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Abstract

Quantum many-body scars (QMBS) are a mechanism for many-body

interacting systems to resist thermalisation. QMBS systems host a

subset of atypical, non thermal eigenstates which are responsible for

coherent oscillatory dynamics when these systems are prepared in spe-

cial initial states. There exist two categories of QMBS. Firstly, there

are ‘exact scars’, which arise due to spectrum generating algebras

(SGA), resulting in perfect oscillations for all times. On the other

hand, there exist ‘approximate scars’ (16, 116, 130), which have been

observed in experiment (7) and are responsible for decaying oscilla-

tory dynamics. The purpose of this thesis is to explain the origin

of approximate scars, make predictions of new models expected to

host them, and to realise approximate scarred dynamics experimen-

tally. We show approximate scars arise due to algebraic structures

analogous to SGA. These structures are known as ‘broken’ Lie alge-

bras. Understanding approximate scars at the level of a Lie algebra

allows us to systematically derive higher order corrections which in-

terpolate between approximate scarring and exact scarring. In ad-

dition, for models with a single revival frequency, indicative of some

su(2) algebraic structure, we introduce a complementary approach of

studying embedded hypercubic structures contained within the adja-

cency graph of the scarred Hamiltonian. Inspired by the notions of

approximate algebraic relations and embedded graph structures, we

introduce a general method of constructing scarred models via kinetic

constraints. Finally, by utilising the suppressed entropy growth typi-

cal of QMBS models, we implement scarred dynamics on a quantum

computer.
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Néel state for the two-hypercube m . . . . . . . . . . . . . . . . . 102

5.7 Dynamics in the two-hypercube model in Eq. (5.24). . . . . . . . 103

5.8 Revivals and scarred eigenstates in models defined in Eq. (5.25)

for different values of r. . . . . . . . . . . . . . . . . . . . . . . . . 106

5.9 Revival fidelity for (k, k+1) models in Eq. (5.26). . . . . . . . . . 109

5.10 Level statistics of the (2,3) model, confirming it is non-integrable. 111

5.11 QMBS in the (2, 3) k, k + 1 model. . . . . . . . . . . . . . . . . . 113

5.12 Interpolating between the two hypercube model and the free para-

magnet via the addition of bridges, resulting in QMBS models. . . 115

6.1 QMBS observed in a kinetically constrained clock model, con-

structed by embedding periodic single site dynamics into a kineti-

cally constrained model. . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Time evolution of local observables when the PCP model is quenched
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Chapter 1

Introduction

Many-body quantum systems with a large number of degrees of freedom are no-

toriously difficult to simulate classically. Describing a quantum state requires an

exponentially growing number of bits in system size, due to the rapid growth of

the Hilbert space. However, despite this seeming complexity, interacting systems

are typically found to approach equilibrium states whose properties depend only

on a single quantity - the energy density of the initial state. This is reminiscent

of thermalisation of classical systems, which is well understood from statistical

mechanics. Much effort has been directed towards understanding thermalisation

of quantum systems, where it is now generally believed quantum systems ther-

malise in accordance with a conjecture known as the eigenstate thermalisation

hypothesis (ETH) (25, 29, 31, 40, 123).

However, thermalisation presents problems if one wants to do useful work

with quantum systems, for example, designing a quantum computer with many

local degrees of freedom coupled by interactions. Interactions which result in

an ETH system result in a scrambling of local information, causing the system

to ‘forget’ its initial state, limiting the the computing potential of such devices.

Therefore there has been a surge of interest in mechanisms which avoid thermal-

isation and violate ETH (1, 15, 80, 102, 119). The most well known mechanism

is integrability (128), where a many-body quantum system hosts an extensive

number of symmetries. Many-body localisation (MBL) (5, 49, 117), an analogue

of Anderson localisation in many-body disordered systems, offers another way of

avoiding thermalisation. MBL systems are similar to integrable systems, as they

1



1. INTRODUCTION

also possess an extensive number of conserved local integrals of motion (LIOM)

(21, 61, 87, 105). MBL and integrability result in a complete lack of thermalisa-

tion, due to the additional conserved quantities, such that these systems may be

said to strongly violate the ETH.

Quantum many-body scars (QMBS) (79, 116) are another mechanism for

avoiding thermalisation, differing from the previous two methods in that QMBS

systems only weakly violate the ETH. This is in the sense that a system hosting

QMBS will avoid thermalisation when initialised in a few, special initial states,

but will generically thermalise from all other initial states. Moreover, QMBS sys-

tems generally feature robust oscillatory dynamics when initialised in these spe-

cial initial states. Absence of thermalisation and oscillatory dynamics in QMBS

systems has been found to occur due to the presence of scarred eigenstates - a

subset of eigenstates with atypical thermal properties. While the existence of

these scarred eigenstates explains the atypical thermal behaviour of QMBS sys-

tems, it is still largely an open problem why these eigenstates are present in the

model in the first place.

In this thesis we introduce theories which aim to understand the origin of

QMBS. Our approach consists of studying algebraic structures which gives rise

to scarred eigenstates. We further introduce a complementary graph-theoretic

approach, yielding predictions of new models hosting QMBS. By considering how

to engineer these algebraic structures using kinetic constraints, we also introduce

a general construction of QMBS models. Finally, we simulate oscillatory scarred

dynamics on real quantum hardware, demonstrating the practicality of simulating

systems which resist thermalisation.

In Chapter 2, we review concepts pertaining to thermalisation, glossed over in

this introduction. Specifically, we review the eigenstate thermalisation hypothe-

sis (ETH) and its relevance for non-integrable many-body interacting quantum

systems. We then proceed to discuss ways in which the ETH may be violated,

where we are particularly interested in examples of weak ETH violation. Finally,

we review experimental results from a 51-Rydberg atom simulator (7), which

appears to weakly violate the ETH. By mapping the simulator to a kinetically

constrained spin chain, called the ‘PXP’ model (130), we verify numerically the

absence of thermalisation in this system.

2



In Chapter 3 we give an overview of quantum many-body scars (QMBS).

We study the spectral properties of the PXP model (131), revealing a subset

of atypical non-thermal eigenstates which is the defining property of quantum

many-body scarring. We then proceed to review other mechanisms for which non-

thermal eigenstates may arise, such as ‘projector embeddings’ (119) and Krylov

restricted thermalisation (80). These mechanisms motivate an idealised limit of

QMBS, so called ‘exact’ scarred models, which contrast with the QMBS observed

in experiments now referred to as ‘approximate’ scars. By reviewing the under-

lying algebraic structure necessary for exact scarring, we provide the necessary

background to understand the remainder of the thesis, which aims to explain the

origin of ‘approximate‘ scarred models.

In Chapter 4 we introduce the concept of a ‘broken’ Lie algebra representa-

tion as a mechanism for engineering approximate scarred models. We introduce

a systematic way of deriving successively higher order correction terms to this

Lie algebra, resulting in an interpolation between approximate and exact scarred

models. We demonstrate this approach with the PXP model, successfully stabil-

ising revivals from arbitrary charge density wave product states.

In Chapter 5 we introduce a graph-theoretic interpretation of scarred mod-

els with a single revival frequency, indicative of some su(2) algebraic structure.

This framework compliments the broken Lie algebra approach discussed in Chap-

ter 4, as it seeks to understand scars from embedded hypercubic structures in the

adjacency graph of the scarred Hamiltonian, and hypercubic adjacency graphs

are isomorphic to models with su(2) symmetry. We interpolate between a free

paramagnet (full hypercube) and the PXP model using several methods, reveal-

ing new approximate scarred models for which we identify embedded hypercubic

structures relevant for scarred dynamics.

Chapter 6 builds upon ideas in the previous two chapters, introducing a gen-

eral construction of approximate scarred models via the use of kinetic constraints.

We give an explicit example of this construction with ‘scarred clock models’.

Finally in Chapter 7 we introduce a variational approach to simulating scarred

dynamics on quantum computers, implementing the dynamics of the PXP model

on IONQ’s trapped ion platform.

3
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Chapter 2

Quantum ergodicity and its

breakdown

In this chapter we review the concept of thermalisation, in the context of many-

body quantum systems. Although dynamics in quantum systems is generated

by the application of a unitary propagator and is therefore fully reversible, one

can still define notions of thermalisation and equilibration if one considers local

quantities. We begin by reviewing concepts related to thermalisation in a classical

context, defining properties such as ergodicity, chaos and integrability. We then

discuss analogous definitions of these concepts in a quantum setting, introducing

the eigenstate thermalisation hypothesis (ETH) and its consequences for non-

integrable systems (25, 29, 31, 40, 123).

Next we proceed to review ways in which the ETH may be violated. This can

be in a strong sense, such as with integrability (128) or many-body localisation

(49), or in a weak sense, such as with single particle quantum scarring (46, 73).

Finally, we review results from a recent experimental quench of a 51 Rydberg

atom simulator (7), a many-body interacting system which appears to exhibit

weak ergodicity breaking, similar to single particle quantum scarring. We will

derive an effective model of this experimental Hamiltonian, the so called ‘PXP’

model (130), which is a kinetically constrained spin chain. We conclude by pre-

senting numerical result which verify the presence of weak ergodicity breaking in

the PXP model.
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2. QUANTUM ERGODICITY AND ITS BREAKDOWN

2.1 Thermalisation in classical systems

Before discussing thermalisation of quantum systems, we first review what ther-

malisation means in the context of classical systems, including related concepts

such as ergodicity and chaos. Extending definitions of well known properties of

classical systems, such as chaos, to quantum systems, is more difficult than one

would naively expect. Nevertheless, a firm intuition of what these concepts means

classically will prove useful in the quantum setting.

Consider a classical system with n degrees of freedom. Formally, this system

is deterministic, and the state of the system may be described by 2n parameters,

n position coordinates ~x and n momenta coordinates ~p. The state of the system

therefore resides in a 2n dimensional space ~r = {~x, ~p}, known as phase space.

Upon initialising the system in a possible configuration, it will evolve according

to Hamilton’s equations of motion (66), which generate a trajectory in the 2n

dimensional phase space.

Now consider the case where the number of degrees of freedom n is assumed

to be extremely large. Such a scenario is typical of everyday, macroscopic objects

we encounter. While in theory the state of this system at any time is described

by 2n variables, in practice, it is well known fact that one only needs to utilise

a few macroscopic variables to describe the average properties of this system at

any given time. Furthermore, macroscopic objects which we encounter in our day

to day lives appear rather static, that is, they are in equilibrium, such that their

macroscopic properties are not changing, even though their phase space coordi-

nates may be evolving continuously. In the Newtonian language of a trajectory in

phase space, equilibrium values of local observables may be computed by evolving

the initial configuration in phase space under Hamilton’s equations and taking

long time averages over this trajectory:

〈O〉eq = lim
t→∞

1

t

∫ t

0

O(~x(t)), ~p(t))dt (2.1)

For a very high dimensional system, obtaining the precise trajectory in phase

space to calculate the above integral becomes practically impossible.

Statistical mechanics is a different framework which yields successful predic-
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2.1 Thermalisation in classical systems

tions of equilibrium values (95). Rather than being concerned with trajectories

in phase space, one instead pursues a description of the system in terms of prob-

ability distributions, by assigning a certain probability for the system to be in

a specific microstate (which corresponds to a single configuration in phase space

~r = {~x, ~p}). A common approach is to take the microcanonical ensemble, where

one assigns an equal probability to every microstate with equal energy. In statis-

tical mechanics, equilibrium values of observables are then calculated as ensemble

averages over all microstates, weighted by the probability to be in a given mi-

crostate. For Hamiltonian systems energy is conserved. Therefore, to calculate

equilibrium values, one needs only average over all microstates in phase space of

the same energy. For the microcanonical ensemble this becomes:

〈O〉eq =

∫
E
O(~r)d2n~r∫
E
d2n~r

(2.2)

But why should the equilibrium value obtained as an average over all states in

phase space, Eq. (2.2) be equivalent to the value obtained as an average over a

particular trajectory in phase space, Eq. (2.1)? What justifies the microcanonical

ensemble?

An ergodic hypothesis provides the link between these two approaches. An

ergodic system is one which evolves in time to explore all possible states. For

Hamiltonian systems which conserve energy, this means that for any arbitrary

initial configuration with some particular energy E, over time the system will

explore the full phase space constrained along this energy surface. This energy

surface will also be covered uniformly by the trajectory as a consequence of Li-

ouville’s theorem (95). A cartoon describing an ergodic trajectory is shown in

Fig. 2.1(a). For this scenario, it becomes obvious that the long time average

over an ergodic trajectory is equivalent to an average over all of phase space

constrained along the energy surface.

A natural question which then arises is how can one know if an ergodic hy-

pothesis is justified, such that one can compute equilibrium values using the

microcanonical ensemble? Indeed, ergodicity has been proven explicitly for only

a relatively few classical systems, such as ‘Sinai billiards’, a system comprising

a set of hard spheres bounded by some volume (86, 121). A somewhat easier

7



2. QUANTUM ERGODICITY AND ITS BREAKDOWN

(a) Ergodic (b) Integrable

Figure 2.1: Different types of trajectories possible in a classical phase space con-
sisting of position and momenta coordinates. (a) Corresponds to an ergodic
trajectory, which explores the whole phase space given enough time, covering
the space uniformly. As a consequence of this uniform exploration, equilibrium
values of functions on phase space, which may be obtained by averaging over the
trajectory, Eq. (2.1), may be equivalently calculated by averaging over the entire
phase space, Eq. (2.2). (b) Corresponds to a quasi-periodic trajectory, typical of
an integrable system, which possess an extensive number of conserved quantities,
constraining possible trajectories.

question to answer is when can it be known for certain that a system is not

ergodic? Integrable systems (3) are defined as systems possessing an extensive

number of conserved quantities, known as integrals of motion, which are identified

by commuting Poisson brackets with the total energy function (the Hamiltonian

function). Integrable systems do not exhibit ergodic trajectories. The conserva-

tion of these integrals of motion constrains the permitted phase space to regions

where these quantities are constant, resulting in trajectories that are generally

quasi-periodic (3) (Fig. 2.1(b)) so that an ergodic hypothesis is no longer justi-

fied. By defining non-integrable systems as systems which only conserve energy

and have only a small number or no additional integrals of motion, it is still not

obvious if all non-integrable systems are generally ergodic. Even if the major-

ity of trajectories may be ergodic, there may still exist some which are periodic.

This is the case for a system of billiards in a Bunimovich stadium (18, 19), as

shown in Fig. 2.2. This scenario would be described as ‘weak ergodicity break-

ing’ in a classical context - it is a termed ‘weak’ as only a few trajectories are

8



2.1 Thermalisation in classical systems

non-ergodic, in contrast to integrable systems, which would constitute ‘strong

ergodicity breaking’, as all initial configurations result in non-ergodic trajecto-

ries. Nevertheless, it is found that weak ergodicity breaking, as is the case with

billiards, is a rare phenomena, and generally, as the number of degrees of freedom

n → ∞, the fraction of quasi periodic orbits becomes vanishingly small (33),

resulting in non-integrable classical systems generally being ergodic.

Figure 2.2: Weak ergodicity breaking for a classical billiard system bounded
by a Bunimovich stadium, which is a stadium defined by a rectangular boundary
capped by two semicircles. Generic trajectories of a billiard ball would be ergodic,
exploring the entire stadium uniformly, as shown in panel (a). However, certain
initial conditions result in unstable, periodic orbits, which are not ergodic. An
example of one such orbit is shown in panel (b).

Therefore we have seen that typically, classical non-integrable systems are

ergodic, such that after very long times, enough for the system to explore all of

phase space, macroscopic observables will equilibrate to values dependent only on

the initial configurations energy, referred to as thermal equilibrium. Equilibrium

values of observables may be calculated using microcanonical ensemble averages.

This process of reaching thermal equilibrium is referred to as thermalisation.

However, it must be noted that thermalisation typically occurs on timescales

much faster than it would take to explore the full phase space. This apparent

faster thermalisation must therefore depend on some additional criteria other than

ergodicity. Indeed, this faster onset of thermalisation in many classical systems is

a consequence of many of the microstates along the constrained energy surface in

phase space being nearly identical. There will be exponentially more microstates

which look like the thermal equilibrium as opposed to some atypical configuration.

Therefore even if the system is initialised in some atypical configuration, given

9



2. QUANTUM ERGODICITY AND ITS BREAKDOWN

the ergodic trajectory, the system will quickly find itself in microstates resembling

the thermal equilibrium long before it has explored the full phase space.

Classical non-integrable systems with a large number of degrees of freedom

typically possess another property as well as ergodicity; they are chaotic. Chaotic

systems are those for which the separation between two trajectories in phase

space, initialised at coordinates very close to each other, grows exponentially in

time, as determined by their Lyapunov exponent (133). In other words, chaotic

systems are extremely sensitive to initial conditions, such that a slight perturba-

tion in the initial configuration results in wildly different dynamics at later times.

Examples of chaotic systems include coupled pendulums, the gravitational three

body problem and the previously mentioned billiards on the Bunimovich stadium

(18, 19). Note chaos is a stronger property than ergodicity. Ergodicity describes

how a single trajectory behaves, whereas chaos describes how distinct trajecto-

ries differ. Nevertheless, for a classical non-integrable system with large number

of degrees of freedom, which are typically both chaotic and ergodic, even if two

trajectories become very different as a consequence of chaos, they will both still

explore phase space uniformly due to ergodicity, therefore equilibrium values may

still be calculated using microcanonical ensemble averages.

2.2 Thermalisation in quantum systems

In the previous section we have introduced important concepts related to ther-

malisation in the context of a classical system with many degrees of freedom.

This included integrability, ergodicity and chaos. Consider now many-body in-

teracting quantum systems with many degrees of freedom. Would these systems

also thermalise?

Thermal equilibrium refers to a system reaching an equilibrium state whose

properties, dependant only on the initial states energy, may be obtained from

appropriate ensemble averages, for example, the microcanonical ensemble, which

was justified by an ergodic hypothesis. However, our definition of classical er-

godicity relied on having a concrete notion of a trajectory in phase space. For

quantum systems, due to the non commutativity of position and momenta vari-

ables, one can no longer describe the state of the system by a trajectory in phase

10



2.2 Thermalisation in quantum systems

space. In addition, the classical definition of chaos relied on an exponential scal-

ing of the distance between two trajectories in phase space. In quantum systems,

the distance between two distinct trajectories in a Hilbert space, generated by

evolution under some Hamiltonian H, is a conserved quantity, due to the unitar-

ity of the propagator U(t) = e−iHt. It is therefore not immediately obvious how

to extend definitions of ergodicity and chaos to quantum systems.

A natural first step to probe if many-body quantum systems do thermalise

is to consider the behaviour of local observables at late times, which would be

expected to equilibrate for a thermalising system. Consider an arbitrary initial

state, expressed in the eigenbasis of some Hamiltonian:

|ψ〉 =
∑
n

cn|En〉 (2.3)

For some arbitrary operator Q, the time evolution of the expectation value of this

operator may be expressed as:

〈Q(t)〉 =
∑
n

|cn|2Qnn +
∑
n6=m

cnc
∗
mQmne

−i(En−Em)t (2.4)

where Qmn = 〈Em|Q|En〉 are the matrix elements of the operator Q in the energy

basis. In the limit t >> 1, this expectation value does equilibrate to some

stationary value, as the second term containing off diagonal matrix elements will

generically average to zero for eigenvalues and initial states which are not fine

tuned. The equilibrium value is given by the diagonal matrix elements of Q in

the energy basis, weighted by the initial states support on the eigenstates:

〈Q〉eq = lim
t→∞
〈Q(t)〉 =

∑
n

|cn|2Qnn (2.5)

An analogue of the ergodic hypothesis for quantum systems would therefore de-

mand that this equilibrium value should be the same for any initial state with

the same energy density. If the system is thermal, equilibrium values should be

in some sense related to the microcanonical ensemble, as in the classical case.

For a quantum system, microcanonical ensemble averages may be expressed as

11



2. QUANTUM ERGODICITY AND ITS BREAKDOWN

averaging a quantity over some small energy window (31):

〈Q〉micro(E) =
1

D

∑
E′∈[E+∆E]

〈E ′|Q|E ′〉 (2.6)

where D is the number of energy eigenstates E ′ in the window E + ∆E.

Thermalisation is the process of approaching an equilibrium state. Therefore

for quantum systems, the thermalisation timescale refers to how long until the off-

diagonal contribution to the time evolved expectation value in Eq. (2.4) averages

to zero. As many-body level spacings are exponentially small in the number of

degrees of freedom, it could take an exponentially long time for these off diagonal

contributions to average to zero. This is similar to how formally, thermalisation in

classical system should occur on the timescale to explore the full phase space, yet

in practice it occurs much faster, due to the large number of typical configurations.

For thermalisation to occur faster than expected for quantum systems, one must

assume that the off diagonal matrix elements Qmn are sufficiently small (135).

In direct analogy with results from classical systems, one would expect an

ergodic hypothesis to apply only to non-integrable quantum systems. In the re-

mainder of this section, we will first define integrability of a quantum system, be-

fore discussing properties of non-integrable Hamiltonians obtained from random

matrix theory (75). This includes the remarkable fact that, for non-integrable

systems, diagonal elements of observables Qnn = 〈En|Q|En〉, which contribute to

long time equilibrium values of a quantum system, Eq. (2.5), are equivalent to val-

ues obtained from the microcanonical ensemble, Eq. (2.6). This result ultimately

lead us to the eigenstate thermalisation hypothesis (ETH) (123, 124, 125), which

seeks to explain thermalisation of many-body interacting quantum systems.

Integrability

Extending the definition of integrability from classical to quantum systems re-

quires some care. A classical integrable system is defined as a system which

possess an extensive number of conserved integrals of motion, as well as energy,

and may be identified by an extensive number of operators which form a com-

muting Poisson bracket with the Hamiltonian function. One may be tempted to
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2.2 Thermalisation in quantum systems

define a quantum integrable system as one which possesses an extensive number

of conserved quantities, such that the Hamiltonian of the system commutes with

an extensive number of symmetry operators. However, by this definition, any

quantum system would be quantum integrable, as there trivially exist exponen-

tial many operators which commute with the Hamiltonian; the projectors onto

arbitrary eigenstates of the Hamiltonian.

It is known however that certain quantum systems are exactly solvable, in the

sense the eigenvectors and eigenvalues of their Hamiltonians may be calculated

analytically, by a technique known as the Bethe Ansatz (67). We will not discuss

the details of the Bethe Ansatz here, it is sufficient to know that as a consequence

of the Bethe ansatz, there arises an extensive set of commuting observables which

are not trivially the projectors onto eigenstates. It is this property, being Bethe

ansatz solvable, that defines quantum integrability. The formal definition of a

non-integrable quantum system is therefore a quantum system which is not Bethe

ansatz solvable.

Note this does not mean that a non-integrable quantum system is one for

which an analytical solution is not known - the definition applies specifically

to the solvability by the Bethe ansatz. If a non-integrable Hamiltonian is not

solvable by the Bethe ansatz, it will still commute with an exponential number of

operators (projectors onto eigenstates), however, there will not exist an extensive

set of non-trivial integrals of motion (such as projectors onto eigenstates) which

commute with with the non-integrable Hamiltonian.

2.2.1 Random matrix theory

It has been found that many of the properties of non-integrable, interacting quan-

tum systems may be understood using random matrices (75). Experimental re-

sults pertaining to the energy levels of heavy nuclei suggested eigenvalues of

strongly interacting quantum systems appeared rather random (120). Wigner

(139) proposed that to understand these systems, the particular details of an

interacting Hamiltonian are irrelevant, such that various properties of the Hamil-

tonian may be calculated from ensemble averages over appropriate set of ran-

dom matrices. This includes matrix elements of observables in the energy basis,
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which are necessary to evaluate long time equilibrium values. For real, symmetric

Hamiltonians, the relevant ensemble of random matrices is the Gaussian orthog-

onal ensemble (GOE). These are matrices which are invariant under orthogonal

transformation, with the individual matrix elements being continuous Gaussian

random variables. Likewise, for complex, hermitian Hamiltonians, one would con-

sider the Gaussian unitary ensemble (GUE), which consists of random matrices

invariant under unitary transformations.

Level statistics

Results from random matrix theory are particularly useful in identifying if a

quantum system is non-integrable. One quantity which may be predicted from

random matrix theory of non-integrable systems is the distribution of level spac-

ings. This distribution is different for integrable and non-integrable systems,

providing a ‘smoking gun’ to identify if a system is non-integrable.

Assuming no degeneracies (resolve all necessary symmetries), define the nor-

malised level spacings of a Hamiltonian, Sn, as:

Sn =
En+1 − En
〈S〉 , 〈S〉 =

1

Ns − 1

Ns−1∑
n=1

(En+1 − En) (2.7)

where Ns is the number of eigenstates in a given symmetry sector. If a non-

integrable Hamiltonian is effectively no different from a random matrix drawn

from the either the GUE or GOE, the level spacings Sn will be random variables.

To illustrate how one would derive the probability density function for the dis-

tribution of level spacings Sn using random matrix theory, consider an orthogonal

2× 2 random matrix drawn from the GOE (139):

H =

(
∆
2

V
2

V
2
−∆

2

)
(2.8)

where ∆, V are (real) continuous random variables drawn from a Gaussian distri-

bution centred around zero with variance σ2. The eigenvalues of this matrix may

be trivially calculated as ±
√

∆2 + V 2/2. The level spacing, as a function of the

random variables ∆, V , is simply S(∆, V ) =
√

∆2 + V 2. The probability density
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function describing the distribution of level spacings S may be calculated using

a convolution:

PGOE(ω) =
1

2πσ2

∫
δ
(√

∆2 + V 2 − ω
)
e−

∆2+V 2

2σ2 d∆dV (2.9)

=
ω

σ2
e−

ω2

2σ2 (2.10)

Likewise suppose H was a 2× 2 hermitian matrix drawn from the GUE:

H =

(
∆
2

α+iβ
2

α−iβ
2

−∆
2

)
(2.11)

with ∆, α, β continuous random Gaussian variables with variance σ2. An analo-

gous derivation results in the following probability density for the level spacing:

PGUE(ω) =
1

(2πσ2)
3
2

∫
δ
(√

∆2 + α2 + β2 − ω
)
e−

∆2+α2+β2

2σ2 d∆dαdβ (2.12)

=

√
2

π

ω2

σ3
e−

ω2

2σ2 (2.13)

Eqs. (2.10),(2.13) are the Wigner-Surmise distributions for level spacings of a ran-

dom matrix drawn from either the GOE or GUE. The level spacing distribution

for larger matrices are found to be well approximated by the result obtained from

2 × 2 matrices (140). A distinguishing feature of the level spacing distribution

for a non-integrable Hamiltonian is the presence of level repulsion, indicated by

the property that P (ω) → 0 as ω → 0. This is in stark contrast to integrable

systems, for which adjacent energy levels will also differ in an extensive num-

ber of conserved quantities, resulting in an absence of level repulsion. The level

spacing distribution for integrable systems are instead found to follow a Poisson

distribution (8). The distribution of level spacings therefore provides a relatively

simple criteria for distinguishing integrable and non-integrable systems.

A scalar quantity obtained from level spacing distributions may also be used

to distinguish integrable and non-integrable systems. This is the mean ratio of
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level spacings (90). Consider the following dimensionless quantity:

rn =
min(Sn, Sn+1)

max(Sn, Sn+1)
(2.14)

The mean average of all rn, 〈r〉, may be calculated from the level spacing distri-

bution. For a non-integrable system obeying the Wigner-Surmise of the GOE, it

is found 〈r〉 = 0.5295. On the other hand, for an integrable system whose level

spacings follow a Poisson distribution, 〈r〉 = 0.386.

Matrix elements of observables

In order to calculate the long time equilibrium values of observables, we re-

quire the diagonal elements of the observable in the energy basis of the system,

Eq. (2.5). For non-integrable systems, these diagonal matrix elements are in

fact consistent with microcanonical ensemble averages (29, 123). Random matrix

theory provides a way in which we can sketch why this would be the case.

Consider a non-integrable Hamiltonian H obtained from some small pertur-

bation to an integrable system H0:

H = H0 + εH1 (2.15)

It may be shown using random matrix theory that the eigenstates of H, |En〉
are equivalent to some random superposition of the integrable eigenstates of H0,

|E0
i 〉, localised around some narrow energy shell:

|En〉 =
∑

E0
i ∈En+∆E

cin|E0
i 〉 (2.16)

where cin are Gaussian random variables with mean zero.

We are interested in the diagonal element of an observable in the non-integrable

energy basis. Expanding this quantity in terms of the integrable energy basis of

H0, we find:

Qnn = 〈En|Q|En〉 =
∑
i,j

cincjn〈E0
i |Q|E0

j 〉 (2.17)

16



2.2 Thermalisation in quantum systems

Averaging this quantity over the random matrix ensemble, only the diagonal

contribution will remain, as the off diagonal contributions are odd in the random

Gaussian variables. This results in the following ensemble average:

〈Qnn〉r =
∑
i

〈c2
in〉r〈E0

i |Q|E0
i 〉 (2.18)

As the random variables cin are clustered around the energy En, the ensemble

average 〈Qnn〉r reproduces the microcanonical ensemble average, Eq. (2.6).

The above argument would also hold if we started at some non-integrable point

and perturb the system, suggesting this property holds generally. Therefore, to

leading order, the results of random matrix theory imply a strong connection

between diagonal elements of observables in a non-integrable energy basis and

the microcanonical ensemble.

2.2.2 Eigenstate thermalisation hypothesis

We have seen that many-body quantum systems will equilibrate at long times,

Eq. (2.5), and general arguments about non-integrable Hamiltonians using ran-

dom matrix theory suggest that for non-integrable systems, this equilibrium state

will be consistent with the microcanonical ensemble. However, the random ma-

trix theory approach is limited in its applicability to real systems. For example,

correlation functions can violate random matrix theory predictions (58, 125). A

generalisation of results obtained from random matrix theory was proposed by

Srednicki (123, 124, 125), which modifies the expression for matrix elements of lo-

cal observables, such that the resulting hypothesis adequately describes thermal-

isation in generic systems. This ansatz is known as the eigenstate thermalisation

hypothesis (ETH) (25, 31). The ansatz is the following:

Qnm = 〈En|Q|Em〉 = 〈Q〉micro(E)δnm + e−S(E)/2fQ(E,ω)Rnm (2.19)

where E = (En + Em)/2 is the average energy and ω = En − Em the energy dif-

ference. The diagonal contribution corresponds to the microcanonical ensemble

and is a smooth function in energy. The off-diagonal contribution describes fluc-

tuations from the microcanonical ensemble. S(E) is the thermodynamic entropy
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(95) at the relevant energy which controls the scale of these deviations. fQ(E,ω)

is smooth envelope function, relevant for non-equal time correlation functions

and linear response of a system to perturbations (58). Rnm is a random matrix

belonging to either the GOE or GUE, dependant on whether the non-integrable

Hamiltonian we have obtained the energy basis from is symmetric or hermitian

respectively.

While no formal proof of this ansatz exists, it has been found in numerical

simulations that the predictions of the ETH hold for many non-integrable systems

(9, 10, 99, 100, 101, 110). However, the ansatz does not appear to hold for

arbitrary observables, for example, matrix elements of projectors onto eigenstates

do not satisfy the ETH. Nevertheless, it has generally been observed empirically

that local, few body observables satisfy the predictions of the ETH ansatz.

The ETH is a statement about matrix elements of local observables of a non-

integrable Hamiltonian in it’s energy basis. Equivalently, this means the ETH

is a statement about eigenstates of a non-integrable Hamiltonian. Consequences

of the ETH are that diagonal matrix elements are smooth functions of energy.

Furthermore, off-diagonal matrix elements are suppressed according to the ther-

modynamic entropy at the relevant energy scale. It also implies that the long

time stationary values of observables after reaching equilibrium, Eq. (2.5), is a

weighted sum of microcanonical ensemble averages. This equilibrium value is

therefore independent of details of the initial state, depending only its energy,

consistent with an ergodic hypothesis.

Bipartite entanglement entropy

An important quantity neglected in the previous analysis is the entropy of a

system. Indeed, the thermodynamic entropy controls the scale of deviations from

the microcanonical ensemble for the ETH ansatz, Eq. (2.19).

Entanglement spectrums and entropy measures are useful quantities for char-

acterising quantum states (68, 85, 96). The bipartite entanglement entropy is

one such measure, which is to be interpreted as a measure of mutual information

between two systems. Consider partitioning an isolated system into two subsys-

tems, A and B. Suppose the state of the system is a pure state, which may be
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expressed as a density matrix ρ. Define the reduced density matrix of subsystem

A as tracing out the environment of subsystem B:

ρA = TrB(ρ) (2.20)

Bipartite entanglement entropy between these two subsystems is defined by the

following entropy measure:

S = −Tr(ρAlnρA) (2.21)

ETH cannot be applied to this quantity, as it is not the expectation value of

some local observable. Nevertheless, it has been shown through numerical works

(32, 109) and theoretical arguments (30) that this entropy measure is related to

the thermodynamic entropy. In particular, for a non-integrable system which

satisfies the ETH, bipartite entanglement entropy of the systems eigenstates is

found to be a smooth function of energy, much like the diagonal elements of

matrix elements of local observables.

2.2.3 Example: longitudinal Ising model

Before discussing ergodicity breaking and violations of the ETH in many-body

quantum systems, we will first consider a non-integrable model which is in agree-

ment with the predictions of ETH. This will provide a benchmark for what is

considered typical thermalising behaviour.

Consider the quantum Ising model with transverse and longitudinal fields

(144), which is described by the following Hamiltonian:

H =
∑
n

Jσznσ
z
n+1 + hxσ

x
n + hzσ

z
n (2.22)

With hz = 0, this is equivalent to the Ising model in transverse field, which is

analytically solvable via a Jordan Wigner transformation (56) and is therefore

integrable (69). Further, there is a well known critical point at hx = 1 (106).

For generic hz, hx 6= 0, the model is known to be non-integrable, although at the

critical point hx = 1 with hz << 1 it remains integrable.
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Figure 2.3: Level statistics for the longitudinal Ising model, Eq. (2.22), obtained
for system size N = 16 using exact diagonalisation for model parameters J =
1, hx = 0.4, hz = 0.7. Eigenvalues were obtained by resolving both translation
and spatial inversion symmetries, working in the momentum zero sector, that is,
[K, I] = [0, 0]. The distribution of level spacings is in good agreement with a
Wigner Surmise distribution describing level spacings of random matrices from
the GOE, with the mean level spacing 〈r〉 ≈ 0.54. These results verify this model
is non-integrable and should therefore agree with the predictions of the ETH.

We consider this model with periodic boundary conditions (n+N ≡ N) such

that this system exhibits translational symmetry. The model is also symmetric

with respect to spatial inversion, that is:

I :j → N − j − 1. (2.23)

Fig. 2.3 shows the level spacing distribution of this model at system size N = 16

with Hamiltonian parameters J = 1, hx = 0.4, hz = 0.7. Eigenvalues were ob-

tained with exact diagonalisation, resolving both translation and spatial inver-

sion symmetries, working in the zero momentum sector ([K, I] = [0, 0]). The

level spacing distribution is converging to a Wigner-Surmise distribution, ex-
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hibiting level repulsion. Furthermore, the mean level spacing may be computed

as 〈r〉 = 0.5333, in good agreement with the predictions of random matrix theory.

These findings verify that at this point in parameter space, the longitudinal Ising

model is indeed non-integrable and the predictions of ETH should be valid.

Fig. (2.4) shows exact diagonalisation results of the longitudinal Ising model

for system size N = 16. Fig. 2.4(a) shows the expectation values of some some

local observable, the spin polarisation in the Z direction on site 0, Z0, with

respect to the eigenstates of the system. As expected from the ETH ansatz, this

is a smooth function of energy. Moreover, the bipartite entropy of eigenstates,

shown in Fig. 2.4(b), is also a smooth function of energy. Finally, Fig. 2.4(c) shows

the time evolution of the expectation value of Z0, with the system initialised in

the polarised state |000...〉. The expectation value quickly equilibrates to the

value given by the diagonal ensemble, Eq. (2.5), confirming off-diagonal matrix

elements of this operator in the energy basis are suppressed, in agreement with

ETH. Finally, the dashed line indicates the prediction of the equilibrium value

from the microcanonical ensemble, which is in good agreement with the numerical

data. The numerics exhibits small fluctuations around this microcanonical value.

These fluctuations are expected to be a finite size effect, whose magnitude should

diminish as system size increases.

2.2.4 Ergodicity breaking

So far we’ve discussed how many-body quantum systems thermalise. Non-integrable

systems are typically ergodic, such that quenches from initial states will equili-

brate to stationary states whose expectation values depend only on their energy

density, in agreement with the microcanonical ensemble, as predicted by the ETH.

We now turn our attention to systems which violate these predictions. This

can be in either a strong or weak sense. Strong ergodicity breaking refers to

a complete breakdown of the ETH, where no initial state exhibits an ergodic

trajectory and all eigenstates are ‘non-thermal’, in the sense that they violate

the predictions of the ETH. This is the case for integrable systems, where long

time equilibrium states obtained from the diagonal ensemble, Eq. (2.5) must also

conserve extensive number of additional symmetries. Furthermore, many-body
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(a) (b)

(c)

Figure 2.4: Longitudinal Ising model Eq. (2.22) numerical results at N = 16.
(a) Is the expectation value of a local observable, the spin polarisation in the Z
direction at site 0, Z0, computed with respect to the eigenstates of the system. (b)
The bipartite entanglement entropy of eigenstates, plotted as a function of energy.
The colour scale in these panels indicate the density of points. (c) Shows the
time evolution of the expectation value of Z0 when the system is initialised in the
polarised state |000...〉. The dashed line indicates the prediction of the equilibrium
value obtained from the microcanonical ensemble, Eqs. (2.5),(2.6). These results
are consistent with the predictions of the ETH ansatz, Eq. (2.19). These results
therefore constitute typical behaviour of generic non-integrable system.
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2.2 Thermalisation in quantum systems

localised systems, a many-body analogue of Anderson localisation (1), exhibit

strong ergodicity breaking. MBL occurs in many-body disordered systems, where

there can emerge an extensive number of conserved local integrals of motion (21,

87, 105), resulting in the absence of thermalisation and the failure of eigenstates

to agree with the ETH.

However, it is possible that some systems may only weakly violate the ETH.

