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Abstract

This Thesis is primarily motivated by a conjecture of Anscombe, Macpherson, Steinhorn

and Wolf [2]. The conjecture states that, for a homogeneous structure M over a finite

relational language,M is elementarily equivalent to the ultraproduct of a ‘multidimensional

exact class’ if and only if M is stable. The right to left statement has already been verified,

and so our focus is on the left to right. In this thesis, we confirm the conjecture for certain

unstable homogeneous structures such as the universal metrically homogeneous graph of

diameter k, the universal homogeneous two-graph and various others, such as the 28 ‘semi-

free’ edge-coloured homogeneous graphs described by Cherlin in the appendix of [16]. We

also provide some mechanisms for answering the question for other unstable structures.

The core of this thesis is about finite ‘n-regular’ 3-edge-coloured graphs. For any given n, a

classification of sufficiently large n-regular 3-edge-coloured graphs is expected to yield

a proof of the ‘m.e.c’ conjecture in the case of the universal homogeneous 3-coloured

graph, and indeed, our results yield some further special cases of the ‘m.e.c’ conjecture.

The main focus is on finite ‘3-regular’ 3-coloured graphs. We classify such structures

under certain conditions: when they possess a ‘complete neighbourhood’, when they are

‘monochromatic-triangle-free’ and if we increase to ‘4-regularity’ we can classify the

imprimitive case as well. In the other scenarios, we employ methods from the theory of

association schemes, together with linear algebra, to give a description of the eigenvalues

and/or eigenvectors of the neighbourhoods with respect to a base point. We also describe

the two known primitive examples of such graphs and prove they are actually homogeneous,

which implies n-regularity for each n.
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Chapter 1

Introduction

This thesis is really the coming together of two different mathematical tales. On the one

side we have the notion of Asymptotic Classes within the burgeoning topic of pseudofinite

model theory, and on the other the classical study of symmetry and regularity conditions in

combinatorics. As such, I have written this thesis with the intent that it is accessible to an

interested party from either field. You must therefore forgive the author if some of it feels

patronisingly basic. It’s my aim to include every definition you will need in the Prerequisites

2. However I understand my limitations and so if you want to look to my betters for help, my

personal favourite references for background are; General Model Theory: [36], Asymptotic

classes: [2], Strongly Regular Graphs:[10], and Association Schemes: [23].

This introduction has some grand aims. Its purpose is to set up the thesis in such a manner

as to make you interested in its content, as well as outlining the tale of how this thesis came

to be.

1.1 History and Motivation

As previously mentioned, this thesis is borne of the meeting of two different fields of study,

and so we will outline both in turn. The over-arching motivations for this thesis perhaps

stem more from the model theoretic notions, and certainly that was the initial emphasis. As

such, it seems only prudent to start our story there.

As is commonly known, the work of Zoé Chatzidakis, Lou van den Dries and Angus
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MacIntyre in 1992 discovered the following Theorem:

Theorem 1.1.1 (Main Theorem, [15]) Let φ(x̄, ȳ) be a formula in the language of rings

Lring := {0, 1,+,−, ·}, where n := l(x̄) and m := l(ȳ). Then there exist a constant

C ∈ R+ and a finite set D of pairs (d, µ) ∈ {0, . . . , n}×Q+ such that for every finite field

Fq and for every ā ∈ Fm
q if φ(Fn

q , ā) ̸= ∅, then

∣∣∣|φ(Fn
q , ā)|−µqd

∣∣∣ ≤ Cqd−
1
2 (1.1.1)

for some pair (d, µ) ∈ D. Moreover, the parameters are definable; that is, for each (d, µ) ∈

D there exists an Lring-formula φ(d,µ)(ȳ) such that for every Fq, Fq |= φ(d,µ)(ā) if and only

if ā satisfies 1.1.1 for (d, µ).

It is really from this that the notion of an asymptotic class is derived. Indeed, from

Macpherson and Steinhorn [35], we can think of a 1-dimensional asymptotic class as a

class of finite structures in some language that satisfies the conclusion of this theorem (with

some small modification). Generalising even further, Richard Elwes [21] then develops the

idea of an asymptotic class, which is in general just a higher (but still finite) dimension

version of the same concept.

The idea is then later generalised once more in [2] into the notion of a multidimensional

asymptotic class of finite structures (Definition 2.5.2). Here we no longer worry about

the form of the functions giving approximate cardinalities, and allow different parts of

a structure to vary independently, whilst keeping that any uniformly definable family of

definable sets has (across the class of structures) a fixed number of (approximate) sizes.

We then also have the sister concept of a multidimensional exact class or m.e.c (of finite

structures), which drops the word ‘approximate’, so instead any uniformly definable family

of definable sets has a fixed number of exact sizes. It is this idea that is most relevant to this

thesis.

We roughly say that an infinite structure is a m.e.c limit if there exists a m.e.c which can

roughly approximate it. More formally there will exist an ultraproduct of the m.e.c that is

elementarily equivalent to the structure. Asking questions like ’does there exist a m.e.c limit

for the Random Graph?’ inherently forces us to consider the finite graphs that would make
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up such a m.e.c. These questions therefore necessitate us to delve into the study of finite

structures.

In particular, we shall be asking these questions of homogeneous structures.

Definition 1.1.2 (Page 10, [11]). Let M be a countable L-structure. We say M is

homogeneous if any isomorphism between finite induced substructures of M can be

extended to an automorphism of M .

The motivating question for this thesis was the following conjecture:

Conjecture ([2] Conjecture 4.1.4) Let M be a homogeneous structure over a finite

relational language L. Then there is an m.e.c with ultraproduct elementarily equivalent

to M if and only if M is stable.

The backwards direction was confirmed by Daniel Wolf in [49], and so just the forwards

direction remains. In [2] the authors tackle a few particular cases, the unstable homogeneous

graphs, certain tournament-free digraphs and the random bipartite graph. The latter has a

particularly interesting proof, drawing on results from [25] to show that any sufficiently

large member of such a m.e.c. is a perfect matching or complete. We employ similar

techniques in this thesis when we discuss the ‘imprimitive’ cases in Chapter 6.

Another crucial idea in this thesis is how the larger finite structures in a m.e.c.

approximating a homogeneous structure will have a high degree of combinatorial regularity.

In particular, it is shown in [2] that sufficiently large members of any m.e.c approximating

the Random Graph must satisfy strict combintorial regularity conditions, namely they must

satisfy n-regularity:

Definition 1.1.3. A finite structureM in a finite relational language L is said to be n-regular

if for any n-tuple ȳ and formula ϕ(x, ȳ) the size of the set ϕ(M, ȳ) = {x ∈ M : M |=

ϕ(x, ȳ)} is determined only by the isomorphism type of ȳ.

It is this discovery that propagated into the second half of the thesis. The authors of [2]

use the classification of 5-regular graphs [9] to show that such highly regular graphs do

not satisfy the properties required for a m.e.c with ultraproduct elementarily equivalent

to the Random Graph. The next obvious question is, what about structures that are very
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similar but with slight adjustments? The initial candidates that were discussed were the

universal homogeneous digraph, the universal homogeneous RGB graph and the universal

homogeneous 3-hypergraph.

Due to the similarity of the material to [12], the first structure which I opted to tackle was

the RGB. More formally the definitions we need are the following

Definition 1.1.4. A graph, G, is 3-edge-coloured or, in this thesis, simply 3-coloured, if

there exist three binary, symmetric, irreflexive relations (colours), such that every unordered

pair of vertices in G satisfies exactly one of these relations.

The universal homogeneous RGB graph is the Fräissé limit (Definition 2.4.14) of the class

of all finite 3-coloured graphs.

We can think of this as the countably infinite homogeneous 3-coloured graph that embeds

all finite 3-coloured graphs. It quickly became apparent that adapting the methods of [12]

(in conjunction with [8]) to the 3-coloured case could only take me so far. That being said,

the set up and the ideas that stemmed from the attempt seemed to me to be quite promising.

Considering the interaction of the neighbourhoods of a base point (as was done in [12]) led

to different cases. Each case came with its own host of conditions that had to be satisfied,

some of which appeared to me to be impossibly limiting. It also seemed to me that, on the

way to ruling out the exact class case, I may as well attempt a full classification of the finite

3-regular 3-coloured graphs. And so the direction of the thesis shifted towards this goal.

We can roughly think of a graph as a network of points with some edges between them.

The graphs of particular interest to this thesis of those with high levels of combinatorial

regularity. n-regularity has a natural application to graphs, and in particular 1 and 2-regular

graphs have been of great interest to mathematicians. In the literature, a 1-regular graph is

generally referred to as a regular graph and a 2-regular graph as a strongly regular graph.

Strong regularity is a fairly limiting condition, however nowhere near enough to consider a

classification of such graphs a likely proposition (at least right now). That being said, when

the regularity of the graph is witnessed by its automorphism group, we can actually say a

lot. For example, we say a transitive permutation group is rank 3 if the stabiliser of any

point has exactly 3 orbits (Definition 2.3.4). Now by [27], rank 3 permutation groups of
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even order produce strongly regular graphs. By the work of Liebeck [32] and Liebeck and

Saxl [33], the finite rank 3 permutation groups were classified, and so this particular class

of strongly regular graphs is completely understood.

Rank three permutation groups actually have implications for graphs with higher levels

of combinatorial regularity as well. The work of Smith in [43] gives a description of a

particular class of rank 3 permutation groups, which are then shown by Cameron, Goethals

and Seidel [Theorem 6.5, [12]] to potentially correspond to graphs that are ‘almost 3-

regular’ (the neighbourhoods of a particular base point are strongly regular). Cameron,

Goethals and Seidel further determine that these ‘almost 3-regular’ graphs are either Smith

Graphs (as described in [43]), graphs of pseudo or negative Latin square type, or the

Pentagon. The corresponding group theoretic classification of finite 3-homogeneous (a

weakening of homogeneity but only for isomorphisms on substructures of size at most 3)

graphs was then given by Cameron and Macpherson in Theorem 1.1 in [13], showcasing

once again just how useful it is to have the group around.

The story is then picked up with one of Cameron’s doctoral students, Buczak. In their thesis

[8], Buczak provides a classification of 4-regular graphs, which is then used by Cameron

again in [9] to classify 5-regular graphs (and n-regular for n > 5 too). We seek to emulate

these efforts with 3-regular, 3-coloured graphs.

To do this it will be best to both make use of similar methods and also recent advances

in the related field of association schemes. An association scheme can be thought of a set

of commutative square 01-matrices that sum to give the all 1 matrix and are closed under

transposition (Definition 2.2.1). The adjacency matrices of strongly regular graphs, together

with the identity matrix, will form an association scheme for instance. In a similar fashion,

these schemes can also be used to represent n-coloured graphs that are 2-regular. In 1999,

Van Dam looks at symmetric 3-class association schemes (which correspond to 3-coloured

2-regular graphs) in his paper [47]. This work, especially his study of amorphic cases

(Definition 4.3.1) was very influential and helpful.
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1.2 Literature Review

The current literature surrounding the topics for this thesis is mainly split into three

categories. We have the recent work of model theorists on pseudofinite structures, the older

papers on combinatorial regularity, and then the more recent work on regular structures and

three-class association schemes.

For pseudofinite structures, and in particular the study of m.a.c.s and m.e.c.s, the current

state of affairs is best expressed in the manuscript of Anscombe, Macpherson, Steinhorn

and Wolf [2].

For work on combinatorial regularity in finite structures there have been some recent

movements, but a lot of the crucial work is much older. The work by Delsarte, Goethals and

Seidel [20] sets up the notion of spherical 2-distance sets and discusses its consequences.

We then get [12] which applies these notions to the ‘almost’ 3-regular case, followed by the

work of Buczak [8] on 4-regular graphs, and Cameron again on 5-regular and 6-transitive

graphs in [9].

For more recent work on three-class association schemes and probably most closely related

to this thesis is the work of Van Dam [47]. Here he provides stipulations for when a three-

class association scheme can exist, and lists all potential examples with under 100 vertices.

Other work is more tangential, Jaeger [30] completes work on triply regular association

schemes (not necessarily three class) in the context of spin models. Here he gives necessary

and sufficient conditions for the existence of triply-regular Bose-Mesner Algebras in the

language of spin models. This is followed up by Suda [44] who gives a sufficient condition

for a triply regular association schemes, using tight spherical designs. He even shows that

every tight 4, 5 or 7 design gives a triply regular association scheme. Suda also mentions

the concept of real mutually unbiased bases and linked systems of symmetric designs, and

shows that these also carry a triply regular association scheme (given certain conditions for

the linked system of symmetric designs).

In a very similar area, although using different methods, there has recently been a

classification of finite highly regular vertex-coloured graphs by Heinrich, Schneider,

and Schweitzer in [25]. The motivations for this paper come from the Weisfeiler-
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Leman algorithm [48], a powerful tool for graph isomorphism and automorphism group

computation. The interest in this algorithm comes from Babai’s very important ‘Graph

isomorphism in quasi-polynomial time’ [3]. The methods in this paper utilise an interplay

between local and global symmetry of a graph, and the general principle that a graph with

high amount of combinatorial regularity will often have a high degree of symmetry too. It

makes sense that combinatorial regularity will play a large part in future work in this field.

1.3 Outline of Thesis

This thesis is very large and I apologise profusely for this. It (hopefully) makes up for the

length with some interesting results however.

In Chapter 2 I have put most of the set up, the main introductions to the different fields of

study, technical definitions and rudimentary theorems. There is also a breakdown of some

of the more influential papers and the theory they introduce.

Chapter 3 is where I have deposited the work I have done on Multidimensional Exact

classes. The main result is Theorem 3.2.4, which roughly states that if you can identify

a homogeneous structure N with no m.e.c limit within another homogeneous structure M ,

then M has no m.e.c. limit either. This is used to prove the following theorem:

Theorem 1.3.1 There does not exist a m.e.c with ultraproduct elementarily equivalent to

any of the following structures:

1. The universal metrically homogeneous graph of diameter k for any k (Theorem

3.2.7),

2. The universal homogeneous two-graph (Theorem 3.2.11),

3. Any other unstable reduct of the random graph (Theorem 3.3.9),

4. The universal homogeneous n-tournament-free digraph (Theorem 3.4.5),

5. The primitive universal homogeneous semi-free 3-edge-coloured graph determined

by forbidden triangles (Theorem 3.4.7 and Theorem 11.5.4),

6. Any of the known primitive universal homogeneous semi-free, but not free, 4-edge-

coloured graphs determined by forbidden triangles (Theorem 3.4.9).
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7. Any homogeneous unstable imprimitive 3-coloured graph (Theorem 6.1.8)

After this we move on to work on specifically finite 3-coloured graphs and high levels of

regularity. The aim here is to provide results that work towards showing that the universal 3-

coloured random graph is not a m.e.c limit. The basic notations and definitions are given in

Chapter 4, some examples are given in Chapter 5 and some results on the imprimitive case

in 6. This culminates in Theorem 6.1.4, which describes the possible imprimitive examples

we might have, and then Theorem 6.1.8, which tells us that they can’t form a m.e.c.

Next in Chapter 7, we set the foundations for the mechanisms we will use throughout

the thesis. This primarily involves applying linear algebraic and combinatorial results to

the multiple scenarios that arise, and discussing their feasibility. The key result from this

chapter is Theorem 7.6.20 which rules out certain triangle-free possibilities. However there

is a host of very powerful lemmas too.

Chapter 8 is an attempt to generalise the work of [12] to the 3-coloured scenario. Due to

the added complexity the extra colour brings this is difficult to do, however we can still get

results in certain situations. Theorem 8.2.22 in particular provides very strong information,

which we then use in Chapter 9.

In Chapter 9, in particular Theorem 9.3.3, we entirely classify the primitive case in which

we have a complete neighbourhood, by showing it can only be the Tricolour Heptagon

(Definition 5.2.1). Similar work is done in Chapter 10, where we continue looking at

some triangle-free cases. We remove the possibility of any three-coloured triangle being

omitted in Theorem 10.1.1, entirely describe the case when we have a single two-coloured

triangle omitted in Theorem 10.2.13 and provide a full classification when we have all three

monochromatic triangles omitted in Theorem 10.3.1.

The final chapter, Chapter 11 works to provide knowledge about the cases we have left,

generally with all triangles present and various other limiting conditions. This culminates

in a description of all the eigenvectors of every possible case we could have in Theorem

11.4.2. Some of the implications of this work with respect to m.e.cs are discussed in Section

11.5, and this culminates in Theorem 11.5.4 where we show any unstable universal semi-

free 3-edge-coloured graph determined by forbidden triangles can’t be ‘approximated’ by a
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m.e.c.

You’ll be glad to know it doesn’t end there, we also have an Appendix. This includes the

proof of the uniqueness of the primitive universal semi-free 3-edge-coloured graph. This is

relevant to Section 3.4 and is unpublished work I completed as part of a research project

before my PhD (although it had to undergo extreme editing).
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Chapter 2

Prerequisites

2.1 Graph Theory

This section is based of definitions and basic results from [7] about graphs.

Definition 2.1.1. A graph is a set V of vertices equipped with a binary relation E. It is said

to be simple if E is symmetric and irreflexive.

All the graphs in this thesis will be considered to be simple graphs unless stated otherwise.

We also look at variations of graphs with differing languages.

Definition 2.1.2. A digraph is a graph where E is anti-symmetric and irreflexive. An n-

coloured graph is a graph but equipped with n symmetric irreflexive binary relations that

partition the set of ordered pairs of distinct elements of V .

Note that in this thesis, we shall always use the term coloured graph to refer to edge-

colourings, not vertex-colourings.

We see that a 2-coloured graph is the same thing as a graph, with non-edges being replaced

with a colour.

Definition 2.1.3. An m-hypergraph is a set of vertices equipped instead with an m-ary

symmetric, irreflexive, edge relation Em, so the edges are m-sets. For any 3-tuple (x, y, z),

symmetric here will mean that if (x, y, z) is an edge, then so is any permutation of x, y and

z, and irreflexive means that if x, y and z are not distinct then (x, y, z) is not an edge.
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We will now define some of the more common terminology I use throughout the thesis.

Definition 2.1.4. A neighbour of a vertex x in a graph Γ, is any other vertex adjacent to x

in Γ. A neighbourhood of a vertex, x, is the induced subgraph on all the neighbours of x.

We will also refer to neighbourhoods defined via colours or directions.

Definition 2.1.5. A graph is regular if every vertex is connected to the same number, k,

of other vertices, the number being known as the degree of the graph. A graph is strongly

regular if it is regular and the number of common neighbours of any two distinct vertices is

entirely determined by whether they are adjacent or not.

In a strongly regular graph, the number of common neighbours of two adjacent vertices

is classically referred to as λ and the number of common neighbours of two non-adjacent

vertices is referred to as µ.

Lemma 2.1.6 The complement of a strongly regular graph is also strongly regular.

A strongly regular graph together with its complement are known as complementary

strongly regular graphs. We can extend the notion of strong regularity further.

Definition 2.1.7. A graph is n-regular if for any subset X of the vertex set, such that

|X|≤ n, the number of vertices adjacent to every x ∈ X is a fixed number determined only

by the isomorphism type of the induced subgraph on X .

Although this may seem slightly different from the general definition 1.1.3, they work out

as the same by inclusion-exclusion principle. It follows that the definition of a strongly

regular graph and a 2-regular graph are the same. We can note the lemma.

Lemma 2.1.8 If a graph is n-regular then the neighbourhood and non-neighbourhood of

each vertex is n− 1-regular.

Graphs also can be looked at in terms of linear algebra.

Definition 2.1.9. Enumerate the vertices of a graph Γ with vertex set of size n. Then the

adjacency matrix, A, of a graph is the n × n matrix, where if i and j are vertices, then

(A)ij = 1 if (i, j) ∈ E and 0 otherwise.

Similarly in an m-coloured graph Γm, for an edge relation El, the Adjacency matrix Al of
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l in Γm, is the n× n matrix, where if i and j are vertices, then (Al)ij = 1 if (i, j) ∈ El and

0 otherwise.

For digraphs it is a little different. The adjacency matrix,A, of a digraph is the n×nmatrix,

where if i and j are vertices, then (A)ij = 1 if (i, j) ∈ E+, (A)ij = −1 if (i, j) ∈ E− and

0 otherwise.

The condition of strongly regular imposes quite a few conditions on the adjacency matrix.

We get that

A2 = kI + λA+ µ(Ā)

where Ā = J −A− I , with J being the all ones matrix.

From [Page 1, [7]] we can note that the all-ones vector u is an eigenvector of A if and only

if A represents a regular graph. u will then have eigenvalue k in A (where k is the degree

of the graph) and is known as the principal eigenvalue.

The other eigenvalues are known as the non-principal eigenvalues. In a strongly regular

graph with adjacency matrix A, A has two distinct non-principal eigenvalues, r and s, with

multiplicities f and g respectively.

Theorem 2.1.10 ([14], Theorem 2.16) Suppose that G is a strongly regular graph with

parameters (n, k, λ, µ). Then it has 2 non-principal eigenvalues r, s with respective

multiplicities f, g as follows:

r, s =
1

2
(λ− µ±

√
(λ− µ)2 + 4(k − µ)

f, g =
1

2
(v − 1± (n− 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)
)

Further f and g must be non-negative integers.

Note that the values of f and g must be non-negative integers. Note that a trivial equivalence

relation is one where everything is considered equivalent, and a proper equivalence relation

is one where there exists at lease one equivalence class with size greater than one (i.e. any

equivalence relation that isn’t just equality).

Definition 2.1.11. A graph, Γ, is called imprimitive if either E∪ = (the union of E with

equality, denoted E=) or (¬E)∪ = form a proper nontrivial equivalence relation. It is
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called primitive otherwise.

Another important concept is that of n-extension.

Definition 2.1.12. A graph satisfies the n-extension axiom if for any two disjoint sets of

size n, say X and Y , there exists a vertex connected to every vertex in X and none in Y .

An example of a graphs which satisfy this axiom for large n would be (sufficiently large

relative to n) Paley graphs. These are the graphs defined via the following process: Let p be

a prime power such that p = 1 mod 4. Then let V = {1, . . . , p} and say i is connected to j

if and only if (i − j) is a square in the finite field Fp. This forms a strongly regular graph

which when we take sufficiently large p (relative to n) satisfies n-extension [5].

Finally, I will define two model theoretic terms in the context of graphs.

Definition 2.1.13. A graph is homogeneous if it is a finite or countable graph such that

every isomorphism between induced finite subgraphs can be extended to an automorphism.

A graph is called universal for a family of graphs F , if it contains every graph in F as an

induced subgraph.

An example of this is the Random Graph. The Random Graph is defined to be the countable

graph that satisfies the n-extension axiom for all n. It is both homogeneous and universal

in that it embeds all countable graphs. Both of these concepts can be extended to include

other type of graphs, for instance digraphs or coloured graphs.

We will also need some simple results like the following.

Lemma 2.1.14 [[7], Section 1.1.3]

1. A strongly regular graph is the union of identical disconnected complete graphs if

and only if one of its eigenvalues is −1.

2. A primitive strongly regular graph with eigenvalue −1 is complete.

Proof. Suppose the strongly regular graph has parameters (n, k, λ, µ). Then we know by

Theorem 2.1.10 that the eigenvalues are

1

2

(
(λ− µ)±

√
(λ− µ)2 + 4(k − µ)

)
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If we let one of these equal −1 then

(−2− (λ− µ))2 = (λ− µ)2 + 4(k − µ)

4 + (λ− µ)2 + 4(λ− µ) = (λ− µ)2 + 4(k − µ)

1 + λ = k

which implies that the graph is the disjoint union of complete graphs.

If we start with a union of identical disconnected complete graphs then we know k = λ+1

and µ = 0. So

r, s =
1

2

(
λ±

√
λ2 + 4λ+ 4

)
=

1

2
(λ± λ+ 2)

So r = −1 and s = k.

This proves part i), and part ii) follows immediately.

Hence if a strongly regular graph is primitive and has eigenvalue −1 it must be complete.

It is also known that we can determine via the multiplicity of the principal eigenvalue the

number of connected components of a regular graph.

Lemma 2.1.15 [[7], Section 1.1] If G is a regular graph of degree k, then the multiplicity

of the eigenvalue k is the number of connected components of G.

Hence in a complete graph, −1 will have multiplicity n − 1, and any regular graph where

−1 has multiplicity n− 1 is complete.

Corollary 2.1.16 If G is a regular graph with degree k, then if the multiplicity of the

eigenvalue k is greater than one, it is imprimitive.

This just follows from the fact that each connected component will form an equivalence

class of a non-trivial equivalence relation on the structure.

Lemma 2.1.17 Suppose the adjacency matrix A of a connected regular graph G has only

one eigenvalue, r, aside from k. Then r = −1.
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Proof. G is connected and so k has multiplicity 1. Therefore r has multiplicity n − 1. As

trace(A) = 0, we know 0 = k + (n − 1)r, implying r = −k
n−1 . We know r is an algebraic

integer as it is the eigenvalue of a 01-matrix, hence n − 1|k. But n − 1 ≥ k, and therefore

n− 1 = k, and r = −1.

2.2 Association Schemes

The definition of an association scheme is very closely related to that of a strongly regular

graph. A lot of this information will be covered in more detail later, as the language

of association schemes is the primary one I use when dealing with 3-regular 3-coloured

structures, and hence only the basics will be mentioned here. The reference I use is [23].

Definition 2.2.1. An association scheme with d classes is a set A = {A0, . . . , Ad} of n×n,

01-matrices, for some n, such that:

i) A0 = I .

ii)
∑d

i=0Ai = J .

iii) AT
i ∈ A for each i.

iv) AiAj = AjAi ∈ span(A)

We say that an association scheme is symmetric if each of its component matrices are

symmetric.

There is a natural translation into strongly regular graphs. A strongly regular graph will

form a symmetric association scheme with 2 classes, one being the adjacency matrixA, and

the other being Ā.

Attached to each association scheme is an algebra known as the Bose-Mesner algebra.

This is the algebra generated by the matrices in A. Call this algebra C[A]. The matrices

A0, . . . , Ad form a basis of this algebra. However we can find a more convenient one. To

do this define a partial ordering on idempotent matrices in C[A] via E ≤ F if FE = E.

We can create a basis of the minimal idempotents via the result
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Theorem 2.2.2 [23, Theorem 1.5.1] SupposeB is a Bose-Mesner Algebra of an association

scheme A. Then B has a basis of matrix idempotents {E0, . . . , Ed} such that:

(a) EiEj = δi,jEi

(b) The columns of Ei are eigenvectors for each matrix in C[A]

(c)
∑d

i=0Ei = I

(d) E∗
i = Ei

Hence {E0, . . . , Ed} is the basis of minimal idempotents of our association scheme.

In an association scheme, there exist constants called intersection numbers. These are

defined to be the pmjl such that

AjAl =

d∑
m=0

pmjlAm. (2.2.1)

For instance in terms of strongly regular graphs, d = 2 and p111 = λ and p211 = µ. We then

note that, if ◦ is the Hadamard product (entrywise multiplication), then

pmjlAm = Am ◦ (AjAl)

We can also define the eigenvalues of the scheme as the eigenvalues of the Ai. As these are

01-matrices, Godsil notes [[23], Section 2.1] that the eigenvalues must be algebraic integers.

There also exists a natural dual concept to the intersection numbers, using the idempotent

basis of the Bose-Mesner algebra. The Krein parameters of the association scheme are the

constants qmjl defined via

Ej ◦ El =
1

n

d∑
m=0

qmjlEm. (2.2.2)

Alternatively these can represented as follows

qmjlEm = nEm(Ej ◦ El)

By bringing in a little linear algebra we can make the eigenvectors much easier to deal with.
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Definition 2.2.3. Two matrices A and B are simultaneously diagonalisable if there exists

a matrix P such that for some two diagonal matrices D1 and D2, P−1AP = D1 and

P−1BP = D2.

We can see that simultaneously diagonalisable matrices must share a basis of eigenvectors,

as these make up the columns of the matrix P .

From [29] we have

Lemma 2.2.4 Diagonalisable matrices commute if and only if they are simultaneously

diagonalisable.

Therefore by the definition of an association scheme we know that all the constituent

matrices are simultaneously diagonalisable, and therefore there exists a basis of

eigenvectors common to all of them.

We will now introduce the necessary combinatorial and linear algebraic notions needed to

make sense of [12].

Definition 2.2.5 ([29]). Let v1, . . . , vm be vectors in an inner product space V with inner

product ⟨·, ·⟩. The Gram matrix of the vectors v1, . . . , vm with respect to the inner product

⟨·, ·⟩ is G = [⟨vi, vj⟩]mi,j=1.

Each eigenspace of a graph will form an inner product space, and so we can naturally form

a corresponding Gram matrix.

Definition 2.2.6 ([38] and [39]). A finite set X in Rd is called an s-distance set if the set

of Euclidean distances between any two distinct points of X has size s. If an s-distance set

lies in the unit sphere Sd−1 then it is known as a spherical s-distance set.

In other words, S is a spherical s-distance set if it is a set of unit vectors, and there are s real

numbers {a1, . . . , as}, with −1 ≤ ai < 1 for all i, such that the inner products of distinct

vectors of S are one of the ai.

As we shall see, spherical 2-distance sets have a very natural application for strongly regular

graphs. There will exist one distance for adjacent pairs of vertices, and one for non-adjacent

pairs.
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2.3 Highly Regular Graphs

Because of the large influence on the ideas of this thesis, this subsection is dedicated to

the story of n-regular graphs through [12], [9] and [8]. Together, these works provide a

classification of all n-regular graphs for n ≥ 4 and strong information in the case of n = 3.

This is immensely useful, as demonstrated later, and therefore producing equivalent results

for more complex languages would be of great worth too.

Throughout [12] the authors mainly work in the language of association schemes above.

However they refer to Γ and ∆ as the complementary pair of strongly regular graphs on a

vertex set X of cardinality n, with adjacency matrices A and B respectively. For a vertex

x ∈ X , let Γ(x) and ∆(x) refer to the sets of vertices in X adjacent to x in Γ and ∆

respectively, i.e. the subconstituents. Their aim is to provide a classification of graphs

that are very close to 3-regular, where for some x ∈ X , Γ,∆,Γ(x) and ∆(x) are strongly

regular. These graphs are effectively 3-regular with respect to a single point x.

A basic result which they make great use of is the following.

Theorem 2.3.1 ([12], Theorem 2.2) A strongly regular graph having k = a− 1, n = ma

is a disjoint union of m complete graphs of size a.

They then introduce a ‘special basis’, such that it includes certain vectors involving

projections onto the eigenspace for A. The process of creating this basis we mirror in

Chapter 8, but with 3-colours. Then using this they find a series of identities involving the

transition matrices between the two bases of the Bose-Mesner algebra and the eigenvalues.

Next they examine the Krein parameters and quickly show that they must be between 0 and

1 in the case of a strongly regular graph.

They look quite heavily at the neighbourhoods. Let A1, A2 be the adjacency matrices of

Γ(x),∆(x) respectively, where these are the neighbourhood and non-neighbourhood of a

vertex x.

Theorem 2.3.2 ([12], Theorem 5.1) Let Γ be a strongly regular graph with eigenvalues

k, r, s. Suppose λ is an eigenvalue of Γ(x), then, if λ /∈ {r, s}, there exists a corresponding

eigenvalue, µ = r + s− λ, of ∆(x) such that γ and µ have the same eigenspace.

The next section is on Smith Graphs, a very important type of graph for the study of n-
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regular graphs. The main result regarding them is from [43] but is mentioned in this paper

as well. We need to quickly introduce the concept of n-transitive and rank 3 permutation

groups.

Definition 2.3.3. A connected simple graph Γ is n-transitive if, for any two ordered n-

tuples (x1, . . . , xn) and (y1, . . . , yn) of vertices satisfying d(xi, xj) = d(yi, yj) for all i (d

the distance function of Γ), there is an automorphism of Γ which maps each xi to yi.

Definition 2.3.4. For any k ≥ 2, a transitive group of permutations of Ω, G, is rank k if,

for α ∈ Ω, Gα has exactly k orbits.

Let l be the size of ∆(x) and recall that λ and µ are the classical parameters of the strongly

regular graph (Definition 2.1.5). The authors note the following is a reformulation of

Theorems E and F from [43].

Theorem 2.3.5 [12, Theorem 6.1] LetG be a primitive rank 3 permutation group on a finite

set X in which, for x ∈ X , the stabilizer Gx with orbits {x}, Γ(x), ∆(x), has rank 3 or

less on both Γ(x) and ∆(x). Assume that {k, l} ̸= {f, g}. Then, without loss of generality,

the parameters of the graphs Γ and ∆ are:

n =
2(r − s)2((2r + 1)(r − s)− 3r(r + 1))

(r − s)2 − r2(r + 1)2
,

k =
−s((2r + 1)(r − s)− r(r + 1))

(r − s) + r(r + 1)
,

l =
−(s+ 1)((2r + 1)(r − s)− r(r + 1))

(r − s)− r(r + 1)
,

λ =
−r(s+ 1)((r − s)− r(r + 3))

(r − s) + r(r + 1)
,

µ =
−(r + 1)s((r − s)− r(r + 1))

(r − s) + r(r + 1)
,

where r − s ≥ r(r + 3). Here, ‘without loss of generality’ means that k > r > s denote

the eigenvalues of the graph defined by either Γ or ∆.

Any graph with the above parameters, for integer r and s, is known as a Smith Graph.

The authors then work out that there are 5 possibilities for the non-principal eigenvalues

in their case and manage to classify them in the following theorem, the main result of the

paper:
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Theorem 2.3.6 [12, Theorem 6.5] Let Γ,∆ be a complementary pair of connected strongly

regular graphs on X , and suppose there is a vertex x ∈ X for which the subconstituents on

Γ(x) and ∆(x) are both strongly regular. Then one of the following occurs:

i) Γ is a pentagon,

ii) Γ is of pseudo or negative Latin square type,

iii) Γ or ∆ is a Smith Graph.

We call a strongly regular graph of negative Latin square type if for some r

(n, k, λ, µ) = (v2, r(v + 1),−v + r2 + 3r, r(r + 1))

and of pseudo Latin square type if

(n, k, λ, µ) = (v2, r(v − 1), v + r2 − 3r, r(r − 1))

We can note that any 3-regular graph must be strongly regular with strongly regular

subconstituents and so will be included in the list of Theorem 2.3.6 as well. Recall the

Krein parameters qmjl defined via equation 2.2.2. A final result from this paper that could be

useful later is the theorem:

Theorem 2.3.7 Let Γ,∆ be a complementary pair of connected strongly regular graphs.

Then qiii = 0 holds for some i ∈ {1, 2} if and only if either Γ is a pentagon or Γ or ∆ is a

Smith Graph.

Now we move on to Cameron’s ‘6-transitive graphs’ [9]. This paper mainly focuses on

transitivity in graphs, however the author notes that the main theorem can also be used as a

classification of 5-regular graphs when coupled with the results of Theorem 2.3.6.

Cameron starts by noting that a 2-transitive graph of diameter 2 is strongly regular from

[40] and then mentions a reformulation of the Theorem 2.3.5.

Theorem 2.3.8 Let Γ be a 3-transitive graph of diameter 2. The one of the following holds:

i) Γ is a complete multipartite graph,
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ii) Γ is of pseudo or negative Latin square type,

iii) Γ or its complement is a Smith Graph.

He then states the most important theorem of the paper from our perspective:

Theorem 2.3.9 [9, Theorem 3.2] Let Γ be a 5-transitive graph of diameter 2. Then Γ is

one of the following:

i) A complete multipartite graph,

ii) a pentagon,

iii) the line graph of K3,3.

To prove this they use the fact that if Γ is n-transitive with diameter 2 (n ≥ 3), then each of

the subgraphs Γ(x) and ∆(x) are either a disjoint union of complete graphs or an (n− 1)-

transitive graph of diameter 2, as two points in Γ(x) or ∆(x) are at distance at most 2.

They prove this by a series of lemmas that deal with the case by case analysis, basing the

arguments mainly on the eigenvalues and their limitations.

Particular results from this analysis that are useful for us are:

Lemma 2.3.10 If a subconstituent of a Smith graph is a Smith graph, then −s = r2(2r+3).

Conversely, if r > 1 and satisfies −s = r2(2r + 3), then both subconstituents are Smith

graphs.

and

Lemma 2.3.11 No Smith graph has a subconstituent which is the complement of a Smith

graph.

Although theorem 2.3.9 does not directly prove the classification of 5-regular graphs,

Cameron notes at the end of the paper that, if you replace the result of Smith with that

from [12], then the same argument shows that this is in fact a complete list of the 5-regular

graphs as well.

Finally we discuss the thesis of J.M.J Buczak [8]. We start with the definition of a graph

which is an extension of the idea that Cameron, Goethals and Seidel talk about in [12]:
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Definition 2.3.12 (Definition 0.3, [8]). A graph of type B3 is a strongly regular graphGwith

strongly regular subconstituents Γ(x),∆(x) for some x ∈ G, such that for some vertex y

in ∆(x), the subconstituents of ∆(x) formed by the points joined to y (denoted ∆1(x, y))

and the points not joined to y (∆2(x, y)) are both strongly regular, and similarly, for some

vertex z in Γ(x), the subconstituents of Γ(x) formed by the points joined to z (Γ1(x, y))

and the points not joined to z (Γ2(x, y)) are both strongly regular too.

This is effectively 4-regularity, but only over specific points. Buczak manages to classify

these up to identifying a potential infinite family of B3 graphs indexed by a natural number

n, these are the graphs he refers to as B3(n).

The main result of the paper is then the following classification of 4-regular graphs.

Theorem 2.3.13 (Section 0.5, [8]) Any finite 4-regular graph must be one of the following:

a) a disjoint union of complete graphs,

b) the pentagon,

c) the lattice graph on 9 vertices,

d) the Schläfli graph on 27 vertices,

e) the Maclaughlin graph on 275 vertices,

f) Any graph of type B3(n), for n ≥ 3, if such exists,

g) The complements of the above.

2.4 Model Theory

Here I will outline a lot of the basic model theory that I use. Most of this section comes

from [36] and [45] and is fairly fundamental. As only the faintest explanation is given here,

I would advise heading to the texts for more information if you’d like it. Throughout L is a

general language.

Definition 2.4.1. A finite relational language is a language which only has relation symbols

and also only finitely many relational symbols.
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Definition 2.4.2. A complete L-theory has quantifier elimination if for every L-formula

ϕ(x̄) there exists a quantifier free formula ψ(x̄) such that

T |= ∀x̄ (ϕ(x̄) ↔ ψ(x̄)) .

Definition 2.4.3. A theory, T , that has countable models is ω-categorical if for any two

models M1 and M2, such that |M1|= |M2|= ω and M1,M2 |= T , then M1
∼=M2.

Definition 2.4.4 ([45], Definition 5.2.1). Two L-structures, A and B, are elementarily

equivalent if they have the same theory; that is, for all L-sentences ϕ

A |= ϕ⇔ B |= ϕ

Definition 2.4.5 ([45], Definition 2.2.6). Let A be a L-structure and B ⊂ A. Then a ∈ A

realises a set of L(B)-formulas Σ(x), if a satisfies all formulas from Σ(x). We write

A |= Σ(x)

We call Σ(x) finitely satisfiable in A if every finite subset of Σ(x) is realised in A.

Definition 2.4.6 ([45], Definition 2.2.8). Let A be an L-structure and B a subset of A. A

set p(x) of L(B)-formulas is a type over B if p(x) is maximal finitely satisfiable in A. Let

S(B) = SA(B) denote the set of types over B.

Recall Definition 1.1.3:

Definition 2.4.7. A finite structureM in a finite relational language L is said to be n-regular

if for any n-tuple ȳ and formula ϕ(x, ȳ) the size of the set ϕ(M, ȳ) = {x ∈ M : M |=

ϕ(x, ȳ)} is determined only by the isomorphism type of ȳ.

In general in this Thesis we will be looking at homogeneous structures, and because of this

(see proof of Lemma 2.5.5), we can note that we will exclusively be looking at n-regularity

where ϕ is quantifier free.

For graphs, we will refer to 2-regularity as strongly regularity still.

Definition 2.4.8 ([45], Definition 5.2.1). Let κ be an infinite cardinal. We say that a theory,
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T , is κ-stable if in each model of T , over every set of parameters of size at most κ, and for

each n, there are at most κ many n-types, i.e.

|A|≤ κ⇒ |S(A)|≤ κ.

We say a theory is unstable if it is not κ-stable for any infinite cardinal κ.

A model is said to be κ-stable if its theory is κ-stable, likewise it is unstable if its theory is

unstable.

Definition 2.4.9 ([36]). An Ultrafilter on a set I is a collection D ⊂ P(I) such that:

i) I ∈ D, ∅ /∈ D

ii) if A,B ∈ D then A ∩B ∈ D

iii) if A ∈ D and A ⊆ B ⊆ I , then B ∈ D

iv) For all X ⊆ I either X ∈ D or I\X ∈ D

This basically means it provides a notion of being a ‘big’ subset of I . We say that an

ultrafilter is principal if for some i ∈ I , D = {X ∈ P(I) : i ∈ X}. Otherwise it is non-

principal. It is immediate that every element in a non-principal ultrafilter will be infinite.

Now the idea is to use this to create a structure, so we define

Definition 2.4.10 ([36]). Suppose we have a class Mi of L-structures indexed by the

infinite set I . Let D be an ultrafilter on I . Then we define the ultraproduct, M =∏
Mi/D, of the Mi’s by defining an equivalence relation ∼ on

X =
∏
i∈I

Mi =

{
f : I →

⋃
i∈I

Mi : f(i) ∈Mi for all i

}

where f ∼ g if and only if {i : f(i) = g(i)} ∈ D.

On the set of equivalence classes we can define an L-structure:

• If c is a constant symbol of L, let cM be the ∼ class of fc ∈ X where fc(i) = cMi

for all i ∈ I .

• Let f be an n-ary function symbol of L and suppose that g1, ..., gn ∈ X . Then
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fM(g1\ ∼, . . . gn\ ∼) = fMi(g1(1), . . . , gn(i))\ ∼.

• If R is a relation symbol in L then RM = {(g1\ ∼, . . . gn\ ∼) : {i ∈ I :

(g1(i), . . . , gn(i)) ∈ RMi} ∈ D}.

The next theorem gives us a good understanding of what properties the ultraproduct

possesses and also what makes it so useful.

Łoś’s Theorem Let ϕ(x1, . . . , xn) be an L-formula. Then, M |= ϕ(g1/∼), . . . , gn/∼) if

and only if {i ∈ I : Mi |= ϕ(g1(i)), . . . , gn(i))} ∈ D.

This tells us that a formula holds in the ultraproduct if and only if it holds in ‘most’ of the

models in the class.

We now need to describe another fundamental model theoretic construction.

Definition 2.4.11 ([11]). A class C has the amalgamation property if forA,B1,B2 ∈ C and

ϕi : A → Bi is an embedding for i = 1, 2, then there is a structure C ∈ C and embeddings

ψi : Bi → C for i = 1, 2 so that ψ1ϕ1 = ψ2ϕ2.

Definition 2.4.12 ([11]). A class C of finite relational structures over L is a Fraïssé class

over L is it satisfies the following four conditions:

(a) C is closed under isomorphism,

(b) C is closed under taking induced substructures (this means, take a subset of the domain,

and all instances of all relations which are contained within this subset,

(c) C has only countably many members up to isomorphism,

(d) C has the amalgamation property.

Definition 2.4.13. Let M be a structure over L. Then the age of M is the class of all finite

L-structures which are embeddable in M .

Fraïssé’s Theorem A class C is the age of a countable homogeneous L-structure M if and

only if it is a Fraïssé class. If these conditions hold then M is unique up to isomorphism.

We then get the further definition:
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Definition 2.4.14. For a countable L-structure M and a class C satisfying the conclusion of

Fraïssé’s Theorem, we refer to M as the Fraïssé limit of the class C.

There exists important strengthenings of the amalgamation property:

Definition 2.4.15. [11] A Fraïssé class C has the strong amalgamation property if whenever

B1 and B2 are structures in C with a common substructure A, there is an amalgam C of B1

and B2 such that the intersection of B1 and B2 in C is precisely A.

If as well every instance of a relation in C is contained in either B1 or B2, then we say that

C has the free amalgamation property also.

We also see that ω-categoricity is generally present when dealing with homogeneous

structures.

Lemma 2.4.16 [11, Remark p.41] A homogeneous structure M which has only finitely

many isomorphism types of n-element substructures for each n is ω-categorical. In

particular this implies any homogeneous structure in a finite relational language is ω-

categorical.

We can also see that

Lemma 2.4.17 [11, 2.22] Suppose M is a countable and ω-categorical structure over a

relational language. Then M is homogeneous if and only if M has quantifier elimination.

2.5 Multidimensional Exact classes

For this section C will refer to a class of finite L-structures and (C, ȳ) will denote the set

{(M, ā) : M ∈ C, ā ∈M |ȳ|}.

Definition 2.5.1. A ∅-definable partition of (C, ȳ) is a partition Φ of (C, ȳ) into finitely

many parts, such that for each π ∈ Φ there exists an L-formula ϕπ(ȳ) such that

ϕπ(M) = {b̄ ∈M |ȳ| : (M, b̄) ∈ π}

for each M ∈ C.

Further:
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Definition 2.5.2. Let R be any set of functions C → R≥0. A class of finite L-structures

is an R-multidimensional asymptotic class if for every formula ϕ(x, ȳ) there is a finite ∅-

definable partition Φ of (C, ȳ) and an indexed set Hϕ := {hπ ∈ R : π ∈ Φ} such that

∣∣∣|ϕ(M |x| : b̄)|−hπ(M)
∣∣∣ = o(hπ(M))

for (M, b̄) ∈ π as |M |→ ∞.

When R is understood then we say that C is just a m.a.c. If, in the equation, the o(hπ(M))

can be taken to be zero, then instead C is known as a R-multidimensional exact class or

R-m.e.c. This is one of the key definitions of the project. Basically we can consider these

finite models to be, in a roughly analytical sense, ‘tending’ to some structure. Therefore

when we take an ultraproduct of the class we approximately get the structure it was tending

to.

Definition 2.5.3. We say a structure, M , has a m.e.c limit if there exists a m.e.c with

ultraproduct elementarily equivalent to M .

Similarly for a given m.e.c C with ultraproduct elementarily equivalent to M , we would say

that M is the m.e.c limit of C.

We will make great use of the following fairly simple lemma:

Lemma 2.5.4 Suppose M is a homogeneous structure over a finite relational language L

such that it is the m.e.c limit of C. Then we can thin out C such that every sentence true of

M holds in cofinitely many members of C.

Proof. Take I an index of the structures in C, and let D be an ultrafilter of I . We know that

M is elementarily equivalent to the ultraproduct of C viaD. Therefore by Łoś’s Theorem we

know that for any sentence true of M is true in some large infinite subclass of the models

in C. We can then thin out C by removing all the models that do not satisfy any of the

sentences. Now for any sentence ϕ true of M say the set of models that satisfy it is indexed

by A ∈ D. Now the models that do not satisfy ϕ is the union of the sets A \ A ∩ B for all

B. But A \ A ∩ B is finite, as A ∩ B is infinite by definition of a non-principal ultrafilter,

and so the union is finite. We see therefore that A is cofinite.
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You may have noticed the similarity between the definition of a m.e.c and that of n-

regularity, and it turns out that these are indeed very similar concepts when it is assumed M

is homogeneous. Any suitably large member of a m.e.c with homogeneous limit will indeed

be n-regular to some degree. This result is an adaption of a result from Theorem 4.1.6 in

[2].

Lemma 2.5.5 Fix n ∈ N and suppose C is a m.e.c over a finite relational language

with ultraproduct elementarily equivalent to a homogeneous structure M . Then there is

a function f : N → N, such that if N ∈ C with |N |> f(n), then N is n-regular.

Proof. Let T = Th(M), and suppose that C is a m.e.c with an ultraproduct U |= T . After

thinning out C we may suppose that all non-principal ultraproducts of C are elementarily

equivalent – that is, each element of T holds of cofinitely many D ∈ C. For any formula

ϕ(x, ȳ) there is a finite set E of functions h : C → R and some formula ψh(ȳ) for each

h ∈ E, such that for any N ∈ C and h ∈ E, if ā ∈M |ȳ| then

N |= ψh(ā) ⇒ |ϕ(N, ā)|= h(N).

Since M is homogeneous, T has quantifier-elimination, and hence there is a quantifier-free

formula χh(ȳ) and σ ∈ T such that σ |= ∀ȳ(ψh(ȳ) ↔ χh(ȳ)). As σ holds on cofinitely

many members of C, provided we work in sufficiently large N |= T , we may assume

ψh(ȳ) is quantifier-free. Therefore if we take ȳ = (y1 . . . , yn) then the size of ϕ(N, ȳ) is

determined by the isomorphism type of ȳ, as if ȳ and ȳ′ are both such that they satisfy ψh

(i.e have the same isomorphism type), then |ϕ(N, ȳ)|= |ϕ(N, ȳ′)|= h(N). It follows that

any sufficiently large N ∈ C, N is n-regular.
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Chapter 3

Multidimensional Exact Classes

This thesis originated with this chapter. It was the first thing I started working on, and as

such much of the motivation for everything in this document stems from it. We’ve already

discussed what a Multidimensional Exact Class, or m.e.c, is in Section 2.5, but in this

chapter we aim to explain the current theoretical landscape and obtain some new results.

