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Abstract

This Thesis is primarily motivated by a conjecture of Anscombe, Macpherson, Steinhorn
and Wolf [2]. The conjecture states that, for a homogeneous structure M over a finite
relational language, M is elementarily equivalent to the ultraproduct of a ‘multidimensional
exact class’ if and only if M is stable. The right to left statement has already been verified,
and so our focus is on the left to right. In this thesis, we confirm the conjecture for certain
unstable homogeneous structures such as the universal metrically homogeneous graph of
diameter k, the universal homogeneous two-graph and various others, such as the 28 ‘semi-
free’ edge-coloured homogeneous graphs described by Cherlin in the appendix of [16]. We

also provide some mechanisms for answering the question for other unstable structures.

The core of this thesis is about finite ‘n-regular’ 3-edge-coloured graphs. For any given n, a
classification of sufficiently large n-regular 3-edge-coloured graphs is expected to yield
a proof of the ‘m.e.c’ conjecture in the case of the universal homogeneous 3-coloured
graph, and indeed, our results yield some further special cases of the ‘m.e.c’ conjecture.
The main focus is on finite ‘3-regular’ 3-coloured graphs. We classify such structures
under certain conditions: when they possess a ‘complete neighbourhood’, when they are
‘monochromatic-triangle-free’ and if we increase to ‘4-regularity’ we can classify the
imprimitive case as well. In the other scenarios, we employ methods from the theory of
association schemes, together with linear algebra, to give a description of the eigenvalues
and/or eigenvectors of the neighbourhoods with respect to a base point. We also describe
the two known primitive examples of such graphs and prove they are actually homogeneous,

which implies n-regularity for each n.
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Chapter 1

Introduction

This thesis is really the coming together of two different mathematical tales. On the one
side we have the notion of Asymptotic Classes within the burgeoning topic of pseudofinite
model theory, and on the other the classical study of symmetry and regularity conditions in
combinatorics. As such, I have written this thesis with the intent that it is accessible to an
interested party from either field. You must therefore forgive the author if some of it feels
patronisingly basic. It’s my aim to include every definition you will need in the Prerequisites
2] However I understand my limitations and so if you want to look to my betters for help, my
personal favourite references for background are; General Model Theory: [36], Asymptotic

classes: [2], Strongly Regular Graphs:[[10], and Association Schemes: [23]].

This introduction has some grand aims. Its purpose is to set up the thesis in such a manner
as to make you interested in its content, as well as outlining the tale of how this thesis came

to be.

1.1 History and Motivation

As previously mentioned, this thesis is borne of the meeting of two different fields of study,
and so we will outline both in turn. The over-arching motivations for this thesis perhaps
stem more from the model theoretic notions, and certainly that was the initial emphasis. As

such, it seems only prudent to start our story there.

As is commonly known, the work of Zoé Chatzidakis, Lou van den Dries and Angus
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Maclntyre in 1992 discovered the following Theorem:

Theorem 1.1.1 (Main Theorem, [15]) Let ¢(Z,y) be a formula in the language of rings
Liing = {0,1,4+,—,-}, where n := I(Z) and m := l(y). Then there exist a constant
C € R and a finite set D of pairs (d, ) € {0, ...,n} x Q7 such that for every finite field
Iy and for every a € " if o(Fy, a) # 0, then

_1
|o(Fy, a)|—pg?| < Cq'~> (1.1.1)

for some pair (d, u) € D. Moreover, the parameters are definable; that is, for each (d, ) €

D there exists an Ling-formula ¢ g ,,) () such that for every ¥y, By = ¢(q (@) if and only
if a satisfies|1.1.1|for (d, u).

It is really from this that the notion of an asymptotic class is derived. Indeed, from
Macpherson and Steinhorn [35], we can think of a I-dimensional asymptotic class as a
class of finite structures in some language that satisfies the conclusion of this theorem (with
some small modification). Generalising even further, Richard Elwes [21]] then develops the
idea of an asymptotic class, which is in general just a higher (but still finite) dimension

version of the same concept.

The idea is then later generalised once more in [2] into the notion of a multidimensional
asymptotic class of finite structures (Definition [2.5.2)). Here we no longer worry about
the form of the functions giving approximate cardinalities, and allow different parts of
a structure to vary independently, whilst keeping that any uniformly definable family of
definable sets has (across the class of structures) a fixed number of (approximate) sizes.
We then also have the sister concept of a multidimensional exact class or m.e.c (of finite
structures), which drops the word ‘approximate’, so instead any uniformly definable family
of definable sets has a fixed number of exact sizes. It is this idea that is most relevant to this

thesis.

We roughly say that an infinite structure is a m.e.c limit if there exists a m.e.c which can
roughly approximate it. More formally there will exist an ultraproduct of the m.e.c that is
elementarily equivalent to the structure. Asking questions like ’does there exist a m.e.c limit

for the Random Graph?’ inherently forces us to consider the finite graphs that would make
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up such a m.e.c. These questions therefore necessitate us to delve into the study of finite

structures.
In particular, we shall be asking these questions of homogeneous structures.

Definition 1.1.2 (Page 10, [11]). Let M be a countable L-structure. We say M is
homogeneous if any isomorphism between finite induced substructures of M can be

extended to an automorphism of M.

The motivating question for this thesis was the following conjecture:

Conjecture ([2] Conjecture 4.1.4) Let M be a homogeneous structure over a finite
relational language L. Then there is an m.e.c with ultraproduct elementarily equivalent

to M if and only if M is stable.

The backwards direction was confirmed by Daniel Wolf in [49]], and so just the forwards
direction remains. In [2] the authors tackle a few particular cases, the unstable homogeneous
graphs, certain tournament-free digraphs and the random bipartite graph. The latter has a
particularly interesting proof, drawing on results from [25] to show that any sufficiently
large member of such a m.e.c. is a perfect matching or complete. We employ similar

techniques in this thesis when we discuss the ‘imprimitive’ cases in Chapter [6]

Another crucial idea in this thesis is how the larger finite structures in a m.e.c.
approximating a homogeneous structure will have a high degree of combinatorial regularity.
In particular, it is shown in [2]] that sufficiently large members of any m.e.c approximating
the Random Graph must satisfy strict combintorial regularity conditions, namely they must

satisfy n-regularity:

Definition 1.1.3. A finite structure M in a finite relational language £ is said to be n-regular
if for any n-tuple  and formula ¢(z, ) the size of the set p(M,y) = {z e M : M E
¢(x,y)} is determined only by the isomorphism type of 3.

It is this discovery that propagated into the second half of the thesis. The authors of [2]
use the classification of 5-regular graphs [9] to show that such highly regular graphs do
not satisfy the properties required for a m.e.c with ultraproduct elementarily equivalent

to the Random Graph. The next obvious question is, what about structures that are very
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similar but with slight adjustments? The initial candidates that were discussed were the
universal homogeneous digraph, the universal homogeneous RGB graph and the universal

homogeneous 3-hypergraph.

Due to the similarity of the material to [[12], the first structure which I opted to tackle was

the RGB. More formally the definitions we need are the following

Definition 1.1.4. A graph, G, is 3-edge-coloured or, in this thesis, simply 3-coloured, if
there exist three binary, symmetric, irreflexive relations (colours), such that every unordered
pair of vertices in G satisfies exactly one of these relations.

The universal homogeneous RGB graph is the Friissé limit (Definition [2.4.14) of the class

of all finite 3-coloured graphs.

We can think of this as the countably infinite homogeneous 3-coloured graph that embeds
all finite 3-coloured graphs. It quickly became apparent that adapting the methods of [12]
(in conjunction with [8]]) to the 3-coloured case could only take me so far. That being said,
the set up and the ideas that stemmed from the attempt seemed to me to be quite promising.
Considering the interaction of the neighbourhoods of a base point (as was done in [12]]) led
to different cases. Each case came with its own host of conditions that had to be satisfied,
some of which appeared to me to be impossibly limiting. It also seemed to me that, on the
way to ruling out the exact class case, I may as well attempt a full classification of the finite

3-regular 3-coloured graphs. And so the direction of the thesis shifted towards this goal.

We can roughly think of a graph as a network of points with some edges between them.
The graphs of particular interest to this thesis of those with high levels of combinatorial
regularity. n-regularity has a natural application to graphs, and in particular 1 and 2-regular
graphs have been of great interest to mathematicians. In the literature, a 1-regular graph is

generally referred to as a regular graph and a 2-regular graph as a strongly regular graph.

Strong regularity is a fairly limiting condition, however nowhere near enough to consider a
classification of such graphs a likely proposition (at least right now). That being said, when
the regularity of the graph is witnessed by its automorphism group, we can actually say a
lot. For example, we say a transitive permutation group is rank 3 if the stabiliser of any

point has exactly 3 orbits (Definition [2.3.4). Now by [27], rank 3 permutation groups of
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even order produce strongly regular graphs. By the work of Liebeck [32] and Liebeck and
Saxl [33]], the finite rank 3 permutation groups were classified, and so this particular class

of strongly regular graphs is completely understood.

Rank three permutation groups actually have implications for graphs with higher levels
of combinatorial regularity as well. The work of Smith in [43] gives a description of a
particular class of rank 3 permutation groups, which are then shown by Cameron, Goethals
and Seidel [Theorem 6.5, [12]]] to potentially correspond to graphs that are ‘almost 3-
regular’ (the neighbourhoods of a particular base point are strongly regular). Cameron,
Goethals and Seidel further determine that these ‘almost 3-regular’ graphs are either Smith
Graphs (as described in [43])), graphs of pseudo or negative Latin square type, or the
Pentagon. The corresponding group theoretic classification of finite 3-homogeneous (a
weakening of homogeneity but only for isomorphisms on substructures of size at most 3)
graphs was then given by Cameron and Macpherson in Theorem 1.1 in [13]], showcasing

once again just how useful it is to have the group around.

The story is then picked up with one of Cameron’s doctoral students, Buczak. In their thesis
[8, Buczak provides a classification of 4-regular graphs, which is then used by Cameron
again in [9] to classify 5-regular graphs (and n-regular for n > 5 too). We seek to emulate

these efforts with 3-regular, 3-coloured graphs.

To do this it will be best to both make use of similar methods and also recent advances
in the related field of association schemes. An association scheme can be thought of a set
of commutative square Ol-matrices that sum to give the all 1 matrix and are closed under
transposition (Definition[2.2.T)). The adjacency matrices of strongly regular graphs, together
with the identity matrix, will form an association scheme for instance. In a similar fashion,
these schemes can also be used to represent n-coloured graphs that are 2-regular. In 1999,
Van Dam looks at symmetric 3-class association schemes (which correspond to 3-coloured
2-regular graphs) in his paper [47]. This work, especially his study of amorphic cases
(Definition [4.3.T)) was very influential and helpful.
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1.2 Literature Review

The current literature surrounding the topics for this thesis is mainly split into three
categories. We have the recent work of model theorists on pseudofinite structures, the older
papers on combinatorial regularity, and then the more recent work on regular structures and

three-class association schemes.

For pseudofinite structures, and in particular the study of m.a.c.s and m.e.c.s, the current
state of affairs is best expressed in the manuscript of Anscombe, Macpherson, Steinhorn

and Wolf [2]].

For work on combinatorial regularity in finite structures there have been some recent
movements, but a lot of the crucial work is much older. The work by Delsarte, Goethals and
Seidel [20] sets up the notion of spherical 2-distance sets and discusses its consequences.
We then get [[12] which applies these notions to the ‘almost’ 3-regular case, followed by the
work of Buczak [8] on 4-regular graphs, and Cameron again on 5-regular and 6-transitive

graphs in [9].

For more recent work on three-class association schemes and probably most closely related
to this thesis is the work of Van Dam [47]. Here he provides stipulations for when a three-
class association scheme can exist, and lists all potential examples with under 100 vertices.
Other work is more tangential, Jaeger [30] completes work on triply regular association
schemes (not necessarily three class) in the context of spin models. Here he gives necessary
and sufficient conditions for the existence of triply-regular Bose-Mesner Algebras in the
language of spin models. This is followed up by Suda [44] who gives a sufficient condition
for a triply regular association schemes, using tight spherical designs. He even shows that
every tight 4,5 or 7 design gives a triply regular association scheme. Suda also mentions
the concept of real mutually unbiased bases and linked systems of symmetric designs, and
shows that these also carry a triply regular association scheme (given certain conditions for

the linked system of symmetric designs).

In a very similar area, although using different methods, there has recently been a
classification of finite highly regular vertex-coloured graphs by Heinrich, Schneider,

and Schweitzer in [25]. The motivations for this paper come from the Weisfeiler-
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Leman algorithm [48]], a powerful tool for graph isomorphism and automorphism group
computation. The interest in this algorithm comes from Babai’s very important ‘Graph
isomorphism in quasi-polynomial time’ [3]]. The methods in this paper utilise an interplay
between local and global symmetry of a graph, and the general principle that a graph with
high amount of combinatorial regularity will often have a high degree of symmetry too. It

makes sense that combinatorial regularity will play a large part in future work in this field.

1.3 Outline of Thesis

This thesis is very large and I apologise profusely for this. It (hopefully) makes up for the
length with some interesting results however.

In Chapter [2]T have put most of the set up, the main introductions to the different fields of
study, technical definitions and rudimentary theorems. There is also a breakdown of some

of the more influential papers and the theory they introduce.

Chapter |3| is where I have deposited the work I have done on Multidimensional Exact
classes. The main result is Theorem [3.2.4] which roughly states that if you can identify
a homogeneous structure /N with no m.e.c limit within another homogeneous structure M,

then M has no m.e.c. limit either. This is used to prove the following theorem:
Theorem 1.3.1 There does not exist a m.e.c with ultraproduct elementarily equivalent to
any of the following structures:

1. The universal metrically homogeneous graph of diameter k for any k (Theorem
B.27,

2. The universal homogeneous two-graph (Theorem[3.2.11)),

3. Any other unstable reduct of the random graph (Theorem|3.3.9),

4. The universal homogeneous n-tournament-free digraph (Theorem[3.4.5)),

5. The primitive universal homogeneous semi-free 3-edge-coloured graph determined

by forbidden triangles (Theorem and Theorem[[1.5.4),

6. Any of the known primitive universal homogeneous semi-free, but not free, 4-edge-

coloured graphs determined by forbidden triangles (Theorem[3.4.9).



8 1. INTRODUCTION

7. Any homogeneous unstable imprimitive 3-coloured graph (Theorem|[6.1.8)

After this we move on to work on specifically finite 3-coloured graphs and high levels of
regularity. The aim here is to provide results that work towards showing that the universal 3-
coloured random graph is not a m.e.c limit. The basic notations and definitions are given in
Chapter 4] some examples are given in Chapter [5|and some results on the imprimitive case
in[6] This culminates in Theorem [6.1.4] which describes the possible imprimitive examples

we might have, and then Theorem [6.1.8] which tells us that they can’t form a m.e.c.

Next in Chapter [/ we set the foundations for the mechanisms we will use throughout
the thesis. This primarily involves applying linear algebraic and combinatorial results to
the multiple scenarios that arise, and discussing their feasibility. The key result from this
chapter is Theorem [7.6.20] which rules out certain triangle-free possibilities. However there

is a host of very powerful lemmas too.

Chapter [8]is an attempt to generalise the work of [12] to the 3-coloured scenario. Due to
the added complexity the extra colour brings this is difficult to do, however we can still get
results in certain situations. Theorem [8.2.22]in particular provides very strong information,

which we then use in Chapter [9]

In Chapter 9] in particular Theorem [9.3.3] we entirely classify the primitive case in which
we have a complete neighbourhood, by showing it can only be the Tricolour Heptagon
(Definition 5.2.1). Similar work is done in Chapter [I0] where we continue looking at
some triangle-free cases. We remove the possibility of any three-coloured triangle being
omitted in Theorem [I0.1.1] entirely describe the case when we have a single two-coloured
triangle omitted in Theorem [10.2.13|and provide a full classification when we have all three

monochromatic triangles omitted in Theorem [10.3.1]

The final chapter, Chapter [IT] works to provide knowledge about the cases we have left,
generally with all triangles present and various other limiting conditions. This culminates
in a description of all the eigenvectors of every possible case we could have in Theorem
[IT.4.2] Some of the implications of this work with respect to m.e.cs are discussed in Section
[I1.5] and this culminates in Theorem [T1.5.4) where we show any unstable universal semi-

free 3-edge-coloured graph determined by forbidden triangles can’t be ‘approximated’ by a
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m.c.C.

You’ll be glad to know it doesn’t end there, we also have an Appendix. This includes the
proof of the uniqueness of the primitive universal semi-free 3-edge-coloured graph. This is
relevant to Section [3.4] and is unpublished work I completed as part of a research project

before my PhD (although it had to undergo extreme editing).
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Chapter 2

Prerequisites

2.1 Graph Theory

This section is based of definitions and basic results from [7]] about graphs.

Definition 2.1.1. A graph is a set V of vertices equipped with a binary relation F. It is said

to be simple if E is symmetric and irreflexive.

All the graphs in this thesis will be considered to be simple graphs unless stated otherwise.

We also look at variations of graphs with differing languages.

Definition 2.1.2. A digraph is a graph where F is anti-symmetric and irreflexive. An n-
coloured graph is a graph but equipped with n symmetric irreflexive binary relations that

partition the set of ordered pairs of distinct elements of V.

Note that in this thesis, we shall always use the term coloured graph to refer to edge-
colourings, not vertex-colourings.
We see that a 2-coloured graph is the same thing as a graph, with non-edges being replaced

with a colour.

Definition 2.1.3. An m-hypergraph is a set of vertices equipped instead with an m-ary
symmetric, irreflexive, edge relation E,,, so the edges are m-sets. For any 3-tuple (z,y, 2),
symmetric here will mean that if (z, y, z) is an edge, then so is any permutation of z, y and

z, and irreflexive means that if x, y and z are not distinct then (x, y, z) is not an edge.
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We will now define some of the more common terminology I use throughout the thesis.

Definition 2.1.4. A neighbour of a vertex x in a graph I, is any other vertex adjacent to x

in I'. A neighbourhood of a vertex, z, is the induced subgraph on all the neighbours of z.
We will also refer to neighbourhoods defined via colours or directions.

Definition 2.1.5. A graph is regular if every vertex is connected to the same number, k,
of other vertices, the number being known as the degree of the graph. A graph is strongly
regular if it is regular and the number of common neighbours of any two distinct vertices is

entirely determined by whether they are adjacent or not.

In a strongly regular graph, the number of common neighbours of two adjacent vertices
is classically referred to as A and the number of common neighbours of two non-adjacent

vertices is referred to as .

Lemma 2.1.6 The complement of a strongly regular graph is also strongly regular.

A strongly regular graph together with its complement are known as complementary

strongly regular graphs. We can extend the notion of strong regularity further.

Definition 2.1.7. A graph is n-regular if for any subset X of the vertex set, such that
| X' |< n, the number of vertices adjacent to every x € X is a fixed number determined only

by the isomorphism type of the induced subgraph on X.

Although this may seem slightly different from the general definition [I.1.3] they work out
as the same by inclusion-exclusion principle. It follows that the definition of a strongly

regular graph and a 2-regular graph are the same. We can note the lemma.

Lemma 2.1.8 If a graph is n-regular then the neighbourhood and non-neighbourhood of

each vertex is n — 1-regular.
Graphs also can be looked at in terms of linear algebra.

Definition 2.1.9. Enumerate the vertices of a graph I" with vertex set of size n. Then the
adjacency matrix, A, of a graph is the n x n matrix, where if 4 and j are vertices, then
(A)ij = 1if (¢,7) € E and 0 otherwise.

Similarly in an m-coloured graph T',,,, for an edge relation Fj, the Adjacency matrix A; of
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lin I'y,, is the n x n matrix, where if ¢ and j are vertices, then (4;);; = 1if (¢, j) € E; and
0 otherwise.

For digraphs it is a little different. The adjacency matrix, A, of a digraph is the n x n matrix,
where if 7 and j are vertices, then (A);; = 1if (i,5) € E, (A);; = —1if (i,j) € E_ and

0 otherwise.

The condition of strongly regular imposes quite a few conditions on the adjacency matrix.
We get that
A% = kT + MA + pu(A)

where A = J — A — I, with J being the all ones matrix.
From [Page 1, [[7]] we can note that the all-ones vector u is an eigenvector of A if and only
if A represents a regular graph. u will then have eigenvalue k in A (where k is the degree

of the graph) and is known as the principal eigenvalue.

The other eigenvalues are known as the non-principal eigenvalues. In a strongly regular
graph with adjacency matrix A, A has two distinct non-principal eigenvalues, r and s, with

multiplicities f and g respectively.

Theorem 2.1.10 ([14], Theorem 2.16) Suppose that G is a strongly regular graph with
parameters (n,k, \, ). Then it has 2 non-principal eigenvalues r,s with respective

multiplicities f, g as follows:

ris= g (=t VO P 4 A )
(n— 1)~ A) — 2k
V=22 +4(k — p)

1
f7g:§(’l)—1i

Further f and g must be non-negative integers.

Note that the values of f and g must be non-negative integers. Note that a trivial equivalence
relation is one where everything is considered equivalent, and a proper equivalence relation
is one where there exists at lease one equivalence class with size greater than one (i.e. any

equivalence relation that isn’t just equality).

Definition 2.1.11. A graph, I, is called imprimitive if either U = (the union of E with

equality, denoted £=) or (—E)U = form a proper nontrivial equivalence relation. It is
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called primitive otherwise.
Another important concept is that of n-extension.

Definition 2.1.12. A graph satisfies the n-extension axiom if for any two disjoint sets of

size n, say X and Y, there exists a vertex connected to every vertex in X and none in Y.

An example of a graphs which satisfy this axiom for large n would be (sufficiently large
relative to n) Paley graphs. These are the graphs defined via the following process: Let p be
a prime power such that p = 1 mod 4. Then let V' = {1, ..., p} and say ¢ is connected to j
if and only if (¢ — j) is a square in the finite field F,,. This forms a strongly regular graph
which when we take sufficiently large p (relative to n) satisfies n-extension [5]].

Finally, I will define two model theoretic terms in the context of graphs.

Definition 2.1.13. A graph is homogeneous if it is a finite or countable graph such that
every isomorphism between induced finite subgraphs can be extended to an automorphism.
A graph is called universal for a family of graphs F, if it contains every graph in F as an

induced subgraph.

An example of this is the Random Graph. The Random Graph is defined to be the countable
graph that satisfies the n-extension axiom for all n. It is both homogeneous and universal
in that it embeds all countable graphs. Both of these concepts can be extended to include

other type of graphs, for instance digraphs or coloured graphs.

We will also need some simple results like the following.

Lemma 2.1.14 [[7], Section 1.1.3]

1. A strongly regular graph is the union of identical disconnected complete graphs if

and only if one of its eigenvalues is —1.

2. A primitive strongly regular graph with eigenvalue —1 is complete.

Proof. Suppose the strongly regular graph has parameters (n, k, A, 11). Then we know by
Theorem [2.1.10] that the eigenvalues are

5 (0w = VO P it )
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If we let one of these equal —1 then

(2= (A=) =A—=p)?+4(k—p)
A+ A= p)’ +4A—p) = (A= p)* +4(k — )

1+A=k

which implies that the graph is the disjoint union of complete graphs.

If we start with a union of identical disconnected complete graphs then we know & = A+ 1

and = 0. So
1
ros=3 (A VN +ar+a)
1
Sor =—1land s = k.
This proves part i), and part ii) follows immediately. O

Hence if a strongly regular graph is primitive and has eigenvalue —1 it must be complete.
It is also known that we can determine via the multiplicity of the principal eigenvalue the

number of connected components of a regular graph.

Lemma 2.1.15 [[7)], Section 1.1] If G is a regular graph of degree k, then the multiplicity

of the eigenvalue k is the number of connected components of G.

Hence in a complete graph, —1 will have multiplicity n — 1, and any regular graph where

—1 has multiplicity n — 1 is complete.

Corollary 2.1.16 If G is a regular graph with degree k, then if the multiplicity of the

eigenvalue k is greater than one, it is imprimitive.

This just follows from the fact that each connected component will form an equivalence

class of a non-trivial equivalence relation on the structure.

Lemma 2.1.17 Suppose the adjacency matrix A of a connected regular graph G has only

one eigenvalue, r, aside from k. Then r = —1.
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Proof. G is connected and so k has multiplicity 1. Therefore r has multiplicity n — 1. As
trace(A) = 0, we know 0 = k + (n — 1)r, implying r = . We know 7 is an algebraic

integer as it is the eigenvalue of a 01-matrix, hence n — 1|k. But n — 1 > k, and therefore

n—1=k,andr = —1. O

2.2 Association Schemes

The definition of an association scheme is very closely related to that of a strongly regular
graph. A lot of this information will be covered in more detail later, as the language
of association schemes is the primary one I use when dealing with 3-regular 3-coloured

structures, and hence only the basics will be mentioned here. The reference I use is [23]].

Definition 2.2.1. An association scheme with d classesis aset A = {Ay, ..., Ag} of nxn,

O1-matrices, for some n, such that:
i) Ag =1.

i) Y4 A=

iii) A7 € Aforeachi.

iv) AjAj = A;A; € span(A)

We say that an association scheme is symmetric if each of its component matrices are

symmetric.

There is a natural translation into strongly regular graphs. A strongly regular graph will
form a symmetric association scheme with 2 classes, one being the adjacency matrix A, and

the other being A.

Attached to each association scheme is an algebra known as the Bose-Mesner algebra.
This is the algebra generated by the matrices in .A. Call this algebra C[.A]. The matrices
Ay, ..., Ay form a basis of this algebra. However we can find a more convenient one. To
do this define a partial ordering on idempotent matrices in C[A4] via E < F if FE = E.

We can create a basis of the minimal idempotents via the result
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Theorem 2.2.2 [23| Theorem 1.5.1] Suppose B is a Bose-Mesner Algebra of an association

scheme A. Then B has a basis of matrix idempotents {Ey, ..., Eq} such that:

(a) E;E; = 6; i F;

(b) The columns of E; are eigenvectors for each matrix in C[A]

(¢) Ying Ei=1

(d) Ef = E;

Hence {Ey, ..., E4} is the basis of minimal idempotents of our association scheme.

In an association scheme, there exist constants called intersection numbers. These are

defined to be the pg’l‘ such that

d
AA = pliAm. 2.2.1)
m=0

For instance in terms of strongly regular graphs, d = 2 and p}; = )\ and p?; = p. We then

note that, if o is the Hadamard product (entrywise multiplication), then
Pl Am = Am o (4;4A))

We can also define the eigenvalues of the scheme as the eigenvalues of the A;. As these are

01-matrices, Godsil notes [[23]], Section 2.1] that the eigenvalues must be algebraic integers.

There also exists a natural dual concept to the intersection numbers, using the idempotent
basis of the Bose-Mesner algebra. The Krein parameters of the association scheme are the

constants qﬁ defined via
d
1
Ejo B =— Z ¢ En. (2.2.2)
m=0

Alternatively these can represented as follows
4G Em = nEn(Ej o Ey)

By bringing in a little linear algebra we can make the eigenvectors much easier to deal with.



18 2. PREREQUISITES

Definition 2.2.3. Two matrices A and B are simultaneously diagonalisable if there exists
a matrix P such that for some two diagonal matrices D; and Dy, P"'AP = D; and

P 'BP = D,.

We can see that simultaneously diagonalisable matrices must share a basis of eigenvectors,

as these make up the columns of the matrix P.

From [29] we have

Lemma 2.2.4 Diagonalisable matrices commute if and only if they are simultaneously

diagonalisable.

Therefore by the definition of an association scheme we know that all the constituent
matrices are simultaneously diagonalisable, and therefore there exists a basis of

eigenvectors common to all of them.

We will now introduce the necessary combinatorial and linear algebraic notions needed to

make sense of [[12].

Definition 2.2.5 ([29]]). Let vy, ..., v, be vectors in an inner product space V' with inner
product (-, -). The Gram matrix of the vectors vy, ..., v, with respect to the inner product
() is G = [{vi, 0)) =1

Each eigenspace of a graph will form an inner product space, and so we can naturally form

a corresponding Gram matrix.

Definition 2.2.6 ([38] and [39]). A finite set X in R? is called an s-distance set if the set
of Euclidean distances between any two distinct points of X has size s. If an s-distance set

lies in the unit sphere S9! then it is known as a spherical s-distance set.

In other words, S is a spherical s-distance set if it is a set of unit vectors, and there are s real
numbers {a1,...,as}, with —1 < a; < 1 for all 4, such that the inner products of distinct

vectors of S are one of the a;.

As we shall see, spherical 2-distance sets have a very natural application for strongly regular
graphs. There will exist one distance for adjacent pairs of vertices, and one for non-adjacent

pairs.
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2.3 Highly Regular Graphs

Because of the large influence on the ideas of this thesis, this subsection is dedicated to
the story of n-regular graphs through [12]], [9] and [8]. Together, these works provide a
classification of all n-regular graphs for n > 4 and strong information in the case of n = 3.
This is immensely useful, as demonstrated later, and therefore producing equivalent results
for more complex languages would be of great worth too.

Throughout [[12]] the authors mainly work in the language of association schemes above.
However they refer to I and A as the complementary pair of strongly regular graphs on a
vertex set X of cardinality n, with adjacency matrices A and B respectively. For a vertex
x € X, let I'(x) and A(xz) refer to the sets of vertices in X adjacent to = in I' and A
respectively, i.e. the subconstituents. Their aim is to provide a classification of graphs
that are very close to 3-regular, where for some z € X, I', A, I'(z) and A(z) are strongly
regular. These graphs are effectively 3-regular with respect to a single point x.

A basic result which they make great use of is the following.

Theorem 2.3.1 ([12], Theorem 2.2) A strongly regular graph having k = a — 1, n = ma

is a disjoint union of m complete graphs of size a.

They then introduce a ‘special basis’, such that it includes certain vectors involving
projections onto the eigenspace for A. The process of creating this basis we mirror in
Chapter [8] but with 3-colours. Then using this they find a series of identities involving the
transition matrices between the two bases of the Bose-Mesner algebra and the eigenvalues.
Next they examine the Krein parameters and quickly show that they must be between 0 and
1 in the case of a strongly regular graph.

They look quite heavily at the neighbourhoods. Let A1, A be the adjacency matrices of
I'(z), A(x) respectively, where these are the neighbourhood and non-neighbourhood of a

vertex x.

Theorem 2.3.2 ([12]], Theorem 5.1) Let ' be a strongly regular graph with eigenvalues
k,r,s. Suppose X is an eigenvalue of I'(z), then, if X ¢ {r, s}, there exists a corresponding

eigenvalue, 1 =1 + s — A, of A(x) such that vy and 1 have the same eigenspace.

The next section is on Smith Graphs, a very important type of graph for the study of n-
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regular graphs. The main result regarding them is from [43]] but is mentioned in this paper
as well. We need to quickly introduce the concept of n-transitive and rank 3 permutation

groups.

Definition 2.3.3. A connected simple graph I' is n-transitive if, for any two ordered n-
tuples (x1,...,2y,) and (yi,...,yn) of vertices satisfying d(z;, z;) = d(y;, y;) for all i (d

the distance function of I'), there is an automorphism of I' which maps each x; to y;.

Definition 2.3.4. For any k£ > 2, a transitive group of permutations of €2, G, is rank k if,

for a € €, G, has exactly k orbits.

Let [ be the size of A(z) and recall that A and p are the classical parameters of the strongly
regular graph (Definition [2.1.5). The authors note the following is a reformulation of
Theorems E and F from [43]].

Theorem 2.3.5 [l/2, Theorem 6.1] Let G be a primitive rank 3 permutation group on a finite
set X in which, for x € X, the stabilizer G, with orbits {x}, T'(z), A(x), has rank 3 or
less on both I'(x) and A(x). Assume that {k,l} # {f, g}. Then, without loss of generality,

the parameters of the graphs I and A are:

2(r —5)2((2r + 1)(r — s) — 3r(r + 1))

"= (r—s)2—r2(r+1)2 ’
b — —s(2r+1)(r—s)—r(r+1))
(r—s)+r(r+1) ’
[ = —(s+1D)(2r+1)(r—s)—r(r+1))
(r—s)—r(r+1) ’
5= —r(s+ 1)((r—s)—r(r+3))

=) +rr+1)
—(r+ Ds((r — s) = r(r + 1))
(r—s)+r(r+1)

)

where v — s > r(r + 3). Here, ‘without loss of generality’ means that k > r > s denote

the eigenvalues of the graph defined by either I" or A.

Any graph with the above parameters, for integer r and s, is known as a Smith Graph.
The authors then work out that there are 5 possibilities for the non-principal eigenvalues

in their case and manage to classify them in the following theorem, the main result of the

paper:
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Theorem 2.3.6 [[I12| Theorem 6.5] Let I', A be a complementary pair of connected strongly
regular graphs on X, and suppose there is a vertex x € X for which the subconstituents on

['(x) and A(x) are both strongly regular. Then one of the following occurs:
i) T'is a pentagon,
ii) T is of pseudo or negative Latin square type,

iii) I" or A is a Smith Graph.

We call a strongly regular graph of negative Latin square type if for some r
(n kA p) = (W2, r(v+ 1), —v+ 72+ 3r,7(r + 1))
and of pseudo Latin square type if
(n, ke, \, 1) = (W3, 7(v — 1), 0+ 7% = 3r,7(r — 1))

We can note that any 3-regular graph must be strongly regular with strongly regular
subconstituents and so will be included in the list of Theorem [2.3.6] as well. Recall the
Krein parameters ¢} defined via equation @ A final result from this paper that could be

useful later is the theorem:

Theorem 2.3.7 Let I', A be a complementary pair of connected strongly regular graphs.
Then g'; = 0 holds for some i € {1,2} if and only if either T is a pentagon or T or A is a
Smith Graph.

Now we move on to Cameron’s ‘6G-transitive graphs’ [9)]. This paper mainly focuses on
transitivity in graphs, however the author notes that the main theorem can also be used as a

classification of 5-regular graphs when coupled with the results of Theorem [2.3.6]

Cameron starts by noting that a 2-transitive graph of diameter 2 is strongly regular from

[40] and then mentions a reformulation of the Theorem [2.3.5]

Theorem 2.3.8 Let I" be a 3-transitive graph of diameter 2. The one of the following holds:

i) ' is a complete multipartite graph,
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ii) T is of pseudo or negative Latin square type,
iii) T or its complement is a Smith Graph.

He then states the most important theorem of the paper from our perspective:

Theorem 2.3.9 [9 Theorem 3.2] Let I be a 5-transitive graph of diameter 2. Then T is

one of the following:
i) A complete multipartite graph,
ii) a pentagon,

iii) the line graph of K3 3.

To prove this they use the fact that if I" is n-transitive with diameter 2 (n > 3), then each of
the subgraphs I'(z) and A(z) are either a disjoint union of complete graphs or an (n — 1)-
transitive graph of diameter 2, as two points in I'(x) or A(z) are at distance at most 2.
They prove this by a series of lemmas that deal with the case by case analysis, basing the
arguments mainly on the eigenvalues and their limitations.

Particular results from this analysis that are useful for us are:

Lemma 2.3.10 Ifa subconstituent of a Smith graph is a Smith graph, then —s = r2(2r+3).
Conversely, if r > 1 and satisfies —s = r2(2r + 3), then both subconstituents are Smith

graphs.

and

Lemma 2.3.11 No Smith graph has a subconstituent which is the complement of a Smith

graph.

Although theorem [2.3.9] does not directly prove the classification of 5-regular graphs,
Cameron notes at the end of the paper that, if you replace the result of Smith with that
from [12], then the same argument shows that this is in fact a complete list of the 5-regular
graphs as well.

Finally we discuss the thesis of J.M.J Buczak [8]]. We start with the definition of a graph

which is an extension of the idea that Cameron, Goethals and Seidel talk about in [[12]:
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Definition 2.3.12 (Definition 0.3, [8]). A graph of type B3 is a strongly regular graph GG with
strongly regular subconstituents I'(x), A(z) for some x € G, such that for some vertex y
in A(z), the subconstituents of A(x) formed by the points joined to y (denoted A;(x,y))
and the points not joined to y (Az(x,y)) are both strongly regular, and similarly, for some
vertex z in I'(x), the subconstituents of I'(z) formed by the points joined to z (I'1 (z,y))

and the points not joined to z (I'z(x, y)) are both strongly regular too.

This is effectively 4-regularity, but only over specific points. Buczak manages to classify
these up to identifying a potential infinite family of B3 graphs indexed by a natural number
n, these are the graphs he refers to as Bz(n).

The main result of the paper is then the following classification of 4-regular graphs.
Theorem 2.3.13 (Section 0.5, [8]]) Any finite 4-regular graph must be one of the following:
a) a disjoint union of complete graphs,

b) the pentagon,

c) the lattice graph on 9 vertices,

d) the Schldfli graph on 27 vertices,

e) the Maclaughlin graph on 275 vertices,

f) Any graph of type Bs(n), for n > 3, if such exists,

g) The complements of the above.

2.4 Model Theory

Here I will outline a lot of the basic model theory that I use. Most of this section comes
from [36]] and [45]] and is fairly fundamental. As only the faintest explanation is given here,
I would advise heading to the texts for more information if you’d like it. Throughout £ is a

general language.

Definition 2.4.1. A finite relational language is a language which only has relation symbols

and also only finitely many relational symbols.
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Definition 2.4.2. A complete L-theory has quantifier elimination if for every L-formula

¢ () there exists a quantifier free formula /() such that

T =z (¢(z) ¢ ().

Definition 2.4.3. A theory, 7', that has countable models is w-categorical if for any two

models My and Mo, such that |M;|= |Mz|= w and My, My = T, then M; = M.

Definition 2.4.4 ([43], Definition 5.2.1). Two L-structures, A and B, are elementarily

equivalent if they have the same theory; that is, for all £-sentences ¢

AF¢&BES

Definition 2.4.5 ([45]], Definition 2.2.6). Let A be a L-structure and B C A. Thena € A

realises a set of L(B)-formulas X(x), if a satisfies all formulas from 3(x). We write

AES(2)

We call X(x) finitely satisfiable in A if every finite subset of () is realised in A.

Definition 2.4.6 ([43]], Definition 2.2.8). Let A be an L-structure and B a subset of A. A
set p(z) of L(B)-formulas is a type over B if p(x) is maximal finitely satisfiable in A. Let
S(B) = S4(B) denote the set of types over B.

Recall Definition [[.1.3t

Definition 2.4.7. A finite structure } in a finite relational language L is said to be n-regular
if for any n-tuple ¢ and formula ¢(z, ) the size of the set ¢(M,y) = {r € M : M
¢(x,y)} is determined only by the isomorphism type of 7.

In general in this Thesis we will be looking at homogeneous structures, and because of this
(see proof of Lemma [2.5.5)), we can note that we will exclusively be looking at n-regularity
where ¢ is quantifier free.

For graphs, we will refer to 2-regularity as strongly regularity still.

Definition 2.4.8 ([45]], Definition 5.2.1). Let x be an infinite cardinal. We say that a theory,
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T, is k-stable if in each model of T', over every set of parameters of size at most «, and for

each n, there are at most x many n-types, i.e.
A< k = |S(A)|< k.

We say a theory is unstable if it is not k-stable for any infinite cardinal .

A model is said to be x-stable if its theory is x-stable, likewise it is unstable if its theory is

unstable.

Definition 2.4.9 ([36]]). An Ultrafilter on a set I is a collection D C P(I) such that:
yIeD o¢D

i) if A,Be Dthen ANB €D

iii) ifA€e Dand AC BC I, thenB € D

iv) Forall X C Ieither X € Dor I\X € D

This basically means it provides a notion of being a ‘big’ subset of I. We say that an
ultrafilter is principal if for some i € I, D = {X € P(I) : i € X}. Otherwise it is non-
principal. It is immediate that every element in a non-principal ultrafilter will be infinite.

Now the idea is to use this to create a structure, so we define

Definition 2.4.10 ([36]). Suppose we have a class M; of L-structures indexed by the
infinite set /. Let D be an ultrafilter on I. Then we define the ultraproduct, M =

H M, /D, of the M;’s by defining an equivalence relation ~ on
X:Ipm:{ﬁI%Lﬁm:ﬂnemmmm}
i€l i€l

where f ~ gifandonly if {i : f(i) = g(i)} € D.

On the set of equivalence classes we can define an L-structure:

« If ¢ is a constant symbol of £, let ¢ be the ~ class of f. € X where f.(i) = ¢

forallz € 1.

* Let f be an n-ary function symbol of £ and suppose that ¢, ...,g, € X. Then
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g\~ ogn\ ~) = (g1 (1), - gn ()N ~.
« If R is a relation symbol in £ then RM = {(g1\ ~,...g.\ ~) : {i € I
(91(4),-- .. gn(i)) € RM} € D}

The next theorem gives us a good understanding of what properties the ultraproduct

possesses and also what makes it so useful.

Lo$’s Theorem Let ¢(x1,...,x,) be an L-formula. Then, M |= ¢(g1/~),...,gn/~) if
and only if {i € T+ M; |= 6(g1(0)), .., ga(0))} € D.

This tells us that a formula holds in the ultraproduct if and only if it holds in ‘most’ of the
models in the class.

We now need to describe another fundamental model theoretic construction.

Definition 2.4.11 ([11]]). A class C has the amalgamation property if for A, By, Bo € C and
¢; + A — B; is an embedding for ¢ = 1,2, then there is a structure C' € C and embeddings
¥, B; = C fori = 1,2 so that ¢ ¢1 = Papo.

Definition 2.4.12 ([11]]). A class C of finite relational structures over L is a Fraissé class

over L is it satisfies the following four conditions:
(a) C is closed under isomorphism,

(b) C is closed under taking induced substructures (this means, take a subset of the domain,

and all instances of all relations which are contained within this subset,
(c) C has only countably many members up to isomorphism,
(d) C has the amalgamation property.

Definition 2.4.13. Let M be a structure over £. Then the age of M is the class of all finite

L-structures which are embeddable in M.

Fraissé’s Theorem A class C is the age of a countable homogeneous L-structure M if and

only if it is a Fraissé class. If these conditions hold then M is unique up to isomorphism.

We then get the further definition:
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Definition 2.4.14. For a countable £-structure M and a class C satisfying the conclusion of

Fraissé’s Theorem, we refer to M as the Fraissé limit of the class C.
There exists important strengthenings of the amalgamation property:

Definition 2.4.15. [11]] A Fraissé class C has the strong amalgamation property if whenever
By and B, are structures in C with a common substructure A, there is an amalgam C of By
and B> such that the intersection of By and Bs in C is precisely A.

If as well every instance of a relation in C' is contained in either B; or B», then we say that

C has the free amalgamation property also.

We also see that w-categoricity is generally present when dealing with homogeneous

structures.

Lemma 2.4.16 [l/]} Remark p.41] A homogeneous structure M which has only finitely
many isomorphism types of n-element substructures for each n is w-categorical. In
particular this implies any homogeneous structure in a finite relational language is w-

categorical.

We can also see that

Lemma 2.4.17 [[1| 2.22] Suppose M is a countable and w-categorical structure over a
relational language. Then M is homogeneous if and only if M has quantifier elimination.
2.5 Multidimensional Exact classes

For this section C will refer to a class of finite £-structures and (C, y) will denote the set

{M,a): MecC,aec MW,

Definition 2.5.1. A I-definable partition of (C,y) is a partition ® of (C,y) into finitely

many parts, such that for each 7 € ® there exists an £-formula ¢ () such that
¢x(M) = {be M7 : (M,b) € nr}

for each M € C.

Further:
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Definition 2.5.2. Let R be any set of functions C — R>(. A class of finite L-structures
is an R-multidimensional asymptotic class if for every formula ¢(z, y) there is a finite &-

definable partition ¢ of (C, y) and an indexed set Hy := {h € R: m € ®} such that
(M B)[~hr (M) | = 0(hr (M)

for (M, b) € 7 as |M|— oo.

When R is understood then we say that C' is just a m.a.c. If, in the equation, the o(h,(M))
can be taken to be zero, then instead C is known as a R-multidimensional exact class or
R-m.e.c. This is one of the key definitions of the project. Basically we can consider these
finite models to be, in a roughly analytical sense, ‘tending’ to some structure. Therefore
when we take an ultraproduct of the class we approximately get the structure it was tending

to.

Definition 2.5.3. We say a structure, M, has a m.e.c limit if there exists a m.e.c with
ultraproduct elementarily equivalent to M.
Similarly for a given m.e.c C with ultraproduct elementarily equivalent to M, we would say

that M is the m.e.c limit of C.

We will make great use of the following fairly simple lemma:

Lemma 2.5.4 Suppose M is a homogeneous structure over a finite relational language L
such that it is the m.e.c limit of C. Then we can thin out C such that every sentence true of

M holds in cofinitely many members of C.

Proof. Take I an index of the structures in C, and let D be an ultrafilter of I. We know that
M is elementarily equivalent to the ultraproduct of C via D. Therefore by L.o$’s Theorem we
know that for any sentence true of M is true in some large infinite subclass of the models
in C. We can then thin out C by removing all the models that do not satisfy any of the
sentences. Now for any sentence ¢ true of M say the set of models that satisfy it is indexed
by A € D. Now the models that do not satisfy ¢ is the union of the sets A \ A N B for all
B. But A\ AN B is finite, as A N B is infinite by definition of a non-principal ultrafilter,

and so the union is finite. We see therefore that A is cofinite. O
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You may have noticed the similarity between the definition of a m.e.c and that of n-
regularity, and it turns out that these are indeed very similar concepts when it is assumed M
is homogeneous. Any suitably large member of a m.e.c with homogeneous limit will indeed
be n-regular to some degree. This result is an adaption of a result from Theorem 4.1.6 in

[2].