We already discussed weak ergodicity breaking in a classical setting in Section 2.1,

where a system of billiards in a Bunimovich stadium hosts both ergodic and

periodic trajectories. In quantum systems, weak ergodicity breaking refers to a

breakdown of the ergodic hypothesis for only a few initial states, not all.

Single particle scarring

One particular class of systems which realise a form of weak ergodicity breaking

in quantum systems are those exhibiting a phenomena known as single particle

quantum scarring. This is an effect observed in quantum versions of classically

chaotic systems exhibiting a mixed phase space (88), which means they host both

ergodic and periodic trajectories in their phase space.

Consider again a classical system of billiards in a Bunimovich stadium. This

system is chaotic, yet exhibits a mixed phase space. As shown in Fig. 2.2, most

trajectories are ergodic, yet there exist certain trajectories corresponding to un-

stable periodic orbits. The quantum analogue of this system consist of a Hamil-

tonian which is simply the kinetic energy term of a free particle with boundary

conditions corresponding to the geometry of the Bunimovich stadium. For the

quantum system, it was found there exists a special subset of eigenstates which

feature enhanced support clustered about the unstable periodic orbits of the cor-

responding classical model (46), Fig. 2.5. These eigenstates were termed quantum

scars, as it appeared the classical orbit had left a ‘scar’ on the eigenstate.

The existence of scarred eigenstates has implications for the dynamics when

the system is prepared in special initial states. For example, consider initialising

the system in some arbitrary wavepacket. A cartoon picture of dynamics would

suggest this wavefunction would spread out, bouncing off the boundary until it

uniformly covers the space. Now consider initialising the system in a wavepacket
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2. QUANTUM ERGODICITY AND ITS BREAKDOWN

Figure 2.5: Single particle quantum scarring observed in the quantum version
of a system of billiards bounded by a Bunimovich stadium. The Hamiltonian
of this system is just the kinetic energy term of a free particle, with boundary
conditions corresponding to the Bunimovich stadium. Scarring refers to certain
eigenfunctions featuring enhanced support clustered around unstable periodic
trajectories of the corresponding classical system. For example, the diamond
trajectory, shown by a solid line, results in one particular scarred eigenfunction,
whose support in position space is indicated by the contours which cluster around
this orbit. Image obtained from Ref. (46).

localised on one of the unstable periodic orbits of the classical system, with mo-

mentum aimed along the orbit. This wavepacket would also eventually spread

out, but would seem to ‘cling’ to the classical orbit for longer times than expected.

This may be interpreted as a form of ‘weak ergodicity breaking’.

2.3 Rydberg atom simulator

We will now review an experimental system which realises a non-integrable, many-

body quantum system that appears to exhibit weak ergodicity breaking similar

to single particle scarring. Attempts to understand the peculiar behaviour of this

system resulted in the discovery of quantum many-body scars (130). The system

exhibiting this strange behaviour was a 51-atom quantum simulator (7). The

simulator was an experimental platform consisting of an array of trapped neutral

cold atoms coupled to highly excited Rydberg states (55, 137) via a driving laser,

such that the laser drives transitions between the ground state of the atom |g〉 and
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2.3 Rydberg atom simulator

Figure 2.6: Experimental platform used to implement a 51-atom quantum sim-
ulator (7). The platform consists of cold atoms trapped by optical tweezers. A
laser drives transitions between the ground state |g〉 and excited Rydberg state
|r〉, with further long range, two body interactions present between Rydberg atom
pairs due to Van der Waals forces. This interaction is of magnitude Vij, where
the subscripts indicate atoms position. It gives rise to an effect known as the
‘Rydberg blockade’, which, depending on the interaction strength Vij, imposes a
constraint that a unit cell of a given size cannot contain more than one Rydberg
excitation.

the excited Rydberg state |r〉. Furthermore this setup results in a repulsive Van

der Waals interaction between Rydberg atom pairs with strength Vij = C/R6
ij

(C > 0), where Rij is the distance between pairs of atoms. A schematic of this

experimental platform is shown in Fig. 2.6. The system may be described by the

following Hamiltonian:

H =
∑
i

Ωi

2
σxi −

∑
i

∆ini +
∑
i<j

Vijninj (2.24)

where Ωi are the effective Rabbi frequencies, ∆i the detunings of the driving

laser from the Rydberg state, σxi = |gi〉〈ri|+ |ri〉〈gi| describes the transition from

ground state to excited Rydberg state and ni = |ri〉〈ri| the occupation of the

excited Rydberg state.

The interacting term whose strength is given by Vij produces an effect known
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as the ‘Rydberg blockade’ (55). The interaction strength Vij may be controlled by

manipulating the distance between the atoms and for strong interactions result-

ing from large Vij, states with sufficiently close Rydberg excitations |ri〉 receive a

heavy energy penalty, effectively prohibiting the occurrence of such states. This

effective blockade may be characterised by the blockade radius Rb, which de-

scribes how large a unit cell is that is only permitted to contain a single Rydberg

excitation. It is defined as the distance between atoms for which Vij = Ω.

The experimentalist were free to vary the parameters Ωi,∆i, allowing them

to prepare specific states by letting the system evolve under specific parameter

regimes while switching the optical traps on and off (7). This approach meant

they were easily able to prepare ‘Rydberg crystal’ states. These are ground states

of the simulators Hamiltonian in a given ordered phase Zn, determined by the

Rydberg blockade radius, when ∆/Ω is taken to be large and positive. When

∆/Ω is large and positive, the ground state will want to maximise the number of

Rydberg excitations, yet the state must still respect the constraint imposed by the

Rydberg blockade. For example, consider the case when the Rydberg blockade

radius effectively imposes that every two site unit cell may only contain a single

Rydberg excitation, which corresponds to the Z2 phase. The ground state with

∆/Ω large and positive will be an antiferromagnetic Néel state |Z2〉 = |rgrg...〉,
which is a Rydberg crystal of order two. Likewise, if the Rydberg blockade radius

is increased, further Rydberg crystal states of higher orders become ground states,

such as |Z3〉 = |rggrgg...〉 or |Z4〉 = |rgggrggg...〉.
One of the experiments carried out with the 51-atom simulator in Ref.(7)

was to perform a quantum quench. The experimentalist prepared a Rydberg

crystal state of a given order, then quenched the detuning ∆ → 0 before letting

the system evolve under the resulting Hamiltonian. During this evolution, the

experimentalist were able to measure a local observable; the density of domain

walls (7).

Now the Hamiltonian in Eq. (2.24) is non integrable, therefore at late times

the system should equilibrate into a thermal state whose energy density is the

same as the initial state, in agreement with the predictions of ETH. While the

results obtained appeared to be consistent with this prediction for nearly all initial

states simulated under this quench, something rather different was observed when
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the simulator was initialised in a Rydberg crystal of order two, that is, the Néel

state |Z2〉 = |rgrg...〉. Instead, persistent, coherent oscillations in the measured

local observable were observed for times much greater than the thermalisation

timescale. This is particularly strange, as the Néel state has zero energy with

respect to the Hamiltonian in Eq. (2.24) with ∆ = 0. This would imply the Néel

state would be expected to rapidly thermalise (7, 31), due to the exponentially

suppressed off-diagonal matrix element of local observables predicted by the ETH.

The fact that arbitrary quenches resulted in local observables thermalising to

values in agreement with the microcanonical ensemble prediction of ETH, yet

only a single quench did not, constitutes a form of weak ergodicity breaking.

This sensitivity to initial state is reminiscent of the weak ergodicity breaking

exhibited by single-particle scarring, as discussed in Section 2.2.4. The dynamics

of the Néel state in this system was largely a mystery which prompted further

study, eventually resulting in the discovery of quantum many-body scars.

2.3.1 PXP model

We now derive an effective model (131) of the 51-atom quantum simulator, whose

Hamiltonian is given in Eq. (2.24), so as to study the anomalous dynamics from

the Néel state numerically. Consider the post quench Hamiltonian that governs

the dynamics of the simulator, that is, let ∆ → 0. In addition, as we are con-

sidering the oscillatory dynamics observed when the system is initialised in the

|Z2〉 state, we assume Hamiltonian parameters are chosen such that the Ryd-

berg blockade radius is of the order of the distance between neighbouring atoms,

such that we are in the Z2 phase. Due to the reduced Rydberg blockade radius,

we truncate the Van der Waals interaction term to a nearest neighbour interac-

tion. Furthermore, we assume we are in the strongly interacting limit, that is,

V = Vi,i+1 >> Ω. Rescaling the Hamiltonian by 1/V , we arrive at the following

Hamiltonian which describes the dynamics of the quantum simulator in the Z2

phase:

H =
∑
i

nini+1︸ ︷︷ ︸
H0

+ ε
∑
i

σxi︸ ︷︷ ︸
H1

(2.25)
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Where ε = Ω/(2V ) << 1 is a small parameter.

The above Hamiltonian consists of a dominant, diagonal term H0 and small

perturbation H1. The initial state |Z2〉 belongs to the lowest energy sector of

H0, namely H0 = 0. We utilise a Schrieffer-Wolff transformation (14, 114) to

derive an effective Hamiltonian which describes dynamics within this zero energy

subspace.

The zero energy subspace of H0 consists of product state configurations with

no neighbouring excitations |rr〉. The global projector into this subspace takes

the following form:

P =
∏
i

(I− nini+1) (2.26)

The effective Hamiltonian within this subspace is then

Heff = P(H0 +H1)P (2.27)

Trivially PH0P = 0, as P is a projector into the zero energy subspace of H0. This

may be seen from the following calculation:

PH0P =
∏
i

(I− nini+1)

(∑
k

nknk+1

)∏
j

(I− njnj+1) (2.28)

Now all the operators in Eq. (2.28) commute. Therefore

PH0P =
∏
i

(I− nini+1)
∏
j 6=k

(I− njnj+1)
∑
k

nknk+1(I− nknk+1) (2.29)

=
∏
i

(I− nini+1)
∏
j 6=k

(I− njnj+1)
∑
k

(nknk+1 − nknk+1) (2.30)

= 0 (2.31)

It follows the effective Hamiltonian governing dynamics within the zero energy

subspace is Heff = PH1P = P (ε
∑

i σ
x
i )P. Neglecting the constant factor ε, this
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becomes:

Heff = P

(∑
i

σxi

)
P (2.32)

=
∏
j

(I− njnj+1)

(∑
i

σxi

)∏
k

(I− nknk+1) (2.33)

Now [ni, σ
x
i ] 6= 0. To proceed, commute all the projectors (I − njnj+1) and

(I− nknk+1) to the right which do not have support on site i:

Heff =
∑
i

(I− ni−1ni)(I− nini+1)σxi (I− ni−1ni)(I− nini+1)
∏

j 6=i−1,i

(I− njnj+1)2

(2.34)

Note that (I−njnj+1)2 = (I−njnj+1) as this operator is a projector. Expanding

out the product of terms inside the sum, Heff becomes

Heff =
∑
i

(I− ni−1ni)(I− nini+1)σxi (I− ni−1ni)(I− nini+1)
∏

j 6=i−1,i

(I− njnj+1)

(2.35)

=
∑
i

(σxi − ni−1σ
x
i − σxi ni+1 + ni−1σ

x
i ni+1)

∏
j 6=i−1,i

(I− njnj+1) (2.36)

Introduce the projector onto the the ground state Pi = |gi〉〈gi| = (I−ni). Rewrit-

ing the term in the sum in terms of Pi rather than ni, Heff simplifies:

Heff =
∑
i

(σxi − ni−1σ
x
i − σxi ni+1 + ni−1σ

x
i ni+1)

∏
j 6=i−1,i

(I− njnj+1) (2.37)

=
∑
i

(σxi − (I− Pi−1)σxi − σxi (I− Pi+1) + (I− Pi−1)σxi (I− Pi+1))
∏

j 6=i−1,i

(I− njnj+1)

(2.38)

=
∑
i

(−σxi + Pi−1σ
x
i + σxi Pi+1 + (σxi − Pi−1σ

x
i )(I− Pi+1))

∏
j 6=i−1,i

(I− njnj+1)

(2.39)

=
∑
i

Pi−1σ
x
i Pi+1

∏
j 6=i−1,i

(I− njnj+1) (2.40)
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Now implicitly assume we work in the constrained Hilbert space consisting of no

neighbouring excitations, such that the projector
∏

j 6=i−1,i(I−njnj+1) = I within

this constrained Hilbert space, allowing us to drop this term from the right hand

side of Heff . The final effective Hamiltonian governing the 51-atom quantum

simulator is therefore the following:

HPXP =
N−1∑
i=0

Pi−1σ
x
i Pi+1 (2.41)

This model is known as the ‘PXP’ model. We interpret this model as a kinetically

constrained spin half chain, changing notation from |g〉 = |0〉 and |r〉 = |1〉. The

basic action of the Hamiltonian is to flip between spin down states |0〉 and spin

up states |1〉, providing such an action does not violate the Rydberg constraint of

no neighbouring excitations (configurations |11〉 are not permitted). An example

of a permitted transition would be the following:

|000〉 ↔ |010〉

Assuming periodic boundary conditions (N + n ≡ n) , the model exhibits trans-

lational symmetry. However, the PXP model also exhibits other discrete sym-

metries. It commutes with the spatial inversion operator I, Eq. (2.23) and anti-

commutes with a particle-hole operator ρ, which is defined as follows

ρ =
N−1∏
j=0

σzj (2.42)

The anti-commutation relation {HPXP , ρ} = 0 ensures the spectrum of the PXP

model is symmetric about E = 0, whilst it is also responsible for an exponential

degeneracy of the eigenstates at E = 0 (130, 131). Finally we note the PXP

model is non-integrable, as verified by its level spacing distribution converging to

the Wigner-Surmise as system size increases (130).
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Dynamics in the PXP model

Armed with an effective Hamiltonian describing the 51-atom simulator, we now

perform time evolution numerically, using exact diagonalisation (108), to verify

the weak ergodicity breaking reported from experimental observations (7).

Figure 2.7: Weak ergodicity breaking observed in the PXP model, Eq. (2.41).
The PXP model exhibits ergodic trajectories from arbitrary initial states, yet
periodic dynamics is observed when the system is initialised in the Néel state
|Z2〉 = |0101...〉. Results are for system size N = 22, obtained via exact diagonal-
isation (108). Numerics for such a large system size are obtained by working only
within the constrained Hilbert space consisting of basis states with no neigh-
bouring excitations, which has dimension 39, 603 at N = 22. In addition, we
resolve both translation and spatial inversion symmetry (108), further reducing
the dimension of the matrices which need diagonalising. Panel (a) shows the
the many-body wavefunction fidelity (Eq. (2.43)), (b) the bipartite entanglement
entropy of the evolved state. Initialising the system in the Néel state results in
decaying fidelity revivals and suppressed entropy growth, relative to the expected
thermalising behaviour, which is indicated by the dynamics of the polarised state
|000...〉. These two states have the same energy density, so would be expected to
have similar dynamics according to the ETH. Revivals in the many-body fidelity
indicate a periodic trajectory in the exponentially large Hilbert space.

To probe for the presence of non-ergodic trajectories, we compute the many-

body wavefunction fidelity, or ‘Loschmidt echo’, defined as:

f(t) = |〈ψ(0)|ψ(t)〉|2 (2.43)
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The fidelity quantifies the support of the time evolved state on the initial state.

For a non-integrable system obeying the predictions of the ETH, we expect a

time evolved wavefunction following an ergodic trajectory would quickly acquire

support on exponentially many states in the Hilbert space, resulting in a fidelity

which would generically decay exponentially fast to zero.

Fig. 2.7(a) shows f(t) computed when we initialise the system in either the

Néel state |Z2〉 = |1010...〉 or the polarised state |000...〉 for system size N = 22.

Both these states have zero energy with respect to the PXP Hamiltonian and

are therefore expected to thermalise on the same timescale. The fidelity from the

polarised state, which is representative of some generic initial state, quickly drops

to zero as the wavefunction spreads throughout the Hilbert space, indicating a fast

equilibration of local observables to their equilibrium values predicted by ETH.

On the other hand, the fidelity from the Néel state exhibits decaying revivals,

revealing a periodic trajectory in the exponentially large Hilbert space, resulting

in robust oscillations in any local observable. These findings are consistent with

observations of weak ergodicity breaking from the 51-atom simulator experiment,

indicating the PXP model provides a good description of the physics of the Z2

phase.

Furthermore, in Fig. 2.7(b), we compute the bipartite entanglement entropy,

Eq. (2.21), of the time evolved wavefunction. As both the Néel state and polarised

state have the same energy density, we would expect this quantity to equilibrate

on the same timescale and to the same value for both quenches. However, the

Néel state |Z2〉 exhibits suppressed linear entropy growth relative to the polarised

state, while also exhibiting small oscillations superimposed on top, as a result of

the wavefunctions periodic trajectory.

It is apparent from these numerical simulations of the PXP model and also

experimental data obtained from the 51-Rydberg atom simulator that the PXP

model exhibits weak ergodicity breaking, with strong sensitivity of dynamics to

the initial state. While generic initial states follow ergodic orbits, special initial

states exhibit oscillatory dynamics which slowly decays in time, although on

timescales much longer than the thermalisation timescale. This is reminiscent of

weak ergodicity breaking observed in single-particle quantum scarred systems, as

discussed in Section 2.2.4. In the next chapter, we will attempt to understand
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why this weak ergodicity breaking is present in the PXP model.
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Chapter 3

An overview of quantum

many-body scars

In this chapter we review quantum many-body scars (QMBS), a mechanism for

avoiding thermalisation via a weak violation of the ETH. By studying the spectral

properties of the ‘PXP’ model introduced in the previous chapter (Eq. (2.41)), we

demonstrate the existence of a subset of atypical non-thermal eigenstates, the so

called ‘scarred eigenstates’, responsible for the weak ergodicity breaking observed

in this model (130).

Next, we consider other mechanisms which result in the coexistence of ther-

mal and non-thermal eigenstates in the same model. These include projector

embedding techniques (119) and Krylov-restricted thermalisation (80). While

similar to QMBS, it is found the distinguishing feature of these systems is that

their Hamiltonians fracture into block-diagonal forms, hosting both integrable

and non-integrable subspaces simultaneously. Nevertheless, we will argue that

something similar occurs in QMBS models, although the fracturing is only ap-

proximate. This inevitably leads us to discuss an idealised limit of QMBS, termed

‘exact scarring’, where this fracturing can be made exact, in contrast to the ‘ap-

proximate scarring’ observed in the PXP model.

Finally we will discuss in more detail the distinction between exact and ap-

proximate scarring. By considering the necessary algebraic conditions for exact

scarring, spectrum generating algebras, we lay the foundation necessary to under-
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stand the remainder of this thesis, which aims to construct theories to understand

‘approximate’ scarring.

3.1 Quantum many-body scars in the PXP model

In the previous section, we demonstrated the PXP model, Eq. (2.41), exhibits

weak ergodicity breaking when initialised in particular initial states (Fig. 2.7).

Specifically, dynamics of generic initial states behave in accordance with predic-

tions from the ETH, but initialising the system in the Néel state |Z2〉 = |0101...〉
results in a periodic trajectory in the exponentially large Hilbert space, indicated

by decaying revivals in the many-body wavefunction fidelity, Eq. (2.43). Fur-

thermore, the dynamics from the Néel state results in suppressed linear entropy

growth relative to ETH predictions.

We now turn our attention to spectral properties of the PXP model, in an

attempt to understand the peculiar dynamics when the system is initialised in

the Néel state. As the PXP model is non-integrable, we expect the predictions

of ETH (Section 2.2.2) should apply to it’s eigenstates. Specifically, these eigen-

states should appear thermal, in the sense that both their bipartite entanglement

entropy and expectation values of local observables should be smooth functions

of energy.

Fig. 3.1 shows spectral properties of the eigenstates of the PXP model at

system size N = 22, as a function of energy. Panel (a) is the overlap of the eigen-

states with the Néel state |Z2〉 = |1010...〉, panel (b) the bipartite entanglement

entropy of the eigenstates. Both these quantities should be smooth functions of

energy according to the ETH. It turns out, the statement that eigenstates are

thermal appears to be true for nearly all eigenstates of the PXP model. However,

there exist a linear subset of N + 1 eigenstates which appear non-thermal. In

this sense the PXP model can be said to weakly violate the ETH. One observes

a band of N + 1 eigenstates, coloured in red, with atypical thermal properties,

namely their entropy is much smaller than expected from the ETH. Furthermore,

this same band of eigenstates exhibits enhanced support on the Néel state and

also feature the property that they are approximately equidistant in energy.

It is apparent that weak ergodicity breaking in the PXP model is a conse-
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Figure 3.1: ETH violating eigenstates in the PXP model, responsible for the weak
ergodicity breaking observed in dynamics when the system is initialised in the
Néel state |Z2〉 = |0101...〉 (see Fig. 2.7). Results are for system size N = 22.
Plotted are various properties of the eigenstates of the PXP model, Eq. (2.41)
as a function of energy. (a) Shows the overlap of the eigenstates with the Néel
state, (b) the bipartite entanglement entropy of the eigenstates. The colour
scale indicates the density of points. As the PXP model is non-integrable (130),
according to the ETH, the quantities depicted in plots (a),(b) should be smooth
functions of energy. However, there exist N+1 eigenstates, coloured in red, which
disagree with this prediction. These are the ‘scarred eigenstates’ (see text), which
are roughly equidistant in energy and characterised by anomalously large overlap
with the Néel state and atypical, sub-thermal entropy. As a consequence of the
Néel states large support on these scarred eigenstates, initialising the system in
the Néel state results in persistent oscillatory dynamics.
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quence of these ETH violating eigenstates. Decaying fidelity revivals observed

when the system is initialised in the Néel state, Fig 2.7(a), which indicates a

periodic, non ergodic trajectory in the Hilbert space, follows simply as a conse-

quence of the Néel’s state enhanced support on these atypical eigenstates which

are approximately equidistant in energy. Furthermore, the entropy of the evolved

wavefunction when quenching from the Néel state, Fig 2.7(b), may also be un-

derstood from the properties of these atypical eigenstates. The oscillatory com-

ponent of the entropy dynamics is a result of the large support of the Néel state

on the roughly equidistant, non-thermal eigenstates, while the small but non-zero

support on the remaining thermal eigenstates, Fig. 3.1, contributes to the linear

growth observed in the entropy.

The ETH violating eigenstates in the PXP model have being given the name

‘scarred eigenstates ’, in analogy with single particle quantum scars (46). Due to

the existence of the ETH violating eigenstates in the PXP model, it is possible

to prepare special initial states whose time evolution generates some oscillatory

trajectory in the Hilbert space while the wavefunction also slowly spreads out,

resulting in long lived coherent dynamics, a form of weak ergodicity breaking.

As discussed in Section 2.2.4, similar weak ergodicity breaking is also observed

for single particle scarred systems, such as quantum billiards. Due to the ex-

istence single particle scarred eigenfunctions in these systems, it would also be

possible to construct special initial states which would exhibit long lived oscil-

latory dynamics. The analogy is made even more concrete when one considers

that for single particle scarring, the scarred eigenfunctions are characterised by

concentrated support in the position basis along unstable periodic trajectories

of the corresponding chaotic classical system. While the classical limit of the

PXP model is not known, a form of semiclassical limit has been studied using the

time-dependent variational principle (TDVP) (64, 92). TDVP constructs classi-

cal equations of motion which approximate the dynamics of a quantum system

by projecting the time dependent Schrodinger equation along some manifold of

variational states. TDVP equations of motion have been obtained for the PXP

model for a specific manifold consisting of matrix product states (MPS) (47, 76).

The resulting classical equations of motion indicate this semiclassical limit of the

PXP model exhibits a mixed phase space, possessing both ergodic and periodic
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3.2 Exact embeddings of non-thermal eigenstates

trajectories, just as the classical limit of single particle quantum scarred systems

do. By plotting the support of the ETH violating eigenstates on the variational

manifold for which the TDVP equations of motion generates trajectories, one also

observes enhanced support along a periodic trajectory originating from the Néel

state (129). Therefore atypical eigenstates in both the PXP model and single

particle scarred systems are both related to periodic orbits present in classically

chaotic systems. In this sense, the PXP model can be said to realise a many-body

version of single particle quantum scarring.

Non-ergodic behaviour in the PXP model is ultimately a consequence of the

existence of few atypical thermal eigenstates. With this in mind, we now give

a formal definition of quantum many-body scarring. Quantum many-body scar-

ring is a form of weak ETH violation in non-integrable quantum systems, where

there exist a subset of atypical, non-thermal eigenstates with suppressed entropy

which are nearly equidistant in energy. Preparing special initial states which fea-

ture enhanced support on these scarred eigenstates results in coherent oscillatory

dynamics and suppressed entropy growth for timescales much greater than the

thermalisation time.

3.2 Exact embeddings of non-thermal eigenstates

While many-body scars are an example of weak ETH violation where only a

few eigenstates of a non-integrable system are non-thermal, there exist other

phenomena where non-thermal eigenstates are found to coexist alongside thermal

ones (80, 116, 119). We briefly summarise these alternate scenarios, contrasting

them with QMBS.

3.2.1 Projector embedding

Firstly, it is in fact possible to embed a subspace consisting of the span of an

arbitrary set of states |ψj〉 into the eigenspace of a thermalising Hamiltonian.

These arbitrary states may be chosen to be non-thermal, such that the result-

ing Hamiltonian may contain both thermal and non thermal eigenstates. This

embedding is possible due to a method introduced by Shiraishi and Mori (119),
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3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

known as ‘projector embedding’. Further extensions of this approach applied to

topologically ordered systems have been developed in Ref. (91).

Consider a Hamiltonian describing some lattice system with Hilbert space H

of the form:

H =
N∑
i=1

PihiPi +H ′, (3.1)

where Pi are local projectors (which do not necessarily commute), hi local Hamil-

tonians, and H ′ a Hermitian operator satisfying [H ′, Pi] = 0 for all i.

Now suppose there is a subspace T ⊂ H spanned by a set of states |ψj〉 ∈ H,

T = span(|ψj〉), with |ψj〉 satisfying:

Pi|ψj〉 = 0, ∀ i, j. (3.2)

Subspace T is therefore equivalent to the null space of the total projector PT =∑
i Pi, ie |ψT〉 ∈ T =⇒ PT |ψT〉 = 0.

We will now demonstrate the subspace T, which is the null space of PT , is

invariant under the action of the Hamiltonian in Eq. (3.1). Using the property of

the states |ψj〉 given in Eq. (3.2) and the fact that [H ′, Pi] = 0, it follows that:

PiH|ψj〉 = Pi

(∑
n

PnhnPn

)
|ψj〉+ PiH

′|ψj〉 (3.3)

= PiH
′|ψj〉 (3.4)

= H ′Pi|ψj〉 (3.5)

= 0 (3.6)

As PiH|ψj〉 = 0,∀ i, j, it trivially follows that PTH|ψj〉 =
∑

i PiH|ψj〉 = 0, such

that the state H|ψj〉 ∈ T. This confirms the subspace T is invariant under the

action of the Hamiltonian. The Hamiltonian in Eq. (3.1) must necessarily fracture

into the block diagonal form:

H = HT

⊕
H⊥T

With HT corresponding to the projection of the Hamiltonian into the subspace T

40



3.2 Exact embeddings of non-thermal eigenstates

and H⊥T the projection into the orthogonal space. Given this fracturing, Hamil-

tonians of the form Eq. (3.1) will contain dimT eigenstates within T that may be

thought of as having being embedded into the spectrum. Using this embedding

procedure, ETH violating eigenstates may be embedded into the spectrum of an

otherwise non-integrable model (119).

Models of this form generically embed eigenstates near the centre of the spec-

trum (119), unlike QMBS which host non-thermal eigenstates throughout the

entire spectrum. Moreover there is no guarantee the embedded eigenstates are

equidistant in energy and may even be degenerate, resulting in models which do

not exhibit wavefunction revivals, as observed with QMBS. Further, note that,

for periodic boundary conditions, the PXP model can be expressed in this ‘pro-

jector embedded’ form such that a single target state is embedded – namely the

AKLT ground state at zero energy (118). However, the complete set of N + 1

scarred eigenstates with enhanced support on |Z2〉 state have not been understood

through this embedding procedure.

3.2.2 Krylov restricted thermalisation

While ‘projector embedding’ illustrates how to embed an arbitrary integrable sub-

space into a non-integrable model, some systems are found to host both integrable

and non-integrable sectors simultaneously without relying on the particular form

of Hamiltonian given in Eq. (3.1). This effect is observed in a range of systems,

such as in fractonic models (59, 93, 107) or models of bosons on an optical lat-

tice (48, 147). These coexisting integrable and ergodic sectors arise as Krylov

subspaces of a given Hamiltonian. We begin this section by discussing how to

construct a basis for a disconnected component of a Hamiltonian, to motivate the

definition of a Krylov subspace.

Suppose you have a Hamiltonian which fractures into a block diagonal form:

H =
⊕
n

Hn (3.7)

This would typically occur when the Hamiltonian commutes with certain sym-

metry operators, such that the block diagonal sectors may be labelled by the
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3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

symmetry quantum numbers. Now suppose one wished to construct a basis for

a certain symmetry sector S which has dimension dimS = DS. Furthermore,

say we are we already know a single vector which is in the symmetric subspace,

|ψS〉 ∈ S. By definition, since the Hamiltonian is symmetric with respect to this

symmetry, states within a symmetry sector remain in that sector after applying

the Hamiltonian, |ψS〉 ∈ S =⇒ H|ψS〉 ∈ S. It follows that we can generate a

sequence of vectors which belong to the subspace S by repeated application of H

onto the initial state |ψ〉. We can repeat this procedure until we have DS states,

which will span the subspace:

S = span{|ψS〉, H|ψS〉, H2|ψS〉, ..., HDS−1|ψS〉}

The vectors Hn|ψS〉 will not generally be orthogonal, but one can always use a

Gram-Schmidt procedure to produce an orthonormal basis if desired.

More generally, we introduce the notion Krylov subspaces KD(H, |ψ〉), which

is a D + 1 dimensional subspace spanned by states obtained by repeated appli-

cation of H onto an arbitrary vector |ψ〉:

KD(H, |ψ〉) = span{|ψ〉, H|ψ〉, ..., HD|ψ〉} (3.8)

These subspaces are used extensively in numerical algorithms, particularly for

finding eigenvalues (Lanczos recurrence (65)) and for time evolution.

Consider now time evolving a quantum state |ψ〉 with a small time step δt,

expanding the propagator as a power series:

e−iHδt|ψ〉 = |ψ〉 − iδtH|ψ〉 − δt2

2
H2|ψ〉+ ...

We observe the basis states of a Krylov subspace, H|ψ〉, H2|ψ〉, ..., arise naturally

in this sum. Now lets assume HD|ψ〉 = 0 for some D smaller than the dimension

of the Hilbert space. The time evolved state then becomes:

e−iHδt|ψ〉 = |ψ〉 − iδtH|ψ〉 − δt2

2
H2|ψ〉+ ...+HD−1|ψ〉

The time evolution of the state |ψ〉 therefore occurs only within the Krylov sub-
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3.2 Exact embeddings of non-thermal eigenstates

space KD−1(H, |ψ〉). This is not surprising if the Krylov subspace corresponds to

a symmetry sector as discussed earlier, as the block diagonal form of the Hamil-

tonian in Eq. (3.7) implies dynamics only occurs within this symmetric subspace.

However, for certain systems, it is possible that the Krylov subspace where the

dynamics is localised is not a symmetry sector of the Hamiltonian! The Hamilto-

nian would still fracture into a block diagonal form, Eq. (3.7), with the separate

blocks corresponding to dynamically disconnected sectors. Hamiltonians may

fracture into an exponential number of dynamically disconnected Krylov sectors.

This phenomena is referred to as ’Hilbert space shattering’ (80). Hilbert

space shattering usually occurs when there are dynamical constraints present in

a model, such as for fractonic systems, where the conservation of both charge

and dipole symmetry imposes a dynamical constraint (107). When Hilbert space

shattering occurs, the dimension of the dynamically disconnected Krylov sectors

may range from being either one to exponentially large in system size (116).

Crucially, when considering only the exponentially large Krylov subspaces, it is

found that these dynamically disconnected sectors may be either integrable or

non-integrable, resulting in Hamiltonians which possess both thermal and non-

thermal eigenstates. This fracturing of the Hamiltonian into both integrable and

non-integrable sectors is referred to as ’Krylov-restricted thermalisation’ (80).

While Krylov restricted thermalisation illustrates a way in which integrable

and non-integrable sectors may coexist in the same model, it does not offer an

explanation for why non-thermal eigenstates are present in scarred models such

as the PXP model. If one were to compute the largest Krylov subspace generated

by repeated application of the PXP Hamiltonian, Eq. (2.41), onto the Néel state

|Z2〉 = |1010...〉, one would not obtain an integrable sector corresponding to a

subspace of scarred eigenstates, rather they would obtain the full Hilbert space,

as the Néel state is not dynamically disconnected from all other product states

under the action of the PXP Hamiltonian. Indeed, the non-integrable sectors

hosted in a model exhibiting Krylov restricted thermalisation may themselves

host QMBS (78), such that Krylov restricted thermalisation offers a way to realise

QMBS, but does not explain them.
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3.3 QMBS as approximate embedding of an in-

tegrable subspace

The two methods we have just discussed, projector embeddings and Krylov-

restricted thermalisation, result in Hamiltonians which fracture into block di-

agonal forms hosting both integrable and non-integrable sectors simultaneously.

These approaches are analytically tractable and present a simple picture of how

thermal and non-thermal eigenstates may coexist in the same model. Fig. 3.2(a),(b)

summarises the two approaches graphically, showing the fracturing of Hamilto-

nians into block diagonal forms when the Hamiltonian is expressed with respect

to a suitably chosen basis. However, these two approaches do not directly apply

to the non-thermal eigenstates observed in the PXP model (7), as the scarred

eigenstates do not reside in some integrable sector which is orthogonal to some

thermalising sector.

Nevertheless, by constructing a special basis, it is in fact possible to demon-

strate that the PXP Hamiltonian approximately fractures into a block diagonal

form containing both integrable and non integrable sectors,

HPXP ≈ Hint

⊕
H⊥ (3.9)

Fig. 3.2(c) demonstrates this fracturing graphically. The fracturing is approxi-

mate in the sense that the block diagonal component corresponding to the in-

tegrable sector is weakly coupled to a larger thermal sector via sparse matrix

elements in the off diagonal block.

One gains further insight into the scarred non thermal eigenstates of the PXP

model by projecting its Hamiltonian into this approximate integrable subspace

and diagonalising the resulting matrix. The states produced by this procedure

are very accurate approximations to the true scarred eigenstates of the full Hamil-

tonian (23, 131). This suggests that the scarred eigenstates have the majority

of their support within this approximate integrable subspace, hence why they

appear non-thermal. The scarred dynamics observed from the Néel state may

therefore be interpreted as an oscillation within some integrable subspace, while

the decaying component to the fidelity revivals is a consequence of this subspace
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3.3 QMBS as approximate embedding of an integrable subspace

Figure 3.2: Graphical interpretation of various schemes in which Hamiltonians
may host both thermal and non thermal eigenstates. Hamiltonians matrices are
expressed in a particular basis which explicitly reveals block diagonal structures
of integrable (blue) and non-integrable (red) sectors. (a) Corresponds to Shiraishi
and Mori’s ‘projector embedding’ (119), where a target integrable subspace is em-
bedded into the spectrum of a non-integrable Hamiltonian. (b) Corresponds to
Krylov-restricted thermalisation (80), where Hamiltonians may fracture into inte-
grable and non-integrable subspaces, and a suitable basis (see Section. (3.3.1)) for
each block diagonal sector may be chosen such that each sector is tridiagonal (red
lines indicate non-zero matrix elements). (c) Corresponds to QMBS as observed
in the PXP model, where, with a suitably chosen basis, it becomes apparent that
the scarred eigenstates can be seen to arise from a ‘loosely embedded’ integrable
subspace, with the Hamiltonian approximately fracturing into a block diagonal
form, where an integrable subspace is weakly coupled to an orthogonal thermal
subspace via sparse matrix elements.
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3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

not being exact, such that some component of the wavefunction leaks out of

this subspace into the orthogonal thermal sector. We will now detail how to

construct this special basis, using a procedure known as the forward scattering

approximation (FSA), which bears a strong resemblance to the construction of

Krylov subspaces introduced in the previous section.

3.3.1 Forward scattering approximation (FSA)

The Forward scattering approximation (FSA) applied to the PXP model con-

structs a subspace for which the PXP Hamiltonian approximately fractures into

a block diagonal form. The subspace is obtained by constructing an orthonormal

basis via repeated application of some operator. This procedure is very similar

to the construction of Krylov subspaces, Eq. (3.8). We will first discuss how an

orthonormal basis for a Krylov subspace is generated, deriving the well known

Lanczos recurrence (4), in order to later demonstrate how the FSA subspace may

be viewed as an approximate Krylov subspace.

Krylov subspace orthonormal basis - Lanczos recurrence

Recall a Krylov subspace, KD(H, |v0〉), generated by a Hamiltonian H and arbi-

trary state |v0〉, is the subspace spanned by the following states:

KD(H, |v0〉) = span{|v0〉, H|v0〉, ..., HD|v0〉}

The basis for the subspace, {|v0〉, H|v0〉, H2|v0〉....} is generally not orthonor-

mal. One can obtain an orthonormal basis for the subspace by performing a

Gram-Schmidt orthonormalisation on the basis vectors Hn|v0〉.
However, an orthonormal basis may be constructed recursively using the

well known Lanczos recurrence (4). Instead of producing all the basis vectors

{|v0〉, H|v0〉, H2|v0〉....} and performing a single orthonormalisation at the end,

the Lanczos iteration orthonormalises the basis every time a new basis vector is

obtained. This results in a recursion relation for the basis states, which we will

now derive.