3.1 The Current Situation

To give some background and motivation for this study in m.e.cs, I will run through some

of the current research into m.a.cs and m.e.cs. This shall mainly take the form of running

through results and ideas listed in a manuscript by Anscombe, Macpherson, Steinhorn and

Wolf [2].

We’ll start with some nice examples:

Example 3.1.1 The Paley graphs Pq form a multidimensional asymptotic class but not a

multidimensional exact class. [[2] Example 2.2.5]

Example 3.1.2 The collection of all finite abelian groups is a m.e.c.[[2] Theorem 4.2.2]

Example 3.1.3 For any d ∈ N, the class of all finite graphs of degree at most d is a m.e.c.

[[2] Theorem 4.3.3 ]

Interestingly, we can note that from [Example 3.4, [35]], the class of Paley Graphs is such
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that any non-principal ultraproduct is elementarily equivalent to the Random Graph.

A crucial and very useful result for determining whether something is a m.a.c or m.e.c

is the following. Let ⟨R⟩ denote the ring generated by R under the usual addition and

multiplication operations for real-valued functions.

Theorem 3.1.4 [[2], Theorem 2.4.1] (i) Let C be a class of L-structures. Suppose that C

satisfies the definition of an R-mac for formulas ϕ(x; ȳ) where x is a singleton. Then C is

an ⟨R⟩-mac.

(ii) [[49], Lemma 2.3.1] The assertion of (i) holds with m.e.c.s in place of m.a.c.s.

This allows us to consider just the formulas ϕ(x, ȳ) where x is a single variable. With

the Examples 3.1.1-3.1.3 and other similar motivational examples the authors proposed the

conjecture:

Conjecture 3.1.5 ([2] Conjecture 4.1.4) 1. Let M be a homogeneous structure over a

finite relational language L. Then there is an m.e.c with ultraproduct elementarily

equivalent to M if and only if M is stable.

2. Let M be an unstable homogeneous structure over a finite relational language. Then

M is not elementarily equivalent to any structure interpretable in an ultraproduct of

a m.e.c.

Now in his thesis [49], Wolf proves the backwards direction of the first conjecture.

Proposition 3.1.6 ([2] Proposition 4.1.5) Let M be a stable homogeneous structure over a

finite relational language L. Then there is an m.e.c. C with an infinite ultraproduct which is

elementarily equivalent to M .

This means that the main focus is on the proving the other direction. This has been done for

certain unstable homogeneous structures. Let In (for n ≥ 3) denote the digraph consisting

of n vertices with no directed edges between them. For each n ≥ 3, we then define Qn

to be the universal homogeneous In-free digraph (these occur in Cherlin’s classification of

homogeneous digraphs in [16]).

Theorem 3.1.7 [[2], Theorem 4.1.6.] Let M be any of the following homogeneous
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structures.

i) Any unstable homogeneous graph.

ii) Any homogeneous tournament.

iii) The digraph Qn for each n ≥ 3.

iv) The generic bipartite graph.

Then there is no m.e.c with an ultraproduct elementarily equivalent to M .

The proof of part i) is particularly important for this chapter. The authors note that the proof

showing that there doesn’t exist a m.e.c limit for the Random Graph, will work for any of

theKn-free graphs (and their complements). And by the Lachlan-Woodrow classification of

Unstable homogeneous graphs in [31], this will cover every unstable homogeneous graph.

So suppose there is actually a m.e.c M with ultraproduct elementarily equivalent to the

Random Graph. Then, by Lemma 2.5.5, we know that for any sufficiently large M ∈ M,

M will satisfy 5-regularity. However, by a note added in the proof at the end of [9], we

know that any 5-regular graph appears in the list in Theorem 2.3.9. It is therefore either the

Pentagon, the line graph K3,3, a disjoint union of complete graphs of the same size, or the

complement of the latter. However M can be chosen sufficiently large so that it satisfies an

extension axiom (Definition 2.1.12) that none of these satisfy.

Because of its frequent use we shall state this as a separate theorem.

Theorem 3.1.8 [[2], Theorem 4.1.6] There is no m.e.c. with an ultraproduct elementarily

equivalent to the Random Graph.

A large amount of the manuscript [2] is dedicated to the study of generalised measurable

structures, defined in [[2] Definition 5.2.1]. The authors show that any m.e.c has a

generalised measurable ultraproduct.

For an ordered commutative ring S, there is a concept of S≥0-measurable, which the authors

use to get the following result:

Theorem 3.1.9 ([2] Theorem 5.3.3) Suppose that C is an m.e.c, and let U be an ultrafilter

on C and M the corresponding ultraproduct of C. Then there is an ordered commutative
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ring S (an integral domain) such that M is S≥0-measurable.

Definition 3.1.10. [42, Defintion 4.2] A formula φ(x̄, ȳ) has the strict order property if

there exists an indiscernible sequence ⟨b̄i : i < ω⟩ such that:

[∃x̄¬φ(x̄, b̄i) ∧ φ(x̄, b̄j)] ⇔ i < j

A theory T has the strict order property if some formula φ(x̄, ȳ) does.

We say that a theory has NSOP if it does not have the strict order property.

Proposition 3.1.11 ([2] Proposition 5.4.1) If M is a weakly generalised measurable

structure then its theory has NSOP.

Crucially, as generalised measurable structures are also weakly generalised measurable, this

means that the ultraproduct of any m.e.c has NSOP.

3.2 Unstable Homogeneous structures with no m.e.c limit

Proving the Random Graph does not have a m.e.c limit turns out to be even more useful

than just eliminating any unstable homogeneous graph. This is because we can essentially

‘find’ it in many other unstable homogeneous structures. It stands to reason that if we have

a structure in which we can perfectly define the Random graph (with no extra structure),

then we have good reason to believe it also can’t be a m.e.c. limit. It may help to think of a

motivating example, say the universal metrically homogeneous graph of diameter k. It can

be shown (Lemma 3.2.6) that from any base vertex x, the vertices immediately adjacent to

x form a graph isomorphic to the Random Graph (without extra structure). Then, because

we know the random graph isn’t a m.e.c limit, we can use the exact same argument, just

with formulas defined over the extra parameter x. We can generalise this concept to get the

main result of this section, Theorem 3.2.4. Through this section we think of L as a finite

relational language.

Great thanks are given to Dugald Macpherson who helped me iron out the detailed

arguments of this section.
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3.2.1 Hide and Seek

There are two main issues we need to address. The first is how do we define the principle of

‘finding’, and the second is the issue of the structure that we are finding being in a different

language. The first is the most easily solved, the notion that we shall require is the following:

Definition 3.2.1. [4, Definition 2.3.1] Let N be an L′-structure and M be an L-structure,

such that N ⊆ M and we have A ⊂ M such that the universe of N is A-definable in M .

We say N is canonically embedded in M over A if the ∅-definable sets in Nk are exactly

the subsets of Nk (for all positive integers k) which are A-definable in M .

In our study, we will couple this with homogeneity so the choice of A is dependent only on

its isomorphism type. A small preliminary lemma we need is the following.

Lemma 3.2.2 Let M be a homogeneous L-structure.

1. If a1, . . . ak ∈ M , then (M,a1, . . . , ak) is homogeneous in a language containing

relation symbols for all atomic L(ā) formulas.

2. If N is an infinite ∅-definable substructure of M then N is homogeneous.

Proof. Both results follow immediately from the definition of homogeneity.

As it turns out, in this case we do not have to worry about the nature of A at all, because

in a big enough member of our m.e.c, the inclusion of A into our language still gives a

m.e.c. More formally, let M be a homogeneous L-structure and a1, . . . , ak ∈ M , and let

θ(z1, . . . , zk) isolate tp(a1, . . . , ak) (so we may suppose θ(z̄) gives the isomorphism type

of ā). Let C be a m.e.c with all non-principal ultraproducts elementarily equivalent to M .

We may suppose that all elements of C satisfy ∃z̄θ(z̄) by thinning it out to only the members

that are large enough. Let C(ā) be the class of all expansions of members of C to L(ā), in

which θ(a1, . . . , ak) holds.

Lemma 3.2.3 Under the above assumptions, C(ā) contains a m.e.c all of whose non-

principal ultraproducts are elementarily equivalent to (M,a1, . . . , ak).
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Proof. First we need to show that the class C(ā) is such that all non-principal ultraproducts

are elementarily equivalent to (M,a1, . . . , ak). By thinning out C(ā), we may suppose

that each L(ā)-sentence is true of a finite or cofinite subset of C(ā). Suppose we have a

formula ϕ(z̄) such that (M,a1, . . . , ak) |= ϕ(a1, . . . , ak). Then M |= ∀z̄(θ(z̄) → ϕ(z̄)),

so this holds in every sufficiently large P ∈ C, so sufficiently large members of C(ā) satisfy

ϕ(a1, . . . , ak). Thus, all non-principal ultraproducts of C(ā) are elementarily equivalent to

(M,a1, . . . , ak).

It remains to show that C(ā) is also a m.e.c. In order to do this we take an L(ā)

formula ψ(x1, . . . , xn, y1, . . . , ym, a1, . . . , ak). Now, as C is a m.e.c, for the L-formula

ψ(x1, . . . , xn, y1, . . . , ym, z1, . . . , zk) there exists an ∅-definable partition Π of (C, ȳz̄) and

a finite set hΠ = {hπ : π ∈ Π} of functions C → N such that for each π ∈ Π, if

(P, c̄d̄) ∈ π then |ψ(Pn, c̄d̄)|= hπ(P ). In particular, for (P, ā) ∈ C(ā), we know sets of

the form ψ(Pn, ȳ, ā) will take only a fixed number of sizes as ȳ ranges through Pm, and in

sufficiently large P (relative to ψ) the size depends just on the isomorphism type of ȳā, that

is the isomorphism type of ȳ over ā. Hence C(ā) is also a m.e.c.

We now have enough to prove the desired result.

Theorem 3.2.4 Let M be a homogeneous L-structure which is a m.e.c limit. Let

a1, . . . , ak ∈M and letN be an ā-definable subset ofM . We also letN ′ be a homogeneous

L′-structure, with universe N , which is canonically embedded in M over ā. Then N ′ is a

m.e.c limit.

Proof. By Lemmas 3.2.3 and 3.2.2, (M,a1, . . . , ak) is also a homogeneous m.e.c limit (in a

language where we add relation symbols for ā-definable atomic relations on M ), and so we

may drop the constants ā. Let C be a m.e.c such that all of its non-principal ultraproducts are

elementarily equivalent to M . Now by Lemma 2.4.17, we have quantifier-free L-formulas

which define N in M and define the L′-relations in N ′. Applying these to the members

of C we define finite L′-structures, which can be used to create a class C′. We claim that

C′ is a m.e.c with any non-principal ultraproduct elementarily equivalent to N ′. We can

arrange this class in such a way so that every L′-sentence true of N ′ is true of cofinitely

many members of C′, hence any non-principal ultraproduct will be elementarily equivalent
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to N ′. Now consider an L′ formula ψ(x̄, c̄). The size of the set ψ(P |x̄|, c̄) is going to be the

same as the size of the set defined by some ψ′ an L-formula over C and therefore will range

through a fixed set of sizes as (P, c̄) range through (C′, ȳ). Furthermore asN ′ is canonically

embedded in M , we see that the same ∅-definable partition that exists for C exists for C′.

Hence C′ is a m.e.c with ultraproduct elementarily equivalent to N ′.

We now have a pretty easy method of eliminating certain homogeneous structures. All we

have to do is find a canonical embedding of an already eliminated structure. We will now

go through some examples of this process.

3.2.2 Metrically Homogeneous graph

Definition 3.2.5 (Section 1, [1]). A connected graph is metrically homogeneous if it is

homogeneous when considered as a metric space in the graph metric, i.e. with binary

predicates interpreted by the graph’s distance.

The Universal metrically homogeneous graph of diameter k, Mk, is the countably infinite

metrically homogeneous graph that embeds all finite graphs of diameter k.

We can immediately find that for any vertex x in Mk, the vertices directly adjacent to x are

effectively the Random Graph.

Lemma 3.2.6 Let Mk be the universal metrically homogeneous graph of finite diameter

k > 1 and let x ∈ M . Set Γ1(x) to be the induced subgraph of all elements of M at

distance 1 from x. Then Γ1(x) is isomorphic to the Random graph.

Proof. To show that a countably infinite graph is isomorphic to the Random graph it is

enough to show that it satisfies the n-extension axiom for any n. Fix an n and suppose we

have two disjoint sets of size n in Γ1(x), {i1, . . . in} and {j1, . . . , jn}. By the universality

of M there exists a vertex m at distance 1 from x such that m is connected to ik and not

connected to jk for all k. This vertex m is therefore in Γ1(x) and hence this means that

Γ1(x) satisfies the n-extension axiom.

We can now see that we have enough to apply Theorem 3.2.4,
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Theorem 3.2.7 For all k ∈ N, there does not exist a m.e.c with ultraproduct elementarily

equivalent to the universal metrically homogeneous graph of diameter k.

Proof. Let Mk be the universal metrically homogeneous graph of diameter k and let

T = Th(M). Suppose there exists a m.e.c C with ultraproduct elementarily equivalent

to Mk. Now take x ∈ Mk and consider Γ1(x). By Lemma 3.2.6 this is isomorphic to the

Random Graph R.

It is clear that R is canonically embedded in Mk over x. First for any point x ∈ M the

universe of R is x-definable. It is also clear, as the language of Mk is binary, that the ∅-

definable sets in R are exactly the x-definable sets in Mk.

Therefore by Theorem 3.2.4, there cannot be a m.e.c with ultraproduct elementarily

equivalent to Mk.

As you can see this proof didn’t use any inherent properties of the metrically homogeneous

graph once the Random Graph was found. It therefore stands to reason that such an

approach will work for other homogeneous structures where we can ‘find’ a canonical

embedding of the Random Graph over some set.

Remark 3.2.8 We could use an analogous arguments to show that the metrically

homogeneous graph of infinite diameter is also not a m.e.c limit, and indeed that many

other metrically homogeneous graphs are not. There exists a catalogue of metrically

homogeneous graphs given by Cherlin, which is conjectured to be complete. This is verified

for diameter 3 in [1].

3.2.3 Universal Homogeneous Two-graph

Another example of such a structure is the universal homogeneous two-graph.

Definition 3.2.9 ([34], Example 2.3.1 (4)). A two-graph is a 3-hypergraph such that any

4-set contains an even number of 3-edges.

The universal homogeneous two-graph is the homogeneous countably infinite two-graph

that embeds all finite two-graphs.

For any graph, Γ, there exists a two-graph with the same vertex set, whose 3-edges are the
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3-sets with an odd number of graph edges, and it can be shown that every two-graph arises

in this manner. For example, the universal homogeneous two-graph is the two-graph that

can formed in this way from the Random Graph.

As before, we have a copy of the Random Graph in this structure by naming a point, however

we have to be very careful that it doesn’t possess any extra structure, i.e 3-edges. This is

a crucial issue, for example we can find the Random graph in the universal 3-hypergraph,

however 3-edges would still remain. This would lead to 3-sets that have the same 2-edge

structure, but aren’t isomorphic due to the fact that one possesses a 3-edge and the other

does not. We could therefore not use the m.e.c condition to dictate that as a graph the

structure possessed 5-regularity.

Lemma 3.2.10 LetM be the universal homogeneous two-graph and take x ∈M . Consider

Γ(x) to be the graph on V (M)\{x} with y and z connected if and only if {x, y, z} is a 3-

edge in M . Then Γ(x) is isomorphic to the Random graph canonically embedded over

x.

Proof. To show that a countably infinite graph is isomorphic to the Random graph it is

enough to show that it satisfies the n-extension axiom for any n. Fix an n and suppose

we have two disjoint sets of size n in Γ(x), {i1, . . . in} and {j1, . . . , jn}. We need to find

an m ∈ M such that (ik,m, x) is a 3-edge and (jk,m, x) is not a 3-edge for all k. By the

universality ofM we only need to show that the existence of such anmwould be consistent.

To do this we just need to show that every 4-set in consideration has an even number of 3-

edges. Clearly any 4-set not includingm does as this it is already present inM . Now we say

if (ik1 , jk2 , x) is not a 3-edge, then (ik1 , jk2 ,m) is and vice versa. If (ik1 , ik2 , x) is a 3-edge

then (ik1 , ik2 ,m) is too and if not then it isn’t either. We do the same thing for (jk1 , jk2 , x)

and (jk1 , jk2 ,m). The above relations ensure all 4-sets including both m and x have an

even number of 3-edges. Clearly (ik1 , ik2 , ik3 ,m) (and w.l.o.g (jk1 , jk2 , jk3 ,m)) have this

property as they satisfy same relations as (ik1 , ik2 , ik3 , x). Finally, (ik1 , jk2 , ik3 ,m) (and

likewise (ik1 , jk2 , ik3 ,m)) have an even number of 3-edges, as it has exactly two 3-edges

different from (ik1 , jk2 , ik3 , x), (ik1 , jk2 ,m) and (jk2 , ik3 ,m). Therefore the existence ofm

is consistent in M , so m is in M and Γ(x) has n-extension. Therefore Γ(x) is isomorphic
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to the Random Graph.

We now need to show that this Random Graph is canonical embedded in M over x. First

note that it will carry no extra structure by way of 3-edges, as if (a, b, c) is a 3-edge but

x /∈ {a, b, c} then having a 3-relation on (a, b, c) in Γ(x) is equivalent to there being an odd

number of edges in (a, b, c) by the definition of the universal homogeneous two-graph, and

therefore the 3-edges are determined by the graph structure. If it contains x then we lose

the 3-relation as we lose x.

We note that we know have two potential random graphs on M \ {x}, the original one used

to determine Γ, which we shall call R and the graph defined via x, R′. In general these

will not be the same graph, however we can see that the graph R will only provide extra

structure to R′ if they determine different two-graphs. We can see fairly quickly that they

will determine the same two graph however. If we take points a, b, c ∈ M \ {x} then they

will be a 3-edge in T (R′) (the two-graph generated by R′) if and only if they have an odd

number of edges in R′. This means that there an odd number of xab, xac, xbc are 3-edges

in T (R). As in any two-graph, any 4-set must have an even number of 3-edges, we get that

abc is a 3-edge in T (R) if and only if it is a 3-edge in T (R′). Hence they generate the same

two-graph.

Then as before we can extend the proof of Theorem 3.1.8 to incorporate this structure.

Theorem 3.2.11 There does not exist a m.e.c with ultraproduct elementarily equivalent to

the universal homogeneous two-graph.

Proof. This argument follows in much the same way to Theorem 3.2.7. Let M be the

universal homogeneous two-graph and let T = Th(M). Suppose there exists a m.e.c C with

ultraproduct elementarily equivalent to M . Now take x ∈ M and consider Γ(x) to be the

graph on V (M)\{x} with y and z connected if and only if {x, y, z} is a 3-edge in M as

before. Then this is isomorphic to the Random graph R canonically embedded over x by

Lemma 3.2.10.
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3.3 Reducts

A good place to look for structures with canonical embeddings is through the study of

reducts. To properly define reducts however we will need some more ideas from group

theory. Let Ω be a countable set. There exists a natural topology on the symmetric group of

Ω, that of pointwise convergence. Cameron [11] describes pointwise convergence with the

following process: Enumerate Ω = {α0, α1, . . .}. Then a sequence (gn) of permutations

tends to the limit g if and only if, for any k ∈ N, αkgn = αkg and αkg
−1
n = αkg

−1 for all

sufficiently large n.

Definition 3.3.1. A group is a topological group if it carries a topological space such that

the group operation and the inverse map are continuous in that space.

Hence in the topology of the symmetric group defined above, we see that any permutation

group G on the countable set Ω is a topological group (We have continuity as if gn → g and

hn → h then gnhn → gh and g−1
n → g−1).

A basis for the open sets in this topology is made up of cosets of stabilisers of finite tuples.

Definition 3.3.2. We say a permutation group G on a countable set Ω is a closed subgroup

of Sym(Ω), if it is a subgroup of Sym(Ω) and a closed set with regards to the topology of

pointwise convergence on Sym(Ω).

A result that will make these much easier to deal with in terms of reducts is the following:

Lemma 3.3.3 [11, 2.6] A subgroup G of Sym(Ω) is closed if and only if G = Aut(M) for

some (first-order) structure M on Ω.

We can now define

Definition 3.3.4 ([46]). A reduct of an ω-categorical structure M is a permutation group

(G,M) such that:

i) Aut(M) ≤ G

ii) G is a closed subgroup of Sym(M)

Assuming ω-categoricity, this is equivalent to there existing a structure N , for some

language L, such that:
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iii) N has the same universe as M .

iv) For each relation R ∈ L, RN is ∅-definable in M

v) G =Aut(N)

There are two main methods of proving an unstable reducts of a structure does not have a

m.e.c limit. The first is to find a combinatorial representation of the reduct, and then find

the original structure as a canonically embedded substructure of it over some finite set. This

will then allow the use of Theorem 3.2.4 to eliminate the possibility of a m.e.c limit.

The second is to instead name points and use Lemma 3.2.3. We can demonstrate both using

the random graph.

3.3.1 Reducts of the Random Graph

It seems prudent that the first structure we look at through this lens is the Random Graph.

In [46], Thomas classifies the possible reducts of the random graph.

Theorem 3.3.5 ([46], Theorem 1) Let the Random Graph be R. If (G,R) is a reduct of R,

then

G ∈ {Aut(R), D(R), S(R), B(R),Sym(R)}

where D(R) is the duality group, S(R) is the switching group, and B(R) =

⟨D(R), S(R)⟩.

This can be rephrased in the form of combinatorial structures as was done in [Theorem 8,

[6]].

Theorem 3.3.6 ([46] or Theorem 8, [6]) i) S(R) is the automorphism group of the 3-

hypergraph whose edges are the 3-element subsets containing an odd number of edges

in the Random Graph.

ii) D(R) is the automorphism group of the 4-hypergraph whose edges are the 4-element

subsets containing an odd number of edges in the Random Graph.

iii) B(R) is the automorphism group of the 5-hypergraph whose edges are the 5-element

subsets containing an odd number of edges in the Random Graph.
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We have already dealt with one of these, for as noted in [41] the 3-hypergraph whose edges

are the 3-element subsets containing an odd number of edges in the Random Graph is

exactly the universal homogeneous two-graph. We will need the following lemma:

Lemma 3.3.7 Let L1,L2 be relational languages, and let M1,M2 be respectively L1 and

L2-structures, both homogeneous, with the same domain M and the same automorphism

group (so the same ∅-definable sets). Then M1 is a m.e.c. limit if and only if M2 is a m.e.c.

limit.

Proof. Any sentences needed to translate between L1 and L2 will hold in sufficiently large

members of a m.e.c. Suppose that C1 is a m.e.c for M1. For each relation symbol R(x̄)

of L2 there is a quantifier-free L1-formula ϕR(x̄) such that {x̄ : M1 |= ϕR(x̄)} = {x̄ :

M2 |= R(x̄)}. We translate each member of C1 into an L2-structure by interpreting each

L2 relation R by the corresponding L1-formula ϕR. After thinning out C2 first, we find that

all its non-principal ultraproducts are elementarily equivalent to M2.

Now, let R denote the random graph, and D denote the reduct whose automorphism group

is the duality group D(R). We may view D as a structure in a language with a single arity

4 relation U which determines an equivalence relation on unordered 2-sets, one class being

the edge set of the random graph, the other being the non-edge set. We can view D as a

homogeneous structure by expanding the language, and this will not change the ∅-definable

sets.

Similarly we let B denote the reduct whose automorphism group is B(R).

Theorem 3.3.8 i) There does not exist a m.e.c with ultraproduct elementarily equivalent

to D,

ii) There does not exist a m.e.c with ultraproduct elementarily equivalent to B.

Proof. i) Suppose that C is a m.e.c all of whose ultraproducts are elementarily equivalent

to D. Let a, b be adjacent in R. By Lemma 3.2.3, we can obtain from C a m.e.c,

C(a, b), all of whose ultraproducts are elementarily equivalent to (D, a, b). Now (in a

suitable language) (D, a, b) is a homogeneous structure whose ∅-definable sets are the
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same as those of (R, a, b). It follows by Lemma 3.3.7 that the random graph is a m.e.c.

limit, a contradiction.

ii) This is the exact same argument, however we name three points a, b, c.

Therefore, using Theorem 3.2.11 and Theorem 3.3.8, all three unstable reducts listed in

Theorem 3.3.5 do not have m.e.c limits (Note Sym(R) is stable). More formally,

Theorem 3.3.9 There does not exist a m.e.c with ultraproduct elementarily equivalent to

any unstable reduct of the random graph.

This begs the question, is this true in general of unstable reducts of structures with no m.e.c

limit? While this question is not answered in this work, we can provide some results to be

applied to other cases.

3.4 Other structures

Although we’ve been using reducts to find universal structures with other universal

structures within, we need not do this. We can also do it the other way around, name a

universal structure and look to see if it contains some copy of a structure already known not

to have a m.e.c limit.

3.4.1 Universal homogeneous n-tournament-free digraph

First we should establish our language for digraphs. For convenience, we shall use three

symbols F,B,N (although really just one F would suffice). We say F (x, y) represents

an edge going from x to y, B(x, y) = F (y, x) represents an edge going from y to x, and

N(x, y) = ¬F (x, y) ∧ ¬F (y, x) represents the absence of an edge between x and y.

Definition 3.4.1. A tournament is a digraph, T , in which for all distinct x, y ∈ T exactly

on of F (x, y) or B(x, y). An n-tournament is a tournament of size n.

It is shown by Henson that for any set S of finite tournaments the collection of finite S-

free digraphs has the amalgamation property, and hence yields an unstable homogeneous
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digraph MS . These are known as Henson Digraphs.

Definition 3.4.2. The universal n-tournament-free digraph is the Fraïssé limit of the class

of all finite digraphs with the omission of any digraph embedding a tournament with n

vertices.

We will first consider the 3-tournament-free case.

Theorem 3.4.3 If M is a finite 2-regular 3-tournament-free digraph then M is isomorphic

to the 4-cycle

Proof. SupposeM is a finite 2-regular 3-tournament-free digraph. For ease, for any x ∈M ,

we will define the sets F (x) = {y ∈ M : F (x, y)}, B(x) = {y ∈ M : B(x, y)} and

N(x) = {y ∈M : N(x, y)}. By 1-regularity, |F (x)|= |B(x)|= k.

Now using 2-regularity, we consider any points x1, x2 ∈M such that (x1, x2) ∈ F . Due to

the fact that we know M embeds no tournaments on at least 3 vertices, we can immediately

see that |F (x1) ∩ F (x2)|= |B(x1) ∩ F (x2)|= |F (x1) ∩ B(x2)|= |B(x1) ∩ B(x2)|= 0.

Also by counting all the arrows to and from x1 and x2, we get that |F (x1) ∩ N(x2)|=

|N(x1) ∩B(x2)|= k − 1 and |B(x1) ∩N(x2)|= |N(x1) ∩ F (x2)|= k.

Similarly we consider any points y1, y2 ∈ M such that N(y1, y2). As there are no

restrictions on this case so we can treat them as we would usual regular digraphs. Suppose

|F (y1) ∩ F (y2)|= d1 and |B(y1) ∩B(y2)|= d2. We know that

|F (y1) ∩B(y2)|= |B(y1) ∩ F (y2)|= c

for some c and

|F (y1) ∩N(y2)|= |N(y1) ∩ F (y2)|= |B(y1) ∩N(y2)|= |N(y1) ∩B(y2)|= e

for some e. To see this note that we can count the structure
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α

β γ

by starting with α and then comparing the numbers when you pick β next or γ next.

Now we can note that |F (y1)|= |(F (y1)∩F (y2))|+|(F (y1)∩B(y2))|+|(F (y1)∩N(y2))|=

d1 + e + c and |B(y1)|= |(B(y1) ∩ F (y2))|+|(B(y1) ∩ B(y2))|+|(B(y1) ∩ N(y2))|=

d2 + e+ c. But |F (y1)|= |B(y1)|= k, hence d1 = d2 = d and e = k − d− c.

Now, let P be the triangle FFN , defined as

We can count P in two different ways either starting with F , giving us n · k · k − 1 copies

of P , or N , giving us n · (n− 2k − 1) · d. This gives us the identity

k(k − 1) = (n− 2k − 1)d

We can do a similar thing for Q = FBN .

giving the identity

k2 = (n− 2k − 1)c

This leads to the result that
k − 1

k
=
d

c

As c and d are integers no bigger than k, this implies that d = k − 1 and c = k. But as

|F (y1) ∩N(y2)|= k − d− c ≥ 0 we know 1− k ≥ 0 and so k = 1, as k − 1 ≥ 0 also. As
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k = c = 1 we get n− 2k − 1 = 1 as well, so n = 4.

These leads immediately on to the following result.

Theorem 3.4.4 Let Γ be the universal homogeneous 3-tournament-free digraph. Then there

does not exists a m.e.c C such that the ultraproduct of C is elementarily equivalent to Γ.

Proof. Suppose that the ultraproduct of C is elementarily equivalent to Γ. Then by Lemma

2.5.5 we know that any sufficiently large member M ∈ C will be n-regular. But then by

Theorem 3.4.3 the only option is the the 4-cycle.

We can now generalise this to the n-tournament-free case for a general n, by finding the

3-tournament-free case within it.

Theorem 3.4.5 If M is the universal homogeneous n-tournament-free digraph then there

does not exist a m.e.c with ultraproduct elementarily equivalent to M .

Proof. This is simple enough. Let X = {x1, . . . , xn−3} ∈ M be such that X carries

a tournament isomorphic to a linear ordering from x1 to xn−3 (the choice of tournament

actually doesn’t matter). Then consider the set of points Y = {y ∈ M\X :

F (y, xi) for each i = 1, . . . , n − 3}. Then Y is 3-tournament-free and has no

other restrictions, hence it is isomorphic to the universal homogeneous 3-tournament-free

digraph, and is canonically embedded over X . It follows from Theorem 3.2.4 and Theorem

3.4.4 that there does not exist a m.e.c. with ultraproduct elementarily equivalent to M .

3.4.2 Amalgamation classes determined by constraints on triangles

Defined by Cherlin in the Appendix of [16], we look at the list of semi-free (but not free)

amalgamation classes in binary relational languages with 3 or 4 colours. We show in

Theorems 3.4.7 and 3.4.9 that none of the Fraïssé limits of these classes are m.e.c limits.

Definition 3.4.6 ([16]). An amalgamation class of a binary relation language is said to have

semi-free amalgamation if there is a proper subset of the 2-types of distinct elements which

is adequate for the solution of any amalgamation problem.
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Let L = {X1, . . . , Xk} be a relational language in which every relation is symmetric,

binary and irreflexive. Define ∆ to be a finite set of L-structures of size 3. Such a structure

will be determined by a triple from L, for example X1X1X2 determines an L-structure

of size 3 in which two pairs satisfy X1 and the third satisfies X2. Then define C(∆) to

be class of all finite L-structures Γ such that for all T ∈ ∆, T is not embedded in Γ and

the set of unordered pairs is partitioned by the relations X1, . . . Xk. If C(∆) satisfies the

amalgamation property, then we say that M(∆) is the Fraïssé limit of C(∆). Cherlin lists

the possible ∆ such that C(∆) is a primitive semi-free, but not free, amalgamation class in

the case where |L|= 3 or |L|= 4, and states that there are 2ℵ0 in any case with a larger

language. Note he conjectures that these lists are complete but does not prove this. A

positive result for the conjecture in the |L|= 3 case is given in the Appendix.

When L = {R,G,B} Cherlin lists just one possibility:

1. ∆ = {RBB, GGB, BBB}

When L = {R,G,A,X} we get 27 possibilities:

1. ∆1 = {RXX, GAX, AXX}

2. ∆2 = {RXX, GAX, AXX, XXX}

3. ∆3 = {RXX, GAX, AXX, AAX}

4. ∆4 = {RXX, GAX, AXX, AAA}

5. ∆5 = {RXX, GAX, AXX, AAX, XXX}

6. ∆6 = {RXX, GAX, AXX, AAA, XXX}

7. ∆7 = {RXX, GAX, AAX, AXX, AAA}

8. ∆8 = {RXX, GAX, AAX, AXX, AAA, XXX}

9. ∆9 = {RXX, GAX, AAX, XXX}

10. ∆10 = {RXX, GAX, AAX, XXX, AAA}

11. ∆11 = {RXX, GGX, AXX, XXX}

12. ∆12 = {RXX, GGX, AAX, AXX, XXX}
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13. ∆13 = {RXX, GGX, AXX, XXX, AAA}

14. ∆14 = {RXX, GGX, AAX, AXX, XXX, AAA}

15. ∆15 = {RXX, GAX, GGX, AXX, XXX}

16. ∆16 = {RXX, GAX, GGX, AAX, AXX, XXX}

17. ∆17 = {RXX, GAX, GGX, AXX, XXX, AAA}

18. ∆18 = {RXX, GAX, GGX, AAX, AXX, XXX,AAA}

19. ∆19 = {RXX, GAX, GGX, AAX, XXX}

20. ∆20 = {RXX, GAX, GGX, AAX, XXX, AAA}

21. ∆21 = {RAA, RXX, GAX, AAX, XXX}

22. ∆22 = {RAA, RXX, GAX, AAX, AXX}

23. ∆23 = {RAA, RXX, GAX, AAX, AXX, XXX}

24. ∆24 = {RAA, RXX, GAX, AXX, XXX, AAA}

25. ∆25 = {RAA, RXX, GAX, AAX, AXX, XXX, AAA}

26. ∆26 = {RRX, RAA, RXX, GAX, GXX, AAX, XXX}

27. ∆27 = {RRA, RRX, GAA, GAX, GXX, AAX, AXX, XXX,AAA}

This is a rather dauntingly long list, but we can show that the corresponding Fraïssé limits

are not m.e.c limits using earlier results:

Theorem 3.4.7 Suppose L = {R,G,B} and ∆ = {RRB, GGB, BBB}. Then there

does not exist a m.e.c with ultraproduct elementarily equivalent to M(∆).

Proof. Define a point x in M(∆), then consider the Green neighbourhood G(x) of x.

As GGB is a forbidden triangle, there are no Blue edges in this neighbourhood, so it is

two coloured. However there is no restriction using only the other two colours. Hence

Age(G(x)) is the set of all finite two-coloured graphs, and therefore this is isomorphic to

the Random Graph.

We can see that this is a canonical embedding as there is no extra structure on the random
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graph, and so the ∅-definable sets in G(x) are exactly those that are x-definable in M(∆).

Hence by Theorem 3.1.8 and Theorem 3.2.4, there does not exist a m.e.c with ultraproduct

elementarily equivalent to M(∆).

Theorem 3.4.8 Suppose L = {R,G,A,X}. Then if ∆ ∈ {∆1, . . . ,∆27}, then M(∆) has

a definable substructure isomorphic to either

• The Random Graph

• The Random Bipartite graph

with no extra structure i.e. canonically embedded over suitable parameters.

Proof. First we shall focus on ∆1. Take a vertex ∞ ∈ M(∆1), and consider X(∞),

the X neighbourhood of ∞. Note that this cannot contain any R or A coloured edges,

so is two-coloured. Further we can note that there are no further restrictions within the

neighbourhood, as no forbidden triangle solely contains just G and X edges. Hence

Age(X(∞)) is the set of all finite two-coloured graphs, and therefore X(∞) is isomorphic

to the Random Graph, canonically embedded over ∞.

We can note that this argument will work for any ∆ containingRXX ,AXX (or isomorphic

conditions) and no further restrictions involving only G and X . Hence, by considering the

X-neighbourhood, this argument follows for ∆3,∆4, ∆7, ∆9 and ∆19 and by considering

the A-neighbourhood it follows for ∆8, ∆10, ∆14, ∆18, ∆20, ∆21, ∆22, ∆23 and ∆26.

Hence all of these have an induced subgraph isomorphic to the Random graph.

Next we shall look at ∆2. The only neighbourhood which is not isomorphic to the entire

graph is the X-neighbourhood, which is complete in G. Now construct the induced

subgraph as follows:

Take vertices ∞1 and ∞2 in M(∆2) such that (∞1,∞2) is red. Now consider Y1 = {y ∈

M(∆2) : X(∞1, y) ∧ G(∞2, y)} and Y2 = {y ∈ M(∆2) : X(∞2, y) ∧ R(∞1, y)}. The

induced subgraph on both Y1 and Y2 is a complete graph in G, however we see that the

connections between Y1 and Y2 are all of colour G or R (X is removed by XXR, A is

removed by GAX). As there are no further restrictions involving just G and R, we can see

that the induced subgraph on Y1 ∪ Y2 is indeed isomorphic to the Random bipartite graph,
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with G becoming non-edges and R being edges. To illustrate, we have structure

∞1

∞2

G Y1

G Y2

X

R

G

X

R G/R

Now as with ∆1 we can generalise this argument. We can observe that ∆5, ∆6, ∆24 and

∆25 have all the triangle restrictions of ∆2, and that their additional forbidden triangles do

not affect the above construction of the random bipartite graph. Thus the same argument

will apply in these cases.

Although ∆12 and ∆27 do not follow exactly from this, very similar arguments can be

used. For ∆12, with ∞1 and ∞2 as above, we instead define Y1 = {y ∈ M(∆12) :

X(∞1, y) ∧ A(∞2, y)} and Y2 as before. And for ∆27, we use vertices ∞1 and ∞2 in

M(∆27) such that (∞1,∞2) is green. Then Y1 = {y ∈M(∆27) : X(∞1, y)∧G(∞2, y)}

and Y2 = {y ∈ M(∆27) : X(∞2, y) ∧ G(∞1, y)} will give that the induced substructure

on Y1 ∪ Y2 is isomorphic to the random bipartite graph.

For ∆13, we take a point ∞ and look at the A-neighbourhood of it. This is 3-coloured as

AAA ∈ ∆13, means it won’t have the colour A. Now the remaining forbidden triangles in

∆13 without A will hold in this neighbourhood. These are ∆′ = {XXX,XGG,XXR}.

Hence the A-neighbourhood of ∞ is isomorphic to M ′(∆′) (with X,G,R replacing

R,G,B). The same this holds for the A-neighbourhood of a point in M(∆17). However

by Theorem 3.4.7, we know these have the random graph as finitely definable substructure.

All we have left are ∆11,∆15 and ∆16. For ∆11, we can find a structure very similar

to the random bipartite graph by naming two points ∞1 and ∞2 such that (∞1,∞2)

is of colour A. Then define Y1 = {y ∈ M(∆11) : X(∞1, y) ∧ G(∞2, y)} and

Y2 = {y ∈ M(∆11) : X(∞2, y) ∧ R(∞1, y)}. Then Y1 ∪ Y2 is two complete graphs

in G connected by random edges of colour A and R. We claim that this graph is isomorphic

to the Random bipartite graph. Indeed the only difference is that the ’non-edges’ internal to

the parts are of a different relation to the ’non-edges’ between the parts. However as each

point in the random bipartite graph knows which part it is in (they are all at distance 2 from
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each other), we can simply forget the colour R, and recover it if necessary.

For ∆= ∆15 or ∆16 it follows very similarly however we need a slightly different set up.

Take ∞1 and ∞2 such that (∞1,∞2) is of colour X . Then define Y1 = {y ∈ M(∆) :

X(∞1, y) ∧ G(∞2, y)} and Y2 = {y ∈ M(∆) : X(∞2, y) ∧ G(∞1, y)}. Then Y1 ∪ Y2

is two complete graphs in G connected by random edges of colour X and R, and the same

process can be done to show this is isomorphic to the Random bipartite graph.

Theorem 3.4.9 Suppose L = {R,G,A,X}. Then for ∆ ∈ {∆1, . . . ,∆27} there does not

exist a m.e.c. with ultraproduct elementarily equivalent to M(∆).

This is just an immediate consequence of Theorem 3.2.4, Theorem 3.4.8 and Theorem 3.1.7.

As part of an Undergraduate Research Project (UROP) I did with Prof. David Evans at

Imperial College London in 2016, I proved the completeness of the Cherlin’s list in the case

where L = {R,G,B}. More specifically the theorem:

Theorem 3.4.10 Let L = {R,G,B} be a symmetric, irreflexive, binary, relational

language and suppose M is a primitive universal homogeneous L-structure with semi-

free, but not free, amalgamation determined by a set of forbidden triangles. Then M is

isomorphic to M(∆) with

∆ = {RBB, GGB, BBB}

As this was not originally done as part of this PhD research (though it has been heavily

revised), I’ve included the proof in the Appendix.

3.5 Next steps and Open Problems

The next steps to the work are generally to do with ruling out more structures. It seems that

once we have certain universal structures, then reducts or other structures defined in similar

languages follow fairly quickly. The main next step would be finding a general approach

to applying Theorem 3.2.4. At the moment I have been looking at individual structures.

However I think there is scope for finding a general theorem that will dictate when a reduct

will contain the original structure as a finitely definable substructure.
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I would expect that any unstable homogeneous structure that has certain limitations in

which types it can use, will probably have a canonical embedding of some other structure

with a lesser degree of limitation. This process would continue until you are left with the

homogeneous structures with pretty much no limitations, the universal unstable structures.

It is my current understanding that these will be the most important pieces of the puzzle.

There are immediate examples that come to mind. The universal homogeneous 3-

hypergraphs provides a good example to consider. As we saw, the classification of 5-regular

graphs resulted from the study of 6-transitive graphs in [9], and their classifications look

very similar. In the same paper we find the following theorem.

Theorem 3.5.1 ([9], Theorem 5.1) Let ∆ be a finite k-hypergraph and suppose that any

isomorphism between induced sub-hypergraphs on at most k + 3 vertices extends to an

automorphism of ∆. Then ∆ is one of the following:

i) the complete or null hypergraph,

ii) the hypergraph whose edges are the lines of PG(2, 2), or its complement,

iii) the hypergraph whose edges are the planes of AG(3, 2), or its complement,

iv) the unique regular two-graph on 6 vertices,

v) the unique regular two-graph on 10 points.

Could we use this as a starting point to get a classification of finite n-regular 3-hypergraphs?

It seems likely that there may exist some equivalent to the results of Chapter 4 and [12] but

utilizing design theory instead of graph theory.

In a similar vein the universal homogeneous digraph would also provide an interesting study.

We saw in the case of the 3-tournament free digraph that counting arguments alone were

enough to rule it out. One would hope a similar approach would work for this structure.

Another immediate open case is the universal homogeneous 3-coloured graph, which we

could also hope to show is not a m.e.c limit from similar methods to the classification of

5-regular graphs. This is what we shall focus on for the rest of the thesis.
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Chapter 4

3-coloured Graphs

In this chapter we will outline what we need for the study of highly regular 3-coloured

graphs. It will tie together the ideas we need from association schemes and graph theory,

and provide strong basic results that will be frequently used in later sections.

4.1 Notation

Throughout the following sections there will be various notation that I will continuously

use. This is a continuation of the notation from [12] but extended to meet the needs of this

work. Suppose M is a finite 2-regular 3-coloured graph. There is also a table in Appendix

B that will summarise the notation given here and throughout the rest of the thesis. The

notation we shall use will be as follows:

• R, B and G are symmetric irreflexive binary relations representing the 3 colours, and

any pair of distinct elements of M satisfy exactly one of them.

• n is the total number of vertices in M .

• AR, AB, AG are the n × n 01-adjacency matrices of the red, blue and green edges

respectively.

• A non-principal eigenvalue is one that does not have eigenvector u (the all 1 vector).

Here ri, si and ti will be the non-principal eigenvalues of Ai for i ∈ {R,G,B}.

There are three as we are working in a 3-class association scheme. We shall use
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the convention later that rR, rG and rB will have the same eigenvectors (shown in

Corollary 4.2.8).

• pijk is the fixed number of vertices such that if x, y are connected by an edge of type

i, then there are pijk vertices z which are connected to x in colour j and y in colour k.

These are the double intersection numbers.

• ki is the number of edges of type i incident with any vertex.

• J will represent the all one matrix of any dimension, not necessarily square.

• E0, E1, E2, E3 form the basis of minimal idempotent matrices of the Bose-Mesner

algebra of our association scheme. nE0 = J .

We can now extend this to 3-regularity and into the neighbourhoods of some base vertex

∞ ∈ M . It should be stated that each neighbourhood of ∞ is itself 2-regular and therefore

an association scheme (not necessarily 3-class). We will therefore assume 3-regularity and

extend the notation in the following way:

• N i
jl is the kl × kj adjacency matrix of i coloured edges, where for x in the l-

neighbourhood of ∞ and y in the j-neighbourhood, of ∞ (N i
jl)x,y = 1 iff (x, y)

is an i-edge and 0 otherwise.

• N i
jj is the kj × kj adjacency matrix of i coloured edges, internal to the j-

neighbourhood.

• rij , sij and tij will be the non-principal eigenvalues of N i
jj .

• pabcijk is the number of vertices z in the following image:

x

∞

y

z

a

b

i

c

j

k

(4.1.1)

These will be called the triple intersection numbers.
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We should note that triple intersection numbers exist only under the assumption of 3-

regularity.

So for illustrative purposes we can see the adjacency matrices fit together as follows

Ai =



0 δiRu
T
1 δiGu

T
2 δiBu

T
3

δiRu1 N i
RR N i

RG N i
RB

δiGu2 N i
GR N i

GG N i
GB

δiBu3 N i
BR N i

BG N i
BB


(4.1.2)

with δij being the Kronecker delta.

From the definition of our RGB structures we know that J = I + AR + AG + AB and

that these (namely I, AR, AG and AB) also form a basis of the Bose-Mesner algebra (see

Section 2.2. By Theorem 1.7.1 in [23], we can choose our parameters in such a way that the

transition matrices between our two bases are as follows:

E0 E1 E2 E3

I 1 1 1 1

AR kR rR sR tR

AG kG rG sG tG

AB kB rB sB tB

(4.1.3)

and
I AR AG AB

nE0 1 1 1 1

nE1 f fα1 fβ1 fγ1

nE2 g gα2 gβ2 gγ2

nE3 h hα3 hβ3 hγ3

(4.1.4)

Here Ai has the eigenvalues ki, ri, si and ti and f, g and h are the multiplicities for ri, si

and ti respectively (This doesn’t depend on i due to 4.2.8).

When using the basis of minimal idempotents, we can think of it as looking at things from

the perspective of the eigenspaces instead of the adjacency matrices.
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As we will always be dealing with 3-coloured structures we can assume that ki ̸= 0 for all

i.

We also define a constant D via

D := rGtR − rRtG + sRtG − sGtR + rRsG − rGsR (4.1.5)

Note that D is the determinant of the (4, 1)-minor of the transition matrix in 4.1.3. As such

we shall see later in Lemma 4.2.12 that D ̸= 0. It should also be noted that the choice of

colours was immaterial here, by permuting the colours you do not change the form of the

equation, however you will multiply by the signature of the permutation. This can be seen

by making repeated use of 0 = 1 + rR + rG + rB (Lemma 4.2.10) and the corresponding

equations for s and t.

Some other shorthand we will use fairly frequently is:

Definition 4.1.1. We say that a 2-regular 3-coloured graph is strongly regular in m, if the

2-coloured graph formed by makingm the edges and j∪ l the non-edges is strongly regular.

We will also here say the adjacency matrix Am is strongly regular.

It is important to note that a strongly regular adjacency matrix will only have two distinct

non-principal eigenvalues as it is exactly the adjacency matrix of a strongly regular graph.

4.2 Preliminary Results

Some initial but important results that come from using this notation are

Lemma 4.2.1 If i and j are distinct colours and kj ̸= 0 then

ki =
∑

k∈{R,G,B}

pjik

and if ki ̸= 0 then

ki =
∑

k∈{R,G,B}

piik + 1

Proof. Fix a vertex x, then fix a vertex y such that (x, y) is of colour j. Then every vertex

connected to x by an i coloured edge must also be connected to y in some colour k, hence
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if we sum over all possibilities for k, we get the number of i-coloured edges from x.

The proof works exactly the same if (x, y) is of colour i except we have to include the edge

(x, y) as well, hence the additional 1 in the sum.

We can find similar results for the triple intersection numbers. Note that in using triple

intersection numbers we are assuming 3-regularity. However first we can note that we

can swap around colours inside the intersection number so long as the triangles within are

preserved. More formally

Lemma 4.2.2 For any colours x, y, z, i, j, k, we get

pxyzijk = pxzyjik = pyxzikj = pyzxkij = pzxyjki = pzyxkji

This just comes from inspection of the diagram 4.1.1. They are all valid ways of counting

the point z. By using other counting arguments we get the following lemma which we will

make great use of:

Lemma 4.2.3 If x, y, z, i, j are colours and pyxz ̸= 0, then if {i, j} ≠ {y, z} we get that

pxij =
∑

k∈{R,G,B}

pxyzijk =
∑

k∈{R,G,B}

pyxzikj =
∑

k∈{R,G,B}

pyzxkij

If (i, j) = (y, z) then we get the same but with pxij − 1 instead.