Lemma 2.5.5 Fix n € N and suppose C is a m.e.c over a finite relational language
with ultraproduct elementarily equivalent to a homogeneous structure M. Then there is

a function f : N — N, such that if N € C with |N|> f(n), then N is n-regular.

Proof. LetT = Th(M ), and suppose that C is a m.e.c with an ultraproduct U = T After
thinning out C we may suppose that all non-principal ultraproducts of C are elementarily
equivalent — that is, each element of 7" holds of cofinitely many D € C. For any formula
¢(z,y) there is a finite set £ of functions h : C — R and some formula v, () for each

h € E, such that forany N € C and h € E, if a € M7l then

N = ¢n(a) = |p(N,a)|= h(N).

Since M is homogeneous, 1" has quantifier-elimination, and hence there is a quantifier-free
formula x;,(y) and o € T such that o = Vy(¢¥n(y) <> xn(y)). As o holds on cofinitely
many members of C, provided we work in sufficiently large N = T, we may assume
¥ (y) is quantifier-free. Therefore if we take ¥ = (y1 ..., yn) then the size of ¢(N,y) is
determined by the isomorphism type of ¥, as if 4 and ¢/ are both such that they satisfy v,
(i.e have the same isomorphism type), then |¢(N, 7)|= |p(N,7')|= h(N). It follows that
any sufficiently large NV € C, N is n-regular. O
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Chapter 3

Multidimensional Exact Classes

This thesis originated with this chapter. It was the first thing I started working on, and as
such much of the motivation for everything in this document stems from it. We’ve already
discussed what a Multidimensional Exact Class, or m.e.c, is in Section [2.5] but in this

chapter we aim to explain the current theoretical landscape and obtain some new results.

3.1 The Current Situation

To give some background and motivation for this study in m.e.cs, I will run through some
of the current research into m.a.cs and m.e.cs. This shall mainly take the form of running
through results and ideas listed in a manuscript by Anscombe, Macpherson, Steinhorn and
Wolf [2].

We’ll start with some nice examples:

Example 3.1.1 The Paley graphs P, form a multidimensional asymptotic class but not a

multidimensional exact class. [[2|] Example 2.2.5]
Example 3.1.2 The collection of all finite abelian groups is a m.e.c.[[2l] Theorem 4.2.2]

Example 3.1.3 For any d € N, the class of all finite graphs of degree at most d is a m.e.c.
[[2l] Theorem 4.3.3 ]

Interestingly, we can note that from [Example 3.4, [35]]], the class of Paley Graphs is such
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that any non-principal ultraproduct is elementarily equivalent to the Random Graph.
A crucial and very useful result for determining whether something is a m.a.c or m.e.c
is the following. Let (R) denote the ring generated by R under the usual addition and

multiplication operations for real-valued functions.

Theorem 3.1.4 [[2l], Theorem 2.4.1] (i) Let C be a class of L-structures. Suppose that C
satisfies the definition of an R-mac for formulas ¢(x;y) where x is a singleton. Then C is
an (R)-mac.

(ii) [[49], Lemma 2.3.1] The assertion of (i) holds with m.e.c.s in place of m.a.c.s.

This allows us to consider just the formulas ¢(x,y) where z is a single variable. With
the Examples and other similar motivational examples the authors proposed the

conjecture:

Conjecture 3.1.5 ([2] Conjecture 4.1.4) 1. Let M be a homogeneous structure over a
finite relational language L. Then there is an m.e.c with ultraproduct elementarily

equivalent to M if and only if M is stable.

2. Let M be an unstable homogeneous structure over a finite relational language. Then
M is not elementarily equivalent to any structure interpretable in an ultraproduct of

am.e.c.

Now in his thesis [49], Wolf proves the backwards direction of the first conjecture.

Proposition 3.1.6 ([2] Proposition 4.1.5) Let M be a stable homogeneous structure over a
finite relational language L. Then there is an m.e.c. C with an infinite ultraproduct which is

elementarily equivalent to M.

This means that the main focus is on the proving the other direction. This has been done for
certain unstable homogeneous structures. Let I, (for n > 3) denote the digraph consisting
of n vertices with no directed edges between them. For each n > 3, we then define ),
to be the universal homogeneous I,,-free digraph (these occur in Cherlin’s classification of

homogeneous digraphs in [16]).

Theorem 3.1.7 [[2]], Theorem 4.1.6.] Let M be any of the following homogeneous
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structures.
i) Any unstable homogeneous graph.
ii) Any homogeneous tournament.
iii) The digraph Q. for eachn > 3.
iv) The generic bipartite graph.
Then there is no m.e.c with an ultraproduct elementarily equivalent to M.

The proof of part i) is particularly important for this chapter. The authors note that the proof
showing that there doesn’t exist a m.e.c limit for the Random Graph, will work for any of
the K,-free graphs (and their complements). And by the Lachlan-Woodrow classification of

Unstable homogeneous graphs in [31], this will cover every unstable homogeneous graph.

So suppose there is actually a m.e.c M with ultraproduct elementarily equivalent to the
Random Graph. Then, by Lemma [2.5.5] we know that for any sufficiently large M € M,
M will satisfy 5-regularity. However, by a note added in the proof at the end of [9]], we
know that any 5-regular graph appears in the list in Theorem [2.3.9] It is therefore either the
Pentagon, the line graph K3 3, a disjoint union of complete graphs of the same size, or the
complement of the latter. However M can be chosen sufficiently large so that it satisfies an

extension axiom (Definition [2.1.12]) that none of these satisfy.

Because of its frequent use we shall state this as a separate theorem.

Theorem 3.1.8 [/2l], Theorem 4.1.6] There is no m.e.c. with an ultraproduct elementarily

equivalent to the Random Graph.

A large amount of the manuscript [2]] is dedicated to the study of generalised measurable
structures, defined in [[2] Definition 5.2.1]. The authors show that any m.e.c has a
generalised measurable ultraproduct.

For an ordered commutative ring S, there is a concept of S="-measurable, which the authors

use to get the following result:

Theorem 3.1.9 ([2]] Theorem 5.3.3) Suppose that C is an m.e.c, and let U be an ultrafilter

on C and M the corresponding ultraproduct of C. Then there is an ordered commutative
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ring S (an integral domain) such that M is SZ°-measurable.

Definition 3.1.10. [42] Defintion 4.2] A formula ¢(Z,y) has the strict order property if

there exists an indiscernible sequence (b* : ¢ < w) such that:
Ba-p(2,6) A p(z,V)] & i < j

A theory T has the strict order property if some formula ¢(z, i) does.

We say that a theory has NSOP if it does not have the strict order property.

Proposition 3.1.11 ([2] Proposition 5.4.1) If M is a weakly generalised measurable

structure then its theory has NSOP.

Crucially, as generalised measurable structures are also weakly generalised measurable, this

means that the ultraproduct of any m.e.c has NSOP.

3.2 Unstable Homogeneous structures with no m.e.c limit

Proving the Random Graph does not have a m.e.c limit turns out to be even more useful
than just eliminating any unstable homogeneous graph. This is because we can essentially
‘find’ it in many other unstable homogeneous structures. It stands to reason that if we have
a structure in which we can perfectly define the Random graph (with no extra structure),
then we have good reason to believe it also can’t be a m.e.c. limit. It may help to think of a
motivating example, say the universal metrically homogeneous graph of diameter k. It can
be shown (Lemma [3.2.6)) that from any base vertex z, the vertices immediately adjacent to
x form a graph isomorphic to the Random Graph (without extra structure). Then, because
we know the random graph isn’t a m.e.c limit, we can use the exact same argument, just
with formulas defined over the extra parameter x. We can generalise this concept to get the
main result of this section, Theorem [3.2.4] Through this section we think of £ as a finite

relational language.

Great thanks are given to Dugald Macpherson who helped me iron out the detailed

arguments of this section.
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3.2.1 Hide and Seek

There are two main issues we need to address. The first is how do we define the principle of
‘finding’, and the second is the issue of the structure that we are finding being in a different

language. The first is the most easily solved, the notion that we shall require is the following:

Definition 3.2.1. [4], Definition 2.3.1] Let N be an £'-structure and M be an L-structure,
such that N C M and we have A C M such that the universe of NV is A-definable in M.
We say N is canonically embedded in M over A if the (-definable sets in N* are exactly

the subsets of N'* (for all positive integers k) which are A-definable in M.

In our study, we will couple this with homogeneity so the choice of A is dependent only on

its isomorphism type. A small preliminary lemma we need is the following.

Lemma 3.2.2 Let M be a homogeneous L-structure.

1. Ifay,...ar € M, then (M,ay,...,a;) is homogeneous in a language containing

relation symbols for all atomic L(a) formulas.

2. If N is an infinite (-definable substructure of M then N is homogeneous.
Proof. Both results follow immediately from the definition of homogeneity. O

As it turns out, in this case we do not have to worry about the nature of A at all, because
in a big enough member of our m.e.c, the inclusion of A into our language still gives a
m.e.c. More formally, let M be a homogeneous L-structure and a1,...,ar € M, and let
0(z1,...,2) isolate tp(ay, ..., ar) (so we may suppose 6(z) gives the isomorphism type
of @). Let C be a m.e.c with all non-principal ultraproducts elementarily equivalent to M.
We may suppose that all elements of C satisfy 3z6(Z) by thinning it out to only the members
that are large enough. Let C(a) be the class of all expansions of members of C to £(a), in

which (ay, ..., ax) holds.

Lemma 3.2.3 Under the above assumptions, C(a) contains a m.e.c all of whose non-

principal ultraproducts are elementarily equivalent to (M, aq, . . ., ax).
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Proof. First we need to show that the class C(a) is such that all non-principal ultraproducts
are elementarily equivalent to (M, aq,...,ax). By thinning out C(a), we may suppose
that each L£(a)-sentence is true of a finite or cofinite subset of C(a). Suppose we have a
formula ¢(z) such that (M, ay,...,a;) E ¢(a1,...,ax). Then M | Vz(0(z) — ¢(2)),
so this holds in every sufficiently large P € C, so sufficiently large members of C(a) satisfy
¢(ay,...,ax). Thus, all non-principal ultraproducts of C(a) are elementarily equivalent to

(M,al,.. . ,ak).

It remains to show that C(a) is also a m.e.c. In order to do this we take an L(a)
formula ¢ (z1,...,%n, Y1, Ym,01,--.,ar). Now, as C is a m.e.c, for the L-formula
V(X1 Ty YLy e oy Yms 21, - - -, 2k ) there exists an ()-definable partition IT of (C, §Z) and
a finite set hyy = {h, : m € II} of functions C — N such that for each 7 € II, if
(P,ed) € 7 then |[¢p(P", éd)|= h.(P). In particular, for (P,a) € C(a), we know sets of
the form ¢ (P", g, a) will take only a fixed number of sizes as g ranges through P™, and in

sufficiently large P (relative to 1) the size depends just on the isomorphism type of ya, that

is the isomorphism type of 3 over a. Hence C(a) is also a m.e.c. O
We now have enough to prove the desired result.

Theorem 3.2.4 Let M be a homogeneous L-structure which is a m.e.c limit. Let
ai,...,ar € M and let N be an a-definable subset of M. We also let N' be a homogeneous
L'-structure, with universe N, which is canonically embedded in M over a. Then N' is a

m.e.c limit.

Proof. By Lemmasand (M,ay,...,a)is also a homogeneous m.e.c limit (in a
language where we add relation symbols for a-definable atomic relations on M), and so we
may drop the constants a. Let C be a m.e.c such that all of its non-principal ultraproducts are
elementarily equivalent to M/. Now by Lemma[2.4.17] we have quantifier-free £-formulas
which define N in M and define the £’-relations in N’. Applying these to the members
of C we define finite £'-structures, which can be used to create a class C’. We claim that
C' is a m.e.c with any non-principal ultraproduct elementarily equivalent to N’. We can
arrange this class in such a way so that every £’-sentence true of N’ is true of cofinitely

many members of C’, hence any non-principal ultraproduct will be elementarily equivalent
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to N’. Now consider an £’ formula ¢)(Z, €). The size of the set ¢)( Pl €) is going to be the
same as the size of the set defined by some 1)’ an £L-formula over C and therefore will range
through a fixed set of sizes as (P, ¢) range through (C’, 7). Furthermore as N’ is canonically
embedded in M, we see that the same ()-definable partition that exists for C exists for C’.

Hence C’ is a m.e.c with ultraproduct elementarily equivalent to N’. O

We now have a pretty easy method of eliminating certain homogeneous structures. All we
have to do is find a canonical embedding of an already eliminated structure. We will now

go through some examples of this process.

3.2.2 Metrically Homogeneous graph

Definition 3.2.5 (Section 1, [1]). A connected graph is metrically homogeneous if it is
homogeneous when considered as a metric space in the graph metric, i.e. with binary
predicates interpreted by the graph’s distance.

The Universal metrically homogeneous graph of diameter k, My, is the countably infinite

metrically homogeneous graph that embeds all finite graphs of diameter k.

We can immediately find that for any vertex = in My, the vertices directly adjacent to x are

effectively the Random Graph.

Lemma 3.2.6 Let My, be the universal metrically homogeneous graph of finite diameter
k > 1andlet x € M. Set T'1(x) to be the induced subgraph of all elements of M at

distance 1 from x. Then I'1(x) is isomorphic to the Random graph.

Proof. To show that a countably infinite graph is isomorphic to the Random graph it is
enough to show that it satisfies the n-extension axiom for any n. Fix an n and suppose we
have two disjoint sets of size n in I'y (), {i1,...4,} and {j1, ..., jn}. By the universality
of M there exists a vertex m at distance 1 from x such that m is connected to i; and not
connected to jj for all k. This vertex m is therefore in I'; (x) and hence this means that

'y (x) satisfies the n-extension axiom. ]

We can now see that we have enough to apply Theorem [3.2.4]
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Theorem 3.2.7 For all k € N, there does not exist a m.e.c with ultraproduct elementarily

equivalent to the universal metrically homogeneous graph of diameter k.

Proof. Let Mj be the universal metrically homogeneous graph of diameter k£ and let
T = Th(M). Suppose there exists a m.e.c C with ultraproduct elementarily equivalent
to M}. Now take x € M}, and consider I'y(z). By Lemmathis is isomorphic to the
Random Graph R.

It is clear that ‘R is canonically embedded in M} over x. First for any point z € M the
universe of R is z-definable. It is also clear, as the language of Mj, is binary, that the (-
definable sets in R are exactly the z-definable sets in M.

Therefore by Theorem [3.2.4] there cannot be a m.e.c with ultraproduct elementarily

equivalent to M. O

As you can see this proof didn’t use any inherent properties of the metrically homogeneous
graph once the Random Graph was found. It therefore stands to reason that such an
approach will work for other homogeneous structures where we can ‘find’ a canonical

embedding of the Random Graph over some set.

Remark 3.2.8 We could use an analogous arguments to show that the metrically
homogeneous graph of infinite diameter is also not a m.e.c limit, and indeed that many
other metrically homogeneous graphs are not. There exists a catalogue of metrically
homogeneous graphs given by Cherlin, which is conjectured to be complete. This is verified

for diameter 3 in [)].

3.2.3 Universal Homogeneous Two-graph
Another example of such a structure is the universal homogeneous two-graph.

Definition 3.2.9 ([34], Example 2.3.1 (4)). A two-graph is a 3-hypergraph such that any
4-set contains an even number of 3-edges.
The universal homogeneous two-graph is the homogeneous countably infinite two-graph

that embeds all finite two-graphs.

For any graph, T, there exists a two-graph with the same vertex set, whose 3-edges are the
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3-sets with an odd number of graph edges, and it can be shown that every two-graph arises
in this manner. For example, the universal homogeneous two-graph is the two-graph that

can formed in this way from the Random Graph.

As before, we have a copy of the Random Graph in this structure by naming a point, however
we have to be very careful that it doesn’t possess any extra structure, i.e 3-edges. This is
a crucial issue, for example we can find the Random graph in the universal 3-hypergraph,
however 3-edges would still remain. This would lead to 3-sets that have the same 2-edge
structure, but aren’t isomorphic due to the fact that one possesses a 3-edge and the other
does not. We could therefore not use the m.e.c condition to dictate that as a graph the

structure possessed S-regularity.

Lemma 3.2.10 Let M be the universal homogeneous two-graph and take x € M. Consider
I'(x) to be the graph on V (M)\{x} with y and z connected if and only if {z,y,z} is a 3-
edge in M. Then I'(x) is isomorphic to the Random graph canonically embedded over

Z.

Proof. To show that a countably infinite graph is isomorphic to the Random graph it is
enough to show that it satisfies the n-extension axiom for any n. Fix an n and suppose
we have two disjoint sets of size n in I'(z), {i1,...4,} and {j1,...,jn}. We need to find
an m € M such that (i, m, x) is a 3-edge and (ji, m, x) is not a 3-edge for all k. By the
universality of M we only need to show that the existence of such an m would be consistent.
To do this we just need to show that every 4-set in consideration has an even number of 3-
edges. Clearly any 4-set not including m does as this it is already present in M. Now we say
if (ik,, jky, ) is not a 3-edge, then (i, , ji,, ™) is and vice versa. If (i, , ix,, x) is a 3-edge
then (i, , ix,, m) is too and if not then it isn’t either. We do the same thing for (ji, , jk,, =)
and (jk, , Jky»m). The above relations ensure all 4-sets including both m and z have an
even number of 3-edges. Clearly (ik, , ik, , iks, ™) (and wW.1.o.g (Jk, , Tk, Jks> ™)) have this
property as they satisfy same relations as (i, , ik, , ik, ). Finally, (ix,, Jky, iks, m) (and
likewise (i, , jk,, iks, ™)) have an even number of 3-edges, as it has exactly two 3-edges
different from (ig, , ji,, tks, ), (3%, Jky, M) and (Jk, , ik,, m). Therefore the existence of m

is consistent in M, so m is in M and I'(z) has n-extension. Therefore I'(x) is isomorphic
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to the Random Graph.

We now need to show that this Random Graph is canonical embedded in M over x. First
note that it will carry no extra structure by way of 3-edges, as if (a, b, c) is a 3-edge but
x ¢ {a,b, c} then having a 3-relation on (a, b, ¢) in I'(z) is equivalent to there being an odd
number of edges in (a, b, ¢) by the definition of the universal homogeneous two-graph, and
therefore the 3-edges are determined by the graph structure. If it contains = then we lose
the 3-relation as we lose x.

We note that we know have two potential random graphs on M \ {z}, the original one used
to determine I", which we shall call R and the graph defined via x, R'. In general these
will not be the same graph, however we can see that the graph R will only provide extra
structure to R’ if they determine different two-graphs. We can see fairly quickly that they
will determine the same two graph however. If we take points a,b,c € M \ {z} then they
will be a 3-edge in T'(R’) (the two-graph generated by R’) if and only if they have an odd
number of edges in R’. This means that there an odd number of xab, zac, zbc are 3-edges
in T(R). As in any two-graph, any 4-set must have an even number of 3-edges, we get that
abcis a 3-edge in T'(R) if and only if it is a 3-edge in T'(R’). Hence they generate the same
two-graph. O

Then as before we can extend the proof of Theorem [3.1.8]to incorporate this structure.

Theorem 3.2.11 There does not exist a m.e.c with ultraproduct elementarily equivalent to

the universal homogeneous two-graph.

Proof. This argument follows in much the same way to Theorem Let M be the
universal homogeneous two-graph and let T = Th(M). Suppose there exists a m.e.c C with
ultraproduct elementarily equivalent to M. Now take x € M and consider I'(z) to be the
graph on V(M)\{x} with y and z connected if and only if {z,y, z} is a 3-edge in M as
before. Then this is isomorphic to the Random graph R canonically embedded over x by

Lemmal(3.2.10) OJ
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3.3 Reducts

A good place to look for structures with canonical embeddings is through the study of
reducts. To properly define reducts however we will need some more ideas from group
theory. Let §2 be a countable set. There exists a natural topology on the symmetric group of
, that of pointwise convergence. Cameron [[11]] describes pointwise convergence with the
following process: Enumerate 2 = {ag, aq,...}. Then a sequence (g,,) of permutations
tends to the limit g if and only if, for any k& € N, apg, = arg and agg, ! = apg~! for all

sufficiently large n.

Definition 3.3.1. A group is a topological group if it carries a topological space such that

the group operation and the inverse map are continuous in that space.

Hence in the topology of the symmetric group defined above, we see that any permutation
group G on the countable set €2 is a topological group (We have continuity as if g,, — ¢g and

h,, — h then g, h, — ghand g, ' — g~1).
A basis for the open sets in this topology is made up of cosets of stabilisers of finite tuples.

Definition 3.3.2. We say a permutation group G on a countable set € is a closed subgroup
of Sym(€), if it is a subgroup of Sym(€2) and a closed set with regards to the topology of

pointwise convergence on Sym(2).

A result that will make these much easier to deal with in terms of reducts is the following:
Lemma 3.3.3 [/1] 2.6] A subgroup G of Sym(€Q) is closed if and only if G = Aut(M) for
some (first-order) structure M on §.

We can now define

Definition 3.3.4 ([46]])). A reduct of an w-categorical structure M is a permutation group

(G, M) such that:
i) Aut(M) < G
ii) G is a closed subgroup of Sym(M)

Assuming w-categoricity, this is equivalent to there existing a structure N, for some

language L, such that:
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iii) NV has the same universe as M.
iv) For each relation R € £, RY is ()-definable in M
v) G =Aut(N)

There are two main methods of proving an unstable reducts of a structure does not have a
m.e.c limit. The first is to find a combinatorial representation of the reduct, and then find
the original structure as a canonically embedded substructure of it over some finite set. This
will then allow the use of Theorem [3.2.4]to eliminate the possibility of a m.e.c limit.

The second is to instead name points and use Lemma[3.2.3] We can demonstrate both using

the random graph.

3.3.1 Reducts of the Random Graph

It seems prudent that the first structure we look at through this lens is the Random Graph.

In [46], Thomas classifies the possible reducts of the random graph.

Theorem 3.3.5 ([46]], Theorem 1) Let the Random Graph be R. If (G, R) is a reduct of R,

then

G € (Aut(R), D(R), S(R). B(R), Sym(R)}
where D(R) is the duality group, S(R) is the switching group, and B(R) =
(D(R), S(R))-

This can be rephrased in the form of combinatorial structures as was done in [Theorem 8,

[6]].

Theorem 3.3.6 ([46] or Theorem 8, [6]) i) S(R) is the automorphism group of the 3-
hypergraph whose edges are the 3-element subsets containing an odd number of edges

in the Random Graph.

ii) D(R) is the automorphism group of the 4-hypergraph whose edges are the 4-element

subsets containing an odd number of edges in the Random Graph.

iii) B(R) is the automorphism group of the 5-hypergraph whose edges are the 5-element

subsets containing an odd number of edges in the Random Graph.
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We have already dealt with one of these, for as noted in [41] the 3-hypergraph whose edges
are the 3-element subsets containing an odd number of edges in the Random Graph is

exactly the universal homogeneous two-graph. We will need the following lemma:

Lemma 3.3.7 Let L1, Lo be relational languages, and let M7, Mo be respectively L1 and
Lo-structures, both homogeneous, with the same domain M and the same automorphism
group (so the same ()-definable sets). Then M is a m.e.c. limit if and only if Ms is a m.e.c.

limit.

Proof. Any sentences needed to translate between £; and Lo will hold in sufficiently large
members of a m.e.c. Suppose that C; is a m.e.c for M;. For each relation symbol R(Z)
of Lo there is a quantifier-free £;-formula ¢(Z) such that {z : My | ¢r(z)} = {Z :
M> = R(z)}. We translate each member of C; into an Ls-structure by interpreting each
L relation R by the corresponding £;-formula ¢r. After thinning out Cs first, we find that

all its non-principal ultraproducts are elementarily equivalent to Mo. O

Now, let R denote the random graph, and D denote the reduct whose automorphism group
is the duality group D(R). We may view D as a structure in a language with a single arity
4 relation U which determines an equivalence relation on unordered 2-sets, one class being
the edge set of the random graph, the other being the non-edge set. We can view D as a
homogeneous structure by expanding the language, and this will not change the ()-definable
sets.

Similarly we let B denote the reduct whose automorphism group is B(R).

Theorem 3.3.8 i) There does not exist a m.e.c with ultraproduct elementarily equivalent

to D,

ii) There does not exist a m.e.c with ultraproduct elementarily equivalent to B.

Proof. 1) Suppose that C is a m.e.c all of whose ultraproducts are elementarily equivalent
to D. Let a,b be adjacent in R. By Lemma [3.2.3] we can obtain from C a m.e.c,
C(a,b), all of whose ultraproducts are elementarily equivalent to (D, a,b). Now (in a

suitable language) (D, a, b) is a homogeneous structure whose ()-definable sets are the
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same as those of (R, a, b). It follows by Lemma that the random graph is a m.e.c.

limit, a contradiction.
ii) This is the exact same argument, however we name three points a, b, c.

O]

Therefore, using Theorem [3.2.11] and Theorem [3.3.8] all three unstable reducts listed in
Theorem do not have m.e.c limits (Note Sym(R) is stable). More formally,

Theorem 3.3.9 There does not exist a m.e.c with ultraproduct elementarily equivalent to

any unstable reduct of the random graph.

This begs the question, is this true in general of unstable reducts of structures with no m.e.c
limit? While this question is not answered in this work, we can provide some results to be

applied to other cases.

3.4 Other structures

Although we’ve been using reducts to find universal structures with other universal
structures within, we need not do this. We can also do it the other way around, name a
universal structure and look to see if it contains some copy of a structure already known not

to have a m.e.c limit.

3.4.1 Universal homogeneous n-tournament-free digraph

First we should establish our language for digraphs. For convenience, we shall use three
symbols F, B, N (although really just one F' would suffice). We say F'(x,y) represents
an edge going from x to y, B(x,y) = F(y, ) represents an edge going from y to x, and

N(z,y) = =F(z,y) A ~F(y, z) represents the absence of an edge between z and y.

Definition 3.4.1. A tournament is a digraph, T, in which for all distinct x,y € T exactly

onof F(x,y) or B(x,y). An n-tournament is a tournament of size n.

It is shown by Henson that for any set .S of finite tournaments the collection of finite S-

free digraphs has the amalgamation property, and hence yields an unstable homogeneous
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digraph Mg. These are known as Henson Digraphs.

Definition 3.4.2. The universal n-tournament-free digraph is the Fraissé limit of the class
of all finite digraphs with the omission of any digraph embedding a tournament with n

vertices.

We will first consider the 3-tournament-free case.

Theorem 3.4.3 If M is a finite 2-regular 3-tournament-free digraph then M is isomorphic

to the 4-cycle

Proof. Suppose M is a finite 2-regular 3-tournament-free digraph. For ease, for any x € M,
we will define the sets F'(z) = {y € M : F(z,y)}, B(x) = {y € M : B(x,y)} and
N(z) ={y € M : N(z,y)}. By l-regularity, |F'(z)|= |B(x)|= k.

Now using 2-regularity, we consider any points x1, zo € M such that (z1,z2) € F. Due to
the fact that we know M embeds no tournaments on at least 3 vertices, we can immediately
see that |F'(z1) N F(x2)|= |B(z1) N F(x2)|= |F(z1) N B(xza)|= |B(z1) N B(z2)|= 0.
Also by counting all the arrows to and from x; and x2, we get that |F'(z1) N N(z2)|=
|N(z1) N B(z2)|=k —1and |B(xz1) N N(z2)|= |N(z1) N F(z2)|= k.

Similarly we consider any points y1,52 € M such that N(y1,y2). As there are no
restrictions on this case so we can treat them as we would usual regular digraphs. Suppose

|F(y1) N F(y2)|= di and |B(y1) N B(y2)|= d2. We know that

[F'(y1) 0 B(ya)|= [B(y1) N F(y2)|= ¢

for some ¢ and

[F'(y1) N N(y2)|= [N (y1) N F(y2)|= [B(y1) N N(y2)|= [N(y1) N B(y2)|=e

for some e. To see this note that we can count the structure
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(ce)

by starting with a and then comparing the numbers when you pick 5 next or 7y next.

Now we can note that | F'(y1)|= |(F'(y1) N F(y2))[+|(F(y1)NB(y2))|+|(F(y1) NN (y2))

di + e+ cand [B(y1)|= [(B(y1) N F(y2))|+|(B(y1) N B(y2))[+(B(y1) N N(y2))|
d2 + e+ c. But|F(y1)|=|B(y1)|=k,hence dy =dy =dande =k —d — c.
Now, let P be the triangle F'F'N, defined as

/N

We can count P in two different ways either starting with F', givingus n - k - £ — 1 copies

of P,or N, givingus n - (n — 2k — 1) - d. This gives us the identity
k(k—1)=(n—2k—1)d

We can do a similar thing for ) = FBN.
/ |
° \o
giving the identity
This leads to the result that

As c and d are integers no bigger than k, this implies that d = £ — 1 and ¢ = k. But as
|F(y1) N N(y2)|[=k—d—c>0weknow 1 —k >0andsok = 1,as k — 1 > 0 also. As
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k=c=1wegetn —2k—1=1aswell,son = 4. O
These leads immediately on to the following result.

Theorem 3.4.4 Let I' be the universal homogeneous 3-tournament-free digraph. Then there

does not exists a m.e.c C such that the ultraproduct of C is elementarily equivalent to T

Proof. Suppose that the ultraproduct of C is elementarily equivalent to I'. Then by Lemma
we know that any sufficiently large member M € C will be n-regular. But then by
Theorem [3.4.3]the only option is the the 4-cycle. O

We can now generalise this to the n-tournament-free case for a general n, by finding the

3-tournament-free case within it.

Theorem 3.4.5 If M is the universal homogeneous n-tournament-free digraph then there

does not exist a m.e.c with ultraproduct elementarily equivalent to M.

Proof. This is simple enough. Let X = {z1,...,2,-3} € M be such that X carries
a tournament isomorphic to a linear ordering from z; to x,_3 (the choice of tournament
actually doesn’t matter). Then consider the set of points ¥ = {y € M\X

F(y,z;) foreach i = 1,...,n — 3}. Then Y is 3-tournament-free and has no
other restrictions, hence it is isomorphic to the universal homogeneous 3-tournament-free
digraph, and is canonically embedded over X. It follows from Theorem [3.2.4and Theorem

[3.4.4] that there does not exist a m.e.c. with ultraproduct elementarily equivalent to A/. [J

3.4.2 Amalgamation classes determined by constraints on triangles

Defined by Cherlin in the Appendix of [16l], we look at the list of semi-free (but not free)
amalgamation classes in binary relational languages with 3 or 4 colours. We show in

Theorems and [3.4.9] that none of the Fraissé limits of these classes are m.e.c limits.

Definition 3.4.6 ([L6]). An amalgamation class of a binary relation language is said to have
semi-free amalgamation if there is a proper subset of the 2-types of distinct elements which

is adequate for the solution of any amalgamation problem.
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Let L = {Xi,...,X}} be a relational language in which every relation is symmetric,
binary and irreflexive. Define A to be a finite set of L-structures of size 3. Such a structure
will be determined by a triple from £, for example X;.X; X9 determines an L-structure
of size 3 in which two pairs satisfy X; and the third satisfies X5. Then define C(A) to
be class of all finite L-structures I' such that for all 7 € A, T is not embedded in I" and
the set of unordered pairs is partitioned by the relations X7, ... X;. If C(A) satisfies the
amalgamation property, then we say that M (A) is the Fraissé limit of C(A). Cherlin lists
the possible A such that C(A) is a primitive semi-free, but not free, amalgamation class in
the case where |£|= 3 or |£|= 4, and states that there are 2™ in any case with a larger
language. Note he conjectures that these lists are complete but does not prove this. A

positive result for the conjecture in the |£|= 3 case is given in the Appendix.
When £ = {R, G, B} Cherlin lists just one possibility:
1. A={RBB, GGB, BBB}
When £ = {R,G, A, X} we get 27 possibilities:
1. Ay ={RXX, GAX, AXX}
2. Ay ={RXX, GAX, AXX, XXX}
3. As ={RXX, GAX, AXX, AAX}
4. Ay ={RXX, GAX, AXX, AAA}
5. As = {RXX, GAX, AXX, AAX, XXX}
6. Ag = {RXX, GAX, AXX, AAA, XXX}
7. A7 = {RXX, GAX, AAX, AXX, AAA}
8. Ag ={RXX, GAX, AAX, AXX, AAA, XXX}
9. Ag = {RXX, GAX, AAX, XXX}
10. Ajg = {RXX, GAX, AAX, XXX, AAA}
11. Ay ={RXX, GGX, AXX, XXX}

12. Ay = {RXX, GGX, AAX, AXX, XXX}
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13. Az = {RXX, GGX, AXX, XXX, AAA}

14. A1y = {RXX, GGX, AAX, AXX, XXX, AAA}

15. A1 = {RXX, GAX, GGX, AXX, XXX}

16. A = {RXX, GAX, GGX, AAX, AXX, XXX}

17. Aip = {RXX, GAX, GGX, AXX, XXX, AAA}

18. A1s = {RXX, GAX, GGX, AAX, AXX, XXX, AAA}
19. A9 = {RXX, GAX, GGX, AAX, XXX}

20. Ay = {RXX, GAX, GGX, AAX, XXX, AAA}

21. Ay = {RAA, RXX, GAX, AAX, XXX}

22. Ay = {RAA, RXX, GAX, AAX, AXX)}

23. Aoy = {RAA, RXX, GAX, AAX, AXX, XXX}

24. Aoy = {RAA, RXX, GAX, AXX, XXX, AAA}

25. Ags = {RAA, RXX, GAX, AAX, AXX, XXX, AAA}
26. Agg = {RRX, RAA, RXX, GAX, GXX, AAX, XXX}
27. Agr = {RRA, RRX, GAA, GAX, GXX, AAX, AXX, XXX, AAA}

This is a rather dauntingly long list, but we can show that the corresponding Fraissé limits

are not m.e.c limits using earlier results:

Theorem 3.4.7 Suppose L = {R,G,B} and A = {RRB, GGB, BBB}. Then there

does not exist a m.e.c with ultraproduct elementarily equivalent to M (A).

Proof. Define a point x in M (A), then consider the Green neighbourhood G(z) of x.
As GGB is a forbidden triangle, there are no Blue edges in this neighbourhood, so it is
two coloured. However there is no restriction using only the other two colours. Hence
Age(G(z)) is the set of all finite two-coloured graphs, and therefore this is isomorphic to
the Random Graph.

We can see that this is a canonical embedding as there is no extra structure on the random
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graph, and so the ()-definable sets in G(z) are exactly those that are z-definable in M (A).
Hence by Theorem [3.1.8]and Theorem [3.2.4] there does not exist a m.e.c with ultraproduct

elementarily equivalent to M (A). O

Theorem 3.4.8 Suppose L = {R,G, A, X}. Thenif A € {A1,..., Aoz}, then M(A) has

a definable substructure isomorphic to either
* The Random Graph
* The Random Bipartite graph

with no extra structure i.e. canonically embedded over suitable parameters.

Proof. First we shall focus on A;. Take a vertex co € M(A;), and consider X (c0),
the X neighbourhood of co. Note that this cannot contain any R or A coloured edges,
so is two-coloured. Further we can note that there are no further restrictions within the
neighbourhood, as no forbidden triangle solely contains just G and X edges. Hence
Age(X (00)) is the set of all finite two-coloured graphs, and therefore X (c0) is isomorphic
to the Random Graph, canonically embedded over co.

We can note that this argument will work for any A containing RX X, AX X (or isomorphic
conditions) and no further restrictions involving only G and X. Hence, by considering the
X -neighbourhood, this argument follows for As, Ay, A7, Ag and A9 and by considering
the A-neighbourhood it follows for Ag, Ai1g, A14, A1s, Ao, Ao, Ago, Asg and Aog.
Hence all of these have an induced subgraph isomorphic to the Random graph.

Next we shall look at As. The only neighbourhood which is not isomorphic to the entire
graph is the X-neighbourhood, which is complete in G. Now construct the induced
subgraph as follows:

Take vertices 0o and cog in M (A3) such that (001, 002) is red. Now consider Y7 = {y €
M(Asg) : X(o01,y) A G(002,y)} and Yo = {y € M(Ag) : X(002,y) A R(c01,y)}. The
induced subgraph on both Y7 and Y5 is a complete graph in G, however we see that the
connections between Y7 and Y5 are all of colour G or R (X is removed by XX R, A is
removed by GAX). As there are no further restrictions involving just G and R, we can see

that the induced subgraph on Y; U Y5 is indeed isomorphic to the Random bipartite graph,
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with G becoming non-edges and R being edges. To illustrate, we have structure

09 e Y2

Now as with A; we can generalise this argument. We can observe that Az, Ag, Agy and
Aos have all the triangle restrictions of Ao, and that their additional forbidden triangles do
not affect the above construction of the random bipartite graph. Thus the same argument
will apply in these cases.

Although Ao and Ay7 do not follow exactly from this, very similar arguments can be
used. For Aj, with oo; and ocog as above, we instead define Y7 = {y € M(Aj2) :
X (001,y) A A(ocog,y)} and Ys as before. And for Ay7, we use vertices ooy and 009 in
M (Ag7) such that (001, 002) is green. Then Y7 = {y € M (Ag7) : X(001,y) A G(c02,y)}
and Y = {y € M (A7) : X (c02,y) A G(o01,y)} will give that the induced substructure
on Y7 U Y3 is isomorphic to the random bipartite graph.

For A13, we take a point co and look at the A-neighbourhood of it. This is 3-coloured as
AAA € Aj3, means it won’t have the colour A. Now the remaining forbidden triangles in
Ay3 without A will hold in this neighbourhood. These are A’ = {X X X, XGG, X X R}.
Hence the A-neighbourhood of oo is isomorphic to M’(A’) (with X, G, R replacing
R, G, B). The same this holds for the A-neighbourhood of a point in M (A17). However
by Theorem [3.4.7] we know these have the random graph as finitely definable substructure.
All we have left are Aq1, A5 and Ayg. For Ay, we can find a structure very similar
to the random bipartite graph by naming two points oo; and ooy such that (coq, 002)
is of colour A. Then define Y7 = {y € M(A11) : X(oco1,y) A G(oog,y)} and
Yo = {y € M(A11) @ X(o02,y) A R(c01,y)}. Then Y7 U Y3 is two complete graphs
in G connected by random edges of colour A and R. We claim that this graph is isomorphic
to the Random bipartite graph. Indeed the only difference is that the non-edges’ internal to
the parts are of a different relation to the 'non-edges’ between the parts. However as each

point in the random bipartite graph knows which part it is in (they are all at distance 2 from
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each other), we can simply forget the colour R, and recover it if necessary.

For A= A15 or Ay it follows very similarly however we need a slightly different set up.
Take 0o; and oog such that (001, 002) is of colour X. Then define Y1 = {y € M(A) :
X (001,y) A G(oog,y)} and Yo = {y € M(A) : X(c02,y) A G(c01,y)}. Then Y1 UY,
is two complete graphs in G connected by random edges of colour X and R, and the same

process can be done to show this is isomorphic to the Random bipartite graph. 0

Theorem 3.4.9 Suppose L = {R,G, A, X'}. Then for A € {A1,...,Agr} there does not

exist a m.e.c. with ultraproduct elementarily equivalent to M (A).

This is just an immediate consequence of Theorem[3.2.4] Theorem3.4.8|and Theorem
As part of an Undergraduate Research Project (UROP) I did with Prof. David Evans at
Imperial College London in 2016, I proved the completeness of the Cherlin’s list in the case

where £ = {R, G, B}. More specifically the theorem:

Theorem 3.4.10 Let L = {R,G,B} be a symmetric, irreflexive, binary, relational
language and suppose M is a primitive universal homogeneous L-structure with semi-
free, but not free, amalgamation determined by a set of forbidden triangles. Then M is

isomorphic to M (A) with

A = {RBB, GGB, BBB}

As this was not originally done as part of this PhD research (though it has been heavily

revised), I’ve included the proof in the Appendix.

3.5 Next steps and Open Problems

The next steps to the work are generally to do with ruling out more structures. It seems that
once we have certain universal structures, then reducts or other structures defined in similar
languages follow fairly quickly. The main next step would be finding a general approach
to applying Theorem [3.2.4] At the moment I have been looking at individual structures.
However I think there is scope for finding a general theorem that will dictate when a reduct

will contain the original structure as a finitely definable substructure.
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I would expect that any unstable homogeneous structure that has certain limitations in
which types it can use, will probably have a canonical embedding of some other structure
with a lesser degree of limitation. This process would continue until you are left with the
homogeneous structures with pretty much no limitations, the universal unstable structures.
It is my current understanding that these will be the most important pieces of the puzzle.
There are immediate examples that come to mind. The universal homogeneous 3-
hypergraphs provides a good example to consider. As we saw, the classification of 5-regular
graphs resulted from the study of 6-transitive graphs in [9]], and their classifications look

very similar. In the same paper we find the following theorem.

Theorem 3.5.1 ([9], Theorem 5.1) Let A be a finite k-hypergraph and suppose that any
isomorphism between induced sub-hypergraphs on at most k + 3 vertices extends to an

automorphism of A. Then A is one of the following:

i) the complete or null hypergraph,

ii) the hypergraph whose edges are the lines of PG(2,2), or its complement,
iii) the hypergraph whose edges are the planes of AG(3,2), or its complement,
iv) the unique regular two-graph on 6 vertices,

v) the unique regular two-graph on 10 points.

Could we use this as a starting point to get a classification of finite n-regular 3-hypergraphs?
It seems likely that there may exist some equivalent to the results of Chapter @ and [[12] but

utilizing design theory instead of graph theory.

In a similar vein the universal homogeneous digraph would also provide an interesting study.
We saw in the case of the 3-tournament free digraph that counting arguments alone were

enough to rule it out. One would hope a similar approach would work for this structure.

Another immediate open case is the universal homogeneous 3-coloured graph, which we
could also hope to show is not a m.e.c limit from similar methods to the classification of

5-regular graphs. This is what we shall focus on for the rest of the thesis.
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Chapter 4

3-coloured Graphs

In this chapter we will outline what we need for the study of highly regular 3-coloured
graphs. It will tie together the ideas we need from association schemes and graph theory,

and provide strong basic results that will be frequently used in later sections.

4.1 Notation

Throughout the following sections there will be various notation that I will continuously
use. This is a continuation of the notation from [[12] but extended to meet the needs of this
work. Suppose M is a finite 2-regular 3-coloured graph. There is also a table in Appendix
B that will summarise the notation given here and throughout the rest of the thesis. The

notation we shall use will be as follows:

* R, B and G are symmetric irreflexive binary relations representing the 3 colours, and

any pair of distinct elements of M satisfy exactly one of them.
* n is the total number of vertices in M.

* AR, Ap, Ag are the n x n 0l-adjacency matrices of the red, blue and green edges

respectively.

* A non-principal eigenvalue is one that does not have eigenvector u (the all 1 vector).
Here 7, s; and t; will be the non-principal eigenvalues of A; for i € {R,G, B}.

There are three as we are working in a 3-class association scheme. We shall use



56 4. 3-COLOURED GRAPHS

the convention later that rr, r¢ and rp will have the same eigenvectors (shown in

Corollary 4.2.8).

. pé- ;. 18 the fixed number of vertices such that if x, y are connected by an edge of type
1, then there are pé- ;; vertices z which are connected to z in colour j and y in colour k.

These are the double intersection numbers.
* k; is the number of edges of type ¢ incident with any vertex.
» J will represent the all one matrix of any dimension, not necessarily square.

* FEy, E1, Es, E3 form the basis of minimal idempotent matrices of the Bose-Mesner

algebra of our association scheme. nEy = J.

We can now extend this to 3-regularity and into the neighbourhoods of some base vertex
oo € M. It should be stated that each neighbourhood of oo is itself 2-regular and therefore
an association scheme (not necessarily 3-class). We will therefore assume 3-regularity and

extend the notation in the following way:

. N]’fl is the k; x k; adjacency matrix of i coloured edges, where for z in the I-
neighbourhood of co and y in the j-neighbourhood, of oo (V. ;l)l‘,y = 1iff (z,y)

is an i-edge and O otherwise.

. N;j is the k; x k; adjacency matrix of 7 coloured edges, internal to the j-
neighbourhood.
* Tij, Si and ti; will be the non-principal eigenvalues of IV ]’J

. p?;’,g is the number of vertices z in the following image:

@.1.1)

These will be called the triple intersection numbers.
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We should note that triple intersection numbers exist only under the assumption of 3-
regularity.

So for illustrative purposes we can see the adjacency matrices fit together as follows

0 51RU¥1 (Szgug 513u§
Sigui Ni, Ni., N
A=l fut R b 4.1.2)
diguz N, é:R N, éG’ N, éB

dipus Npr Npg Npp

with ¢;; being the Kronecker delta.

From the definition of our RGB structures we know that J = I + Arp + Aqg + Ap and
that these (namely I, Ar, Ag and Ap) also form a basis of the Bose-Mesner algebra (see
Section[2.2] By Theorem 1.7.1 in [23]], we can choose our parameters in such a way that the

transition matrices between our two bases are as follows:

Ey E1 Eg Ej
1 1 1 1 1
AR ]{ZR TR SR tR (4.1.3)

Ag | k¢ ra sc ta

Ap | kp rB sB tg

and
I Ar Ag Ap
nky |1 1 1 1
nky | f faa fB1 fm (4.1.4)
nEy| g gaz gPfa gy
nEs | h has hBs hys

Here A; has the eigenvalues k;, r;, s; and ¢; and f, g and h are the multiplicities for r;, s;
and t; respectively (This doesn’t depend on ¢ due to [4.2.8).
When using the basis of minimal idempotents, we can think of it as looking at things from

the perspective of the eigenspaces instead of the adjacency matrices.
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As we will always be dealing with 3-coloured structures we can assume that k; # 0 for all
i.