We will demonstrate how the usual Lanczos recurrence arises by considering
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3.3 QMBS as approximate embedding of an integrable subspace

the first few steps of this process. Consider the first step. One obtains the first

orthonormal vector |v1〉 from |v0〉 by applying the Hamiltonian H, orthogonalising

the resulting vector and normalising it:

|u1〉 = H|v0〉 − 〈v0|H|v0〉|v0〉 (3.10)

|v1〉 =
1

β1

|u1〉, β1 =
√
〈u1|u1〉 (3.11)

We have introduced the coefficient β1, which is simply the normalisation of the

orthogonalised vector |u1〉. To obtain the next orthonormal vector |v2〉, we apply

the Hamiltonian H to |v1〉, orthogonalise it with respect to both |v0〉 and |v1〉
using a Gram-Schmidt procedure, and finally normalise the state:

|u2〉 = H|v1〉 − 〈v0|H|v1〉|v0〉 − 〈v1|H|v1〉|v1〉 (3.12)

For simplicity, let us introduce the notation αi = 〈vi|H|vi〉, such that:

|u2〉 = H|v1〉 − α1|v1〉 − 〈v0|H|v1〉|v0〉 (3.13)

Note H|v0〉 = β1|v1〉+ α0|v0〉, such that the last term becomes:

|u2〉 = H|v1〉 − α1|v1〉 − (β1〈v1|+ α0〈v0|)|v1〉|v0〉 (3.14)

= H|v1〉 − α1|v1〉 − β1|v0〉 (3.15)

due to the orthogonality 〈v0|v1〉 = 0. The second orthonormal vector is found by

normalising the state |u2〉, such that we find:

|v2〉 =
1

β2

|u2〉, β2 =
√
〈u2|u2〉 (3.16)

β2|v2〉 = H|v1〉 − α1|v1〉 − β1|v0〉 (3.17)

In general, one can show that the relation given in Eq. (3.17) holds more generally

at every step, due to the orthogonality of the vectors begin iteratively obtained,

〈vi|vj〉 = δij. The resulting recurrence relation is the famous Lanczos recurrence
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3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

(4):

βj+1 |vj+1〉 = H |vj〉 − αj |vj〉 − βj |vj−1〉 , (3.18)

αj= 〈vj|H|vj〉 removes the component of the vector H|vj〉 along |vj〉. The coeffi-

cients β>0 are simply normalisation coefficients, and are computed in practice by

just calculating the norm of the orthogonal vectors |un〉 obtained after applying

the Gram-Schmidt procedure, as demonstrated earlier with β1, β2.

We may rearrange the Lanczos recurrence in Eq. (3.18), interpreting it as an

equation for the action of the Hamiltonian within the Krylov subspace:

H|vj〉 = αj|vj〉+ βj+1|vj+1〉+ βj|vj−1〉, (3.19)

This equation demonstrates that in the basis |vj〉 for the Krylov subspace, ob-

tained from the Lanczos recurrence, the Hamiltonian will be tridiagonal.

Forward scattering approximation

The Lanczos recurrence in Eq. (3.18) demonstrates how to iteratively construct

an orthonormal basis for a Krylov subspace. We now introduce the forward

scattering approximation, an iterative way of constructing an orthonormal basis

for the so called FSA subspace. By considering the relation between the two

iterative approaches, we will establish a connection between FSA subspaces and

Krylov subspaces.

Start with a product state |vfsa0 〉 which is a basis state of a Fock space. Now

consider a Hamiltonian which is bipartite with respect to the Fock basis (no odd

cycles: 〈vfsa0 |H2n+1|vfsa0 〉 = 0, n ∈ Z). If this is the case, it is possible to decom-

pose the Hamiltonian H into ‘forward’ and ‘backward’ propagating components

H+ and H−, subject to the following criteria:

H = H+ +H− (3.20)

H− = (H+)† (3.21)

H−|vfsa0 〉 = 0 (3.22)

〈n|m〉 = 0, where |n〉 = (H+)n|vfsa0 〉 (3.23)
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The last two criteria state that H− must annihilate |vfsa0 〉, and the states pro-

duced by repeated application of H+ on |vfsa0 〉 are all orthogonal (though not

normalised). These criteria are sufficient to uniquely specify the form of H±,

given a particular Hamiltonian H and product state |vfsa0 〉.
An orthonormal basis may be constructed iteratively from repeatedly applying

H+ to |vfsa0 〉 and normalising at each step:

βfsaj+1|vfsaj+1〉 = H+|vfsaj 〉 (3.24)

βfsaj+1 =
√
〈vfsaj |H−H+|vfsaj 〉 (3.25)

Eq. (3.28) is the FSA recurrence procedure to generate an orthonormal basis.

This recurrence is repeated until it naturally terminates, |vfsaD−1〉 = 0 for some D,

such that the basis will consist of D states. The D dimensional subspace spanned

by the set of states |vfsaj 〉 is referred to as the FSA subspace. The advantage of

this approach is the subspace generated will be linear in system size, allowing for

efficient computations within it.

The form of the recurrence in Eq. (3.28) is similar to the Lanczos recurrence

in Eq. (3.18), although the two procedures generate different basis and therefore

different subspaces. However, the two approaches are in fact equivalent if the

backwards propagator H− satisfies H−|vfsaj 〉 = βfsaj |vfsaj−1〉. To see this, introduce

the FSA error vector:

|δfsaj 〉 = H−|vfsaj 〉 − βfsaj |vfsaj−1〉 (3.26)

|δfsaj 〉 is generically not zero. But assuming it is, we could add it to the FSA

recurrence in Eq. (3.28) without it affecting the basis vectors:

βfsaj+1|vfsaj+1〉 = H+|vfsaj 〉+ |δfsaj 〉 (3.27)

= H+|vfsaj 〉+H−|vfsaj 〉 − βfsaj |vfsaj−1〉 (3.28)

= (H+ +H−)|vfsaj 〉 − βfsaj |vfsaj−1〉 (3.29)

= H|vfsaj 〉 − βfsaj |vfsaj−1〉 (3.30)

This is of the same form as the Lanczos recurrence in Eq. (3.18), with αj =
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0 automatically satisfied as we have assumed H is bipartite. This reveals the

connection between the FSA recurrence and the Lanczos recurrence. If the FSA

error vectors |δfsaj 〉 = 0∀, the FSA subspace is in fact equivalent to a Krylov

subspace.

Recall from Section 3.2.2 that disconnected components of a Hamiltonian may

be obtained as Krylov subspaces. Now if all the FSA error vectors |δfsaj 〉 van-

ish such that the FSA subspace is equivalent to a Krylov subspace, this small

subspace that is linear in the system size will correspond to some disconnected

component of the Hamiltonian, such that the Hamiltonian will fracture into the

block diagonal form H = Hfsa

⊕
H⊥, where Hfsa corresponds to projecting the

Hamiltonian into the FSA subspace. This will not be the case if the error vectors

are non zero, but if they remain sufficiently small, the Hamiltonian will approx-

imately fracture into form H ≈ Hfsa

⊕
H⊥. Therefore if the FSA error vectors

are small, diagonalising Hfsa results in an accurate approximation to a linear set

of eigenstates of the system.

FSA applied to PXP model

For the PXP Hamiltonian, we are interested in constructing a FSA subspace

associated with the scarred oscillatory dynamics observed from the Néel state

|Z2〉 = |0101...〉. Therefore, we make the specific choice that |v0〉 = |Z2〉. The

unique forward propagating component of the PXP Hamiltonian in Eq. (2.41),

chosen to satisfy the conditions in Eq. (3.20-3.23) is the following:

H+ =
N−1∑
n=0

P2n−1σ
+
2nP2n+1 + P2n−2σ

−
2n−1P2n (3.31)

H− = (H+)† =
N−1∑
n=0

P2n−1σ
−
2nP2n+1 + P2n−2σ

+
2n−1P2n (3.32)

The form of H+ such that H = H+ +H− is chosen so that repeated application of

H+ on |Z2〉 generates an orthogonal basis. This convention of the FSA uniquely

specifies H+ given H and |Z2〉. Why this particular H+ is relevant for scarring is

not apparent from this criteria. In this section we simply verify numerically the

FSA subspace produced by this H+ captures properties of the scarred eigenstates.
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Nevertheless, there is a physical motivation for this choice of H+ which gives some

insight about the scarred eigenstates. This particularH+ ‘approximately’ behaves

as an su(2) raising operator, and the subspace spanned by the states (H+)n|Z2〉
‘approximately’ corresponds to some s = N/2 spin sector. We will not dwell

on these facts here, or clarify what we mean by ‘approximate’ in this context -

this topic will be the sole focus of Chapter. 4, where we will demonstrate scarred

eigenstates in the PXP model are intimately related to su(2) Lie algebras.

The FSA recurrence, Eq. (3.28), starting from the Néel state with H+ given in

Eq. (3.31), terminates naturally after N steps, where N is the system size, such

that (H+)N+1|Z2〉 = 0. The resulting FSA subspace therefore has dimension

D = N + 1. In addition, for this particular FSA recurrence, the normalisation

coefficients β may be calculated analytically (131), allowing one to construct

much larger subspaces than if one were to carry out this procedure numerically.

By projecting the PXP Hamiltonian to the FSA subspace generated from the

Néel state, the PXP Hamiltonian will fracture into the approximate block diag-

onal form HPXP ≈ HFSA

⊕
H⊥ as shown schematically in Fig. 3.2(c). The FSA

subspace is not an exact subspace of the PXP Hamiltonian, as the error vectors

|δj〉 of the FSA approximation, Eq. (3.26), are non-zero, resulting in off diagonal

matrix elements which couple the block diagonal component corresponding to the

FSA subspace to the orthogonal thermalising component. However, error analy-

sis of the error vectors |δj〉 indicate these vectors are small for a FSA recurrence

starting from the Néel state, justifying the FSA approximation (23, 131). As a

consequence of these small errors, the FSA subspace is nearly decoupled from the

orthogonal thermal sector.

Due to the approximate decoupling of the PXP Hamiltonian in the FSA

subspace from the remaining orthogonal space, one should be able to diago-

nalise the PXP Hamiltonian projected to this FSA subspace, with the resulting

N + 1 eigenstates approximating some N + 1 eigenstates of the full Hamiltonian.

Fig. 3.3(a),(b) shows spectral properties of the approximate eigenstates obtained

by this procedure at N = 20, indicated by red crosses. Results are obtained using

exact diagonalisation, where we construct the FSA basis numerically. (a) shows

the overlap of these approximate eigenstates with the Néel state while (b) shows

their bipartite entanglement entropy. One observes these approximate eigenstates

51



3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

(a) (b)

(c) (d)

Figure 3.3: Numerical results showing the performance of the forward scattering
approximation (FSA) applied to the PXP model. Results are for system size N =
20 and are obtained with exact diagonalisation. An FSA subspace is generated
by repeated application of the operator H+ (Eq. (3.31)) on the Néel state |Z2〉 =
|0101...〉. By projecting the PXP Hamiltonian (Eq. (2.41)) into this subspace and
diagonalising, one can approximate N + 1 eigenstates of the PXP Hamiltonian.
Plots (a),(b) shows the overlap with the Néel state and entanglement entropy
respectively of these approximate eigenstates, indicated by red crosses, contrasted
with the true eigenstates of the PXP model, indicated by blue points. One
observes that the approximate eigenstates capture the properties of the scarred
eigenstates, which are states with anomalously large overlap with the Néel state
and atypical, sub thermal entropy. Plot (d) shows the overlap of the approximate
eigenstates in the FSA subspace with the scarred eigenstate at the same energy,
which is O(1), indicating the approximate eigenstates indeed correspond with
the scarred eigenstates. Plot (c) compares the many-body fidelity (Eq. (2.43)) of
the PXP model when initialised in the Néel state |ψ(0)〉 = |Z2〉 = |0101...〉 with
the dynamics generated by constraining the evolution to only occur in the FSA
subspace (see text). The approximate evolution in the FSA subspace provides
a good description of the dynamics, capturing the fidelity of revivals and some
component of the decay, due to dephasing within this subspace.
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provide a very accurate description of the N + 1 scarred eigenstates of the PXP

model, as it’s found their energy, overlap with Néel state and entropy all match

that of the actual scarred eigenstates of the full PXP Hamiltonian. This is veri-

fied in Fig. 3.3(d), which shows the overlap of the approximate eigenstates with

the scarred eigenstates at the same energy density, where it’s found this overlap

is O(1) for all N+1 states, with the exception of the scarred eigenstate at E = 0.

This is simply a consequence of the exponential degeneracy at E = 0 generated by

the particle-hole symmetry of the PXP model, Eq. (2.42), therefore this overlap

is a basis dependant quantity. It is expected with a suitable linear combination

of the E = 0 eigenstates, this overlap would also be O(1). These results indicate

the scarred eigenstates are well described by a linear superposition of the N + 1

FSA basis states (131).

Further, by time evolving the Néel state within the FSA subspace, that is, by

applying the projected propagator U(t) = e−iP
†
FSAHPFSAt, where PFSA is a projec-

tion to the FSA basis, one observes a reviving wavefunction fidelity resembling

the oscillatory scarred dynamics of the PXP model, see Fig. 3.3(c). The only dis-

tinct difference between the true evolution of the Néel state and the approximate

evolution restricted to the FSA subspace is that the fidelity revivals decay much

slower when dynamics is restricted to the FSA subspace. Fidelity revivals within

the FSA subspace decay as the approximate eigenstates within this subspace are

still not exactly equidistant, resulting in dephasing. One can therefore associate

two components to the decay of the fidelity during the true evolution. One is the

dephasing within the FSA subspace, while another contribution is the leakage out

of this FSA subspace into the orthogonal thermalising space, as a consequence of

the non-zero off diagonal matrix elements coupling these two sectors.

3.4 Exact scars

In the previous section we have seen how QMBS in the PXP model may be inter-

preted in light of an approximate subspace, which results in the PXP Hamiltonian

approximately fracturing into a block diagonal form, with an integrable sector

weakly coupled via sparse matrix elements to a thermal sector. Furthermore, by

projecting the PXP Hamiltonian into this subspace, one obtains a tridiagonal
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3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

matrix with eigenvalues which are nearly equidistant and eigenvectors which well

approximate the scarred eigenstates (23, 131) of the full Hamiltonian.

This picture of QMBS in terms of an approximate, loosely embedded inte-

grable subspace, suggests an idealised limit of QMBS, where, similar to projector

embedding and Krylov-restricted thermalisation, this integrable subspace would

become an exact subspace. However, in contrast to these two other methods, this

idealised limit of QMBS would carry the property that the scarred eigenstates

within this integrable subspace are exactly equidistant. We refer to this idealised

limit of QMBS as ‘exact scarring’, in contrast to the QMBS observed in the PXP

model, which we now refer to as ‘approximate scarring’, with the nomenclature

chosen due to the approximately equidistant eigenvalues of the scarred eigenstates

in the PXP model.

Exact scarring has been realised in a variety of models, such as spin-1 XY

models (22, 112) and a spin 1/2 model with emergent kinetic constraints (51).

As a consequence of the equidistant scarred eigenstates, it is possible to pre-

pare special initial states with support only on these scarred eigenstates which

exhibit perfect revivals in the many-body fidelity for all time, in contrast to the

PXP model’s decaying fidelity revivals. Furthermore, even though some arbitrary

combination of eigenstates is usually some complicated entangled state, for ex-

act scarred systems, a suitable linear superposition of all the scarred eigenstates

tends to itself be some relatively simple state, for example, a Nematic Néel state

(112).

The purpose of this thesis is to understand the origin of approximate scarring.

We will spend the remainder of this chapter reviewing exact scarring and the

algebraic structures which give rise to this physics, as this will lay the foundation

necessary to understand the algebraic origin of approximate scarring discussed in

Chapter 4.

3.4.1 Spectrum generating algebras

The defining characteristic of exact scarred models is that the scarred eigenstates

(atypical low entropy eigenstates) are exactly equidistant in energy. Models host-

ing many sets of equidistant eigenstates may be seen to possess a spectrum gen-
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3.4 Exact scars

erating algebra (SGA) (12, 50, 143). A generalisation of the SGA, known as

a restricted spectrum generating algebra (RSGA) (82), results in Hamiltonians

which possess only a single set of equidistant eigenstates.

A Hamiltonian H is said to possess a SGA if for some raising operator Q+ it

satisfies the following relation:

[H,Q+] = ωQ+ (3.33)

Typical examples of raising operators Q+ in physical many-body systems may be

spin raising operators or quasiparticle creation operators, which may be either

fermionic or bosonic. Regardless of the physical origin of Q+, if a Hamiltonian

possesses a SGA with respect to the operator Q+, [H,Q+] = ωQ+, it follows that

for every eigenstate |E〉 of H with eigenvalue E, there will exist a set of connected

eigenstates, (Q+)n|E〉 with eigenvalues separated by multiples of ω. This follows

trivially from the commutation relation:

HQ+|E〉 = (ωQ+ +Q+H)|E〉
= (E + ω)Q+|E〉
=⇒ H(Q+)n|E〉 = (E + nω)(Q+)n|E〉

Call the set of n linearly independent eigenstates of H which are annihilated by

the lowering operator Q− = (Q+)† root states |En
0 〉:

Q−|En
0 〉 = 0 ∀n

The number of root states n depends on the details of the particular Hamiltonian

H and raising operator Q+. We group all the eigenstates obtained by acting with

the raising operator Q+ on a specific root state |En
0 〉 together and refer to this set

of connected eigenstates as a tower. A Hamiltonian possessing a SGA therefore

contains multiple towers of eigenstates, where eigenstates in a single tower are all

equidistant in energy with spacing ω.

55



3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

Restricted spectrum generating algebra

A restricted spectrum generating algebra (RSGA) (82) is analogous to a SGA, but

rather than resulting in a Hamiltonian possessing multiple towers of equidistant

eigenstates, the Hamiltonian will instead possess a single tower of equidistant

eigenstates. Higher order generalisations of a RSGA exist (82), but here we will

only consider a first order RSGA, in order to illustrate how such structures give

rise to a single tower . A Hamiltonian is said to possess a RSGA, to first order,

if it satisfies the following conditions:

H|ψ0〉 = E0|ψ0〉 (3.34)

[H,Q+]|ψ0〉 = ωQ+|ψ0〉 (3.35)

[[H,Q+], Q+] = 0 (3.36)

Eq. (3.34) guarantees the existence of a single root state |ψ0〉 with energy E0.

Eqs. (3.35),(3.36) guarantee repeated application of the raising operator Q+ on

the root state |ψ0〉 generates a set of equidistant eigenstates of H. Note this

proof runs in both directions. If a model is found to possess a single tower

of equidistant eigenstates |En〉 such that H|En〉 = (E0 + nω)|En〉, one could

construct an operator Q+ =
∑

n |En+1〉〈En| which would satisfy the requirements

of a RSGA, Eqs. (3.34)-(3.36). A model hosting a single tower of equidistant

eigenstates therefore necessarily possesses an RSGA.

While a Hamiltonian possessing a RSGA results in a single set of equidis-

tant eigenstates, to claim such a Hamiltonian hosts exact scars, the eigenstates

generated by the RSGA must be atypical thermal eigenstates, in the sense their

entropy deviates from the ETH prediction for eigenstates of similar energy. The

next section presents a particularly simple construction for a Hamiltonian pos-

sessing a RSGA whose tower of equally spaced eigenstates are ETH violating.

Note it is not the only way of engineering an exact scarred model, (89), however,

a wide variety of exact scarred systems previously studied follow this formula

(22, 51, 112).
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3.4 Exact scars

Exact scarred model construction

Consider a Hamiltonian of the form:

H = H0 +H ′. (3.37)

We assume the operator H ′ possess a spectrum generating algebra with respect

to some local operator Q+, i.e.

[H ′, Q+] = ωQ+, (3.38)

such that, for any eigenstate |Ω〉 of H ′, H ′|Ω〉 = Ω|Ω〉, H ′ will also possess an

equally spaced tower of eigenstates |Ωn〉, defined as

|Ωn〉 =
1√
N

(Q+)n|Ω〉 (3.39)

H ′|Ωn〉 = (Ω + nω)|Ωn〉 (3.40)

where N is some normalisation factor.

Now suppose H0 is chosen so that one particular tower of eigenstates of H ′

are degenerate eigenstates of H0:

H0|Ωn〉 = EΩ|Ωn〉 ∀n (3.41)

It follows that, for the total Hamiltonian H in Eq. (3.37), H ′ will split the de-

generacy such that |Ωnn〉 are equidistant eigenstates of the full Hamiltonian:

H|Ωn〉 = (EΩ + Ω + nω)|Ωn〉

Further, if |Ω〉 is a weakly entangled state, due to the locality of Q+, states

|Ωn〉 are also expected to be weakly entangled. Given an appropriate choice of H0

such that the model is non-integrable, the states |Ωn〉 will be weakly entangled

scarred eigenstates which violate the ETH. Due to the presence of a single tower

of equidistant eigenstates, models satisfying this construction must necessarily

posses a RSGA.
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3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

In the next section we give an example of an exact scarred model which may

be understood from this construction.

3.4.2 Example: longitudinal Ising model with additional

3-body interaction

Consider the following Hamiltonian, studied in Ref. (51), corresponding to a

longitudinal Ising model with an additional 3-body interaction:

H =
N−1∑
i=0

λ(σxi − σzi−1σ
x
i σ

z
i+1)︸ ︷︷ ︸

Hλ

+ ∆σzi︸︷︷︸
Hz

+ Jσzi σ
z
i+1︸ ︷︷ ︸

Hzz

(3.42)

σzi =

(
1 0

0 −1

)
, σxi =

(
0 1

1 0

)

where σzi , σ
x
i are the Pauli matrices. Throughout this section, we assume periodic

boundary conditions, and we will consider parameters λ = 1,∆ = 0.1, J = 1. The

level statistics of this model with these parameters has been shown to be in agree-

ment with a Wigner-Surmise distribution (51) confirming it is non-integrable.

By calling H0 = Hλ, H
′ = Hz + Hzz, we see this Hamiltonian is of the form

given in Eq. (3.37), that is, H = H0 + H ′. Trivially, the eigenstates of H ′ are

simply all product states in the Z basis.

Now consider the local raising operator defined as:

Q+ =
N−1∑
n=0

(−1)nP 0
n−1σ

+
n P

0
n+1 (3.43)

Note thatH ′ possess a spectrum generating algebra with respect toQ+. Explicitly

computing the commutator, one finds:

[H ′, Q+] = (2∆− 4J)Q+ (3.44)

Therefore, the eigenstates of H ′ may be grouped into equally spaced towers,

connected by the application of the raising operator Q+. To complete the analogy

with the construction of exact scarred models in Section (3.4.1), all that remains
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is to show a single tower of eigenstates of H ′ are degenerate eigenstates of H0.

Consider the tower of states generated by the application of Q+ on the polarised

state:

|Sn〉 =
1

n!
√
N(N, n)

(Q+)n|000...〉 (3.45)

The prefactor is simply a normalisation factor, with the quantity N(N, n) taking

the following form for PBC:

N(N, n) =
N

n

(
N − n− 1

n− 1

)
(3.46)

This is just a combinatorial factor which counts the number of states produced

by the spin flips generated by Q+.

Physically, |Sn〉 correspond to a state containing nmagnons, with each magnon

carrying momentum k = π. Moreover, for this particular tower of eigenstates of

H ′, one can prove H0 annihilates this entire tower of eigenstates (51):

H0|Sn〉 = 0 ∀n (3.47)

It follows that the states |Sn〉 are eigenstates of the full Hamiltonian in Eq. (3.42)

which are equally spaced in energy. Their energies may be computed explicitly

as:

En = (2∆− 4J)n+ (J −∆)N (3.48)

Since the states |Sn〉 consist of quasiparticle excitations atop the polarised state,

they are weakly entangled, relative to states nearby in energy. Moreover, as

the model is non-integrable, the states |Sn〉 are exact scarred eigenstates of the

Hamiltonian in Eq. (3.42).

Fig. 3.4(a) shows the entropy of eigenstates of this model at N = 14, obtained

using exact diagonalisation. The exact scarred eigenstates are coloured in red.

Similar to the PXP model, we see these are characterised by having sub-thermal

entropy relative to states nearby in energy, in violation of the ETH. However,
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(a) (b)

Figure 3.4: Exact scarring observed in the longitudinal Ising model with addi-
tional three body interaction (Eq. (3.42)) at system size N = 16. Results are
obtained with exact diagonalisation. Plot (a) shows the entropy of eigenstates of
the model, with the scarred eigenstates coloured in red. The scarred eigenstates
are exactly equidistant in energy and are characterised by sub-thermal entropy
relative to the predictions of ETH. As a consequence of the exact scarring, one
can prepare special initial states which will undergo perfect oscillations for all
times. Plot (b) shows the many-body fidelity (Eq. (2.43)) for one such initial
state, a Rokshar-Kivelson state given in Eq. (3.49) with ε = 1, which exhibits
perfect revivals for all times.

they are equidistant in energy. This implies one can prepare an initial state

with support only on the scarred eigenstates which would exhibit perfect fidelity

revivals for all times. One family of initial states with this property are are

Rokshar-Kivelson states (104), which may be expressed as:

|ε〉 =
1√
Z(ε)

N−1∏
n=0

(1 + ε(−1)nP 0
n−1σ

+
n P

0
n+1)|000...〉 (3.49)

=
1√
Z(ε)

N/2∑
n=0

εn
√

N(N, n)|Sn〉 (3.50)
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where Z(ε) is a normalisation factor:

Z(ε) =

N/2∑
n=0

ε2nN(N, n) (3.51)

These initial states are weakly entangled (51), unlike the reviving initial state

in the PXP model, which was simply a product state (130). Fig. 3.4(b) shows

the evolution of the wavefunction fidelity when this system is initialised in the

state |ε = 1〉. As expected due to the exact scarring present in this model, the

wavefunction exhibits perfect revivals which persist for all time.

3.5 Summary

In this chapter we have introduced the concept of quantum many-body scars

(QMBS), a form of weak ergodicity breaking occurring due to the presence of

a subset of special eigenstates which violate the ETH. For the PXP model in-

troduced in Eq. (2.41), it’s scarred eigenstates are found to be approximately

equidistant in energy, such that special initial states may be prepared that ex-

hibit oscillatory dynamics for long times.

However, for the PXP model, these oscillations decay over time. To under-

stand why this is the case, we introduced the forward scattering approximation

(FSA), Eq. (3.28). This subspace was found to be ‘approximately’ invariant under

the action of the PXP Hamiltonian. This result indicates that, in a suitable basis,

the PXP Hamiltonian in fact consists of an integrable component weakly coupled

via sparse matrix elements to a thermal component, as shown schematically in

Fig. (3.2)(c). The scarred eigenstates were found to have their dominant support

in this integrable subspace. The decaying component to the oscillatory scarred

dynamics may then be understood as a leakage out of this integrable subspace

into the exponentially large thermal sector.

Motivated by these findings, we introduced the concept of ‘exact’ QMBS.

Systems hosting exact QMBS have Hamiltonians which fracture into an exact

block diagonal form, with an integrable sector completely disconnected from the

thermal sector. Scarred eigenstates reside completely in the integrable sector
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3. AN OVERVIEW OF QUANTUM MANY-BODY SCARS

and are exactly equidistant in energy. As a consequence, scarred dynamics from

special initial states in exact scarred systems realise perfect oscillations for all

times, with no decaying component. In order for a Hamiltonian to host exact

scars, it must possess some underlying algebraic structure, Eq. (3.33). Using

insights from these requirements, we introduced a particular construction which

results in Hamiltonians realising exact QMBS.

Throughout the rest of this thesis, we wish understand the origin of approx-

imate QMBS, as observed in the PXP model. Motivated by the necessary alge-

braic structure to realise exact QMBS, we seek similar conditions necessary to

realise approximate QMBS. By understanding the requirements for approximate

scarring, we will develop recipes to construct new scarred models. Exact scars,

the idealised limit of approximate scarring, necessarily have Hamiltonians which

possess spectrum generating algebras (SGA), [H,Q+] = ωQ+. By interpreting

exact scarring as an idealised limit of approximate scarring, a natural first step to

understand the latter is to search for commutation relations of this form. How-

ever, given the scarred eigenstates in approximate scarred models do not strictly

have equal energy spacing, we would not expect commutation relations like this

to hold exactly, otherwise equidistant eigenstates would be present in the model.

One can make progress if they relax the criteria of a SGA, instead searching for

an approximate SGA such that

[H,Q+] ≈ ωQ+ (3.52)

for some operator Q+. The sense in which this relation is approximate is yet to

be defined, and we will consider this question in more detail in the next Chapter.

Indeed, we find the PXP model does in fact satisfy this relation, with the raising

operator being intimately related to an approximate SU(2) symmetry.
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Chapter 4

Weakly-broken Lie algebras: a

mechanism for approximate scars

In this chapter, based on our work in Ref. (16), we outline how an approximate

SGA may emerge which gives rise to QMBS, as a consequence of ‘weakly bro-

ken Lie algebras’. The approximate SGA emerges due to the root structure of

these Lie algebras. We discuss several different representations of these algebras

found in the PXP model, highlighting the special case of a broken su(2) Lie al-

gebra. Furthermore, we introduce a systematic method for which higher order

corrections to these broken Lie algebras may be successively calculated. These

successive corrections ‘fix’ the broken Lie algebra, in the sense they iteratively

perturb the broken Lie algebra towards an exact Lie algebra. This results in

Hamiltonians which possess an exact SGA corresponding to the relevant symme-

try group generated by the Lie algebra. In this sense, the approximate scarred

eigenstates may be interpreted as eigenstates which still possess a strong resem-

blance to the eigenstates of a proximate Hamiltonian hosting an exact symmetry

generated by a Lie algebra.
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APPROXIMATE SCARS

4.1 Broken Lie algebra representations

We start by recalling some basics of Lie algebras and representation theory (45).

Infinitesimal generators gi of a Lie group G form a Lie Algebra A:

[gi, gj] = fkijgk. (4.1)

The algebra is encoded in the structure constants fkij, which are antisymmetric

with respect to lower indices, fkij = −fkji. A set of n × n matrices {Mi} satisfy-

ing [Mi,Mj] = fkijMk forms an n-dimensional representation of the Lie algebra.

Verifying these commutation relations is sufficient to verify the set {Mi} form a

valid representation.

Given a set of infinitesimal generators of a Lie Group, define {H i} as the

largest set of mutually commuting generators. By taking linear combinations

of the remaining generators, one can construct a set of ladder operators, {Eα},
which satisfy:

[H i, Eα] = αiEα. (4.2)

The coefficients αi are called the roots of the Lie algebra. Verifying the roots

structure of the matrices {H i}, {Ei} is sufficient to check they form a valid rep-

resentation of the Lie algebra.

Together, the sets {H i}, {Eα} are known as the Cartan-Weyl basis (146). As

the set {H i} are mutually commuting by definition, there exists a basis which

simultaneously diagonalises every H i such that we can label basis states of a

representation by their H i quantum numbers. On application of Eα, the change

in H i quantum numbers is just the roots αi:

H i|ψ〉 = λi|ψ〉, (4.3)

H iEα|ψ〉 = (EαH i + αiEα)|ψ〉 = (λi + αi)Eα|ψ〉. (4.4)

Given a single basis state which is an eigenstate of every H i, one can systemati-

cally construct the remaining basis states via repeated applications of the ladder

operators Eα. This construction will prove useful for forming approximate basis

64



4.1 Broken Lie algebra representations

states of broken Lie algebra representations, which can be used to approximate

many-body scar states.

Consider the set of operators {Eα} which are raising and lowering operators

of some Lie algebra A in the Cartan-Weyl basis. One can expand the commutator

[Eα, Eβ] as a linear superposition of all the generators of the Lie algebra:

[Eα, Eβ] =
∑
γ

cγE
γ +

∑
γ

dγH
γ, (4.5)

where the coefficients cγ, dγ, follow from the properties of the Lie algebra. How-

ever, one could consider inverting these equations, treating them as a definition

for the operators H i(Eα, [Eα, Eβ]).

Now we are in position to introduce our notion of a ‘broken’ Lie algebra.

Let the set of operators {Ēα} be of equal size as the previous set {Eα}, but we

do not assume they are raising/lowering operators of any Lie algebra. Taking

Eq. (4.5) as a definition for H i, we can express the latter as some linear com-

bination of {Eα, [Eα, Eβ]}. Then, define H̄ i as the same linear combination of

{Ēα, [Ēα, Ēβ]}. If the sets {Ēα}, {H̄ i} satisfy:

[H̄ i, Ēα] = αiĒα + δα, (4.6)

where αi match the roots coefficients of the Lie algebra A, we say {Ēα}, {H̄ i}
form a broken representation of the Lie algebra A. It is understood δα contain

no terms proportional to the generators Ēα.

Now consider a Hamiltonian consisting of a linear combination of the diagonal

generators {H̄ i} rotated to some other basis:

H =
∑
n

anU
†H̄nU, (4.7)

where U is an arbitrary unitary rotation. Consider quenching from a simulta-

neous eigenstate |ψ0〉 of the operators {H̄ i}. Construct a basis for the broken

representation by repeated application of the raising operators Ēα on |ψ0〉. We

refer to this basis as the representation basis. If the algebra were exact, the Hamil-

tonian would fracture into the block diagonal form H = Hrep basis

⊕
H⊥, where
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Hrep basis corresponds to projecting the Hamiltonian to the representation basis.

Furthermore, there would exist several spectrum generating algebras of Hrep basis,

corresponding to the rotated ladder operators, Qα = U †EαU . For a broken Lie

algebra, these relations only hold approximately, with the error controlled by δα

in Eq. (4.6).

It is possible the dynamics can resemble a quench with additional decoher-

ence from the related system H(H̄ i, Ēα) → H(H i, Eα). For example, if the

embedded algebra was su(2), it is possible the wavefunction will revive with a

single frequency. The conditions necessary for the quench to resemble that of the

proximate model with exact algebraic structure H(H i, Eα) are the following are:

1. The variance of the approximate basis with respect to H̄ i is sufficiently

small.

2. The spacing of expectation values with respect to H̄ i after applications of

Ēα to |ψ0〉 approximately obeys the root structure of the desired Lie algebra,

i.e.,

〈φ|H̄ i|φ〉
〈φ|φ〉 ≈ λi + αi, (4.8)

where H̄ i|ψ0〉 = λi|ψ0〉 and |φ〉 = Ēα|ψ0〉.

3. Repeated application of Ēα on |ψ0〉 will terminate after a finite number of

steps, thus generating a subspace of the full Hilbert space. In general, this

subspace does not correspond to an exact symmetry sector of the Hamil-

tonian. To see signatures of the exact Lie algebra, this subspace must be

sufficiently disconnected from the orthogonal space under the action of the

Hamiltonian.

4.2 Derivation of perturbative corrections

By perturbing the operators Ēα with terms that appear in the error δα, it is

possible to improve the broken Lie algebra, in the sense that decoherence in the

quench described in the previous section is reduced.
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Consider some broken representation of a Lie algebra:

[H̄ i, Ēα] = αiĒα + δα, δα =
∑
n

V α
n , (4.9)

where the error δα has been decomposed into linearly independent terms V α
n .

Now perturb the raising/lowering operators as follows:

Ēα
(1) = Ēα +

∑
n

cnV
α
n . (4.10)

The coefficients cn are to be understood as variational parameters, which we will

seek to solve for so as to minimise the second order error terms arising from

commutations involving the perturbed raising/lowering operators.

The first order raising and lowering operators Eα
(1) in turn defines the first

order diagonal elements of the Lie algebra, H̄ i
(1) , following the same definition of

H i in Eq. (4.5). The root structure of the broken Lie algebra at first order may

then be computed as follows:

[H̄ i
(1), Ē

α
(1)] = αiĒα

(i) + δα(2)(~c), (4.11)

The magnitude of the second order error term δα(2)(~c) will be a function of the

variational parameters cn. If coefficients cn can be obtained such that the sec-

ond order error becomes smaller than the first order error, ||δα(2)||F < ||δα||F , we

would say the broken Lie algebra has been ‘improved’. If the higher order error

term can be made zero, we would say the broken Lie algebra has been corrected

completely and is now exact. If the error term does not completely vanish, one

can use the same procedure described at first order to obtain second order per-

turbations to the raising and lowering operators, such that the process can be

iteratively repeated to obtain higher and higher order correction terms. Fig. 4.1

schematically shows this process of identifying corrections to the algebra. We

will demonstrate that this procedure of iteratively correcting a broken Lie alge-

bra results in many-body scarred models with long-lived coherent dynamics in

the subsequent sections.

Before illustrating this approach with examples, we briefly discuss ways of
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Optimize coefficient      to enhance su(2)

subspace and                  scarring. 

Defined from exact su(2) algebra

Identify corrections 

from 

Let        be the Hamiltonian of our

system. Lowest weight eigenstate

of       ,                  potentially has

a set of scarred eigenstates with

enhanced support.

Figure 4.1: Schematic illustration of an iterative scheme which identifies correc-
tions to broken Lie algebras, specifically an su(2) Lie algebra in this case. The
optimisation of λn is with respect to the error measures described in the text, such
as maximising the first fidelity peak |〈Hz, LW |e−iHt|Hz, LW 〉|2 or minimising the
subspace variance of H w.r.t. to the su(2) basis defined in Eq. (4.13).

quantifying how much the approximate Lie algebra representation differs from

an exact representation. From now on we explicitly restrict to the case of an

su(2) Lie algebra for simplicity. Therefore the broken Lie algebra consists of the

operators {H̄z, H̄+, H̄−}, which are assumed to satisfy the conditions of a broken

su(2) Lie algebra:

[H̄z, H̄±] = ±H̄± + δ±. (4.12)

As a possible error measure, we consider max{var(H̄z)n}, where var(H̄z)n is de-

fined as the variance of the operator H̄z with respect to the state |n〉:

|n〉 =
1√
N

(H̄+)n|LW〉, (4.13)

var(H̄z)n = 〈n|(H̄z)
2|n〉 − (〈n|H̄z|n〉)2 (4.14)

with |LW〉 the lowest weight eigenstate of H̄z and N a normalisation factor. If

an algebra were exact, max{var(H̄z)n} = 0.
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Furthermore, for an exact su(2) algebra, we expect the basis states |n〉 should

have harmonic (equal) energy spacing. To quantify the deviation from harmonic

spacing we introduce the quantity K:

K = ||M ||F , Mnm = |∆En −∆Em|, (4.15)

which represents the Frobenius norm of the matrix of level spacings. The latter

are given by

∆En = 〈H̄z〉n+1 − 〈H̄z〉n, 〈H̄z〉n = 〈n|H̄z|n〉. (4.16)

For an exact su(2) Lie algebra, we would also expect K = 0.

