped-ion quantum computing: Progress and challenges”. In: Applied
Physics Reviews 6.2 (2019), p. 021314.

[15] Mark Saffman. “Quantum computing with atomic qubits and Rydberg interactions: progress
and challenges”. In: Journal of Physics B: Atomic, Molecular and Optical Physics 49.20 (2016),
p. 202001.

[16] Sergey Bravyi, David Poulin, and Barbara Terhal. “Tradeoffs for reliable quantum information
storage in 2D systems”. In: Physical review letters 104.5 (2010), p. 050503.

[17] Nouédyn Baspin and Anirudh Krishna. “Connectivity constrains quantum codes”. In: Quantum
6 (2022), p. 711.

[18] Nicolas Delfosse, Michael E Beverland, and Maxime A Tremblay. “Bounds on stabilizer mea-
surement circuits and obstructions to local implementations of quantum LDPC codes”. In: arXiv
preprint arXiv:2109.14599 (2021).

[19] Armands Strikis and Lucas Berent. “Quantum LDPC Codes for Modular Architectures”. In:
arXiv preprint arXiv:2209.14329 (2022).

112


	Acronyms
	Context and notation - Introduction
	Bits
	Qubits
	Classical linear codes and their quantum counterpart: stabiliser and CSS codes
	The planar code
	On logical operations
	On syndrome measurement errors

	The need for good codes - Overview
	Code construction and decoding - ReShape
	Logical gates - Qubit partitions
	Single-shot error correction - Confinement
	Outlook and Open problems