We also define a constant D via
D :=rgtg — rrtg + srtg — Sagtr + TRSG — TGSR (4.1.5)

Note that D is the determinant of the (4, 1)-minor of the transition matrix in As such
we shall see later in Lemma that D # 0. It should also be noted that the choice of
colours was immaterial here, by permuting the colours you do not change the form of the
equation, however you will multiply by the signature of the permutation. This can be seen
by making repeated use of 0 = 1 + rg + rg + rp (Lemma.2.10) and the corresponding
equations for s and ¢.

Some other shorthand we will use fairly frequently is:

Definition 4.1.1. We say that a 2-regular 3-coloured graph is strongly regular in m, if the
2-coloured graph formed by making m the edges and j U! the non-edges is strongly regular.

We will also here say the adjacency matrix A, is strongly regular.

It is important to note that a strongly regular adjacency matrix will only have two distinct

non-principal eigenvalues as it is exactly the adjacency matrix of a strongly regular graph.

4.2 Preliminary Results
Some initial but important results that come from using this notation are

Lemma 4.2.1 Ifi and j are distinct colours and k; # 0O then

ke{R,G,B}

and if k; # 0 then

ki= Y P+l

ke{R,G,B}

Proof. Fix a vertex x, then fix a vertex y such that (x, y) is of colour j. Then every vertex

connected to x by an ¢ coloured edge must also be connected to y in some colour k, hence
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if we sum over all possibilities for k, we get the number of i-coloured edges from z.
The proof works exactly the same if (z, y) is of colour i except we have to include the edge

(x,y) as well, hence the additional 1 in the sum. O

We can find similar results for the triple intersection numbers. Note that in using triple
intersection numbers we are assuming 3-regularity. However first we can note that we
can swap around colours inside the intersection number so long as the triangles within are

preserved. More formally
Lemma 4.2.2 For any colours x,vy, z,1, j, k, we get

TYz _ XT2Y YTz _  YRT _  RXTY _  ZYX
Piji = Pjik = Pikj = Prij = Pjki = Pji

This just comes from inspection of the diagram {.1.1] They are all valid ways of counting
the point z. By using other counting arguments we get the following lemma which we will

make great use of:

Lemma 4.2.3 If x,y, 2,1, j are colours and p%, # 0, then if {i,j} # {y, 2z} we get that

T TYZ Yyrz YzT
pi= D pg= ). phi= > phy

ke{R,G,B} ke{R,G,B} ke{R,G,B}

If (i, 5) = (y, 2) then we get the same but with p;; — 1 instead.

Proof. This just comes from counting how many of the following shape exist:
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There are multiple ways of doing this, however we shall choose a, then b, then c. This gives
a total of n - ky, - pY. triangles. Now there are two ways of counting how many options for
d there are. Either we can ignore the rest of the structure and note there are pj; options
(or pf; — 1 options if (y, z) = (i, j)), or we can take the sum of all possible colours of the
edge between a and d giving 3~ ¢ 5y pfj?’kz (o X 4e(rG.B} pijkz —1if (y,2) = (i,9)).

Hence counting the total number of triangles gives

neky Y, ph=mn-kypY, Z pfﬂ:
ke{R,G,B}

And so if p4. # 0 we get the result. O
Further basic counting arguments give the next few results.

Lemma 4.2.4 For colours a, b, c, j,l, m we get the following equalities:

kapgc = kbpgc

a ,abc __ b , bjm
kapbcpjlm - kbpjmpacl

Proof. Similar to the above, this comes from counting certain structures in two ways. For

the first equation we count the total number of this structure:

We see that if we first fix z, then y, then = we get nk,pj,. copies of this triangle. However if

instead we fix z then z, then y we get nk;p® . giving the desired equality.
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For the second equation instead we look at the structure

We can count this in many ways as well, one way being starting with w, then z, then y, then

bjm
acl

z giving nkapgcp?lbﬁi. Another starting with w, then y, then z, then z giving nk‘bpgmp

and therefore the result. O]

We can see from the two equations that we can arrange it so any triangle and any edge from
it are brought out first, which is evident from the argument in the proof.

Following on from this we see what happens when intersection numbers are 0. Note it is
convention that if for some colour z if k; = 0, then py, = 0 as there can’t be any points

defined over an edge that doesn’t exist. We get the following result.

Lemma 4.2.5 For any colours x,y, 2,1, j, k,
Py, =0&pl, =0&p;, =0

And

TYz rij iyk jkz
Pigr =0& Py =06 ppy. =06 py, =0

Proof. Suppose py. = 0, then there does not exist any triangles:

Therefore pi. = p;, = 0 too.

The same idea with 4 points gives the second result. O
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An important but simple corollary is the following
Corollary 4.2.6 Suppose p;, = 0. Then for any a,b, ¢, poy. = preb = .

yzc

Proof. Immediately by Lemma we see that for any a, b, c, p*% = 0. Now we use

yzc

Lemma to get pli” = 0 too. O
By multiplying out the matrices we get the equations

Lemma 4.2.7 For distinct colours j,l, m we get

A} = A+ DA + 0 A+ T

AjAm = Pl Aj + D A + pémAz
Proof. This follows directly from the definition of an association scheme. O

From this we can see that A;A,, = A,, A; and hence from Lemma@]

Corollary 4.2.8 There exists a basis of shared eigenvectors for Ar, Aq and Ap.

By multiplying the equations from Lemma [4.2.7] on the left and right by a non-principal

eigenvector we get:

Corollary 4.2.9 For distinct colours j,1, m we get

2 ] l
Ty = p;'jrj +p;7;7°m + ;T + k;

m l
TiTm = p‘;mrj + Do Tm + DT

The same results hold for s and t-eigenvalues.

By the orthogonality of the transition matrix or by multiplying the equation J =

I + AR + Ag + Ap left and right by a non-principal eigenvector we get:

Lemma 4.2.10 For eigenvalues rr, ra, rp

O=14rp+rg+rp
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As such we will generally remove the third eigenvalue (usually 73) and keep everything in
terms of just two. I will however switch back and forth when it is more helpful to do so. We

can also now note:

Corollary 4.2.11

(N&)? + N N5+ NENE =

mj*Ytjim

(k$ - pazcx>I + (pgx - pix)NﬁLm + (pglcx - pgzmc)N;?Jlm + (pix - 51‘771)‘]

Proof. This comes from considering the equation from Lemma with respect to the
expansion of A, in[d.1.2]

T T T T T T
0 dxmU]  OzjUuy  Oyus 0 OpmU]  OzjUy  Oypus
X xr X X xr X
5 Oxm1 Nmm ij le Smu Nmm ij le
AL =
. T X X . X X xr
5$ju2 ij ij le 5;5]’&2 ij ij Nﬂ
X X X X X X
oziuz Ny, NS Nj omuz  Np,  Nj  Nj

If we look at just the entry in the second row and second column of A2 we get

However, from Lemma4.2.7] we also know that
A?: = piwa + p%xAy + p;xAZ + kr[

Therefore, using A, = J — I — A, — A, and taking just the second row and second column

again we get

(km - p;x)I + (pgx - p;w)anm + (pgyc:v - p;x)N’ng +pixj
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Hence we end up with the equality

(Nopum )+ N i N - Nip Nis, = (k=) T+ (052D ) Nop+ (PP ) N+ (P —0m)
O

Recall the constant D defined via[d.1.5] Utilising Lemmal4.2.10] gives us the following:

Lemma 4.2.12 In a 2-regular 3-coloured structure D # 0.

Proof. Consider the transition matrix from Equation .1.3] By adding every row to the
bottom row and using Lemma.2.10] we see the determinant of the transition matrix is the

same as that of the following matrix:

1 1 1 1
kr TR SrR tr

ke ra sa ta
n 0 0O O

The determinant of this matrix is n.D and hence the determinant of the transition matrix is

—nD. The determinant of this matrix must be non-zero and hence D must be. OJ

We can actually get a general form for any multiplication of adjacency matrices, presuming

their dimensions match.
Lemma 4.2.13 For colours ay,as, as, by, b, bs, if ag = by and (a1, az) # (b, b3) then

al by __ _asbsR ATR a2b3G ATG a2b3B ArB
N0«20«3Nb2l)3_ a3a1b1 a2b3+ a3a1b1 a2b3+ a3a1b1 a2b3

If(al, CLQ) = (bl, bg) then

al b1 __ a2 azbsm arm asb3j j azbsl 1
Na2a3Nb2b3 - pCLlCLSI + pa3a1b1 azb3 + pa3a1b1 az2bs + pa3a1b1 azb3

Proof. This follows from direct calculation. We shall first select a row in Ng7,.. This

selection corresponds to choosing a vertex in the as-neighbourhood of oo, let’s call this x;.
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Each of the non-zero entries in this row represent an edge of colour a; going from x; into
the as-neighbourhood. Next we select a column in 4V, Ileb;;' The selection corresponds to a
vertex x2 in the b3-neighbourhood of co, and the non-zero entries in this column represent
the edges of colour b; going from x2 to the by = a3 neighbourhood. So the value of the
multiplication of z;’s row and z3’s column is the size of the overlap of the two. Note that
if as = bz then we could be selecting the same vertex for both the row and column, i.e. we
could have 1 = z9. In this case they will overlap completely if a; = b; and not at all if
a1 # b1. This corresponds to Pa2q, Or 0 in the positions where x1 = x2, which is I. Hence

if (a1, a2) = (b1, b3), we will have an extra pg2,, 1.
Now, supposing x1 # x2, we see that the size of the overlap is determined by the colour of
the edge connecting z; and 2. We shall call this c. The size of the overlap is the number of

vertices y defined over a ag, bs, ¢ triangle with connections a3 between oo and ¥, a; between

asbsc

x1 and y and b; between x2 and y. Hence it has value Paarby -

The positions where we get
this value will correspond to the matrix Ng ,  and therefore, summing over all possible ¢

we get

al b1 __ _asbsR AR a2b3G ATG a2b3B ArB
Na2a3 Nbgbg — FPasa1by azbs + pa3a1b1 azbs + pa3a1b1 azbs

O]

Remark 4.2.14 We can (and frequently do) use the fact that, for distinct colours m, j and
L J=1+N?", + Npm+ N, and J = Ny + anj + anj to make these equations

just in terms of two matrices.

It will also be important to note the following basic fact

Remark 4.2.15 If for some colour m, k., = 0 then ry, = Sy, = ty, = 0. Further for some

=t., = 0.

m

colour c, if pv. = O then ., = 5.

m

This is simply because the adjacency matrix is 0, so all eigenvalues must be.

4.3 Amorphicity

A fairly large set of possible finite 3-coloured 3-regular graphs are those which are such that

each colour is strongly regular when considered as a graph in it’s own right,
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Definition 4.3.1 ([47]). A 3-coloured graph is Amorphic if for any distinct colours X, Y, Z,
the graph with edges X and non-edges Y U Z is strongly regular.

These are troublesome as a lot of our work focuses on using the interactions of
neighbourhoods to show that eigenvalues within specific neighbourhoods are equal.
However, these graphs are natural examples of such phenomena. We can still say a lot

about them though, for example:

Theorem 4.3.2 ([47]], Theorem 4.1) If all three relations of a 3-class association scheme
are strongly regular graphs, then they either have parameters (n?,1;(n — 1),n + l;(l; —

3),ll(ll - 1)), 1=1,2,3or (nz,li(n + 1), —n + ll(ll + 3),ll(lz + 1)), 1=1,2,3.

The proof of this is attributed by Van Dam to Higman [26]. We’ve also seen these forms
before, as they are exactly the Pseudo and Negative Latin square graphs from [12]]. In
future chapters we can see that the tricolour Clebsch graph (Definition [5.3.2)) satisfies the

parameters as a negative Latin square graph as well.

We can calculate the eigenvalues of these graphs fairly simply

Lemma 4.3.3 The eigenvalues of a Pseudo Latin square graph are r; = —Il; with
multiplicity n> — 1 — l;(n — 1) and s; = n — I; with multiplicity I;(n — 1).
The eigenvalues of a Negative Latin square graph are v; = l; with multiplicity n> — 1 —

li(n+ 1) and s; = l; — n with multiplicity l;(n + 1).

This is immediate from inputting the parameterisations into the equations for the

eigenvalues of a strongly regular graph in Lemma[4.2.9]

We can also see that any eigenvector, v of either of these schemes will have eigenvalues
of the form (ry,re,ss), (r1,s2,73) or (s1,r2,73). There is also the possibility of the
neighbourhoods also being amorphic themselves. Then we can parameterise them in the

same way. This leads to the result:

Lemma 4.3.4 Suppose there exists a m.e.c C with ultraproduct elementarily equivalent to
an unstable homogeneous 3-coloured graph. Then for sufficiently large M € C, if M is
amorphic and x,y are distinct vertices and non-adjacent in some colour R, then R(x) N

R(y) cannot be amorphic.
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Proof. We know by lemma [2.5.5|that any sufficiently large member of C will be 4-regular.
So therefore suppose for a contradiction that we have M € C large enough to be 4-regular
and also with x, y distinct vertices in M, non-adjacent in R, and such that R(z) N R(y) is
amorphic. We know by Theorem applied to R(z) N R(y) (which is 2-regular), that
|R(z) N R(y)| is a square. However we also know by applying Theorem 4.3.2]to M, that
|R(z) N R(y)|= p = Li(li + 1) or [;(l; — 1). As these are products of two consecutive

integers they can’t possibly be a square, a contradiction. O

This lemma is more powerful than it originally seems. It tells us that if we can show that
any finite primitive 3-regular 3-coloured graph is amorphic, then we can answer the m.e.c

conjecture.
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Chapter 5

Known Examples

In this section I'll present the only two known examples of finite primitive 3-regular, 3-
coloured graphs that were found during the course of this work, along with proofs they are
indeed 3-regular. Before this we will go over some essential prerequisite ideas that will
be used to show those graphs are 3-regular. We will do this by deriving them from the
known automorphism groups of finite binary homogeneous structures. These are discussed

in Cherlin’s [17] and [18]].

5.1 Binary permutation groups

This section will discuss literature and results regarding permutation groups. A permutation

group G acting on a set X will be denoted by (X, G).

Definition 5.1.1. The relational complexity p(X, G) of the permutation group G acting on
the set X may be defined as the least k& for which (X, G) can be viewed as (X, Aut(X))
with X a homogeneous structure whose relations are k-ary.

Alternatively, in terms of permutation groups, relational complexity is defined as the least k&

such that for all a,b € X" we have
a~,bsa~b

where on the left, ~; means that any corresponding k-tuples from a and b lie in the same
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G-orbit, and on the right, ~ means that a and b lie in the same G-orbit.

As we deal with binary structures, we see therefore that we will be dealing with the case
where the relational complexity is 2. These are known as binary permutation groups. Other

definitions we will need are:

Definition 5.1.2. A permutation group (X, G) is primitive if G does not preserve any proper
non-trivial equivalence relation on X. A primitive permutation group (X, G) is affine if the

socle of G, the direct product of the minimal normal subgroups of G, is abelian.

If (X, G) is a finite affine primitive permutation group with socle A, then A has the form
(Cp)k for some prime p, written additively. Since A acts regularly on X, we may identify
A with X, and G with a semi-direct product AG’, where G is the stabiliser of the elements

0 of A. Here A acts by translation on itself and G’ acts by conjugation.

These groups are classified by Cherlin in the following Theorem:

Theorem 5.1.3 (Theorem 1, [I8]) Let (A, AG’") be a finite primitive affine binary
permutation group. Then either |G'|< 2 and |A|= C,, is cyclic of prime order, or else
A can be given the structure of a two-dimensional vector space over a finite field F, with

G’ = 0, (q), where A acts by translation and G' acts naturally.

As Cherlin describes the first case can be thought of as giving a group A or A(+1) which

is primitive only if A is 1-dimensional over IF,, (AG’ is a dihedral group if |G'|= 2).

The second case is trickier. It gives a family of examples V O, (¢) where V' is 2-dimensional
over a finite field IF,. More explicitly, Cherlin describes it as using the following process.
Identify V' with the quadratic extension IF 2 of the base field. Then O, (¢) can be thought
of as K (o) where (o) = Gal(FF 2 /FF;) and K is the kernel of the norm map from F > to IF,.

By definition of relational complexity, we see that if (A, AG’) is a primitive affine binary
permutation group, then A is a homogeneous binary relational structure. If a structure is
homogeneous, then it is n-regular for any n < | A|. Therefore to show a 3-coloured structure
M is 3-regular (or indeed n-regular) it is enough to show that (M, Aut(M/)) is a primitive
affine binary permutation group, with 3 orbits on ordered pairs of distinct elements, all

symmetric.
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This provides us with a strong tool for identifying whether or not a primitive 3-coloured
structure can be 3-regular. Indeed, in order to discover the Clebsch graph example (5.3),
we considered the implications of this Theorem in the case where the 2-dimensional
permutation group would allow for three orbits. However this Theorem alone does not
provide sufficient conditions. For this we look to Cherlin’s earlier work on the subject in
[L7].

This paper is on the same subject however uses slightly different terminology. Cherlin
describes a group, G as being strictly linear and of dimension d if it is a subgroup of
AGL(V) for V the d-dimensional translational subgroup of G and AGL(V) = V xGL(V).
There is also a slightly broader class of non-strictly linear affine groups which live in

ATL(V) but not AGL(V'), where ATL(V) =V x I'L(V).

Theorem 5.1.4 (Example 7, [17]) Let G be a primitive 1-dimensional affine group, not
strictly linear. Then the relational complexity of G is strictly less than 5 and G is binary if

and only if G has the form F 2 x (g1 x (o)) with o of order 2.

Crucially Cherlin then remarks on potential examples of this:

Remark 5.1.5 (Remark Page 14, [17]) Let I'; be the binary structure corresponding to the
binary 1-dimensional affine group F 2 x (pg11 % (0)). Then Ty is a symmetric graph with

an edge coloring by ¢ — 1 colors.

He goes on to describe the ¢ = 4 case, stating that it produces a graph of order 16 with a
3-edge colouring and no monochromatic triangles, the Tricolour Clebsch Graph. This graph

will be discussed further in Section[3.3]

5.2 The Tricolour Heptagon

Definition 5.2.1. The fricolour heptagon is the 3-coloured graph on 7 vertices such that
each vertex is a point in F7, and for a,b € F7, (a,b) is red if |a — b|= 1, green if |a — b|= 2

and blue if |a — b|= 3.

Visually, this looks like this
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> 3

Figure 5.1: Tricolour Heptagon

This is clearly regular as by definition each vertex will have 2 neighbours in each colour.

We can prove it is 3-regular by finding and examining its automorphism group.
Lemma 5.2.2 Let H be the Tricolour Heptagon. Then Aut(H) = Dr.

Proof. We can clearly see that C7 C Aut(H ). Now we can also see that in the stabiliser of
the point, say co, we get a reflection 0 = (ab)(cd)(ef). As any automorphism in stab(oco)
will preserve coloured neighbourhoods of oo, we see a could only go to b, cto d and e to f
and vice versa. If a was fixed as well, then ¢ must also be fixed, and therefore e too, hence
nothing moves. As every point is isomorphic to a (in some colour), the stabiliser of any
point is Cy. Hence D7 C Aut(H) and by the Orbit-stabilizer theorem, we must have the

entire automorphism group. O

This fits with Cherlin’s description of the 1-dimensional case in Theorem [5.1.3] however
we still have to prove it is a binary affine permutation group (we know it’s primitive as 7 is
prime).

In this context D7 can be identified with the group generated by the functions f(x) = z+1

and g(z) = —x on F.
Theorem 5.2.3 The Tricolour Heptagon is homogeneous.

Proof. We will show that any isomorphism between substructures can be extended by one
point. This is enough to prove homogeneity by a back and forth argument.
Therefore consider any 2 isomorphic n-tuples in Fy, say a,, and b,,. Then there exists a

function o (z) = (—1)!(x + m) for some [ and m such that 7 (a,,) = b,,. We can enumerate
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a, and b,, such that o(a;) = b; for all i. Now extend a,, to a,,1 by a new vertex a1, and
add (=1)"(any1 + m) = bpyq to b, to get b, . We claim that a,, 1 and b, are still
isomorphic.

First we need to show that b, is distinct from all b; € b,,. Well suppose for some 3,
b; = bpy1, then b; = (—1) (ay, 11 + m), implying (—1)!(a; + m) = (=1)"(any1 +m), so
a; = ap41 a contradiction. Now we need to show that the new edges are the same colour,
i.e for all 4, |ap+1 — ai|= |bn+1 — b;]. Note that this will be enough, as all other types will

be determined by the constituent edges. Well

b1 — bi| = [(=1)!(ang1 +m) — (1)} (a; +m))|
= (=D (ans1 +m — a; — m)]

= |ant+1 — a4
So all the edges match up as well. 0

Referring back to the list in the Appendix D of [47], we see that this structure is the smallest

possible with all integral eigenvalues.

5.3 The Tricolour Clebsch graph

The other finite primitive 3-regular, 3-coloured graph we find comes from the study of 3-
homogeneous structures. I have Dugald Macpherson to thank for the process of finding
this example and Gregory Cherlin for the result showing it is 3-regular (and in fact entirely

homogeneous by Remark [5.1.5).
We’ll start by defining the Clebsch graph in the two-colour case.

Definition 5.3.1 ([14]). The Clebsch graph is a strongly regular graph with parameters
(16,5,0,2). It can be constructed by allowing the vertices to be the even sized subsets of

the set {1, 2, 3,4, 5} with two subsets connected if their symmetric difference is of size 4.

It has been shown by Greenwood and Gleason [24], Theorem 4] that there is a three coloured

version. This is defined using cubic residues on the field ;5. Let = be the generator of the
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multiplicative group of [F¢, then the set of cubes in F14 is the following set
Ri={a3 23 42% 3+, 23+ +24+1, 1}
We then note that the multiplicative cosets are the following:

G={z+1,23+z+1, 22 +z+1, 2°+2°+1, z}

Bi={a?+uz 2> +1, 23+ 2%+ 2, 23+ 1, 2°}

We can now formally define the graph using this

Definition 5.3.2 ([24]]). The Tricolour Clebsch Graph is the 3-coloured graph which takes
as its vertex set the elements of ;5. For any two distinct vertices a, b € Fyg, the edge (a, b)

is coloured red if a — b € R, coloured green if a — b € GG and coloured blue if a — b € B.

This can be represented by the following diagram

a
p b

z % !

Figure 5.2: Tricolour Clebsch Graph

By the results of Cherlin discussed in Remark [5.1.5] we get:
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Theorem 5.3.3 ([17]) The Tricolour Clebsch Graph is homogeneous.

And therefore

Corollary 5.3.4 The Tricolour Clebsch Graph is n-regular for all n < 15.

We also have the following small but useful result

Lemma 5.3.5 [/9 Lemma 11] Let T'" be a connected graph with spectrum

{[5]%, [1)/, [=3]9} for some positive integers f and g. Then T is the Clebsch graph.

This tells us that the Clebsch graph is uniquely determined by its spectrum as a 2-coloured
graph, and therefore is uniquely determined by its parameters as a strongly regular graph
(as these are determined by the eigenvalues ([12, Lemma 2.1]). This carries over into three
colours, as the intersection numbers determine the strongly regular graph parameters for

each colour.
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Chapter 6

The Imprimitive Case

In the case of 3-regular 3-coloured graphs, the imprimitive case refers to the existence
of at least one non-trivial proper equivalence relation on either one or two colours. An
equivalence relation on one colour, say R, would take the form of all R-paths being
completed only by red edges. Formally the equivalence relation would be R~ where
R=(x,y) if and only if R(z,y)V (z = y). Similarly an equivalence relation on two colours
B and G would take the form of all B/G-paths being completed by B or G edges. This
will be denoted B~ U G—.

In terms of intersection numbers, an equivalence relation R~, means that pg r = kr—1and

pg R = pg r = 0, and an equivalence relation B~UG™ means that ng = ng = pg g =0.

In this chapter we shall be discussing finite 3-coloured graphs of varying regularity. We shall
show that we can completely describe the equivalence relations when we have 4-regularity
by Theorem[6.1.4] and that in most cases their form is dictated by a 2-coloured graph. Hence
by the earlier work of Buczak [8]], we can classify them in Theorem [6.1.6]

We will then discuss some brief ideas on locally imprimitive graphs i.e. when the
neighbourhood of a base point is imprimitive.
6.1 Globally imprimitive

Lemma 6.1.1 There does not exist any finite, nontrivial, imprimitive, 2-regular, 3-coloured

graphs where the equivalence relations are of the form:
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* R=, G~ and R= U G~ are equivalence relations

* R= and G= U B~ are equivalence relations

Proof. Suppose we have a 2-regular 3-coloured graph M with equivalence relations R~
G~ and R~ U G~. Then pﬁG = pr = pr = pgR = ng = 0, implying either kg = 0
orkp = pg Rt pg Rt pg g = 0by Lemma contradicting the fact it is 3-coloured.

If instead R~ and G~ U B~ are equivalence relations, then p% . = p&, = pEp = pl, =
pg g = 0as any G/B triangle must be completed with G or B. Therefore either kp = 0
or kg = p}}%G + ng + pg g = 0 by Lemma contradicting the fact it is 3-coloured
again. O

Lemma 6.1.2 In a finite nontrivial, imprimitive, 2-regular, 3-coloured graph I if R=,G=

and B~ are equivalence relations, then kr = kp = kg = 1 and T has the form

Proof. Suppose M was such a structure. Then ng = pg B = pg B = pg R = ng =
pB = 0. We can note that for there to exist blue and green edges there must be more than
one red clique, so consider two red cliques, and take a point = in one of them. As pg =0,
there can only be one blue edge from z into the other clique. Similarly p%G = 0 implies
there can only be one green edge from x into the other clique. There must be a total of two
edges from x into the other clique. Hence the red cliques are of size 2 and kr = 1. We can
do the same thing with the other colours to get k¢ = kp = 1 as well. The only possible

way of constructing this graph up to isomorphism is as shown. O

Therefore for an imprimitive 2-regular, 3-coloured graph we have just the cases as follows

for possible equivalence relations:
1) R™

i) R=, G~
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i) R=UG=
iv) R=,R= UG-

Lemma 6.1.3 Suppose M is a finite 4-regular 3-coloured graph, with an equivalence
relation on exactly one colour. Then either ng = 0 or there exists another equivalence

relation on a different colour.

Proof. Suppose M is a finite 4-regular, 3-regular graph with G= being an equivalence
relation. Then M is made up of complete graphs of size kg + 1, where any two complete
graphs are connected by a mixture of red and blue edges. Suppose pg g 7 0, i.e. between

any two blocks, there exists both red and blue edges.

Now take two blocks C' and C5, and consider the induced subgraph on C; U C5. We claim
this must be 3-regular as well. Indeed, we can see that the definable sets over any given
2-type or 3-type, except those entirely made of GG-relations, are either entirely contained
within C; U C5 or entirely not. So all we have to check are the definable sets over a green

edge and the green triangle.

So suppose we have we have x1, x9, such that (x1,x2) is green. Then we know x1, zo are
either both in C or (Y, so say C';. We don’t have to worry about definable sets involving
more green edges, as these are either entirely in Cy (for GGG) or empty in M (GGX).
Hence for colours j,! € {R, B}, we consider the set Yj; = {y € M : j(x1,y) Al(x2,y)},
and we need to show that the intersection of this and C5 is the same size for any (x1, x2)
(we don’t have to worry about '} as the intersection is empty). This is possible by fixing
any point, 3 € Co, then apointy € Yj; isin Co if G(x3,y) or 3 = y and not if ~G(z3, y).
Hence |Co NYj|= [{y € M : j(z1,y) Nl(x2,y) NG(x3,y)}| (+1if x5 € Y;;) whichis a

fixed number by 3-regularity.

Now suppose that 21, 29, z3 form a GGG triangle in C;. We can do the exact same thing to
find the size of the set Co N {y € M : j(z1,y) A l(22,y) A m(z3,y)}, however this now

requires 4-regularity of the graph.

Hence we have that C; U C% is 3-regular. Now we can add unary predicates to the language

that differentiate C; and C5. These can be thought of as vertex colourings of the parts,
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and so from [[25]], Lemma 4.8], we know that the two parts form a matching in R or B,
or are entirely connected in R or B. If we have the latter, then pg 5 = 0, so suppose we
have a matching for . This is equivalent to saying that ng = 0 inside C; U C, but as
discussed earlier, the definable sets over non-green 2-types are the same in the full graph,

andsong:OinM.

Now fix a point oo in M, and consider the B-neighbourhood of a point. This will again
be made of green blocks with these blocks being the same as before, however missing one
point, the red neighbour of oo interior to the green block. Suppose pg g 7 0in M, i.e the
matchings do not necessarily align between the blocks. Now consider two green blocks in
the B-neighbourhood of oo, C and CY, and the extensions of these blocks in M, C and
Cy. So Cf = Cy \ {1} and C% = Cy \ {y2}, where y; is the red neighbour of oo in C; and
o is the red neighbour of co in C. As pg 5 7 0, we can assume there exists some point =
in C such that z is connected to y» by a red edge (as if there does not, we can re-select our
block C such that there does). Now we see that between x and C%, there cannot exist a red
edge, and so pggg = 0. But then for any other vertex in C there cannot exist a red edge to

CY, either. However this implies they all must have a red edge with y2, which can’t happen.

Hence pﬁB =0.

With pgg = pg g = 0, we see that R~ also forms an equivalence relation. Therefore either
pg 5 = 0or R™ is an equivalence relation. O
Theorem 6.1.4 Any imprimitive 4-regular 3-coloured graph is either

i) Disconnected X-blocks of size ki, arranged further into ks-many XY -blocks, where
each XY -block contains ka-many X-blocks connected entirely by edges of colour Y.

Between each XY -block there are edges of colour Z.

ii) Disconnected cliques of size ki in colour X which form the ‘vertices’ of a 4-regular

graphinY and Z.

iii) Multiple isomorphic 4-regular graphs in colours X and Y entirely connected to each

other by edges in Z.

iv) A 2-coloured rook graph, with horizontal edges coloured X and vertical edges coloured

Y, and the non-edges coloured Z.
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Proof. We shall prove this by a case by case analysis of the types of equivalence relations
we can encounter.

Firstly we shall work with just the equivalence relation R= (or B= or G=). So suppose
we have a 4-regular RGB structure, M, where R~ is an equivalence relation. In terms of
intersection numbers this means pg R = pgR =0and krp =1+ pﬁR. And so we have
cliques in R of size kr + 1 with either blue or green edges connecting them. By Lemma
we know in this case ng = 0 or G~ is also an equivalence relation.

Suppose first ng = 0, now cliques I?; and Ry are either connected entirely by blue or

green. Label all the cliques in M with R; for 1 > ¢ > ﬁ. Let I" be a graph defined on

n
k‘R+1

vertices, with v; connected to v; if and only if R; is connected to I?; by blue edges
(basically think of I' as the quotient on the set of equivalence classes of R). Now I' is 3-
regular as for any triangle {v;, v, v} the number of points connected to v;, v; and vy, is
exactly the number of cliques connected by blue edges to R;, I?; and Rj,. Hence we are in
scenario ii) from the theorem.

If we have R and G both equivalence relations, then we know ng = pr = pg R =
pr = 0. This implies ng =1, pr = kqg, p%B = kgr and kp = krkg. Now
n = (kr + 1)(kg + 1). We see therefore that, if we forget the distinction between red and
green and view these only as edges, we have all the necessary and sufficient conditions for
a rook graph from [37] and [28]].

Now we shall consider the equivalence relation R~ U G~. Here we get that pg R= ng =
ng = 0. Therefore the structure will split into blocks containing only red and green edges,
with only blue connecting each block. As we have no restrictions just involving red and
green, the blocks can be any 4-regular graph. Hence we are in situation iii).

The final set of equivalence relations is R~ and R~ U G~ together. Here we have pg R =
pg R = pgR = pga = ng = 0. Therefore we have cliques in R which are entirely

connected to

kiil other cliques by entirely blue edges. These blocks of only blue and red
edges are then connected by green edges. Hence we are in case 1).

O]

We see that the graph described in Lemma [6.1.2]fits into case iv). Notice that case ii) and

iii) are defined by primitive 4-regular 2-coloured graphs, as if they were imprimitive they
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would fall under case i). Hence they are classified by the theorem of Buczak.

Definition 6.1.5. For a 2-coloured graph I in R and G, we can form a 3-coloured graph
by replacing each vertex x; with a set of vertices X of size k1, where X is complete in a
third colour B. This 3-coloured graph shall be known as the ki-quotient of G.

Similarly we can form a graph be introducing ko isomorphic copies of I' and entirely
connecting every vertex unconnected vertex by a new colour B. This shall be known as

the ko-extension of T'.

Using this definition we can see that case ii) refers to the k;-quotients of any 4-regular graph

and case iii) refers to the ky-extension of any 4-regular graph.

Corollary 6.1.6 Any imprimitive 4-regular 3-coloured graph of case ii) from Theorem|[6.1.4|
is the ki-quotient of one of the graphs from Theorem forany k1 > 1.
Any imprimitive 4-regular 3-coloured graph of case iii) from Theorem |6.1.4| is the k-

extension of one of the graphs from Theorem|2.3.13} for any ki > 1.

Similarly we can use the classification of 5-regular graphs in [[12]

Corollary 6.1.7 Any imprimitive 5-regular 3-coloured graph of case ii) from Theorem|[6.1.4)]
is the ki-quotient of one of the graphs from Theorem[2.3.9 for any ki > 1.

Any imprimitive 5-regular 3-coloured graph of case iii) from Theorem is the k-
extension of one of the graphs from Theorem[2.3.9 for any ki > 1.

Further we now have enough to verify the m.e.c conjecture for the case of imprimitive 3-

coloured graphs:

Theorem 6.1.8 There is no unstable imprimitive homogeneous 3-coloured graph M that is

elementarily equivalent to the ultraproduct of a m.e.c.

Proof. Suppose there exists a m.e.c C with ultraproduct elementarily equivalent to M. As
M is imprimitive, we know that in the theory of M there will exist a sentence saying that
the union of some relations (and equality) forms an equivalence relation. After thinning
out the m.e.c C, we know that every sentence true of M is true in cofinitely many of the

members of C. Combining this with Lemma [2.5.5] we know that any sufficiently large
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I' € C, is imprimitive and 5-regular. Hence it will belong to one of the four types described
in Theorem [6.1.4] As the type of equivalence relation is also determined by a sentence in
Th(M), we also know that each I" € C large enough to be imprimitive and 5-regular will
be of the same type in Theorem[6.1.4] Hence we can effectively just think of m.e.cs of such

structures.

We can see that any m.e.c of imprimitive 5-regular graphs of type i) and iv) will have a
stable limit and so cannot be M. Now we look at m.e.cs of imprimitive 5-regular graphs
of type ii). Here either k; goes to infinity or it is fixed. If k; is fixed then the m.e.c limit
would be the k; quotient of an infinite homogeneous graph GG1. Now G will itself be the
limit of a m.e.c of graphs, and we know that no such unstable homogeneous graph exists by
Theorem[3j_7f} Therefore G; must be stable, meaning M is too.

If instead k; varies to infinity, every large enough member of C will be a quotient of the
same graph (G. Hence the m.e.c limit is the w-quotient of G, which is stable, and therefore

M is stable too.

The same argument works for case iii) but with extensions instead of quotients. O
We can also make the following remark

Remark 6.1.9 Suppose for any colour m, we have that k,, = 1. Then we see that the
structure has an equivalence relation in m, with classes of size two. Hence when we assume

a structure is finite primitive and 3-coloured, we know that k,, > 2, for all colours m.

6.2 Locally Imprimitive

As alot of the analysis in later sections involves looking at the structure on neighbourhoods
we need to think about what happens when the neighbourhoods possess non-trivial
equivalence relations. Given an imprimitive neighbourhood, it is not immediate that the
full graph is imprimitive. The following is a generalisation of Lemma 3.1 from [22]] to the

3-coloured case.

Lemma 6.2.1 In a 3-regular 3-coloured graph T' and any vertex oo € T, if the R-

neighbourhood of oo has a non-trivial equivalence relation B~ U G=, then the entirety
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of I has an equivalence relation B= U G~.

Proof. Let the R,G and B-neighbourhoods of co be R, G and B respectively. Consider two
vertices v and v in R, such that they are in different B U G components. Now note the
number of red neighbours of v in GUB is pg g+ pEG, and the same number for v. However
the number of common red neighbours of both u and v in G U B is pREE 4 pRER —
pg B+ ng and must be entirely contained within G U B. Hence these must be the same
sets. This means that every vertex in R has the same red neighbourhood in G U 5, and so
this must be the entirety of G U B. Now any point x € G U B has kg red neighbours, but
must be entirely connected to R by kg red edges, meaning that all edges internal to G U B

are blue or green. Hence I" has a B~ U G~ equivalence relation too. O

This will cover neighbourhoods that are imprimitive of type i) and type iii) from Theorem
[6.1.4 so long as the colours of the equivalence relations are different to that of the

neighbourhood.
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Chapter 7

The Eigenspaces of the
Neighbourhoods

We will pick up from where we left off in Chapter @] now, focusing on primitive 3-regular
3-coloured graphs. We start with some results about any 2-regular graph, and then take
the neighbourhoods of a 3-regular graph (which are themselves 2-regular) and apply these
results to them. We then look at possible ways the eigenspaces of each neighbourhood
interact, and the consequences of such interactions. The main results are the splitting of
these interactions into three cases using Equation the characterisation of each of
these cases (Sections[7.3] [7.4]and [7.5]), and then a host of results about what happens when

multiple different interactions occur simultaneously (Section [7.6).

7.1 Eigenspaces of 2-regular graphs

In this subsection we will generally work under the assumption of only 2-regularity. Here
we know that the adjacency matrices are simultaneously diagonalisable, and so will have a
shared basis of eigenvectors. The aim of this section is to think about how the three different

partitions of the shared basis into eigenspaces interact.

Definition 7.1.1. We say the eigenvalue 7, from A,, corresponds with the eigenvalue 7;

from A; if they share the same subspace of R" as an eigenspace.
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The main consequence of eigenvalues corresponding is that they have the same multiplicity.
We first will deal with them in terms of the full graph before looking at how they behave in

the neighbourhoods.

Lemma 7.1.2 If pfnm #* pﬁnm then we can determine r; given ry, i.e. the eigenspace of Ty,

is contained within the eigenspace of ;.

Proof. From Lemma andas J =1+ A,, + A; + A; we know that
A72n = (pmm _pinm)Am + (p]mm - pg’nm)AJ + (km - plmm)l +plmm‘]

So consider an eigenvector v of r,,. Now as r,, is non-principal we know Jv = 0 and

therefore applying v to the above equation gives us

(pjmm - p{mm)A]'U :A?.,LU - (P%m - pfnm)AmU - (km - p{mm)lv

AjU :T?n — (p%m B plmm)rm _ km +p£nmv

p]mm - plmm

Hence v is also an eigenvector for A; if piﬁm =+ pﬁnm with eigenvalue

rwzn B (p%m B plmm)rm B km + pgnm

j
Pmm — pgnm

ry =
Therefore the eigenspace of 7, is contained within the eigenspace of 7. 0

This means that if the graph is not strongly regular in colour m then the eigenspace of 7,
is contained within the eigenspace of r;. If we also have that p7; # péj then we get that
the eigenspace of r; is also contained within r,,, meaning the eigenspaces of r; and r,, are

equal, so the eigenvectors of 7, and r; correspond. We can also derive further information.

Lemma 7.1.3 Ifr,, # p} i plm ; then we can determine r; given .

Proof. This comes from the equations Corollary and Lemmal4.2.10] These give us

l j l 1
Tm®j = (D = P )Tm + (Dhnj = Dinj)T5 — Dimj
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which we can solve for r; unless 7, = p]m i~ pinj. O
Combining these two results we get

Corollary 7.1.4 Given r,, we can determine r; unless both pf'nm = plmm and ry, = p7m i
l
pmj‘

An interesting consequence of this is the following

Corollary 7.1.5 Suppose pfnm = pﬁnm and Ty, Sy tm, F p]m i~ pinj. Then the structure is

2-coloured.

Proof. As p%m = pl  the graph is strongly regular in m, and we have two non-principal
eigenvalues for A,,. Further, as no eigenvalue of A,, is equal to pfm — pfﬂj, we know
from Lemma that for any eigenvalue r,, of A,,, there exists an eigenvalue r; of
A; such that the r,,-eigenspace is contained within the r;-eigenspace. Hence there are
a maximum of two distinct non-principal r;-eigenspaces, and so a maximum of two non-
principal eigenvalues of A;. As we are assuming A; is not complete, this means there are
two distinct non-principal eigenvalues.

Further this implies that they must correspond perfectly, i.e. share eigenspaces, as a
surjective function between two sets of the same size is bijective. Now as 0 = 1+, +7; +
7}, and the eigenspace of r,, and r; are the same, we must have only two solutions for 7; as
well. In the Bose-Mesner Algebra this is equivalent to there only being two minimal non-

principal idempotents in the basis, and if this is the case their must only be two association

classes as well. Hence it is two-coloured. O

Suppose that we have both pfnm = pfnm and r,,, = pf;nj — pfnj. Well then we can note
that the structure is strongly regular in m, and so we only have two distinct non-principal
eigenvalues for A,,. Further we know that one of them is pf‘n i~ pinj. We can then find the

other eigenvalue using classical results about the eigenvalues of strongly regular graphs.

Lemma 7.1.6 Suppose that p7mm = pfnm and ry, = pi%j — plmj. Then

! . . .
Sm = p%m +pmj - pjmm - p]mj = pmm - p]mm —Tm
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And

(2pinj - 2plmj +p]mm - p%m)Z = (p%m - p]mm)2 + 4(km - pjmm)

Proof. We know from Theorem that

= 5 (98 = Do) + 00y Gt — o2 + 400 = o))

where 6(ry,) is either 1 or —1.

So then using that r,,, = pfnj — pﬁnj we get

2 — 2l + Pl — P = 6(ram)\) (P — Phm)? + A — Phoum)

Squaring this gives the second equation from the Lemma.

Now inputting this into the equation for the other eigenvalue we get

s =3 (O = V) = 3060 i~ P+ 405~ )
= 5 (0= V) = @0y = 2000, + P — 1))

. . .
:p%m - p]mm - p]mj + Py
O

Applying even more classical results we can also get the multiplicities of our two non-

principal eigenvalues in nice terms.

Lemma 7.1.7 Suppose p7mm =9l and r, = pfnj — pfnj and the multiplicity of vy, is f

and the multiplicity of sy, is g. Then

—(n—1)$m — km
m — Sm
(n—1D)rm + kn,

m — Sm

f=

g:
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Proof. By Theorem[2.1.10] we have the equation

fg==|m-n7F (n— 1) )
V B = Phn)? + 4k, — D)

Using results from Lemma [7.1.6] we see this becomes

f _1 ((n 1) - 2k + (n = 1) Prm _pZ@m)>
2 2pinj - 2p£nj — Pl + Dlnm
1 ((n — 1) (25— 204 — P+ D) — 2k — (0 — 1) (P, — pgﬁm)>
2 2p) = 2DL, i — Dy + Phm
_(n - 1)(pinj - plmj — Dmm +p]mm) —km
- 2p), = 2ph i — Dt + Phum
—(n =18y —kn

T'm — Sm

And similarly

1 2him + (n — D)(p™ — pl
QPij - 2pmj — Prvm T Dmm
_ (0= 1)y = Pry) + Fom
2p£nj - 2plrnj — PP + Dlm
(n—D)rm + km

'm — Sm

O

There are also other consequences for the intersection numbers if we are in the case where

we have one colour being strongly regular and at least one of the others not.

Lemma 7.1.8 Suppose that p%m = plmm and ry, = pjm] — pfnj. Then
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Proof. The first equation is the result of putting r,,, = pfn i plm ; into
Pty = (s = Dhoj)Tm + (Phy; = Pl )5 — D
The second comes from doing the same thing with
rmTt = (P — Pinz)rm + (Dt =PI _pan

Note that as pjmm = pinm, pin i~ pfn = pfnl — pfnl, the term involving r; still cancels. Next

W¢€ use

l j l 4
T%@ = (p%m - pmm)rm + (p]mm - pmm)rj + km — Pmm
l j 1 1 l j 1
0= (p%m - pmm)(p]mj - pmj) +pmj +pml - (p]mj _pmj)2

. ! . ! . I I
= (pinj - pmj)(pfnj _pmj +p]mm _pmm) - pmj — Pmi

and substitute in the earlier result for p! ; to give

mj +pjmm —p%m _ij)
km _pan — K + Py + 1)

P =l 4+ 1)

Now for the final equation, we can do the same thing with

En = (pmm - pan)rm + (plmm - p]mm)m + km - p]mm

r

however substituting in quﬁz instead. O

Taking stock of these results we get a simple yet fundamentally crucial lemma describing

the different partitions of eigenspaces.

Lemma 7.1.9 In a primitive 2-regular 3-coloured graph, the intersections of the

eigenspaces in each colour partition the shared basis of non-principal eigenvectors into
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4 classes.

Proof. We immediately get the first class as the principal eigenvectors. Next in each colour,
we get a further partition into 3 classes, and therefore there are 27 possibilities initially.
However as r; = —1 — r,,, — 1, we can determine which eigenspace of A; an eigenvector
is in if we know which it is for A, and A;. This reduces now to 9 cases.

Suppose first that we have three distinct non-principal eigenvectors of A,,. Then pﬁ'nm %
pl..., and hence by Lemma E(ry,) C E(rj). This must also occur for the other two
eigenspace i.e E(s,,) C E(s;) and E(t,,) C E(t;). Therefore if the A; also has three
distinct non-principal eigenvalues, we have equality here. If instead A; has two distinct
eigenvalues, so s; = t;, then E(ry,) = E(r;) and E(sy,) ® E(ty) = E(sj).