Finally, we may consider as an error measure how disconnected the subspace

spanned by |n〉 is from its orthogonal subspace under the action of the Hamil-

tonian H = H+ + H−. For an exact su(2) Lie algebra, these subspaces would

remain disconnected under the action of H, as H possesses su(2) symmetry. To

quantify this property, we use the subspace variance σ:

σ = tr
(

(U †repH
2Urep)− (U †repHUrep)2

)
, (4.17)

where Urep is a projector onto the basis |n〉. This quantity can be interpreted

as being proportional to the Frobenius norm of the block labelled couplings in

Fig. 3.2(c).

4.3 Example: Fixing a ‘trivial’ broken su(2) al-

gebras

We have introduced in a general fashion both broken Lie algebras and how to

find their corrections, however we now consider specific cases. Before considering

broken Lie algebras which emerge due to kinetic constraints, specifically broken

Lie algebras which offer insight into the scarred dynamics of the PXP model, we

will first consider a trivial case of a broken su(2) Lie algebra, which is simply a

small perturbation of an exact su(2) algebra. While it is immediately obvious how
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to ‘correct’ this algebra (remove the perturbation), we nevertheless go through the

process of deriving the corrections, to demonstrate how the procedure outlined

in the previous section would work in practice.

Consider the following operators, to be interpreted as raising and lowering

operators, defined for a Hilbert space of dimension 2:

H+ =

(
ε 0

1 ε

)
H− = (H+)† =

(
ε 1

0 ε

)
(4.18)

Where ε is some small (real) parameter. It is apparent that one may write

H± = S±1/2 +εI, where I is the identity matrix and S±1/2 are the conventional su(2)

raising and lowering operators of a spin half representation:

S+
1/2 =

(
0 0

1 0

)
, S−1/2 =

(
0 1

0 0

)
(4.19)

Therefore it is somewhat trivial that the operators H± should form a broken

su(2) Lie algebra, and we would expect our procedure to correct the Lie algebra

to produce the operators S±1/2. Nevertheless, we will demonstrate this explicitly

in order to illustrate the process.

To show H± are elements of a broken su(2) Lie algebra, we must calculate the

Z element of the algebra, which is defined from the properties of a conventional

su(2) Lie algebra:

Hz ≡ 1

2
[H+, H+] =

1

2

(
−1 0

0 1

)
(4.20)

Verifying the root structure of the Lie algebra, we find:

[Hz, H+] =

(
0 0

1 0

)
= H+ − εI︸︷︷︸

V +
(1)

(4.21)

[Hz, H−] = −
(

0 1

0 0

)
= −H− − εI︸︷︷︸

V −
(1)

(4.22)
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These commutation relations verify that the operators {H+, H−, Hz} realise a

broken su(2) Lie algebra, according to the definition given in Eq. (4.6). This is

because the coefficient of H± on the right hand side of these equations are ±1

respectively, the correct coefficient for the root structure of a su(2) Lie algebra.

Corrections to this broken Lie algebra at first order follow from perturbing the

raising and lowering operators H± by the first order error terms V ±(1), multiplied

by a variational parameter, λ. Absorbing the coefficient ε into this variational

parameter, the first order raising and lowering operators become:

H+
(1) = H+ + λV +

(1) = H+ + λI (4.23)

H−(1) = H− + λV −(1) = H− + λI (4.24)

In this trivial case it is possible to find the optimal λ by calculating the second

order errors terms of the broken Lie algebra and minimising them:

Hz
(1) ≡

1

2
[H+

(1), H
−
(1] =

1

2

(
−1 0

0 1

)
(4.25)

[Hz
(1), H

+
(1)] = H+

(1) − (ε+ λ)I︸ ︷︷ ︸
V +

(2)

(4.26)

[Hz
(1), H

−
(1)] = −H−(1) − (ε+ λ)I︸ ︷︷ ︸

V −
(2)

(4.27)

Therefore by setting λ = −ε, the second order error terms V ±(2) vanish completely

and the algebra is completely fixed at first order. The first order corrected raising

and lowering operators are nothing but the conventional spin half raising and

lowering operators defined earlier, H±(1) = S±(1/2). It must be admitted that this

case is rather trivial, but it serves to illustrate how one would derive corrections

to a broken Lie algebra when the proximate generators of an exact algebra are

not obvious.
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4.4 PXP model and weakly broken su(2) alge-

bra

We now exemplify our general embedding scheme outlined in Section 4.1 by using

the PXP model, Eq. (2.41). We demonstrate how to identify and improve the

broken su(2) algebra associated with Z2 revivals.

4.4.1 Z2 revivals and su(2) algebra

First we focus on the well-known case of Z2 revivals in the PXP model. Define

the su(2) spin raising operator

H̄+ ≡
∑
n

(
σ̃+

2n + σ̃−2n−1

)
, (4.28)

where we have introduced the shorthand notation

σ̃αn ≡ Pn−1σ
α
nPn+1. (4.29)

Recall this is the same operator used in the forward scattering approximation

(FSA) in Section 3.3.1. However, the motivation for choosing this form of H̄+

is rather different from why it was chosen for the FSA procedure, which we will

discuss below.

For the above representation, we have HPXP = H̄+ + H̄− such that HPXP =

H̄x, ie the PXP Hamiltonian itself may be considered the X element of this Lie

algebra. However, note the choice of H̄+ such that HPXP = H̄+ + H̄− is not

unique. The reason we choose this particular H̄+ in this instance is we want

a specific su(2) representation which is relevant for revivals from the Néel state

|Z2〉 = |0101...〉 when evolving under the action of H̄x = HPXP . We seek a

representation for which |Z2〉 is the lowest weight state of the Z element of the

Lie algebra, H̄z = 1/2[H̄+, H̄−], such that by analogy with an exact su(2) algebra

we can think of this state as being a large spin along the negative Z direction.

Decaying revivals may then be loosely understood as a precession of this large

spin around the X axis, generated by H̄x = HPXP .
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We verify the Néel state is indeed the lowest weight eigenstate of H̄z by

computing it explicitly:

H̄z ≡ 1

2
[H̄+, H̄−] =

∑
n

(
σ̃z2n − σ̃z2n−1

)
. (4.30)

Note the minus sign in the second equation, which tells us that H̄z acts as a

staggered magnetisation in the constrained Hilbert space. Since H̄z is a stag-

gered magnetisation, it follows that the Néel state |0101...〉 is the lowest weight

eigenstate of this operator, while the anti-Néel state |1010...〉 would correspond

to a large spin in the positive Z direction.

Computing the root structure arising from the operators {H̄+, H̄−, H̄z} veri-

fies they do realise a broken Lie su(2) algebra:

[
H̄z, H̄+

]
= H̄+ + δ+

(1), (4.31)[
H̄z, H̄−

]
= −H̄− + δ−(1), (4.32)

where the error terms that break the algebra are

δ+
(1) = −1

2
(PPσ+

2nP + Pσ+
2nPP + Pσ−2n+1PP + PPσ−2n+1P ), (4.33)

δ−(1) =
1

2
(PPσ−2nP + Pσ−2nPP + Pσ+

2n+1PP + PPσ+
2n+1P ). (4.34)

For brevity, we have suppressed a summation over the lattice sites in the definition

of δ
+/−
(1) , and terms like PPσ+

2nP stand for
∑

n P2n−2P2n−1σ
+
2nP2n+1 (i.e., strings

of P ’s act on consecutive neighbouring sites).

From the expressions in Eqs. (4.31)-(4.32), we see that {H̄z, H̄+, H̄−} form a

broken representation of su(2). In this language, the forward scattering approx-

imation (FSA) (130) (Section 3.3.1) is rephrased as projecting the Hamiltonian

H to the broken representation basis in Eq. (4.13), with |LW〉 ≡ |Z2〉, and di-

agonalising. This procedure gives very accurate approximations to the special

eigenstates of the full PXP model – see red crosses in Fig. 4.2 (a), (b), (c), (e).

Next, we identify perturbations which can potentially improve the su(2) rep-
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4. WEAKLY-BROKEN LIE ALGEBRAS: A MECHANISM FOR
APPROXIMATE SCARS

True Scars

Figure 4.2: Z2 revival in PXP model originating from a broken su(2) Lie algebra.
(a) Eigenstate overlap with the Néel |Z2〉 state. (b) Eigenstate overlap after
including the first order su(2) correction, Eq. (4.37). (c) Eigenstate overlap after
including the second order su(2) correction, Eqs. (4.40)-(4.47). (d) Quantum
fidelity in Z2 quench, with and without perturbations. Perturbation coefficients
are those that maximise the first fidelity revival peak. (e) Bipartite entropy,
Eq. (2.21), of the eigenstates of PXP model after including second order Z2 su(2)
corrections. The states labelled ‘True Scars’ are exact diagonalisation results
identified from the top band of states in (c). Red crosses in (a), (b), (c), (e)
indicate approximate scar states obtained by projecting the Hamiltonian to the
broken su(2) basis and diagonalising. Colour scale in (a), (b), (c), (e) indicates
the density of data points, with lighter regions being more dense.
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Order 1− f0 σ/Dsu(2) max(var(Hz)n) K
n = 0 2.853×10−1 1.116×10−1 2.711×10−1 9.310×100

n = 1 6.760×10−4 2.190×10−4 9.694×10−4 6.008×10−1

n = 2 3.113×10−6 3.303×10−6 2.355×10−5 8.090×10−2

Table 4.1: Error metrics for the Z2 su(2) subspace of the PXP model at various
perturbation orders for N = 24. Subspace variance σ is normalised by the dimen-
sion of the su(2) representation, N + 1. See text for details of the perturbations.

resentation. First, define H̄±(1) = H̄± + λδ±(1). This gives us

H̄x
(1) = H̄+

(1) + H̄−(1) (4.35)

= HPXP + λ(δ+
(1) + δ−(1)) (4.36)

= PσxnP + λ(PσxnPP + PPσxnP ). (4.37)

In order to find the optimal perturbation strength λ, we maximise the first fidelity

revival as a function of λ,

f0(λ) = f(λ, t0) = |〈ψ(0)|e−iH(λ)t0|ψ(0)〉|2, (4.38)

where t0 is the time at which the first revival occurs. Note that t0 is λ-dependent.

This minimisation was carried out using the Python SciPy routine that employs

the ‘Sequential Least Squares Programming’ (SLSQP) method. After optimi-

sation, we recover the perturbation that was previously empirically found in

Ref. (60) to enhance the revivals following a |Z2〉 quench with maximal f0 when

λ = 0.108 (at system size N = 18). It was previously demonstrated the PXP

model remains non-integrable after including this perturbation (23). Note that

the first order perturbation improves all error metrics of the broken representa-

tion, see Table 4.1.

Second order perturbations can be obtained in a similar fashion, although al-

gebraic manipulations become very laborious to perform by hand. Our analytical

results have been tested against a custom-designed software for symbolic com-

putations of the nested commutators involving projectors 1. Fig. 4.2 summarises

1K. Bull (https://github.com/Cable273/comP).
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the differences between models after including first and second order perturba-

tions. We find the scarred eigenstates become increasingly decoupled from the

thermal bulk and can also be characterised by their anomalously low bipartite

entanglement entropy S, Eq. (2.21).

The second order error term δ+
(2), evaluated by computing the root structure

[H̄z
(1), H̄

+
(1)] = H̄+

(1) + δ+
(2), is found to be a linear combination of linearly indepen-

dent error terms:

δ+
(2) =

∑
n

αnδ
+
(2),n (4.39)

Restricting to terms δ+
(2),n with only a single spin flip, we identify the following

linearly independent second order error terms δ+
(2),n:

δ+
(2),1 = PσzPσ+

2nP + Pσ+
2nPσ

zP + PσzPσ−2n+1P + Pσ−2n+1Pσ
zP, (4.40)

δ+
(2),2 = Pσ+

2nPPP + PPPσ+
2nP + Pσ−2n+1PPP + PPPσ−2n+1P, (4.41)

δ+
(2),3 = PPσ+

2nPP + PPσ−2n+1PP, (4.42)

δ+
(2),4 = PPσ+

2nPσ
zP + PσzPσ+

2nPP + PPσ−2n+1Pσ
zP + PσzPσ−2n+1PP, (4.43)

δ+
(2),5 = PPPσ+

2nPP + PPσ+
2nPPP + PPPσ−2n+1PP + PPσ−2n+1PPP, (4.44)

δ+
(2),6 = Pσ+

2nPσ
zPP + PPσzPσ+

2nP + PPσzPσ−2n+1P + Pσ−2n+1Pσ
zPP, (4.45)

δ+
(2),7 = PPPPσ+

2nP + Pσ+
2nPPPP + PPPPσ−2n+1P + Pσ−2n+1PPPP, (4.46)

δ+
(2),8 = PPσ+

2nPσ
zPP + PPσzPσ+

2nPP + PPσ−2n+1Pσ
zPP + PPσzPσ−2n+1PP.

(4.47)

Putting these terms together, we obtain the second order perturbations, H̄+
(2) =

H̄+ + λ0δ
+
(1) +

∑8
i=1 λiδ

+
(2),i and H̄−(2) = H̄− + λ0δ

−
(1) +

∑8
i=1 λiδ

−
(2),i, which in turn

define H̄x
(2) = H̄+

(2) + H̄−(2). Coefficients λi optimising the fidelity were found to be:

λ∗i = [0.11135, 0.000217,−0.000287,−0.00717, 0.00827, 0.00336, 0.00429, 0.0103, 0.00118],

where the first value is the optimal coefficient for the first order term Eq. (4.33),

while the remaining coefficients correspond to the terms in order of appearance

in Eqs. (4.40)-(4.47). These values have been found via numerical optimisation
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at system size N = 16. Note that previous work in Ref. (23) only considered

PXPIP + PIPXP as a second order perturbation to HPXP. By including all

spin flip terms obtained from the Lie algebra error, fidelity can be enhanced to

1−f0 ≈ O(10−6), while if we only retain PXPIP +PIPXP we obtain infidelity

that is a few orders of magnitude higher, 1− f0 ≈ O(10−3) (data for N = 16). In

Ref. (23) fidelity on the order 1−f0 ≈ O(10−6) was found by including only terms

Pn−1XnPn+1Pn+d+Pn−dPn−1XnPn+1 up to high order d ≤ 10, which are expected

to arise as corrections in higher orders of our method. While these terms alone

appear sufficient to reach very high fidelity values, our analysis suggests that,

strictly speaking, these terms do not fully fix the su(2) algebra.

As discussed earlier, the decomposition of HPXP = H̄+ + H̄− used to identify

the broken su(2) algebra associated with Z2 revivals is not unique. In the follow-

ing section, we discuss additional decompositions leading to an additional su(2)

representation which can be enhanced to fix revivals from |Z3〉. Furthermore, in

Appendix A.1.2, we discuss a su(2) representation which may be enhanced to gen-

erate new models exhibiting revivals from the |Z4〉 state, even though quenches

from this state were found to be generically thermalising in the original PXP

model (131).
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4.5 Z3 revivals from su(2) algebra

In addition to Z2 revivals, the PXP model was also shown numerically to exhibit

wave function revivals following a quench from |Z3〉 = |100100...〉 state (130,

131). Unlike |Z2〉 state, the revivals from |Z3〉 sharply decay even in numerical

simulations on fairly small systems (131), suggesting the model is even further

away from any exact Lie algebra representation furnished by |Z3〉 state.

The Z3 revivals originate from 2N/3 + 1 scarred eigenstates with enhanced

support on the |Z3〉 state. We stress that out of these 2N/3+1 scarred eigenstates,

only two eigenstates coincide with the N + 1 scarred eigenstates with enhanced

support on Z2, which are the ground and most excited eigenstates of the model.

Thus, we interpret the Z3 scarred subspace as a distinct embedded su(2) subspace

as compared to the Z2 scarred subspace.

There has been no FSA method to describe the 2N/3 + 1 Z3 scar states and,

consequently, the perturbations that improve the Z3 revival are not known. Here

we demonstrate that it is possible to deform the PXP model to stabilise a different

su(2) algebra representation compared to the Z2 case, which results in robust Z3

revivals.

We follow our general approach and start by introducing raising and lowering

operators compatible with |Z3〉 state:

H̄+ =
∑
n

(
σ̃−3n + σ̃+

3n+1 + σ̃+
3n+2

)
, (4.48)

H̄− =
∑
n

(
σ̃+

3n + σ̃−3n+1 + σ̃−3n+2

)
, (4.49)

where, as before, we have HPXP = H̄+ + H̄−. The su(2) diagonal generator is

then given by H̄z = 1
2
[H̄+, H̄−], which can be shown to take the form

H̄z =
∑
n

−σ̃z3n + σ̃z3n+1 + σ̃z3n+2 +
1

2

∑
n

(
P3nσ

+
3n+1σ

−
3n+2P3n+3 + P3nσ

−
3n+1σ

+
3n+2P3n+3

)
.

(4.50)

The lowest weight state of H̄z is |Z3〉, as it should be, although it is degenerate.

The first order perturbation will lift this degeneracy such that |Z3〉 is the unique
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ground state of H̄z
(1). We find the H̄z, H̄+, H̄− obey the commutation relations:

[H̄z, H̄+] = H̄+ + δ+
(1), (4.51)

δ+
(1) = −1

2

∑
n

(
P3n−1P3nσ

+
3n+1P3n+2 + P3n−2σ

+
3n−1P3nP3n+1

+ P3n−1σ
−
3nP3n+1P3n+2 + P3n+1P3n+2σ

−
3n+3P3n+4

)
+

1

2

∑
n

(
P3n−1σ

−
3nσ

+
3n+1σ

−
3n+2P3n+3 + P3nσ

−
3n+1σ

+
3n+2σ

−
3n+3P3n+4

)
+

∑
n

(
P3nσ

+
3n+1P3n+2P3n+3 + P3nP3n+1σ

+
3n+2P3n+3

)
. (4.52)

Similarly, we find [H̄z, H̄−] = −H̄−+δ−(1), such that {H̄z, H̄+, H̄−} form a broken

representation of su(2). We identify the following first order perturbations to the

PXP model which improve the representation:

V1 =
∑
n

(
P3n−2σ

x
3n−1P3nP3n+1 + P3n−1P3nσ

x
3n+1P3n+2

+ P3n−1σ
x
3nP3n+1P3n+2 + P3n−2P3n−1σ

x
3nP3n+1

)
, (4.53)

V2 =
∑
n

(
P3nP3n+1σ

x
3n+2P3n+3 + P3nσ

x
3n+1P3n+2P3n+3

)
, (4.54)

V3 =
∑
n

(
P3nσ

x
3n+1σ

x
3n+2σ

x
3n+3P3n+4 + P3n−1σ

x
3nσ

x
3n+1σ

x
3n+2P3n+3

)
. (4.55)

We emphasise that perturbations that improve Z3 revival, even at first order,

break the full translation symmetry of the model to a subgroup of translations

by a unit cell of size 3. This is different from Z2 revivals where the first-order

corrections respect the full translation symmetry of the chain. We next discuss

two interesting limits, corresponding to weak and strong magnitude of these per-

turbations.

4.5.1 Weak limit

By numerical optimisation of the revival amplitude under perturbations in Eqs. (4.53),(4.54)

and (4.55), bounding coefficients to satisfy |λi| < 0.5, we find that revivals from
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Order 1− f0 σ/Dsu(2) max(var(Hz)n) K
n = 0 6.397×10−1 3.358×10−1 9.300×10−1 1.234×101

n = 1 1.338×10−2 3.349×10−2 1.717×10−1 4.957×100

n = 2 1.852×10−5 7.082×10−3 2.357×10−2 2.124×100

Table 4.2: Error metrics for the Z3 su(2) subspace of the PXP model at various
perturbation orders for system size N = 24. Subspace variance σ is normalised
by the dimension of the su(2) representation, 2N/3 + 1. See text for details of
the perturbations.

|Z3〉 can be enhanced with optimal perturbation coefficients

λ∗ = [0.18244,−0.10390, 0.05445]. (4.56)

Similar to |Z2〉 revival, we can find second order perturbations which improve

revivals further (see Appendix A.1.1 for the terms and optimal coefficients). A

summary of the effect of successive perturbations on |Z3〉 is given in Fig. 4.3,

while error metrics at various orders are given in Table 4.2. Despite long-lived

coherent oscillations when the system is initialised in the |Z3〉 state, we verify

the model including second order perturbations is still ergodic by calculating the

mean level spacing (90) 〈r〉 = 0.5256 at N = 24, consistent with the Wigner-

Surmise distribution one would expect in an ergodic system.

4.5.2 Strong limit: exact spectrum generating algebra

A curious feature of Z3 revivals is that the su(2) algebra can be made exact for

the model

H =
∑
n

σ̃xn − V1, (4.57)

which is the PXP model from which we subtracted the V1 perturbation defined

previously in Eq. (4.53). As the strength of V1 is order unity, this model should

not be called a ‘perturbation’ to the PXP model. For the model in Eq. (4.57),
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True Scars

Figure 4.3: Improving the Z3 revival in the PXP model. (a) Eigenstate overlap
with |Z3〉 state for PXP model. (b) Eigenstate overlap after including first or-
der correction in Eqs. (4.53)-(4.55). (c) Eigenstate overlap after including second
order perturbations listed in Appendix A.1.1. (d) Quantum fidelity when the sys-
tem is quenched from |Z3〉 state at various perturbation orders. The perturbation
coefficients are those which maximise the first fidelity revival peak. (e) Bipartite
entropy, Eq. (2.21), of eigenstates of the PXP model after including second order
Z3 su(2) corrections. Points labelled ‘True Scars’ are exact diagonalisation results
identified from the top band of states in (c). Red crosses in (a), (b), (c), (e) indi-
cate approximations to the scar states obtained by projecting the Hamiltonian to
the broken representation basis and diagonalising. Colour scale in (a), (b), (c),
(e) indicates the density of data points, with lighter regions being more dense.
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the raising operator is

H̄+ =
∑
n

(
(I− (P3n−2 + P3n+2))σ̄−3n + (I− P3n−1)σ̄+

3n+1 + (I− P3n+4)σ̄+
3n+2

)
,

(4.58)

and, as before, H̄− = (H̄+)†, H̄z = 1
2
[H̄+, H̄−], H = H̄+ + H̄−. By inspection,

it is easy to see the projectors (I− P3n−1), (I− P3n+4) evaluate to zero when H̄+

is applied to |Z3〉 = |100100...〉. Thus, the terms containing σ̄+
3n+1, σ̄

+
3n+2 never

generate a spin flip and spins pointing down at these sites are frozen. It follows

that the action of H̄+ on |Z3〉 is equivalent to:

(H̄+)n|Z3〉 =

(
−
∑
n

σ̃−3n

)n

|Z3〉, (4.59)

which implies that, within this subspace, the su(2) algebra is exact. Dynam-

ics is just a free precession of spins located at positions 3n along the chain,

|100100...〉 → |000000...〉 → |100100..〉 → .... The model now possesses an exact

SGA within the su(2) subspace, namely

[
P †su(2)HPsu(2), P

†
su(2)Q

+Psu(2)

]
= P †su(2)Q

+Psu(2), (4.60)

Q+ = e−i
π
2
H̄y

H̄+ei
π
2
H̄y

, H̄y =
1

2i
(H̄+ − H̄−), (4.61)

where Psu(2) is the basis transformation which projects to the subspace spanned

by the su(2) basis states |n〉 = (H̄+)n|Z3〉.
The Hamiltonian in Eq. (4.57) fractures the Hilbert space in the computa-

tional basis even further than the pure PXP model. We find the number of sectors

grows exponentially with system size, in a similar fashion to fractonic systems (93)

exhibiting Kyrlov-restricted thermalisation. While one sector is the desired em-

bedded representation of su(2), various other sectors emerge due to the projectors

blocking access from one configuration to another based on the decomposition of

the state into unit cells of three consisting of {|000〉, |001〉, |010〉, |100〉, |101〉}.
We find it is also possible for a model to feature an exactly embedded su(2)

representation for which the Hamiltonian in the computational basis does not
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fracture into exponentially many sectors as seen in the Z3 case. In Appendix A.1.2

we discuss one su(2) representation which allows us to identify such a model.

4.6 Summary

We have argued that, up to a rotation, many-body scars in kinetically constrained

spin models can be interpreted as forming an approximate basis of a broken Lie

algebra representation. This results in a loosely embedded integrable subspace

with approximate SGA, which acts as an approximate representation of the Lie

algebra. Seeking deformations of the Hamiltonian which improve this broken Lie

algebra we have identified several perturbations to the PXP model such that the

resulting systems feature near perfect revivals from the simple product states |Z2〉,
|Z3〉. In addition, we have found by seeking corrections to severely broken broken

Lie algebras, one can engineer revivals from initial states which do not revive in

the original model, rather they just generically thermalise (see Appendix A.1.2,

where we construct a new model, related to the PXP model, which features

revivals from the |Z4〉 product state). Further, we have constructed two models

with exactly embedded su(2) representations, thus obtaining ‘exact scars’ in a

similar spirit to ‘Krylov-restricted thermalisation’ (80) and ‘projector embedded’

scar states (119).

The identification of embedded su(2) subspaces followed from identifying de-

compositions of the Hamiltonian H = H̄+ + H̄−, with H̄− = (H̄+)†. Thus, the

representation is fixed by the choice of H̄+. This choice is not unique and many

other possible decompositions of H exist, but many of these decompositions would

result in embedded representations whose subspace variance is too large to give

rise to scarred dynamics. However, from the examples considered in this chapter,

it appears that aspects of an su(2) algebra can generically be improved in models

like PXP, no matter how broken the representation is to begin with, by consid-

ering errors of a suitably defined broken representation. An obvious question is

how ‘broken’ can these representations be such that we would see signatures of

su(2) dynamics (revivals) following quenches from states in the su(2) subspace.

In the examples considered in this chapter, subspace variance of the approximate

representation basis seems to be the best indicator of scarred dynamics.

83



4. WEAKLY-BROKEN LIE ALGEBRAS: A MECHANISM FOR
APPROXIMATE SCARS

84



Chapter 5

Quantum many-body scars from

embedded hypercube subgraphs

In the previous chapter we demonstrated how approximate scarring can occur

due to a weakly broken Lie algebra. In this chapter, we focus on the case of

an su(2) Lie algebra, but offer a complementary interpretation. Rather than

interpreting the proximity of one Hamiltonian to another with an exact SU(2)

symmetry via the algebra of generators, we instead study the Hamiltonian inter-

preted as an adjacency matrix of a graph, investigating whether it contains large

regular subgraphs which are hypercubes. This graph-theoretic approach, based

on our work in Ref. (27), is motivated by the fact that a Hamiltonian whose ad-

jacency matrix is a hypercube is isomorphic to the free paramagnet. As the free

paramagnet possesses an exact SU(2) symmetry, the existence of a hypercube

subgraph would signal the presence of a subset of states with an approximate

SU(2) structure. This approach is useful when the particular decomposition of

the Hamiltonian into generators of the broken Lie algebra, as discussed in Chap-

ter 4, is not obvious. Furthermore, this approach allows us to construct new

models which contain quantum many-body scars. While such models may be

expected to possess a broken su(2) Lie algebra, the form of the generators are

likely very complicated.

In this chapter we begin by introducing the concept of an adjacency matrix

and its associated graph. We demonstrate that quantum dynamics of many-
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body interacting systems may be interpreted as a quantum walk on a particular

graph. Our primary example will be the Hamiltonian of a free paramagnet, which

gives rise to a hypercube graph. We then review well known results pertaining the

dynamics of a free paramagnet in order to develop intuition for how the trajectory

of a quantum walk on a hypercube behaves. In particular, we will demonstrate a

quantum walk on a hypercube realises ‘perfect corner-to-corner’ transmission

Having established the relationship between quantum walks on hypercubes

and SU(2) symmetry via the connection between this graph and the free para-

magnet, we then introduce the concept of embedded hypercubes. The primary

example used will be the ‘two joined hypercube’ model, which plays the role of

a parent model which captures the main features of the scarred dynamics ob-

served in the PXP model. Furthermore, we demonstrate that the PXP model is

‘generic’, in the sense that it is just one of many scarred models whose adjacency

graphs interpolate between the free paramagnet and the two joined hypercubes.

Finally, we show how the embedded hypercubes approach allow us to formulate

new scarred models with local constraints.

5.1 Hamiltonians as adjacency matrices: quan-

tum walks on graphs

Graphs describe the connectivity between a set of vertices. They are usually

represented graphically. Vertices are drawn as a set of dots, while lines connecting

pairs of vertices indicates their connectivity. An example of a graph with four

vertices is shown in Fig. 5.1. Graphs may also be represented using adjacency

matrices. These are off-diagonal, symmetric matrices Aij with matrix elements

either 0 or 1. Row and column indices i, j label vertices of a graph. If Aij = 1,

this indicates a link between the vertex i and vertex j. For example, for the graph
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5.1 Hamiltonians as adjacency matrices: quantum walks on graphs

Figure 5.1: An example of a graph, which is a collection of vertices (dots) con-
nected by links. This graph may also be described by the adjacency matrix given
in Eq. (5.1).

shown in Fig. 5.1, it’s adjacency matrix would be the following:

A =



0 1 2 3

0 0 1 1 0

1 1 0 1 0

2 1 1 0 1

3 0 0 1 0

 (5.1)

The row and column indices refer to four vertices, labelled as 0, 1, 2, 3. By drawing

four dots, labelling them as 0, 1, 2, 3 and connecting pairs of dots (i, j) with a line

when Aij = 1, we would reproduce the graph in Fig. 5.1, such that there is a one

to one correspondence between the adjacency matrix and the graph.

Graphs have primarily been studied in the context of quantum mechanics by

considering quantum walks along a graph . Given classical random walks have

yielded various search algorithms, it has been hoped that quantum analogous

of these walks may yield useful algorithms. A continuous quantum walk on a

graph is a single particle hopping problem where a particle may hop between

neighbouring vertices on a graph. Formally, let A be an adjacency matrix of

a graph with vertices labelled by an index i. The vertices of the graph, i, are

to be understood as forming an orthogonal basis |i〉 of a Hilbert space, 〈i|j〉 =

δij. The system may therefore be in a state which is some superposition of
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the states localised at different vertices, |ψ〉 =
∑

i ci|i〉. A continuous quantum

walk corresponds to evolving the state of the system |ψ(t)〉 = e−iHt|ψ〉 with

a Hamiltonian H which is obtained by treating the adjacency matrix as the

Hamiltonian, H =
∑

ij Aij|i〉〈j|. This Hamiltonian generates hoppings between

neighbouring vertices of the graph, permitting transitions between states |i〉 →
|j 〉 only if Aij = 1. The propagator of a continuous quantum walk on a given

graph is therefore obtained by exponentiation of the adjacency matrix of the

graph: U(t) = e−iHt = e−iAt.

Now consider a many-body Hamiltonian expressed with respect to a Fock

space basis. Let us assume that in this basis, the Hamiltonian is purely off-

diagonal, and all non-zero matrix elements are uniform. Without loss of gener-

ality, we may rescale the Hamiltonian such that all matrix elements are either 0

or 1. A Hamiltonian of this form may be interpreted as an adjacency matrix of

a graph, with the particular graph been implied by the Hamiltonian. The Fock

basis states are to be understood as the vertices of the graph, while the connec-

tivity of the vertices represents allowed transitions between basis states under

the action of the Hamiltonian. The propagator of this complicated interacting

system is U(t) = e−iHt. We observe, by interpreting H as an adjacency matrix of

a graph, the evolution of this many-body system is equivalent to a single particle

quantum walk occurring on the graph implied by the Hamiltonian.

An important example is the graph associated with the Hamiltonian of a free

paramagnet. The relevant Fock space is a tensor product space of N spin half

degree of freedoms. This Hilbert space is spanned by a basis of Z product states

labelled by bit strings of length N :

|~σz〉 =
N−1⊗
n=0

|σzn〉, |σzn〉 = {|0〉, |1〉}, (5.2)

where states |0〉 and |1〉 refer to spin up and down in the Z direction respectively.

The Hamiltonian of a free paramagnet is the following:

H =
N−1∑
i=0

σxi (5.3)

88



5.1 Hamiltonians as adjacency matrices: quantum walks on graphs

(a) (b) (c)

N=1

N=2 N=3

Figure 5.2: Graphs implied by the Hamiltonian of a free paramagnet are N
dimensional hypercubes. These graphs show the connectivity of basis states under
the action of the Hamiltonian. The Hamiltonian of a free paramagnet, Eq. (5.3)
permits transitions between product states in the Z basis, Eq. (5.2), which differ
by a single spin flip. At N = 2, the graph of the free paramagnet is a square, while
at N = 3, the graph is a cube. It follows the dynamics of the free paramagnet of N
spin half degree of freedoms is equivalent to a quantum walk on a N dimensional
hypercube.

where σxi is the conventional Pauli σx acting on site i, whose action is to flip a

spin at site i in the Z direction:

σx|0〉 = |1〉, σx|1〉 = |0〉 (5.4)

The Hamiltonian of the free paramagnet simply connects basis states |~σz〉 which

differ by a single spin flip. For example, a permitted transition at N = 3 would be

|101〉 → |111〉. The graph for which the equivalent quantum walk will take place

consists of 2N vertices, each labelled by a bit string of length N representing a

product state |~σz〉, with lines connecting states differing by a single spin flip. The

resulting graph is a N dimensional hypercube, which has been studied extensively

due to possessing several desirable properties for quantum walks.

To gain an intuitive understanding why the graph of the free paramagnet

results in a hypercube, let us construct the graphs for various small system sizes

sequentially, starting from N = 1.

For N = 1, the Hilbert space has dimension 2, with the basis being spanned

by the states |0〉 and |1〉. The Hamiltonian of a free paramagnet is simply the
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Pauli X matrix, HN=1 = σx0 :

HN=1 =


|0〉 |1〉

|0〉 0 1

|1〉 1 0

 (5.5)

The two states |0〉 and |1〉 are connected under the action of the Hamiltonian,

therefore the free paramagnet at N = 1 is equivalent to a quantum walk on a

graph consisting of two vertices connected by a single line, Fig. 5.2(a).

ForN = 2, the Hilbert space is spanned by 4 states, namely |00〉, |01〉, |10〉, |11〉.
Writing the free paramagnet Hamiltonian explicitly as a 4× 4 matrix, we find:

HN=2 =



|00〉 |01〉 |10〉 |11〉
|00〉 0 1 1 0

|01〉 1 0 0 1

|10〉 1 0 0 1

|11〉 0 1 1 0

 (5.6)

By treating this Hamiltonian matrix as an adjacency matrix, we can draw the

associated graph. This graph is shown in Fig. 5.2(b), where we observe the graph

is a 2 dimensional square whose 4 vertices correspond to the 4 basis states, and

only basis states differing by a single spin flip are connected.

Likewise, at N = 3, the Hilbert space is spanned by 8 basis states, |000〉,
|001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉. For brevity, we do not produce here

the full 8 × 8 Hamiltonian matrix for the N = 3 free paramagnet. However, to

construct the graph implied by treating the Hamiltonian as an adjacency matrix,

one would draw 8 vertices corresponding to the 8 basis states, and connect those

states differing by a single spin flip with a line. The resulting graph is shown in

Fig. 5.2(c), where it is apparent the that the N = 3 free paramagnet Hamiltonian

connects basis states into a graph corresponding to a 3 dimensional cube.

In general, it follows that the dynamics generated by the Hamiltonian of a

free paramagnet for N spin half degree of freedoms is equivalent to a continuous

quantum walk on a N dimensional hypercube. In the following section we will
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5.2 Free paramagnet: Quantum walks on hypercubes

study the dynamical properties of the free paramagnet in more detail, translating

between the language of spins and quantum walks on hypercubes, to gain some

intuition for the unique properties quantum walks on hypercubes possess.

5.2 Free paramagnet: Quantum walks on hy-

percubes

In the previous section we have introduced the Hamiltonian of the free param-

agnet in Eq. (5.3) and demonstrated the equivalence between this system and

a quantum walk on a hypercube. We now consider the dynamics of the free

paramagnet model, to see what this implies for trajectories of quantum walks on

hypercubes. In particular, we are interested in demonstrating a unique property

of quantum walks on hypercubes, that they feature perfect transmission from

an arbitrary initial vertex to the vertex opposite it on the hypercube. This will

enable the reader to develop some intuition for trajectories on hypercube graphs,

which is essential for understanding the remainder of this chapter. Analytical

calculations of more complicated many-body scarred systems are not possible,

but one can get a feel for what is occurring by considering the scarred system as

a quantum walk on a graph containing large hypercube subgraphs.

5.2.1 Dynamics of the free paramagnet: corner-to-corner

transmission of hypercubes

The dynamics of a free paramagnet in the language of spins is simply the free

precession of each spin half degree of freedom, independent of it’s neighbours.

However, as noted in the previous section, the dynamics may be interpreted as

a quantum walk on a hypercube. By working in the spin language, many time

dependent properties of this system may be calculated analytically, given the

simplicity of the model. In this section we derive an expression for the time

evolved wavefunction initialised on an arbitrary vertex of the hypercube graph.

For clarity, we reproduce the Hamiltonian of the free paramagnet, Eq. (5.3)
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here:

H =
N−1∑
i=0

σxi (5.7)

An arbitrary vertex of the hypercube graph corresponds to an arbitrary product

state in the Z direction, |~σz〉 =
⊗

n |σzn〉. Initialising the system in one of these

arbitrary product states |ψ(t = 0) = |~σz〉 results in the independent precession

of each spin in the chain around the x-axis. This can be seen from the action

of the propagator, which may be decomposed into a tensor product of single site

unitaries, given the Pauli matrices at each site commute:

U(t) = e−iHt = e−i
∑
n σ

x
nt =

⊗
n e
−iσxnt =

⊗
n (cos(t)I− i sin(t)σxn) (5.8)

Applying this propagator to the initial state |~σz〉 =
⊗

n |σzn〉, we find the time

evolved state is:

|ψ(t)〉 = U(t)|~σz〉 =
⊗

n (cos(t)|σzn〉 − i sin(t)σxn|σzn〉) . (5.9)

Now in the language of a quantum walk on a hypercube, the initial state |~σz〉
corresponds to an arbitrary vertex on the hypercube. The opposite corner to this

initial vertex on the hypercube is the state with all the local spin half degree

of freedoms flipped (see Fig. 5.2). Therefore the opposite corner to this initial

vertex will be the product state |~σ′z〉 =
⊗

n σ
x
n|σzn〉. Using the expression for the

time evolved wavefunction starting from an arbitrary state |~σz〉, Eq. (5.9), the

probability the time evolved wavefunction is found on the initial vertex or the

vertex opposite it, Pinitial(t), Popposite(t), may be computed as follows:

Pinitial(t) = |〈~σz|U(t)|~σz〉|2 = | cosN(t)|2 (5.10)

Popposite(t) = |〈~σ′z|U(t)|~σz〉|2 = | sinN(t)|2 (5.11)

Significantly, these functions are periodic, with the probability to be found on

the initial vertex or the opposite vertex being 1 at various times. Therefore for a

quantum walk on a hypercube, an intuitive picture of the dynamics is as follows:

initialising the system in an arbitrary vertex will result in the wavefunction propa-

gating away from the initial vertex and spreading out, before refocusing perfectly
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to the opposite corner. After this perfect transmission, the wavefunction reflects

back, repeating the process and refocusing back onto the initial vertex. We refer

to this property of a quantum walk on a hypercube as ’perfect corner-to-corner

transmission’ and ’perfect reflection’.