Proof. This just comes from counting how many of the following shape exist:

c

a b

d

z

y

i

j

x
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There are multiple ways of doing this, however we shall choose a, then b, then c. This gives

a total of n · ky · pyxz triangles. Now there are two ways of counting how many options for

d there are. Either we can ignore the rest of the structure and note there are pxij options

(or pxij − 1 options if (y, z) = (i, j)), or we can take the sum of all possible colours of the

edge between a and d giving
∑

k∈{R,G,B} p
xyz
ijk (or

∑
k∈{R,G,B} p

xyz
ijk − 1 if (y, z) = (i, j)).

Hence counting the total number of triangles gives

n · ky · pyxz · pxij = n · ky · pyxz ·
∑

k∈{R,G,B}

pxyzijk

And so if pyxz ̸= 0 we get the result.

Further basic counting arguments give the next few results.

Lemma 4.2.4 For colours a, b, c, j, l,m we get the following equalities:

kap
a
bc = kbp

b
ac

kap
a
bcp

abc
jlm = kbp

b
jmp

bjm
acl

Proof. Similar to the above, this comes from counting certain structures in two ways. For

the first equation we count the total number of this structure:

x

y za

c b

We see that if we first fix z, then y, then x we get nkapabc copies of this triangle. However if

instead we fix x then z, then y we get nkbpbac giving the desired equality.
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For the second equation instead we look at the structure

x

w

y

z

a

b

j

c

l

m

We can count this in many ways as well, one way being starting with w, then x, then y, then

z giving nkapabcp
abc
jlm. Another starting with w, then y, then z, then x giving nkbpbjmp

bjm
acl

and therefore the result.

We can see from the two equations that we can arrange it so any triangle and any edge from

it are brought out first, which is evident from the argument in the proof.

Following on from this we see what happens when intersection numbers are 0. Note it is

convention that if for some colour x if kx = 0, then pxyz = 0 as there can’t be any points

defined over an edge that doesn’t exist. We get the following result.

Lemma 4.2.5 For any colours x, y, z, i, j, k,

pxyz = 0 ⇔ pyxz = 0 ⇔ pzyz = 0

And

pxyzijk = 0 ⇔ pxijyzk = 0 ⇔ piykxjz = 0 ⇔ pjkzixy = 0

Proof. Suppose pxyz = 0, then there does not exist any triangles:

x

y z

Therefore pyxz = pzyx = 0 too.

The same idea with 4 points gives the second result.
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An important but simple corollary is the following

Corollary 4.2.6 Suppose pxyz = 0. Then for any a, b, c, pxyzabc = pxabyzc = 0.

Proof. Immediately by Lemma 4.2.3 we see that for any a, b, c, pxabyzc = 0. Now we use

Lemma 4.2.5 to get pxyzabc = 0 too.

By multiplying out the matrices we get the equations

Lemma 4.2.7 For distinct colours j, l,m we get

A2
j = pjjjAj + pmjjAm + pljjAl + kjI

AjAm = pjjmAj + pmjmAm + pljmAl

Proof. This follows directly from the definition of an association scheme.

From this we can see that AjAm = AmAj and hence from Lemma 2.2.4

Corollary 4.2.8 There exists a basis of shared eigenvectors for AR, AG and AB .

By multiplying the equations from Lemma 4.2.7 on the left and right by a non-principal

eigenvector we get:

Corollary 4.2.9 For distinct colours j, l,m we get

r2j = pjjjrj + pmjjrm + pljjrl + kj

rjrm = pjjmrj + pmjmrm + pljmrl

The same results hold for s and t-eigenvalues.

By the orthogonality of the transition matrix 4.1.3 or by multiplying the equation J =

I +AR +AG +AB left and right by a non-principal eigenvector we get:

Lemma 4.2.10 For eigenvalues rR, rG, rB

0 = 1 + rR + rG + rB
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As such we will generally remove the third eigenvalue (usually rB) and keep everything in

terms of just two. I will however switch back and forth when it is more helpful to do so. We

can also now note:

Corollary 4.2.11

(Nx
mm)2 +Nx

mjN
x
jm +Nx

mlN
x
lm =

(kx − pzxx)I + (pxxx − pzxx)N
x
mm + (pyxx − pzxx)N

y
mm + (pzxx − δxm)J

Proof. This comes from considering the equation from Lemma 4.2.7 with respect to the

expansion of Ax in 4.1.2.

A2
x =



0 δxmu
T
1 δxju

T
2 δxlu

T
3

δxmu1 Nx
mm Nx

mj Nx
ml

δxju2 Nx
jm Nx

jj Nx
jl

δxlu3 Nx
lm Nx

lj Nx
ll





0 δxmu
T
1 δxju

T
2 δxlu

T
3

δxmu1 Nx
mm Nx

mj Nx
ml

δxju2 Nx
jm Nx

jj Nx
jl

δxlu3 Nx
lm Nx

lj Nx
ll


If we look at just the entry in the second row and second column of A2

x we get

δxmu1δxmu
T
1 + (Nx

mm)2 +Nx
mjN

x
jm +Nx

mlN
x
lm

However, from Lemma 4.2.7, we also know that

A2
x = pxxxAx + pyxxAy + pzxxAz + kxI

Therefore, using Az = J − I−Ax−Ay and taking just the second row and second column

again we get

(kx − pzxx)I + (pxxx − pzxx)N
x
mm + (pyxx − pzxx)N

y
mm + pzxxJ
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Hence we end up with the equality

(Nx
mm)2+Nx

mjN
x
jm+Nx

mlN
x
lm = (kx−pzxx)I+(pxxx−pzxx)Nx

mm+(pyxx−pzxx)Ny
mm+(pzxx−δxm)J

Recall the constant D defined via 4.1.5. Utilising Lemma 4.2.10 gives us the following:

Lemma 4.2.12 In a 2-regular 3-coloured structure D ̸= 0.

Proof. Consider the transition matrix from Equation 4.1.3. By adding every row to the

bottom row and using Lemma 4.2.10, we see the determinant of the transition matrix is the

same as that of the following matrix:


1 1 1 1

kR rR sR tR

kG rG sG tG

n 0 0 0


The determinant of this matrix is nD and hence the determinant of the transition matrix is

−nD. The determinant of this matrix must be non-zero and hence D must be.

We can actually get a general form for any multiplication of adjacency matrices, presuming

their dimensions match.

Lemma 4.2.13 For colours a1, a2, a3, b1, b2, b3, if a3 = b2 and (a1, a2) ̸= (b1, b3) then

Na1
a2a3N

b1
b2b3

= pa2b3Ra3a1b1
NR

a2b3 + pa2b3Ga3a1b1
NG

a2b3 + pa2b3Ba3a1b1
NB

a2b3

If (a1, a2) = (b1, b3) then

Na1
a2a3N

b1
b2b3

= pa2a1a3I + pa2b3ma3a1b1
Nm

a2b3 + pa2b3ja3a1b1
N j

a2b3
+ pa2b3la3a1b1

N l
a2b3

Proof. This follows from direct calculation. We shall first select a row in Na1
a2a3 . This

selection corresponds to choosing a vertex in the a2-neighbourhood of ∞, let’s call this x1.



4.3. AMORPHICITY 65

Each of the non-zero entries in this row represent an edge of colour a1 going from x1 into

the a3-neighbourhood. Next we select a column in N b1
b2b3

. The selection corresponds to a

vertex x2 in the b3-neighbourhood of ∞, and the non-zero entries in this column represent

the edges of colour b1 going from x2 to the b2 = a3 neighbourhood. So the value of the

multiplication of x1’s row and x2’s column is the size of the overlap of the two. Note that

if a2 = b3 then we could be selecting the same vertex for both the row and column, i.e. we

could have x1 = x2. In this case they will overlap completely if a1 = b1 and not at all if

a1 ̸= b1. This corresponds to pa2a1a3 or 0 in the positions where x1 = x2, which is I . Hence

if (a1, a2) = (b1, b3), we will have an extra pa2a1a3I .

Now, supposing x1 ̸= x2, we see that the size of the overlap is determined by the colour of

the edge connecting x1 and x2. We shall call this c. The size of the overlap is the number of

vertices y defined over a a2, b3, c triangle with connections a3 between ∞ and y, a1 between

x1 and y and b1 between x2 and y. Hence it has value pa2b3ca3a1b1
. The positions where we get

this value will correspond to the matrix N c
a2b3

and therefore, summing over all possible c

we get

Na1
a2a3N

b1
b2b3

= pa2b3Ra3a1b1
NR

a2b3 + pa2b3Ga3a1b1
NG

a2b3 + pa2b3Ba3a1b1
NB

a2b3

Remark 4.2.14 We can (and frequently do) use the fact that, for distinct colours m, j and

l, J = I + Nm
mm + N j

mm + N l
mm and J = Nm

mj + N j
mj + N l

mj to make these equations

just in terms of two matrices.

It will also be important to note the following basic fact

Remark 4.2.15 If for some colour m, km = 0 then rm = sm = tm = 0. Further for some

colour c, if pmmc = 0 then rcm = scm = tcm = 0.

This is simply because the adjacency matrix is 0, so all eigenvalues must be.

4.3 Amorphicity

A fairly large set of possible finite 3-coloured 3-regular graphs are those which are such that

each colour is strongly regular when considered as a graph in it’s own right,
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Definition 4.3.1 ([47]). A 3-coloured graph is Amorphic if for any distinct colours X,Y, Z,

the graph with edges X and non-edges Y ∪ Z is strongly regular.

These are troublesome as a lot of our work focuses on using the interactions of

neighbourhoods to show that eigenvalues within specific neighbourhoods are equal.

However, these graphs are natural examples of such phenomena. We can still say a lot

about them though, for example:

Theorem 4.3.2 ([47], Theorem 4.1) If all three relations of a 3-class association scheme

are strongly regular graphs, then they either have parameters (n2, li(n − 1), n + li(li −

3), li(li − 1)), i = 1, 2, 3 or (n2, li(n+ 1),−n+ li(li + 3), li(li + 1)), i = 1, 2, 3.

The proof of this is attributed by Van Dam to Higman [26]. We’ve also seen these forms

before, as they are exactly the Pseudo and Negative Latin square graphs from [12]. In

future chapters we can see that the tricolour Clebsch graph (Definition 5.3.2) satisfies the

parameters as a negative Latin square graph as well.

We can calculate the eigenvalues of these graphs fairly simply

Lemma 4.3.3 The eigenvalues of a Pseudo Latin square graph are ri = −li with

multiplicity n2 − 1− li(n− 1) and si = n− li with multiplicity li(n− 1).

The eigenvalues of a Negative Latin square graph are ri = li with multiplicity n2 − 1 −

li(n+ 1) and si = li − n with multiplicity li(n+ 1).

This is immediate from inputting the parameterisations into the equations for the

eigenvalues of a strongly regular graph in Lemma 4.2.9.

We can also see that any eigenvector, v of either of these schemes will have eigenvalues

of the form (r1, r2, s3), (r1, s2, r3) or (s1, r2, r3). There is also the possibility of the

neighbourhoods also being amorphic themselves. Then we can parameterise them in the

same way. This leads to the result:

Lemma 4.3.4 Suppose there exists a m.e.c C with ultraproduct elementarily equivalent to

an unstable homogeneous 3-coloured graph. Then for sufficiently large M ∈ C, if M is

amorphic and x, y are distinct vertices and non-adjacent in some colour R, then R(x) ∩

R(y) cannot be amorphic.
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Proof. We know by lemma 2.5.5 that any sufficiently large member of C will be 4-regular.

So therefore suppose for a contradiction that we have M ∈ C large enough to be 4-regular

and also with x, y distinct vertices in M , non-adjacent in R, and such that R(x) ∩ R(y) is

amorphic. We know by Theorem 4.3.2 applied to R(x) ∩ R(y) (which is 2-regular), that

|R(x) ∩ R(y)| is a square. However we also know by applying Theorem 4.3.2 to M , that

|R(x) ∩ R(y)|= µ = li(li + 1) or li(li − 1). As these are products of two consecutive

integers they can’t possibly be a square, a contradiction.

This lemma is more powerful than it originally seems. It tells us that if we can show that

any finite primitive 3-regular 3-coloured graph is amorphic, then we can answer the m.e.c

conjecture.
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Chapter 5

Known Examples

In this section I’ll present the only two known examples of finite primitive 3-regular, 3-

coloured graphs that were found during the course of this work, along with proofs they are

indeed 3-regular. Before this we will go over some essential prerequisite ideas that will

be used to show those graphs are 3-regular. We will do this by deriving them from the

known automorphism groups of finite binary homogeneous structures. These are discussed

in Cherlin’s [17] and [18].

5.1 Binary permutation groups

This section will discuss literature and results regarding permutation groups. A permutation

group G acting on a set X will be denoted by (X,G).

Definition 5.1.1. The relational complexity ρ(X,G) of the permutation group G acting on

the set X may be defined as the least k for which (X,G) can be viewed as (X̂,Aut(X̂))

with X̂ a homogeneous structure whose relations are k-ary.

Alternatively, in terms of permutation groups, relational complexity is defined as the least k

such that for all a,b ∈ Xn we have

a ∼k b ⇔ a ∼ b

where on the left, ∼k means that any corresponding k-tuples from a and b lie in the same
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G-orbit, and on the right, ∼ means that a and b lie in the same G-orbit.

As we deal with binary structures, we see therefore that we will be dealing with the case

where the relational complexity is 2. These are known as binary permutation groups. Other

definitions we will need are:

Definition 5.1.2. A permutation group (X,G) is primitive ifG does not preserve any proper

non-trivial equivalence relation on X . A primitive permutation group (X,G) is affine if the

socle of G, the direct product of the minimal normal subgroups of G, is abelian.

If (X,G) is a finite affine primitive permutation group with socle A, then A has the form

(Cp)
k for some prime p, written additively. Since A acts regularly on X , we may identify

A with X , and G with a semi-direct product AG′, where G′ is the stabiliser of the elements

0 of A. Here A acts by translation on itself and G′ acts by conjugation.

These groups are classified by Cherlin in the following Theorem:

Theorem 5.1.3 (Theorem 1, [18]) Let (A,AG′) be a finite primitive affine binary

permutation group. Then either |G′|≤ 2 and |A|∼= Cp is cyclic of prime order, or else

A can be given the structure of a two-dimensional vector space over a finite field Fq with

G′ = O−
2 (q), where A acts by translation and G′ acts naturally.

As Cherlin describes the first case can be thought of as giving a group A or A⟨±1⟩ which

is primitive only if A is 1-dimensional over Fp (AG′ is a dihedral group if |G′|= 2).

The second case is trickier. It gives a family of examples V O−
2 (q) where V is 2-dimensional

over a finite field Fq. More explicitly, Cherlin describes it as using the following process.

Identify V with the quadratic extension Fq2 of the base field. Then O−
2 (q) can be thought

of as K⟨σ⟩ where ⟨σ⟩ = Gal(Fq2/Fq) and K is the kernel of the norm map from Fq2 to Fq.

By definition of relational complexity, we see that if (A,AG′) is a primitive affine binary

permutation group, then A is a homogeneous binary relational structure. If a structure is

homogeneous, then it is n-regular for any n ≤ |A|. Therefore to show a 3-coloured structure

M is 3-regular (or indeed n-regular) it is enough to show that (M,Aut(M)) is a primitive

affine binary permutation group, with 3 orbits on ordered pairs of distinct elements, all

symmetric.
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This provides us with a strong tool for identifying whether or not a primitive 3-coloured

structure can be 3-regular. Indeed, in order to discover the Clebsch graph example (5.3),

we considered the implications of this Theorem in the case where the 2-dimensional

permutation group would allow for three orbits. However this Theorem alone does not

provide sufficient conditions. For this we look to Cherlin’s earlier work on the subject in

[17].

This paper is on the same subject however uses slightly different terminology. Cherlin

describes a group, G as being strictly linear and of dimension d if it is a subgroup of

AGL(V ) for V the d-dimensional translational subgroup ofG and AGL(V ) = V ⋊GL(V ).

There is also a slightly broader class of non-strictly linear affine groups which live in

AΓL(V ) but not AGL(V ), where AΓL(V ) = V ⋊ ΓL(V ).

Theorem 5.1.4 (Example 7, [17]) Let G be a primitive 1-dimensional affine group, not

strictly linear. Then the relational complexity of G is strictly less than 5 and G is binary if

and only if G has the form Fq2 ⋊ (µq+1 ⋊ ⟨σ⟩) with σ of order 2.

Crucially Cherlin then remarks on potential examples of this:

Remark 5.1.5 (Remark Page 14, [17]) Let Γq be the binary structure corresponding to the

binary 1-dimensional affine group Fq2 ⋊ (µq+1 ⋊ ⟨σ⟩). Then Γq is a symmetric graph with

an edge coloring by q − 1 colors.

He goes on to describe the q = 4 case, stating that it produces a graph of order 16 with a

3-edge colouring and no monochromatic triangles, the Tricolour Clebsch Graph. This graph

will be discussed further in Section 5.3.

5.2 The Tricolour Heptagon

Definition 5.2.1. The tricolour heptagon is the 3-coloured graph on 7 vertices such that

each vertex is a point in F7, and for a, b ∈ F7, (a, b) is red if |a− b|= 1, green if |a− b|= 2

and blue if |a− b|= 3.

Visually, this looks like this



72 5. KNOWN EXAMPLES

∞
f

e

d c

b

a

Figure 5.1: Tricolour Heptagon

This is clearly regular as by definition each vertex will have 2 neighbours in each colour.

We can prove it is 3-regular by finding and examining its automorphism group.

Lemma 5.2.2 Let H be the Tricolour Heptagon. Then Aut(H) ∼= D7.

Proof. We can clearly see that C7 ⊂ Aut(H). Now we can also see that in the stabiliser of

the point, say ∞, we get a reflection σ = (ab)(cd)(ef). As any automorphism in stab(∞)

will preserve coloured neighbourhoods of ∞, we see a could only go to b, c to d and e to f

and vice versa. If a was fixed as well, then c must also be fixed, and therefore e too, hence

nothing moves. As every point is isomorphic to a (in some colour), the stabiliser of any

point is C2. Hence D7 ⊂ Aut(H) and by the Orbit-stabilizer theorem, we must have the

entire automorphism group.

This fits with Cherlin’s description of the 1-dimensional case in Theorem 5.1.3, however

we still have to prove it is a binary affine permutation group (we know it’s primitive as 7 is

prime).

In this context D7 can be identified with the group generated by the functions f(x) = x+1

and g(x) = −x on F7.

Theorem 5.2.3 The Tricolour Heptagon is homogeneous.

Proof. We will show that any isomorphism between substructures can be extended by one

point. This is enough to prove homogeneity by a back and forth argument.

Therefore consider any 2 isomorphic n-tuples in F7, say an and bn. Then there exists a

function σ(x) = (−1)l(x+m) for some l and m such that σ(an) = bn. We can enumerate
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an and bn such that σ(ai) = bi for all i. Now extend an to an+1 by a new vertex an+1, and

add (−1)l(an+1 + m) = bn+1 to bn to get bn+1. We claim that an+1 and bn+1 are still

isomorphic.

First we need to show that bn+1 is distinct from all bi ∈ bn. Well suppose for some i,

bi = bn+1, then bi = (−1)l(an+1 +m), implying (−1)l(ai +m) = (−1)l(an+1 +m), so

ai = an+1 a contradiction. Now we need to show that the new edges are the same colour,

i.e for all i, |an+1 − ai|= |bn+1 − bi|. Note that this will be enough, as all other types will

be determined by the constituent edges. Well

|bn+1 − bi| = |(−1)l(an+1 +m)− (−1)l(ai +m)|

= |(−1)l(an+1 +m− ai −m)|

= |an+1 − ai|

So all the edges match up as well.

Referring back to the list in the Appendix D of [47], we see that this structure is the smallest

possible with all integral eigenvalues.

5.3 The Tricolour Clebsch graph

The other finite primitive 3-regular, 3-coloured graph we find comes from the study of 3-

homogeneous structures. I have Dugald Macpherson to thank for the process of finding

this example and Gregory Cherlin for the result showing it is 3-regular (and in fact entirely

homogeneous by Remark 5.1.5).

We’ll start by defining the Clebsch graph in the two-colour case.

Definition 5.3.1 ([14]). The Clebsch graph is a strongly regular graph with parameters

(16, 5, 0, 2). It can be constructed by allowing the vertices to be the even sized subsets of

the set {1, 2, 3, 4, 5} with two subsets connected if their symmetric difference is of size 4.

It has been shown by Greenwood and Gleason [24, Theorem 4] that there is a three coloured

version. This is defined using cubic residues on the field F16. Let x be the generator of the
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multiplicative group of F16, then the set of cubes in F16 is the following set

R := {x3, x3 + x2, x3 + x, x3 + x2 + x+ 1, 1}

We then note that the multiplicative cosets are the following:

G := {x+ 1, x3 + x+ 1, x2 + x+ 1, x3 + x2 + 1, x}

B := {x2 + x, x2 + 1, x3 + x2 + x, x3 + 1, x2}

We can now formally define the graph using this

Definition 5.3.2 ([24]). The Tricolour Clebsch Graph is the 3-coloured graph which takes

as its vertex set the elements of F16. For any two distinct vertices a, b ∈ F16, the edge (a, b)

is coloured red if a− b ∈ R, coloured green if a− b ∈ G and coloured blue if a− b ∈ B.

This can be represented by the following diagram

a
b

c

d

e

f

g

h
i

j

k

l

m

n

o

p

Figure 5.2: Tricolour Clebsch Graph

By the results of Cherlin discussed in Remark 5.1.5, we get:
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Theorem 5.3.3 ([17]) The Tricolour Clebsch Graph is homogeneous.

And therefore

Corollary 5.3.4 The Tricolour Clebsch Graph is n-regular for all n ≤ 15.

We also have the following small but useful result

Lemma 5.3.5 [19, Lemma 11] Let Γ be a connected graph with spectrum

{[5]1, [1]f , [−3]g} for some positive integers f and g. Then Γ is the Clebsch graph.

This tells us that the Clebsch graph is uniquely determined by its spectrum as a 2-coloured

graph, and therefore is uniquely determined by its parameters as a strongly regular graph

(as these are determined by the eigenvalues ([12, Lemma 2.1]). This carries over into three

colours, as the intersection numbers determine the strongly regular graph parameters for

each colour.
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Chapter 6

The Imprimitive Case

In the case of 3-regular 3-coloured graphs, the imprimitive case refers to the existence

of at least one non-trivial proper equivalence relation on either one or two colours. An

equivalence relation on one colour, say R, would take the form of all R-paths being

completed only by red edges. Formally the equivalence relation would be R= where

R=(x, y) if and only if R(x, y)∨ (x = y). Similarly an equivalence relation on two colours

B and G would take the form of all B/G-paths being completed by B or G edges. This

will be denoted B= ∪G=.

In terms of intersection numbers, an equivalence relationR=, means that pRRR = kR−1 and

pGRR = pBRR = 0, and an equivalence relationB=∪G= means that pRGG = pRBG = pRBB = 0.

In this chapter we shall be discussing finite 3-coloured graphs of varying regularity. We shall

show that we can completely describe the equivalence relations when we have 4-regularity

by Theorem 6.1.4, and that in most cases their form is dictated by a 2-coloured graph. Hence

by the earlier work of Buczak [8], we can classify them in Theorem 6.1.6.

We will then discuss some brief ideas on locally imprimitive graphs i.e. when the

neighbourhood of a base point is imprimitive.

6.1 Globally imprimitive

Lemma 6.1.1 There does not exist any finite, nontrivial, imprimitive, 2-regular, 3-coloured

graphs where the equivalence relations are of the form:
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• R=, G= and R= ∪G= are equivalence relations

• R= and G= ∪B= are equivalence relations

Proof. Suppose we have a 2-regular 3-coloured graph M with equivalence relations R=,

G= and R= ∪G=. Then pRRG = pRRB = pGGB = pGGR = pBRG = 0, implying either kG = 0

or kR = pGGR + pGRR + pGRB = 0 by Lemma 4.2.1, contradicting the fact it is 3-coloured.

If instead R= and G= ∪ B= are equivalence relations, then pRRG = pRRB = pRGB = pRGG =

pRBB = 0 as any G/B triangle must be completed with G or B. Therefore either kR = 0

or kG = pRRG + pRGG + pRGB = 0 by Lemma 4.2.1, contradicting the fact it is 3-coloured

again.

Lemma 6.1.2 In a finite nontrivial, imprimitive, 2-regular, 3-coloured graph Γ if R=, G=

and B= are equivalence relations, then kR = kB = kG = 1 and Γ has the form

Proof. Suppose M was such a structure. Then pRRG = pRRB = pGGB = pGGR = pBBG =

pBBR = 0. We can note that for there to exist blue and green edges there must be more than

one red clique, so consider two red cliques, and take a point x in one of them. As pBRB = 0,

there can only be one blue edge from x into the other clique. Similarly pGRG = 0 implies

there can only be one green edge from x into the other clique. There must be a total of two

edges from x into the other clique. Hence the red cliques are of size 2 and kR = 1. We can

do the same thing with the other colours to get kG = kB = 1 as well. The only possible

way of constructing this graph up to isomorphism is as shown.

Therefore for an imprimitive 2-regular, 3-coloured graph we have just the cases as follows

for possible equivalence relations:

i) R=

ii) R=, G=
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iii) R= ∪G=

iv) R=, R= ∪G=

Lemma 6.1.3 Suppose M is a finite 4-regular 3-coloured graph, with an equivalence

relation on exactly one colour. Then either pRBG = 0 or there exists another equivalence

relation on a different colour.

Proof. Suppose M is a finite 4-regular, 3-regular graph with G= being an equivalence

relation. Then M is made up of complete graphs of size kG + 1, where any two complete

graphs are connected by a mixture of red and blue edges. Suppose pRGB ̸= 0, i.e. between

any two blocks, there exists both red and blue edges.

Now take two blocks C1 and C2, and consider the induced subgraph on C1 ∪C2. We claim

this must be 3-regular as well. Indeed, we can see that the definable sets over any given

2-type or 3-type, except those entirely made of G-relations, are either entirely contained

within C1 ∪ C2 or entirely not. So all we have to check are the definable sets over a green

edge and the green triangle.

So suppose we have we have x1, x2, such that (x1, x2) is green. Then we know x1, x2 are

either both in C1 or C2, so say C1. We don’t have to worry about definable sets involving

more green edges, as these are either entirely in C1 (for GGG) or empty in M (GGX).

Hence for colours j, l ∈ {R,B}, we consider the set Yjl = {y ∈M : j(x1, y) ∧ l(x2, y)},

and we need to show that the intersection of this and C2 is the same size for any (x1, x2)

(we don’t have to worry about C1 as the intersection is empty). This is possible by fixing

any point, x3 ∈ C2, then a point y ∈ Yjl is inC2 ifG(x3, y) or x3 = y and not if ¬G(x3, y).

Hence |C2 ∩ Yjl|= |{y ∈M : j(x1, y) ∧ l(x2, y) ∧G(x3, y)}| (+1 if x3 ∈ Yjl) which is a

fixed number by 3-regularity.

Now suppose that z1, z2, z3 form a GGG triangle in C1. We can do the exact same thing to

find the size of the set C2 ∩ {y ∈ M : j(z1, y) ∧ l(z2, y) ∧m(z3, y)}, however this now

requires 4-regularity of the graph.

Hence we have that C1 ∪C2 is 3-regular. Now we can add unary predicates to the language

that differentiate C1 and C2. These can be thought of as vertex colourings of the parts,
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and so from [[25], Lemma 4.8], we know that the two parts form a matching in R or B,

or are entirely connected in R or B. If we have the latter, then pRGB = 0, so suppose we

have a matching for R. This is equivalent to saying that pRRG = 0 inside C1 ∪ C2, but as

discussed earlier, the definable sets over non-green 2-types are the same in the full graph,

and so pRRG = 0 in M .

Now fix a point ∞ in M , and consider the B-neighbourhood of a point. This will again

be made of green blocks with these blocks being the same as before, however missing one

point, the red neighbour of ∞ interior to the green block. Suppose pRRB ̸= 0 in M , i.e the

matchings do not necessarily align between the blocks. Now consider two green blocks in

the B-neighbourhood of ∞, C ′
1 and C ′

2, and the extensions of these blocks in M , C1 and

C2. So C ′
1 = C1 \ {y1} and C ′

2 = C2 \ {y2}, where y1 is the red neighbour of ∞ in C1 and

y2 is the red neighbour of ∞ in C2. As pRRB ̸= 0, we can assume there exists some point x

in C ′
1 such that x is connected to y2 by a red edge (as if there does not, we can re-select our

block C1 such that there does). Now we see that between x and C ′
2 there cannot exist a red

edge, and so pBBB
BRG = 0. But then for any other vertex in C ′

1 there cannot exist a red edge to

C ′
2 either. However this implies they all must have a red edge with y2, which can’t happen.

Hence pRRB = 0.

With pRRG = pRRB = 0, we see that R= also forms an equivalence relation. Therefore either

pRGB = 0 or R= is an equivalence relation.

Theorem 6.1.4 Any imprimitive 4-regular 3-coloured graph is either

i) Disconnected X-blocks of size k1, arranged further into k3-many XY -blocks, where

each XY -block contains k2-many X-blocks connected entirely by edges of colour Y .

Between each XY -block there are edges of colour Z.

ii) Disconnected cliques of size k1 in colour X which form the ‘vertices’ of a 4-regular

graph in Y and Z.

iii) Multiple isomorphic 4-regular graphs in colours X and Y entirely connected to each

other by edges in Z.

iv) A 2-coloured rook graph, with horizontal edges colouredX and vertical edges coloured

Y , and the non-edges coloured Z.
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Proof. We shall prove this by a case by case analysis of the types of equivalence relations

we can encounter.

Firstly we shall work with just the equivalence relation R= (or B= or G=). So suppose

we have a 4-regular RGB structure, M , where R= is an equivalence relation. In terms of

intersection numbers this means pGRR = pBRR = 0 and kR = 1 + pRRR. And so we have

cliques in R of size kR + 1 with either blue or green edges connecting them. By Lemma

6.1.3, we know in this case pRBG = 0 or G= is also an equivalence relation.

Suppose first pRBG = 0, now cliques R1 and R2 are either connected entirely by blue or

green. Label all the cliques in M with Ri for 1 ≥ i ≥ n
kR+1 . Let Γ be a graph defined on

n
kR+1 vertices, with vi connected to vj if and only if Ri is connected to Rj by blue edges

(basically think of Γ as the quotient on the set of equivalence classes of R). Now Γ is 3-

regular as for any triangle {vi, vj , vk} the number of points connected to vi, vj and vk is

exactly the number of cliques connected by blue edges to Ri, Rj and Rk. Hence we are in

scenario ii) from the theorem.

If we have R and G both equivalence relations, then we know pRRG = pRRB = pGGR =

pGGB = 0. This implies pBRG = 1, pRGB = kG, pGRB = kR and kB = kRkG. Now

n = (kR + 1)(kG + 1). We see therefore that, if we forget the distinction between red and

green and view these only as edges, we have all the necessary and sufficient conditions for

a rook graph from [37] and [28].

Now we shall consider the equivalence relation R= ∪G=. Here we get that pBRR = pBRG =

pBGG = 0. Therefore the structure will split into blocks containing only red and green edges,

with only blue connecting each block. As we have no restrictions just involving red and

green, the blocks can be any 4-regular graph. Hence we are in situation iii).

The final set of equivalence relations is R= and R= ∪ G= together. Here we have pGRR =

pBRR = pBRR = pBRG = pBGG = 0. Therefore we have cliques in R which are entirely

connected to kB
kR+1 other cliques by entirely blue edges. These blocks of only blue and red

edges are then connected by green edges. Hence we are in case i).

We see that the graph described in Lemma 6.1.2 fits into case iv). Notice that case ii) and

iii) are defined by primitive 4-regular 2-coloured graphs, as if they were imprimitive they
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would fall under case i). Hence they are classified by the theorem of Buczak.

Definition 6.1.5. For a 2-coloured graph Γ in R and G, we can form a 3-coloured graph

by replacing each vertex x1 with a set of vertices X1 of size k1, where X1 is complete in a

third colour B. This 3-coloured graph shall be known as the k1-quotient of G.

Similarly we can form a graph be introducing k2 isomorphic copies of Γ and entirely

connecting every vertex unconnected vertex by a new colour B. This shall be known as

the k2-extension of Γ.

Using this definition we can see that case ii) refers to the k1-quotients of any 4-regular graph

and case iii) refers to the k2-extension of any 4-regular graph.

Corollary 6.1.6 Any imprimitive 4-regular 3-coloured graph of case ii) from Theorem 6.1.4

is the k1-quotient of one of the graphs from Theorem 2.3.13, for any k1 > 1.

Any imprimitive 4-regular 3-coloured graph of case iii) from Theorem 6.1.4 is the k1-

extension of one of the graphs from Theorem 2.3.13, for any k1 > 1.

Similarly we can use the classification of 5-regular graphs in [12]

Corollary 6.1.7 Any imprimitive 5-regular 3-coloured graph of case ii) from Theorem 6.1.4

is the k1-quotient of one of the graphs from Theorem 2.3.9, for any k1 > 1.

Any imprimitive 5-regular 3-coloured graph of case iii) from Theorem 6.1.4 is the k1-

extension of one of the graphs from Theorem 2.3.9, for any k1 > 1.

Further we now have enough to verify the m.e.c conjecture for the case of imprimitive 3-

coloured graphs:

Theorem 6.1.8 There is no unstable imprimitive homogeneous 3-coloured graph M that is

elementarily equivalent to the ultraproduct of a m.e.c.

Proof. Suppose there exists a m.e.c C with ultraproduct elementarily equivalent to M . As

M is imprimitive, we know that in the theory of M there will exist a sentence saying that

the union of some relations (and equality) forms an equivalence relation. After thinning

out the m.e.c C, we know that every sentence true of M is true in cofinitely many of the

members of C. Combining this with Lemma 2.5.5, we know that any sufficiently large
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Γ ∈ C, is imprimitive and 5-regular. Hence it will belong to one of the four types described

in Theorem 6.1.4. As the type of equivalence relation is also determined by a sentence in

Th(M), we also know that each Γ ∈ C large enough to be imprimitive and 5-regular will

be of the same type in Theorem 6.1.4. Hence we can effectively just think of m.e.cs of such

structures.

We can see that any m.e.c of imprimitive 5-regular graphs of type i) and iv) will have a

stable limit and so cannot be M . Now we look at m.e.cs of imprimitive 5-regular graphs

of type ii). Here either k1 goes to infinity or it is fixed. If k1 is fixed then the m.e.c limit

would be the k1 quotient of an infinite homogeneous graph G1. Now G1 will itself be the

limit of a m.e.c of graphs, and we know that no such unstable homogeneous graph exists by

Theorem 3.1.4. Therefore G1 must be stable, meaning M is too.

If instead k1 varies to infinity, every large enough member of C will be a quotient of the

same graph G. Hence the m.e.c limit is the ω-quotient of G, which is stable, and therefore

M is stable too.

The same argument works for case iii) but with extensions instead of quotients.

We can also make the following remark

Remark 6.1.9 Suppose for any colour m, we have that km = 1. Then we see that the

structure has an equivalence relation inm, with classes of size two. Hence when we assume

a structure is finite primitive and 3-coloured, we know that km ≥ 2, for all colours m.

6.2 Locally Imprimitive

As a lot of the analysis in later sections involves looking at the structure on neighbourhoods

we need to think about what happens when the neighbourhoods possess non-trivial

equivalence relations. Given an imprimitive neighbourhood, it is not immediate that the

full graph is imprimitive. The following is a generalisation of Lemma 3.1 from [22] to the

3-coloured case.

Lemma 6.2.1 In a 3-regular 3-coloured graph Γ and any vertex ∞ ∈ Γ, if the R-

neighbourhood of ∞ has a non-trivial equivalence relation B= ∪ G=, then the entirety
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of Γ has an equivalence relation B= ∪G=.

Proof. Let the R,G and B-neighbourhoods of ∞ be R, G and B respectively. Consider two

vertices u and v in R, such that they are in different B ∪ G components. Now note the

number of red neighbours of u in G∪B is pRRB+pRRG, and the same number for v. However

the number of common red neighbours of both u and v in G ∪ B is pRRR
RRG + pRRR

RRB =

pRRB + pRRG and must be entirely contained within G ∪ B. Hence these must be the same

sets. This means that every vertex in R has the same red neighbourhood in G ∪ B, and so

this must be the entirety of G ∪ B. Now any point x ∈ G ∪ B has kR red neighbours, but

must be entirely connected to R by kR red edges, meaning that all edges internal to G ∪ B

are blue or green. Hence Γ has a B= ∪G= equivalence relation too.

This will cover neighbourhoods that are imprimitive of type i) and type iii) from Theorem

6.1.4, so long as the colours of the equivalence relations are different to that of the

neighbourhood.
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Chapter 7

The Eigenspaces of the

Neighbourhoods

We will pick up from where we left off in Chapter 4 now, focusing on primitive 3-regular

3-coloured graphs. We start with some results about any 2-regular graph, and then take

the neighbourhoods of a 3-regular graph (which are themselves 2-regular) and apply these

results to them. We then look at possible ways the eigenspaces of each neighbourhood

interact, and the consequences of such interactions. The main results are the splitting of

these interactions into three cases using Equation 7.2.2, the characterisation of each of

these cases (Sections 7.3, 7.4 and 7.5), and then a host of results about what happens when

multiple different interactions occur simultaneously (Section 7.6).

7.1 Eigenspaces of 2-regular graphs

In this subsection we will generally work under the assumption of only 2-regularity. Here

we know that the adjacency matrices are simultaneously diagonalisable, and so will have a

shared basis of eigenvectors. The aim of this section is to think about how the three different

partitions of the shared basis into eigenspaces interact.

Definition 7.1.1. We say the eigenvalue rm from Am corresponds with the eigenvalue rj

from Aj if they share the same subspace of Rn as an eigenspace.
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The main consequence of eigenvalues corresponding is that they have the same multiplicity.

We first will deal with them in terms of the full graph before looking at how they behave in

the neighbourhoods.

Lemma 7.1.2 If pjmm ̸= plmm then we can determine rj given rm i.e. the eigenspace of rm

is contained within the eigenspace of rj .

Proof. From Lemma 4.2.7 and as J = I +Am +Aj +Al we know that

A2
m = (pmmm − plmm)Am + (pjmm − plmm)Aj + (km − plmm)I + plmmJ

So consider an eigenvector v of rm. Now as rm is non-principal we know Jv = 0 and

therefore applying v to the above equation gives us

(pjmm − plmm)Ajv =A2
mv − (pmmm − plmm)Amv − (km − plmm)Iv

Ajv =
r2m − (pmmm − plmm)rm − km + plmm

pjmm − plmm

v

Hence v is also an eigenvector for Aj if pjmm ̸= plmm with eigenvalue

rj =
r2m − (pmmm − plmm)rm − km + plmm

pjmm − plmm

Therefore the eigenspace of rm is contained within the eigenspace of rj .

This means that if the graph is not strongly regular in colour m then the eigenspace of rm

is contained within the eigenspace of rj . If we also have that pmjj ̸= pljj then we get that

the eigenspace of rj is also contained within rm, meaning the eigenspaces of rj and rm are

equal, so the eigenvectors of rm and rj correspond. We can also derive further information.

Lemma 7.1.3 If rm ̸= pjmj − plmj then we can determine rj given rm.

Proof. This comes from the equations Corollary 4.2.9 and Lemma 4.2.10. These give us

rmrj = (pmmj − plmj)rm + (pjmj − plmj)rj − plmj
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which we can solve for rj unless rm = pjmj − plmj .

Combining these two results we get

Corollary 7.1.4 Given rm we can determine rj unless both pjmm = plmm and rm = pjmj −

plmj .

An interesting consequence of this is the following

Corollary 7.1.5 Suppose pjmm = plmm and rm, sm, tm ̸= pjmj − plmj . Then the structure is

2-coloured.

Proof. As pjmm = plmm the graph is strongly regular in m, and we have two non-principal

eigenvalues for Am. Further, as no eigenvalue of Am is equal to pjmj − plmj , we know

from Lemma 7.1.3 that for any eigenvalue rm of Am, there exists an eigenvalue rj of

Aj such that the rm-eigenspace is contained within the rj-eigenspace. Hence there are

a maximum of two distinct non-principal rj-eigenspaces, and so a maximum of two non-

principal eigenvalues of Aj . As we are assuming Aj is not complete, this means there are

two distinct non-principal eigenvalues.

Further this implies that they must correspond perfectly, i.e. share eigenspaces, as a

surjective function between two sets of the same size is bijective. Now as 0 = 1+rm+rj+

rl, and the eigenspace of rm and rj are the same, we must have only two solutions for rl as

well. In the Bose-Mesner Algebra this is equivalent to there only being two minimal non-

principal idempotents in the basis, and if this is the case their must only be two association

classes as well. Hence it is two-coloured.

Suppose that we have both pjmm = plmm and rm = pjmj − plmj . Well then we can note

that the structure is strongly regular in m, and so we only have two distinct non-principal

eigenvalues for Am. Further we know that one of them is pjmj − plmj . We can then find the

other eigenvalue using classical results about the eigenvalues of strongly regular graphs.

Lemma 7.1.6 Suppose that pjmm = plmm and rm = pjmj − plmj . Then

sm = pmmm + plmj − pjmm − pjmj = pmmm − pjmm − rm
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And

(2pjmj − 2plmj + pjmm − pmmm)2 = (pmmm − pjmm)2 + 4(km − pjmm)

Proof. We know from Theorem 2.1.10 that

rm =
1

2

(
(pmmm − pjmm) + δ(rm)

√
(pmmm − pjmm)2 + 4(km − pjmm)

)

where δ(rm) is either 1 or −1.

So then using that rm = pjmj − plmj we get

2pjmj − 2plmj + pjmm − pmmm = δ(rm)

√
(pmmm − pjmm)2 + 4(km − pjmm)

Squaring this gives the second equation from the Lemma.

Now inputting this into the equation for the other eigenvalue we get

sm =
1

2

(
(pmmm − pjmm)− δ(rm)

√
(pmmm − pjmm)2 + 4(km − pjmm)

)
=
1

2

(
(pmmm − pjmm)− (2pjmj − 2plmj + pjmm − pmmm)

)
=pmmm − pjmm − pjmj + plmj

Applying even more classical results we can also get the multiplicities of our two non-

principal eigenvalues in nice terms.

Lemma 7.1.7 Suppose pjmm = plmm and rm = pjmj − plmj and the multiplicity of rm is f

and the multiplicity of sm is g. Then

f =
−(n− 1)sm − km

rm − sm

g =
(n− 1)rm + km

rm − sm
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Proof. By Theorem 2.1.10, we have the equation

f, g =
1

2

(n− 1)∓ 2km + (n− 1)(pmmm − pjmm)√
(pmmm − pjmm)2 + 4(km − pjmm)


Using results from Lemma 7.1.6 we see this becomes

f =
1

2

(
(n− 1)− 2km + (n− 1)(pmmm − pjmm)

2pjmj − 2plmj − pmmm + pjmm

)

=
1

2

(
(n− 1)(2pjmj − 2plmj − pmmm + pjmm)− 2km − (n− 1)(pmmm − pjmm)

2pjmj − 2plmj − pmmm + pjmm

)

=
(n− 1)(pjmj − plmj − pmmm + pjmm)− km

2pjmj − 2plmj − pmmm + pjmm

=
−(n− 1)sm − km

rm − sm

And similarly

g =
1

2

(
(n− 1) +

2km + (n− 1)(pmmm − pjmm)

2pjmj − 2plmj − pmmm + pjmm

)

=
(n− 1)(pjmj − plmj) + km

2pjmj − 2plmj − pmmm + pjmm

=
(n− 1)rm + km

rm − sm

There are also other consequences for the intersection numbers if we are in the case where

we have one colour being strongly regular and at least one of the others not.

Lemma 7.1.8 Suppose that pjmm = plmm and rm = pjmj − plmj . Then

plmj = (pmmj − plmj)(p
j
mj − plmj)

pjml = (pmml − pjml)(p
j
mj − plmj)

plml = (1 + pmml − pjml)(p
j
ml − plmj)

pjmj = (1 + pmmj − plmj)(p
j
ml − plmj)
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Proof. The first equation is the result of putting rm = pjmj − plmj into

rmrj = (pmmj − plmj)rm + (pjmj − plmj)rj − plmj

The second comes from doing the same thing with

rmrl = (pmml − pjml)rm + (plml − pmml)rl − pjml

Note that as pjmm = plmm, pjmj −plmj = plml−p
j
ml, the term involving rl still cancels. Next

we use

r2m = (pmmm − plmm)rm + (pjmm − plmm)rj + km − plmm

0 = (pmmm − plmm)(pjmj − plmj) + plmj + plml − (pjmj − plmj)
2

= (pjmj − plmj)(p
j
mj − plmj + pjmm − pmmm)− plmj − plml

and substitute in the earlier result for plmj to give

plml = (pjmj − plmj)(p
j
mj − plmj + pjmm − pmmm)− (pjmj − plmj)(p

m
mj − plmj)

= (pjmj − plmj)(p
j
mj + pjmm − pmmm − pmmj)

= (pjmj − plmj)(km − pjml − km + pmml + 1)

= (pjmj − plmj)(p
m
ml − pjml + 1)

Now for the final equation, we can do the same thing with

r2m = (pmmm − pjmm)rm + (plmm − pjmm)rl + km − pjmm

however substituting in pjml instead.

Taking stock of these results we get a simple yet fundamentally crucial lemma describing

the different partitions of eigenspaces.

Lemma 7.1.9 In a primitive 2-regular 3-coloured graph, the intersections of the

eigenspaces in each colour partition the shared basis of non-principal eigenvectors into
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4 classes.

Proof. We immediately get the first class as the principal eigenvectors. Next in each colour,

we get a further partition into 3 classes, and therefore there are 27 possibilities initially.

However as rl = −1 − rm − rj , we can determine which eigenspace of Al an eigenvector

is in if we know which it is for Am and Aj . This reduces now to 9 cases.

Suppose first that we have three distinct non-principal eigenvectors of Am. Then pjmm ̸=

plmm, and hence by Lemma 7.1.2 E(rm) ⊂ E(rj). This must also occur for the other two

eigenspace i.e E(sm) ⊂ E(sj) and E(tm) ⊂ E(tj). Therefore if the Aj also has three

distinct non-principal eigenvalues, we have equality here. If instead Aj has two distinct

eigenvalues, so sj = tj , then E(rm) = E(rj) and E(sm)⊕ E(tm) = E(sj).

Now if we suppose that Am has only two distinct non-principal eigenvalues then we see

we’ve already covered if Aj has 3, so it just remains to think about if Aj has two distinct

non-principal eigenvalues as well. The first possibility is when E(rj) ⊂ E(rm), then we

will also have E(sm) ⊂ E(sj) and E(rm) ∩ E(sj) ̸= ∅. Here the classes that partition V

will be E(rj), E(sm) and E(rm) ∩ E(sj).

The final case is when E(rm) = E(rj). But then E(sm) = E(sj), meaning the graph is

simply two-coloured in this scenario.

It is therefore prudent to think of these classes rather than the individual eigenspaces for the

colour.

Definition 7.1.10. We say an eigenvalue triple is a tuple of 3 eigenvalues, one from each

colour adjacency matrix.

We will say E(rm, rj , rl) to mean E(rm) ∩ E(rj) ∩ E(rl), or alternatively the eigenspace

for the eigenvalue triple (rm, rj , rl).

Although it is a slight abuse of notation, I shall occasionally refer to the eigenvalue triple

(rm, rj , rl) as the eigenvalue triple ‘rx’ when it is in sufficient generality as to not present

confusion.

We should note that we could have eigenvalue triples (rm, rj , rl) and (sm, sj , sl) such that

rm = sm say, however so long as there exists one constituent eigenvalue that is different
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between them, we still have different eigenvalue triples. This is because they are based on

the intersection of the three eigenspaces and this space will still be different.

We will now think about what happens in the imprimitive case. Although we are currently

not looking at imprimitive structures, we shall later be applying these results to the

neighbourhoods which could themselves be imprimitive, hence it makes sense to deal with

it now. The difference here is that the principal eigenvalues can act as ‘regular’ eigenvalues,

i.e. we could have that their eigenspace overlaps with that of a non-principal eigenvalue.

Fortunately, we see that if it does, the eigenvector in question will be orthogonal to u still,

as it is non-principal in some colour. Therefore we still get the full weight of Lemmas 7.1.2

and 7.1.3.

Lemma 7.1.11 Suppose for distinct non-principal eigenvalues rj and sj , both E(km) ∩

E(rj) ̸= ∅ and E(km) ∩ E(sj) ̸= ∅. Then plmm = pjmm = plmj = 0.

Proof. From Lemma 7.1.2 we get that pjmm = plmm and then from Lemma 7.1.3 we get

km = pjmj − plmj . As km ≥ pjmj , this implies plmj = 0 and km = pjmj , which further gives

pjmm = 0.