Now if we suppose that A, has only two distinct non-principal eigenvalues then we see
we’ve already covered if A; has 3, so it just remains to think about if A; has two distinct
non-principal eigenvalues as well. The first possibility is when E(r;) C E(ry,), then we
will also have E(s,,) C E(s;) and E(ry,) N E(sj) # (. Here the classes that partition V'
will be E(r;), E(sy,) and E(rp,) N E(sj).

The final case is when E(ry,) = E(r;). But then E(s),) = E(s;), meaning the graph is

simply two-coloured in this scenario. O

It is therefore prudent to think of these classes rather than the individual eigenspaces for the

colour.

Definition 7.1.10. We say an eigenvalue triple is a tuple of 3 eigenvalues, one from each
colour adjacency matrix.
We will say E(ry,,rj,7) to mean E(r,,) N E(rj) N E(r;), or alternatively the eigenspace

for the eigenvalue triple (ry,,r5,17).

Although it is a slight abuse of notation, I shall occasionally refer to the eigenvalue triple
(rm,7j,71) as the eigenvalue triple ‘r,” when it is in sufficient generality as to not present

confusion.

We should note that we could have eigenvalue triples (7, rj,7;) and (sy,, s, s;) such that

Tm = Sm say, however so long as there exists one constituent eigenvalue that is different
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between them, we still have different eigenvalue triples. This is because they are based on

the intersection of the three eigenspaces and this space will still be different.

We will now think about what happens in the imprimitive case. Although we are currently
not looking at imprimitive structures, we shall later be applying these results to the
neighbourhoods which could themselves be imprimitive, hence it makes sense to deal with
it now. The difference here is that the principal eigenvalues can act as ‘regular’ eigenvalues,
i.e. we could have that their eigenspace overlaps with that of a non-principal eigenvalue.
Fortunately, we see that if it does, the eigenvector in question will be orthogonal to w still,
as it is non-principal in some colour. Therefore we still get the full weight of Lemmas

and[Z1.3

Lemma 7.1.11 Suppose for distinct non-principal eigenvalues r; and s;j, both E (k) N

B(rj) # 0 and E(ky) 0 E(s) 7 0. Then ply, = Pl = ply; = 0.

Proof. From Lemma we get that Dl = pl., and then from Lemma we get
km = pinj — pfnj. AS kp, > pfnj, this implies pinj =0and k,, = pinj, which further gives
p]mm = 0. ]

This will mean that the only non-principal eigenvalue of m would be —1, as its complete in
m.

We can also note that the multiplicity of a principal eigenvalue kg will only exceed one if
the graphs equivalence relations include R~ or B= U G=. This is because the graph that
it is actually an eigenvalue of is Ar, which is effectively just a graph with R-edges and B
and GG non-edges. Hence we can just go through the list of possibilities and see how many

classes they have.

Lemma 7.1.12 In an imprimitive 2-regular 3-coloured graph, the intersections of the
eigenspaces in each colour partition the shared basis of non-principal eigenvectors into

4 classes.

Proof. As before, we shall group the principal eigenvectors together as the first class and
ignore them thereafter. Therefore every other eigenvector we deal with will be orthogonal

to u and non-principal. As before we can determine the eigenvalue of Az by knowing that



7.1. EIGENSPACES OF 2-REGULAR GRAPHS 93

of Ap and Agq.

Suppose first that we have the equivalence relation R=. Then Ap has two eigenvalues
kr and —1. If E(kg) has a non-zero intersection with only one eigenspace of A¢, then
we know E(—1) has a maximum of two non-zero intersections with eigenspaces of Ag
(as they are the solutions of a quadratic). If it only has one then we end up with a two-
coloured structure. So it has two, giving three total classes (not including the principal
class). If instead F/(kr) has a non-zero intersection with two eigenspaces of A, then by
Lemmal7.1.11]and[7.1.3] E(—1) must have non-zero intersection with only one eigenspace
of Ag, giving three classes again. Note that this argument also works for equivalence classes
R=,G= and R=, R~ U G=, as we assumed nothing about G.

Finally, If we assume we have the equivalence relation R~ U G=, the only non-principal
eigenvalue with multiplicity greater than one is kp. It makes sense to work consider
then the eigenvalues of Ap. Suppose first for a contradiction that there are three non-
principal eigenvalues of Ap. Then as the multiplicity of £y is one, one of the non-principal
eigenvalues of Ar must have an eigenspace that has a non-zero intersection with two
eigenspaces of Ap. But then by Lemma[7.1.2] Ag has only two non-principal eigenvalues,
implying they both must double up. However by Lemma this would mean they are
equal, a contradiction. Therefore Ap must have two non-principal eigenvalues and by the
previous argument each eigenspace of Ap must not have non-zero intersection with more

than one of the non-principal eigenspaces of Ar. Hence these will be the three classes. [

Remark 7.1.13 We can now look at consequences of the Lemmas|[7.1.9\and[7.1.12] and the

different ‘alignments’ of the eigenspaces.

There are 3 main primitive cases:

i) Ay, has three distinct non-principal eigenvalues ., Sy, tm and A; has three distinct
non-principal eigenvalues 1j,s;,t;. They are such that E(ry,) = E(r;), E(sm) =
E(s;) and E(ty) = E(t;).

ii) Ay, has two distinct non-principal eigenvalues ry,, s, and Aj has three distinct non-
principal eigenvalues rj,s;,t;. They are such that E(r,,) = E(r;) @& E(t;) and

E(sm) = E(s;). Here phym = ., and vy, = Prnj — pfﬂj.
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iii) Ay, has two distinct non-principal eigenvalues ry,, s, and A; has two distinct non-
principal eigenvalues r;,s;. They are such that E(ry,) N E(rj) = E(rj), E(sj) N
E(sm) = E(sm) and E(rpy,) N E(sj) # 0. Here pfnm =l Pl = péj, T =
pfnj — Py and sj = pir; — ph .

There are a further two breakdowns of the third case. At the moment, from Lemma[4.2.10]

we can see the eigenvalues of A; are —1 — r,, — 1j, =1 — 7, — s; and —1 — 55, — 5.

However there is potential for —1 — s,, — s; to equal —1 — r,;, — r;, meaning A; would

only have two distinct non-principal eigenvalues as well. In this case, each colour forms a

strongly regular graph. In this case the structure is amorphic (Definition[4.3.1)) and it’s been

very well documented in [47]. We shall come back to this case later.

If however the third case is not Amorphic, then we can entirely describe its eigenvalues

anyway

Lemma 7.1.14 Suppose a primitive regular 3-coloured graph G is strongly regular in both

m and j, but not strongly regular in l. Then we can describe it’s eigenvalues as follows:

: l ,
T'm :p]mj — Pmj> Sm :pﬁm _pjmm —T'm
R Y o .om
T3 =DPj; —Pj; = 855 5§ = Pmj — Pmj
g m ) J _ l j m
Tl —P{] —DPijs St = Pmi — Py ty = 2pm] -1 —pmj — Pmj
Proof. We already know 7, = pl, - — ph. Sm = Dy — Dinm — Tm 75 = D}; — Py — 8,

and s; = pp,; — pﬁnj by use of Lemma on both m and j. We also know that r; =

—1—7rpy —1js0

j ! j !
T = =1 =D+ Dy — P+ P+ P — D
=P~ Plj
Similarly s; = —1 — s,, — 5; 50

1= —1— Pl 4 phoj — D + Dl + Phoj — Dl

:p?:n_p{m
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Finally the third eigenvalue will be determined by ¢, = —1 — r,;, — 55, s0
i =—1 _P]mj +p£nj _pmj ‘f'plmj
O

If it was Amorphic we would have the added condition that ; = s; = pi; — pﬁnl and
p{l = p;;', which are actually equivalent conditions in this context.
We shall now look at particular combinations of intersection numbers that cannot happen in

a 2-regular, 3-coloured structure.

Lemma 7.1.15 Suppose in a primitive 2-regular, 3-coloured structure that, for distinct

colours c and d, p;y = py; = 0. Then {c,d} = {m, j}.

Proof. This comes from consideration of the equation
TmTj = PmjTm + pinj?”j + Dl
Now if we let p7; = py; = 0, by Lemma@ we see this becomes
TmTj = DimjTe

Where e is the colour distinct from ¢ and d. Suppose e = m, then either r,,, = O or r; =
pzj. However the same equations hold for s and . Now we can’t have ry,, = s,, =t,, =0
so one of these must be non-zero, so suppose without loss of generality that r,,, isn’t. Then
rj = Pp,; = kj, implying that the multiplicity of the principal eigenvalue is greater than
one. This can only happen when the graph is imprimitive by Corollary 2.1.16]and so e # m.
When e = j, we get that either r; = 0 or rp, = p]m] = k,, and so the same contradiction
occurs. Hence e = [ and {¢,d} = {m, j}. O
Lemma 7.1.16 In a 2-regular, 3-coloured structure if p\ . = p%j = p;»’;. = p; ;= 0 then

the structure is imprimitive.

Proof. For a contradiction, suppose we have a primitive 2-regular, 3-coloured structure with
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Prmim = Py = Pjj = p? ; = 0. Then by Lemma Lemmaand Lemmawe

get

2 l 2 l l
T = PmmT1 + km, 75 = P57+ kjy Tt = Pt

And so

2

o = (Db ) 217 = Dhagayyri + (kb + ki )11 + ki

Now, by Lemma and Lemma , we have k,, = p +1,k; = p;z +land k; = p}?,

meaning that pfnj = k”g;” s Phom = %(km — 1) and pé-j = %(kj — 1). Combining these

with the above equation we have

0= ]”Z;j(l — ke — kj)rE + 5% o + kj = 2)ri+ kmk;
= kzlzkj (1= ke — ky)ri = k(1 = ko — k) — kyry + k)
— krg;” ((ry = k) (L = Ky — Kj)re — Fy))
Therefore, as r; = k; would imply k; had multiplicity greater than 1 and the structure
would be imprimitive by Corollary [2.1.16] we must have r; = Jﬁ However the

same equation applies for s; and ¢; too, implying that ; = s; = ¢;. This would mean the
structure was complete in [ by Lemma [2.1.17, which wouldn’t be 3-coloured. Hence if
Prm = Pmj = Pj; = pg ;=0 then the structure is imprimitive. ]
We can also note other combinations that don’t work for similar reasons

Lemma 7.1.17 In a 2-regular, 3-coloured structure, if p}, =

p% :p?} = p; = 0 then

the structure is imprimitive.

Proof. We first note by Lemma and Lemma that k,,, = pf'nl and k,, — 1 = pi,.
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Then
Tl = Plpym + P
I rmtj = (km — 1)rm + kmr;
—Tm (T +75) = km (rm +15)
Therefore either 7, + r; = 0 or 7, = —ky,. The former would imply that , = —1

meaning it’s complete in [ or imprimitive, so suppose the latter. But then by Lemma[4.2.9|

and Lemma[.2.5| we get

(_km>2 = plmmrl + km

km(km — 1) = pﬁnmrl

But by Lemma , ky—1 = p,, and by Lemma , kil = ko = km(km—1).
Hence this implies r; = k;, meaning the structure is imprimitive by Corollary|2.1.16 O

7.2 Into the Neighbourhoods

Now we also want to consider how this works inside of the neighbourhoods. We shall use
freely the notation introduced at the start of Chapter[d] Recall that we fix a point co and look
at the neighbourhoods, R(c0), G(c0) and B(oo), respective of that point. In a 3-regular
structure, the neighbourhoods are themselves 2-regular, and so all of the above results hold,
however k, becomes p;;,. and the intersection number pj, would become p;7%*. We shall

go through this formally now.

Lemma 7.2.1 For any colour m and distinct colours c,d and e, N&

m 1S simultaneously

diagonalisable with N, = and N¢,,..

Proof. This is immediate from the fact that the m-neighbourhood is 2-regular and so will
form an association scheme. Therefore the adjacency matrices will commute, and are

therefore simultaneously diagonalisable by Lemma O
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And so as before there exists a basis of eigenvectors that is shared across all the adjacency

matrices within a neighbourhood. For convenience we will group these together.

Definition 7.2.2. We say the eigenvectors of the m-neighbourhood are the eigenvectors

included in a basis of eigenvectors that is shared between NX NG and NB, .

mm?

We will now list and prove the neighbourhood versions of the earlier results. Lemma

becomes:

Lemma 7.2.3 Suppose x,y, z are distinct colours, m is any colour and r,, is a non-

principal eigenvalue of NE, with eigenvector v,,. Then if pmys # pIT% N has

mxx
eigenvalue
m mmgz mmax mmz 2
. Pem — Pmazx + Tz, (pmzm — Pmax ) T
Tym = mmz mmy

pmxx — Pmax

and the eigenspace of r;,, is contained within the eigenspace of Ty,, .

Proof. First note that Jv,,, = 0 as v, is orthogonal to u. Secondly from Corollary4.2.11

we get that, for distinct j,1 # m,

ngcm Urpm +Nrg{q¢j me Urm ‘H\%l len Vrpy = (ke =Dp)Vrm, + Pz —Pas) T Ve + (Do — Do) Aym Urpm
(7.2.1)
And then using Lemma[.2.13] we see that

T T _(om mmz mma mmz mmy mmz
ijijva - (pxj _pjrx )U"‘m + (pjxx - pj:c:c )rmmv"‘m + (pjacz _pjra: )Aymvrm

as well as

mmz mmax mmz mimy mmz

N’rfllNl:;lvrm = (pg; - pl.ILL‘ )vrm + (pl$$ - plxac )rxmvrm + (pla;gj - pl;m: )Aymvr'm

Inputting these values into equation and rearranging we get

z m m mmz mmz T z mmz mmz mmz mmz 2
A v — kll?—pa:x_pzj_p:pl—i_pjxx + Piga +r$m(pxa:_pzx+pjx:p + Plaz “Pizz — Plza )_Tﬂﬁmv
Ym VTm mmz mmz ] mmy mmy m
Pz~ Plaa “ Djgx — Pzz + Dpyy +pj:m:
m mmz mmae mmz 2
o Pmz = Pmazx + Tem (pmz:v — Pmzx ) Tz
- mmz mmy UTm

pm;cg: — Pmax
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and hence v, is an eigenvector for A,, , with the eigenvalue r,,, as defined. O

mmz

= pm? as follows

We shall also note the consequence of py, s

Corollary 7.2.4 Suppose x,y, z are distinct colours, m is any colour and r,,, is a non-

principal eigenvalue of NZ, . with eigenvector v, . Then if pmzs = pmZ, we have

mmz ( mma mmZ) o ’1“2

0= p;nm — Pmax + Tem \Pmaz — Pmax Tm

Proof. We use equation [/.2.1]as in the previous lemma, however we can note that now the

coefficient of A, v, is 0. This gives the result. O
Next we will adapt Lemma

Lemma 7.2.5 Suppose z,y, z are distinct colours, m is any colour and r,, is a non-
incipal ei l NFE ith ei Then i ey — pmmz - NY
principal eigenvalue of Ny, with eigenvector v.,,. Then if ry,,, # Pmay — Dy > Nmm

has eigenvalue

mmx mmz mmz
o (pm:ry - pmxy )Tﬂcm - pm:py
rym - mmz mmy

rl‘m + pmmy - pmyz’

and the eigenspace of vy, is contained within the eigenspace of Ty, .

Proof. If T4, # pmzy — Py then applying Lemma internal to the m-

neighbourhood we get the equation

_ (ymmz _  _mmz mmy _ ,mmz _mmz
T2 T ym = (pma:y pma:y )sz + (pmwy pmxy )rym pma:y

which we can solve for r,, , giving the solution. O

We can combine Lemma and Lemma again to get the corollaries:

Corollary 7.2.6 The eigenspace for r,,, is contained within the eigenspace of r,, unless

mmy __  mmz _ ynmy mmz
Pmzz = Pmgq and Tz, = Dmay — Prmzy -

Corollary 7.2.7 Suppose pmyy = pV%. Then if there does not exist an eigenvalue 1, =

p%%y — pm;’éf the m-neighbourhood is two-coloured.
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These follow immediately from Corollaries and[7.1.5]applied to the m-neighbourhood.
We will also need a slight but quite important variation on the above result, for which we

re-introduce the concept of an eigenvalue triple (Definition [7.1.10):

Lemma 7.2.8 If we have two eigenvalue triples of the m-neighbourhood, (4, ,7y,,, =, )
and (Sz,,, Sy s Sz )> then if o, = g, either o, = S5, = Dmzy — Dy OF both

Tym = Sy And 15, = 5,

m*

Proof. Here we follow the eigenspaces of the two eigenvalue triples. Suppose E, =
E((T2 TymsT2n)) and Es = E((82,,, Sym» Sz,))- Then as ry = s;,., we know that

E,  NE;s, is non-empty. Now by Corollary either E,, = E(ry,, ) = E(s;,,) = FE

Sm

Of Tz, = Dmuzy — Py and pmizy = p?. If B, = Eq,, then the eigenvalue triples
must actually be equal, giving r,, = s,,, andr,, = s, . Hence we get the result. O
We can also note in the case where r,,, = s;,., 1y, = Sy,, and 7., = s, that the m-

neighbourhood must be two-coloured.
Finally, we get the neighbourhoods variation of Lemma This is slightly different
because the neighbourhoods can indeed be primitive or two-coloured, but also because we

have stronger restrictions. Recall V' defined via equation|8.1.1

Lemma 7.2.9 Suppose we have a primitive 3-regular 3-coloured graph, and we consider
the eigenspaces for each colour in a neighbourhood. Then V can be partitioned into a

maximum of four classes by the intersections of these eigenspaces.

Proof. Immediately if we work under the assumption that the neighbourhood is 3-coloured
and primitive then we can apply Lemma(7.1.9]to the neighbourhood to get the desired result.
If it is 3-coloured and imprimitive we can use Lemma

Note if it is just one-coloured then V' \ {u} is the eigenspace of —1, and there are no other
colours to worry about, so V' has just two classes.

If the neighborhood is two-coloured, then it is strongly regular, and the eigenvalues are

paired off by 1 4+ r + s = 0. Hence we have 3 classes. U

So far we have just been applying results present across any 2-regular structure, however
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these neighbourhoods have the added benefit of being interlinked with each other as
well. From the equations of Lemma we see that, for an eigenvector v of the m-
neighbourhood, we can consider N7, v as a potential eigenvector of the j-neighbourhood.
As j # m Lemma4.2.13|further tells us that, for distinct colours ¢, d, e,
. . - . J .
Nf]N]Cm = (p;‘;rzc - p;'Zlce)N;m + (pjgl - j;lce)ij "‘p;‘ZZeJ

And therefore for a non-principal eigenvector v of the m-neighbourhood, Jv = 0, and we
get

NENS, v = (P — pIm NG o + (01 — pIm )N, v (7.2.2)

2377 9m xc jxc

Definition 7.2.10. Now there are a few possibilities here depending on the eigenvector, v
chosen. For some distinct colours ¢ and d, either we have:

The 0 case in j: N v = N;lmv =0.

The Eigenvector case in j: N, v # 0 and N jdmv = aNNj,,v for some constant a. Here
N7, v will be an eigenvector for the j-neighbourhood.

The Independent case in j: N7 v # 0and N J‘-imv = 0 but they are linearly independent.

Each case has different implications, but we see at the moment they are tied to a particular
eigenvector and not the eigenspace as a whole. It is our aim to tie the cases to eigenvalue
conditions instead. This will mean that each eigenvalue triple’s eigenspace will be of the
same case, which makes sense. This is done with Corollary and Lemma We

shall now go through each case and note the implications.

7.3 Consequences of Eigenvectors being in the Eigenvector case

As might have been hinted by the name, the main consequence of this case is that for
v an eigenvector of the m-neighbourhood, N7 v end up being an eigenvector for the j-

neighbourhood. Indeed we can state

Lemma 7.3.1 For v an eigenvector of the m-neighbourhood then if N7 v # 0 and

aN;,v=N jdmv then N7, v is an eigenvector of the j-neighbourhood.
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Proof. Consider

T nTC _ /. jmc jme c jmd jme d

And so either ¢ = 0 and we are done or

A . 1 . 1 .
T ATC _ (,Jmc ___jme L. gmd L jme c
ijijv - (pjaxc Pjzc + ol Jxc ol gze )ijv

Therefore as N7, v # 0, it is an eigenvector of V. 5 U

Therefore in this case we see that for an eigenvalue triple of the m-neighbourhood,
(Tems Tdym s Te,n )» there will exist an eigenvalue triple (re;, 74;, 7e;) of N, such that for some
€, E((rcj yTdjs rej)) = {N]xmv TV E E((rcmv Tdpm» rem))}’ where E((Tcmv Tdpm s Tem)) =
E(re,,) N E(rq;) N E(re;). We will say here that the two eigenvalue triples correspond.

Lemma 7.3.2 Suppose Nj, v is an eigenvector of the j-neighbourhood. Then, for some

d

colour d distinct from c either N, v is 0 or an eigenvector for the j-neighbourhood, with

J
c _ d
ijv = aijv.

Proof. This is very straightforward. Note that from Lemma4.2.13|

‘ . i imen
NyiNjmv = (Plae = Plae ) Njm? + Plae. = Pige ) Njmv

€T (&) — (& 3 3
But N7, N7 v =y, N5, v as its an eigenvector. Hence

c __/ Jmec jme c imd ime d
Tz, ijv - (p]mc - p]xc )N]mv + (p;xc T Pjzce )ijv
jmc jme c _ /. gmd jme d
(ij T Pjze + jxc )ijv - (pjacc ~ Pjge )ijv
So N J‘»lmv is 0 or a multiple of N7, v, and therefore also an eigenvector. O

We can find some basic equations for what the constant a is in terms of intersection numbers.

Lemma 7.3.3 Suppose v is an eigenvector of the m-neighbourhood such that N imV #£0
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c _ d _
and aijv = ijv then a = 0 or

mmc mme mmd mme mme
a = (pjcd _p]cd )Tcm + (pjcd _pjcd )Tdm _p_]Cd

- d
Pe; = Plec’® + (0fed’® = Pl Irem + (Phec'® = Do )Ty

Proof. First assume a # 0. Now as before we will use the value of the norm squared

NG vP= (D7 + plerre,, + Pl drg,, + plarere,, ) |v)?

and
T ard c __ (,,mmc mmd mme 2
v ijij’U = (pjcd Tem +pjcd Td,, +pjcd r(im)‘v|
But also
1
T nrd c _ c 2
v' N i NG v = g]ijv|

Hence

1

m mmec mmd mme _ mmc mmd mme

a(pjc +pjcc Tem +pjcc Tdp, +pjcc Tem) = ( jed Tem +pjcd Tdpm +pjcd Tem)

And so

mmc mmd mme
(pjcd TCm + p]cd rdm + p]cd rem)

mmc mmd mme

(p:;"é +ijC Tcm +ijC Td,m +ijC Tem)

or, equivalently,

mimc mme mmd mme mme
a= (Pfed = Pfed“Vren + Pjed" — Pjed ) dm — Pjed

o m mme mmc mme mmd mme
pcj - ijC + (ijC - ijC )rcm + (ijC - ijC )rdm

O]

From this we can determine what the corresponding eigenvalues in the j-neighbourhood

actually are

Lemma 7.3.4 Suppose v is an eigenvector of the m-neighbourhood such that N;,,v #£0
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o d . . . . .
and Nj,,v = aNj, v then if vy, is the eigenvalue of N3; with eigenvector Nj,,v and a #0

__jmec jme . gmd  jme
Tz; = Pjze — Pjzc + a(pjxc pjxc)

m mme mmc mme mmd mme
Pej = Pjec + (pjcc ~ Djcc )rCm + (pjcc ~ DPjece )rdm

__jmec jme md jme
= Dl — Do + (Plre — Plze)
Jxe Jxc mmc mme mmd mme mme Jxc Jxe
(pjcd - pjcd )Tcm + (pjcd - pjcd )rdm - pjcd
_ _ _jmc jme
If a = 0 then ry, = Pjze — Pizc -

Proof. We know that N7, v is an eigenvector, so consider

. o imen
NyiNjmv = (Pae = Plae ) Njm? + Pz = Pige ) Njmv

Hence if a = 0, N]‘-imv =0andr,;, = pg;rf - pﬁf. If @ # 0 then

__jmec jme jmd jme
Tz; = Plize — Pjze + a(pjxc T FPjze )
m mme mmc mme mmd mme
o pjmc pjme + Pej = Pjec + (pjcc ~ Djee )rCnL + (pjcc ~ Djee )rdm (p]md 'mE)
— Fjze 7 Fjze mmc __ ,,mme mmd __ ymme __ mme jre T Pjxc
(e = Pl Iem T Dfeq” = Djed ) dm — Pleat
O

We can also show that being corresponding is a symmetric relation.

Lemma 7.3.5 Suppose v is an eigenvector of the m-neighbourhood such that Nj, v # 0

c o d ¢ .. . .
and ijv = aijv, then ijv is in the eigenvector case in m.

Proof. This is fairly trivial, all we have to show is that for some distinct colours x and

_ y
Y, Ny iNi,v # 0 and N? .N¢ v = aijNijv for some constant a. Well note that

m mj*'im
Ny, i Nj,,v is not 0, as otherwise N7, v would be. Further

d c _ mmc mmd mme
N Nim0 = (Pjed Tew + Pjed Tdm + Pjed Tem )V

which is a multiple of N7, N7 v as this can also be expressed as a constant multiplied by

. O

As we’ve seen the a = 0 provides a bit of a special case here. As we showed in Lemma
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the eigenvector in the j-neighbourhood is also of the eigenvector case, and we can

see that if NV ]‘-lmv = 0 then N;flj Nj,v = 0. Hence if one direction gets the a = 0 results,

then so does the other. So in this case we can get a full description of the eigenvalues just

in terms of the intersection numbers.

Lemma 7.3.6 If for v an eigenvector of the m-neighbourhood N ]dmv = 0 but Nj,,v #0

m

jm Jjme

c __ mje
then for any colour x, pj.zd = Djzd

mjc _ c . .
and p,.q = Pppq- Further N3 v is an eigenvector of

the j-neighbourhood with eigenvalues (sz Ty rzj) such that

_ o Jme p]me _ . Jjmec __jme __Jjmec _jme
ij — FPjzc jxc? ryj _pjyc pjyc ’ sz _pjzc pjzc
And if (ry;,7y,, 72, ) are the eigenvalues of v then
__ .mjc __  mje __ ,mjc _ . mje _ .mjc _ _mje
Tzm = Pmac Pmze Tym - pmyc pmyc? Tzm = Pmzc Pmze

Proof. All of this is immediate from Lemmas and[7.3.5] except that for any colour z,

pj:;'zc = pggff and p/7¢, = p™¢  This comes from the fact that, for any colour ,

J . .
0= ijijv = (p;;ndc — p;ZZe)mev

and

0= N2, N&NEv=(prse — plIe NE NS, v

mm*Ymj mj*tjm

7.4 Consequences of Eigenvectors in the 0 case

Lemma 7.4.1 For distinct colours c,d, e, if v is an eigenvector of the m-neighbourhood

with eigenvalues (rc,,, T d,,,Te,,) then N3, v = 0 if and only if

_.m mmc mmd mme
0= Dz +pjma: Tem +pj;rz Tdy, +pjm;r Tem

Proof. This comes from the fact that N7 v = 0 if and only if [N, v|= 0, coupled with the

m
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equation from Lemma[4.2.13]

Noni N = D51 + D53 Ny + P N + 0552 N,

mj*Ytim J mm

Therefore N, v = 0 if and only if

_ x 2
0 _‘ijU’
_ Tnarx €T
=v" Ny i Njpv
_m.,T mme, T nre mmd, T nrd mme, T nre
_prjv U+pj:rx v Nmmv+pjxx v Nmmv+pjxx v Nmmv

d 2
=05 d + Plyg Tem + Ding Tdpm + Pizg Tem)|V|

As v is an eigenvector, we know |v|?# 0 and therefore we have the result. O

Remark 7.4.2 By inputting the equation from Lemma 0=14re, +74, +Te,,
the equation from Lemma becomes

0= (p5 — o) + (P = Piaa Irew + (e = Dl I, (7.4.3)

By Lemma we see that in the 0 case this equation will hold for any colour x. We can
also note that if N, v = 0 then, for any colour y distinct from , vI'NY N% v =0 too

mj*tim

and so we get a slightly different equation

_ mme mmc mme mmd mme
0= “Djzy + (pjxy ~ Pjzy )rCm + (pjxy — Djay )rdm (744)
It can be fairly easily shown that given Equation in all colours x, we get Equation
as a consequence, and so it provides no new information. However, it could be more

useful to use this variation on occasion.

This equation is crucial to a lot of our study, and we will go back to it further on. However
for now we shall focus on how this works with corresponding and non-corresponding

eigenvalues.

Corollary 7.4.3 Suppose v € E(rc, rd,,, e,,) is in the 0 case in j. Then the entirety of

E(re,,7d,.+Te,,) is in the O case in j.
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/

Proof. By definition, it is known that for all v' € E(rc,.7d,,,7en)s Nom?t' = re, v,

N& v =rg, 0, and NS, v" = re, v'. Therefore if there exits v in the O case in j, then by
Lemma(7.4.1} we have the equation This will then hold for all v € E(r¢,,7d,,, e, )

meaning by Lemma|7.4.1} v’ is in the O case in j. O

We can’t necessarily tie the case to an eigenspace of a single colour, E(r., ), in the same
way. What happens to the vectors in the other eigenspaces if there exists overlapping
eigenspaces is an interesting question. For the most part, they cannot be of case 0 in
J, as (re,,, 84, ) won’t generally solve equation if (r¢,,, 74, ) does. However there
are certain constraints on the intersection numbers where it is possible that it might. For
instance, what if the entire equation collapses to 0, or the coefficient of N% v is 0?
Well it would have to happen for all colours x for that to affect the situation, and that will
have some very strong consequences which we shall discuss later.

Now we shall look at the repercussions of just one eigenvalue triple of the m-neighbourhood
being the O case in j. First note that Equation actually gives us three linear equations,
one for each colour in place of x. Hence we can solve them for r., and rg, , if the

discriminant is non-zero. For distinct colours = and y define

Oy = (D — D) (05 — D) + (0 — Dy e — piai®) (145

This is the discriminant of the Equation [7.4.3] when expressed in = and y.

Lemma 7.4.4 Suppose v € E(rc,,,7d,,,Te,,) IS an eigenvector of the m-neighbourhood,

such that v is the 0 case in j, and further suppose for some distinct x,y we have @ffj #0

then
I Rt RO Prea?) + (0 — Pl ) 0 — Pin)
" P Py Pl — ) + P — PRy P — P
ry - (py; = Pl ) (P — Phia®) + (P — Pl ) (P — Ply)
" O~ )P — pia ) + O — Pl (e — pihe)

Proof. From Lemma(/.4.1|we must have that both

mme mmd mme

0= (pg; - p;r:zcgbe) + (pﬁ?c - pjma: )rcm + (pja:r - pj:c:s )Tdm (746)
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And

0= (ps — pin®) + (P — P )re,, + (Purd — plim©yrg,, (7.4.7)

When considered as a system of linear equations in variables r.  and 74, , we see that

: : mme mmc mme mmd mme mmd mmc mme
the determinant is (p7'® — p7m ) (PTn® — Phan®) + (Pfyy® — Phy ) (Pfaz® — Do)
which is non-zero. Hence we can solve these equations for ., and rg, , giving the desired

results. OJ

It is important to note here that unless @fnyj is O for all combinations of distinct = and y, then

we can solve these equations for ., and 4, . For this to happen there will be consequences.

Lemma 7.4.5 For any distinct colours c, d, e, and distinct x and v, C‘Dﬁ/j = 0 if and only if

one of the following occurs:

. mmc __ mme mmc __ mme
i) Pjzz = Pjzx and Pjyy = Pjyy

.o mmd __ , mme mmd __ ,-mme

i) Pjzx = Pjzx andpjyy = Pjyy

mmec _ ,mmd _ ,mme mmec _ ,mmd _ ,mme

iii) Pjex ™ = Pjza = Pjuz 9T Pjyy = Pjyy = Pjyy

. mmc __ ,ymme __ mmc __ ,mme mmd __,ymme __
iv) For some non-zero constant )\, Ry S /\(pjyy Dy ) and Pipe —Pigy =

d
APyt = D)
Proof. Clearly if any of i)-iv) hold then Dfrf’J = 0, so all that remains to prove is the
converse. Well suppose @ff;’j = 0. Then either both the individual terms are 0, giving case

1), case ii) or case iii), or neither are and we have

d d
(Plyy© = Plyy V0 = i) = Py’ = Py ) Pz — Pla’®)

p’r_nme_pmmd pmme_pmmc
Hence if we let A = =222——122 we get A\ = —Lie——iwme. Note that denominators must be
vy Fiyy Pjyy Pjyy

non-zero as otherwise it would fall into one of the other cases. O

Coupling the equations with the results from the determinant being 0 we can push the

consequences even further
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Lemma 7.4.6 Suppose both equations and hold. Then CD:’% = 0 if and only if
one of the following hold

pm_ip'r_nme pm_ip'r_nme
l) pﬂ;gw = pn;‘,r:ge’ pmmc = pmme and rd = mx'rgw Jg’f)fmd - mynj’be ngmd
J J Ty Ty i Pjuz ~Pjzx Piyy ~Pjyy
.. d mme ,,mmd mme pﬁ_pﬁ?e p%—p%’ie
”) pmm = p p - p and TC = —mme_,mmc — mme_,mmc
jr Jzz  Fjyy Jyy ™ Piex Plox Pjyy ~Pjyy
iii) p;-r;c = Oorp% =0
. m m __ ,mmc mmec _ ,mmd mmd __
iv) For some non-zero constant ), Py — )\pjy = Dlpw — )\pjyy = Dipg — )\pjyy =
mme __ mme
Pjzx )‘pjyy

Proof. Suppose first that ”}Dﬁ/j = 0. The different cases here align with the cases from
Lemmal/.4.5

Case i) and ii) are immediate from combining either case i) or ii) from Lemma m with

the equations and[7.4.7)and solving for r4,, or r,, respectively.
For iii) suppose we have p'¢ = pg’;c’;ld = Py, and equation Then the equation

jxx

m __ ,,mme m _ ,mmc _ mmd _ ,mme 1 mo
becomes py; = piyy’c, s0 Pl = PliyC = Pian = Piyy - Note if piit, = 0, for any a, then

Pl = 0by Lemma@ This further implies p;; = 0 and so we are done.

So suppose p”', # 0 for all colours a. Then, for any colour a, by Lemma we know

that pi® = p?* = 0. Now by Lemma , pmzl = 0 and pi¥l = 0 for all a too. But

then by Lemma either p%w = pé”nii + p:;ifc + p?%% =0or pg’} = 0. So either we are
done, or p7% = 0. So suppose for a contradiction that p7. = 0. Applying pZi%é = 0 in the
same way, we see that either p;?}E =0or pZ]L» = 0. Therefore if p;}p # 0, both pZ}- = 0 and
p7; = 0 and further, as p;7; # 0 we know x = m. However, now we have Py = p;.'} =0
contradicting Lemma@ Hence we must have p7, = 0.

Finally for case iv), first input p[;7'¢ — p7i7¢ = A(pjyc — p,7¢) and p;-’;;ld — Pt =
A(plumd — pme) into Equationsand This gives p!7, — pllime = A(pllh — pme),
We can then rearrange both equation and equationWto be equal to pi37e — ApTite,
giving the result.

The other direction is provable from the fact that each of these cases immediately imply
their corresponding cases in Lemma m Cases 1), 11) and iv) are immediate. In case
iii), p% = (0 implies 0 = pg'}c’gc = p;?}c’gd = p%?e by Lemma and the similar for

Py, =0. O
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Note that case iii) is the A\ = 0 variation of case iv). Also it is fairly trivial to note that
Ty YT . . .

Cij = —’ij, and so if one is zero, so is the other.

As mentioned earlier, in order to be unable to solve the equations [7.4.3|for r.,, and rg,,, we

must have ’}Dfé’j = @fnzj = ©7; = 0. Assuming this is the case, we will then have at least

one of the outcomes from Lemma for each pair (z,y), (z, z) and (y, z). We will now

discuss the possible combinations of these outcomes.

Remark 7.4.7 It is important to remark that given the condition p]:, = 0 for some a,
although D), may be zero, we can still solve Equation for the eigenvalues as we
know by Remark[d.2.15|that r,, = 0. Therefore either the equation is immediately in terms

of one eigenvalue, or using 0 = 1 + 1.+ rq, + Te,,, it can be.

Lemma 7.4.8 Suppose the equation holds for .,y and z and that pj;, = 0 and py,, #

0 for all colours a. Then @ffj = @%j =Dz =0,

Proof. Suppose p% = 0 and both p% and pgnz are non-zero (as otherwise we are done).
Then immediately from Lemma we get ;7. = D77 = 0, so all the remains to prove
is that D", = 0. Well if p;, = 0, then for any colour a by Lemma either pl', = 0 or

both p7/, = pi it +pl " and il = pii7 + pliiite. Therefore pf) — pil = piit® — pilte.
Hence we have case iv) from Lemma with A = 1 and @?;’,fj = 0. O

We shall isolate the following result from the proof as it will be useful in it’s own right later

Corollary 7.4.9 Suppose that p7; = 0, pi, # 0 for all colours a and the equation

holds for x,y and z. Then for some distinct y and z, not equal to x, either p%/, = 0, pj’, = 0
m __ ,m _ ymmc _ ,mmc — ,mmd _ ymmd _ ,ymme _ o mme

Or Pjy — Pjz = Pjyy Pjzz Pjyy Pjzz Pjyy Pjzz

We can make some further deductions about other combinations. Suppose we have case 1)

for z and y and case iii) for y and z. Then it turns out that this implies we actually have

case i) for y and z as well. More formally

mmc mme

Lemma 7.4.10 Suppose that pj,/'© = pj,"'¢ and for some non-zero constant A we have

mmc mmc mmd mmd mme mmc __ ,,mme

Py = NP, = Py — AP = Dy — A = Py — ApLLe. Then piil'e = piiile.
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mmc __ mmc __ mme __ mme mmc __ mme
Proof. We have p7,7 AP = Dy Api7¢. Therefore as pj'© = pline, we have
mmc __ mme
pjzz - pjzz . O

Now we can put all these together to classify the possibilities

Lemma 7.4.11 Suppose the equation holds for x,y and z and p}y., # 0. Then @fé’] =

’Dfnzj = D7, = 0if and only if one of the following occurs:

1. Either p%; =0, pj, = 0orpj, =0

mmc __ ,mme . mmc __ ,mme mmec __ ,mme
2. Djzw = Pjza » Plyy = Djyy - and P2 = D2

mmd _ ,ymme ,mmd _ ,mme mmd _ ,mme
3. Dz = Plan > Plyy. = Djyy » and pj2'" = pik

M\ _— o Mma __ mma
4. For some non-zero constants \ and . and all colours a, Py Ap]y Py Dy

mma mma mma mma

Dy — WP} = Py — pp2 and piiy — Apup’ts = piin'® — Aupy]
Proof. First suppose we have CfoL/j = @frfj = 97, = 0. Then by Lemma for each

combination of z,y and z we must have one of the cases i)-iv). For convenience in this
proof we shall use the shorthand that zy is of case 1), for instance.

First suppose that any one of xy, xz or yz is of case iii), then we get case 1) and are done.
If any two of xy, xz or yz are case i), then we get case 2) here. Similarly if we assume they
any two of zy, xz or yz are case ii), we get case 3) here. We can also see that if any two

are of case iv), say w.l.o.g zy and yz, then for all colours a and some non-zero constants
mma mma mma

Aand p, piy — ApYy, = Py — Apjy® and pll — ppll = piptt — ppi. Combining

these two equations gives piy, — Aup’, = pjih'® — Aup 7, and so we are in case 4).

Therefore the only remaining possibility is a combination involving all three of case 1), ii)

and iv). However we note for instance xzy and xzz are case i) and case ii) respectively, then

mmc mmd

Pirn’ = Digg = pg’y;e. This, when coupled with Equation , implies p;r;- = 0, and so
we are actually in case 1).

Now we shall prove the converse. If we suppose we have case 1) then by Lemma

Ty
mj

we get D @ﬂfj = 97;; = 0. If we suppose have case 2 or 3, then this immediately
implies we have case i) or case ii) respectively from Lemma[7.4.6|for every combination of
x,y and z. Similarly, case 4) corresponds to having case iv) from Lemma for every

combination of z, y and z. O
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Remark 7.4.12 It should be noted from the proof that the condition p)., # 0 for all a
is only present so we can apply Lemma Hence Lemma would therefore be
almost exactly the same without this condition, however it would no longer be ‘if and only
if” as the condition ‘pj;, = 0, pi; = 0 or pji, = 0" would no longer necessarily imply

Yy __ yz __ 2r
DY =DV =D =0,

In case 2), we can note that, as we can solve Equation for rq,,, if we have p/""he £

pmrie and use Lemma we can determine r.,,. Similarly we can do the same thing

with case 3). Hence in these cases in order to not be able to solve for both ., and rg,,, we

must have p"7"'¢ = p"""¢ in case 2) or p)'"¢ = p""'¢ in case 3) also.

Further from Lemma|[7.2.5] we can solve for r._ given r4 unless rgy = pmme — pmme
m m m med med

therefore this condition must be present also.

It should be noted that if p]? . = 0 for any a solving the linear equations is possible, except
case 2) when p" , = 0 and the case 3) when pj;. = 0. This shall not be excluded from the
following definitions, however it will be noted wherever it affects results.

As we will make frequent reference to these cases we shall define terms for them

Definition 7.4.13. If for some z, p’ = 0 then we say that the m-neighbourhood is z-

undesirable with respect to the j-neighbourhood.

mmc _ ,,;mme mmc _ ,,/mme mmc _ ,,;mme mmc _ ,,;mme
I e = Dign > Piyy© = Dy Piaz ¢ = P22, and piir = prir, then we say that the

m-neighbourhood is d-semi-undesirable with respect to the j-neighbourhood.

If for some non-zero constants A and p and all colours a, pg’:; — )\pj"; = pj”;’;“ - )\pj%”“,

p% — up}”z = p}%m - upj”ZZ”a and p?;‘c — /\upj"; = p?%“ — Aupj"g;a then we say that the
m-neighbourhood is a multiple with respect to the j-neighbourhood.

Remark 7.4.14 If we have d-semi-undesirability, we can note that we also have p"""¢ =

jay
Py for all distinct x, y. This is because, by repeated use of Lemma

mmc __ m mmc mmc

mmc mmc mmc

= Py — Plea — Pjz T Pjar +Djye

_ m mmc m mimc m mmc mmec
= DPje = Pjux — Pjz T Pjzz T Pjy ~ Pjyy — Piay
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So applying the d-semi-undesirable condition this becomes

mmc __ m mme o mme . mme
2Pjey = Pjo ~ Pjax — Pjz T Pjzz +Pjy — Djyy
mme mime mme mme mme mime

=DPjzy T Pjzz —Pjzz — Pjyz T Pjay T Pjyz

mime

= 2Djay

By combining Lemmas [7.4.4]and [7.4.10| then we can say

Lemma 7.4.15 Suppose we have an eigenvector v of the m-neighbourhood with
eigenvalues (1¢,,,Td,, , Te,,) Which is the O case in j. Further suppose we can’t find unique
solutions for both v, and rq,, using the equations[7.4.3land 0 = 1 + rc,, + 7q,, + Te,,.

Then we must have that, for some colour x, either:

* The m-neighbourhood is 3-coloured and x-undesirable, x-semi-undesirable or a

multiple with respect to j.

* The m-neighbourhood is 2-coloured with p{nj = phim = 0.

Proof. First suppose the m-neighbourhood is not 3-coloured. Well if it is 1-coloured, by
Remark[4.2.15 we can solve 0 = 14, +74,, +7e,, for the eigenvalues. If it is 2-coloured,
then one of the eigenvalues is 0, and the other two are for distinct colours a and b. Then

mma mmb

they satisfy 0 = 1+ rq,, + 1, and 0 = pii% 4 plit@r,, + pjory,, for all colours x. This

becomes
b b
0=py; = Piea + TamPiaa — Pjaz )
Which means we can solve for 7, and ry,, unless pii7t® = %’;b for all z. But if this
happens we also get plfs = p/u7® = p7m°. This implies by Lemma that p/® =

psz
either pJl, = 0 or both pjt, = It and pr, = pzii. But again by Lemma

mjx mjx

either ple = 0 OF phie = prds + p™% +1 = p, + p™, + 1 = ky,. The latter implies

mma — () for y, z distinct and not equal to . But now by Lemma @ and Lemma

Py, = P}, = 0by Lemma@ As we could have done the exact same thing for y and z,

we see that we must have that two of p77,

m m
pY, and pi7 are zero. By Lemma(7.1.15] we must

have p}f"’m = pﬁ- =0.
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So now suppose we are 3-coloured. Then we know p], # 0 for any a and so 7., and rq,,
are non-zero. Hence by Lemma[7.4.4) we can solve the equations[7.4.3|in x, y and z to get
unique solutions for ., and r4,  if we do not have @ffj = @%fj = D7 = 0. Hence if we
cannot do this we must have one of the conclusions from Lemma|[7.4.11] which correspond

to undesirability, semi-undesirability or a multiple with respect to j. O

At this point we can note that the second option doesn’t actually occur, this is due to the
later result Theorem [7.6.20)

We can note that there are some strong consequences of the multiple case.