5.2.2 Hypercubes and SU(2) symmetry: FSA

We continue our program of studying the free paramagnet in order to gain in-

tuition about quantum walks on hypercubes. We have already demonstrated

that hypercubes realise perfect corner-to-corner trajectories along their quantum

walks. We now wish to investigate further how the SU(2) symmetry of the free

paramagnet model may be interpreted from the hypercube point of view. It

turns out equal weight superpositions of all states the same distance away from

an arbitrary vertex of the hypercube is in fact a SU(2) symmetric state. To un-

derstand why this is the case, we will consider mapping the Hamiltonian of the

free paramagnet to a tight binding chain, using the forward scattering approx-

imation (FSA) introduced in Section 3.3.1. The basis states of this equivalent

tight binding chain will be the desired equal weight superpositions of all states the

same distance from an arbitrary vertex of the graph, which we will demonstrate

are SU(2) symmetric.

The FSA procedure produces an orthogonal basis, the FSA basis, which spans

some subspace of the full Hilbert space. Projecting the Hamiltonian into this

subspace yields a tridiagonal matrix such that the dynamics within this subspace

is equivalent to a tight-binding chain. Recall the recurrence procedure which

generates the FSA basis:

βj+1 |vj+1〉 = H |vj〉 − αj |vj〉 − βj |vj−1〉 (5.12)

= (H+ +H−) |vj〉 − αj |vj〉 − βj |vj−1〉 (5.13)

= H+ |vj〉 − αj |vj〉+ |δj〉 (5.14)

|δj〉 = H−|vj〉 − βj|vj−1〉 (5.15)

As described in Section 3.3.1, Eq. (5.12), is just Lanczos recursion (Eq. (3.18)).

By repeated application of the Hamiltonian H, we obtain new states |vj+1〉. The
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term with coefficients α ensures the new vector is orthogonalised against the

previous vector, whereas the β coefficients are present to ensure the vectors are

correctly normalised.

H+, H− correspond to forward and backward propagating parts of the Hamil-

tonian H = H+ + H−, with respect to the initial vector |v0〉. It is worth

considering what these operators mean from the graph point of view. Recall

these operators are uniquely specified given a Hamiltonian H and an initial state

|v0〉, by requiring that the Hamiltonian may be decomposed as H = H+ + H−,

with H− = (H+)†, such that the states |n〉 = (H+)n|v0〉 are all orthogonal

〈n|m〉 = δnm. For the free paramagnet, the operator H+ which satisfies this

condition from an arbitrary vertex |v0〉 is the operator which always increases the

Hamming distance from |v0〉. Hamming distance between a pair of vertices on the

hypercube graph labelled by bit strings is the number of bits which differ between

the two strings. In other words, it counts how many spin flips are necessary to

get from one vertex state to another. As H+ always increases the Hamming dis-

tance from the initial vertex |v0〉, repeated application of the operator H+ on the

initial state |v0〉 may be understood from the graph point of view as forming an

equal weight superposition of all vertices which are the same Hamming distance

away from the initial vertex. We refer to this collection of vertices with the same

distance away from the initial vertex as a ‘Hamming layer’. The role of H+ is

shown graphically Fig 5.3(a), with a particular Hamming layer of a hypercube

circled in blue.

|δj〉 defined in Eq. (5.15) is the FSA error vector, which is assumed to be small

and neglected for the FSA approximation. For a single hypercube in Eq. (5.3),

the FSA scheme is fully analytically tractable and exact. By exact, we mean the

FSA error vectors |δj〉 is always zero for a hypercube, regardless of the initial

vertex |v0〉, such that the obtained FSA subspace is an exact symmetric subspace

of the Hamiltonian.

Let |v0〉 = |~σz〉 =
⊗

n |σzn〉 be an arbitrary vertex of the hypercube graph. The

forward and backward propagating components of the Hamiltonian with respect
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Figure 5.3: Forward scattering approximation applied to the hypercube graph,
which reveals how a hypercube graph implies SU(2) symmetry.
|v0〉 = |~σz〉 =

⊗
n |σzn〉 is an arbitrary vertex of the graph. The forward propagator

with respect to |v0〉 is H+, given in Eq. (5.16). When H+ is applied n times on
the initial vertex |v0〉, it produces an equal weight superposition of all states with
Hamming distance n from the initial vertex, ie. a superposition of all vertices in
a vertical line in panel (a), such as the column circled in blue.
For a hypercube of dimension N , the forward propagator from an arbitrary vertex
H+ coincides with a spin s = N/2 raising operator S̄+, Eq. (5.16), such that equal
weight superpositions of vertices in vertical columns of the graph in panel (a) are
SU(2) symmetric states |s = N/2, S̄z = −N/2 + n〉.

to |v0〉, subject to the criteria discussed above, are found to be:

H+ = S̄+ =
∑
n

σsgn(n)
n , H− = S̄− =

∑
n

σ−sgn(n)
n , sgn(n) =

{
+ |σzn〉 = |0〉
− |σzn〉 = |1〉

,

(5.16)

Note that the operators S̄+, S̄− in fact realise some representation of su(2). To

demonstrate this, construct the Z element of the Lie algebra:

S̄z =
1

2
[S̄+, S̄−] =

1

2

∑
n

sgn(n)σzn. (5.17)
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It is trivial to verify the operators {S̄+, S̄−, S̄z} realise the root structure of an

su(2) Lie algebra, [S̄z, S̄±] = ±S̄±. It is this property, that the forward and

backward propagators of a hypercube graph from any vertex are equivalent to

su(2) raising and lowering operators, which establishes the connection between

hypercube graphs and su(2) symmetry. Furthermore, one can verify the state

|v0〉 = |~σz〉 is the lowest weight eigenstate of S̄z, S̄z|v0〉 = −N/2|v0〉, such that

the state |v0〉 may be identified with a large spin s = N/2 pointing in the neg-

ative Z direction, |v0〉 = |S = N/2, S̄z = −N/2〉. These facts can be used to

immediately map the Hamiltonian of the free paramagnet to a N + 1 dimen-

sional subspace where it is tridiagonal, using well known results from the theory

of angular momentum. Nevertheless, we will derive the Hamiltonian matrix in

the FSA subspace by analytical calculation of the β coefficients. This approach

directly generalises to more complicated models, even if the β coefficients must

be calculated numerically .

Consider the first step of the recurrence. Operator H− annihilates the state

|~σz〉, and we obtain the vector β1 |v1〉 = H+|σz〉, which is an equal-weight super-

position of all single-spin flips on top of |~σz〉,

β1 |v1〉 =
N−1∑
n=0

(⊗
m 6=n

|σm〉z
)
⊗ σxn|σn〉z. (5.18)

The vector |v1〉 is automatically orthogonal to |v0〉, thus we set α0=0, and β1=
√
N

by normalisation, where N is the number of spins.

In the second step, we observe that the action of H+ on |v1〉 will produce

an equal weight superposition of all states containing a pair of spin flips atop

the product state |~σz〉, which is thus orthogonal to both |v1〉, and |v0〉. Further-

more, the action of the backward-scattering part gives us the original state |v0〉,
H− |v1〉 = β1 |v0〉, where we explicitly used the value of β1. For a hypercube, one

can show that

|δj〉 = H− |vj〉 − βj |vj−1〉 = 0 (5.19)

holds more generally at every step of the iteration. This allows one to cancel
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H− |vj〉 with the last term in Eq. (??), yielding the usual FSA recurrence:

βj+1 |vj+1〉 = H+ |vj〉 , (5.20)

where we also omitted the αj |vj〉 term since all αj=0. This follows from the

fact that H± operators change the Hamming distance from |~σz〉 state by ±1.

Hence, the new state |vj+1〉 is always orthogonal to |vj〉. Moreover, by the same

argument, the FSA recurrence closes after N+1 steps as it reaches the vector at

the opposite corner on the hypercube, |~σ′z〉 =
⊗

σxn|σzn〉 that vanishes under the

action of H+.

Finally, using induction one can show

βj =
√
j(N − j + 1), (5.21)

which, as anticipated, is the well-known matrix element of a spin ladder operator.

This results in the effective tridiagonal matrix form in the basis of |vj〉:

Hhypercube =
N∑
j=1

βj |vj〉 〈vj−1|+ H.c. (5.22)

This allows to one reduce the dynamics of an arbitrary product state |~σz〉 to

that of a tight-binding chain with the corresponding hopping strength. Taking

into account the expression for βj, we see that this matrix coincides with the

2X̄ operator for a spin of size N/2, resulting in a set of N+1 equidistant energy

levels.

The FSA basis states may be expressed as:

|vn〉 =
1√
N

(H+)n|v0〉 (5.23)

with N being a combinatorial factor necessary for normalisation. We noted earlier

that the FSA basis states |vn〉 correspond to an equal weight superposition of all

states with a Hamming distance of n from the initial vertex on the hypercube

|v0〉. However, crucially, for a hypercube graph, the forward propagator H+ is

equivalent to a su(2) raising operator, such that equal weight superpositions of all
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vertices in a given Hamming layer of a hypercube graph may be identified with

large spin s = N/2 z-basis states of an su(2) representation:

|vn〉 = |N/2,−N/2 + n〉z̄ .

This establishes the relationship between a hypercube graph and SU(2) symme-

try. Forward propagation on a N dimensional hypercube graph is equivalent to

an s = N/2 su(2) raising operator, and equal weight superpositions of states an

equal distance away from an arbitrary vertex is a SU(2) symmetric state. These

properties are summarised graphically in Fig. 5.3. It follows that whenever a

graph contains a hypercube subgraph, this implies the presence of SU(2) sym-

metric states. Speaking loosely, if the adjacency graph of a Hamiltonian contains

large hypercube subgraphs, this indicates the structure of the graph is ‘almost’

SU(2) symmetric, as the graph is close to a hypercube. Therefore, rather than

probing how well a Hamiltonian approximately hosts an SU(2) symmetry by

studying the algebra of generators, as we did in Chapter 4 when considering bro-

ken Lie algebras, an equivalent metric would be to look for the presence of large

hypercube subgraphs in the graph implied by the Hamiltonian. Throughout the

remainder of this chapter, we will study how the presence of embedded hyper-

cube graphs may be understood to give rise to the oscillatory scarred dynamics,

such as observed in the PXP model. Furthermore, by constructing models ex-

plicitly which feature large hypercube subgraphs, we construct new families of

many-body scarred models.

5.3 The model of two joined hypercubes

We now move away from a quantum walk on a full hypercube, corresponding to

the free paramagnet, to study quantum walks on different graphs containing large

hypercubes. An essential graph which plays the role of a parent model capturing

the essential features of the PXP model is model of two hypercubes joined at a

single vertex.

From a graph point of view, the model for a system size N is defined as a

quantum walk on two hypercubes (of dimension N/2), sharing a single vertex -
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the corresponding graph for N = 6 dimensional cubes is shown in Fig 5.4.

(odd sublattice occupied) (even sublattice occupied)

Figure 5.4: Quantum walk on two joined hypercubes model at N = 6, which is
equivalent to the kinetically constrained Hamiltonian in Eq (5.24). The kinetic
constraint enforced by this spin Hamiltonian is that even and odd sublattices may
not simultaneously host spin excitations. The Hamiltonian simply flips spins if
this constraint is not violated. Each even and odd sublattice behaves as a free
paramagnet with N/2 sites, therefore realising a N/2 dimensional hypercube in
the graph. These two hypercubes are joined at the shared vertex |000...〉.

This two-hypercube model can be written as a translation-invariant spin

Hamiltonian:

H2HC =
∑
j

· · ·Pj−3Pj−1XjPj+1Pj+3 · · · , (5.24)

obtained by dressing each Pauli matrix Xj by an infinite string of projectors onto

the spin down state Pj=(1− Zj)/2. For a finite system, the length of the string

can be limited to N/2 on each side.

Physically, this Hamiltonian may be understood as a kinetically constrained

free paramagnet. The kinetic constraint is that the sublattices consisting of only

even or odd sites may not both simultaneously host a spin excitation. The action

of this Hamiltonian is to flip a spin if this constraint is not violated. For example,

the transition |100000〉 → |100010〉 is permitted, as the resulting state only has

excitations on the even sublattice. On the other hand, the transition |100000〉 →
|100100〉 is not permitted, as the final state has excitations on both the even and

odd sublattice. All possible transitions for system size N = 6 are summarised in
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the Hamiltonian graph in Fig. 5.4, where we observe the graph indeed realises two

3 dimensional cubes joined at a single vertex. For general N , each even and odd

sublattice will realise a N/2 free paramagnet, as spin flips restricted to a single

sublattice are not further constrained. Therefore for general N , the graph of this

Hamiltonian will consist of the two N/2 dimensional hypercubes, corresponding

to the two sublattices, while these two hypercubes will share a single state |000...〉,
corresponding to no excitations on either the even and odd sublattices.

This formulation of the two-hypercube graph in terms of a kinetically con-

strained free paramagnet reveals that this graph emerges as a subgraph of both

the PXP model and the free spin-1/2 model, as can be seen in Fig. 5.5. Both the

PXP model and two hypercube model are kinetically constrained free paramag-

nets, so their Hamiltonian graphs are naturally subgraphs of a full hypercube.

Furthermore, the kinetic constraint is similar for both the two hypercube model

and the PXP model. But in the case of two hypercubes, the kinetic constraint

encompasses all sites on the other sublattice, whereas the kinetic constraint only

effects the nearest neighbours in the PXP model. The two hypercube model may

therefore be considered as a more strongly constrained variant of the PXP model,

such that all the states in the two-hypercube model satisfy the PXP constraint

but not the other way round.

Fig. 5.5 also shows the dynamics of both the two hypercube model and the

PXP model initialised in the Néel state |0101...〉. While the two hypercube model

is a simpler model than the PXP model, from the point of view of its graph, the

dynamics in both these models from Néel state is remarkably similar, indicating

the two hypercube model is capturing the main features of the scarred dynamics

in the PXP model, such as the decaying fidelity revivals and the revival frequency.

We investigate this relationship between an embedded two hypercube subgraph

and many-body scarring further in Section 5.4

5.3.1 FSA and dynamics of two joined hypercubes - nu-

merical results

For the two-hypercube model, the FSA introduced in Section 3.3.1 remains ex-

act for certain initial states (FSA error vector is zero). Indeed, when starting
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(a) (b) (c)

Figure 5.5: Hamiltonian adjacency graphs of three models- from left to right:
(a) two hypercubes model, Eq. (5.24) with N=6; (b) PXP model, Eq. (2.41),
with N=6; (c) the spin-1/2 free paramagnet model, Eq. (5.3) with N=4, whose
adjacency graph corresponds to a hypercube. From a graphical point of view, the
PXP model may be interpreted as an intermediate model between (a) and (c), as
it contains the two hypercube model as a subgraph, while the adjacency graph
of the PXP model is itself a subgraph of a full hypercube. Red vertices in the
graphs denote the two Néel states. The black vertices in the PXP graph highlight
the embedded subgraph corresponding to two hypercubes. The two hypercubes
are connected via ‘bridges’ (green vertices), i.e., vertices and edges present in
the PXP model but not contained within the two hypercubes. The behaviour of
the wave function fidelity revivals |〈ψ(0)|ψ(t)〉|2 for three different system sizes
N1 < N2 < N3 is sketched below the models, along with the system size scaling
of the first revival peak f0. We observe the two hypercube model is a minimal
model which captures the main phenomenology of the PXP model.
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Figure 5.6: Equivalent tight-binding chain describing the dynamics from the Néel
state for the two-hypercube model, Eq. (5.24), at arbitrary N . The many-body
dynamics can be reduced to a single-particle hopping on a 1D tight-binding chain,
with the site-dependent hopping amplitudes indicated on the chains. From these
amplitudes, it can be seen that the two-hypercube model with N sites (N -even)
simply corresponds to ‘sewing’ together two free paramagnets with N/2 sites
each.

from the |Z2〉 = |1010 . . .〉 state (which is the extremal vertex at the maximal

distance away from the shared vertex), the FSA procedure mirrors that of a sin-

gle hypercube until the shared vertex is reached (after N/2 steps), such that β

coefficients representing the tight binding hopping amplitudes are the same as

a regular hypercube (Fig. 5.6). At the central vertex, the second half of the

FSA procedure happens exclusively in the second hypercube until the translated

|Z̄2〉 = |0101 . . .〉 state is reached, such that the β coefficients obtained are a mir-

ror of those obtained during the first half of the FSA procedure – see Fig. 5.6 for

an illustration. As a consequence, the FSA for the model in Eq. (5.24) is exact for

the |Z2〉 initial state and the tridiagonal Hamiltonian corresponds to two copies

of Eq. (5.22) joined together. Unfortunately, analytical diagonalisation of this

Hamiltonian in the FSA subspace is no longer trivial. Nevertheless, due to the

complexity of the problem growing only linearly with N , numerical simulations

on large systems N.105 are possible. The finite-size scaling analysis in Fig. 5.7

for the two-hypercube model in Eq. (5.24) shows that this model supports revival

of the wave function in the thermodynamic limit. We evaluated the quantum

fidelity, |〈ψ(0)|e−iH2HCt|ψ(0)〉|2, which is seen to rapidly decay to zero and then

rise to a value f0≈0.7159 around the time T=6.282, corresponding to the first

revival.
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Figure 5.7: Dynamics in the two-hypercube model in Eq. (5.24). (a) Time evolu-
tion of the return probability, |〈ψ(0)|ψ(t)〉|2, for the Néel state, |ψ(0)〉=|1010 . . .〉
and several system sizes N . The insets zoom in on the first revival at time T
and on the reflection peak at T/2. (b)-(c) Finite size scaling analysis of the first
revival amplitude f0 (b) and period T0 (c). Extrapolation to N→∞ yields a finite
revival peak f0.

Another interesting feature of the revivals in Fig. 5.7 is the presence of a

small but visible peak at half the revival period. In order to understand this, it

is convenient to decompose the problem into a symmetric superposition of the

two hypercubes and their antisymmetric superposition. The symmetric sector has

N+1 states and its Hamiltonian is the one from Eq. (5.22) except that the last

term of the sum is multiplied by a factor of
√

2. In the antisymmetric sector, the

contribution of the two chains cancel at the middle vertex |000 . . .〉. Therefore,

this sector has only N states and its Hamiltonian is the one of Eq. (5.22) without

the last term in the sum. On their own, both sectors revive (although imperfectly)

with a period close to T=π. However, at each revival the antisymmetric sector

picks up a phase of -1. This is why the first revival of the full system only happens

at T≈2π. The symmetric sector also has a slightly longer revival period that the
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antisymmetric one. The difference of frequency and amplitude of revivals means

that they do not exactly cancel at T≈π, hence the reflection peak.

5.4 Interpolating between two hypercubes and

the PXP model

As shown in the previous section, the PXP model contains two embedded hy-

percubes of dimension N/2 which, on their own, support a revival from the |Z2〉
state in the thermodynamic limit. Here we explore a possible connection between

the two-hypercube model and the full PXP model. Interpolation between the two

models can be done naturally by varying the range of the projectors dressing the

Pauli X operator in Eq. (5.24). Specifically, the class of models interpolating

between the PXP and two hypercubes are defined by

Hr =
∑
j

Pj−2r+1 · · ·Pj−3Pj−1XjPj+1Pj+3 · · ·Pj+2r−1, (5.25)

where r labels the number of projectors to the one side of X. Setting r=1 simply

gives back the PXP model, whereas r ≥ N/4 corresponds to the two-hypercube

model in Eq. (5.24).

Physically, this Hamiltonian may be understood as a kinetically constrained

free paramagnet. The constraint realised by this Hamiltonian for a given r is

to forbid the occupation of even and odd sublattices of local unit cells of length

4r − 2. For example, at r = 1, the constraint acts on unit cells of length 2, such

that states containing the pattern 11 on any two neighbouring sites are forbidden.

This is equivalent to the PXP constraint, and hence r = 1 is equivalent to the PXP

model. For r = 2, the unit cell is of length 6. Any states which contain a local

pattern of 6 sites with occupation on even and odd sublattices will be forbidden.

For example, a state containing the local pattern 100100 on any 6 consecutive

sites will be forbidden. Therefore as r increases, the number of forbidden states

grows, corresponding to removing additional vertices from the graph of the PXP

model. Eventually, at r > N/4, the length of the unit cell is larger than the size

of the system, recovering the constraint corresponding to the two hypercubes. In
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the language of graphs at r > N/4, all the vertices of the PXP model not present

on the two hypercube graph, have been removed.

All the models in Eq. (5.25) have the two-hypercube as a subgraph and we

compare the revivals from the Néel state in all of them in Fig. 5.8(a) for a fixed

value of N=32. We observe the fidelity at the first revival peak remains in the

ballpark of f0∼0.7−0.8 for all values of r, with a slight increase of the revival

period with r. Moreover, for all values of r, we can identify a band of N+1 eigen-

states with anomalously high-overlap on |Z2〉, see Fig. 5.8(b)-(d). The energy

separation between these eigenstates is approximately constant in the middle of

the spectrum and matches the frequency of revivals in Fig. 5.8(a). For r=N/4,

the Hamiltonian exactly corresponds to the two-hypercubes model and the spec-

trum contains only N+1 states. As r is decreased, this band of states evolves

smoothly, while an increasing number of thermal eigenstates start to appear in

the system – see Fig. 5.8 (c) and (d).

In Fig. 5.8 (e) and (f) we compare the revivals from all states in the compu-

tational basis, i.e., we probe the revivals from all graph vertices. To make a fair

comparison between different models, instead of fixing the system size, we take

a different value of N for each model that gives roughly the same Hilbert space

dimension. While for the Néel states there are few changes with r, this is not

the case for most other initial states, whose revivals get worse as the constraint

is relaxed. This can be understood by considering new vertices and edges that

appear in the graph as r is decreased.

In the rest of this work we will refer to these graph elements (vertices and

corresponding edges) as ‘bridges’ as they are effectively bridging between the

hypercubes. For example, the ‘bridges’ present in the PXP model are shown as

green vertices in Fig. 5.5.

When only the two hypercubes are present, the dynamics for the majority of

vertices consists of perfect corner-to-corner transmission followed by a reflection

back to the initial vertex occurring within single hypercube, with a small leakage

to the other hypercube. However, if a bridge is added close to a vertex, this will

drastically enhance the state transfer to the other hypercube. Thus the dynamics

is no longer well described by perfect state transfer with some leakage, and the

revivals consequently get worse.
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Figure 5.8: Revivals and scarred eigenstates in models defined in Eq. (5.25) for
different values of r. (a) Fidelity for the |Z2〉 initial state for N=32. The inset
shows the fidelity at the first revival peak f0 as a function of r. (b)-(d) Overlap
between |Z2〉 and the energy eigenstates for three different values of r with N=32.
Panel (b) corresponds to the two-hypercube model while (d) is PXP. The red
crosses highlight the top band of N+1 eigenstates with anomalously high overlap
with the |Z2〉 state. (e)-(f) f0 and revival period T for different r values. In panels
(e)-(f), we compare the revival period and the first revival peak f0 for |Z2〉 initial
state with the computational basis state having the highest f0 (‘best state’) as
well as the average over all initial basis states (with the standard deviation shown
by an error bar). The value of N changes with r in order to keep the Hilbert
space dimensions comparable and in the range 105<D<1.5× 105.
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On the other hand, for the Néel state the dynamics is relatively unchanged

as we always have state transfer to the translated Néel state and back. Due to

the form of the constraint, no bridge is added closer than at Hamming distance

equal to 2 measured from that state. Because of this, during the interpolation

the dynamics is left relatively unchanged by the bridges. It also means that the

first two steps of the FSA are identical and exact for all values of r ≥ 1.

For all values of r, the top band of N+1 states is present and states be-

longing to it are decoupled from the bulk of the spectrum. These states can be

well approximated by the FSA. As we change r, we see that the magnitude and

period of the revival smoothly varies. These results suggest there is a form of

‘adiabatic continuity’ that protects the scarred subspace in the family of models

in Eq. (5.25). However, unlike the usual notion of adiabatic continuity, where

the energy gap protects the smooth evolution of the ground state, here we are

looking at a subspace spanning a finite range of energy densities, which remains

protected due to a combined effect of constraint and many-body scarring.

5.5 Weakening the constraint: interpolating be-

tween PXP and free spin 1/2 model via (k, k+

1) models

Instead of making the PXP constraint stronger as we did in the previous section,

therefore interpolating between the PXP model and the two joined hypercube

model, one may wonder if by weakening the constraint it might be possible to

relate the many-body scarring in the PXP model with the free spin-1/2 model.

This can be achieved by introducing a class of (k, k+1) models with the con-

straint that each cell of k+1 sites can contain at most k excitations. The Hamil-

tonian for this series of models is given by the Rabi flip term compatible with the

constraint, i.e.,

H(k,k+1) = Pk

(∑
j

Xj

)
Pk, (5.26)
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where Pk projects out any configuration with more than k contiguous excitations

anywhere in the chain. Varying k then allows to tune the effective strength of

the constraint, with k=1 corresponding to the PXP model and k=N being the

free spin-1/2 model.

Fig. 5.9 summarises the dependence of revivals in the models defined by

Eq. (5.26) as a function of k. In the limit of large k, the behaviour is dominated by

the proximity to the free spin-1/2 model, where many basis states revive. Intrigu-

ingly, we observe that the PXP model (k=1) is not smoothly connected to this

large-k limit. For example, the fidelity at the first revival peak, Fig. 5.9(b), first

increases in going from k=1 to k=2, but then drops precipitously from k=2 to

k=3. The drop is sharp for the Néel initial state, but somewhat less pronounced

if we look at all initial basis states and choose the ‘best’ one. Nevertheless, this

implies that scarred |Z2〉 dynamics in the PXP model cannot be understood by

smoothly turning off the constraint to reach the free spin-1/2 model. From the

FSA point of view, we expect 1<k � N models to support poorer revivals com-

pared to the PXP model. Indeed, as more and more configurations are allowed,

the graph starts to differ from the one of the two hypercubes as we get closer to

the Néel state. This means that the FSA steps will start to become inexact due

to backscattering after fewer steps . For k>3, new states appear in the graph al-

ready in the first Hamming layer, and this is expected to strongly destabilise the

revivals (23). Similarly, for k=2 new states will appear in the second Hamming

layer, in theory causing similar effects. However, this expectation is clearly not in

agreement with Fig. 5.9 which shows that the k=2 model has more robust revival

compared to the PXP model, for the same |Z2〉 initial state. In the remainder of

this section, we study in detail the k=2 model, identifying its scarred eigenstates

in order to understand why revivals are better than the PXP model. We fur-

ther expand on differences between the k=2 model and PXP model from a graph

theoretic point of view in Appendix A.2.1, where we demonstrate an underlying

hypergrid subgraph is responsible for scarred dynamics from the Néel state, in

contrast to the embedded hypercubes present in the PXP model.
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Figure 5.9: Revival fidelity for (k, k+1) models in Eq. (5.26). (a) Fidelity time
series for the k, k+1 models when initialised in the Néel state |Z2〉 = |1010...〉 for
various k. (b)-(c) Height of the first fidelity revival peak f0 and the associated
revival period T for various initial product states. In order to compare different
models at approximately the same Hilbert space dimension, the system sizes are
chosen according to the value of k in such a way that the Hilbert space dimension
is in the range 1.3 × 105 < D < 2.8 × 105. Shown is the Néel state (red), the
best reviving basis state (black cross) and the average over all computational
basis states (blue - with the standard deviation shown as an error bar). Going
from the k = 1 to the k = 2 model improves revivals from the Néel state, but
progressing to k = 3 results in a discontinuity, where revivals get worse and the
Néel state is no longer the best reviving state. At intermediate k, the distribution
of reviving states is roughly binomial, with many states reviving well (with the
same f0) and many states not reviving at all. This produces the large variance
seen in (b) at k = 4, 5, 6)
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5.5.1 Quantum many-body scars in the (2,3) model

The (2,3) model – a special case of Eq. (5.26) where each consecutive triplet of

sites can have at most two excitations – bears many similarities with the PXP

model. For example, we will show that the (2,3) model is non-integrable yet it

hosts a band of N+1 scarred eigenstates with large support on the Néel state,

|1010 . . . 10〉, reminiscent of the PXP model. However, despite this similarity

between the two models, we find the revivals and scarred eigenstates are more

robust in the (2,3) model, even though the Hilbert space is larger in the latter

model for the same size N , due to the weaker kinetic constraint (27). A more

striking difference, which arises in sizes N divisible by 4, is the existence of

additional reviving states, |11001100 . . .〉 and its three translated equivalents in

the (2,3) model.

We first demonstrate that the (2,3) model is non-integrable and it supports

revivals due to the existence of N+1 towers of scarred eigenstates. The aver-

age energy level spacing 〈r〉 (90) is found to approach 0.53 in large systems,

see Figs. 5.10 (a)-(b), as expected from a thermalising system. Moreover, the

distribution of energy level spacings is consistent with the Wigner-Surmise dis-

tribution (75), demonstrating that physical properties of the model cannot be

explained by its proximity to the full hypercube.

The fidelity density at the first revival, ln(f0)/N , is computed for the Néel

and |11001100 . . .〉 initial states and several values of N in Fig. 5.10(c). For the

Néel state, the fidelity density quickly saturates to ≈−0.00591. For a random

initial state one would expect the saturation value to be −ln(D)/N = −ln(α),

where D is the dimension of the Hilbert space and α is the ‘quantum dimension’,

which measures the exponential scaling of the Hilbert space D = αN . For the

k = 2 constrained Hilbert space, we find the fidelity density of a random state

should saturate to ≈−0.609. As this is two orders of magnitude larger than

the value obtained for the Néel state, it shows that the revivals are not simply

fluctuations due to a small finite size of the system. For comparison, we also

study the other reviving state, |1100 . . . 1100〉, whose fidelity density converges to

≈−0.0304. While larger than for the Néel, this value is still an order of magnitude

smaller than for a random state, signalling that this initial state is also atypical
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Figure 5.10: Level statistics of the (2,3) model, confirming it is non-integrable.
(a) Statistics of energy level spacings P (s) in the (2,3) model in a large system
size N=24 is consistent with the Wigner-Surmise distribution. The average r-
value is close to 0.53. The level statistics is computed in the momentum sector
K=0 and inversion sector I=+1, after performing the spectrum unfolding. (b)
Convergence of 〈r〉 with system size. (c) Fidelity density at the first revival from
the Néel state in the (2,3) model saturates to a non-ergodic value -0.00591. For
comparison, we also show the fidelity density of |11001100 . . .〉 initial state. Both
of these fidelity densities are much larger than expected for a random initial state,
signalling they are strongly atypical initial conditions for the (2,3) model.
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for the (2,3) model.

In Fig. (5.11) we study the scarred dynamics present in the (2, 3) model.

Fig. 5.11(a) shows the overlap between the reviving Néel state and the eigenstates

of the (2,3) model. Similar to the PXP model studied in Ref. (131), we observe

that eigenstates form tower structures. At the top of each tower is a scarred state

with high overlap on the Néel state. The FSA subspace provides a very good

estimate of the energy of each tower, as indicated by crosses in Fig. 5.11(a). The

FSA also captures the revival dynamics, as shown in Fig. 5.11(c), in particular it

accurately estimates its frequency, while somewhat overestimating the amplitude

of the revival.

Moreover, as usual scarred eigenstates can also be identified as having much

lower entanglement than other eigenstates at the similar energy density. To quan-

tify entanglement, we compute the bipartite entanglement entropy, Eq. (2.21).

Entanglement entropy of eigenstates of the (2,3) model in momentum sectors

K=0 and K=π is shown in Fig. 5.11(b). Entanglement entropy reveals the

scarred eigenstates as some of the most weakly entangled states in the spectrum.

While in smaller systems entropy distribution shows a large spreading, similar

to the PXP model as pointed out in Ref. (60), in larger system sizes like N=24

shown in Fig. 5.11(b), we observe that entropy distribution becomes quite nar-

row, starting to look more similar to models such as AKLT (81) and constrained

clock models (17). In particular, constrained clock models exhibit very narrow

towers densely populated with eigenstates, as also seen in Fig. 5.11(a). Such tow-

ers enhance the hybridisation between the top N+1 scarred eigenstates and the

rest of the spectrum, resulting in relatively high entropy of scarred eigenstates,

Fig. 5.11(b).

5.6 Numerical interpolation between two hyper-

cubes and free spin 1/2 model: adding bridges

In Sections 5.4, 5.5 we studied two classes of models which were shown to contain

hypergrid subgraphs. These two classes of models were obtained from physical

Hamiltonians corresponding to strengthening or weakening the PXP constraint.
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Figure 5.11: QMBS in the (2, 3) k, k+ 1 model. The (2, 3) model realises scarred
oscillatory dynamics from the states |Z2〉, |11001100...〉. (a) Shows the overlap of
eigenstates with |Z2〉 state, verifying the presence of scarred eigenstates respon-
sible for the scarred dynamics. N+1 scarred eigenstates with anomalously high
overlap are labelled by red squares. The FSA approximation (Section. 3.3.1) is
applied to produce approximations for the scarred eigenstates (black crosses). (b)
Entanglement entropy of all eigenstates in momentum sectors K=0 and K=π,
with the same N+1 scarred eigenstates highlighted in red. (c) Fidelity revivals
indicating scarred dynamics from the states |Z2〉, |11001100...〉, whose exact dy-
namics generated by the (2, 3) models Hamiltonian are the bold face lines. The
dashed line corresponds to an approximate time evolution generated by restricting
the evolution to only occur within a subspace produced by the FSA approxima-
tion. The FSA provides a good estimate of the revival frequency from |Z2〉 initial
state, although it somewhat overestimates the revival amplitude. For comparison
All data is for system size N=24. In (a) and (b) the colour scale indicates the
density of data points.
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We now turn towards building new constrained models by instead constructing

different graphs, considering quantum walks occurring on these graphs. The

graphs we consider will all be partial cubes, that is, they will all be subgraphs of a

full hypercube, obtained by removing vertices from the full hypercube. Therefore

a Hamiltonian of the form H = P
∑

nXnP will exists for these graphs, with P a

global projector.

We start from the graph of two joined hypercubes and add back states from

the unconstrained spin-1/2 chain of the same length. Recall that we refer to

vertices and links from the full hypercube that are not present on the two joined

hypercube graph as ‘bridges’. For example, the green vertices on the PXP graph

in Fig. 5.5 are bridges. Our method will consist of an algorithm which adds back

these bridges in a systematic fashion.

When adding back vertices from the full hypercube onto the graph of the two

joined hypercube, we will also add all translationally equivalent vertices, such

that the models sampled will also be invariant under translation. The algorithm

we use to grow the graph is the following: A new basis state with m excita-

tions is randomly chosen. After that, all vertices corresponding to this state, its

translations, or states that can be obtained by removing excitations from these,

are added along with the relevant edges. The value of m is initialised at 2 and

increased after a step if some conditions are met. Full details of this algorithm

can be found in Appendix A.2.2. After each addition, the first revival and the

revival period are computed.

In order to monitor closeness to the two hypercubes or to the free spin-1/2

model, we introduce the bridge-density parameter λ defined as

λ =
ln(|G|)− ln(2N/2+1 − 1)

ln(2N)− ln(2N/2+1 − 1)
, (5.27)

where |G| is the number of states in the graph. Note that the two joined hy-

percube graph has 2N/2+1 − 1 vertices, whereas the full hypercube graph has 2N

vertices. Therefore this quantity is a normalised measure of how many vertices

have been added to the two hypercube graph. When no vertices have been added

such that G is still the two hypercube graph, λ=0, while when G is a single large

hypercube λ=1. The logarithms ensure that λ is properly normalised in large
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Figure 5.12: Interpolating between the two hypercube model and the free param-
agnet via the addition of bridges, resulting in QMBS models. (a) Revival fidelity
density when random bridges of density λ are added to the two-hypercube model
in a few system sizes N . The shaded areas represent standard deviation over
different realisations of the bridges with the given density. This analysis reveals
that the PXP model falls in the middle of the distribution, thus it is a ‘generic’
model with the given density of bridges. The behaviour of most (k, k+1) models
is also close to the expected average, with k=2 being a notable outlier. (b) Re-
vival fidelity for random bridges added to the two-hypercube model with N=12.
The subspace variance of the FSA, σE, correlates well with the fidelity at the first
revival.

systems.

The result of adding bridges is summarised in Fig. 5.12 for chains of length

N=10, 12, 14. Fig. 5.12 shows that the PXP model represents a typical model

with the given density of bridges added to the two hypercubes. The presence

of the two hypercubes explains why this model revives, and the bridges only

weakly affect the fidelity and period of the revivals. For larger values of k, the

corresponding (k, k+1) models generally fall very close to the average of random

models for the same value of λ due to their proximity to the free spin-1/2 model.

A notable exception is k=2, which has significantly better revivals than expected
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from our random sampling analysis. As we argued previously, this is likely due

to the presence of the 2HG subgraph and the special structure of the bridges in

that model.

Another notable feature of Fig. 5.12 is that there is always an improvement

of the revivals when a small number of bridges are added to the two hypercubes.

Intuitively, we would expect the fidelity to decay as the graph gets further away

from the two hypercubes, until it becomes close enough to the full hypercube of

a larger size, which also has good revivals. The enhancement of revivals at low

values of λ can be understood as ‘correcting’ the frequency mismatch between

the symmetric (resp. antisymmetric) superpositions of the two hypercubes, as

we discussed in Section 5.3. In this regime the bridges only affect the frequency

of the symmetric sector, bringing it closer to the frequency of the antisymmetric

sector, thus improving the revival fidelity (see Appendix A.2.3 for further details).