This will mean that the only non-principal eigenvalue of m would be −1, as its complete in

m.

We can also note that the multiplicity of a principal eigenvalue kR will only exceed one if

the graphs equivalence relations include R= or B= ∪ G=. This is because the graph that

it is actually an eigenvalue of is AR, which is effectively just a graph with R-edges and B

and G non-edges. Hence we can just go through the list of possibilities and see how many

classes they have.

Lemma 7.1.12 In an imprimitive 2-regular 3-coloured graph, the intersections of the

eigenspaces in each colour partition the shared basis of non-principal eigenvectors into

4 classes.

Proof. As before, we shall group the principal eigenvectors together as the first class and

ignore them thereafter. Therefore every other eigenvector we deal with will be orthogonal

to u and non-principal. As before we can determine the eigenvalue of AB by knowing that
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of AR and AG.

Suppose first that we have the equivalence relation R=. Then AR has two eigenvalues

kR and −1. If E(kR) has a non-zero intersection with only one eigenspace of AG, then

we know E(−1) has a maximum of two non-zero intersections with eigenspaces of AG

(as they are the solutions of a quadratic). If it only has one then we end up with a two-

coloured structure. So it has two, giving three total classes (not including the principal

class). If instead E(kR) has a non-zero intersection with two eigenspaces of AG, then by

Lemma 7.1.11 and 7.1.3, E(−1) must have non-zero intersection with only one eigenspace

ofAG, giving three classes again. Note that this argument also works for equivalence classes

R=, G= and R=, R= ∪G=, as we assumed nothing about G.

Finally, If we assume we have the equivalence relation R= ∪ G=, the only non-principal

eigenvalue with multiplicity greater than one is kB . It makes sense to work consider

then the eigenvalues of AB . Suppose first for a contradiction that there are three non-

principal eigenvalues of AB . Then as the multiplicity of kR is one, one of the non-principal

eigenvalues of AR must have an eigenspace that has a non-zero intersection with two

eigenspaces of AB . But then by Lemma 7.1.2, AR has only two non-principal eigenvalues,

implying they both must double up. However by Lemma 7.1.3 this would mean they are

equal, a contradiction. Therefore AB must have two non-principal eigenvalues and by the

previous argument each eigenspace of AB must not have non-zero intersection with more

than one of the non-principal eigenspaces of AR. Hence these will be the three classes.

Remark 7.1.13 We can now look at consequences of the Lemmas 7.1.9 and 7.1.12, and the

different ‘alignments’ of the eigenspaces.

There are 3 main primitive cases:

i) Am has three distinct non-principal eigenvalues rm, sm, tm and Aj has three distinct

non-principal eigenvalues rj , sj , tj . They are such that E(rm) = E(rj), E(sm) =

E(sj) and E(tm) = E(tj).

ii) Am has two distinct non-principal eigenvalues rm, sm and Aj has three distinct non-

principal eigenvalues rj , sj , tj . They are such that E(rm) = E(rj) ⊕ E(tj) and

E(sm) = E(sj). Here pjmm = plmm and rm = pjmj − plmj .
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iii) Am has two distinct non-principal eigenvalues rm, sm and Aj has two distinct non-

principal eigenvalues rj , sj . They are such that E(rm) ∩ E(rj) = E(rj), E(sj) ∩

E(sm) = E(sm) and E(rm) ∩ E(sj) ̸= 0. Here pjmm = plmm, pmjj = pljj , rm =

pjmj − plmj and sj = pmmj − plmj .

There are a further two breakdowns of the third case. At the moment, from Lemma 4.2.10,

we can see the eigenvalues of Al are −1 − rm − rj , −1 − rm − sj and −1 − sm − sj .

However there is potential for −1 − sm − sj to equal −1 − rm − rj , meaning Al would

only have two distinct non-principal eigenvalues as well. In this case, each colour forms a

strongly regular graph. In this case the structure is amorphic (Definition 4.3.1) and it’s been

very well documented in [47]. We shall come back to this case later.

If however the third case is not Amorphic, then we can entirely describe its eigenvalues

anyway

Lemma 7.1.14 Suppose a primitive regular 3-coloured graph G is strongly regular in both

m and j, but not strongly regular in l. Then we can describe it’s eigenvalues as follows:

rm = pjmj − plmj , sm = pmmm − pjmm − rm

rj = pjjj − pmjj − sj , sj = pmmj − plmj

rl = pjlj − pmlj , sl = pmml − pjml tl = 2plmj − 1− pjmj − pmmj

Proof. We already know rm = pjmj − plmj , sm = pmmm − pjmm − rm rj = pjjj − pmjj − sj

and sj = pmmj − plmj by use of Lemma 7.1.6 on both m and j. We also know that rl =

−1− rm − rj so

rl = −1− pjmj + plmj − pjjj + pmjj + pmmj − plmj

= pjlj − pmlj

Similarly sl = −1− sm − sj so

rl = −1− pmmj + plmj − pmmm + pjmm + pjmj − plmj

= pmlm − pjlm
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Finally the third eigenvalue will be determined by tl = −1− rm − sj , so

tl = −1− pjmj + plmj − pmmj + plmj

If it was Amorphic we would have the added condition that rl = sl = pmml − pjml and

pjll = pmll , which are actually equivalent conditions in this context.

We shall now look at particular combinations of intersection numbers that cannot happen in

a 2-regular, 3-coloured structure.

Lemma 7.1.15 Suppose in a primitive 2-regular, 3-coloured structure that, for distinct

colours c and d, pmcj = pmdj = 0. Then {c, d} = {m, j}.

Proof. This comes from consideration of the equation

rmrj = pmmjrm + pjmjrj + plmjrl

Now if we let pmcj = pmdj = 0, by Lemma 4.2.5, we see this becomes

rmrj = pemjre

Where e is the colour distinct from c and d. Suppose e = m, then either rm = 0 or rj =

pmmj . However the same equations hold for s and t. Now we can’t have rm = sm = tm = 0

so one of these must be non-zero, so suppose without loss of generality that rm isn’t. Then

rj = pmmj = kj , implying that the multiplicity of the principal eigenvalue is greater than

one. This can only happen when the graph is imprimitive by Corollary 2.1.16 and so e ̸= m.

When e = j, we get that either rj = 0 or rm = pjmj = km and so the same contradiction

occurs. Hence e = l and {c, d} = {m, j}.

Lemma 7.1.16 In a 2-regular, 3-coloured structure if pmmm = pmmj = pmjj = pjjj = 0 then

the structure is imprimitive.

Proof. For a contradiction, suppose we have a primitive 2-regular, 3-coloured structure with
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pmmm = pmmj = pmjj = pjjj = 0. Then by Lemma 7.1.15, Lemma 4.2.9 and Lemma 4.2.5 we

get

r2m = plmmrl + km, r
2
j = pljjrl + kj , rmrj = plmjrl

And so

r2mr
2
j = (plmj)

2r2l = plmmp
l
jjr

2
l + (kmp

l
jj + kjp

l
mm)rl + kmkj

Now, by Lemma 4.2.1 and Lemma 4.2.5, we have km = pmml+1, kj = pjjl+1 and kj = pmjl ,

meaning that plmj =
kmkj
kl

, plmm = km
kl
(km − 1) and pljj =

kj
kl
(kj − 1). Combining these

with the above equation we have

0 =
kmkj
k2l

(1− km − kj)r
2
l +

kmkj
kl

(km + kj − 2)rl + kmkj

=
kmkj
k2l

((1− km − kj)r
2
l − kl(1− km − kj)rl − klrl + k2l )

=
kmkj
k2l

((rl − kl)((1− km − kj)rl − kl))

Therefore, as rl = kl would imply kl had multiplicity greater than 1 and the structure

would be imprimitive by Corollary 2.1.16, we must have rl = kl
1−km−kj

. However the

same equation applies for sl and tl too, implying that rl = sl = tl. This would mean the

structure was complete in l by Lemma 2.1.17, which wouldn’t be 3-coloured. Hence if

pmmm = pmmj = pmjj = pjjj = 0 then the structure is imprimitive.

We can also note other combinations that don’t work for similar reasons

Lemma 7.1.17 In a 2-regular, 3-coloured structure, if pmmm = pmmj = pmjj = pmll = 0 then

the structure is imprimitive.

Proof. We first note by Lemma 4.2.1 and Lemma 4.2.5 that km = pjml and km − 1 = pmml.
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Then

rmrl = pmmlrm + pjmlrj

−rm − r2m − rmrj = (km − 1)rm + kmrj

−rm(rm + rj) = km(rm + rj)

Therefore either rm + rj = 0 or rm = −km. The former would imply that rl = −1

meaning it’s complete in l or imprimitive, so suppose the latter. But then by Lemma 4.2.9

and Lemma 4.2.5 we get

(−km)2 = plmmrl + km

km(km − 1) = plmmrl

But by Lemma 4.2.1, km−1 = pmml, and by Lemma 4.2.4, klplmm = kmp
m
ml = km(km−1).

Hence this implies rl = kl, meaning the structure is imprimitive by Corollary 2.1.16.

7.2 Into the Neighbourhoods

Now we also want to consider how this works inside of the neighbourhoods. We shall use

freely the notation introduced at the start of Chapter 4. Recall that we fix a point ∞ and look

at the neighbourhoods, R(∞), G(∞) and B(∞), respective of that point. In a 3-regular

structure, the neighbourhoods are themselves 2-regular, and so all of the above results hold,

however kx becomes pmmx and the intersection number pxyz would become pmmx
myz . We shall

go through this formally now.

Lemma 7.2.1 For any colour m and distinct colours c, d and e, N c
mm is simultaneously

diagonalisable with Nd
mm and N e

mm.

Proof. This is immediate from the fact that the m-neighbourhood is 2-regular and so will

form an association scheme. Therefore the adjacency matrices will commute, and are

therefore simultaneously diagonalisable by Lemma 2.2.4.
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And so as before there exists a basis of eigenvectors that is shared across all the adjacency

matrices within a neighbourhood. For convenience we will group these together.

Definition 7.2.2. We say the eigenvectors of the m-neighbourhood are the eigenvectors

included in a basis of eigenvectors that is shared between NR
mm, NG

mm and NB
mm.

We will now list and prove the neighbourhood versions of the earlier results. Lemma 7.1.2

becomes:

Lemma 7.2.3 Suppose x, y, z are distinct colours, m is any colour and rxm is a non-

principal eigenvalue of Nx
mmwith eigenvector vrm . Then if pmmy

mxx ̸= pmmz
mxx , Ny

mm has

eigenvalue

rym =
pmxm − pmmz

mxx + rxm(p
mmx
mxx − pmmz

mxx )− r2xm

pmmz
mxx − pmmy

mxx

and the eigenspace of rxm is contained within the eigenspace of rym .

Proof. First note that Jvrm = 0 as vrm is orthogonal to u. Secondly from Corollary 4.2.11

we get that, for distinct j, l ̸= m,

r2xm
vrm+N

x
mjN

x
jmvrm+N

x
mlN

x
lmvrm = (kx−pzxx)vrm+(pxxx−pzxx)rxmvrm+(pyxx−pzxx)Aymvrm

(7.2.1)

And then using Lemma 4.2.13, we see that

Nx
mjN

x
jmvrm = (pmxj − pmmz

jxx )vrm + (pmmx
jxx − pmmz

jxx )rxmvrm + (pmmy
jxx − pmmz

jxx )Aymvrm

as well as

Nx
mlN

x
lmvrm = (pmxl − pmmz

lxx )vrm + (pmmx
lxx − pmmz

lxx )rxmvrm + (pmmy
lxx − pmmz

lxx )Aymvrm

Inputting these values into equation 7.2.1 and rearranging we get

Aymvrm =
kx − pzxx − pmxj − pmxl + pmmz

jxx + pmmz
lxx + rxm(p

x
xx − pzxx + pmmz

jxx + pmmz
lxx − pmmx

jxx − pmmx
lxx )− r2xm

pzxx − pmmz
lxx − pmmz

jxx − pyxx + pmmy
lxx + pmmy

jxx

vrm

=
pmmx − pmmz

mxx + rxm(p
mmx
mxx − pmmz

mxx )− r2xm

pmmz
mxx − pmmy

mxx
vrm
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and hence vrm is an eigenvector for Aym , with the eigenvalue rym as defined.

We shall also note the consequence of pmmy
mxx = pmmz

mxx as follows

Corollary 7.2.4 Suppose x, y, z are distinct colours, m is any colour and rxm is a non-

principal eigenvalue of Nx
mm with eigenvector vrm . Then if pmmy

mxx = pmmz
mxx , we have

0 = pmxm − pmmz
mxx + rxm(p

mmx
mxx − pmmz

mxx )− r2xm

Proof. We use equation 7.2.1 as in the previous lemma, however we can note that now the

coefficient of Aymvrm is 0. This gives the result.

Next we will adapt Lemma 7.1.3:

Lemma 7.2.5 Suppose x, y, z are distinct colours, m is any colour and rxm is a non-

principal eigenvalue of Nx
mm with eigenvector vrm . Then if rxm ̸= pmmy

mxy − pmmz
mxy , Ny

mm

has eigenvalue

rym =
(pmmx

mxy − pmmz
mxy )rxm − pmmz

mxy

rxm + pmmz
mxy − pmmy

myx

and the eigenspace of rxm is contained within the eigenspace of rym .

Proof. If rxm ̸= pmmy
mxy − pmmz

mxy , then applying Lemma 4.2.9 internal to the m-

neighbourhood we get the equation

rxmrym = (pmmx
mxy − pmmz

mxy )rxm + (pmmy
mxy − pmmz

mxy )rym − pmmz
mxy

which we can solve for rym , giving the solution.

We can combine Lemma 7.2.3 and Lemma 7.2.5 again to get the corollaries:

Corollary 7.2.6 The eigenspace for rxm is contained within the eigenspace of rym unless

pmmy
mxx = pmmz

mxx and rxm = pmmy
mxy − pmmz

mxy .

Corollary 7.2.7 Suppose pmmy
mxx = pmmz

mxx . Then if there does not exist an eigenvalue rxm =

pmmy
mxy − pmmz

mxy the m-neighbourhood is two-coloured.
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These follow immediately from Corollaries 7.1.4 and 7.1.5 applied to them-neighbourhood.

We will also need a slight but quite important variation on the above result, for which we

re-introduce the concept of an eigenvalue triple (Definition 7.1.10):

Lemma 7.2.8 If we have two eigenvalue triples of the m-neighbourhood, (rxm , rym , rzm)

and (sxm , sym , szm), then if rxm = sxm , either rxm = sxm = pmmy
mxy − pmmz

mxy or both

rym = sym and rzm = szm .

Proof. Here we follow the eigenspaces of the two eigenvalue triples. Suppose Erm =

E((rxm , rym , rzm)) and Esm = E((sxm , sym , szm)). Then as rxm = sxm , we know that

Erm ∩Esm is non-empty. Now by Corollary 7.2.6 eitherErm = E(rxm) = E(sxm) = Esm

or rxm = pmmy
mxy − pmmz

mxy and pmmy
mxx = pmmz

mxx . If Erm = Esm , then the eigenvalue triples

must actually be equal, giving rym = sym and rzm = szm . Hence we get the result.

We can also note in the case where rxm = sxm , rym = sym and rzm = szm that the m-

neighbourhood must be two-coloured.

Finally, we get the neighbourhoods variation of Lemma 7.1.9. This is slightly different

because the neighbourhoods can indeed be primitive or two-coloured, but also because we

have stronger restrictions. Recall V defined via equation 8.1.1.

Lemma 7.2.9 Suppose we have a primitive 3-regular 3-coloured graph, and we consider

the eigenspaces for each colour in a neighbourhood. Then V can be partitioned into a

maximum of four classes by the intersections of these eigenspaces.

Proof. Immediately if we work under the assumption that the neighbourhood is 3-coloured

and primitive then we can apply Lemma 7.1.9 to the neighbourhood to get the desired result.

If it is 3-coloured and imprimitive we can use Lemma 7.1.12.

Note if it is just one-coloured then V \ {u} is the eigenspace of −1, and there are no other

colours to worry about, so V has just two classes.

If the neighborhood is two-coloured, then it is strongly regular, and the eigenvalues are

paired off by 1 + r + s = 0. Hence we have 3 classes.

So far we have just been applying results present across any 2-regular structure, however



7.3. CONSEQUENCES OF EIGENVECTORS BEING IN THE EIGENVECTOR CASE 101

these neighbourhoods have the added benefit of being interlinked with each other as

well. From the equations of Lemma 4.2.13 we see that, for an eigenvector v of the m-

neighbourhood, we can consider N c
jmv as a potential eigenvector of the j-neighbourhood.

As j ̸= m Lemma 4.2.13 further tells us that, for distinct colours c, d, e,

Nx
jjN

c
jm = (pjmc

jxc − pjme
jxc )N

c
jm + (pjmd

jxc − pjme
jxc )N

d
jm + pjme

jxc J

And therefore for a non-principal eigenvector v of the m-neighbourhood, Jv = 0, and we

get

Nx
jjN

c
jmv = (pjmc

jxc − pjme
jxc )N

c
jmv + (pjmd

jxc − pjme
jxc )N

d
jmv (7.2.2)

Definition 7.2.10. Now there are a few possibilities here depending on the eigenvector, v

chosen. For some distinct colours c and d, either we have:

The 0 case in j: N c
jmv = Nd

jmv = 0.

The Eigenvector case in j: N c
jmv ̸= 0 and Nd

jmv = aN c
jmv for some constant a. Here

N c
jmv will be an eigenvector for the j-neighbourhood.

The Independent case in j: N c
jmv ̸= 0 and Nd

jmv ̸= 0 but they are linearly independent.

Each case has different implications, but we see at the moment they are tied to a particular

eigenvector and not the eigenspace as a whole. It is our aim to tie the cases to eigenvalue

conditions instead. This will mean that each eigenvalue triple’s eigenspace will be of the

same case, which makes sense. This is done with Corollary 7.4.3 and Lemma 7.5.5. We

shall now go through each case and note the implications.

7.3 Consequences of Eigenvectors being in the Eigenvector case

As might have been hinted by the name, the main consequence of this case is that for

v an eigenvector of the m-neighbourhood, N c
jmv end up being an eigenvector for the j-

neighbourhood. Indeed we can state

Lemma 7.3.1 For v an eigenvector of the m-neighbourhood then if N c
jmv ̸= 0 and

aN c
jmv = Nd

jmv then N c
jmv is an eigenvector of the j-neighbourhood.
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Proof. Consider

Nx
jjN

c
jmv = (pjmc

jxc − pjme
jxc )N

c
jmv + (pjmd

jxc − pjme
jxc )N

d
jmv

And so either a = 0 and we are done or

Nx
jjN

c
jmv = (pjmc

jxc − pjme
jxc +

1

a
pjmd
jxc − 1

a
pjme
jxc )N

c
jmv

Therefore as N c
jmv ̸= 0, it is an eigenvector of Nx

jj

Therefore in this case we see that for an eigenvalue triple of the m-neighbourhood,

(rcm , rdm , rem), there will exist an eigenvalue triple (rcj , rdj , rej ) ofN c
jj such that for some

x, E((rcj , rdj , rej )) = {Nx
jmv : v ∈ E((rcm , rdm , rem))}, where E((rcm , rdm , rem)) =

E(rcm) ∩ E(rdj ) ∩ E(rej ). We will say here that the two eigenvalue triples correspond.

Lemma 7.3.2 Suppose N c
jmv is an eigenvector of the j-neighbourhood. Then, for some

colour d distinct from c either Nd
jmv is 0 or an eigenvector for the j-neighbourhood, with

N c
jmv = aNd

jmv.

Proof. This is very straightforward. Note that from Lemma 4.2.13

Nx
jjN

c
jmv = (pjmc

jxc − pjme
jxc )N

c
jmv + (pjmd

jxc − pjme
jxc )N

d
jmv

But Nx
jjN

c
jmv = rxjN

c
jmv as its an eigenvector. Hence

rxjN
c
jmv = (pjmc

jxc − pjme
jxc )N

c
jmv + (pjmd

jxc − pjme
jxc )N

d
jmv

(rxj − pjmc
jxc + pjme

jxc )N
c
jmv = (pjmd

jxc − pjme
jxc )N

d
jmv

So Nd
jmv is 0 or a multiple of N c

jmv, and therefore also an eigenvector.

We can find some basic equations for what the constant a is in terms of intersection numbers.

Lemma 7.3.3 Suppose v is an eigenvector of the m-neighbourhood such that N c
jmv ̸= 0
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and aN c
jmv = Nd

jmv then a = 0 or

a =
(pmmc

jcd − pmme
jcd )rcm + (pmmd

jcd − pmme
jcd )rdm − pmme

jcd

pmcj − pmme
jcc + (pmmc

jcc − pmme
jcc )rcm + (pmmd

jcc − pmme
jcc )rdm

Proof. First assume a ̸= 0. Now as before we will use the value of the norm squared

|N c
jmv|2= (pmjc + pmmc

jcc rcm + pmmd
jcc rdm + pmme

jcc rem)|v|2

and

vTNd
mjN

c
jmv = (pmmc

jcd rcm + pmmd
jcd rdm + pmme

jcd rem)|v|2

But also

vTNd
mjN

c
jmv =

1

a
|N c

jmv|2

Hence

1

a
(pmjc + pmmc

jcc rcm + pmmd
jcc rdm + pmme

jcc rem) = (pmmc
jcd rcm + pmmd

jcd rdm + pmme
jcd rem)

And so

a =
(pmmc

jcd rcm + pmmd
jcd rdm + pmme

jcd rem)

(pmjc + pmmc
jcc rcm + pmmd

jcc rdm + pmme
jcc rem)

or, equivalently,

a =
(pmmc

jcd − pmme
jcd )rcm + (pmmd

jcd − pmme
jcd )rdm − pmme

jcd

pmcj − pmme
jcc + (pmmc

jcc − pmme
jcc )rcm + (pmmd

jcc − pmme
jcc )rdm

From this we can determine what the corresponding eigenvalues in the j-neighbourhood

actually are

Lemma 7.3.4 Suppose v is an eigenvector of the m-neighbourhood such that N c
jmv ̸= 0
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and N c
jmv = aNd

jmv then if rxj is the eigenvalue of Nx
jj with eigenvector N c

jmv and a ̸= 0

rxj = pjmc
jxc − pjme

jxc +
1

a
(pjmd

jxc − pjme
jxc )

= pjmc
jxc − pjme

jxc +
pmcj − pmme

jcc + (pmmc
jcc − pmme

jcc )rcm + (pmmd
jcc − pmme

jcc )rdm

(pmmc
jcd − pmme

jcd )rcm + (pmmd
jcd − pmme

jcd )rdm − pmme
jcd

(pjmd
jxc − pjme

jxc )

If a = 0 then rxj = pjmc
jxc − pjme

jxc .

Proof. We know that N c
jmv is an eigenvector, so consider

Nx
jjN

c
jmv = (pjmc

jxc − pjme
jxc )N

c
jmv + (pjmd

jxc − pjme
jxc )N

d
jmv

Hence if a = 0, Nd
jmv = 0 and rxj = pjmc

jxc − pjme
jxc . If a ̸= 0 then

rxj = pjmc
jxc − pjme

jxc +
1

a
(pjmd

jxc − pjme
jxc )

= pjmc
jxc − pjme

jxc +
pmcj − pmme

jcc + (pmmc
jcc − pmme

jcc )rcm + (pmmd
jcc − pmme

jcc )rdm

(pmmc
jcd − pmme

jcd )rcm + (pmmd
jcd − pmme

jcd )rdm − pmme
jcd

(pjmd
jxc − pjme

jxc )

We can also show that being corresponding is a symmetric relation.

Lemma 7.3.5 Suppose v is an eigenvector of the m-neighbourhood such that N c
jmv ̸= 0

and N c
jmv = aNd

jmv, then N c
jmv is in the eigenvector case in m.

Proof. This is fairly trivial, all we have to show is that for some distinct colours x and

y, Nx
mjN

c
jmv ̸= 0 and Nx

mjN
c
jmv = aNy

mjN
c
jmv for some constant a. Well note that

N c
mjN

c
jmv is not 0, as otherwise N c

jmv would be. Further

Nd
mjN

c
jmv = (pmmc

jcd rcm + pmmd
jcd rdm + pmme

jcd rem)v

which is a multiple of N c
mjN

c
jmv as this can also be expressed as a constant multiplied by

v.

As we’ve seen the a = 0 provides a bit of a special case here. As we showed in Lemma
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7.3.5, the eigenvector in the j-neighbourhood is also of the eigenvector case, and we can

see that if Nd
jmv = 0 then Nd

mjN
c
jmv = 0. Hence if one direction gets the a = 0 results,

then so does the other. So in this case we can get a full description of the eigenvalues just

in terms of the intersection numbers.

Lemma 7.3.6 If for v an eigenvector of the m-neighbourhood Nd
jmv = 0 but N c

jmv ̸= 0

then for any colour x, pjmc
jxd = pjme

jxd and pmjc
mxd = pmje

mxd. Further N c
jmv is an eigenvector of

the j-neighbourhood with eigenvalues (rxj , ryj , rzj ) such that

rxj = pjmc
jxc − pjme

jxc , ryj = pjmc
jyc − pjme

jyc , rzj = pjmc
jzc − pjme

jzc

And if (rxj , ryj , rzj ) are the eigenvalues of v then

rxm = pmjc
mxc − pmje

mxc, rym = pmjc
myc − pmje

myc, rzm = pmjc
mzc − pmje

mzc

Proof. All of this is immediate from Lemmas 7.3.4 and 7.3.5, except that for any colour x,

pjmc
jxd = pjme

jxd and pmjc
mxd = pmje

mxd. This comes from the fact that, for any colour x,

0 = Nx
jjN

d
jmv = (pjmc

jxd − pjme
jxd )N

c
jmv

and

0 = Nx
mmN

d
mjN

c
jmv = (pmjc

mxd − pmje
mxd)N

c
mjN

c
jmv

7.4 Consequences of Eigenvectors in the 0 case

Lemma 7.4.1 For distinct colours c, d, e, if v is an eigenvector of the m-neighbourhood

with eigenvalues (rcm , rdm , rem) then Nx
jmv = 0 if and only if

0 = pmxj + pmmc
jxx rcm + pmmd

jxx rdm + pmme
jxx rem

Proof. This comes from the fact that Nx
jmv = 0 if and only if |Nx

jmv|= 0, coupled with the
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equation from Lemma 4.2.13

Nx
mjN

x
jm = pmxjI + pmmc

jxx N c
mm + pmmd

jxx Nd
mm + pmme

jxx N e
mm

Therefore Nx
jmv = 0 if and only if

0 =|Nx
jmv|2

=vTNx
mjN

x
jmv

=pmxjv
T v + pmmc

jxx vTN c
mmv + pmmd

jxx vTNd
mmv + pmme

jxx vTN e
mmv

=(pmxjI + pmmc
jxx rcm + pmmd

jxx rdm + pmme
jxx rem)|v|2

As v is an eigenvector, we know |v|2 ̸= 0 and therefore we have the result.

Remark 7.4.2 By inputting the equation from Lemma 4.2.10, 0 = 1 + rcm + rdm + rem ,

the equation from Lemma 7.4.1 becomes

0 = (pmxj − pmme
jxx ) + (pmmc

jxx − pmme
jxx )rcm + (pmmd

jxx − pmme
jxx )rdm (7.4.3)

By Lemma 7.4.1 we see that in the 0 case this equation will hold for any colour x. We can

also note that if Nx
jmv = 0 then, for any colour y distinct from x, vTNy

mjN
x
jmv = 0 too

and so we get a slightly different equation

0 = −pmme
jxy + (pmmc

jxy − pmme
jxy )rcm + (pmmd

jxy − pmme
jxy )rdm (7.4.4)

It can be fairly easily shown that given Equation 7.4.3 in all colours x, we get Equation

7.4.4 as a consequence, and so it provides no new information. However, it could be more

useful to use this variation on occasion.

This equation is crucial to a lot of our study, and we will go back to it further on. However

for now we shall focus on how this works with corresponding and non-corresponding

eigenvalues.

Corollary 7.4.3 Suppose ∃v ∈ E(rcmrdm , rem) is in the 0 case in j. Then the entirety of

E(rcmrdm , rem) is in the 0 case in j.
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Proof. By definition, it is known that for all v′ ∈ E(rcmrdm , rem), N
c
mmv

′ = rcmv
′,

Nd
mmv

′ = rdmv
′, and N e

mmv
′ = remv

′. Therefore if there exits v in the 0 case in j, then by

Lemma 7.4.1, we have the equation 7.4.3. This will then hold for all v′ ∈ E(rcmrdm , rem),

meaning by Lemma 7.4.1, v′ is in the 0 case in j.

We can’t necessarily tie the case to an eigenspace of a single colour, E(rcm), in the same

way. What happens to the vectors in the other eigenspaces if there exists overlapping

eigenspaces is an interesting question. For the most part, they cannot be of case 0 in

j, as (rcm , sdm) won’t generally solve equation 7.4.3 if (rcm , rdm) does. However there

are certain constraints on the intersection numbers where it is possible that it might. For

instance, what if the entire equation 7.4.3 collapses to 0, or the coefficient of Nd
mmv is 0?

Well it would have to happen for all colours x for that to affect the situation, and that will

have some very strong consequences which we shall discuss later.

Now we shall look at the repercussions of just one eigenvalue triple of them-neighbourhood

being the 0 case in j. First note that Equation 7.4.3 actually gives us three linear equations,

one for each colour in place of x. Hence we can solve them for rcm and rdm , if the

discriminant is non-zero. For distinct colours x and y define

Dxy
mj := (pmme

jyy − pmmc
jyy )(pmme

jxx − pmmd
jxx ) + (pmme

jyy − pmmd
jyy )(pmmc

jxx − pmme
jxx ) (7.4.5)

This is the discriminant of the Equation 7.4.3 when expressed in x and y.

Lemma 7.4.4 Suppose v ∈ E(rcm , rdm , rem) is an eigenvector of the m-neighbourhood,

such that v is the 0 case in j, and further suppose for some distinct x, y we have Dxy
mj ̸= 0

then

rcm =
(pmyj − pmme

jyy )(pmme
jxx − pmmd

jxx ) + (pmxj − pmme
jxx )(pmmd

jyy − pmme
jyy )

(pmme
jyy − pmmc

jyy )(pmme
jxx − pmmd

jxx ) + (pmme
jyy − pmmd

jyy )(pmmc
jxx − pmme

jxx )

rdm =
(pmyj − pmme

jyy )(pmme
jxx − pmmc

jxx ) + (pmxj − pmme
jxx )(pmmc

jyy − pmme
jyy )

(pmme
jyy − pmmc

jyy )(pmme
jxx − pmmd

jxx ) + (pmme
jyy − pmmd

jyy )(pmmc
jxx − pmme

jxx )

Proof. From Lemma 7.4.1 we must have that both

0 = (pmxj − pmme
jxx ) + (pmmc

jxx − pmme
jxx )rcm + (pmmd

jxx − pmme
jxx )rdm (7.4.6)
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And

0 = (pmyj − pmme
jyy ) + (pmmc

jyy − pmme
jyy )rcm + (pmmd

jyy − pmme
jyy )rdm (7.4.7)

When considered as a system of linear equations in variables rcm and rdm , we see that

the determinant is (pmme
jyy − pmmc

jyy )(pmme
jxx − pmmd

jxx ) + (pmme
jyy − pmmd

jyy )(pmmc
jxx − pmme

jxx )

which is non-zero. Hence we can solve these equations for rcm and rdm , giving the desired

results.

It is important to note here that unless Dxy
mj is 0 for all combinations of distinct x and y, then

we can solve these equations for rcm and rdm . For this to happen there will be consequences.

Lemma 7.4.5 For any distinct colours c, d, e, and distinct x and y, Dxy
mj = 0 if and only if

one of the following occurs:

i) pmmc
jxx = pmme

jxx and pmmc
jyy = pmme

jyy

ii) pmmd
jxx = pmme

jxx and pmmd
jyy = pmme

jyy

iii) pmmc
jxx = pmmd

jxx = pmme
jxx or pmmc

jyy = pmmd
jyy = pmme

jyy

iv) For some non-zero constant λ, pmmc
jxx −pmme

jxx = λ(pmmc
jyy −pmme

jyy ) and pmmd
jxx −pmme

jxx =

λ(pmmd
jyy − pmme

jyy )

Proof. Clearly if any of i)-iv) hold then Dxy
mj = 0, so all that remains to prove is the

converse. Well suppose Dxy
mj = 0. Then either both the individual terms are 0, giving case

i), case ii) or case iii), or neither are and we have

(pmme
jyy − pmmc

jyy )(pmme
jxx − pmmd

jxx ) = (pmme
jyy − pmmd

jyy )(pmme
jxx − pmmc

jxx )

Hence if we let λ =
pmme
jxx −pmmd

jxx

pmme
jyy −pmmd

jyy

, we get λ =
pmme
jxx −pmmc

jxx

pmme
jyy −pmmc

jyy
. Note that denominators must be

non-zero as otherwise it would fall into one of the other cases.

Coupling the equations with the results from the determinant being 0 we can push the

consequences even further
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Lemma 7.4.6 Suppose both equations 7.4.6 and 7.4.7 hold. Then Dxy
mj = 0 if and only if

one of the following hold

i) pmmc
jxx = pmme

jxx , pmmc
jyy = pmme

jyy and rdm =
pmxj−pmme

jxx

pmme
jxx −pmmd

jxx

=
pmyj−pmme

jyy

pmme
jyy −pmmd

jyy

ii) pmmd
jxx = pmme

jxx , pmmd
jyy = pmme

jyy and rcm =
pmxj−pmme

jxx

pmme
jxx −pmmc

jxx
=

pmyj−pmme
jyy

pmme
jyy −pmmc

jyy

iii) pmjx = 0 or pmjy = 0

iv) For some non-zero constant λ, pmjx − λpmjy = pmmc
jxx − λpmmc

jyy = pmmd
jxx − λpmmd

jyy =

pmme
jxx − λpmme

jyy

Proof. Suppose first that Dxy
mj = 0. The different cases here align with the cases from

Lemma 7.4.5.

Case i) and ii) are immediate from combining either case i) or ii) from Lemma 7.4.5 with

the equations 7.4.6 and 7.4.7 and solving for rdm or rcm respectively.

For iii) suppose we have pmmc
jxx = pmmd

jxx = pmme
jxx and equation 7.4.6. Then the equation

becomes pmxj = pmme
jxx , so pmxj = pmmc

jxx = pmmd
jxx = pmme

jxx . Note if pmma = 0, for any a, then

pmma
jxx = 0 by Lemma 4.2.3. This further implies pmxj = 0 and so we are done.

So suppose pmma ̸= 0 for all colours a. Then, for any colour a, by Lemma 4.2.3, we know

that pmma
jxy = pmma

jxz = 0. Now by Lemma 4.2.5, pmzj
amx = 0 and pmyj

amx = 0 for all a too. But

then by Lemma 4.2.3, either pjmx = pmzj
cmx + pmzj

dmx + pmzj
emx = 0 or pmzj = 0. So either we are

done, or pmzj = 0. So suppose for a contradiction that pmzj = 0. Applying pmyj
amx = 0 in the

same way, we see that either pmjx = 0 or pmyj = 0. Therefore if pmjx ̸= 0, both pmyj = 0 and

pmzj = 0 and further, as pmmj ̸= 0 we know x = m. However, now we have pmjj = pmjl = 0

contradicting Lemma 7.1.15. Hence we must have pmjx = 0.

Finally for case iv), first input pmmc
jxx − pmme

jxx = λ(pmmc
jyy − pmme

jyy ) and pmmd
jxx − pmme

jxx =

λ(pmmd
jyy −pmme

jyy ) into Equations 7.4.6 and 7.4.7. This gives pmxj −pmme
jxx = λ(pmyj −pmme

jyy ).

We can then rearrange both equation 7.4.6 and equation 7.4.7 to be equal to pmme
jxx −λpmme

jyy ,

giving the result.

The other direction is provable from the fact that each of these cases immediately imply

their corresponding cases in Lemma 7.4.5. Cases i), ii) and iv) are immediate. In case

iii), pmjx = 0 implies 0 = pmmc
jxx = pmmd

jxx = pmme
jxx by Lemma 4.2.3, and the similar for

pmjy = 0.
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Note that case iii) is the λ = 0 variation of case iv). Also it is fairly trivial to note that

Dxy
mj = −Dyx

mj , and so if one is zero, so is the other.

As mentioned earlier, in order to be unable to solve the equations 7.4.3 for rcm and rdm , we

must have Dxy
mj = Dyz

mj = Dzx
mj = 0. Assuming this is the case, we will then have at least

one of the outcomes from Lemma 7.4.6 for each pair (x, y), (x, z) and (y, z). We will now

discuss the possible combinations of these outcomes.

Remark 7.4.7 It is important to remark that given the condition pmma = 0 for some a,

although Dxy
mj may be zero, we can still solve Equation 7.4.3 for the eigenvalues as we

know by Remark 4.2.15 that ram = 0. Therefore either the equation is immediately in terms

of one eigenvalue, or using 0 = 1 + rcm + rdm + rem , it can be.

Lemma 7.4.8 Suppose the equation 7.4.3 holds for x, y and z and that pmjx = 0 and pmma ̸=

0 for all colours a. Then Dxy
mj = Dyz

mj = Dzx
mj = 0.

Proof. Suppose pmjx = 0 and both pmjy and pmjz are non-zero (as otherwise we are done).

Then immediately from Lemma 7.4.6 we get Dxy
mj = Dxz

mj = 0, so all the remains to prove

is that Dyz
mj = 0. Well if pmjx = 0, then for any colour a by Lemma 4.2.3 either pmma = 0 or

both pmjy = pmma
jyy +pmma

jyz and pmjz = pmma
jzz +pmma

jyz . Therefore pmjy−pmjz = pmma
jyy −pmma

jzz .

Hence we have case iv) from Lemma 7.4.6 with λ = 1 and Dyz
mj = 0.

We shall isolate the following result from the proof as it will be useful in it’s own right later

Corollary 7.4.9 Suppose that pmjx = 0, pmma ̸= 0 for all colours a and the equation 7.4.3

holds for x, y and z. Then for some distinct y and z, not equal to x, either pmjy = 0, pmjz = 0

or pmjy − pmjz = pmmc
jyy − pmmc

jzz = pmmd
jyy − pmmd

jzz = pmme
jyy − pmme

jzz .

We can make some further deductions about other combinations. Suppose we have case i)

for x and y and case iii) for y and z. Then it turns out that this implies we actually have

case i) for y and z as well. More formally

Lemma 7.4.10 Suppose that pmmc
jyy = pmme

jyy and for some non-zero constant λ we have

pmjy − λpmjz = pmmc
jyy − λpmmc

jzz = pmmd
jyy − λpmmd

jzz = pmme
jyy − λpmme

jzz . Then pmmc
jzz = pmme

jzz .
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Proof. We have pmmc
jyy − λpmmc

jzz = pmme
jyy − λpmme

jzz . Therefore as pmmc
jyy = pmme

jyy , we have

pmmc
jzz = pmme

jzz .

Now we can put all these together to classify the possibilities

Lemma 7.4.11 Suppose the equation 7.4.3 holds for x, y and z and pmma ̸= 0. Then Dxy
mj =

Dyz
mj = Dzx

mj = 0 if and only if one of the following occurs:

1. Either pmjx = 0, pmjy = 0 or pmjz = 0

2. pmmc
jxx = pmme

jxx , pmmc
jyy = pmme

jyy , and pmmc
jzz = pmme

jzz

3. pmmd
jxx = pmme

jxx , pmmd
jyy = pmme

jyy , and pmmd
jzz = pmme

jzz

4. For some non-zero constants λ and µ and all colours a, pmjx−λpmjy = pmma
jxx −λpmma

jyy ,

pmjy − µpmjz = pmma
jyy − µpmma

jzz and pmjx − λµpmjz = pmma
jxx − λµpmma

jzz

Proof. First suppose we have Dxy
mj = Dyz

mj = Dzx
mj = 0. Then by Lemma 7.4.6 for each

combination of x, y and z we must have one of the cases i)-iv). For convenience in this

proof we shall use the shorthand that xy is of case i), for instance.

First suppose that any one of xy, xz or yz is of case iii), then we get case 1) and are done.

If any two of xy, xz or yz are case i), then we get case 2) here. Similarly if we assume they

any two of xy, xz or yz are case ii), we get case 3) here. We can also see that if any two

are of case iv), say w.l.o.g xy and yz, then for all colours a and some non-zero constants

λ and µ, pmjx − λpmjy = pmma
jxx − λpmma

jyy and pmjy − µpmjz = pmma
jyy − µpmma

jzz . Combining

these two equations gives pmjx − λµpmjz = pmma
jxx − λµpmma

jzz , and so we are in case 4).

Therefore the only remaining possibility is a combination involving all three of case i), ii)

and iv). However we note for instance xy and xz are case i) and case ii) respectively, then

pmmc
jxx = pmmd

jxx = pmme
jxx . This, when coupled with Equation 7.4.3, implies pmxj = 0, and so

we are actually in case 1).

Now we shall prove the converse. If we suppose we have case 1) then by Lemma 7.4.8,

we get Dxy
mj = Dyz

mj = Dzx
mj = 0. If we suppose have case 2 or 3, then this immediately

implies we have case i) or case ii) respectively from Lemma 7.4.6 for every combination of

x, y and z. Similarly, case 4) corresponds to having case iv) from Lemma 7.4.6 for every

combination of x, y and z.
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Remark 7.4.12 It should be noted from the proof that the condition pmma ̸= 0 for all a

is only present so we can apply Lemma 7.4.8. Hence Lemma 7.4.11 would therefore be

almost exactly the same without this condition, however it would no longer be ‘if and only

if’ as the condition ‘pmjx = 0, pmjx = 0 or pmjx = 0’ would no longer necessarily imply

Dxy
mj = Dyz

mj = Dzx
mj = 0.

In case 2), we can note that, as we can solve Equation 7.4.3 for rdm , if we have pmmc
mdd ̸=

pmme
mdd and use Lemma 7.2.3, we can determine rcm . Similarly we can do the same thing

with case 3). Hence in these cases in order to not be able to solve for both rcm and rdm , we

must have pmmc
mdd = pmme

mdd in case 2) or pmmc
mdd = pmme

mdd in case 3) also.

Further from Lemma 7.2.5, we can solve for rcm given rdm unless rdm = pmmc
mcd − pmme

mcd ,

therefore this condition must be present also.

It should be noted that if pmma = 0 for any a solving the linear equations is possible, except

case 2) when pmmd = 0 and the case 3) when pmmc = 0. This shall not be excluded from the

following definitions, however it will be noted wherever it affects results.

As we will make frequent reference to these cases we shall define terms for them

Definition 7.4.13. If for some x, pmjx = 0 then we say that the m-neighbourhood is x-

undesirable with respect to the j-neighbourhood.

If pmmc
jxx = pmme

jxx , pmmc
jyy = pmme

jyy , pmmc
jzz = pmme

jzz , and pmmc
mdd = pmme

mdd , then we say that the

m-neighbourhood is d-semi-undesirable with respect to the j-neighbourhood.

If for some non-zero constants λ and µ and all colours a, pmjx − λpmjy = pmma
jxx − λpmma

jyy ,

pmjy − µpmjz = pmma
jyy − µpmma

jzz and pmjx − λµpmjz = pmma
jxx − λµpmma

jzz then we say that the

m-neighbourhood is a multiple with respect to the j-neighbourhood.

Remark 7.4.14 If we have d-semi-undesirability, we can note that we also have pmmc
jxy =

pmme
jxy for all distinct x, y. This is because, by repeated use of Lemma 4.2.3,

pmmc
jxy = pmjx − pmmc

jxx − pmmc
jxz

= pmjx − pmmc
jxx − pmjz + pmmc

jzz + pmmc
jyz

= pmjx − pmmc
jxx − pmjz + pmmc

jzz + pmjy − pmmc
jyy − pmmc

jxy
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So applying the d-semi-undesirable condition this becomes

2pmmc
jxy = pmjx − pmme

jxx − pmjz + pmme
jzz + pmjy − pmme

jyy

= pmme
jxy + pmme

jxz − pmme
jxz − pmme

jyz + pmme
jxy + pmme

jyz

= 2pmme
jxy

By combining Lemmas 7.4.4 and 7.4.10 then we can say

Lemma 7.4.15 Suppose we have an eigenvector v of the m-neighbourhood with

eigenvalues (rcm , rdm , rem) which is the 0 case in j. Further suppose we can’t find unique

solutions for both rcm and rdm using the equations 7.4.3 and 0 = 1 + rcm + rdm + rem .

Then we must have that, for some colour x, either:

• The m-neighbourhood is 3-coloured and x-undesirable, x-semi-undesirable or a

multiple with respect to j.

• The m-neighbourhood is 2-coloured with pjmj = pjmm = 0.

Proof. First suppose the m-neighbourhood is not 3-coloured. Well if it is 1-coloured, by

Remark 4.2.15, we can solve 0 = 1+rcm+rdm+rem for the eigenvalues. If it is 2-coloured,

then one of the eigenvalues is 0, and the other two are for distinct colours a and b. Then

they satisfy 0 = 1+ ram + rbm and 0 = pmxj + pmma
jxx ram + pmmb

jxx rbm for all colours x. This

becomes

0 = pmxj − pmmb
jxx + ram(p

mma
jxx − pmmb

jxx )

Which means we can solve for ram and rbm unless pmma
jxx = pmmb

jxx for all x. But if this

happens we also get pmxj = pmma
jxx = pmmb

jxx . This implies by Lemma 4.2.3 that pmma
jxy =

pmma
jxz = 0 for y, z distinct and not equal to x. But now by Lemma 4.2.4 and Lemma

4.2.3, either pmjx = 0 or both pmma = pmjx
max and pmmb = pmjx

mbx. But again by Lemma 4.2.3,

either pjmx = 0 or pjmx = pmjx
max + pmjx

mbx + 1 = pmma + pmmb + 1 = km. The latter implies

pmjy = pmjz = 0 by Lemma 4.2.1. As we could have done the exact same thing for y and z,

we see that we must have that two of pmjx, p
m
jy and pmjz are zero. By Lemma 7.1.15, we must

have pmjm = pmjj = 0.
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So now suppose we are 3-coloured. Then we know pmma ̸= 0 for any a and so rcm and rdm

are non-zero. Hence by Lemma 7.4.4 we can solve the equations 7.4.3 in x, y and z to get

unique solutions for rcm and rdm if we do not have Dxy
mj = Dyz

mj = Dzx
mj = 0. Hence if we

cannot do this we must have one of the conclusions from Lemma 7.4.11, which correspond

to undesirability, semi-undesirability or a multiple with respect to j.

At this point we can note that the second option doesn’t actually occur, this is due to the

later result Theorem 7.6.20.

We can note that there are some strong consequences of the multiple case.

Lemma 7.4.16 Suppose we have an eigenvalue triple of the m-neighbourhood

(rcm , rdm , rem) that is in the 0 case in j. Suppose also that the m-neighbourhood is a

multiple with respect to the j-neighbourhood and pmma ̸= 0 for all colours a. Then, for

distinct colours x, y, z,

i) pmmx
jcd pmmy

jce = pmmx
jce pmmy

jcd ,

ii) pmjc
mxdp

mjc
mye = pmjc

mxep
mjc
myd,

iii) pjmdp
mjc
mye = pjmep

mjc
myd,

iv) pmje
myc = pmjd

myc.

Proof. The proof is fairly simple. We know that in the multiple case the equation 7.4.4

0 = −pmmz
jcd + (pmmx

jcd − pmmz
jcd )rxm + (pmmy

jcd − pmmz
jcd )rym

must be a linear multiple of the equation 7.4.4

0 = −pmmz
jce + (pmmx

jce − pmmz
jce )rxm + (pmmy

jce − pmmz
jce )rym

Hence, for some non-zero constant λ,

pmmz
jcd = λpmmz

jce , pmmx
jcd −pmmz

jcd = λ(pmmx
jce −pmmz

jce ) and pmmy
jcd −pmmz

jcd = λ(pmmy
jce −pmmz

jce )
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The first equation gives us λ =
pmmz
jcd

pmmz
jce

, which we can then substitute into the others giving

pmmx
jcd pmmz

jce = pmmx
jce pmmz

jcd

pmmy
jcd pmmz

jce = pmmy
jce pmmz

jcd

Combining these will give us the third

pmmx
jcd pmmy

jce = pmmx
jce pmmy

jcd

The other results we can find from manipulating these equations. First if we just apply

Lemma 4.2.4 to every intersection number we get pmjc
mxdp

mjc
mye = pmjc

mxep
mjc
myd. Now we can

use this and Lemma 4.2.3 to note that

pjmdp
mjc
mye = (pmjc

mxd + pmjc
myd + pmjc

mzd)p
mjc
mye

= pmjc
mxep

mjc
myd + pmjc

mydp
mjc
mye + pmjc

mzep
mjc
myd

= pmjc
myd(p

mjc
mxe + pmjc

mye + pmjc
mze)

= pjmep
mjc
myd

Finally, making repeated use of Lemma 4.2.4

pjmdp
j
mcp

mjc
mye = pjmep

j
mcp

mjc
myd

pjmdp
j
mep

mje
myc = pjmep

j
mdp

mjd
myc

pmje
myc = pmjd

myc

This final equality impacts a lot. Note that m and j are ‘swapped’ from the previously

established convention here as this lemma is from the perspective of assuming that m is a

multiple with respect to j. We don’t assume this, because the Lemma holds from a single

consequence of this, namely the identity pmjd
myc = pmje

myc, and so we don’t require the full

strength of the condition.
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Lemma 7.4.17 Suppose for distinct colours m, j, any colour y and distinct colours c, d, e

we have pmjd
myc = pmje

myc, and also suppose that v′ is a non-principal eigenvector of the j-

neighbourhood. Then either v′ is in the 0 case in m or is in the eigenvector case and

corresponds to an eigenvalue triple where rym = pmjc
myc − pmjd

myc .