Lemma 7.4.16 Suppose we have an eigenvalue triple of the m-neighbourhood
(Fepns Td, s Te, ) that is in the O case in j. Suppose also that the m-neighbourhood is a
multiple with respect to the j-neighbourhood and p], # 0 for all colours a. Then, for

distinct colours x, v, z,

mmax,, MMy mmax ,,my

l) pjcd pjce :pjce pjcd ’

.. mjc _mjc _ _mjc_mjc

ii) PpyzaPmye = PmzePpyq
mjc mjc

ey o
i) p,,aPmye = PmePpyar
. mje mjd

iv) Pmyc = Pmyc-

Proof. The proof is fairly simple. We know that in the multiple case the equation

_ mmz mmax mmz mmy mmz
0= —pjed” + Pjed” — Pjed am + Pjed — Pled )ym

must be a linear multiple of the equation [7.4.4]

mmz mmax mmz mmy mmz

0= _pjce + (pjce - pjce )rfm + (pjce - pjce )rym
Hence, for some non-zero constant \,

mmz mmz mmax mmz __ )\( mmax mmz mmy mmz mmy mmz
ce

pjcd :)‘pj pjcd _pjcd pjce _pjce )andpjcd _pjcd :)\<pjce _pjce )
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mmz

The first equation gives us A = iiﬁfm , which we can then substitute into the others giving

jce

mmax, Mmmz mmax, mmz

Pjcd Pjce = Pjce Pjcd

mmy _mmz mmy_mmz

p]Cd pjce = pjce p]cd
Combining these will give us the third

mmy mmy
pgncgmpjce - pjnzgmpjcd
The other results we can find from manipulating these equations. First if we just apply

Lemma to every intersection number we get p7“ple = p%é‘épﬁiﬁ Now we can

use this and Lemma4.2.3] to note that

) mjc __ mjc mjc mjcy, _mjc
p]mdpmye - (pmxd + pmyd + pmzd)pmye
_ mjc ij mjc mjc mjc mjc
- pmxepmyd + pmydpmye + pmzepmyd

__ . mjc/ _mjc mjc mjc
- pmyd(pmxe + pmye =+ pmze)

= p]mepzjyfi
Finally, making repeated use of Lemma.2.4]

j . mje _ . mjc

pmdpjmcpmye - p]mep]mcpmyd

j i .mje __ .5 . J ,mjd

pmdpjmepmyc - p]mepmdpmyc
mje mjd

Prmiye = Pmiye

O]

This final equality impacts a lot. Note that m and j are ‘swapped’ from the previously
established convention here as this lemma is from the perspective of assuming that m is a
multiple with respect to j. We don’t assume this, because the Lemma holds from a single

consequence of this, namely the identity pjie = pmae, and so we don’t require the full

strength of the condition.
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Lemma 7.4.17 Suppose for distinct colours m, j, any colour y and distinct colours ¢, d, e

we have p%ﬂﬂ = Pmye and also suppose that v' is a non-principal eigenvector of the j-

neighbourhood. Then either v' is in the 0 case in m or is in the eigenvector case and

. . j id
corresponds to an eigenvalue triple where ry,, = Dmyc — Pmiye -

Proof. Suppose that we are not in the 0 case, so for some colour c, N,f%jv’ # 0. Now we
consider the value of N,%mNﬁljv’. From Lemma4.2.13| and Jv' = 0, we get
/ j j ! jd j d 7
N NV = (Pimte = Pmiye) NV + (Pimve — Pmye) Ninj ¥

_ (,,mjc __ _mje c ./
- (pmyc pmyc)ijv

Hence N7, . v’ is an eigenvector of the m-neighbourhood, and has eigenvalues 7, = pmye—
mjd
Pmyc - Il

Further this equality is actually is at odds with the Eigenvector case altogether

mjy __ _mjx

Lemma 7.4.18 Suppose for all b, and all distinct x,y, z, we have p, 3~ = p, .. and that
Pia =% 0 for all a. Then we cannot have an eigenvalue triple for the m-neighbourhood in

the Eigenvector case in j.

Proof. From p™#¥ = ng and Lemma we have for all b that

mbz

b b
PiaPiys = DjyPjar (7.4.8)

Now suppose for a contradiction that we have an eigenvalue triple (sc,,, Sd,, , Se,,) in the

Eigenvector case in j. Note that, for v € E(se,,, Sd,,; Se,, ), We know that

T nrx z _ mmec mmd mme 2
v ijijU - (pj:rz Sem +pjzz Sdpm +pjzz Sem) |U|
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which by use of Equation[7.4.8|becomes

P P P

_ JZ _mmc JZ _mmd JT _mme 2

- pm pjyz Sem + pm p]yz Sdm, + pm pjyz Sem |U|
7Y JY JY

pm
_ gz T Aty Z
7y
And so, as we know that for some constant A\, IV, fmv = AN Jymv, we must have that if

Nz,v #0,
_ P

T )
N3 v m N, v
7y
£ ATY
Note that we also get that, if N v 70
Pl
z _ 2JT a1z
Ny v = m N5 v
J=

Now we know 0 = Jv = Nf v+ N} v+ N7, v and so

Pie | Pz
T o

O:(l—i-p' m)mev
jz jz
k.
_ M oNT oy,
pp "

Soas kj # 0, Nj v =0.
But as p’f; # 0 for all a, either N, mU=0o0r N ]y v = 0 as well, implying all three must be

m

0, a contradiction with the definition of the Eigenvector case. O
Putting this together with Lemma we get

Corollary 7.4.19 Suppose we have an eigenvalue triple of the m-neighbourhood
(Tepns Tdyy s Ter, ) that is case 0 in j. Suppose also that the m-neighbourhood is a multiple
with respect to the j-neighbourhood. Then if p'y; # 0 and p).. # O for all x, then no

eigenvalue triple of the m-neighbourhood can be in the Eigenvector case in j.
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7.5 Consequences of Eigenvectors in the Independent Case

This is maybe the most oppressive of the three cases, and it turns out we can entirely
disprove its existence, which we do in Theorem However in order to get that far
we need to fully explore the limitation and consequences of the Independent cases, which
we do here. The main result is Theorem which both determines the value of all the
eigenvalues of an eigenvalue triple in this case, but also determines that the familiar equality
7:;2 = pf;zz holds. The consequences of this equality are fully explored in this section.

First we can note a rather nice result which seriously limits the prevalence of the

Independent case.

Lemma 7.5.1 Suppose for some c, p?} = 0. Then, for v an eigenvector for the m-

neighbourhood, N, v = 0 and N jdmv is either 0 or an eigenvector of N7, for any d # ¢

Hence v cannot be the Independent case in j.
Proof. We first see that by Lemma and Lemmal[4.2.3],
NG 01 = D+ Dot ™ P + Do T + D11,

=0

And so N5,,v = 0. Well now, we note that as J = N7, + N;’m + Nj,,, and Jv = 0, we get

Niv = —demv for d,e # c. Then by using Lemma [4.2.13| and multiplying by v on the

right we see
m nrd ___gmec are jmd nrd jme
ij ijv = pjmdemv + pjmdemv + pjmdemv
/. gmd jme d
= (pjmd - pjmd)ijU
Hence N Jdmv an eigenvector or it is zero.

Also not that IV Jdmv and N7, v are not linearly independent so v is not in the Independent

case. O

Specifically this means that the combination of some undesirable cases and the Independent

case cannot happen which is always good.
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Now we look at the general implications of the Independent Case. Note in the following
analysis we can safely assume p’ # 0 for all ¢ by the previous lemma. We aim to prove

the following

Theorem 7.5.2 For any colours d, e, f, j, m, such that j and m are distinct, suppose v is

an eigenvector for N¢

e OTthogonal to u, with eigenvalue rq,,, such that N, jemv is non-zero

and not an eigenvector of N ]f] Then for all distinct colours a, b, c

_ . Jma __jmb
Tdm = Pmad mad

jmb __  jmc
Priad = Prmad

Proof. For distinct a, b, ¢, by using Lemma4.2.13|and multiplying by v on the right we get

the equation:

J . b . b
N]qumm’U :(p;:;(cll - pinmad)ijv + (pznn(h;il - pinnZd)ijv
. b . b

0 = (Pl = Pomst = T ) NGu 0 + (Dl — P N0

mad mad

Now we know that N7 v is non-zero and also that it is linearly independent of N7 v,

s . f jma jmb
otherwise it would be an eigenvalue of N ;- Hence we must have p. o — Py 0d = Tdm» and

imc

consequently, p; -

= pfzz too as N7, v must also be non-zero. O
If this situation occurs we can actually determine quite a lot about the rest of the structure.

Lemma 7.5.3 For colours d,e,e', f and distinct colours j and m, suppose v is an

eigenvector for N¢

e OTthogonal to u, with eigenvalue rq, , such that N J‘?mv is non-zero

and not an eigenvector of N ]fj Then, for any eigenvector, v', of N ]fj orthogonal to u, either

/ ! . . . .
Nf;ljv’ =0or Ny, jv’ is an eigenvector for Nﬁlnm orthogonal to v but with eigenvalue g, .

Proof. We get immediately from that ry, = pfnnzlz - pfn W;Z and p/™ = p!™ for any

mad — Fmad

distinct a, b, c.
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Now fix an eigenvector v’ of N J]; orthogonal to u and consider

d e 1 _  mjR mjB R mjG mjB G
NmmijU - (pmde’ - pmde’)ijv + (pmde’ - pmde’)ijv
/. gmR JmB R ./ ImG TmB G

- (pme’d - pme/d)ijU + (pme/d - pme’d)ijU

_ e
= rdmijv

Therefore either Nﬁ; jv’ is an eigenvector of N, with eigenvalue r4,, or it is 0. Note that
if Nﬁ;jv’ is an eigenvector it must be orthogonal to v, else N, v would be a multiple of v,

m

and therefore an eigenvector of NV ij as it’s non-zero. O

The equality p]mnzl; = pz:;fl from Theorem is the same as the one in Lemma (7.4.18
and, as we know by Lemmathat pjy # 0 for all z, we get the following result.

Corollary 7.5.4 Suppose we have an eigenvector of the m-neighbourhood with eigenvalues
(Feps Td, s Te,, ) that is the Independent case in j. Then there does not exist an eigenvalue

triple of the m-neighbourhood in the Eigenvector case in j.

Therefore, this coupled with Lemma [/.4.17] means that in this scenario, the j-

neighbourhood can only have eigenvalues in the 0-case in m.

Lemma 7.5.5 Suppose we have an eigenvector of the m-neighbourhood with eigenvalues
(Fepns Ty, s Te,,) that is the Independent case in j. Then all eigenvectors of the

E(7¢,,,Td,,,Te,,) are in the independent case.

Proof. Consider any v’ in E(r., 74 ,Te,, ). v' cannot be in the O case as this would imply
v was by Corollary By Corollary(7.5.4] we also cannot have v’ be in the Eigenvector

case. Hence v’ is in the Independent case. O

This allows us to conclude that each eigenspace for an eigenvalue triple is of one consistent
case.
We can show further that if we have the Independent case, we can’t be in the multiple case

either.
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Lemma 7.5.6 Suppose we have an eigenvalue triple of the m-neighbourhood
(Tepns Td,, s Ter,) that is the Independent case in j, then the j-neighbourhood can’t be a

multiple with respect to m.

Proof. Suppose the j-neighbourhood was a multiple with respect to m. Then by Lemma

7.4.16|we get that for any d, and distinct a, b, ¢, we have
jmb jmc
p;'da = jda

But now, for some v an eigenvector of the m-neighbourhood belonging to the eigenspace
of (re,,sTd,,, Te,, ), consider the equation
d nta _ ima imc a Jjmb jmc
NjiNim? = Pjda ~ Pjaa JNjm¥ + Pjaa — Pjaa JNjm?
jma jmc
= (P — PN

jda

This implies that N7, v is in fact an eigenvector of the j-neighbourhood. The choice for
a was arbitrary so all of them are actually eigenvectors of the j-neighbourhood. Therefore

they are not linearly independent, and not in the Independent case. O

7.6 Combining the cases

All of these results have been talking about just a single eigenvalue, but as we know by
Lemma|[7.2.9] each neighbourhood can have up to three non-principal eigenvalues and so it
makes sense to look at how they interact. We will start with multiple O cases. Note that in

this section we will always assume m, j and [ are distinct colours.

Lemma 7.6.1 There is a maximum of two distinct eigenvalue triples of the m-

neighbourhood that are in the 0 case in j.

Proof. First note that if the m-neighbourhood is not 3-coloured, this is trivially true as we
only have a maximum of two eigenvalue triples in this case by Lemma We also know
that there must exist some colour ¢ such that p; # 0 or else both £, and k; would be 0.

Suppose for a contradiction that every eigenvalue triple was in the 0 case in j and further
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that for some colour x and distinct colours y and z, we have ppg. # p". Hence we have

by Equation in ¢
mmz mmy mmz

0= (pz - pjnzznz) + (p?zvcnx ~ Pjce )Tﬂcm + (pjcc ~ Pjcc )Tym

Now as pmas # pm™# we can use Lemma to get

pm —p mz oy g m(pmmx _pmmz) o ,r2m
0 =0l — ) + (W — Y, + (e — ) (P Pmee T Pmee P )~ T
pmxa} — Pmax
1 2
= ommz _ pmmy <r$m (p;ncznz - p;nczny)‘i‘
pmxaj pmxx
Tom ((Pmze — Pmag ) Plec” — Plec ) + Pmae — Pmaz ) (Plec — Plec )+

(Pje = Pjec ) Py — Pmas ) + Pjec = Plec ) Plim — p%?f))

Now we have a quadratic in terms of r,, . Provided both the coefficients of both 7, and

2

r

%, aren’t zero then, this can be solved, giving a maximum of two solutions. So all that

remains to be shown is that we can’t have both pi727"* = pli™ and (pi7” — piii?) (pje, ~ —
Pied?) = —(Pae — pmﬁy)(pﬂ?’” — pa*). Well suppose we did, then we would have
0 = (Pl — Pmaz ) (D™ — pie®). Now we already know pmzy’ # P> and so
therefore this would give p7y** = pl*. By Lemmaif DI = Plee = Ple® and

we have an eigenvalue triple in the 0 case, then pj; = 0, a contradiction as we established

earlier that p'7 # 0. Hence we must have ppzi’ = pinys’ for all distinct z, y and 2.

my mmz

So suppose now that we have for all distinct x,y, z we have ppu. = p% and suppose

for a contradiction that all three non-principal eigenvalue triples are in the O case in j. By

the condition that p%géy = Dimga

we know that each colour adjacency matrix has only
2 distinct non-principal eigenvalues. The m-neighbourhood must therefore be in case iii)
from Remark [7.1.13] We can see then that for each colour z, there exists an eigenvalue of
NE,. thatis pmay —p# and this eigenvalue is present in two distinct eigenvalue triples of

may

the m-neighbourhood. Say we now consider just a particular fixed colour x and say w.l.o.g

Ty = Pmay — Pins?. From in z, we get

0=py; = Plaw” + Pfan” = Plax ) (Pimay — Py ) + (Djan = Pz )y
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So unless the m-neighbourhood is z-semi-undesirable, then we can determine r, ,
contradicting the fact that 7, is in two distinct eigenvalue triples. Hence the m-
neighbourhood is z-semi-undesirable. But then consider the eigenvalue triple without 75, ,
and say the z eigenvalue is s,,, . But then by our assumption that this was also in the O case

in j, by Equation [/.4.3|coupled with x-semi-undesirability, we see
0= 135 = Pjze + Wloz — Ploz )Sem

Implying that actually s;, does equal r;, . But then 7, is the only eigenvalue of N in
the m-neighbourhood, and it will have multiplicity k,,, — 1, meaning the m-neighbourhood

is complete in x. But then it is 1-coloured, a contradiction. O

Therefore a maximum of two of our eigenvalue triples in the m-neighbourhood are in the 0
case in j, however we can reduce this number further depending on their desirability from
Definition This is because if we can solve the Equations then we determine
what the eigenvalue is in terms of intersection numbers, and so any eigenvalue triple in this

situation must have the same eigenvalues.

Lemma 7.6.2 Suppose m is not semi-undesirable, undesirable or a multiple with respect
to j, and we have eigenvalue triples (., ,Tq, ,Te,,) and (e, ,Sd,. s Se,, ) both in the 0 case

in ] Then Tew = Semr Tdp = Sdm and Tem = Se

m*

Proof. We know by Lemma|7.4.11|that there must exist some x and y such that @ﬁf”] # 0.
Therefore we can apply Lemma [7.4.4] to both (rc,,,7q,,, e, ) and (sc,,, Sd,,, Se, ). Hence

the eigenvalue triples must be equal. O
We can get some similar results surrounding semi-undesirability.

Lemma 7.6.3 Suppose m is d-semi-undesirable with respect to j, and we have eigenvalue
triples
(Tepns Ty, s Tern,) and (Se,, s Sd,, s Se,,) both in the O case in j. Then rq, = sq, and either

— J— J— mmc mme
rcm - Scm, rem - Sem or Tdm - pmdc - pmdc N
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Proof. Given d-semi-undesirability and Equation for the eigenvalue triple

(FeysTd, s Te,, ) We get, for all colours z,
d
0= (Prj = Ploz )+ Ploz” = Pz Jdm

Hence we can solve this for 74, . However we can note that we get the exact same equation
for the eigenvalue triple (s, , Sd,, , Se,, ), and hence g = sq, .

Now by applying Lemma we see that either 7., = s, Of rq, = 54, = P’ —

mme
Prde - OJ

We can consider the Independent case in a similar manner and get strong results.

Lemma 7.6.4 Suppose we have eigenvalue triples (7¢,,,Td,, s e, ) and (Sc,, s Sd,,» Sem ) Of

m both in the Independent case in j. Then (T, ,Td, sTen) = (Sems Sdy s Sem )-

Proof. Applying Theorem to the eigenvalue triple (¢, ,7d,,, Te,, ), We see that we can
determine the value of each of the eigenvalues. Doing the same thing to (sc,,, Sd,,, Se.,)

gives the same values, hence eigenvalues of the same colour must be equal. O
Similar, slightly weaker results are available for the eigenvector case too.

Lemma 7.6.5 Suppose we have eigenvalue triples (7, ,Td, s e,,) and (Sc,, s Sd,,» Sen,) Of
m both in the eigenvector case in j. Further suppose there exists a colour x such that for

mev’ = 0. Then

z

any eigenvector v of E,,, N; v = 0 and for any eigenvector v of E

Sm?

(Tcm ? rdm Y rem) = (SCHL’ Sdm7 Sem )

This is just a straightforward consequence of Lemma[7.3.6]

So far we have only been combining cases going from the m-neighbourhood to the j-
neighbourhood. However we can also take into account the consequences of the fact there
must also be eigenvectors going between the m and [ neighbourhoods. For instance a fairly

strong result is the following.

Lemma 7.6.6 Suppose v is an eigenvector of the m-neighbourhood with eigenvalues
(Tems Tdms Ten ). Then if for some ¢, N5, v = Ny v = 0, we have N]C-lmv = Nl v =0,

mev = Nl?rnv = 0 and (TCm7rdm7 7aem) = (TC7 Td? r€)7 (867 Sd) 38)7 or (tc; tdv te)
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Proof. Consider the vector v/ = (v”',0,0)7. Then

o« 0 0 0

Al — u Ny, Ny Ny v
0 Nj. N5 g |0
0 N, N; N 0
0 0
NSV v

= =re,

NZv 0
Npov 0

So v’ is a non-principal eigenvector of A, and s0 r,, = 7¢, S Or t.. Suppose without loss
of generality it is 7.. Then further we also know that v’ is a non-principal eigenvector of Ay

and A, with eigenvalue r4 and r, respectively. Hence

rqv = Agv’
0 ul 0 0 0 0
e Mo Nag N {v] | Ny
: 0 N, N Ni||0 . N v
0 N, Nio N 0 NE v

And so N Jdmv = fonv = 0 and rg,, = 4. The same thing will of course happen for the

third colour e, giving the result. O

This basically means that an eigenspace cannot be the a = 0 eigenvector case in both j and
l. It also says that in the case where, for some eigenvalue triple, we have the 0 case in both j

and [, the eigenvalues of the m-neighbourhood are actually eigenvalues of the entire graph.
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Corollary 7.6.7 Suppose there is an eigenvalue triple (r.,, 74, ,Te,,) that is the O case in

both j and l. Then (r¢,,,Td,,,Te,,) = (TesTd, Te), (Sey Sds Se), or (e, ta,te).

Proof. For any eigenvector v € E(re,,,7d,,; e, ), We see N5 v = Nj v = 0. Hence by

Lemma , (T0m7rdm7 rem) = (Tm rd, Te)a (SCu Sd, 86)7 or (tm td, te)- O

Furthermore we can find other relationships in this case. This is because we have the
equations [7.4.3] but for both j and [. Therefore even if they aren’t solvable going from

m to j and from m to [, then they may be solvable through the interaction of the two.
Firstly let us just consider the equations [7.4.3| going in both from m to j and from m to [.
We have for all colours z,

0 = (plls — PIam®) + (P — P, + (D — pme)ra,, (7.6.9)

and

0 = (i — pisa) + (P’ — Plae)ren + (Pfig® = Diae Iy (7.6.10)

Therefore unless the discriminant of these six linear equations, all in terms of r, and rg, ,
is 0, we can solve for 7, and rg, . We will assume that we cannot solve the set for j and
the set for [ internally, i.e. we have either undesirability, semi-undesirability or multiples.
However each of these scenarios leaves us with at least one non-zero equation still and so

we can consider this system.

First we can note that if the m-neighbourhood is c-semi-undesirable with respect to one of
either the j or the [-neighbourhood, then either we can solve for the eigenvalues or it must

also be c-semi-undesirable with respect to the other.

Lemma 7.6.8 Suppose v is an eigenvector of the m-neighbourhood with eigenvalue triple
(FepsTd, s e, ), and is in the O case in both j and l. Suppose the m-neighbourhood is d-
semi-undesirable with respect to j. Then either we can find unique values of (1¢,,,Td,,, e, )

in terms of intersection numbers (either by Equations[7.6.9\and[7.6.10| or otherwise) or the

m-neighbourhood is also d-semi-undesirable with respect to l.

Further if the m-neighbourhood is d-semi-undesirable with respect to both j and | and we
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cannot find unique values for (r.,, T4, ,Te,,) in terms of intersection numbers, then
(& € C (&
Tdy = Ded = Ped> ANd Paq = Dda

Proof. First suppose the m-neighbourhood is d-semi-undesirable with respect to 5 and not
with respect to [. Then we can solve for rg4,,. Now as the m-neighbourhood is not
semi-undesirable with respect to [, there exists some colour x such that [7.6.10]is non-zero
(as we can’t have p;-’;g = 0 for all ), and has non-zero coefficient for r (otherwise we’d
have d-semi-undesirability). Therefore inputting the value of 4, into Equation for
this x, can solve for r,, too.

Now suppose the m-neighbourhood is d-semi-undesirable with respect to j and [ and we
cannot find a unique solution for r., in terms for intersection numbers. Then, for all x, y,

we have p¢ = pine and pj = ppp,t© by Remark Further as we cannot find a

1 1 3 3 i mmc mme
unique value of r., in terms of intersection numbers, we must have rq,, = p"'¢ — p™Y

by Lemma([7.2.5] Well now note that by Lemma[4.2.3]
Pdd = Pmdd T Pidd  + Pjad (+1ifm = d)
= D T + P (1)

= Pdd

Also, by Lemma[.2.3]

. mmec mme
Tdm = Pmed — Pmed

_ (& mmc mmc € mime mme
=DPecd ~ Picd — Pjed — Ped T Pled — Pjed
_ (& (&
= Ped — Ped
[

We can also note that we did not use the 0 case condition to obtain that p5, = pg;, hence:

Corollary 7.6.9 Suppose the m-neighbourhood is c-semi-undesirable with respect to j and

l. Then p$; = pS,-
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So in the case where we have that m is d-semi-undesirable in both j and [ and an eigenvalue
triple of the m-neighbourhood is the O case in both j and /, then from combining Corollary
and Lemma we know that Ay has an eigenvalue rq = p$; — p¢,, and is also
strongly regular.

SO far we have only looked at the scenarios involving semi-undesirability, but we could
also have combinations including undesirability and multiples. We know that by Lemma
if p7i. = O then either we have another p7; = 0 or the Equation in y and z are

multiples. It seems prudent therefore to discuss the interactions of these conditions.

Lemma 7.6.10 Suppose the m-neighbourhood is both c and d-undesirable with respect to
j. Then {c,d} = {m,j} and the m-neighbourhood can be undesirable in at most one

colour with respect to .

Proof. By Lemmal(7.1.15| we know that if p; = pj = 0 then {c,d} = {m, j}. Hence we
get the first statement. Now suppose, for distinct colours ¢’ and d’, the m-neighbourhood
is both ¢’ and d’-undesirable with respect to [, then we know p, = pj = 0 by Lemma

7.1.15| But now we get k,, = 1 4 pl ., a contradiction to primitivity. O
We actually can note the following

Lemma 7.6.11 Suppose pﬁj = 0. Then there cannot exist an eigenvalue triple of the

m-neighbourhood that is the 0 case in both j and l.

Proof. Suppose for a contradiction that there exists an eigenvalue triple (7, ,75,.,71,,) that
isin the 0 case in both j and [. If p;7} - = O then Corollaryyields TiTm = pznjrj —|—pfnjrl.
Now pj; = 0o rj,, = 0 by Remark @} But by Corollary there exists an
eigenvalue of A; equal to 7;,,. Suppose this is r;, hence r; = 0. Therefore 0 = plmjn. But
if pinj = 0, then we contradict Lemma and if r; = 0 then r,,, = —1, meaning the
structure is complete in m or imprimitive by Lemma [2.1.14] Neither of these can happen

and so we have a contradiction. O]

Corollary 7.6.12 Suppose that there exists an eigenvalue triple of the m-neighbourhood

that is the O case in both j and l. Then, for distinct ¢ and d, m cannot be both ¢ and
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d-undesirable with respect to j or l.

Proof. Suppose for a contradiction that the m-neighbourhood is ¢ and d-undesirable with
respect to j. This will imply p; = py; = 0, which by Lemma means pp,; = pJ; =
0. Therefore pj;; = 0 and so we can apply Lemma to get that we can’t have an
eigenvalue triple of the m-neighbourhood that is the 0 case in both j and [, a contradiction.
The exact same thing will happen if we supposed that the m-neighbourhood was ¢ and

d-undesirable with respect to [ instead, however with p7™, = 0. ]

Hence we don’t have to worry about both ¢ and d-undesirability when discussing the double
0 case. We can also think about how the interaction between two of the neighbourhoods
affect their interactions with the third. We first look at the Eigenvector case and note the

following important definition.

Definition 7.6.13. We shall say that an eigenvector, v of the m-neighbourhood and an
eigenvector v’ of the j-neighbourhood correspond if for some colour ¢ and some constants

Acand A, N5 v = Acv’ and N 0" = Aw.

We note that this will occur when we have the Eigenvector case.

Remark 7.6.14 If we have an eigenvalue triple of the m-neighbourhood (r¢,,, 74, ,Te,,)
that is in the Eigenvector case in j, then there will exist an eigenvalue triple (v¢;,74,,7e;) of
the j-neighbourhood, such that for everyv € E(r¢,,, T4, ,Te,, ) there exists a corresponding

V'€ E(re;,Td;Te;)-

Therefore we can say that Eigenvalue triples correspond if the eigenvectors of their
eigenspaces do.
When we have multiple Eigenvector cases we can get quite a few results. We shall see that

effectively the Eigenvector case acts as kind of equivalence relation.

Lemma 7.6.15 For distinct colours j,l and m, if there exist corresponding eigenvectors
U of the m-neighbourhood and v; of j-neighbourhood such that v,, is of the independent

case in l, then v; is also of the independent case in l.
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Proof. As vy, and v; correspond, then for some colour ¢ and non-zero constant A, Ny, U =
Av,,. Therefore for some colour ¢/, Ny N oV = AN ~,Um must be non-zero and not an

eigenvector of the [-neighbourhood, as v,, is in the independent case in [. Now by Lemma

4213

mc'e — Pmete mce — Pmete

Ni N& v = (P00 — pot, INT s + (00, — il ) N (7.6.11)

As this must be non-zero, we can’t have that both [V, l’}?vj and NV évj are zero. So the O case
is not an option or v; in [. If we suppose that only one of these vectors is 0, say NV, f]%j =0,
then we see the non-zero one, [V, zjf’j’ will become an eigenvector for the [-neighbourhood.
This is because for any colour d, NI N, lév (péfjj p% )N J v by Lemma However
we also see that Equation [7.6.11]becomes

ANGy o = (5, — )Y

mCC_meC

And hence this implies that IV, c ©,Um 1s also an eigenvector of the [-neighbourhood, hence we
have a contradiction with v,, being the independent case. The same contradiction occurs if
we assume instead that /V, évm was zero. Therefore Njv; is non-zero for all colours .

If Nj7'vj and Nl@v]- are eigenvectors of the [-neighbourhood then by Equation this
would imply that NlmN 7;0; 1s an eigenvector of the {-neighbourhood too. This would
further imply that N - Um 18, a contradiction to the independent case. Hence we can’t have
both Nj'v; and N/ i jv]- being eigenvectors of the /[-neighbourhood. But if only one is, then
the other must be as well by Lemma [7.3.2} as they can’t be 0. So neither Nl?vj or Név]

are, hence they must be in the independent case, concluding the proof. O
We get a similar result with the O case

Lemma 7.6.16 For distinct colours j, | and m, if there exist corresponding eigenvectors
U, of the m-neighbourhood and v; of the j-neighbourhood such that vy, is the 0 case in |,

then v; is the 0 case in | as well.

Proof. As vy, and vj correspond, then for some colour a and non-zero constants A and A’,

Ny v = Av,, and N om = A'vj. We also know by Lemma [7.6.15| that v; cannot be
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the Independent case in [, as this would imply v,,, was as well. Hence it must be either
the Eigenvector case or the 0 case. Well suppose for a contradiction v; is the Eigenvector
case in [. Then for some colour ¢, NjZv; is an eignevector of the [-neighbourhood and for
some non-zero constant B and eigenvector v; of the [-neighbourhood, N [;vj = Bu;. Hence

%N ij ;fmvm = Buwv;. But now, as IV, lbmvm = 0 for all b by the 0 case assumption for v,,,

/ Imc p1C Imd n1d Ime nre
A By = Pjca Nlmvm + Pjca Nlmvm + Pjca Nlmvm

=0

However A’ and B are both non-zero, implying v; = 0, a contradiction. Hence we cannot

have v; in the Eigenvector case in [, and it must be of the 0 case. 0
And finally

Lemma 7.6.17 For distinct colours j, | and m, if there exists corresponding eigenvectors
U of the m-neighbourhood and v; of the j-neighbourhood, such that vy, is of the

eigenvector case in l, then v; is also of the eigenvector case in l.

Proof. This is just a process of elimination. We know that v; cannot be the Independent
case in [ by Lemma [7.6.15|and we know it can’t be the O case by Lemma|7.6.16| Hence it

must be the eigenvector case in [. O

Further to the scenario where we have eigenvalue triples of the m-neighbourhood in the 0
case in both j and [, we can also get results when we have certain other combinations of the

cases in j and /.

Lemma 7.6.18 Suppose (rc,,,74,,,Te,,) is an eigenvalue triple of the m-neighbourhood
corresponding to (r¢,,7q,,7e,) an eigenvalue triple in the l-neighbourhood. Then if

(Tepns Tdy, s Ter, ) B8 in the O case in j, we get, for any x and y either

Ime _ lmd _ ,Ilme
1. Pjzy = Pjzy = Pjay

c _ Imd __ ,lme _ nImd Ime

2. N =0, piiyy = Py and ra, = pigg” — Piag for all a,
d _ Imec __ ,lme _ lme Ime

3. Nlmv =0, Pjzy = Pjzy and Ta; = Plac ~ Plac Jor all a,
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PR € L Vi VoA 4 L v H R
< Tap = (plmd—plmey for all a.
Pjzy “Pjay

Proof. Suppose (rc,,,7d,,;Te,,) is in the 0 case in j and has eigenvector v. Then for all v,

N;-’mv = 0. Now by Lemma4.2.13| for any =,
0= N:NY _ (plmc _ Ime N¢ Imd _ lme Nd
— jmv - (pj:ry pjxy) Im? + (pj;cy pjacy) Im?

As v is in the Eigenvector case in [ we know we don’t have N}, v = Nl‘fnv = (. Hence

either

: Ime _ Imd _ ,Ilme
D Pjzy = Pjzy = Pjay

ii) Nf,v=0and pind = plme

) Nd = 0and Imec __ lme

iii) Nj,v = 0and p;7 = pii7
Imc Ilme

. d . @ie—pine)

IV) Nlmv T Zmi, fm%) lcmv
Jjry ~ Fjzy

If we suppose 1) holds then we get outcome 1) from the Lemma. First suppose its case iii)

or iv). Then for any a, using Lemmad.2.13| we get

o Nimv = NiiNigyv
_ Imc Ime c Imd Ime d
- (plac ~ Plac )Nlmv + (plac ~ Plac )Nlmv
Assuming case iii), we input Nl‘fnv = 0 and solve this for r,, giving r,, = pfgzc - pfgf
corresponding to outcome 3) from the lemma.
If we assume case iv) then we see we get the result of outcome 4) from the lemma.
Finally assume we are case ii), then we can do the same thing with 74, N l‘fnv to get outcome

2) from the lemma. ]
We can get an equivalent to lemma 5.2 from [[12]]

Lemma 7.6.19 Suppose that, for distinct m and j, none of the eigenvectors of the m-
neighbourhood are in the 0 case in j, and none of the eigenvectors of the j-neighbourhood

are in the 0 case in m. Then k,, = k;.
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Proof. Now suppose for a contradiction that k,,, # k;. Then for all ¢ we get that NV im 18
not square. This will mean that either N7 . N7 has eigenvalue O if k,,, > k; or N7, N
has eigenvalue 0 if k; > k,,,. Suppose without loss of generality we have the first scenario.
Then this is the equivalent of saying that for each c there exists an eigenvector v. of the
m-neighbourhood such that NV jcmvc = 0. If for distinct colours ¢ and d, v. = vg4, then we
can note that N7 ve = —N7 v — N fmvd = 0 too, and so this eigenvector is of the 0 case
in j, a contradiction. But then each of these eigenvectors must be of the Eigenvector case in

J, as the independent case requires N7,

v to be non-zero for all colours x. Also they must
all be from separate eigenvalue triples, meaning that all eigenvalue triples of m are in the
Eigenvector case in j. But then each of these eigenvalue triples corresponds to a different
eigenvalue triple in j. As the multiplicities of these corresponding pairs of eigenvalue triples

are the same, k,,, < k;, a contradiction. So k,, = k;. O

We conclude this chapter with the following powerful Theorem, that draws from a lot of the

results of the section

Theorem 7.6.20 In a primitive 3-regular 3-coloured structure, for distinct colours m and

J, we cannot have both p%j =0and p?;‘- =0.

Proof. Suppose we have p), = pj; = 0. Then the first thing we want to note is that both
o 1 _ . . l _ . .

Ny = 0and Nilj = 0, implying that IV, . = J. Now consider v an eigenvector of the -
neighbourhood and v’ an eigenvector of the j-neighbourhood. As 0 = Nhv' = Ngmjv’ =
1 P . . o o 1 o 1 P
Ny,;v's o' is in the 0 case in m. Similarly 0 = Nj»v = N, ;v = N, v and so v is in
the O case in j. Hence there can only be eigenvectors of the O case between the m and
j-neighbourhoods. Therefore by Lemma there can only be a maximum two distinct
non-principal eigenvalue triples in both the m and the j neighbourhoods.

We now consider the eigenvectors v and v’ in terms of [. As P, = 0 we know by Lemma
7.6.11|that v can’t be the O case in [ and by Lemma and p;;; = 0 we know that v can’t
be the Independent case in /. Hence it must be the Eigenvector case in [. However we get
the exact same argument with v’ using p;.m = 0. Therefore all eigenvectors of the m and

j-neighbourhoods correspond with the eigenvectors of the [-neighbourhood, however are

the 0 case between the m and j-neighbourhoods. This contradicts Lemma Hence
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we cannot have both p% =0and pﬁ =0. ]
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Chapter 8

A More Spectral Approach

In this chapter we follow the ideas of [12]] more closely. The aim is to use the concept of
a spherical 3-distance set in much the same way that they use a spherical 2-distance set,
however it should be noted that the literature on such sets is nowhere near as extensive. The
main difference that arises is that in [12], they are guaranteed that eigenvalues correspond
by the fact that having one immediately determines the other by 0 = 1 4 r 4+ s. Other
such problems also arise during the course of this analysis. However some results can
still be gained by using their methods, as we show in this chapter. Ultimately this chapter
leads to us gaining a better understanding of the 0 case (Corollary [8.2.13)), learning how the
idempotents can relate to certain case distributions from Definition (Lemma [8.2.18))
and also being able to determine the eigenvalues in the case where we have the eigenvector
case in j and the O case in [ (Theorem[8.2.22)). These methods are useful as they allow us to
circumvent the issues of desirability in Definition

8.1 Initial Results using just 2-regularity

In this section we will be working under just 2-regularity. The initial plan is to find all
our parameters in terms of the eigenvalues. Recall the definition of the constant D from

Equation [4.1.5]and that it must be non-zero by Lemma.2.12]

Definition 8.1.1. We shall also start using the convention that y; is f, g or h wheni = 1,2

or 3 respectively and ()\;); is 75, s; or t; when ¢ = 1,2 or 3 respectively; the subscript 7 will
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be modulo 3 here to allow for easier indentation.

It is important to note that the y; and A; have nothing to do with the classical parameters p
and ) of the strongly regular graph. Recall the constant D, defined via Equation [4.1.5] We

can find the following equations:

Lemma 8.1.2 The multiplicities of the eigenvalues can be expressed in terms of n and the

eigenvalues as follows:

Df = (’I’L — 1)(SRtG — SgtR) + k‘R(tG — Sg) + kg(SR — tR)
Dg = (n—1)(trrc — terr) + kr(rc —tc) + ka(tr — Tr)

Dh = (n—1)(rgsg —rasr) + kr(s¢ — ra) + ka(rr — sr)

Proof. This comes from solving the set of equations that we get from the fact the trace of

each adjacency matrix is O:

0 =kr+ frr + gsg + hir
0 =kg + frg + gsg + htg

n=1+f+g+h

Using this we can also find the constants used in the transition matrix .1.4]
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Lemma 8.1.3

Dfay = kg(sp —tr) + (n — kr)(sg — tg) + trsg — taSr
Dgas = kg(tr —rr) + (n — kr)(tc —r¢) + rrtc — rGlR
Dhas = kg(rr — sr) + (n — kr)(rG — s¢) + SrTG — SGTR
Dfp1 = kr(tc —sc) + (n — kg)(tr — sr) + sGtr — srtc
DgBy = kr(rg —tg) + (n — kg)(rg — tr) + tarr — trra
Dhfs = kr(sg —rc) + (n — kg)(sg — TR) + TGSR — TRSG
Dfy =kg(sr —tr) — kr(se — te) + trsc — tasr

(

(

)
Dgvys = kg(tr — Tr) — kr(tg — rq) + TrRtG — TGlR
)

— kr(rq — sa) + srrg — sarr
Proof. Similar to the above, this comes from solving the equations generated by

1 1 1 1 1 1 1
far fB1 fn kr TR Sr tr

gos  gP2 g2 ke ra sa tla

nl =

S Q@ -

hasz  hfBs  hys kg rp sp tgp
O

The concept of a spherical 2-distance set (Definition [2.2.6), first introduced in [20], was
used extensively in Section 2 of [[12]. We can use a similar concept here, except we will
have a 3-distance set instead. We shall set up our 2-regular 3-coloured structure in much the
same way as they set up strongly regular graphs in Section 2 of [[12], however with slight
differences where appropriate.

Suppose we have a 2-regular, 3-coloured structure I', with vertex set X of cardinality n. As
shown in Lemma(7.1.9)and Lemma[7.1.12] the non-zero intersections of the eigenspaces of
AR, Ag, Ap split into 4 different spaces. We shall identify X with an orthonormal basis

for the real vector space V' := R", which is an orthogonal direct sum of these 4 classes,
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namely:
V=WweVieVed Vs, V;=Vm, :=0,1,2,3 (8.1.1)
Define X to be the set of projections of the elements of X into each V;, i.e.
X ={am: ze X}

Now we can see that the idempotent E; is the Gram matrix (Definition [2.2.5)) of the vectors
of Xi’
Ei = {<$7T7;,y771'> RPN TS X}

As, by Equation4.1.4, E; = 24(I + ;AR + BiAc + viAp), we see that the E; form a

spherical 3-distance set in V; with distances «;, 5; and ;. Hence we may write that

E; =H;H!

I =H!H;

where the rows of the H; are the coordinates of the vectors of X with respect to any

orthonormal basis BB; of V;. We therefore see that the matrix
H = (HO H1 HQ Hg) (812)

where n%Ho = u, is the orthonormal transition matrix from the orthonormal basis X
to the orthonormal basis B := By U By U By U Bs. For reference, these H; are the ith
characteristic matrices of each eigenspace [Definition 3.4, [20]], and the above form comes
from Theorems 3.6 and 5.3 in [20].

We now want to define a specific orthonormal basis 5 to form our H;. We do this so that

for a given vertex z € X, the vectors
1 1 1 1
amon?, am(n/f)2, xm(n/g)?, ams(n/h)2

belong to By, B1, Ba, Bs respectively. This gives us the transition matrix H from X to B as
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follows:

(8.1.3)

Here for each ¢, K;, L;, M; have width p; — 1, and for any ¢, K; has height kg, L; has
height kg and M; has height kp, where width refers to the number of entries in a row, and

height the number of entries in a column.

Lemma 8.1.4 We can express the idempotent basis in terms of the eigenvalues as

DFE; :(SRtG — SgtR)I + (SG — tg)AR + (tR — SR)Ag—i—
n (sr —tr)ka + (tq — sa)kr + trsg — tasr

n
DE, =(rgtg — rrtg)I + (t¢ —rq)Ar + (rr — tr)Ac+

N (tr —TR)kc + (r¢ —tq)kr + rrtc — ratr
n

J

J

DE; Z(TRSG — T’GsR)I + (TG — Sg)AR + (SR — ?”R)Ag—i—

n (’I”R — SR)kG + (SG — Tg)k:R + SRTG — SGQTR
n

J

Proof. From the expansion of nF into the basis {I, Ar, Ag, Ap} that is given by

we get
nky = f((1—y)l + (a1 —m)Ar+ (b1 —1)Ac +mJ)

And so in terms of the eigenvalues we get

DnFEq = (SRtg—SgtR)nI+(SG—tg>TLAR—i-(tR—SR)nAg—i-(kg(SR—tR)—kR(Sg—tg)—i-tRSG—thR)J

The formulas for the other n F; follow in exactly the same manner. O
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Using this we can get the results:

Lemma 8.1.5

Df
K1K{ =(sptc — satr)1 + (s¢ — ta)Nhg + (tr — sp)Ng + 7(71 —ai)y
Df

LlLlT :(SRtG — SgtR)h + (SG — tg)NgG + (tR — SR)NgG + 7(’)/1 — B%)Jz

D
MM =(sptg — satr)1 + (s¢ — tac)Nig + (tr — sg)NGp + Yf(% — 1) Js
D
KQKg Z(tRTG — tGTR)Il + (tG — Tg)NgR + (TR — tR)NgR + 79(72 — Oé%)Jl
Dg
n

Dg
MoMj =(tpre —tarr)li + (tc —r6)NEp + (rr — tr)NGp + 7(72 —3)J3

LyLY =(tgre — terr) + (ta — ra)Ngg + (rr — tr)NGg + — (2 — B3) 2

Dh
K3K3 =(rgsc —rasr)1 + (ra — s¢)Nfg + (s — Tr)Nfip + 7(73 —a3)Jy

Dh

Lng :(T‘RSG — T‘GsR)IQ + (TG — Sg)NgG + (SR — TR)NgG + 7(’73 — ﬂg)Jg
Dh
M3Mg Z(TRSG — TGsR)Ig + (’I"G — Sg)NgB + (SR — TR)NgB + 7(’73 - W;)Jg
Proof. Note that E; = HZHlT gives us
% %Oéiur{ %@ug %%UgT

LBy BB + 5 LK BT+ S LLT BBy + S LM

Biyiug Bopyd + 5MKL Boapy] + 5M LT Ba20 + LM M

(8.1.4)
Comparing this with the equations for F; in Lemma [8.1.4] and the formulation of A; from
Equation[d.1.2] we get the equation

1

; 1
%&?J + BKiKiT 25(()\i+1)R()\z‘+2)G — (NisD)aeNir2) R + (Ni1)e — (Nis2)a) NBp+

Dyiiyi
+ ((Nit2)r — Nir1)R)N§R +

J)
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So
KK =((Ais)r(Nir2)e — ir))eNir2) )T + (Mir1)e — (Niva)e) Nip+
D i\ Vi — 0412
F(Oss) = Qer)r) NG + 201200 )
as required. The same reasoning works for the other equations. O

It is worth noting at this point that the matrices listed in Lemma [8.1.5] are real symmetric
and so have real eigenvalues. We can also see that the Equation [8.1.4] can also give us

information about other combinations of matrices:

Lemma 8.1.6

LET = (Mis)e — (Mis2)a) N + (Mes2) — (asn) ) NG + 2101 = 0ili)

n
Dpi(vi — oy
MK} = ((Miv1)a — (Nig2) ) NER + (Mir2)r — (A1) R)NGR + WJ
Dpi(vi — Bivvi
ML = (Mip1)a — (Nir2)a) N + (Mis2)r — (Nip1)r)NEG + MJ

Proof. As before, if we compare the matrix [8.1.4 with the equations for E; in Lemma|[8.1.4]

and the formulation of A; from Equation[4.1.2) we get the equation

. 1 1
%azﬂiJ + BLJQT :5((>\z‘+1)R(>\z‘+2)G — (Aix1)eir2) R + (Nis1)a — (Ni2)a) NG+
Dy
+ ((is2)k — s 1) R)NGg + 220 )

So

LiK] =((Niy1)rNir2)a — Qir)aWNir2) R+ (Nig1)a — (Nir2)a) N+

+ ((Niz2)r — iz 1)R)NSR + WJ)

as required. The same reasoning works for the other equations. O
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8.2 Introducing 3-regularity

Recall that, assuming 3-regularity, N £ RR N R and NE rr have a shared basis of eigenvectors
by Lemma Hence from this point onward we assume 3-regularity and get the

following.