It is also important to note that the range of λ where this improvement happens

goes to zero in the thermodynamic limit, meaning that the slope of the curve in

the limit λ→0 in Fig. 5.12(a) becomes steeper with the increase in system size.

For all graphs sampled during the process in Fig. 5.12 the dimension of the

FSA subspace remains unchanged. Indeed, the FSA process from the Néel states

always terminates on the anti-Néel state after N steps, leading to N+1 states. In

addition, for the two joined hypercubes and for the full hypercube, this subspace

is exact, meaning that it is disconnected from the rest of the Hilbert space. For

the random graphs sampled, the FSA is generally not exact, and this can be

quantified using the subspace variance σE introduced in the previous chapter,

Eq. (4.17). Among all graph properties, the subspace variance was found to best

correlate with the existence of revivals, see Fig. 5.12(b). This correlation implies

that the FSA revivals are generally good, and that the leakage out of it is the

main factor that destabilises the revivals in the full system. As the algorithm

adds back states with incrementally more excitations, these new vertices can get

closer and closer to the Néel state. This means that they can affect the FSA at

earlier steps and thus exert a stronger effect on the revivals.
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5.7 Summary

In this chapter we explored a complementary interpretation of broken Lie alge-

bras, giving a graph-theoretic perspective on the origin of many-body scars and

associated wave function revivals in the PXP model. We studied the properties of

the Hamiltonian adjacency graph, in particular the existence of large regular sub-

graphs, as we varied the constraint in the PXP model. We considered two simple

limiting cases, the free spin-1/2 model and the model of two hypercubes joined

at a single vertex, which naturally arise when the constraint is either completely

turned off or made stronger to penalise not only nearest-neighbour excitations,

but an entire sublattice of the chain. While both of these limits support revivals

in the thermodynamic limit, we argued that only the two hypercube model faith-

fully captures the many-body scarring phenomenology in the PXP model. To

demonstrate the connection between the two, we introduced a family of mod-

els with a variable range of the constraint, showing that the scarred subspace

remains preserved under this interpolation. By contrast, such a smooth interpo-

lation was not found between PXP and the free spin-1/2 model. Nevertheless,

the exploration of this connection led us to new constrained models, such as the

(2,3) model, which were shown to have unique scarring phenomenology of their

own.

We note that the Hamiltonian adjacency graph have recently been linked to

quantum many-body scars in a few models (28, 48, 126, 132, 145). However,

these studies focus on regular subgraphs with weak connectivity to the the rest of

the Hilbert space. In contrast, the subgraphs identified in this work do not have

this property. For example, in the PXP and (2,3) models, the bridges form an

essential part of the scarred dynamics and even enhance it, as opposed to simply

destabilising revivals.

Our approach sheds light on the relation between constrained systems and

many-body scarring. Indeed, constraints have the effect of removing vertices and

edges from the graph. If the constraint removes enough bridges while leaving

the substructure intact, then it can create the right conditions for scarring and

revivals.

In much of the existing literature, quantum many-body scars and other kinds
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of non-stationary dynamics have been understood from the su(2) algebra point

of view, where the non-thermalising eigenstates form a representation of the al-

gebra (15, 72, 74, 81, 89, 112). This eigenstate-based picture, however, does not

directly allow to predict the existence of many-body scars without diagonalisation

of the Hamiltonian – an exponentially difficult task. By utilising a graph-theoretic

approach, one can instead focuses on the Hamiltonian matrix and its properties

in the computational basis. While in general we expect there is no easy way to

directly relate the two points of view, we found that in many scarred models the

existence of regular subgraphs, judiciously perturbed by bridges, correlates with

the emergence and enhancement of su(2) algebra, as captured by the forward

scattering approximation.
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Chapter 6

Systematic construction of

quantum many-body scars using

kinetic constraints

The previous two chapters have introduced two complementary theories that

attempt to understand why approximate quantum many-body scars arise in in-

teracting quantum systems. We have proposed that approximate quantum many-

body scarring, as seen in the PXP model, is a reflection of the fact that scarred

eigenstates possess a strong resemblance to eigenstates of a proximate Hamil-

tonian which possesses some exact symmetry. This notion is made more rigor-

ous by the introduction of ‘broken Lie algebras’ (Chapter 4), for which scarred

Hamiltonians approximate elements of a Lie algebra of the appropriate symme-

try. Furthermore, rather than probing the proximity of a scarred Hamiltonian to

another Hamiltonian possessing an exact symmetry by studying the algebra of

generators, we have shown one can also utilise a graph theoretic point of view,

inspecting the proximity of the Hamiltonian, interpreted as an adjacency matrix

of a graph, to that of another graph which possesses the relevant symmetry group.

For instance, the PXP model adjacency matrix consists of two large embedded

hypercubes, where a hypercube graph is known to possesses SU(2) symmetry.

The hypercube graph has the property that it permits perfect transmission and

reflection on a quantum walk from any node, shedding light on the anomalous
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oscillatory dynamics observed in the PXP model.

These two approaches are useful in understanding the origin of quantum many-

body scars and their insight have resulted in the construction of new scarred

models (16, 27). However, these approaches may not always be a practical way of

understanding the scarred eigenstates or constructing new scarred Hamiltonians

when considering more complicated systems. From the algebraic point of view, to

understand the scarred eigenstates, one must first decompose the scarred Hamil-

tonian into a linear combination of generators of the broken Lie algebra (16),

and this decomposition may not be obvious. Furthermore, from the graph point

of view, the hypercube graph is not the only one which features perfect trans-

mission and reflection and thus perfect oscillatory dynamics (111). There even

exist weighted graphs with this property of perfect transmission (34), which falls

outside the scope of the previous chapter. Identifying generic embedded graphs

which permit perfect transmission and reflection quickly becomes an unfeasible

problem.

The purpose of this chapter is to introduce a general construction, via the

use of kinetic constraints, which yield quantum many-body scarred models. Our

construction, which we introduced in Ref. (17), is based on the systematic embed-

ding of a single-site unitary dynamics into a kinetically-constrained many-body

system. Utilising this construction, we scan the phase space of kinetically con-

strained models of a given local Hilbert space dimension for hosting many-body

scars. Due to the nature of the construction, it is apparent there is likely an

underlying broken Lie algebra structure responsible for scarring in the obtained

models, but this construction does not rely on the details of this algebra be-

ing known. This construction results specifically in approximate scarred models.

Given the only experimentally realised many-body scarred models have hosted

approximate scars (7), this construction may prove useful in experimentally real-

ising weak ETH violating systems with periodic oscillatory dynamics.

6.1 Construction of scarred models

Our construction produces interacting lattice models that exhibit periodic quan-

tum revivals when quenched from a Néel state. The basic building block has

120



6.1 Construction of scarred models

a Hilbert space containing Nc states (‘colours’) and a time-independent local

Hamiltonian that yields periodic unitary dynamics, U(t + T ) = U(t). The in-

teracting models are defined by coupling these building blocks under a kinetic

constraint. Intriguingly, the dynamics in these models decomposes into periods

of nearly free precession, in which the local degrees of freedom coherently cycle

through the available states on a single site, followed by an interacting segment of

dynamical evolution, reminiscent of a kicked quantum top (43). In all cases, the

existence of atypical scarred eigenstates underpins the revivals. We show that our

construction includes known models, such as chiral clock models (36), which are

shown to support scars, and also gives a way of enhancing the revivals in spin-s

generalisations of the Rydberg chain (47). In selected cases for small values of

Nc, we numerically explore general deformations of the models, verifying that

our construction yields optimal models with the highest amplitude of the wave

function revivals.

Specifically, consider a system with a local basis |0〉, |1〉, ..., |Nc − 1〉, and an

arbitrary time independent Hamiltonian h whose unitary dynamics is periodic,

such that UT ≡ exp(−ihT ) = I for arbitrary period T . The eigenvalues of U

are λn = exp(i2πkn/T ), with the corresponding eigenvectors |ψn〉, where kn are

arbitrary integers. We obtain candidate Hamiltonians h by choosing particular

{λn} which guarantee a periodic U and taking its logarithm:

h = i
Nc−1∑
n=0

2πi

T
kn |ψn〉〈ψn|. (6.1)

The many-body lattice Hamiltonian is defined by taking a tensor product of h

and imposing the kinetic constraint that h only acts on sites whose neighbours

are in some unlocking state |χ〉:

H =
N−1∑
j=0

Pj−1hjPj+1, Pj ≡ |χj〉〈χj|, (6.2)

where N is the number of lattice sites. Note that if the operator
∑

j hj is itself

some linear combination of elements of a Lie algebra, the local projector dressing

in Eq. (6.2) will result in a broken Lie algebra when considering the commutation
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of these dressed elements, as is the case with the PXP model (Chapter 4).

The only other condition we place on h is that the many-body system possesses

a particle-hole symmetry ρ, which anticommutes with H, {H, ρ} = 0, leading to

the symmetry E ↔ −E of the energy spectrum. This is motivated by the fact that

PXP model in Eq. (2.41) possesses such a symmetry: ρ =
∏

i Zi anticommutes

with the Hamiltonian of the PXP model. Moreover, the PXP revivals were found

to be improved by perturbations which preserve this symmetry (23, 60). Indeed,

the perturbations we derived in Chapter 4 by correcting errors in a broken su(2)

Lie algebra all preserved this particle-hole symmetry. We thus focus on cases

where {kn} are symmetric around zero, resulting in h being off diagonal and

compatible with some ρ. A particularly illustrative example of this construction

is when U is interpreted as the shift operator of a quantum clock (36, 134, 138),

as we explain next.

6.2 Example: clock models

Consider a specific periodic unitary U which implements a cyclic precession

through the Nc coloured basis states:

U = e−iC =

(
Nc−2∑
n=0

|n+ 1〉〈n|
)

+ |0〉〈Nc − 1| (6.3)

In this case, λn = exp(2πikn/Nc) and |ψn〉 =
∑Nc−1

j=0 (1/λjn)|j〉. For odd Nc,

kn takes the values −Nc−1
2
, . . . , 0, . . . , Nc−1

2
. For Nc-even, we need to double the

period, T = 2Nc, in order to make h off-diagonal in the |j〉 basis. This allows

to choose k = −Nc−1
2
, . . . ,−1

2
, 1

2
, . . . , Nc−1

2
, and Eq. (6.3) continues to be valid for

Nc-even after performing a gauge transformation, |j〉 → eiπj/Nc |j〉.

The single site clock operator C is obtained by taking the logarithm of the

unitary in Eq. (6.3). We also utilise the convention that C is rescaled such that

the magnitude of the largest matrix element is 1. For example, for Nc = 3, 4 the
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single site clock operator C takes the following forms:

CNc=3 =

 0 i −i
−i 0 i

i −i 0

 , (6.4)

CNc=4 =


0 i −i/

√
2 i

−i 0 i −i/
√

2

i/
√

2 −i 0 i

−i i/
√

2 −i 0

 . (6.5)

The inspiration behind Eq. (6.3) is that local dynamics is a cyclic rotation around

the basis of Nc ‘clock’ states |j〉, Fig. 6.1(a). With h in Eq. (6.1) denoted by C,

Eq. (6.2) defines a many-clock ‘PCP’ Hamiltonian,

Hclock =
∑
j

P 0
j−1CjP

0
j+1. (6.6)

Without loss of generality, the projector can be chosen onto any of the clock basis

states, e.g., P 0 = |0〉〈0|. Thus, each site precesses around the clock if both its

neighbours are in |0〉 state, otherwise it remains frozen, Fig. 6.1(a). Note that

the PXP model in Eq. (2.41) is equivalent to Nc = 2 clock.

The PCP model, by construction, possesses the desired (anti-unitary) particle-

hole symmetry, which for an arbitrary Nc coloured clock model generalises to

charge conjugation symmetry. Our clock model actually possesses several discrete

unitary and anti-unitary symmetries, originating from charge conjugation, parity

and time reversal. We define single-site charge conjugation as the following Nc×
Nc operator (138):

Ci =


1 0 0 ... 0

0 0 ... ±1 0

0 ... ±1 0 0

...

0 ±1 0 ... 0

 , (6.7)

where + corresponds to odd Nc while − corresponds to even Nc. Further, we
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Figure 6.1: QMBS observed in a kinetically constrained clock model, constructed
by embedding periodic single site dynamics into a kinetically constrained model.
(a) A schematic of scarred clock models. Green clock can precess because both of
its neighbours are in the unlocking state |0〉 (white), unlike the frozen red clock.
(b) Dynamics of fidelity, |〈φ|e−itH |1010 . . .〉|2, for Nc = 4-colour clock model in
Eq. (6.6). Different curves correspond to several choices of |φ〉 indicated in the
legend. (c) Overlap of all eigenstates of Nc = 4-colour clock model with the Néel
state |0101 . . .〉. Each dot corresponds to a single eigenstate |E〉 with energy E
shown on the x-axis. colour scale indicates the density of data points. Scarred
states are marked by red circles. (d) Entanglement entropy S of all eigenstates of
Nc = 4-colour clock model, plotted as a function of their energy E. Red circles
indicate the matching scarred states from (c), while a few additional scar states,
associated with the a ‘defected Z4’ state, |20002030103000〉, are marked by blue
circles. Plots (b), (c) are for system size N = 16, while (d) is for N = 14. In
all cases, we resolve translation and spatial inversion symmetry, and plot both
[k = 0, P = +] and [k = π, P = −] sectors.
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define spatial inversion P and time reversal T operators in the conventional way:

P : j → L− j − 1, (6.8)

T : K̂, (6.9)

where K̂ corresponds to complex conjugation. It then follows that the PCP

models possess the following discrete symmetries:

[H, I] = 0, (6.10)

[H,CT ] = 0, (6.11)

{H,C} = 0, (6.12)

{H,CI} = 0, (6.13)

where C =
∏

i Ci.

We have studied the PCP model in Eq. (6.6) with periodic boundary condi-

tions using exact diagonalisation, resolving both translation and spatial inversion

symmetries. For any Nc ≤ 12 accessible to us numerically, we find long-lived oscil-

latory dynamics when the system is quenched from any Néel-like state, |0101...〉,
|0202...〉, etc. Fig. 6.1(b) summarises the result for Nc = 4. The dynamics pro-

ceeds in two steps. First, each unfrozen clock nearly freely cycles through its

states, |1〉 → |2〉 → . . . |Nc − 1〉. After this coherent process is complete, the

many-clock state shifts, |Nc− 1, 0, Nc− 1, 0 . . .〉 → |0101 . . .〉. In this second step,

interactions kick in and some fidelity is lost to thermalisation. We now see that

the PXP model is special in that it lacks free-precession dynamics. On the other

hand, similar to the PXP case, in scarred clock models coherence also remains

protected to a large degree during the interacting part of the process, allowing

the wave function to keep returning to the initial state.

In order to visualise the dynamics, in Fig. 6.1(b) we plot the generalised

fidelity

|〈φ| exp(−itH)|1010 . . .〉|2 (6.14)

with respect to several product states |φ〉, corresponding to either the initial state,
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the internal shift of each clock, or to the overall translation of the initial state.

The duration of individual clock ticks (e.g., |1010 . . .〉 → |2020 . . .〉) matches that

of the unconstrained clock model. Following the convention that C is rescaled

such that nearest neighbour hoppings have magnitude one, the frequency of the

putative free precession is found to be≈ 0.902 (in units ~ = 1) while the frequency

of the single site precession (in the absence of a constraint) is ≈ 0.900.

Fig. 6.1(c) shows the overlap of all eigenstates with the Néel state |0101 . . .〉,
while Fig. 6.1(d) shows the bipartite entanglement entropy, Eq. (2.21). The scar

states are easily identifiable as a band of special eigenstates (circled in red) that

extend throughout the entire spectrum. The total number of special states is

(Nc − 1)N + 1. Similar to the PXP model, the special eigenstates are distin-

guished by their high overlap with the Néel state, or alternatively as ones with

atypically low entanglement. Note that some of the eigenstates with small entan-

glement belong to a different band of scarred states associated with a ‘defected

Z4’ state |20002030103000〉 [blue circles in Fig. 6.1(d)]. Apart from these special

states, there are tower structures in the spectrum which reflect the clustering of

neighbouring eigenstates around the energies of the scarred eigenstates. Deep in

the bulk of the spectrum, the density of states [indicated by colour scheme in

Fig. 6.1(c)] appears uniform, as expected from the ETH. Indeed, at N = 14 we

find a mean level spacing ratio (90) of 〈r〉 = 0.5218, consistent with a Wigner-

Surmise distribution. We have confirmed that the frequency of the revival to

the initial state matches the energy separation between special eigenstates in

Fig. 6.1(c).

While we have demonstrated a reviving wavefunction by computing the gener-

alised fidelity in Eq. (6.14), this quantity is formidable to measure experimentally.

However, one can demonstrate that the same picture of the dynamics can be in-

ferred from studying revivals in local observables. For example, measuring a

colour on a given site, Q ≡ P n = |n〉〈n| shows the same pattern of dynamics,

see Fig. 6.2. Consider the two sublattices, corresponding to even and odd sites.

When the system is quenched from the Néel state |0101...〉, even sites initially

cycle through the basis set 1 → 2 → 3... while odd sites are locked at 0 by the

constraint. These sublattices exchange and the process repeats after a full pre-

cession 1 → 0 has been completed. This trajectory is captured in Fig. 6.2, with
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smaller oscillations present under the main peaks, which emerge due to the longer

range hoppings present in the single site clock operator, i.e., 〈n+ d|C|n〉 6= 0.

6.3 Additional scarred models via kinetic con-

straints

6.3.1 Larger spin PXP models

It is apparent that larger spin generalisations of the PXP model may be obtained

via the construction outlined in Section 6.1. Similar to the spin-1/2 PXP model,

these are models of the form:

H =
∑
j

P 0
j−1XjP

0
j+1 (6.15)

However the local Hilbert space dimension, Nc, is now arbitrary, with Xj being a

spin-s (s = (Nc − 1)/2) representation of the X element of an su(2) Lie algebra.

P 0
j is still to be understood as being a projector onto the spin down state, that

is, the state |0〉 corresponds to the lowest weight eigenstate of Zj. Given the

eigenvalues ofXj are equidistant, it follows that U(t) = e−iXjt is a periodic unitary

U(t+T ) = U(t) for some T , such that Hamiltonians of the form Eq. (6.15) follow

from our general construction.

Ref. (47) has studied a semiclassical limit of larger spin-s PXP models using

the time dependant variational principle (TDVP), as discussed in Section 3.1.

Periodic revivals were numerically demonstrated for s = 1, 2. Indeed, using exact

diagonalisation, we verify that large spin-s PXP models exhibit quantum many-

body scarring. Fig. 6.3 shows the fidelity revivals observed in spin-s PXP models

initialised in the Néel state |0, Nc − 1, 0, Nc − 1, ...〉 for system size N = 12.

Revivals in the many-body wavefunction persist to larger s, though the amplitude

of revivals decays as s increases. This is likely due to the growing Frobenius norm

of the error δ of the broken Lie algebra, as defined in Eq. (4.6). Indeed one can

understand this fact intuitively, as the projection onto a single basis state, the spin

down state, becomes a stronger constraint as the local Hilbert space dimension
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Figure 6.2: Time evolution of local observables when the PCP model is quenched
from the Néel state |0101...〉. Plots show the time evolution of the average colour
on a given site, 〈P n(t)〉, as a function of time. Top plot is for Nc = 3 and
bottom plot is Nc = 4, with system size N = 10. A period of free precession
can be observed where the sublattice containing 1 cycles through the clock basis,
followed by a period of time where the colour on the site is locked to 0 while the
other sublattice cycles through the clock basis.
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Figure 6.3: Fidelity revivals in the many-body wavefunction observed in arbitrary
spin-s PXP models, initialised in the Néel state |0, Nc − 1, 0, Nc − 1, ...〉. Results
for system size N = 12. Spin-s PXP models exhibit quantum many-body scar-
ring and as such realise oscillatory dynamics in the many-body wavefunction for
arbitrary s. Amplitude of revivals decays as s increases, and this is believed to
be due to a growing error in the broken Lie algebra (Chapter 4).

grows, which results in larger spin-s PXP models being further from an exact

SU(2) symmetric model. Fig. 6.4 shows the overlap of eigenstates of the s = 2

and s = 5/2 PXP models with the Néel states, where one can observe a band

of 2sN + 1 scarred eigenstates responsible for the oscillatory dynamics when the

system is initialised in these states.

Relation between spin-s PXP and clock models

Both spin-s PXP model and Nc = 2s+1 coloured PCP clock models are obtained

from our construction in Eq. (6.2) by taking k = −s, ..., s, such that the uncon-

strained models have the same spectrum. Indeed, the spin X operator and the

clock operator C are equivalent by a change of basis. The distinction between the

129



6. SYSTEMATIC CONSTRUCTION OF QUANTUM
MANY-BODY SCARS USING KINETIC CONSTRAINTS

constrained clock and spin models therefore lies entirely in the kinetic constraint,

i.e., the choice of the projector P = |φ〉〈φ〉.
By performing a basis rotation, the clock Hamiltonian can be expressed in the

spin basis, Hclock =
∑

j P
′
j−1XjP

′
j+1, where P ′ corresponds to a rotation of the

projector P 0 in Eq. (6.6). To give an explicit example, at Nc = 3, we find:

Hclock =
∑
n

P 0
n−1CnP

0
n+1, P 0 =

1 0 0

0 0 0

0 0 0

 (6.16)

=
∑
n

P
′

n−1XnP
′

n+1, P
′
=

 1/6 1/3 −1/6

1/3 2/3 −1/3

−1/6 −1/3 1/6

 . (6.17)

We have numerically found that the number of scarred states remains the same

for PXP models expressed in terms of either the spin P 0 or P ′; however, for

Nc-odd the amplitude of the revivals is always higher when using P ′ instead of

P 0. One can see why this occurs by inspecting the overlap of the initial state

with the eigenstates of the system, as shown in Fig. 6.4. The scarred eigenstates

remain better separated from the thermal bulk in the clock models for odd Nc

when compared to the spin models, resulting in better fidelity revivals. Thus,

our construction shows how to improve the revivals in the standard PXP models

by modifying the kinetic constraint. In addition, when using P ′, mapping to the

clock representation allows to clearly delineate nearly-free precession from the

interacting part of the dynamics, which is not transparent in the spin represen-

tation.

6.3.2 Chiral clock models

Our construction additionally yields a new class of scarred models, for which C

is not related to spin or clock models via a change of basis. We refer to this class

of models as ‘chiral clock models’ (CCM). Here we give a definition of the models

and present numerical results verifying they host quantum many-body scars.

CCM models emerge in analogy with the quantum Ising model in a transverse
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Figure 6.4: Comparison of the scarred band of states for 5-colour clock model and
PXP spin-2 model. Each plot shows overlap of all eigenstates with the product
state |0404 . . .〉. While the total number of scarred states is the same in the two
models, the shape of the scarred band is different. The larger degree of separation
between the scarred eigenstates and thermal bulk in the clock models as compared
to the spin models results in better fidelity revivals in clock models.
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field (6, 36). Instead of focusing on critical properties of such models, we mainly

focus on their fixed point, where only a shift operator is present in the Hamilto-

nian. The first non-trivial case that is distinct from our clock operators occurs

for Nc = 4 CCM (36), with the Hamiltonian defined as:

H = f

N∑
j=1

τ †j e
−iφ + J

N−1∑
j=1

σ†jσj+1e
−iθ + h.c, (6.18)

The operators σ and τ generalise the spin-1/2 Pauli matrices, σz and σx, respec-

tively. They are given by

σj =


1 0 0 0

0 ω 0 0

0 0 ω2 0

0 0 0 ω3

 , τj =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 , (6.19)

where (for Nc = 4) we have ω = i. Taking J = 0, φ = −π/2, the Hamiltonian in

Eq. (6.18) becomes non-interacting, with the on-site Hamiltonian reducing to:

Hsite =


0 −i 0 i

i 0 −i 0

0 i 0 −i
−i 0 i 0

 . (6.20)

We construct an interacting CCM model hosting quantum many-body scars by

introducing the same Rydberg-like constraint:

Hchiral =
∑
j

P 0
j−1H

site
j P 0

j+1, (6.21)

where as usual P 0
j = |0j〉〈0j|. This Hamiltonian can be obtained via our con-

struction in Eq. (6.2) by choosing choosing k = −2,−1,−1, 2.

The Nc = 4 kinetically constrained CCM model in Eq. (6.18) exhibits two

types of oscillatory behaviour: quenches from |0202...〉 result in slowly decaying

fidelity revivals, while quenches from |1010...〉, |3030...〉 essentially freeze out the
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0 sublattice and the system oscillates like a nearly free paramagnet, see Fig. 6.6.

Figure 6.5: Overlap of all eigenstates of theNc = 4 CCM, Eq. (6.21), with product
state |0101 . . .〉 (left) and |0202 . . .〉 (right). System size N = 14. |0101...〉 has
N + 1 scars, while |0202...〉 has N + 2 scars.

In Fig. 6.5 we plot the overlap of all eigenstates of the Hamiltonian in Eq. (6.21)

with two product states states: |1010 . . .〉 (left) and |2020 . . .〉 (right). System size

is N = 14 with periodic boundary conditions. These plots show that the model

is not completely ergodic and supports a band of scarred states. However, the

scarred bands look rather different in the two cases, with a stronger clustering

of eigenstates into towers for the case of |1010 . . .〉 state. This stronger preserva-

tion of a perfect tower structure for the |1010 . . . 〉 suggests the broken su(2) Lie

algebra responsible for oscillations from the |1010...〉 state has a smaller error,

Eq. (4.6), hinting at why oscillations are more robust from this state. We note

that the structure of the scarred band in the right panel of Fig. 6.5, correspond-

ing to the state |2020...〉, is quite reminiscent of the PXP spin-1/2 model (131).

In fact, as we show next, the dynamics in this case reduces to the same type of

oscillation that was found in the PXP spin-1/2 model.

Fig. 6.6 shows the single-site precession of Hsite in the absence of a constraint.

We see that the dominant dynamics is 0 → 2 flips and 1 → 3 flips. Thus, when

the constrained model, dressed with P 0, is quenched from |0101...〉, the dominant

dynamics is just oscillation between |0101...〉 → |0303...〉, as 0→ 2 is blocked due

to the constraint. Neglecting leakage, this is just a decoupled free paramagnet,
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Figure 6.6: Dynamics of chiral clock models, exhibiting QMBS. Left column: Sin-
gle site precession of the unconstrained Hsite model in Eq. (6.20). The dominant
dynamics is 0 → 2 flips and 1 → 3 flips. Right column: Fidelity of revivals in
CCM, Eq. (6.18), from the initial states |1010 . . .〉 (top) and |2020 . . .〉 (bottom).
System size N = 14. The plots show |〈φ| exp(−itH)|ψ0〉|2, where for |φ〉 is any
of |n0n0 . . .〉, n = 1, 2, 3, and their translated copies, |0n0n . . .〉.

where every other site precesses freely. However, when quenched from |0202...〉, a

transition through the polarised state |0000...〉 is permitted and we see transitions

like |0202...〉 → |2020...〉, reminiscent of spin-1/2 PXP.

We confirm this by studying the fidelity time series, shown in Fig. 6.6, for the

two initial states, |ψ0〉 = |1010 . . .〉 (top) and |ψ0〉 = |2020 . . .〉. To get a clearer

insight into the dynamics, we plot the generalised fidelity, |〈φ| exp(−itH)|ψ0〉|2,

where for |φ〉 we do not necessarily pick the initial state, but any |n0n0 . . .〉,
n = 1, 2, 3, and their translated copies, |0n0n . . .〉. Indeed, we observe when the

system is quenched from |1010...〉, there is an initial shedding of fidelity followed

by a relative perfect oscillation between the states |1010...〉 and |3030...〉. This

dynamics is just a free precession of the decoupled spin-1/2 chain, with a small

leakage. In contrast, 0 → 2 flips are permitted when quenching from the state
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|2020 . . .〉. This allows the state to evolve through the polarised state |0000...〉
and exchange sublattices, undergoing oscillations between |0202...〉 → |2020...〉.
This is precisely the same dynamics of spin-1/2 PXP, neglecting the leakage. As

we see in Fig. 6.6, we obtain non-zero fidelity only with the states |2020 . . .〉 and

|0202 . . .〉, suggesting that the 4-colour chiral clock model contains an embedded

PXP spin-1/2.

Finally, we note that CCMs, as defined in Ref. (36), appear to have scars only

in Nc ≤ 4 cases. For odd Nc ≥ 5, we did not find revivals from Néel-type initial

states. However, we note that for Nc-even it is possible to construct a special case

of our clock models by choosing kn ∈ {−Nc/2, ...,−1, 1, ...Nc/2}. These models

do appear to support scars, and for Nc = 4 this choice of k’s reduces to CCM in

Eq. (6.18). Nevertheless, for Nc > 4 longer range couplings are introduced and

the models are no longer equivalent to Ref. (36). The scarring in these models can

similarly be explained by studying the single-site free precession, where dominant

cyclic transitions between basis states emerge, with cycles shorter than Nc.

6.4 Map of models hosting scarring

We now perform an extensive search for scarred models of the form Eq. (6.6) with

a fixed kinetic constraint P 0. By considering models of the form Eq. (6.6) with

arbitrary C (ie not obtained from our procedure of logging a unitary), we verify

that models of this form which host QMBS are only those for which e−iCT = I,
justifying our original assumption for the construction of scarred models. By

varying the matrix elements of C, we map out a diagram of scarred models based

on the robustness of scars, inferred from the first revival maximum of the fidelity

from the Néel-like states. We restrict the matrix C to be purely imaginary and

off diagonal, as this preserves the desired particle-hole symmetry.

6.4.1 Nc = 3 Scarred models

For Nc = 3, it is straightforward to visualise the entire span of models of the

form Eq. (6.2) with fixed projector P 0 and C purely imaginary and off diagonal.

There are two couplings to vary, as by a rescaling of C we are free to fix the value
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(iv)

Figure 6.7: Kinetically constrained models of the form Eq. (6.2) with local Hilbert
space dimension Nc = 3 which realise QMBS. Models were obtained by varying
the two matrix elements, C02 and C12, Eq. (6.22). Since the matrix elements are
assumed to be purely imaginary, the label on each axis refers to the modulus of the
corresponding matrix element. The colour scale indicates the average maximum
of the first fidelity revival quenched from the Néel states |0101 . . .〉 and |0202 . . .〉.
A value close to 1 indicates the presence of fidelity revivals and hence QMBS.
These fidelity values were obtained at N = 12. All regions associated with strong
scarring can be identified with either spin or clock models previously discussed.

of one of the three couplings. To be explicit, the form of C we consider is the

following:

C =

 0 −i iC02

i 0 iC12

−iC02 −iC12 0

 (6.22)

The fidelity revivals for all possible models at Nc = 3 is shown in Fig. 6.7 as

a function of C02 and C12 matrix elements. All the regions in the diagram that
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have large fidelity revivals and hence display strong scarring can be interpreted as

deformations of one of our previously discussed models. Specifically, in Fig. 6.7

we identify the representative points as: (i) and ii) are spin-1
2

PXP, (iii) is spin−1

PXP, with P = |Sz = −1〉〈Sz = −1|, (iv) spin-1 PXP, with P = |Sz = 0〉〈Sz = 0|,
(v) spin-1 PXP, with P = |Sz = 1〉〈Sz = 1|, (vi) Nc = 3-colour clock model,

(vii) free paramagnet. From this we conclude that for the on-site Hilbert space

dimension Nc = 3, for Hamiltonians of the form Eq. (6.6), the only scarred models

are obtained by various ways one can constrain a free paramagnet. As mentioned

in the previous section, the maximum fidelity of the clock model, 0.724, is greater

than the spin-1 model, 0.653. This improvement in the revival fidelity is seen

in all Nc-odd models. For example, at Nc = 5, N = 10, spin: 0.563, clock:

0.766. Thus, by constraining the free paramagnet with P
′

as opposed to P 0 leads

to better revivals for Nc odd. Finally, although still expressible as spin models,

the clock basis provides a much simpler interpretation of the dynamics, clearly

showing a period of free precession followed by an interacting segment of the

evolution.

6.4.2 Nc = 3 Scarred models

Next we consider the Nc = 4 case. Allowed deformations involve varying the 5

matrix elements in C, so we take slices where only two parameters are simul-

taneously varied. We consider two cases, (A) vary the next-nearest-neighbour

hoppings C02 = C13 = αi, while also varying C03 = −βi, or (B) switch off next-

nearest-neighbour hoppings, while varying C12 = −αi and C03 = −βi. Explicitly:

C(A)
n =


0 −i αi −βi
i 0 −i αi

−αi i 0 −i
βi −αi i 0

 , (6.23)

C(B)
n =


0 −i 0 −βi
i 0 −αi 0

0 αi 0 −i
βi 0 i 0

 . (6.24)
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a) b)
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Figure 6.8: Kinetically constrained models of the form Eq. (6.2) with local Hilbert
space dimension Nc = 4 which realise QMBS. Shown in (a), (b) are two slices
of the parameter space obtained by varying the matrix elements of C, defined in
the text. The colour scale represents the maximum of the first fidelity revival for
quenches from any of the states |0101 . . .〉, |0202 . . .〉, |0303 . . .〉. A value close to 1
indicates robust fidelity revivals and hence strong scarring. Results are for system
size N = 10. Labels on the diagrams refer to special limiting cases defined in the
text. Scarred models can be accurately predicted based on the commensurability
of the eigenvalue spectrum of C, as denoted by lines and explained in the text.

The maximum fidelity revivals of the many-bodied models Eq. (6.6) with local

Hilbert space dimension Nc = 4 and C given above are shown in Fig. 6.8. These

diagrams include several limiting cases at special values of (β, α). For variation

(A), we have: (i) (1, 1/
√

2) is Nc = 4 clock; (ii) (−1, 0) is Nc = 4 CCM model.

For variation (B): (iii) (0, 2/
√

3) is spin-3
2

PXP; (iv) (1,−1) is also Nc = 4 CCM;

(v) at (0, 0), we have C = i
∑

j=0,2 |j〉〈j + 1| − h.c., which (with P 0) can be

viewed as the sum of a spin-1
2

PXP and a free s = 1
2

paramagnet. Points marked

F correspond to decoupled free paramagnets.

In contrast to Nc odd, the maximum fidelity at first revival for Nc-even is

generally comparable between clock and spin-s PXP models. For example, for

Nc = 4 in Fig. 6.8, Fmax ≈ 0.761 (clock) and Fmax ≈ 0.783 for spin-3
2

PXP. For

Nc = 6 and N = 8, we obtain Fmax ≈ 0.813 (spin) and Fmax ≈ 0.802 (clock),

while for Nc = 8, N = 8 we find Fmax ≈ 0.793 (spin) and Fmax ≈ 0.806 (clock).

Since the diagram in Fig. 6.8 is quite rich, we look for a simple guiding princi-

ple that predicts the most robust scarring models. The commensurability of the
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eigenvalue spectrum of C provides such a criterion – see lines and dots in Fig. 6.8.

Appendix A.3 contains an analytical derivation of the equations describing these

lines. White lines mark the models for which C has equidistant energy levels,

En = kε, k ∈ Z. Our Nc = 4 clock model lies on one of these lines, as shown

in Fig. 6.8(a). We can consider further commensurability conditions where the

energy spacings of C are in simple ratios such as 1:2 (purple lines). Finally,

red points mark the cases where C contains one pair of degenerate eigenvalues,

E = E0, E0, E1, E1. One of these points is the Nc = 4 CCM at its fixed point

in the disordered phase. Another one, along the diagonal in Fig. 6.8(b), hosts a

combination of the free paramagnet and spin-1
2

PXP model. In fact, revivals in

models lying on red lines are generically due to the model effectively becoming a

free paramagnet when quenched from specific Néel like states, due to one of the

sublattices being frozen out.

For all of the lines on Fig. 6.8 which predict the scarred regions, given the

commensurability of the eigenvalue spectrum of C along these lines, it follows

that e−iCT = I for some T. In other words, along these lines of scarred regions,

the operator C may be obtained from logging a periodic unitary and hence these

models may be found via our general construction introduced earlier in this chap-

ter. The numerical work presented in this chapter therefore justifies the assump-

tions of our construction. We note, however, that our simple criterion based on

the non-interacting spectrum of C only serves as a rough indicator of scarring

models, i.e., it overpredicts the number of models as one would expect from a

single-particle criterion. The precise parameter values where such models are re-

alised are determined by the non-trivial interplay between this condition and the

kinetic constraint, i.e., P 0.

6.5 Summary

We have presented a systematic construction of non-integrable PCP models ex-

hibiting quantum many-body scars and decaying wavefunction revivals. The

construction is based on embedding local unitary precession, UT = e−iCT = I,
into an interacting quantum system. The obtained models are expressed in terms

of kinetic constraints which arise in quantum simulators in the Rydberg block-
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ade regime (7, 57, 127). Kinetic constraints of this kind also emerge naturally

in lattice gauge theories, which have recently been realised in periodically driven

optical lattices (42, 115). The strongest reviving models are predicted by con-

sidering the commensurability of C’s eigenvalues. For odd Nc and equidistant

eigenvalues for C, the obtained models revive better than the corresponding spin

s = (Nc − 1)/2 PXP model. Rotating C → X, P → P
′
, our construction

thus provides a prescription for improving PXP revivals. If we do not restrict to

equidistant eigenvalues of C, our construction yields further families of scarred

models not related to PXP by rotation. Further, clock models provide a simple

physical picture of the underlying dynamics – a period of nearly free precession

followed by an interacting bottleneck. This ‘effective drive’ is reminiscent of

kicked systems, where mixed phase space dynamics (both recurrent and thermal-

ising behaviour) can emerge due to the presence of a continuous spectrum in the

Floquet operator (77).