Proof. Suppose that we are not in the 0 case, so for some colour c, N c
mjv

′ ̸= 0. Now we

consider the value of Ny
mmN c

mjv
′. From Lemma 4.2.13, and Jv′ = 0, we get

Ny
mmN

c
mjv

′ = (pmjc
myc − pmje

myc)N
c
mjv

′ + (pmjd
myc − pmje

myc)N
d
mjv

′

= (pmjc
myc − pmje

myc)N
c
mjv

′

HenceN c
mjv

′ is an eigenvector of them-neighbourhood, and has eigenvalues rym = pmjc
myc−

pmjd
myc .

Further this equality is actually is at odds with the Eigenvector case altogether

Lemma 7.4.18 Suppose for all b, and all distinct x, y, z, we have pmjy
mbz = pmjx

mbz and that

pmja ̸= 0 for all a. Then we cannot have an eigenvalue triple for the m-neighbourhood in

the Eigenvector case in j.

Proof. From pmjy
mbz = pmjx

mbz and Lemma 4.2.4 we have for all b that

pmjxp
mmb
jyz = pmjyp

mmb
jxz (7.4.8)

Now suppose for a contradiction that we have an eigenvalue triple (scm , sdm , sem) in the

Eigenvector case in j. Note that, for v ∈ E(scm , sdm , sem), we know that

vTNx
mjN

z
jmv =

(
pmmc
jxz scm + pmmd

jxz sdm + pmme
jxz sem

)
|v|2
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which by use of Equation 7.4.8 becomes

=

(
pmjx
pmjy

pmmc
jyz scm +

pmjx
pmjy

pmmd
jyz sdm +

pmjx
pmjy

pmme
jyz sem

)
|v|2

=
pmjx
pmjy

vTNy
mjN

z
jmv

And so, as we know that for some constant λ, Nx
jmv = λNy

jmv, we must have that if

N z
jmv ̸= 0,

Nx
jmv =

pmjx
pmjy

Ny
jmv

Note that we also get that, if Ny
jmv ̸= 0

Nx
jmv =

pmjx
pmjz

N z
jmv

Now we know 0 = Jv = Nx
jmv +Ny

jmv +N z
jmv and so

0 = (1 +
pmjx
pmjz

+
pmjx
pmjz

)Nx
jmv

=
kj
pmjz

Nx
jmv

So as kj ̸= 0, Nx
jmv = 0.

But as pmja ̸= 0 for all a, either N z
jmv = 0 or Ny

jmv = 0 as well, implying all three must be

0, a contradiction with the definition of the Eigenvector case.

Putting this together with Lemma 7.4.16 we get

Corollary 7.4.19 Suppose we have an eigenvalue triple of the m-neighbourhood

(rcm , rdm , rem) that is case 0 in j. Suppose also that the m-neighbourhood is a multiple

with respect to the j-neighbourhood. Then if pmjx ̸= 0 and pmmx ̸= 0 for all x, then no

eigenvalue triple of the m-neighbourhood can be in the Eigenvector case in j.
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7.5 Consequences of Eigenvectors in the Independent Case

This is maybe the most oppressive of the three cases, and it turns out we can entirely

disprove its existence, which we do in Theorem 9.2.2. However in order to get that far

we need to fully explore the limitation and consequences of the Independent cases, which

we do here. The main result is Theorem 7.5.2, which both determines the value of all the

eigenvalues of an eigenvalue triple in this case, but also determines that the familiar equality

pjmb
mad = pjmc

mad holds. The consequences of this equality are fully explored in this section.

First we can note a rather nice result which seriously limits the prevalence of the

Independent case.

Lemma 7.5.1 Suppose for some c, pmcj = 0. Then, for v an eigenvector for the m-

neighbourhood, N c
jmv = 0 and Nd

jmv is either 0 or an eigenvector of Nm
jj , for any d ̸= c.

Hence v cannot be the Independent case in j.

Proof. We first see that by Lemma 4.2.5 and Lemma 4.2.3,

|N c
jmv|2 = pmcj + pmmm

jcc rmm + pmmj
jcc rjm + pmml

jcc rlm

= 0

And so N c
jmv = 0. Well now, we note that as J = N c

jm +Nd
jm +N e

jm and Jv = 0, we get

N e
jmv = −Nd

jmv for d, e ̸= c. Then by using Lemma 4.2.13 and multiplying by v on the

right we see

Nm
jjN

d
jmv = pjmc

jmdN
c
jmv + pjmd

jmdN
d
jmv + pjme

jmdN
e
jmv

= (pjmd
jmd − pjme

jmd)N
d
jmv

Hence Nd
jmv an eigenvector or it is zero.

Also not that Nd
jmv and N e

jmv are not linearly independent so v is not in the Independent

case.

Specifically this means that the combination of some undesirable cases and the Independent

case cannot happen which is always good.
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Now we look at the general implications of the Independent Case. Note in the following

analysis we can safely assume pmjc ̸= 0 for all c by the previous lemma. We aim to prove

the following

Theorem 7.5.2 For any colours d, e, f, j,m, such that j and m are distinct, suppose v is

an eigenvector for Nd
mm, orthogonal to u, with eigenvalue rdm , such that N e

jmv is non-zero

and not an eigenvector of Nf
jj . Then for all distinct colours a, b, c

rdm = pjma
mad − pjmb

mad

pjmb
mad = pjmc

mad

Proof. For distinct a, b, c, by using Lemma 4.2.13 and multiplying by v on the right we get

the equation:

Na
jmN

d
mmv =(pjma

mad − pjmb
mad)N

a
jmv + (pjmc

mad − pjmb
mad)N

c
jmv

0 =(pjma
mad − pjmb

mad − rdm)N
a
jmv + (pjmc

mad − pjmb
mad)N

c
jmv

Now we know that Na
jmv is non-zero and also that it is linearly independent of N c

jmv,

otherwise it would be an eigenvalue of Nf
jj . Hence we must have pjma

mad − pjmb
mad = rdm , and

consequently, pjmc
mad = pjmb

mad too as N c
jmv must also be non-zero.

If this situation occurs we can actually determine quite a lot about the rest of the structure.

Lemma 7.5.3 For colours d, e, e′, f and distinct colours j and m, suppose v is an

eigenvector for Nd
mm, orthogonal to u, with eigenvalue rdm , such that N e

jmv is non-zero

and not an eigenvector of Nf
jj . Then, for any eigenvector, v′, of Nf

jj , orthogonal to u, either

N e′
mjv

′ = 0 or N e′
mjv

′ is an eigenvector for Nd
mm orthogonal to v but with eigenvalue rdm .

Proof. We get immediately from 7.5.2 that rdm = pjma
mad − pjmb

mad and pjmb
mad = pjmc

mad for any

distinct a, b, c.
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Now fix an eigenvector v′ of Nf
jj orthogonal to u and consider

Nd
mmN

e′
mjv

′ = (pmjR
mde′ − pmjB

mde′)N
R
mjv

′ + (pmjG
mde′ − pmjB

mde′)N
G
mjv

′

= (pjmR
me′d − pjmB

me′d)N
R
mjv

′ + (pjmG
me′d − pjmB

me′d)N
G
mjv

′

= rdmN
e′
mjv

′

Therefore either N e′
mjv

′ is an eigenvector of Nd
mm with eigenvalue rdm or it is 0. Note that

if N e′
mjv

′ is an eigenvector it must be orthogonal to v, else N e
jmv would be a multiple of v′,

and therefore an eigenvector of Nf
jj as it’s non-zero.

The equality pjmb
mad = pjmc

mad from Theorem 7.5.2 is the same as the one in Lemma 7.4.18

and, as we know by Lemma 7.5.1 that pmjx ̸= 0 for all x, we get the following result.

Corollary 7.5.4 Suppose we have an eigenvector of them-neighbourhood with eigenvalues

(rcm , rdm , rem) that is the Independent case in j. Then there does not exist an eigenvalue

triple of the m-neighbourhood in the Eigenvector case in j.

Therefore, this coupled with Lemma 7.4.17, means that in this scenario, the j-

neighbourhood can only have eigenvalues in the 0-case in m.

Lemma 7.5.5 Suppose we have an eigenvector of the m-neighbourhood with eigenvalues

(rcm , rdm , rem) that is the Independent case in j. Then all eigenvectors of the

E(rcm , rdm , rem) are in the independent case.

Proof. Consider any v′ in E(rcm , rdm , rem). v
′ cannot be in the 0 case as this would imply

v was by Corollary 7.4.3. By Corollary 7.5.4, we also cannot have v′ be in the Eigenvector

case. Hence v′ is in the Independent case.

This allows us to conclude that each eigenspace for an eigenvalue triple is of one consistent

case.

We can show further that if we have the Independent case, we can’t be in the multiple case

either.
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Lemma 7.5.6 Suppose we have an eigenvalue triple of the m-neighbourhood

(rcm , rdm , rem) that is the Independent case in j, then the j-neighbourhood can’t be a

multiple with respect to m.

Proof. Suppose the j-neighbourhood was a multiple with respect to m. Then by Lemma

7.4.16 we get that for any d, and distinct a, b, c, we have

pjmb
jda = pjmc

jda

But now, for some v an eigenvector of the m-neighbourhood belonging to the eigenspace

of (rcm , rdm , rem), consider the equation

Nd
jjN

a
jmv = (pjma

jda − pjmc
jda )N

a
jmv + (pjmb

jda − pjmc
jda )N

b
jmv

= (pjma
jda − pjmc

jda )N
a
jmv

This implies that Na
jmv is in fact an eigenvector of the j-neighbourhood. The choice for

a was arbitrary so all of them are actually eigenvectors of the j-neighbourhood. Therefore

they are not linearly independent, and not in the Independent case.

7.6 Combining the cases

All of these results have been talking about just a single eigenvalue, but as we know by

Lemma 7.2.9, each neighbourhood can have up to three non-principal eigenvalues and so it

makes sense to look at how they interact. We will start with multiple 0 cases. Note that in

this section we will always assume m, j and l are distinct colours.

Lemma 7.6.1 There is a maximum of two distinct eigenvalue triples of the m-

neighbourhood that are in the 0 case in j.

Proof. First note that if the m-neighbourhood is not 3-coloured, this is trivially true as we

only have a maximum of two eigenvalue triples in this case by Lemma 7.2.9. We also know

that there must exist some colour c such that pmcj ̸= 0 or else both km and kj would be 0.

Suppose for a contradiction that every eigenvalue triple was in the 0 case in j and further
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that for some colour x and distinct colours y and z, we have pmmy
mxx ̸= pmmz

mxx . Hence we have

by Equation 7.4.3 in c

0 = (pmcj − pmmz
jcc ) + (pmmx

jcc − pmmz
jcc )rxm + (pmmy

jcc − pmmz
jcc )rym

Now as pmmy
mxx ̸= pmmz

mxx we can use Lemma 7.2.3 to get

0 =(pmcj − pmmz
jcc ) + (pmmx

jcc − pmmz
jcc )rxm + (pmmy

jcc − pmmz
jcc )(

pmxm − pmmz
mxx + rxm(p

mmx
mxx − pmmz

mxx )− r2xm

pmmz
mxx − pmmy

mxx
)

=
1

pmmz
mxx − pmmy

mxx

(
r2xm

(pmmz
jcc − pmmy

jcc )+

rxm((p
mmx
mxx − pmmz

mxx )(p
mmy
jcc − pmmz

jcc ) + (pmmz
mxx − pmmy

mxx )(p
mmx
jcc − pmmz

jcc ))+

(pmjc − pmmz
jcc )(pmmz

mxx − pmmy
mxx ) + (pmmy

jcc − pmmz
jcc )(pmxm − pmmz

mxx )
)

Now we have a quadratic in terms of rxm . Provided both the coefficients of both rxm and

r2xm
aren’t zero then, this can be solved, giving a maximum of two solutions. So all that

remains to be shown is that we can’t have both pmmz
jcc = pmmy

jcc and (pmmx
mxx −pmmz

mxx )(p
mmy
jcc −

pmmz
jcc ) = −(pmmz

mxx − pmmy
mxx )(pmmx

jcc − pmmz
jcc ). Well suppose we did, then we would have

0 = (pmmz
mxx − pmmy

mxx )(pmmx
jcc − pmmz

jcc ). Now we already know pmmy
mxx ̸= pmmz

mxx , and so

therefore this would give pmmx
jcc = pmmz

jcc . By Lemma 7.4.6 if pmmx
jcc = pmmy

jcc = pmmz
jcc and

we have an eigenvalue triple in the 0 case, then pmjc = 0, a contradiction as we established

earlier that pmjc ̸= 0. Hence we must have pmmy
mxx = pmmz

mxx for all distinct x, y and z.

So suppose now that we have for all distinct x, y, z we have pmmy
mxx = pmmz

mxx , and suppose

for a contradiction that all three non-principal eigenvalue triples are in the 0 case in j. By

the condition that pmmy
mxx = pmmz

mxx we know that each colour adjacency matrix has only

2 distinct non-principal eigenvalues. The m-neighbourhood must therefore be in case iii)

from Remark 7.1.13. We can see then that for each colour x, there exists an eigenvalue of

Nx
mm that is pmmy

mxy −pmmz
mxy and this eigenvalue is present in two distinct eigenvalue triples of

the m-neighbourhood. Say we now consider just a particular fixed colour x and say w.l.o.g

rxm = pmmy
mxy − pmmz

mxy . From 7.4.3 in x, we get

0 = pmxj − pmmz
jxx + (pmmx

jxx − pmmz
jxx )(pmmy

mxy − pmmz
mxy ) + (pmmy

jxx − pmmz
jxx )rym
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So unless the m-neighbourhood is x-semi-undesirable, then we can determine rym ,

contradicting the fact that rxm is in two distinct eigenvalue triples. Hence the m-

neighbourhood is x-semi-undesirable. But then consider the eigenvalue triple without rxm ,

and say the x eigenvalue is sxm . But then by our assumption that this was also in the 0 case

in j, by Equation 7.4.3 coupled with x-semi-undesirability, we see

0 = pmxj − pmmz
jxx + (pmmx

jxx − pmmz
jxx )sxm

Implying that actually sxm does equal rxm . But then rxm is the only eigenvalue of Nx
mm in

the m-neighbourhood, and it will have multiplicity km − 1, meaning the m-neighbourhood

is complete in x. But then it is 1-coloured, a contradiction.

Therefore a maximum of two of our eigenvalue triples in the m-neighbourhood are in the 0

case in j, however we can reduce this number further depending on their desirability from

Definition 7.4.13. This is because if we can solve the Equations 7.4.3 then we determine

what the eigenvalue is in terms of intersection numbers, and so any eigenvalue triple in this

situation must have the same eigenvalues.

Lemma 7.6.2 Suppose m is not semi-undesirable, undesirable or a multiple with respect

to j, and we have eigenvalue triples (rcm , rdm , rem) and (scm , sdm , sem) both in the 0 case

in j. Then rcm = scm , rdm = sdm and rem = sem .

Proof. We know by Lemma 7.4.11 that there must exist some x and y such that Dxy
mj ̸= 0.

Therefore we can apply Lemma 7.4.4 to both (rcm , rdm , rem) and (scm , sdm , sem). Hence

the eigenvalue triples must be equal.

We can get some similar results surrounding semi-undesirability.

Lemma 7.6.3 Suppose m is d-semi-undesirable with respect to j, and we have eigenvalue

triples

(rcm , rdm , rem) and (scm , sdm , sem) both in the 0 case in j. Then rdm = sdm and either

rcm = scm , rem = sem or rdm = pmmc
mdc − pmme

mdc .
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Proof. Given d-semi-undesirability and Equation 7.4.3 for the eigenvalue triple

(rcm , rdm , rem) we get, for all colours x,

0 = (pmxj − pmme
jxx ) + (pmmd

jxx − pmme
jxx )rdm

Hence we can solve this for rdm . However we can note that we get the exact same equation

for the eigenvalue triple (scm , sdm , sem), and hence rdm = sdm .

Now by applying Lemma 7.2.5, we see that either rcm = scm or rdm = sdm = pmmc
mdc −

pmme
mdc .

We can consider the Independent case in a similar manner and get strong results.

Lemma 7.6.4 Suppose we have eigenvalue triples (rcm , rdm , rem) and (scm , sdm , sem) of

m both in the Independent case in j. Then (rcm , rdm , rem) = (scm , sdm , sem).

Proof. Applying Theorem 7.5.2 to the eigenvalue triple (rcm , rdm , rem), we see that we can

determine the value of each of the eigenvalues. Doing the same thing to (scm , sdm , sem)

gives the same values, hence eigenvalues of the same colour must be equal.

Similar, slightly weaker results are available for the eigenvector case too.

Lemma 7.6.5 Suppose we have eigenvalue triples (rcm , rdm , rem) and (scm , sdm , sem) of

m both in the eigenvector case in j. Further suppose there exists a colour x such that for

any eigenvector v of Erm , Nx
jmv = 0 and for any eigenvector v′ of Esm , Nx

jmv
′ = 0. Then

(rcm , rdm , rem) = (scm , sdm , sem).

This is just a straightforward consequence of Lemma 7.3.6.

So far we have only been combining cases going from the m-neighbourhood to the j-

neighbourhood. However we can also take into account the consequences of the fact there

must also be eigenvectors going between the m and l neighbourhoods. For instance a fairly

strong result is the following.

Lemma 7.6.6 Suppose v is an eigenvector of the m-neighbourhood with eigenvalues

(rcm , rdm , rem). Then if for some c, N c
jmv = N c

lmv = 0, we have Nd
jmv = Nd

lmv = 0,

N e
jmv = N e

lmv = 0 and (rcm , rdm , rem) = (rc, rd, re), (sc, sd, se), or (tc, td, te).
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Proof. Consider the vector v′ = (vT , 0, 0)T . Then

Acv
′ =



0 uT 0 0

u N c
mm N c

mj N c
ml

0 N c
jm N c

jj N c
jl

0 N c
lm N c

lj N c
ll





0

v

0

0



=



0

N c
mmv

N c
jmv

N c
lmv


= rcm



0

v

0

0


So v′ is a non-principal eigenvector of Ac, and so rcm = rc, sc or tc. Suppose without loss

of generality it is rc. Then further we also know that v′ is a non-principal eigenvector of Ad

and Ae with eigenvalue rd and re respectively. Hence

rdv
′ = Adv

′

=



0 uT 0 0

u Nd
mm Nd

mj Nd
ml

0 Nd
jm Nd

jj Nd
jl

0 Nd
lm Nd

lj Nd
ll





0

v

0

0


=



0

Nd
mmv

Nd
jmv

Nd
lmv


And so Nd

jmv = Nd
lmv = 0 and rdm = rd. The same thing will of course happen for the

third colour e, giving the result.

This basically means that an eigenspace cannot be the a = 0 eigenvector case in both j and

l. It also says that in the case where, for some eigenvalue triple, we have the 0 case in both j

and l, the eigenvalues of the m-neighbourhood are actually eigenvalues of the entire graph.
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Corollary 7.6.7 Suppose there is an eigenvalue triple (rcm , rdm , rem) that is the 0 case in

both j and l. Then (rcm , rdm , rem) = (rc, rd, re), (sc, sd, se), or (tc, td, te).

Proof. For any eigenvector v ∈ E(rcm , rdm , rem), we see N c
jmv = N c

lmv = 0. Hence by

Lemma 7.6.6, (rcm , rdm , rem) = (rc, rd, re), (sc, sd, se), or (tc, td, te).

Furthermore we can find other relationships in this case. This is because we have the

equations 7.4.3, but for both j and l. Therefore even if they aren’t solvable going from

m to j and from m to l, then they may be solvable through the interaction of the two.

Firstly let us just consider the equations 7.4.3 going in both from m to j and from m to l.

We have for all colours x,

0 = (pmxj − pmme
jxx ) + (pmmc

jxx − pmme
jxx )rcm + (pmmd

jxx − pmme
jxx )rdm (7.6.9)

and

0 = (pmxl − pmme
lxx ) + (pmmc

lxx − pmme
lxx )rcm + (pmmd

lxx − pmme
lxx )rdm (7.6.10)

Therefore unless the discriminant of these six linear equations, all in terms of rcm and rdm ,

is 0, we can solve for rcm and rdm . We will assume that we cannot solve the set for j and

the set for l internally, i.e. we have either undesirability, semi-undesirability or multiples.

However each of these scenarios leaves us with at least one non-zero equation still and so

we can consider this system.

First we can note that if the m-neighbourhood is c-semi-undesirable with respect to one of

either the j or the l-neighbourhood, then either we can solve for the eigenvalues or it must

also be c-semi-undesirable with respect to the other.

Lemma 7.6.8 Suppose v is an eigenvector of the m-neighbourhood with eigenvalue triple

(rcm , rdm , rem), and is in the 0 case in both j and l. Suppose the m-neighbourhood is d-

semi-undesirable with respect to j. Then either we can find unique values of (rcm , rdm , rem)

in terms of intersection numbers (either by Equations 7.6.9 and 7.6.10 or otherwise) or the

m-neighbourhood is also d-semi-undesirable with respect to l.

Further if the m-neighbourhood is d-semi-undesirable with respect to both j and l and we
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cannot find unique values for (rcm , rdm , rem) in terms of intersection numbers, then

rdm = pccd − pecd, and pcdd = pedd

Proof. First suppose the m-neighbourhood is d-semi-undesirable with respect to j and not

with respect to l. Then we can solve 7.6.9 for rdm . Now as the m-neighbourhood is not

semi-undesirable with respect to l, there exists some colour x such that 7.6.10 is non-zero

(as we can’t have pmjx = 0 for all x), and has non-zero coefficient for rcm (otherwise we’d

have d-semi-undesirability). Therefore inputting the value of rdm into Equation 7.6.10 for

this x, can solve for rcm too.

Now suppose the m-neighbourhood is d-semi-undesirable with respect to j and l and we

cannot find a unique solution for rcm in terms for intersection numbers. Then, for all x, y,

we have pmmc
jxy = pmme

jxy and pmmc
lxy = pmme

lxy by Remark 7.4.14. Further as we cannot find a

unique value of rcm in terms of intersection numbers, we must have rdm = pmmc
mcd − pmme

mcd

by Lemma 7.2.5. Well now note that by Lemma 4.2.3,

pcdd = pmmc
mdd + pmmc

ldd + pmmc
jdd (+1 if m = d)

= pmme
mdd + pmme

ldd + pmme
jdd (+1)

= pedd

Also, by Lemma 4.2.3,

rdm = pmmc
mcd − pmme

mcd

= pccd − pmmc
lcd − pmmc

jcd − pecd + pmme
lcd − pmme

jcd

= pccd − pecd

We can also note that we did not use the 0 case condition to obtain that pcdd = pedd, hence:

Corollary 7.6.9 Suppose them-neighbourhood is c-semi-undesirable with respect to j and

l. Then pcdd = pedd.
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So in the case where we have thatm is d-semi-undesirable in both j and l and an eigenvalue

triple of the m-neighbourhood is the 0 case in both j and l, then from combining Corollary

7.6.7 and Lemma 7.6.8 we know that Ad has an eigenvalue rd = pccd − pecd, and is also

strongly regular.

SO far we have only looked at the scenarios involving semi-undesirability, but we could

also have combinations including undesirability and multiples. We know that by Lemma

7.4.9 if pmjx = 0 then either we have another pmjy = 0 or the Equation 7.4.3 in y and z are

multiples. It seems prudent therefore to discuss the interactions of these conditions.

Lemma 7.6.10 Suppose the m-neighbourhood is both c and d-undesirable with respect to

j. Then {c, d} = {m, j} and the m-neighbourhood can be undesirable in at most one

colour with respect to l.

Proof. By Lemma 7.1.15 we know that if pmjc = pmjd = 0 then {c, d} = {m, j}. Hence we

get the first statement. Now suppose, for distinct colours c′ and d′, the m-neighbourhood

is both c′ and d′-undesirable with respect to l, then we know pmml = pmll = 0 by Lemma

7.1.15. But now we get km = 1 + pmmm, a contradiction to primitivity.

We actually can note the following

Lemma 7.6.11 Suppose pmmj = 0. Then there cannot exist an eigenvalue triple of the

m-neighbourhood that is the 0 case in both j and l.

Proof. Suppose for a contradiction that there exists an eigenvalue triple (rmm , rjm , rlm) that

is in the 0 case in both j and l. If pmmj = 0 then Corollary 4.2.9 yields rjrm = pjmjrj+p
l
mjrl.

Now pmmj = 0 so rjm = 0 by Remark 4.2.15. But by Corollary 7.6.7, there exists an

eigenvalue of Aj equal to rjm . Suppose this is rj , hence rj = 0. Therefore 0 = plmjrl. But

if plmj = 0, then we contradict Lemma 7.1.15, and if rl = 0 then rm = −1, meaning the

structure is complete in m or imprimitive by Lemma 2.1.14. Neither of these can happen

and so we have a contradiction.

Corollary 7.6.12 Suppose that there exists an eigenvalue triple of the m-neighbourhood

that is the 0 case in both j and l. Then, for distinct c and d, m cannot be both c and
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d-undesirable with respect to j or l.

Proof. Suppose for a contradiction that the m-neighbourhood is c and d-undesirable with

respect to j. This will imply pmcj = pmdj = 0, which by Lemma 7.1.15, means pmmj = pmjj =

0. Therefore pmmj = 0 and so we can apply Lemma 7.6.11, to get that we can’t have an

eigenvalue triple of the m-neighbourhood that is the 0 case in both j and l, a contradiction.

The exact same thing will happen if we supposed that the m-neighbourhood was c and

d-undesirable with respect to l instead, however with pmml = 0.

Hence we don’t have to worry about both c and d-undesirability when discussing the double

0 case. We can also think about how the interaction between two of the neighbourhoods

affect their interactions with the third. We first look at the Eigenvector case and note the

following important definition.

Definition 7.6.13. We shall say that an eigenvector, v of the m-neighbourhood and an

eigenvector v′ of the j-neighbourhood correspond if for some colour c and some constants

λc and λ′c, N
c
jmv = λcv

′ and N c
mjv

′ = λ′cv.

We note that this will occur when we have the Eigenvector case.

Remark 7.6.14 If we have an eigenvalue triple of the m-neighbourhood (rcm , rdm , rem)

that is in the Eigenvector case in j, then there will exist an eigenvalue triple (rcj , rdj , rej ) of

the j-neighbourhood, such that for every v ∈ E(rcm , rdm , rem) there exists a corresponding

v′ ∈ E(rcj , rdj , rej ).

Therefore we can say that Eigenvalue triples correspond if the eigenvectors of their

eigenspaces do.

When we have multiple Eigenvector cases we can get quite a few results. We shall see that

effectively the Eigenvector case acts as kind of equivalence relation.

Lemma 7.6.15 For distinct colours j, l and m, if there exist corresponding eigenvectors

vm of the m-neighbourhood and vj of j-neighbourhood such that vm is of the independent

case in l, then vj is also of the independent case in l.
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Proof. As vm and vj correspond, then for some colour c and non-zero constantA,N c
mjvj =

Avm. Therefore for some colour c′, N c′
lmN

c
mjvj = AN c′

lmvm must be non-zero and not an

eigenvector of the l-neighbourhood, as vm is in the independent case in l. Now by Lemma

4.2.13

N c′
lmN

c
mjvj = (pljmmc′c − pljlmc′c)N

m
lj vj + (pljjmc′c − pljlmc′c)N

j
ljvj (7.6.11)

As this must be non-zero, we can’t have that both Nm
lj vj and N j

ljvj are zero. So the 0 case

is not an option or vj in l. If we suppose that only one of these vectors is 0, say Nm
lj vj = 0,

then we see the non-zero one, N j
ljvj , will become an eigenvector for the l-neighbourhood.

This is because for any colour d,Nd
llN

j
ljvj = (pljjldj−p

ljl
ldj)N

j
ljvj by Lemma 4.2.13. However

we also see that Equation 7.6.11 becomes

AN c′
lmvm = (pljjmc′c − pljlmc′c)N

j
ljvj

And hence this implies thatN c′
lmvm is also an eigenvector of the l-neighbourhood, hence we

have a contradiction with vm being the independent case. The same contradiction occurs if

we assume instead that N j
ljvm was zero. Therefore Nx

ljvj is non-zero for all colours x.

If Nm
lj vj and N j

ljvj are eigenvectors of the l-neighbourhood then by Equation 7.6.11 this

would imply that N c′
lmN

c
mjvj is an eigenvector of the l-neighbourhood too. This would

further imply that N c′
lmvm is, a contradiction to the independent case. Hence we can’t have

both Nm
lj vj and N j

ljvj being eigenvectors of the l-neighbourhood. But if only one is, then

the other must be as well by Lemma 7.3.2, as they can’t be 0. So neither Nm
lj vj or N j

ljvj

are, hence they must be in the independent case, concluding the proof.

We get a similar result with the 0 case

Lemma 7.6.16 For distinct colours j, l and m, if there exist corresponding eigenvectors

vm of the m-neighbourhood and vj of the j-neighbourhood such that vm is the 0 case in l,

then vj is the 0 case in l as well.

Proof. As vm and vj correspond, then for some colour a and non-zero constants A and A′,

Na
mjvj = Avm and Na

jmvm = A′vj . We also know by Lemma 7.6.15 that vj cannot be



7.6. COMBINING THE CASES 131

the Independent case in l, as this would imply vm was as well. Hence it must be either

the Eigenvector case or the 0 case. Well suppose for a contradiction vj is the Eigenvector

case in l. Then for some colour c, N c
ljvj is an eignevector of the l-neighbourhood and for

some non-zero constant B and eigenvector vl of the l-neighbourhood, N c
ljvj = Bvl. Hence

1
A′N c

ljN
a
jmvm = Bvl. But now, as N b

lmvm = 0 for all b by the 0 case assumption for vm,

A′Bvl = plmc
jcaN

c
lmvm + plmd

jca N
d
lmvm + plme

jcaN
e
lmvm

= 0

However A′ and B are both non-zero, implying vl = 0, a contradiction. Hence we cannot

have vj in the Eigenvector case in l, and it must be of the 0 case.

And finally

Lemma 7.6.17 For distinct colours j, l and m, if there exists corresponding eigenvectors

vm of the m-neighbourhood and vj of the j-neighbourhood, such that vm is of the

eigenvector case in l, then vj is also of the eigenvector case in l.

Proof. This is just a process of elimination. We know that vj cannot be the Independent

case in l by Lemma 7.6.15 and we know it can’t be the 0 case by Lemma 7.6.16. Hence it

must be the eigenvector case in l.

Further to the scenario where we have eigenvalue triples of the m-neighbourhood in the 0

case in both j and l, we can also get results when we have certain other combinations of the

cases in j and l.

Lemma 7.6.18 Suppose (rcm , rdm , rem) is an eigenvalue triple of the m-neighbourhood

corresponding to (rcl , rdl , rel) an eigenvalue triple in the l-neighbourhood. Then if

(rcm , rdm , rem) is in the 0 case in j, we get, for any x and y either

1. plmc
jxy = plmd

jxy = plme
jxy

2. N c
lmv = 0, plmd

jxy = plme
jxy and ral = plmd

lad − plme
lad for all a,

3. Nd
lmv = 0, plmc

jxy = plme
jxy and ral = plmc

lac − plme
lac for all a,
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4. ral =
(plmc

lac −plme
lac )(plmd

jxy −plme
jxy )+(plmd

lac −plme
lac )(plme

jxy−plmc
jxy )

(plmd
jxy −plme

jxy )
for all a.

Proof. Suppose (rcm , rdm , rem) is in the 0 case in j and has eigenvector v. Then for all y,

Ny
jmv = 0. Now by Lemma 4.2.13, for any x,

0 = Nx
ljN

y
jmv = (plmc

jxy − plme
jxy )N

c
lmv + (plmd

jxy − plme
jxy )N

d
lmv

As v is in the Eigenvector case in l we know we don’t have N c
lmv = Nd

lmv = 0. Hence

either

i) plmc
jxy = plmd

jxy = plme
jxy

ii) N c
lmv = 0 and plmd

jxy = plme
jxy

iii) Nd
lmv = 0 and plmc

jxy = plme
jxy

iv) Nd
lmv =

(plmc
jxy−plme

jxy )

(plme
jxy−plmd

jxy )
N c

lmv

If we suppose i) holds then we get outcome 1) from the Lemma. First suppose its case iii)

or iv). Then for any a, using Lemma 4.2.13 we get

ralN
c
lmv = Na

llN
c
lmv

= (plmc
lac − plme

lac )N
c
lmv + (plmd

lac − plme
lac )N

d
lmv

Assuming case iii), we input Nd
lmv = 0 and solve this for ral giving ral = plmc

lac − plme
lac

corresponding to outcome 3) from the lemma.

If we assume case iv) then we see we get the result of outcome 4) from the lemma.

Finally assume we are case ii), then we can do the same thing with ralN
d
lmv to get outcome

2) from the lemma.

We can get an equivalent to lemma 5.2 from [12]

Lemma 7.6.19 Suppose that, for distinct m and j, none of the eigenvectors of the m-

neighbourhood are in the 0 case in j, and none of the eigenvectors of the j-neighbourhood

are in the 0 case in m. Then km = kj .
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Proof. Now suppose for a contradiction that km ̸= kj . Then for all c we get that N c
jm is

not square. This will mean that either N c
mjN

c
jm has eigenvalue 0 if km > kj or N c

jmN
c
mj

has eigenvalue 0 if kj > km. Suppose without loss of generality we have the first scenario.

Then this is the equivalent of saying that for each c there exists an eigenvector vc of the

m-neighbourhood such that N c
jmvc = 0. If for distinct colours c and d, vc = vd, then we

can note that N e
jmvc = −N c

jmvc −Nd
jmvd = 0 too, and so this eigenvector is of the 0 case

in j, a contradiction. But then each of these eigenvectors must be of the Eigenvector case in

j, as the independent case requires Nx
jmv to be non-zero for all colours x. Also they must

all be from separate eigenvalue triples, meaning that all eigenvalue triples of m are in the

Eigenvector case in j. But then each of these eigenvalue triples corresponds to a different

eigenvalue triple in j. As the multiplicities of these corresponding pairs of eigenvalue triples

are the same, km ≤ kj , a contradiction. So km = kj .

We conclude this chapter with the following powerful Theorem, that draws from a lot of the

results of the section

Theorem 7.6.20 In a primitive 3-regular 3-coloured structure, for distinct colours m and

j, we cannot have both pmmj = 0 and pmjj = 0.

Proof. Suppose we have pmmj = pmjj = 0. Then the first thing we want to note is that both

Nm
mj = 0 and N j

mj = 0, implying that N l
mj = J . Now consider v an eigenvector of the m-

neighbourhood and v′ an eigenvector of the j-neighbourhood. As 0 = Nm
mjv

′ = N j
mjv

′ =

N l
mjv

′, v′ is in the 0 case in m. Similarly 0 = Nm
mjv = N j

mjv = N l
mjv and so v is in

the 0 case in j. Hence there can only be eigenvectors of the 0 case between the m and

j-neighbourhoods. Therefore by Lemma 7.6.1 there can only be a maximum two distinct

non-principal eigenvalue triples in both the m and the j neighbourhoods.

We now consider the eigenvectors v and v′ in terms of l. As pmmj = 0 we know by Lemma

7.6.11 that v can’t be the 0 case in l and by Lemma 7.5.1 and pmmj = 0 we know that v can’t

be the Independent case in l. Hence it must be the Eigenvector case in l. However we get

the exact same argument with v′ using pjjm = 0. Therefore all eigenvectors of the m and

j-neighbourhoods correspond with the eigenvectors of the l-neighbourhood, however are

the 0 case between the m and j-neighbourhoods. This contradicts Lemma 7.6.17. Hence
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we cannot have both pmmj = 0 and pmjj = 0.
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Chapter 8

A More Spectral Approach

In this chapter we follow the ideas of [12] more closely. The aim is to use the concept of

a spherical 3-distance set in much the same way that they use a spherical 2-distance set,

however it should be noted that the literature on such sets is nowhere near as extensive. The

main difference that arises is that in [12], they are guaranteed that eigenvalues correspond

by the fact that having one immediately determines the other by 0 = 1 + r + s. Other

such problems also arise during the course of this analysis. However some results can

still be gained by using their methods, as we show in this chapter. Ultimately this chapter

leads to us gaining a better understanding of the 0 case (Corollary 8.2.13), learning how the

idempotents can relate to certain case distributions from Definition 7.2.10 (Lemma 8.2.18)

and also being able to determine the eigenvalues in the case where we have the eigenvector

case in j and the 0 case in l (Theorem 8.2.22). These methods are useful as they allow us to

circumvent the issues of desirability in Definition 7.4.13.

8.1 Initial Results using just 2-regularity

In this section we will be working under just 2-regularity. The initial plan is to find all

our parameters in terms of the eigenvalues. Recall the definition of the constant D from

Equation 4.1.5 and that it must be non-zero by Lemma 4.2.12.

Definition 8.1.1. We shall also start using the convention that µi is f, g or h when i = 1, 2

or 3 respectively and (λi)j is rj , sj or tj when i = 1, 2 or 3 respectively; the subscript i will
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be modulo 3 here to allow for easier indentation.

It is important to note that the µi and λi have nothing to do with the classical parameters µ

and λ of the strongly regular graph. Recall the constant D, defined via Equation 4.1.5. We

can find the following equations:

Lemma 8.1.2 The multiplicities of the eigenvalues can be expressed in terms of n and the

eigenvalues as follows:

Df = (n− 1)(sRtG − sGtR) + kR(tG − sG) + kG(sR − tR)

Dg = (n− 1)(tRrG − tGrR) + kR(rG − tG) + kG(tR − rR)

Dh = (n− 1)(rRsG − rGsR) + kR(sG − rG) + kG(rR − sR)

Proof. This comes from solving the set of equations that we get from the fact the trace of

each adjacency matrix is 0:

0 =kR + frR + gsR + htR

0 =kG + frG + gsG + htG

n =1 + f + g + h

Using this we can also find the constants used in the transition matrix 4.1.4.
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Lemma 8.1.3

Dfα1 = kG(sR − tR) + (n− kR)(sG − tG) + tRsG − tGsR

Dgα2 = kG(tR − rR) + (n− kR)(tG − rG) + rRtG − rGtR

Dhα3 = kG(rR − sR) + (n− kR)(rG − sG) + sRrG − sGrR

Dfβ1 = kR(tG − sG) + (n− kG)(tR − sR) + sGtR − sRtG

Dgβ2 = kR(rG − tG) + (n− kG)(rR − tR) + tGrR − tRrG

Dhβ3 = kR(sG − rG) + (n− kG)(sR − rR) + rGsR − rRsG

Dfγ1 = kG(sR − tR)− kR(sG − tG) + tRsG − tGsR

Dgγ2 = kG(tR − rR)− kR(tG − rG) + rRtG − rGtR

Dhγ3 = kG(rR − sR)− kR(rG − sG) + sRrG − sGrR

Proof. Similar to the above, this comes from solving the equations generated by

nI =


1 1 1 1

f fα1 fβ1 fγ1

g gα2 gβ2 gγ2

h hα3 hβ3 hγ3




1 1 1 1

kR rR sR tR

kG rG sG tG

kB rB sB tB



The concept of a spherical 2-distance set (Definition 2.2.6), first introduced in [20], was

used extensively in Section 2 of [12]. We can use a similar concept here, except we will

have a 3-distance set instead. We shall set up our 2-regular 3-coloured structure in much the

same way as they set up strongly regular graphs in Section 2 of [12], however with slight

differences where appropriate.

Suppose we have a 2-regular, 3-coloured structure Γ, with vertex set X of cardinality n. As

shown in Lemma 7.1.9 and Lemma 7.1.12, the non-zero intersections of the eigenspaces of

AR, AG, AB split into 4 different spaces. We shall identify X with an orthonormal basis

for the real vector space V := Rn, which is an orthogonal direct sum of these 4 classes,
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namely:

V = V0 ⊕ V1 ⊕ V2 ⊕ V3, Vi = V πi, i = 0, 1, 2, 3 (8.1.1)

Define Xi to be the set of projections of the elements of X into each Vi, i.e.

Xi := {xπi : x ∈ X}

Now we can see that the idempotent Ei is the Gram matrix (Definition 2.2.5) of the vectors

of Xi,

Ei = {⟨xπi, yπi⟩ : x, y ∈ X}

As, by Equation 4.1.4, Ei =
µi

n (I + αiAR + βiAG + γiAB), we see that the Ei form a

spherical 3-distance set in Vi with distances αi, βi and γi. Hence we may write that

Ei =HiH
T
i

I =HT
i Hi

where the rows of the Hi are the coordinates of the vectors of X with respect to any

orthonormal basis Bi of Vi. We therefore see that the matrix

H := (H0 H1 H2 H3) (8.1.2)

where n
1
2H0 = u, is the orthonormal transition matrix from the orthonormal basis X

to the orthonormal basis B := B0 ∪ B1 ∪ B2 ∪ B3. For reference, these Hi are the ith

characteristic matrices of each eigenspace [Definition 3.4, [20]], and the above form comes

from Theorems 3.6 and 5.3 in [20].

We now want to define a specific orthonormal basis B to form our Hi. We do this so that

for a given vertex x ∈ X , the vectors

xπ0n
1
2 , xπ1(n/f)

1
2 , xπ2(n/g)

1
2 , xπ3(n/h)

1
2

belong to B0,B1,B2,B3 respectively. This gives us the transition matrix H from X to B as



8.1. INITIAL RESULTS USING JUST 2-REGULARITY 139

follows:

H =(H0, H1, H2, H3)

=



( 1n)
1
2 ( fn)

1
2 0T ( gn)

1
2 0T (hn)

1
2 0T

( 1n)
1
2u1 ( fn)

1
2α1u1 ( 1

D )
1
2K1 ( gn)

1
2α2u1 ( 1

D )
1
2K2 (hn)

1
2α3u1 ( 1

D )
1
2K3

( 1n)
1
2u2 ( fn)

1
2β1u2 ( 1

D )
1
2L1 ( gn)

1
2β2u2 ( 1

D )
1
2L2 (hn)

1
2β3u2 ( 1

D )
1
2L3

( 1n)
1
2u3 ( fn)

1
2γ1u3 ( 1

D )
1
2M1 ( gn)

1
2γ2u3 ( 1

D )
1
2M2 (hn)

1
2γ3u3 ( 1

D )
1
2M3


(8.1.3)

Here for each i, Ki, Li,Mi have width µi − 1, and for any i, Ki has height kR, Li has

height kG and Mi has height kB , where width refers to the number of entries in a row, and

height the number of entries in a column.

Lemma 8.1.4 We can express the idempotent basis in terms of the eigenvalues as

DE1 =(sRtG − sGtR)I + (sG − tG)AR + (tR − sR)AG+

+
(sR − tR)kG + (tG − sG)kR + tRsG − tGsR

n
J

DE2 =(rGtR − rRtG)I + (tG − rG)AR + (rR − tR)AG+

+
(tR − rR)kG + (rG − tG)kR + rRtG − rGtR

n
J

DE3 =(rRsG − rGsR)I + (rG − sG)AR + (sR − rR)AG+

+
(rR − sR)kG + (sG − rG)kR + sRrG − sGrR

n
J

Proof. From the expansion of nE1 into the basis {I, AR, AG, AB} that is given by 4.1.4,

we get

nE1 = f((1− γ1)I + (α1 − γ1)AR + (β1 − γ1)AG + γ1J)

And so in terms of the eigenvalues we get

DnE1 = (sRtG−sGtR)nI+(sG−tG)nAR+(tR−sR)nAG+(kG(sR−tR)−kR(sG−tG)+tRsG−tGsR)J

The formulas for the other nEi follow in exactly the same manner.
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Using this we can get the results:

Lemma 8.1.5

K1K
T
1 =(sRtG − sGtR)I1 + (sG − tG)N

R
RR + (tR − sR)N

G
RR +

Df

n
(γ1 − α2

1)J1

L1L
T
1 =(sRtG − sGtR)I1 + (sG − tG)N

R
GG + (tR − sR)N

G
GG +

Df

n
(γ1 − β21)J2

M1M
T
1 =(sRtG − sGtR)I1 + (sG − tG)N

R
BB + (tR − sR)N

G
BB +

Df

n
(γ1 − γ21)J3

K2K
T
2 =(tRrG − tGrR)I1 + (tG − rG)N

R
RR + (rR − tR)N

G
RR +

Dg

n
(γ2 − α2

2)J1

L2L
T
2 =(tRrG − tGrR)I1 + (tG − rG)N

R
GG + (rR − tR)N

G
GG +

Dg

n
(γ2 − β22)J2

M2M
T
2 =(tRrG − tGrR)I1 + (tG − rG)N

R
BB + (rR − tR)N

G
BB +

Dg

n
(γ2 − γ22)J3

K3K
T
3 =(rRsG − rGsR)I1 + (rG − sG)N

R
RR + (sR − rR)N

G
RR +

Dh

n
(γ3 − α2

3)J1

L3L
T
3 =(rRsG − rGsR)I2 + (rG − sG)N

R
GG + (sR − rR)N

G
GG +

Dh

n
(γ3 − β23)J2

M3M
T
3 =(rRsG − rGsR)I3 + (rG − sG)N

R
BB + (sR − rR)N

G
BB +

Dh

n
(γ3 − γ23)J3

Proof. Note that Ei = HiH
T
i gives us

Ei =



µi

n
µi

n αiu
T
1

µi

n βiu
T
2

µi

n γiu
T
3

µi

n αiu1
µi

n α
2
i J + 1

DKiK
T
i

µi

n αiβiJ + 1
DKiL

T
i

µi

n αiγiJ + 1
DKiM

T
i

µi

n βiu2
µi

n αiβiJ + 1
DLiK

T
i

µi

n β
2
i J + 1

DLiL
T
i

µi

n βiγ1J + 1
DL1M

T
1

µi

n γiu3
µi

n αiγiJ + 1
DMiK

T
i

µi

n αiγiJ + 1
DMiL

T
i

µi

n γ
2
i J + 1

DMiM
T
i


(8.1.4)

Comparing this with the equations for Ei in Lemma 8.1.4 and the formulation of Ai from

Equation 4.1.2, we get the equation

µi
n
α2
i J +

1

D
KiK

T
i =

1

D
((λi+1)R(λi+2)G − (λi+1)G(λi+2)R)I + ((λi+1)G − (λi+2)G)N

R
RR+

+ ((λi+2)R − (λi+1)R)N
G
RR +

Dµiγi
n

J)
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So

KiK
T
i =((λi+1)R(λi+2)G − (λi+1)G(λi+2)R)I + ((λi+1)G − (λi+2)G)N

R
RR+

+ ((λi+2)R − (λi+1)R)N
G
RR +

Dµi(γi − α2
i )

n
J)

as required. The same reasoning works for the other equations.

It is worth noting at this point that the matrices listed in Lemma 8.1.5 are real symmetric

and so have real eigenvalues. We can also see that the Equation 8.1.4 can also give us

information about other combinations of matrices:

Lemma 8.1.6

LiK
T
i = ((λi+1)G − (λi+2)G)N

R
GR + ((λi+2)R − (λi+1)R)N

G
GR +

Dµi(γi − αiβi)

n
J

MiK
T
i = ((λi+1)G − (λi+2)G)N

R
BR + ((λi+2)R − (λi+1)R)N

G
BR +

Dµi(γi − αiγi)

n
J

MiL
T
i = ((λi+1)G − (λi+2)G)N

R
BG + ((λi+2)R − (λi+1)R)N

G
BG +

Dµi(γi − βiγi)

n
J

Proof. As before, if we compare the matrix 8.1.4 with the equations for Ei in Lemma 8.1.4

and the formulation of Ai from Equation 4.1.2 we get the equation

µi
n
αiβiJ +

1

D
LiK

T
i =

1

D
((λi+1)R(λi+2)G − (λi+1)G(λi+2)R)I + ((λi+1)G − (λi+2)G)N

R
GR+

+ ((λi+2)R − (λi+1)R)N
G
GR +

Dµiγi
n

J)

So

LiK
T
i =((λi+1)R(λi+2)G − (λi+1)G(λi+2)R)I + ((λi+1)G − (λi+2)G)N

R
GR+

+ ((λi+2)R − (λi+1)R)N
G
GR +

Dµi(γi − αiβi)

n
J)

as required. The same reasoning works for the other equations.
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8.2 Introducing 3-regularity

Recall that, assuming 3-regularity, NR
RR, NG

RR andNB
RR have a shared basis of eigenvectors

by Lemma 7.2.1. Hence from this point onward we assume 3-regularity and get the

following.