Corollary 8.2.1 The eigenvectors of K; K zT are exactly the eigenvectors of N gR, N}%% and

N g - Likewise for LiLiT and MZMZT but with N¢, and N g respectively.

Proof. The fact the eigenvectors of KiKiT are the same as those for NV }IZ%R and NgR is
immediately evident from the equations, using Jv = 0 for any non-principal eigenvector

. O

Continuing this comparison of the two formulations for £; and A; we get the following

identities

Lemma 8.2.2 For any colour c,

1 1

Nia = ﬁ(’f + refaifr + scgoofa + tchasfs)J + D(TCK1L1T + s KoLd +t.K3LY)
1 1

Ngp = ﬁ(k + refonyi + scgaoye + tchasys)J + D(TcKlMlT + 8. KoMy + tcK3MJ7 )
1 1

Nép = ﬁ(k‘ + e fB1y1 + sc9B2v2 + tehB3y3)J + D(TCL1M1T + scLoM3 +t.LsMg)

Proof. First note that by definition of the F;, we have

Ac = kcEO + rcEl + SCE2 + tcEB

Then using the matrix expansion of F; from Equation [8.1.4]and comparing it to that of A;

in we get Equation[d.1.2] we get

1 1

Nia = ﬁ(k + refaif + scgoofa + tchasfs)J + D(TCK1L1T + s KoLd +t.K3LY)
1 1

Ngp = ﬁ(k + refaiy + scgagys + techasys)J + D(TcKlMlT + scKaMy +t KsMy)
1 1

Nép = ﬁ(k‘ +ref Biy1 + 8cgBav2 + tehBsys)J + D(rcL1M1T + scLoMI +t LyMT)
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as required. O

Using these results about KzK;I s LZ-L;TF and MlMZT , we can start to form some
understanding of KZT K;, LiTLi and MZT M; as well. We know from the definition that

H is an orthogonal matrix, and so using this we can get the following results

Lemma 8.2.3 Fori=1,2 or 3,

DI, 1 = K/'K; + LTL; + M M;
s
L="(1+af + 4 +7)

0= aiKiTul + 51'L1T’U,2 + ’YZ'MZ-TU3

Proof. We can read these results off from the equation

=

Bi(l+a? + B2 +72) (£5)2 (oul K; + Bud Li + ~iud M;)

Ly :HiTHi =

(SIS

(#5)2 (K ur + Bil{ uz + %M us) b (KL Ki+ LT Li + M M;)
O

Pushing this idea even further, using the fact that H is an orthogonal matrix, we know

HI'H; = 0if i # j. This leads to

Lemma 8.2.4 Foralli,j € {0,1,2,3} withi # j we have

=1+ aiaj + BifBj + i
0= ozZ-KjTul + BiL;‘-Fuz + WiMJTU3

0=K/K;+LI'L; + M M;

Proof. As 0= HIH; we get

Nl
[N

%(1 + OziOéj + 5z6] + ’}’i’)/j) (:b) (aiulTKj + @-ung + ’yiu?;Mj)

(wb)

0=

N

(OzjKiTul + 6]‘LZTUQ + 'ijZ-Tug) %(KlTKJ + LZTLJ‘ + MZTM])
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O

We now intend to compare the eigenvalues of the matrices K; K ZT , LiL;fF and MZMZT with

KZT K;, LiTLi and MZT M;. We get the following important result.

Lemma 8.2.5 Any non-zero eigenvalue of K; K ;‘F is an eigenvalue of K lT K; with the same

multiplicity as well. The same results hold for L; and M; too.

Proof. We claim that any non-zero eigenvalue of ;K lT is also an eigenvalue of K ZT K; as
if for some v, K;KIv = Av, then K K;KI'v = AKIv. Now we know Klv # 0 as
otherwise A would be zero, so it is an eigenvector for K K;. We see that A will have the
same multiplicity for both K; K ZT and K ZT K;, as for each eigenvector v of K; K ZT , there
exists a distinct eigenvector KZT v for KiT K;. The same argument works the other way
around, and so all non-zero eigenvalues are shared, and this works similarly for L; and

M;. O

Corollary 8.2.6 If zero is not an eigenvalue of at least one of KoK1 or L1 LT then kg =
kq. Likewise, if zero is not an eigenvalue 0fK3K3T or MlMlT then kr = kp and if zero is

not an eigenvalue 0fL3L3T or My M then kg = kp.

Proof. The total multiplicity of the eigenvalues of KoKJ is kg, however the total
multiplicity of the eigenvalues of KJ Ky is kg. If zero is not an eigenvalue then, by the
previous lemma, the eigenvalues of these two matrices are the same and have the same
multiplicity. Hence kr = kg. By comparing the total multiplicities of the other matrices in

the same way we obtain the other results. 0

Lemma 8.2.7 Let v be an eigenvector of both N ]I%R and NgR with eigenvalues rg, and
TGy, respectively, and suppose for distinct m, j, 1 € {1, 2,3} we have both K ; K]TU = 0and
K K['v=0. Then
TR, Tg m=1
TRr> TGrR = \ SR, S¢ Mm=2

tr, t¢ m=3
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Proof. We suppose that m = 1. However due to the symmetry between the matrices the

same argument will work for the others. Now we have that Ky K ;‘F v =0and K3K ;;F v =20,

giving by Lemma 8.1.5]

0 Z(tRTG — tGTR) + (tG — Tg)TRR + (T'R — tR)TGR

0 Z(TRSG — TGSR) + (TG — Sg)T‘RR + (SR — TR)TGR

Suppose first that ¢ = rg. Then either rg = tg or rq, = rg. If both t¢ = rg and
rr = tg then D = 0, a contradiction to Lemma[4.2.12} and so we must have rg,, = rg.
Similarly if t¢ = rg and rg = sg then D = 0 too. Looking at the second equation we see

we have two options, either rr = s or not. If we do have rg = sg, the equation becomes:

0=rr(s¢g —rq) + (r¢ — 5¢)TRy

which solves to give rr,, = rg as required. And if rp # sgr, we can use the fact that

rar = rq to make the equation:

0= (rrse —rasr) + (r¢ — sa¢)rry + (SR — TR)TG

0=rgr(s¢ —ra) + (r¢ — s¢)TRry

which also solves to give rr,, = rg as required.

Hence we now suppose tg # 7. Solving the first equation gives

_ trra —tgrr + (T‘R — tR)TGR
(re —ta)

TRgr

And so

0 Z(T‘RSG — TGSR)(TG — tg) + (tRTG — tGTR)(TG — Sg)—l-
+rar((sr —7R)(r¢ —ta) + (rr — tr)(r¢ — sa)

OZ—TgD+TGRD

So rg, = rq. Now putting this back into the first equation gives rr, = rg. O
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Lemma 8.2.8 Suppose v is a non-prinicipal eigenvector of N gR and NER such that
K;KIv # 0. Then ingRv = Nng = 0 then LI'L;KI'v = 0, hence Kl'v is an
eigenvector for both K ZT K; and LZTL,-.

Proof. Firstly as K;KIv # 0 then we know K v # 0. Now consider L7 L;KXv. By
Lemma [8.1.6] we know

Dpi(yi — Oéiﬁi)J

n

LiK{ = (A1) — A\is2)a) Nég + (Nir2)r — (A1) R)NGR +
And therefore L, K] v = 0 as N&pv = NSpv = Jv = 0. O

Corollary 8.2.9 Suppose v is an eigenvector of N gR and ngR such that KiKiT v # 0.

Then if NEpv = NEpv = 0, KI'v is an eigenvector of M M;.
Proof. Combining Lemma[8.2.3|and Lemma 8.2.8] gives us that
DK'v=KI'K;KI v+ MM K v
And so KiTv is an eigenvector for MZTMZ O

Suppose v is a non-principal eigenvector of N IIQQR and NgR with eigenvalues rg,, and rg,

respectively. Now define the constants x;(r), y;(r), z;(r) as

zj(r) = srtc — sGtr + (s¢ — tc)rr; + (tr — sR)TG,
yj(r) =trrg —terr + (tc —rc)rr; + (TR — tR)TG, (8.2.5)

zj(r) = rrsG —rGSr + (16 — sG)TR; + (SkR — TR)TG,

7;(8),y;(8), zj(s) and x;(t),y;(t), zj(t) are defined similarly for sg; /s, and tg;/tc,.
We shall see that a consequence of Lemma [8.1.5] and Corollary [8.2.1] is that these are the
eigenvalues of K,-KiT, LiLiT and MZMlT Let ¢; be such thatitis x if s = 1, y if ¢ = 2 and
z if 1+ = 3. Then

Lemma 8.2.10 Fori € {1,2,3}:
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s The non-principal eigenvalues of K; K are @;p(r), pir(s) and @;p(t)
s The non-principal eigenvalues of L;L! are 0;(r), pic:(s) and p;:(t)

* The non-principal eigenvalues of M; M are p; 5(r), pip(s) and @i p(t)

Proof. We shall prove it just for KZKzT , however the same method works for the others.
We know by Corollary [8.2.1] that a non-principal eigenvector for these is the same as a
non-principal eigenvector for the R-neighbourhood. Hence we take the value of KlKZT
from Lemma [8.1.5] and then apply a non-principal eigenvector v. This will give us either

vir(1T), pir(s) and ¢, p(t) depending on the eigenvalue triple to which v belonged. O

Remark 8.2.11 Note that, for any j,

iL‘j(T) + yj(r) + Zj(T’) = Sptg — Sgtr +trrg —tgTrR + TRSG — TGSR

=D

This is true for r, s or t.

It is prudent to note that, although the following analysis works with just the R-
neighbourhood, the matrices N¢ p and KIT , this would all equally work for any other
neighbourhood and the corresponding matrices. For example we could have used the G-
neighbourhood, the matrices N¢ 5 and MF. Or the G-neighbourhood, the matrices Nia

and Kj;.

Lemma 8.2.12 Suppose v is a non-principal eigenvector of N }}%R and NgR such that

KiKZ-TU = 0 for all i. Then we can’t have Nng = Nng =0.

Proof. Assume for a contradiction that Nng = Ng rv = 0. Then we know that L; K ZT v =
0 by Lemma Suppose 7, is the eigenvalue of N gR attached to v. Then by Corollary
we know that K 1T v is an eigenvector for MlT M;. The corresponding eigenvalue for
K ZT v is then either O or it is an eigenvalue of MZMZT by Lemmam If it is O then we get
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from Lemma [8.2.3] that

DK{v=KIK\KI'v+ LT K] v+ MM KT v
= KK Ko

= zp(r)Kfv

so D = xr(r). But then we can do the same with Ky and K33 to get D = yr(r) = zgr(r).
But D = zr(r) + yr(r) + zr(r) = 3D, implying D = 0 a contradiction.

Therefore MZT MlKlT v 1s non-zero and an eigenvector of MlT M;, KlT must have
eigenvalues xzp(r),yg(r) or zp(r) for i = 1,2 or 3 respectively, by Lemma and
Lemma8.2.10} Using Lemma[8.2.3again we have

DKTv=KIK\KTv+ LT L KT v+ M MK v
= KT K Ko+ M MyKT o

= (zr(r) +ap(r) K v
So D = xzg(r) + xp(r). Once again we can do the same for the other ¢ giving
D =xzp(r) + zp(r) = yr(r) + ys(r) = zr(r) + z5(r)

But 2D = zg(r) + 2p(r) + yr(r) + yg(r) + zr(r) + zp(r) = 3D, implying D = 0, a

contradiction. O

From this lemma we can gather that if NgRU = Nng = 0 then we must have that

KK ZT v = 0 for some 4. In fact the proofs actually go a bit further.

Corollary 8.2.13 Suppose v is a non-principal eigenvector of the R-neighbourhood such

that Nng = Nng = 0. Then, for some i, KiTv =0.

This just comes from considering that v K; K v = |K'v|= 0 if and only if K}v = 0.

Further we get that, for no more than two ¢, K ZT v equals 0.

Lemma 8.2.14 Suppose v is a non-principal eigenvector of the R-neighbourhood. Then
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we cannot have K}'v = 0 for all i.

Proof. Suppose for a contradiction that K{ v = K1 v = K1v = 0 and say without loss of
generality, that v belongs to the eigenspace of the eigenvalue triple (7r,,, "Gy, "By )- Then
K;KIv = 0 for all i. But this implies that xg(r) = yg(r) = zr(r) = 0, which implies

D = 0, a contradiction. ]

So the only cases to consider are when we have a unique ¢ such that K ZT v = 0 or when we

have two distinct 7, j such that K lT v = KJTU = 0.

Lemma 8.2.15 Suppose that v € E(rgy,, 7Gx, 7By) IS a non-principal eigenvector of the

R-neighbourhood in the 0 case in G. Then either:
* There exists a unique i such that K'v = 0 and @; z(r) = 0 and @; g(r) = 0,

« Kl'v = K]TU = 0 for exactly 2 distinct i,j and o;p(r) = 0, @jp(r) = 0 and

ei1g(r) = 0 for 1 also distinct from both i, j.

Proof. We can see that either exactly one or two of the K lT v = 0 by Corollary and
Lemma|8.2.14] So all that remains to show is the consequences of either option.

Suppose first that there exists a unique ¢ such that KIT v = 0. We see from Lemma
and multiplying by v on the left and right, that ¢; z(r) = 0. Now we can use Lemma 3.2.8|
and Corollary [8.2.9/for j and I to get that D = ; (1) 4 ¢, 5() = @ir(r) + @ip(r). We
know also by Remark that D = p;ip(r) + ¢ g(r) + wir(r) = @jz(r) + wip(r) and
D = gip(r) +¢15(r) + @ip(r). So

2D = jp(r) + vig(r) +@ir(r) + @ip(r)

= 0jp(r) +oip(r) + @ig(r) +v;p(r) + @ip(r)

implying ;5(r) = 0.

Suppose instead we have KlT v o= Kij = 0. Then again, from Lemma and
multiplying by v on the left and right, it follows that p;z(7) = @;jp(r) = 0, so by
Remark we see D = ¢;p(r). Using Lemma and Corollary we note

D = (1) + ¢ 5(r). This implies ;5 (r) = 0. O
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With the second scenario we can go even further.

Lemma 8.2.16 Suppose v € E(rry,,7Gg,"By) is an eigenvector of the R-neighbourhood

in the 0 case in G and that, for distinct i, j, KiTv = KJTU = 0. Then v is in the 0 case in B.

Proof. As KiT'u = K]Tv = 0 we know by Lemma|8.2.14{that KlTv = 0 for [ distinct from ¢
and j, and by Lemma and Corollary it follows that K IT v must be an eigenvector
of M, ZT M;. By applying K, lT v to the first equation of Lemma

DK}l'v = K KiK['v + M MyK['v

M MK v = (D — () Kj v

However by Lemma (8.2.15| and Remark [8.2.11, we know that D = ¢;p(r), so
MZTMZKZTU = 0. Butif MZTMZKZTU = 0 then MlKlTU = 0, and so by applying v to

the formulation of Nj;, from Lemma([8.2.2] we get

1
N&pv = 5(rCMlKlT v+ s MoK3 v+t M3K7 v)

(Al)c
D

=0

MKl

O]

We can actually prove this the other way around as well. However we are going to want
some more useful lemmas first that describe the consequences of K7v being 0 in other

scenarios. Firstly:

Lemma 8.2.17 Suppose for some i and some eigenvector v € E(rg,,7Gy,"By) of the R-
neighbourhood, we have K 1T v = 0. Then either v is in the 0 case in G or aN, ng = bNg RV

for some a and b, not both 0.

Proof. Suppose for a contradiction that neither of the outcomes occur. This means that both

Nng and Nng are non-zero. Since KZ»TU = 0, we get that LiKiTv = 0. By Lemma
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this means
0= ((Ni+1)a — (Ni+2)a)NErv + (Niv2)r — (Ni1) R)NERY

But as the vectors Ng'Rv and Ng RV are not multiples of each other or zero, we must have
that the coefficients are zero. Recall from Definition [8.1.1] that this will imply that D = 0,
which can’t happen by Lemma4.2.12| Hence either the vectors are multiples or zero. [

In the process of this proof we could also note something about the case when we have
aNng = bNg V. This is a variation of Lemma that we saw earlier, coming from a

different angle.

Lemma 8.2.18 Suppose for some i and some eigenvector v of the R-neighbourhood, we

have KZ»T'U = 0. Then aNng = bNngfor some a and b and one of:
i) Nng = Nng =0
ii) a =0, NgRU =0and (Ni+1)c = (Ni+2)a,

iii) b= O, NgR’U = 0 and ()\i+1>R = ()\z'+2)R»

e
) g (Mi+1)r—(Ni+2)R’

Proof. Suppose for a contradiction that there do not exist a and b such that aNng =
bN, g rv. It follows that both N, ng and N, g R are non-zero and not multiples of each other.

Since K, ZT v = 0 we get that L; K ZT v = 0. By Lemma , this means we have

0= ((Nit1)a — (Nis2)a) Ndrv + (Mir2)r — (Niv1)R)NGRv (8.2.6)

But as the vectors Nng and Ng v are not multiples of each other or zero, we must have
that the coefficients are zero. However as before, this will imply that D = 0. Hence we
must have aNng = bNg rv for some a and b.

Suppose that Nng = (0 but Nng # 0. Then @ = 0 and from equation Nit2)g =
(Ai+1)c giving situation ii). Similarly if Nfpv = 0 but NSpv # 0, then b = 0 and from

equationm (Ni+2)r = (Ait1)R giving situation iii).
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Finally if both Nng # 0 and Ng rv # 0, then from equation we get

a _ (Air)e — (Nis2)a
b (Nit1)r — (Niv2)r

as required. Note that as both a and b must be non-zero, if either coefficient is zero, then
they both are, implying D = 0 as before. Hence neither coefficient is zero and this is a

well-defined fraction. ]
Now if we add also that KJTU = 0 for some j distinct from ¢ we see that also

Corollary 8.2.19 Suppose that for some eigenvector v of the R-neighbourhood, K ZT v =

KJTU = 0 for some distinct © and j. Then either Nng =0or Nng = 0 or both.

Proof. Suppose for a contradiction that both NgR'u # 0 and Ng v £ 0. As KI'v = 0
from Lemma|8.2.18| we get aNng = bNg rv where a and b are such that

a _ (Aig1)e = (Nig2)e
b (Ni+1)r — (Nit2)r

Now as KJTU = 0 also we get

o Nre = Njr2e
b (N+1)r— (Njr2)r
Now this is either
o ()‘H-Q)G’ - (AZ)G of — = ()\Z)G - (/\H-l)G
b (Nir2)r— (Ni)r b (MN)r— (Ni+1)r
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and in the second we also get

0= ((A\)r — (Ni+1)r)(Nit1)e — (Nit2)e) — (MNi)a — (Nit1)e) (Ni+1)r — (Nit2)R)

=D

Hence either way we get D = 0 a contradiction. O
In fact we can even make the following observation as well.

Corollary 8.2.20 Suppose that for some eigenvector v € E(rp,,TGn,TBg) Of the R-

neighbourhood, KiTv = KJTU = 0 for some distinct v and j. Then Nng = Nng =0.

Proof. By Lemma and Corollarywe know that if K ZT v = 0 and we don’t have
Nng = NGGRU = 0, then we must have either a = 0, NGGRU =0and (\i11)e = (Ni+2)e
orb =0, Ng’RU = 0 and (A\j+1)r = (Ni+2)g. Further as K]-Tv = 0 we must have either
a=0,NSpv="0and (\j+1)c = (A\jr2)g orb= 0, Nfpv =0and (\j11)r = (\jt+2)R-
Suppose for a contradiction that we do not have Nng = Ng rv = 0. Then we must have
either (Aiy1)a = (Ait2)g and (Aj41)a = (Ajr2)a or (Nis1)r = (Ait2)r and (Aj11)r =
(Aj+2) r. However the first would imply ¢ = s = t¢ and the latter would imply 7z =

sr = tg, so either way we get a complete graph in some colour by Lemma [2.1.17} a

contradiction. O

The most useful consequence of Lemma [8.2.18] however is the fact that we can fully

determine the ratio between the two vectors.
Corollary 8.2.21 Suppose that for some eigenvector v of the R-neighbourhood, we have
Nng = Nng = 0. Then aNng = bNng, for some a and b and one of

i) Nng = Nng =0

ii) a =0, Nng =0and (N\i+1)c = (Ni+2)6

iii) b= O, NgR’U = 0and (/\i+1)R = ()\i+2)R,

e
) 4 (Mi+1)R—(Ni+2)R’
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for some 1.

The proof is just a simple application of Lemma [8.2.12] and then Lemma[8.2.18] However
it has very important consequences. For example, if v is an eigenvector as described in
Corollary @L and we don’t have case i), then we can determine what the eigenvalues
of the R-neighbourhood are. The case iv) problem is the trickiest but can be found by the

following.

Theorem 8.2.22 Suppose that for some eigenvector v of the R-neighbourhood, v is in the

0 case in G and aN ng = bNng for some non-zero a and b. Then

Ait1)a — (Nit2)a

Fen = PR — pigEp 1 Lurt)e —Qin2)  mag
(ANi+1)r — (Nit2)R
Aiv1)e — (Nit2)a

ren = PR — piEp 4 Litt)e — (Ri2)e rg | ray
(ANi+1)r — (Nit2)R

for some 1.

Proof. First we know that if aN5pv = bN§ v then NE,v is an eigenvector of N5 by

Lemma We can calculate the eigenvalue attached to this eigenvector by examining

basic equations and using Lemma@4.2.13

R R
Tep Ngrv = NppNERv
_ / BRR _ . BRB\nR BRG . BRB\n'G
= (PBer — PBer )NBRY + (PBeR — PBer )NERY

BRR BRB , 4, BRG BRB R
= (PBekR — PBer + g(chR — PEer ) NERV

But also then we know that this holds in reverse as well, ie. av! NE;NE v =

T NGy NE-v. And so by Lemmad.2.13

TarR AR .. T arce R AR
TerV” NppNprv = v° NprNrpNpRv
RBR RBB\, TntR an7R RBG RBB\, T A7G aTR
= (PRer — Prer )V NRpNERV + (PRer — PRer )V NEpNERY

RBR _RBB , %, RBG  RBB\\, TR nR
= (PReR — PRer + g(pRCR —Prer )V NpgNprv
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Now from Lemma|(8.2.21|we know that, as ¢ and b are non-zero, we have

(Air1)e — (Nig2)a

b (Nit)r — (Nit2)Rr

for some fixed 7. And so inputting this into the equations, we are done. O
In case ii) and iii) the situation is slightly different but we can still find the eigenvalues.

Lemma 8.2.23 Suppose that for some eigenvector v of the R-neighbourhood, v is in the 0

case in G. Then lngRv =0 and Nng % 0, for some i
r6p = (Nit1)e = (Nir2)a

Proof. We know from Lemma (8.2.15] that either KZ-T v = 0 for exactly one i, or KZT =
KT = 0 for exactly two distinct 7 and j. Now by Lemma8.1.6, M; K]v = 0 will imply
that

0= ((\i+1)a — (Nir2) ) NERy + (Nix2)r — (A1) R) NGy

meaning (Ait+1)e = (Ni+2)g. We must not have K]Tv = 0 as well, as this would imply

(Aj+1)e = (Aj+2)¢ too, which would mean that r¢ = sg = t¢ and hence the graph was

complete in G by Lemma[2.1.17]
Hence we have just K] v = 0, but then by Lemma 8.2.15]it follows that ¢; 5(r) = 0 too.

But this becomes

0= ((Ni+1)rR(Nit2)e — (Nit1)a(Nit2) r + (Nit1)e — (Niv2)e))rrp + (Nit2)r — (Nit1)R))TG
0= (Nit1)a((Nit1)r — Nir2)r) +rap ((Niv2)a — (Niv1)Rr)

0= ((Ai+1)e —rep)((Nis1)r — (Nit2)R)
We note that (\j11)r # (A\i+2) R, as otherwise D would be 0. Hence rg, = (Aiy1)g. O

We note that the exact same result holds but with Nfpv = 0 and 7, = (Mit1)r =

(Aiv2)R-
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Chapter 9

The Complete Neighbourhood case

In this chapter we consider finite primitive 3-regular 3-coloured structures with the extra
condition that one neighbourhood of a base point is complete in one of the colours. We
obtain a classification (Theorem[9.3.3] showing that the only such example is the Tricolour
Heptagon (Definition[5.2.1)). I examine the interaction between the complete neighbourhood
condition and each of the O case, the Eigenvector case and the Independent case from

Definition [7.2.10

In this chapter m, j and [ are distinct colours, and every structure is assumed to be finite,
primitive, 3-regular and 3-coloured, unless stated. We will choose one neighbourhood, the
m-neighbourhood, to be complete, and consider an eigenvector v from its non-principal
eigenspace. For most of the arguments in this section, we focus just on two neighbourhoods
and the relationship between them, although sometimes we shall have to involve the third

neighbourhood.

An important point to note is that, in order to avoid imprimitivity, we can’t have the m-
neighbourhood being complete in colour m. This is because if it were, then the entire
structure would possess an equivalence relation in m. Hence we shall always assume the
m-neighbourhood is complete in either j or [/, implying p],, = 0 for the whole of this

chapter.

In the following analysis, I keep my colours general. So instead of assigning m to be R

without loss of generality, I keep it as just m. This is so that, when we get to the more
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complicated equalities and identities, it is more easy to spot which positions within the

intersection numbers are impacted by each other.

9.1 The 0 case

Lemma 9.1.1 Suppose, for x # m, 0 = p» . = p. and v is a non-principal eigenvector

of the m-neighbourhood in the 0 case in j. Then x = j.

Proof. Suppose for a contradiction that z = [. Now as N7, v, = 0 for all colours ¢, and

therefore 0 = N¢ .N¢ v, we note by Lemma@

R G B
0 =P+ Plec TRy + Diee TG + Pjec "B

But, as py;,,, = p;v, = 0, this can be reduced to just
— mm;j
0 - ijb +ijC ij

Now as the m-neighbourhood is complete in j,by Lemma[2.1.17} r;, = —1, giving us the

equations

m . mmj m __ _mmj m . mmj
Pmj = Pjmm> Pjj = Pjj5 > Pij = Pju

According to Lemma[4.2.3| we get
m __ _mmj mmj mmj
Pmj = Pimm + Pjimi + Pim;
mm,

mo_ J mmj mmj
Pj; =Pjj5 T Piji -t Pjjm

This gives us the new information that 0 = pgnn:;j = p;::}j = p;};nj . Now we see that by

Lemma[#.2.3|and the fact that p)"; = p;7,,, =0

Jj  __mmj mmj mmj
pml_pjml +plml +pmml =0

and also

j o mmj mmj mmj
Pmj = Pjmj T Pimj” T Pmmj =0
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Now as pj; = p; = 0 by Lemma @ we get a contradiction to Lemma Hence

x # | and therefore x must equal j. [

Lemma 9.1.2 Suppose 0 = py,,,, = p,; and we have some non-principal eigenvector, v of

the m-neighbourhood, such that v is in the 0 case in j. Then p7; = 0.

Proof. Similarly to the previous lemma, by using N7, v = 0 for all ¢ and Lemma@, we

get equations

l ! !

0 =pjjm =Pii" = Djim
Crucially we see that pg'}}"l = 0 implying pfnl{l] = 0. Now as pﬁ{lj + pzigl + p%{ =0,
either p7ml =0or pg’} = 0. By Lemma|7.1.15| we must have pg’} =0. ]

We can now present the classification

Theorem 9.1.3 Suppose in a primitive 3-regular 3-coloured graph, that for some colour
m, the m-neighbourhood is complete. Then for any eigenvector v of the m-neighbourhood,

v cannot be in the 0 case in j.

Proof. Suppose for a contradiction that there exists an eigenvector v of the m-
neighbourhood such that v is in the O case in j. Then by Lemma [0.1.1| we know that

Prm = Py = 0 and so the m-neighbourhood is complete in [. We also know by Lemma

@that pjj; = 0. Hence by Theorem we have a contradiction. O

9.2 The Independent Case

In this section we will be dealing with the case where we have a complete neighbourhood
and this neighbourhood has its only non-principal eigenvalue triple being in the Independent
case in another neighbourhood. For the set up suppose the m-neighbourhood is complete
and we have the sole eigenvalue triple (7,,,,7;,,,71,,) being in the Independent case in
j. Then we definitely have p] = 0 and also, either p%j = O or pj, = 0. However

by Lemma [7.5.1} we know that pj; # 0, and hence p;;; = 0. We can also note that

(rmm’ij’ Tlm) = (Ov -1, 0)'
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By Lemma we know that the eigenvalue triples of the j-neighbourhood are all either
the O case or the Eigenvector case in m. However they actually cannot be the Eigenvector
case, as there is no eigenvalue triple of the m-neighbourhood for them to correspond with,

hence they must all be the O case.

Well now we consider how (7, 7j,,,71,,) interacts with the /-neighbourhood. By Lemma
we see it can’t be in the Independent case in [, and by Theorem[9.1.3]it can’t be in the
0 case in /. Hence it must be in the Eigenvector case. From this however we can also force

the / neighbourhood to be complete.

At this point, we wish to introduce some notation that allows us to more easily generalise

the results of Chapter Recall the K;, L;, M; defined via Equation We define (I1,,);

as follows:
K; ifm =R,
(m)i = Ly ifm=GaG, 9.2.1)
M; ifm=DB

Lemma 9.2.1 Suppose p.,, =iy, =0, v € E(rpm,,Tjn, 1, ) is an eigenvector of the m-
neighbourhood and is in the independent case in j. Then k,, = k; and the l-neighbourhood

must also be complete.

Proof. Suppose both k,,, # k; and k,, # k;. Then by Corollary we must have that
two of (TL,)1 (I1,,) T, (1,,)2 (11, )T v or (I1,,,)3(I1,,) 2 v have an eigenvalue which is 0 (with
which two depending on the value of m). As there is only one non-principal eigenvalue
triple of the m neighbourhood, every non-principal eigenvector of the m-neighbourhood
interacts with the (II,,,); in the same way. Hence for all non-principal eigenvectors v of the
m-neighbourhood, we have two of (IL,,,)7 v, (I, )3 v, (I1,,)% v are equal 0. However if two
of these equal O then by Corollary N ﬁnv =N ]va = 0, a contradiction to the fact

that v is in the independent case in j. So either k,,, = k; or k,,, = ;.

Suppose ky, = kj. Then k; = pj; + 1 by Lemma@4.2.3] implying that p} + pj; = 1 by
Lemma[.2.3]again, and so one of these intersection numbers must be 0. By Lemma

and the fact p;; = 0, we must have that pJ; = 0. However by Lemma [73_TI this would
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imply that v is either the O case or the Eigenvector in j a contradiction.

Hence we have k,, = k;. However by Lemma [7.5.1| we see that (7,,,,,,7;j,,,71,,) can’t be
in the Independent case in [, and by Theorem 9.1.3|it can’t be in the 0 case in /. Hence it
must be in the Eigenvector case, and therefore any non-principal eigenvector v corresponds
to an eigenvector in the [-neighbourhood. Hence they share the same multiplicity, but v has
multiplicity k,, — 1 = k; — 1 and therefore the corresponding eigenvalue triple must be the
only eigenvalue triple of the [-neighbourhood. This implies that the [-neighbourhood is also

complete. O

We can now see that we have this almost symmetrical situation between the [ and the m-
neighbourhoods. Both interact with each other in the same way, and must interact with the
j-neighbourhood likewise. Hence the [-neighbourhood will also have its sole eigenvalue
triple in the Independent case in j. However if we treat the /-neighbourhood as we did the
m-neighbourhood, by Lemma we will get that pﬁl = pﬁm = 0, meaning the structure
is imprimitive by Lemma|[7.1.16] Now combining this and the other results of this section

we can state the classification.

Theorem 9.2.2 Suppose we have a primitive 3-regular, 3-coloured structure with the m-
neighbourhood complete. Then there cannot exist an eigenvector v € E(ry,, ,75,.,71,,) of

the m-neighbourhood, with v in the Independent case in j.

Proof. Suppose for a contradiction that there exists an eigenvector v € E (7, , 7., 71, ) Of
the m-neighbourhood, with v in the Independent case in j. We know from Lemma[7.5.1|that
pzj # 0, and so we must have p); . = p, = 0. Now by Lemma we know that the
[-neighbourhood is also complete and we have that the non-principal eigenvalue triples of
the m and [-neighbourhoods correspond. By Lemma|[7.6.15] this means that the eigenvalue
triple of the [-neighbourhood is also in the Independent case in j. So now, applying Lemma
again, we get that pf j # 0, meaning pfl = pfm = 0. However this would mean the

structure is imprimitive by Lemma|[7.1.16] a contradiction. O
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9.3 The Eigenvector Case

The final case we need to consider to get a full classification of finite primitive 3-coloured,
3-regular graphs with complete neighbourhoods is when there exist only corresponding
eigenvectors from the complete neighbourhood. We will show there exists only one such

structure.

Lemma 9.3.1 Suppose the m-neighbourhood is complete and is such that its sole
eigenvalue triple is in the Eigenvector case in j and l. Then either ky, = k; and the j-

neighbourhood is complete, or k,, = k;, and the l-neighbourhood is complete.

Proof. Suppose both k,, # k; and k,, # k;. Then by Corollary two of (IL,,)T v,
()3, (I1,,,)3 v equal O (with which two depending on the value of m). However if two
of these equal O then by Corollary [8.2.20, N, ffnv =N ﬁﬂfu = 0, a contradiction, and so

either ky, = kj or ky, = kj.

Say without loss of generality, that k,,, = k;. As the multiplicity of the v is k,, — 1, then we
know the multiplicity of N7, v is also k;,, —1 = k; —1, which therefore means it must be the

only eigenvector of the j-neighbourhood. Hence the j-neighbourhood is also complete. []

Supposing it is the j-neighbourhood that is also complete, we know that pI =~ = pij =
P = pgy = 0 for some z and y. By Lemma we know (z,y) # (j,m). Note
that this leaves three possible options, namely (z,y) = (I,1), (I, m) or (j,1). However due
to the fact that j and m have the exact same conditions placed on them at this point, the

options (I, m) and (j,) will produce the same results, however with j and m swapped.

Theorem 9.3.2 Let x € {j,l} and y € {m,l}. Then there is only one finite primitive
3-regular, 3-coloured structure satisfying py.,, = p;:j =pm. = pgy = 0 and k,, = kj,

namely the Tricolour Heptagon from Definition

Proof. First, note that by Lemma [7.1.15] we know (z,y) # (j,m). So suppose (x,y) =
(1,0),ie. p,. = pgj = = p?l = 0. As k, = kj, Lemmayields Pl = p;:m =
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ki — 1 and phym = pi, = ki, — 1. Now

km = Dhm, +pfnz "‘p]ﬁj
= Fp — 1+, — 1

=2k — 241,

So p{nl =2 —kp,. As k,, > 1, we must have k,,, = 2, and therefore pinl = 0. However
now pfnm = pé ;= pinj = 0 and so m™ U j~ forms an equivalence relation, contradicting
our primitivity assumption.

So instead suppose (x,y) = (4,1). Now k,, — 1 = k; — 1 implies p"; = p;:m by Lemma

and pﬁzl = 0 by Lemma Therefore, by Lemma again
il Pl = Pt = Pl = P T 1

This implies that 1 = p{fnT, which means that p{m = lﬂ + p{ﬂ% + p{%;” = 1. But then

by two applications of Lemmal4.2.4]
kj = kmpl} = Kb

implying first that pj? = 1 and then that kpm = klpinj. As we know by Theorems and
the eigenvalue triple of the m-neighbourhood must also be in the Eigenvector case in
[ and so an eigenvalue triple of the [-neighbourhood corresponds with it. This means the
multiplicity of this eigenvalue triple of the [-neighbourhood is k,,, — 1 and so k; > k,,,. But
as plmj > 1, we must have that k; = k,, also. So now the [-neighbourhood is also complete
as it only has one eigenvalue triple, the one that corresponds to the eigenvalue triple in the

m-neighbourhood. Therefore we have three complete neighbourhoods.

We also know p}? = p{m = pé-m = 1. Comparing the two equations we see:

l _lmg Imj Imj __, Imj
Prum = Prmi + Pmmm Tt pmmj = Pmmi

Imj Imj Imj Imj Imj

j _ _
Do = Pt +pjml + Pimi = Prymi +pjml

As pznl = 1, we see that plrzl%l = 0 or 1 and hence plmm = 0 or 1. Of course it must be 1,
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and so p.,,. = 1. Now by Lemmam
FmPy = kiblm

So as ky, = k; we find that p)", = 1 too, and therefore k,, = 1+ p"; = 2 by Lemma

This leads to k; = k; = 2, and then p;:m =1and péj by Lemma By a further
application of Lemma , we get p{l = pj; = Las well.

Now suppose this structure actually exists. Then if we assignm = R, j = Gandl = B,

we get the following:

kr =kp = kg =2,
R R R B B B G G G
PrB = PGB = PGG = PBG = PRR = PRG = PGR =PBB =DPRrB =1

R R G G B B
PrR = PRG = PCc =PéB =PBB =PBr =10

We can start to draw this using kr = kg = kp = 2

o0

Now we can look at the interior of each neighbourhood. This gets us to

o0

Now we look at the edges going between neighbourhoods. First focus on edges from a, into
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the blue neighbourhood. We see from the 2-intersection numbers that one edge must be
red and one must be green. As ¢ and d are at this point indistinguishable, it doesn’t matter

which we choose for each. Hence say a to c is red and a to d is green. Then if we focus

on b, we see that it must have the opposite composition to match with the 2-intersection

o
a \ \f
b €
C N d

Next we’ll look at the edges from the red neighbourhood to the green one, and we find

numbers. This gives us

much the same situation. a must have one blue edge and one green edge and it doesn’t
matter how these are completed. So we pick a to f as blue and a to e as green. b will then

have the opposite.

Finally we look at the last neighbourhood interaction. We can see this can be fully
determined from the two intersection numbers by choosing the colour of the edge from

c to f. First suppose it is a red edge. This gives the structure
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S
~

The other configuration is

S
~

Note that the second configuration is not 3-regular. If we take the triangle (f, d, ¢) then we

get one vertex, a, connected as follows

f d

So pEB% would be 1. However if we look at the triangle (a, oo, f), which is isomorphic

to (f, d, c), there can’t possibly be a vertex connected in the same manner as the only other

blue edge from a goes to b which forms the following configuration:
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Hence we only have one possible configuration, up to isomorphism. This configuration we

can redraw as

00
a /\ b

We can note that it is the Tricolour Heptagon. We know by Theorem that this is
a primitive 3-regular 3-coloured graph and so we have a definite example. Therefore the
Tricolour Heptagon is the only possible solution when we have a complete neighbourhood

with two corresponding eigenvectors. 0

Combining the results of the last few sections we can now provide a full classification of

the complete neighbourhood case.

Theorem 9.3.3 The only finite primitive 3-regular, 3-coloured graph with a complete

neighbourhood is the Tricolour Heptagon.

Proof. Suppose we have a finite primitive 3-regular, 3-coloured graph with the m-
neighbourhood complete. Consider the sole eigenvalue triple (ry,,,,7;j,,,71,,) of the m-
neighbourhood. By Theorem we know (7., 7j.,,71,,) is not in the 0 case in j,
with j a distinct colour to m. We also know by Theorem that (7,7, 71,, ) i NOt

in the Independent case in j, and therefore (r,,,,7;,,,71,) is in the Eigenvector case in
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j. We can do the same thing for [ (the third colour distinct from both m and j), to get
that (7y,,,, 7., 71,,) is in the Eigenvector case in [ as well. Now by Lemma either
the j-neighbourhood is complete with k;,,, = k; or the [-neighbourhood is complete with
km = k;. We suppose without loss of generality that we have the former. However this
implies we must have p; = = p;j =pn. = p§y = 0 for some = € {j,l} and y € {m,(}.
Hence by Theorem[9.3.2] there is only one structure that satisfies this, which is the Tricolour

Heptagon. O
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Chapter 10

Possibilities when Intersection

Numbers are Zero

In this section we will consider what happens when certain double intersection numbers are
zero. It will constantly be assumed that no neighbourhood of a base point is complete, as
these are already classified. Further assumptions are the usual; finite, primitive, 3-regular

and 3-coloured graphs, and m, 5 and [ are distinct colours.

We will attempt to either eliminate such possibilities, or classify them in terms of how
the eigenvectors behave in each neighbourhood. We show that pg 5 = 0 can’t happen in
Theorem @ and classify the pj;; = 0 case in Theorem @ We only partially deal
with pI"' = 0, as these intersection numbers being zero doesn’t affect the main arguments

of this section all that much.

10.1 Some initial results

We can combine arguments similar to those used in Theorem[7.6.20] with earlier ones from

Chapter[7] to get the following theorem.
Theorem 10.1.1 In a primitive 3-regular 3-coloured structure, pg g # 0.

Proof. Suppose pg g = 0. Immediately from Lemma we know that for any two

neighbourhoods m and j, every eigenvalue triple of the m-neighbourhood must be the 0
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case or the Eigenvector case in j.

Suppose first that for every colour m and j there does not exist an eigenvector of the m-

neighbourhood in the O case in j. Then we must have kr = kg = kp by Lemma
Now by Lemma we can note that p% = pan Further as k,, = k;, by Lemma

Pf}zﬂrp{ﬁm +p1jnj =pfnj +ng+p;j+1

Phum = D}; + 1) + 1

But now ng = pgR +P§R + 1 pﬁR = pgg +ppp + 1and pr = ng +ng + 1.

However this, together with the fact pfnm =pm i implies

Plc = Pha + PRr + P + s + 3

a contradiction as all the values are non-negative.

Hence we know that for some distinct m and j, there exists an eigenvector v of the m-
neighbourhood in the O case in j. So N]ymv = 0 for all colours y. Hence, if [ is distinct

from j and m, and a is any colour, by Lemma.2.13|and Corollary {.2.6] we see

0=NENY v

—_Imm arm Imj nrJj Iml A7l
- pjay Nlmv + pjay Nlmv + pjalemv

_ Imm Iml m
- (pjay _pjay)Nlmv

Hence either p%‘;” = pg’gé for all @ and y or V] v = 0. Suppose the former, but then

if a = land y = j we have p!7! = pé’l’}m = 0 (the latter as pfj‘ = 0). This means

Jl
p% ;= 0 and we already know p% ;= 0, however now by Lemma either pinj =

p% i+ plj Lo+ p% ;= 0or pél = 0, both (when combined with the pfj? = 0 condition)

mmj

contradicting Lemma|7.1.15, Hence we must have IV} v = 0, and as Nljm =0, Nljmv =0
too. Therefore Nllmv = Jv = 0 and v must be in the O case in [.

By Lemma we know that if (7ry,,,,7;,.,71,,) is the eigenvalue triple attached to v,

then for some eigenvalue triple of the entire structure, say (7m,75,71)s (Tmons Tjms Tl ) =
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(rm,7j,71). Now by Corollaryand pﬁnj = 0 we get

_ m j
TmTj = PmjTm —|—p7mjrj
pjmjrj

Tm =
R .
7§ = Pmj

Note that r; # Ppyj as this would imply pfnjp;’}bj = 0, which when combined with pg.‘ =0
contradicts Lemma [7.1.T5] We can also get the same eigenvalue equation but inside the

m-neighbourhood:

. ,mmm mmj, .
Tmm T jm = pmm] Tmm +pmmjrjm

This means
ot = D+ P
And so
PhogTs = D' rs + (15— Do )P (10.1.1)
0= (B, = D)3 + (DD = DD )15 (10.1.2)
We can solve this quadratic as if pgnj = pz% and p%pﬁ% = pﬁnjp%%”, then

Pmj = Pmmy and by Lemma this would imply 0 = pJJ/h™ = p%% = pgnj,

a contradiction by Lemma @ when combined with p7; = 0. Therefore r; = 0 or

J MMM __ym mm]
T = pm]’pmmjmmlj-mfpmm] Afrj =0, then 7, = 0 as pj;; # 0 by Lemma(7.1.15} Therefore

Pjm

r; = —1 by Lemma[4.2.10]and by Lemma[2.1.14] this implies the graph is complete in [ or

imprimitive.

Hence we must have

j mmim m ,,mmj m . mmj 7 mmim
o PriPmmi — PmjiPmmj - PrmjiPrmmi = PmjPmmg
J mmj » Tm = pnmm
Pjmj jmgj
i mmm m VMG (o mmm mmj
| = —1—

mmj_mmm
Pjmg Pjm;
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This tells us we have a maximum of one eigenvalue triple of the m-neighbourhood in the 0
case in 7, as if we had another we could use the exact same deductions and determine that

the eigenvalues were all equal.

As in the tricolour heptagon pg g 7 0, by Theorem we know that the neighbourhoods
are not complete, so there must exist at least one more eigenvalue triple in each
neighbourhood. Consider S = (S, , Sj,, S1,,) in the m-neighbourhood. This must be
in the Eigenvector case in both j and [ as it cannot be in the Independent case by Lemma
and cannot be the 0 case by our previous analysis. Suppose v is in the eigenspace of
S and v’ is the corresponding eigenvector such that v = N[n”jv’ in the j-neighbourhood.