Our construction of many-body scarred models utilising kinetic constraints

is particularly useful as it does not require any knowledge of the underlying

mechanism to be known to yield further scarred models. In particular, one does

not need to decompose a Hamiltonian into a sum of broken Lie algebra generators

or identify embedded subgraphs of the Hamiltonian adjacency matrix, which was

how we constructed further scarred models in previous chapters. While we believe

the mechanism of a broken Lie algebra is still ultimately responsible for scarring

in models obtained via kinetic constraints, due to the nature of the projector

dressing, Eq. (6.2), predicting scarred models based on the commensurability of

eigenvalues of a single site operator is practically much simpler, as evidenced by

the rich diagram of scarred models we have obtained in Fig. 6.8. Indeed, given

the only scarred model to have been realised in experiment is the PXP model

(7), it seems likely that scarred models of the form given in Eq. (6.2) may stand

a better chance of being realised in experiment, in contrast to the scarred models

with non-local interactions obtained in previous chapters.
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Chapter 7

Realising scarred dynamics on

quantum hardware

Until now we have been concerned with the mechanisms which give rise to quan-

tum many-body scars, in particular approximate scars, and have used these in-

sights to construct new models exhibiting weak ETH violation. The purpose of

this chapter, based on currently unpublished work, is to realise the dynamics of a

scarred model experimentally, by utilising current noisy-intermediate scale quan-

tum (NISQ) devices (11). Fault-tolerant quantum computers with large number

of qubits which utilise error-correction (103) do not currently exist. However,

NISQ devices with a few qubits are already being used to simulate quantum

systems (2, 13, 84). Taking advantage of NISQ hardware in the context of many-

body quantum systems (11) is an exciting prospect, nevertheless, given the lack

of reliable error-correction (141), one issue in this approach is to identify candi-

date problems which are sufficiently interesting to warrant their implementation,

while being sufficiently simple such that their implementation does not exceed

current hardware limitations.

Quantum many-body scarred systems seem perfectly suited to NISQ devices:

although these systems feature interesting collective phenomena, the dynamics

when the system is initialised in special states, with large support on the scarred

eigenstates, is a relatively simple oscillation with suppressed growth of entangle-

ment entropy. The suppressed entropy growth exhibited during scarred dynamics
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is particularly appealing from the perspective of NISQ hardware, as it suggests

the states the system evolves into are weakly entangled, such that a shallow

depth unitary circuit should be sufficient to describe them. In this chapter we

focus on implementing the dynamics of the PXP model, initialised in the Néel

state, on current quantum hardware. We begin by providing a numerical justifi-

cation, using classical matrix product state (MPS) techniques (24, 113), for why

we expect the dynamics of the PXP model to be simulable on current quantum

devices. We then proceed to introduce a variational quantum algorithm (20, 35)

to simulate time evolution on NISQ devices. We note we have previously used

the same variational approach to successfully simulate a geometric quench of a

fractional quantum hall system (FQH)) (62, 94). This approach was also fruitful

for the FQH system due to suppressed entropy growth during dynamics, although

the origin of this suppression for the FQH system, emerging from the geometric

quench (41, 44, 142), is distinct from QMBS . Using our variational algorithm, we

obtain dynamical results pertaining to the PXP model from current state of the

art quantum hardware. Quantum computers have currently being implemented

using a variety of architectures, such as IBMQ’s superconducting qubit platform

(52) and IONQ’s trapped ion platform (54). Both of these platforms have shown

promise in the implementation of quantum algorithms (37, 38, 39, 83, 122, 136).

We will use IONQ’s trapped-ion architecture (26) to implement the dynamics of

the PXP model. The all-to-all connectivity of the trapped ion qubits (26) make

this architecture appealing as we will consider the PXP model with periodic

boundary conditions.

7.1 Numerical justification for quantum simula-

tion of the PXP model

Implementing quantum algorithms on current quantum hardware essentially con-

stitutes designing unitary quantum circuits which will be applied to a set of qubits

(20). Each device will have a particular gateset for which the unitary circuit

must be composed from. For example, common single qubit gates include Pauli

rotations and Hadamard gates, while common two qubit entangling gates include
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controlled NOT (CNOT) gates and swap gates (85), see Fig. 7.1. Circuit libraries

including compilers exist, such as Qiskit (53) and pyTKET (98), which abstract

away the details of particular gatesets for specific devices. This frees the end user

to focus on designing the unitary circuits, while the compiler will decompose the

circuit into one and two qubit gates which are available on the desired device the

circuit is to be ran on. Throughout this chapter we use the Qiskit circuit library.

(a)

(b)

(c)

(d)

Figure 7.1: Definitions of various quantum gates used throughout this chapter.
(a) is a single qubit Pauli rotation, where σα are the standard Pauli matrices for
a spin half representation of su(2). (b) is a Hadamard gate, (c) a controlled not
(cNOT) gate, with control on the 1st site and action on the 2nd site and (d) a
swap gate. (c) and (d) are multi-qubit entangling gates, and the presence of such
gates is the primary contribution to the hardware error on current NISQ devices
(11), therefore one should try to minimise the number of these gates in a given
circuit ansatz.

The primary limitation of current quantum devices is the quality of qubits,

notably their effect on the fidelity of multi-qubit entangling gates. Gate fidelity,

in the context of quantum computing, refers to how close the experimentally

realised state, upon application of a quantum gate, is to the state that is to be

expected in theory. It is quantified by the overlap of the expected state with the

experimentally realised state. We refer to deviations from expected results due

to gate fidelity as hardware error. Generally, the application of single qubit gates

have a high fidelity and do not greatly contribute to hardware errors. It is only

the application of multiple qubit entangling gates which are noisy. Therefore, for

NISQ hardware, the likelihood a quantum circuit will produce sensible results as
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opposed to pure noise is inversely proportional to the number of entangling gates

present in the circuit, or, alternatively, the circuit depth. To take advantage of

current NISQ hardware, it is essential to utilise shallow depth circuit, limiting

the number of entangling gates.

We propose that if a many-body quantum system exhibits dynamics featur-

ing suppressed entropy growth, as is the case for quantum many-body scarred

models, then there will exist a shallow depth unitary circuit which is capable

of describing the time evolution of the system. This follows from the fact that

the entropy of a matrix product state (MPS) is bounded by it’s bond dimension

(24, 113). Therefore a weakly entangled state with relatively low entropy will

be well approximated by a low bond dimension MPS. But a low bond dimension

MPS state is equivalent to a low bond dimension matrix product operator (MPO)

acting on a product state, which in turn is equivalent to a shallow depth unitary

circuit acting on a product state.

Throughout the remainder of this section we provide explicit numerical ev-

idence that a shallow depth unitary circuit should be sufficient for simulating

scarred dynamics in the PXP model, by utilising the time-evolving block decima-

tion (TEBD) algorithm (113). TEBD evolves a system by applying a trotterised

matrix product operator, followed by a singular value truncation (113) of the

resulting MPS down to the desired bond dimension. Accuracy of the TEBD al-

gorithm is measured by the cumulative sum of discarded singular values, which

we refer to as the truncation error. A small truncation error indicates the evo-

lution obtained from TEBD is in close agreement with the true evolution of the

system. If we were to evolve some system with TEBD, truncating to a small bond

dimension, yet find a small cumulative truncation error, it follows that a small

bond dimension MPS is capable of parameterising the evolved states. This would

indicate a shallow depth unitary circuit should also be sufficient to describe the

time evolved state.

Fig. 7.2 shows the TEBD cumulative truncation error as a function of system

size and bond dimension for two quenches of the PXP model. Note, due to the

nature of the TEBD algorithm (113), the PXP model considered in this plot

has open boundary conditions. For clarity, the PXP model with open boundary
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(a)

(b)

Figure 7.2: TEBD cumulative SVD truncation error at time t = 20, indicated
by the colour scale, as a function of system size and bond dimension for the
PXP model initialised in either the (a) Néel state |10101....〉 or (b) polarised
state |0000....〉. The quench from the polarised state shown in panel (b) is gener-
ically thermalising, hence the truncation error becomes larger as entropy grows.
However, the quench from the Néel state shown in panel (a) exhibits suppressed
entropy growth and correspondingly has suppressed truncation error relative to
a thermalising quench, indicating a low bond dimension MPO or equivalently a
shallow unitary circuit should be able to express the time evolved states.
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condition has the following Hamiltonian:

H =

(
N−2∑
n=1

Pn−1XnPn+1

)
+X0P1 + PN−2XN−1 (7.1)

where the operators P,X have the same meaning as those given in Eq. (2.41).

Throughout the remainder of this chapter all results will pertain to the PXP

model with periodic boundary conditions, Eq. (2.41), only the TEBD results in

Figs. 7.2, 7.3 correspond to open boundaries. However, given the negligible effect

boundary conditions have as system size grows, the TEBD results still justify the

use of shallow depth circuits for the PXP model with periodic boundaries.

Fig. 7.2(a) shows the TEBD truncation error when initialising the PXP model

in the in the Néel state |10101...〉, which exhibits suppressed entropy growth.

The quench shown in Fig. (7.2)(b) corresponds to initialising the PXP model in

the polarised state |000...〉, which generically thermalises such that the entropy

grows much faster. When quenching from the Néel state the truncation error

for a fixed bond dimension D grows slowly with system size, relative to the

thermalising quench from the polarised state. This indicates a shallow circuit

should be sufficient to simulate dynamics at small system sizes. The truncation

error, although growing slowly with system size, is however still growing, such

that deeper circuits will be required for accurate simulations of larger systems.

However, the necessary depth of a circuit which accurately captures the scarred

dynamics will always be smaller than the depth of a circuit needed to capture

thermalising dynamics at a given system size.

For example, shown in Fig. (7.3) is numerical results for the dynamics of the

PXP model, up to time t = 20, from the two initial states |000...〉 and |Z2〉 at

system size N = 72. These results were obtained using the TEBD algorithm with

bond dimension D = 100. Panel (a) shows the many-body fidelity, panel (b) the

bipartite entanglement entropy and panel (c) the cumulative truncation error,

which indicates how accurate the approximate evolution generated by TEBD is

compared with the true evolution. When quenching from the Néel state, the trun-

cation error with D = 100 remains small, indicating the simulated fidelity, includ-

ing both the oscillatory and decaying components, are accurate up to the latest
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time sampled. Note that while simulations of the PXP model using low bond

dimension have been found to sufficiently capture the frequency of oscillations of

the scarred dynamics (76), it is necessary to go to larger bond dimensions if one

wants to capture the decaying component of the fidelity revivals. On the other

hand, the truncation error of the thermalising quench from the polarised state

|000...〉, obtained with D = 100 begins to grow significantly at time t = O(10).

This indicates the TEBD simulation with D = 100 is not accurate after t ∝ 10

for the polarised state, whereas D = 100 was sufficient to accurately capture

the scarred dynamics of the Néel state up to times t > 20. Understanding bond

dimension as a measure of how deep a unitary circuit would be necessary for

accurate simulation, these results indicate that scarred dynamics will always be

more favourable to simulate vs thermalising dynamics on quantum hardware.

(a)

(b)

(c)

Figure 7.3: PXP dynamics (OBC) at large system size N = 72, obtained using the
TEBD algorithm with bond dimension D = 100 and timestep ∆t = 0.01. (a) is
the many-body wave function fidelity, (b) the bipartite entanglement entropy and
(c) the TEBD cumulative SVD truncation error. Even at such a large system size,
we still observe suppressed growth of entropy and cumulative truncation error
when the system is initialised in the Néel state |1010...〉, relative to a generically
thermalising quench such as from the polarised state |0000...〉.
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7.2 PXP quantum hardware implementation

We wish to construct a unitary circuit which approximates the action of the

propagator for arbitrary times t:

e−iHt|ψ(t = 0)〉 ≈ U(L, ~x(t)) |000...〉 (7.2)

~x(t) are time dependant variational parameters, whereas L is a fixed integer

quantifying the depth of the circuit ansatz. The MPO which is equivalent to

this variational circuit has bond dimension which scales exponentially in L (see

Appendix A.4). Therefore increasing L should yield a more accurate simulation

at later times, when entropy has grown.

There are two sources of error in this approach. First the simulation error,

or how well this unitary circuit approximates the true action of the propagator.

This error is independent of quantum hardware, and may be quantified by the

co-moving fidelity:

C(L, t) = |U(L, ~x(t))|000...〉 − e−iHt|ψ(t = 0)〉| (7.3)

To find the unitary circuit which best approximates the true dynamics, for every

time t, we minimise the co-moving fidelity, treating ~x(t) as variational parameters.

Note increasing L should lead to a smaller global minima from this optimisation

procedure, due to the increasing bond dimension of the matrix product state

manifold this ansatz is sampling.

In addition, there is also the hardware error, which will be affected by the

specific platform we choose to implement the variational circuit ansatz on. While

the quality of qubits and resulting gate fidelity is outside of our control, we can

reduce this error by designing U(~x(t)) to minimise the number of multi-qubit

entangling gates.

148



7.2 PXP quantum hardware implementation

7.2.1 Variational circuit ansatz

To simulate the PXP model initialised in the Néel state, we use the following

circuit ansatz:

UPXP(L, ~x(t)) =
L∏
l=1

[
N−1∏
i=0

e−iPi−1XiPi+1φ
l
i(t)

]
(7.4)

Here φli(t) are time dependent variational parameters which are different at each

site i and in each layer l. The local PXP phase gate present in this ansatz may be

implemented as a Toffoli Rx rotation (doubly controlled Rx), see Fig. 7.4. Note

however that this circuit will act on the polarised state |000....〉, Eq. (7.2). It

follows that some of the controls in the first layer of this ansatz may be discarded,

as they are automatically satisfied with respect to the state they are acting on.

More specifically, both controls may be dropped from the first PXP phase gate

(with phase φ1
0(t)), while a single control may be dropped from all other phase

gates in the first layer except the last one, which requires two controls due to

periodic boundary conditions (ie the controls may be dropped from the gates

with phases φ1
i (t), i ∈ [1, N−2]]). Dropping these controls results in a decrease of

the number of entangling gates, reducing the hardware error. We further reduce

the CNOT count by using a particular decomposition of the Toffoli PXP phase

gate utilising Hadamard gates (Fig. 7.4), such that each PXP phase gate contains

4 CNOTs. The total CNOT count of the ansatz after these considerations is:

#PXP
CNOT(N,L) = 2N(2L− 1) (7.5)

The circuit ansatz considered in Eq. (7.4) is inspired by a parameterised MPS

ansatz used to simulate a semiclassical limit of the PXP model using the time

dependent variational principle (TDVP) (76), which we discussed in Section 3.1.

In the next section we will map the unitary circuit in Eq. (7.4) to an MPS

representation to illustrate this connection. Furthermore the unitary circuit is

structurally very similar to trotterisation (71, 92, 97). The structure of the trot-

terised propagator is equivalent to the variational circuit described in Eq. (7.4),
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Figure 7.4: Decomposition of the local PXP unitary gate, used to implement the
PXP variational ansatz, Eq. (7.4) on IONQ hardware.

with the trotter circuit corresponding to fixing all the variational parameters
~x(t) = t/L. We find that allowing variational freedom in the phases greatly de-

creases the simulation error relative to typical trotterisation, without introducing

any extra hardware error, due to the enhanced optimisation landscape.

7.2.2 Circuit ansatz MPS mapping: relation with PXP

TDVP semiclassical limit

In this section we will demonstrate the single layer L = 1 variational circuit

ansatz, Eq. (7.4), is equivalent to a MPS manifold previously considered to sim-

ulate a semi-classical limit of the PXP model using TDVP. This illustrates why

the ansatz works well with only a few layers, as dynamics in the PXP model

is known to be well approximated by an evolution constrained along a manifold

consisting of small dimension MPS states (76).

To find the MPS state corresponding to the L = 1 circuit ansatz, consider the

state produced by the L = 1 circuit explicitly:

|ψ(~φ)〉 = e−iφN−1PN−2Xn ...e−iφ1P0X1e−iφ0X0 |000...〉 (7.6)
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As we are only considering an circuit of depth L = 1, the subscript l indicating

the circuit layer of the variational parameters φil in Eq. (7.4) are redundant, so

we drop them in the above notation.

Note here we consider the ansatz with open boundary conditions, in contrast

to the periodic form used in Eq. (7.4). This is to make analytical calculations

more tractable, but is sufficient to illustrate the relationship with the previously

considered TDVP MPS ansatz (76), as the difference between boundaries becomes

negligible for increasing system sizes.

We will construct a MPO corresponding to the application of this sequence

of unitaries and from this it is trivial to construct the L = 1 MPS state. To cast

the unitary circuit into the form of a matrix product operator we are seeking a

parametrisation of the tensors W such that the following equality is satisfied:

U(~φ) = e−iPN−2XN−1φN−1 ...e−iP0X1φ1e−iX0φ0 (7.7)

! =
∑
σ,θ

W
σ0σ′0
L,θ1

W
σ1σ′1
θ1θ2

...W
σN−2σ

′
N−2

θN−2θN−1
W

σN−1σ
′
N−1

R,θN−1
|σ〉〈σ′|

Here |σ 〉 = |σ0σ1...σN−1〉 are product states in the spin basis, such that σn cor-

respond to physical indices of dimension 2, whereas θn correspond to the virtual

indices of the MPO, whose dimension is the bond dimension (113).

This parametrisation may be be achieved if the tensors W take the following

form, resulting in an MPO of bond dimensions D = 2:

W 00
L = (cosφ0, 0), W 01

L = (−i sinφ0, 0)

W 10
L = (0,−i sinφ0), W 11

L = (0, cosφ0)

W 00 =

(
cosφn 0

1 0

)
, W 01 =

(
−i sinφn 0

0 0

)

W 10 =

(
0 −i sinφn

0 0

)
, W 11 =

(
0 cosφn

0 1

)
W 00
R = (cosφN−1, 1), W 01

R = (−i sinφN−1, 0)

W 10
R = (−i sinφN−1, 0), W 11

R = (cosφN−1, 1)

Note the bond dimension of the MPO UL grows exponentially as 2L. We
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verify in Appendix A.4 that the bond dimension of the MPS UL|000...〉 also

grows exponentially as 2L, by explicitly verifying it is not possible for a SVD

compression to be carried out on the state UL|000...〉.

From the unitary MPO of the circuit ansatz U(~φ). Eq. (7.7), one can read off

the bond dimension D = 2 MPS corresponding to the state |ψ(~φ)〉 = U(~φ)|000...〉.
The resulting MPS takes the following form:

|ψ(~φ)〉 =
∑
σ,θ

Aσ0
θ0
Aσ1
θ0θ1

Aσ2
θ1θ2

...A
σN−2

θN−3θN−2
A
σN−1

θN−2
|~σ〉 (7.8)

Aσ0=0 = (cosφ0, 0), Aσ0=1 = (0,−i sinφ0)

Aσn=0 =

(
cosφn 0

1 0

)
, Aσn=1 =

(
0 −i sinφn

0 0

)
AσN−1=0 = (cosφN−1, 1), AσN−1=1 = (−i sinφN−1, 0)

Given the MPS representation of our L = 1 circuit ansatz, Eq. (7.8), it is now

possible to reveal the connection with a semiclassical limit of the PXP model

obtained via TDVP. For simplicity, consider the ansatz in Eq. (7.8) with uniform

angles φn = φ ∀n and insert the following gauge transformation:

U =

(
1 0

0 sinφ

)
(7.9)

|ψ(φ)〉 =
∑
σ

(Aσ0)†U−1(UAσ1U−1)(UAσ2U−1)... (7.10)

such that the boundary and bulk tensors are mapped to the new representation:

Ãσ0 = U−1Aσ0 , ÃσN−1 = UAσN−1 (7.11)

Ãσn = UAσnU−1 (7.12)

It follows the L = 1 circuit ansatz with uniform angles is equivalent to the
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following MPS representation:

Ãσ0=0 = (cosφ, 0), Ãσ0=1 = (0,−i) (7.13)

ÃσN−1=0 = (cosφ, sinφ), ÃσN−1=1 = (−i sinφ, 0) (7.14)

Ãσn=0 =

(
cosφ 0

sinφ 0

)
, Ãσn=1 =

(
0 −i
0 0

)
(7.15)

In the large N limit, this is equivalent to an infinite MPS previously used to

study TDVP dynamics in the PXP model (76), for which a mixed phase space was

observed. By permitting site-dependent angles φn and considering ansatz with

L > 1, we expect our ansatz to improve upon the semi-classical approximation

of PXP’s scarred dynamics previously considered with TDVP.

7.3 Results

7.3.1 Classical benchmarking

We benchmark the performance of the variational ansatz introduced in Eq. (7.4)

against the more conventional approach of trotterisation. For every time t, we

perform an optimisation which minimises the co-moving fidelity, Eq. (7.3), using

the SciPy minimisation package, in particular using the Nelder-Mead method.

Trotterisation on the other hand has no free parameters, thus an optimisation

is not necessary. For both approximate methods of evolution, we consider two

layer ansatz (L = 2). The circuit depth of both the variational ansatz and

trotterisation are equivalent, ensuring that each method of evolution would suffer

from the same hardware error.

Fig. 7.5 shows the resulting dynamics, obtained with classical techniques

(exact-diagonalisation), after obtaining optimal variational parameters, at sys-

tem size N = 6. In the limit of exact agreement between the true evolution and

approximate evolution, the co-moving fidelity C(L = 2, t) = 1 for all times. We

find trotterisation is only accurate up to times of the O(1), after which the co-

moving fidelity decays away from 1. The variational ansatz on the other hand is

found to accurately approximate the true dynamics up to the largest time sam-
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Figure 7.5: Classical benchmarking of the variational circuit ansatz, Eq. (7.4),
with L = 2, for simulating scarred dynamics in the PXP model. Left plot corre-
sponds to co-moving fidelity, which should equal 1 for perfect performance. The
right plot shows a local observable (Z =

∑
i Zi) and how well the various ap-

proximations agree with exact dynamics. Trotterisation (also with L = 2) is only
accurate up to times O(1). While the variational circuit is the same depth as the
trotter, it vastly outperforms trotterisation and provides a good approximation
for dynamics, as expected from the suppressed entropy growth of these quenches.

pled, with C(L = 2, t) ≈ 1. Although the variational ansatz is structurally the

same circuit as the trotter circuit, the only difference being the phases of the

local unitary gates, we typically wouldn’t expect varying phases in the trotter

circuit to lead to such a significant improvement in the quality of approximation.

This procedure is working here due to the suppressed entropy growth, such that

the expressibility of the variational ansatz, corresponding to a manifold of low

bond-dimension MPS states, is sufficient to capture the trajectory.

Finally in Fig. 7.5 we also compute the dynamics of a local observable, namely

the total Z magnetisation, Z =
∑

i Zi. As expected, whenever the co-moving fi-

delity C(L = 2, t) ≈ 1, there should be good agreement between true dynamics

and approximate dynamics in any local observable. Indeed this is observed with

the variational ansatz, where the co-moving fidelity remains close to 1. Further-

more, we find the variational ansatz is able to capture the decay of oscillations
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observed in the PXP model, owing to the relevant low bond-dimension MPS

manifold associated with the circuit ansatz.

7.3.2 Hardware result

We use IONQ’s trapped-ion quantum computer to obtain the dynamics of the

total Z magnetisation at N = 6 (Fig. 7.6). To obtain these results, we run the op-

timal variational circuits and measure either the wavefunction fidelity, Eq. (2.43)

or the total Z magnetisation. Note it is only possible to measure the wavefunction

fidelity here as the initial state is a simple product state |Z2〉 = |1010...〉, such

that taking measurements in the Z basis is sufficient to compute this quantity.

This process of applying the unitary circuit and performing measurements is re-

peated a number of times (known as the number of ‘shots’), with the data then

averaged over the shots to obtain the final result.

In general, as expected due to hardware error, we find mixed results from

the quantum hardware. The best hardware result corresponds to the L = 1

variational Ansatz, showing good agreement between hardware result and exact

diagonalisation results. In general, while increasing L should lead to an improve-

ment in the agreement with exact diagonalisation, as demonstrated classically in

Fig. 7.5, in practice, the L = 2 circuit performs worse than the L = 1 circuit,

although it still captures the frequency of oscillations. This is due to the growing

hardware error, as it appears the L = 2 ansatz has too large a circuit depth to

give sensible results on current NISQ hardware. Therefore, although classical

results indicate the variational ansatz is an efficient description of the dynamics

for the PXP model, we find already at N = 6, L = 2 we are reaching the limit of

the capabilities of current NISQ devices.

7.4 Summary

By taking advantage of the suppressed entropy growth typical of quantum many-

body scarred systems, we have simulated the dynamics of one scarred model, the

PXP model, on current NISQ hardware. Utilising a variational quantum algo-

rithm and further optimising the obtained circuit for current NISQ hardware, by
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Figure 7.6: Hardware results of quench dynamics of the PXP model obtained
from IONQ’s trapped-ion quantum computer at N = 6, using 5000 shots. (Top)
is the many-body wavefunction fidelity, Eq. (2.43). (Bottom) is the total Z
magnetisation, Z =

∑
n σ

z
n. Bold blue lines correspond to results obtained from

exact diagonalisation, such that they represent a benchmark for what a ‘correct’
result corresponds to. We see good agreement between hardware and theory with
the L = 1 results, whereas the L = 2 results starts to deviate from the expected
value. While deeper circuits (larger L) perform better in theory (see Fig. 7.5 for
classical results), current qubits are too noisy so that adding additional layers to
the ansatz actually makes performance worse.
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removing redundant multi-qubit entangling gates and using a particular decom-

position of the PXP phase gate (Fig. 7.4), we were able to obtain a time series

of a local observable at N = 6 on IONQ’s trapped ion platform, which has good

agreement with theoretical results.

NISQ hardware is currently very limited as to what problems it can sufficiently

handle. While we certainly have not demonstrated any quantum advantage (2)

with our simulation, we believe quantum many-body scars are an interesting yet

tractable problem to push the limits of current NISQ hardware. This is due

in particular to the unique dynamical properties of quantum many-body scars -

their suppressed entropy growth and coherent oscillatory revivals.
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Chapter 8

Conclusions

Throughout this thesis, we have been concerned with the origin of quantum

many-body scars, a mechanism for weak ergodicity breaking in which there exist

a subset of ETH violating eigenstates in non-integrable models. The presence of

these atypical scarred eigenstates result in the dynamics of QMBS systems being

very sensitive to initial conditions; generic states thermalise and follow ergodic

trajectories, whereas special initial states exhibit coherent oscillatory dynamics.

This is in contrast to strong ergodicity breaking, as observed in integrable systems

or in disordered models exhibiting many-body localisation, for which all initial

states do not thermalise to canonical thermal values and all eigenstates violate

the ETH.

As discussed in Chapter 3, two classes of QMBS models exist, ‘exact scarred’

models and ‘approximate scarred’ models. The former feature scarred eigenstates

which are exactly equidistant in energy, resulting in oscillatory dynamics which

persists up to arbitrarily long times. Approximate scarred systems on the other

hand host scarred eigenstates which are only approximately equidistant in energy.

As a consequence of this energy spacing and the fact that experimentally relevant

initial states in approximate scarred systems also have non zero support on ther-

mal eigenstates, oscillatory dynamics in these systems generally decay, although

on timescales much longer than the thermalisation timescale. Nevertheless, ap-

proximate scarring is the only form of QMBS realised to date in experiment (7),

and the first model studied which led to the discovery of QMBS, the PXP model,

Eq. (2.41) , hosted approximate scarred eigenstates.
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Exact scarred Hamiltonians, as a consequence of hosting eigenstates which are

equidistant in energy, necessarily possess a spectrum generating algebra (SGA)

with respect to some raising operator (Section 3.4.1). Scarred eigenstates are

therefore generally much better understood in these models, as knowledge of

this raising operator of the SGA typically allows one to construct analytical ex-

pressions for the scarred eigenstates (51, 112). For approximate scarred models,

closed form expressions for the scarred eigenstates are typically not known, al-

though high accuracy approximations to them have been constructed (23, 131).

In Chapter 4 we have proposed that approximate QMBS is a consequence of

scarred Hamiltonians being proximate to some related system possessing a spec-

trum generating algebra. Specifically, we have introduced a theory of ‘broken Lie

algebras’, where the spectrum generating algebra corresponds to the root struc-

ture of a Lie algebra. A broken Lie algebra consists of Lie algebra elements which

satisfy the root structure of the appropriate conventional Lie algebra up to the

inclusion of additional error terms, Eq. (4.6). We have introduced metrics which

quantify this error and directly correlates with the quality of scarring, measured

by the magnitude of wavefunction revivals. Hamiltonians of approximate QMBS

are themselves elements of a broken Lie algebra. If no error terms were present

in the commutation relations defining the Lie algebra, their Hamiltonians would

fracture exactly into orthogonal integrable and non-integrable subspaces, due to

a spectrum generating algebra. However, the presence of these error terms pro-

hibits Hamiltonians of approximate QMBS systems from completely fracturing

into this block diagonal form. Instead, they will host a ‘loosely embedded‘ inte-

grable subspace spanned by the scarred eigenstates which is coupled via sparse

matrix elements to the orthogonal thermal subspace. This fracturuing provides

a unifying framework in which the weak ergodicity breaking observed in QMBS

models is similar to a high level of abstraction to other forms of weak ergodicity

breaking, including Krylov-restricted thermalisation (80) and projector embed-

ding techniques (119) (Fig. 3.2). Furthermore, we have proposed an iterative

scheme which enables one to systematically derive perturbations to QMBS mod-

els which correct broken Lie algebras, providing a route to analytically connect

approximate and exact scarred models.

Applying these insights to the PXP model, we have identified QMBS in this
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model is a consequence of the PXP Hamiltonian being an element of a broken

su(2) Lie algebra. Scarred eigenstates responsible for non-ergodic dynamics from

the Néel state |Z2〉 are found to reside in a ‘loosely‘ embedded integrable subspace

spanned by a basis for a particular representation of this Lie algebra. Using our

iterative scheme to identify corrections to this broken Lie algebra, we have recov-

ered perturbations to the PXP model which were previously known to enhance

scarring from the Néel state (23). In addition, our method also allowed us to

derive additional corrections, up to arbitrary order, enhancing scarring from this

state further. By considering different representations of a su(2) Lie algebra, we

have constructed deformations of the PXP model which result in persistent co-

herent dynamics from arbitrary charge density wave initial states |Zn〉, even from

those which did not exhibit non-ergodic dynamics in the original PXP model.

In Chapter 5, we have introduced a complimentary graph theoretic approach

to study the proximity of QMBS systems to models hosting an exact spectrum

generating algebra. Specifically, we consider QMBS whose scarring originates

from broken su(2) Lie algebras. Instead of studying the algebra of generators,

as we did in Chapter 4, we instead propose to investigate the proximity of the

Hamiltonian, interpreted as the adjacency matrix of a graph, to that of a hyper-

cube, which is isomorphic to a free paramagnet hosting an exact SU(2) symmetry.

This approach to studying scarring revealed that QMBS is a somewhat generic

property of quantum walks on partial cubes, that is, hypercubes with vertices

removed, providing certain relevant embedded structures are left in tact, such

as a model of two joined hypercubes relevant for scarring in the PXP model.

By interpolating between the model of two joined hypercubes and the free para-

magnet, we have discovered the PXP model is one of many models along this

interpolation hosting QMBS. While most of these graphs correspond to highly

non-local models, we have constructed families of kinetically constrained models

with local interactions which host QMBS whose origin is intuitively understood

from this graph theoretic approach, due to the relevance of embedded hypercubic

subgraphs. While our analysis has been primarily numerical, it would be inter-

esting to analytically affirm the connection between the emergent su(2) algebra

and the underlying regular subgraph in future work.

Furthermore in Chapter 6, we introduced a systematic construction of approx-
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imate QMBS models, which consisted of embedding the local periodic unitary

dynamics of free models into kinetically constrained, interacting quantum sys-

tems using projector dressings. This resulted in a very simple criteria to predict

if models of this form would host approximate scarring, one needs only consider

the eigenvalues of a single site operator and determine if they are commensurate.

Using this criteria it was possible to map out a phase space of scarred models with

arbitrary local Hilbert space dimension, yielding many new QMBS models. Due

to the form of Hamiltonians obtained via this construction, Eq. (6.2), it seems

apparent that the approximate scarring in these models would also be consistent

with broken Lie algebras, as without the projector dressings the Hamiltonians

produced by this construction would be linear combinations of elements of an

exact Lie algebra. The projector dressing will only serve to produce error terms

from the relevant commutators, breaking the algebra. Nevertheless, an advantage

of this construction is that detailed knowledge of the relevant broken Lie alge-

bra or embedded graph structure is not necessary to determine if a model will

host QMBS, rather only eigenvalues of a small dimensional matrix is relevant to

predict scarring. Given the only QMBS which have been observed experimen-

tally have been approximate scars in a kinetically constrained models (7), models

obtained from this construction may yet prove to be relevant experimentally.

Finally in Chapter 7, we turned our attention from the origin of QMBS to

potential implementations. By taking advantage of the weak ergodicity breaking

and suppressed entropy growth typical of QMBS, we successfully implemented

time evolution of the PXP model on a trapped ion quantum computer, using

a variational quantum algorithm. Therefore QMBS, a non-trivial form of weak

ergodicity breaking, corresponds to an interesting yet tractable problem for cur-

rent near-intermediate scale quantum computers. Our success in this endeavour

indicates the potential to realise additional scarred models on current quantum

hardware. One interesting avenue is if an exact scarred model may be realised

on quantum hardware. With traditional experimental platforms, it is not neces-

sarily obvious which experimental systems are mappable to exact scarred mod-

els. Quantum computers however are universal platforms, with a first guess for

the variational circuit necessary for simulation being obvious from trotterisation.

Given the noisy qubits of current devices, implementation of exact scarred sys-
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tems may even realise approximate scarred counterparts to these models.

The mechanism of broken Lie algebras introduced in this thesis has shed light

on the origin of approximate QMBS, revealing the relationship between QMBS

and other forms of weak ergodicity breaking. However, an important open ques-

tion relates to the closure of the broken Lie algebra – will recursively feeding

higher order error terms back into the broken generators result in an exact spec-

trum generating algebra, such that error terms of the broken lie algebra converge

to zero? Indeed, we have identified two representations where an su(2) algebra

can be made exact (|Z3〉, |Z4〉) after only considering first order error terms. This

would be a difficult problem to tackle analytically, indeed, we had to resort to

a custom symbolic code 1 to compute nested commutators in order to calculate

higher order correction terms to the PXP model. The number of correction grows

exponentially, such that the most fruitful approach would probably be a numeri-

cal scaling of the magnitude of errors. But even tackling this problem numerically

is not trivial, as one would have to optimise the coefficients of the resulting correc-

tions, minimising the magnitude of the error term. With exponential number of

corrections, this classical optimisation becomes a numerically intensive problem.

More generally, there remain several open questions about QMBS. An in-

teresting question for future work is if it is possible to engineer approximate

spectrum generating algebras in a subspace without making use of a Lie alge-

bra, but perhaps more general algebraic structures such as the quantum group

Uq(sl2). Indeed, exact spectrum generating algebras which do not rely on a

Lie algebra root structure has already been observed in the AKLT model (81).

The model possesses a SGA [HAKLT, K
+] = ωK+ and, while the operators

{K+, K− = (K+)†, Hz = 1
2
[K+, (K+)†] form an exact representation of su(2),

the AKLT Hamiltonian itself HAKLT is not a linear combination of the su(2) gen-

erators. Therefore, the SGA does not trivially follow from the root structure and

further the scarred subspace, generated by repeated application of K± on the

AKLT ground state, does not act as a representation of su(2) (81). Moreover, we

have not considered embeddings of higher order su(n) Lie algebras throughout

this thesis, instead restricting only to su(2). We expect this to be increasingly

more difficult compared to su(2), due to the presence of more than one set of

1K. Bull (https://github.com/Cable273/comP).
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raising operators, resulting in multiple error sources where there is no guarantee

that improving errors of one set of raising operators will not exasperate errors in

another set. However, it would seem the construction of scarred models of larger

local Hilbert space dimension introduced in Chapter 6 may potentially give rise

to such models.

In addition, it appears that kinetic constraints play an important role in the

realisation of approximate scarred models. This is intuitively seen in the models

hosting broken Lie algebras considered in this thesis, where kinetic constraint

were directly responsible for the presence of error terms in the root structure of

the algebra. Indeed, virtually all the approximate scarred models considered in

this thesis, either from partial cubes of the free paramagnet (Chapter 5) or from

the embedding of periodic unitary dynamics (Chapter 6) have being kinetically

constrained models. Even for exact scarred models which are not intrinsically

constrained systems, kinetic constraints have been found to emerge in the SGA

raising (51). An interesting question is whether alternate, non trivial routes to

QMBS exist.

Studying QMBS has resulted in a surge of interest in mechanisms of weak

ergodicity breaking in many-bodied quantum systems. Indeed, the discovery of

QMBS was a contemporary example of condensed matter research where new

physics emerged from studying experiment, as opposed to experiment verifying

theory. With the advancement of quantum computing as a platform for sim-

ulating many-bodied quantum systems, one can only hope many more exotic

phenomena may be discovered.
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Appendix A

Appendices

A.1 Broken Lie algebras

A.1.1 PXP Z3 second order su(2) corrections

Here we detail the second order corrections to the embedded su(2) algebra which

improves Z3 revivals in the PXP model (Eq. (2.41)), obtained by our recursive

scheme summarised in Fig. 4.1. As with the Z2 case (Section 4.4.1), the second

order error term δ(2) emerging from the commutator in Eq. (??) may be expressed

as a linear combination of individual error terms δ(2),n:

δ+
(2) =

∑
n

αnδ
+
(2),n (A.1)
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The individual error terms, only considering those which include a single spin

flip, take the following form:

δ+
(1),0 = PPσ−3nP + Pσ−3nPP + PPσ+

3n+1P + Pσ+
3n+2PP,

δ+
(2),1 = PPσ−3nPP, (A.2)

δ+
(2),2 = Pσ−3nPσ

zP + PσzPσ−3nP, (A.3)

δ+
(2),3 = Pσ−3nPσ

zPP + PPσzPσ−3nP, (A.4)

δ+
(2),4 = Pσ+

3n+1PP + PPσ+
3n+2P, (A.5)

δ+
(2),5 = PPσ+

3n+1PP + PPσ+
3n+2PP, (A.6)

δ+
(2),6 = Pσ+

3n+1PPP + PPPσ+
3n+2P, (A.7)

δ+
(2),7 = Pσ+

3n+1Pσ
zP + PσzPσ+

3n+2P, (A.8)

δ+
(2),8 = Pσ+

3n+1PQP + PQPσ+
3n+2P, (A.9)

δ+
(2),9 = PPσ+

3n+1PPP + PPPσ+
3n+2PP, (A.10)

δ+
(2),10 = PPσ+

3n+1Pσ
zP + PσzPσ+

3n+2PP, (A.11)

δ+
(2),11 = Pσ+

3n+1Pσ
zPP + PPσzPσ+

3n+2P (A.12)

δ+
(2),12 = PPσ+

3n+1PQP + PQPσ+
3n+2PP, (A.13)

δ+
(2),13 = PPσ+

3n+1Pσ
zPP + PPσzPσ+

3n+2PP, (A.14)

δ+
(2),14 = PPPσ+

3n+1P + Pσ+
3n+2PPP, (A.15)

where Q ≡ |1〉〈1|. δ(1),0 corresponds to the first order error term previously

discussed in Section 4.5, while δ(2),n) are the individual contributions to the second

order error term. Perturbations to the PXP Hamiltonian follow from V(n),m =

δ+
(n),m + (δ+

(n),m)†. Optimising the coefficients of these terms at N = 16, we find

maximal wave-function revivals occur for the following values:

λ∗i =[0.1630, 0.1129, 0.0228, 0.0409, 0.0871, 0.0046,−0.0303,−0.0144,

− 0.0592, 0.0005, 0.0223,−0.0185,−0.0451, 0.0101, 0.0035] (A.16)
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Thus, the dominant perturbations to the PXP Hamiltonian which enhance Z3

revivals up to second order are:

V1 = PPσx3nP + Pσx3nPP + PPσx3n+1P + Pσx3n+2PP, (A.17)

V2 = PPσx3nPP. (A.18)

A.1.2 Z4 Revivals from su(2) Algebra

In Chapter 4, we have discussed how the PXP Hamiltonian, Eq. (2.41), hosts

a broken Lie algebra, and by seeking corrections to this Lie algebra we have

derived perturbations to the PXP Hamiltonian which enhance revivals from both

the |Z2〉 and |Z3〉 states. However, unlike |Z2〉 and |Z3〉, quenches from |Z4〉 =

|10001000...〉 do not result in a reviving wavefunction beyond system size N & 20

in the original PXP model. Furthermore, when quenching from |Z4〉, expectation

values of local observables equilibrate as expected from the ETH (31, 131), such

that there appear to be no scarred dynamics associated with the |Z4〉 state.