Corollary 8.2.1 The eigenvectors of KiK
T
i are exactly the eigenvectors of NR

RR, NG
RR and

NB
RR. Likewise for LiL

T
i and MiM

T
i but with N c

GG and N c
BB respectively.

Proof. The fact the eigenvectors of KiK
T
i are the same as those for NR

RR and NG
RR is

immediately evident from the equations, using Jv = 0 for any non-principal eigenvector

v.

Continuing this comparison of the two formulations for Ei and Ai we get the following

identities

Lemma 8.2.2 For any colour c,

N c
RG =

1

n
(kc + rcfα1β1 + scgα2β2 + tchα3β3)J +

1

D
(rcK1L

T
1 + scK2L

T
2 + tcK3L

T
3 )

N c
RB =

1

n
(kc + rcfα1γ1 + scgα2γ2 + tchα3γ3)J +

1

D
(rcK1M

T
1 + scK2M

T
2 + tcK3M

T
3 )

N c
GB =

1

n
(kc + rcfβ1γ1 + scgβ2γ2 + tchβ3γ3)J +

1

D
(rcL1M

T
1 + scL2M

T
2 + tcL3M

T
3 )

Proof. First note that by definition of the Ei, we have

Ac = kcE0 + rcE1 + scE2 + tcE3

Then using the matrix expansion of Ei from Equation 8.1.4 and comparing it to that of Ai

in we get Equation 4.1.2, we get

N c
RG =

1

n
(kc + rcfα1β1 + scgα2β2 + tchα3β3)J +

1

D
(rcK1L

T
1 + scK2L

T
2 + tcK3L

T
3 )

N c
RB =

1

n
(kc + rcfα1γ1 + scgα2γ2 + tchα3γ3)J +

1

D
(rcK1M

T
1 + scK2M

T
2 + tcK3M

T
3 )

N c
GB =

1

n
(kc + rcfβ1γ1 + scgβ2γ2 + tchβ3γ3)J +

1

D
(rcL1M

T
1 + scL2M

T
2 + tcL3M

T
3 )
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as required.

Using these results about KiK
T
i , LiL

T
i and MiM

T
i , we can start to form some

understanding of KT
i Ki, LT

i Li and MT
i Mi as well. We know from the definition that

H is an orthogonal matrix, and so using this we can get the following results

Lemma 8.2.3 For i = 1, 2 or 3,

DIµi−1 = KT
i Ki + LT

i Li +MT
i Mi

1 =
µi
n
(1 + α2

i + β2i + γ2i )

0 = αiK
T
i u1 + βiL

T
i u2 + γiM

T
i u3

Proof. We can read these results off from the equation

Iµi = HT
i Hi =

 µi

n (1 + α2
i + β2i + γ2i ) ( µi

nD )
1
2 (αiu

T
1Ki + βiu

T
2 Li + γiu

T
3Mi)

( µi

nD )
1
2 (αiK

T
i u1 + βiL

T
i u2 + γiM

T
i u3)

1
D (KT

i Ki + LT
i Li +MT

i Mi)



Pushing this idea even further, using the fact that H is an orthogonal matrix, we know

HT
i Hj = 0 if i ̸= j. This leads to

Lemma 8.2.4 For all i, j ∈ {0, 1, 2, 3} with i ̸= j we have

0 = 1 + αiαj + βiβj + γiγj

0 = αiK
T
j u1 + βiL

T
j u2 + γiM

T
j u3

0 = KT
i Kj + LT

i Lj +MT
i Mj

Proof. As 0 = HT
i Hj we get

0 =


(µiµj)

1
2

n (1 + αiαj + βiβj + γiγj) ( µi

nD )
1
2 (αiu

T
1Kj + βiu

T
2 Lj + γiu

T
3Mj)

(
µj

nD )
1
2 (αjK

T
i u1 + βjL

T
i u2 + γjM

T
i u3)

1
D (KT

i Kj + LT
i Lj +MT

i Mj)


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We now intend to compare the eigenvalues of the matrices KiK
T
i , LiL

T
i and MiM

T
i with

KT
i Ki, LT

i Li and MT
i Mi. We get the following important result.

Lemma 8.2.5 Any non-zero eigenvalue of KiK
T
i is an eigenvalue of KT

i Ki with the same

multiplicity as well. The same results hold for Li and Mi too.

Proof. We claim that any non-zero eigenvalue of KiK
T
i is also an eigenvalue of KT

i Ki as

if for some v, KiK
T
i v = λv, then KT

i KiK
T
i v = λKT

i v. Now we know KT
i v ̸= 0 as

otherwise λ would be zero, so it is an eigenvector for KT
i Ki. We see that λ will have the

same multiplicity for both KiK
T
i and KT

i Ki, as for each eigenvector v of KiK
T
i , there

exists a distinct eigenvector KT
i v for KT

i Ki. The same argument works the other way

around, and so all non-zero eigenvalues are shared, and this works similarly for Li and

Mi.

Corollary 8.2.6 If zero is not an eigenvalue of at least one of K2K
T
2 or L1L

T
1 then kR =

kG. Likewise, if zero is not an eigenvalue of K3K
T
3 or M1M

T
1 then kR = kB and if zero is

not an eigenvalue of L3L
T
3 or M2M

T
2 then kG = kB .

Proof. The total multiplicity of the eigenvalues of K2K
T
2 is kR, however the total

multiplicity of the eigenvalues of KT
2 K2 is kG. If zero is not an eigenvalue then, by the

previous lemma, the eigenvalues of these two matrices are the same and have the same

multiplicity. Hence kR = kG. By comparing the total multiplicities of the other matrices in

the same way we obtain the other results.

Lemma 8.2.7 Let v be an eigenvector of both NR
RR and NG

RR with eigenvalues rRR
and

rGR
respectively, and suppose for distinctm, j, l ∈ {1, 2, 3} we have bothKjK

T
j v = 0 and

KlK
T
l v = 0. Then

rRR
, rGR

=


rR, rG m = 1

sR, sG m = 2

tR, tG m = 3
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Proof. We suppose that m = 1. However due to the symmetry between the matrices the

same argument will work for the others. Now we have that K2K
T
2 v = 0 and K3K

T
3 v = 0,

giving by Lemma 8.1.5

0 =(tRrG − tGrR) + (tG − rG)rRR
+ (rR − tR)rGR

0 =(rRsG − rGsR) + (rG − sG)rRR
+ (sR − rR)rGR

Suppose first that tG = rG. Then either rR = tR or rGR
= rG. If both tG = rG and

rR = tR then D = 0, a contradiction to Lemma 4.2.12, and so we must have rGR
= rG.

Similarly if tG = rG and rG = sG then D = 0 too. Looking at the second equation we see

we have two options, either rR = sR or not. If we do have rR = sR, the equation becomes:

0 = rR(sG − rG) + (rG − sG)rRR

which solves to give rRR
= rR as required. And if rR ̸= sR, we can use the fact that

rGR
= rG to make the equation:

0 = (rRsG − rGsR) + (rG − sG)rRR
+ (sR − rR)rG

0 = rR(sG − rG) + (rG − sG)rRR

which also solves to give rRR
= rR as required.

Hence we now suppose tG ̸= rG. Solving the first equation gives

rRR
=
tRrG − tGrR + (rR − tR)rGR

(rG − tG)

And so

0 =(rRsG − rGsR)(rG − tG) + (tRrG − tGrR)(rG − sG)+

+ rGR
((sR − rR)(rG − tG) + (rR − tR)(rG − sG)

0 =− rGD + rGR
D

So rGR
= rG. Now putting this back into the first equation gives rRR

= rR.
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Lemma 8.2.8 Suppose v is a non-prinicipal eigenvector of NR
RR and NG

RR such that

KiK
T
i v ̸= 0. Then if NR

GRv = NG
GRv = 0 then LT

i LiK
T
i v = 0, hence KT

i v is an

eigenvector for both KT
i Ki and LT

i Li.

Proof. Firstly as KiK
T
i v ̸= 0 then we know KT

i v ̸= 0. Now consider LT
i LiK

T
i v. By

Lemma 8.1.6, we know

LiK
T
i = ((λi+1)G − (λi+2)G)N

R
GR + ((λi+2)R − (λi+1)R)N

G
GR +

Dµi(γi − αiβi)

n
J

And therefore LiK
T
i v = 0 as NR

GRv = NG
GRv = Jv = 0.

Corollary 8.2.9 Suppose v is an eigenvector of NR
RR and NG

RR such that KiK
T
i v ̸= 0.

Then if NR
GRv = NG

GRv = 0, KT
i v is an eigenvector of MT

i Mi.

Proof. Combining Lemma 8.2.3 and Lemma 8.2.8 gives us that

DKT
i v = KT

i KiK
T
i v +MT

i MiK
T
i v

And so KT
i v is an eigenvector for MT

i Mi.

Suppose v is a non-principal eigenvector of NR
RR and NG

RR with eigenvalues rRR
and rGR

respectively. Now define the constants xj(r), yj(r), zj(r) as

xj(r) = sRtG − sGtR + (sG − tG)rRj + (tR − sR)rGj

yj(r) = tRrG − tGrR + (tG − rG)rRj + (rR − tR)rGj (8.2.5)

zj(r) = rRsG − rGsR + (rG − sG)rRj + (sR − rR)rGj

xj(s), yj(s), zj(s) and xj(t), yj(t), zj(t) are defined similarly for sRj/sGj and tRj/tGj .

We shall see that a consequence of Lemma 8.1.5 and Corollary 8.2.1 is that these are the

eigenvalues of KiK
T
i , LiL

T
i and MiM

T
i . Let φi be such that it is x if i = 1, y if i = 2 and

z if i = 3. Then

Lemma 8.2.10 For i ∈ {1, 2, 3}:



8.2. INTRODUCING 3-REGULARITY 147

• The non-principal eigenvalues of KiK
T
i are φiR(r), φiR(s) and φiR(t)

• The non-principal eigenvalues of LiL
T
i are φiG(r), φiG(s) and φiG(t)

• The non-principal eigenvalues of MiM
T
i are φiB(r), φiB(s) and φiB(t)

Proof. We shall prove it just for KiK
T
i , however the same method works for the others.

We know by Corollary 8.2.1 that a non-principal eigenvector for these is the same as a

non-principal eigenvector for the R-neighbourhood. Hence we take the value of KiK
T
i

from Lemma 8.1.5, and then apply a non-principal eigenvector v. This will give us either

φiR(r), φiR(s) and φiR(t) depending on the eigenvalue triple to which v belonged.

Remark 8.2.11 Note that, for any j,

xj(r) + yj(r) + zj(r) = sRtG − sGtR + tRrG − tGrR + rRsG − rGsR

= D

This is true for r, s or t.

It is prudent to note that, although the following analysis works with just the R-

neighbourhood, the matrices N c
GR and KT

i , this would all equally work for any other

neighbourhood and the corresponding matrices. For example we could have used the G-

neighbourhood, the matrices N c
GB and MT

i . Or the G-neighbourhood, the matrices N c
RG

and Ki.

Lemma 8.2.12 Suppose v is a non-principal eigenvector of NR
RR and NG

RR such that

KiK
T
i v ̸= 0 for all i. Then we can’t have NR

GRv = NG
GRv = 0.

Proof. Assume for a contradiction thatNR
GRv = NG

GRv = 0. Then we know that LiK
T
i v =

0 by Lemma 8.1.6. Suppose rRR
is the eigenvalue of NR

RR attached to v. Then by Corollary

8.2.9 we know that KT
i v is an eigenvector for MT

i Mi. The corresponding eigenvalue for

KT
i v is then either 0 or it is an eigenvalue of MiM

T
i by Lemma 8.2.5. If it is 0 then we get
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from Lemma 8.2.3 that

DKT
1 v = KT

1 K1K
T
1 v + LT

1 L1K
T
1 v +MT

1 M1K
T
1 v

= KT
1 K1K

T
1 v

= xR(r)K
T
1 v

so D = xR(r). But then we can do the same with K2 and K3 to get D = yR(r) = zR(r).

But D = xR(r) + yR(r) + zR(r) = 3D, implying D = 0 a contradiction.

Therefore MT
i MiK

T
i v is non-zero and an eigenvector of MT

i Mi, KT
i must have

eigenvalues xB(r), yB(r) or zB(r) for i = 1, 2 or 3 respectively, by Lemma 8.2.5 and

Lemma 8.2.10. Using Lemma 8.2.3 again we have

DKT
1 v = KT

1 K1K
T
1 v + LT

1 L1K
T
1 v +MT

1 M1K
T
1 v

= KT
1 K1K

T
1 v +MT

1 M1K
T
1 v

= (xR(r) + xB(r))K
T
1 v

So D = xR(r) + xB(r). Once again we can do the same for the other i giving

D = xR(r) + xB(r) = yR(r) + yB(r) = zR(r) + zB(r)

But 2D = xR(r) + xB(r) + yR(r) + yB(r) + zR(r) + zB(r) = 3D, implying D = 0, a

contradiction.

From this lemma we can gather that if NR
GRv = NG

GRv = 0 then we must have that

KiK
T
i v = 0 for some i. In fact the proofs actually go a bit further.

Corollary 8.2.13 Suppose v is a non-principal eigenvector of the R-neighbourhood such

that NR
GRv = NG

GRv = 0. Then, for some i, KT
i v = 0.

This just comes from considering that vTKiK
T
i v = |KT

i v|= 0 if and only if KT
i v = 0.

Further we get that, for no more than two i, KT
i v equals 0.

Lemma 8.2.14 Suppose v is a non-principal eigenvector of the R-neighbourhood. Then
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we cannot have KT
i v = 0 for all i.

Proof. Suppose for a contradiction that KT
1 v = KT

2 v = KT
3 v = 0 and say without loss of

generality, that v belongs to the eigenspace of the eigenvalue triple (rRR
, rGR

, rBR
). Then

KiK
T
i v = 0 for all i. But this implies that xR(r) = yR(r) = zR(r) = 0, which implies

D = 0, a contradiction.

So the only cases to consider are when we have a unique i such that KT
i v = 0 or when we

have two distinct i, j such that KT
i v = KT

j v = 0.

Lemma 8.2.15 Suppose that v ∈ E(rRR
, rGR

, rBR
) is a non-principal eigenvector of the

R-neighbourhood in the 0 case in G. Then either:

• There exists a unique i such that KT
i v = 0 and φiR(r) = 0 and φiB(r) = 0,

• KT
i v = KT

j v = 0 for exactly 2 distinct i, j and φiR(r) = 0, φjR(r) = 0 and

φlB(r) = 0 for l also distinct from both i, j.

Proof. We can see that either exactly one or two of the KT
i v = 0 by Corollary 8.2.13 and

Lemma 8.2.14. So all that remains to show is the consequences of either option.

Suppose first that there exists a unique i such that KT
i v = 0. We see from Lemma 8.1.5

and multiplying by v on the left and right, that φiR(r) = 0. Now we can use Lemma 8.2.8

and Corollary 8.2.9 for j and l to get that D = φjR(r) + φjB(r) = φlR(r) + φlB(r). We

know also by Remark 8.2.11 that D = φiR(r)+φjR(r)+φlR(r) = φjR(r)+φlR(r) and

D = φiB(r) + φjB(r) + φlB(r). So

2D = φjR(r) + φjB(r) + φlR(r) + φlB(r)

= φjR(r) + φlR(r) + φiB(r) + φjB(r) + φlB(r)

implying φiB(r) = 0.

Suppose instead we have KT
i v = KT

j v = 0. Then again, from Lemma 8.1.5 and

multiplying by v on the left and right, it follows that φiR(r) = φjR(r) = 0, so by

Remark 8.2.11 we see D = φlR(r). Using Lemma 8.2.8 and Corollary 8.2.9 we note

D = φlR(r) + φlB(r). This implies φlB(r) = 0.
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With the second scenario we can go even further.

Lemma 8.2.16 Suppose v ∈ E(rRR
, rGR

, rBR
) is an eigenvector of the R-neighbourhood

in the 0 case in G and that, for distinct i, j, KT
i v = KT

j v = 0. Then v is in the 0 case in B.

Proof. As KT
i v = KT

j v = 0 we know by Lemma 8.2.14 that KT
l v ̸= 0 for l distinct from i

and j, and by Lemma 8.2.8 and Corollary 8.2.9 it follows that KT
l v must be an eigenvector

of MT
l Ml. By applying KT

l v to the first equation of Lemma 8.2.3

DKT
l v = KT

l KlK
T
l v +MT

l MlK
T
l v

MT
l MlK

T
l v = (D − φlR(r))K

T
l v

However by Lemma 8.2.15 and Remark 8.2.11, we know that D = φlR(r), so

MT
l MlK

T
l v = 0 . But if MT

l MlK
T
l v = 0 then MlK

T
l v = 0, and so by applying v to

the formulation of N c
BR from Lemma 8.2.2 we get

N c
BRv =

1

D
(rcM1K

T
1 v + scM2K

T
2 v + tcM3K

T
3 v)

=
(λl)c
D

MlK
T
l v

= 0

We can actually prove this the other way around as well. However we are going to want

some more useful lemmas first that describe the consequences of KT
i v being 0 in other

scenarios. Firstly:

Lemma 8.2.17 Suppose for some i and some eigenvector v ∈ E(rRR
, rGR

, rBR
) of the R-

neighbourhood, we haveKT
i v = 0. Then either v is in the 0 case inG or aNR

GRv = bNG
GRv

for some a and b, not both 0.

Proof. Suppose for a contradiction that neither of the outcomes occur. This means that both

NR
GRv andNG

GRv are non-zero. SinceKT
i v = 0, we get that LiK

T
i v = 0. By Lemma 8.1.6,
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this means

0 = ((λi+1)G − (λi+2)G)N
R
GRv + (λi+2)R − (λi+1)R)N

G
GRv

But as the vectors NR
GRv and NG

GRv are not multiples of each other or zero, we must have

that the coefficients are zero. Recall from Definition 8.1.1, that this will imply that D = 0,

which can’t happen by Lemma 4.2.12. Hence either the vectors are multiples or zero.

In the process of this proof we could also note something about the case when we have

aNR
GRv = bNG

GRv. This is a variation of Lemma 7.3.3 that we saw earlier, coming from a

different angle.

Lemma 8.2.18 Suppose for some i and some eigenvector v of the R-neighbourhood, we

have KT
i v = 0. Then aNR

GRv = bNG
GRv for some a and b and one of:

i) NR
GRv = NG

GRv = 0

ii) a = 0, NG
GRv = 0 and (λi+1)G = (λi+2)G,

iii) b = 0, NR
GRv = 0 and (λi+1)R = (λi+2)R,

iv) a
b = (λi+1)G−(λi+2)G

(λi+1)R−(λi+2)R
,

Proof. Suppose for a contradiction that there do not exist a and b such that aNR
GRv =

bNG
GRv. It follows that both NR

GRv and NG
GRv are non-zero and not multiples of each other.

Since KT
i v = 0 we get that LiK

T
i v = 0. By Lemma 8.1.6, this means we have

0 = ((λi+1)G − (λi+2)G)N
R
GRv + ((λi+2)R − (λi+1)R)N

G
GRv (8.2.6)

But as the vectors NR
GRv and NG

GRv are not multiples of each other or zero, we must have

that the coefficients are zero. However as before, this will imply that D = 0. Hence we

must have aNR
GRv = bNG

GRv for some a and b.

Suppose that NG
GRv = 0 but NR

GRv ̸= 0. Then a = 0 and from equation 8.2.6 (λi+2)G =

(λi+1)G giving situation ii). Similarly if NR
GRv = 0 but NG

GRv ̸= 0, then b = 0 and from

equation 8.2.6 (λi+2)R = (λi+1)R giving situation iii).
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Finally if both NR
GRv ̸= 0 and NG

GRv ̸= 0, then from equation 8.2.6 we get

a

b
=

(λi+1)G − (λi+2)G
(λi+1)R − (λi+2)R

as required. Note that as both a and b must be non-zero, if either coefficient is zero, then

they both are, implying D = 0 as before. Hence neither coefficient is zero and this is a

well-defined fraction.

Now if we add also that KT
j v = 0 for some j distinct from i we see that also

Corollary 8.2.19 Suppose that for some eigenvector v of the R-neighbourhood, KT
i v =

KT
j v = 0 for some distinct i and j. Then either NR

GRv = 0 or NG
GRv = 0 or both.

Proof. Suppose for a contradiction that both NR
GRv ̸= 0 and NG

GRv ̸= 0. As KT
i v = 0

from Lemma 8.2.18 we get aNR
GRv = bNG

GRv where a and b are such that

a

b
=

(λi+1)G − (λi+2)G
(λi+1)R − (λi+2)R

Now as KT
j v = 0 also we get

a

b
=

(λj+1)G − (λj+2)G
(λj+1)R − (λj+2)R

Now this is either

a

b
=

(λi+2)G − (λi)G
(λi+2)R − (λi)R

or
a

b
=

(λi)G − (λi+1)G
(λi)R − (λi+1)R

Well in the first case, we get that

0 = ((λi+2)R − (λi)R)((λi+1)G − (λi+2)G)− ((λi+2)G − (λi)G)((λi+1)R − (λi+2)R)

= D
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and in the second we also get

0 = ((λi)R − (λi+1)R)((λi+1)G − (λi+2)G)− ((λi)G − (λi+1)G)((λi+1)R − (λi+2)R)

= D

Hence either way we get D = 0 a contradiction.

In fact we can even make the following observation as well.

Corollary 8.2.20 Suppose that for some eigenvector v ∈ E(rRR
, rGR

, rBR
) of the R-

neighbourhood, KT
i v = KT

j v = 0 for some distinct i and j. Then NR
GRv = NG

GRv = 0.

Proof. By Lemma 8.2.18 and Corollary 8.2.19 we know that ifKT
i v = 0 and we don’t have

NR
GRv = NG

GRv = 0, then we must have either a = 0, NG
GRv = 0 and (λi+1)G = (λi+2)G

or b = 0, NR
GRv = 0 and (λi+1)R = (λi+2)R. Further as KT

j v = 0 we must have either

a = 0, NG
GRv = 0 and (λj+1)G = (λj+2)G or b = 0, NR

GRv = 0 and (λj+1)R = (λj+2)R.

Suppose for a contradiction that we do not have NR
GRv = NG

GRv = 0. Then we must have

either (λi+1)G = (λi+2)G and (λj+1)G = (λj+2)G or (λi+1)R = (λi+2)R and (λj+1)R =

(λj+2)R. However the first would imply rG = sG = tG and the latter would imply rR =

sR = tR, so either way we get a complete graph in some colour by Lemma 2.1.17, a

contradiction.

The most useful consequence of Lemma 8.2.18 however is the fact that we can fully

determine the ratio between the two vectors.

Corollary 8.2.21 Suppose that for some eigenvector v of the R-neighbourhood, we have

NR
GRv = NG

GRv = 0. Then aNR
BRv = bNG

BRv, for some a and b and one of

i) NR
BRv = NG

BRv = 0

ii) a = 0, NG
BRv = 0 and (λi+1)G = (λi+2)G,

iii) b = 0, NR
BRv = 0 and (λi+1)R = (λi+2)R,

iv) a
b = (λi+1)G−(λi+2)G

(λi+1)R−(λi+2)R
,
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for some i.

The proof is just a simple application of Lemma 8.2.12 and then Lemma 8.2.18. However

it has very important consequences. For example, if v is an eigenvector as described in

Corollary 8.2.21, and we don’t have case i), then we can determine what the eigenvalues

of the R-neighbourhood are. The case iv) problem is the trickiest but can be found by the

following.

Theorem 8.2.22 Suppose that for some eigenvector v of the R-neighbourhood, v is in the

0 case in G and aNR
BRv = bNG

BRv for some non-zero a and b. Then

rcR = pRBR
RcR − pRBB

RcR +
(λi+1)G − (λi+2)G
(λi+1)R − (λi+2)R

(pRBG
RcR − pRBB

RcR )

rcB = pBRR
BcR − pBRB

BcR +
(λi+1)G − (λi+2)G
(λi+1)R − (λi+2)R

(pBRG
BcR − pBRB

BcR )

for some i.

Proof. First we know that if aNR
BRv = bNG

BRv then NR
BRv is an eigenvector of NR

BB by

Lemma 7.3.1. We can calculate the eigenvalue attached to this eigenvector by examining

basic equations and using Lemma 4.2.13

rcBN
R
BRv = N c

BBN
R
BRv

= (pBRR
BcR − pBRB

BcR )NR
BRv + (pBRG

BcR − pBRB
BcR )NG

BRv

= (pBRR
BcR − pBRB

BcR +
a

b
(pBRG

BcR − pBRB
BcR ))NR

BRv

But also then we know that this holds in reverse as well, i.e. avTNR
RBN

R
BRv =

bvTNG
RBN

R
BRv. And so by Lemma 4.2.13

rcRv
TNR

RBN
R
BRv = vTN c

RRN
R
RBN

R
BRv

= (pRBR
RcR − pRBB

RcR )vTNR
RBN

R
BRv + (pRBG

RcR − pRBB
RcR )vTNG

RBN
R
BRv

= (pRBR
RcR − pRBB

RcR +
a

b
(pRBG

RcR − pRBB
RcR ))vTNR

RBN
R
BRv
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Now from Lemma 8.2.21 we know that, as a and b are non-zero, we have

a

b
=

(λi+1)G − (λi+2)G
(λi+1)R − (λi+2)R

for some fixed i. And so inputting this into the equations, we are done.

In case ii) and iii) the situation is slightly different but we can still find the eigenvalues.

Lemma 8.2.23 Suppose that for some eigenvector v of the R-neighbourhood, v is in the 0

case in G. Then if NG
BRv = 0 and NR

BRv ̸= 0, for some i

rGB
= (λi+1)G = (λi+2)G

Proof. We know from Lemma 8.2.15 that either KT
i v = 0 for exactly one i, or KT

i =

KT
j = 0 for exactly two distinct i and j. Now by Lemma 8.1.6, MiK

T
i v = 0 will imply

that

0 = ((λi+1)G − (λi+2)G)N
R
BRv + ((λi+2)R − (λi+1)R)N

G
BRv

meaning (λi+1)G = (λi+2)G. We must not have KT
j v = 0 as well, as this would imply

(λj+1)G = (λj+2)G too, which would mean that rG = sG = tG and hence the graph was

complete in G by Lemma 2.1.17.

Hence we have just KT
i v = 0, but then by Lemma 8.2.15 it follows that φiB(r) = 0 too.

But this becomes

0 = ((λi+1)R(λi+2)G − (λi+1)G(λi+2)R + ((λi+1)G − (λi+2)G))rRB
+ ((λi+2)R − (λi+1)R))rGB

0 = (λi+1)G((λi+1)R − (λi+2)R) + rGB
((λi+2)G − (λi+1)R)

0 = ((λi+1)G − rGB
)((λi+1)R − (λi+2)R)

We note that (λi+1)R ̸= (λi+2)R, as otherwise D would be 0. Hence rGB
= (λi+1)G.

We note that the exact same result holds but with NR
GRv = 0 and rRB

= (λi+1)R =

(λi+2)R.
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Chapter 9

The Complete Neighbourhood case

In this chapter we consider finite primitive 3-regular 3-coloured structures with the extra

condition that one neighbourhood of a base point is complete in one of the colours. We

obtain a classification (Theorem 9.3.3, showing that the only such example is the Tricolour

Heptagon (Definition 5.2.1). I examine the interaction between the complete neighbourhood

condition and each of the 0 case, the Eigenvector case and the Independent case from

Definition 7.2.10.

In this chapter m, j and l are distinct colours, and every structure is assumed to be finite,

primitive, 3-regular and 3-coloured, unless stated. We will choose one neighbourhood, the

m-neighbourhood, to be complete, and consider an eigenvector v from its non-principal

eigenspace. For most of the arguments in this section, we focus just on two neighbourhoods

and the relationship between them, although sometimes we shall have to involve the third

neighbourhood.

An important point to note is that, in order to avoid imprimitivity, we can’t have the m-

neighbourhood being complete in colour m. This is because if it were, then the entire

structure would possess an equivalence relation in m. Hence we shall always assume the

m-neighbourhood is complete in either j or l, implying pmmm = 0 for the whole of this

chapter.

In the following analysis, I keep my colours general. So instead of assigning m to be R

without loss of generality, I keep it as just m. This is so that, when we get to the more
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complicated equalities and identities, it is more easy to spot which positions within the

intersection numbers are impacted by each other.

9.1 The 0 case

Lemma 9.1.1 Suppose, for x ̸= m, 0 = pmmm = pmmx and v is a non-principal eigenvector

of the m-neighbourhood in the 0 case in j. Then x = j.

Proof. Suppose for a contradiction that x = l. Now as N c
jmvm = 0 for all colours c, and

therefore 0 = N c
mjN

c
jmv, we note by Lemma 4.2.13

0 = pmcj + pmmR
jcc rRm + pmmG

jcc rGm + pmmB
jcc rBm

But, as pmmm = pmml = 0, this can be reduced to just

0 = pmcj + pmmj
jcc rjm

Now as the m-neighbourhood is complete in j,by Lemma 2.1.17, rjm = −1, giving us the

equations

pmmj = pmmj
jmm, p

m
jj = pmmj

jjj , pmlj = pmmj
jll

According to Lemma 4.2.3 we get

pmmj = pmmj
jmm + pmmj

jml + pmmj
jmj

pmjj = pmmj
jjj + pmmj

jjl + pmmj
jjm

This gives us the new information that 0 = pmmj
jml = pmmj

jmj = pmmj
jjl . Now we see that by

Lemma 4.2.3 and the fact that pmml = pmmm = 0

pjml = pmmj
jml + pmmj

lml + pmmj
mml = 0

and also

pjmj = pmmj
jmj + pmmj

lmj + pmmj
mmj = 0



9.2. THE INDEPENDENT CASE 159

Now as pmlj = pmjj = 0 by Lemma 4.2.5, we get a contradiction to Lemma 7.1.15. Hence

x ̸= l and therefore x must equal j.

Lemma 9.1.2 Suppose 0 = pmmm = pmmj and we have some non-principal eigenvector, v of

the m-neighbourhood, such that v is in the 0 case in j. Then pmjj = 0.

Proof. Similarly to the previous lemma, by using N c
jmv = 0 for all c and Lemma 4.2.3, we

get equations

0 = pmml
jjm = pmml

jjl = pmml
jlm

Crucially we see that pmml
jjl = 0 implying pmjj

mll = 0. Now as pmjj
mll + pmjj

mml + pmjj
mjl = 0,

either pjml = 0 or pmjj = 0. By Lemma 7.1.15, we must have pmjj = 0.

We can now present the classification

Theorem 9.1.3 Suppose in a primitive 3-regular 3-coloured graph, that for some colour

m, the m-neighbourhood is complete. Then for any eigenvector v of the m-neighbourhood,

v cannot be in the 0 case in j.

Proof. Suppose for a contradiction that there exists an eigenvector v of the m-

neighbourhood such that v is in the 0 case in j. Then by Lemma 9.1.1 we know that

pmmm = pmmj = 0 and so the m-neighbourhood is complete in l. We also know by Lemma

9.1.2 that pmjj = 0. Hence by Theorem 7.6.20, we have a contradiction.

9.2 The Independent Case

In this section we will be dealing with the case where we have a complete neighbourhood

and this neighbourhood has its only non-principal eigenvalue triple being in the Independent

case in another neighbourhood. For the set up suppose the m-neighbourhood is complete

and we have the sole eigenvalue triple (rmm , rjm , rlm) being in the Independent case in

j. Then we definitely have pmmm = 0 and also, either pmmj = 0 or pmml = 0. However

by Lemma 7.5.1, we know that pmmj ̸= 0, and hence pmml = 0. We can also note that

(rmm , rjm , rlm) = (0,−1, 0).
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By Lemma 7.5.3 we know that the eigenvalue triples of the j-neighbourhood are all either

the 0 case or the Eigenvector case in m. However they actually cannot be the Eigenvector

case, as there is no eigenvalue triple of the m-neighbourhood for them to correspond with,

hence they must all be the 0 case.

Well now we consider how (rmm , rjm , rlm) interacts with the l-neighbourhood. By Lemma

7.5.1, we see it can’t be in the Independent case in l, and by Theorem 9.1.3 it can’t be in the

0 case in l. Hence it must be in the Eigenvector case. From this however we can also force

the l neighbourhood to be complete.

At this point, we wish to introduce some notation that allows us to more easily generalise

the results of Chapter 8. Recall the Ki, Li,Mi defined via Equation 8.1.3. We define (Πm)i

as follows:

(Πm)i =


Ki if m = R,

Li if m = G,

Mi if m = B

(9.2.1)

Lemma 9.2.1 Suppose pmmm = pmml = 0, v ∈ E(rmm , rjm , rlm) is an eigenvector of the m-

neighbourhood and is in the independent case in j. Then km = kl and the l-neighbourhood

must also be complete.

Proof. Suppose both km ̸= kj and km ̸= kl. Then by Corollary 8.2.6 we must have that

two of (Πm)1(Πm)T1 , (Πm)2(Πm)T2 v or (Πm)3(Πm)T3 v have an eigenvalue which is 0 (with

which two depending on the value of m). As there is only one non-principal eigenvalue

triple of the m neighbourhood, every non-principal eigenvector of the m-neighbourhood

interacts with the (Πm)i in the same way. Hence for all non-principal eigenvectors v of the

m-neighbourhood, we have two of (Πm)T1 v, (Πm)T2 v, (Πm)T3 v are equal 0. However if two

of these equal 0 then by Corollary 8.2.20, NR
jmv = NG

jmv = 0, a contradiction to the fact

that v is in the independent case in j. So either km = kj or km = kl.

Suppose km = kj . Then kj = pmmj + 1 by Lemma 4.2.3, implying that pmlj + pmjj = 1 by

Lemma 4.2.3 again, and so one of these intersection numbers must be 0. By Lemma 7.1.15

and the fact pmml = 0, we must have that pmjj = 0. However by Lemma 7.5.1 this would
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imply that v is either the 0 case or the Eigenvector in j a contradiction.

Hence we have km = kl. However by Lemma 7.5.1, we see that (rmm , rjm , rlm) can’t be

in the Independent case in l, and by Theorem 9.1.3 it can’t be in the 0 case in l. Hence it

must be in the Eigenvector case, and therefore any non-principal eigenvector v corresponds

to an eigenvector in the l-neighbourhood. Hence they share the same multiplicity, but v has

multiplicity km − 1 = kl − 1 and therefore the corresponding eigenvalue triple must be the

only eigenvalue triple of the l-neighbourhood. This implies that the l-neighbourhood is also

complete.

We can now see that we have this almost symmetrical situation between the l and the m-

neighbourhoods. Both interact with each other in the same way, and must interact with the

j-neighbourhood likewise. Hence the l-neighbourhood will also have its sole eigenvalue

triple in the Independent case in j. However if we treat the l-neighbourhood as we did the

m-neighbourhood, by Lemma 7.5.1 we will get that plll = pllm = 0, meaning the structure

is imprimitive by Lemma 7.1.16. Now combining this and the other results of this section

we can state the classification.

Theorem 9.2.2 Suppose we have a primitive 3-regular, 3-coloured structure with the m-

neighbourhood complete. Then there cannot exist an eigenvector v ∈ E(rmm , rjm , rlm) of

the m-neighbourhood, with v in the Independent case in j.

Proof. Suppose for a contradiction that there exists an eigenvector v ∈ E(rmm , rjm , rlm) of

them-neighbourhood, with v in the Independent case in j. We know from Lemma 7.5.1 that

pmmj ̸= 0, and so we must have pmmm = pmml = 0. Now by Lemma 9.2.1 we know that the

l-neighbourhood is also complete and we have that the non-principal eigenvalue triples of

the m and l-neighbourhoods correspond. By Lemma 7.6.15, this means that the eigenvalue

triple of the l-neighbourhood is also in the Independent case in j. So now, applying Lemma

7.5.1 again, we get that pllj ̸= 0, meaning plll = pllm = 0. However this would mean the

structure is imprimitive by Lemma 7.1.16, a contradiction.
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9.3 The Eigenvector Case

The final case we need to consider to get a full classification of finite primitive 3-coloured,

3-regular graphs with complete neighbourhoods is when there exist only corresponding

eigenvectors from the complete neighbourhood. We will show there exists only one such

structure.

Lemma 9.3.1 Suppose the m-neighbourhood is complete and is such that its sole

eigenvalue triple is in the Eigenvector case in j and l. Then either km = kj and the j-

neighbourhood is complete, or km = kl, and the l-neighbourhood is complete.

Proof. Suppose both km ̸= kj and km ̸= kl. Then by Corollary 8.2.6 two of (Πm)T1 v,

(Πm)T2 v, (Πm)T3 v equal 0 (with which two depending on the value of m). However if two

of these equal 0 then by Corollary 8.2.20, NR
jmv = NG

jmv = 0, a contradiction, and so

either km = kj or km = kj .

Say without loss of generality, that km = kj . As the multiplicity of the v is km− 1, then we

know the multiplicity ofN c
jmv is also km−1 = kj−1, which therefore means it must be the

only eigenvector of the j-neighbourhood. Hence the j-neighbourhood is also complete.

Supposing it is the j-neighbourhood that is also complete, we know that pmmm = pjjj =

pmmx = pjjy = 0 for some x and y. By Lemma 7.1.15, we know (x, y) ̸= (j,m). Note

that this leaves three possible options, namely (x, y) = (l, l), (l,m) or (j, l). However due

to the fact that j and m have the exact same conditions placed on them at this point, the

options (l,m) and (j, l) will produce the same results, however with j and m swapped.

Theorem 9.3.2 Let x ∈ {j, l} and y ∈ {m, l}. Then there is only one finite primitive

3-regular, 3-coloured structure satisfying pmmm = pjjj = pmmx = pjjy = 0 and km = kj ,

namely the Tricolour Heptagon from Definition 5.2.1.

Proof. First, note that by Lemma 7.1.15, we know (x, y) ̸= (j,m). So suppose (x, y) =

(l, l), i.e. pmmm = pjjj = pmml = pjjl = 0. As km = kj , Lemma 4.2.3 yields pmjj = pjjm =
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km − 1 and pjmm = pmmj = km − 1. Now

km = pjmm + pjml + pjmj

= km − 1 + pjml + km − 1

= 2km − 2 + pjml

So pjml = 2 − km. As km > 1, we must have km = 2, and therefore pjml = 0. However

now plmm = pljj = plmj = 0 and so m= ∪ j= forms an equivalence relation, contradicting

our primitivity assumption.

So instead suppose (x, y) = (j, l). Now km − 1 = kj − 1 implies pmml = pjjm by Lemma

4.2.3, and pjjmmml = 0 by Lemma 4.2.5. Therefore, by Lemma 4.2.3 again

pjjmjml + pjjmlml = pmml = pjjm = pjjmjml + 1

This implies that 1 = pjjmlml , which means that pjlm = pjjmlml + pjjmlmm + pjjmlmj = 1. But then

by two applications of Lemma 4.2.4,

kj = kmp
m
lj = klp

l
mj

implying first that pmlj = 1 and then that km = klp
l
mj . As we know by Theorems 9.1.3 and

9.2.2, the eigenvalue triple of the m-neighbourhood must also be in the Eigenvector case in

l and so an eigenvalue triple of the l-neighbourhood corresponds with it. This means the

multiplicity of this eigenvalue triple of the l-neighbourhood is km − 1 and so kl ≥ km. But

as plmj ≥ 1, we must have that kl = km also. So now the l-neighbourhood is also complete

as it only has one eigenvalue triple, the one that corresponds to the eigenvalue triple in the

m-neighbourhood. Therefore we have three complete neighbourhoods.

We also know pmlj = pjlm = pljm = 1. Comparing the two equations we see:

plmm = plmj
mml + plmj

mmm + plmj
mmj = plmj

mml

pjml = plmj
mml + plmj

jml + plmj
lml = plmj

mml + plmj
jml

As pjml = 1, we see that plmj
mml = 0 or 1 and hence plmm = 0 or 1. Of course it must be 1,
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and so plmm = 1. Now by Lemma 4.2.4

kmp
m
ml = klp

l
mm

So as km = kl we find that pmml = 1 too, and therefore km = 1 + pmml = 2 by Lemma

4.2.3. This leads to kj = kl = 2, and then pjjm = 1 and pllj by Lemma 4.2.3. By a further

application of Lemma 4.2.4, we get pjll = pmjj = 1 as well.

Now suppose this structure actually exists. Then if we assign m = R, j = G and l = B,

we get the following:

kR = kB = kG = 2,

pRRB = pRGB = pRGG = pBBG = pBRR = pBRG = pGGR = pGBB = pGRB = 1

pRRR = pRRG = pGGG = pGGB = pBBB = pBBR = 0

We can start to draw this using kR = kG = kB = 2

∞
a

b

c d

e

f

Now we can look at the interior of each neighbourhood. This gets us to

∞
a

b

c d

e

f

Now we look at the edges going between neighbourhoods. First focus on edges from a, into
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the blue neighbourhood. We see from the 2-intersection numbers that one edge must be

red and one must be green. As c and d are at this point indistinguishable, it doesn’t matter

which we choose for each. Hence say a to c is red and a to d is green. Then if we focus

on b, we see that it must have the opposite composition to match with the 2-intersection

numbers. This gives us

∞
a

b

c d

e

f

Next we’ll look at the edges from the red neighbourhood to the green one, and we find

much the same situation. a must have one blue edge and one green edge and it doesn’t

matter how these are completed. So we pick a to f as blue and a to e as green. b will then

have the opposite.

∞
a

b

c d

e

f

Finally we look at the last neighbourhood interaction. We can see this can be fully

determined from the two intersection numbers by choosing the colour of the edge from

c to f . First suppose it is a red edge. This gives the structure
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∞
a

b

c d

e

f

The other configuration is

∞
a

b

c d

e

f

Note that the second configuration is not 3-regular. If we take the triangle (f, d, c) then we

get one vertex, a, connected as follows

a

c

df

So pRBG
BGR would be 1. However if we look at the triangle (a,∞, f), which is isomorphic

to (f, d, c), there can’t possibly be a vertex connected in the same manner as the only other

blue edge from a goes to b which forms the following configuration:
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b

f

∞a

Hence we only have one possible configuration, up to isomorphism. This configuration we

can redraw as

∞
a

c

e f

d

b

We can note that it is the Tricolour Heptagon. We know by Theorem 5.2.3 that this is

a primitive 3-regular 3-coloured graph and so we have a definite example. Therefore the

Tricolour Heptagon is the only possible solution when we have a complete neighbourhood

with two corresponding eigenvectors.

Combining the results of the last few sections we can now provide a full classification of

the complete neighbourhood case.

Theorem 9.3.3 The only finite primitive 3-regular, 3-coloured graph with a complete

neighbourhood is the Tricolour Heptagon.

Proof. Suppose we have a finite primitive 3-regular, 3-coloured graph with the m-

neighbourhood complete. Consider the sole eigenvalue triple (rmm , rjm , rlm) of the m-

neighbourhood. By Theorem 9.1.3 we know (rmm , rjm , rlm) is not in the 0 case in j,

with j a distinct colour to m. We also know by Theorem 9.2.2 that (rmm , rjm , rlm) in not

in the Independent case in j, and therefore (rmm , rjm , rlm) is in the Eigenvector case in
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j. We can do the same thing for l (the third colour distinct from both m and j), to get

that (rmm , rjm , rlm) is in the Eigenvector case in l as well. Now by Lemma 9.3.1 either

the j-neighbourhood is complete with km = kj or the l-neighbourhood is complete with

km = kl. We suppose without loss of generality that we have the former. However this

implies we must have pmmm = pjjj = pmmx = pjjy = 0 for some x ∈ {j, l} and y ∈ {m, l}.

Hence by Theorem 9.3.2, there is only one structure that satisfies this, which is the Tricolour

Heptagon.
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Chapter 10

Possibilities when Intersection

Numbers are Zero

In this section we will consider what happens when certain double intersection numbers are

zero. It will constantly be assumed that no neighbourhood of a base point is complete, as

these are already classified. Further assumptions are the usual; finite, primitive, 3-regular

and 3-coloured graphs, and m, j and l are distinct colours.

We will attempt to either eliminate such possibilities, or classify them in terms of how

the eigenvectors behave in each neighbourhood. We show that pRGB = 0 can’t happen in

Theorem 10.1.1 and classify the pmmj = 0 case in Theorem 10.2.13. We only partially deal

with pmmm = 0, as these intersection numbers being zero doesn’t affect the main arguments

of this section all that much.

10.1 Some initial results

We can combine arguments similar to those used in Theorem 7.6.20, with earlier ones from

Chapter 7, to get the following theorem.

Theorem 10.1.1 In a primitive 3-regular 3-coloured structure, pRGB ̸= 0.

Proof. Suppose pRGB = 0. Immediately from Lemma 7.5.1 we know that for any two

neighbourhoods m and j, every eigenvalue triple of the m-neighbourhood must be the 0
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case or the Eigenvector case in j.

Suppose first that for every colour m and j there does not exist an eigenvector of the m-

neighbourhood in the 0 case in j. Then we must have kR = kG = kB by Lemma 7.6.19.

Now by Lemma 4.2.4, we can note that pmmj = pjmm. Further as km = kj , by Lemma 4.2.3,

pjml + pjmm + pjmj = pjmj + pjlj + pjjj + 1

pjmm = pjlj + pjjj + 1

But now pRGG = pRBR + pRRR + 1, pBRR = pBBG + pBBB + 1 and pGBB = pGRG + pGGG + 1.

However this, together with the fact pjmm = pmmj , implies

pRGG = pRGG + pRRR + pGGG + pBBB + 3

a contradiction as all the values are non-negative.

Hence we know that for some distinct m and j, there exists an eigenvector v of the m-

neighbourhood in the 0 case in j. So Ny
jmv = 0 for all colours y. Hence, if l is distinct

from j and m, and a is any colour, by Lemma 4.2.13 and Corollary 4.2.6 we see

0 = Na
ljN

y
jmv

= plmm
jay N

m
lmv + plmj

jayN
j
lmv + plml

jayN
l
lmv

= (plmm
jay − plml

jay)N
m
lmv

Hence either plmm
jay = plml

jay for all a and y or Nm
lmv = 0. Suppose the former, but then

if a = l and y = j we have plml
jlj = plmm

jlj = 0 (the latter as pmlj = 0). This means

pljlmlj = 0 and we already know pljlmjj = 0 , however now by Lemma 4.2.3 either pjmj =

pljlmlj + pljlmmj + pljlmjj = 0 or pljl = 0, both (when combined with the pmlj = 0 condition)

contradicting Lemma 7.1.15. Hence we must have Nm
lmv = 0, and as N j

lm = 0, N j
lmv = 0

too. Therefore N l
lmv = Jv = 0 and v must be in the 0 case in l.

By Lemma 7.6.6 we know that if (rmm , rjm , rlm) is the eigenvalue triple attached to v,

then for some eigenvalue triple of the entire structure, say (rm, rj , rl), (rmm , rjm , rlm) =
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(rm, rj , rl). Now by Corollary 4.2.9 and plmj = 0 we get

rmrj = pmmjrm + pjmjrj

rm =
pjmjrj

rj − pmmj

Note that rj ̸= pmmj as this would imply pjmjp
m
mj = 0, which when combined with pmlj = 0

contradicts Lemma 7.1.15. We can also get the same eigenvalue equation but inside the

m-neighbourhood:

rmmrjm = pmmm
mmj rmm + pmmj

mmjrjm

This means

rmrj = pmmm
mmj rm + pmmj

mmjrj

And so

pjmjr
2
j = pjmjp

mmm
mmj rj + (rj − pmmj)p

mmj
mmjrj (10.1.1)

0 = (pjmj − pmmj
mmj)r

2
j + (pmmjp

mmj
mmj − pjmjp

mmm
mmj )rj (10.1.2)

We can solve this quadratic as if pjmj = pmmj
mmj and pmmjp

mmj
mmj = pjmjp

mmm
mmj , then

pmmj = pmmm
mmj and by Lemma 4.2.3 this would imply 0 = pmmm

jmj = pmmj
mmj = pjmj ,

a contradiction by Lemma 7.1.15 when combined with pmjl = 0. Therefore rj = 0 or

rj =
pjmjp

mmm
mmj −pmmjp

mmj
mmj

pmmj
jmj

. If rj = 0, then rm = 0 as pmmj ̸= 0 by Lemma 7.1.15. Therefore

rl = −1 by Lemma 4.2.10 and by Lemma 2.1.14, this implies the graph is complete in l or

imprimitive.

Hence we must have

rj =
pjmjp

mmm
mmj − pmmjp

mmj
mmj

pmmj
jmj

, rm =
pmmjp

mmj
mmj − pjmjp

mmm
mmj

pmmm
jmj

rl = −1−
(pjmjp

mmm
mmj − pmmjp

mmj
mmj)(p

mmm
jmj − pmmj

jmj )

pmmj
jmj p

mmm
jmj
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This tells us we have a maximum of one eigenvalue triple of the m-neighbourhood in the 0

case in j, as if we had another we could use the exact same deductions and determine that

the eigenvalues were all equal.