Then, for any colour y, by Lemma[4.2.13|and Corollary 4.2.6]

— NY
Sym¥ = NJ,,v

m ./
N0

— NV

mm
_ (mim __  mj] m ./
- (pmym pmym)N jU
And so

Sym = D — pidd (10.1.3)

[ m o, __ J
But as ij = 0, we have ijv = —ijv and so

— Y
Sym¥V = Nmmv

= —NY, NI o

mm* 'myj

_(omiimimyarm
= (Pinyj — Py ) N0

Therefore

Sy = 8~ = ) 2 1014

Further we can do the exact same thing with [ giving the equation

mim il mil . mim (10.1.5)

Sym = Pmym — Pmym = Pmyl — Pmyl

From these we can note that by Lemmaand Corollary [4.2.6|we get s;, = ng]] =pr
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and s;,, = pmg-ll = Pp,j- Now we know that 0 = —1 — s, — 5, — Si,,, and 80 Sy, =

—1—pn —Pmj = Ppm — km by Lemma However we can also obtain from Equation

10.1.4|that s,,,, = Prriiim — Pridm. Now

mo _ mjm _  mjj
pmm km - pmmm pmmm

—m _mim _mjj
= Pmm pmmj Primm

Therefore

— yim mjj
mjm mjj

= pﬁnj +p]mm T Pnjj T Pmj

And so we get 0 = pz%n = p%in as kpy = pﬁnj + Dhm by Lemma and pfnz = 0.

7 is non-zero by considering the quadratic in

mjm __ _mm
However we have already shown p,,.=." = p;,,,;
Equation @} Therefore we have a contradiction, and we know no structure with pj = 0

can exist. O

10.2  The p;;; = 0 case

We can apply similar lines of inquiry to get results (namely Theorem [10.2.13) in the case
when p77 - = 0. Using Theorem9.3.3| we shall also work under the assumption that py;,,, #

0 to avoid making the m-neighbourhood complete.

Lemma 10.2.1 In a primitive structure, suppose py,; = 0 and py, =% 0. Then there are
two eigenvalue triples in m, one in the 0 case in j and one in the Eigenvector case in j.
Further the eigenvalue triple in the Eigenvector case in j is
mjj mjl mjj mjl mjj mjl
(pmmj _pmmj7 pmjj _pmjj’ pmlj _pmlj)
Proof. First we immediately know there are only two eigenvalue triples in the m-

neighbourhood as it is two coloured, hence it is a strongly regular graph, but not complete.
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Now suppose that we have an eigenvalue triple (rc,,, 74, ,7e,, ) of the m-neighbourhood
in the Eigenvector case in j. Then by Remark [7.6.14] there exists an eigenvector of

the j-neighbourhood v such that Nf,'ljv is an eigenvector belonging to the eigenspace of

(FepsTd, s Te,, ). Then for each colour z, by Lemmal4.2.13]

J ., NT J
Tmemj”U - Nmmijv
_ o MIJ ATI mjl a7l
_pmxijjU+pmxijjU

= ( mjj myjl )Nj

Przi = Pmzi ) VmsV

as N, = 0 implies 0 = anjv + Nfﬁjv by Remark 4.2.14] Therefore r, = ngf] - ngf]

and so there can only be at most one eigenvalue triple in the Eigenvector case in j.

Now suppose that neither eigenvalue triple is in the Eigenvector case in j. Then as p;7; = 0,
they must be in the 0 case by Lemma [7.5.1, and further, by Lemma we know
that they must both be in the eigenvector case in . Then by Lemma [7.6.18| we see that

pé’;yc = p?gj = pé’;; for all = and y, as otherwise we can determine the eigenvalue,
— _ dmm _ lmj __Iml :
and so 74, = 54, for all a. But now 0 = Pimj = Pjmj = Pjmj» Meaning also that

_lgjm _ ljm _ ljm : J_ ot

0 = Pramj = Pinjj = Pynj» and so either py, . = 0, a contradiction to Theorem [7.6.20} or
pém = 0, a contradiction to Theorem [10.1.1

And therefore we must have one eigenvalue triple in the 0 case in 7 and one in the

Eigenvector case in j. O

We can represent this in the diagram where nodes represent eigenvalue triples of the labelled
neighbourhood and lines represent what case they are in the other neighbourhoods as
follows:

Suppose 7a,, = (T s Tjm> ") @0d Ta; = (T, 75;,71;) are eigenvalue triples. Then, if

Ta,, 18 in the eigenvector case in 7 and it corresponds with Ta; then we would draw the arrow

Ta Tq j

m
Q€e——>0

If 7, is in the O case in j then we would draw the arrow

Tam

o— J
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Note that because it doesn’t attach to a specific eigenvalue triple, the destination is just the
j-neighbourhood in general. And finally if r,,, was in the independent case in j we would
draw

Tam

o— i

Putting this all together for this example we have at the moment

m

Sam
()

7aa'm
()}

[¢] o
'I"al T'a].
o o
Sal Saj
! J

Empty arrows are just where we haven’t yet assigned a case to the eigenvalue triple. By
Lemma we know that s, can’t be in the O case in [ and therefore it must be in
the Eigenvector case. We will say that it corresponds with s,, without loss of generality.
Further by Lemma([7.6.16|this will imply s, is the O case in j as well. Now by Lemma(7.5.1]
we know that s, is either in the 0 or Eigenvector case in both m and [. Clearly it must be in

the O case in m as there is no eigenvalue triple for it to correspond with. Hence the diagram

becomes

m

Sam
0]

Tam
o]

o] Q
Ta, Ta;
o——| °
Sq, Saj
l J

Now we consider what case r,,, must be in /.
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Lemma 10.2.2 Suppose py,; = 0 and the eigenvalue triples (TepnsTd,,sT1,,) and
(TejsTd;>71;) correspond.  Then both (rc,,7d,,,71,,) and (rc;,7a;,7i;) are in the

Eigenvector case in l.

Proof. Suppose not. Then (r.,, , 74, .7, ) is in the O case in [ by Lemma Then for v

in the eigenspace of (r,,, r4,,,71,, ), we have NN, ﬁnv = 0 for all y, and therefore, for any x

_ NENY 4 — (T Jmiy ArJ
0= lelmU - (plmy — Play )ijv

Now ij.mv must be non-zero as (7¢,,,74,,,71,) is in the Eigenvector case in j and we

already have N/ v = 0. Therefore instead we must have that, for all 2 and y, p{;;f = l;’;j.

Jml

This gives us that p;, = 0 as ™I — () since pﬁj = 0. Butnow 0 = p/™ + p]mn}?l@m +

Imm Dimm

jml

imm and so either pfnl = 0 or p!,,, = 0. Both give contradictions, the first by Theorem

[I0.1.T] and the second as then the m-neighbourhood would be complete in m. Hence we

must have that (r., ,7q4,,,7, ) is in the Eigenvector case in [, and therefore by Lemma

7.6.17, (r¢;,74,,71;) must be as well. O

This allows us to complete the diagram a little further

m

Sam
o]

Fa,
/ .\
0—>0
Tay ;
— [5)
Say Sa,

! J

We will now address the issue of how many eigenvalue triples there are in the j-
neighbourhood. We have only been using two so far however it turns out that either there
are three triples or p§ ; =0.

Lemma 10.2.3 Suppose p;;; = 0 and py; =% 0. Then either:

* The j-neighbourhood has three distinct non-principal eigenvalue triples,



10.2. THE pj,; = 0 CASE 177

* ;=0

Proof. By Lemma [[0.2.1] we know that one of the eigenvalue triples of the m-
neighbourhood, say 74,, = (Tm,,s7jm» 1, ) 18 in the Eigenvector case in j and the other,

Sam = (Smm> Sjm> Sl )» is in the O case in j.

We know that if the j-neighbourhood has only one eigenvalue triple it is complete, but then
we would be working with the tricolour heptagon by Theorem However p;,. # 0,
S0 we cannot be.

Suppose that the j-neighbourhood has only two distinct non-principal eigenvalue triples
namely rq; = (T, 7j;, 71, and sq; = (8m;» 84, s1;)- We know one corresponds to 7,,, and
we shall say without loss of generality that this is r,;. However we also know by the fact
pf}bm = 0and Lemma that Sa, is not in the Independent case in m. It also can’t be in
the Eigenvector case, as there is no eigenvalue triple it could correspond to. Hence s, is in
the O case in [. Now we also know that the j-neighbourhood must be two-coloured as it has

only two non-principal eigenvalue triples, so either p? ;=0 p;z =0or p;m = 0. We know

by Theorem [7.6.20] that pgm #0.

First suppose p;:l = 0. Well then we see by Lemma that s,; can’t also be in the
0 case in . Hence it must be in the Eigenvector case. But then, using Lemma we
have that both eigenvalue triples of the j-neighbourhood are in the eigenvector case in the
[-neighbourhood, which contradicts Lemma Therefore p; ; 7 0 too.

Therefore if we do not have three distinct non-principal eigenvalue triples, pj: ; =0. O

Now we can further determine the diagram in the pg ; = 0 case using the following small

result.

Lemma 10.2.4 Suppose p; ;= P = 0. Then no eigenvalue triple of the j-neighbourhood

is the O case in both m and l.

Proof. Suppose pj ; = Pm; = 0 and there exists an eigenvalue triple of the j-neighbourhood
that is the O case in both m and /. Then by Lemma[7.6.6] we know there exists an eigenvalue
r; of Aj such that r; = r;,. However as pgj = 0, we know by Remark that r;, = 0,
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and so 7; = 0 too. But now by Corollary [4.2.9]

0 =rpr;
— m J 1
= PmjTm + DimTy + PmjT1

l
= pmjrl

Hence either »; = 0 too, a contradiction, or pfnj = 0, also a contradiction by Theorem

10.r1 O

Therefore, if p; ;= Pp,; = 0 the diagram looks like this

m
Sa

AN

Q<«——>0
’I”al

M %a;
tar j
l

: N —
Figure 10.1: p;, = p;p =0
If p? j # 0 then there is still work to do to fully determine the diagram. We see that the third
eigenvalue triple of the j-neighbourhood must be in the 0 case in m as it has no eigenvalue

to correspond with.

Claim: Both Sa, and lq,; cannot be in the Eigenvector case in [.
Proof of claim: Suppose for a contradiction both s,; and t,; were in the Eigenvector case

in [. Then as we know they are both in the 0 case in m we can use Lemma[7.6.18|(with j

and m swapped). As we can’t have pé’g’g; = p%j = é’;‘ye for all z,y, we must get that they
belong in case 2,3 or 4 in Lemma|(7.6.18| If Sa; is case 2, then by the condition pé-’g’;; = pé%e,

tq; must also be case 2. The same thing holds for case 3 and 4, and so Sa; and tq; must be
in the same case. But this means they are equal, and so are the same eigenvalue triple, a

contradiction to the fact the j-neighbourhood is not 2-coloured. []
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Hence either one must be the O case in [ and one must be the Eigenvector case in [, or both

are in the O case in [. However:

Lemma 10.2.5 Suppose pﬁj = 0 and an eigenvalue triple (rmj,rjj,rlj) of the j-

neighbourhood is the 0 case in both m and l. Then pljgrfm # 0 and

Jjj

. - p]mpljm
Tm = Tm; =Pjm — i
ljm
Jjim _jjl gl Jjm , jjj
o p]mplmmp{]m +plmp{]m - p]mpjmmp]lm
TP =T = Jjj il ’
pljmplmm
¥ gl J o Jjm _jjl
. p]mplmm ljm — plmpg]m - p]mpjmmpljm
== Jjl il
pljmplmm

Proof. Again from Lemma we know that if we have such an eigenvalue triple, then

Ta; = Tq for all a. Therefore we have the two equations by Corollary [£.2.9]

7yrnz=:pimrj4-pimrl (10.2.6)

TjTm = p;m]TJ + jm]

By substituting the bottom equation from the top equation by and using pp,; = 0, we
get
0 = plar; + Pl m (10.2.7)

It is crucial that these coefficients are not both zero and indeed we can show they are.
Claim: p{” and p” are not both zero.
JJ] gl /

Proof of claim: Suppose for a contradiction p;- p{m = 0 then by Lemma
pé%j = éjyfll = (. But by Lemma and plm = 0, this either means pinj = 0, which
can’t happen by Theorem [10.1.1} or pj ; = 0. The latter would mean the j-neighbourhood
was two-coloured and hence did not have three distinct eigenvalue triples. However this
implies by Lemma |10.2.3| that p? ; = 0 too, and then the j-neighbourhood is complete.
So by Theorem [0.3.3] we would have the Tricolour Heptagon, but this doesn’t have any

eigenvalue triples of any neighbourhood in the O case in any other neighbourhood. Hence

pz» j # 0, a contradiction proving the claim.



180 10. POSSIBILITIES WHEN INTERSECTION NUMBERS ARE ZERO

JJJ
plmj

and pﬁnl ; are non-zero by Equation|10.2.7). If r; = 0, then by Equation|10.2.6, either r; = 0

or plmj = 0, both of which can’t happen, so r; # 0.

We can go further by showing that both r; and r; are also non-zero (also implying both

Suppose now for a contradiction that r; = 0. We know r; # 0, so 7, = p]mj. Now the
eigenvalue triple (7, rjj,rlj) of the j-neighbourhood is in the O case in /. Hence, using
Equation together with the assumption that 7; = r;, = 0 and the fact that p%jm =0

(as plm = 0), it follows that

_ 33 ... jgm
0= P + pgmmrjj + p{mmrmj

. jjm , j
_pml_‘_pgmmpmj

As these are all non-negative integers, this implies that p]ml = 0, a contradicting Theorem

10.1.1] Therefore r; # 0.

Hence we can say that
7JJ

o _plm] )
T = 7jjl T’]
Imj
And therefore —
Jj
g PP
TiTm = PpyiTj — r

o
Plinj
As we already know r; # 0, this implies

1, 73]
i PmjPim;
T = L —
plmj

(10.2.8)

We can note the denominator is non-zero as with r; # 0 and r; # 0, pﬁrf] = 0 if and only
if p% ;= 0, and we’ve already shown both can’t be zero, so neither are.

Now from Equation and the fact that p{frfm = 0 again we have that

g . .
N U A

Our next step is to show p{#m = 0 however. Suppose for a contradiction that p{ﬂm = 0.
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Then we note by Lemma that pﬁz = 0 and so by Lemmam

P = Dy +1 (10.2.9)
= P — P+ 1 (10.2.10)

Further we know from Equation , that pgfnm # 0 (as otherwise p{m = 0) and

m

v i
Py = —— — ] — Zlmd
JJjm p]]m
Pimm Ilmm

We can now see that p{fn? # 0, as if pﬁnT = 0 then r,, = —1, and so by Lemma [2.1.14]
the structure is imprimitive or complete in m, a contradiction. Therefore we know from this

that 7, < —1 and by Equation[T0.2.8] we see

- l 77
p]mjplmj < pmjp{mj

However we can see by Equation |10.2.9|and the fact that p;% # 0 (as otherwise pﬁrz? =0

by Lemma 4.2.5)), that pfnj < pﬁnj. Therefore we can deduce that pl%lj < p{ﬁfj However

applying this to Equation[T0.2] we get that
—-r; > rj
So we know that r,,, < —1and —r; > r;. However 0 = 1+, +7; -+ implies 0 < r;+7;.

And so —r; < r;, a contradiction. So p{fém # 0.

Now using Equations[T0.2:8]and [T0.2] we can deduce

l jgm  jjj i, JJl j jgm  jjl
N pjmp{mm ljm pgmpljm - pgmp{mmpljm
- VELN
pljmplmm

Tl

Therefore by Equation[T0.2] we also get

i Jim jjl J o, Jil 1 Jggm  jjj
. p;mplmmpljm +plmpljm ~ PimPrmm jlm
J 33,351
ljmplmm
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What this lemma tells us is that there cannot be two distinct eigenvalue triples which are

both in the O case in m and [. Therefore this means we can complete our diagram as follows

m

/// RS\

Figure 10.2: pJi; = 0, pl; # 0

Some final deductions we can note from this analysis are as follows:

Corollary 10.2.6 In a finite primitive 3-regular, 3-coloured structure, suppose py;. = 0

and p;t . # 0. Then
i) pfl, % 0 for all x,
ii) ppy # 0 for all x,
iii) p], # 0 for all x.
Proof. Fori) if pé » 7 0 for any z, then the [-neighbourhood will have only two eigenvalue
triples. This doesn’t happen in any case as shown in Figure[I0.2] and Figure [T0.1]

For ii) we immediately know p; # 0 as p;’ = 0 would make the m-neighbourhood
complete in m and p{? # 0 by Theorem [I0.1.1} Hence all we have to consider is pj; = 0,

but this is covered by 1).

In iii) we get p{m # 0 by Theorem |10.1.1} and p{l # 0 by 1). We cannot have p;:l = 0 by
Lemma(10.2.3] O

For both of the pJ: ;=0 and the pj j = (0 scenarios, if a structure exists we can describe the

eigenvalues of the neighbourhoods. We will do this with a swarm of lemmas which will be
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summarised in Theorem [[0.2.13] We label the eigenvalue triples as they are labelled in the
Figure m if pg ; = 0, and Figure 10.2/if not. First we will examine the eigenvalues of the

corresponding triangle.

Lemma 10.2.7 Suppose there exists a finite primitive 3-regular 3-coloured structure with
Pm; = 0and pr,, # 0and r3,, = (TmmsTjms Tl )» Ty, = (rmj,rjj,nj) and 1y, =

(T'my, 7, 71,) all correspond as eigenvalue triples. Then we have:

_.mjj mjl
Tem = Pmaj — Pmaj
. gmj _ gml
"2; = Pjat — Piaj
Imd Imfy/, jmj jml Ime Imf jmj jml
o (plmd — Przd )(plcd ~ DPled ) + (plmd — Pred )(p{ce —p{ce )
Ty jmj  jml
Pied” — Pled
ljd’ Ijf! mjj mjl lje’ 15 f! mjj mjl
_ (P — Piya) Progr — Prog) + Oizgr — Piya) (P — Proier)
- mjj mjl
Piiqr — Pieiar

for any colours c, ¢, distinct colours d, e, f and distinct colours d', €', f'.

Proof. We’ve already seen in Lemma (10.2.1|that r;,, = pﬁfﬁj — pﬁff] We can apply the

same idea in reverse to get r,;. Let v be an eigenvector of the m-neighbourhood in the

eigenspace of 7, . Then IV ijv is an eigenvector of j-neighbourhood, with eigenvalue r ;.

Hence
J . — Nz AT
rijjmv = ijijv
_ . Jmj ard Jgml arl
- ja;mijU+pjmeij
_ (M Jmiy arj
= Pjaj = Pjaj Njmv
_ . gmj _ gml
Hence 7, = s e

We can also determine 7, by utilising V77, = 0. Note that for any ¢ and d,

c ard _ imj jml J
iNimv = (Pled” — Piea )ij“
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And therefore, as Ay N}, , d oy =N\ Ny v for some non-zero constants Ay and \., we get

card 0 c nre
)\d lelmU == )\eN'lNlm/U

jmj jml i jmj jml
)\d( led ~— )ijv - (plce pjce )
j .
As N5 v # 0, this tells us

Jmj iml

ﬁ plce p]ce

jmj jml

"~ Fled

Ae led
From this we can find 7, in terms of the intersections numbers as follows. Let d, e, f be

distinct colours, then

N v=NENE v
= (17 — P Niww + W = pigd )N
(@%?f o)+ i ol ~ ) ) Vo

o ) Pleg” — Plea) + W — Pl ) (e ;;":l>>Nd ,
vl .

Imd
_ (Pird = Pizd
wh -
! led

We can do the exact same thing with the eigenvectors coming from the j-neighbourhood
So suppose we have an eigenvector v’ of the j-neighbourhood that corresponds with v, then

" for some non-zero constants j4 and y.. Then as before we use

Ndv = ueNe
d. I __ mjj mjl i /
anlNljU (plcd — DPled )N
to give
d
dNnCalejU/ = pe Ny Ny
mjj J _ mjj mjly ard
Hd (plcd _plcd )N U Ne(plce — Piee )Nm]
resulting in
mjj mjl
Hd plce — Piee
mjj mjl

Fe  Dieg” = Pied
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Therefore for d, e, f distinct colours as before we get that

re, Niiv' = Njj b/
Ld  Ujfy ard 1j 1j
= (Pppq — plgcJ;)NljU, + (Pig — plg:{l)Nz%U
. ljd 15 f Hd , lje 15 f /
= <(plxd — Piya) T E(pzm - pl:rd)> Njv

lyd Lify(,mii mjl lje Lify(,mii mjl
_ <(pl:cd — Pird) Pred’ — Prea ) + (Piza = Pira) Pree” — Pree )> N
J

mjj mjl
Diea” — Ped

Therefore, for any ¢, and any distinct d, e, f,

( Imd lmf)( Jmj 'ml) +( Ime lmf)(pggzj jml)

- Pizd — Pizd )\Picd” ~ Picd Pizd — Pizd ~ Plee
Ty jmj | jml
Pieq led
And, for any ¢/, and any distinct d’, ¢/, f”,
ljd’ Ijf! mjj mjl lje’ Ijf’ mjj mjl
- (Pizar = Praa) Preig — Prog) + Ppar — Pryar) Pricr — Dieier)
Ty mjj mjl
Digar — Piciar

O]

We can also determine these in other ways using various previous lemmas, mainly Lemma
At the moment I cannot make much of a conclusion from the different forms of r;,,
except the following identity
Ll mjj _ lml jmj
PimmPimi = PimmPimi
which is currently without much use.

We can also determine some more of the eigenvalues that are not dependent upon p? ; being

Zero or not.

Lemma 10.2.8 Suppose py; = 0 and py,, # 0 and the eigenvalue triple s,, =
(Smm»> Sjms St ) Of the m-neighbourhood is in the 0 case in j and the Eigenvector case
in l. Likewise suppose the corresponding eigenvalue triple s, = (sm,, Sj,,51,) of the l-

neighbourhood is in the 0 case in j and the Eigenvector case in m. Then for any colours c
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and d and any distinct colours x,y and z, either pj"éldm = p}’(ﬁfj = pj”éfjl or

l l mly l
milx mlz <p?(13dx - pgncdz)(pma:v - p%azas)
Sam = (pmaa: - ma:c) + 1
mlz M y)
(pjcd pjcd
: H : mim _ o mlj _  mll
And likewise either py™ = p;q. = plg. or
( Imx __ lmz)( Imy lmz)
Imzx Imz pjcd pjcd Prox Plax
Sa; = (plax — DPlax ) + I m
mz __ y)
(pjcd pjcd
] Im _ mlj _  mil )
Further there exists values of ¢ and d such that p;’édm = Djed = pj"éd doesn’t hold, and

values of c and d such that p;’zl{:m = pgzllcj = "}ll(f doesn’t hold.

Proof. In both scenarios, these eigenvalue triples act in exactly the same way, as shown in
Figure[T0.2] Both correspond with each other and are the 0 case in j. Let v be an eigenvector

of sq,. We know, for any colours ¢ and d, and distinct colours x, i and z,

d ! ! ! !
0= Np;iNjv = (Djed — Pjed ) Npuv + (P}ncdy — Pled )NJ v

And therefore
mlx mlz x . _ (. mlz mly Y
(pjcd ~ Pjed )lev - (pjcd ~ Fjed )lel}
Hence, unless p™% = p™%¥ = pmz we have N, Y v in terms of N v and we can get

jed :pjcd :pjcd’

T . __ ATQ T
SamleU - NmmleU

l l l l
= (pmaa::r: - p%aZ)Ngllv + (p%ayx - pmaZ)Nr%lv
l
mie iz PRed — D) (Pmde — i) \ L
= (pma:v - pmax) + ml le’l)
( mlz _ y)
pjcd pjcd

And therefore

l
(Pl — Pl (pimde — D)
l
(P = Pled)

Sam = (Pt — pit=) +
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Now we can do the exact same thing but with m and [ swapped to get s,,. First for v’ an

eigenvector of s,, we have
_ arend o (o dmax Imz z ./ Imy Imz y
0= Nleij = (pjcd — DPjed )Nimv" + (pjcd —Pjed )Nlmv
And therefore
Imzx Imz x ./ _ (. lmz Imy y
(Pjed — Pjed )NimV' = (Ped — Pjed VNjm?
Ime _ lmy _  _Imz Y : T
Hence, unless p//7" = Picd = Pjed » W have NV, v in terms of V7 v and we can get

J m

T _ a €T /
Sa; Nimv = Ny Nip, v

_ o Amzx Imz z ./ Imy Imz y
- (pla:r — Plax )Nlmv + (plam — Plax )Nlmv

l 1 l l
— ( Imx lmz) + (pjncfix _pj'rcrle)(plZ";y - plg?vz) NZ U/
Plaz Plax ( Imz _ lmy) m
pjcd pjcd
And therefore
l l ! l
Sa, = ( Imx _ lmz) (pjTCriix _pjzrélz)(plzzﬂy B plZ:LvZ)
a; = Plaz Plax ( Imz _ lmy)
pjcd pjcd

To prove the final statement we simply need to find colours c and d such that p;ﬂcfim = p;.”cldj =

p?zldl doesn’t hold. The other statement will then not hold when ¢ and d are swapped.

Note that setting ¢ = m and d = j we see that the condition p%f = ?;iy = pé-’?dz cannot
P . 1 _Imy _ Iml _gm  _ ljm _ _ljm

hold. This is because if 0 = pan’]T‘ = Djm; = j%j then 0 = Prami = Pmjj = P and

hence either pg-m =0orp, ; = 0 by Lemma contradicting either Theorem [7.6.20 or

[[0.1.71 And so we are done. O

In a very similar manner we now find the third eigenvalue of the [-neighbourhood, and the

second eigenvalue of the j-neighbourhood.

Lemma 10.2.9 Suppose py,; = 0, and both to, = (tm,,t;,t,) and to; = (tm;,tj;,t;)
are corresponding eigenvalue triples belonging to the l-neighbourhood and the j-

neighbourhood respectively. Then if they are both in the 0 case in m, for some colours
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jly jlz

c and d and any distinct colours x, y and z, either pﬁi d = Died = Py OF We have
jly jlz jla jlz
+ _( jlo jlz>+ (pja:(: —pjax)( med mcd)
aj = Pjaz ~ Pjax ST
Princd med
P . ljz _ ljy _ ljz
Similarly, either p,;~ . = D,)"q = D/ned OT
ljy _ ljz lje ljz
t = ( ljz ljZ) + (plax plax)(pmcd pmcd)
ar = \Praz — Plaz ljz  _ljy
pmcd pmcd

Further there exist values of ¢ and d such that pﬁid = pﬁi 4= piizcd doesn’t hold, and

values of ¢ and d such that pifi g = pfflyc g = piffc , doesn’t hold.

Proof. This is almost exactly the same proof as the last one, however with j instead of m.

First if v is an eigenvector of t,, then

0= N, Nhw

1 il i1 il
= (P s N+ (Phg — Phea) Njjv

med ~ Pmed m med

. jle _  gly _  jlz
And therefore either p; ', = p7m cd = Pryeq OF

pjlx _ Jlz
med med \TT
jlz jly gl

Y,
NY =
Pricd — Pined

Now we know

T _ a T

o jla jlz T jly jlz Y
- ( jax pjax)lev + (pjax - pjam)lev
jly jlz jlx jlz
_ ( jle | jlz ) T4 (pjar - pjaz)(pmcd _pmcd> .,
- \Wjax p]'al? Jl jlz gly Jl
Pricd — Pmed

il il 1 1
— (¢ pjlx B jlz> (Pi-ié - jai)(pizid _anid) z
= : :

jax jax ilz ily gl
med p]mcd
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Therefore either pﬁ;Z = pfqlﬁ: .= nlfc , Of

jly jlz jla jlz
P gl jlz (pja:c - jax)( med pmcd)
a; — (pjam _pjax) + jlz jily
Pred — p]mcd

Similarly if we let v" be an eigenvector of ¢, then
0= N, N& o'
_ / ljz ljz x |/ ljy 1]z T
- (pmcd - pmcd)NljU + (pmcd - pmcd)Nljv
Hence either pfiﬁd = pfff(’: g = piffc , Or

ljx ljz

v 1 _ Pmed ™ Pmed arz, 1
NGV = =53y Nav
med med

Now

x, ! __ anrx,. /!
talNlj/U _NllNl]v

_ (liz Lizy\nrx, 1 iy Liz\nry 1
- (plax _plax)NljU + (plax - plax)NljU

ljy ljz ljx ljz
_ ( ljiz ljZ)Nﬂqvl + (plax — plax)(pmcd — pmcd) NZo
= Plaz ~ Plax lj ljz L7y lj
Dpned — Prcd
ljy ljz ljx ljz
_ ( ljiz ljZ) + (plax _plax)(pmcd _pmcd) NZo
- Praz — Plax ljz ljy lj
Dpned — Pred
Therefore either pfﬁi = pfﬁi .= pfffc , Of
ljy ljz ljx ljz
= ( ljz ljz) + (plax 7plax)(pmcd 7pmcd)
ar = \Praz — Plaz 17z ljy
Pined — Pred

. . jla il jlz B
For the last statement, we note that if ¢ = jand d = m thenp! ", = p’¥ = p’*  doesn’t
im o i gl
mjm pmjm - Pmjm>
0=p" = p{;nnf = pjj,; - This implies either p;,; = 0 or pjp, = 0 by Lemma

however the former contradicts Theorem[7.6.20} and the latter implies the m-neighbourhood

hold. This is because if it did we would have 0 = meaning

is complete in m.
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The same contradiction occurs if we have pfflﬁ = piffé = pfﬁfc gandc=mandd=j. O

A lot of our work with the triple intersection numbers in this case depends on an equation

mim mlj mll

of the following form not holding: p = Pjed = Pjed- We have indeed shown that a

jed
particular case will always not hold, but we can actually go much further than this. Note

that we are dropping the p;;; = 0 assumption here.

Lemma 10.2.10 Suppose in a finite primitive 3-regular 3-coloured graph, for all x and v,

and for all distinct c,d, e, we have ngf = ngd — p?;ie. Then p, # 0 for all z and

mlc __ ,mld _ ,mle
Pjry = Pjzy = Pjay-

Proof. Suppose for some z that p7, = 0. Then p?;;z = 0 for all z and y, by Corollary
and therefore pﬂie = pﬁgd = pﬁie = (. This implies pz?;x = pﬁix = p;Z;x = 0, hence
Py = 0or p{y = 0 by Lemma But this holds for all z and y, meaning it holds for
x = [ and y = m. But here we would have pgfll = 0, a contradiction to Theorem

Therefore we know p, 7 0 for all z.

. mjc _ _mjd __ _mje .
Since Ploy = Plzy = Play then, using Lemma we see

m m m
Piz mie _ Ple miz _ Ple mix
mPjcy = “mPidy = “mPjey
p]’c pjd pje
So
m. m_mle _ _m_ m. mlr _ _m_ _m,_ mlx
PjaljePjey = PjePjcPidy = PjcPjdPjey (10.2.11)
And crucially
pm m
mlz _ Yjd _mix mlx __ pje mlx

jdy = —mPicy > Pjey = —mPjcy
ij p]c
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Therefore, combining this with Lemma[4.2.3] we see

mlx mlx mlx

l
Pjy = Pjey T Pjdy + Pjey

iy D
g (054 8)

Pie  Dje
_ . mlx p;nc—i_p%—i_pjné
= Pjey p
jc
_ kipfy
Pje

m ol
Therefore pi* = %. But this holds for all z, and the value doesn’t depend on z at all,

Jjey
mim _  mlj _ _mll [T . .
hence pje,™ = p jey = Djey- NOw note that it didn’t matter which value we picked for c,
and this could range through any colour. O

We see that this goes back the other way by swapping j and [ so it is actually an if and only
if statement. Further the choice of m was immaterial so we actually get three equivalent

conditions.

Corollary 10.2.11 Suppose in a finite primitive 3-regular 3-coloured graph, for all x and
y, and for all distinct c, d, e the following conditions are equivalent

mjc __ _mjd __ _mje
1. pl:vy _pl:py _plxy

Ime _ \lmd _ ,Ilme
2. Pjzy = Pjzy = Pjay

jlc jld jile
3. p]mzy = pgn:cy = pgn:vy

. . . J .m

mjc __ mjd _ _mje _ PP

4. pl:vy _pl:ry _pla:y - Kk
1

Imec _ lmd _ Ime __ pjﬂ}/pjw
5. Pjay = Pjay = Pjay = k;

. . . U}

le ld jle PinyPma
6. p]mxy = Pmay = Pmay = m;;’m

We can also note the impact of this condition on the eigenvalue interactions.

Lemma 10.2.12 Suppose for all x and y, and for all distinct c,d, e, plr;"ic = p?;id =

p?;;e. Then there cannot exist an eigenvalue triple of the m-neighbourhood that is in the

Eigenvector case in both j and l.
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Proof. Suppose for a contradiction that we have an eigenvalue triple 7, = (Tm,,, 7> Tl )

of the m-neighbourhood in the Eigenvector case in j and [. Then if v is an eigenvector of

T'z,, We know, for some colour a, Nj, v is an eigenvector in the j-neighbourhood. Further
b a . .

by Lemma [7.6.17, we know that for some colour b, N/. N7, v is an eigenvector for the

m

I[-neighbourhood. However

b 1 1 Imd I d
NZijmU = (pﬂf - pj%e)Nl%v + (pﬁ?a - pj%e)szU
and we know by Corollary [10.2.11} pi7e = plid = plme, implying 0 = N/;N§ v. So

N, l’}N ;mV can’t be an eigenvector, a contradiction. O

Hence, as we are guaranteed a triangle of corresponding eigenvalue triples in any situation

including py,; = 0 by Lemma 10.2.1{and Lemma|10.2.2} we can conclude that no variation
of plrgif = pzid = pzj; holds.

We then have only one eigenvalue left to determine, which is s,;. Obviously if pg ;=0
this doesn’t exist, and if p; j = 0 then we know it is case 0 in both m and [. Hence we can

determine it using Lemma[10.2.5] Summarising this we get the following theorem:

Theorem 10.2.13 Suppose for a finite primitive 3-regular, 3-coloured graph, that p),: ;=0
Then all other intersection numbers are non-zero, except perhaps p; - For any colours

a,c and ¢, distinct colours d, e, f and distinct colours d', e’ and f', the eigenvalues of the
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neighbourhoods are as follows:

_ mjj myjl
Tam = Pmaj — Pmaj
_ o Jmj jml
Taj = Piai” — Pjaj
Imd Imfy  jmj jml Ime Imfy, jmj jml
A (Pizd — Prad ) Prea” — Piea ) + (Plad — Plad ) Plee” — Piec )
a = img _gml
Diea” ~ Pled
Lid LGif' /s mjj mjl lje LGf'y (o, mij mjl
_ Pa = Pia ) Py — Proar) + Pizar — Piza) Proer — Pieier)
Dieigr — Prerar
mld mlf mle ml f
o mid mif (pjcc’ - pjcc’ )(pmad - pmad)
Sam = (pmad - pmad) mlf mle
(pjcc’ - pjcc/)

Imd Imf Ime Imz
I (P — P /)(Pzd—Pzd)
Sap = (p%rbd B plZZlf) + jee jec a a

Imf Ime

(pjcc’ - pjcc’)
il il jld il
(p;'aed B p;'a]:i) (p]mcc’ B pgnjccc’)
* i e

_ (Jld iLf
taj - (pjad - p;‘ad) D D
mec! mec!
lje ljf ljd lif
(plad — plad)(pmcc’ — pmcc’)
ljf lje
Pricer — Prnee!

_ . ljd ljf
= (Piad — Piag) +

If pg ;= 0, then we have only two eigenvalues in the j-neighbourhood, so this is all of them.

prgj # 0 then

P ol
- o Jm¥lgm
T'm = Sm; —Pgm T
p{jm
J o Jjm _jjl i JJl Lo Jim . jjj
R _pjmplmmpljm +p{mp{jm ~ PimPimmPiim
7= 5 777 1! !
pljm Imm
1o Jim gji g Jit g _Jdim jjl
i _pjmplmmpljm p{m lym pjmplmmpljm
=8y = gl il
pljm Imm

The eigenvalues also interact as follows:

prg:j:()
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A

°
a
ol—|

! o
Sa]-
la, J

Figure 10.3: Classification of eigenvalue triple cases when p;;; = 0, p; ;=0

Ifp); #0
m
Sam
[¢]
Tam
AN
Sal. b .sa.
tay
l J

Figure 10.4: Classification of eigenvalue triple cases when p;7; = 0, pg j #0

We can summarise all the identities we’ve found over the course of the classification into

one lemma too. These gives us some feasibility equations.

Lemma 10.2.14 Suppose we have a finite primitive, 3-regular, 3-coloured graph such that

Py = 0. Then it must satisfy the following:

1. For all colours ¢, ,d,d" and any distinct colours x,y, z:

l l l l l l l l
(Wied = pjed ) Pica — Pioa) = Wjar — Piea) (Pfed — Pled)
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2. For all colours c,c,d,d" and any distinct colours x,y, z:

1y lj lj 7 7 lj ] 7
(Prvea = Prea) Prmerar = Prmerar) = Prear = Proa) Prea = Prca)
3. For all colours ¢, and any distinct colours e and d:
jmj jml jmj Jmly jmj jml jmj Jml
(pgce - pgce )(plc’d - plc’d) - ( led ~— Flecd )(plc’e - plc’e)
mjj mjl mjj mjly s mjj mjl mjj mjl
(plce ~ Diece )(plc’d _plc’d) - (plcd ~ Pied )(plc’e _plc’e)

We can also note that Theorem [10.2.13| (and Theorem [10.1.1)) have some further
consequences when applied to undesirability (as defined in

Lemma 10.2.15 Suppose the R-neighbourhood is undesirable with respect to G. Then

either:

. ng = 0 and we have either Figure |]0.2.]3| 0r|]0.2.]3| withm = R, j = G and
l=B.

. ng = 0 and we have either Figure |]0.2.]3| or |]0.2.13| withm = G, j = R and
l=B.

This follows from the fact that undesirability forces py; = 0 for some c.

10.3 Monochromatic-triangle-free

In this section we will discuss the consequences of a 3-coloured 3-regular graph having
pEp =pGs = pB s = 0i.e. a3-coloured, 3-regular structure devoid of any monochromatic
triangle. By Ramsey’s Theorem, we know that this must be small. In fact the Clebsch Graph
from earlier is the largest possible case, as R(3, 3,3) = 17 [24]. But aside from the tricolour

Clebsch graph, are there any possibilities? We will now show there are none

Theorem 10.3.1 Suppose I is a primitive, 3-coloured, 3-regular graph with pg R= ng =
pg g = 0 but no complete neighbourhoods. Then I' is isomorphic to the Tricolour Clebsch

graph.
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Proof. Firstly we know that no other double intersection numbers are zero as the
neighbourhoods are not complete and Theorem (10.1.1{ means p7y # 0. This means we can

use Lemma [4.2.3] without worrying about double intersection numbers being 0. Focusing

just on the m-neighbourhood, we see (using p%.’;.] = p%;% = 0) that pj;; = p%’}’ +1=

pm?}l + p%njl and similarly p/", = pmg'}l +1= pzyllj + pﬂﬁj . Now

km :pnmmj + Py + 1

=Pji + P’ +3

mm,

, . l l
Pt + Pit” + Pigic + Pijy + 1
Therefore 2 = pz;’;j + p%’;l, and as these are non-negative integers we have very few

options. Either:

o mmj l_
D) Py~ =Pyy =1

if) pd =2, =0
iii) pyy? =0, it =2
We see that ii) and iii) are effectively the same thing, just with j and [ swapped, and so we
will treat them as one case.

First suppose we have case i), then pj7; =1+ pmmj =1+ pzl”]?l, SO pzmj = p%}?l . But,

mlj lj
by repeated us of Lemma[4.2.4]

m _ .m ,mmj
pm] _pmjpmll

_ m _mml
_pmlpmjl

. m _mml_mmj
= PmiPmjj P

_ mmj\2
= p%’ (pmlj )
Therefore p”7* = pm™m! = 1. This implies p. = p™, = 2, and ky,, = 5.
mlj mlj mj ml ’ m
If instead we suppose we have case ii) (which covers case iii too as previously mentioned),

then we see pj; = p%ﬁl. Now as 2pj: = pipy” = p%p%{?l, we see that p/”", = 2. We

know pity = 1+ piiitt = 1+ pin ., and therefore pj7'; = 1 and k;, = 4.
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Hence we see that for any colour x, k; = 4 or 5. If k,, = 5, then we can note that by
Lemma kjpgnm = kzmpzj = 10, hence k; divides 10 and so it must be 5. The same
is true of k;, hence if we have case i) in one neighbourhood we have it in all the others,
meaning n = 16 and k,,, = k; = k; = 5. As the Clebsch graph is uniquely determined
by its spectrum (Lemma [5.3.5)), it is uniquely determined by its intersection numbers, and
therefore this must be the tricolour Clebsch graph.

Equally we see that if k,,, = 4, then k; = k; = 4. And so if one neighbourhood is case ii) or
case iii), then all three are case ii) or case iii). However, if we assume the m-neighbourhood
is case ii), then case ii) and case iii) can no longer be treated as the same in either the j or

l[-neighbourhood. Consider first the j-neighbourhood. We must have either pﬁlm = 2 and

pﬁfflm =0or p%l%m = 2 and p;:{lm = 0 as these correspond to case ii) and case iii) in the
j-neighbourhood. Suppose first for a contradiction that pjj" = 2 and p;ﬁim = 0. Then

pgm = 1 and p?l = 2. Crucially, as k,, = k; = k Py =1, pfnm = 2 and pgrl‘ = pgm.
Now k; = py; + pj; + pjj implies pj = 2 and therefore pé»m = 2 as well. However
km = Dby, + Dl + Pl now implies pl ;= 0, implying the I-neighbourhood is complete,
when we assumed it was not. Hence we must have instead that pgfflm = 2 and p%m =0
in the j-neighbourhood, and by the same reasoning, pé?jﬂ = 2 and pﬁim = 0 in the [-

neighbourhood.

This structure will have the following intersection numbers:
® n=13,kR:k‘G:k‘B=4
o
* Dimj _pj‘l = Diy = 2

. — ) = _
Pt = Pjm = Pi; = Py = 1

mml _ Jim __ Ui
¢ pmjj _pjll = Pimm = 2

mmj _  omml _ Jil _  gim _  llm _ Ui __
* Pt = Py —pj‘mz = Pimi = Pimy = Pijm = 1

o ymmi _ gil  __ llm __
Poui” = pimm - pljrjn =0
However in trying to fully derive the other triple intersection numbers we will come across

an impossible scenario. Namely, as pé ;=1 and pm}?l = 1, we get that p}lnjml = 0 by
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Lemma[4.2.3] Now, by Lemma[.2.3]again

_.m _ . mml mml mml __ ,_mml
2=py =pu; +TPum TP  =DPim

Butl=p, = mml p%ﬁd + p{?ﬁgl by Lemma , and as p%;”l = 2, the RHS is greater

Pimm

than or equal to 2, a contradiction. Hence this cannot be a primitive 3-regular 3-coloured

graph. 0
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Chapter 11

Other Cases

In this chapter we aim to discuss the myriad of other cases not yet investigated in detail, and

boil everything down to just a few possibilities as given in Theorem [11.4.2

First we’ll talk about the most awkward of the cases, the independent one. This one crops
up annoyingly as a counter example in the broader discussion of non-zero intersection
numbers. As such this case is particular relevant to our original motivating problem of
finding whether the universal homogeneous 3-coloured graph is a m.e.c. limit. However it
provides quite strong conditions itself and using these conditions we will entirely rule out

the possibility of it occurring in Theorem [IT.1.2]

We then turn our attention to the scenario where we have two eigenvalue triples both in the
0 case in another neighbourhood. In Theorem [11.2.4] we show that this can’t occur, except

in the case when p% = 0 as previously discussed.

To start with we shall only be assuming that we are working in a finite primitive 3-regular

3-coloured graph.

11.1 Independent Case

It is first our intention to eliminate the possibility of the Independent case. With this in mind
suppose that we have an eigenvalue triple (7, ,7,., r1,, ) in m which is in the independent

case in j. Now we know that any other eigenvalue triple in the m-neighbourhood can’t be
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in the Eigenvector case in j by Corollary and can’t be in the Independent case in j by
Theorem (as they’d be equal). Further any eigenvalue triples of the j-neighbourhood
must be in the 0 case in m. Hence, as we are assuming the j-neighbourhood isn’t complete,
we must have only two eigenvalue triples in the j-neighbourhood by Lemma and
both must be the 0 case in m. Therefore the j-neighbourhood is two coloured. By Figures

[0.2.13] and [10.2.13] from Theorem [I0.2.13] (and also by Theorem [I0.1.T), we know that

no independent case can occur anywhere when p’i = 0 or pé-c = 0 for any c. Hence

p;: ; = 0 and the j-neighbourhood is either semi-undesirable or a multiple with respect to
m by Lemma (it can’t be undesirable as we’ve already shown p%w # 0 fo all ¢).
Some question remain however. For example what case is (7p,,,, 7j,,,71,,) in [? How many

eigenvalue triples are there in the m-neighbourhood?

First suppose (7., 7., Tl,,) is in the O case in . Then, for some colours ¢ and d, any
distinct colours z, y, z and v an eigenvector in the eigenspace of (7, , 7., 71, ), by Lemma
B2.13
J . . 4 .
0= NiiNio = (Gi8" = s N + (LY — BLs") N0

Therefore we must have pfzgm = p{zsy = p{:;'z, meaning we have all the results from
Corollary [10.2.11] Now if we have that the j-neighbourhood is a multiple with respect to
m, we also get pg:zzb = p;:ZZC for any d and distinct a, b.