Nevertheless, in this appendix, we show that our Lie algebra approach identi-

fies deformations to the PXP model which fixes a new su(2) algebra, engineered

such that |Z4〉 is the lowest weight eigenstate of some H̄z, rather than |Z2〉, |Z3〉
as seen previously. While the subspace variance of this representation is too large

to witness observable revivals in the PXP model, by fixing the algebra we realise

new models which do exhibit Z4 revivals.

In direct analogy with the Z2 and Z3 cases, we define the raising and lowering

operators of a broken su(2) Lie algebra associated with the |Z4〉 state as:

H̄+ =
∑
n

(
σ̃−4n + σ̃+

4n+1 + σ̃+
4n+2 + σ̃+

4n+3

)
, (A.19)

H̄− =
∑
n

(
σ̃+

4n + σ̃−4n+1 + σ̃−4n+2 + σ̃−4n+3

)
, (A.20)
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which, in turn, define H̄z = 1
2
[H̄+, H̄−] that evaluates to

H̄z =
∑
n

(
−σ̃z4n + σ̃z4n+1 + σ̃z4n+2 + σ̃z4n+3

)
+

1

2

∑
n

(
P4nσ

+
4n+1σ

−
4n+2P4n+3 + P4nσ

−
4n+1σ

+
4n+2P4n+3

+ P4n+1σ
+
4n+2σ

−
4n+3P4n+4 + P4n+1σ

−
4n+2σ

+
4n+3P4n+4

)
. (A.21)

Similar to previous cases, |Z4〉 is the lowest weight state of H̄z and it is found that

{H̄z, H̄+, H̄−} form a broken representation of su(2), as defined by Eq. (4.6). Er-

rors in the root structure, for which we give an exhaustive list in Appendix A.1.3,

suggest the following perturbations to the PXP model are necessary to stabilise

Z4 revival:

V1 =
∑
n

P4nσ
x
4n+1σ

x
4n+2σ

x
4n+3P4n+4, (A.22)

V2 =
∑
n

(
P4n−1σ

x
4nσ

x
4n+1σ

x
4n+2P4n+3 + P4n+1σ

x
4n+2σ

x
4n+3σ

x
4n+4P4n+5

)
,(A.23)

V3 =
∑
n

(
P4nP4n+1σ

x
4n+2P4n+3 + P4nσ

x
4n+1P4n+2P4n+3

+ P4n+1P4n+2σ
x
4n+3P4n+4 + P4n+1σ

x
4n+2P4n+3P4n+4

)
, (A.24)

V4 =
∑
n

(
P4n−2σ

x
4n−1P4nP4n+1 + P4n−1P4nσ

x
4n+1P4n+2

+ P4n−1σ
x
4nP4n+1P4n+2 + P4n+2P4n+3σ

x
4n+4P4n+5

)
. (A.25)

Explicit optimisation finds that the terms in Eqs. (A.22)-(A.25) can stabilise

Z4 revivals, but some of the resulting optimal coefficients turn out to be of the

order unity. Therefore we arrive at a model that cannot be viewed as a small

deformation of the PXP Hamiltonian, but rather a new model in its own right.

It is intuitive a strong deformation of the PXP model is necessary to engineer

revivals from the Z4 state, given the original PXP model did not exhibit any

revival from this state. Specifically, optimising Vi coefficients λi for fidelity we

find (at N = 16)

λ∗i = [0.0008,−1.43, 0.0979, 0.0980], (A.26)
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True Scars

Figure A.1: Z4 revivals in PXP model, enhanced by terms which correct a partic-
ular representation of a broken su(2) Lie algebra. (a) Eigenstate overlap with |Z4〉
state for PXP model. (b) Eigenstate overlap with |Z4〉 state after including first
order su(2) corrections, Eqs. (A.22)-(A.23). (c) Eigenstate overlap after including
second order su(2) corrections (see Appendix A.1.3). (d) Z4 quench fidelity. |Z4〉
state does not revive in pure PXP model, but it does revive in the new model
obtained by correcting the su(2) algebra. (e) Bipartite entropy, Eq. (2.21), of
eigenstates of the PXP model after including second order Z4 su(2) corrections.
Points labelled ‘True Scars’ are exact diagonalisation results identified from the
top band of states in (c). Red crosses in (a), (b), (c), (e) indicate approximate
scar states obtained by projecting the Hamiltonian to the broken representation
basis and diagonalising. Colour scale in (a), (b), (c), (e) indicates the density of
data points, with lighter regions being more dense.
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Order 1− f0 σ/Dsu(2) max(var(Hz)n) K
n = 0 9.993×10−1 3.333×100 2.779×100 4.323×100

n = 1 5.814×10−5 6.722×10−4 7.902×10−4 3.258×10−3

n = 2 3.351×10−9 9.746×10−6 2.753×10−4 1.534×10−3

Table A.1: Error metrics for the Z4 su(2) subspace of the PXP model at various
perturbation orders for N = 24. Subspace variance σ is normalised by the dimen-
sion of the su(2) representation, N/2+1. See text for details of the perturbations.
Errors at n = 0 are much worse than n = 0 Z2,Z3 errors (compare with Table 4.1
and Table 4.2), consistent with there being no revivals or Z4 scars in pure PXP
model.

where we see the coefficient of optimal V2 is ∼ O(1). Once again, second order

perturbations can be identified from the Lie algebra and revivals enhanced further

(see Appendix A.1.3 for details of the 36 terms and optimal coefficients – note

only 3 terms contribute significantly with O(1) coefficient after optimising for

revivals). The effect of these perturbations is summarised in Fig. A.1. Error

metrics at various perturbation orders are given in Table A.1. The second order

deformations leave the model non-integrable, which we verify from the mean level

spacing 〈r〉 = 0.5271 at N = 24, consistent with an ergodic system.

Exact Z4 su(2) embedding

Here we note that similar to Z3 case in Section 4.5, there exists a deformation

of the PXP model such that |Z4〉 is the lowest weight state of an exact su(2)

representation. This model is obtained by redefining the raising operator in

Eq. (A.19) according to

H̄+ → H̄+ − V2

= H̄+ −
∑
n

(
P4n+3σ

−
4n+4σ

+
4n+5σ

−
4n+6P4n+7 + P4n+1σ

−
4n+2σ

+
4n+3σ

−
4n+4P4n+5

)
,

(A.27)
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t
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〈σ
2i

(t
)σ

2i
(0

)〉
PXP Z4 Strong deformation, N = 20

|00000000...〉
|10000000...〉
|10001000...〉

Figure A.2: Local autocorrelation function 〈σz2i(t)σz2i(0)〉 of the model given by
Eq. (A.28), for various initial states given in the legend. Results are for N = 20.
We consider sites 2i as the translation symmetry of Eq. (A.28) is broken to a
subgroup corresponding to translations by two units. Generic initial states such
as the polarised state |000...〉 equilibrate, whereas the autocorrelation function
exhibits non stationary behaviour for all times when the system is initialised in
the |Z4〉 = |10001000...〉 state.

which yields the Hamiltonian:

H =
∑
n

Pn−1σ
x
nPn+1 −

∑
n

(
P4n+3σ

x
4n+4σ

x
4n+5σ

x
4n+6P4n+7 + P4n+1σ

x
4n+2σ

x
4n+3σ

x
4n+4P4n+5

)
.

(A.28)

This model features an exact spectrum generating algebra (SGA), Eq. (3.33),

within the su(2) subspace, with the symmetry generator taking the same form as

Eq. (4.60). However, unlike the Z3 example of an exact SGA (Section 4.5.2), the

computational basis which satisfies the Rydberg constraint does not fracture into

exponentially many sectors. There still exists an exact Krylov subspace generated

by repeated application of the Hamiltonian on |Z4〉 which is block diagonal with

respect to the orthogonal thermalising subspace, such that this model fractures

into the block diagonal form shown schematically in Fig. 3.2(c). We verify the

model is still thermalising in the orthogonal subspace by computing the mean

level spacing 〈r〉 = 0.5365 at N = 24, consistent with level spacings obeying the
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Wigner-Surmise distribution as expected of an ergodic subspace.

As a consequence of the exact su(2) embedding the |Z4〉 state revives per-

fectly, whereas generic initial states from the orthogonal sector still thermalise

as expected from the ETH. Thus, local observables and local autocorrelation

functions, which generically equilibrate, may exhibit long-lived non-stationary

behaviour following a quench from |Z4〉, Fig. A.2.

A.1.3 PXP Z4 second order su(2) corrections

For completeness, here we provide the full list of the 36 second order corrections

to the embedded su(2) representation responsible for Z4 revivals. These terms

are identified by an iterative scheme summarised in Fig. 4.1. We do not consider

every term which contributes an error to the broken Lie algebra but restrict to

the subset of terms containing a single spin flip. Note, at second order only three

perturbations to H+ (Eq. A.19) dominate with coefficient O(1) after optimising

for Z4 revivals. These are found to be:

δ+
1 = PPQPσ+

4n+3P + Pσ+
4n+1PQPP, (A.29)

δ+
2 = PPσ+

4n+2PP, (A.30)

δ+
3 = PPσ+

4n+2Pσ
zPP + PPσzPσ4n+1PP. (A.31)

Optimising the coefficients of all 36 terms with respect to Z4 fidelity revivals at

N = 16 we find the coefficients of the above three terms are [1.5621, 1.9337,−1.4312].

Before listing the full set of perturbations, we first introduce the following abbre-

viated notation:

ABC..., n, m =
∑
i

Ani+mBni+m+1Cni+m+2...,

where n is understood as the periodicity of the repeating unit while m is the offset

of the far left operator. Listing multiple terms for a given perturbation is to be

understood as implicitly implying addition. The complete set of second order Z4
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su(2) corrections to H+ are as follows:

δ+
(2),1 = PPσ+P, 4, 3

Pσ+PP, 4, 2

Pσ−PP, 4, 3

PPσ−P, 4, 2 (A.32)

δ+
(2),2 = PPσ+PP, 4, 3

PPσ+PP, 4, 1 (A.33)

δ+
(2),3 = PPPσ+P, 4, 3

Pσ+PPP, 4, 1 (A.34)

δ+
(2),4 = PPQPσ+P, 4, 3

Pσ+PQPP, 4, 0 (A.35)

δ+
(2),5 = Pσ−PQP, 4, 3

PQPσ−P, 4, 1 (A.36)

δ+
(2),6 = P − PσzP, 4, 3

PσzPσ−P, 4, 1 (A.37)

δ+
(2),7 = P − PσzPP, 4, 3

PPσzPσ−P, 4, 0 (A.38)

δ+
(2),8 = PσzPσ+P, 4, 3

Pσ+PσzP, 4, 1 (A.39)

δ+
(2),9 = Pσ+PPP, 4, 2

PPPσ+P, 4, 2 (A.40)

δ+
(2),10 = PPσ+PPP, 4, 1

PPPσ+PP, 4, 2 (A.41)

δ+
(2),11 = PσzPσ+PP, 4, 3

PPσ+PσzP, 4, 0 (A.42)

δ+
(2),12 = PPσ−PP, 4, 2 (A.43)
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δ+
(2),13 = PPσ+P, 4, 0

Pσ+PP, 4, 0

PPσ+P, 4, 1

Pσ+PP, 4, 1 (A.44)

δ+
(2),14 = PPσ+PP, 4, 0 (A.45)

δ+
(2),15 = Pσ+PPP, 4, 0

PPPσ+P, 4, 0 (A.46)

δ+
(2),16 = Pσ+PQP, 4, 0

PQPσ+P, 4, 0 (A.47)

δ+
(2),17 = PPQPσ−P, 4, 0

Pσ−PQPP, 4, 3 (A.48)

δ+
(2),18 = PPσ+PPP, 4, 0

PPPσ+PP, 4, 3 (A.49)

δ+
(2),19 = PQPσ+P, 4, 3

Pσ+PQP, 4, 1 (A.50)

δ+
(2),20 = PPσzPσ+P, 4, 2

Pσ+PσzPP, 4, 1 (A.51)

δ+
(2),21 = Pσ−PPP, 4, 3

PPPσ−P, 4, 1 (A.52)

δ+
(2),22 = PσzP + P, 4, 0

Pσ+PσzP, 4, 0 (A.53)

δ+
(2),23 = PσzPσ+PP, 4, 0

PPσ+PσzP, 4, 3 (A.54)

δ+
(2),24 = PPσ−PPP, 4, 2

PPPσ−PP, 4, 1 (A.55)
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δ+
(2),25 = Pσ+PσzPP, 4, 0

PPσzPσ+P, 4, 1

PPσzPσ+P, 4, 3

Pσ+PσzPP, 4, 2 (A.56)

δ+
(2),26 = PσzPσ+P, 4, 2

Pσ+PσzP, 4, 2 (A.57)

δ+
(2),27 = PPσ+PσzP, 4, 1

PσzPσ+PP, 4, 2 (A.58)

δ+
(2),28 = PPPσ+PP, 4, 0

PPσ+PPP, 4, 3 (A.59)

δ+
(2),29 = PPσ−PσzP, 4, 2

PσzPσ−PP, 4, 1 (A.60)

δ+
(2),30 = Pσ+PPPP, 4, 0

PPPPσ+P, 4, 3 (A.61)

δ+
(2),31 = PPσzPσ−PP, 4, 0

PPσ−PσzPP, 4, 2 (A.62)

δ+
(2),32 = PPσzPσ+PP, 4, 1

PPσ+PσzPP, 4, 1 (A.63)

δ+
(2),33 = Pσ+PPPP, 4, 2

PPPPσ+P, 4, 1 (A.64)

δ+
(2),34 = PPσzPσ+PP, 4, 3

PPσ+PσzPP, 4, 3 (A.65)

δ+
(2),35 = Pσ+PPPP, 4, 1

PPPPσ+P, 4, 2 (A.66)

δ+
(2),36 = PPσ+PσzPP, 4, 0

PPσzPσ+PP, 4, 2 (A.67)
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Perturbations to the PXP Hamiltonian (Eq. 2.41) follow from V(2),m = δ+
(2),m +

(δ+
(2),m)†. Optimising coefficients of these terms at N = 16 with respect to the

first maximum of |〈Z4|e−iHt|Z4〉|2 at N = 16 we find:

λ∗i = [0.0888, 0.2559, 0.0796, 1.5621,

0.1776,−0.0028,−0.0325, 0.0099,

0.1333, 0.0321,−0.0148, 0.1490,

0.0728, 1.9337, 0.0001, 0.0587,

0.0902, 0.0001, 0.1109, 0.0104,

0.0468, 0.0277,−0.0023, 0.1046,

0.0667, 0.0299, 0.0437, 0,

0.0031, 0.0002,−0.0189, 0.0995,

0.1531, 0.0001, 0.0001,−1.4312]. (A.68)

A.2 Embedded hypercubes

A.2.1 Hypergrid subgraphs in the (2,3) model

The key difference between the PXP and (2,3) models can be traced to the un-

derlying subgraph associated with the revivals from the Néel and |11001100 . . .〉
initial states. While in the PXP and other models studied up to this point the

relevant subgraph was a union of hypercubes sharing a single vertex (Section 5.4),

in the (2,3) model we find a different type of subgraph consisting of two hypergrids

of dimension N/2. A hypergrid graph arises as the adjacency matrix of a spin-1

free paramagnet, in contrast to a hypercube which is the adjacency matrix of a

spin-1/2 free paramagnet. In this section, we provide analytical and numerical

evidence that the hypergrid subgraphs are indeed responsible for the atypical

dynamics and many-body scarring in the (2,3) model.
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Proof of the existence of two hypergrids in the (2,3) graph

A hypergrid graph Gd
m is defined as the Cartesian product

Gd
m = Lm�Lm� . . .�Lm︸ ︷︷ ︸

d

, (A.69)

where Lm stands for a linear graph of order m (with m vertices) and we are only

interested in hypergrids with the same order in all dimensions. For example, the

hypergrid Gd
2 is simply the hypercube of dimension d. Similarly, the hypergrid

graph Gd
2S+1, having 2S + 1 states in each dimension, is isomorphic to an un-

weighted graph of a free spin model with d spin-S degrees of freedom. This is

because each vertex of Gd
m can be labelled by a string {1, 2, . . .m}d, and only

vertices with a single site differing by 1 are connected by an edge. Note that

for S>1 the matrix elements of the free spin-S model Hamiltonian are no longer

equal, and the model can no longer be described solely by an unweighted graph.

We will not consider such cases in this paper.

Next we show that there are two distinct hypergrids G
N/2
3 that can be iden-

tified as subgraphs of the (2,3) model. One of these hypergrids is sketched in

Fig. A.3. The proof is based on grouping sites into pairs (70, 118). Let us first

Figure A.3: Adjacency graph of the (2,3) model for system size N=6. The
subgraph associated with many-body scarring is outlined in black, while the Néel
states are shown in red. Blue vertices denote bridges connecting vertices in the
subgraph. The subgraph is isomorphic to a hypergrid G

N/2
3 . Note that there are

two such hypergrids, but for clarity only one of them is highlighted here.
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define the states |o〉 = |00〉, |L〉 = |10〉, |R〉 = |01〉, |2〉 = |11〉. In this formula-

tion, the only forbidden configurations are |2L〉, |R2〉, and of course |22〉. The

Hamiltonian acting on the N/2 pairs of sites can be written as

H(2,3) =

N/2∑
b=1

hb−1,b,b+1, (A.70)

where the local Hamiltonian term is

hb−1,b,b+1 = 1⊗
(
|o〉 〈R|+ |R〉 〈o|

)
⊗
(
1− |2〉 〈2|

)
+
(
1− |2〉 〈2|

)
⊗
(
|o〉 〈L|+ |L〉 〈o|

)
⊗ 1

+
(
|o〉 〈o|+ |L〉 〈L|

)
⊗
[
|L〉 〈2|+ |2〉 〈L|

+ |R〉 〈2|+ |2〉 〈R|
]
⊗
(
|o〉 〈o|+ |R〉 〈R|

)
.

(A.71)

Let us take N=8 as an example. Start from the Néel state |Z2〉 = |10101010〉
and group the cells into pairs (1, 2), (3, 4), (5, 6) and (7, 8). Then |Z2〉 = |LLLL〉
and every pair of sites can be freely flipped |L〉� |o〉� |R〉, like a spin 1. This

means that there is a hypergrid graph G4
3 between the Néel state |LLLL〉 and the

anti-Néel |RRRR〉. It is important to note that while in the (2, 3) model under

some condition the flips |L〉� |2〉 and |R〉� |2〉 are possible, they correspond to

bridging out of this hypergrid graph. Beyond the Néel states, we would expect to

also see revivals from other corners of this hypergrid, i.e., from states in which all

cells have an extremal value (either L or R). Indeed, this would mean that all cells

would precess freely with the same frequency. However, the only other corners of

this graph that have no edges going out of the hypergrid are |LRLR〉 = |10011001〉
and |RLRL〉 = |01100110〉. Indeed, from Eq. (A.71), one can see that any LLR or

LRR configuration can be changed to an L2R one which is not in the hypergrid.

Alternatively, the sites can be paired up as (8, 1), (2, 3), (4, 5) and (6, 7).

In this case the Néel state is |RRRR〉 and the same spin-1 argument holds.

However, this hypergrid graph G4
3 is different from the last one, as can be seen

by looking at the corners |LRLR〉 = |00110011〉 and |RLRL〉 = |11001100〉. In

the first formulation these states would be |o2o2〉 resp. |2o2o〉, which are not in

the corresponding hypergrid graph.
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The two hypergrids identified above are not equivalent but share several ver-

tices, and their union can be taken as a model on its own, which we refer to as

‘2HG’ model. In fact all states with no neighbouring excitations belong to both

hypergrids, so their intersection gives back the PXP graph. Because of this, the

total number of states in the 2HG model is asymptotically given by 3N/2 − φN ,

where φ is the Golden Ratio.

A single hypergrid has perfect state transfer and revivals from any corner state.

While the revivals in the 2HG graph are no longer perfect, they are still present

with a similar frequency. The two Néel states are corners of both hypergrids

and they are the best reviving basis states in the (2,3) model, while the states

|110011 . . . 1100〉 are all corner of only one of the hypergrids and their revivals are

found to be weaker, as expected from their position in the graph. All other basis

states are either not corners of these hypergrids or they have additional edges

extending out of the 2HG, and thus they are not expected to revive. Finally, if

N is even but not a multiple of 4, the two Néel states are the only reviving ones,

as all other corners of the hypergrid have edges going outside of it.

Numerical evidence for the relevance of hypergrids for many-body scar-

ring

In Fig. A.4, we numerically test the relevance of the 2HG subgraph for many-body

scarring in the (2,3) model. We compare the dynamics and eigenstate properties

in the (2,3) model with their projection into the 2HG model. In both models, we

observe revivals of the wave function, with similar frequencies, see Fig. A.4(a).

However, the amplitude of revivals decays more rapidly in the 2HG model com-

pared to the (2,3) model. This difference can be related to the eigenstate overlap

with the Néel state shown in Fig. A.4(b). The overlap between the Néel state and

the eigenstates of the (2,3) model shows clear tower structures with an energy

spacing close to that in the 2HG model. However, in the 2HG model there is no

top band of states that is well-separated from the bulk like in the (2,3) model

or the PXP model in Fig. 5.8. Thus, the revivals decay faster as more states

participate in the dynamics.

The hypergrids also seem to play an important role in stabilising the first step
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Figure A.4: Scarred dynamics and eigenstate properties in the (2,3) model and
its 2HG subgraph. (a) The revivals from the Néel state have very close frequency
in the two models, but their decay is more pronounced in 2HG model. This can
be attributed to the absence of a well-separated band of scarred eigenstates for
this model, as can be seen in (b). Data is for system size N=24.

of the FSA. Indeed, because of the constraint it is possible to add excitations to

a state already in the second Hamming layer. This means that only the first step

of the FSA is the same as in the two-hypercube model. Based on that we would

expect to only have a single exact FSA step and thus poor revivals as in (3,4)

and (4,5) models. However, in practice we observe that the first two FSA steps

are exact, as is also the case in the 2HG model.

The bridges added on top of 2HG to form the (2,3) model seem to stabilise

the revivals from the Néel state. The exact mechanism by which this happens

is unclear to us, however we believe that the mechanism is non-generic as the

addition of random bridges is found to consistently lead to poorer revivals. At the
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same time, the revivals from most other states are destroyed by additional bridges.

As we demonstrate in the next section, this mechanism of revival stabilisation

due to a small density of bridges is also realised in the two-hypercube model

describing the many-body scarring in the PXP model.

A.2.2 Random bridges on two connected hypercubes

In order to test how sensitive our conclusions in Chapter 5 are to the details

of the graph structure, we devised a protocol for random sampling of models

that interpolate between two joined hypercubes and the full hypercube. As two

joined hypercubes of dimension N/2 are contained in a hypercube of dimension

N , the protocol works by adding back states from the full hypercube to the two

smaller hypercubes. In order to match the constraints in the considered models,

at each step the Hamiltonian can be written as Eq. (2.27) with constraints only

on excitations (meaning that it is always possible to remove excitations) and with

translation symmetry conserved. The process also ensures that the graph remains

unweighted, i.e., the matrix elements of the Hamiltonian are all equal.

To formalise the protocol, let us denote each basis state by a binary string

u∈BN , with B=0, 1. Consider two states u and v; we say that u≤v if ui≤vi for

i=1 through N . This is strictly equivalent to saying that u can be obtained by

only removing excitations from v. Then, in all these models, if v∈G and u≤v,

then u∈G as well. Because an excitation can always be removed, all these models

are ‘daisy cubes’ (63):

Definition 1. A daisy cube is defined by a N dimensional hypercube graph GN
2

and a set of states X, such that all elements of X are in GN
2 . Then the set of

vertices in the corresponding daisy cube is defined as V (GN
2 (X)) = {v ∈ GN

2 |∃x ∈
X s.t v ≤ x}. The graph GN

2 (X) is the subgraph of GN
2 induced by V (GN

2 (X)).

Equivalently, there is an edge between two states in GN
2 (X) if their strings differ

by a single element.

This formulation also implies that different sets X can correspond to the same

graph. In particular, if x, y ∈ X and y ≤ x, then GN
2 (X) = GN

2 (X\{y}). However

it is clear that there exists a unique set X̂ of maximal vertices such that it has
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the minimum cardinality of all sets representing the same daisy cube. For the

PXP model in Eq. (2.41) with N=6 for example, the maximal vertices set is

X̂PXP,N=6 = {101010, 010101, 100100, 010010, 001001}.

The graph which has H as its adjacency matrix is the daisy cube G6
2(X̂PXP,N=6).

We will use the binary string and daisy cubes notations to define the sampling

algorithm. The translation operator T acts on the strings as (Tu)i=ui−1, with

periodic boundary conditions such that uN=u0. Because of translation symmetry,

the two stitched hypercubes correspond to the daisy cubeGN
2 (X), X = {Z2, TZ2},

where Z2 is the Néel state 1010 . . . 10. The hypercubes are added in increasing

dimension from k=2 to k=N , and after each addition the revivals from the Néel

state are computed. The interpolation parameter λ is also computed at each step,

as defined in Eq. (5.27) in the Chapter 5. The exact algorithm is :

Algorithm 1 Random bridges on 2 hypercubes

Set X = {Z2, TZ2}
Set the graph as G = GN

2 (X)
Set k = 2
while k ≤ N do

Pick u ∈ GN
2 such that

∑N
i=1 ui=k, u � Z2 and u � TZ2

if u ∈ G then
k = k + 1

else
for r = 0 to N − 1 do

X = X ∪ {T ru}
end for
Update the graph as G = GN

2 (X)
Get the Hamiltonian as H = Adj(G)
Compute λ(G)
Compute the revivals from the Néel state

end if
end while
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A.2.3 The effect of low-density bridges on the two con-

nected hypercubes

In Chapter 5 we showed that adding bridges to the two-hypercube model at first

leads to an increase of revival fidelity at small λ, before a decrease at larger λ

values. In this section we examine in detail the former regime and show that it

can be understood as a tuning of the symmetric and anti-symmetric sectors of

the two-hypercube model.

We focus on the first steps of the algorithm described in Appendix A.2.2, when

the number of excitations of the vertices added is equal to 2. We will refer to these

as bridges of dimension 2. As all states with two excitations on the same sublattice

are already in the two hypercubes, all vertices added will have one excitation on

each sublattice. These states are all located on the Hamming layer N+1, the same

Hamming layer as the shared vertex that contains no excitations. Intuitively, in

the many-body picture one can think these new states as helping ‘spread’ the

support of the wave function on several states instead of just ‘funnelling’ the

wave function onto a single state, |000 . . . 000〉. This means that even if the wave

function still reflects from this vertex, the reflected part of the wave function will

have smaller magnitude, as there is no longer a high concentration of the wave

function on this vertex – see Fig. A.5(a). However, as more bridges of dimension

two are added, the degree of the vertices in the Hamming layers N and N + 2

increases, and this could lead to reflection in this layer. In order to completely get

rid of reflection one would need a smooth coupling profile, which can be achieved

by also adding vertices in other Hamming layers, like in the PXP model. This

would help get rid of reflection but at the price of having an inexact FSA. This

is in line with what we observe as random bridges are added: no reflection but a

leakage outside the FSA subspace.

For two-dimensional bridges, enforcing translation symmetry has the effect

of modifying the edges between the Hamming layers N , N+1 and N+2 in an

isotropic fashion. As a consequence, the FSA remains exact but the middle cou-

plings are changed. Normally, both of these couplings are equal to βmiddle=
√
N ,

however adding V vertices changes the coupling to βmiddle=
√
N + V/N . In or-

der to simplify computations, let us assume that N is even. Then there are
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Figure A.5: Fidelity of revivals and reflection for two linked hypercubes of di-
mension N=300 as two-dimensional bridges are added. (a) Maximum fidelity of
the reflection peak. (b) Fidelity of revivals with respect to the period difference
between the symmetric and antisymmetric sectors.

N/2 bridges that can be added such that they are not equivalent under transla-

tion, and adding any of these implies adding 2N vertices. This means that the

middle FSA couplings can take values βmiddle=
√
N + n, n=0, 2, 4, . . . , N , hence√

N≤βmiddle≤
√

2N . Furthermore, it means that details of the bridges do not

matter, but only their number. So all random processes will be identical if only

hypercubes of dimension 2 are added. The results of this process for two joined

hypercubes of different sizes can be seen in Fig. A.5 (b), where the colour indicates

the density of these bridges.

The results in Fig. A.5 can be understood in terms of the the two symmetry

sectors mentioned in Section 5.4. Indeed, the bridges considered here only affect

the symmetric sector, changing its coupling between the last two states from√
2N to

√
2(N + n). This reduces the revival period of this sector, making it

closer to the period of the anti-symmetric sector until it overshoots and makes

them further apart. This can be seen in Fig. A.5, where the correlation between

184



A.3 Kinetically constrained scarred models: analytical derivation of
Nc = 4 scarred regions

the density of bridges n/N , the revival fidelity, and the period difference between

the sectors is apparent. This also makes the reflection peak much smaller, as the

two sectors almost exactly cancel out at T ≈ π. The only thing preventing the

reflection to be exactly 0 is the difference of revival amplitude between them.

A.3 Kinetically constrained scarred models: an-

alytical derivation of Nc = 4 scarred regions

In Chapter 6, we presented a diagram, Fig. 6.8, showing regions of phase space

of models of the form H =
∑

n P
0
n−1CnP

0
n+1 with local Hilbert space dimension

Nc = 4 which host QMBS. We noted that optimal models in these diagrams

could be roughly predicted by determining the values of parameters that yield a

single-site Hamiltonian Cn with evenly spaced eigenvalues, such that the single-

site dynamics is periodic. Further models with weaker revivals are obtained for

C whose eigenvalue spacings differed by a ratio of 2. In the following we derive

analytical expressions for the lines in Fig. 6.8 in Chapter 6.

Varying the matrix elements of C, we consider all Hermitian, purely imaginary,

non-diagonal C, in analogy with the clock and spin Hamiltonians discussed in

Chapter 6. We are free to rescale C such that one coupling has magnitude 1, so

for Nc = 4, 5 couplings can be varied. We consider two slices of this 5 dimensional

parameter space: (A) vary the next-nearest neighbour hoppings, C02 = C13 = αi,

while also varying C03 = −βi; (B) switch off next-nearest-neighbour hoppings

while varying C12 = −αi and C03 = −βi. Explicitly:

C(A)
n =


0 −i αi −βi
i 0 −i αi

−αi i 0 −i
βi −αi i 0

 , (A.72)

C(B)
n =


0 −i 0 −βi
i 0 −αi 0

0 αi 0 −i
βi 0 i 0

 . (A.73)
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Figure A.6: Prediction of scarred models with strongest revivals based on the
eigenvalue spacings of the single site operator C for Nc = 4. Left and right
panels refer to two deformations of C in Eqs. (A.72), (A.73). Plotted here are: (a)
equidistant eigenvalues, Eq. (A.79) (cyan), (b) eigenvalue spacings commensurate
with ratio 2 (pink), Eq. (A.80),(A.81), (c) degenerate eigenvalues, Eq. (A.82),
(A.83) (blue). These lines coincide with the regions of strong revivals in Fig. 6.8
in Chapter 6.

The characteristic eigenvalue equation for both these matrices reduces to the

form

E4 − aE2 + b = 0, (A.74)

with a and b being:

(A) a = 3 + 2α2 + β, (A.75)

b = 2β − 2α2 − 2α2β + α4 + β2 + 1, (A.76)

(B) a = α2 + β2 + 2, (A.77)

b = 2αβ + α2β2 + 1. (A.78)
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It follows that the eigenvalues E take the form

E1,...,4 = ∓ 1√
2

√
a±
√
a2 − 4b.

These eigenvalues are symmetric about zero, such that the spacings ∆E1 = ∆E3,

with ∆En = En−En−1. The analytic prediction for robust scarred models, based

on the single-site analysis, then reads:

• Equidistant eigenvalues:

9a2 = 100b, ∆E2 = ∆E1, (A.79)

• Commensurate eigenvalues with ratio 2:

4a2 = 25b, ∆E2 = 2∆E1, (A.80)

252 = 676b, ∆E2 =
1

2
∆E1, (A.81)

• Degenerate eigenvalues:

a2 = 4b, ∆E1 = ∆E3 = 0, (A.82)

b = 0, ∆E2 = 0 (A.83)

These equations are plotted in terms of parameters α, β in Fig A.6. These lines

give the band of scarred models in our Nc = 4 scarred model diagram in Fig. 6.8

in Chapter 6.

A.4 PXP quantum hardware implementation:

exponential scaling of ansatz bond dimen-

sion

In this appendix we will argue by induction that the L layer unitary circuit used

to simulate the PXP model, Eq. (7.4), when expressed as a matrix product state
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(MPS), has a bond dimension which scales exponentially in the number of layers.

Recall in Section 7.2.2, we derived the form of the MPO which is equivalent

to the unitary circuit ansatz with a single layer, that is, L = 1. This MPO

is given in Eq. (7.7). To argue inductively that the bond dimension of the L

layer MPS scales exponentially, we wish to express the L = 2 layer circuit ansatz

|ψ(~φ)〉 = U(~φ)2|000...〉 as an MPS. For simplicity, consider the ansatz angles to be

equivalent in the first and second layers. By repeated application of the unitary

MPO U(~φ) given in Eq. (7.7), we find this state can expressed as an MPS with

bond dimension D = 4:

|ψ(~φ)〉 =
∑
σ,θ

Aσ0
θ0
Aσ1
θ0θ1

Aσ2
θ1θ2

...A
σN−2

θN−3θN−2
A
σN−1

θN−2
|~σ〉

Aσ0=0 = (cos2 φ0,− sin2 φ0, 0, 0)

Aσ0=1 =

(
0, 0,− i

2
sin 2φ0,−

i

2
sin 2φ0

)

Aσn=0 =


cos2 φn − sin2 φn 0 0

cosφn 0 0 0

cosφn 0 0 0

1 0 0 0



Aσn=1 =


0 0 − i

2
sin 2φn − i

2
sin 2φn

0 0 −i sinφn 0

0 0 0 −i sinφn

0 0 0 0


AσN−1=0 = (cos 2φN−1, cosφN−1, cosφN−1, 1)

AσN−1=1 = (−i sin 2φN−1 − i sinφN−1,−i sinφN−1, 0)

To verify the dimension of the L layer MPS grows exponentially as 2L, we must

verify no svd compression is possible on the MPS states |ψ(~φ)〉 = U(~φ)L|000...〉.
We check this explicitly for the L = 2 MPS.
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Consider a tensor in the bulk:

Aσnθnθn+1
= A(σnθn),θn+1

= U(σnθn),ρSρ,ρV
†
ρ,θn+1

Where USV † is the singular value decomposition of the matrix A(σnθn),θn+1 . If

any of the singular values in S are zero, we can carry out an exact truncation and

the bond dimension D will not be maximal (D < 4). We compute the singular

values as the eigenvalues of AA† and verify that D = 4.

A(σnθn),θn+1 =



cos2 φn − sin2 φn 0 0

cosφn 0 0 0

cosφn 0 0 0

1 0 0 0

0 0 − i
2

sin 2φn − i
2

sin 2φn

0 0 −i sinφn 0

0 0 0 −i sinφn

0 0 0 0



AA† =


cos4 φn + sin4 φn cos3 φn cos3 φn cos2 φn

cos3 φn cos2 φn cos2 φn cosφn

cos3 φn cos2 φn cos2 φn cosφn

cos2 φn cosφn cosφn 1


⊕


2 cos2 φn sin2 φn cosφn sin2 φn cosφn sin2 φn 0

cosφn sin2 φn sin2 φn 0 0

cosφn sin2 φn 0 sin2 φn 0

0 0 0 0


From the eigenvalues of AA†, we find the 4 singular values of A(σnθn),θn+1 are:

σ2 =
1

8

(
± 2
√

2
√

cos4 φn(−4 cos 2φn + cos 4φn + 35)

+ 4 cos 2φn + cos 4φn + 11
)
, sin2 φn, sin

2 φn(cos 2φn + 2)
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For generic φn, we see no singular values are 0, thus we cannot truncate the tensor,

such that the bond dimension is indeed D = 4. Given the L = 2 MPS state cannot

be truncated, we conclude by induction that the scaling of the bond dimension

of the MPS representation of the variational circuit ansatz scales exponentially

as 2L.
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