As in the tricolour heptagon pRGB ̸= 0, by Theorem 9.3.3 we know that the neighbourhoods

are not complete, so there must exist at least one more eigenvalue triple in each

neighbourhood. Consider S = (smm , sjm , slm) in the m-neighbourhood. This must be

in the Eigenvector case in both j and l as it cannot be in the Independent case by Lemma

7.5.1 and cannot be the 0 case by our previous analysis. Suppose v is in the eigenspace of

S and v′ is the corresponding eigenvector such that v = Nm
mjv

′ in the j-neighbourhood.

Then, for any colour y, by Lemma 4.2.13 and Corollary 4.2.6,

symv = Ny
mmv

= Ny
mmN

m
mjv

′

= (pmjm
mym − pmjj

mym)Nm
mjv

′

And so

sym = pmjm
mym − pmjj

mym (10.1.3)

But as N l
mj = 0, we have Nm

mjv = −N j
mjv and so

symv = Ny
mmv

= −Ny
mmN

j
mjv

′

= (pmjj
myj − pmjm

myj )N
m
mjv

′

Therefore

sym = pmjm
mym − pmjj

mym = pmjj
myj − pmjm

myj (10.1.4)

Further we can do the exact same thing with l giving the equation

sym = pmlm
mym − pmll

mym = pmll
myl − pmlm

myl (10.1.5)

From these we can note that by Lemma 4.2.3 and Corollary 4.2.6 we get slm = pmjj
mlj = pmml
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and sjm = pmll
mjl = pmmj . Now we know that 0 = −1 − smm − sjm − slm and so smm =

−1−pmml−pmmj = pmmm−km by Lemma 4.2.1. However we can also obtain from Equation

10.1.4 that smm = pmjm
mmm − pmjj

mmm. Now

pmmm − km = pmjm
mmm − pmjj

mmm

= pmmm − pmjm
mmj − pmjj

mmm

Therefore

km = pmjm
mmj + pmjj

mmm

= pjmj + pjmm − pmjm
mjj − pmjj

mjm

And so we get 0 = pmjm
mjj = pmjj

mjm as km = pjmj + pjmm by Lemma 4.2.1 and pjml = 0.

However we have already shown pmjm
mjj = pmmj

jmj is non-zero by considering the quadratic in

Equation 10.1.1. Therefore we have a contradiction, and we know no structure with pmjl = 0

can exist.

10.2 The pmmj = 0 case

We can apply similar lines of inquiry to get results (namely Theorem 10.2.13) in the case

when pmmj = 0. Using Theorem 9.3.3, we shall also work under the assumption that pmmm ̸=

0 to avoid making the m-neighbourhood complete.

Lemma 10.2.1 In a primitive structure, suppose pmmj = 0 and pmmm ̸= 0. Then there are

two eigenvalue triples in m, one in the 0 case in j and one in the Eigenvector case in j.

Further the eigenvalue triple in the Eigenvector case in j is

(pmjj
mmj − pmjl

mmj , p
mjj
mjj − pmjl

mjj , p
mjj
mlj − pmjl

mlj)

Proof. First we immediately know there are only two eigenvalue triples in the m-

neighbourhood as it is two coloured, hence it is a strongly regular graph, but not complete.
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Now suppose that we have an eigenvalue triple (rcm , rdm , rem) of the m-neighbourhood

in the Eigenvector case in j. Then by Remark 7.6.14, there exists an eigenvector of

the j-neighbourhood v such that N j
mjv is an eigenvector belonging to the eigenspace of

(rcm , rdm , rem). Then for each colour x, by Lemma 4.2.13,

rxmN
j
mjv = Nx

mmN
j
mjv

= pmjj
mxjN

j
mjv + pmjl

mxjN
l
mjv

= (pmjj
mxj − pmjl

mxj)N
j
mjv

as Nm
mj = 0 implies 0 = N l

mjv +N j
mjv by Remark 4.2.14. Therefore rxm = pmjj

mxj − pmjl
mxj

and so there can only be at most one eigenvalue triple in the Eigenvector case in j.

Now suppose that neither eigenvalue triple is in the Eigenvector case in j. Then as pmmj = 0,

they must be in the 0 case by Lemma 7.5.1, and further, by Lemma 7.6.11, we know

that they must both be in the eigenvector case in l. Then by Lemma 7.6.18 we see that

plmc
jxy = plmd

jxy = plme
jxy for all x and y, as otherwise we can determine the eigenvalue,

and so ral = sal for all a. But now 0 = plmm
jmj = plmj

jmj = plml
jmj , meaning also that

0 = pljmmmj = pljmmjj = pljmmlj , and so either pjmj = 0, a contradiction to Theorem 7.6.20, or

pljm = 0, a contradiction to Theorem 10.1.1.

And therefore we must have one eigenvalue triple in the 0 case in j and one in the

Eigenvector case in j.

We can represent this in the diagram where nodes represent eigenvalue triples of the labelled

neighbourhood and lines represent what case they are in the other neighbourhoods as

follows:

Suppose ram = (rmm , rjm , rlm) and raj = (rmj , rjj , rlj ) are eigenvalue triples. Then, if

ram is in the eigenvector case in j and it corresponds with raj then we would draw the arrow

ram raj

If ram is in the 0 case in j then we would draw the arrow

ram
j
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Note that because it doesn’t attach to a specific eigenvalue triple, the destination is just the

j-neighbourhood in general. And finally if ram was in the independent case in j we would

draw

ram
j

Putting this all together for this example we have at the moment

ram

sam

m

raj
saj

j

ral
sal

l

Empty arrows are just where we haven’t yet assigned a case to the eigenvalue triple. By

Lemma 7.6.11 we know that sam can’t be in the 0 case in l and therefore it must be in

the Eigenvector case. We will say that it corresponds with sal without loss of generality.

Further by Lemma 7.6.16 this will imply sal is the 0 case in j as well. Now by Lemma 7.5.1

we know that saj is either in the 0 or Eigenvector case in both m and l. Clearly it must be in

the 0 case in m as there is no eigenvalue triple for it to correspond with. Hence the diagram

becomes

ram

sam

m

raj
saj

j

ral
sal

l

Now we consider what case ram must be in l.
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Lemma 10.2.2 Suppose pmmj = 0 and the eigenvalue triples (rcm , rdm , rlm) and

(rcj , rdj , rlj ) correspond. Then both (rcm , rdm , rlm) and (rcj , rdj , rlj ) are in the

Eigenvector case in l.

Proof. Suppose not. Then (rcm , rdm , rlm) is in the 0 case in l by Lemma 7.5.1. Then for v

in the eigenspace of (rcm , rdm , rlm), we have Ny
lmv = 0 for all y, and therefore, for any x

0 = Nx
jlN

y
lmv = (pjmj

lxy − pjml
lxy )N

j
jmv

Now N j
jmv must be non-zero as (rcm , rdm , rlm) is in the Eigenvector case in j and we

already have Nm
jmv = 0. Therefore instead we must have that, for all x and y, pjmj

lxy = pjml
lxy .

This gives us that pjml
lmm = 0 as pjmj

lmm = 0 since pmmj = 0. But now 0 = pjml
lmm + pjml

mmm +

pjml
jmm and so either pjml = 0 or plmm = 0. Both give contradictions, the first by Theorem

10.1.1 and the second as then the m-neighbourhood would be complete in m. Hence we

must have that (rcm , rdm , rlm) is in the Eigenvector case in l, and therefore by Lemma

7.6.17, (rcj , rdj , rlj ) must be as well.

This allows us to complete the diagram a little further

ram

sam

m

raj
saj

j

ral
sal

l

We will now address the issue of how many eigenvalue triples there are in the j-

neighbourhood. We have only been using two so far however it turns out that either there

are three triples or pjjj = 0.

Lemma 10.2.3 Suppose pmmj = 0 and pmmm ̸= 0. Then either:

• The j-neighbourhood has three distinct non-principal eigenvalue triples,
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• pjjj = 0.

Proof. By Lemma 10.2.1, we know that one of the eigenvalue triples of the m-

neighbourhood, say ram = (rmm , rjm , rlm) is in the Eigenvector case in j and the other,

sam = (smm , sjm , slm), is in the 0 case in j.

We know that if the j-neighbourhood has only one eigenvalue triple it is complete, but then

we would be working with the tricolour heptagon by Theorem 9.3.3. However pmmm ̸= 0,

so we cannot be.

Suppose that the j-neighbourhood has only two distinct non-principal eigenvalue triples

namely raj = (rmj , rjj , rlj and saj = (smj , sjj , slj ). We know one corresponds to ram and

we shall say without loss of generality that this is raj . However we also know by the fact

pjmm = 0 and Lemma 7.5.1, that saj is not in the Independent case in m. It also can’t be in

the Eigenvector case, as there is no eigenvalue triple it could correspond to. Hence saj is in

the 0 case in l. Now we also know that the j-neighbourhood must be two-coloured as it has

only two non-principal eigenvalue triples, so either pjjj = 0, pjjl = 0 or pjjm = 0. We know

by Theorem 7.6.20 that pjjm ̸= 0.

First suppose pjjl = 0. Well then we see by Lemma 7.6.11, that saj can’t also be in the

0 case in l. Hence it must be in the Eigenvector case. But then, using Lemma 10.2.2 we

have that both eigenvalue triples of the j-neighbourhood are in the eigenvector case in the

l-neighbourhood, which contradicts Lemma 10.2.1. Therefore pjjl ̸= 0 too.

Therefore if we do not have three distinct non-principal eigenvalue triples, pjjj = 0.

Now we can further determine the diagram in the pjjj = 0 case using the following small

result.

Lemma 10.2.4 Suppose pjjj = pmmj = 0. Then no eigenvalue triple of the j-neighbourhood

is the 0 case in both m and l.

Proof. Suppose pjjj = pmmj = 0 and there exists an eigenvalue triple of the j-neighbourhood

that is the 0 case in bothm and l. Then by Lemma 7.6.6, we know there exists an eigenvalue

rj of Aj such that rj = rjj . However as pjjj = 0, we know by Remark 4.2.15 that rjj = 0,
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and so rj = 0 too. But now by Corollary 4.2.9,

0 = rmrj

= pmmjrm + pjjmrj + plmjrl

= plmjrl

Hence either rl = 0 too, a contradiction, or plmj = 0, also a contradiction by Theorem

10.1.1.

Therefore, if pjjj = pmmj = 0 the diagram looks like this

ram

sam

m

raj
saj

j

ral
sal

tal
l

Figure 10.1: pjjj = pmmj = 0

If pjjj ̸= 0 then there is still work to do to fully determine the diagram. We see that the third

eigenvalue triple of the j-neighbourhood must be in the 0 case in m as it has no eigenvalue

to correspond with.

Claim: Both saj and taj cannot be in the Eigenvector case in l.

Proof of claim: Suppose for a contradiction both saj and taj were in the Eigenvector case

in l. Then as we know they are both in the 0 case in m we can use Lemma 7.6.18 (with j

and m swapped). As we can’t have plmc
jxy = plmd

jxy = plme
jxy for all x, y, we must get that they

belong in case 2,3 or 4 in Lemma 7.6.18. If saj is case 2, then by the condition plmd
jxy = plme

jxy ,

taj must also be case 2. The same thing holds for case 3 and 4, and so saj and taj must be

in the same case. But this means they are equal, and so are the same eigenvalue triple, a

contradiction to the fact the j-neighbourhood is not 2-coloured.
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Hence either one must be the 0 case in l and one must be the Eigenvector case in l, or both

are in the 0 case in l. However:

Lemma 10.2.5 Suppose pmmj = 0 and an eigenvalue triple (rmj , rjj , rlj ) of the j-

neighbourhood is the 0 case in both m and l. Then pjjllmm ̸= 0 and

rm = rmj =p
j
jm −

pljmp
jjj
ljm

pjjlljm

,

rj = rjj =
pjjmp

jjm
lmmp

jjl
ljm + pjlmp

jjl
ljm − pljmp

jjm
lmmp

jjj
jlm

pjjjljmp
jjl
lmm

,

rl = rlj =
pljmp

jjm
lmmp

jjj
ljm − pjlmp

jjl
ljm − pjjmp

jjm
lmmp

jjl
ljm

pjjlljmp
jjl
lmm

Proof. Again from Lemma 7.6.6 we know that if we have such an eigenvalue triple, then

raj = ra for all a. Therefore we have the two equations by Corollary 4.2.9

rjrm = pjmjrj + plmjrl (10.2.6)

rjrm = pjjjjmjrj + pjjljmjrl

By substituting the bottom equation from the top equation by 4.2.3 and using pmmj = 0, we

get

0 = pjjjlmjrj + pjjllmjrl (10.2.7)

It is crucial that these coefficients are not both zero and indeed we can show they are.

Claim: pjjjlmj and pjjllmj are not both zero.

Proof of claim: Suppose for a contradiction pjjjlmj = pjjllmj = 0 then by Lemma 4.2.5,

pljjjmj = pljjjml = 0. But by Lemma 4.2.3 and pjmm = 0, this either means plmj = 0, which

can’t happen by Theorem 10.1.1, or pljj = 0. The latter would mean the j-neighbourhood

was two-coloured and hence did not have three distinct eigenvalue triples. However this

implies by Lemma 10.2.3 that pjjj = 0 too, and then the j-neighbourhood is complete.

So by Theorem 9.3.3, we would have the Tricolour Heptagon, but this doesn’t have any

eigenvalue triples of any neighbourhood in the 0 case in any other neighbourhood. Hence

pljj ̸= 0, a contradiction proving the claim.
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We can go further by showing that both rj and rl are also non-zero (also implying both pjjjlmj

and pjjllmj are non-zero by Equation 10.2.7). If rj = 0, then by Equation 10.2.6, either rl = 0

or plmj = 0, both of which can’t happen, so rj ̸= 0.

Suppose now for a contradiction that rl = 0. We know rj ̸= 0, so rm = pjmj . Now the

eigenvalue triple (rmj , rjj , rlj ) of the j-neighbourhood is in the 0 case in l. Hence, using

Equation 7.4.3 together with the assumption that rl = rjl = 0 and the fact that pjjjlmm = 0

(as pjmm = 0), it follows that

0 = pjml + pjjjlmmrjj + pjjmlmmrmj

= pjml + pjjmlmmp
j
mj

As these are all non-negative integers, this implies that pjml = 0, a contradicting Theorem

10.1.1. Therefore rl ̸= 0.

Hence we can say that

rl = −
pjjjlmj

pjjllmj

rj

And therefore

rjrm = pjmjrj −
plmjp

jjj
lmj

pjjllmj

rj

As we already know rj ̸= 0, this implies

rm = pjmj −
plmjp

jjj
lmj

pjjllmj

(10.2.8)

We can note the denominator is non-zero as with rj ̸= 0 and rl ̸= 0, pjjjlmj = 0 if and only

if pjjllmj = 0, and we’ve already shown both can’t be zero, so neither are.

Now from Equation 7.4.3 and the fact that pjjjlmm = 0 again we have that

pjjmlmmrm + pjjllmmrl + pjlm = 0

Our next step is to show pjjllmm ̸= 0 however. Suppose for a contradiction that pjjllmm = 0.
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Then we note by Lemma 4.2.5 that pjlmjlm = 0 and so by Lemma 4.2.3

pljm = pjlmjmm + 1 (10.2.9)

= pjjm − pjlmjml + 1 (10.2.10)

Further we know from Equation 10.2, that pjjmlmm ̸= 0 (as otherwise pjlm = 0) and

rm = −
pjlm
pjjmlmm

= −1−
pjjmlml

pjjmlmm

We can now see that pjjmlml ̸= 0, as if pjjmlml = 0 then rm = −1, and so by Lemma 2.1.14,

the structure is imprimitive or complete in m, a contradiction. Therefore we know from this

that rm < −1 and by Equation 10.2.8 we see

pjmjp
jjl
lmj < plmjp

jjj
lmj

However we can see by Equation 10.2.9 and the fact that pjlmjml ̸= 0 (as otherwise pjjmlml = 0

by Lemma 4.2.5), that plmj ≤ pjmj . Therefore we can deduce that pjjllmj < pjjjlmj . However

applying this to Equation 10.2, we get that

−rl > rj

So we know that rm < −1 and −rl > rj . However 0 = 1+rm+rj+rl implies 0 < rj+rl.

And so −rl < rj , a contradiction. So pjjllmm ̸= 0.

Now using Equations 10.2.8 and 10.2, we can deduce

rl =
pljmp

jjm
lmmp

jjj
ljm − pjlmp

jjl
ljm − pjjmp

jjm
lmmp

jjl
ljm

pjjlljmp
jjl
lmm

Therefore by Equation 10.2, we also get

rj =
pjjmp

jjm
lmmp

jjl
ljm + pjlmp

jjl
ljm − pljmp

jjm
lmmp

jjj
jlm

pjjjljmp
jjl
lmm
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What this lemma tells us is that there cannot be two distinct eigenvalue triples which are

both in the 0 case in m and l. Therefore this means we can complete our diagram as follows

ram

sam

m

raj
saj

taj
j

ral
sal

tal
l

Figure 10.2: pmmj = 0, pjjj ̸= 0

Some final deductions we can note from this analysis are as follows:

Corollary 10.2.6 In a finite primitive 3-regular, 3-coloured structure, suppose pmmj = 0

and pmmm ̸= 0. Then

i) pllx ̸= 0 for all x,

ii) pmlx ̸= 0 for all x,

iii) pjlx ̸= 0 for all x.

Proof. For i) if pllx ̸= 0 for any x, then the l-neighbourhood will have only two eigenvalue

triples. This doesn’t happen in any case as shown in Figure 10.2 and Figure 10.1.

For ii) we immediately know pmlm ̸= 0 as pmlm = 0 would make the m-neighbourhood

complete in m and pmlj ̸= 0 by Theorem 10.1.1. Hence all we have to consider is pmll = 0,

but this is covered by i).

In iii) we get pjlm ̸= 0 by Theorem 10.1.1, and pjll ̸= 0 by i). We cannot have pjjl = 0 by

Lemma 10.2.3.

For both of the pjjj = 0 and the pjjj ̸= 0 scenarios, if a structure exists we can describe the

eigenvalues of the neighbourhoods. We will do this with a swarm of lemmas which will be
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summarised in Theorem 10.2.13. We label the eigenvalue triples as they are labelled in the

Figure 10.1 if pjjj = 0, and Figure 10.2 if not. First we will examine the eigenvalues of the

corresponding triangle.

Lemma 10.2.7 Suppose there exists a finite primitive 3-regular 3-coloured structure with

pmmj = 0 and pmmm ̸= 0 and rxm = (rmm , rjm , rlm), rxj = (rmj , rjj , rlj ) and rxl
=

(rml
, rjl , rll) all correspond as eigenvalue triples. Then we have:

rxm = pmjj
mxj − pmjl

mxj

rxj = pjmj
jxl − pjml

jxj

rxl
=

(plmd
lxd − plmf

lxd )(pjmj
lcd − pjml

lcd ) + (plme
lxd − plmf

lxd )(pjmj
lce − pjml

lce )

pjmj
lcd − pjml

lcd

=
(pljd

′

lxd′ − pljf
′

lxd′)(p
mjj
lc′d′ − pmjl

lc′d′) + (plje
′

lxd′ − pljf
′

lxd′)(p
mjj
lc′e′ − pmjl

lc′e′)

pmjj
lc′d′ − pmjl

lc′d′

for any colours c, c′, distinct colours d, e, f and distinct colours d′, e′, f ′.

Proof. We’ve already seen in Lemma 10.2.1 that rxm = pmjj
mxj − pmjl

mxj . We can apply the

same idea in reverse to get rxj . Let v be an eigenvector of the m-neighbourhood in the

eigenspace of rxm . Then N j
jmv is an eigenvector of j-neighbourhood, with eigenvalue rxj .

Hence

rxjN
j
jmv = Nx

jjN
j
jmv

= pjmj
jxmN

j
jmv + pjml

jxmN
l
jmv

= (pjmj
jxj − pjml

jxj )N
j
jmv

Hence rxj = pjmj
jxj − pjml

jxj .

We can also determine rxl
by utilising Nm

jm = 0. Note that for any c and d,

N c
jlN

d
lmv = (pjmj

lcd − pjml
lcd )N j

jmv
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And therefore, as λdNd
lmv = λeN

e
lmv for some non-zero constants λd and λe, we get

λdN
c
jlN

d
lmv = λeN

c
jlN

e
lmv

λd(p
jmj
lcd − pjml

lcd )N j
jmv = λe(p

jmj
lce − pjml

lce )N j
jmv

As N j
jmv ̸= 0, this tells us

λd
λe

=
pjmj
lce − pjml

lce

pjmj
lcd − pjml

lcd

From this we can find rxl
in terms of the intersections numbers as follows. Let d, e, f be

distinct colours, then

rxl
Nd

lmv = Nx
llN

d
lmv

= (plmd
lxd − plmf

lxd )Nd
lmv + (plme

lxd − plmf
lxd )N e

lmv

=

(
(plmd

lxd − plmf
lxd ) +

λd
λe

(plme
lxd − plmf

lxd )

)
Nd

lmv

=

(
(plmd

lxd − plmf
lxd )(pjmj

lcd − pjml
lcd ) + (plme

lxd − plmf
lxd )(pjmj

lce − pjml
lce )

(pjmj
lcd − pjml

lcd )

)
Nd

lmv

We can do the exact same thing with the eigenvectors coming from the j-neighbourhood.

So suppose we have an eigenvector v′ of the j-neighbourhood that corresponds with v, then

µdN
d
ljv

′ = µeN
e
ljv

′ for some non-zero constants µd and µe. Then as before we use

N c
mlN

d
ljv

′ = (pmjj
lcd − pmjl

lcd )N j
mjv

′

to give

µdN
c
mlN

d
ljv

′ = µeN
c
mlN

e
ljv

′

µd(p
mjj
lcd − pmjl

lcd )N j
mjv

′ = µe(p
mjj
lce − pmjl

lce )N j
mjv

′

resulting in
µd
µe

=
pmjj
lce − pmjl

lce

pmjj
lcd − pmjl

lcd
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Therefore for d, e, f distinct colours as before we get that

rxl
Nd

ljv
′ = Nx

llN
d
ljv

′

= (pljdlxd − pljflxd)N
d
ljv

′ + (pljelxd − pljflxd)N
e
lmv

=

(
(pljdlxd − pljflxd) +

µd
µe

(pljelxd − pljflxd)

)
N e

ljv
′

=

(
(pljdlxd − pljflxd)(p

mjj
lcd − pmjl

lcd ) + (pljelxd − pljflxd)(p
mjj
lce − pmjl

lce )

pmjj
lcd − pmjl

lcd

)
Nd

ljv
′

Therefore, for any c, and any distinct d, e, f ,

rxl
=

(plmd
lxd − plmf

lxd )(pjmj
lcd − pjml

lcd ) + (plme
lxd − plmf

lxd )(pjmj
lce − pjml

lce )

pjmj
lcd − pjml

lcd

And, for any c′, and any distinct d′, e′, f ′,

rxl
=

(pljd
′

lxd′ − pljf
′

lxd′)(p
mjj
lc′d′ − pmjl

lc′d′) + (plje
′

lxd′ − pljf
′

lxd′)(p
mjj
lc′e′ − pmjl

lc′e′)

pmjj
lc′d′ − pmjl

lc′d′

We can also determine these in other ways using various previous lemmas, mainly Lemma

7.3.4. At the moment I cannot make much of a conclusion from the different forms of rxl
,

except the following identity

pljllmmp
mjj
lml = plml

lmmp
jmj
lml

which is currently without much use.

We can also determine some more of the eigenvalues that are not dependent upon pjjj being

zero or not.

Lemma 10.2.8 Suppose pmmj = 0 and pmmm ̸= 0 and the eigenvalue triple sam =

(smm , sjm , slm) of the m-neighbourhood is in the 0 case in j and the Eigenvector case

in l. Likewise suppose the corresponding eigenvalue triple sal = (sml
, sjl , sll) of the l-

neighbourhood is in the 0 case in j and the Eigenvector case in m. Then for any colours c
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and d and any distinct colours x, y and z, either pmlm
jcd = pmlj

jcd = pmll
jcd or

sam = (pmlx
max − pmlz

max) +
(pmlx

jcd − pmlz
jcd )(p

mly
max − pmlz

max)

(pmlz
jcd − pmly

jcd )

And likewise either pmlm
jdc = pmlj

jdc = pmll
jdc or

sal = (plmx
lax − plmz

lax ) +
(plmx

jcd − plmz
jcd )(p

lmy
lax − plmz

lax )

(plmz
jcd − plmy

jcd )

Further there exists values of c and d such that pmlm
jcd = pmlj

jcd = pmll
jcd doesn’t hold, and

values of c and d such that pmlm
jdc = pmlj

jdc = pmll
jdc doesn’t hold.

Proof. In both scenarios, these eigenvalue triples act in exactly the same way, as shown in

Figure 10.2. Both correspond with each other and are the 0 case in j. Let v be an eigenvector

of sal . We know, for any colours c and d, and distinct colours x, y and z,

0 = N c
mjN

d
jlv = (pmlx

jcd − plmz
jcd )N

x
mlv + (pmly

jcd − pmlz
jcd )N

y
mlv

And therefore

(pmlx
jcd − pmlz

jcd )N
x
mlv = (pmlz

jcd − pmly
jcd )N

y
mlv

Hence, unless pmlx
jcd = pmly

jcd = pmlz
jcd , we have Ny

mlv in terms of Nx
mlv and we can get

samN
x
mlv = Na

mmN
x
mlv

= (pmlx
max − pmlz

max)N
x
mlv + (pmly

max − pmlz
max)N

y
mlv

=

(
(pmlx

max − pmlz
max) +

(pmlx
jcd − pmlz

jcd )(p
mly
max − pmlz

max)

(pmlz
jcd − pmly

jcd )

)
Nx

mlv

And therefore

sam = (pmlx
max − pmlz

max) +
(pmlx

jcd − pmlz
jcd )(p

mly
max − pmlz

max)

(pmlz
jcd − pmly

jcd )
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Now we can do the exact same thing but with m and l swapped to get sal . First for v′ an

eigenvector of sal we have

0 = N c
ljN

d
jmv

′ = (plmx
jcd − plmz

jcd )N
x
lmv

′ + (plmy
jcd − plmz

jcd )N
y
lmv

′

And therefore

(plmx
jcd − plmz

jcd )N
x
lmv

′ = (plmz
jcd − plmy

jcd )N
y
lmv

′

Hence, unless plmx
jcd = plmy

jcd = plmz
jcd , we have Ny

lmv in terms of Nx
lmv and we can get

salN
x
lmv = Na

llN
x
lmv

′

= (plmx
lax − plmz

lax )N
x
lmv

′ + (plmy
lax − plmz

lax )N
y
lmv

′

=

(
(plmx

lax − plmz
lax ) +

(plmx
jcd − plmz

jcd )(p
lmy
lax − plmz

lax )

(plmz
jcd − plmy

jcd )

)
Nx

lmv
′

And therefore

sal = (plmx
lax − plmz

lax ) +
(plmx

jcd − plmz
jcd )(p

lmy
lax − plmz

lax )

(plmz
jcd − plmy

jcd )

To prove the final statement we simply need to find colours c and d such that pmlm
jcd = pmlj

jcd =

pmll
jcd doesn’t hold. The other statement will then not hold when c and d are swapped.

Note that setting c = m and d = j we see that the condition plmx
jcd = plmy

jcd = plmz
jcd cannot

hold. This is because if 0 = plmm
jmj = plmj

jmj = plml
jmj then 0 = pljmmmj = pljmmjj = pljmmlj and

hence either pljm = 0 or pjmj = 0 by Lemma 4.2.3, contradicting either Theorem 7.6.20 or

10.1.1. And so we are done.

In a very similar manner we now find the third eigenvalue of the l-neighbourhood, and the

second eigenvalue of the j-neighbourhood.

Lemma 10.2.9 Suppose pmmj = 0, and both tal = (tml
, tjl , tll) and taj = (tmj , tjj , tlj )

are corresponding eigenvalue triples belonging to the l-neighbourhood and the j-

neighbourhood respectively. Then if they are both in the 0 case in m, for some colours



188 10. POSSIBILITIES WHEN INTERSECTION NUMBERS ARE ZERO

c and d and any distinct colours x, y and z, either pjlxmcd = pjlymcd = pjlzmcd, or we have

taj = (pjlxjax − pjlzjax) +
(pjlyjax − pjlzjax)(p

jlx
mcd − pjlzmcd)

pjlzmcd − pjlymcd

Similarly, either pljxmcd = pljymcd = pljzmcd or

tal = (pljxlax − pljzlax) +
(pljylax − pljzlax)(p

ljx
mcd − pljzmcd)

pljzmcd − pljymcd

Further there exist values of c and d such that pjlxmcd = pjlymcd = pjlzmcd doesn’t hold, and

values of c and d such that pljxmcd = pljymcd = pljzmcd doesn’t hold.

Proof. This is almost exactly the same proof as the last one, however with j instead of m.

First if v is an eigenvector of txl
then

0 = N c
jmN

d
mlv

= (pjlxmcd − pjlzmcd)N
x
jlv + (pjlymcd − pjlzmcd)N

y
jlv

And therefore either pjlxmcd = pjlymcd = pjlzmcd or

Ny
jlv =

pjlxmcd − pjlzmcd

pjlzmcd − pjlymcd

Nx
jlv

Now we know

tajN
x
jlv = Na

jjN
x
jlv

= (pjlxjax − pjlzjax)N
x
jlv + (pjlyjax − pjlzjax)N

y
jlv

= (pjlxjax − pjlzjax)N
x
jlv +

(
(pjlyjax − pjlzjax)(p

jlx
mcd − pjlzmcd)

pjlzmcd − pjlymcd

)
Nx

jlv

=

(
(pjlxjax − pjlzjax) +

(pjlyjax − pjlzjax)(p
jlx
mcd − pjlzmcd)

pjlzmcd − pjlymcd

)
Nx

jlv
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Therefore either pjlxmcd = pjlymcd = pjlzmcd or

taj = (pjlxjax − pjlzjax) +
(pjlyjax − pjlzjax)(p

jlx
mcd − pjlzmcd)

pjlzmcd − pjlymcd

Similarly if we let v′ be an eigenvector of txj , then

0 = N c
lmN

d
mjv

′

= (pljxmcd − pljzmcd)N
x
ljv

′ + (pljymcd − pljzmcd)N
y
ljv

′

Hence either pljxmcd = pljymcd = pljzmcd or

Ny
ljv

′ =
pljxmcd − pljzmcd

pljzmcd − pljymcd

Nx
jlv

′

Now

talN
x
ljv

′ = Na
llN

x
ljv

′

= (pljxlax − pljzlax)N
x
ljv

′ + (pljylax − pljzlax)N
y
ljv

′

= (pljxlax − pljzlax)N
x
ljv

′ +

(
(pljylax − pljzlax)(p

ljx
mcd − pljzmcd)

pljzmcd − pljymcd

)
Nx

ljv
′

=

(
(pljxlax − pljzlax) +

(pljylax − pljzlax)(p
ljx
mcd − pljzmcd)

pljzmcd − pljymcd

)
Nx

ljv
′

Therefore either pljxmcd = pljymcd = pljzmcd or

tal = (pljxlax − pljzlax) +
(pljylax − pljzlax)(p

ljx
mcd − pljzmcd)

pljzmcd − pljymcd

For the last statement, we note that if c = j and d = m then pjlxmcd = pjlymcd = pjlzmcd doesn’t

hold. This is because if it did we would have 0 = pjlmmjm = pjljmjm = pjllmjm, meaning

0 = pjmj
lmm = pjmj

ljm = pjmj
llm . This implies either pjmj = 0 or pmlm = 0 by Lemma 4.2.3,

however the former contradicts Theorem 7.6.20, and the latter implies them-neighbourhood

is complete in m.
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The same contradiction occurs if we have pljxmcd = pljymcd = pljzmcd and c = m and d = j.

A lot of our work with the triple intersection numbers in this case depends on an equation

of the following form not holding: pmlm
jcd = pmlj

jcd = pmll
jcd . We have indeed shown that a

particular case will always not hold, but we can actually go much further than this. Note

that we are dropping the pmmj = 0 assumption here.

Lemma 10.2.10 Suppose in a finite primitive 3-regular 3-coloured graph, for all x and y,

and for all distinct c, d, e, we have pmjc
lxy = pmjd

lxy = pmje
lxy . Then pmjz ̸= 0 for all z and

pmlc
jxy = pmld

jxy = pmle
jxy .

Proof. Suppose for some z that pmjz = 0. Then pmjz
lxy = 0 for all x and y, by Corollary 4.2.6,

and therefore pmjc
lxy = pmjd

lxy = pmje
lxy = 0. This implies pmjx

lcy = pmjx
ldy = pmjx

ley = 0, hence

pmjx = 0 or pjly = 0 by Lemma 4.2.3. But this holds for all x and y, meaning it holds for

x = l and y = m. But here we would have pmjl = 0, a contradiction to Theorem 10.1.1.

Therefore we know pmjz ̸= 0 for all z.

Since pmjc
lxy = pmjd

lxy = pmje
lxy then, using Lemma 4.2.4 we see

pmlx
pmjc

pmlx
jcy =

pmlx
pmjd

pmlx
jdy =

pmlx
pmje

pmlx
jey

So

pmjdp
m
jep

mlx
jcy = pmjep

m
jcp

mlx
jdy = pmjcp

m
jdp

mlx
jey (10.2.11)

And crucially

pmlx
jdy =

pmjd
pmjc

pmlx
jcy , p

mlx
jey =

pmje
pmjc

pmlx
jcy
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Therefore, combining this with Lemma 4.2.3, we see

pljy = pmlx
jcy + pmlx

jdy + pmlx
jey

= pmlx
jcy

(
1 +

pmjd
pmjc

+
pmje
pmjc

)

= pmlx
jcy

(
pmjc + pmjd + pmje

pmjc

)

=
kjp

mlx
jcy

pmjc

Therefore pmlx
jcy =

pmjcp
l
jy

kj
. But this holds for all x, and the value doesn’t depend on x at all,

hence pmlm
jcy = pmlj

jcy = pmll
jcy . Now note that it didn’t matter which value we picked for c,

and this could range through any colour.

We see that this goes back the other way by swapping j and l so it is actually an if and only

if statement. Further the choice of m was immaterial so we actually get three equivalent

conditions.

Corollary 10.2.11 Suppose in a finite primitive 3-regular 3-coloured graph, for all x and

y, and for all distinct c, d, e the following conditions are equivalent

1. pmjc
lxy = pmjd

lxy = pmje
lxy

2. plmc
jxy = plmd

jxy = plme
jxy

3. pjlcmxy = pjldmxy = pjlemxy

4. pmjc
lxy = pmjd

lxy = pmje
lxy =

pjlyp
m
lx

kl

5. plmc
jxy = plmd

jxy = plme
jxy =

pmjyp
l
jx

kj

6. pjlcmxy = pjldmxy = pjlemxy =
plmyp

j
mx

km

We can also note the impact of this condition on the eigenvalue interactions.

Lemma 10.2.12 Suppose for all x and y, and for all distinct c, d, e, pmjc
lxy = pmjd

lxy =

pmje
lxy . Then there cannot exist an eigenvalue triple of the m-neighbourhood that is in the

Eigenvector case in both j and l.
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Proof. Suppose for a contradiction that we have an eigenvalue triple rxm = (rmm , rjm , rlm)

of the m-neighbourhood in the Eigenvector case in j and l. Then if v is an eigenvector of

rxm we know, for some colour a, Na
jmv is an eigenvector in the j-neighbourhood. Further

by Lemma 7.6.17, we know that for some colour b, N b
ljN

a
jmv is an eigenvector for the

l-neighbourhood. However

N b
ljN

a
jmv = (plmc

jba − plme
jba )N

c
lmv + (plmd

jba − plme
jba )N

d
lmv

and we know by Corollary 10.2.11, plmc
jxy = plmd

jxy = plme
jxy , implying 0 = N b

ljN
a
jmv. So

N b
ljN

a
jmv can’t be an eigenvector, a contradiction.

Hence, as we are guaranteed a triangle of corresponding eigenvalue triples in any situation

including pmmj = 0 by Lemma 10.2.1 and Lemma 10.2.2, we can conclude that no variation

of pmjc
lxy = pmjd

lxy = pmje
lxy holds.

We then have only one eigenvalue left to determine, which is saj . Obviously if pjjj = 0

this doesn’t exist, and if pjjj ̸= 0 then we know it is case 0 in both m and l. Hence we can

determine it using Lemma 10.2.5. Summarising this we get the following theorem:

Theorem 10.2.13 Suppose for a finite primitive 3-regular, 3-coloured graph, that pmmj = 0.

Then all other intersection numbers are non-zero, except perhaps pjjj . For any colours

a, c and c′, distinct colours d, e, f and distinct colours d′, e′ and f ′, the eigenvalues of the
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neighbourhoods are as follows:

ram = pmjj
maj − pmjl

maj

raj = pjmj
jal − pjml

jaj

ral =
(plmd

lxd − plmf
lxd )(pjmj

lcd − pjml
lcd ) + (plme

lxd − plmf
lxd )(pjmj

lce − pjml
lce )

pjmj
lcd − pjml

lcd

=
(pljd

′

lxd′ − pljf
′

lxd′)(p
mjj
lc′d′ − pmjl

lc′d′) + (plje
′

lxd′ − pljf
′

lxd′)(p
mjj
lc′e′ − pmjl

lc′e′)

pmjj
lc′d′ − pmjl

lc′d′

sam = (pmld
mad − pmlf

mad) +
(pmld

jcc′ − pmlf
jcc′ )(p

mle
mad − pmlf

mad)

(pmlf
jcc′ − pmle

jcc′)

sal = (plmd
lad − plmf

lad ) +
(plmd

jcc′ − plmf
jcc′ )(p

lme
lad − plmz

lad )

(plmf
jcc′ − plme

jcc′)

taj = (pjldjad − pjlfjad) +
(pjlejad − pjlfjad)(p

jld
mcc′ − pjlfmcc′)

pjlfmcc′ − pjlemcc′

tal = (pljdlad − pljflad) +
(pljelad − pljflad)(p

ljd
mcc′ − pljfmcc′)

pljfmcc′ − pljemcc′

If pjjj = 0, then we have only two eigenvalues in the j-neighbourhood, so this is all of them.

If pjjj ̸= 0 then

rm = smj =p
j
jm −

pljmp
jjj
ljm

pjjlljm

,

rj = sjj =
pjjmp

jjm
lmmp

jjl
ljm + pjlmp

jjl
ljm − pljmp

jjm
lmmp

jjj
jlm

pjjjljmp
jjl
lmm

,

rl = slj =
pljmp

jjm
lmmp

jjj
ljm − pjlmp

jjl
ljm − pjjmp

jjm
lmmp

jjl
ljm

pjjlljmp
jjl
lmm

The eigenvalues also interact as follows:

If pjjj = 0
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ram

sam

m

raj
saj

j

ral
sal

tal
l

Figure 10.3: Classification of eigenvalue triple cases when pmmj = 0, pjjj = 0

If pjjj ̸= 0

ram

sam

m

raj
saj

taj
j

ral
sal

tal
l

Figure 10.4: Classification of eigenvalue triple cases when pmmj = 0, pjjj ̸= 0

We can summarise all the identities we’ve found over the course of the classification into

one lemma too. These gives us some feasibility equations.

Lemma 10.2.14 Suppose we have a finite primitive, 3-regular, 3-coloured graph such that

pmmj = 0. Then it must satisfy the following:

1. For all colours c, c′, d, d′ and any distinct colours x, y, z:

(plmx
jcd − plmz

jcd )(p
lmz
jc′d′ − plmy

jc′d′) = (plmx
jc′d′ − plmz

jc′d′)(p
lmz
jcd − plmy

jcd )



10.3. MONOCHROMATIC-TRIANGLE-FREE 195

2. For all colours c, c′, d, d′ and any distinct colours x, y, z:

(pljxmcd − pljzmcd)(p
ljz
mc′d′ − pljymc′d′) = (pljxmc′d′ − pljzmc′d′)(p

ljz
mcd − pljymcd)

3. For all colours c, c′ and any distinct colours e and d:

(pjmj
lce − pjml

lce )(pjmj
lc′d − pjml

lc′d) = (pjmj
lcd − pjml

lcd )(pjmj
lc′e − pjml

lc′e )

(pmjj
lce − pmjl

lce )(pmjj
lc′d − pmjl

lc′d) = (pmjj
lcd − pmjl

lcd )(pmjj
lc′e − pmjl

lc′e )

We can also note that Theorem 10.2.13 (and Theorem 10.1.1) have some further

consequences when applied to undesirability (as defined in 7.4.13)

Lemma 10.2.15 Suppose the R-neighbourhood is undesirable with respect to G. Then

either:

• pRRG = 0 and we have either Figure 10.2.13 or 10.2.13 with m = R, j = G and

l = B.

• pRGG = 0 and we have either Figure 10.2.13 or 10.2.13 with m = G, j = R and

l = B.

This follows from the fact that undesirability forces pmcj = 0 for some c.

10.3 Monochromatic-triangle-free

In this section we will discuss the consequences of a 3-coloured 3-regular graph having

pRRR = pGGG = pBBB = 0 i.e. a 3-coloured, 3-regular structure devoid of any monochromatic

triangle. By Ramsey’s Theorem, we know that this must be small. In fact the Clebsch Graph

from earlier is the largest possible case, asR(3, 3, 3) = 17 [24]. But aside from the tricolour

Clebsch graph, are there any possibilities? We will now show there are none

Theorem 10.3.1 Suppose Γ is a primitive, 3-coloured, 3-regular graph with pRRR = pGGG =

pBBB = 0 but no complete neighbourhoods. Then Γ is isomorphic to the Tricolour Clebsch

graph.
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Proof. Firstly we know that no other double intersection numbers are zero as the

neighbourhoods are not complete and Theorem 10.1.1 means pmjl ̸= 0. This means we can

use Lemma 4.2.3 without worrying about double intersection numbers being 0. Focusing

just on the m-neighbourhood, we see (using pmmj
mjj = pmmj

mjm = 0) that pmmj = pmmj
mjl + 1 =

pmml
mjl + pmml

mjj and similarly pmml = pmml
mjl + 1 = pmmj

mjl + pmmj
mll . Now

km =pmmj + pmml + 1

=pmml
mjl + pmmj

mjl + 3

=pmmj
mjl + pmmj

mll + pmml
mjl + pmml

mjj + 1

Therefore 2 = pmmj
mll + pmml

mjj , and as these are non-negative integers we have very few

options. Either:

i) pmmj
mll = pmml

mjj = 1

ii) pmmj
mll = 2, pmml

mjj = 0

iii) pmmj
mll = 0, pmml

mjj = 2

We see that ii) and iii) are effectively the same thing, just with j and l swapped, and so we

will treat them as one case.

First suppose we have case i), then pmmj = 1 + pmmj
mlj = 1 + pmml

mlj , so pmmj
mlj = pmml

mlj . But,

by repeated us of Lemma 4.2.4,

pmmj = pmmjp
mmj
mll

= pmmlp
mml
mjl

= pmmlp
mml
mjj p

mmj
mlj

= pmmj(p
mmj
mlj )2

Therefore pmmj
mlj = pmml

mlj = 1. This implies pmmj = pmml = 2, and km = 5.

If instead we suppose we have case ii) (which covers case iii too as previously mentioned),

then we see pmmj = pmml
mjl . Now as 2pmmj = pmmjp

mmj
mll = pmmlp

mml
mlj , we see that pmml = 2. We

know pmml = 1 + pmml
mlj = 1 + pmmj , and therefore pmmj = 1 and km = 4.
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Hence we see that for any colour x, kx = 4 or 5. If km = 5, then we can note that by

Lemma 4.2.4, kjp
j
mm = kmp

m
mj = 10, hence kj divides 10 and so it must be 5. The same

is true of kl, hence if we have case i) in one neighbourhood we have it in all the others,

meaning n = 16 and km = kj = kl = 5. As the Clebsch graph is uniquely determined

by its spectrum (Lemma 5.3.5), it is uniquely determined by its intersection numbers, and

therefore this must be the tricolour Clebsch graph.

Equally we see that if km = 4, then kj = kl = 4. And so if one neighbourhood is case ii) or

case iii), then all three are case ii) or case iii). However, if we assume the m-neighbourhood

is case ii), then case ii) and case iii) can no longer be treated as the same in either the j or

l-neighbourhood. Consider first the j-neighbourhood. We must have either pjjmjll = 2 and

pjjljmm = 0 or pjjljmm = 2 and pjjmjll = 0 as these correspond to case ii) and case iii) in the

j-neighbourhood. Suppose first for a contradiction that pjjmjll = 2 and pjjljmm = 0. Then

pjjm = 1 and pjjl = 2. Crucially, as km = kj = kl p
m
jj = 1, plmm = 2 and pmjl = pljm.

Now kj = pmmj + pmjj + pmjl implies pmjl = 2 and therefore pljm = 2 as well. However

km = pljm + plmm + plml now implies plml = 0, implying the l-neighbourhood is complete,

when we assumed it was not. Hence we must have instead that pjjljmm = 2 and pjjmjll = 0

in the j-neighbourhood, and by the same reasoning, pllmljj = 2 and plljlmm = 0 in the l-

neighbourhood.

This structure will have the following intersection numbers:

• n = 13, kR = kG = kB = 4

• pmmj = pjjl = pllm = 2

• pmml = pjjm = pllj = pmjl = 1

• pmml
mjj = pjjmjll = plljlmm = 2

• pmmj
mlj = pmml

mlj = pjjljml = pjjmjml = pllmlmj = plljljm = 1

• pmmj
mll = pjjljmm = pllmljj = 0

However in trying to fully derive the other triple intersection numbers we will come across

an impossible scenario. Namely, as pllj = 1 and pmml
mlj = 1, we get that pmml

llj = 0 by
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Lemma 4.2.3. Now, by Lemma 4.2.3 again

2 = pmll = pmml
llj + pmml

llm + pmml
lll = pmml

llm

But 1 = pmml = pmml
lmm+pmml

llm +pmml
ljm by Lemma 4.2.3, and as pmml

llm = 2, the RHS is greater

than or equal to 2, a contradiction. Hence this cannot be a primitive 3-regular 3-coloured

graph.
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Chapter 11

Other Cases

In this chapter we aim to discuss the myriad of other cases not yet investigated in detail, and

boil everything down to just a few possibilities as given in Theorem 11.4.2.

First we’ll talk about the most awkward of the cases, the independent one. This one crops

up annoyingly as a counter example in the broader discussion of non-zero intersection

numbers. As such this case is particular relevant to our original motivating problem of

finding whether the universal homogeneous 3-coloured graph is a m.e.c. limit. However it

provides quite strong conditions itself and using these conditions we will entirely rule out

the possibility of it occurring in Theorem 11.1.2.

We then turn our attention to the scenario where we have two eigenvalue triples both in the

0 case in another neighbourhood. In Theorem 11.2.4, we show that this can’t occur, except

in the case when pmjj = 0 as previously discussed.

To start with we shall only be assuming that we are working in a finite primitive 3-regular

3-coloured graph.

11.1 Independent Case

It is first our intention to eliminate the possibility of the Independent case. With this in mind

suppose that we have an eigenvalue triple (rmm , rjm , rlm) in m which is in the independent

case in j. Now we know that any other eigenvalue triple in the m-neighbourhood can’t be
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in the Eigenvector case in j by Corollary 7.5.4 and can’t be in the Independent case in j by

Theorem 7.5.2 (as they’d be equal). Further any eigenvalue triples of the j-neighbourhood

must be in the 0 case in m. Hence, as we are assuming the j-neighbourhood isn’t complete,

we must have only two eigenvalue triples in the j-neighbourhood by Lemma 7.6.1, and

both must be the 0 case in m. Therefore the j-neighbourhood is two coloured. By Figures

10.2.13 and 10.2.13 from Theorem 10.2.13 (and also by Theorem 10.1.1), we know that

no independent case can occur anywhere when pmjc = 0 or pljc = 0 for any c. Hence

pjjj = 0 and the j-neighbourhood is either semi-undesirable or a multiple with respect to

m by Lemma 7.6.2 (it can’t be undesirable as we’ve already shown pjmc ̸= 0 fo all c).

Some question remain however. For example what case is (rmm , rjm , rlm) in l? How many

eigenvalue triples are there in the m-neighbourhood?

First suppose (rmm , rjm , rlm) is in the 0 case in l. Then, for some colours c and d, any

distinct colours x, y, z and v an eigenvector in the eigenspace of (rmm , rjm , rlm), by Lemma

4.2.13,

0 = N c
jlN

d
lmv = (pjmx

lcd − pjmz
lcd )Nx

jmv + (pjmy
lcd − pjmz

lcd )Ny
jmv

Therefore we must have pjmx
lcd = pjmy

lcd = pjmz
lcd , meaning we have all the results from

Corollary 10.2.11. Now if we have that the j-neighbourhood is a multiple with respect to

m, we also get pjmb
jda = pjmc

jda for any d and distinct a, b.