Lemma 11.1.1 For any distinct colours m, j,l, suppose the m-neighbourhood has exactly

two distinct eigenvalue triples, both of which are in the O case in j. Then it cannot be

d-semi-undesirable for any d.

Proof. As we have only two distinct eigenvalue triples, we know that the m-neighbourhood
is two-coloured, hence for some colour z, p;:. = 0. Now, by Theorem [I0.2.13] we know
that neither i), = 0 or p;; = 0 as there is no scenario allowing the m-neighbourhood to
have two O cases in either j or [. Hence we must have p]’ = = 0.

Suppose that the m-neighbourhood is d-semi-undesirable. Therefore, for colours ¢ and e,
distinct from each other and from d, p%’gc = %’;e for all colours z. If d # m, then we

see by Lemma([7.6.3|that r4,, = s4,,. But the m-neighbourhood was two coloured, so these

are the only non-principal eigenvalues of N¢, = and their multiplicities will sum to k,, — 1.
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By Lemma they are therefore equal to —1, meaning that the m-neighbourhood is
connected by Lemma[2.1.15| and hence is complete in d.

So we must have d = m, and so r4,, = 0. However now we get from Equation that

0= i~
And so plft = pgz,lj = p;{}cg‘l as {c,e} = {j,1}. Butas p]; and p}"; are non-zero, this
implies by Lemma that p%;j = p%’;” = 0 for any colour y distinct from x. Hence
Dt = Dpnea = 0 by Lemma meaning either p} = 0 or p7, = pj"7 + p; ) = 0 by
Lemma.2.3] But by Theorems [[0.2.13]and [I0.1.1]this can’t happen. O

This was the last remaining possibility that allowed the independent case to occur, and so

we can now formally rule it out.

Theorem 11.1.2 In a 3-regular 3-coloured structure, for any distinct colours m and j there
does not exist an eigenvalue triple of the m neighbourhood that is in the Independent case

in the j neighbourhood.

Proof. Suppose there exists an eigenvalue triple (74,,,,75,.,1,,) of the m-neighbourhood
which is in the independent case in j. Now we know by Corollary that any other
eigenvalue triples of the m-neighbourhood can’t be in the Eigenvector case in j. We also
know that by Theorem that any other eigenvalue triple of the m-neighbourhood can’t
be in the Independent case in j, as it would equal (rp,,,,7;j,,,71,. ). Therefore any other
eigenvalue triple of the m-neighbourhood must be in the 0 case in j. This further implies
that any eigenvalue triple of the j-neighbourhood cannot be in the Eigenvector case in m.
We also know by Lemma[7.5.3|that any eigenvalue triple of the j-neighbourhood cannot be
the Independent case in m, hence all eigenvalue triples of the j-neighbourhood are in the 0

case in m.

We know by Theorem [9.3.3] that the j-neighbourhood is not complete as the Tricolour
Heptagon did not admit an eigenvalue triple in the Independent case anywhere, and we know
it can’t have three distinct eigenvalues by Lemma [7.6.1] Hence it must have two distinct

eigenvalue triples and therefore we know by Lemma that the j-neighbourhood must
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be a multiple, undesirable or semi-undesirable with respect to m. By Lemma we
can’t have it being a multiple, and by Theorem [10.2.13|it can’t be undesirable either. Hence

it has to be semi-undesirable, but this is impossible by Lemma|[IT.1.1] O

11.2 Double 0 cases

Using similar ideas, if we assume pf; = 0 (which is classified in Theorem [10.2.13)), we
can also rule out the possibility of two of the eigenvalue triples from the m-neighbourhood

being the 0 case in j.

Lemma 11.2.1 In a 3-regular 3-coloured structure, for any distinct colours m and j,
suppose p?; # 0 and p. # 0 for all x and there exists an eigenvalue triple of the m-
neighbourhood in the 0 case in j. Then the m-neighbourhood cannot be a multiple with

respect to j.

Proof. Suppose for a contradiction the m-neighbourhood is a multiple with respect to j and
that we have an eigenvalue triple (7, j,,,71,,) of the m-neighbourhood which is in the
0 case in j. Then by Corollary [7.4.19]and Theorem [T1.1.2] we know that all the eigenvalue
triples of the m-neighbourhood are in the O case in j and vice versa. Therefore by Lemma
as neither are complete, we must have that both the m and j-neighbourhoods have
two distinct eigenvalue triples. Hence by Lemma [[T.1.1] j must also be a multiple with
respect to m.

As we have only two distinct eigenvalue triples and we’ve assumed pj = 0 for all z, we
must have either p;;;,, = 0 or p; = 0. Then either r,,,, = sp,,, = 0orr,, = s, =0
by Remark Suppose we have p; = 0 and r,,,, = s;,, = 0, and so by Lemma
|.2.10|we get 0 = rj,, + 71, + 1. But this means that we can solve Equation (note
that coefficients are non-zero for at least one colour as part of the multiple assumption), and
determine that r;,, = s;, and r;, = s;, , meaning we only have one distinct eigenvalue
triple in m, a contradiction. The same thing occurs for p; = 0, and so we can’t have that

the m-neighbourhood is a multiple with respect to j. O

Therefore we can ignore this case and we can boil it down to just semi-undesirability when

there are double O cases.
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Corollary 11.2.2 Suppose that two distinct eigenvalue triples of the m-neighbourhood are
in the 0 case in j and pf; # 0. Then the m-neighbourhood is semi-undesirable with respect

to j.

This is the simple combination of Lemma [[0.2.15] removing undesirability, and Lemma
[I1.2.1] removing the multiple case. Note that we can combine this with Lemma [[T.1.1]to

completely remove this in the 2-coloured case.

Corollary 11.2.3 Suppose the m-neighbourhood is two-coloured. Then it cannot have two

distinct eigenvalue triples both in the O case in j.

So now let us delve into the possibilities that occur as a result of this.

Suppose we have that the m-neighbourhood has three distinct eigenvalue triples, two of
which, say 7, and s, , are in the O case in j. Then m is semi-undesirable with respect to
j by Corollary and also we know by Theorem[I1.1.2]that the third eigenvalue triple

of the m-neighbourhood, ¢, , is in the Eigenvector case in 5. Conveniently we can remove

T

all these cases in one fell swoop.

Theorem 11.2.4 Suppose that two distinct eigenvalue triples of the m-neighbourhood are

in the 0 case in j. Then p}; = 0.

Proof. Suppose for a contradiction that p7 = 0 for all x. We know by Corollary
that the m-neighbourhood has three distinct eigenvalue triples, two of which, namely 7,
and s,,,, are both in the O case in j. Then we know from Corollary that the m-
neighbourhood must be semi-undesirable with respect to j. We also know that the third
eigenvalue triple must be in the Eigenvector case in j as it can’t be in the 0 case by Lemma
and can’t be independent by Theorem [IT.1.2] Say, without loss of generality, that the

m-neighbourhood is d-semi-undesirable with respect to j. This means that, for any distinct

z and y,
m mme mme
Pje ZPjex___ “Pjay (11.2.1)
AR G VRS

Note the denominators are non-zero, as otherwise, when coupled with d-semi-

undesirability, they would give pj;7'¢ = pg’;;”d = Djgg OF Play'c = p%";d = Djyy > Which
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give undesirability, and hence p’; = 0.
Now, as the third eigenvalue triple ¢, is in the Eigenvector case in j, we know that, if v is
its eigenvector,

NZ,v = ByyN¥ v (11.2.2)

where B, is a constant. Now by Lemma and the semi-undesirability condition we

know that
mmd mme mme

(pjx:c ~ Pjag )tdm +p§'§c ~ Djzx

mmd mme mme

Buy =
(pj:vy ~ Pjay )tdm ~ Pjzy

Note that neither the numerator nor the denominator can be zero, as if it was then ¢4, would
equal rg4, and sq4,, meaning the m-neighbourhood was complete in d.

Using Equation [TT.2.T|this becomes

B il
Ty — _pmme
Jxry
Py’
T mme
Jjxy

However we know

0= Nj,v+ Njymv + Niv

= Nj,,v (1+ Byy + B.z)

pmme pmme
= N%,v (1 e

mme mme
pjy:c pjzz

And therefore, as all the intersection numbers are positive, we must have mev = 0.

However this means that B, = 0 which we’ve already shown can’t happen.

Therefore, as the m-neighbourhood cannot be two coloured by Corollary [IT.2.3] we must
have pii. = 0 for some z. Now we know pg’l‘ # 0 by Theorem[10.1.T|and Dmj = (0 by the fact

the m-neighbourhood is three coloured. Hence we know that we must have p7: = 0. O

We can therefore note that the m-neighbourhood has two eigenvalue triples in the O case
in j if we have one of the cases from Theorem [I0.2.13] (with m and j swapped as in the

statement of the theorem). We can therefore see that we must be in the scenario represented

by Figure|10.2.13} and so p},, # 0 (as pgj 2 0 in the theorem).
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11.3 Eigenvector case

The only case for which we have not yet obtained tight restrictions is the Eigenvector case.
Many of the possibilities that we have discussed so far involve a neighbourhood with two
eigenvalues that are in the eigenvector case with another neighbourhood. So if we could
place limits upon this we’d gain a lot of information.

Suppose therefore that the m-neighbourhood is such that it has two distinct eigenvalue
triples, (7z,.s Tym> "z, ) and (Sz,,, Sy, Sz, ) in the Eigenvector case in j. Then we know
there exists a system of constants that describe the linear relationships between N7 v and
N ]y v for all z, y and an eigenvector v belonging to the eigenspace of (74, ,7y,,, 72,, ). We

m

will first assume that N7 v # 0 for all x, however a similar system can be set up when

Nj,v = 0. Let v’ be an eigenvector belonging to the eigenspace, (T2;,Ty;>72;), Which

corresponds to (7, , Ty > r,, ). For any x, y, define constants By, Byy as
_ Yy /I D Yy /
mev = Bzyijv, fow-v = Bwmejv (11.3.3)
Then we can note

Lemma 11.3.1 For the system of constants defined in Equation|l 1.3.3|and any colours x, y:

_ 1
* Bay = By

« 0=1+ By, + B,

* B,y = By

Proof. The first point is immediate from the definition and the second follows from the

fact 0 = N7, v+ N;’mv + N7,,v. The third comes from the fact that because, by Remark

m

7.6.14, N, v’ is itself an eigenvector of the m-neighbourhood, we know N7 N 0" =

Jm=mj

B,y NY NY o'. Further we can say, N2 NY v' = By, B, N! NZ 1/ however

T Yy jjx 7Y jjz /
Nijm N0 = ( Ty ey + DhngyTy; +p]mxyr2j) v

= ( ey + DhiyeTy; + P]niixrzj) v'

=N/ NI o

jm*Ymyg
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meaning BxyBym =1, and therefore, Byx = Byz. ]

Now from Lemma|[7.3.4] we know that, for any colour a,
Tam = (Pihz — Pria) + Buz (Plnats — D) (113.4)

Therefore if we know B, then we know r,,, for any a. At the moment we only know
B, in terms of the eigenvalues (from Lemma and hence it will be unique to each
eigenspace. However if we could find it in terms of just the intersection numbers then we
could determine that (74,,,7y,., 7z, ) and (Sg,,., Sy,., Sz, ) are actually equal.

We know however that

Tam = (Pmay — Priay) T Bry(Pingy — Pnay)

And so

(Phnay = Pmay) + Bey(Pinay — Prmay) = Pimgz — Prmaz) + Bya (Pt — Pinaz)

Using the result from Lemma[IT.3.1)we can determine that

0= ( mjy ij)BZx + ( mjx +pmjz mjz mjy)Byac o ( mjxr mjz) (1 135)

Pz — Pmax Prmax may — Pmaz — Pmay Pmay — Pmay
Therefore we have a quadratic for B,,.

Lemma 11.3.2 In the m-neighbourhood, there do not exist three distinct eigenvalue triples

that are all in the eigenvector case in j.

Proof. So long as the Quadratic[I1.3.5]is non-zero there can exist a maximum of 2 different
values for B,,. As the same quadratic is formed by each of the eigenvalue triples, we
therefore have only two different possible values for the eigenvalue triples. Therefore in
order for there to be three distinct eigenvalue triples all in the eigenvector case in j, the

quadratic [T1.3.5] has coefficients all O for every value of a. However this implies for all a,

P = Dmue, MEANING 7y, = Sq, = ta. = Dmaw — Dmax. Hence there cannot be three

distinct eigenvalue triples all in the eigenvector case in a. O
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We will now consider the case when [I1.3.5]is actually a linear equation:

Lemma 11.3.3 Suppose the m-neighbourhood is such that it has two eigenvalue triples,

(T2 s Ty s Tz ) ANA (Sg,. s Sy s Sz, ) I the Eigenvector case in j. Then if there exists a
colour a and distinct colours x, vy, z such that pmys = Pmes, then either (O Ty s Ty ) =

(Sapm s Syum > Sz,,) OF Dy = Pmae for all distinct colours x, v, z, and also

mjx mjy

Tamwm = Sam = Pmaz — Pmaz

Proof. Suppose there exists a colour a and distinct colours z, y, z such that pjraY = p/dZ .
Then we know from the quadratic that

0 = (Pmaz + Py — Pmaz — Pmagy) Byz — Py — Pmy)

And so either we can solve for B, in terms of only intersection numbers or both p%ﬁ
pﬁ% — pmiz p%{f{, and p%ﬁlgf/ — p%ﬁz are zero. If we had the former, then we are done as
both eigenvalue triples would have the same value for B, and therefore would be equal.
So suppose we have the latter.

Note that now we have 7, = s, = p%{g/ — p%{l’z = ppit _ pmiz by Equation
however it is not only B, that we can solve for, it could be B, or B, ., as well. And now
we can write

— )JY _ mjz _ omjT o mjy mjz __ o mjy
Tam = pmay pmay = Pmax Pmaz BZ$ (pmax pmax)

Again if we can determine B,, in terms of intersection numbers we are done, and so we
must have p/9% = p9Y We can repeat this same idea with any of the B’s leading us to
having the equation pzi‘z = ngl for all distinct colours d, e, f. Further we must have

o - mjd mje
Tam = Sam = Pmad — Pmad

O]

Assuming we don’t have (74,.,, 7y, zn) = (Szms Sym» Sz, ), We can combine this with
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Lemma to get that

_ _ ,.mjxr _ ,.mjy _ mmb __  mmc
Tam = Sam = Pmax Pmaz = Pmab Prab

and that pmmb = pmme py Lemma We can also note that Lemma tells us that,
in the case where Equation [I1.3.5]is linear, it actually has all coefficients being 0. We can
still form the quadratic in terms of b or ¢, however we can show these are the same quadratic,
so we cannot solve for a unique value of By,.

We can however form a different quadratic using the eigenvalue equation for rgm from

Corollary applied to the m-neighbourhood. This gives

2 b
Tho = Pibb Tam + Pinbb "o = Prbby Tem T Pimb

Using this, and the equivalent one for rzm, we can show that this case can’t occur.

Lemma 11.3.4 Suppose the m-neighbourhood is such that it has two eigenvalue triples,
(T2 s Ty s T2 ) ARd (Sg,., Sy, Sz, ) in the Eigenvector case in j. Then if there exists a

colour a and distinct colours ., vy, z such that pyas = Dmae, We must have

b __mjz mjy mjz mjz

pmgg - p%ZZC = Prmbe +pmby ~ Prbe — Prby
Proof. This begins from where Lemma [I1.3.3] ends.  Suppose we do not have
(T2 Tyms T2m ) = (S Syms Sz )- Then we know by Lemma|11.3.3[that we actually have
pmdy. — prmiz for all distinct z,y, z. We also know by Lemma [11.3.3|that for all distinct
x,y, 2z we can’t have p;nliz = ngi or p9Y = p™IZ a5 then we would getry, = Sp.
or re, = Sc,, respectively. So by the equation 0 = 1+ r,,, + 14, + 7¢,,» We could
determine that in fact the third eigenvalue was also equal, contradicting (r4,,, 7y, 72 ) 7
(8$m7 Sym7 Szm)'
This means that we can form the quadratic from Equation|11.3.5|in b, i.e.

mjz mjz mjy mjx mjz

0= Wt = Pk B+ ks + Bty o = o) B = Wl = ) (1130
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Next we consider the eigenvalue equation for rgm.

2 __,.mma mmb mmc m
Tom = Pmbb Tam T Pmbb T T Pmbb Tem T Pmb

_ mma mmc mmb mmc mmc m
= (Pmbb" = Prmbb )Tam T (Pmbb — Prmbb )Tbm — Pmbb + Prmb

Now inputting the value of the eigenvalues in terms of B, gives us

. . . .
0 =((Prmbz — Pimba) + Bya (Prnha = Prate))” =

. 4 . , .

By (Dt = Pt Pt = Poate) — (Pt — Do) (Prine — Piacs) =
, 4 .

(Pt = Pt (Do — Dd =) + Pt — Doy

_nR2 (,mJy mjzy2
0 _Bya?(pmb:r - pmbx) +
. . . . b . )
Bya (2Pt — Prnbe) Prte — Prbr) — Py’ — Pt ) (Pore — Pomira))+

(Pt = Do) = (D™ — Do) (P — Plract) —

pmax max

mmc mjT mjz mmc

b
(p'r%l?z — Pmbb )(pmb:c - pmbx) +pmbb - pzb

Now we can multiply the quadratic|11.3.6{by (pZ{myc - pzz;) and subtract it to get a linear
equation in By,. The coefficient of B, in this equation is crucial —if it is non-zero then we
can solve for By, and determine that (7,,, 7y, 72,) = (Sz.,s Sym» Sz, )» hence it must be

zero. This gives us

mjy mjz mjx mjz mmc mjy mjz

b
2(pmbx _pmbx)(pmbz _pmb:c) - (pmgé — Pmbb )(pmb:c _pmbx)

mjy mjz mjx mjz mjz mjy

= (pmbx _pmbx)(pmbz +pmby ~ Pipe _pmby)

mjz

mbe» WE can cancel these

As we’ve already determined at the start of the proof that pﬁig #p

to give the equation

mjx mjz mmb mme _ ,MjT mjz mjz mjy
2pmbx B 2pmbz — Pmbb + Pmbb = Prby +pmby ~ Pops — pmby

mjx mjz mmb mme __ , Mjz mjy
Prbz — Pmbe — Pmbb + Pmbb = Py — Pmby

mmb mmec __ , mjx mjy mjz mjz
Pmbb — Pmbb = Py + Dby = Pmbz — Pmby
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11.4 Putting it all together

In this section we will work to bring together all that has been discussed over the previous
chapters, and conclude with a meaningful theorem about how the eigenvectors of the
neighbourhoods must interact. We will also talk about what this means for the intersection
numbers.

First coupling together Lemma(11.2.1} Theorem|I1.1.2|and Lemma|l1.3.2)tells us:

Lemma 11.4.1 Suppose p’ # 0 and the m-neighbourhood has three distinct eigenvalue
triples. Then two eigenvalue triples are in the eigenvector case in j and one is in the 0 case
in j.

We can now list the possible diagrams that arise from supposing each neighbourhood is

3-coloured.
Case 1:
m
tam
o

Case 2:
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So there are only two possibilities and both contain at least one corresponding eigenvalue
triangle.
We can also now fully describe when p;;,,, = 0 and p7; = 0 in just one case.

Case 3:

And there are a further two cases when p], . = pg ;=0

Case 4:
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m
Sam
o
Tm
/ .\
Tal. <—>oraj
Sal. ° 50,
o— | .
la, J
l
Case 5:
m
S
o
Tm
/ .\
ral. (—).;
o—— °
M Sa;
. .
la, J

l

Note that case 5 also covers the pj- = 0 case from Theorem [10.2.13| There is one more
33
case which also stems from this Theorem and so we’ll list it for completeness.

Case 6:
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For ease of reference we state this as a Theorem:

Theorem 11.4.2 Suppose I is a finite primitive 3-coloured 3-regular graph. Then we have

one of the following scenarios:

* py, # 0 forall colours x,y, z and the eigenvalue triples of the neighbourhoods are

case 1 or case 2.

* For some colour m, py,,,, = 0, for all other combinations of colours .y, z, py, # 0,

and the eigenvalue triples of the neighbourhoods are case 3.

* For some distinct colours m and j, py.., = p; ;= 0, for all other combinations of
colours x,y, z, Py, # 0, and the eigenvalue triples of the neighbourhoods are case 4

or 5.

* For some distinct colours m and j, pJ; = pg- ; =0 for all other combinations of

colours x,y, z, py, 7 0, and the eigenvalue triples of the neighbourhoods are case 5.

* For some distinct colours m and j, pj; = 0, for all other combinations of colours

T,Y, 2 Dy, # 0, and the eigenvalue triples of the neighbourhoods are case 6.
* [ is the Tricolour Heptagon.

» I is the Tricolour Clebsch Graph.

11.5 M.e.c Implications

To bring this thesis around full circle, we look at the implications of Theorem [TT.4.2] with

regards to m.e.cs.

The most important case and the original motivation was to show that there cannot be a
m.e.c with ultraproduct elementarily equivalent to the universal homogeneous 3-coloured
graph, which we’ll denote by R3. We can see that if a m.e.c C has an ultraproduct that
was elementarily equivalent to R 3 then for some n > 3 any M € C sufficiently large with
respect to n, will be n-regular and such that py, # 0 for any colours z,y and z. Hence
from Theorem [IT.4.2] we know it must be in case 1 or case 2. Further, its neighbourhoods

will be n — 1-regular, and in a large enough member of C we can assume p; 7% # 0 for
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any m, x, y, 2. Therefore the neighbourhoods must also be finite, n — 1-regular 3-coloured
graphs of case 1 or case 2. We can repeat this process indefinitely, as this holds for arbitrarily
large n.

It is my belief that issues will arise from the fact that there are double eigenvector cases in
each neighbourhood. I have not had the chance to go through all the possible consequences
of Equation but I would guess that, because we have it in distinct colours a, b and
¢, at least one colour must have the quadratic reduce to 0 i.e. p9% = p9% . This would
bring about the conclusion of Lemma|[I1.3.3] Now in case 1 and case 2, having r,,, = sq,,
for some a would cause problems, especially if you had it due to both 5 and /. In case 2,
it forces the neighbourhood to become almost amorphic (strongly regular in two colours),

and in both cases we would get some equalities between intersection numbers in j and /.

Other results are slightly easier to apply. We can note an easy application of Theorem

1.6.20]

Theorem 11.5.1 Suppose L = {R,G,B} with R,G,B colours (binary, symmetric,
irreflexive relations), { RRG, RGG} C A, and M is a primitive unstable homogeneous A-

free L-structure. Then there does not exist a m.e.c with ultraproduct elementarily equivalent

to M.

Proof. Suppose for a contradiction there exists a m.e.c C with ultraproduct elementarily
equivalent to //. Well then by Lemma[2.5.4and Lemma[2.5.5] we know that any sufficiently
large member D € C is a finite primitive 3-regular 3-coloured graph with no RRG or RGG
triangles, i.e. ng = ng = 0. But no such structure exists by Theorem O

We know such structures exists as, recalling the notation from section [3.4] just taking A =
{RRG, RGG} means the class C(A) has free amalgamation (by solving the amalgamation
problem with B).

We now look at the repercussions of Theorem[9.3.3]in terms of m.e.c which are very similar.

Theorem 11.5.2 Suppose L = {R, G, B} with R, G, B colours, {RRG, RRR} C A, and

M is a primitive unstable homogeneous A-free L-structure. Then there does not exist a
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m.e.c with ultraproduct elementarily equivalent to M.

Proof. Suppose for a contradiction there exists a m.e.c C with ultraproduct elementarily
equivalent to //. Well then by Lemma[2.5.4|and Lemma[2.5.5] we know that any sufficiently
large member D € C is a finite primitive 3-regular 3-coloured graph with no RRG or RRR
triangles, i.e. ng = pg r = 0. But then it has to be the Tricolour Heptagon by Theorem
[7.6.20] Hence this will not satisfy the required axioms to be a m.e.c with ultraproduct

elementarily equivalent to M. O

Again, we can see such Fraissé classes exist, as just taking A = {RRG, RRR} means

C(A) has free amalgamation (by solving the amalgamation problem with B).

We can also get a similar analogous result for Theorem [I0.1.1}

Theorem 11.5.3 Suppose L = {R,G, B} with R, G, B colours, {RGB} C A, and M
is a primitive unstable homogeneous A-free L-structure. Then there does not exist a m.e.c

with ultraproduct elementarily equivalent to M.

The proof is identical to that of Theorem [T1.5.1] with RG'B taking the place of RRG and
RGG.

Recall Theorem[3.2.4] Using this result, and the work of section[3.4] we now have enough to
show that there does not exist a m.e.c limit for any unstable homogeneous graph determined

only by forbidden triangles.

Theorem 11.5.4 Suppose L = {R,G, B} with R,G, B colours, A is a non-empty set of
triangles such that C(A) is a Fraissé class with semi-free amalgamation, and M (A) is
the Fraissé limit of C(A). Then if M(A) is unstable, there does not exist a m.e.c with

ultraproduct elementarily equivalent to M (A).

Proof. To complete this proof we need to rule out all possible A. Suppose for a
contradiction that M (A) is unstable and a m.e.c limit. We also know it has to be primitive by
Theorem [6.1.8] We can see from Theorems[11.5.1] [T1.5.2] and [T1.5.3] that we cannot have
any sets of the form { RRG, RGG},{RRG, RRR} or {RGB} in A. Further by Theorem
and Theorem[3.4.7] we know that A is not of the form { BRR, GGR, RRR} and that
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A is such that C(A) has free amalgamation. By the fact that the Fraissé limit is primitive,
we can see that any sets of the form { RRG, RRB} are not in A either (as they form an
equivalence relation R~). This leaves with not many options. If we start with RRG € A
then we cannot include a triangle that restricts B in A as this would mean we wouldn’t have
free amalgamation. Hence the only other triangle we can include in A is GGG. Similarly
if we start with RRR € A then we can add either RGG or GGG, but no others. Note that
{RRR, RGGY} is the same as { RRG, GGG} so we ignore it. This means the only options

for A are

i) A; = {RRG}

i) Ao = {RRG,GGG}
iii) A3 ={RRR}

iv) Ay = {RRR,GGG}

We claim that the Fraissé limits of the classes these define all cannot be m.e.c limits by

Theorem [3.2.4]

Indeed, consider M (A;), then if you name a point x € M(A;), the red-neighbourhood
of x is a two-coloured graph with no restrictions, and therefore isomorphic to the random
graph. Hence the random graph is canonically embedded in M (A1) over 2 and therefore
M (Ay) cannot be a m.e.c limit by Theorem [3.1.7/and Theorem [3.2.4] We see that M (A»)
and M (As3), follow by the exact same argument (in M (A3) the random graph is coloured

by G and B but this makes no difference).

M (Ay) is a little different, the same process means that the red-neighbourhood of z, for
some x € M(Ay), is instead the Random triangle-free graph (with G as edges and B as
non-edges) canonically embedded in M (Ay4) over x. However this still has no m.e.c limit
by Theorem and therefore we can apply Theorem [3.2.4] one last time to show that

M (A4) has no m.e.c limit, and hence no such A exists. O
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Appendix A

Completeness of Cherlin’s List with

L ={R,G, B}

This appendix is dedicated to the proving of the following theorem.

Theorem 3.4.10 Ler L = {R,G,B} be a symmetric, irreflexive, binary, relational
language and suppose M is a primitive universal homogeneous L-structure with semi-
free, but not free, amalgamation determined by a set of forbidden triangles. Then M is

isomorphic to M (A) with

A = {RBB, GGB, BBB}

A.1 Set up for a General Coloured Language

Although the aim is to prove this result for a 3-coloured language, we can set up the notation
for a general n-coloured language, to make it easier to generalise. Therefore suppose we
are working over a binary relation language £ = {41, ... A, }, where A; is symmetric and

irreflexive. We will be using the notation from Section 3.4}

The aim is to reduce the amalgamation problem for C(A) to a particular set of finite £-
structures. These structures will not necessarily be in C(A) and in actuality we shall see

in Theorem that the problems occur when they are. In a rough sense we set up these
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L-structures around two distinct points b and ¢, in such a way that there cannot be a A-free
way of connecting b and c. We do this by including points a; as intermediaries between
them, connected in such a way to b and c as to force any edge between b and c to not be a
particular colour by some restricted triangle in A. If we do this for every colour then (b, ¢)
can’t be an edge of any colour. Note we will be able do this for every colour if we do not

have free amalgamation.

More formally, fix a set of forbidden triangles A. Suppose for a colour 4; € £, we define
the set A; as follows. Fix a set of forbidden triangles A and consider a triangle § € A. If
one of the edges in J is of colour A; then we remove this edge and add the other two edges

into A; as an unordered pairi.e. A; = {{E», E3} : AjE2E3 € A}

We first construct an L-structure D in the following way. Define a function h that takes as its
input an edge and returns the colour of the edge. Start with the vertices b and c and for each
colour A; add a vertex a; and edges (b, a;) and (a;, ¢) such that {h(b, a;), h(a;,c)} € A;.
Now if we have vertices a; and ay, such that h(b, a;) = h(b,a;) and h(aj,c) = h(ag,c),
we remove the vertex ag. This leaves us with a finite structure with less than or equal to
n + 2 points. We leave the colours of the edges between the a;’s unassigned (these will be

“filled in’ later). Thus we have not defined an L-structure D, but a family of L-structures.

Definition A.1.1. We define the Discriminatory class, D(A), as the class of all the possible
L-structures D as above for a specific A. We will call any specific D € D(A) a

Discriminatory Structure.

Now a rather confusing thing to mention, is that what we want is that whether or not C(A)
is a Fraissé class should hinge on whether or not every element of D(A) can be completed

in a A-free way. This leads to the rather paradoxical seeming definition.

Definition A.1.2. We say a discriminatory structure is completeable in a A-free way if we
can assign colours from L to the edges (a;, a;) without creating any triangles in A.
A Discriminatory Structure is called flawed if it cannot be completed in a A-free way. D(A)

is called flawed if for every D € D(A), D is flawed.

We then get the crucial theorem of the classification:



A.1. SET UP FOR A GENERAL COLOURED LANGUAGE 219

Theorem A.1.3 Say A is a set of n-coloured triangles and C(A) is the class of all finite n-
coloured A-free L-structures. Then C(A) has the strong amalgamation property iff D(A)
is flawed.

Proof. (=) Suppose that D(A) is not flawed. Then there is a D € D(A) such that D =
{a1,...,a;,b,c} is not flawed, for some j < n. We view D a having been completed,
i.e. with colours assigned in A-free way to pairs {a;,a;} for i # j (but not to {b,c}).
Therefore take A = {a1,...,a;} with B = {a1,...,a;,b} and C' = {a4,...,a;,c}, with
the embeddings § and - from A to B and A to C respectively. As D is not flawed, A, B and
C are all known to be A-free substructures, and hence are structures in C(A). However, in
D, the edge (b, ¢) cannot be coloured as for all i < j the edge pair (b, a;), (¢, a;) eliminates a
set of colours as possibilities, which ultimately partition the set of all colours in £. Therefore
no amalgam of B and C over A exists in C(A), except by possibly amalgamating b and c.
Furthermore any strong amalgamation of B and C' over A must contain D as D = B U C.

Hence C(A) does not have the strong amalgamation property.

(<) Suppose D(A) is flawed. Consider A, By, B € C(A) with embeddings o : A — By
and g : A — Bs. Then we can identify the image of A in each of these structures
such that a1 (A) = az(A) and By N By = ag(A). Then define C = By U By, Now
all the internal edges of By and By are preserved within C, hence for this to solve the

amalgamation problem, all we need to check is the new edges, i.e. the ones between points

in Bl\OéQ(A) and BQ\O[Q (A) So take by € Bl\OéQ(A) and by € BQ\O[Q(A).

Suppose for a contradiction that the edge (b;, b2) cannot be coloured in a A-free way. This
means that there exist pairs of edges between by and by and, foreach 7 = 1,...,n, some a;
for j € {1,...,n} such that {h(b1,a;), h(b2,a;)} € A;. Let I be the index set of the j’s,
then |I|< n. Therefore, the induced substructure over {by, b2, a1, ..., a7} is isomorphic to
a structure that is in D(A). However as D(A) is flawed, this structure cannot exist in A-free
way. This is a contradiction and therefore such a; cannot exist. Using this, we can colour
(b1,b2). Using the same argument, we can assign colour to (b, b2) for all b € Bj\aa(A).
Then, we can treat bo as if it were part of ap(A) and repeat the process for all other elements
of Bs. Including all these edges into our C, we get a legitimate A-free strong amalgamation

of By and By over A. Therefore C(A) has the strong amalgamation property. O
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We can note that C(A) will have the free amalgamation property if and only if for some

colour A;, A; is empty.

A.2 Three colours

We shall now assume that £ = {R, G, B}, with the aim of proving Theorem [3.4.10

Lemma A.2.1 Over the language L = {R,G,B}, if |A|l= 1, then C(A) has free

amalgamation or D(A) is not flawed.

Proof. 1t is clear that if all the colours are not banned in some way, then we can simply
complete the amalgamation by filling in all the edges with that colour, giving us free
amalgamation. That leaves us the sole option of A = { RGB}. However by then examining

the discrimination class we can find the discriminatory structure

as
b a2 c
ai
This can be completed in a A-free way and hence D(A) is not flawed. O

We see that this discriminatory structure remains a problem whenever RGB € A and
because it can be completed in multiple different manners, it requires the inclusion of a few

more triangles to make it flawed. Recall that the relation X~ is XU =.

Corollary A.2.2 Suppose L = {R,G,B} and RGB € A. Then either C(A) has free

amalgamation, or it has an imprimitive Fraissé limit or D(A) is not flawed.
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Proof. Suppose RGB € A and consider the discriminatory structure,

as

ai

Note that we can also permute the colours to create 2 more similar structures. Let .S be
the set of all completions of these three structures in an { RGB}-free way. Then S will
have size 9. To make these structures flawed we would need to add triangles into A such
that every member of S includes at least one of these triangles. We want to find the most
efficient way to do this. It is not possible with only 1 triangle as no triangle is common to all
completions. If we focus only on triangles of the form X XY we see that every completion
contains all but 2 of them, and this pair of absentees is unique to the structure. Therefore
to cover all of these structures with two triangles it satisfies to find two of the form X XY
that are not an absent pair. As we have 15 options, and only 9 pairs in our completions, this
gives us 6 possibilities. However each of these possibilities is of the form {X XY, ZZY '}
or { X XY, X X7}, the latter will mean that X = will form a nontrivial equivalence relation
and the former, when combined with the fact RGB is in A, will mean X~ U Z~ is an

equivalence relation. A Fraissé limit of such a class would therefore be imprimitive.

Hence |A|> 3. However there is no way to include three triangles of the form X XY and

RGB in A without forming a definable non-trivial equivalence relation, as before. O
Hence we can now assume that RG B is not in A. This immediately leads to the result

Corollary A.2.3 Suppose L = {R,G,B} and {RRR,GGG,BBB} C A. Then either

C(A) has an imprimitive Fraissé limit or D(A) is not flawed.

Proof. First note that we cannot have free amalgamation. Then by Corollary [A.2.2] if
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RGB € A we are done, so suppose it is not. In D(A) we have the structure

as

Now there exists a completion of this such that (a1, ag) is Blue, (a2, as) is Red and (a3, a;)
is Green. This completion is entirely made up of only the triangle RG B, and so cannot be

flawed without RGB € A. O

Any A cannot contain more than three triangles of the form X XY without necessitating the
forming of a quantifier-free definable equivalence relation. We see that there are only two
non-isomorphic ways in which three of the X XY triangles might be in A without forming

a quantifier-free definable equivalence relation. This leads to

Corollary A.2.4 * Suppose L = {R,G, B} and |A|> 5. Then either C(A) has an
imprimitive Fraissé limit or D(A) is not flawed.
e If |A|l= 5, then either A = {RRR,GGG,RRG,GGB,BBR} or A =
{RRR,GGG,RRG,GGR, BBR}, or C(A) has an imprimitive Fraissé limit or
D(A) is not flawed.

However we can also rule out the only combinations of three triangles of the form X XY

that don’t form equivalence relations

Lemma A.2.5 Suppose L = {R,G, B} and {RRG,GGB,BBR} C A. Then either

C(A) has an imprimitive Fraissé limit or D(A) is not flawed.
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Proof. Suppose that {RRG,GGB, BBR} C A. Then

as

ai

is a discriminatory structure. We can complete it by making (a1, ag2) green, (ag, as) blue
and (a3, a1) red. Therefore the only triangles in this completion are RGB, GGR, RRB
and BBG, none of which we can include in A without inducing a definable non-trivial

equivalence relation, or other non-flawed discriminatory structures. 0
And

Lemma A.2.6 Suppose L ={R,G,B} and {RRG,GGR, BBR} C A, then either C(A)

has an imprimitive Fraissé limit or D(A) is not flawed.
Proof. Suppose that {RRG, GGR, BBR} C A. Then

b az c

ay

is a discriminatory structure. We can complete it by making (a1, a2) blue, and therefore the
only triangles in this completion are RRB and G BB, neither of which we can include in

A without inducing a definable non-trivial equivalence relation. O

Corollary A.2.7 Suppose L = {R,G,B} and |A|= b5, then either C(A) has an

imprimitive Fraissé limit or D(A) is not flawed.
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We also know now that if |[A|> 3, then A contains a triple X X X and so we focus on

possibilities for such A.

Lemma A.2.8 Suppose L = {R,G,B} and {RRR,GGG,RRB} C A. Then either

C(A) has an imprimitive Fraissé limit or D(A) is not flawed.

Proof. If {RRR,GGG,RRB} C A, we get the following discriminatory structure

ay

This can be completed by colouring (a1, az2) blue, and hence the only way to make this
flawed is with RGB € A. But by Corollary [A.2.2]this can’t happen without D(A) being

flawed or allowing a non-trivial equivalence relation. O

We can similarly rule out another important combination

Lemma A.2.9 Suppose L = {R,G,B} and {RRR,GGR, BBG} C A. Then either

C(A) has an imprimitive Fraissé limit or D(A) is not flawed.

Proof. If {RRR,GGR, BBG} C A, we get the following discriminatory structure

as

ay

This can be completed by colouring (a1, a2) blue, (a2, as) red and (a1, as) red. Hence

the only way to make this flawed is by having RRB, RRG or RBG in A. But we can’t
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have RRB € A without the consequences of Lemma[A.2.5] we can’t have RRG without
the consequences of Lemma and we can’t have RBG without the consequences of

Corollary O

Corollary A.2.10 Suppose L = {R,G,B} and |A|= 4. Then either C(A) has free

amalgamation, has an imprimitive Fraissé limit or D(A) is not flawed.

Proof. Suppose |A|= 4 and C(A) doesn’t have free amalgamation or an imprimitive Fraissé

Limit. Then by Corollary RGB ¢ A, by Lemmas |[A.2.5| and |A.2.6| we have a

maximum of two triangles of the form X XY, and by Corollary[A.2.3] we have a maximum

of 2 monochrome triangles. Therefore the options for A are
i) {RRR,GGG,RRB,GGB}
ii) {RRR,GGG,RRB,BBR}
iii) {RRR, GGG, RRG,GGB}
iv) {RRR,GGG,RRG,BBR}
However i), ii) and iii) come under the jurisdiction of Lemma[A.2.8|and iv) is dealt with by
LemmalA.2.9 m

We will now rule out small As too

Lemma A.2.11 Suppose L = {R,G,B} and |A|= 2. Then either C(A) has free

amalgamation, has an imprimitive Fraissé limit or D(A) is not flawed.
Proof. To avoid free amalgamation each colour must appear in our triangles at least once.
To avoid a definable non-trivial equivalence relation we have the following possibilities:

i) A ={RRG,GGB}

ii) A={RRR,GGB}

iii) A = {RRG,GBB}
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Say we have i). We can see however the discriminatory structure

az
(6]
b a2 ¢ (A2.1)
ai
is not flawed in the determining class.
Now suppose we have ii). Then we have a non-flawed discriminatory structure:
as
(]
b a2 c (A2.2)
ay
This leaves just case iii). However we can find the discriminatory structure
az
b 4 ¢ (A2.3)
ay
which is not flawed. Therefore, |A|# 2 O

As has been the case in most of these proofs, these discriminatory structures can be pushed
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further and used to rule out certain A that embed them.

Corollary A.2.12 Suppose L = {R, G, B} and |A|= 3, and one of the following holds
1. {RRR,GGB} C A
2. {RRG,GBB} C A

Then either C(A) has an imprimitive Fraissé limit or D(A) is not flawed.

Proof. First start with {RRR, GGB} C A and look at the discriminatory structure
This was completed by making (a1, az) green, (ag,as) red and (a1, as) green, hence the
only way to make it flawed is to include RGB or GGR in A. Now GGR cannot be
included without forming a definable non-trivial equivalence relation, and RG B can’t by
Lemmal[A.2.2]

Now we suppose { RRG,GBB} C A and look at the discriminatory structure
This can be completed by making (ai,az) blue, (ag,as) green and (a1, as) green. Now
this completion includes triangles GGR, BGG, RRB and RGB. If RRB was in A we
would end up with a non-trivial equivalence relation. Including GGR in A invokes the
consequences of Lemma and if BGG were in A we would be in the domain of
Lemma|[A.2.5] Then as always Corollary covers the inclusion of RGB. U

We are now at the point where we know A has to be of size 3 and has to include at least
one monochrome triangle X X X. It also cannot include all monochrome triangles, and if
we suppose it has two there is only one possibility if it does not have free amalgamation.

We shall consider this next

Lemma A.2.13 Suppose L = {R,G, B} and A = {RRR, GGG, RBB}, then D(A) is

not flawed.
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Proof. Simply note we have the discriminatory structure

as

This is not flawed as it can be completed in a A-free way by making (a1, az) blue, (a9, as)

blue, and (a1, ag) green. O

Hence we have a maximum of one monochrome triangle in A.

You will now be relieved to hear we have enough to prove the theorem

Theorem 3.4.10 Let L = {R,G,B} be a symmetric, irreflexive, binary, relational
language and suppose M is a primitive universal homogeneous L-structure with semi-
free, but not free, amalgamation determined by a set of forbidden triangles. Then M is

isomorphic to M (A) with
A = {RBB, GGB, BBB}

Proof. For this we shall just bring together all the previous results. Suppose M is a
universal homogeneous L£-structure without free amalgamation or a definable equivalence
relation. As M does not have free amalgamation and is determined by forbidden triangles,
we know that M is isomorphic to M (A) for some set of triangles A. Now by Theorem
we know that D(A) is flawed. Hence we can see by Lemmas [A.2.1] and |[A.2.11]
and Corollaries |A.2.4] [A.2.7 and |A.2.10] that |A|= 3. Now we know RGB ¢ A by
Corollary [A.2.2] Further by Lemmas [A.2.5] and [A.2.6] A must contain a monochrome

triangle. However by Lemmas[A.2.3] [A.2.8]and [A.2.13] A can only contain a maximum of

one monochrome triangle. Hence we have BBB € A and two triangles of the form X XY'.

By Corollary [A.2.12] part i) neither of these X XY can be without the colour B. To avoid
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free amalgamation or a non-trivial equivalence relation we have but one option, which is

A = {RBB, GGB, BBB} 0
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Appendix B

3-coloured Graph Notation

This is a list of the more novel and obscure notation that I commonly use throughout the

work on 3-coloured graphs.
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B. 3-COLOURED GRAPH NOTATION

Notation Meaning Where is it defined?
E= The relation E union with equality Definition[2.1.11
q} i The Krein Parameter Equation 2.2..2
R, B, G Binary, symmetric, irreflexive relations Section ﬂ
relating to the colours red, blue and green
n Number of vertices in the Graph Section E
Ag, Ap, Ag Adjacency matrices of the red, blue, green edges Section H
T4, Sis b; Non-principal eigenvalues for the A; Section E
pé ! The double intersection number Section E
k; Number of ¢ coloured edges incident at any vertex Section 4.1
J The all one matrix (of any dimensions) Section E
The all one vector (of any dimension) Section E
1 The identity matrix (of any square dimensions) Section H
E; The minimal idempotents of the Bose-Mesner algebra Theorem [2.2.2
generated by the A;
N]Z:l Adjacency matrix of ¢ coloured edges Section E
from the [-neighbourhood to the j-neighbourhood
Ti;y Sijs i Eigenvalues of N ;] Section 4.1
pfjb,g Triple intersection number Section 4.1
i Kronecker Delta Classical
f,9.h Multiplicities of r;, s;, t; respectively Equation4.1.4
i, Bis Vi Idempotent constants Equation4.1.4
D A notable structural constant Equation|4.1.5
T3 OF (Tym, 75, 77) Eigenvalue triple of 7, r; and r; Definition|7.1.10
E(ry) or E(rm,1j,11) Eigenspace of the eigenvalue triple Definition|(7.1.10
T Eigenvalue of N?  for any z Section|(7.2
U, Eigenvector of N with eigenvalue r,,, for any Definition [7.2.2]
’foj Discriminant of equation|7.4.3|in x and y Equation(7.4.5
I The multiplicity of an eigenvalue, which depends on ¢ Definition|8.1.1
(Mi); An eigenvalue of the graph, which depends on ¢ and j Definition|(8.1.1
H; Characteristic matrices of an eigenspace Equation|8.1.2
K;, L;, M; Breakdown of the H; into neighbourhoods Equation(8.1.3
xj(r), y;j(r), z;(r) Constants defined via the eigenvalues of the neighbourhood Equation|8.2.5
i x,y or z depending on 7 (in relation to the above constants) Equation8.2.5
(IL,,); One of the K, L or M matrices, depending on m and ¢ Equation|9.2.1

By

Constant used in Eigenvector case

Equation|11.2.2
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