Lemma 11.1.1 For any distinct colours m, j, l, suppose the m-neighbourhood has exactly

two distinct eigenvalue triples, both of which are in the 0 case in j. Then it cannot be

d-semi-undesirable for any d.

Proof. As we have only two distinct eigenvalue triples, we know that them-neighbourhood

is two-coloured, hence for some colour x, pmmx = 0. Now, by Theorem 10.2.13, we know

that neither pmmj = 0 or pmml = 0 as there is no scenario allowing the m-neighbourhood to

have two 0 cases in either j or l. Hence we must have pmmm = 0.

Suppose that the m-neighbourhood is d-semi-undesirable. Therefore, for colours c and e,

distinct from each other and from d, pmmc
jxx = pmme

jxx for all colours x. If d ̸= m, then we

see by Lemma 7.6.3 that rdm = sdm . But the m-neighbourhood was two coloured, so these

are the only non-principal eigenvalues of Nd
mm and their multiplicities will sum to km − 1.
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By Lemma 2.1.17, they are therefore equal to −1, meaning that the m-neighbourhood is

connected by Lemma 2.1.15, and hence is complete in d.

So we must have d = m, and so rdm = 0. However now we get from Equation 7.4.3 that

0 = pmjx − pmme
jxx

And so pmjx = pmmj
jxx = pmml

jxx as {c, e} = {j, l}. But as pmmj and pmml are non-zero, this

implies by Lemma 4.2.3 that pmmj
jxy = pmml

jxy = 0 for any colour y distinct from x. Hence

pmyj
jmx = pmyj

lmx = 0 by Lemma 4.2.5, meaning either pmyj = 0 or pmjx = pmyj
jmx + pmyj

lmx = 0 by

Lemma 4.2.3. But by Theorems 10.2.13 and 10.1.1 this can’t happen.

This was the last remaining possibility that allowed the independent case to occur, and so

we can now formally rule it out.

Theorem 11.1.2 In a 3-regular 3-coloured structure, for any distinct coloursm and j there

does not exist an eigenvalue triple of the m neighbourhood that is in the Independent case

in the j neighbourhood.

Proof. Suppose there exists an eigenvalue triple (rmm , rjm , rlm) of the m-neighbourhood

which is in the independent case in j. Now we know by Corollary 7.5.4 that any other

eigenvalue triples of the m-neighbourhood can’t be in the Eigenvector case in j. We also

know that by Theorem 7.5.2 that any other eigenvalue triple of the m-neighbourhood can’t

be in the Independent case in j, as it would equal (rmm , rjm , rlm). Therefore any other

eigenvalue triple of the m-neighbourhood must be in the 0 case in j. This further implies

that any eigenvalue triple of the j-neighbourhood cannot be in the Eigenvector case in m.

We also know by Lemma 7.5.3 that any eigenvalue triple of the j-neighbourhood cannot be

the Independent case in m, hence all eigenvalue triples of the j-neighbourhood are in the 0

case in m.

We know by Theorem 9.3.3 that the j-neighbourhood is not complete as the Tricolour

Heptagon did not admit an eigenvalue triple in the Independent case anywhere, and we know

it can’t have three distinct eigenvalues by Lemma 7.6.1. Hence it must have two distinct

eigenvalue triples and therefore we know by Lemma 7.6.2 that the j-neighbourhood must
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be a multiple, undesirable or semi-undesirable with respect to m. By Lemma 7.4.17 we

can’t have it being a multiple, and by Theorem 10.2.13 it can’t be undesirable either. Hence

it has to be semi-undesirable, but this is impossible by Lemma 11.1.1.

11.2 Double 0 cases

Using similar ideas, if we assume pmjj ̸= 0 (which is classified in Theorem 10.2.13), we

can also rule out the possibility of two of the eigenvalue triples from the m-neighbourhood

being the 0 case in j.

Lemma 11.2.1 In a 3-regular 3-coloured structure, for any distinct colours m and j,

suppose pmjx ̸= 0 and pmmx ̸= 0 for all x and there exists an eigenvalue triple of the m-

neighbourhood in the 0 case in j. Then the m-neighbourhood cannot be a multiple with

respect to j.

Proof. Suppose for a contradiction them-neighbourhood is a multiple with respect to j and

that we have an eigenvalue triple (rmm , rjm , rlm) of the m-neighbourhood which is in the

0 case in j. Then by Corollary 7.4.19 and Theorem 11.1.2 we know that all the eigenvalue

triples of the m-neighbourhood are in the 0 case in j and vice versa. Therefore by Lemma

7.6.1, as neither are complete, we must have that both the m and j-neighbourhoods have

two distinct eigenvalue triples. Hence by Lemma 11.1.1, j must also be a multiple with

respect to m.

As we have only two distinct eigenvalue triples and we’ve assumed pmjx ̸= 0 for all x, we

must have either pmmm = 0 or pmml = 0. Then either rmm = smm = 0 or rlm = slm = 0

by Remark 4.2.15. Suppose we have pmmm = 0 and rmm = slm = 0, and so by Lemma

4.2.10 we get 0 = rjm + rlm + 1. But this means that we can solve Equation 7.4.3 (note

that coefficients are non-zero for at least one colour as part of the multiple assumption), and

determine that rjm = sjm and rlm = slm , meaning we only have one distinct eigenvalue

triple in m, a contradiction. The same thing occurs for pmml = 0, and so we can’t have that

the m-neighbourhood is a multiple with respect to j.

Therefore we can ignore this case and we can boil it down to just semi-undesirability when

there are double 0 cases.
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Corollary 11.2.2 Suppose that two distinct eigenvalue triples of the m-neighbourhood are

in the 0 case in j and pmjj ̸= 0. Then the m-neighbourhood is semi-undesirable with respect

to j.

This is the simple combination of Lemma 10.2.15, removing undesirability, and Lemma

11.2.1, removing the multiple case. Note that we can combine this with Lemma 11.1.1 to

completely remove this in the 2-coloured case.

Corollary 11.2.3 Suppose the m-neighbourhood is two-coloured. Then it cannot have two

distinct eigenvalue triples both in the 0 case in j.

So now let us delve into the possibilities that occur as a result of this.

Suppose we have that the m-neighbourhood has three distinct eigenvalue triples, two of

which, say rxm and sxm , are in the 0 case in j. Then m is semi-undesirable with respect to

j by Corollary 11.2.2, and also we know by Theorem 11.1.2 that the third eigenvalue triple

of the m-neighbourhood, txm , is in the Eigenvector case in j. Conveniently we can remove

all these cases in one fell swoop.

Theorem 11.2.4 Suppose that two distinct eigenvalue triples of the m-neighbourhood are

in the 0 case in j. Then pmjj = 0.

Proof. Suppose for a contradiction that pmjx ̸= 0 for all x. We know by Corollary 11.2.3

that the m-neighbourhood has three distinct eigenvalue triples, two of which, namely rxm

and sxm , are both in the 0 case in j. Then we know from Corollary 11.2.2 that the m-

neighbourhood must be semi-undesirable with respect to j. We also know that the third

eigenvalue triple must be in the Eigenvector case in j as it can’t be in the 0 case by Lemma

7.6.1 and can’t be independent by Theorem 11.1.2. Say, without loss of generality, that the

m-neighbourhood is d-semi-undesirable with respect to j. This means that, for any distinct

x and y,

pmjx − pmme
jxx

pmme
jxx − pmmd

jxx

=
−pmme

jxy

pmme
jxy − pmmd

jxy

(11.2.1)

Note the denominators are non-zero, as otherwise, when coupled with d-semi-

undesirability, they would give pmmc
jxx = pmmd

jxx = pmme
jxx or pmmc

jxy = pmmd
jxy = pmme

jxy , which
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give undesirability, and hence pmjx = 0.

Now, as the third eigenvalue triple txm is in the Eigenvector case in j, we know that, if v is

its eigenvector,

Nx
jmv = BxyN

y
jmv (11.2.2)

where Bxy is a constant. Now by Lemma 7.3.3 and the semi-undesirability condition we

know that

Bxy =
(pmmd

jxx − pmme
jxx )tdm + pmjx − pmme

jxx

(pmmd
jxy − pmme

jxy )tdm − pmme
jxy

Note that neither the numerator nor the denominator can be zero, as if it was then tdm would

equal rdm and sdm meaning the m-neighbourhood was complete in d.

Using Equation 11.2.1 this becomes

Bxy =
pmjx − pmme

jxx

−pmme
jxy

= −1−
pmme
jxz

pmme
jxy

However we know

0 = Nx
jmv +Ny

jmv +N z
jmv

= Nx
jmv (1 +Byx +Bzx)

= Nx
jmv

(
−1−

pmme
jyz

pmme
jyx

−
pmme
jzy

pmme
jzx

)

And therefore, as all the intersection numbers are positive, we must have Nx
jmv = 0.

However this means that Bxy = 0 which we’ve already shown can’t happen.

Therefore, as the m-neighbourhood cannot be two coloured by Corollary 11.2.3, we must

have pmjx = 0 for some x. Now we know pmjl ̸= 0 by Theorem 10.1.1 and pmmj ̸= 0 by the fact

the m-neighbourhood is three coloured. Hence we know that we must have pmjj = 0.

We can therefore note that the m-neighbourhood has two eigenvalue triples in the 0 case

in j if we have one of the cases from Theorem 10.2.13 (with m and j swapped as in the

statement of the theorem). We can therefore see that we must be in the scenario represented

by Figure 10.2.13, and so pmmm ̸= 0 (as pjjj ̸= 0 in the theorem).
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11.3 Eigenvector case

The only case for which we have not yet obtained tight restrictions is the Eigenvector case.

Many of the possibilities that we have discussed so far involve a neighbourhood with two

eigenvalues that are in the eigenvector case with another neighbourhood. So if we could

place limits upon this we’d gain a lot of information.

Suppose therefore that the m-neighbourhood is such that it has two distinct eigenvalue

triples, (rxm , rym , rzm) and (sxm , sym , szm) in the Eigenvector case in j. Then we know

there exists a system of constants that describe the linear relationships between Nx
jmv and

Ny
jmv for all x, y and an eigenvector v belonging to the eigenspace of (rxm , rym , rzm). We

will first assume that Nx
jmv ̸= 0 for all x, however a similar system can be set up when

Nx
jmv = 0. Let v′ be an eigenvector belonging to the eigenspace, (rxj , ryj , rzj ), which

corresponds to (rxm , rym , rzm). For any x, y, define constants Bxy, B̄xy as

Nx
jmv = BxyN

y
jmv, N

x
mjv

′ = B̄xyN
y
mjv

′ (11.3.3)

Then we can note

Lemma 11.3.1 For the system of constants defined in Equation 11.3.3 and any colours x, y:

• Bxy = 1
Byx

• 0 = 1 +Byx +Bzx

• Bxy = B̄xy

Proof. The first point is immediate from the definition and the second follows from the

fact 0 = Nx
jmv + Ny

jmv + N z
jmv. The third comes from the fact that because, by Remark

7.6.14, Ny
mjv

′ is itself an eigenvector of the m-neighbourhood, we know Nx
jmN

y
mjv

′ =

BxyN
y
jmN

y
mjv

′. Further we can say, Nx
jmN

y
mjv

′ = BxyB̄yxN
y
jmN

x
mjv

′, however

Nx
jmN

y
mjv

′ =
(
pjjxmxyrxj + pjjymxyryj + pjjzmxyrzj

)
v′

=
(
pjjxmyxrxj + pjjymyxryj + pjjzmyxrzj

)
v′

= Ny
jmN

x
mjv

′
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meaning BxyB̄yx = 1, and therefore, B̄yx = Byx.

Now from Lemma 7.3.4 we know that, for any colour a,

ram = (pmjx
max − pmjz

max) +Byx(p
mjy
max − pmjz

max) (11.3.4)

Therefore if we know Byx then we know ram for any a. At the moment we only know

Byx in terms of the eigenvalues (from Lemma 7.3.4) and hence it will be unique to each

eigenspace. However if we could find it in terms of just the intersection numbers then we

could determine that (rxm , rym , rzm) and (sxm , sym , szm) are actually equal.

We know however that

ram = (pmjy
may − pmjz

may) +Bxy(p
mjx
may − pmjz

may)

And so

(pmjy
may − pmjz

may) +Bxy(p
mjx
may − pmjz

may) = (pmjx
max − pmjz

max) +Byx(p
mjy
max − pmjz

max)

Using the result from Lemma 11.3.1 we can determine that

0 = (pmjy
max − pmjz

max)B
2
yx + (pmjx

max + pmjz
may − pmjz

max − pmjy
may)Byx − (pmjx

may − pmjz
may) (11.3.5)

Therefore we have a quadratic for Byx.

Lemma 11.3.2 In the m-neighbourhood, there do not exist three distinct eigenvalue triples

that are all in the eigenvector case in j.

Proof. So long as the Quadratic 11.3.5 is non-zero there can exist a maximum of 2 different

values for Byx. As the same quadratic is formed by each of the eigenvalue triples, we

therefore have only two different possible values for the eigenvalue triples. Therefore in

order for there to be three distinct eigenvalue triples all in the eigenvector case in j, the

quadratic 11.3.5 has coefficients all 0 for every value of a. However this implies for all a,

pmjy
max = pmjz

max, meaning ram = sam = tam = pmjx
max − pmjz

max. Hence there cannot be three

distinct eigenvalue triples all in the eigenvector case in a.
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We will now consider the case when 11.3.5 is actually a linear equation:

Lemma 11.3.3 Suppose the m-neighbourhood is such that it has two eigenvalue triples,

(rxm , rym , rzm) and (sxm , sym , szm) in the Eigenvector case in j. Then if there exists a

colour a and distinct colours x, y, z such that pmjy
max = pmjz

max, then either (rxm , rym , rzm) =

(sxm , sym , szm) or pmjy
max = pmjz

max for all distinct colours x, y, z, and also

ram = sam = pmjx
max − pmjy

max

Proof. Suppose there exists a colour a and distinct colours x, y, z such that pmjy
max = pmjz

max.

Then we know from the quadratic 11.3.5 that

0 = (pmjx
max + pmjz

may − pmjz
max − pmjy

may)Byx − (pmjx
may − pmjz

may)

And so either we can solve for Byx in terms of only intersection numbers or both pmjx
max +

pmjz
may − pmjz

max − pmjy
may and pmjx

may − pmjz
may are zero. If we had the former, then we are done as

both eigenvalue triples would have the same value for Byx, and therefore would be equal.

So suppose we have the latter.

Note that now we have ram = sam = pmjy
may − pmjz

may = pmjx
max − pmjz

max by Equation 11.3.4,

however it is not only Byx that we can solve for, it could be Bxz or Byz , as well. And now

we can write

ram = pmjy
may − pmjz

may = pmjx
max − pmjy

max −Bzx(p
mjz
max − pmjy

max)

Again if we can determine Bzx in terms of intersection numbers we are done, and so we

must have pmjz
max = pmjy

max. We can repeat this same idea with any of the B’s leading us to

having the equation pmje
mad = pmjf

mad for all distinct colours d, e, f . Further we must have

ram = sam = pmjd
mad − pmje

mad

Assuming we don’t have (rxm , rym , rzm) = (sxm , sym , szm), we can combine this with
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Lemma 7.2.8 to get that

ram = sam = pmjx
max − pmjy

max = pmmb
mab − pmmc

mab

and that pmmb
maa = pmmc

maa by Lemma 7.1.2. We can also note that Lemma 11.3.3 tells us that,

in the case where Equation 11.3.5 is linear, it actually has all coefficients being 0. We can

still form the quadratic in terms of b or c, however we can show these are the same quadratic,

so we cannot solve for a unique value of Byx.

We can however form a different quadratic using the eigenvalue equation for r2bm from

Corollary 4.2.9 applied to the m-neighbourhood. This gives

r2bm = pmma
mbb ram + pmmb

mbb rbm + pmmc
mbb rcm + pmmb

Using this, and the equivalent one for r2cm , we can show that this case can’t occur.

Lemma 11.3.4 Suppose the m-neighbourhood is such that it has two eigenvalue triples,

(rxm , rym , rzm) and (sxm , sym , szm) in the Eigenvector case in j. Then if there exists a

colour a and distinct colours x, y, z such that pmjy
max = pmjz

max, we must have

pmmb
mbb − pmmc

mbb = pmjx
mbx + pmjy

mby − pmjz
mbx − pmjz

mby

Proof. This begins from where Lemma 11.3.3 ends. Suppose we do not have

(rxm , rym , rzm) = (sxm , sym , szm). Then we know by Lemma 11.3.3 that we actually have

pmjy
max = pmjz

max for all distinct x, y, z. We also know by Lemma 11.3.3 that for all distinct

x, y, z we can’t have pmjy
mbx = pmjz

mbx or pmjy
mcx = pmjz

mcx, as then we would get rbm = sbm

or rcm = scm , respectively. So by the equation 0 = 1 + ram + rbm + rcm , we could

determine that in fact the third eigenvalue was also equal, contradicting (rxm , rym , rzm) ̸=

(sxm , sym , szm).

This means that we can form the quadratic from Equation 11.3.5 in b, i.e.

0 = (pmjy
mbx − pmjz

mbx)B
2
yx + (pmjx

mbx + pmjz
mby − pmjz

mbx − pmjy
mby)Byx − (pmjx

mby − pmjz
mby) (11.3.6)
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Next we consider the eigenvalue equation for r2bm .

r2bm = pmma
mbb ram + pmmb

mbb rbm + pmmc
mbb rcm + pmmb

= (pmma
mbb − pmmc

mbb )ram + (pmmb
mbb − pmmc

mbb )rbm − pmmc
mbb + pmmb

Now inputting the value of the eigenvalues in terms of Byx gives us

0 =((pmjx
mbx − pmjz

mbx) +Byx(p
mjy
mbx − pmjz

mbx))
2−

Byx(p
mmb
mbb − pmmc

mbb )(pmjy
mbx − pmjz

mbx)− (pmma
mbb − pmmc

mbb )(pmjx
max − pmjy

max)−

(pmmb
mbb − pmmc

mbb )(pmjx
mbx − pmjz

mbx) + pmmc
mbb − pmmb

0 =B2
yx(p

mjy
mbx − pmjz

mbx)
2+

Byx(2(p
mjy
mbx − pmjz

mbx)(p
mjx
mbx − pmjz

mbx)− (pmmb
mbb − pmmc

mbb )(pmjy
mbx − pmjz

mbx))+

(pmjx
mbx − pmjz

mbx)
2 − (pmma

mbb − pmmc
mbb )(pmjx

max − pmjy
max)−

(pmmb
mbb − pmmc

mbb )(pmjx
mbx − pmjz

mbx) + pmmc
mbb − pmmb

Now we can multiply the quadratic 11.3.6 by (pmjy
mbx − pmjz

mbx) and subtract it to get a linear

equation in Byx. The coefficient of Byx in this equation is crucial – if it is non-zero then we

can solve for Byx and determine that (rxm , rym , rzm) = (sxm , sym , szm), hence it must be

zero. This gives us

2(pmjy
mbx − pmjz

mbx)(p
mjx
mbx − pmjz

mbx)− (pmmb
mbb − pmmc

mbb )(pmjy
mbx − pmjz

mbx)

= (pmjy
mbx − pmjz

mbx)(p
mjx
mbx + pmjz

mby − pmjz
mbx − pmjy

mby)

As we’ve already determined at the start of the proof that pmjy
mbx ̸= pmjz

mbx, we can cancel these

to give the equation

2pmjx
mbx − 2pmjz

mbx − pmmb
mbb + pmmc

mbb = pmjx
mbx + pmjz

mby − pmjz
mbx − pmjy

mby

pmjx
mbx − pmjz

mbx − pmmb
mbb + pmmc

mbb = pmjz
mby − pmjy

mby

pmmb
mbb − pmmc

mbb = pmjx
mbx + pmjy

mby − pmjz
mbx − pmjz

mby
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11.4 Putting it all together

In this section we will work to bring together all that has been discussed over the previous

chapters, and conclude with a meaningful theorem about how the eigenvectors of the

neighbourhoods must interact. We will also talk about what this means for the intersection

numbers.

First coupling together Lemma 11.2.1, Theorem 11.1.2 and Lemma 11.3.2 tells us:

Lemma 11.4.1 Suppose pmjj ̸= 0 and the m-neighbourhood has three distinct eigenvalue

triples. Then two eigenvalue triples are in the eigenvector case in j and one is in the 0 case

in j.

We can now list the possible diagrams that arise from supposing each neighbourhood is

3-coloured.

Case 1:

ram

sam

tam

m

raj
saj

taj
j

ral
sal

tal
l

Case 2:
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rxm

sxm

txm

m

raj
saj

taj
j

ral
sal

tal
l

So there are only two possibilities and both contain at least one corresponding eigenvalue

triangle.

We can also now fully describe when pmmm = 0 and pmjj ̸= 0 in just one case.

Case 3:

rxm

sxm

m

raj
saj

taj
j

ral
sal

tal
l

And there are a further two cases when pmmm = pjjj = 0.

Case 4:
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rxm

sxm

m

raj
saj

j

ral
sal

tal
l

Case 5:

rxm

sxm

m

raj
saj

j

ral
sal

tal
l

Note that case 5 also covers the pjjj = 0 case from Theorem 10.2.13. There is one more

case which also stems from this Theorem and so we’ll list it for completeness.

Case 6:

rxm

sxm

m

raj
saj

txj

j

ral
sal

tal
l
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For ease of reference we state this as a Theorem:

Theorem 11.4.2 Suppose Γ is a finite primitive 3-coloured 3-regular graph. Then we have

one of the following scenarios:

• pxyz ̸= 0 for all colours x, y, z and the eigenvalue triples of the neighbourhoods are

case 1 or case 2.

• For some colour m, pmmm = 0, for all other combinations of colours x, y, z, pxyz ̸= 0,

and the eigenvalue triples of the neighbourhoods are case 3.

• For some distinct colours m and j, pmmm = pjjj = 0, for all other combinations of

colours x, y, z, pxyz ̸= 0, and the eigenvalue triples of the neighbourhoods are case 4

or 5.

• For some distinct colours m and j, pmjj = pjjj = 0, for all other combinations of

colours x, y, z, pxyz ̸= 0, and the eigenvalue triples of the neighbourhoods are case 5.

• For some distinct colours m and j, pmjj = 0, for all other combinations of colours

x, y, z, pxyz ̸= 0, and the eigenvalue triples of the neighbourhoods are case 6.

• Γ is the Tricolour Heptagon.

• Γ is the Tricolour Clebsch Graph.

11.5 M.e.c Implications

To bring this thesis around full circle, we look at the implications of Theorem 11.4.2 with

regards to m.e.cs.

The most important case and the original motivation was to show that there cannot be a

m.e.c with ultraproduct elementarily equivalent to the universal homogeneous 3-coloured

graph, which we’ll denote by R3. We can see that if a m.e.c C has an ultraproduct that

was elementarily equivalent to R3 then for some n > 3 any M ∈ C sufficiently large with

respect to n, will be n-regular and such that pxyz ̸= 0 for any colours x, y and z. Hence

from Theorem 11.4.2, we know it must be in case 1 or case 2. Further, its neighbourhoods

will be n − 1-regular, and in a large enough member of C we can assume pmmx
myz ̸= 0 for
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any m,x, y, z. Therefore the neighbourhoods must also be finite, n− 1-regular 3-coloured

graphs of case 1 or case 2. We can repeat this process indefinitely, as this holds for arbitrarily

large n.

It is my belief that issues will arise from the fact that there are double eigenvector cases in

each neighbourhood. I have not had the chance to go through all the possible consequences

of Equation 11.3.5, but I would guess that, because we have it in distinct colours a, b and

c, at least one colour must have the quadratic reduce to 0 i.e. pmjy
max = pmjz

max. This would

bring about the conclusion of Lemma 11.3.3. Now in case 1 and case 2, having ram = sam

for some a would cause problems, especially if you had it due to both j and l. In case 2,

it forces the neighbourhood to become almost amorphic (strongly regular in two colours),

and in both cases we would get some equalities between intersection numbers in j and l.

Other results are slightly easier to apply. We can note an easy application of Theorem

7.6.20.

Theorem 11.5.1 Suppose L = {R,G,B} with R,G,B colours (binary, symmetric,

irreflexive relations), {RRG,RGG} ⊆ ∆, and M is a primitive unstable homogeneous ∆-

free L-structure. Then there does not exist a m.e.c with ultraproduct elementarily equivalent

to M .

Proof. Suppose for a contradiction there exists a m.e.c C with ultraproduct elementarily

equivalent toM . Well then by Lemma 2.5.4 and Lemma 2.5.5, we know that any sufficiently

large memberD ∈ C is a finite primitive 3-regular 3-coloured graph with noRRG orRGG

triangles, i.e. pRRG = pRGG = 0. But no such structure exists by Theorem 7.6.20.

We know such structures exists as, recalling the notation from section 3.4, just taking ∆ =

{RRG,RGG} means the class C(∆) has free amalgamation (by solving the amalgamation

problem with B).

We now look at the repercussions of Theorem 9.3.3 in terms of m.e.c which are very similar.

Theorem 11.5.2 Suppose L = {R,G,B} with R,G,B colours, {RRG,RRR} ⊆ ∆, and

M is a primitive unstable homogeneous ∆-free L-structure. Then there does not exist a
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m.e.c with ultraproduct elementarily equivalent to M .

Proof. Suppose for a contradiction there exists a m.e.c C with ultraproduct elementarily

equivalent toM . Well then by Lemma 2.5.4 and Lemma 2.5.5, we know that any sufficiently

large member D ∈ C is a finite primitive 3-regular 3-coloured graph with no RRG or RRR

triangles, i.e. pRRG = pRRR = 0. But then it has to be the Tricolour Heptagon by Theorem

7.6.20. Hence this will not satisfy the required axioms to be a m.e.c with ultraproduct

elementarily equivalent to M .

Again, we can see such Fraïssé classes exist, as just taking ∆ = {RRG,RRR} means

C(∆) has free amalgamation (by solving the amalgamation problem with B).

We can also get a similar analogous result for Theorem 10.1.1:

Theorem 11.5.3 Suppose L = {R,G,B} with R,G,B colours, {RGB} ⊆ ∆, and M

is a primitive unstable homogeneous ∆-free L-structure. Then there does not exist a m.e.c

with ultraproduct elementarily equivalent to M .

The proof is identical to that of Theorem 11.5.1, with RGB taking the place of RRG and

RGG.

Recall Theorem 3.2.4. Using this result, and the work of section 3.4, we now have enough to

show that there does not exist a m.e.c limit for any unstable homogeneous graph determined

only by forbidden triangles.

Theorem 11.5.4 Suppose L = {R,G,B} with R,G,B colours, ∆ is a non-empty set of

triangles such that C(∆) is a Fraïssé class with semi-free amalgamation, and M(∆) is

the Fraïssé limit of C(∆). Then if M(∆) is unstable, there does not exist a m.e.c with

ultraproduct elementarily equivalent to M(∆).

Proof. To complete this proof we need to rule out all possible ∆. Suppose for a

contradiction thatM(∆) is unstable and a m.e.c limit. We also know it has to be primitive by

Theorem 6.1.8. We can see from Theorems 11.5.1, 11.5.2, and 11.5.3 that we cannot have

any sets of the form {RRG,RGG}, {RRG,RRR} or {RGB} in ∆. Further by Theorem

3.4.10 and Theorem 3.4.7, we know that ∆ is not of the form {BRR,GGR,RRR} and that
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∆ is such that C(∆) has free amalgamation. By the fact that the Fraïssé limit is primitive,

we can see that any sets of the form {RRG,RRB} are not in ∆ either (as they form an

equivalence relation R=). This leaves with not many options. If we start with RRG ∈ ∆

then we cannot include a triangle that restrictsB in ∆ as this would mean we wouldn’t have

free amalgamation. Hence the only other triangle we can include in ∆ is GGG. Similarly

if we start with RRR ∈ ∆ then we can add either RGG or GGG, but no others. Note that

{RRR,RGG} is the same as {RRG,GGG} so we ignore it. This means the only options

for ∆ are

i) ∆1 = {RRG}

ii) ∆2 = {RRG,GGG}

iii) ∆3 = {RRR}

iv) ∆4 = {RRR,GGG}

We claim that the Fraïssé limits of the classes these define all cannot be m.e.c limits by

Theorem 3.2.4.

Indeed, consider M(∆1), then if you name a point x ∈ M(∆1), the red-neighbourhood

of x is a two-coloured graph with no restrictions, and therefore isomorphic to the random

graph. Hence the random graph is canonically embedded in M(∆1) over x and therefore

M(∆1) cannot be a m.e.c limit by Theorem 3.1.7 and Theorem 3.2.4. We see that M(∆2)

and M(∆3), follow by the exact same argument (in M(∆3) the random graph is coloured

by G and B but this makes no difference).

M(∆4) is a little different, the same process means that the red-neighbourhood of x, for

some x ∈ M(∆4), is instead the Random triangle-free graph (with G as edges and B as

non-edges) canonically embedded in M(∆4) over x. However this still has no m.e.c limit

by Theorem 3.1.7, and therefore we can apply Theorem 3.2.4 one last time to show that

M(∆4) has no m.e.c limit, and hence no such ∆ exists.
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Appendix A

Completeness of Cherlin’s List with

L = {R,G,B}

This appendix is dedicated to the proving of the following theorem.

Theorem 3.4.10 Let L = {R,G,B} be a symmetric, irreflexive, binary, relational

language and suppose M is a primitive universal homogeneous L-structure with semi-

free, but not free, amalgamation determined by a set of forbidden triangles. Then M is

isomorphic to M(∆) with

∆ = {RBB, GGB, BBB}

A.1 Set up for a General Coloured Language

Although the aim is to prove this result for a 3-coloured language, we can set up the notation

for a general n-coloured language, to make it easier to generalise. Therefore suppose we

are working over a binary relation language L = {A1, . . . An}, where Ai is symmetric and

irreflexive. We will be using the notation from Section 3.4.

The aim is to reduce the amalgamation problem for C(∆) to a particular set of finite L-

structures. These structures will not necessarily be in C(∆) and in actuality we shall see

in Theorem A.1.3 that the problems occur when they are. In a rough sense we set up these



218 A. COMPLETENESS OF CHERLIN’S LIST WITH L = {R,G,B}

L-structures around two distinct points b and c, in such a way that there cannot be a ∆-free

way of connecting b and c. We do this by including points ai as intermediaries between

them, connected in such a way to b and c as to force any edge between b and c to not be a

particular colour by some restricted triangle in ∆. If we do this for every colour then (b, c)

can’t be an edge of any colour. Note we will be able do this for every colour if we do not

have free amalgamation.

More formally, fix a set of forbidden triangles ∆. Suppose for a colour Ai ∈ L, we define

the set Ai as follows. Fix a set of forbidden triangles ∆ and consider a triangle δ ∈ ∆. If

one of the edges in δ is of colour Ai then we remove this edge and add the other two edges

into Ai as an unordered pair i.e. Ai = {{E2, E3} : A1E2E3 ∈ ∆}.

We first construct an L-structureD in the following way. Define a function h that takes as its

input an edge and returns the colour of the edge. Start with the vertices b and c and for each

colour Ai add a vertex ai and edges (b, ai) and (ai, c) such that {h(b, ai), h(ai, c)} ∈ Ai.

Now if we have vertices aj and ak such that h(b, aj) = h(b, ak) and h(aj , c) = h(ak, c),

we remove the vertex ak. This leaves us with a finite structure with less than or equal to

n + 2 points. We leave the colours of the edges between the ai’s unassigned (these will be

‘filled in’ later). Thus we have not defined an L-structure D, but a family of L-structures.

Definition A.1.1. We define the Discriminatory class, D(∆), as the class of all the possible

L-structures D as above for a specific ∆. We will call any specific D ∈ D(∆) a

Discriminatory Structure.

Now a rather confusing thing to mention, is that what we want is that whether or not C(∆)

is a Fraïssé class should hinge on whether or not every element of D(∆) can be completed

in a ∆-free way. This leads to the rather paradoxical seeming definition.

Definition A.1.2. We say a discriminatory structure is completeable in a ∆-free way if we

can assign colours from L to the edges (ai, aj) without creating any triangles in ∆.

A Discriminatory Structure is called flawed if it cannot be completed in a ∆-free way. D(∆)

is called flawed if for every D ∈ D(∆), D is flawed.

We then get the crucial theorem of the classification:
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Theorem A.1.3 Say ∆ is a set of n-coloured triangles and C(∆) is the class of all finite n-

coloured ∆-free L-structures. Then C(∆) has the strong amalgamation property iff D(∆)

is flawed.

Proof. (⇒) Suppose that D(∆) is not flawed. Then there is a D ∈ D(∆) such that D =

{a1, . . . , aj , b, c} is not flawed, for some j ≤ n. We view D a having been completed,

i.e. with colours assigned in ∆-free way to pairs {ai, aj} for i ̸= j (but not to {b, c}).

Therefore take A = {a1, . . . , aj} with B = {a1, . . . , aj , b} and C = {a1, . . . , aj , c}, with

the embeddings β and γ fromA toB andA to C respectively. AsD is not flawed,A,B and

C are all known to be ∆-free substructures, and hence are structures in C(∆). However, in

D, the edge (b, c) cannot be coloured as for all i ≤ j the edge pair (b, ai), (c, ai) eliminates a

set of colours as possibilities, which ultimately partition the set of all colours in L. Therefore

no amalgam of B and C over A exists in C(∆), except by possibly amalgamating b and c.

Furthermore any strong amalgamation of B and C over A must contain D as D = B ∪ C.

Hence C(∆) does not have the strong amalgamation property.

(⇐) Suppose D(∆) is flawed. Consider A,B1, B2 ∈ C(∆) with embeddings α1 : A→ B1

and α2 : A → B2. Then we can identify the image of A in each of these structures

such that α1(A) = α2(A) and B1 ∩ B2 = α2(A). Then define C = B1 ∪ B2. Now

all the internal edges of B1 and B2 are preserved within C, hence for this to solve the

amalgamation problem, all we need to check is the new edges, i.e. the ones between points

in B1\α2(A) and B2\α2(A). So take b1 ∈ B1\α2(A) and b2 ∈ B2\α2(A).

Suppose for a contradiction that the edge (b1, b2) cannot be coloured in a ∆-free way. This

means that there exist pairs of edges between b1 and b2 and, for each i = 1, . . . , n, some aj

for j ∈ {1, . . . , n} such that {h(b1, aj), h(b2, aj)} ∈ Ai. Let I be the index set of the j’s,

then |I|≤ n. Therefore, the induced substructure over {b1, b2, a1, . . . , a|I|} is isomorphic to

a structure that is in D(∆). However as D(∆) is flawed, this structure cannot exist in ∆-free

way. This is a contradiction and therefore such ai cannot exist. Using this, we can colour

(b1, b2). Using the same argument, we can assign colour to (b, b2) for all b ∈ B1\α2(A).

Then, we can treat b2 as if it were part of α2(A) and repeat the process for all other elements

ofB2. Including all these edges into our C, we get a legitimate ∆-free strong amalgamation

of B1 and B2 over A. Therefore C(∆) has the strong amalgamation property.
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We can note that C(∆) will have the free amalgamation property if and only if for some

colour Ai, Ai is empty.

A.2 Three colours

We shall now assume that L = {R,G,B}, with the aim of proving Theorem 3.4.10

Lemma A.2.1 Over the language L = {R,G,B}, if |∆|= 1, then C(∆) has free

amalgamation or D(∆) is not flawed.

Proof. It is clear that if all the colours are not banned in some way, then we can simply

complete the amalgamation by filling in all the edges with that colour, giving us free

amalgamation. That leaves us the sole option of ∆ = {RGB}. However by then examining

the discrimination class we can find the discriminatory structure

b c

a1

a2

a3

This can be completed in a ∆-free way and hence D(∆) is not flawed.

We see that this discriminatory structure remains a problem whenever RGB ∈ ∆ and

because it can be completed in multiple different manners, it requires the inclusion of a few

more triangles to make it flawed. Recall that the relation X= is X∪ =.

Corollary A.2.2 Suppose L = {R,G,B} and RGB ∈ ∆. Then either C(∆) has free

amalgamation, or it has an imprimitive Fraïssé limit or D(∆) is not flawed.
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Proof. Suppose RGB ∈ ∆ and consider the discriminatory structure,

b c

a1

a2

a3

Note that we can also permute the colours to create 2 more similar structures. Let S be

the set of all completions of these three structures in an {RGB}-free way. Then S will

have size 9. To make these structures flawed we would need to add triangles into ∆ such

that every member of S includes at least one of these triangles. We want to find the most

efficient way to do this. It is not possible with only 1 triangle as no triangle is common to all

completions. If we focus only on triangles of the form XXY we see that every completion

contains all but 2 of them, and this pair of absentees is unique to the structure. Therefore

to cover all of these structures with two triangles it satisfies to find two of the form XXY

that are not an absent pair. As we have 15 options, and only 9 pairs in our completions, this

gives us 6 possibilities. However each of these possibilities is of the form {XXY,ZZY }

or {XXY,XXZ}; the latter will mean that X= will form a nontrivial equivalence relation

and the former, when combined with the fact RGB is in ∆, will mean X= ∪ Z= is an

equivalence relation. A Fraïssé limit of such a class would therefore be imprimitive.

Hence |∆|> 3. However there is no way to include three triangles of the form XXY and

RGB in ∆ without forming a definable non-trivial equivalence relation, as before.

Hence we can now assume that RGB is not in ∆. This immediately leads to the result

Corollary A.2.3 Suppose L = {R,G,B} and {RRR,GGG,BBB} ⊆ ∆. Then either

C(∆) has an imprimitive Fraïssé limit or D(∆) is not flawed.

Proof. First note that we cannot have free amalgamation. Then by Corollary A.2.2, if
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RGB ∈ ∆ we are done, so suppose it is not. In D(∆) we have the structure

b c

a1

a2

a3

Now there exists a completion of this such that (a1, a2) is Blue, (a2, a3) is Red and (a3, a1)

is Green. This completion is entirely made up of only the triangle RGB, and so cannot be

flawed without RGB ∈ ∆.

Any ∆ cannot contain more than three triangles of the formXXY without necessitating the

forming of a quantifier-free definable equivalence relation. We see that there are only two

non-isomorphic ways in which three of the XXY triangles might be in ∆ without forming

a quantifier-free definable equivalence relation. This leads to

Corollary A.2.4 • Suppose L = {R,G,B} and |∆|> 5. Then either C(∆) has an

imprimitive Fraïssé limit or D(∆) is not flawed.

• If |∆|= 5, then either ∆ = {RRR,GGG,RRG,GGB,BBR} or ∆ =

{RRR,GGG,RRG,GGR,BBR}, or C(∆) has an imprimitive Fraïssé limit or

D(∆) is not flawed.

However we can also rule out the only combinations of three triangles of the form XXY

that don’t form equivalence relations

Lemma A.2.5 Suppose L = {R,G,B} and {RRG,GGB,BBR} ⊆ ∆. Then either

C(∆) has an imprimitive Fraïssé limit or D(∆) is not flawed.
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Proof. Suppose that {RRG,GGB,BBR} ⊆ ∆. Then

b c

a1

a2

a3

is a discriminatory structure. We can complete it by making (a1, a2) green, (a2, a3) blue

and (a3, a1) red. Therefore the only triangles in this completion are RGB,GGR,RRB

and BBG, none of which we can include in ∆ without inducing a definable non-trivial

equivalence relation, or other non-flawed discriminatory structures.

And

Lemma A.2.6 Suppose L = {R,G,B} and {RRG,GGR,BBR} ⊆ ∆, then either C(∆)

has an imprimitive Fraïssé limit or D(∆) is not flawed.

Proof. Suppose that {RRG,GGR,BBR} ⊆ ∆. Then

b c

a1

a2

is a discriminatory structure. We can complete it by making (a1, a2) blue, and therefore the

only triangles in this completion are RRB and GBB, neither of which we can include in

∆ without inducing a definable non-trivial equivalence relation.

Corollary A.2.7 Suppose L = {R,G,B} and |∆|= 5, then either C(∆) has an

imprimitive Fraïssé limit or D(∆) is not flawed.
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We also know now that if |∆|≥ 3, then ∆ contains a triple XXX and so we focus on

possibilities for such ∆.

Lemma A.2.8 Suppose L = {R,G,B} and {RRR,GGG,RRB} ⊆ ∆. Then either

C(∆) has an imprimitive Fraïssé limit or D(∆) is not flawed.

Proof. If {RRR,GGG,RRB} ⊆ ∆, we get the following discriminatory structure

b c

a1

a2

This can be completed by colouring (a1, a2) blue, and hence the only way to make this

flawed is with RGB ∈ ∆. But by Corollary A.2.2 this can’t happen without D(∆) being

flawed or allowing a non-trivial equivalence relation.

We can similarly rule out another important combination

Lemma A.2.9 Suppose L = {R,G,B} and {RRR,GGR,BBG} ⊆ ∆. Then either

C(∆) has an imprimitive Fraïssé limit or D(∆) is not flawed.

Proof. If {RRR,GGR,BBG} ⊆ ∆, we get the following discriminatory structure

b c

a1

a2

a3

This can be completed by colouring (a1, a2) blue, (a2, a3) red and (a1, a3) red. Hence

the only way to make this flawed is by having RRB,RRG or RBG in ∆. But we can’t
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have RRB ∈ ∆ without the consequences of Lemma A.2.5, we can’t have RRG without

the consequences of Lemma A.2.6, and we can’t have RBG without the consequences of

Corollary A.2.2.

Corollary A.2.10 Suppose L = {R,G,B} and |∆|= 4. Then either C(∆) has free

amalgamation, has an imprimitive Fraïssé limit or D(∆) is not flawed.

Proof. Suppose |∆|= 4 and C(∆) doesn’t have free amalgamation or an imprimitive Fraïssé

Limit. Then by Corollary A.2.2, RGB /∈ ∆, by Lemmas A.2.5 and A.2.6 we have a

maximum of two triangles of the form XXY , and by Corollary A.2.3, we have a maximum

of 2 monochrome triangles. Therefore the options for ∆ are

i) {RRR,GGG,RRB,GGB}

ii) {RRR,GGG,RRB,BBR}

iii) {RRR,GGG,RRG,GGB}

iv) {RRR,GGG,RRG,BBR}

However i), ii) and iii) come under the jurisdiction of Lemma A.2.8 and iv) is dealt with by

Lemma A.2.9.

We will now rule out small ∆s too

Lemma A.2.11 Suppose L = {R,G,B} and |∆|= 2. Then either C(∆) has free

amalgamation, has an imprimitive Fraïssé limit or D(∆) is not flawed.

Proof. To avoid free amalgamation each colour must appear in our triangles at least once.

To avoid a definable non-trivial equivalence relation we have the following possibilities:

i) ∆ = {RRG,GGB}

ii) ∆ = {RRR,GGB}

iii) ∆ = {RRG,GBB}
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Say we have i). We can see however the discriminatory structure

b c

a1

a2

a3

(A.2.1)

is not flawed in the determining class.

Now suppose we have ii). Then we have a non-flawed discriminatory structure:

b c

a1

a2

a3

(A.2.2)

This leaves just case iii). However we can find the discriminatory structure

b c

a1

a2

a3

(A.2.3)

which is not flawed. Therefore, |∆|̸= 2

As has been the case in most of these proofs, these discriminatory structures can be pushed
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further and used to rule out certain ∆ that embed them.

Corollary A.2.12 Suppose L = {R,G,B} and |∆|= 3, and one of the following holds

1. {RRR,GGB} ⊆ ∆

2. {RRG,GBB} ⊆ ∆

Then either C(∆) has an imprimitive Fraïssé limit or D(∆) is not flawed.

Proof. First start with {RRR,GGB} ⊆ ∆ and look at the discriminatory structure A.2.2.

This was completed by making (a1, a2) green, (a2, a3) red and (a1, a3) green, hence the

only way to make it flawed is to include RGB or GGR in ∆. Now GGR cannot be

included without forming a definable non-trivial equivalence relation, and RGB can’t by

Lemma A.2.2

Now we suppose {RRG,GBB} ⊆ ∆ and look at the discriminatory structure A.2.3.

This can be completed by making (a1, a2) blue, (a2, a3) green and (a1, a3) green. Now

this completion includes triangles GGR,BGG,RRB and RGB. If RRB was in ∆ we

would end up with a non-trivial equivalence relation. Including GGR in ∆ invokes the

consequences of Lemma A.2.6, and if BGG were in ∆ we would be in the domain of

Lemma A.2.5. Then as always Corollary A.2.2 covers the inclusion of RGB.

We are now at the point where we know ∆ has to be of size 3 and has to include at least

one monochrome triangle XXX . It also cannot include all monochrome triangles, and if

we suppose it has two there is only one possibility if it does not have free amalgamation.

We shall consider this next

Lemma A.2.13 Suppose L = {R,G,B} and ∆ = {RRR,GGG,RBB}, then D(∆) is

not flawed.
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Proof. Simply note we have the discriminatory structure

b c

a1

a2

a3

This is not flawed as it can be completed in a ∆-free way by making (a1, a2) blue, (a2, a3)

blue, and (a1, a3) green.

Hence we have a maximum of one monochrome triangle in ∆.

You will now be relieved to hear we have enough to prove the theorem

Theorem 3.4.10 Let L = {R,G,B} be a symmetric, irreflexive, binary, relational

language and suppose M is a primitive universal homogeneous L-structure with semi-

free, but not free, amalgamation determined by a set of forbidden triangles. Then M is

isomorphic to M(∆) with

∆ = {RBB, GGB, BBB}

Proof. For this we shall just bring together all the previous results. Suppose M is a

universal homogeneous L-structure without free amalgamation or a definable equivalence

relation. As M does not have free amalgamation and is determined by forbidden triangles,

we know that M is isomorphic to M(∆) for some set of triangles ∆. Now by Theorem

A.1.3 we know that D(∆) is flawed. Hence we can see by Lemmas A.2.1 and A.2.11,

and Corollaries A.2.4, A.2.7 and A.2.10, that |∆|= 3. Now we know RGB /∈ ∆ by

Corollary A.2.2. Further by Lemmas A.2.5 and A.2.6, ∆ must contain a monochrome

triangle. However by Lemmas A.2.3, A.2.8 and A.2.13, ∆ can only contain a maximum of

one monochrome triangle. Hence we have BBB ∈ ∆ and two triangles of the form XXY .

By Corollary A.2.12 part i) neither of these XXY can be without the colour B. To avoid
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free amalgamation or a non-trivial equivalence relation we have but one option, which is

∆ = {RBB, GGB, BBB}
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Appendix B

3-coloured Graph Notation

This is a list of the more novel and obscure notation that I commonly use throughout the

work on 3-coloured graphs.
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Notation Meaning Where is it defined?

E= The relation E union with equality Definition 2.1.11

qijk The Krein Parameter Equation 2.2.2

R, B, G Binary, symmetric, irreflexive relations Section 4.1
relating to the colours red, blue and green

n Number of vertices in the Graph Section 4.1

AR, AB , AG Adjacency matrices of the red, blue, green edges Section 4.1

ri, si, ti Non-principal eigenvalues for the Ai Section 4.1

pijl The double intersection number Section 4.1

ki Number of i coloured edges incident at any vertex Section 4.1

J The all one matrix (of any dimensions) Section 4.1

u The all one vector (of any dimension) Section 4.1

I The identity matrix (of any square dimensions) Section 4.1

Ei The minimal idempotents of the Bose-Mesner algebra Theorem 2.2.2
generated by the Ai

N i
jl Adjacency matrix of i coloured edges Section 4.1

from the l-neighbourhood to the j-neighbourhood

rij , sij , tij Eigenvalues of N i
jj Section 4.1

pabcijk Triple intersection number Section 4.1

δij Kronecker Delta Classical

f, g, h Multiplicities of ri, si, ti respectively Equation 4.1.4

αi, βi, γi Idempotent constants Equation 4.1.4

D A notable structural constant Equation 4.1.5

rx or (rm, rj , rl) Eigenvalue triple of rm, rj and rl Definition 7.1.10

E(rx) or E(rm, rj , rl) Eigenspace of the eigenvalue triple Definition 7.1.10

rxm Eigenvalue of Nx
mm for any x Section 7.2

vrm Eigenvector of Nx
mm with eigenvalue rxm for any x Definition 7.2.2

Dxy
mj Discriminant of equation 7.4.3 in x and y Equation 7.4.5

µi The multiplicity of an eigenvalue, which depends on i Definition 8.1.1

(λi)j An eigenvalue of the graph, which depends on i and j Definition 8.1.1

Hi Characteristic matrices of an eigenspace Equation 8.1.2

Ki, Li, Mi Breakdown of the Hi into neighbourhoods Equation 8.1.3

xj(r), yj(r), zj(r) Constants defined via the eigenvalues of the neighbourhood Equation 8.2.5

ϕi x, y or z depending on i (in relation to the above constants) Equation 8.2.5

(Πm)i One of the K,L or M matrices, depending on m and i Equation 9.2.1

Bxy Constant used in Eigenvector case Equation 11.2.2
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